
HAL Id: tel-04543036
https://theses.hal.science/tel-04543036

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-scales, multi-physics personalized HD-sEMG
model for the evaluation of skeletal muscle aging

Inès Douania

To cite this version:
Inès Douania. Multi-scales, multi-physics personalized HD-sEMG model for the evaluation of skele-
tal muscle aging. Biomechanics [physics.med-ph]. Université de Technologie de Compiègne, 2022.
English. �NNT : 2022COMP2679�. �tel-04543036�

https://theses.hal.science/tel-04543036
https://hal.archives-ouvertes.fr


 
 
 
 
 
 

   Par DOUANIA Inès 
 

 
 
 

 
 
Thèse présentée  
pour l’obtention du grade 
de Docteur de l’UTC 
 
 
 
 

 

 
 
 
 
 

 
 
 
 

 
 
 

 
 
 

Multi-scales, multi-physics personalized HD-sEMG 
model for the evaluation of skeletal muscle aging 

Soutenue le 3 juin 2022 
Spécialité : Biomécanique, Bioingénierie : Unité de 
Recherche en Biomécanique et Bioingénierie (UMR-7338) 
 D2679 



Université de Technologie de Compiègne
Ecole Doctorale
Rue Roger Couttolenc 
60200 Compiègne

Multi-scales, multi-physics 
personalized HD-sEMG model for

the evaluation of skeletal muscle aging

Thesis
Presented to

Sorbonne University, Université de Technologie de 
Compiègne Doctoral school « Sciences pour l’ingénieur »

for the Degree of

Doctor in Biomechanics and Bioengineering
Presented and publicly defended by:

DOUANIA Inès

Jury members

Reviewers:
Mr. Alfredo I. Hernandez, Research Director INSERM, Université de Rennes 1, LTSI
Mr. David Guiraud, Research Director INRIA - NEUROINNOV
Examiners:
Ms. Catherine Marque, Professor, Université de Technologie de Compiegne, BMBI
Ms. Virginie LE ROLLE , MCF, Université de Rennes 1, LTSI
Invited:
Ms. Kiyoka KINUGAWA BOURRON, Professor, Faculté de Médecine Sorbonne Université
Supervisors:
Mr. Sofiane Boudaoud, Professor, Université de Technologie de Compiègne, BMBI
Mr. Jérémy Laforêt, Research Engineer CNRS, Université de Technologie de Compiègne, BMBI

June 03th 2022

 Spécialité : Biomécanique, Bioingénierie





Publications

International journal papers:

• I. Douania, J. Laforêt, S. Boudaoud, "Improved Morris Sensitivity Analysis (IMSA)
approach for the evaluation of a complex multi-scales and multi-physics neuromus-
cular model”, 2022, Computer Methods and Programs in Biomedicine, Elsevier Jour-
nal. In review (major revision).

International conference papers:

• I. Douania, J. Laforêt and B. Sofiane, "Personalized spatial recruitment model to
motor unit type and number" 2021 Sixth International Conference on Advances in
Biomedical Engineering (ICABME), 2021, pp. 155-158.
Doi: 10.1109/ICABME53305.2021.9604890.

• I. Douania, J. Laforêt, S. Boudaoud, "New modeling approach of structural and
morphological changes of fibers and motor units", 2020 Virtual Physiological Human
conference.

• I. Douania, J. Laforêt, S. Boudaoud and K. Kinugawa, "Assessment and sensitivity
analysis of a motor units recruitment model during isometric contractions of the
Biceps Brachii," 2019 Fifth International Conference on Advances in Biomedical
Engineering (ICABME), 2019, pp. 1-4.
Doi: 10.1109/ICABME47164.2019.8940248.

i



ii PUBLICATIONS



List Of Abbreviations

AP Action Potential.

ATP Adenosine TriPhosphate.

BB Biceps Brachii.

BC Best Candidate.

BF Biceps Femoris.

CNS Central Nervous System.

CSA Cross-Sectional Area.

CT Computational Time.

CTO Computer Tomography.

CV Conduction Velocity.

EE Elementary Effect.

EMG Electromyography.

ETC Excitation Contraction Coupling.

ETh Excitation Threshold.

FD Frequency Domain.

FF Fast Fatigable.

FI Fast Intermediate.

FPDS Fast Poisson Disk Sampling.

FR Fast Resistant.

GWAS Genome-Wide Association Studies.

HC High Contraction.

HD-sEMG High Density surface Electromyography.

iii



iv List Of Abbreviations

IMAT Intra Muscular Adipose Tissue.

IMSA Improved Morris Sensitivity Analysis.

LC Low Contraction.

MAD Model Aided Diagnosis.

MN Motoneuron.

MRI Magnetic Resonance Imaging.

MSA Morris Sensitivity Analysis.

MU Motor Unit.

MUAP Motor Unit Action Potential.

MUMRI Motor Unit Magnetic Resonance Imaging.

MVC Maximal Voluntary Contraction.

MyHC Myosin Heavy Chain.

NMJ Neuromuscular Junction.

OM Old Men.

OW Old Women.

PDS Poisson Disk Sampling.

PNS Peripheral Nervous System.

PSD Power Spectral Density.

RMSA Root Mean Square of Amplitude.

S Slow.

SA Sensitivity Analysis.

sEMG surface Electromyography.

SF Subcutaneous Fat.

SFAP Single Fiber Action Potential.

SR Sarcoplasmic Reticulum.

TD Time Domain.

VL Vastus Lateralis.

WHO World Health Organization.

YM Young Men.

YW Young Women.



Contents

Publications i

General introduction 1

1 State of the art and problematic 5
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Aging: a health-related problem . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Population aging statistics . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Aging Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Aging and disability risks: the neuromusculoskeletal disorder . . . . 13

1.3 The neuromuscular system: anatomy and mechanisms . . . . . . . . . . . . 13
1.3.1 Anatomy of musculo-skeletal system . . . . . . . . . . . . . . . . . 13

1.3.1.1 Macroscopic anatomy . . . . . . . . . . . . . . . . . . . . 14
1.3.1.2 Muscle fiber: macroscopic anatomy . . . . . . . . . . . . . 15
1.3.1.3 Muscle fiber: Sarcomere . . . . . . . . . . . . . . . . . . . 16
1.3.1.4 Muscle fiber: myofilament components . . . . . . . . . . . 17
1.3.1.5 Muscle fiber: types and characteristics . . . . . . . . . . . 18

1.3.2 Anatomy of the peripheral neural system . . . . . . . . . . . . . . . 20
1.3.2.1 Motor unit: types and characteristics . . . . . . . . . . . . 22
1.3.2.2 Motor unit: Recruitment order . . . . . . . . . . . . . . . 23

1.3.3 Mechanisms of muscle contraction . . . . . . . . . . . . . . . . . . . 24
1.3.3.1 Electrical mechanism . . . . . . . . . . . . . . . . . . . . . 25
1.3.3.2 Mechanical mechanism . . . . . . . . . . . . . . . . . . . . 27

1.4 The neuromuscular system: age-related changes . . . . . . . . . . . . . . . 28
1.4.1 Effects of aging on muscle morphology and physiology . . . . . . . . 28

1.4.1.1 Muscle mass changes . . . . . . . . . . . . . . . . . . . . . 28
1.4.1.2 Fiber scale changes . . . . . . . . . . . . . . . . . . . . . . 30
1.4.1.3 Motor unit scale changes . . . . . . . . . . . . . . . . . . . 33
1.4.1.4 Neural drive changes . . . . . . . . . . . . . . . . . . . . . 35
1.4.1.5 Inter and Intramuscular fat changes . . . . . . . . . . . . . 37
1.4.1.6 Aging as a disease entity: Sarcopenia and Dynapenia . . . 38

1.5 Muscle aging: Diagnosis tools . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.1 Muscle mass and fat infiltration . . . . . . . . . . . . . . . . . . . . 41

1.5.1.1 MRI and CT scanning . . . . . . . . . . . . . . . . . . . . 41
1.5.1.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . 42
1.5.1.3 DXA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1.5.1.4 Bioelectrical impedance analysis (BIA) . . . . . . . . . . . 43

1.5.2 Muscle strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.5.2.1 Specific muscle force evaluation . . . . . . . . . . . . . . . 45

v



vi CONTENTS

1.5.2.2 Specific fiber force evaluation . . . . . . . . . . . . . . . . 45
1.5.3 Physical performances evaluation . . . . . . . . . . . . . . . . . . . 47
1.5.4 Surface electromyography . . . . . . . . . . . . . . . . . . . . . . . 48

1.5.4.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5.4.2 sEMG generation process . . . . . . . . . . . . . . . . . . 49
1.5.4.3 HD-sEMG technique and muscle aging . . . . . . . . . . . 51

1.6 Muscle aging: Modeling approaches . . . . . . . . . . . . . . . . . . . . . . 53
1.6.1 Phenomenological models . . . . . . . . . . . . . . . . . . . . . . . 55
1.6.2 Biophysical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

1.6.2.1 Motor neuron pool model . . . . . . . . . . . . . . . . . . 55
1.6.2.2 Multi-scales and multi-physics HD-sEMG model . . . . . . 56

1.7 Objectives of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Sensitivity analysis 61
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2 The neuromuscular model . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.1 Model inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.2 Model output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.2.2.1 Monovariate approach . . . . . . . . . . . . . . . . . . . . 70
2.2.2.2 Bivariate approach . . . . . . . . . . . . . . . . . . . . . . 74

2.2.3 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.3 Morris screening sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 75

2.3.1 Classical Morris Sensitivity Analysis (MSA) . . . . . . . . . . . . . 75
2.3.2 Improved Morris Sensitivity Analysis (IMSA) . . . . . . . . . . . . 78
2.3.3 Assessment of the IMSA approach . . . . . . . . . . . . . . . . . . . 80

2.3.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
2.3.3.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.4 Aging sensitivity matrix using IMSA method . . . . . . . . . . . . . . . . . 88
2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.4.1.1 Mono-variate features . . . . . . . . . . . . . . . . . . . . 90
2.4.1.2 Bivariate features . . . . . . . . . . . . . . . . . . . . . . . 102

2.4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3 Model personalization to muscle aging 109
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.2 The biophysical HD-sEMG Model . . . . . . . . . . . . . . . . . . . . . . . 112

3.2.1 Model implementation . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.2.2 Muscle aging simulated with the previous model . . . . . . . . . . . 116

3.3 New modeling scheme personalized for muscle aging . . . . . . . . . . . . . 119
3.4 Statistical aging models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.4.1 Changes of muscle cross-sectional area with aging . . . . . . . . . . 122
3.4.2 Changes of muscle radius with aging . . . . . . . . . . . . . . . . . 124
3.4.3 Changes of muscle length with aging . . . . . . . . . . . . . . . . . 125
3.4.4 Changes of fat thickness and infiltration with aging . . . . . . . . . 126
3.4.5 Changes of skin thickness with aging . . . . . . . . . . . . . . . . . 128
3.4.6 Changes of fibers number with aging . . . . . . . . . . . . . . . . . 129
3.4.7 Changes of fiber diameters with aging . . . . . . . . . . . . . . . . . 129



CONTENTS vii

3.4.8 Changes of fiber ratio per type with aging . . . . . . . . . . . . . . 131
3.5 Fibers positioning model with aging . . . . . . . . . . . . . . . . . . . . . . 132
3.6 IMAT model with aging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.7 Motor units model with aging . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.8 Neural drive model with aging . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.8.1 Fuglevand model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3.8.2 New recruitment model adapted to aging . . . . . . . . . . . . . . . 143

3.9 Simulations with the HD-sEMG model . . . . . . . . . . . . . . . . . . . . 145
3.10 Discussion et Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

General introduction 151

Bibliography 159



List of Tables

1.1 The main different types of fibers in skeletal muscle and their characteristics. . . . . . 20
1.2 Illustration of reported muscle mass decline during aging. (*) BSMM: Body Skeletal

Muscle Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3 Definitions and criteria of five major research group working on sarcopenia. . . . . . . 38
1.4 Original cut-off points according to consensus. SPPB: Short Physical Performance Bat-

tery protocol [142]. SMI: Index Skeletal Muscle Mass. . . . . . . . . . . . . . . . . 39
1.5 Morphology of the biceps brachii muscle of sarcopenia group and non-sarcopenia group.

Sarcopenia was identified by EWGSOP2 [143]. Abbreviations: BMI, body mass index;
FT, fat thickness; MT, muscle thickness; CSA, cross-sectional area; SMI, index skeletal
muscle mass. The data were shown as Median(first quartile 25%, third quartile 75%). . 40

1.6 Morphology of the biceps brachii muscle of dynapenia group and non-dynapenia group.
Dynapenia was identified by EWGSOP2 [146]. Abbreviations: BMI, body mass in-
dex; MT, muscle thickness; SMI, index skeletal muscle mass. The data were shown as
Mean(Standard deviation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.7 Quantification of specific fiber force in healthy/active aged human muscle. . . . . . . 46
1.8 Physical performance tests and cut points recommended by the EWGSOP. . . . . . . 47

2.1 List of neural, anatomical and physiological parameters involved in the sensitivity anal-
ysis. U uniform distribution. S: Slow, FI: Fast Intermediate, FR: Fast Resistant, FF:
Fast Fatiguable. (-) No measurement unit. . . . . . . . . . . . . . . . . . . . . . . 66

2.2 Recruitment parameters needed to define the MUs recruitment . . . . . . . . . . . . 67
2.3 Electrode grid parameters needed to define an electrode grid . . . . . . . . . . . . . 67
2.4 List of parameters with variation ranges extracted from literature. Values for young

men (YM), old men (OM), young women (YW), and old women (OW). N normal
distribution. U uniform distribution. S: Slow, FI: Fast Intermediate, FR: Fast Resistant,
FF: Fast Fatigable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 List of Features extracted from the HD-sEMG and considered as the model outputs. . . 69
2.6 Computation time of the neuromuscular model (MUs sources) to simulate HD-sEMG

during 5 seconds of isometric contractions at three force levels: 20, 40, and 60% of the
MVC (Maximal Voluntary Contraction). Comparison between computation time using
signals serial computing (1 thread) and parallel computing (10 threads). Workstation:
2×8 cores Intel Xeon 2.40 GHz with hyperthreading (32 threads), 128 Go RAM, Ubuntu
14.04 64bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.7 List of studies assessing the MSA method variables to obtain stable ranking with MSA
method. (∗) missed information in the study . . . . . . . . . . . . . . . . . . . . . 78

2.8 Computation time and number of model evaluations needed for each T . The computa-
tion time was obtained using 32 parallel threads (workstation: 2×24 cores, Intel Xeon
Platinum 8160 X7542, 2.1 Ghz, 1 To RAM). . . . . . . . . . . . . . . . . . . . . . 80

viii



LIST OF TABLES ix

2.9 The results of Kolmogorov-Smirnov normality test applied on elementary effects data of
each parameter, and according to MSA and IMSA indices at T = 30. The p values >
0.05 indicate that EE distribution is significantly normal (green color). . . . . . . . . 82

2.10 Computed position factors PFTi→Tj
according to µ∗ rankings (MSA); χ∗ ranking (IMSA).

Position factors are computed according to the RMSA model output feature. . . . . . 84
2.11 List of features and the corespondent estimated T . . . . . . . . . . . . . . . . . . . 86
2.12 Group of influent parameters for young men (YM) at low contractions (LC = 20% of

MVC). Time domain features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.13 Group of influent parameters for young men (YM) at high contractions (HC = 60% of

MVC). Time domain features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
2.14 Group of influent parameters for ol men (OM) at low contractions (LC = 20% of MVC).

Time domain features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
2.15 Group of influent parameters for old men (OM) at high contractions (HC = 60% of

MVC). Time domain features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2.16 Group of influent parameters for young men (YM) at high contractions (LC = 20% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 98
2.17 Group of influent parameters for young men (YM) at high contractions (HC = 60% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.18 Group of influent parameters for old men (OM) at high contractions (LC = 20% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.19 Group of influent parameters for old men (OM) at high contractions (HC = 60% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.20 Group of influent parameters for young men (YM) at low contractions (LC = 20% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.21 Group of influent parameters for young men (YM) at high contractions (HC = 60% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.22 Group of influent parameters for old men (OM) at low contractions (LC = 20% of MVC).

Bi_variate features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
2.23 Group of influent parameters for old men (OM) at high contractions (HC = 60% of

MVC). Frequency domain features. . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.1 The estimated number of fibers per muscle using the modeling approach in [1, 11]. The
number of MUs and the number of fibers per MU are given as an average values of
model input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2 CSA reported values of BB muscle (YM: Young Men; OM: Older Men; YW: Young
Women; OW: Older Women). (∗) CSA for BB and brachialis muscle together. . . . . . 123

3.3 Estimated parameters of BB CSA model during aging. . . . . . . . . . . . . . . . . 124
3.4 Humerus CSA reported value (YM: Young Men; OM: Older Men; YW: Young Women;

OW: Older Women). The bone radius was estimated using CSAbone = πr2
bone. . . . . . 125

3.5 The estimated values of BB muscle radius. . . . . . . . . . . . . . . . . . . . . . . 125
3.6 The estimated values of BB muscle length. . . . . . . . . . . . . . . . . . . . . . 126
3.7 The estimated BB subcutaneous muscle fat. . . . . . . . . . . . . . . . . . . . . . 127
3.8 The estimated BB muscle IMAT fat. . . . . . . . . . . . . . . . . . . . . . . . . 127
3.9 Number of fibers of BB muscle reported in literature. Y: Young; O: Older; M: Male; F:

Female; U: untrained subjects; T: Trained subjects . . . . . . . . . . . . . . . . . 129
3.10 Comparison between fiber diameters per type of BB muscle (YM: Young Men; OM:

Older Men; YW: Young Women; OW: Older Women.) . . . . . . . . . . . . . . . . 130



x LIST OF TABLES

3.11 The fiber diameter decline with aging (unit = %). Estimations were obtained using
values reported in Table 3.10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.12 Distribution of fibers of BB muscle according to type. YM: Young Men; OM: Older
Men; YW: Young Women; OW: Older Women . . . . . . . . . . . . . . . . . . . . 132

3.13 The number of fiber estimated by FPDS algorithm and its related computational time
for YM (young men) and OM (older men). . . . . . . . . . . . . . . . . . . . . . 134

3.14 The number of adipocyte zones (polygons) estimated by Algorithm 2 and their relative
areas for young (YM) and older male (OM). The computation time of the Algorithm 2
is negligible (few ms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.15 The difference the number of fibers estimated by FPDS algorithm, the number of fibers
after removing fibers located inside the adipocyte zones, and the number of fibers re-
ported in the literature for young (YM) and older (OM). . . . . . . . . . . . . . . 138

3.16 Number of MUs of the BB muscle for young and aged subjects. Relative number of S,
FI, FR, FF MUs are reported in [79] . . . . . . . . . . . . . . . . . . . . . . . . 142

3.17 New model parameters: Number, recruitment range RR, and initial threshold A for
each type of MUs (equation (3.12)). Type’s percentage data are reported in [79] for
aged muscle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.18 The estimated morphological and structural parameters using the proposed aging model.
SAT: Subcutaneous adipose tissue. ∗ mean value. . . . . . . . . . . . . . . . . . . 146



List of Figures

1.1 Proportion of population aged 60 years or older, by country, in (a) 2015 and (b)
2050. Source: Global AgeWatch Index (www.globalagewatch.org) - Adapted fromWorld
Health Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Percentage of people expected to survive to age 100 by year of birth, males and females.
Source: plotted using data of UK Office for National Statistics(www.ons.gov.uk) . . . . 10

1.3 Schematic representation of aging trajectories. The curved lines represent (red) accel-
erated aging, (black) normal aging and (green) healthy aging. Adapted from [4] . . . . 10

1.4 Correlated variants with aging as depicted in [18]. Genetic overlap between age-related
chronic diseases and parental longevity, based on correlations between whole-genome
association results (GWAS: Genome Wide Association). . . . . . . . . . . . . . . . 11

1.5 Correlated variants with aging as depicted in [18]. (a) The metrics of aging. (b) Tra-
jectories of biological, phenotypic and functional aging and their interaction over the
life span. Of note, functional aging occurs only when all resilience mechanisms of the
biological and phenotypic aging domains are exhausted. . . . . . . . . . . . . . . . 12

1.6 Architecture and shapes of skeletal muscles. The architecture and shape of a skeletal
muscle depend on the arrangement of its fibers. Source: www.anatomynote.com . . . . 14

1.7 Macroscopic architecture and structure of skeletal muscles. The perimysium covers
three connective tissue layers: bundles of muscle fibers called fascicles. Muscle fibers
are surrounded by the endomysium (Source: http://open.oregonstate.education). . . . 15

1.8 Anatomic structure of a muscle myofibril. A muscle fiber is structured by numer-
ous myofibrils, which contain striated sarcomeres with bright and dark areas (Source:
http://open.oregonstate.education). . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.9 The sarcomere, the region from one Z-line to the next Z-line. The sarcomere is the
functional unit of a skeletal muscle fiber (Source: http://open.oregonstate.education). . 17

1.10 Histochemical appearance of different types of fiber in the skeletal muscle [31]. . . . . . 19
1.11 Description of the PNS and its communication with the muscular system. (A) Cell body

of an α-motoneuron. (B) and (C) The synaptic description with its vesicles and ACh.
Source: https://aneskey.com/neuromuscular-physiology-and-pharmacology . . . . . . 21

1.12 Territories of the three types of motor units. The scheme reflects the differences in the
size of α-motoneuron cells, the MUs innervation ratios, The MUs territories, and the
diameter of innervated muscle fibers. Recruitment order: from small (S) to larger (FF)
MU/α-motoneurons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.13 Illustrative scheme of motor unit recruitment. Source: www.stackprinter.com . . . . . 24
1.14 An isotonic concentric contraction results in the muscle shortening, an isotonic eccentric

contraction results in the muscle lengthening. During an isometric contraction the mus-
cle is under tension but neither shortens nor lengthens. Source: Structure and Function
of the Body. 14th ed. St. Louis, MO: Elsevier; 2012 . . . . . . . . . . . . . . . . . 25

1.15 Typical membrane action potential. Source: www.aneskey.com/ . . . . . . . . . . . 26

xi



xii LIST OF FIGURES

1.16 The cross-bridge muscle contraction cycle, which is triggered by Ca2+ binding to the
actin active site. With each contraction cycle, actin moves relative to myosin (image
from Pearson education, Inc 2005). . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.17 (A) The age-related muscle mass loss for men and women as depicted in ([61]; Data of
468 men and women aged between 18 and 88 years old are figured in white and black
marks respectively. (B) The age-related differences in peak torque of knee extensors at
slow velocity as depicted in [67]; Data of 346 men and 308 women aged between 20 and
93 years old are figured in black and white marks respectively. . . . . . . . . . . . . 30

1.18 Healthy lower muscles for young and old man. A 75-year-old man with normal ap-
pendicular lean mass has a 15% lower appendicular lean mass [91]; 30% smaller knee
extensor muscles [92]; 35% lower knee extension strength [91] and 35% lower leg power
[93]; The VL has 20–40% fewer muscular fibers, fiber-type clustering, and tiny, angular
fibers [64, 72]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.19 Motor unit remodeling during the normal aging process includes loss of α-motoneurons
and enlargement of the surviving motor units. The denervated muscle fibers may atro-
phy and die (middle image) or be reinnervated by nearby motor nerve axon branches.
They adopt the same phenotypic traits as the motor unit’s existing fibers (right image).
Source: www.motorimpairment.neura.edu.au . . . . . . . . . . . . . . . . . . . . . 33

1.20 (Upper) Muscle motor unit action potential size (MUP Area, named MUAP in this
study), and (Lower) iMUNE values (MUs number) in different stages of aging (vastus
lateralis muscle). Image adapted from [102]. . . . . . . . . . . . . . . . . . . . . . 34

1.21 (a) The mean recruitment threshold expressed in relative and absolute terms for both
younger and older men (estimated from EMG decomposition) [115]. (b) The mean firing
rate versus the recruitment threshold relationship in one younger and one older man [115]. 36

1.22 Intramuscular fat distribution for: (a) Elderly sarcopenic subject; (b) a healthy young
subject. Image from [130]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.23 MRI technique is used in combination with in-scanner electrical stimulation to quantify
the shape and cross-sectional area of MUs [39]. (A) Example motor unit shape. (B)
Typical examples of the five detected motor unit shapes. . . . . . . . . . . . . . . . 42

1.24 The use of ultrasound in the identification of mechanical response of Motor MUs in
the BB muscle [157]. The territories and firing patterns of MUs are identified using
modeling approach and sEMG (column (d,h,i) and (a,e,i)). . . . . . . . . . . . . . . 43

1.25 Piezo-resistive muscle contraction sensor used to detect MMG signal evoked by muscle
stimulation [174]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.26 Apparatus are preparing a skinned fiber and assessing its specific force and its morpho-
logical, physiological, and biochemical characteristics [179]. Abbreviations: FT, Force
Transducer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.27 Prevalence of sarcopenia using three different methods: Usual gait speed (UGS); get-
up-go test (TUG); short physical performance battery (SPPB) and without physical
performance evaluation[185]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1.28 sEMG generation during voluntary contraction [188]. . . . . . . . . . . . . . . . . . 49
1.29 sEMG signals in space and time [186]. . . . . . . . . . . . . . . . . . . . . . . . . 51
1.30 Modeling approach of muscle aging: from primitive inputs (age, gender and BMI) to

simulated HD-sEMG signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
1.31 Modeling approach as depicted in [1, 11]. . . . . . . . . . . . . . . . . . . . . . . 57
1.32 Thesis outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1 SA methods synthesis as depicted in [216]. d is the number of parameters. 63



LIST OF FIGURES xiii

2.2 Chapter outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.3 A schematic representation of performing the sensitivity analysis method on the HD-

sEMG model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.4 Classification of HD-sEMG features. . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 (a) Illustration of creating an input space of three parameters (n = 3). All parameters

are subdivided into l = 4 levels. (b) Each parameter can changes value with a ∆ step. . 76
2.6 An example of a single trajectory T constructed of three-dimensional input space (n = 3,

inputs = {X1,X2,X3}). The trajectory is built with 4 points (n + 1). (a) Step 0: the
first point is randomly chosen; (b) Step 1: Only X1 can change value by ∆ step; (c)
Step 2: Only X2 can change value by ∆ step; (d) Step 3: Only X3 can change value by
∆ step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.7 The shape of EE probability density function according to the ratio ρr/χ∗r . . . . . . . 80
2.8 The EE distributions of 35 parameters featured in the neuromuscular model. T = 30,

output = RMSA. Green color: significantly normal EE distributions around (µ∗,σ).
Red color: non-normal EE distributions around (µ∗,σ). Normality test is preformed by
Kolmogorov-Smirinov test (Table 2.9). . . . . . . . . . . . . . . . . . . . . . . . 81

2.9 Comparison between ranking stability of neuromuscular system inputs using µ∗(a) and
χ∗(b). Output = Mean RMSA value. . . . . . . . . . . . . . . . . . . . . . . . . 83

2.10 The position factors PFTi→Tj values and behavior obtained for each pair of trajectories
with MSA indices (red color), and IMSA indices (green color). Position factors are
computed with RMSA output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.11 (a) Sensitivity analysis screening with MSA method. Output = Mean RMSA value of
HD-sEMG signals (mV). T = 30. Three influential groups: low impact (dark red cross),
Medium impact (orange square). High impact (green circle). (b) Ranking stability of
MSA method at different T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.12 (a) Sensitivity analysis screening with IMSA method. Output = Mean RMSA value of
HD-sEMG signals (mV). T = 30. Three influential groups: low impact (dark red cross),
Medium impact (orange square). High impact (green circle). (b) Ranking stability of
IMSA method at different trajectories T . The IMSA ranking stability is established
from T = 20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.13 Methodology and results of comparing between MSA and IMSA methods. . . . . . . . 87
2.14 Simulation plan. Four sensitivity analysis: YM at LC; YM at HC; OM at LC; OM at HC 89
2.15 Impacts of model inputs on extracted TD features (IMSA results). IMSA impact indice

= Normalized SI (from 0 (light color) to 1 (dark color)). Ranking of neuromuscular
inputs according to age (young (a,b) and old men (c,d)), and level of force contractions
(low (a,c) and high(b,d)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.16 IMSA screening of influential parameters. Categories: YM, LC . Clustering method =
K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.17 IMSA screening of influential parameters. Categories: YM, HC . Clustering method =
K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.18 IMSA screening of influent parameters. Categories: OM, LC . Clustering method =
K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2.19 IMSA screening of influent parameters. Categories: OM, HC . Clustering method =
K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.20 Impacts of model inputs on extracted amplitude HD-sEMG FD features (IMSA results).
IMSA impact indice = Normalized SI (from 0 (light color) to 1 (dark color)). Ranking
of neuromuscular inputs according to age (young (a,b) and old men (c,d)), and level of
force contractions (low (a,c) and high(b,d)). . . . . . . . . . . . . . . . . . . . . . 96



xiv LIST OF FIGURES

2.21 IMSA screening of influential parameters for frequency domain features. Categories: YM, LC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

2.22 IMSA screening of influential parameters for frequency domain features. Categories: YM, HC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.23 IMSA screening of influential parameters for frequency domain features. Categories: OM, LC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.24 IMSA screening of influential parameters for frequency domain features. Categories: OM, HC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.25 Impacts of model inputs on extracted HD-sEMG Bivariate features (IMSA results).
IMSA impact indice = Normalized SI (from 0 (light color) to 1 (dark color)). Ranking
of neuromuscular model inputs according to age (young (a,b) and old men (c,d)), and
level of force contractions (low (a,c) and high(b,d)). . . . . . . . . . . . . . . . . . 102

2.26 IMSA screening of influential parameters for Bi_variate features. Categories: YM, LC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.27 IMSA screening of influential parameters for Bi_variate features. Categories: YM, HC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

2.28 IMSA screening of influential parameters for Bi_variate features. Categories: OM, HC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

2.29 IMSA screening of influential parameters for Bi_variate features. Categories: OM, HC .
Clustering method = K-means . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.1 Model implementation diagram of the modeling approach in [1] and [11]. . . . . . . . 113
3.2 Model inputs: All parameters needed to initiate a simulation of HD-sEMG signals during

isometric contraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.3 Initialization stage: excitation drive, muscle and conductor volume anatomies, and elec-

trode grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
3.4 Computation scheme of the model [1, 11]. . . . . . . . . . . . . . . . . . . . . . . 115
3.5 The HD-sEMG signals is obtained from numerical integration of the 2D electrical activity

computed over the skin surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.6 Muscle morphology and motor units territories generated with modeling approach of

[1, 11]. (left) young muscle, (right) aged muscle. . . . . . . . . . . . . . . . . . . . 117
3.7 Fiber density using the best candidate algorithm with realistic motor units ratio per

type. (left) young muscle, (right) aged muscle. . . . . . . . . . . . . . . . . . . . . 117
3.8 Fiber distribution within circular MU territory. Aged muscle anatomy generated with

modeling approach of [1] and [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.9 New modeling approach diagram. The main input of this model are the age and gender of

the subject. All anatomical and neural parameter need in model workflow are estimated
based on statistical and descriptive model (experimental values reported from literature). 120

3.10 The CSA experimental data of male subjects. Scatters in red color are excluded due
their high standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.11 The CSA fitted functions for male subjects. . . . . . . . . . . . . . . . . . . . . . 124
3.12 Muscle length fitted curve using Gompretz function for male (left) and female (right)

subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.13 Subcutaneous fat thickness fitted curve using Gompretz function for male (left) and

female (right) subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.14 IMAT fat areas fitted curve using Gompretz function for male (left) and female (right)

subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.15 The number of fibers fitted curve using Gompretz function for male subjects. . . . . . 130



LIST OF FIGURES xv

3.16 Four statistical models estimating the fiber diameters during aging for BB male muscle. 131
3.17 Diagram of steps to build the fiber’s model with aging. . . . . . . . . . . . . . . . . 132
3.18 Example of 500 points drawn from the uniform distribution (a) and gen-

erated by the PDS (b). An even quasi-random arrangement of the points,
such as the one provided by the PDS, is not achievable when using the
uniform distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.19 Muscle morphology with fibers placed according to FPDS algorithm for (a) young, and
(b) elder male subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

3.20 Diagram of steps and requirements needed to build the IMAT model with aging. . . . . 135
3.21 The total IMAT area for (a) young and (b) elderly subject simulated as circle (orange)

with a radius equal to
√

TotalIMAT _area

π2 . . . . . . . . . . . . . . . . . . . . . . . . 137
3.22 The dispersion of IMAT adipocyte zones after performing the IMAT positioning algo-

rithm for (a) young and (b) older subject. . . . . . . . . . . . . . . . . . . . . . . 137
3.23 Positioning of MUs according to their type and using FPSD algorithm (Young Male

subjects). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.24 The estimated number of fibers innervated by each MN for a BB muscle with 45 mm of

radius, and 250698 fibers. The number of MUs is equal to 476 (Young male subject). . 139
3.25 Centers of MUs across the cross sectional area of the muscle; The FPDS method allows

an even distribution of not only the centers, but also of the sizes of MUs (Young male
subjects). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

3.26 Territory centers of MUs across the cross sectional area of the muscle (Elder
male subject). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3.27 The recruitment threshold function for (a) young muscle and (b) aged muscle. The RR =
88 for both young and elder muscle, and for Fuglevand and De luca model (equations
(3.10) and (3.11)). The sizes of MUs respect that S(blue)<FI(green)<FR(yellow)<FF(red).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.28 The recruitment threshold function for aged muscle: Fuglevand model (black line) versus
the new type-scaled recruitment model (scatter plot with S-type (blue scatters),FI-type
(green scatters),FR-type (yellow scatters),and FF-type (red scatters)). The recruitment
range is RR = 88. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.29 A mixed recruitment threshold function for aged muscle. . . . . . . . . . . . . . . 145
3.30 The variation of the Root mean square of Amplitude (RMSA) values (in mV) relative

to the subjects ages of the different simulations. (Green) RMSA of HD-sEMG signal at
high contractions. (Red) RMSA of HD-sEMG signal at low contractions. . . . . . . . 147

3.31 The variation of the Mean frequency (MNF) values (in Hz) relative to the subjects ages
of the different simulations. (Green) MNF of HD-sEMG signal at high contractions.
(Red) MNF of HD-sEMG signal at low contractions. . . . . . . . . . . . . . . . . 147

3.32 The variation of the Mean frequency (Kurtosis) values relative to the subjects ages of
the different simulations. (Green) Kurtosis of HD-sEMG signal at high contractions.
(Red) Kurtosis of HD-sEMG signal at low contractions. . . . . . . . . . . . . . . . 148

3.33 The variation of the Mean frequency (Skewness) values relative to the subjects ages of
the different simulations. (Green) Skewness of HD-sEMG signal at high contractions.
(Red) Skewness of HD-sEMG signal at low contractions. . . . . . . . . . . . . . . 148

3.34 Proposed scheme to perform the Model Aided Diagnosis (MAD) of muscle aging. . . . 157



xvi LIST OF FIGURES



General introduction

Skeletal muscles are responsible of enabling and facilitating voluntary movement. They
allow individuals to mobilize, manipulate their environment and live independently. The
neuromuscular disorder is the most common disabling condition affecting people aged
over 65 years. The non-exhaustive list of the age-related neuromuscular features includes
the loss of Motor Units (MUs) and the expansion of that remain, the reduction in the
number and size of muscle fibers, the increase of the intramuscular fat infiltration, and
the disorder of the neural control. As a consequence, mechanical muscle performance is
impaired with concurrent decreases in maximal muscle strength and power in the elderly
population1.
The increase in life expectancy is associated with a high risk of disability. Therefore, de-
tecting an early decline in muscular functions during aging is of paramount importance.
The muscle aging, as a disease entity, is known as sarcopenia. It is defined as a reduction
of muscle strength accompanied by a loss of muscle mass and a decline in physical func-
tions. The current methodologies used in clinical practice to assess this aging disease are
rather limited to capturing the features of this decline at the macroscopic scale2. Factors
such as the loss of MUs, the atrophy of fibers, and the neural recruitment pattern signif-
icantly influence muscular function. However, diagnosing sarcopenia by only measuring
the muscle strength and/or muscle mass is not accurate enough and can not alert an
early loss of muscular function. The inner scales (MU and fiber scale age-related changes)
reflecting that loss of muscle mass and strength during aging are more interesting to ex-
ploit. Thus, in recent studies, some in our team, based on the surface Electromyography
(sEMG) technique, have demonstrated the potential of this technique to be used as a
biomarker to detect early signs of sarcopenic muscles.
In fact, the sEMG signal is the electrical response of the muscle activation managed by
the Central Nervous System (CNS). It is measured at the skin surface using surface elec-
trodes and can be correlated efficiently to the mechanical response of muscle activation.
Moreover, mathematical models of sEMG signal can form a helpful alliance with sEMG
experimental measures and processing to identify and/or quantify bio-indicators (i.e.,
anatomical and neural muscle parameters) of a healthy, early, accelerated, or sarcopenic
muscle aging. Consequently, during the last years, the monitoring of these age-related
alterations in the neuromuscular system from sEMG signals has expanded. Likewise, the
modeling of sEMG signals has seen the same expansion.
Thanks to the thesis work of Dr. V. Carriou, under the supervision of Prof. S. Boudaoud
and IR. J. Laforêt, a fast and optimized electrical model describing the electrical activ-
ity of the muscle at the skin surface using the High Density surface Electromyography
(HD-sEMG) technique, was developed [1]. The reduced computational time of this model

1People aged over 65 years according to the World Health Organization (WHO)
2Diagnosis recommendations of the European Working Group on Sarcopenia of Older People EWG-

SOP2
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2 GENERAL INTRODUCTION

is the prominent key feature of identifying aging indicators using inverse methods and
the HD-sEMG technique. However, this identification needs pre-aided methods such as
sensitivity and identifiability analysis. Moreover, when dealing with this model, we have
observed significant limitations such as the lack of physiological realism (e.g., MUs territo-
ries and the number of fibers per muscle), personalization (e.g., same recruitment pattern
for the young and elder subject), and simplicity (e.g., adjustment of 50 model parameters
according to age and gender). These limitations can restrain the use of this model in
muscle aging diagnosis.
Therefore, we aimed in this thesis to address the limitations of model depicted in [1] and
deliver a more realistic and user-friendly model to evaluate muscle aging. Based on all of
the above, this manuscript is organized as follows:

• Chapter 1: in this chapter, we start the first section by introducing the aging
problematic, its different trajectories, and the contribution of the neuromuscular
system disorder in the increase of disability risks. In the second section, we intro-
duce essential notions concerning the anatomy of the neuromuscular system and
the mechanisms inducing electrical and mechanical muscle response to voluntary
activation. Afterward, in the next section, we describe the age-related alterations
of this anatomy and these mechanisms at the macroscopic scale (muscle mass and
fat infiltration), at the microscopic scale (fiber and Motor Unit (MU)), and at the
neural drive scale (recruitment pattern of sources generating electrical activity). We
enclose this section by defining muscle aging as a disease entity (sarcopenia). In the
next section, we present the diagnosis tools of muscle aging and discuss how their
clinical use is limited to macroscopic measures, whereas they can provide more rele-
vant information on the microscopic and neural scale. At the end of this section, we
focus on the sEMG tool and its usefulness in detecting muscle aging changes. There-
fore, afterward, we introduce the role played by models in enhancing the sEMG tool
to detect these age-related changes. Wherein, we describe the HD-sEMG model
depicted in [1] that will be performed in this thesis to simulate sEMG signal from
specific physiological and neural configurations. Finally, we enclose this chapter by
positioning the proposed thesis work in the face of diagnosing muscle aging and
indicating the thesis’s objectives and workflow.

• Chapter 2: in this chapter, we perform a global sensitivity analysis on the model
[1], where the sensitivity of the statistics computed over the HD-sEMG signals is
assessed according to the variation of the neuromuscular parameters. This analysis
will help in identifying critical parameters of muscle aging. In fact, the sensitivity
analysis will reduce/limit the identification problem to the parameters with large
impact on the HD-sEMG signals. First, we will select the Morris Sensitivity Anal-
ysis (MSA) based on the complexity and the computational time of the HD-sEMG
model. Second, we will improve this method for reliable parameter rankings. Fi-
nally, the Improved Morris Sensitivity Analysis (IMSA) will be performed on young
and elder simulated subjects (at low and high force levels). The result will isolate
the influential parameters for each age category, each force level, and each statistic
feature computed over the HD-sEMG signals. A relationship will be built between
ages, forces, neuromuscular parameters, and HD-sEMG signals. This relation will
be helpful in the identifiability analysis (the cost function evaluation) and iden-
tification process on the one hand and will spotlight the model inaccuracies and
limitations on the other hand. The latter fact will lead to achieving works in the
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next chapter.

• Chapter 3: in this chapter, we will address the limitations observed in the HD-
sEMG model [1] and deliver a more realistic and user-friendly model to evaluate
muscle aging. First, we will describe the modeling approach scheme as depicted
in [1] and illustrate its limitations. Second, we will propose a new user-friendly
scheme. In this new scheme, the 50 inputs will be fairly limited to the age and
gender of the patient. We will propose descriptive and statistical models to estimate
these 50 parameters, manually introduced in [1]. In fact, the statistical models will
provide estimated neuromuscular parameters according to age and gender, such as
the number and size of fibers and the intramuscular fat area. The descriptive models
will define muscle morphology and structure based on age, gender, and estimated
parameters from statistical models. These models describe the positioning of fibers,
MUs, assignment of fibers to motoneurons, dispersion of intramuscular fat, and
the neural drive. This mathematical description will be built regarding age-related
changes depicted in chapter 1. Finally, we will discuss the usefulness of the new
modeling approach to building a muscle aging diagnosis tool aided by the model.
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Chapter 1

State of the art and problematic
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1.1 Introduction
Movement is a capital sign of life; To move is to live. For a long time, this statement was
evident. However, improved safety, health care, nutrition, and progress in medicine, sci-
ence, and technology have increased the world population’s life expectancy. This longevity
of lifespan is not related necessarily to an impairment of movement capacities [2]. The
rising in life expectancy, which is a human success story, is accompanied by a loss of func-
tional performance capacities and a higher risk of falling, leading to a loss of autonomy
and disability risks. Due to these changes, a significant clinical and economic burden for
society exists. Therefore, detecting early declines in muscular function during aging and
preventing the loss in functional performance is of paramount importance.
The primary factor contributing to poor healthcare outcomes for the elderly population is
a general decline in physiological resilience, which is a crucial feature of frailty syndrome
[3]. Frailty syndrome encompasses diseases of the immune, nervous, endocrine, skeletal,
and muscular systems [3]. The neuromusculoskeletal disorder is the most common chronic
disabling condition affecting people aged over 65 years [4]. Skeletal muscles enable and
facilitate voluntary movement within this system and allow individuals to mobilize, ma-
nipulate their environment, and live independently.
However, during aging, skeletal muscles start their natural deteriorating process at the age
of 35 years old [5]. The lean muscle mass and strength loss are the most notable features
of this aging process [6]. The accelerated loss of lean muscle mass and function is known
as sarcopenia, which is recognized as a disease entity by the World Health Organization
(WHO) [7].
The current methodologies used in clinical practice to assess this aging disease are rather
limited to capturing these features at the macroscopic scale, such as the diagnosis recom-
mendations of the European Working Group on Sarcopenia of Older People EWGSOP2
[8]. Despite the collective effort, the diagnosis criteria of sarcopenia remain a major de-
bate today among clinicians. The cut-off points of muscle mass and strength loss fixed
through a statistical model using longitudinal studies among the elderly population are
not accurate enough, robust, precise, and mutual between sarcopenia working groups. In
addition, the recommended diagnosis tools/criteria are not reliable enough: (i) to differ-
entiate between various aging stages (e.g., healthy, accelerated, pre-sarcopenic, several
sarcopenic), and (ii) to predict and detect a presumed motor decline. For example, a
method based on the sEMG processing [9] has demonstrated the great potential of this
technique to be used as a biomarker to detect early signs of sarcopenic back muscle. To
note, in this cited study [9], the younger and older groups have no significant difference
in muscle strength.
Next to these limitations of macroscopic scale diagnosis of muscle aging, the inner scales
reflecting that loss of muscle mass and strength during aging are more interesting to
exploit. In fact, the increasingly enhanced technology and expertise dedicated to the
functional evaluation of the neuro-musculo-skeletal system, such as the HD-sEMG tech-
nique and models, can boost the development of reliable devices able to assess motor
decline and serve as an indicator in a prevention approach or functional rehabilitation.
Following this idea, a recent European project (EIT Health CHRONOS project1) was
granted in 2018, under the coordination of Prof. K. Kinugawa and Prof. S. Boudaoud, to
develop a device able to assess muscle aging using HD-sEMG technique. Promising results
were obtained through the thesis work of L. Imrani[10]. However, this work focused only

1www.eithealth.eu
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on experimental data analysis without interaction with models.
Therefore, following the thesis purpose, this chapter aims to provide new insights into
the muscle aging aided-diagnosis model by integrating macroscopic and microscopic ob-
servations of differences between the younger and older muscles. To begin with, we will
introduce aging as a major health-related problem: the statistics and the different met-
rics of assessment. We will briefly introduce the human neuromuscular system anatomy
and mechanisms of muscle contraction. After, we will review important literature which
establishes age-related changes at the macroscopic scale (mass, size, morphology, fat, and
strength of muscle), microscopic scale (fiber changes, motor unit changes), and neural
scale (recruitment pattern changes). Then, after reviewing sarcopenia (definitions, crite-
ria, and diagnosis tools), I will introduce the HD-sEMG technique and its usefulness in
detecting age-related changes (healthy and sarcopenic). Furthermore, we will underscore
key areas where the multi-scale and multi-physics HD-sEMG model [1, 11], developed
in the team and improved during my thesis work, can enhance aided-diagnosis tools of
muscle aging (eventually sarcopenic aging).

1.2 Aging: a health-related problem
As a time-related defective balance between cell-damage and cell-repair process, aging
is accompanied by a loss of functional performance capacity and a higher risk of falling,
leading to a loss of autonomy. In this section, we will first introduce the aging statistics in
the world and the possible causes and reasons for the exponential statistic curves. Then,
we will review the research efforts to achieve aging metrics and stages. In the last para-
graph of this section, we will introduce the disability risks and the neuromusculoskeletal
disorder for aging people.

1.2.1 Population aging statistics
The second half of the 20th century has seen the world population change. Improvements
in safety, health care, nutrition, and progress in medicine, science, and technology, have
increased the life expectancy of the world population. By 2050, according to the WHO
statistics, the world’s population of people aged 60 years and older will double (2.1 billion,
22% of the world human population). This phenomena, known as population ageing, is
extending through the most planet countries (Fig. 1.1 (a) and (b)). The high income
countries are much more impacted by this population aging: 65 year old and overs peo-
ple should account around 36% of Southern European countries population and 38% of
Japan’s and South Korea’s according to WHO statistics. Next to the growing number
of older people aged above 60, there is a rapid increase in the number of very old peo-
ple aged above 80 (their number should be triple according to the same source: WHO).
This phenomenon is called "Silvering". In the United Kingdom, for example, the Office
for National Statistics2 (ONS) estimates that 50% of the population born after 2050 will
survive to the age of 100 years (Fig. 1.2).
This demographic shift, beyond the major economic and societal challenges that implies,
is a human success story: the health conditions and human safety are improved. However,
is the life quality preserved for the aging and silvering population ?
Aging, as a biological definition, results from the impact of the accumulation of a wide

2www.ons.gov.uk
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(a)

(b)

Figure 1.1: Proportion of population aged 60 years or older, by country, in (a) 2015 and (b) 2050.
Source: Global AgeWatch Index (www.globalagewatch.org) - Adapted from World Health Organization.

variety of molecular and cellular damage over time. Which leads to a gradual decrease
in physical and mental capacity, a growing risk of disease and ultimately death. Beyond
the social and economic altering the life quality for elderly people, many health-related
problems are associated with aging. These health-related problems, defined as chronic
pathologies, include hearing loss, cataracts and refractive errors, back and neck pain and
osteoarthritis, chronic obstructive pulmonary disease, diabetes, depression and dementia,
and musculoskeletal disorders. Moreover, elderly people are more likely to experience
several health-related problems at the same time with an emergency state and risks of
total or partial disability.
The main challenge for scientists and researchers is to evaluate and predict these disability
risks at an early stage and propose therapies and recommendations for long-time healthy
aging.
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Figure 1.2: Percentage of people expected to survive to age 100 by year of birth, males and females.
Source: plotted using data of UK Office for National Statistics(www.ons.gov.uk)

1.2.2 Aging Metrics
Prevention of frailty and evaluation of the disability risks are ascending research themes
as the aging population increases. Disability can be defined as a failure in exerting ac-
tivities in any domain of life due to a health or physical problem [12]. The aging chronic
pathologies, cited in section 1.2.1, can evolve into impairments and functional limita-
tions and eventually leads to the inability to perform activities of daily life independently,
known as disability (Fig. 1.3) [4]. In the Fig. 1.3, authors of [4] define three aging pat-
terns: healthy, normal and accelerating aging. Many factors are impacting these patterns,
such as the biological and physiological changes of the organs, the environmental condi-
tions, and the daily life routine of the person (e.g., nutrition, physical activity. smoking,
etc.)[13, 14, 15, 16].

Figure 1.3: Schematic representation of aging trajectories. The curved lines represent (red) accelerated
aging, (black) normal aging and (green) healthy aging. Adapted from [4]

However, there is no typical older person beyond the studies cited in the previous para-
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graph. Indeed of factors cited in [13, 14, 15, 16], some 80-year-old have physical and
mental capacities similar to many 30-year-olds while other people experience significant
declines in capacities at much younger ages. This unpredictable aging pattern for some
people can be due to other factors, unknown instead of advances in medicine and sciences.
A comprehensive public health response should address this wide range of older people’s
experiences. Recent research themes are focusing on genetic factors and their impacts
on lifespan among individuals [17, 18, 19, 20]. These studies have tried to identify genes
and variants playing some role in longevity, known as Genome-Wide Association Studies
(GWAS). Results of GWAS for many phenotypes relevant to aging have started to emerge,
and valuable information rises to the surface from these studies. This information cor-
related between chronic diseases and aging genes/traits as shown in Fig.1.4(e.g., obesity,
cancer, etc.). It estimates the faculty of each cited chronic aging pathologies to damage
the parental lifespan gene and, as consequence, accelerates the biological aging pattern.

Figure 1.4: Correlated variants with aging as depicted in [18]. Genetic overlap between age-related
chronic diseases and parental longevity, based on correlations between whole-genome association results
(GWAS: Genome Wide Association).

The biological aging is the first stage in the metrics of aging. Many diagrams of the major
influences and mechanisms of human aging and many metrics for aging are proposed in
the literature [6, 18]. The most recent and reliable ones, based on animal models, are
proposed by [6]. Authors in [6] elucidated the connections between longitudinal changes
at the molecular, cellular, and functional levels. As shown in Fig.1.5, the aging metric is
composed of three main stages: 1) Biological aging: first released and featured mainly by
molecular damage and defective repair of cells; 2) Phenotypic aging: featured by changes
in the body composition and alteration of energetic mechanisms; 3) Functional aging:
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the last released aging, mainly featured by a decline in cognitive and physical functions.
This thesis will mainly focus on impairments in the neuro-musculoskeletal system. It will
simulate and study some features of phenotypic and functional aging: mainly the changes
in muscle quality and the decline in muscle neural control and force.

(a)

(b)

Figure 1.5: Correlated variants with aging as depicted in [18]. (a) The metrics of aging. (b) Trajectories
of biological, phenotypic and functional aging and their interaction over the life span. Of note, functional
aging occurs only when all resilience mechanisms of the biological and phenotypic aging domains are
exhausted.
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1.2.3 Aging and disability risks: the neuromusculoskeletal dis-
order

The National Council of Aging3 (NCA) indicates that about 80% of older people have
at least one chronic pathology of those cited in section 1.2. Next to functionality and
independency loss during aging, the risk of falling is one of the most important causes
of mortality for older adults [21]. About 24-40% of community-dwelling people, aged 65
or older, fall at least once a year, whereas this number increases to 50% for residents in
care facilities [22]. Moreover, the NCA declares that every 19 minutes, an older person
dies because of a fall. Including all aspects, aging is accompanied by a loss of functional
performance capacity and a higher risk of falling, leading to a loss of autonomy. Due to
this loss of autonomy, the rising medical costs, and the higher need for primary health
care, a relevant economic burden for society exists. In an attempt to counteract this prob-
lem, a better understanding of the risk factors and underlying mechanisms is warranted.
Therefore, many research areas focus on changes during the aging process. A combination
of neural, hormonal, immunological, physiological, and external factors such as nutrition,
physical activity, and the environment seems to play a role in the loss of functional per-
formance capacity and the higher risk of falling during aging [23]. This thesis will focus
on simulating neural, morphological, and structural changes in muscle quality and control
during aging. Before underlying researches elucidating these changes, we will introduce a
description of the neuromusculoskeletal anatomy.

1.3 The neuromuscular system: anatomy and mech-
anisms

Skeletal muscle is the body actuator. In terms of mass, it is the heaviest organ in the body.
It comprises approximately 40% of total body weight and contains 50–75% of all body
proteins [24]. It is essential for respiration, locomotion, posture, and whole-body energy
homeostasis [25]. These actions allow human functional independence, maintain and
enhance health, and contribute to social and economic life [24]. The neuromusculoskeletal
system displays a higher structural and hierarchical organization to achieve maximal
performance and efficiency for these roles. Three human body systems coordinate and
work together: the skeletal system, the muscular system, and the nervous system. Decades
of research in these body subsystems’ physiology have provided multi-scale insights into
these essential anatomical tissues’ structural and functional complexity.
This section will review the skeletal muscle anatomy, the peripheral neural system, and
the electrical and mechanical mechanisms contributing to muscle contraction. These
descriptions are required to elucidate and simulate mechanisms involved during muscle
aging.

1.3.1 Anatomy of musculo-skeletal system
The human body incorporates more than 600 muscles attached to the skeleton. They
provide a pulling force that allows movement. Each muscle extremity is attached to
bones by the tendons and has a contractile fleshy portion called the muscular body. In
the human body, the skeletal muscles have a variety of shapes depending on their fiber

3www.ncoa.org
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orientation, and the tendon junction is aligned with the tendon (fusiform muscle) or
is at an angle (pennated muscle). In the case of pennated muscles, the muscle fibers
are connected to the muscle’s aponeurosis. Thus, we can classify the skeletal muscles
according to their forms, as illustrated in Fig. 1.6.

Figure 1.6: Architecture and shapes of skeletal muscles. The architecture and shape of a skeletal muscle
depend on the arrangement of its fibers. Source: www.anatomynote.com

1.3.1.1 Macroscopic anatomy

Skeletal muscle is made up of several interconnected components. These tissues encom-
pass skeletal muscle fibers, vasculature, peripheral nerves, and connective tissue. Three
layers of connective tissue envelop each skeletal muscle, providing it structure and com-
partmentalizing the muscle fibers within it (Fig. 1.7). The first layer is a dense and
irregular connective tissue called the epimysium. This enables a muscle to contract
and move forcefully while maintaining structural integrity. The epimysium also separates
muscle from surrounding tissues and organs, allowing it to move independently. Muscle
fibers are organized into fascicles, which are bordered by a middle layer of connective
tissue termed the perimysium, inside each skeletal muscle. This fascicular organization
is typical in muscles of the limbs (e.g., the Biceps Brachii muscle). It permits the nervous
system to activate a subset of muscle fibers inside a muscle fascicle to cause a specific
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muscle action. Each muscle fiber is coated in a thin connective tissue layer of collagen and
reticular fibers termed the endomysium inside each fascicle. The endomysium surrounds
the cells’ extracellular matrix and helps to carry the force generated by muscle fibers to
the tendons. The hypodermis is the outermost of these connective tissues, located just be-
low the skin. It protects muscles, regulates the heat loss generated by muscles, and stores
the triglyceride surplus of the human body. The innermost of these connective tissues are
aponeurosis, also known as fascia, located between skin and bones. In skeletal muscles
that work with tendons to pull on bones, e.g., the Biceps Brachii muscle, these fasciae
continuously surround the muscle and some sub-parts. The fasciae connective tissues are
present in all the muscles up to the tendon to form what is defined as the myotendinous
junction. The tendon then extends to the bone to form the osteo-tendinous junction.

Figure 1.7: Macroscopic architecture and structure of skeletal muscles. The perimysium covers three
connective tissue layers: bundles of muscle fibers called fascicles. Muscle fibers are surrounded by the
endomysium (Source: http://open.oregonstate.education).

1.3.1.2 Muscle fiber: macroscopic anatomy

Muscle fibers (or myofibers) are the commonly used name for skeletal muscle cells since
they are long and tubular. Moreover, skeletal muscle fibers can be quite large compared
to other cells. In fact, the muscle fiber diameter varies from 10 µm to 100 µm according
to the considered muscle. Similarly, its length differs depending on the muscle. It varies
between 10 and 30 cm in a healthy adult human body (e.g., the diameter of the Sarto-
rius is up to 100 µm, and its length is up to 30 cm). The high number of fiber nuclei
produces the vast amounts of proteins and enzymes required to keep these large protein-
dense cells functioning normally. In addition, skeletal muscle fibers contain nuclei as well
as cell components standard in other cells, such as mitochondria. Some of these compo-
nents, however, are specific to muscle fibers. The plasma membrane that covers muscle
fibers is known as the sarcolemma (Fig. 1.7). Inside the sarcolemma is the sarcoplasm,
corresponding to the cytoplasm of the fiber. Similar to the cytoplasm, the sarcoplasm
mainly holds glycogen, used for the synthesis of Adenosine TriPhosphate (ATP) which
acts as an energetic supply for the fiber. In addition, myoglobin protein is also found in
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the sarcoplasm. This protein only exists in the muscles of vertebrates. It stores oxygen
molecules for the formation of ATP by the mitochondria when needed. Proteins are struc-
tured within muscle fibers into myofibrils, which are cylindrical components that run the
length of the cell and contain sarcomeres joined in series (Fig. 1.8). Because myofibrils
are only about 1.2 µm in diameter, one muscle fiber can have hundreds to thousands of
them. These myofibrils are the minor contractile units in the muscle. They are enclosed
in a specialized smooth endoplasmic reticulum, called the Sarcoplasmic Reticulum (SR),
which stores, releases, and retrieves calcium ions (Ca2+). When the muscle is at rest,
the SR stores a certain amount of calcium ions (Ca2+). Then, during muscle contraction
following a neural command from the Central Nervous System (CNS), the SR will release
the Ca2+ stored in the fiber in order to realize the muscle contraction (see section 1.3.3.2).

1.3.1.3 Muscle fiber: Sarcomere

The striated structure of skeletal muscle fibers is owing to the arrangement of the thick
and thin myofilaments within each sarcomere, which is defined as the portion of a myofibril
contained between two cytoskeletal structures termed Z-discs (also called Z-lines) (Fig.
1.8). Striated dark A band comprises myosin thick filaments that span the sarcomere’s
core and extend toward the Z-discs. A protein called myomesin anchors the thick filaments
in the center of the sarcomere (the M-line). Thin actin filaments are tethered at the Z-
discs by a protein called alpha-actinin in the lighter I band regions. The thin filaments
expand into the A band and overlap with portions of the thick filament as they go toward
the M-line. The A band is darker because myosin filaments are thicker and overlap with
actin filaments. Because the thin filaments do not reach into this region, the H zone in the
middle of the A band is slightly lighter in color. A single sarcomere has one dark A band
with half of the lighter I band on each end, as defined by Z-discs (Fig. 1.8). Myofilaments

Figure 1.8: Anatomic structure of a muscle myofibril. A muscle fiber is structured by
numerous myofibrils, which contain striated sarcomeres with bright and dark areas (Source:
http://open.oregonstate.education).
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do not change length during contraction; instead, they glide across each other, shortening
the space between the Z-discs. The length of the A band remains constant (because of the
thick myosin filament), while the H zone and I band areas diminish. These are locations
where the filaments do not overlap, and when filament overlap rises during contraction,
these no overlap regions shrink.

1.3.1.4 Muscle fiber: myofilament components

Two filamentous actin chains (F-actin) composed of individual actin proteins form the
thin filaments (Fig. 1.9). The Z-disc anchors these thin filaments, which expand to the
sarcomere’s center. Each globular actin monomer (G-actin) within the filament contains
a myosin binding site linked to the regulatory proteins troponin and tropomyosin. There
are three polypeptides in the troponin protein complex. Troponin I ( called TnI) binds to
actin, troponin T (called TnT) to tropomyosin, and troponin C (called TnC) to calcium
ions. Troponin and tropomyosin are proteins that run along actin filaments and regulate
when actin-binding sites are accessible for myosin binding. Thick myofilaments are formed
up of myosin protein complexes, consisting of six proteins: two heavy chains and four light
chains. The heavy chains are made up of a tail region, a flexible gate/pivot region, and a
globular head with an Actin-binding site and a binding site for the high-energy molecule
ATP. The light chains control the hinge region, but the heavy chain head interacting with
actin is the most important force generator. Hundreds of myosin proteins are found in
each thick filament, with tails pointing to the M-line and heads pointing to the Z-discs.

Figure 1.9: The sarcomere, the region from one Z-line to the next Z-line. The sarcomere is the functional
unit of a skeletal muscle fiber (Source: http://open.oregonstate.education).
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Other structural proteins are found in the sarcomere but do not contribute to active
force generation. Titin, the world’s biggest protein, aids in the alignment of the thick
filament and gives the sarcomere its elasticity. Titin starts from the M-Line and stretches
to the Z-disc. The thin filaments feature a protein called nebulin that crosses the length
of the thick filaments and helps to keep them stable.

1.3.1.5 Muscle fiber: types and characteristics

Skeletal muscles are composed mainly of two fiber types: slow-twitch fibers (type I) and
fast-twitch fibers (type II), identified by specific Myosin Heavy Chain (MyHC) isoforms.
This classification is based on the functional metabolism of these fiber cells, where the
slow fibers use aerobic metabolism (oxidative phosphorylation) with abundant oxidative
enzyme and myoglobin complement and lower levels of glycolytic enzymes. In contrast, at
the other extreme, the fast fibers use anaerobic metabolism with higher levels of glycolytic
enzymes [26]. Actually, three essential classification techniques are commonly applied
to type fibers: histochemical staining for myosin ATPase, myosin heavy chain isoform
identification, and biochemical identification of metabolic enzymes [27]. However, beyond
the research effort, identifying the type of fibers through their physiological properties is
still a challenge today. In fact, since the introduction of enzyme histochemical methods
into the study of muscle fiber properties in the 1950s, a significant number of histochemical
methods were developed for muscle fiber typing based on the calcium method for myosin
ATPase staining (ATP: Adenosine TriPhosphate).
First appeared methods (e.g., [28]) have identified two fiber types: slow-twitch fibers
(type I) and fast-twitch fibers (type II), based on the stability of fiber cells at different pH-
concentration which allows or inhibits the myosin ATPase reaction. Later, more advanced
techniques have demonstrated that more ATPase activities could be distinguished by
their stability to acidic or basic preincubation solutions. Thus, the fibers of type II were
labeled into two subgroups: IIa (or Fast Resistant (FR) fiber) and IIb (or Fast Fatigable
(FF) fibers). More recent methods have shown the existence of intermediate fiber types
(from slowest to fastest): Ic, IIc, IIac, and IIab [29, 27]. These types have intermediate
myosin ATPase staining characteristics (e.g., IIab intermediate characteristics between
IIa and IIb). In summary, the human muscle fiber types, as identified by myosin ATPase
histochemical staining, are (from slowest to fastest): types I, Ic, IIc, IIac, IIa, IIb, and
IIab.
Because of the different ATPase protocols, studies vary on how many fiber types each
muscle holds (see reviews in [27, 30]). Some have delineated only two muscle fiber types
(type I and all type II). Others have delineated up to six fiber types (I, Ic, IIc, IIa,
IIab, and IIb) based on histochemical staining patterns. Therefore, delineating the type
2 subfibers using immunohistochemistry is challenging and consequently varied between
studies. In Biceps Brachii (BB) muscle, for example, it was found four main fiber types
and subtypes (I, IIb, IIa, and IIc) with different repartition ratios between superficial and
deep muscle layers.
The Fig. 1.10 shows a histochemical appearance of different fiber types within the BB
muscle. Based on their metabolic and physiologic characteristics cited above, human
muscle fibers can generate force at the point of contraction and during a time relevant to
its characteristics, where:

• Type I fibers (or Slow (S) fibers) are the fibers with the smallest diameter and
generating the least force. They appear dark red in the histochemical study (see
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Fig. 1.10) because they contain a large amount of myoglobin and blood capillaries.
These fibers synthesize ATP mainly by the aerobic respiration of cells because they
are also composed of large mitochondria. These fibers are considered slow because
hydrolysis by the ATPase enzymes is slower than in type II fibers. Type I fibers
slowly produce low force but are highly resistant to muscle fatigue and capable of
providing prolonged activity and maintaining it for several hours. These fibers are
mainly present in the muscles responsible for maintaining the posture;

• Type II fibers (or fast fibers) have a larger diameter than type I but have less
myoglobin. Therefore, they have a clearer appearance in the histochemical study
(see Fig. 1.10). In addition, the release of calcium by the SR takes place more
rapidly as well as the hydrolysis of the ATPase enzymes. Within fast fibers, we can
also differentiate two main types:

1. Type IIa fibers (or FR fiber). They are similar in their composition to slow
fibers and are more resistant to fatigue than other fast fibers;

2. Type IIb fibers (or FF fibers). These fibers are the closest to the definition of
fast fibers. They produce a lot of force very quickly but are very sensitive to
muscle fatigue;

• The Fast Intermediate (FI) fibers: These fibers are called intermediate fibers because
they are in their composition and characteristics in between the fibers. For example,
IIc is between IIb and I, IIab is between IIa and IIb.

Figure 1.10: Histochemical appearance of different types of fiber in the skeletal muscle [31].

Differences in physiological, biochemical, histochemical, and force-generating character-
istics of fibers are provided in Table 1.1 as a valuable base to distinguish between them.
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The aging process affects these two-type fibers’ functional, structural, and morphological
behaviors. These age-related changes will be detailed in section 1.4.

Table 1.1: The main different types of fibers in skeletal muscle and their characteristics.

Characteristic Type I Type IIA Type IIB

Alternative name Slow oxidative
Slow-twitch

Fast oxidative-glycolytic
Fast-twitch A

Fast glycolytic
Fast-twitch B

Metabolism Oxidative (aerobic) Oxidative and
Glycolytic (combined)

Glycolytic
(anaerobic)

Color red pink white
Time to maximal
contraction (ms)

100–200 50–80 50–80

Frequency to reach
tetanic contraction
(Hz/s)

16 60 60

Force-generating ca-
pacity

+ ++ +++

Contraction velocity + ++ +++
Diameter + ++ +++
Myoglobin content +++ ++ +
Mitochondria den-
sity

+++ ++ +

Fatigue resistance +++ ++ +
Generated force + ++ +++
ATPase capacity + ++ +++
Recruitment order 1st 2nd 3rd

1.3.2 Anatomy of the peripheral neural system

The skeletal muscles are non-functional without innervation. They are the effectors of the
neural system and are muscles that are controlled voluntarily. In this thesis, we will focus
on the control by the Peripheral Nervous System (PNS) of skeletal muscles. The PNS are
made up of all neurons outside of the brain and spinal cord including long nerve fibers
and ganglia formed of neural cell bodies. The PNS connects the CNS to various parts of
the body. The functional classification of the PNS provides three subsystems/categories:

• Sensory nervous system: is carrying signals from the viscera, sense organs, muscles,
bones and joints towards the CNS. Nerve fibers that carry this information are part
of the afferent division. Sensory receptors can transduce a physical stimulus such
as pressure, sound waves, electromagnetic radiation, or chemical composition into
an electrochemical signal.

• Somatic nervous system: It controls the voluntary activation of skeletal muscles in
the limbs, back, shoulders, neck, and face.
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• Autonomic nervous system: is related to all the involuntary visceral activity of the
body. It consists of the sympathetic and parasympathetic nervous systems, and
their effector organs include cardiac muscle, smooth muscle, and various glands.

The first step in the contractile process is transmitting a signal to contract from a motor
nerve of the somatic nervous system to a skeletal muscle fiber. This occurs at the Neu-
romuscular Junction (NMJ), a type of synapse between the terminal branch of a motor
nerve fiber and a specialized region near the midpoint of a muscle fiber. Transmission of
the neural signal in the PNS is realized through a neural action potential produced by an
α-motoneuron (or somatic motor neuron) placed in the spinal cord and propagates along
its axon surrounded by a thick myelin sheath. Each α-motoneuron innervates several
fibers composing the targeting muscle. A muscle fiber can only be innervated by one
α-motoneuron. This set of fibers innervated by the same α-motoneuron is called a Motor
Unit (MU).

Figure 1.11: Description of the PNS and its communication with the muscular system. (A) Cell
body of an α-motoneuron. (B) and (C) The synaptic description with its vesicles and ACh. Source:
https://aneskey.com/neuromuscular-physiology-and-pharmacology
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The NMJ is located around the middle of the muscle fibers. This position allows a
quasi-simultaneous contraction of the whole muscular fiber. There is no direct contact
between the synapse and the muscle fiber. The communication between these two cells
is made through chemical processes. At the end of the axon, there are synaptic vesicles
containing thousands of Acetylcholine (ACh) molecules. These ACh molecules are neuro-
transmitters that communicate with the fiber. The region of the fiber facing the axonal
termination is called the motor end-plate. Each motor end-plate consists of several mil-
lions of ACh receivers. When a nerve firing arrives at the axonal termination, it causes
a fiber contraction following several chemical phenomena. If a new nerve firing arrives at
the NMJ, this chemical processing chain is repeated.

1.3.2.1 Motor unit: types and characteristics

Although we have been discussing fiber types, the true functional unit of the neuromuscu-
lar system is the motor unit. Because control of muscle is realized at the level of the MU,
it seems important to consider the physiological properties of motor units (MUs) when
attempting to understand and model muscle function decline during aging. The motor
unit (MU) consists of a single α-motoneuron and all of the muscle fibers it innervates. It
is the smallest functional component of the neuromuscular system. In mammals, most
skeletal muscle fibers are innervated by α-motoneurons to generate movements. These
α-motoneurons are clustered in columnar (spinal nuclei) called motor neuron pools (or
motor nuclei), placed in the spinal (the ventral horn). Each motor neuron pool innervates
one skeletal muscle. The α-motoneuron cells of each pool extend an axons that branch
to form a NMJ at the site of innervation. Each fiber is innervated by one α-motoneuron.
On the contrary, an α-motoneuron innervates many fibers.
All the muscle fibers within a MU have the same phenotypic characteristics (i.e., slow
or fast, type I or type II) and are activated together in an all-or-none manner. Thus, as
fiber types, motor units can be divided into groups based on the contractile and fatigue
characteristics of the muscle fibers. Based on contractile speed, motor units are classi-
fied as either slow-twitch (MUS or MU-type I) or fast-twitch (MUF or MU-type II). The
MUFs are further subdivided into fast-twitch fatigue-resistant (MUFR or MU-type IIa)
and fast-twitch fatigable (MUFF or MU-type IIb), with an intermediate type: fast-twitch
fatigue-intermediate (MUFI or MU-type IIc).
To not, there are no universal criteria distinguishing α-motoneuron subtypes. However,
some trends are observed in terms of size, excitability, and firing pattern. Small α-
motoneurons tend to have a smaller cell body diameter and thus a higher input resistance
making them responsive to a lower Excitation Threshold (ETh). As a result, fibers of type
S are recruited first during muscle contraction. Larger α-motoneurons are firing after the
initial recruitment of small ones with a higher ETh, giving extra strength to the activated
muscle [32]. The manner in which intact or denervated fiber induces motoneurons of the
same type to connect or sprout is not well-known, although several factors are Highlighted.
It is generally assumed that motoneuron axons can respond to neurotrophic factors and
other chemicals by directional growth [33, 34, 35]. Nonetheless, it is not well-known if
sprouts are actually stimulated by denervated muscle fibers to grow toward them [35, 36].
This thesis will employ two terms: the innervation ratio and the MU territory. The MU
territory can be defined as "the subset area of the total muscle cross sectional area that
encloses all the fibers belonging to a single motor unit" [37, 38] (see Fig. 1.12). A direct
measure of the MU territory is not possible in vivo (expect one recent study [39], see
section 1.5.1.1) and indirect approaches are used (e.g., in [37] based on sEMG technique).
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For biceps brachii muscle, the MU territory has an estimated cross sectional area of 5-10
mm (ie, diameter) [40, 41]. The innervation ratio is the number of fibers per MU. It has
an estimated value of 500-2000 fibers per one MU for large limb muscles [40]. Therefore,
fibers of the same MU are rarely ever located immediately adjacent to one another (a few
numbers compared to the MU territory). This ensures the distribution of forces across
relatively large areas of muscle, and repetitive extracellular depolarization is less likely to
be intense in any one area upon activation [42]. The MU territories and the innervation
ratio for the BB muscle will be reviewed in chapter 3 with revealing the aging impact and
reported modeling approaches.

Figure 1.12: Territories of the three types of motor units. The scheme reflects the differences in the size
of α-motoneuron cells, the MUs innervation ratios, The MUs territories, and the diameter of innervated
muscle fibers. Recruitment order: from small (S) to larger (FF) MU/α-motoneurons.

1.3.2.2 Motor unit: Recruitment order

The force and electrical activity intensity increase according to the rise of the number of
recruited MUs and the increase of their corresponding firing rate. The spatial recruitment
of the MUs is modulated by the intensity of contraction and follow a rule called the "size
principle" defined in [43]. The "size principle" assessed that during isometric contraction
the recruitment of MUs is done through increasing the motoneuron size and thus, the
MU size. Thus, MUs are recruited from the MU innervated by the smallest diameter
motoneuron to the MU innervated by the highest diameter. Each MU is excited according
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to the goal of the contraction level, if the goal is below its intensity threshold, the MU
is not recruited for this contraction. It has been assessed that the MU recruitment law
describing the evolution of the MUs threshold according to contraction level is exponential
[44]. Depending on the muscle characteristics, all the MUs are recruited for a contraction
level varying between 60 and 90% of the Maximal Voluntary Contraction (MVC) [44].
Beyond this threshold, only increasing the MU firing rate can increase the generated
force.

Figure 1.13: Illustrative scheme of motor unit recruitment. Source: www.stackprinter.com

1.3.3 Mechanisms of muscle contraction
Muscle cells are made to move and generate force. Mainly, four skeletal muscle charac-
teristics lead to motion production: i) Excitability: is the capability of the muscle tissue
to contract when stimulated by a voluntary or involuntary neural command; ii) Contrac-
tility: is the ability of the muscle tissue to respond to a stimulus by developing a tension;
iii) Extensibility: refers to the ability of the muscle tissue to be stretched or increased
in length; iv) Elasticity: refers to the ability of the muscle tissue to return to its resting
state after being stretched.
There are two modalities of muscle contraction [45]: dynamic (isotonic, isokinetic, auxo-
tonic, and plyometric) and static (isometric). It can be separated into concentric (positive
phase: the muscle shortens, creating tension) and eccentric (negative phase: the muscle
stretches, developing tension) contractions when a muscle changes its length by moving
a constant load shortening phase. Isokinetic contraction occurs when the muscle exerts
maximum effort across the whole range of motion while contracting consistently. With
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muscular shortening, the amount of auxiliary contraction rises. An explosive concentric
contraction preceded by an eccentric contraction is referred to as a plyometric contraction.
When a muscle contracts isometrically, it does so without changing its length and hence
without moving the burden.

Figure 1.14: An isotonic concentric contraction results in the muscle shortening, an isotonic eccentric
contraction results in the muscle lengthening. During an isometric contraction the muscle is under tension
but neither shortens nor lengthens. Source: Structure and Function of the Body. 14th ed. St. Louis,
MO: Elsevier; 2012

Considering the complexity of the muscle contraction nature and the specified un-
derlying processes interacting for each contraction, we decided to focus on modeling the
skeletal muscle during voluntary, isometric, and non-fatiguing contractions.

1.3.3.1 Electrical mechanism

The action potential is an ’all-or-nothing’ event: it does not occur if the triggering input
is less than a threshold value. The action potential, once triggered, has a well-defined
amplitude and duration. Action Potential (AP) propagation allows rapid signaling within
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excitable cells over relatively long distances. In most respects, the electrogenesis of the
APs in nerve axons and skeletal muscle fibers is quite similar, from the fact that both are
long fibers and have very brief, and fast-rising APs [46]. However, skeletal muscle fibers
have an extensive internal transverse tubular system formed by periodic tubules of the
surface cell membrane (Fig. 1.11 (D)) that propagate excitation from the cell surface into
the deep interior of the fiber for purposes of electrical-mechanical coupling. The muscle
fiber excitation can be explained by the model of a semi-permeable membrane describing
the electrical properties of the sarcolemma. The ionic balance between the inside and
outside of a fiber cell produces a resting action potential potential (approximately -70 to
-80 mV). This potential difference, which is maintained by physiological processes (ion
pump), leads to a negative intracellular charge compared to the external medium. The ac-
tivation of an α-motoneuron causes conduction of excitation along the motoneuron axon.
A motor end-plate potential is produced on the muscle fiber membrane innervated by this
alpha-motoneuron after acetylcholine is released into the synaptic cleft. The diffusion
characteristics of the muscle fiber membrane are briefly changed, and Na+ ions enter. If
a threshold level is exceeded, depolarization of the membrane causes an action potential
(AP), and the potential difference changes rapidly from - 70 mV to +40 mV (Fig. 1.15).
A monopolar electrical burst is immediately followed by a repolarization phase, at which
Na+ channels close and those of K+ open. Then a period of hyperpolarization of the
membrane occurs: AP becomes more negative than the resting action potential. The hy-
perpolarization phase is the consequence of the slow gradual closure of the voltage-gated
K+ channels, which results in the membrane being briefly more permeable to K+ than
at the resting action potential.

Figure 1.15: Typical membrane action potential. Source: www.aneskey.com/
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As mentioned above, an α-motoneuron innervates several fibers forming a MU. When
a neural firing reaches the NMJ of the fiber, it generates Single Fiber Action Potential
(SFAP). The SFAP is propagated down the muscle fiber in both directions from the
end-plate with a constant velocity of about 5 m.s−1 over the surface sarcolemma. The
electromyogram (EMG) can be recorded from the skin covering an active skeletal mus-
cle because external longitudinal currents can use the full fiber interstitial fluid space
(because current follows the path of least resistance) [46]. Thus, the amplitude of the
EMG potentials becomes larger when more fibers within the muscle are activated (fiber
summation) because of the summation of SFAP of all activated fibers. The frequency of
EMG potentials represents the muscle’s activation frequency and asynchrony. Moreover,
because fiber recruitment depends upon the α-motoneuron recruitment, we can define a
Motor Unit Action Potential (MUAP) corresponding to the sum of the SFAP generated
by its corresponding fibers. This MUAP is correlated with the phenotypic characteris-
tics of fibers and MUs (see sections 1.3.2.1 and 1.3.1.5). In addition, the morphological,
structural, and electrical properties of media through the MUAP is propagating (muscle,
blood vessel, adipose, and skin tissues), known as the conductor volume, have an (age-
related) effect on the electrical signal recorded at the skin. These effects, and the manner
of modeling sEMG, will be detailed in the section.

1.3.3.2 Mechanical mechanism

The study [47] has established the concept of interaction between actin and myosin from
microscopy of single frog muscle fibers and proposed the most prevalent theory regarding
muscle contraction in 1957. Since this theory was enhanced, other mechanisms/theories
were added to explain the muscle contraction (see review in [48]). The mechanism of
muscle contraction is based on the theory of the sliding filament [47] and the cross-bridge
cycle. To understand this theory, we will follow the path of the electrical signal emitted by
the α-motoneuron as a Action Potential (AP), and its transformation to a chemical signal
in the NMJ synapse before coming forward as the mechanical response at the muscle fibers.
The arrival of α-motoneuron AP at the axon’s terminal initiates a calcium ion Ca2+ influx
in the presynaptic terminal, resulting in the release of the neurotransmitter acetylcholine
(ACh). Then, the ACh binds to the sarcolemma receptors, which induces the opening of
ion channels. Thus, Sodium (Na2+) ions enter, and Potassium (K+) ions exit the muscle
fiber. This variation in the ion concentrations changes the membrane potential (endplate
potential), which causes the depolarization of the membrane and the propagation of the
AP at the sarcolemma. The action potential from sarcolemma spreads to the interior
of the muscle fiber through T tubules where the voltage-sensitive proteins lead to the
opening of Ca2+ channels and the releasing of Ca2+ in the sarcoplasmic reticulum. Thus,
the Ca2+ ions concentration in the sarcoplasmic reticulum increases, and the Ca2+ ions
start to bind to the troponin C of the actin filaments. The troponin then removes the
tropomyosin present at the actin-binding sites. Once these sites are free, the contraction
cycle begins and is repeated until tropomyosin returns to attach to these sites. This
phenomenon of pairing an electrical event with a mechanical event is called Excitation
Contraction Coupling (ETC). A cross-bridge cycle is the sequence of events that occur
during the interaction between myosin cross-bridges and actin molecules. During each
cycle, the cross-bridge (myosin head) attaches to a thin filament causing displacement of
thick filament over thin filament followed by detachment of myosin head in a repetitive
fashion. ATP is required during the cycle; for the movement of the cross bridge as well
as for its detachment. However, all the cross-bridges do not go through the same phase
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at any instant during a cycle. This helps in a smooth and sustained contraction.

Figure 1.16: The cross-bridge muscle contraction cycle, which is triggered by Ca2+ binding to the actin
active site. With each contraction cycle, actin moves relative to myosin (image from Pearson education,
Inc 2005).

1.4 The neuromuscular system: age-related changes
The aging-related decline of muscle functions involves quantitative and qualitative changes
in skeletal muscle structure and function. This process is typically slow, and the functional
loss varies significantly among individuals but is observed in all humans (i.e., also in
healthy, well-nourished, and physically active individuals)[49].

1.4.1 Effects of aging on muscle morphology and physiology
1.4.1.1 Muscle mass changes

Aging is a process where the balance between damaging and repairing body cells becomes
defective and slow. The skeletal muscle mass is regulated by the dynamic balance between
muscle protein synthesis and muscle protein breakdown [50]. Aging impacts this protein
synthesis balance and leads to progressive loss of muscle mass. Age-related muscle mass
loss is observed in all humans. Only the rate of this loss varies among individuals. Fac-
tors such as healthy nutrition or physical activity can flatten the aging muscle mass loss
curve. Many studies have qualified and quantified the impact of these lifestyle factors on
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muscle mass during aging [51, 52, 53, 54, 55, 56]. Beyond these environmental factors,
this thesis will focus only on reporting the "standard" behavior and rate of muscle mass
loss during aging for healthy subjects. In fact, muscle mass loss is an insightful param-
eter. It is correlated to Cross-Sectional Area (CSA), which is essential for the definition
of muscle structure and morphology when modeling. Indeed, it is necessary to define
the amount and sizes of fibers, MU territories, fat tissue distribution, and other muscle
characteristics, which are helpful for reliable muscle models. Moreover, many age-related
diseases, such as Sarcopenia, use this parameter as a criterion in diagnosis [57]. Several
studies have attempted to assess the rate of skeletal muscle deterioration [58, 59, 60, 61].
These quantifications are made mathematically by qualifying the mass muscle decline as
a uniform process that starts at the completion of growth [62]. Hence, all studies cited
above recall data models to estimate muscle mass loss without considering the structure
and the process of the system’s functioning. For this reason, these studies deliver limited
information on how the tissue compartment develops across the lifespan. This thesis will
recall these aging data models with a distinctive feature: they will be incorporated into
system models for more informative results (more details in section and chapter). These
studies estimate that the loss of muscle mass by age 18–80 years ranges from 8 to 49%.
Moreover, several studies share the mutual aspect of these declines:

• Aspect 1: Declines were detectable after the age of 40 years approximately;

• Aspect 2: Declines are accentuated for men than for women;

• Aspect 3: Declines are greater in the lower limbs compared to the upper limbs;

• Aspect 4: Declines rate increases and becomes much higher for very elderly people;

The table 1.2 shows an illustration of these aspects with reported data of mass muscle
decline during aging. For more detailed data, see [63]. The study [63] enumerated the
reasons contributing to the differences between studies and reported data, such as the
techniques of measurement, the characteristics of the sample studied, and the data model
assumptions.

Table 1.2: Illustration of reported muscle mass decline during aging. (*) BSMM: Body Skeletal Muscle
Mass

Study Technique Measured
variable Gender Younger

age
Elder
age

Decline
(%)

Decline/yr
(%)

[61]
Magnetic
resonance
imaging

BSMM∗
BSMM∗

Lower BSMM∗
Upper BSMM∗

M
F

18–29
18–29

>70
>70

-18
-17
-25
-5,6

NC

[64] Cadaveric
dissection

Vastus
lateralis CSA M 19± 3 73± 2 -26 −0.48

[64] Cadaveric
dissection

Vastus
lateralis CSA M 73± 3 82± 1 −23 −2.6

We will not discuss these reasons or the discrepancies in mass muscle decline ranges
reported in the literature in this thesis. The valuable information for our study is the
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behavior of this decline (the four aspects cited above) and the correlation between these
aspects and the decline in muscle functions. In fact, the findings of these studies are
correlated with results of other studies reporting a decline in muscle force/strength since
the same approximate age [65, 66, 67]. The Fig. 1.17 shows similarities between curves
(behavior and rate) of muscle mass loss and strength loss. This correlation agrees with
several studies reporting that the loss in muscle mass is the primary determinant of
the age-related decline in muscle strength [68, 69, 70], e.g, the correlation between arm
muscle mass and biceps muscle strength was 0.60 (r2 = 36%, p < .001) in men and 0.48
(r2 = 23%, p < .001) in women in [70].

Figure 1.17: (A) The age-related muscle mass loss for men and women as depicted in ([61]; Data of
468 men and women aged between 18 and 88 years old are figured in white and black marks respectively.
(B) The age-related differences in peak torque of knee extensors at slow velocity as depicted in [67];
Data of 346 men and 308 women aged between 20 and 93 years old are figured in black and white marks
respectively.

In addition to its correlation with muscle strength, the loss of muscle mass can be useful,
with mathematical models, in elucidating other morphological and structural changes of
muscle with aging at the fiber and motor unit scale.

1.4.1.2 Fiber scale changes

As mentioned in the previous paragraph, aging triggers a general decline in muscle mass
in approximately the third or fourth decade. This decline accelerates in the sixth decade
[64]. This has been attributed to two leading causes: a reduction in muscle fiber size
(atrophy) and/or a reduction in their number (hypoplasia). However, numerous studies
have found that type I and type II fibers are lost in almost similar numbers [71, 72]. Other
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studies [73], have reported an accentuated loss of type II between 25 years and the end
of the seventh decade, whereas loss of type I is mainly apparent from the eighth decade
onwards.
On the contrary to the discrepancy in fiber number decrease between fiber types, studies
have the same agreement that the reduction of size is mostly of type II fibers in all studies
[64, 74]. Given the large gap between powers generated by type I (slow, oxidative), type
IIa (fast, oxidative), and type IIb (fast, glycolytic) fibers [52], the type II atrophy is the
most important contributor to muscle weakness during aging [74, 33, 73]. This leads
to dependence, fall risks (first cause of mortality in the aged population), and reduced
quality of life for elderly people [75]. To note, the effect of aging seems to be different in
different muscle groups [76, 77]. This thesis aims to study the BB muscle. We observe
that the gap between the number of fibers for young and elderly people is between 7%
and 10% [78] for BB muscle. The studies [79, 80] have reported a decrease of 15% to
30% in the number of fibers type IIb for the same muscle. This loss can reach 55% of the
number of the total fibers for other muscles [78, 50]. This decline could be attributed to
type II fibers being more susceptible to apoptosis (denaturation of mitochondria or stem
cells) or "the fast-to-slow" fiber type transformation (accentuated during aging). For the
fiber sizes, which are more impacted by the aging process, the attenuation of the type
II fiber area for BB muscle is equal to -24% between aged and young men [78]. This
attenuation of fiber area can reach around -30% for ages >74 to 88 [81]. Moreover, we
observe in the literature that this decrease of the fiber sizes is most accented in lower
limbs than upper limbs. It was reported a decrease of 42% of type II fiber sizes in lower
limbs [82]. To note, few studies in the literature have reported the number and size of
fibers for BB muscle, and much more rarely for different subject categories (young, elder,
male, and female). We will try, in chapter 3, to collect all available data for this muscle
to build an aging model for atrophy and hypoplasia at a fiber scale. Next to atrophy
and reduction of numbers, we would simulate fiber grouping during aging and changes in
fiber type distribution. These two aspects modify the structure and quality of muscle in
the aging process. Although a preferential loss of type II fibers may not be accurate, a
transition of fast-twitch muscle fibers to take on slow-twitch characteristics appears to be
pertinent during aging and can lead to fiber grouping [83].
Fiber type grouping with aging is an age-related characteristic early reported is [72, 82].
A fiber-type group is a collection of fibers that includes at least one enclosed fiber [84].
However, the leading causes of this phenomenon are yet unclear. The two main causes
are reported:

• The fast-to-slow fiber type transformation: Muscle fibers are dynamic structures
capable of altering their phenotype (MyHC) in sequential and reversible transi-
tions from slow-to-fast types or fast-to-slow types, under various conditions, e.g.,
increased or decreased neuromuscular activity, mechanical loading or unloading,
altered hormonal profiles (especially of the thyroid hormones). However, during ag-
ing, All these conditions are present and more featured, which leads to accentuating
the fiber type transformation in non-reversible transition: mostly from slow-to-fast
types [83, 85].

• The denervation–reinnervation cycles of fibers in muscle increases the fiber type
clustering and, as consequence, to type grouping seen in aging muscle [72, 86]. The
alterations of denervation–reinnervation cycles during aging will be discussed with
more details in the section 1.4.1.3.
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The Fig. 1.18 outlines the estimated fibers age-related changes (loss of fibers, atrophy,
fiber-type grouping) of the Vastus Laterlis (VL) muscle. Medical imaging techniques
are an important tool to reveal these fiber transitions and changes in proportions (Fig.
1.18). However, it is also interesting to quantify these changes by measuring the rate of
expression of MyHC isoforms, the major contractile protein in skeletal muscle.
In addition, the rate of this expression can be correlated to the reduction in excitation-
contraction coupling [73]. To note, the reduction in excitation-contraction coupling may
also be the result of a decline in the function of dihydropyridine receptors leading to
reduced Ca2+ release by the sarcoplasmic reticulum. In fact, the changes in function and
volume of the sarcoplasmic reticulum can lead to a decrease in the shortening velocity
of type II fibers [33]. However, for type I fibers, this decrease appears to be mainly the
result of changes in the properties of the myosin protein [87].
In addition, the loss of specific tension may be due to a reduction in single fiber force
per cross-sectional area [88]. The loss of power and force development during fast and
explosive actions might be explained by an additional decrease in the maximal contraction
velocity of the muscle fibers, next to the decreased force potential [89]. Because the muscle
fibers take on the characteristics of the nerves that innervate them, we can assume that
changes in MyHC composition result from changes in neural drive [90], which will be
described in the following section.

Figure 1.18: Healthy lower muscles for young and old man. A 75-year-old man with normal appendic-
ular lean mass has a 15% lower appendicular lean mass [91]; 30% smaller knee extensor muscles [92]; 35%
lower knee extension strength [91] and 35% lower leg power [93]; The VL has 20–40% fewer muscular
fibers, fiber-type clustering, and tiny, angular fibers [64, 72].
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1.4.1.3 Motor unit scale changes

The α-motoneuron is the musculoskeletal system’s final common pathway for translating
all synaptic inputs into the motor function. Aging is escorted by a significant loss of
motor units [94, 95], a neuromuscular junction (NMJ) deterioration [96], and a changes of
the morphology and properties of existing motor units [86, 97]. In order to know how the
MUs change with aging, it is necessary to have methodologies to assess their numbers,
characteristics, and functions.
There are no techniques currently available to directly count MUs in healthy humans, so
efforts have been restricted to post-mortem anatomical estimates (rare studies, e.g., [95])
or Electromyography (EMG). EMG enables detailed investigations of MU function and
recruitment patterns as well as estimation of their numbers in individual muscles. The
range of techniques available to estimate MU numbers using EMG in humans has been
reviewed [98, 99]. However, these methods should be viewed as an index rather than an
accurate anatomical count.
We observe, through these studies, that the number of motor units has been found to
remain almost constant till the age of 60 years but rapidly declines after that with variable
reported rates [97]. As a representative example, we report a decline of around 30% to
50% in the lumber spine muscle of older (>60 years) was reported in [95] (anatomical
count) compared with younger adults; A decline from 150 MUs (estimated with sEMG
technique) for young adults (∼25 years), to 91 MUs for old adult (∼65 years), to 59 MUs
for very old adult (>80 years)[100]; People aged over 75 years had fewer than 50% of the
MUs compared with young, and some of the very oldest subjects apparently had fewer
than 10% of their MUs remaining [97].
In the chapter 3, we will review the loss of MUs for the BB muscle in order to model this
age-related mechanism. Of note, these mentioned studies have been conducted in healthy
older adults, which demonstrates that neuromuscular remodeling is, to some degree, an
unavoidable physiological consequence of aging. In fact, The loss of MUs leaves the muscle
fibers within the MU denervated, but some are "rescued" by sprouting of nearby neuron
branches. The reinnervation process increases fiber density (or innervation ratio) and
territories of rescued MUs (see Fig.1.19). Which leads to enlarge MU action potential
(MUAP) area [101, 102] (see Fig. 1.20).

Figure 1.19: Motor unit remodeling during the normal aging process includes loss of α-motoneurons
and enlargement of the surviving motor units. The denervated muscle fibers may atrophy and die (middle
image) or be reinnervated by nearby motor nerve axon branches. They adopt the same phenotypic traits
as the motor unit’s existing fibers (right image). Source: www.motorimpairment.neura.edu.au
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This enlargement of MUAP area is around of 26 to 41% for healthy older men [102]
(see Fig.1.20). In addition, MU loss was stated as a cause of muscle weakness. The
Maximal Voluntary Contraction (MVC) force reported in the same study [102], shows a
decline of 34 to 39% for these older subjects.

Figure 1.20: (Upper) Muscle motor unit action potential size (MUP Area, named MUAP in this study),
and (Lower) iMUNE values (MUs number) in different stages of aging (vastus lateralis muscle). Image
adapted from [102].

However, MU remodeling remains unclear whether any particular MUs, small or large,
are preferentially lost or which are enlarged during normal aging. The fiber grouping de-
scribed in paragraph 1.4.1.2 appears as a consequence of MU remodeling during aging.
This leads to the estimate that fast MUs are more impacted by the failure of the dener-
vation–reinnervation cycle during aging (Loss of number and expansion of areas).
In this thesis, when modeling the age-related changes at the MU scale, we will focus on
the death rate of MUs and the changes in their sizes (innervation ratio and territory areas)
within the muscle.
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1.4.1.4 Neural drive changes

The nervous system is affected by age at multiple levels [103]. To start, aging is ac-
companied by decreased supraspinal drive generated from the cortex [104]. Further, a
decline in the number of α-motoneurons with a preferential loss of α-motoneuron that
supply fast motor units are apparent in the spinal cord together with losses and changes
in the properties of peripheral nerves [83, 105]. Reduced spinal α-motoneuron excitability
and increased pre- and post-synaptic spinal inhibition can lead to a reduction in pe-
ripheral nerve conduction speed with aging [106]. At the neuromuscular junction, the
number of axon terminals [107], and synaptic vesicles are reduced with aging [108]. On
the other hand, age-related increases in the number of axon terminals through sprout-
ing and branching and increases in the number of neurotransmitters have been reported
[109]. The latter may explain the adaptive mechanism of motor units that re-innervate
de-innervated muscle fibers (see section 1.4.1.2). As a result of changes in the nervous
system, fine motor control is impaired with aging. The magnitude of neural activation
depends on the number of motor units that are activated (i.e., MU recruitment) and the
rates at which the α-motoneurons discharge the action potentials (i.e., MU discharge rate
or MU firing frequency) [110]. To evaluate these neural deficits, previous research has
been using needle electromyography by investigating the additional force when delivering
a supramaximal electrical stimulus to a nerve or muscle during a maximal voluntary con-
traction (e.g., in [94]).
In this way, the reduced neural drive in the older adults was presented by the reduced abil-
ity to voluntarily activate their quadriceps muscles compared to younger adults [111, 112]
(i.e., reduced recruitment threshold, see Fig. 1.21(a)). In addition, a reduction in MU
doublets [113], which can be described as two consecutive motor unit discharges that oc-
cur with short interspike intervals, and maximal MU discharge rate [114] have been shown
to be reduced at an older age (see Fig. 1.21(b)). As an alternative to needle electromyog-
raphy techniques, surface electromyography (sEMG), which is a non-invasive method, has
been used to monitor changes in overall neural activation. Using the sEMG technique,
the reduction of the recruitment threshold and firing rate with aging was confirmed by
many studies (e.g., in [115, 116]). Moreover, it was observed that MU recruitment is com-
pressed towards lower forces [117, 115]. This shift may be observed due to a selective loss
of high threshold motor units (faster MUs). This concept supported the hypothesis that
the decrease in the number of fast MUs with aging is more significant than the decrease of
slow MUs (see the previous paragraph). This reduced recruitment suggests that a more
significant proportion of the force capacity of the muscle arises from changes in discharge
rate. However, maximal discharge rates are also reduced (see Fig. 1.21(b)). This fact sug-
gested that a change in the contractile properties of old adult muscle fibers enhances the
ability of force generation at lower discharge rates [118]. However, it has been suggested
that sEMG signals may be biased towards high threshold motor units [115]. In reality,
studies have shown that rapid muscle fibers (innervated by large, high threshold motor
neurons) are likely to be found near the skin’s surface (e.g., the location of BB muscle
fibers in [119]). Thus, if surface fibers previously innervated by high threshold motor
neurons become reinnervated by low threshold motor neurons, this might suggest that
the sEMG signal in older adults reflects a more outstanding balance of motor unit types.
Potential age-related and experimental differences between groups may have also affected
these results (e.g., subcutaneous and intramuscular fat, electrode positioning, etc.).
To not, the discharge rate of MUs during isometric contractions exhibits a degree of
variability. At low discharge rates (long interspike intervals), the standard deviation of
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discharge rate is high and declines as the discharge rate increases. When discharge vari-
ability is normalized to the mean interspike interval (coefficient of variation), discharge
variability is highest at recruitment. Subsequently, it drops off as force increases above re-
cruitment [120] (the shape of the interspike interval histogram can be used to characterize
MU discharge variability). Some studies have reported greater discharge variability in old
adults (e.g., in [121]). Changes in the amount of discharge variability have implications
for altering the performance of the motor system in regards to maintaining a constant
force [121, 120].

(a)

(b)

Figure 1.21: (a) The mean recruitment threshold expressed in relative and absolute terms for both
younger and older men (estimated from EMG decomposition) [115]. (b) The mean firing rate versus the
recruitment threshold relationship in one younger and one older man [115].
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1.4.1.5 Inter and Intramuscular fat changes

Our understanding of the role of adipose tissue organs has quickly expanded during the
last two decades. Fat tissue is no longer an inactive calorie storage area. Adipose cells
have been shown to express and secrete a variety of hormones and proinflammatory cy-
tokines, which operate in an autocrine, paracrine, and endocrine manner to signal the
heart, musculoskeletal, central neurological, and metabolic systems [122]. It was observed
that the increase of adipose tissue ratio is associated with the decrease in strength and
mobility in older adults [123, 124]. The study [125] indicates that the change in echo
intensity of BB muscle starts from middle age and that this change occurs prior to the
change in muscle thickness. This study indicates that the increase of adipose and con-
nective tissue within this muscle is associated with the decrease of contractile tissue and
muscle strength in middle age. Therefore, we decided to incorporate the adipose tissue
infiltration efficiently through the muscle into our personalized aging model.
Two kinds of fat tissues are identified: 1) Inter/intramuscular fat (Intra Muscular Adi-
pose Tissue (IMAT)), which is generally considered to be any adipocyte deposition located
between muscle fibers or between muscle groups; 2) Subcutaneous Fat (SF) is the fat be-
tween muscle and skin.
As people become older, their fat distribution changes, with IMAT increasing compared
to subcutaneous fat declines increasing. Experimental measures of muscle fat have been
achieved with various imaging (Magnetic Resonance Imaging (MRI), Computer Tomog-
raphy (CTO)) and biochemical techniques. However, measures for BB muscle are rarely
reported compared to lower arm muscles (Vastus Lateralis (VL), Biceps Femoris (BF),
etc.). Generally, the loss in lean body mass is thought to be mainly the result of increased
fat mass relative to total body mass [73], increase of intramuscular fat and connective
tissue known as "myosteatosis" [126] and atrophy of the muscle fibers due to denervation.
Specifically for the thigh muscles, increments of 59-127% intramuscular fat have been
reported for older men compared to younger men, as well as annual increases of 18% in
longitudinal designs [90]. Despite these increases in fat mass with aging, a decrease in
food intake across the life span is observed [127]. In addition, the intake of high-quality
proteins has been demonstrated to be less than 1 g/kg/day for more than 50% of older
adults aged above 60 years and less than 0.8 g/kg/day, which is recommended for healthy
adults, for 30% of a sample of older subjects [128]. However, the existing evidence of
enhanced benefits of exercise training when combined with protein supplementation is
inconsistent [129].

Figure 1.22: Intramuscular fat distribution for: (a) Elderly sarcopenic subject; (b) a healthy young
subject. Image from [130].
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1.4.1.6 Aging as a disease entity: Sarcopenia and Dynapenia

The main question arising from the age-related muscle changes reviewed in previous para-
graphs is: When are these age-related changes normal or express a disease?

Sarcopenia In 1988 (published in 1997), Irwin Rosenberg in [131] was the first to
define the age-related loss of muscle mass as a disease that proposed a Greek compos-
ite name: sarcopenia (sarx in Greek is flesh and penia is loss). Over time, the original
definition of sarcopenia as purely a loss of muscle mass [131] was evolved, and many cross-
sectional studies supported a link between muscle mass and strength [132].
Therefore, in 2010, the European Working Group on Sarcopenia in Older People (EWG-
SOP1) defined sarcopenia as low muscle mass together with low muscle function (strength
or performance)[132]. The EWGSOP1 has also defined a pre-state and advanced state
of sarcopenia termed respectively “pre-sarcopenia” and “severe sarcopenia”. The pre-
sarcopenia is characterized by low muscle mass with no impact on muscle strength or
physical performance. Severe sarcopenia is defined when the three criteria: low muscle
mass, low muscle strength, and low physical performance, are present.
Rapidly, between 2011 and 2014, other working groups have proposed a similar consensus
definition for sarcopenia: the International Working Group on Sarcopenia (IWGS) [133];
The Foundation for the National Institutes of Health (FNIH) [134]; The Asian Working
Group for Sarcopenia (AWGS) [135], And the Society for Sarcopenia Cachexia and Wast-
ing Disorders (SCWD). The definitions of sarcopenia proposed by these working groups
are shown in Table 1.3.

Table 1.3: Definitions and criteria of five major research group working on sarcopenia.

Research group Definition
EWGSOP Sarcopenia is a state defined by a gradual and

widespread loss of skeletal muscle mass and
strength, as well as an elevated risk of nega-
tive outcomes such as disability, poor quality of
life, and death [. . . ]

IWGS Sarcopenia is a muscle and function loss that
occurs with age. Is a complex syndrome that is
linked to localized muscle loss or increased fat
mass [...]

SCWD Sarcopenia is a syndrome characterized by a
loss of muscle mass and difficulty walking that
is not caused by a specific pathologic illness or
cachexia [...]

FNIH Sarcopenia is a functional constraint character-
ized by diminished strength (weakness) as a re-
sult of decreased muscle mass [...]

AWGS Sarcopenia is a relatively new geriatric illness
defined by age-related skeletal muscle deteriora-
tion as well as decreased muscle strength and/or
athletic performance [...]



1.4. THE NEUROMUSCULAR SYSTEM: AGE-RELATED CHANGES 39

The World Health Organization (WHO) initiated, in 2016, the International Classifi-
cation of Disease (ICD) code for sarcopenia as a disease entity with the awarding code:
ICD-10-CM (M62.84) [7]. In 2018, the EWGSOP2 published a revised consensus of sar-
copenia, with a new working definition, based on low muscle strength as the primary
parameter of sarcopenia (contrary to low muscle mass for EWGSOP1), with a new se-
quence of diagnostic criteria [8]. These collective efforts have led to many research studies
in the last decade to: 1) Assess the sarcopenic portion in the aging population; 2) And
to correlate sarcopenia with other chronic diseases (as a trigger factor or as a result) and
mortality. In fact, depending on the definition used, sarcopenia is prevalent in 1-29% of
community-dwelling healthy older adults [136], and some estimates are as high as 60%
[137]. These percentage raise more over for very old population and for hospitalized pa-
tients: 53.2% of community-dwelling healthy very older adult(> 80 years) [138]; Up o
76% of acutely hospitalized older patients (> 65 years) [139]. Moreover, statistics con-
firm the prevalence of sarcopenia with chronic diseases, e,g. 31.4% of individuals with
cardiovascular diseases (CVD) are sarcopenic [140]. Next, it was proved that sarcopenia
significantly increases in the presence of several co-morbidities, such as osteoporosis, type
2 diabetes, advanced organ failure, and chronic inflammatory states [132, 8].
This statement can be valid in the opposite way, e,g,. osteoporosis increases in the pres-
ence of sarcopenia [141]. However, despite these collective efforts, the lack of a unique
consensus defining sarcopenia and the use of different cut-off points prevent formal diag-
nosis in clinical settings and reliable comparison of research studies. The cut-off points are
the criteria/variable values from which the subject is assessed as sarcopenic (e,g,. body
mass index (BMI), body fat, muscle index, handgrip). These cut-off points are essential
for clinicians to differentiate between healthy and sarcopenic aging people. Moreover,
they can be helpful in age-related modeling. However, the challenge is to correlate these
cut-off pints with the age-related change at the different scales aforementioned. The Table
1.4 shows some cut-off points form EWGSOP2 and IWGS consensus. Most of the studies
cited above use these cut-off points to evaluate sarcopenia.

Table 1.4: Original cut-off points according to consensus. SPPB: Short Physical Performance Battery
protocol [142]. SMI: Index Skeletal Muscle Mass.

Consensus Variable Men Women

EWGSOP2
Grip strength
SMI/m2 Index

SPPB

< 27 kg
< 7 kg/m2

≤ 8

< 16 kg
< 5.5 kg/m2

≤ 8

IWGS Gait speed
SMI/m2 Index

1 m/s
< 7.23 kg/m2

1 m/s
< 5.68 kg/m2

The biceps brachii muscle is the subject of this thesis (BB). As a result, we attempted
to describe variables reflecting morphological and structural changes in this muscle as it
ages, using clinically agreed-upon cut-off points. Rare studies give the sarcopenic and
non-sarcopenic aged population this kind of information. In particular, one recent study
[143] has reported the BB muscle thickness, the muscle CSA, and the fat thickness (sub-
cutaneous) for these two populations. Values of these variable are depicted in Table 1.5
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Table 1.5: Morphology of the biceps brachii muscle of sarcopenia group and non-sarcopenia group.
Sarcopenia was identified by EWGSOP2 [143]. Abbreviations: BMI, body mass index; FT, fat thickness;
MT, muscle thickness; CSA, cross-sectional area; SMI, index skeletal muscle mass. The data were shown
as Median(first quartile 25%, third quartile 75%).

Variable Gender Non-sarcopenia group sarcopenia group

BMI (kg/m2) M
F

25.1(23.1, 27.4)
23.4(22.0, 25.5)

21.8(19.5, 23.7)
22.5(20.1, 24.6)

SMI (kg/m2) M
F

6.5(5.8, 7.7)
5.4(4.7, 6.5)

5.5(4.8, 5.8)
4.5(4.1, 5.0)

CSA (cm2) M
F

9.24(7.37, 10.67)
5.50(4.60, 6.12)

7.06(6.40, 9.00)
4.40(3.34, 5.49)

FT (cm) M
F

0.26(0.18, 0.33)
0.35(0.26, 0.42)

0.20(0.14, 0.25)
0.23(0.19, 0.31)

MT (cm) M
F

2.20(2.03, 2.63)
1.71(1.47, 1.92)

2.08(1.97, 2.11)
1.61(1.33, 1.74)

Dynapenia The first study has argued that the loss of muscle mass and strength
need to be defined independently is [144]. Authors of this study have proposed the term
"dynapenia" to describe the age-related loss of muscle strength (The Greek term dynape-
nia translates to "poverty of strength"). The authors proposing this dissociation argued
that dynapenia is characterized by deficiencies in neural activation and motor recruitment
patterns, the loss of α-motoneurons, the replacement of type II fibers with type I fibers,
as well as changes in muscle mass and architecture [144]. They are based on several
studies boosting this hypothesis (see [144]). One study, in particular, demonstrated that,
in a sample of 120 adults initially aged 46 to 78 years who were followed over ten years,
less than 5% of the change in strength was attributable to the corresponding change in
muscle size [145]. Next to the reduction of the intrinsic force-generating capability and
excitation-contraction coupling, the increase of intramuscular and body fat with aging
is one of the leading causes of dynapenia [146]. However, the new definition of sarcope-
nia EWGSOP2 based on low strength as primary criteria in sarcopenia diagnosis may
be redundant [147] and more referable to sarco-dynapenia disease. As in the sarcopenia
paragraph, we have tried to report variables reflecting the morphological and structural
changes during dynapenia aging for BB muscle considering the cut-off points fixed by
EWGSOP2 (considering low strength criteria).
Rare studies give this kind of information for dynapenia and non-dynapenia aged groups.
In particular, one recent study [146] has reported that BB muscle thickness and Echogenic-
ity can be correlated with intramuscular fat for these two populations. Values of these
variable are depicted in Table 1.6.
Sarcopenia and dynapenia, in addition to the consensus definitions and diagnosis rec-
ommendations, are among the fundamental causes of functional decline in older persons,
owing to the loss of voluntary strength contraction.
The different consensus has proposed many diagnosis recommendations and tools to eval-
uate muscle mass, strength, and performance. However, these tools were not satisfactory.
The linkage between the measurable variables that give these tools (e,g. BMI, SMI, gait
speed) and the inner scales of the aforementioned muscle age-related changes are missed.
The following paragraph will describe the muscle age-related diagnosis tools, as recom-
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mended by the sarcopenia consensus for clinicians and deployed by researchers assessing
muscle functions.

Table 1.6: Morphology of the biceps brachii muscle of dynapenia group and non-dynapenia group.
Dynapenia was identified by EWGSOP2 [146]. Abbreviations: BMI, body mass index; MT, muscle
thickness; SMI, index skeletal muscle mass. The data were shown as Mean(Standard deviation).

Variable Non-dynapenia group dynapenia group
BMI (kg/m2) 24.38 (3.11) 23.63 (3.11)
SMI (kg/m2) 6.23 (0.90) 6.54 (0.81)
Waist (cm) 82.55 (8.20) 78.51 (8.59)
MT (cm) 2.03 (0.30) 1.86 (0.73)
Echogenicity (pixel) 88.06 (14.68) 89.51 (19.15)

1.5 Muscle aging: Diagnosis tools
Diagnosis is crucial when treating a disease. A reliable and precise diagnosis, after its
role in finding the appropriate treatment methods, enhances our understanding of disease
causes, issues, and prevention directives.
Muscle aging, as a disease entity, was referred to as sarcopenia or/and dynapenia. As
cited in the previous paragraph, the groups working on sarcopenia have suggested many
diagnosis tools to evaluate the three criteria: low muscle mass, low muscle strength, and
low performance. The philosophy of recommending the evaluation of these three criteria
is based on the fact that only measuring the muscle composition, size, and architecture
does not consider the neural input into the muscle fibers that dictate contraction potential
and force production. The collective research effort, as aforementioned, has associated
muscle weakness with alterations in muscle composition, contractile muscle quality, and
neural activation [144].
Therefore, strength measures represent an essential measure of muscle performance. The
common feature of the metric is the expression of muscle force production relative to
muscle or body size. We will expose, in this section, the principal diagnosis tools of
sarcopenia (as the aging disease), recommended with consensus, to measure these three
criteria: low muscle mass, low muscle strength, and low performance. However, with the
same exposure, we will report the capacity of these tools to measure other inner-scale
age-related changes. In particular, at the fiber and MU scale (morphology, structure, and
neural drive).

1.5.1 Muscle mass and fat infiltration
1.5.1.1 MRI and CT scanning

The gold standards for evaluating body composition are Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT) scanning (muscle morphology and adipose tis-
sues) [148]. MRI and CT scanning both measure intra- and intermuscular adipose tissue,
which is an indicator of muscle quality [122]. There is currently no consensus on sar-
copenia diagnosis criteria or cut-off values or even which indices should be employed to
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quantify skeletal muscle mass using these techniques. However, some studies have pro-
posed gender-related cut-off points. For example, in [149], authors have proposed that
subjects with a total abdominal muscle area inner than 52.4 cm2/m2 for men and 38.5
cm2/m2 for women are sarcopenic. For this reason, the diagnostic cut-off values must be
standardized, which requires further work at large scale studies [150].
Next, the usefulness of these tools in sarcopenia consensus diagnosis, MRI, and CT scan-
ning have increasingly approved its usefulness in assessing muscle aging in general for
many research fields. A latest reviewed study, for the first time, has assessed a human
motor unit’s morphology (territory) and firing rate with MRI technique [39]. In fact,
authors in [39] have applied an in-scanner electrical stimulation of the tibial nerve with
specific increased current steps (extremely small steps). Then, they delineated the regions
of interest within the stimulated muscle, creating a current profile against signal intensity.
The stimulation current at which activity was first visible is defined from this profile. Us-
ing a second scan and decreased steps starting from the defined activity-related current,
the authors have succeeded in identifying regions of MUs regions (see Fig.1.23). This
study has revealed large territories of MUs for aged participating volunteers (> 40 years).
Such MRI or CT scanning applications can be valuable in the MU modeling (either for
the recruitment pattern or for positioning and territories). However, these techniques are
expensive, and CT emits higher radiation.

Figure 1.23: MRI technique is used in combination with in-scanner electrical stimulation to quantify
the shape and cross-sectional area of MUs [39]. (A) Example motor unit shape. (B) Typical examples of
the five detected motor unit shapes.

1.5.1.2 Ultrasound

Ultrasound can measure muscle size (thickness and cross-sectional area), muscle quality
(including IMAT through echogenicity), angle of pennation (for pennate muscles), the
velocity of muscle tissue, and fascicle length [151, 152]. It is a technique easy to use, with
a lack of radiation, low cost, portability, and a real-time visualization [153]. Ultrasound
is not yet endorsed for diagnosis of sarcopenia, and reference data are lacking, despite its
approval in tracking sarcopenia progression [153] and in studying skeletal muscle [151].
Beyond the fact that ultrasound cannot achieve inner scales of age-related muscle changes,
it can be helpful in rapid and efficient measurement of morphological parameters from
arm and leg muscles, such as the subcutaneous fat and/or muscle thickness/mass.
Recently, non-invasive high frame rate (>2000 images per sec) high-resolution ultrasound
imaging has been introduced [154]. In skeletal muscle applications, accompanied by sur-
face EMG, ultrasound has mainly been used for visualization of structural features and
detection of contraction onset (e,g,. in [155]). Other applications of this technique rise
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in modeling and evaluating muscle functions, e,g,. imaging of MUs during externally
controlled electro-stimulations [156], identifying of single MU under low force isometric
voluntary contractions [157] (Fig. 1.24), and modeling functional movements [158]. How-
ever, the use of this technique calls always the use of sEMG , MMG, and/or mathematical
model, e,g,. in [157, 158, 156, 152].

Figure 1.24: The use of ultrasound in the identification of mechanical response of Motor MUs in the
BB muscle [157]. The territories and firing patterns of MUs are identified using modeling approach and
sEMG (column (d,h,i) and (a,e,i)).

1.5.1.3 DXA

Dual-energy X-ray Absorptiometry (DXA) is the most widespread technique for measuring
body composition due to its low cost, rapidity, and safety of use [159]. However, despite
its positive endorsement by EWGSOP, it cannot quantify fatty infiltration of muscle,
which is a bias in the diagnosis of sarcopenia obesity [159]. In addition, DXA measures
appendicular lean mass (ALM), which is not a true reflection of actual muscle mass [160].
In comparison to appendicular muscle mass, a recent study found that calculating the
percentage of skeletal muscle mass (total muscle mass/weight x 100) provides a higher
estimate of sarcopenia prevalence and is more linked with obesity status [150].
It is important to note that DXA cannot assess functional aspects of the neuromuscular
system.

1.5.1.4 Bioelectrical impedance analysis (BIA)

BIA involves a weak electric current flowing through the body, with the resultant electrical
impedance to the current flow measured [161]. This impedance is then converted into an



44 CHAPTER 1. STATE OF THE ART AND PROBLEMATIC

estimate of fat and fat-free mass using conversion equations. BIA is popular due to its
simplicity, portability, and low cost. The disadvantages of using BIA are: overestimation
of muscle mass; a lack of standardization on how to measure muscle mass; and cut-off
points vary depending on the model used [162].

1.5.2 Muscle strength

Muscle strength is expressed as the maximal force or tension exerted by a group of muscles
or a single muscle in a maximum voluntary contraction (MVC) within certain conditions
(type of contraction and joint angle) [163]. There are few reliable techniques to mea-
sure muscle strength [164]. Different assessments have been proposed and recommended
by sarcopenia working groups to measure muscle strength in the aging population: arm
strength and leg strength. The review-study [165] has reported and evaluated the re-
liability of all the tools and tests used by clinicians to evaluate arm and leg strengths.
However, we have observed that sarcopenia diagnosis tools tend to use handgrip strength
rather than leg strength measurements.
The rising application of the handgrip strength dynamometry method is because of its
simplicity, time-efficiency, affordability, and reliability [166]. This method has been shown
to reflect the overall strength status of an old subject and to be a good predictor of mor-
bidity, hospitalization, and mortality [166]. Standardized conditions for the test include
[166]: seating the subject in a standard chair with their forearms resting flat on the arm-
chairs; six measures should be taken, three with each arm; the highest reading of the six
measurements is reported as the final result. The cut-off points for handgrip strength, ac-
cording to EWGSOP, are: < 30 kg in men and < 20 kg in women. To note, the handgrip
strength is measured by a dynamometer (e,g,. hydraulic, mechanic, pneumatic). Dif-
ferences appear between measures of these dynamometers, in particular for older adults
[167], and between genders [168]. It depends if the instruments were properly and regu-
larly calibrated for the measurements [167]. Moreover, the design of each dynamometer
may cause this difference. In fact, the ability to exert handgrip strength is influenced by
pain or discomfort, so the design and mechanism may affect the measurement [168]. More
research in this area is needed.
However, force evaluations performed with the devices described above are non-selective,
as measuring the force or torque of a single muscle is nearly impossible. Moreover, these
tools disallow the force evaluation at the cellular muscle scale (fibers). In fact, as afore-
mentioned in previous sections, the maximum force produced by a muscle is related to
many factors [169]: (1) the physiological cross-sectional area of the muscle; (2) neuro-
muscular performance; (3) Fiber type composition; (4) anatomical factors; (5) length of
the muscle Fiber; (6) Electrical properties of fibers; and (7) mental factors. Thus, many
of the issues associated with studying mechanisms behind strength loss in whole muscles
are overcome using single muscle fibers. Although the relationships between the above
factors and the maximum forces have already been well studied, there are still unknown
factors.
In this thesis, we aim to more understand and assess age-related muscle changes by us-
ing aided-modeling approaches. Thus, in this section, we present different tools used to
evaluate: (1) a specific muscle force; And (2) a specific fiber force ("specific" here average
force per size as normally named in literature). These tools and procedures can be useful
for future validation of the age-related modeling approaches.
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1.5.2.1 Specific muscle force evaluation

Beyond the sEMG technique (will be described in section 1.5.4), MRI and ultrasound
methods (described in sections 1.5.1.1 and 1.5.1.2), other recent techniques exist to eval-
uate specific muscle force. Recently, mechanomyography (MMG) has been introduced.
This non-invasive technique records and quantifies the low-frequency lateral oscillations
produced by the active skeletal muscle fibers [170]. In reality, pressure waves can be
sensed on the skin surface due to the vibration of muscle fibers and their dimensional
changes during activation. As a skin displacement measured by a piezoelectric contact
sensor, laser distance sensor, or condenser microphone, or as an acceleration measured
by sensors such as an accelerometer [171] (see Fig. 1.25). The recorded signal at the
skin surface has been demonstrated to possess valuable information on the neuromuscular
parameters leading to contraction and thus reliable in muscle function assessments [171].
Inference from various scientific research verified that the MMG signal could be used for
the following: (i) muscle fiber typing; (ii) assessment of fiber force; (iii) assessment of
muscle force; (iv) MU activities and properties; (v) muscle fatigue; and (vi) indication of
the resonance frequency of muscle (see the reviews [171, 172, 173] for more details).

Figure 1.25: Piezo-resistive muscle contraction sensor used to detect MMG signal evoked by muscle
stimulation [174].

1.5.2.2 Specific fiber force evaluation

The application of the single fiber technique to the intrinsic contractile dysfunction in
muscle fibers from aged subjects was first published by [175]. Since then, this technique
has significantly contributed to improving our understanding of the cellular mechanisms
of sarcopenia [176, 177]. This technique in the evaluation of primary fiber function and
its relation to muscle quality can be performed using measurements of morphological,
biochemical, physiological, and mechanical properties at the muscle cell level using the
isolated permeabilized (skinned) single muscle fiber preparation (this technique was de-
tailed in [178]; The measurement tool is depicted in Fig. 1.26). In general, for human
muscles evaluation, the technique is based on two successive stages: (1) Measuring the
whole muscle force/strength using a dynamometer tool, for example; (2) Measuring the
fiber specific force after isolating of single human muscle fibers obtained for example with
the percutaneous muscle biopsy needle.
Fibers are made permeable during the second stage, and then segments are activated max-
imally with high calcium concentrations. Due to fiber permeability, there is no (or very
little) sarcolemma or sarcoplasmic reticulum to obstruct calcium ion transit. As a result,
the activation level (or voluntary drive) is no longer a confounding factor. Finally, the
lack of a tendon and mechanical leverage system allows force generation to be measured
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directly from the fiber, and its myofilament structure, rather than at a distance [177].
Several fiber variables can be measured and/or calculated using the single muscle fiber
approach, as shown below:

• Morphological and physiological variables: sarcomere length; fiber length, depth,
and diameter.

• Physiological and mechanical variables: fiber force and specific force (force/size); shortening ve-
locity; elasticity and stiffness.

• Biochemical variables: MyHc expression; regulatory and structural proteins (e.g.,
tropomysosin).

Rare are the studies using this technique to evaluate human muscle aging. The Table
1.7 shows some cross-sectional studies using single muscle fibers obtained from aged human
beings. We can observe in this table the reduction in muscle fiber-specific force in both
slow-twitch type I and fast-twitch type II fibers. For the case of fiber prepared in vivo
before measuring force, we cannot extract this related-type information.

Figure 1.26: Apparatus are preparing a skinned fiber and assessing its specific force and its morpho-
logical, physiological, and biochemical characteristics [179]. Abbreviations: FT, Force Transducer.

Table 1.7: Quantification of specific fiber force in healthy/active aged human muscle.

Study Gender Young
age

Old
age Muscle Preparation Fiber

type
specific

force change (%)

[180] Male 25-36 60-74 VL skinned
fiber

I
IIa

-25%
-33%

[181] Male 28±0.1 68 ± 0.5 BB in vivo NC -14%

[88] Male 30.2±2.2 72.7±2.3 VL skinned
fiber

I
IIa

-22%
-16%

[182] Female 22±3 72±4 knee
extensor in vivo NC -17%

[183] Male 23.0±2.2 70.9±4.1 VL skinned
fiber

I
IIa

-10%
-26%
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1.5.3 Physical performances evaluation
For the first time, the idea of physical performance was created to objectively and clini-
cally assess how an individual performed various activities of daily life or physical tasks,
rather than scales based on asking questions about the ability to accomplish these tasks
[184].
However, the concept of physical performance has developed since then, and it is now
mostly associated with ambulation and transfers. It is included in the most recent defi-
nitions of sarcopenia. The usual gain speed (UGS), the time up and go test (TUG), and
the short physical performance battery (SPPB) are the most widely used tools for the
assessment of functional performance. Their cut-off points recommended by the EWG-
SOP2 to diagnosis sarcopenia are depicted in Table 1.8.

Table 1.8: Physical performance tests and cut points recommended by the EWGSOP.

Physical performance test Cut-off points
Usual gain speed test (UGS) ≤ 0.8 m/s
Short physical performance battery (SPPB) ≤ 8 points
Up-and-go test (TUG) ≥20 seconds

They can be assessed as individual items, but in clinical practice, they are more com-
monly assessed as part of a brief physical performance battery (SPPB). Which is a test
developed by the national institute on aging for use in the Established Population for the
Epidemiologic Studies of the Elderly (EPESE). It includes three tests: 1) balance tests,
2) walking speed test, and 3) repeated Sit To Stand (STS) test. More details about theses
test are available in many references [8, 185, 162]. However, a recent study has revealed
that the statistics of sarcopenia prevalence are similar to using performance tests and
without their application during diagnosis [185] (see Fig. 1.27).

Figure 1.27: Prevalence of sarcopenia using three different methods: Usual gait speed (UGS);
get-up-go test (TUG); short physical performance battery (SPPB) and without physical performance
evaluation[185].
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This finding is consistent with our objective in this thesis which aims to evaluate age-
related (sarcopenia) using more reliable approaches.
Therefore, in the next paragraph, we will come forth the surface electromyography tech-
nique as a more precise and reliable technique in the assessment of functional muscle
abilities and in the evaluation of several phenomena related to the quality and perfor-
mance of skeletal muscle.

1.5.4 Surface electromyography
The surface Electromyography (sEMG) is, at this time, a limited diagnostic tool/power
but is a powerful tool for prevention, assessment, and evaluation of the effectiveness of
treatments and interventions [186].
We will start this section with a paragraph describing the history of dealing with sEMG
signals. Then, we will describe the sEMG generation process. In the last paragraph, we
will discuss the application of the sEMG technique in aging assessment.

1.5.4.1 History

The development of electromyography was possible thanks to the collective contribution
of many scientists and professionals from different fields, both clinical and engineering.
The first experimentation dealing with EMG was in 1666 by Francesco Redi. He discov-
ered that the highly specialized muscle of the electric ray fish generates electricity. In
1792, Luigi Galvani, through his concept of "animal electricity", demonstrated that the
electrical stimulation of a nerve could initiate muscle contraction (using an apparatus
known later as a galvanometer). Between 1840 and 1845, Carlo Matteucci proved that
the muscles generate the electric current described by Galvani. His work in bioelectricity
influenced directly the research developed by Emil du Bois-Reymond (1818–1896), who
tried to duplicate Matteucci’s experiments and ended up discovering and recording the
nerve’s action potential in 1849. The evolution of electromyography has been possible due
to the evolution of acquisition equipment and processing techniques. In 1922, Gasser and
Erlanger used an oscilloscope instead of a galvanometer to display the EMG signal from
muscles. Edgar Douglas Adrian (1889–1977), the Nobel Prize winner in Medicine (1932),
collaborated with Detlef Bronk to quantify the action generated by a single nerve fiber
in 1929 [187]. They recorded the electrical activity of muscle fibers generated by a single
nerve fiber using a needle electrode and a speaker, which became known as the Motor
Unit Action Potential (MUAP). In 1934, Fritz Buchthal developed a microelectrode to
record the potential of isolated muscle fibers. Edward H. Lambert has established the
first clinical electromyography laboratory in the United States in 1943 (a Mayo Clinic
laboratory).
Afterward, through the 50’s and 70’s, major contributions of EMG were achieved, in-
cluding the quantitative analysis of the Motor Unit AP (MUAP), EMG decomposition
techniques and EMG amplitude analysis. Researchers began to use improved electrodes
more widely to study muscles during the same period. The sEMG was introduced as a
non-invasive technique that can detect the MUAP activity in a large volume. In fact,
an EMG signal is the electrical activity of a muscle’s motor units, which consist of two
types: surface EMG (sEMG) and intramuscular EMG. Non-invasive and invasive elec-
trodes record surface EMG and intramuscular EMG signals. Hardyck and his researchers
were the first (1966) practitioners to use sEMG. Then, the sEMG technique was spread
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across the scientific community in the following years. These days, surface-detected sig-
nals are preferably used to obtain information about the time or intensity of superficial
muscle activation.
The non-invasive aspect, the real-time visualization, and the important information on
muscle activation patterns and muscle properties make the sEMG a valuable aging di-
agnosis tool for clinicians. This is in contrast to the training of cardiologists in electro-
cardiography (ECG) and neurologists in electroencephalography (EEG), which has taken
place for 70 years now. Furthermore, the use of sEMG in terms of real-time feedback can
be used to assist patients in becoming more conscious of their muscle activity and during
physical exercise.

1.5.4.2 sEMG generation process

The screened "electrical image" evolving in time frames, as a movie, is a 2D analog signal
sampled in space (by the electrodes) and in time (by an electronic sampler). The origin
source of this 2D signal is the MUAP of the active motor units (MUs), which incorporate
thousands of action potentials (SFAP) generated by the individual fibers of such MUs in
the muscle. The AP generation mechanism was described in section 1.3.3.1. In fact, all
fibers within a single MU are activated together at each discharge of the correspondent
α-motoneuron. The algebraic sum of SFAPs generated by the individual fibers of that
MU produces a single propagating MUAP. Depending on muscle, a specific number of
α-motoneurons are activated at different discharge rates (5-40 pulses/s) to reach the
target force level, speed, and duration. The resulting signals are MUAP trains. The
interferential monopolar sEMG signal screened at a specific point on the skin (near the
muscle), measured with respect to a reference electrode, is the algebraic sum that MUAP
trains (see Fig.1.28).

Figure 1.28: sEMG generation during voluntary contraction [188].

However, next to the influence of volume conductor properties on MUAPs [188], the
electrodes arrangements and locations play an important role in the qualification and
quantification of information measured at the skin surface. We distinguish three types of
sEMG detection:

• Monopolar detection: a point electrode is measuring the voltage with respect to
a remote reference where the potential is zero. It provides the full information



50 CHAPTER 1. STATE OF THE ART AND PROBLEMATIC

which can be recorded from the detection volume. This arrangement has the most
significant detection volume compared to the other electrode arrangements. This
technique is not commonly used in biomechanical and neuromuscular investigations.
The sensitivity of monopolar sEMG to noise from stray voltage 4, movement arti-
facts, and possibly cross-talk5 due to low spatial selectivity [189] may compromise
the reliability of a monopolar system. In particular for the evaluation of muscle ag-
ing based on MUs characteristics. In fact, it is not evident to find and standardize
measure point that minimizes cross-talk activity and the impact of muscle-tendon
end effects.

• Spatial filtering: is based on the linear combination of signals detected by a number
of electrodes placed over the skin with a defined geometry to attenuate specific
spatial frequencies with respect to others (see Fig.1.29). This can partly counteract
the low-pass filtering effect of the volume conductor and reduces the number of motor
unit coverage [190]. The simplest and most widely used spatial filter is the bipolar
or single differential (SD). Enhanced spacial filtering is improved, e.g., the double
differential (DD) filter that is constituted by three equally spaced electrodes and the
Laplace two-dimensional high-pass spatial filter [191]. To note, the high sensitivity
of this filtering mode to the electrode location and orientation regarding the muscle-
tendon junctions, the motor end-plate, and the direction of fibers [191, 192] impacts
the precision of the latter applications like muscle force estimation. In addition,
the use of a few electrodes with this arrangement only gives information about
the activity of a group of MUs but not a single MU. Beyond the alteration that
this fact can cause on the amplitude and energy of measured signals due to the
amplitude cancellation phenomenon [193], this can have a consequent limitation in
many domains such as neuromuscular disorder diagnosis and assessment of muscle
functions for the aged population. All limitations mentioned above can be avoided
using adequate spatial sampling.

• Spatial sampling: The surface EMG signal evolves in time and space, and it can
be described as a three-dimensional signal. In fact, If a spatial filter (SD, DD, or
the two dimensional) is applied to each detection point, the potential distribution
is spatially filtered and also spatially sampled [191]. The spatial sampling grids are,
in general, multi-channel grids covering a large part of the muscle. The spatial
information is independent of the temporal information, and together they can
provide valuable insights into muscle anatomy factors, topographical muscle activity,
and the single MU action potential trains (using sEMG decomposition) [191]. In
this thesis, we work with this technique using a multichannel detection system:
the HD-sEMG [194]. This system has a multi-channel electrode grid with many
channels, small electrode sizes, and interelectrode spacing. Most of the limitations
of the classical sEMG recordings can be overcome by using the HD-sEMG technique.
These recordings are particularly appreciated in clinical applications, including the
evaluation of muscle aging (see next paragraph).

4Potential difference between neutral and monopolar electrode
5The EMG from muscles that are neighbors of the one of interest
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Figure 1.29: sEMG signals in space and time [186].

1.5.4.3 HD-sEMG technique and muscle aging

The sEMG signal is the algebraic sum MUAPs generated by the active MUs and detected
over the skin. Like any other signal, it provides quantitative information concerning wave
shape, amplitude, and power spectral density. Using such information is a clinical choice
or decision. Parameters and features of the spatial and temporal sampling pattern can
be examined to understand age-related (and eventually sex-related) differences in skeletal
muscle.

• Motor unit characteristics: The number, size, MUAP shape and area, and acti-
vation pattern of MUs are reliable indicators of muscle aging (see sections 1.4.1.3
and 1.4.1.4). In sarcopenic individuals, the loss of MUs is accompanied by a rise
in the size of the remaining MUs, linked to muscle weakness in the elderly. The
MU number index (MUNIX) and size index (MUSIX) techniques can estimate the
number and average size of MUs within a muscle using the sEMG technique during
electrically elicited contractions. They can be used as biomarkers of muscle ag-
ing and/or sarcopenia. MUNIX is already evaluated as biomarker of many patient
populations such as the amyotrophic lateral sclerosis (ALS) [195, 196]. For aging
patient population, studies evaluation MUNIX and MUSIX are rare [197, 198, 102]
and unavailable using HD-sEMG system. Some recent studies (e.g., [196]) have
accorded a high reliability to MUNIX using HD-sEMG in neurodegeneration eval-
uation. However, MUNIX is based on the CMAP 6 assessment during electrical
stimulation, rather than the single MUAP measured during voluntary contractions.

6Compound muscle action potential consists in stimulating a nerve fiber and monitoring the response
in the muscle.
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Modeling approaches can overcome this limitation.
The MUAP shape and area (an indicator of larger MU) and the activation pattern
can be estimated thanks to sEMG decomposition. In fact, the spatial sampling
provides usefulness in recognizing the shape and frequency of action potentials of
different MUs within the EMG signal. Several methods were proposed in the lit-
erature using HD-sEMG system (see review [188]). For the sarcopenic aging pa-
tient population, higher variability of MU firing and a lower MU firing rate during
sustained contraction are shown [199]. However, performing sEMG decomposition
requires high expertise in signal acquisition, interpretation of results, and manual
assessment of decomposition quality [188].

• HD-sEMG processing : Requesting a larger muscle force contributes to a greater
amplitude of the sEMG signal [199]. Many amplitude descriptors of sEMG are re-
ported, e.g. in [200]. For aged population, it was observed that the maximal muscle
strength, power, and rate of force are lower than the young population [199]. The
absolute value of sEMG amplitude during MVC shows the same trend, being lower
in the elderly compared with young and middle-aged adults. However, the relation-
ship between force exerted and sEMG amplitude is not necessarily linear. Many
factors influence the raw sEMG signal recorded over the skin, such as the distribu-
tion of active MUs within the muscle, among others [201]. It was observed that the
relationship between the Root Mean Square of Amplitude (RMSA)(mV) and muscle
force (N) could be modeled using a 3rd degree polynomial equation. Moreover, it
appears that the obtained coefficients are patient-specific and dependent on physi-
ological, anatomical and neural parameters [202]. The most widely used frequency
spectrum analyses are the mean frequency and the median frequency. They are
related to several physiological factors, including the Conduction Velocity (CV) of
the MUAP along the fibers [199]. The mean/median frequency-time course during
fatiguing contractions should show a steeper decrease if the muscle is character-
ized by a higher proportion of fast fibers (type II) than slow fibers (type I). The
rate of decrease of power spectrum parameters has been observed to be greater in
young people than in elderly people during submaximal isometric contractions in
many experimental setups [199]. For example, a method based on the surface elec-
tromyography (sEMG) processing [9] has demonstrated the great potential of this
technique to be used as a biomarker to detect early signs of sarcopenic back muscle.
However, some studies indicate that muscle fiber CV (Conduction Velocity) should
be preferred to spectral variables [199].

• Muscle fiber CV: The fiber CV, estimated by correlation technique, can relate the
modifications in EMG signals with the recruited MU pool and with histochemical
characteristics of the muscle. In fact, CV increases gradually when faster and larger
MUs are recruited, such as when the intensity of muscle contraction increases, and
it is positively related to the fiber diameter. When monitoring CV throughout a
wide range of contraction levels (e.g., from 20 to 80% of MVC), the increment of CV
is higher in younger subjects and lower in elderly subjects. This agrees with bioptic
studies reporting a decrease in muscle fiber size in elderly subjects compared with
young people. This reduction in muscle fiber size has been shown to be fiber-type
specific, with the size of type II fibers decreasing by 10-40% compared to unchanged
type I fiber size.
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1.6 Muscle aging: Modeling approaches
The use of models is inevitable in almost all areas of the natural sciences. The model
design is the key task in problem-solving. Models are used in two ways. First, they at-
tempt to extract the essentials of reality for the problem at hand, and second, they permit
control over variables not easily achieved in reality [203].
However, a living organism has a pecular organization which makes it very different from
both a bunch of atoms and a macroscopic material [204]. Living tissues exhibit various
self-organization mechanisms and show radically different pictures at different scales. A
skeletal muscle, for instance, shows a complicated (but not random) structure at smaller
and smaller scales: from fascicles to fibers, to sarcomeres, 77to myosin and actin (see
section 1.3). Moreover, living tissue is usually growing (see section 1.4), thus showing a
feature that is not shared with ordinary macroscopic materials. Therefore, if one wants
to predict a future situation, the type of models that he/she uses may be crucial for the
accuracy of the prediction. It is very important to remind that predictions may depend
on the model used and some lack of matching with real life is not a matter of wrong basic
laws but rather of a wrong or insufficient/imprecise modeling [204].
In order to approach reality, models may have a descriptive character with limited valid-
ity. The often-assumed proportionality between sEMG amplitude and muscle force can
be considered an example of a descriptive model. Moreover, a model can operate at a
phenomenological level, i.e., the model output mimics real-world behavior under a wide
range of conditions, but the model is not or only by chance coupled to any underlying ’real
world’ elements evoking the observed outcomes. Finally, a model can be structure-based,
which means that it selectively takes elements of the real system’s structure into account
in a reductional way in order to represent the system’s important elements.
In this thesis, we are dealing with the latter type of model. In fact, the main goal of our
research activity is to produce a model capable of quantitatively and/or qualitatively de-
scribing the evolution of muscle aging (eventually the sarcopenia disease symptoms). This
model will be coupled with another model, generating HD-sEMG signals during isometric
contractions. Then, a proportionality relationship between the generated sEMG signals
and the neural and anatomical muscle parameters evolving in time will be established.
Thus, we can produce quantitative/qualitative information on both muscle tissues and
their electrical activity simulated at the skin surface at a selected age. To our knowledge,
such a muscle aging model does not exist in the literature.
In order to do this, we need three main ingredients:

• Descriptors of the quality of muscle tissue, that is, some quantity which can sum-
marize the physiological and neural changes due to the aging into a quantitative
parameter. For example, the diameter of the fibers, the intramuscular fat area, the
muscle/fibers atrophy, and the innervation ratio.

• Phenomenological models (statistic and descriptive models) of the quality degrada-
tion of muscle tissue during aging using quality descriptors, which keep into account
also the possible loss of muscular mass/strength. For example, the model describing
the loss of fibers, the model describing the expansion of MUs and territories with
aging.

• A biophysical model including the calculation of each single motor unit action poten-
tial (MUAP) and the global HD-sEMG signal as a function of the outputs descriptive
models and muscle quality descriptors.
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The Fig. 1.30 shows the diagram of the modeling approach adopted in this thesis. The
approaches used to build the descriptive models will be detailed in chapter 3. However,
the biophysical model used in this thesis will be described in the next paragraph, and
improvements will be detailed in chapter 3.

Descriptive aging models
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Figure 1.30: Modeling approach of muscle aging: from primitive inputs (age, gender and BMI) to
simulated HD-sEMG signal.
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1.6.1 Phenomenological models
Muscle age-related changes have been deciphered through several phenomenological exper-
imental models, bringing together the opportunities to conceive a comprehensive analysis
of muscle aging. To identify age-related muscle mechanisms, the gold standard of research
is the comparison of young subjects with elderly subjects (healthy or sarcopenic). Then,
researchers routinely use regression adjustments in order to fit experimental data. In the
previous paragraphs, we have shown many figures depicting this kind of regression (e.g.,
in Fig. 1.21). Phenomenological muscle aging models are based on empirical relationships
between age/gender and muscle tissue descriptor (e.g., number of fibers versus age, cross-
sectional muscle area versus age, etc.). Researchers routinely use regression adjustments
in order to fit experimental data to the "growth" model (e.g., linear, exponential, etc.).
The regression analysis is a statistical tool for determining if two variables are related. As
a result, we refer to these models as statistical models. In the previous paragraphs, we
have shown many figures depicting statistical models of neuromuscular descriptors versus
age (e.g., in Fig. 1.21).
In this thesis, we will perform these models as the first step to provide all the neuro-
muscular parameters needed to simulate sEMG signal by the biophysical model. In fact,
the values of these parameters (muscle quality descriptors in Fig. 1.30) will be reported
from literature according to the age and the gender of the subjects. The review will be
limited to the values measured for the biceps brachii muscle. The definition of the relative
statistical models will be made according to the experimental data shapes. This work will
be well-reviewed and made in chapter 3. To note, we can not find a study that achieves
all these descriptors experimentally together. Such a project is hard to undertake due to
the high cost, the difficulty of finding healthy old people to do all that measurement, and
the invasive method used (e.g., muscle biopsies) to achieve some age-related changes.

1.6.2 Biophysical model
The action potentials generated by the α-motoneurons trigger the force generation in
the skeletal muscle fibers. There exist various different methods to predict skeletal mus-
cle activity due to neural stimulation, that is, motor control, for example, analytical
methods, phenomenological Hill-type or continuum-mechanical approaches, biophysical
Huxley-type, or multiscale, multiphysics skeletal muscle models. Note, although we distin-
guish modeling skeletal muscle mechanics into these categories, a clear separation between
these models does not exist [203].

1.6.2.1 Motor neuron pool model

Several phenomenological and biophysical models have been proposed for the simulation
of the α-motoneuron pool. Phenomenological models are based on the characteristics of
α-motoneuron discharges that have been found experimentally. For example, based on
the relation between the synaptic input to a α-motoneuron and its output discharge rate,
[205] and [44] have proposed powerful phenomenological models for animal and human
α-motoneurons, respectively. These models have been used extensively for the testing of
neurophysiological hypotheses or for interpreting experimental data [206, 207].
However, one important limitation of phenomenological motor neuron models is the fact
that they are not capable of naturally describing the membrane dynamics of the α-
motoneurons, where nonlinear behavior of α-motoneurons predominantly originates. To
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overcome these limitations, several biophysical models have been proposed [208, 209, 210].
These can integrate synaptic and/or common inputs on the α-motoneuron membrane
level. This is done by adopting the Hodgkin and Huxley’s formalism, derived from their
experiments on the giant axon of the squid [47]. Using this formalism, it has been
achievable to progressively increase the type and the number of ion channels in multi-
ple compartments of these realistic motor neuron models. Interestingly, the biophysical
description of the α-motoneuron behavior inherently accounts for the size principle of
α-motoneuron recruitment [43] (small, low-threshold α-motoneurons are recruited before
larger α-motoneurons with a higher excitation threshold) and the "onion-skin" property
[211](for a certain level of synaptic input to the motor neuron pool, low-threshold α-
motoneurons have higher discharge rates than high-threshold α-motoneurons). Addi-
tionally, these complex α-motoneuron descriptions were able to reproduce and help to
interpret important results from human experiments [212]. In favor of the increased com-
putational power and the flexibility of the simulator environments, it has been possible
to create models based on the three-dimensional reconstructed morphology of experimen-
tally recorded α-motoneurons. These models provide the unique possibility to investigate
the neural alterations arising from pathologies of the neuromuscular system.
More recently, biophysical neuromuscular models have been proposed to describe the link
between neural activity and force generation [213, 214, 207]. These models are a pro-
gression from the alpha-motoneuron models that were previously proposed. They also
commonly comprise simple models of supraspinal pathways (e.g., motor cortex, brain
stem), full spinal cord networks (e.g., excitatory and inhibitory interneurons, gamma
motor neurons, afferent projections), and musculotendon unit simulations (propriocep-
tion,e.g., joint dynamics). Recent applications of these biophysical neuromuscular models
include the analysis of the force variability during steady isometric contractions, postural
sway, and nonlinear control of force oscillations [215].

1.6.2.2 Multi-scales and multi-physics HD-sEMG model

In this thesis, we will use the modeling approach depicted in [1][11]. It simulates the
electrical activity of BB muscle during isometric contractions. The main axes of this
neuromuscular system are: (1) the modeling of the MU recruitment and firing behavior,
(2) the modeling of motor-unit action potential (MUAP), and (3) the modeling of the
conductor volume and the recording system. In fact, the model describes the generation
and the propagation of the electrical activity through a three-layered conductor volume
composed of muscle, adipose tissues, and the skin. The recording channels are simulated
to mimic a high-density electrode system. All steps for the generation and dissemination
of the electrical activity are considered in the model, from the motor neuron pool model,
the sources of action potential generated by muscle motor units MUs, the filtering of these
sources by the conductor volume, and the recording system at the skin surface (Fig. 1.31).
The model has 50 inputs: anatomical, neural, and electrical muscle and volume conductor
parameters (see Fig. 1.31). The main output of the model is the 64 HD-sEMG signals
according to the number of simulated channels (see Fig. 1.31). In order to correlate these
signals to the physiological and anatomical muscle properties, many features are extracted
from raw signals. These features are considered as the model outputs to be studied. This
thesis will propose a new personalized neural drive model for muscle aging. The detailed
description of the Hd-sEMG model personalized to aging and thereby, the new neural
drive model will be presented in chapter 3.
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Figure 1.31: Modeling approach as depicted in [1, 11].

1.7 Objectives of the thesis
A better understanding of age-related muscle alterations leads to a more accurate diag-
nosis and the prevention of rapid functional deterioration.
However, indeed of the well-known of many muscle age-related mechanisms, the diagnosis
of muscle aging as a disease entity suffers from a lack of accuracy and reliability. From
this perspective, this thesis proposes the high-density surface electromyography technique
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(HD-sEMG) coupled with muscle aging personalized models as a reliable device able to
assess motor decline and to identify indicator(s) of muscle aging using inverse methods.
To reach this objective, we should ensure that:

1. The biophysical model simulating HD-sEMG signal can help in the parameter iden-
tification process. For this purpose, in chapter 2, we propose an Improved Mor-
ris Sensitivity Analysis (IMSA) with new screening indices. These indices are
less affected by outliers of distributions of elementary effects. Thus, they en-
hance the stability and the reliability of the parameter rankings. Then, using
this method, we draw a global inputs/outputs sensitivity matrix, correlating the
variation ranges/uncertainties of the neuromuscular parameters to the simulated
HD-sEMG signals.

2. This biophysical model can simulate muscle aging with accuracy and reliability. For
this purpose, in chapter 3, we decide to enhance the biophysical model simulating
HD-sEMG muscle signal by phenomenological models describing the muscle quality
degradation during aging. In particular, the morphological, structural, and neural
changes (e.g., the modeling of the intramuscular fat infiltration). The muscle quality
descriptors are extracted from the literature to accomplish this task. Furthermore,
the coupling of the biophysical model and muscle aging descriptive models makes an
important cross-simplification of the global model since the sEMG signal is related to
age, gender, and body mass index. Which makes the new approach more accessible
for clinicians and easy to use in muscle aging diagnosis.
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Figure 1.32: Thesis outlines.
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1.8 Conclusion
Sarcopenia is a serious aging syndrome that is one of the primary causes of senior frailty
and disability. It shows up as a gradual loss of skeletal muscle mass and functionality.
Far from finding a medical therapy, even the disease diagnosis is problematic due to the
scarcity of quantitative parameters (besides the total muscle mass and strength) and the
difficulty of measuring them. In order to help the active aging and healthy living, we aim,
in this thesis, to produce a mathematical model of the behavior of the human skeletal
muscle capable of describing the quality/quantity of the muscular tissue/function. Such a
model would be valuable in the feedback of muscle aging biomarker(s), coupled to a Model
Aided Diagnosis (MAD) architecture that will allow access to underlying properties by
analyzing noninvasive HD-sEMG signals.
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Problematic The neuromuscular model depicted in [1, 11] and described in the pre-
vious chapter, is a multi-scales and multi-physics model simulating the electrical activity
at the skin surface during isometric contractions. All the steps of the electrical activity
generation and dissemination are described in this model, from the motoneuron model
pool, the sources of action potential generated by muscle motor units (MUs), the filtering
of these sources by a three-layered conductor volume (muscle, adipose tissues, and skin),
and the recording system at the skin surface. The recording channels are simulated to
mimic a High-density electrodes system [202].
This model have a complex design with a large number of inputs, more than 50 param-
eters, and marked by switching between behaviors according to threshold concepts. In
addition, many of these parameters are associated to large uncertainties due to the lack
of knowledge and/or the measurement errors. Little data of these parameters is available
in the literature. The exact values of many parameters and the effect on the outputs
of their potential variation are not well defined. A better understanding of the relation-
ships between model inputs (neuromuscular parameters) and outputs would allow the
identification of the most influential parameters as well as those with a negligible impact.
The definition of a groups of parameters with a strong and small influence on the model
outputs would allow us to know which ones are important to determine precisely or, on
the contrary, which ones can be fixed at an average value. Moreover, the input-output
relationships built are useful for the subsequent identification of those parameters. In
fact, in addition of reducing the number of parameters to identify and thus the identifi-
cation computation time, it will figure out the convenient output(s) for each parameter
to accomplish the identification process. This identification will be performed to evaluate
muscle aging effects using the presented personalized model. The Sensitivity Analysis
(SA) is a precious tool to define the influential group of parameters and to build a reliable
relationships between these parameters and the different model outputs. However, the
selection of an adequate sensitivity analysis method providing reliable and robust results
is a complex task. Furthermore, the definition of a simulation plan/methodology to figure
out the input-outputs relationships is not evident. In this chapter, we will address these
several issues.

2.1 Introduction
Many sensitivity analysis methods are reported and classified in literature [216, 217, 218,
219] according to the model complexity and its computation time. The two main classes
reported are : local methods and global methods [216, 218]. Local approaches investigate
the impact of a small variation around a fixed point of input uncertainty range on the
model output(s). These approaches are commonly applied when output have a linear be-
havior near a specific nominal value of model inputs, and are not able to assess interactions
between parameters. Global approaches can explore all the input space and interactions
between parameters. These methods are commonly grouped into derivative-based meth-
ods, regression-based methods, qualitative screening methods, and variance-based meth-
ods [216, 218]. The results of these methods can be illustrated by: ranking, screening, or
mapping. Each representation has a defined utility: Ranking methods are valuables for
parameter identification; Screening methods can be useful for reducing model complexity;
Mapping methods are adapted for studying and understanding model output behavior
and at where input space area this output is stable or optimal.
To facilitate the selection of an adequate sensitivity analysis method, a decision tree is
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proposed by [216] (Fig. 2.1). It suggests the minimum number of model evaluations
needed for each method based on the complexity and regularity of the studied system.
Most of global sensitivity analysis methods are requiring a large number of model evalu-
ations [216, 218]. Thus, performing these sensitivity analysis methods with complex and
high computation time models can be a very long time process.

Figure 2.1: SA methods synthesis as depicted in [216]. d is the number of parameters.

However, based on this decision tree, the MSA [220] come forth as the method needing
the minimum number of model evaluations for complex, non-regular and/or non-linear
ones. It is widely adopted by model makers in many fields [221, 222, 223, 224]. It screens
the most and least sensitive parameters with the fewer number of model simulations
and can be considered as semi-quantitative method regarding the information that gives
for interactions between parameters. In fact, the MSA varies one input at a time and
computes the elementary effect of this variation on the system output. This computation
is repeated several times for each input by following different trajectories in the input
space. The mean and the standard deviation of Elementary Effect (EE) for each input
are considered as the MSA indices. The input impact is assessed according to values
and rankings of these indices. The stability and reliability of MSA indices are rarely
investigated [225, 226, 227, 228]. MSA users refer in the most of cases to a reference
book in this field [218] to fix MSA variables when performing sensitivity analysis. In fact,
the mean and standard deviation are not suitable for non-normal data distributions. This
condition, with the reproducibility of MSA results, is not usually verified and investigated
by MSA users.
In this chapter, we will first introduce the HD-sEMG model [1, 11] in the section 2.2.
Second, we will propose in section 2.3 an IMSA approach and an effective methodology to
deliver reliable, stable and reproducible ranking results at a minimum computation time.
Then, we will apply the new IMSA on the presented model to define parameters with
small and large impacts on the HD-sEMG signals generated by a recent neuromuscular
model. For this purpose, the HD-sEMG signals will be described by 23 features (e.g.,
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amplitude, energy, frequency). Four subject categories are studied: Young Men (YM),
Old Men (OM), Young Women (YW), and Old Women (OW) for evaluating both gender
and aging effect on the input/output relationships. Two contraction levels are investigated
to assess the sensitivity to muscle activation: Low Contraction (LC) (LC = 20% of MVC)
and High Contraction (HC) (HC = 60% of MVC). The Fig. 2.2 resume the chapter
workflow: describing briefly the model, proposing IMSA, comparing IMSA and MSA,
and the employment of IMSA method on the HD-sEMG model. The IMSA allow us
to determine the most influential parameters for each feature which can offer a useful
guide-map for subsequent parameter identification. Furthermore, the IMSA will explore,
evaluate and validate the modeling approach used in [1, 11]. It will assess the impact
of measurement uncertainties of parameter values and evaluate the impact of muscle
anatomy factors on subjects sharing the same age and health conditions. This aspect can
steer the experimental effort toward a precise objectives and a development of personalized
instrumental protocols.
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Figure 2.2: Chapter outlines.
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2.2 The neuromuscular model
The neuromuscular model [1, 11] simulates the electrical activity recorded at skin surface
during isometric contractions of a striated muscle (see chapter1, section 1.6.2.2). This sim-
ulation describes the generation and the propagation of muscle electrical activity through
a three-layered conductor volume composed of muscle, adipose tissues, and skin. The
recording channels are simulated as a high-density electrode system [202]. This model
contains sub-models simulating current source (motor units: motoneuron and fibers) re-
cruitment, its firing rate, and the force generated by the striated muscle during isometric
contractions. The motor unit action potential simulated at the skin surface is computed
at different levels of muscle contractions.
To perform the sensitivity analysis on this model and build a sensitivity matrix between
model inputs and outputs (see Fig. 2.3), we need to: (i) well report the variation ranges
of the several parameters involved in this model, and (ii) select the appropriate features
describing the HD-sEMG signals (model output). In fact, we will compute the effects of
input variations not on the HD-sEMG signals themselves but on features extracted from
these signals. The feature extraction is the transformation of the raw signal data into a
relevant data structure highlighting the important data of HD-sEMG signals [229].
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Figure 2.3: A schematic representation of performing the sensitivity analysis method on the HD-sEMG
model.

2.2.1 Model inputs
The neuromuscular model expresses the theoretical relationship of the generated HD-
sEMG signals according to a specific set of parameters: neural, anatomical and physi-
ological. It involves more than 50 parameters. To perform the sensitivity analysis, we
decide to limit the analysis on 35 parameters (Table 2.1) covering the neural, anatomical
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and physiological muscle factors. In addition, we decide to fix 12 parameters (Table 2.2
and Table 2.3) for a reliable assessment of sensitivity analysis results. The fixed param-
eters describe the configuration of the electrode grid (ex: number of electrode, size of
electrodes), and the source recruitment pattern (e.g., contraction level and time).

Table 2.1: List of neural, anatomical and physiological parameters involved in the sensitivity analysis.
U uniform distribution. S: Slow, FI: Fast Intermediate, FR: Fast Resistant, FF: Fast Fatiguable. (-) No
measurement unit.

Name Description Unit
nMU Number Motoneuron Unit -
MUdist Distribution of MU according to

their type
(%)

MU r
S Radius of MU type S mm

MU r
FI Radius of MU type FI mm

MU r
FR Radius of MU type FR mm

MU r
FF Radius of MU type FF mm

nfSMU Number of fibers per MU type S mm
nfFIMU Number of fibers per MU type FI -
nfFRMU Number of fibers per MU type FR -
nfFFMU Number of fibers per MU type FF -
L Muscle length mm
boner Bone radius mm
SfD S fiber diameter µm
FIfD FI fiber diameter µm
FRfD FI fiber diameter µm
FFfD FF fiber diameter µm
Cvelocity Conduction velocity m.s−1

NMJpos Neuromuscular junction center -
MTZL Left myotendinous length mm
MTZR Right myotendinous length mm
ρcmuscle Radial muscle conductivity S.m−1

θcmuscle Angular muscle conductivity S.m−1

Zc
muscle Longitudinal muscle conductivity S.m−1

thickmuscle Muscle thickness mm
ρcFat Radial fat conductivity S.m−1

θcFat Angular fat conductivity S.m−1

Zc
Fat Longitudinal fat conductivity S.m−1

thickFat Fat thickness mm
ρcskin Radial skin conductivity S.m−1

θcskin Angular skin conductivity S.m−1

Zc
skin Longitudinal skin conductivity S.m−1

thickskin Skin thickness mm
Gridθ Angular grid center ◦

GridZ Longitudinal grid center mm
Gridrot Electrode grid rotation ◦
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Table 2.2: Recruitment parameters needed to define the MUs recruitment

Parameter Description Unit
RR Recruitment range %MVC
a Recruitment threshold slope
lvl Contraction level %MVC
Tr Resting time s
Th Holding time s
cs Contraction speed %MVC.s−1

fs Sampling frequency Hz

Table 2.3: Electrode grid parameters needed to define an electrode grid

Parameter Description Unit
nθ Number of electrode in θ direction
nz Number of electrode in z direction
dθ Inter-electrode distance in θ direction mm
dz Inter-electrode distance in z direction mm
re Electrode radius mm

Collecting input data from literature The uncertainty ranges of the 35 parameters
will is defined according to literature values. Information concerning exact values for
almost of these parameters is uncertain due to the complexity of muscle anatomy, the
large variability of muscle configuration between subjects, and the experimental difficulty
to measure an exact value or a reduced uncertain range.
We have performed electronic database searches in Pubmed and ScienceDirect. The search
terms are composed usually of the biceps brachii term, the name of the parameter we
search, and subject category (e.g., aged, women, young, old). The results of search are
sorted by the most recent. The focus was on investigation of parameters related to the
Biceps Brachii muscle. In some studies, it is designed as the Long Head Biceps (LHB) or
elbow flexors and also some authors design the BB as the upper limb. In that respect, we
take into account the corresponding values. Our priority was also on values reported for
young and elderly people and for both women and men to explore gender and age effect.
The data is selected based on the methods and technics involved in the measurement,
and the clarity of information related to the age and gender of subjects. Moreover,
priority was assigned to values extracted by autopsy or biopsy for some parameters like
the fiber number and length. On other cases, the priority is given to recent methods of
measurement like Magnetic Resonance Imaging (MRI) and imaging technics especially for
defining parameters like bone radius or muscle thickness, etc. For parameters measured
with surface EMG (e.g., MU number, Conduction velocity), the selection is based on the
reliability of three essential factors: the performance of the recording system, the fitting
of the experimental protocol used with our criteria (e.g., isometric contraction), and the
reliability of the algorithms applied to extract data from recorded signals.
The table lists parameters with their potential variation ranges extracted from literature.
4 subject categories are considered according to the age and gender: young men (YM),
old men (OM), young women (YW), and old women (OW).
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Table 2.4: List of parameters with variation ranges extracted from literature. Values for young men
(YM), old men (OM), young women (YW), and old women (OW). N normal distribution. U uniform
distribution. S: Slow, FI: Fast Intermediate, FR: Fast Resistant, FF: Fast Fatigable.

Name YM value OM value YW value OW value References
nMU U [350, 450] U [250, 350] U [300, 400] U [200, 300] [230]
MUdist NS(47, 8)

NFI(10, 11)
NFR(20, 6)
NFF (29, 11)

NS(52, 8)
NFI(18, 2)
NFR(15, 6)
NFF (12, 9)

NS(50, 3)
NFI(10, 11)
NFR(20, 6)
NFF (24, 7)

NS(56, 6)
NFI(18, 2)
NFR(15, 6)
NFF (10, 6)

[231]

MU rS N (2.5, 0.5) N (2.75, 0.5) N (2.3, 0.5) N (2.6, 0.5) [41]
MU rFI N (2.75, 0.5) N (3.0, 0.5) N (2.6, 0.5) N (3.2, 0.5) [41]
MU rFR N (3, 0.5) N (3.25, 0.5) N (2.8, 0.5) N (3.45, 0.5) [41]
MU rFF N (3.25, 0.5) N (3.5, 0.5) N (3.25, 0.5) N (3.5, 0.5) [41]
nfSMU N (240, 310) U(160, 210) N (200, 280) U(120, 180) [78, 230]
nfFIMU N (80, 100) U(80, 90) N (70, 90) U(60, 80) [78, 230]
nfFRMU N (100, 150) U(100, 140) N (100, 150) U(90, 120) [78, 230]
nfFFMU N (170, 260) U(120, 200) N (150, 230) U(100, 180) [78, 230]
L U(115, 130) U(95, 115) U(110, 120) U(90, 110) [202]
boner U(11.7,13.2) U(9.5,13) U(10,11.4) U(10.5,11.9) [232]
SfD N (66, 9) N (51, 6) N (45, 0.4) N (43, 2) [233]
FIfD N (73,15) N (56,13) N (37,2) N (35,0.8) [233]
FRfD N (76, 15) N (60, 11) N (37,2) N (35,0.8) [233]
FFfD N (74, 15) N (51, 15) N (37,2) N (35,0.8) [233]
Cvelocity U [3.5, 5.9] U [2.5, 4.2] U [3.1, 5.5] U [2.3, 4.1] [234]
NMJpos U [-15, 15] U [-15, 15] U [-15, 15] U [-15, 15] [1]
MTZL N (15,2) N (15,2) N (15,2) N (15,2) [1]
MTZR N (15,2) N (15,2) N (15,2) N (15,2) [1]
ρcmuscle U [0.4, 0.6] U [0.3, 0.56] U [0.3,0.45] U [0.3, 0.56] [235]
θcmuscle U [0.4, 0.6] U [0.3, 0.5] U [0.3, 0.45] U [0.3, 0.5] [235]
Zcmuscle U [0.81, 0.99] U [0.73, 0.96] U [0.53, 0.69] U [0.50, 0.66] [235]
thickmuscle N (44, 2) N (40, 2) N (35, 4) N (31, 3) [232]
ρcFat U [0.04, 0.07] U [0.04, 0.07] U [0.04, 0.07] U [0.04, 0.07] [236]
θcFat U [0.04, 0.07] U [0.04, 0.07] U [0.04, 0.07] U [0.04, 0.07] [236]
ZcFat U [0.04, 0.07] U [0.04, 0.07] U [0.04, 0.07] U [0.04, 0.07] [236]
thickFat U [4,6] U [4,8] U [4,6] U [4,9] [237]
ρcskin U [0.9, 1.2] U [0.9, 1.2] U [0.9, 1.2] U [0.9, 1.2] [236]
θcskin U [0.9, 1.2] U [0.9, 1.2] U [0.9, 1.2] U [0.9, 1.2] [236]
Zcskin U [0.9, 1.2] U [0.9, 1.2] U [0.9, 1.2] U [0.9, 1.2] [236]
thickskin U [0.9,1.2] U [0.9,1.2] U [0.9,1.2] U [0.9,1.2] [235]
Gridθ U [0,5] U [0,5] U [0,5] U [0,5] [1]
GridZ U [22,26] U [22,26] U [22,26] U [22,26] [1]
Gridrot U [0,10] U [0,10] U [0,10] U [0,10] [1]

2.2.2 Model output

The main output of the model is the 64 HD-sEMG signals. In order to correlate these
signals to the physiological and anatomical muscle properties, many features are extracted
from raw signals. These features are considered as the model outputs. Table 2.5 summa-
rize all the features extracted from the HD-sEMG signals and considered as the model
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outputs for this study. Features depicted in Table 2.5 are classified according to their
computation algorithm techniques (Fig. 2.4). We have classified features into mono-
variate and bivariate subgroups, according to the fact of using one electrode channel or
two. Then, the monovariate features are classified either as time, frequency domain or
non-linear based algorithms.

Features

Mono-variate

Temporel

Amplitude: RMSA, MAV, 
wave length,..

Energy: Mean, IEMG, 
SSI,..

Statistic: Kurtosis, 
skewness,..

Frequentiel
MDF, MNF, SM, MNP, 

TTP,..

Non-linear
Approximate entropy, 

Sample entropy,..

Bi-variate
pearson correlation

coeficients, non-linear
correlation coeficiets

Figure 2.4: Classification of HD-sEMG features.

Table 2.5: List of Features extracted from the HD-sEMG and considered as the model outputs.

Feature classes Feature name Abbreviation

Time domain

1.Root Mean Square of Amplitude RMSA
2.Integrated EMG IEMG
3.Mean Absolute Value MAV
4.Modified Mean Absolute Value 1 MAV1
5.Modified Mean Absolute Value 2 MAV2
6.Wilson Amplitude wilson_amp
7.Kurtosis Kurt
8.Skewness Skew
9.Variance of EMG Var

Non-linear 10.Approximate entropy ap_ent
11.Sample entropy sp_ent

Frequency domain

12.Median frequency MDF
13.Mean frequency MNF
15.Mean power MNP
16.Peak frequency Peak_f
17.Frequency ratio Freq_r
18.Spectral moment 0 (Total power) SM0 (TTP)
19.Spectral moment 1 SM1
20.Spectral moment 2 SM2
21.Spectral moment 2n (Variance of central frequency) SM2n(VCF)
22.Spectral moment 3 SM3

Bivariate 23.Pearson correlation coefficient R2
24.Non-linear correlation coefficient H2
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2.2.2.1 Monovariate approach

Time domain features

Root mean square of amplitude (RMSA) The RMSA is a popular ampli-
tude/time domain feature in the EMG signal analysis, known also as “EMG amplitude
detector”. This popularity is due to his capacity to assess the main force generated by
the muscle through the estimating of the level of the isometric voluntary contraction. In
this study, the RMSA is defined as the square root of the signal mean over time, and in
addition, over the all electrode signals. Thus, the RMSA is defined as:

RMSA = 1
Ne

Ne∑
j=1

(
√√√√ 1
n

n∑
i=1

(Yj(i)2) (2.1)

Where Ne is the number of the grid-electrodes, n is the length of electrode EMG signal,
and Yj is the EMG signal of electrode j.

Integrated Electromyography signal (IEMG) The IEMG gives the total amount
of muscle activity during a given duration of the signal gives integration value. More am-
plitude, duration and frequency of action potentials lead to the large value of integration.
The IEMG feature is defined as:

IEMG = 1
Ne

Ne∑
j=1

( 1
n

n∑
i=1

Yj(i)) (2.2)

Where Ne is the number of the grid-electrodes, n is the length of electrode EMG signal,
and Yj is the EMG signal of electrode j.

Mean and modified absolute value (MAV, MAV1, MAV2) The mean ab-
solute value MAV represents the area under the EMG signal once it has been rectified
(all of the negative voltage values have been made positive). The modified absolute value
MAV1 and MAV2 are an extension of MAV, using weighting window function to improve
the robustness of MAV. These three features provide a best indicator of the total muscle
effort.

MAV = 1
Ne

Ne∑
j=1

(
√√√√ 1
n

n∑
i=1
|Yj(i)|) (2.3)

MAV 1 = 1
Ne

Ne∑
j=1

(
√√√√ 1
n

n∑
i=1

wi|Yj(i)|), with wi =
{

1, if 0.25n ≤ i ≤ 0.75n
0.5, otherwise (2.4)

MAV 2 = 1
Ne

Ne∑
j=1

(
√√√√ 1
n

n∑
i=1

wi|Yj(i)|), with wi =


1, if 0.25n ≤ i ≤ 0.75n
4i
n
, if i < 0.25n

0.5, otherwise
(2.5)

Where Ne is the number of the grid-electrodes, n is the length of electrode EMG signal,
Yj is the EMG signal of electrode j, and wi is weighting function.
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Willson amplitude (wilson_amp) The wilson_amp computes the number of
time resulting from the difference between EMG signal amplitude of two adjoining seg-
ments that exceeds a predefined threshold. This measure can quantify the firing of motor
unit action potentials and muscle contraction level.

wilson_amp = 1
Ne

Ne∑
j=1

( 1
n

n∑
i=1

fj(|Yj(i+ 1)− Yj(i)|)) with

{
1 if Y ≥ threshold
0 otherwise

(2.6)
Where Ne is the number of the grid-electrodes, n is the length of electrode EMG signal,
and Yj is the EMG signal of electrode j.

Kurtosis (Kurt) The Kurtosis is a measure of whether the a sample distribution
(histogram) is are peaked or flat relative to a normal distribution. For healthy patients,
The Kurtosis values decreases when the muscle contraction levels increases. Moreover,
it was observed that the probability density function of EMG signal at isometric, non-
fatiguing, low contraction levels is super-Gaussian (have more spiky peak and a longer
tail than a Gaussian distribution) [238].

Kurt = 1
Ne

Ne∑
j=1

(
E(Yj − µYj

)4

σ4
Yj

) (2.7)

Where Ne is the number of the grid-electrodes, and Yj is the EMG signal of electrode
j, E(.) the expectation operator, and µYj

and σYj
are the expected values and standard

deviation of the signal Yj.

Skewness (Skew) The Skewness assesses the asymmetry of a distribution. It is
defined as the third standardized moment.

Skew = 1
Ne

M∑
j=1

(
E(Yj − µYj

)3

σ3
Yj

) (2.8)

Where Ne is the number of the grid-electrodes, and Yj is the EMG signal of electrode
j, E(.) the expectation operator, and µYj

and σYj
are the expected values and standard

deviation of the signal Yj.

Variance (Var) The Var is the mean of square of signal deviation. It can give a
clear cut difference between healthy subjects and person with muscular diseases

V ar = 1
Ne

Ne∑
j=1

( 1
n− 1

n∑
i=1

(Yj(i)2) (2.9)

Where Ne is the number of the grid-electrodes, n is the length of electrode EMG signal,
and Yj is the EMG signal of electrode j.

Approximate and sample entropy (ap_ent, sp_ent) Approximate entropy
(ap_ent) was introduced by [239] to quantify the irregularity and complexity of a time
series. Time series data that are more irregular or entropic over time are considered more
complex than those that show irregular behavior at only a single time scale [3]. The
more deterministic time series present a high degree of regularity. Therefore, higher is
the regularity, lower is ap_ent. To calculate ap_ent of one electrode EMS signal Y (i) of
n values, one should first set an embedding dimension m and a distance threshold r and
then:



72 CHAPTER 2. SENSITIVITY ANALYSIS

1. Form a series of n−m+1 vectors of m components G(i) = [Y (i), Y (i+1), . . . , Y (i+
m)]T ;

2. Compute the distance between any couple of vectors G(i) and G(k) as the largest
absolute difference between the corresponding scalar components (if the difference
is less than the distance r the two vectors are similar);

3. Count nGm
i (r), number of the n − m + 1 vectors G(k) similar to G(i) and the

probability to find a vector similar to G(i) as:

Cm
i (r) = nGm

i (r)
n−m+ 1 (2.10)

4. Calculate Cm(r) as the average of Cm
i (r) for all the vectors G(i);

5. Repeat the steps from 1 to 4 for the embedding dimension m+ 1.

Then the ap_ent of Y (i) is calculated as:

ap_ent = − ln(C
m+1(r)
Cm(r) ) (2.11)

The sample entropy (sp_ent) is originally proposed by [240] as a refinement of the
approximate entropy (ap_ent) introduced by [239]. The sp_ent is computed in the same
way as the ap_ent and is given by the same equation (eq. 2.11). However, to reduce
the bias avoiding self-comparison between vectors, it calculates nGm

i (r) (the number of
vectors similar to G(i)) for all the vectors G(k) excluding k = i.
It is recommended [241] to use r ∼= (0.15−0.25)∗sd, where the sd is the standard deviation
Y (i).

Frequency domain features The frequency domain or spectral domain features
are useful in the analyzing of MUs recruitment [200, 242, 243]. To transform the EMG
signal in the time-domain to the frequency-domain, a Fourier transform of the autocorrela-
tion function of the EMG signal is employed to provide the Power Spectral Density (PSD).
The PSD describes how power of a signal is distributed over frequencies. To estimate the
PSD, there are parametric and non-parametric methods [244]. The parametric methods
assume that the data follows a certain model, and the non-parametric methods do not
make any assumption on the data structure [244]. From the non-parametric methods, the
most commonly used PSD estimator in the EMG signal analysis is the periodogram: the
Bartlett method (1948), the Blackman and Tukey method (1958), and the Welch method
(1967). In this study, we employ the Welch method to estimate the PSD [245].

Power spectral density (PSD): Welch method There are several steps to com-
pute PSD with the Welch method (see [245]). Briefly, this method involves: 1) Partition-
ing the signal intoM segments; 2) For each segment (k = 1 toM), computing a windowed
discrete Fourier transform (DFT) at some frequency f ; 3) For each segment, forming a
modified periodogram value Pk(f) from the DFT. Finally, the calculated periodogram
values from different windows are averaged and the PSD estimate is obtained:

P (f) = 1
K

K∑
k=1

Pk(f) (2.12)
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In this study, to compute the PSD of the HD-sEMG signals, we will use a Hanning window
function and a sampling rate equal to 2048 Hz. As consequence, from an electrode signal
Y (t) of length n , we will obtain a representation of the PSD P (Hz) of size M .
We can then extract several descriptors from this PSD. Those that we have used for the
sensitivity analysis are:

Median Frequency (MDF) and Mean Frequency (MNF) MDF is the fre-
quency at which the spectrum is divided into two regions with equal amplitudes. It is
defined as :

MDF =
MDF∑
j=1

Pj/M =
M∑

j=MDF

Pj/M = 1
2

M∑
j=1

Pj/M (2.13)

MNF is the frequency average. It is defined as:

MNF =
M∑
j=1

fjPj/
M∑
j=1

Pj (2.14)

Where fj is the frequency value of EMG power spectrum at the frequency bin j, Pj is
the EMG power spectrum at the frequency bin j, and M is the length of frequency bin.
The variation of mean frequency power may assess the frequency work of slow and fast
MUs knowing what kind of MUs are recruited for each level of isometric contractions.
The MDF and the MNF shifted to lower frequencies at the isometric contractions which
is an indice of muscle fatigue [246]. The authors in [247] reveal that the increase of
isometric contraction level cause the increase of the MDF slope which is an indicator of
fiber strategies recruitment.

Mean power (MNP) MNP is an average power of EMG power spectrum.

MNP =
M∑
j=1

Pj/M (2.15)

Peak frequency (Peak_f) Peak_f is a frequency at which the maximum EMG
power spectrum occurs.

Peak_f = Max(Pj), j = 1, ...,M (2.16)

Frequency ratio (Freq_r) The Freq_r is used to discriminate between relaxation
and contraction of the muscle using a ratio between low- and high-frequency components
of EMG signal

Freq_r = P0

P
=

ULC∑
j=LLC

Pj/
UHC∑
j=LHC

Pj (2.17)

Where ULC and LLC are respectively the upper- and the lower-cutoff frequency of low-
frequency band, and UHC and LHC are respectively the upper- and the lower-cutoff
frequency of high-frequency band.

Spectral moments (SM) SM is an alternative statistical analysis way to extract
feature from the power spectrum of EMG signal [248, 200, 242]. Their equations can be
defined as:

SM0 =
M∑
j=1

Pj (2.18)



74 CHAPTER 2. SENSITIVITY ANALYSIS

SM1 =
M∑
j=1

Pjfj (2.19)

SM2 =
M∑
j=1

Pjf
2
j (2.20)

SM2n = 1
SM0

M∑
j=1

Pj(fj −MNF )2 = SM2

SM0
− (SM1

SM0
)2 (2.21)

SM3 =
M∑
j=1

Pjf
3
j (2.22)

We will name SM0 as TTP (Total power) and SM2n as VCF (variance of the central
frequency) in the next paragraphs.

2.2.2.2 Bivariate approach

This approach evaluates the similarity between between two signals of length n. The
two signals Y1 and Y2 are selected from the 64 signals of the HD-sEMG electrode grid
described previously.

Linear correlation coefficient (R2) The linear correlation, also called Pearson
correlation efficiency, measures the dependence between the two signals Y1 and Y2.

R2 =
∑n
k=1(Y1(k)− µY1)(Y2(k)− µY2)√∑n

k=1(Y1(k)− µY1)2 ∑n
k=1(Y2(k)− µY2)2

(2.23)

Where µY1 and µY2 are, respectively, the average of Y1 and Y2. The coefficient R2 ranges
from -1 to +1. A -1 means there is a strong negative correlation and +1 means that there
is a strong positive correlation. A 0 means that there is no correlation.

Non-linear correlation coefficient (H2) The main idea of the H2 coefficient is
that if the value of Y1 is considered as a function of the value of Y2, the value of Y2
given Y1 can be predicted according to a nonlinear regression curve [249]. The nonlinear
correlation coefficient between Y1 and Y2 is then computed using the following equation:

H2 =
∑n
k=1 Y2(k)2 −∑n

k=1(Y2(k)− f(Y1(k)))2∑n
k=1 Y2(k)2 (2.24)

where f(Y1) is the linear piecewise approximation of the nonlinear regression curve (for
more details see [249]). The estimator H2 ranges from 0 (independent signals) to 1
(correlated signals).

2.2.3 Computation time
The sensitivity analysis are achieved by running the model for many different samples of
the parameter space to determine their impact on the model outputs. If the model has
a high computational time, the employment of sensitivity analysis methods will be not
possible, limited or computationally highly expensive [216]. Which is the case of the most
of models simulating the electrical activity of striated muscles. However, the author of
this HD-sEMG model [1, 11] have proposed a fast generation model of muscle electrical
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activity computed at the motor unit (MU) scale (summation of hundred of sources) rather
than at fiber scale (summation of many hundreds of thousand sources). The implementa-
tion and the computation workflow of this model well be detailed in the next chapter 3.
Next to the MU scale computing, the model computation time can significantly decrease
by optimal programming/implementing strategies. The Table 2.6 shows the computation
time of the neuromuscular model for the same simulations (high an low muscle contrac-
tions) in two different computing configurations (serial and parallel) [1]. According to
this Table, parallel computation time of the HD-sEMG signals using the electrical macro
source model corresponds approximately to 1% of serial computation time. The use of
10 threads (Table 2.6) increases significantly the model speedup. As consequence, the
development in computer sciences can resolve one crucial feature about modeling which
is the computation time. This model speedup promotes high costly processes relevant
in medical applications and diagnostic of muscle diseases (e.g., sensitivity analysis and
parameter identification).
Taking advantage of this model speedup, we will assess the Morris sensitivity analysis
method at high number of samples in the parameter space in the next section.

Table 2.6: Computation time of the neuromuscular model (MUs sources) to simulate HD-sEMG during 5
seconds of isometric contractions at three force levels: 20, 40, and 60% of the MVC (Maximal Voluntary
Contraction). Comparison between computation time using signals serial computing (1 thread) and
parallel computing (10 threads). Workstation: 2×8 cores Intel Xeon 2.40 GHz with hyperthreading (32
threads), 128 Go RAM, Ubuntu 14.04 64bits

Number of Level of force contractions
used process 20% of MVC 40% of MVC 60% of MVC
Serial (1 thread) 20min03s 27min50s 38min10s
Parallel (10
threads)

1min56s 3min03s 4min10s

2.3 Morris screening sensitivity analysis

2.3.1 Classical Morris Sensitivity Analysis (MSA)
The MSA method is based on the discretization of variation ranges of inputs n into l
levels at where each input is varied while fixing the rest. This process is known as One
At a Time design (OAT). The n-dimensional space is thus transformed in n-dimensional
l-level grid. Variation ranges of inputs are defined for each of the parameters and then
sized to obtain a dimensionless interval for all parameters (between 0 and 1). The Fig.
2.5 shows an illustration case of creating an input space with n = 3 and l = 4.

The algorithm of trajectory construction starts at a randomly chosen point in the
n-dimensional space (Fig. 2.5) and creates a trajectory through all the n-dimensional
variable space. The trajectory is built with n + 1 points. Two adjacent points differ
by standardized step ∆ only in one dimension of the n-dimensional variable space. The
coordinates of every point of the single trajectory are used as input values to the compu-
tational algorithm. Step-by-step construction of the single trajectory for n=3 parameters
is presented in Fig. 2.6. In the construction of the single trajectory, it is assumed that
each input factor is varied with a discrete number of values, called levels l.
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Figure 2.5: (a) Illustration of creating an input space of three parameters (n = 3). All parameters are
subdivided into l = 4 levels. (b) Each parameter can changes value with a ∆ step.
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Figure 2.6: An example of a single trajectory T constructed of three-dimensional input space (n = 3,
inputs = {X1,X2,X3}). The trajectory is built with 4 points (n + 1). (a) Step 0: the first point is
randomly chosen; (b) Step 1: Only X1 can change value by ∆ step; (c) Step 2: Only X2 can change value
by ∆ step; (d) Step 3: Only X3 can change value by ∆ step.



2.3. MORRIS SCREENING SENSITIVITY ANALYSIS 77

The elementary effect of this variation on the model output is computed by the fol-
lowing equation:

EEjk = yk(X1, ..., Xj + ∆, ..., Xn)− yk(X1, ..., Xj, ..., Xn)
∆ (2.25)

Where, EEjk is the elementary effect of input j on the kth model output, ∆ is a
predetermined perturbation factor of Xj, yk(X1, X2, ..., Xj, ..., Xn) is the scalar model
output evaluated at inputs (X1, X2, ..., Xj, ..., Xn), while yk(X1, X2, ..., Xj + ∆, ..., Xn) is
the scalar output corresponding to a ∆ changes in Xj, and n is the total number of
inputs.
To obtain a reliable impact of inputs, Morris in [220] suggests to repeat computation
of EEjk for each input several times. At each time, the input changes its value in a
new configuration inside the input space. A number, T , of different trajectories through
variable space have to be constructed. Trajectories respect the one at a time design: only
one input can change its value through levels l by jumping only by one step ∆ at each
time. The step ∆ depends of l (Fig. 2.6). The total number of points for each trajectory is
equal to n+ 1 (the total number of model evaluation to deliver Morris sensitivity analysis
result for all parameters is equal to T ∗ (n + 1)). The mean (µ, equation 3.11) and the
standard deviation (σ, equation 3.12) of all elementary effects (EE) for each input over
its T trajectories are proposed as MSA indices by Morris in [220].

µjk = 1
T

T∑
i=1

EEjk (2.26)

σjk =

√√√√ 1
T

T∑
i=1

(EEjk − µjk)2 (2.27)

The mean µ assesses the input influence on the model output. The σ estimates possible
non-linear effect and/or interactions between inputs. However, for non monotonic and
non-linear models, the distribution of elementary effects can contains positive and negative
elements. In this case, the µ cannot give an exact impact of inputs due to the sign effect
of EE. The study [250] suggests the use of EE absolute values (µ∗, equation (3.13)) as a
reliable and complement MSA indicator.

µ∗jk = 1
T

T∑
i=1
|EEjk| (2.28)

Many variables are involved in the MSA method: the number of levels (l), the sampling
strategy, the number of trajectories (T ), the distributions of the EE, and their averaging
mode. However, it does not exist in the literature a completed and reliable study or guide
to adjust these variables for complex models. Studies and users, in the literature, deliver
MSA results without justifying the adjustment of the method variables, and in most of
times without giving values of these variables.
Moreover, an investigation of the MSA indices adequacy related to its statistical signifi-
cances was not reviewed properly. The mean and the standard deviation are adapted to
normal distributions or large samples of elementary effects. Recently, few studies have
evaluated the stability of MSA results. The Table 2.7 lists all studies evaluating MSA
method variables in different fields. This evaluations are limited to only stability criteria
in a restricted domains and low order model (small computation time).
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Table 2.7: List of studies assessing the MSA method variables to obtain stable ranking with MSA
method. (∗) missed information in the study

Study field T levels l Parameter number n
[251] oceanology 500 * 20
[222] Thermo-chemical 50 6 30
[221] Hydrology 20 * 30
[223] Energy * * 50
[252] Hydrology 50 8,4 20
[253] Environment 200 * 20
[228] Materials 100<>600 * *
[226] Building >=100 >=4 *
[254] Agriculture 50 8 *
[224] Energy 500 2, 4, 6, 8, 10, 12 24

2.3.2 Improved Morris Sensitivity Analysis (IMSA)
The philosophy of MSA is to give two approximate indicators quantifying and qualifying
a set of elementary effects (EE). Mathematically, the two indicators are the expectation
of EE (µ = E(EE)) and its dispersion (σ2 = var(EE)). The original MSA performs the
mean as estimator of µ and the root mean square deviation as estimator of σ2 (equations
(3.11) and (3.12)). Statistically, these two indices/estimators gives a reliable characteri-
zation of a Laplace-Gaussian distribution. Where the mean (µ) is an unbiased estimator
of the expectation, and (σ2) is asymptotically unbiased estimator of dispersion/variance
(biased for small set of data).
However, the symmetry and Gaussianity of EE distributions are not evident for complex
models. In addition, with MSA method, it is common to compute indices from small
samples (small T ). As consequence, the credibility of µ and σ2 cannot be established.
In this study, we propose new indices more adapted to asymmetric and non Gaussian
sample distribution: the absolute median (χ∗, equation (2.29)) and the median absolute
deviation (ρ, equation (2.30)). These two indices are more robust to extremely high and
low outliers values and more efficient for non-normal shapes of EE distributions.

χ∗jk = |EEjk|(T+1)/2 (2.29)

ρjk = (|EEjk| − χjk)(T+1)/2 (2.30)

Reproducibility of IMSA indices ranking The IMSA requires T ∗ (n+1) model
evaluations, where n is the number of inputs. The variable T have an important impact
on the computation cost: high value of T increases the computation time, when a very
small value can gives wrong input impacts. In this study, we keep the original MSA
design (sampling strategy), and we investigate the stability of IMSA indices through
eight scales of T : from 10 to 100. The purpose is to define at which value of T the
stability and reproducibility are guaranteed. In particular, the minimum value of T
needed for reliable and convergent indices. Table 2.8 summarizes the total number of
model simulations needed for each trajectory T and the correspondent computing time.
We should note that MSA and IMSA run in the same computation time since they use
the same sampling strategy of the input space and the same calculator. Method indices
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are computed afterwards.
The stability is assessed with: 1) an individual ranking of parameters using MSA and
IMSA indices, and 2) a ranking by group of parameters sharing the same influence/effect.

1. For individual ranking, the stability is evaluated with a numerical position factor as
proposed in [255]:

PF
{µ∗,χ∗}
Ti→Tj

=
p∑
p=1

|R{µ
∗,χ∗}

r,i −R{µ
∗,χ∗}

r,j |
{µ∗, χ∗}Rp,iRp,j

(2.31)

WhereRr,i andRr,j are the position/ranking of parameter p at Ti and Tj respectively,
and {µ∗, χ∗}Rp,iRp,j

is the ranking average of parameter p obtained by Ti and Tj with
MSA or IMSA method. The position factor PF {µ

∗,χ∗}
Ti→Tj

evaluates the ranking changes
of all parameters between two different trajectories for MSA or IMSA indices (µ∗
and χ∗ respectively). In fact, low value of PF {µ

∗,χ∗}
Ti→Tj

indicates a small ranking
variation between Ti and Tj. Furthermore, the average position obtained by Ti
and Tj: {µ∗, χ∗}Rp,iRp,j

reduces the position changes of negligible parameters. As
consequence, the smallest obtained PFTi→Tj

with a posterior stable values, indicates
that Tj is the minimum trajectory needed for convergent and reliable indices.

2. To evaluate the stability of ranking by group of parameters sharing the same im-
pact on the model output, we decide to perform the ranking task according to the
influence threshold concept. Thresholds are fixed to define from which value of
MSA and IMSA indices the impact of each input is considered important or not.
To define this concept, we have fixed the following thresholds : (i) The input is
considered in influential group if its EE average varies more than 20% of the model
output(χ∗ > 20%, µ∗ > 20%), or the dispersion of its EE is bigger than this value
(ρ > 20%, σ > 20%), or both. (ii) If χ∗ or ρ and respectively µ∗ or σ have values
causing less than 5% of output variation: the input is considered with negligible ef-
fect (non-influential group), (iii) parameters situated between these values (5% and
20%) are classified in the intermediate impact group. Then, we test the stability
of indices by increasing T values. We should note that thresholds are fixed at 20%
and 5% of the model output as illustrative example to perform parameter rankings
with this concept. In fact, threshold values depend of the studied model.

Reliability of IMSA indices Classically, MSA users apply the ratio σ/µ∗ to define
linearity and monotonicity of input impacts. This ratio appears firstly in [256]. Since, it
was performed by the majority of studies applying MSA. In this study, we evaluate the
reliability of this ratio with new IMSA indices. Based on normal distribution statistics,
authors in [256] estimate that σ/µ∗ is an indicator of almost linear effects (if < 0.1) or
monotonic effects (if < 0.5). To define linearity and monotonicity of parameter effects
with IMSA indices, we propose to perform the following steps:

1. Test the normality of EE distributions around χ∗ and ρ. For this purpose, we have
performed a Kolmogorov-Sminov non parametric goodness-of-fit test in the present
study [257, 258].

2. Given that EE distributions are normal, we use the statical property: 95% of EE
are within a range χ∗r ± 1.96ρr, to define (non)linearity and (non)monotonicity of
EE as justified below:
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Table 2.8: Computation time and number of model evaluations needed for each T . The computation
time was obtained using 32 parallel threads (workstation: 2×24 cores, Intel Xeon Platinum 8160 X7542,
2.1 Ghz, 1 To RAM).

Number of trajectories (T ) Number of model evalua-
tions

Computation time (32 par-
allel processes)

10 360 03h25min
20 720 06h02min
30 1080 10h49min
40 1440 15h40min
50 1800 20h28min
60 2160 25h54min
80 2880 37h39min
100 3600 42h35min

• If ρr/χ∗r < 0.1: most EE are in a range ±20% around χ∗ (Fig. 2.7 : 95% of
EE values are within χ∗r ± 1.96 ∗ 0.1χ∗r ≈ χ∗r ± 0.2χ∗r). As consequence, most
EE can be considered as constant and the input r has an almost linear and
monotonic effect (linear effect when ρr/χ∗r = 0).
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Figure 2.7: The shape of EE probability density function according to the ratio ρr/χ∗r .

• If ρr/χ∗r < 0.5: 95% of EE are within χ∗r ± 2 ∗ 0.5χ∗r = χ∗r ± χ∗r which is always
positive. As consequence, most EE have the same sign (monotonic effect of
input r).

By applying these assumptions, we can use the ratio ρr/χ∗r as graphic indicator of (non)linearity
and (non)monotonicity of EE in the input screening with the IMSA method.

2.3.3 Assessment of the IMSA approach
2.3.3.1 Results

To evaluate the reliability of sensitivity analysis using classical MSA and the new IMSA
methods, we will: (1) test the normality of elementary effect distributions according
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to MSA and IMSA indices, (2) test the stability and reproducibility of indices when
changing/increasing T values, and (3) compare between MSA and IMSA results according
to these two previous criteria.

Evaluation of EE distributions To investigate the reliability of parameter rank-
ing with MSA and IMSA indices, we analyze the elementary effects (EE) distributions.
The Fig. 2.8 shows the EE distributions of the 35 parameters involved in the neuromus-
cular model. The EE are computed on the mean RMSA output at T = 30 (Trajectory
needed for stable raking (Fig. 2.10). This figure shows that many input histograms are
marked by a skewed and localized EE distributions (e.g., diameter of fast intermediate
fibers (FIfD), the neuromuscular junction position (NMJpos)). However, visually, we
cannot claim if EE are normally distributed around MSA indices (µ∗ and σ) or not just
by observing the Fig.2.8.
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Figure 2.8: The EE distributions of 35 parameters featured in the neuromuscular model. T = 30, output
= RMSA. Green color: significantly normal EE distributions around (µ∗,σ). Red color: non-normal EE
distributions around (µ∗,σ). Normality test is preformed by Kolmogorov-Smirinov test (Table 2.9).

To perform a reliable investigation of EE distributions, we apply a statistical normality
test: the Kolmogorov-Smirnov test in this case. The test compares between EE distribu-
tion of each input and a theoretical fitted normal distribution generated using the average
and dispersion estimators of these input elementary effects. A distribution is considered
normal or significantly normal: N(µ∗, σ) or N(χ∗, ρ), if p-value > 0.05 (default value of
the level of significance).
The Table 2.9 shows the results of performing the Kolmogorov-Simirinov normality test
on EE distributions for MSA and IMSA methods at T = 30. We observe that EE are
not normally distributed around µ∗ and σ for many inputs (red color). In contrast, all
inputs have a normal distribution around χ∗ and ρ using the same test (green color). As
consequence, the (non)linearity and (non)monotonicity of parameter effects according to
MSA indices are not reliable in agreement with the results of Kolmogorov-Smirnov test.
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For IMSA indices, as aforementioned in the section 2.3.2, we can define these aspects
according to ρ/χ∗ ratio.
The new IMSA screening is proposed in this study with three impact zones: (1) lin-
ear effects for parameters with ρ/χ∗ < 0.1, (2) monotonic effects for parameters with
ρ/χ∗ < 0.5, (3) non-linear and/or non-monotonic effects with possible interactions be-
tween parameters (ρ/χ∗ > 0.5).

Table 2.9: The results of Kolmogorov-Smirnov normality test applied on elementary effects data of each
parameter, and according to MSA and IMSA indices at T = 30. The p values > 0.05 indicate that EE
distribution is significantly normal (green color).

Parameters p value
(MSA,T=30)

p value
(IMSA,T=30)

nMU 0.48 0.954
MUdistribution 0.8118 0.656
MU r

S 0.9945 1
nfSMU 7.43e-06 0.811
MU r

FI 0.9107 0.925
nfFIMU 1.27e-05 0.632
MU r

FR m 0.5864 0.736
nfFRMU 1.05e-06 0.448
MU r

FF 0.4159 0.762
nfFFMU 0.5493 0.949
L 0.6869 0.448
boner 0.9908 0.892
SfD 3.59e-02 0.432
FIfD 5.01e-07 0.632
FRfD 1.28e-05 0.996
FFfD m 6.20e-04 0.384
Cvelocity 0.8885 0.627
NMJpos 1.36e-02 0.441
MTZL 4.08e-05 0.866
MTZR 3.44e-06 0.632
ρcmuscle 4.96e-03 0.07
θcmuscle 4.02e-03 0.402
Zc
muscle 0.6422 0.937

thickmuscle 0.976 0.869
ρcFatm 4.69e-02 0.436
θcFat 8.54e-07 0.728
Zc
Fat 3.19e-02 0.901

thickFat 0.2454 0.774
ρcskin 5.22e-08 0.108
θcskin 0.0948 0.564
Zc
skin 4.42e-02 0.335

thickskin 4.39e-02 0.548
Gridθm 8.13e-03 0.528
GridZ 3.06e-02 0.759
Gridrot 2.44e-05 0.91
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Evaluation of ranking stability The ranking stability is investigated with eight
scaled trajectories (from T = 10 to T = 100) to identify the minimum T needed for a
stable ranking for both MSA and IMSA methods. The model output studied is the RMSA
averaged on the 64 electrodes. For individual ranking, parameters are sorted in ascending
order from 1 to 35 (total number of parameters) according to µ∗ for MSA method and χ∗
for IMSA method. Parameter with highest µ∗ or χ∗ (highest effect on the model output)
is ranked number one for MSA/IMSA method. Conversely, parameter with the most
negligible effect on the model output (lower value of µ∗ or χ∗) is ranked number 35. The
parameter ranking is evaluated at each trajectory T:{10,20,30,40,50,60,80,100}.
The Fig. 2.9 depicts the stability of individual parameter ranking through the eight-scaled
preselected T values. The inputs are ranked according to µ∗ (MSA, Fig. 2.9(a)) and χ∗
(IMSA, Fig. 2.9(b)).
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Figure 2.9: Comparison between ranking stability of neuromuscular system inputs using µ∗(a) and
χ∗(b). Output = Mean RMSA value.

In this figure, the ranks starts from 1 (most influential with respectively high µ∗ , χ∗)
to 35 (least impact with respectively negligible µ∗ , χ∗). The model output is the mean
RMSA feature. For each column of ranking points/parameters according to the given T.
We observe a large impact of the averaging mode on the stability of individual parameters
ranking. This impact is more accentuated for parameters with low µ∗ (negligible effects).
This observation is consistent with observations of the study [225]. In addition, this figure
demonstrates that applying χ∗, as indicator of EE, reduces the minimum T needed for
reliable results (T = 20 or 30 for RMSA output).
To evaluate efficiently the changes between individual rankings when increasing T, the
position factors are computed for each pair of trajectories using the equation (2.31).
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The table 2.10 and Fig. 2.10 show the resulting position factor (PFTi→Tj
) values and

behavior obtained for each pair of trajectories with: (a) MSA indices, and (b) IMSA
indices. We observe that from low number of trajectories with IMSA method (from
T = 30), the PF χ∗

Ti→Tj
values remain stable and lower than with MSA method (PF µ∗

T80→T100

> PF χ∗

T30→T40). In fact, low values of PF indicate that most of the parameters remain in
the same or nearly the same position in the ranking between two successive trajectories.
Therefore, according to table 2.10 and Fig. 2.10, values of T above 30 provide a suitable
estimation of sensitivity measures with IMSA indices.

Table 2.10: Computed position factors PFTi→Tj according to µ∗ rankings (MSA); χ∗ ranking (IMSA).
Position factors are computed according to the RMSA model output feature.

PFTi→Tj
T10 → T20 T20 → T30 T30 → T40 T40 → T50 T50 → T60 T60 → T80 T80 → T100

PFµ
∗

Ti→Tj
6.9 4.9 4.7 4.8 5.1 4.1 4.4

PFχ
∗

Ti→Tj
4.9 4.6 2.4 2.4 2.8 2.6 2.4

T10-->T20 T20-->T30 T30-->T40 T40-->T50 T50-->T60 T60-->T80 T80-->T100
Ti Tj
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Figure 2.10: The position factors PFTi→Tj values and behavior obtained for each pair of trajectories
with MSA indices (red color), and IMSA indices (green color). Position factors are computed with RMSA
output.

However, it is more reliable and intuitive to assess stability according to the ranking
by a group of parameters sharing the same impact on the model output. Thus, we have
fixed the effect thresholds based on MSA and IMSA indices as outlined in 2.3.2: (1) influ-
ential group including parameters with EE average and/or dispersion causing more than
20% of the model output((χ∗, ρ) > 20%, (µ∗, σ) > 20%), (2) non-influential group with
parameters causing less than 5% of output variation ((χ∗, ρ) < 5%, (µ∗, σ) < 5%), and
(3) intermediate group of parameters located between the two previous groups.
The Fig.2.11(a) illustrates a screening sensitivity analysis of the neuromuscular model
with the MSA method at T = 30 and using classical µ∗ and σ indices. The model
output is the RMSA of HD-sEMG signals measured at the skin surface by the 64 elec-
trodes. The sensitivity analysis space is divided into four zones according to the ratio σ/µ∗r
classification suggested in [256]. Each group of inputs is marked by a defined color and
marker according to its influence level. Thresholds separating influential zones are marked
by continuous lines. Elementary effects have the same unit as the model output: mV.



2.3. MORRIS SCREENING SENSITIVITY ANALYSIS 85

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
* (mV)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008
 (m

V)

Upper  Threshold 

Lower  Threshold 

Upper 
* Threshold 

Lower 
* Threshold 

nMU

MUdistribution

MUr
S

nf
SMU

MUr
FI

MUr
FR

MUr
FF

boner

Cvelocity

c
muscle

Zc
muscle

thickmuscle

c
Fat

thickFatZc
skin

thickskin

Grid

 (a) MSA method screening (output = RMSA, T=30)

* = 
/ * = 0.5
/ * = 0.1

linear
monotonic
almost monotonic
non-linear and/or non-monotonic
Influential_groups_
Large impact
Intermediate impact
Small impact

* = 
/ * = 0.5
/ * = 0.1

linear
monotonic
almost monotonic
non-linear and/or non-monotonic
Influential_groups_
Large impact
Intermediate impact
Small impact

010 020 030 040 050 060 080 100
Trajectories T

Gridrot

GridZ

Grid
thickskin

Zc
skin

c
skin

c
skin

thickFat

Zc
Fat

c
Fat

c
Fat

thickmuscle

Zc
muscle

c
muscle

c
muscle

MTZR

MTZL

NMJpos

Cvelocity

FFfD

FRfD

FIfD

SfD

boner

L
nf

FFMU

MUr
FF

nf
FRMU

MUr
FR

nf
FIMU

MUr
FI

nf
SMU

MUr
S

MUdistribution

nMU

Pa
ra

m
et

er
s

 (b) MSA ranking stability of influential groups throug the T scales

Figure 2.11: (a) Sensitivity analysis screening with MSA method. Output = Mean RMSA value of
HD-sEMG signals (mV). T = 30. Three influential groups: low impact (dark red cross), Medium impact
(orange square). High impact (green circle). (b) Ranking stability of MSA method at different T .

The stability of this approach is observed in Fig.2.11(b) at different trajectories T . The
Fig.2.12(a) illustrates a screening sensitivity analysis with the IMSA method at T = 30
with the same model output and with the same colors and markers for influential groups.
The stability of the IMSA indices is observed in Fig.2.12(b) at different trajectories T .
We observe that the IMSA guarantees the stability and reproducibility of parameter rank-
ing from T = 20 (Fig. 2.12(b)). A small T value reduces significantly the computation
time of the sensitivity analysis. The minimum number of model evaluations needed to
perform a sensitivity analysis at T = 20 is 720 which is performed during 6h02min of
computing time(Table 2.8). In contrast, the Fig. 2.11(b) shows that parameter ranking
remains unstable until T = 100 with MSA method (the computation time is equal to
42h35min). In this figure, we observe many disruptions in the ranking for many inputs,
e.g., the parameter θcskin (angular skin conductivity) varies its ranking from large impact
group at T = 60, to intermediate impact group at T = 80, to small impact group at
T = 100. This instability distorts the evaluation of parameter impacts when delivering
sensitivity analysis results. Furthermore, the (non)linearity and (non)monotonicity of in-
put impacts are attributed for only few parameters with significantly normal EE according
to MSA indices (Table 2.9). Thus, a common attributions/screening of (non)linear and
(non)monotonic effects for all parameters as in Fig.2.11(a) is inconsistent. However, the
IMSA indices give a conjoint representation of (non)linear and (non)monotonic zones for
all parameters (Fig. 2.12(a)). Moreover, the Table 2.11 shows the value of T needed to
obtain a stable parameter rankings with IMSA method for each output feature depicted
in Table 2.5. The estimated values of T depicted in this table are obtained using the same
workflow/methodology of this section.
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Figure 2.12: (a) Sensitivity analysis screening with IMSA method. Output = Mean RMSA value
of HD-sEMG signals (mV). T = 30. Three influential groups: low impact (dark red cross), Medium
impact (orange square). High impact (green circle). (b) Ranking stability of IMSA method at different
trajectories T . The IMSA ranking stability is established from T = 20.

Table 2.11: List of features and the corespondent estimated T .

Output feature Stable ranking at T
1. RMSA 20∼30
2. IEMG 20∼30
3. MAV 20∼30
4. MAV1 20∼30
5. MAV2 20∼30
6. wilson_amp 50
7. Kurt 20∼30
8. Skew 20∼30
9. Var 30
10. ap_ent 30
11. sp_ent 30
12. MDF 30
13. MNF 30
14. MNP 30
15. Peak_f 30∼40
16. ap_ent 30∼40
17. Freq_r 30∼40
18. SM0 30
19. SM1 30
20. SM2 30
21. SM2 (VCF) 30
22. SM3 30
23. R2 30∼40
24. H2 30∼40
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2.3.3.2 Discussions

The MSA method is one of the rare tools to perform sensitivity analysis for high com-
puting cost and complex models at the smallest computation time as depicted in the
selection decision tree proposed in [216]. However, the approach bears on strong normal-
ity hypothesis of the EE distributions and presents unstable results. The present study
is motivated by proposing a fast, reliable and stable Morris screening sensitivity analysis
for high computation cost and complex models. The model depicted in [1] satisfies these
criteria. The methodology and the results of comparison between the two methods: MSA
and IMSA, are summarized in the Fig. 2.13.

Neural and anatomical 
muscle properties 

Neuromuscular model

Morris Sensitivity analysis 

Classical method (MSA)
New Improved Method (IMSA)

Indices : absolute mean 𝜇∗, 
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Comparison and evaluation

Figure 2.13: Methodology and results of comparing between MSA and IMSA methods.

Selection of appropriate indices: χ∗ and ρ Few studies have investigated the
robustness of MSA indices (µ∗ and σ), efficient only for normal or significantly normal
data [259]. The study [250] have underlined that more robust indicators should be in-
vestigated, and have suggested to apply, without demonstration, a new ones based on
EE distribution shapes introduced by[260]. A more recent study [225] have proposed and
applied χ∗ in the computation of EE average. Authors of [225] have demonstrated the
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robustness of χ∗ against µ∗ to reproduce a stable ranking. However, they have not pro-
posed a new indicator for EE dispersion. For that reason, authors of [225] have conserved
the original screening analysis proposed by [220].
The new IMSA proposes the application of χ∗ and ρ as sensitivity indicators: the absolute
median and the median absolute deviation respectively. The selection of these indices is
based on several studies e.g., [260, 261] for its relevance to non-normal data distributions
and its robustness to eliminate outliers causing a wrong estimation of data average and
dispersion. The Kolmogorv-Simirinov normality shows that EE distributions are signifi-
cantly normal around IMSA indices for all parameters, but such was not the case for MSA
indices (Table 2.9). We should note that other alternatives for ρ exist in the literature
and can be applied instead of ρ if the normality of EE distributions is not achieved [262].

Performing the (non)linearity and the (non)monotonicity of parameter ef-
fects using the ρ/χ∗ ratio The study[256], using the ratio σ/µ∗, has defined the zone
of linear effects, monotonic effects, and non linear effects and/or with interactions be-
tween inputs. The hypothesis depicted in [256] is based on: 1) statistical properties of
normal EE distributions, 2) equality between the two ratios σ/µ∗ and σ/|µ| to define the
three zones mentioned above for non-normal data. However, This equality cannot deliver
the same conclusions with the new IMSA indices. In fact, the equality between ρ/χ∗

and ρ/|χ| means that χ∗ is equal to |χ| but does not mean necessarily that EE have the
same sign (eq. 2.29). To identify the (non)monotonicity and (non)linearity of parameter
effects, this study have proposed to use the ρ/χ∗ ratio. Statistical properties of normal
or significantly normal EE distributions (normality test is required), indicate that most
EE (95%) have the same sign (monotonic effect) if ρ/χ∗ is smaller than 0.5, and 95%
of EE are constant (linear effect) if ρ/χ∗ is smaller than 0.1. Such conclusions give the
monotonic and linear effects zones as depicted in the Fig.2.12(a) and presented partially
in [256].

Stability of IMSA indices against MSA indices The present study demon-
strates the stability of IMSA indices ranking from T = 30 with individual ranking. For
ranking by group of parameters sharing the same influence on the model output (thresh-
olds concept), the IMSA method reduces the minimum T needed for stable ranking from
(T = 20 < T = 30 with individual ranking). In contrast, MSA indices remain unstable
until T = 100 (Fig. 2.11 and 2.12). The computation time needed to perform Morris
screening analysis, without computing indices, at T = 20 and T = 100 are respectively
6h02min and 42h35min (Table 2.8). Yet, 20 trajectories are sufficient to get a stable and
robust ranking with IMSA indices for the studied neuromuscular model.

2.4 Aging sensitivity matrix using IMSA method
The new proposed IMSA method is applied on the neuromuscular model [1, 11]. The
variable of IMSA will be adjusted using results of previous section. The number of trajec-
tories is fixed at T = 30 and an optimal sampling strategy is adopted [250]. Two subject
categories are studied: Young Men (YM) and Old Men (OM). The evaluation of input
impacts is performed at two contraction levels: LC = 20% of MVC and HC = 60% of
MVC. The impact of each input variation is assessed on all output features of Table 2.5
(expect for wilson_amp, which need T = 50 for stable parameter rankings). Each mean
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output feature is computed from the 64 HD-sEMG simulated signals. We have performed
a parallel computation using a 32 CPUs intel Xeon calculator.

Simulations plan Two categories of subjects are studied: Young Men (YM), Old
Men (OM). Two contraction levels are considered: Low Contractions (20% of MVC) and
High Contractions (60% of MVC). The total number of sensitivity analysis performed is
four (Fig. 2.14).

New IMSA

Young Men Old Men

LC HC

Sensitivity analysis method = IMSA;
T = 30;
Optimal sampling strategy.

Two age categories

Two contraction levels:
LC = 20% of MVC
HC = 60% of MVC

LC HC

Figure 2.14: Simulation plan. Four sensitivity analysis: YM at LC; YM at HC; OM at LC; OM at HC

Presentation of results Results are presented mainly as cluster maps with min/max
normalized IMSA indices (between 0 and 1). For each subgroup of outputs, each age cat-
egory, and for each contractions level, a cluster map gives a relationship map between
inputs and outputs.

Clustering of influential parameters We will evaluate the impact of 35 parame-
ters on 22 HD-sEMG features for 2 age categories, and at 2 contraction levels. Regarding
the huge amount of the result data (35 ∗ 22 ∗ 2 ∗ 2), we will proceed by automatically
selecting the most important parameters for each feature using an unsupervised learning
of IMSA results (two groups of parameters: influential group and non-influential group).
A clustering process divides the entire data into groups (also known as clusters) based on
the patterns and similarities in the data. Many clustering techniques exists in literature
(DBSCAN, Birch,etc.). However, we select a simple and frequently used partitioning un-
supervised learning algorithms : K-mean algorithm.
Its goal is to form groups of data points based on the number of clusters, represented by
the variable k (predefined before the execution). K-means uses an iterative refinement
method to produce its final clustering based on the number of clusters defined by the
user and the data set. Initially, k-means randomly chooses k as the mean values of k
clusters, called centroids, and find the nearest data points of the chosen centroids to form
k clusters. Then, it iteratively recalculates the new centroids for each cluster until the
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algorithm converges to one optimum value.

2.4.1 Results
2.4.1.1 Mono-variate features

Time domain (TD) and non-linear features Eleven features from Table 2.5
are selected: five amplitude features (RMSA, MAV, MAV1, MAV2, wilson_amp), three
energy features (IEMG, SSI, Variance), two statistical features (Kurtosis, Skewness), and
two non-linear features (ap_entropy, samp_entropy).

Amplitude and energy features Features of this class are easy to implement with
the capacity to assess the main electrical activity generated by muscle. They can estimate
efficiently the amount of muscle activation. Correlating anatomical muscle properties to
muscle force and fatigue is useful for clinical and research fields. We observe, in Fig. 2.15,
that all categories (YM, OM) and contraction levels (LC, HC) share approximately the
same influential and non-influential muscle parameters. However, few changes are noted
between Fig. 2.15(a), (b), (c), and (d). For YM (a & b), the number of fast fibers per MU
(nfFFMU) has an important impact at HC. Which is not the case at LC, where the number
of slow fibers nfSMU have more effects. Moreover, electrode grid properties (position and
rotation: GridZ , Gridrot), total MU number (nMU), and radial conductivity of fat tissues
(ρcFat) have more impact at HC. Its influences at LC is not negligible but not important.
For OM, we note the same observation for the number of slow and fast fibers between
HC and LC. In addition, we observe that the ratio of MU (MUdistribution) have a strong
effect on amplitude and energy features at HC and a negligible one at LC. Comparing
changes between young and old categories, we cannot find differences at LC, expect a
slight increase of bone radius (boner) and muscle length (L) effects for OM. At HC, we
observe same trends as LC, with the fact that (MUdistribution) has large effect for OM.

Statistical features Kurtosis and Skewness measure the peakedness and the sym-
metry/asymmetry of HD-sEMG signal respectively. The Fig. 2.15 shows a different
behaviors of these features for each category. We cannot identify clearly a reduced and
common number of influential inputs. The IMSA screening depicted in Fig. 2.16, 2.17,
2.18, 2.19 show that all parameters have a close positions and situated at the non linear
and/or with interactions effects zone, in contrast of amplitude and energy features (e.g.,
the RMSA feature in the same figures. The stability of ranking is not assumed for these
features due to the very close values of IMSA indices (χ∗ ≈ ρ). For that reason, we cannot
find common trends between categories.

Non linear features The conduction velocity along fibers (Cvelocity) is the most
influential parameter for entropy features: approximate entropy (ap_ent) and sample
entropy (samp_ent) for both YM and OM at LC and HC. Entropy features are used to
identify regularity and predictability of the signals. The conduction velocity has a large
and monotonic effect on these features. The rest of of inputs have a negligible effects (Fig.
2.15 and Fig. 2.16, 2.17, 2.18, 2.19.
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(a) Young men, 20% of MVC
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(b) Young men, 60% of MVC
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(c) Old men, 20% of MVC
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(d) Old men, 60% of MVC

Figure 2.15: Impacts of model inputs on extracted TD features (IMSA results). IMSA impact indice
= Normalized SI (from 0 (light color) to 1 (dark color)). Ranking of neuromuscular inputs according to
age (young (a,b) and old men (c,d)), and level of force contractions (low (a,c) and high(b,d)).

K-mean algorithm results for time domain features The application of K-
mean algorithm on the data of IMSA results provides the most influential group of pa-
rameters for each feature. The Tables 2.16 2.17 2.18 2.19 show the result of k-means
algorithm. We observe in Fig. 2.16, 2.17, 2.18, 2.19 the screening of parameters using
IMSA method. In these figures, cluster of parameters with strong impact on the stud-
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ied feature is marked by green color (red color for parameters with negligible effects).
The results of the unsupervised learning of sensitivity analysis data are similar to visual
observations of Fig. 2.15.
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Figure 2.16: IMSA screening of influential parameters. Categories: YM, LC . Clustering method =
K-means

Table 2.12: Group of influent parameters for young men (YM) at low contractions (LC = 20% of
MVC). Time domain features.

Feature Number of Influent pa-
rameters

List of influent parameters

RMSAMAVMAV1
MAV2 IEMG Vari-
ance

5 thickmuscle, Cvelocity, nrSMU , Zcmuscle, ρcmuscle

Kurtosis 19 nMU , MUrS , n
f
SMU , MUrFR, MUrFF , boner,

FIfD, FRfD, FFfD, Cvelocity, MTZR,
Zcmuscle, ρcFat, thickFat, ρcskin, θcskin, Zcskin,
thickskin, Gridrot

Skeweness 23 nMU , MUdistribution, MUrS , MUrFI , n
f
FIMU ,

MUrFR, nfFRMU , MUrFF , L, SfD, FIfD,
FFfD, Cvelocity, MTZR, MTZL, Zcmuscle,
ρcmuscle, θcmuscle, thickFat, ρcskin, Zcskin,
thickskin, GridZ
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Figure 2.17: IMSA screening of influential parameters. Categories: YM, HC . Clustering method =
K-means

Table 2.13: Group of influent parameters for young men (YM) at high contractions (HC = 60% of
MVC). Time domain features.

Feature Number of Influent
parameters

List of influent parameters

RMSA 5 thickmuscle, Cvelocity, nrFFMU ,
Zcmuscle, ρcfat, L

MAV MAV1
MAV2 IEMG
Variance

6 thickmuscle, Cvelocity, nMU , nrFFMU ,
Zcmuscle, ρcfat

Skewness 5 Cvelocity, MU rs , MU rFR, MU rFF ,
ρcfat, θcfat

ap_entropy
samp_ent Kurto-
sis

1 Cvelocity
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Figure 2.18: IMSA screening of influent parameters. Categories: OM, LC . Clustering method =
K-means

Table 2.14: Group of influent parameters for ol men (OM) at low contractions (LC = 20% of MVC).
Time domain features.

Feature Number of Influent
parameters

List of influent parameters

RMSA MAV
MAV1 MAV2
IEMG Variance

9 nMU , nfSMU , L, boner, Cvelocity,
ρcmuscle, Zcmuscle, thickmuscle, ρcFat

Skewness 7 nMU , MU rS , Zcmuscle, thickmuscle,
ρcFat, Zcskin, thickskin

Kurtosis 19 MU rS , nfSMU , MU rFI , nfFRMU ,
nfFFMU , boner, SfD, FIfD,
FRfD, MTZL, MTZR, θcmuscle,
thickmuscle, θcFat, thickFat, ρcskin,
θcskin, thickskin, Gridrot

ap_entropy
samp_ent Kurto-
sis

1 Cvelocity
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Figure 2.19: IMSA screening of influent parameters. Categories: OM, HC . Clustering method =
K-means

Table 2.15: Group of influent parameters for old men (OM) at high contractions (HC = 60% of MVC).
Time domain features.

Feature Number of Influent pa-
rameters

List of influent parameters

RMSA Variance 8 thickmuscle, Cvelocity, MUdistribution, nMU , nrFFMU ,
Zcmuscle, ρcfat, L

MAV MAV1 8 thickmuscle, Cvelocity, MUdistribution, nMU , boner,
Zcmuscle, ρcfat, L

MAV2 6 thickmuscle, Cvelocity, MUdistribution, nMU , ρcfat, L
Kurtosis 17 nMU , MUdistribution, MUrS , MUrFF , n

f
FFMU , L,

boner, FIfD, FFfD, Cvelocity, MTZL, thickmuscle,
ρcFat, ZcFat, thickFat, Zcskin, thickskin

Skewness 10 nMU , MUdistribution, MUrS , n
f
FFMU , boner, FIfD,

MTZL, MTZR, ρcmuscle, Gridrot
ap_entropy
samp_ent Kur-
tosis

1 Cvelocity
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Frequency domain (FD)features The Frequency Domain (FD) features are com-
puted from Power Spectral Density (PSD). These features required more Computational
Time (CT) compared to Time Domain (TD) features, and are useful in the detection of
muscle fatigue. Ten FD features are computed (Fig. 2.20): MDF, MNF, SM1, SM2, SM3,
TTP, MNP, Peak_f, Freq_r, and VDF.
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(a) Young men, 20% of MVC
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(b) Young men, 60% of MVC
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(c) Old men, 20% of MVC
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Figure 2.20: Impacts of model inputs on extracted amplitude HD-sEMG FD features (IMSA results).
IMSA impact indice = Normalized SI (from 0 (light color) to 1 (dark color)). Ranking of neuromuscular
inputs according to age (young (a,b) and old men (c,d)), and level of force contractions (low (a,c) and
high(b,d)).
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• group 1: MDF and MNF , these two features are useful as fatigue indicators. Its
relation to conduction velocity of fibers was proved as linear impact on HD-sEMG
signals at isometric contractions. The length of fibers (L) is in the second position,
and the rest of inputs have a negligible effects. These two inputs have a monotonic
effect with tendency of Cvelocity to have an almost linear effect (IMSA screening).

• group 2: SM1, SM2 and SM3 The Cvelocity has the most important impact. At low
contraction (LC), the muscle thickness and conductivity have the same important
impact for YM and OM. This influence decrease for higher order of SM features.
Then, a reduced group of parameters have an intermediate influence. This group
changes slightly one or more of its members when changing contraction level or age.
We observe that this group contains muscle thickness (thickmuscle) and conductivities
(Zc

muscle, ρcmuscle). For (YM, HC), this group contains, in addition, the number of
slow fibers per MU. For (OM, LC), four parameters share the first ranks: conduction
velocity, muscle thickness, longitudinal and radial muscle conductivities respectively.
We note that, with IMSA screening, these features have an identical distribution
of parameters, and that the influential parameters are localized in the “almost-
monotonic” zone.

• group 3: TTP and MNP The most influential parameters for all categories are:
the conduction velocity of fibers (Cvelocity), the longitudinal conductivity of fibers
(Zc

muscle), and the muscle thickness (thickmuscle). For LC categories, the number of
slow fibers per MU has a large impact (FF fibers at HC). We observe that the MU
repartition have an important impact for OM at HC.

• group 4: Freq_ratio and VDF All parameters have a negligible effect, expecting
C_velocity.

• group 5: Peak_Freq Most of parameters have a significant impact.

K-mean algorithm results for frequency domain features The application
of K-mean algorithm on the data of IMSA results provides the most influential group
of parameters for each feature. The Tables 2.16 2.17 2.18 2.19 show the result of k-
means algorithm. We observe in Fig. 2.21, 2.22, 2.23, 2.24 the screening of parameters
using IMSA method. In these figures, cluster of parameters with strong impact on the
studied feature is marked by green color (red color for parameters with negligible effects).
The results of the unsupervised learning of sensitivity analysis data are similar to visual
observations of Fig. 2.20.
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Figure 2.21: IMSA screening of influential parameters for frequency domain features.
Categories: YM, LC . Clustering method = K-means

Table 2.16: Group of influent parameters for young men (YM) at high contractions (LC = 20% of
MVC). Frequency domain features.

Feature Number of Influent
parameters

List of influent parameters

MDF
MNF
Freq_ratio
VDF

1 Cvelocity

SM1 SM2
SM3

3 thickmuscle, Cvelocity, Zc
muscle

MNP TTP 5 thickmuscle, Cvelocity,
MUdistribution, Zc

muscle, nfSMU ,
ρcmuscle

Peak_freq 3 L, Cvelocity, boner
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Figure 2.22: IMSA screening of influential parameters for frequency domain features.
Categories: YM, HC . Clustering method = K-means

Table 2.17: Group of influent parameters for young men (YM) at high contractions (HC = 60% of
MVC). Frequency domain features.

Feature Number of Influent pa-
rameters

List of influent parameters

MDF MNF
SM2 SM3
Freq_ratio
VDF

1 Cvelocity

SM1 TTP
MNP

5 thickmuscle, Cvelocity, Zcmuscle, n
f
FFMU ,

ρcFat
MNP TTP 5 thickmuscle, Cvelocity, MUdistribution,

Zcmuscle, n
f
SMU , ρcmuscle

Peak_freq 10 L, Cvelocity, MUdistribution, nfSMU ,
Zcskin, Gridθ, MTZR, MUrS ,
FFfd,MUrS
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Figure 2.23: IMSA screening of influential parameters for frequency domain features.
Categories: OM, LC . Clustering method = K-means

Table 2.18: Group of influent parameters for old men (OM) at high contractions (LC = 20% of MVC).
Frequency domain features.

Feature Number of Influent
parameters

List of influent parameters

MDF MNF
Freq_ratio
VDF

1 Cvelocity

SM1 SM2
SM3

2 thickmuscle, Cvelocity

MNP TTP 9 thickmuscle, Cvelocity, boner, Zcmuscle,
nfSMU , ρcmuscle, ρcFat, nMU

Peak_freq 17 nMU , MU rS , nfFIMU , MU rFR,
MU rFF , L, SfD, FIfD, FRfD,
FFfD, Cvelocity, MTZL, θcFat,
thickFat, Zcskin, thickskin, Gridrot
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Figure 2.24: IMSA screening of influential parameters for frequency domain features.
Categories: OM, HC . Clustering method = K-means

Table 2.19: Group of influent parameters for old men (OM) at high contractions (HC = 60% of MVC).
Frequency domain features.

Feature Number of Influent pa-
rameters

List of influent parameters

MDF
MNF SM1
SM2 SM3
Freq_ratio
VDF

1 Cvelocity

SM1 SM2
SM3

2 thickmuscle, Cvelocity

MNP TTP 7 nMU , MUdistribution, L, Cvelocity,
Zcmuscle, thickmuscle, ρcFat

Peak_freq 17 MUdistribution, nfSMU ,MUrFR, n
f
FFMU ,

L, boner, SfD, FFfD, NMJpos,
MTZL, ρcmuscle, Zcmuscle, thickmuscle,
ρcFat, θcFat, thickFat, GridZ
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2.4.1.2 Bivariate features

To assess bivariate relationship between HD-sEMG channels, two features are selected:
the linear correlation coefficient: Pearson coefficient R2, and the nonlinear coefficient:
H2. We cannot observe a significant difference between YM and OM. The changes are
observed between LC and HC. For LC, only few parameters (2-3) enhance correlation
between recording system channels: L and Cvelocity. For HC, many parameters have a
large impact (almost parameters). The results of K-mean algorithm are provided in Fig.
2.26, 2.27, 2.28, 2.29; and Tables 2.20, 2.21, 2.22, 2.23.
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(a) Young men, 20% of MVC
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(b) Young men, 60% of MVC
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(c) Old men, 20% of MVC
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(d) Old men, 60% of MVC

Figure 2.25: Impacts of model inputs on extracted HD-sEMG Bivariate features (IMSA results). IMSA
impact indice = Normalized SI (from 0 (light color) to 1 (dark color)). Ranking of neuromuscular model
inputs according to age (young (a,b) and old men (c,d)), and level of force contractions (low (a,c) and
high(b,d)).
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Figure 2.26: IMSA screening of influential parameters for Bi_variate features. Categories: YM, LC .
Clustering method = K-means

Table 2.20: Group of influent parameters for young men (YM) at low contractions (LC = 20% of
MVC). Frequency domain features.

Feature Number of Influent
parameters

List of influent parameters
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Figure 2.27: IMSA screening of influential parameters for Bi_variate features. Categories: YM, HC .
Clustering method = K-means
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Table 2.21: Group of influent parameters for young men (YM) at high contractions (HC = 60% of
MVC). Frequency domain features.

Feature Number of Influent
parameters

List of influent parameters
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2 24 nMU , MUdistribution, MU r
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nfFRMU , MU r
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θcFat, ρcskin, θcskin, Zc
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Gridrot
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Figure 2.28: IMSA screening of influential parameters for Bi_variate features. Categories: OM, HC .
Clustering method = K-means

Table 2.22: Group of influent parameters for old men (OM) at low contractions (LC = 20% of MVC).
Bi_variate features.

Feature Number of Influent
parameters

List of influent parameters

HP
2 RP

2 2 Cvelocity, L
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Figure 2.29: IMSA screening of influential parameters for Bi_variate features. Categories: OM, HC .
Clustering method = K-means

Table 2.23: Group of influent parameters for old men (OM) at high contractions (HC = 60% of MVC).
Frequency domain features.

Feature Number of Influent
parameters

List of influent parameters

HP
2 20 nMU , MUdistribution, MU r

S,
MU r

FI , nfFRMU , nfFFMU ,
L, FIfD, FFfD, Cvelocity,
NMJpos, MTZR, ρcmuscle,
Zc
muscle, thickmuscle, ρcFat,

θcFat, ρcskin, θcskin, Gridθ,
GridZ

RP
2 19 nMU , MUdistribution, MU r

S,
MU r

FI , n
f
FRMU , n

f
FFMU , L,

SfD, FIfD, FFfD, NMJpos,
MTZR, ρcmuscle, thickmuscle,
ρcFat, θcFat, θcskin, Gridθ,
GridZ

2.4.2 Discussion

The purpose of this study is the identification of anatomical and neural muscle factors
with the largest impact on the HD-sEMG signals simulated with studied model. The
application of IMSA method on the Hd-sEMG signals generated by the neuromuscular
model allows the identification of parameters with small and large impact for young and
old men at low and high contractions. The muscle anatomy for young and old groups is re-
ported from literature, to mimic as much as possible young and aged muscle (e.g. number
of fibers, cross sectional area,etc.). The identification of important and negligible parame-
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ters is a supporting argument for the validation of modeling approaches and assumptions
applied and depicted in [1, 11]. In fact, experimental HD-sEMG signals extracted from
striated muscle during isometric contractions confirm many particular aspects observed
with IMSA sensitivity analysis results of this study. It was verified in many clinical stud-
ies that, for time domain features, parameters related to the structure and morphology of
muscle have a large impact on the measured HD-sEMG signals. This study demonstrates
that the simulated HD-sEMG signals are sensitive to: muscle thickness, the conduction
velocity, and muscle conductivities at LC. In addition, at HC, HD-sEMG signals became
sensitive to the number of MU and the electrode grid position. Many studies prove that
HD-sEMG amplitude is correlated to the increase of force exerted due to the increase of
MU recruited [263, 264, 201]. Likewise, the increase of conduction velocity effect with the
increase of contractions level is mentioned in [265] and clearly observed in Fig. 2.15 for
YM and OM at HC.
For the electrode placement, many previous studies [266, 267] have evoked its importance.
This importance is due to its high dependency to source locations, innervation zone, and
the non-homogeneity of the conductor volume. This study shows that the orientation
and position of recording system is an important factor at HC with amplitude features,
which confirms experimental findings in literature. However, it was not mentioned that
this effect increases with increasing contractions level. In fact, in the modeling approach
depicted in [1], at HC, fast sources (FF MU) are much more recruited and located at
muscle surface layer. This could be an explanation to the large effect of recording system
position at HC.
An additional statement was observed in this study: the highest sensitivity of HD-sEMG
signals to the number of slow and fast fibers and MU at low and high contractions respec-
tively. It was confirmed in [268, 269, 270] that for LC, only slow fibers/MU are recruited
to exert force. Likewise, for HC, the fast fibers are recruited after recruiting all slow ones.
Its number is determinant to define the capacity in maintaining muscle contraction am-
plitude. This study states that fiber diameters have not a direct impact on the HD-sEMG
signals compared to number of fibers. The loss of fibers and MU diameters with aging
does not have a large impact on the simulated HDsEMG signals. This statement should
be viewed cautiously. In fact, it can indicate that apoptosis phenomena have much more
impact on the force generated by muscle than other phenomena such as the atrophy for
example. From such conclusion, we can confirm that the decline of muscle functions with
aging can be related mainly to the neural system (denervation-reinnervation failure) [86].
However, other relevant observation with IMSA results should be mentioned: the muscle
thickness have more impact with aged subjects for amplitude features (Fig. 2.15). This
parameter is related to muscle cross section area (CSA), and its size reduction is due to
both apoptosis and atrophy. From such result, the previous statement is not totally effec-
tive. Moreover, the conduction velocity of fibers, which have a large impact in this study,
is a function of fiber diameters as depicted in [1]. Therefore, the HD-sEMG signals can
be considered as very sensitive to atrophy but indirectly, through muscle thickness and
conduction velocity. This is more consistent with many studies correlating the reduction
of muscle size to the loss of force with aging.
All these expected results make credible the modeling approaches proposed in this thesis
for realistic simulation of muscle electrical activity with aging.
For frequency domain features, it was evident that the conduction velocity of fibers and
the muscle conductivity have the most important impacts. This approves experimental
results [271, 272] and can validate assumptions and approaches applied in [1]. With IMSA
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results, we have observed no significant difference between YM and OM at LC and HC.
This can be related to two facts: (i) FD features are useful to detect muscle fatigue and
this aspect is not considered in [1], and (ii) this model is not incorporating phenomena
related to muscle aging (see the following chapter 3 for details).
The previous discussed points lead to enhance the neuromuscular model depicted in [1]
with supplement modeling approaches describing structural, morphological, and func-
tional age-related phenomena like: atrophy, apoptosis, MU spatiotemporal recruitment,
MU remodeling, and adipose tissue intra/inter muscular infiltration. However, the im-
portance of IMSA results can be extended to cover other important sides. One of the
purposes of applying a sensitivity analysis method on HD-sEMG signals is to develop a
patient personalized model to evaluate and diagnosis muscle aging and its related patholo-
gies as Sarcopenia. A non accessible model parameter value identification with inverse
methods is contemplated to reach a reliable diagnosis. IMSA results offer a map of re-
lationships between inputs and outputs. This will facilitate the decision of which muscle
factor should be identified and by which feature and at which condition (age, contractions
level).
Other important aspects can be underlined from IMSA results as the homogenization of
the most influential muscle parameters for subjects, if possible. In fact, this homoge-
nization can be valuable and crucial for reliable clinical assessment of muscle state and
diseases by helping in designing a fitted experimental setup. For a reliable assessment of
Neuropathies, for example, it is better to neutralize the effect of muscle thickness on the
HD-sEMG signals by selecting subjects with a small variation scale for this parameters.
Commonly, clinical test practitioners are not warn against this factor. Usually, studies
for clinical EMG measures use essentially the body mass index (BMI) as the main criteria
to select subjects/patients. Moreover, this study shows that the position electrodes can
be important for many features and at some contractions level (Fig. 2.15). A rotation of
the recording grid by few degrees, or a translation by few millimeters can impact greatly
the measured HD-sEMG signals. Therefore, this study suggested more care for this kind
of aspects when evaluating muscle diseases and health by HD-sEMG techniques.

2.5 Conclusion
In this chapter, we have recalled the usefulness of the MSA method indices and proposed
an improved formalism. An assessment of classical MSA in the context of analyzing a
bio-reliable HD-sEMG model revealed that parameter rankings, obtained by using the
absolute mean value µ∗ and the standard deviation σ of the elementary effects as a cri-
terion, are unstable and unreliable. The new proposed IMSA approach guarantees the
satisfaction of these criteria without affecting the design of the classical MSA method. It
proposes two new robust indices to evaluate elementary effects: the absolute median (χ∗)
and the median absolute deviation (ρ). By applying a normality test, we show that ele-
mentary effects are normally distributed for all parameters with IMSA indices (χ∗,ρ). In
contrast, many parameters have a non-normal distributions around MSA indices (µ∗,σ).
As consequence, the screening information about the (non)linearity, (non)monotonicity,
and interactions between parameters that provide MSA method are unreliable and dis-
torting the sensitivity analysis results. In fact, this information is based on statistical
properties of the ratio σ/µ∗ for normal distributions. Thus, the new IMSA ratio ρ/χ∗
is more appropriate as a graphic indicator of parameter effect features. Furthermore, by
using the new indices, the minimum number of trajectories T needed to obtain a stable
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ranking with new IMSA indices is T = 20 (computing time = 06h02min), while MSA
indices remains unstable until T = 100 (computing time = 42h35min) using the same
computing resources. Such result is useful for high order computational cost models.
Furthermore, we have proved that the modeling approach depicted in [273, 11] can pro-
duce a simulated HD-sEMG signal close to the experimental signals. The neuromuscular
model is able to deliver signals sensitive to anatomical and neural muscle factors as in
real cases. This result makes this model as a valuable candidate to evaluate healthy and
diseased muscle state with low cost and in reduced time by also helping in design of
optimized experimental setup. However, for a reliable evaluation of muscle aging, mod-
eling approaches should be enhanced to better describe structural, morphological, and
functional age-related phenomena. This last point will be the focus of the next chapter.
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3.1 Introduction

The age-related loss in neuromuscular function comprise loss of MUs and expansion of that
remain, reduction in muscle fiber number and size, increase of intramuscular fat infiltra-
tion, changes in the neural drive (spatial and temporal recruitment),and force steadiness
(see chapter 1). As a consequence, mechanical muscle performance is impaired with con-
current decreases in maximal muscle strength, power, and rate of force development in
the elderly.
The monitoring of these age-related alterations in the neuromuscular system from surface
Electromyography (sEMG) signals has expanded during the last twenty years [199]. Like-
wise, the modeling of sEMG signals generation has seen the same expansion [274, 275].
Mathematical models of sEMG are highly useful, on the one hand to advance under-
standing of the underlying physiological processes, and on the other hand to analyze and
investigate the effects of varying physiological parameters on the simulated signal, and
to test and validate sEMG signal processing algorithms [203, 274]. In fact, models can
provide electromyographic data generated in specific physiological and neural configura-
tions. Those configurations can be controlled in models whereas it is hardly estimated in
experimental conditions.
However an accurate and realistic sEMG model is a hard task. In the literature, two
sEMG modeling approaches have been proposed. The first one, called phenomenological
approach, is based on a statistical analysis of real signals without taking into account their
physical and physiological aspect. The second one, called physiological approach, is speci-
fied by the simulation of the Action Potential (AP) detected by the electrodes while taking
into account the influence of the parameters acting on the collected EMG signals [203, 274].
Physiological approaches can be categorized into analytical (e.g., [1, 276, 277, 278]) and
numerical modeling approaches (e.g., [279, 280]). Numerical methods have more accu-
racy in describing anatomical muscle structure and morphology (e.g, fiber orientation,
conductor volume). These models can be derived from imaging techniques to create 3D
representations of muscle tissues. Which allow a realistic sEMG signal generation and vol-
ume conduction mainly overcoming the muscle electrical anisotropy simplification adopted
by analytical modeling approaches. In fact, the space-invariance property (homogeneous
conductor volume) in the direction of source propagation, made by a linear, space and
time invariant filters to the source with analytical models, can impact considerably the
interpreting sEMG signal features. However, this impact can be reduced for fusiform mus-
cles analytical models, like Biceps Brachii, compared to penniform muscles. Nonetheless,
the major impediment of numerical modeling approaches is the high computational cost
and the complex workflow in the building/solving model process. This factor represents a
major obstacle in clinical diagnosis/evaluation of muscle impairment in general, and dur-
ing aging in particular. In fact, useful applications to identify aging biomarker(s) from
sEMG by inverse methods, e.g., sensitivity analysis and parameter identification, can not
be performed in reasonable time.
For that reason, in this study, we use a physiological modeling approach analytically
solving the sEMG source potential action generation. Analytical models generate sEMG
signals by solving the Poisson’s equation for the propagation of current sources along the
muscle fibers. The computational cost are substantially reduced compared to numeri-
cal methods, although the geometry of the volume conductor is usually simpler than in
numerical models. However, the selected model [1, 11] have many enhanced advantages
compared to other sEMG models, analytically solved, existed in literature:
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• It simulates the sEMG of fusiform muscle (Biceps Brachii (BB)) during isometric
contractions. The simplification effects, made by analytical models, on muscle ar-
chitecture have a reduced impact on the simulated sEMG signal using this muscle
geometry compared to more complex architectures (pinnate, mutli-pinnate, etc.).

• It expresses the theoretical relationship of the generated signal according to a spe-
cific set of parameters (neural, anatomical and physiological) with more biological
realism. Around 50 parameters are incorporated in the model, e,g,. anatomical
parameters describing the number, size, and placement of MUs and fibers.

• Sources were generated from a three-layer volume conductor in cylindrical coordi-
nates (muscle, subcutaneous fat, and skin). Fibers sources have circular forms and
placed in parallel within this volume conductor. MUs sources have circular forms
and placed according to Best Candidate (BC) algorithm.

• It proposes an innovative computation scheme for a fast and optimized computation
of the muscle electrical activity over the skin surface using 3D matrices in the Fourier
domain and parallel computing. Moreover, the electrical source is computed at the
MU scale (summation of hundred sources) rather than at fiber scale (summation
of many hundreds of thousand sources). This simplification reduced efficiently the
computation time without affecting the quality of simulated sEMG.

• It increases the spatial representativeness of the recorded data over the studied
muscle by using a high density recording technique that mimic the real HD-sEMG
systems. This multidimensional view in the modeling process is proposed in this
model without imposing a huge computational time as in other studies.

• It proposes a modular design which allows the modifications or extensions of a
specific module easily without having an impact on the other model.

Nonetheless, this model have several limitations to be useful in the purpose of muscle
aging evaluation and clinical aided-diagnosis. First, the model incorporates a large num-
ber of inputs (50 parameters). To generate young and elderly simulated neuromuscular
systems, we need to adjust/calibrate manually the values of most of these neural and
anatomical parameters (e.g., the number of MUs, their sizes, their spatial distribution,
their innervation ratio, the muscle thickness,etc.). This calibration needs some expertise
and a well-known of the variation ranges of all these parameters for young and elder sub-
jects. Moreover, users must have a deep understanding of workflow, building, and solving
processes of the model. In fact, based only on the parameter values reported in the lit-
erature or determined experimentally, users can introduce contradictory values, e.g., the
number and size of fibers per MU must be consistent with the size of correspondent MU.
Furthermore, these values were reported from various studies where the age of young and
elder population is not the same for each category. However, as mentioned in the chapter
1, some anatomical and neural factors are highly impacted by the various stages of muscle
aging within elderly population. For example, the size of fibers/MUs, which are the elec-
trical generator sources of sEMG, changes dramatically between first aging stage (65 ≤
age ≤ 80 years) and latter stages (≥ 80 years); or between sarcopenic and sarcopenic
subjects. Second, many aged muscle characteristics are not included in this modeling ap-
proach, e.g, the fiber atrophy and grouping, the intramuscular fat, and the expansion of
MUs territories and fiber density per MU. These morphological and structural age-related
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changes have an important effect on the produced sEMG signal and force. Moreover, they
can contribute to the diagnosis of muscle aging: healthy and accelerated aging inducing
possible sarcopenic risk. For example, the increasing of fat mass is used as a sarcope-
nia feature by IWGS 1, and many studies correlated this increase with the increase of
intramuscular fat. Third, the territory and the placement of MUs and fibers with this
modeling approach are unrealistic and can impact the simulated sEMG signal for both
young and elderly population. In fact, the model [1, 11] have positioned MUs with a best
candidate algorithm (BC)2. Then, MUs are fulfilled with a number of fibers defined in the
model inputs. This approach can cause to an unrealistic number of fibers within muscle
(The multiplication of the number of fibers per MU by the total number of MUs can lead
to a number of fibers lower than 100000 fibers per muscle which is unrealistic for BB
muscle). In addition, the e circular shape of MUs is not realistic. A recent study [39] has
proved, using Motor Unit Magnetic Resonance Imaging (MUMRI) technique, that MUs
have more complex shapes (e.g., elliptical or spider-shaped forms). Finally, the neural
drive model in [1, 11] is the same for young and elder population. However, as reported
in chapter 1, the recruitment thresholds is larger for younger subjects [115] (and lower
during fatigue [283]), and the motor unit discharge rates became lower in older adults.
These findings suggest the reductions in motor unit discharge rates and the increase of
recruitment threshold as an important mechanism during aging [284].
Given the above, the aim of the present chapter is to address these limitations and deliver
more realistic and user-friendly model to evaluate muscle aging. In a first place, we will
describe the modeling approach scheme as depicted in [1, 11], and we will discuss and
illustrate its limitations (see section 3.2). Then, to overcome these limitations, we will
propose a new user-friendly scheme. In this new scheme, the 50 inputs will be fairly
limited to the age, gender, and muscle cross sectional area (if it was available) of the
patient. All other parameters will be estimated from descriptive and statistical models
built for this purpose. Finally, the impact of these age-related changes will be assessed
on the HD-sEMG signals generated by the new model.

3.2 The biophysical HD-sEMG Model

To extract precise information from the HD-sEMG signal, it is necessary to have a firm
understanding of how it was generated. This understanding is facilitated by the use of
models and simulations. The modeling approach depicted in [1][11] simulates the electrical
activity of BB muscle during isometric contractions. The main axis of this neuromuscular
system are: (i) the modeling of the MU recruitment and firing behavior, (ii) modeling
of MUAP, (iii) modeling of the conductor volume, (iv) and modeling of the recording
system. This model mimics a BB muscle. Fast sources (MUs) are placed closer to the
muscle surface. Slow and intermediate ones are more deeply immersed. The muscle
geometry is considered as a cylinder with three layers: muscle, adipose tissues and skin.
The source is simulated as a progressive generation of the intracellular action potential at
the end plate and its extinction at the end of the fibers. The electrical activity, generated
by these sources and propagated through the cylindrical conductor volume, is detected
by an electrode grid at the skin surface (Fig. 3.1).

1International Working Group on Sarcopenia.
2algorithm to maximize the minimal distance between MUs (see [281, 282]).
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Figure 3.1: Model implementation diagram of the modeling approach in [1] and [11].

3.2.1 Model implementation
The proposed model is implemented through an object-oriented approach and structured
with a modular design code. The model is split into independent modules, in a way that
each module clearly represents a specific part of the model which allows the modifications
or extensions of a specific module easily without having an impact on the other modules
(Fig. 3.1). The Fig. 3.2 summarize all the parameters needed to initiate the simulation
of HD-sEMG signal for BB muscle during isometric contractions.
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Figure 3.2: Model inputs: All parameters needed to initiate a simulation of HD-sEMG signals during
isometric contraction.
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The implemented model needs an input file (JSON extension format) to start a simulation.
This file contains all the parameters needed to the execution of the model. It indicates
the name of the parameter with an associated unit. Around 50 parameters are needed
to: initialize the neural drive initiating voluntary contractions, the muscle and conductor
volume anatomies, and the grid of electrodes (see Fig. 3.3). Users must provide more
parameters like the conduction velocity of the fiber and spatial conductivity of different
layer (muscle, subcutaneous fat, and skin).

Excitation Drive

Muscle

Motor Unit (s) Fiber (s)

Layer (s)

Conductor

Volume

Electrode Grid

One MU with fibersMuscle with circular MUs

2. Initialization

Figure 3.3: Initialization stage: excitation drive, muscle and conductor volume anatomies, and electrode
grid.

Once gathered, these parameters will initialize:

• The excitation drive with a specific resting time, holding time, contraction level,
goal of the contraction, the contraction slope, recruitment range and the sampling
frequency. All these parameters are defined in the input file.



3.2. THE BIOPHYSICAL HD-SEMG MODEL 115

• The muscle anatomy at the fiber and MU scale. In fact, MUs are positioned accord-
ing to a best candidate algorithm (BC) and regionalized within the muscle according
to their types. The territories of MUs were simulated with a circular shapes. Then,
each MU was filled with fibers of the same phenotypic. The number of MUs, the
number of fibers per MU, and the fibers and MUs diameter’s are defined in the
input file.

• The conductor volume and the different layers (muscle, subcutaneous fat, and skin).
The radius of each layer and its spatial conductivity was gathered from the input
file. Likewise, the neuomuscular junction (NMJ) and the myotendinous junction
(MTZ) (see Fig. 3.3). Each layer composing the conductor volume is considered as
a homogeneous medium. The muscle layer is considered as an anisotropic medium
(conductivity is the highest along the longitudinal direction). While, the adipose
and the skin tissues are isotropic.

• The electrode grid with the number of electrodes according to θ and z axis, the
inter-electrode distances in the two directions, the electrode radius and the position
of the grid center.

This model offers the possibility to define sources at the microscopic scale (single fiber
intracellular potential generation, propagation and extinction: SFAP), and at the macro-
scopic scale (motor unit action potential: MUAP, a weighted AP based on the barycenter
of fibers within the same MU). Considering the macro sources (MUs) with a computation
algorithm fully made in the Fourier frequency domain, the model [1, 11] optimizes signifi-
cantly the computational time of the surface electrical activity at the skin surface (see Fig.
3.4). In fact, activity is computed from the multiplication between the Fourier transform
of the MU discharge times and the 2D Fourier transform of the spatio-temporal signature
of the fiber electrical source. Then, the result is multiplied with the volume conductor
transfer function expressed in spatial frequency coordinates. The 2D electrical activity
over the skin surface is obtained with a 3D inverse Fourier transform.

Recruitment Sources Transfer 

function

X

X

3. Computation

Figure 3.4: Computation scheme of the model [1, 11].
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Finally, the HD-sEMG signals are obtained from numerical integration under the elec-
trode area from a high resolution potential map allowing electrode shape diversity and
infinite combinations of electrode number and position with no need of re-simulation (see
Fig. 3.5).

Electrode grid integration

4. HD-sEMG

Figure 3.5: The HD-sEMG signals is obtained from numerical integration of the 2D electrical activity
computed over the skin surface.

3.2.2 Muscle aging simulated with the previous model

In the purpose of testing accuracy of modeling approach depicted in [1, 11] and illustrated
in Fig. (3.2, 3.3, 3.4, and 3.5), we have tried to simulate young and aged muscle. The list
of all parameters (inputs) used to generate sEMG signal were depicted in Tables (2.1, 2.2,
and 2.3) of chapter 2. The values of these inputs, for young and elderly subjects, were
taken based on values reported from literature and depicted in Table 2.4 of chapter 2.
The including of this large amount of parameters, in respect to each age and gender cate-
gory, requires a meticulous matching work and specific knowledge of this model. Beyond
the difficulty of this task for non-expert operators, and assuming that this is done, the Fig.
3.6 shows the muscle morphology and motor units territories generated by this model
A superficial inspection of this figure can lead to a satisfactory outcome: aged muscle
is smaller than young one; it contains lower number of MUs and fibers; and MUs are
larger for elderly muscle. However, a more in-depth investigation reveals inconsistency
and unrealistic structure for both young and old muscles. In fact, the Table 3.1 shows an
unrealistic estimated number of fibers per muscle, and the Fig. 3.7 shows inhomogeneous
density of fibers.
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Figure 3.6: Muscle morphology and motor units territories generated with modeling approach of [1, 11].
(left) young muscle, (right) aged muscle.

Table 3.1: The estimated number of fibers per muscle using the modeling approach in [1, 11]. The
number of MUs and the number of fibers per MU are given as an average values of model input.

Age number of MUs number of fibers
per MU

Total number
of fibers

Young 450 140 63000
Elder 300 172.5 51750

Figure 3.7: Fiber density using the best candidate algorithm with realistic motor units ratio per type.
(left) young muscle, (right) aged muscle.

To understand this result, we should understand how the model was designed. In fact,
the model build the muscle morphology and structure as follow: muscle was approximated
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by a cylinder where all MUs are parallel to z-axis and where the xy plane constitutes the
muscle cross-section. The input file delivers the number of MUs3, MUs ratio per type4, the
number of fibers per MU5, and MU radius6; then, MUs are placed, as a circular regions,
using a best candidate algorithm (BC) and fulfilled with correspondent number of fibers
(see Fig. 3.8(a),(b)). The BC algorithm is governed by the number and radius of MUs.
A supplement constraint enforced the positioning of slow MUs at deeper layer of muscle,
and fast MUs nearby the muscle surface to mimic histochemical appearance in the biceps
brachii muscle [119] ((see Fig. 3.8(a),(d)). As consequence, around 50% of MUs (slow
type percentage) are placed in innermost one-third muscle volume (see Fig. 3.6, and see
[282] for algorithm details). As result, this design leads to:

1. Inhomogeneous fiber density due to the constraint enforcing type-positioning of
MUs. Homogeneous density is guaranteed only if MUs have the same percentage
per type, which is unreal for BB muscle (see section 3.7)

2. Unrealistic number of fibers per muscle, estimated when multiplying the number
of fibers per one MU by the total number of MUs. The average reported number
of fibers for young and elder male is 253600 and 234300 respectively. However,
the estimated number using this modeling design is 63000 and 51750 for young
and elderly subjects respectively. This difference is due the number of fibers per one
MU (innervation ratio) which is not directly available in literature and need efficient
based-model estimation.

Moreover, the MUs sizes and innervation ratios, despite considerable details provided on
the morphological and electrophysiological characteristics of the motor unit, still unre-
solved issue [285]. Thus, it was the difficult to report such experimentally data for BB
muscle. In fact, the estimation of MU radius per type only was depicted in [41], and inner-
vation ratio of BB muscle was reported in rare studies (e,g,. [286] without related-types
information). As consequence, the BC algorithm, driven by inconsistent entries, can lose
its efficacy. Which leads to an uneven and physiologically incorrect arrangement of MUs
in BB muscle.
Another structural artifact was observed when dealing with this model: the uniform

distribution of fibers over motor units (see Fig. 3.8(c)) provides incorrect densities and
can lead to overlapped fibers. The fiber diameters were randomly drawn from normal
distribution as reported in literature for each type of fiber.
Beyond these above morphological issues, the neural drive performed in this model apply
the same MUs recruitment threshold and firing rate for for both young and elderly pop-
ulation. However, recent finding have demonstrated that recruitment threshold range is
lower for elderly subjects(e.g., in [115]) with a generally flatter slope of the mean firing
rate versus recruitment threshold relationship in older men. Which not the case with this
modeling approach.
In the next paragraph, we will try to overcome these artifacts by proposing new modeling
schema and approaches. Furthermore, The new proposed model will incorporate missed
important age-related changes such as atrophy and intramuscular fat infiltration.

3nMU in Table 2.4
4MUdist in Table 2.4
5nfSMU , n

f
SMU , n

f
SMU , nfSMU in Table 2.4

6MUrS , MUrFI , MUrFR, MUrFF in Table 2.4
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Figure 3.8: Fiber distribution within circular MU territory. Aged muscle anatomy generated with
modeling approach of [1] and [11].

3.3 New modeling scheme personalized for muscle
aging

The new modeling approach is based on the age and gender factors as model entries. The
model users should give, as model inputs, only age and gender. Optional parameters,
easily measured/monitored, like muscle length and cross sectional area can be added to
the model inputs for more accuracy. Then, all needed parameters to define BB muscle
morphology will be estimated through specific age-related statistical models. In fact, a
mini review will be realized to report experimental values of these parameters according
to the age/gender of biceps brachii muscle. Then, using statistical models (e.g., growth
equation models), a fitted relationship between age and experimental data will be estab-
lished for each parameter.
Once the parameters of muscle morphology are computed from these fitted relationships,
The muscle structure can be defined according to the descriptive age-related model (see
Fig. 3.9).
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Figure 3.9: New modeling approach diagram. The main input of this model are the age and gender
of the subject. All anatomical and neural parameter need in model workflow are estimated based on
statistical and descriptive model (experimental values reported from literature).

These models, through vario¨us algorithms, will insure:

1. Homogeneous and close-knit fiber positioning within BB muscle: A Poisson Disk
Sampling (PDS) will fill the enclosed muscle domain by iteratively adding fibers
that are distant in respect to their radius. This algorithm will generate a realis-
tic number of fibers per muscle with more physiologically correct arrangement in
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reduced computation time (few seconds).

2. Infiltration of intramuscular fat (IMAT) within BB muscle: IMAT total area will
be estimated, in respect to age input, using a statistical model. Then, the IMAT
positioning algorithm will split this total area into polygons, randomly shaped and
positioned in the muscle.

3. After fiber deletion from IMAT areas, the innervation ratio for each type of MU
will be estimated. Then, the total number of MUs can be predicted. Finally, we
can place centers of MUs using PDS algorithm. However, a Linear Programming
Problem (LPproblem) solver will be used to place most of slow MUs in the innermost
muscle layers, and faster MUs near the surface.

4. Assignment of positioned fibers to MUs using a randomized procedure (fibers are
going to have same phenotypic as MUs): The assignment will be consistent with the
innervation ratio, fiber’s proximity to centers of MUs, and presence of neighboring
fibers already assigned. This step promotes a realistic MUs territories else the
circular simplified forms that exist in literature. In fact, the territory of each MU
is defined as a convex hull of their assigned fiber’s (convex hull algorithm).

5. Once the muscle structure is defined, a new neural drive will be employed. This
neural model can personalize the spatial and temporal recruitment for each type of
MU, in respect to the age input.

Once all these stages have been overcome, the MUAPs generation, propagation, extinc-
tion, and detection by the HD-sEMG grid will be performed as aforementioned in section
3.2. In the next sections, we will mathematically describe the statistical, descriptive, and
neural models.

3.4 Statistical aging models
The muscle and conducting volume are composed of three layers: the Biceps Brachii
(BB) muscle, the subcutaneous fat, and the skin. However, the bone (Humerus) radius is
needed to compute the muscle radius. The biceps brachii (BB) muscle consists of a long
and a short head, which have two different origins (the supraglenoid and tubercle) and a
common insertion (the radial tuberosity). Thus we consider the BB muscle as a unique
entity when reporting its morphological characteristics from literature. The muscle mem-
brane enumerates many morphological changes from early adulthood to old age including
muscle size (cross-sectional area) and length; bone size; and layer thickness (skin and
subcutaneous fat).
Thus, we will report experimental data for these two age categories and propose their
most appropriate age-related statistical models. Our approach, in this paragraph, will
employ regression analysis, curve-fitting, or trend-lines.
The work below is divided into three parts: 1) reporting morphological parameter values
for each subject category (young and elder, male and female), 2) experimental data prepro-
cessing based on strict inclusion and exclusion criteria (high standard deviation, adequacy
of the measurement protocol,etc.), 3) regression analysis by detecting and quantifying the
relationship between aging and parameter values. Four growth model will fitted from ex-
perimental data and tested to detect dynamics of these relationships : linear, exponential,
logistic and Gompertz model.
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• Linear growth: the parameter evolution with aging can be modeled with a linear
equation:

p(x) = a.x+ p0 (3.1)

Where p is the muscle parameter at age x, a is the growth rate, p0 the initial
parameter value.

• Exponential growth: the parameter growth rate increases over ages, in proportion
to the parameter values, getting larger or smaller. The general form of this model
is:

p(x) = p0.e
a.x (3.2)

Where p(x) is the muscle parameter at age x, a is the growth factor, p0 the initial
parameter value.

• Logistic growth: In logistic growth, a parameter growth rate gets smaller and smaller
(or larger) as it approaches an imposed maximum (or minimum) value, known as
the carrying capacity. The general form of this model:

p(x) = k.p0

p0 + (k − p0).e−a.x (3.3)

Where p(x) is the muscle parameter at age x, a is the growth factor, k is the carrying
capacity, and p0 the initial parameter value. It exists related forms of this logistic
model. In particular, the Log-Logistic model which is defined by the following
equation:

p(x) = p0 + (p0 − pf )/(1 + (x/a)−k) (3.4)

Where p(x) is the muscle parameter at age x, a is the growth factor, k is the carrying
capacity, p0 the minimum asymptote, and pf the maximum asymptote.

• Gompertz growth: It is a sigmoid function at which the parameter evolution with
aging being slowest or fastest at a given age. The asymptote of the function is
approached much more gradually by the curve than the left-hand or lower/higher
valued asymptote. This is in contrast to the simple logistic function in which both
asymptotes are approached by the curve symmetrically. The general form of this
model is:

p(x) = c.e−e
b−a.x (3.5)

Where p(x) is the muscle parameter at age x, a is the growth factor, b is the halfway
point, and c is an asymptote, since limx→+∞ c.e

−eb−a.x = c.

The equations 3.1, 3.2, 3.3, and 3.5 are re-framed for each muscle parameter according
to the experimental data trends. Then, each model equation parameters are estimated
using the Levenberg-Marquardt algorithm (non-linear least squares optimization function)
[287]. We will name the models in this section as statistical models of muscle morphology
changes with aging.

3.4.1 Changes of muscle cross-sectional area with aging
The Cross-Sectional Area (CSA) values of BB muscle are rarely reported in the literature.
In fact, the most reported CSA values include the BB muscle with neighbor muscles, e.g.,
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the Brachialis and the Triceps. Terms like Anatomical Cross-Sectional Area (ACSA) and
Physiological Cross-Sectional Area (PCSA) are also frequently matched in these studies.
ACSA design the muscle CSA measured in the plane perpendicular to its tendons (the
longitudinal axis), commonly recorded at the widest point along the muscle. PCSA is the
muscle CSA measured in the plane perpendicular to the muscle fibers. It is obtained by
dividing the muscle volume by its true fiber length. The Table 3.2 shows CSA values of
BB muscle with the condition: elbow flexors positioned at 90◦. To propose an estimated

Table 3.2: CSA reported values of BB muscle (YM: Young Men; OM: Older Men; YW: Young Women;
OW: Older Women). (∗) CSA for BB and brachialis muscle together.

Subject Age (yr) CSA (cm2) Reference

YM

23.3±3 12.7±2.3 [288]
23.3±1.3 12.4±1.2 [289]
22.4±3.7 11±8.1 [290]
28±0.1 15.3±2.5 [181]
27.5±1.9 12.5±6.3 [291]
12∼25 11.8±2.7 [292]

YW 25.0±1.4 7.5±0.5 [289]
21.7±3 6.9±0.3 [290]

OM 81±13 9.1±1.7 [288]
68±0.5 12.5±3.3 [181]

OW 68.5±3.7 9.7±1.2 ∗ [293]

behavior law of the muscle CSA evolution versus aging, we first eliminate experimental
data with high standard deviation (scatters in red color, Fig. 3.10). Then we have
applied a regression using growth equations of Table 3.3. Four curves of CSA decline
are estimated (Fig. 3.11). According to the results, the linear and Gompretz-Weibull
equations are more suitable to fit the experimental data of Table 3.2. We will use the
Gompretz-Weibull equation to obtain muscle CSA at each age in the personalized aging
model.
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Figure 3.10: The CSA experimental data of male subjects. Scatters in red color are excluded due their
high standard deviation.
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Figure 3.11: The CSA fitted functions for male subjects.

Table 3.3: Estimated parameters of BB CSA model during aging.

Model equation estimated parameters
Linear p(x) = a.x+ p0 p0 = 14.92; a = −0.05

Exponential p(x) = p0.e
a
x p0 = 10.14; a = 6.63

Log-Logistic p(x) = p0 + (p0 − pf )/(1 + (x/a)−k) a = 68.91; k = 25.23
p0 = 15.2; pf = 9

Gompretz-Weibull p(x) = p0 + (p0 − pf )e−e
−a.(logx−logk)

a = 5.18; k = 13.56
p0 = 50; pf = 2

3.4.2 Changes of muscle radius with aging
The BB muscle is attached to the Humerus bone. The bone radius parameter is used to
compute the muscle radius using the following equation 3.6:

CSABB = α.(π.r2
BB − π.r2

bone) (3.6)

Where rBB is the BB radius, rbone is the bone radius, and α is an adjustment factor for
muscle (α = 160

360 in our case).
The Table 3.4, shows no significant difference in the bone radius between young and elder
subjects, with a slight increase with aging. However, this increase is more observed for
elder women compared to youngest.
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The Table 3.5 shows the estimated muscle radius for young and elder male/female subjects,
using equation 3.6 and tables 3.4, and 3.2.

Table 3.4: Humerus CSA reported value (YM: Young Men; OM: Older Men; YW: Young Women; OW:
Older Women). The bone radius was estimated using CSAbone = πr2

bone.

Subject Age (yr) Bone CSA
(mm2)

Bone radius
(mm)

Bone length
(mm)

Reference

YM

21±1 412±64 11.45±4 [294]
23±3 392±40 11.2±3 327±16 [288]
31±4 520±43 12.8±3 [295]
25±5 438±39 12.5±0.7 332.5±13 [232]

OM

78±4.9 416±45 11.5±3.7 [294]
77±1 455±53 12.03±4.1 335±18 [288]
86±4 454±42 12.02±3.6 332±26 [288]
74±7 530±60 13.0±4.3 [295]

OW 21±3 367±37 10.7±0.7 302.7±14 [232]
OW 43±5 354±38 11.25±0.7 304.7±8 [232]

Table 3.5: The estimated values of BB muscle radius.

Subject BB muscle radius (mm)
YM 42,5±3.1
OM 38.7±2.7
YW 36.2±4.5
OW 34±5.1

3.4.3 Changes of muscle length with aging
The muscle length is different from fiber length, and different from fascicule length. The
optimal fiber length is defined as the length at which the muscle can generate its maximal
isometric force. The measurement of muscle length in vivo is rarely exploited for human
skeletal muscles. One of rare study revealing this parameter in [296]. The study measures
the long head and short head of biceps lengths with cadaver of male and female subjects.
It reports that the short head muscle length is 13.6±2.4 (cm), and the long head length
is 15±0.4 (cm). This study indicates that subject ages vary from 23 to 74 years old
without precising their gender. A more recent study reports the muscle lengths as equal to
13.98±0.75 (cm) for women and 13.8±1.1 (cm) for men respectively [290] (young subjects).
Unfortunately, muscle length is not reported for elder subjects in this study. However,
the study [291] correlated the changes of muscle CSA to muscle length of BB. This study
evaluates muscle CSA during aging based on MRI technique. It reports that 10% change
in muscle length could result in a 21% change in muscle area. Based on this observation,
we can generate muscle length for aged category using CSA values of Table 3.2. The Table
3.6 shows BB muscle lengths for the subject categories according to age and gender, and
the Fig. 3.12 shows the regression of these experimental data using growth equation of
Gompertz (eq. 3.5).
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Table 3.6: The estimated values of BB muscle length.

Subject age (years) muscle length (cm)
YM 23 ± 4 13.8±1.1
YW 22 ± 3 13.98±0.75
OM 81 ± 13 12.4±1.1
OM 68 ± 0.5 12.9±1.1
OW 68 ± 3.7 13.1±0.75
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Figure 3.12: Muscle length fitted curve using Gompretz function for male (left) and female (right)
subjects.

3.4.4 Changes of fat thickness and infiltration with aging

In the last twenty years, a rapid expansion of understanding of fat tissue organ role has oc-
curred. Fat tissue is not anymore an inert storage depot for excess calories. It was proved
that adipose cells expresses and secretes a multitude of hormones and proinflammatory
cytokines thereby acting in an autocrine, paracrine, and endocrine manner signaling the
heart, musculoskeletal, central nervous, and metabolic systems [122]. It was observed
that the increase of adipose tissue ratio is associated with the decrease of strength and
mobility in older adults [123, 297, 298, 299, 124]. The study [125] indicates that the
change in echo intensity of BB muscle starts from the middle age, and that this change
occur prior to the change in muscle thickness. It indicates that the increase of adipose and
connective tissue within this muscle is associated with the decrease of contractile tissue
and muscle strength since middle age. Therefore, we decide to incorporate efficiently the
adipose tissues infiltration through the muscle into the aimed personalized aging model.
Two kind of fat tissues are identified: 1) Inter/inramuscular fat (IMAT), is generally con-
sidered to be any adipocyte deposition located between muscle fibers or between muscle
groups; 2) Subcutaneous fat (SF) is the fat between muscle and skin.
Advancing age results in a redistribution of fat, with IMAT tending to increase more than
the subcutaneous fat [300, 301].
Experimental measures of muscle fat have been achieved with a variety of imaging (MRI,
CT) and biochemical techniques. However, measures for BB muscle are rarely reported
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compared to lower arm muscles (vastus lateralis (VL), biceps femoris (BF), etc.). More-
over, the reporting of subcutaneous fat from literature is more easy (Table 3.7 than the
intramuscular fat, which is totally missed for age and gender subject categories.
Therefore, to follow the evolution IMAT areas during aging, we have inspired from two
studies:

• The first study [122] reports that IMAT represents 8% to 10% of the total fat body
tissue. However, the fat body tissue is given in (Kg) or (Kg.m−2) which makes its
conversion to surface areas within BB muscle not evident.

• From the second study [302] we have observed that IMAT fat represents from 5 to
8% of subcutaneous fat (SF) for young subjects, and 20% of subcutaneous fat (SF)
for elderly people aged from 70 to 79 years old (48% for sarcopenic men and +29%
for sarcopenic women). This approach can be more adequate for the personalized
aging model proposed in this chapter. In fact, using the muscle radius (computed in
section 3.4.2 with α = 1) with the hypothesis that all muscle share the same IMAT
percentage of the subcutaneous fat, we can generate IMAT area of BB muscle using
the following equation:

AreaIMAT = β.(π.r2
SF − π.r2

BB) (3.7)

Where r2
SF is the subcutaneous fat radius obtained from Table 3.7, r2

BB is the muscle
radius obtained form Table 3.5, and β is an age regulation factor (β ≈ 0.05 for young
subjects, β ≈ 0.2 for elder subjects).

The Table 3.7 and Fig. 3.13 show the experimental data of SF and its regression using
Gompretz equation (eq. 3.5) for age and gender subject categories. The Table 3.8 and
Fig. 3.14 show the experimental data of IMAT fat and its regression using Gompretz
equation (eq. 3.5) for age and gender subject categories.

Table 3.7: The estimated BB subcutaneous muscle fat.

Subject age (years) Subcutaneous fat thickness (cm) Reference
OM (non-sarcopenic) 65-77 mean=0.26 (0.18, 0.33) [143]
OM (sarcopenic) 74-83 mean=0.20 (0.14, 0.25) [143]

OW (non-sarcopenic) 64-76 mean=0.35 (0.26, 0.42) [143]
OW (sarcopenic) 74-82 mean=0.23 (0.19, 0.31) [143]

YM 29-50 0.43±0.06 [235]
YW 21-44 0.54±0.06 [235]
OM 62-83 0.46±0.03 [235]
OW 62-85 0.6±0.08 [235]

Table 3.8: The estimated BB muscle IMAT fat.

Subject age (years) IMAT fat area (cm2)
YM 29-50 0.31±0.06
YW 21-44 0.55±0.09
OM 62-83 1.2±0.1
OW 62-85 1.78±0.2
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Figure 3.13: Subcutaneous fat thickness fitted curve using Gompretz function for male (left) and female
(right) subjects.
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Figure 3.14: IMAT fat areas fitted curve using Gompretz function for male (left) and female (right)
subjects.

3.4.5 Changes of skin thickness with aging
The effect of age on the thickness of skin is one of the more controversial topics among
dermatological researchers. Comparing measures of skin layer thickness between indi-
viduals (and between studies) is especially challenging because of significant variation in
measurements between individuals and between sites within each individual [303]. Mi-
croscopic appearance of aged skin reveals a thinner epidermis than young skin [304, 305].
Moreover, male skin is thicker than women’s, and a full exposed skin is thinner than full
protected skin [306]. However, the difference between skin thickness is not significant
across the literature, and this slight variation of this parameter values shouldn’t have an
important impact on the force and sEMG generated bu BB muscle. Despite extensive
data, it is difficult to define the effects of aging on whole skin thickness. In the most of
cases, studiesimposant reveals only the external layers thickness of the whole skin (epi-
dermal, superficial dermis). In this chapter, we decide to work with a mean skin thickness
ranged from 0.6 to 3.00 mm in respect to the fact that aged skin is thinner than young
skin and male skin is thicker than female skin.
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3.4.6 Changes of fibers number with aging
The efficient-standard measurement of fiber loss is the direct anatomical estimation ob-
tained from cadaveric studies, although for obvious reasons these studies are rare [82,
64, 78]. It was observed among these studies that: (i) the total number of fibers within
a muscle decrease with aging (apoptosis phenomena), (ii)human muscles are affected by
this loss differently: lower limbs are most affected than upper limbs [50], (iii), fast fibers
are more concerned by this loss than the slower fibers, in particular, for very elder persons
[307]. For the BB muscle, the gap between the number of fibers for young and elder people
is between 7% and 10% [78]. This loss can reach 55% of the total fibers number for other
muscles [78, 50]. The studies [79, 231] have reported a decrease of 15% to 30% in the
number of fibers type IIb. This decrease may be due to the fact that fibers of type II
are more vulnerable to apoptosis (denaturation of mitochondria or stem cells), or to “the
fast-to-slow” fiber type transformation. Few studies in literature have reported the total
number of fibers for BB muscle, and much more rarely for different subject categories
(young, elder, male, and female). The Table 3.9 summarize values reported in literature
for Nfibers. The most relevant and recent study reported in literature is the Klein et al.
study [78]. It estimates the Nfibers of BB muscle by combining two reliable techniques:
MRI and biopsy. The main downside of this study is the little size of the studied sample
(6 subjects). Two other studies have reported the Nf ibers for young population (either
male and female, trained and untrained subjects): [289, 308]. These two studies are using
the same approach to compute Nfibers but with combining two other techniques: Com-
puterizing tomography(CT) and needle biopsy. The Nfibers is given, for these studies, by
the following equation:

Nfibers = Maximal area of BB (obtained by MRI/CT )
Mean fiber area of BB (obtained by (needle)biopsy) (3.8)

We should note that the difference between the number of fibers is not significant between
subject categories in the same study. In contrary, the gap is clearly observed if we com-
pared this number for the same category in different studies. For that reason, we have
decided to fit the model of fiber’s number using data reported in [78] (see Fig. 3.15).

Table 3.9: Number of fibers of BB muscle reported in literature. Y: Young; O: Older; M: Male; F:
Female; U: untrained subjects; T: Trained subjects

Number of fibers Gender Age(yr) sport Reference
253.6±40.4 M Y (21.2±1.9) U [78]
234.3±67.4 M O (82.3±4.3) U [78]
180.6±50.1 M Y (23.3±1.3) U [289]
156.8±25.5 F Y (25.0±1.4) U [289]
290.7±72.2 M Y (23.7±1.2) T [308]
278.5±60.7 M Y (22.5±0.5) U [308]
293.2±61.5 M Y (18∼25) U [292]

3.4.7 Changes of fiber diameters with aging
In BB muscle it was found four fiber types and subtypes (I (slow: S), IIc (fast intermedi-
ate: FI), IIa (fast resistant: FR), and IIb (fatigable fast: FF)) with different repartition
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Figure 3.15: The number of fibers fitted curve using Gompretz function for male subjects.

ratios between superficial and deep muscle layers [119]. Contrary to the fiber’s number
within BB muscle, the size of fibers, all type included, is much more altered by the aging
process. The diameters of type IIb fibers can decrease by more than -30% for BB muscle
(see Tables 3.10 and 3.11). Few studies in literature have reported the size of fibers for
BB muscle, and much more rarely for different subject categories (young, elder, male, and
female). We have reported these values in Table 3.10.
Thus, the statistical model describing this decrease in fiber diameters is depicted in Fig.
3.16. Among the four fitted curves depicted in this figure, the Gompretz-Weibull equation
seems to be more adapted for experimental data of Table 3.10.

Table 3.10: Comparison between fiber diameters per type of BB muscle (YM: Young Men; OM: Older
Men; YW: Young Women; OW: Older Women.)

Subject Age
(year)

Type I
(µm)

Type IIa
(µm)

Type IIb
(µm)

Type IIc
(µm)

Type IIab
(µm)

Ref.

YM

19∼25 66.2±9.5 76.4±15.8 73.8±15.2 67.8 73.8±15.1 [233]
17∼30 50.5 55.8 (muscle surface layer) [309]
17∼30 49.8 52.1 (muscle surface layer) [309]
26∼36 52.03±7.3 57.3±9.2 [310]
21.2±1.9 65.4±7.6 71.5±7.1 [78]

YW 24∼41 45.7±0.4 37.3±2.2 [311]
35∼42 45.2±7 46.2±7.2 [310]

OM
74 51.7±6.7 60.4±11.9 51.5±15.8 27.8±15.3 56.1±13.6 [79]
82.3±4.3 58.4±5.2 60.9±5.5 [78]
72∼88 43.9±10.1 42.4±9.7 [81]

OW 45∼82 43.8±1.4 35.2±0.8 [311]

In fact, the curve behavior, with a slow decrease of fiber diameters during young/middle
age and accelerated rate after 50 years old, seems to be consistent with reported observa-
tions in literature (see chapter 1, section 1.4). Moreover, we observe that model describe
with accuracy the accelerated atrophy of type IIb fast fibers (red curves) after the age of
75 years, compared to type I atrophy during aging. This statement was demonstrated in
many studies (e.g., in [312]). To note, we didn’t found relative data for sarcopenic BB
muscle in literature. However, the study [312] shows that type-II fiber diameters for sar-
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Figure 3.16: Four statistical models estimating the fiber diameters during aging for BB male muscle.

copenic men are significantly below the average range of non sarcopnic ones (the studied
muscle was the vastus lateralis (VL)).

Table 3.11: The fiber diameter decline with aging (unit = %). Estimations were obtained using values
reported in Table 3.10.

Fiber sizes decline be-
tween

Ref.
young

Ref.
elder

Type
I

Type
IIa

Type
IIb

Type
IIc

Type
IIab

YM and OM (%) [233] [79] 21.9 20.9 30.2 58.9 23.9
YM and OM (%) [78] [78] 10.7 14.8
YM and very OM (%) [233] [81] 33.6 44.5 42.5 37.4 42.5
YW and OW (%) [311] [311] 4.1 5.6

3.4.8 Changes of fiber ratio per type with aging

We provide the distribution of fibers according to their types in Table 3.12. There is
no need for a statistical model for this parameter as it is not included in this modeling
scheme. However, it will be useful when estimating the distribution of MUs latter.
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Table 3.12: Distribution of fibers of BB muscle according to type. YM: Young Men; OM: Older Men;
YW: Young Women; OW: Older Women

Subject Age(yr) Type I(%) Type
IIa(%)

Type
IIb(%)

Type
IIc(%)

Type
IIab(%)

Ref

YM

28±0.1 49±2 25±6 26±7 0±0 [181]
19∼25 41.7±8.5 19.4±6.3 29.0±11.2 0.5 9.4±11 [79]
17∼40 39.1±2.1 36.5±3 20.3±2.6 3.9±0.7 [119]
21.8±5 42.3±7 57.7±7 (muscle surface layer) [313]
21.8±5 50.5±9 49.5±9 (muscle deep layer) [289]

YW 25.0±1.4 49±2 25±6 26±7 0±0 [289]

OM

68±0.5 52±8 20±4 26±7 2±0 [181]
77±0.4 51.8±2.3 30.6±2.3 16.9±2.4 0.9±0.3 [314]
74 49.4±11.2 24.1±8 15.6±18.1 0.1±0.1 10.8±9.7 [79]
78∼81 58.5±5.9 26.4±4.1 15.5±4.0 0.4±0.3 [307]

OW 78∼81 53.3±2.9 23.7±2.2 23.0±3.0 0.1±0.1 [307]

3.5 Fibers positioning model with aging
Once the parameters of muscle morphology are computed using statistical models as
depicted in 3.4, the fiber positioning model can be employed. Three main fiber aspects
are outstanding during aging over the literature: 1) the loss of fibers, 2) the decrease of
fiber sizes, 3) the changes in the ratio of fiber types . We will model at first the number,
size and distribution ratios if fibers. Then we will place the fibers in muscle area using
Fast Poisson Disk Sampling (FPDS) algorithm (see Fig. 3.17).

Figure 3.17: Diagram of steps to build the fiber’s model with aging.

Previous models of sEMG signals have not specifically developed a realistic density
and distribution of fibers within the muscle. Authors have worked on modeling the electric
signal produced by a single contraction of a single muscle. The sEMG signal simulated at
the skin surface is the summation of all these single fiber action potentials filtered through
a conductor volume transfer function. The reliability and the impact of fiber distribution
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and density according to their contractile properties on the simulated EMG signal is not
assessed. The model [44] estimates the number of fibers within muscle according to its
cross-sectional area and the all fibers area. Then, the number of fibers for each of the 120
MUs was calculated using an exponential equation. To note, the excitation thresholds
of the MUs were determined similarly in the same study. Then, motor unit territories
were placed randomly in the simulated muscle without exceeding muscle boundary. To
activate the muscle, an excitatory drive was sent to the motor neuron pool, activating
any MU whose excitation threshold was exceeded.
The modeling approach depicted in [1], and used in this study, follows the same vein as in
[44]. However, it changes the algorithm of MUs and fibers positioning (see section 3.2.2
for algorithms explanation and limitations).
In order to simulate physiologically correct number and density of fibers, we propose an
alternative approach that consists of using the FPDS algorithm. The FPDS is part of
a family of algorithms that fill an enclosed 2D domain by iteratively adding points that
are maximally distant from the previously added ones (known as Poisson sampling disk)
[315, 316, 317]. The best candidate (BC) that [1] has performed, is part if this algorithms
family. However, authors in [1] have imposed a fixed number of MUs to fulfill in the
muscle domain. Which can lead to break the constraint on maximal distance between
center of MUs and/or increase the computation time. Moreover, the BC algorithm is not
performed when positioning fiber into the MUs domains. As consequence, we obtained
inconsistent number of fibers per muscle and unreliable placement of fibers (see Table 3.1
and Fig. 3.8 in section 3.2.2).
The new algorithm maximally disperse the fibers territories in the muscle cross sectional
area. At the same time, the generated fiber centers are quasi-random (Fig. 3.18).
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Figure 3.18: Example of 500 points drawn from the uniform distribution (a) and generated
by the PDS (b). An even quasi-random arrangement of the points, such as the one
provided by the PDS, is not achievable when using the uniform distribution.

The simplified PSD algorithm pattern is based on: 1) generating randomly point/fiber;
2) verifying that the point is not too close to any existing point; 3) repeating k times.
Nonetheless, this pattern consume high computational time [318]. However, if the mini-
mum distance between points was known a prior, we can use more enhanced and faster
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algorithm: the Fast Poisson disk sampling (FPDS) [317]. In fact, this method cut down
dramatically the computational time by performing pre-initialized background grid (us-
ing predefined minimum distance between points, r). Each grid cell can only receive one
point (the edge of cell = r/

√
2). Thus, at each new point, only points indexed in grid

cells need to be checked (see Algorithm 1).
Tp perform this FPDS algorithm, we have fixed two ages: 25 years and 82 year old of male
subjects. The statistical model (depicted in 3.4.7) have computed the related diameter of
fibers for each subject and deliver the corespondent radius to fiber positioning algorithm.

Algorithm 1 Fast Poisson Disc Sampling (FPDS) algorithm
Require: Fiber radius (r), muscle radius (rmuscel)
Step 0. Initialize an 2-dimensional background grid for storing samples and acceler-
ating spatial searches. We pick the cell size to be bounded by r/

√
2, so that each grid

cell will contain at most one sample, and thus the grid can be implemented as a simple
2-dimensional array of integers: the default −1 indicates no sample, a non-negative
integer gives the index of the sample located in a cell
Step 1. Select the initial sample, x0, randomly chosen uniformly from the domain.
Insert it into the background grid, and initialize the “active list” (an array of sample
indices) with this index (zero).

Ensure: x0 in 2-dimensional grid

while active list is not empty do
Step 2. choose a random index from it (say i). Generate up to k points chosen
uniformly from the spherical annulus between radius r and 2r around xi. For each
point in turn, check if it is within distance r of existing samples (using the background
grid to only test nearby samples). If a point is adequately far from existing samples,
emit it as the next sample and add it to the active list. If after k attempts no such
point is found, instead remove i from the active list.
end while

The Fig. 3.19 shows the morphology of BB muscle for young men (age = 25 yrs)
and elderly men (age = 82 yr). The Table 3.13 shows that FPDS have produced realistic
number of fibers for young and elder muscle (250698 and 211798 respectively). These pro-
duced number of fibers are consistent with reported values in literature and depicted in
Table 3.9. The computational time to generate these anatomies and store fiber positions
in cylindrical coordinate is lower than 35s.

Table 3.13: The number of fiber estimated by FPDS algorithm and its related computational time for
YM (young men) and OM (older men).

Subject age (years) Number of fibers Computational time (s)
YM 25 250698 31.08
OM 82 211798 28.71
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(a) (b)

Figure 3.19: Muscle morphology with fibers placed according to FPDS algorithm for (a) young, and
(b) elder male subject.

3.6 IMAT model with aging
We have simulated in section 3.4.4 the evolution of the total IMAT area in BB muscle
with aging (see eq. 3.7). However, in this section, we develop an algorithm to disperse
this total area into small adipocyte depositions located between muscle fibers.
For that purpose, we require the parameters of muscle morphology (the muscle and bone
radius), the fiber coordinates (computed in the previous section), and the total surface of
IMAT within BB muscle (computed in section 3.4.4) (Fig.3.20).
The algorithm of IMAT is based on positioning of micro random polygons (0.4 to 1.5 mm
of width and height) in the BB muscle. The algorithm will be stopped when the sum
of polygon areas reach the total estimated area of IMAT. Then the fibers situated inside
these polygon areas will be deleted. The description of this algorithm is depicted in 2.

Figure 3.20: Diagram of steps and requirements needed to build the IMAT model with aging.



136 CHAPTER 3. MODEL PERSONALIZATION TO MUSCLE AGING

Algorithm 2 Positioning of adipocyte depositions algorithm
Require: muscle radius (muscler), bone radius (br), total IMAT area TotalIMAT_area =
f(age), the coordinate of fibers
Step 0. Positioning of the first adipocyte deposition
1. Generate the first polygon center, randomly located in the muscle surface (between
muscler and br). The center coordinates are defined as cpx and cpy.
2. Define the shape/size of polygon (adipocyte deposition size). The width (dw) and
height (dh) are selected randomly between 0.4 and 1 mm for young subjects, and be-
tween 0.5 and 1.5 mm for elderly subjects.
3. Define the number of polygon vertices nv : randomly selected between 3 and 7.
4. Split the width and the height of polygon into nv segments: dw gives xi segments
with i = 1 to nv, and dh gives yi segments with i = 1 to nv.
5. Compute the polygon angles using xi, yi, cpx, cpy and the equation: angles =
arctan 2(xi − cpx, yi − cpy)
6. Form/plot the polygon using: angles, center coordinates (cpx, cpy), and vertices nv.
7. Compute the polygon area using Shoelace formula:

P 0
area = 1

2 |
∑nv−1

i=1 xiy(i+1) + xnvy1 −
∑nv−1

i=1 x(i+1)yi − x1ynv | (3.9)

Step 2. Generate many polygons P k with the same manner as in step 0. We break
the loop when the sum of all generated P k areas reaches the TotalIMAT_area

P total
area ← P 0

area:
k ← 0
while P total

area < TotalIMAT_area do

k ← k + 1
P total
area ← P total

area + P k
area

end while
Step 3. Remove all fibers located within polygon areas knowing the fiber and polygon
coordinates.

We perform this algorithm on young subject (age = 25 years) and elder subject (age
= 82 years). The muscle morphology and fibers positioning are computed according to
these ages using results of previous sections. We observe that IMAT model has generated
54 adipocyte zones for young male with a mean area equal to 0.41 mm2. Whereas, for
elderly subject, the number and size of these adipocyte zones increase to reach 127 and
0.7 mm2 respectively (see Table 3.14). To note, the sizes and number of these adipocyte
zones can be managed for more realism using experimental imaging technique.

Table 3.14: The number of adipocyte zones (polygons) estimated by Algorithm 2 and their relative
areas for young (YM) and older male (OM). The computation time of the Algorithm 2 is negligible (few
ms).

Subject Age
(years)

Total IMAT
area (cm2)

Adipocyte
number

Adipocyte
area (mm2)

YM 25 0.22 54 0.41
OM 82 1.28 127 0.70
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The Fig. 3.21 shows the total IMAT area for young and elderly subject simulated as
circle with a radius equal to

√
TotalIMAT _area

π2 . From this configuration, and performing the
algorithm 2, we obtain the dispersion of IMAT adipocyte zones as depicted in Fig. 3.22.
However, after deleting the fibers from the adipocyte zones, we have obtained a lower
number of fibers for elderly subject, compared to the value reported in [78] (see Table
3.15). This can be explained by an overestimation of this value, for aged category, in the
study [78]. In fact, authors in [78] have estimated the number of fibers per muscle by
dividing the maximal area of BB (obtained by MRI technique) by the mean fiber area
(obtained by biopsy) (see eq. 3.8). By overlooking the notable IMAT infiltration factor
in elderly people, they may overestimate the number of fibers for this aged category.

(a) (b)

Figure 3.21: The total IMAT area for (a) young and (b) elderly subject simulated as circle (orange)
with a radius equal to

√
TotalIMAT _area

π2 .

(a) (b)

Figure 3.22: The dispersion of IMAT adipocyte zones after performing the IMAT positioning algorithm
for (a) young and (b) older subject.
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Table 3.15: The difference the number of fibers estimated by FPDS algorithm, the number of fibers after
removing fibers located inside the adipocyte zones, and the number of fibers reported in the literature
for young (YM) and older (OM).

Subject Age
(years)

Estimated Nb
of fibers

Nb of fibers
after IMAT
modeling

Nb of fibers
in literature
(thousand)

YM 25 250698 239117 253.6±40.4
OM 82 211798 148695 243.3±67.4

3.7 Motor units model with aging
The Motor unit structure and morphology still nowadays a critical issue to resolve [285].
The related anatomical parameters: the number, the innervation ratio (number of fibers
per MU), the territories, and the fiber density (fibers/area) are rarely reported in literature
for all muscles including the BB muscle. Moreover, the rare experimental data reported
in literature are confused. It was reported, in the review [99], that the number of MUs
varies between 118 and 398 for BB muscle using EMG estimation techniques. Other
studies, based on counting of Motoneuron MN axons, have reported a number between
500 and 2000 (mean equal to 774 MUs for the BB muscle in [40] without age and gender
clarification). However, this value can be overestimated due to high similarities between
α-motoneuron axons and sensory somatic motoneuron axons. Moreover, no information
concerning the number of MUs per type (S, FI, FR, and FF) was reported in these studies.
Other parameter remains unavailable in literature which is the MU size and shape. None
of these techniques (EMG and in in vitro) have directly measure these parameters. Expect
a recent study [39], using MRI technique, has estimated the maximum and minimum MU
dimensions at 10.7 ± 3.3 mm and 4.5 ± 1.2 mm respectively. Authors in [39] have
observed that the MUs have an elliptical or crescent-shaped outline, and some MUs have
a "split" territories. However, the cited study was performed on VL muscle. Likewise, the
other structural parameters of MUs show the same confusion (e.g., the estimation of the
innervation ratio [285]).
Based on the fact that MU size is a critical determinant of its physiological action, and
understanding changes in MU structure in the setting of neuromuscular diseases is of
fundamental importance in the interpretation of diagnostic clinical sEMG, we will try, in
this section, to propose a MUs model for BB muscle. This model will place centers of
MUs with a maximal dispersion in the muscle cross-section. Then, we will assign fibers
(simulated in section 3.5) to the α-motoneurons (centers of MUs).
We assume that MUs centers are distributed uniformly in the muscle cross-section. This
assumption was also made in previous works on sEMG simulation [319, 44]. We propose
to use the FPSD algorithm to distribute uniformly centers of MUs for each type. For that
purpose, we "split" the muscle area into three zones: the deep layers of muscle are mainly
populated by slow MUs, the intermediate layers are populated by FI and FR MUs, and
we place FF MUs in surface layers of muscle. This positioning is base on observations in
literature [119] that confirm this behavior. The Fig. 3.23 shows the positioning of MUs
centers using the FPSD algorithm.
Then, we estimate the innervation ratio (number of fibers) for each MU using the

results of FPSD algorithm (number of MUs and ratio). Finally, fibers are attributed to α-
motoneurons according to: the estimated innervation ratio, the proximity of fibers to the
MU center and presence of neighboring fibers already attributed to that α-motoneuron.
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Figure 3.23: Positioning of MUs according to their type and using FPSD algorithm (Young Male
subjects).
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Figure 3.24: The estimated number of fibers innervated by each MN for a BB muscle with 45 mm of
radius, and 250698 fibers. The number of MUs is equal to 476 (Young male subject).
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For each neuron-fiber pair, the probability of assignment is represented by a score Wf (n)
that combines influences of each of these factors.

Algorithm 3 Fiber neuron assignment algorithm

Require: Number of fiber nfiber
Number of MU nMU

Fiber coordinates (ρf ,θf )
MUs coordinates (ρMU ,θMU)
while Not all fiber are assigned do

for n in nMU do
w ← Wf (n)

end for
end while
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Figure 3.25: Centers of MUs across the cross sectional area of the muscle; The FPDS method allows
an even distribution of not only the centers, but also of the sizes of MUs (Young male subjects).
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Figure 3.26: Territory centers of MUs across the cross sectional area of the muscle (Elder
male subject).

3.8 Neural drive model with aging

The model [1, 11] is a multi-components system. It simulates the force and the HD-
sEMG generated by BB muscle during isometric contractions. The recruitment pattern
component simulates the MUs recruitment, activation and firing rate according to the size
principle [43] and using the MN pool model depicted in [44]. The MUAPs are computed
with high-fidelity to the fibers and MUs sizes of BB muscle. However, the variability
in cell properties (S, FI, FR and FF type) is not incorporated in the MN pool model
[44]. In fact, published computational models of MN pool [44, 320, 213, 321, 322] have
considered a continuum form of the MUs electrical properties, although the evidence of
its distinct morphological, structural and functional properties. In these models, all MUs
of different types are recruited at the same ETh. The Fuglevand Motoneuron (MN) pool
model [44], used in the HD-sEMG/force model [1, 11], operates with homogeneous MN
pool according to the size-principle [43]. However, the conductor volume, the MUAPs
and the force components are personalized to the types of MUs sources. Furthermore,
the Fuglevand model capacity to mix or reverse MUs recruitment is limited [213]. A
previous study [323] has evoked the limited capacity of this model to recruit FF MUs
at high contraction levels for aged-subject categories. The study [213] has modified the
Fuglevand model by assigning MN by cell index to be adapted for mixed or reversed
recruitment.
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In this study, 1) we will investigate the capacity of Fuglevand model to recruit fast fatigable
(FF) MUs at 60% of MVC for real cases (young and aged subjects), and 2) we will propose
a discrete type-scaled recruitment model. The new approach follows the size-principle and
respects MU type variability. and its different recruitment ranges.

3.8.1 Fuglevand model
Since the publication of Fuglevand model in 1993 [44], it has been considered as the
major increment in the modeling of MUs recruitment. In this model, MUs are recruited
according to the size-principle [43] and to the force level developed. Each MU is recruited
according to a minimum excitation threshold needed to initiate the discharge moments
of MU action potential. This excitation threshold is described as depicted in [44] by the
following expression:

Thi = ei
ln(R)

N (3.10)

where Thi is the excitation threshold to initiate repetitive discharge moments of the
ith MU, R is the force level (% of MVC) to recruit all MUs, and N is the total number of
MUs within muscle. The number of muscle MUs N and its recruitment range r are muscle
specific parameters and usually are not easily achievable experimentally. It was reported
[324, 211] that for larger proximal muscle, such as the BB muscle, the MUs recruitment
plays more important role in force modulation than its firing rate. The R of BB muscle
according to [324] varies from 0 to 0.88. This range was estimated based on sEMG signal
during isometric contractions. The study [320] has proposed a more adapted Fuglevand
recruitment scheme for such muscles with a gradual slope:

Thi = ai

N
ei

ln( R
a )

N (3.11)

However, authors in [323] have mentioned that the equations: (3.10) and (3.11) are
not able to recruit FF MUs types at 60% of MVC for aged categories: elder men and elder
women. In fact, the study [323] has applied a sensitivity analysis to evaluate recruitment
model performance at a large variation ranges of Fuglevand and De Luca model [211]
parameters for different age and gender categories. To verify this statement, we will
apply the models (equations (3.10) and (3.11)) on a realistic distribution of MUs for
young and elder BB muscle (Table 3.16). At 60% of MVC with orderly size recruitment,
all types of MUs should be recruited. Such force level need FF MUs to be exerted.

Table 3.16: Number of MUs of the BB muscle for young and aged subjects. Relative number of S, FI,
FR, FF MUs are reported in [79]

Age MUs MU ratio per typea (%)
Category Number S FI FR FF
Young males 300 47 9 15 29
Elder males 250 55 15 20 10

a Data reported in [79].
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3.8.2 New recruitment model adapted to aging
The electrical activity generated by the muscle during contraction depends of the fiber/MUs
type composition as well as its number within the muscle. Nevertheless, the wide vari-
ability of the electrical activity is also due to the limb anatomy (muscle/MUs, blood
vessel, adipose and skin tissues) with its different physiological properties. To achieve
that on the MN pool, we first developed a type-scaled, high-fidelity computational re-
cruitment model including its respective MUs types: Small (S), Fast-Intermediate (SI),
Fast-Resistant (FR), and Fast-Fatigable (FF) types. Each type is simulated using equa-
tion (3.12) with its relative parameters. The model simulating global motoneuron pool
recruitment is given by equation (3.13) which is the summation of type-scaled models.

Th{type}i = A{type} + e
i

ln(R{type})
N{type} (3.12)

Th{Global} =
∑

k=S,FI,FR,FF
Th{type}k (3.13)

An aged muscle consisted of 250 MUs cells (Table 3.16 and 3.17) is performed to simu-
late the recruitment of MUs using the new modeling approach. This muscle includes: 137
cells (∼ 55%) of S type, 38 cells (∼ 15%) of FI type, , 50 cells (∼ 20%) of FI type,and 25
cells (∼ 10%) of FF type (Table 3.17). This repartition matches the relative distribution
of MUs types reported experimentally from the BB muscle [79]. The MUs size and type

Table 3.17: New model parameters: Number, recruitment range RR, and initial threshold A for each
type of MUs (equation (3.12)). Type’s percentage data are reported in [79] for aged muscle.

Model MUs typea

Parameters S FI FR FF
RR 25 35 50 88
A 0 24 34 49
N 137 38 50 25

a type percentage data reported in [79].

are strongly correlated, but the correlation ratio is not one [325]. This makes applica-
tion of the size principle to predict motoneuron/MU type recruitment not totally correct
and reliable. A mixed (recruitment of several motoneuron types at the same time) or
reverse (FF>FR>FI>S) recruitment should be investigated mathematically and experi-
mentally. The wide overlap between physiological properties of MUs (sizes overlap cross
the MUs types) and the large biological variability of MN observed experimentally, are a
supported arguments to make these investigations. However, this model (equations (3.12)
and (3.13)) was originally developed to work with a homogeneous sub-models (MUs type
models), as with Fuglevand model. Only the global model (equation (3.13) is heteroge-
neous. To make it more compatible with mixed and reversed type recruitment, we have
modified the assignment of MUs to be by cell indexes and sizes both. To investigate the
performance of Fuglevand model, we apply its recruitment scheme on young and aged
muscle with realistic distribution of MUs types (Table 3.16). The Fig. 3.27 represents the
RTE function according to recruited MUs (orderly sizes recruitment). In this figure, we
observe that, for aged categories (Fig. 3.27(b)), no FF MUs at 60% of MVC are recruited.
Such force level needs FF MUs to be exerted for biceps brachii muscle. This observation
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(b) Aged muscle
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Figure 3.27: The recruitment threshold function for (a) young muscle and (b) aged muscle. The
RR = 88 for both young and elder muscle, and for Fuglevand and De luca model (equations (3.10) and
(3.11)). The sizes of MUs respect that S(blue)<FI(green)<FR(yellow)<FF(red).

is valid for Fuglevand and De Luca model both. Changing the slope value a or the RR
do not ameliorate the results. The model described in equations (3.10) and (3.11) is not
appropriate for such muscle configuration, even when considering that the size orderly
recruitment is valid. The Fig. 3.28 shows the recruitment behavior of Fuglevand model
(continuum black line) and the new modeling approach (colored scatters: S (blue), FI
(green), FR (yellow), FF (red)). The new approach is applied on the same aged muscle of
Fig. 3.27(b) and simulated with parameter values depicted in Table 3.17. We observe that
the new recruitment threshold function is able to recruit FF MUs with a strict orderly
size recruitment, which is not the case for Fuglevand model. Moreover, the curve behavior
of the new personalized recruitment model to MUs type is very close to the recruitment
scheme fitted from experimental data depicted in the study [213].
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Figure 3.28: The recruitment threshold function for aged muscle: Fuglevand model (black line)
versus the new type-scaled recruitment model (scatter plot with S-type (blue scatters),FI-type (green
scatters),FR-type (yellow scatters),and FF-type (red scatters)). The recruitment range is RR = 88.

For mixed and reverse recruitment, experimentally proved (in [213]), we have assigned
the MUs force according to cell indexes. The new indexation makes MUs with the same
order sizes following the same recruitment scaled-type scheme. The Fig. 3.29 shows a
mixed and reverse recruitment using the new modeling approach.
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Figure 3.29: A mixed recruitment threshold function for aged muscle.

However, this scheme should be improved, in future work, using more advanced and
appropriate equations, e.g., applying a sigmoid functions for type-scaled model instead
of exponential recruitment evolution. Such recruitment behavior (sigmoid-shaped curve)
can promote small recruitment rate of FF MUs at low Th and an important one at high
Th. Furthermore, the strictly size indexation of MUs will be compatible for a mixed and
reversed recruitment using sigmoid-shaped functions.
To resume, our results indicate that generic and homogeneous recruitment models con-
fusing size and type of MUs can deliver a non-realistic recruitment behavior for elderly
people. FF MUs for aged biceps brachii muscle are not recruited at higher contractions
with these models. This aspect impacts the prediction reliability of simulated sEMG and
force. An adjustable, discrete, and scaled-type computational model was investigated in
the present study. The new proposed approach offers a mixed and reversed recruitment
with the ability to recruit FF MUs at high contraction for aged healthy subjects.

3.9 Simulations with the HD-sEMG model
To evaluate the proposed changes, in the modeling approach, we decided to simulate
HD-sEMG signals over a 16×16 electrode grid and to compute sEMG signal features on
the recorded signals. Four signals are computed on the signals amplitude (RMSA), on
the probability density function (Kurtosis and Skewness), and on the estimated mean
frequency (MNF) of these signals.
For this purpose, we simulated a potential map of seven anatomies aged between 25 years
and 85 years old, at low and high contraction levels (20 and 60% of the Maximal voluntary
contraction (MVC)) during 5s of holding contraction. The seven anatomies are generated
by introducing only the age and the gender of subjects as inputs to the new proposed
modeling approach. The grid position is the same for all simulations. The features are
computed at each grid electrode and then averaged over the 64 channels. The Table
3.18 shows the values of main parameters defining the structure and morphology of BB
muscle, estimated by statistical and phenomenological modeling approach described in
the previous sections. We observe a decrease in the estimated percentage of fast fatigable
MUs: more than 50% of MUs are lost, from 31% at age 25 years to 14% at 85 years old.
However, the other types of MUs are not impacted by the same way with muscle (e.g.,
the percentage of slow MUs increase but not considerably as the decrease of FF ones).
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This tendency of MUs loss is consistent with reported observations [100, 97] underlying
a loss of MUs by 50% for very elder peoples (> 75years). To note, these studies [100, 97]
have not mentioned which type of MUs is affected by this loss.
Moreover, the proposed model expects a large expansion of "survived" MUs territories.
This expansion, regarding mainly the FF MUs, is a consequence of the large MUs loss
against the small loss of fibers with aging (see related parameters in Table 3.18). In the

Table 3.18: The estimated morphological and structural parameters using the proposed aging model.
SAT: Subcutaneous adipose tissue. ∗ mean value.

Parameter Subject
1

Subject
2

Subject
3

Subject
4

Subject
5

Subject
6

Subject
7

Age (yrs) 25 35 45 55 65 75 85
Muscle CSA (cm2) 13.6 13.41 13.01 13.35 11.48 10.53 9.64
Muscle length (cm) 13.99 13.9 13.75 13.51 13.2 12.85 12.53
SAT (cm) 0.42 0.42 0.43 0.44 0.45 0.46 0.47
IMAT area (cm2) 0.21 0.31 0.59 0.92 1.13 1.24 1.28
Nb of fibers 251199 250444 248172 245487 239773 228314 200242
Nb of MUs 531 557 479 401 338 271 181
S MUs (%) 42 43 45 46 49 52 56
FI MUs (%) 8 4 10 13 15 19 19
FR MUs (%) 19 18 16 13 12 11 11
FF MUs (%) 31 35 29 28 24 16 14
Innervation ratio∗ 507 490 589 711 964 1255 1618
Area of S MUs∗ (mm2) 9.7 8.6 10.4 12.6 14.9 17.1 19.0
Area of FI MUs∗ (mm2) 14.4 17.5 20.9 24.7 27.0 29.0 33.6
Area of FR MUs∗ (mm2) 34.1 31.6 40.2 47.1 55.0 64.7 75.3
Area of FF MUs∗ (mm2) 46.8 44.9 50.0 69.5 83.5 92.8 106.1

same vein, The HD-sEMG signals simulated according to estimated parameters depicted
in Table3.18 show similarities with behaviors reported in literature. In fact, in the Fig.
3.30, we observe that the root mean square of signal amplitudes (RMSA) is significantly
reduced with aging at maintaining high level of contractions (60% of the maximal volun-
tary contraction (MVC)). In particular between the age 40 and 50 years old. However, by
maintaining low force strength (20% of MVC), the RMSA decrease slightly with aging.
The same trends were observed in literature [199, 201]. The structural changes of mus-
cle with aging, in addition of changes in recruitment pattern, can explain this behavior.
In fact, the aged muscle is dominantly populated by slow MUs. Thus the capacity to
maintain a low level of contractions (such at 20% of MVC) is accurately preserved until
advanced ages [326, 327]. However, the comparison between young and elderly subjects
using the absolute values of sEMG amplitude should be applied with caution. The higher
subcutaneous adipose tissue usually detected in elderly compared with young can affect
the measurements with misleading findings [199].
In the frequency domain, we evaluate the HD-sEMG signals with Mean frequency (MNF).
the Fig. 3.31 shows the variation of this signal feature in relation of aging and force pro-
duced. We observe, as expected with literature reports (e.g., in [190]), a decrease in MNF
values with aging at 60% of MVC [190]. However, at 20%of MVC, we don’t observe
the fast decline in MNF but a slight increase. Such aspect should be confirmed with a
comparative study between young and elder population (one of the perspective of this
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Figure 3.30: The variation of the Root mean square of Amplitude (RMSA) values (in mV) relative to
the subjects ages of the different simulations. (Green) RMSA of HD-sEMG signal at high contractions.
(Red) RMSA of HD-sEMG signal at low contractions.

work). To note, this MNF signal feature was recently used as biomarker of early signs
of Sarcopenia (muscle aging disease) [9]. The Fig. 3.32 and 3.33 show the kurtosis and
skewness features for the 7 aged subjects. We observe an increase of these value with ag-
ing and MVC level both. However, we find that kurtosis and skewenes values are slightly
higher than expected and than observed in literature.
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Figure 3.31: The variation of the Mean frequency (MNF) values (in Hz) relative to the subjects ages
of the different simulations. (Green) MNF of HD-sEMG signal at high contractions. (Red) MNF of
HD-sEMG signal at low contractions.
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Figure 3.32: The variation of the Mean frequency (Kurtosis) values relative to the subjects ages of
the different simulations. (Green) Kurtosis of HD-sEMG signal at high contractions. (Red) Kurtosis of
HD-sEMG signal at low contractions.
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Figure 3.33: The variation of the Mean frequency (Skewness) values relative to the subjects ages of
the different simulations. (Green) Skewness of HD-sEMG signal at high contractions. (Red) Skewness of
HD-sEMG signal at low contractions.

3.10 Discussion et Conclusion
In this chapter we have proposed to address inconsistency observations in the building
of muscle structure, and in the recruitment pattern of MUs using the HD-sEMG model
depicted in [1, 11]. In fact the model approach of [1, 11] have placed in first order the
MUs according to the Best Candidate (BC) algorithm (proposed by [281]) in the purpose
to maximize minimal distances between centers of MUs. Then, authors in [1, 11] have



3.10. DISCUSSION ET CONCLUSION 149

added constraints to disperse the positions of MUs in the muscle volume according to
their types as suspected in physiological studies [119] (slow MUs are located in the deep
layers of BB muscle, when fast MUs are located near the muscle surface). Finally, au-
thors have fulfilled the MUs by a number of fibers placed randomly inside the circular
territories of MUs. The number of MUs, the number of fibers per MU, the percentage of
MUs according to their type are defined and introduced as inputs of the MUs positioning
algorithm in [1, 11].
We have observed that this strategy can lead to a non realistic number of fibers. In fact,
less than 100.000 fibers per muscle for young male subjects are only generated by this
algorithm. However, the number of fibers for BB muscle was reported near the value of
250.000 fibers approximately [78]. Moreover, the regionalization of MUs inside the muscle
according to their types without a supplement constraint on their sizes or densities can
lead to a non homogeneous fiber density inside the muscle volume as depicted in Fig. 3.7.
For that reason, we have proposed a new algorithm for fiber and MUs positioning in this
chapter. However, to avoid this kind of errors, we have proposed a initialization of the
model using only two parameters: the age and the gender. In fact, we have proposed
to estimate all the neuromuscular parameters involved in this model using "statistical"
regression models. Since the major part of those parameters and their age changes are
reported in literature. For that purpose, we have extracted values of these parameters for
young, elder, male and female populations. Then, using the regression equations depicted
in the section 3.4, we estimate the appropriate model equation and its relative parameter
values, in order to better fit reported experimental data. As consequence, we have esti-
mated according to age and gender all model entries such as the muscle radius/length,
the subcutaneous fat thickness, and the diameter and percentage of fibers according to
their types.
Then, we have placed fibers according to the Fast Poisson Disk Sampling algorithm [316].
The positioning of fibers is based on the their radius and the muscle/bone radius (both
estimated from statistical models in section 3.4). Using this algorithm, we have positioned
250698 fibers in the BB muscle of young male subject aged at 25 years old (which is close
to the reported value in [78]). The FPDS algorithm is part of family algorithms that fill
an enclosed domain by a number of points added iteratively to respect a fixed minimal
radius [315, 316, 317]. However, the use of these methods in the biophysical models sim-
ulating sEMG signals are limited to only the MUs positioning (few hundred) rather than
the positioning of fibers (thousand of hundreds) [328, 319, 282]. The high computational
time (from few minutes to few hours) is the main cause of this limitation. In this study,
the FPDS has a pre-initialize background grid that minimize the computational time of
the algorithm by limiting the iterative check to only the points/fibers indexed in this grid.
As consequence, the 250698 was positioned in only 31s.
The second main contribution in this chapter, is the intramuscular adipose tissue (IMAT)
infiltration model. To our knowledge, we are the first proposing this model in the simu-
lation of the HD-sEMG signals. The total IMAT area was estimated using a statistical
model and then subdivided into small polygons areas dispersed over the BB muscle vol-
ume. The fibers located in theses polygon areas are then removed. However, the statistical
model of IMAT versus aging needs to be validated or improved by an appropriate exper-
imental data/protocol. In fact, we have proposed this model based on our observations
and findings reported in the literature. These finding have suggested a ratio between
IMAT and the total body fat tissue (BFT) or subcutaneous fat (SF). These latter pa-
rameters are easily measured and well reported in the literature [122, 302]. Nevertheless,
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these findings have supposed that the total estimated IMAT is equally apportioned to
all skeletal muscles. This hypothesis is to verify. Meanwhile, we keep working with this
assumption. Moreover, we should note that each layer composing the conductor volume is
considered as a homogeneous medium in the model [1, 11]. In this conductor volume, the
muscle layer is an anisotropic medium and has higher conductivity along the longitudinal
direction than in the other directions. While, the subcutaneous fat and the skin tissues
are isotropic. The introduction of IMAT infiltration will changes the muscle layer homo-
geneity. As consequence, the estimation of the potential distribution over the skin, due
to sources in the muscle and based on the solution of the Poisson equation in the spatial
frequency domain in the different media [329], should be adapted to the multiple adipose
infiltration between fibers. In this study, we didn’t address this issue. A reflection about
solving this mathematical issue without altering the computation time and complexity of
the model [1, 11] should be made.
After fibers and IMAT positioning, we proceed to the positioning of MUs according the
FPDS algorithm. For that purpose, we have fixed at first the minimal distance between
centers of MUs. This parameter is essential to initiate the FPDS algorithm and can be
reported from literature (e.g., in )[40]). However, the particularity of this study, is to not
use this parameter as the radius that define the circular territory enclosing the center of
the MU. This assumption was made by all studies simulating MUs territories in the bio-
physical models of sEMG signals (e.g.in [1, 278]), expecting one recent study [319] which
define the MUs territories based on the positions of their innervated fibers. Although the
similarities between the methodologies of fiber’s assignment, we are performing a different
positioning algorithms (farthest point sampling in [319] and FPDS in this study). In this
chapter, we follow the same algorithm in order to define MUs territories. The fibers are
assigned to these centers according to: the estimated innervation ratio (statistical model),
their proximity of MU center, and the presence of neighboring fibers already attributed
to MU center. Each MU territory is then defined by the area of the convex hull enclosing
all fibers assigned to its center. The average area of these convex hulls for each type of
MUs is depicted in Table 3.18. This model can place centers of large MUs (FF-type) near
the surface muscle layer as suspected in [119] and, at the same time, guarantee a large
area/size of the positioned MU. This can not be ensured with circle territories. However,
the impact of this approach should evaluated on the simulated HD-sEMG signals.
The last phenomenological model proposed, was a computational recruitment model of
MUs. In fact, the recruitment thresholds of MUs in a muscle appear to follow a continuous
distribution with many MUs attaining a small recruitment threshold, and few large MUs
only being recruited at high activation levels [278]. This behavior is captured well by the
exponential model proposed by [44] and used by in [1, 11]. However, we have demon-
strated the limited capacity of this model to recruit FF MUs at high contraction levels
for aged-subject categories. To overcome this limitation, we have proposed an extended
version of the MUs recruitment model depicted in [44]. In this extended version, we have
attributed a gradual slope of MUs recruitment according to MVC level and type of MUs
both.
Finally, we have illustrated the HD-sEMG signals resulting from these modifications. The
features of HD-sEMG signals are computed over the 64 channels of the recording system
and then averaged. The evolution of feature values was presented according to 7 different
subject ages (Table 3.18) and two contraction levels (60% and 20% of MVC). However,
these simulations are preliminary illustrations of HD-sEMG signals in order to compare
general behavior trends to those reported in literature. Future work should statistically
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explore these trends among a large sample of young and elderly population and with more
features.
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General conclusion

In this general conclusion, we will run through the essential points that were addressed
and developed within this thesis. Then, we will mention some of the limitations of the
proposed models and we will finish by elaborating the perspective of future works. As
previously explained, this thesis aims at helping in the detection of the premature motor
decline with aging by using identification procedure performed on a multi-physic, multi-
scale model describing the skeletal muscle during isometric contractions [1]. For this
purpose, we are faced with several steps of applied mathematics, physiology, and signal
processing to finally model the structural and morphological changes of skeletal muscle
with aging.
The first contribution was the application of sensitivity analysis method on the model [1].
This method aims for defining the neuromuscular parameters with large and negligible im-
pacts on the simulated sEMG signals, in the target of a subsequent identification of those
parameters based on experimental HD-sEMG signals. However, the requested task is not
evident. In fact, This model have a complex design with a large number of inputs, more
than 50 parameters, and marked by switching between behaviors according to threshold
concepts. In addition, many of these parameters are associated to large uncertainties
due to the lack of knowledge and/or the measurement errors. Based on a bibliographic
research, the Morris Sensitivity Analysis (MSA) come forth as the method with accept-
able compromise between its computation time and the model complexity. It screens the
most and least sensitive parameters with the fewer number of model simulations. In fact,
the MSA varies one input at a time and computes the Elementary Effect (EE) of this
variation on the model output.This computation is repeated several times for each input
by following different trajectories T in the input space. The mean µ∗ and the standard
deviation σ of these EEs for each input are considered as the MSA indices. The input’s
impact is assessed based on values and rankings of these indices. The primary sensitivity
analysis tests with MSA method have displayed an unstable parameter ranking even if
increasing the number of trajectories T (i.e., number of model evaluations). In fact, the
mean µ∗ is inappropriate estimator of asymmetric an non-normal distributions of EEs.
Moreover, the standard deviation σ is highly sensitive to extreme outlier. However, the
EEs computed using MSA method on complex systems are frequently asymmetric and
with large outliers. As consequence, we have proposed an extension of MSA by suggesting
the use of two more robust estimators of EEs: the absolute median χ∗ and the median
absolute deviation ρ. Furthermore, we have improved the efficacy of these estimators in
enhancing stability of rankings, in screening the parameter effects with extended informa-
tion (linear, (non)monotonic, and non linear and/or with parameter interaction effects),
and in reducing the computation time of the method. The assessment and the compar-
ison between the MSA method and the proposed Improved Sensitivity Analysis (IMSA)
method are presented in the first section of chapter 1. Then, the IMSA was employed on
the neuromuscular model [1] simulating the electrical activity of Biceps Brachii muscle
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during isometric contractions. For that purpose, we have decided to perform the sensi-
tivity analysis according to the parameter variation ranges of two age categories: Young
and Elder population, and at high and low maintained isometric force (High Contraction
(HC) = 60% of Maximal Voluntary contraction (MVC), and Low Contraction (LC) =
20% of MVC). The HD-sEMG signals are computed and monovariate and bivariate fea-
tures of signals are calculated (the total number if feature studies w=is 23, e.g., feature in
time domain and features in frequency domain). The final step in this first contribution
was the building of sensitivity matrixes relating each HD-sEMG (High Density surface
Electromyography) signal feature to their most influential parameters. This step is useful
for the subsequent identification of those influential neuromuscular parameters. However,
when dealing the HD-sEMG signals by the sensitivity analysis method, we have state
many limitations of the model [1]. Which lead to the second contribution on this thesis
work.
The second contribution was the model personalization to muscle aging. In fact, to gener-
ate young and elderly simulated HD-sEMG signals, users need calibrate/adjust manually
the values of around 50 neuromuscular parameters (entries of the model). This calibra-
tion needs some expertise and a well-known of the variation ranges of all these parameters
for young and elderly subjects. Moreover, users must have a deep understanding of the
workflow, the building and the solving process of the model to avoid introducing contra-
dictory values of model entries (e.g., the number and sizes fibers must be consistent with
the size correspondent Motor Unit and muscle volume). Which can be an obstacle in the
perspective of developing a model aided diagnosis tool. Furthermore, many aged muscle
characteristics are not included in the model [1], e.g., the Intramuscular Adipose Tissue
(IMAT) infiltration and the expansion of MUs. However, these important aging changes
contribute to the diagnosis of muscle aging [133, 8]. For that purpose, we have modified
the model schema implementation to be more easy to manipulate (i.e., user-friendly), with
less error and inconsistency risks. Only the age and the gender of subject became needed
as model entries to initiate a simulation of HD-sEMG signals. All other parameters neces-
sary in simulations are then estimated through "statistical" models. The statistical models
employ regression analysis to estimate the relation Parameter Vs Age. A bibliographic
research reporting these morphological and structural changes according to age, gender,
and BB muscle was done. Once built, we have developed phenomenological models for
the purpose of positioning fibers, IMAT and MUs. In fact, we have placed fibers using
Fast Poisson Disk Sampling (FPDS) method for homogeneous and dense fibers for more
realism muscle structure. As an example, we have placed 250689 and 211798 of fibers into
young and aged statistically estimated. The computational time of this algorithm is 30s.
Then, we have performed an algorithm/model to place small (micro) adipose depositions
between fibers. This model splits the total area of IMAT (estimated by statistical mod-
els) into random polygons with the constraint of that their sizes do not exceed the IMAT
area. The adipose depositions were placed within the BB muscle and emptied from fiber
pre-placed in the previous step. Then a positioning of MUs centers was done and fibers
were assigned to these centers according to: the estimated innervation ratio (statistical
model), their proximity of MU center, and the presence of neighboring fibers already at-
tributed to MU center. The last phenomenological model proposed, was a computational
recruitment model of MUs. It is an extended version of the famous Fuglevand recruitment
model [44], where the recruitment threshold was adapted to aged muscle structure. In
fact, we have attributed a gradual slope of MUs recruitment according to MVC level and
type of MUs both. Finally, we enclose the chapter 3 that contain these modeling approach
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by simulating HD-sEMG signals with model incorporating these changes. The features of
HD-sEMG signals are computed over the simulated electrode channel and the computa-
tion scheme proposed in [1]. The evolution of feature values was presented according to
7 subject ages {25 yrs, 35 yrs, 45 yrs, 55 yrs, 65 yrs, 75 yrs, 85 yrs}, and two contraction
levels {60% and 20% of MVC}. However, these simulations are preliminary illustrations
of HD-sEMG signals in order to compare general behavior trends to those reported in
literature. Future work should statistically explore these trends among a large sample of
young and elderly population.
After improving the sensitivity analysis method, and developing the personalized muscle
model with aging, the next stage of the work will be dedicated to the neuromuscular
parameter identification using inverse method. A preliminary work of parameter identifi-
cation was initiated using simple method (Gradient descent) and one and/or two muscle
parameters was identified in a reduced time (This work is not included in this thesis
manuscript). These parameters, identified from sEMG signals, can be used to detect an
early decline of muscle aging. In fact, the diagnosis of muscle aging as a disease entity
(known with the name of Sarcopenia) respects diagnosis criteria fixed by the different
group of works on this disease (e.g., [8] and [133]). These diagnosis criteria are limited
to measure macroscopic age changes such as the muscle mass and strength loss. How-
ever, it is more interesting to evaluate muscle aging at inner(fiber and MU) muscle scales.
Parameters such as the increase of IMAT proportions in the muscle, the disorder in the
neural recruitment of MUs, or the increase of MUs sizes detected by sEMG signals should
offering a safe and rapid diagnosis of pre stages of sarcopenia or an accelerated muscle
aging. The sEMG can provide objective answers to many unresolved neuromuscular is-
sues. Nonetheless, the sEMG technique still until today a widely used technology to assess
neuromuscular outcomes but only in the scoop of research fields.
The clinical application of this technique suffers of many technical and administrative
barriers [330, 331]. In this thesis work, we have tried to boost the use of sEMG technique
in clinical environment in the focus of developing a Model Aided Diagnosis (MAD) of
muscle aging at short-mid term. We have take into consideration: the reducing of com-
plexity when dealing with the model (user-friendly, only the age and gender is needed as
entries); focusing the modeling approaches toward a precise objective/phenomenon (mus-
cle aging: morphological and structural changes); finding a compromise between reliable
mathematical methods and time of computation (screening sensitivity analysis indeed of
high cost computational methods with more information on the parameter interactions);
and tacking advantages of all accumulated expertise through past years in the evaluation
of muscle changes with aging using sEMG technique (statistical models).
However, the work presented in this thesis, concerning the aging model, needs more ad-
justment and validation process. Meanwhile, we will try at the end of this work, as a
perspective, to plot/imagine/propose a decision tree/scenario to evaluate/diagnosis the
muscle aging using a bio-reliable model simulating the electrical and mechanical activity
of skeletal muscle (see Fig. 3.34).
The proposed diagnosis decision tree works by acquiring real HD-sEMG signal from a pa-
tient, then apply some processing techniques to improve the quality of signal and extract
useful features. In parallel, a simulated HD-sEMG signal is generated using a bio-reliable
model. This model needs only a primitive and easy accessible information from the patient
to generate sEMG signal. Information such as, age, gender, and BMI. Then, using this
information and what we call the "offline system", we generate data needed to simulate a
realistic sEMG signal personalized to the patient. The real sEMG signal detected at the
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skin surface of patient is then compared to simulated signal. If the comparison results
satisfied a pre-fixed threshold criteria, the HD-sEMG model will be used to identify a pre-
defined anatomical/neural muscle parameter(s). This (these) parameter(s) will be used,
by clinicians, as indicator(s)/biomarker(s) of muscle aging. If the simulated sEMG signal
is not matching with patient-measured sEMG, the information with signal processing re-
sults will be transferred to the "offline system". This system, related to a computational
statistical aging models and a data-base, will make a decision by proposing a new set of
inputs to compute/simulate a new patient-personalized sEMG signal. This action will be
repeated until the comparison result converge into the pre-fixed threshold criteria.
The proposed aided-diagnosis tool is composed of two toolboxes: online and offline tool-
box. The online toolbox contains a fast speedup HD-sEMG model, the real equipment
measuring sEMG from patient, and a calculation server (computer). In fact this computer
will ensure the comparison between simulated and real-time sEMG signals, the comput-
ing of the identified muscle aging indicator(s), and the communication with the offline
toolbox.
The offline toolbox will incorporate all data and make-decision algorithms ensuring the
monitoring and the well execution of the online toolbox. It will contain:

• Data base: containing all data needed to built aging statistical models. Furthermore,
this data base will be rewarded permanently by patient-measured sEMG signals and
their processing treatments.

• Statistical aging models: all models extracted from litterateur and/or self-developed,
correlating anatomical and neural muscle factors to muscle force and sEMG.

• Toolbox tool: containing a package of make-decision algorithms. These algorithms
will help in: (1) the building of the cost functions needed in the parameter iden-
tification (using pre-computed sensitivity analysis results); (2) the adjustment and
calibration of statistical aging models using the results comparing the simulated
sEMG to real-measured sEMG; (3) the updating and feeding of the offline database.
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Figure 3.34: Proposed scheme to perform the Model Aided Diagnosis (MAD) of muscle aging.

Sarcopenia is one of the main causes of frailty and inability in elderly people. An
aided-diagnosis tool aims to detect early signs of sarcopenia. This will promote the
development of innovative personalized therapies (physical exercise, diet) in conjunction
with geriatricians.
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