
HAL Id: tel-04543506
https://theses.hal.science/tel-04543506v1

Submitted on 12 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Secure compilation against side channel attacks
Gautier Raimondi

To cite this version:
Gautier Raimondi. Secure compilation against side channel attacks. Cryptography and Security
[cs.CR]. Université de Rennes, 2023. English. �NNT : 2023URENS094�. �tel-04543506�

https://theses.hal.science/tel-04543506v1
https://hal.archives-ouvertes.fr

·
·

· ·

·

·

·

·
·

·

·

·

·

·
·

·

·

·

·
·

·

·

·

·

·

·

·

·
·

·

· ·

·
·

·

·

··

·

··

·

· ·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

··
·

·

·
·

·

··

· ·

·
·

·

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

· ·

·

·

·

·

·

·

·
·

·

·

·

·

·
· ··

·
·

·

·

·

·

·
·

·

·

··

·

·

·
·

··

·

·

·

·

·

·

·
·

·

·

·
·

·

· · ··

·

·

· ·

·

·

·
·

·

·

·

·

· ··

·

·

·

·

·

·

·
·

·

· ·

·

·

·

·

· · ·

·

·

·

·
· ·

·

·

·

·

·

·

· ·

·

·

·

·

·

·
·

·

·

·

·

·

·
·

·
·

·

· ·

· ·

·

·
·

·

·

·

·

·

·

· ·

·

·

·
··

·

·

·

·
· ·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

· ·

·

·

·

·

·
·

·

·

·

·

·

·

·

·······
·

·

·

·

·

·

·

·

·

·
· ·

·

·
·

·

·

·

·
·

·
·

·

·

·

·

··

·

·

·

··

·

·

·

··

·

·

·
·

·

·

·

·

·

·

·

·

·

·

·

·

·

··

· ·

·

·

·

·

·

·

· · ·

·

·

·

·

·
·

·

·
·

·

·

·

·

·

·

·

·

· ·

·

·

·
·

·

·

·

·

·
·

·

·

· ·

·

·

·

·

·

·

·

· ··

·

·

·

·

·

·

·

·

·
·

·

·

·

·

·

·

·

·

·

··

·
·

·

·

·
·

··
·

·

·

·

··

·
·

· ·

·

·

·
· ·

·

·

··

·

·

·

·

·

· ·

·

··

·
·

·

·

·

·

·

·

· ·

··

THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : INFO

Par

Gautier RAIMONDI
Secure compilation against side-channel attacks

Thèse présentée et soutenue à IRISA, le 18 Décembre 2023
Unité de recherche : IRISA

Rapporteurs avant soutenance :

M. Sylvain CONCHON Professeur, Université Paris-Sud
M. Stephan MERZ Directeur de Recherche, Inria Nancy

Composition du Jury :
Président : Mme Sandrine BLAZY Professeure, Université de Rennes
Examinateurs : M. Sylvain CONCHON Professeur, Université Paris-Sud

M. Stephan MERZ Directeur de Recherche, Inria Nancy
M. Julien SIGNOLES Chercheur, CEA LIST

Dir. de thèse : M. Thomas JENSEN Directeur de Recherche, Inria Rennes
Co-dir. de thèse : M. Frédéric BESSON Chargé de Recherche, Inria Rennes

REMERCIEMENTS

Avant de rentrer dans le vif du sujet, je tiens à remercier les personnes sans qui
ce document n’aurait jamais vu le jour. Tout d’abord, Thomas, pour m’avoir permis
de réaliser cette thèse et m’avoir redirigé lorsque je m’égarais. Ensuite, Frédéric, dont
l’accompagnement constant aussi bien sur le plan scientifique que méthodologique a été
le véritable moteur de cette thèse.

Ma reconnaissance va aussi vers Sylvain Conchon et Stephan Merz pour avoir accepté
de rapporter cette thèse, ainsi que Sandrine Blazy et Julien Signoles pour leur présence à
la soutenance en tant que présidente et membre du jury. Je les remercie pour les remarques
qu’ils ont pu formuler sur ce document et les travaux qu’il présente.

J’aimerais également remercier l’ensemble de l’équipe CELTIQUE/EPICURE pour
leur accueil, et plus particulièrement ceux avec qui j’ai partagé un bureau : Victoire,
Santiago Sara et Alexandre. Merci pour les discussions que nous avons pu avoir.

Je remercie ma mère, mon père, ainsi que ma sœur et mes frères pour leur soutien,
bien qu’ils n’aient pas attendu le début de cette thèse pour cela. De la même façon, merci
beaucoup à Gaël, Paul, Mathilde et Romain, qui ont toujours été disponibles pour servir
de canards ou pour me permettre une évasion temporaire.

Enfin, je remercie Ana, pour qui la période de rédaction a été aussi éprouvante que
pour moi, et qui n’a pas cessé de me soutenir.

3

RÉSUMÉ EN FRANÇAIS

Que l’on parle d’une fusée, d’un smartphone, d’un pacemaker ou même d’un frigo, tous
ont un point commun : un ordinateur. Pas forcément un ordinateur au sens usuel du terme,
avec un clavier, une souris et un écran, mais un appareil exécutant du code. Seulement, ce
code étant pensé, théorisé, puis écrit par un humain, il n’est pas infaillible. On y retrouve
ce que l’on appelle des bugs, c’est-à-dire des erreurs de conception et/ou de réalisation.
Ces bugs peuvent prendre de multiples formes. On peut par exemple citer le dépassement
d’entier qui a causé l’explosion de la fusée Ariane V en 1996 [Ben01] ou l’implémentation
imprécise de la logique dans les machines de radiothérapie Therac-25 [Lev95], provoquant
des surdoses de radiation dans les années 1980 et causant la mort d’au moins 5 personnes.
Un autre type de bug, cette fois plus innocent, est un oubli dans la gestion des tailles de
messages provoquant un crash des iPhones lors de l’affichage de la notification de réception
de certains messages contenant un savant mélange d’anglais et d’arabe [Tho15]. Bien que
fondamentalement différents en termes de dangerosité et d’impact économiques, ces trois
exemples sont des bugs dits fonctionnels : ils ont un impact direct sur le fonctionnement
de l’outil ou du logiciel, qui ne se comporte pas comme prévu. Ainsi, la fusée explose, le
Therac-25 envoie beaucoup trop de radiations et le téléphone crash. Il existe néanmoins
un autre type de bug portant sur un domaine tout autre : les bugs de sécurité. Ceux-ci
permettent à un agent extérieur, souvent mal intentionné, d’accéder soit à des données,
soit à des outils auxquels il n’aurait normalement pas accès. Par exemple, il a été révélé
en 2008 que les pacemakers étaient sensibles à des attaques radios [Hal+08].

Étant donné les enjeux importants soulevés par ces problématiques, une des solutions
utilisées est celle des méthodes formelles. Ce sont des règles et techniques afin de rai-
sonner de manière rigoureuse sur un programme, généralement dans le but de prouver
une propriété. Pour faire le lien avec les bugs, on exige régulièrement d’un programme
qu’il soit sûr, c’est-à-dire que toute exécution de ce programme se comporte exactement
comme prédit. En particulier, cela signifie que l’exécution se termine proprement. Pour
permettre le raisonnement sur un programme, ainsi que l’expression des propriétés dé-
sirées, on définit une sémantique, c’est-à-dire une spécification rigoureuse des opérations
du programme et de leurs effets. Cela permet d’exprimer les propriétés dans le même

4

cadre que le comportement du programme lui-même, sans devoir se reposer sur le langage
naturel, qui est sujet à interprétation.

Avec une spécification précise de la propriété et du programme, l’utilisation de mé-
thodes formelles consiste à démontrer rigoureusement que le programme satisfait (ou non)
la propriété. Les méthodes utilisées pour cela sont le typage, à savoir se limiter à certains
programmes qui vérifient certaines contraintes, le model checking, qui analyse toutes les
exécutions possibles, et l’analyse statique, qui sur-approxime les états accessibles par le
système. Pour ce faire, on raisonne souvent à haut niveau, par exemple au niveau du
programme source. Néanmoins, les propriétés à ce niveau ne sont que rarement d’intérêt,
puisque l’on préfère obtenir des garanties sur le code compilé et exécutable directement.
Il est tout à fait possible de raisonner directement sur le code machine, au plus bas niveau
possible, mais cela signifie sacrifier les multiples simplifications offertes par le langage de
programmation. Ainsi, il est souvent préférable de prouver la propriété à haut niveau,
puis montrer que cette propriété est préservée par les différentes transformations (comme
la compilation). Cette thèse traite des transformations de programmes de haut niveau,
mais repose sur des compilateurs vérifiés pour préserver certaines propriétés le long de la
compilation.

Un compilateur, vérifié ou non, est un programme prenant en entrée un programme
écrit en un langage source et renvoyant un programme équivalent écrit en un langage
cible. Par exemple, le compilateur GCC traduit un programme écrit en C en code assem-
bleur. On attend généralement d’un compilateur deux choses : produire un programme
équivalent au programme source et rendre ce produit aussi efficace que possible. À cette
fin, les compilateurs utilisent des optimisations et sont donc de larges et complexes logi-
ciels. Puisque ce sont eux-mêmes des programmes, les compilateurs ne sont pas exempts
de bugs. Ainsi, une étude empirique de 2016 [Sun+16] a montré que GCC et LLVM, les
deux plus gros compilateurs de C sur le marché, souffrent régulièrement de bugs, malgré
leur utilisation quotidienne. La majorité du temps, ces bugs sont sur des cas spécifiques
et négligeables par rapport aux bugs présents dans les programmes sources. Néanmoins,
dans le cas de programmes utilisés dans des domaines tels que la santé ou l’aéronautique,
ces risques supplémentaires sont de trop. Ainsi, s’est développée la compilation formelle-
ment vérifiée, qui joint à un compilateur une preuve de correction. Cela garantit que le
comportement du programme cible est identique à celui du programme source, dans les
sémantiques respectives des langages source et cible. Immédiatement, cela induit que les
garanties de sûreté sont conservées. Plusieurs projets de compilateur vérifié ont vu le jour,

5

parmi lesquels CakeML [Kum+14], qui compile du ML vers de l’assembleur, et Comp-
Cert [Ler09], qui raisonne sur un sous-ensemble de C99. Dans cette thèse, nous utilisons
Jasmin [Alm+17] afin de préserver les propriétés à la compilation.

Jasmin est un cadre de programmation, c’est-à-dire à la fois un langage et un com-
pilateur de vérifié. Le langage est hybride, pensé pour les primitives cryptographiques,
permettant à l’utilisateur d’écrire du code en utilisant des mécanismes de bas niveau
(registres, instructions x86. . .), tout en permettant l’utilisation d’abstractions de haut
niveau (boucles, variables, fonctions. . .). De plus, Jasmin garantit la préservation séman-
tique du programme et est interfacé avec EasyCrypt [Bar+13]. Cela permet la construc-
tion automatique de preuves de préservation pour des propriétés de sécurité. En plus de
cette interface avec EasyCrypt, Jasmin garantit la préservation d’une certaine propriété :
constant-time [Alm+16 ; Amm+22].

Figure 1 – Analyse de Puissance de [Koc+11]

Afin de définir ce qu’est constant-time, il convient de commencer par définir le type
d’attaque que cette propriété prévient : les attaques par canaux auxiliaires. Une attaque
par canaux auxiliaires est l’exploitation de la réalité physique des systèmes informatiques.
Si un algorithme, ou une primitive cryptographique, est pensé et programmé dans un
monde mathématique abstrait, où certaines propriétés peuvent facilement être garanties,
son implémentation est différente. En fonction de l’exécution, un appareil ne va pas dé-
gager la même chaleur, produire le même son, prendre le même temps ou consommer le
même montant d’énergie. Ainsi, il est possible de déduire des informations sur l’exécution
en mesurant ces réalités physiques. Par exemple, comme détaillé dans [Koc+11], si on
s’intéresse à la consommation électrique d’une puce calculant l’exponentiation modulaire
de RSA [RSA78], on obtient une courbe comme celle présentée dans la Figure 1. L’in-
tuition derrière l’exponentiation modulaire est d’itérer sur les bits de la clé secrète, et

6

de ne réaliser la multiplication que si ce bit est vrai. Lorsque l’on regarde la courbe de
consommation, on peut remarquer des pics et des creux, correspondant respectivement
aux 1 et aux 0 de la clé, étant donné que la multiplication demande plus de puissance.

Comme mentionné précédemment, on peut aussi regarder le temps d’exécution et
essayer d’en déduire des informations [Koc96]. Ces attaques sont connues comme des
attaques temporelles et sont réalisables en pratique, même à travers un réseau [BB05 ;
Ber05]. En utilisant l’exemple de l’exponentiation modulaire, la multiplication prendrait
plus de temps que de ne rien faire, et on sait donc que le temps pris par l’exécution est
directement proportionnel au nombre de bits à 1 dans la clé. Cela simplifierait grandement
le nombre de clés à tester pour un attaquant. Cette thèse se concentre sur ce type d’attaque
puisqu’elles sont à la fois les plus courantes et les plus dangereuses, ne nécessitant pas
d’accès physique au système.

Heureusement, il existe des façons de se prévenir contre ces canaux auxiliaires. L’une
d’entre elles, la politique de programmation constant-time, requiert que les programmes
suivent des règles strictes pour être sécurisés. Ces règles sont : aucun contrôle de flux
dépendant des secrets et aucun accès à la mémoire dépendant des secrets. Notons que
le nom constant-time n’est pas suffisamment précis. La politique n’impose pas qu’un
programme s’exécute toujours en un temps constant, indépendamment de tout facteur,
mais seulement que ce temps d’exécution soit indépendant des secrets. La raison pour
interdire un contrôle de flux dépendant des secrets est assez simple : s’il y a une condition
sur un secret, les deux branches ne prennent pas nécessairement le même temps pour
s’exécuter et la valeur du secret utilisé peut être déduite par le temps d’exécution. Pour
les accès mémoire, cette restriction est due à l’existence d’attaques sur le cache.

Figure 2 – Illustration de l’attaque sur le cache Prime+Probe [Mus+20]

Afin d’illustrer une telle attaque sur le cache, considérons la Figure 2 représentant

7

le cache d’une machine partagée par un programme et l’attaquant à différents instants.
Lorsqu’il en gagne le contrôle, l’attaquant peut réaliser des accès mémoire, remplaçant
ainsi dans le cache des lignes choisies (étape de prime). Après avoir retourné la priorité
au programme victime puis l’avoir laissé tourner, l’attaquant peut à nouveau accéder
la mémoire. En fonction du temps requis pour accéder au contenu de la mémoire, il
obtient des informations sur la victime (étape de probe). Si l’accès mémoire est lent,
l’information recherchée n’est plus en cache et le programme attaqué a accédé à une
information contenue dans cette ligne. Dans le cas où, par contre, l’accès est rapide, cela
n’offre aucune information à l’attaquant, si ce n’est que le programme attaqué n’a pas
réalisé d’accès sur cette ligne, sans forcément savoir pourquoi. Par exemple, AES [Dwo23]
accède aux secrets directement. Une telle attaque révélerait que la valeur utilisée comme
index est contenue dans un intervalle strictement inférieur à la taille du tableau.

Pour illustrer la politique constant-time, la Figure 3 montre trois programmes. Le
premier représente une conditionnelle sur une variable de boucle et est constant-time,
puisqu’il représente un branchement sur une variable publique. Les deux derniers sont
respectivement un branchement secret et un accès mémoire secret, et ne sont donc pas
constant-time.

. . .
i f i == 0 then

. . .
else

. . .

(a) Conditionnelle
constant-time

i f s e c r e t then
. . .

else
. . .

(b) Conditionnelle
non constant-time

x = t [s e c r e t] ;

(c) Accès mémoire
secret

Figure 3 – Exemples de programmes (non) constant-time

Comme proposé précédemment, la politique constant-time n’est pas la seule contre-
mesure existante contre ces attaques. Par exemple, Agat [Aga00] a essayé d’équilibrer
les deux branches en ajoutant de fausses instructions. Dans [KM07], Köpf et Mantel
montrent qu’unifier les branches peut réduire le nombre de fausses instructions nécessaires.
Cependant, [ZS18] montre qu’en combinant des attaques temporelles et de puissance, les
fausses instructions peuvent être reconnues et le réel temps d’exécution déduit.

Pour garantir qu’un programme respecte la politique constant-time, plusieurs mé-
thodes peuvent être choisies. Si Jasmin, et d’autres [Bar+20a], préfèrent garantir la

8

préservation de la propriété, il reste qu’écrire du code constant-time est dur. Écrire du
code cryptographique est généralement source d’erreur, mais cela devient pire lorsque des
contraintes sont ajoutées sur la forme (pas de conditionnelles secrètes) ou sur le fond
(pas d’accès secrets). Des outils tels que FaCT [Cau+17] visent à simplifier l’écriture
de primitives cryptographiques constant-time. Le langage propose des constructions de
haut niveau, qui sont transformées durant la compilation. FaCT est vérifié pour produire
du code constant-time, mais utilise aussi l’outil dudect [RBV16] pour vérifier à poste-
riori que les optimisations réalisées par le compilateur LLVM préservent la propriété.
D’autres langages ont été créés, tel que VALE [Bon+17], un langage assembleur de haut
niveau qui vérifie des primitives cryptographiques en utilisant DAFNY [Lei10] ou encore
F*[Swa+16], et prouve la propriété constant-time en utilisant l’analyse teintée de F*. De
façon similaire, HACL* [Zin+17] est une librairie cryptographique vérifiée, programmée
et prouvée en F*, et compilée avec le compilateur vérifié Kremlin [Pro+17] qui préserve la
propriété constant-time. SC-eliminator [Wu+18] utilise l’analyse teintée pour détecter et
réparer les fuites en place, c’est-à-dire directement dans le code source. Pour ce faire, la
transformation utilise une suppression de branches similaire à FaCT. Cette approche a
été améliorée par Soares et Pereira [SP21] pour éviter de générer des programmes avec des
accès en dehors des bornes. Dans [BPT19], l’interprétation abstraite est utilisée afin de
vérifier la propriété constant-time au niveau source. D’autre solutions [Bar+14 ; Bar+20b]
préfèrent vérifier après compilation que le code machine respecte bien la politique.

Contributions et organisation du document Dans cette thèse, nous présentons une
solution à la production de code constant-time par compilation sécurisée. En particulier,
nous abordons trois questions :

1. Comment transformer un programme en équivalent constant-time ?

2. Est-ce que tous les programmes peuvent être rendus constant-time ?

3. Quel est le coût d’une telle transformation ?

Nous répondrons à ces questions au long de ce document. La première de ces questions
a découlé en la définition de plusieurs passes de transformations qui, lorsque appliquées
dans le bon ordre, garantissent que le programme résultant est constant-time.

La seconde question requiert la définition d’un système de type et de preuves qu’être
accepté par ce système de type garantit que la version transformée du programme est
constant-time.

9

La troisième et dernière question demande de l’expérimentation pour être répondue.
Si le travail réalisé sur les deux premières questions a été formalisé sur un petit langage,
nous avons implémenté notre transformation dans le compilateur Jasmin pour observer
son fonctionnement.

Les deux premières questions ont été le sujet d’un travail préliminaire présenté au
6th Workshop on Principles of Secure Compilation (PriSC’) début 2022. Une version
plus aboutie de ce même travail, contenant des résultats expérimentaux, a été publiée
au 25th Symposium on Principles and Practice of Declarative Programming (PPDP)
dans [BJR23].

Le reste de cette thèse s’articule comme suit. Dans le Chapitre 1, nous présentons
notre petit langage théorique, ainsi qu’une définition formelle de la propriété constant-
time. Ce premier chapitre contient également une explication détaillée de la plus simple des
transformations de programme vers constant-time. Dans le Chapitre 2, nous présentons
nos transformations de programme, d’abord de façon informelle avant de formaliser leur
définition et prouver leur propriété de préservation sémantique. Nous introduisons aussi ici
quelques informations qui guident la transformation et seront fournies par le système de
type. Les contributions de ce chapitre sont principalement le mécanisme de scope-increase,
réalisant du déplacement d’instructions problématiques, et la version améliorée de l’usuel
branch removal. Le Chapitre 3 contient la définition de notre système de type différenciant
les flux directs et indirects, et montre le lien entre ce système et le système classique pour
constant-time. Dans le chapitre 4, nous montrons la sécurité de notre transformation.
Nous revenons sur l’implémentation de la transformation et sur les expériences utilisant
le compilateur Jasmin dans le Chapitre 5. Enfin, nous concluons cette thèse et présentons
des perspectives sur nos contributions.

10

TABLE OF CONTENTS

Introduction 21

1 Background 29
1.1 Language . 29

1.1.1 Syntax . 29
1.1.2 Semantics . 30
1.1.3 Operators . 33

1.2 Constant-Time . 34
1.2.1 Constant-time Type System . 35

1.3 Conditional move . 37
1.3.1 Definition . 37
1.3.2 Updated Definitions . 38
1.3.3 Branch Removal . 40
1.3.4 Examples . 40
1.3.5 Limitations . 41

1.4 Constant-Time Array Traversal . 42

2 Program transformation 45
2.1 Delayed if-conversion . 45

2.1.1 Prerequisites . 47
2.1.2 Formal description . 51
2.1.3 Semantics preservation . 53

2.2 Index Sanitizing . 57
2.2.1 Formal Description . 59
2.2.2 Semantics Preservation . 60

2.3 Scope-Increase . 62
2.3.1 Prerequisites . 67
2.3.2 Formal Description . 71
2.3.3 Semantics Preservation . 76

11

TABLE OF CONTENTS

2.4 Updated Delayed If-Conversion . 76
2.4.1 Prerequisites . 79
2.4.2 Formal Description . 79
2.4.3 Semantics Preservation . 84

2.5 Handling direct leaks . 86
2.5.1 Semantics Preservation . 86

2.6 Overall transformation . 87
2.6.1 Semantics Preservation . 89

3 Type System 91
3.1 Types . 91

3.1.1 Classifying . 93
3.2 Program annotations for Constant-Time Transformation 94
3.3 Type System for Constant-Time Transformation 94

3.3.1 Rules for expressions . 95
3.3.2 Rules for instructions . 96
3.3.3 Constant-Time property . 98
3.3.4 Computing annotations . 98

3.4 Adapting the transformation . 99
3.5 Auxiliary Type System . 101

4 Security of the transformation 105
4.1 Preprocessing . 105

4.1.1 Typing Constraints . 105
4.1.2 Array Traversal . 106

4.2 Scope-Increase . 108
4.2.1 Intermediate Results for SI . 108
4.2.2 SI Security Theorem . 112

4.3 Security of IS . 115
4.4 Security of if-conversion . 119

4.4.1 Intermediate Results on Renaming Maps 119
4.4.2 Intermediate Results on the Initializing Statements 122
4.4.3 Intermediate Results on Branch Renaming 125
4.4.4 Intermediate results on Nxth . 130
4.4.5 Merging branches . 138

12

TABLE OF CONTENTS

4.4.6 Security of the delayed if-conversion 140
4.5 Overall transformation and conclusion . 141

5 Experimentation and evaluation 143
5.1 Implementation . 143

5.1.1 Annotations . 143
5.1.2 Typing & Computing Annotations 144
5.1.3 Scope increase . 145
5.1.4 Renaming and fresh variables . 146
5.1.5 Compilation . 146
5.1.6 Limitations . 147

5.2 Benchmark . 147
5.3 Results and evaluation . 150

5.3.1 Evaluation of Results . 150

Conclusion 153

Bibliography 159

13

LIST OF DEFINITIONS

Definition 1 (Syntax of L) . 29
Definition 2 (Set of values V) . 31
Definition 3 (Leaky semantics for expressions) 31
Definition 4 (Leaky semantics for instructions) 32
Definition 5 (Constant-time) . 34
Definition 6 (Constant Time Type System) . 36
Definition 7 (Updated syntax of L with a ctselect operator) 39
Definition 8 (Updated leaky semantics for expressions with a ctselect operator) 39
Definition 9 (Update on the Constant Time Type System) 40
Definition 10 (Definition of the fresh function) 47
Definition 11 (Updating a renaming map: ρ[y 7→ y′]) 49
Definition 12 (Initialization of a renaming map) 50
Definition 13 (Overloading of a renaming map for expressions) 50
Definition 14 (Formal definition of Delayed If-conversion) 51
Definition 15 (Initializing statements for delayed if-conversion) 52
Definition 16 (Renaming a statement) . 52
Definition 17 (Delayed if-conversion of a conditional) 53
Definition 18 (Renaming a environment) . 54
Definition 19 (Bound checks for array accesses) 59
Definition 20 (Index sanitization for expressions (ISe)) 60
Definition 21 (Index sanitization for instructions (IS)) 60
Definition 22 (New syntax of L) . 70
Definition 23 (New leaky semantics for instructions) 71
Definition 24 (Predicate ROp) . 73
Definition 25 (Separation function) . 74
Definition 26 (Scope Increase Algorithm) . 75
Definition 27 (Joining two renaming maps) . 79
Definition 28 (ϕ-merging) . 79
Definition 29 (New formal definition of Delayed If-Conversion) 80

14

LIST OF DEFINITIONS

Definition 30 (Renaming a next block - Assignments) 81
Definition 31 (Renaming a next block - Complex statements) 82
Definition 32 (Delayed if-conversion of a condition with a next) 83
Definition 33 (Constant-Time Transformation) 87
Definition 34 (Type lattice) . 92
Definition 35 (Conversion from lattice to lattice) 92
Definition 36 (Classifying) . 93
Definition 37 (Safe selection) . 95
Definition 38 (Typing rules for expressions) . 96
Definition 39 (Typing rules for Instructions) . 97
Definition 40 (Localized Implicit Flows Typing Rule) 101
Definition 41 (Declassifying) . 119
Definition 42 (Renaming a typing environment) 120
Definition 43 (Well formation of environments for renaming) 121
Definition 44 (Negligible Interference) . 121
Definition 45 (Well-formation of environment for renamings) 131
Definition 46 (Harmless environment) . 132
Definition 47 (Quasi-classify) . 138

15

LIST OF THEOREMS

Theorem 1 (Soundness of Constant Time Type System) 37
Theorem 2 (Update of a renaming map) . 49
Theorem 3 (Identity is a renaming map) . 49
Theorem 4 (Initialization of a renaming map) 50
Theorem 5 (Semantics preservation of index sanitization) 61
Theorem 6 (Safety of index sanitization) . 62
Theorem 7 (Semantics preservation of SIp) . 76
Theorem 8 (Semantics preservation of DICIF VP

p) 85
Theorem 9 (Semantics preservation of array traversal) 86
Theorem 10 (Semantics preservation of the Constant-Time Transformation) . . . 89
Theorem 11 (Order preservation) . 92
Theorem 12 (Constant-Time Enforcement) . 98
Theorem 13 (Security of our transformation) . 105
Theorem 14 (Security of Scope Increase) . 108
Theorem 15 (Security of index instrumentation) 118
Theorem 16 (Security of the delayed if-conversion) 140

16

LIST OF LEMMAS

Lemma 1 (Stability of renaming on environment) 54
Lemma 2 (Renaming a seq statement) . 55
Lemma 3 (Evaluating a renamed expression) . 55
Lemma 4 (Evaluation of a renamed instruction) 56
Lemma 5 (Semantics preservation of index sanitization for expressions) 61
Lemma 6 (Semantics preservation of sep) . 76
Lemma 7 (Semantics Preservation of next renaming) 84
Lemma 8 (Semantics of the merging statement) 85
Lemma 9 (Monotony of classify) . 93
Lemma 10 (Typing without arrays) . 106
Lemma 11 (Typing an array traversal on memory read) 107
Lemma 12 (Typing an array traversal on memory write) 107
Lemma 13 (Free upgrade) . 109
Lemma 14 (Preservation of typing by classifying) 110
Lemma 15 (Free classify) . 111
Lemma 16 (Security of index instrumentation of expression) 116
Lemma 17 (Security of local index instrumentation) 117
Lemma 18 (Composition of renamings on a typing environment) 121
Lemma 19 (Characteristics of initialized maps) 122
Lemma 20 (Security of pre renaming) . 123
Lemma 21 (Sequence of initializing statements) 124
Lemma 22 (Expression renaming) . 125
Lemma 23 (Security of branch renaming) . 126
Lemma 24 (Sequence of branch renamings) . 130
Lemma 25 (ϕ-typing) . 131
Lemma 26 (Property preservation by ⋊⋉) . 132
Lemma 27 (Hidden Renaming) . 133
Lemma 28 (Hidden Retyping) . 133
Lemma 29 (Security of the next transformation) 134

17

LIST OF LEMMAS

Lemma 30 (Merging renaming maps) . 139

18

LIST OF PROGRAMS

Program P0 (Program demonstrating branch removal’s limitation) 42
Program P1 (Result of the delayed if-conversion on Program P0) 46
Program P2 (Program containing a conditional array write) 46
Program P3 (Trying to apply delayed if-conversion on Program P2) 46
Program P4 (Trying to apply improved delayed if-conversion on Program P2) . 47
Program P5 (Unsafe program w.r.t memory accesses) 56
Program P6 (Result of delayed if-conversion on Program P5) 57
Program P7 (Unsafe program w.r.t memory read) 57
Program P8 (Result of our index sanitizing transformation on Program P7) . . . 58
Program P9 (Result of delayed if-conversion on Program P8) 58
Program P10 (Result of our updated index sanitizing transformation on Pro-

gram P5) . 58
Program P11 (Result of delayed if-conversion on Program P10) 59
Program P12 (Program with leak outside of scope) 62
Program P13 (Transformed version of P 12) . 63
Program P14 (Trying a naive solution on P12) 63
Program P15 (P12 with marked code) . 64
Program P16 (Trying our solution on P15) . 64
Program P17 (Leaking from another scope) . 64
Program P18 (Moving code before transformation) 65
Program P19 (Renaming after code motion) . 66
Program P20 (A secret value search through an array) 66
Program P21 (Trying our code motion solution on P20) 67
Program P22 (Trying to apply delayed if-conversion on P21) 67
Program P23 (Rewriting of P15 with next) . 69
Program P24 (Example of a misselection) . 72
Program P25 (Wrong selection in Program P24) 72
Program P26 (Right selection in Program P24) 72
Program P27 (Program containing a change of security on a variable) 78

19

LIST OF PROGRAMS

Program P28 (Program containing a change of security on a variable) 78
Program P29 (Manually curated program with H indexes) 99
Program P30 (First iteration of array traversal on Program P29) 100
Program P31 (Second and final iteration of array traversal on Program P29) . . 100
Program P32 (Swap function from Curve25519) 148
Program P33 (Conditional access) . 148
Program P34 (Two nested conditionals) . 148
Program P35 (Two sequential conditionals) . 148
Program P36 (For loop containing a memory access) 149
Program P37 (For loop followed by a memory access) 149

20

INTRODUCTION

Whether we’re talking about a rocket, a smartphone, a pacemaker or even a fridge,
they all have one thing in common: a computer. Not necessarily a computer in the
usual sense of the word, with a keyboard, a mouse, and a screen, but a device that
executes code. However, this code, conceived, theorized, and written by a human, is not
unerring. It contains what is known as bugs i.e., errors in design and/or implementation.
These bugs take many different forms. The integer overflow that caused the Ariane
V rocket to explode in 1996 [Ben01] or the imprecise implementation of logic in the
Therac-25 radiotherapy machines [Lev95] that caused radiation overdoses resulting in at
least 5 deaths in the 80s are two such forms. . . Another one, perhaps more innocuous,
would be the case of an oversight in the management of message sizes causing iPhones to
crash when displaying notifications of receipt of a certain message combining English and
Arabic [Tho15]. Regardless of the difference in cost and danger, these three examples are
functional bugs: they have a direct impact on the operation of the tool or software, which
doesn’t behave as expected: the rocket explodes, the Therac-25 sends out far too much
radiation, and the phone crashes. There is, however, another type of bug in a completely
different field: security bugs. These enable an external agent, usually with malicious
intent, to access data or tools to which it would not normally have access. For example,
it was revealed in 2008 that pacemakers were susceptible to radio attacks [Hal+08].

Given the high stakes raised by these issues, one of the solutions used is formal meth-
ods. These are rules and techniques for rigorously reasoning about a program, usually to
prove a property. To make the connection with bugs, a program is often required to be
safe i.e., any execution of the program must behave exactly as predicted. In particular,
this means that execution must finish cleanly. To enable reasoning about a program, as
well as the expression of desired properties, we define a semantics i.e., a rigorous specifica-
tion of the program’s operations and their effects. This allows properties to be expressed
in the same framework as the program’s behavior itself, without having to use natural
language, which is open to interpretation.

With a precise specification of the property and the program, the use of formal methods
consists of rigorously demonstrating that the program satisfies (or not) the property. The

21

Introduction

methods used for this are typing i.e., limiting oneself to certain programs that verify
certain constraints, model checking, which analyzes all possible executions, and static
analysis, which over-approximates the states accessible by the system. To do this, we
often reason at a high level i.e., on the source program. However, source-level properties
are rarely of interest, as we mainly wish to have guarantees on executable, compiled
programs. It is perfectly possible to reason directly on machine code, at the lowest
possible level, but this means sacrificing all the simplifications offered by programming
languages. Thus, it is often preferable to prove the property at a high level and that it
is preserved by the transformation (i.e., compilation). This thesis deals with high-level
program transformations but relies on verified compilers to preserve certain properties
through all compilation passes.

A compiler, whether verified or not, is a program that takes a program written in
a source language and returns an equivalent program written in a target language. For
example, the GCC compiler translates a program written in C into assembly code. A
compiler is usually expected to do two things: produce a program equivalent to the
source program, and make this output program as efficient as possible. To achieve this,
compilers use optimizations and are therefore complex pieces of software. Since they are
also programs, they are not free of bugs. For example, a 2016 empirical study [Sun+16]
showed that GCC and LLVM, the two biggest C compilers on the market, often have
bug reports, even though they are used in production and therefore tested. Generally,
these bugs are on niche cases and negligible compared to the number of bugs in the
source programs. However, when it comes to major issues such as health or aeronautics,
these additional risks are too much. This has led to the development of formally verified
compilation, which go with a compiler with a proof of correctness. This guarantees that
the behavior of source and compiled programs is the same, in the respective semantics
of the source and target languages. This immediately gives us that safety guarantees are
preserved. Several verified compiler projects have emerged, including CakeML [Kum+14],
which compiles from ML to assembler, and CompCert [Ler09], which reasons on a subset
of C99. In this thesis, we use Jasmin [Alm+17] to preserve properties during compilation.

Jasmin is a programming framework i.e., both a language and a verified compiler.
The language is a hybrid, designed for cryptographic primitives, allowing the user to write
code using low-level mechanisms (registers, x86 instructions. . .), while allowing the use of
higher-level abstractions (loops, variables, functions. . .). In addition, Jasmin guarantees
semantic preservation of the program and is interfaced with EasyCrypt [Bar+13]. This

22

Introduction

enables it to automatically construct preservation proofs for security properties. There
is, however, one type of property for which Jasmin guarantees preservation: constant-
time [Alm+16; Amm+22].

To define what constant-time is, we need to start by defining the type of attack this
property prevents: side-channel attacks. A side-channel attack is the exploitation of the
physical reality of computer systems. While an algorithm, or cryptographic primitive, is
imagined and programmed in an abstract, mathematical world, where certain properties
are guaranteed, its implementation is quite different. Depending on the execution, a
device will not give off the same heat, the same sound volume, take the same amount of
time, or consume the same amount of power. Thus, it is possible to deduce information
about execution by observing these physical measurements. For example, as detailed
in [Koc+11], if we look at the power consumption of a chip computing the RSA [RSA78]
modular exponentiation loop, we obtain a curve shown in Figure 1. The idea behind
modular exponentiation is to iterate over the bits of the secret key, multiplying only
if that bit is true. When we look at the power consumption curve, we can see peaks
and troughs, corresponding respectively to the 1 and 0 bits of the key, as multiplication
requires more resources.

Figure 1 – Power Analysis from [Koc+11]

As mentioned above, we can also look at the execution time to try and deduce infor-
mation [Koc96]. Such attacks are known as timing attacks and are in practice feasible
even remotely over the network [BB05; Ber05]. Using the example of modular exponen-
tiation, multiplication takes longer than doing nothing, and we know that the time taken
is directly proportional to the number of bits set to 1 in the key. This greatly reduces the
number of keys to be tested. This thesis focuses on this type of attack since they are the
most common and the most dangerous, that can be carried out remotely.

23

Introduction

Fortunately, there are ways of getting rid of this side-channel. One of them, the
constant-time development policy, requires programs to follow strict rules to be secure.
These rules are: no secret-dependent control flow and no secret-dependent memory access.
Note that the name constant-time is not precise enough. The policy does not require that
a program always run in a constant time, independent of any factor, but only that this
execution time be independent of the various secrets. Why prohibiting a secret-dependent
control flow is quite simple: if there is a condition on a secret, the two branches do not
take the same time to execute, and the value of the secret can be deduced using the
execution time. For memory accesses, on the other hand, this is due to the existence of
attacks on the cache.

Figure 2 – Illustration of the Prime+Probe Cache Attack [Mus+20]

To illustrate the attack, consider Figure 2 representing the cache of a machine shared
by a program and an attacker at different times. When it gains control, an attacker can
perform memory accesses, thus overwriting the cache by replacing lines (prime phase).
After returning control to the victim program and letting it run for a given time, the
attacker can access the memory again. Depending on the time required to access the
memory content, he obtains information about the program under attack (probe phase).
If the memory access is slow, this means that the information is no longer cached and
that the attacked program has accessed the information contained in this line. If, on the
other hand, the memory access is fast, this offers no information to the attacker, as the
attacked program has simply made no access on this line, without being able to deduce
why. For example, AES [Dwo23] accesses secrets directly. Such an attack would give the
information that the value used as an index is contained in an interval strictly smaller
than the size of the array.

To illustrate the constant-time policy, we show in Figure 3 three programs. The first

24

Introduction

represents a conditional on a loop variable, and is constant-time, being a branching on
a public variable. The last two are respectively a secret branch, and a secret memory
access, and are therefore not constant-time.

. . .
i f i == 0 then

. . .
else

. . .

(a) Constant-time
conditional

i f s e c r e t then
. . .

else
. . .

(b) Non constant-time
conditional

x = t [s e c r e t] ;

(c) Secret dependent
memory access

Figure 3 – Examples of (non) constant-time programs

As implied, the constant-time policy is not the only countermeasure against this kind
of attack. For example, Agat [Aga00] have tried to balance the two branches by adding
false instructions. In [KM07], Köpf and Mantel show that unifying the branches can
reduce the number of false instructions needed. However, [ZS18] shows that by combining
timing and power attacks, false instructions can be recognized and the execution time
determined.

To ensure that a program respects the constant-time policy, several approaches are
available. While Jasmin, and others [Bar+20a], guarantee property preservation, the fact
remains that writing constant-time code is hard. Writing cryptographic code is generally
error-prone, but it gets worse when constraints are added on syntax (no conditionals) or
substance (no secret accesses). Tools such as FaCT [Cau+17] aim to simplify the writing
of cryptographic primitives in constant time. The language offers high-level constructs,
which are then transformed during compilation. FaCT is verified to produce constant-
time code but also uses the dudect [RBV16] tool to check a posteriori that optimizations
made by the LLVM compiler preserve the property. Other specific languages have been
created, such as VALE [Bon+17], a high-level assembly language that checks crypto-
graphic primitives using DAFNY [Lei10] or F*[Swa+16], and proves the constant-time
property using F*-tainted analysis. Similarly, HACL*[Zin+17] is a verified cryptographic
library programmed and proven in F*, and compiled with the Kremlin [Pro+17] verified
compiler that preserves the constant-time property. SC-eliminator [Wu+18] uses tainted
analysis to detect and repair leaks in place, i.e., directly in the source code. To achieve
this, the transformation uses branch deletions similar to FaCT. This approach has been

25

Introduction

improved by Soares and Pereira [SP21] to avoid generating programs with out-of-bounds
accesses. In [BPT19], abstract interpretation is used to verify the constant-time property
at source level. Other solutions [Bar+14; Bar+20b] prefer to check after compilation that
the binary code complies directly with the policy.

Contributions and organization of this thesis In this thesis, we present a solution
to the production of constant-time code by way of secured compilation. In particular, we
tackle three questions:

1. How can we transform a program into a constant-time counterpart?

2. Are all programs equally constant-time-able?

3. What does it cost?

We answer those questions throughout this document. The first question has led to
the definition of multiple passes of transformation that, when applied in the correct order,
ensure that the resulting program follows the constant-time security policy.

The second question requires the definition of a type system and proofs that being
accepted by the type system ensures that the transformed version of a program is constant-
time.

The third and last question need some kind of experiments to be answered. While
the work done on the first two questions has been formalized on a small language, we
implemented our transformation within the Jasmin compiler as to observe its behavior.

The first two questions have been the scope of a preliminary work presented at the
6th Workshop on Principles of Secure Compilation (PriSC’) in early 2022. A more ac-
complished version of this same work, including some experiments, has been published
at the 25th Symposium on Principles and Practice of Declarative Programming (PPDP)
in [BJR23].

The rest of the thesis answers to these questions as follows. In Chapter 1, we present
our small, theoretical, language, as well as a formal definition of constant-time. This
first chapter also contains a thorough explanation of the simplest program transforma-
tion for the constant-time policy. In Chapter 2, we present our program transformations,
first in an informal way, before formalizing their definitions and proving their semantics
preservation. We also introduce some information needs that will be fulfilled by the type
system. The contribution in this chapter relies mostly on the scope-increase mechanism,
performing code motion of problematic instructions, and on our updated version of the
usual branch removal. In Chapter 3, we define our information flow tracking type system

26

Introduction

discerning direct and indirect flows, and show how it relates to the usual information
flow type system for constant-time. In Chapter 4, we prove our transformation’s security.
We report on the implementation of the transformation and experiments using the Jas-
min compiler in Chapter 5. Finally, we conclude this thesis and present perspectives on
our contributions.

27

Chapter 1

BACKGROUND

1.1 Language

In this section, we define a simple language L by giving its syntax and semantics.
This language will be used in all subsequent sections and chapters, and will be extended.
We use a formal definition to allow us to write proofs on this language and associated
transformations.

1.1.1 Syntax

We use an imperative language, manipulating integer constants, variables, and fixed-
size arrays. The language contains the usual if and for instructions. Given that we aim
to reason on crypto-focused code, the for loop tends to be more used than the while loop.
The syntax is given in definition 1.

Definition 1: Syntax of L

Expressions:
expr ∋ e ::= x | c | e1 ⊕ e2 | t[e]

Statements:
stmt ∋ s ::= skip

| x = e

| t[e1] = e2

| s1; s2

| if x then s1 else s2

| for x from c1 to c2 do s

29

Background

Language L is composed of expressions expr and statements stmt. An expression e

may be a variable x, a constant integer c, a binary operator applied to arguments e1 ⊕ e2

or an array access t[e] where t is an array variable, and e a computed index. Arrays are
statically assigned, and their size is known and is never modified during execution. A
statement s may be a skip (equivalent to a nop operation), an assignment x = e with x

a variable, an array update t[e1] = e2 with t an array variable and e1, e2 two computed
expressions, a sequence of two statements s1; s2, a conditional or a for loop.

Several syntactic constraints are also placed on language L:

1. Condition e of a conditional is restricted to be a variable, which is neither modified
within the conditional nor after the conditional;

2. Memory accesses are only done in simple statements i.e., either y = t[x] or t[x] = y

where x and y are variables;

3. Loop bounds are known constants;

4. Loop index is not modified within the loop body.

The first and second constraints can be circumvented by adding a pre-processing to
a broader language: we create new temporary variables such that the program satisfies
the constraints. The constraints on loops, as well as the restriction on constant array
size, are common for cryptographic code and can be found e.g., in the input language of
the Jasmin compiler [Alm+20], specifically designed for cryptography. These constraints
offer some simplicity on the syntax, allowing for easier case reasoning when working on
programs written in L. For example, the second constraint guarantees that we can think
about memory accesses locally, without resorting to the syntax tree to check if the memory
access holds another one within its index for example.

1.1.2 Semantics

Language L is given a big-step semantics, which is standard except that the execution
also generates a trace of leakage.

This semantics is based on environments σ, and values v. In L, a value can either be
an integer n ∈ Z or an array defined by its size and its content. Therefore, we define the
set of values V as follows:

30

Background

Definition 2: Set of values V

V ∋ v ::= n | [m | n1; . . . ; nm]

If t = [m | n1; . . . ; nm] is an array, we define size(t) to be its size i.e., m, and t[i], with
i ∈ N, i < m to be the value of index i i.e., ni.

Then, an environment σ is a mapping from variables x and arrays a to their values, V.
We define σ[x] to be the value associated to x in σ, and σ[x 7→ v] to be the environment
that is equal to σ, except for x which is now associated to v.

Our semantics generates a trace of leakage. A trace t is a list of values. We denote
ϵ the empty list, and · the concatenation operation, both with other traces and with
values. Following Barthe et al.[Bar+19], a trace is generated when evaluating a conditional
statement or performing an array access. This leakage represents the information that
could be leaked using a timing attack. Therefore, keeping trace of this leak allows us
to check that a program follows the constant-time programming discipline. This can be
intuited by the fact that we leak conditional guards and array indexes, the two sensitive
characteristics in constant-time programming.

Semantics for expressions

The semantics of expressions is defined as a relation (e, σ) ↓t v, where e is an expression,
σ a mapping environment, t a leaking trace, and v the resulting value. It reads as e

evaluated in σ results in v and produces the trace t. Its definition is given in Definition 3.

Definition 3: Leaky semantics for expressions

(c, σ) ↓ϵ c

σ[x] = v

(x, σ) ↓ϵ v

(ei, σ) ↓ti vi i ∈ {1, 2}
v3 = v1 ⊕ v2

(e1 ⊕ e2, σ) ↓t1·t2 v3

(e, σ) ↓te i 0 ≤ i < size(t) σ[t][i] = v

(t[e], σ) ↓te·i v

31

Background

This semantics for expressions contains five rules. Evaluating a constant c produces
the value c itself, independently of the environment σ, and does not produce any trace.
Evaluating a variable x results in its value in the σ environment, and does not leak
anything either. Evaluating a binary operation ⊕ between two expressions e1 and e2

requires to first evaluate e1 and e2 to v1 and v2. The binary operation e1 ⊕ e2 then results
in the operation between resulting values v1 ⊕ v2. Similarly, the evaluation of e1 and e2

produces two traces t1 and t2. By supposing that all operations ⊕ are written as constant-
time 1, the trace generated by e1 ⊕ e2 is t1 · t2. Lastly, the evaluation of an array access
t[e] requires first the evaluation of its index e to a value i. We also require that i is within
the bounds of t, by asserting that i ≥ 0 and i < size(t), for safety. The generated trace
of an array access is the trace of the evaluation of e, appended by the value of e, which is
used as an address, and therefore leaked.

Semantics for instructions

The semantics of instructions is defined as a relation (s, σ) ↓t σ′, where s is a statement,
t a leaking trace, and σ, σ′ two environments. It reads as s evaluated in σ results in the
updated environment σ′ and produces the trace t. It is defined as:

Definition 4: Leaky semantics for instructions

(skip, σ) ↓ϵ σ

(e, σ) ↓t v

(x = e, σ) ↓t σ[x 7→ v]
(s1, σ1) ↓t1 σ2 (s2, σ2) ↓t2 σ3

(s1; s2, σ1) ↓t1·t2 σ3

(e1, σ) ↓t1 i 0 ≤ i < size(t) (e2, σ) ↓t2 v

(t[e1] = e2, σ) ↓t1·t2·i σ[t 7→ σ[t][i 7→ v]]
(x, σ) ↓ϵ b (sb, σ) ↓t σ′

(if x then strue else sfalse, σ) ↓b·t σ′

∀i∈[c1;c2](x = i; s, σi) ↓ti σi+1 t = tc1 · · · · tc2

(for x from c1 to c2 do s, σc1) ↓t σc2+1

This semantics contains six rules. Evaluating a skip, preserves the original environ-
ment, and does not leak anything. Evaluating an assignment needs first to evaluate the
expression e, and results in an updated environment where x now has the value evaluated
for e. The leaked trace is the information leaked when evaluating e. When evaluating a

1. This is for example usually not the case for the division.

32

Background

sequence of two instructions, we first evaluate s1 in our initial environment σ1. This gives
us a new environment σ2, which we use to evaluate s2. Similarly to the above, the trace
is the concatenation of the two traces generated by the evaluation of s1 and s2. An array
write is performed by first evaluating the value of the index, and checking it is within the
array’s bounds, just as an array read. The written expression is then evaluated, and the
environment’s value of the array is updated to now contain the value v at index i. The
trace leaks the value of the index, as stated earlier. The evaluation of the conditional
is standard: we first evaluate the value of the guard, and we execute the corresponding
branch. To track the execution, we leak into the trace the value of the guard, along with
the trace generated by the branch executed. Finally, for loop evaluations are straight-
forward. We evaluate n = c2 − c1 times the loop body, prepended by the assignment of
the index value to the loop variable. We leak a trace concatenating the traces generated
by each iteration.

1.1.3 Operators

To ease the use of this language and syntax, we craft several operators on statements
and/or related objects.

Set of variables

We note var(s) to be the set of variables either modifier or read by a statement s.

Set of modified variables

We note mod(s) to be the set of variables modified by a statement s i.e., all variables
on the left side of an assignment.

Sequence of a set

Given a set of statements S, we can craft an arbitrary statement seq(S) such that

seq(S) ∈ {s1; . . . ; sn | ∪isi = S ∧ n = |S|}

This statement is an arbitrarily ordered sequence of all statements within S.

33

Background

Semantically equivalence

Given two statements s1 and s2, we say that s1 and s2 are semantically equivalent,
noted s1 ≃ s2, if they are syntactically equal, except for skip. Because skip does not have
any impact on evaluation, adding or removing one to a statement doesn’t fundamentally
change it.

1.2 Constant-Time

The constant-time programming discipline as presented in the introduction also has a
more formal definition: we say that a program P abides by the constant-time programming
discipline if starting from environments that agree on the variables containing public
values, the execution traces of leakage events are indistinguishable for an attacker. Given
the leakage semantics, the constant-time property (see Definition 5) can be formalized
as a non-interference property [Bar+19] with respect to a low-equivalence relation over
environments. In the following definition, the set L is to be thought of as the set of public
(“low”) variables.

Definition 5: Constant-time

Let L be a set of variables and P be a program. The program P abides by the
constant-time programming discipline for L, written CT (P, L), if the following non-
interference property holds:

CT (P, L) △=
∧

σ1 ≡L σ2

(P, σ1) ↓t1 σ′
1

(P, σ2) ↓t2 σ′
2

 ⇒ t1 = t2

where σ ≡L σ′ △= ∀x ∈ L, σ(x) = σ′(x).

Note that programs respecting the constant-time programming discipline do not have
the same timing behavior for any input. The guarantee is that programs run with 2
distinct secrets execute the exact same sequence of instructions and perform the exact
same memory accesses in the same order. In practice, this is an effective countermeasure
protecting against micro-architectural timing leaks due to branch prediction and cache
memory.

34

Background

For example, we can try to apply this definition to the programs presented in Figure 3.

Example 1: Constant-time property of the examples of Figure 3

The first program, which we know is constant-time, is

. . .
i f i == 0 then

. . .
else

. . .

The constant-time property of this program is based on the fact that i is a public
variable. Hence, we would define L = {i}. And, given that the statements hidden
behind the · · · are constant-time as well, the semantics rule for the evaluation of a
statement states that the trace contains only the value of the guard (here i == 0),
and the traces of the branches. Because the branches are constant-time, their traces
follow the non-interference property. And, for two environments σ1 ≡L σ2, we have
that σ1(i) = σ2(i) because i ∈ L, and the traces are identical.

However, if we look at the third example, x = t[secret]; , with for example L = ∅,
the semantics rule tells us that the trace of this statement contains the value of secret.
And, two equivalent environments σ1 ≡L σ2 do not necessarily agree on the value of
secret. Hence, the statement does not follow the non-interference property and is
not constant-time either.

1.2.1 Constant-time Type System

The constant-time programming discipline can also be enforced by a flow-sensitive
information flow control type system [Bar+14] in the style of Hunt and Sands [HS06]. A
typing judgment is of the form ∆ ⊢ct Γ{p}Γ′. The typing environments Γ, Γ′, ∆ : Var →
{H, L} map a program variable x to its type τ ∈ {H, L}. Γ and Γ′ assign types to scalar
variables while ∆ assigns types to array variables. As the type system is flow-sensitive
for scalar variables, Γ is the typing environment before running P and Γ′ is the typing
environment obtained after running P . The typing environments for arrays ∆ is not
flow-sensitive. The rationale is that, unlike a variable assignment, an array update would
be modeled as a weak update, and therefore it is unlikely flow-sensitivity would increase

35

Background

precision. The typing judgment for expressions is of the form ∆, Γ ⊢ct e : τ . Compared
to the usual Volpano-Smith style type systems [VIS96; HS06], the type system is flow-
sensitive and enforces the additional typing constraints that conditions and array indices
must be of type L. Therefore, we obtain the typing rules of Definition 6.

Definition 6: Constant Time Type System

∆, Γ ⊢ct x : Γ(x) ∆, Γ ⊢ct i : L
∆, Γ ⊢ct e : L

∆, Γ ⊢ct t[e] : ∆(t)

∆, Γ ⊢ct ei : τi i ∈ {1, 2}
∆, Γ ⊢ct e1 ⊕ e2 : ⊔

i τi

∆ ⊢ct Γ{skip}Γ
∆ ⊢ct Γ1{s1}Γ2 ∆ ⊢ct Γ2{s2}Γ3

∆ ⊢ct Γ1{s1; s2}Γ3

∆, Γ ⊢ct e : τ

∆ ⊢ct Γ{x = e}Γ[x 7→ τ]

∆, Γ ⊢ct e1 : L ∆, Γ ⊢ct e2 : τ2

τ2 ⊑ ∆(t)
∆ ⊢ct Γ{t[e1] = e2}Γ

∆, Γ ⊢ct c : L
∆ ⊢ct Γ{s1}Γ1 ∆ ⊢ct Γ{s2}Γ2

∆ ⊢ct Γ{if c then s1 else s2}Γ1 ⊔ Γ2

Γ ⊑ Γ′ Γ1 ⊑ Γ′

∆ ⊢ct Γ′[i 7→ L]{s}Γ1

∆ ⊢ct Γ{for i from c1 to c2 do s}Γ′

Theorem 1 states that the type-system of Definition 6 ensures that the program is
constant-time according to Definition 5.

36

Background

Theorem 1: Soundness of Constant Time Type System

Consider a program P typable according to the type-system of Definition 6

∆ ⊢ct Γ{P}Γ′

We have that CT (P, L) for L = {x | Γ(x) = L ∨ ∆(x) = L}.

Proof Outline. By induction over the type derivation of P . The only complex cases are
the branching and the array accesses. In both cases, the expression of the guard (resp.
the index) is public, and its value should be shared between two equivalent environments.
By the semantics rule, we can prove that the non-interference property is true.

1.3 Conditional move

1.3.1 Definition

As stated above, for a program to be constant-time, the control flow shall not depend
on secret values. Thus, if e is a secret, simple programs such as if c then x = 0 else x = 1
are insecure. However, such programs, performing a choice between two values, have a
real use-case in cryptographic code. To allow for these kinds of instructions, a constant-
time selection operation is introduced: ctselect. This ctselect operation is semantically
equivalent to a if conditional. For example, x = ctselect(c, 0, 1) is the constant-time
version of the program above.

To effectively implement such an operation, we can for example use bitwise manipu-
lation or arithmetic operation. One such implementation is displayed in Example 2. This
definition of ctselect is semantically correct because if c is true, e1&c boils down to e1 and
if c is false, e2&¬c amounts to e2, giving us the exact semantics of ctselect. Moreover,
if c, e1, and e2 are themselves constant-time expressions, it is easy to prove using the ⊕
semantics rule that ctselect(c, e1, e2) is constant-time as well.

Example 2: Implementation of constant-time selection using bitwise
manipulation

ctselect (c , e1 , e2) = (e1 & c) | (e2 & ¬ c)

37

Background

However, even such a construct is not flawless, and compilers might break it by re-
introducing branches in some compilation passes.

Still, there exists a way to ensure the constant-time property of the ctselect operation:
cmove. This is an x86 instruction designed for this purpose, often used to write constant-
time machine code. The cmove instruction has a semantics similar to one of a branch:
cmove e r1 r2 moves the value of r2 to r1 if e is true. Otherwise, nothing happens. Even
though its semantics makes it look like a branch, its execution does not depend on the
condition, and we can assume this instruction is constant-time, as its trace is constant
whatever the value of e is. We can then use the cmove instruction to implement the
ctselect operation :

Example 3: Implementation of ctselect using cmove

r = ctselect(e, r1, r2) 7→
cmove e r r1
cmove (∼ e) r r2

From now on, we suppose that every ternary conditional operator behaves just as a
ctselect operation and is constant-time i.e.,

ctselect(e1, e2, e3) ≡ e1?e2:e3

1.3.2 Updated Definitions

Having defined this new ctselect operation, we can update the language defined in
Definition 1 to add such an expression within our expressions :

38

Background

Definition 7: Updated syntax of L with a ctselect operator

Expressions:
expr ∋ e ::= x | c | e1 ⊕ e2 | e1?e2:e3 | t[e]

Statements:
stmt ∋ s ::= skip

| x = e

| t[e1] = e2

| s1; s2

| if x then s1 else s2

| for x from c1 to c2 do s

By adding a ternary operator in the syntax, we have to give it a semantics as well.
This is done in Definition 8 by showing the new rule for our conditional expression. The
conditional expression is strict and evaluates all its arguments without leaking the value of
the condition e1. By evaluating e1?e2:e3, we evaluate both e2 and e3, then e1, and produce
either of the values accordingly. This way, a conditional expression always generates the
trace t1 · t2 · t3

Definition 8: Updated leaky semantics for expressions with a ctselect
operator

(ei, σ) ↓ti vi i ∈ {1, 2, 3}
v = if v1 then v2 else v3

(e1?e2:e3, σ) ↓t1·t2·t3 v

Similarly, we update the constant-time type system given in Definition 6 to take into
account the newly created ternary operator. We display in Definition 9 the typing rule
used for this construction. Note that if the three expressions are accepted by the type
system, the conditional move is accepted whatever the type of e1 is.

39

Background

Definition 9: Update on the Constant Time Type System

∆, Γ ⊢ct ei : τi i ∈ {1, 2, 3}
∆, Γ ⊢ct e1?e2:e3 : ⊔

i τi

1.3.3 Branch Removal

For a program to be constant-time, there must be no secret conditionals. Instead
of trying to bend the logic behind a program to satisfy this constraint, we can simply
remove all secret branches. Such a pass, along with a whole compiler, is presented in
FaCT[Cau+19]. This pass, named Branch removal, works by predicating each instruction
by the control predicate, which is constructed from all conditions in the control flow
leading to this instruction. Predicate an instruction by a value means that we use the
ctselect operation defined above to ensure that the instruction is actually executed only
if this value is true. In the case of an assignment, this means transforming x = y to
x = h?y:x, leaving x untouched if h is false. Note that in this case, the operator ctselect
can be implemented at low-level with a single cmove. To keep track of the control flow
leading to an instruction, we append ’&e’ (resp. ’&(¬e)’) to the control predicate when
we cross a then (resp. else) branch.

1.3.4 Examples

Consider the following code, which, depending on a secret h, assigns the variable x to
either l1 or l2.

Example 4: Simple unsecure code snippet

i f h then x = l 1 else x = l 2

After branch removal, we get the following branchless code, which eliminates the
leakage due to the conditional.

40

Background

Example 5: Transformed version of the code in Example 4

x = h? l 1 : x ; x = ¬h? l 2 : x

Now, if we look at a snippet containing two nested conditionals, such as in Exam-
ple 6, the transformation will now combine both conditional guards to form the control
predicate, as shown in Example 7.

Example 6: Complex unsecure code snippet

i f h1 then t [1] = l 3 ; else { i f h2 then t [2] = l 4 ; else skip}

Example 7: Transformed version of the code in Example 6

t [1] = h1? l 3 : t [1] ; t [2]=((¬h1)&h2)? l 4 : t [2] ;

1.3.5 Limitations

Public safety

An issue with Branch removal, such as presented above, is that it is not always a
semantics-preserving transformation. The problem arises when the safety of memory ac-
cesses within the then (resp.the else) branch relies on whether the condition holds or not.
For example, suppose that l1 and l2 in Examples 4, 5 perform a memory access e.g., t[i]
and that the condition h guards against out-of-bound accesses i.e., h := 0 ≤ i < size(t).
After Branch removal, the target code performs the memory access unconditionally and
may perform an illegal access. To solve this issue, the FaCT compiler generates verifi-
cation conditions to ensure that the memory accesses are still valid after transformation
i.e., that the expressions l1 and l2 in a predicated assignment x = h?l1:l2 are safe to eval-
uate, independently of the value of h. The compiler then outsources them to an external
solver.

41

Background

Indirect leakage

Because the Branch removal transformation is a local process, and only considers
instructions one at a time, it is insufficient to remove indirect leakage due to assignment
inside the conditional. Consider the Program P0.

Program P0: Program demonstrating branch removal’s limitation

i f h then (x=l 1 ; y=t [x]) else (x=l 2 ; y=t [x])

By performing the transformation, the following then branch will be generated :

x = h?l1:x; y = h?t[x]:y;

Because the semantics of cmove is to evaluate all expressions, t[x] is always computed.
However, because of the first predicated statement, x is tainted by h, and the memory
access is unsecure, potentially leaking the value of a secret.

1.4 Constant-Time Array Traversal

To avoid leaking an array access y = t[x], an inefficient yet standard countermeasure
consists of iterating over all the indices i of the array and selecting the relevant value
using a conditional expression.

y = t[x] → for i from 0 to size(t)−1 do y = (x == i)?t[i] : y

The semantics is preserved by this transformation. Indeed, the assignment y = (x ==
i)?t[i:y amounts to y = t[x] if x = i, and y = y otherwise. In other words, the statement
is significant only if x = i. And, we only apply these transformations on safe programs,
so we know that 0 ≤ x < size(t), and there is a i such that x = i. This means that the
loop amounts to y = t[x]. Moreover, the conditional move is a constant-time operation,
and the size of arrays is public, so nothing leaks from this array traversal. In the cases of
memory write, the intuition is the same: we introduce a for loop and register the write
only for the correct index. The only difference is that the t[i] is present twice, and that
when x = i, the assignment is equal to t[i] = t[i], which is also harmless. This would look
like :

42

Background

t[x] = y → for i from 0 to size(t)−1 do t[i] = (x == i)?y : t[i]

This solution is a last resort one: we effectively multiply the complexity of the program
by size(t). However, it is a working one, and applying it just after if-conversion would
allow us to circumvent the second limitation presented above. Because of its cost, we
nonetheless aim to use it as little as possible.

43

Chapter 2

PROGRAM TRANSFORMATION

In this chapter, we aim to describe how we can improve the state-of-the-art transfor-
mations described in Chapter 1. We describe each step of our reasoning to propose new,
improved transformations in a different section. We conclude with an overview of the
whole transformation as we propose it. Note that these steps are described in a some-
what informal way: even though a formal description is given, we hide in a black box
the type system which will give us the information needed to apply any transformation.
Along each one of the steps is given, if possible, an outline of the proofs for semantics
preservation. Security, and thus the constant-time property, of the transformed program
will be tackled in Chapter 4, but we ensure here that the transformation shall not change
the behavior of the program. Because the proofs in this chapter are just outlines, some
formalization can be lacking. In most cases, a similar intuition is formalized and detailed
in Chapter 4.

2.1 Delayed if-conversion

As shown earlier using Program P0, the usual Branch removal transformation is not
enough to handle certain classes of programs, notably because the transformation is turn-
ing indirect flows into direct by introducing the predicated code. However, the predicated
code is added in place and we introduce a direct flow where there would have been none
in the original program, making the array access insecure. We then propose to delay the
if-conversion pass i.e., the introduction of the predicated code, at the cost of introducing
extra variables. This allows for the array accesses to be done after a temporary assignment
but before the predicated statement, without any dependence on the condition guard.

If we try to apply it to the Program P0, we get the Program P1. The resulting program
has the same semantics as the original one: y is either t[l1] or t[l2] depending on h, and
is constant-time, the only memory accesses being done are those on l1 and l2, two safe
values.

45

Program transformation

Reminder: Program P0

i f h then (x=l 1 ; y=t [x]) else (x=l 2 ; y=t [x])

Program P1: Result of the delayed if-conversion on Program P0

xt = l 1 ; yt = t [xt] ; xe = l 2 ; ye = t [xe] ;
x = h?xt : xe ; y = h?yt : ye ;

However, this approach only works on scalar variables. If we try to apply it as it is
on arrays, such as the Program P2, we are faced with a problem as to how to delay the
predicated statement for the t[x] = 0 array write. The wrong solution is basically to apply
the delayed if-conversion, and we get the Program P3. Unfortunately, such a resulting
program does not have a consistent semantics: either t[xt] or t[xe] has been wrongfully
rewritten, and does not hold the same value as it does after the evaluation of the original
program.

Program P2: Program containing a conditional array write

i f h then (x = l 1 ; t [x] = 0) else (x = l 2 ; t [x] = 0)

Program P3: Trying to apply delayed if-conversion on Program P2

xt = l 1 ; t [xt] = 0 ;
xe = l 2 ; t [xe] = 0 ;
x = h?xt : xe ; t [x] = h? t [xt] : t [xe] ;

To ensure that the semantics are well-preserved, we limit the delaying of if-conversion
to work only on scalar variables. When faced with a memory write, we immediately
choose the correct value. Such a way to do things would result in Program P4. In such a
program, the memory writes only have an effect if the correct branch is evaluated. Thus,

46

Program transformation

the semantics is preserved. Unfortunately, this introduces direct flow into the arrays, and
we often can’t transform memory accesses done using memory accesses as indexes, such
as t[t[x]]. We will discuss more about this issue in Section 1.4.

Program P4: Trying to apply improved delayed if-conversion on Pro-
gram P2

xt = l 1 ; t [xt] = h ?0 : t [xt] ;
xe = l 2 ; t [xe] = ¬h ?0 : t [xe] ;
x = h?xt : xe ;

2.1.1 Prerequisites

The transformation presented above is quite straightforward: we do not need to have
any information on the program to apply it, working statement by statement is enough.
However, we need a formal structure to keep track of all the fresh variables and their
renaming: renaming maps.

Fresh Variables

Our main tool to actually delay the transformation is the introduction of temporary
variables. To do so, we need to be able to introduce fresh variables i.e., variables whose
names won’t clash with already existing ones. To this end, we define a function yielding
such fresh variables: fresh. The formal definition of this function can be found in Defini-
tion 10. Note that to be sure to have some fresh variables available, we use the set Pf (V)
of finite set of variables, assuming that V to be infinite. Thus, fresh(x) always exists.
This isn’t a true restriction because we usually use the set of variables of a program, which
is obviously finite.

Definition 10: Definition of the fresh function

Pf (V) → V
V 7→ x s.t x /∈ V

In short, the fresh function takes a set of variables V as input and yields a variable
name x not in V . This allows us to new names not interfering with the current set of

47

Program transformation

variables. For the sake of simplicity, we will sometimes omit the V input of the func-
tion, supposing that we use the current set of variables used by the program or in the
transformation.

Renaming maps

Renaming maps, noted ρ, are defined as total functions from a set of variables V to
the same set V . These represent a renaming relation between two names. As such, we
say that ρ(x) is a renaming of x. To ensure a well-formed renaming, we introduce a few
necessary properties on any map ρ:

— ρ is idempotent i.e., ∀x, ρ(ρ(x)) = ρ(x). This implies any renaming is finite. A
value serving as a new variable name cannot be renamed itself.

— two different variables cannot be renamed to the same name i.e., ∀x, y, ρ(x) =
ρ(y) =⇒ x = ρ(y) ∨ y = ρ(x) ∨ x = y. Thanks to the idempotent property, the
other direction of the implication is also true (x = ρ(y) =⇒ ρ(x) = ρ(ρ(y)) = ρ(y)).

On top of this crude definition, we define some operations on and using renaming
maps. The most important of these operations are the update of a map, its definition on
a subset of variables, and its application to expressions and statements. However, we also
define how to compute the set of variables renamed by a map, or what it means for two
maps to be disjoint or non-interfering.

Set of renamed variables. We note Vρ the set containing all variables renamed by ρ

i.e., ∀x ∈ V , x ∈ Vρ ⇐⇒ ρ(x) ̸= x, that is if x is not a fixed point of ρ.

Set of renamings. Similarly, we note Vρ the set containing all variables renamed into
by ρ i.e., ∀x ∈ V , x ∈ Vρ ⇐⇒ ∃y ̸= x, ρ(y) = x.

Disjoint maps. We say that two maps are disjoint if their sets of renamings are distinct
i.e., given two maps ρ and ρ′, they are distinct if and only if Vρ ∩ Vρ′ = ∅.

Non-interfering maps. We say that two maps are non-interfering if their sets of re-
named variables are disjoint i.e., given two maps ρ and ρ′, they are non-interfering if and
only if Vρ ∩ Vρ′ = ∅.

48

Program transformation

Updating a renaming map. When using renaming maps, we may need to update
the renaming of a variable, or even add one. We propose a notation to do so, ρ[y 7→ y′],
detailed in Definition 11.

Definition 11: Updating a renaming map: ρ[y 7→ y′]

dom(ρ) → Im(ρ)

x 7→

 ρ(x) if x ̸= y

y′ otherwise

This defines a new function behaving just as ρ, except on y, in which case the name
yielded is the new renaming y′. Moreover, we can actually ensure that the well-formed
properties are preserved when updating, as stated in Theorem 2.

Theorem 2: Update of a renaming map

Let ρ be a renaming map and y, y′ two variables such that y /∈ Vρ, y′ /∈ Vρ and
y′ /∈ Vρ ∨ y′ = ρ(y) i.e., y and y′ are not renamed variables, and there isn’t already a
renaming to y′ from a different variable than y. Then, the updated map ρ[y 7→ y′] is
also a renaming map.

Proof Outline. Because y′ is not already a renaming of ρ, we have that ρ′(ρ′(y)) = ρ′(y′) =
y′, and, ρ being idempotent, ρ′ is idempotent too. Moreover, y′ and y are not renamings
of ρ, so if no renaming of a variable by ρ′ can be equal to y, and only y, y′ can be renamed
to y′. Thus, ρ′ is a renaming map.

Initializing a renaming map. The most simple renaming map possible is the identity
function id, as shown in Theorem 3.

Theorem 3: Identity is a renaming map

The function id : x 7→ x is a renaming map.

Proof. For all x, y, id(id(x)) = id(x) = x, so id is idempotent, and if id(x) = id(y),
x = y.

However, we often need more complex maps, which actually rename some of the vari-
ables of the set V . In these cases, we use the init function described in Definition 12.

49

Program transformation

Definition 12: Initialization of a renaming map

init(v, u) =
 let ρ = init(v \ x, u) in ρ[x 7→ x′] if ∃x, x′, x ∈ v ∧ x′ = fresh(Vρ ∪ u)

id otherwise

This init function allows us to create renaming maps renaming all the variables, and
only those, within a set v, and without using any of the variables in the set u. Calling
init with v and an empty set creates a map equivalent to id[x1 7→ x′

1] . . . [xn 7→ x′
n] with

v = {x1, . . . , xn} and {x′
1, . . . , x′

n} fresh variables well-chosen so that there are not any
renaming conflicts. Note that this function does not ensure that the created maps are
not redundant. For example, the id function is an adequate yield for any init(v, ∅). To
prevent this, the first parameter must be repeated in the second i.e., init(v, v). Any
function created using init is a renaming map, as stated in Theorem 4.

Theorem 4: Initialization of a renaming map

Let v be a set of variables, then init(v, u) is a renaming map.

Proof Outline. By induction of v. If v is empty, we know that v is a renaming map by
Theorem 3. Otherwise, by induction hypothesis and Theorem 2.

Renaming of expressions. We can overload any renaming map to handle expressions
instead of simply variables. Given a renaming map ρ, we can overload ρ into ρe by
following the rules described in Definition 13.

Definition 13: Overloading of a renaming map for expressions

ρe(x) = ρ(x)
ρe(c) = c

ρe(e1 ⊕ e2) = ρe(e1) ⊕ ρe(e2)
ρe(e1?e2:e2) = ρe(e1)?ρe(e2):ρe(e3)
ρe(t[e]) = t[ρe(e)]

50

Program transformation

2.1.2 Formal description

As shown at the start of this section, the delayed if-conversion applies only to condi-
tional. Hence, if we were to try to formalize such a transformation, we would obtain a
definition close to the one shown in Definition 14. Note that the DICVP is parameterized
by a VP set, corresponding to the set of all variables used (i.e., modified and read) by the
overall program to be transformed. This set is used to ensure that any fresh variable is
not in conflict with already used ones.

Definition 14: Formal definition of Delayed If-conversion

We call DICVP : stmt 7→ stmt the function corresponding to the delayed if-conversion.
It is defined as :

DICVP (skip) = skip
DICVP (x = e) = x = e

DICVP (t[e1] = e2) = t[e1] = e2

DICVP (s1; s2) = DICVP (s1); DICVP (s2)
DICVP (if h then st else se) = DICIF VP if(if h then st else se)
DICVP (for x from c1 to c2 do s) = for x from c1 to c2 do DICVP (s)

where DICIF VP is the result of the transformation described earlier and is ap-
proached below.

The approach explained to handle conditionals at the start of this section is made of
three main steps: 1) initialization, which creates the fresh variables, and initiates them;
2) renaming, which uses the freshly created variables to rename both the then and the else
statements and 3) finalization, which merges back the fresh variables into the initial ones.
We explain in more detail and formalize each of those steps in the following paragraphs.

Initialization

The first step is to create new variables used as renamings for variables modified by
the branch of the conditionals. To do so, we create two renaming maps ρt and ρe, using
the init function:

ρt = init(mod(st), VP) ρe = init(mod(se), VP ∪ Vρt)

51

Program transformation

These two maps are disjoint, and each renames exactly the variables modified by its corre-
sponding branch. Once those names are generated, we can create the statements assigning
correct values to the fresh variables: pret, pree initialize the variables respectively of the
branch then and else. Exact definitions of these statements can be found in Definition 15.

Definition 15: Initializing statements for delayed if-conversion

pret = seq({ρt(x) = x | x ∈ Vρt})
pree = seq({ρe(x) = x | x ∈ Vρe})

It would also be possible to create the map dynamically, each time the transformation
encounters a new variable. However, this static way eases the writing of the transformation
and allows for more flexibility, which we will discuss in Section 2.4.

Renaming

Once the renaming maps are created, and the variables are initiated, we may use
those to rename both branches of the conditional. We do this inductively, statement by
statement. For most of the cases, the renaming is simply a recursive call. However, when
transforming a memory write, and as explained above, we have to do the if-conversion
on-place i.e., without delaying it. The results of the renaming for each case can be
found in Definition 16. The renaming function takes three inputs: the renaming map,
the statement to be renamed, and the guard of the current branch, to allow for direct
conversion. We will call it with ρt, st, and h′ (respectively ρe, se, and ¬h′) to get the two
renamed branches: Rnρt

h′(st) and Rnρe

¬h′(se).

Definition 16: Renaming a statement

Rnρ
h(skip) = skip

Rnρ
h(x = e) = ρ(x) = ρe(e)

Rnρ
h(t[e1] = e2) = t[ρe(e1)] = h?ρe(e2):ρe(e1)

Rnρ
h(s1; s2) = Rnρ

h(s1); Rnρ
h(s2)

Rnρ
h(if h′ then st else se) = if h′ then Rnρ

h(st) else Rnρ
h(se)

Rnρ
h(for x from c1 to c2 do s) = for ρ(x) from c1 to c2 do Rnρ

h(s)

52

Program transformation

Finalization

At the end of the conditional, and to allow for the continuation of the program, we
have to merge back the renamed variables to their original, while keeping track of which
of the branches should be preserved. This is done with a single statement, which assigns
to each variable the renaming of the correct branch:

post = seq({x = h′?ρt(x):ρe(x) | x ∈ Vρt ∪ Vρe})

When applying all those steps, we obtain the description of the DICVP function for a
conditional, such as described in Definition 17.

Definition 17: Delayed if-conversion of a conditional

ρt = init(mod(st), Vp) ρe = init(mod(se), Vp ∪ Vρt)
pret = seq({ρt(x) = x | x ∈ Vρt}) pree = seq({ρe(x) = x | x ∈ Vρe})

post = seq({x = h?ρt(x):ρe(x) | x ∈ Vρt ∪ Vρe})
DICVP (if h then st else se) = pret; pree; Rnρt

h (st); Rnρe

¬h(se); post

Example using Program P0

Reminder: Program P0

i f h then (x=l 1 ; y=t [x]) else (x=l 2 ; y=t [x])

If we look again at Program P0, the whole program is a single conditional, so the only
applicable rule is the one shown in Definition 17. If we actually try to apply it, we obtain
ρt = id[x 7→ xt][y 7→ yt] and ρe = id[x 7→ xe][y 7→ ye]. If not for the pret = (xt = x; yt = y)
and pree statements, which do not have any effects on the semantics of the program, the
resulting program is equal to Program 1, shown earlier.

2.1.3 Semantics preservation

Once a formal description of the transformation has been given, we can provide some
guarantees about it. We will focus on the semantics side of the transformation, and

53

Program transformation

try to prove that the behavior of the program is preserved and that the trace leaked is
more secure than initially. This would basically ensure that if a statement s has a certain
semantics, its transformed version DICVP (s) yields an equivalent environment and a more
secure trace. To pursue this, we first have to investigate the effect of a renaming on an
environment. Then, we will look at the renaming of expressions and the initialization
statements, before tackling the renaming of statements. For simplicity’s sake, we consider
in this chapter only the environments limited to the variables of the program and their
current renamings. That is, if two environments differ on a variable that is neither in the
original program nor a current renaming, we ignore it. Again, this kind of consideration
are lifted in the more detailed Chapter 4

Renaming of an environment

To adapt a mapping environment to a renaming map ρ, we overload ρ to ρs taking two
environments as input, as described in Definition 18. This overloaded function maps the
value of a variable x to its renaming ρ(x). To keep track of the initial value of renamed
variables, we use the σi environment. Because an array cannot be renamed, the evaluation
of an array through a renamed environment will always use σi. Moreover, we suppose
in the rest of this chapter that we write ρ(σi, σ) only if, if ρ(x) = x then σi(x) = σ(x)
(this constraint is ignored for arrays, as they cannot be renamed anyway). We will see in
Chapter 4 the details of why such an assumption is necessary.

Definition 18: Renaming a environment

ρs(σi, σ)[x] =
 σ[ρ−1(x)] if x ∈ Vρ

σi[x] otherwise

Such a definition directly implies a property of invariability by renaming for the envi-
ronments, which is stated in Lemma 1.

Lemma 1: Stability of renaming on environment

Let σi, σ be two environments, ρ a renaming map, and x a variable. The value of the
renaming of x by ρ in the environment σ renamed by ρ is equal to the value of x in
σ, that is:

ρs(σi, σ)[ρ(x)] = σ[x]

54

Program transformation

Proof. By definition of ρs: ρs(σi, σ)[ρ(x)] = σ[ρ−1(ρ(x))] = σ[x].

Evaluating the initialization statements

The transformation starts by defining two renaming maps and introducing two state-
ments initializing the fresh variables. Evaluating these statements yields a final environ-
ment renamed by ρt and ρe. To show this, we state in Lemma 2 that evaluating a seq

statement such as pree yields the renamed version of the map. Hence, the sequencing of
such statements yields a renaming map of the form of ρes(ρts(σ, σ), σ)).

Lemma 2: Renaming a seq statement

Let σ be an environment and ρ a renaming maps. The evaluation of the statement
generated by ρ on σ yields a renamed environment ρs(σ):

(seq({ρ(x) = x | x ∈ Vρ}), σ) ↓ϵ ρs(σ, σ)

Proof Outline. By induction over the size of Vρ. If ρ is the identity function, ρs(σ, σ) = σ.
Otherwise, there is ρ′, x, x′ such that ρ = ρ′[x 7→ x′], and the statement generated by ρ

is the statement generated by ρ′ followed by x′ = x. We conclude with the induction
hypothesis and the definition of ↓.

Evaluating a renamed expression

Because our renaming maps affect variables, it ends up modifying expressions. Hence,
we have to make sure that the semantics of expressions is unchanged before and after
renaming. This property is stated in Lemma 3.

Lemma 3: Evaluating a renamed expression

Let σ be an environment, ρ a renaming map, e an expression, t a trace, and v a value.
If e evaluates to v, then ρe(e) also evaluates to v in the according environment, that
is:

(e, σ) ↓t v =⇒ (ρe(e), ρ(σ, σ)) ↓t v

Proof Outline. By induction over e, and by Lemma 1.

55

Program transformation

Evaluating a renamed instruction

The end goal of the delayed if-conversion is to apply the renaming map to the whole
conditional. Doing so obviously affects the semantics of both branches. The ideal result
would be a preservation of the semantics: every statement evaluating before transforming
should do so after. This intuition is stated in Lemma 4.

Lemma 4: Evaluation of a renamed instruction

Let σ, σ′ be two environments, ρ be a renaming map, t a trace, s a statement, and h a
variable, then if the evaluation of s within σ yields σ′, the evaluation of its renaming
by ρ within ρs(σi, σ) yields ρs(σ′

i, σ′), where σ′
i is σi if h evaluates to false (arrays

are left unchanged), or σi[t 7→ σ′[t] | t an array] otherwise, that is :

(s, σ) ↓t σ′ =⇒ (Rnρ
h(s), ρs(σi, σ)) ↓t′

ρ(σ′
i, σ′)

where

σ′
i =

 σi[t 7→ σ′[t] | t an array] if h

σi otherwise

with t′ being larger than t due to the re-evaluation of e1 in the array write rule, which
duplicates the computation of ρ(e1), and thus the trace associated.

Proof Outline. By induction over s, and by Lemma 3. The σi is preserved for all but
arrays because all assignments are done on variables renamed by ρ, by definition of ρ

using the init function. For arrays, the disjunction between both cases is caused by the
semantics of the conditional expression.

However, we face an issue: memory accesses are made insecure by the branch removal.
Indeed, if we look at Program P5, the transformation would yield Program P6, introducing
potential unsafe memory access in the form of t [i] = h′?0:t[i].

Program P5: Unsafe program w.r.t memory accesses

h = (i < s i z e) ;
i f h then t [i] = 0 else skip

56

Program transformation

Even with the prerequisite that Program P5 is safe, we have no way to ensure that the
access t [i] is safe if the expression i < size(t) is false. This issue is actually blocking if
we try to prove anything on the whole transformation: the semantics of if does not give
any guarantee on the behavior of st if h evaluates to false (or se if h evaluates to true).
A solution to this peculiar issue is detailed in the following Section 2.2.

Program P6: Result of delayed if-conversion on Program P5

h = (i < s i z e) ;
t [i] = h ?0 : t [i]

2.2 Index Sanitizing

As shown in the previous section, the delayed if-conversion as it is is unsafe: it intro-
duces possible out-of-bounds accesses on memory access done within an unsecure context.
To ensure that the resulting program is just as safe, we need to guarantee that all indexes
are within the bounds of the array. Our assumption that the source program is safe means
that it does not make any out-of-bounds array accesses. Hence, we have to make sure
that the evaluation of the access is safe especially when the guard is false i.e., when the
value should be unchanged. FaCT [Cau+19] does so by using type constraints and a
solver to solve those constraints.

Program P7: Unsafe program w.r.t memory read

h = (i<s i z e) ;
i f h then x = t [i] else skip

To avoid having to rely on an external solver, we can instead introduce dynamic bound
checks to prevent any generation of unsafe memory access. Although this solution is usable
in a general setting [SP21], the constant size of our arrays makes its expression easier. Our
instrumentation transforms the array access t[x] into t[0 ≤ x < size(t)?x:0]. Because the
program is safe, we have the invariant that 0 ≤ x < size(t), so the conditional expression
always evaluates to x. Hence, the semantics of the program remains unchanged and the
program remains safe after if-conversion. For example, if we look at Program P7, this

57

Program transformation

transformation would yield Program P8. A subsequent delayed if-conversion would yield
Program P9, which is safe thanks to the dynamic bound check.

Program P8: Result of our index sanitizing transformation on Pro-
gram P7

h = (i < s i z e) ;
i f h then x = t[0<=i<s i z e (t) : i : 0] else skip

We can see that whatever the value of x may be, the array access is done within the
bounds of t. Indeed, if x itself is within the bounds, the access is done as t[x], otherwise,
it is on 0. In a normal execution, an index is always within the bounds of the array, so
the semantics is left unchanged. However, when evaluating the incorrect branch, we may
have to use the t[0] solution. Thanks to the mechanism of delayed if-conversion, where the
value is ignored when it is the wrong branch, we do not have to worry about introducing
a wrong memory access. Moreover, the conditional expression being safe, this rewriting
does not add any leak to the expression.

Program P9: Result of delayed if-conversion on Program P8

h = (i < s i z e) ;
xt = x ; xe = x ;
xt = t[0<=i<s i z e (t) : i : 0]
x = h ? : xt : xe

Similarly, this transformation handles memory writes. For example, if we look at
Program P5 of the previous section, a similar transformation would yield Program P10.

Program P10: Result of our updated index sanitizing transformation
on Program P5

h = (i<s i z e) ;
i f h then t [0<=i<s i z e (t) : i :0]=0 else skip

58

Program transformation

And, applying delayed if-conversion to Program P10 yields Program 11. This last
program is safe in all cases, because our initial program is safe, hence if h is true, i is
within the bounds of t.

Program P11: Result of delayed if-conversion on Program P10

h = (i < s i z e) ;
t [0<=i<s i z e (t)? i : 0] = h ?0 : t [0<=i<s i z e (t)? i : 0]

This instrumentation has a performance overhead by evaluating an additional time
the value stored at t[x] but optimizing compilers should be able to remove most of the
redundant checks. This will be discussed in Chapter 5.

2.2.1 Formal Description

As shown in the examples above, the index sanitization transformation is very lo-
calized, affecting only memory writes and reads. Thus, we can start by defining two
transformation rules for these two cases, as shown in Definition 19. In both cases and
according to the examples above, the index i is replaced by the conditional expression
(0 ≤ i < size(t))?i:0 which returns i if the index is in-bounds and returns 0 otherwise.
As array sizes are strictly positive, t[0] is always a valid access. As a result, in both cases,
we get a valid array access.

Definition 19: Bound checks for array accesses

arr-san t[i]⇝ t[(0 ≤ i < size(t))?i:0]

arr-ass t[i] = e⇝ t[(0 ≤ i < size(t))?i:0] = e

From these definitions, we can go on to formalize the whole index sanitization trans-
formation. Just as delayed if-conversion used a renaming for expression (ρe) and one for
instructions, index sanitization is divided into two distinct parts: one for expression (ISe)
and for instructions (IS). The first one, detailed in Definition 20 is straightforward, we
recursively call it and apply arr-san when needed.

59

Program transformation

Definition 20: Index sanitization for expressions (ISe)

ISe(x) = x

ISe(c) = c

ISe(e1 ⊕ e2) = ISe(e1) ⊕ ISe(e2)
ISe(e1?e2:e3) = ISe(e1)?ISe(e2):ISe(e3)
ISe(t[e]) = t[(0 ≤ ISe(e) < size(t))?ISe(e):0]

Given the locality of the transformation, instructions are handled in a similar way, we
only apply ISe and arr-ass when needed, as shown in Definition 21.

Definition 21: Index sanitization for instructions (IS)

IS(skip) = skip
IS(x = e) = x = ISe(e)
IS(t[e1] = e2) = t[(0 ≤ ISe(e1) < size(t))?ISe(e1):0] = ISe(e2)
IS(s1; s2) = IS(s1); IS(s2)
IS(if x then s1 else s2) = if x then IS(s1) else IS(s2)
IS(for x from c1 to c2 do s) = for x from c1 to c2 do IS(s)

The transformation, written as it is, has a big overhead. We introduce dynamic bound
checks for every memory access. We will see in Section 2.3 how to reduce the number of
checks, thus optimizing the transformation.

2.2.2 Semantics Preservation

The index sanitization transformation is straightforward, and so is its impact on se-
mantics. The resulting environment is not touched, and the leaked trace is at least larger
than the original by the two-fold evaluation of some expressions.

We first tackle this by looking at expressions in Lemma 5.

60

Program transformation

Lemma 5: Semantics preservation of index sanitization for expressions

Let σ be an environment, e an expression, t a trace, and v a value. If e evaluates to
v, then ISe(e) also evaluates to v in the according environment and leaks a trace t′

bigger than t, re-leaking parts of t. This can be written as

(e, σ) ↓t v =⇒ (ISe(e), σ) ↓t′
v

Proof Outline. By induction over e. Immediate for basic cases (x, c) and non-array cases
(by induction hypothesis). In the case of t[e], we know that e evaluates to a ve within the
bounds of t. Hence, ISe(e) does so too, by induction, and the transformed expression is
safe, and has the same evaluation.

We can then prove the theorem for instructions, stated in Theorem 5.

Theorem 5: Semantics preservation of index sanitization

Let σ, σ′ be two environments, t a trace and s a statement, then if the evaluation of
s within σ yields σ′ while leaking t, the evaluation of its transformation IS(s) within
σ also yields σ′, while leaking a t′ greater than t, that is:

(s, σ) ↓t σ′ =⇒ (IS(s), σ) ↓t′
σ′

Proof Outline. By induction over s. Immediate for skip, as well as assignments (by
Lemma 16). The induction hypothesis is enough to handle most cases. The last case is
the array write. Because t[e1] = e2 can be evaluated, we know that e1 evaluates to a v1

within the bounds of t. By Lemma 16, ISe(e1) does the same, and ISe(e2) evaluates to
the same value as e2, and the behavior of the array write is preserved.

We also show in Theorem 6 an interesting property related to index sanitization: after
applying the transformation, a statement can be evaluated from any environment. This
will allow us to prove in Section 2.6 that an incorrect branch of a conditional can still be
evaluated if we apply index sanitization first.

61

Program transformation

Theorem 6: Safety of index sanitization

Let s be a statement, and σ be an environment. There, there exists a σ′ and a t such
that the transformation of s by index sanitization evaluated in σ yields σ′, that is

(IS(s), σ) ↓t σ′

Proof Outline. Firstly, we prove a similar lemma on expressions by induction over e. For
most cases, the evaluation cannot fail, and for the memory read, the transformation
ensures that t[(0 ≤ i < size(t))?i:0 is always within the bounds of t. By induction over
s, and similarly as the expressions version. The only complex case is the memory write,
which is solved thanks to the introduction of the dynamic bound check.

2.3 Scope-Increase

In all previous cases, the leaky memory access is within the scope of the condition h

and therefore a delayed if-conversion is sufficient to remove the leaky access. If we take a
look at Program P12, the current transformation is not enough because the leaky memory
access t[x] occurs after the condition h.

Program P12: Program with leak outside of scope

i f h then x = l 1 else x = l 2 ;
t [l 3] = l 4 ;
y = t [x] ;

Indeed, applying delayed if-conversion would yield Program P13, which is unsecure be-
cause the predicated statement is inserted at the end of the conditionals, directly intro-
ducing secrets into x, which are then leaked by the last memory access.

62

Program transformation

Program P13: Transformed version of P 12

xt = x ; xe = x ;
xt = l 1 ; xe = l 2 ;
x = h?xt : xe ;
t [l 3] = l 4 ;
y = t [x] ;

A naive solution would be to perform code motion and duplicate the offending code in
both branches of the conditional. However, in our example, this has the adverse effect of
moving the harmless statement t [l3 = l4], as shown in Program P14. The semantics is still
preserved, and the memory access won’t be made on a secret x anymore. Unfortunately,
by applying delayed if-conversion on this resulting program, we introduce a direct flow
into x by predicating the assignment to t[l3]. Such a direct flow could render subsequent
operations using t unsecure.

Program P14: Trying a naive solution on P12

i f (h) then
x = l 1

t [l 3] = l 4 ;
y = t [x] ;

else
x = l 2 ;
t [l 3] = l 4 ;
y = t [x] ;

Our solution is instead to mark the offending code and delay the final step of if-
conversion until after that code. For example, marking the offending code in Program P12
in blue and italicized yields Program P15, and applying our proposed transformation
would yield Program P16.

63

Program transformation

Program P15: P12 with marked code

i f (h) then x = l 1 else x = l 2 ;
t [l 3] = l 4 ;
y = t [x] ;

The transformation treats differently y = t[x], which is marked and renamed as if
within the conditional, and t [l3 = l4], the harmless statement, left untouched by the
transformation. It is not within the scope of this section, dedicated solely to the motion
of problematic code, but will be addressed in the following Section 2.4.

Program P16: Trying our solution on P15

xt = x ; xe = x ;
xt = l 1 ; xe = l 2 ;
t [l 3] = l 4 ;
ye = t [xe] ;
yt = t [xt] ;
x = h?xt : xe ;
y = h?yt : ye ;

However, just applying this marking and renaming naively is not enough. If the
problematic conditional and the marked statements are not within the same scope i.e., the
same block-level, as proposed in Program P17, we can’t properly transform away. Indeed,
keeping this code as it is would need the y=t[x] to be predicated both by h and cond.

Program P17: Leaking from another scope

i f (cond) then
i f (h) then x = l 1 else x = l 2 ;

else
skip ;

t [l 3] = l 4 ;
y = t [x] ;

64

Program transformation

Instead, we first perform a code motion into the harmless conditional with the cond
guard, yielding Program P18. Note that to ensure the preservation of the behavior of the
original program, the moved code is actually duplicated in the else branch of the harmless
conditional. Because the code in the else branch cannot be tainted by the problematic
conditional, the moved statements are only marked in the then branch.

Program P18: Moving code before transformation

i f (cond) then
i f (h) then x = l 1 else x = l 2 ;
t [l 3] = l 4 ;
y = t [x] ;

else
skip ;
t [l 3] = l 4 ;
y = t [x] ;

Finally, we can apply the transformation by renaming the marked code within the
harmless conditional to get Program 19. This resulting program is safe and does not
introduce any spurious leakage.

65

Program transformation

Program P19: Renaming after code motion

i f (cond) then
xt = x ; xe = x ;
xt = l 1 ; xe = l 2 ;
t [l 3] = l 4 ;
yt = t [xt] ;
ye = t [xe] ;
x = h?xt : xe ;
y = h?yt : ye ;

else
skip ;
t [l 3] = l 4 ;
y = t [x] ;

Unfortunately, such a code motion is not safe in the case of a for loop. If we look
at Program P20 representing a simple search through an array, code motion as presented
above would yield Program P21.

Program P20: A secret value search through an array

index = −1;
for i from 0 to 32 do

h = t [i] == s e c r e t ;
i f (h) then

index = i ;
t2 [index] = 1 ;

Note that we took extra care to add a dynamic index check, to execute the moved
code only in the last iteration of the loop.

66

Program transformation

Program P21: Trying our code motion solution on P20

index = −1;
for i from 0 to 32 do

h = (t [i] == s e c r e t) ;
i f (h) then

index = i ;
i f i == 31 then

t2 [index] = 1 ;

This program, even though it looks secure at first glance, introduces a major security
flaw: the value of index is tainted by the value of secret at each iteration. Indeed, trying
to remove the conditional would yield Program P22, which obviously introduces a direct
flow onto index.

Program P22: Trying to apply delayed if-conversion on P21

index = −1;
for i from 0 to 32 do

h = (t [i] == s e c r e t) ;
index t = index ;
index e = index ;
index t = i ;
i f i == 32 then

t2 [index t] = h ?1: t2 [index t] ;
index = h? index t : index e ;

Hence, we do not perform code motion inside for loops, and will instead rely on other
methods we will describe in Section 2.5.

2.3.1 Prerequisites

If we want to set a formal definition of the transformation we just glimpsed, we need
(i) to work out how we can identify instructions to be marked, and (ii) to define what it
means for an instruction to be marked.

67

Program transformation

Program Annotations

As stated above, we aim to mark instructions deemed as problematic. We say that an
instruction is problematic w.r.t a condition if it leaks a value depending on said condition.
To keep track of leaks at a language level, we introduce a new construction to our language:
annotations. To answer this need and store more information about our instructions, we
annotate our programs in three different ways: (i) to identify uniquely each condition,
(ii) to keep track of conditions within instructions, and (iii) to keep track of leaks linked
to conditions.

The first kind of annotation, to identify uniquely each condition, requires us to define
a set of program points. We denote this set P. We can then annotate each condition with
a p ∈ P. A condition is now written as ifp h then s1 else s2, and a program is well-formed
if all conditions have a different identifier. We note cond(s) the set of conditionals within
a statement s i.e., cond(s) = {p|ifp c then s1 else s2 ∈ s}.

To keep track both of conditions and leaks within instructions, we introduce two
annotations added to every instruction: high and leak. The function high(s) yields the
set of program points of the problematic, or secrets, conditions within s, while leak(s)
yields the set of program points of conditions leaked by s. These annotations only contain
program points for secret conditions i.e., ones that would cause a security issue. We will
discuss how we determine these secret conditions, and annotations, in Chapter 3. For
example, if we look at Program P12, and annotate the main condition with p, we have
that high(P12) = {p}, leak(P12) = {p}, while high(t[l3] = l4) = ∅, leak(t[l3] = l4) = ∅
and leak(y = t[x]) = {p}.

Reminder: Program P12

i f h then x = l 1 else x = l 2 ;
t [l 3] = l 4 ;
y = t [x] ;

Indeed, P12 contains only the condition p, while the subsequent instructions are
atomic, therefore not containing any conditional. Furthermore, y = t[x] leaks the value of
x, which is directly tied to the p condition, while t[l3] = l4 leaks only "public" values. These
annotations allow us to identify secret conditionals: a condition ifp h then s1 else s2 is
secret if and only if p ∈ high(ifp h then s1 else s2). To store these values directly into

68

Program transformation

the language, we actually annotate the instructions in the following way:

(s)r
g where g = high(s) and r = leak(s)

A new updated version of the language can be found in Definition 22 at the end of
this section.

Next construction

The annotations we just defined will allow us to identify which instructions are to
be marked. However, we still need to present a way to mark any problematic code. By
noting that our transformation is actually moving code into the scope of the condition,
just in a smarter way, we introduce a new construction: next. This syntax comes as an
add-on to the if syntax: if h then s1 else s2 next s3. The next block is an extension
of the scope of the conditional, containing a part of its continuation such that delayed
if-conversion will only apply its final step after it. Semantically, a condition with a next
block is evaluated just as (if h then s1 else s2); s3. We can move all code preceding the last
instruction to be marked into the next block to keep track of all marked instructions. Non-
marked statements will be identified and handled differently during the transformation.
For example, rewriting Program P15 (the colored version of P12) with this construction
would yield Program P23.

Program P23: Rewriting of P15 with next

i f (h) then x = l 1 else x = l 2 next (t [l 3] = l 4 ; y = t [x] ;)

For the sake of simplifying the presentation of our code, we write if h then s1 else s2

to avoid writing if h then s1 else s2 next skip.
Moreover, since we now have a way to know which memory accesses are gonna be af-

fected by our introduction on predicated code, namely the ones within one of the branches
of an unsecure conditions (may the branch be then, else or even next), we can restrict
the application of index sanitization to theses branches only. This allows us to drastically
reduce the overhead of the transformation. We call ISp the restricted transformation. We
have, for a given program point p,

ISp(ifp h then s1 else s2 next s3) = ifp h then IS(s1) else IS(s2) next IS(s3)

69

Program transformation

For all other statements, the ISp function is called recursively, ensuring that we only
transform memory accesses within the p conditional.

Updated Definitions

If we combine both new additions presented above, we can redefine L to be the one de-
fined in Definition 22. We introduce a new intermediate representation of non-annotated
statements to allow for a more comprehensible definition. Given that next is an interme-
diary construction, destined to be removed, we add a new syntactic constraint to input
programs: next blocks are to be equal to skip. Moreover, we now say that a program
point p is within a statement s (noted p ∈ s) if either s is the p conditional, or a parent
instruction of the p conditional.

Definition 22: New syntax of L

Expressions:
expr ∋ e ::= x | c | e1 ⊕ e2 | e1?e2:e3 | t[e]

Instructions:
stmt ′ ∋ s′ ::= skip

| x = e

| t[e1] = e2

| s1; s2

| ifp x then s1 else s2 next s3

| for x from c1 to c2 do s

Annotated instructions:
stmt ∋ s ::= (s′)r

g

Along with the definition of the updated language, we update the definition of our
semantics to be the ones presented in Definition 23. Note that semantics are presented for
the intermediate representation of our statements, without annotation. The new semantic
rule for if is computed by chaining the if rule with the sequence rule, as stated previously.

70

Program transformation

Definition 23: New leaky semantics for instructions

(skip, σ) ↓ϵ σ

(e, σ) ↓t v

(x = e, σ) ↓t σ[x 7→ v]
(s1, σ1) ↓t1 σ2 (s2, σ2) ↓t2 σ3

(s1; s2, σ1) ↓t1·t2 σ3

(e1, σ) ↓t1 i 0 ≤ i < size(t) (e2, σ) ↓t2 v

(t[e1] = e2, σ) ↓t1·t2·i σ[t 7→ σ[t][i 7→ v]]

(x, σ) ↓ϵ b (sb, σ) ↓t σ′ (s, σ′) ↓t′
σ′′

(ifp x then strue else sfalse next s, σ) ↓b·t·t′ σ′′

∀i∈[c1;c2](x = i; s, σi) ↓ti σi+1 t = tc1 · · · · tc2

(for x from c1 to c2 do s, σc1) ↓t σc2+1

2.3.2 Formal Description

The purpose of the scope increase algorithm is to identify a conditional branching,
say identified by the program point p, and to confine inside the next statement of the
conditional all the memory accesses that are indirectly leaking the guard of p.

Condition Selection

As observed at the start of this section, duplicating code in both branches of a con-
ditional may introduce spurious information leaks. To avoid this issue, we select the
outermost, rightmost secret conditional i.e., a secret conditional which is not within the
syntactic scope of another secret conditional and is the last in the textual order. Consider
for example the Program P24, where the statement s indirectly leaks both h1 and h2

i.e., p0, p1 ∈ high(s).

71

Program transformation

Program P24: Example of a misselection

i f @p0 (h0) then
i f @p1 (h1) then x = 0 ;
else x = 1 ;

else skip ;
s

If we select the innermost conditional p1 to first do our code motion, it would yield
Program P25, where the statement s is duplicated and crosses the boundaries of h1. This
actually bypasses the entire role of the next block for condition p0, and we get the same
issue as presented above.

Program P25: Wrong selection in Program P24

i f @p0 (h0) then
i f @p1 (h1) then x = 0 ;
else x = 1 ;
next s ;

else s ;

On the contrary, if we select the outermost conditional p0, the code motion yields
Program P26, which is secure. After full transformation, and removal, of p0, we will be
able to select and transform p1.

Program P26: Right selection in Program P24

i f @p0 (h0) then
i f @p1 (h1) then x = 0 ;
else x = 1 ;

else skip ;
next s ;

We formalize this in Definition 24 by creating a predicate ROp(s) which ensures that
p is the rightmost, outermost secret conditional of statement s.

72

Program transformation

Definition 24: Predicate ROp

p ∈ g

ROp((ifp h then s1 else s2 next s3)r
g)

ROp((s2)r2
g2)

ROp((s1)r1
g1 ; (s2)r2

g2)
ROp((s1)r1

g1)
ROp((s1)r1

g1 ; (s2)r2
∅)

p′ /∈ g ROp(s3)
ROp((ifp′

c then s1 else s2 next s3)r
g)

p′ /∈ g high(s3) = ∅ ROp(s2)
ROp((ifp′

c then s1 else s2 next s3)r
g)

p′ /∈ g high(s3) = ∅ high(s2) = ∅ ROp(s1)
ROp((ifp′

c then s1 else s2 next s3)r
g)

ROp(s)
ROp(for x from c1 to c2 do s)

If s is simply a conditional containing itself as a secret conditional, it is the rightmost
outermost one. Otherwise, we check if the next block, the else block, or the then
block contains any secret conditional, in this order, and pass it as our current rightmost
outermost. If we face a sequence of statements s1; s2, we first check s2 and then s1 for a
rightmost outermost conditional. Finally, in the case of a for loop, we recursively look at
the body of the loop.

Introduction of next

To perform code motion, and once a condition p has been identified as the rightmost,
outermost one, we need (i) to identify the continuation of p in the program, and (ii) to
identify the problematic part of the continuation. The first step is directly computed
by syntax analysis, and the second requires the use of the annotation we defined earlier.
For this purpose, we define a function sepp(s) which, given a program point p and a
continuation s, compute the set of all pairs (sl, ss) (resp. leaking and safe) such that ss

does not leak p, and s is semantically equivalent to the sequence of sl and ss, that is:

(sl, ss) ∈ sepp(s) ⇐⇒ p /∈ leak(ss) ∧ sl; ss ≃ s

Such a function is defined in Definition 25.

73

Program transformation

Definition 25: Separation function

(sl, ss) ∈ sepp(s) p /∈ leak(t)
(sl, ss; ts) ∈ sepp(s; t)

(tl, ts) ∈ sepp(t)
(s; tl, ts) ∈ sepp(s; t)

p ∈ leak(s)
(s, skip) ∈ sepp(s)

p /∈ leak(s)
(skip, s) ∈ sepp(s)

If our continuation is a sequence (s; t) and t is not leaking p, we can use the leaking
part of s as the leaking part of (s; t), and the safe components of s and t as the safe
component of (s; t) for the purpose of the sep function. Otherwise, if t is leaking p, only
the safe section of t is kept as the safe section of the sequence, and the leaking one is the
sequence of s and the leaking component of t. On the other hand, if the statement is not
a sequence, it is either leaking or safe, and its counterpart is skip.

Given a condition of program point p, thanks to ROp, and with the help of the sepa-
ration function sep to isolate problematic statements, we can define the scope-increase al-
gorithm SIp : stmt × stmt → stmt. It takes two parameters: a statement s1 such that
ROp(s1) and another statement s which is the continuation of s1 i.e., the statement to be
executed after s1. The algorithm performs code motion until inserting the motion code
within the next statement of the p conditional. In the case of a for loop, code motion
is performed as much as possible, without compromising the integrity of the loop. To
run the algorithm on a whole program P , we find p such that ROp(P), and call SIp(P).
The rules for the scope-increase algorithm are defined in Definition 26. Note that the
scope-increase algorithm is always called on programs where all next blocks are empty,
or skip. This is true for the input program as a syntactic constraint and is preserved by
the whole transformation, as it will be described in Section 2.6. As a result, following a
call to the scope-increase algorithm, the program contains only one next block, within
the p condition.

74

Program transformation

Definition 26: Scope Increase Algorithm

SIp(ifp c then s1 else s2, s) = ifp c then s1 else s2 next s

SIp(s1; s2, s) = s1; SIp(s2, s) if p ∈ s2

SIp(s1; s2, s) = SIp(s1, s2; s) if p /∈ s2 ∧ s ̸= skip
SIp(s1; s2, skip) = let sl, ss ∈ sepp(s2) in SIp(s1, sl); ss

if p /∈ high(s2)
SIp(ifp′

c then s1 else s2, s) = ifp′
c then (s1; s) else SIp(s2, s)

if p ∈ s2 ∧ p ̸= p′

SIp(ifp′
c then s1 else s2, s) = ifp′

c then SIp(s1, s) else (s2; s)
if p ∈ s1 ∧ p ̸= p′

SIp(for x from c1 to c2 do s1, s) = for x from c1 to c2 do SIp(s1, skip); s

If the statement s1 is the conditional we are looking for, we insert the continuation
s into the next statement. If the statement is a sequence of the form s1; s2, there are
two cases depending on whether p is within the conditions of s1 or s2. If p is within s2

i.e., p ∈ high(s2), the statement s1 is kept unchanged and SIp is recursively called over
s2. Otherwise, the continuation of s is augmented by s2 and SIp is recursively called over
s1, s2; s being the continuation of s1. However, if the continuation is skip, we can optimize
and split s2 into a pair of statements sl and ss, such that (sl, ss) ∈ sepp(s2). Hence, ss

does not leak p, and SIp is recursively called over s1 with a reduced continuation sl which
contains all the statements of s2 that may leak p. This is the step that actually does
the selection of the code to be moved. We left in sr all public, non-problematic code,
and sl contains all statements up to the last potentially dangerous one. If the statement
is instead another conditional with annotation p′ ̸= p, there are two symmetric cases
depending on whether the p conditional is located in the then branch (i.e., p ∈ high(s1))
or in the else branch (i.e., p ∈ high(s2)). Without loss of generality, consider p ∈ s2. In
that case, the continuation s is appended to the statement s1 of the then branch and we
call recursively SIp over the statement s2 of the else branch. For a for, as said earlier,
we prevent any code motion inside the loop. As a result, scope − increase is recursively
called over the loop body s1 with the continuation skip.

75

Program transformation

2.3.3 Semantics Preservation

The sole purpose of scope-increase is first to identify a problematic conditional and
its continuation, and second to perform code motion to ensure that any problematic
statements w.r.t to this conditional are within its scope. Thus, we first prove in Lemma 6
that given a statement s, using the function sep to identify the leaking part of s does not
affect its semantics.

Lemma 6: Semantics preservation of sep

Given a statement s, two environments σ, σ′ and a trace t such that (σ, s) ↓t σ′, the
sequence sl, ss with (sl, ss) ∈ sep(s) has the same semantics as s, that is (σ, sl; ss) ↓t σ′

Proof Outline. By induction over s. If s is not a sequence, either sl or ss is a skip, while
the other is s, and we conclude by the semantics of a sequence. Otherwise, by induction,
and the sequence rule.

Once the continuation of a conditional has been found using the sep function, we prove
in Theorem 7 that performing the code motion is harmless, and have no effect either on
the semantics of the program. The intuition of why it is true is because the next block
evaluates just as a sequence.

Theorem 7: Semantics preservation of SIp

Given two statements s, s′ and a program point p such that ROp(s), the trans-
formed version SIp(s, s′) has the same semantics as its initial counterpart s; s′. That
means for any two environments σ, σ′ and trace t such that (σ, s; s′) ↓t σ′, we have
(σ, SIp(s, s′)) ↓t σ′.

Proof Outline. By induction over s. If s is the conditional we are looking for, by definition
of next. Otherwise, if s is a sequence, by induction, and Lemma 6.

2.4 Updated Delayed If-Conversion

Because we changed the language in the previous Section, we need to revisit the pre-
viously defined transformation. If the index sanitization one is defined locally and is not
impacted by this change (including its preservation proof), the delayed if-conversion is in-
validated both by the presence of annotations and the introduction of the next statement.

76

Program transformation

Firstly, because we now have a way to precisely identify conditions, the transformation
becomes local instead of global, and we only transform one condition at a time: the one
identified by ROp in the scope-increase pass. Secondly, as shown in the previous Section,
the next statement needs particular care in its renamings. In fact, the block contains
both problematic and innocuous statements. We need to keep the harmless ones as is and
rename the problematic ones using renaming maps from both branches. This also means
a change to the final step of the transformation, the merging of the two maps.

The way we rename instructions within the next block is by duplicating and renaming
the statement on the fly. When renaming, we use a fresh variables policy akin to SSA
(Single Static Assignment) to generate new renamings and avoid variable name clashes.
For example, if we take a look at Programs P23 and P16, the transformation renamed
y into two fresh variables yt and ye as to duplicate the memory write, and ignored the
harmless statement.

Reminder: Program P23

i f (h) then x = l 1 else x = l 2 next (t [l 3] = l 4 ; y = t [x] ;)

Reminder: Program P16

xt = x ; xe = x ;
xt = l 1 ; xe = l 2 ;
t [l 3] = l 4 ;
ye = t [xe] ;
yt = t [xt] ;
x = h?xt : xe ;
y = h?yt : ye ;

If we look at the more complicated Program P27, the value of y is overwritten by a
harmless one, and the transformation should not duplicate the first memory write, the
one on y.

77

Program transformation

Program P27: Program containing a change of security on a variable

i f (h) then
x = l 1 ;
y = l 2 ;

else
x = l 3 ;
y = l 4 ;

next
y = 5 ;
w = t [y] ;
z = t [x] ;

Hence, transforming this one requires ignoring the y = 5 instruction, that is not
duplicating it, and instead proposing a new, unique, renaming for the y variable. This
transformation is shown in Program 28.

Program P28: Program containing a change of security on a variable

xt = x ; xe = x ;
yt = y ; ye = y ;
xt = l 1 ; yt = l 2 ;
xe = l 3 ; ye = l 4 ;
yn = 5 ;
wn = t [yn] ;
zt = t [xt] ; ze = t [xe] ;
x = h?xt : xe

y = yn ; w = wn ;
z = h?zt : ze ;

Note that we also introduced new names for the z and w variables, following that
SSA-like policy, to avoid any potential clashes and allow code duplication. The final step
has also been changed to account for any new renaming, especially unique ones i.e., wn

and yn.

78

Program transformation

2.4.1 Prerequisites

Because the transformation changes the renaming maps dynamically, we need to in-
troduce new operations on them. In particular, we need to be able to join them and create
a statement merging them.

Join

Joining two renaming maps, noted ρ1 ⋊⋉ ρ2, is akin to returning the renaming if both
maps agree, or a fresh variable if they disagree. This is formalized in Definition 27.

Definition 27: Joining two renaming maps

Let ρ1 and ρ2 be two renaming maps. We say that ρ1 ⋊⋉ ρ2 is the join of ρ1 and ρ2 if
its renamings are equivalent to these of both maps xor to a fresh variable, that is:

∀x, ρ1 ⋊⋉ ρ2(x) =
 ρ1(x) if ρ1(x) = ρ2(x)

x′ where x′ is a fresh variable otherwise

Phi-merging

Because we create new bifurcation in the simultaneous execution tree, we also need to
be able to merge renamings along the way. This is done using ϕ-merging, akin to the ϕ

nodes in SSA. We define what a ϕ-merging is in Definition 28.

Definition 28: ϕ-merging

Let ρ1 and ρ2 be two renaming maps. We say that ϕ(ρ1, ρ2) is a ϕ-merging of ρ1 and
ρ2 if it is a statement assigning to all renaming by ρ1 the renaming of the renamed
variable by ρ2, that is

ϕ(ρ1, ρ2) = seq({ρ1(x) = ρ2(x)|x ∈ Vρ1 ∧ ρ1(x) ̸= ρ2(x)})

After such a statement, we effectively renamed all ρ2 renamings to ρ1 ones.

2.4.2 Formal Description

Because of all these additions, we have to redefine the DICVP function, although
we can use most of our already-defined tools. In particular, because of the now local

79

Program transformation

characteristic of the transformation, Definition 14 needs to be updated. Similarly, we
need to update Definition 17 to take into account the peculiar renaming of the next
block. Finally, the merge step has to consider the new renamings introduced by the next
renaming.

The change in the definition of DICVP is actually quite straightforward: we add a rule
to handle differently the condition we seek to remove, and other instruction are treated
as they were in Section 2.1. An updated definition can be found in Definition 29. The
function is now parameterized by p, the transformation being local to this condition.
If the condition we encounter is not the one we seek to transform, we indeed pass the
transformation along to the two branches. Note that because we know that only the p

condition has a non-skip next branch, we ignore the third block in this transformation
for most cases.

Definition 29: New formal definition of Delayed If-Conversion

DICVP
p (skip) = skip

DICVP
p (x = e) = x = e

DICVP
p (t[e1] = e2) = t[e1] = e2

DICVP
p (s1; s2) = DICVP

p (s1); DICVP
p (s2)

DICVP
p (ifp h then st else se next sn) = DICIF VP

p (ifp h then st else se next sn)
DICVP

p (ifp′
h then st else se) = ifp′

h then DICVP
p (st) else DICVP

p (se)
DICVP

p (for x from c1 to c2 do s) = for x from c1 to c2 do DICVP
p (s)

where p ̸= p′

Simultaneous Renaming of next

As stated, the DICIF VP function is actually quite close to its DICIF VP counterpart.
The sole changes are in the addition of a Nxt function to rename specifically the next
block, and an upgrade to the crafting of the post statement.

The function Nxt is parameterized by the guard h of the condition, and by the two
renaming maps for each branch, ρt and ρe. This is written as Nxtρt,ρe

h : stmt → rmap ×
rmap × stmt, a function taking as argument a statement corresponding to a next block,
and yielding the updated renaming maps and the transformed statement, after renaming.
Because the transformation needs to be simultaneous for both branches, the expressions of

80

Program transformation

the function Nxt are arguably more complex than its DICVP counterpart. This definition
is divided into two parts: one in Definition 30 containing the renaming of the atomic
instructions, and one in Definition 31, containing sequences, conditionals, and loops.

Definition 30: Renaming a next block - Assignments

We define Vfresh to be an arbitrary big set of variables fresh from all variables used
in the initial program, and in the current renamings.

Nxtρt,ρe

h (x = v) =

(ρt[x 7→ x′], ρe[x 7→ x′], x′ = ρe(v))
if ρt(v) = ρe(v)

(ρt[x 7→ xt], ρe[x 7→ xe], xt = ρt(v); xe = ρe(v))
otherwise

where xt, xe and x′ are sampled from Vfresh

Nxtρt,ρe

h (t[e1] = e2) =

(ρt, ρe, t[ρt(e1)] = ρt(e2))

if ∧ ρt(e1) = ρe(e1)
ρt(e2) = ρe(e2)ρt, ρe,

 t[ρt(e1)] = h?ρt(e2):t[ρt(e1)]
t[ρe(e1)] =!h?ρe(e2):t[ρe(e1)]

otherwise

We use the renamed values as a way to track the secrecy of a variable. If the renaming
maps yield the same renaming: the to-be-assigned value is not dependent on the guard,
and both executions would yield the same. Otherwise, the resulting value would be
directly linked to the branch executed, it is potentially leaking, and the renamings are
distinct. As such, when trying to rename a simple assignment x = v, the behavior
of the Nxt function changes whether or not the renamings are equal. If they are, we
introduce a new unique renaming x′, update both maps ρt and ρe to use this name from
now on, and make the assignment on it, without the need to duplicate the statement.
Otherwise, we pick two new names, duplicate the statement, and virtually create two
different, simultaneous executions: the then branch with xt, and the else branch with xe.
Note that this mechanism works whether or not the variable was duplicated before. This
allows us to merge previously problematic variables that became harmless, or secure the
ones that are not innocuous anymore. The same reasoning is applied to an array update,
where, instead of generating one or two new names, the choice is made on whether or not

81

Program transformation

we predicate the statement. If the update poses a security threat, we duplicate it and
update both simultaneous executions by writing them as a cmove such that the update
is dummy unless the branch is executed. Because a memory write does not overwrite any
variables, we do not need to update the renaming maps.

Definition 31: Renaming a next block - Complex statements

Nxtρt,ρe

h (s1; s2) = let (ρ′
t, ρ′

e, s′
1) = Nxtρt,ρe

h (s1) in

let (ρ′′
t , ρ′′

e , s′
2) = Nxtρt,ρe

h (s2) in

(ρ′′
t , ρ′′

e , s′
1; s′

2)
Nxtρt,ρe

h (ifp′
h′ then s1 else s2) = let (ρ1

t , ρ1
e, s′

1) = Nxtρt,ρe

h (s1) in

let (ρ2
t , ρ2

e, s′
2) = Nxtρt,ρe

h (s2) in

let ρ̇t = ρ1
t ⋊⋉ ρ2

t and ρ̇e = ρ1
e ⋊⋉ ρ2

e in

let sϕ1
t

= ϕ(ρ̇t, ρ1
t) and sϕ1

e
= ϕ(ρ̇e, ρ1

e) in

let sϕ2
t

= ϕ(ρ̇t, ρ2
t) and sϕ2

e
= ϕ(ρ̇e, ρ2

e) in

let rthen = (s′
1; sϕ1

t
; sϕ1

e
) in

let relse = (s′
2; sϕ2

t
; sϕ2

e
) in

(ρ̇t, ρ̇e, ifp′
ρt(h′) then rthen else relse)

Nxtρt,ρe

h (for i from c1 to c2 do s) = let ρ′
t = ρt[x 7→ x′ | x′ ∈ Vfresh ∧ x ∈ mod(s)] in

let ρ′
e = ρe[x 7→ x′ | x′ ∈ Vfresh ∧ x ∈ mod(s)] in

let (ρ′′
t , ρ′′

e , s′) = Nxtρ′
t,ρ′

e

h (s) in

let s′
t = ϕ(ρ′

t, ρt) and s′
e = ϕ(ρ′

e, ρe) in

let s′′
t = ϕ(ρ′

t, ρ′′
t) and s′′

e = ϕ(ρ′
e, ρ′′

e) in

let sb = (s′; s′′
t ; s′′

e) in

(ρ′
t, ρ′

e, s′
t; s′

e; for ρt(i) from c1 to c2 do sb)

For the sequence, both statements are renamed and the renamings are threaded along.
For the conditional, by construction, we have the guarantee that there is no next state-
ment. This is because the only next in the program has just been introduced by the
SIp transformation and we are currently processing the generated next statement. Both
branches are recursively renamed using the same initial renaming maps ρt and ρe. At the
end of the conditional, to reconcile the renaming ρ1

t and ρ2
t (resp. ρ1

e and ρ2
e) we join the

renaming maps ρ̇t = ρ1
t ⋊⋉ ρ2

t (resp. ρ̇e = ρ1
e ⋊⋉ ρ2

e). To synchronize the program variables
with the renaming maps ρ̇t and ρ̇e, we append to each of the branches a sequence of

82

Program transformation

assignments using the ϕ-merging. For the for loop, before renaming the loop body, we
update the initial renaming maps ρt and ρe so that each variable of the loop body is given
a fresh variable. The loop body s is renamed using the obtained renaming maps ρ′

t and
ρ′

e. In order to synchronize the renaming maps with the program variables, we insert
ϕ-merging before and after the renaming of the loop body s′. This is needed to ensure
that the variable names are coherent for the next loop iteration.

Finalization

In our first version of delayed if-conversion, the final merging was done by a simple
sequence of statements post. This statement was assigning to each variable renamed a
conditional choice between both renamings to ensure the correct semantics of the transfor-
mation. However, we now have two possible cases: a variable has either two renamings or
a unique one. We thus need to produce a more complex post statement, doing a straight
assignment for the safe variables, with only one renaming, and a predicated assignment
for the problematic ones. This leads to a definition of post as

post = seq({x =
 ρt(x) if ρt(x) = ρe(x)

h?ρt(x):ρe(x) otherwise

∣∣∣∣∣∣ x ∈ Vρt ∪ Vρe})

We can then define what the delayed if-conversion of a problematic condition p yields.
By first creating the two renaming maps ρt and ρe, initializing their renamed names,
renaming both the then and the next branched, renaming simultaneously the next
branch, and finally merging back the renamings together with the post statement, we are
able to remove the condition. The definition of this exact step is shown in Definition 32.

Definition 32: Delayed if-conversion of a condition with a next

ρt = init(mod(st), Vp) ρe = init(mod(se), Vp ∪ Vρt)
pret = seq({ρt(x) = x | x ∈ Vρt}) pree = seq({ρe(x) = x | x ∈ Vρe})

Nxtρt,ρe

h (sn) = (ρ̇t, ρ̇e, s′
n)

post = seq({x =
 ρt(x) if ρt(x) = ρe(x)

h?ρt(x):ρe(x) otherwise

∣∣∣∣∣∣ x ∈ Vρt ∪ Vρe})

DICIF VP
p (ifp h then st else se next sn) = pret; pree; Rnρt

h (st); Rnρe

¬h(se); s′; post

83

Program transformation

2.4.3 Semantics Preservation

Because the definitions of ρt, ρe, pret, and pree are left unchanged, all lemmas proved
in Section 2.1 are still valid. And, to handle the next transformation, we suppose that
the statement sn evaluates both from two different environments. One being the result of
evaluating the correct branch, the second being the result of evaluating the incorrect one,
albeit first transformed by index sanitization. Then, if we have a combination of both
renamed environments, the next renaming can be evaluated and results in the updated
renaming of both environments, as shown in Lemma 7

Lemma 7: Semantics Preservation of next renaming

Given a statement s, two renaming maps ρt, ρe, a guard h, two traces tt, te, and some
environments σt, σ′

t, σe and σ′
e such that s evaluated in σt yields σ′

t (i.e., (s, σt) ↓tt σ′
t),

and s evaluated in σe yields σ′
e. Then, the next renaming of s can be evaluated within

the renaming of σ by ρt and ρe, that is :

(ρ′
t, ρ′

e, s′) = Nxtρt,ρe

h (s) =⇒ (ρt(ρe(σi, σe), σt), s′) ↓t′
ρ′

t(ρ′
e(σ′

i, σ′
e), σ′

t)

where t′ is larger than tt · te due to the multiple evaluations of memory accesses,
and σ′

i is σi where the arrays are updated from values in σ′
t if h is true, and values

from σ′
e otherwise.

Proof Outline. First, note that the statement defined as ϕ(ρ1, ρ2) harmonizes the environ-
ment ρ2(σ) to ρ1(σ). Then, by induction over s. For the assignment, the new assignment
is just a renaming, and preserves the value, in both cases. For the memory write, if h is
true, the value of t is updated the same way as in σ′

t. Otherwise, it is updated as in σ′
e.

The other cases are by induction hypothesis, and using the property about ϕ.

This lemma about the next transformation means that we simultaneously continue
both executions, those of the correct and incorrect branches. At the end, we merge both
executions using the post statement. The effect of this merging statement is that we only
keep the environment of the correct branch, discarding all incorrect renamings, as stated
in Lemma 8.

84

Program transformation

Lemma 8: Semantics of the merging statement

Let ρt, ρe be two renamings, and σi, σt, σe be three environments. Then, the merging
of ρt and ρe evaluated in the renaming of σt and σe yields σt if h is true, and σe

otherwise.

Proof Outline. The proof is by induction over the set of renamed variables. For each
renamed variable, we assign to it the renaming from the correct branch (if both renaming
are equals, we can prove that their renamings come from the next renaming and that
their values are equal). Thus, the resulting environment is that of the correct branch.

Finally, we can state the semantics preservation for the whole DICVP
p transformation.

Given a conditional p transformed by index sanitization i.e., where all branches can be
evaluated whatever the environment is, the transformation of the conditional p by the
DICIF VP

p has the same behavior as the branch, only without leaking the guard. This
theorem is immensely simplified by the assumption that we only look at interesting vari-
ables in environments. See Chapter 4 for more detailed proofs using the same kind of
reasoning on typing environments.

Theorem 8: Semantics preservation of DICIF VP
p

Let s = ifp h then st else se next sn be the p conditional, previously transformed
by index sanitization. If there is σ, σ′, h, such that (s, σ) ↓t σ′, then we have

(DICIF VP
p (s), σ) ↓t′

σ′

where, if we note t = h · ts, we have t′ greater than ts due to some double evaluations
of memory access, but without h ∈ ts.

Proof Outline. By Lemma 2, we know that the pres statements rename σ by ρt and ρe.
By Lemma 6, we know that we can evaluate the incorrect branch, and propagate the
renamings using Lemma 4. And, we continue both executions by Lemma 7, using here
too Lemma 6 to ensure that the next branch can be evaluated in both branches. We
conclude by Lemma 8 to merge back both renamings to the correct evaluation. The guard
h is removed from the trace by the removal of the conditional.

Per the definition of DICVP
p , we can use Theorem 8 to prove that the whole transfor-

mation is safe and preserves the semantics.

85

Program transformation

2.5 Handling direct leaks

There are some leaks that our current transformation is unable to mitigate. In par-
ticular, because we forbid any code motion within a loop, any memory access outside a
loop depending on a condition within it would still be problematic even after the delayed
if-conversion. To allow a full transformation, and a program clean of any problematic
statement, we apply the naive transformation presented in Section 1.4 to delete those
unsecure accesses. We do not have to worry about conditions: they should be handled by
the transformation anyway.

One way to remove those accesses would be to wait until after our transformation is
done, and then remove any remaining leaking access. However, let’s say that we have a
way to identify from the get-go such accesses, we could then use a preprocessing pass to
apply this naive, costly transformation. We will see how we are effectively able to mark
these leaking statements using a type system in Chapter 3. For now, we assume that we
have a clean-up pass that applies this transformation to any remaining issue.

2.5.1 Semantics Preservation

For this clean-up pass to be effective, it needs to preserve the behavior of the pro-
gram. Thus, we prove in Theorem 9 that the array traversal transformation preserves the
semantics of the transformed statement.

Theorem 9: Semantics preservation of array traversal

Let t be an array and x, y be two variables. Then, if there exist σ, t, σ′ such that
(σ, y = t[x]) ↓t σ′, then (σ, for i from 0 to size(t) − 1 do y = (x == i)?t[i]:y) ↓t′

σ′

where t′ = 0 · 1 · · · size(t).
Similarly, if (t[x] = y], σ) ↓t σ′, then (σ, for i from 0 to size(t) − 1 do t[i] =

(x == i)?y:t[i]) ↓t′
σ′ where t′ = 0 · 1 · · · size(t).

Proof outline. The assignment y = (x == i)?t[i]:y is always safe as 0 ≤ i < size(t).
Moreover, if i == x, it is equivalent to y = t[i], and y = y otherwise. Because the initial
array access is safe, there is a single i′ ∈ [0, size(t) − 1] such that x = i′, and the for loop
amounts to a single assignment y = t[i′] i.e., y = t[x]. Thus, the semantics is preserved.
And, because a memory access is done for each i, the trace leaked is the concatenation of
all those i i.e., 0 · 1 · · · size(t).

The reasoning is the same for the transformation of memory write.

86

Program transformation

2.6 Overall transformation

Our constant-time transformation consists in iterating the previous transformations
i.e., SIp, ISp, and DICVP

p , on s until we can’t find a p such that ROp(s). The main idea
is that scope-increase will introduce a next block on a condition, index sanitization will
secure any access within that condition, and delayed if-conversion finally removes this
condition. Because there are only a finite number of conditions within a program, and
each iteration effectively removes one of them, the transformation always terminates. An
overview of the whole transformation can be found in Figure 2.1 as an UML state diagram
while the constant-time transformation itself is formalized in Definition 33. Given an ini-
tial program P , the transformation consists of first finding a program point p such that
ROpP . If no p satisfies the right-most out-most constraint, we apply the clean-up pass de-
scribed in the previous section to ensure that no secret memory access remains. However,
if such a p exists, we apply scope-increase on the conditional p, then index sanitization on
the same conditional before finishing by applying the delayed if-conversion transforma-
tion. Once delayed if-conversion is applied, the p conditional has been removed, and we
can find a new p′ such that ROp′(P). We repeat this operation while we can find such a
p′.

Definition 33: Constant-Time Transformation

Let T be the function removing (if it exists) the rightmost outermost problematic
conditional of a program P .

T (P) =
 DICVP

p (IS(SIp(P))) if ROp(P) for some p and VP = var(P)
P otherwise

For a program P , the Constant-Time Transformation CTT (P) iterates the function
T until there is no unsecure conditional left.

CTT (P) =
 P if T (P) = P

CTT (T (P)) otherwise

87

Program transformation

Figure 2.1 – Overview of the Constant-Time Transformation

88

Program transformation

2.6.1 Semantics Preservation

By defining the Constant-Time Transformation to be an iteration of a function com-
posed of the transformations described above, we have that this transformation preserves
the behavior of the program, and removes all guards from the leakage trace. We state
this more formally in Theorem 10.

Theorem 10: Semantics preservation of the Constant-Time Transfor-
mation

Given a program P , two typing environments σ, σ′, and a trace t such that (σ, P) ↓t σ′,
then the constant-time transformation of P evaluates the same way, and we have
(σ, CTT (P)) ↓t′

σ′ where t′ is t stripped of all guards of problematic conditionals
within P , and augmented by some double evaluations of array accesses. In particular,
t′ only contains secrets leaked by array accesses.

Proof Outline. We start by proving that the T function preserves the semantics, and re-
duces the number of guards in the trace by 1. This is done by chaining Theorems 7, 5, and 8.
The preservation of semantics immediately follows, and the decrease in number of guards
in the trace is a direct implication of Theorem 8. We then prove that CTT ends because
there is only a finite number of guards in a given program, and by induction, the semantics
is preserved.

We can then prove that by applying our clean-up pass, we could remove all secret leak-
age from the program. However, we will look more into the security of the transformation
in Chapter 4.

89

Chapter 3

TYPE SYSTEM

In this chapter, we present our type designed to answer the needs noted in Chap-
ter 2 notably by proposing a method to compute and check annotations. We will first
describe our types and their associated lattice before formalizing the annotation shown in
Section 2.3 and presenting our flow-sensitive information flow type system which distin-
guishes between direct and indirect flows. This chapter contains some assumptions; these
will be proven in Chapter 4.

3.1 Types

As we pointed out in Section 1.3, the main issue with the classical if-conversion is
that it transforms indirect flows into direct ones which are then responsible for leaking
secret values. Our proposed solution, delayed if-conversion, detailed in Section 2.1, aims
to delay the introduction of direct flow until all possible indirect assignments have been
executed. Intrinsically, such a transformation would not need an elaborate type system:
we just need to be able to identify secret conditions, and the usual C-T type system
does so well. However, to allow us to transform more complex programs, the scope-
increase transformation (Section 2.3) performs code motion, targeting the continuation
of a conditional containing all corresponding indirect flow. To do so, we need to be
able to track indirect flow within the program and differentiate it from its usual, direct,
counterpart. Hence, we extend the usual two-point {H, L} lattice with information flow
types of form I(l) where l ⊆ P is a subset of program points. The type I(l) is given
to variables that are secret because of an indirect secret flow arising from a conditional
labeled with one of the labels in P. We keep the type H which now means “secret because
of a direct or indirect flow”. The definition of our lattice can be found in Definition 34.

91

Type System

Definition 34: Type lattice

IFType = P(P) ∪ {H}.

In this lattice, H is the greatest element and I(l1) ⊑ I(l2) if l1 ⊆ l2 because it is safe
to over-approximate the set of conditionals that caused an indirect flow. The element
I(∅) intuitively means “does not depend on secrets” and types values with only public
informations. We will use L as an abbreviation for the type I(∅). We also say that a
program point p is within a typing environment Γ (noted p ∈ Γ) if there exists a variable
x such that Γ(x) = I(l) with p ∈ l. Throughout this document, we say that a type τ

is simple if τ ∈ {L, H}. The same goes for an environment such that, for all x, Γ(x) is
simple.

This lattice is actually a generalization of the Constant-Time type system, and we
define in Definition 35 a function simplify taking as an argument a type within our
lattice, and yielding the corresponding type in the Constant-Time lattice.

Definition 35: Conversion from lattice to lattice

Assuming that {LCT , HCT } is the Constant-Time lattice, we have

simplify(L) = LCT

simplify(I(s)) = HCT if s ̸= ∅
simplify(H) = HCT

And, the simplify preserves the partial order. We state this property of the function
in Theorem 11.

Theorem 11: Order preservation

Given two types t and t′ such that t ⊑ t′. The conversion of t and t′ to the Constant-
Time lattice preserves the same ordering, that is

simplify(t) ⊑ simplify(t′)

Proof Outline. By case analysis. Immediate if t = t′, or t, t′ ∈ {L, H}. Otherwise,
simplify(t) = simplify(t′) = HCT , and HCT ⊑ HCT .

92

Type System

3.1.1 Classifying

The main tool of our transformation is the predication of statements. This actually
transforms an indirect flow into a direct one. Even though we use them sparsely and
cleverly, we still need to track their impact on the typing. To do so, we define a classifying
operator. Declassification is often used in programming: allowing a secret value that
we trust to be considered as a public one. Our classifying operator formally defined
in Definition 36 does the contrary: it assigns to some variables a higher security level.
Indeed, it sets any variables indirectly secret because of a given program point to the H
security level. This actually simulates a predicated statement, where the dependence is
made direct. Formally, given a set of program point l, we set to H any variable of type
H or I(l′) if l and l′ are not disjoint. To do so, Definition 36 first defines the operator on
a type, before extending it to a typing environment.

Definition 36: Classifying

↑l (τ) =
 τ if τ = I(l′) ∧ l ∩ l′ = ∅

H otherwise

(↑l Γ)(x) =↑l (Γ(x))

Because the transformation only goes one way, it preserves the type order, and the
environment order. This is stated in Lemma 9.

Lemma 9: Monotony of classify

Let τ and τ ′ be two types such that τ ⊑ τ ′, and l be a set of program point. We have

↑l τ ⊑↑l τ
′

Similarly, if we have Γ and Γ′ two typing environments such that Γ ⊑ Γ′, we have

↑l Γ ⊑↑l Γ′

Proof Outline. We prove the first property by case analysis. If τ ′ = H, ↑l τ ⊑ τ ′ for all
values of l and τ . Otherwise, τ ′ = I(()l2), and τ = I(()l1) with l1 ⊆ l2. Thus, if l ∩ l1 ̸= ∅,
we have that l ∩ l2 ̸= emptyset, and the two types are classified. Finally, if τ is not
classified by l, either τ ′ isn’t, and the hypothesis concludes, or τ ′ is, and τ ⊑ H.

93

Type System

The second property is simply by definition of the order on environments, and by the
first property.

3.2 Program annotations for Constant-Time Trans-
formation

We presented back in Section 2.3 a concept of program annotations high and leak,
corresponding to the set of program points that respectively were within a statement s, or
were indirectly leaked by a statement s. This leaking is most often induced by a memory
access on an indirectly secret index. Formally, if a statement s is annotated by two sets g

and r (noted (s)r
g), the set g is an over-approximation of the set of conditionals with non-

low guards within s, while the set r is an upper bound of the security levels of the indices
that have been used to access an array within s. This way of defining r is acceptable
because all secret indexes would be of type I(p) where p is the set of program points of
conditionals that caused an indirect flow. Hence, the union of these sets (which can be
transformed into the upper bound of the security levels) is equal to the set of conditionals
indirectly leaked by s. We will see in a subsequent section how we adapt our type system
to compute these annotations.

3.3 Type System for Constant-Time Transformation

To adapt the usual Constant-Time type system to our transformation i.e., allow it to
accept non-constant-time programs that we are able to transform into constant-time, we
have to loosen some of its rules. Indeed, rules for memory accesses should not enforce
that indices are of security level L, but simply that they are not H. By ensuring that
all memory accesses are done on indirect flow, the delayed if-conversion coupled with
scope-increase should be enough to mitigate the security issues. Similarly, we don’t have
to impose a restriction on the guard’s security level within a conditional: we remove them
anyway. However, allowing secret conditionals and tracking indirect flows requires us to
keep track of the context in which we are evaluating our statement. We model the context
by a type: L at top-level, when there is no context for the statement, and I(p) when
inside conditionals, with p containing all program points of encapsulating conditionals.

94

Type System

This results in a type judgment of the form

∆, κ ⊢ Γ{s}Γ′

where κ is said context, ∆ is the typing environment for array variables, and Γ and Γ′

are the typing environments for scalar variables before and after running the annotated
statement s.

To compute this context, we use the safe selection (Definition 37) to increment it if
needed. Indeed, the ⋉ operator yields the value v if τ is not L, and the default value d

otherwise. By taking the type of the guard as τ , we are able to increment the context in
secret conditionals only. On the other hand, just as in the Constant-Time type system,
the typing of arrays is global (i.e., not flow-sensitive), and simple (i.e., all arrays have
a type τ ∈ {L, H}). The first is a consequence of our weak update modeling, and the
second comes directly from the first: it would make not sense to have an array dependent
on the conditional p before encountering it. There are no such constraints on the typing
environments Γ and Γ′.

Definition 37: Safe selection

τ ⋉d v =
 d if τ = L

v otherwise

3.3.1 Rules for expressions

For expressions, the typing judgment is of the form

∆, Γ ⊢ e : τ, l

where τ is the security type of the result and l is the upper bound of security levels of
array indices used to compute the value of e. This set l is used to compute the leak

annotation of statements.
The typing rules of expressions, detailed in Definition 38 are similar to those of the

Constant-Time type system, and essentially join the type of the sub-expressions to com-
pute the type of the whole expression. For array accesses, an additional hypothesis en-
forces that the type of the index is I(l′) i.e.,strictly below H. If it is L, there is no leakage
and the expression is well typed. Otherwise, there is a leakage of secrets due to indi-

95

Type System

rect flows but the expression is still well-typed because the leakage will be erased by our
program transformation.

Definition 38: Typing rules for expressions

∆, Γ ⊢ x : Γ(x),∅ ∆, Γ ⊢ i : L,∅
∆, Γ ⊢ e : τ, l τ = I(l′)

∆, Γ ⊢ t[e] : ∆(t) ⊔ τ, l ∪ l′

∆, Γ ⊢ ei : τi, li i ∈ {1, 2}
∆, Γ ⊢ e1 ⊕ e2 : ⊔

i τi,
⋃

i li

∆, Γ ⊢ ei : τi, li i ∈ {1, 2, 3}
∆, Γ ⊢ e1?e2:e3 : ⊔

i τi,
⋃

i li

3.3.2 Rules for instructions

For statements, the rules can be found in Definition 39. The ones for skip and sequence
are standard for a flow-sensitive type system. Note that we take care of updating the
annotations of the sequence by joining the annotations of both underlying statements.
For an assignment x = e, the type for x is updated to be the least upper bound of the
type τ of the expression e and the type of the security context κ. This ensures that
indirect flows are correctly reflected in the typing of the assigned variable. The rule for
array update is flow insensitive. It checks that the type τ1 of the index is not H. It also
checks that the type obtained from joining the type of the index τ1 and the type of the
written value τ2 with an upgraded security context κ ⋉L H is below the type ∆(t) of the
array. Therefore, if the security context κ is L, we have τ1 ⊔ τ2 ⊑ ∆(t). Otherwise, if
the array update is performed under a security context κ ̸= L, the safe selection κ ⋉L H
yields H, and typing constraints entail that ∆(t) = H. The r annotation is updated to
reflect that an array access with an index of type τ1 has been made.

96

Type System

Definition 39: Typing rules for Instructions

∆, κ ⊢ Γ{skip∅
∅}Γ

∆, κ ⊢ Γ{(s1)r1
g1}Γ1 ∆, κ ⊢ Γ1{(s2)r2

g2}Γ′

r = r1 ∪ r2 g = g1 ∪ g2

∆, κ ⊢ Γ{(s1; s2)r
g}Γ′

∆, Γ ⊢ e : τ, r

∆, κ ⊢ Γ{(x = e)r
∅}Γ[x 7→ τ ⊔ κ]

∆, Γ ⊢ e1 : τ1, l1 ∆, Γ ⊢ e2 : τ2, l2 τ1 = I(l′
1)

τ1 ⊔ τ2 ⊔ (κ ⋉L H) ⊑ ∆(t)
r = l1 ∪ l′

1 ∪ l2

∆, κ ⊢ Γ{(t[e1] = e2)r
∅}Γ

∆, Γ ⊢ c : τ, rc κ′ = κ ⊔ (τ ⋉L I({p}))
∆, κ′ ⊢ Γ{(s1)r1

g1}Γ1 ∆, κ′ ⊢ Γ{(s2)r2
g2}Γ2

∆, κ ⊢ Γ1 ⊔ Γ2{(s3)r3
g3}Γ′

r = r1 ∪ r2 ∪ r3 ∪ rc

g = g1 ∪ g2 ∪ g3 ∪ τ ⋉∅ {p}
∆, κ ⊢ Γ{(ifp c then s1 else s2 next s3)r

g}Γ′

Γ ⊑ Γ′ Γ1 ⊑ Γ′ ↑high(s) Γ′ = Γ′

∆, κ ⊢ Γ′[i 7→ κ]{(s)r
g}Γ1

∆, κ ⊢ Γ{(for i from c1 to c2 do s)r
g}Γ′

The rule for conditions computes the security level τ of the condition c. If τ is different
from L, c contains secret information and the security context κ′ is updated with I({p}),
recording that execution in the branches takes place under a secret condition located at
program point p. This information is also added to the annotation g that is the set of
labels of the secret conditions in the statements that it annotates. Simultaneously, the
annotation r is updated to be the joining of the annotations for all inner branches, and
the leaking of the evaluation of the condition c.

The typing rule for for loops checks that Γ′ is an invariant typing environment for
the loop, by checking the body s can be type checked in the slightly more constraining
typing environment Γ′[i 7→ κ]. In this environment, the iteration variable i gets the type
of the security context κ. The rule also enforces that Γ′ does not contain any dependency
to conditions within s by ensuring that ↑high(s) Γ′ = Γ′. This equality means that there

97

Type System

are no variables of type I(l) in Γ, with l containing at least one program point p of a
condition within s. This means that we keep track of indirect flows within a loop only,
and do not propagate them outside of its containing loop.

3.3.3 Constant-Time property

Because our transformation aims to transform a program into a constant-time part, our
type system not only accepts constant-time programs but can, with a set of constraints,
accept only constant-time programs. Indeed, if we only consider a type derivation in the
empty security context (κ = L) and a program P with empty annotations (P ∅

∅), our flow
tracking type system enforces the constant-time property of Definition 5. This is more
formally stated in Theorem 12. This will allow us to formulate more easily our security
property: a transformed program shall type with a L context and without annotations.

Theorem 12: Constant-Time Enforcement

If a program P is well-typed in our flow tracking type system with empty annotations,
low context, and a simple typing environment Γ i.e.,

∆, L ⊢ Γ{(P)∅
∅}Γ′

then P is constant-time. More precisely, the predicate CT (P, L) holds for any set of
variables satisfying

{x|Γ(x) ̸= H} ∪ {t|∆(t) ̸= H} ⊆ L

Proof Outline. Given a type derivation ∆, L ⊢ Γ{(P)∅
∅}Γ′, we can exhibit a type derivation

∆ ⊢ct Γ{P} ↓ Γ′ where ↓ Γ′ is obtained by mapping all the indirect flow types i.e., I(l)
for some l, to L. By Theorem 1, we conclude the proof.

3.3.4 Computing annotations

Even though the type system is written as if to ensure that annotations are well-
written, we can actually use it to compute these annotations. Consider Program P0, by
following the typing rules, we would annotate each memory access (y = t[x]){p}

∅ because
of x typing I({p}) due to the indirect flow. Each branch would then be annotated (st){p}

∅

(respectively (se){p}
∅), the assignment to x being benign. By the if rule, we can finally

compute the annotations of P0 : (P0){p}
{p}.

98

Type System

Reminder 1: Program P0

i f @p h then x=l 1 ; y=t [x] else x=l 2 ; y=t [x]

3.4 Adapting the transformation

Before even trying to transform any program, we pass it through our type system.
Two cases arise: it is either rejected or accepted.

If a program is rejected, it is necessarily because of H memory accesses, those being
the only hard constraint of the system. In the previous chapter, we assumed the existence
of a post-transformation pass to mitigate all non-transformable array accesses. All those
accesses were actually those made on H values. By replacing this hypothesis pass with
a preprocessing one in which we apply the array-traversal transformation presented in
Section 2.5 on unsecure array accesses until the program is accepted, we can guarantee
that any program, or a semantically equivalent version, is accepted by the type system.
For example, take the manually curated Program P29 with an initial typing environment
{h 7→ H}.

Program P29: Manually curated program with H indexes

for i from 0 to 31 do
i f @p h then

x = 0 ;
else

x = 1 ;
t [h] = 5 ;

y = t [x] ;

Given an initial typing environment {h 7→ H}, our type system would reject the
program while typing the for loop because of the secret memory write t[h] within its
block. Hence, we can apply the naive array traversal transformation on this statement to
obtain the Program 30.

99

Type System

Program P30: First iteration of array traversal on Program P29

for i from 0 to 31 do
i f @p h then

x = 0 ;
else

x = 1 ;
for j from 0 to s i z e (t) do

t [j] = (j==h) ? 5 : t [j] ;
y = t [x] ;

In this instance, the type system accepts the for loop. The resulting typing environ-
ment after the memory access but still within the loop is {h 7→ H; x 7→ I({p})}. Thus,
after the loop, our typing system yields {h 7→ H; x 7→↑{p} I({p}) = H}. Because x is
typed to H, the last memory access is rejected by the program. Similarly, we can apply
the array traversal transformation to this statement, yielding Program 31. This program
is now fully typable, and accepted by our type system.

Program P31: Second and final iteration of array traversal on Pro-
gram P29

for i from 0 to 31 do
i f @p h then

x = 0 ;
else

x = 1 ;
for j from 0 to s i z e (t) do

t [j] = (j==h) ? 5 : t [j] ;
for k from 0 to s i z e (t) do

y = (k==x)? t [k] : y ;

Once, or if, a program is accepted by our type system, along with the correct anno-
tations, we can apply our constant-time transformation, as stated in Section 2.6. This
gives us the new UML diagram for the transformation shown in Figure 3.1 . We name

100

Type System

FCTT, the transformation following this diagram i.e., our whole transformation. To
reuse Definition 33, for a given program P and a typing environment Γ, FCTTΓ,∆(P) =
CTT (ATΓ(P)), where ATΓ is the function applying array-traversal until P is typable with
Γ. The transformation works as follows: given a program P , we try typing it using our
type system. If the typing system rejects the program, it is necessarily because of a mem-
ory access, and we apply the array traversal on it. We then try again to type it. When
we finally have a program accepted by the typing system, we do one iteration just as in
the transformation described in Section 2.6. That is, we find a p such as ROpP , we apply
scope-increase, index sanitization, and then delayed if-conversion. Once this iteration of
transformation has been applied, we retype the program. This allows us to get rid of the
I({p}) type now that the p conditional has been removed, and to look for a new p′ such
that ROp′(P). When there is no more such p’, the transformation is complete, and the
resulting program is constant-time, as proven in the following Chapter 4.

3.5 Auxiliary Type System

Intuitively, after running SIp(s1, s), all indirect leaks due to a given p conditional are
localized within one of the branches of the conditional. This translates into having all
statements annotated with p localized within the conditional. To formalize this using our
type system, we devise a strengthened type system which, given a label p, prevents indirect
flows from escaping the conditional labeled p. Because the system is parameterized with
p, the typing judgment is of the form ∆, κ ⊢@p Γ{s}Γ′.

Definition 40: Localized Implicit Flows Typing Rule

∆, Γ ⊢ c : τ, rc κ′ = κ ⊔ (τ ⋉L I({p′}))
∆, κ′ ⊢@p Γ{(s1)r1

g1}Γ1 ∆, κ′ ⊢@p Γ{(s2)r2
g2}Γ2

∆, κ ⊢@p Γ1 ⊔ Γ2{(s3)r3
g3}Γ′

r = r1 ∪ r2 ∪ r3 ∪ rc g = g1 ∪ g2 ∪ g3 ∪ τ ⋉∅ {p′}

Γ′′ =
 ↑{p} Γ′ if τ ̸= L ∧ p = p′

Γ′ otherwise
∆, κ ⊢@p Γ{(ifp′

c then s1 else s2 next s3)r
g}Γ′′

It is obtained from our type system of Definitions 38,39 by keeping all the typing

101

Type System

Figure 3.1 – Overview of the Constant-Time Transformation - with typing

102

Type System

rules except the typing rule for the conditional that is replaced by the typing rule of
Definition 40. The typing rule of Definition 40 is very similar to the original typing
rule. Actually, the typing judgments only differ when the label p′ of the condition is p

and when the typing of the condition c is not L. In that case, instead of Γ′, the final
typing environment is Γ′′ =↑{p} Γ′ which classifies the indirect flows due to the current
conditional annotated by p. This ensures that no indirect flow could subsist after the
conditional. This auxiliary system will mostly be used when trying to prove the security
of our transformation in Chapter 4.

103

Chapter 4

SECURITY OF THE TRANSFORMATION

This chapter aims to show that the transformations shown above ensure the constant-
property of its result. This property is stated in Theorem 13, and will be our goal for this
chapter.

Theorem 13: Security of our transformation

Given a program P and two typing environments Γ and ∆, by defining L the set of
public variables in Γ and ∆, then the program resulting of our transformation on P

is constant-time w.r.t L, that is :

L = {x|Γ(x) ⊔ ∆(x) = L} =⇒ CT (FCTTΓ,∆(P), L)

We do so by using the type system described in Chapter 2.
The first step of our proof strategy is to show that any program expressed in our

language can be typed after a first preprocessing pass (i.e., applying array traversal).
Then, we aim to prove that each iteration of our CCT transformation removes a secret
conditional of a program and decreases the size of annotations. Because our annotations
are of finite size, the transformation ends, and we aim to conclude by Theorem 12.

We present here proofs on paper, omitting some details to keep an appropriate level of
abstraction. Some of these proofs have been mechanized in Coq and can be found here 1.

4.1 Preprocessing

4.1.1 Typing Constraints

As stated above, the goal of the preprocessing pass is to ensure that any program
accepted by our language is accepted by our type system, for a given typing environment.

1. https://github.com/frosqh/ctt_proofs

105

Security of the transformation

By default, this isn’t true: given a typing environment where h is mapped to H, the
memory access x = t[h] is adequately rejected by the type system. Note that the only
valid reason for a program to be rejected is because of a secret access, or because of a
misconstructed annotation. This is trivial by looking at the typing rules: an expression
is rejected only if a memory access is done on an index with a type τ ̸= I(l′) for any l′,
i.e., if τ is H. For expressions, aside from annotations that introduce a lot of constraints
on our type system, the only true limitation is in the rule for t[e1] = e2, we reject any
program where the type of e1 τ1 is not a I(l′

1) for any l′
1, i.e., where the index is typed H.

Another way to look at it is to look at programs without any accesses: those programs
should type independently of Γ, as shown in Lemma 10.

Lemma 10: Typing without arrays

Given a program P not containing a single array, two typing environments Γ and ∆,
and a context κ, then there exists a typing environment Γ′ such that P is typable
and yields Γ′, that is:

∆, κ ⊢ Γ{P}Γ′

Proof Outline. First, we prove a similar lemma for the expressions, by induction: there
are four non-array rules, and all accept any expression.

Then, we proceed by induction on P . Aside from the t[e1] = e2 rule, which we
cannot encounter because of our syntactic constraints, there are two base cases: skip,
which is trivial, and x = e, which cannot fail either. By induction, the sequence and the
conditional are immediate. For the for loop, we can choose Γ′ to be the H environment,
i.e., Γ′(x) = H for all x, and conclude by induction.

4.1.2 Array Traversal

By Lemma 10, we have shown that the only way for a program to be rejected by
our type system is because of unsecure memory accesses. To alleviate this issue, we
use the array traversal transformation. Because the result of this transformation only
uses memory accesses on loop indexes, and loop indexes are always public, those results
should always be typable. This is stated in Lemmas 11, 12. Hence, at the potential
cost of classifying an array, as shown in Lemma 12, we can apply our array traversal
transformation to any blocking memory access, and obtain a typable program.

106

Security of the transformation

Lemma 11: Typing an array traversal on memory read

Given an array t, two variables y, x, a context κ ̸= H, and two typing environments
Γ, ∆, then the array traversal transformation of y = t[x] is typable for ∆, κ, and Γ,
that is, there exists a Γ′ such that :

∆, κ ⊢ Γ{for i from 0 to size(t)−1 do y = (x == i)?t[i]:y}Γ′

Proof Outline. By defining τ = Γ(y) ⊔ Γ(x) ⊔ κ ⊔ ∆(t), and Γ′ = Γ[i 7→ H][y 7→ τ], we
have Γ ⊑ Γ′ (because Γ(y) ⊑ Γ(y) ⊔ Γ(x) ⊔ κ ⊔ ∆(t) and Γ(i) ⊑ H).

Moreover, per the rule of ctselect and assignment,

∆, κ ⊢ Γ′[i 7→ κ]{y = (x == i)?t[i]:y}Γ′[i 7→ κ][y 7→ Γ(x) ⊔ κ ⊔ ∆(t) ⊔ τ]

Note that Γ(x) ⊔ κ ⊔ ∆(t) ⊔ τ = τ , and

Γ′[i 7→ κ][y 7→ τ] = Γ[i 7→ H][y 7→ τ][i 7→ κ][y 7→ τ] = Γ[i 7→ κ][y 7→ τ]

And, Γ[i 7→ κ][y 7→ τ] ⊑ Γ′ (because κ ⊑ H), and we can conclude by the for rule.

Lemma 12: Typing an array traversal on memory write

Given an array t, two variables y, x, a context κ ̸= H and two typing environments
Γ, ∆ such that ∆(t) = H, then the array traversal transformation of t[x] = y is
typable for ∆, κ and Γ, that is, there exists a Γ′ such that :

∆, κ ⊢ Γ{for i from 0 to size(t)−1 do t[i] = (x == i)?y:t[i]}Γ′

Proof Outline. By taking Γ′ = Γ[i 7→ H], we have that Γ ⊑ Γ′.
More over, per the rule of ctselect and memory write, and because ∆(t) = H,

∆, κ ⊢ Γ′[i 7→ κ]{t[i] = (x == i)?y:t[i]}Γ′[i 7→ κ]

And, Γ′[i 7→ κ] = Γ[i 7→ H][i 7→ κ] = Γ[i 7→ κ] ⊑ Γ′ (because κ ⊑ H), and we can
conclude by the for rule.

107

Security of the transformation

4.2 Scope-Increase

To follow the proof strategy described at the start of this chapter, we aim to show that
any iteration scope-increase into index sanitization into delayed if-conversion removes a
secret conditional of the program. This results in showing that for any such iteration, if
the high annotation of our program is of cardinality n, the resulting partially transformed
program is typable with a high annotation of cardinality n−1. The first step of this proof
is to show that, given an annotated P and its appropriate rightmost condition p such
that ROp(P), we can decompose P as a sequence c; s where c and s are two annotated
statements such that ROp(c) and high(s) = ∅, and type the scope-increase transformation
SIp(c, s) with the strengthened type system shown in 40. This would mean that we are
able to identify the whole continuation of the conditional p as s and that the scope-
increase transformation virtually restrains all leaks relative to p within its own scope, as
intuited in Section 3.5. Thus, our goal for this section is to prove the following Theorem 14.

Theorem 14: Security of Scope Increase

Let p be the rightmost (high) condition of c i.e.,ROp(c) and s be a program without
any high condition i.e.,high(s) = ∅. Suppose that c; s is well-typed i.e.,

∆, L ⊢ Γ{c; s}Γ′

and ∀x, p /∈ Γ(x).
We have that SIp(c, s) is well-typed with respect to the strengthened type system.

More precisely,
∆, L ⊢@p Γ{SIp(c, s)} ↑{p} Γ′

4.2.1 Intermediate Results for SI

To prove this theorem, multiple intermediate results are needed. First, we have to state
that the upgrade from our type system to the one strengthened w.r.t to the p conditional
is free on any statement not containing p. Indeed, if a statement s does not contain the p

conditional, adding a constraint on said conditional is trivial, and has no impact on the
typing. This is stated and proved in Lemma 13. This will allow us to cross over to the
strengthened type system in base cases.

108

Security of the transformation

Lemma 13: Free upgrade

Let s be a program, p a program point such that p /∈ high(s), and s is well-typed,
i.e.,

∆, κ ⊢ Γ{s}Γ′

Then, s is also well-typed using the strengthened type system for ⊢@p, i.e.,

∆, κ ⊢@p Γ{s}Γ′

Proof. The proof is by induction over the height of the type derivation.

— For s ̸= ifp c then s1 else s2 next s3, the judgments ⊢ and ⊢@p are identical. As
a result, we can reconstruct an isomorphic typing derivation by simply replacing ⊢
with ⊢@p.

— For s = ifp c then s1 else s2 next s3, we have high(s) = high(s1) ∪ high(s2) ∪
high(s3) ∪ τ ⋉∅ {p} for τ the type of the condition c i.e., ∆, Γ ⊢ c : τ . We perform
a case analysis over the type τ .

— For τ = L, the derivation of ⊢ and ⊢@p are still the same and therefore the
property holds.

— For τ ̸= L, we have high(s) = high(s1)∪high(s2)∪high(s3)∪I({p}). Therefore,
we have p ∈ high(s) and the property follows by contradiction.

Because the strengthened type system introduces a classifying operator on the result-
ing environment in certain cases (i.e., if the typed conditional is the to-be-secured one),
Theorem 14 introduces such an operator in all cases. In particular, we have to be able to
show that after a classifying, the continuation is still typable. We first do so by showing
in Lemma 14 that if an expression not leaking p is typable for a given typing environment,
it is also typable if this environment is classified on p.

109

Security of the transformation

Lemma 14: Preservation of typing by classifying

Let e be an expression, r a set of program points, and p a program point such that
p /∈ r, and e is well-typed leaking r, i.e.,

∆, Γ ⊢ e : τ, r

Then, e is also well-typed for the classified environment ↑{p} Γ, i.e.,

∆, ↑{p} Γ ⊢ e :↑{p} τ, r

Proof. The proof is by induction over the height of the type derivation.

— For e = x, we have that r = ∅, and we need to prove that ∆, ↑{p} Γ ⊢ x :↑{p}

(Γ(x)), ∅. This is immediate per the definition of the classifying operator on typing
environments: ↑{p} Γ(x) =↑{p} (Γ(x)) and the typing rule for variables.

— For e = c, because ↑{p} L = L, we can directly conclude by the typing rule for
constants.

— For e = e1 ⊕ e2 and e = e1?e2:e3, we conclude by induction hypothesis.

— For e = t[e1], we have that r = l ∪ l′ and ∆, Γ ⊢ t[e1] : ∆(t) ⊔ I(l′), r, and we
need to prove that ∆, ↑{p} Γ ⊢ t[e1] :↑{p} (∆(t) ⊔ I(l′)), ∅. Because ∆(t) is simple,
we have that ↑{p} ∆(t) = ∆(t). Similarly, because p /∈ r, we know that p /∈ l′, and
↑{p} I(l′) = I(l′). We can then conclude by the memory read rule and by induction
hypothesis.

We generalize it in Lemma 15 by stating that for any s well-typed not containing the
p conditional, the statement would still be typable even if both starting and resulting
typing environments are classified on p. To prove this, we rely heavily on the monotony
of ↑{p} (Lemma 9) and Lemma 14 for the base cases. For other cases, the proof relies on
the induction hypothesis and arithmetic operations around the classify operator.

110

Security of the transformation

Lemma 15: Free classify

Let s be a well-typed statement in a L security context with an empty set of H
conditionals (i.e., high(s) = ∅) and such that p /∈ leak(s) i.e.,

∆, L ⊢ Γ{s}Γ′

Then, s is well-typed for the classified environment ↑{p} Γ, i.e.,

∆, L ⊢ (↑{p} Γ){s}(↑{p} Γ′)

Proof. The proof is by induction over the height of the typing derivation.

— For s = skip, we have Γ = Γ′ and need to prove ∆, L ⊢ (↑{p} Γ){skipr
∅}(↑{p} Γ).

This is done by the typing rule of skip.

— For s = (x = e), we have the hypotheses H1 : ∆, Γ ⊢ e : τ, r, H2 : Γ[x 7→ τ] ⊑ Γ′

and need to prove ∆, L ⊢ (↑{p} Γ){(x = e)r
∅}(↑{p} Γ′). By Lemma 14, using H1,

we have ∆, (↑{p} Γ) ⊢ e :↑{p} τ, r. By the typing rule for assignment, it remains to
prove (↑{p} Γ)[x 7→↑{p} τ]) ⊑ (↑{p} Γ′). We conclude by monotony of ↑{p} over H2 and
because ↑{p} (Γ[x 7→ τ]) = (↑{p} Γ)[x 7→↑{p} τ].

— For s = (t[e1] = e2). Let τ1 be the type of e1 and τ2 be the type of e2. The proof
is similar to the case of assignment and uses the monotony of ↑{p} to retype the
expressions e1 and e2 in a classified environment. By the typing rule for array write,
it remains to prove that τ1 ⊔ τ2 ⊑ ∆(t) ⇒ (↑{p} τ1) ⊔ (↑{p} τ2) ⊑ ∆(t). By case
analysis over ∆(t)

— If ∆(t) = L, we have τi = (↑{p} τi) = L and the property holds.
— If ∆(t) = H, then τ ⊑ ∆(t) for any type τ and the property also holds.

— For s = (s1; s2), the proof follows by using the induction hypothesis over s1 and s2

and by monotony of ↑{p}.

— For s = ifp c then s1 else s2 next s3, we have

Hc : ∆, Γ ⊢ c : τ, rc

H1 : ∆, (τ ⋉∅ {p}) ⊢ Γ{s1}Γ1

H2 : ∆, (τ ⋉∅ {p}) ⊢ Γ{s2}Γ2

H2 : ∆, L ⊢ Γ1 ⊔ Γ2{s3}Γ′

111

Security of the transformation

and we have to prove

∆, L ⊢ (↑{p} Γ){ifp c then s1 else s2 next s3}(↑{p} Γ′).

Because there are no high conditionals, we conclude that τ = L and therefore
τ ⋉∅ {p} = ∅. The proof follows by using the induction hypothesis over H1, H2 and
H3 using the property that (↑{p} Γ1) ⊔ (↑{p} Γ2) =↑{p} (Γ1 ⊔ Γ2).

— For s = for x from c1 to c2 do b, we have

H1 : ∆, L ⊢ Γ′[x 7→ L]{b}Γ1

H2 :↑C(b) Γ′ = Γ′, H3 : Γ1 ⊑ Γ′, H4 : Γ ⊑ Γ′

and need to prove
∆, L ⊢ (↑{p} Γ){s}(↑{p} Γ′).

The proof follows by induction hypothesis over H1 using that ((↑{p} Γ′)[x 7→ L]) =↑{p}

(Γ′[x 7→ L]) and (↑C(b)↑{p} Γ′) = (↑{p}↑C(b) Γ′) =↑{p} Γ′.

4.2.2 SI Security Theorem

With the help of those three lemmas, we aim to prove Theorem 14 stated at the start
of this section. To do so, we work by induction over the statement c. In most cases, we
deconstruct the typing derivation, apply both Lemma 13 and the induction hypothesis,
and reconstruct the correct one in the strengthened type system. This is not enough
for the sequence case s1; s2 where the conditional is in s1, because of the classifying,
thus needing Lemma 15. The other complex case is the for loop, where the subtyping
characteristics of the rule may cause some introduction of spurious leaks. To circumvent
this issue, we construct a stricter, safer, stronger typing environment on which we call the
induction hypothesis.

112

Security of the transformation

Reminder: Theorem 14

Let p be the rightmost (high) condition of c i.e., ROp(c) and s be a program without
any high condition i.e., high(s) = ∅. Suppose that c; s is well-typed i.e.,

∆, L ⊢ Γ{c; s}Γ′

and ∀x, p /∈ Γ(x).
We have that SIp(c, s) is well-typed with respect to the strengthened type system.

More precisely,
∆, L ⊢@p Γ{SIp(c, s)} ↑{p} Γ′

Proof. By the typing rule of the sequence, we have that

∆, L ⊢ Γ{c}Γc and ∆, L ⊢ Γc{s}Γ′

The proof is by induction over the typing derivation of program c.
— The base cases s = skip, s = (x = e) and c = (t[e1] = e2) do not contain a

condition. As a result, p cannot be the rightmost condition of c and therefore the
property is vacuously true.

— For c = c1; c2, we have ∆, L ⊢ Γ{c1}Γ1 and ∆, L ⊢ Γ1{c2}Γc. We perform a case
analysis depending on whether p ∈ c1 or p ∈ c2.

— Suppose that p ∈ c1. We have (s1, s2) ∈ sepp(c2; s) and because sepp preserves
typing we have ∆, L ⊢ Γ1{s1}Γ′

1 and ∆, L ⊢ Γ′
1{s2}Γ′ and need to prove

∆, L ⊢@p Γ{SIp(c1, s1); s2} ↑{p} Γ′.

By induction hypothesis, we get ∆, L ⊢@p Γ{SIp(c1, s1)} ↑{p} Γ′
1. By Lemma 15,

we get ∆, L ⊢ (↑{p} Γ′
1){s2}(↑{p} Γ′) and conclude by Lemma 13.

— Suppose that p ∈ c2. In that case, we need to prove

∆, L ⊢@p Γ{c1; SIp(c2, s)} ↑{p} Γ′.

Because p /∈ c1 and p /∈ Γ, we can exhibit alternative typing derivation for c1

and c2

∆, L ⊢ Γ{c1}Γ′
1 and ∆, L ⊢ Γ′

1{c2}Γc

113

Security of the transformation

such that p /∈ Γ′
1 and Γ′

1 ⊑ Γ1. The property follows by using Lemma 13 on the
typing derivation of c1 and applying the induction hypothesis on the typing
derivation of c2.

— For c = ifp′
x then c1 else c2, we perform a case analysis over p′.

— For p = p′, we have SIp(c, s) = ifp c then c1 else c2 next s and we therefore
need to prove

∆, L ⊢ Γ{ifp x then c1 else c2 next s} ↑{p} Γ′

We cannot directly apply Lemma 13 over the typing derivation of c because
we expect that p ∈ high(c). Yet, p /∈ c1 and p /∈ c2 and therefore p /∈ high(c1)
and p /∈ high(c2). Hence, we can apply Lemma 13 over the derivations for c1,
c2, and s. For c, we can reconstruct a typing derivation,

∆, L ⊢@p Γ{c}Γ′′

where Γ′′ = Γ′ if Γ(x) = L or Γ′′ =↑{p} Γ′ if Γ(x) ̸= L. In either case, Γ′′ ⊑↑{p} Γ′

and the property holds.
— For p ̸= p′, we have that Γ(x) = L. Without loss of generality, suppose that

p ∈ c1. As a result, given

H1 : ∆, L ⊢ Γ{c1}Γ1

H2 : ∆, L ⊢ Γ{c2}Γ2

H3 : Γ1 ⊔ Γ2 ⊑ Γc

H4 : ∆, L ⊢ Γc{s}Γ′

we have to prove

∆, L ⊢@p Γ{if} x then SIp(c1, s) else c2; s next p′ ↑{p} Γ′.

Because Γ2 ⊑ Γc and Γ1 ⊑ Γc, we can exhibit a typing derivation for s starting
from either Γ1 or Γ2. Therefore, from H2 and H4, we have ∆, L ⊢ Γ{c2; s}Γ′.
Moreover, by Lemma 13, we can lift the derivation to ⊢@p and weaken Γ′ to
↑{p} Γ′. By induction hypothesis, we also get

∆, L ⊢@p Γ{SIp(c1, s)} ↑{p} Γ′.

114

Security of the transformation

The proof follows by applying the typing rule for the condition.

— For c = for x from c1 to c2 do b, by the typing rule of the for loop, we have

H1 : ∆, L ⊢ Γc[x → L]{b}Γ′
c

H2 :↑high(b) Γc = Γc

H3 : Γ′
c ⊑ Γc

H4 : Γ ⊑ Γc

H5 : ∆, L ⊢ Γc{s}Γ′

and we need to prove

∆, L ⊢@p Γ{for x from c1 to c2 do SIp(b, skip); s} ↑{p} Γ′.

A difficulty is that the induction hypothesis directly cannot be applied over H1

because we do not have the guarantee that p /∈ Γc. The solution is to exhibit an
alternative typing derivation for b starting from an environment ↓ Γc that is obtained
from Γc by erasing all the spurious indirect flows that are present in Γc but absent
from Γ. As a result, we get a stronger typing derivation that is still a fixpoint

∆, L ⊢ (↓ Γc){b}(↓ Γc)

By induction hypothesis, we get

∆, L ⊢@p (↓ Γc)[x 7→ L]{SIp(b, skip)} ↑{p}↓ Γc

However, by H2 and because p ∈ C(b), we have ↑{p}↓ Γc =↓ Γc. The proof follows
by using the typing rules for the for loop and the sequence.

4.3 Security of IS

The second step of our transformation of a typed program, as shown in Figure 3.1, is
the sanitization of all problematic memory accesses. To ensure any property on the fol-
lowing steps of the transformation, we show here that applying the index sanitization pass
to a given conditional p does not affect the typing of said conditional. We first state a

115

Security of the transformation

similar property on expression i.e., that any typable expression is still typable if we apply
to it the index sanitization transformation. This is stated in Lemma 16, and proved by in-
duction over the expression. In most cases, the induction hypothesis is enough. However,
the main argument for the preservation of the typing is the public status of the size of the
array, allowing us to introduce these bounds at no cost. Note that both this proof and
the following are general: we do not account for the syntax restriction on simple memory
accesses.

Lemma 16: Security of index instrumentation of expression

Let e be a well-typed expression, i.e.,

∆, Γ ⊢ e : τ, l

for some ∆, Γ, τ and l.
Then, the instrumented version ISe(e) is also well-typed, and we have

∆, Γ ⊢ ISe(e) : τ, l

Proof. The proof is by induction over the structure of the expression e.

Case 1 (e = x or e = c) As ISe(e) = e, the property holds.

Case 2 (e = e1 ⊕ e2) We have ISe(e1 ⊕ e2) = ISe(e1) ⊕ ISe(e2). The property follows
by induction hypothesis using the typing rule for ⊕.

Case 3 (e = e1?e2:e3) We have that ISe(e) = ISe(e1)?ISe(e2):ISe(e3). Like Case 2,
the property follows by induction hypothesis using the typing rule for the conditional
expression.

Case 4 (e = t[e2]) We have ∆, Γ ⊢ t[e2] : τ, l and need to prove ∆, Γ ⊢ t[0 ≤ ISe(e2) ≤
size(t)?ISe(e2):0] : τ, l. By the typing rule for array access, we have ∆, Γ ⊢ e2 : I(l1), l2

for some l1 and l2, τ = ∆(t) ⊔ I(l1) and l = l2 ∪ l1. By induction hypothesis, we have
∆, Γ ⊢ ISe(e2) : I(l1), l2. Because 0 and size(t) are public values, and using the typing
rule for conditional expressions, we get that the instrumented index has the typing as e2

i.e.,
∆, Γ ⊢ 0 ≤ ISe(e2) ≤ size(t)?ISe(e2):0 : I(l1), l2

By the array access rule, the property holds.

116

Security of the transformation

However, the bulk of the transformation is done on instructions, not expressions. Thus,
we state for those a similar property: a typable program is still typable after applying
the index sanitization transformation. The main argument is the same as for expressions:
the transformation is very local, and only uses public values (mainly the array size). We
first show in Lemma 17 the consequence of applying the IS transformation (implicitly to
the already selected blocks of the p conditional), before finally stating in Theorem 15 the
property for the whole ISp one.

Lemma 17: Security of local index instrumentation

Let P a program typable for our strengthened type system i.e.,

∆, κ ⊢@p Γ{P}Γ′

for some κ, Γ, ∆, Γ′ and let P ′ be the program P where all the array accesses are
instrumented according to the rules arr-san and arr-ass i.e., P ′ = IS(P).

We have that the program P ′ is still typable for the same environments i.e.,

∆, κ ⊢@p Γ{P ′}Γ′

Proof. By induction over the syntax of P .

Case 1 (P = skip) By definition of IS, we have that IS(P) = P .
Hence, ∆, κ ⊢@p Γ{P ′}Γ′

Case 2 (P = (x = e)r
g) By definition of IS, we have that IS(P) = (x = ISe(e)).

Moreover, ∆, κ ⊢@p Γ{(x = e)r
g}Γ′ gives us that there exists τ such that

∆, Γ ⊢ e : τ, r

By Lemma 16, we have that ∆, Γ ⊢ IS(e) : τ, r

Hence, ∆, κ ⊢@p Γ{(x = IS(e))r
g}Γ′

Case 3 (P = (t[e1] = e2)r
g) By definition of IS, we have that

IS(P) = t[0 ≤ ISe(e1) ≤ size(t)?ISe(e1):0] = ISe(e2)

117

Security of the transformation

Moreover, ∆, κ ⊢@p Γ{(t[e1] = e2])r
g}Γ′ gives us that there exists τ1, τ2, l1, l2 such that

∆, Γ ⊢ e1 : τ1, l1 ∆, Γ ⊢ e2 : τ2, l2

τ1 = I(l′
1)

τ1 ⊔ τ2 ⊔ (κ ⋉L H) ⊑ ∆(t)

r = l1 ⊔ l2 ⊔ l′
1

By Lemma 16, we have that

∆, Γ ⊢ ISe(e1) : τ1, l1 ∆, Γ ⊢ ISe(e2) : τ2, l2

Furthermore, 0 and size(t) are public values, so

∆, Γ ⊢ 0 ≤ ISe(e1) ≤ size(t)?ISe(e1):0 : τ1, l1

We conclude with the memory write rule.

Case 4 (Other cases) By induction, Lemma 16 and the suitable rule, similarly to
Case 2.

Theorem 15: Security of index instrumentation

Let P a program typable for our strengthened type system i.e.,

∆, κ ⊢@p Γ{P}Γ′

for some κ, Γ, ∆ and ∆′, and P ′ be the program P where all the array accesses within
the p conditional are instrumented according to the rules arr-san and arr-ass
i.e., P ′ = ISp(P).

We have that the program P ′ is still typable for the same environments i.e.,

∆, κ ⊢@p Γ{P ′}Γ′

Proof Outline. By induction over the type derivation of P . Until the instruction is the p

conditional, the ISp transformation is the identity function, so the result is immediate.
In the case of the p conditional, we can conclude by using Lemma 17.

118

Security of the transformation

4.4 Security of if-conversion

The last step of a single iteration of our transformation is the delayed if-conversion,
which should remove the p conditional. Removing a conditional should have an impact
on the typability of the program by allowing the high annotation of the program to be
smaller by one i.e., without the p program point. Unlike previous transformations, this
one uses renaming maps and is composed of multiple distinct steps. Thus, we formulate a
lemma for each of those steps, as well as multiple intermediate results on renaming maps,
just like we did in Chapter 2 when we proved the semantics preservation. For the different
steps of the transformation, the main idea of the proof is that the pre step will introduce
new typing environments taking into account the renaming maps, while the Rnρ

h pass will
pass along these typing environments. Finally, the Nxth transformation ensures that a
typing is preserved even with new renaming maps, and the post statement merges back
the new typing environments into one that would be suitable for the continuation of the
transformation.

4.4.1 Intermediate Results on Renaming Maps

Because we aim to provide guarantees on the renaming operations, we will come to
work with renamed typing environments i.e., typing environments where all the renamings
of a renaming map are typed with the type of the renamed variable. This allows us to
create updated typing environments after assigning to each renaming its renamed variable.
However, future operations are done on these environments, and we need to keep track
of both the previous and the current environments. Contrary to the original execution,
the renamed branch should be typed as if there were no secret conditional as context. To
do so, we devise in Definition 41 an operator which removes a dependence to a program
point p.

Definition 41: Declassifying

↓{p} Γ(x) =
 I(l \ {p}) if Γ(x) = I(l)

Γ(x) otherwise

To keep track of renamings on typing environments, we note ρp(Γ, Γ′) the renaming
of an initial typing environment Γ by a renaming ρ, updated to Γ′, and ignoring the

119

Security of the transformation

program point p, and we define it formally in Definition 42. In particular, note that
ρ(Γ, Γ′)(ρ(x)) = Γ(x) and that if x /∈ Vρ, ρ(Γ, Γ′)(x) = Γ(x).

Definition 42: Renaming a typing environment

ρp(Γi, Γ)(x′) =
 ↓{p} Γ(ρ−1(x)) if x ∈ Vρ

Γi(x) otherwise

We can also update a renaming :

ρp(Γi, Γ)[x 7→↓{p} τ] =
 ρp(Γi, Γ[ρ−1(x) 7→ τ]) if x ∈ Vρ

ρp(Γi[x 7→↓{p} τ], Γ) otherwise

An update can also be taken in a less literal way: if x /∈ Vρ, we can choose a fresh
x′ such that

ρp(Γi, Γ)[x 7→↓{p} τ] = ρ[x′ 7→ x]p(Γi, Γ[x′ 7→ τ]) ∪ Γu

where Γu is the reminder of the renaming i.e., Γu = Γid[ρ(x′) 7→ Γ(x′)]. Note that
when ρ(x′) = x, we can forego Γu.

The main intuition of this definition is that we keep track of non-renamed variables
in the first environment Γ, and the renamed variables are updated in Γ′. Along with the
definition of renaming for an environment, we also define what it means for such a map
to be updated. The intuition is that if we update a renamed environment on a renamed
variable, we can instead update the renaming map. Unfortunately, updating the renaming
map means that we forget about the previous renaming. We introduce the environment
Γu to compensate for that. Still, to ensure the preservation of information on the original
variables, the renamed environment should not differ from the original on non-renamed
variables. At this end, we define the well-formation of a couple of environments w.r.t to
a map ρ in Definition 43.

120

Security of the transformation

Definition 43: Well formation of environments for renaming

We say that Γi and Γ are well-formed with respect to a renaming map ρ (noted
Γi ≡ρ Γ) if for any non-renamed variable x, Γ and Γi type x the same, that is

x /∈ Vρ =⇒ Γi(x) = Γ(x)

In particular, if ρ(e) = e, then e types the same way in Γi and Γ.

However, because the renaming is done on two branches at the same time, we end up
working with two renaming maps at the same time, and thus on an environment twice
renamed. Fortunately, given certain restrictions on the renaming maps, the composition
of renamings on an environment is commutative. One of these restrictions is for the
renaming maps to be negligibly interfering, that is, if both maps have a renaming into a
variable x, both maps rename the same variable into x. This is explicated in Definition 44.

Definition 44: Negligible Interference

Let ρ1 and ρ2 be two renaming maps. We say that ρ1 and ρ2 are negligibly interfering
if for any x such that x ∈ Vρ1 ∧ x ∈ Vρ2 , we have ρ−1

1 (x) = ρ−1
2 (x).

We state in Lemma 18 what composition means for renamings. By assigning a current
environment to each renaming, we can ensure that combining two maps, or more, is done
without loss of information. The constraint of negligible interference ensures that the
order does not matter, while the constraints on Vρ1,2 and Vρ1,2 guarantee that a renaming
cannot be renamed by the other. We say that two renamings following these last two
constraints are compatible.

Lemma 18: Composition of renamings on a typing environment

Let ρ1 and ρ2 be two negligibly interfering maps such that Vρ1 ∩ Vρ2 = ∅ and Vρ2 ∩
Vρ1 = ∅, and Γi, Γ1 and Γ2 be three typing environments. We have, for any p,

ρp
1(ρp

2(Γi, Γ2), Γ1) = ρp
2(ρp

1(Γi, Γ1), Γ2)

Proof Outline. The proof is by case analysis on x ∈ Vρi , i ∈ {1, 2} in the definition of the
renaming of an environment. In some cases, the negligible interference ensures that both

121

Security of the transformation

renamings are equal and that the order of call does not matter. This, along with the fact
that the constraints guarantee that there are no intermediate renamings, applying the
definition in Definition 42 is enough.

For example, if there exists x1 such that ρ1(x1) = x but not such x2 for ρ2, we know
thanks to our constraints that there are no x′

2 such that ρ2(x′
2) = x1, and thus, by

definition, we have
ρp

1(ρp
2(Γ, Γ2), Γ1)(x) =↓{p} Γ1(x1)

ρp
2(ρp

1(Γ, Γ1), Γ2))(x) = ρp
1(Γ, Γ1)(x) =↓{p} Γ1(x1)

Furthermore, we can show that if two renaming maps are created following the method
described in Section 2.1, they follow the constraints detailed above. This is formalized in
Lemma 19.

Lemma 19: Characteristics of initialized maps

Let v, vt and ve be three sets of variables such that ve ⊆ v and vt ⊆ v, and ρt and ρe

be two renaming maps such that

ρt = init(vt, v) ρe = init(ve, v ∪ Vρt)

We have that ρt and ρe are non-interfering and compatible.

Proof Outline. By definition of init, the maps are non-interfering. And, Vρt = vt ⊆ v,
and by definition of init, Vρe ∩ v = ∅, hence Vρt ∩ Vρe = ∅

4.4.2 Intermediate Results on the Initializing Statements

The first step of the delayed if-conversion transformation is the initialization of the
renaming maps used further along the way. As stated in Lemma 19, the maps initialized
by and for the transformation follow the constraints of Lemma 18, and it will be usable
for the transformation. Moreover, we show in Lemma 20 that such maps are sequenceable
using the seq operator into a typable statement, and that the resulting typing environment
is the renaming of the initial environment. The intuition of the proof is that each single
assignment is independent of others (because of the fresh nature of renamings), and thus
can be chained.

122

Security of the transformation

Lemma 20: Security of pre renaming

Let ρ be a fresh renaming map from a set of variable V within a larger set Vp i.e., V ⊆
Vp ∧ρ = init(V, Vp) and s a statement such that s = seq({ρ(x) = x | x ∈ Vρ}). Then,
we have that, for any p /∈ Γ

∆, L ⊢ Γ{s}ρp(Γ, Γ)

for some ∆, Γ.

Proof. We start by noticing that by definition of init, Vρ = V . Then, by induction over
V .

Case 5 (V = ∅) We then have ρ = id and pre = seq(∅) = skip, and, because p /∈ Γ,

∆, κ ⊢ Γ{pre}Γ

Case 6 (V = V ′ ∪ {y}) Because seq defines an arbitrarily chosen sequence, we can
choose to define seq({ρ(x) = x|x ∈ V }) as

seq({ρ(x) = x|x ∈ V ′}); (ρ(y) = y)

We can also define a map ρ′ such that ρ = ρ′[y 7→ ρ(y)].
By induction, we have that

∆, κ ⊢ Γ{seq({ρ(x) = x|x ∈ V ′})}ρ′p(Γ, Γ)

By the sequence rule,

∆, κ ⊢ Γ{pre}ρ′p(Γ, Γ)[ρ(y) 7→ Γ(y)]

Because p /∈ Γ, we have Γ(y) =↓{p} Γ(y), and, by definition, ρ′p(Γ, Γ)[ρ(y) 7→ Γ(y)] =
ρ′[y 7→ ρ(y)]p(Γ, Γ[y 7→ Γ(y)]), thus

∆, κ ⊢ Γ{pre}ρp(Γ, Γ)

123

Security of the transformation

Because we are able to transform one such pre statement, we can look at what happens
when we sequence two of them, as we do in the transformation. We state in Lemma 21
that typing the sequence of two initializing statements for two statements within the same
program yields the renaming of the typing environment by both maps. Because there is
no real added value to keeping twice the original environment, we use Lemma 18 to keep
track of only one.

Lemma 21: Sequence of initializing statements

Let st and se be two branches of the same conditional, that is mod(st) ⊆ v and
mod(se) ⊆ v where v is the overall set of variables of the conditional/program. If we
define ρt and ρe such that ρt = init(mod(st), v) and ρe = init(mod(se), v ∪ Vρt), we
can define two statements pret and pre following prei = seq({ρi(x) = x | x ∈ Vρi}).

Then, for any starting typing environment Γ such that p /∈ Γ, the sequence of
pret; pree is typable, and we have

∆, L ⊢ Γ{pret; pree}ρp
t (ρp

e(Γ, Γ), Γ)

Proof. By Lemma 19, we know that ρt and ρe are non-interfering and compatible. Thus,
they are negligibly interfering as well. By Lemma 20, we have

∆, L ⊢ Γ{pret}ρp
t (Γ, Γ)

∆, L ⊢ ρt(Γ, Γ){pree}ρp
e(ρp

t (Γ, Γ), ρp
t (Γ, Γ))

Furthermore, because ρt and ρe are compatible, we can simplify ρp
e(ρp

t (Γ, Γ), ρp
t (Γ, Γ))

to ρp
e(ρp

t (Γ, Γ), Γ). Indeed, if a variable is a renaming by ρe, the renamed variable cannot
be a renaming by ρt, and the second ρp

t (Γ, Γ)(x) would always yield Γ(x). Thus, by the
sequence rule and Lemma 18,

∆, L ⊢ Γ{pret; pree}ρp
t (ρp

e(Γ, Γ), Γ)

124

Security of the transformation

4.4.3 Intermediate Results on Branch Renaming

The first pass aimed to introduce the renamings that we use throughout the trans-
formation. On the other hand, the Branch Renaming transformation is very local and
impacts only a specific branch of the p conditional. Firstly, we show in Lemma 22 that
given a renaming map over a well-typed statement, any well-typed expressions within this
statement is still typable after renaming. This is nearly immediate from the definition of
a renaming of an environment.

Lemma 22: Expression renaming

Let ρ be a renaming map of a statement containing e, a well-typed expression, i.e.,

var(e) ∩ Vρ = ∅ ∆, Γ ⊢ e : τ, l

for some τ, l

Then, ρ(e) is also well-typed, and we have, for two well-formed environments Γi

and Γ w.r.t ρ such that p /∈ Γi,

∆, ρp(Γi, Γ) ⊢ ρ(e) :↓{p} τ, l

Proof. By induction over the syntax of e

Case 7 (e = x) If x ∈ Vρ, ρ(e) = ρ(x). By definition, ρp(Γi, Γ)(ρ(x)) =↓{p} Γ(x), hence

∆, ρp(Γi, Γ) ⊢ ρ(e) :↓{p} τ, l

Otherwise, ρ(e) = x, and there are no renamings to x, so ρp(Γi, Γ)(x) = Γi(x) = Γ(x)
by well-formation. And, p /∈ Γi, so p /∈ Γ(x), and Γ(x) =↓{p} Γ(x), and

∆, ρp(Γi, Γ) ⊢ ρ(e) :↓{p} τ, l

Case 8 (e = c) By definition, ρ(c) = c, and ↓{p} L = L, hence

∆, ρp(Γi, Γ) ⊢ ρ(e) :↓{p} τ, l

125

Security of the transformation

Case 9 (e = e1 ⊕ e2) By definition, ρ(e) = ρ(e1) ⊕ ρ(e2).
We conclude by induction and the ⊕ rule.

Case 10 (e = e1?e2:e3) By definition, ρ(e) = ρ(e1)?ρ(e2):ρ(e3).
We conclude by induction and rule for the conditional expression

Case 11 (e = t[e1]) By definition, ρ(e) = t[ρ(e1)].
We conclude by induction and the memory read rule.

For statements, we show in Lemma 23 that if a branch s is typable using Γ and Γ′,
its renaming by a renaming map ρ is still typable using ρp(Γi, Γ) and ρp(Γi, Γ′) if Γi is
not dependent on any conditional of s, and that if the couple (Γi, Γ) is well-formed for a
renaming, the same goes for (Γi, Γ′). This is done by induction over the statement s. Most
cases are trivial by induction hypothesis. But, the memory write relies on the intuition
that because the write was being done within a high conditional, the array is H anyway,
and augmenting its type should not have any impact.

Lemma 23: Security of branch renaming

Let ρ be a renaming map on the set of variables of a well-typed s statement i.e.,

Vρ = mod(s) ∆, κ ⊢@p Γ{s}Γ′

with some ∆, κ, Γ and Γ′.
If p ∈ κ, p /∈ s, ρ(h) = h, p /∈ Γi, ∀p′ ∈ high(s), p′ /∈ Γi, and Γi ≡ρ Γ, we define

κp =↓{p} κ, and we have :

∆, κp ⊢ ρp(Γi, Γ){Rnρ
h(s)}ρp(Γi, Γ′) Γi ≡ρ Γ′

Proof. By induction over the type derivation.

Case 12 (P = skip) By definition of Rnρ
h, we have that P ′ = Rnρ

h(P) = P .
Furthermore, by the skip rule, ∆, κp ⊢ Γ{skip}Γ, and ∆, κp ⊢ ρp(Γi, Γ){skip}ρp(Γi, Γ)

Case 13 (P = (x = e)r
g) By definition of Rnρ

h, we have that P ′ = Rnρ
h(P) = (ρ(x) =

ρ(e)).

126

Security of the transformation

Moreover, ∆, κ ⊢@p Γ{(x = e)r
g}Γ′ gives us that there exists τ such that

∆, Γ ⊢ e : τ, r Γ′ = Γ[x 7→ τ ⊔ κ]

By Lemma 22, we have that

∆, ρp(Γi, Γ) ⊢ ρ(e) :↓{p} τ, r

Hence, by the assignment rule, we have

∆, κp ⊢ ρp(Γi, Γ){ρ(x) = ρ(e)}ρp(Γi, Γ)[ρ(x) 7→ (↓{p} τ) ⊔ κp]

The definition of κp gives us (↓{p} τ) ⊔ κp =↓{p} (τ ⊔ κ), and by definition of ρp(Γi, Γ),
we can rewrite this as

∆, κp ⊢ ρp(Γi, Γ){ρ(x) = ρ(e)}ρp(Γi, Γ[x 7→ τ ⊔ κ])

And,
∆, κp ⊢ ρp(Γi, Γ){ρ(x) = ρ(e)}ρp(Γi, Γ′)

Furthermore, the only difference between Γ′ and Γ is on a single variable x ∈ Vρ, so
Γi and Γ′ are well-formed w.r.t to ρ.

Case 14 (P = (t[e1] = e2)r
g) By definition of Rnρ

h, we have that P ′ = Rnρ
h(P) =

(t[ρ(e1)] = h?ρ(e2):t[ρ(e1)])
Moreover, ∆, κ ⊢@p Γ{(t[e1] = e2)r

g}Γ′ gives us that there exists τ1, τ2, l1, l2 such that

∆, Γ ⊢ e1 : τ1, l1 ∆, Γ ⊢ e2 : τ2, l2

τ1 ⊔ τ2 ⊔ (κ ⋉L H) ⊑ ∆(t)

τ1 = I(l′
1) r = l1 ∪ l′

1 ∪ l2

Γ′ = Γ

Because κ ̸= L, we have κ ⋉L H = H, hence

H ⊑ ∆(t)

127

Security of the transformation

By Lemma 22, we have that

∆, ρp(Γi, Γ) ⊢ ρ(e1) :↓{p} τ1, l1

∆, ρp(Γi, Γ) ⊢ ρ(e2) :↓{p} τ2, l2

And, by the rule for a conditional expression,

∆, ρp(Γi, Γ) ⊢ h?ρ(e2):t[ρ(e1)] : Γ(h)⊔ ↓{p} τ1⊔ ↓{p} τ2, l1 ∪ l2

By definition of ⊑, Γ(h)⊔ ↓{p} τ1⊔ ↓{p} τ2 ⊑ H, thus

Γ(h)⊔ ↓{p} τ1⊔ ↓{p} τ2 ⊑ ∆(t)

By the array assignment rule,

∆, κp ⊢ ρp(Γi, Γ){(t[ρ(e1)] = h?ρ(e2):t[ρ(e1)])l
g}ρp(Γi, Γ′)

And, Γ′ = Γ, so the well-formation is preserved

Case 15 (P = (s1; s2)r
g) By definition of Rnρ

h, we have that P ′ = Rnρ
h(P) = Rnρ

h(s1); Rnρ
h(s2).

Moreover, ∆, κ ⊢@p Γ{(s1; s2)r
g}Γ′ gives us that there exists Γ1, g1, g2, r1, r2 such that

∆, κ ⊢@p Γ{(s1)r1
g1}Γ1

∆, κ ⊢@p Γ1{(s2)r2
g2}Γ′

r = r1 ∪ r2 ∧ g = g1 ∪ g2

By induction, we have that

∆, κp ⊢ ρp(Γi, Γ){(Rnρ
hs1)r1

g1}ρp(Γi, Γ1)

∆, κp ⊢ ρp(Γi, Γ1){(Rnρ
hs1)r1

g1}ρp(Γi, Γ′)

We conclude by the sequence rule.

Case 16 (P = ifp′
h′ then st else se with p′ ̸= p) By definition of Rnρ

h, we have that
P ′ = Rnρ

h(P) = ifp′
ρ(h′) then Rnρ

h(st) else Rnρ
h(se)

128

Security of the transformation

Moreover, ∆, κ ⊢@p Γ{ifp′
h′ then st else se}Γ′ give us that there exists τc, rc, κ′, Γ3, rt, gt, re, ge

such that
∆, Γ ⊢ c : τ, rc

κ′ = κ ⊔ (τ ⋉L I({p′}))

∆, κ ⊢@p Γ{(st)rt
gt

}Γ1 ∆, κ ⊢@p Γ{(se)re
ge

}Γ2

∆, κ ⊢@p Γ1 ⊔ Γ2{skip}Γ′

r = rt ∪ re ∪ rc

g = gt ∪ ge ∪ τ ⋉L {p′}

By induction,
∆, κ′

p ⊢ ρp(Γi, Γ){(Rnρ
h(st))rt

gt
}ρ(Γi, Γ1)

∆, κ′
p ⊢ ρp(Γi, Γ){(Rnρ

h(st))rt
gt

}ρ(Γi, Γ2)

By Lemma 22,
∆, ρp(Γi, Γ) ⊢ ρ(c) :↓{p} τ, r

By the skip rule, we have that Γ1 ⊔Γ2 = Γ′, and ρp(Γi, Γ1)⊔ρp(Γi, Γ2) = ρp(Γi, Γ1 ⊔Γ2).
And, because both couples (Γi, Γ1) and (Γi, Γ2) are well-formed, the union is well-formed.

Note that because we use ↓{p} τ instead of τ , we need to type Rnρ
h(s) with a κ′′

p ⊑ κ′
p.

By the same reasoning, the high annotation of P may be stricter than its original one.
Nonetheless, we are able to conclude by the if rule.

Case 17 (P = (for i from c1 to c2 do s)r
g) By definition of Rnρ

h, we have that
P ′ = Rnρ

h(P) = for ρ(i) from c1 to c2 do Rnρ
h(s)

Moreover, ∆, κ ⊢@p Γ{for i from c1 to c2 do s}Γ′ gives us that there exists Γ1 such
that

∆, κ ⊢@p Γ′[i 7→ κ]{(s)r
g}Γ1

Γ ⊑ Γ1 Γ1 ⊑ Γ′ ↑high(s) Γ′ = Γ′

By definition, ρp(Γi, Γ′)[i 7→ κp] = ρp(Γi, Γ′[i 7→ κ]), and, by induction,

∆, κp ⊢ ρp(Γi, Γ′[i 7→ κ]){Rnρ
h(s)}ρp(Γ′, Γ1)

And, ρp(Γi, Γ) ⊑ ρp(Γi, Γ′), ρp(Γi, Γ1) ⊑ ρp(Γi, Γ′) by monotony of ρp(), and ↑high(s)

129

Security of the transformation

ρp(Γi, Γ′) = ρp(Γi, Γ′) because ↑high(s) Γ′ = Γ′, and ∀p′ ∈ high(s), p′ /∈ Γi.
We conclude by the for rule.

In the final transformation, we transform the two branches then and else. Thus, we
need to be able to type the sequence of the two renamed statements. We state exactly
this in Lemma 24, and prove it by using twice Lemma 23, and Lemma 18 to switch the
order of the maps.

Lemma 24: Sequence of branch renamings

Let st, se be two statements within a program containing all variables in v, and ρt, ρe

be two renaming maps such that ρt = init(mod(st), v) and ρe = init(mod(se), v∪Vρt).
For any variable h, if st and se are typable for a typing environment Γ to environments
Γ1, Γ2, the sequence of renamings Rnρt

h (st); Rnρe

¬h(se) is typable by the renaming of Γ
by ρt and ρe, that is

∆, κ ⊢ ρp
t (ρp

e(Γ, Γ), Γ){Rnρt

h (st); Rnρe

¬h(se)}ρp
t (ρp

e(Γ, Γ′), Γ′)

Proof. By Lemma 23, we have that ∆, κ ⊢ ρp
t (ρp

e(Γ, Γ), Γ){Rnρt

h (st)}ρp
t (ρp

e(Γ, Γ), Γ1)
By Lemma 19, ρt and ρe are compatible and negligibly interfering, so we apply

Lemma 18 to get ρp
t (ρp

e(Γ, Γ), Γ1) = ρp
e(ρp

t (Γ, Γ1), Γ)
By Lemma 23, we have ∆, κ ⊢ ρp

e(ρp
t (Γ, Γ1), Γ){Rnρe

h (se}ρp
e(ρp

t (Γ, Γ1), Γ2)
We conclude by Lemma 19, and the sequence rule.

4.4.4 Intermediate results on Nxth

The Nxth transformation is the trickier one of them. Indeed, we track two renaming
maps to simulate the execution of both branches. However, as we stated in Section 2.4,
we associate the relation between the two maps, and the typing environment. We define
in Definition 45 a property binding two renaming maps, a typing environment, and a
program point p so that the maps agree on a variable if and only if this variable is not
dependent on x in Γ. This well-formation property will serve as a guide throughout the
proof.

130

Security of the transformation

Definition 45: Well-formation of environment for renamings

A typing environment Γ is well-formed with respect to a program point p and two
renaming maps ρ1 and ρ2 (written ρ1 ≡p

Γ ρ2)
if the following holds

∀x, ρ1(x) = ρ2(x) ↔ p /∈ Γ(x)

The renaming of the next branch uses two main operations on maps to allow the use
of two simultaneous renaming maps: the phi-merging ϕ, and the join ⋊⋉. The phi-merging
aims to readjust a renaming to another one. We state in Lemma 25 that for two well-
defined maps w.r.t to an initial environment, the phi-merging of those maps does exactly
that. Because ϕ uses the seq operator, the proof is similar to the one of Lemma 20, by
applying the definition of an update on each assignment.

Lemma 25: ϕ-typing

Let ρ1 and ρ2 be two renaming maps, such that Γi and Γ are well-formed with respect
to them, such that Vρ2 ⊆ Vρ1 . The sequence of statements represented by ϕ(ρ1, ρ2)
is typable, that is

Γi ≡ρ1 Γ ∧ Γi ≡ρ2 Γ =⇒ ∆, κ ⊢ ρp
2(Γi, Γ){ϕ(ρ1, ρ2)}ρp

1(Γi, Γ) ∪ Γu

for some ∆, κ, and Γ, and where Γu is a memory of retyped renamings of ρ2 over Γ.

Proof. The proof is by induction over the set Vρ1 .
If Vρ1 , then ρ1 = ρ2 = id, and ϕ(ρ1, ρ2) = skip. Hence, ∆, κ ⊢ id(Γi, Γ){skip}id(Γi, Γ).
Otherwise, there is a x, x1, and ρ′

1 such that ρ1 = ρ′
1[x 7→ x1]. There are then two cases:

either x is renamed by ρ2 or not. If x ∈ Vρ2 , there exists x2 and ρ′
2 such that ρ2 = ρ′

2[x 7→
x2]. And, we can choose how ϕ works such that ϕ(ρ1, ρ2) = ϕ(ρ′

1, ρ′
2); (ρ1(x) = ρ2(x)). We

conclude by induction hypothesis and the sequence rule. However, if x is not renamed
by y, we have ϕ(ρ1, ρ2) = ϕ(ρ′

1, ρ2); (ρ1(x) = x). Similarly, we conclude by the induction
hypothesis and the sequence rule (thanks to Γi ≡ρ2 Γ). In both cases, the definition of
an update to a renaming of an environment is what introduces the reminder environment
Γu.

The second operation (⋊⋉) is more of a union between two maps: it keeps common

131

Security of the transformation

renamings, and generates fresh ones to avoid conflicts. Thus, Lemma 26 guarantees that
any interesting property shared by two maps, the join of them possesses it too. The proof
is immediate by developing the definition of ⋊⋉ within the definition of the property.

Lemma 26: Property preservation by ⋊⋉

Let ρ1 and ρ2 be two renaming maps. If any of the following properties is shared by
ρ1 and ρ2, it affects ρ1 ⋊⋉ ρ2 too :

— Negligible interference with another renaming

— Compatibility with another renaming

— Well-formation w.r.t one environment, one renaming, and one program point

Proof Outline. The proof for each property is done by developing the definition of ⋊⋉.
The introduction of fresh variables ensures that no renaming of those names are already
present within the system.

For example, if we look at the negligible interference, we would define a map ρ3 such
that ρ1 and ρ3, as well as ρ2 and ρ3 are negligibly interfering. Then, if we take a x ∈ Vρ1⋊⋉ρ2 ,
either x ∈ Vρ1 , x ∈ Vρ2 or x /∈ Vρ3 . The last case is immediate, while the others use the
negligible interference of ρ1 (or ρ2) and ρ3 to conclude.

As we have seen earlier when defining the update to a renaming of an environment,
updating a map renaming an environment hides the previous renaming. To ensure that
the types of these renamings are not forgotten, we usually add a reminder environment Γu.
By its definition, this Γu should not type any name used by the program or its renamings,
and we say that the environment is harmless. We define precisely what harmlessness
means in Definition 46.

Definition 46: Harmless environment

We say that an environment Γ is harmless to a renaming map ρ if, for any x, we have
Γ(x) = L or x /∈ Vρ ∪ Vρ.

Similarly, an environment Γ is harmless to a statement s if, for any x, we have
Γ(x) = L or x /∈ var(s).

By tracking two maps at once, and especially by using a typing environment twice
renamed, it is hard to apply updates uniformly. Indeed, updating a twice-renamed envi-
ronment usually only affects the surface-level map, not the hidden one. The main reason

132

Security of the transformation

is that these updates have no effects on the second map: the updated value is always
caught by the first. Hence, we state in Lemmas 27 and 28 that we can, if we wish, ap-
ply those updates for free to the second map, given certain restrictions, mainly that the
updated variable is a renaming of or is renamed by the first map.

Lemma 27: Hidden Renaming

Let ρ1 and ρ2 be two compatible renamings. Then,

∀x, x′, x ∈ Vρ1 =⇒ ρp
1(ρp

2(Γi, Γ), Γ) = ρp
1(ρ2[x′ 7→ x]p(Γi, Γ[x′ 7→ Γ(x′)]), Γ)

Proof Outline. By case analysis. If we look at a renaming of ρ1, then by compatibility,
the renamed variable is not a renaming of ρ2 nor ρ2[x′ 7→ x] (the renamed variable cannot
be equal to x, which is a renaming). Thus, the two expressions are equivalent. Otherwise,
the variable is not a renaming of ρ1, so not x, and the update on ρ2 can be ignored.

Lemma 28: Hidden Retyping

Let ρ1 and ρ2 be two compatible renamings. Then,

∀x, τ, x ∈ Vρ1 =⇒ ρp
1(ρp

2(Γi, Γ), Γ′) = ρp
1(ρp

2(Γi, Γ[x′ 7→ τ]), Γ′)

Proof Outline. Similarly to Lemma 27, thanks to the compatibility of the renamings, we
never access Γ[x′ 7→ τ](x′).

Finally, we can express the security of the next transformation: given two maps and
a statement, the renaming of this statement by those two maps is typable. In practice,
the lemma requires and ensures some properties on the maps or the typing environments,
but the lemma really boils down to this: the renaming is typable. To prove it, we reason
by induction over the statement. The base cases are solved by clever use of the definition
of a renaming, and Lemma 22 (on expression renaming). The complex cases make use of
the Lemmas 25 and 26 to ensure that the created maps are well-defined.

133

Security of the transformation

Lemma 29: Security of the next transformation

Let ρt, ρe be two negligibly interfering compatible renaming maps, P be a typable
next branch, and Γi an environment i.e.,

∆, L ⊢@p Γ{P}Γ′ high(P) = ∅

for some ∆, p, Γ and Γ′ such that ρt ≡p
Γ ρe, Γi ≡ρt Γ, Γi ≡ρe Γ and Nxtρt,ρe

h (P) =
(ρ′

t, ρ′
e, P ′).

For any Γu harmless to ρt, ρe and s, there exists a Γ′
u such that

— ρ′
t and ρ′

e are negligibly interfering and compatible

— ∆, L ⊢ ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu{P ′}ρ′p
t (ρ′p

e (Γi, Γ′), Γ′) ∪ Γ′
u

— ρ′
t ≡p

Γ′ ρ′
e

— Γi ≡ρ′
t

Γ′ and Γi ≡ρ′
e

Γ′

— Γ′
u is harmless to ρ′

t and ρ′
e

Proof. For simplicity’s sake, we name H0 the fact that the maps are negligibly interfering
and compatible, H1 the hypothesis ∆, L ⊢@p Γ{P}Γ′, H2 the hypothesis ρt ≡ρ

Γ ρe, H3 and
H4 the well-formation of ρt and ρe w.r.t to Γi, and H5 the harmlessness of Γu. Similarly,
we name Ri the corresponding result for each of the hypotheses.

The proof is by induction over the typing derivation.

Case 18 (P = skip) Because Nxtρt,ρe

h (skip) = (ρt, ρe, skip), most of the results are
immediate. Moreover, H1 gives us that Γ′ = Γ, and R1 follows, by taking Γ′

u = Γu.

Case 19 (P = (x = v)) We have two cases here :

— If ρt(v) = ρe(v), then Nxtρt,ρe

h (x = v) = (ρt[x 7→ x′], ρe[x 7→ x′], (x′ = ρt(v)).

We prove R0 by choosing a y ∈ Vρ′
t
. Either y ∈ Vρt or y = x′. In the first case,

H0 gives us that if y ∈ Vρe , and we conclude. In the other case, we know that
ρ′

e(x′) = x. Moreover, x′ is, by definition, not renamed by ρ′
t and ρ′

e, and ρt and ρe

being compatible, ρ′
t and ρ′

e are too.

The typing of H1 gives us that ∆, Γ ⊢ v : τ, l, and Γ′ = Γ[x 7→ τ]. By Lemma 22, we
have ∆, ρp

t (ρp
e(Γi, Γ), Γ) ⊢ ρt(v) :↓{p} τ, l. Hence, per the typing rule of assignment,

134

Security of the transformation

and because Γu is harmless :

∆, κ ⊢ ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu{x′ = ρt(v)}ρp
t (ρp

e(Γi, Γ), Γ)[x′ 7→↓{p} τ] ∪ Γu

And, by definition, ρp
t (ρp

e(Γi, Γ), Γ)[x′ 7→↓{p} τ] = ρ′p
t (ρp

e(Γi, Γ), Γ[x 7→ τ])∪Γid[ρt(x) 7→
Γ(x)]. By Lemmas 27, 28, we can introduce the renaming of x′ and retyping of x

within the renaming of ρe, that is ρ′p
t (ρ′p

e (Γi, Γ′), Γ′)∪Γid[ρt(x) 7→ Γ(x)]. By defining
Γ′

u = Γu ∪ Γid[ρt(x) 7→ Γ(x)], that proves R1. Furthermore, if ρ(x) = x, we can
redefine Γ′

u = Γu without any loss of precision, and otherwise, ρ(x) is not used in ρ′
t

nor ρ′
e, nor in the program, proving R5.

Because ρ′
t (resp. ρ′

e) is simply an update on ρt (resp. ρ′
e), we have, for any y, that

ρ′
t(y) = ρ′

e(y) if and only if ρt(y) = ρe(y) or y = x. In the first case, H2 is enough to
prove R2, by definition of Γ′, while in the second, ρt(v) = ρe(v) ensures that p /∈ τ ,
and, by definition of Γ′, we prove R2.

Moreover, ρ′
t renames more than ρt, so choosing a y /∈ Vρ′

t amounts to choosing a
y /∈ Vρt , and H3 directly implies R3. We do the same for ρe.

— Otherwise, ρt(v) ̸= ρe(v), and Nxtρt,ρe

h (x = v) = (ρt[x 7→ xt], ρe[x 7→ xe], (xt =
ρt(v), xe = ρe(v)).

We prove R0 by choosing two yt, ye in Vρ′
t
, Vρ′

e
. For each yi, either y ∈ Vρi

, or yi = xi.
If one is a past renaming and the current is new, we have yt ̸= ye. Otherwise, if the
two are past renamings, H0 gives us either xt ̸= ye or ρ′

t(yt) = ρ′
e(ye). Finally, if the

two are the two renamings, we have by definition of xt and xe, yt ̸= ye. Similarly to
the previous case, we show the compatibility of the two new maps by looking at the
new renamings: they are fresh variables, not renamed themselves. From the same
reasoning, ρ′

t and ρe are compatible too.

The typing of H1 gives us that ∆, Γ ⊢ v : τ, l, and Γ′ = Γ[x 7→ τ]. By Lemma 22,
we have ∆, ρp

t (ρp
e(Γi, Γ), Γ) ⊢ ρt(v) :↓{p} τ, l. By the typing rule of assignment and

by H5,

∆, κ ⊢ ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu{xt = ρt(v)}ρp
t (ρp

e(Γi, Γ), Γ)[xt 7→↓{p} τ] ∪ Γu

And, xt = ρ′
t(x), thus ρp

t (ρp
e(Γi, Γ), Γ)[x 7→ τ] = ρ′p

t (ρp
e(Γi, Γ), Γ[xt 7→ τ])∪Γid[ρt(x) 7→

Γ(x)] = ρ′p
t (ρp

e(Γi, Γ), Γ′)∪Γid[ρt(x) 7→ Γ(x)]. We define Γ′
u1 = Γu∪Γid[ρt(x) 7→ Γ(x)],

which is harmless, by the same argument as in the previous case. By Lemma 18,

135

Security of the transformation

we have

∆, κ ⊢ ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu{xt = ρt(v)}ρp
e(ρ′p

t (Γi, Γ′), Γ) ∪ Γ′
u1

Following the same logic, we show

∆, κ ⊢ ρp
e(ρ′p

t (Γi, Γ′), Γ)∪Γ′
u1{xe = ρe(v)}ρ′p

t (ρ′p
e (Γi, Γ′), Γ′)∪Γ′

u1 ∪Γid[ρe(x) 7→ Γ(x)]

We prove R1 with the sequence rule, and R5 by the same arguments as in the
previous case i.e., either ρe(x) = x or not, and in the first case, the reminder
renaming can be ignored, while in the second, the renaming is not used anywhere.
Because ρ′

t (resp. ρ′
e) is simply an update on ρt (resp. ρ′

e), we have, for any y, that
ρ′

t(y) = ρ′
e(y) if and only if ρt(y) = ρe(y), because xt ̸= xe. Then H2 proves R2.

Moreover, ρ′
t renames more than ρt, so choosing a y /∈ Vρ′

t amounts to choosing a
y /∈ Vρt , and H3 directly implies R3. We do the same for ρe to prove R4.

Case 20 (P = t[e1] = e2) Here too, the case is itself divided in two cases. However, in
both cases, we have ρ′

t = ρt, ρ′
e = ρe, and Γ′ = Γ. Thus, the proofs of R0, R2, R3, and R4

are free.

— If ρt(e1) = ρe(e1) and ρt(e2) = ρe(t2), then P ′ = t[ρt(e1)] = ρt(e2).
The typing of H1 gives us that ∆, Γ ⊢ e1 : τ1, r1, ∆, Γ ⊢ e2 : τ2, r2, and τ1 ⊔τ2 ⊑ ∆(t)
(κ being L). By Lemma 22, we have

∆, ρp
t (ρp

e(Γi, Γ), Γ) ⊢ ρt(e1) :↓{p} τ1, r1

∆, ρp
t (ρp

e(Γi, Γ), Γ) ⊢ ρt(e2) :↓{p} τ2, r2

We conclude by the typing rule for memory update. Thus, Γ′
u = Γu, and that proves

R5.

— Otherwise, ρt(e1) ̸= ρt(e1) or ρt(e2) ̸= ρe(e2), and P ′ = t[ρt(e1)] = h?ρt(e2):t[ρt(e1)];
t[ρe(e1)] =!h?ρe(e2):t[ρe(e1)];

Similarly to the previous case, the typing of H1 gives us that ∆, Γ ⊢ e1 : τ1, r1,
∆, Γ ⊢ e2 : τ2, r2, τ1 = I(l) and τ1 ⊔ τ2 ⊑ ∆(t) (κ being L). By Lemma 22, we have

∆, ρp
t (ρp

e(Γi, Γ), Γ) ⊢ ρt(e1) :↓{p} τ1, r1

136

Security of the transformation

∆, ρp
t (ρp

e(Γi, Γ), Γ) ⊢ ρt(e2) :↓{p} τ2, r2

Furthermore, the fact that the renamings yield different values either for e1 or e2

means that there is a variable x ∈ (e1 ∪ e2) such that ρt(x) ̸= ρt(x). By H2, we
have that p ∈ Γ(x). Hence, the typing of H1 gives us that I({p}) ⊑ ∆(t), that is
∆(t) = H.
By the rule for conditional selection and H5, we have that

∆, ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu ⊢ h?ρt(e2):t[ρt(e1)] :↓{p} τ, r2 ∪ r1 ∪ (l \ {p})

We conclude by the typing rule for memory update.

Case 21 (P = s1; s2) The typing of H1 gives us that there exists a Γ1 such that

∆, L ⊢@p Γ{s1}Γ1

∆, L ⊢@p Γ1{s2}Γ′

And we conclude by using twice the induction hypothesis. To show that the Γ′
u1 generated

is harmless to s2, we know that all replaced variables are renamings of ρt i.e., fresh
variables w.r.t the program, and in particular s2. Thus, retyping those fresh variables is
harmless.

Case 22 (P = ifp′
h′ then s1 else s2) The typing of H1 gives us that ∆, Γ ⊢ h′ : τ, rc,

κ′ = τ ⋉L I({p}), as well as

∆, κ′ ⊢@p Γ{s1}Γ1 ∆, κ′ ⊢@p Γ{s2}Γ2

with Γ1, Γ2 such that Γ1 ⊔ Γ2 = Γ′.
More over, high(P) = ∅, so τ ⋉∅ {p} = ∅, and τ = L. Therefore, κ′ = L, and we use

the induction hypothesis on s1 and s2 along with the harmlessness of Γu to get :

∆, L ⊢ ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu{s′
1}ρ1p

t (ρ1p
e (Γi, Γ1), Γ1) ∪ Γ′

u1

∆, L ⊢ ρp
t (ρp

e(Γi, Γ), Γ) ∪ Γu{s′
2}ρ2p

t (ρ2p
e (Γi, Γ2), Γ2) ∪ Γ′

u2

The induction gives us all the required properties on ρ1,2
t,e , that we pass on to ˙ρt,e thanks

to Lemma 26, thus proving R0, R2, R3, and R4.

137

Security of the transformation

To prove R1, we use Lemma 25 to ensure that the renaming to Γ1 and Γ2 are the
same in each environment. This introduces new reminder environments, that we show are
harmless per the freshness of the renamings we use. And, by the sequence rule, and the
if rule, we conclude.

Case 23 (P = for x from c1 to c2 do s) To prove R0, if a variable x is a renaming of
ρ′

t and ρ′
e, it is either a renaming of ρt and ρe, or a fresh variable. In the first case, H0 is

enough. Otherwise, we cannot have the same fresh variable be a renaming of both ρ′
t and

ρ′
e, by definition. Thus, ρ′

t and ρ′
e are negligibly interfering. Moreover, a fresh variable

cannot be an already renamed variable, and by the same logic as above, ρ′
t and ρ′

e are
compatible.

Furthermore, by using the same kind of logic about fresh variables, and noticing that
ρ′

t and ρ′
e differ from their initial counterpart on variables modified by s only, we show

similarly R1, R2, and R3, because we can choose a type derivation such that Γ′ differ from
Γ on the modified variables only.

Then, by induction hypothesis, Lemma 25, the sequence rule, and the for rule, we can
conclude.

4.4.5 Merging branches

The last step of the delayed if-conversion is to merge back the two simultaneous exe-
cutions by using a post statement. However, in this post statement, the choice between
the two maps as to which value to keep is done by using a conditional expression on
the condition guard h. Thus, we transform the indirect flow from h originally present
to a direct flow. This intuition is clarified in Definition 47 by defining the quasi-classify
operator, which removes p from the typing of a variable, and adds that of h instead, if the
typing contains p i.e., if the variable is indirectly secret from h in the original program.

Definition 47: Quasi-classify

↑h
{p} Γ(x) =

 Γ(x) if p /∈ Γ(x)
↓{p} Γ(x) ∪ Γ(h) otherwise

Once this quasi-classify operator is defined, we say in Lemma 30 that given a twice
renamed typing environment, the post statement yields the quasi-classifying of said envi-
ronment. Indeed, we only introduce the direct flow from h if the variable is dependent on

138

Security of the transformation

p, just as in Definition 47. We prove this by induction over the set of renamed variables,
and by verifying that updating using every single assignment of the post statement is
equivalent to applying the typing operator.

Lemma 30: Merging renaming maps

Let ρt and ρe be two renaming maps and Γi, Γ be two environments such that
ρt ≡p

Γ ρe, Γi ≡ρt Γ and Γi ≡ρe Γ, p /∈ Γi. Then, for any h such that Γ(h) ̸= L, the
merging of ρt and ρe defined by :

post = seq({x =
 ρt(x) if ρt(x) = ρe(x)

h?ρt(x):ρe(x) otherwise

∣∣∣∣∣∣ x ∈ Vρt ∪ Vρe})

is typable, that is
∆, κ ⊢ ρp

t (ρp
e(Γi, Γ), Γ){post} ↑h

{p} Γ

Proof. By induction over the set V = Vρt ∪ Vρe .

Case 24 (V = ∅) If the renaming maps don’t have a single renamed variable, that means
that ρt = ρe = id. And, for any x, by well-formation of Γi and Γ w.r.t ρt, Γi(x) = Γ(x),
and Γi = Γ. Thus, ρp

t (ρp
e(Γi, Γ), Γ) = Γ . By definition, we also have post = skip, and

∆, κ ⊢ Γ{skip}Γ

Moreover, for any x, by well-formation of Γ w.r.t ρt and ρe, we have that x /∈ Γ(x),
and ↑h

{p} Γ = Γ.

Case 25 (V = V ′ ∪ x) We have three cases, either x is a variable renamed by ρt or ρe,
or both.

We first look at the case where x is renamed by both maps. We can have either
ρt(x) = ρe(x) or not. If the equality is true, the induction hypothesis gives us the well-
typing for the merging of V ′, and by well-formation of Γ w.r.t ρt, and ρe, we know
that p /∈ Γ(x), and we conclude by assignment rule, and Definition 47. However, if the
renamings are different, we assign a conditional expression to x, which is then typed
to Γ(h)⊔ ↓Γ(x) ⊔ ↓Γ(x)=↑h

{p} Γ(x). We conclude by the induction hypothesis, and the
assignment rule.

If only one map renames the variable, the logic is the same, with the difference that
we use Γi(x) instead of Γ(x). We conclude by well-formation of Γi.

139

Security of the transformation

4.4.6 Security of the delayed if-conversion

The delayed if-conversion is peculiar in the way that it is trivial for most cases. Only
if we look at the p conditional is the transformation complex, using all the steps shown
above. In any case, we show in Theorem 16 that if a program P is typable using our
strengthened type system on a program point p, we can remove the p conditional, and still
type using our main type system. Moreover, by removing this conditional, we effectively
decrease the number of conditions (represented by the cardinality of the annotation high)
by at least one. We prove this by using all the Lemmas proved earlier, and the sequence
rule to show that we can chain the yield of each transformation.

Theorem 16: Security of the delayed if-conversion

Let P be a program, p a program point, and Γ a typing environment such that p /∈ Γ,
and P is well-typed using Γ i.e.,

∆, κ ⊢@p Γ{P}Γ′

Then, the transformation P ′ of P by the delayed if-conversion is also well-typed, and
we have high(P ′) ⊂ high(P)i.e.,

∆, L ⊢ Γ{DICVP
p (P ′)}Γ′′ ∪ Γu

with Γ′′ ⊑ Γ′ and Γu a harmless reminder environment.

Proof. By induction over the type derivation. For most cases, this is either immediate or
directly from the induction hypothesis. For the sequence, the argument is that because
Γ′′ ⊑ Γ′, we can retype the second statement using this environment. We can also ignore
Γu thanks to its harmlessness. For the for loop, we ensure that p /∈ Γ thanks to the
classify within the typing rule.

The main case is for the p conditional. We prove that the renaming maps ρt and ρe

follow our constraints using Lemma 19. We also prove that pret; pree; Rnρt

h (st); Rnρe

¬h(se) is
well-typed using Lemmas 21, 24 and the sequence rule. We conclude by using Lemma 29,
as well as Lemma 30 and the sequence rule, using the harmlessness of the reminder
environment. Moreover, the quasi-classifying of Γ is laxer than the classifying of Γ. Due

140

Security of the transformation

to the removal of the conditional, the high annotation can be updated, and we can remove
the p program point.

4.5 Overall transformation and conclusion

Our proposed transformation consists of iterating the array-traversal transformation
to ensure that any program types, to then iterate on applying all our subsequent trans-
formations until there is no conditional left. We expressed at the start of this chapter the
Theorem 13 which states that given a set of public variables L and an according environ-
ment, applying this transformation will yield a constant-time program w.r.t this set L.
We prove this by using the Lemmas describing the behavior of a statement transformed
by array-traversal to ensure that any program is typing. Then, we use the Theorems
proved in this chapter to gradually reduce the number of secret conditionals, up until the
point where we can use Theorem 12 to conclude.

Reminder 2: Theorem 13

Given a program P and two simple typing environments Γ and ∆, by defining L the
set of public variables in Γ and ∆, then the program resulting of our transformation
on P is constant-time w.r.t L, that is :

L = {x|Γ(x) ⊔ ∆(x) = L} =⇒ CT (FCTTΓ,∆(P), L)

Proof Outline. We know by Lemma 10 that for any Γ, ∆, a program without array accesses
is typable. Therefore, there is a minimal set of array accesses for which a program is
typable (even if this set can be empty). We proved in Lemmas 11, 12 that transforming
an array access with the array traversal method yields a typable statement. Hence, by
replacing all memory accesses not within said set by their transformation with array
traversal, we obtain a typable program ATΓ,∆. Then, while high(P) ̸= ∅, there is a
p ∈ high(P) such that ROp(P). By chaining Theorems 14, 15 and 16, we are able to
show that T (P) = DICVP

p (IS(SIp(P))) types, and that |high(T (P))| < |high(P)|. Thus,
the cardinality of the annotation being a natural number, by iterating, we end up with
a P such that high(P) = ∅, and we end the transformation. Because high(P) = ∅, it is
easy to show that leak(P) = ∅, and we conclude by Theorem 12.

In addition to the proofs in this thesis, the proofs for Theorem 12, Theorem 14 and

141

Security of the transformation

Theorem 15 have been mechanized in Coq and can be found here 2

2. https://github.com/frosqh/ctt_proofs

142

https://github.com/frosqh/ctt_proofs

Chapter 5

EXPERIMENTATION AND EVALUATION

We have implemented and tested our constant-time enforcement transformation as a
pass in the Jasmin compiler [Alm+17; Alm+20].

5.1 Implementation

The Jasmin compiler is written in a mix of Caml and Coq, with the compilation
passes in Coq, and oracles and helper functions in Caml. Thus, implementing our trans-
formation amounts to around 4 KLOC in the Gallina language of the Coq proof as-
sistant, along with some util functions in Caml. This development can be found at
https://github.com/frosqh/ctt_jasmin.

The first step to implementing our transformation is to update the language to add
the next construction. This is done by creating a new instr_n type, being a pair of
instr_info (serving as a program point for each instruction), and instr_r_n (the real
instruction). We can then define the conditional as

Cif_n: pexpr → seq instr_n → seq instr_n → seq instr_n → instr_r_n

where pexpr is the type for expressions.

5.1.1 Annotations

A crucial part of our transformation that the Jasmin compiler does not handle in
its coq formalization is our annotation system. The language allows the programmer
to insert annotations on variables, which we use to set the initial type environment for
the transformation. Then, by using the PPSet type, which is a set of program points
(represented using the positive type) , we can define the type of an annotation as

Record t := mk { leaked: PPSet.t; high : PPSet.t}.

143

https://github.com/frosqh/ctt_jasmin

Experimentation and evaluation

Instead of augmenting every instruction with an annotation, which would require to
redefine all operations on instruction, we keep track of an annotation map, which, for each
instruction identified by a program point assigns an annotation.

5.1.2 Typing & Computing Annotations

To ensure the preservation of the constant-time property, Jasmin has a constant-time
type system implemented in Caml. Our type system is a generalization of the constant-
time one, so we had to implement it from scratch. The intention being to prove the security
of the transformation, and our transformation being type-directed, the type system has
been implemented in Coq. First, we define a type as

Inductive t :=
| I (s:PPSet.t) (* Indirect flow due to the conditionals *)

| H (* High value *)

.

On this type, we can define the same operation as in this thesis, such as classify for
example :

Definition classify (p: positive) (ty: t):=
match ty with

| H ⇒ H

| I s ⇒ if PPSet.mem p s then H else ty

end.

Then, a typing environment is simply a map from variables to type. And, we can define
a function typeofinstr which implements our typing system, and taking into parameter a
fuel n notably used for the typing of the for loop, a type m which is used as the secret type,
the context ctx, the location of the instruction loc (for logging purposes), the map of
annotations ga previously described, a map of typing environment ge, the current typing
environment ev, and finally the instruction i :

Fixpoint type_of_instr (n: nat) (m: Typing.t) (ctx: Typing.t) (lc: loc) (ga: AnnotMap.t)
(ge : TEnvMap.t) (ev: TEnv.t) (i : instr_n) {struct i} :

(* ... *).

The map of typing environment is a workaround to the flow-sensitivity of our type
system. It allows us to access the typing environment after the evaluation of a specific
instruction. The main difference between the work in this thesis and the implementation

144

Experimentation and evaluation

is the computation of annotations. In Chapter 3, we supposed that the annotations were
already computed, and that the role of the type system was to check them. Here, we
start with an empty annotations map, and we build it as we type the program. Other
than that, the implementation of the type system strictly follows our implementation. For
example, the assignment case is simply typing the expression, checking the type of the
assignee (in case of a memory access for example), and updating the typing environment
to this new type, as well as the annotations map to the union of both leaked traces. All
this update is done in the incl_ge function.

| Cassgn_n lv _ _ e ⇒
match type_of_pexpr lc ev e with

| Error e ⇒ Error e

| Ok (ty, r) ⇒ match (type_of_lval m ctx lc ev lv ty) with

| Ok (ty’, r’) ⇒ incl_ge ga ge (ok ty’) (Annot.mk (PPSet.join r r’) PPSet.empty)
| Error e ⇒ Error e

end

end

However, we still use the constant-time type system to check a posteriori that our
transformation has generated constant-time code.

5.1.3 Scope increase

In the formalization we presented, we suppose it is easy to fetch the p conditional and
its continuation from a program. However, in our implementation, this requires a search
through the entire program and can be quite taxing. Thus, we use contexts to keep track
of this unique conditional. We define a context as

Inductive t : Type :=
| Here : instr_info → pexpr → cmd_n → cmd_n → cmd_n → t

| CElse : instr_info → pexpr → cmd_n → List → cmd_n → t

| CThen : instr_info → pexpr → List → cmd_n → cmd_n → t

| CFor : instr_info → var_i → range → List → t

| CWhile1 : instr_info → align → List → pexpr → cmd_n → t

| CWhile2 : instr_info → align → cmd_n → pexpr → List → t

| CSeq : List → t

with

List := CList : cmd_n → t → cmd_n → List.

145

Experimentation and evaluation

This context can be seen as a directed search to the p conditional. Any program
containing the searched conditional can be represented as a context, and it is easy to
fetch any information on the conditional. This mainly works because there is at most
one conditional with a non-skip next branch at a given time, allowing us to only have
cases for CElse and CThen. Then, we can simply apply our transformations locally to the
conditional identified in Here, and reconstruct the program afterward.

5.1.4 Renaming and fresh variables

To apply our transformation, we need to be able to generate new names. To this end,
we take profit of the implementation of variables in Jasmin. In fact, a variable is repre-
sented by two values: an identifier, which is a positive, and a set of properties (its name,
its type, its locality or globality). Moreover, when generating code, the Jasmin compiler
appends the identifier to the name of any variable. Thus, instead of changing the name
of variables, we can simply keep track of the maximum of the identifier used, increment
it, and use this as a new identifier. This allows us to create renamings that are fresh from
anything. Unfortunately, the access to all identifiers is done on Caml, and we do not have
a formal guarantee that a fresh identifier is indeed fresh.

5.1.5 Compilation

The bulk of our transformation relies on a single operation: the conditional expression.
However, Jasmin is a language for low-level, or cryptographic, applications. And, the
language does have a conditional expression operation, which is compiled using the cmove
instruction, but this operation does not bode well with complex expressions. For example,
using a conditional expression within a conditional expression is not handled, and the
compilation crashes. One solution would be to first decompose any complex expression
we create into simpler ones. This approach would work, if not for the fact that it would
require to create lots of temporary variables, used as indexes for memory access. To
avoid tackling this, we instead choose to preserve the complex expressions, and stop the
compilation before the generation of assembly code. To have an executable result, we use
a printer to the C syntax before using a standard C compiler.

146

Experimentation and evaluation

5.1.6 Limitations

Because we do not have formal support for function calls, we transform each function
at a time, before the aggressive inlining pass of Jasmin. To allow for this, we over-
approximate the output typing of a function from I(l) to H.

5.2 Benchmark

We evaluate our constant-time enforcement transformation on simple but challenging
programs that illustrate the expressiveness of our constant-time enforcement transforma-
tions. They include the following programs which are taken from the FaCTtest suite

— BranchRemoval : ifp h then x = l1 else x = l2

— PotentialOOB : ifp h then t[x] = 0 else skip

— ReturnDeferral : ifp h then return x else skip

We also include the motivating examples taken from the previous examples, such as
Program P0 and P12, as well as bubble sort. We remind below both Programs P0 and
P12.

Reminder: Program P0

i f @p h then x=l 1 ; y=t [x] else x=l 2 ; y=t [x]

Reminder: Program P12

i f @p h then x = l 1 else x = l 2 ;
t [l 3] = l 4 ;
y = t [x] ;

Finally, we hand-craft programs to evaluate the behavior of the transformations on
particular patterns. Firstly, we define Program P32 to be the cswap function used by the
existing implementation of Curve25519 in Jasminfrom libjc 1 [Alm+20]. More precisely,
we have rewritten the existing constant-time cswap to the more natural non constant-time
version.

1. https://github.com/tfaoliveira/libjc

147

Experimentation and evaluation

Program P32: Swap function from Curve25519

i f @p swap then
for i from 0 to 4 do

tmp = z2p [i] ; z2p [i] = z3p [i] ; ; z3p [i] = tmp ;
tmp = x2p [i] ; x2p [i] = x3p [i] ; ; x3p [i] = tmp ;

else skip

To test the extent of the scope-increase transformation, we create Programs P33, P34, 35
and P36 that requires code motion to be transformed.

Program P33: Conditional access

(i f @p h then x = l 1 else x = l 2 ;) y = t [x] ;

Program P34: Two nested conditionals

i f @p h then
i f @p′ h ’ then

x = l 1

else x = l 2

y = t [x] ;
else y = l 3

t [y] = l 4 ;

Program P35: Two sequential conditionals

i f @p h then r=0 else r =1;
i f @p′ r then x=1 else x=2;
y = t [x] ;

148

Experimentation and evaluation

Program P36: For loop containing a memory access

for i from c1 to c2 do
i f @p h then x = l 1 else x = l 2 ;
y = t [x] ;

We also experiment on the use of the naive array traversal transformation by using
Program 37 in which the memory access is outside the bounds of a for loop.

Program P37: For loop followed by a memory access

for i from c1 to c2 do
i f @p h then x = l 1 else x = l 2 ;

y = t [x] ;

Unfortunately, programs like AES would be pointless to transform with our transfor-
mation, given that only the array traversal would apply. Thus, we restrict ourselves to
experiment on meaningful programs.

Metrics

We evaluate each program, and its transformation, on the following set of metrics.
These metrics are computed directly within the Jasmin compiler.

a) Constant-Time: We check whether the program is successfully transformed and if
the transformed version is indeed Constant-Time according to the type checker of
Jasmin.

b) Code Size Overhead: We provide the size of the initial code and its size after the
transformation in terms of number of statements.

c) Number of Variables: We provide the number of variables used by the program, at
source level, and after transformation but before optimizations.

d) Compilation Time: We provide the time taken by Jasmin to complete the compi-
lation of the program, whether the transformation is enabled or not, in seconds.

149

Experimentation and evaluation

Program Constant-Time Source code size Var - Source Var - Compiled
FaCT Ours Input Output Input Output C[Input] C[Output]

BranchRemoval ✓ ✓ 3 8 1 3 6 6
PotentialOOB ∼ ✓ 3 5 1 2 6 6
ReturnDeferral ✓ × – – – – – –

cswap (P32) ✓ ✓ 27 45 10 21 6 7
BubbleSort ✓ ✓ 8 12 4 6 7 8

P0 × ✓ 9 19 2 7 6 7
P12 × ✓ 8 17 3 7 6 7
P33 × ✓ 7 16 2 7 6 7
P34 × ✓ 11 46 3 18 6 12
P35 × ✓ 10 24 3 10 6 9
P36 × ✓ 8 17 3 8 6 8
P37 × ✓ 8 14 3 7 6 7

Table 5.1 – Case-study of our transformation - Limited to Jasmin

e) Assembly Size: We also keep track of the size of the compiled code, before and
after transformation. Due to restrictions on the Jasmin compiler, our introduction
of complex expressions sometimes prevents the compilation from terminating. To
evaluate our compiled code, we export the resulting high-level program to C, and
compile it using CompCert, thus preserving the Constant-Time property. As to
compensate CompCert’s lack of optimization, we also try compiling using GCC
-O3.

5.3 Results and evaluation

The results of our evaluation are summarized in Tables 5.1 and 5.2.

5.3.1 Evaluation of Results

Constant-Time Property We are able to transform all the benchmarks except Re-
turnDeferral which is rejected because Jasmin only accept a return as the last instruction.
For PotentialOOB, our generated program is different from FaCT which inserts an as-
sume statement to ensure safety. Instead, we instrument the array access and get safety
for free. Yet, our transformation is only semantically correct if the initial program has no
array of bound access. Programs P0, P12, P33, P34, P35, P36 and P37 are rejected by
FaCT but accepted by our enhanced transformation at the cost of some code duplication.

150

Experimentation and evaluation

Code Size Overhead For most of the benchmarks, the resulting source code is around
twice the size of the original. This observation is true for programs containing at most 1
nested conditional : the code duplication pass is only applied once.

For other programs, such as P34, the overhead is proportional to 2n, with n the depth
of the program. In the case of P34, the t[y] = l4 instruction is duplicated by the first pass
of delayed if-conversion, inserted into the next for the p conditional, and later duplicated
again. This repeats at every level of nesting in the program.

Number of Variables - Source By the same reasoning as above, the number of
variables in the transformed code, before compilation, should be around 2n times the
number of variables in the original program, with n the depth of the program. This is
indeed what can be observed in Table 5.1, where the ratio V ar[Output]/V ar[Input] is
mostly between 2n−1 and 2n.

Number of Variables - Compiled The Jasmin compiler applies a number of aggres-
sive optimizations. To evaluate the impact of optimizations on the transformed code, we
also compare the number of written variables with and without constant-time enforce-
ment.

For most of the programs, the variable overhead is reduced to 1 or 2 and is almost
insignificant. However, for programs such as P34, where there is more than one level, the
overhead is around n times the initial source code, with n the depth of the program. The
exponential 2n presented above is gone thanks to the removal of redundant renamings.
The transformation creates a renaming for each nested conditional, for each variable,
but in practice, because y is not used in the p′ conditional and x is not used in the p′

conditional, these renamings can be merged.

Compilation Time For most of the programs, we have at most one order of magnitude
of compilation time added by the transformation. However, when a secret conditional
is within a loop, our variable overhead is multiplied by the loop unrolling of Jasmin,
resulting in greater compilation time, although it stays reasonable.

Assembly Size For most of our benchmarks, the resulting assembly code using Com-
pCert does not differ by much in size. Notable exceptions are cswap and P34. The one
common factor between these two code snippets is the introduction of multiple cmove
instructions. The construction of the expressions used within those instructions provokes

151

Experimentation and evaluation

Program Constant-Time Compilation Time Asm size (CompCert) Asm Size (gcc -O3)
FaCT Ours Classic Transformed Classic Transformed Classic Transformed

BranchRemoval ✓ ✓ 0.003 0.016 19 19 24 24
PotentialOOB ∼ ✓ 0.004 0.011 22 25 26 34
ReturnDeferral ✓ × – – – – – –

cswap (P32) ✓ ✓ 0.007 0.212 61 136 75 82
BubbleSort ✓ ✓ 0.268 2.126 42 52 53 56

P0 × ✓ 0.004 0.028 27 43 31 31
P12 × ✓ 0.004 0.036 24 27 27 28
P33 × ✓ 0.006 0.023 21 24 25 26
P34 × ✓ 0.004 0.093 28 94 31 67
P35 × ✓ 0.005 0.025 27 24 26 29
P36 × ✓ 0.007 0.034 28 25 26 24
P37 × ✓ 0.005 0.056 27 37 25 45

where Asm stands for Assembly Code.

Table 5.2 – Case-study of our transformation - Compilation time and Exported to C

a significant overhead in code size. When compiling using all optimizations offered by
GCC, we don’t notice such a high overhead anymore, except for P34. Overall, both our
transformations, whether the compilation method used, struggle with nested conditionals
but offer satisfying results on other programs.

Summary of Evaluation Our type-directed transformation allows for more programs
to be transformed into a Constant-Time semantically-equivalent version than FaCT. This
transformation implies a performance and size overhead at most doubles in performance
and size. Subsequent compiler optimizing passes remove most of the increase in code size
and number of variables used. However, per the logic of our transformation, the overhead
is worse for nested conditionals that are transformed and duplicated one at a time.

152

CONCLUSION

Side-channel attacks are a credible threat, and cryptography has to take it into ac-
count. To provide stronger guarantees, formal methods are often used on cryptographic
primitives. However, most of the literature on the subject is centered on the preserva-
tion or the verification of a given property. This thesis proposes a way to enforce the
constant-time property, to alleviate the burden on the programmer.

Summary

In Chapter 1, we formally defined the basics of the language on which we base our
transformation. We also presented a more formal definition for the constant-time policy,
as a non-interference policy and an information flow type system to ensure this non-
interference policy. We have given an overview of the simplest solution to ensure the
constant-time property: the use of a ctselect, the branch removal transformation, and
the array traversal one. We talked about two limitations of the usual branch removal: the
issue of safety and indirect leakage.

In Chapter 2, we gave an informal overview of our transformation, as well as a formal
definition of each pass. This has been done, for each pass, by building on top of the
previous one to alleviate its limitations. These passes are, in order of application in the
final transformation, scope-increase, index sanitization, delayed if-conversion, and array-
traversal. The scope-increase transformation relies on code motion to ensure that all side
effects from a conditional are contained within its scope. To do so, we introduce a new
construction next, which allows us to store the continuation of a conditional. The index
sanitization pass introduces dynamic bound checks to ensure that any memory access is
safe, even if we do not have any guarantee on the value of the index. Then, delayed
if-conversion uses renamings to safely remove a conditional by delaying the introduction
of direct flow. Finally, array traversal uses the classical transformation presented in
Chapter 1 to take care of the remaining secret memory access. We also defined in this
chapter the information needed for all these transformations to succeed, such as leaking
annotations. For each one of those sub-transformations, as well as for the final, complete,

153

one, we presented an outline of the intuition to prove the semantics preservation.
In Chapter 3, we presented our information flow type-system used to fulfill the needs

raised in the previous chapter. The type system uses an annotation system to keep track
of the leaks and high conditionals within a statement and rejects programs performing
memory accesses on secret indexes. We proved that without any annotations, our type
system is equivalent to the constant-time one. Thus, if we succeed in transforming a
program such as it is typable with empty annotations, the transformed program would
be constant-time. Moreover, to differentiate the indirect flows from the direct flows we
augment the usual type lattice with a new type I(l) which represents a variable dependent
on the program points in l. Thus being a public, or low, variable means that we are not
dependent on anything, and this variable can be typed as I(∅). By defining this type
system, we also updated the transformation, moving the use of array-traversal at the
start, to ensure that any program is typable. And, thanks to our computational definition
of the type system, the burden of annotations is not on the programmer, the type system
is able to compute them as it types.

In Chapter 4, we proved that for any program, its transformation abides by the
constant-time policy. To do so, we first proved that applying array-traversal always makes
the program more typable, and that, by applying it enough times, any program becomes
typable with our type system. Then, we proved that by identifying a problematic condi-
tion identified as p, moving it using scope-increase, securing it using index sanitization,
and removing it using delayed if-conversion, we could remove p from all annotations within
the program, and still types. Thus, by iterating this method enough times, we can type
with only empty annotations, and thus have a constant-time program.

In Chapter 5, we implemented our transformation into the Jasmin compiler. This
amounts to 4K lines of code in the Gallina language of Coq. With this implementation,
we performed a benchmark on some hand-crafted examples. This confirmed that when
we are able to transform, the result is constant-time; that we are able to transform more
than the literature (FaCT for example), and that the overhead is great in number of
variables, but that compiler’s optimizations are able to greatly decrease it.

Perspectives

We now suggest some perspective for future work. These perspectives can be cat-
egorized into three groups: 1) the language i.e., handling more complex constructions,

154

and more subtlety, 2) the implementation i.e., improving the benchmarks and/or the
implementation and, 3) the scope i.e., going beyond just constant-time.

Increasing the scope of the language

Our current work is based on a simple language. If we want to generalize our trans-
formation, the obvious way to do it is to extend the language.

Non constant-time operations As stated in Chapter 1, all operations are not constant-
time. In particular, the integer division is implemented differently whether the divisor or
the dividend is small. Thus, the trace leak won’t be the same depending on the values
of these two parameters. However, by extending our language to those operations, and
typing them as leaking operations (just as the array read), we should be able to either
prevent them from being called on secret or transform them away, perhaps with a method
similar to array traversal. In practice, this would need us to separate operations into
which are constant-time, and can be used indifferently, and which are not constant-time,
and need to be used only on non-secrets inputs. Such a change requires an update both
to the syntax (to differentiate ⊕CT to ⊕NCT), the semantics, and the type system.

Unsafe operations Similarly, not all operations are equally safe. For example, the
division cannot be called with 0 as the divisor. If we wanted to extend the language to
handle properly such operations, we would need to generalize the index sanitization pass.
Instead of working only on memory access, the transformation would sanitize all non-
safe operations. For division, the rule could for example be x/y 7→ x/(y ̸= 0?y:1).
This would only need us to categorize operations as safe or unsafe, such that the index
sanitization transformation is able to recognize unsafe statements.

Non constant loops Our current language is restricted to use for loops with constant
bounds. Even if these kinds of loops are the most frequent in cryptographic code, some
primitives make use of the while loop, or of non-constant bounds. In the case where the
bounds of these loops are public, our transformation which prevents code motion inside
loops is enough: we transform them on the side. However, if those bounds are secret
(either because of indirect or direct flows), we have to transform those. Indeed, a while
loop using a secret condition as a guard is definitely not constant-time: it will have a
number of iterations directly linked to its secret guard. To fix this issue, one solution

155

would be to couple our transformation with static analysis as to determine a static upper
bound to the number of iterations. Thus, we could always transform a while loop into
a constant for loop using this upper bound, and predicate the body of the loop with h,
where h is the guard of the while loop. This way, the semantics is preserved, and the
leak from the number of iteration is removed. Moreover, running a while loop in a high
security context could result in a non-terminating program. Indeed, executing the loop
in a wrong branch could remove the guarantee that the loop terminates. One solution
would be to use a pass similar to index sanitization to, as for high while loops, use the
upper bounds of the number of iterations to ensure that the loop never goes beyond that
point. Applying these two transformations would make it so that only public while loops
within a public context would be left unchanged.

Functions Similarly, the way we handle functions in this thesis is by relying on external
inlining passes. However, multiple works, such as FaCT[Cau+17] have succeeded in tak-
ing into account function calls during their transformation. One way we could implement
it would be to add a function context to the parameters of any function. This context
would keep track of whether or not we are within the scope of a secret conditional when
called and would allow to spread the indirect typing of this conditional to all variables
modified within the function. Then, we could imagine transforming any function into two
versions: a secret and a public one. The call of the function within the scope of a se-
cret conditional would be transformed to call the secret version with the correct function
context, while any other call would use the public version.

Extending the implementation

Our current work is implemented as a pass within Jasmin and tested on a small
benchmark composed of hand-crafted languages.

Benchmarks Unfortunately, this benchmark severely lacks real world examples. Most
cryptographic algorithms are directly written as constant-time. Still, trying our trans-
formation on cryptographic libraries, such as NaCl, could prove useful to provide insight
into the usefulness and overhead of our transformation. Similarly, the current benchmark
is limited to evaluating the size of the compiled code. One perspective for future work
would be to compare the performance of execution between the original implementation
and our transformed version.

156

Mechanized proofs Even though proofs of the transformation are proposed in Chap-
ter 4 and a subsection of proofs are mechanized using the Coq assistant, the implemen-
tation within the Jasmin compiler is unproven. Thus, as a future work, proving the
transformation within the context of an already established verified compiler could prove
to be quite an interesting challenge.

Open challenges: speculative execution & power analysis

In this thesis, our work has been focused on alleviating timing vulnerability in non-
speculative, in-order execution. However, such transformation would also be useful in the
context of speculative execution, or to alleviate a different kind of side-channel.

Speculative Execution New attacks abusing the speculative execution of processors
have emerged in the last years, such as Spectre [Koc+20]. These attacks try to access data
wrongly stored in the cache after a mispeculation. To counter these attacks, a speculative
constant-time policy has been proposed [Cau+20]. A future possible work would be to
try and adapt our transformation to ensure this speculative constant-time policy instead
of the constant-time one. Promising approaches would be to perform speculative post-
analysis à la blade [Vas+21] over the constant-time program, or use protect program
annotations, as Jasmin [Bar+21], on top of our transformation.

Power Analysis If the speculative execution has been the subject of intensive work for
the past few years leading to the definition of speculative constant-time, it is not the case
for other side-channels. For example, power analysis attacks are often mitigated using
hardware solutions, such as complimentary gate [GG18]. Thus, an interesting future work
could be the definition of a constant-power policy, along with corresponding semantics
and type system. These constructions would allow us to see if a type-directed program
transformation approach as the one of this thesis would be a good fit to tackle other
side-channel attacks.

157

BIBLIOGRAPHY

[Aga00] Johan Agat, « Transforming Out Timing Leaks », in: POPL, ed. by Mark
N. Wegman and Thomas W. Reps, ACM, 2000, pp. 40–53, doi: 10.1145/
325694.325702, url: https://doi.org/10.1145/325694.325702.

[Alm+16] José Bacelar Almeida et al., « Verifying Constant-Time Implementations »,
in: 25th USENIX Security Symposium, ed. by Thorsten Holz and Stefan Sav-
age, USENIX Association, 2016, pp. 53–70, url: https://www.usenix.org/
conference / usenixsecurity16 / technical - sessions / presentation /
almeida.

[Alm+17] José Bacelar Almeida et al., « Jasmin: High-Assurance and High-Speed Cryp-
tography », in: CCS, ed. by Bhavani M. Thuraisingham et al., ACM, 2017,
pp. 1807–1823, doi: 10.1145/3133956.3134078, url: https://doi.org/
10.1145/3133956.3134078.

[Alm+20] José Bacelar Almeida et al., « The Last Mile: High-Assurance and High-
Speed Cryptographic Implementations », in: S&P, IEEE, 2020, pp. 965–
982, doi: 10.1109/SP40000.2020.00028, url: https://doi.org/10.
1109/SP40000.2020.00028.

[Amm+22] Basavesh Ammanaghatta Shivakumar et al., « Enforcing Fine-grained Constant-
time Policies », in: Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’22, New York, NY, USA:
Association for Computing Machinery, Nov. 2022, pp. 83–96, isbn: 978-1-
4503-9450-5, doi: 10.1145/3548606.3560689, url: https://dl.acm.org/
doi/10.1145/3548606.3560689 (visited on 10/13/2023).

[Bar+13] Gilles Barthe et al., « EasyCrypt: A Tutorial », in: FOSAD Tutorial Lectures,
ed. by Alessandro Aldini, Javier López, and Fabio Martinelli, vol. 8604,
LNCS, Springer, 2013, pp. 146–166, doi: 10.1007/978-3-319-10082-1_6,
url: https://doi.org/10.1007/978-3-319-10082-1%5C_6.

159

https://doi.org/10.1145/325694.325702
https://doi.org/10.1145/325694.325702
https://doi.org/10.1145/325694.325702
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1109/SP40000.2020.00028
https://doi.org/10.1145/3548606.3560689
https://dl.acm.org/doi/10.1145/3548606.3560689
https://dl.acm.org/doi/10.1145/3548606.3560689
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1%5C_6

[Bar+14] Gilles Barthe et al., « System-level Non-interference for Constant-time Cryp-
tography », in: CCS, ed. by Gail-Joon Ahn, Moti Yung, and Ninghui Li,
ACM, 2014, pp. 1267–1279, doi: 10.1145/2660267.2660283, url: https:
//doi.org/10.1145/2660267.2660283.

[Bar+19] Gilles Barthe et al., « System-Level Non-interference of Constant-Time Cryp-
tography. Part I: Model », in: J. Autom. Reason. 63.1 (2019), pp. 1–51, doi:
10.1007/s10817-017-9441-5, url: https://doi.org/10.1007/s10817-
017-9441-5.

[Bar+20a] Gilles Barthe et al., « Formal verification of a constant-time preserving C
compiler », in: Proc. ACM Program. Lang. 4.POPL (2020), 7:1–7:30, doi:
10.1145/3371075, url: https://doi.org/10.1145/3371075.

[Bar+20b] Gilles Barthe et al., « System-Level Non-interference of Constant-Time Cryp-
tography. Part II: Verified Static Analysis and Stealth Memory », in: J.
Autom. Reason. 64.8 (2020), pp. 1685–1729, doi: 10.1007/s10817-020-
09548-x, url: https://doi.org/10.1007/s10817-020-09548-x.

[Bar+21] Gilles Barthe et al., « High-Assurance Cryptography in the Spectre Era »,
in: 2021 IEEE Symposium on Security and Privacy (SP), ISSN: 2375-1207,
May 2021, pp. 1884–1901, doi: 10.1109/SP40001.2021.00046, url: https:
//ieeexplore.ieee.org/document/9519434 (visited on 10/13/2023).

[BB05] David Brumley and Dan Boneh, « Remote timing attacks are practical », en,
in: Computer Networks 48.5 (Aug. 2005), pp. 701–716, issn: 13891286, doi:
10.1016/j.comnet.2005.01.010, url: https://linkinghub.elsevier.
com/retrieve/pii/S1389128605000125 (visited on 10/13/2023).

[Ben01] Mordechai Ben-Ari, « The bug that destroyed a rocket », in: SIGCSE Bul-
letin 33 (June 2001), pp. 58–59, doi: 10.1145/571922.571958.

[Ber05] D. Bernstein, « Cache-timing attacks on AES », in: 2005, url: https :
/ / www . semanticscholar . org / paper / Cache - timing - attacks - on -
AES - Bernstein / 352e74019d86163d73618f03429ae452ab429629 (visited
on 10/13/2023).

[BJR23] Frédéric Besson, Thomas Jensen, and Gautier Raimondi, « Type-directed
Program Transformation for Constant-Time Enforcement », in: Interna-
tional Symposium on Principles and Practice of Declarative Programming

160

https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1145/2660267.2660283
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1007/s10817-017-9441-5
https://doi.org/10.1145/3371075
https://doi.org/10.1145/3371075
https://doi.org/10.1007/s10817-020-09548-x
https://doi.org/10.1007/s10817-020-09548-x
https://doi.org/10.1007/s10817-020-09548-x
https://doi.org/10.1109/SP40001.2021.00046
https://ieeexplore.ieee.org/document/9519434
https://ieeexplore.ieee.org/document/9519434
https://doi.org/10.1016/j.comnet.2005.01.010
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
https://linkinghub.elsevier.com/retrieve/pii/S1389128605000125
https://doi.org/10.1145/571922.571958
https://www.semanticscholar.org/paper/Cache-timing-attacks-on-AES-Bernstein/352e74019d86163d73618f03429ae452ab429629
https://www.semanticscholar.org/paper/Cache-timing-attacks-on-AES-Bernstein/352e74019d86163d73618f03429ae452ab429629
https://www.semanticscholar.org/paper/Cache-timing-attacks-on-AES-Bernstein/352e74019d86163d73618f03429ae452ab429629

(PPDP 2023), 2023, doi: 10.1145/3610612.3610618, url: https://doi.
org/10.1145/3610612.3610618.

[Bon+17] Barry Bond et al., « Vale: Verifying High-Performance Cryptographic As-
sembly Code », in: USENIX Security, ed. by Engin Kirda and Thomas
Ristenpart, USENIX Association, 2017, pp. 917–934, url: https://www.
usenix.org/conference/usenixsecurity17/technical-sessions/presentation/
bond.

[BPT19] Sandrine Blazy, David Pichardie, and Alix Trieu, « Verifying constant-time
implementations by abstract interpretation », in: J. Comput. Secur. 27.1
(2019), pp. 137–163, doi: 10.3233/JCS-181136, url: https://doi.org/
10.3233/JCS-181136.

[Cau+17] Sunjay Cauligi et al., « FaCT: A Flexible, Constant-Time Programming
Language », in: IEEE Cybersecurity Development, SecDev 2017, IEEE Com-
puter Society, 2017, pp. 69–76, doi: 10.1109/SecDev.2017.24, url: https:
//doi.org/10.1109/SecDev.2017.24.

[Cau+19] Sunjay Cauligi et al., « FaCT: a DSL for timing-sensitive computation »,
in: PLDI, ed. by Kathryn S. McKinley and Kathleen Fisher, ACM, 2019,
pp. 174–189, doi: 10.1145/3314221.3314605, url: https://doi.org/10.
1145/3314221.3314605.

[Cau+20] Sunjay Cauligi et al., « Constant-time foundations for the new spectre era »,
in: Proceedings of the 41st ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2020, New York, NY, USA:
Association for Computing Machinery, 2020, pp. 913–926, isbn: 978-1-4503-
7613-6, doi: 10.1145/3385412.3385970, url: https://dl.acm.org/doi/
10.1145/3385412.3385970 (visited on 10/16/2023).

[Dwo23] Morris J Dworkin, Advanced Encryption Standard (AES), en, tech. rep. NIST
FIPS 197-upd1, Gaithersburg, MD: National Institute of Standards and
Technology, 2023, NIST FIPS 197–upd1, doi: 10.6028/NIST.FIPS.197-
upd1, url: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-
upd1.pdf (visited on 10/15/2023).

161

https://doi.org/10.1145/3610612.3610618
https://doi.org/10.1145/3610612.3610618
https://doi.org/10.1145/3610612.3610618
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/bond
https://doi.org/10.3233/JCS-181136
https://doi.org/10.3233/JCS-181136
https://doi.org/10.3233/JCS-181136
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1109/SecDev.2017.24
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3385412.3385970
https://dl.acm.org/doi/10.1145/3385412.3385970
https://dl.acm.org/doi/10.1145/3385412.3385970
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf

[GG18] Edouard Giacomin and Pierre-Emmanuel Gaillardon, « Differential Power
Analysis Mitigation Technique Using Three-Independent-Gate Field Effect
Transistors », in: 2018 IFIP/IEEE International Conference on Very Large
Scale Integration (VLSI-SoC), 2018 IFIP/IEEE International Conference
on Very Large Scale Integration (VLSI-SoC), ISSN: 2324-8440, Oct. 2018,
pp. 107–112, doi: 10.1109/VLSI- SoC.2018.8644747, url: https://
ieeexplore.ieee.org/document/8644747 (visited on 10/16/2023).

[Hal+08] Daniel Halperin et al., « Pacemakers and Implantable Cardiac Defibrilla-
tors: Software Radio Attacks and Zero-Power Defenses », in: 2008 IEEE
Symposium on Security and Privacy (sp 2008), ISSN: 2375-1207, May 2008,
pp. 129–142, doi: 10.1109/SP.2008.31, url: https://ieeexplore.ieee.
org/document/4531149 (visited on 10/13/2023).

[HS06] Sebastian Hunt and David Sands, « On flow-sensitive security types », in:
POPL, ACM, 2006, pp. 79–90, doi: 10.1145/1111037.1111045.

[KM07] Boris Köpf and Heiko Mantel, « Transformational typing and unification
for automatically correcting insecure programs », in: Int. J. Inf. Sec. 6.2-3
(2007), pp. 107–131.

[Koc+11] Paul Kocher et al., « Introduction to differential power analysis », en, in:
Journal of Cryptographic Engineering 1.1 (Apr. 2011), pp. 5–27, issn: 2190-
8516, doi: 10.1007/s13389-011-0006-y, url: https://doi.org/10.
1007/s13389-011-0006-y (visited on 10/13/2023).

[Koc+20] Paul Kocher et al., « Spectre attacks: exploiting speculative execution »,
in: Commun. ACM 63.7 (2020), pp. 93–101, doi: 10.1145/3399742, url:
https://doi.org/10.1145/3399742.

[Koc96] Paul C. Kocher, « Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems », in: 16th Annual International Cryptology
Conference, ed. by Neal Koblitz, vol. 1109, LNCS, Springer, 1996, pp. 104–
113, doi: 10.1007/3-540-68697-5_9, url: https://doi.org/10.1007/
3-540-68697-5%5C_9.

[Kum+14] Ramana Kumar et al., « CakeML: a verified implementation of ML », en, in:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Diego California USA: ACM, Jan. 2014,

162

https://doi.org/10.1109/VLSI-SoC.2018.8644747
https://ieeexplore.ieee.org/document/8644747
https://ieeexplore.ieee.org/document/8644747
https://doi.org/10.1109/SP.2008.31
https://ieeexplore.ieee.org/document/4531149
https://ieeexplore.ieee.org/document/4531149
https://doi.org/10.1145/1111037.1111045
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1007/s13389-011-0006-y
https://doi.org/10.1145/3399742
https://doi.org/10.1145/3399742
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-68697-5%5C_9
https://doi.org/10.1007/3-540-68697-5%5C_9

pp. 179–191, isbn: 978-1-4503-2544-8, doi: 10.1145/2535838.2535841,
url: https://dl.acm.org/doi/10.1145/2535838.2535841 (visited on
10/13/2023).

[Lei10] K. Rustan M. Leino, « Dafny: An Automatic Program Verifier for Functional
Correctness », in: LPAR, ed. by Edmund M. Clarke and Andrei Voronkov,
vol. 6355, LNCS, Springer, 2010, pp. 348–370, doi: 10.1007/978-3-642-
17511- 4_20, url: https://doi.org/10.1007/978- 3- 642- 17511-
4%5C_20.

[Ler09] Xavier Leroy, « A Formally Verified Compiler Back-end », en, in: Journal of
Automated Reasoning 43.4 (Dec. 2009), pp. 363–446, issn: 0168-7433, 1573-
0670, doi: 10.1007/s10817-009-9155-4, url: http://link.springer.
com/10.1007/s10817-009-9155-4 (visited on 10/13/2023).

[Lev95] Nancy G. Leveson, Safeware: system safety and computers, New York, NY,
USA: Association for Computing Machinery, Mar. 1995, isbn: 978-0-201-
11972-5.

[Mus+20] Maria Mushtaq et al., « Winter is here! A decade of cache-based side-channel
attacks, detection & mitigation for RSA », in: Information Systems 92 (Sept. 1,
2020), p. 101524, issn: 0306-4379, doi: 10.1016/j.is.2020.101524, url:
https://www.sciencedirect.com/science/article/pii/S0306437920300338
(visited on 10/13/2023).

[Pro+17] Jonathan Protzenko et al., « Verified low-level programming embedded in
F », in: Proc. ACM Program. Lang. 1.ICFP (2017), 17:1–17:29, doi: 10.
1145/3110261, url: https://doi.org/10.1145/3110261.

[RBV16] Oscar Reparaz, Josep Balasch, and Ingrid Verbauwhede, Dude, is my code
constant time?, Publication info: Published elsewhere. Minor revision. DATE
2017, 2016, url: https : / / eprint . iacr . org / 2016 / 1123 (visited on
10/13/2023).

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, « A method for obtaining digital
signatures and public-key cryptosystems », in: Communications of the ACM
21.2 (1978), pp. 120–126, issn: 0001-0782, doi: 10.1145/359340.359342,
url: https://dl.acm.org/doi/10.1145/359340.359342 (visited on
10/13/2023).

163

https://doi.org/10.1145/2535838.2535841
https://dl.acm.org/doi/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4%5C_20
https://doi.org/10.1007/978-3-642-17511-4%5C_20
https://doi.org/10.1007/s10817-009-9155-4
http://link.springer.com/10.1007/s10817-009-9155-4
http://link.springer.com/10.1007/s10817-009-9155-4
https://doi.org/10.1016/j.is.2020.101524
https://www.sciencedirect.com/science/article/pii/S0306437920300338
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://doi.org/10.1145/3110261
https://eprint.iacr.org/2016/1123
https://doi.org/10.1145/359340.359342
https://dl.acm.org/doi/10.1145/359340.359342

[SP21] Luigi Soares and Fernando Magno Quintão Pereira, « Memory-Safe Elimina-
tion of Side Channels », in: IEEE/ACM CGO, ed. by Jae W. Lee, Mary Lou
Soffa, and Ayal Zaks, IEEE, 2021, pp. 200–210, doi: 10.1109/CGO51591.
2021 . 9370305, url: https : / / doi . org / 10 . 1109 / CGO51591 . 2021 .
9370305.

[Sun+16] Chengnian Sun et al., « Toward understanding compiler bugs in GCC and
LLVM », in: Proceedings of the 25th International Symposium on Software
Testing and Analysis, ISSTA 2016, New York, NY, USA: Association for
Computing Machinery, 2016, pp. 294–305, isbn: 978-1-4503-4390-9, doi: 10.
1145 / 2931037 . 2931074, url: https : / / dl . acm . org / doi / 10 . 1145 /
2931037.2931074 (visited on 10/13/2023).

[Swa+16] Nikhil Swamy et al., « Dependent types and multi-monadic effects in F », in:
POPL, ed. by Rastislav Bodík and Rupak Majumdar, ACM, 2016, pp. 256–
270, doi: 10.1145/2837614.2837655, url: https://doi.org/10.1145/
2837614.2837655.

[Tho15] Ian Thomson, That EVIL TEXT that will CRASH your iPhone: We pop
the hood, en, May 2015, url: https : / / www . theregister . com / 2015 /
05/27/text_message_unicode_ios_osx_vulnerability/ (visited on
10/13/2023).

[Vas+21] Marco Vassena et al., « Automatically eliminating speculative leaks from
cryptographic code with blade », in: Proc. ACM Program. Lang. 5.POPL
(2021), pp. 1–30, doi: 10.1145/3434330, url: https://doi.org/10.
1145/3434330.

[VIS96] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith, « A Sound Type
System for Secure Flow Analysis », in: J. Comput. Secur. 4.2/3 (1996),
pp. 167–188, doi: 10.3233/JCS-1996-42-304, url: https://doi.org/
10.3233/JCS-1996-42-304.

[Wu+18] Meng Wu et al., « Eliminating timing side-channel leaks using program re-
pair », in: ISSTA, ed. by Frank Tip and Eric Bodden, ACM, 2018, pp. 15–
26, doi: 10.1145/3213846.3213851, url: https://doi.org/10.1145/
3213846.3213851.

164

https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1145/2931037.2931074
https://doi.org/10.1145/2931037.2931074
https://dl.acm.org/doi/10.1145/2931037.2931074
https://dl.acm.org/doi/10.1145/2931037.2931074
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/2837614.2837655
https://www.theregister.com/2015/05/27/text_message_unicode_ios_osx_vulnerability/
https://www.theregister.com/2015/05/27/text_message_unicode_ios_osx_vulnerability/
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3434330
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.3233/JCS-1996-42-304
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851

[Zin+17] Jean Karim Zinzindohoué et al., « HACL*: A Verified Modern Cryptographic
Library », in: CCS, ed. by Bhavani M. Thuraisingham et al., ACM, 2017,
pp. 1789–1806, doi: 10.1145/3133956.3134043, url: https://doi.org/
10.1145/3133956.3134043.

[ZS18] Mark Zhao and G. Edward Suh, « FPGA-Based Remote Power Side-Channel
Attacks », in: 2018 IEEE Symposium on Security and Privacy (SP), ISSN:
2375-1207, May 2018, pp. 229–244, doi: 10.1109/SP.2018.00049, url:
https://ieeexplore.ieee.org/document/8418606 (visited on 10/13/2023).

165

https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1145/3133956.3134043
https://doi.org/10.1109/SP.2018.00049
https://ieeexplore.ieee.org/document/8418606

Titre : Compilation Sécurisée contre les Attaques par Canaux Auxiliaires

Mot clés : Compilation Sécurisée, Constant-Time, Vérification Formelle, Transformation de

Programme

Résumé : De par leur omniprésence, la sécu-
rité des systèmes informatiques est un enjeu
majeur. Dans cette thèse, nous visons à ga-
rantir une sécurité contre un certain type d’at-
taques : les attaques par canal caché tempo-
rel. Ces attaques utilisent le temps d’exécu-
tion d’un programme pour déduire des infor-
mations sur le système. En particulier, on dit
d’un programme qu’il est constant-time lors-
qu’il n’est pas sensible à ce type d’attaques.
Cela passe par des contraintes sur le pro-

gramme, qui ne doit ni réaliser de décisions en
utilisant de valeurs secrètes, ni utiliser un de
ces secrets pour accéder à la mémoire. Nous
présentons dans ce document une méthode
permettant de garantir la propriété constant-
time d’un programme. Cette méthode est une
transformation à haut niveau, suivi d’une com-
pilation par Jasmin pour préserver la pro-
priété. Nous présentons également la preuve
de la sécurité et de la préservation séman-
tique de cette méthode.

Title: Secure Compilation against Side-Channel Attacks

Keywords: Secure Compilation, Constant-Time, Formal Verification, Program Transformation

Abstract: Given their ubiquity, the security of
computer systems is a major issue. In this
thesis, we aim to guarantee security against
a certain type of attack: timing side-channel
attacks. These attacks use the execution time
of a program to deduce information about the
system. In particular, a program is said to
be constant-time when it is not sensitive to
this type of attack. This requires constraints

on the program, which must neither make de-
cisions using secret values, nor use one of
these secrets to access memory. In this doc-
ument, we present a method for guaranteeing
the constant-time property of a program. This
method is a high-level transformation, followed
by compilation using Jasmin to preserve the
property. We also present a proof of the secu-
rity and semantic preservation of this method.

	Introduction
	Background
	Language
	Syntax
	Semantics
	Operators

	Constant-Time
	Constant-time Type System

	Conditional move
	Definition
	Updated Definitions
	Branch Removal
	Examples
	Limitations

	Constant-Time Array Traversal

	Program transformation
	Delayed if-conversion
	Prerequisites
	Formal description
	Semantics preservation

	Index Sanitizing
	Formal Description
	Semantics Preservation

	Scope-Increase
	Prerequisites
	Formal Description
	Semantics Preservation

	Updated Delayed If-Conversion
	Prerequisites
	Formal Description
	Semantics Preservation

	Handling direct leaks
	Semantics Preservation

	Overall transformation
	Semantics Preservation

	Type System
	Types
	Classifying

	Program annotations for Constant-Time Transformation
	Type System for Constant-Time Transformation
	Rules for expressions
	Rules for instructions
	Constant-Time property
	Computing annotations

	Adapting the transformation
	Auxiliary Type System

	Security of the transformation
	Preprocessing
	Typing Constraints
	Array Traversal

	Scope-Increase
	Intermediate Results for SI
	SI Security Theorem

	Security of IS
	Security of if-conversion
	Intermediate Results on Renaming Maps
	Intermediate Results on the Initializing Statements
	Intermediate Results on Branch Renaming
	Intermediate results on Nxth
	Merging branches
	Security of the delayed if-conversion

	Overall transformation and conclusion

	Experimentation and evaluation
	Implementation
	Annotations
	Typing & Computing Annotations
	Scope increase
	Renaming and fresh variables
	Compilation
	Limitations

	Benchmark
	Results and evaluation
	Evaluation of Results

	Conclusion
	Bibliography

