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tionnements soulevés lors de nos discussions quant aux limites et aux applications ont
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m’éparpiller. Ton envie de transmettre aussi bien en recherche que dans l’enseignement
force l’admiration et je te remercie sincèrement pour les différentes opportunités que
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Scientific Context

Microscopy is routinely used in medical diagnosis, like infectious diseases detection and/or
characterization, blood components morphological analysis and counting or cancerous
tissue analysis. Most of these diagnoses are performed manually. Thus, the diagnosis
is subjective, depending on the microbiologist, from the preparation of the sample to
the analysis of the images. Automation of this process is then required to perform an
objective diagnosis [Smith et al., 2018].

One of the main difficulty in this automation process is to obtain reproducible and
quantitative data to analyze. Using simple microscopy setups is an easy way to increase
this repeatability. Brightfield microscopy is thus one of the most popular microscopy
technique to observe micrometers-sized objects like cells or bacteria. However this mi-
croscopy technique can only be used on absorbing objects. Thus to observe transparent
objects, also called phase objects, the samples must be stained [Prescott et al., 2002], lead-
ing to an intrusive process, that may also introduce variability depending on the sample
preparation.

Coherent imaging techniques, like digital in-line holographic microscopy, may provide
a solution to this issue since they are not only sensitive to the sample absorption but also
to the phase shift they introduce. This technique is based on the measurements of the
diffraction patterns created by the objects. It is thus no more limited by the depth-of-field
of the microscope and does not require an accurate and expensive translation stage. The
autofocusing step is performed numerically making this technique valuable candidate for
the automation procedure in bio-medical analysis.

This thesis has been prepared at the Hubert Curien Laboratory (LaHC), Saint-Etienne,
France, and funded by the Auvergne-Rhônes-Alpes region under the DIAGHOLO (DI-
AGnostic microbiologique par microscopie HOLOgraphique) project. The LaHC is a joint
research unit of the Jean Monnet University (UJM), the French National Centre for Scien-
tific Research (CNRS), and the Institut d’Optique Graduate School (IOGS). In particular,
the laboratory research covers two main subjects ”Optics, Photonics and Microwave” and
”Computer Science, Telecom and Image”. I was involved in the Optical Design and Im-
age Reconstruction team led by Löıc Denis, at the interface between optics and signal &
image processing.

Holography microscopy, and more specifically in-line holographic reconstructions, is
one of the team main research subject. In this field, many contributions have been applied
to fluid mechanics starting with Corinne Fournier’s thesis in 2003. Inverse problems ap-
proaches framework has been adopted to reconstruct hologram during Löıc Denis’ (2006)
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SCIENTIFIC CONTEXT

and Ferréol Soulez’s (2008) thesis. Since then, Jerôme Gire’s (2009) and Mozhdeh Seifi’s
(2013) thesis enforced the expertise of the team on inverse problems approaches by in-
creasing the collaborations with the Centre d’Astrophysique de Lyon (CRAL) and the
Laboratoire de Mécanique des Fluides et d’Acoustique (LMFA). Fréderic Jolivet’s thesis
(2018) pursued the work of Löıc Denis on non-parametric objects reconstructions [Denis
et al., 2009] by applying them in fluid mechanics and microbiological samples provid-
ing to the team a first microscopic application for holography and a collaboration with
bioMérieux [Jolivet et al., 2018]. Olivier Flasseur’s thesis (2019) improved the recon-
struction of parametric objects (like calibrations bead) by introducing robust processing
in the inverse problem approaches [Flasseur et al., 2017a] and by reconstructing color (Red
Green Blue) holograms with a self-calibrated microscope in the framework of parametric
inverse problem approaches [Flasseur et al., 2017b].

This thesis extends the collaboration with bioMérieux to multispectral reconstructions
of biological sample in the context of biomedical diagnosis automation using digital in-line
holography. In this context, three main aspects of the reconstructions have been studied:
their repeatability, their reproducibility and their quantitativity. These conditions are
fundamental to perform an objective diagnosis whatever the sample and the setup.

The biological context of this thesis consists in reconstructing multispectral holograms
in order to classify Gram stained bacteria. Thus two main axis have been studied during
this thesis:

� Axis 1: Automation of the numerical reconstruction
This axis rises the question of repeatable and reproducible unsupervised reconstruc-
tions in biological sample context, more specifically the reconstruction of bacteria
surrounded by other biological objects introducing noise.

� Axis 2: Bacteria discrimination using multispectral information
This axis rises the question of the quantitativity of the reconstructions and the use
of spectral information to discriminate bacteria.

To improve the reconstructions, three main methodological solutions have been stud-
ied. These methodological solutions constitute the main parts of this manuscript:

� Self-calibration of the image formation model
To perform repeatable and quantitative reconstructions, the image formation model
(forward model) must be accurate, thus focusing distance and aberration depending
of the setup must be calibrated using objective criteria.

� Unsupervised tuning of the regularization hyperparameters
Since the reconstruction process require the use of prior, the weight of these priors
must be objectively tuned to provide reproducible and quantitative reconstructions.

� Exploiting phase diversity in multispectral reconstructions
To exploit the multispectral information contained in multispectral data stack, the
registration of the data is crucial and can be compromised by chromatic aberrations.
These aberrations must thus be taken into account in the reconstruction process.

In this thesis, we suggest to use objective criteria for automation of the reconstruction
process that rely on calibration beads inserted in the sample. Thus, this thesis exploits

2
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SCIENTIFIC CONTEXT

all the information provided by these calibration beads in order to automatize the recon-
struction process.

During this thesis, all the algorithms were developped using the GlobalBioIm frame-
work [Soubies et al., 2019]. This free Matlab library provides generic modules to facilitate
the implementation of inverse problem approaches.
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Introduction
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CHAPTER1
Image processing challenges for phase objects
characterization in holographic microscopy

Abstract

Bloodstream infections are rapidly evolving infections for
which each day of delay of the care causes high increasing
of the mortality probability. Thus, fast identification of the
pathogenic agent must be performed. Gram staining is a com-
monly used technique to classify bacteria and orient quickly
the therapy by only using a brightfield microscope. However,
Gram stain interpretation is a highly operator dependent
process. Automatization of the Gram stain interpretation is
thus required to perform faster and more objective diagnoses.
Since in-line holographic microscopy is based on recording the
diffraction patterns created by the sample, it is not limited
by the depth-of-field. Thus, due to its simplicity and its
adaptability to other setups, in-line holography is a method of
choice to automatize the Gram stain interpretation process.
Indeed, in addition to opacity information, in-line holography
is sensitive to the phase information that can be a key to help
imaging analysis and object classification.
In this chapter we present the biomedical con-
text, digital holographic microscopy, numerical re-
construction of holograms and the thesis challenges.

Introduction: Biomedical context

Optical microscopy is a key tool in biomedical diagnosis [Forbes et al., 2007, Dey et al.,
2015]. It consists in generating magnified images of small objects by using a light source
and a system of lenses. Pathologists are able to investigate biological samples by inter-
preting the absorption, the color and the morphology of the sample.

In the context of analysis of infections in blood smear samples, as illustrated in this
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manuscript, optical microscopy is used as a first step to orient the care. Indeed, for
non-infected patient, blood is sterile, if not, identifying the bacteria responsible for the
infection is a medical emergency [Barenfanger et al., 2008].

To perform the diagnosis on a blood smear sample, the first step consists in preincu-
bating the patient blood in broth culture to detect the presence of bacteria. Few hours are
needed to detect the bacteria. Once a sufficient number of bacteria have been developed,
the blood culture is positive and can be analyzed using, for example Gram analysis.

The sample is spread out on a slide using either an inoculation loop or, as in our
experiments, using the wedge technique. It is then fixed, i.e. dehydrated, by heating
or using ethanol or methanol. However, if the sample is heated, red blood cells can be
degraded. In our experiment, ethanol is used to fix the sample. Thus, the bacteria cell
wall is degraded so that they become dehydrated.

Most cells and bacteria are thin and transparent thus not observable in bright field
microscopy without staining the sample or without adding optics that allows the phase
shift of light induced by the cells to be seen e.g. phase contrast microscopy [Zernike,
1942] or interferometric microscopy [Gabor, 1948, Wolf, 1969]. Figure 1.1 illustrates two
samples containing the same biological objects with and without staining. As seen on this
figure, bacteria are not visible when not stained.

After the fixation process, the sample can be stained so that bacteria can be dis-
criminated. One of the most interesting staining is the Gram one, invented by Hans
Christian Gram in 1884. Indeed, bacteria can be classified in two classes having different
cell-walls. One is composed of a thick polypeptidic membrane (Gram+), while the other
type (Gram-), has a thin polypeptidic and an external lipidic membranes. As most of the
biocides are based on an interaction/degradation of the cell-wall, Gram staining is a first
and fast method to orient the care.

Figure 1.2 illustrates the Gram staining procedure:

� Step 1: The sample is dyed with the violet dye so that all bacteria are stained.

� Step 2: The addition of iodine, which binds to crystal violet and traps the colorant
in the bacteria.

� Step 3: The sample is then bleached using ethanol so that only gram positive
bacteria are still stained.

� Step 4: Then a counterstaining is performed to stain Gram negative bacteria but
with a pink or red dye

At this point, it should noticed that this whole sample preparation procedure is not
standardized, thus variability depending on the biologist that prepares can be observed.
Moreover, it should be noticed that at this point the dye concentration is high in the
bacteria, thus their ”natural” properties are modified.

If Gram staining provides a relevant information to discriminate the bacteria, their
morphological properties can also be exploited. Thus, optical microscopy is commonly
used to perform Gram analysis. In this manuscript we only focus on the automatization
of the Gram analysis. Let us note that further non imaging studies of the sample are
performed by biologists after this first step to identify accurately the bacteria in the
sample. These studies require another bacteria culture and molecular analysis that are
more complex and longer to perform.

6
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Red blood cells
Calibration beads

Unstained sample

Figure 1.1: Unstained and stained blood smears observed using bright field microscopy
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Applying a crystal violet stain Adding iodine Decolorization with alcohol Application of safranine

(counterstaining)

Safranine

Crystal violet

Gram+

Gram-

Figure 1.2: Illustration of the Gram staining procedure. Image adapted from [Jolivet,
2018].

Brightfield microscopy is the most common and simple microscopy technique to ob-
serve biological samples. The sample is illuminated so that the transmitted light is imaged
on the sensor. The setup contains several adjustable optical elements to project a mag-
nified in focus intensity image of the sample. The observed image includes dark shapes
corresponding to the objects and a bright background corresponding to the light that
has not been absorbed. Since the image is directly interpretable, this microscopy tech-
nique belongs to the class of conventional imaging. For example, to observe bacteria, a
×60 - ×100 objective are required, with a high numerical aperture (NA ≈ 1.4) in an
immersion oil medium (n0 ≈ 1.519). The resolution, as defined by Rayleigh’s criterion
(R = 0.61 λ

NA
≈ 250nm in our case, λ ≈ 530nm) is adapted to the observation of bac-

teria (that have a size of approximately 1-2 µm). This technique is commonly used for
its simplicity. However, it is limited to the study of absorbing samples and by its small
depth-of-field (DOF = nλ

NA2 ≈ 400nm in our case) and is highly dependent of the optical
settings (illumination coherence, focus, aberrations, color of the source) as illustrated on
Figure 1.3. In this Figure, the same types of bacteria are observed using different focus-
ing distance and different spatial coherence of the illumination. These small changes in
the optical system lead to high variations of the color of the observed sample. Figure
1.4 illustrates an even more difficult case to perform diagnosis as bacteria colors changes
due to small defocus distances in the field-of-view. Due to the high variability of the
observed images, standardization and automation of Gram analysis is needed to perform
more objective diagnosis [Smith et al., 2018].

In this context, in-line holography provides a simple and low-cost alternative to observe
transparent objects like cells or bacteria. Moreover, it is simply adaptable on existing
systems. As this technique is based on the recording of the diffraction patterns induced
by the biological objects, it is no more limited by the depth-of-field of the microscope. It
is thus a valuable candidate for automation process and does not require an accurate and
expensive translation stage.

Moreover, even with stained samples, holography provides an additional information,
the phase shift introduced by the sample, that may lead to better fiability of the diagnosis.

However, the diffraction patterns are not directly interpretable, thus the holograms
need post-processing algorithms, called reconstruction algorithms, to be interpreted. This
microscopy technique belongs to the class of computational imaging.

At last, it should be mentioned that, due to the recording of the diffraction patterns
of the objects, staining may even not be needed to observe the sample leading to in vivo
applications. This subject is not covered in this manuscript.
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Figure 1.3: Brightfield acquisitions of the same sample under several optical settings:
from left to right the focus varies, from top to bottom the spatial coherence of the light
source varies (top: low coherence, bottom: high coherence) (©Thomas Olivier)

Figure 1.4: Brightfield acquisition of bacteria varying in color due to small focus differences
(©Thomas Olivier)

A In-line holographic microscopy

Holographic microscopy is a widely known method to provide phase information (i.e.
refractive properties) of weakly absorbing objects like cells or bacteria [Marquet et al.,
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2005, Popescu, 2011]. This method was invented by D. Gabor in 1948 [Gabor, 1948] but
remained a theoretical concept due to the low coherence of the light sources at the time.
However with the development of laser sources, and by exploiting numerical reconstruction
algorithms [Gerchberg, 1972, Fienup, 1982], holographic microscopy was able to develop
and became a method of choice in the phase imaging domain.

Based on D. Gabor’s setup, in-line holographic microscopy proposes to record the
diffraction pattern (out of focus image) produced by the sample after propagation over
the distance z when illuminated by a plane and coherent wave. The resulting image is
the so-called hologram. Figure 1.5 illustrates the recording of a lensless in-line hologram.

SensorSample

Figure 1.5: Illustration of the recording of a in-line hologram. Image from [Ferréol Soulez,
TBP].

Digital holography is a two step process a illustrated on Figure 1.6: (a) the recording
of the hologram, i.e. recording the intensity of the diffraction patterns of the sample on
the sensor, (b) the reconstruction of the hologram, i.e. retrieving the complex amplitude
of the wavefront (modulus and phase) that has been diffracted in the sample plane. This
reconstruction step can be seen as a numerical focusing step.

A.1 Rayleigh-Sommerfeld diffraction model

First, let us interest in the image formation model. In this section the notations that will
be used are reported on Figure 1.7.

In this model the sample is considered to be equivalent to a 2D transmittance plane t.
After passing through the sample plane, the complex amplitude orthogonal to the optical
axis U(x, y, 0+) is expressed as:

U(x, y, 0+) = U(ξ, υ, 0−) · t(ξ, υ) (1.1)

where U(ξ, υ, 0−) is the the complex amplitude of the incident wave on the sample plane.
The propagation can be modeled by the Rayleigh-Sommerfeld diffraction formula

[Goodman, 2004]. For a monochromatic illumination wavefront with a wavelength λ,
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Figure 1.6: Principle of in-line holography

Figure 1.7: Illustration of the Rayleigh-Sommerfeld diffraction model

the amplitude of wavefront U(x, y, z) diffracted by a transmittance plane t recorded on
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the sensor at a given point P (x, y, z) is modeled by:

U(x, y, z) =
1

iλ

+∞x

−∞

U(ξ, υ, 0+)
eikR

R
cos(θ)dξdυ (1.2)

where R =
√
(x− ξ)2 + (y − υ)2 + z2 is the distance between M(ξ, υ, 0), that can be

considered as a secondary source (Huygens-Fresnel principle), and the observation point
P (x, y, z) and θ is the angle between the direction given by e⃗z and the direction given by

R⃗ = M⃗P . It should be noted that cos(θ) = z
R
is a factor corresponding to the inclination

factor.
The term eikR

R
corresponds to the propagating spherical wave. Indeed, Equation 1.2

is the mathematical formulation of the Huygens-Fresnel principle [Goodman, 2004] (illus-
trated on Figure 1.8): the diffracted wavefront corresponds to the sum of all the spherical
waves emitted by all the points of the sample. These complex amplitudes depend on
the complex amplitude of the incident wave U(ξ, υ, 0−), the local transmittance t of the
sample and the propagation distance z. Using the convolution symbol ∗ Equation 1.2 can
be rewritten:

U = hRS
z ∗U(·, ·, 0+) (1.3)

were the Rayleigh-Sommerfeld kernel is defined by Equation A.1.

hRS
z (x′, y′) =

z

iλ

exp
(
i2π
λ

√
x′2 + y′2 + z2

)
x′2 + y′2 + z2

(1.4)

To compute the propagation numerically, the discretization of the signal must be consid-
ered. Thus, in the following the model, the data and the convolution are discrete. Using
the formulation given by equation 1.3 and the convolution theorem, the computation of
the diffracted wavefront can be quickly performed in the Fourier domain. Moreover, the
Fourier transform of the propagation kernel does not need to be computed as it can be
done analytically (angular spectrum formula [Goodman, 2004]).

Some properties of the Rayleigh-Sommerfeld propagation [Goodman, 2004]

Rayleigh-Sommerfeld propagation has interesting properties :

� Back-propagating a complex amplitude from distance z is equivalent to con-
jugate the propagation kernel used for the propagation:

hRS
−z = hRS

z

∗
(1.5)

� Propagating and back-propagating a complex amplitude U is equivalent to
applying the identity operation on U :

hRS
−z ∗

[
hRS

z ∗U
]
= U (1.6)

� Propagating a complex amplitude U to distance z1 and then propagating it
to distance z2 is equivalent to propagating U to distance z1 + z2:

hRS
z2
∗
[
hRS

z1
∗U

]
= hRS

z1+z2
∗U (1.7)
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Illumination Di racted wavefront

SensorSample

Figure 1.8: Illustration of the Huygens-Fresnel principle

In this manuscript, it is assumed that U (·, ·, 0−) = 1 so that the phase origin is located
on the object plane, thus the Rayleigh-Sommerfeld propagation formula is:

U = hRS
z ∗ t (1.8)

These equations provide a simple propagation model to compute the complex amplitude
diffracted by a sample. As mentioned earlier, the computation of this model can be per-
formed using Fast Fourier Transform (FFT) to reduce the computational time. However
the field of view must be extended to avoid border effects of the convolution. If this prop-
agation method is really efficient for propagating complex field of view, it should not be
used to back-propagate a hologram to its focus plane. Indeed, the sensor is only sensitive
to intensity thus the recorded hologram d can be expressed as follows:

d = |U |2 + η =
∣∣hRS

z ∗ t
∣∣2 + η (1.9)

where η is assumed to be an additive Gaussian noise (more details on the noise in the image
are provided in Section A.2). Due to the loss of the phase information, back-propagating
the hologram to a distance −z leads to the so-called twin-image problem.

A.2 Noise in the data

As this thesis focuses on numerical processing of images, assumptions on the noise should
be considered. As mentioned in the previous Section, in the rest of the manuscript the
noise in the image will be considered to be white and Gaussian. A few explanation on the
origin of this assumption is provided in this section. In the following, some of the most
common noises are reminded :

Shot noise (also called Photon noise) occurs in the acquisitions since the camera detects
a discrete number of photons. It can be modeled using a Poisson statistic. Thus, the
variance of the measured signal depends on its energy. In in-line holography, the energy
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of the flux on the sensor is high and the variations of the intensity of the signal due to the
diffraction patterns of the objects are low. Thus, the variance of the signal is assumed to
be uniform in our images. When the Poisson law parameter λ > 100, as it occurs in our
case, the Gaussian approximation is a very good approximation of the Poisson law.

Thermal noise depends on the temperature of the sensor. It corresponds to the measured
signal when the sensor is not illuminated. Its statistics can be modeled by a Poisson law.
Its parameter λ depends on the temperature and not on the intensity of the diffraction
patterns.

Dust diffraction patterns are due to the coherence of the light source. Indeed, since
holography is a coherent imaging method, the diffraction patterns of out-of-focus objects
like dust particles can interfere with the signal. This noise is correlated and thus can not
be considered as white. However, as these objects are still, most of the dust particles
diffraction patterns in the optical system can be removed from the hologram by dividing
it with a background obtained without any sample.

Speckle noise is a correlated noise that can be observed when using a coherent light
source. However, in this manuscript, most the images where acquired with LED which
have a limited partial coherence. Thus, effects of speckle noise can be neglected.

Salt and peppers noise occurs with dead pixels or when data are badly transmitted.
This noise can easily be taken into account in the reconstructions by using the inverse of
the co-variance matrix W as mentioned in Section B.2.2.1.

A.3 Twin-image problem

In our model, the transmittance plane t corresponds to the interference between the
objects and the background, thus t = 1 + o. A hologram can be seen as the interference
beetween an unscattered field U 0 = hRS

z ∗ 1 and a scatterred field U 1 = hRS
z ∗ o since

hRS
z ∗ t = hRS

z ∗ [1 + o] = U 0 +U 1 with t = 1 + o. If U = U 0 +U 1 is known, inverting
the model is performed by back-propagating U . However in-digital holography only the
intensity of U , d, is known. Let us consider the back-propagation of equation 1.9 over a
distance −z [Goodman, 2004]:

hRS
−z ∗ d = hRS

z

∗ ∗
∣∣hRS

z ∗ t
∣∣2 + hRS

z

∗ ∗ η
= hRS

z

∗ ∗
[
hRS

z ∗ [1 + o]
] [

hRS
z ∗ [1 + o]

]∗
+ hRS

z

∗ ∗ η

= hRS
z

∗ ∗
[∣∣hRS

z ∗ 1
∣∣2 + ∣∣hRS

z ∗ o
∣∣2 +U 0 · hRS

z

∗ ∗ o∗ + (hRS
z ∗ o) ·U ∗

0

]
+ hRS

z

∗ ∗ η

= hRS
z

∗ ∗
[
|U 0|

2 + |U 1|
2 +U 0 · hRS

z

∗ ∗ o∗ +U ∗
0 · hRS

z ∗ o
]
+ hRS

z

∗ ∗ η

= hRS
z

∗ ∗ |U 0|
2 + hRS

z

∗ ∗ |U 1|
2 +U 0 · hRS

−2z ∗ o+U ∗
0 · o+ hRS

z

∗ ∗ η

The first term is spatially constant and, for small and/or slightly dephasing objects, the
second one is negligible. Thus, only the last three terms are relevant:

hRS
−z ∗ d ≈ U 0 · hRS

−2z ∗ o︸ ︷︷ ︸
Virtual image

+ U ∗
0 · o︸ ︷︷ ︸

Real image

+hRS
z

∗ ∗ η +C (1.10)

where C = hRS
z

∗ ∗ |U 0|
2. Thus by back-propagating the hologram instead of the complex

amplitude, i.e. if we focus numerically on the plane of the sample, we would see an
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overlap of the focused image (real) and an out of focus (”twin”) image corresponding to
the back-propagation of the virtual image over a distance 2z as illustrated on Figure 1.9.
Indeed, due to the intensity recording, the back-propagation is no more the inverse of
the model. This problem can be seen as if two unknowns (the modulus and the phase)
were to be retrieved from only one measurement. Phase diversity consists in improving
the reconstructions by adding several measurements [Greenbaum and Ozcan, 2012, Luo
et al., 2015]

Figure 1.9: Illustration of the twin-image artifacts

To overcome the so-called twin-image problem, several methods have been developed.
The first ones are based on improvement of the experimental setup, like off-axis holog-
raphy, that allows to separate the real image of the virtual image [Leith and Upatnieks,
1962]. This method uses a carrier wave to modulate the object wave. The complex
amplitude (modulus and phase) of the object wave on the sensor can be computed by
demodulating the hologram. However, it requires a more complex setup that leads to less
reproducibility. To overcome this issue common-path configurations have been developed
[Singh et al., 2012]. Other methods based on improving the reconstruction algorithm have
emerged. Due to the loss of the phase information on the sensor more specific reconstruc-
tion algorithms have to be used. Some of the most common algorithms are presented in
Section B.
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B Numerical reconstructions of in-line holograms

B.1 Fienup algorithm

One of the most popular reconstruction algorithm for phase retrieval is the Gerchberg-
Saxton algorithm [Gerchberg, 1972]. Most reconstructions are based on this scheme. It
exploit phase diversity based on the acquisition of two holograms at different defocus dis-
tances to reconstruct the transmittance plane of the sample. Fienup proposed a slightly
different algorithm replacing the need of two acquisition by inserting priors in the recon-
struction [Fienup, 1980]. The Fienup error reduction algorithm is described in Algorithm
1. This class of algorithm is still widely used today [Rodriguez et al., 2013, Rivenson
et al., 2016, Latychevskaia and Fink, 2015] Since the intensity of the diffracted wavefront
is recorded on the sensor, the phase is lost but the modulus of the propagated wavefront
is well known. It corresponds to the square root of the data.

The Fienup error reduction algorithm is based on iterative back and forward-propagation
of the data in between the sensor plane and the reconstruction plane while ensuring that
the modulus of the reconstructed wavefront is the square root of the data (see Figure
1.10).

Thus, the initial step consists in considering the modulus of the amplitude a in the
sensor plane to be the square root of the data and its phase to be null.

Then a back-propagation of a to the object plane is performed in Step 1.
In step 2 constraints are applied in the object plane e.g. a non emissive objects prior

can be considered by applying a positivity constraint.
Then a forward-propagation is performed in Step 3 to apply constraints in the holo-

gram plane e.g. imposing the amplitude of the model to be the square root of the data
(Step 4).

Figure 1.10 illustrates the principle of this algorithm.
Several iterations of this algorithm lead to suppression of the twin-image artifacts, as

well as an estimation of the phase shift induced by the sample.
These methods are often use to reconstruct the phase of t in digital in-line holography

due to their simplicity and computational complexity. Since they are mostly based on
propagations that can be computed using convolution, their computational time is low.

Good results can be obtained using these methods. However their formulation do not
allow to take into account more complex image formation model or priors.

It has been demonstrated that Fienup algorithm is equivalent to an inverse problem
algorithm [Momey et al., 2019]. However a more general inverse problem formulation, as
described in the next section, can provide a more flexible framework to reconstruct in-line
holograms.

B.2 Inverse problem approaches

As stated by J.B. Keller [Keller, 1976], ”We call two problems inverses of one another if
the formulation of each involves all or part of the solution of the other. Often for historical
reasons, one of the two problems has been studied extensively for some time, while the other
has never been studied and is not so well understood. In such cases, the former in called
the direct problem, while the latter is the inverse problem”. In physics, the direct problem
is described as a cause-consequence sequence [Turchin et al., 1971]. For example, in in-line
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Algorithm 1: Fienup algorithm for the reconstruction of t

input : Data d (L× C image)
input : Propagation kernel hz (L× C image)
input : Number of iterations N (N integer)
output: Reconstructed transmittance plane t (H ×W complex image)

Step 0: Initialization:

a←
√
d

for n = 1 to N do
Step 1: Back propagation to the reconstruction plane:
t← h∗

z ∗ a

Step 2: Application of priors in the reconstruction plane:

for i = 1 to H do
for j = 1 to W do

if |t(i, j)| ≥ 1 then
t(i, j)← 1× exp (i× GetPhase(t(i,j)))

end

end

end

Step 3: Propagation of the reconstructed transmittance plane:
m← hz ∗ t

Step 4: Replacing the modulus of a by the square root of d:

for i = 1 to H do
for j = 1 to W do

a(i, j)←
√
d(i, j)× exp (i× GetPhase(m(i, j)))

end

end

end

where GetPhase is a function extracting for complex z = x+ iy the phase of z,
GetPhase(z) = arctan (y/x).
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Hologram planeObject plane

Figure 1.10: Fienup error reduction algorithm principle.

holography, the direct problem, also known as forward problem describe the propagation
of the light from the object plane to the sensor from the knowledge of the source and
the obstacles it encounters. The direct problem is also a problem that involves a loss of
information. For example, the measurement of the intensity of the diffracted wavefront
leads to a loss of the phase information on the sensor. This property is common to most
inverse problems and introduces in in-line holography an ”ill-posedness” of the problem.

B.2.1 Ill-posedness of an inverse problems approaches

In 1902, Jaques Hadamard proposed a first definition of ”well-posedness” [Hadamard,
1902]. A problem is well-posed when:

� a solution exists for arbitrary data,

� its solution is unique,

� the solution should not be very sensitive to small perturbation of the data, i.e. there
should be a continuous dependence between the solutions and the data.

A problem that is not well-posed is referred as ill-posed.
In-line holography would be a well-conditioned problem if the complex amplitude of the
diffraction patter was recorded since the modulus of the Fourier transform of the Rayleigh
Sommerfeld propagator is equal to 1.
However the intensity is recorded and the phase information on the sensor is lost. Thus,
the uniqueness (as seen with the twin image) and the well-conditioned properties of the
solution are compromised. Thus, in-line holography reconstruction is an ill-posed problem.
Numerical inversion of the data, may then lead to physically unrealistic solutions. Thus
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to solve the ill-posedness of the problem, constraints have to be added in the inversion
process. These constraints can be added by using diversity in the acquisitions of one
sample (e.g. phase diversity) or by using regularization. In Part III of this manuscript,
we will mainly focus on the use of regularizations. Part IV will provide an example of
phase diversity used to achieve more quantitative reconstructions in in-line holography.

B.2.2 Regularized inverse problems approaches

In conclusion inverse problems approaches tend to inverse a non-invertible model by using
an accurate and complete forward model m and minimizing its discrepancy with the data
d . The solution of the problem is obtained by minimizing a loss function L that contains
a data fidelity term D , and, since the problem is ill-posed, regularization terms Ri:

L (t) = D(t) +
∑
i

µiRi(t) (1.11)

where µ represents a vector of regularization hyperparameters. Indeed to transform the
ill-posedness of the problem into a well-posedness, priors are added by the use of regu-
larization. However, regularization hyperparameters correspond to the balance between
having a full confidence in the data and a full confidence in the priors. Thus, they must
be tuned carefully.

B.2.2.1 Data fidelity term

The data fidelity term D evaluates the error between the data d and the model m(ϑ).

In phase-retrieval reconstruction ϑ = t and the model is defined as m(t) =
∣∣hRS

z ∗ t
∣∣2.

One of the most popular data-fidelity term is the weighted least squares criterion that
derives from Gaussian errors assumption. This criterion is expressed as follows:

D(t) = ∥d−m(t)∥2W
= (d−m(t))TW (d−m(t))

if errors are not correlated, W is diagonal, W = diag(w),

D(t) =
∑
k

wk(dk −mk(t))
2

(1.12)

where dk is the k-th pixel of the data, mk(t) is k-th pixel of the model and wk is
the weight associated to pixel k. For example, dead pixels can be taken into account by
setting wk to 0 on these pixels and 1 everywhere else. The matrix W is the inverse of
the covariance matrix and thus allows to take into account the statistics of the noise. In
the case of stationary white Gaussian noise, W is the inverse of the noise variance σ2

ϵ an
∥u∥22,W = (1/σ2

ϵ )
∑

k,l u
2
k,l.

The data fidelity term evaluates how much the solution fits the data. However, the
minimization of this criterion depends on the accurate knowledge of the image formation
model. Thus, establishing an accurate image formation model, is a crucial step in the
use of inverse problem approaches. Here, the Rayleigh-Sommerfeld diffraction model is
limited by the knowlegde of the propagation distance z. Thus, the quantitativity of the
transmittance reconstruction depends on the accuracy of the estimation of z.
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B.2.2.2 Regularization

As previously mentioned, the problem is ill-posed, thus priors must be added to the
reconstruction algorithms. These priors promote the convergence to physically realistic
solutions. To add priors in the reconstruction, three options are possible:

� to add priors in the model: for example, if the sample only contains spherical ob-
jects, the Rayleigh-Sommerfeld model should be replaced by a Mie model that char-
acterizes accurately the diffraction by a sphere (solution of the Maxwell equations)
[Slimani et al., 1984],

� to add strict constraints: for example, reconstructing only non emissive objects
corresponds to the constraint ∀i, j, |t(i, j)| ≤ 1,

� to add regularization terms: for example, in holography, the sample is supposed to
be sparse, L1-norm regularization promotes this physical prior.

In the following section, some of the most popular regularization terms are presented.

Tikhonov’s regularization

Introduced by Andrëı Tikhonov, the Tikhonov’s regularization term RTikhonov [Tikhonov,
1963] is expressed as :

RTikhonov(ϑ) = ∥Γϑ∥22 (1.13)

where Γ is the Tikhonov matrix. ΓTΓ is the inverse of the covariance matrix of the ob-
jects to reconstruct. Depending on the values of Γ, the effects of Tikhonov regularization
may vary. Indeed, if Γ = I, the Tikhonov regularization is equivalent to L2-regularization
leading to smaller norm of the reconstructions. If Γ is a high pass filter, the Tikhonov reg-
ularization will enforce smooth reconstructions since the prior corresponds to a decreasing
power density spectrum.

L1 regularization

The L1 regularization term RL1 is expressed as:

RL1(ϑ) = |ϑ| (1.14)

This type of regularization tends to promote sparse solutions [Denis et al., 2009]. This
regularization lead to a solution that fits the data with the lowest number of pixels.

Edge preserving regularization

The Total Variation (TV) regularization term RTV [Rudin et al., 1992] is expressed as:

RTV(ϑ) =
∑
i,j

∥(∇ϑ)i,j∥2 (1.15)

with

(∇ϑ)i,j =
(
∇iϑ
∇jϑ

)
=

(
ϑi+1,j − ϑi,j

ϑi,j+1 − ϑi,j

)
(1.16)
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This regularization enforce sparsity of the gradients of the reconstruction and is thus a
common regularization for reconstructing piecewise-flat objects. As illustrated by Figure
1.11 on a denoising task, and as previously mentioned, the total variation regulariza-
tion reduces the modulus of the gradient of the image and thus promotes flat objects
reconstructions. However it can be seen that a correct regularization for a certain size of
object (Zoom 1) is not valid for another one (Zoom 2). The tuning of the regularization
hyperparameters will thus correspond to tuning the scale of the structure to reconstruct.

(a) Noisy data

Zoom 1 on (a) Zoom 1 on (b) Zoom 1 on (c) Zoom 1 on (d)

(b) Modulus of the 

gradient of the data

(c) Denoised data (d) Modulus of the 

gradient of the denoised data

Zoom 2 on (a) Zoom 2 on (b) Zoom 2 on (c) Zoom 2 on (d)

Figure 1.11: Effects of the total variation regularization term. Image from [Jolivet, 2018]

One of the main drawback of using the total variation regularization is that it is not
differentiable. Thus, proximal algorithms can be used to avoid the optimization issues
due to this non differentiability. Another method to avoid this issue the differentiable
approximation of the total variation [Charbonnier et al., 1997]:

RTVϵ
ϵ (ϑ) =

∑
i,j

√
(∇iϑ)2 + (∇jϑ)2 + ϵ2 − ϵ (1.17)

where ϵ > 0 is small-valued.
Note that the parameter ϵ should also be chosen carefully since it may change the

dynamic of the reconstruction and the staircase effect due to total variation regularization.
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In the reconstruction presented in this manuscript, the complex approximation of the
total variation will be used:

REPϵ
ϵ (ϑ) =

∑
i,j

√
(∇iℜ(ϑ))2 + (∇jℜ(ϑ))2 + (∇iℑ(ϑ))2 + (∇jℑ(ϑ))2 + ϵ2 − ϵ (1.18)

where ϵ > 0 is small-valued.
This term promotes the same properties as the total variation but also promote a

co-localization of the gradient of the modulus and phase of the reconstructed object.
In conclusion, the presented regularizations provides tools to correct the ill-posedness

of the inverse problem. However the balance between these regularization terms and the
data fidelity, i.e. the regularizations hyperparameters, must be carefully chosen.

C Thesis challenges

Brightfield microscopy is an imaging system commonly used by biologists. It can be used
to detect, classify or characterize objects in the sample. However, brightfield microscopy
provides a low contrast for translucent objects due to their low absorption. Thus, these
objects must be stained to be observed. For example Gram staining allows to differentiate
bacteria according to their coloration (see Figure 1.1). In this context, this thesis, try
to answer the question: is it possible to automatize the Gram analysis using digital
holography? To answer this question several issues must be solved:

� Repeatability: Is the reconstructed phase/transmission similar for the same type of
bacteria?

� Reproducibility: Is the reconstructed phase/transmission similar when changing the
setup?

� Quantitativity: Are the phase/transmission reconstructions representative of the
real phase shift introducted by the objects of interest?

This thesis aims at improving the reconstructions to solve these issues. To assess
the performance of the method, biological data were acquired by BIOASTER and are
presented in this manuscript. Even though these data are stained (to be able to identify
the bacteria), their modulus and phase are reconstructed.

To improve the quantitativity of the reconstruction and thus the final diagnoses, several
methodological solutions have been studied:

� Self-calibration of the image formation model:
Rayleigh-Sommerfeld diffraction is an accurate model of the propagation of the
light, however the propagation distance z should be accurately estimated. More-
over, this diffraction formula considers a perfect imaging system, free of aberrations
or misalignment of the optics in the setup. These issues may compromise the quan-
titativity of the reconstructions. An accurate calibration of the whole setup must
be performed.
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� Unsupervised tuning of the regularization hyperparameters:
The tuning of the regularization hyperparameters is a crucial part. Indeed under-
regularization and over-regularization may lead to physically unrealistic reconstruc-
tions. For reproducibility reasons, hand-tuning of the regularization hyperparam-
eters should be avoided. Several unsupervised methods to tune the regularization
hyperparameters have been proposed, however most of them are based on a crite-
rion that depends on the data. Thus, the reproducibility of these methods is not
guaranteed.

� Exploiting phase diversity in multispectral reconstructions:
Regularization is an efficient way to clean the twin-image of a hologram. However,
it may introduce biases in the reconstructions. By using the redundancy in multi-
spectral stacks, less biased, i.e. more quantitative, reconstructions become possible.

After this first introduction part, this thesis manuscript is composed of three parts
and eight chapters that are summarized in the following:
Part II: This second part describes a complete methodology to improve the forward model
used in inverse problems approaches. It is based on calibration of the model thanks to
spherical objects.
Chapter 2: This chapter proposes a parametric inverse problems approach in order to
estimate the propagation distance between the sample and the sensor. The methodology
is based on the positioning of the slide plane instead of a plane estimated with image-
based criteria.
Chapter 3: This chapter details a fast robust detection methodology that is applied on
the calibration beads. The proposed method improve significantly the number of detected
beads.
Chapter 4: This chapter extends the approach proposed in Chapter 3 to aberration
estimation. We propose to estimate and take into account spatially varying point spread
function (PSF) in the regularized reconstructions.
Part III: This third part addresses the issue of regularization hyperparameter tuning by
proposing an unsupervised method to achieve quantitative reconstructions.
Chapter 5: We propose a comparison between several state-of-the-art automatic hy-
perparameter tuning. This chapter is a first work on the use of Stein’s Unbiaised Risk
Estimator in in-line holography.
Chapter 6: We propose a quantitative criterion based on the reconstruction of calibra-
tion beads in order to improve the quantitativity of the reconstructed biological sample.
This chapter is a pre-feasibility study on the use of this criterion.
Part IV: This fourth part uses the whole potential of the previously mentionned method-
ologies on multispectral acquisitions in order to improve the repeatability, the repro-
ducibility and the quantitativity of the reconstructions.
Chapter 7: This chapter present an inverse problems approach using multispectral reg-
ularization to reconstruct multispectral data.
Chapter 8: This chapter uses the methodologies previously presented in this manuscript
to reconstruct multispectral data and highlight the benefits of adding calibration beads
in the sample.

Each chapters begins with an introduction detailing the issues tackled in the chapter.
It is then followed by a preliminary section that reminds basics tools and state-of-the-art
methods. At last, the contributions of this thesis are then presented.
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Part II

Calibration of the image formation
model
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CHAPTER2
Automatic numerical focusing

Abstract

If in-line holograms can be recorded at any defocus distance,
their reconstructions require the accurate knowledge of this
distance. This distance is usually estimated on contrast
”image-based” criteria. In this chapter, we present a new
method to achieve autofocus in digital holographic microscopy.
It is based on inserting calibrated objects into a sample placed
on a slide. Parametric Inverse Problems Approaches make
it possible to precisely locate and characterize the inserted
objects and thereby derive the slide plane location. Numerical
focusing using regularized reconstructions can then be per-
formed in a plane at any chosen distance from the slide plane
of the sample in a reproducible manner and independently of
the diversity of the objects in the sample. In this chapter, af-
ter a preliminary section, we detail the proposed methodology
to accurately estimate the defocus distance z. Then we vali-
date it on simulated and real holograms. Finally this distance
is used in regularized reconstructions to perform autofocus.
This chapter is adapted from the paper [Brault et al., 2022b] .

Introduction

Autofocusing is one of the first requirements for automation of the process in most mi-
croscopy techniques. Efficient autofocusing methods may be required, in particular for
long-time acquisitions [Bon et al., 2015], exhaustive imaging of samples [Bian et al.,
2020], or simply for the automation of microscopy systems for high throughput inspection
of slides. Another reason for precise focusing in the context of automation is simply the
need for the repeatability and standardization of the imaging conditions, which is crucial
for automated image processing, analysis and classification.

However, with incoherent imaging methods, autofocusing can be tricky for several rea-
sons. When high-magnification and high-numerical aperture objectives are used (which
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is the case when examining blood samples, for example), the depth of field of the micro-
scope may be less than 1 µm. In the case of brightfield microscopy of stained samples, the
density, opacity, size, axial locations of the various objects present inside the sample may
not be the same, with variations in size or in axial locations that may be greater than the
depth of field. In these conditions, even the definition of the best focus becomes prob-
lematic. In most cases, it may be better to measure the position of the slide surface as a
reference plane to be tracked. This can be done by including additional optical elements
solely dedicated to the autofocusing problem (triangulation with oblique illumination,
confocal pinhole detection, dual-LED illumination, tilted sensor, etc.) [Bian et al., 2020].
These technical solutions are beyond the scope of this work. Here, we focus on techniques
that require no dedicated optical elements other than the imaging system itself.

With coherent imaging methods, like digital holography, it is possible to measure or
estimate the complex amplitude of the wave diffracted by a given sample. Thus, the
limitations due to the depth of field is no more an issue in the recording step. The in-line
(or Gabor) configuration [Gabor, 1948] is the simplest to set up as, unlike the off-axis
configuration, it does not require a reference beam, and can be used without any objective
(lensless microscopy). It can also be adapted for use on a traditional microscope. The
only requirements are a temporally and spatially coherent (or partially coherent) source
and to record an out-of-focus image of the object on the sensor. Physical focusing on the
sample is then no longer required, making it possible to design imaging systems without
the need for an expensive automated axial positioning system with sub-micrometer res-
olution. However, as the hologram is the intensity image of the wave diffracted by the
sample, the phase of the wave is not directly accessible and in-line digital holography re-
quires numerical reconstructions that consist in a phase retrieval problem. This problem
can be numerically solved by using alternating projection strategies or Inverse Problem
Approaches (IPA) [Fienup, 1982, Latychevskaia and Fink, 2007, Momey et al., 2019].
One of the main drawbacks of these phase retrieval algorithms is that they require the
knowledge of the propagation distance z between the sample and the sensor (see Chapter
1). The conventional way to perform numerical autofocusing reproduces the numerical
autofocusing in brightfield microscopy by analyzing a stack of reconstructed images at
various distance z (see Figure 2.2). It is however important to find a criterion that can
estimate the z distance in a reproducible and physical meaningful way. With traditional
focusing criteria [Gillespie and King, 1989, Dubois et al., 2006, Langehanenberg et al.,
2011, Lamadie et al., 2012, Memmolo et al., 2014, Zhang et al., 2017, Malik et al., 2020],
this location is likely to vary depending on the density, spatial distribution, size, and
transmission of the objects.

In this chapter, we present a new approach to estimate with sub-micrometer accuracy
the axial distance between the focal plane of the optical system and a physical reference
plane corresponding to the top of the slide (or the coverslip, depending on the microscope
configuration).

This approach is based on the insertion of stable calibrated objects (non-porous spher-
ical beads) in the sample (see Figure 2.3 and Appendix A). These beads can be recon-
structed by standard object positioning algorithms that use focusing criteria [Langehanen-
berg et al., 2011, Zhang et al., 2017, Lamadie et al., 2012] or parametric IPA which have
already proven their ability to detect simple shaped objects and to accurately estimate
their position and size [Lee et al., 2007, Soulez et al., 2007a, Cheong et al., 2010]. The
slide surface can be thus reconstructed accurately from the estimation of the position and
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the size of the beads. Then, the focusing reconstruction planes can be chosen relatively
to this reference plane. The main advantage of this method is that it requires only one
recorded hologram and provides objective information on the location of the reference
plane. Unlike image-based criteria, it does not suffer from the influence of the type or
diversity of the sample. Moreover, the positioning and sizing of several beads in the same
field of view enables estimation of potential tilting of the slide surface, as well as a more
precise axial location.

In the following section, we will first detail several classical autofocusing methods
used in holography. Secondly, we will describe the principle of parametric inverse prob-
lem approaches applied on in-line holographic microscopy, finally we will discuss on their
accuracy. Then, we will detail a methodology based on parametric inverse problem ap-
proach and apply it to simulated and experimental holograms. At last, we will present
an example of regularized reconstruction using the estimated propagation distance.

A Preliminaries

A.1 Classical autofocusing methods in in-line holography

In image-based autofocusing, the best focus is typically defined by choosing a global or
local criterion (combining image properties) to be maximized or minimized [Bian et al.,
2020] in a reconstructed z-stack. The efficiency of different criteria vary depending on,
among others, whether the objects of interest are opaque or transparent, isolated, or
embedded in a dense medium. The following section presents two state of the art image-
based method to perform autofocusing in digital in-line holography. They are based on
an analysis of a back-propagated z-stack.

A.1.1 GRA criterion

GRA [Langehanenberg et al., 2011] is a classical criterion for autofocusing. It is based
on the search for an extremum along z direction in the integral over the image of the
magnitude of the gradient of the back-propagated stack. The modulus of the gradient of
the back-propagated fields is computed. The criteria corresponds to sum these values for
all pixels. Algorithm 2 details how to perform autofocusing using this method :

A.1.2 ToG Criterion

ToG [Zhang et al., 2017] is a sparsity criterion applied to the magnitude of the gradient
of the complex back-propagated field by searching for a maximum value in the Tamura
of the gradient. The Tamura of an image I is expressed as:

TC(I) =

√
σI

< I >
(2.1)

where σI is the standard deviation of the image and < I > its average. To perform this
criteria, back-propagations of the data are performed for several z propagation distances as
previously done for GRA criterion. The Tamura of the gradient of these back-propagated
fields are then computed. Algorithm 3 details how to perform autofocusing using this
method :

27



SCIENTIFIC CONTEXT

Algorithm 2: Image-based autofocusing by computation of GRA criterion

input : Data d (L× C image)
input : Search domain sampling z = {zi}1,...,K (1×K vector)
output: Autofocusing distance z†

for i = 1 to K do
Compute hRS

zi
.

BP← hRS
−zi
∗ d

G← ∇i,jBP
M← Modulus(G)
GRAi ←

∑
i,j M

end
z† = argminGRA for phase objects, argmaxGRA for absorption objects

Algorithm 3: Image-based autofocusing by computation of ToG criterion

input : Data d (L× C image)
input : Search domain sampling z (1×K vector)
output: Autofocusing distance z†

for i = 1 to K do
Compute hRS

zi
.

BP← hRS
zi
∗ d

G← ∇i,jBP
T← TC(G)
ToGi ←

∑
i,j T

end
z† = argminToG

A.2 Mie Model

The solutions of Maxwell’s equations for a spherical particle were provided by Mie in 1908
[Slimani et al., 1984]. Since the objects only depends on few parameters, i.e. their radius
r and their complex refractive index n, the holograms of spherical objects only depends on
few parameters: the 3D position of the bead (x, y, z), r and n as illustrated on Figure 2.1.
The Mie model is expressed in terms of an infinite series and it can only be approximated
numerically. The reconstruction of these objects can be performed easily with parametric
inverse problems approaches as presented in Section A.3. It should be noted that when
beads are transparent, the refractive index is real.

A.3 Parametric Inverse Problems Approach to accurately lo-
cate the calibration objects

Inverse problems are a general class of problems where unknowns are linked to measure-
ments through a known image formation model (see Chapter 1). The main idea relies
on minimizing the discrepancy between the measured data and a model. If the model
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Figure 2.1: Illustration of the parameters of the Mie model

depends on only a few parameters and has an analytical form, the parameter can be
reconstructed using parametric IPA methods [Tarantola, 2005]. When the image forma-
tion model is accurately known and sufficiently constrained, full-confidence to the data is
given. In this case, priors are only added in the image formation model. The parametric
IPA can be seen as a fitting problem.

The reconstruction of beads from an in-line hologram is equivalent to estimating their
spatial position (x, y, z), shape (radius r) and optical parameters (refractive index n).
The diffracted wavefront of a single spherical bead is accurately modeled by the Lorenz-
Mie model [Slimani et al., 1984] which depends on the set of bead parameters ϑ =
{x, y, z, r, n}. In our model, aMie(ϑ(i)) represents the interference on the sensor plane
between the diffraction patterns of the i-th bead and the incident beamU 0 = hRS∗1. This
is a non-linear parametric model. It has been successfully used to reconstruct spherical
object from holograms by least square fitting methods [Lee et al., 2007, Cheong et al.,
2010] or, in a more general framework, by parametric IPA [Soulez et al., 2007a, Soulez
et al., 2007b, Méès et al., 2013]. A brief summary of the approach is given below.

A hologram d is modeled by the interference between the diffraction patterns of the
objects and the incident beam:

d =

∣∣∣∣∣U 0 +

Nbeads∑
i=1

(aMie(ϑ(i))−U 0)

∣∣∣∣∣
2

+ η (2.2)

where, after a proper hologram normalization step, the reference beam is assumed to
be of unit magnitude, η is a noise term and Nbeads represents the number of objects in the
hologram. For the rest of this chapter, we define mP(ϑ(i)) the image formation model of
the i-th bead as:

mP(ϑ(i)) =
∣∣∣aMie(ϑ(i)) +Ai

∣∣∣2 (2.3)

where Ai =
∑

j ̸=i(a
Mie(ϑ(j))−U 0). Note that if the hologram contains only one bead:

mP(ϑ) =
∣∣aMie(ϑ)

∣∣2 (2.4)

Accurate estimates of ϑ(i)) can be obtained by maximizing a likelihood function. Assum-
ing the noise is Gaussian, the maximum likelihood estimation of model parameters ϑ(i)
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of the ith bead corresponds to weighted least squares fitting [Soulez et al., 2007b, Lee
et al., 2007], i.e. to find the parameters of a single diffraction pattern model mP(ϑ(i))
that minimize the weighted square distance to the residuals:

DP(ϑ(i)) =
∥∥∥d−mP(ϑ(i))

∥∥∥2
W

(2.5)

where W , the inverse of the covariance matrix of noise. To guarantee the rapid and
accurate reconstruction of a set of objects, an iterative detection/localization scheme,
based on the matching pursuit algorithm, was proposed in [Soulez et al., 2007a]. A
slightly modified version is given below. It consists of two steps: a detection step and an
estimation step.

The first step consists in detecting the calibration beads inside the sample. This pro-
vides a rough estimate of all beads parameters that are then used in the estimation step
as initialization points for minimization of the cost function (2.5) in a discrete parame-
ters space. Since the beads are calibrated, a narrow parameter research domain C can be
chosen depending on the size and refractive index of the calibrated beads used experimen-
tally. This guarantees the selection of the calibration beads among the other objects. To
prevent excessive computation time due to the dimension of the parameter space, C must
be carefully sampled. Cramér-Rao Lower Bounds (see Section A.4.2) make it possible to
find the correct sampling step [Fournier et al., 2010]. Estimating the cost function value
for every subset (x, y, z, r, n) of C is time consuming. As the model is shift-invariant in the
x and y directions, minimizing DP on a (x, y) pixel grid is equivalent to maximizing the
discrete cross-correlation between the data and the image formation model. In order to
reduce computational complexity, the cross-correlations are computed using Fast Fourier
Transforms (FFT). Cross-correlation maps are computed for each subset (z, r, n) of C,
resulting in 5D correlation maps. All the cross-correlations are saved as a z-buffer to only
keep the maximum of the correlation maps on C in the memory. A threshold based on
a percentage of the maximum value of this z-buffer is applied to limit detection to the
best correlation between models and data. Robust detection is possible and presented in
Chapter 3.

After this first detection step, all the parameters are roughly estimated: (x, y) with
accuracy corresponding to the pixel size, and the other parameters (z, r, n) with accuracy
that depends on the sampling steps of C.

The second step, the estimation step, aims at refining these parameters using an
optimization algorithm. The minimization of the cost function DP is then performed in
a continuous parameter domain C. It is performed sequentially for all the beads. At each
iteration of this refinement step, the i-th bead parameters are estimated. During this
step, the parameters of the beads already processed j < i are set to their estimated values
and the parameters of the beads that remain to be processed j > i are set to the rough
values obtained for them in the detection step. Consequently, the interferences between
the diffraction patterns of all the beads are all accounted for in the optimization problem
contrary to the algorithms of previous publications.

A.4 Estimation accuracy

In this section, we detail statistical tools of estimation [Kay, 1993]. They provide an
insight into accuracy and correlations between the estimated parameters.
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A.4.1 Covariance and correlation matrices

Variance/Covariance matrix définition

The covariance matrix Σ of a vector ϑ is defined by :

Σi,j (ϑ) = Cov(ϑi, ϑj) (2.6)

where
Cov(ϑi, ϑj) = E(ϑiϑj)− E(ϑi)E(ϑj) (2.7)

This matrix generalizes the notion of variance to multiple dimensions. It is a useful
statistical description of the estimated parameter since the diagonal coefficients corre-
spond to the variance of the estimation of each parameter. It is strongly linked with the
correlation matrix:

Correlation matrix définition

Cori,j (ϑ) =
[Σ(ϑ)]i,j
σϑi

σϑj

(2.8)

where σϑi
is the standard deviation of the estimation of parameter ϑi. It corresponds

to the square root of i-th diagonal coefficient of Σ. This matrix describes how linear is
the relation between two variables. If |Cori,j| = 1, ϑi and ϑj are linearly related.

A.4.2 Cramér-Rao Lower Bounds

In this section, we aim at estimating the achievable accuracy on each estimated parameter
and study the correlation between these parameters. Cramér-Rao Lower Bounds (CRLB)
is a statistical tool to compute a lower bound of this accuracy.

Cramér-Rao inequality

According to Cramér-Rao inequality, the variance of any unbiased estimator ϑ̂i

of the unknown vector parameter ϑi is bounded from below by the i-th diagonal
coefficient of the inverse of the Fisher information matrix:

Var
(
ϑ̂i

)
≥
[
I−1(ϑ)

]
i,i
= σCRLB

ϑi

2
(2.9)

where I(ϑ) is the Fisher information matrix. It is linked to the curvature of the
cost function in the parameter space:

[I(ϑ)]i,j = E
[∣∣∣∣∂2DP(·)
∂ϑi∂ϑj

∣∣∣∣
ϑ

]
(2.10)

In the case of white Gaussian noise of standard deviation ση, neglecting quantization
effect and considering a centered model [Fournier et al., 2010] :

[I(ϑ)]i,j =
1

σ2
ϵ

∑
k

(
∂mP(xk, yk,ϑ)

∂ϑi

∂mP(xk, yk,ϑ)

∂ϑj

)
(2.11)
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Note that to obtain the best achievable precision, the CRLB should be computed at
the point that minimizes DP. In our case, we compute them at a coarse estimation of
this point.

B Automatic numerical focus plane estimation using

calibration beads

In this section we propose a robust and repeatable autofocusing method based on the
insertion of calibration beads in the sample. It is applied on simulated and experimental
holograms.

B.1 Proposed methodology for reproducible axial localization
of samples

In the next section, we illustrate, using simulations, the need for a spatially well-defined
reference plane.

B.1.1 Interest of a reference plane localization

In order to emphasize the need for a reference plane, 5 simulations of spherical objects
holograms were computed (see Fig.2.2.a) using Mie model [Slimani et al., 1984] using
similar setup parameters as the Setup-BIOASTER ones (see Appendix A Section B). The
illumination is a monochromatic plane wave of wavelength λ = 532nm. The 5 beads
are considered in contact with the microscope slide located at 12µm from the conjugate
of the camera plane (see Fig.2.3). The 5 beads differ in radius, refractive index, and
transmittance in order to mimic the diversity of biological objects in a stained sample (see
Appendix A Section C). These parameters are given in Table 2.1. Figures 2.2.b display the
modulus of the back propagated wave (using angular spectrum propagation [Goodman,
2005]) in the beads cross section XZ of the z-stack. The slide plane is displayed by a
green line which is the same for all simulations. The beads edges are represented by black
dotted circles and the planes that goes through the beads center by black dotted lines.
The orange and blue dashed lines represent respectively the focusing position obtained
using two image-based methods GRA and ToG detailed in Section A.1.1 and Section
A.1.2. Figures 2.2.c show the GRA (orange dashed curves) and ToG (blue dashed curves)

(1) (2) (3) (4) (5)
radius r (µm) 1 0.4 0.5 0.5 0.5

z (µm) 11 11.6 11.5 11.5 11.5
refractive index n 1.4 1.35 1.44 1.44 1.35
transmittance 1 0.5 1 0.01 1

Table 2.1: Simulations parameters for the 5 holograms of Figure 2.2. The transmittance
parameter is defined as t = e−2πni

2r
λ where ni is the extinction coefficient.

focusing criteria for the five holograms. As in Figures 2.2.b, the slide plane position (green
line), the bead center plane (dotted black line) and GRA/ToG focusing positions (orange
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(a)

(b)

(c)

(1) (2) (3) (4) (5)

Figure 2.2: Illustration of the need for an object independent reference plane : (a) in-
line holograms simulated with experimental parameters given in Table 2.1, (b) amplitude
of the back propagation of the holograms, the green line represents the slide plane, the
black line and the black circles represent the beads center planes and the beads edges, the
orange and blue lines represent the focus plane estimated using GRA and ToG focusing
criteria, (c) evolution of the focusing function GRA (orange color) and ToG (blue color)
along the direction z, the slide plane (green color) and the beads center planes (black
color) are also displayed as in (b)

and blue dashed lines) are also displayed. These simulations show that the focusing planes
positions, estimated from image-based criteria, vary according to the criterion used (GRA
or ToG), according to the optical characteristics of the objects imaged (transmittance,
refractive index) and according to their sizes. Even if the ToG criterion gives positions
close to the center of the objects, it deviates from them differently depending on the type
and size of the objects imaged. For example, the deviation between focusing and bead
center position are not negligible : up to 0.4µm for ToG and 0.5µm for GRA. In addition,
the focusing functions can have several close extrema (for example, bead 2 and 4) which
can lead to bias and instability in the measurement.

To detect and classify objects on a large number of various samples, it is important to
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have a numerical reconstruction in a plane positioned relatively to a physical plane, for
example the slide surface. This will make the technique reproducible (the same object
will always give the same pattern in the reconstructed plane) and simplify the subsequent
classification task. The approach we propose makes it possible to precisely estimate the
upper plane of the microscope slide (or coverslip) called hereafter the reference plane.

B.1.2 Principle of the proposed method

As previously mentioned, the need for an accurate, reproducible, and objective focus-
ing criteria is still crucial, even more so in the context of automation or quantitative
microscopy of highly dispersed samples.

Our approach consists in inserting well-chosen calibrated objects (calibrated spherical
objects) inside the sample in order to estimate their individual locations from a single
hologram using a precise parametric IPA as described in Section A.3. Assuming that the
beads are in contact with the slide, the 3D coordinates of the bead-slide contact point
can be deduced from the size and 3D location of the beads. A slide plane can then be
adjusted on the set of the 3D point cloud. This reference plane is an objective, physical
position, independent of specific maximum focusing criteria. Any focusing distance can
be then defined relatively to this reference plane. For example since bacteria are supposed
to be around 1 µm diameter sized, the focus will be performed at 0.5 µm from the slide.
More details on the choice of the calibration beads are provided in Appendix A Section
C.

Hologram conjugated 
plane

Objective

Sample

Biological objects

Calibrated
objects

Illumination (plane wave)

0

Figure 2.3: Example of an in-line digital holographic upright microscope with calibrated
objects inserted in the biological sample.

Fig. 2.3 shows the proposed setup: an in-line digital holographic microscopy setup,
i.e. a traditional microscopy setup with coherent illumination and a slight defocus.

B.2 Application of axial localization of the sample and discus-
sion

In this section, we first apply the proposed method to simulated holograms to demonstrate
the robustness of our approach to samples made of objects that vary in size, transmittance

34



SCIENTIFIC CONTEXT

and refractive index. We then apply it to experimental holograms of beads inserted in a
sample of red blood cells. We compare results with state-of-the-art numerical autofocus
algorithms in both simulated and experimental cases.

B.2.1 Validation on simulated holograms

B.2.1.1 Simulated holograms

calibrated 
objects

semi 
opaque 
objects

calibrated 
objects

 semi opaque 
objects

Figure 2.4: Illustration of the simulation of holograms stack.

A stack of one hundred in-line holograms based on stained sample experimental con-
ditions is simulated (see Appendix A Section C). For each hologram, 10 silica beads
and 50 spherical objects that stand for the biological material, are simulated on a plane
surface corresponding to a virtual slide perpendicular to the optical axis (see Fig 2.4).
Lorenz–Mie models are used to generate the interferences between the incident wavefront
and the complex amplitude of the diffracted waves on the sensor {aMie(ϑ(i)}i=1..Nbeads

(cf.
Equation 2.2).

In this simulation, the sensor plane is composed of 1024×1024 pixels with experimental
parameter similar to the ones of Setup-BIOASTER (see Appendix A Section B). It is
located at zs = 12µm from the slide plane. Finally, a white Gaussian noise η is added,
leading to holograms with a signal-to-noise ratio (SNR) of 10 (where the SNR is defined
a the ratio between the semi-amplitude of the signal and the standard deviation). All the
object transversal coordinates {x(i), y(i)}i=1..Nbeads

are randomly distributed on the sensor
support. Objects overlap is avoided.

The objects are considered to be immersed in oil with a refractive index of 1.519.
The beads parameters are those of standard silica calibration beads used for microscopy.
Their mean radius is rb = 500nm and their mean refractive index is nb = 1.44. To test
our approach in a polydispersed case, the bead radii and refractive indices are drawn from
a uniform law with a width equal to ∆rb = 50nm for the radius and ∆nb = 0.02 for the
refractive index. Their transmittance is assumed to be equal to 1 (pure phase object).
The other spheres, standing for the biological sample, have more dispersed parameters
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silica beads (10) other objects (50)
radius mean (nm) 500 700

range of the radii (nm) [475, 525] [400, 1000]
refractive index mean 1.44 1.5545

range of the refractive indices [1.43, 1.45] [1.519, 1.590]
transmittance mean 1 0.5

range of the transmittance - [0, 1]

Table 2.2: Simulation parameters for the stack of 100 holograms (illustrated in Figure 2.4).
The bead radii and refractive indices are drawn from uniform laws. The transmittance
is equal to 1 for the beads and is drawn from a uniform law for the other objects. The
mean values and the ranges of the uniform laws are given in the table.

also drawn from uniform distributions. The central value of the radius distribution is
rs = 700nm and its width is ∆rs = 600nm. The central value of the dispersion of the
refractive indices is ns = 1.5545 and its width is ∆ns = 0.0710. This leads to radii in the
range [400, 1000] nm and refractive indices in the range [1.519, 1.590]. The transmittance
of the spheres also varies from 0 (opaque objects) to 1 (phase object) with a uniform
distribution. To better underline the diversity of the simulated samples, a summary of
the parameters of these objects is given in the Table2.2. It should be noted that, for these
simulations, the setup parameters (wavelength, pixel size, zs) were chosen in accordance
with the experimental parameters in the following section.

B.2.1.2 z estimate of the reference plane

The beads are detected and their parameters estimated for each hologram using the
parametric IPA described in Section A.3. The optimization algorithm we used to minimize
(2.5) in the estimation step is the SQP algorithm [Nocedal and Wright, 2006]. Note that
the other spheres representing the biological sample are not reconstructed here: in this
calibration step where the focus distance is estimated, their diffraction patterns are only
considered as a source of disturbance for the reconstruction of the beads. From the
estimation of the couple (z(i), r(i)) of the ith bead, the z coordinate of the contact point
P (i) of the bead-slide can be easily derived:

z
(i)
P = z(i) + r(i) (2.12)

To be less sensitive to possible outliers in the estimations of z contact-points, the qth slide
z-position is estimated from the median z values:

z
(q)
slide = median

(
{z(i)P }i∈detected beads

)
(2.13)

B.2.1.3 Statistical results

Considering 100 holograms and 10 beads per hologram, 1000 beads can be detected among
5000 objects.

The detection step uses a search parameter space C that is centered on the average
values of the ground truth parameters but that is three times bigger than the width of its
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(a)

Ground truth position
Estimated position

(b)

Figure 2.5: (a) Example of a simulated hologram with green circles on estimated positions
and crosses on ground truth positions, (b) Examples of XZ-views of the reconstructed
beads

distribution. This step detects the objects corresponding to the beads using a restrictive
threshold coefficient on the correlation map equal to 75% of the maximum of the map,
chosen in order to limit false detections. The estimation step uses much larger ranges (10
times the range of parameter distributions) so as to be less constrained.

Out of the total set of beads, 72.1 % were detected (on average 7.2 per hologram).
Only 3 false detections were observed (objects that were not beads but were detected as
beads) corresponding to 99.6% of true positive detections. The z contact point coordinate
is computed for all the detected beads. For each hologram, the axial location of the
reference plane, zslide, is calculated using equation (2.13). An illustration is given on
Figure 2.5.

The number of true detections could be improved by using robust detection and esti-
mation techniques [Fitch et al., 2005].

The zslide is computed for each hologram and compared to the focusing distance zfocus
estimated by two state-of-the-art algorithms, GRA and ToG, currently used in the liter-
ature (see Section A.1.1 and A.1.2):

For both methods, back-propagated fields are computed using angular spectrum prop-
agation [Goodman, 2005]. Whatever the criterion, GRA or ToG, it is based on the search
for an extremum of a focus function in the stack of back propagated field maps. 50 maps
were computed in the z range [9.5, 13.5]µm. A parabolic interpolation is performed on
the focus function to precisely locate the extremum.

The image-based methods estimate a focus distance zfocus using the whole field of view,
thus considering all the objects (with their diversity). Results obtained with IPA, GRA
and ToG methods are displayed on the box-and-whisker plot in Figure 2.6. As expected,
the median values of zslide and zfocus (red line on the box and whisker) differ from one
method to another : 12.00µm for IPA, 11.56µm for GRA and 11.30µm for ToG . Actually,
only the IPA method produces an estimate of zslide. zslide is estimated with a very small
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bias of 2nm, which can be considered as non-significant given the standard error. Image-
based methods estimate a focus distance zfocus located within the objects and thus smaller
than zslide. The interquartile ranges (distance between the upper and lower quartiles) are
respectively 13nm, 149nm and 79nm for IPA, GRA and ToG methods. It shows that
the IPA is more accurate than image-based approaches, which makes sense because of
the diversity of the simulated objects in the field of view and the global estimation of the
image-based methods.

IPA
11.95

11.96

11.97

11.98

11.99

12

12.01

12.02

12.03

12.04

12.05

GRA ToG
11

11.2

11.4

11.6

11.8

12

12.2

12.4

Figure 2.6: Box and whiskers plot of the axial locations (in µm) of zslide for IPA and of
zfocus for GRA and ToG criteria. The red lines represent the median values, the boxes
extends from the 25th to the 75th percentile, the black lines represent the non-outlier
minimum and the non-outlier maximum and the circles represent the outliers. Four
outliers obtained with GRA method are not represented for visualization sake.

B.2.2 Application to experimental holograms

In this section, we apply our approach to blood smear samples. For this experiment we
use holograms from Setup-BIOASTER with stained sample as described in Appendix A
Section C.

B.2.2.1 Experiment

A set of 40 distinct fields of view has been recorded on a sensor of 3208 × 2200 pixels.
Each field correspond to a 144µm× 99µm view of the sample. Because of the mechanical
stability and backlash effects of the automated XYZ-stage, it was not possible to have an
axial positioning repeatability better than±1µm (typically) during the lateral translations
of the sample on the whole explored area. A physical autofocus step was then performed
on each field, using a high-precision piezoelectric objective scanner (PIFOC, PI) with a
bidirectional repeatability of ±5nm and a classical focusing criteria adapted for brightfield
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beads patterns

RBC patterns

Figure 2.7: Example of an experimental hologram

images. This autofocusing step will not be described in detail here. However, this implies
that the precision of the physical position of the slide is limited by the autofocusing
accuracy. We should emphasize that this autofocus step was only necessary here to
evaluate the feasibility of our approach, and is no longer necessary now that the method
is validated : the autofosing can be performed numerically.

In order to compare our Inverse Problem Approach (IPA) to other autofocusing algo-
rithms (GRA and ToG, previously described in section B.2.1), we have extracted 3 sets
of positioning data from each hologram, with three different approaches :

� The first set is the (x, y, z) contact point cloud corresponding to the contact point
(zP = z+r) estimated by parametric inverse problem approach described in Section
A.3. An example of such a reconstruction is displayed on Figure.2.8.

� The second set is also a (x, y, z) point cloud corresponding to the focus estimation
with the GRA criterion performed on patches extracted from each hologram (each
hologram was divided into 25 non-overlapping sub-images (5×5). The patches size
is 640×440 pixels.

� The third set is exactly the same as the second, but with the ToG algorithm instead
of the GRA criterion.

In these conditions, we generated 40 point clouds (x, y, z) with 3 different methods
that will be referred as IPA, GRA and ToG in the following. With the IPA method, we
reconstructed 1129 contact point locations, randomly distributed from one field to the
other. The median value is 29 contact points per field (with a minimum of 18 and a
maximum of 37). The computation time of the proposed reconstruction method depends
on the number of beads to reconstruct. For these experiments, with an Intel Xeon CPU
2.20GHz with 65GBytes of RAM the IPA algorithm take 7 seconds per bead (for both
the detection and the estimation).
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For GRA and ToG sets, it must be noticed that the reconstructed axial position
are the best numerical focus obtained on the patches. In these patches, most of the
pixels are occupied by red blood cells. Moreover, contrary to the IPA reconstruction of
the beads, the 25 patches are equally distributed over the field. The goal here was to
generate comparable sets of data for the local IPA approach and the global image-based
methods (GRA and ToG). With the patch approach, the image-based algorithms are able
to evaluate the focus at a more local scale. The number of locations on a field are also
similar: 29 for IPA, 25 for patches approaches.

Figure 2.8: Illustration of the beads reconstruction from one hologram. For visualisation
purposes, the size of the beads is doubled.

B.2.2.2 3D positionning of the reference plane

For each hologram and each method (IPA, GRA, ToG), a robust plane fit was performed
on the point cloud (x, y, z), using iterative re-weighted least squares with a Cauchy robust
function. The plane is defined by the parametric equation z = â.x+ b̂.y+ ĉ, where (â, b̂, ĉ)
are the estimated parameters. Parameter ĉ is then the estimated axial position in the
center of the field, which represents the contact point for the IPA, and the best focus in
the center patch for GRA and ToG.

For our approach (IPA), the dispersion of the estimated contact point axial locations
from the fitted plane is presented in the form of a box and whiskers plot of the residuals on
Fig. 2.9(A). As can be seen, the point axial positions are close to the fitted plane but with
some outliers. The plot has been cropped to exclude a few outliers with an error larger
than ±0.5µm (16 outliers over 1129 beads). This behavior can be due to false detections,
or faulty estimations of altered or agglomerated beads. The use of robust plane fitting is
then justified, as it gives less weight to outliers. This presence of outliers can be also seen
with the patch approaches (GRA, ToG), but to a lesser extent. In this case, the variability
of the blood cells distribution among the patches is to be blamed, even if this distribution
is quite dense and uniform. Incidentally, in the rest of our analyses, it has been chosen to
use median values, rather than averages and a robust estimation of the dispersion using
the median absolute deviation (MAD) of the data: σMAD = 1.4826×MAD.

From the IPA reconstructions, the estimated parameters of the 40 planes are presented
on Fig. 2.9(B-D). The estimated parameters are the axial position in the center of the
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Figure 2.9: Robust plane fitting results for IPA. A: Box and whiskers plot of the residuals
of the axial locations of the reconstructed beads contact points (using eq.2.12) from the
fitted plane as a function of the field number. The dotted circles represent the median
values, the thick line extends from the 25th to the 75th percentile, the thin line extends
from the non-outlier minimum to the non-outlier maximum and the circles represent the
outliers. B,C,D: Estimated parameters on the 40 fields and the standard errors (from
the robust fit). B: axial position in the middle of the field ĉ, C: slope along x direction
â, D: slope along y direction b̂). The red line represents the median value over the fields,
the green dashed line represents the dispersion from the median value ±σMAD.

field (ĉ), the slope along x (â) and the slope along y (b̂). The error bars represent the
estimated standard errors on these parameters, evaluated in the robust plane fitting step.
Thus, these errors only depend on the accuracy of the fit, which may be related to the
accuracy of the IPA reconstruction, the number of beads and their distribution within
each field and the presence and number of outliers. This error must not be confused with
the dispersion of the parameters measured from one field to the other (presented later).

Table 2.3 presents the fitted parameters evaluated on the 3 sets of data (IPA, GRA,
ToG). The value and dispersion given in this table are, respectively, the median value
of the parameters (â, b̂, ĉ) on the 40 holograms and the median value of the standard
error on parameters found for the 40 holograms. As expected, there is a difference in
the median value of the axial position between the IPA set (9.686µm) and the GRA and
ToG sets (respectively 8.973µm and 8.635µm). Indeed, it is reasonable to find such a
difference (around 1µm) as the IPA method is expected to locate the slide surface while
the other methods can only locate the best focus on red blood cells whose thickness is
around 2µm. What is most striking is the fact that the two image-based methods (GRA,
ToG) give axial locations almost 0.34µm apart, which is not negligible, compared with
the associated errors. This means that the best-focus axial position is sensitive to the
chosen image-based criterion, which is one of the problem that our autofocusing approach
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propose to prevent, or at least reduce. Concerning the fitting errors, it is quite low for
IPA (±19nm). This tends to demonstrate that the plane fitting is quite precise, which
indirectly validate our approximation about the fact that the beads are close to the slide.
The higher median errors for image-based approaches (±51nm for GRA and ±123nm for
ToG) indicate that a precise location using an image-based criterion on more dispersed
objects (red blood cells) is a little more difficult, as the cells are thicker than the beads,
more dispersed in sizes and shapes and their distribution may vary from one patch to
another. Concerning the slopes of the fitted planes, the results are quite similar for the 3
sets of data. It is interesting to see that the IPA method, as well as the patches approaches
with standard algorithms (GRA and ToG) are able to estimate a slope typically less than
2.5 × 10−3 (along the X-axis), which corresponds to an axial shift of only 360nm on the
total width of a field (144µm).

Parameters IPA GRA ToG

Axial position (ĉ) (µm) 9.686± 0.019 8.973± 0.051 8.635± 0.123

Slope along x (â) ×10−3 2.337± 0.462 2.438± 0.461 2.459± 1.130

Slope along y (b̂) ×10−3 −3.196± 0.683 −3.094± 0.671 −3.061± 1.641

Table 2.3: Fit parameters estimated from the robust plane fitting on 40 holograms with
our Inverse Problem Approach (IPA) and the two state of the art algorithms (GRA, ToG)
performed on 25 patches of each hologram. The estimated value are median values on
the 40 holograms and the dispersion is evaluated with the median value of the standard
error estimated during the robust fitting of the plane.

Finally, Table 2.4 presents the median value and the dispersion of the fitted parameters
evaluated with the 40 holograms. For a better illustration of the estimated tilt of the slide,
the slopes have been converted into angles: θz being the angle between the normal of the
estimated plane and the Z-axis and θx being the angle between the projection of this
normal on the XY-plane and the X-axis. These angles can be seen as an equivalent of an
azimuth (θx) and an elevation angle (θz). The median value of the axial position is the
same as in table 2.3, but the dispersion values are obtained by calculating the σMAD of
the 40 estimated parameters. These dispersion values include now the variability of the
axial position of the slide and possibly of the tilt angle from one field to another. The
variability of the slide position include the effect of the physical refocusing for each field.
The dispersion of the axial position is still very good for IPA, with only ±37nm, which is
slightly more than the ±19nm median of the standard errors previously reported on our
numerical simulations, as could be expected. However, as this value includes the physical
refocusing step for each field, this result indicates that the physical autofocusing step was
very stable on the 40 fields under concern. For the GRA and ToG data sets, the σMAD

dispersion values of the axial position over the 40 fields (±63nm for GRA, ±109nm for
ToG) are similar to the median of the fitting standard errors of Table 2.3. Once again,
ToG seems to be a little less precise in estimating the axial position. For the tilt angle
θz, the results are very similar with a value of 0.22-0.23 degrees with the 3 methods. For
the angle θx, the dispersion is greater, which is understandable as the projection of the
normal of the plane on the XY-plane is very small and very sensitive to any error on
the plane reconstruction. In particular, it must be noted that ToG is less effective in the
present experimental conditions than IPA and GRA, particularly for the θx estimation.
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As a conclusion, by comparing our local IPA approach with the state-of-the-art algo-
rithms GRA and ToG performed on image patches, it comes out that it is possible, with
all 3 methods, to use a robust fit of a plane to evaluate both an axial position, as well
as a very small tilt of the slide, with a pretty good repeatability on 40 non-overlapping
fields-of-view of the same slide. As expected, there is a difference in the axial locations
with IPA and standard approaches. Indeed, the IPA aims at locating the slide surface
while the standard approaches aims at locating the best focus on dispersed objects (blood
cells). While the tilt angle of the slide is quite precisely evaluated (except for ToG, which
is less precise here), the error on the estimated parameters of the fit indicate that the
axial position of the slide is more precisely evaluated with our approach. This last point
indicates also that a major hypothesis of our approach seems to be validated: except for
some rare outliers that could be detected and filtered, the axial positions of the beads
are close to a single plane with a good stability over the 40 analysed fields. Finally, the
IPA dispersion is not very far and quite comparable to the GRA algorithm, but it must
be mentioned that the experiment was performed with a sample (blood smear) in which
the most represented objects (red blood cells) were eventually very similar and quite uni-
formly distributed. As demonstrated on the simulations of section B.2.1, the efficiency of
GRA and ToG algorithms can really degrade with more dispersed biological objects.

Parameters IPA GRA ToG

Axial position (ĉ) (µm) 9.686± 0.037 8.973± 0.063 8.635± 0.109

θz (degrees) 0.224± 0.035 0.227± 0.018 0.221± 0.072

θx (degrees) 125.6± 7.2 129.8± 10.6 130.5± 23.0

Table 2.4: Median value and dispersion on various parameters amongst the 40 fields
tested. The dispersion is still evaluated with σMAD. θz is the angle between the Z-axis
(optical axis) and the normal to the plane surface. θx is the angle between the X-axis
direction and the projection of the normal on the horizontal plane (XY-plane).

B.3 Regularized reconstruction of a hologram

Once the propagation distance z has been calibrated using a parametric inverse problem
approach, it is possible to use a regularized inverse problem approach to reconstruct the
holograms. Algorithm 4 summarize the whole methodology to reconstruct a hologram at
any chosen distance ∆z of the slide plane using the proposed autofocusing methodology.
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Algorithm 4: Reconstruction of a sample plane based on inverse problem ap-
proaches using auto-calibration of the propagation distance z

Input : Data d
Input : Distance between the slide and the reconstruction plane ∆z
Output : Parameters of the beads
Θ = {ϑ(i)}i∈[1,Nbeads],ϑ

(i) = {x(i), y(i), z(i), r(i), n(i)}
Output : Object complex transmittance in focus plane a0

1. Parametric estimation:
(Minimization of the parametric data fidelity D(·,d))
Θ← First estimation of the parameters of the beads (Coarse estimation)
for k=1 à N do

ϑ(k) ← Local minimization of D using an optimization algorithm
end

zslide ← Median of the estimated {z(i)P } = z(i) + r(i).

2. Non parametric reconstruction:
(Minimization of the non parametric loss function L )
t← d ∗ h∗

zslide−∆z

t← Minimization of L using an optimization algorithm

Figure 2.10, illustrates first reconstruction results on experimental data performed
using the methodology described in this chapter. Five beads have been reconstructed
using parametric IPA. The distance between the slide and the sensor is then estimated
from the parameters of the beads. It is then possible to reconstruct the hologram at
distance ∆z = 0.5µm of the slide. In this example, a complex total variation regular-
ization (see Chapter 1) has been used and the regularization hyperparameters have been
tuned manually. Figure show first modules and phase reconstruction of a hologram. The
residuals illustration correspond to the difference between the data and the image forma-
tion model. As seen on these images, most of the signal has been reconstructed, however
strong reconstruction artefacts are still visible. This can be explained by bad regulariza-
tion hyperparameter tuning or errors in the image formation model. These issues will be
assessed in the following chapters of this manuscript.
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C Conclusion

This chapter presents a method for estimating the position of the plane on which the
sample is placed. It is based on the insertion and detection of calibration beads inserted
in the biological sample. Estimating the location and size of the beads using a parametric
IPA makes it possible to accurately reconstruct the surface of the slide on which the beads
and the biological sample are placed. Knowledge of the location of this reference plane
allows the user to objectively choose the position of the reconstruction plane.

Unlike other approaches, the reference plane is independent of the type of objects
present in the biological sample and therefore enables reproducible focusing on an objec-
tive physical surface, which could be useful for whole slide imaging, drift compensation
or automated high-throughput sample classification. Moreover, it also makes it possible
to estimate a tilt of the slide, which could allows tilt corrections.

The study provides proof of the feasibility of the method. Its limits in terms of
robustness to high density and variety of objects in the field still need to be studied. The
proposed methodology was applied to an in-line holographic configuration, but it is also
applicable to off-axis holography when the samples are composed of objects of different
shapes and different optical characteristics.

The need for inserting calibrated objects inside a sample (or using known patterns
engraved on the slides) adds additional experimental complexity or cost to the sample
preparation step. However, the method proposed here offers interesting perspectives for
reconstructing a slide surface that is not flat or taking into account aberrations as de-
scribed in Chapter 4. Other calibration objects can be considered. Further studies on the
choice of the calibration objects can be performed to improve the estimation accuracy.
However, in this thesis, proof of feasibility have been performed on calibration beads as
described in Appendix C.

It must be noted that this approach does not particularly requires mono-dispersed
calibration beads because the size of the beads are evaluated and taken into account in
the reconstruction of the slide plane. Moreover, depending on the application, the use of
purely absorbing objects of micrometer or even sub-micrometer sizes is also possible.

It is important to notice that this methodology is not adapted nor required for any
microscopy situations. For dense samples (e.g. biological tissues), whole slide imaging, or
especially with low magnification objective, the requirements for sub-micrometric focusing
is not an issue, as the depth of field is more important, as well as the thickness of the
sample. The main requirement would be then to find a way to keep a stable focus
throughout the slide. For this, many methods mentioned previously would do the job.
Moreover, in some samples, it can be difficult or undesirable to insert objects, because
of the sample nature or to avoid contamination. However, our methodology is adapted
to the context of automated microscopy analyses of liquid samples (e.g., blood, urine,
cerebrospinal fluid). As they represent an important part of the medical microscopy
analyses, their automation is of major importance. In this context, our methodology, in
its principle, aims at being repeatable and robust to a large diversity of size and absorption
of the objects present in the sample, contrary to image-based methods. In the context of
automation, it aims at locating, for each slide/field of view, a spatial reference position
with a sub-micrometric resolution.

46



CHAPTER3
Fast and robust pattern detection in in-line
holographic microscopy

Abstract

The detection of calibration beads is an essential step in
the autofocusing method proposed in Chapter 2. Yet, the
detection of diffraction patterns can be difficult due to
interferences between the holograms. In this case, detecting
the pattern of interest requires robust detection techniques. A
major drawback of robust pattern matching is the high com-
putational complexity when fast Fourier-based correlations
are replaced by systematic evaluations of a non-quadratic
loss function. In the case of spatially extended patterns, like
digital holography, the complexity becomes prohibitive. In
this chapter, we propose a fast detection algorithm that still
relies on fast correlations to approximate various robust loss
functions. In this chapter, after a preliminary section, we
present the proposed detection scheme and validate it on sim-
ulated and experimental data. This chapter is adapted from
the paper [Brault et al., 2022a]. A video submitted for the
IEEE European Signal Processing Conference (EUSIPCO)
09/2022 is available at the following link: Video Chapter 2

Introduction

Direct object detection by matching a diffraction pattern model to the hologram fringes
is useful in many applications, from holographic microscope calibration to 3D particle
location and tracking. To perform the numerical refocusing proposed in Chapter 2, Section
B.1.2, spherical calibration beads can be used to accurately locate the sample plane.
The 3D localization of spherical objects can be estimated from a digital hologram by a
greedy algorithm similar to continuous matching pursuit [Mallat and Zhang, 1993, Soulez
et al., 2007a, Brault et al., 2022b]. The diffraction pattern produced by a homogeneous
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spherical bead is well modelled by Mie theory [Slimani et al., 1984] and depends only on
a few parameters: the 3D location of the bead (x, y, z), the radius r of the bead and its
refractive index n.

Matching pursuit algorithms identify the location of objects one at a time, based on
a maximum correlation criterion corresponding to the minimization of a least-square cri-
terion. When spherical beads are added on a slide that contains biological samples, the
detection and localization of the beads becomes much more difficult, especially when the
diffraction patterns of the beads are less contrasted than the other diffraction patterns:
the cross-correlation between the model and the data displays maxima at locations cor-
responding to well-contrasted biological structures. Robust detection strategies, more
tolerant to marked deviations in the measurements, are then necessary for the detection
[Rousseeuw and Hubert, 2011, Denis et al., 2016, Flasseur et al., 2019] and accurate
localization [Flasseur et al., 2017a] of the beads.

An important practical advantage of maximum correlation approaches is the possibility
to quickly compute detection maps using fast Fourier transforms to identify the (x, y)
location for a hypothesized set of parameters ϖ = (z, r, n) (that can be optimized).

While it is relatively straightforward to adapt a local optimization method to account
for a non-quadratic loss function (e.g. Iterative Reweighted Least Squares (IRLS) [Holland
and Welsch, 1977, Flasseur et al., 2017a]), it is much more challenging to detect a large
pattern robustly in 2D due to the enormous increase in computational complexity caused
by dropping the fast correlations.

Some approaches taken from robust signal processing [Rousseeuw and Hubert, 2011]
have been used for pattern location, e.g., in the case of weak signals buried in a zero-
mean non-Gaussian noise [Denis et al., 2016], when collections of background images
can be used to capture the spatial correlations of the disturbance terms [Flasseur et al.,
2019]. Deep learning methods have also been used for particle localization but may suffer
generalization issues and need a training dataset [Altman and Grier, 2020].

Several methods have been proposed to speed up the process of robust template match-
ing e.g., computation based on multi-resolution computation of the robust cost function
[Chen et al., 2003] or a template matching strategy based on the Inverted Location Index
for non-decreasing bounded robust functions [Sibiryakov, 2011].

In this chapter, we extend the fast robust correlation approach proposed by Fitch et
al. [Fitch et al., 2005] to approximate detection maps for arbitrary robust functions as a
sum of correlations. It is applicable to pattern detection problems in different fields.

In the Preliminaries section we detail classical correlation-based detection techniques.
Then, we introduce some of the most popular robust penalizations. At last the robust
detection method proposed by Fitch et al. is reminded. The proposed extension of this
methodology is described in Section B.1. The proposed method is then illustrated in
Section B.2 on a challenging bead location problem in holographic microscopy, using
both simulated and experimental images.
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A Preliminaries

A.1 Correlation-based pattern detection

A.1.1 Detection by correlation

In the presence of observed data d ∈ RH·W (an L · C pixels image), finding the (x, y)
location of an object modelled bym(x, y) ∈ RL·C amounts to identifying parameters (x, y)
that minimize the discrepancy between d and m In the presence of white Gaussian noise,
this discrepancy is measured using a L2 norm. The minimization problem is equivalent
to a least squares fitting:

{x†, y†} = arg min
{x,y}

∥d−m∥22

= arg min
{x,y}

∑
i,j

(di,j −mi,j(x, y))
2

= arg min
{x,y}

∑
i,j

d2i,j +
∑
i,j

mi,j(x, y)
2 − 2

∑
i,j

di,jmi,j(x, y)∑
i,j d

2
i,j is constant and since the model is shift invariant

∑
i,j mi,j(x, y)

2is constant too
(whitout taking into account the truncation of the field of view, thus,

{x†, y†} = arg max
{x,y}

∑
i,j

di,jmi,j(x, y) (3.1)

Since the model is shift-invariant a coarse estimation of the (x, y) location of the object
on a pixel grid noted (x, y) can be obtained by maximizing a simple correlation between
the data and a model centred in the field of view:

{x†, y†} = arg max
{x(i),y(j)}

L/2∑
l=−L/2

C/2∑
c=−C/2

dl,cm
∗
l−j,c−i(0, 0) (3.2)

To detect an object pattern in the data under white Gaussian noise assumptions, this
detection can be performed using Fast Fourier Transforms (FFT) to reduce the compu-
tational time.

A.1.2 Normalized correlation

To avoid sensitivity to a scale factor and offset changes between the data and the model,
a normalized correlation can be used, in this case:

{x†, y†} = arg max
{x(i),y(j)}

L/2∑
l=−L/2

C/2∑
c=−C/2

(dl,c− < d >)(m∗
l−j,c−i(0, 0)− <m >)√∑

i,j [dl,c− < d >]2 +
∑

i,j [ml,c− <m >]2
(3.3)

A.2 Robust detection

A.2.1 Robust loss functions

In the presence of noise plus disturbances caused by the presence of other objects the
residuals d−m are no longer Gaussian and the discrepancy has to be evaluated using a
robust loss function.

49



SCIENTIFIC CONTEXT

In robust statistics, Huber [Huber, 2011] introduced M-estimators that replace the
square function by another objective function ρ, which reduces sensitivity to outliers by
penalizing less the largest deviations (Fig. 3.1). Below, we give the expressions of 3 robust
loss functions ρ that we will compare in our experiments:

� Cauchy loss function :

ρ(u) =
1

2
log(1 + u2) (3.4)

� Huber loss function (δ is a positive parameter):

ρδ(u) =

{
1
2
u2 for |u| ≤ δ
δ · (|u| − 1

2
δ) otherwise.

(3.5)

� Tuckey loss function (t is a positive parameter):

ρt(u) =

 t2

6

{
1−

[
1−

(
u
t

)2]3}
for |u| ≤ t

t2

6
otherwise.

(3.6)

Figure 3.1: The least squares and 3 robust loss functions.

The robust loss function ρ either corresponds to the neg-log-likelihood of a heavy-
tailed distribution or is selected for its mathematical properties (in particular, asymptotic
behaviors).

A.2.2 Likelihood Ratio Test

The differences between the model and the data are generally not independent from one
pixel to another due to the spatially extended patterns of the other objects. However,
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when considering a robust loss function (as presented in Section A.2.1), these spatial
dependencies are less of an issue and in the following, we make the simplifying assumption
that those differences are independent. The interpretation as a neg-log-likelihood then
motivates the location problem to be formulated as a hypothesis test that leads to the
Likelihood Ratio Test (LRT):

H0 : − log p(d|H0) =
∑
i,j

ρ

[
di,j
s

]
+ c

(no object)

H1 : − log p(d|H1, x, y) =
∑
i,j

ρ

[
di,j −mi,j(x, y)

s

]
+ c ,

(object at (x, y))

(3.7)

where s is a scaling factor that sets the boundary between inliers and outliers, and c is a
constant to ensure that the probability density functions sum to one. This parameter is
commonly chosen based on a robust estimate of the standard deviation of the data under
H0 using the Median Absolute Deviation (MAD) of the data [Huber, 2011]:

sMAD = 1.48 ·median(|d−median(d)|) . (3.8)

The LR is computed by forming the ratio between the likelihoods of H1 and H0:

LR(x, y) = log
p
(
d
∣∣H1, x, y

)
p(d|H0)

=
∑
i,j

ρ

[
di,j
s

]
− ρ
[
di,j −mi,j(x, y)

s

]
(3.9)

=
∑
i,j

fs(di,j,mi,j(x, y)) , (3.10)

were fs(a, b) = ρ[a/s]− ρ[(a− b)/s].
The strategy used to locate objects modeled by m typically consists in (i) detecting an

object if there is a location (x, y) such that LR(x, y) is above a given detection threshold
(chosen according to a false alarm rate), (ii) refining the location (x, y). Generally, for
computational efficiency reasons, only (x, y) locations (x, y) centered on the pixel grid are
considered during step (i). If several locations (x, y) are above the detection threshold,
only the location leading to the largest LR value is usually kept. Step (ii) then refines
the (x, y) location by maximizing LR. The contribution of the detected object can then
be subtracted from the data and the detection procedure repeated on the residuals, like
in the standard matching pursuit procedure.

A.2.3 Fitch’s robust detection

In [Fitch et al., 2005], Fitch et al. proposed to decompose the robust penalization function
ρ on a limited number nmax of trigonometric functions, so that:

ρ(u) ≈
nmax∑
n=1

cn(1− cos(lnπu)) . (3.11)
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Note that when ln = n, (3.11) is a Fourier cosine series. With this expansion, fs can be
written as :

fs(a, b) ≈ γ(a) +
nmax∑
n=1

cn cos(nπ(a− b)) , (3.12)

where γ(a) = −
∑nmax

n=1 cn cos(nπa). Using the properties of trigonometric functions, fs
can be expanded as follows:

fs(a, b) = γ(a) +
nmax∑
n=1

cn
[
cos(nπa) · cos(nπb) + sin(nπa) · sin(nπb)

]
. (3.13)

This leads to the following efficient detection criterion, based on discrete correlations
computed with FFTs:

LRFitch(x, y) =
nmax∑
n=1

cn [cos(nπd)⊗ cos(nπm(0, 0))]x,y

+
nmax∑
n=1

cn [sin(nπd)⊗ sin(nπm(0, 0))]x,y

+
∑
i,j

γ(di,j) .

(3.14)

Note that if the Fourier Cosine Series (FCS) approximation is limited to nmax terms, the
evaluation of LRFitch requires 2nmax correlations.

B Proposed robust detection method

B.1 Proposed robust detection scheme

In the first step of the object detection procedure described in Section A.2.2 a map of the
following form has to be computed:

LR(x, y) =
∑
i,j

fs(di,j,mi,j(x, y)) , (3.15)

were fs(a, b) = ρ[a/s] − ρ[(a − b)/s]. Direct computation of these terms requires O(LC)
operations for each pixel of the map. Evaluating LR on the whole pixel grids requires
then O(L2C2) operations, which is prohibitive in most applications. If function fs can be
expanded into a sum of a few separable terms:

fs(a, b) =
kmax∑
k

gk(a) · hk(b) , (3.16)

then a fast evaluation is possible using FFT-based correlations:

LR(x, y) =
kmax∑
k

[gk(d)⊗ hk(m(0, 0))]x,y , (3.17)
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where ⊗ represents the bidimensional correlation operator, functions gk and hk are applied
pixelwise, and the possible locations (x, y) are restricted to the pixel grid. With FFTs,
the computation of LR on the whole pixel grid only requires O(LC log(LC)) operations.

When ρ(u) = u2, the expansion fs(a, b) = a2/s2 − (a− b)2/s2 = 2ab/s2 − b2/s2 shows
that LR(x, y) can be computed using a FFT-based correlation. For more general loss func-
tions ρ, a closed-form separable expansion is not usually available. To circumvent this
problem, we quantize values a and b and define matrix F such that Fp,q = fs(ap, bq),
where values (ap)p=1..P and (bq)q=1..Q uniformly span the range [min(d),max(d)] and
[min(m(0, 0)),max(m(0, 0))], respectively.

A singular value decomposition (SVD) of F is then performed so that F =
∑min(P,Q)

k=1 ukσkv
t
k.

By truncating and interpolating this expansion, we obtain the approximation:

fs(a, b) ≈
kmax∑
k=1

φ(
√
σkuk, a) · ψ(

√
σkvk, b) , (3.18)

where kmax is the rank of the approximation, φ(
√
σkuk, a) is the value interpolated at

location a based on the points (
√
σk[uk]p, ap)p=1..P , and ψ(

√
σkvk, b) is the value interpo-

lated at location b based on the points (
√
σk[vk]q, bq)q=1..Q. This leads to the Algorithm

5.

Algorithm 5: Fast computation of the detection map LR

input : Data d (L× C image)
input : Model m (L× C image: m(0, 0,ϖ))
Accuracy parameters: P , Q, kmax

output: Detection map LR (L× C image)

(Build matrix F and compute its SVD decomposition)
for p = 1 to P do

for q = 1 to Q do
ap ← min(d) + p−1

P−1
(max(d)−min(d))

bq ← min(m) + q−1
Q−1

(max(m)−min(m))

Fp,q ← fs(ap, bq)
end

end
[U ,S,V ]←SVD(F )

(Compute detection map using FFT-based correlations)
L ← 0
for k = 1 to kmax do

g ← φ(Sk,kuk,d) (1D interpolation for all d)
h← ψ(Sk,kvk,m) (1D interpolation for all m)
LR← LR + g ⊗ h (2D correlation by FFT)

end

Our robust detection criterion LR generalizes the formulation LRFitch of Fitch et al.
(described in Section A.2.3) by replacing trigonometric functions by modes computed by
SVD on F . Comparison between the FCS approximation and the low rank approximation
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Figure 3.2: Reduction of the approximation error on F with the number of correlations
under Fourier series approximation (Fitch & al.) vs low rank approximation (this paper)

(SVD) on F are presented in Fig. 3.2 for the Cauchy robust penalization function.
While both approaches reduce the quadratic error when more terms are included in the
expansion, this reduction is much faster with the low-rank approximation. To reach a
given approximation error, our expansion L requires much fewer terms, leading to a
reduced computation time.

B.2 Application to spherical bead detection in holographic mi-
croscopy

B.2.1 Robustness evaluation on simulations

In this paragraph, we assess the performance of the proposed method. For this purpose,
non-absorbing silica beads of radius r = 0.5 µm, refractive index n = 1.45 are simulated
at a propagation distance z = 10 µm (Config-STAINED see Appendix A Section C). A
small dispersion of the parameters is generated to match the variability of commercial
calibration silica beads. The beads are mixed with other spherical absorbing objects
with parameters (z = 10 µm, r = 0.5 µm, n = 1.45 and transmittance 0.005) chosen to
simulate the biological objects. Their patterns are also 2.5 time more contrasted than the
calibration beads. They can be considered as a nuisance term in the task of locating the
calibration beads (see Fig. 3.3). The data are simulated on a 5 × 7.4mm2 sensor. The
microscope objective considered is a 85× oil immersion objective, giving a field of view of
60.8 × 90.4 µm2 area. The illumination source is a coherent red-light at 622 nm (Setup-
BIOASTER see Appendix A Section B). The simulated holograms contain the diffraction
patterns of 20 spherical objects in each set (calibration beads and biological objects) and
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Figure 3.3: A simulated hologram with two populations of spherical objects, one repre-
senting calibration beads and the other biological objects.

are corrupted by an additive Gaussian noise leading to a signal-to-noise ratio of 1.5. To
quantify the performance of the robust approach, we consider the detection and location
of the calibration beads. Each object detected with an error less than 2 pixels is counted
as a correct detection. The robustness of the method is assessed through ROC curves that
show the number of true detections as a function of the number of false detections. These
curves are plotted by increasing the detection threshold. The evolution of these curves
according to the scaling factor s is shown in Fig. 3.4a. When s is large (s = 15×MAD)),
the robust penalization curve approaches the least-squares minimization curve which is
characterized by numerous false detections. If a calibration process is performed on the
detected beads, it is important to limit the number of false detections, even if this implies
missing some true detections.

When s is close to the value of the MAD (s = 1.48 ×MAD) [Huber, 2011], all the
calibration beads in this experiment are correctly detected before the first false detection
occurs.

Fig. 3.4b compares the performance of several robust penalization functions using
the fast computation algorithm. As can be seen in Fig.3.4a with the Cauchy function,
when the robustness parameter s is overestimated the Huber and Tuckey loss functions
are more sensitive to outliers.

The number of operations involved in the FFT-based computation of LR(x, y) is pro-
portional to the number of terms kmax in the separable expansion. To limit the compu-
tational cost, kmax should be kept low. Fig. 3.5 shows the logarithm of the mean relative
error between an estimation of the robust function using an expansion of 100 terms and
a smaller number of terms kmax.

The approximation error decreases quickly when only a few terms are considered. In
our case, kmax = 5 is sufficient for robust detection. This is the value we use in the
following paragraph. Note that, depending on the robust loss function, the number of
terms required to reach a given approximation error will vary.
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(a) Influence of the scaling parameter s
when using the Cauchy loss function.

(b) Impact of the loss function on the de-
tection performance.

Figure 3.4: Influence of the scaling parameter and of the loss function on the detections

Figure 3.5: Reduction of the approximation error with the number of terms kmax.
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(a) Experimental hologram of a mixture of blood, bacteria
and calibration beads.

(b) Detection map computed with a
quadratic loss function on the hologram of
calibration beads.

(c) Detection map computed with the
Cauchy loss function on the hologram of
calibration beads (kmax = 5).

Figure 3.6: Detection of calibration beads in a hologram of a blood smear: (a) experi-
mental data; (b) detection map and the first 10 detections with a non-robust criterion;
(c) detection map with a robust Cauchy criterion (s = 1.48 × MAD). False detections
and true detections are circled respectively in red and green.
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B.2.2 Experimental case

The proposed robust detection scheme was applied to experimental in-line holograms. The
sample used was a Gram stained smear of a positive blood culture; the latter was spiked
with a bacillus and coccus bacteria strain. Calibration objects (spherical silica beads)
were added to the sample placed on a microscope slide. The experimental parameters
are the same as the simulated ones (Setup-BIOASTER/Config-STAINED see Appendix
A Section C.

The red blood cells in the sample produce more contrasted diffraction patterns than
the beads (see Fig.3.6(a)) that are strongly correlated with the bead model. The use of a
conventional quadratic loss function leads to a detection map where the first 10 detections
are wrong detections corresponding to blood cells (see Fig. 3.6(b)). Since the autofocus
[Brault et al., 2022b] is performed using the median of the z parameters of the detected
beads, these detections would lead to strong errors. With a robust loss function such as
Cauchy, 7 of the first 10 detections were meaningful (6 out of the first 7). Some red blood
cell diffraction patterns are highly correlated with the patterns of the beads, leading to
large values even with the robust detection criterion.
This detection map was obtained using an expansion of 5 terms (kmax = 5) representing
a computational cost 2.5 times larger than in the case of the non-robust quadratic loss,
which is a moderate increase given the improvement in the detection.

C Conclusion

We proposed a method to reduce the computational cost when computing detection maps
with a robust penalization function. This method approximates the GLR based on a
separable expansion that is suitable for FFT-based implementation. We show that the
use of a robust loss function increases the number of correct detections of calibration
objects in in-line holographic microscopy. To accurately estimate the parameters of the
calibration objects, this robust detection step can be followed by a local refinement using
the same robust cost function [Holland and Welsch, 1977, Flasseur et al., 2017a]. Let us
note that this robust detection is not always necessary (depending and the sample) and
was not required for the following chapters. However this method has been tested on 20
simulated images and hundreds of experimental images.
A supplementary example and the source code are available at https://github.com/

braultd/FastRobustPatternDetection .
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CHAPTER4
Accurate unsupervised estimation of
aberrations for improved quantitative
reconstruction

Abstract

In order to tackle the problem of reproducibility and quatita-
tivity in digital holographic microscopy, we need to calibrate
accurately the aberrations of the setup. Similarly to Chapter
2, the proposed method is based on the estimation of the
aberration parameter using parametric inverse problems
approach on beads diffraction patterns. The forward model is
based on a Lorenz-Mie model distorted by optical aberrations
described by Zernike polynomials. This methodology is thus
able to characterize varying aberrations in the field of view in
order to take them into account to improve the reconstruction
of any sample. We show that this approach increases the
repeatability and quantitativity of the reconstructions in both
simulations and experimental data. We use the Cramér-Rao
lower bounds to study the accuracy of the estimation of
the aberration parameters. Finally, we demonstrate the
efficiency of this aberration calibration by using them in
image reconstructions using a commonly used phase retrieval
algorithm as well as a regularized inverse problems algorithm.
In this chapter, after a preliminary section, we present the
proposed methodology to calibrate the aberrations and validate
it on simulated and experimental data. Finally we use the
aberration model to reconstruct experimental data. This
chapter is based on the published article [Brault et al., 2022c].
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Introduction

Optical microscopy can be used to extract several characteristics from a biological sam-
ple, such as morphological parameters, birefringence or a phase shifts introduced by an
unstained sample. For quantitative measurement of these properties, an accurate opti-
cal model is required [Alexander et al., 2020]. Accounting for the characteristics of the
optical system is an essential component of reconstruction algorithms. For example, in
fluorescence microscopy, accurate modeling of the Point Spread Function (PSF) is a way
to improve the deconvolution step [McNally et al., 1999, Sarder and Nehorai, 2006, Soulez
et al., 2012, Li et al., 2017]. It can be performed using either a dedicated calibration step
(by directly measuring the PSF on “point-like” objects [McNally et al., 1999]) or by esti-
mating the PSF directly on an image that presents aberrations [Soulez et al., 2012, Aris-
tov et al., 2018, Li et al., 2018]). In the literature, estimating aberrations or PSF have
been widely addressed using various microscopy methods (fluorescence, single-molecule
localization, wide-field microscopy, holography, etc.), with different measurement or re-
construction approaches and models of the PSF. These models can be very simple (e.g.
Gaussian model), more realistic, like the Gibson-Lanni model [Gibson and Lanni, 1991, Li
et al., 2017, Li et al., 2018], or more versatile and general, like the Zernike polynomials of
the pupil function [Lakshminarayanan and Fleck, 2011, Zheng et al., 2013, Aristov et al.,
2018]. In the two latter cases, the coherent PSF is modeled as a phase error function in
the exit pupil plane of the objective.

In the particular case of digital holographic microscopy, the issues of aberrations es-
timation and correction have been widely studied for off-axis configuration (e.g. [Ferraro
et al., 2003, Colomb et al., 2006, Min et al., 2017, Xu et al., 2001]). However, it concerns
essentially the wavefront mismatch between the object and the reference beams, which
creates distortions of the interference fringes, thus inducing errors in the reconstruction.

In-line digital holographic microscopy requires a simpler setup involving a single beam.
It is less bulky and less sensitive to vibrations than off-axis holographic setups [Garcia-
Sucerquia et al., 2006, Kreis, 2006]. Image processing makes it possible to reconstruct
the optical properties of the sample including its absorption and its phase shift. The
aberrations of an in-line holographic optical system can have different causes, such as
non standard uses of the objective, tilts or collimation errors in the illumination. These
aberrations are dependent on the setup, its alignment and vary in the field of view. They
lead to reconstruction errors, not only in the quantitative estimation of the modulus and
the phase but also in the geometrical properties of the reconstructed objects. Thus, the
repeatability as well as the reproductibility of the reconstructions is affected. However,
the aberrations of the optical system are usually not considered in the reconstruction step.
Accounting for the aberrations in the image formation model makes it possible to reduce
the bias introduced in the reconstructions. These aberrations are an important issue to
overcome in applications such as medical diagnoses that require reconstructions to be as
accurate as possible to make the decision as robust as possible. To our knowledge, it is
only recently that the influence of optical aberrations has been studied in the context of
in-line digital holographic microscopy [Alexander et al., 2020, Martin et al., 2021, Olivier
et al., 2022]. These studies underlined the need for a fine estimation of aberrations in
order to improve the quantitativity and the repeatability of the phase reconstructions as
well as the axial positioning, by reducing the aberration-driven biases.

In the present chapter, we first address the problem of estimating aberrations in the
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context of in-line digital holographic microscopy. To that end, we use as in Chapter 2
calibration beads to estimate an aberrated forward model. Using a parametric Inverse
Problems Approach (IPA), we simultaneously fit Zernike coefficients and calibration beads
parameters, which are parameters of the forward model, on data. Unlike many PSF es-
timation studies, our approach does not require axial stacks of images i.e. only one
hologram is needed. Moreover, we made no assumption of an aberration-free PSF in the
center of the field, like in Zheng’s et al. study [Zheng et al., 2013]. Finally, this model
of aberration is more general than the Gibson-Lanni model [Martin et al., 2021, Li et al.,
2017, Li et al., 2018]. As a forward model, we use a Lorenz-Mie model of the calibration
beads that has been extended to account for the aberrations of the optical system using
Zernike polynomials [Lakshminarayanan and Fleck, 2011]. To jointly estimate the cali-
bration beads and aberration parameters, we choose a parametric IPA as it is known to
be accurate in estimating the parameters of simple shape objects [Lee et al., 2007, Soulez
et al., 2007a, Cheong et al., 2010] and of the experimental parameters required for cali-
bration. It has already been successfully applied in the context of autofocusing [Brault
et al., 2022b], for the estimation of the spectral crosstalk on a Bayer sensor [Flasseur
et al., 2017b] and to estimate the parameters of an astigmatic reference wave [Verrier
et al., 2014].

Once Zernike coefficients are estimated locally for each bead, they can be used to
perform aberration free reconstruction of the sample. These reconstructions can be per-
formed using regularized IPA algorithm [Denis et al., 2009, Jolivet et al., 2018] or Fienup
algorithm [Fienup, 1982, Latychevskaia and Fink, 2007]. To test the proposed method-
ology, we use the experimental procedure of Martin et al. in [Martin et al., 2021], i.e.
the use of a water immersion microscope objective with a correction collar that causes
aberrations when not set correctly. In the following section, we describe the Zernike poly-
nomials basis. Then we describe the method to estimate aberration parameters (Zernike
coefficients) and use them to refine the PSF model of our holographic setup in order to
reconstruct aberration-free images. We then demonstrate the robustness of the approach
to reconstruct various kinds of aberrations, we first present the estimation of both aber-
rations and beads parameters on simulated holograms and on experimental holograms.
Finally, to illustrate the relevance of our approach on experimental data. These exper-
imental data are reconstructed with phase retrieval algorithms (Fienup and regularized
IPA algorithms) that take into account the estimated aberrations.

A Preliminaries: Zernike Polynomials

As mentioned earlier, due to imperfections in the optical system geometric, aberration can
occur and have a significant impact on the image formation model. Since inverse problem
approach are very sensitive to model errors, the effect of these aberration must be taken
into account. To consider the geometric aberration in the image formation model, Zernike
polynomials are a commonly used mathematical description of the aberrated wavefront in
the pupil plane (Fourier plane). The Zernike polynomials are orthogonal and continuous
over a unit disk. However, it should be noticed that Zernike polynomials will no longer be
orthogonal in a discrete space [Goodwin and Wyant, 2006, Lakshminarayanan and Fleck,
2011].
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Definition of the Zernike polynomials

Zernike polynomials depend on two parameters: the azimuthal angle ϕ = arctan(κy

κx
)

and the radial distance ρ = λ
NA

√
κ2x + κ2y. The Zernike polynomials are defined as

follows :

Zm
n (ρ, ϕ) =

{
R

|m|
n (ρ) sin(mϕ) if m > 0

R
|m|
n (ρ) cos(mϕ) otherwise,

(4.1)

where n ∈ N, m ∈ Z and Rm
n (ρ) is defined as :

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!
k!
[
n+m
2
− k
]
!
[
n−m
2
− k
]
!
ρn−2k, (4.2)

with n ≥ |m| and n− |m| even.

The independance of Zernike polynomials on the unit disk means that every aberrated
wavefront is described by a unique linear combination of Zernike polynomials called the
Zernike coefficients α = {αm

n }n∈N,m∈Z. The total Aberration Correction AC is thus
expressed AC =

∑
n,m

αm
n Z

m
n

Some properties of the Zernike polynomials

Zernike polynomials have interesting properties :

� A common metric to measure the flatness of the wavefront correction is the
wavefront correction variance. It can be computed directly from the Zernike
coefficient:

σAC =
∑

n∈N∗,m∈Z
n≥|m|

n−|m| even

(αm
n )

2

� When m = 0, Zernike polynomials are radially symmetric.

An illustration of the polynomials is given on Fig. 4.1 [Hsieh et al., 2020].
Considering the Zernike coefficient to be of the depth, Figure 4.2 illustrates the effects

of spherical aberration, vertical astigmatism and vertical coma on the PSF and in the
hologram plane. Spherical aberrations maintains the radial symmetry of the propagation
kernel due to the radial symmetry of Z0

4 . For vertical astigmatism and coma the phase
of the MTF has a non radial profile. The symmetry is then lost in the hologram plane.
Note that these effects almost invisible for high z distance. Therefore it is necessary to
look at the focus plane to see them.
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Figure 4.1: Illustration of the 15 first Zernike polynomials (adapted from [Hsieh et al.,
2020]). Visualization of the pupil plane changes in function of (n,m) couples.
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B Aberration estimation

B.1 Estimation of the aberration parameters and reconstruction

In the framework of inverse problem approaches, reconstructions are based on minimiz-
ing the discrepancy between the hologram (the data) d and an image formation model
(forward model) m. This framework is well suited to calibrate the aberrations using holo-
grams of spherical objects as the image formation model depends only on the parameters
of the objects (position, diameter and refractive index) and on the aberrations that can
be modelled with a complex pupil function described by few parameters. Once these
aberrations are estimated, they can be used in a regularized reconstruction method to
reconstruct any sample without any aberration artefacts. Figure 4.3 shows a flowchart
representing the two main steps, the calibration and the reconstruction, that are detailed
here after.

Data
Detection and

coarse estimation of 
the beads

and aberrations
 parameters

Local refinement 
of the beads

and aberrations
 parameters

Estimation of the 
transmittance plane 

using a non-parametric
 approach

Beads
parameters

Aberrations
parameters

Pupil function

Calibration step

Reconstruction step

Reconstructed 
transmittance plane

Propagator

Figure 4.3: Flowchart representing the two main steps of the proposed method: calibra-
tion and reconstruction.

B.1.1 Calibration : aberration parameters estimation

As described in Chapter 2, the diffraction pattern aMie of a spherical bead is accurately
modeled by the Lorenz-Mie model [Slimani et al., 1984] which depends on the set of
bead parameters ϑ = {x, y, z, r, n}, where x, y, z corresponds to the 3D position, r is the
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radius and n is the refractive index. The Lorenz-Mie model has been successfully used to
reconstruct spherical objects from holograms by fitting methods (see Chapter 2). In the
presence of aberrations, the new image formation model of the beads mP also depends
on the aberration parameters α of the optical system that can be included in the model
by mean of a complex pupil plane as follows:

mP(ϑ,α) =
∣∣∣F−1

[
p̃(α)⊙ãMie(ϑ)

]∣∣∣2 (4.3)

where F−1 is the inverse Fourier Transform, p̃(α) is the pupil function in Fourier domain
that depends on (κx, κy), the spatial frequency coordinates. For the sake of compactness,
Fourier space coordinates and spatial coordinates are omitted in the equations when they
are not required. α = {αm

n }(m,n)∈Z2 is a vector of aberration parameters, that will be

referred as Zernike coefficients in this work. ãMie is the Fourier Transform of aMie, and ⊙
is the Hadamard product.

As described in [Lakshminarayanan and Fleck, 2011, Noll, 1976], Zernike polynomials
{Zm

n }m,n provide a suitable basis to describe the pupil function p̃ (see Section A for
details):

p̃(κx, κy,α) = e
i

[ ∑
n,m

αm
n Zm

n (κx,κy)

]
(4.4)

To characterize the aberration effects of the optical system, the Zernike coefficients
α = {αm

n }m,n have to be estimated. Assuming a white and Gaussian noise, the maxi-
mum likelihood estimation of model parameters {ϑ,α} of the bead and the aberrations
corresponds to a least squares fitting problem:{

ϑ†,α†} = argmin
ϑ∈C,α∈D

∥d−m(ϑ,α)∥2W (4.5)

where {C,D} are optimization constraints and ∥·∥2 is the L2-norm. To numerically solve
this optimization problem (equation 4.5), only the first 15 Zernike coefficients are esti-
mated in the following. As a phase piston has no effect on the image formation model
(intensity image formation model), α0

0 is set to 0. As a lateral shift of the beads (change
of (x,y)) have the same effects than the Zernike coefficients α−1

1 and α1
1, these Zernike

coefficients are also set to 0. The coefficient α0
2 corresponds to the Fresnel defocus that

is also estimated using the z parameter (more precisely, z corresponds to the Rayleigh-
Sommerfeld defocus). Thus, it is set to 0. In these conditions, sixteen parameters are
studied:

x, y, z, r, n, α−2
2 , α2

2, α
−3
3 , α−1

3 , α1
3, α

3
3, α

−4
4 , α−2

4 , α0
4, α

2
4, α

4
4.

A study of the correlations between the estimated parameters is presented in Section
B.1.2. It shows some high correlations in the correlation matrix. All the parameters
{ϑ,α} should therefore be estimated simultaneously. An iterative global/local optimiza-
tion scheme [Soulez et al., 2007a] is used to guarantee the rapid and accurate reconstruc-
tion of a set of objects. Since the beads are monodispersed, a narrow parameter research
domain C can be chosen depending on the size and refractive index of the beads used
experimentally.

Since the aberration can differ depending on the location of the beads in the field of
view, the aberration parameters have to be estimated for several different bead locations.
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B.1.2 Theoretical study of the aberrations parameters accuracy

In this section, we aim at estimating the achievable precision on each estimated pa-
rameter and to study the correlation between these parameters. For these purposes,
Cramér-Rao Lower Bounds (see Chapter 2 Section A.4.2) and the correlation matrix are
computed [Kay, 1993] using our aberrated model mP presented in section B.1.1 eq. (4.3).
These bounds are computed for a bead at the center of the field of view and for several
defocus distances with parameters of Setup-LaHC for unstained samples (see Appendix
A Section A, ϑ (x = 0 µm, y = 0 µm, z, r = 0.5 µm, n = 1.58)).

As the aberrations happen to be quite low in our case, the accuracy study has been
performed with Zernike coefficient set to zero. Thus, the accuracy on the Zernike coeffi-
cents has been studied around a zero value.

Figure 4.4 illustrates the evolution of the CRLB with the propagation distance z (i.e.
the lower bound variance of each parameter versus z value).

These CRLB have been computed considering σϵ constant and using numerical deriva-
tives. For most parameters the best accuracy is obtained for defocus distances between
12 and 17 µm. In this study, the defocus distance z = 12µm was considered.
The presence of an optimum for the z parameter can be explained. Indeed, when z de-
creases, the number of pixels on which the diffraction pattern of a bead is recorded also
decreases. Thus the estimation is less robust and accurate. On the contrary if z increases,
the number of pixels on which the diffraction pattern is recorded also increases leading to
smaller CRLB. At one point the hologram is also truncated. Thus, the accuracy of the
estimation is altered.
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Figure 4.4: Evolution of Cramér-Rao Lower Bounds on each parameter as a function
of z. The experimental parameters of the model are given in Appendix A. These CRLB
have been computed for a hologram without aberrations.

Table 4.1 shows the correlation matrix for the selected seventeen parameters. Coeffi-
cients below 0.05 are set to zero for a better visualization.
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x y z r n α−2
2 α2

2 α−3
3 α−1

3 α1
3 α3

3 α−4
4 α−2

4 α0
4 α2

4 α4
4

x 1 0 0 0 0 0 0 0 -0.89 0 0 0 0 0 0 0
y 0 1 0 0 0 0 0 0 0 -0.89 0 0 0 0 0 0
z 0 0 1 0.34 0.31 0 0 0 0 0 0 0 0 -0.85 0 0
r 0 0 0.24 1 -0.85 0 0 0 0 0 0 0 0 0.33 0 0
n 0 0 -0.13 -0.85 1 0 0 0 0 0 0 0 0 0.39 0 0
α−2
2 0 0 0 0 0 1 0 0 0 0 0 0 0.72 0 0 0
α2
2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0.72 0

α−3
3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
α−1
3 -0.89 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
α1
3 0 -0.89 0 0 0 0 0 0 0 1 0 0 0 0 0 0
α3
3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

α−4
4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
α−2
4 0 0 0 0 0 0.72 0 0 0 0 0 0 1 0 0 0
α0
4 0 0 -0.85 0.33 0.39 0 0 0 0 0 0 0 0 1 0 0
α2
4 0 0 0 0 0 0 0.72 0 0 0 0 0 0 0 1 0
α4
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 4.1: Correlation matrix of the 5 beads parameters and 11 Zernike coefficients.
High correlation or anti-correlations are represented in red, moderate correlation or anti-
correlations in yellow, low correlations or anti-correlations in green.

The correlation matrix indicates strong correlations between several parameters. Un-
surprisingly, r and n are highly correlated as the phase shift induced by a an object
depends on the product of these two parameters and the phase shift has a strong effect
on the propagation. It is interesting to notice that coma coefficients represented by α−1

3

and α1
3 are highly correlated with x and y. Therefore, ignoring the coma aberration could

lead to lateral shifts in the reconstructions. Correlations between α−4
2 and α−2

2 , α0
4 and z

or α2
4 and α2

2, may lead to misestimations of these coefficients. This is studied in section
B.3.2 on simulation experiments. However, it would be probably worse not to take them
into account because that would systematically introduce errors in the model. Most of
the other coefficients of the correlation matrix are low or null and the corresponding pa-
rameters can then be considered as decorrelated. Because of the high correlation values
in the correlation matrix, all parameters must be estimated at the same time to prevent
estimation errors.

B.1.3 Reconstruction: including aberration model

Once the aberrations are modeled, they are taken into account to better reconstruct the
modulus and the phase of the objects of interest. Let us consider a sample modeled by
a 2D transmittance plane t(x, y). For an infinite aperture and aberration free imaging
system, the non parametric model is the squared modulus of the convolution between the
Rayleigh-Sommerfeld propagation kernel hRS

z and the transmittance plane t [Goodman,
2004] (see Chapter 1).

In order to account for aberrations in the image formation model, an aberrated PSF
model should be used. Assuming a shift invariance of the pupil function with z, the Optical
Transfer Function (OTF), which is equal to the Fourier Transform of the complex-valued
PSF hz, can be expressed as follows:

h̃z(α) = p̃(α)⊙h̃
RS

z (4.6)
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where h̃
RS

z is also called the angular spectrum and is the Fourier transform of the Rayleigh-
Sommerfeld kernel hRS

z [Goodman, 2004] (see Chapter 1).
Thus, the aberration corrected non-parametric model mNP can be expressed as:

mNP(t,α) = |hz(α) ∗ t|2 (4.7)

Unlike the parametric case (section B.1.1), minimizing the discrepancy between data
and model is not sufficient to solve this ill-posed problem. A priori information about the
sample must be added in the form of constraints on the optimization space T and in the
form of a regularization term R [Sotthivirat and Fessler, 2004, Jolivet et al., 2018, Soulez
et al., 2022]:

t† = argmin
t∈T

∥d−mNP(t,α)∥22 + µR(t) (4.8)

where µ is a regularization hyperparameter.
In the following, the regularization term is a hyperbolic total variation term [Charbon-

nier et al., 1997]. The hyperparameter is chosen empirically. The optimization domain
is restricted to the unitary disk corresponding to a non-emissive object hypothesis. A
FISTA algorithm is used to perform this minimization [Beck and Teboulle, 2009].

B.2 Experimental study

B.2.1 Principle

High quality microscope objectives are supposed to be diffraction limited as long as they
are used in the standard conditions for which they have been optimized (coverslip thick-
ness, refractive indices of the immersion medium, the sample medium and the coverslip
and position of the sample relative to the coverslip) [Gibson and Lanni, 1991, Haeberlé,
2004]. Yet, in some applications, these golden rules may be broken (wrong coverslip thick-
ness, for instance). In inset A of Fig. A.1, the refraction of the beam in the coverslip is
shown before entering the objective. This illustrates the origin of the possible wavefront
errors that may occur between the paraxial rays and the high angle rays when the stan-
dard conditions of use are not met. This wavefront error has been described by several
authors [Gibson and Lanni, 1991, Haeberlé, 2004] in on-axis situations, but it may vary
with the position in the field of view. Finally, even when the rules are strictly applied,
residual aberrations may still exist, especially out of the optical axis, and may differ from
one objective to another. To experimentally study the influence of such aberrations, we
used a water immersion objective with a coverslip correction collar. Thus, for a given
coverslip thickness, a wrong correction collar setting will give rise to aberrations. This
idea was recently used by Martin et al. in 2021 [Martin et al., 2021].

B.2.2 Experimental protocol

In this chapter, the holograms were acquired using the LaHC-Setup with label-free sample
as presented in Appendix A. The sample was composed of 1µm-diameter polystyrene
beads diluted in glycerol. The diameter of the beads is chosen to be similar to biological
objects such as bacteria. Usually, sub-resolution objects are used for PSF calibrations.
However, in our context, with sub-resolution beads embedded in the biological sample,
the contrast of holograms would be too low.
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As polystyrene beads float in glycerol and thanks to its high viscosity, the beads
were located just below the coverslip and did not move during the exposure of one holo-
gram (typically, few milliseconds). According to the Gibson-Lanni model of the aberra-
tions [Gibson and Lanni, 1991] induced by wrong coverslip thicknesses and/or refractive
indices, the fact that the sample medium was glycerol instead of water should not induce
additional aberrations as the beads were just below the coverslip.

Five cases of aberration were tested in this experiment with the correction collar
at different settings (0.13, 0.15, 0.17, 0.19 and 0.21mm). The coverslip thickness was
measured to be 0.170mm with a digital indicator (with a resolution of ±1µm). Thus, the
0.17mm setting of the correction collar is assumed to be the aberration free situation.
A single bead was tracked through the whole field of view in regular steps in the X and
Y directions. A total of 35 images (7 × 5) were acquired in order to regularly cover the
whole field of view (273× 204µm). For each XY-position in the field, an axial stack was
recorded with defocus positions ranging from −10µm to +20µm from the focus position
with a step size of 0.5µm. This stack is used for the illustration of Fig. 4.5, but only
one axial position will be reconstructed in the next section. It should be noted that the
sample is the only moving part, which is important for recording a background image by
calculating the median value of the 35 XY-shifted images recorded at focus.

A view of a typical hologram is shown in the top part of Fig. 4.5. XZ-views of the
stack along the vertical axis of the bead are represented at the bottom of Fig. 4.5. As
shown in the figure, a change in the focus position is observed as a function of the setting
of the correction collar, as well as modifications in the XY-profiles. The radial symmetry
of the PSF is not always valid, as can be seen, for example, for the 0.13mm setting of
the correction collar (green). This asymmetry is due to aberration effects that may break
the radial symmetry of the holograms (e.g. coma, astigmatism, etc.). All aberrations
may originate from the objective, but also from the tube lens or from misalignment of
the illumination or the imaging parts. Moreover, aberrations can also originate from
inhomogeneities of the slide and the coverslip.

B.3 Aberrations estimations implementation

In this section, we first apply the proposed method to simulated holograms to demonstrate
the robustness of our approach for several kind of aberrations, especially in cases of
difficult optimizations, i.e with highly correlated Zernike coefficients. We then apply it to
experimental holograms of beads. We compare our results with state-of-the-art parametric
reconstruction algorithms in both simulated and experimental cases and finally evaluate
and discuss the effects of aberration on regularized reconstructions.

B.3.1 Aberrations parameters estimations on simulated data

A mosaic of 7 × 5 in-line holograms was simulated with aberrations varying in the field
of view (see Fig. 4.6). Each hologram is a 512×512 pixels sub-image simulated with the
experimental parameters described in Appendix A (Setup LaHC, Config-LABELFREE)
and with the aberrated Lorenz-Mie model (see equation 4.3). The defocus is set to
12µm. This distance was chosen to improve the accuracy of the estimation of the Zernike
coefficients, as indicated by CRLB analysis of this parameter (see Section B.1.2 Fig. 4.4).
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0.21 mm

0.19 mm

0.17 mm

0.15 mm

0.13 mm

10 µm

Figure 4.5: Example of a mosaic of holograms (top) of 1µm-diameter polystyrene beads
in glycerol for an approximate defocus of 12µm under 5 different settings of the correction
collar (from left to right: 0.13 (green), 0.15 (yellow), 0.17 (red), 0.19 (blue) and 0.21mm
(magenta). XZ-views of the hologram stacks for the different correction collar settings
(bottom).
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To simulate a varying PSF in the field of view, the aberrated pupil function was con-
sidered to depend on the position of the bead in the field of view. This pupil function
corresponds to a linear combination of oblique astigmatism (Z−2

2 ), vertical coma (Z−1
3 ),

horizontal coma (Z1
3), spherical aberration (Z0

4) and oblique secondary astigmatism (Z−2
4 )

(see Section A). This linear combination is weighted by the corresponding Zernike coeffi-
cients α (see Section B.1.1). We arbitrarily chose to set a linear behavior along y for α−2

2

and α1
3, a linear behavior along x for α−1

3 and α−2
4 , and we set α0

4 constant in the field of
view. This set of coefficients was chosen to demonstrate the performance of the proposed
method in difficult cases, i.e. we chose Zernike coefficients that were highly correlated in
the corrected model (see Section B.1.2).

Finally, a white Gaussian noise η was added to the simulated holograms, which led
to a Signal-to-Noise Ratio (SNR) of 4 in the holograms (SNR = ∆m

2ση
, where ∆m is the

peak-to-peak amplitude of the model).
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Figure 4.6: Top: 35 holograms simulated with variable Zernike coefficients depending on
the position in the field of view. Bottom: magnifications of 3 holograms from different
areas (first line), estimated model accounting for aberrations (C) (second line), residuals
i.e. difference between the first line and the second one (third line).

For each simulated hologram, the estimations were performed using parametric IPA
with or without aberration corrections in the model. The abbreviations C (standing
for Corrected), and UC (standing for UnCorrected) will be used in the following. The
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optimization algorithm we used was the LINCOA algorithm [Powell, 2015]. To perform
the reconstructions with the corrected model (C), the first step implies an exhaustive
search in a 17 parameters space, which can be really demanding in terms of computational
time. To reduce this exhaustive search, it can be fairly convenient to have at least a coarse
knowledge of the Zernike coefficients. As our aberrations were quite low, we performed
this step by considering no aberration, i.e. all Zernike coefficients were set to zero.

Then, the optimization step was performed with the fully corrected model (eq.4.5),
with the constraints on parameters described in Table 4.2. The optimization domains
{C,D} were chosen quite large in order to check the robustness of the proposed method.

z r n α−2
2 α2

2 α−3
3 α−1

3

Lower bound 10 0.2 1.52 -10 -10 -10 -10
Upper bound 14 0.7 1.63 10 10 10 10

α1
3 α3

3 α−4
4 α−2

4 α0
4 α2

4 α4
4

Lower bound -10 -10 -10 -10 -10 -10 -10
Upper bound 10 10 10 10 10 10 10

Table 4.2: Optimization constraints for each estimated parameters (z and r are in mi-
crometers)

Table 4.3 shows the bead parameters reconstructed without (UC) or with (C) taking
the aberration into account in the model. It shows the biases introduced by geometrical
aberrations. When using an unaberrated model (UC), the reconstructions converge either
on a local optimization minimum or to the constraint domain bounds. Conversely, when
using an aberrated model, the reconstructions always converge to the global minimum
with low bias and a standard deviation close to the theoretical lower bound given by
Cramér-Rao analysis.

ϑi ϑGT
i < ϑ̂i >

UC < ϑ̂i >
C σCRLB

ϑi
σUC
ϑ̂i

σC
ϑ̂i

z(µm) 12 11.048 12.001 0.002 0.579 0.004
r(µm) 0.5 0.267 0.500 0.001 0.030 0.001

n 1.58 1.619 1.5798 0.0006 0.0311 0.0007

Table 4.3: Statistical results on the estimated bead parameters with aberration corrected
(C) and uncorrected (UC) models: Ground Truth (GT) parameters ϑGT

i , means of the
estimated parameters < ϑ̂i >, lower bounds of their theoretical standard deviations σCRLB

ϑi

and standard deviations of their estimates σϑ̂i

Residuals between the data and the model are very low, indicating that the model fits
the data accurately (see the bottom line in Figure 4.6). On the upper part of Fig. 4.7
are presented the phase of the pupil functions that were simulated in each part of the
field of view. This gives another view, in Fourier space, of the type of phase errors that
aberrations may imply. On the lower part of Fig. 4.7 are presented the residuals of the
estimated pupil functions (from the simulated ground truth). From these residuals, we
see that our estimations of the Zernike coefficients are accurately describing the phase
function introduced by aberrations in Fourier space.
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In the most difficult cases (upper part and lower part of the field on Fig. 4.7), the
residuals are not negligible for the highest spatial frequencies, close to the cutoff frequency
imposed by the numerical aperture of the objective (represented by a black dashed circle).
Indeed, as we did not use a sub-resolution object, the power spectrum of the object is
not filling the entire pupil. In the inset of Fig. 4.7, the typical power spectrum of the
object is presented and a white dashed circle show the part of the spectrum including
95% of its energy. In this white dashed circle, the residuals remain low. Actually, this is
an unsurprising limitation of this approach: as the object spectrum does not cover the
whole aperture of the objective, the pupil phase function can not be estimated precisely
for the highest frequencies. However, the pupil function is correctly estimated for the
spatial frequencies corresponding to the spectrum of the object, which ensures that a
similar object will be correctly reconstructed. If the aberrations are important, this effect
must be considered for the choice of the calibration objects: the size of the beads chosen
for aberration estimation must be at least equal or smaller than the objects of interest.

B.3.2 Aberrations parameters estimations on experimental data

The experimental parameters were the same as those used in the simulations. Once again,
since the accuracy of the estimated parameters is better in a specific range of defocus z
(see SectionB.1.2), the holograms to be reconstructed were located approximately 12µm
from the focus position, as in the simulations. They were reconstructed using parametric
IPA, with the same workflow that was described in the reconstructions of the previous
subsection. Again, to compare the effect of aberrations on the estimation of the beads
parameters, both corrected (C) and uncorrected (UC) models are used for the reconstruc-
tions. As illustrated in Section B.2, the position of the focus varied with the setting of
the correction collar. Parametric IPA provides an estimation of the defocus distance z
between the sample and the focal plane of the objective.

Table 4.4 presents a list of the mean values and the standard deviations of all 35
positions in the field for parameters z, r and n and for both (UC) and (C) reconstructions.
According to the comparison of standard deviations for each collar setting, the dispersion
over the field was only moderately modified by the model (UC) or (C). However, the
mean values changed, especially that of the estimated defocus ẑ. A maximum difference
of 1.68µm in the estimated defocus was found between the two models (UC) and (C).

Moreover, the estimated defocus highly depends on the correction collar setting, which
varied from 8.8 to 13.9µm (UC) and from 10.5 to 12.5µm (C). Thus, this dispersion
was reduced by taking the aberrations into account, indicating a correction of the bias
in the evaluation of the defocus. Since regularized reconstruction algorithms rely on
a precise knowledge of the image formation model (including the defocus distance), any
misestimation of the axial position of the sample would bias the reconstructions. Finally, it
must be noted that the remaining dependence of the estimated defocus with the correction
collar setting may have a physical origin. Indeed, wrong settings of the correction collar
may really change the focus position as it changes the properties of the objective.

For the estimated radii r̂ and refractive indices n̂, the dispersion over the field was
reduced when the aberrations were taken into account. The averages were also less dis-
persed, but to a lesser extent. Indeed, some biases that depend on the correction collar
setting appeared to remain.

Fig. 4.8 presents the estimated bead parameters as scatter plots. This makes it possible
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Figure 4.7: Simulated phase correction in the pupil (top) and residuals of the estimated
pupil functions from the ground truth (bottom). The white dashed circles correspond
to the disk in which 95% of the energy of the power spectrum of the object (inset) is
contained. The black dashed circles correspond to the aperture (calculated from the
numerical aperture of the objective).
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UC C UC C

Collar < ẑ > < ẑ > σz σz
0.13 13.913 11.769 0.802 0.864
0.15 13.049 12.239 0.483 0.482
0.17 11.706 12.221 0.548 0.527
0.19 10.496 12.112 0.510 0.595
0.21 8.838 11.436 0.442 0.769

Collar < r̂ > < r̂ > σr σr
0.13 0.526 0.494 0.008 0.008
0.15 0.519 0.504 0.006 0.008
0.17 0.502 0.512 0.007 0.005
0.19 0.495 0.518 0.007 0.010
0.21 0.497 0.522 0.007 0.010

Collar < n̂ > < n̂ > σn σn
0.13 1.5733 1.5945 0.0041 0.0034
0.15 1.5773 1.5890 0.0027 0.0062
0.17 1.5856 1.5847 0.0044 0.0031
0.19 1.5902 1.5819 0.0036 0.0040
0.21 1.5878 1.5806 0.0032 0.0053

Table 4.4: For the 5 correction collar settings, averages < ϑ̂i > and standard deviations
σϑ̂i

of the estimated parameter ẑ, r̂ and n̂. All lengths are in micrometers.

to visualize the correlations between the estimated parameters z, r and n.
Moreover, for each collar setting (one color for one collar setting), taking the aberra-

tions into account improved the repeatability of the parameter estimation independently
of the introduced aberrations. Indeed, the aberration corrections not only reduce the
biases between the different collar settings (differences from one color point cloud to
another) but also reduce correlations coefficients between parameter estimations (correla-
tions within one color point cloud). This is presented quantitatively on Table 4.5, for both
models (C) and (UC) and for the less aberrated case (0.17mm). According to Table 4.5,
the decorrelation is particularly important between r and n.

Uncorrected (UC)

ϑi z r n

z 1 0.02 0.51

r 0.02 1 -0.56

n 0.51 -0.56 1

Corrected (C)

ϑi z r n
z 1 0.28 -0.55
r 0.28 1 0.13
n -0.55 0.13 1

Table 4.5: Correlation coefficients between the estimated parameters without aberration
correction (left) and with aberration correction (right) for a correction collar setting of
0.17mm (less aberrated case)

According to the manufacturer’s specifications, the radius should be (0.5±0.03)µm
and the refractive index should be around 1.587. The estimated parameters obtained
with or without an aberration model were within the manufacturer’s confidence interval
(0.47-0.53µm). It is important to note that the fit with the Mie model is constrained by
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Uncorrected

(UC)

Corrected

(C)

Figure 4.8: Scatter plots showing the biases and correlations between the estimated
defocus ẑ, radius r̂ and refractive index n̂ for a single bead, for the 35 positions in the
field, for the 5 settings of the coverslip correction collar and with corrected models (C) and
uncorrected models (UC). With correction of the aberrations, the bias and the dispersion
of the estimations due to aberrations are reduced.

the spherical hypothesis and thus may be quite robust to errors in the model, contrary
to the case of regularized reconstruction that have more degrees of freedom, and will be
more sensitive to aberrations, especially to non-radially symmetric ones, as it will be seen
later on regularized reconstructions.

With the 35 recorded holograms corresponding to 35 bead positions in the field of
view, we were able to check that the Zernike coefficients vary in the field of view, following
continuous evolutions similar to those described in another work [Zheng et al., 2013]. The
Figure 4.9, illustrates the evolution of the Zernike coefficients associated with oblique
astigmatism, vertical coma, horizontal coma and spherical aberrations. These appeared
to be the main components of the aberrated pupil function p̃. The evolution of these
coefficients is continuous and, not surprisingly, increases with increasing errors in the
correction collar setting. Spherical aberration does not depend on the location in the field
of view but change with the correction collar setting, with almost no spherical aberration
for the less aberrated case (0.17mm). This is quite logical as a coverslip thickness error
is known to induce spherical aberrations [Martin et al., 2021]. On the contrary, oblique
astigmatism varies in the field of view without depending too much on the correction
collar setting.

Figure 4.10 illustrates the evolution of the phase correction for the 35 positions in the
field of view and for a correction collar of 0.17mm. For this supposedly aberration-free
case, the setup still suffer from aberrations that change in the field of view. These phase
functions show significant aberration effects but, as expected, lower than for the other
correction collar settings (not represented). This indicates the necessity of taking aberra-
tions into account for hologram reconstruction even when the optical system is supposed
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Figure 4.9: Estimated Zernike coefficients αm
n as a function of the position in the field of

view and for 3 settings of the coverslip correction collar (0.13 mm, 0.17 mm, 0.21 mm).
The evolution of the Zernike coefficients is continuous in the field of view. The coma and
astigmatism coefficients depend on the position in the field of view and on the correction
collar setting whereas defocus and spherical aberration only depend on the correction
collar setting.

to be compensated for aberrations. Indeed, these aberrations may come from residual
aberrations of the objective, but also from other sources, like thickness inhomogeneities
of the slide and the coverslip, as well as alignment issues.

From the numerical point of view, the detection of all 35 beads in the mosaic takes
around 30 seconds on a 3296×2472 pixels image. The local optimization step for each bead
takes around 10 seconds when not considering aberrations while it takes 45 seconds when
considering them. These estimations have been realized using an Intel Core i9-11950H
CPU 2.60GHz with 16GBytes of RAM.

B.4 Reconstructions on experimental data

To evaluate the improvement of the reconstructions due to the refinement of the direct
model (by accounting for aberrations), beads holograms are used. This allows us to
compare quantitatively the reconstructed transmittance with a ground truth (assumed to
be the transmittance of the bead whose parameters are estimated by parametric IPA).
However, since the non-parametric model is very general (not limited to spherical objects),
similar results will be obtained with an aspherical sample. The reconstruction is performed
with (C) and without (UC) the previously estimated aberration pupil function p̃ and the
ẑ parameters.

A Fienup phase retrieval algorithm [Fienup, 1982, Latychevskaia and Fink, 2007],,
as well as a regularized IPA (as presented in B.1.3) are used to reconstruct the data.
These reconstructions are performed using the uncorrected propagator hRS

z (UC) or the
corrected propagator hz (C) in the model (eq.4.7). Fig. 4.11 illustrates the reconstructions
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Figure 4.10: Evolution of the phase (in radians) of the pupil function correction in the
field of view for a setting of the coverslip correction collar of 0.17mm and for the 7×5
positions in the field where the aberrations were estimated. The black and white dashed
circles are defined on Fig.4.7

results for both algorithms. The estimated aberrated Mie model that fits the data has
been back propagated at the center plane of the bead (BPMie-C) and is considered as the
ground truth here because it is the most accurate model. Similarly, a back propagation
of the Mie model estimated without aberration has also been computed (BPMie-UC).
Because of the coma aberrations, the bead position (x, y) is not the same for (BPMie-C)
and (BPMie-UC) parametric inversions, as mentioned in Section B.1.2. For comparison
purpose the beads have then been centered in Fig. 4.11.

When aberrations are not considered in the reconstruction model, the morphological
properties and quantitativity of the reconstructions are compromised. Indeed, either with
Fienup or regularized IPA, the bead does not show a circular shape. As the aberrations
vary in the field of view, the same bead does not have the same shape for each lateral
position. The back-propagation of the Mie model without aberration illustrates the model
error when the aberrations are not considered, but the radial symmetry is maintained as
the Mie model is based on a spherical model. The regularized reconstructions without
aberrations do not match with this model indicating bias in the estimation of the bead pa-
rameters. However, with aberrations correction the reconstructions fit the corresponding
back-propagated Mie model and have the expected geometrical and quantitative proper-
ties. It demonstrates that whatever the reconstruction algorithm, aberrations should be
taken into account to restore accurately the morphological and quantitative properties of
the sample.

Taking into account the aberrations in regularized reconstructions has no effect on the
computational time as the aberrated forward model has the same complexity as angular
spectrum propagation. In the example of Figure 4.11, reconstructing a whole field of view
(2472 × 3296) and considering the spatial evolution of the PSF takes less 10 minutes.
These estimations have been realized using an Intel Core i9-11950H CPU 2.60GHz with
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Figure 4.11: Non-parametric reconstructions using regularized IPA and Fienup algorithm
with (C) or without (UC) aberrations correction. The reconstructions are presented in
real part an imaginary part. A reconstruction is compared with the back-propagation
of the estimated Mie model without aberration estimation (BPMie-UC) and the back-
propagation of the Mie model with aberration estimation (BPMie-C). Profiles of the real
part and imaginary part at the center of the bead are also presented.
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16GBytes of RAM. This computational time can be reduced using GPU.

C Conclusion

In this chapter, we present a method to estimate the aberrations and thus reduce recon-
struction errors, by using a more accurate image formation model, in in-line holographic
microscopy. This method is based on the use and detection of calibration beads. We show
that an aberrated Mie model can be used to estimate bead parameters and Zernike coeffi-
cients at the same time with a good precision and repeatability. Moreover, this approach
requires only one hologram and does not require any assumption on the PSF evolution
in the field of view. This calibration step could be done sequentially, like standard cali-
brations or in-situ by inserting calibrated beads in the biological sample itself. However,
this may depend on the application or on the main origin of the aberrations (from the
optical setup or from the sample itself). Actually, adding calibration beads in the sample
has already proven to be useful for autofocusing (see Chapter 2). In this context, with
the present method of correction of aberrations, this autofocusing would be even more
accurate.

Once the Zernike coefficients have been estimated, it is then possible to use them
in a non-parametric approach framework to reconstruct any biological objects (spherical
or not). This methodology of aberration estimation was applied for the improvement
of non-parametric reconstruction of holograms with the in-line holographic microscopy
configuration. However, it is also applicable to off-axis holography or other coherent
imaging techniques or simply used as a calibration method for microscopy systems.

The method proposed here offers interesting perspectives for reconstructing more ac-
curately and with more quantitativity the absorption and the phase of the objects of
interest, even with poorly corrected or misaligned optical systems, non-standard optical
configurations (various sample media, variable axial position of the objects below the
coverslip) and more generally, for any non-standard microscopy configurations that may
introduce aberrations.

It should be noted that other effects like integration on the pixel or partial spatial
coherence [Olivier et al., 2022] could also be considered using the same approach. These
effects will be neglected for the rest of the manuscript. However they could be considered
when these effects are not negligible (for example for objects smaller than the pixel pitch,
pixel integration is not negligible) to improve the quantitativity and reproductibility of
the reconstructions.

In this study, we estimated aberrations parameters on a discrete grid. The next step
could be to interpolate the spatially varying PSF. This PSF can then be used in the image
reconstruction step, but with a high computational cost. Nevertheless, fast algorithms
can be used [Denis et al., 2011, Denis et al., 2015].
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CHAPTER5
Unsupervised hyperparameters tuning based
on the minimization of SURE in digital
in-line holography

Abstract

Inverse problem approaches are mostly based on the min-
imization of a criterion constructed as a combination of
two components: a data-fidelity term that measures the
discrepancy between the data and the image formation model
and a prior information enforcement taking the form of
regularization terms or bound constraints. To compensate
for the lack of phase information, a trade-off between the
data-fidelity and prior is tuned by weighting the regularizers
thanks to scalar parameters named regularization hyperpa-
rameters. Finding the optimal value for these lasts is an
issue. Since hand tuning of the regularization hyperparam-
eter is fastidious and that a badly chosen hyperparameter
may bias the reconstructions, unsupervised tuning of the
regularization hyperparameters have to be found. In this
work, we discuss a method for unsupervised tuning of the
regularization parameter using the Stein Unbiased Risk
Estimator (SURE) criterion in the context of digital holog-
raphy. In this chapter, after a preliminary section, we
present how to tune the regularization hyperparameters
with SURE in digital holography and an implementation of
this state-of-the-art method on simulated holograms. This
chapter ends with a discussion that introduces Chapter 6.
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Figure 5.1: Exemple of reconstruction under several hyperparameter values. Here µ
represents a weighting parameter of the complex total variation prior.

Introduction

Digital in-line holography consists in recording the intensity of the diffraction pattern
from a defocused sample. Due to the loss of phase information, the reconstruction tech-
nique consisting in back propagating the hologram does not allow to retrieve a physically
feasible 2D transmittance plane reflecting a realistic transmittance of the objects. The
obtained transmittance plane suffers from twin-image artefacts (see Chapter 1). Inverse
problem approaches propose to clean the twin-image artefacts by minimizing a cost func-
tion constructed with a data-fidelity term and a regularization term enforcing a priori
information on the reconstruction plane. The most popular priors are based on the spar-
sity of the sample [Denis et al., 2009, Candes et al., 2013, Shechtman et al., 2014, Fogel
et al., 2016, Rivenson et al., 2016, Cai et al., 2016], on the sparsity of the gradient of the
image (Total Variation) prior [Chang et al., 2016, Fournier et al., 2017, Momey et al.,
2019] or learned regularizations [Tillmann et al., 2016, Chang et al., 2021]. The data-
fidelity term minimization depends mostly on the quality of the image formation model.
Since the problem is ill-posed, the regularization term is added to lead to a physically
feasible solution. Each regularization term added into the cost function is weighted by a
hyperparameter (see Chapter 1). The quality of the reconstruction depends on the tuning
of the hyperparameter which is critical to ensure the consistency of the inverse problem
and its solution. Indeed, a bad tuning of the regularization hyperparameters may lead
to biases in the reconstructions as seen on Figure 5.1 with the hyperbolic total variation
regularization.

Hand tuning of hyperparameters is time consuming and may lead to wrong solutions
depending on the subjective criterion chosen to qualify what a good reconstruction is. A
good looking reconstruction is not necessarily a quantitative reconstruction. If the ground
truth is known, the optimal hyperparameter choice would be the one that minimizes the
error between the reconstruction and the ground truth (for example the Mean Square Er-
ror). In practice, this ground truth is not known and this criterion cannot be computed.
In this context, several methods can be used to proceed to a blind tuning of the reg-
ularization hyperparameters, like Morozov’s discrepancy principle [Karl, 2005], L-curve
[Hansen, 1992, Hansen and O’Leary, 1993, Karl, 2005, Oraintara et al., 2000] generalized
cross validation (GCV) [Golub et al., 1979, Wahba, 1990, Karl, 2005], Stein’s Unbiased
Risk Estimator (SURE) [Stein, 1981, Ramani et al., 2008, Deledalle et al., 2014] or its
generalization exponential families by Eldar [Eldar, 2008]. In this chapter, we discuss
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the performance of SURE unsupervised tuning of regularization hyperparameters in the
context of in-line holography. We focus here on the complex edge-preserving smoothing
regularization. This chapter is structured as follows: first, we will present several criteria
to measure the reconstruction quality. In a second part, two state-of-the-art methods
will be highlighted to compare their results with the methodology we propose. The third
part will focus on bi-level approaches framework that will be used in the both following
chapters. After these preliminaries, we will discuss in this chapter about the performance
of SURE for the tuning of regularization hyperparameters in the context of in-line holo-
graphic microscopy.

A Preliminaries

A.1 Reconstruction quality criteria

The automatic tuning of the regularization hyperparameters µ is based on the minimiza-
tion of a reconstruction quality criterion. In this section, three of the classical reconstruc-
tion quality criteria are presented.

A.1.1 Mean square error

The mean square error measures the accuracy of the estimation of a parameter ϑ when
the true value of this parameter ϑGT is known.

Mean square error definition

The mean square error of an estimation is defined by:

MSE(ϑ̂) = E
[
(ϑ̂− ϑGT)2

]
(5.1)

The mean square error can be expressed as a function of the bias and of the variance
of the estimator:

MSE(ϑ̂) = E
[
(ϑ̂− ϑGT)2

]
= E

[(
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[
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]
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(5.2)

In an ideal world, the transmittance plane, that represents the absorption and refrac-
tive properties of the objects, is known. The mean square error is then a metric that can
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be used to quantify the quality of the reconstruction. Note that our main objective is to
reduce the biais in the reconstructions. However, the MSE can be expressed as a function
of the variance and the bias. Thus, minimizing the MSE do not guarantee to minimize
the bias. Yet, it is a popular criterion to characterize the quality of the reconstructed
image. Moreover the main issue with this metric is that a ground truth has to be known.
Thus the mean square error can only be used in simulation studies.

A.1.2 Prediction mean square error pMSE

To evaluate the quality of the reconstruction, it is also possible to measure an error in the
model domain. The prediction mean square error is the mean square error between the

estimated model m
(
ϑ̂
)
and the true model m

(
ϑGT

)
.

Prediction mean square error definition

The prediction mean square error of an estimation is defined by :

pMSE(ϑ̂) = E
[
∥m

(
ϑ̂
)
−m

(
ϑGT

)
∥2W
]

(5.3)

With an invertible model the minimum of the MSE would be obtained for the same
parameter than the one that minimize the pMSE. In our case, the ground truth model is
unknown since we only have access to the data d = m

(
ϑGT

)
+ η. Since the model is not

easily invertible, regularization term are added in the reconstruction process introducing
small bias to avoid overfitting of the noise. Thus the pMSE and the MSE do not share
the same minimum. Moreover, it should be noted that in this case we suppose to have a
perfect model and additive Gaussian noise. Both assumptions are not exactly true leading
to small biases in the reconstructions.

In the end these quality criteria still needs the true model which is unknown and is
then only computable for simulation reconstructions. However it is possible to estimate
this criteria using the Stein Unbiased Risk Estimator.

A.2 Automatic tuning of the hyperparameters

The reconstruction algorithm can be thought of as an operator (which depends on regular-
ization hyperparameters) that maps the hologram onto the estimation of the reconstructed
autofocused plane. Note that in this Chapter z is supposed to be known. Adjusting the
regularization hyperparameters to obtain the best performances may be a difficult task.

A.2.1 Morozov’s discrepency principle

Morozov’s discrepancy principle tends to chose the regularization hyperparameter by
matching the norm of the residuals to an upper bound [Karl, 2005]. Thus a good regu-
larized reconstruction will be obtained when the estimated model follows Equation 5.4:

∥d−m(t(µ))∥2 ≤ c2 (5.4)

where c is a constant that can be chosen depending on the noise level. A common choice
of c is c2 = LCσ2. Let us note that to use this value of c, the variance of the noise σ2
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must be known. Using this choice of c means that the discrepancy between the data and
the model is inferior to the noise level.

A.2.2 L-Curve

Introduced by Lawson and Hanson [Lawson and Hanson, 1995], the L-curve method is
another method to tune the regularization hyperparameter. This method is based on
”balancing” the effects of the data fidelity term and regularization terms. It consists
in plotting (log(R(t(µ))), log(∥d −m(t(µ))∥2W ) for various values of µ [Hansen, 1992].
Hopefully the L-curve has a ”L-shape” and the chosen regularization hyperparameter
is the corner point of the L-curve. This point corresponds to the point of maximum
curvature of the L-curve [Hansen and O’Leary, 1993]. Figure 5.2 illustrates how to tune
the hyperparameter using the L-curve method. Note that when the variance of the noise
increases, the value of the hyperparameter to tune increases. However one of the main
drawback of this method is due to the fact that with multiple sized objects several corner
are observable.

Figure 5.2: Principle of hyperparameter tuning with the L-curve method

A.2.3 Stein Unbiased Risk Estimator

Stein Unbiaised Risk Estimator (SURE) in an unbiased estimator of the prediction mean
square error. This estimator gives an estimate of the accuracy of the estimator without
any knowledge of the true model.

Prediction mean square error definition

Stein Unbiased Risk Estimator is defined by :

SURE(ϑ̂) = ∥d−m(ϑ̂)∥2W + 2 tr

(
∂m(ϑ̂)

∂d

)∣∣∣∣∣
K

− Card(K) (5.5)

where K = {k ∈ [1, ..., K] so that W k ̸= 0}
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It is interesting to note that the computation of SURE criterion does not depend on a
ground truth neither on an object plane ground truth like for the MSE nor a model ground
truth like for the pMSE. Moreover it is possible to show that [Stein, 1981, Denneulin,
2020]:

E
[
SURE(ϑ̂)

]
= pMSE(ϑ̂) (5.6)

In 2008, Ramani [Ramani et al., 2008] proposed to compute the SURE criterion using
on Monte Carlo method based on the approximation :

tr

(
∂m(ϑ̂)

∂d

)
≈ div

(
m(ϑ̂)

)
where div represents the divergence of the model relative to the data.
Let n ∼ N (0RK , IdRK×RK ) be a perturbation, τ > 0 a small value, δd = d + τn data

that have been perturbed by an additive centered Gaussian noise of variance τ 2, δϑ̂ is the
reconstruction of the perturbed data δd using the model m. Ramani showed that:

div
(
m(ϑ̂)

)
≈
⟨n,m

(
δϑ̂
)
−m

(
ϑ̂
)
⟩

τ

∣∣∣∣∣∣
K

= Card(K)
⟨δd− d,m

(
δϑ̂
)
−m

(
ϑ̂
)
⟩

⟨δd− d, δd− d⟩

∣∣∣∣∣∣
K

,

(5.7)
leading to the Monte-Carlo based Algorithm 6. Let us notice that in our case ϑ = t(µ),

Algorithm 6: SURE criterion computation based on [Ramani et al., 2008]

input : Data d
input : Perturbated data δd
input : Model
input : µ
output: SURE(ϑ̂)

Step 1: ϑ̂← Reconstruction of the data d using hyperparameter µ.
Step 2: δϑ̂← Reconstruction of the perturbated data δd using hyperparameter µ.
Step 3: Compute the divergence term using 5.7 and SURE(ϑ̂) using 5.5.

thus, the finding the optimal hyperparameter by minimizing requires the computation of
SURE for multiple values of µ. The computation of the SURE criterion for a given
hyperparameter is performed using two reconstructions. It should be noted that the
computation of the pMSE and of the SURE criteria depend both on the model. Thus, error
in the image formation model may lead to bad estimation of the optimal hyperparameter
and compensation of the model errors into the regularization term.

A.3 Bi-level approaches

Bi-level approaches [Colson et al., 2007, Sinha et al., 2017] allow to solve an optimiza-
tion problem for which the objective function depends on the optimization of another
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optimization problem. For example, in our case the optimization of a regularization
hyperparameter on a criterion that depends on the reconstruction algorithm. The in-
ner optimization task is called the lower-level optimization task. It corresponds to the
reconstruction task in our case. The outer optimization task is called the upper-level
optimization task and corresponds in our case to the optimization of the regularization
hyperparameter. In this context the upper-level, the leader, take a decision by minimizing
its objective function (the quality criterion) that depends on the results of the lower-level,
the follower. The lower-level, minimizes its own objective function (the reconstruction
algorithm) assuming the decision of the leader (the hyperparameter) has been taken.

Mathematical formulation of bi-level optimization problem

For an upper-level objective function U that depends on parameter xu ∈ U and a
lower-level objective function L that depends on xl ∈ L, the bi-level problem is
given by :

x†
u = argmin

xu∈U
U (x†

l (xu),xu) (Upper-level)

subject to

x†
l = argmin

xl∈L
Lxu(xl) (Lower-level)

(5.8)
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Figure 5.3: General sketch of a bi-level problem with a 1D upper-level and a 1D lower
level

Figure 5.3 illustrates the principle of bi-level problem approaches. In a context of
choosing a regularization hyperparameter Xu the upper-level objective function can be
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seen as a quality criterion that depends on the reconstruction outcome Xl. This recon-
struction has been realized using the regularization hyperparameter Xu and thus depends
on it.

B Regularization hyperparameter tuning using SURE

B.1 Stein’s Unbiased Risk Estimator in in-line holography

Regularization in digital in-line holography reconstruction is crucial since the data-fidelity
minimization problem that consists in minimizing the discrepancy between the data and
the model is ill-posed. Indeed, due to the loss of the phase information, priors on the ob-
jects have to be added into the reconstruction process to ensure convergence to a physical
solution. However, if they are crucial, the tuning of the regularization hyperparameters is
a fastidious task since choosing the wrong hyperparameter may lead to bad bias-variance
trade-off. This problem can be addressed using unsupervised methods. The next section
focuses on the use of SURE criterion for tuning the hyperparameters in digital in-line
holography.

In this chapter, we compare the automatic tuning of the regularization hyperparam-
eters µ = {µEP, ϵEP} for the complex edge preserving (EP) smoothing prior REP given
by

REP
ϵEP

(t) =
∑
i,j

√
∇i,jℜ(t)2 +∇i,jℑ(t)2 + ϵ2EP − ϵEP (5.9)

However since only data disturbed by an additive noise are known, the ground truth
model m(ϑGT) is not known. Thus the pMSE can not be directly computed. However
the SURE criterion is an non-biased estimator of the pMSE. For the computation of the
SURE criterion, the ground truth model knowledge is not needed. The bi-level problem
associated to the unsupervised tuning of the regularization hyperparameter and thus the
optimal reconstruction problem for the SURE criterion can be expressed as follows:

µ† = argmin
µ∈M

SURE(t†(µ),µ) (Upper-level)

subject to

t†(µ) = argmin
t∈T

∥d−m(t)∥2 + µEPREP
ϵEP

(t) (Lower-level)

(5.10)

where M and T define bound constraints for the upper and lower-levels of the bi-level
problem. In the following reconstructions T corresponds to the unitary complex disk. In
practice the SURE criterion is computed using Ramani Monte Carlo algorithm (Algorithm
6)as presented in Section A.2.3. The SURE criterion can then be computed for one point
using two reconstructions.

B.2 Results

To assess the performance of the hyperparameters tuning based on the minimization of
SURE criterion in in-line holographic reconstructions, the bi-level approach presented
in Section A.3 was solved on 4 simulated holograms. Each hologram contains simulated
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biological sample of different sizes and calibration beasd of 0.5 µm radius and of refractive
index of 1.58 in glycerol of refractive index 1.47. These holograms are represented on
Figure 5.4.
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Figure 5.4: Simulated holograms, modulus and phase ground truth for simulation (Data)

In the next section we will focus on the reconstruction of one hologram (third from
left) using an automatic tuning of the regularization hyperparameter using minimization
of SURE criterion. Then we will highlight the main drawbacks of this unsupervised
hyperparameter tuning method.

B.2.1 Tuning of the regularization hyperparameters on simulated data

To tune automatically the regularization hyperparameter, the use of SURE criterion gives
an estimation of the pMSE that should be minimized. Figure 5.5 provides a map of the
pMSE and of SURE criterion as a function of µEP and ϵEP. As seen on this figure, both
criterion have the same shape and share the same minimum value. Thus, minimizing the
SURE criterion, corresponds to minimizing the pMSE which represents the discrepancy
between the estimated model and the true model. Note that in experimental cases the
true model is unknown.The pMSE can not be minimized and SURE criterion has to be
used as in Equation 5.10. Figure 5.5 also illustrates that the SURE/pMSE critera are
not really sensitive to small changes of the regularization hyperparameters. However the
minimum of pMSE/SURE criterion is obtained for ϵEP = 101.5 and µEP = 10−2.75. Note
that in this chapter the minimization is obtained by using minimum of discrete map
of hyperparameters. However, the automatic tuning of the hyperparameters could be
obtained much more quickly by minimizing the upper-level with an optimization algorithm
like a Powell method [Powell, 2015].
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Figure 5.5: pMSE and SURE criterion depending on the regularization hyperparameters
µEP and ϵEP

For comparison purposes the automatic tuning of hyperparameters ϵEP and µEP have
been performed using the L-Curve method and Morozov’s discrepancy principle as seen on
Figure 5.6. These curves have been computed using several values of {µEP, ϵEP} couples.
For each couple a reconstruction has been performed leading to a point of the L-Curve.
Thus both curves are the same and only the color changes and codes the parameters
values. It should be noticed that the L-Curve method is adapted to tune correctly µEP,
however it does not provide good results on the tuning of ϵEP since this method is adapted
for only one hyperparameter tuning. The L-Curve method provides on this hologram
the most quantitative result either in terms of modulus or phase on the whole image.
However since the computation of this curve is time consuming (one reconstruction for
each point), this method should be avoided. The Morozov’s discrepancy leads to a more
regularized reconstruction than the two others. Figure 5.7 shows the modulus and phase
reconstructions obtained using the several unsupervised methods.

B.2.2 Drawbacks of the proposed method

Since all of the method presented earlier are based on the minimization of a criteria defined
in the model space, the optimum obtained for each method depends on the quality of the
image formation model. For the SURE/pMSE criterion, the quality is measured by the
mean square error between the estimated model and the ground truth. For the L-Curve
and for the Morozov’s discrepancy principle the optimum depends on the mean square
error between the model and the data. Thus, error in the image formation model may
lead to bad estimation of the hyperparameters. Moreover there is no guarantee that
minimizing the quality criterion in the model space is equivalent to minimizing a quality
criterion in the object domain. Figure 5.8 represents the MSE criterion, that can be
measured in the case of simulated data. The pMSE and the MSE do not have the same
evolution and do not share the same minimum. Thus one of the main drawbacks of all the
presented method is the lack of guarantee of quantitativity in the reconstructions which
may be critical in bio-medical applications.
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All the presented criteria are ”image-based” criteria. Thus, these criteria tend to re-
construct at best the whole image leading to compromises on the quantitativity of the
modulus and the phase of the reconstructed objects. This may be an issue in diagnos-
tic applications since most of the time, the quantitativity is needed on specific objects.
For example in Gram+/Gram- classification problems, the quantitativity is needed on
the bacteria but can be biased with ”image-based” criterion due to the high number of
red blood cells in the sample which are not objects of interest and thus for which the
quantitativity of the reconstructions is not needed. Figure 5.9 shows SURE-based regu-
larized reconstructions of a mosaic of 4 holograms with different objects sizes using only
one set of regularization hyperparameters. This figure illustrates that the quantitativity
of the obtained reconstructions is a compromise to reconstruct at best all the objects.
This leads to quantitatively correct reconstructions for specific object size (green recon-
structions), over-regularized reconstructions for smaller objects (red reconstructions) and
under-regularization with twin image artifacts for bigger objects. Thus the proposed
methods are qualitatively effective to reconstruct the holograms but it is harder to eval-
uate their quantitativity on specific objects of interest.

C Conclusion

In this chapter, we studied several unsupervised tuning of hyperparameters and applied
the SURE criterion method to in-line holography reconstruction. If the several proposed
methods provide good qualitative results, i.e. ”good looking” results, the quantitavity
that we want to achieve in this manuscript is not guaranteed due to the ”image-based”
nature of the reconstructions. To offers better quantitativity to the reconstructions of
the objects of interest, the tuning of hyperparameters must use an ”object-based” ap-
proach. Moreover ”model-based” hyperparameter tuning may not ensure to find the best
solution in the object plane since ”model-based” approaches minimum may differ from
”object-plane-based” criterion minimum like the MSE. This difference may from the non-
invertibility of the model or from image formation model errors. Due to the diversity
of objects in a biological sample, the automatic tuning of regularization hyperparameters
must be performed using more specific approaches that tends to reconstruct quantitatively
a transmittance plane equivalent to the objects of interest.
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CHAPTER6
Unsupervised hyperparameters tuning based
on calibration beads reconstructions in digital
in-line holography

Abstract

Unsupervised hyperparameter tuning is one of the most
challenging task to perform quantitative reconstructions using
inverse problem approaches in digital in-line holography. Most
of the state-of-the art methods tend to find the best hyperpa-
rameter to reconstruct the whole image. However biological
diagnosis is mostly based on the detection/characterization of
one specific type of object surrounded by multiple other out-
liers. The reconstruction quantitativity is then compromised
due to the surrounding environment of the objects of interest.
Thus, more specific methods must be exploited to ensure the
reproducibility and the quantitativity of the reconstructions.
We propose, here, an automatic tuning of the regularization
hyperparameters based on the quantitativity of calibration
beads reconstructions. In this chapter, we present a new
optimization criterion to tune hyperparamers and apply
it to reconstruct simulated and experimental holograms.

Introduction

As detailed in Chapter 5, unsupervised method for hyperparameter tuning are mostly
based on a criterion involving features of the whole image like the variance of the resid-
uals for Morozov’s discrepancy principle, the balance between the data fidelity term and
the regularization term for L-Curve methods or the computation of an estimation of the
pMSE for the SURE minimization. If those methods provide ”good-looking” reconstruc-
tions, there is no guarantee on their quantitativity since bad tuning of the hyperparameters
may lead to biased reconstructions. Indeed, one of the main drawbacks of the regular-
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ization priors added into the reconstruction algorithms is their objects size and contrast
dependency. To reconstruct a whole sample quantitatively, the regularization hyperpa-
rameters have to change depending on the object to reconstruct. Indeed, the twin-image
artifacts (see Chapter 1) depend on the object size and the refractive index of the objects
to reconstruct. Figure 6.1 illustrates the evolution of the twin-image on calibration beads
of various radius r and refractive index n in an immersion oil of refractive index n0 = 1.518
at λ = 666nm. As seen on Figure 6.1, the level of the noise due to the twin-image artifacts
depends on the scale and refractive index of the objects and thus the amount of prior to
use, i.e. the regularization hyperparameters, changes with the objects to reconstruct.
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Figure 6.1: Evolution of the twin-image artifacts on calibration beads as a function of
the radius r (n = 1.45) and the refractive index n (r = 0.5µm)

In the context of biological observations, samples generally can present a high diversity
of objects, and only few of them are of interest, the others being considered as outliers.
Hence, ”whole-image-based” tuning of hyperparameters do not guarantee a correct re-
construction of the objects of interest. For example, with blood smear samples, most
of the energy of the signal corresponds to red blood cells diffraction patterns while the
objects of interest, the bacteria, represent only a small part of the signal energy. Thus,
the common unsupervised tuning of the hyperparameters may result in the quantitative
reconstruction of the red blood cells in spite of the bacteria. To perform quantitative
reconstructions of bacteria, the tuning of the regularization should be less ”image-driven”
and more ”object-driven”.

To tune automatically the regularization hyperparameter for quantitative reconstruc-
tions we propose to use calibration beads added in the sample. In this work, a quality
criterion based on the quantitative reconstruction of the beads is described and mini-
mized to improve the quantitativity of the reconstructed bacteria that have similar size
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and refractive index difference as beads. This work represent a pre-feasibility study of
this automatic hyperparameters tuning method.

In the following section, we detail this methodology starting with the formalization of
a bi-level approach. Then this bi-level approach is applied on simulated and experimental
data of samples containing a mixture of calibration beads and biological objects.

A Bi-level approach to tune the regularization hy-

perparameter on calibration object

A.1 Optimization criterion to tune the regularization hyperpa-
rameters

One of the main issue with automatic tuning of regularization hyperparameters for quan-
titative reconstructions is the lack of a ground truth criterion in the reconstruction space,
i.e. in the transmittance plane domain. Moreover the dependence between the regular-
ization hyperparameters and the size and contrast of the objects induces a quantitative
issue in in-line holography. We propose to use calibration beads of size and absolute
refractive index difference similar to bacteria to build a reconstruction quality criterion
directly in the transmittance plane domain. Using the framework presented in Part II,
calibration beads allow to increase the quantitativity of the reconstruction by refining the
image formation model. One of the main advantage of using calibration beads is that
their image formation model is accurately known such that their reconstructions do not
need any prior assumptions and thus are not biased. It is then possible to reconstruct an
unbiased transmittance plane equivalent to the beads out of their estimated parameters.
This transmittance is computed by back-propagating the complex amplitude of the Mie
model of the beads.

The back-propagation of this complex amplitude is an accurate and unbiased estima-
tion of the transmittance plane on the support of the beads MaskBeads . It can then
locally be considered as a ground truth of the reconstructions. It is noted tGT. Let us
note that if the calibration beads are isolated, as in most of our cases, MaskBeads can be
extended to bigger areas. In this chapter MaskBeads correspond to a 2.5 µm radius disk
around each bead. Thus the reconstructions should fit the modulus and the phase of the
calibration objects in focus.

We propose this methodology on a regularized reconstruction using a complex edge
preserving smoothing prior. To tune the regularization hyperparameters µ = {µEP, ϵEP} ,
it is possible to construct a quality criterion based on the minimization of the discrepancy
between the regularized reconstruction t(µ) of the calibration beads and tGT on the
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reduced field MaskBeads. This problem can be posed as bi-level problem :

µ† = argmin
µ∈M

Q(t†(µ)) (Upper-level)

subject to

t†(µ) = argmin
t∈T

Lµ(t) (Lower-level)

where

Q(t(µ)) = ∥tGT − t†(µ)∥2WBeads

where W Beads = diag(w) where wk =

{
1 if pixel k ∈MaskBeads,

0 otherwise
,

and Lµ(t) = ∥d−m(t)∥2W + µEPREP
ϵEP

(t)

where W is the inverse of the covariance matrix of the noise

and REP the complex total variation regularization term.

(6.1)

As in Chapter 5, the upper-level Q corresponds to a measurement of the quality of
the reconstruction based on the quantitativity of the reconstructed transmittance plane
for the calibration beads. The lower-level L corresponds to a regularized inversion task.
The reconstruction depends on the regularization hyperparameter, and the quality criteria
to tune the hyperparameter depends on the reconstruction. To tune automatically the
regularization hyperparameters it is then required to solve the upper-level equation.

The upper-level is a parametric inverse problem, and can be solved using a Powell
method that does not need the knowledge of the cost function gradient [Powell, 2015].
Solving the bi-level problem exposed in this section is time consuming since one compu-
tation of the quality criteria Q needs to compute one reconstruction. However compared
to the minimization of the SURE criterion as presented in Chapter 5 the computational
time is divided by 2.

The reconstruction algorithm corresponding to the lower-level is solved as presented
in Chapter 2.

The method we propose in this Chapter can be performed with the aberration correc-
tion presented in Chapter 4.

A.2 Application of the proposed hyperparameters tuning

A.2.1 Tuning the hyperparameter on simulated data

To evaluate the performances of the proposed method 4 silica calibration beads of differ-
ents radii varying from r = 0.25µm to r = 3µm have been simulated. These calibrations
beads have a refractive index of n = 1.45 and are observed in an immersion oil of refractive
index n0 = 1.519 under a coherent illumination at wavelength λ = 622nm. The objects
are simulated at 12 µm from the sensor plane.

Figure 6.2 illustrates the problem of automatic tuning of the hyperparameter with
4 object sizes. These objects have been reconstructed using two unsupervised tuning
methods of the regularization hyperparameters: the technique proposed in Section A.1, is
compared to the SURE minimization. Both of these criteria are represented to compare
the position of their minimum depending on the objects’ size. As previously mentioned,
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the twin image energy is ”object-dependent”. Thus the level of regularization must be
adapted depending on the objects. As seen on Figure 6.2 the optimum of the SURE
criterion is evolving with the size of the bead to reconstruct while the hyperparameters
that minimize our criterion stay in a close neighborhood. Thus ”image-based” criterion
are biased depending on the population of objects in the image.

Our method based on the quantitativity of the reconstructions of the beads ensure
that the objects that are similar to the beads, i.e. similar radius and similar refractive
index difference with the medium, are reconstructed with the correct regularization hyper-
parameter, whatever the surrounding environment and whatever the noise in the image.
This is the main advantage to use this regularization method. Indeed, to provide repro-
ducible reconstructions, the regularization hyperparameter must be tuned independently
of the sample and of the imaging system. Based on the reconstruction of the calibra-
tion beads, the minimization of our criterion tends to an improved reproducibility of the
reconstructions.

Another interesting advantage of the proposed method is that the quality criterion
is computed directly in the transmittance plane domain. Thus, biases due to the fact
that minimizing the pMSE/SURE criterion is not equivalent to minimizing the MSE are
lowered. Indeed, even though the estimated hyperparameter for reconstructing a 1 µm
diameter beads (in green) is not corresponding to the hyperparameter that should be used
for other size objects, it is closer to the optimal minimum that the one estimated with
the pMSE criterion. In conclusion the proposed quality criterion minimization not only
provides quantitative reconstruction of objects similar to the ”reference” calibration bead
but may also help to reconstruct quantitatively the other ones.
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Figure 6.3: Phase reconstruction of objects of various sizes using the proposed method
calibrated on 0.5 µm radius beads and SURE minimization for 1 µm radius objects, i.e.
bigger objects than our objects of interest.

Figure 6.3 presents phase reconstructions of several size of beads using our criterion on
calibrated objects (0.5 µm radius beads) and SURE criterion estimated on bigger objects
that would be in higher number in the sample like red blood cells. Here the radius of
these bigger objects is 1 µm. The reconstruction of the 0.5 µm radius bead is almost
quantitative with our method. It can be seen that smaller objects are over-regularized
and thus almost disappear in the reconstructions (red curve do not match). On the
contrary, bigger object are under-regularized and twin image artifacts are visible at the
edges on the support of the bead. On the SURE based reconstructions, as expected, it
can be seen that the best quantitativity is obtained for the 1 µm radius. However smaller
object, like our objects of interest, are badly reconstructed with quantitativity errors and
high twin image artifacts.
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A.2.2 Tuning the hyperparameter on experimental data

The regularization hyperparameters have been tuned on experimental data. These data
have been acquired using the setup presented in Chapter 2 and corresponds to diffraction
patterns of a mixture of red blood cells, bacteria and calibration beads. The sample is
stained and the data are acquired at a distance z ≈ 10µm between the sample and the
sensor.

As seen on Figure 6.4, the reconstructions of most of the objects that have the same size
and contrast as the beads, like the bacteria, are cleaned of the the twin image artifacts and
logically quantitatively reconstructed. However bigger objects, like the red blood cells, still
present twin image artifacts on the edges of their support. This can be explained by two
main reasons: since the red blood cells are thicker, the defocus distance is badly estimated,
and, to reconstruct red blood cells another regularization hyperparameter should have to
be chosen. As expected the sample is mostly transparent at this wavelength (λ = 622nm).

To assess experimentally the reproducibility of the method, more samples would have
to be studied.

B Conclusion

In conclusion, we propose in this chapter a reconstruction method based on the mini-
mization of a reconstruction quality criterion directly in the object plane that exploit
calibrations beads as ground truth objects. This method is based on the fact that the
beads share morphological properties with the objects of interest such that the choice of a
regularization hyperparameter value adapted to the beads will also provide quantitative
reconstruction of the objects of interest. This method is thus not dependent neither on
the bigger or most numerous objects in the sample (in our application, red blood cells) nor
on the imaging system noise. It improves then the reproducibility of the reconstructions.
Since it is based on the minimization of the MSE on calibration objects, biases due to
the minimization of a criterion in the model domain are avoided. The reconstruction of
the bacteria are then theoretically more quantitative with this hyperparameter tuning.
However the methodology has to be validated on a more complete experimental study. As
seen in the two last chapters, the regularization hyperparameters tuning is still a crucial
step in the search of quantitativity in in-line holography. To prevent biases inherent to
the regularizations, the confidence in the data must be improved.
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Figure 6.4: Reconstruction of a biological sample using the minimization of the proposed
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CHAPTER7
Multiwavelength reconstructions in
holography using a colocalization prior

Abstract

Multispectral imaging technologies offers the capability to ex-
tract spectral information for every pixel of the reconstructed
image. This spectral information increases the informative
content of the sample. It can also improve the reconstruc-
tion quantitativity. Since only the wavelength changes be-
tween each acquisition (objects are not moving), multi-spectral
acquisition give a redundant information on the morpho-
logical properties of the object that can be used to recon-
struct the phase by reducing the twin image artifacts. More-
over, the increased number of data allows to reduce the
weights of the prior by reconstructing jointly the transmit-
tance plane for each wavelength. We focus in this chap-
ter on the use of objects co-localization prior in regularized
inverse problem approach to improve the reconstruction of
multi-spectral holograms. In this chapter, after a prelim-
inary section, we present a co-localization prior for mul-
tispectral reconstruction. Then we propose reconstructions
of experimental multispectral data using this prior. This
chapter ends with a discussion on the need of registration
between multispectral acquisitions that introduce Chapter 8.

Introduction

Digital in-line holography reconstructions are limited by the twin-image problem caused
by the loss of the phase information in the hologram. To overcome this problem, priors
can be considered in the reconstruction algorithm as mentioned in Chapter 2. These pri-
ors are based on objects a priori statistics and can be added in the reconstruction by using
optimization constraints or regularization terms as mentioned in Part III. However, to re-

106



SCIENTIFIC CONTEXT

duce the weights of priors in the reconstructions, phase-diversity can be exploited. Phase
diversity consists in recording multiple acquisition of the same objects with additional
known phase variation like changing the defocus distance [Allen and Oxley, 2001, Green-
baum and Ozcan, 2012], the wavelength or the illumination angle. Using more views,
the reconstructions can afford more confidence in the data and require thus less prior
assumptions.

Multispectral in-line holography is a phase imaging technique based on phase diver-
sity. It consists in recording the diffraction patterns of the same sample under several
wavelengths illuminations. Thus, the obtained reconstruction are more robust to biases
introduced by the prior. Indeed the cleaning of the twin-image is only held by priors based
on objects statistics in mono-wavelength reconstruction. [Denis et al., 2009, Song et al.,
2016, Jolivet et al., 2018, Momey et al., 2019]. With multispectral acquisitions the twin
image problem varies with the wavelength and thus can be treated by using prior exploit-
ing the redundant information in the data [Luo et al., 2015, Isikman et al., 2010].[Herve
et al., 2018]. Indeed, if the twin-image varies with the wavelength, the morphological
properties of the objects do not.

More than just improving the reconstructions, multispectral acquisitions can be used to
extract spectral information from the biological samples [Mo et al., 2009, Allier et al., 2017,
Mariën et al., 2020]. Indeed, some biological materials, like Gram stained bacteria, the
discrimination is based on their color which can be sometimes elusive. Thus multispectral,
quantitative and repeatable information is required.

Thus, by exploiting the redundancy between the acquisitions, multispectral recon-
structions provides less ”prior-driven” and more ”data-driven” reconstructions while re-
constructing spectral information of the samples that may help the diagnosis.

In this chapter, we discuss the problem of using co-localization prior in digital in-line
and multispectral holographic reconstructions to exploit the redundant information of the
data. Using IPA, we reconstruct jointly the 2D transmittance planes equivalent to the
objects at several wavelengths.

In the Preliminaries section, we describe the regularization term prior to consider co-
localization of the objects in the multi-spectral data. In the second section, we discuss
the efficiency of using this prior in our context and the robustness of these method to
badly registered data.

A Preliminaries: Regularization colocalization term

in multi spectral imaging

Let us consider a sample modeled by a 2D complex transmittance plane tλ for all wave-
length λ of Λ. For an infinite aperture and aberration free imaging system, this model
is the squared modulus of the convolution between the Rayleigh-Sommerfeld propagation
kernel hRS

z,λ and the transmittance plane tλ [Goodman, 2004]:

mNP
λ (tλ) =

∣∣hRS
z,λ ∗ tλ

∣∣2 (7.1)

Note that the Rayleigh-Sommerfeld depends on λ as does the Mie model. Figure
7.1 shows the diffraction pattern of a bead depending on the wavelength. The accurate
knowledge of λ is then crucial to model the image formation. In this manuscript, we will
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suppose this parameter is accurately known, though it could also be calibrated [Flasseur
et al., 2017b].

0.7

0.8

0.9

1

1.1

1.2431 nm 450 nm 490 nm

622 nm 666 nm

532 nm

560 nm 590.5 nm

Figure 7.1: Diffraction patterns of a 1µm diameter silica beads (n = 1.45) diffraction
pattern at distance z = 10µm in an oil immersion medium (n0 = 1.519)

Since multispectral acquisitions consist in recording the diffraction patterns of the
same objects with multiple illumination wavelengths, the expected reconstructed objects
should have the same position independently of the wavelength. This prior can thus be
added in the reconstruction algorithm to exploit full multispectral information in order
to remove the twin-image. However depending on the object to reconstruct this prior can
be considered using several methods:

� If the objects are gray, which means their absorption is not varying with λ, then
it is possible to reconstruct only one modulus map A instead of NΛ modulus maps
{Aλ}λ∈Λ where NΛ is the number of wavelengths used for the acquisitions. In this
case:

∀λ ∈ Λ, tλ(x, y) = A(x, y)eiΦλ(x,y) (7.2)

where Φλ is the phase to reconstruct for each λ. The prior is in this case directly
added in the image formation model.

� If the objects have a refractive index without any dispersion over λ, then it is
possible to reconstruct only the optical path difference induced by the objects which
corresponds to one map for all λ. In this case:

∀λ ∈ Λ, tλ(x, y) = Aλ(x, y)e
i 2π

λ
OPD(x,y) (7.3)

where OPD is the optical path difference for each λ. The prior is in this case added
in the image formation model.

� When none of these assumptions can be done on the objects, then the reconstruc-
tion of the absorption and of the phase of the sample must be performed for each
wavelength. Thus,

∀λ ∈ Λ, tλ(x, y) = Aλ(x, y)e
iΦλ(x,y) (7.4)
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Even if the refractive index varies with the wavelength, the phase-shifts introduced
by the objects are located at the same position. Thus co-localization of the edges
of the phase maps and absorption maps along all wavelengths is added as a regu-
larization term.

The biological samples we are studying are neither gray nor dispersive, thus, the co-
localization of the reconstructed objects a prior is added as a regularization term.

Based on a structured norm [Fornasier and Rauhut, 2008], the multi-wavelength total
variation regularization term RΛ promotes the colocalization the edges of the multi-
wavelength transmittance planes and has been successfully used in lens-less multispectral
holography [Herve et al., 2018].

Mean square error definition

The multi-wavelength total variation regularization term can be expressed as the
relaxed L1-norm of the sum between the gradients of the real and imaginary part
of the reconstructed transmittance planes tΛ over λ ∈ Λ :

RΛ(tΛ) =
∑
i,j

√∑
λ∈Λ

∇i,jℜ(tΛ)2 +∇i,jℑ(tΛ)2 + ϵ2 (7.5)

where ϵ is a small valued and positive coefficient used to make Equation 7.5 differ-
entiable and prevent division by 0 in the gradient derivation.

Figure 7.2 illustrates the principle of the multi-spectral total variation regularization
term by presenting the regularization value for co-localized and non co-localized examples.
Indeed on the left part of the graphs the objects are localized at the same position in terms
of real and imaginary part but also along the wavelength stack. Thus, the x and y edges of
these objects are also co-localized. The inner sum between the real and imaginary parts
promote co-localization of the edges for one wavelength and then the sum over all the
wavelength ensure that for all wavelengths the real and imaginary parts are co-localized.
As illustrated with this figure when the reconstructed planes are not co-localized the
regularization term gets bigger, which will penalize non-colocalized solutions.

B Multiwavelength reconstructions in holography

B.1 Including colocalization a priori in the reconstructions

To improve the reconstructions, multispectral holography takes advantage of spatial re-
dundancy in multiple acquisitions dΛ = {dλ}λ∈Λ.

As presented in Chapter 2, the multispectral reconstructions are performed using a
”calibration/reconstruction” scheme based on a parametric IPA for the calibration and
a regularized IPA for the reconstruction of the sample. To simplify the reconstructions
in this chapter, the calibration step will be performed by considering an aberration-free
system.

During the calibration step, it is supposed that the position and the radius of the
objects should not change with λ. Thus, the parameters of the beads {x, y, z, r} are
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Figure 7.2: Principle of the multiwavelength total variation term. ϵ is a small valued and
positive hyperparameter.
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estimated using only one wavelength λref as in Chapter 2.

In multispectral reconstructions, the regularization term introduced in Section A can
be used to promote co-localization of the objects along all wavelengths. The inverse
problem to solve for the reconstruction of the multispectral data is then expressed as:

t†Λ = argmin
tΛ∈T

Lµ(tΛ) (7.6)

with Lµ(tΛ) =
∑
λ∈Λ

∥dλ −mNP(tΛ)∥2W λ
+ µRΛ(tΛ) (7.7)

where µ is a regularization hyperparameter and where T represents reconstructions con-
straints. In our experiment, we chose T so that the reconstructed objects are not emmis-
sive i.e. ∀λ ∈ Λ, |tλ| ≤ 1. Note that W λ, the inverse of the covariance matrix of the
noise is varying with λ. Since the power of the light is different for each wavelength, the
SNR may be different. It is then necessary to take this into account in the data fidelity
term of the cost function by using a different covariance matrix for each wavelength. To
perform this minimization a FISTA algorithm is used [Beck and Teboulle, 2009].

To increase the quantitativity of these reconstructions, the dispersion of the refractive
index over λ must be taken into account. The dispersion law of the immersion oil and
silica are presented on Figure 7.3.
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Figure 7.3: Refractive index of the immersion oil and of silica as functions of the wave-
length 1

B.2 Tuning of the regularization hyperparameter

To tune the regularization hyperparameter µ, the method proposed in Chapter 6 is
adapted for multi-wavelength reconstructions. In this context, the quality criteria Q
used to tune the hyperparameter is based on a cost function that minimizes the discrep-
ancy between the reconstructed transmittance planes t†Λ(µ) and the ground truth tGT

Λ

back-propagation of the Mie model (which parameters are estimated by parametric IPA)

1https://refractiveindex.info/?shelf=glass&book=fused_silica&page=Malitson,https:

//www.cargille.com/available-refractive-indices-sds-datasheets/
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for all wavelengths. The bi-level inverse problem to solve is written as follows :

µ† = argmin
µ∈M

Q(t†Λ(µ)) (Upper-level)

subject to

t†Λ(µ) = argmin
tΛ∈T

Lµ(tΛ) (Lower-level)

(7.8)

where

Q(t†Λ(µ)) =
∑
λ∈Λ

∥tGT
Λ − t†Λ(µ)∥

2
MaskBeads

, (7.9)

and Lµ(tΛ) =
∑
λ∈Λ

∥dλ −m(tΛ)∥2W λ
+ µRΛ(tΛ), (7.10)

where M represent optimization constraints on the regularization hyperparameter and
MaskBeads is a segmentation of the region of the beads. The minimization of this bi-level
problem is performed using a Powell method [Powell, 2015].

Figure 7.4 represents the evolution of the quality criterion Q as a function of µ and
three reconstructions on biological samples that contains calibration beads represented as
false color (see Appendix B). When the regularization hyperparameter is under-estimated,
the reconstructions are under-regularized, i.e. the models fits the noise. Reconstructions
artifacts can be observed in the reconstructed modulus and phase images. These recon-
structions artifact are characterized by a green halo in the phase reconstruction and a
noisy modulus image. In the contrary when the regularization hyperparameter is over-
estimated, the reconstructions are over-regularized, i.e. the model fits the data less but
promote the prior. Almost all the objects disappear and the reconstruction image are
blurry in that case. However using the optimum of the quality criterion as suggested
in Chapter 6, the reconstructions are sharper and objects are closer to their expected
shape. Hopefully the quantitativity of the reconstruction are also enhanced due to the
quantitative quality criterion Q we used.

B.3 Results

In this section, we first apply the proposed reconstruction method on experimental holo-
grams of a biological sample in which calibration beads are inserted. We compare our
results with a regularized inversion for each wavelength in the experimental experimen-
tal case. Finally we discuss the effects of the co-localization a priori in multispectral
reconstructions by testing the limits of the approach on simulations.

B.3.1 Reconstructions on experimental data

The experimental parameters are provided in Appendix A Section C. In this section
Λ = {431 nm, 450 nm, 490.5 nm, 532 nm, 560 nm, 590nm, 622nm, 666nm}, thus Nλ = 8.
The holograms to be reconstructed were defocused of approximately 12µm from the focus
position.

They were reconstructed using parametric IPA on beads to find the correct propagation
distance z to be used in the regularized reconstructions. As mentioned in Section B.1,
we suppose in this chapter that the parameters {x, y, z, r} do not vary with λ. Thus,
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Figure 7.4: Evolution of the reconstruction quality criterion Q as a function of log µ (ϵ =
10−3).

estimation of the propagation distance can be performed using only one acquisition at
wavelength λref = 431nm. The reconstruction workflow of these approaches is detailed in
Chapter 2.

For each hologram, the reconstructions were performed using either the co-localization
prior proposed in A or by reconstructing each wavelength independently using a complex
hyperbolic total variation regularization prior. The abbreviations Multi-λ-Col (standing
for co-localized), and Multi-λ-NotCol(standing for not co-localized) will be used in the
following. In this section both performances of algorithm Multi-λ-NotCol and Multi-λ-Col
are studied on experimental data.

Figure 7.5 presents the reconstruction results using both methods. The reconstructed
absorption color map can be compared with the RGB white light acquisition. The re-
constructed objects have a similar shape to the one acquired with white light when the
co-localization of the objects on the reconstructed plane is used. When this prior is
not considered (Multi-λ-Col reconstructions), the reconstructed objects do not have the
same shapes and more critically some of the objects almost disappear in the absorption
maps. Moreover the Multi-λ-Col absorption color map provides a better reproducibility
on the color of the bacteria since same bacteria types share the same colors (round-shaped
bacteria should be purple in this sample, while rod-shaped bacteria should be pink).

Based on the absorption reconstructions, the twin image is reduced with the Multi-
λ-NotCol algorithm while twin-image artefacts are still visible on the Multi-λ-NotCol
reconstructions. These artefacts can even make some bacteria difficult to detect.

Based on the phase reconstructions, both methods provide a completely different re-
sult. Since no ground truth has been measured for the phase, it is difficult to know which
one is the most quantitative. However Multi-λ-Col reconstructions are more reproducible
in the field of view. The green halo that can be observed with Multi-λ-NotCol algorithm
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RGB White light acquisition

Absorption reconstruction
Multi-λ-NotCol

Absorption reconstruction
Multi-λ-Col

Phase reconstruction
Multi-λ-NotCol

Phase reconstruction
Multi-λ-Col

Figure 7.5: Phase and absorption multispectral reconstructions compared to RGB white
light acquisition. d666nm is one hologram (i.e. data) at 666nm.
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is completely cleaned when the co-localization algorithm is taken into account. This halo
was a critical issue due to its color, similar to the bacteria, that could thus causes seg-
mentation errors. Using the co-localization prior in the reconstruction algorithm provides
thus better reproducibility and more realistic reconstruction both in modulus and phase
as well as better elimination of the twin-image.

To highlight the quantitative properties of the reconstructions, Figure 7.6 shows the
profile of the reconstructions using both methods for four wavelengths. The modulus
and phase profiles along each wavelength are badly colocalized with the Multi-λ-NotCol
algorithm. Indeed, some phase shifts and absorption are visble at certain wavelength
while being null for others. Even though, the refractive indexes of the biological objects
may vary with the wavelength, this result is less physically probable. The Multi-λ-Col
reconstructions provides reconstructions that are more colocalized along the wavelengths
and thus more physically probable. Moreover the reconstructed objects are smoother and
it becomes easy to segment the objects from the background. However it should be noted
that even if the co-localization of the objects along the wavelength is better with Multi-
λ-Col reconstructions, the sample seems a bit shifted from one wavelength to the other.
The shifts in the reconstructions are due to bad registrations of the data. The effect of
bad registrations on the quantitativity of the reconstruction with a co-localization prior
will be explored in Section B.3.2 on calibration beads simulations.

B.3.2 Robustness of the method to badly registered data

For a better understanding of the colocalization errors in the data, we chose to perform
simulations. A bead of 1µm diameter is simulated at the center of the field with a defocus
distance of 12 µm with the Lorenz-Mie model (see Chapter 2). The refractive index of the
bead and the medium has been chosen to correspond to the dispersion law of the refractive
index of silica and of the immersion oil as represented on Figure 7.3. In this simulation
experiment, only 3 wavelengths are considered: Λ = {430 nm, 532 nm, 666 nm}. The
other experimental parameters are the same as the one used for the Section B.3.1. For
more realistic simulations, a white Gaussian noise η was added to the simulated holograms,
which led to a Signal-to-Noise Ratio (SNR) of 4(SNR = ∆m

2ση
, where ∆m is the peak-to-

peak amplitude of the model).
A mosaic of 5×5 in-line beads 512×512 pixels holograms is simulated with registration

error as presented in Figure 7.7. The indicated shifts correspond to the shift between the
430 nm and the 532 nm holograms which also corresponds to the shifts between the 532
nm and the 622 nm holograms. To highlight the effect of the errors on the registration of
the data, the diffraction pattern obtained for each wavelength was normalized so that they
correspond to one of the channel of the RGB image. This normalization is not applied in
the reconstructions but only for display.

In this experiment the propagation distance z is considered to be known. To perform
the Multi-λ-Col and the Multi-λ-NotCol reconstructions, a FISTA algorithm is used.
As silica beads are mostly transparent objects, the quantitativity of the reconstructions
is assessed on the phase. Figure 7.8 shows the profile of the phase of the regularized
reconstructions with the Multi-λ-Col and the the Multi-λ-NotCol methods.

As seen on Figure 7.8 the Multi-λ-Col algorithm provides smoother and better quanti-
tativity results on the phase of the beads due to the more physical nature of the regulariza-
tion term. However when reconstructing badly registered data, the prior of co-localization
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of the objects is not valid anymore, thus reconstructions are biased as seen on the cyan
profile. The object is shifted to promote the regularization term in the cost function,
i.e. the objects are shifted so that their co-localization is improved. Note that when the
registration is even worse (magenta case) the reconstruction algorithm performs quan-
titative results that are not biased due the prior but that are shifted depending on the
wavelength. Indeed, the regularization term gets bigger but promoting it would reduce
the data fidelity too much. Thus the regularization hyperparameter can be seen as a
balance between having co-localized reconstructions or fitting the data.

The Multi-λ-Col algorithm is then sensible to badly registered data depending on the
chosen reconstruction hyperparameter. It is thus important to ensure that the multispec-
tral data are correctly registered together. However the registration of the experimental
data is not a rigid transformation. Indeed the registration errors are mostly due to chro-
matic aberrations that varies in the field of view. To perform quantitative and co-localized
reconstructions one must take these chromatic aberrations into account.

C Conclusion

In conclusion, the colocalization of the objects for all wavelength is a physical prior that
can be added to the regularized inversion of multispectral holograms to provide more
physical and quantitative reconstructions of biological samples. We demonstrated that
the reconstructions are quantitatively improved in phase and modulus. Due to the spectral
colocalization, the biological samples like bacteria can then be spectrally characterized.
This spectral information can then help to discriminate biological objects. With this a
priori the twin-image is better suppressed. The regularization is applied on the whole
multispectral transmittance stack and thus does not require regularization hyperparam-
eters for each wavelength. The tuning of the regularization hyperparameter can be done
automatically in multispectral context using an adapted version of the method proposed
in Chapter 6.

However, the quality of the reconstructions depends on the registration of the data.
Geometric and chromatic aberrations change the propagation model and may introduce
distortions of the holograms from one wavelength to another. Therefore, geometric and
chromatic aberrations must be taken into account to increase both the quantitativity and
colocalization, in order to have a better multiwavelength reconstruction. It is the subject
of next chapter.
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CHAPTER8
Improving multispectral reconstructions by
taking into account chromatic aberrations

Abstract

Multispectral acquisitions provide quantitative reconstruc-
tions of the transmittance plane of the sample by using
colocalization priors. However, these priors require a good
registration between the data. As mentioned in Chap-
ter 4 misalignments in the optical system or chromatic
aberrations can have a significant impact on the image
formation model. We focus in this chapter on the use of
calibration objects for the estimation of chromatic aber-
rations. These estimations are then used to reconstruct
multispectral holograms. In this chapter, we present a
chromatic aberrations model estimation. Then we propose
to reconstruct experimental multispectral data. At last a dis-
cussion on the reconstructed spectral information is provided.

Introduction

Multispectral reconstructions aim at increasing the quantitativity of the spectral recon-
structions by considering a more physical prior based on the co-localization of the objects
in a multispectral data stack. As mentioned in Chapter 7, this prior is highly sensitive to
bad registrations between the data. Thus, a preliminary study, that should be performed
before the reconstruction of multispectral images, consists in checking that the objects
are colocalized with the wavelength.

The estimation, for each wavelength, of the position of calibration beads is a simple
and accurate way to measure accurately the registrations errors. Figure 8.1 illustrates
several calibration beads in a whole field of view that have been reconstructed using
parametric inverse problems approach (as described in Chapter 3). Their 3D positions
have been represented depending on the wavelength of the acquisition.

First, it should be noticed that the estimated propagation distance z highly depends
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Figure 8.1: Estimated 3D positions of the calibration objects as a function of the wave-
length

on the wavelength. Indeed, since the refractive index of the optics is evolving with the
wavelength, a longitudinal aberration can be observed. This longitudinal aberration may
introduce error in the reconstructions. However it can be accounted for by using a different
propagation distance zλ for each wavelength λ.

Lateral chromatic aberrations can also be observed, these aberrations are critical since
they introduce lateral shifts of the objects that depend on the wavelength. Here, the
origins of the aberrations are mainly due to the dispersion of the refractive index of the
optics and to alignment errors in the digital holographic microscopy setup. Due to the
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shifts introduced by these aberrations, the prior consisting in supposing the objects to be
colocalized is compromised.

The lateral shifts of the beads from one wavelength to another are not uniform in the
field of view. This problem is the same as presented in Chapter 4. The PSF is varying
in the field of view and with the wavelength. Thus, rigid registration of the data is not
possible.

We propose in this chapter a similar method to the one applied in Chapter 4 to take
into account chromatic aberrations in multispectral reconstructions. This method is based
on the estimation of Zernike coefficients on calibration beads for each wavelength. The
reconstruction of the sample is then performed by using image formation models that
take into account these chromatic aberrations.

In the following section, we detail this method. Then, we present the results on multi-
spectral experimental data reconstructions of samples containing a mixture of calibration
beads and biological objects.

A Chromatic aberrations model

As presented in Chapter 2 ,the diffraction pattern of a spherical bead is modeled by the
Lorenz-Mie model which depends on the set of bead parameters ϑλ = {x, y, zλ, r, nλ},
where x, y, zλ corresponds to the 3D position, r is the radius and nλ is the refractive
index. Note that the propagation distance zλ and the refractive index nλ depend on the
wavelength. αλ = {αm

n (λ)} is a vector of aberration parameters that varies with the
wavelength. In this context, the model can be expressed as a Mie model that has been
convoluted by a PSF correction that depends on αλ. Thus, in the multispectral case
Equation 4.3 can be written:

mP
λ(ϑλ,αλ) =

∣∣∣F−1
[
p̃(αλ)⊙ãMie

λ (ϑλ)
]∣∣∣2 (8.1)

with

p̃(κx, κy,αλ) = e
i

[ ∑
n,m

αm
n (λ)Zm

n (κx,κy)

]
(8.2)

Accurate estimates of the aberrations and beads parameters can be obtained by maxi-
mizing a least squares cost function as proposed in Chapter 4. In the context of multispec-
tral reconstructions, this parameters estimation must be performed for each wavelength:{

ϑ†
λ,αλ

†
}
= argmin

ϑλ∈C,α∈D
∥dλ −mP

λ(ϑλ,αλ)∥2W (8.3)

where C and D are optimization constraints. Since the (x, y) position and the ra-
dius r of the beads are the same for each wavelength, they are only estimated for
one wavelength λRef = 431nm. Aberrations parameters corresponding to lateral shifts
{α1

1(λRef), α
−1
1 (λRef)} are set to 0 for the calibration of αλRef

. However, for all the other
wavelengths, the aberrations may introduce shifts of the acquisition, thus {α1

1(λ), α
−1
1 (λ)}

are estimated. As previously done in Chapter 4 Section B.1.1, the piston coefficient α0
0 is

set to 0.
Once the aberrations are modeled, they are taken into account to better reconstruct

the modulus and the phase of the objects of interest. In order to account for aberrations
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in the image formation model, an aberrated PSF model is considered:

h̃z(αλ, λ) = p̃(αλ)⊙h̃
RS

z (λ) (8.4)

Thus, the aberration corrected non-parametric models mNP
λ are expressed as:

mNP
λ (tλ,αλ) = |hz(αλ, λ) ∗ tλ|

2 (8.5)

To reconstruct the multispectral transmittance planes using this model, the following
cost function must be minimized:

Lµ(tΛ) =
∑
λ∈Λ

∥dλ −mNP
λ (tλ,αλ)∥2W λ

+ µRΛ(tΛ) (8.6)

where Λ is the set of the wavelengths and RΛ is the colocalization term defined in Chapter
7. The optimization domain is restricted to the unitary disk corresponding to a non-
emissive object hypothesis. A FISTA algorithm is used to perform this minimization
[Beck and Teboulle, 2009].

Since the PSF is varying in the field of view, the hologram has been divided into
512x512 pixels patches. These patches overlap with an overlap ratio of 0.5. Each of these
patches have been reconstructed independently using its own PSF. After reconstruction,
only the 256x256 pixels central part of the patches is kept to avoid border effects. Then,
all of the patches are mosaiced to produce a reconstruction of the whole field of view.
Note that PSF interpolation is a well-studied subject and that further improvements of
this method could be performed to reduce border effects in the reconstructions [Denis
et al., 2011, Denis et al., 2015]

As mentioned, each patch is reconstructed using its own PSF. This PSF is computed
using a locally weighted polynomial regression (LOWESS) of zλ and αλ. Thus, the
uniformity of the distribution of the beads in the field of view may change the quality of
the interpolation. This subject will not be covered in this Chapter.

B Reconstruction of experimental data by account-

ing for aberrations

In this section, we apply the proposed method on the same experimental data as the one
used in Chapter 7. Figures 8.2 and 8.3 illustrate the reconstruction of the phase and the
absorption of the sample and compare them with the Multi-λ-Col method proposed in
Chapter 7. Figure 8.4 provides a zoom on these reconstructions. These figures show that
the main improvement is in the phase reconstructions. With our method, the bacteria
are more contrasted on a more uniform background. On these figures, it can be seen that
similar bacteria types have similar reconstructed phase, i.e. the reconstruction are more
uniform for one type of bacteria, thus, the repeatability of the method is increased. More-
over the shape of the absorption reconstruction is more similar to the phase reconstruction
(cyan and magenta arrows). This can be explained by the use of the colocalization prior.
Indeed, aberrations compromised this prior. For the same reason, objects that were re-
constructed with the aberration correction are bigger than the ones reconstructed with
Multi-λ-Col algorithm.
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On bacteria clusters (green zone), the phase reconstructions are also improved. Bac-
teria that had almost disappeared in the phase with Multi-λ-Col reconstructions are now
reconstructed with almost the same phase value as the isolated ones (orange arrows). On
the absorption maps of bacteria clusters, it can also be seen that the twin-image artifacts
have been reduced (green arrows).

At last this aberration correction provides better resolved reconstruction as seen in
the blue zone. Two bacteria (yellow arrow) appeared as only one with the Multi-λ-Col
phase reconstructions instead of two as observed with the proposed method.
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Multi- -Col phase reconstructions

(Without aberrations correction)

Proposed method phase reconstructions

(With aberrations correction)

Bacteria - Baccilius 

Gram -

Bacteria - Cocci

Gram +

Red blood cells

Figure 8.2: Phase reconstructions of multispectral acquisition using the Multiλ-Col and
proposed aberrations-corrected method.
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Multi- -Col absorption reconstructions

(Without aberrations correction)

Proposed method absorption reconstructions

(With aberration correction)
Bacteria - Baccilius

Gram -

Bacteria - Cocci

Gram +

Red blood cells

Figure 8.3: Absorption reconstructions of multispectral acquisition using the Multiλ-Col
and proposed aberrations-corrected method
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Using the aberration corrections, the discrimination between bacteria becomes easier
as their spectral response is different. As illustrated with Figure 8.5, the twin-image
artefacts have been correctly cleaned for all wavelength. As expected, using Kramer-
Krönigs laws [Lucarini et al., 2005], the phase-shift introduced by the bacteria is increasing
after the absorption peak (reached at λ ≈ 532nm). The phase reconstruction is also
discriminant for the bacteria at this wavelength.
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Figure 8.5: Modulus and phase reconstruction for several wavelength using the proposed
aberrations-corrected method

A basic segmentation task is then performed on the field of view presented in Figure
8.2 to study the transmission and the refractive properties of both bacteria types (Gram+,
Gram-). Figure 8.6 illustrates the evolution of the transmission and optical path with the
wavelength for both bacteria types using the Multi-λ-Col algorithm and the proposed
method. The values have been obtained by averaging the modulus and the phase maps
on the pixels area that correspond to each type of bacteria (approximately 20 bacteria).
As shown in Figure 8.6, the absorption spectrum is quite similar using both algorithms.
However, the Optical Path Difference (OPD) reconstructions are really different. Indeed,
using the Multi-λ-col reconstructions, discriminating the bacteria using the reconstructed
OPD information was a difficult task due to the small difference and the dispersion of
the reconstructed values. With our method, the standard deviation of the reconstructed
OPD is almost unchanged, however the bacteria have a higher average OPD. Thus, these
reconstructions indicates a possibility of discriminating them only with the OPD for the
higher wavelengths.

These last results only highlight the significance of accounting for aberrations in the
reconstructions. Indeed, a ground truth would be needed to ensure that the proposed
method is quantitative in terms of absolute values. However the reconstructions are
performed more rigorously using a more accurate model and provide more physical results
(for example, the object have similar shapes in phase and absorption).

It should be noticed that these samples were stained, thus it is difficult to know if
the measured phase comes from the staining of the bacteria, or from the bacteria itself.
Further investigations on label-free samples should be done.
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Baccilius bacteria
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Figure 8.6: Average and standard deviation of the reconstructed modulus and OPD
introduced by baccilus (Gram-) and cocci bacteria (Gram+)

C Conclusion

In this chapter, we underlined the significance of chromatic aberrations in multispectral
reconstructions. The quantitativity and the repeatability of the reconstructed phase is
strongly affected by these aberrations even though they are quite low in the presented
example. Indeed, because of aberrations, the image formation model is changed leading
to two main consequences: the minimization of the data fidelity is biased and the prior
based on the colocalization of the object for all transmittance planes is not valid. We
proposed a method based on calibration beads to estimate accurately the parameters
of chromatic aberrations and then compensate them in the regularized reconstruction.
The obtained results are more physical and show an increase of the contrast between
the objects of interest. Further studies on label-free samples will have to be done to
determine if the difference between the two types of bacteria without staining is enough
to be discriminant. However, with stained samples, it seems that multispectral phase
reconstruction give interesting discrimination information as pointed out by Figure 8.6.
Indeed, the OPD is almost identical at 560 nm while it is really different at 622 nm or
666 nm. These results results must however be taken with great care since only two types
of Gram+/Gram- bacteria have been reconstructed.
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Conclusion, ongoing and future works

A Summary of the main contributions

In this thesis, we have proposed several methods dedicated to the reconstructions of in-line
holograms. In particular, these methods have been applied to increase the repeatability,
the reproducibility and the quantitativity of biological sample holograms reconstructions.
These methods follows three methodological solutions:

First methodological solution - Self-calibration of the image formation model

In in-line holography, the autofocusing step is performed numerically making this
technique low cost (precise z stage is no longer obligatory) and ideal for automatization.
However, this autofocusing step requires an accurate image formation model. Calibration
beads, on which most of the contributions of this thesis are based, are accurately described
by the Lorenz-Mie model. Thus, we suggest to use these beads to calibrate the image
formation model:

� In Chapter 2, we proposed a method consisting in inserting calibration beads into
the sample to retrieve the slide plane. The slide plane is fitted thanks to the esti-
mation of the beads parameters by a parametric inverse problems approach. This
method improves the repeatability of the reconstruction since the estimation of the
propagation distance z is performed using an objective criterion, i.e. that does not
depend on the sample.

� In Chapter 3, we tackle the robustness issue of bead detection in the sample. We
extended the robust detection proposed by Fitch so that the detection of calibration
objects, as needed for the image formation model calibration, becomes more efficient.
The presented algorithm exploits a low rank approximation of robust cost functions
to compute efficiently robust detection maps using Fast Fourier Transforms.

� In Chapter 4, we proposed a method to take into account aberrations in inverse
problem approaches in holography. This methodology is based on the estimation
of Zernike coefficients on calibration beads at several position in the field-of-view.
Then a correction of the PSF can be computed in order to be used in regularized
reconstruction. This improvement of the image formation model improves morpho-
logically and quantitatively the reconstructions. The whole imaging setup, from the
illumination to the objective, is thus characterized leading to better reproducibility
of the imaging device.
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Second methodological solution - Unsupervised tuning of the regularization
hyperparameters

To reconstruct an in-line hologram using inverse problem approaches, the balance
between full confidence in the data and physical priors on the reconstruction must be
tuned. The tuning of regularization hyperparameters is a critical step in the search of
reproducible and quantitative reconstructions:

� In Chapter 5, we assessed the performances of an unsupervized method, based on the
minimization of SURE, to tune the regularization hyperparameters. This method
provides qualitative reconstructions but is, as all ”image-based” criteria, dependent
on the sample to reconstruct.

� In Chapter 6, we proposed an objective criteria to perform the reconstructions based
on the quantitativity of the reconstruction of calibration objects. This method is
more reproducible as long as the calibration objects are mono-disperse. Moreover
if the calibration objects have similar morphological and refractive index difference
than the objects of interest, bacteria in our case, the reconstruction will specifically
be more quantitative for these objects.

Third methodological solution - Exploiting phase diversity in multispectral
reconstructions
To improve the reconstructions and to discriminate stained bacteria, multispectral data
have been reconstructed:

� In Chapter 7, we reconstructed a multispectral data stack using a multispectral
colocalization prior in a regularized inverse problems approach. Even though using
a multispectral prior improves the quantitativity of the reconstruction, these prior
are sensitive to the registration of the data.

� In Chapter 8, we show that the registration between the multispectral acquisitions
should vary in the field of view and thus, cannot be considered to be rigid. Indeed,
the registration error mainly comes from aberrations of the optical setup. Using a
methodology similar to the one proposed in Chapter 4, these chromatic aberrations
can be corrected such that the quantitativity and reproducibility of the reconstruc-
tions is improved. The reconstruction results are repeatable and show a relevant
spectral information in the phase of the studied sample.

All the algorithms presented in this manuscript have been developed using the frame-
work GlobalBioIm [Soubies et al., 2019]. A toolbox dedicated to in-line inverse problems
approach reconstructions, that includes all the codes for the contribution of this thesis, is
to be released.

B Ongoing and future works

In this section we discuss some ongoing and possible future works related to each method-
ological solution studied in this thesis.
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First methodological solution - Self-calibration of the image formation model
In this manuscript we improved the image formation model by estimating the parameters
of calibration beads inserted in the sample. Some of the perspective provided by this
methodology have been summarized in the following:

� Partial coherence models:
If in-line holography requires coherence of the light source, this condition is not very
restrictive. Thus, partially coherent light sources (that are cheaper than lasers) can
be used to decrease the speckle noise of the in-line holograms. However to perform
more quantitative reconstructions, the partial coherence of the light source has to
be taken into account in the direct model. This subject has been studied during
this thesis and first results have been described in [Olivier et al., 2022]. They show
that taking into account the partial coherence of the illumination reduces biases in
the estimation of calibration beads parameters. However, in these experiments, the
experimental parameters that describes the partial coherence were supposed to be
known. During Thomas Brard’s internship (Master 1), we studied the estimation of
these parameters on calibration beads using parametric inverse problems approach.
First results on simulations have achieved great performances. These results should
be validated on experimental data and used in regularized reconstructions. Let us
notice that a preliminary study of the correlation between the estimated parameters
should be performed.

� Choice of the calibration beads:
To improve the quantitativity of the reconstructions, the calibration beads choice
could be optimized in a co-design approach. The parameters of the calibration beads
could be optimized, using statistical tools as the Cramér-Rao lower bounds, in order
to improve the estimation accuracy of z and of the Zernike coefficients.
Moreover several populations of mono-dispersed beads could be inserted in the sam-
ple. The exploitation of the diversity of their parameters to improve the accuracy
of the estimations could be studied.

� More complex or low quality setups:
In this manuscript we aim at reconstructing quantitatively in-line holograms by
modeling the optical setup. However, the methodology is much more wide ranging.
It could be used to account for aberrations in more complex optical setups or with
low cost optics and should improve also the quantitativity of the reconstructions.
This study would be interesting to assess the limits of our method and to extend it
to other configurations.

Second methodological solution - Unsupervised tuning of the regularization
hyperparameters
To increase the quantitativity of the regularized reconstruction of specific objects, in our
case bacteria, we proposed to use an objective quality criterion based on the reconstruction
of calibration beads. Perspectives of this work are summarized in the following:

� Computational time reduction:
In the proposed method the whole hologram should be reconstructed to compute
the quality criterion. However, when this criterion is based on the reconstruction of
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calibration beads, only these regions need to be reconstructed. Thus, the computa-
tional time could be highly reduced.

� Assessing the quantitativity of the reconstructions of the bacteria:
In this manuscript, we assumed that the optimal regularization hyperparameters
for the beads are the optimal regularization hyperparameters for the bacteria. The
validity of this assumption can be studied using a quantitative measurement of
the phase, for example by comparing our reconstruction with off-axis holograms
reconstruction of the same sample.

Third methodological solution - Exploiting phase diversity in multispectral
reconstructions
In this manuscript, we proposed an unsupervised method to reconstruct multispectral
holograms using a colocalization prior. Some of the perspectives provided by this method
have been summarized in the following:

� Spectral regularization
To increase the quantitativity of the reconstructions, spectral priors could be added
in the reconstruction algorithm. These priors could for example be based on the
Kramers-Kronig laws that describe the link between the real part of the refractive
index and its imaginary part (i.e. for semi-transparent objects, the modulus and
the phase) [Sai et al., 2020].

� PSF design for multispectral reconstruction
With the methodological tools developed during this thesis, co-design approaches
based on the estimation of an optimal PSF for multispectral reconstruction could
be performed. These approaches would consists in finding the multispectral PSF
that provides discriminative information to reconstruct the bacteria.

� Classification
For biomedical purpose, further study on the ability of a classification tool to dis-
criminate bacteria should be done. During Thomas Bultingaire’s internship (Master
1), deep learning solutions have been tested on few holograms leading to promising
results that must be confirmed with a bigger database.

� Label-free samples reconstructions
In this manuscript, holograms reconstructions were performed on stained sample.
However, phase imaging is interesting to reconstruct non stained samples. Thus,
further study on label-free samples should be performed [Kim et al., 2022]. These
studies could exploit dynamic phenomena (cells mobility, reactions to changes in its
environment, etc) [Wang et al., 2016].

In addition of these perspectives, more general perspectives can be added:

� Reproducibility
The reproducibility of the method should be furthermore studied with other in-line
holographic setups. Indeed in this thesis the reproducibility of the method has only
be studied on the two setups presented in Appendix A.
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� Computational time of the reconstruction reduction
Inverse problem approaches reconstruction may be time consuming. Thus, compu-
tational improvements are necessary to make these techniques applicable in practical
conditions. Deep-learning solutions have been studied during this thesis with Carlos
Valdares’ internship (Master 1) for reducing the computational time of the para-
metric approaches, and with Dorian Pillard internship (Master 1) on the learning of
inverse problem approach reconstruction of experimental data to reconstruct in-line
holograms.

� Applications to other coherent imaging techniques
At last, most of the methods presented in this manuscript can be applied to other
coherent imaging techniques [Denneulin et al., 2022].
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APPENDIXA
Experimental protocol

In this Appendix, we present the two in-line holographic setups used in this work. Section
A provides a description of the setup used at LaHC and is referred as Setup-LaHC in the
manuscript. This setup is used for beads monochromatic hologram acquisition in Chapter
4. Section B describes the setup used at BIOASTER for acquisition of multispectral
blood smear holograms that are processed in the other chapters. It is referred as Setup-
BIOASTER. At last, a discussion on the choice of the calibration objects and other
experimental parameters is provided in Section C.

A Description of Setup-LaHC

This section has been adapted from [Olivier et al., 2022].

The LaHC home-made experimental setup is presented in Fig. A.1. The setting of a
spatially coherent illumination may be difficult in a microscopy setup as it is very sensitive
to any stray reflections or dust particles and leads to complex, sometime unstable speckle
patterns. In this setup, the coherent illumination is set by illuminating a 200µm-pinhole
(P) and a lens (L) set in a 2f configuration. Thus, an airy pattern illuminates the
sample, with a large enough central peak to illuminate the whole field of view, but without
inserting too much stray light in the imaging system. This leads to moderate vignetting
which is corrected by dividing the holograms by a background intensity image.

A coherent illumination with a laser at 637.6nm was used. The illumination power was
sufficient to keep exposure times as short as 5ms with our Thorlabs-S805MU1 camera. The
sensor pixel size was 5.5µm. With 22.6mm diagonal, the sensor covers an important part of
the field of view of the microscope (the objective field number is 26.5mm, which represents
the maximum possible field of view of the objective). The microscope objective was a
water immersion microscope objective (Olympus PlanSApo, 60×, 1.2NA) with a coverslip
correction collar. The tube lens was a 200mm-focal length apochromatic TTL200MP lens
from Thorlabs that was used in a telecentric configuration. The measured magnification
was 66.5, and not 60, as the tube lens has a greater focal length than the Olympus
standard (180mm).

Experimental parameters related to this microscope are summarized in Table A.1.
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Figure A.1: Experimental setup. F: monomode fiber coupled laser source, P: 200µm-
pinhole, M: mirror, L: lens, Sa: sample that can be precisely moved in XYZ-directions,
z: defocus distance of the sample from the focus plane, FP: objective focal plane, MO:
microscope objective, BFP: objective back focal plane, TL: tube lens, Se: sensor. Inset A:
zoom on the sample and the objective showing the refraction of the rays occurring through
the coverslip. SM: sample medium, C: coverslip, IM: immersion medium. Inset B:
Picture of the setup showing the imaging system and the precision piezo-stage (ZS) and
the XY-translation stage (XYS).

Wavelength 637.6nm
Magnification 66.5

Pixel pitch 83nm
Total field of view 273×204µm
Beads diameter* (1.0±0.06)µm

Beads refractive index* 1.587 (polystyrene)
Refractive index of immersion medium 1.47 (glycerol)

Coverslip thickness (0.170±0.001)mm
Typical defocus 12µm

Table A.1: Experimental parameters of Setup-LaHC (*from manufacturer, ThermoFisher
Scientific, Inc.)

136



SCIENTIFIC CONTEXT

B Description of Setup-BIOASTER

This section has been adapted from [Brault et al., 2022b]. The BIOASTER setup is also
a home-made microscopy setup.

In this setup a partially coherent illumination based on LED is used. Even though
the coherence of the illumination beam is needed in holography, this condition is not very
restrictive because the patterns that constitutes the hologram comes from the interference
between the wave diffracted by a micrometer thick object and the illumination beam
(background), which corresponds to a short optical path difference. Thus, for in-line
holographic microscopy, the minimum requirements for temporal and spatial coherence
may be quite low.

In this setup, LED sources at Λ = {431 nm , 450 nm , 490.5 nm , 532 nm , 560 nm ,
590 nm , 622 nm , 666 nm } are used.

In order to accurately control the illumination aperture and field, an adapted Köhler
illumination has been set up (see Fig.A.2). The output of the fiber has been magnified
with a microscope objective and imaged on the aperture diaphragm. This diaphragm has
been set in the focal plane of a 150 mm focal length condenser lens. In these conditions,
the illuminated field can be controlled by a field diaphragm to eliminate stray light in the
microscope. The aperture can also be controlled in order to set up precisely the spatial
coherence, which is important to test various partially coherent illuminations. To address
the problem of spectral coherence, bandpass filters were used with a spectral half width at
half maximum of 10 nm. For all holograms processed in this manuscript, the divergence
of the spatially incoherent illumination was 10 mrad with an aperture diameter of 3 mm.

O1 F1'

Collecting
lens Sample planeCondenser

lens

F2

Field
diaphragm

Aperture 
diaphragm

F2'
F1

Fiber
output

θ

O2

Figure A.2: Illustration of the Köhler partially coherent illumination with an extended
source (fiber output), a collecting lens, a condenser lens, a field diaphragm and an aperture
diaphragm. In these conditions, the sample is illuminated by a partially coherent beam
composed of multiple incoherent plane waves with various incident angles with a maximum
angle θ given by the focal length of the condenser and the diameter of the aperture.

Experimental parameters related to this microscope are summarized in Table A.2.
Note that this microscopy setup has two different ports. One port is designed for

brightfield, in-focus microscopy, with a color sensor located in the image focal plane of
a first tube lens. The other port is designed for in-line holography, with a monochrome
sensor located few millimeters away from the image focal plane of a second tube lens. In
these conditions, when the system is in-focus on the brightfield port, the holography port
is out-of-focus with an equivalent axial shift (defocus) of 9.9µm.
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Wavelength 431nm, 450nm, 490.5nm, 532nm, 560nm, 590nm, 622nm, 666nm
Magnification 100

Numerical Aperture 1.4
Pixel pitch 45nm

Typical defocus 10µm

Table A.2: Experimental parameters of Setup-BIOASTER

C Choice of the calibration objects

The choice of the calibrated object is important as it depends on the type of sample and
its preparation. In this section we provide details on the choice of the calibration objects
to add in blood smear samples in order improve the reconstructions. Spherical geometry
increases the accuracy of estimated parameters, as Lorenz-Mie based models are well
known and thus provide highly constrained parametric inverse problems reconstructions.

The choice of the calibration objects was made in the context of blood smear sample
observations with high magnification objectives. For our application, this choice has
several advantages:

� The size (1µm) is similar to the biological objects in the sample (blood cells,
platelets, bacteria, etc.) and is small enough to allow an accurate axial positioning.

� The transparency of the silica beads is an advantage as, whatever the wavelength
used, they can be considered as purely phase objects. Moreover, it is best to use
transparent calibration objects to observe stained samples, as they can be more
easily differentiated from the stained biological structures.

� The refractive index is not so different from the surrounding immersion medium
, which provides moderately contrasted holograms to prevent too much disturbance
caused by the calibrated objects. The refractive index is also lower than the immer-
sion medium refractive index, contrary to the case of fixed biological objects, which
is particularly discriminating.

With blood smear holograms acquisition, the sample has been stained. In this case,
the choice of silica beads is appropriate. Indeed silicon dioxyde is dense, which allows
sedimentation on the slide, non-porous (which prevents the beads from being stained),
solvent and heat resistant (which prevents the beads from being damaged by the fixation
process). Preparation of the blood smear begins with the mixing of a small volume of
blood with an appropriate dilution of silica beads in aqueous suspension. The dilutions
are calibrated beforehand to obtain a representative number of beads in each field of view.
A drop of this mix is then spread on a glass slide using the traditional “wedge or push”
technique. The sample is then fixed with ethanol and Gram stained. In this case, the
parameters of the beads are summarized in Table A.3.

Note that in Chapter 4, no blood smears were analyzed, but only beads to study
the aberration correction approach. For that, a water immersion objective was used
with a coverslip correction collar. However, beads are moving in water because of the
Brownian motion. For practical reasons, these studies were then performed with latex
beads (n = 1.59) in glycerol (n = 1.47) to reduce the Brownian motion with the high
viscosity of glycerol.
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Beads diameter (1.0±0.06)µm
Beads refractive index 1.445 (silica)

Table A.3: Experimental parameters of the silica beads(from manufacturer, ThermoFisher
Scientific, Inc.)
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APPENDIXB
Vizualisation of multispectral
reconstructionions

To represent the multispectral information in this manuscript, it has been chosen to use
a RGB image. Since multispectral reconstructions aim at retrieving the modulus and the
phase of the 2D transmittanc, it is possible to extract from this information a absorption
color map corresponding to an image similar to the one that would be obtained using
bright-field imaging. To compute this image we used this approach illustrated by Figure
B.1.

absorbtion

A
b
s
o
rb
tio

n

Figure B.1: Flow of color reproduction of color digital holography. Figure adapted from
[Xia et al., 2011].

In this approach, the absorption color map is computed from multispectral recon-
struction and multiplied with the spectral power of the illumination and with the spectral
sensitivity of the camera. The absorption maps presented in Chapter 7 and Chapter 8,
uses the same principle, however the spectral power of the illumination is supposed to be
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constant with the wavelength.
For phase color representation, we use the same algorithm. Since most of the objects

observed in this manuscript introduce a small positive phase shift, it has been chosen to
represent the multispectral phase as a linear combination of the phase reconstruction for
which the coefficient correspond to the spectral sensitivity of the sensor. Thus in these
false color images, the beads can not be seen since their phase is negative. All biological
objects can however be seen since the phase shift they introduce is positive.
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[Haeberlé, 2004] Haeberlé, O. (2004). Focusing of light through a stratified medium: a
practical approach for computing fluorescence microscope point spread functions. Part
II: confocal and multiphoton microscopy. Optics Communications, 235:1–10.

[Hansen, 1992] Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of
the l-curve. SIAM review, 34(4):561–580.

[Hansen and O’Leary, 1993] Hansen, P. C. and O’Leary, D. P. (1993). The use of the
l-curve in the regularization of discrete ill-posed problems. SIAM journal on scientific
computing, 14(6):1487–1503.

[Herve et al., 2018] Herve, L., Cioni, O., Blandin, P., Navarro, F., Menneteau, M., Bordy,
T., Morales, S., and Allier, C. (2018). Multispectral total-variation reconstruction
applied to lens-free microscopy. Biomedical Optics Express, 9(11):5828.

[Holland and Welsch, 1977] Holland, P. W. and Welsch, R. E. (1977). Robust regression
using iteratively reweighted least-squares. Communications in Statistics-theory and
Methods, 6(9):813–827.

[Hsieh et al., 2020] Hsieh, Y., Yu, Y., Lai, Y., Hsieh, M., and Chen, Y.-F. (2020).
Integral-based parallel algorithm for the fast generation of the zernike polynomials.
Optics Express, 28(2):936–947.

[Huber, 2011] Huber, P. J. (2011). Robust statistics. Springer.

[Isikman et al., 2010] Isikman, S. O., Sencan, I., Mudanyali, O., Bishara, W., Ozto-
prak, C., and Ozcan, A. (2010). Color and monochrome lensless on-chip imaging of
Caenorhabditis elegans over a wide field-of-view. Lab on a Chip, 10(9):1109–1112.
Publisher: The Royal Society of Chemistry.

146



SCIENTIFIC CONTEXT

[Jolivet, 2018] Jolivet, F. (2018). Approches ”problèmes inverses régularisées pour
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Fournier, C. (2013). Evaporating droplet hologram simulation for digital in-line holog-
raphy setup with divergent beam. JOSA A, 30(10):2021–2028.

[Memmolo et al., 2014] Memmolo, P., Paturzo, M., Javidi, B., Netti, P. A., and Ferraro,
P. (2014). Refocusing criterion via sparsity measurements in digital holography. Optics
letters, 39(16):4719–4722.

148



SCIENTIFIC CONTEXT

[Min et al., 2017] Min, J., Yao, B., Ketelhut, S., Engwer, C., Greve, B., and Kemper, B.
(2017). Simple and fast spectral domain algorithm for quantitative phase imaging of
living cells with digital holographic microscopy. Optics Letters, 42(2):227–230.

[Mo et al., 2009] Mo, X., Kemper, B., Langehanenberg, P., Vollmer, A., Xie, J., and von
Bally, G. (2009). Application of color digital holographic microscopy for analysis of
stained tissue sections. In European Conference on Biomedical Optics, page 7367 18.
Optica Publishing Group.

[Momey et al., 2019] Momey, F., Denis, L., Olivier, T., and Fournier, C. (2019). From
fienup’s phase retrieval techniques to regularized inversion for in-line holography: tu-
torial. JOSA A, 36(12):D62–D80.

[Nocedal and Wright, 2006] Nocedal, J. and Wright, S. (2006). Numerical optimization.
Springer Science & Business Media.

[Noll, 1976] Noll, R. J. (1976). Zernike polynomials and atmospheric turbulence. JOSA,
66(3):207–211.

[Olivier et al., 2022] Olivier, T., Brault, D., Joshi, S., Brard, T., Brodoline, A., Méès, L.,
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[19] Dylan Brault, Löıc Denis, Sophie Dixneuf, Thomas Olivier, Nicolas Faure, and
Corinne Fournier. Fast and robust dandection of calibration objects for in-line holog-
raphy (poster). In Mifobio - GDR Imabio, 2021.

[20] Dylan Brault, Thomas Momey, Fabien Olivier, Ferréol Soulez, Sachin Joshi, and
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ABSTRACT

Résumé :
L’holographie en ligne est une méthode de choix pour s’affranchir de la problématique
de la mise au point indispensable à l’analyse d’échantillons en microscopie en la rem-
plaçant par une mise au point numérique, rendant cette dernière totalement automati-
sable. L’absorption des objets et le déphasage introduit par ces derniers peuvent être
reconstruits et une information spectrale peut être exploitée pour classifier les objets.
Dans ce contexte, les approches problèmes inverses offrent un cadre rigoureux. Cepen-
dant, la qualité des reconstructions peut être limitée par différents aspects tels qu’un
manque de précision sur le modèle de formation d’image ou encore un mauvais réglage
des hyperparamètres nécessaires à la reconstruction. Pour lever ces différents verrous, nous
proposons une méthodologie basée sur l’insertion de billes d’étalonnage dans l’échantillon.
Ainsi la mise au point et l’étalonnage des aberrations du modèle de formation d’image sont
traités au moyen d’approches inverses paramétriques robustes. Le réglage d’hyperparamètres
de régularisation est optimisé pour reconstruire quantitativement les objets d’intérêt. En-
fin, la reconstruction d’informations multispectrales est améliorée par la prise en compte
des aberrations chromatiques. Ceci permet une reconstruction plus reproductible dans
le champ et d’un instrument à un autre, facilitant ensuite l’utilisation d’algorithmes de
machine learning. Toute la méthodologie de reconstruction développée dans le cadre de
cette thèse, illustrée dans le cas de l’analyse de Gram, est très générale et peut être
appliquée dans d’autres contextes de microscopie ou à d’autres modalité d’imagerie non
conventionnelle.

Abstract:
Holography is a method of choice to avoid the experimental focusing problem in sample
analysis by replacing it by a numerical refocus. Thus, sample analysis can be completely
automatized. The absorption of the objects and the phase shift they introduce can be
reconstructed and a spectral information can be exploited to classify the objects. In this
context, inverse problems approaches are a rigorous framework to perform the reconstruc-
tions. However, their quality can be limited by several aspects such as a lack of accuracy
on the image formation model or a bad tuning of the hyperparameters needed for the
reconstruction. To tackle these different issues we propose a method based on the inser-
tion of calibration beads directly into the sample. Thus, the autofocusing problem or the
accurate model calibration considering aberrations of the optical system are addressed
using robust parametric inverse problems approaches. The tuning of the regularization
hyperparameters is automated such that the objects of interest are quantitatively recon-
structed. At last, the reconstructed spectral information is improved by accounting for
chromatic aberrations of the optical system. The reconstructions are thus more repro-
ducible in the field of view and from one setup to another. Machine learning algorithm
can thus be used regardless of the setup. The method developed in this thesis, illustrated
by Gram stained samples, is general and can be applied in other microscopy context and
other non-conventional imaging modalities.
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