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Abstract

A theoretical framework is introduced to tackle electrostatics interactions at
metal/liquid interfaces. By adopting a microscopic perspective, we displace
the electrostatic problem in resolving an integral equation for the linear
response function of the interfacial system. By describing the liquid’s charge
fluctuations and dielectric response in the framework of quantum field theory,
we inherit new concepts to deal with collective interactions at the mean-field
level. The precision and versatility of our approach allow us to scrutinize
carbon interfaces, taking into account the specificity of their electronic band
structures. This method is then used to study the mean force potential of an
aqueous ion at the graphene interface, the electronic band gap of a solvated
carbon nanotube, the van der Waals interactions between a metal and a liquid,
and solid/liquid friction coefficients. The validity of mainstream hypothesis
regarding time and length scales decoupling at metal/liquid interfaces can

be systematically challenged.
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GENERAL INTRODUCTION

This thesis is motivated by a new enthusiasm for nanofluidics: studying
fluids in nanochannels. This recent field, as many others before it, comes to
the fore [1] because experimental measurements are nowadays technolog-
ically possible. Let us briefly dwell on those achievements to realize how
extraordinary they are. Indeed, one could reasonably think that probing
fluid velocities on this scale — one billionth of a meter — is unrealistic. One
can even question the word “fluid”: what is going out of a nanometer pipe
looks much more like a “crowd” of water molecules rather than the familiar
water jet from the kitchen tap (see Fig. 1a). How can we build such a small
pipe? How to control what goes in there? How to detect what goes out and
at which speed? We will not answer those questions in this work, but we
first want to underline how amazed we are by the experimental setups and
measurements that give rise to the theoretical questions we tackle — see Fig.

1b. To cite a few of those pioneers works, we refer to [2, 3, 4, 5, 6].

()
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Figure 1: Nanofluidics in a nutshell. (a) A special pipe (a carbon nanotube or CNT)
with water molecules flowing through it. (b) Experimental setup to measure water
flow inside a CNT with a pipette. The CNT is glued on the outside to focus the water
flow inside the tube. The image is taken from [6]. (c¢) Transport matrix coefficients in
nanofluidics. See text for identification of driving forces and observables. The image
is taken from [7].

Why is nanofluidic a field worth working in? The global need for clean
and renewable energy motivates scientific research in diverse areas. Nanoflu-
idics has made promises because phenomena generating electric currents
with salt concentration gradients — like diffusio-osmosis? — occur in those
tiny pipes. Similar exotic processes suggest some solutions for water desali-
nation/filtration. Those applications are discussed in length in [8].

Why do liquids behave strangely in nanochannels? In nanofluidics,

peculiar effects stem from the increasing surface/volume ratio for the liquid.

Process in which a difference in salt concentration between two reservoirs linked by a nanometer
pipe induces a net ionic current by differential ionic interaction strength with the surface of the
pipe. More can be found in [7].



In fact, like with the rise of microfluidics, reducing the length scale changes
the relevant physical interactions [9]. To understand this, we need to look at
the transport matrix coefficient (see Fig. 1c). Without non-diagonal terms,
it independently links driving forces (respectively pressure drop, chemical
potential difference, electric field) to their ad hoc observables (resp. solvent
flux, excess solute flux, ionic current). However, surface effects increase the
contribution of the non-diagonal terms, which opens new perspectives to
generate, for instance, an ionic current with a salt concentration. In order to
identify those cross-terms, one needs to accurately describe the pipe/liquid
interface, hence the relevance for theoretical chemists to study those systems.

The nanofluidics community now appreciates the efforts of solid-state
physics in developing instruments capable of manipulating 1D or 2D ma-
terials. Graphene has undeniably the leading role among those so-called
2D vdW materials and their assemblies [10]. Interestingly, the long-awaited
emergence of devices allowing reliable measurements of tiny flows can be
traced back to its birth [11], around 2004. A single graphene sheet is ex-
perimentally challenging to isolate, and one usually prefers to use one of
its allotropic forms to build nanofluidic devices: (single/multi-wall) carbon
nanotubes (CNTs), few layers of graphene (FLG), or graphite. Note that a
geometrically similar material — the hexagonal boron nitride (hBN)— is also
used.

The differences between CNTs and boron-nitride nanotubes in nanoflu-
idics illustrate the importance of the liquid/pipe or ion/pipe-specific inter-
action [4, 6]. However, in molecular mechanics (MM), graphene and hBN
are relatively identical, and their interaction with water merely differs by the
parametrization of the Lennard-Jones (LJ) potential between nuclei. More
sophisticated approaches should therefore tackle this apparent oversimplifi-
cation [12, 13].

Graphene and hBN more fundamentally differ in their response to an
electromagnetic field. Whereas graphene is a semi-metallic material, hBN is
insulating. Simulation methods are very reliable for insulating solids in their
most accurate ab initio molecular dynamics (AIMD) form. A recent work
dedicated to the hBN /water interface has revealed some of its secrets [14],
so we will not dwell on it in this work. In contrast, there can be some doubts
about the reliability of AIMD simulations in tackling metal interfaces for
several reasons. Their high computational cost prevents using a simulation
box larger than the typical electronic correlation length. For the same reason,
it is challenging to consider the presence of ions at low concentrations.
Besides the phenomenological ansatz for the exchange-correlation energy

in the density functional theory (DFT) electronic calculations, the dynamics



-~

v

6

also rely on the Born-Oppheinmer approximation (BOA). The latter can be
violated for molecules at metallic interfaces because of the continuum of the
electronic levels at the Fermi level [15]. In fact, in the case of graphene, water
molecules are not needed for the BOA to break down [16].

In this thesis, we shall therefore focus on the graphene/water interface
and try to gain analytical insights on the specificities of this couple. The
goal is of course not to obtain quantitative answers, but rather to identify
and estimate the contributions of so far overlooked “second-order” effects.
We need a general and elastic framework that can tackle the electrostatic
interactions between electrons and polar molecules at the metal/liquid in-
terface. Surprisingly, we have found only one way to tackle this interface
analytically in the literature! It is the classical continuum electrostatic ap-
proach that merely describes water by its bulk dielectric constant*. Therefore,
this prompted us to think about electrostatics from a completely different
perspective, a microscopic one. The elaboration of this versatile framework
and the derivation of some critical physical observables within it may be the
essential parts of this work, considering the “loophole” in the literature.

In the late "7os, many efforts were dedicated to grasping the metal/dielectric
interface in the presence of ions by analytical methods. This work was partly
conducted by A.A. Kornyshev and crystallized in [17] and [18]. Many in-
sights were given, such as the crucial role of the non-local dielectric response
of polar liquids near interfaces. This method is still used [19, 20] nowadays.
Nevertheless, today’s relatively weak interest in analytical methods to tackle
those arduous systems® is due to the rise of computational chemistry and,
most importantly, its large development in the ‘80s®. As mentioned, quantum
simulations have been and still are unrivaled in gaining insights into the
graphene/water interface (see e.g. [12, 22, 23, 24, 13]). However, their cost
and the reduced simulation time and size constrain the system’s largest and
slowest collective motion of dipoles/charges.

Classical molecular dynamics or molecular mechanics (MM) have come
to the rescue with semi-classical approaches to remediate those issues. Due
to their intrinsic lack of metallicity, they introduce parametrized models that
mimic the metal’s polarization — see, e.g. [25] for graphene. A general
approach [26] has received much interest. It consists in conferring to the

metal’s atoms a fluctuating Coulomb charge that is imposed at each time

We will show in this work that the more sophisticated approach [17] that allows the dielectric
to have a non-local dielectric response — the one mentioned in the next paragraph — fails for
the case of water: it cannot be used! Of course, other methods could exist, but we do not know
about them.

“God made the bulk; surfaces were invented by the devil.” — Wolfang Pauli as quoted in
Growth, Dissolution, and Pattern Formation in Geosystems (1999) by Bjern Jamtveit and Paul
Meakin, p. 291

See the preface of [21] for a short history about “computer experiments”.
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step of the simulation to maintain a constant potential at the electrode”.
Going beyond the perfect conductor model, it can even confer an effective
Thomas-Fermi (TF) type of screening to the metal [30].

Nevertheless, the specificity of metals lies within their band structure.
Graphene is semi-metallic and behaves like a metal on a long wavelengths
and like an insulator on shorter ones. This property seems a priori difficult
to infer in a classical Hamiltonian beyond a TF model. Moreover, the opti-
mization procedure for the atomic charges in the metal plays the same role as
the BOA in AIMD. Therefore, despite those recent achievements, questions
are still unanswered. It is useless to say that our role can only be limited to
qualitative analytical support. We will question the implicit hypotheses in
building those models. We point out that from the solid-state point of view,
the graphene communities seem to have ignored the role of the dielectric
environment beyond the local electrostatic case. We will see that there is
room to refine the evaluation of observables such as electronic conductivities,
plasmons dispersions, or electronic band gaps for solvated semi-conductors
with a better description of the metal/liquid interface.

To summarize, our work elaborates a practical approach to electrodynam-
ics at the metal/liquid interface (part i). It shall be general enough to tackle
several open questions regarding “second-order” effects that are usually
ignored in modeling the graphene/water interface. Therefore, in part iii, we

will obtain formulas of several physical observables and study:
¢ the potential of mean force of an ion at the graphene /water interface
¢ the electronic band gap of a solvated CNT

¢ the metal/liquid friction and its non-adiabatic contribution at the car-

bon/water interface

To a less extent, we will also encounter the plasmon dispersion of solvated
graphene, the dielectric response of a water slab under a static electric field,
and the interfacial vdW energy at the metal/liquid interface. We compute
the elementary bricks of our framework for water and graphene (and FLG)

in part ii.

For a detailed description of current semi-classical simulation methods, the reader is referred to
[27] and to [28, 29] for more details about the constant potential method.



Part1

THE METAL/LIQUID THEORETICAL
FRAMEWORK



In this first part, we lay out the basis of the theoretical framework we use
throughout this thesis. In both the solid and liquid communities, interfaces
are tackled from a specific point of view, usually using a trivial model for the
other medium®. The difficulty arises from treating both media with the same
rigor?. A common framework prevents us from making unjustified premises
that are nevertheless rightfully introduced in treating the liquid or the solid
separately.

As will (hopefully) become clear at the end of it, our work consists
in describing the metal/liquid interface using the framework of quantum
field theory The gain is attractive because it unlocks the possibility of using
decades-long physical and mathematical tools. How can a quantum field
describe a purely classical liquid? This part’s driving question requires
adopting a microscopic point of view regarding electrostatic interactions in
liquids.

Being convinced that theoretical chemists could benefit from this frame-
work, an effort has been dedicated to writing this part so that it does not
require an a priori knowledge of the quantum field framework. To the cost of
the mathematical rigor and completeness, we introduce Feynman diagrams
because we find them to play a central role in practice. New diagrams for
liquids are introduced when needed, and rules for constructing them are
simplified for our work. Two chapters are included in this part. Chapter 1
introduces the physical concepts at play for the liquid and the solid. Chapter
2 gives the Hamiltonian of the interface and tackles the classical/quantum
incompatibility. The “rules” summarized at the end allow us to compute
the observables in part iii. For a brief recap of the standard approach to

electrostatics, refer to the appendix A.1

8 Very schematically, we consider the two communities represented by those two famous textbooks
[31, 32].

9 Interestingly, with all its limits, especially for water, the existing method[17] puts the dielectric
and the metal on an equal footing.



PHYSICAL CONCEPTS

1.1 RESPONSE TO A PERTURBATION
1.1.1  Response function

We consider a thermodynamically closed system such that the term ex-
ternal refers to something that is not a part of the physical system under
scrutiny. Under the application of a perturbating external electrostatic poten-
tial gext(x, t), it responds by generating a charge density deviation ny,q(x, t)
— therefore induced by the latter. We will focus on the statistically averaged
— denoted (.) — deviation produced by the system, in space-time — denoted
for short by 1 = (xy, t1). Linear response theory relates both quantities via

the response function y — or susceptibility —, as follows:

(ina(1)) = / d2x(12) pest (2). (1)

The total charge density of the system n = ng + ny,q might not be equal
to nynq if, without the external perturbation, an inhomogeneity is already
present in the system. In turn, the mean induced charge density creates an

averaged induced electrostatic potential ¢,q that can be written

(@na(1)) = / d20(12) (1 (2))- @)

Here we have used the Green’s function method [33] to solve Poisson’s equa-
tion so that the kernel is the Coulomb interaction between two particles of

elementary charge (we use e = 1) in vacuum:

_ 1 4t —h)
 Ame [x1 - x|

v(12) (3)

where ¢ is the dielectric permittivity of the vacuum. Accordingly, we
write Eq. 2 for the external potential ¢ex; that arises from an external
charge density nex:. The statistically averaged total potential in the system is
(Prot) = Pext + (Ping). Combining Eq. 1 and Eq. 2 we can write the Green's

function — or the screened Coulomb potential — of the system w(12) as

w1y = o(11') + / d2d30(12)x(23)0(31). @)



1.1 RESPONSE TO A PERTURBATION

The linearity of Poisson’s equation makes the introduction of w helpful

because the total potential reads’

Grr(D) = [ d200(12)m0x(2). 5)

Those last two equations directly establish the link between the averaged
total potential (¢ior) in the system and y;, its two-point susceptibility. Re-
garding the general structure of w in Eq. 4, we see that two objects are
linked by the operation [f % g] (1) = [d2f(12)g(2). To prepare for future

complexifications, we represent by a diagram the bare potential v and x

and define their diagrammatic link by the operation *. Therefore, we can

represent the Green’s function as follows

Box 1: Eq.1 to Eq. 5 can be written by introducing the non-local microscopic

dielectric function that relates ($ror) and ¢ext as follows:

(Pror(1)) = / 21 (12) pexe (2). ®)

Using (¢rot) = Pext + (Ping) and Eq. 4, we obtain

e 1) =6(1-1") +/d2v(12)x(21’). 9)

1.1.2 Mean field correction: from x(©) to x.

To build the response function x of a system containing indistinguishable
particles, we start from the simplest possible version and enrich the descrip-
tion from it. The first — drastic — physical assumption is to consider that
the particles are independent, so we first construct the non-interacting response
function x(9) using a microscopic model. Enriching the description of the
system requires considering interparticle interactions. In this work, we use a

mean-field approach. Be it for electrons in a metal [31] or in simple liquids

The choice e = 1 makes w(12) also equal to (i) the electrostatic potential in 1 due to a positive
test charge in 2, (ii) the potential energy between two charges of same sign in 1 and 2.

8



1.1 RESPONSE TO A PERTURBATION

[32], the mean-field method is a well-known renormalization scheme for
homogeneous media to take into account the collective behavior of particles.
It amounts to considering that independent particles respond to the external
potential ¢gext plus the mean polarization potential (¢po1) = Vinter * (Mind) Of
the other similar particles — here vj,, is the interparticle potential. In other
words, the mean induced charge density is given by the sum of the two

contributions:

(na()) = [ 4240 12) [¢ext<z> +f dsvimer<z3><nmd<s>>] . (o)

The integral equation captures the recursive nature of this interparticle

renormalization scheme for the response function x which can also be written

@

or, for the last time in equation,

x(11) IX(O)(U’)+/ d2d3x'?) (12)viner (23) x (31'). (12)

Note that the introduction of yx is a short-cut notation for an infinite number
of “convolutions” between X(O) and Tjnter, which are the elementary bricks.

Indeed, by writing the beginning of the infinite sum

(13)
we can observe that we have re-organized an infinite number of diagrams
involving only X(O) and Vjpter. We will say that we have renormalized )((O) by
the interactions of the similar particles. Turning to the topographic structure
of w, when the diagram depicted by x is decomposed, it enumerates all
diagrams that can be built with X(O) and Ujnter, that start and end with a

Coulomb “leg” v°.

2 It is like enumerating all possible ricochets on the independent particles in the system.



1.2 IMPORTANT EXAMPLES

1.2 IMPORTANT EXAMPLES
1.2.1  Example 1: Non-local electrostatics in dielectrics

Here we want to find the electrostatic potential in a dielectric system, in
which we have introduced a point charge. We confer to the dielectric system
a spatial dispersion — we also say that the dielectric response is non-local —
: the density response in one location depends on the perturbing potential in
another. In contrast, continuum electrostatics considers local media, depicted
solely by their dielectric constant ¢,,. The index “w” stands for a dielectric
material in the general case. We have water in mind for applications. We
use Eq. 7, but we introduce a new diagram for the response function of a
dielectric media xw — and leave out the other for metals (electrons to be

more precise). It reads

Wy Xw
T e ssu—— o 0O -

(14)

If the dielectric is homogeneous and isotropic the response function
only depends on absolute distances and time differences — i.e. xw(12) =
Xw(|x1 —x2|,t1 — t2). Convolutions are easier to perform as products in
Fourier space: the system being translationally invariant, xw has a diagonal
representation in reciprocal space? — k is the vector in the dual space. The
time integration in Eq. 1 gives that the induced charge does not depend on
time and that the relevant response quantity is the zero-frequency component
of the spatially Fourier transformed and radially averaged response function

Xw (k) = xw(k,w = 0). Using Eq. 14, we obtain
ww (k) = v(k) + o(k)xw (k)o(k) = v(k) [1 = Zw (k)] (15)

where we have noted the Fourier transform of the Coulomb potential v(k) =
1/€pk? and introduced the dimensionless longitudinal susceptibility Xvw (k) —

see Box 2.

3 see appendix A.2 for a short recap about this crucial point.

10



1.2 IMPORTANT EXAMPLES

Box 2: Whereas in the condensed matter community [31] the response
function x is used, the liquid community [32] usually deals with the

dimensionless susceptibility ¥. Both are linked by

7(12) = — / d30(13)x(32). (16)

In Fourier space, for the homogeneous, isotropic system, it reads x (k) =
—eok?x (k). The origin of such a discrepancy can be traced back to the
objects under scrutiny in both research domains. For the liquid community,
the standard limiting case is the dipolar fluid, and one uses the polarization

field ik - P(k) = ny(k) (using Eq. 263). It explains the k? factor in the

respective correlation functions — ey for homogeneity and minus sign so
that x (k) > 0.

The electrostatic potential ¢ (x) of a point charge at the origin can be

written

P’k
Prot(x) = / e () (17)
—+o0
:/0 zd—;k2jo(kx)ww(k) (18)
1 2 [T sin(kx)
= Treox {1_ = /O dkxw (k) . : (19)

where jj is the first spherical Bessel function. We can check that if {w (k) =0,
we obtain the unscreened Coulomb potential (ot = Pext. Also, if we use the
long-wavelength limit of the susceptibility, as is usually the case in continuum

electrostatics, we have (k) = x(k =0) =1 — 1/&y, and we obtain

_ 1
 4mepewx’

Prot (x) (20)

that is the long-range Coulomb potential attenuated by the dielectric constant

ew. We keep in mind that :

¢ the long-wavelength limit — i.e. kK — 0 — of non-local electrostatics

gives the results of continuum electrostatics.
e for a dielectric system ey (k — 0) = €.

e the potential of an ion in the dielectric is attenuated by ¢,, but remains

long-range.

11



1.2 IMPORTANT EXAMPLES

1.2.2  Example 2: Thomas-Fermi screening

In contrast to dielectrics, metals have mobile charge carriers, free electrons.
The simplest Sommerfeld model of a metal assumes free and independent
electrons that nevertheless respect Pauli’s exclusion principle. The implicit
nuclei preserve the charge neutrality. A given number of electrons, half
spin-up and, half spin-down so that there is no magnetization, are included
in a box of length L. The electrons cannot see each other, like in the perfect

gas. Solving Schrodinger’s equation

h2v2

T h(x) = exp(x), (21)

where m is the bare electronic mass, gives that eigenfunctions are plane
waves Yy (x) = e~ % /[3/2 that are quantized with a — labeling index —

h k . Electrons

wavevector k = 271/L(ney + me, + le;) and energies e =
fill up the eigenstates with the lowest kinetic energy. At zero temperature,
for large L, we define the Fermi wavevector kr such that all states with
|k| < kp are filled and not the others. The homogeneous density of electrons

is therefore equal to

0 d’k I
ne = v 2(9 — |k|) = /(27_[)3@(1@ —|k|) = 372 (22)

where O is the Heaviside function, and to obtain the last equality, one
can refer to the details of Eq. 17. We use the index “e” for the electrons
in the metal. A non-zero temperature would smear out the Fermi-Dirac
distribution but is irrelevant for now. In the ground state, the chemical
potential is constant all over space and indicates the energy of the highest
filled electronic state. It is also called the Fermi energy because y = Er = Z’:;
in the absence of external potential. When a external potential is applied,
the kinetic Fermi energy Er plus the (electrostatic) potential energy ¢ot are
equal to the chemical potential:

hk2
H=5 E ot pror(x) (23)

The latter is constant all over space and equal to its value at infinity by
continuity and the equilibrium condition. Therefore, if Prot(x) is inhomoge-
neous, so is the Fermi energy, or the Fermi wavevector kg(x), or the electronic

density n¢(x) according to Eq. 22. Combining Eq. 22 and Eq. 23, we obtain

372

m 3/2
1e(x) = 57z (35 10~ dr()]) @)

12



1.2 IMPORTANT EXAMPLES

The spatially varying Fermi wavevector is introduced in an ad hoc manner.
Nevertheless, this non-linear equation illustrates the self-consistent iterations
that one needs to make to solve the problem. Indeed, it is crucial to under-
stand that ¢t contains the externally applied potential but also the induced
one that depends on n.. We can look at the linear response using charge
separation 71j,q = 1. — 1. Assuming that the chemical potential far from the
perturbation Er is large compared to ¢t — that we do not know a priori —,
that is Er > ¢rot(x), we obtain

Mind (X) ~ —2;;%4’tot(x) (25)
Finally, going to reciprocal space and using ¢iot = ¢ind + Pext and Eq. 2 —
i.e. ¢ing(k)egk? = ning(k), we can obtain an equation where ¢t (k) appears

on both sides, and that is solved to give

_ dext(k) L M (%'
-1
where the ay = (m / 4neoh2> is the Bohr radius and k1 the TF wavevector.

We have obtained the TF dielectric function €. (k) for the free electron gas.

Having the knowledge of the dielectric function in Eq. 26, we can obtain

the corresponding response function xe(k) = —eok? [1 — 1/ee(k)] (see Box 1
and 2). We find
) (1
xelk) = — X B @)
1—o(k)xe " (k)
where )(go) (k) = —eok3z. We have met this quantity in Eq. 25 when we

related the total potential to the induced charge density in the linear response
approximation: ny,q(k) = Xéo) (k)prot (k). Eq. 27 reveals the self-consistent

nature of the problem:

ina (k) = 28 (K) [pext (k) + Pina (K] (28)
=[x + X 0900 xe (k)| pexe (k) (29)
= Xe (k)fpext(k) (30)

where we have used ¢ing(k) = v(k)njng(k) = v(k)xe(k)pext(k). The last
equality of Eq. 28 is nothing but Eq. 11 with jper = © so that X,EO) (k) =
—epk?g is actually the non-interacting susceptibility in this case. We under-
stand with the Sommerfeld model of free electrons, how the local character
of )(éo) (x) = —epk?d(x) is implicitly assumed by the introduction of k(x) —

each point in space is a small electron gas with given Fermi wavevector.

13



1.2 IMPORTANT EXAMPLES

Turning to the computation of the electrostatic potential of point charge,

we adopt the diagram used in Eq. 7 for metallic systems such that

. (31)

Using Eq. 31 and Eq. 17, we can compute the total potential for the metallic
system in real space when we place a charge at the origin. It reads

1 2 [T  ksin(kr) 1 e ke

drtegx 1 J k2+k3, 4meg x (52)

Prot(x)

where we can check that for ktp = 0 (i.e. no electrons), we obtain ¢iot(x) =
Pext(x). This potential is short-range due to the exponential damping and
bears the name of the Yukawa potential. It is the complete analog of the Debye
screening in electrolytes. The presence of mobile charges (e.g., electrons in
metals) directly impacts the screening effect, which can be traced back to the

behavior of € (k) for k — 0. We keep in mind that:
e for a homogeneous, isotropic metal: ec(k — 0) — +oo.
e for a TF screening, eq(k) =1+ k%F/kz.

¢ the potential of an ion is exponentially damped.

1.2.3 Example 3: A semi-infinite medium

As the last example, we now consider a semi-infinite medium (metallic or
dielectric) that occupies the half-space z < 0 and examine the consequences
of the symmetry breaking in one direction on the Green’s function of the
system w. Looking at the invariances and symmetries of the system, we
can work in Fourier space in the plane. In cylindrical coordinates, we use
x = (r,z) and k = (q,4z). We look for w(qg,z,z"). We focus on the static case
and assume isotropy and homogeneity in translationally invariant interface.

From Eq. 14 or Eq. 31, we obtain

w(0,27) = 0(g.22) + [ dndmole,zm)xle 20 27) 6

where the two-dimensional Fourier transform of the Coulomb potential reads

, e_‘7|z_z/‘
v(q,2,2) = W (34)

14
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Figure 2: Schematic representation illustrating the role of the surface response
function g(g) — here in the case of a metallic medium. A point charge in z > 0 exerts
an external potential ¢ext on the medium in the lower-half plane. The latter induces
back a potential ¢;,q on the test charge.

We ought to note several important points. First, it is crucial to note that
the susceptibility appearing in Eq. 33 is the two-point response function of the
semi-infinite dielectric medium . Therefore, its expression is far from obvious,
and it has a priori no relation with the susceptibility of the bulk system.
Second, because all the elements of the dielectric material are in the half-
space z < 0, the integration in Eq. 33 is restricted to z1,z2 < 0. However, this
is taken into account in the response function x(q,z1,22) « ©(—z1)®(—z2).
Finally, if we probe the dielectric material from outside, for example, if we
put an external point charge outside the material (i.e. 2/ > 0) and we look
at the potential ¢iot from outside the material (z > 0), then the sign of the
absolute value in Eq. 34 is known, and Eq. 33 reduces to

e—lz=7'|  p—q(z+2')
g(q) z7 >0, (35)

N — —_
w(q,z,2) = 2¢€0g 2¢€0g

where we have introduced a dimensionless central quantity that we call the

surface response function (SRF), and that reads:

-1

- 5o // dz1dzpe" @)y (g, 21, 22). (36)

g(q)

Eq. 35 and Eq. 36 are two complementary definitions of the SRE. The former
refers to the phenomenological macroscopic/electrostatic definition, whereas
the latter is the link to its microscopic expression. Be it for the conducting
or dielectric medium, g(q) acts as a reflecting coefficient for an external
potential that arises from a charge density situated outside the medium
(see Fig. 2). For instance, for a perfect metal, g.(q) = 1 and Eq. 35 gives
the well-known corresponding image-charge potential for a point charge at

altitude z, that is

+o0 -1
) — - —2qz0 _ _~
4)1nd(7 0, ZO) /O dqge(q)e 47‘[60(220) . (37)

471€q



1.2 IMPORTANT EXAMPLES

To focus on the reflection coefficient aspect of g(¢), we can also use Eq. 35 to

write

Pind (7,2 = 0,w) = —g(q, w)¢pext(9,z = 0,w), (38)

where we generalized our results to the dynamical case.

Box 3: We can gain valuable insights by looking at the passage from Eq. 33
to Eq. 35. As long as we look at a semi-infinite medium from the outside,
Gauss’s law tells us that the electrostatic potential arising from it can be

considered to be the one of a charged plate situated at its surface, with the

adequate two-dimensional surface charge density.

Let us find the electrostatic limit of the surface response function g(g —
0, w). We have seen that in the long-wavelength continuum limit, the medium
in the lower half-space is local and can therefore by described by the dielectric
function ¢(w). Accordingly, the electrostatic problem can now be formulated
as a standard boundary condition problem. In that limit, the constitutive
relation of Eq. 264 reduces to D(z, w) = —epe(w)V¢(z,w) for z < 0 — note
that e(w) = 1 for z > 0. What is the form of the potential ¢ in the entire
space? First, the perturbating external charge density in zj leads to a total
potential in the space 0 < z < zj that can be read from Eq. 35 using z’ = z.
On the other hand, the potential must vanish for z — —oco and therefore can
be written as ¢ = Cpe?*/2¢pq for z < 0 with Cp a constant. The electrostatic
boundary conditions [33] are the continuity of the potential and displacement
field’s normal component in the absence of surface charges. It leads to two

equations:

¢ continuous: 1—g(q— 0,w) = Cop; (39)
D, continuous: 1+ g(g — 0,w) = ¢(w)Co. (40)

Solving for g(q — 0, w) gives

e(w)—1

gW%szaaiT

(41)

from which we recover the classical image charge reflection coefficient [33].

16
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FORMAL DESCRIPTION

2.1 METAL AND LIQUID RESPECTIVE HAMILTONIANS

We introduce crucial notations to describe interactions between particles. We

use the following functional

ulfig) = - [ aa2rmpe0,202) 42

where f; (or gj) is a scalar or an operator describing the element i €
{e, n, w, m}l. The prefactor with the Kronecker symbol prevents double
counting when i = j*. We write Uy = U [, nj]. We separate the average
charge density n) = (n;) from the charge density deviation én; such that
n; = n? + Jn;j. Inserting in Uj;, it reads

Uy = u + (1 - s)u” + oty — U 43)
where 8Ujj = U [om;,dm], U) = U [nd,nf] and U’ = u [m,n?]. U is a
constant static term that we remove from now on. On the other hand, Ui<J>
is the one-particle mean-field potential exerted by j on i whereas 6Uj; is a

two-particle term.

2.1.1  Metal Hamiltonian H,,

We first ignore the liquid part. We use a bosonic operator to depict the
nuclear charge density of the ions in the solid 7i,(1). The creation ¥*(1) and
annihilation ¥ (1) Fermi fields gives the electronic charge density 7.(1) =
¥*(1)¥(1). We prepare the metallic slab to “welcome” a liquid on its surface.
To that end, we show the different ways the polar liquid can couple to the
surface: static and dynamic contributions for the nuclei and the electrons.

The idea is to express the Hamiltonian of the metal Hy, as a sum of two

n stands for the nuclei and m = e + n stands for the metal
with the convention of the correct ordering for the fermion fields (creation on the left) such that

U [fie, 6] = 1 [/ d1d2¥*(1)¥F(2)0(1,2) ¥ (1)¥(2).

17
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2.1 METAL AND LIQUID RESPECTIVE HAMILTONIANS

separate but effective Hamiltonians, one for electrons and one for the nuclei.

The Hamiltonian of the metal H,, reads
Hm = Te + Tn + aee + l:lrm + aen (44)

where T; is the kinetic operator (one particle term) of i. Inserting Eq. 43 in

Eq. 44, we obtain

Ay = A + AT 4 60 + 6Unn + 0Uen. (45)
For the electrons, the Hartree-Fock (HF) Hamiltonian HEF reads

AT =0 +uf ;A =1+ ol (46)

He(o) is the quadratic Hamiltonian that contains the fixed lattice potential. It
can be build with a tight-binding model. l:lée> the Hartree term that depends
on nd3. HIIF is given by Eq. 46 after the replacement e = n.

Eq. 45 does not separate the electronic and nuclei contributions because
of §Uen. Doing so requires an approximation that we have not made so far.
The idea is that 671 comes from an external perturbation which arises from
0fin. We cannot relate both instantaneously, but we know their relationship
in average: it is given by linear response theory (see Eq. 1). Combining Eq. 1,

Eq. 2 and replacing the average by the instantaneous deviation, we obtain
Sin(1) = / 42430 (12)0(23) 5710 (3). 47)
Inserting Eq. 47 in 6Uen gives for
ST = 60 + %men = % / Sf1e(1)wn(1,2)57(2), (48)
with w;, given by (see also Eq. 4)
wn(11) = v(11) + //d2d3v(12)xn(23)v(31’). (49)

Eq. 49 gives the Coulomb potential screened by the nuclei. We use the other
half of 6Uey in Eq. 48 to write Eq. 47 with e 2 n. Inserting Eq. 48 and its

counterpart for e = n in Eq. 45 reads

A = AIF 4+ AYF 450 46018, (50)

Standard HF calculations find the solution of the Schrodinger equation self-consistently by

inserting the electronic density n) — reconstructed with the wavefunctions — in l:le<e> at each
iteration.

18



2.1 METAL AND LIQUID RESPECTIVE HAMILTONIANS

that is now separable. Eq. 50 is not an explicit expression because it contains
a time integral (see Eq. 48). As noted in [34], an explicit Hamiltonian can be

obtained by using an adiabatic approximation:

an(12) = [ S i (xg 30, 0) = wnx1, 02, = 001 2. (51

In contrast to typical solid-state studies where non-adiabatic effects are at the
center of the interest, our work, focusing on liquid-metal coupling, welcomes
this “intra-metallic” adiabatic approximation. The result is that electrons and
nuclei are decoupled, and their interplay with the liquid can be evaluated

separately.

2.1.2 Liquid Hamiltonian Hy,

We now ignore the metallic part. Considering the electronic density of the
liquid’s molecules is prohibitive. We model them as indiscernible classical
rigid objects composed of three-point-like partial charges, and use a classical
framework. We consider the classical charge density field of water n,,. We
write Hy, as follows:

Hw = Tw + Kw + uww: (52)

where T,y is the one-point charge kinetic term and Ky = Cy + US\}‘},‘VH contains

a constraint term C,, that keeps molecules rigid and interparticle interactions

Ugther that are not Coulombic (e.g. short-range). The definition of LIher
other

can be obtained by replacing v by v in Eq. 42. Introducing USf =

usther 4 Uy (ie. v ¢ v in Eq. 42), we have
0
Hy = HY + 3Ugh, (53)

where H‘(A? ) = Tw + Cw is the non-interacting molecular or ideal part of the
Hamiltonian. In the absence of an external potential we have used 1%, =

We can rewrite SUSH  as
eff _ 1 eff
Sustt, = 3 // d1d26m, (1)0%F (12) 61, (2). (54)

We look for an instantaneous interaction v<f(12) o 6(t; — t;) to build SUSH .

We suppose that we know how the liquid responds to perturbations. Our

strategy is to express v&if with the response function of the liquid. To do so,
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2.1 METAL AND LIQUID RESPECTIVE HAMILTONIANS

we assume that dny has Gaussian spatial fluctuations. We consider the static

case because we look for an instantaneous interaction. Hy, reads

1
H, = E/ dxydxady (x1) My (X1, X2) 01w (X2), (55)

where M, is a Gaussian kernel. To find M,,, we write the partition function
Z, where we add a generic external potential eyt (a source term) to generate

the moments of dn,,. It reads*
z, = / D [511yg] ¢ FHw—Bomwgext — / D [511yg] ¢ bPOmeMudroy—Bmudens (6

where B = 1/kpT. By functional differentiation of the partition function, we

obtain
-1 0Zw

(omwxi)o = Z= 5o 5

(57)

(Pext:O
where (.)( therefore means the phase space average in absence of external

potential: ¢ext = 0. We also obtain

S(omw(x)) _ -1 02 (58)
5¢ext(xz) Zw 5ﬁ¢ext(xl)5¢ext(x2) Pext=0

= —B(dnw(x1)dnw(x2))o (59)

= —M‘;l(xl,XQ), (60)

where we have used a functional Gaussian integration property in the last
step. In the following, we call static structure factor the following correlation
function:

Sw(x1,x2) = (dnw(x1)nw(x2))o- (61)

Using the fluctutation-dissipation theorem [35] (FDT), we have> — Sy (x1,X2) =

Xw(Xx1,X2,w = 0). Inserting in Eq. 59 and Eq. 61, we obtain M,, =
—Xw' (w = 0). Reinserting in Eq. 55 gives

Hy = —= //dxldxzénw(xl)x‘;l(xl,xz,w = 0)dnw(x2). (62)
Integrating Eq. 58, we obtain
(omaxa)) = [ dxa(x1,%2,0 = gt (x2) ©)

and recover the results of linear response theory in Eq. 1 for a static

external potential. X' is the inverse response function of the system —

4 We used in the exponent the notation [d1f(1)g(1) = fg and [ d1d2h(1)f(12)g(2) = hfg.
5 Itis discussed in details in the following. One can refer to Eq. 299 for the proof.
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[d2x 1 (1,2)xw(2,17) = 8(1 —1'). Eq. 55 to Eq. 58 are also valid for the
ideal part:

1 -1
H‘E\(,)) = —i/ dx1dxz074 (x1) {X‘(,?)} (x1, X2, w = 0)dny(x2), (64)

We underline that ). is the response function of the liquid slab and XS?)
is the ideal or non-interacting response function of the liquid slab. Using
sust, = Hy, — HV(S ) with Eq. 55 and Eq. 64, we obtain
-1

US\ff(xll Xz) = [X‘(A(I))] (Xl, X2, W = 0) - XvT/l (Xll X2, W = 0) (65)

By inserting Eq. 65 in the mean-field renormalization equation Eq. 12,
we find that it is satisfied for Vjpter = vﬁ\ff in the static case. We conclude that
veff is the charge-charge mean-field potential in the liquid. It prompts us to
introduce a diagram for the response function of the liquid. We introduce a
white ball-and-stick representation for Xs\(,) ) and Xw- The mean-field equation

Eq. 11, for the case of a water slab alone reads

Xw X\(A(I)) Ueff

-—20—2—2- = 0000 + 0000 FA 02020

(66)
The link between our expression of Hy, in Eq. 62 and functionals for polar-

ization of dielectrics, can be found in appendix B.2.

2.2 QUANTUM FIELD DESCRIPTION OF THE LIQUID
2.2.1  The quantum/classical incompatibility

We try to assemble both Hamiltonians Ay and Hy. We write H = Hy +

Hy, + ﬁwm using fim = fle + fin. Using Eq. 43, we write

A

A =0+ H™ + 60wm, (67)

where I:IénW> = I:IEF + Uf;{v ) + (Slflég) + 5&1(3) and Hévm> = Hy + Uévm> are the
Halmiltonians of both subsystems in the presence of the other. With H given
by Eq. 67, we can evaluate its expectation value and, specifically, the one
of éUym. Taking either the quantum or classical phase space average, we
obtain (6Uwm) = 0. Is there something wrong?

A way to answer is to find what we obtain by minimizing (H) in the

quantum and classical phase space alternatively. We find the minimum
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2.2 QUANTUM FIELD DESCRIPTION OF THE LIQUID

average energy of the system in a self-consistent way because evaluating
nY, requires the first guess for n2, to build ¢, which in turn gives ¢9, to be
applied to the metal and so on. However, we do not get the instantaneous
energy of the system. Why are the two phase spaces incompatible? One deals
with quantum operators and commutators, whereas the second only treats
scalars, so they use different algebra. We scratch the surface of questions
that theoretical physicists would like to answer regarding the unification of
theories that works well on different scales.

What if we arbitrarily choose the quantum phase space? After all, although
the classical framework cannot deal with operators, the quantum one accepts
classical scalars. We would use én,, as an external potential that acts on the
metallic surface, but we would ignore how the liquid respond to the deviation
of metallic charge J7i,. Note, however, the subtelty that if a static external
potential (say an ion in the liquid) produces 7y, the liquid would still be
blind to it, unless it is incorporated back in 73, and follows the self-consistent
cycle to minimize (H). To couple both media (and to go beyond the BOA),
both media should “see” each other at once in the same framework.

Is it possible to find a common framework? It may now be clear that the two
closed media can only mutually perturb each other using an electrostatic
potential. The response function, well-defined in both the quantum and
classical framework, processes the latter. Thus, there is no way for one
medium to tell if the other needs a quantum or a classical description.
Therefore, although the computation of the response functions is different for
the metallic or liquid part, we must be able to find a common framework to
treat this problem. We can take the quantum one to deal with electrons and
phonons, but we need to make room for the liquid part, as discussed.

From where do we start? The key observation is that we have the dynamical
equation for the metallic part (Schrodinger equation) but not for the liquid

part. Indeed, so far, we have imposed the static dielectric response of the

eff
e

liquid thanks to the introduction of an instantaneous effective potential v
Accordingly, we cannot yet tackle time-dependent external perturbation. The
very attractive way to proceed is to generalize Eq. 65 to an arbitrary frequency.
e [0 (12) - i (12)

However, this would imply using Eq. 58 and 61 that x(12) false —BS(12)

After inverse Fourier transform, it reads v&ff(12)

, which we know to be false because it violates the FDT (i.e. the response

function is not the structure factor). We need to find something else.
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2.2 QUANTUM FIELD DESCRIPTION OF THE LIQUID

2.2.2 A fictitious quantum operator fiy,

In 1973, Martin, Siggia, and Rose (MSR) formulated classical statistical
dynamics in the aspect of interacting quantum fields [36]. This was verified
and used since [37, 38, 39]. The underlying complexity of the formulation
and the scarce non-linearities in simple liquids might have led the liquid
community to ignore such formulation. However, in our case, we describe the
liquid by its charge density with Gaussian fluctuations, and the difficulties
are greatly reduced. Starting from a generic Hamiltonian of a dielectric
material and imposing a dissipative dynamic, we show in appendix B.3
how we can encompass this structure in the form of an out-of-equilibrium
quantum field action [40, 41, 42].

We imposed the dynamics, but one can now grasp how this can be gen-
eralized to an arbitrarily complex Gaussian dynamics. The key aspect of
the derivation is introducing the auxiliary charge density field, as revealed
in [36]. The origin of such doubling to mimic quantum field theory can be
understood by the lack of commutators and anticommutators in the classical
paradigm. They contain information on the response to external perturba-
tions and the amplitude of the fluctuations when considered observables.
Also, time ordering appears naturally in all possible correlation functions
one can build using them. On the contrary, the classical formulation sweeps
up those albeit physical subtleties, and the linear response is given by the
Poisson bracket [43], a more complicated formulation of response functions
in a way. From now on, response and fluctuation amplitudes are simple
correlation functions of the real ny and auxiliary 7, fields.

Why do past and future distinguished in a non-equilibrium situation?
Perturbation theory needs a reference state to compute observables. It is
usually the one where the perturbation is turned off. In classical or quantum
linear response theory at equilibrium, the interactions are switched on and
off adiabatically to recover the same initial and final state for t — —oo and
t — +oo. This assumption is challenged in a non-equilibrium situation. For
instance, for two media in relative motion, if one happens to be centered
in x(t) = vt, it is not at the same place for t — —oo and t — +o0 and the
final state differs from the initial one. This subtlety requires to propagate the
wavefunctions forward and back in time to reach the same initial and final
state. The doubling of the fields stems from this doubling of forward and
backward propagation. The reader can refer to [42] for the details.

The observation that results from this derivation is that the central quan-
tities appearing in the partition function are the three response functions:

retarded, advanced, and Keldysh. In this framework, a field, be it an operator
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2.2 QUANTUM FIELD DESCRIPTION OF THE LIQUID

or a scalar, is solely represented by its response functions. In return, it means
that we can introduce a fictitious bosonic quantum operator fi,, for the charge
density of point charges in the liquid. Its response functions in the quantum

framework are defined by the classical ones as follows:

X (12) =~ L0(t1 — 1) [ (Diw(2)]) = 1 (e (Diw(2)) (@)
1 (12) = = 20(t2 = ) ([t (D (1)]) = = (i (Dn(2))  (69)
X(12) = — £ ([ (DA} = =2 (1) (2) (70)

Therefore, as long as the classical polar fluid has Gaussian fluctuations, we shall
describe it in quantum field theory by a fictitious bosonic operator fiy, with prescribed
response functions. For a classical system, x*(12) = x®(21) is implicit. This
is not case for the quantum correlation function because operators do not
commute. To keep the anticommutator’s structure of the Keldysh correlation
function, the structure factor is multiplied by two: xX(12) = —%Sw(12)6.
For the homogeneous, isotropic and infinite system, at equilibrium, the FDT

is now given by

hiw
xR (k w) = x* (k,w) = tanh(—)x* (k,w) (71)
2T
from which we recover Imy (k, w) = fﬁS(k, w) in the classical limit of the

FDT —ie. = 0. Recall that the response function we have encountered
so far is xR = x — as obtained in appendix B.3. The consequence of Eq. 71
is that, at equilibrium, the three response functions are linked and that the
knowledge of xR — note that x*(w)* = x®(w) — is enough to describe the
entire system. For future reference, following [44], we shall also rotate by

71/4 the matrix that gathers the response functions. It reads”

R K

XX

X = LY /s’ = ( 0 A) : (72)
X

This simple operation makes the diagrams very useful for an out-of-equilibrium

situation too. Indeed, at the beginning of this part, we defined the diagram-
matic link between scalar functions f and g to be [f * g] (1) = [d2f(12)g(2),
at equilibrium (see Eq. 7). For an out-of-equilibrium situation, f and g can be
matrices, say F and G (such as defined in Eq. 72). We extend this definition

by stating that the diagrammatic link requires a matrix multiplication in

assuming 19, = 0.

We use L = %2 G 711> and X_ /4 is defined in appendix B.3.
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this matrix space. For instance, [F * G] (1) = [ d2F(12) - G(2) has a matrix

structure with

Feg (1) = [a2AaghAe)

Feaf )= [@(Ffage +fagte). 0

We refer to [42] for the proof of this statement. We can check from Eq. 73
that if 7 and G follow the FDT, then F * G does too. We keep in mind that
an element i can be represented by its response function &j and that, at
equilibrium, the matrix structure &; can be reduced to the scalar x; = XF

function.

2.3 OUR FRAMEWORK
2.3.1  Vacuum gap

In this section, we discuss the microscopic physical/chemical details of the
metal/liquid interface. If the frontiers orbitals of the two media are energet-
ically separated, the effective electron-electron interactions between liquid
molecules and metal’s electrons are merely governed by the Pauli exclu-
sion principle. This short-range repulsion force prevents electronic clouds
from overlapping. Fig. 3a shows the drastic decrease of the plane-averaged
electronic density at the interface between the graphene and water — for
one snapshot taken randomly at equilibrium from an ab initio molecular
dynamics (AIMD)®. It prompts us to model the interface as two separated
closed systems, thus neglecting charge transfer?. Quantum chemistry calcu-
lations, showing no band mixing when a single water molecule is adsorbed
on graphene, support this hypothesis [45, 23].

We model the drastic decrease in electronic density between the two
media by a vacuum gap of thickness d ~ 1A (see inset of Fig. 3a). If
we describe both media so well that we recover the exact shape of the
charge densities that vanish on an impenetrable plane, we will use d = 0 A.
Otherwise, if we resort to a simplified version of the charge density profiles,
we will adjust the thickness d > 0 to model this effective vacuum gap (see
Fig. 3b). From an electrostatic perspective, this gap model the low dielectric
region between both media due to the absence of charges. The consideration

of this impenetrable plane is crucial in our microscopic description of the

see methods in appendix B.1
This hypothesis may need to be challenged depending on the nature of the metal/liquid
interface.
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Liquid/Classical (nQZI(z_)l) eA=?)
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/ A el “—> Metal/Quantum

electronic sea nuclei lattice spacing

Figure 3: Schematic drawing of the metal/liquid interface. (a) From a quantum per-
spective, the zoom shows the electronic density near the interface between graphene
and water. It is obtained with a static DFT calculation on a snapshot taken randomly
at equilibrium. We fix an altitude for the impenetrable plane (d = 0). (b) From a
classical or practical modeling perspective, a vacuum gap d > 0 is introduced. The
image is a snapshot from an interfacial MM simulation.

dielectric. A liquid molecule should never not be cut in two by this plane'® —
see more details in Appendix B.2.

Our description is limited to scales larger than the lattice spacing near the
interface. From a purely practical point of view, due to the discrete lattice
structure of the solid, one cannot describe small scales without introducing
specificities due to lattices. It means adding local-field effects that burden
the mathematical description. The rigorous criteria on in-plane wavevectors
would be g <« 27t/a, with a the lattice spacing. The introduction of the
vacuum gap d relaxes this restriction because it cuts off the electrostatic

interactions between the solid and the liquid at wavevectors g ~ 1/d .

2.3.2  Hamiltonian of the interface

Turning back to the Hamiltonian in Eq. 67, we now replace ny by
and rearrange the terms to prepare many-body perturbation theory. The
Hamiltonian of the system H = Hj + Hiy can always be decomposed in a
quadratic part Hj and and interaction part Hipt such that we will note (0) =
Tr(e*ﬁH O) the expectation value of an operator O and (.)¢ = Tr(e*/mo-).
We do not to study the role of nuclei (phonons), because they are a priori
well-descibed by AIMD or MM. We left the study of their non-negligeable
role for future work and merely consider the frozen lattice. With dn, = 0, we

obtain xn = 0 and wy, = v. Using Eq. 67, we obtain Hy = HSZ” + Hé?, with

AR =T+ 0 + 08 A =AY + 0. (74)

' In a bulk MD simulation, periodic boundary conditions lead to surface charges at the edge of a
simulation box because some molecules are cut in two at each time step. Here, we put a hard
wall at a some altitude. We call it the impenetrable plane because it acts also on the electrons.
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(m)

We underline the presence of LAIéW> and Uy" in the quadratic Hamiltonians.
They point to the necessity to make recursive static calculations to obtain 19,

and 1. The non quadratric terms are gathered in Hi and read:

A

Hine = Uée> + 5Uee + 53\?\5{«\/ + 5Uwe' (75)

ﬁée> is the one-particle Hartree term that requires self-energy calculations to
evaluate the exchange-correlation contribution (see chapter 7). The remaining

two-particles operators have been clearly identified.

2.3.3 Some practical rules

In this part i, we gathered the physical concepts and the mathematical
tools to tackle the electrostatic interactions at interfaces following standard
diagrammatics. In a nutshell, our approach hijacks the electron-phonon
problem in quantum field theory to address metal/liquid interfaces.

We have laid out a systematic way of addressing the problem that we

shall adopt and summarize it here, for two elements, “i” and “j” — that can

be electrons (e) or liquid molecules (w). Chapter 2 prompts us to:

* Minimize self-consistently Hé? and Hé? and obtain 1) and n]Q .

e Fill the matrices Xi(o) and Xj(o) with the adequate response functions

computed with respect to Héji) and I:Iéji). Only xi/; = XF/]. is needed at

equilibrium.

This work will be done in the next part ii for water and graphene/few-layers
graphene. We now state how to assemble the response functions to find

practical observables. In chapter 1, we have guessed that

* For a response function &} = [#;]*": draw all possible linked dia-
grams with X" and X that start with &,*) and end with "), The

iy "3y

nature of links are given by the potential between “i” and “j” in Hip.

¢ For the screened Coulomb potential w: draw all possible linked dia-
grams with Xi(()) and Xj(o) that start and end with a Coulomb leg v.

“":rr “:r7

The nature of links are given by the potential between “i” and “j” in

A

Hing.
To present the results in a physically transparent way:

* Organize the diagrams to make renormalized response functions appear

—see e.g. Eq. 114

™ a short notation for the Keldysh matrix such as the one of Eq. 72. If i=j this is &}
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¢ Write down the equation by reading the diagrams; a link is defined by
the operation .

Several observables are derived in part iii. For now, we build the response

functions of water and graphene/FLG.



PartII

MODELING WATER AND GRAPHENE



2.3 OUR FRAMEWORK

In this part, we aim to construct the response function of water and
graphene — and few-layers graphene (FLG) — at interfaces. We look for the
retarded response function x(q,z,7z/,w) = xR(q,2,7/,w). Regarding water,
we introduce two original approaches that can be generalized for other
dielectric media. We first obtain the dynamic SRF gy (¢, w) by carrying MD
simulations. We then construct a microscopic model for the static response
function of a water slab xw(q,z,z"). For FLG, we progress from a tight-
binding (TB) model exploring the advantages of Wannier functions. We
follow a strategy developed during the rising era of computers [46] to obtain
the complete response function xe(q,z,z, w) of FLG. We restrain, in this case,

our discussion to the SRF ge(q, w).
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INSIGHTS FROM MM SIMULATIONS

All simulations were carried out using the LAMMPS software [47]. We used
the SPC/E water model [48] with the SHAKE algorithm [49, 50]. The simu-
lations were carried out in the canonical (NVT) ensemble, with a stochastic
CSVR thermostat [51] with time constant 1 ps maintaining a temperature
T = 298.15 K. We used a timestep of 2 fs, and atomic positions were written
out every 4 fs. Electrostatic interactions were calculated with a particle-mesh

Ewald summation with a Coulomb cutoff of 1.4 nm.

3.1 BULK SIMULATION
3.1.1 Methods

The bulk simulation uses N = 8000 water molecules. The volume of the
simulation box is adjusted in the NPT ensemble to yield a mass density p =
0.99715 g - cm~3. The resulting volume is V = (64.145)3A3. The simulation
is equilibrated in the NVT ensemble for 200 ps, and the subsequent 20 ns are
used for analysis.

The simulation is split into Ns = 20 pieces of length At = 1ns, and the
results obtained from each of the pieces are averaged to obtain the final
result. The accessible frequencies are thus from 1 GHz to 62.5 THz. At every
sampled time t, we compute the Fourier-transformed water charge density
nw(k, t) = ¥, c;e~ ™), with the index i running over all the charged sites
of the SPC/E water molecules, and c; the corresponding partial charge. We

define the dynamic charge structure factor according to

Sull,w) = % /_ :o At (r1ee (K, ) (—K, 0)) e~ (76)
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3.1 BULK SIMULATION

where V is the volume of the simulation box. Then, the classical FDT gives

the susceptibility y in the classical limit":

1 w

Sw(k, w). (77)
The susceptibility is related to the dielectric permittivity according to yw(k, w)
1—1/ew(k,w). We therefore require also the real part of the susceptibility,
which can be determined through a Kramers-Kronig relation (see Eq. 298)
that reads

—+00
Reftw (k,w) = P / de M, (78)

w —w

where P indicates that the principal part of the integral is taken. In practice,
the structure factor in Eq. 76 is computed from the simulation data by making
use of the Wiener-Khinchin theorem. The resulting spectra is convoluted
with a Gaussian filter of half-width 50 GHz. This allows for some smoothing
of the spectra, while not affecting their low-energy region, since the spectra
are constant below 200 GHz. Then, spherical averaging is performed over
the quantity |61y, (k, w)|?/k?. This gives

im0 1 R
A ) = eV 2ksT AiNmples. 5 Kz 7
k<K' | <k+dk

Warning: the definition and relevance of x5 (q) becomes clear only in part iii.
One can skip the following paragraph if read for the first time. The results of Fig.
21a show the computation of the integral in Eq. 141. We show how it can be
computed using MD simulations. The idea is to realize that 3 (g) can be

expressed as follows:

+o0
Xw(q) = 2€0q // dzidzoxe (9,21, 22)e” q(|z11+1z2) (80)

Following the FDT, we compute x%(7) = —BSw(g), in the bulk simulation,
where S¥(q) = 71( <|n‘°,\,°(q)|2> . Here, n2(q) = ¥; c;e e~ 1l7il according to
Eq 80. The origin of the vertical axis is unimportant due to the periodic

boundary conditions.

The discussion whether it is technically appropriate for water that has modes with frequecies
larger than kgT/h can be found in [52]. In fact, using the quantum FDT would require to
dissymetrize the structure factor that is time-reversible Sy (k, w) = Sw (k, —w) by definition of
the use of MD. We ignore this correction and fully assume the “classical” limits of MM. We can
expect the contribution from the high frequencies peaks to be slightly overestimated by a factor
of (Bhw/2)/ tanh(Bhw/2).
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3.1 BULK SIMULATION

3.1.2  Results

The dispersion for the SPC/E water model is known [52], and we only
report the long-wavelength limit of the relevant response functions in Fig. 4.
Regarding the imaginary parts of Xw(w) and ey (w) (respectively blue and
green in Fig. 4a), they both exhibit in the low-frequency region w < kgT /T a
Debye relaxation peak. Despite historical controversies [53], Debye relaxation
in water involves translational and rotational modes of single molecules and
collective long-range dipole-dipole interactions. For a relaxation timescale of

Tp in éw (w), the one of fw(w) is roughly &,, = 71 — the dielectric constant of

ew—1 _ ew—iwTp
—iwtp ~ 1—iwtp ’

we see that the imaginary pole of ey (w) is at 1/7p and the one of 1/& (w) is

SPC/E water — times shorter. Indeed, using ey (w) =1+ 1

at ey /Tp. At interfaces, a relevant response function is the long-wavelength
limit of the SRF of the semi-infinite water medium, that is gy (w). Using the
same Debye model, we find that the imaginary pole is at (e + 1) /27p. This

is confirmed by Fig. 4a — see orange curve.

(@ 1-- > 1 ewlw) -1
1 @+ 1

10° o

1071

Imaginary part of response functions

1072

(b

=

2.0

15 4
1.0 +
0.5 -
0.0 o

-0.5 -

-1.0

Real part of response functions

-1.5 o

-2.0 — T — T
1073 1072 107t 10° 10t
Bhw

Figure 4: Dynamical response functions of water (SPC/E) in the long-wavelength
limit. The dashed lines stems form the model introduced in Eq. 81. Imaginary (a) and
real part (b) (and zoom in the inset). We use Yw(w) = fw(k = 0,w) =1 —1/¢eyw(w)

and gw(w) = gw(q = 0,w) = ﬁ:éi;;}

In the high frequency region, we find that jw(w) and ey (w) also exhibit
a resonnance. The resonnant frequencies — we note wr the one of ey (w) (“T”
for transverse) and wy, for the one of fw(w) (“L” for longitudinal) — are

close, but not exactly the same. It is an important detail of water dynamics
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because the difference in the transverse and longitudinal resonances, called
the LO-TO splitting, is a characteristic of polar solids [54]. We prefer a more
continuous interpretation of the solid/liquid transition that do not resort to
solid-state tools. The relatively low (y < wr/2) damping coefficient y of the
oscillator at frequency wr confers to the libration peak of water a relatively
long (few oscillations before being damped) lifetime. It is a phonon-like
characteristic, usually imposed by the crystal lattice in solids (y — 0). In
water, this originates from the cage-like structure of the tetrahedric hydrogen
bond structure.

Using a damped harmonic oscillator model is not possible to account
for the observed ratio of wyof wr because the crucial Debye peak, that is
responsible for the high dielectric constant of water, cannot be ignored.

However, using a reformulated expression [55] of the dielectric function
2 2_i0t
wi —w—i0"w

w2

—L———— of a damped harmonic oscillator, we can infer wy,
2 —w?—i0tw

ew(w) =
using our data and check the consistency with the pole obtained at the
surface. After some straighforward algebra, we expect the pole of gw(w)
at wg = 1/ M To insert quantitative values, we refer to the real part
of the response functions in Fig. 4b. The maxima of the imaginary parts
are the zero of the real parts from which we can read fhiwr = 3.11 and
Bhwy, = 4.4 (see the two extreme red dots in the inset of Fig. 4b). We obtain
Bhws = 3.81 that we report by another red dot (the middle one) in the inset
of Fig. 4b. It quantitatively matches the intersection of the orange curve with
the horizontal axis and attests to our model’s relevance.

Those two accurate but separate models tackling the low and high-
frequency regions prompt us to introduce a common one. We find a compact
expression with the three parameters 7, wt, and 1p (see Table 1) that can
reproduce nearly quantitatively all spectra. It reads:

-2 w?
sw(w) =1+ Ew s

- + . 81
l-iwtp  w?—w?—iyw (81)

We report the model with dashed lines in Fig. 4, for the three response

functions. The region near phiw >~ 1 is the less accurately described, but this

is also the case in MM due to the use of a non-polarizable force field [54].

1/m wT Y

kgT/h 3.11x1073 311 1.36

Table 1: Parameters of the water dielectric function of SPC/E water &y (w).
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3.2 INTERFACE SIMULATIONS

3.2.1  Methods

Figure 5: Snapshots of the interface simulation. The surface area is 128.316 x
123.490 A% and the number of water molecules is N = 20200.

The interface simulation is carried out with N = 20200 water molecules.
The solid surface consists of three graphene layers (with ABA stacking), with
surface area 128.316 x 123.490 Az, and the simulation box height was 6.5 nm.
The positions of the carbon atoms are frozen. The direction normal to the
surface was aperiodic, and spurious slab-slab interactions are removed. A
reflective wall is placed close to the top edge of the box to prevent gaseous
water molecules from crossing the top boundary. We use two sets of Lennard-
Jones (L]) parameters for the water-carbon interaction, to which we refer to as
“Werder” and “Aluru”, listed in Table 2. We exhibit the results for the Aluru
force field because it is based on first-principle calculations. The simulation
is equilibrated in the NVT ensemble for 200 ps, and the subsequent 6 ns are

used for analysis.

Name eco (kcal/mol) oco (A)  ecn (kcal/mol)  ocp (A)
Werder [56] 0.0937 3.19 - -
Aluru [57] 0.0850 3.436 0.0383 2.69

Table 2: Lennard-Jones force-field parameters for the carbon-water interaction.

The simulation is split into Ng = 60 pieces of length At = 0.1 ns, and the

results from each of the pieces are then averaged. The accessible frequencies
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are from 10 GHz to 62.5 THz. At every sampled time ¢, we computed the

Fourier-Laplace transform of the water charge density
t) = Zcie_iqrf(t)e_qu, (82)
i

with the index i running over all the charged sites of the SPC/E water
molecules, and ¢; the corresponding charge. According to Eq. 36, the

dynamic surface charge structure factor reads

+o00 ,
Swl@w) =5 [ dtoni(anoms(-q0)e ™, 63)

with A the surface area, and n}, = n§, — (n},). Note that including (n3,)
does not change the computed quantity. We then obtain the imaginary part
of the SRF with the classical FDT:

1 w
Imgw(q,w) = foqmsiv(q,w), (84)

In practice, the structure factor in Eq. (83) is computed from the simulation
data by making use of the Wiener-Khinchin theorem. The resulting spectra
are convoluted with a Gaussian filter of half-width 50 GHz. Then, radial

averaging is performed over the quantity |n$,(q, w)|?/q.

3.2.2  Results for ¢,

The mean charge density profile n%,(z) = n% (g — 0,z) is computed to
obtain ¢9,(z). Recall that we need to include it in Héo) — to find graphene’s
electronic states. By successive integrations of Poisson’s equation in one

dimension, we get:

([)&(z) = —eal/o d21/0 ' dzzngv(zz). (85)

Also, note that the normal polarization density reads P0 fo dz'nf,
The results are shown in Fig. 6. Due to the mean charge density’s mhomo-
geneity (see Fig. 6a), ¢ (z) # 0. The mean static electric field in Fig. 6b

reaches +1 V. nm~!

near the surface, which agrees with the value experimen-
tally probed for water above graphene, using electrostatic force microscopy
[58]. Fig. 6¢ gives several essential insights into ¢9 (z).

First, ¢9,(z) = 0 for z outside the water medium. It stems from the
charge neutrality of water. Indeed, the dipole layering of water can be

schematically modeled by three or four infinite charged plates whose surface
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Figure 6: Mean charge density (a), polarization (b) and electrostatic potential (c) at
graphene-water interface for the SPC/E model.

charge adds up to zero. The electric field and electrostatic potential seen
outside this charged plate system is zero using Gauss’s law. Therefore, while
n9, # 0is due to I:Iévm> # 0 because of the L] interactions, we can write
a§W> = 0. Equivalently, graphene cannot be doped (a shift in the free charge
concentration) by the mere presence of unsalted water. Finally, we conclude
that the recursive static calculations required by Eq. 74 can be restricted to
the first step: n2, gives ¢3,, which gives n9,.

Second, the value of ¢9,(z — o) = —0.3V and minimum min; ¢9, ~ —1V
(Aluru) puts into perspective the hypothesis in [59] asserting that the water
makes graphene metallic. The authors support that the nearly free electron
band at the I" point of graphene’s Brillouin zone is pushed down to the Fermi
level, assuming ¢, (z — o0) = —9V. Our results show that it seems largely
overestimated at room temperature. We can neglect the o band of graphene
at the I' point and reaffirm the validity of the closed system hypothesis. For
lower temperature, an ice-like structure of oriented dipoles could however
produce this high potential [45].

Last, ¢, (z) is the electrostatic potential felt by a point charge at the inter-
face if the relatively homogeneous water structure is not disturbed. It is not a
realistic point of view because water rearranges around an ion and therefore
does not apply ¢, (z). In fact, we need to consider the electrostatic potential
at the center of a L] cavity. It has been computed here [60], for graphene. The
mean average potential variations are of the order of the thermal energy with
the distance to the surface due to the compensating orientations of the water
molecules surrounding the ion. To a first approximation, it can be neglected.

However, it is a source of charge asymmetry (anion/cation) at the interface.
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3.2.3 Results for gu(q)

In this paragraph, we aim to identify the static SRF of water — i.e. gw(q)
— at the graphene interface. The computation of S5, depends on the origin

along the vertical axis, which we take to be the one of the top graphene layer.
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Figure 7: Surface response function gw(g) of water. (a) Comparison of the hydro-
gen density profile along the graphene/water interface for the Werder (green) and
Aluru (orange) force field. (b) Obtention of dwerder = 1.3A and d Aluru = 1.74A by
considering the fastest convergence of gw(g) for ¢ — 0. (c) Gaussian fit of the gw(q)
at graphene interface (A = 0.35A).

We compute gWerder(g) and gAri(g) for the two different force fields

and show the results in Fig. 7. To compare both quantities, we put them on
an equal footing regarding the actual microscopic vacuum gap thickness d.

We set the difference d oy — Awerder = 0.44A by equating gWverder ()21 Werder

and gAlU™ (g)e?9¥awr in the long-wavelength limit ¢ — 0. It makes the charge
(or hydrogen) distribution for both force fields to start at the same altitude,
as shown in Fig. 7a. To visualize and model both quantities, we also set the
absolute value dyerger by imposing the fastest convergence of gy (gq) with
g — 0. This imposes a horizontal asymptote in g = 0 (see Fig. 7b). We obtain
Awerder = 1.3A. To model those results, taking into both force fields, we use

a simple Gaussian model:
qu _ Ew — 1 _q2/\2
e LI (36)
The value of 4 is interface-dependent and defines the thickness of the vacuum

gap. As a reference, we keep in mind d = m = 1.52A. We use
AMl=gy= 2.86A"". The fit is shown in Fig. 7c.

3.2.4 Results for gu(q, w)

To fully characterize the SRF, we turn to the dynamics. To avoid differences

between the SRF that arise from static considerations, we focus on the
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3.2 INTERFACE SIMULATIONS

renormalized quantity gw (g, w)/gw(q). The long-wavelength limit* of this
quantity can be checked using three different ways: two different force fields
(for the interfacial simulations) and one bulk simulation (using the orange

curve in Fig. 4). The results are shown in Fig. 8a.

(a) 1.0
Ewlw) =1 en(0)+1 "y

+ 0.8 W +1 T (0 -1

g gw(g—0, w)

> 0.6 g0,y (Alur)

5]

£ gw(g -0, w)

2 04 9 = @500 (Werder) ¢

£

- 024

1073 1072 107t 10° 10t

Bhw

10°

10~
10°
qdon qdon

Figure 8: Imaginary part of the dynamical SRF gw (g, w)/gw(q). (a) Long-wavelength
limit for two force fields model and theoretical prediction. (b) 2D map showing the
frequency-resolved dispersion of the surface response. The left panel is the simulation
data for the Aluru force field and the right one is the proposed model. Black arrows
relate the two peaks in (a) and (b).

Remarkably, we find that the dynamical SRF for the Aluru and Werder
force fields overlap with the theoretical prediction: the specificity of the static
surface potential disappears. It prompts us to build a dynamical model
starting from the dielectric function model in Eq. 81. The dispersion relation
obtained in the simulation is given in Fig. 8b (left panel). We schematically
gather the negative dispersion of the high-frequency peak from those data,
its increasing damping, and its decreasing contribution to the total spectra.
At the same time, the low-frequency Debye peak disperses positively, and
its relative contribution to the dynamics increases. It roughly happens on
the length scale gdoyg ~ 1. We suggest to model the dielectric function as

follows

282 _2d% /2
ew —1— e 7 don/2 w3(q)e~1 9on/

ewl(lgw) =1+ - + -
(7, @) 1—iwtp(q) wi(q) — w? —iv(g)w

, (8y)

with the parameters dispersion given in Table 3.

For interfacial simulations, the smallest accessible wavevector is gmin = 271/ max(Ly, Ly) =
e —1
0.049A .
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3.2 INTERFACE SIMULATIONS 40

1/1m(q) wr(q) v(q)

242 o0
Dispersion 151(14_”%) wpe—Pdbu/2 q/(1+qal%)

Table 3: Dispersive relation for the parameters of the waterr dielectric function.

The characteristic length scale doy can be understood as the transition
between collective and individual dynamics. The libration peak describes
a collective “phonon-like” fast oscillation mode that requires several water
molecules. Therefore, it disappears for sub-molecular wavelength — i.e.
q > 1/don. In contrast, the Debye peak has a collective and individual
molecular contribution. For q > 1/dpy, the collective, slow (wtp ~ 1) ones
are filtered out, and the fast unimolecular ones dominate.

Eq. 87 gives Eq. 81 for g — 0. Also the limits ey (g — 0, w) = ew(w) and
ew(w — 0) = &, are ensured. However, we underline that Eq. 87 does not
model the bulk dielectric function &, (k, w)3. Our work finally produces a

general model for the SRF of water that reads

ew(q,w) — 1e_‘72/\2. (88)

2qd _
8w (g w)e ew(q,w) +1

The right panel of Fig. 8b shows that the dynamical modeling captures the
simulation’s essential features using the Aluru force field parameters (left
panel). The Werder force field dynamics are very similar (not shown).

We have carried out slab simulations to find if those results would change
for water under finite confinement. We find that as long as the size of the
water slab is larger than 1 nm, the results are identical. The results are
reported in appendix C. As long as the size of the water slab is larger than 1

nm, the results are identical.

3 One can easily check that Vg, e (g, w =0) = &y.



MICROSCOPIC WATER MODEL

4.1 WATER MODEL

In this part, we build a versatile microscopic model for water. It relies on the
construction of the non-interacting response function )(‘(A(,) ) and the effective
potential between molecules v\e,ff (see Eq. 65). We scrutinize the bulk medium

before tackling the water slab.

4.1.1  Water bulk

Herein, we build the response function x. of an homogeneous, isotropic,
bulk water medium. Using Eq. 66, the effective charge-charge electrostatic

potential in bulk water vjnter = vs\ff can be written

effpy 1 3

The FDT gives X‘(,\(,)) (k) = —,55‘(,8) (k) where p = 1/kgT and sl (k) is the
single-molecule — or “self” — charge structure factor, and xw (k) = —BSw(k),
Sw (k) the charge structure factor of the liquid. Here, we apply this framework
to the widely-used 3 point-charge model of water, SPC/E [48]. The analytical
expression of s (k) is given in Eq. 310. The second term can be computed
in MM — e.g. the result of [61] computing the polarization response function
Kw (k) = —xw(k)/eok? that is reported in Fig. 9. The sharp peak of x (k)
centered at k ~ 3A illustrates the nonlocal and over-screening properties’
of water [63]. From the numerical knowledge of v<ff(k) using Eq. 89, we
suggest an ansatz.

We work with 1/¢8ff(k) = v&ff(k) /v(k). First, the long-wavelength limit

of eff(k) can be expressed analytically as shown in appendix D.2. We obtain

A system’s screening ability is its faculty to moderate the external force it undergoes. In order
to damp the external electric field of, say, a point charge in an infinite homogenous medium, the
induced charge density must generally be of opposite sign closed to the test charge. Thus, it is
usually the case that the total electric field ¢t is smaller than ¢ey:. However, there is no physical
reason why the system cannot locally overreact to the original perturbation. In other words, it is
also possible that the electric potential induced in the system is locally larger than the external
one. For example, in the case of a homogenous isotropic system that can be described with
dielectric function e(k) (here in Fourier space) , the total potential reads ¢iot(k) = Pext (k) /€(k)
and the stability criteria — see e.g. [62]- reads (k) > 1 or ¢(k) < 0. It means that the external
potential cannot be plainly amplified (i.e. with the same sign), but that some wavelengths can
be overscreened (i.e. e(k) < 0 or x(k) > 1).

41



4.1 WATER MODEL

(@ 5o (b)

Xw(K)
Xw(K)

k(A1)

Figure 9: Susceptiblity of SPC/E water obtained with MD [61] and with the theoretical

model for (a) varying x with ¢y = 0.99 and (b) varying y with x = 1.65A". We show
the dimensionless quantities Yw (k) = —xw (k) /€ok?.

eff(k — 0) = e¢ff ~ 1.04 (for SPC/E water). For the remaining wavelengths,

and with the help of the MD results shown in Fig. 9, we suggest the following

ansatz:
eff 2 2 ,—k%/2x?
T L (90)
e (k) +x2 2 an

with the inverse screening length x and the prefactor vy as parameters. The
values of (x, ) are adjusted to reproduce the position and the amplitude
of the over-screening peak of yw. The effect of those parameters on Y (k)
is shown in Fig. 9. The experimental spectra [63] shows a less intensive
peak that can be easily fitted by tuning down 7. The second peak of fw (k)
around k ~ 5A_1can also be included to refine the model, but we expect
no important change on the long-range collective dielectric response of
water. The ansatz ensures xw(k) — X&S” (k) for k — oo. We have found
that k = 1.65A and 7 = 0.99 can reproduce the spectra of SPC/E water.
We plot the polarization response function derived from our framework,
1/ xw(k) = 1/ (k) + 1/)3&9) (k) (orange curve, Fig.10a) and compare it to
MD results for validation. It shows that this model captures nicely the
dielectric properties of bulk water. The expression of v&f in real space is

given in Eq. 315.
4.1.2  Water slab

We turn to the dielectric response of a water slab confined between two

infinite flat interfaces located in z = 0 and z = L respectively (see the sketch
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Figure 10: Dielectric response functions of water. (a) Susceptiblity of SPC/E water
obtained with MD Jeanmairet ef al. [61] and with the theoretical model for (es\ff ~

1.04 , x = 1.65A_1, 7 = 0.99) . We show the dimensionless quantities jw (k) =
—Xw (k) /€0k?. (b) Schematic drawing of the water slab and of the two considered
molecular density profiles ny(z) for L = 3nm. The inset shows the two parameters of
the smoothed step function model for np(z): the vacuum distance (dy) and the width
(00)- (0) Local dielectric susceptibility fw(z) of the slab P, = xw(z)D; corresponding
to the molecular profile 19 (z), we use oy = .3A.

in Fig. 10b). Assuming equiprobable orientation of water molecules in the

slab, we show in appendix D.3 that we can write

YV E) o

1o

0 (@z2) = —p 712-2)) (91)
where S$3>(q, lz—2'])= [ %eiqzlz—z/\sﬁg) (k) and ny(z) is the molecular den-
sity profile that converges to bulk density ng in the middle of the channel
(see Fig. 10b). We assume that water molecules interact in the slab between
themselves as they would in the bulk, so the slab-geometry effective potential
vef(g, |z — 2'|) can be obtained by Fourier transforming Eq. go (see Eq. 317
in appendix D.2).

Obtaining xw (4, z,z') requires to solve the mean-field intergral equation
in Eq. 66. We resort to matrix multiplications — now, and for all subsequent
computations — in the discretized space along z and z’. The (i, )™ element
of the matrix M[z;, zﬂ is given by the function m(q, z;, z;) The solution of Eq.
66 reads

Xy = (1 — xOveff [dz)?) - 1x (92)

where dz = 0.02A is the converged grid spacing and where a matrix of

size |[L/ clzJ2 has been inversed. We rely on the condition that an homo-
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geneous external potential cannot induce a charge density disturbance (i.e.
[dZ X‘(S ) (z,Z') = 0) to fill the matrix X9, This can be checked in bulk and
imposed at altitudes close to the molecular density depletion. Therefore,
in order to obtain the entire matrix X‘(,\(,) ) and avoid numerical integration
errors due to the Dirac delta functions, we fill the non-diagonal entries of
xQ according to X‘(A(,))(q, z,7') = —ﬁS‘(A(,)) (9,z,7') and impose that all lines and

columns sum to 0 to fill the diagonal.

4.2 TWO APPLICATIONS
4.2.1  Local susceptibility at interfaces

Theory

As an intermediate check to validate our approach, we derive the local
dielectric susceptibility Yw(z), relating the response polarization field P;(z)
to a constant excitation D = D,e;.

Within the standard approach of electrostatics, using Eq. 264 for a
constant D, gives E(z) = €pe(z) - D, where ¢ is the dielectric tensor. At a

translationally invariant interface, ¢ is diagonal [64]*. Therefore, we obtain

E.(z) =¢ ' (z)=. (94)

Using eoE;(z) = D, — P,(z), we find the local susceptibility xw(z) = 1 —
e ' (z) with P.(z) = Xw(z)Ds.

On the other hand, we microscopically construct the external electric field.
We place two infinite plates of opposite surface charge that sandwich from
very far the system under scrutiny. The system of finite size experiences
Pext(z) = — E—OZ (z— &) plus a constant that we set to zero. The electric field in
the system reads E;(z) = _%(Ptot(z)- Using Eq. 8, ¢rot and ¢ext are linked

as follows3:

L
pa@) = [ 0= 02,7 )gen () (96)
2 It reads
€H(Z) 0 0
&(z) = ( 0 ¢z 0 ) : (93)
0 0 e (z)

3 From Eq. 9, recall that

el (9,2,2) =6(z—2) + / dz10(q,2,21) 300 (9,21, 7). ©5)
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4.2 TWO APPLICATIONS

We now link e,'(g,z,2’) to 811 (z). We differentiate Eq. 96, use Eq. 94 and

all formulas in the preceeding paragraph to obtain

L
e(z) = % [/0 dz'e ) (g — 0,2,2)) <z’ — ;)] , (97)

and therefore yw(z).

Results

The slab molecular density profile np(z) is an input of the model (see Eq. 91)

and we first consider a generic smoothed step function model:

no Z—do

0o

)+ 1} {tanh( )+1]. (98)

0o
It captures the vacuum layer between the fluid and the surface (encoded
by do) and the width (0p) of the fluid interface (inset of Fig. 10b). We
have converged L — oo and used L = 3nm. In agreement with previous
results [32], the susceptibility calculated in this framework and plotted
in Fig. 10c presents an alternation of overresponding (Yw(z) > x;) and
underresponding ({w(z) < xp) layers before reaching its bulk value x;, =
1—1/ew for z > 1.25 nm.

The effect of the smoothness parameter is shown in Fig. 11a. We observe
that steeper the density profile is, the sharper yw(z) near the surface. The
agreement with the Landau-Ginzburg model introduced in [65] is excellent
for 0y = 0.2A. Refining 19 (z) by extracting the hydrogen density from the
MD simulations (see Fig. 10b, where we use the Werder force field hydrogen
profile) induces minor modifications in fw(z) (dotted line in Fig. 10c). For
future references, we will use the first density model and fix oy = 0.3A (see

also appendix D.4 and [65]).

25
2.0
~ 15 -
o
E
< 1.0 -
T T
05 4 0.00 0.25 0.50
—— LG model
0.0

Figure 11: (a) Local dielectric susceptibility of the slab P, = xw(z)D,; computed
from the non-local response function X (g, z,z") with varying smoothness of the step
function 0y and compared with Landau-Ginzburg model of Ref. [65].
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4.2.2 On the effective dielectric constant

Theory

In the recent literature [65, 66, 67], we have found some recent interest in the
effective dielectric constant eq¢ of a L nm thick water slab. In the following,
by resolving the electrostatic potential ¢rot(z), we show that it is poorly
defined from a microscopic perspective.

The effective dielectric constant relates the potential difference between

the two ends of the water slab as follows

11 b ot(L) — Prot (0
< - f/o dze1(z) = 0 (¢ t(—I)DZL(Pt (0] (99)

We have used Eq. 97 for the last step. ¢ is actually simpler to compute in
our framework because it does not require the numerical gradient. From Eq.

96 obtain
L
€ofrot(z) _ / en' (g —0,2,2) <z’ — L) dz’. (100)
—D; 0 2

Results

We show ¢ot(z) in Fig. 12a for a slab of L = 4nm. We have used a large value
dy = 5A to observe the potential at the borders of the water slab, situated in
dop and L — dy — see also black lines in Fig. 12a. As expected, we find a slope
of 1 in vacuum and 1/&y in the bulk region — see orange triangles. The
non-monotonic variation of the potential is due to the non-local properties of

water at the interface, as previously noted in Fig. 10.

(a) (b)
L
3 do Ny
A4V L
3 3 T
N s TV
% 8 Lfemm—
< )
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z-5 (nm) z=5 (nm)

Figure 12: Electrostatic potential ¢ot(z) for (@) L = 4nm and dy = 5A to see the
potential in vacuum (b) with dy = 0.88A and varying size L to make €5 = €y V L.
We use dz = 0.005. The orange triangle is a guide for the eye, to understand the
slopes.

We compute Eq. 99 as the difference between two extreme points. How-

ever, what are the two extreme points? According to Eq. 99, we should use
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4.2 TWO APPLICATIONS

z = 0and z = L. In this case, the results would highly depend on dj because
the slope in the vaccum is e, times higher than in bulk. A more intuitive
choice is to take the two points that delimitate the water slab: z = dy and
z = L —dp*. It turns out that it makes e¢ negative — see intersection of the
dark and blue curve in Fig. 12a —, layers of water dipoles overscreen the
external potential. As L grows, e retrieve a positive sign and converges to
ew for L — co. Without any specific definition of dy, e.¢ can take any value
(see Fig. 12b for eqff = €w, V L). In a real experiment that probes e, water
is contained in a slit made of another material such that a vacuum gap does
exist.

To understand the effect of dy, we first extract a dp-independent result.
From Eq. 100, we express analytically the g — 0 limit. After some straight-
forwards steps® we obtain the result in agreement with [64]. Introducing

1/eef = 1 — Xeft, We obtain

-1 L L
Xeff = eTL//ledzz <21 - 2) Xw(g=10,z1,22) (Zz - 2> (101)

— £ [i#)o - (p33). (102)

The polarization of the slab in the perpendicular direction reads P, =
[dz <z — %) nw(z). We use 0y — 0 (heaviside step function in Eq. 98) and
compute X, following Eq. 101 for increasing L. The results are given in Fig.
13a. Xeff decreases with L and converges to Xeff — 1 — 1/ew for L — co. The
overscreening transition ().g > 1) occurs at L ~ 7nm. As discussed, it gives
geff < 0 for small slabs if the vacuum gap dj is ignored.

A dielectrically dead water layer at interfaces (¢S = 2.1 on a distance of
0.7 nm) has been postulated to understand an anomalous dielectric constant
of water in nanometric channels [66]. According to our results, this explana-
tion could be misleading as it does not account for the oscillating potential
in Fig. 13a, which is not linear with a slope of 1/5%".

Nevertheless, let us assume a continuous slope of 1/¢,, in the entire slab
(local continuous media). The effect of the vacuum gap dy gives with a

simple capacitor model:

1 2d L—2d
_ 2y  L—2do

Q - Lew (103)

4 Of course, replacing L by L — 2dj in the denominator of Eq.99.
5 make a sinh(g [z1 — L/2]) appear using the difference ¢(L) — ¢(0) and the use the limit g — 0.
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4.2 TWO APPLICATIONS

The result for eq(L) is shown in Fig. 13b with the experimental data of
[66]. The simple model fits the measurements reasonably well. However, the
overall trend is solely due to the vaccum gap dp.

(a) (b)
1.150 102 E

1.125

1.100 —

1.075 4

Xeff
Eeff

10
1.050 ]

1.025 - ]
1.000 ] /
" ———r . 10°
10° 10! 10° 10t 102
L (nm) L (nm)

Figure 13: Evolution of dielectric properties of water with L. (a) Computation of
Xeff using Eq. 101. No dependency on d in this case and we use a heaviside step
function (o9 — 0) for the molecular profile (b) Experimental data [66] and capacitor
model with a vacuum gap of dy = 3A and constant dielectric constant of SPC/E
water &y, = 71.

In short, in our microscopic formalism, g5 highly depends on the vac-
uum gap do. It can be positive, negative, infinite or equal to &y, and in-
crease/decrease/be constant with L. It is a poor observable from a mi-
croscopic perspective. We also argue that its use might be misleading in

grasping the non-local behavior of water at interfaces.
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FEW-LAYERS GRAPHENE MODEL

5.1 RPA RESPONSE FUNCTION
5.1.1  Wannier functions

Warning: in this chapter, k is a two-dimensional wavevector.

In this part, we consider a metallic slab in the lower half-space z < 0, at
temperature T. We aim to compute its response function xe and its SRF ge
with a tight-binding (TB) model. The interface is translationally invariant, and
electronic states are labeled with a continuous two-dimensional wavevector k
belonging to the Brillouin zone. We neglect the corrugation due to the lattice
and therefore ignore local-field effects as discussed in 2.3.1. Two electrons
with opposite spin can occupy a state labeled with a band index v. The Fermi
field reads ¥ (x) = Y1 Py (x)E,x where ¢ (x) is the wavefunction of the
electron in state (vk) and ¢, is the fermionic annihilation operator. The
electronic density operator reads 7io(x) = ¥1(x)¥(x), with x = (r,z). The
0) _

quadratic hamiltonian reads Ay Yk evké;rkévk. The wavefunctions are

decomposed on Wannier functions:

Ze*lle’d" — Tip,Z — Zx), (104)

Purlx m s

where « labels the atomic sites at position T, in the two-dimensional unit
cell of the material, p labels the N, cells at position R, in the plane, and
Tpx = Rp + Tx. We consider one electron per atomic orbtital ¢ that have the
same form. We neglect the overlap integral between two neighboring atomic
site. The normalization of wavefunction [ dx|y,x (x)|*> = 1 therefore requires
Yx [d5 > = 1. The coefficients d¥, and the eigenenergies €, solve the
Schrodinger equation He(, |Pyx) = €uk |k ). Note that the number of sites in
the unit cell, Ny, increases when the medium grows in the direction normal

to the surface. The Fourier-transform of the electronic density operator reads

fie(q, Zk/\k+qk z)e ;rzk+q€vk- (105)
Vi
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5.1 RPA RESPONSE FUNCTION

To obtain Eq. 105, we have used the crystal momentum conservation as

detailed in appendix E.1. The coefficient )‘k +q «(z) is given by

MY () = Wukergle 9 (2) (106)
= [ drgiacsq (e
Eq104 Zuq 2,5) (5 o) A (107)

where the last line is obtained after insertion of Eq. 104. (see also appendix
E.1). The in-plane Fourier transform of the electronic density on site %, that

reads

uq(z,x) = uq(z +zx, 0)e*idx uq(z,0) = /dre*iqr|cp(r,z)|2. (108)

5.1.2 Non-interacting response function X(O)

Using Eq. 68, we obtain after Fourier transformation:

0 1Ot . .

@220 =100 gz n-a2,0]) (o9
h A 0

where [.,.] is the anticommutator, ® the Heaviside function. We use Matsub-

ara’s framework [31] to compute )(((30) at T = 0 K. Those steps are detailed in

appendix E.2. We find

5T
x9(q,2,7, i Tzl;(kz)\kﬂk Ok, iky)..  (110)
vk iky

G K+ @ik + i) Mo (2))

(0)

that we now detail. First, xe ' (q, z,2/,iQy,) is linked to the Fourier transform
of )(((30) (q,z,7',w) by analytic continuation along the real axis iQ,, — w + iy
with 7 = 0", Second, Q,EO) (k,iky) = (iky, — €, )" is the Matsubara single—
particle Green’s function. Third, the summation is over fermionic Matsubara
frequencies k, = m(2n + 1)kgT /.

We open a parenthesis to appreciate how Feynman diagrammatics, adapted
to the Matsubara formalism, saves us a lot of tedious work to obtain Eq.

110. We first define two symbols: (i) the line diagram as the single-particle
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5.1 RPA RESPONSE FUNCTION

Green’s function propagator, (ii) the Coulomb vertex )\ﬁ: qk(z) of Eq. 106

that couples two eigenstates due to the Coulomb interaction. It reads

() (k4 . o q o Mkt
G0 ik) = W)=
14

s (111)

(0)

from which we can represent the non-interacting response function xe * from

Eq. 110 as follows

(1k + q, ikp 4 1)

!/
X (@, 2,2, i) = .*_ZOZ_*__

(vk, iky) (112)
Note that (i) there is a conservation of momentum and energy at each vertex,
and (ii) the dummy indices are summed up — that we will use again. All
terms appearing in the diagrams are multiplied as shown in Eq. 110.

Using standard Matsubara summations [31], we simplify Eq. 110. By

taking the analytic continuation on the real axis i(},;, — w + i%, we obtain

(0) / 8 uv ”F(eykJrq) — np(€yi) un /
Xe (@z7,w) = A D kel )w + i1 — (€jk+q — €vk) kictq(2):

vpk

(113)

where the factor gs = 2 comes from the spin degeneracy and nr is the
Fermi-Dirac distribution function.

Eq. 113 has to be distinguished from the formula usually found in the
literature. The wavevectors k and q lie in the plane. The number of bands
increases as the material becomes thicker in the vertical direction. In the limit
of an infinite medium in this direction, we would label the bands differently,
using v = k; and y = k; + g,. Conservation of momentum in this direction
would then impose g, = —¢;, and the textbook bubble diagram would be

obtained.

5.1.3 RPA equation
We now use Eq. 11 to renormalize )(go) by the interparticle effective potential
Vinter- A special case of mean-field renormalization is the random phase

approximation (RPA) [68]. It is equivalent to identifying the interparticle
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5.1 RPA RESPONSE FUNCTION

mean-field potential with the direct potential — e.g. Vinter = v. We confer the

hatched diagram to the RPA response function for electrons (x.) that reads

To solve Eq. 114, we proceed by matrix inversion. Again, using the matrix

notations — i.e. M [z,2'] = m(q,z,z/,w) — we find

Xe = (I— xPVvdz2)-1x0. (115)
However, in contrast to the dielectric case, computing xff’) (q,z,7,w) with
the help of Eq. 113 is not numerically straightforward. The grid in (z,z’)
requires at least | Nc/2dz|? evaluations of Eq. 113, where Nc/2 is about slab

height and dz the grid spacing. Consequently, we change the basis set and

take advantage of Wannier functions as suggested for the bulk case in [46].

It was also suggested for the case of a finite slab [69], but never applied for

carbon materials to our knowledge.

5.1.4 Basis change

Herein, we change the (z,z’) grid to the local atomic sites (k,«’) basis.

Inserting Eq. 107 in Eq. 113, we obtain that Xéo) = Uqf(éO) UZ; where

—&s Z( K )*d~ nP(e}lk+q) —nr(e) ! ( ! )

=(0) ! _
Ko (q KK, w) A QT TR G i — (epacrq — €u) MRTETYR

vuk
(116)

Inserting Xéo) = Uqf(éo) U:; in Eq. 115, we find that X = UqXe l,IZrl with

Xe = (1- %) 1%L, (117)

Here we have introduced the site-site interaction matrix V. = U;qu that

reads

Te(q, %, «') = zeloq//dzdz’ufl(z,ic)e_”’Z_Z/|uq(z, ). (118)

We have expressed the RPA equation Eq. 114, in the basis of local atomic
sites. If N is the number of sites in the two-dimensional unit cell, then we
have to compute N2 times Eq. 116. In order to compute the SRF, we use that
X, = Uqf(ell;, Eq. 36 and Eq 108. It reads
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2 .
g(q, a)) = ZXe(q,K,K/,w)e—"_lq'(TK_TK’)_q(ZK""ZK’) (119)

xK!

ug
where ug = [ dzeT*ugq(z,0) = [ dxe~ e |¢p(x)|2.
5.2 TIGHT-BINDING MODELS

5.2.1  Graphene

Figure 14: Tight-binding model for graphene and few-layers graphene. (a) Lattice
vectors (a1, ap) of graphene with two sites (A, B) per unit cell that are linked by

the vector 7. The chemical bonds are highlighted and defined by the vectors T,
T — a1, T — ap. The covalent bond strength vy = (4)3,0\1:150) |pa,) is represented. (b)
Other coupling parameters between different sites in the SWMC [70] TB model.

For the tight-binding model of graphene [71], the lattice vectors (see
Fig. 14a) read a; = $(V/3,1) and ap = %(+/3,—1) in real space and b; =
%(1, \@) and b, = %(L —\@) in reciprocal space. Here, 2 = V/3de with
dec = 1.42A the carbon-carbon distance. There are two carbon atoms in the
unit cell such that the first one (site A) is placed at the origin and the second
(site B) at a vector T = (a; + a2)/3 from it. The Hamiltonian is limited to

nearest-neighbor (NN) interactions. It reads

10 =0 Y 19e0) @l

K «'p' eNN(x)

where [¢x,p) = |p(r — Txp, z — zx)) and g is the NN covalent bond strength.

We project Schrodinger’s equation Ao |Puk) = €uk|uk) on |pap) and |¢pp o)
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— where |¢,y) is defined in Eq. 104 — to obtain the coefficients df, for
k = A, B. We obtain, with f(k) =1+ e~ikar 4 p—ikay

—70f (K)d5, = €nd),
_’YOf* (k)dfk = evkdll,gk

(120)

With 6y = arg f(k), Eq. 120 gives dB,_ = e 44 . Moreover, the normal-
ization condition for the wavefunction leads to dl‘f‘k = 1/+/2. Therefore, we
label the two energy bands with the index v = +1 and write d5,_ = ve ™k dfk.

The wavefunction reads

Py (x) = L ZeikRP (¢(r —Rp,z) + ve‘iekgb(r —T— Rp,z)) ,  (121)
Np P

kg/Zz _ kelx]

N 2 is the p, carbon orbital with k. = 3.18/ag [72] —

ap is the Bohr radius.

where ¢(x) =

Having obtained the coefficients dJ, , we reinsert them in Eq. 120 to find
the eigenenergies €, = v7yo|f(k)|. Filling the bands of graphene with the
two available electrons means that the v = —1 band is occupied but not the
v = +1, at T = 0 K. The Fermi level, in an undoped situation, is therefore
at the top of the valence band. This is also the bottom of the conduction
band (where |f(k)| = 0). This condition is fulfilled in two special points
K = (b; —by)/3 and K'. Ignoring the differences between the two valleys,
we scrutinize the energy bands near K, for k = K + dk.

After some straightforward algebra, we find |f(k)| ~ +/3a|dk|/2 for
|0k| < |K|. This conical behavior of the energy bands is responsible for the
semimetallic properties of graphene. Reducing the tight-binding model to
the linear behavior near the independent K and K’ points is called the Dirac
approximation. This approximation is excellent for computing the response
function of graphene x., even at large wavevector — i.e., for |q|~ 1/a [73].
Therefore, in the following, we introduce the Fermi velocity vr = \/ga'yo /2h

and write the eigenstates’
ek ~vhoplk — K| for |k—K| < 1/a. (122)

We now search for the Coulomb potential coupling matrix element be-
tween different electronic states. It is defined in Eq. 105 and Eq. 106 and reads
AR (2) = —uoz(z) (1 —l—vye*i(ekﬂ’ek)) with Up(z) ~ k;gz (1 + kc|z|)e’kc|z‘

kk+q
that is valid for ¢ < k.. In this work, we may invoke the argument of the

small spatial extent of the carbon p, orbital —i.e. kc.ap = 3.18 — to make

T Tt is also valid near K'.
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the 2D approximation using "% dzly(z) = 1 or even Uy(z) ~ §(z). In

those cases, we may use Ai’li . f dZ/\;’ff( +q (z) such as the coupling matrix
element squared reads
1 k-(k+q)
vu 2 -
|Akk+q‘ - 2 (1 +V}l |k||k+q| . (123)

52.2 FLG

We use the Slonzcewski-Weiss-McClure (SWMC) model [70] to describe few-
layers graphene (FLG). Graphene layers, arranged in the Bernal stacking
(ABAB..), are separated by a distance c/2 = 3.35A (see Fig. 14b). In the limit
of N — oo, it is graphite. The interaction between sites is truncated at the
first NN within the same layer and second NN between layers. The unit
cell contains 4 atoms situated at 7o = 0,71 = T, T2 = —5€;, T3 = —T — 5e,.
The primitive pattern includes three graphene layers (ABA) — we thus use
T4 = —ce; and 75 = T — ce,. The interaction parameters <; are indicated in

Figure 14, and their values are given in Table 4.

TB paramaters g Y1 Y2 Y3 Y4 Y5 A
eV 316 039 —-0.02 0315 0.044 0.038 —0.008

Table 4: Tight-binding paramerters for the SWMC model of FLG [70].

The Hamiltonian, whose eigenvalues and eigenvectors are given by

Héo) |yk) = €x|Puk), is written in a matrix form. The primitive pattern

reads
A fK)ro mo &Ky s 0
(K)o 0 fr&)vs f(K)rs 0 72
100 (1) 7 f)74 A ff&rv m f)7s
fK)ys  frK)ys  f(k)ro 0 fK)ys  fr(k)rs
s 0 7 fr(K)7a A fK)ro
0 T2 ffI)r f(K)rs fr(K)7o 0 o
124

and [¢,) = (4%, d, ..., d*}) . It contains N = 2N lines and rows with N
the number of graphene layers. The band label index v runs from 1 to 2N.
The eigenenergies for an increasing number of layers are given in Fig. 15.
For graphene, Eq. 122 is verified and for N > 1, the angular dependency 6y
can longer be ignored, and analytical results cannot be obtained even near

the K point.
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Figure 15: Evolution of the band structure near the K point for FLG. The number of
graphene layers N are stacked in the Bernal configuration (ABA...). For each band,
we represent Ny, = 20 angles for the same norm of k = |k|.

Given a wavevector q, we diagonolize He(o) for every couple (k, k + q) to
(0)

obtain the eigenenergies and eigenvectors required to calculate f¢ "’ in Eq.

116. We compute

k 27
~(0) n_ max dk doy
(0, K') = —gsgo /0 e AW (125)

% 1K nF(eyk—i-q) —np(evk) ! ( !

( Zk+q) vk ; uk+q vk)*r
w + i1 = (€pr+q — €vk)

where and gs = gy = 2 is the spin and valley degeneracy. Note that the
coefficients d};, are orthonormalized. Regarding the U matrix, we shall focus
on small wavevectors where g|T| < 27t and use the approximation Uy(z) ~
d(z). Therefore, with z, = § [x/2| we read e (x, ') = ﬁ%e*qm*zx". The

SRF — that does not depend on the angle of q — reads, using Eq. 119,
8e(q, w) = Ly Xe(x, K/)e_q(z’(l-ﬂ;()'

5.3 RESULTS

5.3.1 Numerical details

We use dk = 1073/a and kmax = 1/a. The angular grid is composed of
Np, = 20 angles. We fix 7 = 5meV. If analytic expressions are invoked
[74, 75], they are obtained in the T = 0 K limit. We verified that our code
reproduces the analytical results of graphene in this limit [74] and focus on

room temperature T = 300 K.
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5.3.2  Graphene

In this section, we qualitatively discuss the electronic properties of graphene
(N = 1) with the help of Fig. 16.

Fig. 16a shows ge(q) for intrinsic graphene at T = 0 K and T = 300
K, along with three curves of extrinsic graphene (Er # 0) at T = 0 K. The
constant black dashed curve shows that intrinsic graphene at T = 0 K acts

like a dielectric, that is ge(q) = 1 — 1/€. with €. the dielectric constant of the

material. Indeed, there is no free electrons for Er = 0 and T = 0K (see Fig.

15 for N = 1).
(a) 1.00 (b); 4
=+ ErF=25meV
=+ Ef=40 meV
. 1.2
0.95 \ - Ep=55meV
\"
0.90 \\
- W\
S .
< 0.85
o
0.80
0.75
0.70 T T T 0.0
0.000 0.025 0.050 0.075 0.100 0.0 25 5.0 75 0.0 25 5.0 7.5
qa Bhw Bhw

Figure 16: Surface response function (SRF) of graphene ge(q,w). (a) Static SRF
ge(q) = ge(g,w = 0) of intrinsic graphene at T = 0K (black dashed curved), at
T = 300K (black curve) and for various doping level Er at T = 0K (dashed dotted
curve). Evolution of the (b) real and (c) imaginary part of ge(q, w) with wavevector
and temperature.

For T = 300 K, mobile charge carriers are present at the Fermi level
due to thermal smearing. Fig. 16a shows that graphene has a metallic
behavior —i.e., ge(q) — 1 for ¢ — 0 — at this temperature. Can we define
an effective Fermi surface area at T = 0 K, that relates the properties of room
temperature graphene? Fig. 16a shows ge(q) for extrinsic graphene with
varying Er = hopkp. We find that Er ~ kgT ~ 25 meV at T = 0 K roughly
mimics an effective electron concentration at T = 300 K for Er = 0. We could
therefore benefit from an analytical formula at T = 0 K.

Using the small spatial extent of the p, orbitals of graphene, we use the

2D approximation for graphene:

X (g,2,2) ~ 6(2)5(z) / dz / dzxV(g,2,2") = 5(2)8(2)x ) (g). (126
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Using Eq. 126 and Eq. 113, an analytical formula exists for Xéo) (q,w) [74], at

T = 0 K. We provide the expression of Xéo) (9) in Eq. 345. Solving Eq. 114

and using Eq. 36, we obtain

2D — © (g, w /2e 1
ge(q,w) 2 Xe(ogq/ ) 04q -1— , (127)
1—xe ' (q,w)/2e0q ge(q, w)

Introducing the TF wavevector g1r = gs8vkr/4meghvr, and inserting Eq. 345

in Eq. 127, we obtain

1
s ge(g 2 qrr) =1— — (128)

(g < 2kp) =
ge(q F) par— e

with eo >~ 1+ g590/32e0hvp ~ 4.4. The form of ge(q < 2k) is similar to the
one of a 2D TF metal — with ¢.(q) = 1+ q% [76]. For Er = kgT, we can
keep in mind

grra ~ 0.08 (129)

with a = 2.46A. Eq. 128 shows the peculiar semi-metallic properties of

graphene. Depending on the external perturbation’s wavelength, it acts as a

metal or as an insulator. It is difficult to translate this behavior in real space.

This behavior can be traced back to the presence of the Dirac cones in the
zero-gap band structure of graphene.

Turning to Fig. 16b, we scrutinize the dynamical SRF of graphene in the
low-frequency region 0 < fiw < 200meV. Fig. 16b and Fig. 16c show that
2e(q,w) =~ ge(q) for w < vpq. In fact, at T = 0 K, only interband transitions

can cancel out the denominator in Eq. 125 — for iw = €y 1 g — €_x > UFq.

At room temperature, this strict condition is relaxed and dissipation occurs
even at low frequencies so that Img. (g, w) & w with varying proportionality

coefficient that monotically decreases with increasing 4.

5.3.3 FLG

Turning to the electronic properties of FLG with Fig. 18, we focus on
discussing the qualitative evolution of the SRF with N. Fig. 18 shows the
static SRF for N = 2 to N = 4, which quickly converges. Fig. 18 also shows
(i) the SRF of intrinsic graphene at T = 0 K with a dashed black line, and (ii)

the analytical SRF of bilayer graphene (BLG) [75] with a gray dashed line.

We note in passing that a recent study [77] has studied the water-graphene interface using the
perfect-metal or “mirror” approximation for graphene — i.e., go(q) = 1. The approximation
seems drastic by looking at Eq. 128.
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Figure 17: Static SRF of FLG. The curves are shown for N = 2,3,4 and superimposes
with the latter for N > 4. The black (red) dashed line is the analytical model for

graphene [74] using Er = 0 and Er = (hovp)?mlog4. The grey dashed line is the BLG

model [78], ge(q) = 7157

The latter model considers a 2D material with two parabolic bands —i.e,,
€k = viPk? /2m* where m* = 7/ 27)%-. Within this model, the SRF reads

BLG(q) _ 4s

e - 7 1
8 PR (130)

with g5 = 4m™* log4/4mey, and is shown with a gray dashed line in Fig. 173.
We keep in mind:

gsa ~ 0.8. (131)

The BLG model captures g.(q) for N > 2 and q — 0. However, this result
is different from the one of graphene, even at room temperature (see Fig.
16a). The striking difference between graphene and FLG for 4 — 0 can be
understood by comparing Eq. 129 and Eq. 131 —i.e., gs/qtr =~ 10. The
limit g — oo for the SRF gc(¢q) of FLG has to be the one of graphene (N = 1)
because the RPA correction vanishes, and only the immediate vicinity of the
surface matters. The BLG model does not capture this crucial limit. However,
Fig. 17 shows that the SRF for N > 4 converges to gc(q) = 1 —1/¢€c of
graphene. Therefore, to describe the static SRF of FLG shown in Fig. 17, we
suggest to use an effectively doped graphene layer, with grp =gsat T =0
K#. It ensures the correct limit for § — 0 and g — +oco — see red dashed line
in Fig. 17.

Turning to the dynamical SRF of FLG, the complexity of eigenenergies
in Fig. 15 prevents us from gaining valuable analytical insights. Fig. 18a

and Fig. 18b warn us against naive arguments regarding the number of

available states in the low-energy region and the intensity of Imge (g, w). Fig.

3 It is therefore equivalent to the 2D TF metal with gr = gs.
4 Tt corresponds to an effective doping level of E$f = 0.27 eV.

59



(a)

Re ge(q, w)

W mn ww
0N OAWN R
Im ge(q, w)

z2zzzzzz=2

5.3 RESULTS

© 0.05

0.04 4

0.03

Im ge(q, w)

0.02 4

0.01

0.00 4

Figure 18: Surface response function ge(g, w) of FLG from N = 1 (graphene) to
N = 8. Evolution of the (a) real and (b) imaginary part of ge(g, w) with the number
of layers for ga = 0.01 at T = 300K. (c) Imge (g, w) for ga = 0.1 and increasing number

of layers.

18c shows the convergence with N, for ga = 0.1. We will therefore use raw

numerical values if we use the dynamical SRF of FLG.



Part II1

PREDICTION OF PHYSICAL OBSERVABLES



-

IONIC POTENTIAL OF MEAN FORCE AT INTERFACES

The presence of charges in a wet nanometric channel constituted of graphene
sheets leads to exotic ionic behaviors [4, 79, 80, 81]. They are at the cor-
nerstone of energy storage applications [82] and blue energy harvesting [8].
Although experimental data [83, 84] regarding specific graphene-ion interac-
tions in water are still few, the limits of MM to describe those interfaces have
been established [85], and the need to describe the system with the same
rigor as metal/liquid interfaces [27] has been acknowledged. State-of-the-art
quantum calculations combined with solvation codes [86, 87, 88] and even
fully explicit AIMD methods [22, 24] have been carried out very recently,
but their computational cost remains prohibitive for systematic investiga-
tions. On the other hand, although recent semi-classical numerical studies —
mimicking the behavior of electrons classically — have described graphene
using a perfect metal [77], a TF [30, 89], and an all-atomistic polarizable force
field [85, 9o] model, they still ignore the peculiar semimetallic band struc-
ture of graphene and resort to ad hoc surface polarization models. Lastly,
analytical approaches such as continuum electrostatics [33, 60] evaluate the
well-known attractive “image-charge” electrostatic potential in a dielectric
medium. Spatial correlations of both the fluid and the metal can a priori be
included [17, 18, 19, 80] to investigate microscopic effects. However, in our

view, this method" has not widely been used because of three reasons:

¢ [t uses the phenomenological “specular reflection approximation” (SRA)

that lacks physical grounds.

* The self-consistent electrostatic problem is not addressed — i.e. liquid

does not “see” the metal and vice-versa.

e It cannot be used for some media, such as water — i.e., the potential

diverges.

To our knowledge, the last limit has not been pointed out in the literature.
We first prove this statement. Then, we suggest a new method to find the
potential of an ion at a metal/dielectric interface by deriving a Hedin’s-like

equation thanks to our work in part i. We apply this method to find the

Other approximations were initially suggested [91], but they consist of cruder approximations
that are not satisfactory from a conceptual point of view (such as the dielectric response of a
slab identical to the one of the bulk medium). It also appears that only the SRA has traveled
“through the ages” [19, 80].
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PMF of ions in a nanometric channel made of two graphene sheets filled
with water and finally conclude on the limits of the TF model to describe

graphene.

6.1 LIMITS OF EXISTING APPROACHES
6.1.1  The specular reflection approximation (SRA)

The SRA was first introduced to address the anomalous skin effects on
metallic surfaces [92]. The idea is to express the non-local dielectric tensor
of the semi-infinite medium in terms of the same quantity for the infinite
medium. It gives up on the possibility of changing the response function of,
e.g., the liquid, depending on the nature of the solid. It also considers that
the medium terminates abruptly at the interface in z = 0. In the standard
approch, the constitutive relation (Eq. 264) is fed with the specific dielectric
tensor € shown in Eq. 93. Let us consider a single semi-infinite medium in

the lower half-space. The dielectric tensor reads:

€1 (r/21122) =& (r/ |Zl - ZZ|) —&1 (I',Zl + ZZ)

(132)
g (r,z1,22) = ¢ (v, ]z1 — 22]) + ¢ (¥, 21 + 22)

for z1,z, < 0, where L stands for the direction normal to the interface. Here
the dielectric function on the right-hand side is the bulk one. Eq. 132 is not
physically transparent because it is a phenomenological ansatz. Nevertheless,
it has the advantage of being correct in the long-wavelength limit [93] and
the electrostatic problem can be solved using the cosine convolution theorem
with the appropriate boundary conditions [17].

In the following, we solve the electrostatic problem under the SRA, using
Green’s functions. We do not resort to Eq. 132, but obtain identical results.
We believe our original approach is physically more transparent, facilitating

the understanding of the SRA’s limits.

6.1.2 The Green’s function of the semi-infinite medium

We look for the Green’s function w of a generic semi-infinite medium situated
in the lower half-space z < 0, such as the one defined in Eq. 33. The medium
terminates abruptly in z = 0, the upper-half space is a vacuum. For a point
charge in the medium, z’ < 0, the electrostatic potential seen from outside in

z > 0 can be written*

2 We omit the index g is this section.
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w(z,7') = e Tw(0,7) z>0,7 <0. (133)
Identically, in the opposite case of a point charge outside the medium, we
have

w(z,7) = w(z,0)e 7 2<0,2 >0, (134)

which is also obtained considering the symmetry w(z,z') = w(z/,z) of the

Green’s function [33]. The case z,z' > 0 is given in Eq. 35. It reads

g(g) = —m (135)

with Aw = w — v. By continuity of w, Eq. 133, Eq. 134, and Eq. 135 are

obtained once the case z,z’ < 0 is dealt with. We now tackle this case.

____________

o
S

Figure 19: Illustration of the physical assumptions underlying the SRA. The corre-
sponding equations for the first line are Eq. 136 (left) and Eq. 137 (right). External
sources are in red and the zone at which the electrostatic potential is evaluated are in
bright blue.

The gist of the idea is presented with the help of Fig. 19. We consider
an infinite water medium with two test charges symmetrically placed in z’
and —z’ for a fictitious interface in z = 0. The system can also be considered
as two semi-infinite media in contact. We introduce the Green'’s function of
the infinite system w®(z,z’') = w™(|z — 2’|) that we consider to be known.
We express the electrostatic potential ¢(z) stemming from the two charges
in a point z < 0, using two different ways. The simplest way is to use the
linearity of Poisson’s equation and superpose the external perturbations (see

Fig 19 upper-left cartoon), that is

P(z) = w™(z,7') + w™(z, —2'). (136)
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The second way consists in adopting the two semi-infinite media picture.
We focus on the one in the lower half-space because we are looking for
its Green'’s function — that is w(z,z’) for z,z’ < 0. First, we separate the
screening contribution of the lower semi-infinite medium to the point charge
in 2’ from the remaining contribution, that is ¢(z) = w(z,z') + ... What is
missing?

Using Eq. 134 and the insights in Box 3, we can consider that the lower-
half medium reacts to a surface charge density applied by the upper-half
medium, that is ¢(z) = w(z,z’) + w(z,0) x surface charge. From which
external source does this surface charge exists? It is from the charge in —z’
that is screened by the infinite medium (see second line of Fig. 19) — and not

only the upper-half one. Therefore, (see also Fig 19 second cartoon), we read

w®(0,—2')
T’O)- (137)

We divided by the bare Coulomb potential to obtain the surface charge

¢(z) = w(z,7') + w(z,0)

instead of the screened potential at the interface. Equating Eq. 136 and
Eq. 137 and evaluating in z/ = 0 allows to solve the equation for w(z,0).

Reinjecting into Eq. 137 and equating once again gives

2w (z,0)w* (0, —2')
0(0,0) + w=(0,0)

w(z,7') = w*(z,7') + w*(z, —2') z,Z <0 (138)
which is the main result of this paragraph. Eq. 138 is obtained in [17] if one
solves the (difficult) non-local electrostatic problem, using the dielectric tensor
given in Eq. 132. Our approach reveals the implicit physical assumptions

that are made using Eq. 132 and sheds light upon this approach.

6.1.3 Limits of the SRA

Opening the black box in Eq. 132 also helps to understand why it does not
work for a case of study, water. First, we precise the expression of w®™. It is
obtained with Eq. 33, replacing the response function of the semi-infinite

medium x(z,z’) by the one of the infinite medium x*(|z — 2’|). It gives,

w¥(z,2) =0(z2) + / - 92 ) (ko () (139)

oo 2T

=v(z,2) —v(0,0)x*(q, |z — Z') (140)

with
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x7(q,z) == — 502 c08((22). (141)

2 /+°° dgzqx (k)
7T Jo 7>+ q2

For completeness, we give the expression of the SRF in Eq. 35 that reads

x°(q)

8(q) = 72— x=(q) (142)

where ¥*(q) = x*°(gq,z = 0). Using Eq. 138, we find that

SRA can be used < V 4, ¥ (g9) < 2 (143)
25
—— Landau-Ginzburg model
20
i
15 +
T ]
£ §
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Figure 20: Computation of ¥*°(q) for SPC/E water. For z = 0, Eq. 141 is transformed
into Eq. 8o and computed for SPC/E water direclty from an MD simulation as a
correlation function (see details in 3.1.1). The condition V ¢, ¥ (9,0) < 2 is not met.
We add the specific LG fit with (¢, A) = (0.9989,0.35A).

How to test Eq. 1437 The integral in Eq. 141 does not behave nicely for
g — 0; numerical integration starting from a model of x(k) is adventurous.
We find that ¥®°(g) can be expressed as a correlation function and directly
computed in a MM simulation of bulk SPC/E water molecules. The correla-
tion function and the numerical details are given in 3.1.1 and specifically in
Eq. 8o which is obtained from Eq. 141. The results are reported in Fig. 20.
We observe that {5 (7) > 2 for a large range of wavevectors: the SRA cannot
be used for SPC/E water. Using the experimental spectra [63] for x(k) as
input of Eq. 141 leads to the same conclusion.

What is the reason for that? From Eq. 141, we find that (k) needs to be
larger than 2 for a “large” range of wavevectors. This means that the bulk
medium is able to largely over-screen an external response on large range of

wavevectors. We can write

V k, x(k) < 2 = SRA can be used. (144)

Eq. 144 means that the overscreening condition (i.e. (k) > 1) is not sufficient

to prevent the use of the SRA. This divergence can be traced back to the
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self-consistent Eq 137. When the ions in z’ and —z’ come close the interface
z' — 0, Eq. 136 states that the potential on the infinite system is the one of a
point charge with a partial charge multiplied by 2 —i.e. ¢(z) = 2w®(z,0)
—, regardless of the value of Y*(gq). In contrast, Eq. 137 states that it is zero
if ¥*°(q) = 2 because we subsequently consider the overscreening of the two

semi-infinite media.

(a) (b)
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Figure 21: Limits of the specular reflection approximation. (a) (b) Bulk Landau-
Ginzburg susceptibility fw (k) for various a. (b) Landau-Ginzburg susceptibility
X% (g) for various a. Note that fw(0) = x%(0) =1 —1/¢y with &y, = 71.

To find a versatile result regarding the limits of the SRA, we adopt a
Landau-Ginzburg model [94] to build j(k) for a dielectric medium and com-
pute Eq. 141 analytically. We use a model that encompasses overscreening

[65]. The susceptibility reads3:

Xw (k) 1

Tw(0) 1 202A2K2 + ABKE” (145)

The characteristic length A gives the position of the maximum of y(k) and
« < 1 gives the intensity of the peak (see Fig 21a). Eq. 145 only depends on
Ak so that we can find a condition for the SRA’s validity independent of A.
We express the condition in Eq. 143 as a condition on «. Inserting Eq. 145
in Eq. 141, we compute the integral analytically in Appendix F.1. The result
for x*(q) is provided in Eq. 348 and shown Fig. 21b. To linear order in g,

we find

) g M
A% (0) 2vV1—a

We need 1 — a < 1 to make y*(gq) > 2. Using Fig. 21, we find

+ O(A%g%). (146)

SRA can be used < a < 0.93. (147)

The LG Hamiltonian of the microscopic polarization reads: H [P] =
ﬁ Jdx [er —K2(V-P?+p*(V (V- I’))Z]. We have used & = szpX%"M(O) and A = prl/4(0)
and fw(0) =1/(1 +7).



6.2 SELF-CONSISTENT HEDIN'S-LIKE EQUATIONS

For water, the result of y%(q) computed in MM is fitted with the two-
parameters LG model (see Eq. 145). We find an excellent agreement for
x=09989 and A7! = gy, = 2.86A " as long as gA < 1 (see Fig. 70).

Having established the limits of the SRA, we now overcome them using

the tools developped in part i.

6.2 SELF-CONSISTENT HEDIN’'S-LIKE EQUATIONS

Hedin proposed [95] an approach to tackle the electron-phonon problem
by obtaining a well-known set of self-consistent equations. We have seen
in part i how to represent a classical polar liquid by a bosonic operator in
the quantum field framework. Therefore, we obtain the same equations for
the metal/liquid interface problem. We focus on the screened potential w
in the following. We ignore some corrections that are present in Hedin’s
framework (self-energy and vertex corrections) for simplicity, but they can be
incorporated as well (see e.g., chapter 7). A rigorous mathematical derivation
can be found in the original article [95] or more recently in [96].

We follow the rules fixed in 2.3.3 for enumerating diagrams. In practice,
our approach consists of writing diagrams by hand and finding ways to
express them in a compact form. The physical relevant insights only come a
posteriori. The automaticity of the approach is a significant advantage of the
diagrammatic approach. We do not detail the steps in obtaining Eq. 149 as
they result from systematic computations using the rules in 2.3.3. Note that

adding phonons can be done easily following the same scheme*.

6.2.1  Green's function at interfaces

There are two convenient ways of organizing diagrams when treating elec-
trons and liquid molecules. Here, we chose to separate the contribution of
the liquid because it will be relevant to understand the different contributions
to a PMP>.

The Green’s function of the liquid slab w,, is given in Eq. 14. The response
function of electrons )(go) can now be renormalized at the mean field level —

see Eq. 11. However, the electrons now interact via the Coulomb potential

4 For n elements, it adds up in enumerating all paths on a complete looped graph with n vertices.
Surprisingly, we did not find this remark in the literature, maybe because those graphs represent
complex equations making the cases n > 3 already too complicated if we think about the
physical aspect. However, encompassing an entire graph in the form of Eq.149, that is in terms
of its “renormalized” vertices, could be very convenient for some fields outside many-particle
physics... work in progress.

5 We use the other “smart” way of organizing the diagrams in the next chapter.
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6.2 SELF-CONSISTENT HEDIN'S-LIKE EQUATIONS

screened by water so that Ujnter = ww. This means that we need to introduce

the in situ response function of electrons X,(ew) that reads

(148)
All diagrams starting and ending with the Coulomb “leg” v are contained by

expressing w as follows

w
AAMAMAANAA = T + |IIIIIIIIIIIIIIIIIIIIIII%HIIIIIIIIIIIIIIIIIIIIII

(149)

6.2.2  Special case of the slit geometry

Until now, our work does not depend on geometry. If the system has one
interface, Eq. 149 can be written in terms of the well-identified response

W I contrast, when two interfaces are present, ng) is the

function ),
response function for the whole electronic part, the two metals with a channel
filled with the liquid in between. We understand it is a poor choice because
computing the response function of “two metallic plates separated by a water
slab of length L” is tedious. It is simpler to decompose it in terms of the
non-interacting response function of the two metals, taken separately with
some adequate renormalizations.

Naively, we would like to split the electronic response into two parts, one
for the electrons at the bottom | of the channel and one for the electrons at

the top 1 that is

\%
\\\‘

7772222 7772, 7722,
Lvy - Qv - Q¢

77777 "////// /e 777727

[
Q

, (150)

where the diagrams on the right-hand side are the renormalized response
functions for the metal in z < 0 (bottom, |) and at z > L (top, 1). The
diagram on the left-hand side is our first guess. The correct result is not
that simple because we neglected cross-correlations. Indeed, according to
the aforementioned rules, we miss some diagrams in w and need to combine

top and bottom response functions in all possible ways. We can separate all
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6.3 COUPLED INTERACTIONS AT IONIC GRAPHENE/WATER INTERFACE

combinations into four categories depending on their first and last diagram
(M1, 41, 11). The task is easier if we introduce the cross-correlation

response function

4wty 4wy 4wt
= O w
,W///,/ Raal 4 ,,,,,,,,,// (15)
and its mean-field renormalized analogue
Z72222, //////////,,., ////////,,,,, //////////,,.,
//é//// - ///4’/// + ||||||||||||||||||||||||
N//////// e N///////7/ 777727 N///////7/ .
(152)

This gives the first two independent integral equations (Eq. 152 can also be

written for 1)) and the remaining two read

/////////,,.,/ /////////,.‘,/ 72772225, //////////..,/
///4’/// = /////’7/ + ||||||||||||||||||||||||
1/ 7727 X7/ 727

(153)
— and the same for 71. Assembling the four categories gives the response

function that we look for and

,//////////,"/ ///////////,.,/ /////////,.‘,/ ///////////,.,/
777777 77727 ez pz?

(154)
It can be checked that if L — oo, the cross-susceptibilities are 0 and our guess

is correct — i.e., Eq. 154 and Eq. 150 are equal.

63 COUPLED INTERACTIONS AT IONIC GRAPHENE/WATER INTERFACE

In this section, we use the results of section 6.2, the microscopic water model
developed in chapter 4, and the graphene SRF obtained in chapter 5, to study
the PMF of an ion in a nanometric slab of water — of length L — confined

between two graphene sheets.
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6.3.1 Potential of mean force (PMF)

The Coulomb free energy of the interfacial graphene/water system, when a
spherical test charge 7ext(x) = (b — |x — zpe;|) /47tb?* of radius b is placed
in the channel reads[33]

F(zp) = %//dxdx'next(x)Aw(x, X ) next (X'), (155)

where Aw = w — v and w is the Green'’s function of the interfacial system.
We define the PMF as AF(z) = F(z) — F(L/2). To gain insights into the
water and electronic contributions to the PMF, we can further decompose
the free energy contribution into two terms: F = F. 4 Fy, where F, solely
contains the contribution of water as in an air/water interface replacing w

by wy, in Eq. 155.

@) Wuncoupled Wy i
@ " = + g
Wsemi-coupled 0
e LT — uuuuuuuuuuuu
W
Wiully-coupled Xe
= +
(b)
@ O (5}
A" i \ i v
A" \ Ww
Qq vV ¥a 4 vTa ;4
uncoupled semi-coupled fully-coupled

Figure 22: (a) Computed Feynman diagrams included in the Green’s functions for
various approximations. The colors of w match the one of curves in Fig. 23. The
dashed line represents the Coulomb potential. The hatched bubble diagram depicts
Xe. (b) Schematic illustration of the screening in the different cases (see text for
interpretation).

We gradually introduce coupled interactions in three steps labeled uncou-
pled, semi-coupled and fully-coupled to build w from the knowledge of x.
and x. Fig. 22 reports the computed Feynman diagrams and the sketched
coupling scenarios. First, we consider the uncoupled case, where water and

graphene are blind to each other such that w is separable:

Wuncoupled = Ww T U Xe * 0. (156)

Second, we consider the semi-coupled scenario where the polarization charge
on the graphene surface results from the potential exerted by the ion and

surrounding water molecules. It is the sum of the bare ionic potential and
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6.3 COUPLED INTERACTIONS AT IONIC GRAPHENE/WATER INTERFACE

the one induced by the solvating structure of dipoles, that is, the screened

potential that is obtained by the water slab Green’s function w,, and therefore

Wsemi-coupled = Ww T Wy * Xe * Wy (157)

It is equivalent to an interfacial semi-classical simulation adding a self-
consistent optimization of the surface polarization at each time step, taking
into account fixed — and equal to their values in the vacuum — site-site
interactions of the atomistic model of the metal. Finally, the last fully-coupled
case unveils the presence of the polar liquid for electrons of the solid. At the
mean-field level, electron-electron interactions are effectively modified due
to the presence of water. We introduce the in situ response function of the
metal Xéw), which is built from Eq. 11 with ¥jpter = wyw. The most refined

Green’s function systems therefore reads
w = Wy + W * A w0 (158)
fully-coupled \4 w * Xe we 5

With the different w expressions for the uncoupled, semi-coupled and
fully-coupled cases respectively, three different PMFs can be computed using
Eq. 155. Note that the double integration of Eq. 155 is made in Fourier space
and by matrix multiplication®. The (i,j)™ element of the matrix M [zi,z;-]
is given by the function m(qg, zi,z}). We obtain wy, = v + vxwv in a matrix
form, as detailed in chapter 4. For the smoothed step function model of
1o(z), we use 0y = 0.3A and dy = 1.3A(= dyyerger), as discussed in 4.2.1. For
graphene (see chapter 5), we use the 2D approximation — see Eq. 126— and
the analytic form of X(SO) at T = 0 K — see Eq. 345 — with an effective Fermi
level of Er = 25 meV to take into account temperature. We find a negligible
impact of Er on the PMF. Refinements due to long-range graphene-graphene
interactions are detailed in appendix F.2. We converge the PMFs for L — +o0

and use L = 6nm.

6.3.2  Comparison with AIMD simulations

Fig. 23a displays the resulting different computed profiles for AF for one
single positive charge of radius b = 2 A, together with a reference curve
computed recently from an AIMD study for K solvated in a 2nm thick

water slab on graphene [24]. For sake of comparison, we shift the ab initio

Using Nex[z] = Jo(q/b? + (z — z0)?) /2b with ]y being the zeroth order Bessel function, we

compute F(zg) = } 0+°° g—frq [NL (W — V)Next] (q), for the three Green’s functions, in log-log

space using g = e/Er/vr, y € [—1,8] and N, = 100 for convergence. Note that V(z,z'] =
e=1lz=7l /2€0q.
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Figure 23: (a) PMF of K™ at the graphene-water interface. We model K™ by a sphere
aradius b = 2A and compare our results with ab initio simulation results [24]. The
right side of the ab initio data depicts the part of the PMF that is repulsive for K"
due to the presence of the hidden air interface at z ~ 1.8 nm [97]. (b) Detailed
contributions to the PMF from water (b1) and from graphene (b,) with varying ionic
radius. The ionic center is placed at increasing altitude x = (0,0, z + b) for increasing
radius. (b3) Comparative PMF for three alkali ions. The PMF for Li* (resp. Cs™) is
obtained using b = 1A (resp. b = 3A).

PMF such that it is vanishing in the middle of the water slab, for z around 1
nm (black dots, Fig. 23a). The water contribution AF, shows the expected
repulsive behaviour of the ion at an air/interface (blue curve, Fig. 23a).

Concerning the graphene/water interface, the uncoupled PMF profile
(red curve, Fig. 23a) is strongly attractive and presents oscillations with small
amplitudes near the surface stemming from the non-local dielectric response
of water that is crucial at interfaces.

Indeed, by taking the long-wavelength limit for the description of water
henceforth solely described by its dielectric constant e, we can confirm the
large magnitude of the error on the PMF near the surface. For an infinite
channel height L — co, we have

1—38w(q)

ww(q,z2=0,z=0) = W/ (159)

where gw(q) is the SRF of water as defined in Eq. 36. Taking the long-
wavelenght limit for gw(q) (see Eq. 41), we obtain that Eq. 159 is the
Coulomb potential attenuated by a factor €}, = (ew + 1) /2. Moreover, using
Eq. 158, we obtain

w(q,z,7") = ww(q,z,7') + ww(q,z, O)X.(ew)(q)ww(q, 0,2'). (160)
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Close to the surface, for z ~ z/ ~ 0, if we take the long-wavelength limit
according of Eq. 159, the second electronic term on the r.h.s. of Eq. 160 is
reduced by a factor a roughly (&%,)? =~ 1600, as first noticed in [18].

The uncoupled PMF deviates a lot from the ab initio plot. Interestingly,
this strong difference quantifies the large error which is made in MM simula-
tions when the same pairwise ion-carbon potential is used in vacuum and in
water [85].

Moving to the semi-coupled PMF profile (orange curve, Fig. 23a), its
energy position is shifted to positive values fingerprinting a long-range repul-
sion and a net reduction of the graphene-ion interaction due to surrounding
water molecules. This effect has been already observed in semi-classical
simulations [77, 85, 98] using ad hoc surface polarization models. The ionic
potential attenuation due to water molecules, evaluated by detailing the
electronic contribution in appendix F.3, is in very good agreement with the
results of [85].

Finally, the fully-coupled PMF curve (green curve in Fig. 23a) reveals a
re-amplification of the wall-ion attraction by several thermal energy units and
matches almost quantitatively the ab initio PMF. It is the key finding of our
approach. The nice agreement suggests that our semi-analytical approach
incorporating electrostatics in a self-consistent way can reproduce some key
features of the state-of-art reference PMF like the position and amplitude of
the three local minima. The origin of the oscillations will be associated later
with the hydration shells of the cation.

To qualitatively rationalize the stabilizing effect in the fully-coupled
case, we first need to picture a metallic sheet with independent electrons
— responding with )(go). The unphysical absence of repulsive interaction
between charge carriers makes them accumulate to one point to screen the
ionic potential. Thanks to electron-electron interactions, a finite polarization
charge can accumulate on the surface, as shown by the uncoupled case
cartoon in Fig. 22b. Water molecules screen the ionic potential and reduce
the polarization charge (semi-coupled case Fig. 22b). However, in the last
fully-coupled case, water’s presence effectively reduces electron-electron
interactions — by roughly a factor of €, for far apart electrons, as shown in
Eq. 159. As a result, the polarization charge gets re-amplified, and so does

the surface-ion screened potential.

6.3.3 Alkali series

We now investigate the variations of the PMF with the ionic radius b. We first

explore a vast continuous range of radii to qualitatively understand its role
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on water AFy and surface AF. contributions to the PMF. Then, considering
that b = 2 A accurately describes K, we highlight the adsorption profiles of
a smaller and a larger cation, that is for Lit using b = 1 A and Cs* using
b =3 A. Fig. 23b; shows that water repels more strongly smaller ions from
the interface. It can be understood by considering the hydrated radius of
the cations that is inversely proportional to the ionic radius [99]. Coming
from the bulk, Li*is the first to break its solvation shell. Fig. 23b, compares
the non-monotonic surface contribution AF, for the series of ions, which
center is shifted so that the available space for water molecules between
ion and surface is equal for each ion. We link the increasing attraction for
smaller radii to the ordering degree of the hydration shells. In the limit of
poorly structured hydration shells — e.g. for Cs*— we find the monotonic
surface-ion potential of an attenuated charge in a vacuum. The opposite limit
is a point charge with three highly ordered hydration shells. It gives rise to
three special places where ice-like water, with low permittivity, is practically
transparent to the potential stemming from the polarization charge on the
graphene surface. Summing both contributions in Fig. 23b3 for three cations
in the alkali series leads to complex profiles that cannot be easily rationalized.
However, we observe that for increasing radius, the three local minima are
stabilized and shifted away from the surface, which is in agreement with

capacitance experiments [84] and recent quantum simulations [87].

6.3.4 On the Thomas-Fermi modeling of graphene

The change of the surface’s screening properties in the dielectric medium
has been systematically ignored in previous analytical studies because they
did not tackle the microscopic problem. For the case of graphene, we have
shown that it is a crucial phenomenon captured thanks to considering a
relatively accurate description of the collective properties of electrons and
water. It raises the question of whether the electronic/dipolar coupling at
the graphene/water interface can be captured with a metal/water — and
not semi-metal /water — modeling of the interface. To answer this question,
we model graphene as a two-dimensional TF metal and try to obtain similar
PMFs.

Gaining insights analytically to grasp the eventual differences between the
metallic and semi-metallic structures, we introduce the fictitious system that
describes a point charge b — 0 in a vacuum (L — oo) above the “fictitiously
solvated” graphene sheet. It amounts to considering the system described

by the Green’s function wectitious = 0 + 0 * )(SN) * v. We denote by AFe(ﬁC) the
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surface contribution to the PMF of the fictitious system, and using Eq. 160

we obtain

(fic) T W) 0
AFe (ZO): /0 dgge (q)e o, (161)

47te)

where géw)(q) = —ng)(q)/ 2g€. AFe(VM) is the similar quantity for the

analog real system that considers an unsolvated graphene sheet —i.e., ge
instead of géw) in Eq. 161. We have introduced the SRF of the metallic

medium gc(q), its renormalized analog”

W)y - 8eld) o
ge (4)= 1—gw(q)ge(q)’ (x62)

and therefore the one of the polar liquid gw(7) — see Eq. 86 with d = d.

Eq. 161 reveals that \AFe(ﬁC)\ > |AFe(VﬁC>| because the denominator of Eq. 162

can be expressed as an infinite sum of contributions that adds to AFE(WC).

Those successive powers of gw(7)ge(g) corresponds to an infinite number
of convolutions between response functions of the liquid and graphene and
therefore depends on the (semi-)metal/liquid couple. It can be understood as
a mutual screening process: the polarization charge on the surface is screened
by water molecules so the former is magnified and the latter readapt, etc.
The difference between the SRF of graphene (Eq. 127) and the one of a 2D
TF metal — i.e., ge(q) = qrr/ (9 + g1F) — such as BLG, have been detailed
in chapter 5. We compare those two cases in the following (respectively
denoted G and TF). However, we use two values for gtp. The case TF(G) uses

gtr from Eq. 129 and the case TF(BLG) uses g1p = g5 from Eq. 131.
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Figure 24: Role of the surface polarization model of graphene on the ionic PMF. (a)
PMF for G (plain lines), TF(G) (dashed lines) and TF(BLG) (dashed dotted lines). The
ion is in a vacuum (blue) and in the fictitious system (orange) (b) Product of SRFs

ge(7)gw (7).

It can be obtained with Eq. 148 for a 2D metal. In fact this is valid for a 3D metal as well (see
next chapter).
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Fig. 24a shows AFéﬁC) and AFe(VﬁC) for the three cases. Unsurprisingly,
we find that even in the vacuum, TF(G) does not correctly describe ion
adsorption. However, a routine procedure of semi-classical simulations is
first to fit parameters for the ion-metal potential in vacuum against results
from quantum calculations. Here, this amounts to considering the TF(BLG)
case in Fig. 24a, where we have tuned g1 = g5 to reproduce the amplitude
of the graphene-ion interaction in a vacuum near the surface. Turning to

the fictitious system, Fig. 24a shows that AFéﬁC)

is largely overestimated. We
conclude that describing the ion-graphene potential near the surface both in
a vacuum and in water using the same TF model is impossible.

We trace back this observation in the quantity gw(7)ge(¢), that Eq. 161
and Eq. 162 prompt us to scrutinize. Fig. 24b shows this product for the
three models. It points to the fact as long as 2qtrdy < 1, a metal will mainly
“see” the polar liquid’s macroscopic dielectric constant e,,. For graphene,
in addition, the intermedium distance d gets imprinted in the solvated SRF
g,gw) (9), albeit the length scale decoupling 2grd < 1. It can be traced back
to the semi-metallicity of graphene, more precisely to the presence of the
Dirac cones in the zero-gap band structure of graphene. As a result, the
dielectric response of graphene cannot be easily isolated from its aqueous
environment, and the amplification of the surface-ion potential due to the
presence of water cannot be quantitatively evaluated using a metallic model

for graphene.

Conclusion

After highlighting the limits of current approaches, we built a self-consistent
theoretical framework that permits us to investigate ionic adsorption ana-
lytically at the graphene/water interface. By including graphene’s peculiar
semi-metallic band structure, building a microscopic model for interfacial
water, and considering the mutual screening of the two materials, we ob-
tained results that are in excellent agreement with expensive quantum free
energy perturbation methods at a negligible computational cost.

Our PMF predictions for the alkali series agree with experimental obser-
vations and permit us to distinguish the liquid water and graphene surface
contributions. Beyond the particular case of graphene, our study shows that
the attenuation of electron-electron interactions by the surrounding dielectric
medium plays an essential role in the adsorption of ions at the metallic
interfaces. It suggests that local models of surface polarization miss some

critical physical ingredients.
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For the particular case of graphene and water, the vacuum gap thickness
d changes the screening properties of graphene in constrat to a typical
metal with wavevector 2g7rd < 1. This phenomenon can only be correctly
apprehended if the semi-metallic properties of graphene are included, at

least by considering its band structure at the RPA level. We find impossible

to model graphene with a TF model that is valid both in water and vacuum.
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CNTs are promising materials for numerous applications ranging from
microelectronics [100, 101] to optical sensors [102] and solar cells [103]. Most
of these potentials can be traced back to the electronic properties [71] of
CNTs. Experimental and theoretical works are abundant because CNTs
are affordable and composed of carbon atoms only. As a key example,
theoretical predictions [104, 105] in the field of exciton photophysics [106]
need an accurate description of electron-electron interactions to correctly
evaluate the binding energies of these quasiparticles, measured in Raman
spectroscopy or fluorescence experiments [107, 108].

The strength of the interaction between charge carriers is crucial because
it defines the band-gap of the semiconducting CNT. To compute the band
gap value defined by a TB model of graphene combined with a zone-folding
approximation, the exchange and correlation electronic energy are estimated
via many-body calculations: the so-called GW scheme. In those carbon
structures, band-gap variations by a factor as significant as 200% are expected
[104] and observed [109], so they are, in fact, crucial.

In most applications, the dielectric environment of semiconducting CNTs
is not a vacuum. Its band-gap varies because the liquid or substrate addi-
tionally screens the Coulomb interaction between electrons. There has been
experimental evidences [110, 111, 112, 113] of the excitonic binding energy
redshift and theoretical explanation for the latter [114, 115, 116]. Neverthe-
less, state-of-the-art models [117] that fit experimental data [118] require the
introduction of an effective dielectric constant that depends on a prefactor,
the radius of the CNT, the exciton radius and three fitted exponents. It
leaves room for improvement, but the difficulty arises from the fact that only
exciton binding energies are easily accessible and do not depend only on
the electronic band gap. In a pioneer work, Ando [115] calls for a more

elaborated model:

“the sensitive dependence of the environment effect [...] makes
the dielectric continuum model marginally valid and may necessi-
tate more elaborate calculations explicitly including microscopic

structure of surrounding materials.”

We have developed a framework that includes the non-local behavior of the

liquid. Therefore, we focus on the crucial first step in evaluating excitons
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binding energies in the following: we express the band gap of a CNT
immersed in a liquid. It paves the way towards the precise evaluation of
band gaps, using adequate evaluation of SRFs. More generally, this work

gives an enriched description of surrounding liquids in solid-state condensed-

matter studies.

7.1 GW APPROXIMATION AND BAND GAP OF CNTS
7.1.1  GW approximation

The single-particle Green'’s function G follows the Dyson equation that reads

G GO

O/

7

(163)
where G(©) is the non-interacting Green’s function. Hedin [119] has given
a self-consistent expression of the self-energy as a functional the Green’s
function X [G]. However, in practice, a common approach is using the GW
approximation. It is known [120, 121] that the most straightforward GO w

approximation better evaluates the bang gap. In the following we therefore

(=) = &7

Note that the bended line is nothing but the screened potential w, as defined

in Eq. 149.

compute

(164)

7.1.2 From graphene to CNTs

We first obtain X for graphene in the Matsubara framework (see appendix
G). Then, we make the zone-folding approximation (see appendix G.2) and
consider a CNT as a rolled graphene ribbon. We ignore the local curvature

of the carbon-carbon bonds. It is a very good approximation for CNTs with
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radii R > 2 nm [71]. We change our spatial notations (see appendix G.2). In

cylindrical coordinates, x = (p, ¢, z), The Fourier transform reads

L pr2m
f(P/C)Z/O i dedy f(x)e {(@/RHP2); £(x) = 27rL Zf 0,1, p)etilol/R+p2)

(165)
where { = (I, p) refers to a wavevector that has continuous component p
along the translational vector T of the CNT — aligned with the CNT axis
of length L — and a component //R along with the chiral vector C with
|C| = 27tR — with [ being an integer. The wavefunctions ¢,;(x) of the CNT
have eigenenergies €,; = vhop+/k2(I) + p2 withv = £1, x(I) = (¢/3+1)/R
and ¢ = %1 for semiconducting CNTs (see Fig. 25a).

Green’s functions in Matsubara’s framework follow the Dyson equation

O

G (T k)~ g0z, iky) — Zy(C, ikn) (166)

with 1/G\°)(g, iks) = ik, — €,; and where k, = 71(2n + 1)k T /1 are fermionic
frequencies. The RPA self-energy in the G(Ow approximation (see also

[104, 114, 115]) and at temperature T = 1/ kg reads

—kT (0) L .
2nL, Z?‘ AL PG Qo+ ik + iQm)w (G, iOm),

ZV(éOr ikn -
(167)

where w(Z,iQy,) = w(p = R,p' = R,{,iQy) is the Fourier-transformed

screened Coulomb potential on the cylinder'. It is given by

—+o0o
w(Z, i) = /_ ) dw%. (168)

7.1.3  Electronic band gap

L, contains a static exchange and a dynamical correlation term: ¥, (ik,) =
¥X 4+ 2§ (ik, ). We use v instead w(ik,) in Eq. 167 to obtain ¥X. The correla-
tion term is also split 5 (ik,) = %, Clstatic) 4 5:C(dyn) (ik,). We use Aw instead

of w(ik,) in Eq. 167 to obtain v

Static) - According to [114], gathering all static
terms is enough to correctly evaluate the band gap. However, Ando a priori

excluded the fluid dynamics. It raises the question of whether non-adiabatic

Note that )‘g}ll v = Ayl (OPugy g (x)e —i(py+19/R) in analogy to Eq. 106. We have used the
equivalent of the 2D approximation for the CNT (see appendix G.2).
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effects affect the electronic band gap of CNTs. One needs to compute all

terms to answer. After the Matsubara summation in Eq. 167, we obtain

% (G0, E EI ? /ﬂo diw [np(w) +np(€ugyg) | Imw(f, w)
VA0S T onL, L Godote! [ hw — (€ugo+¢ — E) + i1 '
(169)

This is our most general result®. It can be computed once w({, w) is obtained.

Following [114], we ignore the dynamics and evaluate the static terms.

The Matsubara summation in Eq. 167 leads to

=X(Z0) + 2y 9 (g0) = 27rL2| e nE(eugy (@), (170)

We insert the expression of |/\g’ % +§|2 from Eq. 1233. The band-gap reads
Eg = Eéo) + AEg where the TB band gap reads Eéo) = 2hvp /3R. After some
straighforward steps, using Eq. 170 to compute AE; = X ({o) — X ({o)
with gy = (0,0), leads to

feo o gy ox(l) tanh(E59)

)3

e )2 k(D)2 p2

w(g). (171)

Eq. 171 diverges logarithmically with the cutoff: the width the graphene’s
Dirac cone. We follow the “trick” in [114]. We choose a radius-dependent

cutoff xo/R so that Eg/ Eg)) does not depend on R, at T = OK. By restricting

their range of validity for R < 10nm, the results only slightly depend on xp*.

7.2 SCREENED COULOMB POTENTIAL

7.2.1 Isolating the electronic contribution

To obtain the screened static potential w, we can use Eq.149. However, and

this is a crucial advantage of our approach, there are 2 compact ways of

np and np are the Bose-Einstein and Fermi-Dirac distributions, respectively.

e/
+
The idea is to be in the flat region of the logarlthm while still keeping a physically relevant

cutoff. We use the cutoff function h,(x) =

Adapted to the cylindrical, it reads V‘g 7 +Z‘ =(1+vu

with xg = 5 and & = 4 and compute

A+x“
oo dx w(l, x|x(1)])
AE, = — (TKZ/ — —————h(|x(I)|[RV1 + x2). 172
g 27T ; () 0 T /71_"_ > 0(‘ | (7)

in log-log space, x = ¢¥, y € [-10,10og(8x¢)] and N, = 50.
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7.2 SCREENED COULOMB POTENTIAL

expressing w. In contrast to Eq. 149, we now highlight the electronic part

(recall the expression of we from Eq. 31). It gives

AAMAAMAAAAA —  rzzzzzzzzzzzz:z: 4 rzzzzzzzzziziz @) —@—@—@zzzzzzzzzzzzz:
(173)
where the liquid response function renormalized by the presence of the metal
X&f) reads
0 i
000 — 0000 + OO0 000 0
(174)
so that water molecules effectively interact with v‘e,ff(e)
RO F =
(175)

7.2.2 A CNT in aa vacuum

We consider a CNT in a vacuum — i.e., w = we. In cylindrical coordinates,

the Coulomb potential reads[33]

. 1
v(p,0',0) = ;OII(|P|P<)K1(\P\P<), (176)

where [; and K; are modified Bessel function of the first and second kind
respectively (of order I). Also p~ = min(p,p’) and p~ = max(p,p’). For
a given CNT of radius R, we note v({) = I;(|p|R)K;(|p|R)/€eg. Writing
down Eq. 31 using the small spatial extent of the p, carbon orbitals reads
we(Z) = v() + v(Q)xe(2)v({)5. We recover the relations between the re-

sponse functions in the 2D planar case:

we(f) = ); =1+0(0)xe(0);  ge() =1- (178)

1
ee(0)

Within the RPA, e.(0) =1 —v(Q) )(éo) () where Xéo) ({) is defined like in Eq.

177. We do not resort to the zone-folding approximation for the response

5 We have used xe(p, 0, () ~ ﬁé(p —R)3(p" — R)xe(C) and

Xe(Q) = // dp1dp2p102xe (01,02, C)- (177)
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(0)

function xe ' ({), because it makes all CNTs semi-metallic®. We compute

Xgo) (¢) following chapter 5. Adapting Eq. 113 to the static and cylindrical

case, we obtain

WO LTy [ S e Catnisnin) 1)
o vy m J—oo 27" Cot+l.0o ey(erl,ker) _ev(m,k)

(180)

The sum over the ¢ = £1 symbol stems from the K and K’ contributions.

(a) (b)

7.5 - \_/ %
4 -
5.0
25 \/ 3 4 /
_ v ) /
w Q
2 00 = /
S S 2 /
= w
v 55 A /
-5.0 19 /—/=0 =3 1=6
— =1 I=4 — =7
-7.5 //_\ — =2 |=5 — |=8
T T T 0 = T T T T
-2 0 2 0.0 0.5 1.0 15 2.0
PR PR

Figure 25: Eigenenergies and static dielectric function of CNTs. (a) Eigenenergies of

a semiconducing CNT (¢ = +1) normalized by the band gap E(E,O). (b) Evolution of
ee(I, p) with angular momentum ! at T = 0 K (no radius dependency).

Fig. 25b shows the dielectric function ¢.({), at T = 0K. It only depends
on pR and I. For | # 0, €e(l,p) =~ €e(l,p — 0). Acccordingly, a CNT
responds like a dielectric for an excitation along its circumference. The [ = 0
term quantifies intraband and interband (between bands depicted with the
same color in Fig. 25a) transitions. For pR > 1, the finite band mass” near
the K point is not seen and we recover the results of graphene. Using the
zone-folding approximation (see Eq. 179), we find ec(I = 0,p — ) = &,

for R — co. For pR < 1, at T = 0 K, intraband transitions are suppressed

Even if we do not resort to this approximation, it is instructive to link ¢.({) with the planar
dielectric function €¢(q). In the available orthonormal basis, we can decompose an “in-plane”

wavevector q; = %% + p‘%l for the CNT. Comparing the planar and cylindrical expression
for the linear response (Eq. 1) we obtain that p'xe(0,0',{) = xe(qg, 0 — R, p’ — R) equating
both equations. Further, making the 2D approximation or its cylindrical equivalent, we obtain

Xé()) Q) = R)(éo) (q7)- The zone-folding approximation for the response functions therefore links
the dielectric function of the CNT with the response function of graphene as follows:

0
ee(§) =1~ Ro(@)xe" (az) (179)
In the limit R — oo, we should recover the response function of graphene. In fact, writing
0 =R +2z, p) = R+ z; and taking the limit R — oo gives

, 57(3 [pllz1 =22
(p,0',8) —= <R

Therefore, we recover the graphene dielectric function for R — oo, with only the I = 0 terms
remaining. More details can be found here [122].
7 what makes the band parabolic.
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7.2 SCREENED COULOMB POTENTIAL

because the Fermi level is in the band gap —i.e., ee(I = 0,p — 0) = 1. Eq.

172 using we({) = v({)/€e({) gives
— =23, (181)

in agreement with [114, 123].

At T = 300 K (see Fig. 42 in appendix G.2), the | = 0 component is
radius-dependent. For large gap CNTs (i.e., small R), thermal smearing puts
some holes/electrons in the valence/conduction band. Departure from the
T = 0 K case is limited for pR > 1. However, the long-wavelength limit

changes to .(I = 0,p) 7 which confers a metallic character to the
p—

CNT. The evaluation of Eq. 172 gives Eo/ Eé(zo) = 2 for R = 1.5 nm and
E¢/EY) = 1.16 for R = 6.4 nm.

The band bap is temperature-dependent, and a systematic investigation is
required to account for the results properly. We focus on obtaining w in the
presence of a liquid with varying dielectric constant. To restrict the parameter

space, we use T = 0 K for electros and eliminate the radius dependency.

7.2.3 A liquid outside or inside a CNT

We insert a liquid inside or outside a CNT. Adapting Eq. 14 to the cylindrical
geometry, we write the equivalent of Eq. 35 for the liquid®. As in the planar

case ({ = g), we obtain

w4 (g) = 0(¢) [1 - g/ ()], (182)

but where the SRFs now read

. ~L(|p|R) 1
S0 = o B [ dordpappaa o e Kalplon Kol
(183)
—Ki(pIR)

gw(f) = W// dp1dpap1p2xw(C,01,02)1i(Iplp1) L([plp2). (184)

Following this direction, one could express Eq. 149 in terms of SRFs.

However, the contributions of electrons and liquid molecules are not sepa-

8 It reads wi¥*(p,',0) = v(p,0',0) — & 8w (O)Ki(|plp)L(|ple’) for p,p" < R and wiy(p,0',§) =
v(p,0,0) — &m@L(|plo)Ki(lple’) for p,p" > R.
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7.2 SCREENED COULOMB POTENTIAL

rated. To identify the band gap variation when inserting a liquid, we use Eq.

gw/out(e) (C)
Ee(g) ’

where g™/ (¢) = g/ (£)/ [1 - ge(2)gh™"(¢)], as discussed in Eq.
1629. Using Eq. 185 and Eq. 178, we look for the total dielectric function —
ie., w(l) =v(f)/e({) — and obtain™

173 and obtain

w(g) = we(7) (1 - (185)

g’ (0)

8w &) (187)
= Q) v

Eq. 187 can be understood as the capacitance of two parallel capacitors
(electrons and liquid), in contrast to Eq. 99. Using Eq. 187 and Eq. 183-184,
one can therefore compute the band gap of a partially solvated CNT.

7.2.4 A CNT immersed in a liquid

For an immersed CNT, the continuum electrostatic limit [115] merely con-
siders a CNT placed in a background dielectric constant of ¢,,. From our
microscopic perspective, the liquids on both sides of the CNT are not the
same because of the non-zero volume of the CNT in which liquid molecules

cannot penetrate. We consider two independent interfaces. The SRF of each

In fact, whereas the renormalization of g. in ggw) can be easily understood for the 2D case of

graphene (Eq. 162), it is not evident for the 3D case. Using the matrix notation, we can however
show that the renormalizations process can be permuted (first electron interaction, second water
molecules or vice versa). It reads

el

-1

X9 = [1-x (vl + awe) | x)
-1 -1
= { Ve (1 - (1-xVveh) XES)AWeﬂ xY)
1 -1 -1
{1 xWvert) X‘(A?)Awe} (1=xPvef)
= (I - XwbWe) ' Xy (186)

The integration of Eq. 36 applied to Xv(f ) then leads to g£§> =gw/ (1 — geQw)-

1% Obviously, it does not matter if one starts from Eq. 149 or Eq. 173 to obtain Eq. 187.
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7.3 RESULTS

one needs to be renormalized by the presence of the other. Conceptually, it

has been done in 6.2.2"". Adapting those results, we find"*

w(g) = we(?) (1 - gwsz(g@) , (188)
where gy(¢w () reads
in(e) out(e m(e) out(e e
cenle) = D@ 2O I D g

1 —gl @) °“t(e)(é)/€2(é’)

Making some rearrangements and generalizing to the dynamical case, we

obtain

B w0
T-gh@w) " T- "G w)

Eq. 188 and Eq. 183-184 constitute the central result of this chapter.

E(C/w) = Se(g, (U) +

(190)

Eq. 188 shows the contribution of three parallel capacitors and is also
valid in the planar geometry (J = ¢). It deals with all cases (inside, outside,
inside and outside) at once. Most importantly, it conferes to the liquid a
non-local and dynamical response and one can therefore tackle Eq. 169. It
relies on a microscopic computation of SRFs (Eq. 183 and Eq 184).

We leave for future work the construction of a specific microscopic model
to obtain ¢i" () and gQ(Z), or the conduction of MM simulations in order
to calculate them. We have shown in part ii how to do so. However, we check

that we recover known results in the continuum electrostatic limit.
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Figure 26: Electronic band gap of a CNT with a dielectric material (¢, ) inside (a)

and outside (b), at T = 0K (electronic temperature). Note the Eéo) = 2?% is the
tight-binding band gap. As mentioned in the text, this is valid for R < 20a.

7.3 RESULTS

In appendix G.3, we solve the continuum electrostatic problem to find

gin/eut(z 5 (), assuming an homogeneous, isotropic dielectric medium

with dielectric constant &,,. We find

- S/ 0) = o (o)

. e
N 50) = b ’
gw(€=0) e+ 8 (1PIR)

ew + 1/a;(|p[R)

with

. _ _K(|pIR) L(IpIR) o
PR == Ri(lpIR) Tl IR) (192)

Using Eq. 191, Eq. 187 and Eq. 172, we evaluate the electronic band gap for
a liquid inside or outside the CNT in Fig. 26. For large dielectric constants,
Eg ~ Eé(zo) because the electron-electron interactions are completely screened.
However, a dielectric background outside the CNT has more effect than
inside. Those results have been obtained in [115].

For an immersed CNT, using Eq. 190 and Eq. 191, we obtain

(= 0) =ee(f) +ew—1, (193)

It has been done for the reversed case, a liquid slab delimitated by two metals. We make the
substitutiuon e = w in Eq. 154

infout in out
= 000 - 90— 0—0—0
INJOUT infout infout NIOUT
= 0000 + 000 @ ::::::zzizz::
IN in infout IN
000 — 0000 000 ::::::::::::: 19— @—@—O—

IN ouUT INJOUT OUT/IN
4000 — 0000 - 0000 - 60600
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7.3 RESULTS

which is explicitly used in [115]. Therefore, our approach recovers the

state-of-the-art result in the static and long-wavelength limit.

Conclusion

In this chapter 7, we have built theoretical tools that were called for in
the scientific community interested in evaluating electronic band gaps of
CNTs. In routine calculations, the liquid is merely described by its dielectric
constant e,,. A pioneering researcher pointed out the limit of this method
in one of his articles [115]. Our framework, which uses Hedin’s approach
for constructing the screened potential, expresses the dielectric function on
the tube in terms of SRFs. It confers non-local and dynamical properties to
the liquid. We provide the microscopic correlations functions to compute in
order to evaluate them. Beyond the particular case of CNTs, we hope that
our work, enriching the description of the surrounding liquid in solid-state

calculations, will interest researchers in solid-state physics.

Future work

2.0 1.0
0.8
15
w 0.6
a
3 1.0
< 0.4

0.5

0.0

1 2
ql2ke

Figure 27: Loss function —Im [1/¢(g, w)] of solvated graphene. The electronic tem-
parature is T = 0K and Fermi energy Er = 70 meV. We used the model of Eq. 88 for
gw(q,w) with d = 1.52A.

To show the practical advantages of our approach for some solid-state
physics applications, we conclude this chapter with an example in the field
of graphene plasmonics [124]. We argue that the plasmon dispersion can be
evaluated precisely with Eq. 190. One usually solves Eq. 193 to find plasmon
modes of solvated graphene [74]. Let us use Eq. 190 instead. For a graphene

sheet immersed in water, it reads

2gw (9, w)

T— (7,0 (194)

e(q,w) = €e(q,w) +
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7.3 RESULTS

where gw (g, w) is the SRF of water (Eq. 88) and ¢.(g,w) is the dielectric
function of graphene (at T = 0 K, see Eq. 127 and Eq. 178).

Fig. 27 shows the loss function Im [—1/¢(g, w)] of solvated graphene.

The libration peak of water (large red area) acts as a damped surface optical
phonon that modifies graphene’s intrinsic plasmon (thin bright red spot in
the lower-left part) and creates satellites for ficw > 2EF (light red area). Those
insights are absent in the literature for liquids (for solid dielectric substrate
see, e.g., [125] for graphene). It paves the way toward a more refined plasmon
dispersion evaluation thanks to a microscopic description of dielectrics at

metal surfaces.

90



INTERMEZZO: METAL/LIQUID VAN DER WAALS
ENERGY

THEORY

We evaluate the vdW energy between a metal and a liquid in this interlude.
We recover, in our framework, the well-known Lifshitz formula. Computing
solid /liquid vdW energies is tedious because it requires the knowledge of the
excitation spectra of the liquid and the solid in the entire range of energies.
It is a common issue for MM or AIMD simulations that resort to ansatz in
computing such types of interactions. Therefore, this interlude links our
description and the use of L] parameters in MM.

First, we find the mean interfacial electrostatic energy between the metal
and the liquid. It can be written (Uew) = (0Uew) + US,. In 3.2.2, we
obtained UY, = 0 for a neutral liquid and a metal. We now assume 12, =

and nY, = 0. Using Eq. 42, we find

(Clene (1) / dx; / d20(12) (371e(1)57 (2))

ih
% / dx; / d2v(12)xX, (12). (195)

Using v(12) o §(t] — tp) and making the Fourier transform in the plane, we

obtain

A

ih
(Uew(t1)) = EZ/ dz1dzp0(q, 21, 22) Xew (4, 21, 22, ). (196)
q

At equilibrium, (U;;(t1)) does not depend on t; and we fix t; = 0. x&, is

linked to xR, by virtue of the FDT in Eq. 71. It reads

. dhw
(Uew ) = _Z/W (w)/ dz1dzy0(q, 21, 22)Imxew (9, 21, 22, w),  (197)
q

where f(w) = coth(Bhw/2). The integration over z; is restricted to z; > 0
because it runs over liquid molecules and the one of z; for z; < 0 because it

runs over the electron positions. We define a new SRF that reads

1
Sew(q, w) = +2q€0//dzldzzeqzle_"ZZXew(q,zl,zz,w). (198)
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Using Eq.197 and Eq. 198, we find
dhw
2 / w)Imgew (q, w)- (199)

The vdW energy is due to charge fluctuations in both media. A type of
thermodynamical integration must therefore be computed for (Uey). We
use the adiabatic connection to slowly drive the Hamiltonian Hy to H while
remaining in the ground state [126]. We introduce the parameter A such
that H represents the Hamiltonian in which electron-liquid interactions are
reduced by a factor 0 < A < 1. We write Uew = U, [fle, fiw] ,where U, means
that a factor A attenuates the Coulomb interactions in Eq. 42: v — Av. The

energy E; = (H,), is evaluated for a fixed A. We write

EVW — E; —Ey = / dAC(liEA)‘ (200)
and use the Hellman-Feynman [127] theorem, %(AA) = <ddH ), to obtain
Lda .
B = | 5 Wewa. (201)

Inserting Eq. 199 in Eq. 201, we define gJ,, as the SRF with v — Av. We find
h
ES = / o / S Imgew (4, @). (202)

To obtain g2, we look for xew. We use the rules of 2.3.3 and write down all

linked diagrams that start with én. and end with én,,. We obtain

with

X
AR

In Eq. 203, the Coulomb potential is always separable v(q,z,z') =

(204)

eTIZeta7' 1 /2gep — see also the remark below Eq. 198. Moreover, the double
integration in Eq. 197 can actually be interpreted as a trace in the (z,z") basis:

Sew = Tr [VXew]. Therefore, using V = SST and the cyclic property of the
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trace we get gew = Tr [ST XewS] = ST XewS. This greatly simplifies our work.
Using Eq. 204, we obtain

g = Tr [VXew] = Tr [SSTXe88T Xy | = Tr [STXeSST XS] = gegu- (205)
We solve Eq. 203 using Eq. 205. It reads

_ 88w
Sew = T— oo Cegw’ (206)

Obtaining g2, is straighforward from Eq. 206. Making the integration of

Eq. 202, we obtain

1 di 1
/0 Tgéw(q/aﬂ =/O d?\% = —log (1 — gegw) - (207)

Inserting Eq. 207 in Eq. 202, we find

vdW 2
B [ 5 [ i g (s ™)]
(208)
where we have separated both media by a distance h'3. Eq. 208 generalizes
Lifshitz’s formula for vdW interactions between solids [128], as recently
obtained in [129]. Our result does not distinguish quantum solids or clas-
sical liquids and uses well-defined microscopic SRFs. Using Matsubara’s

summation'#, we find

EvdW h +o 4 . . _
ﬁ%ﬁ =) ; %qlog (1 — 8e(q,10) 8w (q,1Q )e 2‘”’)- (210)
0y

where ), = 2rtnkgT.
The summation in Eq. 210 extends to large frequencies (see also the
coth(Bhw/2) factor in Eq. 208). In practice, atomic electronic excitations of
n =~ 100eV are required to reach €(iQ),) = 1 [130]! The study of the SRF
in the high-frequency limit is beyond the scope of this work. The work in
part ii allows for evaluation of the zeroth-order (i), = 0) term only. It reads
EYdWo (1), with

dWo +oo
BE&"(h) / dg o0
=~ = —qlo (1— e ‘7). 211
i  aplos (1 ge(9)sw(e) (211)
3 It has nothing to do with the incompressible size of the vacuum gap d that exists for & = 0.
4 We use
dhiw .
[ S flw)mb (@) - ke ¥ H(O) (200)
i

where H(i(),) is express with ImH(w) as in Eq. 168.
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We argue that E¥3W° (1) and EYSW(h) are approximately linked by an
unknown prefactor. Slow charge fluctuations can occur on all length scales,
fast oscillations are relatively located in space. Therefore, the shape of
EY4W (1) should be contained in EYdWO (). We proceed in two steps. First,

we introduce ] ]
9,1 )gw (q, 1)

8e(9)8w(q)
and assume that it does not depend on 4."> Note that A(0) = 1. Second,

A(i0,) = 8el , (212)

from [130] we obtain &y (i) < 2 for [Q),| > 0. Therefore, for Q] > 0,
ew(9,10)/gw(q) < 1/2 so that A(iQ),) < 1/2. Inserting in Eq. 210, we use
log(1 — x) ~ —x for x < 1/2, which gives

EYW (h) ~ (1 +) A(z’Qn)> EYAWO (1) = AL EYdWo(p), (213)
iQy

which supports our initial statement, with unknown prefactor Ae.

RESULTS

We tackle the graphene/water interface and first construct a reference. In
MM, the interfacial vdW energy is the sum of carbon-water pairwise L]

potentials:
L S
Bl = YT VY (e, — ) v”<x>—4€U<|x|iz—x|]6>’ e
e; W]

where 015 and € are the carbon-oxygen L] parameters. we can compute
E, analytically for a single rigid graphene sheet in z = 0, interacting with
a semi-infinite water medium. To do so, we use the most straightforward
molecular profile 1y(z) = ng@(z — (h +d")), where g is the bulk molecular
density, and d- the vacuum gap due to the repulsive L] term in Eq. 214 that

avoids overlapping. We obtain’®:

Eeh(h) _ _47T€LJ‘TE]”0NS 1/ oy 3 1 oy ’ (215)
A 3A, 2\h+dD 15 \htdd) |’ 5

where A, = V/3a?/2 is the graphene unit cell area that contains Nj = 2
1/6

carbon atoms. For a given force field, we find 4 = (2/5)'/%01; by imposing

minELy (h) = Esh(h = 0) — we suppose that the vacuum gap thickness

5 In practice, dividing by the zero-frequency component removes spatial dependencies such as
the exponential ¢21 that plays a significant role in the dispersion of gy (g,i) (see e.g. Fig. 8).
1] ¢ oo
161t starts by Eﬁl = no% htrdo dz [ d*eVH (|x]).
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minimizes the L] vdW energy. Using Table 2, we find d\L/\]/er dor = 2.74A and
L %
.. = 2.95A.

We compare the attractive part of the model in Eq. 215 to the field-

theoretic results (Eq. 213 and Eq. 211), by fitting the unknown parameter

Aco. We compute Eq. 211 using the raw simulation data of gerder(7) and

galuri(g) (see Fig. 7) to avoid the introduction of a vacuum gap thickness.
Computing Eq. 211 only requires graphene’s SRF (see Eq. 127)'7. The results

are shown in Fig. 28.

(h) (meV/A=2)

vdW
Eew

— Werder (A, =16)
-5 Aluru (A, =16)
—-- LJmodels

-6 T T T T T
2 3 4 5 6

h (&)

o
[

Figure 28: Interfacial vdW energies. We use Eq. 211 and 213 with the raw SRFs for
the Werder and Aluru force fields (see Fig. 8). The corresponding L] models are
obtained using the attractive part of Eq. 215 with the force field parameters taken in
Table 2. We use only the carbon-oxygen interaction for the Aluru force field.

The field-theoretic and L] models are in excellent agreement for both
force fields. Not only does this validate our approximation, but it also seems
versatile because they both use the same prefactor As = 16'®. It also shows
the physical relevance of using a vacuum gap in our modelings.

We have expressed the surface vdW energy between a metal and a solid.
We recovered Lifshitz’s formula with our familiar tools, the SRFs. Arguing
that the unknown high-frequency contribution can be encompassed in a
prefactor Ae, we compared the adapted results to the relevant L] modeling
(used in MM simulations). By fitting a single and shared prefactor, our
field-theoretic results match the L] modeling for both force fields. It bridges
the gap between our pure electrostatic approach to the interface and the ad

hoc models used in MM simulations.

7 We use Er = kT and find no significant variations of EY" (k) for Er
18 The agreement with the Aluru force field may be slightly less accurate because it contains

hydrogen-carbon interactions.
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The following results exist thanks to a collaboration with Nikita Kavokine,
Marie-Laure Bocquet, and Lydéric Bocquet. However, these authors cannot be held

liable for the content of this section.

In nanometric channels, the estimation of the water permeability becomes
subtle because the surface/volume ratio of the liquid medium increases. In
textbooks, the effect of the surface is usually described by a no-slip boundary
condition at the interface with the , that is, an infinite solid /liquid friction.
More refined descriptions are also considered by quantifying the friction
coefficients using diverse experimental or simulation techniques. However,
the study of the water-carbon couple has led to a puzzling observation
[131, 1].

Water exhibit low friction in CNTs, with friction coefficient (1) decreas-
ing with decreasing tube radius (R), as shown in Fig. 29. For R — oo,
experiments [132] on flat graphite provide a friction coefficient of /\gsphite ~
1.2 x 10° N.s.m 2 in relatively good well agreement with simulation results
~ 4.5 x 10* N.s.m 3. However, there is a large discrepancy between the
experimental and simulations data for decreasing radius, be they quantum
(AIMD) or classical (MM).

In those simulations, the curvature effect disappears for R > 2.5nm, and
the flat limit is reached. This radius effect can be understood by a surface
curvature effect on the scale of a typical water molecule [133]. However, the
experimental data of [6] in Fig. 29 show a different behavior regarding the
radius dependency. The friction coefficient nearly exponentially depends on
the radius, and the limit R — oo is not reached for R = 60 nm>> dpy. These
data challenge the current theories of solid/liquid friction that are based on a
roughness-based picture in which the solid acts as a static external potential
for the liquid molecules [134].

Whereas AIMD constitutes an expensive but highly accurate simulation
method, it does resort to the BOA that we now put into question. The break-
down of the BOA has already been observed in graphene [16]. Its peculiar
conical band structure intersection at the Fermi level (see part ii) prevents (to
some extent that needs to be determined) the decoupling of the electronic

and nuclear wavefunctions. For instance, the highest optical phonon energy

96



NON-ADIABATIC METAL/LIQUID FRICTION

T 0} v
@
: Joe ©
) Q) i
T 100t oo !
° O :
k] o
2 a? @ Thiemann et al. (AIMD-ML)
[5) o
g 107 Secchi et al. (Exp)
s o Majumber et al. (Exp)
,‘g Holt et al. (Exp)
o102 g O Falk et al. (MM)

V Tocci et al. (AIMD)

1 10 ®
Tube radius (nm)

Figure 29: Friction coefficient evolution of water inside CNTs with varyig radii as
obtained from different experiments and simulations. The gathering of the data from
this figure was made by the authors of [13]. We freely adapted their figure — the
colour-circled data are meaningless in our context. The reported data can be found
(in the same order) in [13], [6], [2], [3], [133], and [12]. “Exp” indicates experimental
measurements, “MM” indicates force fields molecular mechanics, “AIMD” refers to
BO quantum simulations and “AIMD-ML” refers to the same kind of simualtions
assisted with a machine learning framwork.

~ 200meV can oscillate several periods before the electrons fully relax to
the adiabatic ground state. Water has some high-frequency components (we
have seen dynamical peaks in water’s SRF around ~ 100meV in part ii, Fig
4) so we may investigate this aspect.

Moreover, we have seen in chapter 7 that electronic properties of CNTs
change on length scales large compared to molecular water size. The TB

band gap of a semiconduting CNT is Eéo) = 2;‘? ~ kpT for R = 15nm. The

charge carrier density in the conduction band 7, o e_ﬁEé(fO) could, for instance,
be the source of the exponential scaling of the friction coefficient with the
radius.

Our approach is the following. Assuming that simulations obtain results
in agreement with experimental measurements for R — oo by an error
compensation effect, we investigate if a non-adiabatic (nBO) contribution can
be responsible for the observed friction on graphene/graphite: AS;SP hite
1.2 x 10°N.s.m 3. If so, we will investigate if a transition from a metal-like
to a insulating-like behavior of CNTs when R decreases could explain the
observed trend of the experimental data reported in Fig. 29.

Whereas numerical applications for the water/graphene couple will
be critical, we dwell on the physical insights revealed by identifying a
new mechanism of solid/liquid friction. We derive friction coefficients by
progressively reducing the number of assumptions we use, to keep track
of the role of non-adiabaticity. The friction coefficient is defined as follows:

for a solid and a liquid in a relative velocity v, the liquid experiences a
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8.1 TYPES OF FRICTION

force of Feyy = —AAv, where A is the surface area. The solid experiences
Fuwe = —Few. We extract A with the normalized dissipated power:
- Few -V _3
A= W {N.s.m } (216)

8.1 TYPES OF FRICTION
8.1.1 Classical friction

Here we derive the surface roughness-based friction coefficient. We start
from a classical Kubo formula [134]. At equilibrium, the friction coefficient

is linked to the correlation function of solid/liquid force and reads

1 e
Mo = 7 /O A (Fouy () Few (0)). (217)

We consider that the charge density of the solid does not fluctuate diy, = 0.

The Hamiltonian (Eq. 74) points to the remaining operator Clé\,m that includes

Sty and nY — or equivalently, the static external potential of the metal:

¢%, = [ d20(12)nY, (2). There is no reason to keep the quantum formalism in
this particular case so we replace d1iy, by dn,, and write the force experienced

by the liquid at a time ¢:

Few(t) = —/deHcp?n(x)énw(x,t). (218)

where V| is the derivative in the direction parallel to the surface. Inserting

Eq. 218 in Eq. 217 leads to

1 teo
Moo = g / dx / X'V 0 () V| 40(x) /0 dE(S1 (%, 16110 (),
(219)
from which we recognize the structure factor of water’s charge density after

Fourier transformation®. We obtain

1 1 d
ABO = AkBTE/ (27?)2 qz /dZdZ’cpgl(q,z)(])?n(—q,zl)sw(q,z,z/,w = 0)
(220)
We specify the absolute value in the Coulomb potential
e 1* e 1*
Pm(q,2) = 2 enp(q,2) = 26]60”?1?(‘1)- (221)

1 We use f0+°° dH{(nw (x, Hnw (X)) = 1 | (SZT‘)ESW(q, 2,7, w = 0)elax—x),
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We introduce a static surface structure factor for the metal that contains its

“charge roughness”:

5:9(a) = (@) (~a). (222

We neglected this term (S(q) = 0) in previous applications because we

considered flat and locally neutral surfaces. Inserting in Eq. 220, we obtain

_ 1 ‘A"q 2 s0 s _
ABo = m /dq (47.(60) Sm(q)Sw(q,w =0), (223)

where we have chosen the origin for the angular integration as the direction
of the velocity ¥ =v/|v|*. Eq. 223 can be found in [135] and can be refined
to include non-Coulombic forces. Eq. 223 can be understood as an overlap
between two surface structure factors. If the typical length scale of charge
corrugation in the metal matches the slowest charge fluctuation in water,
friction will be high. The friction coefficient, therefore, quantifies a matching

of correlation lengths.

8.1.2  Electronic friction

Here, we look for the first-order correction to the BOA, assuming a flat
interface and S(q) = 0. This breakdown has been studied under various
names in the literature, but the one of electronic friction [136] seems to be
adequate in our case. We are not dealing with a breakdown of the BOA from
a chemical perspective [137]: liquid molecules remain rigid, and the metal

nuclei are frozen. Electronic friction can be defined as follows:

“Electronic friction is a correction to the Born-Oppenheimer ap-
proximation, whereby nuclei in motion experience a drag in the

presence of a manifold of electronic states.”[136]

Let us simplify our system to understand the underlying mechanism
better. We consider the friction experienced by a charge density above a
metallic surface (see Fig. 30). At rest (v = 0), electrons accumulate (or
deplete) to screen the charge density. We schematically represent the charge
image in the metal in Fig. 30 (left panel). When a constant velocity (v # 0)
is given to the charge density, its image charge in the metal must follow.
For a perfect metal, the image charge instantaneously follows that charge
density (like an image in a mirror). However, if the metal is not perfect,
the image charge “lags behind”. Electrons move in the crystal lattice, and

the mechanisms for energy loss are therefore the same as those governing

2 Tt is for comparison with future formulas of the friction coefficient.
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Figure 30: Schematic illustration of the electronic friction exerted on a charge density
(red) above a metal — see text for description. The introduced friction coefficient
n = AA is not surfacic in this case.

Ohmic dissipation. The dissipated energy comes from the velocity v of the
charge density in the first place. Therefore, it experiences a friction force in
the direction opposite to its trajectory.

We express this friction force with the metal’s SRF [138]. Consider the
moving external (to the metal) charge density next (X, t) = exto(X + vt) where
v is parallel to the metal surface. The friction force is constant in time and

we can evaluate it at t = 0, that is
Feoext = —/de||4>ind(x,t = 0)Hexto(X). (224)
After Fourier transformation, we obtain
dq .
Fesext =— [ dz W(W)‘Pind(q/ z,t = 0)nexto(—q, 2), (225)

and using ¢ing(1) = [ d2Awe(12)next(2) (see Eq. 2 with w = w,), we obtain

dw
Pind(q,2,t =0) = /E/dz’Awe(q,z,z’,cu)next(q,z’,w). (226)

Eq. 226 involves the Fourier transform of two quantities #ext and Awe. First,
fext(q, 2z, w) = /dx/dtnext(x, z, t)e_i(q"’L‘”t)
= 27-[5((‘() - Vq)”exto(q, Z)/ (227)

means that a constant velocity in space-time gives a Doppler shift of v - q in
Fourier space. Then, from Eq. 35,

Awe(q,z,7,w) = ge(q, w)e*qze*qzl, (228)

a 2q€g
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because the external charge density is outside the medium z,z’ > 0. Inserting

Eq. 228 and Eq. 227 in Eq. 226, and then in Eq. 225, we obtain

i dq .,
Feson = 5o | Grapdsel@w =va) (@, @29

where q = q/q. However, the imaginary part of the SRF is an odd function
of frequency whereas the real part is even — ie., ge(—q, —w) = gi(q, w). In
integrating Eq. 229, the real part disappears. Specializing to the case of point

S

charge at altitude zp — e.g.|n3,,0(q) ‘2 = ¢~29%0—, we obtain

ext0
_ 1 dq (‘A’ ) Q) —2qz
= 47'[60 / (27[)2 |V| Imge(q,v q)e ’ (230)

where 7 = AA is the relevant friction coefficient for a single point-like charge.

Eq. 230 involves the imaginary part of the metallic response function,
which indicates that dissipation only occurs in the metal. The velocity of
the charged particle is not assumed to be small in Eq. 230 so it can excite
some plasmons — collective charge oscillations — in the metal, as probed
in Electron-Energy Loss Spectroscopy (EELS), for instance [122]. However,
the particle’s velocity does not have to be significant for the friction to exist. In
the linear regime, for small velocities compared to typical charge oscillation
frequencies in the metal, we can write

Imge(q, w)

lim Imge(q, v~ q) = v qlim —=="2—=. (231)

Inserting Eq. 231 in Eq. 230, the velocity disappears from the friction
coefficient, as expected by the linear regime assumption. We will be interested
in typical velocities of |v| ~ ym.s~! [6], which are ten orders of magnitudes

lower than microscopic velocities, so the linear regime is relevant.

We have obtained the friction coefficient of one particle above a metal. To
tackle the friction of a liquid, should we sum the friction coefficients of all
its constituting particles? Is v the relative solid/liquid macroscopic velocity
or the microscopic ones? The answer to those questions, we refer to Eq. 227
and Eq. 229. Even if introducing a macroscopic velocity of a medium is equivalent
to shifting the velocity of all its constituting particles3, we cannot simply add the
friction coefficients because of the term |nS ,(q) |2 in Eq. 229.

Can we bridge the gap between this single-particle mechanism and the
metal/liquid picture? We can first consider that the external charge density is

the mean average charge density of the medium — e.g. 71exio = 1% The latter

is due to the mean charge structuration in the liquid due to the solid lattice.

To better understand this first aspect, we can use the microscopic expression in Eq. 82. It reads
n‘s,v(q, t) — e—iqvt Zi Cie_jqri(t)e_qzi(t) = Z]. Cig_q(rz(f)+Vt)g_qzz(f>_

101



8.1 TYPES OF FRICTION

Note that a charge layering in the direction normal to the surface — such as
the one in Fig. 12a — is insufficient to generate friction because n5C(q) o« dq

and the infinite interface is translationally invariant. We are dealing with
the same reasoning as in the classical case, and we can introduce S(q) in

analogy to Eq. 222 and rewrite Eq. 229 as

Favev = A [ s G i I8 s010). e
We insert the FDT for the SRF,
Img(q,w) = Wss(q,w), (233)
in Eq. 232 to obtain
1 4\ o ©
Moo= 57 [ 44 (1) Slaw=0s2@. G

Eq. 234 is very similar to Eq 223 but its meaning is now different. Here
dissipation occurs in the metal and not in the liquid. Electrons travel in a
static potential exerted by the nuclei and the average one of the liquid. It
gives them new channels to scatter and dissipate energy. In this view, it is
maybe better to understand this process as the reversed classical one. Liquid
molecules have a certain structuration at the interface because they see the
metal lattice. They generate a periodic potential for the electrons — same
periodicity. Electrons move at a constant velocity in this potential and can
scatter on it. This additional energy dissipation mechanism is no longer due
to Ohmic loss but solid /liquid friction.

Consequently, we should be able to link solid/liquid friction and metals’
differential resistivities, as pointed out in [139]. It echoes the electron/nuclei
force-force correlation function to compute — the quantum analog of Kubo
formula (Eq. 217) — to calculate conductivities of metals [31]. Interestingly,
there is sizeable electrical resistivity enhancement when water adsorbs on
graphene [140]. However, we have seen in part ii that S0(q) < S5,(q) (see
the remark below Eq. 83). Charge structuration is relatively small at the
graphene/water interface [12], and the contribution of Eq. 234 is therefore
negligible.

Assuming no mean charge corrugation for the liquid and the solid —
e.g. S¥(q) = 0 and S(q) = 0 — where could the friction come from?
The liquid is neutral on average, but the instantaneous electric fields are
pretty large at the interface. We are facing a subtle issue regarding the
averaging process. By assuming that the liquid’s fastest damped charge

oscillation is slower than the slowest one in the metal, we try to use Eq. 229.
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In other words, electrons always see static liquid molecules, and we can
compute friction coefficients A for every possible molecular configuration in
the liquid*. The averaged friction coefficient /\Ellgo should constitute a first
guess for the searched quantity®.

Replacing ]nig(q)f by (|6n5,(q)|?) in Eq. 232 gives

6 A2
Mo = 507 [ 4 () Siaw=0si@. @)
Eq. 235 is again an overlap between two structure factors, but this time it
quantifies the matching of the fluctuations wavelengths in both media. Dissipa-
tion still occurs in the metal only. We can include the result of Eq. 234 in
Eq. 235 by enlarging the definition of the liquid’s surface charge structure

factor®.

8.1.3 Van der Waals friction

So far, we have assumed the decoupling of the dynamics of liquid molecules
and electrons. We now tackle the theoretical difficulty of assessing the range
of validity of Eq. 235 by reintroducing the dynamics. The relative motion
of the two bodies now requires using the out-of-equilibrium framework as
discussed in 2.2.2.

The first step consists in writing the instantaneous electron/water force

as the Keldsyh response function, as in Eq. 195. It reads

(Fou(t) = [ dx1 [ d2V}0(12) (00(1)510(2)
- [ ax [ @2vjoa2)ak,2) (236)

We cannot use the FDT because we are not in an equilibrium situation (the
media are moving with a relative velocity v). However, the average force
does not depend on time. Using v(12) o §(t; — t) and looking at t; = 0, we
find — see also from Eq. 196 to Eq. 199 —

<Few = —72 / deo qRegey (9, w). (237)

4 It is the Monte-Carlo picture of phase-space averaging that is relevant here.
5 Of course, we will check it below.

6 This means by defining S5, (q) = <|n3\,(q)|2)/A and no longer S5, (q) = (\5n§,(q)|2>/A.
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To find g¥,,, we follow the rules in 2.3.37. Using Eq. 205 and Eq. 203, we

obtain

gout = g g A +ge g Meeant
3 , (238)

ghe = gReK 4 geh + gRaR gk, 4 (sReK + g5 e ) gow

where we omitted the (q, w) index for clarity. The solution for the retarded
and advanced component were obtained in Eq. 206. For the Keldysh

component, we find
_ 8e8w T 8e8uw

K
Sew = |1 _gegw|2 ’ (239)

where we have used gR(q,w) = ¢5*(q, w) in the denominator. Using the
reaction force (Few) = —(Fwe), we can compute half the difference of Eq.

239 and its alternative (w = e),

—_

gk gy _ 8wImge — geTmgiy
2 ew we |1 _ gegw|2 °

(240)
How do we find the Keldysh response function of both media? Consider-
ing the extremely slow relative velocity between the two media, a reasonable
assumption is that they both verify the FDT (Eq. 71). Nevertheless, we shall
not forget that the Doppler shift of +%1% they both acquire (see Eq. 227).
Therefore,
\ , v %
8w (@0 F ) = 2f (0 F SH)Imges (@@ F ), (241)
where we recall that f(w) = coth(ﬁhTw). Inserting Eq. 241 in Eq. 240 and
taking the limit v — 0, gives

1. x  x,\_ df(w) | Imgelmgw
5 (8ew — 8we) = 2vq ‘ do | = gegnl®” (242)
Inserting Eq. 242 in Eq. 237 — using (Few) = % (<1'56W> — <IA3we>), gives
B dhw ,, 5 |df(w)| ImgeImgy
)\nBO - ;/ 27T (V q) dw |1 _gegw|2‘ (243)

Using Eq. 233, Eq. 243 can be expressed as

1 /d Vv-q 2/dwSz(q,w)S‘SN(q,a))sec:hz(,Bhw/Z)
8O T kT 47tey 27 11— ge(q,w)gw(gw)|>
(244)
Using the equilibrium framework leads to (Few) = 0 because gX, is purely imaginary according

to the FDT (Eq. 71)
We find convenient to symmetrize the velocities.
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Eq. 243 can be found in the works of Persson and Volokitin [141, 142, 143].
However, it has been rigorously derived only in the local case. Eq. 244, like
Eq. 223 and Eq. 235, is a (weighted) overlap between two surface charge
structure factor, now resolved in the frequency domain. The non-adiabatic
friction coefficient quantifies the wavelength and frequency matching of the charge
fluctuations in both media. How to understand the underlying microscopic
mechanism? In practice, for all metal/liquid interfaces we deal with in
this work, Eq. 244 reduces to a form similar to Eq. 235 and can thus be
understood semi-classically, as in the electronic friction picture. However,
written as in Eq. 244, quantum arguments are needed to understand the
microscopic friction force.

We picture two solids — say (1) and (2) — with collectives modes
aJEIl) and w‘(]z) of charge oscillations — describing quasiparticles such as
phonons or plasmons — that carry a momentum #1q. At room tempera-
ture, the population of one mode follows the Bose-Einstein distribution

(1/2)>

ng(wq ™). The population of one mode can vary if another quasiparti-
cle mode exists with the same energy. More precisely, the exchange rate
of a quanta from mode (1) to mode (2) is given by Fermi golden rule
Tc;l(l —2) « nB(wgl))J(wgll) - wéz)). The exchanged momentum 7#q is a
consequence of this quasiparticle transfer. At an interface between two solids,

the population of the modes in the two media fluctuates if w,gll) = wg), but
(2))

they are, on average, the same at equilibrium because np (w&m) = np(wq
More precisely, 7q '(1 = 2) = 7,1(2 = 1) or Aty ! = 0. Accordingly, the net
momentum transfer between the two solids is, on average, zero.

What happens if v # 0? The frequency modes of one medium are Doppler
shifted by £vq. It is, indeed, how the macroscopic velocity is translated in
the microscopic picture: the modes carrying momentum along the velocity
direction are more populated than the one in the opposite direction —i.e.,
ng(wq —vq) > ng(wq) for v-q > 0. In turn, at the interface between the two
media, we obtain Arq_l ~ tv- q(dnB(wgll/z))/dcu)(S(w}1 — w%) for v — 0.
Summing over existing modes in both media requires the introduction of
spectral functions. In the quantum framework, these are the structure factors.
Therefore, we have accounted for the main ingredients of Eq. 244.

What is the role of the sech? (Bfiw /2) term? It acts like a cutoff for frequen-
cies larger than 2kpT/h. It is the equivalent of the factor dn B(w‘(ll/ 2))/ dw
that rapidly converges to zero for cu((]l/ 2) 2 2kgT/h. What is the denominator
about? It comes from the infinite resummation of the reflecting electric field
at the interface. It is our framework’s signature: by putting both media

on an equal footing, it allows recursive and mutual screening (the coupled

interactions in 6.3.4). It has played a role in evaluating the vdW energy in 7.3.
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However, the fluctuations frequencies involved here are not the relevant ones
to compute the vdW energy. It appears that vdW friction and vdW energy

are quite decoupled.

8.1.4 Three practical formulas

This section discusses the wavelength and frequency matching of the charge
fluctuations in a metal and a liquid. Eq. 244 can generally be simplified at
a solid/liquid interface. First, we cut off the frequency integral of Eq. 244
at 2kgT /h, roughening the filter’s edges. Making the angular integration in
Eq. 244, we introduce formula I for the non-adiabatic contribution to the

solid /liquid friction:

+00 2kgT /h s s
m 7 /O daq /0 dw  S(q,w)Sy(q,w) (243)

nBO "~ kpT (471€))? 27 [1— ge(q, w)gw(q, w)[*

How accurate is our first guess for the friction coefficient in Eq. 235? We
ignore the denominator that cannot be rigorously obtained without resorting
to our hybrid framework®. We assume the decoupling of the dynamics —i.e.,
55(q,2kpT/h) ~ S3(q,w = 0) and S5,(q, w) ~ 0 for w > 2kpT /h. Therefore,
we can pull out $3(q, w = 0) from the integral and perform the integration
to recover Eq. 235. Our first guess is recovered from the general formula Eq.
244 (or Eq. 245), and the criteria for its validity are now obtained.

The spectral functions of typical metals and liquids at room temperature
give the range of typical charge oscillation frequencies. Typical excitations in
metals have energies around Er /% > 2kpT/h. Debye collective relaxation
modes in liquids usually satisfy 7, 1« 2kpT/h. Therefore, decoupling the
dynamics is relevant in the general case. However, our first guess (Eq. 235)
misses to account for the recursive and mutual screening (the denominator
of Eq. 245). Considering the small imaginary part of ge(q, w) and gw(q, w)
for w < 2kpT/h (see part ii), we only keep the real parts. We suggest
formula II for the non-adiabatic contribution of the solid/liquid friction
when ! < kgT/h < Ep/h*:

+o0 s _ S
A T /O (dqq Se(q,w = 0)S%(q) (246)

nBO ~ 20T 47€0)2 (1 — ge(q)gw(q))*

9 Of course, other approaches with the same results might be constructed differently.

10 The more specific criteria S3(q, 2kgT/h) ~ S$(q,w = 0) and SS,(q, w) ~ 0 for w > 2kgT/h are
of course the most relevant ones that should be satisfied. However, those two conditions are
usually linked.
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This assumption localizes dissipation in the metal. The quantum picture

vanishes and the relevant (semi-classical) microscopic mechanism is electronic

friction, as detailed above.

(a) A €k (d) (c) A vk

hw < Ep ¢

la| < 2kp

Ep lal <2kr | 4 « Erd
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kp k kr

Figure 31: Band structure of (a) a 2D jellium (c) graphene. (b) Details of the scattering
event on the Fermi surface given an energy iw < kpT. Here k is a 2D wavevector. .

We now discuss the wavelength matching of the charge fluctuations. Fig.
31a and Fig. 31c show a schematic band structure for a 2D electron gas
(2DEG)'" and graphene, respectively. As seen in chapter 1 or chapter 5, the
energy dispersion is e = #*k?/2m** and €, = vhugk, respectively. The
advantage of using the (surface) charge structure factor of the metal S5(g, w)
is that we can restrict the integration of Eq. 246. S5(g,w) quantifies the
number of electron-hole pairs that can be created with a momentum of q
and an energy fiw. A look at a metallic band structure (see Fig. 31) gives
us an upper bound for the norm of the maximum scattering wavevector
q = |k — K/|, at low energy hiw = |ex — €| < Ep. We look for possible
“horizontal” transitions between two states in the band structure. Zooming
on the electronic Fermi surface (Fig. 31b), we find a common criterion —
|q| < 2kp — for graphene and 2DEG. For a 3D material, one needs to project
all electronic bands along the 2D wavevector plane, like in Fig. 15. For a 3D
jellium, the convexity of the band structure implies that the same criteria is
still valid. This reasoning is exact at T = 0K. Thermal smearing alters this
argument, but as long as kgT < EF, the criteria |q| < 2kF is still valid.

We compute S3(g,w = 0) in Fig. 32 for graphene and for a 3D jellium to
ensure we are not missing some important considerations when the metal
has some thickness. We use the RPA+SRA level for the jellium — details are
given in appendix H.1. We use analytical formulas at T = 0K in all cases.
As discussed, the results only depend on gq/2kp. For the 3D jellium, the

variation with kr is captured by solely looking at the value in g = k.

1 k is a 2Dwavevector here.
12 We use m* = m, the mass of an electron.
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Figure 32: Surface charge structure factor for a 3D jellium and graphene, for various
kp, at T = OK. There is no variation of S3(g, w = 0) with kr for graphene.

The static surface charge structure factor S5, (¢) for the liquid is linked to

the static SRF by the FDT (see e.g. 299 and Eq. 233). We use

Sw(q) = 2kpTeoqgw(q). (247)

Using gw(q < 1/2d) = g7 (see Eq. 86) and restricting the integration of
Eq. 246 to g < 2k, we suggest formula III for the friction coefficent. It is
valid in the case of frequency T, ! « kgT/h < Eph and wavelength 4kpd < 1

decoupling. It reads

3
am  ew—12 kp _ qTF
AHBO - ew + 1 3471 Se(kl:/w - O)H(szI€W)/ (248)

where the analytical expression of H is given and discussed in Appendix H.2.

We have used ge(q) = qj_gip, that is valid for g < 2kr for a wide variety of
materials such as graphene, FLG, and 2DEG (see chapter 5). The evaluation
of Eq. 248 for typical metals and complementary discussions can be found

in appendix H.2. In the following, we focus on carbon materials.

8.2 RESULTS
8.2.1  Case of graphene and FLG

For graphene, qrr/2kr = 2ae where ae = 1/4meghvr = 2.2 is the fine

structure constant of the material. Using the limit ey > 2ae in H(2ae, €vw)

and gx;% ~ 1, we obtain

(Graphene) _ ksl‘:“e(l + Z‘Xe)

A
nBO €y

Si(kp,w =0) ~ x 10! (N.s.m ™) (249)

(kpa)?
3
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with 4 = v/3de = 2.46A and kpa < 1 for typical doping.
For FLG, we use g1r = g5 (Eq. 130 and Eq. 131) to evaluate Agé% in Eq.
248. We replace S%(kp,w = 0) by S&(kp,w = 0)/2 to consider FLG instead of

graphene®3. Using &,, = 71, we obtain

PR ) ~ 6102 (Nsm ™). (250)
s Zkl:

ATLS) ~ 0.17(

with kr = gs/4a. (a doping of Er = 0.27 eV) for the numerical application.
We have assumed kpT < Ef to obtain Eq. 249 and Eq. 250, but they are
upper bounds for the case Er — 0. From those results, we conclude that
non-adiabatic contributions to the friction coefficient for graphene or FLG, at
the RPA level, are many orders of magnitude smaller than the experimental

value on graphite )Lg;r;phite ~ 1.2 x 10° N.s.m 3.

8.2.2  Case of graphite

Although our first-principle calculations at the RPA level show convergence
of ge(q, w) with the number of layers N for FLG (see Fig. 18), they miss to
reproduce an experimentally seen low-energy plasmon [144, 145, 146, 147,
148, 149, 150, 151] near wp ~ 50meV, at T = 300K, in graphite™. This is
not the case of other theoretical studies [152, 153] that predict some of its
characteristics. This plasmon puts into question the use of )‘glls)o' that is the
decoupling of the dynamics. We need to study it in detail and answer several
questions.

Why don’t we see this plasmon in our study? The abovementionned theo-
retical studies look for low-energy plasmons in bulk graphite (at the RPA
level), meaning that they have an infinite number of graphene layers. They
deal with a continuous g, index instead of discrete band indices v (like us),
which reveals our finite number of layers N. We can therefore suppose
that we did not converge exactly our results for graphite (N — c0) in the
N = 12 case, in the low-energy region. In [152], the plasmon exists with a
wavevector g, < 0.03A7 " It corresponds to oscillation wavelength of about
N = 1/(gzc/2) ~ 20 layers, larger than our maximum number of layers.

Note that we have chosen not to follow the computation of the bulk graphite

3 It can be refined depending on the exact number of graphene layers if N < 5. This change is
motivated by two arguments. First, the slope of Imge(g, w) for w — 0 in Fig. 18b that converges
to the one of graphene divided by a factor of 2. This is observed at the RPA level for T = 300K,
by solving the Schrodinger equation for FLG. The second argument comes from a simple model
we build in appendix H.3, in which we express S5(g, w = 0) with the analytical graphene’s

response function Xéo) (g, w), by coupling independent graphene layers. We also obtain the
factor of 2, or less (i.e. there is a slight variation with k).

™4 Those Electron Energy-Loss Spectroscopy (EELS) experiments that we choose not to detail here
measure signals that are proportional to Imgm (¢, w).

109



8.2 RESULTS

dielectric function because it is numerically too demanding. The authors of
[152] only study the case q = 0, which is not of great interest to us.

What is the history of this low-energy plasmon? It has been ignored in the
first studies of the electronic properties of graphite — e.g. [154]. We find two
reasons for that. First, condensed-matter experimentalists seem to be more
interested in different range of energies (i.e. ~ 1eV at T = 0K and not really
~ kpT ~ 25meV at room temperature). Therefore, it has been overlooked in
most studies. The second reason is the experimental difficulties in measuring
such low-energy excitations [148]. In the latter studies [144, 145, 146, 147], it
seems that it may have been confused with phonons contributions because
of their similar energies [148]. The study [148] is the first (and only) one that
tries to reconcile experimental data regarding the dispersion of this plasmon
with the most resolved apparatus. This plasmon was observed later in several
experiments [149, 150, 151, 155], but its dispersion has never been studied
since then. Finally, the last study ([156], cited more than two hundred times
but for different reasons) attributes a peak to this plasmon for graphene on
SiC(ooo1). We choose to restrict the discussion of this plasmon to graphite.

What is the physical origin of this low-energy plasmon? Experimentally, this
plasmon is seen to be polarized in the direction normal to the graphene
sheet, along e, (in our case). It corresponds to a collective charge oscillation
of electrons traveling between graphene layers. It is possible because the
electronic states on different layers are coupled (see, e.g., the Hamiltonian
matrix in Eq. 124). Accordingly, this plasmon could not be found with the
simpler model we build in Appendix H.3 in which graphene layers are only

electrostatically coupled.
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Figure 33: (a) Zoom on the band structure of FLG (N = 50) near the Fermi level
showing the overlap between valence and conductions bands in graphite. A color
corresponds to a electronic band (2N bands in total). Multiple lines with the same
color represent different angles in the BZ. Note that k is a two-dimensional vector
here. (b) Schematic illustration of the low-energy intersheet plasmon mode.
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Between which states those electronic transitions occur? In graphite, electronic
states that are spatially localized on graphene layers that are far apart actually
have similar energies. It can be seen by looking at the band structure of
graphite, projected in the 2D plane (see Fig. 33a for N = 50. See also Fig. 15d
for N = 16). At the Fermi level (assuming Er = 0), many electronic bands
overlap. Electrons can travel between graphene sheets at negligible energy
cost (fiw = |ei — €,0¢| == kpT) and small parallel momentum g = [k — k|.
One can picture waves of electrons tunneling between sheets at T = 300K,
as shown in Fig. 33b. Letting aside the g, dispersion that is not the most
relevant to us, we look at the topmost layer of the slab (assuming a large
number of layers for the reasons abovementioned).

What is the momentum dispersion in the plane? Looking for horizontal
transitions (fiw =~ 0) in Fig. 33a, and considering the thermal smearing, we
find them limited to wavevectors g < |k — k/|~ 0.12A ", In the most resolved
experiment [148], the plasmon cannot be traced for § > gmax With gmax =
0.18A71, which agrees with our estimation. The slight underestimation can
be explained (i) because we look at horizontal transitions instead of one
involving having a vertical component of fiw ~ hwp (ii) of the limitation
of the model (and the TB parameters fitted on another experiment) (iii) of
the limits of this “by-hand” estimation that (at least) do not weight the
contribution of larger wavevectors properly. In a study [147] prior to [148],
values reaching gmax = 0.4A " were find at T = 300K and Gmax = 0.6A7"
at T = 600K. The authors of [148] argue that we cannot experimentally
distinguish this plasmon from the LA phonon mode for q > 0.18A°".

How can this plasmon play a role in non-adiabatic friction? Fig. 33b shows
how this plasmon can act as charge corrugation on the top graphene layer
of graphite. The value of gmax is crucial because it gives the wavelength
of this corrugation. Also, the use of the BOA is put into question because
wp ~ 2kgT /h. We need to evaluate )\%O in this case.

To evaluate the contribution of this plasmon, we choose a simple model

for ge(q, w) to focus on the relevant low-frequency region. We write

ge(q, W) w?
- © max — q),
ge(q)  wp—w?—2iyw (g 9) (251)

where v = 25meV [148] is the plasmon width and g.(q) is the SRF of graphite
(or FLG for N > 4). Eq. 251 ensures the correct limit for ge(g, w = 0) and the
FDT. From Eq. 251 and the FDT (Eq. 233), we obtain S(g,w). We show in
appendix (see Fig. 46) S3(g, w) alongside with S$, (g, w). Again, we find very

accurate to evaluate Ag])go by pulling out Si(gq, w = 0) out of the integral. It is
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actually due to the larger frequency that can be traced back to &y, < wptp'®.

Using the static FDT (Eq. 247), we obtain

. +o00 3
AGraphite) ksg / dg  7°ge(7)gw(q) N (252)
wp Jo 27 (1 ge(q)gw(9))

We compute Eq. 252 using kT /w3 = 1/4, Eq. 127 with qrp = g5 (ESf ~
0.27 V) for ge(q) (see chapter 5), and gw(q) (in Eq. 86). The results are
shown Fig. 34, with respect to d/doy (with dog = 1A), for several gmax-

104 o — max =0.12 A7
E — max = 0.18 A~
. Gmax =0.4 A71
@
IE. 10° o — Gmax = 0.6 A1
a E
3 ]
@
% 102 o
cQ E
[c)= E
< ]
10t E \
T T T T
0 1 2 3
d/don

Figure 34: Graphite/water non-adiabatic contribution to the friction coefficient as a
function of d/doy.

Our reference values are d = (dajuru + IWerder) /2 = 1.52A (see MM

simulations in chapter 3) and gmax = 0.181&7l (see [148]), from which we

find )Lfféroaphite) ~ 30 N.s.m 3. However, for d = dopy and Jmax = 0.4A71,
we find )\gréphite) ~ 300 N.s.m 3. Using larger values for gmax, keeping in

mind the plasmon picture, is quite unrealistic according to Fig. 33a. Using
smaller values for d < dpp is not in the spirit of our microscopic approach
and would deteriorate the results obtained for the vdW energy in Fig. 28. It
would nevertheless lead to results closer to the graphite experimental values

AS{I‘;‘P}‘“Q ~ 1.2 x 10°N.s.m 2 or simulation data ~ 4.5 x 10*N.s.m 3.

Conclusion

In this chapter 8, we estimated the role of non-adiabatic effects in under-
standing friction at the metal/liquid interface. In the absence of a static
corrugation, the roughness-based picture no longers hold, but the friction
can still be understood as an overlap between two dynamical surface charge
structure factors. The friction coefficient quantifies the overlap between
charge fluctuations wavelength and frequency in both media. The general

friction formula that we derive could be simplified in all cases we dealt

5 The libration peak of water wy, ~ 100 meV puts the BOA into perspective, but it is irrelevant
here because wy, > 2kgT /.
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with for metal/liquid friction, leading to a semi-classical result that can be
understood with the electronic friction picture, as defined in [136]. In the case
of wavelength decoupling, we have given analytical formulas with typical
parameters of metals — kr and grg — and polar liquids — éy.

We conclude that, within the limits of our formalism, the non-adiabatic
contribution to the solid /liquid friction seems to be three orders of magnitude
lower than the experimentally measured value on graphite — and way lower
for graphene. However, considering the sensibility to the inherent parameter
of our microscopic framework, the vacuum gap thickness d, we advocate for

further interest in this question.
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GENERAL CONCLUSION

In a nutshell, we summarize the main results of this work by distinguishing
the theoretical results from the ones specific to the graphene/water interface.
We then discuss the limits of our approach and future perspectives.

From the theoretical point of view, our first contribution is the microscopic
formulation of the electrostatic problem at interfaces (part i). We consider
materials infinite in only two directions. In the third, they are closed by
an impenetrable plane so that the charge density profile vanishes at this
altitude (chapter 2). We use the linear response framework to obtain the
electrostatic potential but displace the problem in resolving an integral
equation for the response function. The latter involves a non-interacting
response function x(*) and the mean-field potential between particles vinger
(chapter 1). In practice, it is solved by a mere matrix inversion (part ii). For
instance, the effect of microscopic parameters on the screening of an applied
constant electric field can be studied (chapter 4). We no longer have to resort
to a phenomenological approximation to solve the interfacial electrostatic
problem. The framework provides a way to deal with ions at water interfaces
without reducing the liquid to its bulk dielectric function (chapter 6).

Our second contribution comes from the hybrid quantum/classical cou-
pling. We encompassed a liquid’s fluctuations and dielectric response in a
quantum field by introducing a fictitious quantum operator (chapter 2). It
allowed us to formulate the interfacial self-consistent electrostatic problem by
hijacking the electron-phonon problem in solid-state physics. As a result, we
can benefit from decades-long development in this field. For instance, physi-
cal observables can be linked to screened potentials (chapter 6), self-energies
(chapter 7) or specific response functions (chapter 8), expressed in terms
of Feynman diagrams. The framework ensures the self-consistency of the
electrostatic problem — electrons see the liquid molecules that see the elec-
trons. Those coupled interactions make the physical observables non-longer
linearly dependent on the response of the two media at the interface.

On the other hand, the results — that exist thanks to the elaboration of
the previous framework — regarding the graphene/water interface can be
summarized as follows. First, we have seen that coupled dipole/electron
and electron/electron interactions were crucial to understanding the PMF of

an ion at the interface (chapter 6). Our results reproduced a reference PMF



obtained using expensive AIMD free energy perturbation calculations'®. Un-
like typical TF metals, the interface’s microscopic details change graphene’s
screening properties. In return, we find that graphene could not be modeled
by a TF model that is valid both in vacuum and in water because of its
peculiar semi-metallic band structure.

Regarding the electronic band gap of a solvated CNT (chapter 7), we
obtain an analytical expression of the non-local and dynamical dielectric
function on the tube’s surface. It is expressed with the inside/outside
liquid’s SRFs, which are defined by microscopic correlation functions. It is
now possible to infer the non-local and dynamical properties of a metal’s
liquid environment, and we prompt physicists in the specific domains to
evaluate environmental effects with this refined microscopic description. We
show how water’s libration peak alters graphene’s loss spectra as an example
of overlooked contributions.

Finally, we estimated the non-adiabatic contributions to the metal/liquid
friction phenomenon (chapter 8). We have seen that friction can always be
formulated as an overlap between two surface charge structure factors. For
the non-adiabatic contribution, the friction coefficient quantifies the matching
between frequency and wavelength charge fluctuations in both media. The
relative frequency decoupling allows evaluating the first-order correction to
the BOA in all cases under scrutiny. Therefore, the semi-classical mechanism
of electronic friction in which dissipation is localized in the metal is relevant.
Our estimation of the contribution of this process to experimentally measured
values does not allow us to call the BOA into question in AIMD — at least,
not for computing friction. Nevertheless, our approach provides the tools to
enrich our understanding of solid/liquid friction.

What are the limits of our approach? The main limit is most probably about
the lack of chemistry. We consider closed media so that charge transfer is
forbidden. The argument relying on the overall neutrality of both media can
be challenged. If it is accepted that there is no charge transfer on average
or for a single adsorbed (say water) molecule, it says nothing about the
dynamical fluctuations of charge transfer. The second apparent limit of our
framework is the validity of our description for wavevectors comparable to
the inverse lattice ¢ ~ 1/a. This limit is linked to the first because chemi-
cal effects predominate (exchange-correlation interaction, hydrogen-bond,
charge transfer) on the atomic size. Metal/liquid electrostatic interactions

are cut off by a factor e=2/*

, and only adsorbed molecules play a role.
Future directions for the friction? It could be interesting to evaluate the link

between metal/liquid friction and charge transfer fluctuations. Both media

6 We have written an article [157] on this subject. It is currently in the submission process.



could exchange (fraction of) electrons; the question would be to determine
the specific surface area or time scale. There is some experimental evidence
for such a triboelectrification effect [158]. This would be a red wire to include
chemical effects in the present formalism.

What is left to do regarding the framework? One could rederive the main
equations of this work, including local-field effects. It would “complete”
the purely physical description. For completeness, it would be beneficial to
include phonons in one wants to tackle dynamical properties. The diagrams
equations in this thesis can all be expressed in terms of the matrices of the
elementary blocks. Numerically, it is a real advantage, and one can quickly
think of a code that computes W = W,, + W, XcW,, for large systems, in
seconds.

Machine learning approaches may revolutionize molecular simulations
and enrich the insights they bring into metal/liquid interfaces [13]. I believe
making them talk with cheaper analytical models is crucial so that new ideas
can emerge from a scientist’s head. We tried to twine our approach with
simulation results (see chapter 3, 4, 6, 8 and Intermezzo) because we think
they can benefit from each other'”. We hope this versatile approach, which
can be generalized for any metal/liquid couple, will be appreciated by some

researchers in the liquid and metal community.

7 That is all the more the case with our microscopic approach that allows the tuning of, for
instance, an hydrogen partial charge, tight-binding parameters, etc..



ABSTRACT EN FRANCAIS

Un cadre théorique est introduit pour aborder les interactions électrostatiques
aux interfaces métal/liquide. En adoptant une perspective microscopique,
nous déplacons le probleme électrostatique dans la résolution d"une équa-
tion intégrale pour la fonction de réponse linéaire du systéme interfacial.
En décrivant les fluctuations et la réponse diélectrique du liquide dans le
formalisme de la théorie quantique des champs, nous héritons de nouveaux
concepts pour aborder les interactions collectives en champ moyen. La
précision et la versatilité de notre approche nous permettent de décrire
des interfaces carbonées en considérant la spécificité de leurs structures
de bandes électroniques. Cette méthode est ensuite mise en pratique pour
étudier le potentiel de force moyenne d’un ion solvaté prés d'une surface
de graphene, la largeur de la bande électronique interdite d’un nanotube
solvaté, l'interaction de van der Waals entre du grapheéne et de l'eau, et
des coefficients de friction solide/liquide. La validité des hypotheses clas-
siques concernant le découplage des temps et longueurs caractéristiques aux

interfaces métal/liquide, peut étre systématiquement évaluée.



RESUME EN FRANCAIS

Cette these est motivée par un enthousiasme nouveau pour la nanofluidique
[1]. Cette discipline étudie les liquides dans des canaux de quelques mil-
liardiemes de metres. Cette étude est permise grace aux progres techniques
titanesques concernant la fabrication de ces canaux ou la détection de ce
qui en sort. A cette échelle nanométrique on observe plutot une “foule” de
molécules sortant d’un canal (voir, par exemple, Fig. 1a) et non un jet d’eau
comme celui du robinet de la cuisine. Les expériences qui permettent ces
mesures ne seront pas abordés dans ce travail, mais nous devons commencer
par dire notre émerveillement pour de telles prouesses qui sont la condition
nécessaire a notre travail théorique (voir Fig. 1b). Pour citer quelques travaux

majeurs, on peut se réferer par exemple a [2, 3, 4, 5, 6].

Pourquoi travailler dans la nanofluidique ? La nécessité d’utiliser des
énergies propres et renouvelables pour traverser les crises écologiques
actuelles et futures a motivé beaucoup de recherche scientifique dans des
domaines divers. La nanofluidique soutient 1’espoir de pouvoir exploiter
des phénomenes osmotiques aux embouchures de mers et rivieres. En
effet, a cette échelle, apparaissent des phénomenes exotiques qui permet-
tent de générer des courants électriques comme celui de diffusio-osmose®.
Des processus similaires proposent des solutions aux enjeux concernant
I'approvisionnement en eau par sa désalinisation. Ces applications sont

détaillées ici [8].

Pourquoi des liquides comme l'eau ont un comportement étrange dans ces
canaux ? La réduction d’échelle (de macro a micro, puis nano) change
les interactions physiques dominantes. En nanofluidique, de nouveaux
phénomenes apparaissent grace a I'augmentation du ratio surface/volume
pour le liquide. Pour le comprendre, on peut regarder la matrice de transport
qui relie quelques forces appliquées a leurs observables ad hoc (voir Fig.
1c). Quand seuls les termes diagonaux subsistent, on peut indépendamment
relier les forces appliquées (respectivement une différence de pression, de
potentiels chimiques ou un champ électrique) aux observables (flux du
solvant, flux d’exces du soluté, courant ionique). Cependant, les effets de

surfaces produisent des termes non-diagonaux importants, de sorte que de

18 Processus dans lequel une différence de concentration en sel entre deux réservoirs reliés par un
canal nanométrique induit un courant ionique grace a une interaction différente des cations et
anions avec la surface du canal. Voir [7] pour plus de détails.



nouvelles options s’offrent a nous pour, par exemple, générer un courant
ionique avec une différence de concentration en sel. Pour identifier ces
termes croisés, une description physique/chimique précise de l'interface
canal/liquide est alors nécessaire. C’est ici que l'intervention de chimistes

théoriciens devient pertinente.

Il faut remarquer que I'’émergence des nanocanaux permettant la mesure de
flux arrive avec 'apparition du graphéne en 2004 et I'intérét nouveau pour
les nanomatériaux a base de carbone [11]. L'enthousiasme de la communauté
de la physique du solide pour le développement d’instruments capables
de manipuler des nanomatériaux 1D ou 2D est maintenant apprécié de la
communauté nanofluidique. Parmi ces matériaux van de Waals (vdW) et
leurs assemblages [10], le graphéne & un roéle emblématique. Cependant,
isoler une feuille de grapheéne est compliqué et il s’avere plus simple d’utiliser
des formes allotropiques du grapheéne pour la construction de canaux : des
nanotubes de carbone (CNTs), plusieurs feuilles de graphene (FLG), du
graphite.

I1 existe cependant un matériau qui a la méme maille cristalline que le
graphéne — le nitrure de bore hexagonal (hBN) — et qui est aussi sou-
vent utilisé. La différence entre un CNT et un BNNT (nanotube de ni-
trure de bore) en nanofluidique illustre I'importance de la spécificité de
I'interaction canal/liquide ou canal/ion [4, 6, 159], au-dela des considéra-
tions géométriques. Cependant, en dynamique moléculaire classique, ou
mécanique moléculaire (MM), le graphéne et ’'hBN sont tres semblables.
Leur différence réside seulement dans la valeur des parametres d’interaction
vdW avec 'eau, c’est-a-dire avec les parametres du potentiel de Lennard-
Jones entre atomes [12]. L'apparente sursimplification qui est faite dans ces
simulations est maintenant contestée avec des approches théoriques plus

sophistiquées [25].

Le graphene et I'hBN différent plus fondamentalement si I’'on compare leurs
réponses a un champ électromagnétique. Le graphéne est un semimétal alors
que I'hBN est un isolant. Pour les isolants, les méthodes de simulations et
notamment leurs formes les plus précises, les dynamiques moléculaires ab
initio (AIMD), sont fiables. Grace a cette approche, l'interface hBN/eau a
déja dévoilé quelques-uns de ses secrets [14] et ne sera pas étudié dans ce
travail. A l'inverse, il y a des raisons de remettre en question la fiabilité
des simulations AIMD pour l'interface graphéne/eau. D’abord, leurs cotits
ne permettent pas d’utiliser des boites de simulations plus grandes que la
longueur de corrélation typique des électrons. Pour la méme raison, I'étude

de sels a ces interfaces ne peut se faire qu’a des concentrations élevées. Mis



a part la fonctionnelle d’échange-corrélation ad hoc pour le calcul quantique
effectué grace a la théorie de la fonctionnelle de la densité éléctronique (DFT),
la dyamique repose sur I'approximation Born-Oppheinmer (BOA). Celle-ci
peut ne pas étre respectée pour des molécules aux interfaces métalliques a
cause du continuum de niveaux d’énergie prés du niveau de Fermi. En fait,
sans considérer le liquide, elle ne tient théoriquement et expérimentalement

pas dans le cas du graphene [16].

Cette thése se concentre sur l'interface graphéne/eau et essaye de trouver
quelques éléments qui nous indiquent la spécificité de ce couple. Le but
n’est bien stir pas d’obtenir des résultats quantitatifs, mais plutdt d’estimer
des contributions “d’ordre deux”, ignorées jusque-la. Pour ce faire, nous
aurons besoin d"une approche robuste et élastique qui permet de considérer
les interactions électrostatiques entre les électrons de la surface et les dipdles
du liquide. De maniére surprenante, nous n’avons trouvé qu’une seule facon
de traiter cette interface analytiquement dans la littérature. C’est 'approche
électrostatique continue qui décrit I’eau seulement par sa constante diélec-
trique bulk™. Cela nous a incités a proposer une approche microscopique
de l'électrostatique. L'élaboration de cette nouvelle méthode et I'obtention
de formules concernant d’importantes observables physiques constituent
peut-étre la partie la plus importante de ce travail en vue de cette béance

dans la littérature.

A la fin des années 70, beaucoup d’efforts ont été dédiés a la compréhension
de ces interfaces métal/diélectrique en présence d’ions par des méthodes
analytiques. Ce travail a été fait en grande partie par A.A. Kornyshev et
M.A. Vorotynsev et se cristallise dans [17] et [18]. Beaucoup de remarques
cruciales étaient déja présentes comme l'importance de la réponse non-local
du diélectrique a ces interfaces. Cette méthode est toujours utilisée au-
jourd’hui [19, 20]. Cependant, I'intérét relativement faible pour les approches
analytiques dans le traitement de ces systémes compliqués*® peut étre com-
pris avec 'essor de la chimie computationelle et son large développement
depuis les années 2000. Les simulations quantiques ont été et sont toujours
d’inégalables outils d’étude des interfaces graphéne/eau (voir par exemple
[12, 22, 23, 24, 13]). Cependant, comme on l’a dit, la plus grande et la plus

lente oscillation de dipoles/charges dans le systeme est limitée.

9 On montrera dans ce travail que 'approche plus sophistiquée [17] qui permet aux diélectriques
d’avoir une réponse non-locale — celle mentionnée au prochain paragraphe— ne fonctionne
par pour l'eau : elle n’est tout simplement pas applicable ! Bien stir, d’autres méthodes peuvent
exister, mais nous ne les connaissons pas.

20 “God made the bulk; surfaces were invented by the devil.” — Wolfang Pauli, cité dans Growth,
Dissolution, and Pattern Formation in Geosystems (1999) by Bjern Jamtveit and Paul Meakin, p.
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Pour tenter de résoudre ces problémes, la dynamique moléculaire classique
propose des modeles semi-classiques. Conscient que leur manque intrin-
seque de métallicité demande l'introduction de parametres décrivant le
métal, beaucoup d’efforts ont été dédiés a la compréhension du role de sa
polarisation en surface — voir par exemple [25] pour le graphéne. Une
approche générale est prometteuse [26]. Elle consiste a conférer aux atomes
du métal une charge fluctuante qui est imposée a chaque pas de temps de la
simulation, pour maintenir un potentiel constant a I'électrode®'. Dépassant
le modele du conducteur parfait, elle permet méme de conférer un écrantage

de type Thomas-Fermi (TF) au métal [30].

Cependant, la spécificité d'un métal réside dans sa structure de bande. Le
graphene est un semi-métal qui se comporte comme un métal sur de grandes
distances, mais comme un isolant sur les petites. Ce comportement semble a
priori difficile a inférer dans un Hamiltonien, au-dela du modele TF. En outre,
la procédure d’optimisation des charges atomiques dans le métal joue le role
d’une BOA en AIMD. Des lors, malgré les récents progres considérables,
il reste des questions ouvertes concernant cette interface auxquelles nous
pouvons essayer de répondre. Il est inutile de dire que notre role ne peut que
se limiter & un support analytique qualitatif. Nous allons donc questionner
les hypotheéses réalisées dans la construction des modéles mentionnés et peut-

étre suggérer de nouvelles directions pour améliorer de futures simulations.

On remarque finalement qu’en physique des solides, les communautés
s’intéressant au grapheéne semblent ignorer le role de ’environnement diélec-
trique d’un métal, au-dela de la description électrostatique continue. Celle-ci
ignore la réponse dynamique et non-locale du liquide. Il y aussi donc aussi
ici des observables comme des conductivités électroniques, des dispersions
de plasmons ou des bandes interdites électroniques de semi-conducteurs
solvatés, a raffiner avec une meilleure une description de l'interface mé-

tal/liquide.

On peut conclure de cette introduction que notre travail réside premierement
dans 1’élaboration d’une approche pratique de 1’électrodynamique aux inter-
faces métal/liquide (partie i). Celle-ci doit étre assez générale pour traiter
un éventail de questions ouvertes concernant des effets “d’ordre deux” qui
sont généralement ignorés a l'interface graphene/eau. Ainsi, dans la partie
iii, nous obtiendrons les expressions de plusieurs observables physiques et

étudierons :

¢ le potentiel de force moyenne d’un ion solvaté a I'interface métal/liquide,

! Pour une description détaillée des simulations semi-classiques, 1’on renvoit a [27] et a [28, 29]
pour les détails concernant la méthode du potentiel constant.



¢ la taille de la bande interdite électronique d’un CNT solvaté,

* la friction métal/liquide et sa contribution non-adiabatique a 'interface

grapheéne/eau

Dans une moindre mesure, nous rencontrerons aussi la dispersion du plas-
mon du graphene solvaté, la réponse d'un slab d’eau a un champ électrique,
l'énergie interfaciale de vdW. Nous verrons le role central de certaines fonc-
tions de réponse que nous devrons donc construire en partie ii, avant les

évaluations numériques qui se situent sous les formules, en partie iii.

PARTIEI  Ladifficulté de la formulation de I'électrodynamique a une interface
métal/liquide réside dans le fait de devoir faire dialoguer des domaines
distincts de la physique : solide/liquide et quantique/classique. Dans les
approches existantes, il y a toujours une préférence, car il y a certains points
de vue. Il est intéressant de noter que la méthode encore aujourd’hui utilisée
[17] — mais qu’on essayera de dépasser — a justement su placer le solide
et le liquide sur un pied d’égalité. Malgré la réduction grossiere, fixons les

idées et schématisons ces deux domaines avec deux livres emblématiques

[31, 32].

Cherchons les similitudes entre ces deux domaines en ce qui concerne
I'électrodynamique. Dans les deux cas, on trouve un usage de la théorie de
la réponse linéaire dynamique et non-locale. Notre premier point d’entrée
sera donc de définir une fonction de réponse pour le métal x. et pour
le diélectrique xw, tel que si un potentiel électrostatique extérieur ¢ex est
appliqué a I'un d’entre eux, il répondra linéairement en induisant une densité

de charge n;,4 qui, en moyenne s’écrit :

(i (1)) = / A2(1,2) et (2). (253)

On a utilisé et utiliserons une notation regroupant espace et temps — i.e.,
1 = (x1,t1) — pour la lisibilité. Des lors, dans un systéme qui ne comporte
que le métal ou que le diélectrique, on pourra trouver le potentiel total en
considérant la somme de deux potentiels : celui appliqué ¢ex; et celui généré

par la nouvelle densité de charge induite ¢;,q.

Nous pouvons donc exprimer le potentiel (total) ¢tor grace a x dans n’importe
quel systéme fermé. On a donc déplacé le probleme dans 1'obtention de x qui
nous permet d’apporter des détails microscopiques. Nous allons construire x
avec une fonction plus simple x() qui considere que les particules®* du sys-

téme sont indépendantes, i.e. comme dans le gaz parfait, elles n’interagissent

22 Ce sont les électrons pour le métal et les molécules polaires pour le liquide.



pas. A cette fonction de réponse x(?) nous devons ajouter un potentiel de
force moyen entre particules vjnter. On construira x en faisant une renormali-

sation en champ moyen de x©).

Il s’agit d’écrire qu’'une particule répond au
potentiel extérieur appliqué ainsi qu’au potentiel moyen induit par toutes les
autres particules similaires. Ainsi, on obtient une équation intégrale de x en

fonction de X(O) et Vinter:

x(11) = X0 (11') + // 2d3x0) (12) e (23)(31). (254)

Ainsi, nous avons réduit le probleme central de I'obtention du potentiel
électrodynamique dans un métal ou un liquide a I’obtention de )((0) et Vinter
et a la résolution d"une équation intégrale. A fortiori, a une interface, nous
aurons besoin de Xéo), )(58) et Uinter (“W” pour le liquide et “e” pour les
électrons). Ce sont les briques élémentaires de notre approches. Dans ces
travail, toutes les observables physiques pourront étre exprimées grace a elles
seules. Cependant, leur définition est générale (nous n’avons toujours pas
précisé de géométrie) et elles comportent a priori 8 indices ! Dans la suite de ce
premier chapitre, nous donnons quelques exemples classiques pour exprimer
des résultats connus sous cette forme dans le cas de systemes homogenes,
infinis et isotropes. Nous proposons aussi un d’expliciter certaines formules
pour le cas d’un milieu semi-infini isolé. Ainsi, nous rencontrons pour la
premiere fois une quantité qui s’avérera centrale dans notre travail. Il s’agit
de la fonction de réponse de surface g (SRF) qui s’exprime grace a x comme

ceci :

—1
g(qw) = zeoq//dzldzze_q(zl+22)x(q,zl,zz,w). (255)

Nous avons utilisé le fait que pour une interface infinie (ici encore avec le vide)
et a I’équilibre, la transformée de Fourier était pertinente dans le temps et le
plan — x = (r,z) en coordonnées cylindriques et k = (q,¢-) dans I'espace
réciproque. On comprend aussi que la connexion avec l'électrostatique
continue se fait dans la limite des grandes longueurs d’ondes des fonctions de
réponse manipulée. Par exemple, nous retrouvons le coefficient de réflexion

du milieu semi-infini comme ceci :

e(w) —1

-0 e(w)+1’ (256)

8(q,w)
ol ¢(w) = e(k — 0,w) est la fonction diélectrique du milieu homogene,
isotropique et infini correspondant.

Le deuxieme chapitre de cette partie pose les fondations de notre approche.

On y décrit I'interface graphéne/eau pour en conclure que les interactions



chimiques y sont a priori négligeables (pas d’échange d’électrons). Dés lors,
on peut procéder a la fermeture des deux sous-systemes métallique et liquide
a l'interface. En effet, 'introduction abstraite d'une paroi imperméable
entre les deux milieux permettra de construire un modele microscopique de
l'interface. Les Hamiltoniens du liquide et du métal sont d’abord construits
séparément. Du coté du métal, c’est une pratique courante et 'on découple
surtout les électrons des noyaux de la maille pour préparer 1’ajout rigoureux
du liquide. Du c6té du liquide polaire, nous construisons un Hamiltonien
qui peut s’écrire en fonction de X(O) et Vinter- Des comparaisons sont faites
avec les fonctionelles de polarisation dans 'objectif de clarifier ce en quoi

notre approche s’en démarque.

L’étape suivante consiste a résoudre les incompatibilités fondamentales qui
subsistent encore pour le couplage classique/quantique en exprimant la
densité de charge du liquide polaire avec un opérateur bosonique quantique.
On montre comment obtenir, a partir de I'Hamiltonien classique du liquide
et en imposant une dynamique ad hoc, une action qui peut s’insérer dans la
théorie quantique des champs. On exploite a notre avantage des paralleles
connus entre celle-ci [160] et la dynamique des champs statistiques formulée
par Martin, Siggia et Rose [36]. Dés lors, une fois le liquide polaire transposé
— seulement formellement — dans cet univers, nous bénéficions d’outils issus
de théorie perturbation comme les diagrammes de Feynman. IlIs permettent
de combiner de maniére systematique les fonctions de réponse du liquide
et du métal (a travers X(O)et Uinter) €n fonction du cadre donné. Nous les

adaptons et simplifions a nos besoins a la fin de cette partie.

PARTIE II  Cette deuxieme partie est dédiée a 1’obtention des briques élé-
mentaires de notre approche ( X9, vinter) et des SRFs ( Q) pour l'eau et le
graphéne (ou plusieurs feuillets de graphéne — FLG). On introduit a travers
trois chapitres, trois méthodes originales pour obtenir ces quantités. Pour
l'eau, nous procédons d’abord & des simulations moléculaires classiques dans
plusieurs géométries pour obtenir des informations dynamiques. Ensuite,
nous résolvons 1'équation intégrale Eq. 254 pour un slab d’eau et procédons
a diverses études concernant I'eau interfaciale. Enfin, nous résolvons Eq. 254
pour un systéeme comportant plusieurs couches de graphéne (FLG) grace a

l'utilisation de fonctions de Wannier et un modele “tight-binding”.

Des simulations MM sont réalisées pour de 'eau bulk, a I'interface avec du
graphene et confinée dans deux feuilles de graphene, pour deux champs
de force différents. Elles nous permettent d’abord de nous intéresser aux

fonctions de réponse dynamiques du milieu homogene, isotrope et infini.



Nous repérons le pic de Debye et de libration dans le spectre de 'eau et
nous construisons des modeles analytiques pour les modéliser. Nous nous
faisons une idée de la SRF dans la limite de 1’électrostatique continue grace
a I'Eq. 256. Les simulations interfaciales nous apportent tout d’abord des
éléments complémentaires sur les Hamiltoniens statiques de référence qui
seront considérés pour la théorie de perturbation. Un protocole est proposé
pour obtenir g grace au théoreme de fluctuation—dissipation (FDT) qui s’écrit
tmg g ) = ST 5, 0), (57)
On a ici introduit une nouvelle fonction de corrélation importante que
I'on nomme le facteur de structure de charge de surface. L’analyse des
simulations consiste donc a obtenir S%(g,w). Grace a I'Eq. 257 et a des
propriétés d’analyse complexe de fonctions de réponse, nous construisons

une méthode d’obtention, des références et des modeles pour gw (g, w).

Dans un second temps, en partant d'un modele géométrique d’une molécule
d’eau (modele SPC/E, aussi utilisé pour le MM) nous dérivons une expres-
sion analytique pour x(?) dans le cas d’un slab d’eau. Nous inférons ensuite
un potentiel d'interaction moyen entre molécules d’eau vjnter qui est construit
grace a des résultats expérimentaux ou de simulations. Les éléments de 1'Eq.
254 étant réunis, nous montrons comment celle-ci peut-étre résolue pour
Xw(q,2,7") grace a une simple inversion matricielle. Nous comparons nos
résultats avec ceux de la littérature pour finalement prolonger notre étude
de la réponse diélectrique de I'eau a une interface. L'effet d'un champ élec-
trique extérieur est étudié et la pertinence de l'introduction d’une constante

diélectrique effective dans notre approche microscopique est discutée.

En dernier lieu, nous procédons a la méme démarche du c6té graphene et
FLG. Cette fois-ci, le formalisme quantique est nécessaire. Pour se placer a
température ambiante, nous utilisons ’approche de Matsubara pour obtenir
X,EO). Les interactions d’échange-corrélation ne sont pas considérées dans
Vinter €t NOUS nous plagons donc au niveau “random phase approximation”
(RPA)?3. Une solution originale pour le FLG est proposée pour la résolution
de I'Eq. 254 en réhabilitant des idées proposées lors de l'apparition des
fonctions de Wannier [69]. Un modeéle bien connu de “tight-binding” pour le
graphene et FLG est adopté et les SRFs g. (g, w) sont calculées, comparées et

discutées.

23 Leur ajout n’est cependant pas problematique.



PARTIE IIT  La derniére partie de ce travail consiste a obtenir des expressions
pour des observables physiques pertinentes aux interfaces métal/liquide avec
des applications pour le graphéne et I'eau. La premiére qui nous intéressera
est le potentiel de force moyenne d’ion solvaté, s’approchant de l'interface.
Elle nécessite 1'obtention du potentiel électrostatique a l'interface considérée.
Nous établissons d’abord les limites conceptuelles et pratiques (pour 'eau)
de l'approche existante. Ensuite, nous utilisons notre approche et organ-
isons nos briques élémentaires ()(E_.O), X‘(,\(,) ), Uinter) pour obtenir 1’expression du
potentiel total dti a une densité de charge externe a cette interface. Notre
résultat théorique est similaire a celui d’Hedin [95] et son traitement du
probléme électron-phonon. En utilisant les résultats de la partie II, le PMF
du potassium (K*) a l'interface graphéne/eau est calculé. La comparai-
son avec des résultats longs et couteux de calculs d’énergie libre effectué
en AIMD démontre la pertinence de notre approche. Nous procédons a
I'analyse des différentes contributions du PMF, toujours en lien avec un
regard critique sur les hypotheéses effectuées en simulation (métallicité, “fit”
de parameétres dans le vide, importance des interactions électroniques). Fi-
nalement, nous concluons sur la particuliarité du graphéne et sa structure
de bande semi-métallique. L'insuffisance du modele de TF pour décrire la
réponse diélectrique du graphéne de maniere cohérente dans le vide et dans

I'eau (en méme temps) est relevée.

Dans un deuxiéme temps, nous nous intéressons a ’évaluation de la bande
interdite électronique (ou “gap”) d'un CNT. Cette étude est motivée par
I'appel explicite d'un chercheur pour une description microscopique du
liquide aux interfaces CNT/eau. Nous la construisons en ayant recours a
des calculs GW pour obtenir 1’'expression du “gap”. Elle prend en entrée
I'expression de la fonction de Green du systéme sur le CNT que nous pou-
vons exprimer analytiquement grace aux SRFs g. et gw. Nous exprimons
les fonctions de corrélations microscopiques a calculer dans une étude fu-
ture. Les résultats obtenus dans ce chapitre — en donnant une description
microscopique et dynamique de 'environnement des électrons a la surface
solvatée d'un métal — permettent aussi de mieux décrire les excitations du
systéme. A titre d’exemple, et pour inciter a la réévaluation de ces subtilités
ignorées, nous montrons que le pic de libration de 'eau altere le spectre

d’excitation du graphene solvaté.

Le dernier chapitre de ce travail examine I’hypothese d’une contribution
non-adiabatique au phénomene de friction aux interfaces graphéne/eau.
Apres I'exposition des motivations d'un tel questionnement et un rappel de

la description classique de la friction — une image basée sur une idée de



8.2 RESULTS

corrugation statique — nous partons a la recherche de corrections a BOA.
Nous trouvons que le coefficient de friction a une interface peut toujours
s’exprimer comme un recouvrement entre deux facteurs de structure de
charge de surface S5, et 5. La contribution non-adiabatique quantifie les
similitudes entre les fluctuations temporelles et spatiales de charge dans les
deux millieux. La formule générale pour la friction entre deux solides** se
simplifie dans le cas d'une interface métal/eau grace au découplage des
temps et longueurs de corrélation dans les deux matériaux. Le processus de
friction électronique est évalué pour l'interface graphéne/eau et FLG/eau.
En outre, des données spectroscopiques expérimentales nous enjoignent a
étudier de plus pres le cas du graphite et de son plasmon de basse énergie.
Trois ordres de grandeurs séparent notre estimation des contributions non-

adiabatiques a la friction expérimentalement mesurée.

En conclusion, nous discutons brievement des limites et perspectives de
notre cadre théorique. Notre approche de 1’électrostatique surmonte des
obstacles théoriques non négligeables. Elle permet d’étudier les interfaces
métal/liquide rigoureusement a partir de modeles microscopiques et a un
prix computationnel négligeable. Elle pourrait constituer un outil complé-
mentaire aux simulations moléculaires avec lesquelles un dialogue a été
amorcé dans ce travail. Nous espérons qu’elle sera appréciée par quelques

chercheurs de disciplines différentes.

24 introduite par Persson et al. [143], et que nous généralisons.
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APPENDICES OF CHAPTER 1

A.1 STANDARD APPROACH TO ELECTROSTATICS

Herein, we summarize the standard approach to electrostatics. Gauss’s law
relates the electric field E in the vacuum to the electric charge density p it
stems from:

v.E=L. (258)

The vector fields we introduce — e.g., E — are expectation values of operators
for quantum systems. Helmholtz allows us to decompose the electric field
into a divergence-free field (or “transverse”) and an irrotational one (or
“longitudinal”). Introducing the electrostatic potential ¢ and the vector

potential A, it reads [33]:
E=—V¢ —0:A. (259)

Using the Coulomb gauge —i.e., V- A = 0 —, and inserting in Eq. 259 in

Eq. 258, we obtain Poisson’s equation:

vip =L (260)
€0

Assuming that a charge labeling is possible, the linearity of Eq. 260 prompts
us to separate charges. Some are external to the medium under consideration
Pext, SOme are present without the external perturbation p°, and others pjq
(also noted dp) are induced by the presence of the external ones. It means
that we can write ¢ = Pext + ¢° + Ping, each potential solving independently
Eq. 260.

POLARIZATION AND DISPLACEMENT FIELD It is usual to make yet
another distinction regarding the nature of the charges. When the system
is probed with wavelengths A extremely large compared to typical atomic
separation distance 4, averages can be made on large volumes V compared
to a. Therefore, if we can find a volume V such that 1 < V% < A, we can
separate charges that are bound (pp,) to a position (move on scale of a) and
others that are free (pf, that can move on large scales V%). For instance, polar

molecules in a dielectric can be considered bound charges, whereas electrons
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A.1 STANDARD APPROACH TO ELECTROSTATICS

in a metal are free. With this distinction — e.g. p = pext + pp + pf — We
rewrite Eq. 258 as

\ <D>V = 0t + Pext- (261)

where we have introduced the volume averaged displacement field (D)), =
€0(E)y + (P)y. The polarization is expressed in terms of the bound charge
density as follows p, = —V - (P)y. To what end this charge separation is
practical? Because for A 3> g, the constitutive relation for a local dielectric
media can be written in its long-wavelength limit. Therefore, it takes an
elementary form: (P)y, = epxT1(E)y. The local transverse susceptiblity reads
XT = €w — 1 where ¢, is the dielectric constant of the medium. Inserting in

Eq. 261, we find that

V- (E)y = PrT Pext +peXt, (262)

€0€w
which is Gauss’s law in a dielectric material. This formulation of Maxwell’s
equations is called “in matter” or “macroscopic”. Note that this formulation
implies that the distinction between bound and free charges is possible and

that A >> a.

GENERALIZATION OF THE BOUND AND FREE CHARGE SEPARATION
The polarization and displacement field can still be introduced without
assuming the volume averaging. However, to which charge density can we
attribute the polarization? In the literature regarding dielectrics and where
free charges are absent, it is ubiquitous to identify the bound charge to the
induced charge density in the system. The following set of equations is

therefore obtained:

Pind = —V-P; V-D=pet; D=¢eE+P. (263)

We call it the standard approach of electrostatics. What happens if free
charges are present? What is, in this case, the physical meaning of the
polarization if it contains a contribution from free charges? It appears that
the introduction of D and P is no longer relevant if we do not make the

long-wavelength limit assumption for the dielectric.

CONSTITUTIVE EQUATION In this thesis, we will consider a dielec-
tric/metal interface at the microscopic scale, and we do not resort to the
bound/free charge distinction (nor the introduction of D and P). However,
in the literature, this distinction is implicitly made, assuming the ambiguity

in the definition of the polarization P when free charges are present (see Eq.
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263). It is most probably why the polarization is ignored and the constitutive

equation links E and D, using

D(1) = € / d1d2e(1,2)E(2) (264)

where ¢ is the dielectric tensor and where we use 1 = (xq, 7).

A.2 TRANSLATIONAL INVARIANCE

The Fourier transform is defined as follows:

£09 = @@ f0= SR, ey

with & -y dk — We express
v Lk V—r+4o0 f m)? P

(2

n(x) = /dx’x(x,x')cp(x’), (266)

when x(x, x") only depends on x — x’. We insert the inverse Fourier transform

of ¢ in Eq. 266. It gives, after Fourier transformation,
) = 3 Dt KK, (267)
In Fourier space, x(k, —k’) reads
x(k, —k') = / dxdx’x (x, X' )e~ kXt kX (268)

Using x’ = x — x” and the invariance by translation, we compute the integral
over x. Therefore,
Xl =) = Vo qox (k) S — 25k = K)x(K)  (260)
—» 00
where x(K') = [dx"x(x,x — x")e"¥X"_Eq. 269 shows that x(x,x') has
a diagonal representation in the Fourier basis. Inserting Eq. 269 in Eq.
267 gives n(k) = x(k)¢(k). We will extensively use this property at an

translationally invariant interface (see Fig. 35). We recap those results in a

mathematical “toolbox” (Table 5).
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Fig. 35 Planar (cylindrical coordinates)
X (r,2)
dx drdz
J(x) 6(r)d(z)
k (9.92)

Fourier transfom

£(@) = [ drf(x)e o

inverse Fourier transform

f(r) = A7 yq fg)eia"

2
limit sum- AY, i f ((217()12
; 2
integral Adg . (27)%6(q)
fxg 25 dzf(q,2,2)8(q,2))

linear response

n(q,z) = [dz'x(q,z,2")¢(q,2')

plane invariance

x(q,—q') = (2m)%6(q — q')x(q')

Table 5: Mathematical toolbox for the infinite, homogeneous, and isotropic in the

plane interface.

Figure 35: Planar geometry with cylindrical coordinates. The vectors T and C are

relevant for chapter 7 only.

132



APPENDICES OF CHAPTER 2

B.1 DFT CALCULATIONS

We carried out an ab-initio molecular dynamics (AIMD) simulation of a
graphene-water interface of area 12.83 A x 12.35 A using the CP2K software.
The simulation is identical to the one described in [22] with the difference
that the hydroxide ion is replaced by a water molecule. A VASP calculation
was performed on a single configuration extracted from the dynamics, again
following [22]. We used the Perdew, Burke and Ernzerhof functional [161]
with the D3 dispersion correction scheme [162], which has been shown to
provide a good description of the water/graphene interface [23]. Plane waves
with kinetic energy larger than 600 eV were cut off and convergence was
reached when the difference between total energy and eigenvalue energies
was smaller than 107° eV. The resulting electronic density, once averaged in

the direction parallel to the interface, is shown in Fig. 1b of the main text.

B.2 LINK WITH POLARIZATION FUNCTIONALS

Felderhof [163, 164] showed that we could write a functional of the po-
larization field in a dielectric medium whose minimization leads to the
completion of Maxwell’s equations. The Hamiltonian of the system, using

the polarization field P instead of dn,, — with ény,, = —V - P —, reads
pol 1 ——1 1
Hy' =5 [ dadePa)x, (x,x)P) - = [ daD(x) - P(x).
€0 €0
(270)

By differentiating with respect to P, we find the constitutive equation in the

static case:

pol
51—1‘3’71)[1)] =0: P(Xl) = /dXzZW(Xl,XZ)D(xz), (271)

We have used [ dxq )7(";1 (x,x1) - x..(x1,x") = I6(x — x’). Therefore, using Eq.

Lw

263 and Eq. 264, we obtain

gy (12) =1 -, (12). (272)
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B.2 LINK WITH POLARIZATION FUNCTIONALS

We split the displacement field into a longitudinal and transverse compo-
nent D = D' + DT (Helmholtz decomposition). An external electrostatic
potential only appears in the longitudinal term: DL = —€0VPext = €9Eext.
An excitation stemming from a charge density only produces a longitudinal

excitation. Inserting in Eq. 270, it reads

/dxlEext(xl) ‘P(x1) = —/dX1V1¢ext(X1) -P(xq)
— / 1V} - P(x) ) ext(x1) — / dx1 V1 - [t (x1)P(x1)]

= */dlénw(xl)(Pext(xl) - #Qbext(xl)lj(xl) -dS;.
(273)

We have used an identity of operators and the divergence theorem to intro-
duce the surface charge density o(x;) = P(x7) - dS;. For a constant external

potential (or no potential), we obtain that

[ dxasn) = = ff o) (274)

Eq. 274 says that if you cut a dielectric medium, net charges will appear on
the surface because some molecules will be cut in two. The overall neutrality
condition requires to include charges on the surface.

Charges on the surface also react to the external electric field, hence the
second term in Eq. 273. For an infinite slab, there is no surface polarization
in the direction parallel to the interface because it is never cut. However, the
symmetry breaking in the direction normal to the interface can lead to a net

surface charge. The latter integrates to 0 on the infinite surface,

# o(x1) =0 (275)
S1

Therefore, if ¢ex: is constant on the boundaries, then the second term in Eq.
273 integrates to 0 along the infinite surface. For instance, this is valid for a
constant electric field D, /eg applied in the direction normal to the surface.
Without any assumption regarding ¢ext, Eq. 273 shows that the excitation
will couple the surface charges to the charges in the volume. It points out the
crucial role of the volume boundaries. In a macroscopic formalism, media
are cut with sharp boundaries (e.g., one-side being the medium and the
other vacuum). However, from a microscopic point of view, the medium
does not terminate abruptly but smoothly on average. The surface boundary
is no longer clearly defined. At a plane interface, we can therefore use a
volume encompassing all molecules so that none of them can be cut in two.

It adds up to closing the medium with an impenetrable plane. To remove
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the surface charge due to the dielectric media’s abrupt termination, we
introduce a smooth molecular profile that vanishes on the volume boundaries.
The response function of the dielectric medium will also smoothly decay
near the boundary. This assumption will come in 2.3.1. Our framework
therefore comes with the assumption ¢(x) = 0 on the volume boundaries
(impenetrable plane).

To link the dielectric response tensor to the susceptiblity of Eq. 1, we

insert Eq. 273 in Eq. 270 (without the surface charge term) and obtain

HE0 = o ] a5, (0, x0)P0x) + [ dxadn(x1)gesi(x0).
K (276)

¢ext generates the moments of dn,,. In the expression of the response function

Xw(x1,%2) = %, only quadratic terms will participate. Using P =

PL + PT and the Helmholtz decomposition for the longitudinal field:
Oy (X
P (xi) = V4 / dezf (277)

we can express X' with the tensor &;1

dX3&4 ( 1 ) . ( 1 >
(xq,x . X3,X4) - Vg | ——
X 1 2 / €0 47_[ |X3 — X1| &W ( 3 4) 4 |X4 _ X2|

(278)
In Fourier space, for the case of an homogeneous, isotropic, infinite dielectric,

Eq. 278 reads

ke
The longitudinal response {w (k) = k- &;1 (k) - k is therefore linked to yy (k)

as follows (see also Eq. 16):
xw(k) = *kZGOXW(k)
B.3 A LIQUID IN A QUANTUM FRAMEWORK

The liquid Hamiltonian (see Eq. 62) written at an arbitrary time ¢, reads

Hy(t) = —%/ dxldxzn(l))(_l(xl,xz)n(xz,t1)—i—/dxln(l)(p(l), (279)

where we simplified the notations (6nyw — 1, xw — x) for the sake of clarity.

We included the external potential (¢ext — ¢). The dynamics of liquids
are a combination of Gaussian processes, be them harmonic oscillators or

diffusive processes. For simplicity, we impose the simplest dynamic by using
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B.3 A LIQUID IN A QUANTUM FRAMEWORK

the Langevin equation. For instance, the same treatment can be refined by
incorporating an acceleration term. The charge density is a non-conservative
order parameter, so we use the simplest model for stochastic systems — type
A in the nomenclature of Hohenberg and Halperin [165]. The Langevin

equation reads
on(1)
ot

where (¢(1)E(2)) = (¢€)6(1 —2) and where (¢¢) = 2kgT would indicate
equilibrium’. The “force” F(1) is the functional derivative of Hy, (Eq. 279):

= F(1) +£(1) (280)

_ SHy

F(1) = 5n(1) =—¢(1) —l—/dxz)(*l(xl,xz)n(xz,tl) (281)

The dynamic is markovian, and the susceptibility x ~! has no time argument.
Once (1) is known, the Langevin equation is entirely deterministic, and
the average of a quantity can be understood as an average over multiple
realizations of the random force. Therefore, we introduce functional proba-
bility P [n,¢] of a trajectory n(1) to occur, given the random noise ¢(1). Its

expression requires the Dirac functional, and is obtained from Eq. 280:

Pn,& =6[n(1)—F(1)—¢(1)] = / Diiet [ RM)-FM)=CD]  (585)

We have used the functional Fourier transform for the last equality. It
introduces an auxiliary field 7. The noise averaging is a (weighted) integration
over the different realizations of the random force. Using the notation

[d1f(1)g(1) = fg in the exponent, we obtain®

& - )
(P [1,&)noise = / Dge 2@ P [n,¢] = / Diie M-F-3E0% (585
The partition function, Z [¢] = [ D [n] (P [1, &])noise, reads

2] = / D [n, ] e—ifli-FI-} (@7 (284)
We extract from F the external potential ¢ that acts like a source to generate
the moments of the auxiliary field 7i. Accordingly, we introduce the auxiliary

external potential ¢ that generates the moments of n. We impose the normal-

For clarity, we remove the prefactors that ensure homogeneity. We do believe we benefit from
this non-orthodox choice.

We do not report the Jacobian in the denominator and we may be missing some subtelties
that are beyond our mathematical skills. However, we will be interested in response functions
that are obtained by Gaussian integration of the partition function. We miss now the correct
prefactor and will miss its inverse later.
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B.3 A LIQUID IN A QUANTUM FRAMEWORK

ization Z [¢, ¢ = 0] = 1. The response of the mean field due to an external

perturbation reads:

ez
54’(2)‘(,5—0 ~ ' 55(1)sp(2) $=0
By rewriting the exponent in Eq. 284, we express it as Keldysh action
[40, 42]. We use fDg = [d1 [d2f(1)D(12)g(2) in the exponent. We find

that we can write

= —i(n(1)@i(2)). (285)

/D "XR n+nxg fi+iixg ”)—z(ﬁ(p—&-n(f))l (286)
with the following definitions of the inverse propagators:

xg (12) = — {5( 2)0t, —0(t —ta) X~ (X1x2)} (287)

xal(12) = xg1(21) 5 xg'(12) = +i(EE)o(1 —2). (288)

We have split in two Eq. 281 two build, with redundancy, )(Kl and xz 1. The
matrix form of the action appears once the vectors fields NV (1) = [7(1), n(1)]

and ®(1) = [¢(1),$(1)] are introduced. The susceptibility matrix reads

-1 -1
12 12 0 12
7 y0) = (B U2 U2 ) w2,
Xa (12) 0 xr(12)  xx(12)
(289)
the action reads S [V] = N X! /4N, and the partition function reduces to

/D zS NV]— l./\f@ (290)

By gaussian integration, we obtain

; 52z
6@ (1)0D(2)

_ / D NN (DN (2)e T PN/ (201)

- — (1)ﬁ(2)>0 <ﬁ(1)1’l(2)>0 Gaéss.‘)c. P (292)
(n(D)i(2))o  (n(1)n(2))o o

Using Eq. 285, we find that the retarted response fuction, xg, is the response
function to an external potential: xg = x.
Let us fully characterize X_, /4 for the most straightforward dissipative

dynamics, imposed by the Langevin equation. We use

[ 22 12w/ c(2) = 511, (299)
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For the homogeneous, isotropic, infinite case, we use Eq. 287 and Eq. 293 in

Fourier space. It reads x4 (k,w) = — [#iw — x ' (k)], or
xrya(kw) 1 xx(kw)  (66)  2t(k) (204)
Xk dFietk) x| 2 1@k o4

with (k) = x(k) (recall that the prefactors are ignored), and we recover
Xr/A(k,w = 0) = x(k). For the off-diagonal Keldysh term, we used yx =
—XRXK 1xa. Eq. 294 are familiar equations for classical relaxation dynamics?.
Finally, we check that (¢¢) = 2kpT does ensure the classical FDT. First, using
Eq. 291 we find xx(12) = —iS(12) where the dynamical structure factor or
correlation function, reads S(12) = (én(1)én(2)). Second, ilmxg(k, w) =
ﬁ Xk (k, w). Using both equations and ({¢) = 2kgT, gives

w

sepsbw)  Skt=0)=—px(k.  @96)

Imyg(k,w) = —

Eq. 296 is the classical FDT (right) [35] and its static consequence (right) due
to Kramers-Kronig (KK) relations (see appendix B.4 or Eq. 299).

B.4 KRAMERS-KRONIG RELATIONS

Response functions respect specific properties such as causality: x(t; — t) =
0 for t; < tp. It implies that the complex function x(z) is analytic in the
upper-half plane (Titchmarsh’s theorem). Moreover, when the system is
excited at very high frequencies, it no longer responds to the perturbation:
x(w — ) — 0. It goes to zero faster than |w|~! because the dissipated

power hiwImy (w) should also converge to zero. On a semi-circle contour C
x(z)

2, the residue theorem

that avoids the real pole at w of the function z —

gives

x(z) CONN
é =—dz = 27T12ReSc)( =0= P/ W itx(w). (297)

Z— W

Here, P is the Cauchy principal value. Equating the real and imaginary part
of Eq. 297, we find:

T dow’ Imy (w')
Rex(w ”P/ o —w (298)

3 In the time domain, we find

xryalkt) _ 0(£t) /e xxlkt) (88 /e
S wm e wm e (299)
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The response function x can be obtained with the sole knowledge of the
structure factor, at equilibrium. Note that Imy(w) is an odd function, while

Rex(w) is even#.

4 It may be clearer written as Imy(w) = — fj’;o dte™ ™t [x(t) — x(=1)]).



APPENDIX OF CHAPTER 3

L=96A L=128A

L=18.9A

Figure 36: Snapshots of the slab simulations with varying L. The surface area is
64.158 x 61.745 A”.

In conducting slab simulations, we merely want to check if the surface
response function changes with confinement effects. The slab simulations
contained N = 800, 1200, 1600, or 2000 water molecules depending on the
slab thickness — resp. L = 9.6,12.8,15.8 and 18.9 A . The two solid surfaces
each consisted of two staggered graphene layers, with a surface area 64.158 x
61.745 A”. The positions of the carbon atoms were frozen relative to each
other. The distance between the surfaces is first equilibrated during 400 ps,
then it is fixed, and the subsequent 6 ns are used for analysis. Werder
parameters are used for the water-carbon interaction. The results for the
static surface response function are shown in Fig.37, using dwerder = 1.3A
as in the bulk case. We find no variation of gw(g) for L > Inm. The same
conclusions are obtained regarding the dynamics (not shown). We also do
not find any differences in the SRF using two or three graphene layers in the

MM simulations.
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Figure 37: Static surface response function of water confined in slabs of length L. We
use the Werder force field and dyerder-
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D.1 BULK NON-INTERACTING SUSCEPTIBILITY X&?)(k)

A
4

dun=1.633 A

Figure 38: SPC/E water molecule [48].

In this paragraph we detail our model for bulk water. First, we precise
that we will consider static external perturbations only. The time integration
in Eq.1 gives that the mean induced charge density does not depend on time
(as expected) and that the relevant response quantity is the zero-frequency
component of the response function - e.g. xw(k) = xw(k,w = 0) in the
homogeneous and isotropic system. We briefly recall how to obtain it using

Kramers-Kronig relations and the FDT [35] :

xw(k) = Rexw(k,w = 0) (299)
Eq._298 Foo dw’ Im)(w (k, w’)
=L S (300)
Eq. 206 [T dw’ _ﬁSW(krw/)
=L S (301)
= —BSw(k,t =0) = —pSw(k) (302)
= =L om0 (509)

The charge density of the water molecules ny,(x) — that must be replaced
by dnw(x) = nw(x) — (nw(x)) if the mean is not zero — is composed of
point-like charges. In a field formulation, we can write the charge density as
a convolution between the fixed charge density o(x,()) of one rigid water
molecule oriented with an angle (), and the molecular number density

Nw(x,Q) —ie. [}, [ Nw = N = ngV so that n is the molecular density

Nw(x,Q) = Zé(x —x)0(QQ—=0y); o(x,Q)= ané(x —54(Q)), (304)
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D.1 BULK NON-INTERACTING SUSCEPTIBILITY Xﬁ,;’)(k)

They both depend on the molecule’s orientation () that we do not need to
explicit here, but details can be found in e.g. [166]. The index i runs on
different molecules and « on different atoms in the molecule with the partial
charges c,. s,((2) is the position of the atom « positions given the orientation
Q) of the molecule. Those quantities for the SPC/E model [48] can be found
in Fig. 38. It gives

nw(x) = /dQ/dx’a(x— x', Q)Nw (X, Q) (305)
With those definitions, the structure factor reads
1
Su(k) = 35 ] 000k, 00)o(—k, ) (Vo (k, 01)No (K, ) G06)

The molecular number density field can be split into two parts that highlight

intramolecular and intermolecular correlations

(Nw (k, Q1) Nyw (—k, Q) Z(s M — Q)6 =)+ ) .. (307)
i,j#i

Therefore, we can write Sy (k) = S< )(k) + S(mter (k) with
1
S = o5 / A (k, O1)or(—k, Q1) (N () (308)

and the orientational density Ny (()1) = }_; 6(Q — ;). In the bulk (N (()1)) =

1/87?% is homogeneous and
(k) = nozcacﬁ/ M o~k (su (1) —s5()) _ 1o Y cacpjo(kdap)  (309)
a.p ap

where jj is the zeroth order spherical Bessel function, the interatomic dis-
tances read dyg = [sa — sg| and ng is the molecular bulk density. For SPC/E

water, we have
S‘(A(,)) (k) = noz3; [6 — 8sinc(kdop) + 2sinc(kdp )] (310)

where zy is the partial charge on the hydrogen atom, doy and dyy are
the bond distances of the SPC/E molecule Berendsen ef al. [48] and ng =
0.03298 A > This gives the response function of the independent - or non-

interacting - molecules that reads

X (k) = — st (k) (311)
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D.2 THE MEAN-FIELD WATER POTENTIAL Uy "

To find an expression for v&f, we rearrange Eq. 89 to make an effective

dielectric function e&f (k) appear:

k) 11 (312)
o) el xw(l) 2Oy

e&ff(k) is known in the long-wavelenght limit because

4 6 k212
55\9) (k) —0> nogkzz%ldon cosz( HgH) = noTﬂ = kg Tnoak?. (313)

We notice the Debye-Langevin polarizability &« = % with p the dipole

moment of the SPC/E water molecule (see SPC/E water molecule in Fig.

38 for zpy, don, fono). Using the dimensionless susceptibilities fw (k) =

ew’

—xw(k)/€eok?, and he limit yy (k) Py 1— L, we obtain

1 ,L, w €0 (314)
efk=0) &ff ew—1 mnpa’ o

As expected, the intermolecular potential is zero — or €& — oo — if water
molecules behave independently i.e. {w = X‘(S ). For water, &ff ~ 1.04 so that
the description of interacting molecular form factors with a bare Coulomb

potential is accurate in the long-wavelength limit. The effective charge-charge

potential in real space for water is given by the Fourier transform of Eq. go.

It read ) | gmtr _ x7£67K2x2/2
v (x) = 4n€0€$5’§x : (315)
Using Eq. 315, we find
v(x
veff(x) ~ g(eff) rx > 1. (316)
w

The partial Fourier transformation that is used to fill the V& matrix reads

off 1

vy (9, ]z =2') = Trtege (317)
W
YY)
B 2T g 2 )
q Q K T
(318)

where Q? = g% + «2.
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D.3 NON-INTERACTING SUSCEPTIBILITY X (q,2,2")

Looking for the response function xw(q,z,z") at interfaces, we can proceed
from Eq. 299 to Eq. 303 to find a relation between the susceptibility and the
corresponing structure factor. Equally, we dwell on the non-interacting part
and find

xg,27) = -ps¥(q,2,2) (319)

We proceed like in the bulk and after some straighforward steps, we obtain

Ség)(q,z Z') A//dﬁldzla(q,z—zl,ﬁl) (—q,2" — z1,Q1)(Nw(z1, 1)),
(320)
with

0(q,z,Q) = ane*iqsﬂ‘(n)é(z —2(Q)); Nw(z1,Q) =Y 6(01 —Q)8(z1 —2)).

i
(321)
Looking at the structure of the product ¢(q,z, O1)0(—q,2/,Q1), we can

express it with the sum and differences of z and z’ as follows

o(q,z,0)o(—q,7,0) Zc cpe ' (=85 (2 — 2,(Q)) 6 (2/ —25(0))

= Zc acpe ~1q(sa(Q) —s5() (322)
) (z — 7' — [22(Q) — 25(Q)]) (323)
X 6(z 42 — [2(0) +25(0)]) 520

This makes the convolution of Eq. 320 with Ny, (z1,)1) possible. It reads

s9(q,2,2) /dQancﬁe (s (=555 (2 — 2/ — [24(Q) — 25(Q)])
(325)
X Now (z—i—z’ — [za(ZQ) -i-zﬁ(Q)} ,Q> (326)

For an homogeneous density, we would be able to get the term involving N,

out of the summation. Assuming equiprobable orientation of molecules in
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the entire slab, we would recover the inverse fourier transform of the bulk

structure factor, i.e.

5(0) (q]z -7/ / aqz olzlz— ZIS )( K) (327)
= ngz3; [66(z —2') — 81(q,don, |z — 2'|) +21(q, dun, |z — 2'])]
(328)

with 1(g,d,z) = Jo(qv/d?> —2z2)®(d — |z|)/2d and ]y is the zeroth order
Bessel function. We work in this direction and try to express S‘(N) (q,2,7)
with S\ (q, |z — Z'|). Using the condition enforced by the first Dirac delta
function in Eq. 325 — z = 2’ 4 [2,(Q) — 23(Q)] — we can replace the
term involving Ny by either Ny, (z' — z5(€2), Q2), or Ny (z — 24(Q)), Q0), but
also by \/Nw (z = 22(Q)), Q) Nw (2 — 25(Q), Q)), without any approximation.

Making now the approximation Ny, (z —z4, ) >~ Ny, (z,Q2) and assuming
equiprobable orientation of molecules in the entire slab we can write

no(z)no(z) 5

S - w (]2 =2), (329)
0

q9,z,7) ~

which is the main result of this paragraph. This approximation is valid if
the molecular profile typically varies on a scale larger than the size of a
water molecule. Note however that the Taylor expansion of N, near the
interface give rises to terms linear in z,(()) that can most probably gives
a zero contribution when the angular integration is carried out (under the
approximation of equiprobable orientation). Combining Eq. 319 and Eq. 329
gives Eq. 91.

D.4 COMPARISON WITH MD RESULTS

The smoothed step function molecular density profile ny(z) is chosen be-

cause:

eff

e the use of 05" that implies that molecules interact as is they were in the

bulk, that is with an homogeneous molecular density ny.

e it gives the same Y (z) we obtain by using the real hydrogen density
of the MD simulation. We use the hydrogens because they can go at

altitudes at which oxygens cannot.

The MM results of [65] for fw(z) are shown in Fig. 39. The use of 0y =
0.3A gives the correct amplitude for the first peak. The oscillation period,
amplitude and decay length are also in good agreement. By tuning the

molecular density profile, we can fit exactly the MM results, but our goal is



D.4 COMPARISON WITH MD RESULTS

not to reproduce the local dielectric of an MM simulation that uses effective

L] potentials or effective interactions between the surface and the water

molecules — graphene is absent when we build x..

2.0 -
i
15 [ TRAN ) } N
B ™ ° | A,
—_ [N [ < !
~ 1 I [N J
oS 1.0 ‘l \v Y ! NN /
i \ ¥ —
i v/ T
05 4 \/ 0.0 0.5 1.0
]
/ -== MD —— models
0.0 4=——==
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z (nm)

Figure 39: The results in Fig. 10, compared with the MM simulation results in [65]
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E.1 COULOMB VERTEX

Inserting the Bloch expansion Eq. 104 in fie = ¥'¥ and Fourier-transforming

in the plane gives

R/ —
(Yup(2)le™ ¥ pyic(2) 7 Y. Z /PRy MRy (g5 ). (330)
Kp K/
/dre ar gy (r — Tyrp, 2 = 2 )P(T — Tiep, 2 — ).
(331)

Making the change of variable ' = r — R,y in the integral and R,y = R + R~

in the summation leads to

(Ppp(2)|e T po(2)) = Y Y /P ORypilPmaRy g (g5 ) (332)

Kp K/p"
/ dre 9" (r — Ty, z — 2, )p(r — Tyips 2 — Zy!)
(333)

The sum over the lattice sites R, gives the conservation of momentum

p=k+qso
U(s,z) = /dre*iqrcp*(r — T, 2 — Z)P(r — Ty — Rp, 2 — 2), (334)

with s = {k,«’, p}. Therefore, we get
AR

ktqk(2) = Y e Re( yk+q) dyU(s, z). (335)

Eq. 107 with Eq. 335, assuming U(s,z) = 0 if p # 0 and x # «’.



E.2 COMPUTATION X(EO)(q,z,z’,w)

0
E2 COMPUTATION X\ )(q,z,z’,w)

We note T H the imaginary time-ordering operator with T € [—8, f] and
B = 1/kgT. The response function, as given by linear response theory in the

imaginary time formulation [31], reads

xe(@z7 0 = - (Tfadazvn-a)]). G

Xe(q,z,2/,7) is related to xe(q,z 2/, t) in the frequency domain, by analytic
continuation on the real axis, that is xe(q,z, 2/, w) = xe(q,2, 2/, iQn — w +
i), where Q),, = 2tmkpT is a Matsubara bosonic frequency. We do not
distinguish them in the notations, apart from the type of argument (real or
complex). Inserting Eq.105 in Eq. 336, gives rise correlators” expectation

values (C). They have the following form:

<C> = <TT [[CA;kJrq(T)évk(T)é}pquA’YP]] > (337)

Inserting (.) = Tr(e_ﬁH.), Eq. 337 gives [31]:

<TT [$(B,0)ehuc. g (Teuc(T)el, g >

<é<ﬁ,o>>0

Greek letters represent band index and $(8,0) = T [[exp(— foﬂ dTHint(T))]]

is the propagator in the imaginary time interaction representation — e.g.

(C)=— 2 (338)

Hint(1) = e H; e~ ™o where Hip is given by Eq. 75. Eq 338 shows that
the complex expectation value (.) = Tr(e_ﬁH ) can be expressed pertubatively
with respect to the quadratic Hamiltonian: (.)g = Tr(e’/gH © ). It follows from
Wick’s theorem that we can express Eq. 338 in terms of all possible products
of single-particle Matsubara Green’s functions.

The non-interacting response function Xéo) is obtained by ignoring the
interaction of the electrons between themselves or with their environment.
Therefore, computing Eq. 336 adds up to developping the propagator $ to

zeroth order, that is $(B,0) = 1. This gives

(Cho=— <TT Héé‘p—qézk('r)ﬂ >O<TT [[ﬁyk—o—q(‘[)é;p]] >0 (339)

+ <TT [[@Hq(f)@lk(ﬂ]] >O<TT [[éépfqdp]] >0

= 690, 1)6” (K + q, —T)616u50p 11 q (340)
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where we have used in Eq. 339 that <TT [[c},k+q(r)€$k(7)]] > =0forq#0
and that for q = 0, charge electroneutrality (considering th(é frozen lattice
of nuclei) gives that it is also equal to zero. Finally, the properties of the
creation and anhiliation operators leads to the conditions 6,,8,50p 11 q that
stems from the orthogonality of the eigenstates. We have introduced the

non-interacting Matsubara’s single-particle Green’s function Q,SO)(k, T) =
—<TT [[cvk(gcltk(r)]] > , whose expression in Matsubara fermionic space is
0

given by
1

0) ik, T
(k, iky,) / dre ® gl (16, 7) = Fr—— (341)

where k, = 71(2n + 1)kgT. Note that the inverse transform reads QV(O) (k,T) =
% Y ekt V) (k, ik, ). Finally, combining Eq. 105, Eq. 336, Eq. 341, and Eq.

339, we obtain

Oa27,7) = 5 LA @6 (6 0610 e+ @~ DA, (), (42)
vyk

X

where A} } N q( N =Yy, d~ it q(d" )*ug(z,«) that is obtained similarly as Eq.
(0)

107. Fourier transforming with x¢ ' (q,z,2,iQp) = foﬁ dTe’iQmT)(éO)(q, z,7,7),

‘we recover

kgT v
(@22, i) = B T VAL w0 (k). (43)
vuk iky
-G (k+ q, ik, +iQm) My (2): (344)

where we have used the convolution theorem. Making the substitution

iQy — w + iy gives Eq. 113.

E (0)
3 Xz (9) FOR GRAPHENE

(0)

The analytical expression of xe ' (g, w) for graphene can be found in [74]. In

the static case, it reads:

2k1: q
fropr 1+0 (2kp - ) (345)

2
(ZZF {n — arcsin <2I;F>} - L 1— <2§F> )] (346)

xg) = -

N
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APPENDICES OF CHAPTER 6

F1 ANALYTICAL EXPRESSION OF Xy

Computing Eq. 141 using Eq. 145 is a non-trivial complex analysis exercise.

Briefly, we express the integral as

o 2 e Xw(q%)  igeva—1
~(q,z) = =Re dx StV
Xwld,2) = — /1 Y (347)

and use the residue theorem on a contour that avoids the real branches
| —oo,—1[ and ] 4 1, +oo[. We have fives poles in the contour, four from x
and one in zero. Be careful with the definition of the complex square root.
This allows to obtain an analytical expression for {*(g,z) in general. We

report the result for z = 0:

F2 GRAPHENE LAYER-LAYER CORRECTIONS
For two confining plates centered in z = 0 and z = L, the expression of the

electronic response function is obtained by following the steps from Eq. 150

to Eq. 154. It gives

(0,22 = x5 @0@)8() + A (@)L - 2)S(L-2)  (349)
+ a5 (o - Do) + A5 @)8(2)6(L—2)  (350)

with
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F‘3 OTHER COMPARISON

A () (w)
1— 0,L)x™). ()]
ww(q,0,L)Xe/6:(q)

(w) (w)
w X r(‘])ww(q/O/L)X r(q) w w
A (q) = L8 (W)e/G > A @=al@  Gs2
1= [ww (2,0, L)x()8, (@)
and where
(0)
Xeye(0) = xe_(4) @ (353)

1 —ww(q,0,0)xe " (4)
The uncoupled and semi-coupled curves are obtained by replacing wy (g, 0,0)

with v(g,0,0) = 1/2gep in Eq. 353.

F.3 OTHER COMPARISON

Extracting the electronic contribution F., we compare our results with the
one of [85] in Fig. 40. They decompose the wall-ion contribution for the
adsorption site of SCN™, which is an ion too large and anisotropic to be quan-
titatively compared with isotropic ion in presence of water. Nevertheless, the
good agreement with our results regarding metal-ion potential attenuation

validates our description of the system.

30
= water only
20 —— uncoupled
semi-coupled

= fully-coupled

BAF(2)

z (nm)

Figure go: Electronic contribution to the PMF shown in Fig 23a. The crosses are
results extracted from Ref. [85].
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APPENDICES OF CHAPTER 7

G.1 GoW IN GRAPHENE

The single-particle Green’s function G follows the Dyson equation:

G(1,1) = G9(1,1) +//d2d3c<0(1,2)2(2,3)c(3,1’), (354)

where G0 is the non-interacting Green’s function that is build in the eigen-
states basis of the quadratic TB hamiltonian. To calculate the self-energy

%.(1,2), Hedin [119] suggested the GW approximation:
2(1,2) = iG(1,2)w(17,2). (355)

Here w is the screened potential and where the ” + ” indicates a forward
infinitesimal time shift. The retarted Green’s function of the electronic system

can be decomposed on the electronic energy levels

Glx,xa b, t) = ) Puk, ()51, (x3) Gy (K, Ky, o, 13). (356)
aykaky

We underline that in this section, that k’s are two-dimensional wavevectors.

At equilibrium, for a translationally invariant interface, G only depends on

time and space coordinate difference. Going into frequency space in time,

we find using Eq. 356, Eq. 355 and Eq. 354, that

d(hw B
Zvy kl// ky/ E Z % / dedfolpka (XZ)I/)aka (XZ)"' (357)
.Gy (Ka, ko, E + hw)ei‘s‘”w(xz, X3, w)lp;k7 (X3)l,byk” (x3)

The screened potential w is expressed in terms of its inverse Fourier transform
and reads w(xy, x3,w) = A~! Yq e~1(2—13)7y(q, w, zp,23). To conserve the
crystal momentum (ie. A%, (—q) # 0 or /\IZZ ke (q) # 0 see chapter 5)
we need that ky — q = ky (resp. ky + q = k). Also, the starting point
is Gy = G,Efy) [0 5«75kvky that has diagonal entries at equilibrium so that

introducing
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(G.2 CARBON NANOTUBES (CNTS)

Wgyk(q/ (‘J) = / deng/\i‘i‘(_q (ZZ)ZU(q, W, z2, 23)/\iy7qk (23)/ (358)

we can rewrite

— i d(hw) idwyATH
Zuu(k, E) = A;/mGa(k—q,E—khw)e vyk(q'a))' (359)

We can also check that non-diagonal terms are zero because we only consider
classical — Coulomb type of interactions so that eigenstates are not mixed
(Xyy o dyy). Finally, considering the small spatial extent of the carbon p, or-
bital, we make the 2D approximation, that is w(q, w, zp,23) ~ w(q,w,0,0) =

w(q,w) in Eq.358. It gives

= Z 7_” Mic—ql Gu(k — g E + hw)w(q, w)e®™.  (360)
This can be expressed in the Matsubara formalism [31] as long as we con-

sider a thermal equilibrium state at temperature T. The Matsubara bosonic

frequencies ), = 27tmkpT are introduced and we read

ZZ e ngﬂ (k — q, ikp +iQu)w(q, iQp).  (361)
Vq iQy

G.2 CARBON NANOTUBES (CNTS)

Figure 41: A CNT as rolled graphene ribbon. To be compared with Fig. 35.
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(G.2 CARBON NANOTUBES (CNTS)

Fig. 41 Cylinder (cylindrical coordinates)
X (0, 9,y)
dx pdpdedy
5(x) 50(0)(9)8(y)
k (pr l/ P) = (qP/ C:)
Fourier transform £(Q) = [Tde fOLy dyf (¢, y)e (ol/R+py)
inverse Fourier transform  f(¢,y) = (2nL,) ™! ng(g)e“(?"l/R“’y)
limit sum- L'y, P [t
integral Lyéy —— 2md(p)
Ly—o0
fxg o " de'e'Flp. 03 (')
linear response n(0.0) = [ a0 x (.0, 90 0)

Table 6: Mathematical toolbox for the infinite, homogeneous, and isotropic on its
surface tube.

A CNT is a rolled graphene ribbon. The chiral vector uniquely defines
the CNT because it links two overlapping carbon atoms in the ribbon. Given
the lattice vectors aj,ap of the graphene lattice, it reads C = naj + may. The
circumference of the CNT is |C| = 27tR with R the radius of the CNT. Along
the nanotube axis, we can introduce another vector that gives the minimal

translation before repetition along with the axis of the tube [71]:

_ 2m+n _m+2n

T dR a dR

ap dr =ged(2m+n,m+ 2n). (362)

This vector is orthogonal to C as shown Fig. 41 that shows the CNT and
its corresponding unrolled ribbon. We choose e, = ‘% to be aligned with
the tube axis of length L, and e,y = \%I In our coordinate system, it gives
x'/|C| = ¢/2m or x' = ¢R. Note that locally, considering the small spatial
extension of the p; orbital, when can assimilate the vertical direction of the
planar system to the distance from the cylinder, that is z ~ p — R. In cartesian

space that links the planar and cylindrical coordinates, we can therefore write

x = gRe, +ye, + (0 — R)e.. (363)

In the so-called zone folding approximation, we obtain the eigenstates of

the graphene ribbon with a periodic boundary condition in the e, direction.

This means that the wavefunction should be periodic. Using Eq. 121, we
must therefore imposes that ¢, (r + C) = e % Cy1 (r) = ¥, (r). This is
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G.3 CYLINDRICAL SRF OF A DIELECTRIC

equivalent to discretizing the reciprocal space in one direction such that
the Brilioun zone is now a set of parallel lines. We are interested of the
condition e =€ = 1 for k near K or K’. Using K- C = (n —m) /3, we find

convenient to distinguish cases and write n +m € 3N — ¢ with o = 0, £1.

The periodic boundary condition reads ffik - C = 277(I 4+ ¢/3). Turning to

the eigenenergies (see Eq. 122), we find that

€y = vhor \/(l +0/3)2/R?2 + p?, (364)

where the symbol { = (I, p) for the wavevector in the CNT has replaced the

k — K symbol for the planar surface. Note that near K’, we replace ¢ by —o.

The consequence of such a dispersion relation is that some tubes (¢ = 0) are

semimetallic like graphene, and others (o = £1) are semiconducting.

=0,p)

geoll

0.0 0.5 1.0 15 2.0
PR

Figure 42: Static dielectric constant ec(I = 0, p) of a CNT a T = 300 K.

G.3 CYLINDRICAL SRF OF A DIELECTRIC

In this paragraph, we derive the SRF of a liquid inside or outside a CNT in
the continuum electrostatic limit (see Fig. 43). This means that we can use
standard electrostatics — Eq. 262 and the constitutive Eq. 264. We use the

following tensor for the dielectric

0 0
ew=10 € 0], (365)
0 0 &

to show the first steps of the derivation in one considers of an anisotropic

material. We detail the electrostatic problem for the outside case in Fig. 43a.

We consider the space entirely filled wih a liquid outside a hollow cylinder
of radius R. This region is denoted (2) (see Fig. 43a). The zone (0) contains

an external charge that polarizes the dielectric medium which induces a
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G.3 CYLINDRICAL SRF OF A DIELECTRIC

potenial back on it. There is no charge in region (1). There is no CNT in this
section, no electrons. Only a cylindrical steric constraint. The external charge
only help in expressing the SRE. At the end of the computation, we will use
V; — 0.

(b)

Figure 43: Geometry for a dielectric outside (a) or inside (b) a CNT of radius R.

Denoting ¢?) the electrostatic potential in region (i), we use Eq. 262 for

region (1) and (2), and get

V. [g&? V) (x)] —0 ie1,2 (366)

withe =1 §£3 ) = &y The boundary conditions — continuity of potential

of vertical component of displacement field — in p = R read

¢W(p=R")=¢®(p=R")

(367)
ap()b(l) |p:R* = Sevap()b(z) |p:RJr
Expressing 366 in both region (1) and (2), we get
020291 + pa,9 M) + [0%92 + 93] ) = 0
02292 + p0pp® + 2303 + 232 | 9@ = 0 (368)

where py, = el /€% and Ho = ely /€%, quantify the anisotropy. Expanding the

potential in its Fourier components

99 (p, 0 y) 2m12¢ Je oY), (369)

we insert back in Eq. 368 and obtain two equations of the type

d? d
xzd—xz + x% — (xz + 1x2) y=0. (370)
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G.3 CYLINDRICAL SRF OF A DIELECTRIC

Two independent solutions are I, (x) and K, (x) such that we can express the

solutions as follows:

90 (0,0) = V1 (ple) + G Ki(Iplo)
9@ (0,0) = F 1y, (ylplo) + G Ky, (ylplo)-

When the dielectric is outside the CNT, the potential must vanish for

p — oo so that Fg(z) = 0. Similarly to Eq. 38, we define the SRF as follows

(371)

. _ '1L,(]pIR
out(g) _ _¢1nd(€/P = R) - l(|P| )

(1

F

& _ Cl . (372)
Pex(lp=R) WK (|plp)

The last equality of Eq. 372 stems from the fact that the contribution with
I;(|plp) in V) in Eq. 371 cannot be the one of the external charge because
Pext(C,p — o0) — 0. Using the boundary condition and specializing to the

0 Yy _ ¢

isotropic case, i.e. & = €3 = €y, we get from Eq. 367 that

EV1(pIR) + G Ki(pIR) = G Ky(|pIR)
E(pIR) + G K (IpIR) = ewGEVKi(pIR). 673)

Finally, using Eq. 372 and Eq. 373, we get

out(r _  Ew—1 __K(|p[R) I[([p|R)
s @)= ramm PR = =) TrR)

(374)

For the inside case (see Fig. 43b), Eq. 371 is still valid but now Gg) =

0 because the potential cannot diverge at the center of the dielectric in

the absence of exteral charge. This time we have ¢i?({) = —% =
Gk (pIR

g(l) 1(pIR) and
FL(IpIR)
; ew — 1
gw () - (375)

~ ew +1/a(p[R)
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APPENDICES OF CHAPTER 9

H.1 S$(g,w) FOR A 3D JELLIUM (RPA+SRA)

Computing Si(g, w) adds up in computing g.(q, w) using the FDT (see Eq.
233). To compute ge(q, w) we resort to the SRA in Eq. 142. To compute 1<,
we use Eq. 141. To find the bulk response function of the medium . we
resort to the RPA in Eq. 27. Finally, we need the non-interacting response
function X,EO) (k,w). We obtain it by computing analytically at T = 0K a
formula of the type Eq. 110 for the bulk case. This well-known result can be

find in textbooks [31]. It reads, using k= ﬁ and @ = %—‘;’,

Rexéo) (k,w) = —egk?s <; +f (7(,(1)) +f (fc,—(IJ)) ; (376)

Ty ") (k, w) = —eokdp lﬂh(l?,df)@)(w — |k = B?))... (77)

We have introduced

oz z 22
_ . k+k2—a;' o 1 [w/k-F]
k,@) = h(k,@)log | ——= hik, @) = —————— 8
k@) = (k@) tog |0 hihe) = 679)
and we recall for completness the dispersion relation €, = %, the TF
1/2 2
wavevector ktp = (%) , Fermi energy Ep = % and charge carrier
3
density nd = 31%

H.2 NON-ADIABATIC FRICTION ON TYPICAL METALS

The expression of H reads

1 2
JTF _ 2 X tua
H(szIEW) - 3A dxx (x+lx/K) (379)

and can be computed to give
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1

H.2 NON-ADIABATIC FRICTION ON TYPICAL METALS

_ 2
H(w,ey) = 1+3Q 0(+(K*3)Klj_a (380)
-2
+2(KK2 ) .3 (Ki“ —log(1 + Z)) (381)

where we have introduced « = (ew +1)/2 and « = g1p/2kr. Fig. 44 shows

H (gkl;,sw) that distinguishes metals (gkil;), and liquids (ew).

10%

100

107t 10° 10t 102
qrel2ke

Figure 44: H (;’%, ew) computed from Eq. 380.

Herein, we try to evaluate the maximum friction coefficient that can be
obtained assuming frequency and wavelength decoupling for a 3D jellium—
using /\gg%). Using kr = 1/4d, we find an upperbound for metal with

kte < (rwapd)~1/2. Inserting Eq. 247 in Eq. 246 and we can pull gy (7 <

1/2d) ~ ixjr% out of the integral. The charge structure factor for the jellium
Se(kp =1/4d,w = 0) can be read in Fig. 32 is also pulled out of the integral®.
We find that using g1r = kr approximately reproduces the calculated SRF
ge(q) and we use this value to quantify H. Therefore the d—dependant

. -
maximum value for /\EIBOmaX) reads

A(HI-max) o Ew— 1 SZ(%/“} = O) H(l/zr Sw)
nBO - e+ 1 128megd? 3

. (382)

In fact, Eq. 382, can be obtained by considering an assembly of inde-

pendent dipoles. Inserting S3,(q) = [, no(z)u?q%e2%*dz with the dipole

density ng(z) = O(z —d) in Eq. 235, gives after some algebra /\1(113)0 =

20(0) Ss(w=0) L . . . . .
T Smeed It is similar to Eq. 382 by replacing gw(0) with the non-
(0)

interacting SRF gy’ (0) = 37tnpa, where the Langevin-Debye polarisability
reads & = u?/3kpT. The corrective factor H(1/2, ey ) is find to be very close

a small overestimation can be anticipated here. In any case, we look for an upper bound.
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H.2 NON-ADIABATIC FRICTION ON TYPICAL METALS

to g‘(A(,) ) (0)/gw(0), for SPC/E water, which makes the independent dipole
model relevant for the upper bound /\Sgémax). The numerical application

gives

1 3
(l-max) _ Selzg,w =0) N don -3
Apo = meno ~ 20 x ) - (N.s.m™) (383)

which is valid for 3D metals with ktg < 0.77 (dOTH) 2 AT Here doy = 1A
is the oxygen-hydrogen distance in the SPC/E water molecule. For d =
(d Aluru + AWerder) /2 = 1.524, given by our MD simulations for graphene (see
Fig. 7), we find /\Sé%max) ~ 5.7 N.s.m 3 for 3D metals with ktp < 0.63A".
What if the charge fluctuation wavelengths cannot be decoupled ? For
metals with large Fermi wavevector kr > 1/4d, we must compute /\1(111?0 in
Eq. 246. We restrict the integration from 1/2d < g < 2kr because we have
already evaluated the part g < 1/2d in Eq.383>. The denominator in Eq. 246
no longer plays an important role due to the =2 factor and we ignore it.
For increasing kr, we find that the friction increases and converge for krd 2 1

to

/\(H) . A(HI-max) o &w 1 Se(kFrw 0) 10 ~ 20 X <dOH) (N.s.m*:%).

nBO —TnBO T e 41 128megd® e d
(384)
By considering larger Fermi wavevector kr > 1/4d, we find that we need
to multiply our previous estimate in Eq. 383 by a factor of 2 because
10/e >~ tang ~ H(1/2,ey)/3. In other words, the same contribution to the
friction can be find for g < 1/2d and q > 1/2d.

We can summarize our results as follows. If charge fluctuations wave-
length and frequencies between the liquid and the solid are decoupled as
it is usually the case, one should resort to Eq. 248 and the evaluation of
)\I(I%I()). For a generic jellium model, we can estimate an upper bound for the
friction and we find it adds up in summing up the friction coefficients of
independent dipoles — see /\Elggmax)in Eq. 383. The result is limited by the
closest dipole distance to the surface d and converge for increasing until
kr ~ 1/d. For the non-local properties of the liquid to play a role, it needs
to contain wavelength fluctuations at length scales gw < 1/2d. For dense

metals, with d = doy, we obtain the upper bound /\ggo ~ 40 N.s.m 3.

2 To be more precise, we should multiply are results by S$(kp,w = 0)/S5(1/2d,w = 0) < 1.
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H.3 S(gq,w) OF FLG AND GRAPHITE

H.3 S;(,w) OF FLG AND GRAPHITE

To quantify the surface charge structure factor S(gq, w) of graphite at T = 0K,
we build a small model using the single layer non-interacting response func-
tion of grpaphene Xgo) (9, w). To renormalize electron-electron interactions at
the RPA level, we solve Eq. 115. However, we cut off all non-diagonal inter-
layer interactions in Eq. 124. Therefore, we solve N independant Schrodinger
equations to get N times Xf,_‘)) (g9, w). We then couple the graphene layers as

follows. We write

Xolz,2] = L x (q,@)é(z — 2)6(2' - ). (385)

We operate in the layer-layer (i, j) basis in which X is diagonal and solve Eq.

117. Here V[i,j] = e~931-11 /2gey and

X= (-2 @0)V) " (0, ). (386)
Finally, we compute the SRF as
ge(g,w) = —5-— Y X[i, fle 120+, (387)

Taking the imaginary part and using the FDT, we compute Fig. 45 that

supports the argument of the main text.

@ %5 — -1 ® %7
s [\ = 2
0.4 N=3 0.4
o N=4 <
E = N=5 E
& 0.3 & 03
S =S
I I
3 024 3 024
s s
o o =2
Y01 4 Y01 4 -3
=4
0.0 - 0.0 = N=5
T T T T T T T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10
ga ga

Figure 45: Surface charge structure factor of FLG for increasing number of layers N
and (@)Er = kgT and (b) Ep = 10kgT
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H.3 S(gq,w) OF FLG AND GRAPHITE 163

—— water (Aluru)
10 —— water (Werder)
graphite (model)
T 8
=Y
Sy
l«? 6 -
<
S
3 44
o)
)
2 -
0 J ¥
T T T
-2 -1 0 1 2
Bhw

Figure 46: Surface structure factor of water from MD simulation (Aluru and Werder)
and graphite from the model for ge(g, w) in Eq. 251. The range of validity for the
wavevector is g < 1/2d and g < gmax respectively.
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RESUME

Un cadre théorique est introduit pour aborder les interactions électrostatiques aux
interfaces métal/liquide. En adoptant une perspective microscopique, nous déplacgons le
probleme électrostatique dans la résolution d’une équation intégrale pour la fonction de
réponse linéaire du systéme interfacial. En décrivant les fluctuations et la réponse
diélectrique du liquide dans le formalisme de la théorie quantique des champs, nous
héritons de nouveaux concepts pour aborder les interactions collectives en champ moyen.
La précision et la versatilité de notre approche nous permettent de décrire des interfaces
carbonées en considérant la spécificité de leurs structures de bandes électroniques.

Cette méthode est ensuite mise en pratique pour étudier le potentiel de force moyenne
d’'un ion solvaté prés d'une surface de graphéne, la largeur de la bande électronique
interdite d’'un nanotube solvaté, l'interaction de van der Waals entre du graphéne et de
'eau, et des coefficients de friction solide/liquide. La validité des hypothéses classiques
concernant le découplage des temps et longueurs caractéristiques aux interfaces
métal/liquide, peut étre systématiquement évaluée.

MOTS CLES

Métal, liquide, électrostatique, interface, graphéne, eau, théorie quantique des champs,
champ moyen, fonction de réponse, renormalisation, équation intégrale.

ABSTRACT

A theoretical framework is introduced to tackle electrostatics interactions at metal/liquid
interfaces. By adopting a microscopic perspective, we displace the electrostatic problem in
resolving an integral equation for the linear response function of the interfacial system. By
describing the liquid's fluctuations and dielectric response in the framework of quantum
field theory, we inherit new concepts to deal with collective interactions at the mean-field
level. The precision and versatility of our approach allow us to scrutinize carbon interfaces,
taking into account the specificity of their electronic band structures.

This method then is used to study the mean force potential of an aqueous ion at the
graphene interface, the electronic band gap of a solvated carbon nanotube, the van der
Waals interactions between a metal and a liquid, and solid/liquid friction coefficient. The
validity of mainstream hypothesis regarding time and length scales decoupling at
metal/liquid interfaces can be systematically challenged.

KEYWORDS

Metal, liquid, electrostatics, interface, graphene, water, quantum field theory, mean-field,
response function, renormalization, integral equation.
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