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“We all have dreams. But in order to make dreams come into reality,
it takes an awful lot of determination, dedication, self-discipline, and effort.”

—Jesse Owens



Acknowledgements

This thesis marks the end of a challenging but fruitful journey. The experience of these
three years has been memorable and my heart is filled with nothing but gratitude.

It would not have been possible without my two advisors, Camille Duprat and Blaise Del-
motte. I want to thank Camille for teaching me experimental methods and techniques for fluid
mechanics at low Reynolds number. Her support, constructive comments and helpful sugges-
tions have allowed me to improve significantly the quality of my work. I want to thank Blaise
for teaching me almost everything I know about numerical methods and analysis, but also
the art of scientific investigation. His continuous support, encouragement and generosity have
allowed me to explore so many avenues, but also gave me enough freedom to pursue my own
ideas toward research. I am indebted to Camille and Blaise for their mentorship and kindness.

I would like to thank Ian Griffiths and Thomas (aka Tom) Montenegro-Johnson for taking
the necessary time and effort to carefully review this manuscript. I sincerely appreciated all
comments, recommendations and suggestions. I would also like to thank Anne Juel and Basile
Audoly for accepting to be part of my thesis committee; as well as Olivia du Roure for accepting
to be the president of the latter. I am grateful to all the committee members.

I would also like to express my gratitude to the department of Mechanics of École poly-
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Abstract

The transport of elastic fibers at the micron-scale often happens in complex media that
are structured by obstacles whose size is similar to the one of the moving particles. This
situation is ubiquitous in nature and industrial applications. In order to act against antibiotics
and antimicrobial agents, bacteria often stick together in an extracellular matrix to form a
biofilm. Their migration to secondary sites results to the formation of biofilm streamers, large
elastic filaments, that can lead to clogging while transported through complex environments.
In everyday life, laundry washing machines discharge a large number of microplastic fibers
(around 1900 fibers per wash) into wastewaters which contain a significant amount of debris. In
such complex media, flexible fibers can exhibit nontrivial conformations and different modes of
transport through the surrounding obstacles. These dynamics result from the complex interplay
between their elastic response, collisions and hydrodynamic interactions. Understanding of
these phenomena is therefore essential to study the physics of biological, environmental and
industrial systems, but also to prevent issues such as pollution or clogging.

Over the past decades, the study of the dynamics of elongated particles in a viscous fluid has
been a major area of research in fluid mechanics. When settling in a free fluid, thanks to its drag
anisotropy, a rigid fiber parallel to gravity will settle twice as fast as a fiber perpendicular to
gravity. The drag coefficient in the direction of the minor axis of the fiber is twice as large as the
one in the direction of its major axis. Therefore, a rigid fiber, initially oriented at a given angle
with respect to the direction of gravity, will drift laterally and maintain its initial orientation.
When the fiber is allowed to bend, owing to the inhomogeneous drag distribution along its
length, it will reorient in the direction of gravity and reach an equilibrium configuration after a
finite settling distance. The deformation of the fiber induces an elastic restoring torque that will
counterbalance the gravitational torque. During its reorientation process, the fiber experiences
a lateral displacement that affects significantly its trajectory. Accordingly, the presence of
obstacles or complex environments will lead to different modes of transport/migration of the
fiber based on its geometrical and/or mechanical properties.

Modeling slender particles in a viscous fluid has led researchers across different fields to
develop various numerical methods that range from continuum to discrete models. These
methods have since been used in applications in various domains : from biology to industrial
applications. However, methodologies involving surrounding environments are scarce. The
resulting complex coupling leads to a constrained formulation of the problem in addition of being
stiff. Therefore, modeling fibers in complex media is challenging and can be computationally
costly.

In this thesis, we will propose a methodology to model flexible fibers in different envi-
ronments that are made of rigid stationary obstacles. Our implementation enables dynamic
simulations of large systems in reasonable wall times on a single modern Graphics Processing
Unit (GPU). Using the capabilities afforded by our method, together with simple experiments,
we will investigate the sedimentation of flexible fibers in structured environments. The result-
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ing findings provide physical insight into future experiments and the design of gravity-based
sorting devices.

Keywords: Flexible fibers, Structured media, Fluid-structure interactions, Stokes flow, Sedi-
mentation, Numerical modeling.



Résumé

Le transport des fibres élastiques à petites échelles se produit généralement dans des en-
vironnements fluidiques munis d’obstacles dont la taille est du même ordre de grandeur que
celle des particules en mouvement. Ce cas de figure se rencontre dans diverses situations dans
la nature et les applications industrielles. Afin de résister à la réponse immunitaire de l’hôte,
les bactéries peuvent s’assembler et sécréter une matrice protectrice pour former un biofilm.
De microcolonies filamenteuses, de 100 microns en ordre de grandeur, peuvent se détacher des
biofilms et se déplacer dans des microcanaux munis d’obstacles ; conduisant ainsi à une adhésion
à de nouvelles surfaces biotiques et une reformation des biofilms avec des espèces bactériennes
secondaires. Quotidiennement, les lave-linge rejettent un grand nombre de fibres de microplas-
tiques (environ 1900 fibres par lavage) dans des eaux usées contenant plusieurs débris. Dans de
tels environnements complexes, les fibres peuvent adopter différentes formes non triviales et se
déplacer suivant différents modes à travers les obstacles environnants. Ces différents comporte-
ments résultent du couplage complexe entre la réponse élastique des fibres, les collisions et les
interactions hydrodynamiques. Leur compréhension est par conséquent essentielle pour l’étude
des systèmes biologiques, environnementaux et industriels, où des phénomènes similaires sont
observés, de même que pour éviter des problèmes majeurs comme la pollution ou le colmatage.

Au cours des dernières décennies, l’étude des particules élancées en interaction dans un fluide
visqueux a été un domaine majeur de recherche en mécanique des fluides. Lorsqu’elle sédimente
sous l’action de son propre poids, une fibre rigide, orientée parallèlement à la direction de la
gravité, tombe deux fois plus vite qu’une fibre orientée perpendiculairement à la direction de la
gravité. Cette dynamique résulte de l’anisotropie de la trainée de la fibre, i.e., le coefficient de
trainée est deux fois plus grand dans la direction transversale de la fibre que dans sa direction
longitudinale. Par conséquent, une fibre rigide, initialement inclinée d’un angle donné par
rapport à la direction de la gravité, est soumise à un mouvement de dérive latérale avec une
inclinaison uniforme - équivalente à son inclinaison initiale. En revanche, lorsqu’elle peut se
déformer sous l’action des efforts élastiques internes, la fibre se réoriente dans la direction de la
gravité et adopte une configuration d’équilibre stable. La déformation élastique de la fibre induit
une inhomogénéité de la trainée le long de sa longueur et, par conséquent, un couple de rappel
élastique. La réorientation de la fibre affecte significativement sa trajectoire de sédimentation.
Ainsi, la présence d’obstacles ou d’un environnement complexe pourrait entrainer différents
modes de déplacement/migration de la fibre en fonction de ses propriétés géométriques et/ou
mécaniques.

La modélisation numérique des fibres flexibles immergées dans un fluide visqueux a été
abordée sous différentes approches durant ces dernières années. Des approches continues
aux discrètes, ces modèles ont permis de résoudre efficacement des dynamiques complexes
d’interactions de fibres flexibles dans divers domaines : de la biologie aux applications in-
dustrielles. Cependant, le développement des modèles numériques permettant de prendre en
compte des environnements munis d’obstacles a été peu abordé. Le problème raide à résoudre
sous contraintes qui en résulte en est une des raisons. Modéliser des fibres dans de tels envi-
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ronnements est un défi majeur pour les approches numériques actuelles.

Ainsi, dans cette thèse, nous proposerons une méthodologie pour simuler des fibres flexi-
bles dans des environnements fluidiques munis d’obstacles. Notre implémentation permet de
simuler des systèmes contenant un nombre considérable de fibres et d’obstacles en des temps
raisonnables sur une seule carte graphique (GPU). Forts de cet outil, et d’expériences simples,
nous étudierons ensuite le problème de sédimentation des fibres flexibles dans des environ-
nements complexes. Nos résultats jettent les bases pour de futures expériences et fournissent
des ingrédients physiques essentiels pour la conception des dispositifs de tri de particules sous
l’action de la gravité.

Mots clés: Fibres flexibles, Environnements munis d’obstacles, Interactions fluide-structure,
Ecoulements de Stokes, Sédimentation, Modélisation numérique.



Contents

List of Tables xiii

List of Figures xv

I Introduction and theoretical background 1

1 Introduction and thesis outline 3

1.1 Transport of active and passive fiber-like particles in complex environments . . . 3

1.2 Modeling moving and stationary boundaries in a viscous fluid . . . . . . . . . . 6

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 An overview of Stokes flow 9

2.1 The governing equations of fluid dynamics . . . . . . . . . . . . . . . . . . . . . 9

2.2 General solutions to Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Fundamental solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 The multipole expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Faxén’s laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Grand mobility tensor and Rotne-Prager-Yamakawa hydrodynamics . . . . . . . 14

II Modeling flexible fibers in complex environments 17

3 Dynamics of flexible fibers in Stokes flow 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Continuum formulation for flexible fibers . . . . . . . . . . . . . . . . . . . . . . 20

3.2.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Constitutive relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Fluid-fiber coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Modelisation and simulation methods . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 The continuum approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 The discrete approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 The bead-spring model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Discrete elastic energy and forces . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Mobility problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5 Sedimentation of flexible fibers in a quiescent viscous fluid . . . . . . . . . . . . 32

3.5.1 Deformation under gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5.2 Collective dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

ix



x CONTENTS

4 A mutlibead approach to handle obstacles in Stokes flow: applications for
settling fibers 39
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Constrained formulation to account for obstacles . . . . . . . . . . . . . . . . . . 40

4.2.1 Kinematic constraints: velocity-based formulation . . . . . . . . . . . . . 41
4.2.2 Mixed mobility-resistance problem . . . . . . . . . . . . . . . . . . . . . 41

4.3 Iterative solver and convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Preconditioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Implementations and simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

III Sedimenting flexible fibers against rigid obstacles 53

5 Obstacle-induced lateral dispersion and nontrivial trapping of flexible fibers
settling in a viscous fluid 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Problem description and relevant parameters . . . . . . . . . . . . . . . . . . . . 57
5.3 Experimental and numerical methods . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Experimental methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.1 Gliding events: tilting and lateral displacement induced by fiber-obstacle

interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Investigation of trapping events . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.3 Toward a sorting device . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Sedimentation of a flexible fiber in a structured environment 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3 Model and numerical method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4.1 Short-time dynamics : scattering induced by fiber-pillar interactions . . . 79
6.4.2 Long-time transport properties . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Conclusions and future directions 91

A The Positively-Split-Ewald method 95

B Constrained Brownian dynamics: Itô stochastic differential equation 97
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1.1 Transport of active and passive fiber-like particles in

complex environments

Active elongated1 particles such as some biological microorganisms often interact with net-
work of obstacles in their natural habitats, e.g., soil, guts, etc. For instance, bacteria Helicobac-
ter pylori swims through gastric mucus gel (Montecucco and Rappuoli, 2001; Celli et al., 2009;
Mirbagheri and Fu, 2016); spermatozoa migrate through cervical mucus in their ascent through
the female genital tract, see Fig.1.1(a) (Rutllant et al., 2005); the protozoan hemoflagellate Try-
panosoma brucei, which causes a deadly sleeping sickness in both animals and humans, migrates
through red blood cells (Engstler et al., 2007; Ralston et al., 2009); some invasive bacterial
pathogens, known as spirochetes, move through a broad range of tissues in the mammalian
body (Wolgemuth, 2015). The aforementioned surrounding environments affect significantly
the locomotion performance of biological microorganisms. Experiments have shown that the
swimming speed of the worm nematode Caenorhabditis elegans (C. elegans), that often swims
in satured soil, is enhanced by the presence of the obstacles, see Fig.1.1(b) (Juarez et al., 2010;
Jung, 2010; Majmudar et al., 2012). These findings agree with analytical results based on a
mean-field approximation of the porous media (Leshansky, 2009; Jung, 2010), a Brinkman fluid
(Brinkman, 1949). The latter acts as a resistance to the motion of microswimmers. In addition,
recent numerical studies based on the Brinkman model, have shown that the swimming speed
of a flagellar microswimmer can be enhanced, owing to emergent waveforms that are induced
by the surrounding environment (Leiderman and Olson, 2016; Ho et al., 2016, 2019). These
findings have provided insights into the development and study of artificial microswimmers,
mainly for the purpose of biomedical applications (Nelson et al., 2010; Medina-Sánchez and
Schmidt, 2017).

Over the past decade, advances in manufacturing techniques (Walther and E. Müller, 2008;
Guix et al., 2018) and the development of rigorous mathematical and computational frame-
works (Lauga and Powers, 2009; Du Roure et al., 2019; Lauga, 2020) have led researchers and

1Here by “elongated” or “fiber-like”, we mean a particle whose length is much greater than its width.

3
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Figure 1.1: Transport of fiber-like particles in the presence of obstacles. (a) Photomicrograph of
spermatozoa swimming in a vaginal fluid sample (Rutllant et al., 2005). Scale bar, 10 µm. (b)
An image from experiments showing C. elegans in a lattice of PDMS micropillars (Majmudar
et al., 2012). (c) An image from experiments showing a biohybrid microswimmer swimming
through red blood cells (Xu et al., 2020). Scale bar, 40 µm. (d) Microplastic fibers in a deep-
marine environment, Tyrrhenian Sea (Kane and Clare, 2019). (e) An image from experiments
showing rod-shaped bacteria through an array of I-shaped pillars (Ranjan et al., 2014). (f) An
image from experiments showing the clogging of a microfluidic channel by biofilm streamers
(Drescher et al., 2013).

engineers across different fields to develop and design artificial microswimmers inspired by bi-
ological microorganisms. Earlier approaches rely on an external field (e.g., magnetic (Dreyfus
et al., 2005; Zhang et al., 2009; Nelson et al., 2010), electric (Loget and Kuhn, 2011), light (Li
et al., 2016; Sridhar et al., 2018), acoustic (Ahmed et al., 2015, 2016; Ren et al., 2017), etc.)
for actuation. Although few examples of the precise navigation of such microswimmers have
been demonstrated in vivo, recent studies show that the navigation of biohybrid fiber-like mi-
croswimmers through complex environments can be controlled in vitro (Magdanz et al., 2013;
Medina-Sánchez et al., 2016; Xu et al., 2018, 2020). For instance, Xu et al., 2020 designed a
biohybrid fiber-like microswimmer made of a sperm and a synthetic magnetic scaffold which is
operated by an external magnetic field, to achieve precision navigation through red blood cells
(see Fig.1.1(c)).
More recently, a different actuation mechanism, where microswimmers take advantage of their
surrounding environment to self-propel has been promoted. The latter exploits interfacial pro-



1.1. FIBER-LIKE PARTICLES IN COMPLEX ENVIRONMENTS 5

cesses to generate propulsion from gradients of the surrounding field (e.g., chemical solute
concentration (Golestanian et al., 2005), electrical charge (Nourhani et al., 2015) or tempera-
ture (Jiang et al., 2010)), namely phoretic particles; or from local gradients generated through
the surface activity of the particle (e.g., heat release (P. Bregulla and Cichos, 2015) or surface-
catalysis of chemical reactions (Wang et al., 2006)), namely autophoretic particles. In some
applications such as cargo transport (Sundararajan et al., 2008) or drug delivery (Kagan et al.,
2010), a precise trajectory control is needed during the transport of artificial microswimmers
through complex environments in vivo. One promising navigation approach, to overcome this
hurdle, is the design of autophoretic filaments (Paxton et al., 2004; Williams et al., 2014; Vu-
tukuri et al., 2017). Indeed, autophoretic filaments driven by local chemical gradients take
advantage of both, their geometric anisotropy and their chemical asymmetry to break the sym-
metry in order to self-propel. In addition, their flexibility allows for different conformations
and modes of transport (e.g., tumbling, pumping, translating or rotating) to achieve precision
transport (Montenegro-Johnson, 2018; Sharan et al., 2021).

On the other side, the transport of passive fiber-like particles through complex environments
is ubiquitous in nature and industrial applications. For instance, microplastic fibers often find
themselves immersed in aquatic environments with embedded obstacles, Fig.1.1(d) (Kane and
Clare, 2019). In papermaking processes, fiber suspensions are collected on screens, i.e., wire
meshes, for paper forming (Lundell et al., 2011; Redlinger-Pohn et al., 2021). In determin-
istic lateral displacement (DLD) devices, long linear polymer chains such as DNA molecules
(Chou et al., 1999) or rod-shaped bacteria as shown in Fig.1.1(e) (Ranjan et al., 2014), are
transported through an array of obstacles for sorting purposes. The presence of these em-
bedded obstacles introduces additional solid surfaces, which disturb the flow field around the
fibers and hence their translational and angular velocities. When passive fibers are allowed to
bend, their dynamics result from the complex interplay between internal elastic stresses and in-
teractions with their surroundings, which include long-ranged hydrodynamic interactions and
short-ranged interactions such as lubrication, friction and steric interactions. This complex
coupling may lead to scattering or entrapment of fibers around the surrounding obstacles, but
also affect significantly the ambient flow when present. Experiments have shown that biofilm
streamers, long elastic filaments (see Fig.1.1(f)), can rapidly expand, cause sudden clogging,
and lead to a catastrophic disruption of the ambient flow in a microfluidic channel made of a se-
quence of corners (Drescher et al., 2013). Over longer time scales, thermal fluctuations together
with trapping and scattering dynamics, affect the transport and dispersion of semiflexible and
flexible polymers in crowded environments (Nam et al., 2010; Mokhtari and Zippelius, 2019;
Chakrabarti et al., 2020).

While transported from the sea surface to the seabed, mainly by sedimentation, microplastic
fibers can interact with different surroundings, from plastic debris to marine vegetation. Owing
to their small size, i.e., less than 1mm, the effects of fluid inertia on microplastic fibers are
negligible compared to viscous ones, leading to a low Reynolds number regime. Understanding
how microplastic fibers are transported in such environments is essential for identifying and
preventing pollution hotspots (Browne et al., 2011a; Kane and Clare, 2019; Re, 2019; Choi
et al., 2022; Sutherland et al., 2023).
When settling in a free fluid, at low Reynolds number, a rigid fiber parallel to gravity will
settle twice as fast as a fiber perpendicular to gravity; owing to its drag anisotropy, i.e., the
drag coefficient in the direction of the minor axis of the fiber is twice as large as the one in
the direction of its major axis (Batchelor, 1970). Therefore, a rigid fiber, initially oriented at
a given nonzero angle with respect to the direction of gravity, will drift laterally at a constant
velocity and maintain its initial orientation.
When the fiber is allowed to bend, owing to the inhomogeneous drag distribution along its
length, it will reorient and then reach an equilibrium shape after a finite settling distance
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(Li et al., 2013; Marchetti et al., 2018). This equilibrium shape is characterized by the so-
called elastogravitational number. The latter is defined as the balance between gravity and
elastic restoring forces, such that when the value of the elastogravitational number increases,
the equilibrium shape of the fiber evolves from rod-like to U-like shapes (Marchetti et al.,
2018). During its reorientation process, the fiber experiences a lateral displacement that affects
strongly its trajectory. Accordingly, the presence of obstacles, together with the deformation
and the orientation of the fiber, will lead to different modes of transport.

However, modeling flexible fibers in complex environments is challenging and can be nu-
merically costly, owing to the resulting complex interactions.

1.2 Modeling moving and stationary boundaries in a vis-

cous fluid

There are a variety of modeling approaches to handle stationary and moving boundaries in
Stokes flow2. Such approaches can be broadly separated into those based upon (i) two different
methods to handle both boundaries separately and (ii) a unique method to handle both. For
category (i), the flow generated by stationary boundaries is precomputed and then added as a
background flow to moving boundaries. Despite the fact that this approach allows fast compu-
tations, it neglects hydrodynamic interactions between moving and stationary boundaries. For
instance, Chakrabarti et al., 2020 used the boundary integral method (Pozrikidis, 1992) to com-
pute the velocity field induced by an array of obstacles on a semiflexible fiber (see Fig.1.2(a))
which is modeled using local slender body theory (Hancock, 1953; Keller and Rubinow, 1976).
Similarly, Münch et al., 2016 and Engdahl, 2018 combined respectively the method of multi-
particle collision dynamics (MPCD) (Malevanets and Kapral, 1999, 2000; Gompper et al., 2009)
and the Lattice-Boltzmann method (Chen and Doolen, 1997), with a multibead model (Liu,
1989; Gauger and Stark, 2006), to investigate the transport of fiber-like particles in porous
media (see Fig.1.2(b) and Fig.1.2(c), respectively).

By using a unique method to model both boundaries, approaches in category (ii) are more
suitable to account for hydrodynamic interactions. For instance, using the immersed boundary
method (Peskin, 2002), Fauci and McDonald, 1995 introduced a computational model to inves-
tigate sperm motility near rigid and elastic walls. Dillon et al., 1996 used a similar model for
studying biofilm processes. However, the immersed boundary method is a grid-based approach,
which requires solving the fluid problem in the entire domain, and therefore can be time con-
suming for large systems. The boundary integral method overcomes this hurdle, since only the
immersed boundaries need to be discretized. Although being an accurate approach, the bound-
ary integral method scales badly with the number of discrete elements. An alternative approach
is the method of regularized Stokeslets (Cortez, 2001), which models the immersed boundaries
as distributions of regularized point forces. This method has been used in applications to in-
vestigate the dynamics of microswimmers in complex environments such as viscoelastic media
(Wróbel et al., 2016), shown in Fig.1.2(d), or porous media (Leiderman and Olson, 2016; Ho
et al., 2019; Kamarapu et al., 2022). When the point forces are regularized and interpolated
through the surface of a sphere, the method is referred to as the multibead/multiblob method
(Usabiaga et al., 2016; Balboa Usabiaga and Delmotte, 2022). This method is a good com-
promise between efficiency, flexibility, accuracy and scalability. Recently, there has been a
significant drive to apply the multiblob method on problems involving moving particles and
stationary obstacles. For instance, Majmudar et al., 2012 used a multibead approach to in-
vestigate the locomotion of swimming C. elegans through a structured array of pillars (see

2In the Stokes regime, inertial effects are negligible compared to viscous ones.
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Figure 1.2: (a) Advection of polymers through a structured array of micropillars (Chakrabarti
et al., 2020). (b) Chronophotographies of a swimming Taylor line through a structured array of
micropillars (Münch et al., 2016). (c) Transport of microplastic fibers through a porous medium
(Engdahl, 2018). (d) A flagellar microswimmer moving through a viscoelastic network (Wróbel
et al., 2016). (e) A mechanical worm (MW) moving through a heterogeneous environment
(Majmudar et al., 2012). (f) Chronophotographies of a microroller approaching a cylindrical
obstacle (Van Der Wee et al., 2023).

Fig.1.2(e)). This approach has since been extended by Kamal and Keaveny, 2018 to account
for randomly distributed obstacles tethered with linear springs. More recently, Van Der Wee
et al., 2023 and Gidituri et al., 2023 used the rigid multiblob approach to investigate the mech-
anisms of trapping of microrollers by obstacles (see Fig.1.2(f)) and the different swimming
modes of single-flagellated bacteria inside a circular pipe, respectively. To account for obsta-
cles, in most of the aforementioned studies, kinematic constraints are introduced to prescribe
the obstacle velocities to zero. Therefore, the resulting constrained problem is solved for a set
of Lagrange multipliers enforcing the kinematic constraints. Solving a constrained problem can
be challenging, in particular for large systems involving stationary and moving objects.

In this thesis, we aim to provide a contribution in that direction. Along this manuscript, we
try to develop a modeling approach that accounts for obstacles at the scale of fibers in order
to investigate the influence of different surrounding environments on the dynamics of passive
flexible fibers.

1.3 Thesis outline

This thesis contains three parts, that are organized as follows:

The remainder of Part I, through Chapter 2, is devoted to the governing equations and
fundamental theorems of Stokes flow, that lay the foundations of the numerical approaches
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developed in the subsequent Part.
In Part II, we focus on modeling flexible fibers in complex environments.

Chapter 3 describes the commonly-used methods to simulate the dynamics of flexible fibers that
are immersed in Stokes flow. The equilibrium equations for the mechanics of flexible fibers are
first derived. We then discuss the different approaches to couple these equations to fluid flow.
The bead-spring model is chosen from among these different approaches, for which a detailed
analysis is presented. Finally, we validate our implementation against known results collected
in the literature, but also address open problems such as velocity and density fluctuations in
the collective sedimentation of flexible fibers.
Chapter 4 extends the bead-spring model to account for obstacles. The presence of the obsta-
cles introduces kinematic constraints in the problem, namely that the velocity of each obstacle
bead is zero. The resulting constrained formulation leads to a linear system to solve for the
bead velocities and Lagrange multipliers that enforce the kinematic constraints. We propose a
numerical framework to solve this problem in a computationally efficient manner, that allows
to handle a large number of fibers and obstacles in the system.

In Part III, we apply our numerical framework to investigate the sedimentation of flexible
fibers in structured environments.
Chapter 5 examines the effect of obstacle shapes on the settling dynamics of a single flexible
fiber, by means of numerical simulations, experiments and analytical predictions. We show
that the complex interplay between the fiber elastic response, gravity, contact forces and hy-
drodynamic interactions with the obstacle, leads to two types of events: trapping and gliding.
We observe nontrivial trapping conformations on sharp obstacles that result from a subtle bal-
ance between elasticity, gravity and friction. In the gliding case, a flexible fiber reorients and
drifts sideways after sliding along the obstacle. The subsequent lateral displacement is large
compared to the fiber length and strongly depends on its mechanical and geometrical proper-
ties. We show how these effects can be leveraged to propose a new strategy to sort elongated
particles based on their size and/or elasticity.
Chapter 6 extends the study carried out in Chapter 5 into the case of a sedimenting flexible
fiber through a periodic array of pillars. By means of numerical simulations, we show that
the long-time trajectory of the fiber falls into one of two modes, zigzag or displacement. In
the former, there is no average displacement from the direction of gravity, therefore the fiber
center of mass follows a quasi-straight line with a migration angle close to zero. In the latter,
there is a net displacement from the the direction of gravity, the fiber center of mass follows
a cyclical skew bumping path. The dynamics described above are dictated by the short-time
scattering process of the fiber. Especially the contact angle, i.e., the angle with which the fiber
collides with a given pillar in the array, and the resulting contact point. These two quantities
are determined by the intrinsic properties of the fiber, i.e., its flexibility and length, as well
as the topology of the array, i.e., its lattice arrangement and spacing. These findings provide
physical insight into future experiments, as well as the design of gravity-based deterministic
lateral displacement (DLD) devices to sort fiber-like particles for the purpose of biomedical,
microfluidics and environmental applications.

Finally, we summarize at the end the results obtained throughout this thesis and suggest
future directions.
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This chapter lays the foundations of the Green’s function based numerical approach used
throughout this thesis to simulate the motion of particles that are immersed in Stokes flow.
Here and throughout this thesis, Einstein summation is assumed for repeated indices, vectors
and tensors1 are represented by bold symbols, and scalar quantities by unbolded symbols.

2.1 The governing equations of fluid dynamics

We start with a rigid particle of length L, immersed in an incompressible viscous fluid with
viscosity η, and subject to an external conservative force f . As the particle moves, it disturbs
the surrounding fluid that imparts hydrodynamic stresses. Denoting by σ the stress tensor,
u the fluid velocity and ρ the mass density, conservation of momemtum and mass give rise to
Cauchy’s incompressible equationsρ

(
∂u

∂t
+ (u · ∇)u

)
= ∇ · σ + f ,

∇ · u = 0,

. (2.1)

For Newtonian fluids, in which viscosity is constant and the stress is defined by the following
constitutive law

σ = −pI + 2ηE, (2.2)

where p is the absolute pressure, I the identity tensor and E the rate of strain tensor, which
is given by the symmetric part of the velocity gradient, E = (∇u + ∇uT )/2. The Cauchy’s
incompressible equations (2.1) become the Navier-Stokes equations

1Green’s functions are represented by blackboard-bold symbols.

9
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ρ
(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ η∇2u+ f ,

∇ · u = 0,

. (2.3)

The solution to these equations is subject to the boundary conditions on the fluid domain, as
well as the no-slip boundary condition on the surface of the immersed particle.

Now we consider a situation in which there is a time scale ω−1 for imposed variations in the
characteristic particle velocity U . Denoting by L the characteristic length, we can rewrite the
Navier-Stokes momentum balance equation in nondimensional form

St
∂u

∂t
+ Re(u · ∇)u = −∇p+∇2u+ f , (2.4)

where we have used the same symbols as the dimensional equation for notation convenience.
Two dimensionless numbers appear

Re ≡ ρUL

η
and St ≡ ρωL2

η
. (2.5)

The Reynolds number Re estimates the importance of inertial effects compared to viscous
effects. The Strouhal number St is the oscillatory Reynolds number, in which the velocity scale
is the local fluid velocity induced by the oscillatory motion of the particle, Lω.

For the problems of interest in this thesis, both the Reynolds number and the Strouhal
number will be small, i.e., Re � 1 and St � 1. Thus, the acceleration and the convective
terms in the Navier-Stokes momentum balance equation (2.4) can be neglected, and it reduces
to the Stokes momentum balance equation, which in dimensional form is given by

−∇p+ η∇2u+ f = 0. (2.6)

In numerous situations, the external conservative force is due to gravity, f = ρg with g the
acceleration of gravity. Its only effect is to induce a hydrostatic pressure gradient, which can
be included in a modified pressure field also called the dynamic pressure π = p− ρg · r, where
r is the particle position in the material frame of reference. Thus, we can rewrite (2.6) to yield
the homogeneous Stokes momentum balance equation

−∇π + η∇2u = 0. (2.7)

For notation convenience, π is always replaced by p. The aforementioned equation (2.7), to-
gether with the continuity equation form the system of Stokes equations{

−∇p+ η∇2u = 0,

∇ · u = 0,
. (2.8)

The Stokes equations display numerous properties that follow from the absence of inertial effects
and we refer the reader to Kim and Karrila, 2005; Graham, 2018 for a detailed description. Since
there is no time derivative in the Stokes equations, the motion is said to be quasi-static, thus
the flow field is instantaneously determined by the initial condition and prescribed boundary
conditions. Taking the divergence of the Stokes momentum balance equation and knowing that
the velocity field is divergence-free, it is straightforward to show that

∇2p = 0. (2.9)

Thus, the pressure field is a harmonic function, it can be written as superposition of fundamental
solutions of the Laplace equation. Then, taking the Laplacian of the Stokes momentum balance
equation leads to
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∇4u ≡ ∇2∇2u = 0, (2.10)

the velocity field is a biharmonic function, i.e., its Laplacian is harmonic. Finally, taking the
curl of the Stokes momentum balance equation leads to a Laplace equation of the flow vorticity
ω,

∇2ω = 0, (2.11)

where ω = ∇×u. Therefore, as the pressure field, the flow vorticity is also a harmonic function.
Note that, numerous exact and approximate solutions to the Stokes equations exist in the

literature, we refer the reader to Happel and Brenner, 1981; Kim and Karrila, 2005; Leal, 2007
for a more detailed description. In this thesis, we will conduct dynamic simulations based on
the Green’s function formulation for Stokes flow to compute the velocity field in response to
prescribed forces.

2.2 General solutions to Stokes equations

2.2.1 Fundamental solutions

Since the Stokes equations are quasi-static, the velocity field will respond instantaneously
to the prescribed forces and boundary conditions. Thus, dynamic simulations are conducted
by computing particle velocities due to forces that are applied on each particle. These forces
are determined by the physics of the problem. Therefore, numerical methods need to compute
both the velocity field induced by a given particle and the resulting motion of other particles
in response to that field. Methods based on Green’s function are among the widely used
approaches to achieve this target. The Green’s function is the fundamental solution to the
Stokes equations, and derives from the velocity field induced by a point force of strength F ,
namely f = F δ(r − r0), where r is the field point, r0 the source point and δ the three-
dimensional delta function. Thus, the Stokes equations (2.8) lead to the singularly forced
Stokes equations {

−η∇2u+∇p = F δ(r − r0),
∇ · u = 0,

. (2.12)

Introducing the Green’s function G, we write the velocity, pressure and stress fields, that are
fundamental solutions to (2.12) in the following forms

u(r) = G(r, r0) · F , (2.13)

p(r) = P(r, r0) · F , (2.14)

σ(r) = T(r, r0) · F , (2.15)

where P and T are respectively the pressure vector and stress tensor associated with the Green’s
function G. In particular, the stress tensor T is given by

Tijk(r, r0) = −δijPk(r, r0) + η

[
∂Gij(r, r0)

∂rk
+
∂Gik(r, r0)

∂rj

]
. (2.16)

Note that Tijk = Tkji, since σ is symmetric as aforementioned. In an unbounded domain,
the Green’s function G is commonly called the Stokeslet or Oseen-Burgers tensor (Pozrikidis,
1992).
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Due to the linearity of the Stokes equations, the velocity field in a control volume V that is
bounded by a closed surface S, may be represented in terms of boundary integrals involving the
boundary values of the velocity and traction fields . This formulation is known as the boundary
integral representation of Stokes flow2 (Pozrikidis, 1992; Kim and Karrila, 2005)

u(r) = −
∫
S

G(r, r0) · [σ(r0) · n̂(r0)]dS(r0)−
∫
S

T(r, r0) : [u(r0)⊗ n̂(r0)]dS(r0), (2.17)

where n̂ is the unit normal directed from S into the enclosed fluid volume V and −σ · n̂ is the
traction exerted by the boundaries on the fluid. Note that S may be composed of fluid or solid
surfaces (e.g., particles immersed in a viscous fluid). The two convolutions on the right hand
side of (2.17) involve respectively the Green’s function G and the associated stress tensor T,
these convolutions are known as the single-layer and the double-layer potentials, respectively.

Particles that are said to undergoing a rigid-body motion, which are the class of particles
considered in this thesis3, are characterized by the following velocity boundary condition u(r) =
U + Ω× r, for r ∈ S, where U and Ω are respectively the translational and angular velocities
of the particle. In that case, the double-layer potential vanishes, as shown by Pozrikidis, 1992.
Thus, (2.17) reduces to

u(r) = −
∫
S

G(r, r0) · [σ(r0) · n̂(r0)]dS(r0). (2.18)

This reduced form shows the velocity field induced by the boundary distribution of point forces.
For a collection of N rigid particles immersed in the fluid domain, it is straightforward to

derive the induced velocity field as a superposition of convolutions over the sub-boundaries.
Thus,

u(r) = −
N∑
i=1

∫
Si

G(r, r0) · [σ(r0) · n̂(r0)]dS(r0), (2.19)

where Si is the surface of particle i.

2.2.2 The multipole expansion

The numerical evaluation of the convolutions in (2.19) can be a cumbersome task for particles
of arbitrary shapes. Numerical approaches such as boundary element methods (Pozrikidis,
1992) are computationally costly and scale badly with the number of elements. A widely
used approach that applies to sphere-like particles, is the multipole expansion. To derive the
multipole expansion of the velocity field, we first Taylor expand the Green’s function about the
center of a rigid particle, and substitute the result into (2.18)

ui(r) = −
∞∑
n=0

(−1)n

n!

∂

∂rk1
. . .

∂

∂rkn
Gij(r, r0)|ξ=0H

n
k1...knj

, (2.20)

where ξ = r0− rc, rc being the position of the particle center. The multipole expansion of the
surface traction −σ · n̂ is given by

Hn
k1...knj

=

∫
S

ξk1 . . . ξkn [σjp(r0)n̂p(r0)]dS(r0), (2.21)

2This formulation gives rise to a computational approach called the boundary integral method, where only
the boundaries need to be discretized to solve the Stokes equations instead of discretizing the fluid domain V .

3In discrete form, a fiber-like particle can be seen as a series of rigid spherical particles connected by stiff
linkers (see Section 3.4).
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where ξk1 . . . ξkn = 1 for n = 0. In order to get some physical insight, we can write the first few
terms of (2.20) as follows

ui(r) = −Gij(r, r0)|ξ=0

∫
S

[σjp(r0)n̂p(r0)]dS(r0)

+
∂Gij(r, r0)

∂rk

∣∣∣∣
ξ=0

∫
S

ξk[σjp(r0)n̂p(r0)]dS(r0) + . . .
(2.22)

The zeroth-order moment or monopole is the force exerted on the particle by the fluid integrated
over the particle surface

Fj =

∫
S

[σjp(r0)n̂p(r0)]dS(r0), (2.23)

and

Djk =

∫
S

ξk[σjp(r0)n̂p(r0)]dS(r0) (2.24)

is the first-order moment, also called the dipole tensor or the force dipole. The traceless part
of the latter4 can be decomposed into a symmetric component known as the stresslet

Sjk =
1

2

∫
S

{ξk[σjp(r0)n̂p(r0)] + ξj[σkp(r0)n̂p(r0)]} dS(r0)

− 2

3

∫
S

{δjkξl[σlp(r0)n̂p(r0)]} dS(r0),

(2.25)

and an antisymmetric component known as the rotlet, which is related to the total torque L
exerted on the particle by the fluid integrated over the particle surface

Rjk =
1

2

∫
S

{ξk[σjp(r0)n̂p(r0)]− ξj[σkp(r0)n̂p(r0)]} dS(r0)

=
1

2
εjkpLp,

(2.26)

where

Lp =

∫
S

{εpmnξm[σnl(r0)n̂l(r0)]} dS(r0). (2.27)

Now we can write the multipole expansion of the velocity field (2.22) in terms of the aforemen-
tioned quantities, we obtain

ui(r) = −Gij(r, r0)|ξ=0Fj + Ckij(r, r0)|ξ=0Rjk +Kkij(r, r0)|ξ=0Sjk + . . . , (2.28)

where

Ckij(r, r0) =
1

2

[
∂Gij(r, r0)

∂rk
− ∂Gik(r, r0)

∂rj

]
, (2.29)

and

Kkij(r, r0) =
1

2

[
∂Gij(r, r0)

∂rk
+
∂Gik(r, r0)

∂rj

]
. (2.30)

This is the most commonly taken approach to conduct Green’s function based simulations.
Since the flows associated with higher-order moments decay more quickly than the one associ-
ated with the zeroth-order moment, the latter is sufficient to conduct dynamic simulations in

4The isotropic part of the dipole tensor is of no dynamic significance (Kim and Karrila, 2005).
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the case of well-separated particles (e.g., dilute suspensions), and the formers only matter for
particles that are close together (e.g., concentrated suspensions), or when lubrication effects
are accounted for. Note that, for finite-size particles such as spheres, the isotropic contribution
to the quadrupolar and octupolar moments contributes respectively to the coupling with the
zeroth-order moment (monopole) and the first-order moment (dipole).

2.2.3 Faxén’s laws

Commonly used approaches to determine the particle motion induced by the flow field are
known as Faxén’s laws (Kim and Karrila, 2005). For spherical particles, these laws are given
by differential relations between the velocity field and gradients that derive from the multipole
expansion (2.28). Accordingly, the translational and angular velocities for spherical particles
are given by5

U =

(
1 +

a2

6
∇2

)
u(r0), (2.31a)

Ω =
1

2
∇× u(r0). (2.31b)

However, numerically speaking, these differential expressions suffer from regularization prob-
lems. Instead, integral expressions that are convolutions over the particle surface are employed
to overcome this hurdle (Stone and Samuel, 1996; Fiore and Swan, 2019)

U =
1

4πa2

∫
S

u(r0)dS(r0), (2.32a)

Ω =
3

4πa3

∫
S

1

2
[u(r0)× n̂(r0)]dS(r0). (2.32b)

Thus, Faxén’s laws are effectively integral statements of the no-slip boundary condition for a
spherical particle that undergoes a rigid-body motion.

2.3 Grand mobility tensor and Rotne-Prager-Yamakawa

hydrodynamics

In the previous section, we have derived the flow due to isolated particles in the Stokes
regime and seen that the particle motion induced by the flow field in the case of spherical
particles can be given by Faxén’s laws. However, interest is often in the motion of a collection
of particles that are interacting hydrodynamically. The integral expressions of Faxén’s laws
(2.32) introduced at the end of the previous section are commonly used to derive equations
that govern such dynamics.

Let us consider a pair of spherical particles of the same radius a, that are at positions ri
and rj within the fluid domain, and generate a flow as they move. The flow field generated by
particle j subject to the force Fj is given by

u(r) = − 1

4πa2

∫
Sj

G(r, r0) · FjdS(r0), (2.33)

5These expressions derive from the Lorentz reciprocal theorem applied to the problem for translating and
rotating spherical particles in Stokes flow.



2.3. GRAND MOBILITY TENSOR AND RPY HYDRODYNAMICS 15

and the induced motion in particle i is given by

Ui =
1

4πa2

∫
Si

u(r)dS(r). (2.34)

Thus, substituting (2.33) into (2.34), the expression of the translational velocity of particle i
due to the force exerted on particle j reads as follows

Ui = − 1

4πa2

∫
Si

dS(r)
1

4πa2

∫
Sj

G(r, r0) · FjdS(r0). (2.35)

Introducing Mtt
ij as the translational-translational mobility tensor, such as

Mtt
ij =

1

4πa2

∫
Si

dS(r)
1

4πa2

∫
Sj

G(r, r0)dS(r0), (2.36)

the linear coupling between forces and velocities of the particle pair can be written as

Ui = −Mtt
ij · Fj. (2.37)

We can generalize this coupling for a collection of N particles. For particle i, we have that

Ui = −
N∑
j=1

Mtt
ij · Fj. (2.38)

Letting U = [U1, . . . ,UN ] and F = [F1, . . . ,FN ], the vectors collecting respectively particle
translational velocities and hydrodynamic forces, we can write (2.38) succinctly as

U = −Mtt · F . (2.39)

Using the same approach, one can derive similar relations for higher-order moments. However,
as aforementioned, the predominance influence to the flow field generated by a given parti-
cle within the fluid is associated with the first terms in the multipole expansion. Hence in
this thesis, we will limit our consideration to the contributions of the monopole and isotropic
quadrupole moments on such flow (see Section 3.4.3). However, for the sake of completeness
and because they are so prevalent in the literature, we give here the other couplings up to the
first-order velocity and force moments. Thus, (2.39) can be rewritten as(

U
Ω

)
= −

(
Mtt Mtr

Mrt Mrr

)
·
(
F
L

)
= −M ·

(
F
L

)
,

(2.40)

where Ω = [Ω1, . . . ,ΩN ] and L = [L1, . . . ,LN ] are vectors collecting respectively particle an-
gular velocities and hydrodynamic torques. Mrr, Mrt and Mtr are mobility tensors which
couple respectively, angular velocities to hydrodynamic torques, angular velocities to hydrody-
namic forces and translational velocities to hydrodynamic torques. In the second line of (2.40),
the tensor M is called the grand mobility tensor, and is symmetric and positive semi-definite.
Both properties can be shown respectively, by the reciprocal and energy dissipation theorems
(Kim and Karrila, 2005).

The relationship (2.40) is known as the mobility problem, and is usually employed to compute
particle motions in Green’s function based methods. However, in the opposite case, where
translational and angular velocities are prescribed (e.g., velocity-based constraint problems,
where Lagrange multipliers need to be found in order to satisfy the constraints), this problem
is referred to as the resistance problem
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(
F
L

)
= −

(
Rtt Rtr

Rrt Rtr

)
·
(
U
Ω

)
= −R ·

(
U
Ω

)
,

(2.41)

where the grand resistance tensor R is defined such as R = M−1.
From Newton’s third law, the hydrodynamic force Fi exerted by the fluid on a given particle

i in a collection of N particles, is the negative of the force that the particle exerts on the
fluid, which arises from external sources. Therefore, as aforementioned, by considering only
the coupling between the zeroth-order velocity and force moments throughout this thesis, the
mobility problem (2.39) can be rewritten as

U = M · F , (2.42)

where we have used the same symbols as the grand mobility tensor and the hydrodynamic
forces to denote respectively the translational-translational mobility tensor and the forces that
arise from external sources, for notation convenience.

The mobility tensor (2.36) derived for spherical particles can be rewritten into a form that
employs the Faxén’s differential operator,

Mij =


1

6πηa
I, i = j(

I +
a2

6
∇2
r

)(
I +

a2

6
∇2
r0

)
G(r, r0)

∣∣∣∣r=ri
r0=rj

, i 6= j
, (2.43)

where I is the identity tensor. This formulation is widely used to perform dynamic simulations
of hydrodynamically interacting particles in Stokes flow, and is known as the Rotne-Prager-
Yamakawa (RPY) tensor (Rotne and Prager, 1969; Yamakawa, 1970). The RPY hydrodynamic
tensor can be evaluated in different domains, including unbounded (Wajnryb et al., 2013), half-
space above a no-slip wall (Swan and Brady, 2007), confined (Swan and Brady, 2010) and triply
periodic (Fiore et al., 2017) domains. In particular, for a triply periodic domain, Fiore et al.,
2017 shown that by using the appropriate Green’s function, which is given by Hasimoto, 1959,

G(r, r0) =
1

ηV

∑
k 6=0

1

k2

(
I − k̂ ⊗ k̂

)
exp (ik · x̂), (2.44)

where x̂ = r − r0, V is the periodic cell volume and k are the set of reciprocal lattice vectors,
with k̂ = k/k for k = |k|; the formulation (2.43) is symmetric and positive definite (SPD)
for all particle separations, i.e., overlapping and non-overlapping configurations. The latter
property is needed to conduct dynamic simulations that account for Brownian effects. In
contrast, additional regularizing corrections are required for overlapping configurations in an
unbounded domain (Wajnryb et al., 2013). Using the appropriate Green’s function, known as
the Oseen-Burgers’s tensor,

G(r, r0) =
1

8πη|x̂|

(
I +

x̂⊗ x̂
|x̂|2

)
, (2.45)

the formulation (2.43) takes the following form

Mij =
1

6πηa


(

3a

4|x̂| +
a3

2|x̂|3
)
I +

(
3a

4|x̂|3 −
3a3

2|x̂|4
)
x̂⊗ x̂, |x̂| > 2a(

1− 9|x̂|
32a

)
I +

(
3

32a|x̂|

)
x̂⊗ x̂, |x̂| ≤ 2a

. (2.46)
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Chapter 3

Dynamics of flexible fibers in Stokes
flow
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This chapter describes the numerical method used throughout this thesis to conduct dy-
namic simulations of flexible fibers in Stokes flow. This method relies on the commonly-used
bead-spring model with hydrodynamic interactions accounted for at the Rotne-Prager-Yamakawa
(RPY) level of approximation.

3.1 Introduction

Various situations in biology and engineering applications exhibit interactions of elastic
fiber-like particles with a surrounding fluid. For instance, in biology, numerous microswim-
mers such as bacteria apply stresses on the fluid through swimming strokes or sequences of
shape configurations of their fiber-like appendages which include cilia and flagella, in order to
induce propulsion (Boal, 2012; Lauga, 2020). In engineering applications, e.g., in industrial
papermaking processes, cellulose fibers of high aspect-ratios are mixed with water to form a
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suspension referred to as pulp (Lundell et al., 2011). In all the aforementioned situations, the
fiber dynamics result from the complex interplay between its elastic response and hydrodynamic
interactions with the surrounding fluid and fibers.

In the Stokes regime, where inertial effects are negligible compared to viscous ones, nu-
merous mathematical and computational methods have been developed to tackle the resulting
elastohydrodynamic coupling problem. On the numerical side, such methods follow the general
pattern commonly used to simulate the dynamics of flexible fibers that are immersed in Stokes
flow : an elastic model, referred to as the theory of elastic rods, is used to characterize the defor-
mation of the fiber, which is subject to external forces that arise from the surrounding fluid and
external fields such as gravity or steric interactions. The way to compute the forces exerted by
the surrounding fluid on the fiber determines the particular numerical method. Such methods
include the slender body theory (SBT) (Tornberg and Shelley, 2004), the boundary integral
method (BIM) (Pozrikidis, 1992), the immersed boundary method (Peskin, 2002), the force-
coupling method (FCM) (Schoeller et al., 2021), the Rotne-Prager-Yamakawa (RPY) based
method (Maxian et al., 2021a; Balboa Usabiaga and Delmotte, 2022), and the method of reg-
ularized Stokeslets (Lim et al., 2008; Olson et al., 2013; Jabbarzadeh and Fu, 2020). In this
chapter, we give a detailed description of the RPY-based approach used throughout this thesis
to conduct dynamic simulations of flexible fibers in Stokes flow. The chapter is organized as
follows. In Section 3.2, the equilibrium equations for the mechanics of flexible fibers are derived.
Section 3.3 discusses the different numerical approaches to couple the mechanics of the fiber to
fluid flow. Section 3.4 describes the formulation of the bead-spring model, the internal elastic
forces are derived for planar deformations, as well as the mobility relation that relates bead
velocities to applied forces. Finally, Section 3.5 shows various numerical test problems which
validate our implementation against known results collected in the literature.

3.2 Continuum formulation for flexible fibers

In this section, we derive the equilibrium equations for flexible fibers, that are known in
the literature as equations for elastic rods. In a very common approach, the energy functional
is first derived for an arbitrary configuration of the fiber. Then, the equilibrium equations are
obtained by variation of the former for given boundary conditions.

3.2.1 Kinematics

We denote by X(s, t) the space curve, which represents the position of the centerline of the
fiber at a given time t, parametrized by the Lagrangian parameter1 s ∈ [0, L] along its length.
We assume that the fiber is isotropic and has a uniform cross-section along its length.

To keep track of the deformation, we introduce the orthonormal material frame
(n̂1(s, t), n̂2(s, t), t̂(s, t)), which is attached to the centerline of the fiber. The orientation of
this material frame is defined such that n̂1 and n̂2 lie in the plane of the cross-section, while
t̂ is the tangent to the centerline (see Fig.3.1). Upon deformation and under Euler-Bernoulli
kinematic assumptions2, these vectors are given by

∂n̂1

∂s
= Ω× n̂1

∂n̂2

∂s
= Ω× n̂2

∂t̂

∂s
= Ω× t̂, (3.1)

where we have introduced the spatial-rate of rotation per unit length of the material frame
along the centerline Ω(s, t), also called the Darboux vector (Darboux, 1896)

1Not necessarily the arclength.
2Upon deformation, the plane sections remain plane and deformed centerline angles (slopes) are small.

Therefore, the material frame remains approximately orthonormal.
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Ω(s, t) = κ(1)(s, t)n̂1 + κ(2)(s, t)n̂2 + τ(s, t)t̂, (3.2)

with κ(1) and κ(2) being the curvatures of the centerline, respectively in the cross-sectional
directions n̂1 and n̂2, and τ the twist around the centerline, i.e., around the cross-sectional
direction t̂.

Figure 3.1: Continuous description of a flexible fiber (the explicit time dependence is omitted
for notation convenience). The position of its centerline X(s) is parametrized by the Lagrange
parameter s ∈ [0, L], and the material frame (n̂1, n̂2, t̂) is attached to the former. The inset
shows forces and torques acting on a small element of the fiber. F and M are the internal force
and moment, that are transmitted by the neighboring elements. f and γ are the lineic densities
of the external force and torque that arise from the surrounding fluid and other external sources.

3.2.2 Constitutive relations

3.2.2.1 Elastic energy

As mentioned earlier, the deformation of the fiber is characterized by the Darboux vector
Ω(s, t). Thus, assuming Hookean elasticity and that the deformation is invariant along the
fiber, the elastic energy over the length L is a quadratic function of the components of the
Darboux vector (Landau et al., 1986)

E =

∫ L

0

(
EI(1)

2
(κ(1)(s, t))2 +

EI(2)

2
(κ(2)(s, t))2 +

µJ

2
(τ(s, t))2

)
ds, (3.3)

where the cross terms corresponding to coupling between flexion and twist have been set to zero,
due to symmetry consideration (Landau et al., 1986; Audoly and Pomeau, 2010). The first two
terms on the right hand side are the bending terms, where E is the Young’s modulus, and I(1)

and I(2) are the principal moments of inertia, respectively in the cross-sectional directions n̂1

and n̂2, for instance I(1) = I(2) = πa4/4 for a circular cross-section of radius a. The last term
is the twisting term, where µ is the shear modulus, and J the moment of twist, which is similar
to the principal moments of inertia I(i) defined for bending, for instance J = 2I(1) = 2I(2) for
a circular cross-section.

The elastic energy can also be expressed only in terms of material vectors n̂1, n̂2 and
t̂. Given the relations (3.1), we express the material curvatures and twist as function of the
material vectors, such that
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∂n̂2

∂s
· t̂ = κ(1)

∂t̂

∂s
· n̂1 = κ(2)

∂n̂1

∂s
· n̂2 = τ. (3.4)

Thus, by substituting (3.4) into (3.3), yields

E =

∫ L

0

[
EI(1)

2

(
∂n̂2

∂s
· t̂
)
n̂1 +

EI(2)

2

(
∂t̂

∂s
· n̂1

)
n̂2 +

µJ

2

(
∂n̂1

∂s
· n̂2

)
t̂

]
ds. (3.5)

3.2.2.2 Internal moment

The internal moment M (s, t) is defined as the moment of the contact forces transmit-
ted across the cross-section. To derive the expression of the internal moment, we follow
the same approach as done by Audoly and Pomeau, 2010. We start with the derivation of
the bending part by considering the fiber clamped at its section s = 0 and bent by ap-
plying a moment at s = L. An infinitesimal change in loading will induce an infinitesimal
change in curvature, denoted δκ(i). Therefore, the end section will experience an infinitesi-
mal rotation by the vector [(δκ(1)n1 + δκ(2)n2)L] . The work done by the bending moment
MB(s, t)|s=L upon this rotation is [MB(s, t)|s=L · (δκ(1)n1 + δκ(2)n2)L]. To maintain equilib-
rium, this work should balance the corresponding change in the elastic energy derived from
(3.3), [(EI(1)κ(1)δκ(1) +EI(2)κ(2)δκ(2))L]. Thus, by identifying the two expressions, the internal
bending moment is given by

MB(s, t) = EI(1)κ(1)(s, t)n̂1 + EI(2)κ(2)(s, t)n̂2 (3.6)

Similarly, the twisting part can be derived by using an analogous argument as done for
bending, thereby the internal twisting moment is given by

MT (s, t) = µJτ(s, t)t̂. (3.7)

Accordingly, the internal moment is a linear superposition of both, the internal bending and
twisting moments

M (s, t) = MB(s, t) +MT (s, t)

= EI(1)κ(1)(s, t)n̂1 + EI(2)κ(2)(s, t).n̂2 + µJτ(s, t)t̂.
(3.8)

As done for the elastic energy (3.5), the internal moment can also be expressed in terms of
the material vectors by substituting the relations (3.4) into (3.8), thus

M (s, t) = EI(1)
(
∂n̂2

∂s
· t̂
)
n̂1 + EI(2)

(
∂t̂

∂s
· n̂1

)
n̂2 + µJ

(
∂n̂1

∂s
· n̂2

)
t̂. (3.9)

3.2.3 Fluid-fiber coupling

In the following, we derive the equations for equilibrium of the fiber, which is subject to
external forces and torques per unit length that arise from the surrounding fluid and external
fields such as gravity or steric interactions. This derivation is based on the general theory
of elastic rods, where the equations for equilibrium of the rod are obtained by variation of its
energy functional. We first derive these equations in the case of three-dimensional deformations,
known as Kirchhoff model (Kirchhoff, 1850), then in the case of planar deformations, known as
Euler’s Elastica model (Euler, 1744), a limit case of the general Kirchhoff equations.
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3.2.3.1 Equilibrium equations : Kirchhoff model

3.2.3.1.1 Principle of virtual work

We use the principle of virtual work, which is a classical approach in the theory of elastic
rods to derive the equations of equilibrium (Steigmann and Faulkner, 1993; Lim et al., 2008;
Powers, 2010; Audoly and Pomeau, 2010). During a virtual displacement X → X + δX, and
a virtual rotation of the material frame (n̂1, n̂2, t̂) → (n̂1, n̂2, t̂) + (δn̂1, δn̂2, δt̂), the elastic
energy E is affected and its variation is given by

δE =

∫ L

0

[
EI(1)

(
∂n̂2

∂s
· t̂
)
δ

(
∂n̂2

∂s
· t̂
)

+ EI(2)
(
∂t̂

∂s
· n̂1

)
δ

(
∂t̂

∂s
· n̂1

)
+ µJ

(
∂n̂1

∂s
· n̂2

)
δ

(
∂n̂1

∂s
· n̂2

)]
ds (3.10a)

=

∫ L

0

M ·
[
δ

(
∂n̂2

∂s
· t̂
)
n̂1 + δ

(
∂t̂

∂s
· n̂1

)
n̂2 + δ

(
∂n̂1

∂s
· n̂2

)
t̂

]
ds (3.10b)

where we have substituted the expression (3.9) of the internal moment M (s, t) into (3.10a) to
yield (3.10b).

We introduce the variation δφ to the orientation of the material frame, which is given as
function of the material vectors, such that3

δn̂1 = δφ× n̂1 δn̂2 = δφ× n̂2 δt̂ = δφ× t̂. (3.11)

Given the above relations, one can show that the first derivative of the variation δφ with respect
to the Lagrangian parameter s, reads as (Audoly and Pomeau, 2010)

∂(δφ)

∂s
= δ

(
∂n̂2

∂s
· t̂
)
n̂1 + δ

(
∂t̂

∂s
· n̂1

)
n̂2 + δ

(
∂n̂1

∂s
· n̂2

)
t̂. (3.12)

Thus, we can rewritte the variation of the elastic energy (3.10b) in terms of the variation δφ
to the orientation of the material frame,

δE =

∫ L

0

M · ∂(δφ)

∂s
ds

= [M · δφ]L0 −
∫ L

0

(
∂M

∂s
· δφ

)
ds,

(3.13)

where the second line is obtained after integrating by parts. The first term [M · δφ]L0 on the
right hand side is the virtual work due to a virtual rotation of the ends. In the second term,
the elementary contribution (∂M/∂s · δφ)ds to the integral is exerted on an element of the
fiber of length ds, and corresponds to the elementary virtual work of the internal moment due
to a variation δφ.

The external forces and torques exerted by the surrounding fluid and/or external fields to
hold an arbitrary configuration of the fiber in equilibrium can be of two types : (i) points forces
and torques applied at the two ends of the fiber, respectively (FEXT (s, t)|s=0,MEXT (s, t)|s=0)
and (FEXT (s, t)|s=L,MEXT (s, t)|s=L), (ii) forces and torques exerted along the fiber length
with linear densities denoted f(s, t) and γ(s, t). Thus, the work done by the aforementioned
external forces and torques during a virtual displacement and rotation is given by

3Assuming Euler-Bernoulli assumptions.
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δW =

∫ L

0

(f · δX + γ · δφ) ds

+ FEXT |s=0 · δX|s=0 +MEXT |s=0 · δφ|s=0

+ FEXT |s=L · δX|s=L +MEXT |s=L · δφ|s=L.

(3.14)

Having all the necessary ingredients, we can apply the principle of virtual work by setting
δE − δW = 0, where,

δE − δW = [M · δφ]L0 −
∫ L

0

(
∂M

∂s
· δφ

)
ds

−
∫ L

0

(f · δX + γ · δφ) ds

− FEXT |s=0 · δX|s=0 −MEXT |s=0 · δφ|s=0

− FEXT |s=L · δX|s=L −MEXT |s=L · δφ|s=L.

(3.15)

To calculate the above variation, we must find how the variation δX to the displacement is
affected by the variation δφ to the orientation of the material frame. To do so, we assume the
centerline of the fiber to be inextensible4, thus the following constraint holds true

∂X(s, t)

∂s
= t̂, (3.16)

which can be integrated into X(s, t) = X(s, t)|s=0 +
∫ s
0
t̂(s′, t)ds′. By computing the variation

of the latter expression, one obtains

δX = δX|s=0 −
∫ s

0

(
t̂× δφ

)
ds′, (3.17)

where we have used the relation δt̂ = δφ× t̂ given in (3.11).
Then, after substituting (3.17) into (3.15) and introducing the force F acting on the fiber at

s, such that ∂F /∂s = f , the principle of virtual work implies the following balance of moments

∂M

∂s
+ t̂× F + γ = 0, (3.18)

with the following boundary conditions at the ends, F |s=0 = −FEXT |s=0, F |s=L = FEXT |s=L,
M |s=0 = −MEXT |s=0 and M |s=L = MEXT |s=L. These boundary conditions imply that the
internal forces F and momentsM are transmitted through the cross-section by the downstream
part of the fiber s > 0 to its upstream part s < 0.

4We can justify this assumption by a scaling argument. For instance by considering an elastic fiber of
length L that is immersed in a viscous fluid of viscosity η, such that inertial effects are negligible compared to
viscous ones. In the absence of any external force, the only resistance to the fiber stretch will arise from the
hydrodynamic force. Thus, the balance between both forces Ea2 (δx/L) ∼ ηL (δx/τs) yields to the stretching

timescale τs ∼ η (L/a)
2
/E, where δx is the fiber deformation along its major axis, E the Young’s modulus,

and a the characteristic length of its cross-section. Similarly, the balance between the bending moment and the
hydrodynamic torque Ea4

(
δz/L2

)
∼ ηL2 (δz/τb) yields to the bending timescale τb ∼ η (L/a)

4
/E, where δz is

the fiber deformation along its transverse axis. The ratio of the bending timescale to the stretching timescale
leads to two powers of the fiber aspect-ratio, τb/τs ∼ (L/a)

2
. This implies that, assuming the slenderness

assumption, (L/a) � 1, the timescale at which the fiber stretches is negligible compared to the timescale at
which it bends, for long thin fibers. Thus, when the main concern is bending dynamics, long thin fibers are
assumed to be inextensible.
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3.2.3.1.2 Kirchhoff equations: summary

We summarize here the Kirchhoff equations, which are generally given by the force and
momentum balance equations, as derived in the previous section,

∂F

∂s
+ f = 0, (3.19a)

∂M

∂s
+ t̂× F + γ = 0. (3.19b)

Together with the kinematic relations (3.1) and (3.2),

∂n̂1

∂s
= Ω× n̂1

∂n̂2

∂s
= Ω× n̂2

∂t̂

∂s
= Ω× t̂, (3.20a)

Ω(s, t) = κ(1)(s, t)n̂1 + κ(2)(s, t)n̂2 + τ(s, t)t̂, (3.20b)

the constitutive relation (3.8),

M(s, t) = EI(1)κ(1)(s, t)n̂1 + EI(2)κ(2)(s, t)n̂2 + µJτ(s, t)t̂, (3.21)

and the boundary conditions F |s=0 = −FEXT |s=0, F |s=L = FEXT |s=L, M |s=0 = −MEXT |s=0

and M |s=L = MEXT |s=L. Note that, in this thesis the fiber ends are free to move, i.e., no
external forces and torques are exerted on them. This condition implies that F |s=0 = F |s=L = 0
and M |s=0 = M |s=L = 0.

3.2.3.2 Planar deformations : Euler’s Elastica model

The Euler’s Elastica model, also known as Euler-Bernoulli rod model, is the limit case of
the general Kirchhoff equations for planar deformations. This assumption implies that the
material vector n̂2 is a constant vector, that is orthogonal to the plane described by n̂1 and
t̂ (see Fig.3.1). Therefore, from the kinematic equations (see Section 3.2.1), this leads to
τ = κ(1) = 0, i.e., twisting of the fiber does not occur5 and bending deformations occur in
the transverse direction. Hence, by taking the first derivative of the internal moment equation
(3.21), we obtain the following relation

∂M

∂s
= EI(2)

∂κ(2)

∂s
n̂2. (3.22)

From the equilibrium equations (3.19), one can express the internal force as function of the
internal moment, by taking the cross product of the momentum balance equation (3.19b) with
the material vector t̂

F = t̂× ∂M

∂s
+ T t̂

= −EI(2)∂κ
(2)

∂s
n̂1 + T t̂

= −EI(2) ∂
2t̂

∂s2
+ T t̂,

(3.23)

where in the first line, T represents the line tension, a Lagrange multiplier that enforces the
inextensibility condition (3.16). In the second line, we have substituted the first derivative of

5This assumption is valid when the dominant contribution to the fluid flow at the fiber surface is from local
translation. Furthermore, the slenderness of the fiber reduces the magnitude of any twisting effect,

(
a
L

)
� 1.
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the internal moment ∂M/∂s by (3.22). Finally, in the third line, we end up with the expression
of F as function of t̂, after identifying (∂κ(2)/∂s)n̂1 = ∂2t̂/∂s2.
Thus, the force balance equation (3.19a) takes the following form, known as Euler’s Elastica
model

f = −∂F
∂s

= EI(2)
∂4X

∂s4
− ∂

∂s

(
T
∂X

∂s

)
,

(3.24)

which relates the linear force density f(s, t) of the external forces, that arise from the surround-
ing fluid and/or external fields, to the deformed fiber configuration X(s, t) (Xu and Nadim,
1994; Tornberg and Shelley, 2004; Li et al., 2013; Nazockdast et al., 2017; Maxian et al., 2021a).

Note that, the Euler’s Elastica model can also be derived by the principle of virtual work,
as done for the Kirchhoff equations (see Section 3.2.3.1), by considering the following form of
the elastic energy

Ẽ =

∫ L

0

[
EI(2)

2

∣∣∣∣∂2X∂s2
∣∣∣∣2
]

ds︸ ︷︷ ︸
ẼB

+

∫ L

0

[
T

2

(
∂X

∂s
· t̂− 1

)2
]

ds︸ ︷︷ ︸
ẼS

, (3.25)

where the first term on the right hand side is the bending energy, namely ẼB, that arises from
(3.3). The second term is the stretching energy, namely ẼS, that is defined in the tangential
direction to the centerline, where T is the line tension, as aforementioned. T is a Lagrange
multiplier for inextensible fibers (Li et al., 2013) or the stretching modulus for extensible fibers,
that is T = EA, where E is the Young’s modulus and A the area of the cross-section.

3.3 Modelisation and simulation methods

In this section, we describe how to approximately compute the forces exerted on the fiber
by the surrounding fluid. Since there is no time derivative in the Stokes equations (2.8), the
motion is said to be quasi-static. Thus at a given instant, these forces are only determined by
the instantaneous velocity and configuration of the fiber. However, analytical expressions of
these forces are only possible for specific geometries (Happel and Brenner, 1981). For slender
bodies such as fibers, the problem can be tackled analytically and numerically by a contin-
uum approach that exploits the smallness of the aspect-ratio of the fiber to approximate the
hydrodynamic forces acting on it, this approach is known as Slender Body Theory (SBT). A
numerical alternative to SBT based methods or the continuum approach is to use non-SBT
based methods or a discrete approach. In the following, we summarize the two aforementioned
approaches, and we refer the reader to Du Roure et al., 2019 and references therein for a more
detailed description.

3.3.1 The continuum approach

The slender body theory is an asymptotic approach that relies on a superposition of fun-
damental solutions to construct solutions for the flow around a moving slender object. This
approach was first introduced by Hancock, 1953 and later extended by Batchelor, 1970; Keller
and Rubinow, 1976; Johnson, 1980 and Goetz, 2000. The core idea is that the flow produced
by a moving fiber arises from distributions of Stokeslest singularities along the fiber centerline.
This results in an approximation of hydrodynamic forces acting on the fiber.
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On the numerical side, SBT based methods to simulate fibers immersed in Stokes flow
have been in use for 20 years. Due to numerical stiffness associated with the inextensibility
condition, as well as the treatment of nonlocal interactions, such methods have historically been
computationally costly. The most popular and commonly used model is that of Tornberg and
Shelley, 2004. In their approach, they derived an auxiliary integro-differential equation for the
line tension, that acts as Lagrange multipliers in order to enforce the inextensibility condition.
Combined with a stable numerical scheme based on finite differences and implicit time-stepping,
this method and its extensions have since allowed the simulations of nonlocal interactions of
multiple fibers in an efficient manner (Tornberg and Shelley, 2004; Gustavsson and Tornberg,
2009; Nazockdast et al., 2017). Despite these advances, imposing inextensibility via a tension
boundary value problem (BVP) leads to some drawbacks such as the loss of spatial accuracy
when using spectral methods (Nazockdast et al., 2017), in addition some penalty terms are still
required to preserve inextensibility (Tornberg and Shelley, 2004) due to discretization errors. In
order to overcome these hurdles, Maxian et al., 2021a have recently developed an accurate and
robust numerical method to handle the inextensibility condition, as well as nonlocal interactions
efficiently. Their approach relies on a reformulation of the classical nonlocal SBT in terms of
the Rotne-Prager-Yamakawa (RPY) hydrodynamic tensor (Wajnryb et al., 2013; Zuk et al.,
2014, see also Section 2.3) to regularize the local drag coefficient for cylindrical fibers, the
inextensibility condition is enforced by Lagrange multipliers that are derived from the principle
of virtual work, and the fiber evolution is done through a rotation of the tangent vector on a
unit sphere. This framework has since been used in applications with actin filaments (Maxian
et al., 2021a,b), and extended to account for Brownian motion (Maxian et al., 2023).

3.3.2 The discrete approach

In the discrete approach, the fiber is discretized by a series of marker points that are
subject to regularized forces. The numerical method is determined by the type of regularization.
For instance, in the immersed boundary method (Peskin, 2002), the forces are regularized
by spreading them onto an Eulerian grid on which the fluid problem is solved. Thus, the
marker point velocities are obtained by an interpolation of the resulting flow field. When the
regularization and interpolation are done through a Gaussian kernel, the method is referred to
as a Force Coupling Method (FCM)(Maxey and Patel, 2001), as done by Schoeller et al., 2021.
Otherwise, when the regularization and interpolation are done through the surface of a sphere,
the method is referred to as a Multibead/Multiblob method (Yamamoto and Matsuoka, 1995;
Joung et al., 2001; Gauger and Stark, 2006; Swan et al., 2011; Delmotte et al., 2015; Usabiaga
et al., 2016; Schoeller et al., 2021; Balboa Usabiaga and Delmotte, 2022, see also Section
3.4). The marker point velocities are coupled linearly to the forces through the Rotne-Prager-
Yamakawa (RPY) hydrodynamic tensor, which is consistent with the low Reynolds number
regime. Finally, when the marker point velocities are obtained without an interpolation kernel,
through the exact solution to the regularized Stokes equations, the method is referred to as
the method of regularized Stokeslets (Cortez, 2001; Cortez et al., 2005; Lim et al., 2008; Olson
et al., 2013; Jabbarzadeh and Fu, 2020).

As highlighted for the continuum approach, the discrete approach also suffers from the
stiffness associated with the inextensibility condition. For instance, in the bead-spring model
(see Section 3.4) which is the model adopted in this thesis, the latter is enforced by prescribing
large spring constants between successive beads, thus limiting the use of explicit temporal
integrators. Other approaches use Lagrange multipliers instead of springs to effectively tackle
the inextensibility condition, such approaches can be broadly separated according to whether
they derive from : (i) a velocity-based formulation, meant the constraints are nonholonomic,
as done by Delmotte et al., 2015; Balboa Usabiaga and Delmotte, 2022 or (ii) a position-based
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formulation, meant the constraints are holonomic, as done by Schoeller et al., 2021. Finally,
Jabbarzadeh and Fu, 2020 enforced rigorously the inextensibility condition through a rotation
of the tangent vector. In this way, they maintained strict inextensibility of the fiber, without
introducing penalty terms. Combined with the method of regularized Stokeslets, this approach
has since been used in applications, for instance to investigate the dynamics of a bacteria-
inspired rod-like soft robot in a viscous fluid (Bhattacharjee et al., 2022). Though scalable
to multiple fibers, discrete approaches require large number of marker points to discretize
a single fiber, compared to what would be needed in a continuum approach (Bringley and
Peskin, 2008). Recently, hybrid continuum-discrete approaches have been developed in order to
overcome the aforementioned drawbacks, as well as the bottleneck arising from the resolution
of the elastohydrodynamic problem. For instance, Moreau et al., 2018 developed a coarse-
grained elastohydrodynamic framework to alleviate the numerical stiffness. This does not
require evaluation of Lagrange multipliers, since the inextensibility condition is satisfied by
construction. In addition, their approach requires few number of maker points to discretize the
fiber, that allows for faster computations, with increasingly better performance. This numerical
framework has since been extended to account for nonlocal interactions of multiple fibers using
the method of regularized Stokeslets (Hall-McNair et al., 2019), as well as to account for three-
dimensional deformations (Walker et al., 2020).

Despite their limitations, discrete approaches based on regularized singularities are some-
times convenient to work with compared to SBT based methods, since they are nonsingular on
the fiber centerline, they can therefore be efficiently evaluated there. Thus, such approaches are
more suitable for modeling localized forces such as those due to electrostatics, steric interactions
and friction. The latter feature is especially advantageous to capture fiber-obstacle interactions
in a computationally efficient manner, which is the main concern of this work. In this thesis,
the bead-spring model will be employed for the fiber model, an implicit temporal integrator
with an adaptive time-step size will be used to alleviate the numerical stiffness arising from the
elastohydrodynamic coupling and the springs. This approach, combined with fast methods to
compute the action of the RPY hydrodynamic tensor on the applied forces in quasilinear times,
allows for faster and efficient simulations of multiple fibers and obstacles, as we will show in
the next sections.

3.4 The bead-spring model

Linear bead-spring models are the most commonly-used coarse-grained approaches to study
the dynamics of polymer molecules in solution (Graham, 2018). They display some features,
such as the extensibility of the chain that plays an important role to determine the rheological
properties of polymers (Bird et al., 1987); and are “constraint-free”. The latter makes them
particularly efficient for carrying out Brownian dynamics simulations compared to constrained
approaches such as bead-rod models, where additional NF − 1 (NF is the number of beads
in the polymer chain) constraints must be satisfied to enforce the inextensibility condition.
However, due to their linearity, the time-step must be taken less than the shortest intrinsic
oscillating period of the springs to obey the absolute stability restriction when using explicit
temporal integrators. Though various non-linear bead-spring models that allow large time
step sizes have also been developed for inextensible polymers, such models usually suffer from
the singular behavior of stretching forces when approaching the maximum extension (Shaqfeh
et al., 2004). One commonly employed alternative that is suitable for “stiff” problems, is
to use an implicit temporal integrator based on a backward differentiation formula (BDF).
Throughout this thesis, the built-in variable-step, variable-coefficient ODE solver VODE (Brown
et al., 1989), is used to alleviate the numerical stiffness arising from the springs, as well as from
the elastohydrodynamic coupling problem. While not a unique or necessarily superior choice,
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Figure 3.2: The bead-spring model of a flexible fiber. The chain is made of evenly spaced NF

beads of the same radius a that are linked by linear springs, shown in the inset. Each bead is
subject to a total force Fi that includes the internal elastic and external forces. ti = ri − ri−1
is the tangent vector to the centerline of the chain at the bead index i− 1.

we prefer to use a linear bead-spring model as the discrete approach to simulate the dynamics
of flexible fibers that are immersed in Stokes flow, due to the fact that it reduces the number
of constraints when handling obstacles in fiber-obstacle coupling problems (see Chapter 4), as
well as because of its long history of use in polymer dynamics.

3.4.1 Model

As discussed in Section 3.3, the bead-spring model is one of the most discrete approaches
used to model the dynamics of flexible fibers immersed in a viscous fluid. The core idea is
to discretize the fiber as a series of evenly spaced NF marker points ri (see Fig.3.2) that are
subject to internal elastic forces and external forces. These forces are thus regularized over
the bead surface via the bead/delta function of width ∼ a, that is on the order of the fiber
radius. Furthermore, in the bead-spring model, two adjacent marker points are connected by
stiff linkers made of springs, the tangent vector to the centerline at the position of the marker
point i− 1 is defined as ti = ri − ri−1(see Fig.3.2). Traditionally, the linkers are extensible in
length but do not bend or twist. Since in this thesis we are interested in inextensible fibers, we
made linkers inextensible by penalization. The latter is achieved by prescribing spring constants
that allow small variations ∆L of the fiber length L, less than 0.35% of its initial length L0.
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3.4.2 Discrete elastic energy and forces

In Section 3.2.3.2, we have defined the elastic energy (3.25) that gives rise to Euler’s Elastica
model for extensible fibers. The former can be split into two parts, namely the bending and
stretching energies, denoted respectively by ẼB and ẼS,

Ẽ = ẼB + ẼS. (3.26)

Applying forward differencing to both parts, leads to their respective discrete forms6,

ẼB =
EI

2

NF−1∑
i=2

(
t̂i − t̂i−1

l0

)2

l0

=
EI

l0

NF−1∑
i=2

(
1− t̂i · t̂i−1

)
,

(3.27)

and

ẼS =
EA

2

NF∑
i=2

(
ri − ri−1

l0
· ti|ti|

− 1

)2

l0

=
EA

2l0

NF∑
i=2

(|ti| − l0)2 ,
(3.28)

where l0 is the free length of the spring link. The corresponding forces are obtained by taking
the gradient of each part of Ẽ with respect to the bead positions. Thereby, the bending and
stretching forces applied at the bead position ri are given respectively by

FB
i = −∇ri ẼB

=
EI

2

[
hi−1
|ti|

t̂i−1 −
(
hi−1
|ti|

t̂i−1 · t̂i +
hi
|ti+1|

+
hi
|ti|
t̂i · t̂i+1

)
t̂i

+

(
hi
|ti+1|

t̂i · t̂i+1 +
hi
|ti|

+
hi+1

|ti+1|
t̂i+1 · t̂i+2

)
t̂i+1 −

hi+1

|ti+1|
t̂i+2

]
,

(3.29)

and

F S
i = −∇ri ẼS

=
EA

2l0

[
− (|ti| − l0)h′it̂i + (|ti+1| − l0)h′i+1t̂i+1

]
,

(3.30)

where following Gauger and Stark, 2006, to derive the explicit forms thereof, we have introduced
the factors (hi)1≤i≤NF

and (h′i)1≤i≤NF
, that are defined as

hi =

{
1 if 2 ≤ i ≤ NF − 1,

0 otherwise,
, (3.31)

h′i =

{
1 if 2 ≤ i ≤ NF ,

0 otherwise,
. (3.32)

6We have substituted

∣∣∣∣∂2X∂s2
∣∣∣∣ by

∣∣∣∣∂t̂∂s
∣∣∣∣ in (3.25) to obtain the first line of (3.27).
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3.4.3 Mobility problem

The chain being immersed in a viscous fluid, in the absence of inertia, the fluid velocity
u(r)7 obeys the Stokes equations forced by regularized point forces Fj ∈ R3


−η∇2u+∇p =

NF∑
j=1

1

4πa2j
Fj δ(|r − r0| − aj)|r0=rj ,

∇ · u = 0,

, (3.33)

where r0 is the source point and r is the field point, the distribution (4πa2)−1δ(|r − r0| − a) is
the regularized spherically-symmetric delta function or bead function of width ∼ a. The forces
F ∈ R3NF , F = FB + F S + F E that are applied at each source point, account for internal
elastic forces derived in the previous section: bending and stretching forces, respectively FB

and F S; and external forces F E such as gravity and steric interactions.

Due to the linearity of the Stokes equations, the solution u(r) to (3.33) is given analytically
as a superposition of convolutions over the bead surfaces of the Green’s function G(r, r0) ∈ R3×3

with regularized point forces

u(r) =

NF∑
j=1

1

4πa2j

∫
Sj

G(r, r0) · Fjδ(|r − r0| − aj)dS(r0), (3.34)

where Sj is the surface of bead j.

In the multibead approach, the linear velocity of a given bead Ui ∈ R3 is obtained as a
convolution over the bead surface Si, of the fluid velocity u(r) with the bead function

Ui =
1

4πa2i

∫
Si

u(r)δ(|r − r0| − ai)dS(r). (3.35)

Thus, by substituting (3.34) into (3.35), we obtain the so-called mobility relation, which gives
the hydrodynamic interactions of a given bead as sum over all other beads

Ui =

NF∑
j=1

Mij · Fj, (3.36)

where Mij ∈ R3×3 is the widely-used Rotne-Prager-Yamakawa (RPY) tensor (Zuk et al., 2014),

Mij =
1

4πa2i

∫
Si

δ(|r − r0| − ai)dS(r)
1

4πa2j

∫
Sj

G(r, r0)δ(|r − r0| − aj)dS(r0). (3.37)

This formulation is identical to (2.36) for non-overlapping beads, but also gives a symmetric and
positive definite (SPD) tensor for overlapping beads as well, and can be used for a collection
of beads with different radii. As discussed in Chapter 2, the RPY tensor can be evaluated
in different domains. In addition, there are fast methods to compute the action M · F of
the mobility matrix M ∈ R3NF×3NF on the applied forces F ∈ R3NF , in quasilinear time in
those different domains, such methods include Fast Multipole (Yan and Shelley, 2018; Yan and
Blackwell, 2021) and Positively Split Ewald (PSE) (Fiore et al., 2017, see also Appendix A).

7The time dependence is omitted for notation convenience.
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3.5 Sedimentation of flexible fibers in a quiescent viscous

fluid

In this section, we validate our bead-spring model (see Chapter 4, for the implementation
details) against known dynamic results for the classical problem of flexible fibers settling under
gravity in a quiescent viscous fluid. First, we investigate the deformation for a single fiber in
an unbounded domain. Then, the collective dynamics that arise from fiber suspensions in a
triply periodic domain are investigated.

3.5.1 Deformation under gravity

Figure 3.3: Results from numerical simulations showing a single fiber settling in a quiescent
viscous fluid for NF = 31 and Be = 3800. In each panel, axes are centered with respect to the
center of mass of the fiber and normalized by its length. The color bar shows the magnitude
of the velocity field normalized by the total velocity of the center of mass of the fiber |u|/|U |.
The fiber first adopts a “W” configuration also known as the metastable state that is shown
at t/T = 20. Then, due to the inhomogeneous drag distribution along its length, the fiber
reorients to reach its equilibrium state after having traveled a finite distance, that is shown
at t/T = 70 by a “horseshoe” configuration. T = ηL2/FG is the characteristic settling time,
defined as the time for the fiber to settle its length.

The deformation of a single flexible fiber settling under gravity in a quiescent viscous fluid
has been first investigated theoretically by Xu and Nadim, 1994 for the case of small deforma-
tion amplitudes using the slender body theory (SBT), and later numerically using a bead-spring
method by Lagomarsino et al., 2005 for both, small and large deformation amplitudes. Their
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Figure 3.4: Normalized deflection A/L against the elastogravitational number Be. Our findings
are compared with experimental (Marchetti et al., 2018), numerical (Lagomarsino et al., 2005;
Li et al., 2013; Delmotte et al., 2015; Schoeller et al., 2021; Cunha et al., 2022) and theoretical
(Xu and Nadim, 1994) results collected in the literature. The equilibrium shapes of the fiber
are shown for small, intermediate and large values of Be. Our data were obtained with a fiber
made of NF = 31 beads.

findings were confirmed experimentally (Marchetti et al., 2018), and numerically using multi-
bead (Schlagberger and Netz, 2005; Delmotte et al., 2015; Schoeller et al., 2021; Cunha et al.,
2022) and SBT-based (Li et al., 2013) methods.

We conduct numerical simulations by considering a single fiber made of NF = 31 beads
that are evenly spaced by a distance l0 = 2a. Each bead is subject to a gravitational force
FG/NF and internal elastic forces defined in Section 3.4.2. Initially, the fiber is straight and
oriented perpendicularly to the direction of gravity in an unbounded domain. As it settles, the
fiber first experiences a time-dependent deformation in response to viscous forces, then reaches
an equilibrium state at a constant velocity. In order to characterize its equilibrium shape, we
define the elastogravitational number Be = L2FG/EI, as the balance between gravitational
and elastic restoring forces. The evolution of the fiber deformation in time is shown in Fig.3.3
for Be = 3800.

Following the previous works found in the literature, we characterize the deformation at
equilibrium by measuring the normal deflection A, defined as the distance between the highest
and lowest points of the fiber. We compare our numerical results with those collected in
the literature, including experimental (Marchetti et al., 2018), numerical (Lagomarsino et al.,
2005; Li et al., 2013; Delmotte et al., 2015; Schoeller et al., 2021; Cunha et al., 2022) and
theoretical (Xu and Nadim, 1994) results (see Fig.3.4). In the weakly flexible regime (Be .
100), all findings exhibit the same linear growth predicted by Xu and Nadim, 1994. Numerical
methods, as well as experimental ones, allow to go beyond the limit of small deflections, though
experiments are limited at Be ≈ 1000. Our “constraint-free” multibead approach agrees well
with that of Cunha et al., 2022, as well as with the constrained approaches of Delmotte et al.,
2015 and Schoeller et al., 2021, for small and large values of Be. In contrast, we observe
discrepancies in the weakly flexible and intermediate (100 < Be . 300) regimes, respectively
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with the SBT-based approach of Li et al., 2013, where they made the assumption of a spheroidal
fiber instead of a cylindrical one; and with the multibead approach of Lagomarsino et al., 2005,
where the hydrodynamic interactions between beads are approximated with point-like particles8

instead of regularized approximations that account for the finite size of the beads.

3.5.2 Collective dynamics

We now turn to the sedimentation of a large, homogeneous and random distributed suspen-
sion of fibers in a triply periodic domain. This problem has been investigated experimentally
(Anselmet, 1989; KUMAR and RAMARAO, 1991; Turney et al., 1995; Herzhaft et al., 1996;
Herzhaft and Guazzelli, 1999; Metzger et al., 2005, 2007a,b), numerically (Mackaplow and
Shaqfeh, 1998; Butler and Shaqfeh, 2002; Saintillan et al., 2005; Gustavsson and Tornberg,
2009; Manikantan and Saintillan, 2016), and theoretically (Koch and Shaqfeh, 1989; Manikan-
tan et al., 2014) over the last years. In the dilute and semi-dilute regimes, most of the studies
have reported the formation of floc-like inhomogeneities, i.e., small clusters of fibers, within
downward streamers that are balanced by upward (back-flow) streamers of clarified fluid sus-
pension. This leads to an enhancement of the mean settling velocity of the suspension which
exceeds the velocity of a single rigid fiber settling along its major axis in an unbounded fluid
domain, U‖. This structural instability has been first reported by Koch and Shaqfeh, 1989. By
means of theoretical predictions, they found that the complex coupling between the orientation
of the fibers and hydrodynamic interactions leads to the growth of concentration fluctuations
in the fiber distribution.

However, despite the various degrees of approximation of the computational studies, that
range from the Stokeslet approximation to the widely used slender body theory (SBT), simu-
lations have been found to converge into a single streamer that spans the entire height of the
periodic box. This finding disagrees with experimental results (Metzger et al., 2007a), where
more than one streamer has been observed9. Both, Saintillan et al., 2005 and Gustavsson and
Tornberg, 2009 argued that the periodic boundary conditions imposed in the vertical direction
of the box are at the origin of this disagreement. Furthermore, most of the numerical stud-
ies reported in the literature were carried out in the limit of rigid and weakly flexible fibers
(Be � 1). To our knowledge, only the recent study of Schoeller et al., 2021 goes beyond the
limit of weakly flexible fibers, up to Be = 1000. However, despite the fact that they captured
most of the features reported in the previous studies, their simulations were restricted to a
planar distribution of fibers. Here, we consider a suspension of M straight fibers, initially dis-
tributed in a triply periodic domain of size 4L × 4L × 25L, where L is the fiber length. Each
fiber is made of NF = 10 beads, that are evenly spaced by a distance l0 = 2a, where a is the
bead radius. In order to characterize the regime of the suspension, we introduce the effective
concentration nl3 = 0.5ML/V , where V is the volume of the periodic box. We perform the
simulation for Be = 100 and M = 600, that corresponds to a dilute regime10, nl3 ≈ 0.2.

Fig.3.5 shows the time-evolution of the fiber distribution while settling under gravity. Qual-
itatively, most of the features reported in the literature (such as the formation of distinct
clusters, the periodic build-up process of clusters, i.e., small clusters merge into larger clusters
which later dissolve into small clusters and so on, and the orientation of the fibers toward the
direction of gravity) are reproduced by our bead-spring model. In agreement with Saintillan
et al., 2005, our model also captures one streamer11 in the transverse direction of the periodic

8Also called the Stokeslet approximation.
9By increasing the horizontal dimension (in the x direction) of the periodic box, Saintillan et al., 2005 were

able to observe more than one streamer.
10The suspension is said to be dilute when nl3 < 1 (Guazzelli and Hinch, 2011).
11The streamer is divided into two parts, owing to the periodic boundary conditions.
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box, which is composed of distinct clusters in the vertical direction. These findings confirm the
adequacy of our model to accurately capture the microstructure of the suspension.

Figure 3.5: Results from numerical simulations showing the time evolution (left to right) of
a sedimenting suspension of flexible fibers in a quiescent viscous fluid. The simulation has
been performed for a suspension of 600 fibers, where each fiber is made of NF = 10 beads.
The regime is dilute with an effective concentration of nl3 ≈ 0.2, and the elastogravitational
number is set to Be = 100 for each fiber.

In order to reproduce the other features, following Gustavsson and Tornberg, 2009, we
introduce the mean settling velocity w and the mean orientation angle θ, that are defined by,

w(t) =
1

M

M∑
m=1

wm(t), (3.38)

and

θ(t) =
1

M

M∑
m=1

θm(t), (3.39)

where wm is the component along the z−axis of the center of mass velocity of fiber m, and
θm the orientation angle between the unit tangent vector at the midpoint of fiber m and the
direction of gravity (θm = π/2, when the fiber is perpendicular to the direction of gravity).
Fig.3.6 shows the time evolutions of the two aforementioned quantities. As expected, owing
to the formation of clusters, we observe an enhancement of the mean settling velocity of the
suspension, which becomes larger that the maximum possible value of a single rigid fiber,
Fig.3.6(a). In the case of a sedimenting suspension of rigid fibers, experimental (Herzhaft
et al., 1996; Herzhaft and Guazzelli, 1999; Metzger et al., 2007a) and numerical (Butler and
Shaqfeh, 2002; Gustavsson and Tornberg, 2009) studies have reported the onset of a steady
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Figure 3.6: Time evolutions of the mean settling velocity of the suspension relative to the
maximum velocity of an isolated rigid fiber (a), and the mean orientation of the suspension (b).

state in the mean settling velocity w, when the rigid fibers tend to align in the direction of
gravity with occasional flipping. However, unlike a suspension of rigid fibers, this feature is
not captured in our numerical simulations that are carried out for a sedimenting suspension of
flexible fibers. This finding agrees with the numerical results reported by Schoeller et al., 2021,
where even after 500T , with T being the characteristic settling time12, the mean settling velocity
continues to grow in time. This discrepancy was attributed to the larger lateral distances that
the fibers have to travel in their periodic unit cell, as well as the fact that the fiber dynamics
were restricted to two dimensions, in which hydrodynamic interactions are enhanced compared
to three dimensions. Conversely, we suspect that this is a result of the reorientation induced by
flexibility, which will continuously affect the fiber shapes and lateral displacements, thus their
effective drag during the periodic build-up process of clusters, i.e., the clusters continuously
capture and lose fibers. Therefore, there is no reason for the instantaneous velocities of different
fibers to be statistically identical to instantaneous velocities of a single fiber, as assumed for
the rigid case when the fibers are statistically aligned in the direction of gravity (Herzhaft and
Guazzelli, 1999). The time evolution of the mean orientation (Fig.3.6(b)) is consistent with
our assumption. However, the effect of flexibility on the collective behavior exhibited by a
sedimenting suspension of fibers is an open fundamental question that will be tackled in the
future.

3.6 Conclusions

In this chapter, we have described the multibead approach used throughout this thesis to
carry out dynamic simulations of flexible fibers in Stokes flow. This approach relies on the
commonly-used bead-spring model, which is “constraint-free” and suitable for modeling local-
ized forces such as steric interactions and friction, as well as to carry out Brownian simulations.
The hydrodynamic interactions are accounted for at the Rotne-Prager-Yamakawa (RPY) level
of approximation, and can be evaluated in different geometries. Furthermore, our implementa-
tion is flexible and enables dynamic simulations of O(104) beads in reasonable wall times on a
single modern Graphics Processing Unit (GPU). In addition, we have shown that our method
agrees well with some relevant results collected in the literature, including experimental, numer-

12The time for the fiber to settle its own length.
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ical and theoretical. Thus confirming, its adequacy to solve accurately the elastohydrodynamic
coupling problem.

In various situations in nature and industries, fiber-like particles are transported through
complex environments made of obstacles and walls. In such situations, the dynamics of fibers
result from the complex coupling between internal elastic stresses, contact forces, and hy-
drodynamic interactions with the surrounding obstacles and walls. The resulting problem is
computationally challenging, owing to the complexity of the coupling and the stiffness of the
problem. There is thus a need for a numerical framework to capture fiber-obstacle interactions
in a computationally efficient manner. This fundamental problem is tackled in the next chapter.
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A mutlibead approach to handle
obstacles in Stokes flow: applications
for settling fibers
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In this chapter, we extend the bead-spring method to account for obstacles. We derive a
constrained formulation which leads to a linear system, that we solve iteratively with a suitable
preconditioner. This numerical framework allows to handle different environments involving
rigid stationary obstacles.

4.1 Introduction

Fluid-structure interactions are encountered in numerous situations in biomedical, microflu-
idics, and environmental applications. Such situations include the locomotion of nanorobots
in complex environments (Wu et al., 2020), the transport of biofilm streamers in microfluidic
devices (Drescher et al., 2013) and the motion of microplastic fibers in crowded environments
(Browne et al., 2011b). All these situations occur at low Reynolds number, and involve station-
ary and moving boundaries immersed in a fluid. These boundaries may move, deform, interact,
and have complex shapes. For instance, biofilm streamers are elastic moving boundaries that
can interact with stationary rigid boundaries such as obstacles or walls (Drescher et al., 2013).

Nowadays, there are various numerical approaches to handle immersed stationary and/or
moving boundaries in the Stokes regime (Pozrikidis, 1992; Peskin, 2002; Cortez, 2001; Usabiaga

39
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et al., 2016). Among those, the rigid multiblob approach offers a good compromise between
flexibility, scalability, efficiency, and accuracy. This approach has been introduced by Usabiaga
et al., 2016, and relies on a coarse-grained representation of the boundaries. Each bound-
ary is built as a collection of rigidly-connected blobs that are subject to Lagrange multipliers
enforcing the rigidity constraint. This framework and its extensions (Sprinkle et al., 2017; Bal-
boa Usabiaga and Delmotte, 2022) have since been used in applications involving stationary and
moving boundaries. For instance, Van Der Wee et al., 2023 used the rigid multiblob approach to
simulate the dynamics of microrollers immersed in a viscous fluid with obstacles embedded. Re-
cently, Gidituri et al., 2023 investigated different swimming modes of single-flagellated bacteria
inside a circular pipe. A similar constrained formulation has also been proposed by Majmudar
et al., 2012, to model the locomotion of C. elegans through a structured environment made
of stationary rigid spheres. The authors used kinematic constraints to prescribe the velocity
of each stationary sphere to zero. In the particular case of immersed elastic boundaries such
as inextensible fibers, an additional set of constraints must be satisfied in order to enforce the
inextensibility condition (Delmotte et al., 2015; Schoeller et al., 2021). The resulting problem
involves two different sets of Lagrange multipliers: (i) a set to enforce the stationary condition
on the obstacles and (ii) a set to enforce the inextensibility condition on the fibers. Thus,
such problems are solved for these two types of constraints at each time step (Majmudar et al.,
2012), and therefore can be computationally costly for large systems.

In an effort to reduce the number of time-consuming operations, we develop a hybrid ap-
proach that builds heavily on the methods proposed by Usabiaga et al., 2016 and Majmudar
et al., 2012, to solve problems involving fibers and stationary rigid obstacles in Stokes flow. Our
approach relies on the bead-spring method to model the fibers. The latter has the advantage
of being “constraint-free”, thus reduces the number of constraints in the system, such that
only kinematic constraints need to be satisfied. Each obstacle is built as a collection of rigidly
connected beads, this multibead representation allows to handle complex obstacle shapes.

This chapter is organized as follows. In Section 4.2, a constrained formulation of the
bead-spring method that accounts for obstacles is derived. This formulation leads to a mixed
mobility-resistance problem, a linear system to solve for the bead velocities and the Lagrange
multipliers that enforce the kinematic constraints. In Section 4.3, a preconditioner is introduced
to solve iteratively the mixed mobility-resistance problem, and its effectiveness is evaluated
through two test problems. Finally, in Section 4.4, we explore three problems of sedimentation
involving fibers and obstacles. In doing so, we show that our numerical framework is an effi-
cient, scalable and flexible tool for studying a variety of problems that involve fiber-obstacle
interactions in Stokes flow.

4.2 Constrained formulation to account for obstacles

In this section, we extend the unconstrained problem derived for flexible fibers in the
previous chapter, to account for obstacles. In the following, the obstacle is made of NO

rigidly-connected beads, instead of springs as done for the fiber (see Section 3.4). For the
sake of simplicity, we will consider the system {Fiber + Obstacle} as monodispere, in which
all the beads have the same hydrodynamic radius a. However, the extension to the poly-
disperse case is done by using the suitable RPY tensor (Zuk et al., 2014). We denote by
N = NF + NO the total number of beads in the system, by M ∈ R3N×3N their mobility ma-
trix, and by U = [U1, . . . ,UNF

,UNF+1, . . .UN ] ∈ R3N , R = [r1, . . . , rNF
, rNF+1, . . . rN ] ∈ R3N

and F = [F1, . . . ,FNF
,FNF+1, . . .FN ] ∈ R3N , the vectors collecting respectively their linear

velocities, positions and the forces that are exerted on each of them.
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4.2.1 Kinematic constraints: velocity-based formulation

Our goal is to prescribe the motion of the obstacle beads, to ensure they have zero degrees
of freedom (DOF). This restriction implies the following kinematic constraint equation at the
velocity level

Φ(U) ≡ J ·U = 0, (4.1)

where Φ ∈ R3NO denotes the set of constraints in the system, and the matrix J ∈ R3NO×3N

maps R3N onto R3NO . In other words, J will select the obstacle beads to prescribe their
velocities to zero. It can be constructed by blocks of 3× 3 sub-matrices, such that

J lk =

{
I for k = NF + l

0 otherwise
, (4.2)

where 1 ≤ l ≤ NO and 1 ≤ k ≤ N , I ∈ R3×3 is an identity matrix.

From classical mechanics, it is well known that linear nonholonomic constraints (4.1), i.e.,
linear velocity-dependent constraints, give rise to constraint forces F C ∈ R3N of the form

F C = J T · λ. (4.3)

This follows from the principle of virtual work, since the constraint forces are workless (Lanczos,
1986). The 3NO×3N matrix J ≡ ∂Φ/∂U is the constraint Jacobian, and λ ∈ R3NO is a vector
of Lagrange multipliers, which collects forces that are exerted on the obstacle beads to satisfy
the kinematic constraints (4.1).

4.2.2 Mixed mobility-resistance problem

Due to the linearity of the Stokes equations, the solution to the constrained problem arises
from the solution to the unconstrained problem Û = M · F ∈ R3N corrected by the particle
motion U = M · F C ∈ R3N induced by the constraint forces that are exerted on the obstacle
beads. Accordingly, the constrained problem is a superposition of the two aforementioned
sub-problems,

U = Û +U

= M · F + M · F C

= M · F + M ·J T · λ,
(4.4)

where in the third line of (4.4), we have substituted the constraint forces F C by (4.3). This
results in a mixed mobility-resistance problem, as the Lagrange multipliers λ and the velocity
of the beads U are both unknowns. This formulation is closed by the kinematic constraint
equation (4.1), as defined in Section 4.2.1.

We can write the equations (4.4) and (4.1) in a compact matrix notation as a linear system
to solve for the two aforementioned unknowns,[

−M ·J T I
0 J

]
︸ ︷︷ ︸

A

·
[
λ
U

]
︸︷︷︸
x

=

[
M · F

0

]
︸ ︷︷ ︸

b

, (4.5)

where I ∈ R3N×3N is an identity matrix. It is straightforward to eliminate the Lagrange
multipliers λ in the above system, in order to derive a constrained mobility problem, i.e., with
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the velocity U as the only unknown,

dR

dt
≡ U
=
[
I −M ·J T ·M−1

OO ·J
]
·M · F

= P · Û
= N · F ,

(4.6)

where in the second line of (4.6), I ∈ R3N×3N is an identity matrix and MOO =[
J ·M ·J T

]
∈ R3NO×3NO is the mobility matrix between the obstacle beads. In the third line,

P =
[
I −M ·J T ·M−1

OO ·J
]
∈ R3N×3N is a projector, i.e., P2 = P , which maps the uncon-

strained solution Û = M · F ∈ R3N onto the constraint space C = {U ∈ R3N | J ·U = 0}.
Finally, the fourth line shows the action of the constraint mobility matrix N = P ·M ∈ R3N×3N

on the applied forces F .
At first sight, it might seem easier to solve the constrained mobility problem (4.6) as done

in Chapter 5 (see also the corresponding paper (Makanga et al., 2023)), instead of solving the
mixed mobility-resistance problem (4.5), since one has to solve the former for 3N unknowns
and the latter for 3NO + 3N . In fact, the former is attractive for small systems and if the con-
straint mobility matrix N can be formed efficiently. The main disadvantage is that numerical
instabilities may be a concern when forming N , especially when the mobility matrix MOO is
ill-conditioned.

In contrast, we found that solving the mixed mobility-resistance problem (4.5) for 3NO+3N
unknowns, namely (λ,U), iteratively, using a preconditioned GMRES method, is more suitable
numerically for large systems of fibers and obstacles. As a matter of fact, such approach has
a computational complexity that is quadratic in the number of beads N , compared to direct
methods which scale as O(N3). This efficiency is mainly due to the modest number of iterations
required to solve (4.5) when an appropriate preconditioner is used, as described in the next
section.

4.3 Iterative solver and convergence

In this section, we solve the mixed mobility-resistance problem (4.5) iteratively, using a
preconditioned GMRES method. Given the linear system A · x = b, the idea behind this
approach is to project this 3N -dimensional problem onto a lower-dimensional Krylov subspace
using matrix-vector products, without requiring the computation of the inverse matrix A−1.
However, due to the long-ranged nature of the hydrodynamic interactions, the condition number
of A will increase with the number of beads and volume fraction (e.g., large and/or concentrated
systems or complex media), therefore will slow down the convergence of the iterative solver by
increasing the number of iterations. This can be overcome by applying a suitable preocnditioner
to (4.5). The idea of preconditioning (4.5) is the following, if Q is a given non-singular 3N×3N
matrix, then the linear system Q−1 ·A ·x = Q−1 ·b has the same solution. If the preconditioner
Q is well chosen to improve the properties of Q−1 ·A, the new preconditioned linear system
may converge quickly with a few number of iterations. Two conditions are required to set a
good preconditioner: firstly it must be close to A, such that the eigenvalues of Q−1 ·A are close
to unity and ‖Q−1 ·A − I‖2 is small, where ‖·‖2 is the spectral norm and I ∈ R3N×3N is an
identity matrix. Secondly, the preconditioner matrix must require a few number of operations
to be computed.

In the following, we introduce the preconditioner that we use to solve the mixed mobility-
resistance problem (4.5). Then we evaluate its effectiveness on two test problems.
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4.3.1 Preconditioner

The bead mobility matrix M can be decomposed into four blocks,

M =

[
MFF MFO

MOF MOO

]
, (4.7)

where F and O stand for Fibers and Obstacles, respectively. Accordingly, each block encodes
hydrodynamic interactions between the subscripted bodies. Note that, the block MOO is the
mobility matrix between the obstacle beads defined in Section 4.2.2.

Since the Lagrange multipliers λ apply just on the obstacle beads, a suitable preconditioner
matrix for the linear system (4.5) is obtained by setting the three blocks MFF , MFO and
MOF as null matrices and neglecting hydrodynamic interactions between different obstacles,
i.e., setting the elements of MOO corresponding to pairs of beads on distinct obstacles to zero,
as done by Usabiaga et al., 2016; Balboa Usabiaga and Delmotte, 2022. This results in a sparse
matrix M̃ and a block-diagonal approximation M̃OO for MOO,

M̃
(pq)

OO = δpqM(pp)
OO , (4.8)

where p and q are two distinct bodies defined as obstacles, and δpq is the Kronecker delta.
Accordingly, applying the preconditioner matrix to (4.5) amounts to solving the following

linear system [
−M̃ ·J T I

0 J

]
·
[
λ
U

]
=

[
M · F

0

]
. (4.9)

The corresponding approximation of the constraint mobility matrix is Ñ = P̃ ·M, where the
projector P̃ is a block-diagonal matrix, which each block refers to an identity matrix for each
body defined as fiber and to a sub-matrix neglecting all hydrodynamic interactions with the
other bodies for each body defined as obstacle

P̃
(pq)

=


δpqI

(p) for fibers

δpq

[
I(p) −M(pp) ·

(
J (p)

)T
·
(
M(pp)

OO

)−1
·J (p)

]
for obstacles

. (4.10)

The construction of P̃ requires the computation of both M̃OO and its inverse M̃
−1
OO, which

depend on the boundaries of the domain. We compute the latter by Cholesky factorization
and iteratively, respectively in unbounded and periodic domains. Since the obstacles are not
moving over time, M̃OO and its inverse never change. Therefore, both are precomputed once
before the time loop and reused during the simulation.

4.3.2 Convergence

In the following, we test the robustness of our preconditioner with respect to the number of
obstacle beads NO. We consider two types of tests, that are similar to the study carried out in
Chapter 5 (see also the corresponding paper (Makanga et al., 2023)). Where we investigated
the sedimentation of a single flexible fiber of length L against a rigid obstacle of width ω in a
quiescent viscous fluid. The fiber is discretized as a series of NF beads connected by springs
and subject to a constant weight per unit length, as described in Section 3.4. The obstacle has
a different shape for each test:

1. Cylindrical shape of depth DO (see Fig.4.1(i)), built with a hexagonal close-packing ar-
rangement of rings, where each ring is discretized as a series of 20 rigidly connected beads
so that the number of obstacle beads is given as NO = 20Nrings, where Nrings is the number
of rings.
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Figure 4.1: Multibead models of obstacles used to evaluate the effectiveness of our precondi-
tioner. Each obstacle is made of NO beads. (i) Cylindrical obstacles of different depths. (ii)
Spherical obstacles of different resolutions.

2. Spherical shape (see Fig.4.1(ii)), built as a rigid geodesic polyhedron with icosahedral
symmetry made of NO beads sitting on the nodes of the different geodesic grids.

Initially, the fiber midpoint is positioned at a given horizontal (Dx/L = 0.05) and verti-
cal (Dz/L = 4) distance from the obstacle center of mass. The tests are investigated in an
unbounded domain for Be = 1000, L/ω = 3.1 and 1.5 respectively for cylindrical and spher-
ical obstacles. The simulations are performed with right preconditioned GMRES of residual
tolerance ε = 10−8, using the implementation described in Section 4.4.

We evaluate the performance of the preconditioned GMRES solver for two different approx-
imations of the mobility matrix MOO, the first one (Fig.4.2, dashed lines) neglects hydrody-
namic interactions between obstacle beads, i.e., the elements of MOO corresponding to pair
interactions are null; and the second approximation of MOO (Fig.4.2, solid lines) does not.

First, we test the robustness for cylindrical obstacles with increasing NO (i.e., the obstacle
depth DO). The panels (a) − (c) of Fig.4.2 show that the iterative solver converges within
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Figure 4.2: Linear solver convergence for different number of obstacle beads, NO, of the two
types of obstacle shapes: cylindrical [panels (a) and (c)] and spherical [panels (b) and (d)].
The different values of NO correspond respectively to different depths for cylindrical shapes
and different resolutions for spherical shapes. Panels (c) and (d) show the number of iterations
required to reach a tolerance ε = 10−8. The dashed lines correspond to identical models which
do not account for pairwise hydrodynamic interactions to form MOO.

3 iterations independently of the number of obstacle beads NO when considering pair inter-
actions. Without pair interactions, the preconditioner performance is expected to deteriorate
with increasing NO as the obstacle beads are relatively close to no longer neglect hydrodynamic
interactions between neighbouring beads to form MOO. Figure 4.2 (a) shows that without
pair interactions, the number of iterations to reach the GMRES residual tolerance (ε = 10−8)
depends strongly on the number of obstacle beads. However, even though the number of it-
erations scales logarithmically with NO, as shown in Fig.4.2(c), our preconditioner should not
be formed by neglecting pairwise hydrodynamic interactions between beads that belong to the
same obstacle, since it does not improve significantly the properties of the iterative matrix A
(4.5).

Next, we test the robustness for spherical obstacles with increasing NO. Figure 4.2 (b) shows
the convergence rate with (solid lines) and without (dashed lines) pair interactions. As in the
case of cylindrical shapes, the iterative solver converges within 3 iterations independently of the
number of obstacle beads NO. Without pair interactions, the number of iterations also scales
logarithmically with NO (see Fig.4.2(d), dashed line).
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Accordingly, the aforementioned results demonstrate the effectiveness of our preconditioner
to solve the mixed mobility-resistance problem (4.5). The main feature of our preconditioner
seems to be its ability to improve significantly the properties of the iterative matrix A such
that the rate of convergence becomes independent of the obstacle shape and the number of
obstacle beads.

4.4 Implementations and simulations

In this section, we apply the numerical framework described above to problems involving
fibers and obstacles that are immersed in a quiescent viscous fluid. In all simulations presented
here, the fibers are driven by gravity and the obstacles are rigid and stationary.

4.4.1 Implementations

The code used to perform simulations throughout this thesis is written in Python. Time-
consuming operations such as matrix-vector products, are implemented on a Graphics Process-
ing Unit (GPU) using PyCUDA.

As mentioned earlier, the cost of each GMRES iteration while solving the deterministic
mixed mobility-resistance problem (4.5) will be related to the action M · (•) of the mobility
matrix on a given vector. The computation of the latter depends on the geometry of the
domain and the construction of M. In what follow, we perform simulations in two kinds of
geometry: unbounded and triply periodic domains. For unbounded domains, we use a GPU
implementation based on a direct summation of M · (•) (Usabiaga et al., 2016), where M is
based on the free-space Green’s function for Stokes flow (2.46). This implementation scales as
O(N2), however thanks to their large number of threads, this computation is relatively fast
on modern GPUs, allowing large number of beads to be handled with a low computational
cost. For triply periodic domains, we use a GPU implementation of the Positively-Split-Ewald
(PSE) method (Fiore et al., 2017; Pérez Peláez, 2022) based on the periodic Green’s function
for Stokes flow (Hasimoto, 1959). The PSE method is briefly described in Appendix A.

4.4.2 Simulations

4.4.2.1 Sedimenting a fiber square against an obstacle

At low Reynolds number, the sedimentation of a finite number of fiber-like particles that
are in an initially symmetric configuration, has been investigated experimentally (Jung et al.,
2006), numerically (Claeys and Brady, 1993; Llopis et al., 2007; Gustavsson and Tornberg,
2009; Saggiorato et al., 2015; Bukowicki and L. Ekiel-Jeżewska, 2019; Hall-McNair et al., 2019;
Schoeller et al., 2021) and theoretically (Wakiya, 1965; Kim, 1985). Most of the studies have
reported the periodic tumbling-like motion exhibited by rigid and semi-flexible particles, as well
as in the case of flexible fibers, the onset of chaotic or more complex dynamics that arise in the
long term. Here, we investigate how the presence of a rigid obstacle can affect the dynamics
described above.

Following Schoeller et al., 2021, we consider four fibers evenly distributed at the corners of
a horizontal square of side length relative to fiber length, d/L = 0.268. Each fiber is made of
NF = 20 beads that are evenly spaced by a distance l0 = 2.2a, where a is the bead radius. The
obstacle is a rigid cylindrical tube of width ω/d ≈ 1 and depth DO/d =

√
2 (Fig.4.1(i)) that

is made of NO = 200 beads of radius a. Initially, the center of mass of the fiber configuration
is aligned and positioned vertically at Dz/L ≈ 40 with respect to the obstacle center of mass.
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One quantity of interest to characterize the dynamics is the mean settling velocity, U(t), which
we define as follows

U(t) =
1

4

4∑
m=1

Um(t) (4.11)

where Um is the center of mass velocity of fiber m. We perform simulations in an unbounded
domain for various values of the elastogravitational number Be (10 ≤ Be ≤ 1000).

When settling toward the obstacle, most of the features (e.g., the tumbling orbits forBe = 10
and Be = 100, the repulsion and convergence toward a stationary state for Be = 1000) reported
in the literature (Bukowicki and L. Ekiel-Jeżewska, 2019; Schoeller et al., 2021) are observed in
our simulations (Fig.4.3(a)). During the collision with the obstacle, the fiber configuration is
disturbed, the distance between the fibers increases (Fig.4.3(b), panels (i)). This perturbation
is reflected by a decrease in the mean settling velocity, its minimum value is lower than the one
attained by an identical sedimenting configuration without the obstacle (Fig.4.3(b), panels (ii)).
Downstream the obstacle, for Be = 10 and Be = 100, at early times the dynamics are similar
to those observed upstream, then become unstable, we observe the onset of complex dynamics.
However, at very long times, the mean settling velocity displays a steady state, in which the
instantaneous fiber configuration is such that three fibers form a bundle that settles faster than
the fourth fiber that is left behind (Fig.4.3(c)). Finally, for Be = 1000, the collective behavior
is found to converge toward a stable state.

4.4.2.2 Obstacle-induced separation of a fiber pair

In this study, we discuss the effect of an array of obstacles on a sedimenting pair of flexible
fibers. Our goal here is to illustrate the flexibility of our numerical approach rather than a
detailed investigation of the problem. In the following, we consider a pair of fibers of identical
length L and different flexibilities such that their elastogravitational numbers are Be = 10
and Be = 100. Each fiber is made of NF = 15 beads of radius a. The array is immersed in a
quiescent viscous fluid, and is made of rigid cylindrical pillars (Fig.4.1(i)) of infinite depth, that
are arranged in a hexagonal lattice. The fibers are initially straight, oriented perpendicularly
to the direction of gravity. Initially, the fibers are well separated along their minor axis by
a distance D = |r(1) − r(2)| = 12a, where r(1) and r(2) are their respective center of mass
(Fig.4.4(a)). The computational domain consists of 2×1×2 unit cells (Fig.4.4(a)), where each
unit cell contains the equivalent to two pillars of depth DO ≈ L. In order to characterize the
fiber dynamics, we introduce the mean displacement σ(τ), which we define as follows

σ(τ) = 〈[r(t+ τ)− r(t)]〉 , (4.12)

where 〈·〉 denotes the ensemble average, and r is the position of the fiber center of mass. We
perform simulations with periodic boundary conditions in the three directions of the domain.

Panel (i) of Fig.4.4(b) shows the center of mass trajectories of the fibers. At early times, hy-
drodynamic interactions affect the fiber trajectories, and therefore lead to a complex scattering
dynamics. At long times, the fibers separate laterally, their trajectories fall in quasi-straight
lines. This long-time behavior is reflected in the x-component of their mean displacement by
the onset of a steady state, as shown in panel (i) of Fig.4.4(c). However, when the fibers are
sufficiently close, such that D = 4a, they strongly interact hydrodynamically. As a result, the
fibers continuously attract each other and form a bundle, which later dissolves when it collides
with a pillar. This process persists over a longer period of time (0 ≤ t/T ≤ 150), and therefore
the fibers do not separate laterally at long times (Figs.4.4(b)-(c), panels (ii)). These findings
provide physical insight into how collective behavior can significantly affect the dynamics of a
sedimenting suspension of fibers through an array of pillars.
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Figure 4.3: Sedimenting four fibers against a rigid obstacle. The fibers are initially in a sym-
metric configuration. (a) Chronophotographs, the time step between two consecutive frames
(shown with alternating colors: blue and gray) is ∆t = 1.7T , where T is the characteristic
settling time. (b) The panels (i) show the settling dynamics close to the obstacle. the panels
(ii) show the time evolution of the mean settling velocity relative to the maximum velocity
of an isolated rigid fiber, U‖. The gray-shaded zone corresponds to the dynamics before the
collision. (c) Long-time dynamics at t = 275T .
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Figure 4.4: Sedimenting pairs of flexible fibers through an array of rigid pillars. (a) A 3D
representation of the computational domain, which is made of 2 × 1 × 2 unit hexagonal cells.
The computational domain contains the equivalent to 8 pillars of depth DO, plus the pair
of fibers. The center-to-center distance between two adjacent pillars d is defined such that
L/d ≈ 0.67. (b) Trajectories of the center of mass of the fibers, that are initially separated
by a distance D = 12a (i) or D = 4a (ii). The two fibers have different elastogravitational
numbers, Be = 10 (blue) and Be = 100 (magenta). (c) Time-evolutions of the x-component of
the mean displacement of each fiber center of mass. Panels (i) and (ii) correspond to D = 12a
and D = 4a, respectively.
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4.4.2.3 Sedimenting a fiber suspension through an array of obstacles

Here, we investigate the sedimentation of a dilute suspension of M fibers through an array
of obstacles. Initially, the fibers are straight and randomly distributed within the array of
obstacles. The latter, as well as the computational domain, are defined in the same way as
in the previous problem (see Section 4.4.2.2). Each fiber is made of N = 15 beads, that are
evenly spaced by a distance 2a, where a is the bead radius. We perform numerical simulations
for Be = 100 and two different values of the effective concentration of the fiber suspension,
nl3 = [0.3, 0.5].

Figure 4.5: Results from numerical simulations showing the time evolution (from left to right)
of a sedimenting suspension of fibers through an array of obstacles. The snapshots are shown
for two different values of the effective concentration: nl3 = 0.3 (a) and nl3 = 0.5 (b).

Figure 4.5 shows some snapshots of the time evolution of the fiber suspension through the
array of obstacles. In contrast to the case of a sedimenting suspension of fibers in a free fluid,
where the formation of clusters within downward streamers has been observed at long times (see
Section 3.5.2), the presence of obstacles leads to the formation of a single cloud of fibers. The
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latter undergoes a zigzag motion with no average displacement from the direction of gravity,
i.e., the migration angle of the cloud through the array is close to zero.

While interacting with the obstacles, the cloud continuously loses and captures fibers. As
a result, it remains a cohesive entity with a quasi-stable shape. This finding contrasts with the
settling dynamic of a cloud of fibers in a free fluid (Park et al., 2010), where, at long times, the
cloud evolves into a torus that subsequently becomes unstable and breaks up into secondary
clouds which themselves later break up and so on. However, this cascade behavior has been
observed for a very large number of fibers (more than 500 fibers) which has not been explored
in this thesis.

As done in Section 4.4.2.2, for each simulation, we measure the mean settling velocity w of
the fiber suspension. The time evolution of the resulting values is shown in Fig.4.6. For each
effective concentration nl3, the mean settling velocity increases as the cloud forms and becomes
even larger than the maximum possible value of a single rigid fiber for nl3 = 0.5. At long times,
the mean settling velocity reaches a plateau when the cloud adopts a quasi-stable shape. This
steady state occurs earlier as the value of the effective concentration decreases.
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Figure 4.6: Time evolution of the mean settling velocity w of the fiber suspension for various
values of the effective concentration nl3. The mean settling velocity is normalized by the
maximum velocity of an isolated rigid fiber U‖.

4.5 Conclusions

In this chapter, we have introduced a methodology to solve problems involving fiber and
rigid stationary obstacles of arbitrary shapes in Stokes flow. Especially, we have shown how our
methodology reduces the number of constraints in the system compared to the approach pro-
posed by Majmudar et al., 2012, in which the inextensibility condition gives rise to additional
constraints. We have proposed an effective preconditioner to solve iteratively the resulting
mixed mobility-resistance problem in reasonable wall times on a single modern Graphics Pro-
cessing Unit (GPU). This framework has been used to investigate three problems involving
sedimentation of flexible fibers against obstacles, in which we have observed interesting phe-
nomena owing to the complex coupling between the elastic response of the fibers, gravity,
contact forces and hydrodynamic interactions.
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Although in this chapter, we focused on passive fiber-like particles, our methodology can be
extended to active fiber-like particles, and to account for more complex shapes.

Owing to the capabilities afforded by our methodology, in the next part, we use numerical
simulations, experiments and analytical tools to investigate in detail the effects of obstacles on
the settling dynamics of flexible fibers.
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Sedimenting flexible fibers against rigid
obstacles
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Chapter 5

Obstacle-induced lateral dispersion and
nontrivial trapping of flexible fibers
settling in a viscous fluid
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Remark: the content of this chapter is directly extracted from the eponymous
paper (Makanga et al., 2023), published in Physical Review Fluids.
The motion of flexible fibers through structured fluidic environments is ubiquitous in nature
and industrial applications. Most often, their dynamics results from the complex interplay
between internal elastic stresses, contact forces and hydrodynamic interactions with the walls
and obstacles. By means of numerical simulations, experiments and analytical predictions, we
investigate the dynamics of flexible fibers settling in a viscous fluid embedded with obstacles
of arbitrary shapes. We identify and characterize two types of events: trapping and gliding,
for which we detail the mechanisms at play. We observe nontrivial trapping conformations on
sharp obstacles that result from a subtle balance between elasticity, gravity and friction. In the
gliding case, a flexible fiber reorients and drifts sideways after sliding along the obstacle. The
subsequent lateral displacement is large compared to the fiber length and strongly depends on its
mechanical and geometrical properties. We show how these effects can be leveraged to propose a
new strategy to sort particles based on their size and/or elasticity. This approach has the major
advantage of being simple to implement and fully passive, since no external source of energy is
needed.
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5.1 Introduction

The transport and trapping of fibers through complex environments, such as porous media,
occurs in a variety of systems. Small fibers, e.g., microplastic fibers, may propagate in soil
and cause pollution of groundwater (Re, 2019; Engdahl, 2018). When flowed through small
cracks in natural rocks, such flexible fibers may buckle, leading eventually to clogging and thus
closing of small paths (D’Angelo et al., 2010), which is for example used to prevent proppant
flowback in petroleum engineering (Howard et al., 1995). Similar clogging may happen in the
vascular system, where biofilm streamers may form in irregular channels, detach, transport and
ultimately remain attached and clog small vessels or structures such as stents (Rusconi et al.,
2010). The characterization of the interaction of flexible fibers with obstacles can further be
used to design chromatographic devices to separate DNA filaments by size by transporting them
through periodic arrays of posts in microfluidic devices (Chou et al., 1999). Other industrial
processes rely on the trapping of the fibers on the obstacles, e.g., in papermaking where the
fibers accumulates on the wires of a fabric through which a suspension is drained in order to
form the paper sheet (Vakil and Green, 2011). In all these situations, the velocity, deformation
or trapping of the fiber is determined by a complex interplay between elasticity, viscosity, and
interactions with the obstacles.

When a rigid fiber is freely transported in a viscous flow, the trajectory of its center of
mass globally follows the streamlines. The fiber may further interact hydrodynamically with
the bounding walls of the channel, causing rotations and reorientations (Nagel et al., 2018;
Cappello et al., 2019). When freely transported fibers encounter obstacles, they will thus glide
around them (López et al., 2015). When the fiber is flexible, it may deform in response to
viscous forces (Du Roure et al., 2019). These deformations help the fiber escape and migrate
through the flow streamlines, e.g., through buckling (Wandersman et al., 2010; Quennouz et al.,
2015), bending or coiling (Xue et al., 2022). In the presence of obstacles, flexible fibers may
thus deform, stretch, buckle, vault and tumble due to the flow generated by the obstacles,
which will affect their trajectory as well as their transport time (Sabrio and Rasoulzadeh, 2022;
Kawale et al., 2017; Chakrabarti et al., 2020); indeed, these dynamics increase the path taken
by the fiber, and may further lead to prolonged trapping periods or fibers remaining trapped
on the obstacles (Vakil and Green, 2011). The presence of obstacles thus affects the long-time
transport properties of fibers, such as dispersion, and since the collision times and the associated
transport velocity are size-dependent, this can serve as a base for sorting devices. However, in
these cases the overall lateral displacement remains small, as freely transported fibers globally
tend to align with the flow.

Conversely, when moving thanks to external forces such as gravity or in a centrifuge, with-
out an external driving flow, the trajectories of a fiber strongly depends on its orientation with
respect to the direction of the force. In particular, a rigid fiber settling in a quiescent fluid
oriented at an angle neither perpendicularly nor aligned with the force will drift as it settles
down, leading to large lateral displacements. During settling, flexible fibers experience deforma-
tions and reorientations that strongly affect their transport (Saggiorato et al., 2015; Marchetti
et al., 2018; Cunha et al., 2022). Indeed, a flexible fiber bends due to its own hydrodynamic
disturbances; this deformation leads to a torque that re-orients the fiber perpendicularly to
gravity, thus reducing its lateral drift (Xu and Nadim, 1994; Li et al., 2013), which also affects
their collective dynamics (Manikantan et al., 2014; Schoeller et al., 2021). In this situation, the
presence of an obstacle, by modifying the deformation and orientation of the fiber, will thus
directly affect its trajectory. Here, we consider the prototypal case of a single flexible fiber
settling in a quiescent fluid embedded with fixed obstacles of various shapes. We show that the
fiber interacts with the obstacle both hydrodynamically and through friction. The presence of
the obstacle induces a reorientation with an angle that depends on the fiber characteristics, in
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particular its flexibility, and the obstacle shape. The fiber then reorients to reach its equilibrium
shape after having travelled a finite distance; the magnitude of this lateral displacement is large
(typically several fiber lengths) and depends on the fiber characteristics, an effect we leverage
on to propose a sensitive sorting solution. Furthermore, we examine the conditions under which
a fiber may remain trapped on the obstacle, and identify non-trivial trapping events, providing
design clues for optimal sorting/filtration.

5.2 Problem description and relevant parameters

We study the dynamics of a flexible fiber settling in a viscous fluid, with viscosity η, embed-
ded with a rigid obstacle, as shown in Fig. 5.1. The flexible fiber is an elastic rod of length L
and circular cross-section of radius a, with centerline characterized by its arc length s ∈ [0, L].
The fiber is settling at a velocity U such that the Reynolds number Re = ρUL/η is always
small and viscous effects dominate the hydrodynamics. The obstacle is defined as a rigid tube
of width ω and depth DO. The cross-section of the tube is generated by an area-preserving
conformal mapping of the unit circle (Avron et al., 2004; Alonso-Matilla et al., 2019) (see
Appendix D.1). The obstacle shape and symmetry are controlled by a geometric parameter
K: K = 0 corresponds to a circular cross-section while K = ±0.6 is a triangle with negative
curvature pointing upward (downward respectively). The fiber starts at equilibrium with its
midpoint initially positioned at a given horizontal and vertical distance, Dx and Dy, from the
obstacle center of mass.

In the absence of obstacles, the equilibrium shape of a fiber subject to gravity in a viscous
fluid results from the balance between viscous and internal elastic stresses, which is quantified by
the so-called elasto-gravitational number Be = FGL2/EI = WL3/EI, where FG = WL is the
gravity force, W the weight per unit length of the fiber, E its Young’s modulus and I = πa4/4
its second moment of inertia. In the rigid case, Be� 1, the fiber keeps its initial shape, while in
the flexible regime, Be� 1, it bends due to its own hydrodynamic disturbances. The fiber will
thus adopt a more or less pronounced “U” shape, depending on Be, oriented perpendicularly
with the direction of gravity, independently of its initial configuration, as sketched in Fig. 5.1.
As we will show below, the presence of an obstacle destabilizes this equilibrium shape and
affects its trajectory. These changes depend on two additional parameters: the relative length
of the fiber with respect to the obstacle width ξ = L/ω and the obstacle shape K.

5.3 Experimental and numerical methods

5.3.1 Experimental methods

Experiments are carried out using a slightly modified version of the experimental setup and
protocol described in Marchetti et al., 2018. We fabricate elastic fibers of controlled properties
by molding liquid poly-vinyl siloxane (PVS 8, Elite double Zhermack) mixed with iron powder
(from 10 to 20%) into a capillary tube of radius a = 510 µm; after degassing and cross-linking
at room temperature, the fibers are extracted from the tubes. We work with two solutions:
10% Fe, for which ρf = 1107 ± 40 kg/m3 and E = 141 ± 50 kPa, and 20% Fe for which
ρf = 1143 ± 13 kg/m3 and E = 180 ± 75 kPa. The fibers are then released in a large tank
which has a rectangular cross-section (L1 = 60 cm, L2 = 40 cm) and height H = 80 cm, filled
with silicone oil (ρ = 970 kg/m3, η = 0.97 Pa.s). A 3D-printed obstacle of width 1 cm and
spanning the entire depth of the tank is held against the walls in the center of the tank (Fig.
5.2(a)). Fibers are initially held in the upper part of the tank by tweezers in a shape close to
their equilibrium configuration. It ensures that equilibrium is reach before interacting with the
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Figure 5.1: Schematic of the problem considered: a fiber sediments with its equilibrium shape
towards an obstacle of cross-section controlled by the parameter K ranging between K = −0.6
to K = 0.6.

obstacles. Fibers are released by slightly opening the tweezers simultaneously to avoid large
flow disturbances. We track the shape and position of the fiber using a high-resolution DSLR
camera with a wide 20 mm lens. Typically, the fiber settling velocity is 0.5 mm/s, corresponding
to Reynolds numbers Re ∼ 10−2, and images are taken every 10s.

5.3.2 Numerical simulations

The numerical method relies on the bead model (see Section 3.4) to solve the elasto-
hydrodynamic couplings and contact interactions between fibers and obstacles. Below we briefly
outline the method, more details are provided in Chapter 4. The fiber is modelled as a chain
of NF spherical beads of radius a connected by Hookean springs (Fig. 5.2(b)). The fiber beads
are subject to a gravitational force FG/NF , where FG = ‖FG‖ is the weight of the whole fiber.
Mechanical interactions between the fiber beads are governed by elastic forces, F E, that derive
from the stretching and bending free energies (see Section 3.4.2). Since we are considering
plane deformations, twisting of the fiber is neglected. The obstacle surface is discretized with
NO beads of radius aO stacked in slices. Each slice is discretized with a uniform distribution of
beads in contact along its contour C. The total number of beads in the system is N = NF +NO.
The contact forces between the obstacle and fiber beads, FR, are pairwise, short-ranged and
repulsive. The repulsion between bead i and j is given by Dance et al., 2004

FR
ij =

−
FR

(ai + aj)

[
R2
c − r2ij

R2
c − (ai + aj)2

]4
rij, for rij < Rc

0, otherwise

(5.1)

where rij = rj − ri is the vector between the bead centers and rij = |rij| . The repulsion
strength is chosen to prevent bead overlaps, FR = 4FG, and Rc = 1.1(ai + aj) sets the cutoff
distance over which the force acts, here 10% of the contact distance between a pair of beads.
Owing the spherical shape of the beads, and to the discrete nature of the bead model, the
repulsive force (5.1) can exert tangential efforts along the fiber centerline. The tangential
component of FR, denoted FR

τ hereinafter, therefore acts as a friction force between the fiber
and obstacle surface. For a given obstacle shape and fiber conformation, the relative magnitude
of this friction force is controlled by the relative size of the obstacle beads with respect to the
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Figure 5.2: (a) Experimental setup, showing a fiber initially held with tweezers under the
free-surface of the tank, with an obstacle of circular cross-section and depth DO held at the
center of the tank. (b) Numerical model, showing the fiber (gray), represented by a chain of NF

spherical beads linked elastically by Hookean springs, and an obstacle slice (red), discretized
by a series of NO beads along its contour. Both fiber and obstacle beads are subject to external
and internal forces: FR is the repulsive contact barrier force between the fiber and obstacle
beads, F C is the constraint force applied to obstacle beads in order to prescribe their motion,
F E and FG/NF are respectively the internal elastic and gravitational forces experienced by the
fiber beads. ti = ri− ri−1 is tangent vector to the fiber centerline at the position of bead i− 1.

fiber beads, α = aO/a. The maximum penetration of the obstacle bead in the void between
fiber beads is given by δ/a = 1 + α −

√
α(2 + α), which is an upper bound of the effective

roughness between the two surfaces. This maximum value is reached when the local radius of
curvature of the obstacle is equal to aO, i.e., when the obstacle has cusps and the beads are
touching. In the following we choose α = 0.61 − 2, which sets the maximum interpenetration
to δ/a = 0.17− 0.35.
Because the Reynolds number associated with the fiber motion is relatively small (Re � 1),
the kinematic equation of motion of the beads, in the absence of background flow, is given by
the constrained mobility problem (4.6), which we reproduce here for the sake of clarity

dR

dt
≡ U = N ·

(
FG/NF + F E + FR

)
, (5.2)

where R = [r1, · · · , rNF
, rNF+1, · · · , rN ] and U = [U1, · · · ,UNF

,UNF+1, · · · ,UN ] are 3N vec-
tors collecting the bead positions and translational velocities. N is the 3N × 3N constraint
mobility matrix1, as defined in Section 4.2.2. Long-ranged hydrodynamic interactions, namely
the bead mobility matrix M, to construct N , is defined in an infinite fluid domain (Zuk et al.,
2014). Here the choice of an unbounded geometry is justified by the fact that the tank dimen-
sions are approximately one order of magnitude larger than the fiber length in experiments,
and also because the fiber relaxes to equilibrium long before reaching the bottom of the tank.
After computing U we then integrate the bead positions in the equation of motion (5.2) using
an implicit time integrator based on Backward Differentiation Formula (BDF) with adaptive
time-stepping (Brown et al., 1989).

1The constraint mobility matrix N includes the constraint forces FC by construction.
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5.4 Results and discussion

The presence of the obstacle leads to two main outcomes that depend on the mechanical
and geometrical properties of the system: the fiber can either glide along the obstacle (see
Fig. 5.3(a)) or remain trapped around it (see Fig. 5.3(b)). These events results from the complex
interplay between internal elastic stresses, contact forces and hydrodynamic interactions with
the embedded rigid obstacle.

Figure 5.3: (a− b) Numerical (S) and experimental (E) chronophotographies of a flexible fiber
settling against an obstacle in a viscous fluid. The time step between two consecutive frames
is taken as ∆t = 10s. The initial fiber configuration in numerical simulations is taken from the
first experimental frame (see also movies 1 and 2 in supplementary material (Makanga et al.,
2023)). (a) Gliding event: parameter values are Be = 200, ξ = 7.71 and Dx/L = 0.25. The
gliding event is characterized by a short trapping period around the obstacle followed by a drift
motion. (b) Trapping event: parameter values are Be = 210, ξ = 9.35 and Dx/L = 0.03. The
trapping event is characterized by a prolonged trapping period of the fiber around the obstacle.
(c − d) Evolution of the total velocity of the center of mass of the fiber as function of time in
experiments (circles with grey shaded error bars) and numerical simulations (lines) for various
depths of the obstacle, respectively for (c) gliding and (d) trapping events. The velocity and
the time are scaled respectively by the settling velocity of the corresponding rigid fiber oriented
perpendicularly to the direction of gravity, V⊥, and the characteristic settling time T = Lη/W .

Before addressing the role of each of these mechanisms on the fiber trajectory, we char-
acterize these two situations and use them to validate our numerical method. Fig. 5.3 shows
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numerical and experimental realizations of the gliding and trapping events for a semi-flexible
fiber (Be ∼ 200) settling against an obstacle (the complete set of parameters is provided in
Appendix D.2). In the simulations, the initial position of the fiber centerline and its me-
chanical properties are directly extracted from the experiments. Note that to compute the
elasto-gravitational number Be in our multibead approach, we have used the volume of the
object as a continuous fiber and not as a chain of beads, which is smaller by a factor 2/3
(Marchetti et al., 2018).

As shown by the chronophotographies in panels (a) − (b), the simulations agree qualita-
tively well with experiments for both events. In addition, the time evolution of the settling
speed, reported in panels (c) − (d), shows excellent quantitative agreement, thus confirming
the adequacy of our method to capture fiber-obstacle interactions in a viscous fluid. In the
gliding case, the fiber starts close to its equilibrium shape with a settling speed larger than a
rigid one (V > V⊥), (see panels (a) and (c)). As it settles, it progressively slows down until it
partially hits the obstacle and reaches its minimum speed. The speed increases again as the
fiber glides along the obstacle. Upon release, it is more aligned with gravity and reaches its
maximum velocity (V/V⊥ ≈ 1.2). Eventually it slowly relaxes to its equilibrium shape: the
velocity decreases to its initial value and the fiber drifts sideways as it reorients perpendicular
to gravity. In the trapping case, the initial lateral distance between the fiber and obstacle, Dx,
is smaller. As a result the fiber slows down continuously, wraps around the obstacle and finally
remains in a trapped configuration indefinitely (see Fig. 5.3(b) and (d)). The decrease in the
settling speed is more pronounced when the fiber touches and wraps around the obstacle in the
interval 1.3 < t/T < 4, where T = Lη/W is the characteristic settling time. The trapped con-
figuration in the steady regime is asymmetric with respect to the obstacle center of mass. Such
stable asymmetric configuration is only permitted by the tangential contact forces and results
from an equilibrium configuration that minimizes the total energy due to external (gravity and
contact) and internal elastic forces.

We note that the settling velocity of the fiber weakly depends on the obstacle depth DO in
numerical simulations, and is close to the experimental value, for which the obstacle is spanning
the entire depth of the tank, with typical value DO/L ≈ 4 (see Fig. 5.3(c − d)). This weak
dependence can be understood by the fact that the fluid in the tank is at rest and the dominant
portion of the flow induced by the fiber decays as r−1. Therefore, the response of the obstacle,
to maintain its position, is weak for large separation distances. As a result the extremities of
the obstacle that are far from the fiber barely affect its motion. That is why we only observe
a slight decrease in the velocity of fiber close to the obstacle when DO increases. We note that
in the case of a fiber transported by a convective, e.g., plug or Poiseuille flow, the fiber velocity
would be strongly correlated to the obstacle depth as its response to the ambient flow (which
is no longer zero) has a magnitude close to the fiber speed.

Now that the gliding and trapping events have been described, and the numerical method
validated, we use numerical simulations and analytical tools to explain their mechanical origin,
identify their key parameters and to explore their potential for sorting applications.

5.4.1 Gliding events: tilting and lateral displacement induced by
fiber-obstacle interactions

The gliding motion along the obstacle induces a tilt of the fiber centerline with respect to
gravity, measured at the midpoint, denoted θ(t) (see Fig. 5.4(a)). Here, the origin of time
(t = 0) is taken when the fiber leaves the obstacle, i.e., when there is no contact anymore. As
mentioned earlier, this tilt induces a lateral drift as the fiber reorients back to its horizontal
equilibrium shape. We define this lateral shift, δ̃x = δx/L, as the lateral displacement of the
fiber center of mass between a given starting time, here t = 0, and the final equilibrium state.
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In the elongated limit (ε = 2a/L � 1), the velocity and lateral displacement of weakly
flexible fibers (Be� 1) with initial orientation θ(0), and negative curvature, has been computed
analytically by Li et al., 2013 using slender body theory (Keller and Rubinow, 1976; Johnson,
1980; Tornberg and Shelley, 2004). Their approach is based on a multiple-scale analysis (Hinch,
1991; Bender and Orszag, 1999), where they identify two relevant independent timescales in
the fiber dynamic: the time for the fiber to settle its length L, of order O(1), and the time
to reorient toward its equilibrium configuration, which is much slower and of order O(Be−1).
In the case of a fiber with uniform thickness, mass and bending stiffness, they found that the
leading order settling velocity is given by U = 2c0 cos(θ)t̂(θ) − c0 sin(θ)n̂(θ), where (t̂, n̂) are
the tangent and normal vector at the midpoint of the centerline, and c0 = ln (1/ε2e). Therefore,
the velocity components in the lab frame, Ux and Uy, are obtained by dotting separately with
the unit vectors x̂ and ŷ:

Ux = U · x̂ =
c0h

1 + h2
, (5.3)

Uy = U · ŷ = −c0
(

1 +
1

1 + h2

)
, (5.4)

where

h(t) = tan (θ(0)) exp ((2CBe)t), (5.5)

with

C =
7

400
+ c−10

(
1813− 300π2 + 630 ln (2)

18000

)
. (5.6)

Finally, the lateral shift can be deduced by integrating Eq.(5.3) and assuming 0 < θ(0) ≤
π/2

δ̃x =

∫ ∞
0

(U · x̂)dt =
c0

2CBe
β0, (5.7)

where

β0 =
π

2
− θ(0). (5.8)

Eq.(5.7) is valid in the slender body regime if C > 0, i.e., when ε = 2a/L < 0.196. Holding β0
constant in Eq.(5.7), we observe that, the lateral shift is inversely proportional to the elasto-
gravitational number Be and the larger displacements are achieved for very stiff fibers, Be→ 0.
The lateral shift is also proportional to the initial angle β0 by holding Be constant. We also
notice that, δ̃x = 0 when θ(0) = π/2: a fiber whose unit tangent at the midpoint is initially
oriented perpendicular to the direction of gravity, will not experience a drift motion, as expected.
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Figure 5.4: (a) Illustration of a fiber at the edge of the obstacle (downstream). t̂ and n̂ are
respectively the unit tangent and unit normal vectors. The orientation angle θ(t) is defined
between t̂ and the direction of gravity −ŷ. (b) Results from numerical simulations (solid line)
and from theoretical predictions (dash-dot line) showing the trajectory of the center of mass
of the fiber for Be = 10 and ξ = 2. The initial configuration of the fiber is considered at
the edge of the obstacle (downstream), with an initial orientation θ(0) induced by its shape,
here for K = 0.6. (c) Scaled lateral shift δx/L versus β0/Be. Comparison of the theoretical
predictions (lines) with numerical results (symbols) done with one slice on the obstacle, for
various values of the geometrical parameter ξ and the conformal mapping parameter K. The
corresponding values of ε are 0.031, 0.016, 0.008 and 0.0032, respectively for ξ = 0.5, 1, 2 and 5.
The showed numerical results (symbols) correspond to three sets of data for Be = 10, 100 and
200. The initial offset of the fiber midpoint is set horizontally at Dx/L = 0.005. Parameter
values: ∆s/C = 0.01, α = 2, and Dy/L = 5.

Figure 5.4(b) shows a typical trajectory of the midpoint of a rigid fiber with Be = 10,
ξ = 2, after it has hit an upward-pointing triangular obstacle (K = 0.6). The black solid
line corresponds to the numerical simulation of the full system and the red dashed line to the
theoretical prediction obtained by integrating (5.3) and (5.4) in time with the initial tilt angle
taken from the numerics (here θ(0) = 0.38). While the two curves show some discrepancies at
short time when the fiber reorients, probably due to the fact that hydrodynamic interactions
with the obstacle are not taken into account in the theoretical approach, their lateral shift
matches exactly at long times when equilibrium is reached. Fig. 5.4(c) compares the predicted
lateral shift in Eq. (5.7) with numerical simulations for a large range of realizations involving
different obstacle shapes K = −0.6, . . . , 0, 6, relative length ξ = 0.5, . . . , 5. As before, the
initial tilt angle in Eq. (5.8) is taken from the simulations after hitting the obstacle. Since the
theoretical approach is valid only for weakly flexible fibers, we used relatively small values of
Be = 10, 100, 200 in the simulations. As expected, the simulated lateral shift δ̃x is monotonic
in β0/Be. Its values is maximal the most rigid case, i.e. the largest β0/Be. Similarly to the
theoretical prediction we observe a slow increase of δ̃x with ξ (i.e. ε−1) for a given value of
β0/Be: for the same mechanical properties and a given obstacle shape, elongated fibers exhibit
larger displacements than short ones. While theory and numerics agree reasonably well for
ξ > 1 (ε � 1), a slight shift appears for ξ = 5 (black symbols vs. black solid line) due to the
fact that the fiber has a positive curvature at its midpoint in the simulations when it leaves
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Figure 5.5: Results from numerical simulations of the trajectory of the center of mass of the
fiber for ξ = 1 and three different shapes of the obstacle (K = 0, 0.3 and 0.6). The snapshots
show the configurations of the fiber under sedimentation in a frame moving with its midpoint,
each configuration corresponds to the point having the same color on the trajectory. The initial
offset of the fiber midpoint is set horizontally at Dx/L = 0.05 with respect to the center of mass
of the obstacle. (a) With an intermediate value of the elasto-gravitational number Be = 100.
(b) With a large value of the elasto-gravitational number Be = 1000. Note that xc and yc
represent the position of the center of mass of the obstacle in xy plane. Parameter values are
as in Fig. 5.4.

the obstacle (see movie 3 in the supplementary material (Makanga et al., 2023)), which violates
the hypothesis of negative initial curvature in the theoretical approach. This error is decreased
if the initial angle is taken at a later time in the simulations when the curvature at the midpoint
becomes negative. For ξ ≤ 1, the numerical simulations (red and green symbols) present some
scatters which reflect the effects of hydrodynamic interactions of order O(1/d) induced by
the obstacle, d being the fiber-obstacle distance. Note that, these effects are not taken into
account in the theoretical approach where the fiber is isolated. In addition to the dependence
of the lateral shift on ξ, we observe also the dependence of the lateral shift on the initial
orientation angle induced by the obstacle shape. Before embarking in a detailed explanation
on the dependence of δ̃x on the obstacle shape, we notice that for large values of ξ, i.e. ξ = 5,
the lateral shift is quasi-independent of the obstacle shape. For instance, for β0/Be ≈ 10−1,
the induced local deflection along the fiber is lower than in the other cases (ξ < 5), therefore
the initial fiber configurations are quasi-straight and have the same initial orientation angles at
the edge of the obstacle (downstream) for all K (see movies 4-6 in the supplementary material
(Makanga et al., 2023)). However, at smaller ξ, we observe a slight dependence of δ̃x on the
obstacle shape. This dependence is due to the different curvatures of the obstacle sides, i.e.
negative curvature (K = −0.6 and K = 0.6) or positive curvature (K = −0.3, K = 0 and
K = 0.3), and depends on the fiber flexibility. Finally, the increased discrepancies between
simulations and theory at Be = 200 provide an upper bound for the range of validity of the
theory which relies on an expansion at small Be. To include larger values outside the small Be
constraint, we perform numerical simulations for ξ = 1 with Be = 1000. Typical trajectories
for Be = 100 and Be = 1000 are presented in Fig. 5.5 for three shapes. In Fig. 5.5(a) for
Be = 100, we observe that the lateral shift is maximized where the curvature of the obstacle
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shape has a positive sign (K = 0 and K = 0.3) and minimized where it is negative (K = 0.6)
as observed in Fig. 5.4. However, for a large value of Be (Be = 1000) shown in Fig. 5.5(b), the
trend is different, the lateral shift is maximized for K = 0.6 compared to the other cases K = 0
and K = 0.3. This difference can be explained by the fact that for K = 0.6, the fiber takes
longer to release from the obstacle (characterized by the plateau region) than for K = 0 and
K = 0.3, due its high flexibility which promotes higher adherence to the obstacle curvature.
Nevertheless, for all shapes the angle at which the fiber leaves the obstacle is always small
(typically θ < π/6) and only slightly depends on the obstacle shape. The obstacle thus always
tends to align the fiber with the direction of gravity; from there, the fibers have to reorient
towards their equilibrium shape while drifting laterally; the magnitude of the lateral drift then
strongly depends on the fiber’s length and flexibility through Be, which offers opportunities for
sorting fibers according to their characteristics.

Finally, we systematically explore the influence of the parameters on the lateral shift with
a large set of simulations in the range −0.6 ≤ K ≤ 0.6, 10 ≤ Be ≤ 1000, 1 ≤ ξ ≤ 5, for a given
initial lateral offset Dx/L = 0.05. The results, reported in Fig. 5.6, show the coexistence of the
gliding and trapping states, the latter corresponding to the purple symbols (δx/L = 0). Before
undertaking a detailed investigation of the trapping events in Section 5.4.2, we qualitatively
highlight the features of the resulting phase diagram (Fig. 5.6(a)) for each value of Be. Firstly,
we observe that the maximum value of the lateral displacement δx/L starts to saturates with
Be−1 in the flexible regime Be ≥ 200, which clearly indicates where the linear relationship
obtained from the theory (5.7) breaks down.

Figure 5.6: Results from numerical simulations computed with one slice on the obstacle. The
initial offset of the fiber midpoint is set horizontally at Dx/L = 0.05 with respect to the
center of mass of the obstacle. (a) Phase diagram, showing the scaled lateral shift δx/L for
various values of the elasto-gravitational number Be, the relative length ξ and the conformal
mapping parameter K. The purple symbols (δx/L ∼ 0), denote the trapping events. (b − e)
Trapping events resulting from the phase diagram (see also movies 7-10 in supplementary
material (Makanga et al., 2023)). (b) Be = 10, ξ = 0.5 and K = −0.6. (c) Be = 100, ξ = 2 and
K = −0.3. (d) Be = 200, ξ = 2 and K = 0.3. (e) Be = 1000, ξ = 5 and K = 0.6. Parameter
values are as in Fig. 5.4.

Secondly, we notice that in the flexible regime (Be = 1000), for a given obstacle shape K, the
lateral shift in the gliding events is inversely proportional to the fiber length ξ (and thus pro-
portional to ε). This trend contrasts with the rigid and semi-flexible regimes (10 ≤ Be ≤ 200)
where the opposite is observed and predicted by the theory (5.7). Indeed as the flexibility
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increases, local deformations happen near the tip of the longest fibers as they exit the obsta-
cle, which tends to reorient them earlier than shorter ones and therefore reduce their lateral
displacement. Thirdly, trapping states are mostly localized in the bottom left (short fibers on
downward-pointing triangles) and upper right (long fibers on upward-pointing triangles) cor-
ners of the (K, ξ) plane for Be ≥ 100. In the most rigid regime Be = 10 trapping only occurs
on obstacles with a large incident contact surface (K ≤ 0).

5.4.2 Investigation of trapping events

As shown in Fig. 5.6(b − e), for a given initial lateral offset (here Dx = 0.05L), the fiber
can be trapped in many different ways depending on the obstacle shape K, elasto-gravitational
number Be, and relative length ξ. Some of these configurations might not seem intuitive at
first sight and need to be rationalized.
The goal of this section is to systematically explore the wide diversity of trapping states in
order to connect them to the geometric and mechanical parameters of the system.

In the absence of surface roughness, steric forces with the obstacle are exclusively directed
along the normal of the fiber centerline. In this regime, trapping is only possible for symmetric
configurations i.e., with zero lateral offset (Dx/L = 0), where the gravity forces balance on
both sides of the fiber. However, surface asperities appear both in experiments and simulations:
even though the crosslinked fibers are smooth, the 3D-printer has a finite resolution and defects
might occur, while the simulated obstacles and fibers have a maximum interpenetration length
δ/a ≈ 0.17 (see Section 5.3.2). Surface roughness generates friction directed along the fiber
centerline. These tangential forces can balance asymmetric gravity forces and thus prevent the
fiber from slipping away from the obstacle. In numerical simulations, friction forces correspond
to the tangential component of the steric forces between obstacle and fiber beads FR

τ . The
trapping probability and trapping configurations are obviously highly sensitive to the details
of the surface roughness. However, we did not try to match the experimental roughness in
the simulations. The focus of this section is, for a given roughness value, to understand the
mechanisms that lead to the observed trapping states.

To do so, we systematically explored the four-dimensional parameter space (ξ,K, Be,Dx/L).
For each simulation, the fiber is released at a fixed height Dy/L = 5 with its equilibrium shape
and the initial lateral offset is varied between Dx/L = ±0.5 with steps of size 0.01. Figure
5.7 shows the probability density function (PDF) of finding the trapped fiber centerline, with
relative length ξ = 2, as a function of the elasto-gravitational number Be and obstacle shape
K. Owing to the symmetry of the problem, the PDF is computed only for the trapping events
(TE in the figure) happening in the range Dx/L = [0, 0.5], which represents 51 simulations for
each panel. The range of initial offsets that correspond to the trapping events is shown at the
bottom of each panel.

In the stiff limit, Be = 10 (Fig. 5.7i), the fiber barely deforms and cannot fit the obstacle
shape. The trapping configurations result from the balance between the tilt induced by the lever
arm due to gravity and the friction forces at the contact points with the obstacle. The trapping
probability of the fiber therefore decreases as the tip of the obstacle narrows, as shown by the
drop in the number of trapping events (TE) between K = −0.6 and K = 0.6 (panels i(a− e)).
This competition between lever arm and friction at the tips obstacle leads to surprising trapping
states for upward pointing triangles i(d − e). In the highly flexible regime, Be = 1000 (Fig.
5.7iv), the fiber better fits the obstacle shape and its freely hanging extremities are aligned
with the gravitational field. Such alignment with gravity induces a tangential load along the
fiber centerline, which competes with friction in the high curvature regions of the obstacle. As a
result, the fiber is mostly trapped by obstacles with high curvatures, i.e., for K = ±0.6 (panels
iv(a) and iv(e)), and easily slips away from smooth obstacles (panels iv(b− d)).
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Figure 5.7: Probability distribution of the trapping configurations of the fiber around the
obstacle, for ξ = 2 and various values of Be and K. TE stands for the number of trapping
events. Note that we used 102 initial configurations per shape and for a given value of Be,
generated by varying the initial offset Dx/L between −0.5 and 0.5 with a step size of 10−2.
For the sake of clarity, the initial offsets of the showed configurations fall between 0 and 0.5,
since the remaining configurations are the same by symmetry. The range of initial offsets
corresponding to the trapping events is shown at the bottom of each panel. Parameter values
are as in Fig. 5.4.

To further quantify the main differences between the stiff and flexible limits, we measure the
total tangential (i.e., frictional) component of the resultant steric force, FR

τ , acting on the fiber
against an obstacle with a high trapping probability, K = −0.6, as a function of the relative
length ξ, for a small initial offset Dx/L = 0.05 (see Fig. 5.8(a)). First we notice that, regardless
of the rigidity, the friction force is small for short relative lengths ξ ≤ 1, where the fiber fully
rests on the base of the triangle. When ξ > 1, the rigidity makes a big difference since the
contact line with the obstacle becomes more and more localized along the fiber. In the rigid
case (Be = 10), the tilt induced by the lever arm effect increases with ξ and so does the friction
force to counterbalance the resulting tangential motion. In the flexible regime (Be = 1000),
as soon as the fiber extremities stick out of the obstacle (ξ > 1), they align with gravity and
generate a strong tangential load (i.e., a pulley effect). As a result the friction force jumps
suddenly, by a factor 24, between ξ = 1 and ξ = 2 and is at least twice larger than the friction
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on the rigid fiber. This is illustrated for ξ = 2 in the close-up views of Fig. 5.8(a), where the
larger compliance of the flexible fiber leads to an extra frictional contact near the right edge
of the triangle compared to the rigid one. For longer flexible fibers (ξ = 5), the curvature near
the edges of the obstacle saturates and so does the friction force.

Figure 5.8: (a) Evolution of the tangential component (frictional force) of the steric force scaled
by the gravitational force for two different values of Be and various values of ξ, Dx = 0.05L
and K = −0.6. The close-up views show the corresponding distributions of the tangential
component of the steric force along the fiber centerline, for ξ = 2. (b) Trapping events from
experimental (i − ii) and numerical (iii − iv) results obtained for K = 0.6. (i) Be = 36 and
ξ = 2. (ii) Be = 210 and ξ = 4. (iii) Be = 10 and ξ = 2. (iv) Be = 200 and ξ = 5.

In the intermediate semi-flexible regime (Be = 100, 200, see Fig. 5.7ii− iii), the increasing
flexibility promotes alignment of the extremities with gravity but the fiber cannot fit obstacles
with high curvatures. As a result fibers are much less trapped for K = −0.6 because the strong
tangential motion induced by the hanging extremities beats the friction with the pointy vertices
of the triangle, while the increased contact area with a smooth inverted triangle, K = −0.3,
allows for more trapping configurations. For the upward pointing triangles, the fiber can bend
enough so that friction at the tip can beat tangential motion. Fiber flexibility also allows one
of its extremities to touch one of the sides of the triangle. The vertical component of the steric
force between the obstacle side and the fiber extremity, which acts against gravity, increases
as the obstacle curvature becomes negative, leading to higher trapping probability for K = 0.6
than for K = 0.3.

Some of the exotic, asymmetric, trapping states observed in numerical simulations with
non-circular obstacles have also been reported in experiments. Figure 5.8(b)i − ii shows two
occurrences of relatively long fibers being trapped on a curved triangle (K = 0.6) in the stiff
(Be ≈ 36 and ξ = 2) and semi-flexible (Be ≈ 210 and ξ = 4) regimes. The two panels below
(Fig. 5.8(b)iii − iv) show qualitatively similar trapping states from numerical simulations in
the explored parameter state (Be = 10 and ξ = 2 for the stiff regime and Be = 200 and
ξ = 5 for the semi-flexible case), thus confirming the relevance of our parametric exploration,
and more importantly, showing that even a small amount of friction can lead to nontrivial
trapping configurations. This good agreement with experiments suggests that the effective
friction coefficient in our simulations is at least equal or larger than the experimental one.
Finally, for the range of parameters considered, our analysis shows that trapping is overall
minimized with smooth obstacles (K = 0, 0.3). These findings could be used in the design of
fiber sorting devices where trapping or long residence times are undesired.
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5.4.3 Toward a sorting device

We have shown that an obstacle can reorient a settling fiber, and thus deviate its trajectory.
This reorientation and its subsequent lateral motion strongly depend on the geometrical and
mechanical properties of the fiber (Be, ξ) and the obstacle shape (K).

Figure 5.9: (a) The central panel shows the trajectories of the center of mass of two fibers
with the same length ξ = 2 and different elasto-gravitational number, respectively Be = 200
and Be = 1000. The side to side panels show the corresponding chronophotographies of the
fiber centerline settling through the unit cell, respectively on the left and right of the central
panel (see also movies 11 and 12 in supplementary material (Makanga et al., 2023)). (b)
Trajectories of the center of mass of two fibers with the same rigidity EI and different length,
respectively ξ = 1 and ξ = 2. (c) Trajectories of the center of mass of two fibers with the
same elasto-gravitational number Be = 200 and different length, respectively ξ = 1 and ξ = 2.
(d) Trajectories of the center of mass of two fibers with the same elasto-gravitational number
Be = 200 and length ξ = 2, settling through two different unit cells, respectively K = −0.3
and K = 0. In all cases studies, the initial offset of the fiber midpoint is set horizontally at
Dx/L = 0.05 with respect to the center of the unit cell. Parameter values: ∆s/C = 0.02, α = 2
and Dy/L = 5.

We now discuss how to leverage and guide such lateral dispersion with obstacles arranged
in a lattice to sort fibers according to their flexibility and/or length. Our goal here is to provide
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the proof of concept of a new, passive, sorting strategy rather than a systematic parametric
exploration or optimization of the system. In the following, we analyze the motion of a fiber
settling towards a unit cell of a centered square lattice of circular obstacles (K = 0). The lattice
spacing between nearest obstacles is d = 1.5ω, which leaves a gap of d− ω = 0.5ω for the fiber
to go through. The fiber is initially released horizontally with a lateral offset Dx = 0.05L with
respect to the center obstacle. We consider two different sorting strategies: 1) sorting fibers by
rigidity EI for a given length L, 2) sorting by length for a given rigidity.

To showcase the first sorting strategy, we consider two fibers with the same relative length
ξ = 2 that differ by a factor 5 in their rigidity, so that their elasto-gravitational number are
Be = 200 and Be = 1000 respectively. Figure 5.9(a) shows their conformation and trajectory
over time. The most flexible fiber (Be = 1000) approaches the lattice with an equilibrium “U”
shape such that its end-to-end width is smaller than the spacing between the obstacles in the
first row of the lattice. As a result it directly falls onto the center obstacle, zigzags around it
and escapes from the center of the lattice. Due to its high elasto-gravitational number, the
fiber quickly readjusts to find its equilibrium “U” shape with almost no lateral displacement
(δx/L = 0.01). On the other hand, the more rigid fiber approaches the lattice with a “V” shape
that is wider than the entrance. It therefore interacts with the first two obstacles and migrates
to the left side of the lattice. It thus lands on the outer side of the left obstacle, allowing it to
exit vertically from the diagonal of the lattice and slowly reorient back to its equilibrium shape
while drifting leftward. As a result, the fibers are separated by a distance 2.13L after passing
only through one unit cell of the lattice, which clearly illustrates the potential efficiency of the
first strategy with a larger lattice.

In the second scenario, only the fiber length changes. The shortest one has a relative length
ξ = 1 and an elasto-gravitational number Be = 200. The second one is twice longer (ξ = 2),
and thus has an elasto-gravitational number 8 times higher (Be = 1600). Due to its small size,
the short fiber directly lands on the center obstacle (see Fig. 5.9(b−c)). After wrapping around
it, it aligns with gravity, and exits from the center of the lattice. It finally slowly reorients while
drifting sideways which results in a lateral displacement of δx/L = 0.7. The second fiber is
twice longer and 8 times more deformable, which allows it to bend between the pores (see Fig.
5.9(b)). It therefore follows a very similar trajectory to the first scenario (Be = 1000 and ξ = 2)
shown in Fig. 5.9(a), where very little lateral displacement (δx/L = 5× 10−4) is observed due
to the short reorientation time. If the fibers were rigid regardless of their length, (i.e., EI � 1
so that Be < 1 for all L), then they would barely deform and the separation would be more
efficient because the pore size would differentiate them: short fibers (L/d < 0.5) would fall
vertically through the pores while long fibers (L/d > 0.5) would travel along the diagonals.
However, our simulations suggest that non-rigid fibers tend to fall vertically and exit from the
same location in the lattice regardless of their length. Indeed, long fibers (ξ > 1) are much
more deformable than short ones (because of the L3 factor in the elasto-gravitational number
Be), and therefore bend and squeeze between the pores to fall in a zig-zag motion. Even though
these fibers are not sorted inside the network, the lattice is still useful to reorient them so that
the difference in their reorientation dynamics, and the subsequent lateral drift, separates them
in the obstacle-free area underneath.

Although in most practical cases, the fibers would be sorted by length and/or rigidity, i.e.
with coupled variations in both ξ and Be, we can isolate the mechanisms at play by varying
ξ and keeping Be constant (i.e. by adjusting the rigidity EI) in order to identify the effect
of changing the fiber length only. In that case, sorting becomes easier. Indeed, Fig. 5.9(c)
shows the trajectory of two fibers of different length (ξ = 1 and ξ = 2 resp.) with the same
elasto-gravitational number Be = 200. Because the longest fiber has the same deformability
as the small one, it is now rigid enough to travel along the diagonal of the lattice. The final
separation, here 2.84L, is four times greater than in the previous scenario.
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Finally, one may wish to optimize sorting by tuning the obstacle shape. In Figure 5.9(c)
we compare the trajectory of a semi-flexible fiber (Be = 200 and ξ = 2) crossing a unit cell
made of circles (already analysed above) and of smooth inverted triangles (K = −0.3). The
triangular obstacles have two main effect on the fiber trajectory: 1) the fiber follows a much
more complex path across the lattice, leading to a different exit location (through the center
instead of the diagonal); 2) due to prolonged contacts with the flat base of the triangles, the
residence time of the fiber is increased by 50% (15T instead of 10T for K = 0), as expected
from our analysis in Section 5.4.2. These effects may not be particularly desirable or easy to
comprehend for the design of an efficient sorting platform. Furthermore, obstacles with circular
cross-sections also minimize fiber trapping, and may thus provide a simple, easy to manufacture
solution for optimal sorting.

5.5 Conclusions

The dynamics of a flexible fiber sedimenting in a structured medium is dictated by com-
plex and intricate couplings, combining long-ranged hydrodynamic interactions, internal elastic
stresses and contact forces (steric and/or friction) between the fiber and the surface of obstacles
of arbitrary shape. With a combination of theory, numerical simulations and experiments, all
of which show excellent quantitative agreement, we explain how these various mechanisms lead
to lateral migration or trapping by obstacles.

Indeed, in a large tank, in the absence of obstacles, flexible fibers adopt an horizontal,
curved, equilibrium shape and settle vertically. Upon hitting an obstacle, a fiber changes
its orientation by an amount that depends on the obstacle shape K, relative length ξ, fiber
deformability Be and initial lateral offset Dx. As it relaxes back to its equilibrium shape the
fiber drifts laterally due to its elongated shape. In the limit of small Be, the relaxation time
scale and the resulting lateral displacement are inversely proportional to Be. This obstacle-
induced lateral displacement under gravity can be used to passively sort fibers according to their
Be and thus their mechanical properties E and/or length L. Preliminary simulations show that
fibers can indeed be efficiently sorted by length and/or rigidity in a lattice of circular obstacles.
This system has the major advantage of being fully passive, since no energy is needed, low-tech
and simple to implement. The design of a sorting device only requires a tank and 3D-printed
obstacles. However, even a small amount of friction (due to roughness) between the fiber and
obstacle surfaces can lead to the trapping of the fiber. The trapping configurations and their
likelihood depend on the obstacle shape and Be, and we find that the obstacle shape that best
avoids trapping is a circular cross-section.

When transported by a background flow, a flexible fiber can migrate across the streamlines
by dynamically changing its shape in the velocity gradients induced by the obstacle. However,
even if the fiber undergoes drastic deformations (buckling, rotation, coiling, snaking,...), the
resulting lateral displacement remains small compared to the fiber length (δx/L < 1) (Vakil
and Green, 2011). In our system, the reorientation induced by the obstacle generates a lateral
shift one to two orders of magnitude larger (δx/L ∼ O(1 − 100)). We therefore believe our
approach could be a complementary and promising alternative to the traditional deterministic
lateral displacement (DLD) methods used to sort elongated particle in microfluidics (McGrath
et al., 2014). In some practical situations (wastewater treatment, textile and micro-plastic
clean-up, separation of pathogen populations), and in order to increase the throughput of our
method, a whole fiber suspension would be injected in the device. If the fiber concentration
is high enough, fiber-fiber hydrodynamic and contact interactions would probably affect their
lateral displacement and their trapping likelihood. In the absence of obstacles, sedimenting fiber
suspensions are known to exhibit clustering and large scale density fluctuations (Saintillan et al.,
2005; Guazzelli and Hinch, 2011; Schoeller et al., 2021; Du Roure et al., 2019). The effect of
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obstacles and porosity on these collective effects is an open fundamental question that we will
tackle in the future to further develop our sorting strategy.
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Sedimentation of a flexible fiber in a
structured environment
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Remark: this chapter is written as a standalone article for publication.
The motion of flexible fibers often happens in complex environments that are structured by
obstacles. Examples range from the transport of biofilm streamers through porous media to the
design of sorting devices for DNA molecules. For large number of such problems, the dynamics
of the fibers result from the complex interplay between internal elastic stresses, contact forces
and hydrodynamic interactions with the obstacles. By means of numerical simulations, we
investigate the dynamics of flexible fibers settling through a periodic array of pillars that is
immersed in a quiescent viscous fluid. We show that the fiber trajectory falls at long times into
one of two modes of migration, zigzag or displacement, that are determined by the short-time
scattering dynamics induced by fiber-pillar interactions. In the zigzag mode, there is no average
displacement from the direction of gravity, the fiber center of mass follows a quasi-straight line.
Conversely, in the displacement mode, there is a net displacement from the direction of gravity,
the fiber center of mass follows a cyclical skew bumping path. We show how this long-time
behavior can be predicted through a theoretical model based on minimal ingredients. These
findings, together with the long-time transport properties of the fiber, provide physical insight
into future experiments, as well as the design of gravity-based sorting devices to sort elongated
particles based on their size and/or elasticity.

6.1 Introduction

The motion of fibers in a fluid is ubiquitous in various situations. Examples include the pro-
cess of making pulp in paper industries (Lundell et al., 2011), where cellulose fibers are mixed
with water; and the transport of microplastic fibers through fluidic environments (Browne et al.,
2011b; Engdahl, 2018; Re, 2019; Kane and Clare, 2019; Sutherland et al., 2023). Over the last

73
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20 years, several studies focused on fluid-fiber interactions in different fluid domains, and re-
sulted to numerous well known conclusions (Du Roure et al., 2019). However, there are many
instances in nature and engineering applications where fiber-like particles must make their way
through a fluidic environment embedded with obstacles, whose size is similar to the fiber char-
acteristic length. In nature, bacteria often live in biofilms, which act as antibiotic-resistant and
may lead to undesirable effects. Their migration to secondary sites results to the formation of
biofilm streamers, large elastic filaments, that can lead to clogging while transported through
complex environments (Dykaar and Kitanidis, 1996; Drescher et al., 2013). Understanding
their navigation is essential for biomedical applications, for instance to prevent infections. In
engineering applications, especially for particle sorting purposes, fiber-obstacle interactions are
relevant to deterministic lateral displacement (DLD) device design, as the obstacles affect the
long-time transport properties of fiber-like particles (e.g., long linear polymer chains such as
DNA molecules) through repetitive collisions (Chou et al., 1999; Kulrattanarak et al., 2011a,b).
In all the aforementioned situations, the dynamics of the fiber result from the complex inter-
play between internal elastic stresses, contact forces and hydrodynamic interactions with the
surrounding obstacles.

To our knowledge, the transport of flexible fibers through structured environments has
been the subject of few analytical (Doi and Edwards, 1988; Sevick and Williams, 2001; de
Gennes, 2003), experimental (Chou et al., 1999; Dorfman et al., 2013) and numerical studies
(Muthukumar and Baumgaertner, 1989; Patel and Shaqfeh, 2003; Nam et al., 2010; Kurzthaler
et al., 2021). Recently, Chakrabarti et al., 2020 analyzed numerically the dynamics of semi-
flexible polymers moving through a structured two-dimensional array of pillars, under the
influence of an imposed flow. They reported three modes of transport: trapping, gliding, and
vaulting, governed by the balance between dynamic buckling instabilities and steric interactions
with the pillars. However, although the presence of thermal fluctuations affects the modes of
migration, the magnitude of the overall lateral displacement remains small compared to the
fiber length, as the fiber tends to align in the direction of the imposed flow. Therefore, the
trajectory of the center of mass of the fiber generally follows the streamlines.

In contrast, while settling under gravity at low Reynolds number, due to its drag anisotropy,
a rigid fiber drift laterally at a constant velocity and maintains its initial orientation with respect
to the direction of gravity (Batchelor, 1970). When the fiber is allowed to bend, owing to the
inhomogeneous drag distribution along its length, the fiber reorients to reach an equilibrium
state after having traveled a finite distance (Li et al., 2013; Marchetti et al., 2018). Accordingly,
the presence of an obstacle is expected to affect significantly the trajectory of the fiber. In our
recent study (Makanga et al., 2023, see also Chapter 5), we showed that, while settling against
a rigid obstacle of arbitrary shape, a flexible fiber can either glide or remain trapped on it. The
trapping states lead to nontrivial conformations of the fiber that result from the balance between
elastic stresses, gravity, and friction on the obstacle surface. On the other hand, gliding cases
lead to a lateral displacement, whose the magnitude is large (typically several fiber lengths) and
depends on the mechanical and geometrical properties of the fiber. In an array of rigid obstacles,
it is clear that the repetitive collisions with the obstacles, as well as hydrodynamic interactions,
will qualitatively change the dynamics described above, and therefore the trajectory of the fiber.
Here, we investigate the dynamics of a single flexible fiber settling through a periodic array of
pillars that is immersed in a quiescent viscous fluid. We show that the fiber trajectory falls
at long times into one of two modes of migration, zigzag or displacement, that are determined
by the short-time scattering dynamics. Furthermore, we examine the effect of mechanical and
geometrical properties of the fiber on its long-time transport behavior. These findings provide
physical insight into future experiments, as well as the design of sorting devices for the purpose
of biomedical, microfluidics and environmental applications.
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6.2 Problem description

We study the dynamics of a single flexible fiber settling under gravity through a periodic
array of pillars that is immersed in a quiescent viscous fluid, of viscosity η. The fiber is an
elastic rod of length L and has a circular cross-section of radius a. The fiber is settling at a
characteristic velocity U such that the Reynolds number Re = ρUL/η is always small, where
ρ is the mass density of the fluid. Therefore, inertial effects are negligible compared to viscous
ones. The array is made of rigid cylindrical pillars of infinite depth and width ω, see Fig.6.1.
The geometry of the array is generated following the commonly-used convention for the design
of deterministic lateral displacement (DLD) devices, used to sort particles in biological and
microfluidic applications (Long et al., 2008; Kim et al., 2017). We denote by d the center-to-
center distance between two adjacent pillars, see Fig.6.1. Starting from row (i), the subsequent
row (i + 1) is placed downstream at a distance αzd from the former, where αz ∈ R∗+. The
pillars in this subsequent row are then shifted by a distance αxd along the transverse direction,
where αx is known as the row-shift fraction. Following the same process, the n-th nearest row
will be shifted by a distance nαxd from row (i), n ∈ N∗. Thus, a periodic array is obtained
for αx = 1/n, and its structural angle φs is given by tan (φs) = 1/(nαz). In this study, we set
αz =

√
3/2 and n = 2. This setting leads to an array of pillars arranged in a hexagonal lattice,

which we characterize by the structural angle, φs = π/6, and the lattice spacing relative to the
width of the pillars, d/ω.

Figure 6.1: Schematic of the problem considered: A flexible fiber, initially straight, sediments
under gravity in an array of rigid pillars, that is arranged in a hexagonal lattice, and immersed
in a quiescent viscous fluid. Left: A 3D representation of the computational domain made
of 2 × 1 × 2 unit cells. A unit cell (indicated in blue) contains the equivalent to two pillars
of depth DO. Right: A planar representation of the computational domain, that shows an
array of pillars, whose geometry is characterized by its topological parameters αx = 1/2 and
αz =

√
3/2.

As done in Chapter 5, in addition to the aforementioned geometrical parameters to describe
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the dynamics of the fiber through the array, we introduce the relative length of the fiber with
respect to the width of the pillars, denoted as ξ = L/ω, as well as the elastogravitational number
Be = FGL2/EI, where FG = WL is the gravity force, W is the weight per unit length of the
fiber, E its Young’s modulus, and I = πa4/2 the second moment of inertia of its cross-section.
The elastogravitational number characterizes the deformation of the fiber at equilibrium, when
settling under gravity in a viscous fluid. It results from the balance between gravitational and
elastic restoring forces. When the value of Be increases, the equilibrium shape of the fiber
evolves from rod-like to U-like shapes.

6.3 Model and numerical method

Simulations are performed using the method described in Chapter 4. We summarize the
method here and we refer the reader to the aforementioned chapter for a more detailed descrip-
tion. The fiber model relies on the commonly-used bead-spring model. Accordingly, the fiber
is discretized as a series of evenly spaced NF beads (ri)1≤i≤NF

connected by stiff linkers made
of springs, which do not bend or twist. Each bead of radius a is subject to two types of forces
: (i) a gravitational force FG/NF , where FG = |FG| is the weight of the whole fiber; and (ii)

an internal elastic force F E
i = −∇ri Ẽ , where Ẽ is the elastic potential1 and is given by

Ẽ =
S

4a

NF∑
i=2

(|ti| − 2a)2︸ ︷︷ ︸
ẼS

+
B

2a

NF−1∑
i=2

(
1− t̂i+1 · t̂i

)
︸ ︷︷ ︸

ẼB

, (6.1)

where S = πEa2 and B = πEa4/4 are respectively the stretching and the bending moduli,
with E being the Young’s modulus. The tangential vector between two neighboring beads is
defined as ti = ri−ri−1, and t̂i = ti/|ti| is the corresponding unit vector. The first term on the

right hand side of (6.1) is the stretching energy, namely ẼS, and the second term is the bending

energy, namely ẼB. Similarly, each pillar of the array is discretized with NO beads of radius a
that are rigidly-connected. Since pillars are not moving, their beads must have zero velocity.
This kinematic constraint is enforced with a set of constraint forces F C applied on each bead
that belongs to the pillars. Finally, owing to fiber-pillar contacts, a pairwise-repulsive force FR

is applied between the beads of pillars and the ones of the fiber, in order to prevent overlaps
(see Chapter 5).

In our model, a unit lattice cell contains the equivalent to two pillars of depth DO (see
Fig.6.1), while the computational domain consists of 2 × 1 × 2 unit cells, thus including the
equivalent to 8 pillars of depth DO, plus the fiber. Therefore the total number of beads in
the computational domain is N = NF + 8NO. Due to the lack of inertia (Re � 1), and in
the absence of background flow, the kinematic equation of motion of the beads is given by the
following linear mobility relation between velocities and forces

dR

dt
≡ U = M ·

(
F C + FG/NF + F E + FR

)
, (6.2)

whereR = [r1, . . . , rNF
, rNF+1, . . . , rN ] andU = [U1, . . . ,UNF

,UNF+1, . . . ,UN ], are 3N vectors
collecting respectively bead positions and translational velocities. M is their 3N×3N mobility
matrix that encodes hydrodynamic interactions between all beads in the domain. This mobility
matrix is given by the Rotne-Prager-Yamakawa (RPY) hydrodynamic tensor evaluated in a
triply periodic domain (Fiore et al., 2017, see also Section 2.3), and we use the Positively-Split-
Ewald (PSE) method (Fiore et al., 2017; Pérez Peláez, 2022, see also Appendix A) for a fast

1We are considering planar deformations, i.e., twisting of the fiber is neglected.
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computation of its action M·(·) on a given vector. Once U is computed, the bead positions are
updated by a temporal integration of (6.2). We use an implicit integrator based on a backward
differentiation formula (BDF) with adaptive time stepping (Brown et al., 1989), to alleviate the
numerical stiffness arising from the springs, as well as from the elastohydrodynamic coupling
problem.

In our simulations, the fiber is initially straight and oriented perpendicularly to the direction
of gravity. It is positioned halfway the depth of the computational domain, with its midpoint
at a given horizontal and vertical distance, Dx and Dz, from the center, see Fig.6.1.

6.4 Results and discussion

We start by a characterization of the long-time dynamics of the fiber through the array. The
considered time interval is 100 ≤ t/T ≤ 300, where T = Lη/W is the characteristic settling
time. The dynamics of a single flexible fiber settling under gravity in a quiescent viscous
fluid embedded with a rigid obstacle have been described and analyzed in detail in Chapter
5. The resulting findings provide a basis to investigate the dynamics in the present work.
While settling against an obstacle of arbitrary shape, a flexible fiber can either glide or remain
trapped around the latter. These two outcomes result from the complex interplay between
internal elastic stresses, contact forces and hydrodynamic interactions with the obstacle, as
well as the surrounding fluid. The trapping states lead to nontrivial conformations of the fiber
that result from the balance between its elastic response, gravity, and friction on the obstacle
surface. While in the gliding case, the fiber experiences a drift motion, leading to a lateral
displacement whose the magnitude depends on its mechanical and geometrical properties, as
well as on its initial orientation that is induced by the obstacle. In an array of rigid pillars,
the lattice arrangement and spacing may influence the lateral displacement of the fiber, thus
its migration through the former. Accordingly, we explore the two-dimensional parameter
space (10 ≤ Be ≤ 1000, 2.36 ≤ ξ ≤ 6.28) for a given lattice spacing d/ω ≈ 3.53 and depth
DO/ω ≈ 2.36. For each simulation, the fiber is released at Dx/ω ≈ 0.12 and Dz/ω ≈ 5.22, from
the center of the computational domain.

Figure 6.2 shows the probability distribution (PDF) of the fiber centerline inside the com-
putational domain at long times, where only the representative cases of the explored parameter
space are illustrated, for the sake of clarity.
We identify two modes of migration of the fiber through the array, “zigzag” and “displacement”
modes, for which the mechanisms at play will be detailed in Section 6.4.1. These two modes are
respectively denoted (ZM) and (DM) in Fig.6.2, and can be characterized as follows. We denote
by φ the migration angle of the fiber through the array. In the zigzag mode (see Fig.6.2(a),
panels (ii) and (iii); Fig.6.2(b), panels (i) and (iii)), there is no average displacement from the
direction of gravity, the trajectory of the fiber falls in a quasi-straight line with a migration
angle close to zero, φ ≈ 0. In contrast, in the displacement mode (see Fig.6.2(a), panel (i);
Fig.6.2(b), panel (ii)), there is a net displacement from the direction of gravity, the trajectory
of the fiber falls in a cyclical skew bumping path with a cyclic period n′ = 3, i.e., the number
of rows of pillars after which the bumping pattern repeats itself. Thus, the resulting nonzero
migration angle is given by tan (φ) ≈ 1/(n′nαz), and can be related to the structural angle
of the array, tan (φ) ≈ tan (φs)/n

′. The latter relation implies that φ < φs, thus the fiber is
always traveling with an angle that is less than the structural angle of the array. This finding is
illustrated in Fig.6.3, that shows the migration angle relative to the structural angle, φ/φs, as
function of the elastogravitational number Be (10 ≤ Be ≤ 100) for a fixed value of the relative
length ξ = 2.36 (Fig.6.3(a)), and as function of the relative length ξ (2.36 ≤ ξ ≤ 6.28) for a
fixed value of the elastogravitational number Be = 100 (Fig.6.3(b)). In addition, the migration
angle is found to be the same φ ≈ 0.36φs for all displacement modes (DM), that are shown
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by the gray-shaded zones in Fig.6.3. Therefore, for a given topology of the array, when its
trajectory does not fall in a quasi-straight line at long times, the fiber will travel laterally with
a constant angle, regardless of its mechanical and geometrical properties.

Figure 6.2: Probability distribution of the fiber centerline inside the computational domain at
long times (100 ≤ t/T ≤ 300), where T = Lη/W is the characteristic settling time. These
results are obtained from the explored two-dimensional parameter space (10 ≤ Be ≤ 1000,
2.36 ≤ ξ ≤ 6.28). (ZM) and (DM) stand for “Zigzag Mode” and “Displacement Mode”,
respectively. Parameter values: d/ω ≈ 3.53, DO/ω ≈ 2.36, Dx/ω ≈ 0.12 and Dz/ω ≈ 5.22.

Now that we have characterized the long-time trajectory of the fiber through the array,
we discuss the mechanisms at play at short times (0 ≤ t/T < 100) that lead to the two
aforementioned modes of migration, namely the zigzag and displacement modes.
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Figure 6.3: Migration angle normalized by the structural angle of the array, φ/φs. (a) As
function of the elastogravitational number Be (10 ≤ Be ≤ 100) for a fixed value of the relative
fiber length ξ = 2.36. (b) As function of the relative fiber length (2.36 ≤ ξ ≤ 6.28) for a fixed
value of the elastogravitational number Be = 100. (ZM) and (DM) stand for “Zigzag Mode”
and “Displacement Mode”, respectively. Parameter values are as in Fig.6.2.

6.4.1 Short-time dynamics : scattering induced by fiber-pillar in-
teractions

The behavior of the fiber at long times follows a reptation picture, which was first proposed
by de Gennes, 2003, to describe the thermal motion of a long linear polymer chain through an
array of fixed obstacles. The key assumption of the reptation theory is that, after short-time
dynamics, the polymer chain experiences a snake-like motion through an imaginary tube formed
by the surrounding obstacles, which prevent it from undergoing transverse displacements.

Unlike a long polymer chain that is driven by thermal fluctuations, the short-time dynamics
of a non-Brownian flexible fiber under sedimentation through an array of rigid pillars, result
from repetitive steric collisions and hydrodynamic interactions with nearby pillars. These lead
to a scattering process, which determines the mode of migration of the fiber at long times.
The scattering process can be decomposed into three steps: (i) the migration toward a given
pillar of the array, (ii) the collision and the subsequent gliding along the pillar surface, and
(iii) the escape. In the following, we focus on the collision events (step (ii)) to characterize the
short-time dynamics. We denote by xc, the contact point between one end of the fiber and the
surface of the pillar; and by θc, the corresponding contact angle defined between the direction of
gravity and the tangent vector directed outward at the end of the fiber. Fig.6.4 shows the two
modes of scattering induced by fiber-pillar interactions, for which we define qualitative features
by analogy with electromagnetic interactions:

• In-scattering : the contact angle and the contact point are unlike-charged, i.e., (θ+c , x
−
c )

or (θ−c , x
+
c ), referred to as “In” events in Fig.6.4.

• Out-scattering : the contact angle and the contact point are like-charged, i.e., (θ+c , x
+
c ) or

(θ−c , x
−
c ), referred to as “Out” events in Fig.6.4.

With these pictures in mind, we now proceed to discuss the features of the scattering process
before the limit of reptation. To do so, we track the end of the fiber that collides with a given
pillar in the array at short times (0 ≤ t/T < 100). We plot the corresponding path, from
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the migration toward the pillar to the escape (steps (i) − (iii)), and we describe the different
modes of scattering that occur at each collision event. These results are shown in Fig.6.5 for
the explored parameter space (10 ≤ Be ≤ 1000, 2.36 ≤ ξ ≤ 6.28).

Figure 6.4: Schematic of the two modes of scattering induced by fiber-pillar interactions, which
we define by analogy with electromagnetic interactions. Left: In-scattering mode, the contact
point and the contact angle are unlike-charged, (θ+c , x

−
c ) or (θ−c , x

+
c ). Right: Out-scattering

mode, the contact point and the contact angle are like-charged, (θ+c , x
+
c ) or (θ−c , x

−
c ). Note that,

the contact angle θc is defined between the direction of gravity −ẑ and the unit tangent vector
t̂ (directed outward) at the end of the fiber that is in contact with the surface of the pillar.

We first investigate the effect of flexibility (10 ≤ Be ≤ 1000) for a fixed fiber length,
ξ = 2.36 (Fig.6.5(a)). In the stiff limit, Be = 10 (see Fig.6.5(a), panel (i)), after its first
interaction with a pillar (t/T = 17), which is dictated by its initial configuration, the fiber
follows a scattering process. The latter first falls two times consecutively in the “In” scattering
mode, then alternates in a cyclic manner between “Out” and “In” scattering modes. This
cyclic scattering pattern is a signature of a migration in a displacement mode (DM) at long
times (see Fig.6.2(a), panel (i)). Owing to its long elastic relaxation time scale [O(Be−1)],
the fiber drifts rightward in a skew configuration after escaping from the surface of the pillar
with which it collided. The subsequent lateral displacement is large and increases with the
settling distance (see Fig.6.5(a), top panel of (i)). In the “In” scattering events, during its
migration toward a pillar, the fiber settles a finite vertical distance less than d, the center-to-
center distance between two adjacent pillars; such that its escape angle is close to its contact
angle. Since the angle at which the fiber leaves a pillar is always smaller than π/6 (Makanga
et al., 2023), the contact point at the surface of the pillar with which the fiber collides is such
that xc ∈ [−ω/2, 0). Therefore all collision events occur with positive contact angles on the
left side of the collided pillars, (θ+c , x

−
c ). Unlike the “In” scattering events, the fiber settles a

vertical distance larger than d when approaching a pillar in the “Out” scattering events, such
that its lateral displacement exceeds ω/2 and leads to xc ∈ (0,+ω/2]. Therefore all collision
events occur with positive contact angles on the right side of the collided pillars, (θ+c , x

+
c ). On

the other hand, in the flexible regime, Be = 1000, the fiber quickly relaxes to a U-like shape.
As a result, it escapes from its first interaction (t/T = 12) with a hook-like shape while drifting
rightward. This leads to a large orientation of its end compared to the structural angle of the
array, typically larger than 2φs, where φs is the structural angle of the array (see Fig.6.5(a),
top panel of (iii)).
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Figure 6.5: Results from numerical simulations showing the scattering process at short times.
The trajectories represent the scattering of the fiber end which collides with a given pillar in
the array, and the arrows represent the unit tangent vectors that define its orientation. The
scattering events are represented from the migration toward the pillar to the escape. The
corresponding scattering modes are shown in the subsequent row. (a) As function of the
elastogravitational number Be (10 ≤ Be ≤ 1000), for a fixed value of the relative fiber length
ξ = 2.36. (b) As function of the relative fiber length ξ (2.36 ≤ ξ ≤ 6.28), for a fixed value of
the elastogravitational number Be = 100. Parameter values are as in Fig.6.2.
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Since the allowed vertical distance for the fiber to settle until collision is smaller than d, the
resulting contact angle θ+c will be close to the escape angle, as well as the resulting contact
point will fall on the left side of the collided pillar, x−c . This leads to a “In” scattering event,
as shown in the scattering process (Fig.6.5(a), bottom panel of (iii)). The latter corrects the
trajectory of the fiber, that results to a quick readjustment of its shape into a U-like shape,
such that its end-to-end width is smaller than the lattice spacing. Thus, the trajectory of the
fiber falls in a quasi-straight line with no average displacement from the direction of gravity
(Fig.6.2(a), panel (iii)).

Finally, the effect of the fiber length (2.36 ≤ ξ ≤ 6.28) in the semi-flexible regime, Be = 100
(Fig.6.5(b)), affects the short-time dynamics as follows. For ξ = 2.36, the fiber length is
smaller than the lattice spacing, L/d ≈ 0.67. All the scattering modes fall in “In” events
(see Fig.6.5(b), bottom panel of (i)), the surrounding pillars prevent the fiber from undergoing
lateral displacements. As a result, the fiber migrates through the array in a quasi-straight line
(Fig.6.2(b), panel (i)). Owing to its semi-flexibility, the fiber ends tend to align in the direction
of gravity while escaping from the surface of the collided pillars (see Fig.6.5(b), top panel of (i)).
Therefore, due to its near-zero escape angle and its slow reorientation toward its equilibrium
configuration, the fiber exhibits small transverse displacements, less than ω/2, while settling
toward a pillar. These dynamics lead to the two types of “In” events shown in the scattering
process (Fig.6.5(b), bottom panel of (i)), namely (θ−c , x

+
c ) and (θ+c , x

−
c ). When the fiber length

is larger than the lattice spacing, L/d > 1, after its first interaction, the fiber cannot align
with the direction of gravity while escaping from the surface of the pillar. As a result, the fiber
end hits the subsequent pillar with a contact angle close to φs while its other end still gliding
on the surface of the upstream pillar. This leads to the two “Out” scattering events shown at
t/T = 10 and t/T = 8 in Fig.6.5(b) (bottom panel of (ii) and (iii)), respectively for ξ = 4.71
and ξ = 6.28. For each of these “Out” scattering events, the fiber bends significantly while
escaping from the collided pillar, such that its lower end tends to align with the direction of
gravity. In addition, its escape angle becomes smaller than φs, when the fiber end is close to the
surface of the subsequent nearby pillar. Therefore, the collision event occurs with a negative
angle on the right side of the collided pillar, (θ−c , x

+
c ), for ξ = 4.71 (see Fig.6.5(b), bottom panel

of (ii)); and with a positive angle on the left side of the collided pillar, (θ+c , x
−
c ), for ξ = 6.28 (see

Fig.6.5(b), bottom panel of (iii)). In these two cases, the resulting escape angle, together with
the vertical distance that the fiber end has to settle before the next collision event, determine
the subsequent scattering events. The shortest fiber, ξ = 4.71, escapes with a large angle at
t/T = 13 (see Fig.6.5(b), top panel of (ii)), compared to the longest fiber (ξ = 6.18) at t/T = 11
(see Fig.6.5(b), top panel of (iii)). As a result, the former exhibits a large lateral displacement
while drifting leftward, such as its contact point falls on the left side of the collided pillar,
that leads to the “Out” scattering event (θ−c , x

−
c ) shown at t/T = 17 in the scattering process

(Fig.6.5(b), bottom panel of (ii)); and the latter is less laterally displaced than the former while
drifting rightward, such as its contact point falls on the left side of the collided pillar, that leads
to the “In” scattering event (θ+c , x

−
c ) shown at t/T = 14 in the scattering process (Fig.6.5(b),

bottom panel of (iii)). Thus, once a steady state is achieved, the trajectory of the shortest
fiber (ξ = 4.71) falls in a cyclical skew bumping path, which is a signature of a migration in a
displacement mode (DM) at long times (see Fig.6.2(b), panel (ii)); and the one of longest fiber
(ξ = 6.28) falls in a quasi-straight line, which is a signature of a migration in a zigzag mode
(ZM) at long times (see Fig.6.2(b), panel (iii)).

Now that we have a clear understanding on how the scattering process at short times leads to
the two aforementioned modes of migration at long times, namely the zigzag and the displace-
ment modes, we use analytical tools to predict in which mode of migration the trajectory of the
fiber will fall according to its intrinsic properties, i.e., geometrical and mechanical properties,
as well as to the geometry of the array, i.e., the lattice arrangement and spacing.
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We consider the limit of large lattice spacings, d/L � 1, where the scattering modes are
determined by the escape configuration, i.e., when the fiber is no longer in contact with the
collided pillar; and by the vertical distance that the fiber has to settle for the subsequent
collision event to occur. We denote by θ0 the escape angle of the fiber, that is its incident
angle for the subsequent collision event; and by hxd and hzd, the lateral shift and the vertical
distance, at which the center of the pillar is initially positioned with respect to the nearest
end of the fiber, see Fig.6.6(a). In the limit of small deformation amplitudes, Be � 1, the
time-dependent parametric equation of the path L of the lower end of the fiber (X(t), Z(t)),
while sedimenting without interacting with the pillars, is given by

L :


tan [(2CBe/c0)X + θ0] = tan (θ0) exp [(2CBe)t],

Z = −c0t−
c0

4CBe
ln

{
[1 + tan2 (θ0)] exp [(4CBe)t]

1 + tan2 (θ0) exp [(4CBe)t]

}
,
t ∈ [0,+∞) (6.3)

with

C =
7

400
+ c−10

(
1813− 300π2 + 630 ln (2)

18000

)
, (6.4)

where c0 is related to the aspect-ratio of the fiber ε−1 = L/2a as follows, c0 = ln (1/ε2e). This
parametric equation is derived for a slender fiber with uniform thickness, following the approach
described in Appendix B of Li et al., 2013. We refer the reader to Appendix C of this thesis
for a more detailed description.

The settling trajectory is obtained by eliminating t in (6.3), this leads to the following
implicit formulation

L :
{

(X,Z) ∈ R2,

tan (θ0) sin2 (θ0) exp [−(2CBe/c0)Z] = tan [(2CBe/c0)X + θ0] sin2 [(2CBe/c0)X + θ0]
}
.

(6.5)

Linearizing (6.5) about X = 0 (the fiber exhibits small lateral displacements compared to its
length), we obtain

tan (θ0) sin2 (θ0) exp [−(2CBe/c0)Z] = tan (θ0) sin2 (θ0)

+ (2CBe/c0)[2 sin2 (θ0) + tan2 (θ0)]X +O(X2),
(6.6)

thus

X ∼ c0 tan (θ0) {exp [−(2CBe/c0)Z]− 1}
2CBe[3 + tan2 (θ0)]

, (6.7)

linearizing (6.7) about θ0 = 0 (the fiber ends tend to align in the direction of gravity), leads to

X ∼ c0
6CBe

θ0 {exp [−(2CBe/c0)Z]− 1} . (6.8)

Holding CBe/c0 constant in (6.8), we observe that the lateral displacement is monotonic in the
incident angle θ0 for a small longitudinal displacement, i.e., vertical motion in the direction of
gravity.

For a given incident angle θ0, the contact point between the lower end of the fiber and the
surface of the pillar, is any point of L that lies on the latter. We denote by RO, the time-
dependent position of the center of the pillar with respect to the lower end of the fiber, see
Fig.6.6(a). Thus, the set of contact points C is given by

C = {X ∈ L such that |RO| = ω/2}, (6.9)
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Figure 6.6: (a) Illustration of the migration of the fiber toward the pillar. The center of the
pillar is positioned initially at a given lateral shift hxd and vertical distance hzd, from the
nearest end of the fiber. t̂ and n̂ are the unit tangent and unit normal vectors, respectively.
The incident angle θ0 is defined between t̂ and the direction of gravity -ẑ. (b) Scaled contact
points xc/ω vs θ0/φs. Comparison of the theoretical predictions (lines) and numerical results
(markers). These results are obtained for Be = 10 and ξ = 2.36, the latter corresponds to
ε−1 = 15. Parameter values are as in Fig.6.2.

where ω is the width of the pillar. Fig.6.6(b) shows two sets of contact points for various values
of θ0 (π/50 ≤ θ0 ≤ π/6). These two sets are obtained for Be = 10 and ε−1 = 15 (ξ = 2.36),
where the corresponding parameters (hx, hz) are extracted from numerical simulations for the
two modes of scattering (see Fig.6.5(a), panel (i)), In-scattering (solid line) and Out-scattering
(dashed line).

In the limit of small incident angles, the two sets of contact points exhibit a linear growth,
that agrees with (6.8). Furthermore, numerical results are in good agreement with theoretical
predictions, thus confirming the adequacy of our simple theoretical model to predict the scatter-
ing process that the fiber will experience at short times; in the limit of small deformations and
large lattice spacings. These findings may be used to predict in which mode of migration the
trajectory of a fiber-like particle will fall at long times, according to the geometry of the array,
i.e., the lattice arrangement and spacing. For instance, array geometries that are designed such
that hx ≤ 0.1 and hz ≤ 0.5 hold for most of the scattering events at short times, will lead to a
migration of the fiber in a zigzag mode, see Fig.6.6(b).

6.4.2 Long-time transport properties

We now set out to describe the long-time transport properties of the fiber. To do so, we in-
troduce the mean square displacement (MSD) and rotation (MSR), that are defined respectively
as

Ξ(τ) = 〈[r(t+ τ)− r(t)] [r(t+ τ)− r(t)]〉 , (6.10)

and

Θ(τ) = 〈[θ(t+ τ)− θ(t)] [θ(t+ τ)− θ(t)]〉 , (6.11)
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Figure 6.7: Results from numerical simulations showing the time evolutions of the two relevant
components of the mean square displacement tensor (MSD) relative to the fiber length square,
Ξzz/L

2 and Ξxx/L
2; and the mean square rotation (MSR) relative to the structural angle of the

array square, Θ/φ2
s. (a) As function of the elastogravitational number Be (10 ≤ Be ≤ 1000),

for a fixed value of the relative fiber length ξ = 2.36. (b) As function of the relative fiber length
ξ (2.36 ≤ ξ ≤ 6.28), for a fixed value of the elastogravitational number Be = 100. Parameter
values are as in Fig.6.2.

where 〈·〉 denotes the ensemble average. The mean square displacement Ξ is dyadic and mea-
sured at the center of mass of the fiber, r. While the mean square rotation Θ is obtained
from the angle θ, measured between the direction of gravity and the unit tangent vector at
the fiber midpoint. These two quantities are shown in Fig.6.7 for the explored parameter
space (10 ≤ Be ≤ 1000, 2.36 ≤ ξ ≤ 6.28); where only the two relevant components of Ξ are
represented, Ξzz and Ξxx.

The fiber dynamics display a short-time regime, in which the effect of flexibility and length
are reflected on both, Ξxx (panels (ii) in Fig.6.7(a) and Fig.6.7(b)) and Θ (panels (iii) in
Fig.6.7(a) and Fig.6.7(b)) . This regime is followed by a ballistic regime at intermediate times,
that is characterized by a linear increase of slope two, ∼ τ 2. The short and intermediate
regimes are dominated by the scattering process, as discussed in the previous section. Since
the longitudinal behavior of the fiber, i.e., its vertical motion in the direction of gravity, is also
ballistic at long times (panels (i) in Fig.6.7(a) and Fig.6.7(b)), regardless of its flexibility and
length, i.e., the fibers move longitudinally at the same velocity, we focus on the time-evolution
of Ξxx, as the latter displays features that will determine the mode of migration of the fiber
through the array.

For the stiff case, Be = 10, as well as for the intermediate length with Be = 100, the long-
time regime is also ballistic: Ξxx maintains the same increase as in the intermediate regime
(panels (ii) in Fig.6.7(a) and Fig.6.7(b)) which is indicative of a migration in a displacement
mode. Conversely, in the other cases, the ballistic regime is followed by a caged regime, where
Ξxx displays a plateau. This saturation of Ξxx reflects the formation of an imaginary tube by
the surrounding pillars, which prevent the fiber from undergoing lateral displacements. This is
indicative of a migration in a zigzag mode. At later times, however, we observe that Ξxx sud-
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denly increases and gradually decreases after, regardless of the flexibility and the length of the
fiber. This sudden variation results from the reorientation of the fiber in the less topologically
constrained direction, which is well reflected by the change in Θ observed at long times (panels
(iii) in Fig.6.7(a) and Fig.6.7(b)). We expect that at very long-time dynamics, though not cap-
tured owing to the finite duration of our simulations, Ξxx and Θ will display a plateau, as the
fiber will reach its equilibrium shape in the less topologically constrained direction. Therefore,
all the trajectories will fall in quasi-straight lines with migration angles close to zero, regardless
of the flexibility and the length of the fiber.

To further characterize its long-time reorientation, we investigate the deformation of the
fiber. To do so, we introduce the gyration tensor Q ∈ R3×3 of the fiber (Blavatska and Janke,
2010; Arkın and Janke, 2013), whose components are given by

Qjk =
1

NF

NF∑
i=1

[x
(j)
i − x(j)M ][x

(k)
i − x(k)M ], j, k = 1, 2, 3, (6.12)

where x
(j)
i and x

(j)
M are respectively the components of the fiber bead position ri ∈ R3, and the

fiber midpoint rM ∈ R3. Since the gyration tensor is symmetric, there exists a basis in which
it can be diagonalized. Its eigenvalues also known as moments can be combined to characterize
the fiber shape. Let (λi)1≤i≤3 be the eigenvalues of Q and λ ≡ TrQ/3 their average. Thus, the
relative shape anisotropy of the fiber, denoted κ2, is given by

κ2 =
1

6

3∑
i=1

(λi − λ)

λ
2 =

3

2

TrQ̂2

(TrQ)2
, (6.13)

where Q̂ ≡ Q− λI, with I ∈ R3×3 being the identity matrix. This quantity evolves from zero
to one, where its lower bound corresponds to an isotropic shape, i.e., all the eigenvalues are
equal; and its upper bound to a rod-like shape, i.e all the eigenvalues are zero except for one.
Furthermore, the dominant eigenvalue of the gyration tensor determines the orientation θ of
the fiber with respect to the direction of gravity. Figure 6.8 shows the long-time evolutions of
the relative shape anisotropy, κ2; and the orientation of the fiber at its midpoint relative to the
structural angle of the array, θ/φs. These both quantities are represented for various values
of the elastogravitational number Be (10 ≤ Be ≤ 1000) at a fixed value of the relative length
ξ = 2.36, Fig.6.8(a); and for various values of the relative length ξ (2.36 ≤ ξ ≤ 6.28) at a fixed
value of the elastogravitational number Be = 100, Fig.6.8(b).

In the semi-flexible regime (10 ≤ Be ≤ 100), the fiber weakly deforms, its shape remains
quasi-straight κ2 ≈ 1, while its orientation θ varies in the two modes of migration. The time-
periodic evolutions of θ characterize a cyclical skew bumping trajectory, that is a signature
of a migration in a displacement mode (DM). Conversely, when θ ≈ 0 the fiber is nearly
oriented to the direction of gravity, while moving through the array, that is a signature of
a migration in a zigzag mode (ZM). However for ξ = 2.36 and Be = 100, we observe a
sudden jump in the orientation angle from θ ≈ 0 to θ ≈ 2.5φs (see the gray-shaded zones
in Fig.6.8(a)-(b), panels (ii)), while the fiber still roughly straight κ2 ≈ 1, and executes a
zigzag motion through the array. During this transition, the fiber rotates around the x-axis
to roughly aligned perpendicularly with the direction of gravity in the yz-plane, which is the
less topologically constrained direction of the array. This reorientation is shown in Fig.6.9, and
leads to a lateral displacement of the fiber along the y direction.

Finally, in the highly flexible regime (Be ≥ 1000), the fiber adopts a roughly U-like shape
κ2 ≈ 0.5, while traveling quasi-periodically through the array, with a mean orientation angle
θ ≈ 2φs, i.e., the fiber is oriented quasi-perpendicularly to the direction of gravity.
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Figure 6.8: Long-time evolutions of the relative shape anisotropy κ2 of the fiber and its ori-
entation (measured at its midpoint) with respect to the direction of gravity. The latter is
normalized by the structural angle of the array, θ/φs. These results are obtained from the
explored two-dimensional parameter space (10 ≤ Be ≤ 1000, 2.36 ≤ ξ ≤ 6.28). Parameter
values are as in Fig.6.2.

6.5 Conclusions

The dynamics of flexible fibers in a periodic array of pillars, result from the complex interplay
between internal elastic stresses, contact forces, and hydrodynamic interactions with the pillars,
as well as the surrounding fluid. By means of numerical simulations, we have investigated the
long-time behavior of a single flexible fiber settling under gravity through a periodic array of
pillars, that is immersed in a quiescent viscous fluid. Our findings show that the long-time
trajectory of the fiber falls into one of two modes, zigzag (ZM) or displacement (DM). In the
former, there is no average displacement from the direction of gravity, therefore the center of
mass of the fiber follows a quasi-straight line with a migration angle close to zero. In the latter,
there is a net displacement from the direction of gravity, the center of mass of the fiber follows
a cyclical skew bumping path.

The short-time scattering of the fiber by the stationary pillars was found to dictate the
aforementioned behavior. Especially the contact angle, i.e., the angle with which the fiber
collides with a given pillar in the array, and the resulting contact point. These two quantities
are determined by the intrinsic properties of the fiber, i.e., its flexibility and length, as well as the
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Figure 6.9: Chronophotographs showing the long-time reorientation of the fiber for ξ = 2.36
and Be = 100, while settling through the array of pillars. The results are shown for the time
interval 215 ≤ t/T ≤ 300, where T = Lη/W is the characteristic settling time. The time step
between two consecutive frames (shown with alternating colors: blue and gray) is ∆t ≈ 9T .
Left: A 3D representation. Right: A planar representation in the yz-plane.

topology of the array, i.e., its lattice arrangement and spacing. In the limit of small deformations
(Be� 1) and large lattice spacings (d/L� 1), we propose a toy model to predict the scattering
process that the fiber will experience at short times, and therefore in which mode of migration
its trajectory will fall at long times. These findings, together with the long-time transport
properties of the fiber, provide physical insight into future experiments, as well as the design
of gravity-based deterministic lateral displacement (DLD) devices to sort fiber-like particles for
the purpose of biomedical, microfluidics and environmental applications. In practical situations
such as wastewater treatment, a suspension of fiber-like particles is released from the top of a
vessel which contains an array of stationary obstacles, the fibers will eventually clump together
to form clusters (Metzger et al., 2007a; Saintillan et al., 2006; Manikantan and Saintillan,
2016) which will interact hydrodynamically and collide with the surrounding obstacles. From
this complex coupling, may emerge unexpected collective dynamics whose understanding will
inspire future works on the transport of fiber suspensions in structured environments.
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Conclusions

In this thesis, we have proposed a methodology to conduct numerical simulations for prob-
lems involving flexible fibers and obstacles. Our method relies on a multibead approach to
solve Stokes flow with stationary and moving boundaries. Such problems require to prescribe
the motion of stationary boundaries, such that their velocities are always zero. We used a set
of Lagrange multipliers to enforce these kinematic constraints, and solved the resulting con-
strained problem iteratively with a preconditioned GMRES solver. We have shown that this
problem can converge quickly with a suitable preconditioner, such that the rate of convergence
becomes independent of the obstacle shape and the number of obstacle beads. This feature
allows to reduce significantly the computational cost, and therefore to carry out simulations
of large systems. By doing so, we provide an effective tool for studying a variety of problems
involving fibers and obstacles.

Using this numerical framework, together with simple experiments, we have investigated the
settling dynamics of flexible fibers in a viscous fluid with embedded obstacles. In particular,
we have found that fiber-obstacle interactions may lead to trapping or scattering events, owing
to the complex coupling between internal elastic stresses, gravity, contact forces, and hydrody-
namic interactions. The trapping events result from the balance between frictional forces along
the fiber centerline and gravity. As a result, in the flexible regime, the fibers easily escape
from smooth obstacle shapes since the fiber ends tend to align in the direction of gravity. This
finding provides insight into the design of microfluidic devices. For instance, in some applica-
tions such as sorting processes, the circular cross-section obstacles are particularly interesting
to avoid trapping events hence to prevent microfluidic devices from clogging. In addition, we
have found that the scattering dynamics govern the long-time behavior of the fibers, such that
they can undergo lateral displacements from the direction of gravity. We leveraged these find-
ings to propose a strategy to sort fiber-like particles based on their size and/or flexibility. This
strategy resulted in an invention that is patent pending.

Our invention consists of a sorting device made of a large tank which contains a periodic
array of obstacles. The array is immersed in a quiescent viscous fluid, and its geometry is
characterized by the lattice arrangement and spacing, i.e., the distance between two adjacent
obstacles in the array; as described in Chapter 6. A heterogeneous suspension of fiber-like
particles is released from the upper side of the tank, such that the particles are transported
under gravity through the array of obstacles. Owing to the resulting interactions between par-
ticles, obstacles, and the surrounding fluid; the particles migrate laterally after a finite settling
distance. The resulting lateral displacement, δx/L ∼ EI/WL3, depends on their size L and
flexibility EI, where W is the weight per unit length. Hence, at the lower side of the tank,
the particles are sorted with respect to their mechanical and/or geometrical properties. This
strategy of sorting has the main advantage of being passive or “energy-free” since the particles
are transported under the effect of gravity, no external energy is required. In addition, this
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device also has the advantages of low manufacturing and maintenance costs.
Our invention is useful for environmental, biological, and microfluidic applications. In particu-
lar, it could be used for wastewater treatment purposes, to prevent important issues such as the
pollution of the oceans by microplastic fibers. Indeed, more than 5250 billion of microplastic
debris are found in the marine environment, i.e., nearly 270000 tonnes. According to Eriksen
et al., 2014, the amount of microplastic fibers is estimated to 2.9 millions tonnes. Owing to
their small size, less than 1 mm, microplastic fibers are not captured by conventional filters
and wastewater treatment plants (Browne et al., 2011a), therefore, they end up most of the
time in the oceans, leading to adverse effects on aquatic environments and human well-being.
Our device could be installed downstream of wastewater treatment plants to increase filtration
efficiency. In biology, many parasites, such as those responsible for meningitis, develop in the
form of chains of cells of various size and rigidity (Barratt et al., 2016). The size and rigidity
of these chains vary between species of pathogens, between dead and living cells, depending on
their virulence or under the action of antibiotics. Accordingly, our device could be used for the
separation of pathogens based on their morphology, to study their virulence.

During this thesis, we have also discussed some features of a sedimenting suspension of
flexible fibers in a quiescent viscous fluid. In particular, we have shown that the mean settling
velocity of the suspension will increase continuously in time, owing to the effect of flexibility.
This finding disagrees with the rigid case, where some experimental (Herzhaft et al., 1996;
Herzhaft and Guazzelli, 1999; Metzger et al., 2007a) and numerical (Butler and Shaqfeh, 2002;
Saintillan et al., 2005; Gustavsson and Tornberg, 2009) studies have reported the onset of a
steady state in the mean settling velocity. We hope that this outcome will provide physical
insight into future experimental and numerical studies.

Finally, it is my sincere hope that our methodology, together with the studies carried out
in this thesis, will provide a launching point into future experiments and applications.
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Future directions

The numerical framework developed during this thesis lends itself to a wide range of relevant
extensions. One avenue to tackle in the future is to account for thermal fluctuations. Indeed,
at very small scale, i.e., less than 1 µm, thermal fluctuations become an important aspect
of the fiber dynamics. In complex environments, thermal fluctuations may allow fiber-like
particles to escape from obstacles, thus avoiding trapping events (Chakrabarti et al., 2020).
However, the resulting interplay between internal elastic stresses, contact forces, hydrodynamic
interactions, and thermal fluctuations is challenging to tackle numerically. Especially to account
for the random increments and the stochastic drift term, that turn the deterministic equation
of motion into a stochastic one. In Appendix B, inspired by the work of Bao et al., 2018, we
propose an approach to account efficiently for the random increments.

Our framework could also be extended to account for active particles, such as autophoretic
fiber-like particles. These particles self-propel owing to local gradients generated through their
surface activity (e.g., heat release (P. Bregulla and Cichos, 2015) or surface-catalysis of chem-
ical reactions (Wang et al., 2006)). The most popular design consists of half-coated spherical
or fiber-like particles that catalyze through surface activity on the solute (e.g., the catalytic
decomposition of hydrogen peroxide in aqueous solution), and thus lead to their self-propulsion
resulting from local chemical gradients (Paxton et al., 2004; Guix et al., 2018). While trans-
ported through complex environments, the trajectory of autophoretic fibers results from the
complex interplay between the surrounding fluid and solute, internal elastic stresses, contact
forces, and hydrodynamic interactions with the boundaries of the domain and the embedded
obstacles. The resulting chemoelastohydrodynamic problem can be challenging to tackle an-
alytically and numerically. Recently, there has been a significant drive to develop efficient
theoretical and numerical frameworks for autophoretic fiber-like particles. The most system-
atic and rigorous approach is the Slender Phoretic Theory (SPT) developed by Katsamba et al.,
2020 to investigate the dynamics of chemically active fibers with arbitrary three dimensional
shapes and surface activities. Their approach asymptotically reduces the phoretic problem
from three dimensions to one by assuming a certain distribution of singularities along the fiber
centerline. This result is then combined with the Slender Body Theory (SBT) of Koens and
Lauga, 2018 to evaluate the swimming velocity. However, to our knowledge, the current SPT
framework is limited to stiff fibers, and accounting for pairwise interactions is challenging. Our
approach could be used to overcome the aforementioned hurdles while achieving a similar nu-
merical efficiency to SPT. The key idea is to introduce a non-standard boundary condition on
the fiber surface. The latter will be a superposition of the no-slip boundary condition, namely
the passive part; and the slip boundary condition that arises from the phoretic flow due to the
non-uniform solute distribution on the fiber surface, namely the active part. The passive part
could be computed by our current framework, i.e., a multibead approach; and the active part
by the diffusio-phoretic force coupling method (DFCM) of Rojas-Pérez et al., 2021.

Regarding the settling dynamics of flexible fibers through structured environments, one
clear avenue to tackle in the future is to consider a suspension of multiple fibers. Indeed, in
the absence of obstacles, it has been shown that a sedimenting suspension of fibers exhibits
a structural instability (Guazzelli and Hinch, 2011; Manikantan et al., 2014; Manikantan and
Saintillan, 2016). Vertical inhomogeneities develop through the formation of clusters within
downward streamers that are balanced by upward streamers of clarified fluid, and therefore en-
hance the mean settling velocity of the suspension (typically larger than the maximum velocity
of an isolated fiber). The repetitive collisions with the obstacles will clearly affect the formation
of clusters, and therefore may lead to hindered or enhanced settling. In Chapter 4, for a dilute
suspension of fibers, we have shown that the presence of obstacles leads to the formation of
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a single cloud of fibers. The latter undergoes a zigzag motion through the array of obstacles.
However, this study is limited to a given geometry of the array, i.e., a hexagonal arrangement
with a fixed lattice spacing. A detailed study of this problem through a parametric study should
therefore be carried out. Furthermore, this study will provide additional physical insight into
the design of gravity-based sorting devices, since in such systems a whole fiber suspension is
sorted rather than an isolated fiber. Our current methodology allows to handle a large number
of fibers and obstacles. However, the use of fast algorithms (Kalantari and McDonald, 1983;
Tasora and Anitescu, 2013; Yan et al., 2019; Broms and Tornberg, 2023) to detect and compute
collisions might enable an efficient simulation of larger systems in reasonable wall times.

Regarding our sorting strategy, one avenue for future direction is to investigate the effects
of the array geometry on the fiber dynamics. Indeed, the numerical studies carried out through
this thesis are limited to a hexagonal arrangement of the array. Since the lattice spacing affects
the fiber dynamics at long times, as shown in Chapter 6, it is clear that the lattice arrangement
will have a similar effect on the lateral displacement. For instance, to avoid the out-of-plane
motions observed during the reorientation process of the fiber, in Chapter 6, one can use a
grid-like arrangement to constrain the fiber motion to a 2D plane. Accordingly, a detailed
parametric investigation of the system is necessary to propose a complete gravity-based sorting
device.

Finally, in the two applications investigated in Chapters 5 and 6, the theoretical approach,
built heavily on the work of Li et al., 2013, does not account for the interactions with the
obstacles. An avenue for future work is therefore to develop a theory that overcomes this
hurdle. One might consider for instance, a mean field approach that is built upon the solutions
of Stokes flow through an array of obstacles. Leshansky, 2009 used a similar approach to
investigate theoretically the effect of an array of obstacles on the locomotion of a microswimmer.
The author modeled the array as a Brinkman fluid that acts as a resistance to the motion of
the microswimmer. Although limited to sparse arrays, i.e., the obstacles are well separated
from each other and from the microswimmer, this model provided physical grounds into the
understanding of the enhancement of propulsion of some microswimmers in gel-like polymer
environments (Berg and Turner, 1979).



Appendix A

The Positively-Split-Ewald method

A key idea for achieving quasilinear scaling with the total number of beads N in a triply
periodic domain, is to use an Ewald splitting strategy as described in Fiore et al., 2017.

Starting from the periodic Green’s function for Stokes flow as derived in Hasimoto, 1959,

G(r, r0) =
1

ηV

∑
k 6=0

1

k2

(
I − k̂ ⊗ k̂

)
exp (ik · x̂), (A.1)

where x̂ = r−r0, η is the fluid viscosity, V is the periodic cell volume, I is the identity tensor,
and k are the set of reciprocal lattice vectors, with k̂ = k/k for k = |k|.

We derive the periodic RPY tensor, which amounts to plug (A.1) into the Fourier represen-
tation of (3.37)

Mij =
1

ηV

∑
k 6=0

sinc2 (ka)

k2

(
I − k̂ ⊗ k̂

)
exp (ik · x̂), (A.2)

given here for a pair of beads with equal finite hydrodynamic radius a.
Using the Ewald sum splitting of Hasimoto (Hasimoto, 1959), we decompose (A.2) into a

sum of two symmetric positive definite (SPD) operators

Mij = M(w)
ij + M(r)

ij , (A.3)

where the long-ranged wave-space part M(w)
ij is given by

M(w)
ij =

1

ηV

∑
k 6=0

sinc2 (ka)

k2
H(k, ξ)

(
I − k̂ ⊗ k̂

)
exp (ik · x̂), (A.4)

with H(k, ξ) being the Hasimoto splitting function defined as

H(k, ξ) =

(
1 +

k2

4ξ2

)
e−k

2/4ξ2 , (A.5)

where ξ is the splitting parameter that controls the rate of exponential decay. The short-ranged
real-space part M(r)

ij in (A.3) is given by the following expression, after performing analytically
the integral for the inverse Fourier transform

M(r)
ij = F (|x̂|, ξ)

(
I +

x̂⊗ x̂
|x̂|2

)
+G(|x̂|, ξ)

(
x̂⊗ x̂
|x̂|2

)
, (A.6)

where F (|x̂|, ξ) and G(|x̂|, ξ) are two rapidly decaying scalar functions that are given in Ap-
pendix A of Fiore et al., 2017.
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Thus, the action M·(·) of the mobility matrix on a given vector, can be computed efficiently

by a superposition of the actions of the long-ranged wave-space part M(w)
ij · (·) and the short-

ranged real-space part M(r)
ij ·(·). In the case of Brownian dynamics, the stochastic displacements

M1/2 ·W(t) in triply periodic domains are computed by a superposition of two independent
samples (Fiore et al., 2017):

M1/2 ·W(t)
d
=
(
M(w)

)1/2
·W (w)(t) +

(
M(r)

)1/2
·W (r)(t), (A.7)

where W (w)(t) and W (r)(t) are two uncorrelated Wiener processes. The long-ranged wave-
space contribution is computed using fluctuating hydrodynamics (Bao et al., 2018) and the
short-ranged real-space contribution by a Lanczos iterative method (Chow and Saad, 2014).



Appendix B

Constrained Brownian dynamics: Itô
stochastic differential equation

By considering Brownian motion, bodies that are allowed to move, i.e the fibers, will experi-
ence a random motion due to the thermal fluctuations of the surrounding fluid in addition to the
deterministic motion due to the conservative external and internal forces. In the overdamped
limit, the effect of thermal fluctuations turns the deterministic equation of motion (4.6) into
the Itô stochastic differential equation (SDE) describing the evolution of the bead positions
(Graham, 2018)

dR

dt
≡ U = N · F +

√
2kBTN 1/2 ·W(t) + kBT (∇ ·N ), (B.1)

where kB and T are respectively the Boltzmann constant and the temperature. The first term
on the right hand side is the deterministic motion. The second term represents the random
increments, with W(t) ∈ R3N being a vector of independent Wiener processes (Graham, 2018).
The square root of the constraint mobility matrix N 1/2 is any matrix, not necessarily square
that ensures that the fluctuation-dissipation balance is satisfied

N 1/2 · (N 1/2)T = N . (B.2)

The third term on the right hand side of (B.1) is the stochastic drift term, which ensures that
the SDE with an Itô interpretation of the stochastic integral leads to an equilibrium Gibbs-
Boltzmann distribution.

In practice, as mentioned in Section 4.2.2, direct computation of the constraint mobility ma-
trix N is not attractive for large systems due to numerical instabilities which may be a concern
when forming N . Therefore, direct computation of its square root N 1/2 is less convenient too.
This can be overcome by following the same approach as in fluctuating hydrodynamics (Bao
et al., 2018) to incorporate the random displacements

√
2kBTN 1/2 ·W(t) into the deterministic

motion N · F . The key idea, based on the linearity of Stokes flow, is to introduce a random
slip velocity ṽ(t) =

√
2kBTM1/2 ·W(t), that has zero mean and covariance

〈ṽ(t)ṽT (t′)〉 = 2kBTM, (B.3)

into the right hand side of the mixed mobility-resistance problem (4.5). Where the square root
of the mobility matrix M1/2 satisfies the fluctuation dissipation balance M1/2 · (M1/2)T =
M. Specifically, the deterministic linear system (4.5) turns into the following stochastic linear

system to solve for the Lagrange multipliers and the stochastic bead velocities (λ, Ũ)[
−M ·J T I

0 J

]
·
[
λ

Ũ

]
=

[
M · F +

√
2kBTM1/2 ·W(t)

0

]
. (B.4)
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We can eliminate the Lagrange multipliers from this system and write the solution for Ũ ∈ R3N ,

Ũ = N · F +
√

2kBTP1/2 ·M1/2 ·W(t)

= N · F +
√

2kBTN 1/2 ·W(t),
(B.5)

which defines N 1/2 with correct covariance

N 1/2 · (N 1/2)T = P1/2 ·M1/2 · (P1/2)T · (M1/2)T

= P ·M
= N .

(B.6)

Hence, the stochastic bead velocities (without taking into account the stochastic drift term) can
be computed by solving the stochastic mixed mobility-resistance problem (B.4). As shown for
the deterministic case (see Section 4.3), we can solve efficiently this linear system iteratively,
using a preconditioned GMRES method. In addition to the action M · (•) of the mobility
matrix on a given vector, which is computed efficiently in quasilinear time as described in the
next section, the cost of each GMRES iteration will be also related to the action of M1/2 on
the random vector W , which is obtained through a preconditioned Lanczos iterative method
(Chow and Saad, 2014) or a Positively-Split-Ewald (PSE) method (Fiore et al., 2017; see also
Appendix A) in an unbounded or a triply periodic domain.

Accordingly, the solution to the constrained SDE (B.1) arises from the solution to the

stochastic linear system (B.4), Ũ , corrected by the stochastic drift term kBT (∇ · N ). The
computation of the latter is challenging and is still an active area of research.

Fixman, 1978 proposed a method that avoids a direct computation of the drift term. How-
ever, this approach scales badly with the number of particles in the system (Delmotte and Keav-
eny, 2015; Sprinkle et al., 2017), and therefore can be computationally costly. A commonly-used
approach to overcome this hurdle is the random finite difference (RFD). This approach has been
introduced by Delong et al., 2014, and can be seen as a variant of Fixman’s approach. In ad-
dition, efficient temporal schemes have been proposed for rigid particles to reduce significantly
the number of operations while capturing the drift term through RFD (Usabiaga et al., 2017;
Sprinkle et al., 2017). Finally, the drift-corrector (DC) method introduced by Delmotte and
Keaveny, 2015, and recently generalized by Westwood et al., 2021, combines the two afore-
mentioned approaches to capture the drift term. Therefore, the DC allows to carry out large
Brownian simulations at a low computational cost compared to the RFD.

Since our constrained formulation is referred as “stiff”, there is a need for an efficient
temporal integrator to conduct large Brownian simulations. Indeed, this stiffness restricts the
maximum possible time step size, and therefore increases significantly the wall times. The
development of an efficient temporal integrator for constrained Brownian dynamics will be
tackled in the future.



Appendix C

Weakly flexible fiber under
sedimentation in a quiescent viscous
fluid: lateral shift and trajectory

C.1 Lateral shift

Following Li et al., 2013, we perform a multiple-scale analysis to derive analytically the
lateral shift for weakly flexible fibers. This approach was initially developed to solve the linear
and nonlinear oscillator problems in a time domain O(t) ≤ 1/εk (ε being a small parameter)
under an asymptotic approximation in multiple scales t0, t1, . . ., tk, considered as independent
variables (Hinch, 1991; Bender and Orszag, 1999).

We start with the local slender body theory (Hancock, 1953; Keller and Rubinow, 1976),
scaled upon the settling timescale 8πLη/W

∂tx(s, t) = −Λ[f ](s), (C.1)

where x(s, t) is the position of a point s along the fiber centerline, and is given by

x(s, t) = x(1/2, t) +

(
s− 1

2

)
t̂+ ζ(s, t), (C.2)

with x(1/2, t) = 0, t̂ = xs(1/2, t) being the unit tangential vector at the fiber midpoint and
ζ(s, t) the time-dependent deflection defined such that at the midpoint ζ(1/2, t) = 0. f is the
scaled fluid force acting on the fiber, and is defined as follows

f(s) = −ω(s)− (T (s)xs)s +
1

Be
(B(s)xss)ss , (C.3)

with ω(s) being the density of the gravitational forces, T (s) the fiber centerline tension acting
as a Lagrange multiplier to enforce the inextensibility condition and B(s) = EI(s) the bending
modulus. The local operator Λ in (C.1) is given by

Λ[f ](s) = [(c(s) + 2)I + (c(s)− 2)ŝŝ(s)] · f(s), (C.4)

where ŝ = xs, ŝŝ is a dyadic product, and c(s) = ln (4s(1− s)/ε2r(s)2e), with r(s) being
dimensionless and ε = 2a/L� 1.

For small values of the elasto-gravitational number Be (Be � 1), Li et al., 2013 identified
three independent timescales during the sedimentation of the fiber: the first one is the short
elastic relaxation timescale of order O(Be), the second one is the time for the fiber to settle its
own length, O(1), and the last one is the time for the fiber to reorient toward its equilibrium
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configuration, O(Be−1). Introducing a new variable t1 = t0Be, we assume the following per-
turbation expansions in power of Be, for the translational velocity U(t) = U(t)t̂+ V (t)n̂, the
orientation angle θ(t), the line tension T (s, t) and the time-dependent deflection ζ(s, t),

U(t, Be) = U (0)(t0, t1) + U (1)(t0, t1)Be+O(Be2), (C.5)

V (t, Be) = V (0)(t0, t1) + V (1)(t0, t1)Be+O(Be2), (C.6)

θ(t, Be) = θ(0)(t0, t1) + θ(1)(t0, t1)Be+O(Be2), (C.7)

T (s, t, Be) = T (0)(s, t0, t1) + T (1)(s, t0, t1)Be+O(Be2), (C.8)

ζ(s, t, Be) = (ζn(1)(s, t0, t1)n̂)Be+ (ζn(2)(s, t0, t1)n̂+ ζt(2)(s, t0, t1)t̂)Be
2 +O(Be3). (C.9)

In the following, we use the symbol t instead of t0, for notation convenience.
We first solve the problem at the timescale t = O(1). By substituting the expansions defined

above in (C.1), we end-up with

U (0)(t, t1) = 2c(s)
[
T (0)
s + cos θ(0)

]
, (C.10)

V (0)(t, t1) = − (c(s) + 2)
[
ζn(1)ssss + sin θ(0)

]
−
(
s− 1

2

)
∂tθ

(0). (C.11)

The resulting equations (C.10) and (C.11) are obtained for a homogeneous fiber with uniform
thickness, i.e., r(s) = 1, ω(s) = 1 and B(s) = 1.
From here, as done in Appendix B of Li et al., 2013, we pursue the expansion at leading order
in a small parameter 1/c0 � 1, where c0 = ln (1/ε2e) such that c(s) = ln (4s(1− s)) + c0.
Accordingly, we consider the following perturbation expansions

U (0) =
+∞∑
k=0

Ukc
1−k
0 , (C.12)

V (0) =
+∞∑
k=0

Vkc
1−k
0 , (C.13)

θ(0) =
+∞∑
k=0

θkc
−k
0 , (C.14)

T (0) =
+∞∑
k=0

Tkc
−1−k
0 , (C.15)

ζn(1) =
+∞∑
k=0

ζkc
−1−k
0 . (C.16)

By inserting the above expansions up to k = 1 in (C.10) and (C.11), and using sin (c−10 θ1) =
c−10 θ1 +O(c−30 ), as well as cos (c−10 θ1) = 1 +O(c−20 ), we obtain

U0 = 2 cos θ0, (C.17)

V0 = − sin θ0, (C.18)

U1 + 2θ1 sin θ0 = 2T ′0 + 2 [ln (4s(1− s))] cos θ0, (C.19)

V1 + θ1 cos θ0 = −ζ ′′′′0 − [ln (4s(1− s)) + 2] sin θ0. (C.20)
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Applying the boundary conditions T0(0) = T0(1) = 0 and ζ ′′′0 (0) = ζ ′′′0 (1) = 0 to (C.19) and
(C.20), we find

U1 + 2θ1 sin θ0 = 2 cos θ0

∫ 1

0

ln (4s(1− s))ds, (C.21)

V1 + θ1 cos θ0 = − sin θ0

∫ 1

0

[ln (4s(1− s)) + 2] ds. (C.22)

Thus, we can rewrite (C.19) and (C.20) as follows

T ′0 = [2(ln 2− 1)− ln (4s(1− s))] cos θ0, (C.23)

ζ ′′′′0 = [2(ln 2− 1)− ln (4s(1− s))] sin θ0. (C.24)

We solve the above ODEs with the suitable boundary conditions and deduce the following
expressions of the tension and the deflection at the leading order in Be

T (0) = c−10 p(s) cos θ(0) +O(c−20 ), (C.25)

ζn(1) = c−10 q(s) sin θ(0) +O(c−20 ), (C.26)

with

p(s) = (1− s) ln (1− s)− s ln s, (C.27)

and

q(s) = − 1

384

[
16s4 ln 2s+ (2− 2s)4 ln (2− 2s)−

(
13

6
+ 2 ln 2

)
(2s− 1)4 − (1 + 12 ln 2) (2s− 1)2

]
.

(C.28)
Now, we look at the next order O(Be) to derive the evolution of the orientation angle θ

with respect to time. From (C.1), we obtain

V (1)(t, t1) = (c(s) + 2)
[(
T (0)ζn(1)s

)
s
− ζn(2)ssss − θ(1) cos θ(0)

]
+ (c(s)− 2)

(
T (0)
s + cos θ(0)

)
ζn(1)s −

(
s− 1

2

)(
∂t1θ

(0) + ∂tθ
(1)
)
. (C.29)

Multiplying by (s − 1/2) and integrating the above expression, we end-up with the following
differential equation for the orientation angle, where the secular term has been removed by
imposing ∂tθ

(1) = 0

∂tθ = C sin (2θ)Be+O(c−20 , Be2), (C.30)

with

C = 6
[
I0 + c−10 (I1 + I2 + I3)

]
, (C.31)

where

I0 =

∫ 1

0

(s− 1/2)qsds, (C.32)

I1 =

∫ 1

0

(s− 1/2)(pqs)sds, (C.33)

I2 =

∫ 1

0

(s− 1/2)psqsds. (C.34)

I3 =

∫ 1

0

(s− 1/2) [ln (4s(1− s))− 2] qsds. (C.35)
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Thus, by solving (C.30) for an arbitrary initial orientation θ(0), we obtain

tan (θ(t)) = tan (θ(0)) exp ((2CBe)t), (C.36)

where C is given by

C =
7

400
+ ln (1/ε2e)

−1
(

1813− 300π2 + 630 ln (2)

18000

)
. (C.37)

The components of the settling velocity Ux and Uy in the laboratory frame are obtained by
substituting (C.36) into the leading-order settling velocity U = 2c0 cos(θ)t̂(θ) − c0 sin(θ)n̂(θ),
and then by multiplying the resulting expression respectively with the unit vectors x̂ and ŷ
(see Fig. 5.4(a))

Ux = U · x̂ =
c0h

1 + h2
, (C.38)

Uy = U · ŷ = −c0
(

1 +
1

1 + h2

)
, (C.39)

with
h(t) = tan (θ(0)) exp ((2CBe)t). (C.40)

Finally, the lateral shift is obtained by integrating (C.38) and assuming 0 < θ(0) ≤ π/2

δ̃x =

∫ ∞
0

(U · x̂)dt =
c0

2CBe

(π
2
− θ(0)

)
. (C.41)

C.2 Parametric equation of the trajectory

The time-dependent parametric equation of the path L described by the fiber midpoint
(X, Y ), is obtained by integrating (C.38) and (C.39) in time

L :


tan [(2CBe/c0)X + θ0] = tan (θ0) exp [(2CBe)t],

Y = −c0t−
c0

4CBe
ln

{
[1 + tan2 (θ0)] exp [(4CBe)t]

1 + tan2 (θ0) exp [(4CBe)t]

}
,
t ∈ [0,+∞). (C.42)



Appendix D

Conformal mapping and parameter
settings

D.1 Area-preserving conformal mapping

We use Riemann area-preserving map of the unit disk (Avron et al., 2004; Alonso-Matilla
et al., 2019) to generate a class of cross-section shapes of the obstacle

F(z) =Wz +
Y
z

+
K√
2z2

, (D.1)

where z = eiθ with θ ∈ [0, 2π], Y and K respectively control the aspect ratio and the fore-aft
asymmetry of the shape.

The shape parameter W > 0 is defined as

W =
√

1 + Y2 +K2. (D.2)

Therefore, the coordinates of a given point in the physical xy plane derive from the mapping
function (D.1) 

x = (W + Y) cos θ +
K√

2
cos 2θ

y = (W −Y) sin θ − K√
2

sin 2θ

(D.3)

In our study, we take Y = 0 and the resulting geometries are homogeneously dilated in order
to have a constant obstacle width ω = 1 for all the simulations.

D.2 Parameter sets

In the following table, we summarize the parameters used in our numerical simulations to
compare with experiments. We recall that ∆s/C is the obstacle cross-section shape resolution,
where C is its contour length and ∆s the centerline distance between two consecutive beads.
ε−1 = L/2a is the fiber aspect-ratio, which is equivalent to its number of beads NF .
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Parameter Set I: “Gliding event”. Set II: “Trapping event”.
ε−1 75 91
a[µm] 257 257
∆s/C 0.02 0.02
α 0.61 0.61

ω[cm] 1 1
Dx/L 0.25 0.03
Dy/L 1.75 1.45
Be 200 210
ξ 7.71 9.35
K 0 0

W [N/cm] 13× 10−6 11× 10−6

η[cP] 0.97 0.97

Table D.1: Parameter sets used for comparison with experiments in Section 5.4.1
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Kirchhoff, G. (1850). Über das Gleichgewicht und die Bewegung einer elastischen Scheibe.
Journal für die reine und angewandte Mathematik (Crelles Journal), 1850(40):51–88.

Koch, D. L. and Shaqfeh, E. S. G. (1989). The instability of a dispersion of sedimenting
spheroids. Journal of Fluid Mechanics, 209:521–542.



REFERENCES 111

Koens, L. and Lauga, E. (2018). The boundary integral formulation of Stokes flows includes
slender-body theory. Journal of Fluid Mechanics, 850:R1.

Kulrattanarak, T., van der Sman, R. G. M., Lubbersen, Y. S., Schroën, C. G. P. H., Pham, H.
T. M., Sarro, P. M., and Boom, R. M. (2011a). Mixed motion in deterministic ratchets due
to anisotropic permeability. Journal of Colloid and Interface Science, 354(1):7–14.

Kulrattanarak, T., van der Sman, R. G. M., Schroën, C. G. P. H., and Boom, R. M. (2011b).
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Titre : Transport et déformation des fibres flexibles en géométries complexes

Mots clés : Fibres flexibles, Environnements munis d’obstacles, Interactions fluide-structure, Ecoulements de
Stokes, Sédimentation, Modélisation numérique.

Résumé : Les fibres flexibles se rencontrent dans
diverses situations dans la nature et les applica-
tions industrielles. Parmi lesquelles on trouve des
fibres de microplastiques, des fibres de cellulose
et des structures filamenteuses résultant de colo-
nies bactériennes dites “biofilms”. Dans la plupart
des cas, les fibres flexibles sont généralement im-
mergées dans des environnements fluidiques qui sont
munis d’obstacles. A titre d’exemple, les lave-linge
rejettent un grand nombre de fibres de microplas-
tiques (environ 1900 fibres par lavage) dans des eaux
usées contenant plusieurs débris. Dans de tels en-
vironnements complexes, les fibres peuvent adopter
différentes formes non triviales et se déplacer suivant
différents modes à travers les obstacles environnants.
Ces différents comportements résultent du couplage
complexe entre la réponse élastique des fibres, les
collisions et les interactions hydrodynamiques. Leur
compréhension est par conséquent essentielle pour
l’étude des systèmes biologiques, environnementaux
et industriels, où des phénomènes similaires sont
observés, de même que pour éviter des problèmes
majeurs comme la pollution ou le colmatage. Au
cours des dernières décennies, la modélisation des

particules élancées immergées dans un fluide vis-
queux a été un domaine majeur de recherche en
mécanique des fluides. Cependant, le développement
des modèles numériques permettant de prendre en
compte des environnements munis d’obstacles a été
peu abordé. Le problème raide à résoudre sous
contraintes qui en résulte en est une des raisons.
Modéliser des fibres dans de tels environnements est
un défi majeur pour les approches numériques ac-
tuelles.

Ainsi, dans cette thèse, nous proposerons une
méthodologie pour simuler des fibres flexibles
dans des environnements fluidiques munis d’obs-
tacles. Notre implémentation permet de simuler des
systèmes contenant un nombre considérable de
fibres et d’obstacles en des temps raisonnables sur
une seule carte graphique (GPU). Forts de cet outil,
et d’expériences simples, nous étudierons ensuite le
problème de sédimentation des fibres flexibles dans
des environnements complexes. Nos résultats jettent
les bases pour de futures expériences et fournissent
des ingrédients physiques essentiels pour la concep-
tion des dispositifs de tri de particules sous l’action de
la gravité.

Title : Transport and deformation of flexible fibers in structured environments

Keywords : Flexible fibers, Structured media, Fluid-structure interactions, Stokes flow, Sedimentation, Nume-
rical modeling.

Abstract : Flexible fibers are encountered in va-
rious situations in nature and industrial applications.
Examples include microplastic fibers, cellulose fibers,
and biofilm streamers. In a wide range of such si-
tuations, flexible fibers are often immersed in a flui-
dic environment with embedded obstacles. For ins-
tance, laundry washing machines discharge a large
number of microplastic fibers (around 1900 fibers per
wash) into wastewaters which contain a significant
amount of debris. In such complex media, flexible fi-
bers can exhibit nontrivial conformations and different
modes of transport through the surrounding obs-
tacles. These dynamics result from the complex inter-
play between their elastic response, collisions and hy-
drodynamic interactions. Understanding of these phe-
nomena is therefore essential to study the physics of
biological, environmental and industrial systems, but
also to prevent issues such as pollution or clogging.
While modeling slender particles in viscous fluids has

been a major area of research over the past few
decades, methodologies involving surrounding envi-
ronments are scarce. The resulting complex coupling
leads to a constrained formulation of the problem in
addition of being stiff. Therefore, modeling fibers in
complex media is challenging and can be computa-
tionally costly.

In this thesis, we will propose a methodology to mo-
del flexible fibers in different environments that are
made of rigid stationary obstacles. Our implementa-
tion enables dynamic simulations of large systems in
reasonable wall times on a single modern Graphics
Processing Unit (GPU). Using the capabilities affor-
ded by our method, together with simple experiments,
we will investigate the sedimentation of flexible fibers
in structured environments. The resulting findings pro-
vide physical insight into future experiments and the
design of gravity-based sorting devices.

Institut Polytechnique de Paris
91120 Palaiseau, France



120 REFERENCES


	List of Tables
	List of Figures
	I Introduction and theoretical background
	Introduction and thesis outline
	Transport of active and passive fiber-like particles in complex environments
	Modeling moving and stationary boundaries in a viscous fluid
	Thesis outline

	An overview of Stokes flow
	The governing equations of fluid dynamics
	General solutions to Stokes equations
	Fundamental solutions
	The multipole expansion
	Faxén's laws

	Grand mobility tensor and Rotne-Prager-Yamakawa hydrodynamics


	II Modeling flexible fibers in complex environments
	Dynamics of flexible fibers in Stokes flow
	Introduction
	Continuum formulation for flexible fibers
	Kinematics
	Constitutive relations
	Fluid-fiber coupling

	Modelisation and simulation methods
	The continuum approach
	The discrete approach

	The bead-spring model
	Model
	Discrete elastic energy and forces
	Mobility problem

	Sedimentation of flexible fibers in a quiescent viscous fluid
	Deformation under gravity
	Collective dynamics

	Conclusions

	A mutlibead approach to handle obstacles in Stokes flow: applications for settling fibers
	Introduction
	Constrained formulation to account for obstacles
	Kinematic constraints: velocity-based formulation
	Mixed mobility-resistance problem

	Iterative solver and convergence
	Preconditioner
	Convergence

	Implementations and simulations
	Implementations
	Simulations

	Conclusions


	III Sedimenting flexible fibers against rigid obstacles
	Obstacle-induced lateral dispersion and nontrivial trapping of flexible fibers settling in a viscous fluid
	Introduction
	Problem description and relevant parameters
	Experimental and numerical methods
	Experimental methods
	Numerical simulations

	Results and discussion
	Gliding events: tilting and lateral displacement induced by fiber-obstacle interactions
	Investigation of trapping events
	Toward a sorting device

	Conclusions

	Sedimentation of a flexible fiber in a structured environment
	Introduction
	Problem description
	Model and numerical method
	Results and discussion
	Short-time dynamics : scattering induced by fiber-pillar interactions
	Long-time transport properties

	Conclusions


	Conclusions and future directions
	The Positively-Split-Ewald method
	Constrained Brownian dynamics: Itô stochastic differential equation
	Weakly flexible fiber under sedimentation in a quiescent viscous fluid: lateral shift and trajectory
	Lateral shift
	Parametric equation of the trajectory

	Conformal mapping and parameter settings
	Area-preserving conformal mapping
	Parameter sets

	References


