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Chapter 1

Introduction (French version)

Dans cette thèse, nous explorons deux domaines des statistiques modernes : les problèmes de classement et la
détection de points de rupture. Les problèmes de classement ont de nombreuses applications, notamment dans
les tournois, les systèmes de vote ou le classement d’experts dans des données de crowdsourcing. De même, la
détection des points de rupture joue un rôle crucial dans diverses situations pratiques, telles que le suivi des
changements de température, le suivi des cours boursiers ou l’analyse de données génomiques.

Bien que nous abordions ces deux sujets de manière indépendante, notre approche s’inscrit dans un même
cadre : les statistiques en grande dimension. En effet, dans les deux cas, le nombre de paramètres inconnus
peut être supérieur au nombre d’échantillons. Pour gérer cette complexité et rendre ces problèmes en grande
dimension abordable, nous introduisons des hypothèses structurelles spécifiques, ou des contraintes de forme,
dans chaque modèle.

La première partie de cette thèse se penche sur les problèmes de classement. Essentiellement, les méthodes
de classement visent à trier une collection d’éléments sur la base d’observations bruitées, avec des données
potentiellement manquantes. Nous explorerons plusieurs modèles qui diffèrent par leurs contraintes de forme.
En particulier, nos contributions se concentrent sur deux modèles où l’objectif est de retrouver une permutation
des lignes d’une matrice. Dans Chapter 4, nous supposons que la matrice réordonnée a des colonnes croissante.
Ce modèle englobe de nombreux modèles, notamment le classement d’experts au sein d’une foule ou le classement
dans les tournois à partir de comparaisons par paire. Dans Chapter 3, en plus de supposer que la matrice
réordonnée a ses colonnes croissante, nous supposons que ses lignes le sont aussi. Pour les deux modèles, nous
fournissons des algorithmes calculables en temps polynomial qui permettent d’obtenir des garanties optimales
dans l’estimation de la permutation.

La deuxième partie porte sur un problème de détection de points de ruptures multiples pour des séries
temporelles multivariées. De manière informelle, un point de rupture est un point dans une séquence où les
propriétés statistiques des données changent. Dans notre contexte, les observations séquentielles peuvent exister
dans un espace en grande dimension et peuvent contenir un nombre arbitraire de points de ruptures. Cela étend
en particulier le modèle univarié plus simple, où les données consistent en des observations à valeur réelle. Pour
contrôler la complexité du modèle, nous considérons les cas où les variations du signal en grande dimension
peuvent être parcimonieuses. Dans un régime parcimonieux, de nombreuses entrées du vecteur représentant les
variations sont égales à zéro. Dans Chapter 5, nous établissons les conditions minimales pour que la détection
soit possible dans ce cadre. Dans ces conditions, nous fournissons des garanties qui s’adaptent à la parcimonie
inconnu et à la distance entre les points de rupture.

Dans le dernier chapitre, nous discutons des axes d’approfondissement de cette thèse, en introduisant trois
problèmes. Le premier est lié à l’identification de label en crowdsourcing, le deuxième au classement d’experts
lorsque les observations peuvent être choisies séquentiellement, et le dernier à la localisation de points de rupture
dans des séries temporelles multivariées.

Dans les sections suivantes, nous explorons d’abord certaines des motivations des statistiques en grande
dimension. Ensuite, nous effectuons une revue de certains problèmes de classement, y compris les modèles
monotones et bi-monotones-1D étudiés dans Chapter 3 [74] et Chapter 4. Enfin, nous présentons le problème
de détection de points de rupture dans le cas univarié, avant de passer au cas multivarié également détaillé dans
Chapter 5 [73].

1.1 Statistiques en grande dimension

Au cours des dernières décennies, nous avons assisté à une évolution significative des technologies d’acquisition
de données. Comme mentionné dans [42], ces avancées ont donné naissance à des dispositifs capables de capturer
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simultanément des milliers de mesures, entraînant la production de données en grande dimension. Ces ensembles
de données à grande échelle apparaissent dans de nombreux domaines, allant des sciences naturelles à la finance
et aux sciences sociales.

La théorie classique en statistiques traite généralement des ensembles de données où la taille de l’échantillon
n est grande par rapport au nombre de paramètres inconnus p du modèle. Dans le régime asymptotique où
n tend vers l’infini et où p est fixe, les principales garanties souhaitables pour un estimateur donné sont la
consistence et la normalité asymptotique. En termes simples, la consistence signifie que l’estimateur converge
en probabilité vers le paramètre inconnu, et la normalité asymptotique caractérise sa vitesse de convergence.
Pour établir ces propriétés, les outils standards sont la loi des grands nombres et le théorème central limite.

Cependant, dans les données en grande dimension, p est parfois si grand que le point de vue asymptotique
classique échoue à fournir des prédictions utiles. Dans de tels régimes, il devient souvent difficile de distinguer
les informations utiles du bruit dans les données. Pour cette raison, de nombreux travaux ont été consacré au
développement de nouveaux outils et techniques statistiques. Plus précisément, cela implique d’introduire une
certaine structure sur les paramètres inconnus, et de développer des méthodes qui s’adaptent à cette structure.
Par exemple, supposons que nous observons un vecteur y ∈ Rp qui suit une distribution gaussienne N (θ, Ip),
et que nous voulons retrouver le vecteur inconnu θ ∈ Rp. Pour un estimateur θ̂ donné, on considère le risque
E[∥θ̂ − θ∥22]. Ceci est explicitement un problème en grande dimension, étant donné qu’il n’y a seul échantillon
dans ce cas (n = 1). Discutons maintenant de deux structures potentielles que nous pouvons supposer sur θ, et
sous lesquelles l’estimation de θ devient plus simple.

Une contrainte structurelle simple est la parcimonie. Si nous supposons que seul un petit nombre d’entrées
de θ sont non nulles par rapport à sa dimension p, alors nous pouvons obtenir un estimateur plus précis que
de simplement fixer θ̂ = y. Par exemple, l’estimateur avec seuil donné par θ̂i = yi1∣yi∣ ≥ t obtient de bonnes
garanties théoriques si le seuil t est fixé à

√
2 log(p) – voir par exemple [94]. L’idée principale est que le seuillage

est particulièrement adapté pour les vecteurs parcimonieux θ, car il réduit l’impact des entrées nulles de θ dans
l’erreur des moindres carrés ∑i(θ̂i − θi)2.

Une autre structure possible est de supposer que θ est monotone, c’est-à-dire que θ1 ≤ ⋅ ⋅ ⋅ ≤ θp. Dans ce
cas, il peut être démontré que l’estimateur des moindres carrés défini par θ̂ = argminθ′ ∑i(θ̂

′
i − yi)

2, où l’argmin
est pris sur tous les vecteurs monotones, obtient des garanties optimales par rapport à l’estimateur naïf θ̂ = y.
Retrouver θ sous cette contrainte est appelé le problème de régression monotone [107, 17].

Dans les problèmes de classement étudiés dans Chapter 3 et Chapter 4, nous cherchons à trier les lignes
d’une matrice n× d, en nous basant sur moins de n× d observations bruitées. Dans le problème de détection de
points de changement abordé dans Chapter 5, nous cherchons à détecter des points de changement dans une
séquence de n vecteurs de dimension p, où p est potentiellement beaucoup plus grand que n. Ces problèmes
relèvent de la catégorie des problèmes statistiques en grande dimension, et nous supposerons des contraintes de
forme distinctes pour chacun.

1.2 Problèmes de classement

Les problèmes de classement s’inscrivent dans le sujet plus large de l’estimation des permutations. Ces dernières
années, ce domaine a suscité une attention significative, notamment dans des problèmes impliquant l’appariement
de vecteurs ou l’appariement de graphes – voir par exemple [25, 100]. Bien qu’il y ait quelques idées communes
entre les problèmes d’appariement et notre travail, nous n’entrerons pas dans plus de détails. Le but général des
problèmes de classement est de trier un ensemble d’éléments sur la base d’observations bruitées. Ces problèmes
englobent un large éventail d’applications, telles que le classement d’experts dans des données de crowdsourcing
ou le classement de joueurs dans les tournois. Dans ce qui suit, nous donnons d’abord un aperçu des sujets
qui peuvent être trouvés dans l’abondante littérature sur le classement. Ensuite, nous passons au cœur de nos
contributions, qui sont principalement centrées sur les modèles monotone et bi-monotone-1D.

1.2.1 Revue sélective des modèles de classement

Premièrement, nous commençons par introduire deux modèles paramétriques simples pour la comparaison par
paires, à savoir le modèle Bradley-Terry-Luce (BTL) et le modèle noisy sorting (tri bruité). Ensuite, nous appro-
fondissons le modèle non paramétrique SST (strong stochastic transitive), notamment connu pour sa flexibilité
dans le traitement des problèmes de tournois. Enfin, nous explorons d’autres modèles non paramétriques, parti-
culièrement motivés par des données de crowdsourcing. Ces modèles non paramétriques incluent en particulier
les modèles monotones et bi-monotones-1D.
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1.2.1.1 Modèles paramétriques en comparaisons par paires

Considérons un tournoi où nous observons les comparaisons par paires entre n joueurs. Plus formellement, nous
observons une matrice n×n notée Y , dont les coefficients Yij appartiennent à 0,1 et satisfont Yij = 1−Yji. Si le
joueur i gagne contre le joueur j, alors Yij est égal à 1. Il est égal à 0 sinon. Dans un cadre sans bruit, supposons
qu’il existe une permutation π∗ qui classe parfaitement les joueurs selon leurs aptitudes. En d’autres termes, les
entrées de Y représentent les comparaisons données par π∗, c’est-à-dire que Yij = 1{π∗(i) − π∗(j) > 0}. Alors,
retrouver la permutation π∗ revient simplement à appliquer une méthode de tri standard. Cependant, dans de
nombreux cas pratiques, nous ne pouvons pas supposer l’existence d’un tel classement déterministe π∗, car des
facteurs aléatoires entrent souvent en jeu.

Modèle noisy sorting. Dans le modèle noisy sorting, Y est également une matrice n × n qui représente les
comparaisons par paires entre les joueurs. Supposons que les coefficients de Y soient des variables aléatoires
de Bernoulli indépendantes avec des paramètres Mij = E[Yij]. De plus, supposons que lorsque π∗(i) < π∗(j),
alors Mij ≥ 1/2 + γ pour un certain γ ∈ (0,1/2). Alternativement, soit MNS l’ensemble de toutes les matrices
qui satisfont Mij ≥ 1/2 + γ lorsque i < j. Alors, le modèle de tri bruité revient à supposer que

Mπ∗−1π∗−1 ∈MNS , (1.1)

où (Mπ∗−1π∗−1)ij =Mπ∗−1(i)π∗−1(j). Dit autrement, π∗ représente le classement inconnu entre les joueurs, et Mij

dénote la probabilité que i gagne contre j. Si i est meilleur que j, alors ses chances de gagner sont supérieures
à 1/2+γ. Contrairement au cadre sans bruit, nous n’observons pas directement quel joueur est le meilleur entre
i et j. Au lieu de cela, nous obtenons généralement un résultat Yij qui est en faveur du meilleur joueur en
probabilité. Le but principal est de retrouver π∗ aussi précisément que possible.

Dans le modèle noisy sorting, les principaux critères pour mesurer la qualité d’un estimateur π̂ sont basés
sur des distances entre les permutations [12, 61, 13]. Plus précisément, considérons la distance de Kendall tau,
définie comme

dKT (π,σ) = ∑
π(i)<π(j)

1{σ(i) > σ(j)} , (1.2)

pour toutes permutations π et σ. Dans l’équation ci-dessus, la somme est prise sur toutes les paires possibles
(i, j). dKT (π,σ) correspond au nombre d’inversions entre π et σ. Ici, le risque minimax associé est donné
par inf π̂ supπ∗,M E[dKT (π∗, π̂)], où le supremum est pris sur toutes les permutations possibles π∗, et toutes les
matrices M telles que M ∈MNS. Dans ce contexte, Mao et al. [61] ont établi que le risque minimax est de
l’ordre de n/γ2∧n2. En particulier, supposons que γ est de l’ordre d’une constante, par exemple γ = 0.01. Alors,
tout estimateur fait au moins un nombre d’inversions de l’ordre de n parmi les (n

2
) paires possibles.

Braverman et Mossel [12] ont initialement considéré la distance empirique de Kendall tau comme critère
pour récupérer π∗ :

d̂KT (Y,π) = ∑
π(i)<π(j)

Yij . (1.3)

Pour une permutation π donnée, la quantité ci-dessus est calculée en comptant le nombre de paires i, j pour
lesquelles la comparaison basée sur π est incompatible avec la comparaison Yji. Les mêmes auteurs ont établi
qu’il existe un estimateur π̂ qui peut être calculé en temps polynomial, et qui minimise la quantité ci-dessus
avec une grande probabilité, c’est à dire d̂KT (Y, π̂) =minπ d̂KT (Y,π).

Notamment, l’existence d’une méthode en temps polynomial pour calculer le minimiseur de (1.3) repose
fortement sur l’hypothèse probabiliste faite sur les coefficients de Y . En effet, si les coefficients Yij peuvent
prendre n’importe quelle valeur arbitraire de l’ensemble {0,1}, le problème de minimiser d̂KT (Y,π) sur tous
les π possibles devient équivalent à résoudre le problème de l’ensemble des arcs de rétroaction (feedback arc
set). Ce problème d’optimisation s’avère être computationnellement difficile, car il peut être réduit à partir
d’un problème NP difficile – voir par exemple [1]. De manière intéressante, c’est un exemple d’un problème
d’optimisation computationnellement difficile qui devient faisable avec une instance aléatoire pertinente.

Le modèle BTL. Le modèle Bradley-Terry-Luce (BTL) [11] est un cadre statistique légèrement plus complexe
pour classer n joueurs sur la base de comparaisons par paires. Chaque joueur i correspond à un paramètre
inconnu θi ∈ R où, par convention, ∑ni=1 θi = 0. θi représente l’aptitude du joueur i. La comparaison Yij =
1 − Yji ∈ {0,1} entre i et j est supposée être une variable aléatoire de Bernoulli de paramètre Mij = ψ(θi − θj),
où ψ est la fonction logistique ψ(t) = 1/(1 + e−t). De manière équivalente, si π∗ est une permutation telle que
θπ∗−1(1) ≤ ⋅ ⋅ ⋅ ≤ θπ∗−1(n), alors

Mπ∗−1π∗−1 ∈MBTL , (1.4)

où MBTL dénote l’ensemble de toutes les matrices M telles que Mij = ψ(θ
′
i − θ

′
j) pour un certain vecteur

croissant θ′1 ≤ ⋅ ⋅ ⋅ ≤ θ
′
n satisfaisant ∑i θ′i = 0. Comme pour le modèle noisy sorting, l’objectif est de retrouver



10 Chapter 1. Introduction (French version)

la permutation inconnue π∗. La distance de Kendall tau a également été considérée comme mesure de qualité
dans le modèle BTL, et nous renvoyons le lecteur aux travaux de Chen et al. [20] pour des garanties optimales
avec cette distance.

Cependant, contrairement au modèle noisy sorting, l’accent principal dans le modèle BTL a été mis sur
l’estimation de θ [66, 22, 21, 32, 39]. Pour comparer ce modèle avec d’autres modèles que nous présentons plus
tard, nous considérons plutôt dans ce qui suit le problème de l’estimation de la matrice entière M . Pour ce
problème, nous définissons le risque minimax, ou risque minimax, comme suit:

R
∗BTL
reco (n) ∶= inf

M̂
sup
π∗,M

E [∥M̂ −M∥2F ] , (1.5)

où ∥A∥F = ∑i,j A2
ij . Dans (1.5), le supremum est pris sur toutes les permutations possibles π∗ et toutes les

matrices possibles M telles que Mπ∗−1,π∗−1 ∈MBTL – voir (1.4). Pour une matrice donnée M , la distance de
Frobenius au carré ∥M̂ −M∥2F mesure la perte de l’estimateur M̂ . La perte moyenne E [∥M̂ −M∥2F ] mesure son
risque, et le supremum supπ∗,M E [∥M̂ −M∥2F ] son risque maximal, ou pire risque. Nous disons qu’un estimateur
M̂ qui a un risque maximal de l’ordre de R∗BTL

reco (n), à constante multiplicative près indépendante de n, est
minimax optimal pour le problème de reconstruction. Nous pouvons déduire de [66, 22, 21] que R∗BTL

reco (n) est
de l’ordre de n 1. En particulier, cela est nettement inférieur à n2, qui est le nombre d’entrées de M et une
limite supérieure triviale sur le risque minimax.

Le taux de l’ordre de n peut être atteint en temps polynomial dans le modèle BTL. En effet, l’estimateur
du maximum de vraisemblance (MLE) θ̂ est une méthode efficace qui conduit à un estimateur minimax optimal
de M – voir par exemple [21]. Le MLE θ̂ est donné comme le problème de minimisation suivant:

θ̂ ∶= argmin
θ′ ∶ 1T θ′=0

∑
i<j
Yij log(

1

ψ(θ′i − θ
′
j)
) + (1 − Yij) log(

1

1 − ψ(θ′i − θ
′
j)
) , (1.6)

qui est un problème de minimisation convexe sur un espace vectoriel. De plus, l’estimateur correspondant M̂
de M peut être défini comme M̂ij = ψ(θ̂i − θ̂j).

1.2.1.2 Le modèle SST dans les contextes de tournoi

Bien que les modèles BTL et noisy sorting soient souvent des modèles étalons, il a été noté qu’ils manquent
souvent de réalisme et qu’ils peuvent ne pas bien correspondre aux données. Pour aborder ces problèmes, le
modèle fortement stochastiquement transitif (SST) a été introduit comme un modèle beaucoup plus flexible
[83, 86, 60, 56]. Plus précisément, il remplace les hypothèses paramétriques strictes des modèles noisy sorting
et BTL par des hypothèses non paramétriques avec des contraintes de forme.

De manière similaire aux modèles BTL et noisy sorting, considérons un scénario où nous observons une
matrice n × n Y d’observations de Bernoulli. Les éléments du triangle supérieur de cette matrice sont indépen-
dants, et chaque entrée Yij = 1 − Yji a un paramètre de Bernoulli Mij . En particulier, M est anti-symétrique,
c’est-à-dire que Mij = 1−Mji. Dans SST, il est également supposé qu’il existe une permutation inconnue π∗ telle
que lorsque les lignes et les colonnes de la matrice M sont réarrangées selon π∗, la matrice résultante Mπ∗−1π∗−1

est bi-monotone – ses lignes et colonnes sont croissantes. De manière équivalente,

Mπ∗−1π∗−1 ∈MSST , (1.7)

où MSST désigne l’ensemble de toutes les matrices qui sont anti-symétriques et bi-monotones. En particulier,
le modèle SST englobe le modèle BTL puisque MBTL ⊂ MSST. En d’autres termes, la matrice qui a pour
coefficients M ′

ij = ψ(θi − θj) est anti-symétrique (M ′
ij = 1 −M

′
ji), et elle est bi-monotone à permutation π∗ près

de ses lignes et de ses colonnes. Nous renvoyons le lecteur à Figure 1.1 pour un exemple d’une matrice 3× 3 qui
est à la fois anti-symétrique et bi-monotone. Dans le contexte d’un tournoi, l’hypothèse de bi-monotonie peut
être expliquée comme suit. Si un joueur i est meilleur en moyenne qu’un autre joueur j, alors i devrait gagner
plus en moyenne que j contre tout autre joueur k. Plus formellement, si Mij ≥ 1/2, alors Mik ≥Mjk. Dans la
littérature, il y a également eu un accent significatif sur le scénario où seule une proportion λ ∈ [0,1] des paires
(i, j) est observée – voir par exemple [19]. Néanmoins, dans cette discussion sur le modèle SST, nous supposons
pour simplifier que toutes les observations nd sont disponibles, c’est à dire λ = 1.

De manière similaire à ce que nous avons présenté pour le modèle BTL, une question naturelle souvent posée
dans la littérature sur le modèle SST [83, 19, 60, 59, 56, 71] peut être formulée comme suit : Quelle est la

1[66, 22, 21] ne fournissent que le risque minimax pour l’estimation de θ, mais nous pourrions déduire le risque minimax optimal
pour la reconstruction de M à partir de leurs résultats.
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Figure 1.1: Un exemple de matrice bi-monotone et antisymétrique (Mij = 1 −Mij)

précision avec laquelle nous pouvons reconstruire la matrice réordonnée M à partir des données observées Y ?
Pour quantifier cela, considérons à nouveau le risque de reconstruction minimax suivant :

R
∗SST
reco (n) ∶= inf

M̂
sup
π∗,M

E [∥M̂ −M∥2F ] , (1.8)

où ici, le supremum est pris sur toutes les permutations π∗ et sur toutes les matrices M telles que Mπ∗−1π∗−1 ∈

MSST.
Shah et al. [83] ont établi un fait surprenant : R∗SSTreco (n) est de l’ordre de n. Par conséquent, R∗SSTreco (n) et

R∗BTL
reco (n) sont du même ordre de grandeur. Ainsi, d’un point de vue statistique, il n’est pas beaucoup plus

facile de reconstruire M dans le modèle BTL que dans le modèle SST. En revanche, rappelons que le modèle
SST a n2 paramètres inconnus, tandis que le modèle BTL n’en contient que n.

Étant donnée une matrice d’observation Y , un estimateur naturel de π∗ et de la matrice triée Mπ∗−1π∗−1 est
l’estimateur des moindres carrés, défini par

(π̂LS , M̂LS
sorted) = argmin

π∈Πn,M̃∈Mbiso

∥Yπ−1π−1 − M̃∥
2
F , (1.9)

où Πn désigne l’ensemble de toutes les permutations et Mbiso l’ensemble de toutes les matrices bi-monotones.
Ensuite, l’estimateur correspondant de M est M̂LS = (M̂LS

sorted)π̂LS π̂LS . Shah et al. [83] ont établi que
l’estimateur des moindres carrés M̂LS est minimax optimal : son risque maximal de reconstruction est de
l’ordre de n. Malheureusement, aucune méthode en temps polynomial connue n’existe pour résoudre le prob-
lème de minimisation ci-dessus (1.9), principalement parce qu’il implique une recherche exhaustive sur toutes
les n! permutations.

Les mêmes auteurs proposent également un estimateur en temps polynomial, qui consiste à classer les joueurs
selon les moyennes des lignes de Y . Essentiellement, la méthode consiste d’abord à estimer π∗ par la permutation
π̂ qui trie les moyennes des lignes de Y . Ensuite, une estimation de M est obtenue en minimisant les moindres
carrés sur toutes les matrices bi-monotones :

M̂sorted = argmin
M̃∈Mbiso

∥Yπ̂−1π̂−1 − M̃∥
2
F . (1.10)

Contrairement à l’estimateur des moindres carrés (1.9), cet estimateur en temps polynomial atteint seulement
un taux de l’ordre de n3/2.

Beaucoup d’efforts ont depuis été consacrés à réduire l’écart computationnel entre n3/2 et n. En bref,
Chatterjee et Mukherjee [19] ont fourni une méthode qui s’adapte à la régularité de la matrice Mπ∗−1π∗−1 et
au cas où il s’agit d’une matrice bloc. Néanmoins, ils n’ont pas amélioré le taux de n3/2 dans le pire des cas.
Ensuite, Mao et al. [60, 59] ont introduit une méthode en temps polynomial atteignant le taux de n5/4. Pour
retrouver π∗, l’approche de [60] comporte deux étapes principales. Tout d’abord, les joueurs sont triés selon
les moyennes des lignes de Y , comme dans [83]. Cela donne une matrice pré-triée Y ′. Ensuite, les joueurs
sont comparés selon les moyennes locales des lignes de Y ′ sur des intervalles inclus dans {1, . . . , n}. Cependant,
comme l’ont souligné Liu et Moitra [56], la méthode présentée dans [60] n’exploite pas les informations globales
disponibles dans toute la matrice car elle ne compare les joueurs que deux à deux. En s’appuyant sur cette
remarque, Liu et Moitra [56] ont réussi à atteindre le meilleur taux de n7/6+o(1), en utilisant une méthode en
temps polynomial dans le cas où au moins no(1) échantillons indépendants par entrée sont à disposition. Ces
résultats sont également discutés dans Chapter 4, où nous retrouvons également un taux de l’ordre de n7/6 dans
le modèle SST, à facteur polylogarithmique près. Ainsi, dans le modèle SST, le risque minimax est de l’ordre
de n, mais la meilleure méthode connue en temps polynomial atteint seulement un taux de l’ordre de n7/6.
Cependant, si l’écart entre n et n7/6 est intrinsèque au modèle SST ou non reste une question ouverte.

Puisque l’estimateur des moindres carrés atteint le risque minimax de l’ordre de n, il pourrait sembler
raisonnable de résoudre le problème computationnel par une relaxation convexe de (2.9). Une première idée est
de calculer les moindres carrés ∣Y −M̃ ∣F 2 sur toutes les matrices M̃ dans l’enveloppe convexe deM ∈ Rn×d ∶Mπ∗−1 ∈M.
Néanmoins, un tel estimateur est peu susceptible d’atteindre de bonnes garanties théoriques, et nous renvoyons
le lecteur à [82] pour certains résultats négatifs – du moins dans le modèle bi-isotone-2D. Une autre idée est



12 Chapter 1. Introduction (French version)

d’utiliser le théorème de Birkhoff-von Neumann. Soit Pn l’ensemble des matrices n×n doublement stochastiques
et considérons la relaxation suivante de (1.9) :

M̂REL
sorted = argmin

P ∈PnM̃∈M
∥Y − PM̃∥2F . (1.11)

Les ensembles Pn et M sont convexes et la fonction de minimisation est convexe en P et en M̃ . Cependant,
cette fonction n’est pas jointement convexe en (P, M̃), et à notre connaissance, l’existence d’une procédure
efficace résolvant (1.11) est un problème ouvert. De plus, il n’est pas clair si le minimiseur du problème relaxé
(1.11) atteint le taux de convergence optimal de n, comme le fait l’estimateur des moindres carrés.

1.2.1.3 Autres modèles non-paramétriques en crowdsourcing

Au-delà des problèmes de tournoi et motivés par les problèmes de crowdsourcing, il y a eu une augmentation
récente dans le développement de nouveaux modèles non-paramétriques [60, 81, 84, 85, 56, 33]. Avant d’explorer
ces modèles, décrivons d’abord le cadre général, qui est similaire à celui du modèle SST. Soit Mik une matrice
rectangulaire n× d dont les coefficients sont dans [0,1]. Dans les données de crowdsourcing, n fait référence au
nombre d’experts, d représente le nombre de questions et Mik dénote la probabilité que l’expert i fournisse une
réponse correcte à la question k. En particulier, Mik = 1/2 signifie que l’expert i fait une estimation aléatoire
de la question k et Mik = 1 signifie qu’il connaît parfaitement la bonne réponse. Supposons que pour chaque
paire (i, k) d’expert/question, nous recevons Nik observations indépendantes de Bernoulli

Y
(u)
ik = Bern(Mik), u = 1, . . . ,Nik . (1.12)

La paire (i, k) est observée si et seulement si Nik > 0 et Y (u)ik = 1 signifie que l’expert i est correct par rapport à la
question k lors de l’essai u. Pour tenir compte des observations partielles possibles, nous utilisons une astuce de
poissonisation standard. À savoir, nous supposons que Nik suit une distribution de Poisson de paramètre λ > 0
– voir par exemple [60]. Le cas intéressant est lorsque λ ≤ 1, car cela correspond à une proportion de données
manquantes de l’ordre de 1−λ. Dans ce qui suit, nous exposons les modèles bi-monotone-2D, bi-monotones-1D
et monotones. Chacun de ces modèles inclut une certaine forme de contrainte de forme sur la matrice M ,
puisque la reconstruction de M n’est pas possible sans autre hypothèse.

Le modèle bi-monotone-2D. Dans le contexte des données de crowdsourcing, le pendant du modèle SST
est le modèle bi-monotone-2D. Supposons qu’il existe deux permutations inconnues π∗ et η∗ telles que Mπ∗−1η∗−1

soit bi-monotone, c’est-à-dire que ses lignes et colonnes sont croissantes. Nous écrivons Mbiso pour l’ensemble
de toutes les matrices bi-monotones, de sorte que

Mπ∗−1η∗−1 ∈Mbiso . (1.13)

Pour illustrer, Figure 1.2 offre une représentation visuelle d’une matrice bi-monotone générée aléatoirement en
affichant un graphique de chacune de ses lignes. Ce modèle implique qu’il existe un ordre intrinsèque π∗ qui
classe les experts selon leurs compétences, et un autre ordre intrinsèque η∗ qui trie les questions selon leurs
difficultés. Ce modèle englobe le modèle SST précité, où les hypothèses supplémentaires sont que π∗ = η∗ et
que M est antisymétrique.

Comme garantie théorique, la perte de reconstruction pour un estimateur donné M̂ est définie comme ∥M̂ −
M∥2F , ce qui est analogue à la fonction de perte définie dans le modèle SST. Le risque maximum supE[∥M̂−M∥2F ]
pour cette perte est pris sur toutes les permutations π∗, η∗ et matrices M telles que Mπ∗−1,η∗−1 soit bi-monotone.
Mao et al. [60] ont montré que lorsque M est une matrice carrée, c’est-à-dire n = d, le risque minimax dans
ce modèle est de l’ordre de n à facteurs polylogarithmiques près. Plus précisément, le risque minimax est
du même ordre que dans le modèle SST. Ainsi, le modèle bi-monotone-2D n’est pas beaucoup plus difficile,
statistiquement parlant, que le modèle SST.

Discutons des problèmes computationnels dans ce modèle. Liu et Moitra [56] ont établi que, lorsque n = d
et λ = no(1), il existe une méthode en temps polynomial qui atteint un risque dans le pire des cas de l’ordre
de n7/6+o(1). Il s’avère que l’hypothèse que λ = no(1) peut être assouplie à λ = 1, comme nous le montrons
dans un corollaire dans Chapter 4 pour le modèle monotone. Le cas λ = 1 correspond à la situation où, en
moyenne, nous avons une observation pour chaque paire (i, k). D’un autre côté, λ = no(1) représente un nombre
sous-polynomial d’observations pour chaque paire (i, k). Dans l’ensemble, de manière similaire au modèle SST,
le fait que le même écart computationnel-statistique entre n et n7/6 soit intrinsèque au problème demeure une
question ouverte dans ce modèle également.
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Le modèle bi-monotone-1D. Un modèle plus spécifique motivé par les données de crowdsourcing est le
modèle bi-monotone-1D. L’hypothèse plus forte est que la matrice M est bi-monotone à une seule permutation
près π∗ agissant sur ses lignes. De manière équivalente,

Mπ∗−1 ∈Mbiso , (1.14)

où (Mπ∗−1)ik = Mπ∗−1(i),k. Alternativement, le modèle bi-monotone-1D peut être considéré comme un cas
particulier du modèle bi-monotone-2D, car il correspond au cas où la permutation sur les colonnes η∗ est
connue et égale à l’identité. En pratique, connaître η∗ dans le modèle bi-monotone-2D revient à supposer que le
statisticien a accès à la difficulté intrinsèque des questions, ce qui est une hypothèse plus forte. Étonnamment,
dans le cas où n = d et λ = 1, le taux de reconstruction n’est pas meilleur dans le modèle bi-monotone-1D par
rapport aux modèles bi-monotone-2D ou SST. En effet, Mao et al. [60] ont établi que le risque minimax pour
la reconstruction est de l’ordre de n, comme dans les modèles SST et bi-monotone-2D.

Néanmoins, Mao et al. [60] ont laissé un écart computationnel-statistique dans ce modèle : leur solution
optimale est peu probablement calculable en temps polynomial, et leur méthode efficace ne peut reconstruire
M qu’à un taux taux de n5/4. Dans [60], l’approche principale consiste à comparer les lignes de Y deux à
deux. Ceci est fait en calculant des moyennes locales des lignes sur des intervalles locaux inclus dans {1, . . . , d}.
Plus récemment, Liu et Moitra [56] ont presque fermé l’écart computationnel dans le cas n = d et λ = no(1).
Les auteurs ont établi une méthode en temps polynomial qui atteint un taux de reconstruction de n1+o(1), ce
qui est presque minimax optimal. Contrairement à [60], une idée cruciale introduite par Liu et Moitra est de
se concentrer sur des intervalles spécifiques avant de moyenner les observations. À savoir, pour un ensemble
donné P de lignes, ils se concentrent sur des régions où la moyenne de toutes les lignes de P change de manière
significative.

Figure 1.2: Un exemple d’une matrice bi-monotone Mπ∗−1 . Chaque ligne colorée se situe dans [0,1] et représente une
ligne de Mπ∗−1 . Puisque Mπ∗−1 est bi-monotone, ces lignes sont croissantes.

Le modèle monotone. Enfin, une extension du modèle bi-monotone-2D est le modèle monotone [33]. Dans
ce cadre, la seule hypothèse est que toutes les colonnes de M sont croissantes à permutation près π∗ des lignes.
De manière équivalente, siMiso désigne l’ensemble de toutes les matrices monotones, nous avons

Mπ∗−1 ∈Miso . (1.15)

En d’autres termes, le modèle monotone est un assouplissement du modèle bi-monotone-2D, sans l’hypothèse
que les lignes sont croissantes à permutation η∗ près. Notamment, cela rend le modèle monotone plus flexible,
même si la reconstruction de M devient statistiquement plus difficile. Pour simplifier les comparaisons avec les
autres modèles, supposons que λ = 1 et que n = d. Flammarion et al. [33] ont montré que le risque minimax pour
ce modèle est de l’ordre de n4/3. Ils ont également introduit RankScore, une méthode computationnellement
efficace et qui repose sur une comparaison moyenne globale et une comparaison élément par élément. Cependant,
RankScore n’atteint qu’un risque maximal de l’ordre de n3/2, ce qui est sous-optimal. Dans le pire des cas,
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RankScore atteint des performances similaires à celles obtenues en classant simplement les lignes selon leurs
moyennes. Néanmoins, il n’y a pas d’écart computationnel dans ce modèle et le taux n4/3 peut être atteint en
temps polynomial, à polylogs près. Ceci est prouvé dans l’analyse du modèle monotone, dans Chapter 4. À
part quand n = d, un autre cas intéressant est lorsque d = 1, ce qui revient à supposer que M est un vecteur
colonne.

Dans le cas où d = 1, ce modèle est étroitement lié à un problème de régression monotone non couplée, qui
trouve sa motivation dans les transports optimaux ou les problèmes de sciences sociales [76, 14]. Supposons que
nous observions les ensembles non ordonnés {x1, . . . , xn} et {y1, . . . , yn}, liés par la relation yi = f(xi)+ εi pour
une fonction croissante inconnue f et un bruit ε avec des coefficients indépendants. Comme illustré dans [14],
les xi et yi peuvent respectivement représenter les données de salaire collectées par une agence gouvernementale
et les yi les prix des logements collectés par une banque. Dans notre cas, xi = i, f(xi) =Mπ∗−1(i), et estimer f
revient à estimer le vecteur ordonné Mπ∗−1 . Rigollet et Niles-Weed [76] ont établi que le risque minimax pour
l’estimation de f , ou Mπ∗−1 , est de l’ordre de n( log log(n)

log(n) )
2.

Bien que les trois modèles mentionnés précédemment semblent structurellement similaires, ils diffèrent con-
sidérablement d’un point de vue statistique. En particulier, beaucoup plus d’information est disponible lorsque
nous supposons que l’ordre des colonnes est connu dans le modèle bi-monotone-1D. Figure 1.3 donne une illus-
tration de la différence entre les modèles monotone et bi-monotone-1D en représentant des matrices M générées
aléatoirement.

Dans l’ensemble, les relations entre les trois modèles peuvent être résumées comme suit : le modèle monotone
est une extension du modèle bi-monotone-2D, qui est lui-même une extension du modèle bi-monotone-1D.
Résumons les écarts computationnelles-statistiques non résolues dans la littérature concernant la reconstruction
de M dans ces trois modèles. Dans le modèle monotone, [33] a laissé un écart computationnel entre le taux
optimal n4/3 et n3/2, dans le cas n = d. Concernant le modèle bi-monotone-1D, [56] a presque comblé l’écart et a
atteint un taux de l’ordre de n1+o(1) dans le cas n = d. Cependant, un écart computationnel significatif demeure
dans le modèle bi-monotone-1D pour tous n, d, λ tels que n≪ d. Enfin, dans le modèle bi-monotone-2D, [56] a
réussi à réduire l’écart. Néanmoins, la question de savoir s’il est possible de réduire davantage l’écart entre n et
n7/6+o(1) reste ouverte.

Figure 1.3: Pour chaque modèle – monotone (à gauche) ou bi-monotone-1D (à droite) – les matrices Mπ∗−1 , Yπ∗−1 , M ,
Y sont respectivement représentées dans l’ordre de lecture.

1.2.2 Aperçu de notre contribution

Dans Chapter 3 et Chapter 4, nous comblons les écarts computationnels existants dans les modèles bi-monotone-
1D (1.14) et monotone (1.15), pour presque toutes les valeurs possibles de n, d et λ. De plus, nous réduisons
davantage l’écart dans les modèles bi-monotone-2D (1.13) et SST.
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Dans ce qui suit, nous résumons nos principales contributions et nous concentrons notre attention sur les
modèles monotone et bi-monotone-1D. Rappelons que Miso et Mbiso désignent les ensembles de toutes les
matrices monotones et bi-monotones respectivement, et soit M l’un ou l’autre Miso ou Mbiso. Comme dans
la section précédente, M représente une matrice inconnue dont les entrées sont dans [0,1], et est telle que
Mπ∗−1 ∈M pour une certaine permutation inconnue π∗ de ses lignes. Considérons une observation Y donnée
par le modèle (1.12).

1.2.2.1 Risque minimax pour l’estimation de la permutation

Comme souligné dans Section 1.2.2, estimer la matrice M est un problème important dans la littérature sur
le classement [83, 84, 60, 56, 71]. Cependant, l’objectif principal en classement n’est pas tant de reconstruire
l’intégralité de la matriceM , mais plutôt de trouver une bonne estimation de l’ordre original π∗. Par conséquent,
nous adoptons une approche différente pour construire un estimateur de π∗ et mesurer sa qualité. Étant donné
un estimateur π̂ de π∗, soit ∥Mπ̂−1−Mπ∗−1∥

2
F la perte de permutation. Contrairement à la perte de reconstruction

∥M̂ −M∥2F , cette perte quantifie la distance entre la matrice M triée selon l’estimateur π̂ et la matrice M triée
selon la permutation réelle π∗. En particulier, il n’est pas nécessaire de définir un estimateur M̂ de toute la
matrice M pour mesurer la qualité d’un estimateur donné π̂ de π. Nous définissons les risques minimax à la
fois pour l’estimation de la permutation et la reconstruction de la matrice comme

R
∗M
perm(n, d, λ) ∶= inf

π̂
sup

π∗∈Πn
M ∶Mπ∗−1∈M

E[∥Mπ̂−1 −Mπ∗−1∥
2
F ]

R
∗M
reco(n, d, λ) ∶= inf

M̂
sup

π∗∈Πn
M ∶Mπ∗−1∈M

E [∥M̂ −Mπ∗−1∥
2
F ] .

La définition de ces deux risques permet en particulier de séparer la difficulté d’estimer π∗ de la difficulté
d’estimer M .

1.2.2.2 Résultats

Que nous considérions le modèle monotone (1.15) ou le modèle bi-monotone-1D (1.14), il s’avère qu’il existe un
estimateur en temps polynomial π̂ qui est presque minimax optimal, pour presque tous les régimes en n, d et
λ. De plus, tout estimateur optimal de π∗ peut être utilisé pour construire un estimateur optimal de M . Par
conséquent, il n’y a pas d’écart statistique computationnel significatif pour l’estimation de la permutation et la
reconstruction de la matrice, contrairement aux modèles SST et bi-monotone-2D.

Considérons, pour simplifier, le régime où λ = 1, et discutons des risque minimax de permutation résumés
dans les tableaux de Figure 1.4. Tout d’abord, la reconstruction de M est statistiquement plus difficile que
l’estimation de π∗. En effet, nous déduisons de Figure 1.4 que R∗Mreco ≳R

∗M
perm, à facteurs polylogarithmiques près.

Essentiellement, le taux de reconstruction R∗Mreco peut être décomposé en deux composants : le taux d’estimation
de la permutation R∗Mperm et le taux de reconstruction d’une matrice triée, c’est-à-dire lorsque π∗ est connu.

Pour illustrer les taux d’estimation de la permutation, considérons le cas n = 2. Dans les deux modèles, la
matrice M a deux lignes, l’une étant uniformément au-dessus de l’autre. Sans perte de généralité, supposons
que M1,k ≥ M2,k pour tout k. Lorsque n = 2, ceci est la seule et unique hypothèse dans le modèle monotone.
Cependant, dans le modèle bi-monotone-1D, il est en outre supposé que chaque ligne M1 et M2 est croissante.
Cette hypothèse supplémentaire explique pourquoi le taux de d1/6 dans le modèle bi-monotone-1D est beaucoup
plus petit que le taux de

√
d dans le modèle monotone.

Donnons maintenant l’intuition du taux
√
d dans le modèle monotone. Considérons la méthode simple qui

compare les moyennes des deux lignes Y1 et Y2. Avec cette méthode, si la moyenne de la ligne 1 est plus grande,
alors nous retrouvons la véritable permutation et la perte est égale à 0. Sinon, nous inversons l’ordre des lignes
et la perte de permutation est égale à 2∥M1 −M2∥

2
2. Il s’avère que cette méthode simple atteint le taux optimal√

d. Par la suite, nous fournissons les principaux arguments pour cette affirmation. Étant donné que la ligne 1
est au-dessus de la ligne 2, nous avons que

d

∑
k=1

Y1,k − Y2,k = ∥M1 −M2∥1 +
d

∑
k=1

E1,k −E2,k ,

où Eik = Yik−Mik. En utilisant l’inégalité de Hoeffding pour les variables aléatoires de Bernoulli, nous déduisons
que ∣∑dk=1E1,k − E2,k ∣ ≤ C

√
d pour une certaine constante C, avec une probabilité d’au moins 0,99. De plus,

puisque Mik ∈ [0,1] pour tous i, k, il est vrai que

∥M1 −M2∥1 ≥ ∥M1 −M2∥
2
2 .
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monotone Model Miso:

n ≲ d3/2 d3/2 ≲ n

R∗Mperm n2/3
√
d n

R∗Mreco n1/3d n

Bi-monotone Model Mbiso:

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

R∗Mperm nd1/6 n3/4d1/4 n

R∗Mreco nd1/3
√
nd n

Figure 1.4: Taux optimaux dans les modèles monotone et bi-monotone, pour toutes les valeurs possibles de n, d et λ = 1,
à facteur polylogarithmique près en nd. Ces taux sont atteints par des estimateurs en temps polynomial.

Par conséquent, si ∥M1 −M2∥
2
2 > C

√
d, alors la moyenne de la ligne 1 est au-dessus de la moyenne de la ligne 2

avec une probabilité de 0,99. Sur cet événement de haute probabilité, nous retrouvons la véritable permutation
et la perte en norme de Frobenius carrée est égale à 0. Sinon, lorsque ∥M1 −M2∥

2
2 ≤ C

√
d, la perte est limitée à

2C
√
d. En fait, cette limite supérieure de l’ordre de

√
d est optimale au sens minimax, lorsque n = 2. De plus,

cette limite peut être étendue à des n plus grands, résultant en une limite supérieure sous-optimale de n
√
d.

Plus précisément, c’est l’idée sous-jacente derrière le taux sous-optimal de l’ordre de n3/2 établi par Shah et al.
[83] dans le modèle SST (1.7). Dans le modèle bi-monotone-1D, nous pouvons atteindre le taux d1/6 lorsque
n = 2 en utilisant le fait que les deux lignes M1 et M2 sont croissantes. Voir Chapter 3 pour plus de détails.

Lorsque n et d sont égaux, le taux pour estimer la permutation est de l’ordre de n7/6 dans le modèle
monotone, et il est atteint par un estimateur en temps polynomial π̂ de π∗. Ce taux a été initialement établi
dans le modèle bi-monotone-2D ou SST par Liu et Moitra [56], pour un nombre d’échantillons de l’ordre de
no(1). Cependant, contrairement à [56], notre méthode dans le modèle monotone présentée dans Chapter 4
ne nécessite aucune hypothèse sur les lignes de M . L’estimateur π̂ peut également être utilisé pour définir un
estimateur de la matrice M qui atteint un taux de reconstruction de l’ordre de n4/3 dans le modèle monotone
– voir Figure 2.4 avec n = d. De plus, nous montrons dans Corollary 4.2.5 de Chapter 4 que, dans le modèle
bi-monotone-2D ou SST, il est également possible de dériver un estimateur de M à partir de π̂, qui atteint un
taux de reconstruction de l’ordre de n7/6. Ce taux de n7/6, comme mentionné précédemment, est le meilleur
taux connu pour la reconstruction de matrice en temps polynomial ou l’estimation de permutation dans les
modèles bi-monotone-2D et SST.

1.2.2.3 Idées générales des procédures

Les procédures que nous décrivons dans Chapter 3 pour le modèle bi-monotone-1D et dans Chapter 4 pour
le modèle monotone sont substantiellement différentes. La première repose sur un regroupement hiérarchique
avec mémoire, tandis que la seconde est basée sur un graphe de comparaison. Cependant, il vaut la peine de
noter que notre analyse du modèle monotone s’appuie sur plusieurs éléments initialement introduits dans notre
analyse du modèle bi-monotone-1D. Par la suite, nous donnons un aperçu informel des deux approches.

Dans Chapter 3, nous visons à construire un arbre de tri, comme illustré dans Figure 1.5. En commençant
par l’ensemble complet des lignes [n], nous le divisons en trois sous-ensembles (O,P, I) de [n], où O et I
contiennent des lignes qui sont probablement en dessous et au-dessus de la ligne médiane, respectivement. Le
sous-ensemble P contient des lignes qui ne peuvent pas être classifiées avec une grande confiance. Ensuite, nous
divisons récursivement les sous-ensembles O et I, comme le montre la partie gauche de Figure 1.5. Lorsque
l’arbre est terminé, nous obtenons un ordre partiel sur toutes les lignes qui peut être utilisé pour estimer π∗.

La principale difficulté de cette procédure est de diviser de manière optimale un ensemble donné G ⊂ [n]
en (O,P, I). Nous y parvenons essentiellement en combinant des techniques allant de la détection de point
de ruptures aux méthodes spectrales. Pour calculer les sous-ensembles (O,P, I) d’un ensemble donné G, il
est également crucial de garder en mémoire l’arbre de tri. En effet, cette approche nous permet d’utiliser des
informations précieuses provenant des autres feuilles de l’arbre pour affiner la division de G. Par exemple, dans
Figure 1.5, le groupe G(0) pourrait être davantage divisé en utilisant l’information qu’il est compris entre les
deux ensembles de lignes V− et V+.

D’un autre côté, la méthode basée sur un graphe de comparaison dans Chapter 4 consiste à mettre à jour
de manière itérative un graphe orienté pondéré. Les arêtes de ce graphe quantifient le niveau de la comparaison
entre les lignes de M . Une arête qui pointe d’une ligne i à une autre ligne j signifie que i devrait être au-dessus
de j. De plus, nous sommes plus confiants quant à l’ordre entre les lignes pour lesquelles les arêtes ont un poids
plus important. À la dernière mise à jour du graphe, nous obtenons un graphe pondéré à partir duquel nous
dérivons un estimateur de π∗.

Il est intéressant de noter que la technique basée sur un graphe de comparaison est étroitement liée à la
méthode reposant sur le groupement hiérarchique. Le lien principal entre les deux approches peut être résumé
comme suit. Dans un graphe de comparaison, l’idée de base est de mettre à jour le poids des arêtes entre une
ligne donnée i et les autres lignes dans son voisinage P qui est lui-même calculé à partir du graphe pondéré. A
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Figure 1.5: Exemple d’un arbre de tri hiérarchique (à gauche), et de la matrice M triée avec l’arbre (à droite). V− (resp.
V+) représente un ensemble de groupes de lignes qui sont en dessous (resp. au-dessus) du groupe G(0).

chaque itération est calculé un sous-ensemble de colonnes Q̂ ⊂ [d] qui sert à réduire la dimension et à comparer
la ligne i avec les lignes de son voisinage P par des sommes pondérées. De manière similaire, l’approche de
groupement hiérarchique implique de comparer les lignes d’un ensemble P en utilisant des sommes pondérées
calculées sur des sous-ensembles Q̂. Cependant, au lieu de mettre à jour les arêtes entre les lignes, l’approche de
groupement hiérarchique calcule une division de P en sous-ensembles. Chaque division consiste à calculer deux
sous-ensembles L et U de P , de sorte que les lignes de l’ensemble L soient en dessous des lignes de l’ensemble
U . Les fortes relations entre ces deux méthodes suggèrent que les deux pourraient être appliquées aux modèles
isotone et bi-isotone-1D pour atteindre les risques minimax à facteurs polylogarithmiques près.

1.3 Détection de points de rupture

La détection de points de rupture a une riche histoire, commençant par les travaux fondateurs de Wald [95],
qui ont depuis inspiré des avancées significatives dans le domaine [68, 89]. Comme mentionné précédemment, la
détection de points de rupture est cruciale dans un large éventail de situations pratiques, allant de la surveillance
des fluctuations quotidiennes de la température et de l’observation des tendances du marché boursier à l’analyse
de données génomiques. Dans ce qui suit, nous commençons par discuter du cas univarié, où nous observons
une séquence de données réelles. Ensuite, nous introduisons le problème de la détection de points de rupture
dans les séries temporelles en grande dimension avant de passer à notre contribution dans ce contexte.

1.3.1 Discussion sur le cas univarié

Dans cette discussion, nous nous concentrons exclusivement sur les séries temporelles univariées. Supposons
que nous observons une séquence de variables aléatoires réelles indépendantes (y1, . . . , yn), avec des fonctions de
distribution cumulatives (F1, . . . , Fn). Nous disons qu’il y a un point de rupture à une position τ si la fonction
de distribution cumulative à τ est différente de la précédente, c’est-à-dire Fτ−1 ≠ Fτ . En particulier, si nous
savons que le nombre de points de rupture K est au plus égal à 1, la question devient de savoir si la distribution
des données reste stationnaire au fil du temps, ou s’il y a un point de rupture détectable. Bien que ce modèle
non paramétrique englobe de nombreuses situations, il est souvent trop large dans de nombreuses applications
pratiques [68]. Pour cette raison, les distributions Fi doivent souvent être paramétrées.

Par la suite, nous supposons que pour chaque t = 1, . . . , n, nous avons la décomposition signal/bruit suivante
:

yt = θt + εt ∈ R , (1.16)

où la suite déterministe (θt) est inconnue, et le bruit ε1, . . . , εn est composé de variables indépendantes gaussi-
ennes centrées standard N (0,1). Dans ce modèle, la suite des points de rupture (τ1, . . . , τK) correspond aux
positions τk où θτk−1 diffère de θτk . Pour chaque point de rupture τk, nous définissons Dk ∈ R comme la dif-
férence θτk − θτk−1 , représentant le rupture moyen dans les données. Nous définissons également rk comme la
distance entre τk et son point de rupture adjacent le plus proche, c’est-à-dire rk =min(τk − τk−1, τk+1 − τk). Par
convention, nous fixons τ0 = 1 et τK+1 = n + 1. Discutons maintenant des problèmes de détection de ruptures
simples et multiples dans ce contexte.

Détection d’un unique point de rupture. Supposons que nous savons qu’il y a au plus un point de
rupture, c’est-à-dire K ≤ 1. Le problème revient alors à tester les deux hypothèses suivantes :

H0 ∶ Il n’y a pas de point de rupture
H1 ∶ Il y a un unique point de rupture à une position inconnue τ .
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Nous cherchons à déterminer s’il y a ou non un point de rupture dans la suite (θt). Si un point de rupture τ
existe, alors θt est égal à µ1 si t < τ et à µ2 ≠ µ1 sinon. Dans ce modèle à un seul point de rupture, l’approche
originale de Hinkley [44] consiste à maximiser la valeur absolue de la statistique CUSUM

Ct(y) =

√
(t − 1)(n − t + 1)

n
(

1

n − t + 1

n

∑
i=t
yi −

1

t − 1

t−1
∑
i=1
yi) , (1.17)

sur toutes les positions possibles t = 2, . . . , n. En termes plus simples, Ct(y) représente la différence redimen-
sionnée entre la moyenne des données sur l’intervalle [t, n] et la moyenne sur [1, t). L’idée principale est que s’il
n’y a pas de point de rupture, alors Ct(y) suit une distribution normale standard N (0,1) pour tout t. D’un
autre côté, s’il y a un point de rupture à la position τ , alors Cτ(y) suit une distribution normale avec une

espérance égale à
√
(τ−1)(n−τ+1)

n
D, où D = µ2 − µ1. En particulier, cette quantité satisfait :

1
2
rD2

≤
(τ−1)(n−τ+1)

n
D2
≤ rD2 , (1.18)

où r =min(τ, n + 1 − τ).
Détecter τ devient statistiquement plus facile à mesure que rD2 augmente. Il s’avère que la quantité rD2

caractérise précisément la limite de détection dans ce problème. Récemment, Gao et al. [38] ont établi que le
point de rupture peut être détecté avec une grande probabilité, dès que rD2 ≥ C

√
log log(n), pour une constante

C qui dépend uniquement de la probabilité d’erreur désirée. Voir également les travaux antérieurs de Csörgö et
Horváth [26] pour un résultat asymptotique connexe. Pour un résultat plus précis remplaçant

√
log log(n) par

√
log log(n/r), nous renvoyons le lecteur aux travaux de Verzelen et al. [92].

Détection de points de rupture multiples. Le problème est plus complexe lorsque K est inconnu et
arbitraire. Pour estimer l’un des K points de rupture, il semblerait raisonnable de prendre le maximum sur tous
les t de la valeur absolue de Ct(y), comme dans le cas précédent avec un seul point de rupture. C’est le principe
de la segmentation binaire (BS) [80], mais malheureusement, cela ne conduit pas à un estimateur consistent de
l’un des points de rupture. Nous présentons brièvement ensuite deux classes de méthodes visant à surmonter
les limites de BS.

Une large gamme de méthodes est basée sur une variante de la segmentation binaire : la segmentation binaire
sauvage (WBS), qui est une approche de haut en bas introduite par Fryzlewicz [36]. Dans WBS, nous tirons
d’abord au hasard certains intervalles aléatoires [s, e) ⊂ [n]. Ensuite, nous maximisons la statistique CUSUM
locale

Cs,t,e(y) =

√
(t − s)(e − t)

e − s
(

1

e − t

e−1
∑
i=t
yi −

1

t − s

t−1
∑
i=s
yi) ,

sur tous les t possibles dans [s, e) et tous les intervalles aléatoirement choisis [s, e). Si le maximum est au-dessus
d’un certain seuil en valeur absolue, alors nous prenons le t correspondant comme premier estimateur d’un point
de rupture. Ensuite, nous subdivisons [n] en [1, t − 1] et [t, n] et nous cherchons de manière récursive d’autres
points de rupture potentiels dans ces deux intervalles.

Une autre classe de méthodes est basée sur des critères des moindres carrés pénalisés [92, 98]. L’idée
principale est d’estimer une séquence constante par morceaux θ̂ via le problème de minimisation suivant :

θ̂ = argmin
θ′∈Rn

∑
i

(yi − θ
′
i)

2
+ λpen(θ′) , (1.19)

où λ est un paramètre de réglage et pen(θ′) ≥ 0 est une fonction de θ′ visant à pénaliser les variations de θ′.
En particulier, Wang et al. [98] définissent pen(θ′) comme le nombre de positions i où θ′i−1 ≠ θ

′
i. Bien que

le problème de minimisation (1.9) ne soit pas convexe, θ̂ peut encore être calculé efficacement en utilisant des
techniques de programmation dynamique – voir par exemple l’algorithme 1 de Friedrich et al. [35].

De manière similaire au problème de détection d’un seul point de rupture, la condition minimale de détection
d’un point de rupture donné τk dans ce contexte dépend de la quantité rkD2

k. Wang et al. [98] ont établi que,
dès que rkD2

k ≳
√
log(n) pour tous les k, nous pouvons détecter tous les points de rupture avec une grande

probabilité. Cette découverte a été davantage affinée par Verzelen et al. [98], qui ont montré que la condition
minimale nécessaire à la détection du point de rupture τk est rkD2

k ≳
√
log(n/rk).

1.3.2 Le cas multivarié
Dans le cas multivarié, les observations y1, . . . , yn appartiennent à l’espace vectoriel Rp, de dimension p ≥ 1
arbitraire. Nous observons, pour t = 1, . . . , n

yt = θt + εt ∈ Rp . (1.20)
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Contrairement au cas univarié (1.16), θt est un vecteur dans Rp et les variables aléatoires ε1, . . . , εn sont des
variables gaussiennes multivariées standard i.i.d N (0, Ip). Dans ce contexte, le kime point de changement τk est
toujours défini par θτk ≠ θτk−1, et Dk = θτk − θτk−1 est un vecteur dans Rp. Nous notons sk pour la parcimonie
de Dk, c’est-à-dire sk = ∥Dk∥0. En termes plus simples, sk représente le nombre d’entrées non nulles de Dk.

Parmi la littérature sur les séries temporelles multivariées, beaucoup d’efforts ont été concentrés sur l’adaptation
à la parcimonie de Dk [103, 47, 57]. Comme dans le cas univarié, nous cherchons la valeur minimale de rk∥Dk∥

2
2

pour laquelle le point de rupture τk peut être détecté avec précision. Dans ce contexte, cette valeur dépend de
n, rk, p et sk.

Liu et al. [57] ont considéré le cas d’un seul point de rupture (K ≤ 1), où le but est de détecter un point
de rupture potentiel τ . Comme dans le cas univarié, soit r = min(τ, n − τ), D = θτ − θτ−1 et s = ∥D∥0. Les
auteurs ont établi que le point de rupture τ peut être détecté avec une grande probabilité dès lors que r∥D∥22
est supérieur à Cmin(

√
p log log(8n), s log( p

s2
log log(8n))), où C est une constante qui dépend uniquement de

la probabilité de détection souhaitée. En particulier, lorsque p = 1, nous retrouvons le résultat de Gao et al.
[38] mentionné plus tôt dans le cas univarié.

Dans le cas de points de rupture multiples (K ≥ 1), Wang et Samworth [103] ont introduit une méthode
basée sur des projections parcimonieuses. Cependant, leur procédure ne détecte les points de rupture que
sous une condition forte sur rk∥Dk∥

2
2. Plus récemment, Hu et al. [47] ont assoupli cette condition dans un

cadre asymptotique spécifique, en utilisant une approche basée sur un score de vraisemblance parcimonieux.
Néanmoins, la condition de détection prouvée dans [47] n’est pas optimale si l’on s’intéresse aux facteurs
logarithmiques.

En plus de la détection de points de rupture en moyenne dans le cas multivarié, le sujet plus large de la
détection de points de rupture dans les séries temporelles en grande dimension englobe également de nombreux
autres problèmes. Ceux-ci incluent entre autre des problèmes tels que la détection de points de rupture en
covariance [96] ou la détection de points de rupture dans des séquences de réseaux [97]. Dans chaque cas, les
données consistent en une suite en grande dimension, où le signal sous-jacent est constant par morceaux avec
une structure spécifique.

1.3.3 Aperçu de notre contribution
Dans Chapter 5, nous établissons des conditions minimales de détection des points de rupture dans plusieurs
problèmes, y compris la détection de points de rupture en covariance, la détection de points de rupture non
paramétrique et la détection de points de rupture en moyenne multivariée sparse. Par la suite, nous nous
concentrons sur notre contribution à la détection des points de rupture en moyenne dans des séries temporelles
multivariées, et nous fournissons un résumé de notre travail sur ce problème. Nous commençons par décrire
la condition minimale de détection avant de discuter des idées de notre approche ascendante qui atteint des
garanties optimales minimax.

Comme mentionné précédemment, la condition minimale que les points de rupture doivent satisfaire pour
être détectés dépend de rk∥Dk∥

2
2. Intuitivement, si rk∥Dk∥

2
2 est très grand, alors τk peut facilement être détecté.

D’autre part, la détection de τk devient impossible lorsque rk∥Dk∥
2
2 approche 0. Dans Chapter 5, nous montrons

que la condition minimale de détection de tous les points de rupture τk est donnée par

rk∥Dk∥
2
2 ≥ C

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rk
)
⎞

⎠
+ log (

n

rk
)

⎤
⎥
⎥
⎥
⎥
⎦

, (1.21)

pour tout k = 1, . . . ,K. Ici, C est une constante qui ne dépend que de la probabilité souhaitée de détecter
tous les points de rupture. Plus précisément, si tous les points de rupture satisfont (1.21), alors il existe un
estimateur (τ̂k) de (τk) qui satisfait avec grande probabilité :

1. Nous retrouvons le vrai nombre de points de rupture, c’est-à-dire K̂ =K

2. Le point de rupture estimé τ̂k n’est pas trop éloigné du vrai point de rupture τk, au sens où τ̂k ∈ [τk −
rk/2, τk + rk/2]

Les deux propriétés ci-dessus sont sans doute les garanties minimales souhaitables que l’on pourrait attendre
d’un estimateur de points de rupture, lorsqu’ils sont tous supposés être détectables. Notre analyse faite dans
Chapter 5 prend en compte les points de rupture qui ne satisfont peut-être pas la condition (1.21). De manière
informelle, l’estimateur est tenu de détecter les points de rupture qui satisfont (1.21), et de ne pas détecter deux
fois un même point de rupture. De plus, les intervalles de détection fournis dans Chapter 5 sont plus précis que
[τk − rk/2, τk + rk/2].

De manière intéressante, la condition de détection (1.21) peut être approximée à rk∥Dk∥
2
2 ≫ sk∧

√
p, à facteurs

logarithmiques près. Notamment, la parcimonie sk de Dk rend le problème de détection substantiellement plus
facile lorsque sk ≤

√
p.
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Pour détecter les points de rupture lorsqu’ils satisfont la condition (1.21), nous utilisons une approche
ascendante dans Chapter 5. De manière informelle, notre méthode est basée sur l’agrégation de plusieurs tests,
qui sont effectués à différents emplacements et à différentes échelles. Tout d’abord, nous commençons par
essayer de détecter les points de rupture sur les intervalles du type [l − 1, l], en nous basant sur l’observation
yl − yl−1 ∈ Rp. Ensuite, pour tout point de rupture potentiel détecté, nous enlevons un petit voisinage autour
de lui. Puis, nous essayons une échelle plus grande r = 2, et nous effectuons des tests locaux sur les intervalles
restants de la forme [l − r, l + r). Nous continuons ce processus pour des échelles r croissantes, jusqu’à ce que
nous atteignions une échelle maximale r de l’ordre de n/2. À la fin, l’estimateur correspond aux positions au
sein des intervalles qui ont été retirés au cours du processus.

Dans Chapter 5, l’analyse de cet estimateur implique une borne d’union sur les événements contrôlant les
tests locaux sur les intervalles [l−r, l+r). Pour chacun de ces intervalles, nous contrôlons la statistique CUSUM
en grande dimension correspondante avec des techniques similaires à celles utilisées dans la détection d’un signal
sparse – voir par exemple [30]. Finalement, cela assure avec une grande probabilité que nous détectons les points
de rupture τk qui satisfont la condition (1.21), à des échelles r plus petites que rk/2.

Pour conclure, les points de rupture d’une série temporelle en grande dimension peuvent être détectés sous la
condition minimale (1.21), qui s’adapte à la parcimonie sk des points de rupture. De plus, l’approche ascendante
décrite dans Chapter 5 est capable de détecter avec une grande probabilité tous les points de rupture qui satisfont
cette condition.



Chapter 2

Introduction

In this thesis, we explore two areas in modern statistics: ranking problems and change-point detection. Ranking
problems have wide applications, from ranking players in tournaments to voting and organizing experts in
crowdsourcing data. Similarly, change-point detection plays a crucial role in various real-world scenarios, such
as tracking daily temperature changes, monitoring stock prices, or analyzing genomic data.

While we discuss these two topics independently, our approach to both is grounded in the framework of
high-dimensional statistics. Indeed, in both cases, the number of unknown parameters can be larger than the
number of samples. To handle this complexity and to make these high-dimensional problems tractable, we
introduce specific structural assumptions, or shape constraints, in each model.

The first part of this thesis delves into ranking problems. Essentially, ranking methods aim to sort a collection
of items based on noisy observations, with potentially missing data. We will explore various models that differ
in their shape constraints. Specifically, our contributions center on two models where the goal is to recover a
permutation of the rows of a matrix. In Chapter 3, we assume that the reordered matrix has nondecreasing
columns and rows. In Chapter 4, we only assume that it has nondecreasing columns. This model encompasses
many models, including crowd-labeling and ranking in tournaments by pairwise comparisons. For both models,
we provide computationally tractable algorithms that achieve optimal guarantees in estimating the permutation.

The second part focuses on a multiple change-point detection problem for multivariate time series. Informally,
a change-point is a point in time in a sequence where the statistical properties of the data change. In our
context, the sequential observations can exist in a high-dimensional space, and may contain an arbitrary number
of change-points. This extends in particular the simpler univariate model, where the data consist of real-
valued observations. To make the problem more tractable, we consider cases where the variations of the
high-dimensional signal can be sparse. In a sparse regime, many entries of the vector representing the variations
are equal to zero. In Chapter 5, we establish the minimal conditions for possible detection in this framework.
Under these conditions, we provide guarantees that are adaptive to the unknown sparsity and to the distance
between the change-points.

In the last chapter, we discuss potential developments for this thesis. Specifically, we explore problems
related to ranking and label identification in crowdsourcing, online ranking problems, and localization problems
within multivariate time series.

In the following sections, we first explore some motivations of high-dimensional statistics. Next, we make
a review of the main ranking problems, including the isotonic and bi-isotonic-1D models studied in Chapter 3
[74] and Chapter 4. Lastly, we present a change-point detection problem in the univariate case, before moving
to the multivariate case also detailed in Chapter 5 [73].

2.1 High-dimensional statistics
Over the past few decades, we have witnessed a significant evolution in data acquisition technologies. As
mentioned in [42], these advancements have given rise to devices capable of capturing thousands of measurements
simultaneously, resulting in the production of high-dimensional data. These large-scale datasets appear in many
fields, ranging from natural sciences to finance and social sciences.

Classical theory in statistics typically deals with datasets where sample size n is large with respect to the
number of unknown parameters p of the model. In the asymptotic regime where n goes to infinity and where
p is fixed, the main desirable guarantees for a given estimator are consistency and asymptotic normality. In
simple terms, consistency means that the estimator converges in probability to the unknown parameter, and
asymptotic normality characterizes its speed of convergence. To establish these properties, the standard tools
are the law of large numbers and the central limit theorem.

21



22 Chapter 2. Introduction

However, in high-dimensional data, p is sometimes so large that the classical asymptotic point of view fail to
provide useful predictions. In such regimes, it often becomes challenging to distinguish useful information from
noise in the data. Hence, considerable work has been devoted to develop new tools and statistical techniques.
Specifically, these involve introducing some structure on the unknown parameters, and developing methods
that adapt to this structure. For instance, assume that we observe a vector y ∈ Rp that follows a Gaussian
distribution N (θ, Ip), and that we want to recover the unknown vector θ ∈ Rp. For a given estimator θ̂, we
consider the L2 risk E[∥θ̂ − θ∥22]. We are explicitly dealing with a high-dimensional setting, given that we have
just one sample in this case (n = 1). Let us now discuss two potential structures that we can assume on θ to
make its estimation more feasible.

A simple structural constraint is sparsity. If we assume that only a small number of the entries of θ are
non-zero compared to its dimension p, then we can derive a more accurate estimator than simply setting θ̂ = y.
For example, the hard-thresholding estimator given by θ̂i = yi1{∣yi∣ ≥ t} achieves good theoretical guarantees
if the threshold t is set to

√
2 log(p) – see e.g. [94]. The main idea is that hard-thresholding is particularly

adapted for sparse vectors θ, as it reduces the impact of the zero entries of θ in the least square error ∑i(θ̂i−θi)2.
Another possible structure is to assume that θ is isotonic, i.e. that θ1 ≤ ⋅ ⋅ ⋅ ≤ θp. In this case, it can be

shown that the least square estimator defined by θ̂ = argminθ′ ∑i(θ
′
i − yi)

2, where the argmin is taken over all
isotonic vectors, achieves optimal guarantees in contrast to the naive estimator θ̂ = y. Recovering θ under this
constraint is called the isotonic regression problem [107, 17].

In the ranking problems studied in Chapter 3 and Chapter 4, we aim to sort the rows of an n × d matrix,
based on less than n × d noisy observations. In the change-point detection problem covered in Chapter 5, we
aim to detect change-points in a sequence of n vectors of dimension p, where p is potentially much larger than
n. Both of these problems fall under the category of high-dimensional statistical problems, and we will assume
distinct shape constraints for each.

2.2 Ranking problems

Ranking problems fall within the broader topic of permutation estimation. In recent years, this area has gained
significant attention, notably in problems involving vector matching or graph matching – see e.g. [25, 100].
While there are a few common ideas between matching problems and our work, we will not discuss them into
further detail. The general purpose in ranking problems is to sort a set of items based on noisy observations.
These problems encompass a wide range of applications, such as ranking experts or workers in crowdsourcing
data or ranking players in tournaments. In what follows, we first give an overview of the topics that can be
found in the extensive body of ranking literature. Next, we shift to the core of our contributions, which are
primarily centered on the isotonic and bi-isotonic-1D models.

2.2.1 Selective review of ranking models

First, we start by introducing two simple parametric models for pairwise comparison, namely the Bradley-Terry-
Luce (BTL) model [11] and the noisy sorting model [12]. Next, we delve deeper into the non-parametric strong
stochastically transitive (SST) model [83], notably known for its flexibility in addressing tournament problems.
Finally, we explore other non-parametric models, particularly motivated by crowdsourcing data. These models
include in particular the isotonic and the bi-isotonic-1D models.

2.2.1.1 Parametric models in pairwise comparisons

Consider a tournament where we observe the pairwise comparisons between n players. More formally, we
observe an n×n matrix Y whose coefficients Yij belong to {0,1} and satisfy Yij = 1−Yji. If player i wins against
player j, then Yij is equal to 1. It is equal to 0 otherwise. In a noiseless setting, assume that there exists a
permutation π∗ that perfectly ranks the players according to their abilities. In other words, the entries of Y
represent the comparisons given by π∗, that is Yij = 1{π∗(i) − π∗(j) > 0}. Then, recovering the permutation
π∗ simply amounts to applying a standard sorting method. However, in many real-world scenarios, we cannot
assume the existence of such a deterministic ranking π∗, as random factors often come into play.

The noisy sorting model. Within the noisy sorting framework, Y is also an n × n matrix which represents
the pairwise comparisons between players. Assume that the coefficients of Y are independent Bernoulli random
variables with parametersMij = E[Yij]. Additionally, assume that when π∗(i) < π∗(j), it holds thatMij ≥ 1/2+γ
for some γ ∈ (0,1/2). Alternatively, let MNS be the set of all matrices that satisfy Mij ≥ 1/2 + γ when i < j.
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Then, the noisy sorting model is equivalent to assume that

Mπ∗−1π∗−1 ∈MNS , (2.1)

where we write (Mπ∗−1π∗−1)ij =Mπ∗−1(i)π∗−1(j). In simpler terms, π∗ represents the unknown ranking between
the players, and Mij denotes the probability that i wins against j. If i is better than j, then its chances of
winning are greater than 1/2 + γ. In contrast to the noiseless setting, we do not directly observe which player
is the best between i and j. Instead, we typically get an outcome Yij that is in favor of the best player in
probability. The main purpose is to accurately recover π∗.

In the noisy sorting model, the main criteria to measure the quality of a given estimator π̂ are based on
distances between permutations [12, 61, 13]. Specifically, consider the Kendall tau distance, defined as

dKT (π,σ) = ∑
π(i)<π(j)

1{σ(i) > σ(j)} , (2.2)

for any permutations π and σ. In the above equation, the sum is take over all possible pairs of indices (i, j).
dKT (π,σ) corresponds to the number of inversions between π and σ. Then, the associated minimax risk is
given by inf π̂ supπ∗,M E[dKT (π∗, π̂)], where the supremum is taken over all possible permutations π∗, and all
matrices M such that M ∈MNS. In this context, Mao et al. [61] established that the minimax risk is of the
order of n/γ2 ∧n2. In particular, assume that γ is of the order of a constant, e.g. γ = 0.01. Then, any estimator
makes at least a number of inversions of the order of n among the (n

2
) possible pairs.

Interestingly, Braverman and Mossel [12] originally considered the empirical Kendall tau distance as a
criterion to recover π∗:

d̂KT (Y,π) = ∑
π(i)<π(j)

Yij . (2.3)

For a given permutation π, the above quantity is calculated by counting the number of pairs i, j for which
the comparison based on π is inconsistent with the comparison Yji. The authors established that there exists
an estimator π̂ that can be computed in polynomial-time, and that minimizes the above quantity with high
probability. In other words, d̂KT (Y, π̂) =minπ d̂KT (Y,π).

Notably, the existence of a polynomial-time method to compute the minimizer of (2.3) heavily relies on the
probabilistic assumption made on the coefficients of Y . Indeed, if the coefficients Yij can take any arbitrary
value from the set {0,1}, the problem of minimizing d̂KT (Y,π) over all π becomes equivalent to solving the
feedback arc set problem. This optimization problem turns out to be computationally challenging, as it can
be reduced from a NP hard problem – see e.g. [1]. Interestingly, this is an example of a computationally hard
optimization problem that becomes feasible in a relevant random instance.

The BTL model. The Bradley-Terry-Luce (BTL) model [11] is a slightly more involved statistical framework
for ranking n players based on pairwise comparisons. Each player i corresponds to an unknown parameter θi ∈ R
where, by convention, ∑ni=1 θi = 0. θi represents the ability of player i. The comparison Yij = 1 − Yji ∈ {0,1}
between i and j is assumed to be a Bernoulli random variable with parameter Mij = ψ(θi − θj), where ψ is the
logistic function ψ(t) = 1/(1 + e−t). Equivalently, if π∗ is a permutation such that θπ∗−1(1) ≤ ⋅ ⋅ ⋅ ≤ θπ∗−1(n), then

Mπ∗−1π∗−1 ∈MBTL , (2.4)

where MBTL denotes the set of all matrices M such that Mij = ψ(θ
′
i − θ

′
j) for some nondecreasing vector

θ′1 ≤ ⋅ ⋅ ⋅ ≤ θ
′
n satisfying ∑i θ′i = 0. Similarly to the noisy sorting model, we aim to recover the unknown

permutation π∗. The Kendall tau distance has also been considered as a measure of quality in the BTL model,
and we refer the reader to the of work Chen et al. [20] for optimal guarantees in Kendall tau distance.

However, unlike in the noisy sorting model, the main focus in the BTL model has been on the estimation
of θ [66, 22, 21, 32, 39]. To compare this model with other models that we present later, we rather consider in
what follows the problem of estimating the whole matrix M . For this problem, we define the minimax risk as
follows:

R
∗BTL
reco (n) ∶= inf

M̂
sup
π∗,M

E [∥M̂ −M∥2F ] , (2.5)

where ∥A∥F =
√

∑i,j A
2
ij . In (2.5), the supremum is taken over all possible permutations π∗ and all possible

matrices M such that Mπ∗−1,π∗−1 ∈MBTL – see (2.4). For a given matrix M , the squared Frobenius distance
∥M̂ −M∥2F measures the loss of the estimator M̂ . The expected loss E [∥M̂ −M∥2F ] measures its risk, and the
supremum supπ∗,M E [∥M̂ −M∥2F ] its maximum risk, or worst risk. We say that an estimator M̂ that has a
maximum risk of order R∗BTL

reco (n), up to a multiplicative constant independent of n, is minimax optimal for
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the reconstruction problem. Interestingly, we can derive from [66, 22, 21] that R∗BTL
reco (n) is of order n 1. In

particular, this is significantly smaller than n2, which is the number of entries of M and a trivial upper bound
on the minimax risk.

The rate of order n can be achieved in polynomial-time in the BTL model. Indeed, the Maximum Likelihood
Estimator (MLE) θ̂ is an efficient method that leads to a minimax optimal estimator of M – see e.g. [21]. The
MLE θ̂ is given as the following minimization problem:

θ̂ ∶= argmin
θ′ ∶ 1T θ′=0

∑
i<j
Yij log(

1

ψ(θ′i − θ
′
j)
) + (1 − Yij) log(

1

1 − ψ(θ′i − θ
′
j)
) , (2.6)

which is a convex minimization problem on a vector space. Moreover, the corresponding estimator M̂ of M can
be defined as M̂ij = ψ(θ̂i − θ̂j).

2.2.1.2 The SST model in tournament contexts

While the BTL and noisy sorting models are practical benchmark models, it has been noted that they often
lack realism and that they may not fit the data well. To address these issues, the strong stochastically transitive
model (SST) has been introduced as a much more flexible model [83, 86, 60, 56]. Specifically, it replaces the
stringent parametric assumptions of the noisy sorting and BTL models by non-parametric assumptions with
shape constraints.

Similarly to BTL and noisy sorting models, consider a scenario where we observe an n × n matrix Y of
Bernoulli observations. The upper triangular elements of this matrix are independent, and each entry Yij = 1−Yji
has a Bernoulli parameter Mij . In particular, M is skew-symmetric, that is Mij = 1 −Mij . In SST, it is
additionally assumed that there exists an unknown permutation π∗ such that when the rows and columns of the
matrix M are rearranged according to π∗, the resulting matrix Mπ∗−1π∗−1 is bi-isotonic – its rows and columns
are non-decreasing. Equivalently,

Mπ∗−1π∗−1 ∈MSST , (2.7)

where MSST denotes the set of all matrices that are skew-symmetric and bi-isotonic. In particular, the SST
model encompasses the BTL model since MBTL ⊂MSST. In other words, the matrix with coefficients M ′

ij =

ψ(θi − θj) is skew-symmetric (M ′
ij = 1 −M ′

ji), and it is bi-isotonic up to a permutation π∗ of its rows and
columns. We refer the reader to Figure 2.1 for an example of a 3 × 3 matrix that is both skew-symmetric and
bi-isotonic. In the context of a tournament, the assumption of bi-isotonicity can be explained as follows. If a
player i is better on average than another player j, then i should win more on average than j against any other
player k. More formally, if Mij ≥ 1/2, then Mik ≥Mjk. In the literature, there has also been significant focus
on the scenario where only a proportion λ ∈ [0,1] of the pairs (i, j) is observed – see e.g. [19]. Nevertheless, in
this discussion on the SST model, we assume for simplicity that all the nd observations are available.

Mπ∗−1π∗−1 =
⎛
⎜
⎝

0.5 0.6 0.8
0.4 0.5 0.7
0.2 0.3 0.5

⎞
⎟
⎠

Figure 2.1: An example of a bi-isotonic and skew symmetric matrix.

Similarly to what we presented for the BTL model, a natural question often raised in the literature on the
SST model [83, 19, 60, 59, 56, 71] can be framed as follows: How accurately can we reconstruct the reordered
matrix M from the observed data Y ? To quantify this, consider again the following minimax reconstruction
risk:

R
∗SST
reco (n) ∶= inf

M̂
sup
π∗,M

E [∥M̂ −M∥2F ] , (2.8)

where here, the supremum is taken over all permutation π∗ and over all matrices M such that Mπ∗−1π∗−1 ∈MSST.
Shah et al. [83] established a surprising fact: R∗SSTreco (n) is of the order of n. Consequently, R∗SSTreco (n) and

R∗BTL
reco (n) are of the same order. Hence, from a statistical point of view, it is not much easier to reconstruct M

in the BTL model than in the SST model. In contrast, recall that the SST model has n2 unknown parameters,
while the BTL model contains only n unknown parameters.

1[66, 22, 21] only provide the minimax risk for the estimation of θ, but we could deduce the minimax optimal rate for the
reconstruction M from their result.
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Given a matrix of observation Y , a natural estimator of π∗ and of the sorted matrix Mπ∗−1π∗−1 is the least
square estimator, defined by

(π̂LS , M̂LS
sorted) = argmin

π∈Πn,M̃∈Mbiso

∥Yπ−1π−1 − M̃∥
2
F , (2.9)

where Πn denotes the set of all permutations and Mbiso the set of all bi-isotonic matrices. Then, the corre-
sponding estimator of M is M̂LS = (M̂LS

sorted)π̂LS π̂LS . Shah et al. [83] established that the least square estimator
M̂LS is minimax optimal: its maximum risk of reconstruction is of the order n. Unfortunately, no known
polynomial-time method exists to solve the above minimization problem (2.9), primarily because it involves an
exhaustive search over all n! permutations.

The same authors also propose an efficient estimator, based on global average comparison, which amounts to
ranking the players according to the means of the rows of Y . Essentially, the method consists in first estimating
π∗ by the permutation π̂ which sorts the row means of Y . Then, an estimation of M is derived by minimizing
the least squares over all bi-isotonic matrices:

M̂sorted = argmin
M̃∈Mbiso

∥Yπ̂−1π̂−1 − M̃∥
2
F . (2.10)

In contrast to the least square estimator (2.9), this polynomial-time estimator only achieves a rate of order n3/2.
A lot of effort has since been dedicated to narrowing the computational gap between n3/2 and n. In short,

Chatterjee and Mukherjee [19] provided a method that adapt to the regularity of the matrix Mπ∗−1π∗−1 , or to
the case where it is a block matrix. Nevertheless, they did not improve the rate n3/2 in the worst case. Then,
Mao et al. [60, 59] introduced a polynomial-time method achieving the rate n5/4. To recover π∗, the approach
of [60] involves two main steps. First, the players are sorted according to the means of the rows of Y , as in [83].
This gives a pre-sorted matrix Y ′. Then, the players are compared according to local means of the rows of Y ′

over intervals included in {1, . . . , n}. However, as pointed out by Liu and Moitra [56], [60] did not leverage the
global information available in the whole matrix as they only compare players two by two. Building upon this
remark, Liu and Moitra [56] successfully achieved the better rate n7/6+o(1), using a polynomial-time method
in the case where we have access to no(1) independent samples per entry. These findings are also discussed in
Chapter 4, where we also recover a rate of order n7/6 in the SST model, up to polylogarithmic factor. Hence,
in the SST model, the minimax risk is of order n, but the best known polynomial-time method only achieves
a rate of order n7/6. It is still an open question whether the gap between n and n7/6 is intrinsic to the SST
model, or if it can be further reduced.

Since the least square estimator achieves the minimax risk of order n, it might be tempting to solve the
computational issue with a convex relaxation of (2.9). A first idea is to compute the least-square ∥Y −M̃∥2F over
all the matrices M̃ in the convex hull of {M ∈ Rn×d ∶ Mπ∗−1 ∈M}. Nonetheless, such an estimator is unlikely
to achieve good theoretical guarantees, and we refer the reader to [82] for some negative result – at least in the
bi-isotonic-2D model. Another idea is to use the Birkhoff-von Neumann theorem. Let Pn be the set of doubly
stochastic n × n matrices and consider the following relaxation of (2.9):

M̂REL
sorted = argmin

P ∈PnM̃∈M
∥Y − PM̃∥2F . (2.11)

Both Pn andM are convex sets and the minimization function is convex in P and in M̃ . However, this function
is not jointly convex in (P, M̃), and up to our knowledge, the existence of an efficient procedure solving (2.11)
is an open problem. Moreover, it is unclear whether the minimizer of the relaxed problem (2.11) achieves the
optimal convergence rate of n, as does the least square estimator.

2.2.1.3 Other non-parametric models in crowdsourcing

Beyond tournament problems and motivated by crowdsourcing problems, there has been a recent surge in the
development of new non-parametric models [60, 81, 84, 85, 56, 33]. Before exploring these models, let us first
describe the general framework, which is similar to that of the SST model. Let Mik be any rectangular n × d
matrix whose coefficient are in [0,1]. In crowdsourcing data, n refers to the number of experts or workers, d
represents the number of questions or tasks and Mik denotes the probability that expert i provides a correct
response to question k. In particular, Mik = 1/2 means that expert i gives a random guess of question k
and Mik = 1 means that he perfectly knows the correct answer. Let us assume that for each pair (i, k) of
expert/question, we receive Nik independent Bernoulli observations

Y
(u)
ik = Bern(Mik), u = 1, . . . ,Nik . (2.12)
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The pair (i, k) is observed if and only if Nik > 0 and Y
(u)
ik = 1 means that expert i is correct to question k at

trial u. To take into account possible partial observations, we use a standard poissonization trick. Namely,
we assume that Nik follows a Poisson distribution of parameter λ > 0 – see e.g. [60]. The interesting case is
when λ ≤ 1, since it corresponds to a proportion of missing data of order 1 − λ. Subsequently, we expose the
bi-isotonic-2D, the isotonic and the bi-isotonic-1D models. Each one of these models include some form of shape
constraint on matrix M , since the reconstruction of M is hopeless without any further assumption.

The bi-isotonic-2D model. In the context of crowdsourcing data, the counterpart of the SST model is the
bi-isotonic-2D model. Assume that there exists two unknown permutations π∗ and η∗ such that Mπ∗−1η∗−1 is
bi-isotonic, i.e. that has non-decreasing rows and columns. We writeMbiso for the set of all bi-isotonic matrices,
so that we have

Mπ∗−1η∗−1 ∈Mbiso . (2.13)

To illustrate, Figure 2.2 offers a visual representation of a randomly generated bi-isotonic matrix by displaying
a plot of each of its rows. This model implies that there exists an intrinsic order π∗ that ranks the experts
according to their abilities, and another intrinsic order η∗ that sorts the questions according to their difficulties.
This model encompasses the aforementioned SST model, where the additional assumptions are that π∗ = η∗

and that M is skew-symmetric.
As a theoretical guarantee, the reconstruction loss for a given estimator M̂ is defined as ∥M̂ −M∥2F , which

is analogous to the loss function defined in the SST model. The worst case risk supE[∥M̂ −M∥2F ] for this
loss is taken over all permutation π∗, η∗ and matrices M such that Mπ∗−1,η∗−1 is bi-isotonic. Mao et al. [60]
have shown that when M is a square matrix, that is n = d, the minimax risk in this model is of order n up to
polylogarithmic factors. Specifically, it is of the same order as in the SST model and the bi-isotonic-2D model
is therefore not much statistically harder than SST.

Let us discuss the computational issues in this model. Liu and Moitra [56] established that, when n = d
and λ = no(1), there exists a polynomial-time method that achieves a maximum risk of order n7/6+o(1). It turns
out that the assumption that λ = no(1) can be relaxed to λ = 1, as we show in a corollary in Chapter 4 for the
isotonic model. The case λ = 1 corresponds to the situation where, on average, we have one observation for each
pair (i, k). Meanwhile, λ = no(1) represents a sub-polynomial number of observations for each pair. Overall,
similarly to the SST model, whether the same computational-statistical gap between n and n7/6 is intrinsic to
the problem remains an open question in this model as well.

The bi-isotonic-1D model. A more specific model motivated by crowdsourcing data is the bi-isotonic-1D
model. The stronger assumption is that the matrix M is bi-isotonic up to a single permutation π∗ acting on its
rows. Equivalently,

Mπ∗−1 ∈Mbiso , (2.14)

where (Mπ∗−1)ik = Mπ∗−1(i),k. Alternatively, the bi-isotonic-1D model can be viewed as a special case of the
bi-isotonic-2D model, since it corresponds to the case where the permutation on the columns η∗ is known
and equal to the identity. In practice, knowing η∗ in the bi-isotonic-2D model amounts to assuming that the
statistician has access to the intrinsic difficulty of the questions, which is a stronger assumption. Surprisingly,
in the case where n = d and λ = 1, the reconstruction rate is not better in the bi-isotonic-1D model compared to
the bi-isotonic-2D or SST models. Indeed, Mao et al. [60] established that the minimax risk for reconstruction
is of the order of n, as in the SST and in the bi-isotonic-2D models.

Nevertheless, Mao et al. [60] left a computational-statistical gap in this model: their optimal solution is
unlikely to be computable in polynomial-time, and their efficient method can only reconstruct M at a rate n5/4.
In [60], the main approach is to compare the rows of Y two by two. This is done by computing local means
of the rows over local intervals included in {1, . . . , d}. More recently, Liu and Moitra [56] almost closed the
computational gap in the case n = d and λ = no(1). The authors established a polynomial-time method that
achieves a reconstruction rate of n1+o(1), which is nearly minimax optimal. In contrast to [60], a crucial idea
introduced by Liu and Moitra is to focus on specific intervals before averaging the observations. Namely, for a
given set P of rows, they focus on regions where the mean of all the rows of P changes significantly.

The isotonic model. Lastly, an extension of the bi-isotonic-2D model is the isotonic model [33]. Within this
framework, the only assumption is that all the columns of M are non-decreasing up to an unknown permutation
of the rows π∗. Equivalently, ifMiso denotes the set of all isotonic matrices, we have that

Mπ∗−1 ∈Miso . (2.15)
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Figure 2.2: An example of a bi-isotonic matrix Mπ∗−1 . Each colored line lies in [0,1] and represents a row of Mπ∗−1 .
Since Mπ∗−1 is bi-isotonic, these lines are nondecreasing.

In other words, the isotonic model is a relaxation of the bi-isotoni-2D model, without the assumption that the
rows are non-decreasing up to a permutation η∗. Notably, this makes the isotonic model more flexible, even
if the reconstruction of M becomes statistically harder. To simplify the comparisons with the other models,
assume that λ = 1 and that n = d. Flammarion et al. [33] have shown that the minimax risk for this model
is of the order of n4/3. They also introduced RankScore, a computationally efficient method that is based on
global average comparison and entrywise comparison. However, RankScore only achieves a maximum risk of
the order of n3/2, which is suboptimal. In the worst case, RankScore reaches similar performances to simply
ranking the rows according to their averages. Nevertheless, there is no computational gap in this model and
the rate n4/3 can be reached in polynomial-time, up to polylogs. This is proven in the analysis of the isotonic
model, in Chapter 4. Aside from when n = d, another interesting case is when d = 1, which amounts to assuming
that M is a column vector.

In the case d = 1, this model closely related to a problem of uncoupled isotonic regression, which finds
motivation in optimal transports or social science problems [76, 14]. Assume that we observe the unordered sets
{x1, . . . , xn} and {y1, . . . , yn}, linked by the relation yi = f(xi) + εi for some unknown non-decreasing function
f and noise ε with independent coefficients. As illustrated in [14], the xi and yi can respectively represent the
wage data collected by a governmental agency and the yi the housing prices collected by a bank. In our case,
xi = i, f(xi) = Mπ∗−1(i), and estimating f comes down to estimating the sorted vector Mπ∗−1 . Rigollet and
Niles-Weed [76] have established that the minimax risk for the estimation of f , or Mπ∗−1 , is of the order of
n( log log(n)

log(n) )
2.

Although the three aforementioned models seem structurally similar, they substantially differ from a statistical
point of view. In particular, much more information is available when we assume that the order of the columns
is known in the bi-isotonic-1D model. Figure 2.3 gives an illustration of the difference between the isotonic and
bi-isotonic-1D models by depicting randomly generated matrices M .

Overall, the relations between the three models can be summarized as follows: the isotonic model is an
extension of the bi-isotonic-2D model, which in turn is an extension of the bi-isotonic-1D model. Let us address
unresolved computational-statistical gaps in the literature concerning the reconstruction of M across these three
models. In the isotonic model, [33] left a computational gap between the optimal rate n4/3 and n3/2, in the case
n = d. Concerning the bi-isotonic-1D model, [56] almost closed the gap and achieved a rate of order n1+o(1) in
the case n = d. However, a significant computational gap remained in the bi-isotonic-1D model for all n, d, λ
such that n≪ d. Finally, in the bi-isotonic-2D model, [56] managed to narrow the gap. Nevertheless, whether
it is possible to further reduce the gap between n and n7/6+o(1) remains an open question.
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Figure 2.3: For each model – isotonic (left) or bi-isotonic-1D (right) – the matrices Mπ∗−1 ,Yπ∗−1 , M , Y are respectively
represented in the reading order.

2.2.2 Overview of our contribution
In Chapter 3 and Chapter 4, we close the existing computational gaps in both the bi-isotonic-1D (2.14) and
isotonic (2.15) models, for almost all possible values of n, d and λ. Additionally, we further narrow the gap in
the bi-isotonic-2D (2.13) and SST models.

In what follows, we summarize our main contributions, and we focus our attention on the isotonic and
bi-isotonic-1D models. Recall that Miso and Mbiso denote the sets of all isotonic and bi-isotonic matrices
respectively, and letM be eitherMiso orMbiso. As in the previous section, M represents an unknown matrix
with entries in [0,1], and is such that Mπ∗−1 ∈M for some unknown permutation π∗ of the rows. Consider
some observation Y given by model (2.12).

2.2.2.1 Minimax risk for permutation estimation

As highlighted in Section Section 2.2.1, estimating the matrix M is a significant problem within the ranking
literature [83, 84, 60, 56, 71]. However, the primary focus in ranking is not so much to reconstruct the entire
matrix M , but rather to find a good estimation of the original order π∗. Therefore, we take a different approach
to build an estimator of π∗ and to measure its quality. Given an estimator π̂ of π∗, let ∥Mπ̂−1 −Mπ∗−1∥

2
F be the

permutation loss. In contrast to the reconstruction loss ∥M̂ −M∥2F , this loss quantifies the distance between
the matrix M reordered according to the estimator π̂ and the matrix M sorted according to the ground truth
permutation π∗. In particular, it is not necessary to define an estimator M̂ of the whole matrix M to measure
the quality of a given estimator π̂ of π. We define the minimax risks for both permutation estimation and
matrix reconstruction as

R
∗M
perm(n, d, λ) ∶= inf

π̂
sup

π∗∈Πn
M ∶Mπ∗−1∈M

E[∥Mπ̂−1 −Mπ∗−1∥
2
F ]

R
∗M
reco(n, d, λ) ∶= inf

M̂
sup

π∗∈Πn
M ∶Mπ∗−1∈M

E [∥M̂ −M∥2F ] .

The definition of both of these two risks allows to decipher the difficulty of estimating the permutation π∗ from
the difficulty of reconstructing the whole matrix M .

2.2.2.2 Results

Whether we consider the isotonic (2.15) or bi-isotonic-1D (2.14) model, it turns out that there exists a
polynomial-time estimator π̂ that is nearly minimax optimal, for almost all regimes in n, d and λ. More-
over, any optimal estimator of π∗ can be used to build an optimal estimator of M . Hence, there is no significant



2.2. Ranking problems 29

Bi-isotonic-1D Model (2.14):

n ≲ d1/3 d1/3 ≲ n ≲ d d ≲ n

R∗Mperm nd1/6 n3/4d1/4 n

R∗Mreco nd1/3
√
nd n

Isotonic Model (2.15):

n ≲ d3/2 d3/2 ≲ n

R∗Mperm n2/3
√
d n

R∗Mreco n1/3d n

Figure 2.4: Optimal rates in the bi-isotonic-1D and isotonic models, for all possible values of n, d and λ = 1, up to a
polylogarithmic factor in nd. These rates are achieved by polynomial-time estimators. For further details,
see Chapters 3 and 4, respectively.

computational statistical gap for both permutation estimation and matrix reconstruction, unlike in the SST
and the bi-isotonic-2D models.

Consider for simplicity the regime where λ = 1, and let us discuss the minimax permutation rates summarized
in the tables of Figure 2.4. First, the reconstruction of M is statistically harder than the estimation of π∗.
Indeed, we deduce from Figure 2.4 that R∗Mreco ≳ R

∗M
perm, up to polylogarithmic factors. Essentially, the rate of

reconstruction R∗Mreco can be decomposed into two components: the rate of permutation estimation R∗Mperm and
the rate of reconstructing a sorted matrix, that is when π∗ is known.

To illustrate the rates of permutation estimation, let us consider the case n = 2. In both models, the matrix
M has two rows, with one uniformly above the other. Without loss of generality, assume that M1,k ≥M2,k for
all k. When n = 2, this is the only assumption in the isotonic model. However, in the bi-isotonic-1D model, it
is further assumed that each row M1 and M2 is non-decreasing. This additional assumption explains why the
rate of d1/6 in the bi-isotonic-1D model is much smaller than the rate of

√
d in the isotonic model.

Let us give the intuition of the rate
√
d in the isotonic model. Consider the simple method which compares

the means of the two rows Y1 and Y2. With this method, if the mean of row 1 is larger, then we recover the
true permutation and the loss is equal to 0. Otherwise, we reverse the order of the rows and the permutation
loss is equal to 2∥M1 −M2∥

2
2. It turns out that this simple method achieves the optimal rate

√
d. Subsequently,

we provide the main arguments for this claim. Since row 1 is above row 2, we have that

d

∑
k=1

Y1,k − Y2,k = ∥M1 −M2∥1 +
d

∑
k=1

E1,k −E2,k ,

where Eik = Yik−Mik. Using the Hoeffding inequality for Bernoulli random variables, we deduce that ∣∑dk=1E1,k−

E2,k ∣ ≤ C
√
d for some constant C, with probability at least 0.99. Moreover, since Mik ∈ [0,1] for all i, k, it holds

that
∥M1 −M2∥1 ≥ ∥M1 −M2∥

2
2 .

Hence, if ∥M1 −M2∥
2
2 > C

√
d, then the mean of row 1 is above the mean of row 2 with probability 0.99. On

this high probability event, we recover the true permutation and the loss in square Frobenius norm is equal to
0. Otherwise, when ∥M1 −M2∥

2
2 ≤ C

√
d, the loss is bounded by 2C

√
d. In fact, this upper bound of order

√
d

is optimal in a minimax sense, when n = 2. Moreover, this bound can be extended to larger n, resulting in a
suboptimal upper-bound of n

√
d. Specifically, this is the underlying idea behind the suboptimal rate of order

n3/2 established by Shah et al. [83] in the SST model (2.7). In the bi-isotonic-1D model, we can achieve the
rate d1/6 when n = 2 by using the fact that the two rows M1 and M2 are nondecreasing. See Chapter 3 for more
details.

When both n and d are equal, the rate for estimating the permutation is of order n7/6 in the isotonic model,
and it is achieved by a polynomial time estimator π̂ of π∗. This rate was originally established in the bi-isotonic-
2D or SST model by Liu and Moitra [56], up to a number of samples of the order of no(1). However, in contrast
to [56], our method in the isotonic model presented in Chapter 4 does not require any assumption on the rows
of M . The estimator π̂ can also be used to define an estimator of the matrix M which achieves a reconstruction
rate of order n4/3 in the isotonic model – see Figure 2.4 with n = d. Additionally, we show in Corollary 4.2.5 of
Chapter 4 that, in the bi-isotonic-2D or SST model, it is also possible to derive an estimator of M from π̂ that
achieves a reconstruction rate of order n7/6. This n7/6 rate, as previously mentioned, is the best known rate for
polynomial-time matrix reconstruction or permutation estimation in the bi-isotonic-2D and SST models.

2.2.2.3 General ideas of the procedures

The procedures that we describe in Chapter 3 for the bi-isotonic-1D model and in Chapter 4 for the isotonic
model are substantially different. The former relies on hierarchical clustering with memory, while the latter is
based on a comparison graph. However, it is worth noting that our analysis of the isotonic model builds upon
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Figure 2.5: Example of a hierarchical sorting tree (left), and of the matrix M sorted with the tree (right). V− (resp. V+)
represents a set of group of rows that are below (resp. above) the group G(0).

several elements originally introduced in our analysis of the bi-isotonic-1D model. Subsequently, we give an
informal overview of the two approaches.

In Chapter 3, we aim at building a sorting tree using a top-down strategy, as illustrated in Figure 2.5.
Starting with the complete set of rows [n], we divide it into three subsets (O,P, I) of [n], where O and I
contain rows that are likely to be below and above the median row, respectively. The subset P contains rows
which cannot be classified with high confidence. Then, we recursively divide the subsets O and I, as shown in
the left part of Figure 2.5. When the tree is completed, we obtain a partial ordering on all the rows which can
be used to estimate π∗.

The main difficulty in this procedure is to optimally divide a given set G ⊂ [n] into (O,P, I). We obtain this
by essentially combining techniques ranging from change-point detection to spectral methods. To compute the
subsets (O,P, I) of a given set G, it is also crucial to keep in memory the sorting tree. Indeed, this approach
allows us to use valuable information from the other leaves of the tree to refine the division of G. For instance,
in Figure 2.5, the group G(0) could be further divided using the information that it is sandwiched between the
two sets of rows V− and V+.

In contrast, the method based on a comparison graph in Chapter 4 amounts to iteratively updating a
weighted directed graph. The edges of this graph quantify the level of the comparison between the rows of M .
An edge that points from a row i to another row j means that i should be above j. Moreover, we are more
confident about the order between the rows for which the edges have a larger weight. At the last update of the
graph, we obtain a weighted graph from which we derive an estimator of π∗.

Interestingly, the technique based on a comparison graph is closely related to the method relying on hi-
erarchical clustering. The main connection between the two approaches can be summarized as follows. In a
comparison graph, the core idea is to update the weights of the edges between a given row i and the other rows
in its neighborhood P which is itself computed from the weighted graph. From a broad perspective, at each
iteration, a subset of columns Q̂ ⊂ [d] is computed to reduce the dimension and to compare row i with the
other rows in P using weighted sums. Similarly, the hierarchical clustering approach involves comparing rows
in a set P using weighted sums computed over subsets Q̂. However, instead of updating edges between rows,
the hierarchical clustering approach involves a clustering of P . Each clustering step consists in computing two
subsets L and U of P , such that the rows in set L are provably below the rows in set U . The strong relations
between these two methods suggests that both could be applied to both the isotonic and bi-isotonic-1D models
to achieve the minimax risks up to polylogarithmic factors.

2.3 Change-point detection

Change-point detection has a rich historical background, starting with Wald’s seminal work [95], which has since
inspired significant advancements in the field [68, 89]. As mentioned earlier, detecting change-point is crucial
in a wide range of practical situations, from monitoring daily temperature fluctuations and observing stock
market trends to examining genomic information. In what follows, we start by discussing the univariate case,
where we observe a sequence of real-valued data. Then, we introduce the problem of change-point detection in
high-dimensional time series before moving to our contribution in this setting.

2.3.1 Discussion on the univariate case

In this discussion, we focus exclusively on univariate time series. Assume that we observe a sequence of inde-
pendent real-valued random variables (y1, . . . , yn), with cumulative distribution functions (F1, . . . , Fn). We say
that a change-point occurs at a position τ if the cumulative distribution functions at τ is different from the
previous one, i.e., Fτ−1 ≠ Fτ . In particular, if we know that the number of change-points K is at most equal
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to 1, the question becomes whether the distribution of the data remains stationary over time, or if there is a
detectable change in it. While this non-parametric model encompasses many situations, it is often too broad in
many practical applications [68]. For this reason, the distributions Fi often need to be parametrized.

Henceforth, we assume that for each t = 1, . . . , n, we have the following signal/noise decomposition:

yt = θt + εt ∈ R , (2.16)

where (θt) is an unknown deterministic sequence, and the noise ε1, . . . , εn are i.i.d. centered standard Gaussian
variable N (0,1). In this model, the sequence of change-points (τ1, . . . , τK) corresponds to positions τk where
θτk−1 differs from θτk . For each change-point τk, we define Dk ∈ R as the difference θτk − θτk−1 , representing the
average change in the data. We also define rk as the distance between τk and its closest adjacent change-point,
that is rk = min(τk − τk−1, τk+1 − τk). By convention, we set τ0 = 1 and τK+1 = n + 1. Let us now discuss the
single and multiple change-point detection problems in this setting.

Single change-point detection. Assume that we know that there is at most one change-point, i.e. K ≤ 1.
We are essentially dealing with a hypothesis testing problem, and we aim to test the two following hypotheses:

H0 ∶ There is no change-point
H1 ∶ There is a single change-point at an unknown position τ .

We aim to determine whether there is one change-point or not in the sequence (θt). If a change-point τ exists,
then θt is equal to µ1 if t < τ and to µ2 ≠ µ1 otherwise. In this single change-point model, the original approach
of Hinkley [44] is to maximize the absolute value of the CUSUM statistic

Ct(y) =

√
(t − 1)(n − t + 1)

n
(

1

n − t + 1

n

∑
i=t
yi −

1

t − 1

t−1
∑
i=1
yi) , (2.17)

over all possible positions t = 2, . . . , n. In simpler terms, Ct(y) represents the rescaled difference between the
average of the data over the interval [t, n] and the average over [1, t). The primary idea is that if there is no
change-point, then Ct(y) follows a standard normal distribution N (0,1) for all t. On the other hand, if there is a

change-point at position τ , then Cτ(y) follows a normal distribution with expectation equal to
√
(τ−1)(n−τ+1)

n
D,

where D = µ2 − µ1. In particular, this quantity satisfies:

1
2
rD2

≤
(τ−1)(n−τ+1)

n
D2
≤ rD2 , (2.18)

where r =min(τ, n + 1 − τ).
Detecting τ becomes statistically easier as rD2 increases. It turns out that the quantity rD2 precisely

characterizes the limit of detection in this problem. Recently, Gao et al. [38] established that the change-point
can be detected with high probability, as soon as rD2 ≥ C

√
log log(n), for some constant C that only depends

on the desired probability of error. See also the earlier work of Csörgö and Horváth [26] for a related asymptotic
result. For a more precise result replacing

√
log log(n) by

√
log log(n/r), we refer the reader to the work of

Verzelen et al. [92].

Multiple change-point detection. The problem is more challenging in the case where K is unknown and
arbitrary. To estimate one of the K change-points, one could be tempted to take the maximum over all t of
the absolute value of Ct(y), as in the previous setting with a single change-point. This is the principle of
binary segmentation (BS) [80], but unfortunately, this does not lead to a consistent estimator of one of the
change-points. Subsequently, we briefly outline two classes of methods that aim to overcome the limitations of
BS.

A wide range of methods are based on a variant of binary segmentation: wild binary segmentation (WBS),
which is a top-down approach that was introduced by Fryzlewicz [36]. In WBS, we first draw at random some
random intervals [s, e) ⊂ [n]. Then, we maximize the local CUSUM statistic

Cs,t,e(y) =

√
(t − s)(e − t)

e − s
(

1

e − t

e−1
∑
i=t
yi −

1

t − s

t−1
∑
i=s
yi) ,

over all possible t ∈ [s, e) and all randomly chosen intervals [s, e). If the maximum is above some threshold in
absolute value, then we take the corresponding t as the first estimator of a change-point. Then, we subdivide
[n] into [1, t − 1] and [t, n], and we recursively look for other potential change-points in these two intervals.
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Another class of methods is based on penalized least square criteria [92, 98]. The primary idea is to estimate
a piecewise constant sequence θ̂ through the following minimization problem

θ̂ = argmin
θ′∈Rn

∑
i

(yi − θ
′
i)

2
+ λpen(θ′) , (2.19)

where λ is a tuning parameter and pen(θ′) ≥ 0 is a function of θ′ that aims at penalizing the variations of θ′. In
particular, Wang et al. [98] define pen(θ′) as the number of positions i where θ′i−1 ≠ θ

′
i. While the minimization

problem (2.9) is not convex, θ̂ can still be computed efficiently using dynamic programming techniques – see
e.g. algorithm 1 of Friedrich et al. [35].

Similarly to the single change-point detection problem, the minimal condition of detection of a given change-
point τk in this context depends on the quantity rkD2

k, where we recall that, whenK ≥ 2, rk =min(τk−τk−1, τk+1−

τk) and Dk = θτk − θτk−1 . Wang et al. [98] established that, as soon as rkD2
k ≳
√
log(n) for all k, we can detect

all the change points with high probability. This finding was further refined by Verzelen et al. [98], who showed
that the minimal condition needed of detection of change-point τk is rkD2

k ≳
√
log(n/rk).

2.3.2 The multivariate case

In the multivariate case, the observations y1, . . . , yn belong to the vector space Rp, with arbitrary dimension
p ≥ 1. We observe, for t = 1, . . . , n

yt = θt + εt ∈ Rp . (2.20)

In contrast to the univariate case (2.16), θt is a vector in Rp and the random variables ε1, . . . , εn are i.i.d.
multivariate standard Gaussian random variables N (0, Ip). In this context, the kth change-point τk is still
defined as θτk ≠ θτk−1, and Dk = θτk − θτk−1 is a vector in Rp. We write sk for the sparsity of Dk, that is
sk = ∥Dk∥0. In simpler terms, sk represents the number of non-zero entries of Dk.

Among the literature on multivariate time series, a lot of effort has been focused on adapting to the sparsity
of Dk [103, 47, 57]. Similarly to the univariate case, we look for the minimal value of rk∥Dk∥

2
2 such that the

change-point τk can be accurately detected. In this context, this value depends on n, rk, p and sk.
Liu et al. [57] considered the single change-point case (K ≤ 1), where the purpose is to detect a potential

change-point τ . Similarly to the univariate case, let r =min(τ, n − τ), D = θτ − θτ−1 and s = ∥D∥0. The authors
established that the change-point τ can be detected with high probability as soon as r∥D∥22 is larger than
Cmin(

√
p log log(8n), s log( p

s2
log log(8n))), where C is a constant that only depends on the desired probability

of detection. In particular, when p = 1, we recover the result of Gao et al. [38] mentioned earlier in the univariate
case.

In the case of multiple change-points (K ≥ 1), Wang and Samworth [103] introduced a method based on
sparse projections. However, their procedure provably detects the change-points only under a strong condition
on rk∥Dk∥

2
2. More recently, Hu et al. [47] relaxed this condition within a specific asymptotic framework, using

an approach based on a sparse likelihood score. Nevertheless, the condition of detection proven in [47] is not
optimal, at least up to a logarithmic factor.

In addition to multivariate mean change-point detection, the broader topic of change-point detection in
high-dimensional time series also encompasses many other problems. These include problems such as covariance
change-point detection [96] or network change-point detection [97]. In each case, the data consist of a high-
dimensional sequence, where the underlying signal is piecewise constant with a specific structure.

2.3.3 Overview of our contribution

In Chapter 5, we establish minimal conditions of detection of change-points in several problems, including
covariance change-point detection, non-parametric change-point detection and sparse multivariate mean change-
point detection. Subsequently, we focus on our contribution to mean change-point detection in multivariate time
series, and we provide a summary of our work on this problem. We start by describing the minimal condition
of detection before discussing the ideas of our bottom-up approach that achieves minimax optimal guarantees.

As mentioned earlier, the minimal condition that the change-points have to satisfy to be detected depends on
rk∥Dk∥

2
2. Intuitively, if rk∥Dk∥

2
2 is very large, then τk can easily be detected. On the other hand, the detection

of τk becomes impossible when ∥Dk∥2 approaches 0. In Chapter 5, we show that the minimal condition of
detection of all the change-points τk is given by

rk∥Dk∥
2
2 ≥ C

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rk
)
⎞

⎠
+ log (

n

rk
)

⎤
⎥
⎥
⎥
⎥
⎦

, (2.21)



2.3. Change-point detection 33

for all k = 1, . . . ,K. Here, C is a constant that only depends on the desired probability of detecting all the
change-points. More precisely, if all the change-points satisfy (2.21), then there exists an estimator (τ̂k) of (τk)
that satisfies with high probability:

1. We recover the true number of change-points, that is K̂ =K

2. The estimated change-point τ̂k is not too far from the true change-point τk, in the sense that τ̂k ∈ [τk −
rk/2, τk + rk/2]

The above two properties are arguably the minimal desirable guarantees could be expected from an estimator
of change-points, when they are all assumed to be detectable. Our analysis made in Chapter 5 takes into account
change-points that possibly do not meet condition (2.21). Informally, the estimator is required to detect the
change-points that satisfy (2.21), and not to detect any change-point twice. Additionally, the intervals of
detection provided in Chapter 5 are more precise than [τk − rk/2, τk + rk/2].

Interestingly, the condition of detection (2.21) can be approximated to rk∥Dk∥
2
2 ≫ sk ∧

√
p, up to the log

factors. Notably, the sparsity sk of Dk makes the detection problem substantially easier when sk ≤
√
p.

To detect the change-points when they satisfy condition (2.21), we use a bottom-up approach in Chapter 5.
Informally, our method is based on the aggregation of several tests, that are performed at different location and
at different scale. First, we start by trying to detect change-points on the intervals of the type [l−1, l], based on
the observation yl−yl−1 ∈ Rp. Then, for every potential change-point detected, we remove a small neighborhood
around it. Next, we try a greater scale r = 2, and we perform local tests on the remaining intervals of the form
[l − r, l + r). We continue this process for increasing scales r, until we reach a maximum scale r of order n/2.
In the end, the estimator corresponds to positions within the intervals that have been removed through the
process.

In Chapter 5, the analysis of this estimator involves a union bound on events controlling the local tests on the
intervals [l−r, l+r). For each of these intervals, we control the corresponding high-dimensional CUSUM statistic
with techniques that are similar to those used in the detection of a sparse signal – see e.g. [30]. Ultimately,
this ensures with high probability that we detect the change-points τk that satisfy condition (2.21), at scales r
smaller than rk/2.

To conclude, the change-points of a high-dimensional time series can be detected under the minimal condition
(2.21), which adapts to the sparsity sk of the change-points. Moreover, the bottom-up approach described in
Chapter 5 is able to accurately detect with high probability all the change-points that satisfy this condition.





Chapter 3

Ranking a permuted matrix under the
bi-isotonic-1D model

Motivated by crowdsourcing applications, we consider a model where we have partial observations from a bivariate
isotonic n × d matrix with an unknown permutation π∗ acting on its rows. Focusing on the twin problems of
recovering the permutation π∗ and estimating the unknown matrix, we introduce a polynomial-time procedure
achieving the minimax risk for these two problems, this for all possible values of n, d, and all possible sampling
efforts. Along the way, we establish that, in some regimes, recovering the unknown permutation π∗ is considerably
simpler than estimating the matrix.

This chapter is based on [74].

3.1 Introduction
We consider a crowdsourcing problem with n experts and d questions. For an unknown matrix M , Mi,j ∈ [0,1]
stands for the ability of expert i at question j. For the purpose of calibrating the model, we receive partial
and noisy observations of the matrix M and our goal is to rank the experts according to their ability. Earlier
models in crowd-labelling problems or in the related problems of pairwise comparisons typically assumed that
the matrix M belongs to a parametric model [11, 58, 87, 27, 12], a prominent example being Bradley-Luce-Terry
model. While there has been significant progress in this direction, such models do not tend to fit well real-world
data [63, 4].

To address this issue, there has been a recent interest in the class of permutation-based models [16, 81,
83, 60, 19, 33, 72, 85] where it is only assumed that the matrix M satisfies some shape-constrained conditions
before one (or two) permutations acts on the rows (and possibly on the columns) of M . Quite surprisingly, it
has been established in [83] that, at least in some settings, the matrix M can be estimated at the same rate in
those non-parametric models as in classical parametric models by relying on the least-square estimator on the
class of permuted bi-isotonic matrices. Unfortunately, the corresponding class of matrices is highly non-convex
and no polynomial-time algorithm is known for computing this least-square estimator. Furthermore, known
computationally efficient procedures such as spectral estimators [16, 18] only achieve suboptimal convergence
rates. This has led several authors to conjecture the existence of computational-statistical trade-offs [33, 84].
Despite recent progress in this direction [60, 56], the fundamental limits of polynomial-time algorithms for this
class of problems remain largely unknown.

Arguably, for most applications, the primary objective is to recover the underlying permutation π∗ acting on
the rows or equivalently to rank the experts accordingly. While estimation of the full matrix M is closely related
to ranking, it is also of a quite different nature as argued below. In this work, we investigate the estimation
of the permutation π∗ by characterizing the minimax risk for estimating π∗ in a permuted shape-constrained
model, introducing a polynomial-time procedure nearly achieving this risk bound. As a byproduct, we also
disprove the existence of a computational-statistical gap for the reconstruction of the matrix M .

3.1.1 Problem formulation

A bounded matrix B ∈ [0,1]n×d is said to be bi-isotonic if it satisfies Bi,j ≤ Bi+1,j and Bi,j ≤ Bi,j+1 for any
i ∈ [n − 1] and j ∈ [d − 1]. Henceforth, we write CBISO for the collection of such n × d bounded bi-isotonic
matrices.

In this work, we assume that the matrix M is a row-permuted bi-isotonic matrix as in [60, 56]. In other
words, up to a single permutation π∗ of [n], the matrix Mπ∗−1 defined by (Mπ∗−1)i,j = (Mπ∗−1(i),j) is bi-isotonic.

35



36 Chapter 3. Ranking a permuted matrix under the bi-isotonic-1D model

From a modeling viewpoint, this amounts to assuming that the d questions are ordered from the most difficult
question to the most simple question. The permutation π∗ is not necessarily unique, but the corresponding
permuted matrix Mπ∗−1 is unique. Despite that, we refer, with a slight abuse of terminology, to π∗ as the oracle
permutation. With this definition, π∗−1(i) corresponds to any i-th smallest row (or equivalently expert to use
the crowdsourcing terminology) in the matrix M . In the following, the ith row of M is referred to as expert i,
whereas the kth column is referred to as question k.

We consider an observation-scheme where the statistician has partial access to noisy observations Y of M
such that

Y =M +E , (3.1)

where the entries of E are centered, independent, subGaussian - see definition 2.2 of [94] - with Orlicz norm at
most ζ, but are not necessarily identically distributed. In particular, this model encompasses binary observations
Yi,k ∼ Ber(Mi,k) which arise in crowd-labelling problems, in which case we have ζ = 1. In the following, we
refer to ζ as the noise level.

As usual in the literature –e.g. [60], we use the Poissonization trick to model the partial observations. Given
some λ > 0, which is henceforth referred as the sampling effort, we have N = Poi(λnd) observations of the form

(xt, yt), t =,1 . . . ,N, (3.2)

where the position xt is sampled uniformly in [n] × [d], and yt = Mxt + Ext is an independent observation of
matrix Y of (3.1) at position xt. Conditionally to N , this scheme is equivalent to a uniform sampling scheme
with replacement [61]. If λ < 1, then a specific entry of Y is sampled at least once with probability 1−e−λ which
is close to λ. More generally, λ corresponds to the expected number of times a specific entry of Y is observed,
so that λ > 1 would correspond to the situation where entries are sampled multiple times.

Since our aim is to recover the permutation π∗ from the partial observations (xt, yt), we consider, for some
estimator π̂, the following error metric

l(π̂;π∗) = ∥Mπ̂−1 −Mπ∗−1∥
2
F , (3.3)

where ∥.∥F stands for the Frobenius norm. This loss quantifies the distance between the matrix M ordered
according to the oracle permutation π∗ and the matrix M ordered according to the estimated permutation.
When π∗ is not unique, the error l(π∗, π∗

′
) between any two oracle permutations is zero. If π̂ and π∗ only differ

by a transposition or equivalently if the ranking π̂ and π∗ only differ on two experts, then l(π̂;π∗) is twice the
square Euclidean distance between the corresponding rows of M . More generally, l(π̂;π∗) interprets as the sum
over all i = 1, . . . , n of the square Euclidean distance between the i-th smallest row of M according to π̂ and
according to the oracle ranking π∗. In constrast to other metrics between permutations such as the Kendall tau
distance, – see e.g. [12, 61, 13] – the loss function l depends on M . Our choice of this loss function l results in
a higher penalty for inverting a pair of rows that are distant in L2 norm compared to inverting another pair of
rows that are closer in L2 norm.

The loss (3.3) is ubiquitous when one aims at estimating the matrix M in Frobenius norm, that is building
an estimator M̂ such that ∥M̂ −M∥2F is as small as possible –see e.g. [83, 60, 56]. Indeed, estimating π∗ by π̂
is a first step towards building an estimator of M by doing as if Mπ̂−1 was bi-isotonic. It turns out that the
error in ∥M̂ −M∥2F decomposes as the sum of two terms, one of them being l(π̂, π∗) while the other one does
not really depend on π̂. Conversely, an estimator M̂ can be easily transformed into an estimator π̂ whose loss
l(π̂, π∗) is controlled by ∥M̂ −M∥2F . See [83, 60] for further discussions. In summary, controlling l(π̂;π∗) is
important in order to evaluate to what extent π∗ is well estimated, but it is also the key stepping stone towards
a good estimation of the matrix M .

In some works, the authors directly consider distances on the symmetric group of permutations. Examples
include the Kendall tau distance dKT (π,π′) = ∑(i,j)∶π(i)<π(j) 1{π′(i) > π′(j)} or the l∞ distance ∥π − π′∥∞ =
maxi∈[n] ∣π(i) − π

′(i)∣ –see [12, 61] in the noisy sorting model. However, those distances are not well suited
to handle the non-parametric class of bi-isotonic matrices, because to control them we would need to make
assumptions on the separation between the rows of the matrix M –see Appendix A of [83].

Equipped with this notation, we consider the minimax risk of permutation recovery as a function of the
number n of experts, the number d of question, the sampling effort λ, and the noise level ζ.

R
∗
[n, d, λ, ζ] = inf

π̂
sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E [∥Mπ̂−1 −Mπ∗−1∥
2
F ] , (3.4)

where Πn stands for the collection of all permutations of [n]. In particular, our general aim is to tightly control
this minimax risk and, if possible, to provide a computationally efficient procedure achieving this minimax risk.
Although our primary interest lies in the estimation of π∗, we also consider the minimax estimation risk of M

R
∗
est[n, d, λ, ζ] = inf

M̂
sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E [∥M̂ −M∥2F ] . (3.5)
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as studied in [83, 56, 60, 71] in order to assess the performances of our computationally efficient procedures.

3.1.2 Related work and open questions
The most relevant body of work to the current chapter is that on estimating square matrices M satisfying the
so-called strong stochastic transitivity class (SST) [16, 83]. A matrix M belongs to the SST class if (i) M is
skew-symmetric that is M +MT = eeT where e is the constant vector of size n and (ii) there exists a common
permutation π∗ of [n] such that row and column-permuted matrix Mπ∗−1π∗−1 is bi-isotonic. This class is suited
for considering pairwise comparisons problems. Shah et al. [83] consider the full observation setting, namely
a setting where each entry of the matrix M is observed once in noise - which is in some sense akin to λ = 1
in our Poissonian scheme1. They proved that the minimax risk for estimating M in square Frobenius distance
is, up to logarithmic terms, of the order of n and is achieved by the corresponding least-square estimator over
the SST class. Unfortunately, this estimator cannot be efficiently computed. They also analyzed an efficient
spectral estimator achieving the rate n3/2. This rate is also achieved [83] by the near-linear time Borda count
algorithm CRL that simply ranks the individuals according to the row sums of the observations and then plugs
the corresponding permutation to estimate M . See also [19] for related results. This led some authors [33, 84] to
conjecture the existence of a

√
n computational gap for SST matrices and for other shape-constrained matrices

with unknown permutation.
In crowdsourcing problems where M ∈ [0,1]n×d, non-parametric models [60] assume that the matrix M is

bi-isotonic up to a permutation π∗ of the rows (experts) - and sometimes also up to a permutation τ∗ of the
columns (questions)2. In this chapter as in this literature review, we focus however solely on the case where M
is bi-isotonic up to a permutation π∗ of the rows (experts). Mao et al. [60] have established the minimax risk
R∗est[n, d, λ,1] for estimating M in the specific case where n ≥ d. In the arguably most interesting regime of
partial observations λ ≤ 1, they prove that this minimax risk is of the order of n/λ∧ (nd). This rate is achieved
by the inefficient least-square estimator. Furthermore, Mao et al. [60] were the first to narrow the conjectured
computational gap by introducing a new efficient procedure called one-dimensional sorting. In the square case
n = d with full observations, these procedures achieve (up to log terms) the rate n5/4 for estimating the matrix
M , thereby improving over the previous n3/2 barrier.

Recently, this rate was improved by Liu and Moitra [56] in a specific instance of the problem where n = d and
one has access to a sub-polynomial number of noisy independent samples of the complete matrix M from (3.1)
– which is akin to our Poissonian scheme for λ being sub-polynomial in n, d. They introduce a polynomial-time
procedure achieving the rate n1+o(1) for permutation recovery and matrix estimation which, up to the factor
no(1), turns out to be minimax optimal for both problems. As a consequence, in this very specific instance, the
computational gap turns out to be nonexistent.

There remain important open problems to characterize the estimation of π∗ and M in crowdsourcing prob-
lems.

• Beyond the case n ≥ d handled by Mao et al. [60], the minimax risk R∗[n, d, λ,1] of estimation of the
permutation π∗ - as well as the minimax risk R∗est[n, d, λ,1] of estimation of the matrix M - are unknown.
In particular, in the rectangular case where n≪ d, the number of questions exceeds the number of experts
is both relevant from a practical [85] and a conceptual perspective. Indeed, the analysis of the least-square
estimator of [60] and related works is based on entropy calculation of the class of permuted bi-isotonic
matrices. While the minimax risk R∗est[n, d, λ,1] turns out to be (up to logarithm terms), characterized
by this entropy, this is not always the case for the estimation of π∗ as many matrices M share the same
permutation π∗. As a consequence, even if we leave aside computational constraints, pinpointing the
optimal risk R∗[n, d, λ,1] for estimating π∗ requires quite different arguments.

• Beyond the toy "over-complete" observation model in the square case n = d of Liu and Moitra [56], where
each entry is sampled at least no(1) times, it remains unclear whether there is a computational gap for
general rectangular settings with partial observations.

.

3.1.3 Our contributions
Echoing with these open problems, we make the following contributions in this work:

• First, we characterize (up to polylogarithmic multiplicative terms) the minimax risk R∗[n, d, λ, ζ] of
permutation recovery, this, for all possible number of experts n ≥ 1, number of questions d ≥ 1, noise level

1In the Poissonian scheme, each entry is observed at least once with probability 1 − e−λ.
2This would correspond to the situation where the corresponding ordering of the questions is also unknown.
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n ≤ d1/3 d1/3 ≤ n ≤ d n ≥ d

Permutation estimation: R∗[n, d,1,1] nd1/6 n3/4d1/4 n

Matrix estimation: R∗est[n, d,1,1] nd1/3
√
nd n

Figure 3.1: Summary of the minimax risks (up to poly-logarithmic terms) for permutation estimation (R∗[n, d,1,1]) and
matrix estimation (R∗est[n, d,1,1]) in the specific cases where λ, ζ = 1.

ζ ≥ 0, and almost all sampling efforts λ > 0. When n ≪ d, we prove in particular that R∗[n, d, λ,1] ≪
R∗est[n, d, λ,1] in all non-trivial regimes, highlighting that when n ≪ d, the problem of permutation
recovery is statistically easier than the problem of matrix estimation.

• Moreover, we introduce a polynomial-time procedure achieving this risk bound, thereby establishing that
there does not exist any significant computational-statistical trade-off for the problem of recovering a
single permutation π∗. While our procedure borrows some of the ingredients of Liu and Moitra [56], we
need to introduce several new ideas to deal with the significantly more involved case n ≪ d. Since an
estimator π̂ of π∗ can be easily combined with a least-square estimator of a bi-isotonic matrix to estimate
the matrix M –see e.g. [83, 60] – we also deduce a polynomial time estimator M̂ which nearly achieves
the minimax estimation risk R∗est[n, d, λ,1], thereby proving that this problem does not either exhibit any
computational-statistical trade-off, thereby answering the open problem of [60].

To provide a glimpse of our results, let us describe the minimax risks on the arguably most interesting case
where the noise level ζ is of order 1 as in the Bernoulli observation setting and where λ < 1 which corresponds
to a partially observed matrix. In Section 3.4, we establish that the minimax risk R∗[n, d, λ,1] of permutation
recovery is (up to polylogarithmic multiplicative terms) of the order of

[
nd1/6

λ5/6
⋀
n3/4d1/4

λ3/4
+
n

λ
]⋀nd, (3.6)

whereas the minimax reconstruction risk R∗est[n, d, λ,1] is of the order

⎡
⎢
⎢
⎢
⎢
⎣

√
nd

λ
⋀

nd

λ2/3(n ∨ d)2/3
+
n

λ

⎤
⎥
⎥
⎥
⎥
⎦

⋀nd. (3.7)

We display in Figure 3.1 a summary of our results in the specific case where we also have λ = 1 on top of ζ = 1,
and will discuss this case more in details, as it highlights one of our main findings.

A first comment is that the minimax risk of matrix estimation R∗est[n, d,1,1] can be interpreted through
the covering numbers of the space of permuted bi-isotonic matrices as in [60]. For n ≥ d both minimax risks -
R∗[n, d,1,1], R∗est[n, d,1,1] - are of the order of n so that recovering the permutation π∗ is as hard as estimating
the matrix M (up to logarithmic factors). This is the regime studied in the literature, see [60, 56]. When the
number d of questions is large - n≪ d - then the regimes are more tricky. There are two of them, depending on
whether n is larger than d1/3 or not, and in both regimes R∗est[n, d,1,1] is significantly larger than R∗[n, d,1,1].
More regimes appear when we do not restrict ourselves to λ = 1, ζ = 1. This complex picture, as well as the fact
that R∗[n, d,1,1]≪R∗est[n, d,1,1] for n≪ d - and also in many other configurations of λ, ζ - highlights the fact
that the difficulty of estimating π∗ is not governed by the size of the space of permuted bi-isotonic matrices.
As a consequence, even if we leave computational aspects aside, it is not clear that the least-square estimator
of [60] achieves optimal risk for estimating the permutation π∗ and, in any case, entropy-based arguments would
lead to suboptimal bounds, at least if we use the same arguments as in [60].

As a byproduct of our results, we also establish the minimax risk - and prove that it is achievable in
polynomial time - for another loss function termed l∞(π̂, π

∗) (see (3.30)) put forward in [19, 84, 60] - and we
also disprove a conjecture regarding a computational-statistical gap for this loss. See Subsection 3.4.4.

As our minimax results remain valid in the noiseless case (ζ = 0) where one has access to partial observation
of the matrix M itself, we are able to tightly decipher the approximation error which is due to the partial
sampling of the matrix M from the stochastic error stemming from noisy observations. In some way, this
complements the works of Pananjady et al. [71] on the effect of the design in the specific case where the sampled
entries are sampled uniformly.

3.1.4 Proof techniques and further comparison with the literature
In order to build a polynomial-time procedure nearly achieving the minimax permutation risk in the partial
observation setting (3.2), we first consider the so-called full observation setting where one has access to poly-
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Figure 3.2: Example of a hierarchical sorting tree.

logarithmic number Υ of samples Y (0), Y (1), . . . , Y (Υ) of the complete n×d matrix. This setting is akin to that
of Liu and Moitra [56] when they handled the specific square case n = d with noise level ζ = 1.

For this reason, our estimators π̂HT and π̂WM introduced in Section 3.3 share some features with the
procedure of [56]. From a broad perspective, our procedure and theirs build a hierarchical sorting tree using
a top-down approach as depicted in Figure 3.2. We start from the complete set [n] of all experts and build a
trisection (O,P, I) of [n], where O (resp. I) contains experts that provably are below (resp. above) the median
expert, whereas P contains all the experts for which we cannot certify with high confidence whether they are
above or below the median. Then, we recursively trisect the sets O and I as depicted in Figure 3.2. At the
end of the algorithm, we obtain a partial ordering on all the experts which can be used to estimate the oracle
permutation π∗.

Then, the problem of building a suitable estimator boils down to introducing a suitable trisection procedure.
We could naively do this by comparing the row-sums of the observed matrix Y which amounts to comparing
the mean ability of each expert, but this is well known to lead to suboptimal performances by a factor

√
d –see

e.g. [60]. To improve over this rate, we need to compare the experts according to convex combinations of suitable
questions. As in [56], we start by selecting suitable blocks of questions by detecting the high-variation regions
of the mean empirical expert and combine them with spectral algorithms to select suitable convex combinations
of questions. Still, we have to refine significantly their spectral procedure to handle the rectangular case n≪ d.
Equipped with these refinements, which are involved technically, but are built on the ideas developed in [56], we
arrive at the estimator π̂HT (see Section 3.3) that turns out to be minimax optimal in some regimes of (n, d, ζ).

Unfortunately, this method turns out to be suboptimal in many regimes, for instance for mild values of
n ∈ [d1/3, d]. Informally, this is due to the fact that our first estimator π̂HT as well as that of Liu and Moitra [56]
build an oblivious hierarchical sorting tree. This means that the trisection method decomposes a group G(0)

of experts in the hierarchical sorting tree in (O,P, I) only using the experts in G(0) of the matrix Y . In the
related problem of hierarchical clustering, most top-down procedures also share this feature. It turns out that
the observations of other experts can help improving the trisection of G(0). In particular, sets of experts that
are close in the ordering –such as G(1) and G(−1) in Figure 3.2– are sometimes valuable to improve the selection
of a suitable convex combination of questions. We emphasize this phenomenon and provide more intuition on
it in Section 3.3, when we introduce a new estimator π̂WM that builds upon the memory of the sorting tree.
This new procedure π̂WM turns out to be near minimax optimal for all values of (n, d, ζ).

Coming back to the partial observation setting (3.2), we introduce in Section 3.4 a reduction scheme which
boils down to reducing the number of questions in order to come back to a full observation model for a sub-
matrix of size n × d− where d− is possibly much smaller than d. Then, relying on the full observation setting
described above, we estimate the permutation π∗ based on the corresponding reduced matrix. In comparison to
the full observation model, we can suffer from an additional bias term which arises in the reduction process. To
handle this, we develop a slight variant π̂WM−SR of π̂WM –see 3.5.7 for details. The resulting procedure turns
out to nearly achieve minimax permutation recovery risk for all values (n, d, ζ) and all values of λ. Plugging
our procedure to estimating the matrix M , we close all the computational gaps pointed out in Mao et al. [60]
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for the problem of matrix estimation with a single unknown permutation - see Subsection 3.4.3.

3.1.5 Notation and organization of the chapter

In the following, c, c1, . . . stand for numerical positive constants that may change from line to line. Given a
vector u and p ∈ [1,∞], we write ∥u∥p for its lp norm. For a matrix A, ∥A∥F and ∥A∥op stand for its Frobenius
and its operator norm. We write ⌊x⌋ (resp. ⌈x⌉) for the largest (resp. smallest) integer smaller than (resp.
larger than) or equal to x.

Although M stands for an n × d matrix, we extend it sometimes in an infinite matrix by setting Mi,k = 0
when either i ≤ 0 or k ≤ 0 and Mi,k = 1 when either i ≥ n + 1 and k > 0 or k ≥ d+ 1 and i > 0. The corresponding
infinite matrix Mπ∗−1 which is obtained by permuting the n original rows is still bi-isotonic and takes values in
[0,1]. We shall often work with sub-matrices of M that are restricted to a subset P ⊂ [n] and Q ⊂ [d] of rows
and columns, in which case we write that the corresponding matrix M ′ belongs to RP×Q. More precisely, M ′ is
such that, M ′

i,j =Mi,j for any i ∈ P and any j ∈ Q.
In the following, we write that two sequences or functions u and v satisfy u ≲ v, if there exists a universal

constant such that u ≤ cv.

In Section 3.2, we first consider the complete observation problem, where one has access to a poly-logarithmic
number of independent samples of the complete noisy matrix Y . We characterize the minimax risk for per-
mutation recovery and prove that it is achieved by a polynomial-time procedure. In section 3.3, we describe
the corresponding polynomial-time procedure. In Section 3.4, we deal with the problem of partially observed
matrix in the model (3.2).

3.2 Analysis of the full observation problem

As explained in the introduction, and following [56], we first consider a slightly different problem where we fully
observe a Υ-sample Y = (Y (0), . . . , Y (Υ−1)) of the noisy matrix according to the model Y = M + E in (3.1).
Here, Υ should be considered as a polylogarithms in n and d. This is of course not very realistic in applications,
but it is simpler to first present our algorithmic procedure in this setting, and it also enables more direct
comparison to [56]. We will explain later in Section 3.4, how one can transform data in the more realistic
partial observation scheme from (3.2) to this full observation scheme. We will then prove that the algorithm
applied to the transformed data is near minimax optimal.

We recall that M is a bi-isotonic matrix, up to an unknown permutation π∗ of its rows. Besides, the noise
matrix E is made of independent mean zero subGaussian entries, with Orlicz norm less than or equal to ζ.

3.2.1 Minimax lower bounds

Before considering ranking procedures, we characterize the minimax risk for the problem of ranking with full
observations. For the purpose of the minimax lower bound, we assume that the noise matrix E in (3.1) is made
of independent normal random variables with variance ζ2. For a permutation π∗ and a matrix M such that
Mπ∗ ∈ CBISO, we respectively denote P(π∗,M) and E(π∗,M) the corresponding probability and expectations with
respect to the Υ independent observations of Y . Define

RF (n, d, ζ) = ζ
2
[
nd1/6

ζ1/3
∧
n3/4d1/4

ζ1/2
∧ n
√
d ∧

n2/3
√
d

ζ1/3
+ n] . (3.8)

The following minimax lower bound is stated in a setting where one has access to a polylogarithmic number
Υ of full samples to be in line with the analysis of the next subsection. Still, we can forget about the dependency
in Υ at first reading.

Theorem 3.2.1. There exists a universal constant c such that the following holds for any n ≥ 2, d ≥ 1, ζ > 0,
and κ > 2. Provided that the sample size Υ is less than or equal to logκ(2nd/ζ), we have

inf
π̂

sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E(π∗,M)∥Mπ̂−1 −Mπ∗−1∥
2
F ≥ c [log

−κ
(nd/ζ)RF [n, d, ζ]⋀nd] . (3.9)

In fact, this theorem turns out to be a consequence of the minimax lower bound in the partial observation
scheme –see Section 3.4. Together with the risk upper bounds of the next section, (3.9) characterizes, up to
polylogarithmic terms, the minimax risk for estimating π∗. The term nd in (3.9) is related to the fact that the
loss ∥Mπ̂−1 −Mπ∗−1∥

2
F cannot be larger than nd because the entries of M are in [0,1].
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Mild noise level. The risk bound RF (n, d, ζ) involves five different terms, some of them being significant only
when ζ is small in comparison to n and d. As these regimes with very small ζ are arguably quite specific, and
to simplify the discussion, we will now detail the minimax lower bound in the specific case when ζ = 1.

RF (n, d) =RF (n, d,1) = (nd
1/6
)⋀(n

3/4d1/4) + n . (3.10)

In particular, we recognize three main regimes in (3.10) that depend on n and d. When the number of experts
is relatively small (n ≤ d1/3), the risk is proportional to nd1/6. Specifying the result to n = 2, one checks that
a square distance d1/6 is necessary to distinguish two experts. As a consequence, a suitable estimator π̂ should
be able to coherently rank experts that are distant by more than d1/6 in squared Frobenius norm, and then to
achieve a risk smaller than nd1/6. For larger n ≥ d1/3, it is in fact possible to build upon the large number of
experts to improve the comparisons between experts using in particular spectral methods. For this reason, the
optimal risk is proportional to n for n ≥ d. For an intermediary number of experts n ∈ [d1/3, d], the risk is of
the order of n3/4d1/4. Our main contribution is the construction of a polynomial-time procedure that achieves
these risk bounds, see below.

Low noise level. For mild values of ζ, the minimax risk RF (n, d, ζ) has the same form as RF (n, d), up to
some factors that depend on ζ. However, for very small ζ, the risk becomes qualitatively different. For example,
we have RF (n, d, ζ) ≍ ζ2n

√
d when ζ ∈ (0, 1

n∨d ]. In fact, this rate is quite easy to achieve by a polynomial time
algorithm in this extreme case. It is proven in various works – see e.g. [83] that ranking the experts according
to the row sum of the matrix correctly compares two experts as long as their square distance is at least ζ2

√
d

(up to logarithmic terms). As a consequence, this simple procedure leads to an error ζ2n
√
d. While ζ2n

√
d is

highly suboptimal in most realistic regimes, it turns out to be tight for extremely low level of noise. Finally,
the intermediary rate RF (n, d, ζ) ≍ ζ5/3n2/3

√
d is achieved for slightly larger values of ζ, but it is less clear how

to interpret it.

3.2.2 Minimax upper bounds
In the following, we fix a parameter δ ∈ (0,1) that will correspond to a small probability. We write ζ− = ζ ∧ 1,
where ζ is the noise level. In this section, we analyze two estimators π̂HT and π̂WM of π∗ that are described in
Section 3.3 and more formally defined in Section 3.4.5. The first estimator π̂HT is based on the construction of
an oblivious hierarchical sorting tree. We will later explain all the ingredients of this procedure. In contrast, the
second estimator π̂WM relies on the construction of a hierarchical sorting tree with memory. Both procedures
have a computational complexity of the order of logc( nd

ζ−δ
)(n3 + nd2), for some c > 0, which makes them

polynomial time - unlike the least square procedure e.g. from [60].

Theorem 3.2.2. There exist three numerical constants c, c′, and c0 such that the following holds. Fix δ > 0
and assume that Υ ≥ c0 log8 (nd/δ). For any permutation π∗ ∈ Πn and any matrix M such that Mπ∗−1 ∈ CBISO,
the oblivious hierarchical sorting tree estimator π̂HT defined in the next section satisfies

∥Mπ̂−1
HT
−Mπ∗−1∥

2
F ≤ cζ

2 log10.5 (
2nd

δζ−
)[
n2/3d1/3

ζ2/3
∧
nd1/6

ζ1/3
∧ n
√
d + n] ,

with probability at least 1 − c′n log9( nd
δζ−
)δ.

If we take δ = ζ2(nd)−1 in the above expression, we easily deduce - reminding that the entries of M are in
[0,1] - the following risk bound

E [∥Mπ̂−1
HT
−Mπ∗−1∥

2
F ] ≤ cζ

2 log10.5 (
2nd

ζ−
)[
n2/3d1/3

ζ2/3
∧
nd1/6

ζ1/3
∧ n
√
d + n] .

Comparing this bound with (3.10) in the specific case where ζ = 1, we observe that π̂HT achieves the optimal
risk nd1/6 for small n ≤ d1/3 and the optimal risk n for large n ≥ d. Unfortunately, for mild n ∈ [d1/3, d], the risk
bound is of the order of n2/3d1/3, which is significantly higher than the minimax lower bound n3/4d1/4. To close
this gap, we turn to the more refined estimator π̂WM .

Theorem 3.2.3. There exist three numerical constants c, c′, and c0 such that the following holds. Fix δ > 0 and
assume that Υ ≥ c0 log8 (nd/(δζ−)). For any permutation π∗ ∈ Πn and any matrix M such that Mπ∗−1 ∈ CBISO,
the hierarchical sorting tree estimator with memory π̂WM satisfies

∥Mπ̂−1
WM
−Mπ∗−1∥

2
F ≤ [c log

11
(
2nd

δζ−
)RF [n, d, ζ]]⋀nd , (3.11)

with probability at least 1 − c′n log9( nd
δζ−
)δ.
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As for the previous theorem, this high probability result can be turned into a risk bound by taking δ =
ζ2/(nd). In particular, this risk bound matches, up to polylogarithmic terms, the minimax lower bound (3.9)
for all possible values of n, d, and ζ. As a consequence, the estimator π̂WM is nearly minimax and this ranking
problem does not exhibit any computational gap.

In [56], the polynomial-time estimator π̂LM of Liu and Moitra achieves the minimax risk in the specific
square where n = d and ζ = 1. In all the other regimes, no polynomial-time procedure was previously proved
to achieve the minimax risk. In fact, even if we do not restrict our attention to polynomial-time procedures,
least-square type procedures studied e.g. in [60] provably achieve the minimax risk only in the regime when
n ≥ d. As alluded in the introduction - see Equations (3.6) and (3.7), the minimax risks for estimating π∗ and M
differ when n ≤ d, so that achieving the optimal risk for π∗ is not possible using the classical entropy arguments
as in [83, 60]. This highlights the fact that estimating the permutation π∗ is significantly more challenging in
the regime n ≤ d - both from a statistical and computational perspective - than in the regime n ≥ d handled
in [56, 60].

Consequences for the estimation of the matrix M . Provided that we have estimated π∗ with Υ − 1
independent samples, we could use the last sample Y (Υ) to estimate the matrix M by minimizing the least-
square criterion B̂ = argminB∈CBISO

∥Y
(Υ)
π̂WM

−B∥2F and setting M̂ = B̂π̂−1
WM

. Since the set of bi-isotonic matrices
is convex, this estimator is computable efficiently [53]. As argued in Proposition 3.3 of [60] and often used in
the ranking literature [84, 19, 72], it turns out that, with high probability, the reconstruction error ∥M −M̂∥2F is
(up to polylogarithmic terms) the sum of the expected permutation loss E [∥Mπ̂WM

−Mπ∗∥
2
F ] and the minimax

reconstruction risk of a bi-isotonic matrix infB̂ supB∈CBISO
E[∥B̂ − B∥2F ] where Y = B + E′ and E′ is made of

independent subGaussian random variables. Hence, based on π̂WM and Theorem 3.2.3, it is easy to construct
a polynomial-time estimator of M that is also near minimax-optimal in the sense of Equation (3.5). We will
further build upon this remark in Section 3.4 when we come back to the problem of partial observations of the
matrix.

3.3 Description of the hierarchical sorting estimators

Let us now describe the construction of the estimators π̂HT and π̂WM of π∗. The construction is quite long
and involves several subroutines. For this reason and to ease the understanding of proof details, we also provide
a more formal and longer definition in Section 3.4.5. Afterwards, we comment on the different steps of the
procedure and on their connection to the literature in Subsection 3.3.3.

Define τ∞ = ⌈4 ⋅ 107 log7( nd
δ(ζ−)2 )⌉ and t∞ = ⌈log(n)/ log(2)⌉. We define Υ∗ = 6τ∞t∞ for the total number of

independent samples required for the computation of these two estimators.
Hence, we are given independent samples Y = (Y (0), . . . , Y (Υ

∗−1)). From a broad perspective, both proce-
dures are based on the construction of the recursive sorting tree as illustrated in Figure 3.2. Starting from the
root of the tree which corresponds to the set [n] of all experts, we build a partition O, P , I, of [n] in such a
way that, with high probability, all the experts in O are below the median expert of [n], all the experts in I
are above the median expert of [n], while the remaining experts in P are those for which we are not able to
decipher whether they are below or above the median expert of [n].

Having trisected [n], we recursively trisect the subsets O and I- see Figure 3.2. Each time, the size of the
groups O and I is divided by at least 2. Hence, at depth t∞, all the groups of O and I have size at most 1. For
each depth t = 0, . . . , t∞ − 1, we use 6τ∞ new samples. The construction of the tree is described in TreeSort
–see Algorithm 1 and is based on the routine BlockSort which performs the trisection of a group into (O,P, I).

Let us now explain how to deduce an estimator π̂ from the final hierarchical sorting tree T . Indeed, the
hierarchical sorting tree T induces an order on its leaves as follows. For any groups (O,P, I) sharing the same
parent, we say that any descendent of O in the tree T is below P , which, in turn, is below any descendent of I in
T . This endows a complete ordering on the leaves of the tree T . Denote G = (G1, . . . ,Gα) the sequence of leaves
of the final tree ranked according to this complete order. For any a ∈ [α], we define the lower bound π−G(Ga)
and the upper bound π+G(Ga) of the ranks of experts in Ga by π−G(Ga) ∶= ∑a′<a ∣Ga′ ∣ and π+G(Ga) ∶= ∑a′≤a ∣Ga′ ∣.
Finally, we sample π̂ arbitrarily in such a way that

π̂(Ga) = [π
−
G(a) + 1, π

+
G(a)] . (3.12)

In other words, the estimator π̂ ranks the groups Ga according to the ordering of the groups endowed by T
and, given that, ranks the experts Ga uniformly at random. See Section 3.4.5 for a more formal definition of
the ordering.
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3.3.1 Description of the trisection of a leaf G into (O,P, I) with BlockSort

The purpose of BlockSort is to build a trisection of a group G of experts into (O,P, I) where O is made of
experts that are, with high probability, below the median expert in G and I is made of experts which are, with
high probability, above this median expert. It turns out that this construction is based on τ∞ iterations of a
procedure called DoubleTrisection which is the backbone of our procedure. Intuitively, we shall iteratively
detect subgroups of experts that are below (resp. above) the median expert of G which, after τ∞ iterations,
will allow us to obtain O and I.

For technical reasons, our definition is slightly more intricate. We shall simultaneously build two collec-
tions (Oτ , Iτ) and (Oτ , Iτ) of groups, the second one being more conservative. We start with empty sets for
(O0, I0,O0, I0) = ∅. Then, at each step τ , we will consider the remaining set of experts G ∖ (Oτ ∪ Iτ). Define
γ = ⌊∣G∣/2⌋ − ∣Oτ ∣ for the presumed rank of the median expert of G inside G ∖ (Oτ ∪ Iτ). Then, using 6 inde-
pendent samples, we apply DoubleTrisection(Y,T ,G ∖ (Oτ ∪ Iτ), γ) to compute four subsets (Lτ , Uτ) and
(Lτ , Uτ). With high probability, it turns out that Lτ ⊂ Lτ is made of experts below the median expert of G
and Uτ ⊂ Uτ is made of experts above the median expert of G. This allows us to update as follows

Oτ+1 = Oτ ∪Lτ , Iτ+1 = Iτ ∪Uτ , Oτ+1 = Oτ ∪Lτ , Iτ+1 = Iτ ∪Uτ . (3.13)

The procedure is summarized in Algorithm 2 below.

Algorithm 1 TreeSort(Y)

Require: 6τ∞t∞ samples Y = (Y (0), . . . , Y (6τ∞t∞−1))
Ensure: A tree T and an estimator π̂
1: Initialize T as the tree with only the root [n]
2: for t = 0, . . . , t∞ − 1 do
3: Take 6τ∞ samples Yt = (Y (6tτ∞), . . . , Y (6(t+1)τ∞−1))
4: Initialize T ′ = T
5: for All the leaves G at depth t corresponding to O

or I as in Figure 3.2 do
6: Set (OG, PG, IG) = BlockSort(Yt,T ,G)
7: Add (OG, PG, IG) to the tree T ′

8: end for
9: Update T = T ′

10: end for
11: Set π̂ ∶= π̂(T ) as in (3.12)
12: return T and π̂

Algorithm 2 BlockSort(Y,T ,G)

Require: 6τ∞ samples Y = (Y (0), . . . , Y (6τ∞−1)),
the tree T , a leaf G in T

Ensure: A partition of G into (O,P, I)

1: Set γ = ⌊∣G∣/2⌋ and O0, I0, O0, I0 = ∅
2: for τ = 0, . . . , τ∞ − 1 do
3: Take 6 samples Yτ = (Y (6τ), . . . , Y (6τ+5))
4: set γ = ⌊∣G∣/2⌋ − ∣Oτ ∣
5: (Lτ , Uτ), (Lτ , Uτ) =

DoubleTrisection(Yτ ,T ,G ∖ (Oτ ∪ Iτ), γ)
as in Algorithm 3

6: Update Oτ+1 = Oτ ∪ Lτ , Iτ+1 = Iτ ∪
Uτ , Oτ+1 = Oτ ∪Lτ , Iτ+1 = Iτ ∪Uτ

7: end for
8: return (Oτ∞ ,G ∖ (Oτ∞ ∪ Iτ∞), Iτ∞)

3.3.2 Description of the double trisection procedure
We now describe the trisection procedure DoubleTrisection. For this purpose, we first provide a few defini-
tions.

3.3.2.1 Definitions

In this subsection, we write Y for one data set sampled according to (3.1). For the sake of simplicity, we often
omit the dependence of Y in the definitions. We write D for the set of all dyadic numbers: D = {2k ∶ k ∈ Z} and
we define the sets R = D ∩ [1, d] and H = D ∩ [ ζ

2

nd
,1]. The collection R corresponds to the possible scales, that

is the number of questions under consideration, whereas the collection H corresponds to the possible heights of
variations.

For all r ∈R, we write Qr = {1, r + 1,2r + 1, . . . , ⌊dr ⌋ r + 1} for the regular grid of questions with spacing r. If
P ⊂ [n] is a set of experts, we denote y(P ) as the mean of the vectors Yi,⋅ for i ∈ P , that is, for all k ∈ [d], we
have yk(P ) =

1

∣P ∣ ∑i∈P Yi,k. For any r ∈R, we define Z(Y,P , r) as the aggregation of the matrix Y on blocks of

questions of size r and with lines restricted to P . More formally, for any i ∈ P and l ∈ Qr, we have

Zi,l(Y,P , r) =
1
√
r

l+r−1
∑
k=l

Yi,k and Zi,l(Y,P , r) =
1
√
r

l+r−1
∑
k=l

yk(P ) . (3.14)

Both matrices are of size ∣P ∣× ∣Qr ∣. Note that, in the above definition, Zi,l(Y,P , r) and Zi,l(Y,P , r) are rescaled
by
√
r so that the subGaussian norm remains at most ζ. For any subset Q ⊂ Qr, we also write Z(Y,P ,Q, r) for

the sub-matrix of Z(Y,P , r) restricted to columns in Q.
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Given a matrix Z ∈ RP×Q, a vector w ∈ RQ+ with non-negative components and i, j in P , we say i is
(Z,w)-above j (or equivalently that j is (Z,w)-below i) if the projection of Zi,⋅ on the direction w is larger
than the projection of Zj,⋅ on w, that is ⟨Zi,⋅ − Zj,⋅,w⟩ > 0, where ⟨., .⟩ stands for the standard inner product
between vectors. Now, for γ ∈ {1, . . . , ∣P ∣}, we can consider the γ-th expert iγ ∈ P such that there are exactly
γ − 1 experts which are (Z,w)-below iγ . Given a tuning parameter β > 0 to be fixed below, we then define the
(Z,w, γ, β)-trisection of P on direction w with respect to pivot index γ and matrix Z as the sets:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Uw ∶= U(Z,w, γ, β) = {i ∈ P ∶ ⟨Zi,⋅ −Ziγ ,⋅,
w
∥w∥2 ⟩ ≥ β

√

log (2 ∣P ∣
δ
)}

Lw ∶= L(Z,w, γ, β) = {i ∈ P ∶ ⟨Zi,⋅ −Ziγ ,⋅,
w
∥w∥2 ⟩ ≤ −β

√

log (2 ∣P ∣
δ
)} .

(3.15)

Hence a (Z,w, γ, β)-trisection on direction w and pivot γ consists of two possibly empty disjoint subsets U and
L which are respectively taken among the γ −1 experts (resp. the ∣P ∣−γ) which are (Z,w)-above (resp. (Z,w)-

below) the expert iγ , with a margin of the order of
√

log(∣P ∣/δ). Remark that if β < β then U(Z,w, γ, β) ⊂

U(Z,w, γ, β), which means that the trisection of P on direction w becomes more conservative as β increases.
In fact, (3.15) turns out to be the cornerstone or our procedure. Since the coordinates of w are non-

negative, the corresponding row-wise weighted sums of the aggregation E[Z(Y,P , r)] of the signal matrix M
are also ordered according to the oracle permutation. In other words, the k-th expert in P has the k-th highest
value of the expectation of this weighted sum.

For r ∈ R and Q ⊂ Qr, choosing w = 1Q in (3.15) amounts to trisecting P according to the average of the
observations over all questions in ⋃l∈Q[l, l + r). In that case, we write for simplicity (LQ, UQ) = (L1Q

, U1Q
).

When Q = Qr and w = 1Q, then (3.15) simply amounts to ranking experts according to their average over all
the questions. As explained in the introduction, the global average does not lead to optimal performances. This
is why most following steps in the algorithm amount to selecting suitable blocks Q of questions and directions
w.

In the following, the tuning parameters β are set as follows.

βtris = 4
√
2ζ , βtris = 8

√
2ζ . (3.16)

3.3.2.2 Description of the double trisection procedure

Recall that the purpose of DoubleTrisection is to select subsets (L,U) and (L,U) of a group P of experts in
such a way that L ⊂ L, U ⊂ U , and experts in L (resp. in U) are with high probability below (resp. above) the
γ-th expert of P .

For that purpose, we have 6 independent samples (Y (s))s=1,...,6 sampled from (3.1) at our disposal. Fix any
height h ∈H and any scale r ∈R. DoubleTrisection relies on the following steps also described in Algorithm 3.

1. Selection of a suitable subset of questions. Using the first sample Y (1), we first select a subset
Q̂ ⊂ Qr. We postpone the definition of the selection procedure to the next subsection. We will introduce
two approaches for this Q̂ ∶= Q̂cp(P ,h, r) as in (3.20) or Q̂ ∶= Q̂WM(T , P , h, r) as in (3.26). These two
definitions respectively correspond to the oblivious estimator π̂HT and to the estimator with memory
π̂WM.

2. Average-based trisection. Using the second sample Y (2), we consider the corresponding aggregated
matrix Z(2) ∶= Z(Y (2), P , Q̂, r) as defined in (3.14) which focuses on the selected blocks of questions Q̂
. Then, we consider experts whose corresponding row sums on Z(2) is unusually large or small. More
formally, we compute the (Z(2),1Q̂, γ, βtris)-trisection and the (Z(2),1Q̂, γ, βtris)-trisection of P as defined
in (3.15) and where the tuning parameters βtris and βtris are defined in (3.16). This allows us to obtain
(LQ̂, UQ̂) and (LQ̂, U Q̂).

3. PCA-based trisection. Then, we focus on the conservative subset of remaining experts P̃ = P ∖LQ̂∪U Q̂.
Relying on the samples Y (3), Y (4), Y (5), Y (6), we build the corresponding aggregated matrices Z(s) ∶=
Z(Y (s), P̃ , Q̂, r) restricted to the subset P̃ for s = 3,4,5. In principle, we would like to aim at the right
singular value of E[Z(3)−Z

(3)
] as this would give us a nice direction w on which we could apply (3.15). For

technical reasons to be explained later, we take a roundabout way, by first computing a vector v̂ indexed
by P̃ which, in principle, is not too far from the left singular value of E[Z(3) − Z

(3)
]. More precisely, we

compute v̂ as follows

v̂ ∶= v̂(P̃ , Q̂, r) = argmax
∥v∥2≤1

[∥vT (Z(3) −Z
(3)
)∥

2
2 −

1

2
∥vT (Z(3) −Z

(3)
−Z(4) +Z

(4)
)∥

2
2] . (3.17)
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The right-hand side term in (3.17) allows us to deal with the fact that the entries of the noise matrix E
in (3.1) are possibly heteroskedastic. Although there exist more elegant workarounds for heteroskedastic
noise (e.g. PCA [106]), the analysis in those works does not apply in our non-parametric setting. Moreover,
v̂ in (3.17) corresponds to the leading eigenvector of a square symmetric matrix and can therefore be com-
puted efficiently. Then, we consider the image ẑ = v̂T (Z(5)−Z

(5)
) ∈ RQ̂ of v̂. After this, we threshold ẑ and

take the absolute values of the components. Thus, we get ŵ+ ∈ RQ defined by (ŵ+)l = ∣ẑl∣1∣ẑl∣≥2ζ
√

2 log(2∣Q̂∣/δ)

for any l ∈ Q̂. Finally, we consider the last aggregated sample Z(6) ∶= Z(Y (6), P , Q̂, r) on the set P ⊃ P̃ of
experts. We apply these weights ŵ+ to compute the row-wise weighted sums of Z(6) and discard experts
whose corresponding weighted sums is unusually small or large. More formally, we apply (Z(6), ŵ+, γ, β)-
trisection and (Z(6), ŵ+, γ, β)-trisection of P as defined in (3.15). Doing so we obtain (Lŵ+ , Uŵ+) and
(Lŵ+ , U ŵ+) respectively.

In the definition of Z(6) we consider the whole set of experts P instead of the remaining of experts P̃
that have not been discarded because otherwise we should have needed to update the value of γ when
applying (3.15).

Finally, we define the trisections (L,U) (resp. (L,U)) as the union of the corresponding discarded subsets
of experts based on 1Q̂ and ŵ+, this for all possible height h ∈H and scale r ∈R. We recall that the definition
of Q̂ was depending on h and r.

⎧⎪⎪
⎨
⎪⎪⎩

(L,U) = (⋃(h,r)∈H×RLQ̂(h, r) ∪Lŵ+(h, r),⋃(h,r)∈H×RUQ̂(h, r) ∪Uŵ+(h, r))

(L,U) = (⋃(h,r)∈H×RLQ̂(h, r) ∪Lŵ+(h, r),⋃(h,r)∈H×RU Q̂(h, r) ∪U ŵ+(h, r)) .
(3.18)

This whole routine for computing (L,U), (L,U) is referred to as DoubleTrisection and is summarized in
Algorithm 3. We underline that L ⊂ L ⊂ P and U ⊂ U ⊂ P as we took βtris < βtris.

Algorithm 3 DoubleTrisection((Y (s))s=1,...,6,T , P , γ)

Require: 6 samples (Y (s))s=1,...,6, a set P , a tree T , a pivot index γ ∈ [1, . . . , ∣P ∣]
Ensure: Two trisections (L,U) and (L,U) of P

1: Start from L,U,L,U = ∅
2: for h ∈H, r ∈R do
3: Compute Q̂ ∶= Q̂cp(P ,h, r) as in (3.20) or Q̂ ∶= Q̂WM(T , P , h, r) as in (3.26) using sample Y (1)

4: Let Z(s) ∶= Z(Y (s), P , Q̂, r), for s ∈ {2,6} be the aggregated matrices of samples defined as in (3.14)
5: Let (LQ̂, UQ̂), (LQ̂, U Q̂) be resp. the (Z(2),1Q̂, γ, β) and the (Z(2),1Q̂, γ, β)-trisections of P as in (3.15)
6: Define P̃ = P ∖ (LQ̂ ∪U Q̂) and the aggregated samples Z(s) ∶= Z(s)(Y (s), P̃ , Q̂, r) for s ∈ {3,4,5}
7: Compute the PCA-like direction v̂ ∶= v̂(P̃ , Q̂, r) as in (3.17)
8: Compute ẑ = v̂T (Z(5) −Z

(5)
) and define ŵ+ by (ŵ+)l = ∣ẑl∣1∣ẑl∣≥2ζ

√
2 log(2∣Q̂∣/δ)

for any l ∈ Q̂

9: Let (Lŵ+ , Uŵ+), (Lŵ+ , U ŵ+) be resp. the (Z(6), ŵ+, γ, β) and the (Z(6), ŵ+, γ, β)-trisections of P as in
(3.15)

10: Update L = L ∪Lŵ+ ∪LQ̂, U = U ∪Uŵ+ ∪UQ̂, L = L ∪Lŵ+ ∪LQ̂, U = U ∪U ŵ+ ∪U Q̂
11: end for
12: return (L,U), (L,U)

To finish the definition of the estimator, it remains to describe the selection procedures for the suitable
blocks of questions that are used in Line 3 of Algorithm 3. As explained above, we consider two procedures
Q̂ ∶= Q̂cp(P ,h, r) as in (3.20) or Q̂ ∶= Q̂WM(T , P , h, r) as in (3.26) - which respectively apply to the oblivious
estimator π̂HT and to the estimator π̂WM with memory.

3.3.2.3 Definition of Q̂cp

We start with Q̂cp(P ,h, r). The corresponding estimator π̂HT is called an oblivious hierarchical sorting tree
estimator because Q̂cp only depends on the restriction of the data to P . As a consequence, the corresponding
BlockSort procedure (see Algorithm 2) which builds a trisection of a group G of experts into three subgroups
(O,P, I) only depends on the observations on this set G of experts. In other words, the recursive construction
of the hierarchical sorting tree estimator is completely oblivious of the rest of the tree. Up to our knowledge,
this feature is shared by most hierarchical clustering algorithms.
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Fix some height h ∈ H and r ∈ R. Intuitively, Q̂cp(P ,h, r) amounts to focusing on the subset of questions
around which the empirical mean expert y(P ) has a high-variation. We provide some intuition on the rationale
of this approach in the next subsection. More precisely, we define the CUSUM statistic:

r̃ = 8 [(
32ζ2

∣P ∣h2
log( 2d

δ
)) ∨ r] and Ĉk,r̃(P ) =

1

r̃
(
k+r̃−1
∑
k′=k

yk′(P ) −
k−1
∑

k′=k−r̃
yk′(P )) . (3.19)

In a nustshell, Ĉk,r̃(P ) is the empirical variation of y(P ) at question k and at scale r̃ ≥ r. Then, we define
D̂cp as the set of questions where the CUSUM statistic is larger than h/4, and Q̂cp ⊂ Qr for the corresponding
subset of blocks or questions of size r.

D̂cp = {k ∈ [d] ∶ Ĉk,r̃(y(P )) ≥
h

4
} and Q̂cp = {l ∈ Qr ∶ D̂cp ∩ [l, l + r) ≠ ∅} . (3.20)

In (3.19), the choice of r̃ ≥ r is due to the fact that we need to compute an empirical mean Ck,r̃(y(P )) on
enough questions so that its standard deviation is small compared to h.

3.3.2.4 Definition of Q̂WM

Finally, we describe Q̂WM(T , P , h, r) which corresponds to the estimator π̂WM . The set P is a subset of a leaf
G of the tree T and we write t for its depth. As illustrated in Figure 3.2, there is a natural order on the nodes
of T at depth t that have been either obtained as subsets of type O or I in BlockSort (Algorithm 2). We
can index these nodes according to the ordering by setting G(0) = G and then G(1), G(2),. . . as the following
groups. Similarly, G(−1), G(−2),. . . stand for the groups preceding G(0). See Figure 3.2 for an illustration. In
fact, with high probability, for any a, all the experts in G(a+1) are above the expert in G(a). As a consequence,
the observations in G(1) and G(−1) can bring some information on the behavior of the experts in P ⊂ G(0).

Fix r ∈R and h ∈H. Define r̃ ∈R as r̃ = 4(⌈29 log(4d∣R∣/δ) ζ2

∣P ∣h2
⌉dya∨r), where ⌈x⌉dya = 2⌈log2(x)⌉. As before,

r̃ ≥ r stands for the scale which is required if we want to estimate the variation of y(P ) with a standard error
small compared to h.

Now, we consider any scale rcp ∈ [4r,2r̃] ∩R. The rationale is that, if rcp < r̃, we can reduce the standard
deviations of the empirical means by considering an average over experts in neighboring groups. Define the
upper neighborhood V+rcp and lower neighborhood V−rcp as the set of groups above G and below G that are
necessary to have enough experts at scale rcp.

a+WM =min{a ∶ ∣G(1)∣ + ⋅ ⋅ ⋅ + ∣G(a)∣ ≥ 211ζ2 log(4d∣R∣/δ)
rcph2 } and V

+
rcp =

a+WM

⋃
a=1

G(a) ; (3.21)

a−WM =min{a ∶ ∣G(−1)∣ + ⋅ ⋅ ⋅ + ∣G(−a)∣ ≥ 211ζ2 log(4d∣R∣/δ)
rcph2 } and V

−
rcp =

−1
⋃

a∈−a−
WM

G(a) . (3.22)

For a given subset P ⊂ G, we define the corresponding CUSUM statistic Ĉ
(ext)
k,rcp

computed on the questions
[k − rcp, k + rcp) and using the empirical mean observations in V+rcp ∪ V

−
rcp if r < 2r̃ and in P if rcp = 2r̃:

Ĉ
(ext)
k,rcp

=
1

rcp

⎧⎪⎪
⎨
⎪⎪⎩

∑
k+rcp−1
k′=k yk′(V

+
rcp ∪ V

−
rcp) −∑

k−1
k′=k−rcp yk′(V

+
rcp ∪ V

−
rcp) if rcp ∈ [8r,2r̃)

∑
k+rcp−1
k′=k yk′(P ) −∑

k−1
k′=k−rcp yk′(P ) if rcp = 2r̃

(3.23)

If rcp = 2r̃, this new definition of the CUSUM with memory matches the definition (3.19) in the previous
paragraph. For rcp < 2r̃, we are not able to average on enough expert in P . To deal with this issue, we average
on a suitable number of neighboring experts.

Beside considering questions around which the variations of y(P ) are large enough, we also check whether,
on the corresponding regions, the width of P , that is the difference between the best expert and the worst expert
in P is high enough. Given a question k ∈ [d], we define ∆̂

(ext)
k,rcp as the difference between the locals average on

[k − rcp, k + rcp) of the neighborhoods of G that is

∆̂
(ext)
k,rcp =

1

2rcp

k+rcp−1
∑

k′=k−rcp
yk′(V

+
rcp) − yk′(V

−
rcp) . (3.24)

Since the groups G(1),. . . , G(2) are above the best expert in P and since the groups G(−1), G(−2),. . . are below
the worst expert in P , this statistic ∆̂

(ext)
k,rcp overestimates the width of P . In the next subsection, we will explain

why it is relevant to consider the width of P .
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We are now equipped to define the subsets D̂WM(T , P , h, r) of suitable questions and the corresponding
Q̂WM(T , P , h, r) of corresponding blocks.

D̂WM = {k ∈ [d] ∶ ∃rcp ∈ [4r, r̃] ∩R s.t. Ĉ
(ext)
k,2rcp

≥
h

16
and ∆̂

(ext)
k,rcp ≥

h

16
} ; (3.25)

Q̂WM = {l ∈ Qr ∶ D̂WM ∩ [l, l + r) ≠ ∅} . (3.26)

In other words, D̂WM is made of questions for which there exists a scale rcp such that simultaneously the
empirical variations Ĉ

(ext)
k,2rcp

at scale 2rcp is at least of order h and the empirical width at scale rcp is at least of
order h.

3.3.3 Comments on the procedure and relation to the literature
These twin procedure are quite involved and combine several ingredients, some of them being already used by
Liu and Moitra [57]. In particular, they introduced the key ideas of localization of the suitable blocks of questions
through change-point detection on the mean expert and of a spectral clustering scheme for dividing blocks of
experts. Still, we need to add several key elements in order to deal with the arguably more involved setting
where n ≤ d. We describe below how our procedure compares to [57] and highlight also the main differences
and new ideas. Also, despite the fact that our procedure is very involved, it remains computationally efficient.
Overall, the full procedure requires O[logc( nd

ζ−δ
)(nd2 + n3)] operations for some c > 0. Indeed, each of the main

steps of the algorithm correspond to matrix multiplications and computations of the largest eigenvector of a
square symmetric matrix.

In this subsection, we discuss three key steps of the algorithm: (i) the selection of blocks of questions
corresponding to the high-variation regions of the average expert in the group as in the definition of Q̂cp, (ii)
construction of the weights vector w+ by a spectral procedure, (iii) the use of neighboring groups in Q̂WM .

3.3.3.1 Detecting high-variation regions of the average expert

Recall that, for a fixed r ∈ R and h ∈ H, Q̂cp selects blocks of questions in which the variations (3.19) Ĉk,r̃(P )
of the average y(P ) at question k and at scale r̃ ≥ r is higher than h/4.

To explain the rationale behind this choice, let us first consider a toy example depicted in Figure 3.3. Assume
that the group P is made of two subgroups of experts U∗ and L∗ and that all the experts in U∗ and all the
experts in L∗ are identical. Also, assume that the corresponding rows only differ on r consecutive questions
by h and are otherwise identical. As illustrated in Figure 3.3, it turns out that the expected average expert
m(P ) = E[y(P )] needs to vary by h at scale r near the block of questions on which the two groups of experts
are differing. This is due to the fact that both the rows corresponding to U∗ and L∗ are isotonic and that the
row of U∗ is always larger or equal to that of L∗. As a consequence, by restricting our attention to the blocks
of questions corresponding to high-variation regions of m(P ) (or in practice y(P )), we are able to much reduce
the dimension of the problem and thereby to improve our ability to distinguish different experts.

Beyond this toy example, we show in Lemma 3.5.10 that there exists a suitable scale r ∈ R and a suitable
height h ∈H such that, by restricting our attention to blocks of questions of size r such that the expected average
expert m(P ) varies by at least h/2, we are able to retain a significant proportion of the differences between
experts in P . In other words, focusing on regions of high-variation of y(P ) in the blocks Q̂cp is, at least for
some scale and some height, a suitable dimension reduction technique. This phenomenon was already observed
in [56] and their procedure also uses such dimension detection techniques. In this chapter, we also build upon
this idea, which has also important consequences, in a related yet different manner, in the rectangular case
where n ≤ d.

If we do not apply the spectral clustering sorting steps in π̂HT , that is, if we do not compute v̂ and ŵ+

in DoubleTrisection, then we would get a risk bound for π̂HT of the order of ζ5/3nd1/6 instead of that of
Theorem 3.2.2. In other words, the dimension reduction in Q̂cp is alone sufficient to recover the optimal risk in
the case where d is quite large and ζ is mild - namely n ≤ ζ2/3d1/3 and ζ ∈ [1/d,

√
d].

3.3.3.2 On the spectral estimation of the weights

In this subsection, we explain how the computation of ẑ in (3.17) and the corresponding weights ŵ+ allow to
improve over the ζ5/3nd1/6 rate. Again, we start with a motivating toy example depicted in Figure 3.4. As
previously, we consider a situation where P can be decomposed into two subgroups U∗ and L∗ of the same
size. The corresponding rows L∗ are block-constant with blocks of questions of size r and increased by h at
the end of each block of questions. On the other hand, the corresponding lines of U∗ are, in each block of
questions, either equal to the rows of L∗, or are exactly at a distance h above. These last blocks of questions
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Figure 3.3: In this toy example, the group P is only made of two types of experts, those in U∗ and those in L∗. The
high-variation region of m(P ) corresponds to the questions on which U∗ and L∗ differ.

are the only ones which are informative when it comes to distinguishing the best experts in the group - namely
U∗ - from the worst experts in the group - namely L∗. Some of the blocks corresponding to high-variation
regions of the expected average row m(P ) do not convey any information on the difference between U∗ and L∗

– see Figure 3.4. In this example, at scale r, all the blocks of size r are to be detected by the high variation
dimension reduction step, that is Q̂cp = Qr. At the second step, we consider the corresponding aggregated
matrix Z −Z at scale r as defined in (3.14). To be more specific, let us assume that ∣L∗∣ = ∣U∗∣ = 3. Then, Z −Z
is a 6 × 8 matrix whose expectation is of the form of the right panel in Figure 3.4.

E[Z −Z] =
1

2

√
rh

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 0
0 −1 −1 0 0 −1 0 0
0 −1 −1 0 0 −1 0 0
0 1 1 0 0 1 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 3.4: In this toy example, the group P is only made of two types of experts U∗ and L∗ with ∣L∗∣ = ∣U∗∣ = 3.

In this specific example, the rank of this expected matrix is one and some of its columns are completely
useless to decipher experts in U∗ from experts in L∗. In contrast, taking w as a right singular vector associated
to the largest singular value of this matrix would allow us to select the significant blocks of questions while
discarding the irrelevant ones. While this example is very specific, this still sheds some light on why spectral
clustering procedure can be of interest for this problem and how it can help recover blocks of questions that are
the most informative for dividing the experts.

Let us come back to a general matrix M and to the spectral step of DoubleTrisection as described in
the previous section. Up to a permutation of its rows, the expectation Θ(3) −Θ

(3)
of Z(3) − Z

(3)
is isotonic in

each column. It turns out that the entries of any left singular vector associated to the largest singular value of
Θ(3)−Θ

(3)
is, up to the permutation, either non-increasing or non-decreasing. As a consequence, the left-singular

value of Θ(3) −Θ
(3)

can bring information on the underlying ranking. This property is at the heart of spectral
ranking algorithms [93]. Unfortunately, contrary to the analysis of spectral methods in the Bradley-Luce-Terry
model [22, 20], we cannot control the entry-wise deviations of the left singular eigenvector of Z(3)−Z

(3)
because

the matrix Θ(3) −Θ
(3)

is non-parametric and does not necessarily exhibit any spectral gap. To handle this, Liu
and Moitra [56] suggest to compute a right singular vector of Z(3)−Z

(3)
and, using another independent sample,

to compare the experts based on the corresponding weighted average of the experts. Unfortunately, while their
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analysis provides near optimal results for n = d, this would not work for n ≤ d. In DoubleTrisection, we apply a
more involved workaround (i) to handle possible heteroskedastic noise and (ii) to improve the convergence rates
in comparison to Liu and Moitra [56]. Indeed, we first compute in (3.17) a debiased version v̂ of the left-singular
vector of Z(3) − Z

(3)
. Then, we compute the image [Z(5) − Z

(5)
]T v̂, threshold it, and take its absolute value

to obtain our estimated weights ŵ+. In principle, ŵ+ aims at being close to the right first singular vector of
Θ(3)−Θ

(3)
. In comparison to Liu and Moitra [56], ŵ+ better handles the situation where the matrix Θ(3)−Θ

(3)

is highly rectangular (with many columns) and where its corresponding right singular vector is nearly sparse.

3.3.3.3 On the tree information and the definition of Q̂WM

The oblivious estimator π̂HT based on Q̂cp is only proved to achieve the suboptimal error of Theorem 3.2.2. In
this section, we explain how Q̂WM improves the performances of the procedure by relying on the neighboring
experts to fix one possible weakness of Q̂cp and so, improve the dimension reduction step.

Indeed, Q̂cp selects spurious blocks of questions. In the previous toy example (Figure 3.4), some of the blocks
corresponding to high-variation values of the expected mean expert m(P ) do not bring any suitable information
for ordering the experts in P because, in these blocks, all the experts are close to each other. In other words,
the width of P , that is the difference between the best and worst experts in P , is small. It is not possible to
easily estimate this width from the observations in P since this would require to have sorted the experts in
P in the first place. Still, we can estimate this width by comparing the average of experts that are above P
with average of experts that are below P . A first idea would therefore be to consider a large enough number
of experts above and below P in order to estimate the width with a small variance and to exclude regions such
that the estimated width on a window of size r is small compared to h. This is exactly the purpose of the
statistic ∆̂

(ext)
k,r . The selected blocks Q̂WM only contain regions such that the estimated width ∆̂

(ext)
k,r is large

enough compared to h –see the left panel in Figure 3.5. Unfortunately, the statistic ∆̂
(ext)
k,r may suffer from a

large positive bias if the experts above or below P are away from P . Moreover, considering only the scale r is
not sufficient because we are forced to average over many experts above and below P in order to have a small
variance at this small scale, leading to a large bias. For this reason, we consider all possible scales rcp (in a
dyadic grid) between r and r̃.

Another important idea in the dimension reduction scheme is the following: If there is a region of questions
in which, not only the mean experts of the group P but also the mean experts in neighboring groups of P have
a high variation, it is interesting to detect this high-variation region by relying on all these neighboring groups
in order to decrease the variance of the CUSUM statistic. With this idea, we are able to consider the CUSUM
statistic at a smaller scale rcp ≤ r̃ –see the right panel in Figure 3.5. This is exactly the purpose of the statistic
Ĉ
(ext)
k,rcp

.

In our procedure, we build a collection D̂WM that selects a question k if there exists a scale rcp in [4r, r̃]

such that both the CUSUM statistic Ĉ
(ext)
k,2rcp

at scale 2rcp is large and the empirical width ∆̂
(ext)
k,rcp is large. This

combines the two ideas described in the previous paragraphs which, in turn, allows us to further reduce the
dimension in comparison to D̂cp while ensuring that the selected questions in D̂WM contains all the relevant
regions to trisect P , namely regions of size r, on which P has a variation at least of the order of h and the width
of P is at least of the order of h.

Interestingly, in the square case where n = d considered in [56] or more generally when n ≥ d, this dimension
reduction variant is not necessary to achieve the minimax risk as the oblivious estimator π̂HT is already optimal.
The dimension reduction scheme Q̂WM allows us to improve the risk bound from that Theorem 3.2.2 to that of
Theorem 3.2.3. In the specific case where the noise level ζ is equal to one, the term n2/3d1/3 in the risk bound
is improved to the optimal one n3/4d1/4. Hence, building upon the neighboring groups in Q̂WM turns out to be
the key ingredient to recover the minimax risk in the large d regime where n ∈ [d1/3, d].

3.4 Partial observations

We now come back to the partial observation setting. Given λ > 0, we are given Poi(λnd) independent
observations (xt, yt) where xt is sampled uniformly in [n] × [d] and, conditionally to xt, yt = Mxt + Ext is an
observation of the full model (3.1) at position xt. As noted above, λ stands for the sampling effort and the
larger λ, the more samples on average.
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Figure 3.5: In these two panels, the group P is only made of two types of experts, those in U∗ and those in L∗. The
curves m(V+rcp) and m(V−rcp) respectively correspond to the expected average experts in the neighboring
groups V+rcp and V−rcp defined in (3.21). In the left panel, the third and fourth blocks are not selected because

the corresponding statistic ∆̂
(ext)
k,rcp is small. In the right panel, both the statistic Ĉ

(ext)
k,rcp

and ∆̂
(ext)
k,rcp are large

compared to h. If P is small, this block is selected using a scale rcp ≲ r̃.

3.4.1 Minimax lower bound
As in Section 3.2.1, we first state a minimax lower bound in the case where the noise matrix E is made of
independent Gaussian random variables with variance ζ2. Note that the following minimax lower bound also
handle the noise case where ζ = 0, i.e. the noiseless case.

Theorem 3.4.1. There exist universal constants c and c′ such that the following holds for any n ≥ 2, any d ≥ 1,
λ > 0, and ζ ≥ 0:

inf
π̂

sup
π∗∈Πn

M ∶Mπ∗−1∈CBISO

E(π∗,M)[∥Mπ̂−1 −Mπ∗−1∥
2
F ] ≥ c [(RF [n, d, ζ/

√
λ] +

n

λ
e−2λ)⋀nd] . (3.27)

As in the previous minimax lower bound, the quantity nd simply appears because the entries of M lie in
[0,1]. In (3.27), we recognize two terms. First, RF [n, d, ζ/

√
λ] corresponds to the minimax risk for recovering

π∗ in a full observation model with noise ζ/
√
λ. The second term n

λ
e−2λ does not depend on ζ and is also

present in the noiseless setting. It simply quantifies the fact that, for λ < 1, observations are lacking so that it
is impossible to correctly rank experts if there are no observations on the questions on which they are distinct.
As the minimax lower bound in (3.27) turns out to be nearly tight in light of Theorem 3.4.3, we refer to (3.27)
as the minimax risk in the following. For the purpose of the discussion, we will first focus on the case where
ζ = 1 and λ < 1, which corresponds to the case where we really have partial observations on the matrix. We will
then turn to ζ = 1 and λ > 1, which corresponds to the case where we observe several times each entry of the
matrix. Finally, we discuss the noiseless case where ζ = 0.

Low-sample size. We first focus on the case where ζ = 1 and λ < 1, which corresponds to the case where
we really have partial observations on the matrix. If λ ≤ 1/d, then the minimax risk is of the order of nd and
it is impossible to perform significantly better than a random guess. This is not surprising as there are, in
expectation, less than one observation on each row. For λ ∈ [1/d,1], the minimax risk is of the order of

nd1/6

λ5/6
⋀
n3/4d1/4

λ3/4
+
n

λ

In the rectangular case where n ≥ d, the minimax risk is then of the order of n/λ for λ ∈ [1/d,1]. When
n ∈ [d1/3, d], the minimax risk is of the order of n/λ for λ ∈ [1/d,n/d], and of the order of n

3/4d1/4

λ3/4 for λ ∈ [n/d,1].
For even smaller n ≤ d1/3, there is one more regime since

RF [n, d,1/
√
λ] ≍

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n
λ

if λ ∈ [ 1
d
, n
d
] ;

n3/4d1/4

λ3/4 if λ ∈ [n
d
, n

3

d
] ;

nd1/6

λ5/6 if λ ∈ [n
3

d
,1] .

Large-sample size. In the setting where λ > 1 and ζ = 1, there are several observations per entries. In this
case, there are many regimes in (3.27) that depend on n, d, ζ, and λ. To simplify the discussion, we focus here
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on the case n = d and ζ = 1. Then, the minimax risk is of the order of n3/4d1/4

λ3/4 for λ ∈ [1, n2] and is of the
order of n

√
d/λ for λ ≥ n2. This ’easy rate’ n

√
d/λ is achieved by the simple procedure that ranks the experts

according to the row sums [83, 60]. This simple method turns out to be optimal in the regime where there are
more than n2 observations per entry.

Noiseless case. In the extreme case where ζ = 0 and λ ≥ 1/d, the minimax risk is of the order of (n/λ) × e−2λ,
which, for some small λ is of the order of n/λ. This minimax lower bound is quite simple to prove. Without
loss of generality, suppose that 1/λ is an integer. Consider a matrix M such that all its columns, except its 1/λ
first ones are constant and equal to one, so that it boils down to considering a ranking problem of size n×(1/λ).
In this reduced model, there are two types of experts: (a) experts that are constant and equal to zero and (b)
experts that are constant and equal to one. Obviously, if one is given at least one noiseless observation on a
row, then it is possible to assign it to a group. However, on each row there is a probability e−1 of having no
observations. Hence, on expectations there are n/e experts that are impossible to classify. For this reason, any
estimator must suffer from a risk at least of the order n/λ.

3.4.2 Reduction to the full observation model

We now describe a scheme to adapt the estimators π̂HT and π̂WM that we developed in the full observation
setting of Section 3.2, to this more general Poissonian setting (3.2), which encompasses the partial observation
setting as well as the over-complete observation setting where each entry is sampled several times. Roughly,
if λ is small, we simply decrease the number of columns of the matrix M in order to obtain a reduced matrix
with full observations. Conversely, if λ is really large, which corresponds to the case of multiple observations
per entry, we simply average the multiple observations per entry to reduce the noise levels.

As in Section 3.2, we fix δ ∈ (0,1) that will correspond to a small probability. Given this δ > 0, we denote
Υ∗ = Υ∗(n, d, ζ/

√
λ ∨ 1) the number of independent samples required in Section 3.2 for the estimation through

π̂HT or π̂WM of the n × d matrix M with a noise level equal to ζ/
√
λ ∨ 1. Recall that Υ∗ is of the order of

log8(nd(λ ∨ 1)/(δζ−)).
Define λ− = λ/[4Υ∗]. For any i ∈ [n] and any S ⊂ [d], we write ni,S the number of observations in the sample

falling in {i} × S, that is ni,S = ∣{t ∶ xt ∈ {i} × S}∣. The following lemma is a simple consequence of Chernoff
inequality for Poisson random variables.

Lemma 3.4.2. Assume that λ− ∈ [2/d,1], we fix l(λ) = ⌊1/λ−⌋. With probability higher than 1 − δ, we have

min
i∈[n]

min
j∈[⌊d/l(λ)⌋]

ni,[(j−1)l(λ)+1,jl(λ)] ≥ Υ
∗ .

Now assume that λ− > 1. With probability higher than 1 − δ, we have

min
i∈[n]

min
j∈[d]

ni,{j} ≥ λ−Υ
∗ .

Henceforth, we work under the event introduced in the previous lemma. If this event does not hold, we
choose π̂WMP arbitrarily. To build π̂WMP , we consider three subcases that depend on the value of λ:

1. Very small sample size. If λ− ≤ 2/d, then we simply choose π̂WMP uniformly at random over the set
of all possible permutations. While this choice does not depend on the data and could therefore seem
suboptimal, it is not the case, as the minimax lower bound states that it is impossible to perform better
than random guess in this setting.

2. Small sample size. If λ− ∈ [2/d,1], then we build Υ∗ matrices Y↓ = (Y ↓(0), Y ↓(1), Y ↓(Υ
∗−1)) of size

n × ⌊d/l(λ)⌋ in the following way. For any i ∈ [n], j ∈ [⌊d/l(λ)⌋] and s ∈ [0,Υ∗ − 1], Y ↓(s)i,j = yt where t
is the (s + 1)-th observation such that xt ∈ {i} × [l(λ)j + 1, l(λ)(j + 1)]. On the event of Lemma 3.4.2,
this definition is valid as we observe enough samples for any i, j. Then, we compute π̂WMP as the variant
π̂WM−SR, introduced in Section 3.5.7, applied to this sample of reduced matrices.

3. Large sample size. If λ− ≥ 1, then we build Υ∗ matrices Y↓ = (Y ↓(0), Y ↓(1), Y ↓(Υ
∗−1)) of size n× d in the

following way. For any i ∈ [n], j ∈ [d], l ∈ [⌊λ−⌋], and s ∈ [0,Υ∗ −1], define Y ↓(s)i,j = 1
⌊λ−⌋ ∑t yt where the yt’s

are the z-th observations such that xt = (i, j) with z ∈ [1 + (s − 1)⌊λ−⌋, s⌊λ−⌋]. In other words, we build
the samples Y↓ be averaging ⌊λ−⌋ observations on each entries. Again, on the event of Lemma 3.4.2, this
definition is valid as we observed enough samples for any i, j. Then, we define π̂WMP as π̂WM applied to
this sample of averaged matrices. By averaging the independent observations, we reduce the noise level of
each entry from ζ to ζ/

√
λ−.
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For λ− ≤ 2/d, there are very few observations on each row so that it is very difficult to compare the experts.
For λ− ∈ [2/d,1], we have access to less than Υ∗ noisy observations of the matrix M . The rationale of our proce-
dure is to group together l(λ) consecutive questions together in such a way that there are enough observations
on each of these groups. The resulting matrices of observations Y ↓(s) have around λd/Υ∗ columns. We could
have applied the procedure π̂WM defined in the previous section to Y↓, but the corresponding subGaussian
norm of the noise would be 1+ ζ (instead of ζ) because there is additional variability coming from the fact that
any entry in the reduced matrices has been sampled uniformly among l(λ) entries in the original matrices. This
would lead us to a procedure achieving the minimax rate with respect to n, d, and λ but with a suboptimal
dependency with respect to ζ since ζ would be replaced by ζ + 1. This is the reason why, for λ− ∈ [2/d,1], we
rely on a slight variant π̂WM−SR (see Section 3.5.7) of π̂WM that builds upon the fact that the variations that
are due to the aggregation of M are very specific.

Theorem 3.4.3. There exist four numerical constants c1–c4 such that the following holds. Fix δ = ζ2−[(λ ∨
1)nd]−2. For any permutation π∗ ∈ Πn and any matrix M such that Mπ∗−1 ∈ CBISO, the sorting tree estimator
π̂WMP defined above satisfies

E [∥Mπ̂−1
WMP

−Mπ∗−1∥
2
F ] ≤ c1 log

c2 (
nd(λ∨1)

ζ−
) [RF (n, d, ζλ

−1/2
) +

n

λ
e
−c3λ log−c4(nd(λ∨1)

ζ−
)
] . (3.28)

Up to logarithmic terms and up to the logarithmic term inside the exponential term (3.28), both the minimax
upper bound (3.28) and lower bound (3.27) match for all values of n, d, λ and ζ. As a consequence, this problem
of estimating a single permutation π∗ does not exhibit any significant computational gap.

Let us further discuss and compare the exponential term nλ−1e
−c3λ log−c4(nd(λ∨1)

ζ−
) in (3.27) and nλ−1e−2λ

in (3.28). First, observe that these two terms are larger than RF (n, d, ζλ
−1/2) only when the noise level ζ is

small, so that it is relevant to discuss them only when ζ ≪ 1. Second, note that there is a significant mismatch
between these exponential terms only when λ is close to one, up to a polylogarithmic factor, since otherwise,
either the exponential is close to one (for λ ≤ 1) or the exponential is so small that it becomes negligible in
comparison to RF (n, d, ζλ−1/2). One may object that the logarithmic term log−c4(nd(λ∨1)

ζ−
) may be large in case

ζ is really small –think e.g. of ζ = e−nd. Let us consider this extremely low noise setting where, say ζ ≤ 1/(nd)2.
If one applies the procedure π̂WMP with ζ0 = 1/(nd)

2 ≥ ζ, then the logarithmic terms become bounded inside
the exponential. Since RF (n, d, ζ0λ−1/2) is always smaller than nd⋀ n

λ
e−c3λ provided that λ ≤ 1, this estimator

achieves the risk bound n
λ
∧ nd, which is optimal for all ζ ∈ [0,1/(nd)2] and all λ ≤ 1. To sum up, there is gap

between our minimax lower and upper bounds only either (i) in the low-noise level with large but mild sampling
effort, that is ζ = o(log−c(nd)), ζ ≥ (nd)−2, and λ ∈ [logc log(nd), logc

′
(nd)] for some c and c′ > 0 or (ii) in the

extremely low noise level with large sampling effort, that is ζ ≤ (nd)−2 and λ ≥ 1.

In π̂WMP , we have plugged in the hierarchical sorting tree estimator with memory π̂WM . If we had plugged
in the oblivious hierarchical sorting tree estimator π̂HT , then the resulting estimator would satisfy a similar rate
similar to (3.28) except that the term n3/4d1/4/λ3/4 would be replaced by the slower rate n2/3d1/3/λ2/3.

3.4.3 Reconstruction of the matrix M

In this subsection, we assume again that the noise level ζ = 1 to simplify the exposition. As alluded in Section 3.2,
it is quite straightforward to estimate the matrix M and control the corresponding loss ∥M̂ −M∥2F by a simple
subsampling step explained e.g. in [60] that we recall here. First, we split the sample into two part by assigning
independently each observation to the first subsample with probability 1/2 and the second subsample with
probability 1/2. Then, we use the first subsample to estimate the permutation π̂ of the experts. As for the
second subsample (x(2)t , y

(2)
t ), we define the empirical observed matrix Y (2) by

Y
(2)
i,j =

1

λ
∑
t

y
(2)
t 1

x
(2)
t =(i,j).

Then, we compute the least-square estimator M̂π̂ ofMπ̂ in the class of bi-isotonic matrix M̂π̃ = argminB∈CBISO ∥B−

Y
(2)
π̃ ∥

2
F . This estimator can be computed in near linear-time [53]. Then, Proposition 3.3 in [60] states, that with

high probability, the loss ∥M̂ −M∥2F is, up to logarithmic terms, smaller than the sum of the minimax risk for
estimating a bi-isotonic matrix B and the loss ∥Mπ̃−1 −Mπ∗−1∥

2
F . Plugging this proposition with our estimator

π̂WMP with δ = (λ ∨ 1)/(np), we readily arrive to the following risk bound for the corresponding estimator
M̂WMP .
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Define R1(n, d, λ) =
√

nd
λ ⋀

nd
λ2/3(n∨d)2/3 ⋀

nd
λ

. Mao et al. [60] have proved that, up to polylogarithmic factor
and up to a possible additive term (n ∧ d)/λ, the minimax risk in square Frobenius norm for estimating a
bi-isotonic matrix with partial observations is R1(n, d, λ).

Corollary 3.4.4. There exist two numerical constants c and c′ such that the following holds. For any permu-
tation π∗ ∈ Πn and any matrix M such that Mπ∗ ∈ CBISO, we have

E [∥M̂WMP −M∥
2
F ] ≤ (nd)⋀ [c log

c′
((λ ∨ 1)nd) (R1(n, d, λ) +RF (n, d, λ

−1/2
))]

≤ (nd)⋀ [c log
c′
((λ ∨ 1)nd) (R1(n, d, λ) +

n

λ
)] . (3.29)

The proof is a straightforward consequence of Proposition 3.3 in [60] and Theorem 3.4.3 and is therefore
omitted. It turns out thatRF (n, d, λ−1/2) is always smaller thanR1(n, d, λ)+

n
λ
, so that the cost of reconstruction

for not knowing π∗ is n/λ.
This risk bound (3.29) is minimax optimal, up to polylogarithms, and this for all possible values of n ≥ 2, d,

and λ > 0. Indeed, in their Theorem 3.1, Mao et al. [60] provide a matching minimax lower bound in R1(n, d, λ)
in the specific case where n ≥ d, but their proof easily extends to the case where n ≤ d. Besides, our proof of
the minimax lower bound n

λ
in Theorem 3.4.1 for the problem of estimating π∗ straightforwardly extends to

the problem of matrix estimation (recall that we consider ζ = 1 here).
The least-square estimator π̂LS of Mao et al. has also been proved to achieve the minimax risk for n ≥ d

–see their theorem 3.1 in [60]. However, no efficient algorithm is known for computing this estimator in π̂LS ,
so that our estimator M̂WMP is, to the best of our knowledge, the first efficient minimax-optimal estimator for
estimating M in this context, for any values of n, d, λ.

3.4.4 Bounds for the max loss of Mao et al. [60]

In [60], Mao et al. control, for an estimator π̂ of the permutation, a different loss from ours. Up to normalization
factors, they indeed focus on the maximum l2 norm of the rows of (Mπ̂−1)i,. − (Mπ∗−1)i,., that is

l∞(π̂, π
∗
) = sup

i∈[n]
∥(Mπ̂−1)i,. − (Mπ∗−1)i,.∥

2
2 . (3.30)

This loss also considered in [84, 19] corresponds to some maximum error of the estimated permutation so that
l∞(π̂, π

∗) ≥ ∥Mπ̂−1 −Mπ∗−1∥
2
F /n. Alternatively, we can define the loss lerr

lerr(π̂, π
∗
) = max

i,j∈[n] ∶
π̂(i)<π̂(j) and π∗(i)>π∗(j)

∥Mi,. −Mj,.∥
2
2 ,

which quantifies the maximum distance between two experts that have not been ranked consistently. The loss
l∞ and lerr turn out to be equivalent as stated in the following lemma.

Lemma 3.4.5. For any permutation π̂, we have

l∞(π̂, π
∗
) ≤ lerr(π̂, π

∗
) ≤ 4l∞(π̂, π

∗
) (3.31)

To simplify the discussion in this section, we assume again that the noise level ζ equals one. Mao et al. [60]
provide a simple polynomial time π̂ref achieving

E[l∞(π̂ref, π
∗
)] ≲ d⋀

d1/4

λ3/4
log3/4(n) . (3.32)

Conversely, they prove in their Theorem 3.7 that any estimator π̂ that only ranks the experts i and j according
to the differences of the observations on the rows i and j must incur this risk bound– see [60] for further details.
Besides, they conjecture that the risk bound (3.32) cannot be improved. In [56], Liu and Moitra already pointed
out that the max loss l∞(π̂, π∗) is less suited than the loss ∥Mπ̂−Mπ∗∥

2
F for the purpose of estimating the matrix

M –see the discussion in the previous subsection. Still, controlling the max loss l∞(π̂, π∗) may be an objective
per se, and the study of its minimax value and of the existence of related minimax estimators is relevant. In
the following proposition, which is mainly a consequence of our results and proof techniques, we disprove Mao
et al.’s conjecture by introducing an estimator π̂PC achieving a faster rate than (3.32). Besides, this rate turns
out to be minimax-optimal.
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Proposition 3.4.6. There exist numerical constants c, c′, and c′′ such that the following result holds. There ex-
ists a polynomial-time estimator π̂PC that performs pair-wise comparisons between the experts and that achieves
the risk bound

E[l∞(π̂PC , π∗)] ≤ c logc
′
(nd(λ ∨ 1)) [

d1/6

λ5/6
⋀

√
d

λ
]⋀d . (3.33)

Conversely, for any n ≥ 2, any d ≥ 1, and λ > 0, we have

inf
π̂

sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E(π∗,M)[l∞(π̂, π∗)] ≥ c′′ [
d1/6

λ5/6
⋀

√
d

λ
⋀d] . (3.34)

For λ ≤ 1/d, it is not possible to perform significantly better than random guess. Then, in the interesting
regime λ ∈ [1/d, d2], the risk is of the order of d

1/6

λ5/6 . It turns out that this rate corresponds, up to polylogarithmic
terms, to the minimal distance between two experts so that one is able to consistently compare them. For very
large sample size λ ≥ d2, we arrive at the easy regime which is of the order of

√
d
λ

.

The estimator π̂PC is based on pairwise comparisons. For any two experts i and j, we apply the procedure
π̂WMP to i and j with δ = [(λ ∨ 1)(n2d)]−2 . If the trisection (O,P, I) is of the form (∅,{i},{j}), we return
i ≺ j. If the trisection (O,P, I) is of the form (∅,{j},{i}), we return j ≺ i. Otherwise, we return nothing.
Applying this comparison algorithm to all (i, j), we recover a set of pairwise comparisons PC = {(i, j) ∶ i ≺ j}.
With high probability –see the proof for more details–, it turns that PC satisfies two properties:

(i) PC is consistent. For any (i, j) ∈ PC, we have π∗(i) < π∗(j).

(ii) PC contains all 2-tuple of experts that are far apart. More precisely, PC contains all (i, j) such that
π∗(i) < π∗(j), and

∥Mi,. −Mj,.∥
2
2 ≥ c log

c′
(nd(λ ∨ 1)) [

d1/6

λ5/6
⋀

√
d

λ
]⋀d , (3.35)

for suitable constants c and c′.

Then, define the function ϕ ∶ [n] ↦ N by ϕ(j) = ∣{(i, j) ∶ (i, j) ∈ PC}∣ which simply counts the number of
experts i that are detected to be lower than j. Finally, we build π̂PC as any permutation that ranks the experts
consistently with ϕ.

In fact, the procedure for computing π̂PC could be greatly simplified. Indeed, as we only perform pairwise
comparisons, some parts of BlockSort turn out to be irrelevant. For instance, the PCA steps are not required.
Besides, the sample splits could be avoided, and it could even be possible to work with a single observation. As
the problem of optimal permutation recovery with respect to the l∞ loss is not the main scope of this chapter,
we do not provide a simplified and dedicated algorithm. Besides, we conjecture that our original estimator
π̂WMP also achieves the minimax risk (3.33) with respect to the l∞ loss.

3.4.5 Full description of the procedures

In this section, we provide a fuller description of the estimators π̂HT and π̂WM as a collection of algorithms. We
will rely on this description in the analysis of these estimators. To ease its understanding, we make this section
completely self-contained. As a consequence, the material presented here is partly redundant with Section 3.3.

3.4.6 Sorting a group of experts

Some of the notation have already been introduced in Section 3.3. Still we define them again here for the sake
of completeness. We write D for the set of all dyadic numbers, that is D = {2k ∶ k ∈ Z}. Equipped with D, let

R = D ∩ [1, d] and H = D ∩ [
ζ2

nd
,1] , (3.36)

respectively denote the dyadic collection of numbers beween 1 and d and the dyadic collection of numbers
between 1/nd and 1.

Besides for an integer r ∈R, we write Qr for the regular grid of [d] of width r:

Qr = {1, r + 1,2r + 1, . . . ⌊
d

r
⌋ r + 1} .
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In contrast to Section 3.3, we start by describing the simple comparison routine before moving to the
dimension reduction techniques and to the general architecture of the procedures.

Given a collection P of experts, some data Z ∈ RP×Q and a direction w ∈ (R+)Q and a pivot γ ∈ [1 ∶ ∣P ∣], the
following pivoting algorithm sorts the experts in P according to the projection of the data onto the vector w.
More precisely, it returns four subsets L ⊂ L and U ⊂ U of experts such that the γ-th best expert according to
the (Z,w)-order - as defined above Equation (3.15) - is significantly above all experts in L and below all experts
in U . The subsets L and L (resp. U and U) differ in the level of significance we require. We define the tuning
parameters βtris and βtris for Pivot

βtris = 4
√
2ζ , βtris = 8

√
2ζ. (3.37)

Algorithm 4 Pivot(Z,w, γ)

Require: A matrix Z ∈ RP×Q with P ⊂ [n] a set of experts and Q ⊂ [d] a set of blocks, a direction w ∈ RQ+ ,
w ≠ 0 and a pivot index γ

Ensure: Two couples of subsets (L,U) and (L,U) of P

1: for i ∈ P do
2: Compute the statistic ψ(i,w) = ⟨Zi,⋅, w

∥w∥2 ⟩

3: end for
4: Sort the statistics ψ(i,w) : ψ(i1,w) ≤ ⋅ ⋅ ⋅ ≤ ψ(i∣P ∣,w)

5: U = {i ∈ P ∶ ψ(i,w) > ψ(iγ ,w) + βtris

√

log (2 ∣P ∣
δ
)}

6: U = {i ∈ P ∶ ψ(i,w) > ψ(iγ ,w) + βtris

√

log (2 ∣P ∣
δ
)}

7: L = {i ∈ P ∶ ψ(i,w) < ψ(iγ ,w) − βtris

√

log ( 2∣P ∣
δ
)}

8: L = {i ∈ P ∶ ψ(i,w) < ψ(iγ ,w) − βtris

√

log ( 2∣P ∣
δ
)}

9: return (L,U), (L,U)

When the vector w is equal to 1Q, we simply write Pivot(Z,γ) instead of Pivot(Z,1Q, γ) for the sake of
simplicity.

Pivot(Z,γ) = Pivot(Z,w = 1Q, γ) . (3.38)

In fact, Pivot(Z,γ) simply amounts to comparing the row sums of Z for each of the experts in P .

In the next two pages, we redefine in more detail the Double Trisection algorithm of Section 3.3. First,
DoubleTrisection −PCA relies on a PCA-type argument to find a suitable direction ŵ+ and then provides
two trisections of the subset P of experts using the Pivot sub-routine.

Algorithm 5 DoubleTrisection −PCA(Z, γ)

Require: 4 reduced samples Z = (Z(1), Z(2), Z(3), Z(4)) where Z(1), Z(2), Z(3) ∈ RP̃×Q and Z(4) ∈ RP×Q with
some P̃ ⊂ P , and a pivot index γ

Ensure: Four subsets (Lpca, Upca) and (Lpca, Upca) of P

1: Compute the following vector with coefficients in P̃ :

v̂ = argmax
∥v∥≤1

[∥vT (Z(1) −Z
(1)
)∥

2
2 −

1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2] ∈ R

P̃

2: ẑ = vTZ(3) ∈ RQ
3: Define ŵ+ by (ŵ+)l = ∣ẑl∣1∣ẑl∣≥2ζ

√
2 log(2∣Q∣/δ)

4: (Lpca, Upca), (Lpca, Upca) = Pivot(Z(4), ŵ+, γ)
5: return (Lpca, Upca), (Lpca, Upca)

Next, DoubleTrisection −Local(Z, γ) builds two trisections of P based on the reduced samples. First,
it builds these trisections by simply using the row sums on the data and then it improves them thanks to
DoubleTrisection −PCA.
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Algorithm 6 DoubleTrisection −Local(Z, γ)

Require: 5 reduced samples Z = (Z(1), Z(2), Z(3), Z(4), Z(5)) in RP×Q, a pivot index γ and a threshold βtris
Ensure: Two couples of subsets (L,U) and (L,U) of P

1: (Lcp, Ucp), (Lcp, U cp) = Pivot(Z(1),1Q, γ)

2: Set P̃ = P ∖ (Lcp ∪U cp)

3: Set Z ′ = (Z(2)(P̃ ), Z(3)(P̃ ), Z(4)(P̃ ), Z(5)(P )) be the sequence of reduced samples where the three first
samples are restricted to P̃ .

4: (Lpca, Upca), (Lpca, Upca) =DoubleTrisection −PCA(Z ′, γ)
5: Set L = Lcp ∪Lpca and L = Lcp ∪Lpca and U = Ucp ∪Upca and U = U cp ∪Upca

6: return (L,U), (L,U)

To finish defining DoubleTrisection, we simply need to plug a dimension reduction procedure to select a
subset of questions Q ⊂ [d] and then to sum the data on these questions.

The two following algorithms are mainly definitions. For some data Y ∈ R[n]×[d], a set of experts P and a set
of blocks Q ⊂ Qr, and a scale r, the ∣P ∣ × ∣Q∣ matrix Encode −Matrix(Y,P ,Q, r) is simply a reduced matrix
where we consider the normalized row sums of Y around the questions of Q at scale r.

Algorithm 7 Encode −Matrix(Y,P ,Q, r)

Require: A matrix Y ∈ R[n]×[d], a set of experts P and a set of blocks Q ⊂ Qr, a scale r
Ensure: A reduced matrix Z ∈ RP×Q

1: for i ∈ P and l ∈ Q do
2: Define Zi,l = 1√

r ∑k∈[l,l+r) Yi,k ▷ Yi,k = 1 for k ≥ d + 1
3: end for
4: return Z ∈ RP×Q ▷ the restriction of Z to P and Q

Second, Encode − Set(D,r) transforms a subset [d] of questions into a subset Q ⊂ Qr of blocks of questions
at scale r.

Algorithm 8 Encode − Set(D,r)

Require: A set of questions D ⊂ [d], a scale r ∈R
Ensure: A set of blocks Q ⊂ Qr

return Q = {l ∈ Qr ∶ [l, l + r) ∩D ≠ ∅}

Then, we are in position to redefine this version of Algorithm 3. As in the original definition in Section 3.3,
there are two variations of this procedure depending on whether we are building the estimator π̂HT or the
estimator π̂WM that uses the memory of the tree. Algorithm DoubleTrisection(Y,T , P , γ) takes some original
data and then reduces the dimension of the problem to build two trisections of the set P of experts.
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Algorithm 9 DoubleTrisection(Y,T , P , γ)

Require: 6 samples Y = (Y (1), . . . , Y (6)), a tree T , a set of expert P included in a leaf G of T at maximal
depth and a pivot index γ

Ensure: Two couples of subsets (L,U), (L,U) of P

1: Initialize L,U,L,U = ∅
2: for h ∈H, r ∈R do
3: if Not using the memory of the tree then
4: Set Q̂ ∶= Q̂cp(h, r) =DimensionReduction(Y (1), P , h, r) - see Algorithm 12 or (3.20)
5: else if Using the memory of the tree then
6: Set Q̂ ∶= Q̂WM(h, r) =DimensionReduction −WM(Y (1),T , P , h, r) - See Algorithm 13 or (3.26)
7: end if
8: Consider the five samples Y ′ = (Y (2), Y (3), Y (4), Y (5), Y (6))
9: Consider the five reduced samples Z = Encode −Matrix(Y ′, P , Q̂WM , r)

10: Compute (Lloc, Uloc), (Lloc, U loc) =DoubleTrisection −Local(Z, γ)
11: Update L = L ∪Lloc and L = L ∪Lloc and U = U ∪Uloc and U = U ∪U loc

12: end for
13: return (L,U), (L,U)

Finally, we reproduce BlockSort here that was originally defined in Algorithm 2. We recall that BlockSort
iteratively applies a logarithmic number of times the procedure DoubleTrisection to build two suitable tri-
sections of a set G of experts. Although implicit in this description, there are two different versions of the
corresponding procedure whether we use the memory of the tree - estimator π̂WM - or not - estimator π̂HT
in DoubleTrisection. In the following, τ∞ = ⌈4 ⋅ 107 log7( nd

δ(ζ−)2 )⌉ stands for the number of iterations in
BlockSort.

Algorithm 10 BlockSort(Y,T ,G)

Require: 6τ∞ samples Y = (Y (0), . . . , Y (6τ∞−1)), the tree T , a leaf G ⊂ [n] in T at maximal depth
Ensure: A partition of G into three groups (O,P, I)

1: Set γ = ⌊∣G∣/2⌋ and O0, I0, O0, I0 = ∅
2: for τ = 0, . . . , τ∞ − 1 do
3: Consider 6 fresh samples Yτ = (Y (6τ), . . . , Y (6τ+5))
4: set γ = ⌊∣G∣/2⌋ − ∣Oτ ∣
5: (Lτ , Uτ), (Lτ , Uτ) =DoubleTrisection(Yτ ,T ,G ∖ (Oτ ∪ Iτ), γ) as in Algorithm 9
6: Update Oτ+1 = Oτ ∪Lτ , Iτ+1 = Iτ ∪Uτ , Oτ+1 = Oτ ∪Lτ , Iτ+1 = Iτ ∪Uτ
7: end for
8: if Oτ∞ ∩ Iτ∞ ≠ ∅ then
9: Set Oτ∞ ∶= Oτ∞ ∖ Iτ∞ and Iτ∞ ∶= Iτ∞ ∖Oτ∞

10: end if
11: return (Oτ∞ ,G ∖ (Oτ∞ ∪ Iτ∞), Iτ∞)

Under an event of high probability (to be later discussed), we have Oτ∞ ∩ Iτ∞ = ∅. The correction at the
end of the algorithm simply forces the algorithm to return a partition of G.

3.4.7 Hierarchical sorting trees and TreeSort algorithm
In this subsection, we formally describe how we build and navigate into a hierarchical tree. In the following, a
node G ∈Nodes is a labelled subset of [n]. Its label belongs to {0,p,1}. For a node G, we write Type(G) for
the label (also called type) of G.

Definition 1. (Hierarchical sorting Trees) A hierarchical sorting tree T is a rooted tree that satisfies the three
following properties:

• The root G of T corresponds to the set [n] and its label is 0.

• Any node G of type p is a leaf.

• Any node G of type in {0,1} is either a leaf or has three children (O,P, I) with type 0, p, 1 respectively.
Besides, (O,P, I) correspond to a partition of G.
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We write T0 for the tree of depth 0. The procedure TreeSort iteratively builds a hierarchical sorting tree.
Hence, we need to define the operation of adding children to a leaf in a tree T . For a specific leaf G of type
0 or 1, we consider three labelled subsets O, P , I of type 0, p, 1, respectively. Besides, those subsets satisfy
the third condition in Definition 1. Then, T ′ =AddChild(T ,G, (O,P, I)) is the supertree of T where we have
added the nodes (O,P, I) as children of G. Finally, we observe that for any t > 0, all the nodes at depth t of a
hierarchical sorting tree T are disjoint.

In fact, we shall prove in Proposition 3.5.1 and in Corollary 3.5.4 that, with high probability, the final tree
Tt∞ turns out to be a valid hierarchical sorting tree as defined below.

Definition 2. (Valid hierarchical sorting Tree) A hierarchical sorting tree T is valid if non-terminal nodes
G of T satisfy the two following additional properties: if we denote (O,P, I) their children of type 0, p, 1
respectively, then

• All the experts in O are below those of I. In other words, for any i ∈ O and any j ∈ I, we have π∗(i) < π∗(j).

• ∣O∣ < ∣G∣ and ∣I ∣ < ∣G∣.

The second property (∣O∣ < ∣G∣ and ∣I ∣ < ∣G∣) forces the tree to be finite.
For a node G in a such valid hierarchical sorting tree T , Depth(T ,G) stands for the depth of G in T . In

light of this definition of valid hierarchical sorting trees, a labelled subset G cannot appear twice in a tree T ,
so that Depth(T ,G) is well-defined.

We are now equipped to provide a more formal definition of TreeSort, although the procedure is in fact
the same as the one described in Algorithm 1. Let t∞ = ⌈log(n)/ log(2)⌉.

Algorithm 11 TreeSort(Y)

Require: 6τ∞t∞ samples Y = (Y (0), . . . , Y (6τ∞t∞−1))
Ensure: A final tree T
1: T = T0 ▷ The root is at depth 0
2: for t = 0, . . . , t∞ − 1 do
3: Consider 6τ∞ fresh samples Y = (Y (6tτ∞), . . . , Y (6(t+1)τ∞−1))
4: for G ∈ L(0,1)(T ) do ▷ See (3.39) for the definition of L(0,1)

5: (OG, PG, IG) = BlockSort(Y,T ,G)
6: Set Type(OG) = 0 and Type(PG) = p and Type(IG) = 1
7: end for
8: for G ∈ L(0,1)(T ) do
9: AddChild(T ,G, (OG, PG, IG))

10: end for
11: end for
12: return T

As explained in Section 3.3, the final estimators π̂HT or π̂WM are computed from their corresponding
hierarchical sorting tree T .

In order to define the DimensionReduction −WM algorithm in the next subsection, we need to introduce
a few more notation. First, we define

L
(0,1)
(T ) = {G ∈ Leaves(T ) ∶ Type(G) ∈ {0,1}} , (3.39)

as the collection of leaves of T that are either of type 0 or of type 1. In the algorithm TreeSort, these are the
leaves to be partitionned. In particular at step t of TreeSort, L(0,1)(T ) is only made of leaves at depth t.

For a subset P ⊂ [n], Leaf(T , P ) is defined as the leaf G ∈ Leaves(T ) containing P (if it exists). Finally, the
groups G ∈ L(0,1)(T ) inherit from a natural order provided that T is a valid hierarchical sorting tree. We can
enumerate the groups G1, G2,. . . , G∣L(0,1)(T )∣ in such a way that all the experts in Gs are below those of Gs′ for
s < s′. To ease the presentation, we also introduce, for any positive integer s the groups G∣L(0,1)(T )∣+s = {n + s}.
The corresponding data and signal for the n + s-th expert satisfies Yn+s,j = 1 = Mn+s,j almost-surely for any
j ∈ [d]. Also, for any positive integer s we introduce the groups G1−s = {1 − s}. The corresponding data and
signal for this synthetic expert satisfy Y1−s,j = 0 =M1−s,j = 0 almost-surely for any j ∈ [d].

Then, for a specific leaf Gs ∈ L(0,1)(T ), Order(T ,G) stands for the collection (G(a)), a ∈ Z of leaves where
G(a) = Ga+s. In other words, we have G(0) = Gs and G(1) is the following group, and so on.
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3.4.8 Dimension reduction algorithms

To finish the description of the two procedures, we fully describe the two dimension reduction algorithms both
for the oblivious estimator π̂HT and for the estimator π̂WM with memory. These procedures were already
introduced in Section 3.3. First, DimensionReduction(Y,P , h, r) considers the columns-wise mean of the
restriction of Y to the group P and detects high-variation regions of this vector.

Algorithm 12 DimensionReduction(Y,P , h, r)

Require: A sample Y ∈ RP×[d], a set of experts P , h ∈H and r in R
Ensure: An encoded set including the high-variation regions Q̂cp ∶= Q̂cp(Y,P , h, r) ⊂ Qr

1: y(P ) = 1

∣P ∣ ∑i∈P Yi,⋅

2: r̃ = 8 [⌈( 32ζ2

∣P ∣h2
log( 2d

δ
))⌉ ∨ r]

3: Initialize D̂cp = ∅

4: for k ∈ [d] do
5: Compute

Ĉk(y(P )) =
1

r̃
(
k+r̃−1
∑
k′=k

yk′(P ) −
k−1
∑

k′=k−r̃
yk′(P )) ; (3.40)

6: end for
7: D̂cp = {k ∈ [d] ∶ Ĉk(y(P )) ≥ h/4}

8: Q̂cp = Encode − Set(D̂cp, r)

9: return Q̂cp

For the more involved dimension reduction procedure with memory DimensionReduction −WM, we
compute the CUSUM statistic in larger groups V ⊃ P to reduce its variance and we also require that the
estimated "width" of the group of experts is high enough. More precisely, given three sets of expert V, V+ and
V− and a sample Y , we consider the two following statistics, for any k = 1, . . . , d and r′ ∈R:

∆̂
(ext)
k,r′ (V

+,V−) =
1

2r′

k+r′−1
∑

k′=k−r′
yk′(V

+
) − yk′(V

−
) ; Ĉ

(ext)
k,r′ (V) =

1

r′
⎛

⎝

k+r′−1
∑
k′=k

yk′(V) −
k−1
∑

k′=k−r′
yk′(V)

⎞

⎠
. (3.41)

Here, ∆̂
(ext)
k,r′ (V

+,V−) computes the width - i.e. the difference - between the mean of experts in V+ and the mean
of experts in V−. Since V+ and V− are built in the algorithm below in such a way that experts in P are below
those of V+ and above those of V−, ∆̂

(ext)
k,r′ (V

+,V−) provides an upper bound of the width between the best
expert in P and the worst expert in P .

The algorithm DimensionReduction −WM described below builds a collection of sets V+, V−, and V
and detects questions such that both the CUSUM C

(ext)
k,r′ (V) and the width ∆̂

(ext)
k,r′ (V

+,V−) are large enough.
Further explanations are postponed to the analysis of the algorithm in Section 3.5.5. Below, we write ⌈x⌉dya

for 2⌈log2(x)⌉.
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Algorithm 13 DimensionReduction −WM(Y,T , P , h, r)

Require: A sample Y ∈ Rn×d, a tree T , a set P included in a leaf G of T of type 0 or 1, h ∈H and r ∈R
Ensure: A set of blocks Q̂WM ∶= Q̂WM(Y,T , P , h, r) ⊂ Qr

1: r0 = 2
9 log(4d∣R∣/δ) ζ2

∣P ∣h2
and r̃ = 4(⌈r0⌉

dya ∨ r)

2: (G(a))a∈Z =Order(T ,G)
3: for rcp ∈ [4r,2r̃] ∩R do
4: Set a+WM =min{a ∶ ∣G(1)∣ + ⋅ ⋅ ⋅ + ∣G(a)∣ ≥ 211 log(4d∣R∣/δ) ζ2

rcph2 }

5: Set a−WM =min{a ∶ ∣G(−1)∣ + ⋅ ⋅ ⋅ + ∣G(−a)∣ ≥ 211 log(4d∣R∣/δ) ζ2

rcph2 }

6: Set

V
+
rcp ∶= V

+
rcp(T ,G, h) =

a+WM

⋃
a=1

G(a) and V
−
rcp ∶= V

−
rcp(T ,G, h) =

−1
⋃

a∈−a−
WM

G(a) (3.42)

7: if rcp > r̃ then
8: Set Vrcp ∶= Vrcp(T , P , h) = P
9: else if rcp ≤ r̃ then

10: Set Vrcp ∶= Vrcp(T , P , h) = V
−
rcp ∪ V

+
rcp

11: end if
12: end for
13: Q̂WM = ∅

14: for rcp ∈ [4r, r̃] ∩R do
15: D̂WM = ∅

16: for k = 1, . . . , d do
17: Compute ∆̂

(ext)
k,rcp ∶= ∆̂

(ext)
k,rcp(V

+
rcp ,V

−
rcp)

18: Compute Ĉ
(ext)
k,2rcp

∶= Ĉ
(ext)
k,2rcp

(V2rcp)

19: end for
20: Update D̂WM = {k ∈ [d] ∶ ∆̂

(ext)
k,rcp ≥ h/16 and Ĉ

(ext)
k,2rcp

≥ h/16}

21: Update Q̂WM = Q̂WM ∪Encode − Set(D̂WM , r)
22: end for
23: return Q̂WM ▷ The same set is defined in (3.26)

3.5 Proofs

3.5.1 Overview and organization of the proofs of Theorems 3.2.2 and 3.2.3
In this section, we divide the analysis of the procedures into several properties that will be proved to hold with
high probability in the next sections.

3.5.1.1 Definitions

Since we build our estimator using a hierarchical tree, we need to quantify the error that we suffer at each depth
of the tree. For i ∈ [n], we write Mi =Mi,⋅ for the expert i. By definition of π∗, we recall that

Mπ∗−1(1) ≤Mπ∗−1(2) ≤ . . . ≤Mπ∗−1(n) .

For a given group of experts G, we write π∗{G} for the oracle ordering in [1, ∣G∣] of the group G according to π∗,
that is for all i, j ∈ G, π∗{G}(i) and π∗{G}(j) belong to [1, ∣G∣] and

π∗{G}(i) < π
∗
{G}(j) iff π∗(i) < π∗(j) .

We say that a sequence of sets G = (G1, . . . ,Gα) is an ordered partition of a set S if {G1, . . . ,Gα} is a
partition of S. For a given ordered partition {G1, . . . ,Gα} and a ∈ [1, α] and any i ∈ Ga we write

π−G(Ga) = π
−
G(i) ∶= ∑

a′<a
∣Ga′ ∣ and π+G(Ga) = π

+
G(i) ∶= ∑

a′≤a
∣Ga′ ∣ . (3.43)

If we are to build a permutation π which is consistent with this ordered partition, then one easily checks that
π(i) ∈ [π−G(i) + 1, π

+
G(i)]. For simplicity, we write G(i) for the group Ga such that i ∈ Ga. For a given ordered
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partition G = (G1, . . . ,Gα), we define the oracle permutation associated to G by

π∗G(i) = π
−
G(i) + π

∗
{G(i)}(i) . (3.44)

For example, π∗{[n]} = π
∗ is simply the true permutation. By definition, we have π∗G(G(i)) = [π

−
G(i) + 1, π

+
G(i)].

Given an ordered partition, π∗G is the best permutation we could hope for after any statistical treatment.
Given an ordered partition G = (G1, . . . ,Gα), we define the random estimation of π∗ given G as π̂G(i) which

is uniformly distributed in [π−G(i) + 1, π
+
G(i)]:

π̂G(i) ∈ [π
−
G(i) + 1, π

+
G(i)] .

Note that π̂G is not necessarily bijective.

3.5.1.2 Deterministic analysis

In this subsection, we analyze TreeSort (Algorithm 11) and we characterize the loss of the estimator π̂ in terms
of that of the trisections that are computed inside the subroutine BlockSort(Y,T ,G). This algorithm takes a
subset G of experts and computes two trisections of G. The first one

(O,P, I) = (Oτ∞ ,G ∖ (Oτ∞ ∪ Iτ∞), Iτ∞)

is returned by the algorithm. The second one

(O,P , I) = (Oτ∞ ,G ∖ (Oτ∞ ∪ Iτ∞), Iτ∞)

is important for our analysis. From the definitions of the different procedures, one readily checks that O ⊂ O
and I ⊂ I. In fact, we shall prove later that, with high probability, the subsets (O,P, I) and (O,P , I) satisfy
the following stronger property.

Property 1.

1. {O,P, I} and {O,P , I} are partitions of the leaf G with O ⊂ O, I ⊂ I, and P ⊂ P ,

2. For ω = π∗−1{O,P,I}π
∗
{G}, we have ω(i) = i for any i ∈ O ∪ I.

3. For any i ∈ O and j ∈ I, we have π∗(i) < π∗(j).

4. We have ∣O∣ ≤ ∣G∣/2 and ∣I ∣ ≤ ∣G∣/2.

The last claim states that all experts in O are below all experts of I. The second claim can be understood
as the fact that, if an expert i belongs to O, then all experts below i belong to O.

Let Y = (Y (0), . . . , Y (6τ∞−1)) be a sequence of 6τ∞ matrices in Rn×d. We say that BlockSort satisfies Prop-
erty 1 on (Y,T ,G) if the two partitions (O,P, I) and (O,P , I) worked out in Algorithm 11 satisfy Property 1.
We recall that by definition O ⊂ O, I ⊂ I, P ⊂ P so that P corresponds to the collection of experts that are
either not sorted by TreeSort or are sorted with a small confidence.

For each t = 0, . . . , t∞, we write Tt for the hierarchical sorting tree at the beginning of step t of TreeSort.
Besides, we write Gt for the corresponding ordered partition obtained by taking the leaves of the tree Tt in
increasing order in the ternary base {0,p,1}. We define the tree T t∞ as the tree Tt∞ where we replaced all the
leaves P of type p - at any depth - by P , where (O,P , I) has been worked out by TreeSort at the same time
as (O,P, I).

We also define

Lt(Tt∞) = {P ∈ Gt∞ ∶ P is a nonempty leaf at depth t of Tt∞} ;

Lt(T t∞) = {P ∈ Gt∞ ∶ P is a nonempty leaf at depth t of T t∞} . (3.45)

For simplicity, we sometimes write Lt for Lt(Tt∞) and Lt for Lt(T t∞). Lt stands for the collection of experts
that have not been sorted at the t-th iteration TreeSort. The sets in the collection Lt are strictly larger and
correspond to the collections of experts in P that are either not sorted by TreeSort or are sorted with less
confidence. Let M(P ) be defined as the restriction of M to the experts in P , and M(P ) the ∣P ∣×d matrix with
constant columns which correspond to the mean row of M(P ). The following proposition characterizes the loss
of the final estimator estimator π̂Gt∞ which is obtained from a hierarchical sorting tree in terms of the variance
of the experts M within the groups P in Lt(T t∞).
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Proposition 3.5.1 (Deterministic Analysis of TreeSort). Assume that at each step of TreeSort, the routine
BlockSort applied to the data satisfies Property 1. Then, the error of π̂ = π̂−1Gt∞ is controlled as follows

∥Mπ̂−1 −Mπ∗−1∥
2
F ≤ 10t∞

t∞

∑
t=1
∑

P ∈Lt

∥M(P ) −M(P )∥2F . (3.46)

Besides, the hierarchical tree Tt∞ is valid (as in Definition 2) and all its non-empty leaves are of type p.

Up to a normalization, ∥M(P ) −M(P )∥2F corresponds to the variance of M within the group P . The
bound (3.46) expresses that the loss of a hierarchical sorting tree is controlled by the variance of the set P
that are not sorted with confidence at each step of the algorithm. Also, we recall that t∞ = ⌈log(n)/ log(2)⌉.
This proposition only relies on Property 1 and on the construction of the tree. Hence, it applies both to the
estimators π̂HT and π̂WM .

The sets (O,O, I, I) built in BlockSort arise as unions of set (L,U) and (L,U) that are computed by
DoubleTrisection for a set P and a pivot γ ∈ [1, ∣P ∣]. For this reason, we now state a desired property of the
result of the algorithm that will enforce Property 1.

Property 2 (Property on (L,U) and (L,U)). For P
′
= P ∖ (L ∪U) and P ′ = P ∖ (L ∪U), we have

1. L ⊂ L, and U ⊂ U ,

2. if ω = π∗−1{L,P ′,U}π
∗
{P} then for any i ∈ L ∪U it holds that ω(i) = i,

3. For any i ∈ L and j ∈ U we have π∗{P}(i) < γ < π
∗
{P}(j).

We say that DoubleTrisection with (Y,T , P , γ) satisfies Property 2 if the corresponding subsets (L,U)
and (L,U) satisfy Property 2.

Proposition 3.5.2 (Deterministic Analysis of BlockSort). BlockSort satisfies Property 1 on (Y,T ,G) if,
at each step of Algorithm 10, each call of DoubleTrisection satisfies Property 2.

In light of Propositions 3.5.1 and 3.5.2, it suffices to show that, with high probability, all applications of
DoubleTrisection in the construction of the hierarchical sorting tree satisfy Property 2, and then to control
the sum of within-group variances in (3.46).

3.5.1.3 High probability control of property 2

We write in this part of the proof (this subsection), for simplicity, Y = (Y (1), . . . , Y (6)) for 6 independent
matrices that are identically distributed as Y = M + E in (3.1), where we recall that the entries of E are
centered, independent and ζ-subgaussian.

Fix a hierarchical sorting tree T (recall Definition 1), a leaf G of T , a set P ⊂ G, a pivot γ ∈ {1, . . . , ∣P ∣}.
Let P2 ∶= P2(T , P , γ, βtris, βtris) be the event holding true if DoubleTrisection satisfies Property 2 on Y for
(T , P , γ, βtris, βtris). The following proposition states that P2 holds with uniformly high probability.

Proposition 3.5.3. For any T , any leaf G, any P ⊂ G, any pivot γ ∈ [∣P ∣], we have P(P2) ≥ 1 − 3∣H∣∣R∣δ.

This result is valid for both versions of DoubleTrisection where we use the memory of the tree (estimator
π̂WM ) or not (estimator π̂HT ). Recall that in BlockSort there are at most τ∞ calls of DoubleTrisection.
Since the construction of the hierarchical tree requires at most 2t∞+1 applications of BlockSort, we arrive at
the following straightforward corollary of Propositions 3.5.2, 3.5.1 and 3.5.3.

Corollary 3.5.4. There exists an event ξ of probability higher than 1− 2t∞+13τ∞∣H∣∣R∣δ such that all results of
BlockSort within TreeSort satisfy Property 1. In particular, the tree Tt∞ is a valid hierarchical sorting tree
(as in Definition 2) whose non-empty leaves are all of type p. Besides, on this event we also have

∥Mπ̂−1Gt∞
−Mπ∗−1∥

2
F ≤ 10t∞

t∞

∑
t=1
∑

P ∈Lt

∥M(P ) −M(P )∥2F . (3.47)

Again, this results applies to both variants of our procedure - with or without memory.
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3.5.1.4 Control of the loss function

In contrast to the previous subsection, we now need to specify the dimension reduction scheme
DimensionReduction (which corresponds to π̂HT ) or DimensionReduction −WM (which corresponds to
π̂WM ) inside
DoubleTrisection as the convergence rates depend on these quantities.

First we state the results for the method without memory: π̂HT .

Proposition 3.5.5. Consider the oblivious hierarchical sorting tree estimator π̂HT . On the intersection of
event ξ (defined in Corollary 3.5.4) and an event of probability higher than 1 − 5 ⋅ 2tτ∞δ, it holds that

∑

P ∈Lt

∥M(P ) −M(P )∥2 ≲ ζ2 log8.5 (
6nd

δζ−
)[
n2/3d1/3

ζ2/3
∧
nd1/6

ζ1/3
∧ n
√
d + n] .

Then we state the results for the method with memory: π̂WM .

Proposition 3.5.6. Consider the hierarchical sorting tree estimator π̂WM . On the intersection of event ξ
(defined in Corollary 3.5.4) and an event of probability higher 1 − 5 ⋅ 2tτ∞δ, it holds that

∑

P ∈Lt

∥M(P ) −M(P )∥2 ≲ ζ2 log9 (
6nd

δζ−
)[(

n3/4d1/4

ζ1/2
∧
nd1/6

ζ1/3
∧ n
√
d ∧

n2/3
√
d

ζ1/3
) + n] .

Now, we are in position to easily conclude the proof of Theorems 3.2.2 and 3.2.3.

Proof of Theorem 3.2.2. Let π̂HT ∶= π̂Gt∞ denote the oblivious hierarchical sorting tree estimator. Combining
Corollary 3.5.4 with Proposition 3.5.5 and a union bound over all t = 0, . . . , t∞ − 1, it holds with probability
higher than 1 − 8 ⋅ 2t∞+1τ∞∣H∣∣R∣δ that

∥Mπ̂−1
HT
−Mπ∗−1∥

2
F ≲ t2∞ ζ

2 log8.5 (
2nd

δζ−
)[
n2/3d1/3

ζ2/3
∧
nd1/6

ζ1/3
∧ n
√
d + n]

≲ ζ2 log10.5 (
2nd

δζ−
)[
n2/3d1/3

ζ2/3
∧
nd1/6

ζ1/3
∧ n
√
d + n] .

Proof of Theorem 3.2.3. Let π̂WM ∶= π̂Gt∞ denote the hierarchical sorting tree where we use the memory to
reduce the dimension (Algorithm DimensionReduction −WM). Combining Corollary 3.5.4 with Proposition
3.5.6 and a union bound on t = 0, . . . , t∞ − 1, it holds with probability higher than 1 − 8 ⋅ 2t∞+1τ∞∣H∣∣R∣δ that

∥Mπ̂−1
WM
−Mπ∗−1∥

2
F ≲ ζ

2 log11 (
6nd

δζ−
)[(

n3/4d1/4

ζ1/2
∧
nd1/6

ζ1/3
∧ n
√
d ∧

n2/3
√
d

ζ1/3
) + n] .

In the next four sections, we prove the intermediary results. Propositions 3.5.1–3.5.3 are relatively simple.
The main difficulty and the key arguments lie in the proofs of Proposition 3.5.5 and 3.5.6 which are respectively
in Sections 3.5.3 and 3.5.5.

3.5.2 Proofs of Propositions 3.5.1, 3.5.2, and 3.5.3

Proof of Proposition 3.5.1. First, we prove by induction that Tt∞ is a valid hierarchical sorting tree. Besides,
the last part of Property 1 enforces that the cardinality of any non-terminal node G of Tt∞ of depth t is at most
n/2t. As a consequence, the cardinality of any non-terminal node at depth t∞−1 is at most 1 and its children O
and I are therefore empty.

We control the error using a telescopic sum. Recall that, by convention, π∗G0 = π
∗. We start with the

following inequality:

∥Mπ̂−1Gt∞
−Mπ∗−1∥

2
F ≤ 2∥Mπ̂Gt∞

−Mπ∗−1Gt∞
∥
2
F + 2t∞

t∞

∑
t=1
∥Mπ∗−1Gt

−Mπ∗−1Gt−1
∥
2
F . (3.48)
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Since, for any group P in Gt∞ , π̂Gt∞ sorts the elements of P uniformly at random and π∗−1Gt∞ acts as another
permutation of P , we deduce from the triangular inequality that

∥Mπ̂−1Gt∞
−Mπ∗−1Gt∞

∥
2
F ≤ ∑

P ∈Gt∞
2∥M(P ) −M(P )∥2F = 2

t∞

∑
t=1
∑
P ∈Lt

∥M(P ) −M(P )∥2F

≤ 2
t∞

∑
t=1
∑

P ∈Lt

∥M(P ) −M(P )∥2F , (3.49)

where we used in the last line that P ⊂ P . For the second term in (3.48), remark that π∗Gt−1(P ) = π
∗
Gt(P ) for any

P ∈ Lt−1 so that the error at step t in the telescopic sum can be restricted to the groups G that are trisected at
step t − 1:

t∞

∑
t=1
∥Mπ∗−1Gt

−Mπ∗−1Gt−1
∥
2
F =

t∞

∑
t=1

∑
G∈Gt−1∖(∪s≥1Lt−s)

∑
i∈G
∥Mπ∗−1Gt

(π∗Gt−1(i))
−Mi∥

2
2 .

Let (O,P, I) be the trisection obtained at the t-th iteration when we apply BlockSort to a group G ∈ Gt−1 ∖
(∪s≥1Lt−s). We also write (O,P , I) for the more conservative trisection obtained at the end of BlockSort. For
short, we write ω = π∗−1Gt π∗Gt−1 . We decompose the sum over i ∈ G:

∑
i∈G
∥Mω(i) −Mi∥

2
= ∑

i∈O
∥Mω(i) −Mi∥

2
+∑

i∈I
∥Mω(i) −Mi∥

2
+∑

i∈P
∥Mω(i) −Mi∥

2 ,

By Property 1, all the experts in O and in I are perfectly sorted within G by π∗−1G(t). As a consequence, the
two first sums in the right-hand side term of the above equality are equal to zero. To handle the last term, we
introduce the row vector m(P ) as the mean of the experts of M over P :

∑
i∈G
∥Mω(i) −Mi∥

2
2 = ∑

i∈P
∥Mω(i) −Mi∥

2
2 ≤ 2∑

i∈P
(∥Mi −m(P )∥

2
2 + ∥m(P ) −Mω(i)∥

2
2)

= 4∥M(P ) −M(P )∥2F ,

where we used in the last line that ω acts as a permutation of P . Since P ∈ Lt, we obtain

t∞

∑
t=1
∥Mπ∗−1Gt

−Mπ∗−1Gt−1
∥
2
≤ 4

t∞

∑
t=1
∑

P ∈Lt

∥M(P ) −M(P )∥2F .

Together with (3.48) and (3.49), this concludes the proof since t∞ ≥ 1.

Proof of Proposition 3.5.2. Consider any data Y, any tree T and any leaf G of T . Let (O,P, I) and (O,P , I)
denote the trisections built in BlockSort(Y,T ,G). For any τ < τ∞, let (Lτ , Uτ), (Lτ , Uτ), (Oτ , Iτ) and
(Oτ , Iτ) be defined as in Algorithm 10. We also write Pτ = G∖ (Oτ ∪ Iτ) and P τ = G∖ (Oτ ∪ Iτ). We only need
to prove that, for all τ , (Oτ , Pτ , Iτ), and (Oτ , P τ , Iτ) satisfy Property 1. Since

Oτ = ⋃
τ ′<τ

Lτ ′ and Iτ = ⋃
τ ′<τ

Uτ ′ and Oτ = ⋃
τ ′<τ

Lτ ′ and Iτ = ⋃
τ ′<τ

Uτ ′ ,

we easily deduce from Property 2 for (Lτ , Uτ) and (Lτ , Uτ) that the first part of Property 1 is satisfied for
(Oτ , Pτ , Iτ), and (Oτ , P τ , Iτ).

Let us turn to the third and fourth parts of Property 1. Let us call im the expert such that π∗{G}(im) = ⌊∣G∣/2⌋.
In fact, we only need to prove that maxi∈Oτ π

∗
{G}(i) ≤ ∣G∣/2 and mini∈Iτ π

∗
{G}(i) ≥ ∣G∣/2. For this purpose, we

prove by induction on τ that the pivot always satisfies π∗−1{P τ}
(γ) = im and that all the experts of Oτ (resp. Iτ )

are below (resp. above) im, where γ depends on τ and is defined in Algorithm 10. Assume that this property
holds at step τ . Since Oτ only contains experts that are below the median expert and since γ = ⌊∣G∣/2⌋ − ∣Oτ ∣,
it follows that π∗−1{P}(γ) = im. Consider any i ∈ Oτ+1. If i ∈ Oτ , then π∗{G}(i) ≤ ∣G∣/2 by induction. If i ∈ Lτ , then
it follows from Property 2 that i is below im, which in turn implies that π∗{G}(i) ≤ ∣G∣/2. By symmetry, the
property also holds for Iτ . We have proved the third and the fourth parts of Property 1.

Finally, we consider the second part of Property 1. Assume that the property holds at step τ . This implies
that, for any i ∈ Oτ , all experts below i belong to Oτ . Consider any expert i ∈ Oτ+1. If i ∈ Oτ , then, by
induction, we have π∗{G}(i) = π

∗
{Oτ}(i) = π

∗
{Oτ+1}(i). Then, we turn to the case where i belongs to Lτ ⊂ P τ .

Consider any j ∈ G such that π∗{G}(j) ≤ π
∗
{G}(i). If j ∈ Oτ , then we obviously have j ∈ Oτ+1. If j ∈ P τ , then
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the second part of property 2 enforces that j ∈ Lτ and therefore j ∈ Oτ+1. Finally, it is not possible that j ∈ Iτ
since this enforces that π∗{G}(j) > ∣G∣/2 > π

∗
{G}(i) and contradicts the hypothesis. We prove similarly that, for

any expert i ∈ Iτ+1, all experts j above i belong to Iτ+1.

Proof of Proposition 3.5.3. As DoubleTrisection is based on multiple applications of the Pivot algorithm,
we start by considering the latter procedure.

Consider two sets ∣P ∣ ⊂ [n] and Q ⊂ [d] and a matrix Θ ∈ R∣P ∣×∣Q∣ which, up to the permutation π∗{P}, is
bi-isotonic. Let Z be a noiy observation of Θ,

Z = Θ +N , (3.50)

where the noise matrix N is made of independent, centered, ζ-subGaussian random variables. Let w ∈ RQ+ be a
non-zero vector with nonegative coordinates. we write (L,U) and (L,U) for the result of Pivot(Z,w, γ). We
define the event P3 ∶= P3(P ,Q,w, γ) as the event on Z such that (L,U) and (L,U) satisfy Property 2.

We remind that P ′ = P ∖ (L ∪U), and P ′ = P ∖ (L ∪U).

Lemma 3.5.7. For any non-zero vector w ∈ RQ+ , any pivot γ ∈ {1, . . . , ∣P ∣} , we have P[P3] ≥ 1− δ. Besides, on
the same event of probability at least 1 − δ, we have

∣⟨Θi,⋅ −Θiγ ,⋅,
w

∥w∥2
⟩∣ ≤ (2ζ

√
2 + βtris)

¿
Á
ÁÀlog(

2∣P ∣

δ
) if i ∈ P ′ . (3.51)

Before proving the lemma, let us explain why Proposition 3.5.3 is easily deduced from it. The procedure
DoubleTrisection calls at most 3∣H∣∣R∣ times Pivot. Note that, each time, we rely on an independent sample
to choose the direction w and to apply Pivot. Then, applying the Lemma, we derive that, with probability
higher than 1 − 3∣H∣∣R∣δ, each of these 3∣H∣∣R∣ sets (L,U) and (L,U) satisfy Property 2. Hence, we only
need to check that Property 2 is stable by union. If, both (L(1), U (1)) and (L

(1)
, U
(1)
) and (L(2), U (2)) and

(L
(2)
, U
(2)
) satisfy Property 2, then one easily checks that the first and third part of Property 2 are also true for

(L,U) = (L(1) ∪L(2), U (1) ∪U
(2)
) and (L,U) = (L

(1)
∪L

(2)
, U
(1)
∪U

(2)
). Consider any expert i in L. Without

loss of generality, we may assume that i ∈ L
(1)

so that all experts below i in P belong to L(1) by the second
part of Property 2. As a consequence, all these experts below i belong to L and we deduce that the second part
of Property 2 holds. Similarly, we deal with experts i ∈ U . This concludes the proof of Proposition 3.5.3.

Proof of Lemma 3.5.7. Since the noise matrix in (3.50) is made of independent ζ-subGaussian random variables,
it follows from a union bound, that with probability higher than 1 − δ, we have

∣⟨Zi,⋅,
w

∥w∥2
⟩ − ⟨Θi,⋅,

w

∥w∥2
⟩∣ ≤ ζ

¿
Á
ÁÀ2 log(

2∣P ∣

δ
) .

simultaneously for all i in P . Since the entries of w are non-negative, the quantities ⟨Θi,⋅, w
∥w∥2 ⟩ are ordered

according the permutation π∗{P}. Denote iγ = π∗−1{P}(γ) and îγ the index of γ-th value of ⟨Zi,⋅, w
∥w∥2 ⟩ for i ∈ P .

Since at least γ experts satisfy ⟨Θi,⋅, w
∥w∥2 ⟩ ≤ ⟨Θiγ ,⋅,

w
∥w∥2 ⟩, we deduce from the above uniform deviation inequality

that

⟨Zîγ ,⋅,
w

∥w∥2
⟩ ≤ ⟨Θiγ ,⋅,

w

∥w∥2
⟩ + ζ

¿
Á
ÁÀ2 log(

2∣P ∣

δ
) .

By symmetry, we deduce that

∣⟨Zîγ ,⋅,
w

∥w∥2
⟩ − ⟨Θiγ ,⋅,

w

∥w∥2
⟩∣ ≤ ζ

¿
Á
ÁÀ2 log(

2∣P ∣

δ
) .
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As a consequence, we have

⟨Θi,⋅,
w

∥w∥2
⟩ < ⟨Θiγ ,⋅,

w

∥w∥2
⟩ − (βtris − 2ζ

√
2)

¿
Á
ÁÀlog(

2∣P ∣

δ
) if i ∈ L ;

⟨Θi,⋅,
w

∥w∥2
⟩ > ⟨Θiγ ,⋅,

w

∥w∥2
⟩ + (βtris − 2ζ

√
2)

¿
Á
ÁÀlog(

2∣P ∣

δ
) if i ∈ U ;

∣⟨Θi,⋅ −Θiγ ,⋅,
w

∥w∥2
⟩∣ ≤ (2ζ

√
2 + βtris)

¿
Á
ÁÀlog(

2∣P ∣

δ
) if i ∈ P ′ . (3.52)

The same inequalities hold for L, U , and P
′

provided that we replace βtris by βtris. It remains to show that
(L,U) and (L,U) satisfy Property 2. The first part of the property is obvious. Since βtris ≥ 2

√
2ζ, one observes

that π∗{P}(i) < π
∗
{P}(iγ) = γ if i ∈ L. Similarly, π∗{P}(i) > γ if i ∈ U and the third part of Property 2 follows.

Turning to the second part of the property, we consider without loss of generality some i ∈ L and we need to
show that all j satisfying π∗{P}(j) ≤ π

∗
{P}(i) belong to L. First, such a j does not belong to U since π∗{P}(i) < γ.

Since i ∈ L, we deduce that

⟨Θi,⋅,
w

∥w∥2
⟩ < ⟨Θiγ ,⋅,

w

∥w∥2
⟩ − (βtris − 2

√
2ζ)

¿
Á
ÁÀlog(

2∣P ∣

δ
) ,

which implies that

∣⟨Θiγ ,⋅ −Θj,⋅,
w

∥w∥2
⟩∣ > (βtris − 2

√
2ζ)

¿
Á
ÁÀlog(

2∣P ∣

δ
) ≥ (2ζ

√
2 + βtris)

¿
Á
ÁÀlog(

2∣P ∣

δ
) .

which in light of (3.52) implies that j ∉ P ′. We have proved that j belongs to L. Hence, Property 2 holds,
which concludes the proof.

3.5.3 Proof of Proposition 3.5.5

In this section, we prove Proposition 3.5.5 and thereby control the loss of the estimator π̂ with simple dimension
reduction. For this purpose, we analyze each step of the algorithm. In Section 3.5.3.2, we first prove that, by
detecting the high-variation regions of M , we are able to aggregate M at some scale r without decreasing much
the variation of M . This allows us to drastically reduce the dimension of the problem. Then, in Sections 3.5.3.3
and 3.5.3.3, we show that, unless this aggregated matrix Θ has small variations, DoubleTrisection −PCA and
Pivot will remove some experts so that the corresponding new aggregated matrix Θ′ exhibit significantly smaller
variations. As a consequence, after a polylogarithmic number of iterations of the procedure, the variations of
the matrix M restricted to the remaining experts of P is small enough.

3.5.3.1 Notation

As the arguments rely on considering aggregation of the matrix at different scales, we recall some notation.
Let Y = M + E denote a sample of the original matrix. For a set P ⊂ [n] of experts and a set Q of blocks of
questions and a scale r ∈ R, we respectively denote

Z(P,Q, r) = Encode −Matrix(Y,P,Q, r) ∈ RP×Q

Θ(P,Q, r) = Encode −Matrix(M,P,Q, r)

N(P,Q, r) = Encode −Matrix(E,P,Q, r) ,

the aggregations of Y , M , and E at scale r so that

Z(P,Q, r) = Θ(P,Q, r) +N(P,Q, r) .

By definition of Encode −Matrix, all the entries of N are independent and ζ-subGaussian. For any p × q
matrix A, we define a as the row vector corresponding to the column-wise mean of A, that is aj = 1

q ∑
q
i=1Ai,j .

Besides, we write A for p × q matrix whose experts are all equal to a.
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3.5.3.2 Analysis of DimensionReduction

In this subsection, we mainly state, that for any h ∈ H, r ∈ R, the set Q̂cp (which depends on h, r) detects
the high-variation regions of M with high probability. Then, we show in Lemma 3.5.9, that for, for some
(h, r) ∈H×R, the aggregation of M at scale r and at these high-variation regions contains most of the variance
of M . This motivates us to work with this aggregated matrix henceforth. Consider any set P of experts and a
sample

Y (P ) =M(P ) +E(P ) .

Fix any scale r ∈R and any height h ∈H. Recall the two quantities r0 and r̃ defined in DimensionReduction
by

r0 = 32ζ
2 log (

2d

δ
)

1

∣P ∣h2
and r̃ = 8(⌈r0⌉ ∨ r) . (3.53)

In a nustshell, r0 stands for the minimal scale at which a variation of order h in the mean m(P ) = E[y(P )] can
be statistically detected. This is why we consider empirical variations of y(P ) at scale r̃ ≥ (r0 ∨ r) in Algorithm
DimensionReduction to possibly detect variations at scale r.

The purpose of this subsection is to prove, that with high probability, the collections
Q̂cp(h, r) = DimensionReduction(Y,P , h, r) of selected blocks of length r is not too large and that there
exists at least one (h, r) ∈H×R such that the aggregation of M(P ) at scale r restricted to the blocks Q̂cp(h, r)
captures most of the variance of M(P ).

For this purpose, we recall the CUSUM statistics introduced in DimensionReduction and we introduce
its population counterpart. Given positive integers k ∈ [d] and r > 0, consider

Ĉk,r =
1

r
(
k+r−1
∑
k′=k

yk′(P ) −
k−1
∑

k′=k−r
yk′(P )) and C∗k,r =

1

r
(
k+r−1
∑
k′=k

mk′(P ) −
k−1
∑

k′=k−r
mk′(P )) .

Equipped with this notation, we define D̂cp as in the algorithm as the set of positions d such that the association
CUSUM statistic is above the threshold, and D∗cp and D

∗
cp as some population versions of D̂cp, but with different

tuning parameters:

D̂cp(h, r) = {k ∈ [d] ∶ Ĉk,r̃ ≥
1

4
h} , (3.54)

D∗cp(h, r) = {k ∈ [d] ∶ C
∗
k,8r ≥

1

2
h} ; D

∗
cp(h, r) = {k ∈ [d] ∶ C

∗
k,r̃ ≥

1

8
h} . (3.55)

Then, we consider the collection of blocks Q̂cp(h, r) , Q∗cp(h, r), and Q
∗
cp(h, r) of size r that are associated

with these positions. In terms of our algorithms, this means that Q∗cp(h, r) = Encode − Set(D∗cp, r), Q
∗
cp(h, r) =

Encode − Set(D
∗
cp, r), and Q̂cp(h, r) = Encode − Set(D̂cp, r). The first proposition states that, with high

probability, Q̂cp(h, r) is sandwidched between Q∗cp(h, r) and Q
∗
cp(h, r), so that, on the corresponding event, it

is sufficient to study these two quantities.

Lemma 3.5.8. For all h, r, the event ξcp ∶= ξcp(P ,h, r) defined by

Q∗cp ⊂ Q̂cp ⊂ Q
∗
cp , (3.56)

holds true with probability at least 1 − δ.

Then, we show that there are not too many significant blocks in Q
∗
cp. The proof is based on the fact that

the row vector m(P ) is isotonic and lies in [0,1]. As a consequence, there cannot exist two many regions where
the variations of m(P ) is large.

Lemma 3.5.9. For all h ∈H and all r ∈R, we have

∣Q
∗
cp∣ ≤

64r̃

rh
. (3.57)

The next lemma states that, at least for a height h ∈ H and a scale r ∈ R, the aggregation of M at scale r
and restricted to the regions Q∗cp(h, r) of significant variations contains almost all the variance of the signal.

For any number θ and any η > 0, we define [θ]η = (−1)sgn(θ)η1∣θ∣≥η. For any matrix Θ, we write [Θ]η for the
thresholded matrix with coefficients [Θi,j]η.

Lemma 3.5.10. For any set P ⊂ [n] and any bi-isotonic matrix M ∈ [0,1]n×d, there exist r ∈R and h ∈H such
that

∥M(P ) −M(P )∥2F ≤ 16ζ
2
+ 96∣R∣∣H∣ ∥[Θ(P ,Q∗cp) −Θ(P ,Q

∗
cp)]√rh∥

2

F
, (3.58)

The proof of the above lemmas is postponed to Section 3.5.4.1.
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3.5.3.3 Analysis of Pivot based on the row sums

We consider a specific subset P of experts, a subset Q of blocks of questions, the corresponding aggregated
model

Z(P ,Q) = Θ(P ,Q) +N(P ,Q) ∈ RP×Q , (3.59)

and a pivot γ ∈ [1, ∣P ∣]. Let (L,U) = Pivot(Z,1Q, γ) be the conservative result of Pivot based on the row sums
of Z(P ,Q) and let P

′
= P ∖ (L ∪U) be the subgroup of experts which have not been classified by Pivot. The

following proposition states that, provided that for some η the norm ∥ [Θ(P ,Q) −Θ(P ,Q)]
η
∥2F is large enough

compared to ∣P ∣
√
∣Q∣, the resulting matrix Θ(P

′
,Q) −Θ(P

′
,Q) after Pivot has a significantly smaller norm.

We shall often use the following quantity.

ϕl1 = 2(2ζ
√
2 + βtris) ≤ 29ζ . (3.60)

Proposition 3.5.11. Consider any P ⊂ [n], any r ∈ R, and any subset Q ⊂ Qr. Also, fix any η > 0 and any
ϕ > 0. If

∥ [Θ(P ,Q) −Θ(P ,Q)]
η
∥
2
F ≥

1

ϕ
∥Θ(P ,Q) −Θ(P ,Q)∥2F ≥ 8ϕl1η

√

log( 2∣P ∣
δ
)∣P ∣
√
∣Q∣ ,

then, with probability higher than 1 − δ, we have

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤ (1 −

1

16ϕ
) ∥Θ(P ,Q) −Θ(P ,Q)∥2F .

3.5.3.4 Analysis of DoubleTrisection −PCA

In this subsection, we state the main result regarding the trisection of a set P based on the first singular
vector of a suitable matrix. We start from a subset P of experts. In DoubleTrisection −Local, we start
applying Pivot and define P̃ = P ∖ (Lcp ∪ U cp) as the set of experts that have not been classified by Pivot.
We are given four independent samples Z = (Z(1), Z(2), Z(3), Z(4)) according to the aggregated model (3.59).
The first three samples are restricted to P̃ , whereas the last one concerns P . Fix γ ∈ [1, ∣P ∣]. We consider
(L,U) = DoubleTrisection −PCA(Z, γ) and P

′
= P̃ ∖ (Lpca ∪ Upca) the set of experts that have not been

classified by DoubleTrisection −PCA.
Recall the definition (3.60) of ϕl1 . Henceforth, the matrix Θ(P̃ ,Q) is said to be undistinguishable in l1-norm

if it satisfies

max
i,j∈P

∥Θi,⋅(P̃ ,Q) −Θj,⋅(P̃ ,Q)∥1 ≤ ϕl1

√

∣Q∣ log ( 2∣P ∣
δ
) . (3.61)

Since, up to permutation of its experts, the matrix Θ(P̃ ,Q) is bi-isotonic, the l1 norm ∥Θi,⋅(P̃ ,Q)−Θj,⋅(P̃ ,Q)∥1
is simply the difference of the row sums of Θ(P̃ ,Q). Since P̃ has been deduced from P by applying Pivot(Z,γ),
we can safely assume that Θ(P̃ ,Q) is undistinguishable in l1-norm with high probability – see the next subsection
for a proper justification.

The next result states that, if Θ(P̃ ,Q) is undistinguishable in l1-norm and if the Frobenius norm of Θ(P̃ ,Q)−
Θ(P̃ ,Q) is large enough, then the corresponding matrix Θ(P

′
,Q) obtained after trisection has a significantly

smaller Frobenius norm.

Proposition 3.5.12. Let P ⊂ [n] and Q ⊂ [d]. If Θ(P̃ ,Q) is undistinguishable in l1-norm and if

∥Θ(P̃ ,Q) −Θ(P̃ ,Q)∥2F ≥ 2 ⋅ 10
5ζ2 log3 (

6nd

δζ−
)(

√

∣P̃ ∣∣Q∣ + ∣P̃ ∣) , (3.62)

then, with probability higher than 1 − 3δ, we have

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤ (1 −

1

200 log2(nd/ζ−)
) ∥Θ(P ,Q) −Θ(P ,Q)∥2F .

Then, we gather the two previous results to analyze the routine DoubleTrisection −Local. Fix any P ⊂ [n]
and Q ⊂ [p]. Let Z = (Z(1)(P ,Q), Z(2)(P ,Q), Z(3)(P ,Q), Z(4)(P ,Q), Z(5)(P ,Q)) be five independent samples
of the model (3.50). Fix any γ ∈ [1, ∣P ∣]. Let (L,U) be the conservative result of DoubleTrisection −Local(Z, γ)

and P
′
= P ∖ (L ∪U). In the following, we write Θ(P ,Qr) for the aggregation of M(P ) at all blocks of size r.



3.5. Proofs 69

Corollary 3.5.13. Fix any r ∈R. If, for some P ⊂ [n], Q ⊂ Qr, and η > 0, Θ(P ,Q) satisfies

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∥ [Θ(P ,Q) −Θ(P ,Q)]
η
∥2F ≥

1

120 log2( nd
δζ−
)
∥Θ(P ,Qr) −Θ(P ,Qr)∥

2
F

∥Θ(P ,Q) −Θ(P ,Q)∥2F ≥ 4 ⋅ 10
5ζ2 log3 ( 6nd

δζ−
) [

η
ζ
∣P ∣
√
∣Q∣ ∧ (

√

∣P ∣∣Q∣ + ∣P ∣)] ,
(3.63)

then, with probability higher than 1 − 4δ, we have

∥Θ(P
′
,Qr) −Θ(P

′
,Qr)∥

2
F ≤
⎛
⎜
⎝
1 −

1

3 ⋅ 105 log4 ( nd
δζ−
)

⎞
⎟
⎠
∥Θ(P ,Qr) −Θ(P ,Qr)∥

2
F .

3.5.3.5 Analysis of BlockSort

Next, we combine the results of the previous sections to control the error of BlockSort. We are given a collection
Y of 6τ∞ samples of the model (3.1) and a valid hierarchical sorting tree T of depth t that we consider as fixed.
Then, we take a leaf G of T with maximal depth and we consider (O,P, I) = BlockSort(Y,T ,G) the trisection
of G, as well as P ⊇ P the more conservative intermediary set. In this section, we provide a high-probability
control of P .

For any height h ∈ H and scale r ∈ R, recall that Q∗cp is the subset(defined in Section 3.5.3.2) of block of
questions at scale r such that the mean m(P ) increases by at least h/2. Also recall the superset Q

∗
cp ⊃ Q

∗
cp.

At a high level, the next proposition states that, after τ∞ iterations of the DoubleTrisection −Local
routines at all scales r ∈ R and all heights h ∈ H, the size ∥M(P ) −M(P )∥2F is quite small. This is mainly
due to the fact that, by Lemma 3.5.10, at each step τ , there exists some (r, h) ∈ R ×H such that the norm of
the thresholded aggregated matrix [Θ(P τ ,Q∗cp) −Θ(P τ ,Q

∗
cp)]√rh is of the same order as ∥M(P ) −M(P )∥2F .

By Lemma 3.5.8, the estimated blocks Q̂∗cp contain Q∗cp with high probability. Hence, unless the norm of the
thresholded aggregated matrix is small, we derive from corollary 3.5.13 that the norm of this aggregated matrix
has contracted at step τ + 1. Hence, after τ∞ steps, one could expect that the norm of ∥M(P ) −M(P )∥2F is
small. In fact, both the statement and the proof of this proposition are slightly more involved because we need
to keep track of the scales and heights of interest. Define the function Ψ(p, r, h, q) by

Ψ(p, r, h, q) =
hp
√
rq

ζ
∧ (
√
pq) + p . (3.64)

Proposition 3.5.14. With probability higher than 1 − 5τ∞δ, there exists a subset P
†

such that P ⊆ P
†
⊆ G

and the following property holds. For some r† ∈ R and some h† ∈ H, upon writing Q†
cp = Q

∗
cp(P

†
, h†, r†) and

Q
†
cp = Q

∗
cp(P

†
, h†, r†), we have simultaneously

∥ [Θ(P
†
,Q†

cp) −Θ(P
†
,Q†

cp)]√
r†h†
∥
2
F ≤ 4 ⋅ 10

5ζ2 log3 (
6nd

δζ−
)Ψ(∣P

†
∣, r†, h†, ∣Q

†
cp∣) ; (3.65)

∥M(P
†
) −M(P

†
)∥

2
F ≤ 16ζ

2
+ 96∣R∣∣H∣∥[Θ(P

†
,Q†

cp) −Θ(P
†
,Q†

cp)]
√
r†h†∥

2
F . (3.66)

In other words, there exists a superset P
†

of P such that, for a suitable height and scale, at the high-
variation regions, both the original matrix M(P

†
) and the thresholded aggregated matrix are controlled at the

level Ψ(∣P
†
∣, r†, h†, ∣Q

†
cp∣). The virtue of the above result is that it easily adapts to the block sorting variant

with memory. Unfortunately, the rate Ψ(∣P
†
∣, r†, h†, ∣Q

†
cp∣) is a bit difficult to handle. In the next corollary, we

replace it by a simpler but cruder bound that only depends on ∣G∣, h† and d.

Corollary 3.5.15. Under the same event of probability higher than 1−5τ∞δ as in the previous proposition, the
set P

†
, the scale r†, and the height h† also satisfy

∥ [Θ(P
†
,Q†

cp) −Θ(P
†
,Q†

cp)]√
r†h†
∥
2
F ≲ ζ

2 log3.5 (
6nd

δζ−
)

⎡
⎢
⎢
⎢
⎢
⎣

h†∣G∣
√
d

ζ
∧
√
∣G∣d ∧

√
∣G∣

h† + ∣G∣

⎤
⎥
⎥
⎥
⎥
⎦

, (3.67)

where we recall that G is the initial group.
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3.5.3.6 Analysis of the complete procedure TreeSort

We are now equipped to prove Proposition 3.5.5.

Proof of Proposition 3.5.5. Let us fix an integer t ≤ t∞ and let us consider the collection Lt of the 2t groups P
that are not sorted with confidence. Let us apply Proposition 3.5.14 to each of these sets P . In view of this
proposition, we define (P

†
, h†, r†) as well as Q†

cp. We also define

s† = ∣{l ∶ ∃i, j ∈ P
†

s.t. [Θi,l(P
†
,Q†

cp) −Θj,l(P
†
,Q†

cp)]√
r†h†
≠ 0}∣ .

In a nustshell, s† is the number of columns of the thresholded aggregated matrix which are not equal to zero.

Definition 3. Define the dyadic collection S = {1,2,4, . . . ,2⌈log2(d)⌉}. For any s ∈ S, r ∈ R, and h ∈ H, we
consider the collection P∗(h, r, s) ⊂ Lt satisfying r† = r, h† = h, and s† ∈ [s,2s).

The following lemma controls the cardinality of P∗(h, r, s). This bound mainly relies on the facts that the
matrix M is, up to a row permutation, bi-isotonic and that its entries lie in [0,1].

Lemma 3.5.16. Assume that there exists an ordering σ of Lt that orders all groups P ’s. In other words, for
any r ≤ s, any expert i ∈ Pσ(r) is below any expert j ∈ Pσ(s). Then, upon this assumption,

∣P
∗
(h, r, s)∣ ≤

2d

hrs
∧ 2t ≤

√
d2t+1

hrs
,

for any h ∈H, r ∈R, and s ∈ S.

In fact, all the collections Lt with t = 0, . . . , t∞ satisfy the assumption in the above under the event ξ defined
in Corollary 3.5.4 –see the proof of Proposition 3.5.3.

Putting everything together and summing over the groups P∗(h, r, s), we derive from Proposition 3.5.14 and
Corollary 3.5.15 that, with probability higher than 1 − 5 ⋅ 2tτ∞δ, we have

∑

P ∈Lt

∥M(P ) −M(P )∥2F ≤ 16ζ
2
∣Lt∣ + 96∣R∣∣H∣ ∑

h,r,s

∑

P ∈P∗(h,r,s)
∥ [Θ(P ,Q†

cp) −Θ(P ,Q
†
cp)]√rh ∥

2
F

(a)
≲ ζ2 log5.5 (

6nd

δζ−
) ∑
h,r,s

∑

P ∈P∗(h,r,s)
[(

n

2tζ2
s†rh2) ∧ (

√
n

2th
) +

n

2t
]

(b)
≲ ζ2 log5.5 (

6nd

δζ−
) ∑
h,r,s

⎡
⎢
⎢
⎢
⎢
⎣

nsrh2

ζ2
∧

√
dn

srh2
+ n

⎤
⎥
⎥
⎥
⎥
⎦

(c)
≲ ζ2 log8.5 (

6nd

δζ−
)[
n2/3d1/3

ζ2/3
+ n] ,

where in (a), we combined Corollary 3.5.15 with the fact that the size of each group is at most n/2t, the crude
bound ∥[A]η∥2F ≤ η

2d1d2 for any d1 × d2 matrix and that n/2t ≥ 1. In (b), we relied on Lemma 3.5.16, whereas
in (c) we used that x ∧ y ≤ x1/3y2/3.

We have proved the desired n2/3d1/3/ζ2/3 + n upper bound. The rate nd1/6/ζ1/3 is proved using the same
scheme except that we apply Corollary 3.5.15 differently in (a). More precisely, we have

∑

P ∈Lt

∥M(P ) −M(P )∥2F ≤ 16ζ
2
∣Lt∣ + 96∣R∣∣H∣ ∑

h,r,s

∑

P ∈P∗(h,r,s)
∥ [Θ(P ,Q†

cp) −Θ(P ,Q
†
cp)]√rh ∥

2
F

≤ ζ2 log5.5 (
6nd

δζ−
) ∑
h,r,s

∑

P ∈P∗(h,r,s)
[(

n

2tζ
h
√
d) ∧ (

√
n

2th
) ∧

√
n

2t
d +

n

2t
]

≲ ζ2 log5.5 (
6nd

δζ−
)∑
h

∑
r,s

∣P
∗
(h, r, s)∣ [(

n

2tζ
h
√
d) ∧ (

√
n

2th
) ∧

√
n

2t
d +

n

2t
]

(a′)
≲ ζ2 log5.5 (

6nd

δζ−
)∑
h

⎡
⎢
⎢
⎢
⎢
⎣

nh
√
d

ζ
∧

√
n2

h
∧
√
n2td + n

⎤
⎥
⎥
⎥
⎥
⎦

(b′)
≲ ζ2 log6.5 (

6nd

δζ−
)[
nd1/6

ζ1/3
∧ n
√
d + n] ,

where in (a′), we used that ∑r,s ∣P∗(h, r, s)∣ ≤ 2t ≤ 2n and in (b’) that xy ≤ x1/3y2/3.
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Proof of Lemma 3.5.16. To ease the notation, we write P∗ = P∗(h, r, s) in this proof. Since P∗ ⊂ Lt, we
straightforwardly derive that ∣P∗∣ ≤ ∣Lt∣ ≤ 2t. Let us introduce the width of a matrix Θ ∈ R[n]×Qr on the set
P ⊂ [n] and Q ⊂ Qr:

W∞,1(Θ, P,Q) =max
i,j∈P

∑
l∈Q
∣Θi,l −Θj,l∣ .

Consider any set P and the corresponding quantities P
†
, s†, r†, and h†. By definition of s†, we have

W∞,1(Θ, P
†
,Q†

cp) ≥ s
†
√
r†h†. Recall that the matrix Θ is, up to a permutation of its rows, bi-isotonic. Besides,

all the groups P in Lt are perfectly ordered by assumption. As a consequence, the width of Θ on [n] is larger
or equal to the sum of the width on each set P . Since P∗ is an ordered sub-partition, it holds that

W∞,1(Θ, [n],Qr) ≥ ∑
P ∈P∗

W∞,1(Θ, P
†
,Qr) ≥ ∑

P ∈P∗
W∞,1(Θ, P

†
,Q†

cp) ≥ ∣P
∗
∣s†
√
rh ≥ ∣P∗∣s

√
rh . (3.68)

By definition of Qr, we have ∣Qr ∣ ≤ 2d/r. Since the values of Θ lie in [0,
√
r], we deduce that W∞,1(Θ, [n],Qr) ≤

2d/
√
r. Together with (3.68), this yields

∣P
∗
∣ ≤

2d

rsh
,

which concludes the proof.

3.5.4 Remaining proofs for Proposition 3.5.5

3.5.4.1 Proofs of the results on DimensionReduction (Section 3.5.3.2)

Proof of Lemma 3.5.8. It is sufficient to prove that D∗cp(h, r) ⊂ D̂cp(h, r) ⊂ D
∗
cp(h, r). Recall that we use the

convention that yi = mi = 0 if i ≤ 0 and yi = mi = 1 if i > d. Since the CUSUM statistic is linear, we have the
decomposition

Ĉk,r̃ =C
∗
k,r̃ +

1

r̃
(
k+r̃−1
∑
k′=k

ek′(P ) −
k−1
∑

k′=k−r̃
ek′(P )) ,

where the latter random variable is centered and ζ(∣P ∣r̃/2)−1/2-subGaussian. By a union bound, we derive that,
with probability higher than 1 − δ, we have

max
k∈[d]
∣Ĉk,r̃ −C

∗
k,r̃ ∣ ≤ ζ

¿
Á
ÁÀ 2 ⋅ 2

∣P ∣r̃
log (

2d

δ
) .

Since r̃ is defined in such a way that

ζ

¿
Á
ÁÀ 4

∣P ∣
log (

2d

δ
) ≤

1

8

√
r̃h ,

we deduce that D̂cp(h, r) ⊂ D
∗
cp(h, r). Conversely, if k belongs to D∗cp(h, r), we have C∗k,8r ≥ h/2. Since m(P )

is an isotonic vector and r̃ ≥ 8r, it follows that C∗k,r̃ ≥C
∗
k,8r ≥ h/2. We deduce that

Ĉk,r̃ ≥ h[
1
2
− 1

8
] ≥

h

4
,

which implies that D∗cp(h, r) ⊂ D̂cp(h, r).

Proof of Lemma 3.5.9. If an index k belongs to D
∗
(h, r), this implies that mk+r̃−mk−r̃ ≥ h/8, since the vector m

is isotonic. Define κ = 1+⌈r̃/r⌉. Sincem is an isotonic vector, for l ∈ Q
∗
cp(h, r), we deduce thatml+κr−ml−κr ≥ h/8.

Consider the regular grid Qκr of width κr and define Q
∗
(h, r, κ) = {l ∈ Qκr ∶ Q

∗
cp(h, r) ∩ [l, l + κr) ≠ ∅}. Since,

for l ∈ Q
∗
(h, r, κ), we have ml+2κr −ml−2κr ≥ h/8 and since the total variation of m is at most one, this implies

h

8
∣Q
∗
(h, r, κ)∣ ≤ ∑

l∈D(κ,r,h)
ml+2κr −ml−2κr ≤ ∑

l∈Qκr

ml+2κr −ml−2κr ≤ 4 .

Since ∣Q
∗
(h, r)∣ ≤ κ∣Q

∗
(h, r, κ)∣ and since κ ≤ 2r̃/r, we obtain the desired result.
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Proof of Lemma 3.5.10. For any height h ∈ H –recall the definition of the dyadic class H in (3.36)– and any
expert i ∈ P , we consider the h-level set Mi,. −m, that is

F (i, h) = {k ∈ [d] ∶ Mi,k −mk ≥ h} ; F (i,−h) = {k ∈ [d] ∶ Mi,k −mk ≤ −h} . (3.69)

Since F (i, h) and F (i,−h) are subsets of [d], we can decompose them into unions of disjoint intervals. For any
positive integer r ∈R, we write F (i, h, r) as the union of intervals of F (i, h) whose size belongs [2r − 1,4r − 1).
Finally, we consider the subset F (i, h, r; 2h) ⊂ F (i, h, r) of all intervals of F (i, h, r) that intersect F (i,2h). In
other words, any maximal interval I in F (i, h, r; 2h) is a h-level set whose size belongs to [2r − 1,4r − 1) and
such that Mi,. −m crosses the level 2h in I. We define similarly F (i, h, r) and F (i, h, r; 2h) when h is negative
and −h ∈H. It follows from these definitions that, for any h such that either h ∈H or −h ∈H, we have

F (i,2h) ⊂ ⋃
r∈R

F (i, h, r; 2h) . (3.70)

We define F ∗(h, r,2h) as the union of those intervals for i ∈ P .

F ∗(h, r,2h) = ⋃
i∈P

F (i, h, r; 2h) .

First, we claim that this collection of intervals F ∗(h, r,2h) is contained in the significant regions of variation
of m. This result heavily relies on the monotonicity assumptions.

Lemma 3.5.17. For any h ∈H and any r ∈R.

[F ∗(h, r,2h)⋃F ∗(−h, r,−2h)] ⊂D∗cp(h, r) .

Next, we quantify ∥M(P ) −M(P )∥2F using regions of large variation of Mi,. −m.

Lemma 3.5.18. For any P , it holds that

∥M(P ) −M(P )∥2F ≤ 16

⎡
⎢
⎢
⎢
⎢
⎣

ζ2 +∑
i∈P

∑
r∈R,h∈H

h2 (∣F (i, h, r; 2h)∣ + ∣F (i,−h, r;−2h)∣)

⎤
⎥
⎥
⎥
⎥
⎦

.

The last lemma connects these sets ∣F (i, h, r; 2h)∣ to the norm of the thresholded aggregated matrix.

Lemma 3.5.19. For any r ∈R and h ∈H, we consider Θ(P ,Q∗cp(h, r)) the aggregation of M at scale r and at
Q∗cp(h, r). We have

h2∑
i∈P
[∣F (i, h, r; 2h)∣ + ∣F (i,−h, r;−2h)∣] ≤ 3∥ [Θ(P ,Q∗cp(h, r)) −Θ(P ,Q

∗
cp(h, r))]√rh ∥

2
F .

Combining Lemmas 3.5.18 and 3.5.19, we conclude that

∥M(P ) −M(P )∥2F ≤ 16

⎡
⎢
⎢
⎢
⎢
⎣

ζ2 +∑
i∈P

∑
r∈R, h∈H

h2(∣F (i, h, r; 2h)∣ + ∣F (i,−h, r;−2h)∣)

⎤
⎥
⎥
⎥
⎥
⎦

≤ 16

⎡
⎢
⎢
⎢
⎢
⎣

ζ2 + 3 ∑
r∈R, h∈H

∥ [Θ(P ,Q∗cp(h, r)) −Θ(P ,Q
∗
cp(h, r))]√rh ∥

2
F

⎤
⎥
⎥
⎥
⎥
⎦

≤ 16 [ζ2 + 6∣R∣∣H∣ max
r∈R, h∈H

∥[Θ(P ,Q∗cp(h, r)) −Θ(P ,Q
∗
cp(h, r))]√rh∥

2

F
] ,

which concludes the proof of Lemma 3.5.10.

Proof of Lemma 3.5.17. Consider any i ∈ P , any height h ∈ H, and any scale r ∈R. Without loss of generality,
we only focus on F (i, h, r; 2h); the case of F (i,−h, r;−2h) being analogous. Let I be an interval of F (i, h, r; 2h).
Fix any question k ∈ I such that ∣Mi,k −mk ∣ ≥ 2h. Since k ∈ F (i, h, r), it follows that there exists l < 4r such that
Mi,k+l −mk+l ≤ h. Since both the vectors Mi,⋅ and m are isotonic, it follows that mk+l −mk ≥ h. Now consider
any k0 ∈ I. Using again the monotonicity of m, we deduce that,

C∗k0,8r ≥
4rh

8r
≥
1

2
h ,

and k0 therefore belongs to D∗cp(h, r). We have proved the desired result.
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Proof of Lemma 3.5.18. Consider any expert i ∈ P . We decompose the norm of [Mi,⋅ −m(P )] using the level
sets of this vector. We recall that H is of the form {hmin,2hmin,4hmin, . . .} where hmin ∈ [ζ

2/nd,2ζ2/nd].

∥Mi,⋅ −m(P )∥
2
2 ≤ ∑

h∈H

d

∑
k=1
(Mi,k −mk(P ))

21{2h ≤ ∣Mi,k −mk(P )∣ < 4h} + 4dh
2
min

≤ 16 ∑
h∈H

d

∑
k=1

h21{2h ≤ ∣Mi,k −mk(P )∣ < 4h} +
16ζ2

n2d

≤ 16 ∑
h∈H

h2∣F (i,2h)∣ +
16ζ2

n2d

≤ 16 ∑
h∈H
∑
r∈R

h2∣F (i, h, r; 2h)∣ +
16ζ2

n2d
,

where in the last line, we used (3.70). Then, we sum over i ∈ P to conclude.

Proof of Lemma 3.5.19. Consider any i ∈ P , any height h ∈ H, and any scale r ∈R. Without loss of generality,
we only consider F (i, h, r; 2h) the case of F (i,−h, r;−2h) being analogous. Let I be a maximal interval of
F (i, h, r; 2h). We deduce from Lemma 3.5.17 that I is included in D∗cp(h, r). Let I0 be the largest sub-interval
of I of the form [qr, q′r) where q and q′ ∈ Qr. Since ∣I ∣ ≥ 2r−1, it follows that ∣I ∣ ≤ 3∣I0∣. We write L0 the subset
of columns of the aggregated matrix Θ(P ,Q∗cp(h, r)) corresponding to I0 so that ∣L0∣ = ∣I0∣/r. On each column
l of L0, we have Θi,l(P ,Q

∗
cp(h, r)) − θl(P ,Q

∗
cp(h, r)) ≥

√
rh. Putting everything together, we get

h2∣I ∣ ≤ 3h2∣I0∣ = 3h
2r∣L0∣ ≤ 3 ∑

l∈L0

([Θ(P ,Q∗cp(h, r))i,l − θ(P ,Q
∗
cp(h, r))l]√rh)

2
.

Summing over all intervals I and over all experts i ∈ P and also accounting for the F [i,−h, r;−2h] concludes
the proof.

3.5.4.2 Proof of Proposition 3.5.11

To simplify the notation, we define Φl1 = 2(2ζ
√
2 + βtris)

√

log ( 2∣P ∣
δ
) = ϕl1

√

log ( 2∣P ∣
δ
).

For simplicity, we respectivly write Θ(P ) = Θ(P ,Q) and Θ(P
′
) = Θ(P

′
,Q) in this proof. Recall that θ(P )

stands the mean row of Θ(P ) whereas θ(P
′
) stands for the mean row of Θ(P

′
).

Invoking Lemma 3.5.7 with w = 1Q and since the matrix Θ is isotonic, we deduce that outside an event of
probability smaller than δ, we have

max
i,j∈P ′

∥Θ(P
′
)i,⋅ −Θ(P

′
)j,⋅∥1 ≤ Φl1

√
∣Q∣ . (3.71)

since the matrix Θ is isotonic. We shall deduce from this inequality the desired bound. We consider two cases
depending on the difference between θ(P ) and θ(P

′
) the mean rows in P and P

′
.

Case 1: ∣P
′
∣ ⋅ ∥θ(P ) − θ(P

′
)∥22 >

1
16ϕ
∥Θ(P ) −Θ(P )∥2F . Since P

′
⊂ P , we deduce that

∥Θ(P ) −Θ(P )∥2F − ∥Θ(P
′
) −Θ(P

′
)∥

2
F ≥ ∑

i∈P ′
∥Θ(P )i,⋅ − θ(P )∥

2
2 − ∥Θ(P )i,⋅ − θ(P

′
)∥

2
2

= ∣P
′
∣ ⋅ ∥θ(P ) − θ(P

′
)∥

2
2

≥
1

16ϕ
∥Θ(P ) −Θ(P )∥2F ,

where we used the condition in the last line. We have proved the desired result.
Case 2: ∣P

′
∣ ⋅ ∥θ(P ) − θ(P

′
)∥22 ≤

1
16ϕ
∥Θ(P ) −Θ(P )∥2F . We start with the decomposition

∥Θ(P
′
) −Θ(P

′
)∥

2
F ≤ ∥Θ(P

′
) −Θ(P )∥2F = ∥Θ(P ) −Θ(P )∥

2
F − ∥Θ(P ∖ P

′
) −Θ(P )∥2F , (3.72)

so that we only have to control ∥Θ(P ∖ P
′
) −Θ(P )∥2F from below. By definition of the operator [⋅]η, we have

∥Θ(P ∖ P
′
) −Θ(P )∥2F ≥ ∥[Θ(P ∖ P

′
) −Θ(P )]η∥

2
F = ∥[Θ(P ) −Θ(P )]η∥

2
F − ∥[Θ(P

′
) −Θ(P )]η∥

2
F .
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By assumption, we have ∥[Θ(P ) −Θ(P )]η∥2F ≥ ϕ
−1∥Θ(P ) −Θ(P )∥2F . Hence, as long as we prove that

∥[Θ(P
′
) −Θ(P )]η∥

2
F ≤ (2ϕ)

−1
∥[Θ(P ) −Θ(P )∥2F , (3.73)

we can safely conclude from (3.72) that

∥Θ(P
′
) −Θ(P

′
)∥

2
F ≤ (1 − (2ϕ)

−1
)∥Θ(P ) −Θ(P )∥2F .

Thus, we only have to prove (3.73). Again, by definition of the thresholding operator, we have

∥[Θ(P
′
) −Θ(P )]η∥

2
F = η2 ∑

i∈P ′, l∈Q
1∣Θi,l−θ(P )l∣≥η

≤ η2 ∑

i∈P ′, l∈Q
1∣Θi,l−θ(P

′)l∣≥η/2 + 1∣θ(P
′)l−θ(P )l∣≥η/2 . (3.74)

By Markov inequality, the condition that defines Case 2 above implies that

∑
l∈Q

1{∣θ(P
′
)l − θ(P )l∣ ≥ η/2} ≤

1

4ϕ

∥Θ(P ) −Θ(P )∥2F

∣P
′
∣η2

. (3.75)

From (3.71) and a convexity argument, we deduce that, for any i ∈ P
′
, ∥Θ(P

′
)i,⋅ − θ(P

′
)∥1 ≤ Φl1

√
∣Q∣. Then,

applying again Markov inequality, we deduce that, for any expert i in P
′
and any η > 0, we have

∑
l∈Q

1{∣Θ(P
′
)i,l − θ(P

′
)l∣ ≥ η/2} ≤ 2Φl1

√
∣Q∣

η
.

Since we assume that ∥Θ(P ) −Θ(P )∥2F ≥ 8ϕΦl1η∣P ∣
√
∣Q∣ ≥ 8ϕΦl1η∣P

′
∣
√
∣Q∣, we deduce that

∑
l∈Q

1{∣Θ(P
′
)i,l − θ(P

′
)l∣ ≥ η/2} ≤

1

4ϕ

∥Θ(P ) −Θ(P )∥2F

∣P
′
∣η2

. (3.76)

So that, combining (3.74), (3.75) and (3.76), we arrive at

∥[Θ(P
′
) −Θ(P )]η∥

2
F ≤

1

2ϕ
∥Θ(P ) −Θ(P )∥2F .

We have proved (3.73).

3.5.4.3 Proof of Proposition 3.5.12

For simplicity, we write in this proof Θ ∶= Θ(P̃ ,Q) and Θ(P
′
) ∶= Θ(P

′
,Q). Without loss of generality, we

assume that the rows of Θ are already ordered according to the oracle order so that Θ is bi-isotonic.
First, the following lemma states that, the first singular value of (Θ−Θ) is, up to polylogarithmic terms, of

the same order as its Frobenius norm. This is mainly due to the fact that the entries of Θ lies in [0,
√
r] and

that Θ is a bi-isotonic matrix.

Lemma 3.5.20. Assume that ∥Θ −Θ∥F ≥ 2ζ. For any sets P̃ and Q, we have

∥Θ −Θ∥2op ≥
1

16 log2(nd/ζ−)
∥Θ −Θ∥2F .

Now, write v̂ = argmax∥v∥2≤1 [∥v
T (Z(1) −Z

(1)
)∥22 −

1
2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥22] .

Lemma 3.5.21. Fix any δ ∈ (0,1). If

∥Θ −Θ∥2op ≥ 1600ζ
2
[

√

∣Q∣(5∣P̃ ∣ + log(6/δ)) + 7∣P̃ ∣ + 2 log(6/δ)] , (3.77)

then, with probability higher than 1 − δ, we have

∥v̂T (Θ −Θ) ∥22 ≥
1

2
∥Θ −Θ∥2op .
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In light of Lemma 3.5.20 and Condition (3.62), the Condition (3.77) in Lemma 3.5.21 is valid. Consequently,
there exists an event of probability higher than 1 − δ such that

∥v̂T (Θ −Θ) ∥22 ≥
1

32 log2(nd/ζ−)
∥Θ −Θ∥2F . (3.78)

Next, we show that a thresholded version of ẑ = (Z(3) −Z
(3)
)T v̂ is almost aligned with z∗ = (Θ −Θ)T v̂. We

define the sets S∗ ⊂ Q and Ŝ ⊂ Q of blocks of questions by

S∗ = {l ∈ Q ∶ ∣z∗l ∣ ≥ 3ζ
√
2 log(2∣Q∣/δ)} ; Ŝ = {l ∈ Q ∶ ∣ẑl∣ ≥ 2ζ

√
2 log(2∣Q∣/δ)} .

S∗ stands for the collection of blocks of questions l such that z∗l is large whereas Ŝ is the collection of blocks l
with large ẑl. Finally, we consider the vectors w∗ and ŵ defined as theresholded versions of z∗ and ẑ respectively,
that is w∗i = z

∗
i 1i∈S∗ and ŵi = ẑi1i∈Ŝ . Note that, up to the sign, ŵ stands for the active coordinates computed

in DoubleTrisection −PCA.

We write v for any unit vector in R∣P̃ ∣. Since the noise matrix N (2) is made of independent ζ-subGaussian
random variables, it follows that (vT (N (3) −N

(3)
))l is a ζ-subGaussian random variables. Hence, we deduce

that, for any fixed matrix Θ, subsets P and Q, and any unit vector v, we have

P [max
l∈Q
∣(vT (N (3) −N

(3)
))l∣ ≤ ζ

√
2 log(2∣Q∣/δ)] ≥ 1 − δ .

Observe that ẑ = z∗ + v̂T (N (3) −N
(3)
). Conditioning on v̂, we deduce that, on an event of probability higher

than 1 − δ, we have
∥ẑ − z∗∥∞ ≤ ζ

√
2 log(2∣Q∣/δ) . (3.79)

Under this event, we have S∗ ⊂ Ŝ and for l ∈ Ŝ, we have z∗l /ẑl ∈ [1/2,2]. Next, we shall prove that, under this
event, v̂T (Θ −Θ)ŵ/∥ŵ∥2 is large (in absolute value):

∣v̂T (Θ −Θ)ŵ∣ = ∣(z∗)T ŵ∣ =∑
l∈Ŝ
z∗l ẑl ≥

2

5
∑

l∈Ŝ
(z∗l )

2
+ (ẑl)

2
≥
2

5
[∥w∗∥22 + ∥ŵ∥

2
2] ≥

4

5
∥ŵ∥2∥w

∗
∥2 ,

where we used in the first inequality that z∗l /ẑl ∈ [1/2,2] and in the second inequality that S∗ ⊂ Ŝ. Thus, it
holds that

∣v̂T (Θ −Θ)
ŵ

∥ŵ∥2
∣

2

≥
16

25
∥w∗∥22 . (3.80)

It remains to prove that ∥w∗∥2 is large enough. Writing S∗c for the complementary of S∗ in Q, it holds that

∥w∗∥22 = ∥z
∗
∥
2
2 − ∑

l∈S∗c
(z∗l )

2 , (3.81)

so that we need to upper bound the latter quantity. Write z∗S∗c = z
∗ −w∗. Coming back to the definition of z∗,

[ ∑
l∈S∗c
(z∗l )

2
]

2

= [ ∑
l∈S∗c
[v̂T (Θ −Θ)]lz

∗
l ]

2

≤ ∥ (Θ −Θ) z∗S∗c∥
2
2 = ∑

i∈P̃
( ∑
l∈S∗c
(Θi,l − θl)z

∗
l )

2

≤
18ζ2

∣P̃ ∣2
log(

2∣Q∣

δ
)∑
i∈P̃

⎛

⎝
∑
l∈S∗c

∑
j∈P̃
∣Θi,l −Θj,l∣

⎞

⎠

2

≤
18ζ2

∣P̃ ∣2
log(

2∣Q∣

δ
)∑
i∈P̃

⎛

⎝
∑
j∈P̃
∥Θi,⋅ −Θj,⋅∥1

⎞

⎠

2

≤ 18ζ2ϕ2l1 log(
2∣Q∣

δ
) log(

2∣P̃ ∣

δ
) ∣P̃ ∣∣Q∣

≤ [145ζ2 log(
2∣Q∣∣P̃ ∣

δ
)

√

∣P̃ ∣∣Q∣]

2

,
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where we used the definition of S∗ in the third line as well as the Condition (3.71) in the fifth line. We recall
that ϕl1 = 2(2ζ

√
2 + βtris) ≤ 29ζ is defined in (3.60). Recall that z∗ = v̂T (Θ −Θ). Combining (3.78), (3.81), and

Condition (3.62), we deduce that

∥w∗∥22 ≥
1

64 log2(nd/ζ−)
∥Θ −Θ∥2F ,

which, together with (3.80), yields

∥(Θ −Θ)
ŵ

∥ŵ∥2
∥

2

2

≥ ∣v̂T (Θ −Θ)
ŵ

∥ŵ∥2
∣

2

≥
1

100 log2(nd/ζ−)
∥Θ −Θ∥2F .

Write ŵ(1) and ŵ(2) the positive and negative parts of ŵ respectively so that ŵ = ŵ(1)−ŵ(2) and ŵ+ = ŵ(1)+ŵ(2).
We obviously have ∥ŵ∥2 = ∥ŵ+∥2. Besides, if the rows of Θ are ordered according to the oracle permutation,
then (Θ−Θ)ŵ(1) and (Θ−Θ)ŵ(2) are increasing vectors with mean zero. It then follows from Harris’ inequality
that these two vectors have a nonegative inner product. We have proved that

∥(Θ −Θ)
ŵ+

∥ŵ+∥2
∥

2

2

≥ ∥(Θ −Θ)
ŵ

∥ŵ∥2
∥

2

2

≥
1

100 log2(nd/ζ−)
∥Θ −Θ∥2F . (3.82)

Equipped with this bound, we are now in position to show that the set P
′

of experts obtained from P̃ when
applying the pivoting algorithm with ŵ+/∥ŵ+∥2 has a much smaller variance.

By Lemma 3.5.7, there exists an event of probability higher than 1 − δ such that

max
i,j∈P ′

∣⟨Θ(P
′
)i,⋅ −Θ(P

′
)j,⋅,

ŵ+

∥ŵ+∥2
⟩∣ ≤ ϕl1

√

log ( 2∣P ∣
δ
) ,

where we recall that ϕl1 = 2(2ζ
√
2 + βtris). By convexity, it follows that

∥(Θ(P
′
) −Θ(P

′
)) ŵ+

∥ŵ+∥2 ∥
2

2
≤ ϕ2l1 log (

2∣P ∣
δ
) ∣P

′
∣ ≤ ϕ2l1 log (

2∣P ∣
δ
) ∣P̃ ∣ .

In light of Condition (3.62), this quantity is small compared to ∥Θ −Θ∥2F :

∥(Θ(P
′
) −Θ(P

′
)) ŵ+

∥ŵ+∥2 ∥
2
2 ≤

1

200 log2(nd/ζ−)
∥Θ −Θ∥2F , (3.83)

which together with (3.82) leads to

∥(Θ −Θ) ŵ+

∥ŵ+∥2 ∥
2
2 − ∥(Θ(P

′
) −Θ(P

′
)) ŵ+

∥ŵ+∥2 ∥
2
2 ≥

1

200 log2(nd/ζ−)
∥Θ −Θ∥2F . (3.84)

Since P
′
⊂ P̃ , we deduce that, for any vector w′ ∈ Rq, we have ∥(Θ −Θ)w′∥22 ≥ ∥(Θ(P

′
) −Θ(P

′
))w′∥2. It then

follows from the Pythagorean theorem that

∥Θ −Θ∥2F − ∥Θ(P
′
) −Θ(P

′
)∥

2
F ≥ ∥(Θ −Θ)

ŵ+

∥ŵ+∥2 ∥
2
2 − ∥(Θ(P

′
) −Θ(P

′
)) ŵ+

∥ŵ+∥2 ∥
2
2 .

Then, together with (3.84), we arrive at

∥Θ(P
′
) −Θ(P

′
)∥

2
F ≤ (1 −

1

200 log2(nd/ζ)
) ∥Θ −Θ∥2F .

Proof of Lemma 3.5.20. The proof mainly relies on a discretisation argument. Given any a ∈ R and any matrix
U , we define the matrix [U]thresa by ([U]thresa )i,j = Ui,j1{Ui,j ∈ (a,2a]}. If a is negative, then the interval should
be understood as [2a, a). Recall that all the entries of Θ−Θ lie in [−

√
r,
√
r]. This allows us to decompose this

matrix as follows

r−1/2(Θ −Θ) = ∑
i∈N∗
[r−1/2(Θ −Θ)]thres2−i + [r

−1/2
(Θ −Θ)]thres−2−i .

All the matrices in this decomposition have disjoint support. For all i > log2(nd/ζ), all the entries of the
discretised matrices in the decomposition are smaller than ζ(nd)−1. Since ∣P̃ ∣ = p ≤ n and ∣Q∣ = q ≤ d/r, this
implies that

∥ ∑
i∈N∗,i>log2(nd/ζ)

[r−1/2(Θ −Θ)]thres2−i + [r
−1/2
(Θ −Θ)]thres−2−i ∥

2

F
≤ ζ2

nd

(nd)2r
≤
ζ2

r
.
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Coming back to the previous bound, we arrive at

∥r−1/2(Θ −Θ)∥2F ≤ ∑
i∈N∗,i≤log2(nd/ζ)

∥[r−1/2(Θ −Θ)]thres2−i ∥
2
F + ∥[r

−1/2
(Θ −Θ)]thres−2−i ∥

2
F +

ζ2

r
.

As we assume that ∥Θ −Θ∥F ≥ 2ζ ≥ 2ζ/
√
r,

∥r−1/2(Θ −Θ)∥2F ≤
4

3
∑

i∈N∗,i≤log2(nd/ζ)
∥[r−1/2(Θ −Θ)]thres2−i ∥

2
F + ∥[r

−1/2
(Θ −Θ)]thres−2−i ∥

2
F .

Hence, there exists an integer i0 ∈ [1, log2(nd/ζ)] such that

3∥Θ −Θ∥2F
8r log2(nd/ζ)

≤ ∥[r−1/2(Θ −Θ)]thres2−i0 ∥
2
F ∨ ∥[r

−1/2
(Θ −Θ)]thres−2−i0 ∥

2
F .

Assume w.l.o.g. that, for this i0 ≤ log2(nd/ζ), we have

3∥Θ −Θ∥2F
8r log2(nd/ζ)

≤ ∥[r−1/2(Θ −Θ)]thres2−i0 ∥
2
F .

Now, we define a different discretised version. For a matrix U and some a ∈ R+, let [U]a be defined by
([U]a)ij = (a1{Ui,j ≥ a})i,j . We readily deduce that

∥Θ −Θ∥2F ≤
32

3
r log2(nd/ζ)∥[r

−1/2
(Θ −Θ)]2−i0 ∥

2
F . (3.85)

The entries of the matrix [r−1/2(Θ − Θ)]2−i0 lie in {0,2−i0}. Up to a permutation of the rows of Θ, we can
assume that each column of [r−1/2(Θ −Θ)]2−i0 is isotonic. One can easily check that a matrix that only takes
two values and such that each column is isotonic can be transformed into a bi-isotonic matrix by applying a
suitable permutation π0 to its columns. We denote B the corresponding permuted matrix. Recall that we
denote p and q the dimensions of B. Then, define the function ϕ ∶ [p]→ {0, . . . , q} such that ϕ(i) is the number
of non-zero entries in the (p−i+1)-th row of B. Since B is bi-isotonic, the function ϕ is non-increasing. Besides,
we have

p

∑
i=1
ϕ(i) = 2i0∑

i,j

Bi,j = 2
2i0∑

i,j

B2
i,j = 2

2i0∥B∥2F .

Lemma 3.5.22. Let d1 and d2 be two positive integers and consider a non-increasing function f ∶ [d1] → R+.
Then, there exists m ∈ [d1] such that ∑d1i=1 f(i) ≤ log(ed1)mf(m).

Applying this lemma to ϕ, we deduce that, for some m ∈ [p], we have

22i0∥B∥2F ≤ log(ep)mϕ(m) . (3.86)

Since ϕ(m) is the number of non-zero entries on the p + 1 −m-th row of B, since B is bi-isotonic and since B
only takes two values, this implies that B contains in the lower right a rectangle of size m × ϕ(m) with value
2−i0 . Define the vector u ∈ Rp such that ui = m−1/2 if i ≥ p −m + 1 and ui = 0, otherwise. Define also the
vector v ∈ Rq such vj = 1/

√
ϕ(m) if j ≥ q − ϕ(m) + 1, and vj = 0 otherwise. It follows from these definitions

that uTBv = 2−i0
√
mϕ(m). Recall that [r−1/2(Θ −Θ)]2−i0 corresponds to a row and column permutation of B.

Hence, there exist two permutations π1 and π2 such that

uTπ1
[r−1/2(Θ −Θ)]2−i0 vπ2 = u

TBv .

By construction, the entries of Θ−Θ are higher than 2−i0 for all entries such that (uπ1)i ≠ 0 and (vπ1)j ≠ 0. We
deduce that

∥Θ −Θ∥
op
≥
√
ruTπ1

r−1/2(Θ −Θ)v =
√
r2−i0

√
mϕ(m) ≥

√
r

√
log(ep)

∥B∥F .

Finally, we come back to (3.85) to conclude that ∥Θ −Θ∥op ≥ [32 log(ep) log2(nd/ζ)/3]−1/2∥Θ −Θ∥F , where we
recall that ζ− < ζ.

Proof of Lemma 3.5.22. Define a = supd1m=1mf(m). As a consequence, we have f(m) ≤ a/m. This implies that

d1

∑
i=1
f(i) ≤

d1

∑
i=1

a

i
≤ a log(ed1) .

We have proved that log(ed1) sup
d1
m=1mf(m) ≥ ∑

d1
i=1 f(i).



78 Chapter 3. Ranking a permuted matrix under the bi-isotonic-1D model

Proof of Lemma 3.5.21. We start with the two following lemmas. For short, we write p = ∣P ∣ and q = ∣Q∣ in this
proof.

Lemma 3.5.23. Let N ′ denote a random d1 × d2 matrix whose entries follow independent, centered and ζ-
subGaussian distributions. Let Ω ⊂ Rd2 be a subspace of dimension d′2. With probability larger than 1 − δ, one
has

sup
u∈Rd1 , v∈Ω∶ ∥u∥2≤1, ∥v∥2≤1

∣uT (N ′ −N ′)v∣ ≤ 10ζ
√
d1 + d′2 + log(2/δ) ,

where N ′ = d−11 1d11
T
d1
N ′ is made of the mean row of N ′.

Lemma 3.5.24. Let N ′ be a random d1×d2 matrix whose entries follow independent, centered and ζ-subGaussian
distributions. It holds with probability larger than 1 − δ that

sup
u∈Rd1 ∶∥u∥2≤1

∣∥uT (N ′ −N ′)∥22 −E∥u
T
(N ′ −N ′)∥22∣ ≤ 64ζ

2
[
√
d2(5d1 + log(2/δ) + (5d1 + log(2/δ))] .

We have
Z(1) −Z

(1)
= Θ −Θ +N (1) −N

(1)
,

so that, for any v ∈ Rp,

∥vT (Z(1) −Z
(1)
)∥

2
2 = ∥v

T
(Θ −Θ)∥22 + ∥v

TN (1) − vTN
(1)
∥
2
2 + 2⟨v

TN (1) − vTN
(1)
, vT (Θ −Θ)⟩ ,

which, in turn, implies that

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ −Θ)∥22 −E [∥v

TN (1) − vTN
(1)
∥
2
2]∣ ≤ (3.87)

∣∥vTN (1) − vTN
(1)
∥
2
2 −E [∥v

TN (1) − vTN
(1)
∥
2
2]∣ + 2∣⟨v

TN (1) − vTN
(1)
, vT (Θ −Θ)⟩∣ .

Write W ⊂ Rq for the image of (Θ −Θ)T . Then, we apply Lemma 3.5.23 to derive that

sup
v∈Rp∶ ∥v∥2≤1

∣⟨vT (N (1) −N
(1)
), vT (Θ −Θ)⟩ ≤ ∥Θ −Θ∥op sup

v∈Rp∶ ∥v∥2≤1, u∈W ∶ ∥u∥2≤1
∣vT (N (1) −N

(1)
)u∣

≤ 10ζ∥Θ −Θ∥op
√
2p + log(6/δ) , (3.88)

with probability higher than 1 − δ/3 since the dimension of W is no larger than p. We deduce from Lemma
3.5.24 that, with probability higher than 1 − δ/3, we have

sup
v∈Rp∶ ∥v∥2≤1

∣∣∥vT (N (1) −N
(1)
)∥

2
2 −E∥v

T
(N (1) −N

(1)
)∥

2
2∣ ≤ 64ζ

2
[
√
q(5p + log(6/δ)) + 5p + log(6/δ)] .

Together with (3.87) and (3.88), we have that with probability larger than 1 − 2δ/3,

sup
v∈Rp∶ ∥v∥2≤1

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ −Θ)∥22 −E∥v

TN (1) − vTN
(1)
∥
2
2∣

≤ 10ζ∥Θ −Θ∥op
√
2p + log(6/δ) + 64ζ2 [

√
q(5p + log(6/δ)) + (5p + log(6/δ))] .

In the same way, we have that, with probability larger than 1 − δ/3,

sup
v∈Rp∶ ∥v∥2≤1

∣
1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2 −E∥v

T
(N (1) −N

(1)
)∥

2
2∣

=
1

2
sup

v∈Rp∶ ∥v∥2≤1
∣∥vT (Z(1) −Z

(1)
−Z(2) +Z(2))∥22 −E∥v

T
(Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2∣

≤ 128ζ2 [
√
q(5p + log(6/δ) + (5p + log(6/δ))] .

Putting everything together we conclude that, on an event of probability higher than 1 − 3δ, we have simulta-
neously for all v ∈ Rp with ∥v∥2 ≤ 1 that

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ −Θ)∥22 −

1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2∣

≤ 10ζ∥Θ −Θ∥op
√
2p + log(6/δ) + 192ζ2 [

√
q(3p + log(6/δ)) + (3p + log(6/δ))] .
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Since ∥Θ −Θ∥2op ≥ 1600ζ
2[
√
q(5p + log(6/δ)) + 7p + 2 log(6/δ)], we deduce that, on the same event, we have

sup
v∈Rp∶ ∥v∥2≤1

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ −Θ)∥22 −

1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2∣ ≤

1

4
∥Θ −Θ∥2op .

Writing ψ(v) = ∣∥vT (Z(1) −Z
(1)
)∥22 −

1
2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥22∣, we deduce that, for v such that ∥vT (Θ−

Θ)∥22 = ∥Θ −Θ∥
2
op, we have Ψ(v) ≥ 3

4
∥Θ −Θ∥2op, whereas, for v such that ∥vT (Θ −Θ)∥22 <

1
2
∥Θ −Θ∥2op, we have

Ψ(v) < 3
4
∥Θ −Θ∥2op. We conclude that v̂ satisfies ∥v̂T (Θ −Θ)∥22 >

1
2
∥Θ −Θ∥2op.

Proof of Lemma 3.5.23. We start with a classical result. Variants of it can be found in random matrix textbooks
(see e.g [91]). Still, we provide a simple dedicated proof below for the sake of completeness.

Lemma 3.5.25. Let N ′ be a d1 × d2 matrix whose entries follow independent, centered, and ζ-subGaussian
distributions. Consider any vector subspace Ω ⊂ Rd2 with dimension d′2. With probability higher than 1 − δ, one
has

sup
u∈Rd1 , v∈Ω∶ ∥u∥2≤1, ∥v∥2≤1

∣uTN ′v∣ ≤ 5ζ
√
d1 + d′2 + log(1/δ) .

We have the following decomposition

sup
u∈Rd1 ,v∈Ω

∥u∥2≤1,∥v∥2≤1

∣uT (N ′ −N ′)v∣ ≤ sup
u∈Rd1 ,v∈Ω

∥u∥2≤1,∥v∥2≤1

∣uTN ′v∣ + sup
u∈Rd1 ,v∈Ω

∥u∥2≤1,∥v∥2≤1

∣uTN ′v∣.

The first expression in the right-hand side is handled with Lemma 3.5.25. Regarding the second one, we observe
that N ′v is a constant vector. As a consequence,

sup
u∈Rd1 ,v∈Ω

∥u∥2≤1,∥v∥2≤1

∣uTN ′v∣ ≤
√
d1 sup

v∈Ω
∥n′v∥2 ,

where n′ is a ζ/
√
d1-subGaussian random vector. Then, we control this expression applying Lemma 3.5.25 to a

1 × d′2 matrix. All in all, we have proved that, with probability higher than 1 − δ, we have

sup
u∈Rd1 ,v∈Ω

∥u∥2≤1,∥v∥2≤1

∣uT (N ′ −N ′)v∣ ≤ 10ζ

√

(d1 + d′2) + log (
2

δ
) .

Proof of Lemma 3.5.25. Let Ud(ϵ) denote the ϵ-covering number of the d-dimensional unit ball and let Ud(ϵ)
denote a corresponding minimal covering set. For Ω a d′2-dimensional subspace of Rd

′
2 , we also write with a slight

abuse of notation Ud′2(ϵ) for a corresponding minimal covering set of its unit ball. Consider any d1 × d2 matrix
W . Write w∗ = supu∶∥u∥2≤1 supv∈Ω, ∥v∥2≤1 ∣u

TWv∣ and w = supu∈Ud1
(1/4) supv∈Ud′

2
(1/4) ∣u

TWv∣. Given u ∈ Rd1 , let

π(u) denote any closest point of u in Ud1(1/4). Similarly, for v ∈ Ω, π′(v) stands for a closest point of v in
Ud′2(1/4). By triangular inequality, we have

w∗ ≤ w + sup
u∶∥u∥2≤1

sup
v∈Ω, ∥v∥2≤1

∣uTWv∣ − ∣π(u)Wπ′(v)∣

≤ w + sup
u∶∥u∥2≤1

sup
v∈Ω, ∥v∥2≤1

∣(uT − π(u)T )Wv∣ + ∣π(u)TW (v − π′(v))∣

≤ w +w∗/2 .

We have proven that
sup

u∶∥u∥2≤1
sup

v∈Ω, ∥v∥2≤1
∣uTWv∣ ≤ 2 sup

u∈Ud1
(1/4)

sup
v∈Ud′

2
(1/4)
∣uTWv∣ . (3.89)

Since log(Ud(ϵ)) ≤ d log(3/ϵ) (see e.g. [104]), we deduce from triangular inequality that, with probability
higher than 1 − δ, we have

sup
u∈Rd1 , v∈Ω∶ ∥u∥2≤1, ∥v∥2≤1

∣uTN ′v∣ ≤ 2ζ
√
2(d1 + d′2) log(12) + 2 log(1/δ) .
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Proof of Lemma 3.5.24. Relying on (3.89) with W = (N ′ −N
′
)(N ′ −N

′
)T −E [(N ′ −N

′
)(N ′ −N

′
)T ], we derive

that supu∶∥u∥2≤1 ∣∥u
T (N ′ −N

′
)∥22 −E∥uT (N ′ −N

′
)∥22∣ is less than or equal to

2 sup
u∈Ud1

(1/4)
sup

v∈Ud1
(1/4)

uT (N ′ −N
′
)(N ′ −N

′
)
T v −E [uT (N ′ −N

′
)(N ′ −N

′
)
T v]

As a consequence, it amounts to simultaneously control ∣Ud1(1/4)∣
2 quadratic forms of subGaussian random

variables. For this purpose, we use the Hanson-Wright inequality [91]. Below we provide a version of this
inequality with explicit numerical constants.

Lemma 3.5.26. Let x be d-dimensional ζ-subGaussian centered random vector with independent components.
For any d × d matrix A and any t > 0, we have

P [xTAx −E[xTAx] ≥ 32ζ2 (∥A∥F
√
t + ∥A∥opt)] ≤ 2e

−t

For any fixed u and v, we interpret uT (N ′−N
′
)(N ′−N

′
)T v as a quadratic form of d1d2 independent random

variables where the corresponding matrix B of the quadratic form satisfies ∥B∥op ≤ 1 and ∥B∥F ≤
√
d2. Putting

everything together we deduce that, with probability higher than 1 − δ, we have

sup
u∶∥u∥2≤1

∣∥uT (N ′ −N
′
)∥

2
2 −E∥u

T
(N ′ −N

′
))∥

2
2∣

≤ 64ζ2 [
√
d2(2d1 log(12) + log(2/δ) + 2d1 log(12) + log(2/δ)]

≤ 64ζ2 [
√
d2(5d1 + log(2/δ) + (5d1 + log(2/δ))] .

Proof of Lemma 3.5.26. We consider separately the diagonal terms of A and the non-diagonal terms. Write A−

for the matrix such that A−ij = Aij1i≠j . First, we use Section 2.8 in [75] to handle xTA−x. We know that

P [xTA−x ≥ 8ζ2 (∥A−∥F
√
t +
√
2∥A−∥opt)] ≤ e

−t ,

for any t > 0. Regarding the diagonal part, we know from Rudelson and Vershynin [78] (Step 1 of the main
proof) that ∥x2i −E[x2i ]∥ψ1 ≤ 4ζ

2 (see [91] for a definition of ∥.∥ψ1). Then, we are in position to apply Bernstein’s
inequality [10] (Theorem 2.10) to ∑i aiix2i with v = (16ζ2)2∑i a2ii and c = 16ζ2maxi ∣aii∣. For any t > 0, we have

P
⎡
⎢
⎢
⎢
⎢
⎣

d

∑
i=1
aii(x

2
i −E[x

2
i ]) ≥ 16ζ

2 ⎛

⎝

√

2∑
i

a2iit +max
i
∣aii∣t
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ e−t ,

which implies that

P [
d

∑
i=1
aii(x

2
i −E[x

2
i ]) ≥ 16ζ

2
(∥A∥F

√
2t + ∥A∥opt)] ≤ e

−t .

We combine the two deviation inequalities and use ∥A−∥op ≤ 2∥A∥op to conclude that

P [xTAx −E[xTAx] ≥ 32ζ2 [∥A∥F
√
t + ∥A∥opt]] ≤ 2e

−t .

3.5.4.4 Proof of Corollary 3.5.13

Let (Lcp, U cp) denote the conservative result of Pivot(Z(1),1Q, γ) and P̃ = P ∖ (Lcp ∪U cp).
Let (Lpca, Upca) = DoubleTrisection −PCA(Z, γ) with Z = (Z(2), Z(3), Z(4), Z(5)). Here, (Z(2), Z(3), Z(4))
restricted to the experts in P̃ , whereas Z(5) is restricted to experts in P . Finally, we write P

′
= P̃ ∖(Lpca∪Upca).

We first prove the following intermediary result

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤

⎛

⎝
1 −

1

1920 log2( nd
δζ−
)

⎞

⎠
∥Θ(P ,Q) −Θ(P ,Q)∥2F . (3.90)

We consider two cases. First, we assume that η
ζ
∣P ∣
√
∣Q∣ ≤

√

∣P ∣∣Q∣+∣P ∣. Then, it follows from Equation (3.63)

that we are in position to apply Proposition 3.5.11 with ϕ = 120 log2( nd
δζ−
). Since P

′
⊂ P̃ , it follows that

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤ ∥Θ(P̃ ,Q) −Θ(P̃ ,Q)∥

2
F and (3.90) follows from Proposition 3.5.11.
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Now, we assume that
√

∣P ∣∣Q∣ + ∣P ∣ ≤ η
ζ
∣P ∣
√
∣Q∣. If ∥Θ(P̃ ,Q) −Θ(P̃ ,Q)∥2F ≤ 0.5∥Θ(P ,Q) −Θ(P ,Q)∥

2
F , then

the result obviously holds. Otherwise, it follows from (3.63) that

∥Θ(P̃ ,Q) −Θ(P̃ ,Q)∥2F ≥ 2 ⋅ 10
5 log3 (

6nd

δζ−
) [η∣P ∣

√
∣Q∣ ∧ (

√

∣P ∣∣Q∣ + ∣P ∣)] ,

Besides, with probability higher than 1 − δ, Θ(P̃ ) is undistinguishable in l1-norm by (3.71). Hence, we are in
position to apply Proposition 3.5.12 and it follows that

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤

⎛

⎝
1 −

1

200 log2( nd
δζ−
)

⎞

⎠
∥Θ(P̃ ,Q) −Θ(P̃ ,Q)∥2F

≤
⎛

⎝
1 −

1

1920 log2( nd
δζ−
)

⎞

⎠
∥Θ(P ,Q) −Θ(P ,Q)∥2F ,

which is exactly Equation (3.90).

It remains to conclude from Equation (3.90). We start from

∥Θ(P
′
,Qr) −Θ(P

′
,Qr)∥

2
F = ∥Θ(P

′
,Q) −Θ(P

′
,Q)∥2F + ∥Θ(P

′
,Qr ∖Q) −Θ(P

′
,Qr ∖Q)∥

2
F

≤
⎛

⎝
1 −

1

1920 log2( nd
δζ−
)

⎞

⎠
∥Θ(P ,Q) −Θ(P ,Q)∥2F

+∥Θ(P ,Qr ∖Q) −Θ(P ,Qr ∖Q)∥
2
F

≤
⎛
⎜
⎝
1 −

1

3 ⋅ 105 log4 ( nd
δζ−
)

⎞
⎟
⎠
∥Θ(P ,Qr) −Θ(P ,Qr)∥

2
F ,

where we used in the last line that ∥Θ(P ,Q) −Θ(P ,Q)∥2F ≥ 1/(120 log
2
( nd
δζ−
))∥Θ(P ,Qr) −Θ(P ,Qr)∥

2
F .

3.5.4.5 Proof of Proposition 3.5.14

For all τ = 0, . . . , τ∞, let (Oτ , P τ , Iτ) be the sets defined in BlockSort.
Let also (h†τ , r†τ) = argmaxh,r ∥ [Θ(P τ ,Q

∗
cp) −Θ(P τ ,Q

∗
cp)]√rh ∥

2
F , where we recall that Q∗cp depends on

h and r. For simplicity, we write Q†τ
cp = Q

∗
cp(h

†τ , r†τ). Equipped with this notation, we readily deduce from
Lemma 3.5.10 that

∥M(P τ) −M(P τ)∥
2
F ≤ 16ζ

2
+ 96∣R∣∣H∣ ∥[Θ(P τ ,Q

†τ
cp) −Θ(P,Q

†τ
cp)]

√
r†τh†τ ∥

2

F
. (3.91)

If, for some τ < τ∞, we have

∥[Θ(P τ ,Q
†τ
cp) −Θ(P τ ,Q

†τ
cp)]

√
r†τh†τ ∥

2

F
≤ 4 ⋅ 105ζ2 log3 (

6nd

δζ−
)Ψ(∣P τ ∣, r

†τ , h†τ , ∣Q
†τ
cp∣) , (3.92)

then we can fix, for any such τ , P
†
= P τ , h† = h†τ , Q† = Q†τ

cp, and r† = r†τ so that both the properties (3.65)
and (3.66) hold.

Hence, we assume henceforth that, for all τ , Equation (3.92) does not hold and we shall arrive at a con-
tradiction. In particular, this implies that ∥[Θ(P τ ,Q†τ

cp) −Θ(P τ ,Q
†τ
cp)]

√
r†τh†τ ∥

2
F ≥ ζ

2 ≥ ζ2(∣R∣∣H∣)−1. We have
112∣R∣∣H∣ ≤ 120 log2( nd

δζ−
) provided that n is a large enough constant. In light of (3.91), this implies that, for all

τ ,

∥[Θ(P τ ,Q
†τ
cp) −Θ(P τ ,Q

†τ
cp)]

√
r†τh†τ ∥

2

F
≥

1

120 log2( nd
δζ−
)
∥M(P τ) −M(P τ)∥

2
F (3.93)

≥
1

120 log2( nd
δζ−
)
∥Θ(P τ ,Qr†τ ) −Θ(P τ ,Qr†τ )∥

2
F , (3.94)

where we recall that Qr†τ is the collection of all blocks at scale r†τ and we use the Pythagorean equality in the
second line. Applying Lemma 3.5.8 at the scale r†τ ∈R, at the height h†τ ∈H, and at all steps τ = 0, . . . , τ∞ −1,
we deduce that the event ξcp ∶= ⋂

τ∞−1
τ=0 ξcp(P τ , h

†τ , r†τ) holds with probability at least 1−τ∞δ. Under this event,
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we write Q̂τcp for the estimated set defined at step τ and scales (h†τ , r†τ) in BlockSort. Then, it holds that

Q†τ
cp ⊂ Q̂

τ
cp ⊂ Q

†τ
cp and we deduce from (3.94) that

∥[Θ(P τ , Q̂
τ
cp) −Θ(P τ , Q̂

τ
cp)]

√
r†τh†τ ∥

2

F
≥

1

120 log2( nd
δτ−
)
∥Θ(P τ ,Qr†τ ) −Θ(P τ ,Qr†τ )∥

2
F .

Since (3.92) is not satisfied, we also have

∥Θ(P τ , Q̂
τ
cp) −Θ(P τ , Q̂

τ
cp)∥

2

F
≥ ∥[Θ(P τ , Q̂

τ
cp) −Θ(P τ , Q̂

τ
cp)]

√
r†τh†τ ∥

2

F

≥ ∥[Θ(P τ ,Q
†τ
cp) −Θ(P τ ,Q

†τ
cp)]

√
r†τh†τ ∥

2

F

≥ 4 ⋅ 105ζ2 log3 (
6nd

δζ−
)Ψ(∣P τ ∣, r

†τ , h†τ , ∣Q̂τcp∣) ,

since Q̂τcp ⊂ Q
†τ
cp. Hence, we are in position to apply Corollary 3.5.13 at all steps τ with r†τ , P τ , Q̂τcp, and

η =
√
r†τh†τ . There exists an event of probability higher than 1 − 4τ∞δ such that, at all steps τ , we have

∥Θ(P τ+1,Qr†τ ) −Θ(P τ+1,Qr†τ )∥
2
F ≤
⎛
⎜
⎝
1 −

1

3 ⋅ 105 log4 ( nd
δζ−
)

⎞
⎟
⎠
∥Θ(P τ ;Qr†τ ) −Θ(P τ ;Qr†τ )∥

2
F .

Together with Equation (3.93), we deduce that

∥M(P τ) −M(P τ)∥
2
F − ∥M(P τ+1) −M(P τ+1)∥

2
F

≥ ∥Θ(P τ ,Qr†τ ) −Θ(P τ+1,Qr†τ )∥
2
F − ∥Θ(P τ+1,Qr†τ ) −Θ(P τ ,Qr†τ )∥

2
F

≥
1

4 ⋅ 107 log6( nd
δζ−
)
∥M(P τ) −M(P τ)∥

2
F .

Hence,

∥M(P τ0)∥
2
F ≥ ∥M(P τ0) −M(P τ0)∥

2
F

≥ ∥M(P τ∞) −M(P τ∞)∥
2
F

⎛

⎝
1 −

1

4 ⋅ 107 log6( nd
δζ−
)

⎞

⎠

−τ∞

.

Since (3.92) does not hold at τ = τ∞, this implies that the Frobenius norm in the right-hand side of the above
inequality is larger than 2ζ2 and, in light of the definition of τ∞ = 4 ⋅ 107 log7( nd

δ(ζ−)2 ), the right-hand side is
larger than 2nd. This contradicts the fact that ∥M(P τ0)∥

2
F ≤ nd since the entries of M lie in [0,1].

Proof of Corollary 3.5.15. To ease the notation in this proof, we simply write P for P
†
, r for r†, Q

∗
cp for Q

†
cp,

and h for h†. Since Q
∗
cp corresponds to a set of blocks of questions of size r, it follows that ∣Q

∗
cp∣ ≤ d/r. This, in

turn, implies that
√
rh∣P ∣

√

∣Q
∗
cp∣ ≤ ∣P ∣h

√
d and

√

∣P ∣∣Q
∗
cp∣ ≤

√
∣P ∣d. We have proven that

√
rh∣P ∣

√

∣Q
∗
cp∣

ζ
∧ (

√

∣P ∣∣Q
∗
cp∣ + ∣P ∣) ≤

∣G∣h
√
d

ζ
∧ (
√
∣G∣d + ∣G∣) . (3.95)

Second, we know from Lemma 3.5.9 that ∣Q
∗
cp∣ ≤ 64

r̃
rh

so that

√
rh∣P ∣

√

∣Q
∗
cp∣

ζ
∧ (

√

∣P ∣∣Q
∗
cp∣ + ∣P ∣) ≲

∣P ∣
√
r̃h

ζ
∧
⎛

⎝

√

∣P ∣
r̃

rh
+ ∣P ∣

⎞

⎠
. (3.96)

If r > 32ζ2 log( 2d
δ
) 1
∣P ∣h2 then, it follows from the definition (3.53) of r̃ that r̃ = 8r so that the right-hand side

of (3.96) is at most of the order of
√
∣P ∣/h+ ∣P ∣. For a smaller r, we know from (3.53) that r̃ ≲ ζ2 log( 2d

δ
)/(∣P ∣h2),

which in turn implies that
∣P ∣
√
r̃h

ζ
≲

√

log( 2d
δ
)

√
∣P ∣

h
.
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Hence, we deduce from (3.96) that

√
rh∣P ∣

√

∣Q
∗
cp∣

ζ
∧ (

√

∣P ∣∣Q
∗
cp∣ + ∣P ∣) ≲

√

log( 2d
δ
)
⎛

⎝

√
∣P ∣

h
+ ∣P ∣

⎞

⎠
.

Together with (3.95), this leads us to

√
rh∣P ∣

√

∣Q
∗
cp∣

ζ
∧ (

√

∣P ∣∣Q
∗
cp∣ + ∣P ∣) ≲

√

log( 2d
δ
)

⎡
⎢
⎢
⎢
⎢
⎣

∣G∣h
√
d

ζ
∧ ∣G∣

√
d ∧

√
∣G∣

h
+ ∣G∣

⎤
⎥
⎥
⎥
⎥
⎦

,

which, together with (3.65) concludes the proof.

3.5.5 Proof of Proposition 3.5.6
In this section, we prove Proposition 3.5.6 which states a tighter bound than Proposition 3.5.5 on TreeSort
when we use the variant DimensionReduction −WM to compute π̂WM . Recall that, for any t = 1, . . . , t∞,
Tt stands for the hierarchical sorting tree built by TreeSort at the beginning of step t. Thus, Tt has depth t.

The main difference with the analysis of Proposition 3.5.5 lies in the analysis of the algorithm
DimensionReduction −WM, which is the purpose of the next subsection. Then, we combine it with the
general scheme of the proof of Proposition 3.5.6 to get the desired bound.

3.5.5.1 Analysis of DimensionReduction −WM

The key idea of DimensionReduction −WM is to examine the high-variation regions of the observations not
only in a set of experts P but also in the neighboring sets of experts. For this reason, we remind the reader
of the notation of DimensionReduction −WM. Through this subsection, we fix the step t ≥ 0 of TreeSort.
For simplicity, we write T ∶= Tt. Recall that L(0,1)(T ) stands for the set of leaves of T of type 0 or 1. By
definition, those leaves are all at depth t. Let us focus on a specific leaf G ∈ L(0,1)(T ), and we consider a subset
P of G.

Finally, we recall that we consider an ordering of the leaves L(0,1)(T ) at depth t and centered on G as:

(G(a))a∈Z =Order(T ,G) ,

where G(0) = G.
Also, we fix any h ∈H and r ∈R. As in DimensionReduction −WM, define

r0 = 2
9 log(4d∣R∣/δ)

ζ2

∣P ∣h2
and r̃ = 4(⌈r0⌉

dya
∨ r) , (3.97)

where ⌈r0⌉dya = 2⌈log2(r0)⌉ is the smaller power of 2 which is larger than r0. Up to numerical constants, r̃ is
defined as for the original procedure DimensionReduction. If r ≥ r0, then we can simply rely on CUSUM
statistics at the scale 8r and on the set P to detect high variation regions in P . If h (or ∣P ∣) is so small that
r0 > r, we applied the CUSUM statistic at a larger scale r̃ in DimensionReduction. In this version, we
compute the CUSUM statistics at a scale smaller than r̃ to the price of considering more experts than those in
P .

If r < ⌈r0⌉dya, let us consider any rcp ∈ [8r,2r̃] ∩R. We respectively define

a+WM ∶= a
+
WM(T ,G, h, rcp) =min{a ∶ ∣G(1)∣ + ⋅ ⋅ ⋅ + ∣G(a)∣ ≥ 211 log(4d∣R∣/δ)

ζ2

rcph2
} ;

a−WM ∶= a
−
WM(T ,G, h, rcp) =min{a ∶ ∣G(−1)∣ + ⋅ ⋅ ⋅ + ∣G(−a)∣ ≥ 211 log(4d∣R∣/δ)

ζ2

rcph2
} ,

as the minimum number of groups above and below G in such a way that there are enough experts to detect
a h-variation in the mean at the scale rcp. Then, V+rcp and V−rcp stand for the collection of experts in the
corresponding groups:

V
+
rcp ∶= V

+
rcp(T , P , h) =

a+WM

⋃
a=1

G(a) and V
−
rcp ∶= V

−
rcp(T , P , h) =

−1
⋃

a=−a−
WM

G(a) , (3.98)
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Finally, we define

Vrcp ∶= Vrcp(T , P , h) = {
V+rcp ∪ V

−
rcp if rcp ≤ r̃

P if rcp = 2r̃
(3.99)

which exactly corresponds to the definition at Line 4 and Line 6 of DimensionReduction −WM. For any
k ∈ [d], we recall here the definition of the statistic ∆̂

(ext)
k,rcp its deterministic counterpart:

∆̂
(ext)
k,rcp =

1

2rcp

k+rcp−1
∑

k′=k−rcp
yk′(V

+
rcp) − yk′(V

−
rcp) and ∆

∗(ext)
k,rcp

=
1

2rcp

k+rcp−1
∑

k′=k−rcp
mk′(V

+
rcp) −mk′(V

−
rcp) .

In the notation of ∆̂
(ext)
k,rcp , we remove the dependency on V+rcp and V−rcp to simplify the notation. Here, ∆̂

(ext)
k,rcp

stands for the width between the empirical means of the groups above P and below P . Recall also the definition
of the statistic Ĉ

(ext)
k,2rcp

and introduce its deterministic counterpart:

Ĉ
(ext)
k,2rcp

=
1

2rcp

⎛

⎝

k+2rcp−1
∑
k′=k

yk′(V2rcp) −
k−1
∑

k′=k−2rcp
yk′(V2rcp)

⎞

⎠

C
∗(ext)
k,2rcp

=
1

2rcp

⎛

⎝

k+2rcp−1
∑
k′=k

mk′(V2rcp) −
k−1
∑

k′=k−2rcp
mk′(V2rcp)

⎞

⎠
.

Here, Ĉ(ext)k,2rcp
stands for the mean CUSUM statistic over the experts in V2rcp . Consider any rcp ∈ [4r, r̃] ∩R.

Then, as in the algorithm DimensionReduction −WM, we define the collection of positions where both the
width and the CUSUM statistic are large:

D̂WM ∶= D̂WM(T , P , h, r, rcp) = {k ∶ ∆̂
(ext)
k,rcp ≥

h

16
and Ĉ

(ext)
k,2rcp

≥
h

16
} .

See Figure 3.5 for illustrations. Then, we define D∗WM and D
∗
WM as the population counterparts of D̂WM with

different constants

D∗WM(T , P , h, r, rcp) = {k ∈ 1, . . . , d ∶ C
∗(ext)
k,2rcp

≥
h

8
and ∆

∗(ext)
k,rcp

≥
h

8
} ;

D
∗
WM(T , P , h, r, rcp) = {k ∈ 1, . . . , d ∶ C

∗(ext)
k,2rcp

≥
h

32
and ∆

∗(ext)
k,rcp

≥
h

32
} .

Then, we consider the collections of blocks Q̂WM(T , P , h, r, rcp), Q∗WM(T , P , h, r, rcp), and Q̂WM(T , P , h, r, rcp)
of size r. With our notation, this means that
Q∗WM(T , P , h, r, rcp) = Encode − Set(D∗WM , r), Q

∗
WM(T , P , h, r, rcp) = Encode − Set(D

∗
WM , r), and Q̂WM(T , P , h, r, rcp) =

Encode − Set(D̂WM , r). Finally, we consider the unions over all possible rcp ∈R with 4r ≤ rcp ≤ r̃:

Q̂WM ∶= Q̂WM(T , P , h, r) =
r̃

⋃
rcp=4r

Q̂WM(T , P , h, r, rcp) ;

Q∗WM ∶= Q
∗
WM(T , P , h, r) =

r̃

⋃
rcp=4r

Q∗WM(T , P , h, r, rcp) ;

Q
∗
WM ∶= Q

∗
WM(T , P , h, r) =

r̃

⋃
rcp=4r

Q
∗
WM(T , P , h, r, rcp) .

The following lemma states that, with high probability, Q̂WM is sandwiched between Q∗WM and Q
∗
WM , so

that, on the corresponding event, it is sufficient to study these two quantities.

Lemma 3.5.27. Consider any valid hierarchical sorting tree T , any subset P of a leaf G of T , any h ∈H, and
any r ∈R. With probability at least 1 − δ, it holds that

Q∗WM ⊂ Q̂WM ⊂ Q
∗
WM . (3.100)

Next, we show that the aggregation of M(P ) at Q∗WM captures most of the variance of M(P ).

Lemma 3.5.28. Assume that T is a valid hierarchical sorting tree. Then, there exist h ∈H and r ∈R such that

∥M(P ) −M(P )∥2F ≤ 16ζ
2
+ 96∣R∣∣H∣ ∥[Θ(P ,Q∗WM) −Θ(P ,Q

∗
WM)]√rh∥

2

F
. (3.101)

Recall that Tt∞ (and in particular also T = Tt) is a valid hierarchical sorting tree under the event ξ of
high probability defined in Corollary 3.5.4. This lemma is the counterpart of Lemma 3.5.10 for the oblivious
DimensionReduction algorithm.
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3.5.5.2 Analysis of the variant BlockSort with DoubleTrisection −WM

Recall the definition (3.64) of the function Ψ by Ψ(p, r, h, q) =
hp
√
rq

ζ
∧
√
pq + p. In Proposition 3.5.14, we stated

a high probability control for the result of BlockSort when fed with DimensionReduction. In particular,
this proposition only used the properties of DimensionReduction stated in Lemmas 3.5.8 and 3.5.10. As we
have proven in Lemmas 3.5.27 and 3.5.28 (their counterparts for DimensionReduction −WM), we readily
obtain the following result whose proof is omitted.

Proposition 3.5.29. Assume that Tt is a valid hierarchical sorting tree. Consider a leaf G of T of type 0 or 1

at depth t. With probability higher than 1−5τ∞δ, there exists a subset P
†

such that P ⊆ P
†
⊆ G and the following

property holds. For some r†cp ≥ r
† ∈ R and some h† ∈ H, upon writing Q†

WM = Q
∗
WM and Q

†
WM = Q

∗
WM , we

have simultaneously

∥ [Θ(P
†
,Q†

WM) −Θ(P
†
,Q†

WM)]√r†h†
∥
2
F ≤ 4 ⋅ 10

5ζ2 log3 (
6nd

δζ−
)Ψ(∣P

†
∣, r†, h†, ∣Q

†
WM ∣) ; (3.102)

∥M(P
†
) −M(P

†
)∥

2
F ≤ 16ζ

2
+ 96∣R∣∣H∣∥[Θ(P

†
,Q†

WM) −Θ(P
†
,Q†

WM)]
√
r†h†∥

2
F . (3.103)

Since ∥M(P ) −M(P )∥2F ≤ ∥M(P
†
) −M(P

†
)∥2F , the above proposition controls ∥M(P ) −M(P )∥2F in terms

of Ψ(∣P
†
∣, r†, h†, ∣Q

†
WM ∣).

3.5.5.3 Analysis of the complete procedure TreeSort with DoubleTrisection −WM

In light of Proposition 3.5.29, we need to control the cardinality of ∣Q
†
WM ∣. In comparison to the oblivious

procedure analyzed in the previous section, the main improvement here is that the typical cardinalities ∣Q
†
WM ∣

are smaller than ∣Q
†
cp∣ thanks to the refined dimension reduction procedure DimensionReduction −WM.

Unfortunately, it is not possible to get a tight control of the cardinality of each Q
†
WM individually. Still,

we are able to show that among all groups G ∈ L(0,1)(Tt) that are refined in the t-th iteration of TreeSort,
many of them will correspond to small ∣Q

†
WM ∣. To formalize this argument, we need to be careful about the

dependencies of the quantities under consideration.
We start from the ordered collection L(0,1)(Tt) of v ≤ 2t leaves of types 0 or 1. We write G1, . . . ,Gv for

these groups and we are given a collection P 1,. . . , P v of subgroups such that P i ⊂ Gi for i = 1, . . . , v. Later, we
will specify P v = P

†
v, but those sets can be considered arbitrarily.

For a specific group P v ⊂ Gv, we write Q
†
WM(P v, h, r) instead of Q

†
WM to emphasize its dependency on P v,

r and h. Given a positive integer p > 0, we define P∗(p) = {P v ∶ ∣P v ∣ ∈ [p,2p)} the collection of groups P v of
size in [p,2p).

Lemma 3.5.30. Assume that Tt is a valid hierarchical sorting tree. For any h ∈ H, r ∈ R, any integer p, any
sequence P v of subsets of Gv, it holds that

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r)∣ ≲ log(d)

⎡
⎢
⎢
⎢
⎣

√
nd(r0 ∨ r)

rh
√
p

∧
d(r0 ∨ r)

r2h
∧
nd

pr
∧
n(r0 ∨ r)

prh

⎤
⎥
⎥
⎥
⎦
. (3.104)

We are now equipped to prove Proposition 3.5.6.

Proof of Proposition 3.5.6. We work under the event ξ (Corollary 3.5.4) ensuring Tt∞ and in particular Tt is
a valid hierarchical sorting tree. For each group Gs ∈ L

(0,1)(Tt) we apply Proposition 3.5.29 and define a
corresponding subgroup P

†
, with r† ∈ R, h† ∈ H and a corresponding collection of blocks Q

†
WM . Define the

collection Dn = {1,2,4, . . . ,2⌈log2(n)⌉}. For p ∈ Dn, we define P∗(p, h, r) as the collection of groups P
†

satisfying
∣P

†
∣ ∈ [p,2p), h† = h, and r† = r.
Then, we derive from Proposition 3.5.29 that, on an additional event of probability higher than 1−5 ⋅2tτ∞δ,
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we have

∑

P ∈Lt

∥M(P ) −M(P )∥2F

≤ 16ζ2∣Lt∣ + 96∣R∣∣H∣ ∑
p,h,r

∑

P
†∈P∗(p,h,r)

∥ [Θ(P
†
,Q

†
WM) −Θ(P

†
,Q

†
WM)]√

rh
∥
2
F

(a)
≲ ζ2 log5 (

6nd

δζ−
) ∑
p,h,r

∑

P
†∈P∗(p,h,r)

⎡
⎢
⎢
⎢
⎢
⎣

√

[
h2pr

ζ2
∧ 1]p∣Q

∗
WM(P

†
, h, r)∣ + p

⎤
⎥
⎥
⎥
⎥
⎦

(b)
≲ ζ2 log5.5 (

6nd

δζ−
) ∑
p,h,r

⎡
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀ

r

r ∨ r0
p∣P∗(p, h, r)∣ ∑

P
†∈P∗(p,h,r)

∣Q
∗
WM(P

†
, h, r)∣ + p∣P∗(p, h, r)∣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(c)
≲ ζ2 log5.5 (

6nd

δζ−
) ∑
p,h,r

⎡
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀ

nr

r ∨ r0
∑

P
†∈P∗(p,h,r)

∣Q
∗
WM(P

†
, h, r)∣ + n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(d)
≲ ζ2 log6 (

6nd

δζ−
) ∑
p,h,r

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝
n3/4d1/4 (

1

(r0 ∨ r)ph2
)

1/4

∧ n

√
d

p(r0 ∨ r)
∧

n
√
ph
∧

√
nd

rh

⎞

⎠
+ n

⎤
⎥
⎥
⎥
⎥
⎦

≲ ζ2 log7 (
6nd

δζ−
)∑
p,h

[(
n3/4d1/4

ζ1/2
∧ n
√
d ∧

nh

ζ

√
d ∧

n
√
h
∧

√
nd
√
h
) + n]

(e)
≲ ζ2 log7 (

6nd

δζ−
)∑
p,h

[(
n3/4d1/4

ζ1/2
∧ n
√
d ∧

n2/3
√
d

ζ1/3
∧
nd1/6

ζ1/3
) + n]

≲ ζ2 log9 (
6nd

δζ−
)[(

n3/4d1/4

ζ1/2
∧ n
√
d ∧

n2/3
√
d

ζ1/3
∧
nd1/6

ζ1/3
) + n] ,

where we applied Proposition 3.5.29 in (a), Jensen inequality and the definition of r0 in (b), as well as the bound
∣P∗(p, h, r)∣ ≤ n/p in (c), Lemma 3.5.30 in (d), and x ∧ y ≤ x1/3y2/3 in (e).

3.5.5.4 Remaining proofs

Proof of Lemma 3.5.27. It is sufficient to prove that with high probability,D∗WM(T , P, h, rcp) ⊂ D̂WM(T , P, h, rcp) ⊂

D
∗
WM(T , P, h, rcp) for all rcp ∈ [4r, r̃] ∩R. Recall that we use the convention that yi = mi = 0 if i ≤ 0 and

yi =mi = 1 if i > d. Since the CUSUM and the envelope statistics are linear, we have the decompositions

Ĉ
(ext)
k,2rcp

(V2rcp) =C
∗(ext)
k,2rcp

(V2rcp) +
1

2rcp

⎛

⎝

k+2rcp−1
∑
k′=k

ek′(V2rcp) −
k−1
∑

k′=k−2rcp
ek′(V2rcp)

⎞

⎠

∆̂
(ext)
k,rcp(V

+
rcp ,V

−
rcp) =∆

∗(ext)
k,rcp

(V
+
rcp ,V

−
rcp) +

1

2rcp

k+rcp−1
∑

k′=k−rcp
(ek′(V

+
rcp) − ek′(V

−
rcp)) ,

where the two latter random variables are centered and respectively ζ(rcp∣V2rcp ∣)
−1/2-subGaussian and

ζ[rcp(∣V
+
rcp ∣ ∧ ∣V

−
rcp ∣)]

−1/2-subGaussian. By a union bound, we deduce that, with probability higher than 1 − δ,
we have simultaneously

max
rcp∈[4r,r̃]∩R

max
k∈[d]
∣Ĉ
∗(ext)
k,2rcp

−C
∗(ext)
k,2rcp

∣ ≤ ζ

¿
Á
ÁÀ 2

rcp∣V2rcp ∣
log(

4d∣R∣

δ
) ; (3.105)

max
rcp∈[4r,r̃]∩R

max
k∈[d]
∣∆̂
∗(ext)
k,rcp −∆

∗(ext)
k,rcp

∣ ≤ ζ

¿
Á
ÁÀ 2

(∣V+rcp ∣ ∧ ∣V
−
rcp ∣)rcp

log(
4d∣R∣

δ
) . (3.106)

To conclude, it suffices to check that ∣V+rcp ∣, ∣V
−
rcp ∣, and ∣Vrcp ∣ have been chosen large enough so that the right-hand

side of the two above equations is at most h/32.
By definition of V+rcp and V−rcp , we know that ∣V+rcp ∣∧ ∣V

−
rcp ∣ ≥ 2

11 log(4d∣R∣/δ) ζ2

rcph2 which implies that (3.106)
is at most h/32.
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If rcp ≤ r̃/2, then V2rrcp = ∣V
+
2rrcp
∣+ ∣V−2rrcp ∣ ≥ 2

11 log(4d∣R∣/δ) ζ2

rcph2 , which implies that (3.105) is at most h/32.
Finally, for rcp = r̃, we use

rcp ≥ 4r0 ≥ 2
11 log(4d∣R∣/δ)

ζ2

∣P ∣h2

and that ∣V ∣ = ∣P ∣ to conclude that (3.105) is at most h/32.

Proof of Lemma 3.5.28. In the analysis of DimensionReduction, we introduced in (3.55) the sets D∗cp(P,h, r)
of questions such that the corresponding CUSUM of the mean expert in P is above h/2 at scale 8r. Recall the
set Q∗cp ∶= Q

∗
cp(P,h, r) = Encode − Set(D∗cp(P,h, r), r). In Lemma 3.5.10, we stated that, for some h ∈ H and

r ∈R, we have

∥M(P ) −M(P )∥2F ≤ 16ζ
2
+ 96∣R∣∣H∣ ∥[Θ(P,Q∗cp) −Θ(P,Q

∗
cp)]√rh∥

2

F
. (3.107)

Define D∗env ∶=D
∗
env(T , P, h, r) = {k ∈ [d] ∶ ∆

∗(ext)
k,r (V+r ,V

−
r ) ≥ h/2} for the questions where the population width

between V+r and V−r at scale r is at least h/2. Besides, we defineQ∗env ∶= Q
∗
env(T , P, h, r) = Encode − Set(D∗env, r).

If l ∈ Q∗cp ∖Q
∗
env, then for any i, j ∈ P , we have

∣Θi,l −Θj,l∣ ≤
1
√
r

(l+1)r−1
∑
k′=lr

mk′(V
+
r ) −mk′(V

−
r ) ≤ 2

√
r∆

(∗ext)
lr,r <

√
rh .

Hence, it follows that

∥[Θ(P,Q∗cp) −Θ(P,Q
∗
cp)]√rh∥

2

F
= ∥[Θ(P,Q∗cp ∩Q

∗
env) −Θ(P,Q

∗
cp ∩Q

∗
env)]√rh∥

2

F
. (3.108)

In light of (3.107) and (3.108), we only have to prove that, for any fixed T , P , h, and r, we have

D∗cp(P,h, r) ∩D
∗
env(T , P, h, r) ⊂ ⋃

rcp∈[4r,r̃]∩R
D∗WM(T , P, h, r, rcp) . (3.109)

Since the remainder of the proof heavily relies on the comparisons between CUSUM statistics for different
subsets of experts, we respectively write C

∗(ext)
k,r (Vr) and ∆

∗(ext)
k,r (V+r ,V

−
r ) instead of C

∗(ext)
k,r and ∆

∗(ext)
k,r to

better keep track of the dependencies. Fix any question k ∈D∗cp(P,h, r) ∩D
∗
env(T , P, h, r) and define

rmin =max{r′ ∈R ∶ C
∗(ext)
k,r′ (Vr′) < h/8} ,

with the convention that max(∅) = 1. rmin can be interpreted as the largest scale r′ in R such that the
population CUSUM at scale r′ applied to Vr′ is smaller than h/8. By definition, we have V2r̃ = P . As a
consequence, for any r′ ≥ 2r̃, we have C

∗(ext)
k,r′ (Vr′) =C

∗
k,r′(P ) ≥C

∗
k,2r̃(P ) ≥C

∗
k,8r(P ) ≥ h/8 since k ∈D∗cp(P,h, r)

and since r̃ ≥ 8r (see (3.97)). This implies that rmin ≤ r̃. We consider two distinct cases.

Case 1: rmin ≤ 4r. Then, we simply choose rcp = 4r. By definition of rmin, we have C
∗(ext)
k,2rcp

(V2rcp) ≥ h/8. Since
k ∈D∗env(T , P, h, r), we can lower bound the envelope statistic as

∆
∗(ext)
k,rcp

(V
+
rcp ,V

−
rcp) ≥

1

4
∆
∗(ext)
k,r (V

+
r ,V

−
r ) ≥ h/8 .

We have proved that k ∈D∗WM(T , P, h, r, rcp).

Case 2: rmin ∈ (4r, r̃]. In that case, we choose rcp = rmin ≥ 8r (since rmin is a power of 2). By definition of
rmin, we have both C

∗(ext)
k,2rcp

≥ h/8 and C
∗(ext)
k,rcp

< h/8. Since k ∈ D∗cp(P,h, r) and rcp ≥ 8r, we also deduce by
monotonocity that the CUSUM of the mean expert in P at scale rcp is higher than h/2, this is C∗k,rcp ≥C

∗
k,8r ≥ h/2

since k ∈D∗cp(P,h, r) – see (3.55).
Remark that, since rcp ≤ r̃, we have Vrcp = V

+
rcp ∪ V

−
rcp . Without loss of generality, we can assume that

∣V+rcp ∣ ≥ ∣V
−
rcp ∣. This implies in particular that

rcpC
∗(ext)
k,rcp

(Vrcp) ≥
∣V+rcp ∣

∣Vrcp ∣

k+rcp−1
∑
k′=k

mk(V
+
) −
∣V+rcp ∣

∣Vrcp ∣

k−1
∑

k′=k−rcp
mk(V

+
)

≥
1

2

⎛

⎝

k+rcp−1
∑
k′=k

mk(V
+
rcp) −

k−1
∑

k′=k−rcp
mk(V

+
rcp)
⎞

⎠
.
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Since C∗k,rcp(P ) ≥ h/2 and C
∗(ext)
k,rcp

(Vrcp) ≤ h/8, this implies that

h/4 ≤C∗k,rcp(P ) − 2C
∗(ext)
k,rcp

(Vrcp) ≤
1

rcp

⎛

⎝

k+rcp−1
∑
k′=k

mk′(P ) −mk′(V
+
rcp)
⎞

⎠
+

1

rcp

⎛

⎝

k−1
∑

k′=k−rcp
mk′(V

+
rcp) −mk′(P )

⎞

⎠

≤
1

rcp

⎛

⎝

k−1
∑

k′=k−rcp
mk′(V

+
rcp) −mk′(P )

⎞

⎠

≤
1

rcp

⎛

⎝

k+rcp−1
∑

k′=k−rcp
mk′(V

+
rcp) −mk′(V

−
rcp)
⎞

⎠

= 2∆
∗(ext)
k,rcp

(V
+
rcp ,V

−
rcp) .

Hence, we have proved that ∆
∗(ext)
k,rcp

(V+rcp ,V
−
rcp) ≥ h/8 and C

∗(ext)
k,2rcp

(Vrcp) ≥ h/8. Thus, k ∈ DWM(T , P, h, rcp).
We have shown (3.109) and the proof is finished.

Proof of Lemma 3.5.30. We fix h ∈H and r ∈R. Let us consider a subgroup P ⊂ G ∈ L(0,1)(T ) Recall that the
blocks Q

∗
WM(P ,h, r) = ⋃

r̃
rcp=4rQ

∗
WM(P ,h, r, rcp) – see the definitions in Section 3.5.5.1. Again, we remove the

dependency on T in Q∗WM(P ,h, r, rcp) for the ease of exposition. First, we bound ∑P ∈P∗(p) ∣Q
∗
WM(P ,h, r, rcp)∣

before summing over the range over all possible rcp.

Let us consider some l ∈ Q
∗
WM(P ,h, r, rcp). By definition, there exists at least one question k(l) ∈ [lr, (l+1)r)

such that we have simultaneously C
∗(ext)
k(l),2rcp ≥ h/32 and ∆

∗(ext)
k(l),rcp ≥ h/32. For l ∈ Qr ∖ Q

∗
WM(rcp), we simply

define k(l) = l. We deduce from this definition that

∣Q
∗
WM(P ,h, r, rcp)∣ ≤ ∑

l∈Qr

1{C
∗(ext)
k(l),2rcp ≥ h/32}1{∆

∗(ext)
k(l),rcp ≥ h/32} . (3.110)

This implies that

∣Q
∗
WM(P ,h, r, rcp)∣ ≤

32

h
∑
l∈Qr

C
∗(ext)
k(l),2rcp ≤ 2

8 rcp

rh
(3.111)

where the last inequality comes from the fact that the total variation of m(V2rcp) is at most 1 and that, for any
l ∈ Qr, the interval [k(l)−2rcp, k(l)+2rcp) intersects at most 8rcp/r intervals of the form [k(l′)−2rcp, k(l′)+2rcp)
with l′ ∈ Qr.

Let p be an integer and assume that ∣P ∣ ∈ [p,2p). Let us introduce Γ ∶= Γ(p, h, rcp) =
r̃
rcp
≥ 1, where we recall

that r̃ ≥ 4r0 is defined by r0 = 29 log(4d∣R∣/δ) ζ
2

ph2 in (3.97). Intuitively, Γ would correspond to the number a+WM

and a−WM of sets of experts above P or below P that would be considered if those sets were of size p. More
generally, V+rcp(T , P , h) = ∪

a+WM

a=1 G(a) contains at most Γ groups of size at least p among G(1), . . . ,G(aWM−1) since

the total size of the groups G(a) with a ≤ aWM − 1 must be less than 211 log(4d∣R∣/δ) ζ2

rcph2 . Thus, we deduce
that V−rcp(T , P , h) ∪ P ∪ V

+
rcp(T , P , h) contains at most 2Γ + 3 groups of size at least p.

The following lemma states that the neighbourhoods V−rcp(T , P , h)∪P ∪V
+
rcp(T , P , h) of groups P in P∗(p)

only intersect on a few groups.

Lemma 3.5.31. Consider any group P ∈ P∗(p). There exists at most 4Γ + 3 groups P
′
∈ P∗(p) such that

(V
−
rcp(T , P , h) ∪ P ∪ V

+
rcp(T , P , h)) ∩ (V

−
rcp(T , P

′
, h) ∪ P

′
∪ V

+
rcp(T , P

′
, h)) ≠ ∅ . (3.112)

As in the proof of Lemma 3.5.16, we introduce the width of the matrix M on a set A of experts and an
interval of questions [k1, k2] by

W∞,1(M,A, [k1, k2]) ∶=max
i,j∈A

k2

∑
k=k1
∣Mi,k −Mj,k ∣ .
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From (3.110) again, we deduce that

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≤

32

h
∑

P ∈P∗(p)
∑
l∈Qr

∆
∗(ext)
k(l),rcp(V

+
rcp(T , P , h),V

−
rcp(T , P , h))

≤
32

h
∑
l∈Qr

∑

P ∈P∗(p)

1

2rcp
W∞,1(V

+
rcp(T , P , h) ∪ P ∪ V

−
rcp(T , P , h), [k − rcp, k + rcp])

≤
32

rh
(4Γ + 3)d ,

where the last inequality comes Lemma 3.5.31 and the fact that the sum over disjoints sets V−rcp(P )∪P ∪V
+
rcp(P )

of W∞,1(V+rcp(P )∪P ∪V
−
rcp(P ), [k−rcp, k+rcp)) is upper bounded by 2rcp since the total variation of any column

of M is at most 1.
Combining (3.111) with the latter upper bound together with ∣P∗(p)∣ ≤ n/p we deduce that

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≲

nrcp

prh
∧
Γd

rh
. (3.113)

If r0 > r, then we have Γ ≤ 8r0
rcp

. This implies that

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≲

nrcp

prh
∧

r0d

rcprh
≲

√
ndr0
rh
√
p

.

Since rcp ≤ [4r, r̃] ∩R, there are at most c log(d) possible values for rcp, we conclude that

∑
rcp

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≲

nr0
prh
∧
r0d

r2h
∧

√
ndr0
rh
√
p

.

Otherwise, if r0 ≤ r, then Γ ≤ 8 and rcp ∈ [4r,8r]. We deduce from (3.113) that

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≲

n

ph
∧
d

rh
≤

√
nd

√
rh
√
p
.

We have proved that, in any case,

∑
rcp

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≲ log(d)

⎡
⎢
⎢
⎢
⎣

d(r0 ∨ r)

r2h
∧

√
nd(r0 ∨ r)

rh
√
p

⎤
⎥
⎥
⎥
⎦
. (3.114)

To establish the remaining bound for the sum of ∣Q
∗
WM(P ,h, r, rcp)∣, we control each ∣Q

∗
WM(P ,h, r, rcp)∣ indi-

vidually in a similar fashion to what we did for the analysis of the oblivious hierarchical sorting estimator π̂HT .
First, we have Q

∗
WM(P ,h, r, rcp) ⊂ Qr so that ∣Q

∗
WM(P ,h, r, rcp)∣ ≤ d/r. Besides, arguing as in the proof of

Lemma 3.5.9, ∣Q
∗
WM(P ,h, r, rcp)∣ ≲ rcp/(rh) ≲ (r0 ∨ r)/(rh).

∑
rcp

∑

P ∈P∗(p)
∣Q
∗
WM(P ,h, r, rcp)∣ ≲ log(d) [

nd

pr
∧
n(r0 ∨ r)

prh
] . (3.115)

Combining (3.114) and (3.115) concludes the proof.

Proof of Lemma 3.5.31. Consider two distinct groups P and P
′
in P∗(p). Let (G(a)(P ))a∈Z =Order(T , P ) be

the ordering of L(0,1)(T ) centered on P and a′ ∈ Z the index of the leaf G(a
′)(P ) containing P

′
. Obviously,

∣G(a
′)∣ ≥ ∣P

′
∣ ≥ p.

Without loss of generality, we assume that a′ > 0. In that case, if (3.112) is satisfied then necessarily

(V
+
rcp(T , P , h) ∪ P ) ∩ V

−
rcp(T , P

′
, h) ≠ ∅ .

This can only happen if the number of leaves G(a)(P ) for 0 < a < a′ that are of size at least p is less than or
equal to 2Γ. The same holds if a′ < 0 and this proves the lemma.
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3.5.6 Proof of Lemma 3.4.2 and Theorem 3.4.3
3.5.6.1 Proof of Lemma 3.4.2

We start with the case λ− ∈ [2/d,1]. The random variable ni,[(j−1)l(λ)+1,jl(λ)] is distributed as a Poisson random
variable with parameter λl(λ). Let us apply Chernoff’s inequality for Poisson random variable (e.g. [10], section
2.2). We have

P [ni,[(j−1)l(λ)+1,jl(λ)] ≤ λl(λ)/2] ≤ exp [−
3

28
λl(λ)] ≤

δ

nd
,

provided that λl(λ) ≥ 28
3
log(nd/δ). Since λ− ≤ 1, we have λl(λ)/2 ≥ Υ∗. In view of the definition of Υ∗, the

condition λl(λ) ≥ 28
3
log(nd/δ) is therefore valid and we conclude that

P [ni,[(j−1)l(λ)+1,jl(λ)] ≤ Υ∗] ≤
δ

nd
,

and the first result follows. Turning to the second result, we observe that ni,{j} is distributed as a Poisson
random variable. We apply again Chernoff’s inequality to derive that

P [ni,{j} ≤
λ

2
] ≤ exp [−

3

28
λ] ≤

δ

nd
,

since λ ≥ 28
3
log(nd/δ). Since λ ≥ 2λ−Υ∗, the result follows.

3.5.6.2 Proof of Theorem 3.4.3

If λ− ≤ 2/d, we use the trivial bound ∥Mπ̂−1
WMP

−Mπ∗−1∥
2
F ≤ nd, which ensures that

E [∥Mπ̂−1
WMP

−Mπ∗−1∥
2
F ] ≤

n

λ−
≤ c logc

′
(
ndλ1/2

ζ−
)
n

λ
.

If λ− ≥ 1, then Lemma 3.4.2 ensures that, with probability higher than 1 − δ, we are able to build the Υ∗

subsamples and we are in position to apply Theorem 3.2.3 with subGaussian norm ζ/⌊λ−⌋
1/2. Hence, with

probability higher than 1 − c′ log9(ndλ
1/2
− /(δζ−))δ, we have

∥Mπ̂−1
WMP

−Mπ∗−1∥
2
F ≤ c log11 (

nd⌊λ−⌋
1/2

δζ−
)RF (n, d, ζ⌊λ−⌋

−1/2
)

≤ c′ logc
′′
(
ndλ1/2

ζ−
)RF (n, d, ζ⌊λ⌋

−1/2
) ,

where we use the definition of δ and λ− in the last line. On the complementary event, we simply use that
∥Mπ̂−1

WMP
−Mπ∗−1∥

2
F ≤ nd. Since δ has been chosen small enough, we can conclude that

E[∥Mπ̂−1
WMP

−Mπ∗−1∥
2
F ] ≤ c

′ logc
′′
(
ndλ1/2

ζ−
)RF (n, d, ζλ

−1/2
) .

It remains to consider the case where λ− ∈ [2/d,1]. Working under the event of probability higher than 1− δ

ensured by Lemma 3.4.2, we have Υ∗ independent samples Y ↓(0), . . . , Y ↓(Υ
∗−1) of size n × ⌊d/l(λ)⌋. Define the

matrix M ↓ of size n × ⌊d/l(λ)⌋ by M ↓
i,j = Mi,l(λ)(j−1)+1. Obviously, M ↓

π∗−1
is a bi-isotonic matrix. Besides, for

s = 0, . . . ,Υ∗ − 1, (i, j) ∈ [n] × ⌊d/l(λ)⌋, we have the decomposition

Y
↓(s)
ij =M

↓(s)
ij +E

↓(s)
ij ,

where M ↓(s)
ij belongs to [M ↓

ij ,M
↓
ij+1] with the convention M ↓(s)

i,⌊d/l(λ)⌋+1 = 1 and the E↓(s)ij ’s are independent and,

for fixed i and j, are i.i.d. distributed and ζ-subGaussian. In fact, the M ↓(s)
ij are random since M ↓(s)

ij has been
sampled uniformly in {Mi,l(λ)(j−1)+1,Mi,l(λ)(j−1)+2, . . . ,Mi,l(λ)(j−1)+l(λ)}. Besides, those are correlated with the
noise E↓(s)ij . For the sake of the analysis, it is in fact easier to consider that M ↓(s)

ij has been set by an adversary.
Hence, we fall into the semi-random model of Section 3.5.7 and we are in position to apply Theorem 3.5.32 to
π̂WM−SR. With probability at least 1 − c′n log9( nd

δζ−
)δ, we have

∥M ↓
π̂−1
WM−SR

−M ↓
π∗−1
∥
2
F ≤ c log

11
(
2nd

δζ−
) [RF (n, ⌊d/l(λ)⌋, ζ) + n] ,
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Define the matrix M ↓↑ of size n×d such that each column is duplicated l(λ) times, except the last one which
has been duplicated l(λ) − l(λ)⌊d/l(λ)⌋. We readily deduce that

∥M ↓↑
π̂−1
WM−SR

−M ↓↑
π∗−1
∥
2
F ≤ c

′l(λ) log11 (
2nd

δζ−
) [RF (n, ⌊d/l(λ)⌋, ζ) + n] , (3.116)

By triangular inequality, we have

∥Mπ̂−1
WM−SR

−Mπ∗−1∥
2
F ≤ 2∥M

↓↑
π̂−1
WM−SR

−M ↓↑
π∗−1
∥
2
F + 8∥M −M

↓↑
∥
2
F .

Thus it remains to upper bound the square Euclidean norm of each row of M −M ↓↑:

d

∑
j=1
[M −M ↓↑

]
2
i,j =

⌊d/l(λ)⌋
∑
k=1

l(λ)
∑
r=1
[Mi,(k−1)l(λ)+r −Mi,(k−1)l(λ)+1]

2

+

d−l(λ)⌊d/l(λ)⌋
∑
r=1

[Mi,(⌊d/l(λ)⌋−1)l(λ)+r −Mi,(⌊d/l(λ)⌋−1)l(λ)+1]
2

≤

⌊d/l(λ)⌋
∑
k=1

l(λ)[Mi,kl(λ) −Mi,(k−1)l(λ)+1]
2
+ l(λ)[Mi,d −Mi,(⌊d/l(λ)⌋−1)l(λ)+1]

2

≤ 2l(λ) ,

since the total variation of the i-th row of M is at most one. Hence, ∥M−M ↓↑∥2F ≤ 2nl(λ). Together with (3.116),
we conclude that

∥Mπ̂−1
WM−SR

−Mπ∗−1∥
2
F ≤ c

′l(λ) log11 (
2nd

δζ−
) [RF (n, ⌊d/l(λ)⌋, ζ) + n] .

with probability at least 1−c′n log9( nd
δζ−
)δ. Since δ has been chosen small enough and since ∥Mπ̂−1

WM−SR
−Mπ∗−1∥

2
F ≤

nd, we conclude that

E [∥Mπ̂−1
WM−SR

−Mπ∗−1∥
2
F ] ≤ c

′l(λ) log11 (
2nd

ζ−
) [RF (n, ⌊d/l(λ)⌋, ζ) + n] .

Since l(λ) ≤ c′ logc
′′
(nd(λ ∨ 1)/ζ−)/λ, we deduce from this bound that

E [∥Mπ̂−1
WM−SR

−Mπ∗−1∥
2
F ]

≤ c′ logc
′′
(
2nd

ζ−
)

⎡
⎢
⎢
⎢
⎢
⎣

(
ζ
√
λ
)

2 ⎧⎪⎪
⎨
⎪⎪⎩

nd1/6

(
ζ√
λ
)1/3
∧
n3/4d1/4

(
ζ√
λ
)1/2
∧ n
√
dλ ∧

n2/3
√
dλ1/3

(
ζ√
λ
)1/3

+ n

⎫⎪⎪
⎬
⎪⎪⎭

+
n

λ

⎤
⎥
⎥
⎥
⎥
⎦

≤ c′ logc
′′
(
2nd

ζ−
) [RF [n, d, ζ/

√
λ] +

n

λ
] ,

since λ− ≤ 1. Again, since λ− ≤ 1, we have λ ≤ c3 logc4 (nd(λ ∨ 1)/ζ) for some numerical constant c3 and c4. We
conclude that

E [∥Mπ̂−1
WM−SR

−Mπ∗−1∥
2
F ] ≤ c

′ logc
′′
(
2nd

ζ−
)[RF [n, d, ζ/

√
λ] +

n

λ
e
− λ
c3 logc4(nd(λ∨1)/ζ) ] ,

which concludes the proof.

3.5.7 Permutation estimation in the semi-random model

3.5.7.1 Model and algorithm

We now consider a slightly different model with Υ∗ samples Y (1), . . . , Y (Υ
∗−1). The noise matrices E(1), . . . ,E(Υ

∗−1)

are sampled independently (as previously) and Y
(t)
ij = E

(t)
ij +M

(t)
ij where M (t)

ij is chosen by an adversary in
[Mij ,Mi,j+1]. This slightly different model is mainly motivated by the analysis of the partial observation
scheme in Section 3.4. In particular, building upon this model and relying on the corresponding modifications
in the algorithm allows us to recover the right dependency with respect to ζ in Section 3.4.

We consider a slight variant π̂WM−SR of the estimator π̂WM to handle the adversarial differences. The
procedure π̂WM−SR is computed exactly as π̂WM except that
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• In Pivot (Algorithm 4), the threshold βtris

√

log( 2∣P ∣
δ
) is replaced by βtris

√

log( 2∣P ∣
δ
) + 4∥ω∥∞/∥ω∥2 and

βtris

√

log( 2∣P ∣
δ
) is replaced by βtris

√

log( 2∣P ∣
δ
) + 8∥ω∥∞/∥ω∥2

• In DimensionReduction −WM (Algorithm 13), we respectively replace the definitions of the CUSUM
and empirical width by

∆̂
(ext)
k,r′ (V

+,V−) =
k+r′−1
∑

k′=k−r′
yk′(V

+
) − yk′−1(V

−
) ; (3.117)

Ĉ
(ext)
k,r′ (V) =

k+r′−1
∑
k′=k

yk′(V) −
k−2
∑

k′=k−r′−1
yk′(V) . (3.118)

Theorem 3.5.32. There exist three numerical constants c, c′, and c0 such that the following holds. Fix δ > 0 and
assume that Υ ≥ c0 log8 (nd/(δζ−)). For any permutation π∗ ∈ Πn and any matrix M such that Mπ∗−1 ∈ CBISO,
the hierarchical sorting tree estimator with memory π̂WM−SR satisfies

∥Mπ̂−1
WM−SR

−Mπ∗−1∥
2
F ≤ c log

11
(
2nd

δζ−
) [RF (n, d, ζ) + n] , (3.119)

with probability at least 1 − c′n log9( nd
δζ−
)δ.

3.5.7.2 Proof of Theorem 3.5.32

The proof follows the main steps as that of Theorem 3.2.3 and we mainly emphasize here the differences. In
the proof of Theorem 3.2.3, we often work with the aggregated model (3.50) Z = Θ+N which is restricted to a
subset P of experts and a subset Q ⊂ Qr of questions aggregated at scale r – see Encode −Matrix for details.
For t = 0, . . . ,Υ − 1, the counterpart of (3.50) is the following

Z(t) = Θ(t) +N (t) , (3.120)

where the entries of N (t) are independent and ζ-subGaussian and Θ(t) stands for the corresponding aggregation
of the matrix M (t). Since the total variation of each row of M is at most one, one readily checks that

∑
j∈Q
∣Θ
(t)
ij −Θij ∣ ≤ 1 . (3.121)

Since π̂WM−SR is a hierarchical sorting tree estimator, we are in position to control its loss using Proposition
3.5.1. For this purpose, we need to prove that Proposition 3.5.3 still holds in the semi-random model which,
in turn, would imply that Corollary 3.5.4 is true. In fact, the proof of Proposition 3.5.3 is verbatim the same
except that Lemma 3.5.7 is replaced by the following lemma.

We remind that P ′ = P ∖ (L ∪U), and P ′ = P ∖ (L ∪U).

Lemma 3.5.33. For any non-zero vector w ∈ RQ+ , any pivot γ ∈ {1, . . . , ∣P ∣} , we have P[P3] ≥ 1 − δ. Besides,
on the same event of probability at least 1 − δ, we have

∣⟨Θi,⋅ −Θiγ ,⋅,
w

∥w∥2
⟩∣ ≤ (2ζ

√
2 + βtris)

¿
Á
ÁÀlog(

2∣P ∣

δ
) + 10

∥w∥∞
∥w∥2

if i ∈ P ′ . (3.122)

Proof of Lemma 3.5.33. Consider any sample t ∈ [0,Υ − 1], any vector w ∈ Rq, and any i ∈ P . As a straightfor-
ward consequence of (3.121), we deduce that

∣⟨Θ
(t)
i,⋅ −Θi,⋅,

w

∥w∥2
⟩∣ ≤
∥w∥∞
∥w∥2

. (3.123)

We then deduce from a union bound, that with probability higher than 1 − δ, we have

∣⟨Z
(t)
i,⋅ ,

w

∥w∥2
⟩ − ⟨Θi,⋅,

w

∥w∥2
⟩∣ ≤ ζ

¿
Á
ÁÀ2 log(

2∣P ∣

δ
) +
∥w∥∞
∥w∥2

.

simultaneously for all i in P . The rest of the proof of Lemma 3.5.33 is left unchanged provided that we replace√

2 log ( 2∣P ∣
δ
) by

√

2 log ( 2∣P ∣
δ
) +

∥w∥∞
∥w∥2 .
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Then, being in position to apply Corollary 3.5.4, we state the counterpart of Proposition 3.5.6.

Proposition 3.5.34. On the intersection of event ξ (defined in Corollary 3.5.4) and an event of probability
higher than 1 − 5 ⋅ 2tτ∞δ, it holds that

∑

P ∈Lt

∥M(P ) −M(P )∥2 ≲ log9 (
6nd

δζ−
) [RF (n, d, ζ) + n] .

We conclude the proof of Theorem 3.5.32 by combining Proposition 3.5.34 with Corollary 3.5.4. Hence, we
only need to prove the last proposition.

3.5.7.3 Proof of Proposition 3.5.34

Again, we only emphasize the differences with the proof of Proposition 3.5.6. We start with the analysis of
DimensionReduction −WM. Recall that we slightly changed the definition of the CUSUM statistics

Ĉ
(ext)
k,2rcp

=
1

2rcp

⎛

⎝

k+2rcp−1
∑
k′=k

yk′(V2rcp) −
k−2
∑

k′=k−2rcp−1
yk′(V2rcp)

⎞

⎠

by shifting the second sum by one index. The definition of the population CUSUM statistic C
∗(ext)
k,2rcp

is left

unchanged. Similarly, we slightly changed the definition of ∆̂
(ext)
k,rcp to

∆̂
(ext)
k,rcp =

1

2rcp

k+rcp−1
∑

k′=k−rcp
yk′(V

+
rcp) − yk′−1(V

−
rcp) ,

by shifting again the right hand-side observation by one. With these simple shifts, ∆̂
(ext)
k,rcp and Ĉ

(ext)
k,2rcp

both

overestimates ∆
∗(ext)
k,rcp

and C
∗(ext)
k,2rcp

and arguing as in the proof of Lemma 3.5.27, we will prove that Q∗WM ⊂

Q̂WM with probability at least 1 − δ –see Lemma 3.5.35 below. However, we need to adapt the definition of
D
∗
WM(T , P, h, r, rcp) to cope with this possible bias. Define

D
∗
WM−SR−1(T , P, h, r, rcp) = {k ∈ 1, . . . , d ∶ C

∗(ext)
k,2rcp

≥
h

128
and ∆

∗(ext)
k,rcp

≥
h

128
} ; (3.124)

D
∗
WM−SR−2(T , P, h, r, rcp) = {k ∈ 1, . . . , d ∶ mk+rcp(V

+
rcp) −mk−rcp(V

+
rcp) ≥

hrcp

128
} ; (3.125)

D
∗
WM−SR−3(T , P, h, r, rcp) = {k ∈ 1, . . . , d ∶ mk+rcp−1(V

−
rcp) −mk−rcp−1(V

−
rcp) ≥

hrcp

128
} ; (3.126)

D
∗
WM−SR−4(T , P, h, r, rcp) = {k ∈ 1, . . . , d ∶ mk+2rcp(V2rcp) −mk−2rcp−1(V2rcp) ≥

hrcp

128
} . (3.127)

Then, we define the corresponding subsets Q
∗
WM−SR−1, Q

∗
WM−SR−2, Q

∗
WM−SR−3, and Q

∗
WM−SR−4 of Qr. For

short, we write Q
∗
WM−SR = Q

∗
WM−SR−1 ∪Q

∗
WM−SR−2 ∪Q

∗
WM−SR−3 ∪Q

∗
WM−SR−4. We have the following coun-

terpart of Lemma 3.5.27.

Lemma 3.5.35. Consider any valid hierarchical sorting tree T , any subset P of a leaf G of T , any h ∈H, and
any r ∈R. With probability at least 1 − δ, it holds that

Q∗WM ⊂ Q̂WM ⊂ Q
∗
WM−SR . (3.128)

Obviously, Lemma 3.5.28 is still true since it does not depend on the data generating process. Then, we
adapt Propositions 3.5.11 and 3.5.12 to this adversarial setting.

Proposition 3.5.36. Consider any P ⊂ [n], any r ∈ R, and any subset Q ⊂ Qr. Also, fix any η > 0 and any
ϕ > 0. Provided that

∥ [Θ(P ,Q) −Θ(P ,Q)]
η
∥
2
F ≥

1

ϕ
∥Θ(P ,Q) −Θ(P ,Q)∥2F ≥ 8η∣P ∣ [ϕl1

√

log( 2∣P ∣
δ
)
√
∣Q∣ + 20] ,

then, with probability higher than 1 − δ, we have

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤ (1 −

1

16ϕ
) ∥Θ(P ,Q) −Θ(P ,Q)∥2F .
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Recall the definition (3.60) of ϕl1 . Henceforth, the matrix Θ(P̃ ,Q) is said to be indistinguishable in l1-norm
if it satisfies

max
i,j∈P

∥Θi,⋅(P̃ ,Q) −Θj,⋅(P̃ ,Q)∥1 ≤ ϕl1

√

∣Q∣ log ( 2∣P ∣
δ
) + 20 . (3.129)

Proposition 3.5.37. Let P ⊂ [n] and Q ⊂ [d]. If Θ(P̃ ,Q) is indistinguishable in l1-norm and if

∥Θ(P̃ ,Q) −Θ(P̃ ,Q)∥2F ≥ 10
6 log3 (

6nd

δζ−
) [ζ2 (

√

∣P̃ ∣∣Q∣ + ∣P̃ ∣) + ∣P̃ ∣] , (3.130)

then, with probability higher than 1 − 3δ, we have

∥Θ(P
′
,Q) −Θ(P

′
,Q)∥2F ≤ (1 −

1

200 log2(nd/ζ−)
) ∥Θ(P ,Q) −Θ(P ,Q)∥2F .

Equipped with these two propositions, we arrive at the counterpart of Propositions 3.5.14 and 3.5.29. Recall
Definition (3.64) of the function Ψ by Ψ(p, r, h, q) =

hp
√
rq

ζ
∧
√
pq + p.

Proposition 3.5.38. Assume that Tt is a valid hierarchical sorting tree. Consider a leaf G of T of type 0 or 1

at depth t. With probability higher than 1−5τ∞δ, there exists a subset P
†

such that P ⊆ P
†
⊆ G and the following

property holds. For some r†cp ≥ r
† ∈R and some h† ∈H, upon writing Q†

WM = Q
∗
WM and Q

†
WM−SR = Q

∗
WM−SR,

we have simultaneously

∥ [Θ(P
†
,Q†

WM−SR) −Θ(P
†
,Q†

WM)]√r†h†
∥
2
F ≤ 2 ⋅ 10

6 log3 (
6nd

δζ−
) [ζ2Ψ(∣P

†
∣, r†, h†, ∣Q

†
WM−SR∣) + ∣P

†
∣] ;

(3.131)

∥M(P
†
) −M(P

†
)∥

2
F ≤ 16ζ

2
+ 96∣R∣∣H∣∥[Θ(P

†
,Q†

WM) −Θ(P
†
,Q†

WM)]
√
r†h†∥

2
F .

(3.132)

The proof is analogous to that of Proposition 3.5.29, up to some numerical constants, and is omitted.
Then, we state the counterpart of Lemma 3.5.30 to control ∣Q

†
WM−SR∣. In comparison to this lemma, we

have an additional term n/(prh).

Lemma 3.5.39. Assume that Tt is a valid hierarchical sorting tree. For any h ∈ H, r ∈ R, any integer p, any
sequence P v of subsets of Gv, it holds that

∑

P ∈P∗(p)
∣Q
∗
WM−SR(P ,h, r)∣ ≲ log(d)

⎡
⎢
⎢
⎢
⎢
⎣

⎧⎪⎪
⎨
⎪⎪⎩

√
nd(r0 ∨ r)

rh
√
p

∧
d(r0 ∨ r)

r2h
∧
nd

pr
∧
n(r0 ∨ r)

prh

⎫⎪⎪
⎬
⎪⎪⎭

+
n

prh

⎤
⎥
⎥
⎥
⎥
⎦

. (3.133)

Then, we apply Proposition 3.5.38 to control the loss on an additional event of probability higher than
1 − 5 ⋅ 2tτ∞δ.

∑

P ∈Lt

∥M(P ) −M(P )∥2F

≤ 16ζ2∣Lt∣ + 96∣R∣∣H∣ ∑
p,h,r

∑

P
†∈P∗(p,h,r)

∥ [Θ(P
†
,Q

†
WM) −Θ(P

†
,Q

†
WM)]√

rh
∥
2
F

≲ log5 (
6nd

δζ−
) ∑
p,h,r

∑

P
†∈P∗(p,h,r)

⎡
⎢
⎢
⎢
⎢
⎣

ζ2
√

[
h2pr

ζ2
∧ 1]p∣Q

∗
WM(P

†
, h, r)∣ + (ζ2 ∨ 1)p

⎤
⎥
⎥
⎥
⎥
⎦

≲ log5.5 (
6nd

δζ−
) ∑
p,h,r

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ζ2
¿
Á
ÁÀ

nr

r ∨ r0
∑

P
†∈P∗(p,h,r)

∣Q
∗
WM(P

†
, h, r)∣ + (ζ2 ∨ 1)n

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≲ log6 (
6nd

δζ−
) ∑
p,h,r

⎡
⎢
⎢
⎢
⎢
⎣

ζ2
⎛

⎝
n3/4d1/4 (

1

(r0 ∨ r)ph2
)

1/4

∧ n

√
d

p(r0 ∨ r)
∧

n
√
ph
∧

√
nd

rh

⎞

⎠
+ ζ2n

√
1

pr0h
+ (ζ2 ∨ 1)n

⎤
⎥
⎥
⎥
⎥
⎦

(a)
≲ log7 (

6nd

δζ−
)∑
p,h

[ζ2 (
n3/4d1/4

ζ1/2
∧ n
√
d ∧

nh

ζ

√
d ∧

n
√
h
∧

√
nd
√
h
) + (ζ2 ∨ 1)n]

≲ log9 (
6nd

δζ−
)[ζ2 (

n3/4d1/4

ζ1/2
∧ n
√
d ∧

n2/3
√
d

ζ1/3
∧
nd1/6

ζ1/3
) + (ζ2 ∨ 1)n] ,

where, in (a), we use that pr0h ≥ pr0h2 ≳ 1, the rest of the bounds being analogous to the proof of Proposi-
tion 3.5.34. This concludes the proof.
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3.5.7.4 Proofs of the lemmas

Proof of Lemma 3.5.35. By a union bound and arguing as in the proof of Lemma 3.5.27, we deduce that, with
probability higher than 1 − δ, we have simultaneously

max
rcp∈[4r,r̃]∩R

max
k∈[d]
∣Ĉ
∗(ext)
k,2rcp

−E [Ĉ∗(ext)k,2rcp
]∣ ≤ h/32 ; (3.134)

max
rcp∈[4r,r̃]∩R

max
k∈[d]
∣∆̂
∗(ext)
k,rcp −E [∆̂

(ext)
k,rcp
]∣ ≤ h/32 . (3.135)

Because of the adversarial observations, we now have

C
∗(ext)
k,2rcp

≤E [Ĉ∗(ext)k,2rcp
] ≤C

∗(ext)
k,2rcp

+
mk+2rcp(V) −mk−2rcp−1(V)

2rcp
,

∆
∗(ext)
k,rcp

≤E [∆̂
∗(ext)
k,rcp ] ≤∆

∗(ext)
k,rcp

+
mk+rcp(V

+) −mk−rcp−1(V
−)

2rcp
+
mk+rcp−1(V

+) −mk−rcp(V
−)

2rcp
.

Combining the above bounds with (3.134) and (3.135) allows us to conclude.

Proof of Proposition 3.5.36. With the notation of the proof of Proposition 3.5.11, the condition (3.71) is now
replaced by

max
i,j∈P ′

∥Θ(P
′
)i,⋅ −Θ(P

′
)j,⋅∥1 ≤ Φl1

√
∣Q∣ + 20 , (3.136)

where we used Lemma 3.5.33 with w = 1Q. The rest of the proof is left unchanged except that we replace
Φl1
√
∣Q∣ by Φl1

√
∣Q∣ + 20.

Proof of Proposition 3.5.37. Lemma 3.5.20 is still true. However, Lemma 3.5.21 needs to be updated to

Lemma 3.5.40. Fix any δ ∈ (0,1). If

∥Θ −Θ∥2op ≥ 6400 [∣P̃ ∣ + ζ
2
[

√

∣Q∣(5∣P̃ ∣ + log(6/δ)) + 7∣P̃ ∣ + 2 log(6/δ)]] , (3.137)

then, with probability higher than 1 − δ, we have

∥v̂T (Θ −Θ) ∥22 ≥
1

2
∥Θ −Θ∥2op .

In light of Condition (3.130), this assumption is valid. Together with Lemma 3.5.20, we deduce that there
exists an event of probability higher than 1 − δ such that

∥v̂T (Θ −Θ) ∥22 ≥
1

2
∥Θ −Θ∥2op ≥

1

32 log2(nd/ζ−)
∥Θ −Θ∥2F .

As the vectors ẑ and ŵ are defined though Z(3), we rather focus on Θ(3). By (3.121), we have ∥Θ(3)−Θ∥op ≤
√

∣P̃ ∣.

∥v̂T (Θ(3) −Θ
(3)
)∥

2
2 ≥ ∥v̂T (Θ −Θ)∥22 − 4∥Θ −Θ

(3)
∥op∥Θ −Θ∥op ≥ ∥v̂

T
(Θ −Θ)∥22 − 4

√

∣P̃ ∣∥Θ −Θ∥op

≥
9

20
∥Θ −Θ∥2op ≥

1

36 log2(nd/ζ−)
∥Θ −Θ∥2F . (3.138)

Then, the analysis of ẑ and z∗ follows the same steps as in the original proofs, - see Section 3.5.4.3 - the main
difference being that we invoke (3.136) instead of (3.71). More precisely, we still have

∣v̂T (Θ(3) −Θ
(3)
)
ŵ

∥ŵ∥2
∣

2

≥
16

25
∥w∗∥22 . (3.139)

and
∥w∗∥22 = ∥z

∗
∥
2
2 − ∑

l∈S∗c
(z∗l )

2 . (3.140)
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The control of ∑l∈S∗c(z∗l )
2 is slightly different.

[ ∑
l∈S∗c
(z∗l )

2
]

2

= [ ∑
l∈S∗c
[v̂T (Θ(3) −Θ

(3)
)]lz

∗
l ]

2

≤ ∥ (Θ(3) −Θ
(3)
) z∗S∗c∥

2
2 = ∑

i∈P̃
( ∑
l∈S∗c
(Θ
(3)
i,l − θ

(3)
l )z

∗
l )

2

≤
18ζ2

∣P̃ ∣2
log(

2∣Q∣

δ
)∑
i∈P̃

⎛

⎝
∑
l∈S∗c

∑
j∈P̃
∣Θ
(3)
i,l −Θ

(3)
j,l ∣
⎞

⎠

2

≤
18ζ2

∣P̃ ∣2
log(

2∣Q∣

δ
)∑
i∈P̃

⎛

⎝
∑
j∈P̃
∥Θ
(3)
i,⋅ −Θ

(3)
j,⋅ ∥1

⎞

⎠

2

≤ 18ζ2 log(
2∣Q∣

δ
) ∣P̃ ∣ [ϕl1 log

1/2
(
2∣P̃ ∣

δ
)
√
Q + 22]

2

≤ [250ζ2 log(
2∣Q∣∣P̃ ∣

δ
)(

√

∣P̃ ∣∣Q∣ + 1) + 400∣P̃ ∣]

2

,

where we used (3.136) as well as the fact ∥Θ(3)i,⋅ − Θi,⋅∥1 ≤ 1. Recall that z∗ = v̂T (Θ(3) − Θ
(3)
). Combining

Section 3.5.7.4, (3.140), and Condition (3.130), we deduce that

∥w∗∥22 ≥
1

72 log2(nd/ζ−)
∥Θ −Θ∥2F ,

which, together with (3.139), yields

∥(Θ(3) −Θ
(3)
)
ŵ

∥ŵ∥2
∥

2

2

≥ ∣v̂T (Θ(3) −Θ
(3)
)
ŵ

∥ŵ∥2
∣

2

≥
1

120 log2(nd/ζ−)
∥Θ −Θ∥2F .

Then, we come back to the matrix Θ −Θ using again (3.121).

∥(Θ −Θ)
ŵ

∥ŵ∥2
∥

2

2

≥
9

10
∣v̂T (Θ(3) −Θ

(3)
)
ŵ

∥ŵ∥2
∣

2

− 9∣P̃ ∣ .

Then, we apply Harris’ inequality as in the original proof of the lemma to conclude that

∥(Θ −Θ)
ŵ+

∥ŵ+∥2
∥

2

2

≥ ∥(Θ −Θ)
ŵ

∥ŵ∥2
∥

2

2

≥
9

1200 log2(nd/ζ−)
∥Θ −Θ∥2F − 9p ≥

1

150 log2(nd/ζ−)
∥Θ −Θ∥2F . (3.141)

Applying the pivot algorithm to ŵ+, we deduce from Lemma 3.5.33 that there exists an event of probability
higher than 1 − δ such that

max
i,j∈P ′

∣⟨Θ(P
′
)i,⋅ −Θ(P

′
)j,⋅,

ŵ+

∥ŵ+∥2
⟩∣ ≤ ϕl1

√

log ( 2∣P ∣
δ
) + 20 .

By convexity, it follows that

∥[Θ(P
′
) −Θ(P

′
)] ŵ+

∥ŵ+∥2 ∥
2

2
≤ 2ϕ2l1 log (

2∣P ∣
δ
) ∣P

′
∣ + 800∣P

′
∣ ≤ ∣P̃ ∣ [2ϕ2l1 log (

2∣P ∣
δ
) + 800] .

In light of Condition (3.62), this quantity is small compared to ∥Θ −Θ∥2F .

∥(Θ(P
′
) −Θ(P

′
)) ŵ+

∥ŵ+∥2 ∥
2
2 ≤

1

200 log2(nd/ζ−)
∥Θ −Θ∥2F . (3.142)

Then, we conclude from (3.142) as we did from (3.83) in the original proof.

Proof of Lemma 3.5.40. For short, we write p = ∣P̃ ∣. Since Z(t) = Θ(t) + N (t) for t = 1,2, the difference wih
Lemma 3.5.21 is that Θ(1) and Θ(2) are involved in the terms vT (Z(1) − Z

(1)
) and vT (Z(2) − Z

(2)
). Hence,
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arguing as in the proof of Lemma 3.5.21, we derive that, on an event of probability higher than 1− 3δ, we have
simultaneously for all v ∈ Rp with ∥v∥2 ≤ 1 that

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ(1) −Θ

(1)
)∥

2
2+

1

2
∥vT (Θ(1) −Θ

(1)
−Θ(2) +Θ

(2)
)∥

2
2 −

1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2∣

≤ 10ζ [∥Θ(1) −Θ
(1)
∥op +

1

2
∥Θ(1) −Θ

(1)
−Θ(2) +Θ

(2)
∥op]
√
2p + log(6/δ)

+ 192ζ2 [
√
q(3p + log(6/δ)) + (3p + log(6/δ))] .

By (3.121), we have ∥Θ(t) −Θ∥op ≤
√
p for t = 1,2. Hence, the above bound simplifies in

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ −Θ)∥22 −

1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2∣

≤ 10ζ [∥Θ −Θ∥op + 4
√
p]
√
2p + log(6/δ) + 192ζ2 [

√
q(3p + log(6/δ)) + (3p + log(6/δ))]

+ 12p + 4
√
p∥Θ −Θ∥op .

Since we assume that ∥Θ−Θ∥2op ≥ 6400[p+ζ
2[
√
q(5p + log(6/δ))+7p+2 log(6/δ)]], we deduce that, on the same

event, we have

sup
v∈Rp∶ ∥v∥2≤1

∣∥vT (Z(1) −Z
(1)
)∥

2
2 − ∥v

T
(Θ −Θ)∥22 −

1

2
∥vT (Z(1) −Z

(1)
−Z(2) +Z

(2)
)∥

2
2∣ ≤

1

4
∥Θ −Θ∥2op .

The rest of the proof is left unchanged.

Proof of Lemma 3.5.39. Recall that Q
∗
WM−SR(P ,h, r) decomposes as the union of Q

∗
WM−SR−1, Q

∗
WM−SR−2,

and Q
∗
WM−SR−3, Q

∗
WM−SR−4. Since Q

∗
WM−SR−1 is defined analogously to Q

∗
WM –but with a different numerical

constant–, we can argue as in the proof of Lemma 3.5.39, which yields

∑

P ∈P∗(p)
∣Q
∗
WM−SR−1(P ,h, r)∣ ≲ log(d)

⎡
⎢
⎢
⎢
⎣

√
nd(r0 ∨ r)

rh
√
p

∧
d(r0 ∨ r)

r2h
∧
nd

pr
∧
n(r0 ∨ r)

prh

⎤
⎥
⎥
⎥
⎦
.

It remains to consider the three last sets. We only focus on Q
∗
WM−SR−2(P ,h, r), the last ones being anal-

ogous. We first focus on a single set Q
∗
WM−SR−2(P ,h, r, rcp). If k belongs to D

∗
WM−SR−2(P ,h, r, rcp), this

implies that the total variation of m(V+rcp) between k − rcp and k + rcp is at least hrcp/128. Since the total
variation of m(V+rcp) is at most one, there are at most c/(hrcp) regions of Qrcp that contain at least a point
D
∗
WM−SR−2(P ,h, r, rcp), which entails that there are at most c′ rcp

r
⋅ 1
hrcp

= c′/(hr) regions of Qr that contain

at least a point D
∗
WM−SR−2(P ,h, r, rcp). Since rcp takes at most a logarithmic number of values and since

∣P∗(p)∣ ≤ n/p, we obtain
∑
rcp

∑

P ∈P∗(p)
∣Q
∗
WM−SR−2(P ,h, r, rcp)∣ ≲ log(d)

n

prh
,

which concludes the proof.

3.5.8 Proofs for the l∞ loss

Proof of Lemma 3.4.5. Without loss of generality, we assume that π∗ is the identity. Fix any i ∈ [n] and assume
that π̂−1(i) ≠ i. Consider for instance the case where m = π̂−1(i) > i. As a consequence, there are at least l =m−i
experts that are below m in the oracle order and above m in the estimated order . Denote j the smallest of those
experts. Hence, we have j ≤ i < m and π̂(j) ≥ π̂(m). Besides, since j ≤ i ≤ m, we deduce from the bi-isotonic
assumption that

∥Mi,. −Mπ̂−1(i),.∥
2
2 ≤ ∥Mj,. −Mπ̂−1(i),.∥

2
2 = ∥Mj,. −Mm,.∥

2
2 .

Taking the supremum over all i implies that l∞(π̂, π∗) ≤ lerr(π̂, π∗). Let us turn to the second inequality.
Consider any i < j such that π̂(i) > π̂(j). We consider three subcases.

(i) If π̂(i) ≥ j, then we have ∥Mi,. −Mj,.∥
2
2 ≤ ∥Mi,. −Mπ̂(i),.∥

2
2.
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(ii) If π̂(j) ≤ i, then ∥Mi,. −Mj,.∥
2
2 ≤ ∥Mπ̂(j),. −Mj,.∥

2
2.

(iii) It remains to consider the case where we have i < π̂(j) < π̂(i) < j. As a consequence, for each k ∈ [d], we
have Mj,k −Mi,k ≤Mj,k −Mπ̂(j),k +Mπ̂(i),k −Mi,k, which in turn implies that

∥Mj,. −Mi,.∥
2
2 ≤ 4l∞(π̂, π

∗
) .

Taking the supremum over all i and reminding the definition of j concludes the proof.

Proof of Proposition 3.4.6. For n = 2, all the losses are equal. Hence, the minimax lower bound (3.34) is a
straightforward consequence of the general minimax lower bound of Theorem 3.4.1 by a reduction to the case
where n = 2 (recall that ζ = 1 here) - This reduction is achieved by putting to 0 the signal corresponding to all
n − 2 experts that do not corresponds to the 2 experts of interest that will be most difficult to distinguish so
that estimating the permutation amounts to deciphering between these two experts. Hence, we derive that

inf
π̂

sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E(π∗,M)[l∞(π̂, π∗)] ≥ c′′ [(
d1/6

λ5/6
⋀

√
d

λ
+
1

λ
)⋀d] .

It turns out that the term 1/λ is higher than d if λ ≤ 1/d and is smaller than d1/6

λ5/6 ⋀

√
d
λ

for larger λ’s. Hence,
we can conclude that

inf
π̂

sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E(π∗,M)[l∞(π̂, π∗)] ≥ c′′ [
d1/6

λ5/6
⋀

√
d

λ
⋀d] .

Regarding the upper bound, we build upon the analysis of π̂WMP in the specific case of n = 2. Consider any
fixed i and j. With probability higher than 1 − cδ logc

′
[nd(λ ∨ 1)], it follows from the proof of Theorems 3.2.3

and 3.4.3 that (i) π̂WMP builds a valid hierarchical sorting tree and (ii) the set P ⊂ {i, j} built at the end of
BlockSort satisfies

∥M(P ) −M(P )∥2F ≤ c1 log
c2 (nd(λ ∨ 1)) [

d1/6

λ5/6
⋀

√
d

λ
+
1

λ
] . (3.143)

It follows from (i) that (i, j) (resp. (j, i)) is added to PC only if π∗(i) < π∗(j) (resp. π∗(i) < π∗(j)). Besides, if

∥Mi,. −Mj,.∥2 > 2c1 log
c2 (nd(λ ∨ 1)) [

d1/6

λ5/6
⋀

√
d

λ
+
1

λ
] , (3.144)

then, this implies that ∣P ∣ ≤ 1, otherwise this would contradict Equation (3.143).
Then, taking a union bound over all possible (i, j), we deduce that there exists an event of probability higher

than 1−cn2δ logc
′
(nd(λ∨1)), such that PC is consistent and contains all 2-tuples of experts that satisfy (3.144).

Turning to the estimated permutation π̂PC , we consider any two experts such that π∗(i) < π∗(j) and
π̂PC(i) > π̂PC(j). The latter condition implies that ϕ(i) ≥ ϕ(j). Since PC is consistent, we have π∗(i) ≥ 1+ϕ(i).
Define π∗−(j) as the number of experts k that are below j and are far apart from j in the sense of Equation (3.144).
We know that, under the above event, we have that ϕ(j) ≥ π∗−(j). This implies that π∗(i) > π∗−(j). As a
consequence, i and j are not far apart in the sense of Equation (3.144). This implies that

lerr(π̂PC , π
∗
) ≤ 2c1 log

c2 (nd(λ ∨ 1)) [
d1/6

λ5/6
⋀

√
d

λ
+
1

λ
] .

Since lerr(π̂PC , π∗) is equivalent to l∞(π̂PC , π∗), this bound also holds (with a larger constant) for the latter
loss. Since δ has been chosen small enough and since the loss is always smaller than d, we arrive at the following
risk bound

E [l∞(π̂PC , π∗)] ≤ c′1 log
c′2 (nd(λ ∨ 1)) [

d1/6

λ5/6
⋀

√
d

λ
+
1

λ
] ,

which, in turn, implies that

E[l∞(π̂PC , π∗)] ≤ c logc
′
(nd(λ ∨ 1)) [

d1/6

λ5/6
⋀

√
d

λ
]⋀d .
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3.5.9 Proof of the minimax lower bounds
3.5.9.1 Proof of Theorem 3.4.1

3.5.9.2 Noiseless minimax lower bound

Here, we shall prove the following minimax lower bound holding in the noiseless case ζ = 0.

R
∗
[n, d, λ,0] ≥ c [

n

λ
e−2λ ∧ nd] (3.145)

Obviously, the bound remains valid for general ζ ≥ 0. Define the positive integer d− = 1 ∨ [⌊1/λ⌋ ∧ d] ≤ d. We
build a prior distribution ν of M as follows. For each row i = 1, . . . , n, we sample Wi ∼ B(1/2). If ζi = 1, the i-th
row of M is constant and equal to 1. if Wi = 0, then the i-th row of M has its d− first entries equal to 0, while
the remaining entries are equal to 1.

We write P and E for the corresponding marginal probability and expectations of the data (xt, yt).

R
∗
[n, d, λ,0] ≥ inf

π̂
E [∥Mπ̂−1 −Mπ∗−1∥

2
2] .

For each entry i = 1, . . . , n, we write Ni = ∑t 1xt∈{i}×[d−] the number of observations on the d− first columns of
the i-th row. If Ni ≥ 1, then the statistician knows the value of Wi. Conversely, if Ni = 0, then she has no
information on the value of Wi. Given an estimator π̂, it is always possible to reduce its loss by ranking at
the top the experts such that Ni ≥ 1 and Wi = 1, ranking below the experts such that Ni ≥ 1 and Wi = 0, and
putting in between the experts such that Ni = 0. Conditionally to the observations (xt, yt), the values of Wi

such that Ni = 0 are still distributed according to a Bernoulli distribution. As a consequence, for any π̂ which
has been rearranged as explained above, the conditional risk satisfies

E [∥Mπ̂−1 −Mπ∗−1∥
2
2∣(xt, yt)] ≥ d− × g(

n

∑
i=1

1Ni=0) ,

where g(k) corresponds to the expected number of error of π̂ when there are exactly k rows without any
observations. Since conditionally to π̂, the corresponding values of W have been sampled independently as
Bernoulli random variables with parameter 1/2, we arrive at the following expression for g(k):

g(k) =
k

∑
i=1

P[{Wi = 1} ∩ {
k

∑
j=1

Wj ≤ k − i}] + P[{Wi = 0} ∩ {
k

∑
j=1

Wj > k − i}] .

We have g(1) = 0, g(2) = 1/2, g(3) = 1. For k ≥ 4, we focus on the ⌊k/4⌋ first and ⌊k/4⌋ last entries to deduce
that

g(k) ≥ E
⎡
⎢
⎢
⎢
⎢
⎣

⌊k/4⌋
∑
i=1

Wi

⎤
⎥
⎥
⎥
⎥
⎦

P

⎡
⎢
⎢
⎢
⎢
⎣

k

∑
i=⌊k/4⌋+1

Wi ≤ k/2

⎤
⎥
⎥
⎥
⎥
⎦

+E
⎡
⎢
⎢
⎢
⎢
⎣

k

∑
i=k−⌊k/4⌋+1

(1 −Wi)

⎤
⎥
⎥
⎥
⎥
⎦

P

⎡
⎢
⎢
⎢
⎢
⎣

k−⌊k/4⌋
∑
i=1
(1 −Wi) ≤ k/2

⎤
⎥
⎥
⎥
⎥
⎦

≥ 0.5⌊
k

4
⌋ .

Hence, there exists a universal constant c > 0 such that we have g(k) ≥ c(k − 1) for any k ≥ 1. Since Ni follows
a Poisson distribution with parameter λd−, V = ∑ni=1 1Ni=0 follows a binomial distribution with parameters
(e−λd− , n). We obtain R∗[n, d, λ,0] ≥ cd−E[(V − 1)+]. If E[V ] ≥ 2, then we simply use E[(V − 1)+] ≥ E[V ]/2. If
E[V ] < 2, we use E[(V − 1)+] ≥ P[V = 2] = n(n−1)

2
e−2λd−(1 − e−2λd−)n−2 ≥ c′n2e−2λd− . In any case, we conclude

that
R
∗
[n, d, λ,0] ≥ c′′d−ne

−2λd− .

If λ ≤ 1/d, then d− = d, and the right hand-side is higher than c′′nde−2. If λ ∈ [1/d,1], then we have d− ∈
[1/(2λ),1/λ] and the right hand-side risk is higher than cn/λ. Finally, if λ ≥ 1, we take d− = 1 and the right
hand-side is higher than c′ne−2λ. We have proved Equation (3.145).

3.5.9.3 Proof of the remaining regimes

Since the minimax risk is increasing with n and d, we can assume without loss of generality that both n and d
express as a power of 2.

We shall first build a collection of prior distributions νG indexed by G ∈ G on M . We denote P
(full)
G and

E
(full)
G the corresponding marginal probability distributions and expectations on the data (xt, yt). Since we aim
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at proving the lower bound in the Gaussian setting, we assume that the data yt is a normal random variable
with mean Mxt and variance ζ2 conditionally on M and xt. The minimax risk (3.4) is higher than the worst
Bayesian risk.

R∗[n, d, λ, ζ] ≥ inf
π̂

sup
G∈G

Efull
G [∥Mπ̂−1 −Mπ∗−1∥

2
F ] . (3.146)

We first spend some time defining the corresponding prior distributions before applying a sequence of reduction
arguments.

3.5.9.4 Construction of the Prior distribution on M

Let ñ ∈ [n] be an a power of 2 so that n/ñ is an integer. From a broad perspective, the general purpose of
this prior construction is to break down the permutation estimation problem into n/ñ independent bisection
problems of size ñ. We will fix the value of ñ at the end of the proof. The permuted matrix Mπ∗−1 will turn out
to be block constant and we introduce d̃ ∈ [d] the number of blocks of questions, each of them being of size d/d̃.
Here we assume that d̃ is a power of 2 so that d/d̃ is an integer. d̃ will be also fixed at the end of the proof.

We introduce the staircase matrix C of dimension (n/ñ)× d̃ such that Cι,κ = ιñ/(4n)+κ/(4d̃). Also write U
for the constant ñ × d/d̃ matrix whose entries are all equal to one. With this notation, the Kronecker product
matrix C ⊗U of size n × d is a bi-isotonic staircase matrix with blocks of size ñ × (d/d̃).

Then, we shall perturb the matrix C⊗U in order to simultaneously craft n/ñ independent clustering problems
of size ñ each. Set λ̃ = λd

d̃
and λ0 = ñλ̃. Let υ be a positive number and let also q be an integer smaller than or

equal to d̃ and

M = C ⊗U + υ
ζ
√
λ0
B(full) , (3.147)

where the random matrix B(full) ∈ {0,1}n×d is defined below.
For this purpose, we consider a collection G of subsets of [ñ] with size ñ/2 that are well-separated in

symmetric difference as defined by the following lemma.

Lemma 3.5.41. There exists a numerical constant c0 such that the following holds for any even integer ñ.
There exists a collection G of subsets of [ñ] with size ñ/2 whose satisfies log(∣G∣) ≥ c0∣ñ∣ and whose elements are
ñ/4-separated, that is ∣G1∆G2∣ ≥ ñ/4 for any G1 ≠ G2.

The above result is a straightforward consequence of Varshamov-Gilbert’s lemma – see e.g. [90].

For each block ι ∈ [n/ñ], we fix a subset G(ι) from G. Then, we consider its ’translation’ Gt(ι) = {x+(ι−1)ñ ∶
x ∈ Gι}. The experts of Gt(ι) will correspond to the subgroup of ’higher’ experts in the group ι. We write
G = (Gt(1), . . . ,Gt(n/ñ)) and G the corresponding collection of all possible G. Given any such G, we shall define
a prior distribution νG on M .

For ι ∈ [n/ñ], we sample uniformly a subset Q(ι) of q block of questions among the d̃ blocks. In each of these
q blocks, the corresponding rows of B(full) are equal to one. More formally, upon writing 1d/d̃ for the constant
vector of size d/d̃, we have

B(full) =
n/ñ
∑
ι=1

1Gt(ι)(Q(ι) ⊗ 1d/d̃)
T . (3.148)

To sum up, we define a prior distribution νG on B(full) (and equivalently on M) such that, under νG, all the
rows of B(full) that do not belong to any Gt(ι) are zero. All the rows belonging to the same set Gt(ι) are equal
and block constants with d̃ blocks of size d/d̃, among which q blocks are exactly equal to one.

Coming back to the matrix M defined in (3.148), we see that as soon as

2υζ/
√
λ0 ≤ ñ/(4n) ∧ 1/(4d̃) , (3.149)

then, almost surely, the matrix M , is up to a (non-unique) permutation, bi-isotonic and its coefficients are in
[0,1]. Defining the subset G

(ι)
= {i+(ι−1)ñ ∶ i ∈ [ñ]}, we see that, under νG, recovering a suitable permutation

π∗ is exactly equivalent to estimating the subgroup Gt(ι) ⊂ G
(ι)

for each ι = 1, . . . , n/ñ. This construction of M
is illustrated in Figure 3.6. To sum up, the prior distribution distribution νG on M requires the choice of the
parameters ñ ∈ [n], d̃ ∈ [d], the sparsity q ∈ [d̃], and some signal level υ > 0 satisfying (3.149).

As we shall use several reduction arguments, we need to introduce some new notation. First, we respectively
denote P

(full)
G and E

(full)
G for the marginal probability and expectation with respect to the data when M is

sampled according to νG.
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Figure 3.6: Example of a matrix M sampled from νG.

The distribution of the rows G
t(ι)

in M under νG only depends on Gt(ι). In what follows, we write νGt(ι)

for this distribution. Similarly, we write P
(full)
Gt(ι) for the corresponding marginal distribution of the observations

(xt, yt) such that (xt)1 ∈ G
t(ι)

. By the poissonization trick, the distribution P
(full)
G is a product measure of

P
(full)
Gt(ι) for ι = 1, . . . , n/ñ. We write E

(full)
Gt(ι) for the corresponding expectation.

3.5.9.4.1 Step 2: Problem Reduction We start with prior distributions νG.

R∗[n, d, λ, ζ] ≥ inf
π̂

sup
G∈G

E(full)G ∥Mπ∗−1 −Mπ̂−1∥
2
2

For each of these matrices M sampled from a distribution νG, it turns out that π∗(G
(ι)
) = G

(ι)
. Hence, to

estimate π∗, we only need to estimate each Gt(ι) ⊂ G
(ι)

from the data. Intuitively, we therefore can restrict
ourselves to estimators π̂ satisfying π̂(G

(ι)
) = G

(ι)
. More precisely, if an estimator π̃ does not satisfy this

condition, then we can modify π̃ in π̂ in order to enforce the G
(ι)

’s to be stable. Since, by Condition (3.149)
experts in different G

(ι)
are far from each other, it turns out that the loss of π̂ is smaller than that of π̃.

R
∗
[n, d, λ, ζ] ≥ inf

π̂∶ π̂(G(ι))=G(ι)
sup
G∈G

n/ñ
∑
ι=1

E
(full)
Gt(ι) [∥(Mπ̂−1 −Mπ∗−1)G

(ι)∥
2
F ]

≥ inf
π̂∶ π̂(G(ι))=G(ι)

n/ñ
∑
ι=1

sup
Gt(ι)

E
(full)
Gt(ι) [∥(Mπ̂−1 −Mπ∗−1)G

(ι)∥
2
F ]

≥

n/ñ
∑
ι=1

inf
π̂(ι)

sup
Gt(ι)

E
(full)
Gt(ι) [∥(Mπ̂(ι)−1 −Mπ∗−1)G

(ι)∥
2
F ] ,

where, in the last line, π̂(ι) stands for any estimator of the restriction π∗ to G
(ι)

. By symmetry, we arrive at

R
∗
[n, d, λ, ζ] ≥

n

ñ
inf
π̂(1)

sup
Gt(1)

E
(full)
Gt(1) [∥(Mπ̂(1)−1 −Mπ∗−1)G

(1)∥
2
F ] (3.150)

In summary, we have reduced the problem of estimating π∗ into the sum of n/ñ problems of size ñ. Under
νGt(ι) , the restriction of M to G

(ι)
contains ñ/2 good experts (those in Gt(ι)) and ñ/2 bad experts. The square

Euclidean distance between these two types of experts is qυ2dζ2

λ0d̃
. If we denote Ĝt(ι) the set of the ñ/2 best

experts according to π̂(ι), then the loss writes as

∥(Mπ̂(ι)−1 −Mπ∗−1)G
(ι)∥

2
F =

qυ2dζ2

λ0d̃
∣Ĝ(ι)∆Gt(ι)∣ .
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Coming back to (3.150), we obtain

R
∗
[n, d, λ, ζ] ≥

nqυ2dζ2

ñλ0d̃
inf
Ĝ(1)

sup
Gt(1)

E
(full)
Gt(1) [∣Ĝ

(1)∆Gt(1)∣] .

Since all possible values of Gt(1) are ñ/4-apart by definition of the collection G, we deduce that

R
∗
[n, d, λ, ζ] ≥

nqυ2dζ2

8λ0d̃
inf
Ĝ(1)

sup
Gt(1)

P
(full)
Gt(1) [Ĝ

(1)
≠ Gt(1)] .

For any group Gt(1), under νGt(1) , the rows of the restrictions of M to G
t(1)

are block-constant with d̃ blocks
of d/d̃ questions. Consider the ñ × d̃ matrices N and Y ↓ defined by

Ni,j =∑
t

1xt∈{i}×[(j−1)(d/d̃)+1,j(d/d̃)+1] ; Y ↓i,j =∑
t

1xt∈{i}×[(j−1)(d/d̃)+1,j(d/d̃)+1] (yt −
ñ

4n
−
j

4d̃
) .

To simplify the notation, we write henceforth G and Ĝ for Gt(1) and Ĝ(1) respectively. We also write PG for
the corresponding marginal distribution of N and Y ↓. By a sufficiency argument, it turns out that

inf
Ĝ

sup
G

P
(full)
G [Ĝ ≠ G] = inf

Ĝ
sup
G

PG [Ĝ ≠ G] .

Hence, we arrive at the following conclusion

R
∗
[n, d, λ, ζ] ≥

nqυ2dζ2

8λ0d̃
inf
Ĝ

sup
G

PG [Ĝ ≠ G] . (3.151)

Let us introduce a third-part distribution P0 on N and Y ↓ corresponding to the case υ = 0. Each of the
entry of N therefore follows an independent Poisson distribution with parameter λ̃ and, given Ni,j , we have
Y ↓ ∼ N (0,Ni,jζ

2). We then deduce from Fano’s inequality [90] that

inf
Ĝ

sup
G∈G

PG(Ĝ ≠ G) ≥ 1 −
1 +maxG∈G KL(PG∣∣P0)

log(∣G∣)
, (3.152)

where KL(.∣∣.) stands for the Kullback-Leibler divergence. Then, the following lemma bounds these Kullback-
Leibler divergences.

Lemma 3.5.42. Assume that λ0 = ñλd/d̃ ≥ 1 and that 8υ2 ≤ 1. For any G ∈ G, we have

KL(PG∣∣P0) ≤
4υ2q2

d̃
.

In the specific case where d̃ = q = 1, we have KL(PG∣∣P0) = υ
2/2 for any G ∈ G, any λ0 > 0, and any υ > 0.

Let us summarize our findings by combining (3.151), (3.152), with Lemma 3.5.42 and the different constraints
on the parameters (3.149).

Proposition 3.5.43. Provided that ñ, d̃, q, and υ satisfy the two following conditions

λ ≥
d̃

ñd
; (3.153)

υ ≤ 2−3/2⋀

⎡
⎢
⎢
⎢
⎢
⎣

c0

√

d̃ñ

q
⋀ c1

√
λ

ζ
[
ñ3/2d1/2

nd̃1/2
∧

√
ñd

d̃3/2
]

⎤
⎥
⎥
⎥
⎥
⎦

, (3.154)

then, we have

R
∗
[n, d, λ, ζ] ≥ c′′

nqυ2ζ2

ñλ
. (3.155)

In the specific case where we fix d̃ = q = 1 and ñ = n, we can deduce from combining (3.151), (3.152), and
the second part of Lemma 3.5.42 that

R
∗
[n, d, λ, ζ] ≥ c′′

nυ2ζ2

ñλ
,

provided that υ2 ≤ c′ λnd
ζ2
∧ n. By choosing υ2 of the order of the right-hand side, we then deduce that

R
∗
[n, d, ζ] ≥ c [

nζ2

λ
∧ nd] . (3.156)



3.5. Proofs 103

3.5.9.5 Step 3. Choice of the parameters and conclusion

Writing λ′ = λ/ζ2, recall that we aim at proving that

R[n, d, λ, ζ] ≥ c [[
nd1/6

λ′5/6
⋀
n3/4d1/4

λ′3/4
⋀
n2/3
√
d

λ′5/6
⋀
n
√
d

λ′
] +

n

λ′
+
n

λ
e−2λ]⋀nd . (3.157)

Since we have proved the lower bound (3.145) and (3.156), we only have to prove the corresponding minimax
lower bound for the remaining four rates. For this purpose, we shall fix the values of ñ, d̃, q, and υ and apply
from Proposition 3.5.43. In the sequel we write ⌊x⌋dya for 2⌊log2(x)⌋.

Case 1: Rate nd1/6

λ′5/6
. This rate can only occur if n ≤ d, λ′ ∈ [n3/d, d2] and λ ≥ 1 ∧ [λ′5/6/d1/6]. In this case,

we take ñ = 2, d̃ = ⌊(λ′d)1/3⌋dya, and q = ⌊
√

d̃⌋. One readily checks that the conditions (3.153) and (3.154) are
satisfied for a universal numerical value of υ. Then, Proposition 3.5.43 leads to the desired rate.

Case 2: Rate n3/4d1/4

λ′3/4
. This rate can only occur if λ ≥ [1 ∧ (nλ′3/d)1/4] and (a) either n ≤ d and λ′ ∈ [n

d
, n

3

d
]

or (b) n ∈ [d;d2] and λ′ ∈ [n
d
, d

3

n
]. In this case, we take d̃ = ⌊(λ′nd)1/4⌋dya, ñ = ⌊n/d̃⌋dya , and q = ⌊

√

ñd̃⌋. One
readily checks that the conditions (3.153) and (3.154) are satisfied for an universal numerical value of υ. Then,
Proposition 3.5.43 leads to the desired rate.

Case 3: Rate n2/3√d
λ′5/6

. This rate can only occur if λ ≥ [1∧λ
′5/6n1/3
√
d
] and (a) either n ∈ [d, d2] and λ′ ∈ [d

3

n
, n2] or (b)

n ≥ d2 and λ′ ∈ [n
2

d3
, n2]. In this case, we take ñ = ⌊(n2/λ′)1/3⌋dya, d̃ = d, and q = ⌊

√

ñd̃⌋. One readily checks that
the conditions (3.153) and (3.154) are satisfied for an universal numerical value of υ. Then, Proposition 3.5.43
leads to the desired rate.

Case 4: Rate n
√
d

λ′
. This rate can only occur if λ ≥ 1 and λ′ ≥ (n ∨ d)2. In this case, we take ñ = 2, d̃ = d,

and q = ⌊
√
d⌋. One readily checks that the conditions (3.153) and (3.154) are satisfied for a universal numerical

value of υ. Then, Proposition 3.5.43 leads to the desired rate. This concludes the proof.

3.5.9.6 Proof of Lemma 3.5.42

Proof of Lemma 3.5.42. In order to bound the Kullback-Leibler discrepancy KL(PG∣∣P0), we first observe that
the rows of N and Y ↓ outside G have the same distribution on PG and P0. Besides, all the rows of N and
Y ↓ in G are identically distributed on PG and on P0. Define the vectors N and Y

↓
by N j = ζ

−1
∑i∈GNi,j and

Y ↓j = ζ
−1
∑i∈G Y

↓
i,j are a sufficient statistic for deciphering PG and P0, we have KL(PG∣∣P0) = KL(P′∣∣P) where

P′ and P stand for the corresponding marginal distributions of N and Y
↓
.

Set u = υ/
√
λ0. Under P, given N , the Y

↓
j ’s are independent and satisfy Y

↓
j ∼ N (0,N j). Under P′,

conditionally to the subset Q of size q and conditionally to N , the Y
↓
j ’s are independent and satisfy Y

↓
j ∼

N (uN j1{j ∈ Q},N j).

In the specific case of q = d̃ = 1, we can explicitely compute the Kullback Leibler divergence. Conditionally
to N1 = x, Y

↓
is either distributed N (0, x) under P and N (ux,x) under P′. Hence, their conditional Kullback-

divergence is u2x/2. Integrating with respect to x, we conclude that

KL(P′∣∣P) = E [
u2

2
N] =

u2λ0
2
=
υ2

2
.

We have shown the second result.

Let us come back to the general case. For z = 1,0, define

αz(x, y) =
λx0e

−λ0

x!

1
√
2αx

exp(−
(y − uxz)2

2x
) .

Then, the density of P with respect to µ⊗ λ where µ is the discrete measure and λ is the Lebesgues measure
is ∏j α0(N j , Y

↓
j). Besides, the density of P′ is

∫ [∏
j

α1j∈Q(N j , Y
↓
j)]dη(Q) ,
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where η stands for the uniform distribution over {Q ∈ {0,1}d̃ ∶ ∥Q∥0 = q}. It is more convenient to first control
the χ2 distance P and P′. Since this distance is, up to an additive term of order 1, the second moment of the
likelihood ratio between P and P′, we arrive at the following

χ2
(P′,P) + 1

= ∫ [ ∏
j∈Q∩Q′

[α1(xj , yj)]
2

α0(xj , yj)
dµ(xj)dyj][ ∏

j∈Q∆Q′
α1(xj , yj)dµ(xj)dyj]dη(Q)dη(Q

′
)

= ∫ [ ∏
j∈Q∩Q′

[α1(xj , yj)]
2

α0(xj , yj)
dµ(xj)dyj]dη(Q)dη(Q

′
) ,

since α1 is a density. Let us work out each of these ratios.

∫
α2
1(x, y)

α0(x, y)
dxdy = ∫ α0(x, y) exp [

2yux − u2x2

x
]dµ(x)dy

=
∞
∑
x=0

λx0e
−λ0

x!
eu

2x
= exp(λ0(e

u2

− 1)) ∶= exp(I) .

Coming back to the χ2 distance, we arrive at the following equality

χ2
(P′,P) = ∫ exp (I ∣Q ∩Q′∣)dη(Q)dη(Q′) − 1 .

Here, ∣Q ∩Q′∣ is distributed as an Hypergeometric distribution with parameters d̃, q, and q/d̃. We know from
Aldous (p.173) [2] that ∣Q ∩ Q′∣ follows the same distribution as the random variable E(W ∣B) where W is a
binomial random variable of parameters q, q/d̃ and B is some suitable σ-algebra. By Jensen’s inequality, we
deduce that

χ2
(P′,P) ≤ E[exp(IW )] − 1 = [1 +

q

d̃
(exp(I) − 1)]

q

− 1 .

Recall that λ0u2 = υ2 ≤ 1/8. Hence, provided that λ0 = ñλd/d̃ ≥ 1, we have I ≤ 2λ0u2 = 2υ2. It then follows that

χ2
(P′,P) ≤ exp (q2/d̃(exp(I) − 1)) − 1 ≤ exp (4υ2q2/d̃) − 1.

To conclude, we use the classical bound KL(P′∣∣P) ≤ log (1 + χ2(P′,P)) –see e.g. [90]. This leads us to

KL(P′∣∣P) ≤
4υ2q2

d̃
.

3.5.9.7 Proof of Theorem 3.2.1

Fix n, d, ζ, and κ ≥ 2, and assume that, for some c′, there exists an estimator π̂ satisfying

sup
π∗∈Πn

sup
M ∶Mπ∗−1∈CBISO

E(π∗,M)∥Mπ̂−1 −Mπ∗−1∥
2
F ≤ c

′ [log−κ(nd/ζ−)RF [n, d, ζ]⋀nd] , (3.158)

with Υ = ⌊logκ(nd/ζ−)⌋ samples.
Let us show that this bound would contradict the minimax lower bound in the Poisson setting. Fix λ =

112
3

logκ(nd/ζ−) and consider the model (3.2). Define the estimator π̃ such that π̃ = π̂ under the event A such
that there are at least Υ observations on each entry and π̃ is computed arbitrarily otherwise. By (3.158), π̃
satisfies

E(π∗,M)∥Mπ̂−1 −Mπ∗−1∥
2
F ≤ ndP[A

c
] + c′ [log−κ(nd/ζ−)RF [n, d, ζ]⋀nd] . (3.159)

By Chernoff’inequality for Poisson random variable, we deduce that

P[Ac] ≤ nd exp [−
3

28
λ] ≤ nde−4 log

κ(nd/ζ−) ≤
ζ2−
nd
e−4 log

κ(nd/ζ−)+2 log(nd/ζ−)

There exists a constant c0 such that for any κ ≥ 2, e−4x
κ+2x ≤ c0

x2κ . We deduce that

P[Ac] ≤
ζ2−
nd

c0

log2κ(nd/ζ−)
,
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where we used that ex ≥ 1+xβ/β for any x ≥ 0 and any β > 0 and that κ ≥ 2. We then deduce from (3.159) that

E(π∗,M)∥Mπ̂−1 −Mπ∗−1∥
2
F ≤ (c

′
+

c0
logκ(nd/ζ−)

) [log−κ(nd/ζ−)RF [n, d, ζ]⋀nd] . (3.160)

For λ ≥ 1, RF [n, d, ζ/
√
λ] ≥ RF [n,d,ζ]

λ
. We deduce that

E(π∗,M)∥Mπ̂−1 −Mπ∗−1∥
2
F ≤

112

3
(c′ +

c0
logκ(nd/ζ−)

) [RF [n, d, ζ/
√
λ]⋀nd] .

Taking c′ small enough compared to the numerical constant c in Theorem 3.4.1 contradicts this last theorem
provided that nd/ζ− is larger than some some numerical constant. Hence, no estimator can achieve (3.158) for
this constant c′ when (nd/ζ−) is large enough.

It remains to consider the case where nd/ζ− is smaller than some constant c′′ ≥ 2. We only need to prove that
the minimax risk is lower bounded by c0

Υ
where Υ is the sample size. Since the minimax risk is non-decreasing

with respect to n, d, and ζ, we only have to consider the case n = 2, d = 1, ζ = 2/c′′. Define a = ζ/
√
Υ. Consider a

problem where either M = (a,0)T or M = (0, a)T . Then, with positive probability, no test is able to distinguish
both hypotheses and the risk of any estimator is at most of the order a2 = ζ2/Υ. The result follows.





Chapter 4

Ranking a permuted matrix under the
isotonic model

We consider a ranking problem where we have noisy observations from a matrix with isotonic columns whose
rows have been permuted by some permutation π∗. This encompasses many models, including crowd-labeling
and ranking in tournaments by pair-wise comparisons. In this work, we provide an optimal and polynomial-time
procedure for recovering π∗, settling an open problem in [33]. As a byproduct, our procedure is used to improve
the state-of-the art for ranking problems in the stochastically transitive model (SST). Our approach is based on
iterative pairwise comparisons by suitable data-driven weighted means of the columns. These weights are built
using a combination of spectral methods with new dimension-reduction techniques. In order to deal with the
important case of missing data, we establish a new concentration inequality for sparse and centered rectangular
Wishart-type matrices.

4.1 Introduction

Ranking problems have recently spurred a lot of interest in the statistical and computer science literature. This
includes a variety of problems ranging from ranking experts/workers in crowd-sourced data, ranking players in
a tournament or equivalently sorting objects based on pairwise comparisons.

To fix ideas, let us consider a problem where we have noisy partial observations from an unknown matrix
M ∈ [0,1]n×d. In crowdsourcing problems, n stands for the number of experts (or workers), d stands for the
number of questions (or tasks) and Mi,k for the probability that expert i answers question k correctly. For
tournament problems, we have n = d players (or objects) and Mi,k stands for the probability that player i wins
against player k. Based on these noisy data, the general goal is to provide a full ranking of the experts or of
the players.

Originally, these problems were tackled using parametric model for the matrix M . Notably, this includes
the noisy sorting model [12] or Bradley-Luce-Terry model [11]. Still, it has been observed that these simple
models are often unrealistic and do not tend to fit well.

This has spurred a recent line of literature where strong parametric assumptions are replaced by non-
parametric assumptions [81, 83, 84, 85, 60, 59, 56, 33, 8, 79]. In particular, for tournament problems, the strong
stochastically transitive (SST) model presumes that the square matrix M is, up to a common permutation π∗

of the rows and of the columns, bi-isotonic and satisfies the skew symmetry condition Mi,k +Mk,i = 1. Although
optimal rates for estimation of the permutation π∗ have been pinpointed in the earlier paper of Shah et al. [83],
there remains a large gap between these optimal rates and the best known performances of polynomial-time
algorithms. This has led to conjecture the existence of a statistical-computational gap [60, 56].

For crowdsourcing data, the counterpart of the SST model is the so-called bi-isotonic model, where the
rectangular matrix M is bi-isotonic, up to an unknown permutation π∗ of its rows and an unknown permutation
η∗ of its columns. This model turns out to be really similar to the SST model and the existence of a statistical-
computational gap has also been conjectured [60].

In this chapter, we tackle a slightly different route and we consider the arguably more general isotonic
model [33]. The only assumption is that all the columns of M are nondecreasing up to an unknown permutation
of the rows, making the isotonic model more flexible than the bi-isotonic and SST models. It is in fact the
most general model under which an unambiguous ranking of the experts is well-defined. In this model as well,
there is a gap between the (statistical) optimal rates, and the rate obtained by the (polynomial-time) algorithm
in [33].
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Our main contributions are as follows. For the isotonic model, we establish the optimal rate for recovering
the permutation, and we introduce a polynomial-time procedure achieving this rate, thereby settling the absence
of any computational gap in this model. Besides, our procedure and results have important consequences when
applied to the SST and bi-isotonic model. More specifically, we achieve the best known guarantees in these two
models [56, 59] and even improve them in some regimes.

4.1.1 Problem formulation

Let us further introduce our model. A bounded matrix A ∈ [0,1]n×d is said to be isotonic if its columns are
nondecreasing, that is Ai,k ≤ Ai+1,k for any i ∈ [n−1] and k ∈ [d]. Henceforth, we write Ciso for the collection of
all n× d isotonic matrices taking values in [0,1]. In our model, we recall that we assume that the signal matrix
M is isotonic up to an unknown permutation of its rows. In other words, there exists a permutation π∗ of [n]
such that the matrix Mπ∗−1 defined by (Mπ∗−1)i,k = (Mπ∗−1(i),k) has nondecreasing columns, that is

Mπ∗−1(i),k ≤Mπ∗−1(i+1),k , (4.1)

for any i ∈ {1, . . . , n − 1} and k ∈ {1, . . . , d}, or equivalently Mπ∗−1 ∈ Ciso. Henceforth, π∗ is called an oracle
permutation. Using the terminology of crowdsourcing, we refer to ith row of M as expert i and to kth column
as question k.

In this work, we have N partial and noisy observations of the matrix M of the form (xt, yt) where

yt =Mxt + εt t = 1, . . . ,N . (4.2)

For each t, the position xt ∈ [n] × [d] is sampled uniformly. The noise variables εt’s are independent and their
distributions only depend on the position xt. We only assume that all these distributions are centered and are
subGaussian with a subGaussian norm of at most 1 – see e.g. [94]. In particular, this encompasses the typical
case where the yt’s follow Bernoulli distributions with parameters Mxt .

As usual in the literature e.g. [74, 56, 60], we use, for technical convenience, the Poissonization trick which
amounts to assuming that the number N of observations has been sampled according to a Poisson distribution
with parameter λnd. We refer to λ > 0 as the sampling effort. When λ > 1, we have, in expectation, several
independent observations per entry (i, j) - and λ = 1 means that there is on average one observation per entry.
In this chaper, we are especially interested in the sparse case where λ is much smaller than one, i.e. the case
where we have missing observations for some entries. We refer to λ = 1 as the full observation regime at it bears
some similarity to the case often considered in the literature –e.g. [83, 33], where we have a full observation of
the matrix,

Y =M +E′ ∈ Rn×d . (4.3)

The entries of the noise matrix E′ are independent, centered, and 1-subGaussian.
In this work, we are primarily interested in estimating the permutation π∗. Given an estimator π̂, we use

the square Frobenius norm ∥Mπ̂−1 −Mπ∗−1∥
2
F as the loss. This loss quantifies the distance between the matrix

M reordered according to the estimator π̂ and the matrix M sorted according to the oracle permutation π∗.
This loss is explicitly used in [56, 74] and is implicit in earlier works –see e.g. [83].

We define the associated optimal risk of permutation recovery as a function of the number n of experts, the
number d of question and the sampling effort λ,

R
∗
perm(n, d, λ) = inf

π̂
sup

π∗∈Πn
M ∶Mπ∗−1∈Ciso

E(π∗,M)[∥Mπ̂−1 −Mπ∗−1∥
2
F ] , (4.4)

where the infimum is taken over all estimators. Here, Πn stands for the collection of all permutations of [n]. If
the main focus is not only to estimate π∗, but also to reconstruct the unknown matrix M , we also consider the
optimal reconstruction rate

R
∗
reco(n, d, λ) = inf

M̂
sup

π∗∈Πn
M ∶Mπ∗−1∈Ciso

E [∥M̂ −M∥2F ] . (4.5)

It turns out that reconstructing the matrix M is more challenging than estimating the permutation π∗. Consid-
ering both risks allows to disentangle the reconstruction of the matrix M : looking at both enables to distinguish
the error that is due to estimating the permutation, from the error that comes from estimating an isotonic ma-
trix.
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4.1.2 Past results on the isotonic model and our contributions

In the specific case where d = 1 (a single column), our model is closely related to uncoupled isotonic regression
and is motivated by optimal transport. Rigollet and Niles-Weed [76] have established that the estimation error
infM̂sorted supπ∗,M ∥M̂

sorted −Mπ∗−1∥
2
F of the sorted vector Mπ∗−1 is of the order of n( log log(n)

log(n) )
2.

For the general case d ≥ 1, Flammarion et al. [33] have shown1 that the optimal reconstruction error in the
full observation model (4.3) is of the order of n1/3d + n. However, the corresponding procedure is not efficient.
They also introduce an efficient procedure that first estimates π∗ using a score based on row comparisons on Y .
Unfortunately, this method only achieves a reconstruction error of the order of n1/3d+n

√
d which is significantly

slower than the optimal one. Whether or not there is a statistical-computational gap was therefore an open
problem.

We prove in this work that there is no computational statistical gap in this model. More precisely, we
introduce estimators that are both polynomial-time and minimax optimal up to some polylog factors. To that
end, we characterize the optimal risks R∗perm(n, d, λ) and R∗reco(n, d, λ) of permutation estimation and matrix
reconstruction, for all possible number of experts n ≥ 1, number of questions d ≥ 1 and all sampling efforts λ,
up to some polylog factors in nd. Table 4.1 summarizes our findings in the arguably most interesting cases2

λ ∈ [1/(n ∧ d),1].

n ≤ d3/2
√
λ d3/2

√
λ ≤ n

R∗perm n2/3
√
dλ−5/6 n/λ

R∗reco n1/3dλ−2/3 n/λ

,

Table 4.1: Optimal rates in our model, for all possible values of n, d and λ ∈ [1/(n∧d),1], up to a polylogarithmic factor
in nd. These rates are achieved by polynomial-time estimators.

4.1.3 Implication for other models and connection to the literature

As discussed earlier, the isotonic model is quite general and encompasses both the bi-isotonic model for crowd-
sourcing problems as well the SST model for tournament problems.

Let us first focus on the SST model which corresponds to the case where n = d together with a bi-isotonicity
and a skew-symmetry assumption. In the full observation scheme (related to the case λ = 1) where one ob-
serves the noisy matrix n × n, Shah et al. [83] have established that the optimal rates for estimating π∗ and
reconstructing the matrix M are of the order of n. In contrast, their efficient procedure which estimates π∗

according to the row sums of Y only achieves the rate of n3/2. In more recent years, there has been a lot of
effort dedicated to improving this

√
n statistical-computational gap. The SST model was also generalized to

partial observations by [19], which corresponds to λ ≤ 1. They introduced an efficient procedure that targets
a specific sub-class of the SST model, and that achieves a rate of order n3/2λ−1/2 in the worst case for matrix
reconstruction.

Recently, a few important contributions tackling both the bi-isotonic model and the SST model made
important steps towards better understanding the statistical-computational gap. We first explain how their
results translate in the SST model. Mao et al. [60, 59] introduced a polynomial-time procedure handling partial
observation, achieving a rate of order n5/4λ−3/4 for matrix reconstruction. Nonetheless, [60] failed to exploit
global information shared between the players/experts – as they only compare players/experts two by two
– as pointed out by [56]. Building upon this remark, [56] managed to get the better rate n7/6+o(1) with a
polynomial-time method in the case λ = no(1).

Let us turn to the more general bi-isotonic model. Here, the rectangular matrix M ∈ Rn×d is bi-isotonic
up an unknown permutation π∗ of the rows and an unknown permutation η∗ of the columns. Since M is not
necessarily square, this model can be used in more general crowd-sourcing problems. The optimal rate for
reconstruction in this model with partial observation has been established in [60] to be of order ν(n, d, λ) ∶=
(n∨d)/λ+

√
nd/λ∧n1/3dλ−2/3∧d1/3nλ−2/3 up to polylog factors, in the non-trivial regime where λ ∈ [1/(n∧d),1].

However, the polynomial-time estimator provided by Mao et al. [60] only achieves the rate n5/4λ−3/4+ν(λ,n, d).
In a nutshell, Mao et al. first compute column sums to give a first estimator of the permutation of the

1The authors consider the isotonic model as a subcase of a seriation model, where each columns of Mπ∗−1 is only assumed to
be unimodal.

2We are indeed mostly interested in the more realistic sparse observation regime (meaning λ ≤ 1). The case λ ≤ 1/d leads to the
trivial minimax bound of order nd for both reconstruction and estimation, as in this case we have less than one observations per
expert on average. As for the case λ > 1/d but λ ≤ 1/n, we have less than one observation per question on average, and this leads
to a minimax risk of order n

√
d/λ for permutation estimation and of order nd for matrix recontruction.
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questions. Then, they compare the experts on aggregated blocks of questions, and finally compare the questions
on aggregated blocks of experts. As explained in the previous paragraph for SST models, Liu and Moitra [56]
improved this rate to n7/6+o(1) in the square case (n = d), with a subpolynomial number of observations per
entry (λ = no(1)). Their estimators of the permutations π∗, η∗ were based on hierarchical clustering and on
local aggregation of high variation areas. Both [56, 60] made heavily use of the bi-isotonicity structure of M by
alternatively sorting the columns and rows. As mentioned for the SST model, the order of magnitude n7/6+o(1)

remains nevertheless suboptimal, and whether there exists an efficient algorithm achieving the optimal rate in
this bi-isotonic model remains an open problem.

We now discuss the implications of our work concerning the bi-isotonic model and SST model. First, in the
full observation setting (λ = 1) and square case for the bi-isotonic model (n = d), we reach in polynomial-time
the upper bound n7/6 up to polylog factors, for both permutation estimation and matrix reconstruction. In
particular, we improve the rate in [56] by a subpolynomial factor in n, and we do not need a subpolynomial
number of observations per entry. Moreover, our procedure being primarily designed for the isotonic model, it
does not require any shape constraint on the rows in contrast to [56, 60]. Beyond the full observation regimes,
we provide guarantees on our estimator of π∗ for different values of λ. In particular, in Corollary 4.2.5, we derive
an estimator of the matrix M that achieves a maximum reconstruction risk supπ∗,η∗,M E [∥M̂ −Mπ∗−1η∗−1∥

2
F ]

of order less than n7/6λ−5/6 up to polylogs, thereby improving the state-of-the-art polynomial-time methods in
partial observation [60]. Lastly, we perform our analysis in the general rectangular case, giving guarantees for
general values of d.

The optimal risks and the known polynomial-time upper bounds for the isotonic, bi-isotonic with two
permutations and SST models are summarized in Table 4.2. For the sake of simplicity, we focus in the table to
the specific case case n = d and λ ∈ [1/n,1].

Different models, with
M ∈ Rn×n

Isotonic Bi-isotonic(π∗, η∗) SST
Mπ∗−1 has

nondecreasing
columns

Mπ∗−1η∗−1 has
nondecreasing columns

and rows

Mπ∗−1π∗−1 has
nondecreasing columns

and rows, and
Mik +Mki = 1

Permutation
estimation

Poly.
Time

n7/6λ−5/6 [Th 4.2.2] n7/6+o(1) [56](λ = no(1))
n7/6λ−5/6 [Th 4.2.2]

n7/6+o(1) [56](λ = no(1))
n7/6λ−5/6 [Th 4.2.2]

optimal
rate

n7/6λ−5/6 [Th 4.2.1] n/λ [60] n/λ [60]

Matrix
reconstruction

Poly.
Time

n3/2 (λ = 1)[33]
n4/3λ−2/3 [Cor 4.2.5]

n7/6+o(1) [56](λ = no(1))
n5/4λ−3/4 [60]
n7/6λ−5/6 [Cor 4.2.5]

n7/6+o(1) [56](λ = no(1))
n5/4λ−3/4 [60]
n7/6λ−5/6 [Cor 4.2.5]

optimal
rate

n4/3λ−2/3 [33]
(also [Prop 4.2.3])

n/λ [60] n/λ [60]

Table 4.2: For the isotonic model, the optimal rate for permutation estimation (resp. matrix reconstruction) corresponds
toR∗perm (resp. R∗reco). For the two other columns, the optimal rates are similarly defined as minimax risk over
the corresponding models. The Poly. Time rows correspond to state-of-the art rates achieved by polynomial-
time methods. All the rates are given up to polylogarithmic factors in n.

Finally, we mention the even more specific model where the matrixM is bi-isotonic up to a single permutation
π∗ acting on the rows. This corresponds to the case where η∗ is known in the previous paragraph [60, 74, 56].
Equivalently, this also corresponds to our isotonic model (4.2) with the additional assumption that all the rows
are nondecreasing, that is Mi,k ≤Mi,k+1. For this model, it is possible to leverage the shape constrains on the
rows to build efficient and optimal estimators, this for all n, d, and λ – see [74].

4.1.4 Overview of our techniques

In this work, we introduce the iterative soft ranking (ISR) procedure, which gives an estimator π̂ based on the
observations. Informally, this method iteratively updates a weighted directed graph between experts, where the
weight between any two experts quantifies the significance of their comparison. The procedure increases the
weights at each step. After it stops, the final estimator is an arbitrary permutation π̂ that agrees as well as
possible with the final weighted directed graph.

As mentioned in [56], it is hopeless to use only local information between pairs of experts to obtain a rate
of order n7/6 up to polylogs, and we must exploit global information. Still, we do it in a completely different
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way than Liu and Moitra [56], who were building upon the bi-isotonicity of the matrix.
One first main ingredient of our procedure is a new dimension reduction technique. At a high level, suppose

that we have partially ranked the rows in such a way that, for a given triplet (P , O, I) of subsets of [n], we
are already quite confident that experts in P are below those in I and above those in O. Relying on the shape
constraint of the matrix M , it is therefore possible to build a high-probability confidence regions for rows in P
based on the rows in O and the rows in I. If, for a question j, the confidence region is really narrow, this implies
that all experts in P take almost the same value on this column. As a consequence, this question is almost
irrelevant for further comparing the experts in P . In summary, our dimension reduction technique selects the
set of questions for which the confidence region of P is wide enough, and in that way reduces the dimension of
the problem while keeping most of the relevant information.

The second main ingredient, once the dimension is reduced, is to use a spectral method to capture some
global information shared between experts. That is why our procedure makes significant use of spectral methods
to compute the updates of the weighted graph. Although this spectral scheme already appears in recent
works [74, 56], those are used here for updating the weight of the comparison graph rather than performing a
clustering as in [56]. Moreover, the analysis of the spectral step in the partial observation regime (λ≪ 1) leads
to technical difficulties – see the discussion in Section 4.3.5.

Related to the latter problem, we need to establish a new tail bound on sparse rectangular matrices. More
specifically, for a rectangular matrixX with centered independent entries that satisfy a Bernstein type condition,
we provide a high-probability control of the operator norm of XXT − E[XXT ]. This result, based on non-
commutative matrix Bernstein concentration inequality, may be of independent interest e.g. for controlling the
spectral properties of a sparse bipartite random graph. We state it in Section 4.4, independently of the rest of
this chapter.

4.1.5 Notation
Given a vector u and p ∈ [1,∞], we write ∥u∥p for its lp norm. For a matrix A, ∥A∥F and ∥A∥op stand for
its Frobenius and its operator norm. We write ⌊x⌋ (resp. ⌈x⌉) for the largest (resp. smallest) integer smaller
than (resp. larger than) or equal to x. Although M stands for an n × d matrix, we extend it sometimes in an
infinite matrix defined for all i ∈ N, k ∈ {1, . . . , d} by setting Mik = 0 when i ≤ 0 and Mik = 1 when i ≥ n + 1.
The corresponding infinite matrix Mπ∗(−1) which is obtained by permuting the n original rows is still isotonic
and takes values in [0,1]. We shall often work with submatrices M(P,Q) of M that are restricted to a subset
P ⊂ [n] and Q ⊂ [d] of rows and columns. If A is any matrix in RP×Q, we write A for the matrix whose rows
are all equal to the average row of A, namely Aik = 1

∣P ∣ ∑j∈P Ajk.

4.2 Results
In this section, we first establish the statistical limit with a lower bound on R∗perm(n, d, λ). Then, we state the
existence of a polynomial-time estimator that is minimax optimal up to polylog factors. More precisely, we
prove that for all integers n, d and λ ∈ [1/d,8n2], the optimal rate of permutation estimation R∗perm is of the
order of

ρperm(n, d, λ) ∶=
n2/3
√
d

λ5/6
⋀n

√
d

λ
+
n

λ
, (4.6)

up to some polylog factors. As a corollary, we then establish that the optimal rate of matrix reconstruction
R∗reco is of order

ρreco(n, d, λ) ∶=
n1/3d

λ2/3
+
n

λ
, (4.7)

up to polylog factors. We therefore establish that these two problems do not exhibit a computational-statistical
gap.

4.2.1 Minimax lower bound for permutation estimation
Assume that λ ∈ [1/d,8n2] is fixed and that we are given N = Poi(λnd) independent observations under model
(4.2). Namely, we observe (xt, yt)t=1,...,N where xt is sampled uniformly in [n]×[d] and yt =Mxt+εt conditionally
to xt. The following theorem states that ρperm is a lower bound on the maximum risk of permutation estimation
for all n, d, λ ∈ [1/d,8n2], up to some numerical constant.

Theorem 4.2.1. There exists a universal constant c > 0 such that, for any n ≥ 2, d ≥ 1, and λ ∈ [1/d,8n2], we
have

R
∗
perm(n, d, λ) ≥ cρperm(n, d, λ) . (4.8)
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In the proof, we show a slightly stronger result that also covers the cases λ < 1/d and λ > 8n2, where
R∗perm(n, d, λ) is in fact respectively lower bounded by a quantity of order nd and n

√
d/λ. For the sake of

readability, we chose to omit these arguably less interesting cases in the statement of Theorem 4.2.1 and of
Theorem 4.2.2.

4.2.2 Optimal permutation estimation
Let us fix a quantity δ ∈ (0,1) that will correspond to a small probability. We need to introduce some notation.
We write

ϕL1 = 10
4 log(

102nd

δ
) . (4.9)

Our procedure depends on a sequence of tuning parameters. For this reason, we introduce a subset Γ ⊂ R+,
henceforth called a grid. The grid Γ is said to be valid if it contains a sequence γ0 ≥ ⋅ ⋅ ⋅ ≥ γ2⌊log2(n)⌋+2 of length
2 ⌊log2(n)⌋ + 3 such that for all u,

γu − γu+1 ≥ γ2⌊log2(n)⌋+2 + ϕL1 and γ2⌊log2(n)⌋+2 ≥ ϕL1 . (4.10)

In light of this definition, we could simply choose the valid sequence Γ = {ϕL1 ,2ϕL1 , . . . , (2 ⌊log2(n)⌋ + 3)ϕL1}

with a corresponding γ0 that is polylogarithmic. Still, for practical purpose, we consider general grids; examples
of such grids are discussed in more details in Section 4.3.6.

For any valid subset Γ, we define γ̄ as the smallest possible value of γ0 over all sequences that satisfy (4.10).

γ̄ =min{γ ∶ ∃(γu) satisfying (4.10) s.t. γ0 = γ} . (4.11)

Our main procedure ISR, for iterative soft ranking, will be described in detail in Section 4.3. The only
tuning parameters are the number of steps T and the valid grid Γ.

Theorem 4.2.2. There exists C > 0 such that the following holds. Let λ ∈ [1/d,8n2] and δ > 0. Assume that Γ
is a valid grid and that T ≥ 4γ̄6 with γ̄ defined in (4.11). For any permutation π∗ ∈ Πn and any matrix M such
that Mπ∗−1 ∈ Ciso, the estimator π̂ from Algorithm ISR(T,Γ) defined in the next section satisfies

∥Mπ̂−1 −Mπ∗−1∥
2
F ≤ CT γ̄

6ρperm(n, d, λ) ,

with probability at least 1 − 10Tδ.

In particular, if we suitably choose Γ (as discussed above) and T = 4⌈γ̄6⌉ and δ = 1/(nd)2, we deduce from
Theorem 4.2.2 that

R
∗
perm(n, d, λ) ≤ C

′ logC
′
(nd)ρperm(n, d, λ) ,

for some numerical constant C ′ > 0. In the case where λ = no(1) and n = d, this bound achieves the order of
magnitude n7/6, which aligns with the result presented in Theorem 2 of Liu and Moitra [56]. However, it is
important to note that the analysis made in [56] focuses on the statistically easier bi-isotonic model, and their
procedure heavily relies on the isotonicity structure imposed on the questions.

4.2.3 Optimal reconstruction of the matrix M

We now turn to the problem of estimating the signal matrix M . Obviously, the reconstruction of the matrix
M from the observation of model in(4.2) is at least as hard as if we knew the permutation π∗. In this favorable
situation, estimating M amounts to estimating d isotonic vectors from partial and noisy observations Yik =
1
λ ∑t yt1xt=(ik). The isotonic regression problem is already well understood, and we state the following lower
bound without proof since it directly follows from [60] (see in particular Theorem 3.1 therein). We recall that
ρreco(n, d, λ) is defined in (4.7).

Proposition 4.2.3. There exists a universal constant c > 0 such that, for any n ≥ 2, any d ≥ 1, and any λ > 0,
we have

R
∗
reco(n, d, λ) ≥ cρreco(n, d, λ) . (4.12)

In particular, since ρperm(n, d, λ) ≪ ρreco(n, d, λ) in many regimes in n, d, λ, this proposition implies that
the reconstruction of a permuted isotonic matrix is harder than the estimation of the permutation, namely that
R∗perm ≪R

∗
reco.

To build an optimal estimator of M , we compute the estimated permutation π̂ of Theorem 4.2.2 and
estimate an isotonic matrix based on this ordering. This approach is similar to what is done in [60, 74], for
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related problems where a bi-isotonic assumption is done. For simplicity, set the tuning parameters T , Γ for
Algorithm 14 so that T = 4 ⌈γ6⌉ and γ̄6 ≤ C ′ logC

′
(nd/δ). We split the samples yt defined in (4.2) into two

independent sequences of samples (y(1)t ), (y
(2)
t ). First, we compute the estimator π̂ of π∗ with the first sub-

samples (y(1)t ). Then, we define M̂iso as the projection of Y (2)π̂ onto the convex set of isotonic matrices, where
Y (2) is the matrix defined by Y (2)ik =

1
λ ∑t y

(2)
t 1

x
(2)
t =(i,k). More precisely, set

M̂iso = argmin
M̃∈Ciso

∥M̃ − Y
(2)
π̂−1
∥
2
2 .

The following corollary controls the risk of M̂iso.

Corollary 4.2.4. Assume that λ ∈ [1/d,8n2]. There exists a universal constant C ′′ such that the following
holds for any permutation π∗ ∈ Πn and any matrix M ∈ Ciso.

E[∥(M̂iso)π̂ −M∥
2
F ] ≤ C

′′ logC
′′
(nd)ρreco(n, d, λ) .

As a consequence, the polynomial-time estimator M̂iso achieves the optimal risk for all values of n and d.
For λ = 1, the optimal risk ρreco(n, d,1) is of the order of n1/3d + n. In particular, our risk bound strictly
improves over the one of Flammarion et al. [33] - e.g. their procedure achieves the estimation error n

√
d for

n ≥ d1/3. Their slower convergence rates are mainly due to the fact that their estimator of the permutation π∗

is suboptimal in this regime.

4.2.4 Polynomial-time reconstruction in the bi-isotonic model
We now turn our attention to the problem of estimating the matrix M when M satisfies the additional as-
sumption of being bi-isotonic up to unknown permutations π∗ and η∗ of its rows and columns respectively. In
other words, the matrix Mπ∗−1η∗−1 has non-decreasing entries. As explained in the introduction, this model has
attracted a lot of attention in the last decade and encompasses the SST model for tournament problems.

To simplify the exposition, we focus in this section on the case n = d and λ ∈ [ 1
n
,1]. Since the bi-isotonic

model is a specific case of the isotonic model, we could rely on the estimator M̂iso introduced in the previous
subsection. In fact, we can improve this estimation rate by relying on the bi-isotonicity of the matrix Mπ∗−1η∗−1 .

As previously, we choose the tuning parameters of Algorithm 14 in such a way that T = 4 ⌈γ6⌉ and γ̄6 ≤

C ′ logC
′
(nd/δ). Then, we use the following procedure:

1. Subsample the data into 3 independent samples (y(1)t ), (y
(2)
t ), (y

(3)
t ).

2. Run our procedure Algorithm 14 to obtain an estimator π̂ of the permutation π∗ of the rows, using the
first sample.

3. Run again Algorithm 14 to obtain an estimator η̂ of the permutation η∗ of the columns, using the second
sample.

4. Compute the least-square estimator M̂biso = argminM̃∈Cbiso
∥M̃ − Y

(3)
π̂−1η̂−1

∥22, where Cbiso is the set of all

bi-isotonic matrices with entries in [0,1] and Y (3)ik =
1
λ ∑t y

(3)
t 1

x
(3)
t =(i,k).

The following corollary states that M̂biso achieves a reconstruction rate of order n7/6λ−5/6 in the bi-isotonic
model.

Corollary 4.2.5. Assume that λ ∈ [1/n,8n2]. There exists a universal constant C ′′ such that

sup
π∗,η∗∈Πn

M ∶Mπ∗−1η∗−1∈Cbiso

E [∥(M̂biso)π̂η̂ −M∥
2
F ] ≤ C

′′ logC
′′
(n)n7/6λ−5/6 .

Here, we have fixed n = d to simplify the exposition, but we could extend the analysis to general n and d.
Our risk bound improves over the rate n5/4λ−3/4 of Mao et al. [60]. In [56], Liu and Moitra have introduced a
procedure achieving the rate n7/6 in the specific case where λ = no(1). In some way, our procedure generalizes
their results for general λ, while being applicable to the more general isotonic models.

Still, we recall that the optimal risk (without computational constraints) for estimating the matrix M is of
the order n/λ – see e.g. [83, 60]. This remains an open problem to establish the existence of a computational-
statistical gap or to construct a polynomial-time procedure achieving this risk on SST and bi-isotonic models.
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4.3 Description of the ISR procedure

4.3.1 Weighted directed graph W and estimator π̂

Our approach involves the iterative construction of a weighted directed graph W, represented by an antisym-
metric matrix in Rn×n. More formally, for any experts i, j in [n], we have W(i, j) = −W(j, i). In a nutshell,
W(i, j) quantifies our evidence of the comparisons between expert i and expert j. IfW(i, j) is large and positive
(resp. negative), we are confident that the expert i is above (below) the expert j. Most of the procedure is
dedicated to the construction of W. Before this, let us explain how we deduce our estimator π̂ from W.

For a given weighted directed graph W, we define its corresponding directed graph at threshold γ > 0 as

G(W, γ) = {(i, j) ∈ [n]2 ∶ W(i, j) > γ} . (4.13)

For any thresholds γ < γ′, it holds that G(W, γ) ⊂ G(W, γ′). In other words, the function γ → G(W, γ) is
nondecreasing. When γ ≥maxi,j ∣W(i, j)∣, G(W, γ) = ∅ is the trivial graph with no edges. Let γ̂ be the smallest
threshold γ such that G(W, γ) is a directed acyclic graph (DAG). By monotonicity, G(W, γ̂) is also the largest
DAG among {G(W, γ), γ ≥ γ̂}. We then build the estimator π̂ by picking any permutation that is consistent
with the graph Ĝ ∶= G(W, γ̂), that is if (i, j) ∈ Ĝ ∩ [n]2 then π̂(i) ≥ π̂(j). To put it another way, the general idea
of our procedure can be summarized into these three components:

1. Construct a weighted directed graph W between the experts.

2. Compute the largest directed acyclic graph Ĝ of W.

3. Take any arbitrary permutation π̂ that is consistent with Ĝ.

The construction of W is at the core of this chapter, and the computation of Ĝ and π̂ will be discussed in
Section 4.3.7. Still, we already point out that the third point can be dealt in polynomial time using Mirsky’s
algorithm [64].

4.3.2 Construction of W with ISR

4.3.2.1 Description of the subsampling

Let us now describe the construction of the weighted directed graph W. Let T ≥ 1 be an arbitrary integer,
representing the number of steps of our procedure. In what follows, we explain how we subsample the data
from (4.2) into 5T independent matrices (Y (s))s=1...5T . Recall that we are given N observations (xt, yt), where
N follows a Poisson distribution P(λnd). Let us divide the observations into 5T batches (N (s))s=0,...,5T−1,
aggregated into matrices of averaged observations Y (s). To that end, we let Su be i.i.d. uniform random
variables in {0, . . . ,5T − 1} representing a random batch for observation u, and we define

N (s) = {u ∈ {1 . . . ,N} ∶ Su = s} and Y
(s)
ik = ∑

t∈N(s)

yt

r
(s)
ik
∨1
1{xt = (i, k)} , (4.14)

where, for any (i, k) ∈ [n]× [d], r
(s)
ik = ∑t∈N(s) 1{xt = (i, k)} is the number of times the coefficient position (i, k)

is observed in batch s. Y (s)ik is equal to 0 if (i, k) is not observed in batch s and it is equal to the average of
the observations yt for which xt = (i, k) otherwise. We also define the mask matrix B(s) as being equal to 0 at
location (i, k) if the value is missing from batch s, and to 1 otherwise.

B
(s)
ik = 1{r

(s)
ik ≥ 1} . (4.15)

Define λ0 = λ/5T . In our sampling scheme, where the data is divided into 5T samples, each coefficient B(s)ik has
a probability of 1 − e−λ0 of being equal to one. It is worth mentioning that a different subsampling scheme was
performed in [74], consisting in aggregating consecutive columns. However, such a scheme is not applicable in
our case as we do not assume the rows of M to be nondecreasing, unlike in [74].

4.3.2.2 Neighborhoods in comparison graphs

At each step t = 0, . . . , T −1 of the procedure, we aim to enrich our knowledge of the order of the experts, which
we formally do by nondecreasing the weights of W in absolute value. At T = 0, we start with the weights Wij

all being equal to zero. A meaningful update of W around a reference expert i can be done when we restrict
ourselves to experts that are in a neighborhood of i. Broadly speaking, a neighborhood of i is a set made of all
the experts j that are not comparable to i with respect to a given partial order.
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More precisely, for any directed graph G and any experts i, j ∈ {1, . . . , n}, we say that i and j are G-comparable
if there is a path from i to j or from j to i in G. The neighborhood N (G, i) of i in G can then naturally be
defined as the set of experts j that are not G-comparable with i. Equipped with the concept of neighborhood,
our overall strategy involves iterating over all possible thresholds γ ∈ Γ such that G(W, γ) is acyclic, as well
as all possible experts i. At each iteration, we apply the soft local ranking procedure Algorithm 15 described
in the next subsection. Algorithm 15 updates the weights between i and any expert j in the neighborhood
N (G(W, γ), i) of i. Our approach can be summarized as follows:

1. Subsample the data - see Section 4.3.2.1.

2. Initialize W to be the directed graph with all weights set to 0.

3. For all t = 0, . . . , T − 1 and γ ∈ Γ such that G(W, γ) is acyclic and all i ∈ [n], update W with the soft local
ranking procedure Algorithm 15.

Algorithm 14 ISR(T,Γ)

Require: N and observations (xt, yt)t=1,...,N according to (4.2), a number of steps T and a valid grid Γ as in
(4.10)

Ensure: A weighted graph W and an estimator π̂
1: Aggregate the observation into 5T matrices of observation (Y (s)) as in (4.14)
2: Initialize W(i, j) = 0 for all (i, j) ∈ [n]2, and γ̂ = 0
3: for t = 0, . . . , T − 1 do
4: for γ ∈ Γ ∩ [γ̂,+∞) do
5: Compute G = G(W, γ) the directed graph at threshold γ of W as in (4.13) and set P = N (G, i).
6: Take 5 samples Y = (Y (5t), . . . , Y (5t+4))
7: for i ∈ [n] do
8: Apply SLR(Y,W, γ, i,G, P ) to update W
9: end for

10: end for
11: Set γ̂ as the smallest γ such that G(W, γ) is acyclic
12: end for
13: Set Ĝ = G(W, γ̂) be the largest acyclic DAG (see (4.13))
14: Set π̂ to be any arbitrary permutation that is consistent with Ĝ
15: return W and π̂

The main Line 8 of Algorithm 14 aims to provide a soft ranking of the neighborhood P of i by setting
positive (resp. negative) weights Wij to experts j ∈ P that are significantly below (resp. above) i. Line 11
together with restricting γ ≥ γ̂ simply guarantees that all the considered graph G are acyclic. Finally, Lines 13
and 14 simply correspond to the construction of the final permutation, described in the second and third points
of Section 4.3.1.

4.3.3 Description of the updating procedure

4.3.3.1 Local weighted sums

Let us describe the process of updating a given weighted graph W, which will be used twice at each call of the
soft local ranking Algorithm 15. Let us fix a weighted graph W, an element s ∈ {0, . . . ,5T − 1} and Y ∶= Y (s)

the matrix defined in (4.14). We also let i ∈ [n] be an arbitrary expert corresponding to Line 7 of Algorithm 14,
and γ be any threshold in the grid Γ. We write P ∶= N (G(W, γ), i) ⊂ [n] for the neighborhood of i in G(W, γ),
echoing the notation of the sets that are trisected in [74].

Since the matrix M is, up to a row-permutation, a column-wise isotonic matrix, it follows that, if the expert
i is above j, then for any vector w ∈ Rd+, we have ∑dk=1wikMik ≥ ∑

d
k=1wjkMjk. As a consequence, the crux of the

algorithm is to find suitable data-driven weights w that allow to discriminate the experts. As explained in the
introduction, earlier works focused on uniform weights w = 1[d] [83] which, unfortunately leads to suboptimal
results. Before discussing the choice of the weights w in the following subsections, let us first formalize how we
leverage on w to compare the experts and update the graph W.

Given a subset Q ⊂ [d] of columns and a non-zero vector w ∈ RQ+ , we first check whether the following
condition is satisfied:

λ0∥w∥
2
2 ≥ ∥w∥

2
∞ , (4.16)
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where we recall that λ0 = λ/5T . This condition is always verified when λ0 ≥ 1, and it is equivalent to λ0∣Q∣ ≥ 1
when w = 1Q. Condition (4.16) ensures that w is not too sparse which could be harmful when many observations
are lacking (λ0 small).

If this condition is not satisfied, then we leave the weights of W unchanged. Otherwise, we define the
(Y,P,w)-updating weights U ∶= U(Y,P,w) around i as

Uij =
1

√
1
λ0
∧ λ0

⋅ ⟨Yi⋅ − Yj⋅,
w

∥w∥2
⟩ , (4.17)

where, for all w′ ∈ RQ and a ∈ Rd, we write ⟨a,w′⟩ = ∑k∈Q akw′k. We can then update the weighted directed
graph around i by setting, for all i ∈ P such that ∣Uij ∣ ≥ ∣Wij ∣,

Wij = Uij and Wji = −Uij . (4.18)

As explained above, if we replace Yi⋅ and Yj⋅ by Mi⋅ and Mj⋅ respectively in (4.17), then the corresponding value
of the statistic is non-negative if expert i is above j. Hence, a large value for Uij provides evidence that i is
above j.

Computing U(Y,P,w) for suitable directions w is the basic brick or our procedure, since it is through the
update (4.18) that we iteratively increase the weights ofW. This update shares some similarities to the pivoting
algorithm introduced in [56] and also used in [74], in the sense that while we are fixing an arbitrary reference
expert i to compute pairwise comparisons, they fix a set P and compute a pivot expert i0 that would correspond
to a quantile of the set {⟨Yj⋅, w

∥w∥2 ⟩, j ∈ P} in the case λ0 = 1.
Note that the orientation of a given weighted edge (i, j) can change during the procedure if it turns out that

∣Uij ∣ ≥ ∣Wij ∣ and that UijWij ≤ 0. This simply means that if the direction w leads to a more significant weight
between some experts i and j, then we are more confident to use the vector w and to revise the order between
i and j.

For Q ⊂ [d], choosing w = 1Q in (4.17) amounts to compute the average of the observations over all questions
in Q. We now explain in the main sections how we iteratively build adaptive weights w that allow to improve
over the naive global average given by w = 1[d].

4.3.3.2 Definitions of a rank in a DAG

We first introduce a few definitions on directed acyclic graphs G, which we formally define as a set of directed
edges (i, j) ∈ [n]2 for which there is no cycle. We denote path(i, j) = {(k1, . . . , kL) ∶ L > 0 and (i, k1), . . . , (kL, j) ∈
G} as the set of all possible paths from i to j, and we write ∣s∣ for the length of any path s. We say that i and
j are G-comparable if path(i, j) ∪ path(j, i) ≠ ∅, and we write N (i,G) for the set of all experts that are not
G-comparable with i. If i, j are G-comparable, it either holds that path(i, j) = ∅ or path(j, i) = ∅. We say in
the first case that i is G-below j and that i is G-above j in the second case. We also define the relative rank
from i according to G as the length of the longest path in G from i to j, or minus the longest past from j to i
depending on whether i is G-above or G-below j:

rkG,i(j) =max{∣s∣ ∶ s ∈ path(i, j)} −max{∣s∣ ∶ s ∈ path(j, i)} . (4.19)

Here, we use the convention max∅ = 0. With this definition, the neighborhood of a given expert i is equal to
the set of experts whose relative rank is equal to 0, that is N (G, i) = rk−1G,i(0). Moreover, an expert j ∈ [n] is
G-above (resp. G-below) i if and only if rkG,i(j) ≥ 1 (resp. rkG,i(j) ≤ −1). Although G stands for a finite set of
edges with endpoints in [n], we extend it to a set of edges with endpoints in Z2 by putting in G every (i, j) ∈ Z2

such that i > j and j ≤ 0 or i ≥ n + 1.

4.3.3.3 Description of the soft local ranking algorithm

To update the weighted directed graph W in Line 8 of Algorithm 14, we apply the soft local ranking procedure
SLR to all experts i ∈ [n] and all thresholds γ. To define our soft local ranking procedure, let us fix W, an
expert i and a threshold γ such that G(W, γ) is acyclic. As a shorthand, we write G and P respectively for the
thresholded graph G(W, γ) and the neighborhood N (G, i) of i in G.

We write D for the set of all dyadic numbers: D = {2k ∶ k ∈ Z} and we define the set H = D ∩ [ 1
nd
,1]. We

denote y(P ) as the mean of the vectors Yj⋅ over all j ∈ P , that is yk(P ) =
1
∣P ∣ ∑j∈P Yjk, for any k ∈ [d]. SLR

relies on the following steps repeated over all height h ∈H. It is also described in Algorithm 15.

1. Dimension reduction. Using the first sample Y (1), we first reduce the dimension by selecting a subset
Q̂h ⊂ [d] corresponding to wide confidence regions. Recall that rkG,i is the relative rank to i defined in
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(4.19). For any a > 0, define the sets Na ∶= Na(G, i) (resp. N−a ∶= N−a(G, i)) of experts j which are
G-above (resp. G-below) all the experts of P and whose relative rank to any i′ ∈ P is at most a in absolute
value:

Na = ⋂
i′∈P

rk−1G,i′([1, a]) and N−a = ⋂
i′∈P

rk−1G,i′([−1,−a]) . (4.20)

Secondly, we define for any question k ∈ [d] and a ≥ 1 the width statistic ∆̂k as the difference between
the mean of the experts in Na and the mean of the experts in N−a. Then, âk is set to be the first value
of a ≥ 1 such that any a′ ≥ a has a corresponding width statistic of at least (λ0 ∧ 1)h:

∆̂k(a) = yk(Na) − yk(N−a) and âk(h) =max{a ≥ 1 ∶
1

λ0 ∧ 1
∆̂k(a) < h} + 1 . (4.21)

Finally, we define Q̂h ∶= Q̂h(G, i) as the set of indices k such that âk(h) is relatively small.

Q̂h = {k ∈ [d] ∶ ∣Nâk(h)∣ ∧ ∣N−âk(h)∣ ≤
1

λ0h2
} . (4.22)

Intuitively, if the experts above and below i vary by more than h on a specific question k, then this question
should belong to Q̂h. Conversely, if the experts below and above i are nearly equal on the question k,
than âk(h) will be large and k will not be selected in Q̂h.

2. Average-based weighted sums. Still using the first sample Y (1), we examine the corresponding sub-
matrix Y (1)(P, Q̂) restricted to questions in Q̂. If the row sums of Y are larger than the current edges,
we update the weighted edges. More formally, we compute the (Y (1), P,1Q̂)-updating weighted edges
(UQ̂) around i as defined in (4.17) and update W as in (4.18). We then also update G = G(W, γ) and
P = N (G, i).

3. PCA-based weighted sums. Relying on the samples Y (2), Y (3), Y (4), Y (5), we do a slight abuse of
notation and write Y (s) for the restriction of Y (s) to the subset P, Q̂h for s = 2,3,4,5. Ideally, we would
get an informative direction w from the largest right singular vector of E[Y (2) −Y

(2)
] ∈ RP×Q̂

h

. Indeed, it
is known (see the proofs for more details) that the entries of the first right singular vector of an isotonic
matrix all share the same sign and are most informative to compare the experts. However, computing
directly the empirical right-singular vector of Y (2) − Y

(2)
does not lead to the desired bounds because (i)

this matrix is perhaps highly rectangular (ii) the noise is possibly heteroskedastic and (iii) this matrix is
perhaps sparse because of the many missing observations when λ0 is small. Here, we use a workaround
which is reminiscent of that of [74] and discussed later. First, we compute v̂ as a proxy for the first left
singular vector of E[Y (2) − Y

(2)
].

v̂ ∶= v̂(P, Q̂h) = argmax
v∈RP ∶ ∥v∥2≤1

[∥vT (Y (2) − Y
(2)
)∥

2
2 −

1

2
∥vT (Y (2) − Y

(2)
− Y (3) + Y

(3)
)∥

2
2] . (4.23)

The right-hand side term in (4.23) deals with the heteroskedasticity of the noise matrix E in (4.3).
v̂ in (4.23) can be computed efficiently since it corresponds to the leading eigenvector of a symmetric
matrix. For technical reasons occurring in the sparse observation regime (i.e. when λ0 is small), we then
threshold the largest absolute values of the coefficients of v̂ at

√
λ0 and define (v̂−)i = v̂i1{∣v̂i∣ ≤

√
λ0}.

After having calculated v̂−, we consider as in [74] the image ẑ = v̂T− (Y
(4) − Y

(4)
) ∈ RQ̂ of v̂−. We then

threshold the smallest values of ẑ and take the absolute values of the components. Thus, we get ŵ+ ∈ RQ̂

defined by (ŵ+)l = ∣ẑl∣1{∣ẑl∣ ≥ γ
√
λ0 ∧

1
λ0
} for any l ∈ Q̂.

Finally, we consider the last submatrix Y (5) = Y (5)(P, Q̂). We apply these weights ŵ+ to compute
the row-wise weighted sums of Y (5) and update the weighted edges. More formally, we compute the
(Y (5), P, ŵ+)-updating weighted edges U(Y (5), P, ŵ) around i as defined in (4.17). We finally update the
weighted directed graph W with U(Y (5), P, ŵ+) as in (4.18).
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Algorithm 15 SLR((Y (s))s=1,...,5,W, γ, i,G, P )

Require: 6 samples (Y (s))s=1,...,5, a weighted directed graph W, a threshold γ such that G(W, γ) is acyclic
and an expert i ∈ [n]. G and P are shorthands for the thresholded graph G(W, γ) and the neighborhood
N (G, i).

Ensure: An update of W

1: for h ∈H do
2: Compute Q̂h ∶= Q̂(G, i) as in (4.22) using sample Y (1)

3: Let UQ̂h be the (Y (1), P,1Q̂h)-updating weighted edges around i as in (4.17), using again sample Y (1)

4: Update W with U(Q̂h) as in (4.18) and update G = G(W, γ), P = N (G, i)
5: Restrict the samples (Y (s))s=2,...,5 to P, Q̂h in the following remaining steps
6: Compute the PCA-like direction v̂ ∶= v̂(P, Q̂h) as in (4.23) and define (v̂−)i = v̂i1{∣v̂i∣ ≤

√
λ0}

7: Compute ẑ = v̂T− (Y
(4) − Y

(4)
) and define ŵ+ by (ŵ+)l = ∣ẑl∣1{∣ẑl∣ ≥ γ

√
λ0 ∧

1
λ0
} for any l ∈ Q̂h

8: Let U(Y (5), ŵ+) be the (Y (5), P, ŵ+)-updating weighted edges around i as in (4.17)
9: Update W with U(Y (5), ŵ+) as in (4.18)

10: end for

4.3.4 Toy example illustrating Algorithm 15
To understand why the steps described in Algorithm 15 are relevant, assume that π∗ = id and consider the
following simple example where n = 204, d = 10, and where the isotonic matrix Mπ∗−1 can be decomposed into
three blocks of rows as

Mπ∗−1 = α +
h

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 1 1 0 1 1

0 0 0 1 0 1 0 0 1 1
0 0 0 1 0 1 0 0 1 1
0 0 0 −1 0 −1 0 0 −1 −1
0 0 0 −1 0 −1 0 0 −1 −1

0 0 −1 −1 0 −1 −1 0 −1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In the above matrix, α is any number in (h,1 − h), and 0,1 are the columns in R100 whose coefficients are
respectively all equal to 0 and 1. Assume that the statistician already knows that the first and the third blocks
are made of experts that are respectively above and below the second block. If W, P, γ are the parameters
fixed in Algorithm 15, the three blocks correspond respectively to the subsets N1 ∪N2, P and N−1 ∪N−2 in our
example. Provided that N−2 and N2 are large enough, the set Q̂h only keeps columns corresponding to indices
k where ∆̂k(1) is large – those are highlighted in blue.

Then, we can work on the reduced subset Q̂h of columns highlighted in blue. As one may check, Q̂h contains
all the relevant columns to decipher the experts in the block P . Besides, the expected matrix of observations
restricted to the block P and to Q̂h is of rank one:

E[Y − Y ] =
h

2

⎛
⎜
⎜
⎜
⎝

0 1 1 0 1 1
0 1 1 0 1 1
0 −1 −1 0 −1 −1
0 −1 −1 0 −1 −1

⎞
⎟
⎟
⎟
⎠

.

In particular, the right singular vector of this matrix is of the form (0,1,1,0,1,1) and provides suitable weights
to decipher the two largest experts from the two lowest experts in the above matrix. The PCA-based weighted
sums steps above precisely aims at estimating these weights.

4.3.5 Comments on the procedure and relation to the literature
Finding confidence regions Q̂ before computing weighted sums on the corresponding columns is at the core
of our procedure. This idea generalizes the RankScore procedure of [33] which rather computes averages on
the subsets [d] or on the singletons {1}, . . . ,{d}. As mentioned in the introduction, only using the subsets of
the RankScore method in [33] does not allow to reach the optimal rate for permutation estimation or matrix
reconstruction.

In Algorithm 15, the computation of subsets Q̂h is reminiscent of some aspects of the non oblivious trisection
procedure used in [74] for the bi-isotonic model. In fact, the statistic ∆̂k corresponds to the statistic ∆̂

(ext)
k,1

in [74]. Apart from that, the selection of subsets of questions was quite different in [74] as it mostly involved
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change-point detection ideas as introduced in [56]. However, those ideas are irrelevant in our setting because
the rows do not exhibit any specific structure in the isotonic model.

The high-level sorting method in [74] is based on a hierarchical sorting tree with memory. In contrast,
our new algorithm is based on an iterative refinement of a weighted comparison graph. This new algorithm is
more natural and benefits from the fact that it is almost free of any tuning parameter. Indeed, at the end of
Algorithm 14, we simply use the threshold γ̂ corresponding to the largest acyclic Ĝ graph in W. No significant
threshold needs to be chosen, since any permutation that is consistent with Ĝ is also necessarily consistent with
W thresholded at values larger than γ̂.

The spectral step in [74] is quite similar to the third step of our procedure described in section 4.3.3.3,
except for the first thresholding of v̂ to obtain v̂−. In [74], this workaround was not needed mainly because in
the bi-isotonic model, it is possible to aggregate sparse observations by merging consecutive columns – see [74]
for further details. This is however not possible here.

As mentioned in the introduction, Liu and Moitra [56] obtain an upper bound of the permutation loss of
the order of n7/6 for the estimation of two unknown permutations in the case where M ∈ Rn×n is bi-isotonic.
Broadly speaking, their method involves iterating a clustering method called block-sorting over groups of rows
or columns that are close with each other. Using this sorting method based on block-sorting, their whole
approach alternates between row sorting and column sorting for a subpolynomial number of time. Besides,
their procedure makes heavily use of bi-isotonicity of the matrix. It turns out that Algorithm 15 reaches the
same rate in this bi-isotonic model by running only once on the rows, and once on the columns, as described
in Section 4.2.4. In other words, if the problem is to estimate only π∗ in the bi-isotonic model, we proved that
only the isotonicity of the columns is necessary to achieve the state-of-the-art polynomial-time upper bound of
order n7/6.

4.3.6 Examples of valid grids Γ

Remark that the simple set {(u + 1) ⋅ ϕL1 , u ∈ {0, . . . ,2 ⌊log2(n)⌋ + 2}} is a valid grid of logarithmic size with
γ̄ ≤ (2 log2(n) + 3)ϕL1 . This set is the smallest valid grid achieving the smallest possible value of γ̄. However,
it depends on the quantity ϕL1 which is perhaps a bit pessimistic in practice.

An other choice can be to take R+ itself, albeit infinite. Indeed, the set {G(W, γ), γ ≥ 0} is made of at most
n2 possible directed graphs for any W during the whole procedure. Choosing R+ is convenient since it does not
depend on the constants in ϕL1 that are likely to be overestimated. The drawback of choosing R+ though is
that the number of tested γ in Algorithm 15 becomes quadratic in n.

Finally, a good compromise is to take the set {(1 + 1
log2(n)

)u
′
, u′ ∈ Z}. It is easy to check that it contains

a sequence satisfying (4.10) whose length is at least 2 ⌊log2(n)⌋ + 3 and whose maximum γ̄ is a polylogarithmic
function in nd/δ.

4.3.7 Discussion on the computation of Ĝ and π̂

Once we have suitable weighted graphW, it remains to construct the permutation π̂, as in the second and third
point of Section 4.3.1.

For the second point, checking that a given directed graph is acyclic can be done through depth first search
with a computational complexity less than n, so that computing γ̂ can be done with less than ∣Γ∣n operations.
As discussed in Section 4.3.3, it is possible to choose Γ to be of size of order less than log(n). If Γ is bounded
and is such that any different thresholds γ, γ′ in Γ satisfy ∣γ − γ′∣ ≥ η for some η > 0, the computation of γ̂ can
always be done with complexity of order less than n log(max(Γ)/η).

Regarding the third point, a permutation π̂ can be computed in polynomial time from the directed acyclic
graph Ĝ using Mirsky’s algorithm [64] – see also [72]. It simply consists in finding the minimal experts i in Ĝ,
removing them and repeat this process. This construction is in fact equivalent to ranking the experts according
to the index rkĜ,0 as defined in (4.19).

4.4 Concentration inequality for rectangular matrices

In this section, we state a concentration inequality for rectangular random matrices with independent entries
satisfying a Bernstein-type condition. This section can be read independently of the rest of this chapter. Let p
and q be two positive integers and X ∈ Rp×q be a random matrix with independent and mean zero coefficients.
Assume that there exists σ > 0 and K ≥ 1 such that for any i = 1, . . . , p and k = 1, . . . , q,

∀u ≥ 1, E[(Xik)
2u
] ≤

1

2
u!σ2K2(u−1) . (4.24)
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This Bernstein-type condition (4.24) is exactly the same as Assumption 1 in [7] – see [7] for a discussion.
Let Λ ∈ Rp×p be any orthogonal projection matrix, i.e. Λ = ΛT and Λ2 = Λ. We write rΛ for the rank of Λ.

Proposition 4.4.1. There exists a positive numerical constant κ such that the following holds for any δ > 0.

∥Λ(XXT
−E[XXT

])Λ∥op ≤ κ [
√
(σ4pq + σ2q) log(p/δ) + (σ2rΛ +K

2 log(q)) log(p/δ)] . (4.25)

For the sake of the discussion, consider the particular case where Xik = BikEik, with Bik and Eik being
respectively independent Bernoulli random variable of parameter σ2 and centered Gaussian random variable
with variance 1. By a simple computation done e.g. in (4.77), Xik satisfies condition (4.24) with K being of
the order of a constant. Hence, if K2 log(q) ≤ σ2p, applying Proposition 4.4.1 with the identity matrix Λ gives

∥XXT
−E[XXT

]∥op ≤ 2κσ
2
[
√
pq log(p/δ) + p log(p/δ)] , (4.26)

with probability at least 1 − δ.

Up to our knowledge, the inequality (4.26) is tighter than state-of-the-art result random rectangular sparse
matrices in the regime where q ≫ p and σ2 ≪ 1. In fact, most of the results in the literature concerning random
matrices state concentration inequalities for the non-centered operator norm ∥XXT ∥op – see the survey of Tropp
[88].

More specifically, Bandeira and Van Handel [5] provide tight non-asymptotic bounds for the spectral norm
of a square symmetric random matrices with independent Gaussian entries, and derive tail bounds for the
operator norm of XXT . For instance, Corollary 3.11 in [5], implies that, for some numerical constant c,
E[∥XXT ∥2op] ≤ c(σ

2(p∨ q)+ log(p∨ q)). Together with a triangular inequality, Bandeira and Van Handel imply
∥XXT −E[XXT ]∥2op ≤ cσ

2((p ∨ q) + log(p∨q
δ
)) with probability higher than 1 − δ.

While the order of magnitude σ2(p ∨ q) is tight for controlling the operator norm ∥XXT ∥2op of the non-
centered Gram matrix with high probability, (4.26) implies that the right bound for ∥XXT − E[XXT ]∥2op is
rather σ2√pq which is significantly smaller in the regime p≪ q and σ2 ≪ 1.

In the proof of Theorem 4.2.2, we could have used those previous results for controlling the matrices of the
form ∥XXT − E[XXT ]∥2op. However, we would have then achieved a suboptimal risk upper bound. Indeed,
Proposition 4.4.1 plays critical role in the proof of Theorem 4.2.2, when we need to handle matrices with partial
observations that are possibly highly rectangular in the spectal step of the procedure (4.23).

The proof of Proposition 4.4.1 relies on the observation that the matrix XXT − E[XXT ] is the sum of q
centered rank 1 random matrices. This allows us to apply Matrix Bernstein-type concentration inequalities for
controlling the operator norm of this sum – see [88] or Section 6 of [94].

4.5 Proofs

4.5.1 Proof of Theorem 4.2.2
4.5.1.1 Notation and signal-noise decomposition

We first introduce some notation, and in particular the noise matrices on which we will apply concentration
inequalities. In what follows, we define for any matrix A ∈ Rn×d, and any vector w ∈ Rd:

⟨Ai⋅,w⟩ =
d

∑
k=1

Aikwk . (4.27)

If w belongs to RQ where Q is some subset of [d], we also write < Ai⋅,w >= ∑dk∈QAikwk. The same notation
stands for the scalar product on matrices, namely ⟨A,A′⟩ = Tr(ATA′) if A′ ∈ Rn×d. If A and A′ are two
matrices in Rn×d, then we write the coordinate-wise product (A⊙A′)ik = AikA′ik. In what follows, we assume
that π∗ = id. We make this assumption without loss of generality since we can reindex each expert i with
i′ = π∗−1(i). Recalling that B is defined in (4.15) we define

λ1 ∶= P(B(s)ik = 1) = 1 − e
−λ0 . (4.28)

If λ0 ≤ 1, we have λ0 ≥ λ1 ≥ (1 − 1
e
)λ0. We assume in what follows that λ0 ≤ 1, which corresponds to the

case where there are potentially many unobserved coefficients. The case λ0 ≥ 1 will be treated in Section 4.5.6.
For an observation matrix Y (s) defined in (4.14), we make the difference between E[Y (s)] = λ1M , which is the
unconditional expectation of Y (s), and E[Y (s)∣B(s)] = B(s) ⊙M , which is the expectation of Y (s) conditionally
to the matrix B. We write the noise matrix
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E(s) = Y (s) − λ1M and Ẽ(s) = Y (s) −B(s) ⊙M . (4.29)

Recall that εt = yt−Mxt is the subGaussian noise part in model (4.2), and that Ns is defined in (4.14). Each
coefficient Ẽ(s)ik can be rewritten as the average of the noise εt. that are present in N (s) and that correspond to
coefficient xt = (i, k).

Ẽ
(s)
ik = ∑

t∈N(s)

εt
r
(s)
ik
∨1
1{xt = (i, k)} . (4.30)

From now on, we often omit the dependence in s. We will extensively use the decomposition Y = λ1M + E,
where λ1 is defined in (4.28) and E in (4.29). Recalling that Bik = 1{rik ≥ 1}, we often rewrite E as the sum of
two centered random variables:

Eik = (Bik − λ1)M +BikẼik .

Handling the concentration of the noise is more challenging in the case λ0 ≤ 1 than in the full observation
regime λ0 ≥ 1 discussed in Section 4.5.6. While subGaussian concentration inequalities are effective in the full
observation regime λ0 ≥ 1, they lead to slower estimation rate in the case λ0 ≤ 1, for instance in Lemma 4.5.1.
Indeed, it turns out that the variance of a coefficient εik is of order λ0 ≤ 1, while the Hoeffding inequality only
implies that Bik − λ1, and in particular εik are c-subGaussian for some numerical constant c. To overcome this
issue, one of the main ideas is to use Bernstein-type bounds on the coefficients of E and on the random matrix
EET −E[EET ]- see Lemma 4.5.7 and Proposition 4.4.1.

4.5.1.2 General property on W

Recall that we assume that λ0 ≤ 1, so that 1
λ0
∧ λ0 = λ0 in (4.18), and that ϕL1 is defined in (4.9) by ϕL1 ∶=

104 log(102nd/δ). In the following, we let ξ be the event on which the noise concentrates well for all the pairs
(Q,w) considered during the whole procedure. More precisely, we say that we are under event ξ, if for any
s = 0, . . . ,5T − 1 and for any pair (Q,w) that is used to compute a refinement as in (4.17) we have

∣⟨E
(s)
i⋅ −E

(s)
j⋅ ,w⟩∣ ≤

1
3
ϕL1

√
λ0 for any (i, j) ∈ [n]2 . (4.31)

Lemma 4.5.1. The event ξ holds true with probability at least 1 − 2Tδ.

The idea of Lemma 4.5.1 is to apply a bernstein-type inequality and a union bound on all the possible
dot products ⟨E(s)i⋅ ,w⟩, for all the 5T possible s and the at most 2T possible w. The upper bound is of
the order of the square of the variance of Eik up to the polylogarithm factor ϕL1 . The crucial point is that
if ⟨E(s)i⋅ ,w⟩ is not λ0-subGaussian, it satisfies the Bernstein’s Condition [ 2.15 of [62]] with variance ν = λ0
and scaling factor b = ∥w∥∞. We then obtain an upper bound of order

√
λ0 since any w considered in the

update step (4.18) must satisfy (4.16). Recall that γ̄ is defined in (4.11). We fix in what follows a sequence
γ = γ0 > γ1 > γ2 > ⋅ ⋅ ⋅ > γ⌊2 log2(n)⌋ = γmin in Γ satisfying property (4.10). We say that u is the level of the
corresponding threshold γu. We say W and (γu) satisfies the property C(W, (γu)) if the following holds

1. consistency: For any (i, j) ∈ G(W, γmin) it holds that π∗(i) > π∗(j).

2. weak-transitivity: Fix any u ∈ {0, . . . , ⌊2 log2(n)⌋ − 1}. For any experts i, j, k, if i is G(W, γu)-above j
and k ∈ N (G(W, γu+1), j), then any i′ ≥ i is also G(W, γmin)-above k.

The first point of the above property means that at threshold γmin, there is no mistake in the directed graph
G(W, γmin), meaning that if there is an edge from i to j in G(W, γmin), then i is truly above j. Moreover,
we only state the consistency property of the graph G(W, γmin), but this property also implies that, for any
more conservative threshold γ ≥ γmin, any (i, j) ∈ G(W, γ) satisfies π∗(i) > π∗(j). This is due to the fact that
G(W, γ) ⊂ G(W, γmin). The weak transitivity property states in particular that if there is a path from i to j in
the more conservative graph G(W, γu), then there is a path from i to any k in the neighborhood of j at the less
conservative threshold γmin. The following lemma states that the above property remains true for the weighted
graph W ′, after any update (4.18) of the whole procedure.

Lemma 4.5.2. Under ξ, the property C(W ′, (γu)) holds true for any directed weighted graph W ′ obtained at
any stage of Algorithm 14 and Algorithm 15.

We denote in the following Wt for the directed weighted graph at the beginning of step t. For any u ∈
[0, ⌊2 log2(n)⌋], we also write as a shorthand Gt,u = G(Wt, γu) for the directed graph at beginning of step t and
level u and Pt,u(i) = N (Gt,u, i) for the set of experts that are not comparable with i according to Gt,u. For any
sequence of experts I, we write Pt,u(I) for the sequence of subsets (Pt,u(i))i∈I . Let us now divide the T steps
of the algorithm into τmax = ⌊log2(n)⌋ + 1 epochs of K = ⌊T /τmax⌋ steps. For any τ ∈ [0, τmax], we also write
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GKτ,u = GτK,u, P
K
τ,u(i) = PτK,u(i) and PKτ,u(I) = P

K
τ,u(I). Now we consider for each epoch τ a sequence of experts

I(τ) = (i1(τ), . . . , iLτ (τ)) defined by induction:

• I(0) is the empty sequence

• For τ ≥ 0, let (i1, . . . , iL) be the sequence ordered according to π∗ and corresponding to the union of the
already constructed sequences ⋃τ ′≤τ I(τ ′) , and i = 0, iL+1 = n + 1. For any l ∈ [0, L], let Al be the set
of experts that are GKτ+1,2τ+1-below il+1 but GKτ+1,2τ+1-above il. For all l such that Al is not empty, we
define i′l as the expert of Al which is any expert closest to the median ⌊(il + il+1)/2⌋, and the new sequence
I(τ + 1) ∶= (i′l).

By definition, remark that I(1) is equal to (⌊(n + 1)/2⌋). The induction step aims at building a sequence
I(τ + 1) that is disjoint from ∪τ ′≤τI(τ ′), and that cuts each set Al of experts that are above il and below il+1
according to the graph at epoch τ + 1 and level 2τ + 1. Given the already constructed collections of perfectly
ordered experts I(τ ′) for τ ′ ≤ τ , the idea of I(τ + 1) is that it tends to fill the gaps between the neighborhoods
in Gτ+1,2τ+1 of any two successive experts in ∪τ ′≤τI(τ ′).

By monotonicity, it holds that for any expert i, epoch τ and level u that PKτ+1,u+1(i) ⊂ P
K
τ+1,u(i) ⊂ P

K
τ,u(i).

We say that the sets PKτ,2τ(i) and PKτ,2τ+1(i) are the neighborhoods of i at the beginning of epoch τ and that
the sets PKτ+1,2τ(i), P

K
τ+1,2τ+1(i) are the neighborhood of i at the end of epoch τ . The neighborhoods at the end

of a given epoch τ are obtained from the neighborhoods at the beginning the of epoch τ after K steps of the
Algorithm 14. On the other hand, we say that the sets PKτ,2τ , P

K
τ+1,2τ are the conservative subsets at epoch τ ,

since they correspond to a more conservative directed graph with threshold γ2τ ≥ γ2τ+1. The following lemma
states that, at any epoch τ , the conservative subsets at the beginning of epoch τ are well separated according
to the true order π∗ = id:

Lemma 4.5.3. Under event ξ, for any τ ∈ [0, τmax], letting (i1, . . . , iL) = I(τ), we have

PKτ,2τ(i1) < ⋅ ⋅ ⋅ < P
K
τ,2τ(iL).

In other words, Lemma 4.5.3 implies that, for any l < l′, any expert in PKτ,2τ(il) is π∗-below any expert in
PKτ,2τ(il′). As a consequence, it holds that for any l ∈ [1, Lτ − 2],

PKτ,2τ(il)
GK
τ,2τ

≺ PKτ,2τ(il+2) . (4.32)

Namely, any expert in PKτ,2τ(il) is GKτ,2τ -below any expert in PKτ,2τ(il+2). Indeed, Lemma 4.5.3 and first point
of event ξ imply that any expert j in PKτ,2τ(il) is GKτ,2τ -below il+1, since j cannot be in PKτ,2τ(il). On the other
hand, il+1 is itself GKτ,2τ -below any expert of PKτ,2τ(il+2) for the same reason. The following lemma states that
the ending less conservative subsets are covering the set of all experts.

Lemma 4.5.4. Under event ξ, it holds that

[n] =
τmax−1
⋃
τ=0

⋃
i∈I(τ)

PKτ+1,2τ+1(i) .

Let π̂ be the estimator obtained from the final weighted directed graph W at the end of the procedure, that
is any permutation on [n] that is consistent with the largest acyclic graph of the form G(W, γ) for all γ > 0.
For any sequence of subsets P = (P1, . . . , PL) we define

SN(P) = ∑
P ∈P
∥M(P ) −M(P )∥2F . (4.33)

The following proposition that we can control the L2 error of π̂ by the maximum over all epoch τ of the sum
over τ of the square norms of the groups in PKτ+1,2τ+1.

Proposition 4.5.5. Under event ξ, it holds that

∥Mπ̂−1 −M∥
2
F ≤ 4

τmax−1
∑
τ=0

SN(PKτ+1,2(τ+1)) . (4.34)

Recall that γ̄ is defined in (4.11), and that Γ can be taken to be a valid grid with γ̄ smaller than a
polylogarithm in n, d, δ. The final proposition states that at any level u and any step t, any sequence of subset
that can be ordered according to the already constructed graph Gt,u as in (4.32) will either have a square norm
smaller than the minimax rate ρperm, defined in (4.6) or almost exponentially decrease its square norm with
high probability.
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Proposition 4.5.6. Fix any u ∈ [0,2τmax] and step t < T , and assume that I = (i1, . . . , iL) is a sequence of

experts that satisfies Pt,u(i1)
Gt,u
≺ . . .

Gt,u
≺ Pt,u(iL). Then on the intersection of the event ξ (defined in (4.31))

and an event of probability higher than 1 − 5δ, it holds that

SN(Pt+1,u(I)) ≤ [Cγ̄
6ρperm(n, d, λ0)] ∨ [(1 −

1

4γ̄2
)SN(Pt,u(I))] ,

for some numerical constant C.

Let us fix τ ∈ {0, . . . , τmax − 1}. Applying Proposition 4.5.6 for each t =Kτ, . . . ,Kτ +K − 1 and u = 2(τ + 1)
-the hypothesis of Proposition 4.5.6 being satisfied by (4.32), we obtain with probability 1 − 5(K + T )δ that

SN(Pτ+1,2(τ+1)) ≤ [Cγ̄
6ρperm(n, d, λ0)] ∨ e

− T
4τmaxγ̄4 nd

≤ CT γ̄6ρperm(n, d, λ) ,

if T is larger than 4γ̄6 ≥ 4 log2(nd)γ̄4. We conclude the proof of Theorem 4.2.2 with Proposition 4.5.5, using
that 4τmax ≤ γ̄:

∥Mπ̂−1 −M∥
2
F ≤ 4

τmax−1
∑
τ=0

SN(PKτ+1,2(τ+1)) ≤ CT γ̄
7ρperm(n, d, λ) .

4.5.2 Proofs of the lemmas of Section 4.5.1 and of Proposition 4.5.5

4.5.2.1 Proof of Proposition 4.5.5

Let π̂ be any arbitrary permutation that is consistent with the largest DAG G(W, γ̄), as defined in Section 4.3.1.
Recall that we assume in this proof that π∗ = id. By Lemma 4.5.4, for any i ∈ [n] there exists τ ∈ [0, τmax − 1]
and i0 ∈ I(τ) such that i ∈ PKτ+1,2τ+1(i0).

Let us define the interval [a, b] as the maximal interval containing i0 and that is included in the more
conservative set PKτ+1,2τ . Now, if j > b, then by definition there exists j′ such that j ≥ j′ > b and j′ /∈ PKτ+1,2τ .

Summarizing the properties, we have j ≥ j′
Gτ+1,2τ
≻ i0, and that i is in the neighborhood of i0 in the graph

Gτ+1,2τ+1. Hence, applying the weak-transitivity property (first in C), holding true on event ξ - see Lemma
4.5.2, we obtain that j is G(WK(τ+1), γmin)-above i. By the consistency property (second point in C), j is also
necessarily G(W, γmin)-above i, and this proves that all the n−b experts j satisfying j > b are G(W, γmin) above
i. Hence, it holds that π̂(i) ≤ b. By symmetry, we also prove that π̂(i) ≥ a, so that

π̂(i) ∈ [a, b] ⊂ PKτ+1,2τ(i0). (4.35)

Finally, we have

∥Mπ̂−1 −M∥
2
F =

n

∑
i=1
∥Mπ̂(i)⋅ −Mi⋅∥

2
F

≤
τmax

∑
τ=0

∑
i0∈I(τ)

∑
i∈PK

τ+1,2τ+1(i0)
∥Mπ̂(i)⋅ −Mi⋅∥

2

≤ 2
τmax

∑
τ=0

∑
i0∈I(τ)

∑
i∈PK

τ+1,2τ+1(i0)
∥Mi⋅ −m(P

K
τ+1,2τ(i0))∥

2
+ ∥Mπ̂(i)⋅ −m(P

K
τ+1,2τ(i0))∥

2

≤ 4
τmax

∑
τ=0

∑
i0∈I(τ)

∑
i∈PK

τ+1,2τ (i0)
∥Mi⋅ −m(P

K
τ+1,2τ(i0))∥

2 ,

where we used Lemma 4.5.4 for the first inequality and (4.35) for the last inequality.

4.5.2.2 Proof of the lemmas of Section 4.5.1

We postpone the proof of Lemma 4.5.1 to the next subsection.

Proof of Lemma 4.5.2. Recall that we consider the case λ0 ≤ 1, so that λ0 ∧ 1/λ0 = λ0 in (4.18).
Consider any substep of the whole procedure where the current directed weighted graph is W ′. For the first

point, remark that i is G(W ′, γmin)-above j only if there exists a previous substep during which we find out
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that ⟨Yi⋅ −Yj⋅,w⟩ ≥ γmin on some direction w ∈ RQ, where Y is the sample used to refine the edges (4.17). Since
γmin > ϕL1 , then decomposing Y = λ1M +E as in (4.29), we have

λ1⟨Mi⋅ −Mj⋅,w⟩ ≥ ⟨Yi⋅ − Yj⋅,w⟩ − ⟨Ei⋅ −Ej⋅,w⟩ > 0 , (4.36)

where the last inequality comes from (4.31), using the notation (4.27). Since the coefficients of w are nonegative,
we have proven that i is above j. For the second point, assume that i is G(W, γu)-above j, and take i′ ≥ i.
As before, there exists a direction w used during the procedure such that ⟨Yi⋅ − Yj⋅,w⟩ ≥ γu. Now consider any
k ∈ N (G(W, γu+1), j). On the direction w, we have under the event ξ defined in (4.31) that

⟨Yi′⋅ − Yk⋅,w⟩ ≥ λ1⟨Mi′⋅ −Mk⋅,w⟩ −
1
3
ϕL1

√
λ0

≥ λ1⟨Mi⋅ −Mk⋅,w⟩ −
1
3
ϕL1

√
λ0

≥ ⟨Yi⋅ − Yj⋅,w⟩ − ⟨Yk⋅ − Yj⋅,w⟩ − ϕL1

√
λ0

≥ (γu − γu+1 − ϕL1
)
√
λ0 ≥ γmin

√
λ0 ,

where the last inequality comes from the assumption (4.10). We conclude that i′ is G(W ′, γmin)-above k.

Proof of Lemma 4.5.3. We proceed by induction over τ ≥ 0. The lemma is trivial for τ = 0,1 since I(0) is empty
and I(1) = (⌊(n + 1)/2⌋). Let τ ≥ 1 and i1, i2, i3 be three experts in I(τ)∪{0, n+1} such that i1 < i2 < i3. Let A
be the set of experts that are GKτ+1,2τ+1-above i1 and GKτ+1,2τ+1-below i2, and A′ be the set of experts that are
GKτ+1,2τ+1-above i2 and GKτ+1,2τ+1-below i3. Assume that both sets A and A′ are nonempty, and let j ∈ A and
j′ ∈ A′. Let us apply the weak-transitivity of W, (γu) in Property C - which holds true under ξ from Lemma
4.5.2 - with u = 2τ + 1. Since j is GKτ+1,2τ+1-below i2, any k ∈ PKτ+1,2(τ+1)(j) is π∗-below i2. We also prove that
any k′ ∈ PKτ+1,2(τ+1)(j

′) is π∗-above i2. We conclude that PKτ+1,2(τ+1)(j) < P
K
τ+1,2(τ+1)(j

′), and the proof of the
lemma follows.

Proof of Lemma 4.5.4. We prove that, by construction, any expert i ∈ [n] is at distance less than (n+1)/2τ+1 of
⋃
τ
τ ′=0⋃i∈I(τ) P

K
τ+1,2τ+1(i)∪ {0, n+ 1}. This is obvious for τ = 0 since any expert is at distance less than (n+ 1)/2

of 0 or n + 1. Let (i1, . . . , iL) = ⋃τ ′≤τ I(τ ′) be the collection of experts in the union of all possible I(τ ′) that is
ordered according to π∗. If j is any expert in [n], then we let l ∈ [0, L] be such that il ≤ j ≤ il+1. We can assume
that j /∈ PKτ+1,2τ+1(il) and j /∈ PKτ+1,2τ+1(il+1) because otherwise the distance of j to ⋃ττ ′=0⋃

L
i∈I(τ) P

K
τ+1,2τ+1(i) is 0.

Using property C holding true from Lemma 4.5.2, it holds that the set A of experts that are GKτ+1,2τ+1-above il
but GKτ+1,2τ+1-below il+1 contains j and therefore is nonempty. Now, let m = ⌊(il + il+1)/2⌋ and i′ be any expert
closest to m in A, as defined in the construction of I(τ + 1), and assume without loss of generality that m ≤ i′.
We consider the following cases:

• m ≤ i′ ≤ j: In that case, j is at distance less than (il+1 −m)/2 of i′ or il+1.

• m ≤ j < i′: This case is not possible since i′ is the closest expert to m in A.

• j <m < i′: In that case, since i′ minimizes the distance to m, we necessarily have that m ∈ PKτ+1,2τ+1(il) ∪
PKτ+1,2τ+1(il+1). Hence, j is at distance less than (m − il)/2 of m or il.

We have proved that the distance of any j to ⋃τ+1τ ′=0⋃
L
i∈I(τ) P

K
τ+1,2τ+1(i) ∪ {0, n + 1} is at most (m − il)/2 or

(il+1 −m)/2. Using the induction hypothesis, we have that m− il and il+1 −m are both less than n/2τ+1, which
concludes the induction.

Finally, applying this property with τmax−1 = ⌊log2(n)⌋ gives a distance strictly smaller than 1, which proves
the result.

4.5.2.3 Proof of Lemma 4.5.1

Let us start with the following lemma, which gives a concentration bound when λ0 ≤ 1:

Lemma 4.5.7. For any δ′ > 0 and for any matrix W ∈ Rn×d, the following inequality holds with probability at
least 1 − δ′:

∣⟨E,W ⟩∣ ≤

√

4e2∥W ∥2Fλ0 log (
2

δ′
) + ∥W ∥∞ log (

2

δ′
) . (4.37)
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Now we apply Lemma 4.5.7 with the matrix W with 0 coefficients except at line i where it is equal to the
vector w

∥w∥2 as defined in (4.17), and we deduce that

∣⟨Ei,⋅,
w

∥w∥2
⟩∣ ≤

√

4e2λ0 log (
2

δ′
) +
∥w∥∞
∥w∥2

log (
2

δ′
) ≤ 11

√
λ0 log(2/δ

′
) , (4.38)

where the last inequality comes from Condition (4.16) on w. Now choosing δ′ = δ/(4Tn6), a union bound over
the at most 2n2T ∣H∣(∣Γ∣ ∧ n2) pairs (Q,w) considered during the procedure, we deduce the bound of Lemma
4.5.1 for all λ0 ≤ 1.

Proof of Lemma 4.5.7. Recall that E, Ẽ are defined in (4.29) and that we have in particular

Eik = (Bik − λ1)Mik + Ẽik .

Let x > 0. By Cauchy-Schwarz inequality, we have

E[exEik] ≤

√

E[e2x(Bik−λ1)Mik]

√

E[e2xẼik] ,

where we recall that λ1 = 1 − e−λ0 ≤ λ0. We have

E[e2x(Bik−λ1)Mik] ≤ e−2λ1xMik(λ1(e
2xMik − 1) + 1) ≤ eλ1e

2x2

,

and

E[e2xẼik] ≤ λ1(e
2x2

− 1) + 1 ≤ eλ1e
2x2

,

where we used the inequalities e2x
2

− 1 ≤ e2x2 and e2x − 1 − 2x ≤ e2x2 for any x ∈ [−1,1].

In particular, if t > 0, a Chernoff bound with x = t
2∥W ∥2

F
λ0e2
∧ 1 gives

P(⟨W,E⟩ ≥ t) ≤ exp(−( t2

4∥W ∥2
F
λ0e2
∧ t)) ,

so that with probability at least 1 − δ′:

∣⟨W,E⟩∣ ≤

√

4e2∥W ∥2Fλ0 log (
2

δ′
) + log (

2

δ′
) .

4.5.3 Proof of Proposition 4.5.6
Step 0 : general definitions

In this proof, we fix u ∈ {0, . . . ,2 ⌊log2(n)⌋ + 2} and a corresponding threshold γu in the sequence in Γ
satisfying γu ≥ ϕL1 - see (4.10) - and a step t < T . We assume that I = (i1, . . . , iL) is a fixed sequence of experts

that satisfies Pt,u(i1)
Gt,u
≺ . . .

Gt,u
≺ Pt,u(iL).

From now on, we ease the notation by omitting the dependence in t, u, γu and we write G = Gt,u, G′ = Gt+1,u,
P = (P1, . . . , PL) for Pt,u and P ′ for Pt+1,u. We denote G̃h for the directed graph at threshold γu of the directed
weighted graph W̃h obtained at the end the first update Line 3 of Algorithm 15. We also write P̃hl = N (G̃

h, il)

and P̃h = (P̃h1 , . . . , P̃
h
L) for the corresponding sequence of subsets at height h ∈H. By monotonicity, it holds for

any h ∈H that
P ′l ⊂ P̃

h
l ⊂ Pl .

4.5.3.1 Step 1: Analysis of the selected set Q̂

Recall the definition of the neighborhoods (4.20) of the set Pl in the graph G:

Na(l) = ⋂
i∈Pl

rk−1G,il([1, a]) and N−a(l) = ⋂
i∈Pl

rk−1G,il([−1,−a]) ,

Define for κ > 0 and l ∈ [1, L] the population version ∆∗k of the width statistic ∆̂k - see (4.21) - as the the
difference of the best and worst expert of P (il) if a = 0 and as the difference of the average of the experts in
Na(l) and the average of the expert in N−a(l):

∆∗k(0, l) = max
i,j∈P (il)

∣Mi,k −Mj,k ∣ and ∆∗k(a, l) =mk(Na(l)) −mk(N−a(l)) if a ≥ 1. (4.39)
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We also define a∗(h, l) as the minimum a ≥ 1 such that there are at least 1
λ0h2 experts in Na(l) and in

N−a(l):

a∗(h, l) =min{a ≥ 1 ∶ ∣Na(l)∣ ∧ ∣N−a(l)∣ ≥
1

λ0h2
} . (4.40)

Now, define for ϕ ≥ 1:

Q∗hl (ϕ) ∶= {k ∈ [d] ∶ ∆
∗
k(0, l) ∈ [ϕh,2ϕh]}

Q
∗h
l (ϕ) ∶= {k ∈ [d] ∶ ∆

∗
k(a

∗
(ϕ−1h, l), l) ≥ h/2} .

(4.41)

The following lemma states that, for ϕ of order log(nd/δ), we can sandwich Q̂hl between the two fixed sets
Q∗hl and Q

∗h
l :

Lemma 4.5.8. Let l be a fixed index in {1, . . . , L} and h a fixed height in H. There exists a numerical constant
κ0 > 0 such that, with probability at least 1 − δ/(L∣H∣), we have

Q∗hl (κ0 log(nd/δ)) ⊂ Q̂
h
l ⊂ Q

∗h
l (κ0 log(nd/δ)) . (4.42)

4.5.3.2 Step 2 : l1-control of the intermediary sets P̃h

Recall that γu is a threshold corresponding to a sequence in Γ as defined in (4.10). For any sets P ⊂ [n],Q ⊂ [d],
we say that M(P,Q) is indistinguishable in L1-norm if it satisfies

max
i,j∈P

∥Mi⋅(P,Q) −Mj⋅(P,Q)∥1 ≤ 3γu

√
∣Q∣

λ0
. (4.43)

For a fixed l ∈ {1, . . . , L}, let ξL1(l, h) be the event under which M(P̃hl , Q̂
h
l ) is indistinguishable in L1-norm.

Lemma 4.5.9. Let l be a fixed index in {1, . . . , L} and h ∈ H such that λ0∣Q∗hl ∣ ≥ 1. The event ξL1(l, h) holds
true with probability at least 1 − δ/(L∣H∣).

Let κ0 be a numerical constant given by Lemma 4.5.8 and let ϕ0 = κ0 log(nd/δ). In what follows, we write
for simplicity (Q∗hl , Q̂hl ,Q

h

l ) = (Q
∗h
l (ϕ0), Q̂

h
l (ϕ0),Q

h

l (ϕ0)). Lemma 4.5.9 provides an upper bound only on the
L1 distance between rows of M restricted to the subsets P̃hl and Q̂hl , while the square norm of a group (4.33)
is defined with the L2 distance. with (4.43). The idea is that for any k in Q∗h, and for any i ∈ P̃h, we
have that ∣Mik −mk ∣

2 ≤ 2ϕ0h∣Mik −mk ∣. In particular, ∥Mi⋅(P̃
h
l ,Q

∗h
l ) −m⋅(P̃

h
l ,Q

∗h
l )∥

2
2 ≤ 2ϕ0h∥Mi⋅(P̃

h
l ,Q

∗h
l ) −

m⋅(P̃
h
l ,Q

∗h
l )∥1. Hence, it holds from Lemma 4.5.8, Lemma 4.5.9 and a union bound over all l ∈ {1, . . . , L} and

all h ∈H satisfying λ0∣Q∗hl ∣ ≥ 1 that with probability at least 1 − 2δ,

∑
i∈P̃h

l

∥Mi⋅(P̃
h
l ,Q

∗h
l ) −m⋅(P̃

h
l ,Q

∗h
l )∥

2
2 ≤ 6ϕ0γu

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h∣P̃hl ∣

¿
Á
ÁÀ∣Q

∗h
l ∣

λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (4.44)

simultaneously for all l ∈ {1, . . . , L} and h ∈H satisfying λ0∣Q∗hl ∣ ≥ 1.

Proof of Lemma 4.5.9. Let l be a fixed index in {1, . . . , L} and h be a fixed height in H. If a ≥ 1, the subset
Pl is disjoint from the sets Na(l) ∪N−a(l) so that Q̂hl is independent of Y (1)(Pl). Remark also that condition
(4.16) is satisfied since λ0∣Q∗hl ∣ ≥ 1 and Q∗hl ⊂ Q̂

h
l .

Recall that we assume that λ0 ≤ 1. We write w = 1Q̂h
l
, and we recall that B = (Bik) is the matrix defined in

(4.15). Let i, j ∈ P̃hl so that, by definition, we have that ∣⟨Yi⋅ − Yj⋅,w⟩∣ ≤ γu
√

λ0∣Q̂hl ∣. With probability at least
1 − δ/L, for all i, j in Pl we have that

λ1 ∣⟨Mi⋅ −Mj⋅,w⟩∣ ≤ ∣⟨Yi⋅ − Yj⋅,w⟩∣ + ∣⟨Ei⋅ −Ej⋅,w⟩∣ ≤ (γu + ϕL1/2)
√

λ0∣Q̂hl ∣ . (4.45)

where the last inequality comes from Lemma 4.5.7 applied with δ′ = δ/n3 and from the definition of ϕL1 (4.9).
Recalling the two inequalities λ1 = 1 − e−λ0 ≥ λ0/2 and ϕL1 ≤ γu, we obtain the result.
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4.5.3.3 Step 3 : Local square norm reduction

Henceforth we condition to the sample Y (1) of Algorithm 15 which allows us to assume that, for any h ∈H, the
two sequences of sets P̃h and Q̂h are fixed.

For κ1 > 0, let ξloc(l, h, κ1) be the event holding true if the local square norm of M(Pl, Q̂hl ) has decreased at
the end of Algorithm 15, that is

∥M(P ′l , Q̂
h
l ) −M(P

′
l , Q̂

h
l )∥

2
F ≤ κ1γ

4
u [

1

λ0

√

∣Pl∣∣Q̂hl ∣ +
∣Pl∣

λ0
]

∨ (1 −
1

4γ2u
)∥M(Pl, Q̂

h
l ) −M(Pl, Q̂

h
l )∥

2
F .

(4.46)

The following proposition states that given the fact that the experts in P̃hl are indistinguishable in L1-norm
and λ0(∣P̃hl ∣ ∧ ∣Q

∗h
l ∣) ≥ 1, the event ξloc holds true simultaneously for all l and h with high probability.

Proposition 4.5.10. There exists a numerical constant κ1 such that the following holds, for any fixed index
l in {1, . . . , L}, and fixed height h in H. Conditionally to Y (1), the event ξL1(l) and λ0(∣P̃

h
l ∣ ∧ ∣Q

∗h
l ∣) ≥ 1, the

event ξloc(l, h, κ1) holds true with probability at least 1 − 3δ/(L∣H∣).

Proposition 4.5.10 is at the core of the analysis, and its proof contains a significant part of the arguments.
This proposition and its proof are similar to Proposition D.5 in [74], but the main difficulty with respect to [74]
is that we do not achieve the optimal rate in λ0 ≤ 1 using only the subgaussianity of the coefficients of the noise
E. A key step in the proof of Proposition 4.5.10 is Proposition 4.4.1, which implies Lemma 4.5.13 and gives
a concentration inequality of the operator norm of EET − E[EET ]. Proposition 4.4.1 is effective in that case
since the coefficients of E will be proven to satisfy (4.24).

Then, the idea is that when a group P ′l has a square norm of order at least 1
λ0

√

∣Pl∣∣Q̂hl ∣+
∣Pl∣
λ0

, the PCA-based
procedure defined as in (4.23) will output a vector v̂ that is well aligned with the first left singular vector of
M(P̃hl , Q̂

h
l ) −M(P̃

h
l , Q̂

h
l ). Moreover, the isotonic structure of M(P̃hl , Q̂

h
l ) −M(P̃

h
l , Q̂

h
l ) implies in fact that its

operator norm is greater than a polylogarithmic fraction of its Frobenius norm (see Lemma 4.5.12 or Lemma E.4
in [74]], so that ∥v̂T (M(P̃hl , Q̂

h
l )−M(P̃

h
l , Q̂

h
l ))∥

2
2 is of the same order as the square Frobenius norm. Hence after

updating the edges, we can prove that the experts in P̃hl ∖ P
′
l were contributing significantly to the Frobenius

norm, which enforces the contraction part in the second term of the maximum in (4.46). All the details of the
proof can be found in Section 4.5.5.

4.5.3.4 Step 4 : Control of the size of the sets Q
∗h
l

For any p ∈ [n] ∩ {2k ∶ k ∈ Z+}, let L(p) be the sets of indices l = 1, . . . , L whose corresponding group size ∣Pl∣
belongs to [p,2p). The two upper bounds implied by (4.44) and (4.46) both depend on the selected subset of
columns, which is included in Q

∗h
l under the event of Lemma 4.5.8. The following lemma provides an upper

bound on the sum over l ∈ L(p) of the size of the sets Q
∗h
l (ϕ) defined in (4.41), for any ϕ > 0.

Lemma 4.5.11. For any ϕ ≥ 1 and any h ∈H, it holds that

∑
l∈L(p)

∣Q
∗h
(ϕ)∣ ≤ 12ϕ2 (

1

pλ0h2
∨ 1)

d

h
.

The proof of Lemma 4.5.11 is mainly implied by the fact that the coefficients of M are bounded by 1. Then,
the idea is that in the case where all the sets Pl are of size p, it is enough to take a number of group a of
order at most 1

pλ0h2 ∨ 1 above and below each Pl to ensure that the corresponding neighborhood of Pl has size
∣Na(l)∣ ∧ ∣N−a(l)∣ ≥

1
λ0h2 .

4.5.3.5 Step 5 : Conclusion of the previous steps

We first decompose the square norm SN(P) as defined in (4.33) into two terms. Assume that the event of
Lemma 4.5.8, ξL1(l) and ξloc(l, h, κ1) - see Lemma 4.5.9 and Proposition 4.5.10 - hold true. Define L− as the
sequence of indices l such that the corresponding reduced subsets P ′l have low local square norm for all h ∈ H.
More precisely, we say that l ∈ L− if for all h ∈H we have

∥M(P ′l , Q̂
h
l ) −M(P

′
l , Q̂

h
l )∥

2
F ≤ κ1γ

4
u [

1

λ0

√

∣Pl∣∣Q̂hl ∣ +
∣Pl∣

λ0
]

∨
1

2∣H∣
∥M(Pl) −M(Pl)∥

2
F .

(4.47)
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We also define the complementary L+ = [1, L] ∖L− and their corresponding subsets P ′+,P
′
− in P ′. We have the

following decomposition:
SN(P ′) = SN(P ′+) + SN(P

′
−) . (4.48)

Let us now give an upper bound of SN(P ′+). For any l ∈ L+, there exists by definition an element hl ∈H such

that ∥M(P ′l , Q̂
hl

l )−M(P
′
l , Q̂

h
l )∥

2
F > κ1γ

4
u [

1
λ0

√

∣Pl∣∣Q̂hl ∣ +
∣Pl∣
λ0
]∨ 1

2∣H∣∥M(Pl, Q̂
h
l )−M(Pl, Q̂

h
l )∥

2
F . Hence, applying

(4.46) with h = hl, we have that, for any l ∈ L+,

∥M(P ′l ) −M(P
′
l )∥

2
F = ∥M(P

′
l , Q̂

hl

l ) −M(P
′
l , Q̂

hl

l )∥
2
F + ∥M(P

′
l , [d] ∖ Q̂

hl

l ) −M(P
′
l , [d] ∖ Q̂

hl

l )∥
2
F

≤ ∥M(Pl) −M(Pl)∥
2
F −

1

4γ2u
∥M(Pl, Q̂

hl

l ) −M(Pl, Q̂
hl

l )∥
2
F

≤ (1 −
1

γ3u
)∥M(Pl) −M(Pl)∥

2
F ,

where the third inequality comes from the second term of (4.47) together with P ′l ⊂ Pl and γu ≥ ϕL1 ≥ 8∣H∣,
with ϕL1 defined in (4.9). Hence we obtain that

SN(P ′+) ≤ (1 −
1

γ3u
)SN(P+) . (4.49)

Finally, we give an upper bound of SN(P ′−). Let us write Dn = {2k ∶ k ∈ Z+}∩[n] for the set of dyadic integer
smaller than n. Given p ∈ Dn, we write L−(p) = L(p) ∩ L− for the set of indices in L− such that ∣Pl∣ ∈ [p,2p),
and P ′−(p) for the corresponding sequence of subsets in P ′−(p). Let ϕ0 = κ0 log(nd/δ), where κ0 is a numerical
constant given by Lemma 4.5.8. By definition of Q∗hl , the square norm of a group P ′l restricted to questions
that do not belong the set ∪h∈HQ∗hl is smaller than ϕ0nd ⋅min(H) ≤ ϕ0. Hence, we have that

SN(P ′−) = ∑
p∈Dn

SN(P ′−(p)) ≤ ϕ0 + ∑
(p,h)∈Dn×H

∑
l∈L−(p)

∥M(P ′l ,Q
∗h
l ) −M(P

′
l ,Q

∗h
l )∥

2
F . (4.50)

If λ0∣Q∗hl ∣ ≤ 1 then we use the trivial inequality ∥M(P ′l ,Q
∗h
l ) −M(P

′
l ,Q

∗h
l )∥

2
F ≤ ∣P

′
l ∣∣Q

∗h
l ∣ ≤ ∣P

h
l ∣/λ0,since the

entries of M are bounded by one.

If λ0∣Q∗hl ∣ ≥ 1 and ∣P̃hl ∣λ0 ≤ 1, we have that h∣P̃hl ∣
√
∣Q∗hl ∣
λ0
≤

√
∣P̃h

l
∣∣Q∗hl ∣
λ2
0

, using the fact that h ≤ 1. Hence, since

the experts in P ′l ⊂ P̃
h are indistinguishable in L1 norm by Lemma 4.5.9, (4.44) holds true, and we have

∥M(P ′l ,Q
∗h
l ) −M(P

′
l ,Q

∗h
l )∥

2
F ≤ 6ϕ0γu

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h∣P̃hl ∣

¿
Á
ÁÀ∣Q

∗h
l ∣

λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ 6ϕ0γu

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
ÁÀ

h2∣P̃hl ∣
2
∣Q
∗h
l ∣

λ0
∧

¿
Á
Á
ÁÀ
∣P̃hl ∣∣Q

∗h
l ∣

λ20

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 12ϕ0γu

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
Á
ÁÀ(h2pλ0 ∧ 1)

p∣Q
∗h
l ∣

λ20
+
p

λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally, if λ0(∣Q∗hl ∣ ∨ ∣P̃
h
l ∣) ≥ 1, we are in position to apply Proposition 4.5.10. For all l ∈ L−(p) and

h ∈ H that ∥M(P ′l ,Q
∗h
l ) −M(P

′
l ,Q

∗h
l )∥

2
F is either smaller than 1

2∣H∣∥M(Pl) −M(Pl)∥
2
F , or it is smaller than

κ1γ
4
u [

1
λ0

√

∣Pl∣∣Q̂hl ∣ +
∣Pl∣
λ0
]. From (4.44), it is also smaller than 6ϕ0γuh∣P̃

h
l ∣

√
∣Q∗hl ∣
λ0

. As a consequence, we obtain

the following upper bound:

∥M(P ′l ,Q
∗h
l ) −M(P

′
l ,Q

∗h
l )∥

2
F ≤κ2γ

4
u

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
Á
ÁÀ(h2pλ0 ∧ 1)

p∣Q
∗h
l ∣

λ20
+
p

λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∨
1

2∣H∣
∥M(Pl) −M(Pl)∥

2
F ,

(4.51)
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with κ2 = 12(κ0 ∨ κ1), and using that ϕ0 ≤ κ0γu and ∣P̃hl ∣ ≤ ∣Pl∣ ≤ 2p.
By the two previous cases on l, the inequality (4.51) is valid for any l ∈ L−(p). Now, we decompose (4.50)

into two terms, corresponding to the maximum in (4.51). First, since each Pl is in at most one P−(p) for p ∈ Dn,
we have

∑
(p,h)∈Dn×H

∑
l∈L−(p)

1

2∣H∣
∥M(Pl) −M(Pl)∥

2
F ≤

1

2
SN(P−) . (4.52)

Secondly, we have that

κ2γ
4
u ∑
(p,h)∈Dn×H

∑
l∈L−(p)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
Á
ÁÀ(h2pλ0 ∧ 1)

p∣Q
∗h
l ∣

λ20
+
p

λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ κ2γ
6
u

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

max
p,h

∑
l∈L−(p)

¿
Á
Á
ÁÀ(h2pλ0 ∧ 1)

p∣Q
h∗
l ∣

λ20
+
p

λ0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(a)
≤ 2κ2γ

6
umax
p,h

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

n

λ0
+

¿
Á
Á
ÁÀ(h2pλ0 ∧ 1)

p∣L(p)∣∑l∈L(p) ∣Q
h∗
l ∣

λ20

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b)
≤ 4κ22γ

7
umax
p,h

⎡
⎢
⎢
⎢
⎢
⎣

n

λ0
+

¿
Á
ÁÀ(h2pλ0 ∧ 1)(

n2d

λ20p
∧ (

nd

pλ30h
3
∨
nd

λ20h
))

⎤
⎥
⎥
⎥
⎥
⎦

≤ 4κ22γ
7
umax
p,h

⎡
⎢
⎢
⎢
⎢
⎣

n

λ0
+ nh

√
d

λ0
∧

¿
Á
ÁÀn2dh2

λ0
∧
nd

λ20h

⎤
⎥
⎥
⎥
⎥
⎦

(c)
≤ 4κ22γ

7
u

⎡
⎢
⎢
⎢
⎢
⎣

n

λ0
+ n

√
d

λ0
∧
n2/3
√
d

λ
5/6
0

⎤
⎥
⎥
⎥
⎥
⎦

,

where in (a) we used the Jensen inequality, in (b) we used Lemma 4.5.11 with ϕ = ϕ0 together with the
trivial inequality ∑l∈L(p) ∣Q

h∗
l ∣ ≤ nd/p and in (c) the fact that x ∧ y ≤ x2/3y1/3 and h ≤ 1.

Finally, combining this last inequality with (4.48), (4.49) and (4.52),
we obtain

SN(P ′) = SN(P ′+) + SN(P
′
−)

≤ (1 −
1

γ3u
)SN(P+) + 4κ

2
2γ

7
u

⎡
⎢
⎢
⎢
⎢
⎣

n

λ0
+ n

√
d

λ0
∧
n2/3
√
d

λ
5/6
0

⎤
⎥
⎥
⎥
⎥
⎦

∨ [
1

2
SN(P−)]

≤

⎡
⎢
⎢
⎢
⎢
⎣

Cγ̄7
⎛

⎝

n

λ0
+ n

√
d

λ0
∧
n2/3
√
d

λ
5/6
0

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

∨ [(1 −
1

γ̄3
)SN(P)] ,

where we recall that γ̄ is defined in (4.11) and satisfies γ̄ ≥ γu. This concludes the proof of Proposition 4.5.6.

4.5.4 Proof of the lemmas of Section 4.5.3
Recall that we can write

E = (B −E[B])⊙M +B ⊙ Ẽ , (4.53)

where Ẽ = Y −E[Y ∣B] and that B is a matrix of Bernoulli random variables with parameter λ1.

Proof of Lemma 4.5.8. Assume first that λ0 ≤ 1. Let us fix l ∈ {1, . . . , L} and h ∈ H. We omit the dependence
in l in this proof to ease the notation, and we write P for Pl. Let us define

E′k(a) ∶=
1

∣Na∣
∑
i∈Na

Eik −
1

∣N−a∣
∑
i∈N−a

Eik and ν(a) ∶= ∣Na∣ ∧ ∣N−a∣ . (4.54)

Using Lemma 4.5.7 with a column matrix W with coefficient in {0, 1
∣Na∣ ,−

1
∣N−a∣} and a union bound over all

k ∈ [d] and a ∈ [n], we have with probability at least 1 − δ/L that:

1

λ0
∣E′k(a)∣ ≤ κ

′
0 log(nd/δ) [

√
1

λ0ν(a)
+

1

λ0ν(a)
] , (4.55)
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for some numerical constant κ′0. In what follows, we work under that (4.55) holds true for all a ∈ [n] and k ∈ [d].
First inclusion. Let k ∈ Q∗(κ0 log(nd/δ)h) with numerical constant κ0 to be fixed later. Let a′ ≥ 1 be

any integer such that ν(a′) ≥ 1/(λ0h2). We have

1

λ0
∣E′k(a

′
)∣ ≤ 2κ′0 log(nd/δ)h , (4.56)

since we work under the event defined by (4.55) and since h2 ≤ h. Then by consistency of the already constructed
graph Gt,u at the beginning of step t, Na′ (resp. N−a′) contains by definition (4.20) only experts that are π∗-above
(resp. below) all the experts of P . Since by assumption k is inQ∗h, it holds that ∆∗k(a

′) ≥∆∗k(0) ≥ κ0 log(nd/δ)h
- see the definition (4.41) of Q∗h. Hence, recalling the signal-noise decomposition (4.53), we have that

1

λ0
∆̂k(a

′
) =

λ1
λ0

∆∗k(a
′
) +

1

λ0
E′k(a

′
) ≥ log(nd/δ)((1 − 1/e)κ0 − 2κ

′
0)h . (4.57)

Choosing κ0 ≥ 10κ′0 + 1, we obtain by definition (4.21) that ν(âk(h)) ≤ 1
λ0h2 so that k ∈ Q̂h.

Second inclusion. Let k ∈ Q̂h, and a′ = a∗((κ0 log(nd/δ))
−1h) be as defined in (4.40). By definition,

it holds that ν(a′) ≥ κ0 log(nd/δ)/(λ0h2) ≥ 1
λ0h2 . Hence, since k ∈ Q̂h, we have by definition (4.22) that

ν(âk(h)) ≤
1

λ0h2 ≤ ν(a
′), which implies in particular that âk(h) ≤ a′. Then, by definition (4.21) of âk(h) we

have that 1
λ0
∆̂k(a

′) ≥ h. Using the concentration inequality (4.55) with h′ = (κ0 log(nd/δ))
−1h and the fact

that λ0 ≥ λ1 we obtain

∆∗k(a
′
) ≥ h −

2κ′0
κ0

h , (4.58)

and we get the second inclusion by also choosing κ0 ≥ 4(κ′0 + 1).

Proof of Lemma 4.5.11. For simplicity, we renumber L(p) = (1,2, . . . , L′ ∶= ∣L(p)∣). Let us write ν(a, l) =

∣Na(l)∣ ∧ ∣N−a(l)∣ and Λ = ⌊ ϕ2

pλ0h2 ⌋ + 1. We let a∗ ∶= a∗(ϕ−1h, l) be as defined in (4.40) so that for any l,

ν(a∗, l) ≥ ϕ2

λ0h2 .

By assumption of Proposition 4.5.6, it holds that P1
G
≺ P2

G
≺ . . .

G
≺ P∣L(p)∣ where we recall G = Gt,u is the

already constructed graph - see Section 4.5.3.1. Hence, it holds that rkG,i(j) ≥ Λ for any i ∈ Pl and j ∈ Pl+Λ

- see (4.19) for the definition of rk. Since there are at least pΛ ≥ ϕ2

λ0h2 experts in the union Pl+1 ∪ ⋅ ⋅ ⋅ ∪ Pl+Λ,
we conclude that a∗ ≤ Λ, and that any expert in Na∗ (resp. N−a∗) is below the maximal expert of Pl+Γ (resp.
above) the minimal expert of Pl−Λ. This implies that, upon writing ∆

∗
k(l) for the difference of these maximal

and minimal experts, we have by definition (4.41) of Q
∗h

that ∆
∗
k(l) > h/2 for all k in Q

∗h
. This implies in

particular that

∑
l∈L(p)

∣Q
∗h
l (h,ϕ)∣ ≤

d

∑
k=1

∑
l∈L(p)

1{∆
∗
k(l) ≥ h/2} ≤

2

h

d

∑
k=1

∑
l∈L(p)

∆
∗
k(l) ≤ (2Λ + 1)

2d

h
≤ 6

Λd

h
, (4.59)

where in the last inequality we used the fact that Mi,k ∈ [0,1] and that the sequence Pl−Λ, . . . , Pl+Λ is of length
2Λ + 1, for any l ∈ L(p).

4.5.5 Proof of Proposition 4.5.10

Let us fix any l ∈ {1, . . . , L} and h ∈H. Since l, h and Q̂hl are fixed in this proof, we simplify the notation and we
write (P ′, P̃ ,Q) = (P ′l , P̃

h
l , Q̂

h
l ) and M ∶= M(P̃ ,Q) and M(P ′) ∶= M(P ′,Q). We also fix δ′ = δ/(L∣H∣), where

we recall that L ≤ n is the number of groups.
Let us assume that

∥M(P ′) −M(P ′)∥2F ≥ κ1γ
4
u [

1

λ0

√

∣P̃ ∣∣Q∣ +
∣P̃ ∣

λ0
] , (4.60)

for some constant κ1 to be fixed later. In what follows, we show that under assumption (4.60) for some large
enough numerical constant κ1, we necessarily have that the square norm of P ′ is a contraction of the square
norm of P , that is

∥M(P ′) −M(P ′)∥2F ≤ (1 −
1

4γ2u
)∥M −M∥2F . (4.61)
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Step 1: control of the vector v̂

First, the following lemma states that the first singular value of (M −M) is, up to polylogarithmic terms,
of the same order as its Frobenius norm. This is mainly due to the fact that the entries of M lie in [0,1] and
that M −M is an isotonic matrix.

Lemma 4.5.12 (Lemma E.4 in [74]). Assume that ∥M −M∥F ≥ 2. For any sets P̃ and Q, we have

∥M −M∥2op ≥
4

γ2u
∥M −M∥2F .

This lemma was already stated and proved as Lemma E.4 in [74], recalling that γu > ϕL1 ≥ 8 log(nd) – see
(4.9) and (4.10).

Now, write v̂ = argmax∥v∥2≤1 [∥v
T (Y (2) − Y

(2)
)∥22 −

1
2
∥vT (Y (2) − Y

(2)
− Y (3) + Y

(3)
)∥22], where the argmax is

taken over all v in P̃ .

Lemma 4.5.13. Assume that λ0∣P̃ ∣ ≥ 1. There exists a numerical constant κ′0 such that if

∥M −M∥2op ≥ κ
′
0 log

2
(nd/δ′)(

1

λ0

√

∣Q∣∣P̃ ∣ +
∣P̃ ∣

λ0
) , (4.62)

then, with probability higher than 1 − δ′, we have

∥v̂T (M −M) ∥22 ≥
1

2
∥M −M∥2op .

In light of Lemma 4.5.12 and Condition (4.60), the Condition (4.62) in Lemma 4.5.13 is valid if we choose
κ1 in Proposition 4.5.10 such that κ1 ≥ 16κ′0. Consequently, there exists an event of probability higher than
1 − δ′ such that

∥v̂T (M −M) ∥22 ≥
2

γ2u
∥M −M∥2F . (4.63)

Step 2: control of the vector v̂−
Now remark that since ∥v̂i∥2 = 1, there are at most 1

λ0
of experts i such that v̂i >

√
λ0. Hence, we have that

∥v̂T− (M −M) ∥
2
2 ≥

2

γ2u
∥M −M∥2F −∑

i∈P̃
1v̂i>

√
λ0
∥Mi⋅ −m∥

2
2

(a)
≥

2

γ2u
∥M −M∥2F −

3γu
λ0

¿
Á
ÁÀ∣Q̂∣

λ0
(b)
≥

1

γ2u
∥M −M∥2F .

(a) comes from the fact that any expert in P̃ satisfies (4.43) under the event of Lemma 4.5.9. (b) comes from
Condition (4.60) and the assumption that λ0∣P̃ ∣ ≥ 1.

Step 3: control of the vector ŵ

Next, we show that a thresholded version of ẑ = (Y (4)−Y
(4)
)T v̂− is almost aligned with z∗ = λ1(M −M)T v̂−.

We define the sets S∗ ⊂ Q and Ŝ ⊂ Q of questions by

S∗ = {k ∈ Q ∶ ∣z∗k ∣ ≥ 2γu
√
λ0} ; Ŝ = {k ∈ Q ∶ ∣ẑk ∣ ≥ γu

√
λ0} . (4.64)

S∗ stands for the collection of questions k such that z∗k is large whereas Ŝ is the collection questions k with
large ẑk. Finally, we consider the vectors w∗ and ŵ defined as theresholded versions of z∗ and ẑ respectively,
that is w∗k = z

∗
k1k∈S∗ and ŵk = ẑk1k∈Ŝ . Note that, up to the sign, ŵ stands for the active coordinates computed

in SLR, Line 7 of Algorithm 15.

Recall that we assume that λ0 ≤ 1. We write v for any unit vector in R∣P̃ ∣. Let us apply Lemma 4.5.7 for
each column k ∈ Q of the noise matrix E with the matrix W equal to v − ( 1

∣P̃ ∣ ∑i∈P̃ vi)1P̃ at column k and 0

elsewhere. We deduce that, for any fixed matrix M , any subsets P̃ and Q, and any unit vector v ∈ RP̃ such
that ∥v∥∞ ≤ 2

√
λ0, we have

P [max
k∈Q
∣(vT (E(3) −E

(3)
))k∣ ≤ 100 log(2∣Q∣/δ

′
)
√
λ0] ≥ 1 − δ

′ . (4.65)
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Observe that ẑ = z∗ + (E(3) −E
(3)
)T v̂−. Conditioning on v̂−, we deduce that, on an event of probability higher

than 1 − δ′, we have
∥ẑ − z∗∥∞ ≤ 100 log(2∣Q∣/δ

′
)
√
λ0 ≤

γu
2

√
λ0 , (4.66)

where the last inequality comes from γu > ϕL1 . Hence it holds that S∗ ⊂ Ŝ and for k ∈ Ŝ, we have
z∗k/ẑk ∈ [1/2,2]. Next, we shall prove that, under this event, λ1v̂T− (M −M)ŵ/∥ŵ∥2 is large (in absolute value):

λ1 ∣v̂
T
− (M −M)ŵ∣ = ∣(z

∗
)
T ŵ∣ = ∑

k∈Ŝ
z∗k ẑl ≥

2

5
∑

k∈Ŝ
(z∗k)

2
+ (ẑl)

2
≥
2

5
[∥w∗∥22 + ∥ŵ∥

2
2] ≥

4

5
∥ŵ∥2∥w

∗
∥2 ,

where we used in the first inequality that z∗k/ẑk ∈ [1/2,2] and in the second inequality that S∗ ⊂ Ŝ. Thus, it
holds that

λ21 ∣v̂
T
− (M −M)

ŵ

∥ŵ∥2
∣

2

≥
16

25
∥w∗∥22 . (4.67)

It remains to prove that ∥w∗∥2 is large enough. Writing S∗c for the complementary of S∗ in Q, it holds that

∥w∗∥22 = ∥z
∗
∥
2
2 − ∑

k∈S∗c
(z∗k)

2 , (4.68)

so that we need to upper bound the latter quantity. Write z∗S∗c = z
∗ −w∗. Coming back to the definition of z∗,

[ ∑
k∈S∗c

(z∗k)
2
]

2

= [ ∑
k∈S∗c

λ1[v̂
T
− (M −M)]kz

∗
k]

2

≤ ∥λ1 (M −M) z
∗
S∗c∥

2
2 = ∑

i∈P̃
( ∑
k∈S∗c

λ1(Mik −mk)z
∗
k)

2

(a)
≤

4γ2u
∣P̃ ∣2

λ0∑
i∈P̃

⎛

⎝
∑
k∈S∗c

∑
j∈P̃

λ1∣Mik −Mjk ∣
⎞

⎠

2

≤
4γ2u
∣P̃ ∣2

λ0∑
i∈P̃

⎛

⎝
∑
j∈P̃

λ1∥Mi⋅ −Mj⋅∥1
⎞

⎠

2

(b)
≤ 40γ4uλ

2
0∣P̃ ∣∣Q∣

≤ [7γ2uλ0

√

∣P̃ ∣∣Q∣]
2

≤ [
1

2γ2u
λ20∥M −M∥

2
F ]

2

.

In (a), we used the definition of S∗. In (b), we used (4.43) that holds true since we are under the event Lemma
4.5.8 and λ0∣Q∣ ≥ 1. The last inequality comes from Condition (4.60), choosing κ1 ≥ 14.

Recall that z∗ = v̂T− (M −M). Combining (4.63) and (4.68), we deduce that

∥w∗∥22 ≥
1

2γ2u
λ20∥M −M∥

2
F , (4.69)

which, together with (4.67) and λ0 ≥ λ1, yields

∥(M −M)
ŵ

∥ŵ∥2
∥

2

2

≥ ∣v̂T− (M −M)
ŵ

∥ŵ∥2
∣

2

≥
1

2γ2u
∥M −M∥2F . (4.70)

Write ŵ(1) and ŵ(2) the positive and negative parts of ŵ respectively so that ŵ = ŵ(1) − ŵ(2) and ŵ+ =
ŵ(1) + ŵ(2). We obviously have ∥ŵ∥2 = ∥ŵ+∥2. Besides, if the rows of M are ordered according to the oracle
permutation, then (M −M)ŵ(1) and (M −M)ŵ(2) are nondecreasing vectors with mean zero. It then follows
from Harris’ inequality that these two vectors have a nonegative inner product. We have proved that

∥(M −M)
ŵ+

∥ŵ+∥2
∥

2

2

≥ ∥(M −M)
ŵ

∥ŵ∥2
∥

2

2

≥
1

2γ2u
∥M −M∥2F . (4.71)

Step 4: Showing that ŵ satisfies Condition (4.16)
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Recall that we assume for simplicity that λ0 ≤ 1. First we upper bound ∥w∥2∞ by using (a) that ẑ is close to
z∗ with (4.66), (b) that for any k ∈ Q, vTM⋅k ≤ ∥v∥1 and (c) that λ0∣P̃ ∣ ≥ 1:

∥ŵ∥2∞
(a)
≤ 2∥z∗∥2∞ + γ

2
uλ0

(b)
≤ 2λ20∥v̂∥

2
1 + γ

2
uλ0

(c)
≤ 3γ2uλ

2
0∣P̃ ∣ . (4.72)

Secondly, we lower bound ∥w∥22 by using (a) that S∗ ⊂ Ŝ and that z∗k/ẑk ∈ [1/2,2], (b) that ∥w∗∥22 captures
a significant part of the L2 norm -see (4.69), and (c) the Condition (4.60) with κ1 ≥ 24:

∥ŵ∥22
(a)
≥

1

4
∥w∗∥22

(b)
≥

1

8γ2u
λ20∥M −M∥

2
F

(c)
≥ 3γ2uλ0∣P̃ ∣ . (4.73)

We deduce that ∥ŵ∥2∞ ≤ λ0∥ŵ∥
2
2, which is exactly Condition (4.16). This shows that ŵ+ is considered for the

update (4.18) in the final step of the procedure Line 9 of Algorithm 15.

Step 5: upper bound of the Frobenius norm restricted to P ′

Equipped with this bound, we are now in position to show that the set P ′ of experts obtained from P̃ when
applying the pivoting algorithm with ŵ+/∥ŵ+∥2 has a much smaller square norm. By Lemma 4.5.7 used with
the matrix W equal to 0 except at line i where it is equal to the vector ŵ+/∥ŵ+∥2, there exists an event of
probability higher than 1 − δ′ such that

max
i,j∈P ′

∣⟨Ei⋅ −Ej⋅,
ŵ+

∥ŵ+∥2
⟩∣ ≤ ϕL1

√
λ0 ≤ γu

√
λ0 ,

where we recall that ϕl1 is defined in (4.9). Hence, since the vector ŵ is considered in the update (4.18), we
have maxi,j∈P ′ ∣⟨Yi⋅ − Yj⋅,

ŵ+

∥ŵ+∥2 ⟩∣ ≤ γu
√
λ0 and

max
i,j∈P ′

∣⟨Mi⋅ −Mj⋅,
ŵ+

∥ŵ+∥2
⟩∣ ≤ 2γu

√
1

λ0
. (4.74)

By convexity, it follows that

∥(M(P ′) −M(P ′)) ŵ+

∥ŵ+∥2 ∥
2

2
≤ 4γ2u

1

λ0
∣P ′∣ ≤ 4γ2u

1

λ0
∣P̃ ∣ .

In light of Condition (4.60), this quantity is small compared to ∥M −M∥2F :

∥(M(P ′) −M(P ′)) ŵ+

∥ŵ+∥2 ∥
2
2 ≤

1

4γ2u
∥M −M∥2F , (4.75)

which together with (4.71) leads to

∥(M −M) ŵ+

∥ŵ+∥2 ∥
2
2 − ∥(M(P

′
) −M(P ′)) ŵ+

∥ŵ+∥2 ∥
2
2 ≥

1

4γ2u
∥M −M∥2F . (4.76)

Since P ′ ⊂ P̃ , we deduce that, for any vector w′ ∈ Rq, we have ∥(M −M)w′∥22 ≥ ∥(M(P
′)−M(P ′))w′∥2. It then

follows from the Pythagorean theorem that

∥M −M∥2F − ∥M(P
′
) −M(P ′)∥2F ≥ ∥(M −M)

ŵ+

∥ŵ+∥2 ∥
2
2 − ∥(M(P

′
) −M(P ′)) ŵ+

∥ŵ+∥2 ∥
2
2 .

Then, together with (4.76), we arrive at

∥M(P ′) −M(P ′)∥2F ≤ (1 −
1

4γ2u
)∥M −M∥2F .

We have shown that if (4.60) is satisfied, then there is a contraction in the sense of (4.61). This in turn gives
the upper bound (4.46), and it concludes the proof of Proposition 4.5.10.

Proof of Lemma 4.5.13. Recall that we consider the case λ0 ≤ 1 and that the case λ0 ≥ 1 is discussed in
Section 4.5.6. We start with the two following lemmas. To ease the notation, we assume in this proof that
P̃ = {1, . . . , p}, that Q = {1, . . . q}. We only consider the matrices restricted to the sets P̃ ,Q and we write
E ∶= E(P̃ ,Q). Let us define J = 11T ∈ Rp×p the matrix with constant coefficients equals to 1 and A = (Ip − 1

p
J)

be the projector on the orthogonal of 1, so that E − E = AE ∈ Rp×q. The two following lemmas are direct
consequences of Proposition 4.4.1, and a discussion of the corresponding concenration inequality on random
rectangular matrices can be found in Section 4.4. We state weaker concentration inequalities than what is
proven in Proposition 4.4.1 in order to factorize the polylogarithmic factors and to ease the reading of the proof.
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Lemma 4.5.14. Assume that λ0 ≤ 1 and that λ0(p ∨ q) ≥ 1. It holds with probability larger than 1 − δ′/4 that

∥EET −E[EET ]∥op ≤ κ′′0 log
2
(pq/δ′) [λ0

√
pq + λ0p] .

Lemma 4.5.15. Assume that λ0 ≤ 1 and that λ0(p ∨ q) ≥ 1. With probability larger than 1 − δ′/4, one has for
any orthogonal projection Λ ∈ Rq×q satisfying rank(Λ) ≤ p that

∥ΛETEΛ∥op ≤ κ
′′
1 log

2
(pq/δ′) [λ0

√
pq + λ0p] ,

Proofs of Lemma 4.5.14 and Lemma 4.5.15. First, we recall that for any i, k, we have that Eik = (Bik−λ1)Mik+

Ẽik, and that Ẽ is an average of 1-subGaussian random variables, as described in (4.30) For any u ≥ 0 we have

E[E2u
ik ] ≤ 3

uE [Bik + λ2u0 + Ẽ
2u
ik ] ≤ 3

u
(2λ0 + u!E[eẼ

2
ik]) ≤

1

2
u!λ01000

u , (4.77)

where for the last inequality we used the following inequalities:

E[eẼ
2
ik] ≤ ∑

u≥1
e−λ0

λu0
u!
e1/u ≤ λ0e .

Hence, condition (4.24) is satisfied withK = 1000 and σ2 = λ0 for the coefficients of E. We just apply Proposition
4.4.1 with X = E for Lemma 4.5.14. For Lemma 4.5.15, we apply Proposition 4.4.1 with X = ET and we remark
that ∥ΛETEΛ∥2op ≤ 2∥ΛE

TE −E[ETE]Λ∥2op + 2∥E[ETE]∥2op together with the fact that ∥E[ETE]∥2op ≤ c′λ0p for
some numerical constant c′.

Remark that since we assume in Lemma 4.5.13 that λ0p ≥ 1, it holds that
√
λ0p ≤ λ0p and

√
λ0q ≤ λ

2
0
√
pq, so

that both upper bounds of Lemma 4.5.14 and Lemma 4.5.15 reduce - up to logarithmic factors - to λ0
√
pq+λ0p.

We write for short in the following

F ∶= F (p, q, λ0, δ
′
) = log2(pq/δ′)[λ0

√
pq + λ0p] , (4.78)

and κ′′2 = 8(κ
′′
0 ∨ κ

′′
1).

Now let us write
AY = λ1AM +AE ,

so that, for any v ∈ Rp, recalling that AY = Y − Y ,

∥vTAY ∥22 = λ
2
1∥v

TAM∥22 + ∥v
TAE∥22 + 2λ1⟨v

TAE,vTAM⟩ ,

which, in turn, implies that

∣∥vTAY ∥22 − λ
2
1∥v

TAM∥22 −E [∥v
TAE∥22]∣ ≤ ∣∥v

TAE∥22 −E [∥v
TAE∥22]∣ + 2λ1∣v

TAMET (Av)∣

(a)
≤ ∥A(EET −E[EET ])A∥op + 2λ1∥AMETE(AM)T ∥1/2op

≤ ∥EET −E[EET ]∥op + 2λ1∥AM∥op∥ΛETEΛ∥1/2op ,

Where we define Λ ∈ Rd×d as the orthogonal projector on the image of ker(AM)⊥ which is of rank less than p. For
(a), we used the fact that A is contracting the operator norm as an orthogonal projector so that ∥Av∥2 ≤ 1. We
now apply Lemma 4.5.14 and Lemma 4.5.15 together with the fact that λ1 ≤ λ0, and we obtain with probability
at least 1 − δ′/2 that

sup
v∈Rp,∥v∥=1

∣∥vTAY ∥22 − λ
2
1∥v

TAM∥22 −E [∥v
TAE∥22]∣ ≤ κ

′′
2F + λ1∥AM∥op

√
κ′′2F . (4.79)

where F is defined in (4.78). In the same way, we have that, with probability larger than 1 − δ′/2,

sup
v∈Rp∶ ∥v∥2≤1

∣
1

2
∥vTA(Y − Y ′)∥22 −E [∥v

TAE∥22]∣ =
1

2
sup

v∈Rp∶ ∥v∥2≤1
∣∥vTA(Y − Y ′)∥22 −E∥v

TA(Y − Y ′)∥22∣

≤ κ′′3F ,

for some numerical constant κ′′3 . Putting everything together we conclude that, on an event of probability higher
than 1 − δ′, we have simultaneously for all v ∈ Rp with ∥v∥2 ≤ 1 that

∣∥vTAY ∥22 − ∥v
TAM∥22 −

1

2
∥vTA(Y − Y ′)∥22∣ ≤ κ

′′
4F + λ1∥AM∥op

√
κ′′4F ,
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with κ′′4 = κ
′′
2 ∨ κ

′′
3 . Choosing the numerical constant κ′0 of Lemma 4.5.13 such that κ′0 ≥ 4 ⋅ 16(1 − 1/e)

−1κ′′4 we
have

λ21∥AM∥
2
op ≥ 4 ⋅ 16κ

′′
4F ,

since it holds that λ1 ≥ (1 − 1/e)λ0. We deduce that on the same event:

sup
v∈Rp∶ ∥v∥2≤1

∣∥vTAY ∥22 − ∥v
TAM∥22 −

1

2
∥vTA(Y − Y ′)∥22∣ ≤

1

4
∥AM∥2op .

Writing ψ(v) = ∣∥vT (Y − Y )∥22 −
1
2
∥vTA(Y − Y ′)∥22∣, we deduce that, for v such that ∥vTAM∥22 = ∥AM∥

2
op, we

have Ψ(v) ≥ 3
4
∥AM∥2op, whereas, for v such that ∥vTAM∥22 <

1
2
∥AM∥2op, we have Ψ(v) < 3

4
∥AM∥2op. We conclude

that v̂ satisfies ∥v̂TAM∥22 >
1
2
∥AM∥2op with probability at least 1 − δ′.

4.5.6 Proof of Theorem 4.2.2 when λ0 ≥ 1

The aim of this section is to provide an extension of the proof of Theorem 4.2.2 to the case λ0 ≥ 1. Recall that
we fix δ to be a small probability the proof of Theorem 4.2.2, and that E and Ẽ are the matrices defined in
(4.29) and (4.30) by

Ẽ
(s)
ik = ∑

t∈N(s)

εt
r
(s)
ik
∨1
1{xt = (i, k)} and E

(s)
ik = (B

(s)
ik − λ1)M +B

(s)
ik Ẽ

(s)
ik .

In what follows, we consider the two subcases where λ0 > 16 log(5nd/δ) or λ0 ≤ 16 log(5nd/δ), which essentially
rely on the two following ideas:

• If λ0 ≤ 16 log(5nd/δ), we use the fact that the coefficients of E defined in (4.29) are 5-subGaussian together
with the same signal-noise decomposition Y = λ1M +E as in the proofs when λ0 ≤ 1. The difference from
the case λ0 ≤ 1 lies in the application of subGaussian inequalities of Eik instead of Bernstein inequalities
as in (4.37).

• If λ0 > 16 log(5nd/δ), we show that the event {r(s)ik ≥ λ0/2} holds true for all i, k, s with high probability.
Working conditionally to this event, we use the decomposition Y =M + Ẽ, and we show that the noise Ẽ
has 2

λ0
-subGaussian independent coefficients. The rationale behind using Ẽ when λ0 is large is that Ẽik

takes advantage of the mean of 2/λ0 subGaussian variables with high probability.

Let r
(s)
min = mini,k r

(s)
ik be the minimum number of observation at positions (i, k) in Ns - see (4.14). In the case

λ0 > 16 log(5nd/δ), the following lemma states that with high probability, we observe all the coefficients for all
sample s in the full observation regime.

Lemma 4.5.16. Assume that λ0 ≥ 16 log(5nd/δ). The event {r(s)min ≥ λ0/2} holds simultaneously for all sample
s with probability at least 1 − 5Tδ.

Proof of Lemma 4.5.16. We apply Chernoff’s inequality - see e.g. section 2.2 of [62] - to derive that for any i, k

P(r(s)ik ≤ λ0/2) ≤ exp(−
1

8
λ0) ≤ δ/(nd) , (4.80)

where we use the inequality (1−log(2))/2 ≥ 1/8. We conclude with a union bound over all coefficients in [n]×[d]
and all 5T samples.

Let us now omit the dependence of E and Ẽ in the sample s. In what follows, use that the coefficients of E
are 5-subGaussian, which is a consequence of the fact that Eik is the sum of a centered variable bounded by 1
and a 1-subgaussian random variable Ẽik, so that by Cauchy-Schwarz and the Hoeffding inequality we have

E[exp(xEik)] ≤
√
exp(4x2/8)

√
exp(4x2/2) = exp(5/4x2) . (4.81)

Under the event of Lemma 4.5.16, we use that Ẽik is λ0/2-subGaussian, as an average of at least 2/λ0
random variables that are 1-subGaussians:

E[exp(xẼik)] ≤ exp( 1
λ0
x2) , (4.82)
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4.5.6.1 Adjustements for the general analysis

We first make the changes that should be done in Section 4.5.1 to have a proper proof in the case λ0 ≥ 1.
If λ0 ∈ [1,16 log(5nd/δ)], we simply replace λ0 by 1/λ0 in the upper bound of (4.31) for the event ξ in Lemma

4.5.1. In the proof of the restated Lemma 4.5.1, we can replace the inequality (4.37) by

∣⟨E,W ⟩∣ ≤

√

10∥W ∥2F log (
2

δ′
) , (4.83)

for any matrix W ∈ Rn×d, with probability at least 1 − δ′. We can then obtain 1/λ0 instead of λ0 simply by
using that ϕL1/

√
λ0 ≥

√
ϕL1 , recalling that ϕL1 is defined in (4.9).

If λ0 > 16 log(5nd/δ), we say that we are under event ξ if the event of Lemma 4.5.16 holds and (4.31) holds
for all pairs (Q,w), replacing E by Ẽ, and λ0 by 1/λ0. The proof of the new version of Lemma 4.5.1 lies in the
Hoeffding inequality applied to Ẽ under the event of Lemma 4.5.16, leading to the subsequent equation:

∣⟨Ẽ,W ⟩∣ ≤

¿
Á
ÁÀ4∥W ∥2F

λ0
log (

2

δ′
) , (4.84)

for any matrix W ∈ Rn×d, with probability at least 1 − δ′. This equation then replaces (4.37).

4.5.6.2 Adjustments to the proofs of Proposition 4.5.6

We now adapt the proofs in Section 4.5.3 of Proposition 4.5.6 to the case λ0 ≥ 1.
All the lemmas of Section 4.5.3 can be stated as is for any λ0 ≥ 1, and the only adjustments concern the

proofs of Lemma 4.5.8, Lemma 4.5.9 and Proposition 4.5.10.

4.5.6.3 Adjustments in the proofs of Lemma 4.5.8 and Lemma 4.5.9

Consider the proof of Lemma 4.5.8. First, if λ0 ≥ 16 log(5nd/δ), we place ourselves under the event Lemma
4.5.16 and replace λ1 by 1 and all the E by Ẽ. Instead of inequality (4.55), we use the fact that the coefficients
of Ẽ are 2/λ0-subGaussian - see (4.82) - leading to the following inequality with probability at least 1 − δ:

∣Ẽk(a)∣ ∶=
RRRRRRRRRRR

1

∣Na∣
∑
i∈Na

Ẽik −
1

∣N−a∣
∑
i∈N−a

Ẽik

RRRRRRRRRRR

≤ κ′0 log(nd/δ)

√
1

λ0ν(a)
, (4.85)

for some numerical constant κ′0. The rest of the proof remains unchanged.

If λ0 ∈ [1,16 log(5nd/δ)], we use the fact that E has 5-subGaussians coefficients - see (4.81) and we do not
divide by λ0 in (4.57) - see the definition of ∆̂ (4.21).

Concerning Lemma 4.5.9, the adjustments are the same as for Lemma 4.5.1, namely working under the event
of Lemma 4.5.16, replacing E by Ẽ, λ0 by 1/λ0 and λ1 by 1 if λ0 ≥ 16 log(5nd/δ), and using the fact that the
coefficient of E are 5-subGaussians - see (4.81) if λ0 ∈ [1,16 log(5nd/δ)].

4.5.6.4 Adjustments in the proof of Proposition 4.5.10

We now adapt the proofs in Section 4.5.5 of Proposition 4.5.10 to the case λ0 ≥ 1. First, Lemma 4.5.13 can be
stated as is, and its proof when λ0 ≥ 1 is directly implied by Lemma E.5 in [74] with Θ ∶=M either conditionally
on Lemma 4.5.16 with noise N ∶= Ẽ and ζ2 ∶= 2/λ0 when λ0 ≥ 16 log(5nd/δ) or with noise N ∶= E and ζ2 ∶= 5
when λ0 ≤ 16 log(5nd/δ).

Secondly, remark that if λ0 ≥ 1, it holds that v̂− = v̂ and that Condition (4.16) on ŵ is automatically satisfied,
so that step 2 and step 4 can be removed from the proof in that case. For Step 3 and 5, we do the following
adjustments:

If λ0 ∈ [1,16 log(5nd/δ)], the proof remains unchanged except that we use that the coefficients of E are
5-subGaussian -see (4.81).

If λ0 ≥ 16 log(5nd/δ), we work conditionally on the event of Lemma 4.5.16 and we replace λ1 by 1 and E
by Ẽ. The subgaussian concentration bound on Ẽ (4.84) allows us to replace λ0 by 1

λ0
in the equations from

(4.64) to (4.69).
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4.5.7 Proof of Corollaries 4.2.4 and 4.2.5
Proof of Corollary 4.2.4. Assume that π∗ = id for simplicity. Let Piso be the projector on the set of isotonic
matrices, and E′ = Y (2)

π̂−1
−Mπ̂−1 so that M̂iso = Piso(Mπ̂−1 +E

′). Remark that the loss can be decomposed as

∥(M̂iso)π̂ −M∥
2
F = ∥PisoMπ̂−1 − PisoM + Piso(M +E

′
) −M +M −Mπ̂−1∥

2
F .

Using the non-expansiveness of Piso and the triangular inequality as in the proof of proposition 3.3 of [60], we
deduce that

∥M̂iso −M∥
2
F ≤ 4∥Mπ̂−1 −M∥

2
F + 2∥Piso(M +E

′
) −M∥2F . (4.86)

Since the projection of M +E′ on isotonic matrices is equal to the columnwise projection on isotonic vectors,
it holds that supM∈Ciso(n,d)E∥Piso(M +E

′) −M∥2F = d supM∈C(n,1)E∥Piso(M⋅1 +E
′
⋅1) −M⋅1∥

2
F , where we also use

the notation Piso for the projector on isotonic vectors. The rate of estimation in L2 norm of an isotonic vector
with bounded total variation partial observation can be found in [107], with V ∶= 1 and σ2 ∶= 1/λ. Hence, we
obtain that supM∈C(n,1)E∥Piso(M⋅1 +E

′
⋅1) −M⋅1∥

2
F ≤ C1n

1/3/λ2/3. Upper bounding the first term in (4.86) with
a quantity of order ρperm ≤ 2ρreco by Theorem 4.2.2 concludes the proof.

Proof of Corollary 4.2.5. We follow the same steps as in Corollary 4.2.4. Assume that π∗ = η∗ = id, E′ =
Y
(3)
π̂−1η̂−1

−M , and let Pbiso be the projector on bi-isotonic matrices. We have that

∥(M̂biso)π̂η̂ −M∥
2
F ≤ 4∥Mπ̂−1η̂−1 −M∥

2
F + 2∥Pbiso(M +E

′
) −M∥2F . (4.87)

M is isotonic in both directions so that we can apply Theorem 4.2.2 in rows and columns. After the first two
steps of the above procedure, we obtain two estimator π̂, η̂ that satisfy

sup
π∗,η∗∈Πn

M ∶Mπ∗−1η∗−1∈Cbiso

E [∥Mπ̂−1η̂−1 −Mπ∗−1η∗−1∥
2
F ] ≤ C

′′ logC
′′
(n)n7/6λ−5/6 . (4.88)

The second term of (4.87) is the risk of a bi-isotonic regression by least square, and is smaller than n/λ ≤ n7/6λ−5/6

- see e.g. [60].

4.5.8 Proof of the minimax lower bound
Proof of Theorem 4.2.1. Since ρperm(n, d, λ) is nondecreasing with n and d, we can assume without loss of
generality that both n and d express as a power of 2.

The following proof is strongly related to the proof of Theorem 4.1 in [74]. While a worst case distribution
is defined on the set of matrices that have nondecreasing rows and nondecreasing columns in [74], we aim here
at defining a worst case distribution on matrices only have nondecreasing columns. Since the isotonic model is
less constrained than the bi-isotonic model studied in [74], the permutation estimation problem is statistically
harder, and the lower bound has a greater order of magnitude.

As in [74], the general idea is first to build a collection of prior νG indexed by some G ∈ G on M , then
to reduce the problem to smaller problems and finally to specify the prior in function of the regime in n, d
and λ. By assumption, the data yt is distributed as a normal random variable with mean Mxt and variance
1, conditionally on M and xt. We write as in [74] P(full)G and E

(full)
G the corresponding marginal probability

distributions and expectations on the data (xt, yt). Our starting point is the fact that the minimax risk (4.4)
is higher than the worst Bayesian risk:

R
∗
perm(n, d, λ) ≥ inf

π̂
sup
G∈G

Efull
G [∥Mπ̂−1 −Mπ∗−1∥

2
F ] . (4.89)

Step 1: Construction of the prior distribution on M

Let p ∈ {2, . . . , n} and q ∈ [d] be two powers of 2 to be fixed later, and G
(ι)
∶= [(ι − 1)p + 1, ιp], for

ι ∈ {1, . . . , n/p}. The general idea is to build a simple prior distribution on isotonic matrices in RG
(ι)×d, and to

derive a prior distribution on isotonic matrices in Rn×d by combining n/p independent simple prior distributions
defined on each strip RG

(ι)×d.
Let w ∈ Rn be a vector that is constant on each group G

(ι)
= [(ι − 1)p + 1, ιp] and that has linearly

nondecreasing steps:

wi = ⌊
i

p
⌋
p

4n
∈ [0,1/4] . (4.90)
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Letting 1[d] be constant equal to 1 in Rd, we define

M = w1T[d] +
υ
√
pλ
B(full) , (4.91)

where the random matrix B(full) ∈ {0,1}n×d is defined as in [74]. We recall the definition of its distribution in
what follows for the sake of completeness.

Consider a collection G of subsets of [p] with size p/2 that are well-separated in symmetric difference as
defined by the following lemma.

Lemma 4.5.17. There exists a numerical constant c0 such that the following holds for any even integer p.
There exists a collection G of subsets of [p] with size p/2 which satisfies log(∣G∣) ≥ c0∣p∣ and whose elements are
p/4-separated, that is ∣G1∆G2∣ ≥ p/4 for any G1 ≠ G2.

The above result is stated as is in [74] and is a consequence of Varshamov-Gilbert’s lemma - see e.g. [90].

For each ι ∈ [n/p], we fix a subset G(ι) from G, and its translation Gt(ι) = {(ι − 1)p + x ∶ x ∈ G(ι)} ⊂ G
(ι)

.
The experts of Gt(ι) will correspond the p/2 experts in G

(ι)
that are above the p/2 experts in G

(ι)
∖Gt(ι). We

write G = (Gt(1), . . . ,Gt(n/p)) and G the corresponding collection of all possible G. Given any such G, we shall
define a distribution νG of B(full), and equivalently of M by (4.91).

For ι ∈ [n/p], we sample uniformly a subset Q(ι) of q questions among the d columns. In each of these q
columns, the corresponding rows of B(full) are equal to one. More formally, we have

B(full) =
n/p
∑
ι=1

1Gt(ι)1Q(ι) . (4.92)

As mentioned above, the definition of B(full) is the same as in [74], if d̃ is set to be equal to d. They define a
block constant matrix when d̃ < d to get an appropriate prior distribution for bi-isotonic matrices, but we do
not need to do that here since we do not put any constraint on the rows of M .

The matrix M defined in (4.92) is isotonic up to a permutation of its rows and has coefficients in [0,1], if
the following inequality is satisfied.

υ
√
pλ
≤
p

8n
. (4.93)

This constraint is strictly weaker than its counterpart (149) in [74], and this is precisely what makes the
lower bound in the isotonic setting larger than the lower bound in the bi-isotonic setting of [74]. Our purpose
will be to wisely choose parameters p, q and υ > 0 to maximize the Bayesian risk (4.89) with νG.

Step 2: Problem Reduction

In what follows, we use the same reduction arguments as in [74]. Using the notation of [74], we write
P
(full)
G and E

(full)
G for the probability distribution and corresponding expectation of the data (xt, yt), when M

is sampled according to νG. Since the distribution of the rows of M in G
t(ι)

only depend on Gt(ι), we write νGt(ι)

for the distribution of these rows. We also write P
(full)
Gt(ι) and E

(full)
Gt(ι) for the corresponding marginal distribution

and corresponding expectation of the observations (xt, yt) such that (xt)1 ∈ G
t(ι)

. By the Poissonization trick,
the distribution P

(full)
G is a product measure of P(full)

Gt(ι) for ι = 1, . . . , n/p.
Let π̃ be any estimator of π∗. Let us provide more details than [74] to prove that π̃ can be modified

into an estimator π̂ satisfying π̂(G
(ι)
) = G

(ι)
for all ι = 1, . . . , n/p, and reducing the loss ∥Mπ̂−1 −Mπ∗−1∥

2
F ≤

∥Mπ̃−1 −Mπ∗−1∥
2
F almost surely, for all possible prior νG. For that purpose, we introduce

N(π) =
n/p
∑
ι=1
∑

i∈G(ι)
1{i /∈ G

(ι)
} .

If N(π̃) > 0, then there exists ι0 and i0 ∈ G
(ι0) such that π̃(i0) ∈ G

(ι1) with ι1 ≠ ι0. Then, π̃ being a
permutation, we consider its associated cycle containing i0, which we denote by (i1, . . . , iK). Let (i′1, i

′
2, . . . , i

′
L)

be the elements of this cycle such that π̃(i′l) /∈ G
(ιl), where ιl satisfies i′l ∈ G

(ιl). Then it holds that for any

l = 1, . . . , L − 1, π̃(i′l) ∈ G
(ιl+1), and π̃(i′L) ∈ G

(ι1). We now define π̃′(i) = π̃(i) for all i, except on the cycle
(i′1, . . . , i

′
L) where we set π̃′(i′l) = π̃(i

′
l−1). Then, we easily check that N(π̃′) = N(π̃) − L < N(π̃), and that

∥Mπ̃′−1 −Mπ∗−1∥
2
F ≤ ∥Mπ̃−1 −Mπ∗−1∥

2
F if condition (4.93) is satisfied.
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We can therefore restrict ourselves to estimators π̂ such that π̂(G
(ι)
) = G

(ι)
for all ι. There is however

still another catch to obtain the same lines as in [74]. Indeed, the restriction π̂(ι) of π̂ to G
(ι)

is measurable
with respect to the observation Y , but not necessarily to Y (G

(ι)
). Still, this restriction can be writen as

π̂(ι) = π̂(ι)(Y (G
(ι)
), Y ([n] ∖G

(ι)
)), and, for any α > 0, there exists y∗(ι)(α) such that

E
(full)
G [∥Mπ̂(ι)−1 −Mπ∗−1∥

2
F ] ≥ E

(full)
G [∥Mπ̄(ι)−1(α) −Mπ∗−1∥

2
F ] − α ,

where π̄(ι) ∶= π̂(ι)(Y (G
(ι)
), y∗(ι)(α)) is measurable with respect to Y (G

(ι)
). Since it is possible such a stable

estimator for any α > 0, we finally obtain the inequality

R
∗
perm(n, d, λ) ≥ inf

π̂∶ π̂(G(ι))=G(ι)
sup
G∈G

n/p
∑
ι=1

E
(full)
G [∥(Mπ̂−1 −Mπ∗−1)G

(ι)∥
2
F ]

≥

n/p
∑
ι=1

inf
π̂(ι)

sup
Gt(ι)

E
(full)
Gt(ι) [∥(Mπ̂(ι)−1 −Mπ∗−1)G

(ι)∥
2
F ] .

The problem of estimating the permutation π∗ is now broken down into the n/p smaller problems of estimating
the subsets Gt(ι) ⊂ G

(ι)
. The square Euclidean distance between to experts in G

(ι)
of experts is 0 is they are

both either in or not in Gt(ι) and it is equal to qυ2

pλ
otherwise. Let us focus on the easier problem of estimating

the subsets Gt(ι) and define Ĝt(ι) the set of the p/2 experts that are ranked above according π̂(ι). Then, we
have that

∥(Mπ̂(ι)−1 −Mπ∗−1)G
(ι)∥

2
F =

qυ2

pλ
∣Ĝ(ι)∆Gt(ι)∣ ≥

qυ2

4λ
1{Ĝ(ι) ≠ Gt(ι)} ,

where the last inequality comes from the construction of the sets Gt(ι) by Lemma 4.5.17. Hence, we deduce
that

R
∗
perm(n, d, λ) ≥

qυ2

4λ

n/p
∑
ι=1

inf
π̂(ι)

sup
Gt(ι)

P
(full)
Gt(ι) [Ĝ

(ι)
≠ Gt(ι)] , (4.94)

so that by symmetry,

R
∗
perm(n, d, λ) ≥

nqυ2

4pλ
inf
Ĝ(1)

sup
Gt(1)

P
(full)
Gt(1) [Ĝ

(1)
≠ Gt(1)] .

Consider the p × d matrices N and Y ↓ defined by

Nik =∑
t

1xt=(i,k) ; Y ↓ik =∑
t

1xt=(i,k)(yt −wi) ,

where w is defined in (4.90). To simplify the notation, we write henceforth G and Ĝ for Gt(1) and Ĝ(1)

respectively. Letting PG for the corresponding marginal distribution of N and Y ↓, the same sufficiency argument
as in [74] gives that

inf
Ĝ

sup
G

P
(full)
G [Ĝ ≠ G] = inf

Ĝ
sup
G

PG [Ĝ ≠ G] .

We finally obtain the following inequality:

R
∗
perm(n, d, λ) ≥

nqυ2

4pλ
inf
Ĝ

sup
G

PG [Ĝ ≠ G] . (4.95)

Let P0 be the distribution on N and Y ↓ corresponding to the case υ = 0. The entries of N of are independent
and follow a Poisson distribution of parameter λ. Conditionally to Nik, we have Y ↓ik is a Gaussian variable with
mean 0 and variance Nik. Then, we deduce from Fano’s inequality [90] that

inf
Ĝ

sup
G∈G

PG(Ĝ ≠ G) ≥ 1 −
1 +maxG∈G KL(PG∣∣P0)

log(∣G∣)
, (4.96)

where KL(.∣∣.) stands for the Kullback-Leibler divergence. The following lemma gives an upper bound of these
Kullback-Leibler divergences. It can be found in [74], with the slightly stronger assumption that pλ ≥ 1.
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Lemma 4.5.18 (Lemma J.2 of [74]). There exists a numerical constant c1 such that the following holds true.
If υ2 ≤ 1 ∧ pλ, then for any G ∈ G, we have

KL(PG∣∣P0) ≤ c1
υ2q2

d
.

The proof of Lemma 4.5.18 can be found in [74], with ñ ∶= p and d̃ = d. The slightly stronger assumption
that pλ ≥ 1 made in Lemma J.2 in [74] is in fact not necessary. Indeed, it is only used to prove that I ∶=
λp(eυ

2/(λp)−1) ≤ c′1υ
2 in the proof of Lemma J.2 in [74], and this inequality remains valid under the assumption

of Lemma 4.5.18, that is u2 ∶= υ2/(λp) ≤ 1.

Step 3: Choice of suitable parameters p, q and υ

By combining (4.95), (4.96), with Lemma 4.5.18 and the different constraints on the parameters (4.93), we
directly obtain the following proposition.

Proposition 4.5.19. There exists a numerical constant c such that if p ∈ {2, . . . , n}, q ∈ {1, . . . , d} are dyadic
integers, and υ satisfy the following condition:

υ ≤ c [1 ∧
√
pλ ∧

√
pd

q
∧
√
λ
p3/2

n
] , (4.97)

then we have

R
∗
perm(n, d, λ) ≥ c

nqυ2

pλ
. (4.98)

The above proposition being a direct consequence of what preceeds it, we consider that it does not require a
proof. Let us now apply Proposition 4.5.19 for different parameters p, q and υ to conclude the proof of Theorem
4.2.1.

First, using the lower bound in the bi-isotonic case – see Theorem 4.1 of [74], we have for some constant c′

that
R
∗
perm(n, d, λ) ≥ c

′
(n/λ ∧ nd) . (4.99)

In what follows, we write ⌊x⌋dya for the greatest integer that is a power of two and smaller than x. Let us
consider the following inequality:

λ ≥ 1/d ∨ n2/d3 . (4.100)

In the case where (4.100) is not satisfied, then n
√
d/λ∧n2/3

√
dλ−5/6 ≤ n/λ∧nd and the lower bound of Theorem

4.2.1 is proven by (4.99).
We subsequently assume that (4.100) is satisfied.

Case 1: λn ≤ 1. In this case, we choose q = ⌊
√

d
λ
⌋
dya

and p = n/2. We have that q ∈ {1, . . . , d} since λ ≤ 1 in that

case and by assumption (4.100), λ ≥ 1/d. We deduce from Proposition 4.5.19 applied with v/c =
√
pλ =

√
pd/q

that
R
∗
perm(n, d, λ) ≥ c

′′n
√

d
λ
.

Case 2: λ ∈ [ 1
n
,8n2]. In this case, we choose q = ⌊n

1/3√d
λ1/6 ⌋

dya
and p = ⌊n

2/3

λ1/3 ⌋
dya

. We deduce from (4.100) that

q ≤ d. Since λ ∈ [ 1
n
,8n2], we also necessarily have that q ≥ 1, p ≥ 2 and p ≤ n. Applying the above proposition

with υ/c = 1 =
√
pd/q =

√
λp3/2/n, we deduce that

R
∗
perm(n, d, λ) ≥ c

′′ n2/3√d
λ5/6 .

Case 3: λ ≥ 8n2. When λ satisfies this condition that is out of the scope of Theorem 4.2.1 but discussed
below Theorem 4.2.1, we choose q = ⌊

√
d⌋

dya
and p = 2. Applying the above proposition with υ/c = 1, we deduce

that
R
∗
perm(n, d, λ) ≥ c

′′ n
√
d

λ
.

We have proved that for any n, d and λ, we have the lower bound

R
∗
perm(n, d, λ) ≥ c

′′
[n
√

d
λ
∧ n2/3√d

λ5/6 ∧
n
√
d

λ
+ n/λ] ∧ nd .

This concludes in particular the proof of Theorem 4.2.1, stated for λ ∈ [1/d,8n2].
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4.5.9 Proof of Proposition 4.4.1

Let us introduce Pk = Λ(X⋅kXT
⋅k −E[X⋅kXT

⋅k])Λ ∈ Rp×p, so that

Λ(XXT
−E[XXT

])Λ =
q

∑
k=1

Pk . (4.101)

Lemma 4.5.20. There exists a numerical constant κ′′′3 such that for any
x ∈ [0, (κ′′′3 (σ

2rΛ +K
2 log(q)))−1], we have

∥E[exPk]∥op ≤ exp(κ
′′′
3 x

2
(σ2
+ σ4p)) +

1

q
.

Moreover, applying the Matrix Chernoff techniques for the independent matrices Pk (see lemma 6.12 and
6.13 of [94]), we have for any t > 0 that

log(P(∥
q

∑
k=1

Pk ∥op ≥ t)) ≤ log(tr [E[ex∑
q
k=1 Pk]]) − xt

≤ log(tr [exp(
q

∑
k=1

log(E[exPk]))]) − xt

≤ log(p) +
q

∑
k=1
∥ log(E[exPk])∥op − xt

= log(p) +
q

∑
k=1

log(∥E[exPk]∥op) − xt .

Applying Lemma 4.5.20, it holds for any x ∈ [0, (κ′′′3 (σ
2rΛ +K

2 log(q)))−1] that

q

∑
k=1

log(∥E[exPk]∥op) ≤ q log (exp (κ
′′′
3 x

2
(σ2
+ σ4p)) +

1

q
)

≤ κ′′′3 x
2
(σ2q + σ4pq) + 1 ,

where in the last inequality we used the fact that for any a ≥ 1 and u > 0, log(a + u) ≤ log(a) + u/a.
Hence, we obtain

log(P(∥
q

∑
k=1

Pk ∥op ≥ t)) ≤ log(ep) + κ′′′3 x
2
(σ2q + σ4pq) − xt .

Hence, if t ≤ 2 σ2q+σ4pq
σ2rΛ+K2 log(q) , we choose x = t

2κ′′′3 (σ2q+σ4pq) and if t > 2 σ2q+σ4pq
σ2rΛ+K2 log(q) we choose x = 1

κ′′′3 (σ2rΛ+K2 log(q)) ,
which gives

P(∥
q

∑
k=1

Pk ∥op ≥ t) ≤ epmax [exp(−
1

κ3
(

t2

4(σ2q + σ4pq)
∨

t

2(σ2rΛ +K2 log(q))
))] .

We deduce that with probability at least 1 − δ, it holds that

∥

q

∑
k=1

Pk ∥op ≤ κ [
√
(σ4pq + σ2q) log(p/δ′′) + (σ2rΛ +K

2 log(q)) log(p/δ′′)] ,

for some numerical constant κ.

Proof of Lemma 4.5.20. Since ∥ΛX⋅kXT
⋅kΛ∥op = ∥ΛX⋅k∥

2
2, we state the following lemma controlling the moment

generating function of the L2 norm of the projection ΛX⋅k:

Lemma 4.5.21. There exists a numerical constant κ′′′0 such that for any x ≤ 1
κ′′′0 K

2 we have

E[ex∥ΛX⋅k∥
2
2] ≤ eκ

′′′
0 σ

2rΛx .
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Now we define the event ξop ∶= {maxk=1,...,d ∥ΛX⋅k∥
2
2 ≤ κ

′′′
0 (σ

2rΛ +K
2 log(q3))}, where κ′′′0 is the numerical

constant given by Lemma 4.5.21. Applying the same lemma together with the Chernoff bound, a union bound
over all k = 1 . . . d gives

P(ξcop) ≤ 1
q2

.

We consider in what follows the relation order ⪯ induced by the cone of nonegative symmetric matrices S+n,
namely X ′ ⪯X ′′ if and only if X ′′ −X ′ ∈ S+n. Under the event ξop, it holds that for any u ≥ 2,

Puk ⪯ ∥Pk ∥
u−2
op P2

k

⪯ ∥Λ(XT
⋅kX⋅k −E[X

T
⋅kX⋅k])Λ∥

u−2
op P2

k

⪯ (κ′′′1 (σ
2rΛ +K

2 log(q)))u−2 P2
k ,

for some numerical constant κ′′′1 (depending on κ′′′0 ). In the third inequality we used the definition of ξop the
fact that E[∥ΛX⋅k∥22] ≤ κ′′′0 σ2rΛ.

We now give an upper bound of ∥E[P2
k]∥op, which is the operator norm of the variance of Pk as defined

in section 6 in [94]. Remark that since any matrix U ∈ Rq×q satisfies UΛUT ⪯ UUT , we have that Pk ⪯
Λ(XT

⋅kX⋅k −E[XT
⋅kX⋅k])

2Λ.
Let us compute the expectation of (XT

⋅kX⋅k −E[XT
⋅kX⋅k])

2:

E[(XT
⋅kX⋅k −E[X

T
⋅kX⋅k])

2
]ij = ∑

l∈P
E[(XikXlk −E[XikXlk])(XlkXjk −E[XlkXjk])] .

The off diagonal terms are zero, and the ith diagonal element satisfies:

E[(XT
⋅kX⋅k −E[X

T
⋅kX⋅k])

2
]ii = E[(X2

ik −E[X
2
ik])

2
] +∑

j≠i
E[X2

ik]E[X
2
jk] . (4.102)

By assumption (4.24), the first term of (4.102) satisfies

E[(X2
ik −E[X

2
ik])

2
] ≤ 4E[(X4

ik)] ≤ 48σ
2K2 .

The second term of (4.102) is smaller than σ4p, still by assumption (4.24). Hence we have some numerical
constant κ′′′2 that

∥E[P2
k]∥op ≤ ∥E[(X

2
ik −E[X

2
ik])

2
]∥op ≤ κ

′′′
2 (σ

2
+ σ4p) .

Now, by the definition of the exponential of matrices, the triangular inequality and the fact that Pk is
centered, we have

∥E[exp(xPk)]∥op = 1 +∑
u≥2

xu

u!
∥E[Puk 1ξop]∥op +∑

u≥2

xu

u!
∥E[Puk 1ξcop]∥op . (4.103)

By definition of ξop together with the upper bound of the variance of P2
k 1ξop ⪯ P2

k, it holds for any x ∈
[0, (κ′′′1 (σ

2rΛ +K
2 log(q)))−1] that

∑
u≥2

xu∥E[Puk 1ξop]∥op ≤ x
2
∥E[P2

k]∥op∑
u≥2

xu−2

u!
(κ′′′1 (σ

2rΛ +K
2 log(q)))u−2

≤ x2κ′′′2 (σ
2
+ σ4p)∑

u≥0

xu

(u + 2)!
(κ′′′1 (σ

2rΛ +K
2 log(q)))u

≤ exp(κ′′′3 x
2
(σ2
+ σ4p)) − 1 ,

for some numerical constant κ′′′3 . We now control the second term of (4.103) under the complementary event
ξop, for any x ∈ [0, (2κ′′′0 (σ

2rΛ +K
2 log(q)))−1]:

∑
u≥2

xu

u!
∥E[Puk 1ξcop] ≤ E[exp(x∥Pk ∥op1ξcop]]

(a)
≤

√
1

q2

√
E[exp(2x∥Pk ∥op)]

(b)
≤

1

q
exp(xκ′′′0 σ

2rΛ)

≤
1

q
,
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where in (a) we used the Cauchy-Schwarz inequality for real random variables and in (b) we applied Lemma
4.5.21.

Proof of Lemma 4.5.21. We use the result of [7] which is a generalization of the Hanson-Wright inequality to
random variables with coefficients with Bernstein’s moments.

[Assumption 1 of [7]] is satisfied with parameters σ2 and K, and we have the following upper bound on the
moment generating function of the quadratic form ∥ΛXT

⋅k∥
2
2 = ∣X⋅kΛX

T
⋅k ∣:

E[ex∥ΛX
T
⋅k∥

2
2] ≤ exE[∥ΛX

T
⋅k∥

2
2]eκ

′′′
0 x

2K2σ2∥Λ∥2F ≤ eκ
′′′
1 xσ

2rΛ , (4.104)

for any x satisfying condition (6) of [7], that is 128x∥Λ∥opK
2 ≤ 1. For the last inequality, we used the fact that

∥Λ∥2F = rank(Λ). We obtain the result by choosing κ′′′2 = κ
′′′
1 ∨ 128.





Chapter 5

Multiple change-point detection for
high-dimensional data

This chapter makes two contributions to the field of change-point detection. In a general change-point setting, we
provide a generic algorithm for aggregating local homogeneity tests into an estimator of change-points in a time
series. Interestingly, we establish that the error rates of the collection of tests directly translate into detection
properties of the change-point estimator. This generic scheme is then applied to various problems including
covariance change-point detection, nonparametric change-point detection and sparse multivariate mean change-
point detection. For the latter, we derive minimax optimal rates that are adaptive to the unknown sparsity
and to the distance between change-points when the noise is Gaussian. For sub-Gaussian noise, we introduce a
variant that is optimal in almost all sparsity regimes.

This chapter is based on [73].

5.1 Introduction
Change-point detection has a long history since the seminal work of Wald [95] that lead to flourishing lines (see
[68, 89] for recent surveys). Earlier contributions focused on the problems of detecting and localizing change-
points in a univariate time series. Spurred by applications in genomics [69] and finance, there has been a recent
trend in the literature towards the analysis of more complex time series for instance in a high-dimensional linear
space [48] or even belonging to a non-Euclidean space [24].

In this work, we study high-dimensional time series whose mean may change possibly on a few number of
coordinates. See the introduction of [103] for an account of possible applications and practical motivations. In
particular, we build a procedure which is able to detect and localize change-points under minimal assumptions
on the height of these change-points. Along the way towards this optimal procedure, we define and analyze a
scheme for general change-point problems that aggregates a collection of local tests into an estimator change-
points. This generic scheme is of independent interest and easily allows to derive optimal change-point procedure
in other complex settings such as covariance change-points problems or nonparametric change-point problems.
In this introduction, we first describe this generic scheme before turning to our results in high-dimensional
sparse change-point detection and finally discussing other applications.

5.1.1 General change-point setting

In the most general form of a change-point problem, we consider a random sequence Y = (y1, y2, . . . , yn) in
some measured space Yn and, for t = 1, . . . , n, we write Pt for the marginal distribution of yt. We are also given
a functional Γ mapping the probability distribution Pt to some space V. Then, the purpose of change-point
detection is to detect changes in the sequence (Γ(P1),Γ(P2), . . . ,Γ(Pn)) in Vn and to estimate the positions of
these changes. This setting is really general and does not require that the random variables (yt) are independent.

Let us shortly explain how this general framework encompasses most offline change-point detection problems.
In the Gaussian mean univariate change-point setting, we have Y = R, the distribution Pt corresponds to the
normal distribution with mean θt ∈ R and variance σ2 and Γ(Pt) = θt. In the (heteroscedastic) mean univariate
change-point problem, the distribution Pt is not necessarily Gaussian and, in particular, the variance of yt is
allowed to vary with t. Still, one is only interested in detecting variations of Γ(Pt) = ∫ xdPt = E[yt]. By contrast,
in the variance univariate change-point problems, one focuses on changes in the variance of yt. This can be
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done by taking Γ(Pt) = ∫ x2dPt − [∫ xdPt]2 = Var(yt). If one is interested in possibly nonparametric changes
in the distributions, then the functional Γ is simply taken to be the identity map. In semi-parametric quantile
change-point detection [49], the univariate distributions Pt can be arbitrary whereas Γ(Pt) is a quantile of Pt.

To further formalize the change-point detection problem in the sequence (Γ(P1),Γ(P2), . . . ,Γ(Pn)), we define
an integer 0 ≤ K ≤ n − 1 and a vector of integers τ = (τ1, . . . , τK) satisfying 1 = τ0 < τ1 < ⋅ ⋅ ⋅ < τK < τK+1 = n + 1
such that Γ(Pt) is constant over each interval [τk, τk+1−1] and Γ(Pτk−1) ≠ Γ(Pτk). Hence, τk corresponds to the
position of the kth change-point. We shall often refer to τk as a change-point. Equipped with this notation, we
are interested in building an estimator τ̂ = (τ̂1, . . . , τ̂K̂) of τ from the time series Y . Here, τ̂1, . . . , τ̂K̂ correspond
to the estimated change-points of τ and K̂ to the number of the estimated change-points.

5.1.1.1 Desirable Guarantees of an estimator.

Before describing the generic scheme for estimating τ , let us first formalize the desired properties of a good
change-point procedure. Informally, the primary objectives are to detect most if not all change-points while
estimating no (or at least very few) spurious change-points.

Regarding the latter objective, it is usually required that the number of change-points K is not overestimated
by τ̂ . Here, we require a slightly stronger local property introduced in [92]. An estimator τ̂ of size K̂ is said to
detect no spurious change-points (NoSp) if

{
∣{τ̂k′ , 1 ≤ k

′ ≤ K̂} ∩ [τk −
τk−τk−1

2
, τk +

τk+1−τk
2
]∣ ≤ 1 , for all 1 ≤ k ≤K ;

{τ̂k′ ,1 ≤ k
′ ≤ K̂} ⊂ [τ1 −

τ1−1
2
, τK +

n+1−τK
2
] .

(5.1)

The second condition simply ensures that no change-point is estimated near the boundaries of the time series.
The first condition entails that, for each change-point τk there is at most one estimated change-point τ̂k in the
interval [τk − (τk − τk−1)/2, τk + (τk+1 − τk)/2]. In other words, (NoSp) requires that, on each sub-interval, the
number of change-points is not overestimated.

Let us now formalize the objective of detecting the change-points. In this work, we consider as in [92]
realistic settings where some change-points are so close or their heights are so small that they are impossible
to detect. As a consequence, we can only hope to detect the subset of significant change-points. In what
follows, we define a subset K∗ ⊂ [K] of change-point indices that correspond to significant change-points.
Obviously, the significance of a particular change-point is relative to the problem under consideration - data
distribution, nature of change-points - and the definition is problem dependent. As an example, we define in
the next subsection the suitable notion of energy and significance of a change-point in the mean multivariate
change-point setting. In Section 5.6, we formalize this notion for covariance and univariate nonparametric
change-point problems. In light of this discussion, the second guarantee we aim for is to detect all significant
change-points. A change-point τk is said to be detected if there is at least one estimated change-point τ̂l in
the interval [τk − (τk − τk−1)/2, τk + (τk+1 − τk)/2]. Equivalently, this means that at least one of the estimated
change-points is closer to τk than to any other true change-point.

Aside from (NoSp) and (detect) properties, one may additionally aim at localizing the change-points as
well as possible – see the discussions in [97]. Given a specific change-point τk detected by an estimator τ̂ , its
localization error dH,1(τ̂ , τk) is defined by

dH,1(τ̂ , τk) = min
l=1,...,∣τ̂ ∣

∣τ̂l − τk ∣ ,

which is the smallest distance between τk and one of the estimated change-points. While this work mainly
focused on the detection problem, we shall also provide localization bounds along the way.

5.1.1.2 A generic roadmap for change-point detection.

In this chapter, our first contribution is a generic procedure for aggregating a collection of tests into an estimator
τ̂ of τ . For two positive integers (l, r), we consider the time interval [l−r, l+r). Suppose we are given a collection
G of such (l, r). For each (l, r) ∈ G, we are also given a homogeneity test Tl,r of the null hypothesis H0: {(Γ(Pt))
is constant over the segment [l − r, l + r)}. This hypothesis is equivalent to the absence of any change-point
on the interval (l − r, l + r). Given such a collection of homogeneity tests (Tl,r), (l, r) ∈ G, we build in this
chapter an estimator τ̂ that satisfies the following properties. If the multiple testing procedure does not reject
any true null hypothesis (no false positives), then τ̂ does not estimate any spurious change-point, that is, it
satisfies (No Sp). Furthermore, any change-point τk that is detected by some test Tτ̄k,rk , where τ̄k is close
enough to τk and rk is small enough is detected by the estimator τ̂ . In other words, we establish a completely
generic result that translates properties of the multiple testing procedure into detection properties. Thus, the
construction of a change-point procedure boils down to building a suitable multiple testing procedure (Tl,r),
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(l, r) ∈ G whose family-wise error rate (FWER) is controlled, while being able to detect all the significant
change-points. In turn, this allows us to reduce the problem of change-point detection under minimal distance
between the change-points to the well-established field of minimax testing.

5.1.1.3 Related Work and possible applications.

In the last years, there has been a growing interest into the extension of univariate mean change-point procedures
such as wild binary segmentation (WBS) [36] to other problems such as covariance change-point [96], network
change-point [97], or nonparametric change-point [70]. For each of these problems (and for others), it turns
out that the general ideas of WBS can be instantiated. However, for each setting, the proofs need to be fully
adapted in a case by case manner. Besides, the resulting procedures are only optimal up to logarithmic terms.

Recently, Chan and Chen [47] and Kovács et al. [51] have introduced bottom-up aggregation procedures for
mean change-point segmentation (see also [52] for localization improvements). Moreover, Kovács et al. [51, 52]
illustrate the numerical performances to other change-point models, such as graphical models or multivariate
mean-change point models. In fact, one may extend their procedures to generic problems, but the theoretical
guarantees are only provided for univariate models, and it remains unclear whether one can extend them beyond
very specific cases.

In contrast, it is quite straightforward to adapt our generic procedure to any new setting once suitable
homogeneity multiple tests have been crafted. As the most prominent example, we consider the sparse high-
dimensional mean change-point detection and establish the optimality of our procedure – see the next subsection
for details. In Section 5.6, we also handle the covariance change-point detection and the univariate nonparametric
change-point detection problems. In each case, we pinpoint the first tight minimal conditions for detection.

Besides, we could apply our strategy to other problems such changes in auto-regressive models [99], changes
in the inverse covariance matrix of yi [41, 51] or changes in a high-dimensional regression model [77]. All such
change-point problems can be addressed through the construction and careful analysis of two-sample tests for
auto-regressive models, inverse covariance matrices, and linear regression models respectively. Similarly, we can
build Kernel change-point procedures [3, 40] from kernel two-sample tests [43].

5.1.2 Sparse multivariate change-point setting

As explained above, our primary application of our generic scheme is the multivariate mean change-point
detection problem with sparse variations where one observes a time series Y = (y1, . . . , yn) ∈ Rp×n with unknown
means Θ = (θ1, . . . , θn) ∈ Rp×n so that we have the decomposition

yt = θt + εt t = 1, . . . , n , (5.2)

where the noise matrix ε = (ε1, . . . , εn) is made of independent and mean zero random vectors of size p. In this
chapter, we make two distributional assumptions on the noise. Either we suppose that all random vectors εi
follow independent normal distribution with variance σ2Ip (see section 5.3) or that the components of εi follow
independent sub-Gaussian distributions with variance σ2 (see section 5.4). In either case, we assume that σ2 is
known.

Here, we are interested in the variations of the mean vector θt so that, relying on the formalism of the
previous subsection, we have Γ(Pt) = θt. Considering the vector of change-points τ = (τ1, . . . , τK), we can define
K + 1 vectors µ0, . . . , µK in Rp satisfying µk ≠ µk+1 for all k = 0, . . . ,K − 1 such that

θt =
K

∑
k=0

µk1τk≤t<τk+1 .

Equivalently, µk is the constant mean of y over the interval [τk, τk+1 − 1]. The difference µk − µk−1 in Rp
measures the variation of Θ at the change-point τk and can possibly have many null coordinates. In this possibly
sparse multi-dimensional setting, the significance of a change-point is measured through three quantities ∆k,
rk, and sk. First, the height ∆k of the change-point τk is defined as the Euclidean norm of the signal difference.
The length rk of the change-point τk is the minimal distance from τk to another change-point, τk−1 or τk+1.
More precisely,

∆k = ∥µk − µk−1∥ ; rk =min(τk+1 − τk, τk − τk−1) . (5.3)

As a simple example, Figure 5.1 depicts a one dimensional piece-wise constant sequence Θ with 3 change-points
illustrating the setting presented above. In the univariate change-point literature (e.g. [36, 37, 23]) the height
and the length of a change-point characterize the significance of a change-point. In the multivariate setting,
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where the change-points can be sparse, meaning the number of non null coordinates of the vector µk − µk−1 is
possibly small, one also considers the sparsity sk of change-point τk, defined by

sk = ∥µk − µk−1∥0 , (5.4)

where, for any v ∈ Rp, ∥v∥0 = ∑1≤i≤p 1{vi ≠ 0}.

Figure 5.1: An example of a piece-wise constant sequence Θ with 3 change-points and p = 1.

5.1.2.1 Two-sample tests and CUSUM statistics

Our objective is to detect and recover positions (τk)k≤K under minimal conditions on the change-point height
∆k, change-point length rk and sparsity sk. In view of the generic change-point procedure discussed in the
previous subsection, this mainly boils down to building suitable tests of the assumptions {Θ is constant over
[l − r, l + r)} versus {Θ is not constant on this segment}. Following the literature on binary and wild binary
segmentation, we consider the CUSUM statistic

Cl,r(Y ) =

√
r

2σ2
(
1

r

l+r−1
∑
i=l

yi −
1

r

l−1
∑
i=l−r

yi) .

This statistic computes the normalized difference of empirical mean of yi on [l − r, l) and [l, l + r). If the
noise is Gaussian and if Θ is constant on [l − r, l + r), then Cl,r(Y ) simply follows a standard p-dimensional
normal distribution. To simplify, consider a specific instance of our testing problem where we want to test
whether {Θ is constant over [l − r, l + r)} versus {Θ contains exactly one change-point at l on the segment
[l − r, l + r)}. This corresponds to a two-sample mean testing problem, for which the CUSUM statistic Cl,r(Y )
is a sufficient statistic if the noise is Gaussian. Then, given Cl,r(Y ), one wants to test whether its expectation
is 0 (no change-point on [l − r, l + r)) versus its expectation is non-zero but is s-sparse for some unknown s.
This classical detection problem is well understood [30], and it is well known that a combination of a χ2-type
test with a higher-criticism-type test is optimal. Here, the challenge stems from the fact that we do not want
to perform a single such test, but a large collection of tests over a collection of (l, r) ∈ G.

5.1.2.2 Our contribution

As usual in the mean change-point literature, we consider the energy rk∆
2
k of the change-point τk. Up to a

possible factor in [1/2,1], rk∆2
k is the square distance between Θ and its projection on the space of vectors

Θ′ with change-point at (τ1, . . . , τk−1, τk+1, . . . , τK) –see e.g. [92] for a discussion in the univariate setting. In
other words, the energy rk∆2

k characterizes the significance of the change-point τk. In Section 5.3, we introduce
a multi-scale change-point detection procedure detecting any change-point τk whose energy is higher, up to a
numerical constant, than σ2sk log(1+

√
p

sk

√
log(n/rk))+σ

2 log(n/rk). This result is valid for arbitrary length rk
and sparsity sk, and does not require the knowledge of these two quantities. In summary, our procedure does
not estimate any spurious change-point (NoSp) and detects all the change-points whose energy are higher than
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the latter threshold. In Section 5.5, we establish that, as soon as the unknown number K of the change-points
is larger than 1, the condition σ2sk log(1 +

√
p

sk

√
log(n/rk)) + σ

2 log(n/rk) on the energy is tight with respect
to n, p, rk and sk, in the sense that no procedure achieving (NoSp) is able to detect with high probability
a change-point whose energy is smaller (up to some constant) than the latter threshold. In Section 5.4, we
consider the more general setting where the noise is L-sub-gaussian with known variance, and we establish a
similar result to the Gaussian case up to a logarithmic loss in some regimes. Finally, we illustrate in Section 5.8
the behavior of our procedure on numerical experiments.

5.1.2.3 Related work

For dense change-points (sk = p) but with unknown covariance for the noise, Wang et al. [102] (see also [101])
study the behavior of a procedure based on U -statistics of the CUSUM. Jirak [48] and Yu and Chen [105]
introduce binary segmentation procedures based on the l∞ norm of the CUSUMs. Although those work explicitly
characterize the asymptotic distribution of the test statistics and, for some of them, allow temporal dependencies
in the data, the corresponding energy requirements for change-point detection are either not studied or turn
out to be suboptimal.

Closest to our work, Chan and Chen [47] study a bottom-up approach to detect change-points of a Gaussian
multivariate time series in an asymptotic setting. More specifically, the authors consider an asymptotic regime
where the size of the time series is exponential in the dimension: n = ep

ζ

with ζ ∈ (0,1). The authors also assume
that the number K of change-points remains finite when n, p → ∞ and that the minimal sparsity s of these
change-points is polynomial is p. In this specific regime, their procedures provably recover change-points under
a near-minimal (up to logarithmic factors with respect to n) condition on the energy. In contrast, our results
provide non-asymptotic and tight results for all scaling with respect to n and p, allow for arbitrarily large number
K of change-points and allow for the presence of non-significant change-points. In the same specific asymptotic
setting, [46] introduce a so called score test statistic used in a change-point detection procedure which is shown
to achieve the same performance as [47] in the gaussian model but also handle Poisson observations.

Recently, Liu et al. [57] have characterized the optimal detection rate of a possibly sparse change-point in the
specific case where there is at most one change-point, but the optimal rates are significantly slower in the multiple
change-point setting. See also [31] and [28] for earlier results. Wang and Samworth [103] have proposed the
INSPECT method based on sparse projection to handle sparse change-points, but INSPECT provably detects
the change-points under strong assumption on the energy; see Section 5.3 for a precise comparison.

In the univariate setting (p = 1), minimal energy requirements for change-point detection are well under-
stood [34, 37, 98, 92] and are nearly achieved by a wide range of procedures including penalized least-square
and multi-scale tests methods.

5.2 A generic algorithm for multiscale change-point detection on a
grid

In this section, we study the problem of change-point detection in the general setting defined in Section 5.1.1.
We introduce a bottom-up algorithm that aggregates a collection of homogeneity tests, performed at many
positions, and for many scales, of our data. Then, we establish that, under some conditions on these tests, the
procedure detects significant change-points.

5.2.1 Grid and multiscale statistics
Since our purpose is to translate a collection of local tests T = (Tl,r)(l,r)∈G indexed by a grid G into a change-
point detection procedure, we first need to formalize what we mean by a grid. Henceforth, we call a grid G
of [n] a collection of locations and scales where a scale r is a positive integer smaller or equal to ⌊n/2⌋ and a
location l is an integer between r + 1 and n − r. This couple (l, r) refers to the segment [l − r, l + r) centered at
l and with radius r. Formally, G is therefore a subset of Jn = {(l, r) ∶ r = 1, . . . , ⌊n2 ⌋ and l = r + 1, . . . , n − r + 1}.
Given a grid G, we call R its collection of scales, that is R = {r ∶ ∃l s.t. (l, r) ∈ G}. Finally, for a scale r ∈ R,
Dr stands for the corresponding collection of locations, that is Dr = {l ∶ (l, r) ∈ G}. Although we do not make
any assumption on the grid G for the time being, we will mainly consider two specific grids in this section: the
complete grid GF = Jn and the dyadic grid GD defined by R = {1,2,4, . . . ,2⌊log2(n)⌋−1}, D1 = [2, n], and

Dr = {r + 1,3⌊r/2⌋ + 1,4⌊r/2⌋ + 1, . . . , (
n

⌊r/2⌋
− 2)⌊

r

2
⌋ + 1, n − r + 1} for r ∈R ∖ {1} . (5.5)

See Figure 5.2 for a visual representation of the dyadic grid. At some points, we shall also mention a-adic
grids Ga. For any a ∈ (0,1), Ga is defined by R = {1, ⌊a−1⌋, ⌊a−2⌋, . . . , ⌊a1−⌊log(n)/ log(a)⌋⌋} and Dr as in (5.5).
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Interestingly, the cardinality of the dyadic grid or more generally of the a-adic grid is order O(n), whereas the
complete grid GD is quadratic.

Figure 5.2: The dyadic grid is represented as follows : for each r = 2i and l ∈ Dr, we draw the interval [l − r + 1, l + r − 1]
at position (l, log2(r)).

Grids are reminiscent of the c-normal systems of intervals introduced by Nemirovsky [67] (see also [55] for
a definition) although our definition allows for non-necessarily normal intervals.

Given a fixed grid G, a multiscale test is simply a collection of test T = (Tl,r)(l,r)∈G indexed by the elements of
G, which amounts to testing at all scales r ∈R and all locations l ∈ Dr whether the functional Γ(Pt) is constant
over the segment [l − r, l + r). Equivalently, Tl,r tests whether there exists a change-point in [l − r + 1, l + r − 1].

5.2.2 From a multiscale test to a change-point detection procedure
Our purpose is to introduce a generic procedure to translate a multiscale procedure into a vector of change-
points. Intuitively, if, for some (l, r) ∈ G, we have Tl,r = 1, then the functional Γ(Pt) is certainly not constant
over [l − r, l + r) which entails that there is possibly at least one change-point in [l − r + 1, l + r − 1]. As a
consequence, the multiscale test gives a collection I(T ) = {[l − r + 1, l + r − 1] s.t. Tl,r = 1} of intervals that
tentatively contain at least one change-point.

If all these intervals were disjoint, then one simply would take τ̂ as the sequence of centers of these intervals.
Unfortunately, when two intervals [l1 − r1 + 1, l1 + r1 − 1] and [l2 − r2 + 1, l2 + r2 − 1] in I(T ) have a non-empty
intersection, one cannot necessarily decipher whether there is only one change-point in the intersection of both
intervals or if each interval contains a specific change-point. Hence, our general objective is to transform the
collection I(T ) into a collection of non-intersecting intervals by either discarding or merging some of them.

We propose the following bottom-up iterative procedure for building a collection of non-intersecting intervals.
Start with T0 = S0 = ∅. For any scale r ∈R, we compute the collections Sr of intervals of scale r and the collection
Tr of locations based on the following

Tr =

⎧⎪⎪
⎨
⎪⎪⎩

l ∈ Dr, Tl,r = 1 and [l − r + 1, l + r − 1]⋂ ( ⋃
r′<r, r′∈R

Sr′) = ∅ ;

⎫⎪⎪
⎬
⎪⎪⎭

Sr = ⋃
l∈Tr
[l − r + 1, l + r − 1] .

The sets T1 and S1 are made of all positions l such that Tl,1 = 1. More generally, Tr contains all locations l
such that Tl,r = 1 and the corresponding interval [l − r + 1, l + r − 1] does not intersect with any of the detected
intervals at a smaller scale r′ < r. The set Sr contains all intervals associated to Tr.

One can easily check that S = ⋃r Sr is a union of closed non-intersecting intervals. Denote C = {C1, . . . ,CK̂}

the partition of S into connected components such that, for all 1 ≤ i < j ≤ K̂, maxCi < minCj . Finally,
we estimate the vector of change-points τ̂ by taking the center of each segment Ck. In other words, we
take τ̂k ∶= 1

2
(minCk +maxCk) for any 1 ≤ k ≤ K̂. This bottom-up aggregation procedure is summarized in

Algorithm 16 and illustrated in Figure 5.3 below.
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Remark: If, for some r ∈ R and some l1 < l2 ∈ Dr, we have Tl1,r = 1, Tl2,r = 1, and l1 + r − 1 ≥ l2 − r + 1, then
Sr contains the segment [l1 − r + 1, l2 + r − 1]. In other words, our aggregation procedure merges two intervals
if and only if they correspond to the same scales. In Section 5.9, we also introduce a variant of the algorithm
where, instead of merging these two intersecting with identical scale, we discard one of them.

Algorithm 16 Bottom-up aggregation procedure of multiscale tests

Require: Observations yt, t = 1 . . . n and local test statistics (Tl,r)(l,r)∈G
Ensure: Estimated change-points (τ̂k)k≤K̂
1: Tr,Sr = ∅ for all r ∈R and S = ∅
2: for Increasing r ∈R do
3: for l ∈ Dr s.t. Tl,r = 1 do
4: if [l − r + 1, l + r − 1]⋂S = ∅ then
5: Tr ← Tr ∪ {l}
6: Sr ← Sr ∪ [l − r + 1, l + r − 1]
7: end if
8: end for
9: S = S⋃Sr

10: end for
11: Let (Ck)k=1,...,K̂ be the connected components of S sorted in increasing order
12: return (τ̂k = 1

2
(minCk +maxCk))k=1,...,K̂

Figure 5.3: Example of our change-point detection procedure with three change-points. The first two change-points
have large heights and are detected at a small scale r (in magenta) while the third one is detected at a larger
scale r.

Computational Cost. A naive implementation of Algorithm 16 - and also of Algorithm 17 defined in
Section 5.9 - requires to compute all tests Tl,r on the grid, whereas the aggregation procedure only needs to
compute a number of tests Tl,r proportional to the size of the grid. More precisely, if the computational cost of
Tl,r is Λl,r for each (l, r) in the grid G, then the aggregation procedure requires O(∑(l,r)∈G Λl,r) computations.
If for all (l, r), the cost Λl,r is proportional to r, that is Λl,r = O(rΛ), then the overall computational cost is
O(Λ∑(l,r)∈G r) which is O(Λn3) for the complete grid and O(Λn log(n)) for the dyadic grid. One can speed up
the full procedure by computing the statistics Tl,r and aggregating on the fly by checking whether [l−r+1, l+r−1]
intersects S before evaluating Tl,r = 1. Indeed, the connected components Ck can be computed at each increasing
scale r. Hence, at scale r, one only needs to compute the tests Tl,r at locations l such that [l − r + 1, l + r − 1]
does not intersect the connected components detected at scales r′ < r.
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5.2.3 General analysis

In this subsection, we provide an abstract theorem translating error controls of the multiple test procedure T
in terms of properties of τ̂ . As explained in the introduction, the time series (yt) may contain change-points
that are too small to be detected. Having this in mind, we define a subset K∗ ⊂ [K] of indices corresponding
to so-called significant change-points. As our purpose is to provide deterministic condition so that the change-
points in K∗, we need to introduce, for each k ∈ K∗, an element of the grid (τ̄k, r̄k) ∈ G at which the statistic
T is expected to detect τk. One could think of τ̄k as some position close to τk and to r̄k as some radius which
is large enough to convey information on the change-point. Recall that the length rk of the change-point τk is
defined by rk = min(τk+1 − τk, τk − τk−1). We assume that the scales r̄k and the location τ̄k of detection satisfy
the two following conditions:

4(r̄k − 1) < rk and ∣τ̄k − τk ∣ ≤ r̄k − 1. (5.6)

The first condition ensures that the scale r̄k < rk/4 + 1 is small enough compared to the length rk. The second
condition is always satisfied if τ̄k is the best approximation of τk in Dr̄k and if the grid G satisfies the following
approximation property
(App): For all r ∈R and all l ∈ [r + 1, n − r + 1], there exists l′ ∈ Dr such that ∣l′ − l∣ ≤ r − 1.

This property entails that any point l can be approximated at distance r − 1 by some location in Dr. This
also implies that each point l ∈ [r + 1, n− r] belongs to at least one segment (l′ − r, l′ + r) where l1 lies in Dr. In
practice, the a-adic grids Ga and the complete grid satisfy (App).

Next, we introduce an event on the tests (Tl,r) under which the change-point estimator τ̂ of Algorithm 16
performs well. In the following, we write H0, the collection of all possible (l, r) ∈ Jn such that there is no change
in [l − r + 1, l + r − 1], i.e. Γ(Pt) is constant on [l − r, l + r). Equivalently, we have

(l, r) ∈H0 iff (l − r, l + r) ∩ {τk, k = 1, . . . ,K} = ∅ . (5.7)

For a collection K∗ and some elements of the grid (τ̄k, r̄k) satisfying (5.6), the Event A (T,K∗, (τ̄k, r̄k)k∈K∗) is
defined as the conjunction of the two following properties: (i) (No false positive) Tl,r = 0 for all (l, r) ∈H0∩G

(ii) (Detection of significant change-points) for every k ∈ K∗, we have Tτ̄k,r̄k = 1.
The first property states that T performs no type I errors on the event A (T,K∗, (τ̄k, r̄k)k∈K∗), whereas the

second property enforces that all the significant change-points are detected by the specific tests Tτ̄k,r̄k .

Theorem 5.2.1. The following holds for any grid G, any local test statistic T , any non-negative integer K,
any distribution with K change-points, any K∗ ⊂ [K] and scales and locations (τ̄k, r̄k)k∈K∗ in G satisfying
Assumption (5.6). Under the event A(T,K∗, (τ̄k, r̄k)k∈K∗), the estimated change-point vector τ̂ returned by
Algorithm 16 satisfies the two following properties

• Significant change-points are detected: for all k ∈ K∗, there exists k′ ≤ K̂ such that ∣τ̂k′ −τk ∣ ≤ r̄k−1 <
rk
4

.

• (NoSp): No Spurious change-point is detected (5.1).

The first property states that so-called significant change-points (τk)k∈K∗ are detected by the generic algo-
rithm at the right scale. The no-spurious property (5.1) guarantees that, around any true change-point τk, the
procedure estimates at most one single change-point τ̂l. Importantly, the theorem does not make any assumption
on the non-significant change-points. In fact, change-points τk with k ∈ [K] ∖K∗ may or may not be detected.
In general, we can only conclude from Theorem 5.2.1 that ∣K∗∣ ≤ K̂ ≤K on the event A (T,K∗, (τ̄k, r̄k)k∈K∗) .

Theorem 5.2.1 is abstract, but its main virtue is to translate multiple testing properties into change-point
detection properties. For a specific problem such as multivariate mean change-point detection considered in the
next section, the construction of a near optimal procedure boils down to introducing a collection of local test
statistics, such that (a) change-points τk belong to K∗ under minimal conditions, (b) the scale r̄k is the smallest
possible, and (c) the event A(T,K∗, (τ̄k, r̄k)k∈K∗) holds with high probability.

In the case where all the change-points are significant, the result of Theorem 5.2.1 can be reformulated as
follows:

Corollary 5.2.2. The following holds for any grid G, any local test statistic T , any non-negative integer K,
any distribution with K change-points, any (τ̄k, r̄k)k=1,...,K in G satisfying Assumption (5.6). Under the event
A(T, [K], (τ̄k, r̄k)k=1,...,K , the estimated change-point vector τ̂ returned by Algorithm 16 satisfies K̂ =K and,

∣τ̂k − τk ∣ < r̄k − 1 ≤
rk
4

for all k = 1, . . . ,K .
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Let us respectively define the Hausdorff distance and the Wasserstein distance of two vectors (u1, . . . , uK)
and (v1, . . . , vK) in RK by dH(u, v) = maxk=1,...,K ∣uk − vk ∣ and dW (u, v) = ∑k=1,...,K ∣uk − vk ∣. Then, Corollary
5.2.2 straightforwardly implies that, if K∗ = [K], then these two losses are bounded as follows

dH(τ̂ , τ) ≤ max
k=1,...,K

(r̄k − 1) and dW (τ̂ , τ) ≤ ∑
k=1,...,K

(r̄k − 1) .

As an alternative of Algorithm 16, one could use other bottom-up aggregating procedures. For instance,
Algorithm 17 defined in Section 5.9 also satisfies Theorem 5.2.1. Although these two algorithms are closely
related, Algorithm 16 is slightly more conservative than Algorithm 17 since it merges all detection intervals
at a given resolution while Algorithm 17 only keeps one interval at a given resolution when multiple intervals
intersect - the one with smallest index t. While the minimax properties of both methods are comparable - at
least up to a multiple constant - the choice of aggregation method will have an influence in practice on the
outcome: Algorithm 16 will be slightly more stable, detect less change-points, and provide wider confidence
interval around them, while Algorithm 17 will be slightly more sensitive to smaller changes, i.e. detect smaller
change-points, will be more precise, and somewhat less stable.

Theorem 5.2.1 ensures that, if Tτk,rk = 1 with (τk, rk) satisfying Assumption (5.6), then the change-point
τk is detected. Inspecting the proof of Theorem 5.2.1, one easily checks that Assumption (5.6) is minimal for
Algorithm 16 (and also for Algorithm 17). Still, one may wonder whether any generic algorithm has to require
that 4(rk − 1) < rk to detect the change-points or if there exists a generic algorithm where the constant 4 in the
above condition can be improved.

Comparison with narrowest over threshold methods. As mentioned in the introduction, other aggre-
gation procedures have been proposed in the literature. In particular, the narrowest over threshold scheme
proposed by [6] and later used in [51] is also closely related to the local segmentation algorithm of Chan and
Chen [47]. A simple extension of these procedures for generic change-point problems and for a general collection
of tests (Tl,r) would amount to modifying algorithm 16 by selecting locations l in Dr such that Tl,r = 1 and
[l − r + 1, l + r − 1] does not intersect previously detected change-points, whereas we require in Algorithms 16
and 17, that [l − r + 1, l + r − 1] does not intersect previously detected confidence intervals. In some way, the
narrowest-over threshold scheme is therefore less conservative. Unfortunately, there is no generic result in the
form of Theorem 5.2.1 for such procedures and, from informal arguments, we doubt that the corresponding
procedure provably achieves (NoSp) under a control of the FWER of the tests. Inspecting the proof of The-
orem 1 in [6] and Theorem 3 in [51] for univariate mean change-point problems, one observes that the chosen
threshold is much larger than what is needed to control the FWER so that the theoretical threshold is certainly
over-conservative – see step 5 of the proof of Theorem 1 in [6]. In contrast, Theorem 1 in [47] for univariate
change-point problems is based on the minimal threshold, but the proof relies on the important assumption
that the number K of change-point remains bounded while n goes to infinity. Besides, it is not clear how one
could extend the arguments to more general settings.

5.3 Multivariate Gaussian change-point detection
We now turn to the multivariate change-point model introduced in Section 5.1.2. Throughout this section, we
assume that the random vectors εt are independently and identically distributed with εt ∼ N (0, σ

2Ip). Since
we shall apply the general aggregation procedures introduced in the previous section, our main job here is to
introduce a near-optimal testing procedure.

Fix some quantity δ ∈ (0,1). At the end of the section, 1 − δ will correspond to the probability of the
event A (T,K∗, (τ̄k, r̄k)k∈K∗) introduced in the previous section. Alternatively, one may interpret δ as an upper
bound of the desired probability that the change-point detection procedure detects a spurious change-points.
Recall that, for a change-point τk, sk stands for the sparsity of the difference µk+1 − µk. The energy of a given
change-point τk is c0-high if

rk∆
2
k ≥ c0σ

2

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rkδ
)
⎞

⎠
+ log (

n

rkδ
)

⎤
⎥
⎥
⎥
⎥
⎦

, (5.8)

for some universal constant c0 to be defined later. We show in this section that when c0 is large enough, all
high-energy change-points can be detected. Conversely, it is established in Section 5.5 that Condition (5.8) is
(up to a multiplicative constant) optimal for detecting change-points and cannot be weakened.

Let us now discuss the different regimes contained in Equation (5.8). In what follows, define

ψ(g)n,r,s ∶= s log(1 +

√
p

s

√
γr) + γr ; γr ∶= log (

n

rδ
) ,
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in order to alleviate notations. If γr ≥ p/2, then ψ
(g)
n,r,s ≍ γr where u ≍ v means that for two positive numerical

constants c1 and c2, one has c1v ≤ u ≤ c2v. This corresponds to the minimal energy condition for detection in
the univariate case, i.e. when p = 1; see [92]. The condition γr ≥ p/2 occurs when p is rather small and the scale
r is much smaller than n. If γr ≤ p/2, then

ψ(g)n,r,s ≍

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

γr if s ≤ γr
log(p)−log(γr)

s log (2 p
s2
γr) if γr

log(p)−log(γr) < s <
√
pγr

√
pγr if s ≥√pγr .

We define K∗ ⊂ [K] as the subset of indices such that τk satisfies (5.8). For any k ∈ K∗, we define r∗k as the
minimum radius r such that an inequality similar to (5.8) is satisfied for r∆2

k, namely

r∗k =min

⎧⎪⎪
⎨
⎪⎪⎩

r ∈ R+ ∶ r∆2
k ≥ c0σ

2

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rδ
)
⎞

⎠
+ log (

n

rδ
)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

. (5.9)

In the following, we introduce multi-scale tests for respectively dense and sparse change-points. For simplic-
ity, we restrict our attention to the dyadic grid GD = (R,D) introduced in the previous section (see Equation
(5.5)), the complete grid being used in the next section.

To apply Theorem 5.2.1, we will consider an event A (T,K∗, (τ̄k, r̄k)k∈K∗) in the proof of Corollary 5.3.3
where the scale r̄k ∈R is of the same order as r∗k ∈ R+.

5.3.1 Dense change-points

We focus here on dense change-points for which sk is possibly as large as p. Given κ > 0, τk is a κ-dense
high-energy change-point if

rk∆
2
k ≥ κσ

2 ⎛

⎝

√

p log (
n

rkδ
) + log (

n

rkδ
)
⎞

⎠
. (5.10)

The requirement (5.10) is analogous to (5.8) when sk ≥ [p log(n/(rkδ))]1/2. For any κ-dense high-energy change-
point, we define r̄(d)k ∈ R as the minimum radius r ∈ R such that an inequality of the same type as (5.10) is
satisfied for r∆2

k,

r̄
(d)
k =min

⎧⎪⎪
⎨
⎪⎪⎩

r ∈R ∶ 8r∆2
k ≥ κσ

2 ⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

.

Intuitively, r̄(d)k corresponds to the smallest scale such that τk is guaranteed to be detected. By definition, we
have 4(r̄

(d)
k − 1) ≤ rk. Let τ̄ (d)k be the best approximation of τk in the grid with scale r̄(d)k . By definition of the

dyadic grid, we have ∣τ̄ (d)k − τk ∣ ≤ r̄
(d)
k /4.

For any positive integers r ∈ [1;n] and l ∈ [r + 1, n + 1 − r], we define the statistic Ψ
(d)
l,r ∶= ∥Cl,r∥

2
− p. If θ

is constant over [l − r, l + r), then the expectation of Ψ(d)l,r is zero. Recall that the rescaled CUSUM statistic

Cl,r depends on the noise level σ, and the statistic Ψ
(d)
l,r therefore requires the knowledge of σ. To calibrate the

corresponding test T (d)l,r rejecting for large values of Ψ(d)l,r we introduce

T
(d)
l,r ∶= 1{Ψ

(d)
l,r > x

(d)
r } ; x(d)r ∶= 4

⎛

⎝

√

p log (
2n

rδ
) + log (

2n

rδ
)
⎞

⎠
.

Proposition 5.3.1. There exists a universal constant κd > 0 and an event ξ(d) of probability larger than 1− 2δ

such that (i) T (d)l,r = 0 for all (l, r) ∈H0 ∩ GD and (ii) T (d)
τ̄
(d)
k

,r̄
(d)
k

= 1 for all κd-dense high-energy change-point τk.

The above proposition ensures that, on the event ξ(d), the collection of tests T (d)l,r detects all dense high-energy

change-points at the scale r̄(d)k and makes no false positives on the dyadic grid GD. If we plugged this collection
of tests into the general multiple change-point procedure, then Theorem 5.2.1 would entail that all κd-dense
high-energy change-points are discovered and localized and that τ̂ does not detect any spurious change-point.
In the next subsection, we introduce alternative tests that are tailored to sparse change-points and thereby
allow to detect change-points that are not κd-dense high-energy but still satisfy the energy condition (5.8).
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5.3.2 Sparse change-points

5.3.2.1 Energy condition

For a given 1 ≤ k ≤K, the change-point τk is a κ-sparse high-energy change-point if sk ≤ [p log(n/(rkδ))]1/2 and

rk∆
2
k ≥ κσ

2
(sk log(

p

s2k
log (

n

rkδ
)) + log (

n

rkδ
)) . (5.11)

If τk is a κ-sparse high-energy change-point, we define r̄(s)k as the minimum scale such that an inequality
similar to (5.11) is satisfied :

r̄
(s)
k =min{r ∈R ∶ 8r∆2

k ≥ κσ
2
(sk log(

p

s2k
log (

n

rδ
)) + log (

n

rδ
))} .

As in the dense case, we have 4(r̄
(s)
k − 1) ≤ rk. Set τ̄ (s)k as the best approximation of τk in the grid D

r̄
(s)
k

at scale

τk. By definition of the dyadic grid, we have ∣τ̄ (s)k − τk ∣ ≤ r̄
(s)
k /4. We introduce below two statistics for handling

this problem.

5.3.2.2 Berk-Jones Test

The Berk-Jones test [65] is a variation of the Higher-Criticism test originally introduced in [30] for signal
detection. It has been previously studied in [15] for sparse segment detection. We decided to use the Berk-Jones
test in this chapter because of its intrinsic formulation in terms of the quantiles of a Bernoulli distribution, but
the Higher-Criticism test would reach the same rates of detection within a constant factor. We use the notation
N∗ to denote the set of positive itegers. Given (l, r) in the grid GD, we first introduce Nx,l,r as the number of
coordinates of Cl,r that are larger than x in absolute value.

Nx,l,r =
p

∑
i=1

1∣Cl,r,i∣>x (5.12)

If (l, r) ∈ H0, then the rescaled CUSUM statistic follows a standard normal distribution and Nx,l,r therefore
follows a Binomial distribution with parameters p and 2Φ(x). The Berk-Jones test amounts to rejecting the
null, when at least one of the statistics Nx,l,r, for x ∈ N∗, is significantly large. Next, we formalize what we
mean by ’large’.

For any u > 0, any q0 ∈ [0,1], and positive integer p0, denote Q(u, p0, q0) = P[B(p0, q0) > u] the tail
distribution function of a Binomial distribution with parameters p0 and q0. Given δ ∈ [0,1], we then write
Q
−1
(δ, p0, q0) for the corresponding quantile function,

Q
−1
(δ, p0, q0) = inf

u
[P[B(p0, q0) > u] ≤ δ] .

Given a scale r ∈R and a positive integer x, we define the weights

δ(BJ)
x,r =

6δr

π2x2∣Dr ∣n
. (5.13)

This allows us to define the Berk-Jones statistic over [l− r, l+ r) as the test rejecting the null when at least one
Nx,l,r is large.

T
(BJ)
l,r =max

x∈N∗
1{Nx,l,r > Q

−1
(δ(BJ)
x,r , p,2Φ(x))} . (5.14)

Equivalently, T (BJ)
l,r is an aggregated test based on the statistics Nx,l,r with weights δ(BJ)

x,r . From the above

remark and a union bound, we deduce that the probability that the collection of tests {T (BJ)
l,r , (l, r) ∈ GD}

rejects a least one false positive is at most δ:

P [ max
(l,r)∈H0∩GD

T
(BJ)
l,r = 1] ≤ ∑

r∈R
∑
l∈Dr

∑
x∈N∗

δ(BJ)
x,r ≤ ∑

r∈R
∑
l∈Dr

δr

∣Dr ∣n
≤ ∑
r∈R

δr

n
≤ δ ,

where we recall that (l, r) ∈ H0 if and only if Θ is constant on [l − r, l + r). Although one may think from
the definition (5.14) that T (BJ)

l,r involves an infinite number of Nx,l,r, this is not the case. Indeed, Nx,l,r is
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a non-increasing function of x whereas for all x such that 2pΦ(x) ≤ δ
(BJ)
x,r , we have Q

−1
(δ
(BJ)
x,r , p,2Φ(x)) = 0.

Writing x0,r the smallest x such that 2pΦ(x) ≤ δ
(BJ)
x,r we derive

T
(BJ)
l,r = max

x=1,...,x0,r

1{Nx,l,r > Q
−1
(δ(BJ)
x,r , p,2Φ(x))} .

Since, for any x > 0, we have Φ(x) ≤ e−x
2/2, one can deduce that x0,r ≤ c[log(np/(rδ))]1/2, for some numerical

constant c > 0.

5.3.2.3 Partial norm statistics

The Berk-Jones test is able to detect change-points τk for which there exists s such that the s largest squared
coordinates of µk −µk−1 are larger than C(log(ep/s2)+ log(n/rk)/s) with a large enough constant C. However,
it may happen that τk satisfies the energy condition (5.8) and that the s largest coordinates of µk − µk−1 are
negligible compared to log(n/rk)/s, mainly because s↦ 1/s is not summable. To solve this issue, we introduce
a second sparse statistic based on the partial sums. Let

Z = {1,2,22, . . . ,2⌊log2(p)⌋}

denote the dyadic set. Only the sparsities s ∈ Z will be analysed by the partial norm statistic. For any (l, r)
in the grid GD, we respectively write Cl,r,(1), Cl,r,(2), . . . the reordered entries of Cl,r by decreasing absolute
value, that is ∣Cl,r,(1)∣ ≥ ⋅ ⋅ ⋅ ≥ ∣Cl,r,(p)∣. Then, for s ∈ Z, we define the partial CUSUM norm by

Ψ
(p)
l,r,s =

s

∑
i=1
(Cl,r,(i))

2
. (5.15)

Then, we define the test T (p)l,r rejecting the null when at least one of the partial norms is large

x(p)r,s ∶= x
(p)
r,s (δ) = 4s log (

2ep

s
) + 4 log (

n

rδ
) ; T

(p)
l,r =max

s∈Z
1{Ψ

(p)
l,r,s > x

(p)
r,s } .

Finally, we define the sparse test by aggregating both the Berk-Jones test and the partial norm test. For
any (l, r) ∈ GD, let T (s)l,r = T

(p)
l,r ∨ T

(BJ)
l,r . The next proposition controls the error of this collection of tests.

Proposition 5.3.2. There exists a universal constant κs > 0 and an event ξ(s) of probability larger than 1 − 4δ

such that (i) T (s)l,r = 0 for all (l, r) ∈H0 ∩ GD and (ii) T (s)
τ̄
(s)
k
,r̄
(s)
k

= 1 for all κs-sparse high-energy change-point τk.

Here we introduced two different statistics for the same sparse regime sk ≤ [p log(n/(rkδ))]1/2 - the Berk-
Jones statistic and the partial sums statistic - mainly to solve a problem of integrability. We made this choice
for the sake of simplicity, but we could have used a single test, as presented in [57]

Ψ
(LGS)
x,l,r =

p

∑
i=1
(C2

l,r,i −E [Z ∣Z ≥ x])1{C
2
l,r,i ≥ x} ,

where Z follows a standard normal distribution N (0,1). This statistic leads to the same type of result as the
Berk-Jones statistic when enough coordinates µk −µk−1 are large in absolute value, and it is comparable to the
partial sums statistic when its threshold x becomes low enough.

5.3.3 Consequences
To conclude this section, it suffices to observe that, for c0 in (5.8), any c0-high-energy change-point τk in the
sense of (5.8) is either a c0

2
-dense or a c0

2
-sparse high-energy change-point. Hence, upon defining the test

Tl,r = T
(d)
l,r ∨ T

(s)
l,r for (l, r) ∈ GD, we consider the change-point procedure τ̂ defined in Algorithm 16. Gathering

Theorem 5.2.1 with Proposition 5.3.1 and Proposition 5.3.2, we obtain the following.

Corollary 5.3.3. There exists a universal constant c0 > 0 such that, with probability higher than 1 − 6δ, the
estimator τ̂ satisfies (NoSp) and detects all c0-high-energy change-points (as defined in (5.8)) τk in the sense

dH,1(τ̂ , τk) <
r∗k
2
≤
rk
2

,

where r∗k is defined in (5.9).
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If the change-points are of high-energy, that is K∗ = [K], then Corollary 5.3.3 can be reformulated as follows:

Corollary 5.3.4. Assume that for all k = 1, . . . ,K, τk is a c0-high-energy change-point (see (5.8)) where c0 is
the same as in Corollary 5.3.3. Then, with probability higher than 1 − 6δ, the estimator τ̂ satisfies K̂ =K and

∣τ̂k − τk ∣ <
r∗k
2
≤
rk
2
, for all k = 1, . . . ,K .

In particular, one can respectively bound the Hausdorff and the Wasserstein losses, with probability higher
than 1 − 6δ by

dH(τ̂ , τ) ≤ max
k=1,...,K

r∗k
2

and dW (τ̂ , τ) ≤ ∑
k=1,...,K

r∗k
2

. (5.16)

In Section 5.5, we establish that the Condition (5.8) is (up to a multiplicative constant) unimprovable and
corresponds to the detection threshold for multivariate change-points.

Corollary 5.3.4 can be compared to the result of [103] on multivariate change-point detection in the multiple
change-point setting. Using a method based on the CUSUM statistic and assuming that there are only high-
energy change-points, the authors also obtain an upper bound on the energy necessary to detect the change-
points. However, this result does not adapt to rk,∆k, sk, and the detection rate is suboptimal in many regimes.
Writing r =mink=1,...,K rk, ∆ =mink=1,...,K∆k and s =maxk=1,...,K sk, Theorem 5 of [103] requires two conditions
of the type r∆2 ≥ c(n

r
)4 log(np) and r∆2 ≥ csn

r
log(np). This detection rate is therefore suboptimal by a

polynomial factor in n/r when r is of smaller order than n, and by a logarithmic factor log(np) instead of
log(1 +

√
p/s log(n/r)) + 1

s
log(n/r) when r is of order n. Closer to our results, [47] have introduced another

bottom-up procedure in the very specific asymptotic setting n = ep
ζ

for ζ ∈ (0,1) with a fixed K number of
change-points. Assuming that, for each change-point, at least s coordinates of µk+1 − µk+1 are larger than ζ in
absolute value, [47] establish that their procedure provably detects the change-points as long as

rsζ2 ≥ c

⎧⎪⎪
⎨
⎪⎪⎩

√
p log(n) if s ≥ 0.5

√
p log(n)

s log ( p
s2

log (n)) if s ≤ 0.5
√
p log(n) .

In their specific asymptotic regime and when all non-zero coordinates are of the same order, and all the change-
points have a similar length rk, their result is similar to ours up to the logarithmic terms. Indeed, for equispaced
change-points, our logarithmic term log(n/rk) = log(K) is much smaller than log(n). Besides, their result does
not handle the presence of low-energy change-points and does not hold beyond the asymptotic regime n = ep

ζ

. In
contrast, our condition (5.8) for high-energy change-points entails that the detection conditions are qualitatively
different for other scalings in n and p. On the technical side, our condition (5.8) is of l2 type whereas that
in [47] is of minimal non-zero type. Recovering the tight l2 conditions turns out to be much more challenging
as we need to handle situations where some coordinates have different orders of magnitude. This is the main
reason why we need to resort to a combination of the Berk-Jones and the partial-norm statistics.

Comparison to one change-point problem. When one knows that K ≤ 1 (at most one change-point), then
[57] proved that it is possible to detect τ1 if and only if r1∆2

1 ≥ cσ
2[s1 log(1 +

1
s1

√
p log log 8n) + log log 8n]. As

in the univariate setting, the problem with only one change-point is simpler than for general K ≥ 2. As for our
procedure, Liu et al. [57] rely on statistics based on the CUSUM - a chi square statistics in the dense case and
a thresholded sum of squared coordinates in the sparse case - to detect and localize τ1. It turns out that the
detection procedure of [57] adapts to distance r1 =max(τ1−1, n+1−τ1) the boundary, and one could refine their
result by stating that τ1 is detectable if and only if r1∆2

1 ≥ cσ
2[s1 log(1 +

1
s1

√
p log log(2n/r1)) + log log(2n/r1)]

which is more smaller when r1 is of the order of n. This refined result is in the same spirit as our bounds
for mutiple change-point, but the rate is faster because one obtains log log(n/r1) - instead of log(n/rk) in our
case. The reason for this faster rate is due to the relative simplicity of the problem with only one change-point.
Indeed, in single change-point detection, there is no need to look for change-points at all positions and scale
at the same time, since scale and positions are related. This implies that it is possible to attain faster rates
than in multiple change-point detection. The comparison between single and multiple change-point detection
is thoroughly done in [92] for univariate models.

Computational Cost. The cost of the tests T (d)l,r in the dense regime is O(rp). The computation of the
partial norm statistic requires to sort the coordinates Cl,r,i of the CUSUM statistic, which takes O(p(r+log(p)))
operations. Since only the thresholds x ≤ c log(np/(rδ))1/2 are needed to compute the Berk-Jones statistic, it
holds that, for δ ≥ (np)−c with a numerical constant c > 0, the computational cost of the Berk-Jones statistic
is O(p(r + log(np))). Thus, for each (l, r), the overall computational cost of the test Tl,r = T

(d)
l,r ∨ T

(s)
l,r is

Λ = O(p(r+ log(np))), and the computational cost of the whole change-point detection procedure on the dyadic
grid is O(np log(np)).
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5.4 Multi-scale change-point detection with sub-Gaussian noise
We now turn to the more general case of sub-Gaussian distributions [91]. Given a random variable Z, define
its ψ2-norm by ∥Z∥ψ2

= inf{x > 0, E[exp(Z2/x2)] ≤ 2} . Given L > 0, a mean zero real random variable is
said to be L-sub-Gaussian if ∥Z∥ψ2

≤ L. This implies in particular that, for all x ≥ 0, one has P (∣Z ∣ ≥ x) ≤
2 exp(−x2/L2). Throughout this section, we assume that, for t = 1, . . . , n, the random vectors εt are independent,
have independent L-sub-Gaussian components εt,i, for i = 1, . . . , p with variance σ2. As in the previous section,
we apply the general aggregation procedures introduced in Section 5.2. As a consequence, our main task boils
down to introducing a near-optimal multiple testing procedure indexed by a grid for detecting the existence of a
change-point. Here, we shall rely on the complete grid GF = Jn = {(l, r) ∶ r = 1, . . . , ⌊n2 ⌋ and l = r + 1, . . . , n − r}
whose size is quadratic with respect to n. All the results presented in this section are still valid (but with different
numerical constants) if we keep the dyadic grid GD as in the previous section. Here, we use the complete grid as
a proof of concept that one can rely on the full collection of possible segments without deteriorating the rates.
Still, controlling the behavior of the procedure on the complete grid is technically more involved and requires
chaining arguments. A detailed comparison between the complete and dyadic grids is made in Section 5.7.

In order to emphasize the common points with the previous section, we use the same notation K∗ for the
collection of high-energy change-points1, r̄k for the scales associated to the k-th change-points2, Ψ for the
statistics, T for the test and x for the thresholds although these quantities are slightly changed to cope with
the sub-Gaussian tail distribution. We follow the same scheme as for the Gaussian case and first introduce
multi-scale tests for dense change-points before turning to sparse change-points. As in the previous section, we
consider some δ ∈ (0,1) corresponding to the type I error probability.

5.4.1 Dense change-points with sub-Gaussian noise
Recall that, for a change-point τk, sk stands for the sparsity of the difference µk+1 −µk. We focus here on dense
change-points for which sk is possibly as large as p. Given κ > 0, τk is a κ-dense high-energy change-point if

rk∆
2
k ≥ κL

2 ⎛

⎝

√

p log (
n

rkδ
) + log (

n

rkδ
)
⎞

⎠
. (5.17)

This condition is very similar to its counterpart (5.10) for Gaussian noise. Still, we introduce it here for the
sake of completeness. For k ∈ [K] such that τk is a κ-dense high-energy change-point, we define r̄(d)k as the
minimum length such that an inequality similar to (5.17) is satisfied :

r̄
(d)
k =min

⎧⎪⎪
⎨
⎪⎪⎩

r ∈ N∗ ∶ 4r∆2
k ≥ κL

2 ⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

.

As in the Gaussian case in Section 5.3, r̄(d)k corresponds to the smallest scale such that τk is guaranteed to be
detected. For any κ-dense high-energy change-point, it holds that 4(r̄

(d)
k − 1) < rk. For any positive integers

(l, r) ∈ GF , we consider the same CUSUM-based statistic Ψ
(d)
l,r ∶= ∥Cl,r∥

2
−p as for Gaussian noise. Let c̄(d)thresh > 0

be a tuning parameter to be discussed later. To calibrate the corresponding multiple test procedures (T (d)l,r )

with (l, r) ∈ GF rejecting for large values of Ψ(d)l,r we introduce

T
(d)
l,r ∶= 1{Ψ

(d)
l,r > x

(d)
r } ; x(d)r = c̄

(d)
thresh

L2

σ2

⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠
.

Proposition 5.4.1. There exists a numerical constant c̄(d)thresh > 0 such that the following holds for any κd >
32c̄

(d)
thresh. With probability higher than 1 − δ, one has (i) T (d)l,r = 0 for all (l, r) ∈ GF ∩H0 and (ii) T (d)

τk,r̄
(d)
k

= 1 for

all κd-dense high-energy change-points τk.

In comparison to Proposition 5.3.1 in the previous section, there are two differences. First, we need to cope
with sub-Gaussian distribution by applying the Hanson-Wright inequality. Most importantly, the grid GF is
much larger than GD so that we cannot simply consider each test Tl,r separately and simply apply a union
bound as in the previous section. To handle the dependencies between the statistics Ψ

(d)
l,r , we have to apply a

chaining argument. In fact, the thresholds x(d)r are similar to their counterpart in the previous section, whereas
1See Equation (5.20) as the energy condition is slightly different in the sub-Gaussian setting.
2Re-defined in Equation (5.21).
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the number ∣GF ∣ of tests is now proportional to n2. In principle, the benefit of using the full grid GF is that
(τk, r̄

(d)
k ) belongs to GF so that we can consider the CUSUM statistic based on a segment [τk − r̄

(d)
k , τk + r̄

(d)
k ]

centered around the change-point τk. In contrast, (τk, r̄
(d)
k ) does not necessarily belong to the dyadic grid GD

and we needed to consider its best approximation (τ̄ (d)k , r̄
(d)
k ). The segment [τ̄ (d)k − r̄

(d)
k , τ̄

(d)
k + r̄

(d)
k ] is therefore

not centered on τk and the corresponding statistic Ψ
(d)
τ̄
(d)
k

,r̄
(d)
k

is in expectation smaller than Ψ
(d)
τk,r̄

(d)
k

. In summary,

both the collections of dense tests Ψ
(d)
l,r on GD and GF are able to detect change-points whose energy is, up to

some multiplicative constants, higher than L2[[p log( n
rkδ
)]1/2 + log( n

rkδ
)].

5.4.2 Sparse change-points with sub-Gaussian noise
Unlike in the Gaussian case, we do not know the exact distribution of the noise. As a consequence, the Berk-
Jones test and more generally higher-criticism type tests cannot be applied to this setting. This is why we only
rely on the partial norm statistic. Recall that Z = {1,2,22, . . . ,2⌊log2(p)⌋} stands for a dyadic set of sparsities.

For (l, r) ∈ GF and s ∈ Z, we also recall that the partial CUSUM norm is defined as Ψ
(p)
l,r,s = ∑

s
i=1 (Cl,r,(i))

2
.

Then, for any (l, r) ∈ GF , the test T (p)l,r rejects the null when at least one of the partial norms is large

x(p)r,s = s + c̄
(p)
thresh

L2

σ2
[s log (

2ep

s
) + log (

n

rδ
)] ; T

(p)
l,r =max

s∈Z
1{Ψ

(p)
l,r,s > x

(p)
r,s } ,

where c̄(p)thresh is a tuning parameter in Proposition 5.4.2 below. The partial norm test alone is not able to detect
sparse high-energy change-points in the sense of (5.11) and we need to introduce a stronger condition on the
energy. Given κ > 0, a change-point τk is a κ-sparse high-energy change-point in the sub-Gaussian setting if
sk ≤ [p log(

n
rkδ
)]1/2 and

rk∆
2
k ≥ κL

2
[sk log (

ep

sk
) + log (

n

rkδ
)] . (5.18)

Both Conditions (5.11) and (5.18) are compared at the end of the subsection. For a κ-sparse high-energy
change-point τk, we define its scale r̄(s)k by

r̄
(s)
k =min{r ∈ N∗ ∶ 4r∆2

k ≥ κL
2
[sk log (

ep

sk
) + log (

n

rδ
)]} . (5.19)

For any κ-sparse high-energy change-point, it holds that 4(r̄
(s)
k − 1) ≤ rk.

Proposition 5.4.2. There exists a numerical constant c̄(p)thresh > 0 such that the following holds for any κs >

32c̄
(p)
thresh. With probability higher than 1 − δ, one has (i) T (p)l,r = 0 for all (l, r) ∈ GF ∩H0 and (ii) T (p)

τk,r̄
(s)
k

= 1 for

all κs-sparse high-energy change-point τk in the sense of (5.18).

As for Proposition 5.4.1, the proof relies on a careful analysis of the joint distributions of the statistics Ψ(p)l,r,s
to handle the multiplicity of GF .

5.4.3 Consequences
Let c0 > 0 be some constant that we will discuss later. A change-point τk is then said to be a c0-high-energy
change-points –in the sub-Gaussian setting– if

rk∆
2
k ≥ c0L

2

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

√

p log (
n

rkδ
) ∧ (sk log (

ep

sk
))
⎞

⎠
+ log (

n

rkδ
)

⎤
⎥
⎥
⎥
⎥
⎦

. (5.20)

We here re-introduce K∗ ⊂ [K] as the subset of indices such that τk satisfies (5.20).
We gather both tests by considering, for any (l, r) ∈ GF , the test Tl,r = T

(d)
l,r ∨ T

(p)
l,r with tuning parameters

c̄
(d)
thresh and c̄(p)thresh as in Propositions 5.4.1 and 5.4.2. Consider any c0 > 32(c̄

(d)
thresh∨c̄

(p)
thresh) and any c0-high-energy

change-point τk, which is either a c0-sparse or a c0-dense high-energy change-point. Defining

r̄k = r̄
(d)
k ∧ r̄

(s)
k , (5.21)

we straightforwardly derive from Proposition 5.4.1 and Proposition 5.4.2 the following result.



160 Chapter 5. Multiple change-point detection for high-dimensional data

Corollary 5.4.3. There exists two numerical constants c̄(p)thresh > 0 and c̄(d)thresh > 0 such that the following holds.
With probability higher than 1 − δ, it holds that (i) Tl,r = 0 for all (l, r) ∈ GF ∩H0 and (ii) Tτk,r̄k = 1 for any
c0-high-energy change-point τk in the sense of (5.20).

Then, it suffices to combine this multiple testing procedure with Algorithm 16 to get the change-point
procedure τ̂ . Since, for a high-energy change-point in the sense of (5.20), we have 4(r̄k − 1) < rk, we are in
position to apply Theorem 5.2.1.

Corollary 5.4.4. There exist two numerical constant c̄(p)thresh > 0 and c̄(d)thresh > 0 such that the following holds.
With probability higher than 1 − δ, the estimator τ̂ satisfies (NoSp) and detects c0-high-energy change-point
τk (as defined in(5.20)), that is

dH,1(τ̂ , τk) ≤ r̄k − 1 ≤
rk
4

,

where r̄k is defined in (5.21).

In the case where all change-points are c0-high-energy change-points in the sense of (5.20), all of them are
detected, and a result similar to Corollary 5.3.4 holds here, replacing r∗k/2 by r̄k − 1. Also, both the Hausdorff
distance and the Wasserstein distance, can be bounded as in Equation (5.16) if we replace r∗k/2 by r̄k − 1.

As already stated, we could have obtained a similar result (but with different constants) using the dyadic
grid GD instead of GF . To conclude this section, let us compare the conditions (5.20) and (5.8) for high-energy.
Define

ψ(sg)n,r,s =
√
pγr ∧ (s log (

ep

s
)) + γr ,

where we recall that γr = log ( n
rδ
). If γr ≥ p/2, then ψ

(sg)
n,r,s ≍ γr. In low dimension, the energy threshold for

multivariate change-point detection is the same as in the univariate setting, see [92]. If γr ≤ p/2, then

ψ(sg)n,r,s ≍

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

γr if s ≤ γr
log(p)−log(γr)

s log (ep
s
) if γr

log(p)−log(γr) < s <
√
pγr

log(p)−log(γr)
√
pγr if s ≥

√
pγr

log(p)−log(γr)

As a consequence, ψ(sg)n,r,s and ψ
(g)
n,r,s are of the same order of magnitude for all s when γr ≥ p/2. When

log(n/rδ) < p, they are also of the same order of magnitude except when s is close but smaller than √pγr,
for which the ratio ψ

(sg)
n,r,s/ψ

(g)
n,r,s between these two quantities can be as large as log(p) − log(γr). This gap

corresponds to the regime where the test based on the Berk-Jones statistic defined in Equation (5.14), used in
the Gaussian case, outperforms the test based on the partial CUSUM norm statistic defined in Equation (5.15).

In the definitions of the tests, the tuning constants c̄(p)thresh and c̄(d)thresh are left implicit, although one can find
suitable values by following the proofs of Propositions 5.4.1 and 5.4.2. In practice, the practitioner can calibrate
them by a Monte-Carlo method by simulating a Gaussian multivariate times series without any change-points.
Then, c̄(p)thresh and c̄

(d)
thresh are chosen so that the Family-wise error rate (FWER) of the two collections (T (d)l,r )

and T (p)l,r is equal to δ.

Computational Cost. The computational cost of the statistic Tl,r = T
(d)
l,r ∨ T

(p)
l,r is O(p(r + log(p))). Thus,

a naive computation of all the tests Tl,r for (l, r) in the complete grid GF requires O(p log(p)∑(l,r)∈GF r) =
O(pn(n2 + log(p))) operations. Nevertheless, using the fact that ∑l+ri=l+1 Yi = (∑

l+r−1
i=l Yi)+Yl+r −Yl, it is possible

to compute all the tests at scale r with cost O(np log(p)). Since there are n possible scales r on the complete
grid, the whole procedure cost is O(n2p log(p)). Using a grid G = {(l, r) ∈ GF ∶ r ∈ R} that contains dyadic
scales and all possible locations l for each scale, the whole change-point detection would then require only
O(np log(n) log(p)) computations, since there are only log(n) possible scales r for such grids.

5.5 Minimax lower bound
In this section, we write for any Θ ∈ Rp×n, the distribution of the time series Y = (y1, . . . , yn) in the model (5.2)
with Gaussian noise εt ∼ N (0, σ2Ip). In Section 5.3, we have established that any change-point satisfying the
condition (5.8), that is

rk∆
2
k ≥ c0σ

2

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rkδ
)
⎞

⎠
+ log (

n

rkδ
)

⎤
⎥
⎥
⎥
⎥
⎦

,
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is detected by our change-point procedure. We now show that this energy condition is unimprovable from a
minimax point of view. More precisely, let us define, for any u > 0, the class P̄(u) of mean parameters Θ with
arbitrary K ≥ 0 number of change points and such that any change-point τk for 1 ≤ k ≤K satisfies

rk∆
2
k ≥

1

2
σ2

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 + u

√
p

sk

√

log (
n

rk
)
⎞

⎠
+ u log (

n

rk
)

⎤
⎥
⎥
⎥
⎥
⎦

. (5.22)

For u small enough, it turns out no change-point estimator is able to detect all change-points without estimating
any spurious change-point with high probability on the full class P̄(u). Still, using this large class provides
somewhat pessimistic bounds. For instance, the most challenging distributions in P̄(u) for the purpose of
change-point detection satisfy sk = p and rk = 1 (very close change-points). As a consequence, relying on the full
collection P̄(u) turns too pessimistic. To establish that our bounds are adaptive with respect to the sparsity sk
and the length rk, we define, for any positive integers 1 ≤ r ≤ ⌊n/2⌋ and any 1 ≤ s ≤ p the collection

P̄(u, r, s) = {Θ ∈ P̄(u) ∶ min
k
rk ≥ r and max

k
sk ≤ s} .

By convention, constant means Θ with no change-points (K = 0) also belong to P̄(u, r, s). In the class P̄(u, r, s),
all change-points have a sparsity at most s and a length at least r. Hence, P̄(u, r, s) becomes larger when s
increases or when r increases.

Theorem 5.5.1. Fix any u ∈ (0,1/8). For any σ > 0, n ≥ 2, p ≥ 1, any length 1 ≤ r ≤ n/4, and any sparsity
1 ≤ s ≤ p, we have

inf
τ̂

sup
Θ∈P̄(u,r,s)

PΘ(K̂ ≠K) ≥
1

4
,

where the infimum is taken over all estimators τ̂ of the change-point vector τ and and K̂ = ∣τ̂ ∣.

Thus, in the Gaussian setting, if all the change-points have a high-energy in the sense of (5.8) but with a
smaller multiplicative constant factor, no change-point estimator can consistently estimate the true number of
change-points. The next corollary restates this negative results in the same lines as Corollary 5.3.4.

Corollary 5.5.2. Fix any u ∈ (0,1/8). For any σ > 0, n ≥ 2, p > 1, any length 1 ≤ r ≤ n/4, any sparsity 1 ≤ s ≤ p,
and any estimator τ̂ , there exists some Θ ∈ P̄(u, r, s) such that with PΘ-probability larger than 1/4, at least one
of the two following properties is satisfied

• τ̂ contains at least one spurious change-point

• at least a change-point τk with 1 ≤ k ≤ K is not detected, i.e. there is no change-point estimated in the
interval [(τk−1 + τk)/2, (τk + τk+1)/2].

This corollary is to be compared to Corollary 5.3.4 - indeed, the energy condition in Equation (5.22) differs
from Equation (5.8) only by a numerical multiplicative constant. As a consequence, the energy condition (5.22)
is minimal for detection by a change-point estimator that achieves (NoSp).

5.6 Application to other change-point problems
In this section, we apply the general methodology of Section 5.2 to two other problems, namely detection
of covariance and nonparametric change-points. This allows us to obtain the first tight minimax detection
conditions for these problems.

5.6.1 Covariance change-point detection
Following Wang et al. [96], we consider the covariance change-point model where the covariance matrices Σt
of the centered random vectors yt ∈ Rp are piece-wise constant. Then, the goal is to estimate the times
0 < τ1 < . . . < τK < τK+1 = n + 1 such that Σt is varying. See [96] for motivations. As in that work, we assume
that the random vectors yt are independent and are sub-Gaussian with a uniformly bounded Orlicz norm, that
is maxt=1,...,n ∥yt∥ψ2 ≤ B for some known fixed B. The Orlicz norm of a random vector y is the supremum of
the Orlicz norm of any uni-dimensional projection of y – see e.g. [91]. If the yt’s follow a normal distribution,
this amounts to assuming that maxt=1,...,n ∥Σt∥op ≤ 2B

2 where ∥.∥op is for the operator norm. The purpose of
Wang et al. was to detect small changes in operator norm, that is detecting instants τk such that Στk ≠ Στk−1
with ∥Στk −Στk−1∥op possibly small. Apart from the operator norm, other norms have also been considered e.g.
in [29]. Here, we focus on the operator norm as in [96].
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Recalling the generic procedure introduced in Section 5.2, we consider the dyadic grid GD and some δ ∈ (0,1).
For any (l, r) ∈ G, we respectively write Σ̂l,−r and Σ̂l,r for the empirical covariance matrices

Σ̂l,−r = r
−1

l−1
∑
t=l−r

yty
T
t ; Σ̂l,r = r

−1
l+r−1
∑
t=l

yty
T
t .

Then, we consider the test Tl,r rejecting for large values of ∥Σ̂l,r − Σ̂l,−r∥op.

Tl,r = 1

⎧⎪⎪
⎨
⎪⎪⎩

∥Σ̂l,r − Σ̂l,−r∥op ≥ c0B
2

⎡
⎢
⎢
⎢
⎢
⎣

√
p

r
+
p

r
+

√
log( 2n

δr
)

r
+
log( 2n

δr
)

r

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

, (5.23)

where the numerical tuning constant c0 is set in the proof of the following proposition. Relying on concentration
bounds [50] for the empirical covariance matrix of sub-Gaussian random vectors, we easily prove that the
FWER of the multiple testing procedure (Tl,r) with (l, r) ∈ GD is small. Then, we can analyze the type II
error probability and plug it into the generic result (Theorem 5.2.1) to control the behavior of the change-point
estimator τ̂ . This leads us to the following result. In the sequel, a change-point τk is said to have a high-energy
if

rk∥Στk −Στk−1∥
2
op ≥ c1B

4
[(p + log (

2n

rkδ
)) ∧ rk] , (5.24)

where the numerical constant c1 is introduced in the proof of the following proposition. We recall that, by
definition of the model, we have ∥Στk −Στk−1∥op ≤ 4B

2.

Proposition 5.6.1. There exist positive numerical constants c0, c1, and c2 such that the following holds for any
B > 0 and any sequence of independent centered random vectors (yt) satisfying maxt ∥yt∥ψ2 ≤ B. With probability
higher than 1 − δ, the change-point estimator τ̂ satisfies (NoSp) and detects all high-energy change-points in
the sense of (5.24). Besides, any such high-energy change-point τk satisfies

dH,1(τ̂ , τk) ≤ c2B
4
p + log (2δ−1B−4n∥Στk −Στk−1∥

2
op)

∥Στk −Στk−1∥
2
op

≤
rk
4
, (5.25)

under the same event of probability than 1 − δ.

Let us compare our condition (5.24) for detection with Theorem 2 in Wang et al. [96]. The authors assume
that all the change-points satisfy

min
k
rkmin

k
∥Στk −Στk−1∥

2
op ≥ c

′
1B

4p log(n) .

In addition to the fact that we allow some change-points to have an arbitrarily low energy, our requirement for
detection scales like √p +

√
log(n/rk) instead of

√
p log(n).

The next proposition establishes that the latter condition is minimal. By homogeneity, we can only consider
the case where B = 3/2. We focus our attention on Gaussian distributions so that the distribution of the
sequence (y1, . . . , yn) is uniquely defined by the sequence (Σ1, . . . ,Σn) of covariance matrices. Given an integer
1 ≤ r ≤ n/4 and ζ ∈ (0,1/

√
2), we define P̄(r, ζ) the collection of sequences η = (Σ1, . . . ,Σn) of covariance

matrices that satisfy either Σt = Ip or ∥Σt∥op = 1 + ζ. Besides, the corresponding change-points (τ1, . . . , τK) of
η must satisfy mink rk ≥ r and mink ∥Στk − Στk−1∥op ≥ ζ. For η ∈ P̄(r, ζ), we write Pη for the corresponding
distribution of (y1, . . . , yn).

Proposition 5.6.2. There exists a positive numerical constant c such that, for any n, p and any length 1 ≤ r ≤
n/4 the following holds. Provided that rζ2 ≤ c(p + log(n/r)) ∧ r

2
, we have

inf
τ̂

sup
η∈P̄(r,ζ)

Pη(K̂ ≠K) ≥
1

4
.

As a consequence, our procedure τ̂ achieves the minimal separation condition (5.24) for change-point detec-
tion. In their work, [96] obtain faster localization errors than (5.25) to the price of stronger separation conditions.
Our focus in this work is to provide optimal detection conditions and we did not try to optimize (5.24).

5.6.2 Univariate nonparametric change-point detection
We now turn to the univariate nonparametric change-point model considered in [70]. Let m ≥ 1 be any positive
integer. At each time t = 1, . . . , n, the random vector yt is an m-sample of a univariate distribution with
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cumulative distribution function Ft. Then, we aim at detecting a vector τ = (τ1, . . . , τK) of change-points such
that Fτk ≠ Fτk−1 . As in [70], we quantify the distance between two distributions by the Kolmogorov distance
∥F1 − F2∥∞ = supz∈R ∣F1(z) − F2(z)∣.

As in the previous subsection, we build a procedure τ̂ with our generic algorithm on the dyadic grid.
Regarding the collection of tests (Tl,r), we consider two-sample Kolmogorov-Smirnov tests. More precisely, we
denote F̂t the empirical distribution function associated with the sample yt and we define the test

Tl,r = 1

⎧⎪⎪
⎨
⎪⎪⎩

∥r−1 (
l+r−1
∑
t=l

F̂t −
l−1
∑
t=l−r

F̂t)∥
∞
≥

√

2
log(4n/(δr))

mr

⎫⎪⎪
⎬
⎪⎪⎭

.

In the following, a change-point τk is said to have a high-energy if

rk∥Fτk − Fτk−1∥
2
∞ ≥

c1
m

log (
n

rkδ
) , (5.26)

where the numerical constant c1 is introduced in the proof of the next proposition. As in Subsection 5.6.1, it
is straightforward to prove, based on Dvoretzky–Kiefer–Wolfowitz inequality, that the FWER of the multiple
testing procedures (Tl,r) with (l, r) ∈ GD is small. Then, we analyze the type II error probability of this test
and plug it into the generic result (Theorem 5.2.1) to control the behavior of the change-point estimator τ̂ .

Proposition 5.6.3. There exist positive numerical constants c1 and c2 such that the following holds. With
probability higher than 1−δ, the change-point estimator τ̂ satisfies (NoSp) and detects all high-energy change-
points τk in the sense of (5.26). Besides, any such high-energy change-points τk satisfies

dH,1(τ̂k′ , τk) ≤ c2
log (δ−1nm∥Fτk − Fτk−1∥

2
∞)

m∥Fτk − Fτk−1∥
2
∞

≤
rk
4
, (5.27)

under the same event of probability than 1 − δ.

In [70], the authors introduce a procedure detecting all the change-points provided that

min
k
rkmin

k
∥Fτk − Fτk−1∥

2
∞ ≥ c1

log(n)

m
.

Comparing this last condition with (5.26), we observe that our logarithmic term is tighter and that we allow
arbitrarily low-energy change-points.

The next proposition establishes that the condition (5.26) is unimprovable. Given an integer 1 ≤ r ≤ n/4 and
ζ ∈ (0,1/4), we focus our attention on the collection P̄(r, ζ) of sequences (F1, . . . , Fn) of distributions such that
the corresponding change-points (τ1, . . . , τK) satisfy mink rk ≥ r and mink ∥Fτk − Fτk−1∥∞ ≥ ζ. For η ∈ P̄(r, ζ),
we write Pη for the corresponding distribution of the sequence (y1, . . . , yn).

Proposition 5.6.4. There exists a positive numerical constant c such that, for any n, p and any length 1 ≤ r ≤
n/4 the following holds. Provided that rζ2 ≤ c′ log(n/r)/m, we have

inf
τ̂

sup
η∈P̄(r,ζ)

Pη(K̂ ≠K) ≥
1

4
.

5.7 Discussion

5.7.1 Noise distribution for multivariate change-point detection
Comparison between Gaussian and sub-Gaussian rates. In this work, we have studied two types of
noise distribution: Gaussian (Section 5.3) and general sub-Gaussian distributions (Section 5.4) without further
knowledge on the distribution functions. Since the Gaussian setting is a specific instance of the sub-Gaussian
setting, it is clear that the minimax lower bounds from Section 5.5 apply in both settings. As described in
the previous subsection, the performances in the sub-Gaussian case almost match those in the Gaussian setting
except for sk slightly lower but close to

√
p log(en/rk). Indeed, in that regime, Berk-Jones or Higher-Criticism

type statistics heavily rely on the probability distribution function of the noise, which is not available in the
general sub-Gaussian case. Still, we could slightly improve the sub-Gaussian rates if we further assume that the
noise components are identically distributed with common CDF F .

• If F is known (know noise distribution), then one may adapt Berk-Jones test by replacing Φ̄(x) in Equa-
tion (5.14) by F (−x) + (1 − F (x)). This would allow us to recover the exact same detection condition as
in the Gaussian setting.

• If F is unknown and if there are not too many change-points, one could hope to estimate the quantiles
of the CUSUM statistic at each scale r and plug them into a Berk-Jones statistics. This goes however
beyond the scope of this chapter.
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Unknown variance or more general variance matrix. We assumed in the sparse multivariate sections
that the variance σ2 is known. Whereas the partial norm test only requires the knowledge of an upper bound
on σ, the dense statistic Ψ

(d)
l,r requires the exact knowledge of the variance. As soon as there are not too many

change-points, it is possible to roughly estimate σ and therefore accommodate the partial norm test with an
unknown variance. In contrast, the dense statistics needs to be replaced by a U -statistics. Consider any even
positive integer r and define

C̃l,r(Y ) =

√
r

2

⎛

⎝

2

r

r/2
∑
t=1
Yl−2(t−1)−1 −

2

r

r/2
∑
t=1
Yl+2(t−1)

⎞

⎠
, C̃′l,r(Y ) =

√
r

2

⎛

⎝

2

r

r/2
∑
t=1
Yl−2t −

2

r

r/2
∑
t=1
Yl+2(t−1)+1

⎞

⎠
,

where C̃l,r(Y ) and C̃′l,r(Y ) are independent. If there is one change-point at position l and no other change-

points in (l−r, l+r), then these statistics are identically distributed and we consider Ψ̃
′′(d)
l,r = ⟨C̃l,r(Y ), C̃

′
l,r(Y )⟩

whose expectation is null when there are no change-points in the segment. As a consequence, Ψ̃
′′(d)
l,r does not

require the knowledge of σ; only an upper bound of σ is required to calibrate the corresponding test. Such a
U -statistics has already been introduced in [102] and analyzed in an asymptotic setting. Unfortunately, since we
can only consider even r, this precludes us to detecting change-points that are very close together with rk = 1.

In the general case where there is spatial covariance in the noise, that is var(ϵt) = Σ for an unknown but
general Σ, we can still use the same U -statistic described in the previous paragraph for the dense case. For the
sparse case, one could use the supremum norm of the CUSUM statistics as in Jirak [48] and Yu and Chen [105].
To calibrate those tests, we need to estimate both the Frobenius and the operator norm of Σ, which seems to
be doable as soon as there are not too many change-points. If the spatial covariance matrix var(ϵt) is unknown
and even allowed to change with time, we suspect that the problem becomes intrinsically more involved.

5.7.2 Optimal localization rates

In this work, we mainly considered the problem of detecting change-points in the mean of a random vector.
We provided tight conditions on the energy so that a change-point is detectable. When such a change-point τk
is detected, Corollary 5.3.3 states that its position is estimated up to an error of r∗k, which is also of the order
of σ2Ψ

(g)
n,rk,sk

∆−2k – see the definition (5.9). It is not clear whether this error is optimal or not.
In the univariate setting (p = 1), [92] has established that, above the detection threshold, a specific change-

point position τk can be localized at the rate σ2∆−2k . In the multivariate setting, the situation is more tricky
and there are certainly several localization regimes beyond the detection threshold. It is an interesting direction
of research to pinpoint the exact localization rate between σ2∆−2k and σ2Ψ

(g)
n,rk,sk

∆−2k . We leave this for future
work.

5.7.3 On the choice of the grid in the generic algorithm

Our general procedure is defined for almost any arbitrary grid. Optimal procedures with the dyadic grid are
introduced in Sections 5.3 and 5.6, whereas we use a near-optimal procedure on the complete grid in Section 5.4.

From a computational perspective, the procedure’s worst-case complexity is proportional to the size ∣G∣ of
the grid G. In that respect, the dyadic grid and more generally the a-adic grids benefit from a linear size whereas
the size of the complete grid is quadratic.

From a mathematical perspective, it is much easier to control the behaviour of the procedure for an a-adic
grid by a simple Bonferroni correction on all the statistics as it turns out that this correction is sufficient for our
purpose – see the proofs of Section 5.3. In constrast, controlling larger collections of tests turns out to be much
more challenging as one needs to carefully take into account the dependences between the test statistics, which
becomes all the more challenging for complex models. As an example, we introduced in Section 5.3 Berk-Jones
statistics to achieve the tight minimax condition for change-point detection. Unfortunately, we did not manage
to apply a suitable chaining argument to these statistics and were therefore unable to control the behavior of
the corresponding change-point detection procedure on the complete grid.

From a purely statistical perspective, it is difficult to appreciate the respective benefits of denser or sparser
grids. On the one hand, for denser grids, the approximation τk of τk at scale r will be closer to τk so that the
corresponding test Tτk,r may be more powerful. On the other hand, for a denser grid, the tests possibly suffer
from a higher price for multiplicity. This price can be mild if one takes into account the dependences between
the tests. Still, except perhaps in the univariate Gaussian change-point model for which delicate controls of the
CUSUM process exist, it is challenging to provide theoretical guidance towards the best choice of the grid.
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5.7.4 Optimality of the generic algorithm in a broader context.

Algorithm 16 aggregates homogeneity tests and provides theoretical guarantees on the eventA (T,K∗, (τ̄k, r̄k)k∈K∗)
- i.e. the event where the outcomes of the tests are consistent - as stated in Theorem 5.2.1. In the possibly
sparse high-dimensional mean change-point model, we introduced a suitable multiple testing procedure which,
when combined with Algorithm 16, leads to a minimax optimal change-point detection procedure.

We described in Section 5.2 how to adapt this approach to other change-point problems and this was
already illustrated in Section 5.6 with covariance and nonparametric problems. One may then wonder whether
this roadmap still leads to minimax optimal procedures for general problems. Consider the general setting
from Section 5.1 where we are interested in detecting change-points in (Γ (Pt))t∈[n]. Upon endowing the space
V with some distance d, we define, for any k,

∆̄k = d (Γ (Pτk) ,Γ (Pτk−1)) ,

which corresponds to the change-point height. Then, one may wonder how large ∆̄k has to be - as a function of
rk - so that a change-point detection procedure achieving the no-spurious property (NoSp) with high probability
is able to detect τk. In this discussion, we restrict our attention to independent observations, that is the random
variables yt are assumed to be independent and we consider the dyadic grid GD.

Fix δ ∈ (0,1). At each scale r ∈ {1,2, . . . ,2⌊log2(n)⌋−1} and for each l ∈ Dr, with Dr defined in (5.5), we
consider the testing problem H0,l,r ∶ {P ∶ Γ(Pl−r) = . . . = Γ(Pl+r−1)} versus

Hρ,l,r ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

P ∶
Γ(Pl−r) = . . . = Γ(Pl−m−1)
Γ(Pl−m) = . . . = Γ(Pl+r−1)
d(Γ(Pl−m−1),Γ(Pl−m) ≥ ρ)

for some integer m ∈ [−r/2, r/2]
⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

This amounts to testing whether there is a single change-point near l of height at least ρ in the segment
(l − r, l + r). Given δ ∈ (0,1) and a test T we define the δ-separation distance of T by

ρ∗l,r(T, δ) = inf {ρ ∶ sup
P∈H0,l,r

P(T = 1) ∨ sup
P∈Hρ,l,r

P(T = 0) ≤ δ} .

This corresponds to the minimal change-point height that is detected by the test T . Then, the minimax
separation distance ρ∗l,r(δ) is simply infT ρl,r(T, δ), i.e. the infimum over all tests T of the separation distance.
By translation invariance of the testing problem, note that ρ∗l,r(δ) does not depend on l and is henceforth
denoted ρ∗r(δ).

For any (l, r), take any test Tl,r (nearly)3 achieving the minimax separation distance ρ∗r(δ∣Dr ∣
−1βr) with

βr = 6 log−22 (n/r))π
−2. Then, it follows from a simple union bound on the dyadic grid that, with probability

higher than 1 − δ, the collection of tests Tl,r, where (l, r) belongs to the dyadic grid, does not detect any false
positive and detects any change-point τk such that ∆k is higher than ρ∗r̃k(δ∣Dr̃k ∣

−1βr̃k), where r̃k is the largest
scale in R such that 4(r̃k − 1) ≤ rk. As a consequence of Theorem 5.2.1, the corresponding detection procedure
achieves, with probability higher than 1− δ, the property (NoSp) and detects any change-point satisfying the
energy condition ∆k ≥ ρ

∗
r̃k
(rδβr/2n).

Conversely, we believe that this energy condition is almost tight. Indeed, fix any even range r ≥ 2. To
simplify the discussion suppose that n/(2r) is an integer. We consider a specific instance of the problem where the
statistician knows that there are n/(2r)−1 evenly-spaced change-points respectively at 2r+1,4r+1, . . . , n−2r+1
that allow to reduce the change-point detection problem to n/(2r) change-point detection problem in intervals
(l−r, l+r] for l = r+1,3r+1,5r+1, . . .. Furthermore, it is known that, in each such segment, there exists at most
one change-point that is situated in [l−0.5r, l+0.5r], and if the change-point is present then its height is at least
ρ = ρ∗r(δ)− ζ for ζ arbitrarily small. Since all n/(2r)− 1 evenly-spaced change-points 2r + 1,4r + 1, . . . , n− 2r + 1
are known to the statistician, detecting all remaining change-points is equivalent to building an n/(2r) multiple
test of the hypotheses H0,l,r versus Hρ,l,r for l = r + 1,3r + 1,5r + 1, . . .. If a change-point procedure achieves
(NoSp) and detects all change-points with radius at least r/2 and height at least ρ with probability at least
1 − δ, then one is able, with probability uniformly higher than 1 − δ, to simultaneously perform without error
n/(2r) independent tests H0,l,r versus Hρ,l,r. Since any single test must endure an error with probability at
least δ in the worst case, no collection of independents tests is able to endure less than 1 − (1 − δ)n/(2r). When
n/r is large and δ < 2r/n, the latter is of the order of δ2r/n. Based on this, we conjecture that no change-point

3Since the minimax separation distance is defined as an infimum, it is not necessarily achieved by a test. Still, we can build a
test whose separation distance is arbitrarily close to the optimal one. We neglect the additive error term for the purpose of the
discussion.
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procedure is able to achieve, with probability higher than 1 − δ the property (NoSp), and also to detect all
change-points with radius at least r/2 and height at least ρ∗r(2rδ/n) − ζ for ζ > 0 arbitrarily small.

Comparing the performances of our procedure with the negative arguments that we just outlined, we see
that aggregating optimal tests on a dyadic grid allows to detect change-points with (almost) uniform height
higher ρ∗r̃k(rkδβrk/(2n)) whereas, as explained above, we conjecture that a change-point τk can be detected
only if ∆̄k ≥ ρ

∗
rk
(2rkδ/n). Since r̃k ≥ (rk/8) ∨ 1- as we considered the dyadic grid when constructing r̃k - the

difference between these two bounds is mostly due to the term βr which is of the order of log2(n/r). Whereas it
is possible to detect change-points at a given scale with a test of type I error probability 2rδ/n, our multi-scale
procedure relies on a collection of single tests with type I error probability of the order of rδ/n/ log2(n/r). This
mild mismatch - that we introduce to deal with the multiplicity of scales - of order log2(n/r) is harmless for the
Gaussian mean-detection problem. Indeed, one may deduce from our analysis in Section 5.3 that ρ∗rk(2rkδ/n)
is of the same order as ρ∗r̃k(δ∣Dr̃k ∣

−1βr̃k).

In conclusion, one can build through Algorithm 16 an almost optimal change-point procedure in any model
provided that we are given optimal homogeneity tests of the form H0,l,r versus Hρ,l,r. This provides a universal
reduction of the problem of change-point detection to the problem of homogeneity testing.

5.8 Numerical experiments

In this section, we illustrate the behavior of our procedure to detect change-points in a sparse high-dimensional
setting (5.2).
Performance Measure. To assess the quality of change-point estimator τ̂ , we first measure whether the
estimated number of change-points K̂ = ∣τ̂ ∣ is equal to the true number K of change-points. We also define
the SAND loss as the proportion of Spurious estimated change-points And true change-points that are Not
Detected:

SAND((τk), (τ̂k′)) =
1
K

K

∑
k=1
∣∣[(τk + τk−1)/2, (τk + τk+1)/2] ∩ {τ̂k, k ∈ [K̂]}∣ − 1∣ .

Change-point Detection Methods. In the experiments, we implemented the bottom-up aggregation pro-
cedure Algorithm 16 with partial norm tests T (p) and dense test T (d) corresponding to Section 5.4 on a semi-
complete grid GF = {(l, r) ∶ l ∈ {r+1, . . . , n−r+1, r ∈R}} - we take scales r in the dyadic set for computational
purposes. On a location l and a scale r, each test statistic can be seen as a partial norm test relying on the
statistic Ψ

(p)
l,r,s defined in Section 5.4.2 and a threshold Thresh(r, s) which is either equal to x(d)r when s = d - see

Section 5.4.1 - or to x(p)r,s when s ∈ Zr ∶= {1,2,4, . . . ,2⌊log2(smax)⌋} with smax ∶=
√
pγr

log(p)−log(γr) - see Section 5.4.3 for
the definition of the boundary between sparse and dense regimes smax. We actually do not use the definition of
x
(d)
r and x(p)r,s for our thresholds Thresh(r, s) since they rely on constants that are not necessarily tight, but we

rather calibrate them by a Monte-Carlo method using 10.000 independent samples. For each sample consisting
in a time series made of n gaussian normal centered vector in Rp, and for each r ∈R, s ∈ Zr ∪ {p}, we compute
the maximum over all l of the statistics Ψ

(p)
l,r,s. Considering the list of all the 10.000 maximums and taking

δ = 5%, Thresh(r, s) is then defined as the (1− δ/(2∣R∣∣Zr ∣))-quantile if s ∈ Zr and as the (1− δ/(2∣R∣))-quantile
if s = p, so that, by a union bound, the total probability of finding a false positive is less than δ. Note that this
calibration step only depends on n, p, and σ and only needs to be performed once and for all.

We compare our procedure with the inspect method of [103] which is available as an R package. The tuning
parameters of inspect are computed with the automatic method defined in the same R package.

In all the following experiments, we fix the dimension p = 100 and the sample size n = 200. We generate a
piecewise constant signal (ηt)nt=1 in Rp with possible change-points (τ1, . . . , τK) using one of the three following
settings. We then add a scaling factor α > 0 and apply our procedure to the data yt = αηt + εt, which amounts
to setting θt = αηt in model (5.2). We fix the variance of all the coordinates of εt to be equal to one. Increasing
α on a grid with step 0.1 allows us to experimentally identify a transition between the regime where we do not
detect precisely the change-points - in which case the two losses tend to be close to one - and the regime where
we do detect the change-points - in which cases the losses are smaller. We consider three simulation settings:

1. Segment. We generate a signal η which is zero everywhere, except on [80,100] where we set it equal to
a random vector ∆ with ∥∆∥ = 1 and ∥∆∥0 = s, for s = 1,20,100. In each one of these cases, we choose the
location of the s non null coordinates of ∆ uniformly at random and their value uniformly at random in the
set {−1/

√
s,1/
√
s}. Each time, η has 2 true change-points, and we generate the noise (ϵt) as independent

centered and normalized gaussian vectors.
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2. Multiple Change points. We generate 10 uniform random locations τ1 < τ2 < . . . < τ10 on [1,200]. For
each location τi, we generate a uniform random integer si ∈ [1,100] and a vector ∆i as in the segment
setting with ∥∆i∥ = 1 and ∥∆i∥0 = si. We generate a uniform random real number Ni ∈ [1,5] and define
the time series ηi by (ηi)t = Ni∆i1t≥τi . Finally, the signal η = ∑10

i=1 ηi has exactly 10 change-points with
random locations. As previously, the noise components (εt) follow independent centered and standard
gaussian vectors.

3. Time-dependencies. We use the same signal as in the segment setting with s = 20 but we move
away from our assumptions by considering time dependencies. More precisely, the (εt)’s are now defined
according to an AR process such taht εt+1 = ρεt+

√
1 − ρ2ε′t+1 for t ≥ 0 where (ε′t) are independent centered

and normalized gaussian vectors, ρ = 0.05 for the simulation and by convention ε0 ∼ N (0, Ip).

Risk estimation with Monte-Carlo. In each setting, we generate 500 independent samples and compute
the twpo losses SAND((τk), (τ̂k′)) and 1{K̂ ≠K}. We estimate the risks E[SAND((τk), (τ̂k′))] and P(K ≠ K̂)
by averaging the loss over the 500 trials. We also compute 95% confidence intervals.

Results. In the segment setting - see Figure 5.4, 5.5, 5.6, the risks tend to decrease as α increases since
the higher α, the higher the energy of the generated change-points are. As s increases, we can see that both
methods need a higher scaling factor to achieve the same risk, which translates the fact that the higher s,
the more energy is needed to detect a change-point with vector ∆ of sparsity s. In the segment settings, our
bottom-up procedure tends to achieve significantly smaller loss than the inspect method on average. It is not the
case in the multiple change-points setting - see Figure 5.7 - where the inspect method tends to perform slightly
better. In the setting with time-dependencies - see Figure 5.8 - the risks are worse than the corresponding
setting without time-dependencies - see Figure 5.5 - mainly because adding time-dependencies tends to create
more spurious change-points (i.e. false positives).

Computation time Our code is implemented with python 3.9 and it mainly uses the convolution function
conv1d from pytorch 1.12.1 to compute the Cusum statistics. Simulations are run on CPU (Intel(R) Core(TM)
i7-10510U CPU @ 1.80GHz) with 32Go of memory. Running our method on pure noise - i.e. θt = 0 for
all t - takes 101 ± 2 ms while the inspect method takes only 18 ± 2 ms to run on average, but optimizing
our code is out of the scope of this chapter. All the experiments are described in the repository https:
//github.com/epilliat/multicpdetec.

Figure 5.4: Estimation of E[SAND((τk), (τ̂k′))] and P(K̂ ≠K) in the segment setting with s = 1.

https://github.com/epilliat/multicpdetec
https://github.com/epilliat/multicpdetec
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Figure 5.5: Estimation of E[SAND((τk), (τ̂k′))] and P(K̂ ≠K) in the segment setting with s = 20.

Figure 5.6: Estimation of E[SAND((τk), (τ̂k′))] and P(K̂ ≠K) in the segment setting with s = 100.

Figure 5.7: Estimation of E[SAND((τk), (τ̂k′))] and P(K̂ ≠ K) in a multiple change-point setting with K = 10 where
change-points have random norms in [1,5] and random sparsities in [1, p].
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Figure 5.8: Estimation of E[SAND((τk), (τ̂k′))] and P(K̂ ≠ K) in the segment setting with s = 20 but with time-
dependent noise that have an auto-correlation of ρ = 5%.
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5.9 An alternative algorithm
In Algorithm 17 below, we also introduce a variant of the procedure, where instead of merging relevant interesting
intervals at the same scale, we only keep one of them. More precisely, we choose the convention of discarding
the interval [l−r+1, l+r−1] if there exists l′ < l such that Tl′,r = 1 and [l−r+1, l+r−1]∩[l′−r+1, l′+r−1] ≠ ∅.
Alternatively, we could have chosen to discard one of the intervals at random.

Algorithm 17 Variant bottom-up aggregation procedure of multiscale tests

Require: Observations yt, t = 1 . . . n and local test statistic (Tl,r)(l,r)∈G
Ensure: Estimated change-points (τ̂k)k≤K̂
1: S = ∅ T = ∅
2: for Increasing r ∈R do
3: for l ∈ Dr s.t. Tl,r = 1 do
4: if [l − r + 1, l + r − 1] ∩ S = ∅ then
5: S ← S ∪ [l − r + 1, l + r − 1]
6: T ← T ∪ {l}
7: end if
8: end for
9: end for

10: return T

5.10 Proofs

5.10.1 Proof of Theorem 5.2.1
Let Θ ∈ Rn×p, T be a local test statistic, K∗ be a set of indices of significant change-points and (τ̄k, r̄k)k∈K∗ be
elements of the grid G that satisfy (5.6). We assume that A(Θ, T,K∗, (τ̄k, r̄k)k∈K∗) holds, that is:

1. (No False Positive) Tl,r = 0 for all (l, r) ∈H0 ∩ G, where H0 is defined by (5.7)

2. (Significant change-point detection) for every k ∈ K∗, we have Tτ̄k,r̄k = 1.

For every r ∈R define

T ∗r = {l ∈ Tr ∶ ∃k ∈ K
∗ s.t. τk ∈ [l − r + 1, l + r − 1]},

S∗r = ⋃
l∈T ∗r
[l − r + 1, l + r − 1].

In other words, for all r ∈ R, T ∗r is the subset of Tr for which each interval of detection [l − r + 1, l + r − 1]
contains a significant change-point. The next proposition recursively analyzes the detection sets corresponding
to significant change-points (S∗r )r≥1. The first inclusion means that significant change-points which can be
detected with a local statistic with radius smaller than r are detected before step r, while the second inclusion
means that each connected component of ⋃

r∈R
S∗r is included in a close neighborhoods of some significant change-

point τk, k ∈ K∗.

Proposition 5.10.1. For all r ∈R ∪ {0}, we have the double inclusion

{τk ∶ k ∈ K
∗ and r̄k ≤ r} ⊂ ⋃

r′≤r,r′∈R
S
∗
r′ ⊂ ⋃

k∈K∗
[τk − 2(r̄k − 1), τk + 2(r̄k − 1)] . (5.28)

The next proposition shows that for each step r ∈R, the subset of detection corresponding to non significant
change-point is disjoint from ⋃r′∈R S∗r′ .

Proposition 5.10.2. For all r ∈R, we have

⋃
l∈Tr∖T ∗r

[l − r + 1, l + r − 1] ∩ ( ⋃
r′∈R
S
∗
r′) = ∅ .

Recall that (Ck)k=1,...,K̂ are defined as the connected component of ⋃r∈R Sr. To ease the notation, re-index
(Ck) so that τk is the closest true change-point to τ̂k = minCk+maxCk

2
. Since there is no false positive, τk ∈ Ck.

By Proposition 5.10.2, the two closed subset ⋃r∈R⋃l∈Tr∖T ∗r [l − r + 1, l + r − 1] and ⋃r∈R S∗r are disjoint. For
all k ∈ K∗, it holds by Proposition 5.10.1 that τk ∈ ⋃r∈R S∗r , so that Ck is a connected component of ⋃r∈R S∗r
containing the significant change-point τk. In particular, K̂ ≥ ∣K∗∣. We have
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• By Proposition 5.10.1, Ck ⊂ [τk − 2(r̄k − 1), τk + 2(r̄k − 1)] for every k ∈ K∗. Thus

∣τ̂k − τk ∣ ≤ (r̄k − 1) <
rk
4
.

• For all k ∈ [K]∖K∗, either τk does not belong to ⋃r∈R Sr and it is simply not detected, or it is the closest
true change-point to τ̂k = minCk+maxCk

2
so that

τ̂k ∈ [τk −
τk + τk−1

2
, τk +

τk + τk+1
2

] .

In particular,

{τ̂k′ , k
′
≤ K̂} ⊂ [τ1 −

τ1 − τ0
2

, τK +
τK+1 − τK

2
] .

• Finally, if there exists two estimated change-points τ̂k1 , τ̂k2 in [τk − τk+τk−1
2

, τk +
τk+τk+1

2
], then either Ck1

or Ck2 does not contain τk. Then Θ is constant on Ck1 or on Ck2 and we obtain a contradiction since
there is no false positive.

This concludes the proof of Theorem 5.2.1.

Proof of Proposition 5.10.1. To prove the proposition, we do an induction on r ∈ R ∪ {0}. The case r = 0 is
trivial since by definition, S0 = ∅. Let r ∈ R and assume that the double inclusion Proposition 5.10.1 holds for
all r′ < r, r′ ∈R ∪ {0}.

First inclusion: Let k ∈ K∗ be such that r̄k = r and assume that the corresponding significant change-point τk
has not been detected before step r, that is τk /∈ ⋃

r′<r
S∗r′ . Since k ∈ K∗, this implies in particular that τk /∈ ⋃

r′<r
Sr′ .

Let us show that τk ∈ Sr. To this end we prove that

[τ̄k − r + 1, τ̄k + r − 1] ∩ ⋃
r′<r,r′∈R

Sr′ = ∅ (5.29)

and

Tτ̄k,r = 1, (5.30)

which will be enough since ∣τ̄k − τk ∣ ≤ r̄k − 1 = r − 1.

• Proof of (5.29): Assume for the sake of contradiction that there exists an integer z which belongs
to [τ̄k − r + 1, τ̄k + r − 1] ∩ ⋃

r′<r
r′∈R

Sr′ . There exists r′ < r such that z ∈ Sr′ and l(z) ∈ Tr′ such that z ∈

[l(z) − r′ + 1, l(z) + r′ − 1]. Since τk /∈ ⋃
r′<r
Sr′ , we have τk /∈ [l(z) − r′ + 1, l(z) + r′ − 1]. Moreover,

∣l(z) − τk ∣ ≤ ∣l(z) − z∣ + ∣z − τ̄k ∣ + ∣τ̄k − τk ∣

≤ (r′ − 1) + (r − 1) + ∣τ̄k − τk ∣

< rk − r
′ ,

Where the last inequality comes from the hypothesis 3(r̄k − 1) + ∣τ̄k − τk ∣ ≤ rk Consequently,

[l(z) − r′, l(z) + r′] ⊂ [τk − rk, τk + rk) ∖ {τk} ,

so that θ is constant on [l(z) − r′, l(z) + r′) ∩N. Thus, (l(z), r′) ∈H0 and l(z) /∈ Tr′ since there is no false
positive. This gives a contradiction and concludes the proof of (5.29).

• Proof of (5.30): This is simply a consequence of the fact that significant change-point are detected on
the grid (See Item 2 in the definition of A).

We have just shown that τk ∈ Sr and hence τk ∈ S∗r so that the first inclusion holds at step r.
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Second inclusion : Let x be an element of S∗r . There exists l(x) ∈ T ∗r such that
x ∈ [l(x) − r + 1, l(x) + r − 1]. By definition of T ∗r , there exists a significant change-point τk ( i.e. such that
k ∈ K∗) belonging to [l(x) − r + 1, l(x) + r − 1].

We necessarily have r̄k ≥ r. Indeed, if r̄k < r, then by the induction hypothesis, τk ∈ S∗r′ for some r′ < r,
which contradicts the fact that S∗r′ is disjoint from [l(x) − r + 1, l(x) + r − 1] ⊂ S∗r . Consequently,

∣l(x) − τk ∣ + r − 1 ≤ 2r − 2

≤ 2(r̄k − 1)

Thus

x ∈ [l(x) − r + 1, l(x) + r − 1] ⊂ [τk − 2(r̄k − 1), τk + 2(r̄k − 1)] .

We have just shown that S∗r ⊂ ⋃
k∈K∗
[τk − 2(r̄k − 1), τk + 2(r̄k − 1)].

Therefore, the proposition is verified at step r and the induction is proved.

Proof of Proposition 5.10.2. Let k ∈ K∗ and Ck be the detected connected component containing the significant
change-point τk

Ck = ⋃
r′∈R
S
∗
r′ ∩ [τk − 2(r̄k − 1), τk + 2(r̄k − 1)] .

We know from Proposition 5.10.1 that Ck is a connected component of ⋃r′∈R S∗r′ and we want to prove now
that Ck does not overlap with ⋃l∈Tr∖T ∗r [l−r+1, l+r−1] for some r ∈R. Let r0 be such that Ck is the connected
component of Sr0 ,

Ck ⊂ S
∗
r0 .

Such an r0 exists and is unique since the sets (S∗r′) are disjoint. We have from Proposition 5.10.1 that
τk ∈ ⋃r′∈R,r′≤r̄k S

∗
r′ so that

r0 ≤ r̄k .

Let r ∈R and l ∈ Tr∖T ∗r and assume without loss of generality that l+r−1 < τk. Since there is no false positive,
(l, r) /∈H0 and there exists at least one true change-point in the interval of detection [l − r + 1, l + r − 1]. Denote
τa, . . . , τb with a ≤ b the true change-points belonging to [l − r + 1, l + r − 1]. By definition of Tr ∖ T ∗r , τa, . . . , τb
are not significant change-points, i.e. a, a + 1, . . . , b /∈ K∗. We consider the two cases r > r̄k and r ≤ r̄k

• r > r̄k : In that case, since the sets (Sr′) are disjoint and Ck ⊂ S
∗
r0 , we have Ck ∩ [l − r + 1, l + r − 1] = ∅.

• r ≤ r̄k : In that case, we have

l + r − 1 ≤ τb + 2(r − 1) ≤ τb + 2(r̄k − 1) < τk − 2(r̄k − 1) ,

where we used the fact that 4(r̄k−1) < rk ≤ τk−τb. Since by Proposition 5.10.1 we have Ck ⊂ [l−r+1, l+r−1],
we also have in that case Ck ∩ [l − r + 1, l + r − 1] = ∅.

This concludes the proof of the proposition.

5.10.2 Proofs for Gaussian multivariate change-point detection
From now on, we use the following notation for all (l, r) ∈ Jn.

• For any (v1, . . . , vn) with vt ∈ Rp, the left mean and right mean of v on [l − r, l + r) are denoted by

v̄l,+r =
1

r

l+r−1
∑
t=l

vt v̄l,−r =
1

r

l−1
∑
t=l−r

vt .

• The population term of the CUSUM statistic Cl,r is written

Ul,r =

√
r

2
(θ̄l,+r − θ̄l,−r) .

• With these notation, we write vl,+r,i, vl,−r,i, Ul,r,i for the ith coordinate of the vector vl,+r, vl,−r, Ul,r.

• We define, for 1 ≤ s ≤ p, the order statistics Ul,r,(s) by ∣Ul,r,(1)∣ ≥ ∣Ul,r,(2)∣ ≥ . . . ∣Ul,r,(p)∣.
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5.10.2.1 Proof of Proposition 5.3.1

Step 0: Consequence of Equation (5.10) on the grid. Let k ∈ [K] and assume that τk is a κd-dense
high-energy change-point (see Equation (5.10)). We have that

∥U
τ̄
(d)
k

,r̄
(d)
k

∥
2
≥

9

16
∥U

τk,r̄
(d)
k

∥
2

≥
9

16 × 12
κd
⎛
⎜
⎝

¿
Á
Á
ÁÀp log

⎛

⎝

n

r̄
(d)
k , δ

⎞

⎠
+ log

⎛

⎝

n

r̄
(d)
k , δ

⎞

⎠

⎞
⎟
⎠
,

(5.31)

since by definition ∥τk − τ̄
(d)
k ∥ ≤ r̄

(d)
k /4, so that ∣∣θ

τ̄
(d)
k

,+r̄(d)
k

− θ
τ̄
(d)
k

,−r̄(d)
k

∣∣2 ≥ 9
16
∣∣θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

∣∣2.

Step 1: Introduction of useful high probability events. Remark that

r

2
[∥yl,+r − yl,−r∥

2
− ∥θl,−r − θl,+r∥

2
] − σ2p = r⟨εl,+r − εl,−r, θl,+r − θl,−r⟩ +

r

2
∥εl,+r − εl,−r∥

2
− σ2p .

The first term, written as

r⟨εl,+r − εl,−r, θl,+r − θl,−r⟩ ,

is a crossed term between the noise and the mean vector θ. Lemma 5.10.3 states that near the change-points
and on the grid defined by the sets R,Dr, it is jointly controlled with high probability.

Lemma 5.10.3. Let 1 ≥ δ > 0. The event
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holds with probability larger than 1 − δ.

The second term, written as

r

2
∥εl,+r − εl,−r∥

2
− σ2p ,

is a term of pure noise. Lemma 5.10.4 states that it is controlled jointly with high probability on the grid
defined by the sets R,Dr.

Lemma 5.10.4. Let 1 ≥ δ > 0. The event

ξ
(d)
2 = ⋂

r∈R
⋂
l∈Dr
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holds with probability larger than 1 − δ.

Set now

ξ(d) ∶= ξ(d) = ξ
(d)
1 ∩ ξ

(d)
2 .

Note that

P(ξ(d)) ≥ 1 − 2δ .

Step 2: Study in the ‘no change-point’ situation. Consider r ∈ R, l ∈ Dr such that {τk, k ∈ [K]} ∩ [l −
r, l + r) = ∅. Note that since {τk, k ∈ [K]} ∩ [l − r, l + r) = ∅, we have θl,−r = θl,+r so that

r

2
∥θl,−r − θl,+r∥

2
= 0 ,
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and

r⟨εl,+r − εl,−r, θl,+r − θl,−r⟩ = 0.

Moreover we have on ξ(d) that - see Lemma 5.10.4
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And so

Ψ
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l,r ≤ x

(d)
r ,

so that

T
(d)
l,r = 0 ,

on ξ(d). This concludes the proof of the first part of the proposition.

Step 3: Study in the ‘change-point’ situation. Consider k ∈ [K] τk is a κd-dense high-energy change-
point - that is Equation(5.10) holds. We have from (5.31) that for κd large enough,
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So on ξ(d) this implies that - see Lemma 5.10.3
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Moreover we have on ξ(d) that - see Lemma 5.10.4

∣
r̄(d)

2
∥ε
τ̄
(d)
k

,+r̄(d)
k

− ε
τ̄
(d)
k

,−r̄(d)
k

∥
2
− σ2p∣ ≤ 4σ2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

¿
Á
Á
ÁÀp log

⎛

⎝
2
n

r̄
(d)
k

δ−1
⎞

⎠
+ log

⎛

⎝
2
n

r̄
(d)
k

δ−1
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= σ2x
(d)
r̄
(d)
k

.

And so on ξ(d), combining the three previous displayed equations implies
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This concludes the proof of the second part of the proposition.

Proof of Lemma 5.10.3. Let k ∈ [K]. Since the vectors εt are i.i.d. and distributed as N (0, σ2Ip), it holds that
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And so for δk > 0, it holds with probability larger than 1 − δk it holds that
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Let us set δk =
(r̄(d)

k
)2δ
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This implies in particular that with probability larger than 1 − δ, for any k ∈ [K], we have
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Proof of Lemma 5.10.4. Let r ∈ R and l ∈ Dr. Since the vectors εt are i.i.d. and distributed as N (0, σ2Ip), it
holds that

r
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∥εl,+r − εl,−r∥

2
∼ σ2χ2

p,

which implies by properties of the χ2
p distribution - see e.g. Lemma 1 of [54] - that for any δr > 0 we have with

probability larger than 1 − δr
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This concludes the proof.

5.10.2.2 Proof of Proposition 5.3.2

Step 1 : Analysis of the Berk-Jones statistics We first define a threshold x
(BJ)
r,s for the Berk-Jones

statistics for all r, s ≥ 1

x(BJ)
r,s =min{x ≥ 2 ∶ Φ(x) ≤

s2

282p log(2δ−1x,r)
} , (5.32)

where we recall that δx,r are the weights defined by (5.13):

δx,r =
6δr

π2x2∣Dr ∣n
.
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Remark that (x(BJ)
r,s ) is nonincreasing with s and define for all r ≥ 1

s̄r =min{s ∈ Z ∶ s ≥
28

3
log (2δ−1

x
(BJ)
r,s ,r

)} . (5.33)

The second point of the following proposition ensures that if there exists s ∈ Z such that Ul,r,(s) ≥ ts for some
s ≥ s̄r, for (l, r) = (τ̄ (s)k , r̄

(s)
k ), then T

(BJ)
l,r = 1 with high probability. We recall that ∣Ul,r,(1)∣ ≥ ⋅ ⋅ ⋅ ≥ ∣Ul,r,(p)∣ are

the sorted absolute values of the coordinate of Ul,r and that H0 is defined by (5.7).

Proposition 5.10.5. There exists an event ξ(BJ) of probability larger than 1− 2δ such that the following holds:

• T
(BJ)
l,r = 0 for any (l, r) ∈H0 ∩G.

• For all k ∈ [K], if there exists s ∈ Z such that s ≥ s̄
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(s)
k
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k
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,s
, then T
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(s)
k
,r̄
(s)
k

= 1.

Step 2 : Analysis of the partial norm statistics Since it may happen that τk is a sparse high-energy
change-point but there is no s ≥ s̄

r̄
(s)
k

such that U
τ̄
(s)
k
,r̄
(s)
k
,(s) ≥ x

(BJ)
r̄
(s)
k
,s
, we use the following proposition on the

partial norm test statistic T (p)l,r :

Proposition 5.10.6. There exists an event ξ(p) of probability larger than 1 − 2δ such that the following holds:

• T
(p)
l,r = 0 for any (l, r) ∈H0 ∩G.

• for any k ∈ [K], if there exists s ∈ Z such that
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then T
(p)
τ̄
(s)
k
,r̄
(s)
k

= 1.

Step 3 : Combination of the two Statistics Let us return to the proof of Proposition 5.3.2. To conclude
the proof, it suffices to show that if τk is a κs-sparse high-energy change-point - see (5.11) - for some large
enough constant κs, then the result of one of the two preceding propositions holds. This is precisely what the
following lemma shows.

Lemma 5.10.7. There exists a constant κs such that if τk is a κs-sparse high-energy change-point, then one of
the following propositions is true:

• There exists s ∈ Z such that s > s̄
r̄
(s)
k

and ∣U
τ̄
(s)
k
,r̄
(s)
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,(s)∣ > x
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.

Proof of Proposition 5.10.5. The first part of the proposition is a simple consequence of the definition together
with an union bound.

P [ max
(l,r)∈H0

T
(BJ)
l,r = 1] ≤ ∑

r∈R
∑
l∈Dr

∑
x∈N∗

δ(BJ)
x,r

≤ ∑
r∈R
∑
l∈Dr

δr

∣Dr ∣n
≤ ∑
r∈R

δr

n
≤ δ.

We focus on the second part of the proposition. To ease the reading, we introduce some notation

γx,r = Q
−1
[δx,r, p,2Φ(x)] ; ηx,r,s = Q

−1
[1 − δx,r/2, p − s,2Φ(x)] ;

ψx,r,s(u) = Q
−1
[1 − δx,r/2, s,Φ(x − u) +Φ(x + u)] ,

for x ≥ 0. In fact, γx,r is the threshold of the statistics Nx,l,r. As for ηx,r,s, it stands for the contribution to
Nx,l,r of the (p − s) coordinates i such that θ⋅,i is constant over [l − r, l + r). Finally, ψx,r,s(u) stands for the
contribution to Nx,l,r of the s coordinates i whose population CUSUM statistics Ul,r,i is equal to u.
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Lemma 5.10.8. Consider any r ∈R and l ∈ Dr. If for some positive integers s and x we have

ψx,r,s(∣Ul,r,(s)∣) > γx,r − ηx,r,s , (5.35)

then P[T (BJ)
l,r = 1] ≥ 1 − δx,r.

Denote H[θ] the collection of (l, r) with r ∈R and l ∈ Dr that satisfy Condition (5.35) for some s and some
x. We easily deduce from the above Lemma together with an union bound that, with probability higher than
1 − δ, T (BJ)

l,r = 1 for all (l, r) ∈H[θ].

Let us now provide a more explicit characterisation of H[θ] with the following Lemma.

Lemma 5.10.9. For any 1 ≤ s ≤ p and r ∈R define xs by

xs ∶= x
(BJ)
r,s =min{x ≥ 2 ∶ Φ(x) ≤

s2

282p log(2α−1x,r)
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We have ψxs,r,s(ts) > γxs,r − ηxs,r,s provided that

s ≥
28

3
log(2δ−1xs,r) . (5.36)

Combining Lemma 5.10.9 and Lemma 5.10.8, we conclude the proof of the proposition.

Proof of Lemma 5.10.8. Denote S any subset of size s, such that for any j ∈ S, ∣Ul,r,j ∣ ≥ ∣Ul,r,(s)∣. Define

N
(1)
x,l,r =
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∑
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1i∉S1∣Cl,r,i∣>x, N
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p

∑
i=1
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Since, for any x > 0, the function u↦ Φ(x+u)+Φ(x−u) is non-decreasing. As a consequence, the random variable
N
(1)
x,l,r is stochastically dominated by a Binomial distribution with parameters (p − s,2Φ(x)). Besides, N (2)x,l,r is

stochastically dominated by a Binomial distribution with parameters (s,Φ(x + ∣Ul,r,(s)∣) +Φ(x − ∣Ul,r,(s)∣)). We
obtain

P[T (BJ)l,r = 0] ≤ P[Nx,l,r ≤ γx,r] ≤ P[N (1)x,l,r < ηx,r,s] + P[N
(2)
x,l,r ≤ γx,r − ηx,r,s]

≤
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2
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≤
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2
+
δx,r

2
≤ δx,r .

Proof of Lemma 5.10.9. From Bernstein inequality, we deduce that, for any positive integers s and x,

γx,s ≤ 2pΦ(x) + 2
√

pΦ(x) log(δ−1x,r) +
2

3
log(δ−1x,r) ;

ηx,r,s ≥ 2(p − s)Φ(x) − 2
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2

3
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Hence, it follows that

γx,s − ηx,r,s ≤ 2sΦ(x) + 4
√

pΦ(x) log(2δ−1x,r) +
4

3
log(2δ−1x,r) .

For u = x, we have Φ(x − u) +Φ(x + u) ≥ Φ(0) = 1/2 and we derive from Bernstein inequality that

ψx,r,s(t) ≥
s

2
−
√
s log(2δ−1x,r) −

2

3
log(2δ−1x,r) .

As a ce, ψx,r,s(t) > γx,s − ηx,r,s as long as

s(1 − 4Φ(x)) > 12
√

pΦ(x) log(2δ−1x,r) +
12

3
log(2δ−1x,r) .
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Provided that we take x ≥ 2, the latter holds if

s ≥ 14
√

pΦ(x) log(2δ−1x,r) +
14

3
log(2δ−1x,r) (5.37)

In view of the definition (5.32) of xs, we have 14
√

pΦ(xs) log(2δ−1xs,r) ≤ s/2. Hence, under Condition (5.33),
(5.37) holds and we conclude that ψxs,r,s(xs) > γxs,s − ηxs,r,s.

Proof of Proposition 5.10.6. The following lemma ensures that the partial norm test returns 0 with high prob-
ability jointly at all positions where there is no change-point. We write C̄sp for the set of all combinations of s
indices taken from [p].

Lemma 5.10.10 (concentration of the pure noise for the second sparse statistic). If 1 ≥ δ > 0, then the event

ξ
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holds with probability higher than 1 − δ.

We now state the following lemma, which ensures that the partial norm test returns 1 with high probability
jointly at relevant positions which are close to a change-point.

Lemma 5.10.11 (concentration on the change-points for the second sparse statistic). We write K̄∗ for the set
of k ∈ [K] such that

• sk ≤

√

p log ( n
rkδ
)

• ∑ss′=1 ∣Uτ̄(s)
k
,r̄
(s)
k
,(s′)∣

2
≥ 4x

(p)
r̄
(s)
k
,s

If 1 ≥ δ > 0, the event

ξ
(p)
2 =

⎧⎪⎪
⎨
⎪⎪⎩

∀k ∈ K̄∗ ∶ ∃s ∈ Z s.t. Ψ(p)
τ̄
(s)
k
,r̄
(s)
k
,s
> x
(p)
r̄
(s)
k
,s

⎫⎪⎪
⎬
⎪⎪⎭

,

holds with probability higher than 1 − δ.

Lemmas 5.10.10 and 5.10.11 directly imply the result of the proposition.

Proof of Lemma 5.10.10. Let r ∈ R, l ∈ Dr, s ≤ s̄r and S ∈ C̄sp . Let δ > 0, δr,s = ( rn)
2
( s
2ep
)
s
δ. Since

√
r

2σ2 (ε̄l,+r,i − ε̄l,−r,i) follows a N (0,1) distribution for all l, r, i, we have by Bernstein’s inequality that with
probability larger than 1 − δr,s,

∑
i∈S
(ε̄l,+r,i − ε̄l,−r,i)

2
≤ s + 2

¿
Á
ÁÀs log(

1

δr,s
) + log(

1

δr,s
)

≤ 2(s + log(
1

δr,s
))

= 2(s + s log (
2ep

s
) + log(

n2

r2δ
))

≤ 4(s log (
2ep

s
) + log (

n

rδ
)) .

Since the number of such S is smaller than ( ep
s
)
s
, a union bound gives

P (ξ(p)1 ) ≥ 1 − ∑
r∈R
∑
l∈Dr

∑
s∈Z
∣C̄sp ∣ (

s

2ep
)
s

(
r

n
)
2

δ

≥ 1 − ∑
r∈R
∑
l∈Dr

∑
s∈Z
(
1

2
)

s

(
r

n
)
2

δ

≥ 1 − δ ,

which yields the result.
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Proof of Lemma 5.10.11. Let k ∈ K̄∗, and s ∈ Z such that

s

∑
i=1
U2

τ̄
(s)
k
,r̄
(s)
k
,(i) > 4x

(p)
r̄
(s)
k
,s
. (5.38)

To ease the reading, we write (τ, r) = (τ̄ (s)k , r̄
(s)
k ). Then on the event ξ(p)1 which holds with probability 1− δ, we

have

Ψ(p)τ,r,s = max
S∈C̄s

p

∑
i∈S

r

2σ2
(θ̄τ,+r,i + ε̄τ,+r,i − θ̄τ,−r,i − ε̄τ,−r,i)

2

≥ max
S∈C̄s

p

∑
i∈S

1

2
U2
τ,r,i −

r

2σ2
(ε̄τ,+r,i − ε̄τ,−r,i)

2

> 2x(p)r,s − x
(p)
r,s

= x(p)r,s ,

where in the second inequality, we used the fact that (a + b)2 ≥ 1
2
a2 − b2 for all a, b ∈ R.

Proof of Lemma 5.10.7. First remark that there exists a large enough constant C such that for all r, s ≥ 1,

(x(BJ)
r,s )

2
≤ C log (

ep

s2
log (

n

rδ
))

s̄r ≤ C log(log(
ep

s̄2r
)
n

rδ
) ,

where we recall that s̄r is defined by (5.33) and x
(BJ)
r,s by (5.32). These two inequalies come from the fact

that for all t ≥ 2 and all A > 0, if t ≤ A + log (t) then t ≤ 2A. Assume that for all s′ = s̄
r̄
(s)
k

+ 1, . . . , sk we

have ∣U
τ̄
(s)
k
,r̄
(s)
k
,(s′)∣ < x

(BJ)
r̄
(s)
k
,s′

. To ease the notation, we write s̄ = s̄
r̄
(s)
k

∧ sk and in what follows we prove that

∑
s̄
s′=1 ∣Uτ̄(s)

k
,r̄
(s)
k
,(s′)∣

2 > 4x
(p)
r̄
(s)
k
,s̄

when κs is a large enough constant. We have

sk

∑
s′=s̄

r̄
(s)
k

+1
U2

τ̄
(s)
k
,r̄
(s)
k
,(s′) ≤ C1

⌊log(sk)⌋
∑
i=0

2i log
⎛

⎝

ep

22i
log
⎛

⎝

n

r̄
(s)
k δ

⎞

⎠

⎞

⎠

≤ C1sk log
⎛

⎝
2e log

⎛

⎝

n

r̄
(s)
k δ

⎞

⎠

⎞

⎠
+C1

⌊log(sk)⌋
∑
i=0

2i log (
p

22(i+1)
) ,

for some universal constant C1. To handle the second term remark that since x ↦ log ( p
x2 ) is decreasing, we

have

⌊log(sk)⌋
∑
i=0

2i log (
p

22(i+1)
) ≤ ∫

2sk

1
log (

p

x2
)dx

= 2sk log(
p

(2sk)2
) + 2sk − 1

≤ 2sk log(
p

s2k
) ,

and thus

sk

∑
s′=s̄

r̄
(s)
k

+1
U2

τ̄
(s)
k
,r̄
(s)
k
,(s′) ≤ 2C1sk log

⎛

⎝
2e

p

s2k
log
⎛

⎝

n

r̄
(s)
k δ

⎞

⎠

⎞

⎠
,

which finally gives

s̄

∑
s′=1

U2

τ̄
(s)
k
,r̄
(s)
k
,(s′) ≥

9

16
r̄
(s)
k ∆2

k − 2C1sk log
⎛

⎝

2ep

s2k
log
⎛

⎝

n

r̄
(s)
k δ

⎞

⎠

⎞

⎠

≥ 4x
(p)
r̄
(s)
k
,s̄
.
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In the first inequality we used the fact that

∣τ̄
(s)
k − τk∣ ≤

1

4
r̄
(s)
k ,

so that for all i,

∣θ̄
τ̄
(s)
k
,+r̄(s)

k
,i
− θ̄

τ̄
(s)
k
,−r̄(s)

k
,i
∣ =

1

r̄
(s)
k

∣(r̄
(s)
k + τ̄

(s)
k − τk)µk,i − (r̄

(s)
k − τ̄

(s)
k + τk)µk−1,i∣

≥
⎛
⎜
⎝
1 −
∣τ̄
(s)
k − τk∣

r̄
(s)
k

⎞
⎟
⎠
∣µk,i − µk−1,i∣

>
3

4
∣µk,i − µk−1,i∣ =

3

4
Uk,i .

In the second inequality, we used the fact that

• 8r̄
(s)
k ∆2

k ≥ κsσ
2 (sk log (

p
s2
k

log ( n

r̄
(s)
k
δ
)) + log ( n

r̄
(s)
k
δ
)) for a large enough constant κs (see (5.11)),

• x↦ x log ( ep
x2 ) is increasing for x ≤ p, so that sk can be replaced by s̄,

• s̄ ≤ C log (log ( ep
s̄2
) n
rδ
) .

This concludes the proof of the lemma.

5.10.2.3 Proof of Corollary 5.3.3

Let ξ(d) and ξ(s) be two events such that Proposition 5.3.1 and Proposition 5.3.2 hold respectively with constants
κd, κs and with probability 1 − 2δ and 1 − 4δ, and write ξ = ξ(d) ∩ ξ(s). From now on, we work on the event
ξ, which holds with probability 1 − 6δ. Let us choose c0 ≥ 2(κd ∨ κs) in (5.8). For all k such that τk is a
c0-high-energy change-point, define

(τ̄k, r̄k) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(τ̄
(d)
k , r̄

(d)
k ) if sk >

√

p log (
n

rkδ
)

(τ̄
(s)
k , r̄

(s)
k ) if sk ≤

√

p log (
n

rkδ
) .

(r̄k, τ̄k) is well defined. Indeed, If sk ≤
√

p log ( n
rkδ
) then

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rkδ
)
⎞

⎠
+ log (

n

rkδ
) ≥

1

2
(sk log(

p

s2k
log (

n

rkδ
)) + log (

n

rkδ
)) .

Now if sk ≥
√

p log ( n
rkδ
) then using log (1 + x) ≥ x

2
for x ∈ [0,1] we have

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

rkδ
)
⎞

⎠
+ log (

n

rkδ
) ≥

1

2

⎛

⎝

√

p log (
n

rkδ
) + log (

n

rkδ
)
⎞

⎠
.

According to Theorem 5.2.1, it is sufficient to prove that the event A (Θ, T,K∗, (τ̄k, r̄k)k∈K∗) defined in
Section 5.2.3 holds on ξ:

1. (No false positive): for every r ∈R and l ∈ Dr, if Θ is constant on [l − r, l + r) then

Tl,r = T
(d)
l,r ∨ T

(s)
l,r = 0,

by Proposition 5.3.1 and Proposition 5.3.2.

2. (High-energy change-point detection): for every k such that τk has c0-high-energy, it holds by
definition of r̄(d)k and r̄(s)k that

4(r̄k − 1) ≤ rk.

Moreover, T (s)τ̄k,r̄k = 1 if (τ̄k, r̄k) = (τ̄
(d)
k , r̄

(d)
k ) by Proposition 5.3.2 and T (d)τ̄k,r̄k = 1 if (τ̄k, r̄k) = (τ̄

(s)
k , r̄

(s)
k ) by

Proposition 5.3.1.
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Theorem 5.2.1 ensures that for all k ∈ [K] such that τk is a c0-high-energy change-point, there exists k′ ∈ [K̂]
such that

∣τ̂k′ − τk ∣ ≤ r̄k − 1.

It remains to show that
r̄k − 1 ≤

r∗k
2
,

where r∗k is define by (5.9). Using log (1 + x) ≥ x
2

for x ∈ [0,1] and log (1 + x) ≥ log (x) for x ≥ 1 we have

8r̄k∆
2
k ≤ 4(κd ∨ κs)

⎡
⎢
⎢
⎢
⎢
⎣

sk log
⎛

⎝
1 +

√
p

sk

√

log (
n

r̄kδ
)
⎞

⎠
+ log (

n

r̄kδ
)

⎤
⎥
⎥
⎥
⎥
⎦

,

when r̄k ≥ 2. Thus 2(r̄k − 1) ≤ r
∗
k for c0 ≥ 2(κd ∨ κs). This concludes the proof of Corollary 5.3.3.

5.10.3 Proofs for sub-Gaussian multivariate change-point detection
We recall that in this section, we work on the complete grid GF = Jn defined in Section 5.2.

5.10.3.1 Proof of Proposition 5.4.1

Step 1: Introduction of useful high probability events. We first introduce two events ξ(d)1 and ξ
(d)
2

on which the noise can be controlled. Remark that by a simple computation, the noise can be decomposed as
follows :

r

2
[∥yl,+r − yl,−r∥

2
− ∥θl,−r − θl,+r∥

2
] − σ2p = r⟨εl,+r − εl,−r, θl,+r − θl,−r⟩ +

r

2
∥εl,+r − εl,−r∥

2
− σ2p .

The first term written as

r⟨εl,+r − εl,−r, θl,+r − θl,−r⟩

is a crossed term between the noise and the mean vector θ. Lemma 5.10.12 states that for l equal to a true
change-point τk and r of order r∗k, it is controlled on event ξ(d)1 with high probability.

Lemma 5.10.12 (concentration of the crossed terms). Assume that κ is a large enough universal constant.
The event

ξ
(d)
1 =

⎧⎪⎪
⎨
⎪⎪⎩

∀k ∈ [K] s.t. Equation (5.17) holds for k,

r̄
(d)
k ∣⟨ετk,+r̄(d)k

− ε
τk,−r̄(d)k

, θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

⟩∣ ≤
r̄
(d)
k

4
∥θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

∥
2
⎫⎪⎪
⎬
⎪⎪⎭

holds with probability higher than 1 − δ.

The second term written as
r

2
∥εl,+r − εl,−r∥

2
− σ2p ,

is a term of pure noise. Lemma 5.10.13 states that it is controlled on event ξ(d)2 with high probability.

Lemma 5.10.13 (concentration of the pure noise). There exists a constant c̄conc > 0 such that the event

ξ
(d)
2 =

⎧⎪⎪
⎨
⎪⎪⎩

∀(l, r) ∈ Jn, ∣
r

2
∥εl,+r − εl,−r∥

2
− σ2p∣ ≤ c̄concL

2 ⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

holds with probability higher than 1 − 2δ.

Set now

ξ(d) ∶= ξ
(d)
1 ∩ ξ

(d)
2 .

Note that

P(ξ(d)) ≥ 1 − 3δ .
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Step 2: Study in the ‘no change-point’ situation. We remind that H0 stands for elements (l, r) such
that there is no change-point in [l − r, l + r) and that it is defined in (5.7). Consider (l, r) ∈ Jn ∩H0. Note that
since {τk, k ∈ [K]} ∩ [l − r, l + r) = ∅, we have θl,−r = θl,+r so that

r

2
∥θl,−r − θl,+r∥

2
= 0 ,

and

r⟨εl,+r − εl,−r, θl,+r − θl,−r⟩ = 0 .

Moreover we have on ξ(d) that - see Lemma 5.10.13

∣
r

2
∥εl,+r − εl,−r∥

2
− σ2p∣ ≤ c̄concL

2 ⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠
≤ σ2x(d)r ,

for c̄thresh ≥ c̄conc - note that c̄conc > 0 is a universal constant. And so

Ψ
(d)
l,r ≤ x

(d)
r ,

so that

T
(d)
l,r = 0 ,

on ξ(d). This concludes the proof of the first part of the proposition.

Step 3: Study in the ‘change-point’ situation. Consider k ∈ [K] such that τk is a κ-dense high-energy
change-point - see Equation (5.17). We have

r̄
(d)
k

2
∥θ
τk,−r̄(d)k

− θ
τk,+r̄(d)k

∥
2
≥
κ

8
L2
⎛
⎜
⎝

¿
Á
Á
ÁÀp log

⎛

⎝

n

r̄
(d)
k δ

⎞

⎠
+ log

⎛

⎝

n

r̄
(d)
k δ

⎞

⎠

⎞
⎟
⎠
.

So on ξ(d) choosing κ large enough implies that - see Lemma 5.10.12

r̄
(d)
k ∣⟨ετk,+r̄(d)k

− ε
τk,−r̄(d)k

, θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

⟩∣ ≤
r̄
(d)
k

4
∥θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

∥
2
.

Moreover we have on ξ(d) that - see Lemma 5.10.13

RRRRRRRRRRR

r̄
(d)
k

2
∥ε
τk,+r̄(d)k

− ε
τk,−r̄(d)k

∥
2
− σ2p

RRRRRRRRRRR

≤ c̄concL
2
⎛
⎜
⎝

¿
Á
Á
ÁÀp log

⎛

⎝

n

r̄
(d)
k δ

⎞

⎠
+ log

⎛

⎝

n

r̄
(d)
k δ

⎞

⎠

⎞
⎟
⎠
≤ σ2x

(d)
r̄
(d)
k

,

for c̄thresh ≥ c̄conc - note that c̄conc > 0 is a universal constant. Thus on ξ(d), combining the three previous
displayed equations implies

Ψ
(d)
τk,r̄

(d)
k

≥
r̄
(d)
k

4σ2
∥θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

∥
2
− x
(d)
r̄
(d)
k

≥ (
c0
16
− c̄thresh)

L2

σ2

⎛
⎜
⎝

¿
Á
Á
ÁÀp log

⎛

⎝

n

r̄
(d)
k δ

⎞

⎠
+ log

⎛

⎝

n

r̄
(d)
k δ

⎞

⎠

⎞
⎟
⎠
> x
(d)
r̄
(d)
k

,

since κ > 32c̄thresh. And so on ξ(d):

T
(d)
τk,r̄

(d)
k

= 1 .

This concludes the proof of the second part of the proposition.
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Proof of Lemma 5.10.12. Let k be in [K] and such that Equation (5.17) is satisfied. Remark that θ is constant
on [τk − r̄

(d)
k , τk) and is equal to µk−1, and is also constant on [τk, τk + r̄

(d)
k ) and is equal to µk. First, from the

definition of the ψ2-norm of a vector, there exists a universal constant C > 0 such that for all k = 1 . . .K,

∥r̄
(d)
k ⟨ετk,+r̄(d)k

− ε
τk,−r̄(d)k

, θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

⟩∥
ψ2

≤ r̄
(d)
k ∥ετk,+r̄(d)k

− ε
τk,−r̄(d)k

∥
ψ2

∣µk − µk−1∣

≤ C
√

r̄
(d)
k ∥ε1∥ψ2

∣µk − µk−1∣

≤ C
√

r̄
(d)
k L ∣µk − µk−1∣

≤ CL
√

rk∆2
k .

Thus by definition of sub-Gaussianity, for all t > 0,

P (r̄(d)k ∣⟨ετk,+r̄(d)k

− ε
τk,−r̄(d)k

, θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

⟩∣ ≥ t) ≤ exp(−c
t2

L2rk∆2
k

) ,

for some constant c > 0. Finally we apply the concentration inequality to t = rk∆
2
k

4
- remembering that τk is

a κ-dense high-energy change-point in the sense of Equation (5.17) - and sum over k to obtain a union bound
over ξc2 :

P (ξc2) ≤
K

∑
k=1

P (r ∣⟨ε
τk,+r̄(d)k

− ε
τk,−r̄(d)k

, θ
τk,+r̄(d)k

− θ
τk,−r̄(d)k

⟩∣ ≥
rk∆

2
k

4
)

≤
K

∑
k=1

exp(−c
rk∆

2
k

16L2
)

≤
K

∑
k=1

exp
⎛

⎝
−c′κ log

⎛

⎝

n

r̄
(d)
k

δ−1
⎞

⎠

⎞

⎠
(c′ = c/16)

≤
K

∑
k=1

⎛

⎝

r̄
(d)
k

n

⎞

⎠

c′κ

δc
′κ

≤ δ ,

where the last inequality comes from the fact that ∑Kk=1 r̄
(d)
k ≤ n and the fact that κ is chosen large enough so

that c′κ ≥ 1.

Proof of Lemma 5.10.13. Remark first that by homogeneity, we can assume without loss of generality that
L = 1. To provide a proof, we will use the Hanson-Wright inequality in high dimension, which is a way to
control quadratic forms of the noise.

Lemma 5.10.14 (Hanson-Wright inequality in high dimension). Let A = (aij) be a m×m matrix and ε1, . . . , εm
be sub-Gaussian vectors of dimension p with norm smaller than 1. Then

P
⎛

⎝

RRRRRRRRRRR

∑
1≤i,j≤m

ai,j⟨εi, εj⟩ −E
⎡
⎢
⎢
⎢
⎣
∑

1≤i,j≤m
ai,j⟨εi, εj⟩

⎤
⎥
⎥
⎥
⎦

RRRRRRRRRRR

≥ t
⎞

⎠
≤ 2 exp(−cmin(

t2

p∥A∥2F
,

t

∥A∥op
)) ,

where c is an absolute constant, ∥A∥2F = ∑
i,j
a2i,j is the squared Frobenius norm of A and ∥A∥op is the operator

norm of A.

The proof of this lemma relies on the classical Hanson Wright inequality that is proved for example in [78].
To prove the proposition, we will use a chaining argument. To this end, we let (Nu)u≥0 be the following covering
sets of Jn :

Nu = Jn ∩ {i2
κ1−u, i ∈ N}2 ,

where we define κ1 = ⌊log2(n)⌋, and more generally κr = ⌊log2(n/r)⌋ for r = 1, . . . n. Remark that the higher u
is, the finer the covering set Nu is, and Nκ1 = Jn. For all u ≥ 0, we define the projection map πu from Jn to
Nu by

πu(l, r) = argmin
(l̂,r̂)∈Nu

(∣l̂ − l∣ + ∣r̂ − r∣) .
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In the sequel, we will use the slight abuse of notation for (l, r) in Jn :

(lu, ru) = πu(l, r) .

A useful lemma to control the distance between (l, r) and its projection (lu, ru) can be stated as follow.

Lemma 5.10.15. For all (l, r) ∈ Jn and 0 ≤ u ≤ κ1 such that Nu ≠ ∅,

∣lu − l∣ + ∣ru − r∣ ≤ 2
n

2u
.

Let (l, r) ∈ Jn. From know on, we write εl,+r = rε̄l,+r = ∑l+r−1t=l εt and εl,−r = rε̄l,+r. The chaining relation can
be written as

r

2
∥εl,+r − εl,−r∥

2
− σ2p =

1

2r
[∥εlκr ,+rκr

− εlκr ,−rκr
∥
2
− 2rκrσ

2p]

+
1

2r

κ1

∑
v=κr

[∥εlv+1,+rv+1 − εlv+1,−rv+1∥
2
− ∥εlv,+rv − εlv,−rv∥

2
− 2(rv+1 − rv)σ

2p] .

Remark that the chaining summation starts at scale u = κr so that n
2u
≍ r. The first term of the chaining is

an approximation on the grid at level u of the term r
2
∥εl,+r − εl,−r∥

2
− σ2p. The second term can be viewed as

an error term, and we will show that it is of the same order as the first term. Since both terms are quadratic
forms of the noise, we will need an upper bound on the norm of their corresponding matrix to apply the Hanson
Wright inequality - see Lemma 5.10.14.

Lemma 5.10.16 (Control of the Frobenius norm). Let (l, r) be a fixed element of Jn. Let A and B be the
corresponding matrix of the two following quadratic form :

εT Aε = ∥εl,+r − εl,−r∥
2 and εT B ε = ∥εl,+r − εl,−r∥

2
− ∥εl′,+r′ − εl′,−r′∥

2
.

Then

∥A∥
2
F ≤ 16r

2

∥B∥
2
F ≤ 24 (∣l − l

′
∣ + ∣r − r′∣) (r + r′ + ∣l − l′∣) .

The following lemma aims at upper bounding the first term of the chaining relation with high probability.

Lemma 5.10.17. There exists a constant CN such that for all n, the event

ξ
(d)
N = ⋂

u≥0
⋂

(l,r)∈Nu

r≤3 n
2u

{∣∥εl,+r − εl,−r∥
2
− 2rσ2p∣ ≤ CNr (

√
p log (2uδ−1) + log (2uδ−1))} .

holds with probability higher than 1 − δ.

For u = κr, (lu, ru) ∈ Nu Lemma 5.10.15 gives ru ≤ r+ 2 n
2u
≤ 3 n

2u
. Consequently, on the event ξ(d)N , we obtain

∣
1

2r
∥εlκr ,+rκr

− εlκr ,−rκr
∥
2
−
rκr

r
σ2p∣ ≤ C ′N

⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠
,

for C ′N a large absolute constant. To upper bound the second term, we use the following lemma :

Lemma 5.10.18. For all (l, r) and (l′, r′) in Jn, set

ξ
(d)
∆,v(l, r, l

′, r′) = {∣∥εl′,+r′ − εl′,−r′∥2 − ∥εl,+r − εl,−r∥2 − 2(r′ − r)σ2p∣ ≤ C∆

√
rn

2v
(
√
p log (2vδ−1) + log (2vδ−1))} .

There exists a constant C∆ such that, for all n, the event

ξ
(d)
∆ = ⋂

v≥0
{ξ
(d)
∆,v (l, r, l

′, r′) holds for all ((l, r), (l′, r′)) ∈ Nv ×Nv+1 s.t. ∣l − l′∣ + ∣r − r′∣ ≤ 3
n

2v
} .

holds with probability higher than 1 − δ.
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For v ≥ κr, ((lv, rv), (lv+1, rv+1)) ∈ Nv ×Nv+1 and by Lemma 5.10.15,

∣rv − rv+1∣ + ∣lv − lv+1∣ ≤ ∣rv − r∣ + ∣lv − l∣ + ∣r − rv+1∣ + ∣l − lv+1∣

≤ 3
n

2v
.

Therefore, on the event ξ(d)∆ ,

∣
1

2r

κ1−1
∑
v=κr

[∥εlv+1,+rv+1 − εlv+1,−rv+1∥
2
− ∥εlv,+rv − εlv,−rv∥

2
− 2(rv+1 − rv)σ

2p]∣

≤ C∆
1

2r

κ1−1
∑
v=κr

√
rvn

2v
(
√
p log (2vδ−1) + log (2vδ−1))

≤ C ′∆ ∑
v′≥0

1

2v′
⎛
⎜
⎝

¿
Á
ÁÀp log(

n2v′

rδ
) + log(

n2v
′

rδ
)
⎞
⎟
⎠

≤ C ′′∆
⎛

⎝

√

p log (
n

rδ
) + log (

n

rδ
)
⎞

⎠
,

where C ′∆,C
′′
∆ are large absolute constants. Hence, letting c̄conc = C ′N +C

′′
∆ we obtain

ξ
(d)
N ∩ ξ

(d)
∆ ⊂ ξ

(d)
2 ,

which must be of probability higher than 1 − 2δ.

Proof of Lemma 5.10.15. Since the mesh of the grid Nu is equal to 2κ1−u ≤ n
2u

, there exists (l̃, r̃) ∈ Nu such that

∣l − l̃∣ ≤
n

2u
and ∣r − r̃∣ ≤

n

2u
.

Proof of Lemma 5.10.16. Let us write

εT Aε = ∑
l−r≤i,j<l+r

aij⟨εi, εj⟩ and εT B ε = ∑
m1≤i,j<m2

bij⟨εi, εj⟩,

where m1 = min(l − r, l′ − r′), m2 = max(l + r, l′ + r′). Remark that for all i, j in [l − r, l + r), aij ≤ 2. This gives
the first inequality.
For the second inequality, assume without loss of generality that l ≤ l′. As for the first inequality, bij ≤ 2 for all
i, j ∈ [m1,m2). Remark that bij can be non zero only if (i, j) is in one of the following cases :

1. i or j is in [min(l + r, l′ + r′),max(l + r, l′ + r′))

2. i or j is in [min(l − r, l′ − r′),max(l − r, l′ − r′))

3. i or j is in [l, l′).

Hence there is at most (4(∣l − l′∣ + ∣r − r′∣) + 2∣l − l′∣)(r + r′ + ∣l − l′∣) non zero bij , and we obtain the second
inequality.

Proof of Lemma 5.10.17. The probability of (ξ(d)N )
c can be written as :

P ((ξ(d)N )
c
) = P

⎛

⎝
∃u ≥ 0,∃(l, r) ∈ Nu s.t. r ≤ 3

n

2u
and

∣∥εl,+r − εl,−r∥
2
− 2rσ2p∣ ≤ CNr (

√
p log (2uδ−1) + log (2uδ−1))

⎞

⎠
.

First, fix u ≥ 0 and (l, r) ∈ Nu such that r ≤ 3 n
2u

.
Applying the first inequality of Lemma 5.10.16 and the Hanson-Wright inequality - see Lemma 5.10.14, we

obtain for all t ≥ 0

P (∣∥εl,+r − εl,−r∥
2
− 2rσ2p∣ ≥ t) ≤ 2 exp(−cmin(

t2

pr2
,
t

r
)) ,



186 Chapter 5. Multiple change-point detection for high-dimensional data

where c is an absolute constant. Choosing

t = CNr (
√
p log (2uδ−1) + log (2uδ−1)) ,

we obtain

P (∣∥εl,+r − εl,−r∥
2
− 2rσ2p∣ ≥ CNr (

√
p log (2uδ−1) + log (2uδ−1))) ≤ C (

1

2u
)

cCN

δcCN ,

where c,C are absolute constants. Since the cardinal of Nu is upper bounded by 22u+2, A union bound on each
Nu for each u ≥ 0 gives :

P ((ξ(d)N )
c
) ≤ ∑

u≥0
C ∣Nu∣ (

1

2u
)

cCN

δcCN

≤ ∑
u≥0

4C (
1

2u
)

2−cCN

δcCN ,

which is convergent. For CN large enough, we obtain P (ξcN) ≤ 1 − δ.

Proof of Lemma 5.10.18.

P ((ξ(d)∆ )
c
) = P (∃v ≥ 0,∃((l, r), (l′, r′)) ∈ Nv ×Nv+1 s.t. ∣l − l′∣ + ∣r − r′∣ ≤ 4

n

2v
and (ξ(d)∆,v (l, r, l

′, r′))c holds ) .

First fix v ≥ 0 and ((l, r), (l′, r′)) ∈ Nv ×Nv+1. Remark that by definition of Nv,

r ≥
n

2v+1
.

Thus,

r + r′ + ∣l − l′∣ ≤ 2r + ∣l − l′∣ + ∣r − r′∣ ≤ 10r .

Then by Lemma 5.10.16, letting B be the matrix such that εT B ε = ∥εl′,+r′ − εl′,−r′∥
2
− ∥εl,+r − εl,−r∥

2, we
obtain

∥B∥
2
≤ ∥B∥

2
F ≤ 40r

n

2v
.

Thus, by the Hanson Wright inequality - see Lemma 5.10.14,

P (∣εT Bu ε−E [εT Bu ε]∣ ≥ t) ≤ 2 exp
⎛

⎝
−cmin

⎛

⎝

2v

pnr
t2,

√
2v

nr
t
⎞

⎠

⎞

⎠
.

From now on, we choose

t = C∆

√
rn

2v
(
√
p log (2vδ−1) + log (2vδ−1)) .

There are at most 24v+6 elements in Nv ×Nv+1. Therefore, a union bound on v ≥ 0 and Nv ×Nv+1 gives

P ((ξ(d)∆ )
c
) ≤ ∑

u≥0
2∣Nv ×Nv+1∣ (2

v
)
−cC∆ δcC∆

≤ ∑
u≥0

27 (2v)
4−cC∆ δcC∆

≤ CδcC∆ ,

where the last inequality holds if C∆ is large enough, for c,C universal constants.
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5.10.3.2 Proof of Proposition 5.4.2

Step 1: Introduction of useful high probability events. Let s ≤ p and consider S ∈ C̄sp . In what follows
and for an vector u ∈ Rp, we write u(S) for the vector u restricted to the set S.

Remark that by a simple computation, the noise can be decomposed as follows :

r

2
[∥ȳ

(S)
l,+r − ȳ

(S)
l,−r∥

2
− ∥θ̄

(S)
l,−r − θ̄

(S)
l,+r∥

2
] − σ2s

= r⟨ε̄
(S)
l,+r − ε̄

(S)
l,−r, θ̄

(S)
l,+r − θ̄

(S)
l,−r⟩ +

r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s .

The first term written as

r⟨ε̄
(S)
l,+r − ε̄

(S)
l,−r, θ̄

(S)
l,+r − θ̄

(S)
l,−r⟩ ,

is a crossed term between the noise and the mean vector θ. Lemma 5.10.12 states that for l equal to a true
change-point τk, r of order r∗k, and S being the corresponding support of the change-point, it is controlled on
event ξ(p)1 with high probability.

Lemma 5.10.19. For k ∈ [K], let us write Sk ⊂ [K] for the support of µk − µk−1. Assume that c0 is a large
enough universal constant. The event

ξ
(p)
1 ∶= ξ

(p)
1 (δ) =

⎧⎪⎪
⎨
⎪⎪⎩

∀k ∈ [K] s.t. Equation (5.18) holds for k,

r̄
(d)
k ∣⟨ε̄

(Sk)
τk,+r̄(d)k

− ε̄
(Sk)
τk,−r̄(s)k

, θ̄
(Sk)
τk,+r̄(s)k

− θ̄
(Sk)
τk,−r̄(s)k

⟩∣ ≤
r̄
(d)
k

4
∥θ
τk,+r̄(s)k

− θ
τk,−r̄(s)k

∥
2
⎫⎪⎪
⎬
⎪⎪⎭

holds with probability higher than 1 − δ.

The proof of this lemma follows directly from the one of Lemma 5.10.12, restricting the term corresponding
to change-point k to Sk - and diminishing the deviation by doing so.

The second term written as
r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s

is a term of pure noise. Lemma 5.10.20 states that it is controlled on event ξ(p)2 (S) with high probability.

Lemma 5.10.20. There exists a constant c̄conc > 0 such that the event

ξ
(p)
2 (S) ∶= ξ

(p)
2 (S, δ) =

⎧⎪⎪
⎨
⎪⎪⎩

∀(l, r) ∈ Jn, ∣
r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s∣

≤ c̄concL
2 ⎛

⎝

√

s log (
n

rδ
) + log (

n

rδ
)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

holds with probability higher than 1 − 2δ.

The proof of this lemma is exactly the same as the one of Lemma 5.10.13, restricting all vectors to S.
Set δs = δ/(2s(ps)). Lemma 5.10.20 implies that with probability larger than 1 − 2δ, ∀(l, r) ∈ Jn, ∀S ⊂ [p]

∣
r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s∣ ≤ c̄concL

2 ⎛

⎝

√

s log (
n

rδs
) + log (

n

rδs
)
⎞

⎠
.

And so since (p
s
) ≤ (

ep
s
)
s
, we have probability larger than 1 − 2δ, ∀(l, r) ∈ Jn, ∀S ⊂ [p]

∣
r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s∣ ≤ c̄concL

2 ⎛

⎝

√

s log (
n

rδ
) + s log (

2ep

s
) + log (

n

rδ
) + s log (

2ep

s
)
⎞

⎠

≤ 4c̄concL
2
(log (

n

rδ
) + s log (

2ep

s
)) .
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And so the event

ξ
(p)
2 ∶= ξ

(p)
2 (δ) =

⎧⎪⎪
⎨
⎪⎪⎩

∀(l, r) ∈ Jn,∀S ⊂ [p], ∣
r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s∣

≤ 4c̄concL
2
(log (

n

rδ
) + s log (

2ep

s
))

⎫⎪⎪
⎬
⎪⎪⎭

(5.39)

has probability larger than 1 − 2δ.
Set now

ξ(p) ∶= ξ
(p)
1 ∩ ξ

(p)
2 .

Note that
P(ξ(p)) ≥ 1 − 3δ.

Step 2: Study in the ‘no change-point’ situation. Consider (l, r) ∈ Jn such that {τk, k ∈ [K]}∩[l−r, l+r) =
∅, and S ⊂ [p]. Note that since {τk, k ∈ [K]} ∩ [l − r, l + r) = ∅, we have θ̄(S)l,−r = θ̄

(S)
l,+r so that

r

2
∥θ̄
(S)
l,−r − θ̄

(S)
l,+r∥

2
= 0,

and
r⟨ε̄
(S)
l,+r − ε̄

(S)
l,−r, θ̄

(S)
l,+r − θ̄

(S)
l,−r⟩ = 0.

Moreover we have on ξ(p) that - see Equation (5.39)

∣
r

2
∥ε̄
(S)
l,+r − ε̄

(S)
l,−r∥

2
− σ2s∣ ≤ 4c̄concL

2
(log (

n

rδ
) + s log (

2ep

s
)) ≤ σ2x(p)r ,

for c̄thresh ≥ 4c̄conc - note that c̄conc > 0 is a universal constant. And so

Ψ
(p)
l,r ≤ x

(p)
r ,

so that on ξ(d),
T
(p)
l,r = 0 .

This concludes the proof of the first part of the proposition.

Step 3: Study in the ‘change-point’ situation. Consider k ∈ [K] such that τk is a κ-sparse high-energy
change-point, - see Equation (5.18). Since Sk is the support of µk − µk−1 - and therefore of θ

τk,−r̄(s)k

− θ
τk,+r̄(s)k

-
we have

r̄
(s)
k

2
∥θ̄
(Sk)
τk,−r̄(s)k

− θ̄
(Sk)
τk,+r̄(s)k

∥
2

≥
κ

8
L2 ⎛

⎝
sk log (

2ep

sk
) + log

⎛

⎝

n

r̄
(s)
k δ

⎞

⎠

⎞

⎠
.

So on ξ(p) this implies that - see Lemma 5.10.19

r̄
(d)
k ∣⟨ε̄

(Sk)
τk,+r̄(s)k

− ε̄
(Sk)
τk,−r̄(s)k

, θ̄
(Sk)
τk,+r̄(s)k

− θ̄
(Sk)
τk,−r̄(s)k

⟩∣ ≤
r̄
(s)
k

4
∥θ
τk,+r̄(s)k

− θ
τk,−r̄(s)k

∥
2
.

Moreover we have on ξ(p) that - see Equation (5.39)
RRRRRRRRRRR

r̄
(s)
k

2
∥ε̄
(Sk)
τk,+r̄(s)k

− ε̄
(Sk)
τk,−r̄(s)k

∥
2

− σ2s
RRRRRRRRRRR

≤ 4c̄concL
2 ⎛

⎝
log
⎛

⎝

n

r̄
(s)
k δ

⎞

⎠
+ 2sk log (

2ep

sk
)
⎞

⎠
≤ σ2x

(p)
r̄
(s)
k

,

for c̄thresh ≥ 4c̄conc - note that c̄conc > 0 is a universal constant. And so on ξ(p), combining the three previous
displayed equations implies

Ψ
(p)
τk,r̄

(s)
k

≥
r̄
(d)
k

4σ2
∥θ̄
(Sk)
τk,+r̄(s)k

− θ̄
(Sk)
τk,−r̄(s)k

∥
2

− x
(p)
r̄
(s)
k

≥ (
κ

16
− c̄thresh)

L2

σ2

⎛

⎝
log
⎛

⎝

n

r̄
(s)
k δ

⎞

⎠
+ sk log (

2ep

sk
)
⎞

⎠
> x
(p)
r̄
(s)
k

,

since κ > 32c̄thresh. And so on ξ(p)

T
(p)
τk,r̄

(s)
k

= 1.

This concludes the proof of the second part of the proposition.
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5.10.3.3 Proof of Corollary 5.4.4

Let ξ(d) and ξ(s) be two events such that Proposition 5.4.1 and Proposition 5.4.2 both hold with probability
1 − 3δ, and write ξ = ξ(d) ∩ ξ(p). From now on, we work on the event ξ, which holds with probability 1 − 6δ.
Define here simply τ̄k = τk. Note that by definition of r̄k in the sub-Gaussian regime:

r̄k =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r̄
(d)
k if sk log (

ep

sk
) >

√

p log (
n

rkδ
)

r̄
(s)
k if sk log (

ep

sk
) ≤

√

p log (
n

rkδ
)

According to Theorem 5.2.1, it is sufficient to prove that A (Θ, T,K∗, (τ̄k, r̄k)k∈K∗) holds.

1. (No false positive): Tl,r = T
(p)
l,r ∨T

(d)
l,r = 0 for any (l, r) ∈ GF ∩H0. by Proposition 5.4.1 and Proposition

5.4.2.

2. (Significant change-point detection): for every k ∈ K∗ (see (5.20)), we have by definition of r̄k :

4(r̄k − 1) ≤ rk.

Now if sk log ( epsk ) ≥
√

p log ( n
rkδ
), we have T (d)τ̄k,r̄k = 1 by Proposition 5.4.1, by definition of c0, and for

c̄
(d)
thresh as in Proposition 5.4.1.

If sk log ( epsk ) ≤
√

p log ( n
rkδ
), we have T (p)τ̄k,r̄k = 1 by Proposition 5.4.2, by definition of c0, and for c̄(p)thresh as

in Proposition 5.4.2.

Theorem 5.2.1 ensures that for all k ∈ K∗, there exists k′ ∈ [K̂] such that

∣τ̂k′ − τk ∣ ≤ r̄k − 1.

This concludes the proof since 4(r̄k − 1) ≤ rk for k ∈ K∗.

5.10.4 Proof of Theorem 5.5.1
Let us fix (r, s) ∈ [1, n/4] × [1, p]. Let ∆ be such that

r∆2
=
1

2
σ2

⎡
⎢
⎢
⎢
⎢
⎣

s log
⎛

⎝
1 + u

√
p

s

√

log (
n

r
)
⎞

⎠
+ u log (

n

r
)

⎤
⎥
⎥
⎥
⎥
⎦

,

for some u ≤ 1
8
.

In what follows, we consider any change-point detection method that outputs an estimator τ̂ of the change-
points, associated to a number K̂ of detected change-points, i.e. the length of τ̂ . We also write PΘ for the
distribution of the data when the mean parameter or the time series is fixed to a n × p matrix Θ, i.e. of Θ + ε
where the noise entries (εt)j are i.i.d. and follow N (0, σ2) as in Section 5.3. Also abusing slightly notations, we
write P0 for the distribution of the data when the parameter is constant and equal to 0.
Consider also any prior π over the set of n × p matrices Θ such that the number of true change-points over the
support of the prior is larger than 1 - i.e. the prior puts mass only on problems where more than one change-point
occurs. Let P̄π be the corresponding distribution of the data, namely the distribution of the matrix of data
when the mean parameter of the time series is the random matrix Θ̃ ∼ π. Otherwise said, P̄π is the distribution
of Θ̃ + ε where Θ̃ ∼ π.

We remind that in our setting K is the number of true change-points in a given problem - which would be
either 0 under P0, or more than 1 under P̄π. If the support of π1 is included in P(r, s), then

sup
Θ∈P(r,s)

PΘ(K̂ ≠K) ≥
1

2
(P̄π(K̂ = 0) + P0(K̂ ≠ 0))

≥
1

2
(1 − dTV (P̄π,P0)), (5.40)

where dTV is the total variation distance. From the Cauchy-Schwarz inequality, we have

dTV (P̄π,P0) ≤
1

2

√

χ2(P̄π,P0), (5.41)
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where χ2 is the divergence between probability distributions:

χ2
(P̄π,P0) = EP0

⎡
⎢
⎢
⎢
⎢
⎣

(
dP̄π
dP0

− 1)

2⎤
⎥
⎥
⎥
⎥
⎦

.

By a simple computation that can be found for example in [104]

χ2
(P̄π,P0) = EΘ̃,Θ̃′ [e

1
σ2 ⟨Θ̃,Θ̃

′⟩
] − 1, (5.42)

where Θ̃ and Θ̃′ are i.i.d. and distributed according to π, ⟨Θ̃, Θ̃′⟩ = Tr(Θ̃′Θ̃T ) is the standard scalar product,
and EΘ̃,Θ̃′ is the expectation according to Θ̃ and Θ̃′.

Let us consider the three following cases for the couple (r, s):

Case 1 ∶ u log (
n

r
) ≤ s log

⎛

⎝
1 + u

√
p

s

√

log (
n

r
)
⎞

⎠
and s ≤ u

√

p log (
n

r
),

Case 2 ∶ u log (
n

r
) ≤ s log

⎛

⎝
1 + u

√
p

s

√

log (
n

r
)
⎞

⎠
and s > u

√

p log (
n

r
),

Case 3 ∶ u log (
n

r
) > s log

⎛

⎝
1 + u

√
p

s

√

log (
n

r
)
⎞

⎠
.

Each case corresponds to the regime of detection of one of the three statistics. The first one corresponds to the
Berk-Jones statistic, the second one to the dense statistic and the last one to the partial norm statistic.

Case 1 : In that case, r∆2 ≤ σ2s log (4u p
s2

log (n
r
)). Let us define a probability distribution on the parameter

Θ ∈ P(r, s). For ζ = ⌊n
r
⌋ − 1 and l ∈ D̃r = {1, r + 1,2r + 1, . . . ζr + 1}, define the column vector vl = ∑l+r−1j=l ej ,

where ej is the jth element of the canonical basis of Rn. Let a be a random variable uniformly distributed in
{x ∈ {0,1}p, ∣x∣0 = s} and ν be a random variable independent from a and uniformly distributed on {vl ∶ l ∈ D̃r}.
Let

Θ̃(1) =
∆
√
s
aνT ∈ Rp×n,

and π1 be the distribution of the random variable Θ̃(1), and P̄π1 be the corresponding distribution of the data.
Consider two independent copies Θ̃(1) and Θ̃′(1) that are distributed like π1. The probability that Θ̃(1) and

Θ̃′(1) have the same support is exactly 1
ζ+1 . Hence, from Equation (5.42)

χ2
(P̄π1 ,P0) =

1

ζ + 1
(Ea,a′ [e

r∆2

sσ2 ⟨a,a
′⟩
− 1]) , (5.43)

where a′ is an independent copy of a, and Ea,a′ is the expectation according to a, a′. Remark by symmetry that
⟨a, a′⟩ has the same law as ∑si=1 ai. Hence

Ea,a′ [e
r∆2

sσ2 ⟨a,a
′⟩
] = Ea

⎡
⎢
⎢
⎢
⎢
⎣

e
r∆2

sσ2

s

∑
i=1

ai
⎤
⎥
⎥
⎥
⎥
⎦

,

where Ea is the expectation according to a.
Remark that (a1, . . . , ap) has the same distribution as a random sampling without replacement of the list

of length p containing (1, . . . ,1,0, . . . ,0) - the list containing exactly s times the quantity 1 and otherwise
only 0. The following lemma allows us to replace the variables ai by independent Bernoulli random variables
Zi ∼ B(s/p).

Lemma 5.10.21. Let c = (c1, . . . , cp) ∈ Rp. We associate to the list c two random sampling processes: (i)
the sampling process without replacement (Xi)i=1...s of s elements uniformly on the list c and (ii) the sampling
process with replacement (Zi)i=1...s of s elements uniformly in the list. Then for any convex function f ,

E [f (
s

∑
i=1
Xi)] ≤ E [f (

s

∑
i=1
Zi)] .
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The proof of this lemma can be found in [45]. Thus, if (Zi)i=1...s is an i.i.d sequence of Bernoulli variables
with parameter s

p
as described above, we obtain

χ2
(P̄π1 ,P0) ≤

1

ζ + 1

⎛

⎝
EZ
⎡
⎢
⎢
⎢
⎢
⎣

e
r∆2

sσ2

s

∑
i=1

Zi

⎤
⎥
⎥
⎥
⎥
⎦

− 1
⎞

⎠
(5.44)

=
1

ζ + 1
[(
s

p
e

r∆2

sσ2 + 1 −
s

p
)
s

− 1] ≤
1

ζ + 1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

e
s2

p

⎛
⎝
e
r∆2

sσ2 −1
⎞
⎠
− 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≤ 2
r

n
e

s2

p (e
log(4u2 p

s2
log(n

r
)))
≤ 2(

r

n
)
1−4u2

≤ 1 , (5.45)

where EZ is the expectation according to the (Zi)i and where in the last inequality we used u ≤ 1/3 and n ≥ 4r.

Case 2 : In that case, r∆2 ≤ σ2u
√

p log (n
r
). Let s0 = ⌈u

√

p log (n
r
)⌉ and b be a random variable uniformly

distributed in {x ∈ {0,1}p, ∣x∣0 = s0} and ν be defined as in Case 1. Let

Θ̃(2) =
∆
√
p
bνT ,

let π2 be the distribution of Θ̃(2) and P̄π2 be the associated probability distribution of the data. Doing the same
reasoning and similar computations as for Case 1, see in particular the steps of Equations (5.43) and (5.44) -
replacing s by s0 and a by b - we have

χ2
(P̄π2 ,P0) = EΘ̃(2),Θ̃

′
(2)
[e

1
σ2 ⟨Θ̃(2),Θ̃

′
(2)⟩] − 1 =

1

ζ + 1
Eb,b′ [e

r∆2

pσ2 ⟨b,b
′⟩
− 1] ≤

1

ζ + 1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e

s20
p

⎛
⎝
e

r∆2

s0σ2 −1
⎞
⎠
− 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤
1

ζ + 1
e
2

s0r∆2

pσ2 ≤ 2
r

n
e4u log n

r = 2(
r

n
)
1−4u

≤ 1 , (5.46)

where EΘ̃(2),Θ̃
′
(2)

is the expectation according to Θ̃(2), Θ̃
′
(2) (where Θ̃′(2) is an independent copy of Θ̃(2)) and

where Eb,b′ is the expectation according to b, b′ (where b′ is an independent copy of b), and where in the last
step we used u ≤ 1/8 and n ≥ 4r.

Case 3 : In that case, r∆2 ≤ u log (n
r
). Let c = (1,0,0, . . . ,0) be the vector with 0 entries except the first

one. Let ν be the random vector defined as in Case 1. Let

Θ̃(3) =∆cν
T ,

and π3 be the distribution of the random variable Θ̃(3) - and P̄π3 be the associated probability distribution of
the data. Doing the same reasoning as in Case 1 - see in particular the step of Equation (5.43) - replacing a
by c and s by 1 - for the prior π3, we obtain

χ2
(P̄π3 ,P0) = EΘ̃(3),Θ̃

′
(3)
[e

1
σ2 ⟨Θ̃(3),Θ̃

′
(3)⟩] − 1 =

1

ζ + 1
e

r∆2

σ2 ≤ 2
r

n
eu log(nr ) ≤ 2(

r

n
)
1−u
≤ 1 , (5.47)

where EΘ̃(3),Θ̃
′
(3)

is the expectation according to Θ̃(3), Θ̃
′
(3) (where Θ̃′(3) is an independent copy of Θ̃(3)) and

where in the last step we used n ≥ 4r and u ≤ 1/2.

Thus, in all cases - combining Equations (5.40) and (5.41) with Equations (5.45), (5.46) and (5.47) - we
obtain in all three cases

sup
Θ∈P(r,s)

PΘ(K̂ ≠K) ≥
1

4
.

and this concludes the proof.
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5.10.5 Proofs for covariance and nonparametric change-point detection
Proof of Proposition 5.6.1. Consider an r-sample (z1, . . . zr) with mean zero and covariance matrix Σ and Orlicz
norm B. Koltchinskii and Lounici [50] have proved that, for any x > 0, the empirical covariance matrix
Σ̂ = r−1(∑

r
i=1 ziz

T
i ) satistifies

∥Σ̂ −Σ∥op ≤ c
′B2
[

√
p

r
+
p

r
+

√
x

r
+
x

r
] ,

with probability higher than 1 − exp(−x). Here c′ is a suitable positive constant. Considering a union bound
over all (l, r) ∈ GD such that Σt is constant over [l − r, l + r), we have, with probability higher than 1− δ/2, that
simultaneously on all such r ∈R and l ∈ Dr,

∥Σ̂l,r − Σ̂l,−r∥op ≤ ∥Σ̂l,r −Σl∥op + ∥Σ̂l,−r −Σl∥op ≤ 8c
′B2

⎡
⎢
⎢
⎢
⎢
⎣

√
p

r
+
p

r
+

√
log(2n/(rδ))

r
+
log(2n/(rδ))

r

⎤
⎥
⎥
⎥
⎥
⎦

,

where the constant 8 comes from the union bound on all elements of the grid. As a consequence, the FWER of
the multiple testing collection is at most δ/2 provided that we choose c0 ≤ 8c′.

Conversely, consider any high-energy change-point τk. Let rk be the smallest radius r ∈R such that

r∥Στk −Στk−1∥
2
op ≥ 0.25c1B

4
[(p + log (

2n

rδ
)) ∧ r] . (5.48)

and consider the closest location l ∈ Dr of τk so that ∣l − τk ∣ ≤ r/2. To ease the notation, we still write r for rk.
Without loss of generality, we assume that l ≥ τk. Let us decompose the statistic Σ̂l,−r =

r−l+τk
r

Σ̂τk,−(r−l+τk) +
l−τk
r

Σ̂l,−(l−τk). Since r ≤ rk/2, Σt is constant over [l − r, τk) and over [τk, l + r). Then, we apply three times the
deviation inequality of Koltchinskii and Lounici [50] to get

∥Σ̂l,r − Σ̂l,−r∥op ≥
r − l + τk

r
∥Στk −Στk−1∥op − ∥Σ̂l,r −Στk∥op

−
l − τk
r
∥Σ̂l,−(l−τk) −Στk∥op −

r − l + τk
r

∥Σ̂τk,−(r−l+τk) −Στk−1∥op

≥
1

2
∥Στk −Στk−1∥op − c

′′B2

⎡
⎢
⎢
⎢
⎢
⎣

√
p

r
+
p

r
+

√
log(2n/(rδ))

r
+
log(2n/(rδ))

r

⎤
⎥
⎥
⎥
⎥
⎦

,

with probability higher than 1 − 0.5δ[r/(2n)]2. As a consequence, we have Tl,r = 1 provided that

∥Στk −Στk−1∥op ≥ 2(c
′′
+ c0)B

2

⎡
⎢
⎢
⎢
⎢
⎣

√
p

r
+
p

r
+

√
log(2n/(rδ))

r
+
log(2n/(rδ))

r

⎤
⎥
⎥
⎥
⎥
⎦

.

Since ∥Στk − Στk−1∥op ≤ 2B2 and if we choose c1 ≥ 17 ∨ 32(c′′ + c0), the bound (5.48) is achievable only if
r ≥ p + log(2n/(rδ)) and we deduce from (5.48) that Tl,r = 1.

Taking a union bound over all high-energy change-points, we deduce from Theorem 5.2.1 that, with proba-
bility higher than 1−δ, τ̂ achieves (NoSp) and detects all high-energy change-points. Besides, the localization
error (5.25) is a consequence of the definition (5.48) together with Theorem 5.2.1.

Proof of Proposition 5.6.2. As in the proof of Theorem 5.5.1, we only consider a specific setting where one aims
at testing K = 0 with Σ1 = Ip versus K = 2 with τ1 ∈ (n/4; 3n/4), τ2 = τ1 + r, Σ1 = Στ2 = Ip and Στ1 = Ip + ζuu

T

for some unknown unit vector u in Rp. Obviously, we have r1 = r2 = r and ∥Στ1 −Στ0∥op = ∥Στ2 −Στ1∥op = ζ so
that it suffices to prove that the sum of the type I and type II error probabilities of any test of these hypotheses
is bounded away from zero. We consider two subcases:
Case 1: ζ ≤ c′

√
p/r∧ 1√

2
. Then, we focus on the specific alternative hypothesis where τ1 = ⌊n/2⌋ and τ2 = τ1 + r,

so that the problem reduces exactly to testing whether the covariance matrix Σ of a r-sample satisfies Σ = Ip
or whether Σ = Ip + ζuu

T . This hypothesis testing problem for covariance matrices is well understood. In
particular, one can deduce from Theorem 5.1 in [9] that, as soon as ζ ≤ c′[

√
p/r ∧ 1], for some c′ sufficiently

small, one has

inf
τ̂

sup
Θ∈P̄(r,ζ)

PΘ(K̂ ≠K) ≥
1

4
.

Case 2: ζ ≤ c′
√
log(n/r)/r ∧ 1/

√
2. Here, we consider another specific class of alternative hypotheses where we

fix u = (1,0, . . . ,0) but τ1 can take different values, i.e. τ1 ∈ {⌊n/4⌋, ⌊n/4⌋ + r, . . . , ⌊n/4⌋ + r⌊n/2r⌋}. It turns out
that this is equivalent to a univariate variance testing problem where one observes q = ⌊n/(2r)⌋ samples of size r
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with distributions N (0, σ2
1), . . . , N (0, σ2

q). Under the null, we have σ1 = σ2 = . . . = σq = 1. Under the alternative,
for some j ∈ [q], we have σj =

√
1 + ζ and σl = 1 for l ≠ j. For j = 1, . . . , q, write Pj for the distributions of the

j-th sample of size r when σ2
j = 1 + ζ and σl = 1 for l ≠ j. Besides, we write Lj for the corresponding likelihood

ratio with the null distribution P0. Then, the mixture distribution is defined as P = 1
q ∑

q
j=1 Pj whereas L stands

for the mean likelihood ratio. Following the classical path of Le Cam’s method we obtain that, for any test T ,

P0[T = 1] + sup
j=1,...,q

Pj[T = 0] ≥ P0[T = 1] + P[T = 0] ≥ 1 − ∥P0 −P∥TV ,

where ∥.∥TV is the total variation norm. Using Cauchy-Schwarz inequality, we bound this total variation distance
between the covariates

∥P0 −P∥TV ≤ E0 [L
2
] − 1 =

1

q
(E0 [L

2
i ] − 1) =

1

q
[(1 − ζ2)−r/2 − 1] ≤

1

q
[erζ

2

− 1] ,

since ζ ∈ (0,1/2). As a consequence, we derive that ∥P0 −P∥TV ≤ 1/4 as long as rζ2 ≤ c′ log(q) ∧ 1. The result
follows.

Proof of Proposition 5.6.3. The proof is based on an application of Dvoretzky–Kiefer–Wolfowitz (DKW) in-
equality [10] together with an union bound. For a q sample of a univariate distribution with empirical distribu-
tion function F̂ and true distribution function F , DKW inequality ensures that

P [∥F̂ − F ∥∞ ≥
√

x

2q
] ≤ 2e−x.

Applying two-times DKW inequality to each statistic Tl,r such that no-change-point occurs on (l − r, l + r), we
deduce that, setting c1 sufficiently larger, the FWER of (Tl,r) is at most δ/2 by summing the probabilities over
all scales r ∈R and by a union bound on all l ∈ Dr.

Turning to the high-energy change points, we consider τk satisfying (5.26). Let rk be the smallest radius
r ∈R such that

r∥Fτk − Fτk−1∥
2
∞ ≥ 0.25c1

log ( n
rδ
)

m
, (5.49)

and consider the closest location l ∈ Dr of τk so that ∣l − τk ∣ ≤ r/2 and 2r ≤ rk. To ease the notation, we still
write r for rk. As in the proof of Proposition 5.6.1, we decompose the statistic

l+r−1
∑
t=l

F̂t −
l−1
∑
t=l−r

F̂t =
l+r−1
∑
t=l

F̂t −
τk−1
∑
t=l−r

F̂t −
l−1
∑
t=τk

F̂t,

and apply DKW inequality to each of three sums. Taking the union bound over all possible Tl,r we deduce that,
with probability higher than 1 − δ/2

r−1∥
l+r−1
∑
t=l

F̂t −
l−1
∑
t=l−r

F̂t∥∞ ≥
1

2
∥Fτk − Fτk−1∥∞ − c

′′
√

log(4n/rδ)

mr
,

so that in view of Condition (5.49) implies that Tl,r = 1. Applying Theorem 5.2.1 allows us to conclude.

Proof of Proposition 5.6.4. As in the proof of Proposition 5.6.2, we focus on a simpler testing problem. Write
U for the cumulative distribution function of the uniform distribution on [0,1], i.e. U(x) = x for any x ∈ [0,1].
Given ζ ∈ (0,1/4), we define the cumulative distribution function Uζ by Uζ(x) = (1 + 2ζ)x for x ∈ [0,1/2] and
Uζ(x) = (1/2 + ζ) + (1 − 2ζ)(x − 1/2) for x ∈ [1/2,1]. Note that ∥Uζ −U∥∞ = ζ.

We focus on a testing problem where, under the null, Ft = U for all t = 1, . . . , n, whereas under the alternative
there exists τ1 ∈ {⌊n/4⌋, ⌊n/4⌋ + r, . . . , ⌊n/4⌋ + (r − 1)⌊n/(2r)⌋} such that Ft = Uζ for t = τ1, . . . , τ1 + r − 1 and
Ft = U otherwise. Defining q = ⌊n/(2r)⌋, we observe that this amounts to testing whether q samples of size rm
are distributed according the null distribution or whether exactly one of them is distributed according to Uζ .
Arguing again in the proof of Proposition 5.6.2, we only need to bound the total variation distance between the
distribution P0 under the null and the mixture distribution q−1∑qj=1 Pj of the q possible alternatives - here P0 =

⊗
q
k=1U

⊗(rm) is the distribution of the samples when Ft = U and Pj = [⊗j−1k=1U
⊗(rm)]⊗U

⊗(rm)
ζ ⊗[⊗

q
k=j+1U

⊗(rm)],
is for j ≥ 1 the distribution of the samples when Ft = U except for t ∈ [jr, (j + 1)r), in which case Ft = Uζ .

Let z be a uniform random variable over [0,1] and w be an independent Bernoulli random variable with
parameter 1/2. Then, one easily checks that z/2 + w/2 is uniformly distributed on [0,1]. If w is a Bernoulli
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random variable with parameter 1/2 − 2ζ, then one easily checks that the cumulative distribution function of
z/2 +w/2 is Fζ . As a consequence, by a standard data-processing inequality [104], one derives that

∥P0 − q
−1

q

∑
j=1

Pj∥TV ≤ ∥P̃0 − q
−1

q

∑
j=1

P̃j∥TV ,

where under P̃0 one observes q independent Binomial random variables with parameter (mr,1/2), whereas under
P̃j , the j-th observation follows a Binomial distribution with parameter (mr,1/2 − 2ζ). Using Cauchy-Schwarz
inequality, we upper bound the square of the total variation distance by the χ2 distance and then compute it
explicitly. This leads us to

∥P̃0 − q
−1

q

∑
j=1

P̃j∥2TV ≤
1

q
[(1 + 16ζ2)rm − 1] ,

which is smaller than 1/4 provided that 16rmζ2 ≤ log(q/4 + 1). If we choose c′ small enough in the statement
of the proposition, this last condition holds and the result follows.



Chapter 6

Future research

In this thesis, we analyzed problems related to both crowdsourcing and time series, from a minimax point
of view. We believe it is possible to build upon our research for future works in both of these topics. In the
subsequent sections, we first discuss an extension to crowdsourcing problems where we have unknown labels that
we want to recover. Then, we introduce a model for ranking workers in a setting with sequential observations.
Finally, we discuss the problem of localization of change-points in time series, where the purpose is to not only
detect the change-points, but also to estimate them accurately.

6.1 Estimating labels in crowdsourcing problems

A natural extension of the crowdsourcing models presented in the introduction and detailed in Chapter 4
and Chapter 3 is when we are dealing with unknown labels. In what follows, we discuss a model with two
unknown labels, similar to the one proposed by Shah et al. [85], as well as a conjecture we might expect.

Assume that we have n workers on d tasks, where each task consists in finding the true label in {−1,1}.
In this context, we observe a matrix Y ∈ {−1,1}n×d representing the labels given by the workers. Even in the
problem with unknown labels, we consider a matrix M such that Mik represents the probability that worker
i labels task k correctly. For this problem, we let x∗ ∈ {−1,1}d be the vector representing the unknown true
labels. Assume that M is isotonic up to an unknown permutation π∗, and that the entries of Y are distributed
as follows:

Yik = {
x∗k, with probability Mik,
−x∗k, with probability 1 −Mik.

In contrast to the models presented in Chapter 3 and Chapter 4, we do not assume that the true labels
x∗k are known. This situation mirrors many real-world crowdsourcing scenarios, where the main purpose is to
recover the unknown labels based on the responses from a set of workers.

In this model, recovering the true label x∗ or the true ranking of the worker π∗ seems challenging. The prob-
lem looks circular: estimating π∗ is not possible until having a convenient estimator of the labels. Conversely,
a suitable estimator of π∗ can arguably provide a better estimator of the labels.

In [85] the authors established the minimax rate of the reconstruction ofM , in the case where n = d and where
M is bi-isotonic up to two permutations. Despite this, as in the bi-isotonic-2D and SST models, considerable
computational-statistical gaps persist in the estimation of π∗ or M .

In the isotonic model, we can derive from Chapter 4 that if the true labels were known, we could reconstruct
the matrix M in polynomial time at the optimal rate of order n7/6, when n = d. In fact, we believe that, at
least in the isotonic model when n = d, there exists a polynomial-time method to estimate π∗ and M , achieving
the rate of order n7/6.

We conjecture that this rate is optimal could be proved with two main ingredients: a majority vote in a
preprocessing step, and an iterative spectral method. Initially, we would estimate a first set of labels where a
majority vote gives high confidence results. Then, the remaining subset of labels would be estimated through a
spectral method. Restricting again to labels with low confidence, we would then iteratively repeat this process
a polylogarithmic number of times. A spectral method is particularly interesting in this case, primarily because
the largest singular value of the population matrix, denoted as M diag(x∗1, . . . , x

∗
d), does not depend on the true

labels (x∗1, . . . , x
∗
d).

In summary, we believe that this crowdsourcing problem with unknown labels is relevant in many practical
situations. We also conjecture that it is possible to improve the current convergence rates given by [85] with

195
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a polynomial-time method. In particular, we believe that we could build upon the findings from Chapter 4 on
the isotonic model to provide an optimal method to rank the workers when labels are unknown.

6.2 Online ranking problems

In the isotonic and bi-isotonic-1D models presented in Chapter 4, Chapter 3 respectively, we have direct
access to the observation from all the pairs of workers/task. Nevertheless, From a practical point of view, it is
often reasonable to assume that we can sequentially choose each pair of worker/task. Let us consider an online
variant of the isotonic model, where we have a fixed budget T that we can allocate among the workers instead of
a matrix of observation. Similarly to the model studied in Saad et al. [79], we sequentially choose T pairs (i, k)
of task/worker. At each step, we get an independent Bernoulli observation yt ∈ {0,1} with unknown parameter
Mik, where M ∈ [0,1]n×d is an isotonic matrix up to some permutation π∗. Specifically, the new pair (i, k) can
be chosen given the past information (yt′)t′≤t−1. Similarly to Chapter 4 and Chapter 3, the problem is to find
an estimator of π∗.

Without any further assumption in this model, the same worker/task pair can be selected multiple times,
each time with independent noise. In particular, the model studied in [79] does not impose any constraint on
the number of observations that can be requested for a given pair (i, k). However, in many real-world scenarios,
the observations for the same pair are often strongly correlated. For example, if you ask someone the same
question 10 times, you will likely receive the same answer each time. An idea to address this issue is to assume
that we can observe each pair (i, k) at most Nik times, where Nik follows a Poisson distribution with parameter
λ ≤ 1.

In this context, a natural idea to estimate π∗ is as follows. Assume that the budget T is of order λnd.
Then, randomly sample λnd pairs (i, k) among the nd possible entries in [n] × [d]. We get a batch of sample
corresponding to a sampling effort of order λ, as in Chapter 4. Finally, apply the algorithm described for the
isotonic model – in Chapter 4 – to obtain some estimator of π∗ or M . In the worst case, we could show that
this estimator achieves the same guarantees as in Chapter 4 for the risk E[∥Mπ̂−1 −Mπ∗−1∥

2
F ] with parameters

n, d and λ. However, we strongly believe that better guarantees can be achieved in this sequential setting.
The main flaw of the aforementioned method is that it does use past observations to refine the choice of

the next pair (i, k). As a consequence, accurately estimating the permutations in this model is not a mere
application of the procedure given for the isotonic model in Chapter 4. We hope that using the properties of
active sampling would improve the rate of convergence. Let us informally describe a procedure that could be
better suited for a sequential setting.

First, we use only the T /2 first observations to derive an initial estimator by applying the method of
Chapter 4. In particular, we are left with sets of workers P ⊂ [n] that we cannot compare with high confidence,
and with subsets Q ⊂ [d] of tasks that are relevant for the comparison between workers of these groups. Then,
the remaining T /2 observations could be randomly allocated in the subsets of the form P × Q. Finally, we
compare the averages of the workers on the subsets Q to further refine the estimator. In particular, if the total
number of entries corresponding to the P ×Q subsets is significantly smaller than nd, then this idea is likely to
lead to a better convergence rate than a random allocation across the entire n × d matrix.

Overall, a straightforward consequence of Chapter 4 is that we can estimate the permutation π∗ with a
convergence rate of R∗perm(n, d, T /(nd)), using a random allocation of observations. This corresponds to the
case where λ = T /nd in Chapter 4. An interesting direction of research would be to use the properties of the
online setting to improve the convergence rate of permutation estimation, and to adapt the estimation to a
given budget T .

6.3 Change-point localization in time series

In Chapter 5, we established the minimal conditions under which we can consistently detect K change-points
in a high-dimensional time series. Beyond simply detecting these change-points, another crucial problem is the
localization of the change-points. Take, for instance, a univariate time series with a single possible change-point
τ . Arguably, we are not only interested in knowing whether the change-point τ exists, but also in an accurate
estimator τ̂ of τ (if it exists).

In the context of a univariate time series with piecewise constant mean (i.e. with multiple change-points),
Verzelen et al. [92] established the optimal rates for both detection and localization. In particular, the authors
show that the distance of an optimal estimator τ̂ to the true change-point is of order 1/∆2, where ∆ is the
difference between the means before and after the change-point in absolute value. In simpler terms, an optimal
estimator τ̂ of τ achieves ∣τ̂ − τ ∣ ≲ 1/∆2 with high probability.
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Consider the high-dimensional setting described in Chapter 5, and let Dk = θτk − θτk−1 ∈ Rp. For the sake of
simplicity, let us present our conjecture in the case where we do not aim to adapt to the unknown sparsity sk
of Dk, and assume that sk = p.

On the one hand, if rk∥Dk∥
2 ≥ p, we could estimate the direction Dk. By projecting the time series on a

direction that is close to Dk/∥Dk∥, we conjecture that we could reduce the problem to the univariate case and
estimate τk at a distance of order 1/∥Dk∥

2. On the other hand, if rk∥Dk∥
2 ∈ [

√
p, p], the idea would be to

estimate a direction that is weakly correlated with Dk/∥Dk∥. In this case, we conjecture that we could estimate
τk at a distance of order p/(rk∥Dk∥

4).
To conclude, improving the localization distance of change-points would be interesting for both practical

and theoretical reasons. A worthwhile direction of research would be to look for the precise minimal conditions
of change-point localization, and to adapt the analysis to the sparsity sk of the change-points.
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Résumé

Cette thèse explore deux domaines en statistique moderne : les problèmes de classement et la détection
de points de rupture. Les deux sujets sont étudiés dans le cadre des statistiques en grande dimension, où le
nombre de paramètres inconnus peut être supérieur au nombre d’échantillons. Pour gérer cette complexité,
nous introduisons des hypothèses spécifiques ou des contraintes de forme dans les modèles.

La première partie de la thèse explore des problèmes de classement, qui impliquent d’ordonner des éléments
sur la base d’observations bruitées et partielles. Principalement, nous examinons deux modèles qui visent à
retrouver une permutation des lignes d’une matrice ayant des contraintes de forme spécifiques. Plus précisément,
nous considérons le modèle monotone où la matrice réordonnée a des colonnes croissantes, et le modèle bi-
monotone où à la fois ses colonnes et ses lignes sont croissantes. Pour chacun des modèles, nous développons
un algorithme calculable en temps polynomial pour estimer la permutation inconnue, et nous prouvons qu’il
atteint des garanties presque optimales.

La deuxième partie se penche sur la détection de points de rupture dans des séries temporelles en grande
dimension. Bien que nous considérions un cadre général pour les points de rupture, l’accent principal est mis sur
le cas où nous cherchons à détecter des ruptures dans la moyenne d’une séquence de données. Nous établissons
les taux optimaux minimax qui s’adaptent à la fois à la parcimonie inconnue de ces points de rupture, et à la
distance entre les points de rupture.

Abstract

This thesis explores two areas in modern statistics: ranking problems and change-point detection. Both
topics are investigated within the framework of high-dimensional statistics, where the number of unknown
parameters can be greater than the number of samples. To manage this complexity, we introduce specific
assumptions, or shape constraints, into the models.

The first part of the thesis looks at ranking problems, which involve rearranging items based on noisy and
partial observations. We mainly examine two models that aim to recover a permutation of the rows of a matrix
that has specific shape constraints. Specifically, we consider the isotonic model where the reordered matrix
has nondecreasing columns, and the bi-isotonic model where it has nondecreasing columns and rows. In both
models, we develop polynomial-time algorithms to estimate the unknown permutation, and we prove that they
achieve nearly optimal guarantees.

The second part delves into detecting multiple change-points in high-dimensional time series. While we
consider a general change-point setting, the main focus is on the case where we aim to detect changes in the
mean of the data. We establish minimax optimal rates that are adaptive to the unknown sparsity of these
changes, and to the distance between the change-points.
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