
HAL Id: tel-04542844
https://theses.hal.science/tel-04542844

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enabling technologies for real-time acquisition and
processing of large volumes of data and their

applications to giant astronomical telescopes and radar
systems

Julien Plante

To cite this version:
Julien Plante. Enabling technologies for real-time acquisition and processing of large volumes of data
and their applications to giant astronomical telescopes and radar systems. Astrophysics [astro-ph].
Université Paris sciences et lettres; Thales LAS France, 2023. English. �NNT : 2023UPSLO015�.
�tel-04542844�

https://theses.hal.science/tel-04542844
https://hal.archives-ouvertes.fr

Acknowledgements

I sincerely thank the French Region Île-de-France for funding this work through the Paris Region
PhD program (DIM ACAV+ #20007183).

I am also deeply grateful for the support and mentorship of my thesis supervisor Dr Damien
Gratadour and co-supervisor Lionel Matias. This work could not have been completed without
their continuous support, connections, and deep knowledge and experience of the fields touched in
this thesis.

I am especially grateful to Dr Florian Ferreira and Arnaud Sevin from Observatoire de Paris, for
welcoming me into their team at pole HRA, and for the interesting interactions regarding Adaptive
Optics, DPDK, and COSMIC.

I am also grateful to the Observatoire Radioastronomique de Nançay, especially Cédric Viou
and Emmanuel Thétas for their help deploying this work on-site and Dr Louis Bondonneau for
his counselling about FRB detection, as well as Dr Jean-Mathias Grießmeier (LPC2E, USN) and
Dr Valentin Decoene (Nantes Université) for approving our piggybacking on the LT03 and LT05
observation programs. On a similar level, I thank Helène Menuet and Remi Kassab from the ARC
unit of Thales LAS France, and François-Xavier Archambault for their help understanding radar
system architecture and algorithms.

Many thanks as well to Stephen Jones (Nvidia), for his ever accurate insights about the intri-
cacies of CUDA distilled during our meetings.

Finally, thanks should also go to Elena Agostini (Nvidia) for her implication in DPDK and her
work to enable NIC to GPU DMA, as well as the collaboration we had about this matter.

On a more personal note, I deeply thank my family and my friends, especially my partner
Margot, who endured this thesis as much as I did, and supported me flawlessly during these three
long years.

I thank my friends and fellow PhD students Tomeu and Étienne for helping me vent, for the
interesting discussions, and for pushing me until the last day of this thesis. I am grateful to my
parents Vincent and Valérie for keeping interest in my long studies, and to both my grandpar-
ents Raphaël and Marie-Reine and my teachers Dr Anica Lekic and Pr Redamy Péres-Ramos for
transmitting their inclination for research.

Finally, I want to name every other significant close family member or friend, who all con-
tributed to support me during this work: my grandmother Raymonde, my aunts and uncles Chris-
telle, Aline, Christophe and Stéphane, my cousins Coralie, Lorina and Émeline, my family-in-law
Denis, Delphine, Carla and Mattéo, my friends Victor, Yves, Alexandre and Marc and my dog
Tiplo.

Besides the technical and scientific aspects, this work was also a strong human experience, and
would not have been possible without them.

2

Abstract

Systems of our world are following a constant growth in terms of precision, speed and electrical
consumption. This growth involves the production of always larger volumes of data, which become
difficult to process using today’s standard technologies.

In the context of this thesis, we looked into emerging technologies such as GPU computing,
userland networking, DPDK and GPUDirect, which are able to answer this need, and applied them
to multiple real-life projects with strong scientific and industrial impact (wavefront acquisition for
adaptive optics, real-time fast radio burst detection, radar signal processing) with success.

As a first application, high-performance wavefront acquisition is a corner stone of Adaptive
Optics systems, essential to the quality of images produced by ground-based telescopes. On the
ELT, the Adaptive Optics control loop must not be longer than 200µs, although network packet
acquisition with standard methods on the Linux OS already exhibits a latency of multiple tens of
microseconds.

A second application is the detection of elusive signals sharing similarities with pulsars, the Fast
Radio Bursts. The cutting-edge technologies considered in this thesis enable real-time detection
of these signals at very low frequency on the telescope NenuFAR, making it possible to search for
them continuously, statistically increasing chances of detection.

Finally, a third application is the acquisition and processing of radar data, providing technical
solutions to the current performance bottlenecks encountered in this domain. This opens way to
better resolution and sensitivity.

We show how these technologies converged to reusable solutions across our multiple applica-
tions, and provide performance analyses. We obtain encouraging results, providing a solution to
the current bottleneck of current standard technologies. This is promising in the context of the
extreme systems being designed in the domains considered (SKA, giant radars), and could also be
transposed to other domains (autonomous vehicles, finance, etc).

Résumé

Les systèmes de notre monde sont en croissance constante en termes de précision, rapidité et
consommation énergetique. Cette croissance passe par la production de volumes de données tou-
jours plus importants, qui deviennent difficiles à traiter avec les technologies standard actuelles.

Dans le cadre de cette thèse, nous nous sommes intéressé à des technologies émergentes, telles
que le calcul sur GPU, le réseau en espace utilisateur, DPDK et GPUDirect, permettant de répondre
à ce besoin, et les avons appliquées à plusieurs projets concrets à fort impact scientifique et industriel
(acquisition de front d’ondes pour optique adaptative, detection en temps réel de transients radio,
traitement du signal radar) avec succès.

La première application est l’acquisition à haute performance de fronts d’ondes, une pierre
angulaire de l’Optique Adaptative, essentielle à la qualité des images produites par les telescopes
terrestres. Pour l’ELT, la boucle de contrôle d’Optique Adaptative ne doit pas dépasser 200µs,
alors que l’acquisition de paquets réseau à partir du système d’exploitation Linux possède une
latence de plusieurs dizaines de microsecondes.

La deuxième application est la détection de signaux encore peu compris, possédant des carac-
téristiques similaires aux pulsars, les Sursauts Radio Rapides. Les technologies de pointe étudiés
dans cette thèse permettent la détection en temps-réel de ces signaux à très basse fréquence sur le
téléscope NenuFAR, rendant possible une recherche continue de ces signaux, augmentant statisti-
quement les chances de détection.

Enfin, la troisième application concernce l’acquisition et le traitement de données radar, en
proposant des solutions techniques aux limites de performance rencontrées dans ce domaine. Cela
ouvre la voie à une meilleure résolution et sensibilité.

Nous montrons comment ces technologies ont pu converger vers des solutions réutilisables dans
le contexte de ces différentes applications, et fournissons des analyses de performance. Nous ob-
tenons des résultats encourageants, proposant ainsi une solution aux limitations des technologies
standard actuelles. Ces résultats sont prometteurs dans le cadre des systèmes extrêmes en court
de conception dans les domaines considérés (SKA, radars géants), et pourraient également être
transposés à d’autres domaines (véhicules autonomes, finance, etc).

3

Contents

Acknowledgements 2

Abstract 3

Résumé 3

Glossary 7

Abbreviations 9

Symbols 14

Introduction 16

I High-performance data acquisition 18

Introduction 19
Previous work . 19
Problem statement . 20

1 Data acquisition system description 22
1.1 Architecture . 22

1.1.1 Experiment configuration . 22
1.1.2 Host packet processing, Linux kernel RX . 23
1.1.3 Host packet processing, DPDK RX . 23
1.1.4 GPU packet processing, DPDK . 25
1.1.5 GPU packet processing, DPDK gpudev . 26
1.1.6 Packet processing persistent kernel design 26

1.2 Performance tuning . 27
1.2.1 PCIe topology . 28
1.2.2 PCIe usage . 28
1.2.3 NUMA effects . 29
1.2.4 Burst size . 29

1.3 Telemetry . 30
1.3.1 Data dumping . 30
1.3.2 Pipeline control and monitoring . 31

2 Applications 33
2.1 Common network protocols . 33

2.1.1 Endianness . 34
2.1.2 Ethernet . 34
2.1.3 IPv4 . 34
2.1.4 UDP . 35
2.1.5 Note on alignment . 36

4

2.2 Adaptive Optics . 37
2.2.1 ESO network protocols . 38
2.2.2 ELT-MICADO . 39
2.2.3 VLT-MAVIS . 41
2.2.4 Results . 41

2.3 Radio astronomy . 43
2.3.1 BIGCAT . 44
2.3.2 NenuFAR . 45

2.4 Radar . 47
2.4.1 Protocol . 47
2.4.2 Acquisition system . 48
2.4.3 Results . 49

3 Future work 50
3.1 Portability . 50

3.1.1 Other NIC + Nvidia GPU . 50
3.1.2 Nvidia NIC + other GPU . 50
3.1.3 Other NIC + other GPU . 50

3.2 Alternatives to DPDK . 50
3.2.1 DPU . 51
3.2.2 GPUNetIO . 51
3.2.3 Newer functionalities . 51
3.2.4 RDMA . 52

3.3 Encapsulation in a high-level component . 53

Conclusion 54

II High-performance GPU computing 55

Introduction 56

4 Methodology 57
4.1 CUDA kernel optimization . 57
4.2 Benchmarking with many degrees of freedom . 58

4.2.1 Mathematical models . 58
4.2.2 GPU saturation . 58
4.2.3 Uncertainty . 58

5 Radar 60
5.1 Porting an existing CPU-based radar SP . 60

5.1.1 A secondary radar . 60
5.1.2 Existing SP implementation . 62
5.1.3 Implementation . 63
5.1.4 Results . 64
5.1.5 Future work / Lessons learned . 65

5.2 Primary radar . 66
5.2.1 Classical primary radar SP . 66
5.2.2 Increasing the number of hypotheses . 68
5.2.3 Implementation: ConvSP . 70
5.2.4 PC implementation . 78
5.2.5 DF implementation . 78
5.2.6 LogMod . 86
5.2.7 CFARs . 86
5.2.8 Full pipeline . 87
5.2.9 Kernel fusion . 87
5.2.10 Future work . 89

5

6 FRB detection on NenuFAR 91

7 Interesting connections between radar and radioastronomy 124
7.1 Beamforming . 124
7.2 Feature extraction . 125
7.3 Adaptive thresholding . 125

8 Future work 127
8.1 Alternatives to CUDA . 127

8.1.1 OpenCL . 127
8.1.2 ROCm / HIP . 128
8.1.3 SYCL . 128
8.1.4 Others . 128
8.1.5 Going to a higher level . 128

8.2 Multi-GPU, multi-node systems . 129
8.3 COSMIC framework . 130

Conclusion 131

Conclusion 134

Code availability 136

A Papers 141

B Parset file 156

C Details on GPU architecture 158
C.1 GPU memory subunits . 158

C.1.1 global memory . 158
C.1.2 local memory . 158
C.1.3 shared memory . 158
C.1.4 constant memory . 159
C.1.5 texture memory . 159
C.1.6 surface memory . 159
C.1.7 Other . 159

C.2 Compute Capability . 160
C.3 Coalesced memory accesses . 160

6

Glossary

ALICE
LISA

FREDA







WFS Different WaveFront Sensors (WFSs) of MICADO

alignment Property of a computer address to be a multiple of some number, commonly a power
of 2. For example, the address 0x1234 is aligned to 4B, 0x1230 is aligned to 16B, but 0x4321
is not aligned

beamlet

CUDA block Group of threads

CUDA kernel Function dispatched over multiple CUDA CUDA blocks and threads, running in
parallel on an Nvidia Graphics Processing Unit (GPU)

CuTe Sister library of CUTLASS providing an elaborate Tensor class to describe n-D arrays of
data with a lot of flexibility

CUTLASS High-performance, header-only linear algebra from Nvidia, with the main goal of
targeting Tensor Cores

device External system, controlled by the host. In the context of CUDA, this is a GPU.

DOCA
global

local
shared

constant
texture
surface































memory Different memory subunits related to the GPU. A detailed description

is given in C.1

goodput Good + throughput – Payload bytes received over a certain period of time, stripped
from network headers

gpudev DPDK library to use GPUs in an abstracted way.

host Orchestrator of a computer, typically the CPU

io_uring Asynchronous interface to Linux I/O

jumbogram L4 packet with a payload greater than MTU

kernel fusion Action of fusing multiple CUDA kernels into one, in order to improve performance.

Linux kernel Core of the Linux OS, handling tasks such as multiprocessing, memory manage-
ment, device management, etc

NCHW
NHWC

KCRS







layout Different memory layouts

7

sensitivity Proportion of true positives among all positive detections

specificity Proportion of true negatives among all negative detections

system call Function to request a service from the OS, including I/O, process creation, schedul-
ing, ...

thread Thread of execution, a succession of instructions

8

Abbreviations

ADC Analog-to-Digital Converter

ADS-B Automatic Dependent Surveillance-Broadcast

AI Artificial Intelligence

AO Adaptive Optics

API Application Programming Interface

ASIC Application Specific Integrated Circuit

ATCA Australian Telescope Compact Array

AVX Advanced Vector eXtensions

BHR Beamformed High Resolution

BIGCAT Broadband Integrated Gpu Correlator for ATCA

BLAS Basic Linear Algebra Subprograms

BU Business Unit

C2C Complex-to-Complex

CA-CFAR Cell Averaging CFAR

CC Compute Capability

CCD Charge-Coupled Device

CFAR Constant False Alarm Rate

CNN Convolutional Neural Network

COTS Commercial off-the-shelf

CPU Central Processing Unit

CRC Cyclic Redundancy Check

CSIRO Commonwealth Scientific and Industrial Research Organisation

CSP Central Signal Processor

cuBLAS CUDA BLAS

CUDA Compute Unified Device Architecture

cuDNN CUDA DNN

cuFFT CUDA FFT

cuFFTDx cuFFT Device eXtension

9

DCCP Datagram Congestion Control Protocol

DCS Double Correlated Sampling

DF Doppler Filtering

DGX Deep learning GPU eXtreme

DMA Direct Memory Access

DMT Dispersion Measure Transform

DNN Deep Neural Network

DPC++ Data Parallel C++

DPDK Data Plane Development Kit

DPU Data Processing Unit

DRAM Dynamic RAM

DSCP Differentiated Services Code Point

dst destination

eBPF extended Berkeley Packet Filter

ECN Explicit Congestion Notification

ELT Extremely Large Telescope

EoIB Ethernet over InfiniBand

EPI European Processor Initiative

ESA European Spatial Agency

ESO European Southern Observatory

FAD Functional Analysis Document

FDMT Fast Dispersion Measure Transform

FFT Fast Fourier Transform

FIFO First In, First Out

FLOP Floating Point OPeration

FMA Fused Multiply Add

FPGA Field-programmable Gate Array

FRB Fast Radio Burst

FRUIT False Replies Unsynchronized with Interrogator Transmissions

FS Fowler Sampling

GDDR Graphics Double Data Rate

GDS GPUDirect Storage

GEMM GEneral Matrix Multiply: D = αAB + βC

GNSS Global Navigation Satellite Systems

10

GPGPU General Purpose GPU

GPU Graphics Processing Unit

HBM High Bandwidth Memory

HDF Doppler Filter Hypothesis

HPC High Performance Computing

HRA Haute Résolution Angulaire (High Angular Resolution)

I/O Input/Output

IB InfiniBand

IHL Internet Header Length

IP Internet Protocol

IPoIB Internet Protocol over InfiniBand

IPsec Internet Protocol Security

IPv4 IP version 4

IPv6 IP version 6

IQ In phase, Quadrature

I²C Inter-Integrated Circuit

JATIS Journal of Astronomical Telescopes, Instruments and Systems

JSON JavaScript Object Notation

LAN Local Area Network

LESIA Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique (Space and Astro-
physics Instrumentation Research Laboratory)

LOFAR Low-Frequency Array

LogMod Logarithm of the Modulus

LSB Least Significant Byte

MAC Media Access Control

MAD Median Absolute Deviation

MAVIS MCAO Assisted Visible Imager and Spectrograph

mbuf memory buffer

MCAO Multi-Conjugate AO

MICADO Multi-AO Imaging Camera for Deep Observations

MMA Matrix Multiply Accumulate

MMHRSP Massively Multi-Hypotheses Radar SP

MPPA Massively Parallel Processor Array

MSB Most Significant Byte

MTU Maximum Transmission Unit

11

MUDPI Multicast UDP Interface

NenuFAR New Extension in Nançay Upgrading LOFAR

NIC Network Interface Controller

NUMA Non-Uniform Memory Access

NVMe Non-Volatile Memory Express

OS Operating System

OS-CFAR Ordered-Statistic CFAR

OSI model Open Systems Interconnection model

PC Pulse Compression

PCI Peripheral Component Interconnect

PCIe PCI Express

PCIe Gen PCIe Generation

PDCA Plan, Do, Act, Check

POSIX Portable Operating System System Interface

PTP Precision Time Protocol

radar RAdio Detection And Ranging

RAM Random Access Memory

RDMA Remote DMA

regex Regular Expression

RFI Radio Frequency Interference

RLE Run-Length Encoding

RoCE RDMA over Converged Ethernet

RTC Real-Time Computer

RTMS Real-Time MUDPI Stream

RX Reception

SCTP Stream Control Transmission Protocol

SDP Science Data Processor

SIMD Single Instruction, Multiple Data

SKA Square Kilometer Array

SM Streaming Multiprocessor

SNR Signal-to-Noise Ratio

SP Signal Processing

SR Single Read

SRP Simple Radar Protocol

12

SSE Streaming SIMD Extensions

SSR Secondary Surveillance Radar

TCP Transmission Control Protocol

TMA Tensor Memory Accelerator

ToS Type of Service

TTL Time To Live

TUI Terminal User Interface

TX Transmission

UDP User Datagram Protocol

UML Unified Modelling Language

USB Universal Serial Bus

vDPA virtio Data Path Acceleration

VLAN Virtual LAN

VLT Very Large Telescope

VPP Video Processing Pipeline

VRX Video RX

WFS WaveFront Sensor

WGMMA WarpGroup MMA

WIP Work-in-Progress

WMMA Warp MMA

XDP eXpress Data Path

Yacc Yet Another Compiler-Compiler

13

Symbols

⌈.⌉ Ceil function

⌊.⌋ Floor function

⌊.⌉ Round to nearest integer

Ja, bK Integer range from a to b, both inclusive

fs Sampling frequency

ℑ(z) Imaginary part of z

ℜ(z) Real part of z

14

Introduction

15

Cyberphysical systems, that can be described as systems interacting with the real world by pro-
cessing data from sensors, surround us more than ever in the present world[1, 65, 28]. Autonomous
vehicles, cellphones, and smart factories are among the most famous and common examples of such
systems. Following Moore’s law, the amount of data received and processed by these systems has
been steadily growing over the last decades, generating many scientific and industrial revolutions
at the same time[62, 7], in order to keep up with this exponential performance growth. In this
thesis, we focused on the case of two extreme cyberphysical systems, featuring some of the largest
data rates and most severe operational constraints in the world: giant astronomical telescopes and
radar systems.

By focusing on these two classes of systems, we identified the start of a new revolution regarding
data acquisition, and an ongoing one with regards to data processing.

A majority of data transfers in cyberphysical systems is based on standard networking protocols,
built upon the Ethernet protocol[45]. For a long time, corresponding data acquisition systems
have been relying on Operating System (OS) features in order to handle interface with the actual
receiving hardware, commonly Network Interface Controllers (NICs), but also in some rarer cases
wireless LAN controllers or baseband devices. However, after decades of performance being limited
by hardware, data acquisition has recently become limited by software, because of the architecture
of current OSes[36]. Complex solutions based on Field-programmable Gate Arrays (FPGAs) have
been designed in order to lift this limitation[52, 53], but recent developments of Smart NIC devices
caused a small revolution in the data acquisition domain. In this thesis, we investigated the use
of such new technology in order to provide a solution for high-performance data acquisition in
cyberphysical systems based on Commercial off-the-shelf (COTS) hardware.

The second, ongoing revolution in the context of High Performance Computing (HPC) is the
progressive adoption of accelerators or co-processors such as GPUs, featuring much denser com-
putational power than the regular Central Processing Units (CPUs)[29]. Starting in the 2000s,
and soaring with the advent of Artificial Intelligence (AI)[5], GPUs feature an massively parallel
architectures, able to process a number of threads of execution three orders of magnitude larger
than with CPUs. This is made possible by greatly simplifying the execution units compared to
a CPU, and enables computational intensities two to three orders of magnitude larger than with
CPUs on appropriate algorithms. Indeed, the parallel architecture and reduced instruction set of
the GPU makes it interesting only for the most repetitive and large scale use cases. This matches
our need in extreme cyberphysical systems, and motivated the use of GPU computing as a means
to process the large data rates acquired in this context.

This thesis is dedicated to providing a better understanding of these two technological revolu-
tions, and promoting their use in every cyberphysical system.

In order to do so, we focused on three main applications: Adaptive Optics, Fast Radio Burst
detection, and radar Signal Processing.

Adaptive Optics (AO) is a technology used in optical systems to correct aberrations caused
by a transmitting medium[15, 58]. The main use of AO is ground-based astronomy, in order
to compensate for the effects of the atmosphere and produce clean images of stars and other
astronomical objects using ground-based telescopes. This is especially key to the discovery of
exoplanets, and the study of these distant worlds. Moreover, this technology has been applied with
similar goals in the medical domain, for retinal imaging[38] and microscopy[42]. In the context of
this thesis, we focused on the use of AO in astronomy.

The principle of AO is to measure aberrations on a wavefront using a WFS, and to use a
deformable mirror to compensate for them. Computations are required between these two stages,
and are performed by a Real-Time Computer (RTC), forming a control loop[58]. Because the effects
of the atmosphere can change very rapidly, this control loop must maintain a very low latency,
typically under 200µs, making it qualified as an extreme cyberphysical system. Since the first
AO systems for astronomy deployed in the late 1980s, WaveFront Sensors have greatly increased
in resolution, and deformable mirrors have gained in number of actuators, making complexity
increasing quadratically. This makes this application a prime candidate for experimenting cutting
edge technologies. Moreover, the AO team of LESIA has been developing GPU-based AO RTCs
for over a decade, and is looking into newer data acquisition methods in order to benefit from the
latest hardware and sensors.

16

A second application considered in the context of this thesis is radio astronomy, and especially
the problem of Fast Radio Burst (FRB) detection in real-time. The study of FRBs is a nascent
research topic in radio astronomy, since the first of these elusive signals was detected in 2007[39].
Since then, a few thousands of these bright, intense, and isolated events have been detected, but
hundreds of them could theoretically be received every day. Limitations for detection of these events
includes Radio Frequency Interference (RFI), mainly caused by human activity, low Signal-to-Noise
Ratio (SNR), and very high memory footprint[19]. Indeed, the signal of FRBs is dispersed during
its propagation through the interstellar medium, and its lower frequency components are received
with a delay compared to higher frequencies. This delay is quadratically inverse to the observation
frequency, and can range from a few milliseconds to multiple hours. Because of this, only a small
portion of the existing FRBs are actually detected. Relative lack of data, especially in the lower
observing frequencies, make them a challenging phenomenon, and their emission mechanism is not
yet understood, even though models have been proposed.

In the context of this thesis, we tried to provide a technical solution to the problem of FRB
detection at lower frequencies, by proposing a real-time FRB detection pipeline for the telescope
NenuFAR. This telescope, built in Nançay, France and extending the European telescope Low-
Frequency Array (LOFAR), is currently one of the most powerful (sensitivity, resolution) in the
very low-frequency range (10–85MHz). It has not detected any FRB at the time of writing,
making it a very interesting challenge. In the current approach used on New Extension in Nançay
Upgrading LOFAR (NenuFAR), large campaigns of observation are made, and data is stored on
disk, after some reduction operations (time integration and Short-time Fourier Transform). The
resulting data is then processed, in hopes of finding FRBs. This approach provides the advantage
of enabling very good observability and reproducibility, but suffers from a huge storage footprint.
This limits greatly the amount of data in which FRBs can be searched. Moreover, time integration
induces a loss of information that can reduce SNR, and as such reduce the probability of detection.

We propose a real-time FRB detection pipeline for NenuFAR, in order to address the limitations
of the current method and increase the probability of detection of these interesting signals. The
proposed pipeline has the dual goal of providing interesting scientific results on NenuFAR, and
additionally to demonstrate the use of the enabling technologies of GPU computing and high
performance networking in the context of radio astronomy. This is motivated by the upcoming
giant radio telescope Square Kilometer Array (SKA), of which NenuFAR is an official pathfinder.

Finally, the third domain of application considered is that of radar systems, where both primary
and secondary radars were considered. Primary radars systems are used for airspace surveillance
without cooperation of aircraft[56]: a signal is sent, and potential aircraft are detected by their
echo to this initial impulsion. No action is required from the detected aircraft, making it possible to
detect any target (planes, missiles, drones, or even rain or birds). Secondary radars, on the contrary,
are used for airspace surveillance with collaborative targets[22], and complement primary radars.
This second type of radar interrogates an aircraft’s transponder, giving various information such
as identification, altitude, or position.

In the context of this thesis, we focused on porting an existing secondary radar Signal Processing
application from CPU to GPU, and on the development of a scaled-up Signal Processing chain
benefiting from GPU acceleration for primary radars, opening great perspectives for future radar
computing systems, as well as linking this pipeline with our high performance data acquisition
system.

In the first part of this thesis, we will present the high performance data acquisition system
based on COTS hardware that was developed throughout this work. We start by explaining its
global architecture in Chapter 1, proceed by presenting how this system was applied to our different
applications in Chapter 2, then list potential future improvements in Chapter 3.

The second part of this thesis is related to GPU computing, and how this cutting-edge tech-
nology was applied in the two major applications of this work. We begin by presenting a set of
common methodologies used throughout this thesis in Chapter 4, then go on with our two ap-
plications: radar systems in Chapter 5 and astronomy, through FRB detection, in Chapter 6.
Finally, we expose the non-trivial connections between these two applications, and the associated
opportunities it creates in Chapter 7, and future improvements for these different GPU computing
applications in Chapter 8.

17

Part I

High-performance data acquisition

18

Introduction

Throughout the last few decades, the maximum networking data rate enabled by Ethernet hard-
ware roughly followed Moore’s law, doubling every two years. Until recently, the main data
rate bottleneck for acquisition interfaces in cyberphysical systems was coming from the hardware,
namely NICs and Ethernet links.

However, during the last decade, with the popularization of 10, 40 and 100GbE hardware, the
bottleneck shifted from hardware to software. Indeed, the commonly used OS networking stacks
suffer from lack of support for asynchronous operations, and introduce some overheads that were
not limiting at lower data rates, but became impactful starting from 10Gbit/s.

In the mean time, computing power available in cyberphysical systems skyrocketed, benefitting
from the rise of AI and new accelerators making it possible, especially GPUs. This new type
of processor unlocked new possibilities in term of computations while keeping costs and energy
consumption low, which made them ubiquitous in modern systems.

In the context of AI, data is commonly stored on disk or in Random Access Memory (RAM),
and accessed quickly. However, in cyberphysical systems, data acquisition can become a strongly
limiting factor, especially in the context of the limitations of common networking stacks mentioned
earlier.

In this part of the thesis, we will present the method we developed to create a very high
performance data acquisition system, acquiring data from an Ethernet network and storing the
acquired data in the GPU’s Dynamic RAM (DRAM). This system was key to many applications
considered in this thesis, and represents a strong contribution that could be reused in many other
cyberphysical systems.

Previous work
Such data acquisition system is not a new need, but comes as the continuation of many systems
that proved to be hardly scalable to newer hardware, namely the combination of ≥10GbE NICs
and GPUs. We will start by giving an overview of related efforts.

Linux kernel networking stack based acquisition
The most significant share of systems relying on high-speed networking are based on the Linux OS,
and as such we will focus on this platform during the rest of this thesis. The current mainstream
solution used to take fully advantage of newer NICs relies on heavy tuning of the Linux kernel[36].
By carefully managing the NIC’s number of Reception (RX) queues, packet sizes and interrupts,
as well as using vectorized packet reception calls and multithreading, it was shown to be possible
to reach 10Gbit/s using only the Linux networking stack.

However, fully dedicating multiple CPU cores to data acquisition is neither scalable nor resource
efficient[35, 34]. Moreover, acquiring data through the Linux networking stack makes it possible
to receive data in host memory, accessible only from CPUs. Because of this, an additional transfer
is required to make GPU computing possible, adding yet another overhead.

Because of its standard aspect, this method has been used in Thales radars since Ethernet was
chosen to transfer data from antennas to Signal Processing (SP) chains. It has also been used
successfully in a number of projects in radio astronomy[66, 21, 64], and others[43, 61, 44].

19

FPGA based acquisition
One alternative to the standard Linux networking stack found to overcome its limitations is the
use of FPGA-based data acquisition systems. Because of their much more flexible nature, FPGAs
have been used to provide similar functionalities to NICs, although with specialized behavior in
order to offload a maximum number of tasks from the Linux kernel to the FPGA itself, enabling
the acquisition of very high data rates[53, 27].

In the case of the Green Flash project1, coordinated by LESIA at Observatoire de Paris for
AO, this was successfully used and deployed, even providing Direct Memory Access (DMA) func-
tionalities to a GPU[53], effectively providing best possible performance.

However such approach is hardly reusable from one project to another, as FPGA IP blocks must
be significantly rewritten for each different protocol supported, and configured for each different
machine architecture. This leads to a very complex maintenance strategy, and the acquisition
system proposed in the context of this thesis aims to provide easier maintenance and portability.

DPDK based acquisition
Another relatively widespread alternative to the Linux networking stack is the Data Plane De-
velopment Kit (DPDK) library. This library makes it possible to replace the Linux kernel for
networking operations and to control directly the NIC’s driver. This has already been used for
various deployed projects, especially in radio astronomy[2, 10, 12], and has been used to receive
bandwidths of several tens of gigabits per second on regular NICs.

However, DPDK was never used in previous applications coupled with GPU, and would still
require in such cases an additional memory copy stage to a GPU, adding an additional overhead.

Interestingly, coincidentally to the thesis, Nvidia introduced in DPDK the possibility to perform
NIC → GPU DMA, effectively lifting the mentioned limitation, with 5G networking as a main
target. This made this state-of-the-art technology a very interesting candidate for implementation
of a high-speed data acquisition system.

Problem statement
Because of existing GPU computing pipelines developed at LESIA, this data acquisition system
needs to store received data in GPU memory, ready to be processed by existing pipelines.

We drew up a list of desirable features in Table 1, as well as the applications it applies to
the most among those considered in this work. Note that even if SKA is a radio telescope, its
dimensions are several orders of magnitude larger than that of NenuFAR, hence some features
were classified as desirable only for SKA, and some for radio telescopes in a more broader sense.

In the following chapters of this part of the thesis, we will describe the data acquisition system
that we designed to best answer these requirements. Then, we proceed by describing how this
system was applied to the multiple domains we considered. Finally, possible future improvements
are discussed.

1https://greenflash-h2020.eu/

20

Feature Description Application
Reliability The system must be able to work during multiple

weeks without any packet loss or other error
All

Maintainability The system must be maintainable during multiple
decades, both in terms of hardware (issue of ac-
cessibility to a specific model) and software (issue
of code complexity, clarity and documentation)

All

Low latency The system must introduce as little latency as
possible

AO+++
radar++

High bandwidth The system must be able to perform the acquisi-
tion of large volumes of data

SKA+++
radar+++
Others

Self-contained The system must work in itself, not relying on a
modification of the whole emission chain we are
acquiring data from

Radio astronomy+++
AO+++
radar+

Scalability The system should be able to scale to larger prob-
lems

All

Reusability The system should be reusable, with the goal
to provide a generic high-level tool for high-
performance data acquisition

All

Energy efficiency The system should be as energy efficient as pos-
sible both for ecological and infrastructure (max-
imum energy consumption and thermal dissipa-
tion) concerns

SKA+++
radar++
Others

Table 1: Feature requirements for data acquisition method

21

Chapter 1

Data acquisition system
description

In this chapter, we explain how we used the DPDK framework in order to design a solution to the
problem described in Section I, and why was this framework used compared to other solutions.

We start by describing the architecture of the resulting data acquisition system, continue by
giving a performance tuning guide for this system in order to obtain the best performance on a
given hardware topology, and finish by expanding on the telemetry method used to inspect and
debug the states of systems built with this data acquisition system.

1.1 Architecture
In this section, we will list the different iterations that were developed before stabilizing our ap-
proach to high-performance data acquisition, as well as the final designs. We will discuss the
advantages of each approach, and show why it is difficult to unify bursted and continuous acqui-
sition schemes.

1.1.1 Experiment configuration
In order to develop, test and benchmark the different approaches developed around high perfor-
mance data acquisition, we developed multiple experiments. Two reasons motivated the existence
of multiple different configurations:

• Privacy policy: Because of the confidential nature of a part of Thales’ activity, many limiting
rules exist regarding network access, code sharing, software installation, etc. As a result,
experiments related to Thales had to be realized on site at Limours, on Thales machines,
and code could not be shared between Thales and the Observatoire de Paris. This lead to a
separate experiment configuration, and a separate codebase.

• Metrics: Latency is challenging to measure as explained in paragraph 2.2.4.1.1. The loopback
configuration makes it much easier to measure latency, while being less realistic.

• Realism: Metrics collection is important, but testing in conditions as close to reality as
possible was another important task in order to remove the possible bias of a simplified
configuration, thus improving confidence in our data acquisition system.

Figure 1.1 presents in more details three major configurations used. The loopback configuration,
where two NICs of the same machine are connected together, enables easier time management and
latency computation, as no specific clock synchronization has to be performed, although care must
be taken in case the hosting machine possesses multiple hardware clocks. The point to point
configuration, where two NICs of different machines are connected, is the most representative of a
real-life system. Finally, the switched loopback configuration is a variant of the simple loopback

22

configuration, featuring more NICs connected through a network switch. This configuration was
especially useful to try and scale up 100GbE to higher bandwidths by distributing acquisition
among multiple NICs. This was additionally a configuration pushing the limits of the PCI Express
(PCIe) bus, because of the full-duplex communication scheme used.

NIC

NIC

(a) Loopback

NIC NIC

(b) Point to Point

NIC
NIC
NIC
NIC

switch

(c) Switched loopback

Figure 1.1: Overview of experiment configurations

1.1.2 Host packet processing, Linux kernel RX
From initial testing using the iperf3 tool and custom code, User Datagram Protocol (UDP) trans-
fer fails to overcome a limit of 4Gbit/s when using standard Linux kernel Application Programming
Interfaces (APIs):

• send / recv: send / receive a single packet

• sendmsg / recvmsg: send / receive a single packet with more control

• sendmmsg / recvmmsg: send / receive multiple packets with same control capabilities as
sendmsg / recvmsg.

Even with the latter option which provides vectorization, and non-blocking sockets, we failed
to achieve more than 10Gbit/s. This is explained by the cost of the Linux context switches[16,
35]: when calling a system call, the current program is paused, and replaced temporarily by the
kernel context, before being resumed. This operation has a significant overhead, and can become
a bottleneck if too frequent.

1.1.3 Host packet processing, DPDK RX
An alternative to the Linux kernel that can be used to reduce the number of context switches and
obtain better performance is userland libraries. As their name suggests, userland libraries execute
code from user space, as opposed to kernel space. The distinction is generally used in contexts
where a library replaces OS functionalities, such as networking in the case considered here, by
functions usable from user space. One of the most widespread such libraries for networking is
DPDK. In this section, we will begin by presenting this library in more details, and describe the
main steps of setting up an acquisition system using it.

1.1.3.1 The Data Plane Development Kit

The DPDK library was first released in 2010 by Intel, and is being developed and maintained as
one of the Linux Foundation Projects.

It provides a de-facto standard interface to NIC drivers, abstracting the many different drivers
available, usually handled by the Linux kernel. As of version 23.07, it supports 58 different net-
working drivers, including 9 meta-drivers. We designate by meta-drivers those controlling virtual
devices, such as a classic Linux kernel socket, files, or shared memory. By writing software with
DPDK, we can target any of these drivers, albeit with a varying level of success, since not all
features of DPDK are supported by every driver[14].

It is worth noting that over time, DPDK accumulated abstractions for hardware other than
NICs: baseband devices, crypto devices, compression devices, virtio Data Path Acceleration

23

(vDPA) devices, Regular Expression (regex) devices, machine learning devices, DMA devices,
GPU devices and NICs supporting an event-driven scheme of operation. This gradually increased
the complexity of the library but makes it suitable for many use cases. However, this choice is de-
batable, since some other abstractions, especially for GPU, may be more popular (see Section 8.1),
resulting in an unnecessary abstraction effort.

1.1.3.2 Typical setup of an acquisition system based on DPDK

The typical skeleton of a DPDK application is given below, using jargon explained in greater depth
in the continuation of the section.

• rte_eal_init: Initialize DPDK

• rte_pktmbuf_mpool_create: Allocate memory pool(s)

• rte_eth_dev_start: Start receiving packets on a NIC

• in a loop rte_eth_rx_burst: Transfer burst of packets from a NIC to a memory pool

• (cleanup): Free memory, close NIC(s), …

1.1.3.2.1 Initialization Every program relying on DPDK must initialize the library early in
the application, through rte_eal_init. This function scans the server it runs on in search for any
device supported by DPDK. Note that the library was primarily designed to scan the PCIe, but
also support the virtual devices presented earlier.

Hugepage availability is checked at this stage too. Indeed, in order to provide best-in-class
performance, DPDK relies on hugepages, a feature of modern OSes used to reduce the time spent
managing virtual memory: using larger memory chunks (the huge pages), less different pages have
to be managed, and operations are faster. DPDK handles this additional complexity automatically
through its custom memory management primitives.

These memory management primitives are generally hidden by another level of abstraction,
the memory pools. These data structures provide a ring of memory zones, allocated once and
managed by DPDK. These memory zones can be acquired and released, in a similar fashion than
when allocating and freeing memory, but without actual additional allocation, and thus with a very
minimal performance impact. Because of this desirable feature, packets in DPDK are transferred
from NIC to memory pool.

More precisely, one memory pool is attached to every RX queue allocated for a NIC. Different
NICs support varying numbers of these RX queues, which makes it possible to receive multiple
different streams of data on the same NIC easily. Note that on lower-end NICs, using multiple
RX queues can also be mandatory in order to reach maximum performance. The best practice
regarding this point is to allocate the preferred number of RX queues suggested by the NIC itself,
that can be accessed through the field default_rxportconf of the rte_eth_dev_info structure.

Once all RX queues have been configured using rte_eth_rx_queue_setup, the NIC can be
started, after which points ingress packets start being received instead of dropped. This is done
with the function rte_eth_dev_start.

The final step of initialization concerns DPDK’s Flow API. This is an advanced mechanism
enabling to take specific actions on ingress and egress traffic, based on a concept similar to P4’s
match-action tables. Indeed, a set of rules is built to filter ingress traffic, and take action in
case of match (enqueue in a specific RX queue, increment a counter, drop the packet, …). This
feature is very powerful, and made it possible to implement robust systems with limited effort.
Indeed, network programming using DPDK implies a full rewrite of the networking stack, which is
a significant task. Using the Flow API, we can discard packets that do not match our rules, which
can at least result in a packet to be dropped, and at best to be redirected to the Linux kernel
for standard processing. This is noticeably the case with Nvidia NICs and the MLX5 driver from
Nvidia (formerly Mellanox), that we used throughout this work.

24

1.1.3.2.2 Main loop The main loop of a data acquisition system based on DPDK with packet
processing on the host can be broken down in four simple steps:

1. Receive packets with rte_eth_rx_burst.

2. Parse headers, and follow the networking protocols

3. (use the received data, e.g. copy to a managed location or process in-place)

4. Cleanup, free the memory associated to the packets received

Note that we put the third step into brackets as it is not a part of the data acquisition system
per se, but is an important part (if not the most) in a real system.

We will proceed by giving important details on these steps. As explained in the previous
paragraph regarding initialization, memory pools are associated with RX queues. When receiving
packets in the first step of the main loop, memory buffers (mbufs) are allocated from the associated
memory pool, and filled with a number of packets. One mbuf contains one packet, plus additional
metadata, most importantly linking to the next mbuf in case of fragmentation. Other metadata is
available, in some cases strongly depending on the specific hardware and driver used, such as for
timestamps.

The second and third steps are dependant on the specific application targeted. In this specific
scheme, the only fixed design is that they are executed by a CPU.

Finally, the last step releases the mbuf acquired at step 1. This memory segment becomes
available again in the memory pool, and acquisition can proceed. If this step is not done, or is
faulty, the rte_eth_rx_burst function fails silently, and does not receive anything. The NIC’s RX
queues fill up, and when full, drop ingress traffic. This packet drop is one way to notice a faulty
acquisition, and can be queried using the rte_eth_stats_get function.

1.1.3.2.3 Final cleanup This step mirrors the first step, and mainly consists in stopping the
NIC and deallocating every allocated memory zone. Note that this step is a best practice and is
strongly encouraged, but most modern OSes should be able to free allocated memory on their own
when a process finishes its execution, and NIC drivers should be able to stop the NIC similarly.

1.1.4 GPU packet processing, DPDK
The second iteration of this acquisition system was designed with the goal to remove the CPU from
the critical path as much as possible. Using recent features introduced by Nvidia specifically for
the MLX5 driver, we were able to setup memory pools resident in GPU memory. By associating
a GPU memory pool instead of a CPU memory pool to an RX queue, ingress traffic is seamlessly
DMA’ed to a GPU. This is also called GPUDirect in the context of Nvidia hardware.

Note that two limitations apply to this approach: it has only been tested on Nvidia hardware,
and requires a special Linux kernel module shipped by Nvidia, nvidia-peermem, in order to func-
tion correctly. This module would most likely need to be rewritten for this method to work on
hardware from other vendors. This is presented in greater details in Section 3.1.

The only other modifications necessary, compared to the previous design, are steps 2 and 3 of
the main loop. Indeed, code used to parse headers and use payloads is executed by a GPU in this
design, and custom code has to be written for this purpose. Parallelizing efficiently these tasks can
be a challenging tasks. Multiple solutions exist, and we mainly considered three options:

1. One thread per packet

2. One warp per packet

3. One block per warp

These different options provide a tradeoff between parallelization and latency. Mapping one
thread per packet is the approach presented in the documentation of this DPDK feature. This is
ideal for parallel header parsing, but we found that it was an issue for payload processing. Indeed,
in the context of our data acquisition system, the most common task was to copy payloads to a

25

reserved, application-managed memory zone, and mapping one thread per packet does not permit
coalesced memory accesses (cf. Section C.3), resulting in great performance loss. Moreover, using
this option, packets must be received in a huge number at a time to use as many threads as possible.

The two remaining options are almost the same, both enabling coalesced memory accesses
during the payload copy. The warp granularity makes it possible to process more packets at a time
per block, while copying more slowly, compared to the block granularity. The warp granularity
is also slightly more efficient, as header parsing is duplicated across a single warp (32 threads),
compared to a whole block (variable size, commonly 256 or 512 threads). However, the block
granularity should provide in theory a slightly lower latency per packet.

One issue is yet to be discussed: as presented in the previous section, the function used to
acquire packets, rte_eth_rx_burst, returns instances of the mbuf structure. Even in the case of
a GPUDirect setup, this structure is resident on the host, and as such cannot be accessed from
the GPU without special care. Moreover, we did not succeed when trying to retro-engineer DPDK
codebase in order to understand from which memory zone these mbufs are allocated. Indeed, when
allocating a GPU memory pool, the GPU memory zone is explicitly allocated, but an additional
memory pool must be allocated implicitly to contain the mbuf structure itself, while the GPU
memory pool only contains raw packets (corresponding to the buf_addr field of the mbuf structure).

Since the memory zone from which these mbuf structures are allocated is not known, it is not
possible to pin it using cudaHostRegister, making it accessible from the GPU through the PCIe.
It is not clear whether hugepages already behave as pinned memory, but in any case, we miss the
information of where this memory zone is.

One workaround found was to manually allocate a pinned memory buffer, and to copy relevant
information from mbufs inside, before accessing from the packet processing GPU kernel.

Another relevant detail is the cost of launching a GPU kernel over and over. Indeed, the average
kernel launch overhead is of the order of 10µs. Because of this, launching the packet processing
kernel for each received packet is out of question, and launching for a burst of packets is not ideal.
Indeed, the overhead per packet is of 10 µs

number of packets , and at 100Gbit/s, one packet is received each
0.72µs. Because of this, a lower bound for the burst size at 100Gbit/s is at 14 packets. Naturally,
the actual computation time needed to process packets also has to be considered on top of this
lower bound.

In order to remove completely this concern, we actually used a persistent kernel. Persistent
kernels are a class of Compute Unified Device Architecture (CUDA) kernel that run a main loop
by themselves, without being relaunched by the host. This comes with the advantage of providing
minimum latency and no overhead, but requires more complex and handcrafted synchronization
mechanisms, that make this approach less maintainable.

1.1.5 GPU packet processing, DPDK gpudev
Fortunately, during the course of this work, a new component was added in DPDK: the gpudev
library. This library adds support for GPU devices in DPDK, however it is only supported on
Nvidia hardware through the CUDA driver as of DPDK 23.07.

In particular, this library adds a de facto standard way to implement the persistent packet
processing kernel introduced in the previous section. To do so, the library provides a structure
called a communication list, that makes the transfer of relevant fields of mbufs easier. Additionally,
it provides flags used for manual CPU-GPU synchronization. All of these features made it possible
to develop a maintainable, rather standard high-performance acquisition system.

Figure 1.2 gives a representation of this final acquisition system design, relying on a persistent
packet processing kernel and GPUDirect, as a Unified Modelling Language (UML) activity diagram.

1.1.6 Packet processing persistent kernel design
The general steps of the packet processing kernel followed generally this progression:

• Poll communication list for a new burst of packets

• Iterate over packets of the communication list

26

Initialize

CPU GPU

Receive packets

Process packets

[stop]

[Next comm list
element is READY]

Free packets

[Last comm list element is DONE]

[stop]

Fill next comm
list element

[Received enough packets]

Set last comm list
element to DONE

Figure 1.2: Acquisition system activity diagram. The communication list is a ring buffer, enabling
CPU-GPU communication. Packet bursts are freed in an asynchronous fashion, unless the com-
munication list is full, which can happen with a burst size too small.

– Parse headers
– Copy payload

• Notify through communication list that the burst has been processed

However, many important parameters of this kernel (complexity, duration, thread mapping)
have to be tailored for each specific application. Because of this, the major part of this kernel
has to be rewritten for each different application and protocol, reducing portability and increasing
development time.

1.2 Performance tuning
Even with such architecture, and probably partly because it is elaborate and designed at low-level,
special care must be taken before deploying on a real system. Various performance tuning tips are
given in this section, making it possible to reach the maximum performance of the hardware.

27

80 Gbit/s 2 Gbit/s

40 Gbit/s

Figure 1.3: Maximum PCIe bandwidth on moksha along different routes. The shortest route
features the best performance. moksha uses PCIe Generation (PCIe Gen) 3.0, making it more
difficult to reach 100Gbit/s.

1.2.1 PCIe topology
The PCIe network’s performance is highly dependent on its topology[46]. In order to obtain
maximum performance, two PCIe devices must be as close as possible in the topology. This was
revealed in the first benchmarks we deployed, on a DGX-1 server, as shown on Figure 1.3. This
specific experiment was made using a point to point configuration between two different servers,
as represented on Figure 1.1b.

1.2.2 PCIe usage
Another factor that impacts the PCIe maximum bandwidth for a DMA is bus contention. Indeed,
the PCIe bus is limited in terms of transfers per second (T/s). Consequently, small, repeated
transactions, such as polling a flag can be strongly detrimental, and interfere strongly with critical
transfers.

This has been observed on the first designs using the gpudev library, and GPU-side packet
processing. A simple stop flag, used to control the execution of the persistent kernel described in
Section 1.1.6, polled from the GPU but resident in host memory, reduced the maximum bandwidth
from 100Gbit/s to 4Gbit/s. Note that for this first design, the GPU was polling as fast as possible,
effectively flooding the PCIe under transfer requests.

Two solutions were devised to address issues of this kind. Figure 1.4 summarizes theses ap-
proaches, detailed more precisely in the next two subsections.

1.2.2.1 Reasonable transaction intensity

By adding sleeps of a few hundreds of microseconds in the busy waiting loop, it is possible to solve
this problem almost entirely. A small overhead remains, inversely proportional to the sleep delay
chosen, and forms a tradeoff between maximum bandwidth and maximum latency.

This approach is efficient and simple, but is not optimal, because of the aforementioned tradeoff.

28

	Acknowledgements
	Abstract
	Résumé
	Glossary
	Abbreviations
	Symbols
	Introduction
	I High-performance data acquisition
	Introduction
	Previous work
	Problem statement

	Data acquisition system description
	Architecture
	Experiment configuration
	host packet processing, Linux kernel RX
	host packet processing, DPDK RX
	GPU packet processing, DPDK
	GPU packet processing, DPDK gpudev
	Packet processing persistent kernel design

	Performance tuning
	PCIe topology
	PCIe usage
	NUMA effects
	Burst size

	Telemetry
	Data dumping
	Pipeline control and monitoring

	Applications
	Common network protocols
	Endianness
	Ethernet
	IPv4
	UDP
	Note on alignment

	Adaptive Optics
	ESO network protocols
	ELT-MICADO
	VLT-MAVIS
	Results

	Radio astronomy
	BIGCAT
	NenuFAR

	radar
	Protocol
	Acquisition system
	Results

	Future work
	Portability
	Other NIC + Nvidia GPU
	Nvidia NIC + other GPU
	Other NIC + other GPU

	Alternatives to DPDK
	 DPU
	 GPUNetIO
	Newer functionalities
	RDMA

	Encapsulation in a high-level component

	Conclusion

	II High-performance GPU computing
	Introduction
	Methodology
	CUDA kernel optimization
	Benchmarking with many degrees of freedom
	Mathematical models
	GPU saturation
	Uncertainty

	radar
	Porting an existing CPU-based radar SP
	A secondary radar
	Existing SP implementation
	Implementation
	Results
	Future work / Lessons learned

	Primary radar
	Classical primary radar SP
	Increasing the number of hypotheses
	Implementation: ConvSP
	PC implementation
	DF implementation
	LogMod
	CFARs
	Full pipeline
	Kernel fusion
	Future work

	FRB detection on NenuFAR
	Interesting connections between radar and radioastronomy
	Beamforming
	Feature extraction
	Adaptive thresholding

	Future work
	Alternatives to CUDA
	OpenCL
	ROCm / HIP
	SYCL
	Others
	Going to a higher level

	Multi-GPU, multi-node systems
	COSMIC framework

	Conclusion

	Conclusion
	Code availability
	Papers
	Parset file
	Details on GPU architecture
	GPU memory subunits
	global memory
	local memory
	shared memory
	constant memory
	texture memory
	surface memory
	Other

	Compute Capability
	Coalesced memory accesses

