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ABSTRACT

Mental health and emotional well-being have significant influence on
physical health, and are especially important for healthy aging. Continued
progress on sensors and microelectronics has provided a number of new
technologies that can be deployed in homes and used to monitor health
and well-being. These can be combined with recent advances in machine
learning to provide services that enhance the physical and emotional well-
being of individuals to promote healthy aging. In this context, an automatic
emotion recognition system can provide a tool to help assure the emotional
well-being of frail people. Therefore, it is desirable to develop a technology
that can draw information about human emotions from multiple sensor
modalities and can be trained without the need for large labeled training
datasets.

This thesis addresses the problem of emotion recognition using the dif-
ferent types of signals that a smart environment may provide, such as visual,
audio, and physiological signals. To do this, we develop different models
based on the Transformer architecture, which has useful characteristics such
as their capacity to model long-range dependencies, as well as their capabil-
ity to discern the relevant parts of the input. We first propose a model to
recognize emotions from individual physiological signals. We propose a self-
supervised pre-training technique that uses unlabeled physiological signals,
showing that that pre-training technique helps the model to perform better.
This approach is then extended to take advantage of the complementarity
of information that may exist in different physiological signals. For this,
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ABSTRACT

we develop a model that combines different physiological signals and also
uses self-supervised pre-training to improve its performance. We propose a
method for pre-training that does not require a dataset with the complete
set of target signals, but can rather, be trained on individual datasets from
each target signal.

To further take advantage of the different modalities that a smart environ-
ment may provide, we also propose a model that uses as inputs multimodal
signals such as video, audio, and physiological signals. Since these signals
are of a different nature, they cover different ways in which emotions are
expressed, thus they should provide complementary information concerning
emotions, and therefore it is appealing to use them together. However, in
real-world scenarios, there might be cases where a modality is missing. Our
model is flexible enough to continue working when a modality is missing,
albeit with a reduction in its performance. To address this problem, we
propose a training strategy that reduces the drop in performance when a
modality is missing.

The methods developed in this thesis are evaluated using several datasets,
obtaining results that demonstrate the effectiveness of our approach to pre-
train Transformers to recognize emotions from physiological signals. The
results also show the efficacy of our Transformer-based solution to aggregate
multimodal information, and to accommodate missing modalities. These
results demonstrate the feasibility of the proposed approaches to recognizing
emotions from multiple environmental sensors. This opens new avenues
for deeper exploration of using Transformer-based approaches to process
information from environmental sensors and allows the development of
emotion recognition technologies robust to missing modalities. The results
of this work can contribute to better care for the mental health of frail
people.

Keywords Transformers, Emotion Recognition, Self-Supervised Learning,
Pre-Training, Machine Learning.
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RÉSUMÉ

La santé mentale et le bien-être émotionnel ont une influence signi-
ficative sur la santé physique, et sont particulièrement importants pour
un viellissement en bonne santé. Les avancées continues dans le domaine
des capteurs et de la microélectronique en général ont permis l’avènement
de nouvelles technologies pouvant être déployées dans les maisons pour
surveiller la santé et le bien-être des occupants. Ces technologies de cap-
tation peuvent être combinées aux avancées récentes sur l’apprentissage
automatique pour proposer des services utiles pour vieillir en bonne santé.
Dans ce cadre, un système de reconnaissance automatique d’émotions peut
être un outil s’assurant du bien-être de personnes fragiles. Dès lors, il est
intéressant de développer un système pouvant déduire des informations
sur les émotions humaines à partir de modalités de captation multiples, et
pouvant être entrainé sans requérir de larges jeux de données labellisées
d’apprentissage.

Cette thèse aborde le problème de la reconnaissance d’émotions à partir
de différents types de signaux qu’un environnement intelligent peut capter,
tels que des signaux visuels, audios, et physiologiques. Pour ce faire, nous dé-
veloppons différents modèles basés sur l’architecture Transformer, possédant
des caractéristiques utiles à nos besoins comme la capacité à modéliser des
dépendances longues et à sélectionner les parties importantes des signaux
entrants. Nous proposons en premier lieu un modèle pour reconnaitre les
émotions à partir de signaux physiologiques individuels. Nous proposons
une technique de pré-apprentissage auto-supervisé utilisant des données
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physiologiques non-labellisées, qui améliore les performances du modèle.
Cette approche est ensuite étendue pour exploiter la complémentarité de
différents types de signaux physiologiques. Nous développons un modèle
qui combine ces différents signaux physiologiques, et qui exploite également
le pré-apprentissage auto-supervisé. Nous proposons une méthode de pré-
apprentissage qui ne nécessite pas un jeu de données unique contenant tous
les types de signaux utilisés, pouvant au contraire être pré-entrainé avec des
jeux de données différents pour chaque type de signal.

Pour tirer parti des différentes modalités qu’un environnement connecté
peut offrir, nous proposons un modèle multimodal exploitant des signaux
vidéos, audios, et physiologiques. Ces signaux étant de natures différentes,
ils capturent des modes distincts d’expression des émotions, qui peuvent
être complémentaires et qu’il est donc intéressant d’exploiter simultanément.
Cependant, dans des situations d’usage réelles, il se peut que certaines de ces
modalités soient manquantes. Notre modèle est suffisamment flexible pour
continuer à fonctionner lorsqu’une modalité est manquante, mais sera moins
performant. Nous proposons alors une stratégie d’apprentissage permettant
de réduire ces baisses de performances lorsqu’une modalité est manquante.

Les méthodes développées dans cette thèse sont évaluées sur plusieurs
jeux de données. Les résultats obtenus montrent que nos approches de Trans-
former pré-entrainé sont performantes pour reconnaitre les émotions à partir
de signaux physiologiques. Nos résultats mettent également en lumière les
capacités de notre solution à aggréger différents signaux multimodaux, et
à s’adapter à l’absence de l’un d’entre eux. Ces résultats montrent que les
appproches proposées sont adaptées pour reconnaitre les émotions à partir
de multiples capteurs de l’environnment. Nos travaux ouvrent de nouvelles
pistes de recherche sur l’utilisation des Transformers pour traiter les infor-
mations de capteurs d’environnements intelligents et sur la reconnaissance
d’émotions robuste dans les cas où des modalités sont manquantes. Les
résultats de ces travaux peuvent contribuer à améliorer l’attention apportée
à la santé mentale des personnes fragiles.

Mots-clés Transformers, reconnaissance d’émotions, apprentissage auto-
supervisé, pré-apprentissage, apprentissage automatique.
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CHAPTER 1

INTRODUCTION

Mental health plays an important role in having a healthy life. According
to the World Health Organization (WHO), mental health is “a state of mental
well-being that enables people to cope with the stresses of life, realize their
abilities, learn well and work well, and contribute to their community”
[203]. The WHO also states that mental health is an integral component of
health, and it is a basic human right.

An important part of mental health is emotional wellness. Braun and
Kloss [27] say the following about emotional wellness:

“Emotional wellness is when a person’s belief of what they are
feeling becomes realized into physical manifestations of that
belief. For example, feeling encouraged and supported produces
positive endorphins... Alternatively, when a person is feeling
stressed or overwhelmed, they ostracize or isolate themselves...
Often, physical manifestations are associated with poor emo-
tional wellness. Blood pressure problems, heart conditions, and
general exhaustion are some common symptoms.”
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1. Introduction

Mental health and emotional well-being have significant influence on
physical health, and are especially important for healthy aging. Although
mental and emotional health problems affect people from all age ranges,
as the world population ages it is becoming increasingly important to pay
attention to the mental health of elderly and frail people, especially if these
people are living alone. Continued progress in sensors and microelectronics
has provided a number of new technologies that can be deployed in homes
and used to monitor health and well-being. These can be combined with
recent advances in machine learning to provide services that enhance the
physical and emotional well-being of individuals.

In this thesis, we aim to develop methods that can be helpful for the
general task of preserving the mental and emotional well-being of frail
people. To understand better how we do this, it is important to define how
we interpret the terms affect, emotion, and mood, especially because there is
no consensus in their definition [7].

— Affect: is a term that covers various feelings that individuals can
undergo, encompassing both emotions and moods.

— Emotion: is a strong short-term feeling usually directed towards a
stimulus. Emotions frequently manifest through corporal and facial
expressions and bodily responses.

— Mood: is a mental state milder in intensity than an emotion, which
does not necessarily require a specific trigger. Moreover, moods persist
for an extended period compared to emotions, lasting from hours to
days.

If unattended, negative emotions can turn into negative moods. For
this reason, it is important to detect negative emotions before they become
more permanent negative feelings. With this, the goal of this thesis is to
develop methods for automatically detecting the emotional state of a person.
Specifically, we are interested in recognizing if the person is experiencing
a positive or negative emotion, and how intense the emotion is. We do
not aim to build a system that provides a comprehensive diagnosis and
treatment of mental and emotional health issues of a person. Instead,
the methods presented in this thesis are intended as a part of a global
health system, where other participants like caregivers, family, and maybe
additional computerized systems, monitor, diagnose, treat, and help the
person.
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1.1 Frail People, Emotional Wellness, Smart En-
vironments

We believe that a system capable of recognizing the emotional state of
a person can be useful for accommodating the increasing frailty of aging
people living alone. As defined by Sicsic et al. [174], frailty is a “geriatric
syndrome resulting from age-related cumulative declines across multiple
physiologic systems, with reduced capacity of the organism to withstand
stress, thus increasing vulnerability to adverse health outcomes including
falls, hospitalization, institutionalization, and mortality”. Thus, it can be
seen that frail people are particularly exposed to the consequences of poor
emotional health.

Moreover, the world population is aging. In fact, according to the WHO
[204], between 2015 and 2050 the population of older adults is projected to
increase from approximately 12% to 22%, which corresponds to an increase
from 900 million to 2 billion people older than 60. In addition to this, an
important percentage of older people are living alone. For instance, in 2018
in the 27 countries of the European Union, there were 40.2% of women and
21.8% of men aged 65 or more that were living alone [63].

Under this scenario, it could be helpful for a frail person living alone
to live in a smart environment, which Kaswan et al. [101] define as an
ecosystem equipped with communicating smart objects that could gather
information through different sensors and provide services according to
the user’s needs. Some examples of smart objects in a smart environment
include improved traditional appliances, such as refrigerators that monitor
and display contents, and order new foodstuff when needed; smart speakers
that can provide interactive access to information and media over the
internet; and smart wearables, including smartwatches, that can monitor
health while providing hand-free mobile access to communications and
services. In a smart environment, such objects can be made to work together
to provide services to the user [45].

Smart objects can provide a rich ensemble of information about individu-
als and their environments. For example, there might be sensors to measure
temperature, air quality and other ambient variables. The environment
can also be equipped with wearables fitted with accelerometers to detect
the movements of the user [43], and these wearables might be fitted with
sensors that can gather physiological signals. Audio and video might be
captured through the interaction with a smart assistant. Such data can
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1. Introduction

be combined and interpreted to provide a rich source of information for
services to enhance quality of life. Machine learning provides the enabling
technology for such services.

1.1.1 The Usefulness of Emotion Recognition Systems

We now exemplify how it can be helpful for a frail person to live in a
smart environment that has the capacity to recognize emotions when he
or she has affective struggles. In this case, the person could be using a
wearable that monitors his or her physiological signals, for example, cardiac
signals. Through these signals, it can be recognized that the person is not
feeling well mentally, perhaps detecting a repetitive negative emotion of
high intensity. The smart environment may decide to act [150], initializing
an interaction through a camera-equipped smart assistant. Through the
audio and video captured by the assistant, the emotion that the person is
feeling at that moment can be detected, and this information can be used by
the system to further assess his or her affective state. With this assessment,
the system can evaluate the next actions. For example, if the affective
struggle is not very serious, the system may suggest to the person that he or
she should do an activity like taking a walk or doing relaxation exercises.
Or maybe the system realizes that help is needed, and communicates the
situation to a family member or a caregiver, so they can take any necessary
action.

From the previous example, it can be observed that an important com-
ponent of the described system is being able to recognize the emotional
state of the person. In other words, it is necessary to detect how intense it
is the emotion that this person is feeling, and how positive or negative this
emotion is. Also, note that the smart environment may provide different
types of signals, and being capable of processing these different signals to
recognize emotions can be advantageous as the information that each type
provides might be complementary. Moreover, these sources may not all be
available, for example, the user may decide not to activate the camera of the
assistant. Therefore, it is desirable that a system that recognizes emotions
from different types of signals could keep working when one type of signal
is missing.

1.1.2 Practical Considerations for Emotion Recognition

For an emotion recognition system to work inside a system that monitors
the global health of a person, it is necessary that this emotion recognition
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system works accurately and reliably, which is a challenging problem. Some
difficulties are that emotions are subjective feelings, emotions may vary
across cultures [119], collecting data related to emotions is difficult [62],
bodily response to emotions may vary across individuals [81], and emotions
are expressed through different modalities [44], so fusing their information
could be necessary. Through this work, we aim to address some of these
difficulties and improve the accuracy and reliability of emotion recognition
systems, so they can be used as part of a global health system that enhances
the care given to frail people.

To summarize this section, we believe that being capable of taking
advantage of the signals that a smart environment may provide to perform
emotion recognition accurately and reliably is an important problem, that
could be especially helpful for frail people living alone. This is why in this
thesis we are interested in developing emotion recognition algorithms using
different types of input signals, and we also are interested in addressing the
problem that sometimes some signals may not be available. Even with the
difficulties of gathering data related to emotions, training data is becoming
more available, and thus our algorithms are based on Machine Learning
(ML), or more specifically, on Deep Learning (DL).

1.2 Contributions of this Thesis

In this thesis, we propose four contributions:

Self-Supervised Learning for Emotion Recognition with Physiological
Signals: We propose a method to recognize emotions from single physio-
logical signals, developing a self-supervised technique to pre-train the model
to overcome the difficulty that labeled data with labels of emotion is not
abundant. The pre-training technique uses unlabeled physiological data,
thus it takes advantage of datasets that contain physiological data that have
not necessarily been collected for emotion recognition tasks. We argue that
using this pre-training technique should improve the accuracy of the model.
We evaluate our approach on state-of-the-art datasets. This contribution
was published and presented at a peer-reviewed conference as the paper:

Juan Vazquez-Rodriguez, Grégoire Lefebvre, Julien Cumin and James L.
Crowley, “Transformer-Based Self-Supervised Learning for Emotion Recogni-
tion”. In 26th International Conference on Pattern Recognition (ICPR), 2022,
pp. 2605-2612.

Emotion Recognition from Multiple Physiological Signals: We ex-
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tend the contribution described in the previous paragraph and we propose
an approach to recognize emotions from multiple physiological signals.
This approach uses a self-supervised pre-training technique in which each
dataset in the pre-training dataset collection does not need to contain all
the concerned physiological signals, but instead different datasets cover one
physiological signal each. This is advantageous since finding or collecting
datasets that contain all relevant physiological signals is more difficult than
obtaining multiple single-signal datasets, even if these datasets do not need
to be labeled. We evaluate the accuracy of our approach on state-of-the-art
datasets. This contribution was published and presented at a peer-reviewed
conference as the paper:

Juan Vazquez-Rodriguez, Grégoire Lefebvre, Julien Cumin and James
L. Crowley, “Emotion Recognition with Pre-Trained Transformers Using
Multimodal Signals”. In 10th International Conference on Affective Computing
and Intelligent Interaction (ACII), 2022, pp. 1-8.

Multimodal Time-Continuous Emotion Recognition: We propose a
method to perform time-continuous emotion recognition using multimodal
inputs. Our method uses attention mechanisms to aggregate information
from the different modalities, and auto-regression to take past predictions
into account. We argue that these techniques should be helpful in improving
the accuracy of the model. We test our approach on a state-of-the-art
dataset. This contribution was part of a paper published and presented at a
peer-reviewed conference as:

Juan Vazquez-Rodriguez, Grégoire Lefebvre, Julien Cumin and James
L. Crowley, “Accommodating Missing Modalities in Time-Continuous Multi-
modal Emotion Recognition”. In 11th International Conference on Affective
Computing and Intelligent Interaction (ACII), 2023.

Accommodating Missing Modalities in Multimodal Emotion Recog-
nition: We propose an approach capable of performing time-continuous
multimodal emotion recognition that is robust to missing modalities. For
this, we show that an attention-based model is well adapted for this case,
and we also show that the robustness of the model to missing modalities can
be improved through a novel training technique. We run several experiments
to evaluate our approach on a state-of-the-art dataset. This contribution
was published and presented at a peer-reviewed conference, as part of the
paper mentioned above.
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1.3 Thesis Overview

This manuscript reviews the overall scientific context for our contri-
butions, followed by a presentation of the technological approach, imple-
mentation, and experimental evaluation of each contribution, moving from
interpretation of sensor information from an individual sensor, combining
information from multiple sensors, using this to provide a time continuous
multimodal emotion recognition, and describing how our approach can
overcome a partial absence of information from individual sensors.

Chapter 2 presents various concepts necessary to address the overall
problem of emotion recognition. We provide a review of emotions as
studied in the field of Psychology, talking about the definition of emotion,
how it can be represented, and the sensing modalities that can be used
to capture emotions. We also define what emotion recognition is, and
the elements of an emotion recognition system. In addition, we discuss
general computing approaches to build an automatic emotion recognition
system and review the Transformer architecture[196] in particular, which
constitutes the backbone of the approaches developed in this thesis. Finally,
we discuss different datasets available for the task of emotion recognition,
identifying the datasets used in this thesis to evaluate our contributions.

Chapter 3 presents our contribution to the problem of emotion recog-
nition from a single physiological signal. We start this chapter by giving
a definition of the problem being addressed, identifying the challenges
associated with solving that problem, and the motivations for why we set
up the problem the way we did. After this, we perform a survey of re-
lated state-of-the-art contributions. We continue the chapter by introducing
our contribution regarding emotion recognition from physiological signals,
detailing how we address the different challenges that emerge when address-
ing this problem. In particular, we give details about our Transformer-based
architecture, and we also show how we pre-train that architecture in a
self-supervised manner, taking advantage of unlabeled data that is typically
more available than labeled data. We end the chapter by showing the eval-
uation of our approach, which was done by running multiple experiments
using AMIGOS [135] and DREAMER [102] datasets, and then we draw
conclusions from these experiments.

Chapter 4 presents our contribution related to using multiple physio-
logical signals to perform emotion recognition. At the beginning of this
chapter, we define the problem addressed, identifying as one of the main
challenges that the size of available labeled data that contains multiple
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physiological signals is limited. We then review the state-of-the-art literature
that addresses the task of recognizing emotions from multiple physiological
signals. Next, we present our contribution, explaining how we pre-train
our proposed Transformer-based model capable of processing multimodal
physiological signals, to address the challenge identified at the beginning
of the chapter. More specifically, we describe a pre-training strategy that
allows the use of unlabeled datasets that do not need to contain all the
concerned physiological signals at the same time, but instead uses different
datasets each containing one of the concerned signals. Finally, we evaluate
our approach by running multiple experiments using AMIGOS [135] and
DREAMER [102] datasets.

Chapter 5 presents our contribution to the problem of time-continuous
multimodal emotion recognition. After providing a definition of the problem
addressed in the chapter and explaining the associated challenges, we
provide a literature review of the related state-of-the-art contributions. We
then present our approach to perform time-continuous multimodal emotion
recognition, detailing how we use the attention layers of a Transformer
to aggregate the information from the different modalities, and use auto-
regression to take into account past predictions. We end the chapter showing
different experimental results obtained to test our approach, using the Ulm-
Trier Social Stress Test (ULM-TSST) dataset [180].

Chapter 6 presents our contribution to the problem of accommodating
missing modalities when performing multimodal emotion recognition. We
start this chapter by giving the motivations of why it is pertinent to handle
missing modalities in this case. After this, we present relevant state-of-the-
art contributions that also address the problem of missing modalities. Next,
we detail our approach to accommodating missing modalities in multimodal
emotion recognition. We show that our Transformer-based model can han-
dle missing modalities without any architectural change, albeit with some
drop in performance. We also describe our training technique designed to
make the model more robust to missing modalities, alleviating the problem
of performance drop when a modality is missing. Finally, we show experi-
mental results when evaluating our approach with the ULM-TSST dataset
[180].

Chapter 7 concludes this thesis, providing a summary of our contribu-
tions, and discussing the limitations of our approaches. We also examine
some perspectives that emerge from our work, and discuss the potential for
ethical misuse and the need for clear ethical guidelines for applications that
deal with emotions.
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CHAPTER 2

BACKGROUND ON EMOTION RECOGNITION

In this chapter, various concepts and definitions necessary to better un-
derstand this thesis are explained. There are four different subjects that are
covered, starting in Section 2.1 with some background information about
emotions, discussing their definition, and how they can be detected and
measured. Then, Section 2.2 provides a definition of emotion recognition
and describes how an emotion recognition system might be designed. After
this, Section 2.3, describes the Transformer [196], an architecture that
constitutes the backbone of the different approaches that are presented
in this thesis. Finally, Section 2.4 provides an overview of datasets em-
ployed for emotion recognition, identifying the datasets used to evaluate
our approaches.

2.1 Emotions

The measurement, and even the definition, of human emotions remains
a controversial subject. A reflection of this is the statement of Fehr and
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Russell [67] that says: “Everyone knows what an emotion is, until asked to
give a definition. Then it seems, no one knows”. In an attempt to find a
definition, Kleinginna and Kleinginna [108] analyzed nearly one-hundred
definitions of emotions, and found that they can be classified into eleven
categories, based on what they emphasize more. For example, they found
that some definitions placed emphasis on feelings of excitement/depression
or pleasure/displeasure, others placed emphasis on appraisal processes,
some others emphasized the physiological mechanism of emotions, oth-
ers emphasized emotional and expressive behavior, and other definitions
placed emphasis on the functional aspects of emotions. From this analysis,
Kleinginna and Kleinginna [108] came up with the following definition:

“Emotion is a complex set of interactions among subjective and
objective factors, mediated by neural hormonal systems, which can
(a) give rise to affective experiences such as feelings of arousal,
pleasure/displeasure; (b) generate cognitive processes such as emo-
tionally relevant perceptual effects, appraisals, labeling processes;
(c) activate widespread physiological adjustments to the arousing
conditions; and (d) lead to behavior that is often, but not always,
expressive, goal-directed, and adaptive.”

Although it is difficult to come up with a universal definition of emotion,
it can be seen from the work of Kleinginna and Kleinginna [108] that
in general, the definitions of emotions involve concepts such as feelings,
arousal, pleasure/displeasure, cognitive process, appraisal, physiological
responses, and behavior.

2.1.1 Theories of Emotion

There is no general consensus around the internal mechanisms of how an
emotion is generated. James [97] and Lange [116] proposed an early theory
of emotion, known as the James-Lange theory, that states that emotions are
the sensation of bodily changes. James stated that “My theory ... is that the
bodily changes follow directly the perception of the exciting fact, and that
our feeling of the same changes as they occur IS the emotion”.

In contrast to the James-Lange theory, Cannon [33] and Bard [19]
presented a theory that states that emotions are generated by a stimulus
that is processed by the central nervous system, and physiological reactions
are not considered as a cause for emotion elicitation.

A third point of view regarding emotions is the appraisal theory of emo-
tions, which states that an emotion is produced after a cognitive evaluation
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of a stimulus (see Scherer and Moore [166]). In this case, the resulting
emotion is an outcome of the personal judgment, or appraisal, of an event.
This theory explains why people experiencing the same stimulus, watching a
moving video for example, will not necessarily experience the same emotion.

Another important aspect of the theory of emotions is the discussion
about their universality. According to Kuang et al. [113], “emotion univer-
sality theories assume that emotions are innate and universal, independently
of human’s acknowledgment of them, and that all humans have the capacity
to experience and perceive the same core set of emotion categories”. Some
works in this direction are the works Ekman [55], and Ekman and Friesen
[58], who defend that facial expressions of emotion are universal. On the
other hand, other authors like Barret [20] and Lindquist et al. [124] af-
firm that emotions are shaped by societal influences and past experiences,
challenging the notion of the universality of emotions.

To summarize, diverse theories have been proposed to explain the mech-
anism behind emotions, and there is no agreement in the scientific com-
munity about how these mechanisms work. However, it can be noted that
the presented theories agree that emotions are triggered by a stimulus, and
the body displays a reaction associated with the perceived emotion. With
these ideas, we continue reviewing emotions by describing how they can be
represented.

2.1.2 Emotion Representation

Emotions may be represented by qualitative descriptors that describe how
a person feels. Intuitively, a representation of emotion is a word like “happy”,
or saying something like “In a scale from 1 to 10 describing how positive
is the emotion I am feeling, I feel 8”. In fact, these intuitions are the basis
of the two main ways of representing emotions: discrete representations
and continuous representations. These types of representations are well
grounded in models of emotions that come from psychological theories,
which are described below.

2.1.2.1 Discrete Representation: Basic Emotion Theory

According to the basic emotion theory, there is a limited number of core
or basic emotions, under the assumption that there is a strong agreement
in the manner that people express and perceive emotions. They are called
discrete because they are distinguishable from one another. One of the most
notable proponents of this theory is Paul Ekman [57].
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Common examples of discrete emotions include: happiness, fear, dis-
gust, anger, sadness, and surprise, which were used by Ekman et al. in
[54]. Nonetheless, researchers do not agree on what constitutes a basic
emotion. For instance, Izard [96] lists as basic emotions the following: guilt,
shame, contempt, joy, interest-excitement, surprise, distress-anguish, anger,
disgust, and fear. In [57], Ekman argued that in order for an emotion to be
considered basic, it has to have the following characteristics

1. Distinctive universal signals
2. Distinctive physiology
3. Automatic appraisal
4. Distinctive universals in an-

tecedent events
5. Distinctive appearance develop-

mentally
6. Presence in other primates

7. Quick onset

8. Brief duration

9. Unbidden occurrence

10. Distinctive thoughts, memories
images

11. Distinctive subjective experi-
ence

Using those characteristics, Ekman [57] proposes the following list of
basic emotions: amusement, anger, contempt, contentment, disgust, embar-
rassment, excitement, fear, guilt, pride in achievement, relief, sadness/dis-
tress, satisfaction, sensory pleasure, and shame.

Plutchik [148] proposed the Wheel of Emotions as a way to represent
emotions. Plutchik’s model, uses 8 basic emotions (joy, trust, fear, surprise,
sadness, disgust, anger, and anticipation), mapping them to 3 levels of
intensity, as shown in Figure 2.1a. In this model, opposite emotions are
placed on opposite sides of the graph; for example, joy is the opposite
of sadness. Moreover, the combination of two basic emotions produces a
complex emotion, like the combination of joy and anticipation produces
optimism and the combination of fear and sadness produces despair (not
shown in the graph). This way, the basic set of 8 emotions is complemented
with 28 more complex variations, better representing the complexity of
human emotions.

Cambria et al. [32] reinterprets the Plutchik model arranging primary
emotions into four interrelated yet independent dimensions: pleasantness,
attention, sensitivity, and aptitude. This model, known as the Hourglass
Model, is depicted in Figure 2.1b. Cambria et al. [32] argue that the
transition between different emotional states is not linear, thus they model
this variation with a negative Gaussian function that gives the model its
hourglass shape. Each of the 4 dimensions is divided into 6 levels of
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(a) Wheel of Emotions (public domain figure).
(b) The Hourglass of Emotions. (Figure fromCambria et al. [32]).

Figure 2.1 – The Wheel of Emotions (Plutchik [148]) and the Hourglass of Emotions(Cambria et al. [32]).
intensity, producing 24 basic emotions. Similarly to Plutchik’s model [148],
the combination of fundamental emotions produces more complex emotions,
for example, the combination of joy and trust produces love.

The advantage of using discrete emotions as a representation of emo-
tional feeling is that it allows the use of common language to describe
emotions, facilitating their understanding. However, one may argue that it
may not be enough to use a limited set of words to represent an emotion, as
discrete emotions may not cover the entire spectrum of feelings. Therefore,
other ways of representation have been developed, which are presented
below.

2.1.2.2 Continuous Representation: Dimensional Models

According to Ekman [57], proponents of the basic emotion theory main-
tain that “there are a number of separate emotions, that differ one from
another in important ways”. Ekman [57] also states that this perspective “is
in contrast to those who treat emotions as fundamentally the same, differing

13



2. Background on Emotion Recognition

Figure 2.2 – Circumplex model of emotions, with affective concepts mapped on it.(Figure from Russell [157]).
only in terms of intensity or pleasantness”. It is this second point of view,
that emotions can be represented as continuous values that vary in terms of
intensity or pleasantness, that is reviewed in this section.

Arguably, the most common model that follows this perspective is the
circumplex model, developed by Rusell [155]. This model was developed
under the premise that affective concepts can be defined in terms of two
orthogonal dimensions: one dimension is pleasure/displeasure and the other
is the degree of arousal. The circumplex model is depicted in Figure 2.2,
with some affective concepts mapped on it. The pleasure/displeasure axis
is commonly known as the valence axis. Thus, valence can be understood
as how good/positive or bad/negative the feeling is. The arousal axis (also
known as activation/deactivation axis) represents how intense the feeling
is. Some authors, such as Russell and Mehrabian [159] or Mehrabian [133],
add a third axis that represents dominance. The dominance axis indicates
how in control a person feels in a situation, going from submissiveness to
dominance. This 3-axis model is known as the PAD model, for Pleasure-
Arousal-Dominance.

It may be argued that dimensional models are less intuitive and could
be more difficult to interpret than using discrete emotions. Nevertheless,
dimensional models, in particular the circumplex model, are probably the
most commonly used models to measure emotional experiences [44].
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STIMULUS
Internal

Psychophysiological
Mechanisms

EMOTION

Emotion Indicator

Physiological signals

Face expressions

Speech modulation

Posture

Figure 2.3 – A simplified perspective of emotion generation.

2.2 Emotion Recognition

Emotion recognition refers to identifying the emotion that a person is
feeling using signs or expressions from this person. In this thesis, our goal is
to design a system capable of performing emotion recognition automatically.
For this, Section 2.2.1 provides a simplified perspective of emotions that will
be helpful in defining emotion recognition. Then, Section 2.2.2, explains
how an emotion recognition system could work, describing the different
signals that could be used as inputs for such a system, and the outputs that
it may produce.

2.2.1 Emotions, a simplified perspective

The human emotion mechanisms can be viewed from a simplified per-
spective. Although this view takes elements from the psychological research
that was reviewed in previous sections, it is not a representation of the real
mechanisms that are involved in emotions. This simplified perspective is
presented in Figure 2.3, and models emotions as if they were produced by
a simple input-output system. The input of the system is a stimulus (e.g.
learning good or bad news, watching a scary scene in a movie, etc.) that
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Figure 2.4 – A depiction of an emotion recognition system.
generates an emotion, and the output is an indicator of that emotion. In this
context, we denote as an indicator of emotion any expression of emotion
that can be observed, maybe with the help of an instrument, by an external
observer. Some examples of these indicators are facial expressions, voice
tone, and physiological signal features.

2.2.2 Emotion Recognition System

To explain how an emotion recognition system may work, we use the
simplified perspective explained above. The idea is to instrument, i.e.
measure or capture, the indicators of emotion produced during emotional
events. For example, these measurements can be made with sensors that
might exist as a part of a smart environment [150], or these measurements
can be done for healthcare purposes. Then, these measurements can be
used as inputs for an emotion recognition system, that gives as an output an
estimation of the emotion that originally produced the indicator [110]. This
process is depicted in Figure 2.4.

Note that in reality, the indicators of emotion used as inputs for the
recognition system are not necessarily produced directly by emotions, since
the interactions between emotions and indicators of emotions are more
complex, as described in Section 2.1. This is why we use the simplified
perspective from Section 2.2.1, because it allows us to see these indicators
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Figure 2.5 – Facial expressions (by Icerko Lýdia/CC-BY-3.0).

as a consequence of emotions, without having to worry about the real
interactions between them.

It can be noted from Figure 2.4 that to build an emotion recognition
system it is necessary to identify the different expressions that can be used
as indicators of emotion. In other words, it is required to define what can be
used as input for an emotion recognition system, which is done in Section
2.2.3. In addition, a way to represent the recognized emotion is needed,
meaning that it is necessary to define how the output of the system should
look, which is done in Section 2.2.4.

2.2.3 Input of an Emotion Recognition System: Capturing
Indicators of Emotion

There are several indicators of emotion that may be used as inputs for an
emotion recognition system. Some examples of such indicators include facial
expressions, speech, and body postures. There are also indicators of emotion
in Electrocardiogram (ECG), Electroencephalogram (EEG), Electrodermal
Activity (EDA), Electromyogram (EMG), Respiration (RESP), Temperature
(TEMP), and other physiological signals. These indicators can be classified
into four modalities: visual, audio, text, and physiological signals, which
are reviewed below.
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2.2.3.1 Visual Modality

Human emotions may be directly perceived from multiple channels
using vision. For example, humans communicate emotional states with
facial expressions and these can be directly observed and measured with
computer vision. Figure 2.5 shows different facial expressions that display
different emotions. In addition to facial expressions, there are other visual
indicators that reflect the emotional state like gaits [24], body gestures
[205] and posture [182].

Charles Darwin [48] described facial expressions as innate and universal,
and he also theorized that these expressions evolved through interaction
with the physical environment; for instance, he speculated that the display
of disgust was initially linked to spitting spoiled food items [44]. Other
authors (e.g. Ekman [56], Tomkins and McCarter [186], Larsen and Freder-
ickson [117]) have also studied the relation between facial expressions and
emotions, and how these expressions show the emotional state of a person.
Many of these works have also suggested that facial expressions, and the
interpretation of these expressions, are universal across cultures, although
this has been heavily debated in the psychological research community,
by critics like Russell [156]. Another characteristic of facial expressions,
and visual indicators of emotion in general, is that they can be faked. For
instance, talented actors are capable of displaying different emotions in a
convincing way.

Ekman and Friesen [53] developed a widely used system, the Facial
Action Coding System (FACS), that can be used to decode emotions from
the activation patterns of groups of facial muscles, deconstructing facial
expressions into distinct muscle movements called Action Unit (AU). For
example, AU 4 is associated with lowering the brow. FACS use 28 main
AUs, and provides additional ones to code the position and movements of
the head and eyes. The activation strength of each AU can also be coded,
using letters A (minimum) to E (maximum). A variation of this system was
developed by Friesen and Ekman [70], that considers only AUs related to
emotions.

From previous paragraphs, it is evident that it makes sense to use visual
indicators as input for an emotion recognition system. Typically, this input
is in the form of standard images, but authors like Wang et al. [198] have
experimented with using thermal infrared images. Visual inputs may be
used directly, that is, feeding into the system raw images or video frames.
Another option is to code the visual information, for example, code the facial
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Figure 2.6 – An example of a speech signal. (Figure from Riadh et al. [152]).
expressions using FACS, and feed the coded information into the emotion
recognition system. Even with the debate around its universality from critics
like Russell [156], visual expressions remain a useful input for emotion
recognition.

2.2.3.2 Audio Modality

As noted by several authors, like Kappas et al. [100], Bachorowski et
al. [13], and Scherer et al. [165], expressions of emotion can be found in
human speech. In fact, according to Scherer et al. [165], the effects that
emotional responses have on respiration and muscle tension (especially in
the larynx muscles) produce acoustical effects in speech like changes in
its fundamental frequency, intensity, harmonic energy, and others. These
authors also state that the arrangement of the vocal tract during certain
emotional episodes will give preference to specific filter traits of the vocal
tract, consequently impacting the distribution of energy in the spectrum.
Moreover, they affirm that the changes in the larynx muscles will appear
regardless if the subjects decide to speak or not.

In an effort to standardize the acoustic parameters used for speech analy-
sis, Eyben et al. [64] proposed the Geneva Minimalistic Acoustic Parameter
Set (GeMAPS). They choose parameters that are good indicators of changes
in speech characteristics during emotional episodes, taking into account
how frequently and successfully those parameters have been used in past
literature. They also took into account the theoretical significance of the dif-
ferent parameters. Eyben et al. [64] presented a minimalistic parameter set,
consisting of 18 low-level descriptors like pitch, loudness, jitter (deviations
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from the fundamental frequency), and other attributes including spectral
characteristics. They also introduced an extended parameter set, called
extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), that
added additional parameters to the minimalistic set with additional spectral
and frequency-related attributes, bringing the total number of parameters
to 88.

In summary, human speech can communicate emotions and therefore
it can be used as input for an emotion recognition system. Besides speech,
other useful clues could be found in audio signals, like laughter, crying, etc.
Audio inputs can have the form of raw audio signals, like the speech signal
depicted in Figure 2.6. Another option is to use acoustic parameters like the
ones from eGeMAPS.

2.2.3.3 Text Modality

In addition to using audio signals or parameters from those signals as
inputs for an emotion recognition system, it is also possible to extract the
words that the subject is saying, i.e. extract transcripts, and use these words
as input for the system [106, 167, 213]. These extracted words belong to a
distinct modality, specifically the text modality, differing from audio due to
their inherently different nature.

In general, affective analysis of text encompasses other tasks beyond
recognizing emotions using transcripts; for example, written reviews of a
user can be analyzed to determine if the attitude of the user is positive,
neutral, or negative [137]. This type of analysis is commonly known as
sentiment analysis, where the goal is to determine the valence of a piece of
text (positive, neutral or negative), as mentioned by Mohammad [137].

2.2.3.4 Physiological Signals

According to Coppin and Sander [44], bodily reactions are considered
an element of emotion by all prominent contemporary theories. This shows
that there is a strong link between physiological reactions and emotions.
For this reason, its usage as an input for an emotion recognition system is
very appealing. In addition, physiological signals may convey information
about emotions that is not externally expressed. Another advantage is that,
different from visual and audio modalities, it is difficult to modulate these
signals voluntarily, making it more difficult to fake an emotion. Below, some
physiological signals that can be used as inputs for emotion recognition are
reviewed.
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(a) Example of an ECG signal. (b) Elements of an ECG waveform.
Figure 2.7 – ECG signal and elements (Fig. (b) by A. Atkielski/Public Domain)

Cardiovascular Signals

There are several works that demonstrate the link between emotions and
cardiovascular measurements like heart rate, heart rate variability, systolic
and diastolic blood pressure, pre-injection period, and others. For example,
Delplanque et al. [50] show that heart rate is a good indicator of valence.
Also, Wu et al. [207] investigated the influence of emotions on cardiac
responses, and found that certain emotions were reflected in changes in
heart rate and heart rate variability.

Works like Delplanque et al. [50] and Wu et al. [207] show that there
is a relation between cardiovascular activity and emotions. One way to
capture cardiovascular information is to use ECG. ECG are recordings of
electrical activity in the heart, typically collected by placing electrodes in the
chest. Specifically, ECG register the changes in electrical potential difference
during depolarization (contraction) and repolarization (relaxation) of the
heart [200].

To better understand ECG signals, Figure 2.7a shows a sample of such a
signal, whereas Figure 2.7b shows the elements that can be identified in a
ECG waveform. From those figures, it can be observed that the elements of
an ECG signal are: P wave, which is produced by atrial depolarization (i.e.
atrial contraction); QRS complex, produced by ventricular depolarization
(i.e. ventricular contraction); T wave produced by ventricular repolarization
(i.e. ventricular relaxation). All these parts together are known as a PQRST
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wave, and each heartbeat produces one of these waves.

Several parameters that can be useful for emotion recognition can be
extracted from an ECG signal. For example, by identifying the QRS com-
plexes present on a ECG signal, the time between two consecutive R peaks
(called the RR interval) can be calculated, and from this quantity parameters
such as heart rate and heart rate variability can be computed, which have
been demonstrated to be related to emotions [50, 224]. Additionally, time-
domain statistical parameters can be obtained, like the mean and median RR
intervals, the standard deviation of RR intervals, and others. Furthermore,
frequency-domain parameters like the total power in the full frequency
range and the power in different frequency bands can also be extracted from
ECG signals. All these parameters have been shown to be useful as inputs
for an emotion recognition system [77, 90, 161].

Given that cardiovascular activity is linked to emotions, it makes sense
to use ECG signals as input for an emotion recognition system, either in its
raw form, or using different parameters extracted from those signals.

Brain Imaging

According to the appraisal theory, there is a cognitive evaluation of a
stimulus before an emotion is elicited. Therefore, when an emotion is felt it
should be reflected in the brain activity. For this reason, it is appealing to
image the brain, i.e. measure brain activity, and use these measurements to
perform emotion recognition.

There are several ways to monitor brain activity, for example through
EEG, Functional Magnetic Resonance Imaging (fMRI), and Magnetoen-
cephalography (MEG). Here, we give details about EEG, as it is one of the
most accessible methods to monitor brain activity because it is cost-efficient,
it can be acquired with portable systems, and it does not require intensive
training to use.

EEG signals are acquired through electrodes placed on the scalp, which
record the electrical activity of the brain. Typically, the electrodes are placed
using the international 10-20 system or the 10-10 system, which are depicted
in Figure 2.8. A more dense placement system exists, called the 10-5 system
[142]. An example of EEG signals is depicted in Figure 2.9, where each of
the showed waves is a signal acquired by one electrode.

From the appraisal theory of emotions, it can be argued that brain activity
should be related to emotions. Therefore, it is feasible to use EEG signals as
input for an emotion recognition system. Moreover, these types of signals
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(a) 10-20 EEG electrode placement system(public domain figure). (b) 10-10 EEG electrode placement (fig. by B.C. Oxley/CC0).
Figure 2.8 – EEG electrode placement sytems.

are more accessible compared to other options to monitor brain activity,
therefore they are a good solution to incorporate brain imaging in such
emotion recognition systems.

Respiration

It has been shown that variations in respiration occur during changes
in emotion [183]. For example, Noguchi et al. [141] showed that fear and
anxiety increase the respiration rate. Also, Boiten [25] found clear effects
on inspiration, inspiratory pauses, tidal volume, and breathing irregularity,
when subjects watched an emotionally loaded film. These works show that
it is feasible to use respiration as input for an emotion recognition system.

Respiration may be measured by detecting the electrical impedance
changes that occur in the chest during the respiration process. A good
correlation exists between this impedance and the volume of breathed air.
An example of a respiration signal is depicted in Figure 2.10.

Electrodermal Activity (EDA)

EDA is the measurement of changes in the electrical conductance of
the skin produced by perspiration or sweat. Although sweat glands have
thermoregulation as their primary function, glands in the hands and in the
plantar regions have been shown to have a relation with behavior [89]. In
fact, EDA has demonstrated to be an indicator of arousal [36].

As depicted in Figure 2.11, EDA signals are slow-changing, typically
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Figure 2.9 – EEG signals (by A. Cherninsky/CC-BY-SA-4.0).
characterized by rises and falls in the conductance values. Each of these
“rises and falls” is known as an Electrodermic Response (EDR). As described
in Boucsein [26], a EDR can be a response to a specific stimulus, like
responses 1 and 6 in Figure 2.11, or could be spontaneous (maybe from an
unknown stimulus), like responses 3 and 4, or can be undetermined, like
responses 2 and 5.

Various parameters can be extracted from a EDA signal, like the am-
plitude of a EDR or the number of EDRs in a period of time. Analysis of
these parameters has been widely used in psychological research [134],
including detecting emotions [89]. Therefore, EDA, either raw signals or
parameters extracted from those signals, should be useful as input for an
emotion recognition system.

2.2.3.5 Discussion on Inputs for Emotion Recognition

In this section, we have described several indicators for emotional state
that can be used as input for an emotion recognition system. Note that
we used psychological literature to justify the reasons why these indicators
should work as inputs for emotion recognition. We avoided basing the
justification on contributions that have successfully developed an emotion
recognition system using the indicators we reviewed. We did this because
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Figure 2.10 – Respiration signal. The measured millivolts (mV) are correlated with thevolume of respired air. (Fig. from Shimmer3 User Manual [170])

Figure 2.11 – Electrodermal Activity signal (Fig. by Boucsein [26]).
we believe it gives a stronger ground on the validity of those indicators as
inputs for an emotion recognition system.

Nevertheless, there are plenty of works addressing emotion recognition
that have used the indicators reviewed in this section. For example, Filntisis
et al. [68] use visual inputs, Trigeorgis et al. [189] use audio inputs, Xiao
et al. [210] use ECG signals, Hajlaoui et al. [82] use EEG signals, and
Chatterjee et al. [37] use EDA. These works further validate the usefulness
of those indicators as inputs for emotion recognition systems.

In the first part of this thesis, we use ECG and EEG signals. As our global
objective falls within the framework of monitoring the mental health of frail
people, these signals could already be acquired for other health purposes.
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Moreover, these signals can already be acquired with portable, wireless,
low-cost, and off-the-shelf equipment, as is done to build the AMIGOS
dataset [135] and the DREAMER dataset [102], and thus we envision that
the acquisition of these signals will become even less intrusive and easier to
perform in the future. Another advantage is that datasets that contain these
signals are abundant, if we include datasets that have not necessarily been
collected for affective tasks, but with other goals like medical research. This
is important for performing the self-supervised pre-training technique that
is introduced in Chapter 3. In addition, in Chapter 4 we use both ECG and
EEG at the same time, hypothesizing that doing this will improve the results
when doing emotion recognition. We believe this should be the case since
those signals may carry complementary information since they come from
different mechanisms inside the body: EEG signals monitor brain activity,
thus they are more related to cognition, while the characteristics of EEG
are related to the autonomic nervous system, thus are the result of a more
primary reaction.

In later chapters, we consider the use of auditory and visual modalities
in combination with physiological signals, performing emotion recognition
in a multimodal fashion. Using similar reasoning for combining EEG and
ECG signals, we believe that the information carried by audio, visual, and
physiological signals may be complementary. In fact, in physiological signals,
there might be information about the emotion being felt that might not be
externally expressed. There is an additional advantage of using multiple
types of inputs: the system could be built to be robust to missing modalities.
For this, using heterogeneous sources (e.g. audio, visual and physiological
signals), improves the usability of a system in varied situations, having
different sensing capabilities which might not all be available at all times.

2.2.4 Output of an Emotion Recognition System: Emotion
Representation

When designing an emotion recognition system, it is necessary to define
what will be its output. In other words, it is necessary to define how the
recognized emotion will be represented by the system. From the review
in Section 2.1.2, it can be concluded that it is possible to use as output a
discrete or a continuous representation of emotions.

A system that identifies an emotion using discrete representations will
have as output the name of the identified emotion. For example, the output
could be one of the following emotions: happiness, fear, disgust, anger,

26



2.2. Emotion Recognition

sadness, or surprise. On the other hand, a system that uses a continuous
representation may output numerical values of arousal and valence.

In this thesis, we decide to represent emotions using arousal and valence.
We do this because we are mainly interested in determining how a person
is doing emotionally, so we want to know the pleasantness of the emotion
being felt (valence) and the intensity of that emotion (arousal). We believe
that for this objective of knowing how the person is doing emotionally using
arousal and valence is more convenient than using discrete emotions. In
addition, we decide to use only arousal and valence and no other dimensions
of emotion because we are more interested in elementary affective feelings.
In this sense, we adopt a point of view similar to the one described by Rusell
and Barrett [158], who consider other dimensions (e.g. dominance) more
related to the event that produces the emotion, and thus outside of being
part of the elementary feeling.

More specifically, the first part of this thesis uses high and low cate-
gories of arousal and valence as outputs for an emotion recognition system.
Whereas, for the second part of this work, the output of the system is a nu-
merical value of arousal and valence. When using high and low categories,
since arousal and valence are continuous values, a threshold value can be
used to determine those high and low categories. This threshold value
could be, for example, the average arousal/valence value of the considered
samples used to develop the system.

2.2.5 Putting it all Together

We now have all the elements necessary to build an emotion recognition
system. We can also provide a definition of what emotion recognition is in
the context of this thesis:

Definition 2.1. Emotion Recognition: Estimation of the emotional state
of an individual using one or more observed indicators (visual, auditory,
physiological or other perceptual channels).

An depiction of such a system is shown in Figure 2.12. Note that, as
discussed in this section, the inputs can be either raw signals or parameters
extracted from those signals. Moreover, the system could draw information
from only one modality (i.e. a single-modality system) or several modalities
(i.e. a multimodal system). As discussed before, the output of the system
can be discrete emotions (e.g. happiness, fear, disgust, etc.) or, as is the
case for this thesis, numerical values or categories of arousal and valence.
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Figure 2.12 – An emotion recognition system: putting it all together

At the heart of an emotion recognition system, there is a model capable
of describing the relation between the different indicators of emotion and
the emotion behind those indicators. In other words, this model is the
mechanism that receives as inputs indicators of emotion and produces as
output a representation of the emotion that produced those indicators. When
the emotion representation is a category, as it is in the first part of this thesis
where high and low categories of arousal and values are used, the model
has to perform a classification task. While if the emotion representation
is a numerical value, as in the second part of this thesis where continuous
values of arousal and valence are used, the model performs a regression
task. A model of such characteristics can be implemented using Machine
Learning (ML).

Through this thesis, we design single architectures to recognize arousal
and valence and train the same architecture one time to recognize arousal
and a second time to recognize valence. Instead of this approach, other op-
tions are designing a multitask system, that recognizes arousal and valence
at the same time; or designing an architecture for arousal and a different
one for valence. We prefer having unified architecture trained independently
for arousal and valence, as it is a good trade-off between having to design
two different specialized systems, and having a single global system that
might sacrifice individual performance.

In real-life scenarios, there might be additional challenges that need
to be addressed when designing a system for emotion recognition. One
challenge has to do with noisy and incomplete inputs; for instance, audio
signals might incorporate background noise, or the face of a person might
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be partially occluded. In our work, this challenge is partially addressed in
Chapter 6, where we assume that an input that is too noisy to be useful
can be detected as such, so it can be discarded, and the system should keep
working with the remaining inputs.

Another challenge is that an emotion recognition system has to deal with
the diversity in individual reactions to stimuli. In fact, as stated by Hajlaoui
et al. [81], across different subjects the same stimulus may produce different
emotions, and the same emotion may raise different physiological responses.
In addition to this, there might be cultural differences in emotional responses
[119, 113]. Thus, personalized systems may be envisaged, where data from
a subject can be used to train a personal model to recognize emotions
from that same subject, using for example few-shot learning techniques
if data from this person are scarce. Different from this, in this thesis, we
are more interested in developing a general system, that works at least
for people within the same demographics. The reason for this is that we
envision the emotion recognition system as a part of a smart environment
where the emotional state of frail people can be monitored. Therefore, it is
important that the deployment of the emotion recognition system is easy. If
a personalization step is needed, users might need to collect and label their
own data, which could be an obstacle to the use of the system.

2.2.6 Models for Emotion Recognition

An emotion recognition model can be implemented using classical ML
techniques, like Gaussian Naive Bayes, Support Vector Machine (SVM),
k-Nearest Neighbors, and others. Several works have used this technique for
emotion recognition, using different inputs like speech [115], physiological
signals [90], and faces [76]. Typically, these types of models use different
parameters extracted from the input signals. Generally, these parameters are
chosen using domain expertise, and for this reason, the chosen parameters
are called engineered features.

An alternative to classical ML techniques is the use of Deep Learning (DL)
models. These models typically exhibit superior performance to classical
ML approaches. In fact, Abbaschian et al. [2] show that in speech emotion
recognition, for some tasks, the accuracy increases between 70% and 90%
when using DL compared to classical ML. In addition, Maithri et al. [131]
reviewed several works that use classical ML and DL techniques for emotion
recognition using EEG, facial, speech, and multimodal signals, and conclude
that using DL leads to higher performance. An additional advantage of DL
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models is that they can process raw signals instead of engineered features,
being capable of learning intermediate representations better aligned to
the addressed problem, and therefore leading to improved performance
[192]. When DL is employed, Convolutional Neural Network (CNN) may be
used to process images [149], audio [2], and physiological signals [161].
In addition, to model sequential information in the inputs Recurrent Neural
Network (RNN) and its variations (Long Short-Term Memory (LSTM), Gated
Recurrent Unit (GRU), etc.), may be employed [6, 192].

Recently, the Transformer [196] has emerged as successful DL architec-
ture in fields like Natural Language Processing (NLP) [51], computer vision
[83], and speech processing [118]. It has been also used successfully for
emotion recognition [95, 190, 208]. An advantage of the Transformer is
that it is capable of effectively capturing long-range dependencies in the
input sequence, in contrast with RNNs that may struggle to capture such
dependencies. Moreover, it allows parallel processing of the sequence, as
the output does not depend on past states. These benefits are the result of
the Transformer relying entirely on attention mechanisms to build repre-
sentations of the input, without using recurrent or convolutional networks.
Moreover, the attention mechanisms of the Transformer are capable of gen-
erating representations that pay more attention, i.e. give more weight, to
the relevant parts of the input. For this reason, we use a Transformer as the
backbone of the different architectures that we introduce in this thesis.

2.3 Overview of the Transformer

A Transformer [196] combines multiple layers of encoders and decoders
to provide an extremely powerful architecture for processing signals. While
the Transformer was originally designed for NLP tasks, such as machine
translation, it is suitable for use in other tasks requiring interpretation of
other types of sequences, like frames from a video [83], sound signals [118],
and physiological signals [223]. Thus, it is feasible to use a Transformer
to estimate arousal and valence from the different modalities discussed in
Section 2.2.3. Importantly, the transformer is well-suited for interpreting
multiple signal modalities.

The remainder of this section describes in detail the Transformer archi-
tecture, mainly summarizing the original paper by Vaswani et al. [196].
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2.3.1 Attention

A key innovation of the Transformer is the use of attention to simplify
processes for encoding and decoding information. The attention function of
the Transformer can be characterized as a mapping of a query to a set of
key-value pairs, where all of them are vectors. The output of this function is
a weighted sum of the values, where the weight for each value corresponds
to the compatibility of the query with the corresponding key.

2.3.1.1 Scaled Dot-Product Attention

The Transformer employs an information selection technique referred
to as scaled dot-product attention to associate related parts of the input
sequence. The Transformer expresses information using a system of symbolic
tokens. Tokens are encoded in a key-value representation that enables tokens
to be easily associated with related parts of a signal expressed as queries.
Keys and queries are implemented using a trained linear encoding that can
be used to retrieve tokens that are related to a query by a simple matrix
multiplication.

If queries come from sequence 𝑄 , keys from sequence 𝐾 , and values
from sequence 𝑉 , query (𝑄), key (𝐾) and value (𝑉 ) matrices are obtained
as follows:

𝑄 = 𝑄𝑊 𝑄 𝐾 = 𝐾𝑊 𝐾 𝑉 = 𝑉𝑊 𝑉 , (2.1)

where𝑊 𝑄 ∈ ℝ𝑑model×𝑑𝑘 ,𝑊 𝐾 ∈ ℝ𝑑model×𝑑𝑘 , and𝑊 𝑉 ∈ ℝ𝑑model×𝑑𝑣 are learnable
projection matrices. Also, 𝑑model corresponds to the dimensions of the
intermediate representations inside the Transformer, as well as its output
dimension, while 𝑑𝑘 and 𝑑𝑣 are the dimensions of the key and value vectors,
respectively.

Scaled Dot-Product Attention is computed by performing the dot product
between a query and all the keys, dividing each result by

√
𝑑𝑘 , and then

using the softmax function to obtain the weights for each value. With all the
queries, keys and values packed in matrices 𝑄 , 𝐾 and 𝑉 , this can be done
simultaneously for all the queries using the following expression:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇√
𝑑𝑘

)
𝑉 . (2.2)
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2.3.1.2 Multi-Head Attention

The authors of the Transformer architecture found it beneficial to obtain
ℎ versions of queries, keys and values with different learnable projection
matrices𝑊 𝑄

𝑖 ,𝑊 𝐾
𝑖 , and𝑊 𝑉

𝑖 :

𝑄𝑖 = 𝑄𝑊
𝑄
𝑖 𝐾𝑖 = 𝐾𝑊

𝐾
𝑖 𝑉𝑖 = 𝑉𝑊

𝑉
𝑖 . (2.3)

Then, the attention function defined in Expression 2.2 is computed for
each version of the queries, keys and values, obtaining the output of a single
head:

head𝑖 = Attention(𝑄𝑖, 𝐾𝑖,𝑉𝑖) . (2.4)

The outputs of each head are concatenated and projected again using
the learnable matrix𝑊 𝑂 ∈ ℝℎ𝑑𝑣×𝑑model. Thus, Multi-Head Attention (MHA)
is defined as:

MHA(𝑄,𝐾,𝑉 ) = Concat(head1, . . . , headℎ)𝑊 𝑂 . (2.5)

The dimensions 𝑑𝑘 and 𝑑𝑣 are chosen as 𝑑𝑘 = 𝑑𝑣 = 𝑑model/ℎ. With this,
the computational cost is comparable to using full-dimension single-head
attention.

Using multiple attention heads permits the creation of various represen-
tation subspaces, allowing the model to simultaneously attend to multiple
information contexts at different positions of the input sequence.

2.3.1.3 Self-Attention and Cross-Attention

The input sequences 𝑄 , 𝐾 and 𝑉 of the MHA module may be chosen to
be the same sequence. In this case, each position of the sequence attends to
the other positions from the same sequence. Accordingly, this case is called
self-attention.

Another option is having a sequence as the query sequence 𝑄 , and a
different sequence as the key and value sequences𝐾 and𝑉 . If this is the case,
the first sequence attends each position of the second sequence, Note that in
this case, both sequences do not need to have the same length. Having the
query from one sequence and the key-value from a second sequence is known
as cross-attention. Cross-attention can be used to associate information
from different modalities, incorporating information from one modality,
the source modality, into another modality, the target modality. In this
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Figure 2.13 – Model Architecture of the Transformer (Fig. by Vaswani et al. [196]).
case, the keys and values come from the source modality, and the query
comes from the target modality. This way, the target modality attends the
source modality, effectively associating relevant information from the source
modality, and incorporating this information into the target modality.

2.3.2 Transformer Architecture

The Transformer follows an encoder-decoder structure, using stacks
of MHA and point-wise feed-forward Fully-Connected Network (FCN), as
depicted in Figure 2.13. A description of the different components of the
Transformer architecture is provided below.

2.3.2.1 Encoder

The encoder of a Transformer is composed of a stack of identical layers,
where each layer is composed of a MHA module followed by a point-wise
feed-forward FCN. The MHA performs self-attention, that is, all the queries,
keys and values come from the same sequence, in this case, the input
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sequence or the output of the previous encoder layer. Residual connec-
tions and layer normalization [11] is employed, as shown by the following
expressions, that describe the process of a single layer of the encoder:

𝐻 ′𝐸
𝑙 = LayerNorm(𝐻𝐸

𝑙−1 + MHA(𝐻𝐸
𝑙−1, 𝐻

𝐸
𝑙−1, 𝐻

𝐸
𝑙−1)) (2.6)

𝐻𝐸
𝑙 = LayerNorm(𝐻 ′𝐸

𝑙 + FCN(𝐻 ′𝐸
𝑙 )), (2.7)

where 𝐻𝐸
𝑙

is the output of encoder layer 𝑙 , and 𝐻𝐸
0 is the input sequence.

2.3.2.2 Decoder

The decoder is composed of a stack of Transformer Decoder Layers
(TDLs). Each TDL is similar to an encoder layer, with the difference that an
additional attention module is added to attend to the outputs of the encoder,
i.e. perform cross-attention. In this cross-attention module, the queries
come from the previous decoder layer, while the key and values come from
the output of the last layer of the encoder. Thus, the expressions that define
a single decoder layer are the following:

𝐻 ′𝐷
𝑙 = LayerNorm(𝐻𝐷

𝑙−1 + MHA(𝐻𝐷
𝑙−1, 𝐻

𝐷
𝑙−1, 𝐻

𝐷
𝑙−1)) (2.8)

𝐻 ′′𝐷
𝑙 = LayerNorm(𝐻 ′𝐷

𝑙 + MHA(𝐻 ′𝐷
𝑙 , 𝐻

𝐸
𝑁 , 𝐻

𝐸
𝑁 )) (2.9)

𝐻𝐷
𝑙 = LayerNorm(𝐻 ′′𝐷

𝑙 + FCN(𝐻 ′′𝐷
𝑙 )), (2.10)

where 𝐻𝐸
𝑁 is the output of the last encoder layer, and 𝐻𝐷

0 is the input se-
quence of the decoder, which corresponds to the decoder outputs generated
up to the current time.

2.3.2.3 Positional Encoding

The operations in the Transformer are permutation-invariant with respect
to the order of the elements in the input sequence. Therefore, there is the
need to inject information about the position that each element occupies
in the input sequence. For this reason, positional encodings are added to
the elements of the input sequence before they are fed to the encoder
and decoder stacks. These encodings are designed such that a unique
representation is generated for each position in the sequence. These position
representations are vectors of size 𝑑model, the same size as the input vectors,
so the positional encodings and the vectors of the input sequence can be
summed. Through the combination of these positional encodings with the
inputs, the Transformer can take into account both the content and the
order of inputs when processing those inputs.
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Figure 2.14 – Sinusoidal Positional Encodings.
In the original Transformer paper, fixed positional-encoding vectors are

used. They are built using the following expressions:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = sin(𝑝𝑜𝑠/100002𝑖/𝑑model) (2.11)

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = cos(𝑝𝑜𝑠/100002𝑖/𝑑model), (2.12)

where 𝑝𝑜𝑠 is the position to which the position encoding 𝑃𝐸 corresponds,
and 𝑖 is the dimension in the vector. Using sine and cosine functions produces
a pattern of values that depends on the index inside each vector, but more
importantly, depends on the position, as depicted in Figure 2.14.

An alternative to fixed positional encodings is to use learned positional
encodings. The idea is to learn those encodings during training, at the
same time as the rest of the parameters of the architecture. Then, if the
input sequence is 𝑋 ∈ ℝ𝑇×𝑑model, the input with the positional information
becomes 𝑋 +𝑊𝑃𝐸 , where the elements of𝑊𝑃𝐸 ∈ ℝ𝑇×𝑑model are parameters
that are learned during training.

2.3.3 Discussion About Transformers

When processing sequences, some favorable characteristics of the Trans-
former include its capacity to model long-range dependencies, and its ability
to process the input sequence in parallel. In addition, the attention mech-
anism of the Transformer creates representations that are the weighted
sum of the different elements of the input sequence. In a way, this weight
is an indication of the importance of each element. This is visualized in
Figure 2.15, which shows attention maps from different layers of a Trans-
formed trained for image classification. In our case, if we are processing
physiological signals for example, we can imagine that some parts of the
signal may be more important than others, and thus is appealing to use an
architecture capable of capturing this fact. Moreover, if multiple modalities

35



2. Background on Emotion Recognition

ORIGINAL ATTENTION MAPS
Layer 1 Layer 6 Layer 12

Figure 2.15 – Transformer attention maps at different layers. (Image from Bazi et al.[21]).
are used, the attention mechanism of the Transformer can be used to weigh
the importance of each modality when building a representation that is the
aggregation of all modalities, while also using self-attention to select and
incorporate the most relevant information within each modality into that
representation.

For the reasons stated above, in this thesis, we explore the use of the
Transformer as the backbone of different architectures to perform emotion
recognition, as we hope the characteristics of the Transformer will be bene-
ficial for this task. To train the different models, datasets that contain labels
of emotion are required. The next section briefly discusses some examples
of such datasets. More details about the datasets used in this thesis can be
found in Appendix A.

2.4 Datasets

There are several datasets that can be used to train models for emotion
recognition, varying in the modalities that they provide and the labeling that
they use. Regarding datasets that include physiological signals, which are
the signals used in the first part of this thesis, there are datasets like DEAP
[109], MAHNOB-HCI [177], and DECAF [1] that used costly, non-portable
and non-wearable sensors to acquire physiological signals. Contrary to
this, the AMIGOS [135], DREAMER [102], and ASCERTAIN [184] datasets
acquire ECG and EEG signals using wireless, wearable, and off-the-shelf
equipment.

To develop our approaches in the first part of the thesis, where ECG and
EEG signals are employed, we use the AMIGOS and DREAMER datasets. In
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addition to providing the physiological signals we are interested in, a reason
to use AMIGOS and DREAMER datasets is that both datasets use portable,
wearable, wireless, low-cost, and off-the-shelf equipment to acquire the
signals. We believe that in the future the technology to acquire those
signals could become even less invasive, thus capable of becoming part of a
smart environment, where the emotional well-being of a frail person can
be monitored with non-invasive wearable sensors. For these reasons, it is
interesting for us to test our approaches with signals that are obtained with
the equipment used in AMIGOS and DREAMER. More details about these
two datasets are provided in Appendix A.

For the second part of this work, datasets that include multimodal
data and time-continuous annotations of valence and arousal are required.
Some datasets in this category are the Aff-Wild [214] and Aff-Wild2 [111]
datasets, which were collected by continuously annotating emotional la-
bels in YouTube videos. Another dataset is the SEWA DB dataset [112],
which compromises audio-visual data of subjects recorded watching adverts
and then discussing these adverts in a video chat. Also in this category
of datasets, there is the RECOLA dataset [153], where participants were
recorded during a video conference while completing a collaborative task.
A final example is the Ulm-Trier Social Stress Test (ULM-TSST) dataset
[179, 180], a multimodal dataset that was collected while inducing stress
on the participants.

Given that our interest is to monitor the emotional well-being of frail
people, it is interesting to use a dataset in which subjects go through a stress-
ful situation, because it is important to be able to recognize the emotions
of people going through difficult events. For this reason, in our work, we
use the ULM-TSST dataset. Moreover, although we are not interested in
measuring stress directly, it is an important factor to take into account for
preserving the mental health of frail people. In fact, stress in old age may
lead to serious health issues. For example, a study showed that vulnerability
to stress in seniors is associated with an increased risk of Alzheimer’s disease
[202]. Therefore, it is interesting in the general framework where this thesis
is developed to measure emotions elicited during stressful situations. More
details about the ULM-TSST dataset is provided in Appendix A.3.

Through this chapter, we provide various definitions and assumptions
used in this thesis, when developing emotion recognition systems. Also, the
datasets that are used to train our models have been identified. The rest of
this thesis provides details about our different contributions to the task of
emotion recognition.
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CHAPTER 3

EMOTION RECOGNITION FROM

PHYSIOLOGICAL SIGNALS

In order to monitor the mental well-being of a frail person in a smart
environment, it is desirable to have a system able to recognize emotions from
the sensors present there. In this type of environments, wearable sensors
can be used to collect physiological data, and thus it is interesting to predict
emotions from these data. Since we envision emotion recognition systems as
a part of a global health system, an advantage of using physiological signals
is that those signals could already be acquired for other health purposes.
Moreover, nowadays there are portable, wireless, low-cost, and off-the-shelf
equipment capable of gathering some of these types of signals, therefore
there is a potential that the acquisition of these signals become even less
intrusive in the future.

This chapter describes a method to recognize emotions from physio-
logical signals. It starts by providing a problem definition in Section 3.1,
along with the challenges around solving this problem, followed by a review
of current methods for emotion recognition from physiological signals in
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Section 3.2. Next, our approach, which is the first contribution of this thesis,
is detailed in Section 3.3, presenting a pre-trained Transformer-based model
designed to perform emotion recognition from physiological signals. Finally,
the results of evaluating our ideas are presented in Section 3.4.

3.1 Problem Definition and Challenges

3.1.1 Problem Definition

Using the definition of the emotion recognition problem provided in
Section 2.2, we define the specific problem addressed in this chapter: How
to recognize high and low categories of arousal and valence from raw
physiological signals, or more specifically from raw Electrocardiogram (ECG)
and Electroencephalogram (EEG) signals. We chose to use ECG and EEG
signals since they can be acquired with portable, low-cost equipment, as
done by Katsigiannis et al. [102] and Miranda-Correa et al. [135]. In
addition, there is abundant unlabeled data of this type, which is important
for our approach, as we shall see. Additional details about different aspects
of the problem addressed in this chapter, including our motivations on why
the problem is specified that way, are provided below.

3.1.1.1 Recognizing High/Low categories of Arousal and Valence

We formulate the emotion recognition problem as a classification prob-
lem, recognizing high and low categories of arousal and valence. We con-
sider that setting the problem this way is appropriate for the general goal
of this thesis: monitoring the emotional state of a frail person. Specifically,
to accomplish this general goal, it is necessary to know if the monitored
person is feeling a positive or negative emotion (high or low valence) and if
the intensity of this emotion is high or low (high or low arousal). Moreover,
other works that address the task of emotion recognition from physiological
signals also aim to recognize high and low categories of arousal and valence
[162, 161, 212], further validating our choice.

Nevertheless, it could be argued that a system that recognizes numerical
values of arousal and valence could be preferable since it could provide a
better understanding of the emotional state. We thus address this task in
Chapter 5.
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(a) (b)

(c) (d)
Figure 3.1 – Examples of raw physiological signals: (a) and (c) Electrocardiogram (ECG)signals, (b) and (d) Electroencephalogram (EEG) signals. The top row depicts signalslabeled as high arousal and low valence, and the bottom row depicts signals labeled aslow arousal and high valence.
3.1.1.2 Using Raw Physiological Signals

It has been demonstrated that physiological signals can be used to
recognize emotions [171], and several works have emerged in this area
using EEG [160, 218] and ECG signals [161, 162].

As discussed in Section 2.2.3, an emotion recognition system may use
as input raw signals or parameters extracted from those signals. We will
refer to the signals returned by sensors, including filtered or normalized
versions, as raw signals. From these raw signals, different parameters may
be extracted. Some examples of parameters that can be extracted from
physiological signals are time and frequency-domain characteristics of the
signal, like spectral entropy of the signal [168] or the spectral power of the
signal [161].

A Deep Learning (DL) model may be designed to work with raw signals
or with parameters extracted from the signal. However, when using param-
eters of the signals instead of raw signals, it is necessary to choose which
parameters to use, which may require certain expertise, and choosing the
most discriminant parameters may be difficult to do [173]. On the other
hand, using raw signals does not require this expertise, and a well-designed
deep neural network should be able to extract suitable features from the
raw signal that can lead to good performance. Therefore, as we use a DL
approach, we use raw physiological signals as input for our model.

Figure 3.1 shows examples of the two types of raw physiological signals
used in this chapter. Figures 3.1a and 3.1c show examples of raw ECG
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signals, and Figures 3.1d and 3.1d show examples of raw EEG signals.

3.1.2 Challenges

We identify two main challenges for our approach. The first challenge is
the lack of sufficient labeled data to effectively train a deep neural network.
The second challenge is how to process raw signals effectively.

Regarding the first challenge, a characteristic of DL approaches is that
a satisfactory performance of these types of models typically depends on
having enough labeled data to train the model. In fact, Sun et al. [185]
claim that one of the reasons for the success of DL is the availability of
large-scale labeled data. However, collecting physiological data and labeling
it with labels of emotion is a long and expensive process, and therefore
these types of datasets tend to be small. For example, the DREAMER dataset
[102], which includes physiological signals with labels of emotion, contains
around 23 hours of data. Meanwhile, for other tasks like action recognition
from videos, there are datasets like the Kinetics-700 [35] with over 1800
hours of video. Not having enough data to train the model could lead
to overfitting. Therefore, it is necessary to have a strategy that allows an
emotion recognition model to perform adequately under these conditions.
This challenge can be summarized as follows:

Challenge 3.1. How to effectively train a DL model to perform emotion
recognition from physiological signals, given that datasets of physiological
signals with labels of emotion may not have enough data to do so.

The second challenge is how to effectively process raw signals. Thus,
this challenge can be stated as follows:

Challenge 3.2. How to design a model that can extract from raw signals
features suitable for emotion recognition, effectively modeling the different
dependencies of the signals.

A description of how we address these challenges is provided in Section
3.3. For the moment, in the next section, we review current methods of
emotion recognition from physiological signals.
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3.2 State of the Art on Emotion Recognition
from Physiological Signals

This section provides a review of the literature and techniques relevant
to the task of emotion recognition. This review is focused on the works that
are pertinent to the problem and challenges described in Section 3.1.2. That
is, we are mostly interested in works that deal with emotion recognition
from ECG and EEG signals.

The discussion starts by reviewing works that use classical Machine
Learning (ML) techniques in Section 3.2.1. Then, contributions that employ
DL methods are covered in Section 3.2.2. After that, Transformer-based
approaches are reviewed in Section 3.2.3. Then, an overview of training DL
models with limited data is provided in Section 3.2.4. Finally, pre-training
approaches, which are approaches that first pre-train the model with a
pretext task using unlabeled data, are discussed in Section 3.2.5.

3.2.1 Classical Machine Learning Techniques for Recogni-
tion of Emotions

Classical ML techniques (non-DL techniques) employed for emotion
recognition include Gaussian Naive Bayes, Support Vector Machines (SVMs),
k-Nearest Neighbors, and Random Forests, among others. Generally, the
works that employ these approaches use parameters extracted from the
signals, instead of using raw signals. Since these parameters are the input
features for the models, instead of parameters, we prefer to call them
features. Typically, designing and selecting these features requires certain
expertise, and usually these features are called engineered features.

Several authors have addressed the task of emotion recognition from
physiological signals using classical ML techniques. Gjoreski et al. [77]
use engineered features extracted from ECG and Electrodermal Activity
(EDA) signals, and then process those features using several ML models
like Random Forests, SVMs, Gaussian Naive Bayes, among others. Hsu et
al. [90] work with ECG signals, extracting engineered features from those
signals and using an algorithmic selection step to reduce the number of
features to be used, in order to reduce computational complexity. Then,
the selected features are used as input of a SVM. Shu et al. [172] use
heart rate data as input. From that input, they extract engineered features
like the mean difference in heart rates, heart rate range, heart rate mean
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and variance, among others, and then they use an algorithm to select the
most relevant features for the task. They trained five types of classifiers:
k-Nearest Neighbors, Random Forest, Decision Trees, Gradient Boosting
Decision Trees, and Adaptive Boosting. Subramanian et al. [184] extract
several engineered features like heart rate statistics from ECG signals, and
various statistical parameters from EDA and EEG signals. Then, they use
those features as inputs for a SVM and a Naive Bayes model.

To better illustrate the kind of approach described in this subsection,
the work of Hsu et al. [90] is detailed in Section 3.2.1.1, and the work of
Subramanian et al. [184] is detailed in Section 3.2.1.2.

3.2.1.1 Emotion Recognition From ECG Signals

In the work of Hsu et al. [90], the goal is to recognize discrete emotions
from ECG signals. To process the signals, they first obtain the RR intervals,
i.e. the time between two consecutive R peaks. An R peak corresponds
to the higher peaks typically seen on ECG signals (see Section 2.2.3.4 and
Figure 2.7). Then, they get several features from the extracted RR intervals,
as explained below.

First, they perform time-domain analysis to obtain 12 features. Some
of the obtained time-domain features include the standard deviation of RR
intervals, the root mean square of differences between adjacent RR intervals,
and the number of successive RR intervals that differ more than 50ms,
among others. Next, they perform frequency-domain analysis to obtain 13
features. Some of the frequency-domain features that they extract are the
total power in the full frequency range, power in different frequency bands,
frequency of the highest peak in different frequency bands, etc. Finally, they
perform nonlinear analysis to obtain 9 additional features. Some examples
of these additional features are the approximate entropy and the sample
entropy. In total, 34 features are extracted.

Once the features have been extracted, they perform a feature selection
step. In other words, they reduce the number of features that are fed into
the classifier, thus reducing the computational complexity. The authors
claim that this step also increases the classification accuracy. For this feature
selection step, they iteratively select a feature set that maximizes a separa-
bility criterion. This criterion is a kernel-based class separability method,
that was developed by Wang [197]. This method consists in projecting the
samples to a kernel space and calculating the separability of the different
features in that kernel space. Once the features have been selected, the final
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step is to use a classifier to predict the emotion. In this case, the classifier
employed is a least-square SVM.

3.2.1.2 Emotion Recognition From EEG Signals

Subramanian et al. [184] use different physiological signals to recognize
high and low categories of arousal and valence. We review how they process
EEG signals, as they are of our interest, but for the other signals they employ
a similar procedure, although differing in the features that are extracted at
the beginning of the process.

Subramanian et al. [184] employ 1-channel EEG signal, with this chan-
nel monitoring the frontal lobe activity. From this signal, they extract 88
features. Some examples of the extracted features are: mean of the signal,
standard deviation, skewness, mean number of peaks, and others. Then,
they use Fisher’s linear discriminant [69] to identify the most discriminative
features. Using the selected features, they train a Naive Bayes and a SVM
classifier to perform recognition of high and low categories of arousal and
valence.

3.2.1.3 Discussion of Classical Machine Learning Approaches

The above examples illustrate the general procedure for performing
emotion recognition when using classical ML techniques: selecting and
extracting different features from the signal, using an algorithm to reduce
the number of features, and feeding those features into a ML classifier. This
procedure requires that an expert decide which features will be employed.
Even if the approach employs an automatic feature selection mechanism, the
original features to be used as input for the system still need to be designed
and selected by an expert.

Having an expert to select features has the advantage that in a way,
external knowledge is included in the system, which can be beneficial for
the task. On the other hand, it could be difficult to select the features that
will lead to good performance. In fact, the work of Shukla et al. [173] shows
that features that are commonly used to predict arousal and valence are not
necessarily the most discriminant. For this reason, it is tempting to explore
options where the features are extracted in a data-driven manner, so no
domain knowledge is required. DL techniques can be used for this purpose,
since they are capable of deriving features directly from data, with the model
learning intermediate features that better suit the target task, thus leading
to more accurate results [192]. Moreover, processing raw signals with DL
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Figure 3.2 – DL approach for emotion recognition from physiological signals.
models allows them to benefit from certain classes of data transformations
such as Fourier Transforms, Cepstral Coefficients or Gaussian Scale Space,
as a pre-processing step to the model.

3.2.2 Deep Learning Approaches for Emotion Recognition

DL architectures have demonstrated that they are capable of automat-
ically extracting useful features to perform a variety of tasks in computer
vision, Natural Language Processing (NLP), signal processing, and other
domains [47]. As opposed to engineered features, where expert knowledge
is needed to choose which parameters to use, deep neural networks are
capable of extracting the features directly from data. When using a DL
approach, the extracted features may not be explicitly related to what is
known about the problem, so in a sense, the model extracts useful infor-
mation from the signal that may not be evident. Note that even though
DL models can process raw data, it is still feasible to pre-process the input
signals using operations such as a Fourier Transform to transform the input
into a canonical representation, thus reducing the dimensionality of the
input signal prior to processing int with the DL model.

Regarding emotion recognition from physiological signals, a common
approach, illustrated in Figure 3.2, is to use Convolutional Neural Net-
work (CNN) or Recurrent Neural Network (RNN) layers to process the
signals and model their spatio-temporal information. After these layers, a
Fully-Connected Network (FCN) is commonly used as classifier to predict
emotions. In this case, the CNN and RNN layers are considered feature
extractors, and the FCN is defined as the predictor model.
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An example of a contribution that uses the approach described in the
previous paragraph is the work of Santamaria-Granados et al. [161], where
ECG and EDA signals are processed with a 1D Convolutional Neural Network
(1D-CNN) obtaining features from those signals. Another example is the
work of Alhagry et al. [6], which uses a Long Short-Term Memory (LSTM)
network (a RNN designed to address the vanishing gradient problem [88])
to extract features from raw EEG signals. Another example is the work of
Harper and Southern [85], where features are extracted by combining a
1D-CNN network concurrently with a LSTM network. An additional example
is the work of Hu et al. [91], which employs CNN-based layers to extract
spectrogram-like features from raw EEG signals, and then these features
are processed with additional CNN layers to obtain the final features. In all
these four examples, the extracted features are processed with a FCN used
to predict the emotion.

To better illustrate DL approaches for emotion recognition, Sections
3.2.2.1 and 3.2.2.2 detail the contributions of Santamaria-Granados et al.
[161] and Hu et al. [91], respectively, both contributions using DL models
for emotion recognition.

3.2.2.1 Using DL Models to Recognize Emotions from ECG and EDA
Signals

In their work, Santamaria-Granados et al. [161] use 1D-CNNs to extract
features from ECG and EDA signals, and then process those features with a
FCN to predict low and high categories of arousal and valence.

Santamaria-Granados et al. [161] use two approaches: in the first one,
they use raw signals as inputs. For the second approach, they extract some
parameters from the signals and use those parameters as inputs. Specifically,
they detect the QRS peaks from the ECG signal and use them as inputs, and
in a similar way, for the EDA signal they detect peaks and use them as inputs.
In both approaches, they process the inputs with a 1D-CNN followed by a
FCN. In their experiments, they obtain similar results with both approaches
when predicting arousal and valence from ECG signals. When using EDA
signals, the approach that uses the peaks as inputs obtains more accurate
results. The authors also compare their results with results obtained using
classical ML models like Naive Bayes, k-Nearest Neighbors, and Random
Forest, which use engineered features as inputs. This comparison shows
that their DL-based method obtains more accurate results.

Santamaria-Granados et al. [161] show that it is possible to use DL
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models to recognize high and low categories of arousal and valence, em-
ploying as inputs physiological signals, either using the raw signals or using
some parameters extracted from the signals. Moreover, their DL approach
shows better accuracy than other approaches consisting of using engineered
features and a non-deep ML model.

3.2.2.2 Using DL Models to Extract Features from EEG Signals for
Emotion Recognition

Hu et al. [91] explore the use of a convolutional layer designed to extract
in a data-driven manner spectrogram-like features from raw EEG signals, so
those features can be used to recognize high and low categories of arousal,
valence and dominance.

Their convolutional layer works by average-pooling the kernel used for
convolution. Specifically, this pooling is done 𝑙 times, scaling the kernel each
time to a specific period, thus capturing specific frequency-like characteristics
from the input signal. Each pooled kernel is used to do convolution with
the input signal, thus at the end a 2D spectrogram-like feature of size
𝑙 × signal length is obtained. Finally, this 2D feature is processed with a 2D
Convolutional Neural Network (2D-CNN) and then with a FCN to perform
the classification.

The work of Hu et al. [91] is an example of how DL models can be
used to extract features from raw physiological signals. Moreover, their
results show an improvement over other contributions that use engineered
features.

3.2.2.3 Discussion on DL Approaches

DL approaches have the advantage that can extract data-driven features
from raw data, avoiding having to design and select engineered features,
which may be difficult to do. Therefore, we are interested in a DL solution
for emotion recognition, that uses raw physiological signals as input. On
the other hand, in order to have a DL model to perform effectively, enough
data is needed. We thus argue that the performance of emotion recognition
models, for which there are no large labeled datasets, should improve if
the problem of lack of data is addressed. Addressing this issue is in fact
Challenge 3.1, which was identified in Section 3.1.2. We discuss how other
contributions address this challenge in Sections 3.2.4 and 3.2.5.

Another point to note is that the majority of the reviewed approaches
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employ CNN-based feature extractors. One drawback of these CNN-based
approaches is that they do not take context into account: after training, ker-
nel weights of the CNN are static, no matter the input. It is possible that the
result could be improved by dynamically scoring the relevance of different
parts of the input, as done by the attention layers of the Transformer [196],
which is described in Section 2.3. This is in fact a way to address Challenge
3.2, i.e. how to use a DL model to extract suitable features. The follow-
ing section provides a review of some works that use Transformer-based
approaches to address this challenge for the task of emotion recognition.

3.2.3 Transformer-Based Emotion Recognition

DL architectures based on attention, such as the Transformer [196],
can dynamically weigh the importance of different parts of the input. Al-
though developed for NLP tasks, the Transformer has been successfully
used in other domains like computer vision [52] and audio processing [14],
demonstrating its versatility for different tasks.

Transformers have been used to process time-series for the task of time-
series forecasting, like in the works of Li et al. [121] and Wu et al. [206],
showing that Transformers are also useful for processing time series data.
This is relevant because physiological signals can be seen as a type of
time series. In fact, some authors have performed analysis of medical
physiological signals using Transformers. For example, Ahmedt-Aristizabal
et al. [4] use Transformers to analyze physiological recordings to recognize
neurogenerative disorders, neurological status, and seizure type. Another
example is the work of Yan et al. [211], where a Transformer is used to
process ECG signals for heartbeat classification to help with the diagnosis of
cardiac arrhythmia.

Regarding emotion recognition, several works use Transformers to per-
form this task. Many of these works deal with multimodal signals, combining
text, visual, and audio information [95, 190, 208]. Other works also use
physiological signals in addition to the text, visual and audio inputs [30, 41].

Using Transformers only with physiological signals for emotion recog-
nition has been explored by some authors. For example, Arjun et al. [9]
employ a type of Transformer, called the Vision Transformer [52], to process
EEG signals. Another example is the work of Behinaein et al. [22], which
uses ECG signals to detect stress. In this work, the signals are processed
by a 1D-CNN, followed by a Transformer encoder, and then using a FCN as
predictor.
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For illustration purposes, the following subsection describes in detail the
work of Arjun et al. [9].

3.2.3.1 Using Transformers to Recognize Emotions from EEG Signals

In [9], Arjun et al. design a Transformer-based model to recognize high
and low categories of arousal and valence from EEG signals. To do this, they
employ a variation of the Transformer, called Vision Transformer [52], to
process the EEG signals. The original Vision Transformer [52] is designed
for computer vision tasks, where its input sequence is formed by flattened
patches from the input image, ordered sequentially.

Arjun et al. [9] present two approaches: one where the EEG signals
are first converted to images using continuous wavelet transformations [5],
and then feeding these images into the Vision Transformer; and another
approach where raw EEG signals are used directly. For the second approach,
the patches are segments from the raw signal.

The results from Arjun et al.’s work [9] show that using raw EEG signals
obtains better performance in terms of accuracy than using EEG images
obtained with continuous wavelet transformations. The work of Arjun
et al. [9] demonstrates that it is feasible to use Transformers to process
raw physiological signals, and that they are capable of extracting suitable
features for emotion recognition.

3.2.3.2 Discussion on Transformer-Based Emotion Recognition from
Raw Physiological Signals

Arjun et al.’s work [9] and other Transformer-based approaches named
in this section are examples of the direction that we also take: using Trans-
formers as the backbone to process raw physiological signals. Specifically, we
find that the characteristics of the Transformer, such as having the capacity
to account for long-range dependencies, should be useful when process-
ing raw physiological signals for emotion recognition. Also, the attention
mechanisms of the Transformer are capable of recognizing the important
parts of the raw signals, giving more weight to those important parts when
extracting the features.

However, the approaches presented in this section rely on supervised
learning, and therefore, as mentioned before, they are limited by the avail-
ability of labeled training data. Several techniques have come to solve this
issue, which are reviewed below.
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3.2.4 Training DL Models with Limited Labeled Data

When a supervised DL approach is employed to process raw physiological
signals, it is relaying on the capabilities of the DL model to find patterns
present in the data to extract useful features. This typically requires having
enough labeled data to exploit the full potential of a DL approach. The
problem is that large datasets of physiological signals with labels of emotion
are difficult to obtain, thus the size of the datasets might not be enough to
exploit effectively a DL model.

A solution to obtain more accurate results from a model under data-
constrained situations can be incorporating external knowledge during
training. This can be done by employing knowledge and expertise about a
task, and with this expertise designing and selecting different parameters
from the data. In other words, engineered features can be employed. This
approach is used by Santamaria-Granados et al. [161], where they use a
CNN to process parameters extracted from physiological signals. This work
was reviewed in Section 3.2.2.1.

An extreme case of limited labeled data is few-shot learning, where the
aim is to train a model using few labeled examples per class, typically less
than 5. Wang et al. [199] describe several techniques used in the litera-
ture to address the tasks of few-shot learning including data augmentation,
where the available data is augmented by doing some transformations on
it, thus creating more examples; embedding learning, where each sample
is embedded to a lower dimensional field, such that the embeddings corre-
sponding to the same class are closer while the embeddings corresponding
to different classes are more separated, thus making easier to differentiate
classes; and pre-training methods, where a model is pre-trained for another
task, and then the parameters of the pre-trained model are fine-tuned for
the target task.

In our case, we assume that the data available for training have more
than a few examples for each class, which is a reasonable assumption
if the different datasets of physiological data with labels of emotion are
analyzed (see Appendix A). Therefore, we do not have a few-shot learning
problem. Nevertheless, the techniques used to address the problem of
few-shot learning can be adapted to obtain more accurate results from a
DL model in data-constrained situations. Notably, pre-training techniques
are widely used in different domains like computer vision, NLP, and signal
processing, to improve the performance of models, especially when large
amounts of unlabeled data (or large amounts of data labeled for a different
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task) are available.

In this chapter, we are interested in pre-training a DL model, specifically
a Transformer-based model, for the task of emotion recognition from raw
physiological signals. We do this because we want to take advantage of the
availability of large amounts of physiological data used for medical tasks.
The data is especially abundant for ECG and EEG signals. Thus, our idea
is to use these data, which does not necessarily contain labels of emotion,
to pre-train a Transformer-based model, and then fine-tune this model to
perform emotion recognition. Since we use a pre-training technique, in the
following section we review this type of technique in detail, also reviewing
other contributions that use this method.

3.2.5 Learning Pre-trained Models with Self Supervised
Learning

Pre-training techniques are used to improve the performance of deep
neural networks, and if done in a self-supervised fashion, it is possible
to take advantage of unlabeled data that is typically more abundant than
labeled data. Below, we provide a revision of the self-supervised pre-training
technique, followed by a review of related works that use pre-training
approaches for emotion recognition.

3.2.5.1 Self-Supervised Pre-Training

Pre-training is a technique employed to boost the performance of deep
neural networks [185]. Moreover, as pre-training acts as a regularizer for
the subsequent training [60], it is especially useful when training data is
scarce since in this situation the model is prone to overfitting.

The process of pre-training and then fine-tuning a model consists of
the following. First, the model is pre-trained using a pretext task, such
that the model learns to generate good features for the actual final task.
Then, the pre-trained model, now capable of generating good features, can
be further trained for the target task, in a step called fine-tuning. These
learned features are typically called representations, and thus we can refer
to the process of pre-training a model to obtain these representations as
representation learning [23]. In addition, when going from the pre-training
phase to the fine-tuning phase, there is a transfer of what the model learned
for the pretext task to the target task. For this reason, sometimes this part is
called transfer learning.
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Figure 3.3 – Pre-training and fine-tuning a model
The pretext task should allow the model to learn representations that

capture useful information from the signal. Ideally, this task should be
self-supervised, meaning that no manual labels are required to perform the
pretext task. This has the advantage of allowing the usage of unlabeled data
during the pre-training phase, which is more abundant and easier to gather
than labeled data. So, instead of using labeled data during pre-training, the
idea is that the supervision comes from the unlabeled input data itself, by
carefully designing the pretext task [61]; hence the term self-supervised.
Accordingly, when pre-training a model using the self-supervised paradigm,
we refer to this as self-supervised pre-training.

One example of a self-supervised pretext task is reconstructing the origi-
nal input. For instance, if processing images, during pre-training the model
will output a representation of this image. Then, the image is reconstructed
from this representation with the aid of the auxiliary model. The pretext
task can be learned by comparing the reconstructed image with the original
one. Therefore, no manual labels are needed for this, but note that the task
can still be considered as supervised.

Figure 3.3 illustrates a possible approach for pre-training and fine-tuning
a model. Three phases can be identified: pre-training, weight transfer, and
fine-tuning. First, during the pre-training phase, left part of Figure 3.3,
the model processes the unlabeled inputs to generate the representations.
The module that generates these representations is called encoder, since
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it encodes the inputs into representations. These representations are then
further processed with an auxiliary model to accomplish the pretext task.

Next, the weight transfer is performed. When the pre-training is finished,
the auxiliary model is discarded, and the pre-trained encoder will be used
to solve the target task. Another way of seeing this is having a new encoder
with exactly the same architecture as the original encoder and transferring
the weights from the pre-trained encoder to the new one, as indicated by
the arrow marked as "Weight Transfer" in Figure 3.3.

Finally, the model is fine-tuned, where the model is trained to perform
the target task, using the labeled inputs. For this, a new network is added
to process the representations generated by the encoder, with the objective
of accomplishing the target task, as depicted by the right part of Figure 3.3.
In this figure, this new network is called predictor, since it typically predicts
a class or a value. During the fine-tuning step, the pre-trained encoder
might be frozen and only the predictor network is trained; or the complete
architecture, the predictor network and the pre-trained encoder, might be
trained.

Three types of self-supervised pre-training approaches can be distin-
guished, according to the pretext task. Summarizing the work of Del Pup
and Atzori [49], those types are:

1. Predictive pretext tasks: The pretext task consists of regression or
classification problems. For example, the input can be transformed by
adding noise, scaling it, flipping it, etc. Then, the pretext tasks consist
of classifying which transformation has taken place.

2. Generative pretext tasks: The pretext task consists in regenerating
the input data from a corrupted version of the data. For example, if
processing sentences, we can mask some words in the input sentences,
and the pretext task may consist in predicting those missing words.

3. Contrastive Learning pretext tasks: The idea behind this type of
task is that representations should be closer if they come from related
inputs, and farther if they come from unrelated inputs. One way of
doing this is by generating new inputs by transforming the original
input by adding noise, scaling it, flipping it, etc. Then, related inputs
are transformed inputs that come from the same sample, while unre-
lated inputs come from different samples. To measure how close or far
the representations are, cosine similarity can be used. In summary, in
this case the pretext task consists in measuring the distance between
a pair of representations, pushing them closer if they come from the
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same transformed sample, and pushing them away if they come from
different samples.

3.2.5.2 Pre-Trained Models for Emotion Recognition

In the literature, we found that authors have used the different types of
pretext tasks identified in Del Pup and Atzori [49], and mentioned above,
namely predictive tasks, generative tasks, and contrastive tasks. Below, we
review different works that use these approaches for the task of emotion
recognition.

Using a Contrastive Pretext Task

Kan et al. [98] and Shen et al. [169] use a contrastive learning approach
to pre-train a model for emotion recognition from EEG signals. In these
works, the authors take advantage of the fact that in order to obtain the
emotion-induced EEG signals, researchers who build datasets usually employ
the same stimuli, typically a video, in several subjects. Consequently, in the
datasets usually exist samples obtained from different subjects, but with
these subjects having received the same stimuli. Then, the general idea
behind the contrastive task in the works of Kan et al. [98] and Shen et al.
[169] is to maximize the similarity of the representations from EEG samples
that were triggered by the same stimuli.

Using a Generative Pretext Task

Ross et al. [154] pre-train a model using a generative approach. In
their work, they use an autoencoder [18], encoding and then reconstructing
the signal during the pre-training phase. Specifically, the autoencoder
generates a representation from the input signal, and then the signal is
reconstructed from this representation. The model can be pre-trained by
comparing the original signal with the generated one. Since the dimension
of the representation is smaller than the dimension of the input signal, this
representation should contain the most important information in order to
reconstruct the input successfully. Therefore, this approach leads to the
generation of strong representations.

Using a Predictive Pretext Task

Sarkar and Etemad [162], address the task of emotion recognition from
raw ECG signals. To pre-train their model, the authors use a predictive
approach. The pretext task consists in applying transformations to the input
signal, and then recognizing what transformation was used. Specifically,
they use 6 different transformations:
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Figure 3.4 – Depiction of the approach used by Sarkar and Eteman [162]. Affect Scorerefers to the predicted value of arousal or valence. (Figure from their related paper[163]).
— Noise Addition: Random noise from a Gaussian distribution is added

to the signal.

— Scaling: Each signal value is multiplied by a scaling factor.

— Negation: The signal values are multiplied by -1.

— Temporal Inversion: If we represent the signal as {𝑥1, 𝑥2, . . . , 𝑥𝑛−1, 𝑥𝑛},
the signal is transformed to the sequence {𝑥𝑛, 𝑥𝑛−1, . . . , 𝑥2, 𝑥1}.

— Permutation. The original signal is divided into segments, and the
transformed signal is the result of shuffling those segments.

— Time-warping: Randomly selected segments of the input signal are
squeezed or stretched along the time axis.

Figure 3.4 depicts the model used by Sarkar and Etemad. This figure
shows that the signal is first processed by CNN layers. Those are the layers
that are also used for the target task after the pre-training phase. Thus, the
authors call these layers shared layers. For the pretext task, an auxiliary
network consisting of 7 branches of FCN is added to the shared layers.
The first 6 branches are used to predict if each transformation has taken
place, and the last one predicts if no transformation was used. After the
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pre-training phase, the auxiliary network is discarded, and a new FCN is
added to the shared layers to fine-tune the model for emotion recognition.

3.2.5.3 Discussion on Pre-Trained Models

In the preceding subsection, we have reviewed several works that use
pre-training for the task of emotion recognition from physiological signals.
All the contributions that were presented are based on CNNs. As we have
already mentioned, we believe that a Transformer-based approach can be
advantageous. In addition, although some works have used pre-training
techniques with Transformers to process time-series [84, 215], none of these
works deal with uni-modal physiological signals for emotion recognition.

3.2.6 Discussion

This section reviewed several contributions that address the task of
emotion recognition. Approaches that use engineered features have the
advantage that external knowledge is incorporated into the approach. On
the other hand, selecting relevant features can be a difficult task. DL
approaches are useful for this situation since they extract features in a
data-driven fashion. Moreover, DL approaches have the advantage that they
can be pre-trained, as has been done by several authors [98, 154, 162], to
further improve the accuracy of the results obtained from a model.

Transformers have been shown to be useful for tasks of emotion recog-
nition from physiological signals. This architecture presents several advan-
tages, like its capacity to model long-range dependencies, and to attend (i.e.
give more weight) to the important parts of the input signal. Moreover, we
believe that employing self-supervised techniques to pre-train a Transformer
should help the architecture to produce stronger features from physiological
signals, leading to more accurate results when predicting emotions. Con-
sequently, we orient our contribution towards this idea. To the best of our
knowledge, we are exploring a novel approach by examining the potential
of pre-training a Transformer model for recognizing emotions from ECG and
EEG signals.
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Figure 3.5 – Generating the representation of a signal: the representation is built takinginto account the importance of different parts of the signal.

3.3 Pre-Trained Transformer for Emotion Recog-
nition

This section describes our contribution to the problem defined in Section
3.1: recognizing high and low categories of arousal and valence from raw
physiological signals. Our solution needs to address the Challenges 3.1 and
3.2 described in Section 3.1.2, namely processing raw physiological signals
effectively, and not having large quantities of labeled data. For simplicity, for
the rest of the chapter, the term emotion recognition refers to recognizing
high and low categories of arousal or valence.

To address the challenge of processing the raw signals effectively, we
design a model with the Transformer [196] as the backbone of our solution,
justifying this decision in Section 3.3.1, and presenting the details of our
Transformer-based architecture in Section 3.3.2. To address the challenge
of not having large quantities of labeled data, we develop a self-supervised
pre-training technique, which is explained in Section 3.3.3, followed by an
explanation of the fine-tuning step in Section 3.3.4.
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3.3. Pre-Trained Transformer for Emotion Recognition

3.3.1 Transformers for Raw Physiological Signals

Since we want to process raw signals, it is useful to aggregate information
from the whole signal, giving more weight to more important parts of the
signal. A way of doing this is using attention mechanisms that weigh, or
pay more attention, to the relevant parts of the input. The Transformer,
described in Section 2.3, is currently the most successful attention-based
approach, and thus we base our approach on this architecture.

A depiction of using attention to build a representation of the signal
is shown in Figure 3.5. The contribution of each part of the signal to the
representation is determined by an attention score, illustrated with the
opacity of the red lines. The Transformer should be capable of assessing this
importance when building the representation.

While the Transformer was originally developed for NLP tasks involving
transformation of sequences of symbols (words and phrases), it is based on
encoders and decoders that transform vectors of numerical values. Apply-
ing a Transformer to natural language requires transforming the symbolic
input into sequences of vectors of numerical values using an embedding.
Physiological signals are sequences of numerical values that can also be
transformed into sequences of numeric vectors that can be processed by a
Transformer.

3.3.2 Our Architecture

Our Transformer-based approach used to obtain representations from
raw physiological signals is depicted in Figure 3.6. Our approach consists
of two phases. First, we pre-train the model, illustrated by the left part of
Figure 3.6. Second, we fine-tune the model, depicted in the right part of
Figure 3.6.

As mentioned in Section 2.2.5, we use the same architecture to recognize
arousal and valence, and train different models for each of those emotion
dimensions. Specifically, a single model is pre-trained for both arousal and
valence recognition, but one model is independently fine-tuned for arousal
and another model for valence. This approach is a good trade-off between
designing two specialized systems, and having a general model that might
sacrifice individual performance. In fact, several other works also use a
single architecture trained independently to recognize the different emotion
dimensions [91, 161, 162].

Our architecture generates representations with a component that we
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Figure 3.6 – Our approach to pre-train (left) and fine-tune (right) a Transformer toprocess raw physiological signals.
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Figure 3.7 – Our Transformer-based signal encoder to generate representations. Theaggregated representation 𝑒𝐶𝐿𝑆 is used for classification.
refer to as signal encoder in Figure 3.6. We now explain each of the compo-
nents of the signal encoder, which is depicted in Figure 3.7.

3.3.2.1 Input Encoder

In order to process the raw physiological signals with our signal encoder,
it is necessary to first encode these signals into 𝑠 feature vectors of dimension
𝑑model, getting one vector for each of the 𝑠 values of the input signal. A
1D-CNNs can be used as input encoder, this way the input encoder will
aggregate local information [38].

We represent each scalar value of the raw input signal as 𝑥𝑖 , then the
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3.3. Pre-Trained Transformer for Emotion Recognition

input signal of length 𝑠 is

𝑋 = {𝑥1, ..., 𝑥𝑠}. (3.1)

We then encode the signal with the 1D-CNN to obtain the features
𝑓𝑖 ∈ ℝ𝑑model, so at the end of the input encoder we have

𝐹 = {𝑓1, ..., 𝑓𝑠} = 1D-CNN ({𝑥1, ..., 𝑥𝑠}) . (3.2)

3.3.2.2 CLS Token

The target outputs are low and high categories of arousal and valence,
based on the entire input sequence, so it is necessary to obtain a single
representation of the whole input signal. This is provided by appending a
special token to the beginning of the feature sequence 𝐹 , as done by Devlin
et al. for the BERT model [51]. This token is called classification token or
CLS for short. Thus, after adding the CLS token, the sequence of features
becomes

𝐹 ′ = {𝐶𝐿𝑆, 𝑓1, ..., 𝑓𝑠} = {𝐶𝐿𝑆; 𝐹 } (3.3)

where ; denotes concatenation.

In our case, the CLS token is a learnable vector with dimension ℝ𝑑model,
that is trained with the rest of the model. As we shall see, once the sequence
is processed by the Transformer, we obtain the representation of the CLS
token (𝑒CLS in Figure 3.7). The attention mechanisms of the Transformer
allow that the information from the entire input signal to be aggregated
in 𝑒CLS. Recall that the Multi-Head Attention (MHA) mechanism from the
Transformer, described in Section 2.3, has as inputs a query 𝑄 , a key 𝐾 , and
a value 𝑉 . When the CLS token is processed, it becomes the 𝑄 that queries
the keys from all the other values of the input signal, weighting these other
values and effectively incorporating their information in the representation
generated from this token. Therefore, when performing the classification,
𝑒𝐶𝐿𝑆 can be used as input for the classifier network.

3.3.2.3 Positional Encoding

As discussed in Section 2.3, Transformers are permutation-invariant, and
information about the order of the input values has to be injected explicitly.
In our case, we use fixed sinusoidal positional embeddings as proposed by
Vaswani et al. [196]. We add these positional embeddings to the features
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𝐹 ′ and then apply layer normalization 𝐿𝑁 [11] to the resulting vector. If
𝑝𝑒𝑖 ∈ ℝ𝑑model is the positional embedding for the time-step 𝑖, we have

𝑍 = 𝐿𝑁 ({𝐶𝐿𝑆 + 𝑝𝑒0, 𝑓1 + 𝑝𝑒1, ..., 𝑓𝑠 + 𝑝𝑒𝑠}), (3.4)

where 𝑍 is the sequence of features that will be provided to the encoder.

3.3.2.4 Transformer Encoder

Since this part of the architecture encodes the signals to obtain represen-
tations, we use the encoder part of the Transformer discarding the decoder
part. Specifically, we use a Transformer encoder to obtain the representa-
tions 𝐸. The Transformer encoder is composed by a MHA module followed
by a fully-connected Feed-Forward Network (FFN). Section 2.3 gives more
details about the Transformer encoder. Thus, to process the features 𝑍 we
have

𝐸 = {𝑒𝐶𝐿𝑆 , 𝑒1, ..., 𝑒𝑠} = Transformer_Encoder(𝑍 ) . (3.5)

The representations 𝐸, specifically 𝑒𝐶𝐿𝑆 , are used to perform the emotion
recognition, as is described in Section 3.3.4.

3.3.3 Pre-Training the Signal Encoder

We use an approach inspired by the BERT model presented in Devlin et
al. [51], to pre-train the signal encoder in a self-supervised fashion. First,
we mask random segments of a certain length in the input signal. This is
done by replacing the masked values with zeros. Then, we train the model
to predict those masked values. This process is depicted in the left part of
Figure 3.6. Note that for this step, no labeled data is needed. Although we
use zeros to mask segments of the signal, it is possible to use other values
for masking, like a value outside the range of the signal, for example. We
do not study the impact of the values used for masking, leaving this as a
perspective to explore.

To mask the signal, we follow an approach similar to the one described in
Baevski et al. [14]. First, a proportion 𝑝 of points is randomly selected from
the input signal. These selected values become the starting points of the
masked segments. Then, for each starting point, the subsequent 𝑀 points
are masked. There might be overlapping between the masked segments.
Figure 3.8 depicts our masking strategy.

A FCN is used to predict the masked points. The FCN is placed on top
of the signal encoder, as depicted in the left part of Figure 3.6. We do not
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Figure 3.8 – Masking strategy. We randomly selected points as the starting points ofsegments of length𝑀 . The masked values are replaced with zeros.
reconstruct the complete signal. Instead, we predict only the values of the
masked inputs.

Since the model predicts values for the masked parts of the signal, we
want to minimize the difference between the predicted values and the
real (original unmasked) values. Thus, for this pre-training phase, the
reconstruction loss L𝑟 is the mean square error between predicted and real
values:

L𝑟 =
1
𝑁𝑚

𝑁𝑚∑︁
𝑗=1

(𝑥 𝑗 − 𝑥𝑝 ( 𝑗))2, (3.6)

where 𝑁𝑚 is the number of masked values, 𝑥 𝑗 is the prediction corresponding
to the 𝑗𝑡ℎ masked value, and 𝑥𝑝 ( 𝑗) is the original input value selected to be
the 𝑗𝑡ℎ masked value, whose position is 𝑝 ( 𝑗) in the input signal.

3.3.4 Fine-Tuning the Model

To fine-tune the model to recognize high and low categories of arousal
and valence, a supervised approach is used. This means that now labeled
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data is employed. As shown in the right part of Figure 3.6, a FCN is added
on top of the signal encoder, replacing the network used as masked-values
predictor. This new FCN, which works as the emotion classifier, receives as
input 𝑒𝐶𝐿𝑆 .

The new FCN is randomly initialized, while the signal encoder is initial-
ized with the weights obtained after the pre-training phase. During this
phase, all the parameters of the model, including the pre-trained weights,
are fine-tuned. We use the binary cross-entropy loss L𝑓 𝑡 as the fine-tuning
loss:

L𝑓 𝑡 = −
𝑁∑︁
𝑛=1

(
𝑤𝑝𝑦𝑛 log(𝜎 (𝑜𝑢𝑡𝑛)) − (1 − 𝑦𝑛) log(1 − 𝜎 (𝑜𝑢𝑡𝑛))

)
, (3.7)

where 𝑦𝑛 is an indicator variable with a value of 1 if the class of the ground
truth for sample 𝑛 corresponds to a high level of arousal (high emotion
intensity) or high level of valence (positive emotion), and 0 if it corresponds
to a low level of arousal (low emotion intensity) or low level of valence
(negative emotion). 𝑁 is the number of samples in the minibatch, 𝑜𝑢𝑡𝑛 is
the output of the classifier for sample 𝑛, and 𝜎 is the sigmoid function. We
use the ratio of negative to positive training samples 𝑤𝑝 to compensate for
the unbalances that may be present in the dataset.

3.3.5 Expected Results

We believe that using our pre-training strategy, the model should be able
to generate stronger representations from the data, and be less prone to
overfitting. Therefore, we expect the following result regarding recognizing
emotions from physiological signals:

Expected Result 3.1. Using our strategy to pre-train a model and then fine-
tune it to recognize high and low categories of arousal and valence, should give
more accurate results than training a model from scratch.

In addition, we believe that a Transformer-based architecture should
be more suitable to model the dependencies from the inputs than other
DL networks like CNNs or RNNs, when processing physiological signals for
emotion recognition. This, combined with our pre-training strategy, led us
to expect the following result:

Expected Result 3.2. Our pre-trained Transformer-based approach should
improve the results in terms of the accuracy of predictions of arousal and
valence, compared to other state-of-the-art methods.
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No Evaluation Dataset Physiological Signal

1 AMIGOS ECG
2 DREAMER ECG
3 AMIGOS EEG
4 DREAMER EEG

Table 3.1 – Evaluation scenarios to test our approach for emotion recognition
Finally, we use a Transformer-based approach because its attention layers

can identify and give more weight to the important parts of the physiological
signal used as input. Then, we expect the following:

Expected Result 3.3. The attention layers of the Transformer will give more
attention to certain parts of the input signal, thus demonstrating that using
this architecture is valuable for physiological signals.

3.4 Experiments

This section presents the evaluation of our Transformer-based approach
designed to recognize high and low categories of arousal and valence from
raw physiological signals. Our approach is tested with ECG and EEG signals.
This section starts by describing our experimental setup in Section 3.4.1,
followed by the presentation of the results obtained when our approach is
evaluated in Section 3.4.2.

3.4.1 Experimental Setup

3.4.1.1 Evaluation Scenarios

To evaluate our approach, we need data to fine-tune and test the model.
We call these data the evaluation dataset. We also need data to pre-train the
model, which we call the pre-training datasets. We call an evaluation scenario
assessing the model with an evaluation dataset using a specific physiological
signal. Table 3.1 describes the evaluation scenarios for our experiments.
The datasets used are the AMIGOS [135] and DREAMER [102] datasets,
which provide ECG and EEG signals collected from subjects who watched
videos specially selected to evoke an emotion. In both datasets, each subject
conducted a self-assessment of their emotional state after watching each
video, rating their levels of arousal and valence on a scale of 1 to 9 in
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AMIGOS, and on a scale of 1 to 5 in DREAMER. In the AMIGOS dataset,
there are data from 40 participants and around 65 hours of data were
collected. For the DREAMER dataset, data comes from 23 subjects, and
around 23 hours of data were collected. Appendix A provides more details
about these datasets.

When processing EEG signals, the following 10 channels are used: F7,
F3, T7, P7, O1, O2, P8, T8, F4, F8. We use these channels as they cover
different regions around the entire scalp (see Figure 2.8b). Moreover, they
are commonly present in the datasets that we use for pre-training.

Regarding ECG signals, the datasets provide signals taken from the left
and right sides of the body. From preliminary experiments and observations,
we did not find a difference between using any of those channels. For our
experiments, we use the signals taken from the left side.

3.4.1.2 Datasets for Pre-Training

To pre-train the model using a self-supervised approach, we gather
datasets that include the necessary physiological signals. It is important to
note that these data do not need to contain labels of arousal and valence.
We collect two sets of data: One with ECG signals and one with EEG signals.

ECG Data. The following datasets are used: ASCERTAIN [184], PsPM-
FR [194], PsPM-HRM5 [145], PsPM-RRM1-2 [12], and PsPM-VIS [209]. We
also employ the AMIGOS dataset and the DREAMER dataset as pre-training
datasets. Since AMIGOS and DREAMER are also used as evaluation datasets,
care is taken not to test and pre-train the model with the same samples.
In order to obtain as much data as possible, we use all the ECG channels
available in the datasets. The authors of the ASCERTAIN dataset provide a
quality evaluation of the data. This evaluation is used to discard the signal
that has a quality level of 3 or worse. The total amount of ECG data used
for pre-training is around 230 hours.

EEG Data. The following datasets are used: WAY-EEG-GAL [129],
BCI2000 [78, 164], and Large-EEG-BCI [103]. These datasets were collected
to develop Brain-Computer Interfaces. We also use the AMIGOS dataset as
part of the pre-training datasets. Since AMIGOS is also used as evaluation
dataset, we pay attention to not use the same samples to pre-train and test
our approach. Around 195 hours of EEG data are gathered to pre-train the
model.
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3.4.1.3 Signal Pre-Processing

Since our objective is to use raw physiological signals, we employ mini-
mal pre-processing on those signals. The same pre-processing is done for the
pre-training and evaluation data. We use an 8th order Butterworth band-pass
filter, with cut-off frequencies of 0.8Hz and 50Hz. This Butterworth filter
was selected through preliminary experiments. The 50Hz cut-off frequency
is used to eliminate the line noise, that is the noise that comes from the
power source. The 0.8Hz cut-off frequency is used to eliminate any drift
that the signal might have, i.e. slow variations of the signal that might
be produced by movements of the sensor, for example. After filtering the
signals, the next step is to down-sample them to a sample rate of 128Hz, if
they have a sample rate greater than that. This way, all the signals will have
a common sample rate. Next, we normalize the signals such that for each
subject, they have zero-mean and unit-variance. Similar to other works that
use physiological signals to predict emotions [135, 162, 154], we segment
the signals and use each segment as a sample. We use 10-second segments
as samples in our experiments as ten seconds is a short enough length to
work efficiently with our Transformer-based solution, and we argue that it
is long enough to capture an emotional response.

3.4.1.4 Pre-Training Set-Up

To maximize the quantity of data used to pre-train the model, we consider
the AMIGOS and DREAMER datasets as part of the pre-training datasets.
As these datasets are also used for evaluation, care was taken to avoid
using the same samples to pre-train and test the model, while using as
much data as possible from the gathered datasets to pre-train the model. To
accomplish this, a different model is pre-trained for each evaluation scenario
using different parts of AMIGOS and DREAMER datasets, and leaving for
evaluation the samples not used in pre-training. A detailed explanation of
how this is performed is provided in Appendix B.

To prepare the signals for our pretext pre-training task of predicting
masked segments, for each of the 10-second segments, 3.25% of points are
randomly selected as the starting points of masked spans of length 𝑀 = 20.
Since we allow overlapping of masked segments, on average this results in
masking around 47% of each segment.

For all the evaluation scenarios, we build the input encoder of our model
using a 1D-CNN composed of 3 layers, employing the Rectified Linear Unit
(ReLU) activation function. At the first layer and at the output of the encoder,
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we use layer normalization [11]. Each layer has a number of channels of 64,
128, and 256, with kernel sizes of 65, 33, and 17. The stride for all layers is
1. This configuration gives a receptive field of 113 input values, which at a
sampling rate of 128Hz, is equivalent to 0.88 seconds. This receptive field
size was selected because it matches the typical interval between peaks in an
ECG signal, which has values between 0.6 seconds and 1 second, including
when the person is experiencing emotions [207]. Based on preliminary
experimental studies, we estimate that this receptive field is also suitable
for EEG signals.

The Transformer in the signal encoder has a model dimension of 𝑑model =

256. This Transformer has two layers and two attention heads, and the
size of the FFN is 𝑑model · 4 = 1024. To predict the masked values, we
use a single-layer FCN with ReLU activation function. The size of this
FCN is 𝑑model/2 = 128. When processing ECG signals, we employ an
additional linear layer to project the output to a single value. This single
value corresponds to the prediction of a masked point. Likewise, when
processing EEG signals, we employ an additional linear layer to project the
output to 10 output values. Each of these output values corresponds to the
predicted value of each masked EEG channel.

For each evaluation scenario, the corresponding models are pre-trained
for 500 epochs. We use learning rate warm-up, gradually increasing it
during the first 30 epochs from 3.33e−5 to 0.001 when using ECG signals
and to 0.0005 when using EEG signals. Then, the learning rate is linearly
decreased. We use Adam’s optimization with hyper-parameter values of
𝛽1 = 0.9, 𝛽2 = 0.999, and 𝐿2 weight decay of 0.005. A dropout of 0.1 is
applied at the end of the input encoder, after the positional encoding, and
inside the Transformer.

Bayesian Optimization with Hyperband (BOHB) [66] is used to tune
the number of layers and heads of the Transformer, the learning rate, and
the warm-up duration. This tuning is done using the Ray Tune framework
[122].

3.4.1.5 Fine-Tuning Set-Up

During this phase, we train our model for emotion recognition in a
supervised fashion. Specifically, we fine-tune our pre-trained model to
predict high and low categories of arousal and valence, using the ECG and
EEG signals in AMIGOS and DREAMER datasets. We fine-tune the complete
model: the signal encoder and the FCN classifier.
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Dataset Signal
Learning

Rate

Learning
Rate

Decay

Classifier
Layer
Sizes

Classifier
Dropout

AMIGOS ECG 0.0001
0.65 every
45 epochs

1024, 512 0.3

DREAMER ECG 0.0001 None 128 0.2

AMIGOS EEG 0.0001
0.65 every
45 epochs

64 0.6

DREAMER EEG 0.0001
0.65 every
45 epochs

64 0.6

Table 3.2 – Hyperparameters used to fine-tune the models under the different evalua-tion scenarios.

For labels, we employ the emotional self-assessments provided in both
datasets. Since we are interested in predicting high and low categories of
arousal and valence, it is necessary to process the numerical values given in
the self-assessments. In the AMIGOS dataset, the self-assessments provide
numerical values of arousal and valence in the range of 1 to 9. In the
DREAMER dataset, the range for arousal and valence is 1 to 5. To obtain
the high or low labels from the numerical values, we find the average
arousal and valence value in each dataset and use it as a threshold value to
determine a low or high category of arousal and valence.

The FCN used as classifier uses ReLU as activation function. We add an
additional linear layer at the output of the classifier to project the output
to a single value. For each evaluation scenario, we fine-tune one model to
predict arousal and another to predict valence. The models are fine-tuned
for 100 epochs, using Adam optimization, with 𝛽1 = 0.9, 𝛽2 = 0.999. As it
was done for pre-training, we use a dropout of 0.1 at the end of the input
encoder, after the positional encoding, and inside the Transformer. Table
3.2 summarizes the rest of the hyper-parameters. As with pre-training, we
use the Ray Tune Framework with BOHB to tune the different parameters
of our model.

To evaluate our approach, we use 10-fold cross-validation, taking care of
not using the same samples that were used for pre-training to evaluate the
model. Details about this are given in Appendix B.
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Arousal Acc. Arousal F1 Valence Acc. Valence F1

Aggregation Method
Last Representation 0.85±1.3e−2 0.84±1.2e−2 0.80±7.6e−3 0.80±8.0e−3

Max-Pooling 1 0.85±6.6e−3 0.84±6.4e−3 0.78±6.5e−3 0.78±6.6e−3

Max-Pooling 2 0.86±7.4e−3 0.84±7.3e−3 0.80±6.3e−3 0.80±5.9e−3

Average-Pooling 1 0.87±8.3e−3 0.87±7.3e−3 0.82±6.2e−3 0.82±6.7e−3

Average-Pooling 2 0.88±4.4e−3 0.87±4.6e−3 0.83±6.4e−3 0.83±6.6e−3

CLS 0.88±5.4e−3 0.87±5.4e−3 0.83±7.8e−3 0.83±7.4e−3

Segment Length
40 seconds 0.86±1.2e−2 0.85±1.1e−2 0.82±1.0e−2 0.81±9.9e−3

20 seconds 0.87±5.6e−3 0.86±6.4e−3 0.82±7.8e−3 0.82±8.1e−3

10 seconds 0.88±5.4e−3 0.87±5.4e−3 0.83±7.8e−3 0.83±7.4e−3

Table 3.3 – Comparison of different strategies of our approach on the AMIGOS datasetwith ECG signals for arousal. Best results are in bold, second bests are underlined.
3.4.2 Results

3.4.2.1 Metrics

To evaluate our results, we use as metrics the mean accuracy and the
mean F1-score between the two predicted classes (high and low categories
of arousal or valence), averaged across the 10 folds of cross-validation. We
also report the confidence intervals of each metric, computed across the 10
folds of cross-validation. These confidence intervals are calculated using a
t-distribution with 9 degrees of freedom for a two-sided 95% confidence.
Specifically, the following expression is used to calculate the Confidence
interval CI for each metric:

CI = ±2.262
𝑆√
10
, (3.8)

where 𝑆 is the standard deviation of the 10 results corresponding to each
fold.

3.4.2.2 Preliminary Studies for the Aggregation Method and Segment
Length

To test our model, it is necessary to determine an aggregation method
and the segment length. The aggregation method concerns how to obtain a
single representation from all the outputs of the signal encoder in order to
make the prediction. As indicated in Section 3.3.2, we use the representa-
tion 𝑒𝐶𝐿𝑆 of the 𝐶𝐿𝑆 token as the aggregated information of the processed
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segment. Nevertheless, other options can be used for that purpose; thus,
we experimentally test those options and compare the results with using
𝑒𝐶𝐿𝑆 . Second, regarding the segment length, we compare different segment
lengths used to divide the input signal, in order to experimentally justify
our choice of 10-second segments. We test these different options only in
the evaluation scenario with AMIGOS as the evaluation dataset and using
ECG signals. We expect the results to generalize to the other scenarios. The
results of these experiments are reported in Table 3.3 and discussed below.

Aggregation Method: We compared several strategies to aggregate the
representations given by the signal encoder. Note that the goal is to obtain
a single vector to feed our FCN classifier. Below we describe the different
strategies tested to get this aggregated vector.

— CLS: This is the strategy described in Section 3.3.2, where we use the
representation of the 𝐶𝐿𝑆 token, i.e. we use 𝑒𝐶𝐿𝑆 .

— Last Representation: We use the last representation given by the
signal encoder, i.e. we use 𝑒𝑠 (see Expression 3.5).

— Max-Pooling 1: We apply max-pooling across all the output represen-
tations given by the signal encoder.

— Max-Pooling 2: We optimize a max-pooling strategy on the validation
set: we reduce the representations to a size of 64, divide them into
two groups, and then we apply max-pooling on each group. Finally,
the results are concatenated to obtain a single representation of size
128.

— Average-Pooling 1: We apply average-pooling across all the output
representations given by the signal encoder.

— Average-Pooling 2: We optimize an average-pooling strategy on
the validation set: we divide the representations into 4 groups, and
then we apply average pooling on each group. The next step is to
concatenate the results to obtain a single representation of size 1024.

Table 3.3 shows that the best results are obtained using the Average-
Pooling 2 strategy and using CLS. Even though the results are practically
identical for both of them, the CLS strategy has the advantage of not requir-
ing any kind of tuning on the validation data, as opposed to Average-Pooling
2. In fact, using the CLS token is a commonly-used strategy for Transformers.
Therefore, for the remainder of the experiments, we will use CLS as our
aggregation method.

Segment Length: We test 3 different segment lengths for dividing the
physiological signals into the input samples. Specifically, we test segments
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(a) Arousal (ECG) (b) Arousal (EEG) (c) Valence (ECG) (d) Valence (EEG)
Figure 3.9 – Confusion matrices with normalized rows, obtained with our approach usingthe CLS token, and 10-second segments as inputs. Results on the AMIGOS dataset,aggregating the results of the 10 folds.

of 10, 20, and 40 seconds. Table 3.3 shows that, for both valence and
arousal, shorter segments lead to better results. We believe this is the case
because longer segments should require more complex models, that is, a
bigger Transformer and FCN classifier. These bigger models are harder to
train due to the relatively low amount of labeled data on our evaluation
datasets. Another advantage of shorter segments is that they are faster to
process, permitting a higher number of training epochs and smaller learning
rates. Thus, for the following experiments, we use 10-second segments.

Figure 3.9 shows the confusion matrices obtained in the AMIGOS dataset,
with the model using the CLS token as aggregation method, and using as
inputs 10-second segments. The displayed confusion matrices show the
aggregated results from the 10 folds, with their rows normalized. From
that figure, we notice that the model is better at recognizing the high
category than the low category of arousal. For example, when using ECG
signals to predict arousal (Figure 3.9a), the model identifies correctly 91%
of the high arousal samples, compared to 82 % of the low arousal samples.
When recognizing valence from ECG (Figure 3.9c), the model obtains better
results when identifying the low category than the high category. Meanwhile,
when recognizing valence from EEG (Figure 3.9d), the model has equal
performance when recognizing the low and the high category. In summary,
our model is better at recognizing negative emotions of high intensity. We
found this result satisfactory, in the sense that we believe that this is the most
critical situation that should be identified when monitoring the emotional
state of a frail person.
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Pre-train Arousal Acc. Arousal F1 Valence Acc. Valence F1 Avg. Δ

AMIGOS
ECG

No 0.85±5.6e−3 0.84±5.8e−3 0.80±6.5e−3 0.80±6.4e−3
3.7%

Yes 0.88±5.4e−3 0.87±5.4e−3 0.83±7.8e−3 0.83±7.4e−3

DREAMER
ECG

No 0.74±1.1e−2 0.74±1.2e−2 0.72±8.2e−3 0.71±7.4e−3
11.7%

Yes 0.83±7.1e−3 0.83±7.6e−3 0.80±1.1e−2 0.79±1.1e−2

AMIGOS
EEG

No 0.76±7.3e−3 0.75±8.3e−3 0.70±6.4e−3 0.70±6.8e−3
8.3%

Yes 0.81±1.1e−2 0.80±9.4e−3 0.77±9.3e−3 0.77±9.1e−3

DREAMER
EEG

No 0.64±1.0e−2 0.64±1.1e−2 0.63±1.1e−2 0.61±1.1e−2
7.8%

Yes 0.68±1.7e−2 0.68±1.6e−2 0.68±1.9e−2 0.67±1.4e−2

Table 3.4 – No Pre-trained vs. pre-trained model for the different evaluation scenarios.Avg. Δ is the average percentage increase of the different metrics between the nopre-trained model and its pre-trained counterpart.
3.4.2.3 Effectiveness of Pre-Training

To evaluate the effectiveness of our pre-training strategy and validate
Expected Result 3.1, we replace our pre-trained signal encoder with an
encoder using randomly initialized parameters. In other words, we skip the
left part of our process depicted in Figure 3.6.

As can be seen from both the accuracy and the F1-score shown in Table
3.4, a pre-trained model was found to perform better than a model trained
from scratch in all the evaluation scenarios. These results demonstrate
that pre-training our Transformer-based signal encoder is beneficial for
our task of recognizing emotions from physiological signals. Pre-training
allows the model to build stronger representations, making the model more
generalizable and less prone to overfitting. These ideas are expanded below

A more generalizable model: In Table 3.4, the column Avg. Δ indicates
the average percentage increase between a pre-trained and a no pre-trained
model. The average is calculated across all the metrics of each evaluation
scenario. We can see that the minimum increase is 3.7%, and it corresponds
to using AMIGOS with ECG signals. For the other evaluation scenarios, the
increase is significantly higher.

In developing the architecture, we used the ECG signals from the AMI-
GOS dataset for both tuning and testing the model. As a result, the hyper-
parameters of the model are better tuned for this scenario than for the
other ones. Therefore, even without pre-training, in this case the model
reaches high performance, so improving is harder. In the other scenarios, the
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(a) Validation losses for Arousal (b) Validation losses for Valence
Figure 3.10 – Comparison of the losses on the validation set when using a pre-trainedmodel, in red, compared to using a model without pre-training, in blue. We show thelosses for arousal (a) and valence (b).
architecture may not be completely tuned for them, so we get relatively low
scores when no pre-training is used. But using pre-training, we overcome
the problem of not using a highly tuned model, gaining large increases in
performance. From these observations, we can conclude that through our
pre-training strategy we make the model more generalizable, allowing it to
perform well across different datasets and physiological signals.

Overcoming overfitting: During our experiments with pre-trained and
not pre-trained models, we noticed that the model without pre-training had
a tendency to overfit quickly, while the pre-trained model did not exhibit the
same behavior. Figure 3.10 shows an example of this, where we compare
the losses in the validation dataset between using a pre-trained (red line)
and a no pre-trained (blue line) model. This figure shows the average
validation loss across the 10 folds for the AMIGOS dataset with ECG signals.
We obtained similar results in the other evaluation scenarios. Through
these observations, we can conclude that pre-training the model on different
datasets increases its robustness to overfitting when the model is fine-tuned
on a specific dataset.

3.4.2.4 Comparison With Other Approaches

Table 3.5 reports various state-of-the-art results for emotion recognition
obtained using the same datasets and the same physiological signals that
we use. It is necessary to take into account that these works use different
experimental protocols to perform the evaluation. For example, there is
a variety of input segment sizes, different partitions of data into training
and test sets, subject-dependent and independent evaluations, etc. For this
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Model
Subj.
Ind.

Input Seg.
Size

Arousal
Acc.

Arousal
F1

Valence
Acc.

Valence
F1

AMIGOS WITH ECG SIGNALS.
Gaussian Naive Bayes [135] Yes 20s - 0.55 - 0.55
1D-CNN [161] No 200 peaks 0.81 0.76 0.71 0.68
2D-CNN [175] Yes No 0.83 0.76 0.82 0.80
1D-CNN with LSTM [85] Yes No - - 0.81 0.80
Pre-trained CNN [162] No 10s 0.89 0.88 0.88 0.87
Autoencoder [154] No 10s 0.85 0.89 - -
Pre-trained Transf. (ours) No 10s 0.88 0.87 0.83 0.83

DREAMER WITH ECG SIGNALS.
SVM [102] Yes No 0.62 0.58 0.62 0.53
2D-CNN [175] Yes No 0.81 0.77 0.80 0.78
1D-CNN with LSTM [85] Yes No - - 0.71 0.66
Pre-trained Transf. (ours) No 10s 0.83 0.83 0.80 0.79

AMIGOS WITH EEG SIGNALS.
Gaussian Naive Bayes [135] Yes 20s - 0.58 - 0.56
2D-CNN [175] Yes No 0.79 0.74 0.83 0.80
CNN + SVM [187] No No 0.91 - 0.87 -
1D-CNN [114] Yes No 0.66 0.67 0.61 0.63
2D-CNN [114] Yes No 0.79 0.79 0.79 0.76
Pre-trained Transf. (ours) No 10s 0.81 0.80 0.77 0.77

DREAMER WITH EEG SIGNALS.
SVM [102] Yes No 0.62 0.58 0.62 0.52
2D-CNN [175] Yes No 0.79 0.77 0.79 0.75
Graph CNN [178] No 60s 0.85 - 0.86 -
CNN + SVM [187] No No 0.90 - 0.88 -
1D-CNN [114] Yes No 0.61 0.63 0.61 0.60
2D-CNN [114] Yes No 0.83 0.81 0.80 0.79
Pre-trained Transf. (ours) No 10s 0.68 0.68 0.68 0.67

Table 3.5 – Results of different methods on the different evaluation scenarios. Theseresults are not directly comparable as the experimental protocols are not necessarilythe same.

reason, we cannot compare these results directly to each other, nor can
we compare these results with our work. However, we present them to
demonstrate the range of different solutions that have been proposed for
this task and to provide a comparative understanding of the performances
achieved in the different evaluation scenarios.

To have a more fair comparison of our work and another state-of-the-art
approach, it is necessary that both use the same experimental protocol. In
order to achieve this, we fully retrain and evaluate the pre-trained CNN
approach proposed by Sarkar and Etemad [162], using exactly the same
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Model Arousal Acc. Arousal F1 Valence Acc. Valence F1

AMIGOS WITH ECG SIGNALS.
Pre-trained CNN [162] 0.85±5.4e−3 0.84±5.3e−3 0.77±5.5e−3 0.77±5.1e−3

Pre-trained Transf. (ours) 0.88±5.4e−3† 0.87±5.4e−3† 0.83±7.8e−3† 0.83±7.4e−3†

DREAMER WITH ECG SIGNALS.
Pre-trained CNN [162] 0.81±1.1e−2 0.81±9.9e−3 0.79±8.4e−3 0.78±7.3e−3

Pre-trained Transf. (ours) 0.83±7.1e−3† 0.83±7.6e−3† 0.80±1.1e−2 0.79±1.1e−3†

Table 3.6 – Comparison of our approach with the approach of Sarkar and Etemad [162],under the same experimental protocol. The symbol (†) indicates that the differencesare statistically significant.
protocol that we use in our experiments. To run these experiments, we
use the code provided by the authors 1. The work of Sarkar and Etemad
addresses the task of recognizing emotions from ECG signals, so we make
the comparison only with the evaluation scenarios where ECG signals are
used. To pre-train, train and test their approach, we use the same data that
we use to pre-train and train our model. We also use the same partitions of
train, validation, and test sets, and the same folds when doing the 10-fold
cross-validation. In general, where applicable, we replicate the experimental
setup described in Section 3.4.1.

Table 3.6 shows that under the same experimental protocol, our approach
achieves better performance than the approach of Sarkar and Etemad, for
both arousal and valence. Moreover, the difference between the results of
our and their approach is statistically significant, with 𝑝 < 0.05 following
a t-test. This last statement is true for all the results except for valence
accuracy using the DREAMER dataset. In this case, although our results are
better, they are not statistically different than those obtained using their
approach. These results confirm our Expected Result 3.2, i.e. we expected
that our approach should improve the state-of-the-art.

With these results, we can conclude that our pre-trained Transformer
approach produces strong representations useful for predicting emotions
from ECG and EEG signals, which improves the results over the previous
state-of-the-art.

3.4.2.5 Attention Weights

It is interesting to observe the attention weights produced by the Trans-
former, to assert our claim that the Transformer is capable of assigning more

1. https://code.engineering.queensu.ca/pritam/SSL-ECG
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(a) Attention weights when predicting arousal.

(b) Attention weights when predicting valence.
Figure 3.11 – Attention weights overlaid in the corresponding ECG input signal, corre-sponding to arousal prediction (a) and valence prediction (b). The darker the color, thegreater the attention weight.

importance to certain parts of the signal, i.e. checking if our Expected Result
3.3 is correct. To do this, we extract the Transformer attention matrix from
the last layer of the Transformer. Since in our experiments each layer has
two heads, we calculate the average of the weights produced by each head.

Figure 3.11 shows the attention weights overlaid over the corresponding
ECG input signal of a chosen sample. The darker the color, the greater the
attention weight. These weights correspond to the CLS token; that is, it
indicates how much attention this token pays to each point on the input
signal. Recall that this token is used to perform the classification.

It is interesting to see that the model succeeds in capturing the periodic
nature of the ECG signal. For example, Figure 3.11a clearly shows that the
attention weights follow a periodic pattern, each time giving less attention
to the small peaks that come after the main peak.
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These observations confirm our claim that a Transformer based approach
is capable of assigning different weights to the input signal, thus allow-
ing us to obtain a representation that is the weighted aggregation of the
information from all the signal, confirming this way our Expected Result
3.3.

3.5 Conclusions

This chapter presented the first contribution of this thesis: pre-training
a Transformer with a self-supervised approach for emotion recognition
from physiological signals. With this contribution, we address the two
main challenges that were identified regarding this task: the lack of large
quantities of labeled data to train the model (Challenge 3.1), and how to
process raw physiological signals effectively (Challenge 3.2).

First, to address the challenge of how to process raw physiological sig-
nals effectively, we employ a Transformer-based approach. We showed that
in fact this architecture assigns more weight to certain parts of the input
signal, which we could argue are the important parts. Second, to address
the challenge of not having large quantities of labeled data, we pre-train our
model with unlabeled physiological signals using a self-supervised approach.
We experimentally demonstrated that our pre-training technique, predicting
masked segments of the inputs, leads to a performance improvement com-
pared to using a no pre-trained model. In addition, we discussed that this
improvement could be explained because the model becomes more general-
izable and less prone to overfitting. Talking more broadly, with the results
presented in this chapter, we showed that self-supervised pre-training and
Transformer-based models could be successfully used in affective computing.

Taking a wider view, if the goal is to monitor the mental well-being of
frail people in a smart environment, it is important to recognize emotions
accurately, using signals that such an environment may provide. This
environment can be equipped with devices that collect signals for other
health purposes, like physiological signals. Thus, it is appealing to use that
type of signal for emotion recognition. Moreover, nowadays those signals
can be acquired using portable, affordable off-the-shelf devices, therefore in
the future, we expect that the acquisition of those signals becomes even less
invasive. We believe that the contributions made in this chapter are a step
towards the goal of monitoring the emotional wellness of frail people living
in smart environments.
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In this chapter, we used each type of physiological signal independently
and obtained good results with each signal. This shows that those signals
contain useful information for emotion recognition. It may be the case that
this information may not overlap. Therefore, if multiple physiological signals
are used simultaneously, they may complement each other, thus further
improving the results. This approach is explored in the next chapter, where
we investigate the usage of multiple physiological signals simultaneously to
perform emotion recognition.
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CHAPTER 4

EMOTION RECOGNITION FROM MULTIPLE

PHYSIOLOGICAL SIGNALS

To effectively monitor the emotional well-being of a frail person living
in a smart environment, it is desirable to have an accurate emotion recog-
nition system. Therefore, it is appealing to take advantage of the multiple
physiological signals that may be gathered in a smart environment, not only
processing them individually, as it was done in Chapter 3, but using them at
the same time to exploit the complementary information that they might
carry.

This chapter describes a method to recognize emotions from multiple
physiological signals, extending the work from Chapter 3 where we devel-
oped a solution that works for single physiological signals. This chapter
starts by providing in Section 4.1 a definition of the problem, and a de-
scription of the motivations and challenges of this problem. It continues
by reviewing the current literature and techniques related to recognizing
emotions from multiple sources in Section 4.2. Next, in Section 4.3, it
describes in detail the second contribution of this thesis, which is a method
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to recognize emotions from multiple physiological signals using pre-trained
Transformers. Finally, in Section 4.4, it shows the experimental results
obtained when testing our approach.

4.1 Problem Definition, Motivations and Chal-
lenges

In this chapter, our goal is to recognize high and low categories of
arousal and valence from multiple raw physiological signals. Specifically,
raw Electrocardiogram (ECG) and Electroencephalogram (EEG) signals are
combined. These are the same signals used in Chapter 3, where they were
used individually as inputs for an emotion recognition system. As for chapter
3, those signals are selected because of advantages such as that they can
be gathered with portable equipment, they might be already acquired from
frail people for other medical purposes, and there exist abundant unlabeled
datasets with these types of signals that can be used to pre-train a model.

4.1.1 Motivations

The problem addressed in this chapter is related to the one addressed
in Chapter 3, sharing the motivations behind working with high/low cate-
gories of arousal and valence, and using raw physiological signals. These
motivations, which are explained in detail in Sections 3.1.1.1 and 3.1.1.2,
are summarized below:

— Using high/low categories of arousal and valence: A way to monitor
the mental well-being of a person is to identify if the person is feeling
a positive or negative emotion and if the intensity of this emotion is
high or low. To identify these situations, it is enough to recognize high
and low categories of arousal and valence.

— Using raw physiological signals: ECG and EEG signals can be cap-
tured with wearable, wireless, and low-cost off-the-shelf equipment,
giving the potential to use emotion recognition methods in everyday
scenarios [102]. In addition, raw signals are used instead of engi-
neered features extracted from these signals because a Deep Learning
(DL) approach is employed, which is capable of extracting robust
features from these raw signals.

Multiple physiological signals are expected to improve the accuracy of
estimates of the emotional state of a subject by providing complementary
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information. Therefore, it is worth trying to combine them in an attempt
to improve the accuracy of the results given by the model. Specifically for
ECG and EEG signals, they are produced by different systems of the body:
ECG signals are related to the autonomic nervous system, and EEG signals
monitor brain activity so they are more related to cognition. For this reason,
the interaction of each of those signals with emotions is not the same, and
therefore, the information about emotions that they carry might be different
but complementary.

Since we consider that all physiological signals are from the same modal-
ity, we designate this problem as detecting emotions from multi-signal inputs
rather than from multimodal inputs. Nevertheless, both types of problems
are related, and the multi-signal emotion recognition task can be seen as a
special case of multimodal emotion recognition.

4.1.2 Challenges

In solving the problem addressed in this chapter, there are challenges
similar to the ones identified in Chapter 3 and detailed in Section 3.1.2,
namely, how to process raw signals effectively and the lack of large quantities
of labeled data to train the model.

The challenge of the lack of large quantities of labeled data is especially
important in this chapter because there is the need for labeled datasets that
have all the concerned signals, which may limit even more the available
datasets. With this, the main challenge for solving the problem addressed in
this chapter is:

Challenge 4.1. How to train a model for emotion recognition from multiple
physiological signals, without large quantities of labeled data that contain all
those multiple physiological signals.

4.2 State of the Art on Emotion Recognition
from Multiple Signals

This section reviews relevant literature related to recognizing emotions
from multiple physiological signals, discussing fusion techniques in Section
4.2.1, and then reviewing contributions that use Machine Learning (ML)
approaches with and without pre-training in Sections 4.2.2 and 4.2.3.
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Figure 4.1 – Different types of multimodal fusion.

4.2.1 Fusion of Multiple Signals

It is possible to use established techniques of multimodal fusion to
combine multiple physiological signals. As described by Baltrusaitis et al.
[17], most of the works that employ multimodal fusion use a model-agnostic
approach that can be divided into two types: early fusion and late fusion.
If we constrain the models to DL approaches, a third type of fusion can be
introduced: mid-fusion. The difference between those approaches is at what
level the fusion of the different modalities takes place. Figure 4.1 shows a
graphical representation of those types of fusion.

4.2.1.1 Early Fusion

As described in Atrey et al. [10], early fusion is done by combining the
different modalities before they are fed into the model. Commonly, this is
done by concatenating features extracted from each modality, although raw
data can also be used as input. This approach is depicted in Figure 4.1a,
where𝑚1 and𝑚2 are the features from two different modalities. This type of
fusion allows the model to learn cross-correlations and interactions between
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the low-level characteristics of each modality [74]. In fact, with early fusion,
we can say that the obtained feature 𝑓 is a multimodal representation of the
input signals.

One of the advantages of early fusion is that we only work with a single
model. This means that the training process is typically less cumbersome
than mid- and late-fusion approaches.

4.2.1.2 Late Fusion

As described in Gadzicki et al. [74], late fusion combines the different
modalities after each one has been processed independently. One way of
doing this is to obtain the predictions (decisions) for each modality and
then combine those decisions to obtain the final one [10]. For this reason,
this approach is often called decision-level fusion. As described in Cumin
and Lefebvre [46], the final decision can be obtained through mechanisms
like, voting, or stacking. In voting methods, the decision obtained by each
modality is used as a vote, and a fuser module collects those votes and
produces the final result. In stacking methods, a top-level model is trained
to use as input the decisions of each modality and produce the final result.

When using a DL model, another option is that instead of using the
individual decisions, a late-fusion model can use the features produced by
each individual model before the decisions are made. Then, those features
can be combined by training a new model that uses them as input. Figure
4.1b depicts this process.

In any case, late fusion combines the outputs of two or more uni-modal
models. Commonly, each individual model is trained independently, al-
though all of them are trained for the same task. As pointed out by several
authors like Atrey et al. [10], in a late-fusion approach each model can
specialize in processing its corresponding modality, obtaining better uni-
modal features, but on the other hand, the low-level relations between the
modalities are ignored.

4.2.1.3 Mid-Fusion

Instead of fusing the modalities at the beginning, like in early fusion,
or at the end, like in late fusion, a middle-ground approach is possible, as
described by authors like Liu et al. [125] and Nagrani et al. [139]. The idea
of this approach, called mid-fusion, is to process modalities individually,
and then the obtained representations are combined and further processed
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together. This allows the first layers of the architecture to model the low-
level individual characteristics of the signal, and the upper layers model
inter-modality relations. Figure 4.1c shows a depiction of this approach.

4.2.1.4 Discussion About Fusion Approaches

In this chapter, we employ late fusion to combine multiple physiological
signals to perform emotion recognition because, as it will be described in
Section 4.3, pre-training is used in our approach, and using early fusion or
mid-fusion may impose restrictions on the datasets used for pre-training
the model. With pre-training, the idea is to use many different datasets
in order to obtain a more robust representation of the information of the
different signals. This collection of datasets does not need to be related to
the task of emotion recognition. If early fusion is employed, the pre-training
datasets should include all the targeted types of signals. This severely limits
the availability of datasets that could be used. Conversely, if late fusion is
used, each uni-signal model can be pre-trained independently, thus having
the possibility of using different collections of datasets, each one including
only the concerned signal.

Our late-fusion approach uses a top-level model that uses as input the
concatenated features of individual models. Other late-fusion aggregation
methods might be considered, like using the decisions of individual models
for voting or stacking. However, we believe that a top-level model using
the features produced by individual models will help better aggregate the
complementary information from each signal.

4.2.2 Machine Learning Approaches for Emotion Recogni-
tion from Multiple Physiological Signals

Classical ML techniques such as Support Vector Machine (SVM), Gaus-
sian Naive Bayes (GNB), and Decision Trees have been used by several
authors [80, 102, 135] to perform emotion recognition from multiple physi-
ological signals. Typically, these techniques use as inputs engineered features
extracted from the signal.

On the other hand, DL architectures extract data-driven features that
typically lead to more accurate results than using engineered features, as
demonstrated in works like Santamaria-Granados et al. [161] and Siddharth
et al. [175]. In addition, DL approaches allow the usage of self-supervised
pre-training techniques, making it possible to take advantage of unlabeled
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Figure 4.2 – Zhang et al. [221] approach. (Figure from Zhang et al.’s paper [221]).
datasets to further improve the accuracy of the results compared to a fully-
supervised approach.

Below, we provide a review of some contributions that use ML approaches
to perform emotion recognition, focusing on approaches that employ DL
techniques.

4.2.2.1 Emotion Recognition with Deep Fusion of Kernel Machine

Zhang et al. [221] use kernel matrices to construct an ensemble of dense
embeddings from each input signal and then process these embeddings
using a Fully-Connected Network (FCN) to obtain the signal representations.
To combine the different signals, they use a global fusion layer.

In Zhang et al.’s approach [221], which is depicted in Figure 4.2, the
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authors use as inputs engineered features extracted from the physiological
signals. The physiological signals that they use are EEG, Electromyogram
(EMG), Electrodermal Activity (EDA), and Respiration (RESP). The first
step is to obtain embeddings for each type of signal using a kernel matrix
constructed with a kernel function. Specifically, several mapping functions
are built from the kernel matrix using different sample subsets. This is
done because having multiple mapping functions allows the modeling of
the characteristics of different regions in the input space. From these
embeddings, a representation of each type of signal is obtained using a
multilayer FCN.

To combine the representations from the signals, an intermediate fusion
step is performed first. In this step, several one-layer FCN are used to do a
pair-wise combination of the representations of the different signals. Next,
a global fusion layer is used to obtain the final fused representation. The
inputs for the global fusion layer are the representations of each type of
signal, plus the outputs from the intermediate fusion step. The predicted
class distributions are obtained using a soft-max function on the final fused
representation.

The work of Zhang et al. [221] shows that engineered features can be
processed using a DL to learn better suitable representations for emotion
recognition. Moreover, their work exemplifies the usage of a late-fusion
approach by first obtaining representations of each physiological signal, and
then combining this signal with a fusion layer that works as the predictor.
Another important takeaway from this work is that although they obtain the
best result when combining all four physiological signals, combining two or
three signals does not necessarily outperform using a single signal.

4.2.2.2 Using Features From Pre-Trained Deep Learning Models

Siddharth et al. [175]. take advantage of DL models trained for com-
puter vision to extract features for the task of emotion recognition from
multiple physiological signals. An Extreme Learning Machine [92] is used
to process these features to predict emotions.

Siddharth et al. [175] use a VGG model [176] to extract features from
EEG, ECG, Photoplethysmography (PPG) and EDA signals. VGG is a model
trained for object recognition using a dataset with more than one million
images and 1000 object classes. In order to use VGG to process physiological
signals, the signals need to be transformed into images. To do this for EEG
signals, they extract the power spectral density of the signal, and then they
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produce a heat map using these values plotted and interpolated in a 2D
plane according to the location of the EEG electrodes. For ECG, PPG, and
EDA signals, they generate spectrogram images [71] from each of those
signals, which are resized to fit in the VGG model. The VGG model produces
features of size 4096, and the authors use Principal Component Analysis
(PCA) to reduce this dimension to 30. The features obtained with the VGG
model are concatenated and then processed with an Extreme Learning
Machine [92] to predict high and low categories of arousal and valence.

This work shows that DL models are capable of producing data-driven
features for emotion recognition. Moreover, in their paper, Siddharth et
al. [175] visually compare the feature spaces obtained with engineered
features with the feature spaces from the VGG features and show that the
latter allows for better separation of classes. When comparing the results
of using multiple signals with using single signals, the authors found that
in the majority of experiments they conducted on different datasets, using
multiple signals outperforms using single signals.

4.2.2.3 Emotion Recognition with Classical Machine Learning Ap-
proaches

Miranda-Correa et al. [135] introduce the AMIGOS dataset and use a
classical ML model to perform emotion recognition on that dataset. This
model uses as inputs engineered features extracted from ECG, EEG, and EDA
signals. For each signal, the authors train a GNB classifier, and a decision-
level fusion is implemented to combine the outputs from the different
signals, using a SVM as the predictor. Interestingly in their case, most of
their experiments show better results when using only EEG rather than
combining the three signals.

Katsigiannis and Ramzan [102] introduce the DREAMER dataset and
perform emotion classification with a SVM employing a radial basis function
kernel, using as inputs engineered features extracted from ECG and EEG
signals. In this work, early fusion is used to combine the signals, concate-
nating the features from ECG and EEG, and feeding the concatenated vector
into the SVM. The results in Katsigiannis and Ramzan’s [102] paper show
that the difference in performance between fusing the signals and using
the signals independently is not statistically significant, showing that the
engineered features from the different signals describe the same information
about the emotional state of the person.
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4.2.2.4 Discussion on Emotion Recognition from Multiple Physiologi-
cal Signals

Several conclusions can be made from the above review. First, concern-
ing the use of DL-based approaches, Zhang et al. [221] and Siddharth et
al. [175] show that for the problem of emotion recognition from multiple
signals, extracting features with DL leads to better results than using engi-
neered features with a non DL model. This is in line with other works that
use a single physiological signal (see Section 3.2.2).

Second, the reviewed works show that combining multiple signals may
lead to an improvement in performance compared to using single signals,
even though sometimes it may be difficult to know beforehand if fusing the
signals will increase performance or which signals to combine.

Finally, although the reviewed works show the strength of DL approaches,
there is an advantage that was not exploited by them, which is using pre-
training techniques. Only Siddharth et al. [175] use a pre-trained VGG
model, but this model was pre-trained for computer vision tasks, and it
could be more convenient to pre-train a model for signal processing. Pre-
training can be especially useful when labeled data is scarce, as is usually
the case for data with labels of emotion. This data scarcity is the reason
why we identified Challenge 4.1. Therefore, in the next section, we review
contributions that use pre-training in their approach for the task of emotion
recognition from multiple physiological signals.

4.2.3 Pre-trained Models for Multi-Signal Emotion Recog-
nition

As discussed in Chapter 3, pre-training may help the model obtain
better results. Many authors have explored this technique when developing
approaches for emotion recognition. Several works employ pre-training
when using other modalities besides physiological data, like images, sound,
and text. Recent works are based on Transformers, like the work of Khare et
al. [105], which uses Transformers that are pre-trained by masking some
words in the input text, along with the audio and visual parts that correspond
to those words, and then the pre-training task consists in predicting the
masked words.

Regarding using multiple physiological signals, a common pre-training
approach is to use autoencoders to extract representations from the inputs.
An autoencoder is an architecture that can learn to extract representations
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Figure 4.3 – An autoencoder example. (Figure from Bank et al. [18]).
in a self-supervised way. This is done by mapping the input to a latent
representation and then reconstructing the input from this representation,
as depicted in Figure 4.3. The pre-training can be done by comparing the
reconstructed input with the original input. The remainder of this section
reviews some papers that exemplify this approach.

4.2.3.1 Extracting Representations with Autoencoders

Ross et al. [154], report on the use of Variational Autoencoders (VAEs)
to extract representations from raw ECG and EDA signals, for the task of
predicting arousal. They train two independent VAEs, one for each signal.
The VAEs are based on stacked layers of 1D Convolutional Neural Networks
(1D-CNNs). The combination of the representations learned by the ECG
and EDA autoencoders is done by concatenating those representations.
Then, a Random Forest model is used to predict arousal using as inputs the
concatenated representations.

Ross et al. [154] compare using VAE representations to using engineered
features and show that the former approach improves the accuracy of
the results. In addition, they also show that fusing the two signals has
better performance in terms of accuracy and F1-score than using the signals
individually. In summary, this work exemplifies that pre-training techniques
can be used to extract relevant representations from the signals for the task
of emotion recognition from multiple physiological signals.

4.2.3.2 Emotion Recognition with a Bimodal Autoencoder

Liu et al. [127] address the task of predicting positive, neutral, and
negative emotions from EEG signals and eye movement or other peripheral
physiological signals, depending on the dataset. First, they train two inde-
pendent Restricted Boltzmann Machines (RBMs), one for each signal, using
as inputs engineered features extracted from the signals. Once the RBMs
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are trained, the outputs from those machines are concatenated and used
as input for an upper RBM. The output for the upper RBM is the shared
representation of the multiple signals, which is used as input to reconstruct
the signals during the unsupervised pre-training phase. This reconstruction
is done using a network with the same weights as the encoding RBMs. The
shared representations generated by the pre-trained model are used to train
an SVM classifier.

When the authors test their approach on a first dataset, they show that
using the shared representations obtained from EEG and eye movement
leads to better results than a uni-signal model. Moreover, they show that
simply using the concatenation of the engineered features of both signals
directly as input for the SVM is better than using the signals independently.

When testing on a second set using EEG and peripheral physiological
signals as input, the authors also find that their pre-trained multi-signal
approach improves over using uni-signal models. However, in this case,
if the concatenation of engineered features is used instead of the shared
representation, there is a decrease in performance compared to the uni-
signal models.

The results from Liu et al. [127] show that simply combining differ-
ent modalities may not lead to an improvement in performance, but this
improvement can be achieved if robust representations are used to do the
emotion recognition. Moreover, they show the usefulness of pre-training
in improving the results when doing emotion recognition from multiple
physiological signals.

4.2.3.3 Discussion on Pre-Trained Models

The reviewed literature shows that it is possible to use pre-training
techniques to extract robust representations for multi-signal emotion recog-
nition. Moreover, Ross et al. [154] and Liu et al. [127] show that these
representations can better model the complementary information that may
be present in the different physiological signals, thus making the results
better when using multiple signals than when single signals are used.

4.2.4 Discussion

Several conclusions can be obtained from the contributions studied in
this section. First, DL are capable of extracting features useful for the task
of multi-signal emotion recognition that improves the results over using

92



4.3. Pre-Trained Transformers for Multi Physiological Signals

engineered features. Moreover, DL approaches have the advantage that can
be pre-trained using self-supervised approaches.

Second, using multiple signals may help to improve the performance
compared to using single signals. This depends in part if the features used
are capable of modeling the complementary information that may be present
in the signals, and depends also on using a model capable of exploiting this
complementarity, if it exists.

Third, pre-trained models help to obtain representations that improve
the accuracy of the results produced by the model, compared to no pre-
trained approaches. Moreover, these representations help the model to
better take advantage of using multiple physiological signals.

Following these conclusions, we aim to develop a DL architecture that
uses pre-training as part of the training process, to perform emotion recogni-
tion using multiple raw physiological signals. Specifically, our contribution
uses a Transformer-based approach to process raw physiological signals
because, as demonstrated in Chapter 3, this architecture is capable of pro-
cessing raw physiological signals effectively. In addition, we use pre-training
to overcome the issue of not having large labeled datasets that include all
the concerned physiological signals, as pointed out by Challenge 4.1. To do
this, we use a late-fusion approach, that allows us to pre-train individual
models using unlabeled datasets that do not necessarily contain all the
concerned signals.

Reviewing the literature, we concluded that multimodal pre-training
approaches are not typically used on physiological signals, and conversely,
pre-training approaches for physiological signals are usually single-modality,
and in addition, the few multimodal pre-trained approaches for physiological
signals we surveyed don’t use attention-based models. Therefore, our
contribution aims to investigate how to exploit the advantages of a pre-
trained Transformer-based model to perform emotion recognition from
multiple raw physiological signals, something not explored in the current
state-of-the-art.

4.3 Pre-Trained Transformers for Multi Physio-
logical Signals

This section describes our contribution to the problem of recognizing
high and low categories of arousal and valence from multiple physiological
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signals. As we shall see, we use a pre-training strategy to address Challenge
4.1, which is not having large quantities of labeled data containing all
the considered physiological signals. For the rest of the chapter, the term
emotion recognition is used to refer to the recognition of high and low
categories of arousal or valence. As it was done in Chapter 3, we use the
same architecture to recognize arousal and valence, but train one model to
recognize arousal and another to recognize valence.

The backbone of our architecture is a Transformer [196], which is used
to process multiple physiological signals, as we did in Chapter 3 for single
signals. As shown in that chapter, Transformers employ a learned attention
mechanism to dynamically score the relevance of different parts of an input.
In other words, Transformers can aggregate information from signals giving
more weight to the more relevant parts.

4.3.1 Type of Fusion

As seen in Section 4.2.1, it is possible to combine the information from
the different signals at different levels of the model, namely early, late, or in
the middle. Therefore, when designing an architecture to process multiple
signals, an important problem is to determine at which level those signals
should be combined. In our case, as we are interested in a multi-signal
model that employs pre-training techniques, we use a late-fusion approach.

When employing late fusion, each individual uni-signal model can be pre-
trained individually, allowing the usage of different collections of unlabeled
datasets, each one including only the concerned signal. Thus, the number
of potential datasets that can be used for pre-training increases, as they do
not need to have all the concerned signals.

Another problem with early fusion is that the input for the model is
generally the concatenation of the features from the different modalities.
In our case, this means that the input would be the concatenation of the
physiological signals in the temporal dimension, forming a single and longer
sequence. However, it is necessary to take into account that the computa-
tional complexity of the Transformer is𝑂 (𝑛2), where 𝑛 is the input sequence
length. This means that a longer sequence will be more computationally
expensive to process. On the other hand, with a late-fusion approach, it
is possible to train several uni-signal models, training them one by one on
less powerful hardware than the one required to train a single and more
computationally expensive multi-signal model. Moreover, during the fusion
phase, the uni-signal models can be frozen, meaning that we only need to
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train the predictor model (see Figure 4.1b). Therefore, with late fusion, for
the fusion phase, the model can also be trained with less powerful hardware
resources. A similar line of thinking can be used to see the benefits of late
fusion compared to mid-fusion in this scenario.

4.3.2 Multi-Signal Emotion Recognition Model

This section presents our strategy for recognizing high and low categories
of arousal and valence, using multiple physiological signals, specifically,
using ECG and EEG signals. Our procedure is performed in two steps. In the
first step, we pre-train and fine-tune two uni-signal models. One model is
trained to recognize emotions from ECG signals, and the other one is trained
to recognize emotions from EEG signals. In the second step, we use late
fusion to combine the outputs of the uni-signal models, training a network
to recognize emotions from the combined outputs. More details about the
architectures employed in each one of these steps are provided below.

4.3.2.1 Uni-Signal Models

For the uni-signal models, we use our approach proposed in Chapter 3.
That is, we use a model based on a Transformer [196]. Since we employ a
pre-trained approach, the uni-signal models are trained in two phases. First,
we pre-train each model by reconstructing masked values in the input signal.
Labeled data is not required for this phase, but only data that include the
corresponding physiological signal. Second, we fine-tune each model for
emotion recognition. This second step is done in a supervised fashion using
labeled data. A graphical depiction of the uni-signal model is depicted in
Figure 4.4. More details can be found in Chapter 3.

4.3.2.2 Multi-Signal Emotion Recognition Model

We use late fusion to combine the outputs from the ECG and EEG models,
as depicted in Figure 4.5. Instead of using the recognized emotions from
each individual model (decision fusion), we prefer to use the output of the
last hidden layer (not the output layer) from each uni-signal model. We do
this because these features contain more information than the recognized
category of arousal or valence, and we believe that using them should lead
to a model that produces more accurate results.

To combine individual outputs, we simply concatenate them. Other ways
of combining them might be considered, like using max or average pooling.

95



4. Emotion Recognition from Multiple Physiological Signals

Raw Physiological Signal
(Values masked during pre-training)
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FCN Masked Values Predictor

Predicted Masked Values

(A)
Only During Pre-Training

FCNEmotion Classifier

Recognized Emotion

(B)
Only During Fine-Tuning

Figure 4.4 – Uni-Signal Model: The raw signal is encoded by a 1D-CNN and processedwith a Transformer. First, the model is pre-trained by masking some values of theunlabeled input signal and then predicting those masked values (Part A). Then, labeleddata is used to fine-tune the model in a supervised way (Part B).

However, alternative methods may pose some constraints in the design of
the models. Pooling, for example, requires that the outputs of each uni-
signal model have the same size, which in turn means that the last hidden
layers of those models also have the same size. Without this constraint, we
can freely choose the size of each individual model that makes the whole
approach perform best.

We use a FCN to process the concatenated outputs. This network outputs
the predicted high or low category of arousal or valence. That is, the FCN
performs emotion classification using the outputs of the individual models.
Thus, in Figure 4.5, this FCN network is noted as Multi-Signal Emotion
Classifier.

When training the fused model, we freeze the weights of both uni-signal
models, training only the FCN emotion classifier. As mentioned before, one
model is trained to predict high and low categories of arousal, and another
model is trained to predict high and low categories of valence.
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Recognized Emotion

Figure 4.5 – Multi-Signal Model. Late fusion is used to combine the ECG and EEG signals.The outputs of the last layer from both uni-modality models are concatenated, andthen used as input to an FCN that outputs the recognized emotion.
4.3.3 Expected Results

4.3.3.1 Expected Results on Using Multiple Physiological Signals

We use multiple physiological signals, specifically ECG and EEG signals,
under the assumption that the information that they contain is complimen-
tary. Therefore, if that assumption is true, the following result is expected:

Expected Result 4.1. Using both ECG and EEG signals at the same time
should give more accurate results than using any of those signals individually.

4.3.3.2 Expected Results on Pre-Training the Model

We use a pre-trained approach in our solution. Specifically, we pre-train
and fine-tune individual uni-signal models, and combine them using late
fusion. Another option is not to pre-train the individual models, training
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each individual uni-signal model from scratch. We refer to this second option
as a non-pre-trained model. With this, the following result is expected:

Expected Result 4.2. Using a pre-trained model should give more accurate
results than using a non-pre-trained model.

4.4 Experiments

This section describes the experimental procedure and the results of
testing our approach for emotion recognition from multiple physiological
signals, presenting in Section 4.4.1 the experimental setup, giving details
about the used datasets and the different hyperparameters of our model,
and presenting the results in Section 4.4.2.

4.4.1 Experimental Setup

4.4.1.1 Evaluation Datasets

To train and evaluate our fused-signals model, we use the AMIGOS
[135] and the DREAMER [102] datasets, which were also used in Chapter 3.
Details about these datasets can be found in Appendix A. We use as labels the
self-assessments of arousal and valence provided in those datasets. These
assessments are in the ranges 1 to 9 in AMIGOS and 1 to 5 in DREAMER.
Since we want to identify high and low categories of arousal and valence,
rather than the numerical value, we use the average value in the dataset as
the threshold for high and low classes.

Both AMIGOS and DREAMER include ECG and EEG signals. In both
cases, for EEG, we use signals taken from the left arm. For EEG, we use the
channels F7, F3, T7, P7, O1, O2, P8, T8, F4, F8. These channels are used
because they are obtained through electrodes distributed throughout the
entirety of the head (see Figure 2.8), thus capturing most of the responses
to a given stimulus.

4.4.1.2 Signal pre-processing

We use the same signal pre-processing that we used in Chapter 3 (see
Section 3.4.1), filtering the signals with an 8th order Butterworth band-
pass filter, with cut-off frequencies of 0.8Hz and 50Hz. Next, the signals
are downsampled to a common sample rate of 128Hz. In addition, we
normalize the signals so they have zero-mean and unit-variance across each
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subject. Finally, we segment the signals into 10-second segments, using each
segment as a as sample in our experiments.

4.4.1.3 Uni-Signal Models

We employ the ECG and EEG models described in Chapter 3. That is,
we pre-train and fine-tune these models according to the description given
in Section 3.4.1. We use the same datasets and the same hyperparameters
defined there. Recall that in Chapter 3 a single architecture was developed
and pre-trained to recognize arousal and valence, but independent models
were fine-tuned, one for arousal and one for valence. Therefore, in this
Chapter, there will also be a model to recognize arousal and a different model
to recognize valence, although the models will have the same architecture.

4.4.1.4 Multi-Signal Emotion Classifier

Our multi-signal emotion classifier, described in Section 4.3.2.2, is com-
posed of a FCN with two hidden layers, using the Rectified Linear Unit
(ReLU) activation function. The sizes of those layers are 64 and 32. We add
an output layer to project the result to a single value that corresponds to
the predicted binary emotion class.

The network is trained during 52 epochs, with a learning rate of 0.00001
decayed every 20 epochs with a factor of 0.65. We employ a dropout value
of 0.1, and Adam optimization with 𝛽1 = 0.9, 𝛽2 = 0.999 and 𝐿2 weight
decay of 0.00001. The hyperparameters of this network were tuned using
the Ray Tune Toolkit [122], with the Bayesian Optimization with Hyperband
(BOHB) optimization.

4.4.2 Results

4.4.2.1 Evaluation Strategy and Metrics

To test our approach, we use 10-fold cross-validation across our exper-
iments. We employ the same strategy described in Section 3.4.1 to avoid
using the same samples to pre-train and test the model, which in essence is
to use two versions of the pre-trained model so that when evaluating with a
sample, the evaluation is done with a model that was not pre-trained with
that sample.

As metrics, we use accuracy and F1-score, averaged across the two pre-
dicted classes (high and low categories of arousal/valence), and averaged
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Dataset Signal Arousal Acc. Arousal F1 Valence Acc. Valence F1

AMIGOS
ECG 0.88±5.4e−3 0.87±5.4e−3 0.83±7.8e−3 0.83±7.4e−3

EEG 0.81±1.1e−2 0.80±9.4e−3 0.77±9.3e−3 0.77±9.1e−3

ECG+EEG 0.89±5.0e−3‡† 0.89±5.0e−3‡† 0.85±3.8e−3‡† 0.85±3.9e−3‡†

DREAMER
ECG 0.83±7.1e−3 0.83±7.6e−3 0.80±1.1e−2 0.79±1.1e−2

EEG 0.68±1.7e−2 0.68±1.6e−2 0.68±1.9e−2 0.67±1.4e−2

ECG+EEG 0.84±1.3e−2† 0.84±1.3e−2† 0.80±1.9e−2† 0.79±2.2e−2†

Table 4.1 – Emotion recognition performances of uni-signal models and of the multi-signal model. The symbols (‡) and (†) indicate that the multi-signal result is statisticallysignificantly different than the result with the ECG signal and the EEG signal respectively.
across the 10 folds of cross-validation. We also report the confidence inter-
vals of each metric, calculated across the 10 folds of cross-validation, with a
t-distribution with 9 degrees of freedom for a two-sided 95% confidence,
using Expression 3.8.

4.4.2.2 Multi-signal Model Results

Table 4.1 shows a comparison of accuracies and F1-scores between the
multi-signal model and uni-signal models when recognizing arousal and
valence. The uni-signal models used pre-training as part of their training
process, and the multi-signal model uses those pre-trained uni-signal models.
For the AMIGOS dataset, the multi-signal model performs better than the
uni-signal models for both arousal and valence across the metrics that we
use. Moreover, when comparing the results of the uni-signal models with
the multi-signal strategy for this dataset, the two-tailed P values are less
than 1e−3, thus the difference is extremely statistically significant.

On the other hand, for the DREAMER dataset, there is no statistically
significant difference between the performance of using only the ECG signal
and using both the ECG and the EEG signal. We believe this is the case
because the performance of the EEG model for the DREAMER dataset is
particularly lower compared to the ECG model; therefore, the output of the
EEG model does possess relevant information that can produce a gain in
performance.

The results of this experiment show that using various physiological
may lead to an improvement in performance. In fact, in many cases shown
in Table 4.1, combining ECG and EEG signals obtains better results than
using those signals individually. Moreover, when there is no increment
in performance, our multi-signal approach does at least as good as using
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Objective Class ECG F1 EEG F1 ECG+EEG F1

Arousal
High 0.90 0.84 0.91
Low 0.83 0.76 0.86

Valence
High 0.81 0.75 0.84
Low 0.84 0.78 0.87

Table 4.2 – F1-scores of the high and low classes for the ECG, EEG models, and fusedmodels, using the AMIGOS dataset.
a single-signal. With these results, the Expected Result 4.1 is validated,
showing that our model is capable of extracting complementary information
from each physiological signal, improving the results when the signals are
used together.

Now, we further explore the results with the AMIGOS dataset to see
if there are characteristics of each ECG and EEG model that show why
combining them leads to better results. Concretely, we want to see if one
model does better predicting one class and the other does better predicting
the other class. For this, Table 4.2 shows the F1-score of the high and low
classes individually, instead of averaging them as in the rest of the results
shown in this section. In other words, each entry in Table 4.2 gives an
idea of how good each model is in distinguishing each class. In the case of
arousal recognition, it can be observed that using ECG, EEG, and combining
both signals always performs better for the high class. In the case of valence
recognition, all the models perform better for the low class. Therefore, for
each arousal and valence objective, one uni-signal model is not better at
predicting a specific class while the other model is better at predicting the
other class. Despite this, the table shows that when combining the signals
the performance of predicting both classes improves, thus improving the
general performance of the model.

4.4.2.3 Effectiveness of Pre-training the Multi-Signal Model

Table 4.3 compares the performances of our multi-signal model when
it uses as backbone pre-trained uni-signal models, and when it uses no
pre-trained uni-signal models. We can see that when using pre-training, the
model achieves better performance compared to not using pre-training, thus
confirming Expected Result 4.2. The difference between the pre-trained and
no pre-trained approaches have two-tailed P values less than 5e−3, thus this
difference is extremely statistically significant.
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Dataset Pre-train Arousal Acc. Arousal F1 Valence Acc. Valence F1

AMIGOS
No 0.86±4.9e−3 0.85±5.1e−3 0.82±6.5e−3 0.81±6.8e−3

Yes 0.89±5.0e−3 0.89±5.0e−3 0.85±3.8e−3 0.85±3.9e−3

DREAMER
No 0.74±3.1e−2 0.74±3.1e−2 0.72±2.4e−2 0.70±2.4e−2

Yes 0.84±1.3e−2 0.84±1.3e−2 0.80±1.9e−2 0.79±2.2e−2

Table 4.3 – Fused Model: Pre-Training vs No Pre-Training.
These results indicate that the complete model benefits from the pre-

training done to the uni-signal models. It is interesting to analyze how the
model gets these benefits. We hypothesize that it could be explained by the
two following reasons:

1) The pre-trained uni-signal models are already better. When
using single signals, the pre-trained uni-signal models already gave better
results than the no pre-trained uni-signal models, as shown in Chapter
3, in particular in Table 3.4. Therefore, as our FCN multi-signal emotion
classifier uses the features generated by those uni-signal models, when using
the features from the pre-trained models it uses better features than when
using the features from no pre-trained models. Using pre-trained uni-signal
models that give better features is clearly an advantage that leads to a better
performance of the multi-signal modal.

2) The benefits of pre-training are carried over. The benefits of pre-
training the uni-signal models are carried over when training the complete
architecture. One benefit of pre-training is that the model becomes less
prone to overfitting (see Section 3.4.2.3). Therefore, using the pre-trained
uni-signal models makes the whole architecture less prone to overfitting.

We further analyze the second reason, as this reason is less evident. It is
less evident because the weights of the uni-signal models are frozen when
the whole architecture is trained. This means that the uni-signal models
cannot become less prone to overfitting. On the other hand, it could be the
case that the representations from the uni-signal models carry the benefits of
pre-training when they are used as inputs to train the multi-signal emotion
classifier (See Figure 4.5). If this is true, the multi-signal classifier that uses
representations from pre-trained uni-signal models should be less prone to
overfitting. Below, we check this last statement.

Figure 4.6 compares the losses in the validation dataset when training the
model using pre-trained uni-signal models (red line) with using uni-signal
models that were not pre-trained (blue line). This figure shows the average
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(a) Arousal Losses (b) Valence Losses
Figure 4.6 – Comparison of the losses on the validation set when using pre-traineduni-signal models, in red, compared to not using pre-trained uni-signal models, in blue.We show the losses for arousal (a) and valence (b). The figure shows the average lossacross the 10 folds on the AMIGOS dataset.
validation loss across the 10 folds for the AMIGOS dataset. We can see that
when using the representations generated by pre-trained uni-signal models
to train the multi-signal emotion classifier, the model does not overfit. On
the other hand, when not using pre-trained uni-signal models, the model
overfits.

These results show that pre-training leads to more robust features, and
that in fact, these features carry the benefits of pre-training. Thus, when
using them to train a new model, in our case the multi-signal emotion
classifier, this new model becomes less prone to overfitting, which is one of
the benefits of pre-training.

4.4.2.4 Comparison with the State-of-the-Art

Table 4.4 shows the performance of our model next to other state-of-the-
art works that perform emotion recognition using multiple physiological
signals. These works use different experimental protocols to evaluate their
performance, and therefore they are not directly comparable to each other
nor are they comparable to our work. For instance, there is a variety of input
segment sizes, input signals, different partitions of data into training and
test sets, subject-dependent and independent evaluations, etc. However, all
of them recognize categories of arousal and valence, i.e. all of them perform
classification of arousal and valence. Therefore, the results in Table 4.4 still
give a good idea of the relative performances of the current state-of-the-art,
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4. Emotion Recognition from Multiple Physiological Signals

Model Signals
Arousal

Acc.
Arousal

F1
Valence

Acc.
Valence

F1

AMIGOS

GNB [135] ECG+EEG+EDA - 0.56 - 0.56
LSTM [120] ECG+EEG+EDA 0.83 0.72 0.78 0.7
2D-CNN [175] ECG+EEG+EDA 0.83 0.76 0.84 0.82
2D-CNN [59] ECG+EDA 0.79 0.75 0.79 0.76
VAE [212] ECG+EEG+EDA 0.69 0.64 0.67 0.67
VAE [154] ECG+EDA 0.93 0.95 - -
Transf. (ours) ECG+EEG 0.89 0.89 0.85 0.85

DREAMER

SVM [102] ECG+EEG 0.62 0.58 0.62 0.52
GRU [104] ECG+EEG 0.85 - 0.84 -
DCCA [126] ECG+EEG 0.89 - 0.91
Transf. (ours) ECG+EEG 0.84 0.84 0.80 0.79

Table 4.4 – Comparison of our results with other works. These results are not directlycomparable as the experimental protocols are not necessarily the same.
showing that we obtain competitive results.

Table 4.4 illustrates the variety of solutions that have been proposed for
the task of emotion recognition from multiple physiological signals. Non-DL
methods like GNB and SVM that use engineered features as inputs are pre-
sented in Miranda-Correa et al. [135], and Katsigiannis and Ramzan [102].
However, Table 4.4 shows that results tend to be better with DL approaches.
Some authors explore the use of recurrent networks, with the usage of Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) by Li et al.
[120] and Khan et al. [104], respectively. Liu et al. [126] use Deep Canoni-
cal Correlation Analysis (DCCA), which is a technique where two FCN are
used to obtain representations of two modalities, learning the weights of
those FCN by maximizing the correlation between those representations.
To take advantage of existing pre-trained models for computer vision tasks,
Siddharth et al. [175] and Elalamy et al. [59] use 2D Convolutional Neural
Network (2D-CNN) to process images (e.g. spectrograms) generated from
the physiological signals. Finally, Yang and Lee [212], and Ross et al. [154]
use VAE to generate representations, pre-training the VAEs by encoding and
reconstructing the inputs.

Given the variety of evaluation protocols employed by the works pre-
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sented in Table 4.4, it is not possible to conclude which approach has the
best performance. Nevertheless, as all of those approaches recognize cate-
gories of arousal and valence, several conclusions can be drawn from the
results shown in that table. First, DL approaches tend to give more accurate
results than non-DL approaches, corroborating the ability of DL models to
extract and process features from data. Second, some authors have used
pre-training techniques, confirming the usefulness of this method when pre-
dicting emotions from multiple physiological signals. Third, our pre-trained
Transformer-based approach shows results that are on the line with other
state-of-the-art works, demonstrating the validity of our approach.

4.5 Conclusions

This chapter presented the second contribution of this thesis, which is a
pre-trained Transformer-based technique designed to recognize emotions
from multiple physiological signals. Our method is based on pre-training and
fine-tuning individual uni-signal models and using late fusion to combine
the outputs of those models. This approach addresses Challenge 4.1, since
using pre-training produced better results than when no pre-training was
used. As discussed in the chapter, the improvement when using pre-training
could be explained by the better quality of results of each single-signal
model and also because the representations from those models were more
robust against over-fitting.

We also tested the usefulness of combining multiple physiological signals
and found that in many cases this led to better accuracy and F1-score
than using one physiological signal. In particular, there was a performance
improvement with the AMIGOS dataset when using ECG and EEG signals
at the same time in comparison to using those signals separately. With the
DREAMER dataset, the accuracy and F1-score when combining ECG and
EEG signals were better than using only EEG signals, and at least as good as
using only ECG signals. We hypothesize that these results on the DREAMER
dataset can be explained by the low performance of the EEG model when
using this dataset.

In this chapter, we used only physiological signals to predict high and
low categories of arousal and valence. But in a smart environment there
might be other types of signals, like visual and sound signals, that can be
combined with those physiological signals to perform emotion recognition.
Therefore it is appealing to design an architecture capable of using all those
types of signals for the task of emotion recognition. For this reason, we
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4. Emotion Recognition from Multiple Physiological Signals

present in the next chapter an approach capable of using multimodal inputs.
This approach also performs time-continuous value-continuous emotion
recognition, which we believe will help to produce a better image of the
mental well-being of a person.
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CHAPTER 5

TIME-CONTINUOUS MULTIMODAL EMOTION

RECOGNITION

People express emotions through external manifestations in both verbal
and non-verbal manners. Examples of non-verbal communication include
facial expressions and speech pitch intensity. In addition, as seen in previous
chapters, emotions are also reflected in internal manifestations through
different physiological signals. A smart environment may be equipped
with cameras, microphones, and other sensors capable of collecting those
external and internal manifestations. Therefore, to better monitor the
mental well-being of a frail person in such smart environments, it is desirable
to automatically infer emotions with the multimodal information coming
from such sensors.

This chapter describes a method for recognizing emotions from mul-
timodal inputs, in a time-continuous fashion. Specifically, the chapter
presents a model that not only processes physiological signals, like in previ-
ous chapters, but uses other modalities, like audio and video, to perform
time-continuous emotion recognition.
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5. Time-Continuous Multimodal Emotion Recognition

Figure 5.1 – Depiction of the problem addressed in this chapter. From multimodal inputs,we want to predict value-continuous and time-continuous levels of arousal and valence.
This chapter provides a definition of the problem being addressed, as

well as the motivations and challenges associated with that problem in
Section 5.1, examines the related State-of-the-Art in Section 5.2, introduces
our approach for time-continuous emotion recognition in Section 5.3, and
shows the experimental results when testing our approach in Section 5.4.

5.1 Problem Definition, Motivations and Chal-
lenges

5.1.1 Problem Definition

Our goal is to use the signals from multiple perceptual modalities, in-
cluding video, audio, and physiological signals, to recognize continuous
values (in the [-1, 1] range) of arousal and valence in a time-continuous
fashion. Since we want to recognize continuous levels of emotion, this task
is a regression problem. Note that throughout this chapter, we refer to this
problem as multimodal continuous emotion recognition, and we use the word
continuous to denote value-continuous and time-continuous, and the word
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(a) Arousal ground-truth example. (b) Valence ground-truth example.
Figure 5.2 – Example of time-continuous ground-truth values, sampled at 2Hz.

emotion to indicate either arousal or valence.

Figure 5.1 presents a depiction of the problem addressed in this chapter.
The multimodal inputs are temporal sequences of visual, audio, and physio-
logical signals. Specifically, the visual information is a sequence of image
frames from a video; the audio is a time-series of audio values, and the
physiological signals are also time-series values. Then, emotion recognition
is performed at a certain rate, say at each time-step 𝑡 , such that for every
time-step 𝑡 there is a corresponding image frame (or several image frames),
a segment of audio, and a segment of a physiological signal. In our case,
we assume that for every time-step, there is a label indicating the arousal
and valence values, which means that the inputs and labels are aligned. In
addition, we assume that there are no missing modalities, an assumption
that will be relaxed in Chapter 6.

In our case, the recognition rate is high enough (2Hz), so there are not
large variations of arousal and valence between two consecutive recognized
values. For this reason, we talk about time-continuous emotion recognition.
Figure 5.2 shows an example of arousal and valence ground-truth values
that we aim to recognize.

5.1.2 Motivations

5.1.2.1 Motivation to use Multimodal Inputs

Our motivation to use multimodal inputs comes from the idea that the
information in different modalities may be complementary. In fact, in Chap-
ter 4, we showed that using multiple physiological signals can improve the
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5. Time-Continuous Multimodal Emotion Recognition

accuracy of the predicted values from emotion recognition models. In this
chapter, we explore this idea further using other modalities besides phys-
iological signals, namely visual, and audio modalities. In our case, audio
information captures speech, and visual information captures facial expres-
sions. As detailed in Section 2.2.3, speech and facial expressions are ways
that emotion is displayed, thus it is feasible to use them in combination with
physiological signals as inputs for an emotion recognition system. Moreover,
since these modalities are of different nature and produced by different
mechanisms in the body, they should carry different and complementary
information, thus helping to improve the accuracy of an emotion recognition
model.

Another motivation to use multimodal inputs is that a smart environment
may be equipped with sensors to gather these different modalities. Portable
sensors could be worn to gather physiological signals, as it was described
in previous chapters. In addition to this, cameras and microphones could
gather audio and video signals, both of which could be acquired through
user interaction with a smart assistant, for example. In this scenario, privacy
concerns may arise. We discuss these concerns and other ethical implications
of our work in the perspectives provided in Section 7.2.9.

5.1.2.2 Motivation to Perform Continuous Emotion Recognition

Although knowing if an emotion is positive or negative and if its intensity
is low or high may be enough to have an idea of the emotional state of a
person, we think that to have a better picture of the emotional situation it
can be useful to obtain value-continuous levels of arousal and valence. For
example, stress can be inferred from the level of arousal and valence, as
there is a correlation between them [188].

Moreover, continuously recognizing the emotional state of a person can
be a way to improve the monitoring of his or her emotional well-being. This
results from the fact that predicting emotions in a time-continuous manner
can show the emotional variations that a person feels across time, which can
give better insights into the emotional state of this person. For example, if a
decision has to be made using the inferred emotional state of a frail person,
it would be better if this decision is made following several consecutive
predictions, rather than basing this decision on a single prediction.
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5.1.3 Challenges

Three main challenges have to be addressed to construct a system for
multimodal continuous emotion recognition. The first challenge is how
to model the temporal dependencies inside the input sequence of each
modality. The second challenge is how to fuse the information from the
different modalities. The third challenge is how to take past predictions into
account when performing the current prediction.

Since each modality is a temporal sequence, there are temporal depen-
dencies inside each modality that are important to identify and model in
order to efficiently use the information from that modality. With this, we
define the first challenge of this chapter as follows:

Challenge 5.1. How to model the temporal dependencies present in each
modality.

Using multimodal inputs is advantageous since the information from the
different modalities may be complementary, leading to better results from
the model. However, it is important that the model is able to extract and
take advantage of this complementarity, also taking into account that part
of the information may be redundant. Thus, the second challenge addressed
in this chapter is:

Challenge 5.2. Designing a model capable of aggregating multimodal in-
formation, taking advantage of complementary information, and discarding
redundant information.

Since emotions will be predicted in a time-continuous manner, it is im-
portant to use past predictions to infer the current emotional state, because
this past information may help to obtain better results. Changes in emotion
are not instantaneous, thus there is a relation between the current and past
emotional states. With this, we define the third challenge as follows:

Challenge 5.3. How to use past emotion predictions when inferring the current
emotion.

5.2 Existing Techniques for Multimodal Contin-
uous Emotion Recognition

As stated above, when doing multimodal continuous emotion recogni-
tion, there are three main challenges that need to be addressed. The first
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one is how to model the temporal dependencies from the input sequence
(Challenge 5.1), the second one is how to fuse the different modalities
(Challenge 5.2), and the third is how to take past predictions into account
(Challenge 5.3). Regarding the first challenge, in the literature there are two
main methods: recurrent models [93, 94, 193] and attention-based models
[38, 87, 219]. For the second challenge, some approaches use early and late
fusion [128, 220], while other authors have studied the use of attention
mechanism for multimodal fusion [143, 190, 219]. We did not find in our
literature review contributions that directly address the challenge of taking
previous predictions into account, although using recurrence does this in a
way.

5.2.1 Modelling Time-Continuous Information for Emo-
tion Recognition

When recognizing time-continuous values of emotion from multimodal
inputs, the input data are sequential, containing information across time.
Therefore, it is important to model the underlying temporal dynamics
present in these data. One way of doing this is to use architectures de-
signed to process sequences. In the literature, this has been done mainly
using two architectures: Recurrent Neural Network (RNN) [93, 94, 193],
and attention mechanisms [38, 87, 219]. The following subsections discuss
in more detail some papers that present these approaches.

5.2.1.1 Recurrent Approach for Continuous Emotion Recognition

In [93], Huang et al. present an approach for continuous emotion
recognition with RNNs, using audio, visual, and text modalities. To process
the input sequences, they first perform a data augmentation technique by
segmenting the original sequence into smaller overlapping segments. This
way, they obtain a larger quantity of training samples. In addition, since
the samples are smaller than the original sequences, they are more suitable
to be processed to model the temporal dynamics inside those sequences.
The dataset they use contains sound recordings of the target speaker and an
interlocutor. For this reason, Huang et al. [93] append to the sound features
a marker to differentiate from who the features come from. This marker is a
1 for the main speaker and a 0 for the interlocutor.

To process the signals and model the temporal relations inside them,
Huang et al. [93] use a Long Short-Term Memory (LSTM) network. Before
feeding the modality features into the LSTM, they are processed with average
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Figure 5.3 – Recurrent Neural Network (RNN). Note that when obtaining the outputOut𝑡 , all the past information is contained in the hidden state vector ℎ𝑡−1.
pooling in the temporal dimension to achieve an additional short level of
temporal modeling. A time delay is added, shifting the features with respect
to the labels, to overcome the annotation delay present in the dataset they
use.

To fuse the information from the different modalities, the authors con-
sider feature-level fusion (i.e. early-fusion) and decision-level fusion (i.e.
late-fusion). Feature-level fusion is performed by concatenating the features
before they are fed into the LSTM network, while decision-level fusion is
done by training an individual model for each input modality, and then the
outputs of the different models are concatenated and processed with support
vector regression to infer the final emotion value. Feature-level fusion and
decision-level fusion obtain comparable results when predicting arousal,
while feature-level fusion achieves better results for valence prediction.

Although this work shows that using recurrent models, like LSTM net-
works, are useful for time-continuous emotion recognition, RNNs convey
the information of past interactions into a single hidden state vector, as
depicted in Figure 5.3. Therefore, long-range interactions are difficult to
model with an RNN, even with the improvements that LSTM networks
bring by controlling the information flow. One solution to this is the use of
attention-based approaches that allow the direct incorporation of past (or
future) information. One of the most successful attention-based models is
the Transformer, which was discussed in detail in Section 2.3.

5.2.1.2 Attention-Based Approach for Continuous Emotion Recogni-
tion

Chen et al. [38] introduce a model for multimodal continuous emotion
recognition. They propose to use attention layers to model the tempo-
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ral dynamics within each modality. In addition, they also use attention
mechanisms to model the inter-modality interactions.

The proposed approach first extracts the features for each modality,
then processes these features with a 1D Convolutional Neural Network
(1D-CNN) to aggregate local context information. The output features from
the 1D-CNN are processed by a stack of Multimodal Attention Modules and
Temporal Attention Modules, and the output of these modules is processed
with a Fully-Connected Network (FCN) to predict the emotion values.

The Multimodal Attention Module in the approach of Chen et al. [38]
is designed to model the inter-modality interactions, while the Temporal
Attention Module is in charge of modeling the temporal intra-modality
interactions. In general terms, the Temporal Attention Module works by
having as input, for each modality, a sequence of time-steps, thus each
time-step attends the other time-steps within the same modality. On the
other hand, the Multimodal Attention Module works by having as input, for
each time-step, a sequence of modality features, thus each modality attends
the other modalities within the same time-step.

Regarding the performance of this approach, Chen et al. show that,
in several instances, their results are better than other solutions that use
recurrence. In the cases where other approaches are better, their results
are not far away, remaining competitive. In summary, the work of Chen et
al. shows that it is possible to use attention-based models for the task of
continuous emotion recognition. However, they do not use past predictions
to infer the current emotional state.

In an attempt to further improve the performance of continuous emotion
recognition systems, some authors have combined attention modules with
RNNs. The following subsection describes in detail a contribution that uses
this type of approach.

5.2.1.3 Hybrid Models for Continuous Emotion Recognition

In their work, Wu et al. [208] combine a Transformer encoder with
LSTM networks to predict continuous values of valence from video, audio
and text. The first step of their approach is to process the features extracted
from the different modalities with 1D-CNNs. The fusion of modalities is
done by concatenating the features of each modality obtained from the
1D-CNNs. The multimodal sequence is then fed into a Transformer encoder,
which produces an intermediate sequence. This intermediate sequence is
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further processed by an LSTM, which produces an output sequence that is
fed into a FCN to obtain the predicted values.

In their paper, Wu et al. [208] demonstrate that the combination of
attention and recurrent mechanisms gives more accurate results than using
those mechanisms individually. Moreover, sometimes the performance that
their approach obtains is close to a human-level benchmark. These results
show the utility of using attention mechanisms to model the temporal
information in the inputs. In addition, the results show that using a vanilla
implementation of an attention model, like the Transformer encoder, might
not be enough to effectively process the inputs in the task of emotion
recognition, and architecture adaptations, like the addition of the LSTM
network, might be necessary.

5.2.2 Combination of Modalities for Multimodal Emotion
Recognition

Having reviewed some approaches to model the temporal dynamics in
the sequential inputs used for multimodal continuous emotion recognition,
we now focus on another important aspect of multimodal processing: how
to combine the information from different modalities. The different ap-
proaches found in the literature to combine modalities can be divided into
two classes. The first class consists in using early or late fusion, which is
typically done by concatenating the input features of each modality before
they are fed into the model (early fusion) or concatenating the outputs of
individual-modality models (late fusion). A description of these two types
of approach can be found in Section 4.2.1. The second class consists of
approaches where the combination of modalities goes beyond simple con-
catenation, but different components within the model itself are in charge
of aggregating the information. We call this type of approach model fusion.
The following subsections describe some contributions that present these
fusion approaches.

5.2.2.1 Early and Late Fusion for Multimodal Emotion Recognition

In [220], Zhang et al. make a comparison between early and late fusion
for the multimodal continuous emotion recognition task. Specifically, they
work with audio, visual, text and physiological inputs, extracting different
types of features from each of them and trying several combinations of these
features. Their model consists of an LSTM network that, in the case of early
fusion, is fed with the concatenation of the different input features. In the
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case of late fusion, they concatenate the outputs of individual LSTM models
and process the concatenated sequence with a second-level LSTM.

Zhang et al. [220] did several experiments using different combinations
of modalities/features, testing early and late fusion, always using the same
hyper-parameters for their architecture. When comparing the results be-
tween early and late fusion, they could not find an approach that gives
more accurate results than the other in all the cases. On the contrary, the
performance depends on the number and type of modalities, as well as the
type of features that are used from each modality. For example, the authors
found that when audio and visual modalities are used, early fusion gives
more accurate results. On the other hand, when audio and text are used,
the late fusion approach gives more accurate results. In the case of audio
and physiological features, early or late fusion gives more accurate results
depending on what type of features of each modality are used.

Additionally to testing different fusion methods, Zhang et al. [220] com-
pare using a multimodal approach with using a single modality. The authors
experimentally show that using a multimodal approach can lead to perfor-
mance improvements, demonstrating that in some cases the information in
the different modalities is complementary.

Several other authors [73, 139, 190] have experimented with more
sophisticated ways to aggregate multimodal information beyond early and
late fusion. Below, some of those contributions are reviewed.

5.2.2.2 Multimodal Transformer

The idea behind the multimodal Transformer is to concatenate the se-
quence of different modalities one after the other and then feed this mul-
timodal sequence into a Transformer encoder, as indicated in Figure 5.4.
This way, the attention mechanism of the Transformer can model the intra-
modality dependencies of each modality, and at the same time, they can
model the inter-modality dependencies between modalities. One contribu-
tion that uses this approach is the work of Gabeur et al. [73]. Although
the aim of this work is not emotion recognition, it is still interesting to ana-
lyze as an example of a multimodal Transformer. Gabeur et al.’s approach
processes multimodal signals by first extracting different types of features
of each modality using a pre-trained model. They call each type of feature
an expert. To obtain an aggregated representation of each expert, they use
a vector 𝐹𝑚𝑎𝑔𝑔 that is appended to the beginning of the feature sequence of
each expert 𝑚. This is similar to the CLS token used in the architecture
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Figure 5.4 – Using a Transformer Encoder with multimodal inputs. The different modal-ities are concatenated, and the resulting sequence is fed into a Transformer encoder.
presented in Chapter 3. Denoting each expert feature as 𝐹𝑚𝑡 , the sequence
of input features has the form

𝐹 = [𝐹 1
𝑎𝑔𝑔, 𝐹

1
1 , . . . , 𝐹

1
𝑇 , . . . , 𝐹

𝑀
𝑎𝑔𝑔, 𝐹

𝑀
1 , . . . , 𝐹

𝑀
𝑇 ], (5.1)

where 𝑀 is the number of experts, and 𝑇 is the sequence length of every
expert. To allow the model to distinguish between experts, 𝑀 embeddings
are learned, one for each expert. These embeddings are added to the
features of the corresponding expert. In addition, as is typically done in
Transformer-based architectures, temporal embeddings are added so the
model is provided with information about the order of the sequence. The
final sequence is fed into a Transformer encoder, and then the authors use
the outputs corresponding to the aggregated feature 𝐹𝑚𝑎𝑔𝑔 as representations
of each expert.

This work shows that attention-based models are capable of generating
representations of each modality that aggregate the intra-modality temporal
information and the inter-modality information. Nevertheless, Nagrani et al.
[139] argue that while it may seem better to have a free flow of information
across modalities, it is not necessary to have this flow of information in all
the layers of the model because part of the information might be redundant.
For this reason, Nagrani et al. propose to restrict this flow by using a small
set of fusion units through which the interchange of information between
modalities must pass.
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Figure 5.5 – A Crossmodal Transformer [190] incorporates information from the sourcemodality into the target modality by taking the key and value vectors from the sourceand the query vectors from the target.
From the works of Gabeur et al. [73] and Nagrani et al. [139], we

can conclude that the multimodal Transformer is capable of modeling in-
teractions between modalities. Specifically, both of these architectures use
self-attention because each position in the input sequence attends to the
input sequence itself (see Section 2.3.1.3). However, there is a different
approach that might be used, which is using cross-attention instead of
self-attention. The following subsection details this approach.

5.2.2.3 Cross-Attention for Multimodal Fusion

The idea behind using cross-attention for multimodal fusion is to use
multiple pairwise crossmodal Transformers, with each of these Transformers
reinforcing a target modality with information from a source modality. This
idea was introduced by Tsai et al. in [190]. As described in section 2.3, the
attention mechanisms inside a Transformer require query, key, and value
vectors (𝑄 , 𝐾 , and 𝑉 , respectively). Then, the idea of Tsai et al. [190] is to
take the query from one modality, the target modality, and the key and value
vectors from another modality, the source modality, as depicted in Figure
5.5. The advantage of this approach is that the source and target modalities
do not need to be aligned. To illustrate what we mean by alignment, we can
take, for example, a video and a sentence that corresponds to what a person
says in that video. The first word may correspond to the first seven frames,
the second to the next five frames, the third to the next ten frames, etc.
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Thus, in this example, aligning the video and the language inputs means
identifying what frames correspond to what words.

Regarding the usage of cross-attention for multimodal fusion for contin-
uous emotion recognition, we detail the contribution of Huang et al. [95],
where they use as inputs audio-visual information. In their work, they first
process audio and visual information individually using a Transformer en-
coder, and then, to combine the information from those two modalities, they
use a crossmodal Transformer. Huang et al. [95] choose only to incorporate
information from audio to the visual modality and not do it also the other
way around. This means that in their crossmodal Transformer, the query
vector comes from the visual modality, while the key and value vectors come
from the audio modality. The final step in their approach is to use a linear
layer to process the outputs of the crossmodal Transformer and obtain the
predicted values of emotion.

Using a crossmodal Transformer is an interesting approach that can be
especially useful when the different modalities are not aligned. However,
the problem is that this approach allows only a pair-wise exchange of
information, thus if a complete information flow between several modalities
is required, the number of crossmodal Transformers needed is 2

(𝑀
2

)
, where

𝑀 is the number of modalities. Nevertheless, the contributions reviewed in
this subsection further confirm the value and utility of using attention to
aggregate information from different modalities.

5.2.3 Discussion

In order to predict continuous values of emotion, it is necessary to pro-
cess sequential inputs. In the literature, we have found two main trends to
process sequences: the first one is to use RNN, and the second one, which
is more recent, is to use attention. Attention-based approaches have the
advantage that they are better adapted to model the long-range relations
that may be present in the inputs. In addition, these models can process the
inputs in parallel because to obtain the output at a specific time-step it is
not necessary to have obtained the output from the previous step. More-
over, the representations generated with attention-based models incorporate
weighted information from the whole input, meaning that it identifies the
important parts of the input signal, giving more weight to them when build-
ing the representation. Regarding the fusion of information from multiple
modalities, using attention has the advantage that such architectures are
capable of aggregating information from the different modalities, but they
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do in a way that more weight is given to the most important ones.

For these reasons, in our architecture, we use an attention-based ap-
proach to model the temporal dynamics of the inputs and to aggregate
the information from the different modalities. Since we are not concerned
with unaligned modalities, we do not use a crossmodal Transformer. In-
stead, we use a novel approach that aggregates the information from the
different modalities using the cross-attention from a Transformer decoder,
incorporating at the same time past predictions in an autoregressive man-
ner. With our approach, we take advantage of the characteristics of an
attention-based model while also restricting the information between differ-
ent modalities, which, as suggested by Nagrani et al. [139], should increase
the performance of the model.

5.3 Multimodal Transformer for Emotion Recog-
nition

This section presents our approach to addressing the problem of multi-
modal continuous emotion recognition. In our approach, we use the same
architecture to recognize both arousal and valence, although we train one
independent model to recognize arousal and another to recognize valence.
For this, in this section, we often use the terms to recognize (or predict)
an emotion to refer to recognize (or predict) values of either arousal or
valence.

Figure 5.6 shows our architecture, which follows an encoder-decoder ap-
proach, similar to the one presented in the original Transformer paper [196].
The encoder, which we call Multimodal Transformer Encoder (MMTE), takes
elements from current literature and is capable of producing representations
using all the modalities as inputs. The multimodal representations gener-
ated by the encoder are processed and aggregated by the decoder, called
Autoregressive Multimodal Transformer Decoder (AMMTD). The AMMTD
produces the representation 𝑑𝑡 that is used to predict the emotion value
at time-step 𝑡 with the help of a FCN network called Emotion Regression
Network (ERN). We design this decoder such that it aggregates information
from the multimodal representations given by the encoder, in a way that
more weight is given to the most important modalities. To generate the
representation 𝑑𝑡 , the decoder also considers the generated representations
from previous time-steps. The following subsection explains in detail the
two main components of our architecture: the MMTE and the AMMTD.
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Figure 5.6 – General architecture of our approach for multimodal emotion recognition.
5.3.1 Multimodal Transformer Encoder (MMTE)

To design the MMTE, which is depicted in Figure 5.7, we took some
inspiration from the work of Gabeur et al. [73]. The encoder takes as inputs
features extracted from the different modalities. We discuss the features
used in Section 5.4.1.3. The MMTE models the temporal dynamics inside
each modality, addressing the Challenge 5.1.

The first step in the MMTE architecture is to process each modality
individually using a Temporal Convolutional Network (TCN) [15] to model
local temporal information, similarly to what is done by Chen et al. [38].
TCNs are Convolutional Neural Networks (CNNs) adapted for sequence
modeling, and we use them because the input is a sequence of features.
Our architecture uses independent TCNs for each modality. If we define
the feature corresponding to modality 𝑚 at time-step 𝑡 as 𝑥𝑚𝑡 ∈ ℝ𝑑modality,
then the input sequence for modality𝑚 will be [𝑥𝑚1 , . . . , 𝑥𝑚𝑇 ], where 𝑇 is the
length of the sequence. That being said, when using the TCN to process the
input corresponding to modality𝑚, we have:

[𝑎𝑚1 , . . . , 𝑎𝑚𝑇 ] = TCN𝑚 ( [𝑥𝑚1 , . . . , 𝑥𝑚𝑇 ]), (5.2)
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Figure 5.7 – Multimodal Transformer Encoder (MMTE).
where 𝑎𝑚𝑡 ∈ ℝ𝑑model. Note that for all modalities, the TCN outputs will have
a common size 𝑑model.

The outputs given by the TCN will be processed by the Transformer. To
do this, it is necessary to add positional encodings to allow the Transformer
to take into account the actual order of the sequence [196]. The positional
encodings that we use are vectors that are learned during training. Specifi-
cally, the model learns a vector 𝑝𝑡 ∈ ℝ𝑑model for each input position, giving
the sequence [𝑝1, . . . , 𝑝𝑇 ]. Then, the sequence obtained is:

[𝑎𝑚1 + 𝑝1, . . . , 𝑎
𝑚
𝑇 + 𝑝𝑇 ] . (5.3)

We use learned positional encodings because we did preliminary experi-
ments that showed that in our case they worked better than fixed positional
encodings. See Section 2.3.2.3 for more information about positional en-
codings.

To process cross-modality information, the Transformer must discern
between each modality. To achieve this, we adopt the approach of Gabeur
et al. [73] and use modality encodings. Like positional encodings, these
encodings are vectors learned during training. Specifically, for each modality
𝑚, an encoding 𝑒𝑚 ∈ ℝ𝑑model is added to the input. The output after doing
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this is
[𝑓𝑚1 , . . . , 𝑓𝑚𝑇 ] = [𝑎𝑚1 + 𝑝1 + 𝑒𝑚, . . . , 𝑎𝑚𝑇 + 𝑝𝑇 + 𝑒𝑚] (5.4)

Note that 𝑓𝑚𝑡 is the vector that corresponds to modality 𝑚 at time-step 𝑡 ,
with 𝑓𝑚𝑡 = 𝑎𝑚𝑡 + 𝑝𝑡 , +𝑒𝑚.

We concatenate the sequences from all modalities to form a single se-
quence. If we have 𝑀 modalities, the concatenated input sequence is

[𝑓 1
1 , . . . , 𝑓

1
𝑇 , . . . , 𝑓

𝑀
1 , . . . , 𝑓 𝑀𝑇 ] . (5.5)

The concatenated sequence is processed using a Transformer encoder, which
produces representations 𝑟𝑚𝑡 given by

[𝑟1
1, . . . , 𝑟

1
𝑇 , . . . , 𝑟

𝑀
1 , . . . , 𝑟

𝑀
𝑇 ] =

Transformer Encoder( [𝑓 1
1 , . . . , 𝑓

1
𝑇 , . . . , 𝑓

𝑀
1 , . . . , 𝑓 𝑀𝑇 ]). (5.6)

We employ a bidirectional attention mask at the input of the Transformer
encoder, similar to what is done in the work of Chen et al. [38]. When
the Transformer encoder is processing an input 𝑓𝑚𝑡 , this mask hides the
inputs that are farther than mask_length positions in the future and in the
past. This means that to produce the representation 𝑟𝑚𝑡 , the Transformer
attends the sequence [𝑓𝑚

𝑡−𝑚𝑎𝑠𝑘_𝑙𝑒𝑛𝑔𝑡ℎ . . . 𝑓𝑚
𝑡+𝑚𝑎𝑠𝑘_𝑙𝑒𝑛𝑔𝑡ℎ]. This allows the model

to concentrate on recent information and not to worry about information
too far in time that probably does not influence the current emotional state.

5.3.2 Autoregressive Multimodal Transformer Decoder

The decoder in our architecture uses the representations generated by
the encoder to predict the values of arousal and valence. This decoder
needs to address Challenge 5.2 and Challenge 5.3. This means it needs to
aggregate the representations of the different modalities while restricting
the information flow to deal with redundant information, and it has to
take previous predictions into account to determine the current emotion.
To do this, we design the Autoregressive Multimodal Transformer Decoder
(AMMTD), which is described below.

To understand how the AMMTD is built, we give a brief description of the
Transformer decoder [196], which is explained in more detail in Section 2.3.
The Transformer decoder is constructed of stacked Transformer Decoder Lay-
ers (TDLs). Each TDL is composed of a Multi-Head Self-Attention (MHSA)
module, followed by a Multi-Head Cross-Attention (MHCA) module, and
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Figure 5.8 – Autoregressive Multimodal Transformer Decoder (AMMTD). State of thedecoder when predicting the emotion value at time 𝑡 .
followed by a fully-connected Feed-Forward Network (FFN). Residual con-
nections are used around each of these three components. The MHSA and
MHCA implement a Multi-Head Attention (MHA) mechanism that projects a
query vector 𝑞 from a given position to a key vector 𝑘 from another position
to determine the attention (i.e. the weight) given to a value 𝑣 associated
with the position of 𝑘. The final value is the weighted sum of the 𝑣 vectors
from the different positions. We denote the MHA mechanism as

MHA(𝑄,𝐾,𝑉 ), (5.7)

where the three parameters𝑄 , 𝐾 , and𝑉 indicate the sequence used as query,
key, and value, respectively.

The AMMTD, shown in figure 5.8, is composed of a stack of TDLs,
followed by a ERN. We use autoregression to address Challenge 5.3, taking
into account past predictions. This means that the previously generated
outputs are used as inputs to the AMMTD. Note that we do not use the
outputs of the ERN, i.e. the predicted emotion values 𝑦, since these are
scalar values and the inputs of the AMMTD module must be vectors. For
this reason, we use the features generated by the top TDL. Specifically, at
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the moment of predicting the emotion value at time-step 𝑡 , the sequence
[𝑑1, . . . , 𝑑𝑡−1] should already have been generated by the stack of TDLs.
Then, the AMMTD input is

[𝑑0, 𝑑1, . . . , 𝑑𝑡−1], (5.8)

where 𝑑0 ∈ ℝ𝑑model is a randomly initialized vector.

In the same way as it was done for the encoder, the decoder uses posi-
tional encodings 𝑝′𝑡 ∈ ℝ𝑑model that are added to the input before it is fed to
the stack of TDLs. These positional encodings are learned during training.
With this, when performing the prediction at time-step 𝑡 , the input sequence
𝐼𝑡 = [𝑖0, 𝑖1, . . . , 𝑖𝑡−1] with 𝐼𝑡 ∈ ℝ𝑡×𝑑model becomes

𝐼𝑡 = [𝑑0 + 𝑝′0, 𝑑1 + 𝑝′1, . . . , 𝑑𝑡−1 + 𝑝′𝑡−1] . (5.9)

The sequence 𝐼𝑡 from Expression 5.9 is processed by the stack of TDL.
As described in previous paragraphs, the three components of a TDL are
the MHSA, the MHCA, and the FFN. We now describe how we adapt these
components in our architecture, particularly to address the Challenges 5.2
and 5.3.

5.3.2.1 Multi-Head Self-Attention (MHSA)

Inside the TDL, the features are first processed by the MHSA module.
This module uses self-attention, meaning that it integrates information from
its own input. In other words, the query, key, and value used for the MHA
layers inside the MHSA come from the input sequence. Using Expression
5.7, the output of the MHSA module is

𝐻𝑡 = [ℎ0, ℎ1, . . . , ℎ𝑡−1] = MHA(𝐼𝑡 , 𝐼𝑡 , 𝐼𝑡 ). (5.10)

Since the sequence 𝐼𝑡 is built with past outputs of the decoder (see
Expressions 5.8 and 5.9), it means that for the model to generate the
sequence 𝐻𝑡 , the MHSA module attends the past generated outputs. This is
the way past outputs are taken into account, thus addressing the Challenge
5.3.

5.3.2.2 Multi-Head Cross-Attention (MHCA)

The MHCA module is used to incorporate the information from the multi-
modal signals. For this, the MHCA module has as input the sequence 𝐻𝑡 and
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attends to the encoder outputs. In other words, the MHA inside the MHCA
uses as query the sequence 𝐻𝑡 , and as key and value the representations gen-
erated by the MMTE module. This means the attention mechanisms in the
MHCA are used to aggregate the information from the different modalities.
To be more precise, when predicting the emotion value at time-step 𝑡 , the
MHCA attends only to the representations of each modality corresponding
to this time-step. Thus, the output sequence of the MHCA is

𝐻 ′
𝑡 = MHA( [ℎ0, ℎ1, . . . , ℎ𝑡−1], [𝑟1

𝑡 , . . . , 𝑟
𝑀
𝑡 ], [𝑟1

𝑡 , . . . , 𝑟
𝑀
𝑡 ]), (5.11)

where the sequence [𝑟1
𝑡 , . . . , 𝑟

𝑀
𝑡 ] is obtained using Expression 5.6 and then

extracting the representations of each modality at time 𝑡 . This is the way we
use the attention mechanisms of the MHCA to aggregate the information
from the different modalities, thus addressing Challenge 5.2.

Note that when predicting the emotion value at time 𝑡 , instead of
making the model attend the encoder outputs for that same time-step
([𝑟1

𝑡 , . . . , 𝑟
𝑀
𝑡 ]), we could have instead made the model attend all encoder

outputs ([𝑟1
1, . . . , 𝑟

1
𝑇 , . . . , 𝑟

𝑀
1 , . . . , 𝑟

𝑀
𝑇 ]). However, as it will be shown in the

Experiments section, we found it more effective to have the MHCA module
focus only on finding the best weighting between the different modalities,
avoiding the MHCA having to weigh which other time-steps in the different
modalities might be important. Moreover, having the MHCA module focus
on the current time-step restricts the information flow between modalities,
forcing the shared representation to condense the most significant informa-
tion, a technique that has been demonstrated to be beneficial by Nagrani et
al. [139]. This flow restriction is also important to address Challenge 5.2.

5.3.2.3 Feed-Forward Network (FFN)

The last component of the TDL processes each element of the sequence
𝐻 ′
𝑡 through a fully-connected FFN, applied independently to each position,

thus we have:
𝐻 ′′
𝑡 = FFN(𝐻 ′

𝑡 ) . (5.12)

The sequence 𝐻 ′′
𝑡 is the input of the next layer in the TDL stack. Con-

cretely, the next TDL in the stack uses as input 𝐼𝑡 = 𝐻 ′′
𝑡 and implements

Expressions 5.10, 5.11, and 5.12. If the sequence 𝐻 ′′
𝑡 is generated by the

top TDL, 𝐻 ′′
𝑡 becomes the newly generated sequence [𝑑1, . . . , 𝑑𝑡 ] that will

be used as input for the AMMTD to predict the emotion value for the next
time-step 𝑡 + 1,
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After the model has generated the complete output sequence 𝐷 =

[𝑑1, . . . , 𝑑𝑇 ], the final step is to process this sequence with the ERN. As
depicted in Figure 5.8, the ERN consists of a FCN that processes indepen-
dently each element of the sequence 𝐷, predicting the emotion values for
each time-step and generating the resulting sequence [𝑦1, . . . , 𝑦𝑇 ].

5.3.3 Expected Results

5.3.3.1 Results Expected from Attention Mechanisms

Our approach for processing multimodal inputs is to use the cross-
attention mechanism of a Transformer decoder to weigh the importance
of each modality. But there are other alternatives, like concatenating the
representations from the different modalities generated by the MMTE to
obtain a fused feature, and then processing this fused feature to obtain the
predicted emotion. In that case, the importance given to each modality
is fixed once the architecture has been trained. On the other hand, using
attention can dynamically weigh the importance of each modality according
to the input. With this in mind, the following result is expected:

Expected Result 5.1. Using attention mechanisms to aggregate multimodal
information should produce more accurate results when recognizing continuous
values of arousal or valence than fusing the multimodal information without
dynamically weighing the importance of each modality.

5.3.3.2 Expected Results on Cross-Attention Length

If the MHCA module attends several time-steps of each modality, this
module not only weighs the importance of each modality, but it attends to
the temporal information inside each modality. Thus, how many time-steps
of each modality are attended should impact the performance of the model.
In other words, we expect the following:

Expected Result 5.2. Changing how many time-steps the MHCA module
attends should impact the performance of the model, having an optimal value
between attending only 1 time-step (the module concentrates only on weighing
the importance of each modality), and attending all the time-steps (the module
evaluates the importance of each modality and models temporal dependencies).
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5.4 Experiments

This section shows the results of testing our approach for multimodal
continuous emotion recognition, describing the experimental setup in Sec-
tion 5.4.1, and showing the obtained results in Section 5.4.2. As mentioned
before, in our experiments we use the same architecture to predict arousal
and valence, although we train one model for arousal and another for
valence.

5.4.1 Experimental Setup

5.4.1.1 Metrics

Different from previous chapters where we addressed a classification
problem, the problem addressed in this chapter, continuous emotion recog-
nition, is a regression problem. Therefore, we use two metrics adapted for
this type of problem: Concordance Correlation Coefficient (CCC) and Root
Mean Square Error (RMSE), which are detailed below.

Concordance Correlation Coefficient

The CCC metric, introduced by Lawrence Lin in [123], is a measure of
the agreement between the ground-truth values and the predicted values.
Given𝑇 pairs of predictions and ground-truth values (𝑌,𝑌 ) = (𝑦𝑡 , 𝑦𝑡 )𝑇𝑡=1, the
CCC measures the correlation between values 𝑌 and 𝑌 , taking into account
how close these pairs are to the line 𝑦𝑡 = 𝑦𝑡 (perfect prediction). The metric
is built like this because 𝑌 and 𝑌 can have a perfect correlation even in cases
when (𝑦𝑡 ≠ 𝑦𝑡 )𝑇𝑡=1. The idea behind the CCC is to calculate the expected
value of the squared difference between 𝑌 and 𝑌 , which is also two times
the expected squared perpendicular distance 𝐷 of each pair (𝑦𝑡 , 𝑦𝑡 ) to the
line 𝑦𝑡 = 𝑦𝑡 . With this, in his paper, Lin proposed:

𝐸 [(𝑌 − 𝑌 )2] = 𝐸 [2𝐷] = (`𝑌 − `𝑌 )2 + 𝜎2
𝑌
+ 𝜎2

𝑌 − 2𝜎𝑌𝑌
= (`𝑌 − `𝑌 )2 + 𝜎2

𝑌
+ 𝜎2

𝑌 − 2𝜌𝜎𝑌𝜎𝑌 ,
(5.13)

where `, 𝜎2, and 𝜎 represent the mean, variance, and standard deviation,
respectively, for𝑌 and𝑌 as indicated by the subindices; 𝜎𝑌𝑌 is the covariance
between 𝑌 and 𝑌 , and 𝜌 is the Pearson correlation coefficient.

In the case that all the predictions are perfect, 𝐸 [(𝑌 − 𝑌 )2] would be 0.
To scale the CCC metric so it fits in the range of [−1, 1], Lin proposes the
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following normalization:

CCC = 1 − 𝐸 [(𝑌 − 𝑌 )2]
𝐸 [(𝑌 − 𝑌 )2 |𝜌 = 0 (No correlation)]

= 1 −
(`𝑌 − `𝑌 )2 + 𝜎2

𝑌
+ 𝜎2

𝑌 − 2𝜌𝜎𝑌𝜎𝑌

(`𝑌 − `𝑌 )2 + 𝜎2
𝑌
+ 𝜎2

𝑌

=
2𝜌𝜎𝑌𝜎𝑌

𝜎2
𝑌
+ 𝜎2

𝑌 + (`𝑌 − `𝑌 )2
.

(5.14)

With this formulation, a CCC value of 1 indicates perfect agreement, a value
of -1 indicates perfect reversed agreement, and a value of 0 indicates that
there is no agreement (i.e. no correlation, having 𝜌 = 0).

To calculate the CCC metric for 𝑇 pairs (𝑦𝑡 , 𝑦𝑡 ), the sample counterparts
of the terms of Expression 5.14 can be used:

CCC =
2𝑆𝑌𝑌

𝑆2
𝑌
+ 𝑆2

𝑌 + ( ¯̂𝑌 − 𝑌 )2
, (5.15)

where 𝑆𝑌𝑌 is the sample covariance between 𝑌 and 𝑌 , ¯̂𝑌 and 𝑌 represents
the sample mean, and 𝑆2

𝑌
and 𝑆2

𝑌 are the sample variances of 𝑌 and 𝑌

respectively.

In our case, when evaluating our approach, we calculate the CCC for
each sample using Expression 5.15, and the final result is the average of the
obtained CCC values.

Root Mean Square Error

The CCC metric gives an idea of how well the predicted values correlate
to the real values. To complement this metric, the RMSE is also used. This
way, it is possible to present a measurement of the difference between the
predicted and ground-truth values. Specifically, we compute the RMSE for
each sample, and then calculate the average of those results.

5.4.1.2 Evaluation Dataset

To evaluate our model, we use the Ulm-Trier Social Stress Test (ULM-
TSST) dataset, which was presented for the Muse 2021 Challenge [179, 180]
and was also used in the Muse 2022 Challenge [42]. This dataset includes
video, speech, text, and physiological data collected from volunteers during
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a stressful situation emulating a job interview, following the Trier Social
Stress Test (TSST) protocol [107]. Data are collected during a five-minute
speech each participant gave under the supervision of two interviewers,
who did not intervene during this time. The labels provided in the dataset
are values of arousal and valence in the range [−1, 1], sampled every 0.5
seconds. There are in total 69 samples in the dataset, each sample consisting
of the five-minute-long data from each subject. In the original dataset, 41
samples are used as train set, 14 as validation set, and 14 as test set. Since
annotations are not provided for the test set, as the dataset comes from a
challenge, we randomly pick 4 samples from the validation set and 6 from
the train set to form a new test set consisting of 10 samples. In summary,
the new train set has 35 samples, the new validation set has 10 samples,
and the new test set has 10 samples. More details about the ULM-TSST
dataset are presented in Appendix A.3.

5.4.1.3 Input Features

We employ audio, video, and physiological signals as input modalities,
using the features provided in ULM-TSST. The provided features are aligned
with the annotations; that is, features are extracted every 0.5 seconds.
ULM-TSST provides several types of features for the different modalities,
and from them, we chose the ones listed below. Regarding the audio
modality, we use the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) features [64]. For the video modality, we use facial Action
Unit (AU) intensity. For the physiological signals, we use Electrocardiogram
(ECG), Respiration (RESP), and Beats per Minute (BPM) signals that were
downsampled to 2Hz and smoothed with a Savitzky-Golay filter, so there
is a 3-value feature every 0.5 seconds consisting of the concatenation of
those three physiological signal values. More details about the features in
the ULM-TSST dataset can be found in Appendix A.3.

We select the described features from other ones included in the dataset
based on experiments run with the baseline model, which was provided by
the authors of the ULM-TSST dataset, selecting the features that lead to a
good performance.

5.4.1.4 Model Hyperparameters and Training

We use the Ray Tune Framework [122] to optimize different hyperpa-
rameters of our model on the validation set. The selected hyperparameters
can be found in Table 5.1. Additionally to those hyperparameters, we use
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Module Hyperparameters
Activation
Function

TCN Layers: 6, Kernel size: 9, Channels: 64 ReLU

Transformer
Encoder FFN size: 256, Heads 2, Layers 2 GELU

Transformer
Decoder FFN size: 256, Heads 1, Layers 1 GELU

ERN Layers: 1, Size: 32 ReLU

Table 5.1 – Model hyperparameters used during the experiments
a model dimension of 𝑑model = 64. Also, the bidirectional attention mask
for the input of the Transformer encoder has a mask_length of 50 seconds,
which is equivalent to 100 time-steps.

During training, we segment each 5-minute sample into smaller overlap-
ping samples, as suggested by Huang et al. [93] and done by other authors
when working with long sequences for time-continuous emotion prediction
[38, 42, 143]. According to Huang, using the overlapping segments can be
seen as a way of data augmentation, multiplying the number of samples and
helping the model convergence. In our case, since we use a Transformer-
based approach, segmenting the samples into shorter segments also helps
to perform the training more efficiently since the computational complexity
of the Transformer grows quadratically with respect to the input length.
Searching across different options, we found that segments of 125 seconds
(250 time-steps) with a hop size of 25 seconds (50 time-steps) work well in
our experimental protocol.

The model is trained for a maximum of 100 epochs, starting with a
learning rate of 0.0001 and halving it if the metric does not improve for
five epochs on the validation set. The training is stopped if there is no
improvement in the metric for 15 epochs. We use Adam optimizer with
𝐵1 = 0.9 and 𝐵2 = 0.999, a dropout rate of 0.2 throughout all the model,
and a batch size of 64.

Loss Function

We use CCC as the loss function for training, in line with other systems
for time-continuous emotion recognition [42, 87, 128, 143]. Specifically,
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(a) (b) (c)
Figure 5.9 – Three examples of using CCC and MSE to measure the similarity of predictedvalues𝑌 to ground-truth values𝑌 .

using Expression 5.14, the loss is formulated as follows:

L = 1 − CCC

= 1 − 2𝜌𝜎𝑌𝜎𝑌
𝜎2
𝑌
+ 𝜎2

𝑌 + (`𝑌 − `𝑌 )2
.

(5.16)

Recall that in this expression, 𝜌 is the Pearson correlation coefficient between
the predicted values 𝑌 and the ground-truth values 𝑌 . 𝜎 and ` denote the
standard deviation and the mean, respectively, of the predicted or the
ground-truth values, as indicated by their subindices.

We also considered using as loss the Mean Square Error (MSE) between
the predicted and ground-truth values, but we preferred the CCC. While
the MSE only indicates how far are the predicted values from the ground
truth, the CCC value gives a measure of how far are the predicted values
from the ground truth and also how correlated those values are. Figure
5.9 illustrates this, showing three examples where predicted values 𝑌 are
compared to ground-truth values 𝑌 . In the examples from Figures 5.9a and
5.9b, the MSE is the same, showing that this metric fails to capture the
correlation between 𝑌 and 𝑌 in Figure 5.9b. On the other hand, the CCC
is better in Figure 5.9b, showing that this metric captures the correlation.
We argue that the result from Figure 5.9b is preferable to the result from
Figure 5.9a, and this is better indicated by the CCC value. Moreover, the
CCC value not only indicates correlation, but also captures the difference in
distance between 𝑌 and 𝑌 . This is shown in Figure 5.9c, where 𝑌 and 𝑌 are
correlated with coefficient 𝜌 = 1, but the CCC is less than one indicating the
displacement of 𝑌 with respect to 𝑌 .
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Figure 5.10 – Baseline approach No 1: Late-Fusion with LSTM networks.
5.4.2 Results

For each experiment, 30 results are obtained by training the model with
30 different initialization seeds, reporting the average of those results. We
use a two-sided t-test with a threshold of p-value < 0.05 to assert that a result
is statistically significantly different than another, using the Holm-Bonferroni
correction method to account for the fact that multiple comparisons are
being done.

5.4.2.1 Comparison with the Baseline

We start by comparing the results of our approach with the baseline
model developed for the Muse 2022 Challenge [42], which is depicted in
Figure 5.10. To test this baseline approach, we use the provided code 1, so
it can be evaluated with the same features that we employ and using the
same partition of train, validation and test sets of the ULM-TSST dataset
that we use. This model is based on LSTM networks, using late fusion to
aggregate the different modalities. This is done in two steps. In the first

1. https://github.com/EIHW/MuSe2022
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AROUSAL VALENCE
Approach RMSE↓ CCC↑ RMSE↓ CCC↑

Late-fusion with
LSTM [42]

0.3046 (0.020) 0.2702 (0.026) 0.1585 (0.016) 0.1273 (0.053)

MMTE +
AMMTD (ours)

0.2948 (0.013) 0.3578 (0.033) 0.1796 (0.011) 0.1502 (0.027)

Table 5.2 – Comparison of our results with the baseline. The best result is indicated inbold, and we show the standard deviation in parentheses. In all cases, the differencesbetween both approaches are statistically significantly different. The symbols (↓) and(↑) indicate that a lower and a higher score are desirable, respectively.

Figure 5.11 – Example of an output of our model compared with the ground-truth, whenpredicting arousal (a) and valence (b) for the same sample.
step, a different LSTM is trained for each modality to predict the emotion
value. In the second step, the decisions of each single-modality model
are concatenated and used as input for a meta regressor, also based in a
LSTM network. Linear layers are used throughout the model to change the
dimensions of the representations, as shown in Figure 5.10.

Table 5.2 shows the results of our model along with the results of the
baseline. In all cases, the differences between the results are statistically
significantly different. This table shows that for all metrics except for valence
RMSE, our model obtains better results than this baseline. These results
are in line with Expected Result 5.1, showing that most of the time our
attention-based approach leads to better results than a no-attention-based
architecture. An example of an output of our model and ground-truth values
is depicted in Figure 5.11, which shows that real valence values tend to be
flat and have less variability than the arousal values, which we noted is a
common occurrence in our test set. We hypothesize that the baseline does
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AROUSAL CCC VALENCE CCC

He et al. [87] 0.6818 0.6841
Liu et al. [128] 0.6689 0.6803
Park et al. [143] 0.6196 0.6351

Ours 0.3453 0.5821

Table 5.3 – Comparison of our results with other results of the Muse 2022 Challenge.
better in valence RMSE because the simpler architecture of the baseline
is good enough to produce flat sequences of valence values that are close
enough to the also flat ground truth. On the other hand, the baseline
approach fails to predict the small changes in the valence values, penalizing
the CCC score, while our model does a better job in this case.

To further compare our approach with other contributions, Table 5.3
shows the results of the top 3 entries in the Muse 2022 Challenge, in
which they addressed continuous emotion recognition using the ULM-TSST
dataset. In this case, the results of our approach were obtained using the
official train-validation-test partition of the challenge, and submitting the
predictions to the challenge web server, since the labels of the test set
are not provided. The participants of the challenge typically search for
the best feature combinations, sometimes using different models for each
emotion dimension. For example, He et al. [87], who are the winners of
the challenge, use a combination of five different types of features extracted
from four modalities to predict arousal, processing those features with a
Transformer-based model. For valence, they use four different features
extracted from three modalities and an LSTM-based early fusion model.
Different from this, our goal is to find a general architecture that works
for arousal and valence, so we use the same architecture to predict both
emotion dimensions. In addition, instead of tuning our approach to find the
best feature combination, we found in early tests a combination of features
(one type of feature per modality) that worked well, and then we improved
our architecture keeping the selected features fixed. Taking into account
those remarks, Table 5.3 shows that our model obtains good results for
valence, although there is room for improvement regarding arousal.

5.4.2.2 Testing the Effectiveness of the AMMTD decoder

To test the importance of the AMMTD decoder, we conduct an ablation
study by replacing this module with two different architectures. The idea
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Figure 5.12 – Alternative approach No 1:MMTE + FCN
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Figure 5.13 – Alternative approach No 2:MMTE + LSTM

is to compare other alternatives to predict the emotion values from the
representations given by the MMTE encoder. The alternative architectures
are described below.

Alternative Approach No 1: MMTE + FCN: This approach corresponds
to a model where instead of using the AMMTD, the representations from
the MMTE are directly processed with a FCN, as indicated in Figure 5.12.
Specifically, when predicting the emotion value at time 𝑡 , the representations
𝑟𝑚𝑡 ∈ ℝ𝑑model of each modality𝑚 corresponding to time 𝑡 are concatenated
to form the vector 𝑅𝑡 = [𝑟1

𝑡 ; . . . ; 𝑟𝑀𝑡 ] ∈ ℝ𝑑model·𝑀 , where (;) denotes con-
catenation, 𝑀 is the number of modalities, and 𝑑model is the size of the
representations given by the MMTE module. Then, the vector 𝑅𝑡 is used as
input for the FCN, and the whole architecture is trained in an end-to-end
fashion.

Alternative Approach No 2: MMTE + LSTM: This approach uses an
LSTM to process the representations given by the MMTE. An LSTM is used
because it is capable of modeling the temporal relations of the sequence of
representations given by the MMTE. The input for this LSTM is the sequence
[𝑅1, . . . , 𝑅𝑇 ], where 𝑇 is the sequence length and 𝑅𝑡 is the concatenated
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AROUSAL VALENCE
Approach RMSE↓ CCC↑ RMSE↓ CCC↑

MMTE+FCN 0.3238 (0.023) 0.1388 (0.068) 0.1850 (0.017) 0.1221 (0.031)

MMTE+LSTM 0.3189 (0.024) 0.1387 (0.058) 0.1842 (0.065) 0.0435 (0.064)

MMTE +
AMMTD (ours)

0.2948 (0.013)† 0.3578 (0.033)† 0.1796 (0.011) 0.1502 (0.027)†

Table 5.4 – Comparison of using an LSTM and a FCN as alternatives to the AMMTDmodule to predict emotion values from the MMTE representations. The best result isindicated in bold, with the standard deviation in parentheses. The symbol (†) indicatesif the result of our approach is statistically significantly different than the alternativeapproaches. The symbols (↓) and (↑) indicate that a lower and a higher score are desirable,respectively.
representations given by the MMTE, as presented in the explanation of
Approach No 1. We used a grid search to tune the size of the LSTM, selecting
an LSTM with 4 layers and a hidden dimension of 32. Figure 5.13 shows a
depiction of this approach.

Table 5.4 shows the results of the alternative approaches and of our
approach. These results show that the AMMTD module leads to better
performance in all metrics. The results of our method are statistically
significantly different from the alternative approaches in all metrics except
for valence RMSE, where although our approach outperforms both baselines,
the improvement is not statistically significant. These results demonstrate
the effectiveness of our ideas of using cross-attention and autoregression,
both implemented in the AMMTD module, to predict time-continuous values
of arousal and valence. Moreover, this validates the Expected Result 5.1,
showing that using attention to aggregate the information from the different
modalities has superior performance than other alternatives of information
fusion.

5.4.2.3 Influence of the Span of the Cross-Attention Mechanism

We define the span of the cross-attention mechanism as the number of
time-steps that the MHCA module inside the AMMTD decoder attends from
the representations of each modality. For example, if the span is 11, it means
that the MHCA module is attending the current representation time-step
𝑟𝑚𝑡 of each modality, plus the five previous and subsequent time-steps, i.e.
the module is attending the sequence [𝑟𝑚𝑡−5 . . . 𝑟

𝑚
𝑡+5] of each modality 𝑚.

According to Expected Result 5.2, we expect that varying the attention span
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(a) Span length vs. arousal RMSE (b) Span length vs. arousal CCC

(c) Span length vs. valence RMSE (d) Span length vs. valence CCC
Figure 5.14 – Plots of cross attention span length vs. RMSE and CCC when predictingarousal and valence. Bars indicate confidence intervals for a Student’s t distribution,with a 95% confidence level.
will influence the model performance.

We check Expected Result 5.2 by predicting values of arousal and valence
with different cross-attention span lengths. Thirty models were trained
to predict arousal with different initialization seeds, and we present the
average of those thirty results. Similarly, thirty models were trained to
predict valence using different initialization seeds, and their results were
averaged. Figure 5.14 shows these results, and as we expected, varying
the cross-attention span length changes the performance of the model in
terms of RMSE and CCC, confirming Expected Result 5.2. However, it
is interesting that the model tends to perform better with shorter cross-
attention spans. We believe this is the case because the representations
generated by the encoder already incorporate temporal information, so
the decoder does not need to look far in time. With this, the decoder can
concentrate on weighting and aggregating the multimodal information,
rather than modeling the temporal dependencies. Figure 5.14 shows that
the best cross-attention spans are between 1 and 21, with no significant
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difference between them. Thus, in our model, we used a cross-attention
span of 1 since it is more computationally efficient, as the decoder has fewer
representations to process.

5.5 Conclusions

This chapter presented the third contribution of this thesis, which is a
method for continuous emotion recognition from multimodal inputs. Our
attention-based solution addresses the challenges described in Section 5.1.3:
Challenge 5.1, how to model temporal dependencies; Challenge 5.2, how
to aggregate multimodal information; and Challenge 5.3, how to take into
account past predictions.

To address Challenge 5.1, we design a multimodal Transformer encoder,
using the attention mechanisms inside the Transformer to model the tempo-
ral relations in the input modalities. To address Challenge 5.2, we use the
cross-modal attention from a Transformer decoder, thus aggregating infor-
mation in a way that more weight is given to the more important modalities.
Finally, to address Challenge 5.3, we employ an autoregressive approach.

The different experiments showed that our attention-based approach
outperforms a baseline based on late fusion and recurrence. Moreover, an
ablation study revealed that processing the representations generated by the
encoder using the AMMTD increases the performance compared to using
other solutions such as a FCN or a LSTM network.

In this chapter, we used multimodal signals that a smart environment
may provide in order to perform continuous emotion recognition. Besides
of having complementary information in the different modalities, there
is an additional advantage in using multimodal information: if a modal-
ity is missing, emotions could still be inferred from the remaining ones.
We explore this idea in the following chapter, where we address the task
of accommodating missing modalities in continuous multimodal emotion
recognition.
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CHAPTER 6

ACCOMMODATING MISSING MODALITIES

FOR EMOTION RECOGNITION

If we want to effectively monitor the mental well-being of a frail person
in a smart environment, it is desirable to monitor the emotional state of
those people by taking advantage of the variety of sensors that might be
present in such an environment. To achieve this goal, there are systems that
are capable of processing multimodal inputs in order to recognize emotions,
like the system we presented in the previous chapter. However, in real-
world scenarios, some modalities may become unavailable. For example,
a sensor might run out of battery, it might have communication issues, or
maybe the user deactivates a sensor for privacy concerns. These stations
may cause the system not to work if it is not flexible enough to deal with
these circumstances. Therefore, if we envision the deployment of emotion
recognition systems in real-world settings, those systems should be capable
of accommodating missing modalities.

This chapter presents a method to recognize emotions from multimodal
inputs capable of handling missing modalities. The chapter gives a concrete
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definition of the problem being addressed in Section 6.1, reviews some
related contributions in Section 6.2, describes our contribution to handle
missing modalities for emotion recognition in Section 6.3, and shows the
experimental results obtained when evaluating our ideas in Section 6.4.

6.1 Problem Definition, Motivations and Chal-
lenges

In this Chapter, our goal is similar to the one that we had for Chapter 5,
which is described in Section 5.1. That is, we want to perform multimodal
continuous emotion recognition. For this chapter though, we address the
case that modalities are missing during inference. Thus, to be more specific,
in this chapter, we design a system capable of performing multimodal value-
continuous time-continuous recognition of arousal or valence, even in the
situation when there are missing modalities.

Our motivations behind this task come from the real-world scenario that,
although all modalities may be available during training, there might be
modalities that are unavailable when performing the inference. For example,
if the input consists of video, audio, and physiological signals, as it is our
case, the camera’s field of view may become obstructed, the microphone
may be too far away, the physiological sensor may be on a wearable device
that is not currently worn, or simply any of the mentioned sensors may be
disconnected by the user for privacy concerns.

Similar to Chapter 5, we refer to the problem of multimodal value-
continuous time-continuous recognition of arousal or valence simply as
multimodal continuous emotion recognition, denoting with the word contin-
uous value-continuous and time-continuous, and with the word emotion
either arousal or valence.

6.1.1 Challenges

In this chapter, a missing modality can be understood as a modality that
is absent. That is, the input is not replaced by any value (e.g. a null value or
zeros), but rather is completely unavailable. In this case, the model should
use as inputs the remaining modalities. We can imagine this case of an
absent modality when the system has been designed assuming that visual,
audio, and physiological information is going to be present, but for example,

142



6.1. Problem Definition, Motivations and Challenges

the final user prefers not installing cameras to gather the visual information
or decides to disable the microphone when someone is visiting.

Also, in this chapter we consider that a missing modality could be a
modality with invalid data, that is, the data from the modality is spurious
or noisy, such that it is not feasible to reliably perform emotion recognition
with these data. In this case, we assume that there is a method that identifies
that a modality is not valid, and the model should ignore it. One way to
check the validity of a modality is by checking the correlation between the
different modalities, as done by Mittal et al. [136]. In any case, in this
chapter, we do not study methods to identify invalid modalities, and we
simply assume that a perfect method exists. In real life, an invalid modality
might arise, for example, when there are communication errors with the
sensors, such that the system keeps receiving data, but these data are not
valid.

For simplicity, we refer to a modality that is absent or invalid as a missing
modality. With this, one challenge addressed in this chapter is the following:

Challenge 6.1. Developing an architecture to perform multimodal emotion
recognition capable of accommodating missing modalities, such that the archi-
tecture is flexible to work with fewer modalities than originally intended, or
capable of ignoring modalities identified as not valid.

Even if an architecture is flexible enough to accommodate missing modal-
ities when performing emotion recognition, it might have its accuracy re-
duced when a modality is missing. From this, the following challenge
arises:

Challenge 6.2. How to improve the accuracy of a model designed for multi-
modal emotion recognition capable of accommodation missing modalities, in
the case that the accuracy of the model is reduced when a modality is missing.

To address these challenges, we assume that all modalities have an equal
probability of being missing, and we also assume that only one modality
will be missing at a time. Although these assumptions may not hold in real
life, we use them as a starting point in our approach, leaving the impact of
relaxing these assumptions as future work.

143



6. Accommodating Missing Modalities for Emotion Recognition

6.2 Related Work on Handling Missing Modali-
ties for Emotion Recognition

Early contributions that address the issue of missing modalities in mul-
timodal approaches include the work of Kapoor and Picard [99], which
proposes an approach based on a Mixture of Gaussian Processes to fuse the
information from multiple modalities in a scenario where there might be
modalities missing. Kapoor and Picard [99] demonstrate that their method
can handle missing modalities better than simply stacking the observations
of all modalities to form a vector used as input to a classifier.

For the rest of this literature review, we focus on Deep Learning (DL)
approaches. Zhao et al. [222] identify three main types of approaches to
handle missing modalities:

— Learning a joint representation from the different modalities, such
that if a modality is missing at test time, the remaining ones can still
generate this joint representation.

— Using generative methods to generate the missing modalities from the
available ones.

— Ablating the inputs at training time to mimic the case that a modality
is missing.

The following subsections examine these approaches in detail, review-
ing relevant literature that showcases how these techniques are used to
handle missing modalities. Specifically, contributions that learn joint repre-
sentations are reviewed in Section 6.2.1, contributions that use generative
methods are reviewed in Section 6.2.2, and contributions that ablate the
inputs during training are reviewed in Section 6.2.3.

6.2.1 Learning Joint Representations

The idea behind this technique is to learn joint representations from
the different modalities, such that these representations can be generated
even when a modality is absent at test time. The key fact is that during
training, the model learns to generate joint representations that capture
semantic information from all the modalities. Then, during inference, the
model generates these representations using only the available modalities
as input. To exemplify this, we now describe in detail the works of Aguilar
et al. [3] in Section 6.2.1.1 and Pham et al. [147] in Section 6.2.1.2.
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6.2.1.1 Multi-view Approach for Missing Modalities

In their work, Aguilar et al. [3] address the task of emotion recognition
from lexical (i.e. transcripts) and acoustic information. They argue that
although during training it could be possible to access both modalities, at
test time it might be more difficult to have access to the transcript. Thus,
they develop a system to combine acoustic and lexical modalities during
training, while for inference the system does not require lexical inputs.

For this, they induce semantic information from a multimodal model
into an acoustic-only model using a multi-view approach with contrastive
learning. In other words, they consider the acoustic information as one
view and the multimodal information as a second view from the same input,
hence their representations should be similar. Specifically, they build a
model that uses only acoustic inputs, and a multimodal model that takes
acoustic and lexical inputs. During training, each model is taught to predict
emotion while contrastive loss is used to tie the representations generated
by both models. With this approach, the authors claim that information is
shared between the models, and therefore at test time the acoustic model
is capable of predicting emotions without the need of lexical information,
having taken advantage of this information at training time. In fact, the
accuracy of predicting emotions with the acoustic model using this approach
is around 10% higher than using the same model but trained only with
acoustic inputs, without using the multimodal model and the contrastive
loss.

The work of Aguilar et al. [3] shows that it is possible to learn a
joint representation that incorporates the information from the available
modalities at train time, and then generate this representation at test time
using only one modality. However, one drawback of this approach is that
if all modalities are present during testing, the model cannot use all of
them and take advantage of this situation, since it only accepts one type of
modality as input.

6.2.1.2 Learning Joint Representations with Cyclic Translations

Pham et al. [147] develop a model to predict emotions that is trained
using text, visual and audio information, but uses only text to make the
predictions. For this, they use a sequence-to-sequence approach to perform
translation between a source modality (text) and a target modality (audio
or visual), arguing that this method provides a way of learning a joint
representation that uses only one modality, the source modality, as input.
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Their idea is to encode the information from the text modality into
an intermediate representation, and then generate the other modalities
from this intermediate representation. This intermediate representation
captures joint information from the source and target modalities, and thus
the authors refer to it as a joint representation. To ensure that this joint
representation captures most of the information from all modalities, they
use a cycle consistency loss, meaning that they translate back from the
generated modality to the source modality. The joint representation is used
to perform the emotion prediction, and during training, the translation loss,
the cycle loss, and the prediction loss are minimized together.

The key aspect of this approach is that once the model has been trained,
the joint representation can be generated using only the source modality,
which in this case is the text modality. Their model is capable of performing
better than other works that address the same problem, even using only the
text modality as input during test time, while other approaches use text,
visual and audio modalities as input.

Pham et al.’s approach [147] shows how to generate a joint representa-
tion using a single modality as input, while incorporating the information
from other modalities during training. However, like the work of Aguilar et
al. [3], which was reviewed in the previous section, it cannot take advan-
tage of other modalities if they are present at test time. Moreover, as these
approaches rely on a single modality at test time, if this single modality is
missing, the system will stop working.

6.2.2 Using Generative Methods

In this type of approach, the idea is that if a modality is missing, it will be
generated from the remaining modalities using a generative method. A way
to do this is to use linear transformations to generate the missing features
from the available ones, like in Mittal et al. [136], which is reviewed in
Section 6.2.2.1; use an encoder-decoder model like Tsai et al. [191], which
is reviewed in Section 6.2.2.2; or use adversarial networks like Cai et al.
[31], which is reviewed in Section 6.2.2.3.

6.2.2.1 Generating Proxy Features for Missing Modalities with Linear
Functions

In their work, Mittal et al. [136] address the task of emotion recognition
from facial, textual, and speech inputs. Their approach checks for ineffective
modalities (for example a noisy modality), and if a modality is identified as
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Inference Network Generative Network

Figure 6.1 – Tsai et al.’s approach (figure from Tsai et al. [191].)
ineffective, its features are replaced by proxy features generated from the
remaining effective modalities.

The first step in their approach is to verify if a modality is effective
or ineffective. To do this, they argue that when emotions are predicted
correctly, there exists a correlation between the input modalities. Thus, they
check the correlation between pairs of modalities to identify a modality
that may be uncorrelated with the others, and this modality is identified as
ineffective. If a modality is identified as ineffective, a proxy feature vector
is generated to replace it using a linear transformation on the features of
another modality. In reality, there is a non-linear relation between modalities,
but they demonstrate that by relaxing this constraint, a linear transformation
can be found that approximates the ineffective modality, and an approximate
feature (i.e. a proxy feature) can be obtained from the available modalities
features using a linear algorithm.

An advantage of Mittal et al.’s approach [136] is that it is capable of
identifying and reconstructing the representations of modalities. However,
there is no guarantee that the generated representation accurately resembles
the missing one, which may downgrade the performance of the model in
case the proxy representation is far from the real one.

6.2.2.2 Using an Encoder-Decoder Model to Generate Missing Modali-
ties

Tsai et al. [191] develop an architecture to generate multimodal repre-
sentations that can be used for different downstream tasks, factorizing these
representations into multimodal discriminative factors and modality-specific
generative factors. Their method is depicted in Figure 6.1. In their approach,
the model produces those factors rather than generating the representations
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Figure 6.2 – Cai et al.’s approach (figure from Cai et al. [31].)
directly.

To do this, they employ a multimodal fusion model that produces a
representation that is used to perform the prediction, this representation
being the multimodal discriminative factor. They also employ different
networks to generate individual representations from each modality and
reconstruct the respective modality from the corresponding representation.
These individual representations are the modality-specific generative factors.

At test time, if a modality is missing, the model is capable of recon-
structing the missing modality from the remaining ones, being also able to
produce the multimodal discriminative factor that is used for the prediction.
Therefore, the model is able to perform the prediction even with the missing
modality.

The results shown by Tsai et al. [191] demonstrate that in the case of
missing modalities, using their factorized representation approach leads to
better results compared to using a purely generative or a purely discrimi-
native model. However, a disadvantage of their approach is that different
models need to be trained to deal with different missing modalities. In other
words, if there are modalities A, B, and C, a model needs to be trained in
case modality A is missing, another one in case modality B is missing, and a
third one in case modality C is missing.

6.2.2.3 Using Adversarial Networks

In their work, Cai et al. [31] address the problem of processing medical
images for disease diagnosis. Specifically, they use magnetic resonance
images and tomographies as inputs during training, with the aim of using
only the magnetic resonance images during inference. For this, they use
Generative Adversarial Networks (GANs) to generate the missing tomogra-
phies.
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In their approach, which is depicted in Figure 6.2, they use an encoder-
decoder network as generator, while their discriminator has the particularity
that it is not only in charge of distinguishing real and fake input images, but
also performs the target classification task. To train their model, the loss is
based on the distance between the generated and real tomographies, plus
the adversarial loss and plus the classification loss.

The results presented in Cai et al.’s paper [31] show that their approach
can perform better in terms of accuracy than using only magnetic resonance
or only tomographies, showing that the generated missing modalities help
the model to achieve better results. Nevertheless, their model is not capable
of accepting more than one modality as input, and thus, if all modalities
are present during inference, their approach cannot take advantage of this
situation.

6.2.3 Ablating Inputs at Training Time

The main idea in this approach is to ablate or eliminate different modali-
ties at training time, such that the model learns to handle the case of missing
modalities during evaluation. We now review some contributions that use
this technique to handle missing modalities.

6.2.3.1 Random Dropping of Modalities

The work of Neverova et al. [140] addresses the task of multimodal
gesture recognition that is robust to missing modalities. To do this, they
develop a model that first processes each modality individually and then
fuses the information from each modality using non-linear fusion shared
layers, based on Fully-Connected Network (FCN).

Their fusion shared layers are FCNs carefully designed such that they
can work even when some modalities are absent. In fact, the weight matrix
of the shared layers is structured in blocks, in such a way that each diagonal
block models single-modality dependencies, while the off-diagonal blocks
model cross-modal dependencies. This allows to pre-train the complete
model one modality at a time, initializing this way the diagonal blocks.
Once this pre-training is concluded, the model could be potentially trained
with all the modalities, but instead, the authors propose to drop modalities
randomly, making the model robust to missing modalities at test time.

Neverova et al.’s work [140] demonstrates the potential of dropping
modalities during training to make a model more robust to missing modali-
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ties. However, their approach requires structuring the weights of a FCN in
blocks to make it suitable to handle missing modalities. Contrary to this
method, a Transformer-based approach may be seen as a more flexible tech-
nique to deal with missing modalities because there is no need to change its
architecture when a modality is missing. In fact, in this case, the attention
mechanisms in the Transformer will simply pay attention to the remaining
modalities. The following subsection presents some works that address the
problem of missing modalities using a Transformer-based approach.

6.2.3.2 Transformer-Based Approaches

Using Transformer-based approaches to process multimodal information
has the advantage that if a modality is missing, the attention mechanisms of
the Transformers can ignore the missing modalities and only attend to the
remaining ones, thus being a solution well adapted for this situation.

One example of such an approach is the work of Parthasarathy and
Sundaram [144], where a cross-modal Transformer [190] is used to model
inter-modality interactions for the task of audiovisual emotion recognition
(see Section 5.2.2.3 for more information about cross-modal Transformers).
Two cross-modal Transformers are used: one to incorporate information
from the visual modality into the audio modality, and one to incorporate
information from the audio modality into the visual modality. The final
representation is the addition of the output representations of the two cross-
modal Transformers, plus the original audio and video features. The use of
addition to obtain the final representation allows the model to work even if
a modality is missing. Specifically, the authors address the case where the
visual modality is missing. For this, during training, they randomly replace
with zeros some selected frames.

Another example is the work of Goncalves and Busso [79], which also
uses a cross-modal Transformer for audiovisual emotion recognition. In
their case, in addition to the cross-modal Transformer, single-modality
Transformers are also used, and the final training loss is the weighted sum of
the losses of each of the Transformers. To make the model robust to missing
modalities, during training the audio or visual features are replaced with
zeros with a certain probability.

The contributions reviewed here show that Transformer-based approaches
can be used to handle missing modalities, and they can be made more ro-
bust to this situation by dropping modalities during training. However, a
disadvantage of using a cross-modal Transformer is that a single cross-modal
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Transformer only accepts a pair of modalities, incorporating information
from one modality into the other (and not the other way). Therefore,
expanding the presented approaches to use more modalities is not straight-
forward.

To alleviate the situation described in the previous paragraph, a Multi-
modal Transformer [73] can be employed. An example of this approach
can be found in the work of Ma et al. [130], where they process inputs
consisting of images and text using a Multimodal Transformer, with the
input formed by creating a sequence with the concatenation of the image
and text features. During training, they sometimes hinder the attention
between modalities, essentially converting the Multimodal Transformer into
two single modality Transformers, thus now the model has two outputs.
The training loss is the sum of the loss when all modalities are present and
the two losses that are obtained when the attention between modalities is
masked.

6.2.4 Discussion

This review has presented different types of approaches for handling
missing modalities in a multimodal task. One approach is learning joint rep-
resentations that capture semantic information from the different modalities,
but can be generated only with a single modality. Although the reviewed
contributions show that this approach is suitable to handle the situation of
having only one modality available during inference, the drawback is that
this approach cannot take advantage of using more than one modality in
the case that all modalities are available at test time.

A second approach is to generate the missing modalities from the re-
maining ones. This can be done using methods like GANs, encoder-decoder
approaches, or linear functions to generate the missing modalities or proxy
features for the missing modalities. In this case, the model can use all the
available modalities, but there is no guarantee that the generated modality
or the proxy feature will accurately resemble the missing one.

To avoid generating synthetic information, a third approach consisting of
dropping modalities at training time can be used. This way, the model learns
to handle the case when a modality is missing. Given its advantages, this is
the technique that we adopt to accommodate missing modalities. Moreover,
we use a Transformer-based approach, since its architecture is well adapted
to deal with missing modalities, and allows dropping modalities, as shown
by Gabeur et al. [72]. Specifically, we use the architecture introduced in
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Chapter 5, composed by a Multimodal Transformer Encoder (MMTE) and a
Autoregressive Multimodal Transformer Decoder (AMMTD). Moreover, in-
stead of randomly dropping any modality during training as is typically done,
we drop the modalities that we identify as the ones that are contributing
the most to the prediction, forcing the model to learn to obtain information
from the other modalities. In summary, our approach takes advantage of
the flexibility of Transformer-based approaches to accommodate missing
modalities, while employing a modality-drop strategy to better prepare the
model to the case when a modality is missing.

6.3 Accommodating Missing Modalities

The contribution of this chapter, which is described in this section, is to
develop an approach to handle missing modalities when recognizing value-
continuous time-continuous values of arousal or valence, using multimodal
inputs. For simplicity, we use the term multimodal continuous emotion
recognition to refer to recognizing value- and time-continuous values of
arousal or valence from multimodal inputs.

For our approach, we use the same architecture that we developed in
Chapter 5. As we did in that chapter, we use a common architecture to
predict arousal and valence, but we train different models for each one of
them. The architecture consists of two modules. The first module is an
encoder that we call MMTE, which is in charge of generating representations
from the multimodal inputs. The second module is a decoder that we call
AMMTD, which uses the multimodal representations from the encoder
to perform continuous emotion recognition, aggregating the multimodal
information and using auto-regression to take into account past predictions.
Please refer to Section 5.3 for more details about the architecture.

6.3.1 Accommodating Missing Modalities in an Attention-
Based Architecture

Different from an approach where the fusion of information is done
explicitly, like concatenating features for example, our model will not break
in the case a modality is missing. In fact, the attention mechanisms in our
Transformer-based approach can accommodate missing modalities by simply
not attending them. We now explain this idea in detail, starting with how
the MMTE behaves when a modality is missing.

152



6.3. Accommodating Missing Modalities

𝑑𝑇

AMMTD
+

𝑣1
𝑇

𝑤1

𝑣2
𝑇

𝑤2

𝑣3
𝑇

𝑤3

𝑟1
𝑇 𝑟2

𝑇 𝑟3
𝑇

MMTE
+

𝑣1
1

𝑤1,1

𝑣1
𝑇

𝑤1,𝑇

𝑣2
1

𝑤2,1

𝑣2
𝑇

𝑤2,𝑇

𝑣3
1

𝑤3,1

𝑣3
𝑇

𝑤3,𝑇

𝑥1
1 𝑥1

𝑇 𝑥2
1 𝑥2

𝑇 𝑥2
1 𝑥2

𝑇

(a) All modalities present.

𝑑𝑇

AMMTD
+

𝑣1
𝑇

𝑤1

𝑣3
𝑇

𝑤3

𝑟1
𝑇 𝑟3

𝑇

MMTE
+

𝑣1
1

𝑤1,1

𝑣1
𝑇

𝑤1,𝑇

𝑣3
1

𝑤3,1

𝑣3
𝑇

𝑤3,𝑇

𝑥1
1 𝑥1

𝑇 𝑥2
1 𝑥2

𝑇

(b) Having a missing modality.
Figure 6.3 – Depiction on how our Transformer-based architecture is flexible in the casewhere modalities are missing.
6.3.1.1 Handling Modalities in the MMTE

The input of the MMTE is the concatenation of the different modalities to
form a single sequence, as observed in Figure 6.3a. If there are𝑀 modalities
with length 𝑇 , the input of the MMTE is

𝑋 = [𝑥1
1, . . . , 𝑥

1
𝑇 , . . . , 𝑥

𝑀
1 , . . . , 𝑥

𝑀
𝑇 ], (6.1)

where 𝑥𝑚𝑡 ∈ ℝ𝑑model is a feature corresponding to modality𝑚 at time-step 𝑡 .

To facilitate the explanation, and without the loss of generality, assume
that the number of modalities is three. Moreover, let us concentrate on
how the representation 𝑟3

𝑇 obtained from feature 𝑥3
𝑇 is generated, assuming

that the attention module has only one head and one layer. The process of
generating the representation 𝑟3

𝑇 with these assumptions is depicted in Figure
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6.3a. Since we are using self-attention, the representation 𝑟3
𝑇 is obtained

from query, key and value vectors coming from the input. Specifically, 𝑟3
𝑇

is the weighted sum of the value vectors 𝑣𝑚𝑡 , with each value vector 𝑣𝑚𝑡
obtained from the corresponding input feature 𝑥𝑚𝑡 . Then, to obtain the
representation 𝑟3

𝑇 we have

𝑟3
𝑇 = 𝑤1,1𝑣

1
1 + · · · +𝑤1,𝑇𝑣

1
𝑇 +𝑤2,1𝑣

2
1 + · · · +𝑤2,𝑇𝑣

2
𝑇 +𝑤3,1𝑣

3
1, · · · +𝑤3,𝑇𝑣

3
𝑇 , (6.2)

where 𝑤𝑚,𝑡 corresponds to the attention weights, which are obtained using
the query and key vectors, Particularly, 𝑤𝑚,𝑡 represents the weight (or
attention) given to the input feature corresponding to modality𝑚 at time-
step 𝑡 .

When a modality is absent, the associated value vectors and attention
weights are not generated. For example, assume that modality two is
missing, which is depicted in Figure 6.3b. In this case, Expression 6.2
becomes

𝑟3
𝑇 = 𝑤1,1𝑣

1
1 + · · · +𝑤1,𝑇𝑣

1
𝑇 +𝑤3,1𝑣

3
1, · · · +𝑤3,𝑇𝑣

3
𝑇 . (6.3)

This shows the flexibility of the Transformer-based approaches to handle
missing modalities because in this case, the model does not break. Instead, it
accommodates the missing information by simply attending to the remaining
information.

Note that this architecture can also handle the case where a modality
instead of being completely absent, is identified as not valid. This could be
the case if, for example, a sensor becomes faulty and gives incorrect values.
Having identified the faulty modality, the model could ignore those values
by masking the attention weights. In other words, the attention weights
corresponding to the faulty modality become 0. As an example, assume that
the faulty modality is modality two; then we have

𝑟3
𝑇 = 𝑤1,1𝑣

1
1 + · · · +𝑤1,𝑇𝑣

1
𝑇 + 0𝑣2

1 + · · · + 0𝑣2
𝑇 +𝑤3,1𝑣

3
1, · · · +𝑤3,𝑇𝑣

3
𝑇

= 𝑤1,1𝑣
1
1 + · · · +𝑤1,𝑇𝑣

1
𝑇 +𝑤3,1𝑣

3
1, · · · +𝑤3,𝑇𝑣

3
𝑇 .

(6.4)

6.3.1.2 Handling Modalities in the AMMTD

The way the AMMTD decoder works when a modality is absent is similar
to how the MMTE module works in the same situation. Using the same
simplifying assumptions as before (3 modalities, model with one layer and
one head), let us study the case when the model is predicting the emotion at
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time-step 𝑇 . In this case, as shown in Figure 6.3a, the representations given
by the MMTE that are used by the AMMTD to perform the prediction are

𝑅 = [𝑟1
𝑇 , 𝑟

2
𝑇 , 𝑟

3
𝑇 ], (6.5)

where 𝑟𝑚𝑇 ∈ ℝ𝑑model is the representation corresponding to modality 𝑚 at
time-step 𝑇 . Recall that in the AMMTD, the value vectors come from the
representations given by the MMTE module. With this in mind, if the value
vectors are [𝑣1

𝑇 , 𝑣
2
𝑇 , 𝑣

3
𝑇 , ], then the output for the time-step 𝑇 of the AMMTD

is
𝑑𝑇 = 𝑤1𝑣

1
𝑇 +𝑤2𝑣

2
𝑇 +𝑤3𝑣

3
𝑇 , (6.6)

where the weights 𝑤 are the attention weights obtained using the represen-
tations 𝑅 and the information from past predictions.

Like in the case of the MMTE, when a modality is absent, the associated
vectors and attention weights are not generated. If, for example, modality 2
is absent, we have

𝑑𝑇 = 𝑤1𝑣
1
𝑇 +𝑤3𝑣

3
𝑇 . (6.7)

Also, like for MMTE, when a modality is identified as not valid, the
model could ignore this modality by using zeros as attention weights for the
invalid modality. If, for example, modality 2 not valid, we have

𝑑𝑇 = 𝑤1𝑣
1
𝑇 + 0𝑣2

𝑇 +𝑤3𝑣
3
𝑇 . (6.8)

To summarize this and the previous subsection, our complete architec-
ture, composed of the MMTE and AMMTD modules, is capable of handling
missing modalities without breaking in case a modality is completely absent.
Also, our architecture can ignore a modality that has been identified as not
valid. This means that our architecture is capable of addressing Challenge
6.1. However, even if our approach continues working in the case of missing
modalities, its performance may be degraded. To alleviate this situation and
increase the robustness of the model to missing modalities, we perform a
special way of training that we call optimized training, which is explained in
the following subsection.

6.3.1.3 Optimized Training for Missing Modalities

As seen in the previous subsections, our architecture is capable of work-
ing even if there are modalities absent. Nevertheless, the accuracy of the
predictions may be negatively affected in this circumstance. For this, we
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develop a way of training our model to mitigate this situation. Through this
chapter, we call this way of training as optimized training.

The procedure for the optimized training consists in first identifying
the most important modalities. To do this, the model is first trained in a
standard way and then evaluated on the validation set, with every modality
missing, one at a time. With this procedure, we can identify in which cases
the performance is reduced more, which means that the missing modalities
in those cases should be important. Specifically, if the difference in both
employed metrics 1 when a particular modality is missing is statistically
significant compared to when all the modalities are present, we consider that
particular modality as important. We select as important all the modalities
that meet this condition, even if it is more than one.

The next step after that the important modalities have been identified
is to retrain the model without using those important modalities a portion
of the time. Specifically, for each batch, the important modality 𝑖 may be
selected to be eliminated with probability 𝑝𝑖eliminate, and all the modalities
may be kept with probability 𝑝none = 1 − ∑𝑛

𝑖=1 𝑝
𝑖
eliminate, where 𝑛 is the

number of important modalities.

The rationale behind this training strategy is that by hiding the important
modalities, the model is forced to learn from the remaining ones, and this
makes the model robust when those important modalities are not present.
In addition to this, this training strategy should also improve the results
when all the modalities are present, because more information will be taken
from all the modalities instead of just relying on the important ones.

6.3.2 Expected Results

6.3.2.1 Expected Results with Missing Modalities, Standard Training

If our model has been trained under a standard procedure, we expect
the following when a modality is missing:

Expected Result 6.1. The model should continue working even when a modal-
ity is missing, although the performance of the model with respect to the
employed metrics may be reduced.

1. We discuss about metrics in the Experiments section. (Section 6.4.1.4).
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6.3.2.2 Expected Results with Missing Modalities, Optimized Training

When a modality is missing, the quality of the results may be reduced.
With our optimized training strategy we aim to mitigate this situation, and
thus the following result is expected:

Expected Result 6.2. The results obtained with a model trained with the
optimized-training strategy and tested with a missing modality should be better
than the results obtained with the same model, but trained in a standard
manner, when tested with the same missing modality.

6.3.2.3 Expected Results with All Modalities, Optimized Training

With our optimized training strategy, we force the model to use informa-
tion from modalities that it may consider less important. We believe that
using more information from these modalities should improve the overall
performance. In short, the following result is expected:

Expected Result 6.3. The results obtained with a model trained with the
optimized-training strategy and tested with all modalities present should be
better than the results obtained with the same model, but trained in a standard
manner.

6.4 Experiments

This section presents and discusses the experimental results when testing
our approach for handling missing modalities in multimodal continuous
recognition of arousal and valence, describing the experimental setup in Sec-
tion 6.4.1, showing the results of testing the model with missing modalities
in Section 6.4.2, and showing the results of evaluating the model trained
with the optimized approach in Section 6.4.3.

6.4.1 Experimental Setup

We employ the same experimental setup used in Chapter 5, using the
same model size and hyperparameters. We provide a summary of the
experimental setup here, but a detailed description can be found in Section
5.4.1.
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6.4.1.1 Database

We use the Ulm-Trier Social Stress Test (ULM-TSST) database, which
consists of participants recorded giving a five-minute speech under a stressful
situation. In addition to audio and video, physiological signals consisting of
Electrocardiogram (ECG), Respiration (RESP), and Beats per Minute (BPM)
are also collected. The dataset was annotated by experts, with continuous
annotations every 0.5 seconds. Annotations consist of numerical values of
arousal and valence in the range of [−1, 1].

6.4.1.2 Input Features

We use three modalities as input for our model: audio, visual, and
physiological signals. The ULM-TSST dataset provides features extracted
from those modalities, and we use those provided features. For the audio
modality, we use the extended Geneva Minimalistic Acoustic Parameter Set
(eGeMAPS) features [64]. For the video modality, we use facial Action Unit
(AU) intensity. For the physiological signals, we use ECG, RESP, and BPM
signals concatenated to a 3-value feature vector.

6.4.1.3 Loss Function

We use Concordance Correlation Coefficient (CCC) as the basis for the
loss to train our model. A detailed explanation about the CCC can be found
in Sections 5.4.1.1 and 5.4.1.4. This loss is formulated as

L = 1 − CCC (6.9)

CCC =
2𝜌𝜎𝑌𝜎𝑌

𝜎2
𝑌
+ 𝜎2

𝑌 + (`𝑌 − `𝑌 )2
, (6.10)

where 𝜌 is the Pearson correlation coefficient between the predicted values
𝑌 and the ground-truth values 𝑌 . 𝜎 and ` denote the standard deviation
and the mean, respectively, of the predicted or the ground-truth values, as
indicated by their subindices.

6.4.1.4 Metrics

We use the CCC, defined in Expression 6.10, as one of our metrics.
Generally speaking, the CCC metric gives two pieces of information: how
correlated are the predicted sequence of values with the ground truth
sequence of values, and how far are the predicted values from the real ones.
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The range of this metric is between -1 and 1, with 1 indicating a perfect
prediction, -1 indicating a perfect reversed prediction, and 0 indicating there
is no correlation between the prediction and ground truth. Additionally to
the CCC metric, we use the Root Mean Square Error (RMSE) to have an
idea of how distant are the predicted values from the ground truth.

When evaluating a model with these metrics, a higher CCC and a lower
RMSE is desirable, which is indicated with the symbols (↑) and (↓) when
we present the results.

6.4.1.5 Experimental Procedure

We independently test arousal and valence, training different models
for each of them, although we should keep in mind that the architecture is
the same in both cases. For each test, we obtain 30 results by training the
model with 30 different initialization seeds, and we report the average of
those results. A t-test is used with a threshold of p-value < 0.05 to assert
statistical significance, with a two-sided t-test used to check if results are
significantly different, and a one-sided t-test used to check if a result is
significantly better than another.

6.4.2 Testing the Model With Missing Modalities

Our first experiment consists in testing the model when there are modal-
ities missing. In this case, the model was trained in a standard way, that
is, without using the optimized training procedure. In our experiments, a
missing modality means the case where the modality is completely absent,
so the input of the MMTE consists only of the features of the remaining
modalities. This is similar to having a modality identified as invalid because
the model could ignore it by setting the corresponding attention weights to
zero, as seen in Sections 6.3.1.1 and 6.3.1.2.

With our first experiment, we try to corroborate the Expected Result 6.1,
meaning that the model should work although a decrease in performance
may be present in some cases. Table 6.1 presents the results of this experi-
ment. First, we analyze the case for arousal prediction. It is clear in Table
6.1a that the difference between the metrics obtained with all the modalities
present and when the audio or the physiological modalities are missing is
small. In fact, there is no statistically significant difference in these cases.
On the other hand, when the video modality is missing, the performance
measured with CCC and RMSE drops significantly. Specifically, the CCC
decreases from 0.3578 to 0.2713 and the RMSE increases from 0.2948 to
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Metric All Modalities Missing Audio Missing Video Missing Physio

RMSE↓ 0.2948 (0.0125) 0.2926 (0.0206) 0.3252 (0.0422)† 0.2920 (0.0146)
CCC↑ 0.3578 (0.0317) 0.3589 (0.0282) 0.2713 (0.0378)† 0.3539 (0.0382)

(a) Arousal Results
Metric All Modalities Missing Audio Missing Video Missing Physio

RMSE↓ 0.1796 (0.0114) 0.2533 (0.1036)† 0.2170 (0.0409)† 0.1808 (0.0122)
CCC↑ 0.1502 (0.0272) 0.0738 (0.0360)† 0.1564 (0.0275) 0.1486 (0.0284)

(b) Valence Results
Table 6.1 – Results obtained with the model trained with standard training, tested with allmodalities present and also with a missing modality. The standard deviation is indicatedin parentheses. The symbol (†) indicates that a result obtained with a missing modalityis statistically significantly different than the result obtained with all the modalities.

0.3252. These results confirm, for the case when predicting arousal, Ex-
pected Result 6.1, with our model able to continue working when a modality
is missing, although performance is reduced in some cases.

When predicting valence, Table 6.1b shows that there is no significant
performance degradation in terms of CCC and RMSE when physiological
signals are missing. Regarding CCC, it goes from 0.1502 to 0.1486, while
RMSE goes from 0.1796 to 0.1808. In both cases, the difference is not
statistically significant. On the contrary, there is a significant performance
drop when audio or video modalities are absent. For instance, RMSE
increases from 0.1796 to 0.2533 when the audio modality is missing and
increases to 0.2170 when the video modality is missing. Similar to the
results obtained when predicting arousal, these results confirm the Expected
Result 6.1, showing that our model continues to predict valence when a
modality is missing, although with a drop in performance in some cases.

To demonstrate that our Transformer-based solution is superior to non-
attention-based approaches for accommodating missing modalities, we use
the alternative approaches introduced in Section 5.4.2.2, testing them with
missing modalities. Specifically, we test Alternative Approach No 1, where a
FCN is used instead of the AMMTD decoder, and Alternative Approach No 2,
where a Long Short-Term Memory (LSTM) network is used instead of the
AMMTD. Since in this case the FCN and LSTM networks are expecting as
input the concatenation from the representations from the three modalities
(see Figures 5.12 and 5.13), it is still necessary to generate the representation
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for the missing modalities. In this case, we replace the missing modalities
with zeros, which in turn will produce vectors of zeros as representations
of those missing modalities. Therefore, the input of the FCN and the
LSTM networks will be the concatenation of valid representations and
representations filled with zeros coming from the missing modalities. It
could be argued that it is not fair to compare these alternative approaches
with our strategy, since they are not designed to handle missing modalities
and they are been fed with vectors filled with zeros. So, it might be said
that it is fairer to use an approach that for example, generates the missing
modality, or its representations, from the remaining ones, and use those
generated representations instead of vectors of zeros, as done in other
state-of-the-art works (see Section 6.2.2). Nevertheless, our intention is
to prove that an attention-based architecture is flexible enough to handle
missing modalities, without requiring techniques like generating proxy
representations to replace the missing inputs.

Table 6.2 shows the results of this experiment. This table shows that
in the majority of cases, our approach performs better than the alternative
approaches when a modality is missing. For example, when predicting
valence, in the case when the audio modality is missing, our model obtains
a CCC of 0.0738 while the MMTE+FCN approach obtains a CCC of 0.0159
and the MMTE+LSTM approach obtains a CCC of 0.0166. Moreover, for
most of the cases, the proportion of the reduction when a modality is missing
is less with our model than with the other approaches. For example, when
predicting arousal with the video modality missing, with our approach
the RMSE increases (worsen) 10.3%, while with MMTE+FCN it increases
15.4% and with MMTE+LSTM it increases 21.3%. In general, the results
in Table 6.2 show that using the alternative approaches almost always
presents degradation when a modality is missing, which does not happen
with our approach which has many instances where the performance does
not decrease with a missing modality. One such instance in which the
performance does not decrease with our approach is when audio is missing
when predicting arousal. This shows the superiority of our design that uses
our AMMTD module to process the representations produced by the MMTE
encoder. Moreover, these results show the robustness to missing modalities
of Transformer-based approaches, confirming their adaptability to this type
of situation.
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MMTE+FCN MMTE+LSTM MMTE+AMMTD (ours)
RMSE↓ %↓ RMSE↓ %↓ RMSE↓ %↓

All 0.3238 (0.0277) – 0.3189 (0.0244) – 0.2948 (0.0125) –

No Audio 0.3653 (0.0525) 12.8 0.3664 (0.0732) 14.9 0.2926 (0.0206) -0.80
No Video 0.3736 (0.0811) 15.4 0.3868 (0.0733) 21.3 0.3252 (0.0422) 10.3
No Physio 0.3638 (0.0840) 12.4 0.3530 (0.0415) 10.7 0.2920 (0.0146) -1.00

(a) Arousal results, RMSE metric.
MMTE+FCN MMTE+LSTM MMTE+AMMTD (ours)

CCC↑ %↓ CCC↑ %↓ CCC↑ %↓

All 0.1388 (0.0682) – 0.1387 (0.0575) – 0.3578 (0.0317) –

No Audio 0.0668 (0.0870) 51.9 0.0560 (0.1023) 59.6 0.3589 (0.0282) -0.30
No Video 0.0579 (0.1130) 58.3 0.0598 (0.0948) 56.9 0.2713 (0.0378) 24.2
No Physio 0.0957 (0.0757) 31.0 0.0564 (0.0723) 59.4 0.3539 (0.0382) 1.10

(b) Arousal results, CCC metric.
MMTE+FCN MMTE+LSTM MMTE+AMMTD (ours)

RMSE↓ %↓ RMSE↓ %↓ RMSE↓ %↓

All 0.1850 (0.0167) – 0.1842 (0.0653) – 0.1796 (0.0114) –

No Audio 0.3180 (0.0730) 71.9 0.1823 (0.0685) -1.0 0.2533 (0.1036) 41.0
No Video 0.2919 (0.0995) 57.8 0.2113 (0.0876) 14.7 0.2170 (0.0409) 20.8
No Physio 0.2700 (0.1221) 45.9 0.1868 (0.0619) 1.4 0.1808 (0.0122) 0.7

(c) Valence results, RMSE metric.
MMTE+FCN MMTE+LSTM MMTE+AMMTD (ours)

CCC↑ %↓ CCC↑ %↓ CCC↑ %↓

All 0.1221 (0.0309) – 0.0435 (0.0640) – 0.1502 (0.0272) –

No Audio 0.0159 (0.0259) 87.0 0.0166 (0.0355) 61.9 0.0738 (0.0360) 50.8
No Video 0.0641 (0.0389) 47.6 0.0189 (0.0509) 56.7 0.1564 (0.0275) -4.10
No Physio 0.0854 (0.0467) 30.1 0.0236 (0.0474) 45.8 0.1486 (0.0284) 1.10

(d) Valence results, CCC metric.
Table 6.2 – Comparison of using the AMMTD module with other approaches when amodality is missing. "%" indicates the percentage loss of the metric when a modalityis missing compared to using all modalities. Best results are indicated in bold, andstandard deviation is indicated in parentheses.
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6.4.3 Optimized-Trained Model with Missing Modalities

With the results from the previous experiment, we notice that when
performing emotion recognition, there are modalities that influence the
outcome more than others. We call those modalities important modalities.
However, other modalities that are not important modalities may still carry
useful information for emotion recognition. Therefore, it is appealing to
force the model to increase its use of non-important modalities, especially
to prepare the model for the situation that a modality is missing. To do
this, we use our optimized training strategy of hiding important modalities
during parts of the training, forcing the model to rely more on the other
modalities.

In order to train the model with the optimized training strategy, we first
need to identify the most important modalities. We evaluate the model
using the validation set, with a single modality missing at a time. Using
these results, we select the modalities that, when missing, induce a statis-
tically significant drop in performance measured with both the CCC and
RMSE metrics. With this, when predicting arousal, we identified that the
most important modality is video. Similarly, when predicting valence, we
identified that the most important modalities are audio and video.

Using the optimized training strategy, described in Section 6.3.1.3, when
training the model to predict arousal, the video modality is eliminated with
probability 𝑝video

eliminate = 0.25, and all the modalities are maintained with
probability 𝑝none = 0.75. In the same way, when training to recognize
valence, the audio modality is eliminated with probability 𝑝audio

eliminate = 0.333,
the video modality is eliminated with probability 𝑝video

eliminate = 0.333, and all
modalities are kept with probability 𝑝none = 0.334. These probabilities were
found empirically by testing several configurations and keeping the best
ones when evaluated on the validation set.

We use the model trained with the optimized strategy to check Expected
Result 6.2, meaning that we expect that when a modality is missing, the
results obtained with the model trained with the optimized strategy should
be better than the ones obtained with the model trained in a standard way.

Table 6.3 presents the results of the model trained with the optimized
strategy and tested when a modality is missing, compared with the results
obtained with the model trained with the standard strategy and also tested
when a modality is missing. The table shows that our optimized training
strategy improves all the results when a modality is missing. For example,
when the physiological signals are missing, CCC improves from 0.3539
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Standard Optimized

Missing Audio 0.2926 (0.0206) 0.2850 (0.0132)†
Missing Video* 0.3252 (0.0422) 0.3249 (0.0317)
Missing Physio 0.2920 (0.0146) 0.2878 (0.0160)

(a) Arousal results, RMSE metric (↓).
Standard Optimized

Missing Audio 0.3589 (0.0282) 0.3644 (0.0501)
Missing Video* 0.2713 (0.0378) 0.2984 (0.0345)†
Missing Physio 0.3539 (0.0382) 0.3571 (0.0477)

(b) Arousal results, CCC metric (↑).
Standard Optimized

Missing Audio* 0.2533 (0.1036) 0.2052 (0.0564)†
Missing Video* 0.2170 (0.0409) 0.1809 (0.0175)†
Missing Physio 0.1808 (0.0122) 0.1746 (0.0094)†

(c) Valence results, RMSE metric (↓).
Standard Optimized

Missing Audio* 0.0738 (0.0360) 0.1170 (0.0333)†
Missing Video* 0.1564 (0.0275) 0.1676 (0.0232)†
Missing Physio 0.1486 (0.0284) 0.1637 (0.0164)†

(d) Valence results, CCC metric (↑).
Table 6.3 – Comparison of the results when a modality is missing using a model trainedin a standard way with a model trained with the optimized strategy. An asterisk (*)indicates that the modality was identified as important. Standard deviation is indicatedin parentheses. Bold font is used to indicate that the result is better than its counterparttrained in a different fashion, and if it is statistically significantly better, this is indicatedwith the symbol (†).
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Metric Standard Optimized

Arousal
RMSE↓ 0.2948 (0.0125) 0.2869 (0.0120)†
CCC↑ 0.3578 (0.0317) 0.3703 (0.0351)

Valence
RMSE↓ 0.1796 (0.0114) 0.1739 (0.0089)†
CCC↑ 0.1502 (0.0272) 0.1656 (0.0169)†

Table 6.4 – Results obtained with all modalities present, using a model trained in astandard way and using a model trained with the optimized strategy. Bold indicates thebest result, the symbol (†) indicates that the result is statistically significantly better.

to 0.3571 when predicting arousal and from 0.1486 to 0.1637 when pre-
dicting valence. Notably, the improvement is statistically significant in all
cases when the important modalities are missing, except for RMSE when
predicting arousal with the video modality missing. These results confirm
Expected Result 6.2, showing that our optimized training strategy works
well, making our model less reliant on the important modalities and using
more information from the other ones.

6.4.3.1 Optimized Training Strategy with All Modalities Present

With the optimized strategy we force the model to use more information
from the non-important modalities. We believe that this information may
carry important cues to recognize emotion. Therefore, forcing the model to
use more of this information should improve the results not only when a
modality is missing, but also when all the modalities are present. This is in
fact what we expect according to Expected Result 6.3.

Table 6.4 shows a comparison between the results obtained using the
model trained with the optimized strategy and the results using the model
trained in a standard way, when all the modalities are present. The table
shows that for both arousal and valence, and for both metrics, the model
trained with the optimized strategy performs better. This confirms Expected
Result 6.3, showing that the model is getting more information from the
non-important modalities, and this information is contributing to improving
the performance of the model.
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6.5 Conclusions

This chapter presented the final contribution of this thesis, which is a
model to perform multimodal continuous emotion recognition, that can
accommodate missing modalities.

We demonstrated that our Transformed-based approach is flexible enough
to accommodate missing modalities without any architectural modifications.
The self-attention layers in the MMTE module can accommodate the miss-
ing modalities by paying attention to the remaining ones, as well as the
cross-attention layers in the AMMTD will just attend to the representations
generated from the available modalities. However, there are cases when
the performance drops when a modality is missing. In fact, we showed
that there are modalities that when absent, impact the performance more
than others, indicating that the model uses more information from these
important modalities paying less attention to the others.

To alleviate the situation described in the previous paragraph, we intro-
duced an optimized training strategy, which consists in hiding the important
modalities during training. We showed that with this optimized strategy, the
performance of the model increases not only when a modality is missing,
but also when all modalities are present. This performance increment was
especially important when the missing modalities were important modal-
ities. These results demonstrate that by hiding the important modalities
during training, the model learns to obtain more information from the other
modalities.

In our work, we used the ULM-TSST dataset, with audio, visual and
physiological data. Further work is needed to see if our results generalize to
other datasets and to other modality combinations. Moreover, our approach
is not designed to identify the case that a certain modality is present, but it
is not valid, as we assumed that there is a method that identifies an invalid
modality. In fact, having invalid data is a highly-probable scenario in a real-
world situation, thus addressing this problem is necessary if we envision the
deployment of emotion recognition systems in real-world settings.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

In this chapter, we conclude the manuscript by summarizing our contribu-
tions. We also examine the limitations of our work and discuss perspectives
to address those limitations.

7.1 Conclusions

The goal of this thesis was to develop techniques to perform emotion
recognition. Through our work to address this task, we made contributions
to recognizing emotions from single physiological signals, multiple phys-
iological signals, and multimodal inputs. We also addressed the issue of
missing modalities when performing the recognition. We synthesize those
contributions below.
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7.1.1 Emotion Recognition from Single Physiological Sig-
nals

Our first contribution was to propose a method to recognize emotions
from single physiological signals. In our approach, we used as inputs raw
physiological signals, employing a Deep Learning (DL) model to extract
representations from those signals. This raises the question of how to
effectively process such signals. For this, we investigated a Transformer-
based approach. We demonstrated that a Transformer concentrates on
processing the most informative parts of an input signal.

A supervised DL approach for constructing a model for physiological
signals requires labeled training data. This poses a problem since a charac-
teristic of DL approaches is that satisfactory performances typically depend
on having enough data to train the model [185], and large labeled datasets
of physiological signals with enough data to train the model effectively are
difficult to obtain. To overcome this issue, we proposed a self-supervised pre-
training technique, using unlabeled physiological signals. This pre-training
technique consisted in masking some segments of the input signal and then
predicting those masked segments.

Using two different datasets and two different types of physiological
signals, we experimentally showed that a model pre-trained with our tech-
nique and then fine-tuned with labeled data was less prone to overfitting
and had better performance in terms of accuracy and F1-score than a model
trained from scratch. We also showed that with our approach, we obtained
better results than a state-of-the-art work that uses a different architecture
and pre-training strategy, when both our approach and the state-of-the-art
approach used the same experimental protocol.

Our results demonstrate that it is valuable to use Transformer-based
solutions to process raw physiological signals. Moreover, we showed that
pre-training is an adequate technique for recognizing emotions from physio-
logical signals, making the model less prone to overfitting, which is espe-
cially important in data-constrained scenarios typically found in affective
computing.

7.1.2 Emotion Recognition from Multiple Physiological
Signals

Extending our first contribution, for our second contribution we pro-
posed a method for emotion recognition from multiple physiological signals.
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One of the advantages of using multiple physiological signals is that the
information contained in them may be complementary, and therefore com-
bining that information should improve the results compared to using each
signal individually.

As was the case for single physiological signals, it could be a challenge
to find large enough labeled datasets with all the concerned signals to
effectively train a DL model. Thus, as we did for our first contribution, we
employed a pre-training technique, but taking into account that acquiring
datasets containing all relevant physiological signals is more challenging
than obtaining multiple single-signal datasets, even if these datasets do not
require labeling.

Our pre-training strategy consisted in pre-training and fine-tuning in-
dividual Transformer-based models, with each model processing a single
physiological signal. Then, we used a late-fusion approach to combine the
results of each individual model. This way, during pre-training, the datasets
used for this phase only needed to have a single physiological signal.

Through experimental results using two different datasets, we showed
that using pre-trained individual models led to better results in terms of
accuracy and F1-score than using individual models trained from scratch.
In addition, we showed that one of the reasons for this improvement was
that the model was less prone to overfitting. This was the case even if the
individual models were frozen during late-fusion training, demonstrating
that the representations generated by the pre-trained individual models
were robust in the sense that using them as inputs for the late-fusion model
made the system less prone to overfitting. In addition, experimental results
showed that combining multiple physiological signals is helpful, increasing
in most of cases the performance in terms of accuracy and F1-score compared
to using individual signals.

Our results using multiple physiological signals show that information in
different physiological signals is complementary, and therefore it is worth
using multiple signals since there is the potential for a performance increase.
In addition, we showed that using pre-training is also useful in the case of
combining multiple physiological signals, which as we mentioned before, is
especially important in the affective computing field where datasets tend to
be small.
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7.1.3 Multimodal Time-Continuous Emotion Recognition

For our third contribution, we proposed a method to perform time-
continuous emotion recognition using multimodal inputs. When addressing
this problem, we identified three main challenges: how to model the tempo-
ral dependencies present in each modality, how to aggregate multimodal
information, and how to use past emotion predictions when inferring the
current emotion.

We used an encoder-decoder approach to address this task. The encoder
processes the multimodal inputs and generates representations from those
inputs, and the decoder uses those representations and gives as an output
the recognized emotion. In order to address the challenge of how to model
the temporal dependencies from the input data, we designed a Transformer-
based multimodal encoder. This way, the attention mechanisms from the
Transformer are used to model the temporal relations in the input modalities.

Our decoder was designed to address the second challenge, i.e. how
to aggregate multimodal information. For this, our decoder uses a cross-
attention mechanism that aggregates the information from the different
modalities, using as input the representations given by the encoder. Using
cross-attention implies that multimodal aggregation is done by performing
a weighted sum of the representations of the different modalities. Those
weights change dynamically depending on the input, and can be understood
as the model identifying the most relevant modalities.

For the third challenge, taking into account past predictions, our decoder
infers emotions in an auto-regressive manner. This means that to predict
the current emotion, it uses as inputs the previous predictions.

We evaluated our approach on a state-of-the-art dataset, obtaining re-
sults that improved the baseline provided by the authors of the dataset, in
terms of Root Mean Square Error (RMSE) and Concordance Correlation
Coefficient (CCC). Moreover, we showed the validity of our decoder de-
sign, by replacing it with other architectures. Specifically, we replaced our
Transformer-based decoder with a Fully-Connected Network (FCN) and a
Long Short-Term Memory (LSTM) network, to process the representations
given by the encoder. The experimental results showed that the performance
of our solution was better than the alternative approaches, in terms of RMSE
and CCC.

The work done for this contribution demonstrates that using attention
mechanisms to aggregate multimodal information is useful, as this could
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lead to improved performance. It also shows that it is important to take past
predictions into account when doing time-continuous emotion recognition.

7.1.4 Accommodating Missing Modalities

Our last contribution is an approach to perform time-continuous multi-
modal emotion recognition robust to missing modalities. For this, we used
the same architecture developed for our previous contribution, since an
attention-based model is well-suited to handle missing modalities. In fact,
we illustrated how this type of architecture can naturally accommodate
missing modalities by attending to the remaining ones.

Through different experiments, we demonstrated that our model was
indeed capable of handling missing modalities without any architectural
change. Specifically, we showed that at test time, the model could still
work even with a modality absent. However, we noted that there were
modalities that when absent, significantly decreased the performance of the
model, in terms of RMSE and CCC. From this, we concluded that there were
modalities from which the model was extracting more information, thus
they were important modalities, i.e. the most discriminant modalities.

To alleviate the performance decrease when an important modality is
missing, we introduced an optimized training strategy, which consisted of
hiding part of the time the important modalities during training. This way,
we forced the model to use information from the weaker modalities (less
discriminant modalities), such that when an important modality is missing,
the model can still rely on the other ones.

We experimentally tested our ideas, finding that using the optimized
training strategy led to improved performance in terms of CCC and RMSE
when a modality was missing, compared to the performance when the
same modality was missing and the model was trained using a standard
approach. Moreover, given that with the optimized training strategy the
model learns to use more information from the weak modalities, there was
also an increase in performance when all the modalities were present.

The results show that our Transformer-based architecture is capable of ac-
commodating missing modalities without the need of architectural changes,
and it is partially robust to missing modalities even without any special
training strategy. We also showed that robustness to missing modalities can
be improved by hiding the important modalities during training.

Having a model that can accommodate missing modalities is important
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because in real-life applications there can be cases when a modality may be
missing. For example, a sensor could be faulty, or the user may decide to
intentionally disconnect one of the inputs, say a video camera, for privacy
reasons.

7.2 Limitations and Perspectives

We now discuss some limitations of our contributions, presenting some
perspectives to overcome those limitations and to further expand our work.

7.2.1 Limitations on Datasets

As described in Section 2.4, different criteria were used to select the
datasets that we employ to test our contributions. Some of these criteria
included the type of sensors used to acquire the signals and the stimulus
used to generate the emotions in the subjects from whom the different
signals were acquired. The participants in the datasets selected under these
criteria were healthy people, with ages between 18 and 40 years. However,
as we envision the emotion recognition techniques developed in this thesis
as part of a global health monitoring system for frail people, we consider a
limitation to our work the fact that we did not test our model with samples
taken from frail people, but tested only on healthy young people. Although
we still consider our results valid towards our general goal of monitoring
the emotional health of frail people, an interesting perspective is to study
the differences that might exist between signals acquired from frail and
younger healthy people. For example, physiological manifestations or facial
expressions might be more pronounced at different age ranges.

Another limitation of the selected datasets is in the stimuli used to pro-
duce emotions in the subjects. We tried to have some variability regarding
this, by using datasets that employed audio-visual stimulus for the first part
of the thesis, and using a dataset that acquired signals from subjects under
stress-induced situations for the second part of the thesis. Nevertheless, we
are far from covering the whole range of emotion-inducing stimuli that a
frail person might experience, like talking with a family member, receiving
good or bad news, health-related issues, and others. Future work should
take this into account, studying if models trained with data elicited with
certain types of stimuli can function with data elicited with other types of
stimuli.

Finally, our approaches were tested with a limited quantity of datasets:
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two datasets when we worked only with physiological signals and one
dataset when we worked with multimodal signals. Future work should
include testing our models with more datasets to better evaluate the perfor-
mance of our approaches.

7.2.2 General Models vs. Specific Models for Emotion
Recognition

During this thesis, for each task we addressed, we designed a single
architecture to recognize the two dimensions of emotions with which we
worked: arousal and valence. And then, we trained the architecture sepa-
rately for each dimension. We did this because we aimed to design a general
architecture to predict emotions, rather than designing specific solutions for
each emotion dimension. Then, during training, this architecture specializes
in a particular emotion dimension.

However, another solution will be to train a single multi-tasking model,
capable of predicting the different emotion dimensions at the same time.
And going to the other extreme, another solution is to design specific
architectures for each emotion dimension. The latter option is especially
used in works that participate in challenges, where the objective is to obtain
the best performance in terms of a defined metric [87, 143].

From this, a perspective that emerges is that we should study and com-
pare the performances of the described approaches, understanding the
strengths and weaknesses of each of them. This probably will help to answer
some interesting questions, at least from a machine-learning point of view:
Are the different emotion dimensions very independent, so using different
architectures for each dimension works better? Or are these dimensions
deeply related so a multi-task approach is more convenient?

Another aspect of generalization in contrast to specialization is having a
general model that works for all users as opposed to a personalized specific
model for each user. For the latter option, it means that the model is
personalized by training it with data from the specific user, maybe in a
few-shot learning fashion. In this thesis, we did not work on specialized
models, because that implies that people have to label their own data, which
we see as a barrier to deploying a system in real-world scenarios, especially
for frail people. Nevertheless, as it is expected that a personalized model be
more accurate than a general one, an interesting perspective to explore is to
investigate if a personalized system is feasible, and if there are ways that
such systems could be practical to deploy, searching for ways to easily label
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data, for example.

7.2.3 Alternative Ways to Pre-Train the Models

When we worked only with physiological signals, we developed a pre-
training strategy consisting of masking some parts of the signal and predict-
ing those masked parts. In a way, this can be seen as a pre-training based on
denoising: we added noise to the signal by putting zeros in some parts of the
signal and then tried to reconstruct the original signal. In any case, our pre-
training strategy falls under the category of a generative strategy [216]. But
as we saw in Section 3.2.5.1, there are other strategies, notably predictive
strategies, and contrastive learning. Predictive strategies typically consist
of setting the pre-training task as a classification problem, for example by
applying a transformation to the input and identifying which transformation
took place. In fact, this is the strategy employed in the approach of Sarkar
and Etemad [162], with which we compare our approach when we process
single physiological signals in Chapter 3. Contrastive learning consists of
generating representations from the data such that these representations are
closer for related data (positive examples) and farther for unrelated data
(negative examples).

We consider it an interesting perspective to explore those other types
of pre-training strategies, especially contrastive learning, as it has demon-
strated great success in other domains. The challenge with this strategy is
to identify a way to build positive and negative samples. One way to do this
is to take advantage of the sequential nature of physiological signals, and
explore techniques similar to contrastive predicting coding [195]. In con-
trastive predicting coding the idea is to use the signal up to a specific time to
predict representations that come after that time. This way, these generated
representations should be closer to the real subsequent representations, and
farther from any other representation of the signal. Other options include
creating positive examples by transforming the original signal [39]. In any
case, we believe contrastive learning, and other pre-training strategies, are
an attractive avenue to investigate.

7.2.4 Using Characteristics of the Physiological Signals

A characteristic of our approach to processing physiological signals for
emotion recognition is that we do not use parameters extracted from the
signals, but we use raw signals instead. Nevertheless, it may be useful to
use certain characteristics of the signals to improve the performance of
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the models, identifying these characteristics using the knowledge about
physiological signals that exist in medical and psychological domains. In a
way, this could be seen as incorporating external knowledge into the system.
For example, some psychological studies have investigated the influence
of emotions on heart rate and heart rate variability [207]. Then, a way
to incorporate this knowledge could be pre-training the model such that it
predicts those quantities, a technique that has been tested for tasks in the
medical domain [201]. We think that exploring this and other techniques to
incorporate external (expert) knowledge in our model could be interesting.

In addition to this, we saw that our architecture gives more weight to
certain elements of the Electrocardiogram (ECG) waveform (see Section
3.4.2.5 and Figure 3.11). It could be interesting to understand why those
parts of the signal are more important, and if this has a relation with how
emotions influence cardiac responses. Such understanding could be useful
in tuning the model to make it better adapted for processing ECG with the
aim of emotion recognition.

7.2.5 Characteristics of our Encoder-Decoder Architecture

To process multimodal signals to perform time-continuous emotion recog-
nition, we developed a Transformer-based encoder-decoder architecture,
which is described in Chapter 5. A limitation of our encoder-decoder ap-
proach is that having the encoder and the decoder increases the number
of parameters of the model, thus it takes more time to train, requires more
hardware resources, and may be more prone to overfitting than a smaller
model. A way to reduce the number of parameters could be to use only the
decoder. In this case, the decoder will not have a cross-attention module but
will be formed only with self-attention layers. The input will be a sequence
formed with the input signals and the target labels, in this way:

[𝑥1
1, . . . , 𝑥

𝑀
1 , 𝑦1, 𝑥

1
2, . . . , 𝑥

𝑀
2 , 𝑦2, . . . , 𝑥

𝑀
𝑇 , . . . , 𝑥

𝑀
𝑇 , 𝑦𝑇 , ], (7.1)

where 𝑥𝑚𝑡 is the feature of modality𝑚 at time-step 𝑡 , and 𝑦𝑡 is the label at
that time-step. Then, for training, a strategy similar to next-token prediction
can be used. In other words, the model can be trained to predict label 𝑦𝑡
using as input the sequence up to that position.

These ideas are largely used in Language Models [28], and some authors
have investigated its use with multimodal data [151]. We think it should be
interesting to explore these approaches for multimodal emotion recognition,
answering questions like if the quantity of data available in datasets with
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labels of emotion is enough to train these models, if some type of pre-training
will be necessary, and if so, how to design a pre-training task.

7.2.6 Unaligned Inputs for Multimodal Emotion Recogni-
tion

Our model developed to perform time-continuous emotion recognition
was designed under the assumption that the multimodal inputs are aligned
with each other. In other words, there is a fixed sampling rate at which all
the features from the different modalities are extracted, so at any time 𝑡 we
have available the multimodal features corresponding to that time 𝑡 . This is
a limitation, as in the real world data may be extracted at different sample
rates, there might be lagging in the data extraction and communication,
and there might be other factors that produce unaligned multimodal data.
Some authors have already addressed this issue, notably using cross-modal
attention [190], but this approach is not scalable in terms of the number of
modalities.

Future work could include extending our architecture to take alignment
issues into account. For example, the cross-attention layers of our decoder
can be adapted to attend to unaligned multimodal features given by the
encoder, in a way emulating what is done in cross-modal attention [190],
but with the advantage that it will have better scalability.

7.2.7 About Missing Modalities

To develop our training strategy to make our model more robust to
missing modalities, described in Chapter 6, we did not take into account
how probable each modality is to be missing. For example, it could be the
case that important modalities have a low probability of being absent, or
non-important modalities have a high probability of being missing. More-
over, we assumed that only one modality is missing at a time, whereas in
real life this could not be the case. Thus, future work could study these
different circumstances. It could be interesting to evaluate how our ap-
proach performs under these situations, and if a different training strategy
is needed for these scenarios.

In addition, when we tested our approach with a missing modality, we
did it by eliminating the modality from the input. However, it could be the
case that a modality is not absent but is extremely noisy, or its values are
spurious, and for this case, we assumed that there exists a perfect method
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to identify these data as invalid, such that the model can ignore it. Although
there are ways to identify if a modality falls under those cases (i.e. is not
valid), for example by checking if its values are correlated with the values
of the other modalities [136], these methods are not perfect. Therefore,
future work remains in finding ways to incorporate these techniques into
our approach, taking into account their accuracy, and how their possible
errors would impact our approach. This way, our approach will become
more robust in handling different scenarios that can arise regarding missing
modalities, noisy inputs, and spurious values.

7.2.8 Giving Incorrect Recognition Results

If we imagine an emotion recognition system as part of a global system
that monitors and offers services to frail people, then perfect accuracy is
required from the recognition system. Detecting incorrect emotions might
lead to incorrect behavior of the global system which can have dramatic con-
sequences in these particular applications, like the global system suggesting
to take a medicine that is not necessary. A way to alleviate this is to measure
the uncertainty of the predictions made by the emotion recognition system.
This way, the global system may accept only predictions that are considered
correct with a high level of confidence. Note that using softmax confidence
is not a good measurement of uncertainty [146], thus it is necessary to study
how to adapt in our approaches methods to measure uncertainty such as
Bayesian deep learning [75].

Even if only high-confidence predictions are used, the system can still
make mistakes. Therefore, before deploying systems that monitor the
emotions of frail people, it is important to understand the consequences for
the user when the system does not work properly, and to identify, study, and
find ways to mitigate these consequences before deploying such systems in
the real world.

7.2.9 Ethical Implications

One of the ethical implications of our research is the risk of the use of our
work in negative applications, like behavior manipulation. We acknowledge
this potential risk, and recognize that the problem of using research for
negative applications is in fact a problem that concerns many domains in
Artificial Intelligence. Therefore, we advocate that the research community
should seek that governmental entities legislate and control the use of Ar-
tificial Intelligence technologies, to avoid their use for harmful purposes.
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Moreover, any monitoring application, especially if we are monitoring emo-
tions, should be deployed with the full consent and understanding of the
user. Therefore, efforts should be put into making people understand how
the technology works, its potential risks, and the measures taken to mitigate
those risks.

Another important issue is privacy considerations. In this regard, one of
our contributions can be used to better ensure privacy: our approach that
makes the model robust to missing modalities. To see how, we can imagine
that a user may not want that a certain modality, that he or she considers
invasive, to be captured and used by the system. In this case, the user can
intentionally disable the modality considered as invasive and the system
could keep working with the remaining modalities. Nevertheless, more work
is needed to better ensure privacy, especially since some data sources used
to recognize emotions may contain sensitive medical information. Using
Machine Learning (ML) frameworks that are designed to be more privacy-
oriented should be investigated. One of such frameworks that is well suited
for smart environments is Federative Learning [132]. Within this framework,
coordinated learning and inference could occur at each object of the smart
environment, without having the gathered data leaving the object, thus
better preserving privacy. For these reasons, an interesting perspective to
investigate is how to adapt approaches like the ones developed in this thesis
to work in a federative way.

Another important aspect that should be considered is energy use. Fu-
ture work could include studying the energy consumption of our different
approaches when training and when doing inference. With those findings,
ways to make our architecture more energy-efficient could be investigated.
For example, it may be deemed not necessary to use all the modalities
when doing inference, as acceptable performance may be achieved with
fewer modalities. Using fewer modalities implies less data to process and
therefore, less energy consumption.
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APPENDIX A

DATASETS

A.1 DREAMER Dataset

In [102], Katsigiannis and Ramzan introduce the DREAMER dataset,
which consists in Electroencephalogram (EEG) and ECG signals recorded
during emotional episodes provoked by audio-visual stimuli. Their goal is
to use portable, wearable, wireless, low-cost, and off-the-shelf equipment to
register the EEG and ECG signals, so the application of algorithms related to
emotion and physiological signals can be expanded into everyday scenarios.

A.1.1 Acquisition Setup

Audio-visual stimuli were used to elicit emotional reactions from the
participants. For this, 18 film clips were utilized, each clip containing
scenes that have been shown to be capable of evoking a specific emotion.
Specifically, each two of the 18 clips targeted one of the following emotions:
amusement, excitement, happiness, calmness, anger, disgust, fear, sadness,
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and surprise. The lengths of the clips were between 65 and 393 seconds,
with an average of 199 seconds. 23 subjects participated in the experiments,
aged between 22 and 33 years old. The total collected data amounts to a
total of around 23 hours.

A.1.2 Provided Signals

The DREAMER dataset provides EEG and ECG signals obtained from
commercial off-the-shelf devices. EEG signals were registered using an
Emotiv EPOC system 1, providing the following 14 EEG channels: AF3, F7,
F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4 (See Figure 2.8b). ECG
signals were recorded using the Shimmer platform [29].

A.1.3 Labeling

After watching each clip, participants self-assessed the levels of arousal,
valence, and dominance that they felt while watching the clip. To facilitate
the annotations, Self-Assessment Manikins [138] were used. Arousal, va-
lence and dominance were annotated on a scale of 1 to 5, ranging from
uninterested/bored to excited/alert for arousal, unpleasant/stressed to hap-
py/elated for valence, and helpless to empowered for dominance.

A.2 AMIGOS Dataset

The AMIGOS dataset was introduced by Miranda-Correa et al. in [135]
with the aim of facilitating the multimodal study of the affective response of
people. The dataset is built by recording different signals from participants
while they are exposed to emotional fragments of movies.

A.2.1 Acquisition Setup

The 40 subjects that participated in the trials to build this dataset took
part in two sets of experiments. In the first experiment, the 40 subjects indi-
vidually watched 16 short videos with lengths between 51 to 150 seconds,
with the average length of the videos being 86.7 seconds. In the second ex-
periment, 37 of the 40 subjects watched 4 long videos with lengths between
14.1 to 23.58 minutes, with an average length of 20 minutes. The subjects
watched the videos either alone or in groups.

1. https://www.emotiv.com/
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The videos were selected so they produce emotional responses, with
different videos covering a quadrant of the valence-arousal space, namely
High Valence-High Arousal, High Valence-Low Arousal, Low Valence-High
Arousal, and Low Valence-Low Arousal.

A.2.2 Provided Signals

The Amigos dataset provides the signals that we detail below.

Physiological Signals: In this dataset, three types of physiological
signals are provided: ECG, EEG, and Electrodermal Activity (EDA). Similar to
what was done for the DREAMER dataset, instead of using laboratory-grade
instruments to acquire these signals, the authors preferred to use wearable
low-cost off-the-shelf devices. In fact, they used the same equipment as the
DREAMER authors, using the Emotive EPOC system to capture EEG signals,
and the Shimmer platform to capture ECG signals. To capture EDA signals,
an additional Shimmer board was used to extend the functionality of the
Shimmer platform. The provided EEG channels are AF3, F7, F3, FC5, T7,
P7, O1, O2, P8, T8, FC6, F4, F8, AF4 (See Figure 2.8b).

Video Recordings: The AMIGOS dataset provides frontal face recordings
in HD quality. In addition to this, RGB and depth full-body videos were also
captured.

A.2.3 Labeling

The authors of the AMIGOS dataset performed affective annotation using
internal (self-assessment) and external annotations.

The self-assessment annotation was performed at the end of each trial.
Participants selected discrete emotions and annotated the levels of valence,
arousal, and dominance that they felt while watching each video. Also,
they annotated if they liked or not the video, and how familiar they were
with it, in a range from “Never seen it before” to “Know the video very
well”. Valence, arousal, and dominance were annotated on a scale of 1 to 9
using Self-Assessment Manikins [138], allowing participants to assess their
arousal level from “very-calm” (1) to “very excited” (9), their valence level
from “very negative” (1) to “very positive” (9), and their dominance level
from “overwhelmed with emotions” (1) to “in full control of emotions” (9).
Regarding discrete emotions, the subjects had to select at least one of the
following: neutral, disgust, happiness, surprise, anger, fear, and sadness.
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For the external annotations, the frontal face videos were used to anno-
tate values of arousal and valence. Specifically, the videos were cropped
so only a squared region around the face was visible for each participant.
Then, the videos were split into 20-second clips. Three annotators rated for
each clip, on a scale of -1 to 1, the perceived levels of arousal and valence.

A.3 Ulm-Trier Social Stress Test (ULM-TSST)

The Ulm-Trier Social Stress Test (ULM-TSST) dataset was introduced by
Stappen et al. [179, 180] for the Multimodal Sentiment Analysis (MuSe)
2021 challenge, which was held as part of the ACM Multimedia 2021 con-
ference. The same dataset was also used in the MuSe 2022 challenge [42].
Specifically, the dataset was used for the MuSe-Stress sub-challenge, which
was a regression task of time-continuous values of arousal and valence.

A.3.1 Acquisition Setup

The data from the ULM-TSST dataset were captured from subjects during
a stress-induced situation, following the Trier Social Stress Test (TSST)
protocol [107]. TSST induces stress by simulating a job interview, where
participants have to give a five-minute free speech oral presentation in front
of two interviewers, who remain silent during the presentation. In total 69
subjects participated in the experiment, with ages between 18 and 39 years,
generating around 6 hours of data.

A.3.2 Provided Signals and Features

The dataset provides audio and video recordings of each participant’s
five-minute speech, and it also provides a transcript of the speech. In
addition, four physiological signals are recorded: EDA, ECG, Respiration
(RESP), and Beats per Minute (BPM). From those physiological signals, only
the last three are provided, since EDA is used to build the arousal ground
truth as we shall see later.

Besides the raw signals, the authors of the ULM-TSST dataset provided
the features described below. All the provided features are obtained at
0.5-second intervals, such that they are aligned to the labels.

eGeMAPS (audio): The authors used the openSMILE toolkit [65] to
extract 88 extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS)
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(a) Arousal ground truth. (b) Valence ground truth.
Figure A.1 – Example of arousal (Fig. A.1a) and valence (Fig. A.1b) ground-truth values ofa sample from the ULM-TSST dataset.

features [64] (see Section 2.2.3.2 for more information on eGeMAPS).

DeepSpectrum (audio): DeepSpectrum features [8] are extracted using
Convolutional Neural Network (CNN) pre-trained on images. For this, image
representations of the sound are used (i.e. spectrograms). The obtained
features are 1024-dimensional vectors.

VGGFace2 (video): These 512-dimensional features are extracted using
a ResNet50 network [86] trained on the VGGFace 2 dataset [34] for the
task of face recognition. The inputs to obtain these features are faces that
are automatically extracted from the videos using the MTCNN model [217].

AU (video): As described in Section 2.2.3.1, it is possible to use Facial
Action Coding System (FACS) [53] to deconstruct facial expressions into
distinct muscle movements called Action Units (AUs). The authors of the
ULM-TSST dataset used the Py-Feat toolbox [40] to automatically obtain 20
different AU, using as input faces extracted in the same way as it was done
for the VGGFace2 features.

BERT (text): Text features are extracted using the BERT model [51],
obtaining a 768-dimensional vector.

Physiological Signals: Physiological signals are downsampled to 2Hz
and smoothed with a Savitzky-Golay filter. Then, the three signals (ECG,
RESP, and BPM) are concatenated to form a 3-value feature vector.
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A.3.3 Labeling

The ULM-TSST dataset was annotated by three raters for the emotional
dimensions of arousal and valence. The annotation for both dimensions is
done every 0.5 seconds, using values in the -1 to 1 range.

The ground truth for valence was obtained by aggregating the scores of
the three annotators using the Rater Aligned Annotation Weighting (RAAW)
method from the MuSe-Toolbox [181]. RAAW is a method to aggregate
annotations from various raters, addressing the rater lag that might be
present, and performing weighted aggregation by assigning weights to the
annotations of each rater according to their agreement with the mean of all
others. Figure A.1b shows an example of the obtained valence ground truth
of a sample.

The ground truth for arousal is obtained in a similar way, with the
difference that the annotations with the lower inter-rater agreement are
discarded and replaced with the EDA signal from the corresponding subject
[16]. The authors do this because EDA signals are known to be a good
indicator of arousal [36]. Figure A.1a shows an example of the obtained
arousal ground truth of a sample.

Of the 69 samples, the authors only provide labels for the 55 samples
that were selected by them as train and validation sets. The labels for the
other 14 samples, which form the test set, are held by the authors for the
purpose of the challenge.
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APPENDIX B

SETTING THE DATASETS FOR

SELF-SUPERVISED PRE-TRAINING

B.1 Pre-Training Setup

Note that AMIGOS and DREAMER datasets are part of the pre-training
datasets and the evaluation datasets for ECG signals, and the AMIGOS
dataset is part of the pre-training datasets and the evaluation datasets for
EEG signals. Therefore, it is necessary to be careful to avoid using the same
samples to pre-train and test the model.

In our experiments, we perform a pre-training process for each evaluation
scenario when working with ECG signals. On the other hand, when working
with EEG signals, we use the same pre-trained model for all the evaluation
datasets, with a caveat when using AMIGOS, as we shall see. This means
that we do the following:

— Pre-training with ECG signals, for AMIGOS as evaluation dataset.

— Pre-training with ECG signals, for DREAMER as evaluation dataset.
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— Pre-training with EEG signals, for AMIGOS and DREAMER as evalua-
tion dataset.

In order to avoid testing with a sample that was already used for pre-
training, we perform the procedure described below. This procedure does
not need to be done when DREAMER with EEG signals is used as evaluation
set, since DREAMER is not used at all for pre-training EEG signals. First,
each evaluation dataset is divided into two halves. Then, we pre-train two
models: one model is pre-trained using all the other pre-training datasets
plus the first half of the evaluation dataset. The second model is also
pre-trained with all the other datasets but now uses the other half of the
evaluation dataset. At evaluation time, if we are testing a certain sample
from the evaluation dataset, we make sure to use the model that was pre-
trained with the half of the evaluation dataset that does not contain that
sample. Appendix B.2 explains how each half of the evaluation datasets are
created.

An alternative to pre-training multiple models is to pre-train a single
model for ECG signals and a single model for EEG signals. These models
could be pre-trained without using any of the evaluation datasets, thus
avoiding the possibility of using the same samples to pre-train and test
the model. Then the pre-trained ECG and EEG models would be fine-
tuned independently for each evaluation dataset. In this case, no part of
the AMIGOS or DREAMER dataset would be used for pre-training. This
approach was not adopted in order to use as much data as possible, because
with our strategy, we can incorporate data that is not part of the current
evaluation set in the pre-training datasets. For example, with AMIGOS as
evaluation dataset with ECG signals, it is possible to use half of the AMIGOS
dataset and the whole DREAMER dataset, with the rest of the pre-training
datasets, to pre-train the model. It could be interesting to explore how much
pre-training data is necessary for the model to perform well. This could help
determine if it is necessary to employ our strategy or if a simpler approach
of not using the evaluation datasets for pre-training is enough. We leave
these questions as future work.

Table B.1 shows the number of 10-second segments that are used to
pre-train the model. Note that these quantities are the ones used for each of
the two pre-trained models for each evaluation scenario.
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Evaluation Scenario
Signal Evaluation Dataset Segments

ECG AMIGOS 83,401
ECG DREAMER 98,295
EEG AMIGOS, DREAMER 45,805

Table B.1 – Number of 10-second segments used for each pre-trained model on eachevaluation scenario.

B.2 Fine-Tuning Setup

To avoid using the same samples for pre-training and evaluation, when
fine-tuning and evaluating the model we follow the strategy described below.

To evaluate our approach, we use 10-fold cross-validation, so each
evaluation dataset is divided into 10 folds. Recall that for each evaluation
scenario, except for DREAMER with EEG signals, we pre-train two models.
Specifically, for each evaluation dataset 𝐷 and for each type of physiological
signal 𝑆 , we pre-train two signal encoders, noted as 𝑆𝐸𝐷,𝑆1 and 𝑆𝐸𝐷,𝑆2 . To pre-
train 𝑆𝐸𝐷,𝑆1 , we use the folds 1 to 5 of the evaluation dataset 𝐷 and the rest of
the pre-training datasets, using the physiological signal 𝑆 . Correspondingly,
the second signal encoder 𝑆𝐸𝐷,𝑆2 is pre-trained with the folds 6 to 10 of
the evaluation dataset 𝐷 and the rest of the pre-training datasets, using
the signal 𝑆 . Then, we fine-tune a model initialized with the weights from
𝑆𝐸𝐷,𝑆2 , if the model is tested on folds 1 to 5 for emotion recognition on
the evaluation dataset 𝐷 using the signal 𝑆 . Likewise, to test a model on
folds 6 to 10 for emotion recognition on the evaluation dataset 𝐷 using the
signal 𝑆 , the model is initialized with the weights from 𝑆𝐸𝐷,𝑆1 . This method
allows us to pre-train, fine-tune and test the model in a more efficient way
than pre-training 10 different models, one for each fold, while retaining
complete separations between training and testing data. When we fine-tune
DREAMER with EEG signals, we choose the first pre-trained EEG signal
encoder, i.e. we use the model 𝑆𝐸AMIGOS, EEG

1 .
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