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Abstract

Strongly correlated materials reveal remarkable physical phenomena at low temperatures.
Depending on external parameters, they exhibit extremely different electronic phases,
ranging from insulating magnetic orders to strong superconductivity with infinite electri-
cal conductivity. The richness of these physical phenomena takes its roots in the strong
interactions that impact heavily the behaviour of electrons. These materials can not be
understood by an effective one-body treatment. To accurately describe these proper-
ties, one must solve the quantum many-body problem of interacting particles. This is
a complex problem that requires numerical approaches to obtain quantitatively accurate
results. In this thesis, we focus on the development of new algorithms to address strongly
interacting fermionic systems.

After introducing strongly interacting systems, we show that the perturbation theory
framework is a powerful tool for studying the many-body problem. By considering elec-
tronic interactions as a perturbation to the non-interacting system, we focus on computing
efficiently, and up to high orders, the perturbation series, which can be expressed as sums
of Feynman diagrams. We present the CDet (Connected Determinants) state-of-the-art
algorithm which allows us to reach high perturbation orders. We overcome one of the
main limitations of perturbation theory by introducing a novel chemical potential shift
that breaks a symmetry. We show that this approach allows us to describe perturbatively
the physics of ordered phases in the thermodynamic limit. We apply this new algorithm
to the cubic half-filled Hubbard model and provide a quantitative description of the Néel
order both near the phase transition and at low temperature up to the high coupling
regime. This study enables us to detail the limitations to our method and to present the
numerical tools that ensure an efficient implementation of the CDet algorithm and an
accurate resummation of the resulting perturbative series. The attractive counterpart of
this model shows a superconducting phase that can also be described by adapting our
symmetry-breaking approach.

In the last chapter of this thesis we turn our attention to out-of- equilibrium interacting
systems. The non-equilibrium interacting problem in real materials is extraordinarily dif-
ficult to solve exactly, and we rely on a diagrammatic approximation : the Non-Crossing-
Approximation. We implement an efficient and fast impurity solver by alternating be-
tween the real-time and frequency domains in the steady-state limit. This solver allows
us to compute transport properties in systems that are driven out-of-equilibrium by an
external electric field.
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Résumé

Les matériaux fortement corrélés révèlent des phénomènes physiques remarquables à basse
température. Selon les paramètres externes, ils peuvent présenter des phases électroniques
extrêmement différentes, allant d’ordres magnétiques isolants à une phase supraconduc-
trice présentant une résistance électrique nulle. La richesse de ces phénomènes physiques
prend ses racines dans les interactions fortes qui impactent le comportement des électrons.
Ces matériaux ne peuvent pas être compris par un traitement effectif à un seul corps. Pour
décrire avec précision leurs propriétés, il faut prendre en compte les corrélations entre élec-
trons et résoudre le problème quantique à N corps. Il s’agit d’un problème complexe sans
solution analytique exacte. Ce problème nécessite des approches numériques efficaces
pour obtenir des résultats quantitativement précis. Dans cette thèse, nous abordons le
développement de nouveaux algorithmes pour étudier les propriétés à l’équilibre et hors
d’équilibre, des systèmes fermioniques à fortes interactions.

Après avoir introduit les systèmes électroniques à fortes interactions, nous présentons
le modèle fermionique de Hubbard. Ce modèle microscopique minimaliste nous permet
de décrire la physique des matériaux dont les électrons interagissent fortement. Nous
montrons ensuite que la théorie des perturbations est un outil puissant pour étudier ce
modèle, et de manière générale pour étudier le problème à N corps quantique. En consid-
érant les interactions électroniques comme une perturbation du système sans interaction,
nous exposons comment calculer de manière efficace, et jusqu’à des ordres élevés, la série
perturbative qui peut être exprimée comme une somme de diagrammes de Feynman. Nous
présentons l’algorithme CDet (Connected Determinants) qui nous permet d’atteindre des
ordres de perturbation élevés en effectuant en un nombre d’étapes exponentiel, la somme
d’une quantité factorielle de diagrammes. Nous dépassons l’une des principales limites
de la théorie des perturbations en introduisant un changement de potentiel chimique qui
brise une symétrie du système. Cette approche permet de décrire de façon perturbative la
physique des phases ordonnées dans la limite thermodynamique des grands systèmes. Ce
nouvel algorithme est appliqué au modèle de Hubbard à moitié rempli et sur un réseau
cubique. Il fournit une description quantitative de la transition de phase du système
vers un ordre antiferromagnétique (ordre de Néel) à basse tempárature. Ces résultats
numériquement exacts sont obtenus à la fois près de la température critique, et à basse
température jusqu’au régime de couplage fort. Cette étude nous permet de détailler les
limites de notre méthode et de présenter les outils numériques qui assurent une mise en
œuvre efficace de l’algorithme CDet et une resommation précise des séries perturbatives.
La version attractive de ce modèle présente une phase supraconductrice qui est décrite en
adaptant notre approche d’expansion dans une phase à symétrie brisée. Ceci nous permet
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de comparer l’utilisation de notre approche perturbative pour des transitions de phase du
premier ou du second ordre.

Dans le dernier chapitre de cette thèse, nous nous intéressons aux systèmes à forte
interaction et hors équilibre. Le problème hors équilibre dans les matériaux fortement
corrélés est exceptionnellement difficile à résoudre exactement, et nous nous appuyons
sur une approximation diagrammatique NCA (Non Crossing Approximation). Cette ap-
proximation permet une évaluation analytique et auto-cohérente de la somme des di-
agrammes de Feynman de la série perturbative. Ceci nous conduit à implémenter un
solveur d’impuretés efficace et rapide en alternant entre les domaines en temps réel et en
fréquence, dans la limite du régime permanent. Ce solveur nous permet de calculer les
propriétés de transport dans des systèmes qui sont maintenus hors équilibre par un champ
électrique extérieur. Nous l’appliquons de manière préliminaire à l’étude des propriétés
du modèle d’impureté d’Anderson.
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Figure I.1: Electronic phase diagram as a function of temperature and doping
of hole-doped Y Ba2Cu3O7 and electron-doped Pr2CuO4. Adapted from [76].

I.1 Physics of strongly correlated materials
The goal of condensed matter physics is to understand the properties of matter as it orga-
nizes into solid crystals at the microscopic level. Starting from the observed microscopic
structure and symmetries of a piece of matter, we want to understand the macroscopic
properties of a material : Is it a metal that easily conducts electricity and heat? Is it an
insulator that exhibits high resistance? Does it show magnetic properties as observed in
permanent magnets?

In crystals the atoms form a lattice which organizes according to spatial symmetries.
The nuclei of the atoms are essentially fixed or vibrating around their equilibrium posi-
tion. The electrons from the outer orbitals carry the remaining degrees of freedom that
determine the physical properties of the solid. In strongly correlated materials, these
electrons are not only subject to the electric field generated by the lattice of cations, but
they also strongly interact with each other. This gives rise to intricate and interesting
physical properties. As the temperature drops, the electronic degrees of freedom condense
into new phases with very different and fascinating characteristics.

I.1.1 Phase diagram of high-temperature superconductors

The interest for strongly correlated materials hinges on the discovery of a new class of
materials at the end of the 1980s called cuprates, which exhibit strong superconductivity
up to extremely high temperatures in comparison to conventional metals. They hold
the name of high temperature superconductors and have been shown to host fascinating
physical phenomena which still remain to be understood in details.

In these materials the Coulomb repulsion between electrons is exceptionally strong
such that, at zero doping, the Coulomb interaction impedes the motion of electrons and
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the material is a Mott insulator. As the system is doped with adding (negative doping) or
removing (positive doping) electrons, the Coulomb blocking of charge carriers vanishes and
the system becomes metallic. This is shown in the phase diagram of cuprates displayed
in Fig. I.1. In between these two regimes, cuprates show a wide variety of electronic
phases at low temperatures with very dissimilar properties. At low temperature, and as
the doping is increased, the system goes through an insulating antiferromagnetic (AF)
phase, a charge density wave ordering (CDO) and superconductivity (SC) under a dome
described by the critical temperature Tc. At higher temperature and under the T ∗ line,
we find a regime called the pseudo-gap (PG) characterized by an anisotropic suppression
of quasi-particles in the Brillouin zone. At higher doping, the system goes to a regime
called strange metal which exhibits an enigmatic linear dependence of the resistance with
respect to the temperature. For a complete review on the low temperature physics of
cuprates, see [107].

The rich and intricate physics at work in these materials motivates the research on
interacting electronic systems. This phase diagram shows competition between different
orders which is still not fully understood theoretically.

I.1.2 Cold atoms experiments

Understanding the behaviour of strongly interacting fermions is a complicated physics
problem that can be addressed experimentally. Indeed, the quantum dynamics of fermions
in a material can be reproduced in cold atom experiments. They simulate the physical
environment of the electrons and perform measurements of the physical properties of the
system.

In experiments with cold atoms, tunable lasers are used to create periodic potentials.
By superimposing light from lasers in different directions, these experiments construct
an optical lattice on which individual atoms are studied. The periodic potential gen-
erated by the lasers mimics the potential generated by the solid cations in a material.
The fermionic atoms interact with each other through a contact repulsion. These experi-
ments provide highly controllable systems for studying interacting fermions in an external
periodic potential, and one can vary the repulsion intensity, lattice potential, and geom-
etry [18, 65]. They can also include time-dependent perturbations to study the out-of-
equilibrium dynamics of interacting systems. Recently, cold atom experiments have been
able to describe phase transitions and have shown to be able to describe antiferromagnetic
ordering [43,50,87,134] as well as a Mott insulator to superfluid transition [44].

However, the description of strongly correlated materials with cold atoms experiments
is currently limited to relatively high temperatures (T/t ≥ 0.3 with t the hopping term
introduced in the next section). The theoretical description of these materials in conjunc-
tion with numerical techniques is therefore more than a complementary approach, as it
provides an understanding of their physical properties at low temperatures.
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I.2 Models for strongly interacting electrons

I.2.1 Introduction to the many-body problem

The main challenge for condensed matter physics is to be able, starting from simple
quantum physics principles, to describe collective and complex phenomena happening in
materials. The energy levels of a single electron in orbit around a proton is well understood
from the Schrödinger equation, but what does happen when we assemble many of these
hydrogen atoms together ? Because of the interactions between particles the physics of
the whole system can become drastically different and richer than the one of the single
body. They give rise to various electronic phases as exotic as superconductivity or spin
waves orders with very dissimilar physical properties in terms of transport or excitations.

The Hamiltonian describing the degrees of freedom of Nat atoms and Ne electrons
inside a material is easily written from the kinetic energy and coulomb interaction terms
:

H =
Nat∑
i=1

P2
i

2Mi
+

Ne∑
i=1

p2
i

2mi
+ 1

2
∑

1≤i ̸=j≤Ne

e2

4πϵ0|ri − rj |
+ 1

2
∑

1≤i ̸=j≤Nat

Z2
i

4πϵ0|Ri − Rj |

− 1
2

i=Nat∑
i=1

j=Ne∑
j=1

Zie
2

4πϵ0|Ri − rj |

(I.1)

Where Pi, Mi, Ri are the momentum, mass and position of the atoms with Zi protons
of charge +e and pi, mi, ri are the momentum, mass and position of electrons of charge
−e.

The energy levels of the material are then given by the stationary Schrödinger equation
(or eigenvalue problem of the Hamiltonian) :

HΨ = EΨ (I.2)

With Ψ a stationary wave function of the system with energy E. Even though express-
ing this physical problem is very simple and straight forward, it is in practice impossible
to solve, as for a small dice of matter, Ψ is a function of more than 1023 variables. This
intricate problem of many particles interacting with each other is called the quantum
many-body problem. It has no analytic solution for more than 3 particles and it is a
strong challenge for numerical physics.

In this thesis we consider the Born-Oppenheimer approximation : the atoms having
a large mass compared to the electrons and forming a crystal are supposed to be fix
on a periodic lattice. This reduces drastically the number of degrees of freedom of the
problem. We are left with interacting electrons in a periodic external potential created
by the lattice.
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The richness of the physics of strongly correlated materials lies in the various and
different electronic phases that emerge when going to low temperature, such as ferromag-
netism or superconductivity. As we decrease the temperature, the electronic degrees of
freedom tend to order and spontaneously break a symmetry of the system. This phe-
nomenon is called phase transition and is, at the level of electrons in a material, similar
to the common experiment of solidification or liquefaction of water for instance. This is
a collective thermodynamic phenomenon which tends to reduce the energy of the system
at low temperature, at the expense of a higher degree of ordering and therefore a smaller
entropy. It can only happen because a huge number of particles are present in the system.
Therefore the understanding of phases in strongly correlated materials requires to tackle
the many-body problem in the limit of infinite number of particle Nat, Ne → ∞, called
the thermodynamic limit.

I.2.2 The Hubbard model

In this section we introduce a toy model for strongly-correlated materials. It is, from the
theoretical point of view, one of the simplest models to investigate correlations and phase
transitions in strongly correlated materials. Starting from the Hamiltonian (I.1) rewritten
in the second quantization formalism after dropping the atomic degrees of freedom we
obtain the Hamiltonian :

Ĥ =
∑
ij

∑
σ

tij ĉ†
iσ ĉjσ + 1

2
∑

i,j,k,l

∑
σ,σ′

Uijklĉ
†
iσ ĉ†

jσ′ ĉlσ′ ĉkσ (I.3)

Where ĉ†
iσ creates an electron in orbital i with spin σ, which we write |i, σ⟩, and ĉiσ

annihilates and electron on orbital i with spin σ. tij = ⟨i|p̂2/2m|j⟩ is the hopping term
between orbitals i and j. Uijkl = ⟨i|⟨j|V̂ |k⟩|l⟩ the Coulomb interaction term. For a given
material the t and U matrices are hard to compute and require electronic band structure
computations.

As we are describing a system of electrons, the second quantization creation and
annihilation operators verify the fermionic anti-commutation relations :{

ĉjσ, ĉ†
iσ′

}
= δijδσσ′{

ĉ†
jσ, ĉ†

iσ′

}
= 0

{ĉjσ, ĉiσ′} = 0

(I.4)

The Hubbard Hamiltonian is obtained after imposing several approximations :

• We restrict ourselves to the single orbital case so that the system is made of a
network of sites forming a lattice. Each site can be occupied by either no electron,
one electron with spin up or down, or two electrons with opposite spins. Therefore
there are four possible states for each site which are respectively |0⟩, |↑⟩, |↓⟩ and
|↑↓⟩
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Figure I.2: Hubbard model on a two dimensional square lattice [150] with t
the hopping term and U the on-site Coulomb interaction

• We only consider nearest neighbour hopping so that tij = −t if i and j describe
neighbouring sites of the lattice, tij = 0 otherwise.

• We neglect long-range Coulomb repulsion which is limited to on-site interaction :
Uijkl = U if i = j = k = l and 0 otherwise.

We obtain the Hubbard Hamiltonian [49,56,57] to which we add the chemical potential
term for working in the grand canonical ensemble. The sum ⟨i, j⟩ runs over neighbouring
sites :

Ĥ = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µ
∑

i

(n̂i↑ + n̂i↓) (I.5)

With n̂iσ = ĉ†
iσ ĉiσ the occupation number operator on site i with spin σ. There are

various versions of this model when considering different dimensions or lattice geometry,
next-nearest neighbour or asymmetric hopping, and Coulomb repulsion between electrons
on different sites. In two dimensions on a square lattice, this model is depicted in Fig. I.2.

For depicting strongly correlated materials we have t > 0 since atomic orbitals over-
lap on neighbouring sites, and U > 0 for the Coulomb interaction is repulsive between
negatively charged electrons. Despite its apparent simplicity this model has no analytic
solution in more than one dimension. It shows a competition between two terms : the
kinetic energy term Ĥkin = −t

∑
⟨i,j⟩

∑
σ ĉ†

iσ ĉjσ which tends to delocalize electrons on the
lattice, and the potential energy term Ĥpot = U

∑
i n̂i↑n̂i↓ which costs energy for doubly

occupied states and therefore tends to localize electrons. For better understanding of this
competition we can study two limits :

• U = 0 : The Hubbard Hamiltonian becomes non-interacting and describes free
electrons on a lattice similarly to what is obtained for tight-binding models. It is
diagonal on the reciprocal lattice in k space and we get after performing a Fourier
transformation on the lattice positions Ĥ =

∑
k(ϵk − µ)ĉ†

kσ ĉkσ. The dispersion
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relation ϵk depends on the geometry of the lattice, but it describes a band structure
and the system is in a metallic state.

• t = 0 (or U → ∞) : Ĥ = U
∑

i n̂i↑n̂i↓ − µ
∑

i(n̂i↑ + n̂i↓) which is diagonal in the
lattice basis. The system is a collection of independent atoms with no hopping.
Each electron is localized on a site and no electric transport is possible. Because of
overwhelming interactions the system is a Mott insulator.

In the general case, the sum of these two competing terms leads to a complex in-
teracting problem with no easy diagonalisation. Its simple formulation associated with
the intricate physics of the many-body problem make this model an ideal platform for
investigating the capabilities of new algorithms before engaging in the study of actual
materials. The model is also actively explored using quantum simulations in cold-atomic
experiments on optical lattices [66].

The two-dimensional Hubbard model on a square lattice is believed to be especially
relevant for high-temperature superconductor cuprates. It could be a minimal model
for understanding the quasi two-dimensional physics of the CuO2 planes in which the
copper 3d orbitals form a square lattice with nearest-neighbour orbitals overlap. This
model is believed to exhibit a rich phase diagram with various nontrivial phenomena
which compares well with the one observed in cuprates, including metal-insulator transi-
tion, antiferromagnetism, pseudo-gap and superconductivity. For a detailed overview of
the two-dimensional Hubbard model, and the properties of its ground state see [7, 109].
Recently, the ground state of the two-dimensional Hubbard model, in the absence of next-
nearest-neighbour hopping, has been found to show no superconductivity in a regime of
parameters relevant to cuprates [108]. The superconducting phase turns out to be in
competition with a stripe order, which has been shown to prevail by very small energy
scales. Nevertheless the next-nearest-neighbour hopping term is believed to be a key in-
gredient for the modeling of cuprates. Including this term, the Hubbard model exhibits
a d-wave superconducting ground state around the optimal doping [149]. Moreover, at
finite temperatures, simulations have pointed out the presence of a pseudo-gap regime
with properties similar to what is observed in cuprates [83,103,144,148].

In this thesis we focus on this minimal microscopic model of interacting fermions
in order to understand the physics of strongly correlated materials. By developing new
numerical accurate techniques we want to provide a deeper understanding of the physi-
cal phenomena observed experimentally in cuprates and provide results for guiding the
development of cold atoms experiments which are currently limited to relatively high
temperature of the order of T ∼ 0.3t .

I.2.3 DMFT and the impurity problem

A first simple approach to tackle the Hubbard model would be to apply a mean-field
approximation to the interacting term, approximating the Coulomb interaction by an av-
eraged effective one body interaction term. An example of a Hartree-Fock resolution of
the Hubbard model in the paramagnetic and antiferromagnetic states, useful for further
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Bath

Figure I.3: Illustration of the DMFT scheme. We map a site of the lattice into
an impurity embedded in a self-consistent bath. Figure adapted from [110]

developments in this thesis, can be found in the Appendix C. Nevertheless this approxi-
mation is known to be extremely rough and can not be considered satisfying for studying
strongly correlated systems.

The Dynamical Mean Field Theory (DMFT) goes one step further into taking into
account correlations in strongly correlated systems. It is centered on the idea that a
lattice problem can be mapped to a single impurity embedded in a bath. We can take one
site of the Hubbard model out of the lattice, the rest of the sites forming a bath which
exchanges electrons with the impurity as shown in Fig. I.3. The DMFT approximation
neglects the interactions between the electrons inside the bath, and the properties of the
bath are self-consistently determined from the interacting impurities [38,39,67].

The DMFT approximation is formulated in the many-body Green’s function formalism
which we employ in the rest of this thesis. We note G0 the non-interacting Green’s function
(for U = 0 in the case of the Hubbard model), G the interacting Green’s function, Σ its
associated self-energy, k a wave vector of the reciprocal lattice, and iωn = (2n + 1)π/β
the n-th Matsubara frequency in the imaginary-time framework at equilibrium and at
temperature T = 1/β. The non-interacting Green’s function reads (see Appendix A) :

G0σ(k, iωn) = 1
iωn − ϵkσ + µ

(I.6)

With ϵkσ the energy dispersion of the non-interacting system, and µ the chemical
potential. By definition of the self-energy the Green’s function for the interacting system
is given by the Dyson’s equation :

Gσ(k, iωn) = (G0σ(k, iωn)−1 − Σσ(k, iωn))−1

= (iωn − ϵkσ + µ − Σσ(k, iωn))−1 (I.7)

The Green’s function of the single lattice site considered as an impurity which ex-
changes electrons with a bath through a hybridization function ∆(iωn) reads :

Gimp,σ(iωn) = (iωn − ϵd + µ − ∆(iωn) − Σimp,σ(iωn))−1 (I.8)

So far we did not make any approximation and this last equation is a representation
of the local Green’s function as an impurity coupled to a bath :
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Gloc,σ(iωn) =
∑

k
Gσ(k, iωn) = Gimp,σ(iωn). (I.9)

The DMFT approximation considers the bath to be non-interacting and self-determined
by the impurity’s characteristics. Formally it states that the lattice self-energy is equal
to the impurity’s one :

Σσ(k, iωn) = Σimp,σ(iωn) (I.10)

We neglect the k dependency of the self-energy but keep its dynamical properties as a
function of the imaginary-time or Matsubara frequencies, hence the name of Dynamical
Mean-Field Theory. Therefore this approximation neglects non-local correlations but is
able to handle the different time-scales involved in the correlations encoded in the self-
energy function.

Within the DMFT approximation Eq. I.10 the hybridization function ∆ has to be
self-determined for the local Green’s function to stay equal to the impurity one. It leads
to the self-consistent scheme :

i. We start from a guess for the non-interacting Green’s function G0σ(k, iωn) and
determine the associated hybridization function ∆(iωn).

ii. We solve the impurity problem and determine the impurity self-energy Σimp,σ(iωn)
and Green’s function.

iii. We apply the DMFT approximation to compute the local Green’s function :

Gloc,σ(iωn) =
∑

k
(iωn − ϵkσ + µ − Σimp,σ(iωn))−1 (I.11)

iv. We obtain a new non-interacting Green’s function and its associated hybridization
function through :

G0σ(k, iωn) = (Gσ(k, iωn)−1 + Σimp,σ(iωn))−1 (I.12)

v. We repeat this procedure until convergence of the hybridization and local Green’s
function.

This scheme stresses the importance of being able to solve efficiently an impurity
problem and we will discuss some impurity solvers in Subsection I.3.2. The DMFT ap-
proximation has been shown to become exact in the limit of infinite dimension on a Bethe
lattice (infinite coordination lattice) [38]. It is also exact in the limits of infinite or zero
interaction (U = 0 or U = ∞). In the intermediate regime where t ≈ U , since it approx-
imates the self-energy by the impurity one, it becomes a good approximation in regimes
with a localized self-energy.

Many extensions to this DMFT scheme have been developed in order to enhance its
ability to describe accurately the physics of correlated systems. The Cellular DMFT
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(CDMFT) extracts several sites of the original lattice as an impurity so that the non-
local correlations are encoded in the impurity self-energy up to the size of the considered
impurity. This approach becomes exact in the limit of infinite cluster size which corre-
sponds to all the system being treated exactly. The Dynamical Cluster Approximation
(DCA) is the counterpart of CDMFT on the reciprocal lattice. It separates the Brillouin
zone into patches of wave vectors and distinguishes the behaviour of the self-energy on
these different areas. Other expansions focus on including correlations by making ap-
proximations on different objects than the self-energy. At a heavy computational price,
the Dynamical Vertex Approximation (DΓA) relies on considering purely local the fully
irreducible two-fermion scattering vertex.

It is to be noted that the DMFT framework enables one to study symmetry-broken
phases and phase transition. As in the plain mean-field approximation, it can allow
several solutions depending on their symmetries. A comparison of the free-energy of
these solutions is required to establish the phase diagram. However, as DMFT neglects
spatial correlations up to some extent, it does not follow the Mermin–Wagner theorem and
leads to spontaneous breaking of continuous symmetries at finite non-zero temperatures
in two dimensions.

The DMFT framework can be used for computing the electronic structure of more re-
alistic interacting materials when associated with the Density Functional Theory (DMFT
+ DFT approach) [52]. The DMFT is also successful for describing out-of equilibrium
systems [82,85,102].

I.3 Computational methods to the many-body problem

Efficient computational tools are essential to understand quantitatively and solve the
quantum many-body problem. Considerable progress has been achieved in this field in
the last decade with the introduction of new algorithms and concepts to tackle strongly
correlated systems. Since this thesis is based on algorithmic developments on this matter,
we give in this section an overview on modern numerical methods which have been applied
successfully in some regime of the Hubbard model. We will emphasize on equilibrium
methods and address approaches for out-of-equilibrium systems in Chapter V. Recent
works have put efforts into comparing quantitatively these methods in different regimes
of the two dimensional Hubbard model [79,123].

We distinguish two classes of such methods : the finite temperature methods and the
zero temperature methods which focus on establishing the ground state properties.

I.3.1 Finite temperature methods

Many numerical techniques are opening the path to understanding strongly correlated ma-
terials at finite temperature T ̸= 0 working directly on the lattice. They try to reach low
temperatures starting from the equilibrium high temperature limit at which the physics of
the system is well understood. They are based on a perturbative expansion of some quan-
tity and rely on Monte Carlo techniques for computing the interacting Green’s function,
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or partition function. Because of the anticommutation relations that fermionic operators
obey, these techniques sample stochastically a quantity with alternating sign. This is
the main limitation of these methods called the sign problem. It leads to exponentially
increasing statistical errors with decreasing temperature [137].

A large class of algorithms belong to the Diagrammatic Monte Carlo methods which
perform an expansion in interaction of the problem directly on the lattice. They either
sample connected diagrams to obtain a physical observable or correlator, or sample de-
terminants to compute the partition function.
The Determinant Diagrammatic Monte Carlo (DDMC) [23] performs an expansion in
the interaction parameter to compute stochastically the partition function. It is limited
to small system sizes and it relies on universal scaling laws to extrapolate towards the
thermodynamic limit (infinite lattice).
The Diagrammatic Monte Carlo (DiagMC) algorithm constructs a Markov Chain of Feyn-
man diagrams in order to evaluate a perturbative series in the interaction parameter. The
complexity of this algorithm scales badly with the maximum order of perturbation and
the stochastic method suffers from a fierce sign problem. Recent developments have been
made to overcome these difficulties which will be the subject of Chapters II and III.

The Auxiliary-Field Quantum Monte Carlo (AFQMC) [151] performs the imaginary-
time evolution of a constrained wave function by applying the evolution operator e−βH

by stochastically evaluating imaginary-time path integrals. This approximate method
takes advantage of symmetries and auxiliary fields introduced by a Hubbard-Stratonovich
transformation [126]. It aims at taking the limit of zero temperature β → ∞ to obtain
the ground state wave function.

Recent developments have been implemented to build quantum Monte Carlo algo-
rithms working in the real-time domain, that could be used for both equilibrium and
out-of-equilibrium systems. The Inchworm algorithm [4, 25, 26] builds diagrams on the
Keldysh contour to evaluate the real-time Green’s function.

I.3.2 Embedding methods and impurity solver

A powerful framework to study strongly interacting systems comes from the DMFT ap-
proximation as described in I.2.3. Many extensions of this method have been developed
to go further and reduce the roughness of this approximation, such as CDMFT and DCA
which involve some non-local correlations in the definition of the impurity self-energy.
Other extensions focus on other objects than the self-energy such as DΓA, Trilex [8, 9],
Dual-Fermion [117] or Dual-Boson [118]. They are called embedding methods, and they all
require to solve efficiently and accurately an impurity problem of an interacting impurity
embedded in a non-interacting bath.

The Iterative Perturbation Theory (IPT) [39] or Non-Crossing Approximation (NCA)
[16,31] are performing approximations in the diagrammatic expansion of the self-energy.
By removing some well-chosen terms they sum analytically the remaining diagrams and
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lead to self-consistent analytic solutions. They provide impurity solvers that do not re-
quire many computational resources, but they perform a rough and uncontrolled approx-
imation which can not be quantified. For this reason other state of the art numerically
exact methods are preferred at equilibrium. They are yet employed extensively out-of-
equilibrium where other methods become excessively greedy in terms of computational
complexity. The use of NCA as an out-of-equilibrium impurity solver is the subject of
Chapter V.

The Continuous Time Quantum Monte Carlo (CT-QMC) [46] is a group of three
algorithms which have been a breakthrough in finding the exact solution of impurity
models. They all rely on a perturbative expansion of the partition function and adapt the
maximum perturbation order to get a fully resummed result. This expansion can either
be expressed in interaction (CT-INT), in hybridization (CT-HYB) or using auxiliary
fields (CT-AUX). They compute the perturbation coefficients stochastically using a Monte
Carlo scheme. Their complexity scales poorly with the system size and they suffer from
the sign problem at low temperatures which limits their usage. They are described in
more details in Subsection I.3.2.

I.3.3 Ground state numerical approaches

An active field of research focuses on understanding the ground state properties of ma-
terials and are therefore studying the zero temperature T = 0 limit. These methods are
by construction not perturbative in any of the system parameters. They are centered on
building directly the wave function of the system which minimizes the energy.

The Exact Diagonalization (ED) directly tackles the Hamiltonian diagonalization
problem. At T = 0 it can be associated to an iterative eigenvalue solver, like the Lanc-
zos algorithm, in order to obtain specifically the ground state eigenvector. This method
provides an exact solution of the problem when successful but it remains highly limited
by the number of sites of the system. Taking advantage of symmetries an upper limit of
N = 50 spins was recently reached [145].

The Numerical Renormalization Group (NRG) [22, 146] is an impurity solver at zero
temperature. It takes advantage of the concepts of renormalization group flow introduced
by Wilson to the field of condensed matter theory (Nobel prize 1982). It adds iteratively
to an impurity the degrees of freedom of a non-interacting bath. The Hilbert space is
truncated to keep the small energy scales of the impurity.

The Tensor Network algorithms rely on a specific representation of the wave function
described by a network of tensors adapted recursively in order to minimize the energy
towards the ground state. The Density Matrix Renormalization Group (DMRG) [124,
142, 143] belongs to this class of methods. It represents the wave function as a matrix
product state in one dimension and truncates the Hilbert space to reduce the degrees of
freedom of the ground state.

These methods have proven effective for finding the ground state of correlated systems.
However they are limited by the size of the Hilbert space and struggle for addressing large
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system sizes or dimensions greater than D = 2. Since they put effort into reducing the
number of degrees of freedom of the system when constructing the ground state wave
function, they suffer from limitations regarding the degree of entanglement of the ground
state.

All of these techniques have extensions to study non-zero temperature systems, but
they remain restricted to small system sizes and are limited by the entanglement entropy.
The Minimally Entangled Typical States (METTS) method is one of these extensions. It
evolves in imaginary time a typical wave function constructed as a matrix product state.
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We introduce in this chapter the perturbative theory framework for strongly correlated
fermions which is at the center of the algorithmic developments provided in this thesis.
It is a common idea in physics for treating systems with interaction to start from the
much simpler non-interacting limit. One can then add interactions considered as a small
parameter, and treat it as a perturbation to the non-interacting system. Let us take the
example of the Hubbard Hamiltonian Eq.I.5 to illustrate this idea :

Ĥ = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µ
∑

i

(n̂i↑ + n̂i↓)

= Ĥ0 + UĤexp

(II.1)

Where we noted Ĥ0 the non-interacting Hamiltonian and Ĥexp the interacting expan-
sion Hamiltonian. We choose here to consider U the on-site Coulomb interaction as the
perturbation parameter.

Ĥ0 = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − µ

∑
i

(n̂i↑ + n̂i↓) Ĥexp =
∑

i

n̂i↑n̂i↓ (II.2)

The goal of perturbation theory is to express a quantity of interest as a function of
perturbation orders in U . For an observable A we write :

A = a0 + a1U + a2U2 + a3U3 + ... (II.3)

where ai is the expansion coefficient of order i. The perturbative approach consists in
computing the first coefficients of this development for small i and truncate this series.
This would yield meaningful insights on the effect of small interaction in the perturbative
regime valid at small values of the perturbation parameter U . However it is not enough
to get a controlled and quantitative result in the intermediate coupling for U ∼ t. What
if we were able to compute many of the expansion coefficients up to some large enough
order n such that we could extrapolate the remaining coefficients towards infinite order ?
We would then describe the observable A as a power series in U :

A =
∞∑

n=0
anUn (II.4)

This will be our approach in the Chapters III-IV, using perturbation theory to obtain
quantitative results in the strong-to-intermediate coupling regime (U ≫ t), a regime which
is by essence, as stated in the title of this thesis, non-perturbative.

In this chapter we will show how to express the expansion coefficients an and interpret
them as diagrams, and how several algorithms are taking advantage of perturbation theory
to solve impurity or lattice problems.
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II.1 Interaction and hybridization expansions

II.1.1 Perturbative expansions of Z and G

We can employ two different perturbative approaches to the many-body problem :

• The interaction expansion for which we treat the Coulomb interaction U as the per-
turbation parameter, starting the expansion from the non-interacting Hamiltonian,

• The hybridization expansion for which we treat the hybridization function ∆ as the
perturbation parameter, starting the expansion from the well-defined atomic limit
(U → ∞). On the lattice we could expand in the hopping term t and start the
expansion at the same limit.

We aim in this section at deriving the perturbative expansions of correlators both in
interaction and hybridization. For simplicity we consider a single site impurity embedded
in a non-interacting bath :

H =
∑

σ

ϵd̂†
σd̂σ + Un̂d,↓n̂d,↑ +

∑
k,σ

(γkĉ†
k,σd̂σ + h.c.) +

∑
k,σ

ϵkĉ†
k,σ ĉk,σ

= H0 + Hint + Hhyb + Hbath

(II.5)

With ϵ the energy level of the impurity, ϵk the energy levels of the non-interacting
bath, d̂†

σ and d̂σ (respectively ĉ†
k,σ and ĉk,σ) are creation and annihilation operators on

the impurity (resp. in the bath for electrons with wave vector k), σ is the spin degree of
freedom, and γk the coupling constant between the bath and impurity.

After integrating over the degrees of freedom of the bath we can describe the impurity
by the action expressed in imaginary time τ at equilibrium with β = 1/T :

S =
∑

σ

∫ β

0
dτd†

σ(τ)(∂τ + ϵ)dσ(τ) + U

∫ β

0
dτn↓(τ)n↑(τ)

+
∑

σ

∫ β

0
dτdτ ′d†

σ(τ)∆σ(τ − τ ′)dσ(τ ′)
(II.6)

Which is written in terms of the hybridization function in imaginary time :

∆σ(τ) =
∑

k

|γk|2

iωn − ϵk
(II.7)

We recall that we can express in terms of Grassmann variables the partition function,
the average value of an observable A, and the imaginary-time Green’s function in the
following form :
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Z =
∫

D[d†
σ, dσ]e−S

⟨A⟩ = 1
Z

∫
D[d†

σ, dσ]e−SA

Gσ(τ) = 1
Z

∫
D[d†

σ, dσ]e−Sdσ(τ)d†
σ(0) = − δlnZ

βδ∆σ(−τ)

(II.8)

Expansion in interaction :

We start by describing the expansion in the Coulomb interaction U . The non-
interacting system is defined by the action :

S0 =
∑

σ

∫ β

0
dτd†

σ(τ)(∂τ + ϵ)dσ(τ) +
∑

σ

∫ β

0
dτdτ ′d†

σ(τ)∆σ(τ − τ ′)dσ(τ ′)

= −
∑

σ

∫ β

0
dτdτ ′d†

σ(τ)G0σ(τ − τ ′)−1dσ(τ ′)
(II.9)

Where we recognized the non-interacting Green’s function G0σ(iωn)−1 = iωn − ϵ −
∆σ(iωn). And with ⟨⟩0 designing the average over the non-interacting system we have :

Z0 =
∫

D[d†
σ, dσ]e−S0

⟨A⟩0 = 1
Z0

∫
D[d†

σ, dσ]e−S0A
(II.10)

We can now expand the interaction part in the expression of the partition function
with noting Tτ the imaginary time-ordering operator :

Z =
∫

D[d†
σ, dσ]e−S

=
∫

D[d†
σ, dσ]e−S0e−U

∫ β

0 dτn↓(τ)n↑(τ)

= Z0⟨Tτ e−U
∫ β

0 dτn↓(τ)n↑(τ)⟩0

= Z0
∑

n

∫ β

0
dτ1...dτn

(−U)n

n! ⟨Tτ nd↓(τ1)nd↑(τ1)...nd↓(τn)nd↑(τn)⟩0

(II.11)

Where we recognize a perturbative expansion in powers of the interaction U . The
correlator over the non-interacting system can be computed as a determinant using Wick’s
theorem. We note Dn,σ the n × n matrix of elements [Dn,σ]i,j = G0(τi − τj) :

Z = Z0
∑

n

∫ β

0
dτ1...dτn

(−U)n

n! DetDn,↑DetDn,↓ (II.12)



II.1. Interaction and hybridization expansions 19

And the Green’s function is obtained through the functional derivation :

Gσ(τ − τ ′) = − δlnZ

βδ∆σ(−τ + τ ′)

= −Z0
Z

∑
n

∫ β

0
dτ1...dτn

(−U)n

n! ⟨Tτ nd↓(τ1)nd↑(τ1)...nd↓(τn)nd↑(τn)dσ(τ)d†
σ(τ ′)⟩0

(II.13)

Which can also be written in terms of determinants with D′
n,σ the (n + 1) × (n + 1)

matrix defined by :

D′
n,σ =


G0σ(0−) . . . G0σ(τ1 − τn) G0σ(τ1 − τ ′)

G0σ(τ2 − τ1) . . . G0σ(τ2 − τn) G0σ(τ2 − τ ′)
... . . . ...

...
G0σ(τ − τ1) . . . G0σ(τ − τn) G0σ(τ − τ ′)

 (II.14)

And the Green’s function writes :

Gσ(τ − τ ′) = −Z0
Z

∑
n

∫ β

0
dτ1...dτn

(−U)n

n! DetD′
n,σDetDn,σ (II.15)

Hybridization expansion :

An other perturbative approach starts from the atomic limit of the problem (U → ∞)
and expands physical quantities in the hybridization function ∆σ(τ). The atomic limit is
described by the action :

Sloc =
∑

σ

∫ β

0
dτd†

σ(τ)(∂τ + ϵ)dσ(τ) + U

∫ β

0
dτn↓(τ)n↑(τ) (II.16)

In the local system we have :

Zloc =
∫

D[d†
σ, dσ]e−Sloc

⟨A⟩loc = 1
Zloc

∫
D[d†

σ, dσ]e−SlocA = Tr(e−βHlocA)
Zloc

(II.17)

With the local Hamiltonian Hloc =
∑

σ ϵd̂†
σd̂σ + Un̂d,↓n̂d,↑. In the same way as we

proceeded for the interaction expansion, we can now expand the partition function in the
hybridization function :
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Z =
∫

D[d†
σ, dσ]e−S

=
∫

D[d†
σ, dσ]e−Sloce−

∑
σ

∫ β

0 dτdτ ′d†
σ(τ)∆σ(τ−τ ′)dσ(τ ′)

= Zloc⟨Tτ e−
∑

σ

∫ β

0 dτdτ ′d†
σ(τ)∆σ(τ−τ ′)dσ(τ ′)⟩loc

= Tr(
∑

n

∫ β

0
dτ1...dτ ′

n

(−1)n

n! Tτ exp(−βHloc
∏
i,σ

d†
σ(τi)∆σ(τi − τ ′

i)dσ(τ ′
i)))

(II.18)

Which can be rewritten in terms of a determinant of the n×n matrix ∆n,σ of elements
[∆n,σ]i,j = ∆σ(τσ

i − τ
′σ
j ) :

Z =
∑

n↑,n↓

∫ β

0
dτ↑

1 ...dτ
′↑
n↑

∫ β

0
dτ↓

1 ...dτ
′↑
n↓

∏
σ

Det(∆n,σ)
nσ!2

× Tr(Tτ e−βHloc
∏
σ,i

d†
σ(τσ

i )dσ(τ ′σ
i ))

(II.19)

The hybridization expansion of the partition function. Contrary to the interaction
expansion, here the average value is over the local Hamiltonian which is not quadratic
since it contains the local Coulomb interaction quartic term. Therefore we can not apply
Wick’s theorem and have to perform a trace over the local degrees of freedom to evaluate
the partition function. We obtain the Green’s function :

Gσ(τ − τ ′) = 1
Z

∑
n↑,n↓

∫ β

0
dτ↑

1 ...dτ
′↑
n↑

∫ β

0
dτ↓

1 ...dτ
′↑
n↓

∏
σ′

Det(∆n,σ′)
nσ′ !2

× Tr(Tτ e−βHloc
∏
σ′,i

d†
σ′(τσ′

i )dσ′(τ ′σ′
i )dσ(τ)d†

σ(τ ′))
(II.20)

These equations are easily generalized to any correlator. The equations for the parti-
tion function expansions in this form are at the basis of two Continuous-Time Quantum
Monte Carlo (CT-QMC) algorithms. We describe them in the next section.

II.1.2 Stochastic sampling and impurity solver

We have shown how to express perturbatively the partition function as a power series :

Z =
∑

n

Znξn (II.21)

With ξ the perturbation parameter being either the Coulomb repulsion U or the
hybridization function ∆. In both cases the expansion coefficients Zn are expressed as
multidimensional integrals. One of the most efficient tool to evaluate integrals over a high
dimensional space is the Monte Carlo method. In this section we describe the continuous
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time Monte Carlo algorithms in interaction (CT-INT) and hybridization (CT-HYB) which
sample stochastically the partition function. They are part of a class of algorithms called
Continuous Time Quantum Monte Carlo (CTQMC). We give general explanations on the
Monte Carlo procedure and show how it is applied to these two impurity solvers. These
two algorithms consist in a first example of Diagrammatic Monte Carlo algorithms.

Monte Carlo :

The Monte Carlo method aims at computing integrals using a stochastic process to
generate configurations over the multidimensional integration space. Here, in the general
case of both expansions, we have expressed the partition function as an integration (or
sum) over many inner variables xi :

Z =
∫

dx1...dxmz(x1, ..., xm) =
∫

Ω
dxz(x) (II.22)

With Ω = {x1, ..., xm} the multidimensional integration space. The Monte Carlo
method computes this integral through generating configurations in the ensemble X ∈ Ω
and evaluating z(X) at these configurations. For configurations Xi generated uniformly
we obtain :

Z =
∫

Ω
dxz(x) ≈ Ω

N

N∑
i=1

z(Xi) (II.23)

Where the sum runs over the randomly generated configurations Xi. This equation
becomes exact in the limit of infinite configurations N → ∞.

However sampling uniformly the configuration space will lead to poor convergence
properties by generating configurations where the function z is small. We need to sample
efficiently the configuration space by defining a Monte Carlo weight W(X) which is a
distribution probability for generating the configurations Xi. This procedure is called
importance sampling :

Z ≈ 1
N

N∑
i=1

z(Xi)
W(Xi)

(II.24)

The best strategy would be to sample the configuration space according to a prob-
ability density proportional to z so that we only need to accumulate the sign of the
non-positive z function :

W(X) = |z(X)|∫
Ω dX ′|z(X ′)| Z =

MC∑
C

sgn(z(C)) (II.25)

Where the sum on ’MC’ means that we do the summation according to the Monte
Carlo procedure in the limit of a large number of configurations C which are generated
according to the defined Monte Carlo weight W(C).
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In practice we do not know a priori the normalization of the function z and we do not
know how to generate configurations directly according to this probability distribution.
This means that we can not use this optimal Monte Carlo weight while sampling directly
the configuration space. This problem is solved by constructing a Markov chain to explore
the configuration space with a probability density which doesn’t require normalization.
A Markov chain is a stochastic process that generates new configurations iteratively from
the existing one. Starting from a configuration X we get to a new configuration Y with a
probability WXY . A sufficient condition for the configurations to be generated according
to a given density probability W is the detailed balance condition :

WXY W(X) = WY XW(Y ) (II.26)

There are many ways to choose a transition amplitude WXY which satisfies this con-
dition. The most famous approach lies in the Metropolis-Hastings algorithm. It consists
in splitting the transition probability W into two parts with WXY = TXY AXY :

• We first propose a change from a configuration X to Y with probability TXY .

• The transition is then accepted with probability AXY . If rejected we stay in con-
figuration X.

The detailed balance condition is satisfied by setting the acceptance probability as :

AXY = min(1,
W(Y )TY X

W(X)TXY
) (II.27)

More details and concrete examples on Monte Carlo simulations are given in Subsec-
tion III.1.2. We make several remarks before applying this procedure to the two impurity
solvers detailed in this section :

• The amplitude probability TXY for proposing changes in configuration can be cho-
sen arbitrarily and adapted to the configuration space. It is only required to ensure
ergodicity which means that a configuration Y can be reached from a given config-
uration X in a finite number of steps.

• Only the ratio of Monte Carlo weights appears in the detailed balance Eq. II.26.
This shows that the probability density does not require to be normalized when
constructing the Markov chain and we can use the optimal distribution of Eq. II.25.

• The convergence property of the Monte Carlo sum is ensured by the Central Limit
theorem. For a finite, but large, number N of uncorrelated configurations explored
by the Monte Carlo procedure, the standard deviation of the distribution varies like
1/

√
N . Therefore it converges to the exact value of the integral in the limit of long

computational time and the Monte Carlo belongs to the class of methods called
numerically exact.
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• Since the statistical error on the Monte Carlo result does not depend on the di-
mension of the configuration space, it proves to be much more efficient for high
dimensional integration than standard discretization scheme such as Simpson in-
tegration. For these techniques applied to an integration over a D-dimensional
space discretized into N points the convergence scales as 1/ D

√
N which becomes

very slow at large D. Other numerical methods such as Quasi-Monte Carlo [90] or
Tensor Trained Cross approximation [97] have proven effective for multidimensional
integration.

In the following we apply the Monte Carlo method to the perturbative expansions
developed in the previous subsection. We apply it to measure the Green’s function as
an example which can be generalized to the measurement of the self-energy or any other
correlator. Since they are expressed as a ratio of an integral of a determinant-like quan-
tity over the partition function, we use the partition function expansion for importance
sampling. We accumulate both the numerator and denominator at every Monte Carlo
step and need to reach the convergence for both procedures to obtain the quantity of
interest.

CT-INT :

The CT-INT algorithm computes the interacting Green’s function through its expan-
sion in the Coulomb interaction U . It is evaluated as a fraction over the partition function
as shown in Eq.II.15. To evaluate the multi-dimensional integrals we define a Monte-Carlo
configuration as C = {n, τ1, ....τn} :

MC∑
C

1
W(C) =

∑
n

∫ β

0
dτ1...

∫ β

0
dτn (II.28)

We aim at sampling the partition function which expansion is shown in Eq. II.12,
hence the weight of a Monte Carlo configuration :

W(C) = |(−U)n

n! DetDn,↑DetDn,↓| (II.29)

So that the partition function is obtained by accumulating its sign :

Z = Z0

MC∑
C

((−1)nsgn(DetDC,↑DetDC,↓) (II.30)

In order to measure the Green’s function it is useful to have the Monte Carlo weight
appear in the numerator of its expression. We expand the determinant of D̃n,σ with
respect to the last line and last column :
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Gσ(τ) = G0σ(τ) − 1
βZ

G0σ(−τ)2∑
n

∫ β

0
dτ1...

∫ β

0
dτn

(−U)n

n! DetDn,↑DetDn,↓

×
n∑

i,j=1
δ(τi − τj + τ)[Dn,σ]−1

ij

(II.31)

At the expense of a matrix inversion we obtain a new form for the Green’s function
to be computed stochastically :

Gσ(τ) = G0σ(τ) − 1
βZ

G0σ(−τ)2
MC∑

C
(−1)nsgn(DetDC,↑DetDC,↓)

×
n∑

i,j=1
δ(τi − τj + τ)[DC,σ]−1

ij

(II.32)

CT-HYB :

The CT-HYB algorithm computes the interacting Green’s function through its expan-
sion in the hybridization function ∆. Given the multi-dimensional integral Eq. II.20 we
define a Monte Carlo configuration by C = {nσ, {τσ

i , τ
′σ
j }1≤i,j≤nσ }σ=↑,↓ :

MC∑
C

1
W(C) =

∑
n↑,n↓

∫ β

0
dτ↑

1 ...dτ
′↑
n↑

∫ β

0
dτ↓

1 ...dτ
′↑
n↓

(II.33)

We aim at sampling the partition function which expansion is shown in Eq. II.19,
hence the weight of a Monte Carlo configuration :

W(C) = |
∏
σ

Det(∆n,σ)
nσ!2 × Tr(Tτ e−βHloc

∏
σ

d†
σ(τσ

i )dσ(τ ′σ
i ))| (II.34)

So that the partition function is obtained by accumulating its sign :

Z =
MC∑

C
sgn(

∏
σ

Det(∆C,σ)
n2

σ!
× Tr(Tτ e−βHloc

∏
σ

d†
σ(τσ

i )dσ(τ ′σ
i ))) (II.35)

We perform the functional derivative from the expression of Z Eq. II.19 in order to
express the Green’s function in terms of the Monte Carlo weight :

Gσ(τ) = − 1
βZ

∑
n↑,n↓

∫ β

0
dτ↑

1 ...dτ
′↑
n↑

∫ β

0
dτ↓

1 ...dτ
′↑
n↓

∏
σ′

Det(∆n,σ′)
nσ′ !2 × Tr(Tτ e−βHloc

∏
σ′,i

d†
σ′(τσ′

i )dσ′(τ ′σ′
i ))

×
n∑

i,j=1
δ(τσ

i − τσ
j + τ)[∆n,σ]−1

ij

(II.36)
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And the Green’s function is computed stochastically through :

Gσ(τ) = − 1
βZ

MC∑
C

sgn(
∏
σ′

Det(∆C,σ′) × Tr(Tτ e−βHloc
∏
σ′,i

d†
σ′(τσ′

i )dσ′(τ ′σ′
i )))

×
n∑

i,j=1
δ(τσ

i − τσ
j + τ)[∆C,σ]−1

ij

(II.37)

Comparison and limitations of the CTQMC algorithms :

Both these algorithms rely on the same approach : expressing a correlator as a ratio
of a perturbative series over the partition function, and using the partition function for
importance sampling of the stochastic computation. They perform directly the summa-
tion over the perturbative orders to obtain a ratio of two Monte Carlo sums. This means
that they need to allow updates between configurations with a different number of imag-
inary times called insertions or removals, as well as simple modifications of times on the
imaginary time axis.

At each Monte Carlo step theses methods require the computation of determinant and
of inverse matrices of size n × n which leads to a complexity per Monte Carlo step scaling
like n3 with n the average perturbation order in the stochastic process. This average
order can be related to the physical parameters of the problem with n ∼ NUβ for the
interaction expansion case (CT-INT) and n ∼ NEkinβ for the hybridization expansion
case (CT-HYB) with N the size of the impurity (N = 1 here for a single-orbital single-
site impurity) and Ekin the kinetic energy of the system. Additionally, for the CT-HYB
algorithm one needs to compute a trace over the local states, which leads to an exponential
complexity with the size of the impurity. This explains the main difference between these
two approaches : the interaction expansion works better for weakly interacting systems,
while the hybridization expansion is limited by the kinetic energy and works better in
the large interaction limit. They are complementary in the sense that their perturbative
approach starts form different limits and tries to reach the intermediate coupling regime
where the kinetic and potential energies are of the same order.

This could have us think that we found methods that solve strongly correlated sys-
tems in a polynomial complexity, for any temperature or system size. Nonetheless, these
approaches suffer from an other main issue which we discuss in the next section : the sign
problem.

II.1.3 Sign problem and chemical potential shift

The main limitation to the CTQMC algorithms at low temperature and for large system
sizes is caused by the sign problem. In the expansion of the partition function or of
the Green’s function, we see that the Monte Carlo contributions have a changing sign
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depending on the imaginary time distribution and on the order. When sampling the
partition function we therefore need to accumulate its sign as shown in Eq. II.30 and
Eq. II.35. Depending on the Monte Carlo configuration this sign alternates leading to
cancellations between different measurements. In the end these cancellations can cause
a huge raise of the statistical error and become overwhelming at small temperature.
The sign problem is even worsen in the context of CTQMC algorithms by the fact that
the quantity of interest is expressed as a ratio over the partition function. This makes
the statistical error of the ratio explode after error propagation. This alternating sign
ultimately comes from the fermionic anticommutation relations and is believed to make
the solving of strongly correlated fermionic systems a nondeterministic polynomial hard
problem (NP hard) [137].

The sign problem can be estimated during the Monte Carlo computation as :

⟨sgn(Z)⟩ =
∫

dx1...dxmz(x1, ..., xm)∫
dx1...dxm|z(x1, ..., xm)| (II.38)

This sign is known to decrease exponentially towards 0 when increasing the system size
or decreasing the temperature. It remains the main limitation to Monte Carlo methods
for strongly correlated fermions.

The α-shift :

One way to soften the sign problem is to redefine the starting point of the perturbation
expansion. In the CT-INT algorithm one can redefine the non-interacting Hamiltonian
(or action) and propagator. This technique is called the α-shift and it takes the form of a
chemical potential shift. We detail this in a more general and detailed way in Subsection
III.1.3. The idea here is to redefine the interaction term as :

Und,↓nd,↑ → U(nd,↓ − α↑)(nd,↑ − α↓) + U
∑

σ

nd,σασ + const (II.39)

This will have no consequence on the final result since we are, up to a non essential
constant, describing the same Hamiltonian. We incorporate the quadratic term of this
interaction in the non-interacting propagator which is now written :

G̃0,σ(iωn) = 1
iωn − ϵ − Uασ − ∆σ(iωn) (II.40)

This means that the perturbative expansion is performed around a different starting
point defined by this new propagator. The perturbative expansion of the partition func-
tion (similarly to the one of the Green’s function) changes to incorporate the α terms
:
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Z̃ = Z̃0
∑

n

∫ β

0
dτ1...dτn

(−U)n

n! ⟨Tτ (nd↓(τ1 − α↑)...(nd↑(τn) − α↓)⟩0

= Z̃0
∑

n

∫ β

0
dτ1...dτn

(−U)n

n! DetD̃n,↑DetD̃n,↓

(II.41)

Where after applying Wick’s theorem we obtain the same expression involving deter-
minants of the shifted matrices :

D̃n,σ =


G0σ(0−) − ασ̄ G0σ(τ1 − τ2) . . . G0σ(τ1 − τn)
G0σ(τ2 − τ1) G0σ(0−) − ασ̄ . . . G0σ(τ2 − τn)

...
... . . . ...

G0σ(τn − τ1) G0σ(τn − τ2) . . . G0σ(0−) − ασ̄

 (II.42)

In general, for a system close to half-filling ⟨nσ⟩ ≈ 1/2 we choose to set the α coeffi-
cients as :

α = 1
2 + (−1)σδ (II.43)

With δ a small parameter. With this choice we expect the operators n↑ − α↓ and
n↓ − α↑ to have opposite signs on average, creating a new alternating sign depending on
the order n. This sign is expected to cancel with the (−U)n term and has proven to limit
the cancellations between different the contributions at different orders [147].

II.2 Diagrammatic Monte Carlo

Although Continuous Time Quantum Monte Carlo algorithms have been a breakthrough
for solving impurity problems in the context of the DMFT framework, we have seen that
they face strong limits when increasing the system size. In this thesis we aim at going
further and addressing the many-body fermionic problem in the thermodynamic limit,
and without approximation.

The idea developed in this section is based on the diagrammatic formalism developed
initially by Feynman for tackling perturbative expansions in high energy physics. After
briefly introducing Feynman diagrams and their application to perturbative expansions,
we show how the DiagMC (Diagrammatic Monte Carlo) algorithm computes sums of dia-
grams to construct perturbative series, and we detail the main limitations to perturbative
approaches.

In this section we consider a perturbative approach of the Hubbard Hamiltonian in
the Coulomb interaction U , directly on the full lattice of N sites, and we write :
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H = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − µ
∑

i

(n̂i↑ + n̂i↓)

= H0 + UHexp

H0 = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − µ

∑
i

(n̂i↑ + n̂i↓) Hexp =
∑

i

n̂i↑n̂i↓

(II.44)

With H0 the non-interacting Hamiltonian, and Hexp the interacting expansion Hamil-
tonian. Similarly to the hybridization expansion developed on the CT-HYB algorithm,
we could also start the perturbative treatment from the atomic limit U → ∞ and perform
a perturbation in the hopping parameter t. For simplicity we will focus on the interaction
expansion which is at the basis of the algorithmic developments presented in this thesis
in the chapters III and IV.

II.2.1 Diagrammatic interpretation of perturbative expansions

In the CTQMC approach, we expressed a correlator (or observable) as a ratio of a
perturbative expansion over the partition function. Typically for an observable A we
have :

A =
∑∞

n=0 anUn

Z
(II.45)

Even if the expansion coefficients turns out to be relatively easy to compute in a
polynomial time, this has a major drawback : the presence of a sign problem at the
denominator in the computation of the partition function leads to overwhelming statistical
errors. We aim here at getting rid of the fraction and expressing an observable as a simple
expansion series :

A =
∞∑

n=0
anUn (II.46)

In this expansion the coefficients an can be interpreted as sums of diagrams. More
details on the use of diagrams in quantum physics can be found in [21,95].

Expansion of the partition function :

To introduce Feynman diagrams we come back to the interaction expansion of the
partition function :

Z = Z0
∑

n

N∑
i1,...,in=1

∫ β

0
dτ1...dτn

(−U)n

n! ⟨Tτ ni1↓(τ1)ni1↑(τ1)...nin↓(τn)nin↑(τn)⟩0 (II.47)
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Where we added the sum over the sites of the lattice, with niσ the density operator
on site i with spin σ. In the context of CTQMC we have used Wick’s theorem to express
the average value over the non-interacting system ⟨. . .⟩0 as a determinant. Our idea
now is to express each of these terms as diagrams which are a pictorial representation of
these expectation values. They are a powerful tool to deal with perturbation theory as
they enable one to understand each mathematical term in the expansion expression as a
graphic representation and to better understand the combinatory arguments to compute
these terms.

In the case of the interaction expansion of the Hubbard model we construct the di-
agrammatic representation with two main features : bare lines and vertices. The bare
fermionic lines are non-interacting propagators between two points with different position
and imaginary time and same spin coordinates :

(τ1, i1, σ) (τ2, i2, σ) = G0,σ,i1i2(τ2 − τ1) (II.48)

And the wiggly lines connect four propagators. They stand for the interaction per-
turbative term U and are called vertices :

(5)

(1)

(3)

(2)

(4)

↑

↓

= −U
∑
i5

∫
dτ5[G0,↑,i1i5(τ5 − τ1)G0,↑,i5i2(τ2 − τ5)

G0,↓,i3i5(τ5 − τ3)G0,↓,i5i4(τ4 − τ5)]

(II.49)

Where we used the compact notation for the tips of the propagator lines (1) = (τ1, i1).
In the following we will, without loss of generality, omit to write the indices at each vertex.
Because of the form of the interacting term U

∑
i n̂i↑n̂i↓ the interaction vertices connect

propagators with the same imaginary-time and position coordinates, but with opposite
spins. For each closed loop one has to multiply by −1 when evaluating a diagram. In the
end we notice that the order to which a diagram contributes is equal to the number of
vertices it contains.

Returning to the perturbative expansion of the partition function Eq. II.47 and apply-
ing Wick’s theorem we can rewrite the average value of the product of second quantization
operators as a sum and product of contracted terms that we can interpret as diagrams.
The partition function is expressed as a sum :

Z = Z0
∑

n

N∑
i1,...,in=1

∫ β

0
dτ1...dτnFn(τ1, i1, . . . , τn, in) (II.50)

With Fn(τ1, i1, . . . , τn, in) the sum of all the possible diagram topologies with n ver-
tices with coordinates (τ1, i1), . . . , (τn, in) which are connected or not, with no external
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vertices (all vertices are linked to four propagators). For instance at the second order in
perturbation in U :

F2((1), (2)) = (1) (2)
↓

↑

+ (1) (2)
↓

↑

+

(1) (2)
↓

↑

+ (1) (2)
↓

↑
(II.51)

At a perturbation order n the number of different diagrammatic topologies that con-
tribute to Fn is equal to (n!)2.

Expansion of the Green’s function :

Now that we have introduced the diagrammatic expansion of the partition function,
we focus on applying the diagrammatic formalism to the perturbation expansion of cor-
relators or physical observables. As in the previous Section, we take the example of the
Green’s function between sites l and k :

Gσ,lk(τ − τ ′) = − Z0
Z

∑
n

N∑
i1,...,in=1

∫ β

0
dτ1...dτn

(−U)n

n! ⟨Tτ ni1↓(τ1)ni1↑(τ1) . . .

. . . nin↓(τn)nin↑(τn)cσ,l(τ)c†
σ,k(τ ′)⟩0

(II.52)

This expression of the numerator is very similar to the one for the partition function
with two additional operators with definite sites, spin and imaginary-time. Therefore its
diagrammatic expansion follows similar rules and we note :

Gσ,lk(τ − τ ′) = −
∑

n

∑N
i1,...,in=1

∫ β
0 dτ1...dτnBn((τ1, i1, . . . , τn, in), (τ, l, σ), (τ ′, k, σ))∑

n

∑N
i1,...,in=1

∫ β
0 dτ1...dτnFn(τ1, i1, . . . , τn, in)

(II.53)

With Bn((τ1, i1, . . . , τn, in), (τ, l, σ), (τ ′, k, σ)) the sum of all the possible diagram topolo-
gies connected or not, and having n + 2 vertices with :

• n internal vertices of coordinates (τ1, i1), . . . , (τn, in) each having two entering and
two leaving propagators,

• one external vertex of coordinates τ, k which only has one leaving propagator with
spin σ,
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• one external vertex of coordinates τ ′, l which only has one entering propagator with
spin σ.

For instance the following diagram is contributing to B2 :

(1) (2)

(τ ′, k) (τ, l)
σ

σ̄

(II.54)

The Green’s function is now expressed as a ratio of sums over diagrams’ topologies
which number grows factorially with the perturbation order n. In this form this expression
is not usable for any practical purpose, but it leads to a major combinatory simplification.
Indeed, from the linked-cluster theorem, we are able to factorize the numerator by the
partition function. We eliminate the ratio by removing the contribution of disconnected
diagrams and obtain :

Gσ,lk(τ − τ ′) = −
∑

n

N∑
i1,...,in=1

∫ β

0
dτ1...dτnCn((τ1, i1, . . . , τn, in), (τ, l, σ), (τ ′, k, σ)) (II.55)

With Cn((τ1, i1, . . . , τn, in), (τ, l, σ), (τ ′, k, σ)) the sum of diagrams that follow the same
rules as for Bn but have to be connected. Writing the interacting Green’s function as a
double arrow and omitting the vertices coordinates we give the Green’s function pertur-
bative expansion up to order two :

= +

+ + + + . . .

(II.56)

Self-energy :

From this diagrammatic expansion we notice that the interacting Green’s function can
be expressed as a series of diagrams which are called one-particle irreducible and can not
be separated into two diagrams by cutting a single fermionic line. We note the sum over
such diagrams as a circle and write the Green’s function :
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= + + + . . .

= +

(II.57)

Where we recognize a self-consistent relation on the Green’s function which is the
diagrammatic expression of the Dyson’s equation :

Gσ,ij(τ) = G0σ,ij(τ) +
∑
kl

∫
dτ1dτ2G0σ,ik(τ1)Σσ,kl(τ2 − τ1)Gσ,lj(τ − τ2) (II.58)

It corresponds to the definition of the self-energy in Matsubara frequencies and in k
space :

Gkσ(iωn) = G0kσ(iωn) + G0kσ(iωn)Σkσ(iωn)Gkσ(iωn) (II.59)

With this we identify the diagrammatic expansion of the self-energy which is the sum
over all topologies of the connected one-particle irreducible diagrams.

Diagrammatic interpretation of many-body approximations :

Returning to our problem at hand, the Green’s function expansion that we have
derived above can be generalized to any correlator or observable. In the end, we have
found a way to express, as expected without a ratio, an observable A in the form of a
perturbative expansion in the interaction :

A =
∞∑

n=0
anUn (II.60)

Where the expansion coefficients an are a sum of a class (depending on the correlator or
observable) of connected diagrams with n internal vertices. This diagrammatic formalism
comes out to be very useful and manageable for analytic and algorithmic treatments.
Before addressing computational and algorithmic aspects we discuss several many-body
approximations which either rely directly on, or can be interpreted with diagrammatic
expansions.

Some approximations rely on considering only a certain class of diagrams in the dia-
grammatic expansion, enabling an analytic treatment of the sum over diagrams topologies
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and orders. That is the case of the Non-Crossing Approximation (NCA) which will be
detailed in Chapter V. The famous mean-field (or Hatree-Fock) approximation can be
interpreted in that sense. It consists in decoupling the quartic interaction term by ap-
proximating it by an effective single body interaction in an effective bath of electrons. In
practice we write :

n̂i↑n̂i↓ → n̂i↑⟨n̂i↓⟩ + n̂i↓⟨n̂i↑⟩ + ⟨n̂i↑⟩⟨n̂i↓⟩ (II.61)

And the Hubbard Hamiltonian becomes :

ĤMF = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − U

∑
i

⟨n̂i↑⟩⟨n̂i↓⟩ + U
∑

i

n̂i↑⟨n̂i↓⟩

+ U
∑

i

n̂i↓⟨n̂i↑⟩ − µ
∑

i

(n̂i↑ + n̂i↓)
(II.62)

This is a quadratic Hamiltonian depending on the average values of the number oper-
ators which is easily diagonalized in k space. It leads to a self-consistent analytic solution
and the mean-field Green’s function is :

GMF kσ(iωn) = 1
iωn − ϵk − U⟨n̂σ⟩ + µ

= G0kσ(iωn) +
∞∑

l=0
(U⟨n̂σ⟩)lG0kσ(iωn)l+1

(II.63)

Where we recognize a self-consistent Dyson-like equation :

GMF kσ(iωn) = G0kσ(iωn) + G0kσ(iωn)(U⟨n̂σ⟩)GMF kσ(iωn) (II.64)

To link this expression to a diagrammatic interpretation of the mean-field approx-
imation, let us evaluate the single loop diagram, called Hartree insertion. The double
fermionic line now stands for the mean-field propagator :

σ (1) = UGMF i1i1σ(0−)

= U⟨ĉ†
i1σ(0+)ĉi1σ(0)⟩MF

= U⟨n̂σ⟩

(II.65)

Therefore we can rewrite Eq. II.64 diagrammatically dropping the vertices’ coordinates
:

= + (II.66)

We notice that the mean-field approximation is equivalent to setting the self-energy to
a self-consistent Hartree self-loop term. In other words, we approximate the self-energy
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by keeping only the first order term (a self-loop) among all the one-particle irreducible
diagrams and making it self-consistent.

Other more advanced approximations such as DMFT and its extensions have a dia-
grammatic interpretation. The DMFT approximation Eq. I.10 corresponds to considering
only local diagram insertions in the expansion of the self-energy. This remains valid in the
case of the DΓA and Trilex approximations for which only local insertions are considered
in the expansion of the two-particle and three-particle irreducible vertices.

II.2.2 The DiagMC algorithm

The first direct consequence of the diagrammatic expansion Eq.II.60 is that it gives a
new pertubative numerical approach to the strongly interacting problem. In the CTQMC
algorithms, the partition function at the denominator of the expression was significantly
worsening the sign problem and by getting rid of it we can expect to reach bigger system
sizes and lower temperatures. The stochastic treatment that we detail in this section is
called DiagMC (Diagrammatic Monte Carlo) [74,105,138].

The idea of this algorithm is to compute for each order n, the expansion coefficient an

of the perturbation expansion of an observable A. It is expressed as a multidimensional
integration over all the topologies of connected diagrams with n internal vertices (and
with external legs depending on the observable) noted T, that imply integration over n
imaginary-times and n positional indices. We define a Monte Carlo configuration as :

C = {(τ1, i1), . . . , (τn, in), T} (II.67)

And the Monte Carlo weight is defined as the absolute value of a diagram defined by
the configuration C. We note :

W(C) = |T((τ1, i1), . . . , (τn, in))| (II.68)

Since diagrams don’t have a definite sign, it needs to be accumulated as we perform
the Markovian process :

an =
MC∑

C
sgn|T((τ1, i1), . . . , (τn, in))| (II.69)

It is to be noted that generally, contrary to the CTQMC approach, the computation
focuses on a specific perturbation order and the summation over perturbative orders
has to be performed afterhand. In practice since the Markov chain does not lead to
a normalized results, the stochastic process samples several orders at the same time,
allowing for normalization.

A significant difficulty of this algorithm lies in the definition of the Markov chain
through the Metropolis-Hasting algorithm. The standard updates for exploring the dia-
grams’ topologies are insertions or removals of vertices. Ensuring ergodicity between all
diagrams’ topologies and checking their connectivity is in itself an algorithmic challenge.
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This algorithm is able to tackle the low-to-intermediate coupling regime of the Hub-
bard model but is limited by a significant sign problem due to cancellations between
diagrams. In practice it is able to reach up to order n ∼ 6 − 7. In order to overcome this
sign problem one could try to sample individually each diagram at a specific order and
perform the sum over all topologies explicitly. However the number of diagrams increases
rapidly with the perturbation order, leading to an overwhelming factorial complexity
O(n!). Other approaches aim at generating and regrouping together many diagrams in
order to reduce the effect of cancellations [27,132].

This DiagMC algorithm can be used for computing the fully dressed self-energy in
the context of skeleton series [106]. The proper self-energy is expressed self-consistently
expressed in terms of renormalized propagators, making the Dyson’s equation a self-
consistent scheme. Although promising, this self-consistent approach has been shown to
lead to misleading results by converging to non-physical propagators [75].

The main advantage of this method lies in the fact that the diagrammatic expansion
is formulated directly in the thermodynamic limit. The only algorithmic step that scales
with the system size is the computation of the non-interacting propagator which is done
by a Fourier transform in polynomial time. Contrary to the CT-INT algorithm, the
DiagMC technique is able to tackle large system sizes which is essential for the study of
phase transitions. Nevertheless, one problem still remains, after obtaining the expansion
coefficients up to some maximal order, how do we perform the summation of the series
and what are the limitations involved ?

II.2.3 Resummation and Complex plane structure

The DiagMC technique is limited at high perturbation orders by the factorial increase
in the number of diagrams it needs to sample. With this methods we are in general able
to obtain a finite number of expansion coefficients with good statistical error, up to a
maximal order nmax ∼ 6 − 7. One of the advantages of the diagrammatic Monte Carlo
approach is that an observable A is directly computed as a function of the perturbative
parameter U . But a fair part of the information on this function can be hidden at higher
orders.

Extrapolation to infinite perturbation order :

After performing the DiagMC algorithm we obtain the observable A expressed as :

A(U) =
nmax∑
n=0

anUn (II.70)

In order to obtain a controlled result one needs to extrapolate this truncated pertur-
bation series to infinite perturbation order nmax → ∞ to retrieve the expression Eq. II.60.
Several numerical tools have been developed to handle this procedure called resummation.
The partial sum can be extrapolated to an infinite power series using simple polynomial
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or exponential fitting of its coefficients. In this thesis we rely on Padé and D-log Padé
approximants [10,20] that express the finite series as a Padé approximant (or the deriva-
tive of the log of the finite series). More details on our complete resummation procedure
will be given in IV.2.3. Other methods such as Borel summation or conformal mapping
have also proven efficient on this matter.

All things considered, the information that is available to us is mostly relevant at
small values of the interaction. At high values of U we expect higher orders to carry more
weight in the description of the power series. This means that the more orders we are able
to compute with good accuracy, the higher the values of the interaction we can describe
with good confidence and control.

Limitations to perturbation theory :

The finite number of orders obtained with diagrammatic Monte Carlo is a fair obstacle
to reaching strong coupling regimes from perturbation theory. But even if we could obtain
an infinite number of expansion coefficients with perfect accuracy we would still face the
main limitation to our perturbative approach. This limitation finds its origin in the very
first assumption that we have made : that an observable A can be described as a power
series in the interaction U .

Indeed the convergence of such a power series is not ensured, and many analytic
functions can not be fully described as a power series. Such a series is characterized
by a radius of convergence R which is equal to the limit for n → ∞, when it exists, of
the ratio |an/an+1|. It is useful here to extend the power series to complex values of U ,
the real values of the interaction yielding the physical results. In the complex plane the
power series can diverge at some values of U called poles, or have branch cuts where the
summation is not well defined, see Fig. II.1. The closest pole to the origin defines the value
of the radius of convergence. Inside the radius of convergence of the series for |U | < R,
the series is absolutely convergent and the convergence of the series with the maximal
perturbation order is exponentially fast. This is the region where the diagrammatic
approach is especially well suited to obtain a controlled result. Outside of the radius of
convergence |U | > R the series is diverging, while the power series can either converge or
diverge at |U | = R. However exiting the radius of convergence does not necessarily mean
that the perturbative approach is failing and the resummation techniques evoked above
are tools for resumming diverging series [14]. A region close to a pole is however almost
impossible to reach since it implies contributions from high perturbation orders.

This is probably the most challenging limitation to the use of perturbation theory
directly on the lattice for tackling strongly correlated problems. It is to be noted that this
limitation does not matter in the context of the CT-INT algorithm since an observable is
expressed as a ratio of two functions which are entire functions of U . This means that they
are holomorphic on the whole complex plane and have an infinite radius of convergence.
The finite radius of convergence is a drawback of removing the ratio and the contribution
of disconnected diagrams to the perturbative expansion. Thus, the poles in the expansion
of an observable correspond to the zeroes of the partition function.
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Figure II.1: Example of pole structure in the complex plane of a power series of
the complex parameter U . The violet dots are poles. The closest to the origin
is the one on the negative real axis, it defines the radius of convergence of the
series (violet circle). The physical values we are interested in are the ones on
the real axis (for a physical real interaction U). The green line represents the
values where one can hope to get a resummable series for the physical value.
The pole on the real axis make the region past its value a priori unreachable.

Even if poles in the complex plane are considered an artifact of our perturbative
approach which can sometimes be overcome with resummation tools, some poles can be
interpreted having a physical meaning. Indeed, a pole may exist because of a phase
transition happening at some values of U in the Hubbard model phase diagram. A phase
transition causes a divergence or a discontinuity in one of the derivatives of the quantity
we are interested in. Such a behaviour is not compatible with expressing it as a power
series. This is consistent with a general feature of perturbation theory : one can not
describe with perturbation series a crossing of a phase transition line as the behaviours
in the different phases can be considered to be analytically disconnected. This has two
major consequences:

• studying the pole structure of perturbation series can give insights on the phase
diagram of the model at hand,

• we need to find solutions to change the complex plane structure of perturbation
series to facilitate the resummation, and ultimately to enter perturbatively ordered
phases.
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In Chapter II we have understood the essential features of perturbation theory and
its diagrammatic formulation. The DiagMC approach is a powerful tool for studying
strongly correlated systems directly in the thermodynamic limit, how can we go further
and overcome its main limitations ?

In this chapter we show how recent developments in terms of both new algorithms
and formulation of perturbation theory are pushing further the limits to Diagrammatic
Monte Carlo methods. These advances rely on two main axis of progress :

• Computing more perturbation orders with better accuracy,

• Changing the starting point of the perturbation expansion to modify the complex
plane structure of the perturbation series.

III.1 The Connected Determinant algorithm
In this section we present the recent advances that lead to the new Connected Determinant
algorithm (CDet) [114]. This numerical technique, and its efficient implementation to
study the Hubbard model are at the basis of the work presented in this thesis. All the
numerical results presented in the Chapters III and IV rely on the Fast Feynman Diagrams
library (FFD) which is a toolkit for implementing efficiently diagrammatic Monte Carlo
algorithms.

III.1.1 Algorithm and complexity

The main advantage of the DiagMC approach comes from the cancellation of the dis-
connected diagrams (see Eq. II.55) in the perturbative expansion of an observable. By
simplifying the partition function expansion at the denominator we obtain a numerical
scheme that can cope with large system sizes. But this comes at the expense of a severe
sign problem from cancellations between diagram’s topologies. And trying to perform the
summation between different diagram’s topologies explicitly gives rise to a huge compu-
tational cost as it requires a factorial number of operations. In the CT-INT algorithm,
taking advantage of Wick’s theorem, the factorial number of contributions of connected
or disconnected diagrams is computed as a determinant in polynomial time. The idea
of the CDet algorithm is, starting from these determinant-like contributions, to remove
recursively the contribution of disconnected diagrams at each order.

Recursion for connected diagrams :

To illustrate this recursive procedure we consider the interacting Green’s function
Gσiiniout(τout − τin). Its order n expansion coefficient is the sum of connected diagrams
with n internal vertices which coordinates are given by the set V = {(i1, τ1), . . . , (in, τn)}
and two external ones {xin = (iin, τin), xout = (iout, τou)}. We aim at computing the sum
over all possible connected topologies of the diagrams that live on these vertices. We note
the sum of the connected diagrams on this ensemble of n+2 vertices C(V )(xin, xout). We
can compute as a determinant the sum of connected and disconnected diagrams on this set
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of vertices which we note D(V )(xin, xout). We recall that in the case of the perturbative
expansion in interaction of the Hubbard Hamiltonian it is expressed as :

D(V )(xin, xout) = DetD′
n,σDetDn,σ̄ (III.1)

Where the n + 1 × n + 1 matrix D′
n,σ is expressed in terms of the non-interaction

propagator :

D′
n,σ =


G0σi1i1(0−) . . . G0σini1(τ1 − τn) G0σiini1(τ1 − τin)

G0σi1i2(τ2 − τ1) . . . G0σini2(τ2 − τn) G0σiini2(τ2 − τin)
... . . . ...

...
G0σi1iout(τout − τ1) . . . G0σiniout(τout − τn) G0σiiniout(τout − τin)

 (III.2)

And Dn,σ̄ is the same matrix without the last line and column, involving propagators
with opposite spin. In order to remove the disconnected contributions to D(V )(xin, xout)
we notice that a disconnected diagram is composed of a disconnected part and a connected
part that contains the two external vertices, both made of strictly less than n+2 vertices.
Therefore computing the contribution of the disconnected part to D(V )(xin, xout) reduces
to computing the connected and disconnected contributions at lower orders, for subsets
of the vertices in V . Hence a recursive scheme on the perturbative order.

In the end, to get the sum of strictly disconnected diagrams we need to sum over all
the subsets S ⊊ V with vertices in S considered connected to the external vertices, and
the vertices in its complementary subset V/S being disconnected :

C(V )(xin, xout) = D(V )(xin, xout) −
∑
S⊊V

C(S)(xin, xout)D(V \S)(∅) (III.3)

Where D(V \S)(∅) designates the disconnected contributions of the subset V \S de-
fined with no external legs. This procedure is easily generalized in the case of observables
or correlators with different conditions on the external vertices involved in their diagram-
matic expansion.

Complexity :

We obtain a recursive approach for computing explicitly the sum of connected dia-
grams. What is the computational complexity of this recursive algorithm, and how does
it scale with the perturbative order in comparison to the factorial number of diagrams ?

In the recursion, to obtain the sum of connected diagrams at order n, one needs
to compute all the diagrams connected or disconnected at every lower order, for every
subset S ⊊ V . First one needs to compute at every order k lower than n, all the possible

determinants which number is
(

n

k

)
. This computation is done for each subset in a
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polynomial time k3. Then, performing the recursive computation, one needs to remove
from every set of k vertices all of its connected subsets multiplied by one of the previously
computed determinant for its complement. There are 2k subsets for an initial set of k
vertices. The complexity of the algorithm Cn is the sum of the complexities of these two
steps :

Cn =
n∑

k=0

(
n

k

)
k3 +

n∑
k=0

(
n

k

)
2k ∝ 2nn3 + 3n (III.4)

The complexity is no longer factorial but exponential and scales like 3n. In reality some
algorithmic improvements enable one to reach a better asymptotic complexity. Using
a fast principal minor computation algorithms [45, 63] one can perform the first step
in a smaller 2n asymptotic complexity. The second step, and overall complexity, can
be reduced thanks to a fast subset convolution algorithm [17] leading to an asymptotic
complexity increasing like n22n. In practice this last trick only gives a sensible speed up
at large perturbation orders for n > 10.

In the end the CDet algorithm provides an algorithm for computing the sum of con-
nected diagrams in exponential time. This is much faster than the naive summation
over the factorial number of connected topologies. Thanks to the explicit summation of
the connected diagrams this algorithm contributes to a significant reduction of the sign
problem and higher perturbative orders can be reached comparatively to the DiagMC
approach (see Section III.1.4). Even if the computational time for obtaining the expan-
sion coefficient of an observable is exponential, we have seen in Section II.2.3 that the
convergence of the resulting power series is exponentially fast inside the radius of conver-
gence. With this we can show that the CDet algorithm provides a method with an overall
polynomial complexity for obtaining a controlled result in the Hubbard model, at values
of the interaction that sit well into the radius of convergence of the series [113].

It is to be noted that this approach can be adapted to the computation of the self-
energy by summing all one-particle irreducible diagrams. The associated algorithm is
called Σ-Det [58,92].

A similar approach expressing expansion coefficients as determinants can be used
int the real-time formalism and adapted to the Keldysh contour for studying out-of-
equilibrium physics [13–15, 84, 104]. It does not require such a recursion for removing
disconnected contributions, but it requires the sum of an exponential number of determi-
nants at each order.

III.1.2 Many-Configuration Markov-Chain Monte Carlo

Now that we have presented an algorithm for efficiently computing explicitly the
sum over connected diagrams, we rely on a Monte Carlo algorithm for performing the
integration over the imaginary-time and lattice coordinates of vertices. In this approach
we fix the external vertices {xin = (iin, τin), xout = (iout, τou)} and define the Monte Carlo
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configuration C = {n, (τ1, i1), . . . , (τn, in)}. We do not use a simple Metropolis algorithm
at a fixed order n for two reasons :

• We want to take advantage of the many connected contributions computed in the
CDet recursion at lower orders

• The Markovian process needs to be normalized afterwards since the Monte Carlo
weight is not normalized.

Many Configurations in the Monte Carlo :

The CDet algorithm is particularly well adapted to the use of a Many-Configuration
Markov Chain Monte Carlo which details are presented in [60]. In the CDet recursive
scheme we compute many sums of connected diagrams (2n subsets at an order n), which
we would like to accumulate to get statistics over expansion coefficients at lower orders.
This algorithm enables this by exploring many sub-configurations at each Monte Carlo
step. It has the advantage of being rejection free.

Let us define n the order at which the computation is performed, and we consider a
Markov chain between an infinity of configurations of sets of n vertices C1 → . . . → Cj →
Cj+1 → . . .. At a step j, we call V this set of n vertices. At each Monte Carlo step we
perform the CDet recursive computation so that we obtain the Monte Carlo weight for
all the subsets S ⊊ V which is defined as the sum of all connected diagrams :

W(S) = |C(S)(xin, xout)| (III.5)

The idea is to accumulate these contributions to the expansion coefficients at lower
orders in between the steps j and j+1 of the Markov chain. We consider a continuous-time
Monte Carlo procedure in this interval where, in a faster than the clock-like feature, we
spend a time in each subset configuration proportional to the non normalized probability
:

P (S) = W(S)λl (III.6)

Where l is the cardinality of the set S which corresponds to the order at which the
sum of diagrams contributes. The λl are positive coefficients which enable renormaliza-
tion between the weight given at different orders. After accumulating for the expansion
coefficients at every order l ≤ n, we select one of these subsets of V in order to update
the Markov chain to the next configuration at step j + 1. We keep the l vertices present
in S and generate the missing n − l vertices. We choose to generate these new vertices
with the following procedure :

• We choose randomly one of the vertices of S,

• We generate a new vertex with coordinates around this existing vertex according to
a quasi-Gaussian distribution,
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• We do the same procedure for generating each new vertex.

The selection of the subset of vertices which we keep to generate this new configuration
is done according to a probability which enables the detailed balance condition [60]. This
probability can be computed in an exponential time which is negligible at high orders
comparing to the CDet recursion complexity. This procedure enables one to compute
all expansion orders up to some maximal order n in a single numerical simulation. The
many-configuration scheme has been shown to lead to a major speed up for the CDet
Monte Carlo computation, of a factor 102 for a computation at order 12. It is to be noted
that at the maximal order of the computation n, we only sample one configuration at
each Monte Carlo step, while we accumulate many configurations at lower orders, and
therefore the statistical error on the expansion coefficient at this order is huge in general.
In practice if we want to compute the perturbation series up to an order n, we perform
the CDet recursion with n + 1 internal vertices.

The accumulation is done at every step of the Markov chain and we rely on a binning
analysis to obtain reliable error estimates from correlated samples and get rid of the
auto-correlation time. The thermalisation time is negligible in front of the Monte Carlo
simulation time.

Normalizing the result :

Because of the Markovian process which relies on a distribution of probability which
is not normalized, the result at each order of this Monte Carlo scheme is defined up to
a constant factor. In order to normalize the obtained expansion coefficients we rely on
computing the zeroth order perturbation coefficient which is a know constant. In practice
we set this constant to 1 and give it the weight λ0. It is crucial that this normalization
term is computed with very good accuracy since its statistical error is propagated to all
other expansion orders when normalizing.

In order to understand the complexity that this need for normalization brings, it is
useful to better apprehend the effect of the reweighting coefficients λl. By affecting the
weight given to a set of vertices depending only on its carnality, the coefficients λl rescale
the weight given to different expansion orders. The weight associated with a specific
order is directly correlated to the Monte Carlo time spent and the proportion of updates
at this order. Therefore increasing the weight leads to a better Monte Carlo statistic
on the corresponding expansion coefficient, at the expense of a bigger statistical error at
different orders. In practice we set the coefficients λl = 2l for l ≥ 1 which turns out to
give a reliable re-weighting between orders for spending most of the time at high orders
where we need a lots of statistics, but also enough statistics for obtaining accurate low
expansion orders. This power law is motivated by the fact that the expansion coefficient
are the prefactor of Un in the expansion series. On the other hand, the weight λ0 requires
more work for enabling enough updates at zeroth order and an accurate normalization.
It is set by the condition that the stochastic process spends approximately 10% of the
Monte Carlo time accumulating at order zero. We follow the procedure :

i. We start from a guess for λ0 ∼ 2n/3 where n is the maximum order of the CDet
computation
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ii. We run the Many-Configuration Markov-Chain Monte Carlo procedure and store
the time spent accumulating at zeroth order. We need to run the Monte Carlo for
enough steps to overcome the thermalization time and obtain good statistics.

iii. We compare the proportion of Monte Carlo time spent at order zero t0 to 50% and
update the coefficient λ0 → cλ0 × 0.5/t0

iv. Go back to (ii) until the convergence t0 → 0.5

v. Finally update λ0 → 0.1λ0/0.5 to rescale the time at order zero t0 = 0.1

The convergence is made towards t0 → 0.5 to ensure better statistics for the time
spent at order zero, before rescaling it to t0 = 0.1. The coefficient c ensures that there
is no oscillations in the self-consistent converging scheme c ∼ 0.8. The convergence of
this scheme is essential to the overall computation to avoid ill cases in which we spend
no Monte Carlo time on normalization and we are unable to normalize the expansion
coefficients, or we spend all the time on normalization and obtain huge statistical errors
on the other expansion coefficients. We set limits at the step (ii) to deal with the ill
situation where t0 = 0.

Overall, a good value of the λ0 coefficient is hard to predict since it is dependent on
the observable at hand, on the maximal order of the simulation, on temperature, and
on the spread of the probability distribution for creating new vertices which we set as a
quasi-Gaussian.

III.1.3 Chemical potential shift

With the recursive CDet algorithm associated with a Many-Configuration Markov Chain
Monte Carlo we can compute with good statistical accuracy many expansion coefficients
up to a maximum order which depends on the observable or correlator at hand nmax ∼
9 − 13. But one main limitation still remains : how can we model the complex plane
structure of the perturbation series to increase its radius of convergence and ensure better
convergence properties ?

α-shift :

This can be achieved using a chemical potential shift similar to the one we have intro-
duced in the context of CTQMC algorithms in Section II.1.3. It has been extensively used
in the context of diagrammatic Monte Carlo [59, 104, 112, 147] and it can be formulated
both as a chemical potential shift (the approach we take in this thesis) and as a shift to
the action [71,115].

To change the pole structure in the complex plane of the perturbation series and
increase the radius of convergence we can change the starting point and the path of
the perturbation expansion. The chemical potential term is quadratic and it is part of
the non-interacting Hamiltonian, therefore a shift in the chemical potential changes the
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starting point of the perturbation expansion. Let’s formalize this by introducing the shift
which expresses the chemical potential as a function of the interaction :

µ → µ′ = µ + α(U) (III.7)
We now describe the Hubbard Hamiltonian in terms of the non-interacting and inter-

acting expansion Hamiltonian :

H[µ′ = µ + α(U), U ] = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − (µ + α(U))
∑

i

(n̂i↑ + n̂i↓)

= H̃0 + UHexp

H̃0 = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − (µ + α(U = 0))

∑
i

(n̂i↑ + n̂i↓)

Hexp =
∑

i

n̂i↑n̂i↓ − α(U) − α(U = 0)
U

∑
i

(n̂i↑ + n̂i↓)

(III.8)

We call path of the perturbation expansion all the physical systems described
by the Hamiltonian H[µ′ = µ + α(U), U ] as the expansion parameter evolves from U = 0
up to a physical value Uϕ. The parameter Uϕ is the value of the interaction at which we
want to resum the perturbative series and obtain a controlled result for the observable
at hand. We see that for the same physical system H[µ + α(Uϕ), Uϕ] that we want to
solve perturbatively, there are many different perturbation paths possible. They depend
on the choices for the free parameters µ and α(U) that change the starting point of the
pertubative scheme described by the non-interacting propagator :

G̃0kσ(iωn) = 1
iωn − ϵkσ + µ + α(U = 0) (III.9)

We can imagine many possibilities for the choice of the shifting function α(U). In this
thesis, for the sake of simplicity, we will restrict ourselves to the use of a linear shift which
gives a full range of options for the starting point of the perturbative development :

α(U) = −α + α
U

Uϕ
(III.10)

This leaves us with two free parameters µ and α which define the perturbative ex-
pansion. Other similar choices on the context of different systems have been explored for
defining the shift function [59, 139]. Generalizations of the CDet algorithm have shown
how powerful the chemical potential shift approach is in the context of Diagrammatic
Monte Carlo. The Renormalized Determinant algorithm enables one to consider momen-
tum and frequency dependent chemical potential shifts, as well as higher order polynomial
functions of the interaction [61, 116]. The Double-expansion determinant algorithm per-
forms a double expansion in the interaction and chemical potential, enabling one to choose
during the resummation procedure the polynomial shape of the chemical potential shift,
and to consider a perturbation path at fixed density [64].
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Linear chemical potential shift :

Considering a linear function of the interaction for the chemical potential shift, we
see that the added term to the expansion Hamiltonian −α/Uϕ

∑
i(n̂i↑ + n̂i↓) does not

depend on the expansion parameter. It is a quadratic one-body term which acts as an
external potential on the system. Diagrammatically it corresponds to a local vertex which
connects two propagators on the same site at identical imaginary-time and with the same
spin, noted as a wiggly line with a dashed circle. For instance the diagrammatic expansion
of the Green’s function up to the second order Eq. II.56 becomes :

= + +

+ + + +

+ + + + . . .

(III.11)

We note that this additional external potential term induces many new diagrams in
which a self-loop is replaced by this new vertex. In fact it implies a renormalization of
the self-loop Hartree diagram which becomes :

σ (1) +

(1)

= UG0i1i1σ(0−) + α
U

Uϕ

= U⟨ĉ†
i1σ(0+)ĉi1σ(0)⟩0 + α

U

Uϕ

= U(⟨n̂σ⟩0 + α

Uϕ
)

(III.12)

Therefore we can define a specific choice for the free parameter α which corresponds
to canceling the Hartree insertions in the diagrammatic expansion. We call this shift the
mean-field chemical potential shift since this means that the bare propagator is renor-
malized to incorporate all the Hartree insertions and thus corresponds to the mean-field
Green’s function :
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αMF = −Uϕ⟨n̂σ⟩0 (III.13)

Indeed for this self-consistent choice of the chemical potential, the non-interacting
system writes :

H̃0 = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ −

∑
iσ

(µ − Uϕ⟨n̂σ⟩0)n̂iσ (III.14)

Which corresponds to the mean-field version of the Hubbard Hamiltonian Eq. C.1.
This specific value for the chemical potential shift often turns out to be a good choice for
improving the convergence properties of the perturbation series.

One of the main advances presented in this thesis is the development of a new type
of chemical-potential shift that enables one to enter perturbatively ordered phases. It is
detailed in Section III.2.

CDet implementation :

The chemical potential shift linear in the interaction turns out to be easily imple-
mented in CDet. The added quadratic term to the expansion Hamiltonian gives an
additional term in the perturbative expansion Eq. II.11 :

ĉ†
i1↑(τ1)ĉ†

i1↓(τ1)ĉi1↑(τ1)ĉi1↓(τ1) →ĉ†
i1↑(τ1)ĉ†

i1↓(τ1)ĉi1↑(τ1)ĉi1↓(τ1)

− α

Uϕ
(ĉ†

i1↑(τ1)ĉi1↑(τ1) + ĉ†
i1↓(τ1)ĉi1↓(τ1))

(III.15)

After applying Wick’s theorem to contract these operators into a determinant of non-
interacting Green’s function this simply adds −α/Uϕ terms on the diagonal of the matrices
(except on the lines and columns dedicated to the external vertices) involved in the CDet
recursion Eq. III.2 which become:

D′
n,σ =


G0σi1i1(0−) − α/Uϕ . . . G0σini1(τ1 − τn) G0σiini1(τ1 − τin)

G0σi1i2(τ2 − τ1) . . . G0σini2(τ2 − τn) G0σiini2(τ2 − τin)
... . . . ...

...
G0σi1in(τn − τ1) . . . G0σinin(0−) − α/Uϕ G0σiini2(τ2 − τin)

G0σi1iout(τout − τ1) . . . G0σiniout(τout − τn) G0σiiniout(τout − τin)

 (III.16)

The CDet recursion is not changed and we simply perform it on these shifted matrices.
In addition to changing the complex plane pole structure of the perturbation series, the
chemical potential shift also has an effect on the accuracy of the Monte Carlo process
: since it decreases the values on the diagonal of the sampled matrices, it reduces the
biggest contributions to the final results which are now taken into account exactly in



III.1. The Connected Determinant algorithm 49

the non-interacting system. The weight of smaller contributions in the determinants is
enhanced so that the final variance of the stochastic process become smaller. This effect is
maximized for the mean-field chemical potential shift which cancels the Hartree insertions
and therefore puts zeros on the diagonal of the matrix. We show in Chapter IV how the
number of expansion coefficients that we are able to compute stochastically varies with
the value of the chemical potential shift.

III.1.4 Illustration in the normal phase of the Hubbard model

In this Section we illustrate the CDet algorithm on the Hubbard model at half-filling
in two and three dimensions, respectively on a square and cubic lattice. By taking the ex-
ample of the double occupancy in these specific models we aim at discerning the strength
and limitations of CDet. We observe that the antiferromagnetic phase transition in three
dimensions and the increase in correlation length in two dimensions limit the series re-
summation and our perturbative method.

Particle-hole symmetry :

One of the main advantages of studying the Hubbard model on the square or cubic
lattice with only nearest-neighbour hopping is that it shows a particle-hole symmetry. It
is an additional symmetry to the Hubbard model at half-filling on bipartite lattices. They
are lattices which can be separated into two sublattices such that there is no hopping term
within one sublattice and only hopping terms between different sublattices. At half-filling
(⟨n̂⟩ = (⟨n̂↑ + n̂↓⟩/2 = 1/2) this symmetry fixes the value of the chemical potential to
µ = U/2 as shown in Appendix B. Therefore we aim at describing the half-filled Hubbard
Hamiltonian :

H = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − U

2
∑

i

(n̂i↑ + n̂i↓) (III.17)

In general the CDet algorithm works in the grand canonical ensemble at fixed chemi-
cal potential. Therefore the density of the system is not fixed and it is varying with the
interaction parameter U . When computing an observable, we would in principle need
to perform a separate computation along with resummation to control the filling of the
system at different values of U . The physics of the Hubbard model is in general presented
as a function of the density which is much more practical than the chemical potential for
physics considerations. But choosing a chemical potential for the non-interacting system
in order to aim at a specific density at some value of U at the end of the perturbative
treatment turns out to be a very difficult task. Here, thanks to the predetermined value
of the chemical potential, linear in the interaction, we can directly describe the system
at half-filling relying on the linear chemical potential shift technique presented in Section
III.1.3. We notice that the half-filled Hubbard Hamiltonian corresponds to the Hamilto-
nian Eq. III.8 described by the perturbation expansion with the linear chemical potential
shift :

α(U) = −µ + U

2 (III.18)
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This means that with this chemical potential shift, the density is fixed on the path
of the perturbation expansion. We can therefore directly describe an observable A(U) at
half-filling at every value of U with one simulation of the CDet algorithm. It is to be
noted that this chemical potential shift corresponds to the mean-field shift which leads
to the cancellation of Hartree loops and puts zeros on the diagonal of the matrix in the
CDet algorithm.

Three-dimensional Cubic lattice :

In the following, we focus on computing the double-occupancy ⟨n̂↓n̂↑⟩ which is related
to the potential energy of the system through Epot = UD. At U = 0, since electrons
move freely on the lattice with no Coulomb repulsion, D = ⟨n↓⟩⟨n↑⟩ = 0.25. As the
Coulomb repulsion increases, electrons tend to occupy different sites, and D decreases.
Diagrammatically the double-occupancy is represented by diagrams with four external
vertices, and a corresponding line and column have to added for each spin to the matrices
used in the CDet recursion. It is to be noted that the expansion coefficients of even
order of D are equal to zero, see Appendix E. We compute the double-occupancy at
four different value of the interaction. Depending on the temperature we get accurate
expansion orders up to order n ∼ 10 − 12. We show in Appendix D the results for the
truncated partial sums and Pade extrapolation as a function of U , along with the complex
pole structure of the series. All energies are expressed in units of the hopping amplitude
t = 1.

The resummed double-occupancy is displayed in Fig. III.1. The double-occupancy
decreases almost linearly with the interaction. The perturbative expansion yields very
accurate results at small interaction, but the error increases drastically when increasing
the interaction. Close to the estimated position of a pole on the real axis of the complex
plane structure of the series, the resummation finally breaks and we can not reach higher
values of the interaction. This is consistent with what we know of the half-filled Hubbard
model on a cubic lattice. At a given low enough temperature the system undergoes
a phase transition towards a Néel order at some critical value of the interaction Uc (see
Chapter IV for more details on the cubic half-filled Hubbard model). Therefore this result
provides a first method for estimating the phase diagram of this model. The position of
the poles as a function of temperature and interaction is shown in Fig. III.2. The result
is imprecise and can only be interpreted as a first sketch of the Néel dome which can
be explained by the difficulty in estimating the position of poles. Indeed the estimation
relies on extrapolation of high perturbation orders and the double-occupancy, having
half its expansion coefficient exactly equal to zero, does not yield many coefficients for
performing this extrapolation. Recently, the critical value of the interaction has this has
been determined precisely by taking advantage of the known critical behaviour in the
vicinity of the phase transition and extrapolating the expansion coefficients of the spin
structure factor to high order [81].

Two-dimensional square lattice :

Similarly in two dimensions on the square lattice, as shown in Fig. III.3, the double
occupancy as a function of the interaction is almost linear at small values of U . We
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Figure III.1: Double-occupancy as a function of the Coulomb repulsion in
the half-filled Hubbard model on a cubic lattice. The system-size is fixed to
L3 = 203 sites. The double-occupancy value with errorbar is determined after
resummation using Padé and D-log Padé approximants. The colored areas
correspond to the estimated position of a pole on the positive real axis for
each temperature
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Figure III.2: Position of the pole on the real positive axis as a function of
temperature and interaction, in three (a) and two dimensions (b). In three
dimensions these poles can be interpreted as the critical value of the interac-
tion at which the system undergoes the Néel phase transition.
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Figure III.3: Double-occupancy as a function of the Coulomb repulsion in
the half-filled Hubbard model on a square lattice. The system-size is fixed to
L2 = 642 sites. The double-occupancy value with errorbar is determined after
resummation using Padé and D-log Padé approximants. The colored areas
correspond to the estimated position of a pole on the positive real axis for
each temperature

observe the bending of the curve towards zero and a huge increase in the error when
approaching interactions close to the regions where a pole seats on the positive real axis.
In two dimensions, the Mermin–Wagner theorem impedes the breaking of a continuous
symmetry at finite temperature. Therefore this pole can not happen as a consequence of
a phase transition. We interpret this as a limitation due to an overwhelming increase in
the correlation length at these values of the interaction. Indeed, even if a proper magnetic
phase transition can not happen because of fluctuations, the antiferromagnetic correlation
length can become very large. Even though the system size considered is large (L2 = 642

sites), it is not enough to distinguish between a long or an infinite correlation length.
This can lead to poles very close to the positive real axis which we can not discriminate
from a pole on the real axis, and can not overcome with our finite number of expansion
coefficients. The position of the poles as a function of temperature and interaction is
shown in Fig. III.2.

III.2 Symmetry-broken CDet

In the previous section we have detailed how to apply the CDet algorithm in the context
of a chemical-potential shift. The main restriction to obtaining results in the strong
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coupling regime turns out to be the appearance of a phase transition (or the sudden
increase in correlation length). We introduce in this section the new symmetry-broken
CDet algorithm which overcomes this limitation and enables one to enter perturbatively
an ordered phase.

III.2.1 Symmetry-broken chemical potential shift

The idea of the symmetry-broken version of the CDet algorithm is to take advantage of
the chemical potential shift for breaking a symmetry of the model in the non-interacting
system. We want to remove the pole on the positive real axis of the series and therefore
we need to find a perturbation path which does not undergo a phase transition at some
value of the expansion parameter. This is achieved by choosing a different transformation
for the chemical potential.

Breaking the spin inversion symmetry :

We take the example of the antiferromagnetic phase of the three dimensional half-
filled Hubbard model which will be developed in more details in Chapter IV, but this
approach can be generalized to any system with a different spontaneous symmetry break-
ing. The case of s-wave superconductivity will be tackled in Section IV.5. We introduce
the chemical potential shift with a dependency on the spin and on the sublattice :

µ → µ′
σi = U

2 + h
∑
iσ

σ(−1)i − U

Uϕ
h
∑
iσ

σ(−1)i (III.19)

Where h is an external Zeeman magnetic field which sign alternates on the different
sublattices characterized by the site index i being odd or even, and acts on the spin
σ = ±1. With this shift we describe the following Hamiltonian at every value of the
expansion parameter U :

Ĥ = − t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − U

2
∑
iσ

n̂iσ + h
∑

i

(−1)iŜz
i + U

∑
i

n̂i↑n̂i↓ − U

Uϕ
h
∑

i

(−1)iŜz
i

= H0 + UHexp

Ĥ0 = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + h

∑
i

(−1)iŜz
i

Ĥexp =
∑

i

n̂i↑n̂i↓ − 1
2
∑
iσ

n̂iσ − h

Uϕ

∑
i

(−1)iŜz
i

(III.20)

Where Ŝz
i = (n̂i↑ − n̂i↓). The system described by this Hamiltonian corresponds to

the Hubbard model at half-filling to which we add an external staggered Zeeman field
h(1 − U/Uϕ). This additional term breaks the spin inversion SU(2) symmetry. On a
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Figure III.4: Sketch of the perturbation path for a perturbative expansion
in (a) the normal phase with α = 0, (b) a symmetry-broken expansion α ̸=
0. The yellow star of coordinates {T, Uϕ, h = 0} is the point inside the
antiferromagnetic phase (AF) at which we want to evaluate the perturbative
series. The perturbation path is the ensemble of points described by the
perturbative series for all the values of the expansion parameter U ∈ [U, Uϕ].
For the normal state expansion (a), the starting point of the perturbative
expansion is in the paramagnetic phase (PM) and at a certain value of U ,
the perturbation path crosses the Néel temperature curve (red star) which
prohibits the perturbation to reach higher values of the interaction. For the
symmetry-broken case (b), the starting point of the perturbative expansion
is at a non-zero field αhMF in a magnetic state (m ̸= 0). The perturbation
path reaches the yellow star without crossing the Néel phase transition and
avoids the associated singularity.

specific site, the density for each spin flavor is no longer the same and the system has a
non-zero magnetization m = (−1)i⟨n̂i↑ − n̂i↓⟩. The symmetry is restored for U = Uϕ at
which the Hamiltonian corresponds to the Hubbard Hamiltonian. Therefore the Hubbard
Hamiltonian can be described by the expansion detailed in Eq. III.20, after resumming
the obtained perturbation series at U = Uϕ. Since the SU(2) spin inversion symmetry is
broken along the expansion path, we expect the system not go through a phase transition
at a value of the interaction U < Uϕ, and we may enter the ordered phase perturbatively.
For a more visual explanation on this, see the sketch on Fig. III.4.

α shift :

Similarly to how we defined the chemical potential shift in the paramagnetic regime
(with no symmetry breaking), it is useful to define the external field in terms of the
mean-field solution of the Hubbard model. We rewrite the external staggered field as
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h = αhMF where hMF = UϕmMF /2 and mMF is the magnetization of the mean-field
Hubbard model in the antiferromagnetic state. We show in Appendix C how we solve the
mean-field antiferromagnetic system.

Aiming at computing an observable at some value of the temperature and interaction
Uϕ, we see that we are left with one free parameter for defining the perturbative series :
α. It is helpful to consider two limit cases for the choice of α :

• For α = 1, the non-interacting system is equal to the mean-field antiferromagnetic
solution of the Hubbard model. The bare propagators are the mean-field ones.

• For α = 0, the staggered external field vanishes and the non-interacting system does
not break the spin inversion symmetry. We go back to the usual expansion limited
to the paramagnetic regime.

In general we will choose values of the shift between these two cases 0 < α ≤ 1, even if
there is a priori no limitation to taking α > 1.

CDet implementation :

The additional term to the expansion Hamiltonian is quadratic and acts as an external
potential. Just as we have shown in Section III.1.3, the diagrammatic expansion of an
observable is modified by adding a new vertex connected to two propagators, which leads
to a renormalization of the self-loop Hartree insertions. Because of the staggered field,
this vertex now depends on the sublattice and spin indices. The Hartree self-insertions
are renormalized as (for the spin ↑ with no loss of generality) :

UG0ii↑(0−) → UG0ii↑(0−) − (−1)iU
mMF

2 − U

2
→ U(⟨n̂iσ⟩0 − (−1)i mMF

2 − 1
2)

(III.21)

By definition of the magnetization ⟨n̂iσ⟩ = n + (−1)im/2 with n the density per
site and spin. Therefore, with α = 1, since the system is at half-filling n = 1/2 and
as the non-interacting system corresponds to the antiferromagnetic mean-field Hubbard
Hamiltonian, the self-loops are canceled in the diagrammatic expansion.

Similarly to the paramagnetic case, the CDet algorithm applies in the same usual way,
with changing the diagonal terms of the matrices for the lines and columns of internal
vertices. They take the value computed in Eq. III.21 and we notice that the diagonal
terms are nullified for both α = 0 and α = 1.

III.2.2 Illustration in the normal and antiferromagnetic phases of the
Hubbard model

We give an example in this section of the application of the newly developed symmetry-
broken CDet algorithm to the half-filled Hubbard model on a cubic and square lattice.
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Figure III.5: Partial sums of the double occupancy D for two different values
of the interaction U and temperature T as a function of the maximum order n.
The colored area corresponds to the estimated resummed value with errorbar.

We show that it enables us to outperform the maximal values of the interaction reached
by the perturbative expansion in the paramagnetic regime. As the symmetry is restored
at the physical value of the interaction parameter, we are able to resum perturbative
series outside and inside the ordered phase in three dimensions.

Double occupancy on the cubic lattice :

We first focus on applying the symmetry-broken chemical potential shift to the Hub-
bard model on a cubic lattice. We show the obtained partial sums for two sets of param-
eters (T, Uϕ), and for different values of the shift α, in Fig. III.4.

On the left panel the computation is done at relatively high temperature and we can
expect the system to be in the paramagnetic phase. Indeed, we see that the paramagnetic
perturbative expansion for α = 0 leads to a converging partial sum. This means that it
is not limited by a pole on the positive real axis at a value of the interaction U < 6.
On the contrary the right panel corresponds to a relatively low temperature at which we
expect the system to be in the ordered antiferromagnetic phase. Indeed, according to
Fig. III.2, the parameters correspond to a resummation past a pole in the complex plane,
which explains why the paramagnetic series for α = 0 does not converge with increasing
the perturbation order. For α ̸= 0 the perturbative series converge towards the same
result after resummation. This shows that we are able to overcome the limitation of the
paramagnetic perturbative series which are due to the phase transition.

Even if the zeroth order value is extremely dependent on the value of the shift, as
expected all series for α ̸= 0 converge towards the same result after resummation. We
notice that the maximum number of expansion orders that we are able to compute with
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good accuracy and in a reasonable time with the CDet algorithm highly depends on the
value of the shift. We reach up to thirteen expansion orders for α = 1 and up to eight
orders for α ∼ 0.5. Indeed, a shift closer to 0 or 1 leads to cancellation of the Hartree
insertions and zeros on the diagonal of the matrices in the CDet recursion. For α ∼ 0.5,
these diagonal contributions have a large weight which takes over different diagrammatic
contributions in the Monte Carlo procedure. This deteriorates the overall accuracy of the
Monte Carlo integration and less orders can be computed accurately.

Double occupancy on the square lattice :

On the square lattice, the perturbative expansion in the paramagnetic phase is also
limited by its pole structure in the complex plane. Even if a spontaneous breaking of
a continuous symmetry is not possible because of the Mermin-Wagner theorem, the an-
tiferromagnetic correlations are large and limit our perturbative method. We show in
Fig. III.6 that the symmetry-broken shift enables us to modify the pole structure of the
series and obtain converging series up to high interaction.

On the left panel we are able to obtain a resummed result using a symmetry broken
expansion at T = 0.1 and at a relatively small value of the interaction Uϕ = 2. This set
of parameters is accessible through a perturbative expansion in the paramagnetic regime
and the resummed value D = 0.1985(5) coincides with the one showed in Fig. III.3. At a
larger value of the interaction U = 6 which is not accessible by the standard paramagnetic
expansion, we obtain a converging partial sum and can estimate the resummed result.
This shows that the symmetry-broken CDet algorithm can be applied to obtain results
in the normal state of a model even if no phase transition occurs.

Entering the antiferromagnetic state :

Going back to the cubic lattice, we aim now at proving that the perturbative expan-
sion enters the ordered phase and that the pole limiting the paramagnetic expansion is
indeed due to the appearance of the antiferromagnetic order. For this purpose we com-
pute the staggered magnetization which is the order parameter of the antiferromagnetic
phase. We recall its expression m = (−1)i⟨n̂i↑ − n̂i↓⟩. Within the CDet algorithm it is
computed as the subtraction of the average value of both density operators. The density
operators diagrammatic expansions correspond to the one of the Green’s function with
⟨n̂iσ⟩ = Giiσ(0−). The CDet recursion applies with the matrices as defined for the Green’s
function expansion. The subtraction between the weights at each order of both densities
is done within the Monte Carlo procedure. Thus we sample the weights corresponding
to the magnetization expansion coefficients and obtain a better Monte Carlo accuracy in
comparison to sampling both densities and applying the subtraction afterwards.

The partial sums for two sets of parameters (T, Uϕ), and for different values of the shift
α, are presented in Fig. III.7. As α goes from one to zero, the value of the magnetization
changes from its high mean-field value, towards zero in the paramagnetic non-interacting
system. Independently on the value of the shift all partial sums seem to converge towards
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the same value when increasing the maximum order n. At U = 3 and T = 0.3 the mag-
netization is resummed to zero which shows that we restore the spin inversion symmetry
inside the paramagnetic regime. At U = 6 and T = 0.24, the magnetization is resummed
to a non-zero value indicating that we have entered the antiferromagnetic phase.

In the end the implementation of a symmetry-broken chemical potential shift within
the CDet algorithm enables us to remodel the complex plane structure of perturbative
series and reach regimes which are not accessible to the usual normal state perturbation
expansion. In the context of spontaneous symmetry breaking it even proves to be able
to enter the ordered phase and obtain controlled results at relatively high values of the
interaction.
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In this Chapter we devote ourselves to studying the three-dimensional Hubbard model
at half-filling on a cubic lattice. At half-filling the particle-hole symmetry fixes the value
of the chemical potential which facilitates our perturbative approach. This model shows
an antiferromagnetic phase at low temperature which we aim at describing by applying
the symmetry-broken CDet algorithm. Even if this phase transition is well understood
qualitatively and has been studied extensively by many numerical methods, it still misses
a quantitative unbiased description. We present state of the art controlled results in the
thermodynamic limit, close to the phase transition and inside the ordered phase, a regime
which is inaccessible to most of the available numerical numerical methods for strongly
correlated systems.

First, we present the half-filled cubic Hubbard model and provide an outline of its
physical characteristics and previous numerical studies. We then describe our method-
ology for obtaining controlled results from applying the CDet algorithm and resumming
the resulting series. In a third and fourth section we detail our results in two dissimilar
physical regimes : close to the Néel phase transition and deep inside the ordered phase
at low temperature. We finish by giving few insights and results for the negative U at-
tractive counterpart of this model, applying the symmetry-broken CDet algorithm to a
superconducting phase.

The results presented in this chapter are the object of published (as of preprints at
the moment) articles studying respectively the repulsive and attractive models [36, 128].
They are reproduced in Appendix J. All energies are expressed in units of t = 1.

IV.1 Physics of the half-filled repulsive cubic Hubbard model
As explained in Chapter I, despite its apparent simplicity, the Hubbard model on the
cubic lattice exhibits a rich phase diagram and a variety of distinct physical regimes,
making it an excellent starting point for investigating the possibility of novel algorithms.
In this Section we present what is known of the physics of this testing ground model
from prior scientific works, and what still remains to be understood or misses a precise
description.

We recall the Hubbard Hamiltonian at half-filling :

H = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − U

2
∑

i

(n̂i↑ + n̂i↓) (IV.1)

Where the chemical potential is determined by µ = U/2 at half-filling because of the
particle-hole symmetry on the cubic bipartite lattice (see Appendix B).

IV.1.1 Mott physics

The Hubbard Hamiltonian embodies a competition between the kinetic and potential
Coulomb repulsion energies. The kinetic term tends to delocalize electrons on the lattice
and at U = 0 the system is diagonalized in k space. For this single-orbital model, the
eigenenergies form one conduction band of dispersion ϵk = −2t(cos kx + cos ky + cos kz)
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which is half-filled. The system is metallic since empty energy levels are accessible at any
arbitrary small energy above the Fermi sea. At small values of the interaction and small
temperatures the conducting system can be described in terms of a metallic Fermi liquid.

On the contrary at U → ∞ in the atomic limit, electrons are localized on each site
to avoid paying the large energetic cost of on-site Coulomb repulsion : the system is a
Mott insulator. In the high interaction limit the system becomes equivalent to the three
dimensional Heisenberg model. Indeed for almost localized electrons, at half-filling, each
site is occupied by one electron. On a specific site, at first order in 1/U , the electron can
gain negative kinetic energy by hopping on a neighbouring site and hopping back. This
process is only possible if neighbouring sites are occupied by electrons with opposite spins
because of the Pauli exclusion principle, hence a difference in energy depending on the
spins of neighbouring sites. Exchanging two electrons gives a gain in kinetic energy of 2t,
hence the superexchange coupling constant J = 4t2/U and the Heisenberg model :

H = −J
∑
⟨i,j⟩

ˆ⃗
Si · ˆ⃗

Sj (IV.2)

In between these two regimes with opposite transport properties, making the assump-
tion that the system remains in a paramagnetic phase, a metallic to insulator transition
happens as U is increased from small to large values. This transition has been extensively
studied in the DMFT framework [39]. In this approximation, it has been shown to take
the form of a first order phase transition at small temperatures with a coexisting region
which vanishes as the temperature increases. At higher temperatures the metallic to
insulating transition happens as a succession of two continuous crossovers. As the inter-
action rises, the system is successively in metallic state, goes to an incoherent bad metal
behaviour, and for U > T becomes a gaped insulator. These crossovers can be linked to
properties of the underlying Mott transition which extends to higher temperatures [123].

IV.1.2 Néel ordering

At half-filling, and for any non-zero interaction, the ground state of the Hubbard Hamil-
tonian is ordered in an antiferromagnetic state. Starting from the normal phase, as
the temperature is decreased the system will eventually go through a second order phase
transition. The SU(2) spin-inversion symmetry is broken and the system shows an antifer-
romagnetic long-range spin order. This phase transition belongs to the O(3) Heisenberg
universality class which gives information about the universal critical behaviour of the
system in the vicinity of the phase transition [24]. The resulting antiferromagnetic phase
is called Néel order, and we will write TN the Néel temperature which corresponds to the
critical temperature of the Néel ordering. We distinguish two dissimilar mechanisms for
this spontaneous symmetry-breaking :

• At weak coupling, the system is metallic, fermions are essentially delocalized over
the lattice, and the double-occupancy is relatively high. Therefore the phase tran-
sition towards an antiferromagnetic state essentially leads to a gain (negative) in
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potential energy which compensates a small loss in kinetic energy. This effect be-
comes stronger as the interaction increases, hence a rising of the Néel temperature.
This is called the Slater mechanism [127].

• At strong coupling, the phase transition happens from cooling a Mott insulating
regime. The system is factually localized, and the phase transition towards an
antiferromagnetic state is driven by a gain in kinetic energy enabled by the su-
perexchange phenomenon. As the interaction increases, the superexchange coupling
constant decreases as 1/U and this effect is less substantial, leading to a decrease
of the Néel temperature. This is the Heisenberg mechanism.

These two regimes are by essence very dissimilar. In the intermediate coupling regime
we therefore expect the Néel temperature to change from a rising to a decreasing function
of the interaction, forming a Néel antiferromagnetic dome. This change from a poten-
tial energy to a kinetic-energy driven transition has been documented with DMFT like
methods and in cold atoms simulations [34,41,133].

The phase diagram of the half-filled Hubbard model on a cubic lattice has been stud-
ied by many different numerical methods and we show in Fig. IV.1 their numerical results
for the Néel temperature. These methods are described in more details in Section I.3.
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The dual fermion (DF) and DMFT [54] are embedding methods mapping an impurity
problem to a lattice system. The Determinant Diagrammatic Monte Carlo [73] (DDMC)
is a generalization of the CT-INT impurity solver to the lattice. The Dynamical Clus-
ter Approximation (DCA) [62, 70] is an extension of DMFT which creates clusters in
the reciprocal space for describing the self-energy. The study is extrapolated to infi-
nite cluster size. The recently improved dynamical vertex approximation DΓA [131] is a
particular mapping of an impurity into the lattice system. The Truncated-unity Func-
tional Renormalization Group [32] applies deep-learning methods to the renormalization
group concept, it is limited to low values of the interaction. The Quantum Monte Carlo
(QMC) [129] approach performs a discretization of the imaginary-time axis and evalu-
ates path integrals stochastically. The CDet PM technique [81] relies on precise CDet
computations in the paramagnetic phase. The phase transition is determined accurately
by extrapolating the expansion series of the spin structure factor to infinite order and
finding the interaction at which a singularity stands. This computation is performed at
fixed temperature, hence the horizontal errorbar. Finally the Heisenberg line matches
the Néel temperature curve in the large interaction limit. It is proportional to the su-
perexchange coupling constant and is determined to vary as TN ≃ 0.946J [121]. At very
small interaction the Néel temperature is known from the mean-field analysis to decay as
TN ∝ exp −1/|U |.

At the exception of the CDet approach, all of these methods either perform an approx-
imation by relying on an embedding scheme, or have a complexity which scales poorly
with the size of the lattice and are limited to small system sizes from which they try to
extrapolate to the thermodynamic limit. Except for the single-site DMFT which highly
overestimates the Néel temperature, they give a reasonably accurate description of the
Néel dome, but are not always agreeing within errorbar with each other. They provide a
good set of data for comparing with our numerical results.

It is to be noted that none of these numerical approaches have the ability to enter
the ordered phase and obtain controlled results in the antiferromagnetic state. Only
biased methods based on the DMFT approximation such as CDMFT or DCA could
impose the breaking of a symmetry but, studying small clusters, they tend to excessively
overestimate the magnetization and the Néel temperature. Recently, antiferromagnetic
states were realized in cold-atomic experiments on optical lattices. Unbiased controlled
results inside the antiferromagnetic phase could provide a useful benchmark for guiding
these state-of-the-art experiments [43,50,87,134].

IV.1.3 Signatures of the Mott transition

In practice DMFT and its extensions suggest that the Mott transition would happen
at small temperatures where the physics is in fact governed by the Néel ordering. The
transition from a metallic to Mott insulator happens above the antiferromagnetic phase
as a continuous crossover. The Néel dome hides the first order phase transition which is
observed with DMFT techniques and its extensions.

Indeed, the DMFT method, by relying on a self-consistent mean-field-like scheme,
can observe for the same set of parameters several solutions corresponding to different
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prechosen symmetries. One then has to compare the free energies of the different solutions
to determine the actual phase of the system. Although the inhomogeneous DMFT scheme
[101] lets the system organize by itself and is a proper method for determining the phase
at hand.

In the end the DMFT, as an artifact of the mean-field scheme, has access to under-
lying phases. By comparing the potential and kinetic energies of the paramagnetic and
antiferromagnetic solutions, the study [34] was able to map the Néel dome into Slater and
Heisenberg regions, and linked their separation to the underlying Mott phase transition.
This would imply a significant effect of the underlying normal state in defining the ordered
state’s characteristics.

In the following we apply the unbiased symmetry-broken CDet algorithm to the half-
filled Cubic Hubbard model and try to answer the following questions : Can we obtain
controlled results inside the antiferromagnetic phase ? Can we determine accurately
the Néel temperature and critical region close to the phase transition ? Can we reach
the strong coupling limit and observe the Slater to Heisenberg change of mechanism ?
And finally, without having access to the hidden paramagnetic phase, is there at low
temperature an effect of Mott physics inside the antiferromagnetic dome ?

IV.2 Methodology and resummation procedure

We start by describing our methodology for acquiring accurate data from the symmetry-
broken CDet algorithm. We detail our procedure for obtaining and resumming pertur-
bative series into precise results with estimating their error, and controlling sources for
biases.

IV.2.1 Impact of the chemical potential shift

The choice of the α ∈ [0, 1] parameter in the symmetry-broken CDet algorithm has a
major influence on the perturbative series and on our ability to resum it efficiently. We
rely on multiple choices of this free parameter in order to optimize our perturbative
approach.

We recall that α = 0 corresponds to a perturbative expansion in the normal phase with
no external field breaking the spin-inversion symmetry, while α = 1 is a symmetry-broken
expansion starting from the antiferromagnetic mean-field solution of the Hubbard model.
Reducing α from 1 to 0.5 leads to a raise of the diagonal coefficient in the CDet matrices,
and hence a reduction of the maximal order available with good accuracy in a reasonable
computational time. This maximal order increases again but gains only around two ex-
pansion coefficients when going from 0.5 to 0. However, having more expansion orders
available is not the only key to a more controlled and accurate resummation. Indeed
the α parameter choice has an other important effect as it modifies the starting point
of the perturbative expansion and changes the perturbation path towards the Hubbard
Hamiltonian at interaction Uϕ. For an observable A, this changes the function A(U)
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for U ∈ [0, Uϕ] (see Eq. III.20), and hence modifies its perturbative expansion. There-
fore the choice of the α parameter influences strongly the convergence properties of the
perturbative series, and hence our ability to resum it accurately.

We illustrate the impact of α on the convergence properties of the expansion series
for different sets of parameters and observables in Fig. IV.2. The left panels correspond
to parameters close to the Néel phase transition, while the panels on the right side are
deep inside the antiferromagnetic phase. We show computations for the three quantities
which we compute with the CDet algorithm in this chapter, the grand potential will be
introduced in the Subsection IV.3.3. As a general remark, we see that for shifts α close
to 1 we obtain many orders, up to 15 expansion orders for the grand potential, but the
resulting series is converging very slowly towards the result. In some cases other values of
the shift lead to a much faster convergence of the series with respect to the expansion order
and enable a much more accurate resummation. This is especially true in the regime close
to the phase transition where the magnetization shows large variations when changing the
temperature. From this we establish a strategy for obtaining converging expansion series.
When deep inside the dome, we rely on shifts close to the mean-field value α ∼ 0 − 0.3
which yield many orders and converging partial sums. At higher temperatures the same
plan is not as efficient as it can be seen from the much bigger errorbar on the grand
potential resummed value on the left panel. In the vicinity of the phase transition we
rely on shifts in the range α ∼ 0.5 − 0 which lead to converging partial sums and thus
precise resummations. This is especially true for computing the magnetization. A precise
choice for the α parameter gives a converging partial sum α = 0.162. Finding this value
is not an easy task and it requires many computations with varying parameters. In order
to determine accurately the magnetization in the critical region of the phase diagram we
will rely on scanning values of the shift parameter in search for the ’magic’ α-shift. In
the end our resummation procedure always rely on at least two different expansion series
with different values of the shift and their discrepancy enters the estimated error of the
resummed result.

IV.2.2 High order behaviour

The resummation procedure for estimating a perturbative series essentially relies on an
extrapolation to infinite orders, which is equivalent to finding the behaviour of the expan-
sion coefficients an as the order becomes large n → ∞. This asymptotic behaviour encodes
the convergence properties of the perturbative series of an observable A =

∑
n anUn. We

give here several arguments to understand the limitations and the high order behaviour
of perturbative series for the symmetry-broken expansion. We discuss here the Grand
potential density −Ω/L3 which is introduced in details in the Subsection IV.3.3.

Goldstone singularity :

Even if the symmetry-broken expansion enables one to enter perturbatively the Néel
order, it comes with a singularity at the physical value of the interaction U = Uϕ. It
is due to long-wavelength thermal fluctuations, called Goldstone modes, as we enter the
antiferromagnetic phase with canceling an external staggered field. This singularity is
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U

Figure IV.3: Sketch of the expected variation of the magnetization as a func-
tion of the expansion parameter U for a symmetry-broken perturbative series
performed at T < TN (Uϕ inside the ordered phase. At U → Uϕ the magne-
tization gets an infinite derivative and shows a vertical asymptotic line (blue
dashed line). At U = Uϕ the magnetization changes sign and is discontinuous.

different from the critical behaviour at the phase transition T = TN and due to the
divergence of the magnetic susceptibility as we restore the spin inversion symmetry by
canceling the external field. Indeed we see in Eq. III.20 that the external field along
the perturbation path varies as h(1 − U

Uϕ
). Considering a perturbative expansion at

T < TN , the Goldstone fluctuations lead to a singularity as the external field vanishes for
U → Uϕ [19, 99] :

χ(U → Uϕ) ∝ 1√
h(1 − U

Uϕ
)

(IV.3)

With χ the antiferromagnetic susceptibility which is the derivative of the magnetiza-
tion with respect to an external staggered Zeeman magnetic field. This gives the behaviour
of the magnetization and grand potential as the expansion parameter goes to its physical
value U → Uϕ :

m ∝
√

h(1 − U

Uϕ
)

− Ω
L3 ∝ [h(1 − U

Uϕ
)]

3
2

(IV.4)

Supposing that there is no singularity closer to to the origin in the perturbative series
of the grand potential and magnetization (which is observed by the possible resummation
and convergence of the computed series at U = Uϕ in Fg. IV.2), this singularity determines
the behaviour of high perturbative orders. By expanding these expressions we obtain for
n → ∞ the behaviour of the expansion coefficients :
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mn ∝ 1
Un

ϕ n3/2

− Ωn

L3 ∝ 1
Un

ϕ n5/2

(IV.5)

Hence the series are converging and can be resummed at U → Uϕ. Given Eq. IV.21, the
double occupancy expansion coefficients behave in the same way as for the magnetization
at high expansion orders.

This predicted behaviour can be modified in two cases :

• Considering a symmetry-broken perturbative expansion right at the Néel phase
transition with a temperature and an interaction verifying T = TN (Uϕ), the uni-
versal critical behaviour has to be taken into account. It gives the asymptotic
form m(U → Uϕ) ∝ [h(1 − U/Uϕ)]

1
δ with δ = 4.783(3) [24]. This leads to slowly

converging series at U = Uϕ with a high order behaviour :

mn ∝ 1
Un

ϕ n1+1/δ

− Ωn

L3 ∝ 1
Un

ϕ n2+1/δ

(IV.6)

• At low temperatures T → 0, the long-wavelength fluctuations become dominated
by quantum fluctuations [30]. This changes the expected high order behaviour as :

mn ∝ 1
Un

ϕ n2

− Ωn

L3 ∝ 1
Un

ϕ n3

(IV.7)

Discontinuous magnetization at Uϕ :

At U = Uϕ, as the external magnetic field vanishes and the symmetry of the Hubbard
Hamiltonian is restored, an other singularity arises. It finds its origin in the discontinuity
of the order parameter as the external field changes sign as shown in Fig. IV.3. Indeed
as we approach Uϕ, the magnetization is aligned with the staggered magnetic field h(1 −
U/Uϕ) which changes sign at U = Uϕ. This leads to a change of sign at the physical
value of the interaction and m(U = U−

ϕ ) = −m(U = U+
ϕ ). For T > TN the value of

magnetization is zero in the paramagnetic regime and there is no singularity, we can expect
an exponential convergence of the perturbative series at U = Uϕ. But for T < TN the
magnetization has a non-zero value and the order parameter is discontinuous at U = Uϕ,
the system goes through a first order phase transition as the external field changes sign.
This yields a new singularity with an associated high order behaviour of the perturbative
series.
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The first order phase transition can be associated with a branch cut in the complex
plane of the perturbative series. We expect a singularity in the grand potential pertur-
bative series which goes like e−βB(U) where B(U) ∝ 1/

√
1 − U/Uϕ is the grand potential

barrier between the metastable and stable phases [33, 48, 77]. Such a behaviour for the
grand potential can be estimated to lead to a stretched exponential decay for the expan-
sion coefficients at high orders :

−Ωn

L3 ∝ e−cna (IV.8)

With c a constant coefficient and 0 < a < 1. In the end this singularity is weaker than
the Goldstone singularity and the associated polynomial decay dominates at high order.

All things considered, the presence of a singularity at the physical value defines the
radius of convergence of the series which is equal to the physical value of the interaction
Uϕ. Even if we aim at resumming series right at the singularity, the series prove to be
converging at U → Uϕ which makes our approach viable.

IV.2.3 Resummation tools

At the end of the symmetry-broken CDet algorithm, we are left with a finite number of
expansion coefficients obtained with a stochastic error due to the Monte Carlo compu-
tation. In order to obtain a controlled result at U = Uϕ one needs to extrapolate this
truncated perturbation series to infinite perturbation order. This procedure is called re-
summation and we use several tools to perform the extrapolation. The final result and
its estimated error are given after comparing the different techniques.

For simplicity we do not consider the correlation between expansion coefficients at
different orders obtained within the CDet procedure. In fact determining accurately the
covariance matrix of the expansion coefficients at different perturbation orders is not
an easy task and has been tested to have a minor impact on the estimated result after
resummation. The resummation techniques are implemented with error propagation of
the stochastic error on the coefficients. For better convergence with respect to the number
of sampling of the resummation procedure, we consider as the error the median absolute
deviation. The standard deviation of a supposed Gaussian distribution is obtained by
multiplying this estimation by a constant factor 1.4826 .

Padé and D-log Padé :

We rely on Padé and D-log Padé extrapolation [10, 20] of the truncated expansion
series. These methods are well known state-of-the-art resummation techniques which
consist in approximating the truncated power series by a rational function such that :

nmax∑
n=0

anUn ≃
∑k

i=0 biU
i

1 +
∑l

i=1 diU i
(IV.9)



72 Chapter IV. Néel order and superconductivity in the 3D half-filled Hubbard model

The right hand side of this equation is called Padé approximant of order [k, l]. It
contains k + l + 1 free parameters which are determined to be the best approximation to
the truncated power series and we must impose nmax = k+l. For obtaining the resummed
result at U = Uϕ we rely on the Padé approximants of three different orders (for nmax

even for instance) [nmax/2, nmax/2], [nmax/2−1, nmax/2+1] and [nmax/2+1, nmax/2−1],
and compare there result.

The D-log Padé extrapolation approximates the logarithmic derivative of the partial
sum by a Padé approximant. It is known for giving a better description of singularities
of the perturbative series. As for the Padé approach, we use three different orders for the
approximants and compare their result with each other.

Exponential and power-law fits :

As the Goldstone instability and first-order phase transition imply at U → Uϕ, we
can search for the corresponding high-order behaviour of the expansion coefficients as
described in Subsection IV.2.2. We therefore look for such a high order behaviour and,
when verified, obtain a resummed result.

We rely on this only for symmetry-broken series obtained with a coefficient α ∼ 1−0.7
for which we have many expansion coefficients nmax ≃ 10−13 with the same definite sign
within errorbar, and enough orders to look for an asymptotic behaviour for expansion
orders n → nmax.

We give in Fig. IV.4 an example for the magnetization expansion obtained with the
symmetry-broken CDet algorithm. The Bottom panels show the search for an exponential
and a power law decreasing as the series is resummed at U = Uϕ. We see on the bottom
right panel that the power-law behaviour predicted by the Goldstone singularity does not
appear within the 13 orders available. However, the exponentially decreasing high order
behaviour is well verified on the bottom left panel. The linear regression gives a coefficient
leading to a radius of convergence bigger than Uϕ, hence an exponential convergence of
the series at U = Uϕ. Considering this exponential high order behaviour we can resum the
perturbative series and obtain m = 0.618 for this set of parameters. This value is in good
agreement with the resummed result obtained with Padé and D-log Padé resummation
as shown on the top panel.

This observation for this specific example is actually general and the same approach
with other sets of parameters and observables leads to the same conclusion. The large
order behaviour predicted by the Goldstone singularity is in fact never observed within
the number of expansion coefficients that we are able to compute and we can conclude
that its contribution to the final result must be negligible in front of the estimated error
on the resummed result.

IV.2.4 System size study

The Diagrammatic Monte Carlo methods offer the main advantage of being formulated
in the thermodynamic limit, on the contrary to most numerical techniques for strongly
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Figure IV.4: Expansion series of the magnetization for Uϕ = 6, T = 0.2
and α = 1. Top panel : Truncated series as a function of he maximum
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Figure IV.5: Double occupancy and magnetization at U = 4, T = 0.15 as a
function of the linear system size L.

correlated systems which are limited to small system sizes. Indeed the system size enters
at two different steps of the CDet algorithm : for solving the non-interacting system and
obtaining the bare propagators on which the perturbative expansion is built, and during
the markovian process since the sites’ indices are a part of the Monte Carlo configuration.
For our study we fix the system size to L3 = 203 = 8000 sites and we show that this is
large enough to neglect finite size effects, even in the vicinity of the phase transition.

Finite-size effects :

We conduct a system size study of our method. We show in Fig. IV.5 the evolution
of the double occupancy and magnetization after resummation. The CDet computation
is performed on a lattice of size L3 and we vary L from 4 up to 32. Starting at L = 16,
the results are fixed within error and we can consider that, within our precision, the
thermodynamic limit is reached. In more details, we display the expansion coefficients of
the perturbative treatment of the magnetization, as a function of the linear system size,
in Fig. IV.6. The CDet calculation is completed at U = 4, T = 0.18 which is located very
close to the phase transition (TN ≃ 0.19 at an interaction U = 4). The biggest finite-size
effects are expected to be observed in the critical region for temperatures near the Néel
temperature. However we conclude that for a linear system size L ≥ 20, up to high order
and negligible contribution to the resummed result (mnUn ≤ 10−3), the contribution
from each order is converged within statistical error. Therefore our results are obtained
directly in the thermodynamic limit and, thus, do not involve any finite size scaling. In
the end the final error is dominated by statistical and resummation errors.

Phase transition on a finite lattice :

It is counter intuitive that we can describe the antiferromagnetic phase by performing
computations on a finite lattice. Indeed, the spontaneous breaking of a symmetry can not
occur on finite system, but is a characteristic of macroscopic systems in which an infinite
number of particles develop long range correlations. Therefore one could expect any
magnetization computation to be resummed to zero and the physical system to remain
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paramagnetic at any temperature. This is not what we observe, how can we explain that
we are able to describe a phase transition with a finite number of sites ?

In fact in the CDet recursion, as any Diagrammatic Monte Carlo algorithm, computes
stochastically diagrams which vertices take a position on the finite lattice in real space. All
of these vertices belong to connected diagrams which weight decreases fast with increasing
the spacing between vertices. This is explained by the fact that the bare propagator
decreases fast with increasing the distance between two vertices.

Numerically we estimate for T = 0.2 and independently on the imaginary-time τ , the
average value of the spreading of the Green’s function from the origin i0. It is given by
δr =

∑
i |G0,i0i,σ(τ)| × dii0/

∑
i |G0,i0i,σ(τ)| ≃ 0.5 with dii0 the distance between the sites

i and i0. We want to evaluate the average spreading of diagrams at a certain order in
real space with a simplified approach. We consider a connected diagram formed with n
vertices and two external vertices fixed at the origin. Given the fast decreasing weight
of the non-interacting Green’s function, we consider an average distance between two
vertices given by the average value of the bare propagator spreading δr ≃ 0.5. We can
build the diagram by performing a random walk of step δr in the three dimensional cubic
lattice and imposing it to form a closed loop with the external vertices at the origin. This
situation is close to the worst case by giving the diagram a linear form, maximizing its
spread. The expected translation distance from the origin of this random walk made of
n steps is given by :

D ≃
√

n

2 δr (IV.10)
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Hence the critical expansion order at which the diagrams start to have significant
contributions outside of the cubic lattice of linear size L = 20 is :

nc ≃ 4 L2

δr2 ≃ 6400 (IV.11)

Although extremely simplified, this approach shows that within the number of orders
available we are far from the order of magnitude where diagrams have important con-
tributions outside of the box defined by the finite cubic lattice of L3 = 203 sites. At
expansion orders of the order of magnitude of nc, one would expect the contributions to
be significantly influenced by the finite cubic box of the system and to lead to a cancel-
lation of the magnetization which is equal to zero in a finite system. The spreading of
the bare propagator is increasing as the temperature is decreasing which leads to a larger
spreading in real space of diagrams.

This estimate is extremely rough and it could be checked numerically during the Monte
Carlo simulation. By storing the spreading of diagrams through the Markovian process
one could verify that they mostly remain inside the finite-size cubic lattice. This would
provide an additional argument that the expansion orders are obtained directly within
the thermodynamic limit.

IV.2.5 Numerical instabilities

At high orders and for large system sizes, the perturbative expansion sometimes turns
out to show inconsistent results due to round-off errors in the CDet recursion.

In order to understand this issue let us consider a configuration of n vertices with at
least one vertex which is far away from the rest of the vertices. As the bare propagator
decreases fast with increasing the distance between two vertices, the sum of connected di-
agrams that leave on these vertices is going to be small. However the sum of disconnected
diagrams does not have to be small given that it includes diagrams where the far away
vertices are not connected to the rest of the vertices. Naming V the set of considered
diagrams we therefore have, using the notations of Eq. III.3 :

|C(V )(xin, xout)| ≪ |D(V )(xin, xout)| (IV.12)

This means that many cancellations have to happen in the CDet recursion which
implies 2n operations between determinant like quantities. It leads to round-off errors
that give a wrong and uncontrolled weight to the sum of connected diagrams.

This problem vanishes at α = 1 and is extremely enhanced for α → 0.5 since it gives
a more important weight to Hartree self-loops. Indeed they contribute highly to discon-
nected configurations in the case of far away vertices that do not need to be connected
to any other vertex. Increasing the system size also worsen this effect by increasing the
volume available for far away vertices.
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To solve this issue we define a numerical threshold ϵ to cut-off small contributions in
the CDet recursion and avoid errors. We implement the condition :

|C(V )(xin, xout)| < ϵ|D(V )(xin, xout)| + |
∑
S⊊V

C(S)(xin, xout)D(V \S)(∅)| (IV.13)

At every step of the CDet recursion. If this condition is fulfilled, we set the connected
contribution C(V )(xin, xout) to zero and continue the recursion. To be certain not to
miss important contributions to the final result we perform the full computation with two
significantly different values of the ϵ parameter and check that the expansion coefficients
obtained are consistent within statistical errors. In practice this cut-off is chosen to be a
few orders of magnitude above machine precision ϵ0. In general we use ϵ/ϵ0 = 103 and
105 and utilize the long double accuracy of the C++ standard library.

In the end the resummation procedure enables us to obtain a controlled result. The
finale estimated error on our results are due to the propagation from the stochastic error
on the expansion coefficients, after comparing the resummation with Padé, D-log Padé,
the truncated partial sum, and the exponential fitting of the expansion coefficients, for at
least two different values of the shift α, and with two different coefficients for handling
round-off errors for each computed perturbative series. This procedure gives a controlled
estimation of the result within its determined errorbar, which we have shown is dominating
the error due to the finite size of the lattice.

IV.3 Critical behaviour and Néel ordering
We start our study of the physics of the Néel order by focusing on the critical properties
of the system in the vicinity of the phase transition. We focus in this section on describing
how the magnetization, double occupancy, and entropy behave both within the ordered
phase and across the phase transition.

IV.3.1 Criticality of the Néel phase transition

Applying the symmetry-broken CDet algorithm and our resummation procedure we are
able to compute the order parameter of the antiferromagnetic phase with very good accu-
racy. The magnetization is determined at low temperatures where it saturates to its zero
temperature value, up to the Néel temperature at which it vanishes to zero. Results are
shown in Fig. IV.7 for three different values of the interaction up to intermediate coupling
U = 6. A non-zero magnetization indicates that we enter the Néel phase and we determine
from our grid in temperature the critical Néel temperatures : TN (U = 2) = 0.0425(25),
TN (U = 4) = 0.191(1) and TN (U = 6) = 0.315(5). More precisely, taking advantage of our
precise data, we manage to find the critical behaviour of the magnetization close to the
phase transition m(T ) ≃ a(TN − T )β. We show in Fig. IV.8 (left panel) the acquired
values for the β critical exponent which compare remarkably well with literature for the
O(3) Heisenberg universality class [24, 111, 122]. Relying on this critical behaviour we
also get the very precise estimates of the Néel temperature : TN (U = 2) = 0.0411(8),
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Figure IV.7: Magnetization as a function of temperature at interaction U = 2,
4 and 6. A non zero magnetization indicates that the system is ordered in the
antiferromagnetic phase. The dashed curve corresponds to the best critical
behaviour in the vicinity of the Néel temperature, as fitted with our data.

TN (U =4)=0.1902(3) and TN (U =6)=0.312(2). At U = 4 we see that the linear relation
in the log-log scale is verified on a large scale of temperature. The critical region, defined
as the temperature range T ∈ [TN − δT, TN ] where m(T ) = a(TN − T )β is a good fit to
our data, is of the order of δT ≃ 0.025 for U ≥ 4.

These computations are the first direct computation of the β critical exponent on a
fermionic lattice and in the thermodynamic limit as other methods are either not able
to enter the ordered phase, or show approximate critical exponents since they rely on
the DMFT approximation. The estimated values of the Néel temperature compare well
with the paramagnetic CDet approach [81], the improved dynamical vertex approximation
DΓA [131], and the DCA extrapolated to infinite cluster size [62,70].

The magnetization computations are limited to the weak-to-intermediate coupling
U ≤ 6 with our approach. At stronger interaction, the expansion series convergence
becomes slower with respect to the expansion order, and the search for the ’magic shift’
requires more effort. This leads to series which turn out to be hard to resum in a controlled
way. However, even if the critical region will remain inaccessible to our method, we show
in Section IV.4.1 that the magnetization can be determined at low temperature up to
very high interaction.
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IV.3.2 The Slater mechanism

We present the variations of the double occupancy with respect to temperature, in the
paramagnetic and antiferromagnetic phases, in Fig. IV.10. At U = 4 we observe a sin-
gularity in the double occupancy which corresponds to the Néel phase transition. As
expected at this relatively small value of the interaction, the double occupancy bends
towards zero when entering the antiferromagnetic phase with decreasing the tempera-
ture. Therefore the phase transition provokes a gain in potential energy Epot = UD
which is consistent with the Slater mechanism. Interestingly in the paramagnetic phase
at T ≥ 0.19, D decreases with increasing temperature. This is the Pomeranchuk ef-
fect [29, 39, 41, 141] which happens in this part of the phase diagram. It is driven by the
spin entropy which is larger in a localized state than in the Fermi liquid. Therefore an
increase in temperature leads to less localization and an increase of the double occupancy
for the half-filled system.

At higher values of the interaction we loose in accuracy because of harder resumma-
tions and the curve flattens. We can not observe a singularity at the phase transition.
We do not report any change in the double occupancy at the Néel temperature or inside
the antiferromagnetic phase within our 10−2 relative accuracy on the displayed results.
For this coupling we are close to the maximum of the Néel temperature, at the top of the
antiferromagnetic dome. We therefore expect to be seated at an intermediate interaction
between the Slater and Heisenberg domains which is consistent with a quite still potential
energy as we enter the ordered phase, on a range of temperature much larger than the
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critical region.

At higher values of the coupling, the double occupancy computations does not show
the same limitations as for the magnetization and we show further results as a function of
the interaction in Section IV.4.1. However, as seen at U = 8, a much better sensitivity on
the double occupancy would be needed to witness the change from a Slater to Heisenberg
mechanism.

IV.3.3 Entropy through the phase transition

Grand potential :

To derive the entropy we compute the grand potential per lattice site of the system
−Ω/L3 = P where L is the linear system size of the cubic lattice, and P the thermody-
namic pressure. The entropy density can be obtained from the grand potential density
through :

S = − ∂Ω
L3∂T

(IV.14)

The grand potential density, or pressure, is defined on a lattice with L3 sites by the
logarithm of the partition function :

− Ω
L3 = 1

βL3 log(Tr[e−βĤ]) (IV.15)

From the linked-cluster theorem, one can show that its diagrammatic expansion is
made of the sum of fully connected diagrams with no external vertices. To implement
this computation within the CDet framework we need external vertices see Eq. III.3. We
take advantage of the position and imaginary-time translation invariance of the system
and fix one of the vertices, taken as a reference, on a specific site and time. The other ver-
tices coordinates stay part of the Monte Carlo configuration. This definition of a vertex of
reference is required in order to distinguish the connected from the disconnected part in
the CDet recursion. In the end the quantity that we compute is defined diagrammatically
by the sum of fully connected diagrams with four external vertices that have the same
coordinate of reference in the time and space-translational invariant system and are con-
nected to one propagator. We call this quantity Λ and note Λn its expansion coefficient
of order n.

Because of this scheme the pertubative expansion of Λ is not exactly the one of P ,
and we need to make a few adjustments. Indeed the reference vertex being defined as
an external vertex, for a computation with k internal vertices we compute the expansion
coefficient Λk. It corresponds to an expansion coefficient at order k + 1 of the pressure
once the reference vertex is considered as internal. At an order k, the prefactor of the
sum of the factorial number of diagrams goes as 1/k! and therefore one has to add a
coefficient k!/(k + 1)! = 1/(k + 1) in the process of going from Λ to P . In the end we get
the expansion coefficients for the pressure :
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Pk+1 = − Λk

k + 1 (IV.16)

This means that, after normalization of the coefficients Λk up to a maximal order n
we obtain the expansion coefficients of the pressure from order 2 to n + 1. We now have
to determine analytically two expansion coefficients to complete the perturbative series.
At U = 0 the pressure for free fermions with eigenenergies Ei is given by :

P0 = 1
βL3

∑
i

log(1 + e−βEi) (IV.17)

From the expression of the Hamiltonian on the expansion path Eq. III.20 for U ∈
[0, Uϕ] we get the first derivative for the pressure :

dP

dU
= − 1

L3

Tr[(
∑

i n̂i↑n̂i↓ − 1
2
∑

i(n̂i↑ + n̂i↓) − αhMF
Uϕ

∑
i(−1)iŜz

i )e−βĤ]

Tr[e−βĤ]
(IV.18)

With recalling D = ⟨n̂i↑n̂i↓⟩, and m = ⟨(−1)iŜz
i ⟩ and at half-filling ⟨n̂i↑ + n̂i↓⟩ = 1 we

get :

dP

dU
= −D(U) + 1

2 + αhMF

Uϕ
m(U) (IV.19)

Which gives :

P1 = dP

dU
(U = 0) = −D(0) + 1

2 + αhMF

Uϕ
m(U = 0) (IV.20)

This links the perturbative expansions of the grand potential with the double occu-
pancy and magnetization, and at any expansion order n ≥ 2 we have :

Pn+1 = 1
n + 1(−Dn + αhMF

Uϕ
mn) (IV.21)

We notice that the quantity Λ can be expressed in terms of the magnetization and
double occupancy. Indeed the diagrammatic expansion of Λ is similar to the double
occupancy one but with a possible external interaction due to the shift on the reference
vertex. For a CDet expansion in the paramagnetic regime (α = 0), the grand potential is
obtained directly from computing the double occupancy.
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Deriving the entropy :

We determine the grand potential at U = 4 from low to high temperatures in
Fig. IV.11. Within our numerical data we can not observe a singularity of the grand
potential at the Néel temperature. Indeed its critical behavior at the phase transition is
determined by the α critical exponent which defines the specific heat variations in the
vicinity of the Néel temperature C ∝ (TN − T )−α, with α ≃ −0.1336 for the O(3) Heisen-
berg universality class. Hence the specific heat is continuous at the critical temperature
with a diverging derivative. The specific heat is related to the grand potential through
C = −T∂2Ω/L3∂T 2. Therefore the grand potential is continuous up to its third derivative
and the function appears smooth at our scale and numerical accuracy.

In order to evaluate its derivative with respect to the temperature and get the entropy
density of the system, we suppose a polynomial behaviour of the grand potential. At
low temperatures T → 0 in the antiferromagnetic phase, the low energy excitations of
the ground state take the form of spin wave excitations which analysis leads to a low
temperature behaviour Ω(T ) − Ω(T = 0) ∝ T 4 [140]. This motivates the polynomial
expression −Ω(T )/L3 = −Ω(T =0/L3) + aT 4 + bT 5 + cT 6 which fits well our data inside
the antiferromagnetic phase (cyan curve). At T > TN we expect a quadratic dependency
on the temperature in the degenerate Fermi liquid regime. The data is well fitted by
the expression −Ω/L3(T ) = d + eT 2 (yellow curve). The two relations are linked at the
Néel temperature by imposing continuity of the grand potential and of its derivative. At
higher temperatures T ≥ 0.4 the grand potential becomes almost linear in temperature
−Ω(T ) ≃ log(4)T . The entropy density is then extracted with a finite difference scheme.
These different behaviors of the grand potential lead to different physical regimes for
the evolution of the entropy density with temperature. In the Néel phase and at small
temperatures the entropy density varies as S ∝ T 3. For temperatures just above the
transition T ∈ [TN , 0.35] the entropy density increases linearly with the temperature
which is a signature of the expected metallic behaviour of the system in this part of the
phase diagram. At higher temperatures T ∼ U = 4 the entropy density saturates to
S(T → +∞) = log(4). It corresponds to its expected value in the disordered system for
T → ∞ as the system has four possible configurations on each site.

This study enables us to recover the expected different physical regimes present at
intermediate coupling U = 4 of the half-filled Hubbard model. We lack accuracy and
results close to the Néel temperature to be able to describe the critical behaviour of the
grand potential and entropy. In this context the obtained entropy at the phase transition
can only be given as a general estimate and we document S ≃ 0.22 at TN ≃ 0.19 which is
consistent with the estimated value of the DDMC study at S(T = 0.2) = 0.215(11) [73].

IV.4 Low temperature physics

Our attention is now focused on the system’s low temperature characteristics where the
magnetization has reached saturation. The region with saturated magnetization makes up
a considerable portion of the antiferromagnetic dome since we have shown that the mag-
netization only noticeably changes in a shell of size δT ∼ 0.1 below the Néel temperature.
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Figure IV.11: Left panel: At interaction U = 4, grand potential density
−Ω/L3 as a function of temperature T . When not visible the error bar is
smaller than the markers. Right panel: Entropy density S as a function of
temperature and computed as derivative of the grand potential fitting curves
(see text). The cyan error bars give the error on the entropy curve. The
entropy curve is dashed in the temperature range where we lack sufficient data
to fully resolve the critical behavior of entropy. The insets are the same plots
on a larger temperature range. The lime horizontal line indicates the high
temperature limit S = log(4). On both panels the vertical lines correspond
to the value of the Néel temperature.
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In this regime the perturbative series turn out to be easier to resum and we systematically
rely on series with a chemical potential shift α ∼ 1 − 0.7 for double occupancy and grand
potential computations.

IV.4.1 Double occupancy at low T

As a measure of localization, the double occupancy is highly sensible on the interaction
U . We display its variations with the coupling at three different values of the temperature
in Fig. IV.12.

At small values of the interaction the double occupancy obtained with CDet algorithm
with no symmetry breaking matches the symmetry-broken CDet results, up to the critical
value of the interaction at which the paramagnetic phase computation breaks and the
series can not be resummed. As anticipated, a singularity in the double occupancy is
observed during the transition at Uc, and this observation may be utilized to determine
the value of the critical interaction at fixed temperature. The double occupancy decreases
faster with increasing interaction when entering the Néel phase which is consistent with
the Slater mechanism at the transition on this part of the Néel dome. Inside the phase
and at higher interaction, the double occupancy decreases slowly towards zero at U → ∞.
We are able to accurately determine the double occupancy up to very strong coupling
U = 18. Our error on the resummed result which is too small to be visible here, remains
approximately constant over the different temperatures and values of U . But since the
overall result decreases with increasing the interaction, it goes from a 1% error at U = 7
up to a 5% error at U = 18. For U ≥ 8 and within our errorbar, we do not see any change
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in the double occupancy as the temperature varies from T = 0.3 to T = 0.1. Even if we
could expect the to have reached the paramagnetic phase on the other side of the Néel
dome at high interaction and T = 0.3, we do not observe any signature of this in the
temperature.

In the end our results are not precise enough for documenting a change to a Heisen-
berg mechanism of the Néel ordering or a change in behaviour indicating an underlying
insulating paramagnetic system, since the variations of the double occupancy with respect
to the temperature are inaccessible. Still, our approach shows powerful for reaching the
strong coupling regime in which it is able to provide controlled and accurate resummed
results.

IV.4.2 Grand potential as a path to magnetization

As the interaction is increased, it becomes increasingly difficult to resum the perturbative
series of the magnetization and the direct computations fail for U ≥ 7. However the
perturbative series for the grand potential behaves in a much better way and we can, as for
the double occupancy, resum them accurately up to high interaction. Our approach relies
on determining the magnetization from the grand potential computations. In this purpose
we describe the Hubbard Hamiltonian with an additional term Hext

∑
i(−1)iŜz

i which acts
as an external staggered Zeeman field. This term does not depend on the interaction and
enters the definition of the non-interacting Hamiltonian. The magnetization is obtained
as :

m = − ∂Ω
L3∂Hext

∣∣∣∣
Hext=0

(IV.22)

By determining the grand potential for different values of the external field we are
able to determine its derivative and obtain the magnetization at low temperatures and up
to strong interactions. Depending on the data we use a first or second order polynomial
fit at relatively small values of the field Hext ≤ 0.2. This method enables one to reach
very high values of the interaction up to U = 18 as shown in Fig. IV.13.

However this approach is limited to the region where the magnetization is saturated
and has almost reached its zero temperature value. As the temperature is increased, the
significant changes in the grand potential happen at small fields. Moreover the series at
small external fields become harder to resum and the error on the grand potential becomes
larger. These two elements are consistent with the fact that the values at smaller fields
are more dependent on the magnetic fluctuations when approaching the Néel transition.
Therefore this approach is unable to access the regime where the magnetization changes
significantly with the temperature.

We display the magnetization at low temperature T = 0.1 and T = 0.2 as a function
of the interaction. When available the direct computations of the magnetization at U ≤ 7
coincide with the value derived from differentiating the grand potential. As for the double
occupancy, for U ≥ 7 we see no difference between the values of the magnetization at the
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two temperatures. This means that we have reached the regime where the magnetization
is saturated to its zero temperature value. The magnetization becomes very close to
its maximum value which is close to 1 for U ≥ 14. As these computations are done
at finite temperature we would expect the magnetization to show a maximum with the
interaction before decreasing towards zero as we exit the antiferromagnetic phase on the
high interaction part of the Néel dome. This must therefore happen at U > 18.

IV.5 The attractive Hubbard model

The study of antiferromagnetism with the symmetry-broken CDet algorithm is an example
of its reliable application to a specific ordered system. This technique is general for any
symmetry-broken system, provided that we know the symmetries and the order parameter
involved. In this section we study an other application of our method to the Hubbard
model on a cubic lattice, but with negative interaction U < 0. The attractive interaction
gives rise to forming pair of electrons with opposite spins, and at low temperature leads
to a superconducting state with long-range order in the s-wave pairing channel.

The study presented in this Section is detailed in the article (preprint) [128] which is
reproduced in Appendix J.

IV.5.1 Superconductivity and correspondence to the repulsive model

The repulsive Hubbard model :

The half-filled Hubbard model on a bipartite cubic lattice shows a correspondence
between the attractive and repulsive models which is detailed in Appendix E. As the
interaction U changes sign the Néel order is transformed in an s-wave superconducting
phase described by the order parameter ⟨Ô⟩ = ⟨ĉi↑ĉi↓⟩. Moreover shifting the chemical
potential in the model at U < 0 and doping the system away from half-filling keeps
the equivalence to the repulsive model at half-filling with an additional external Zeeman
field. And vice versa : adding a Zeeman field to the attractive Hubbard Hamiltonian
corresponds to doping the repulsive model.

Replacing the superconducting order by an antiferromagnetic one, both models at half-
filling are equivalent and have the same physical properties. In the attractive system, as for
the repulsive model, the superconducting phase can be described by two different regimes
which are the analogous of the Slater and Heisenberg mechanisms. At small interaction
the phase transition happens because of a gain in potential energy and gives a BCS-like
superconductor where the critical temperature is linked to the value of the gap and rises
as the interaction is increased. At high values of the interaction the transition goes to
a Bose-Einstein Condensate regime, the transition is caused by a gain in kinetic energy
and the critical temperature is essentially determined by the superconducting stiffness
which decreases as the interaction is increased. In the middle of these two regimes the
crossover from the BCS to BEC regime has been extensively documented with DMFT
like approaches at different temperatures and fillings [11,28,35,135].
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Entering the superconducting phase :

In order to describe the superconducting phase of the attractive Hubbard model, the
symmetry-broken CDet approach needs to be adapted to this new ordering. We define
the perturbative expansion with the Hamiltonian, away from half-filling (µ ̸= U/2) and
in the presence of an external and uniform Zeeman field h :

H[U ] = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ

∑
i

+U
∑

i

n̂i↑n̂i↓ −
∑
iσ

(µ − U⟨nσ̄⟩H0)(n̂iσ)

+ h
∑

i

Ŝz
i + ∆0

∑
i

(ĉ†
i↑ĉ†

i↓ + h.c.) − ∆0
U

Uϕ

∑
i

(ĉ†
i↑ĉ†

i↓ + h.c.) )

= H0 + UHexp

(IV.23)

Where h.c. stands for hermitian conjugate, H0 = H(U = 0) is the non-interacting
Hamiltonian, and Hexp the expansion one which comes with a linear term in interaction
U in the definition of H. The linear shift to the chemical potential µ−U⟨nσ̄⟩H0 corresponds
to the one which cancels the Hartree self-insertions in the diagrammatic expansion, and
cancels the diagonal coefficients of the matrix used in the CDet recursion. The pairing
field ∆0 is breaking the symmetry associated with the superconducting phase and enables
one to enter the phase perturbatively. By analogy to the repulsive study, we can choose :
∆0 = α∆MF = −αUϕ⟨Ô⟩H0 . For α = 1 the non-interacting system therefore corresponds
to the mean-field BCS solution of the model. We perform an expansion in U going
from 0 to Uϕ at which the pairing term vanishes in H and we get back to the Hubbard
Hamiltonian. Uϕ is the targeted value of U which is negative in the attractive case.

The pairing term is part of the expansion Hamiltonian and it therefore impacts the
diagrammatic expansion. It is quadratic and acts as an external field which links two
propagators. On the contrary to the antiferromagnetic case, the pairing term does not
conserve the number of particles and one needs to include anomalous propagators in
the construction of the perturbative expansion. In the diagrammatic expansion these
propagators correspond to lines which create or destroy a particle at both ends. The bare
propagator is now expressed in terms of the four components :

G00
0,ij(τj − τi) = −⟨T ĉ†

j↑(τj)ĉi↑(τi)⟩

G11
0,ij(τj − τi) = −⟨T ĉj↓(τj)ĉ†

i↓(τi)⟩
G10

0,ij(τj − τi) = −⟨T ĉj↓(τj)ĉi↑(τi)⟩

G01
0,ij(τj − τi) = −⟨T ĉ†

j↑(τj)ĉ†
i↑(τi)⟩

(IV.24)

This leads to a matrix for the CDet recursion of size (2n + 1) × (2n + 1) at order n
for the computation of Green’s function Gaoutain

iiniout
(τout − τin), which is expressed as follow :
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D′
n,σ =



0 δ . . . G00
0,i1in

(τ1 − τn) G01
0,i1in

(τ1 − τn) G0ain
0iini1

(τ1 − τin)
δ 0 . . . G10

0,i1in
(τ1 − τn) G11

0,i1in
(τ1 − τn) G1ain

0iini1
(τ1 − τin)

...
... . . . ...

...
...

G00
0,ini1(τn − τ1) G01

0,ini1(τn − τ1) . . . 0 δ G0ain
0,iinin

(τn − τin)
G10

0,ini1(τn − τ1) G11
0,ini1(τn − τ1) . . . δ 0 G1ain

0,iinin
(τn − τin)

Gaout0
0,iouti1

(τout − τ1) Gaout1
0,iouti1

(τout − τ1) . . . Gaout0
0,ioutin

(τout − τn) Gaout1
0,ioutin

(τout − τn) Gaoutain
0,ioutiin

(τout − τin)


(IV.25)

Where the chemical potential shift leads to the cancellation of diagonal terms. δ =
⟨Ô⟩H0(1 − α) and vanishes for α = 1. This bigger matrix does not change the overall
complexity of the algorithm since the complexity due to the calculation of determinants
is dominated by the recursion.

In the end, the obtained perturbative series have the same behaviour that we displayed
for computations in the repulsive model and we can apply a similar resummation pro-
cedure to get controlled results inside and out of the superconducting phase. The order
parameter can be resummed accurately at low temperatures to non-zero values, show-
ing that we enter perturbatively the superconducting phase of the attractive Hubbard
Hamiltonian on a cubic lattice.
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IV.5.2 Superconductivity and depairing magnetic field

The perturbative expansion Eq. IV.23 enables us to study the superconducting phase
in the presence of a Zeeman field. By favoring one spin flavor over the other one, the
Zeeman field enters in competitions with the Cooper s-wave pairing of electrons which
forms pairs of opposite spins fermions. For a big enough field, the gain in energy of
the polarized state compensates the gain due to the pairing gap of the superconducting
phase. We therefore expect a critical field hc such that for h ≥ hc the superconductivity is
suppressed. The magnetization m = ⟨Ŝz

i ⟩ and superconducting gap are discontinuous at
the critical field, hence a first order phase transition between the normal polarized state
and the superconducting phase.

We show in Fig. IV.15 the grand potential obtained from the normal and symmetry-
broken CDet algorithms as a function of the external Zeeman field. The results are ob-
tained at a value of the interaction Uϕ = −5 and fixing the chemical potential in Eq. IV.23
to µ = −3.38. The temperature is fixed to 0.0625 which is in the superconducting phase
at h = 0 and around Tc/4. Since the system is not at half-filling any more, the density
is not fixed but varies along the perturbation path, and depends on the parameters of
the Hamiltonian. For this starting chemical potential at U = 0 and this value of the
physical interaction, the density turns out to be close to ⟨n̂i↑ + n̂i↓⟩ ≃ 0.5, and is almost
independent on the value of the magnetic field at small temperatures. Since Ω is the ther-
modynamic potential of the system in the grand canonical ensemble, the thermodynamic
solution of the model has to maximize the value of −Ω/L3. We see that we obtain differ-
ent resummed solutions depending on the used perturbative expansion with or without
a symmetry-breaking field. For h < hc ≃ 0.6 the thermodynamic solution is given by
the symmetry-broken expansion and we are in the superconducting phase. In this phase
the value of the grand potential is almost independent on the field which means that the
magnetization is close to zero. For h > hc the thermodynamic solution is obtained via the
normal state expansion. The variations of this curve with the field indicate a non-zero
magnetization. The crossing of the two solutions indicates a discontinuity at h = hc of
the first derivative of the grand potential, hence a first order phase transition. The fact
that we are able to resum normal expansions in a regime where the system is ordered in a
superconducting state, and that we obtain a different solution from the symmetry-broken
expansion at h > hc could be due to the existence of metastable solutions in a first order
phase transition. This still remains to be fully understood to state if our method can de-
scribe metastable states or if we are missing important contributions at high perturbative
orders.

IV.6 Conclusion and perspectives on the symmetry-broken
CDet algorithm

We have shown in this chapter that the symmetry-broken CDet algorithm is a powerful
tool for studying in a controlled and accurate way ordered systems, directly in the thermo-
dynamic limit. Our approach to the antiferromagnetic and s-wave superconductivity can
be generalized to any symmetry-broken phase provided that its symmetry and order pa-
rameter are known before hand. When adding a Zeeman field, the superconducting state
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shows a first order phase transition around which the properties of the symmetry-broken
and normal expansion series still remain to be understood in details.

In the half-filled repulsive Hubbard model we have documented the critical regime in
the weak to intermediate coupling regimes and have documented the Slater mechanism
at the phase transition. Due to increasingly hard resummation, our approach remains
limited in the critical region at strong coupling. At low temperature though we have been
able to reach very strong couplings (U = 18). However this is not enough to document a
crossover to a Heisenberg regime. Deep inside the dome the double occupancy does not
show any feature of a crossover happening and the transition seems to be smooth from the
Slater to Heisenberg regions. The implementation of the recent new Renormalized CDet
algorithm [61,116] could yield expansion series with a faster convergence with respect to
the expansion order, and easier resummations, by enabling a symmetry-broken chemical
potential shift with a staggered magnetic field varying as a polynomial in the expansion
parameter U . Considering the cubic model, a rich physics happens at finite doping away
from half-filling and the antiferromagnetic order is gradually suppressed as the doping
increases. At low temperatures it even transforms to incommensurate spin density wave
ordering as it was studied e.g. in DΓA [122]. The Néel temperature goes to zero at fixed
interaction when increasing the doping, and the magnetic order finishes as a phase tran-
sition at T = 0 in a quantum critical point whose physics still remains to be determined
numerically. In the doped regime the chemical potential has no predetermined value and
the density varies on the expansion path. This issue could be overcome by making use
of the newly developed double-expansion CDet algorithm [64] which enables one to fix
the density along the perturbative path, at the expense of a slightly worse computational
complexity.

One of the next objectives would be to tackle the two dimensional model on a square
lattice whose properties in the doped regimes at low temperatures are still debated and
which has been extensively studied by many different methods in the past years [79,123].
Even if the Mermin-Wagner theorem prevents any spontaneous breaking of a continu-
ous symmetry in two dimensions, the low temperature regime is characterized by very
long correlation lengths and many different competing orders such as charge density or-
ders, and d-wave superconductivity. The symmetry-broken expansion could prove useful
for studying these regimes with long-distance correlations as done in [80]. However the
perturbative series obtained with symmetry-broken diagrammatic expansions have been
observed to show slow convergence and obtaining controlled results in these regimes re-
mains very challenging.
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In the previous chapters, we have focused on developing a new method for under-
standing strongly-correlated systems at equilibrium. In this chapter we rely on a different
approach to study interacting systems in the presence of a time-dependent perturbation
driving the system out of equilibrium.

The richness of the physics of strongly correlated materials gives rise to many inter-
esting phenomena when submitting them to external perturbations. One example is the
the recently observed metal-to-insulator transition in Ca2RuO4 induced by an electric
field [94, 96, 120]. Even if recently the impact of local heating has been pointed out in
these experiments [86], it has been suspected that small electrical fields can provoke a
structural transition of the crystal, leading to a radical change in the resistance of the
material [1, 42].

Describing theoretically these phenomena is challenging and the associated numerical
methods can become extremely heavy when considering the many different orbitals at
play, and the different components of correlators in the out-of-equilibrium formalism. In
this chapter we rely on the DMFT approximation which can be generalized to out-of-
equilibrium systems [5,6,82,85,102]. We therefore focus on developing an impurity solver
in the real-time Keldysh formalism. We introduce a strong coupling expansion called the
NCA (Non-Crossing-Approximation) which sums analytically an infinite number of terms
in the hybridization diagrammatic expansion. It provides a simple and light numerical
impurity solver for out-of-equilibrium systems.

In this chapter we introduce the out-of-equilibrium formalism for strongly-correlated
systems and the NCA approximation. We implement an impurity solver in the steady-
state limit and apply it to the Kondo resonance of the Anderson impurity model. In
general this approximation is formulated directly on the Green’s function of the im-
purity [16, 31]. This chapter enables us to introduce a different approach for the out-
of-equilibrium many-body problem and the NCA approximation in terms of the local
propagator R [91, 100,119].

The NCA approximation is well known and has been extensively used to tackle im-
purity problems in the past three decades. This approach is not new, but in its general
formulation it struggles for providing relying results for out-of-equilibrium systems and in
multi-orbital models for strongly correlated materials. We provide in this chapter a novel
algorithm for solving efficiently the NCA equations, by alternating between the time and
frequency domain.

V.1 NCA equations
To introduces the NCA impurity solver, we consider an impurity described by a local
Hamiltonian Ĥloc which exchanges electrons with a bath at equilibrium temperature β =
1/T and Hamiltonian Ĥbath through a hybridization function ∆.

We recall the expressions of the hybridization functions ∆ which characterize the bath.
In the general case with d̂i operators acting on the impurity (the i index stands for local
sites or spin degrees of freedom) and ĉk operators on the bath :
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Ĥ = Ĥloc + Ĥhyb + Ĥbath

= Ĥloc +
∑
k,i

γk,i(ĉ†
kd̂i + h.c) +

∑
k

ϵkĉ†
kĉk

(V.1)

Since the bath is considered to be at equilibrium we can write the hybridization
function in Matsubara frequencies as follow :

∆ij(iωn) =
∑

k

γikγkj

iωn − ϵk
(V.2)

∆ has the standard properties of Green’s functions and has a spectral representation
:

∆ij(iωn) =
∫ A∆ij

(ϵ)
iωn − ϵ

dϵ (V.3)

V.1.1 NCA at equilibrium

The local states propagator :

We introduce the local propagator and NCA equations in imaginary-time for an im-
purity at equilibrium, before generalizing it to out-of-equilibrium systems. After tracing
over the bath degrees of freedom with Zbath = Trbath[e−βĤbath ], the impurity local state
propagator reads :

R(τ) = − 1
Zbath

Trbath[e−(β−τ)Ĥbathe−τ(Ĥloc+Ĥhyb+Ĥbath)] (V.4)

R is an operator that acts on the local impurity Hilbert space and it has a 2N × 2N

matrix representation with N the number of states in the impurity. From the definition
we see that R is linked to the local density matrix ρloc and has the following properties
for describing the system :

R(β) = − 1
Zbath

Trbath[e−βĤ]

ρloc = −Zbath
Z

R(β)

Z = −ZbathTrloc(R(β))

(V.5)

And for any observable O, it expectation value is given by :

O(β) = −Zbath
Z

Trloc[R(β)Ô] (V.6)

In the absence of hybridization we find the propagator for an isolated system :

R0(τ) = −e−τHloc (V.7)



96 Chapter V. NCA solver for out-of-equilibrium systems

Hybridization expansion :

We want to expand the local state propagator in the hybridization function as we did
in Chapter II. R can be written in terms of an imaginary time path-integral representation
:

R(τ) = −Tτ exp(−τHloc −
∫ τ

0
dτ1

∑
ij

diτ2∆ij(τ1 − τ2)d†
j(τ1)d(τ2)) (V.8)

Expanding the time-ordered exponential we obtain the hybridization perturbative
expansion of the local propagator :

R(τ) =
∑
n≥0

(−1)n

n!

∫ τ

0
dτ1dτ ′

1...dτndτ ′
n

∑
aibi

(
n∏

i=1
∆aibi

(τi − τ ′
i))

× Tτ (R0(τ)
n∏

j=1
(d†

aj
(τj)dbj

(τ ′
j)))

(V.9)

From this equation we can deduce the diagrammatic rules for expanding R in the
hybridization function. The diagrammatic expansion of R is made of vertices with local
coordinates (a, τ), bare lines linking two vertices at different imaginary-time and con-
tributing as R0(τ − τ ′), and hybridization dashed lines between vertices of coordinates
(a, τ) and (b, τ ′) which contribute as ∆ab(τ − τ ′)d†

a(τ)db(τ ′). The expansion coefficient of
order n is the diagram with n hybridization lines summed over all internal vertices coor-
dinates, with time-ordering the d operators according to their imaginary-time arguments
multiplied by (−1)s+f with s the number of crossings of hybridization lines, and f the
number of back lines going backward in time.

For instance the first order expansion term is written with two vertices and one hy-
bridization line (omitting the internal vertices coordinates) :

(0) (τ)
(a,τ1) (b,τ ′

1)
=
∑
a,b

∫ τ

0
dτ1dτ ′

1∆ab(τ ′
1−τ1)R0(τ1)d†

a(τ1)R0(τ ′
1−τ1)db(τ ′

1)R0(τ−τ ′
1)

(V.10)

From this diagrammatic expansion we see that R obeys a Dyson-like equation with
S the associated self-energy which is the sum of all one-particle irreducible diagrams. It
writes :

R(τ) = R0(τ) +
∫ τ

0
dτ ′dτ̄R0(τ − τ ′)S(τ − τ̄)R(τ ′) (V.11)

After differentiating with respect to τ we obtain an integro-differential Volterra equa-
tion :
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−∂τ R(τ) = HlocR(τ) +
∫ τ

0
dτ ′S(τ − τ ′)R(τ ′) (V.12)

With initial condition R(τ = 0) = R0(τ = 0) = −1

Fourier representation :

Since we define these functions for τ ∈ [0, β] it can be extended to τ ∈ R to use the
usual transformations on functions. For example it could be periodicized to be represented
by a Fourier series in Matsubara frequencies. R and S can also be defined by the Volterra
equation for τ > 0 and taken equal to 0 for τ ≤ 0. The Volterra equation then becomes :

−∂τ R(τ) = δ(τ) + HlocR(τ) +
∫ +∞

∞
dτ ′S(τ − τ ′)R(τ ′) (V.13)

And assuming that we can perform the Fourier transform of R and S through :

R(iω) =
∫ ∞

0
dτR(τ)eiωτ (V.14)

The Volterra equation becomes :

R(iω) = [iω − Hloc − S(iω)]−1 (V.15)

We supposed here that is is possible to perform a Fourier transform on the R(τ)
function, which according to Eq.V.4 is only possible if the spectrum of the Hamiltonian
Ĥloc + Ĥhyb is positive. Supposing that it is bounded at low energies, this condition can
be fulfilled by switching the overall Hamiltonian by an energy constant.

NCA approximation :

In the Non-Crossing Approximation we consider the sum of diagrams without any
crossing of hybridization lines and omit the other diagrams. In this approximation the
self-energy S is the sum of two diagrams with a single hybridization line : the one of
Eq. V.10 and the same one with inverting the orientation of the hybridization line. The
self-energy can be written as :

S(τ) = −
∑
ab

[d†
aR(τ)db∆ab(τ) − daR(τ)d†

b∆ba(−τ)] (V.16)

By summing explicitly a class of diagrams, the NCA approximation leads to a closed
system of two equations which can be solved self-consistently and provides an easy solver
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for impurity problems. However the approximation is uncontrolled and will yield better
results in the high interaction limit where the weight of high-order hybridization diagrams
can be neglected.

In this approximation, the Green’s functions can then be expressed through :

Gab(τ) = − 1
Z

Tr[e−(β−τ)Hdae−τHd†
b]

= −Zbath
Z

Trloc[R(β − τ)daR(τ)d†
b]

= Trloc[R(β − τ)daR(τ)d†
b]

Trloc[R(β)]

(V.17)

Which is only valid in the NCA approximation since we ignored the crossing with
external bath lines to perform the trace over the bath degrees of freedom.

V.1.2 Out-of-equilibrium formalism

In the following, we aim at studying a system out-of-equilibrium. The local Hamiltonian
can evolve either as a quench at t = 0 and be time-independent for t > 0, or evolve with
time Ĥloc = Ĥloc(t). The initial state is defined by the density matrix :

ρ(t = 0) = e−βHbath

Zbath
ρloc(t = 0) (V.18)

Where ρloc(t = 0) = 1/Zloc is the local density matrix.

The triple contour :

We start by introducing the formalism that we use for the many-body problem out-of-
equilibrium. For a complete introduction to non-equilibrium physics in quantum systems
see [130].

In the condition of a time-dependent Hamiltonian, the expected value of an operator
Ô is expressed as :

O(z) = Tr[T̄ e−i
∫

C̄ dz̄Ĥ(z̄)Ô(z)]
Tr[T̄ e−i

∫
C̄ dz̄Ĥ(z̄)]

(V.19)

With C̄ the Baym-Kadanoff contour shown in Fig. V.1, z a point of this contour and
T̄ the time-ordering operator along this contour. The contour is oriented such that T̄ is
the time-ordering operator on the C+ and CT , the anti-time ordering operator on the C−
axis. The time axis carry the properties of out-of-equilibrium time-evolution, while the
imaginary-time axis enables one to start at t = 0 from a correlated many-body state at
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Figure V.1: Oriented Baym-Kadanoff contour used for out-of-equilibrium
time-evolution. The time-coordinate evolves from 0 to tmax on the C+ axis,
from tmax to 0 on the C− axis, and on CT as an imaginary-time which final
point −iβ coincides with the origin of C+.

temperature β. A point z of this contour is therefore expressed as z = (t, +) or z = (t, −)
depending on the real-time axis, and z = −iτ on the imaginary-time axis.

The local state propagator R function is now defined on the full Baym-Kadanoff
contour by the expression :

R(z, z′) = −iTrbath[e
−βHbath

Zbath
T̄ exp(−i

∫
C̄

Hbath − i

∫ z

z′
Hloc + Hhyb)] (V.20)

Which leads after tracing the bath out in the path integral formulation :

R(z, z′) = −iT̄ exp(−i

∫ z

z′
Hloc(z1)dz1 − i

∫ z

z′
dz1dz2∆(z1, z2)d†(z1)d(z2)) (V.21)

The local propagator, as well as the impurity Green’s function are function of two
time variables and are now expressed in terms of nine components depending on the axis
these variables belong to. We note R as a 3 × 3 matrix :

R(z, z′) =

R++(t, t′) R<(t, t′) R⌉(t, τ ′)
R>(t, t′) R−−(t, t′) R⌉(t, τ ′)
R⌈(τ, t′) R⌈(τ, t′) iRM (τ, −τ ′)

 (V.22)

Where the last component corresponds to the equilibrium propagator defined in
Eq.V.4 : R(−iτ, −iτ ′) = iRM (τ − τ ′). These nine components are not independent
and they obey the following relations :
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R++(t, t′) = θ(t − t′)R>(t, t′) + θ(t′ − t)R<(t, t′)
R−−(t, t′) = θ(t − t′)R<(t, t′) + θ(t′ − t)R>(t, t′)
R⌉(t, τ) = −R⌈(β − τ, t)

(V.23)

With θ the Heaviside function. In the end only four components of the local propagator
are independent. Additionally the following symmetry relation holds :

R>(<)(t, t′)† = −R>(<)(t′, t) (V.24)

For an isolated impurity in the absence of hybridization the bare propagator writes :

R0(z, z′) = −iT̄ e−i
∫ z

z′ Ĥloc(z1)dz1 (V.25)

And the partition function is given by :

Zloc = iTrloc[R<(t, t)] = −Trloc[RM (β)] (V.26)

NCA approximation :

By analogy with the equilibrium case, the same diagrammatic can be defined with
hybridization lines ending on points of the triple contour. It leads to a Dyson-like equation
which can be written as a Volterra integro-differential equation :

i∂zR(z, z′) = HlocR(z, z′) +
∫ z

z′
dz1S(z, z1)R(z1, z′) (V.27)

Performing the NCA approximation we obtain an analytic expression for the self-
energy :

S(z, z′) = iT (z, z′)
∑
ab

[d†
aR(z, z′)db∆ab(z, z′) − daR(z, z′)d†

b∆ba(z′, z)] (V.28)

With T (z, z′) = 1 if z > z′ and −1 otherwise. The Volterra and NCA equations can
be solved together using a time discretization scheme for each components of R and S
and relying on their symmetries [91].

In the NCA approximation, each component of the the Green’s functions on the triple
contour can be obtained through :

Gab(z, z′) = i

Zloc
T (z, z′)Trloc[R(z′, z)daR(z, z′)d†

b] (V.29)
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Re t+

-
tmax

Figure V.2: Oriented Keldysh contour C used for steady-state NCA solving.
The time-coordinate evolves from −∞ to tmax on the C+ axis, from tmax to
−∞ on the C− axis.

V.1.3 Steady-state NCA equations

Keldysh contour :

The out-of-equilibrium equations enable us to compute the time-evolution of the sys-
tem and describe its transient behaviour before it reaches long-time limit. In this part we
suppose that the system reaches a steady-state after a long time evolution and we aim at
describing this limit. We first simplify the out-of-equilibrium formalism described before
by restricting ourselves to the double contour C of the Keldysh formalism by dropping
the imaginary-time axis (Fig. V.2). Without the third branch of the contour we can’t
describe a correlated state at t = 0, but we suppose that the information on the initial
state is lost in the long-time regimes.

Recalling that the evolution operator writes U(t, t′) = e−i
∫ t′

t
H(t1)dt1 we can remove

the time-ordering and write the local propagator as :

R(z, z′) = −iTrbath[e
−βHbath

Zbath
TC exp(−i

∫
C

Hbath − i

∫ z

z′
Hloc + Hhyb)]

= −iTrbath[e
−βHbath

Zbath
Ubath(0−, z)U(z, z′)Ubath(z′, 0+)] if z > z′

= −iTrbath[Ubath(z′, z)U(z, 0+)e−βHbath

Zbath
Ubath(0−, z′)] if z < z′

(V.30)

Which depends on the relative position on the double-contour of the coordinates z and
z′. The local propagator is now completely defined by its two independent components R>

and R< which obey the symmetry relation R>(<)(t, t′)† = −R>(<)(t′, t) (See Appendix
F). It is to be noted that the hybridization function, Green’s function, and self-energy S
obey the same relation. We have for any observable on the local system :

O(t) = Tr[e
−βĤbath

Z
U(0, t)ÔU(t, 0)] (V.31)

Rearranging the order of the trace we get :

O(t) = iTr[Zbath
Z

R<(t, t)Ô] (V.32)
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And we deduce :

Zloc = iTrloc[R<(t, t)]

ρloc(t) = i
R<(t, t)

Zloc

(V.33)

Restricting the system to the double contour we get the Dyson like Volterra equation
obtained from the diagrammatic expansion of R :

i∂zR(z, z′) = HlocR(z, z′) +
∫ z

z′
dz1S(z, z1)R(z1, z′) (V.34)

NCA equations :

Performing the NCA approximation as we did before but this time on the double-
contour :

S(z, z′) = iT (z, z′)
∑
ab

[d†
aR(z, z′)db∆ab(z, z′) − daR(z, z′)d†

b∆ba(z′, z)] (V.35)

This leads to two systems of self-consistent equations for the greater and lesser compo-
nents which have to be solved one after the other independently. On the double-contour
the NCA equations become :

i∂tR
>(t, t′) = HlocR

>(t, t′) +
∫ t

t′
duS>(t, u)R>(u, t′)

S>(t, t′) = i
∑
ab

[d†
aR>(t, t′)db∆>

ab(t, t′) − daR>(t, t′)d†
b∆

<
ba(t′, t)]

(V.36)

Where we have the initial condition R>(t, t) = −i1. This system of equations is
independent of the lesser component functions and can be solved first. The solutions are
then used to compute the lesser components which obey the equations :

i∂tR
<(t, t′) = HlocR

<(t, t′) −
∫ t′

0
duS<(t, u)R>(u, t′) +

∫ t

0
duS>(t, u)R<(u, t′)

S<(t, t′) = −i
∑
ab

[d†
aR<(t, t′)db∆<

ab(t, t′) − daR<(t, t′)d†
b∆

>
ba(t′, t)]

(V.37)

The equations for R> are non-linear given the multiplication between R> and S> in
the self-energy equation, whereas the equation for R< is linear in S< and it is therefore
defined up to a constant. It is fixed here by noticing that R<(0, 0) = −iρloc(t = 0)Zloc =
−i1.

In this approximation the green’s functions are obtained through :
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Gab(z, z′) = −iTr[e
−βH

Z
TCe−i

∫
C

H(z)dzda(z)d†
b(z

′)]

= Trloc[
1

Zloc
TCR((0, −), (0, +))da(z)d†

b(z
′)]

(V.38)

It gives for the greater and lesser components :

G>
ab(t, t′) = iTrloc[

1
Zloc

R<(t′, t)daR>(t, t′)d†
b]

G<
ab(t, t′) = −iTrloc[

1
Zloc

R<(t, t′)d†
aR>(t′, t)db]

(V.39)

Steady-state limit :

Supposing that the local Hamiltonian is time-independent, it is possible in the long-
time limit to reach a steady-state regime. We make the assumption that we are in this
limit. The R and S functions only depend on the time-difference : R>(t, t′) = R>(t − t′),
and the initial time of the double-contour is pushed to tin → −∞.

The NCA system of equations for the greater and lesser components can be simplified
to :

i∂tR
>(t) = HlocR

>(t) +
∫ t

0
duS>(t − u)R>(u)

S>(t) = i
∑
ab

[d†
aR>(t)db∆>

ab(t) − daR>(t)d†
b∆

<
ba(−t)]

(V.40)

The initial condition is valid in this limit R>(0) = R>(t − t) = −i1.

i∂tR
<(t) = HlocR

<(t) −
∫ t′

−∞
duS>(t − u)R<(u) +

∫ 0

−∞
duS<(t − u)R>(u)

S<(t) = −i
∑
ab

[d†
aR<(t)db∆<

ab(t) − daR<(t)d†
b∆

>
ba(−t)]

(V.41)

In the steady-state limit we have lost the initial condition for R< and it is now defined
up to a constant. It is chosen by setting the partition function to 1 as it is usually done
in the Keldysh formalism : Zloc = iTrloc[R<(0)] = 1. The Green’s functions are obtained
through :

G>
ab(t) = iTrloc[

1
Zloc

R<(−t)daR>(t)d†
b]

G<
ab(t) = −iTrloc[

1
Zloc

R<(t)d†
aR>(−t)db]

(V.42)

The NCA approximation, associated with the Dyson equation for the self-energy can
be solved for the greater and lesser components by a time-discretization and finite differ-
ence scheme. It can be done self-consistently by starting from a guess for the self-energy,
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or directly by noticing that the Volterra integro-differential equation only implies ante-
rior times to the computed one. However solving of the NCA equations using a finite
difference method shows some limitations. Because of the Volterra integro-differential
equation, the finite difference scheme has a complexity varying with the square of the
number of points in the time-grid O(N2). The functions are oscillating which fixes the
step of the time-discretization, and are decaying slowly at large times. In practice a new
algorithm has been found recently for reducing this complexity to O(N log N) [68,69].

In this section we have expressed the Non-Crossing Approximation equations for out-
of-equilibrium systems and in the steady-state limit. Even if uncontrolled, this approxi-
mation has the benefit to provide an analytic expression for the self-energy and therefore
an impurity solver computationally light and easy to implement.

V.2 NCA impurity solver in the steady-state limit

In this section we introduce a new efficient solver for the steady-state NCA equations by
alternating between the time and frequency domain. Relying on a fast Fourier Transform
algorithm it gives an overall complexity in O(N log N) with N the size of the time-
discretization grid. It aims at overcoming the limitations that faces the usual NCA
solvers in the time domain, and improving the efficiency of the NCA approach for out-of-
equilibrium materials.

V.2.1 NCA solver

Volterra equation in the frequency domain :

While the relation for the self-energy in the NCA approximation is linear and easy to
implement in the time-domain, the Volterra equation, because of its integro-differential
form, leads to a complex finite difference scheme In fact the integrated part of the equation
is similar to a convolution which guides us towards expressing it simply in the frequency
domain.

R and S are infinitely differentiable functions and therefore they have Fourier trans-
forms which decay exponentially fast at large |ω|. We define :

R<(>)(ω) =
∫ +∞

−∞
R<(>)(t)e−iωtdt

S<(>)(ω) =
∫ +∞

−∞
S<(>)(t)e−iωtdt

(V.43)

Given that R and S obey the symmetry relations Eq.V.24 , the Fourier transform
functions have purely imaginary diagonal coefficients and we have :
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R>(<)(ω)† = −R>(<)(ω)
S>(<)(ω)† = −S>(<)(ω)

(V.44)

In order to transform the Volterra integration into a convolution we introduce retarded
functions of the local propagator and self-energy (for the greater and lesser components)
:

R̃(t) = θ(t)R(t)
S̃(t) = θ(t)S(t)

(V.45)

We notice that the symmetry relations Eq. V.44 imply that R>(ω) = 2iImR̃>(ω).
The Volterra equations rewrite in terms of these functions (with the δ(t)1 accounting for
the discontinuity in t = 0) :

i∂tR̃
>(t) = δ(t)1 + HlocR̃

>(t) +
∫ +∞

−∞
duS̃>(t − u)R̃>(u)

i∂tR
<(t) = HlocR

<(t) −
∫ +∞

−∞
duS̃>(t − u)R<(u) +

∫ +∞

−∞
duS<(t − u)R̄>(u)

(V.46)

Where R̄ = θ(−t)R(t). Because of their non-linearity at t = 0, the R̃,S̃ and R̄
functions have Fourier transforms which decay slowly in frequency. The integrating parts
are now convolutions and they become algebraic equations in Fourier space. We are left
with the system of equations for the greater component :

R̃>(ω) = [ω − Hloc − S̃>(ω)]−1

S>(t) = i
∑
ab

[d†
aR>(t)db∆>

ab(t) − daR>(t)d†
b∆

<
ba(−t)] (V.47)

Which has to be solved with its initial condition R>(0) = −i1. For the lesser condition
:

R<(ω) = −[ω − Hloc − S̃>(ω)]−1S<(ω)R̄>(ω)

S<(t) = −i
∑
ab

[d†
aR<(t)db∆<

ab(t) − daR<(t)d†
b∆

>
ba(−t)] (V.48)

For which we impose Zloc = iTrloc[R<(0)] = 1. We notice that the equation on
R̃>(ω) is similar to what was obtained at equilibrium in the imaginary-time formalism in
Eq. V.15. We explain this in Appendix G by showing that R has a spectral representation
which links its imaginary-time and real-time expressions at equilibrium.
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Implementation :

We tackle this system of equations self-consistently by alternating between real-time
and frequency domains. We can first solve the system of equations for the greater compo-
nent and then use the solutions for R> and S> to solve the lesser component system.The
Fourier transforms are performed using an FFT (fast Fourier Transform) algorithm on a
discretized time-grid. For the greater component system we use the algorithm :

• Start from a guess for R>(ω)

• Compute R̃>(t) with the FFT algorithm

• Use the self-energy equations to get S̃>(t)

• Compute S̃>(ω) by reverse FFT algorithm

• Use the Volterra equation in frequency domain to get R̃(ω)

• We loop until convergence of the function R>(ω) = 2iImR̃>(ω).

The Fourier transform of the discontinuous functions R̃(ω) and S̃(ω) have a real part
which decays slowly at high frequencies. We could think that this would lead to a major
drawback by requiring very large frequency grids in order to resolve their slowly decaying
behaviour. However the main advantage of this solver is that this slowly decaying tail does
not need to be handled. Indeed using the symmetries on R we have R>(ω) = 2iImR̃>(ω).
This means that we never need to perform the Fourier transform of a tilde function in
frequency and we can restrict the frequency domain to the support of R>(ω). This point
is essential to reduce the size of the considered grid and obtain a fast NCA solver.

The algorithm for the lesser component is the same one without the need to compute
the tilde functions. The normalization condition on R<(0) must be fixed at each step of
the algorithm to avoid a drifting of the numerical solution.

We make a few remarks on this scheme :

• We need to perform the Fourier transform of discontinuous functions. In order to
avoid numerical errors due to the discontinuity at t = 0, one can substract auxiliary
functions of known Fourier transform which discontinuity compensates the one of
S̃.

• It is useful to take advantage of the symmetries of ∆ and Ĥloc to block diagonalise
R and S and simplify the matrix computations.

The overall complexity is dominated by the FFT which scales as O(N log N) with N
the number of points in the time-discretized grid.
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V.2.2 Application to the Anderson Impurity model

In order to test and show the limitation of the NCA solver, we apply it to the Anderson
impurity model [2, 3, 125] at equilibrium, and out-of-equilibrium in the presence of an
external electric field. This model constitutes a simple testing ground for our impurity
solver and we show that the NCA approximation enables one to describe the Kondo
resonance [37, 53, 72] at small temperatures and close to half-filling. This model is made
of a single site and single orbital impurity in a bath of free electrons :

Ĥ = Ĥloc + Ĥhyb + Ĥbath

= Un̂d↑n̂d↓ − µ
∑

σ

d̂†
σd̂σ +

∑
k,σ

γk(ĉ†
k,σd̂σ + h.c) +

∑
k,σ

ϵkĉ†
k,σ ĉk,σ

(V.49)

The system has a spin inversion symmetry. Because of the particle-hole symmetry,
the condition for half-filling is µ = U/2. The bath is characterized by its hybridization
function :

∆(iωn) =
∑

k

|γk|2

iωn − ϵk
(V.50)

Here we only consider non-interacting baths made of free electrons. ∆ has the standard
properties of Green’s functions and has a spectral representation :

∆(iωn) =
∫

A∆(ϵ)
iωn − ϵ

dϵ (V.51)

We set a flat bath of width w :

A∆(ϵ) = Γ/π if − w < ϵ < w; 0 else (V.52)

With Γ = 1 the unit energy.

NCA at equilibrium :

In the absence of an external electric field, the system is at equilibrium at temperature
β = 1/T , and we apply the steady-state NCA solver to retrieve the properties of the
Anderson impurity. The NCA equations are diagonal in the local basis and because of
the spin-inversion symmetry, we have three different diagonal functions which are labeled
by the indices 0,1 and 2 for the different local sates |0⟩, | ↑> or | ↓⟩ and | ↑↓⟩. We note
E = (0, −µ, −µ, U − 2µ) the eigenvalues of the local Hamiltonian.

The equations on the local propagator write :
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• for the greater component :

R̃>
j (ω) = [ω − Ej − S̃>

j (ω)]−1

S>
0 (t) = −2iR>

1 (t)∆<(−t)
S>

1 (t) = i(R>
0 (t)∆>(t) − R>

2 (t)∆<(−t))
S>

2 (t) = 2iR>
1 (t)∆>(t)

(V.53)

• for the lesser component :

R<
j (ω) = −[ω − Ej − S̃>

j (ω)]−1S<
j (ω)R̄>

j (ω)
S<

0 (t) = 2iR<
1 (t)∆>(−t)

S<
1 (t) = −i(R<

0 (t)∆<(t) − R<
2 (t)∆>(−t))

S<
2 (t) = −2iR<

1 (t)∆<(t)

(V.54)

We get the Green’s functions through (we drop the spin indices) :

G>(t) = i

Z
(R<

0 (−t)R>
1 (t) + R<

1 (−t)R>
2 (t)

G<(t) = −i

Z
(R>

0 (−t)R<
1 (t) + R>

1 (−t)R<
2 (t)

(V.55)

With Z = iTr[R<(0)] = i(R<
0 (0)+2R<

1 (0)+R<
2 (0)). The spectral function is obtained

with GR(t) = θ(t)(G>(t) + G<(t)) and A(ω) = (−1/π)ImGR(ω). Its integration over
frequency space is normalized to 1.

The density per spin at a given temperature is given by :

n =
∫

dωA(ω)f(β, ω) = −iG<(t = 0) (V.56)

We study the system at half-filling for different temperatures β. We set U = 6 and
µ = U/2 = 3. The eigen-energies for the local system are : E = [0, −3, −3, 0]. We show
the evolution of the spectral function with temperature in Fig. V.3. At half-filling the
spectral function is symmetric around ω = 0. For β ≥ 2 we see the appearance of the
Kondo peak at ω = 0 in the spectral function. The small peaks at ω = ±10 correspond
to the effect of the discontinuous flat bath at w = 10.

Away from half-filling, at U = 6 and µ = 3U/4, we show the evolution of the R and
S functions when decreasing the temperature in Appendix H. The eigen-energies for the
local system are : E = [0, −µ, −µ, U −2µ]. For this set of parameters we are in the regime
of the Anderson impurity model with a density around n >∼ 0.5. The evolution with
temperature of the spectral function is shown if Fig. V.4. The spectral function presents
peaks corresponding to the different local eigen energies which are broaden by the bath,
and to the limits of the bath of width w = 10. As the temperature decreases the spectral
weight is concentrated into the Kondo resonance peak at ω = 0.
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(a) A(ω), β = 0.5 (b) A(ω), β = 2

(c) A(ω), β = 6

Figure V.3: Spectral function as a function of frequency for different temper-
atures, at half-filling and U = 6.

Figure V.4: Spectral function as a function of frequency for different temper-
atures, at U = 6 and µ = 3U/4.
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Current out-of-equilibrium :

As an example of a simple out-of-equilibrium model we study the current through a
single orbital impurity. We use a model similar to the previous Anderson impurity model
but this time with two baths R and L at equilibrium, which have different chemical
potential to account for a potential difference driving an electric current through the
impurity. The Hamiltonian reads :

Ĥ = Ĥloc + Ĥhyb + Ĥbath

= Un̂d↑n̂d↓ − µ
∑

σ

d̂†
σd̂σ +

∑
k,σ,α=(R,L)

γk(ĉ†
k,α,σd̂σ + h.c) +

∑
k,σ,α=(R,L)

ϵk,αĉ†
k,α,σ ĉk,α,σ

(V.57)

The two baths are described by two chemical potentials µR and µL which differ to
account for a potential difference V = µR−µL (e = 1). We consider a symmetric potential
difference between the left and right baths with µL = −µR. This difference is taken into
account for defining their characteristic hybridization functions (a = L, R) :

∆>
a (t) = −i

∫
dϵA∆(ϵ)(1 − f(ϵ − µa))e−iϵt

∆<
a (t) = i

∫
dϵA∆(ϵ)f(ϵ − µa)e−iϵt

(V.58)

The system is now out-of-equilibrium and we can use the real-time framework devel-
oped before to tackle it in the steady-state limit. We aim at computing the current which
is expressed per spin as [89] :

Iσ = i

2
∑

k
[⟨ĉ†

k,L,σd̂σ⟩ − ⟨d̂†
σ ĉk,L,σ⟩ + ⟨d̂†

σ ĉk,R,σ⟩ − ⟨ĉ†
k,R,σd̂σ⟩] (V.59)

We introduce the Green’s functions (with d the index referring to the impurity and
a = R, L the bath index) :

G<
d→a,σk(t − t′) = i⟨ĉ†

k,a,σ(t)d̂σ(t′)⟩

G<
a→d,σk(t − t′) = i⟨d̂†

σ(t)ĉk,a,σ(t′)⟩
(V.60)

Which gives after Fourier transform and noting g the non-interacting Green’s functions
describing the bath :

G<
d→a,σk(ω) = γk[g<

k,a,σ(ω)G++
σ (ω) − g−−

k,a,σ(ω)G<
σ (ω)]

G<
a→d,σk(ω) = γk[g++

k,a,σ(ω)G<
σ (ω) − g<

k,a,σ(ω)G−−
σ (ω)]

(V.61)
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  μ

  μ

Figure V.5: Conductivity G and density per spin n as a function of the
chemical potential µ, at U = 6, T = 0.5 . The green dashed lines correspond
to the specific values of the chemical potential µ = U/2 at half-filling, and
µ − U/2 = ±U/2 in the mixed-valence states for which the total density
is around half an integer. The red dashed vertical lines correspond to the
expected value of the density at half-filling and at µ → ±∞.
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And noting that the hybridization functions write ∆a,σ =
∑

k γ2
kgk,a,σ we get the ex-

pression of the current as a function of the local Green’s functions and of the hybridization
functions :

Iσ = 1
2

∫ dω

2π
[(∆<

σ,L(ω) − ∆<
σ,R(ω))G>

σ (ω) − (∆>
σ,L(ω) − ∆>

σ,R(ω))G<
σ (ω)] (V.62)

The model is solved identically to the Anderson impurity model as described in the
previous section. The NCA equations apply with a total hybridization which is the sum
of the hybridization functions for both baths ∆σ(ω) = ∆L,σ(ω) + ∆R,σ(ω) for the lesser
and greater components.

We show the conductance G = I/V as a function of the chemical potential at U = 6
and T = 0.5 in Fig. V.5. The conductance of the system is maximum at µ − U/2 = ±U/2
when the system is in a mixed-valence state with a density which is nit an entire number.
To see this we also show the evolution of the density with the chemical potential. At
µ → ±∞ or µ = U/2, the density is fixed to an entire number and the conductivity is
minimal because of the Coulomb blockade, preventing transport through the impurity.
At µ ≃ U/2, the conductivity does not go to zero because of the rise of the Kondo peak
in the spectral function as seen in Fig. V.4.

V.2.3 Conclusion and discussion

The NCA approximation provides an impurity solver which does not require heavy nu-
merical resources and is easy to implement. By treating the Volterra equation in the
frequency domain and reducing the considered frequency interval to the support of R
and S, we obtain an efficient solving of the NCA equations by alternating between the
frequency and real-time domains.

The main limitation to our approach stands in the divergence of the R functions at
small temperatures as observed in Appendix H. As the temperature is decreased, these
functions show a peak which diverges exponentially towards a vertical asymptote. This
divergence can be seen in the frequency Volterra equation and happens in the vicinity of
the local Hamiltonian eigenvalues for |ω−Hloc−S̃>(ω)| ≃ 0. In the frequency domain, the
discretized grid must have a small enough step in order to be able to resolve these peaks.
The width of the considered grid is fixed by the spread of the self-energy S function
which is determined by the width of the bath. At small temperatures the observed
peaks becomes extremely narrow and leads to an overwhelming number of points on the
considered frequency grid. In order to overcome this difficulty we consider using adaptive
logarithmic grids to resolve the peaks with a fixed number of points sampling the frequency
axis. These threshold singularities appearing at zero temperature have been documented
before [93, 98] and would require further work for better understanding their frequency
position and asymptotic behaviour at small temperatures.

The purpose of the NCA solver is to be able to solve efficiently out-of-equilibrium
problems for actual materials with several orbitals and large unit cells. The NCA solver
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provides a fast solution for the impurity problem that arises in the DMFT approximation.
Even if the NCA approximation is quite rough, it shows to be able to describe qualita-
tively phenomena of strongly interacting quantum problems, such as the Kondo effect in
the Anderson impurity model. One way to improve the NCA approximation is to add
successively other class of diagrams on top of the non-crossing ones [47,51,119,136]. The
novel inchworm algorithm performs a Monte Carlo computation on the Keldysh contour
of classes of diagrams differentiated according to the allowed number of crossings between
hybridization line [4, 25, 26]. When converging, it provides an unbiased result, but it
remains computationally heavy and is limited for multi-orbital systems.
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Chapter VI

Conclusion

In this thesis we have described new algorithmic developments for studying strongly cor-
related systems both in and out of equilibrium. At equilibrium, we have focused on de-
veloping an unbiased perturbative method that yields precise results. Out-of-equilibrium,
finding the exact solution to the problem is extremely complicated, and we have endeav-
oured to develop an efficient and lightweight perturbation solver that nevertheless suffers
from approximations.

First, we have shown that the symmetry-broken CDet algorithm is a powerful method
to study the Hubbard model at equilibrium. Our approach implies no approximation
and is formulated in the thermodynamic limit. For the half-filled cubic model, we have
controlled all sources of bias to obtain accurate and controlled results. It turns out to be
able to perturbatively reach the very strong coupling regime at small temperatures. These
computations are the first unbiased perturbative computations inside an ordered phase
and open the way to the numerical study of symmetry-broken phases, and of the physics
of phase transitions. However, some parts of the phase diagram are still difficult to reach
with our method, and require further study and algorithmic development. Our approach
is an example of the power of chemical potential shifts for perturbation expansion. The
linear symmetry-breaking shift can be generalized to almost any function in the expansion
parameter and could lead to significant improvements in the convergence properties of
the perturbation series. This could lead to new methods capable of handling the doped
regimes or the challenging two-dimensional Hubbard model.

In a second step, we developed and implemented an efficient solver for the NCA equa-
tions. By switching between the time and frequency domains and reducing the frequency
window for the resolution of the involved functions, we have developed an efficient impu-
rity solver in the steady-state limit. The main limitation of our solver lies in the threshold
singularities that occur at small temperatures. The use of adaptive logarithmic frequency
grids could allow us to reach lower temperatures. This solver still needs to be imple-
mented in a DMFT loop to handle multi-orbital systems that model more specifically the
behaviour of a particular material.
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Appendix A

Non-interacting Green’s functions

We introduce in this part the Green’s function formalism used for the perturbation theory
development. We specifically want to show how to compute the non-interacting Green’s
function with U = 0 in the Hubbard model (and in general for every quadratic Hamilto-
nian).

We describe our system in term of the imaginary-time (τ = it) fermionic Green’s
function correlator :

Gijσσ′(τ, τ ′) = − < Tτ ĉiσ(τ)ĉ†
jσ′(τ ′) > (A.1)

With Tτ being the time ordering operator. The time dependence of the second quan-
tization operators makes reference to their time evolution in the Heisenberg picture. We
recall that (for imaginary-time evolution) :

ĉiσ(τ) = eτH ĉiσe−τH (A.2)

ĉ†
iσ(τ) = eτH ĉ†

iσe−τH (A.3)

In the non-interacting picture U = 0, the Hubbard Hamiltonian is diagonal in k space
and we get after performing the Fourier transform of the lattice :

Ĥ =
∑

k
ξkσ ĉ†

kσ ĉkσ (A.4)

Where ξkσ = ϵk − µ and ϵk the energy dispersion depending on the lattice geometry
and easily computed in the tight-binding approximation. This leads to :

ĉkσ(τ) = e−ξkστ ĉkσ (A.5)

ĉ†
kσ(τ) = eξkστ ĉ†

kσ (A.6)

And we get, with θ(τ) the Heaviside function : θ(τ) = 1 for τ > 0 and 0 otherwise,
the non-interacting Green’s function :
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G0kσ(τ − τ ′) = − < Tτ ĉkσ(τ)ĉ†
kσ(τ ′) >

= −θ(τ − τ ′) < ĉkσ(τ)ĉ†
kσ(τ ′) > +θ(τ ′ − τ) < ĉ†

kσ(τ ′)ĉkσ(τ) >

= −[θ(τ − τ ′)(1 − nF (ξkσ)) − θ(τ ′ − τ)nF (ξkσ)]e−ξkσ(τ−τ ′)

(A.7)

With nF (ϵ) = 1
1+eβϵ being the Fermi-Dirac distribution function. One can show that

this Green’s function is antiperiodic with a period β = 1/kBT so that one can develop
it as a Fourier series to get the well known formula of a non-interacting single-particle
Green’s function for the Matsubara frequencies ωn = (2n + 1)π

β :

G0kσ(iωn) =
∫ β

0
dτeiωnτ G0kσ(τ)

= −(1 − nF (ξkσ))
∫ β

0
dτeiωnτ e−ξkστ

= −(1 − nF (ξkσ)) 1
iωn − ξkσ

(eiωnβe−ξkσβ − 1)

(A.8)

And after noticing that eiωnβ = −1 and 1 − nF (ξkσ) = (e−βξkσ + 1)−1 we get:

G0kσ(iωn) = 1
iωn − ϵkσ + µ

(A.9)



Appendix B

Particle-hole symmetry

In some cases the Hubbard Hamiltonian possesses a particle-hole symmetry that we aim
at introducing in this appendix and which enables us to derive an important result :
in the grand canonical ensemble, the system is at half-filling for a specific value of the
chemical potential µHF = U/2. It requires a geometric condition on the considered model
: having a bipartite lattice. A lattice is said to be bipartite if it can be separated into
two sublattices such that there is no hopping term within one sublattice, and thus only
hopping terms between different sublattices. For instance the square or cubic lattices are
bipartite when considering only nearest neighbour site hopping, whereas the triangular
lattice, because of its high connectivity, is not.

For a bipartite lattice with two sublattices, one can introduce the particle-hole sym-
metry transformation exchanging the role of creation and annihilation operators. The
second quantization operators transform as follow :

ĉ†
iσ → ±ĉiσ (B.1)

With the sign depending on the sublattice the site i belongs to. This unitary trans-
formation conserves the fermionic anti-commutation relations. The number operators
then transform as n̂iσ → 1 − n̂iσ. The Hubbard Hamiltonian gives after performing the
transformation :

Ĥ′ = − t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓ − (U − µ)
∑

i

(n̂i↑ + n̂i↓)

+ (U − 2µ)N
(B.2)

where we notice that for i and j neighbouring sites ĉ†
iσ ĉjσ → −ĉiσ ĉ†

jσ = ĉ†
jσ ĉiσ and the

kinetic part of the Hamiltonian remains unchanged after reorganizing the sum. N is the
number of sites of the lattice. This Hamiltonian is equivalent to the Hubbard Hamiltonian
with a shifted chemical potential and an inessential energy constant.

One can then compute the density per site and spin for these two equivalent Hamil-
tonians :
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n = 1
2N

∑
i

⟨n̂i↑ + n̂i↓⟩ĤHubbard
→

1
2N

∑
i

⟨(1 − n̂i↑) + (1 − n̂i↓)⟩Ĥ′ = 1 − 1
2N

∑
i

⟨n̂i↑ + n̂i↓⟩Ĥ′

(B.3)

But the density is a physical quantity which has to remain invariant with the trans-
formation, and since both Hamiltonians are equivalent with just a change in the chemical
potential, this leads to (for every T , U , t and µ) :

n(U − µ) = 1 − n(µ) (B.4)

At half-filling (one electron per site on average), the density per site and spin is
n = 0.5. From the previous equation, we notice that a sufficient condition is that :

n(µHF ) = n(U − µHF ) (B.5)

Which is satisfied for µHF = U − µHF . In the end we get a value for the chemical
potential which sets the system at half-filling for the Hubbard model on a bipartite lattice
:

µHF = U

2 (B.6)

We notice that for µ = U/2 we get Ĥ′ = ĤHubbard and therefore the Hubbard model
has a particle-hole symmetry at half-filling. In fact the particle-hole transformation in
Eq. E.3 implies that the Hubbard Hamiltonian phase diagram is symmetric about half-
filling. When modeling cuprates, one would have to add a next-nearest-neighbour hopping
t′ which breaks the particle-hole symmetry since the square lattice is no longer bipartite.



Appendix C

Mean-field solution of the
Hubbard model

We derive the mean-field solution of the Hubbard model which is used as a starting point
for perturbative series in the context of the chemical potential shift. We solve the mean-
field equations in order to solve the non-interacting starting point of the perturbation
expansion and obtain the zeroth order coefficient.

Performing the mean-field approximation, we neglect the last non-quadratic term
supposing that the number operator does not deviate a lot from its average value. This
leads to the mean-field Hubbard Hamiltonian :

ĤMF = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − U

∑
i

⟨n̂i↑⟩⟨n̂i↓⟩ + U
∑

i

n̂i↑⟨n̂i↓⟩

+ U
∑

i

n̂i↓⟨n̂i↑⟩ − µ
∑

i

(n̂i↑ + n̂i↓)
(C.1)

This is a quadratic Hamiltonian depending on the average values of the number op-
erators which thus leads to a self-consistent analytic solution. It can be used to study
magnetic orders in the Hubbard model. It leads, for instance, to competing ferromag-
netic, paramagnetic and anti-ferromagnetic phases among others. In our study we need
the solutions for the paramagnetic and antiferromagnetic phases.

Paramagnetic solution :

If we make the assumption that the spin inversion symmetry is not broken, then on-site
density does not depend on the spin degree of freedom and the mean-field Hamiltonian
can be written :

ĤMF = −t
∑
⟨i,j⟩

∑
σ

(ĉ†
iσ ĉjσ + ĉ†

jσ ĉiσ) + (Un − µ)
∑

i

(n̂i↑ + n̂i↓) (C.2)

With n the density per spin and site. It is diagonalised in k space :
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ĤMF =
∑

k

∑
σ

(ϵk + Un − µ)ĉ†
kσ ĉkσ (C.3)

Where ϵk is the energy dispersion depending on the lattice geometry and easily com-
puted in the tight-binding approximation :

• ϵk = −2t(cos kx + cos ky) for the square lattice.

• ϵk = −2t(cos kx + cos ky + cos kz) for the cubic lattice.

Hence the mean-field paramagnetic Green’s function in Matsubara frequencies :

GMF k(iωn) = 1
iωn − ϵk − Un + µ

(C.4)

For a given filling n, temperature T , interaction U , and hopping t of the model, the
chemical potential can be determined through the self-consistent equation :

n = 1
2N

∑
i

⟨n̂i↑ + n̂i↓⟩ĤMF

= 1
N

∑
k

nF (ϵk + Un − µ)

=
∫ ∞

−∞
nF (ϵ + Un − µ)ρ(ϵ)dϵ

(C.5)

Where nF is the Fermi-Dirac distribution function and ρ(ϵ) the density of states. As
expected, since the density of states is symmetric around 0, and the the couple µ = U

2
and n = 1

2 is a solution of this equation for half-filling.

Antiferromagnetic phase :

We now assume a breaking of the spin inversion symmetry towards an antiferromag-
netic phase. To restore the translation symmetry one needs to consider a new unit cell
composed of one site from each sublattice of the bipartite lattice. As the unit cell becomes
bigger, this leads to a reduced Brillouin zone in k space. We introduce the magnetiza-
tion per site and spin m = ⟨n̂i↑ − n̂i↓⟩. It is the order parameter which is zero in the
paramagnetic phase while it has a non-zero value inside the antiferromagnetic order. We
therefore have ⟨n̂iσ⟩ = n + σ(−1)i m

2 with the sign depending on the spin σ = ±1, and on
the sublattice of the site i. The mean-field Hamiltonian then becomes :

ĤMF = −t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ + U

∑
iσ

(n + σ(−1)i m

2 )ĉ†
iσ ĉiσ

− µ
∑

i

(n̂i↑ + n̂i↓)
(C.6)
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Performing a Fourier transform and going to k space the Hamiltonian is no longer
diagonal and we add an index 1, 2 depending on the sublattice :

ĤMF =
∑
kσ

[
ĉ†

k1σ ĉ†
k2σ

] [−σ Um
2 − µ + Un Ξ

Ξ∗ σ Um
2 − µ + Un

] [
ĉk1σ

ĉk2σ

]
(C.7)

Where Ξ is the geometric factor depending on the lattice, such that ϵk = |Ξ|. One
needs to diagonalise the two by two matrix to get a quadratic diagonal Hamiltonian. Its
eigenvalues are :

E± = −µ + Un ±
√

ϵ2
k + ∆2 (C.8)

Where the antiferromagnetic symmetry breaking leads to the opening of a gap ∆ = Um
2

in the energy spectrum. In the case of m = 0 with no antiferromagnetic order we find
back the results of the paramagnetic mean-field solution.

Similarly as in the paramagnetic case we get the two self-consistent equations relating
the density per site and spin, the chemical potential, and the magnetization :

n =
∫ ∞

−∞

∆
2
√

∆2 + ϵ2
[nF (Un − µ +

√
∆2 + ϵ2) + nF (Un − µ −

√
∆2 + ϵ2)]ρ(ϵ)dϵ

m =
∫ ∞

−∞

∆√
∆2 + ϵ2

[nF (Un − µ +
√

∆2 + ϵ2) − nF (Un − µ −
√

∆2 + ϵ2)]ρ(ϵ)dϵ

(C.9)

Supposing that we work at half-filling with n = 1
2 and µ = U

2 we compute the magne-
tization thanks to the second self-consistent equation which becomes :

m =
∫ ∞

−∞

∆√
∆2 + ϵ2

[nF (
√

∆2 + ϵ2) − nF (−
√

∆2 + ϵ2)]ρ(ϵ)dϵ (C.10)

Since ∆ = Um
2 this equation has a paramagnetic solution m = 0 which restores the

translation symmetry, and possibly a second non-zero solution. When the equation has
two solutions, one needs to compare the value of the grand canonical potential for each
solution to see which phase actually minimizes it.
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Appendix D

Partial sum and resummation in
the paramagnetic phase
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Figure D.1: Double occupancy as a function of the interaction for four differ-
ent values of the temperature. We display results obtained after resummation
of the perturbation series using Padé approximant at different orders [j, l] with
j being the order of the polynomial at the numerator of the approximant, and
l the one of the denominator. We set j + l = n with n the maximal expansion
order obtained in the pertubative expansion of D. TPS stands for Truncated
Perturbative Series and simply is the power series summed up to the order n.
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Figure D.2: Position of the poles in the complex plane structure of the pertur-
bative series of the double occupancy at different temperatures. The singular-
ities positions are estimated using a specific Padé approximant scheme [40].
On each side of the real axis, the spread of the colored diamond marks rep-
resents the spread of the position of the pole after error propagation of the
statistical error on the expansion coefficients.

We give some insights on the resummation of the series in the normal phase of the half-
filled Hubbard model on a cubic lattice. Using Padé approximants we are able to perform
the resummation of the pertubative series of the double occupancy. We estimate the error
to derive a controlled result with propagating the error from the expansion coefficients
and by comparing several Padé approximants as shown in Fig. D.1. We also use Padé
approximants to draw the complex plane structure of the series and estimate the positions
of poles which limit the resummation. The position of the pole concurs with a huge
increase in the resummation error. Even if the Padé resummation gives an estimate of
the series past the pole on the real axis, it can not be considered reliable past this value
of the interaction.



Appendix E

Equivalence of the repulsive and
attractive half-filled Hubbard
model

The half-filled Hubbard model on a bipartite lattice possesses a correspondence between
the attractive (U < 0) and repulsive (U > 0) cases which we introduce in this appendix.
The transformation studied here is explained in more details in [55].

For a bipartite lattice with two sublattices, one can introduce the following transfor-
mation in terms of second quantization operators :

ĉ†
i↑ → (−1)iĉi↑

ĉ†
i↓ → ĉ†

i↓
(E.1)

With the sign depending on the sublattice the site i belongs to. This unitary transfor-
mation conserves the fermionic anti-commutation relations. The operators for the spin ↓
are left unchanged while the number operator for the spin ↑ transforms as n̂i↑ → 1 − n̂i↑.
The Hubbard Hamiltonian gives after performing the transformation :

Ĥ′ = − t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − U

∑
i

n̂i↑n̂i↓ − (µ − U)
∑

i

n̂i↓

− (−µ)
∑

i

n̂i↑ + µN
(E.2)

Which simplifies at half-filling for µ = U/2 :

Ĥ′ = − t
∑
⟨i,j⟩

∑
σ

ĉ†
iσ ĉjσ − U

∑
i

n̂i↑n̂i↓ + U

2
∑

i

(n̂i↑ + n̂i↓)

+ µN

(E.3)

Where N is the number of sites of the lattice. This Hamiltonian is equivalent to
the Hubbard Hamiltonian at half-filling with an opposite U and an inessential energy
constant. This transformation shows how observables are modified when inverting the
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sign of the interaction U , hence the correspondence between the attractive and repulsive
half-filled Hubbard models.

Double occupancy :

Under this transformation of the second quantization operators the double occupancy
transforms as follow :

D = 1
N

∑
i

⟨n̂i↑n̂i↓⟩ĤHubbard
→

1
N

∑
i

⟨n̂i↑(1 − n̂i↓)⟩Ĥ′ = ⟨n̂↑⟩ − D
(E.4)

But since both Hamiltonian are equivalent with changing the sign of U and we obtain
(for every T , U , and t) at half-filling :

D(−U) = 0.5 − D(U) (E.5)

Which can be rewritten recalling that D(U = 0) = 0.25 :

(D(U) − D(U = 0)) = −(D(U) − D(U = 0)) (E.6)

Therefore the double-occupancy, minus its value at zero interaction, is an odd function
of the interaction.

Magnetization :

For the repulsive model we know that the system shows at half-filling a phase transition
towards an antiferromagnetic state breaking the SU(2) spin inversion symmetry. How does
this order change as we inverse the sign of the interaction U ?

Performing the transformation described in Eq. E.1 we have a look at the transfor-
mation of different operators. We write on the left side the operators at U > 0 for the
repulsive case, and on the left their corresponding operator in the repulsive U < 0 case :

(−1)iŜz
i = (−1)i(n̂i↓ − n̂i↑) → (−1)i(n̂i↑ + n̂i↓ − 1)

(−1)iŜ+
i = (−1)i(ĉ†

i↓ĉi↑) → ĉ†
i↓ĉ†

i↑

hŜz
i → h(n̂i↑ + n̂i↓ − 1)

(E.7)

Therefore we see that the staggered magnetization which is the order parameter of the
antiferromagnetic phase in the U > 0 model corresponds in the z direction to the order
parameter of a charge density wave order (first line), and in the other directions (second
line), to the order parameter of s-wave superconductivity. These orders are equivalent
through the global spin rotation symmetry of the system. Thus, at half-filling the phase
diagram of the Hubbard model is symmetric as U → −U with the Néel order becoming
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a superconducting order. Moreover, the last line shows that a change in the chemical
potential at U < 0 from its value at half-filling corresponds to adding a uniform Zeeman
field in the U > 0 model. Hence doping the attractive model is equivalent to adding a
uniform field in the half-filled repulsive model.
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Appendix F

Symmetry of the R propagator

Out-of equilibrium the R function is defined on the full Baym-Kadanoff contour by :

R(z, z′) = −iTC̄ exp(−i

∫ z

z′
Hloc(z1)dz1 − i

∫ z

z′
dz1dz2∆(z1, z2)d†(z1)d(z2)) (F.1)

Where R is expressed in terms of 9 different functions depending on the different
branches of the contour.

In the steady-state limit, we can drop the imaginary-time axis. From the Keldysh
contour, and supposing R invariant by translation in time (we set z′ = 0), we get the two
components :

R<(t, 0) = −iTC exp(−itHloc − i

∫ t

0
dt1

∫ t

0,t1>t2
dt2∆>(t1 − t2)d†(t1)d(t2)

− i

∫ t

0
dt1

∫ t

0,t2>t1
dt2∆<(t1 − t2)d†(t1)d(t2))

R>(t, 0) = −iTC exp(−itHloc − i

∫ +∞

0
dt1

∫ +∞

0,t1>t2
dt2∆>(t1 − t2)d†(t1)d(t2)

− i

∫ +∞

0
dt1

∫ +∞

0,t2>t1
dt2∆<(t1 − t2)d†(t1)d(t2)

− i

∫ +∞

t
dt1

∫ +∞

t,t2>t1
dt2∆>(t1 − t2)d†(t1)d(t2)

− i

∫ +∞

t
dt1

∫ +∞

t,t1>t2
dt2∆<(t1 − t2)d†(t1)d(t2)

+ i

∫ +∞

0
dt1

∫ +∞

t
dt2∆>(t1 − t2)d†(t1)d(t2)

+ i

∫ +∞

t
dt1

∫ +∞

0
dt2∆<(t1 − t2)d†(t1)d(t2))

(F.2)

Which are supposed invariant by translation and we note R(t) = R(t, 0). With this
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we verify the usual properties on R :

R<(t, 0)† = iTC exp(−i(−t)Hloc − i

∫ t

0
dt1

∫ t

0,t1>t2
dt2∆>(t2 − t1)d†(t2)d(t1)

− i

∫ t

0
dt1

∫ t

0,t2>t1
dt2∆<(t2 − t1)d†(t2)d(t1))

= iTC exp(−i(−t)Hloc − i

∫ t

0
dt2

∫ t2

0
dt1∆>(t1 − t2)d†(t1)d(t2)

− i

∫ t

0
dt2

∫ t

t2
dt1∆<(t1 − t2)d†(t1)d(t2))

(F.3)

And since : ∫ t

0
dt2

∫ t2

0
dt1 =

∫ t

0
dt1

∫ t

t1
dt2 =

∫ 0

t
dt1

∫ t1

t
dt2 (F.4)

And similarly : ∫ t

0
dt2

∫ t

t2
dt1 =

∫ 0

t
dt1

∫ 0

t1
dt2 (F.5)

And we get supposing the time-translation invariance :

R<(t)† = R<(t, 0)† = −R<(0, t) = −R<(−t) (F.6)

We get the same relation for the greater component with a similar calculation.



Appendix G

Spectral representation of the
local propagator

We define R̃>(t) = θ(t)R>(t) whose spectral function is the real function iR>(ω)/2π. We
can write by extending R̃ to the complex plane :

R̃>(z) = 1
2π

∫ +∞

−∞

iR>(ω)
z − ω

dω (G.1)

On the real frequency axis it gives :

R̃>(ω) = 1
2π

∫ +∞

−∞

iR>(ω′)
ω − ω′ + iη

dω′ (G.2)

Which corresponds to the Fourier transform of R̃>(t) = θ(t)R(t). At equilibrium,
using the steady-state and noting U(t, t′) = e−i(t−t′)H the time-evolution operator :

R>(t) = −iTrbath[e
−βHbath

Zbath
Ubath(0, t)U(t, 0)] (G.3)

And we recall :

R(τ) = − 1
Zbath

Trbath[e−(β−τ)Hbathe−τ(Hloc+Hhyb+Hbath)] (G.4)

We see that at equilibrium, R(τ) is the analytic continuation of R>(t) for t → −iτ .
We have a similar relation for R< :

R>(−iτ) = iR(τ)

R<(−iτ) = i
Z0
Z

R(τ + β)
(G.5)
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where Z0 is the partition function of the isolated system. And therefore we have :

R(τ) = −i

∫ dω

2π
R>(ω)e−ωτ (G.6)

Recalling the frequency definition of R in Eq.V.14 we see that the imaginary frequency
R function is the analytic continuation of R̃>(ω) :

R(ω) = −i

∫ +∞

0
dτ

∫ dω

2π
R>(ω′)e−ω′τ eiωτ = i

∫ dω

2π

R>(ω′)
iω − ω′ = R̃>(iω) (G.7)

Which explains that they obey the same equation. We can deduce the fluctuation-
dissipation theorem for the R propagator at equilibrium from Eq. G.5, by noticing that
iR(τ) = R>(−iτ) = R<(−iτ + iβ)Z/Z0. After performing a Fourier transform we get :

R<(ω) = Z0
Z

R>(ω)e−βω (G.8)

These analytic continuation properties can also be seen in NCA by taking the analytic
continuation of the Volterra equations in real and imaginary time as they completely define
the local propagator given the associated initial conditions.



Appendix H

R and S functions

We study the system for different temperatures β with U = 6 and µ = 3U/4. We show the
evolution of the R and S functions when decreasing the temperature. The eigen-energies
for the local system are : E = [0, −µ, −µ, U − 2µ]. For this set of parameters we are in
the regime of the Anderson impurity model with a density around n >∼ 0.5 so that we
are away from half-filling.
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(a) R>
0 (ω) (b) R>

1 (ω)

(c) R>
2 (ω) (d) R<

0 (ω)

(e) R<
1 (ω) (f) R<

2 (ω)

Figure H.1: R functions for different temperatures
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(a) Re(S̃>
0 (ω)) (b) Im(S̃>

0 (ω))

(c) Re(S̃>
1 (ω)) (d) Im(S̃>

1 (ω))

(e) S<
0 (ω) (f) S<

1 (ω)

Figure H.2: Example of S and S̃ functions for different temperatures. The
S<(ω) functions are purely imaginary.
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Appendix I

Environmental impact of
numerical methods

The numerical results presented in Chapter IV are obtained through computations made
on computational resources of TGCC (Très Grand Centre de Calcul du CEA) and IDRIS
(Institut du développement et des ressources en informatique scientifique) attributed by
GENCI (Grand Equipment National de Calcul Intensif). The Monte Carlo computations
and CDet recursion can be very greedy in numerical resources and we propose in this ap-
pendix to estimate their environmental impact which is essentially linked to the generated
emission of green house gases and of CO2.

Far from being negligible, the contribution of data centers and high performance
computing to the global CO2 emissions can be estimated to a quarter of the emissions of
modern country like France (around 100Mt) [78]. However this impact is rarely mentioned
or thought of when conducting greedy numerical studies. In a concern of transparency
we want to estimate the impact of the three years of computations on high performance
cluster machines presented in this thesis.

In the following we use the energetic emission of France to evaluate the impact of elec-
tricity consumption which is about 60g/kWh of CO2 emissions. Estimating the emissions
provoked by computational centers is not an easy task. The electric energy used for one
hour on one CPU core on the super-calculator Jean-Zay (IDRIS) has been estimated by
the CNRS [88] to be of 10Wh. The cluster uses a heat recovery network which in the end
reduces this energetically consumption to 5.3Wh . However the calculation leading to
this number is not detailed, and we fear that it only includes the electrical consumption
of the cluster and not the emissions due to its overall operating and building. Here we
rely on a realistic, complete and detailed estimation which is given in [12]. It gives the
value of 3.6g of CO2 emissions for 1 h.core computation. Taking into account the heat
recovery network effect would only reduce this amount by 0.3g to a final value of 3.3g.

The CDet computations are very greedy and usually one computation requires 20
hours on a hundred cores. We estimate the number of CPU hours used for all our com-
putations on the Hubbard model to amount to 1.9 × 106 hours. This corresponds to an
emission of 6.3 tones of CO2. This almost compares to the yearly emissions on average of
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a someone living in France (∼ 9 tones) and corresponds approximately to the emissions
of 6 passengers flying from Paris to New-York.
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Preprint papers
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We introduce a spin-symmetry-broken extension of the connected determinant algorithm [Phys.
Rev. Lett. 119, 045701 (2017)]. The resulting systematic perturbative expansions around an anti-
ferromagnetic state allow for numerically exact calculations directly inside a magnetically ordered
phase. We show new precise results for the magnetic phase diagram and thermodynamics of the
three-dimensional cubic Hubbard model at half-filling. With detailed computations of the order
parameter in the low to intermediate-coupling regime, we establish the Néel phase boundary. The
critical behavior in its vicinity is shown to be compatible with the O(3) Heisenberg universality
class. By determining the evolution of the entropy with decreasing temperature through the phase
transition we identify the different physical regimes at U/t=4. We provide quantitative results for
several thermodynamic quantities deep inside the antiferromagnetic dome up to large interaction
strengths and investigate the crossover between the Slater and Heisenberg regimes.

In strongly correlated materials, such as high temper-
ature superconducting copper oxides or iron-based pnic-
tides, the interactions between electrons yield intricate
phase diagrams, exhibiting, e.g., magnetically or charge-
ordered phases, superconductivity or Mott insulating be-
haviors. Understanding the properties of these different
phases, their interplay and driving mechanisms is one of
the outstanding challenges of modern condensed matter
theory.

From the theoretical point of view, one of the sim-
plest models to investigate phase transitions is the three-
dimensional cubic Hubbard model [1–6] given by the
Hamiltonian

Ĥ = −t
∑

〈i,j〉

∑

σ

ĉ†iσ ĉjσ + U
∑

i

n̂i↑n̂i↓ − µ
∑

iσ

n̂iσ, (1)

where t is the hopping amplitude between nearest-
neighbor sites 〈i, j〉 on a cubic lattice, U ≥ 0 the
on-site Coulomb interaction, µ the chemical potential,
n̂iσ = ĉ†iσ ĉiσ and ĉ†iσ creates an electron on site i with
spin σ. At half-filling (µ = U/2), the ground state has
antiferromagnetic long-range spin order. In three dimen-
sions this SU(2) symmetry-broken phase survives up to
the Néel temperature TN (U) above which the system be-
comes paramagnetic. While there is qualitative under-
standing of the mechanisms that produce the antiferro-
magnetic order both at weak and strong coupling, ob-
taining unbiased quantitative results, especially close to
the phase transition and inside the ordered phase, is still
very challenging [7–16]. Therefore, despite its apparent
simplicity, the Hubbard model on the cubic lattice is an

ideal platform to explore the potential of new algorithms
before engaging in the study of more realistic systems.
The model was realized in cold-atomic experiments on
optical lattices where antiferromagnetism is under active
investigation [17–25].

The main challenge for theoretical approaches based on
finite size lattices is to properly account for the increasing
correlation length in the vicinity of a second order phase
transition, and, as such, to extrapolate to the thermody-
namic limit. In that respect, the diagrammatic Monte
Carlo approach [26–28] is very promising as it offers the
possibility to investigate a system directly in the thermo-
dynamic limit. The method stochastically computes the
coefficients ak appearing in the perturbative expansion
in U of a physical observable, A(U) =

∑
k akU

k in the
simplest formulation. The computational cost rapidly in-
creases with increasing perturbation orders and only so
many coefficients can be computed before the statistical
variance becomes overwhelming. Nevertheless, impor-
tant improvements [29, 30] make it now possible to reach
perturbation orders as large as 10−12. In the context of
the repulsive Hubbard model, diagrammatic Monte Carlo
has already been successfully applied to non-perturbative
regimes in the two-dimensional square lattice [28, 31–40].

In the usual formulation, the perturbation series is
constructed starting from the non-interacting (U = 0)
SU(2)-symmetric solution of Eq. (1). This allows to ob-
tain results for the interacting system in its paramagnetic
regime. As the phase transition to the antiferromagnetic
state is approached, however, the resummation of the se-
ries becomes increasingly difficult. The reason is that
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a second-order phase transition happening at U = Uc
is accompanied by a singularity in the complex-U plane
for observables A(U) that show a non-analyticity at Uc.
Consequently, investigating the antiferromagnetic transi-
tion in the cubic Hubbard model can only be done from
temperatures above and not too close to the Néel tem-
perature TN . Very recently, the spin structure factor
perturbation series has been computed this way in the
paramagnetic phase of the cubic Hubbard model [39]. As-
suming the critical behavior in the vicinity of the phase
transition, the authors were able to accurately compute
TN in the weak-to-intermediate coupling regime both at
half-filling and at finite doping. This approach is however
not able to address the properties of the model inside the
ordered phase.

In this Letter, we take a complementary approach and
compute the perturbation series for physical observables
within the antiferromagnetic phase of the cubic half-filled
Hubbard model. We show that our broken-symmetry ap-
proach to perturbative expansions is a powerful tool for
studying magnetically ordered phases and phase transi-
tions. Our results are obtained directly in the thermody-
namic limit and, thus, do not involve any finite size scal-
ing. We document the vanishing of the magnetic order
parameter at TN and the corresponding critical exponent
β and report and discuss the behavior of the double oc-
cupancy, grand potential and entropy across the phase
transition and inside the ordered phase.

Method. The possibility to construct symmetry-broken
perturbation series comes from a flexibility in the choice
of the starting point around which the perturbation is
expanded. This freedom has been extensively applied
to diagrammatic Monte Carlo computations in the non-
magnetic phase to improve the convergence properties of
the series [36–38, 41–49]. Very recently, it has been used
to construct a perturbation theory around a BCS state
and inside the superconducting phase of the attractive
Hubbard model [50]. Here, we follow similar steps and
introduce the modified Hamiltonian

Ĥξ = −t
∑

〈i,j〉

∑

σ

ĉ†iσ ĉjσ − ξ
U

2

∑

iσ

n̂iσ

+ (1− ξ)h
∑

i

piŜ
z
i + ξU

∑

i

n̂i↑n̂i↓,
(2)

where Ŝzi = (n̂i↑ − n̂i↓)/2 and pi = ±1 depending on
whether i belongs to one or the other sub-lattice of the
bipartite cubic lattice. Observables are expressed as per-
turbation series in ξ and physical results are recovered
for ξ = 1 where both Hamiltonians become equivalent,
Ĥξ=1 = Ĥ. The perturbation series in ξ is built around
a state that breaks the SU(2) spin rotation symmetry
of the original Hamiltonian. Indeed, Ĥξ=0 describes free
electrons in a staggered external magnetic field h. Be-
cause this state breaks the symmetry from the start, the
perturbation series can describe a magnetically ordered

phase without the need of undergoing a phase transition.
Accordingly, singularities in the complex-ξ plane associ-
ated to the phase transition are avoided.

We compute the coefficients of the perturbation se-
ries with the CDet [29] algorithm using a rejection-free
many-configuration Monte Carlo [51] as well as a fast
principal minor algorithm [52, 53] to improve the speed
of the determinant calculations. The series are evaluated
with different resummation techniques [54, 55] that serve
as a basis to determine the error bars of our results, see
Supplementary Material [56]. While the diagrammatic
expansion can be formulated directly in the thermody-
namic limit, in practice, we use a system with L3 = 203

sites for our computations. We have carefully checked
that this is large enough to avoid finite-size effects, even
in the vicinity of the phase transition, as discussed in the
Supplementary Material [56]. In the following, we will de-
note this spin symmetry-broken algorithm by CDet(AF).

In the Hamiltonian of Eq. (2), the field h can be cho-
sen arbitrarily and different choices for h define different
series. In order to obtain the best convergence and to
cross-check different results, we have computed several
values in the range 0 ≤ h ≤ hMF, where hMF is the ef-
fective field found in the mean-field solution of Eq. (1).
In the following, we will parameterize h = αhMF with
0 ≤ α ≤ 1. Note that when α = 0, the perturbation
series is the usual expansion limited to the paramagnetic
regime.

For our analysis we compute the double occupancy
D = 〈n̂i↑n̂i↓〉 = Epot/U , the staggered magnetization
m = 〈n̂i↑ − n̂i↓〉 (which is the order parameter for the
Néel phase transition) and the grand potential per lat-
tice site −Ω/L3 = P where L is the linear system size

0 2 4 6 8 10 12 14
U

0.0

0.1

0.2

0.3

0.4

0.5

T

Heisenberg
DMFT[11]
TUfRG[10]
DF[11]
DCA[9]

DDMC[7]
QMC[12]
D A[57]
CDet (PM)[39]
CDet (AF)

FIG. 1. Comparison of the Néel temperature TN (U) (lime
stars), obtained with the symmetry broken CDet(AF), with
other numerical methods. References for the numerical meth-
ods data are indicated in the legend.
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of the cubic lattice, and P the thermodynamic pressure.
The grand potential computations enable us to determine
the entropy density and magnetization through

s = − ∂Ω

L3∂T
m = − ∂Ω

L3∂Hext

∣∣∣∣
Hext=0

, (3)

where Hext is an external Zeeman staggered field whose
sign alternates on neighboring sites in the form of an
additional term to the Hubbard Hamiltonian Eq. (1):
Hext

∑
i piŜ

z
i . All energies are expressed in units of the

hopping amplitude t=1.
Phase diagram and universality class. We start our

study by determining the Néel temperature for different
values of the interaction in order to establish the mag-
netic phase diagram of the system.

In Fig. 1 we compare our values for the critical tem-
perature TN (U) from CDet(AF) against numerous other
numerical methods [7, 9–12, 39, 57]. The Néel temper-
ature is expected to increase with increasing interaction
at small U since the transition is driven by the Slater
mechanism [58] and reaches a maximum in the interme-
diate coupling around U ' 6−10, before decreasing like
TN ' 0.946J [59] in the high-U Heisenberg limit, where
J = 4t2/U is the super-exchange coupling. We have been
able to determine the critical temperature up to an inter-
mediate coupling strength of U = 6. For U > 6, regard-
ing the magnetization, we experience increased difficulty
in resumming our perturbation series and loss of Monte
Carlo accuracy in the critical region close to the phase
transition.

The values of the Néel temperature displayed in Fig. 1
are obtained from the computation of the magnetiza-
tion as a function of temperature m(T ), which we show
in Fig. 2. The order parameter m indicates the phase
transition by assuming a non-zero value when decreas-
ing the temperature. Thanks to our high precision data,
we manage to compute directly the β critical exponent
along with the Néel temperature from the critical be-
haviour m(T ) ' a(TN − T )β . The obtained values for
the critical exponent Fig. 2 (top right) compare remark-
ably well to the literature values for the O(3) Heisen-
berg universality class [8, 11, 60, 61]. They establish
the first direct computations of the β critical exponent
on a fermionic lattice and in the thermodynamic limit.
They also yield the Néel temperature with very good ac-
curacy: TN (U = 2) = 0.0411(8), TN (U = 4) = 0.1902(3)
and TN (U=6)=0.312(2). As shown in Fig. 1, the values
that we obtain for the Néel temperature compare well
with paramagnetic DiagMC [39] and DCA extrapolated
to infinite cluster size [9], as well as to the recently im-
proved dynamical vertex approximation DΓA [57], but
are out of the error bounds obtained by finite-size scal-
ing of L ≤ 10 DDMC data [7]. The critical region, de-
fined as the temperature range T ∈ [TN − δT, TN ] where
m(T ) = a(TN − T )β is a good fit to our data, is of the
order of δT ' 0.025 for U ≥ 4. The magnetization and

0.0 0.1 0.2 0.3
T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m

U=2
U=4
U=6

2 4 6
U

0.30

0.35

0.40

0.45

-7.5 -2.5
log(TN T)

3

2

1

lo
g(

m
)

U=4

FIG. 2. Magnetization and critical behavior - Left panel:
Magnetization m as a function of temperature T for three
different values of the interaction U . The dashed curves
represent the critical behavior as determined from our data
close to the critical temperature fitted with the formula:
m(T ) ' a(TN − T )β . Top right panel: Critical exponent
obtained from the three magnetization curves. The gold hor-
izontal band corresponds to the theoretically predicted value
of β for the O(3) Heisenberg universality class in [60]. Lower
right panel: magnetization as a function of TN − T at U = 4
on a log-log scale. TN is determined with the critical behav-
ior fit from the left panel. The dashed line corresponds to the
fitting curve on the left panel.

the other thermodynamic quantities (see Figs 3 and 4)
only have a variation in a temperature interval δT ' 0.1
below TN before they essentially saturate to their low
temperature value. This interval does not seem to ex-
pand when increasing the interaction and hence the Néel
temperature for U ≥ 4.
Double occupancy. The signatures of the phase transi-

tion can also be read from the double occupancy, shown
in Fig. 3. At U=4, we observe a singularity in the double
occupancy at a temperature in good agreement with the
value of the Néel temperature determined in Fig. 2. At
this value of the interaction, the double occupancy in-
creases with decreasing temperature in the normal phase
because of the Pomeranchuk effect [62–66]. It decreases
in the antiferromagnetic phase which is consistent with
the Slater mechanism expected at small interaction: The
ordered phase is stabilized because of a gain in potential
energy Epot = UD and, hence, a lowering of double oc-
cupancy at fixed interaction. At higher values of U the
double occupancy curve flattens, and within our accu-
racy, we are not able to document the non-analyticity of
the double occupancy at the Néel temperature. We do
not observe significant changes of the double occupancy
around the Néel temperature at U = 8 within the 10−2

relative accuracy of our computation. Further work with
better sensitivity or studying the kinetic energy would be
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FIG. 3. Double occupancy D as a function of temperature
for three different values of the interaction U . The vertical
bands at U = 4 and U = 6 correspond to the estimate of
the Néel temperature from our study, while the hashed area
at U = 8 is an estimate of the Néel transition from other
numerical methods displayed in Fig. 1.
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FIG. 4. Left panel: Grand potential density −Ω/L3 as a
function of temperature T at interaction U = 4. When not
visible the error bar is smaller than the markers. Right panel:
Entropy density s as a function of temperature T obtained as
derivative of the grand potential fitting curves (see text). The
cyan error bars give the error on the entropy curve. We do
not have enough data close to the Néel temperature to resolve
the critical behaviour of the entropy, and the entropy curve
is dashed in this region. The insets are the same plots on a
larger temperature range. The lime horizontal line indicates
the high temperature limit s = log(4). On both panels the
vertical lines correspond to the value of the Néel temperature
obtained in Fig. 2.

needed to clearly document the change from a Slater to
a Heisenberg regime with a kinetic-energy driven phase
transition, as was done in DMFT and extensions thereof
in [67–69].

Grand potential. The grand potential at U = 4 is dis-
played in Fig. 4. In order to evaluate the entropy density
from Eq. (3) we suppose a polynomial behavior of the
grand potential with temperature. Since Ω(T ) − Ω(T =
0) ∝ T 4 for T → 0, we fit the T < TN data with the

expression −Ω(T ) = −Ω(T =0) + aT 4 + bT 5 + cT 6 (cyan
curve). At T > TN we expect a quadratic behavior in the
degenerate Fermi liquid regime. The data is well fitted by
the expression −Ω/L3(T ) = d+ eT 2 (yellow curve). We
impose continuity up to first order derivative at T = TN .
At higher temperatures T ≥ 0.4 the grand potential be-
comes almost linear in temperature −Ω(T ) ' log(4)T .
The entropy density is then extracted with a finite dif-
ference scheme. These different behaviors of the grand
potential lead to different physical regimes for the evo-
lution of the entropy density with temperature. In the
AF phase the entropy density varies as s ∝ T 3 at small
temperatures. For temperatures just above the transi-
tion T ∈ [TN , 0.35] the entropy density increases linearly
with the temperature which is a signature of a metallic
behaviour of the system in this part of the phase dia-
gram. At higher temperatures of the order of the in-
teraction T ∼ U = 4 the entropy density saturates to
s(T → +∞) = log(4).

Magnetically saturated regime at low T. We are now
interested in the low temperature properties of the sys-
tem where the magnetization has reached saturation.
We have observed earlier that the magnetization only
changes significantly in a shell of size δT ∼ 0.1 below
the Néel temperature, so that the region with saturated
magnetization represents an important part of the anti-
ferromagnetic dome.

Direct computations of the magnetization become
problematic for U > 6 because the associated series are
difficult to resum. At small temperature it turns out to
be more practical to compute the grand potential density
and extract the magnetization as its variation with the
external field as stated in Eq. (3). More details, and the
associated computations are shown in [56].

The directly computed magnetization compares well
with differentiating the grand potential as shown in
Fig. 5. For U ≥ 6 we observe no difference between the
T = 0.1 and T = 0.2 curves which shows that the mag-
netization is already saturated at its zero temperature
value. The magnetization will eventually have a maxi-
mum with respect to U , but this must happen for values
of U > 18.

The variations of the double occupancy with the inter-
action at low temperatures are shown in Fig. 5. In the
normal phase the double occupancy is decreasing quasi-
linearly with the interaction. In the vicinity of the phase
transition we observe good agreement between results for
the paramagnetic and symmetry-broken computations.
As expected, at the transition Uc we observe a singularity
in the double occupancy, and these results can be used to
estimate the value of the critical interaction at fixed tem-
perature. The double occupancy decreases faster with
increasing interaction when entering the AF phase which
is consistent with the Slater mechanism at the transition
for values of the critical interaction Uc < 6. In the an-
tiferromagnetic phase the double occupancy is a convex
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FIG. 5. Left panel: Magnetization as a function of the interac-
tion U for two different values of the temperature. For better
visibility the magnetization at T = 0.2 is shifted by +0.5 .
The square markers are obtained through direct computation
of the order parameter like in Fig. 2. The round markers are
obtained by numerically differentiating the grand potential
density at an external fieldHext → 0, see Eq. (3). Right panel:
Double occupancy D as a function of the interaction U for
three different values of the temperature. For better visibility
the data at T = 0.2 (T = 0.3) is shifted by +0.1 (+0.2). The
square markers are in the normal phase and are obtained with
the paramagnetic CDet algorithm (no symmetry-breaking at
α = 0). The round markers are obtained with the antiferro-
magnetic symmetry-broken CDet with α 6= 0 (AF).

function of the interaction which decays slowly to zero
at infinite interaction. At U > 7 we cannot distinguish
between the different temperatures within our accuracy
as expected from Fig. 3.

Conclusions. To conclude, we have applied the new
algorithmic developments of the symmetry-broken CDet
approach to produce the first high order diagrammatic
computations inside an antiferromagnetic phase and di-
rectly in the thermodynamic limit. We have provided a
quantitative description of the antiferromagnetic phase of
the cubic half-filled Hubbard model. After determining
the critical behavior of the system and its phase diagram
we have reported resummed results at small tempera-
tures deep inside the antiferromagnetic dome up to high
interactions U = 18. We have shown that diagrammatic
Monte Carlo is a powerful tool to study the physics of
ordered systems with no need for an embedding scheme
or system size extrapolation. A more advanced, non-
linear chemical-potential shift combined with other CDet
extensions [38] may lead to further improvements for
describing the critical behaviour in the strong-coupling
Heisenberg part of the antiferromagnetic dome. This
symmetry-broken expansion could be applied to incom-
mensurate orders in the doped regime, similarly to what
was done in the normal phase [39] or with embedding
methods [61]. Another interesting possibility would be
to extend our study by including an anisotropic hopping
term tperp < t in the z-direction (similarly to what was

done in [70]) in order to investigate how the magnetic
properties are modified as the two-dimensional limit is
approached. This application would be especially rele-
vant for the physics of cuprate superconductors.
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[38] Fedor Šimkovic, Riccardo Rossi, and Michel Ferrero. The
Weak, the Strong and the Long Correlation Regimes of
the Two-Dimensional Hubbard Model at Finite Temper-
ature. arXiv e-prints, page arXiv:2110.05863, October
2021. arXiv:2110.05863.

[39] Connor Lenihan, Aaram J. Kim, IV. Šimkovic, Fedor,
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and N. Blümer. Néel Transition of Lattice Fermions
in a Harmonic Trap: A Real-Space Dynamic Mean-
Field Study. Phys. Rev. Lett., 105:065301, Aug
2010. URL: https://link.aps.org/doi/10.1103/

PhysRevLett.105.065301, doi:10.1103/PhysRevLett.

105.065301.
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Supplemental material for “Precise many-body simulations of antiferromagnetic
phases using broken-symmetry perturbative expansions”

TUNING THE SHIFT α

We detail in this section the effect of the choice of the
shift parameter on the series behaviour and discuss our
method for selecting the optimal value of the α parame-
ter. The expression of the perturbation Hamiltonian Ĥξ
is given in Eq. 1 with ξ the expansion parameter. We pa-
rameterize h = αhMF with hMF the effective field which
corresponds to the mean-field solution at interaction U
and temperature T . The free parameter α modifies the
intensity of the staggered field in the non-perturbed sys-
tem. There is no limitation prohibiting choices of α > 1,
however, it was not beneficial in our studies and we limit
ourselves to values of the shift α ∈ [0, 1]. The value α = 1
leads to a non-perturbed Hamiltonian Ĥξ=0 correspond-
ing to the antiferromagnetic mean-field Hamiltonian for
which the Hartree insertions are canceled in the diagram-
matic expansion of an observable A.

We employ different resummation techniques in or-
der to extrapolate the computed series to infinite orders.
We use Padé and D-log Padé approximants [1, 2] cross
checked with an exponential fitting of the expansion coef-
ficient with respect to the order to establish a controlled
result. In the end the error on an observable is deter-
mined through error propagation of the MC error on the
expansion orders, after comparing the results from dif-
ferent resummations techniques, for at least two different
values of the shift parameter α.

The choice of the value of the α parameter changes
the non-interacting Hamiltonian Ĥ0 and therefore mod-
ifies the series behavior and its convergence properties.
We illustrate in Fig. S1 the effect of the value of the shift
parameter on the shape of the partial sums for different
observables. The value of the α parameter leading to
the best convergence of the partial sum depends on the
parameters T and U of the computation and on the com-
puted observable. If the best convergence is usually given
by shifts in the range α ∈ [0.7−1], it is helpful (especially
for the magnetization close to the Néel temperature) to
calibrate its value in order to obtain a quickly converg-
ing partial sum. At U = 4, T = 0.15 we find a ‘magical
shift’ α = 0.162 for which the convergence of the series
is optimal, leading to an accurate result. The maximum
expansion order we are able to reach with good accuracy
depends strongly on the value of the shift and is higher
for α close to 1, which can be explained by the cancella-
tion of Hartree insertion which reduces the MC variance.
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FIG. S1. Partial sums of magnetization m and double-
occupancy D for different values of the interaction U and
temperature T as a function of the maximum order n. The
partial sums are highly dependent on the value of the shift
α. The red colored band corresponds to the result with error
after resummation.

SYSTEM-SIZE EFFECTS

The diagrammatic expansion is formulated directly in
the thermodynamic limit. In practice we solve the un-
perturbed Hamiltonian and tabulate for finite L the non-
interacting Green’s functions to build the diagrammatic
expansion of the problem. Considering an expansion se-
ries of the magnetization at U = 4, T = 0.18 close to the
phase transition (TN ' 0.19 at an interaction U = 4),
we show in Fig. S2 that, up to relatively high order and
negligible contribution to the resummed result, the con-
tribution from each order is converged within statistical
error for a linear system size L ≥ 20. This shows that the
final error on our results is dominated by statistical and
resummation error. Finite size effects would only affect
very high perturbation orders which can be neglected to
determine the converging value of the series. This prop-
erty remains valid when getting closer to the Néel tem-
perature (see [3]). In our study, we fix the system-size
to L3 = 203 sites on a cubic lattice which proves to be
large enough to avoid finite-size effects, even in the crit-
ical region in the vicinity of the Néel phase transition.

ar
X

iv
:2

21
0.

17
42

3v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  3

1 
O

ct
 2

02
2



2

To illustrate this we show the evolution of the value of
different observables with linear system size in Fig. S3,
with a convergence reached for L ≥ 20.
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FIG. S2. System-size study : Contribution to the magnetiza-
tion of its expansion coefficients mn at different orders n, as
a function of the linear system size L. The parameters of the
perturbation expansion are T = 0.18, U = 4, α = 0.1 . The
inset is the same plot for smaller contributions.
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FIG. S3. System-size study : Double-occupancy and magne-
tization at U = 4, T = 0.15 as a function of the linear system
size L for a cubic lattice of L3 sites.

GRAND-POTENTIAL COMPUTATIONS

Grand potential computations are shown in Fig. S4.
The corresponding magnetization is obtained with a first
or second order polynomial fit of the grand potential data
as a function of the external field Hext. This method for

estimating indirectly the magnetization as a derivative
of the grand potential proves to be efficient deep inside
the antiferromagnetic dome, in the regime where mag-
netization is saturated to its zero temperature value. In
the vicinity of the phase transition we expect the grand
potential curve as a function of the external field Hext to
be flattening close to the origin Hext = 0 as the temper-
ature gets higher. These changes at very small fields are
hard to resolve and we rely on direct computations of the
magnetization in this regime.
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external staggered field Hext for different values of the tem-
perature and interaction parameters. The orange line corre-
sponds to the best fit by a second (first) order polynomial on
the top and bottom left (right) panels
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2Laboratoire de Physique de l’École Normale Supérieure, ENS - Université PSL,
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We demonstrate that summation of connected diagrams to high order on top of the BCS hamil-
tonian is a viable generic unbiased approach for strongly correlated fermions in superconducting
or superfluid phases. For the 3D attractive Hubbard model in a strongly correlated regime, we
observe convergence of the diagrammatic series, evaluated up to 12 loops thanks to the connected
determinant diagrammatic Monte Carlo algorithm. Our study includes the polarized regime, where
conventional quantum Monte Carlo methods suffer from the fermion sign problem. Upon increas-
ing the Zeeman field, we observe the first-order superconducting-to-normal phase transition at low
temperature, and a significant polarization of the superconducting phase at higher temperature.

After the discovery of superconductivity 110 years
ago [1], it took nearly half a century before Bardeen,
Cooper and Schrieffer provided a microscopic explana-
tion based on an ansatz for the many-body ground-state
wavefunction – a coherent state of pairs, breaking the
U(1) symmetry corresponding to particle number con-
servation [2]. Variational minimization over this ansatz
leads to the well-known BCS mean-field theory which
captures not only the “BCS regime” where the attractive
interaction is weak, but also the “BEC regime” where
the attractive interaction is strong, suggesting a smooth
crossover from a fermionic superfluid with large Cooper
pairs to a Bose-Einstein condensate of small composite
bosons [3, 4]. This BCS-BEC crossover scenario, con-
firmed experimentally in ultracold atomic gases [5–7], is
relevant to neutron matter [8, 9] and to various solid-state
materials [10, 11] where s-wave pairing arises between
opposite-spin electrons [12] or between an electron and a
hole [13]. The problem becomes even more interesting in
presence of a Zeeman field h, i.e., a chemical potential
offset between ↑ and ↓ fermions, which favors a difference
between ↑ and ↓ densities, and tends to destabilize the
fully paired superconducting state.

A minimal theoretical formulation of the BCS-BEC
crossover problem is the attractive Hubbard model on
the cubic lattice, which was widely studied at h = 0
(and generic filling [14]) by different versions and ex-
tensions of BCS mean-field theory [15, 16] and of the
T-matrix approximation [11, 17], dynamical mean-field
theory (DMFT) in the normal [18, 19] and the super-
conducting [20, 21] phase, and the dynamical vertex ap-
proximation [22]. Unbiased studies, based on the aux-
iliary field quantum Monte Carlo (AFQMC) [23–25] or
determinant diagrammatic Monte Carlo (DDMC) meth-
ods [26, 27], are mostly restricted to a Zeeman field h = 0:

In the h 6= 0 regime, where there is no symmetry be-
tween ↑ and ↓, these methods are plagued by the infa-
mous fermion sign problem [28], and most studies resort
to the static [15, 29, 30] or dynamical [31] mean-field
approximations. A very different route is to emulate the
Hubbard model with cold atoms, although long-range or-
der in 3D was not reached so far [6, 32].

In this Letter, we demonstrate that unbiased accurate
results in the polarized superconducting phase can be ob-
tained from a high-order diagrammatic expansion around
the BCS hamiltonian. By extending the connected deter-
minant (CDet) algorithm [33] to anomalous propagators,
we go up to twelve-loop order and observe convergence
of the series. This extends the realm of controlled dia-
grammatic computations for strongly correlated fermions
in the thermodynamic limit [33–36] to superconducting
phases. We determine the critical Zeeman field where
a first-order superconducting-to-normal phase transition
takes place at low temperature, and find a significant
polarization of the superconducting phase at higher tem-
perature. Our results deviate very substantially from the
BCS mean-field predictions and provide reliable bench-
marks for optical-lattice experiments.

The Hubbard model is defined by the hamiltonian

H = Hkin −
∑

σ=↑,↓
µσ Nσ +Hint (1)

with µ↑/↓ = µ ± h the chemical potentials, Hkin =

−t∑〈i,j〉σ(c†iσcjσ + h.c.) the nearest-neighbor hopping,

and Hint = U
∑

i ni↑ ni↓ the on-site interaction (ciσ are

the fermion annihilation operators, while niσ = c†iσciσ
and Nσ =

∑
i niσ are the single-site and total particle-

number-operators).
To set up a diagrammatic expansion for the infinite-
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size system in the superconducting phase, we must ex-
pand around an unperturbed hamiltonian H0 that breaks
the U(1) symmetry. We take

H0 = Hkin −
∑

σ

µ0,σ Nσ +H
(∆0)
pair (2)

with a symmetry-breaking pairing term

H
(∆0)
pair := ∆0

∑

i

c†i↑c
†
i↓ + h.c. (3)

The most natural choice for the free parameters ∆0 and
µ0,σ is given by the self-consistency conditions of BCS
mean-field theory

µ0,σ = µσ − U 〈n0,−σ〉H0
(4)

∆0 = −U 〈Ô〉H0
(5)

where 〈Ô〉 := 〈c0↑c0↓〉 is the order parameter for the
superconducting phase with long-range order in the s-
wave pairing channel. In what follows we will denote
this mean-field choice of ∆0 by ∆MF. We will also use
other values of ∆0, but always keep the mean-field choice
(4) for the unperturbed chemical potential.

As usual we then introduce a hamiltonian that depends
on a formal parameter ξ,

Hξ = H0 + ξ (H −H0), (6)

expand intensive observables in powers of ξ, and finally
set ξ = 1. For the order parameter, this means introduc-
ing

O(ξ) := 〈Ô〉Hξ ≡ Tr(Ô e−βHξ) /Tr e−βHξ (7)

and expanding O(ξ) =
∑∞
N=0ON ξN . We will see nu-

merically that this series converges at ξ = 1. We can
thus obtain the physical order parameter simply by eval-
uating the series

∑∞
N=0ON .

Thermodynamic limit and spontaneous symmetry
breaking. Here it is actually crucial to work directly in the
thermodynamic limit [37]. This limit should be taken in
the definition (7) of O(ξ), and hence the thermodynamic
limit should be taken before summing the ON over N .
Indeed, recall that in presence of spontaneous symmetry
breaking, the order parameter is defined by introducing
an external symmetry-breaking field η that couples to the
order parameter, and sending η to zero after taking the
thermodynamic limit:

O = lim
η→0+

lim
L→∞

〈Ô〉H(η), L (8)

where H(η) := H +H
(η)
pair and L is the linear system size.

Let us denote by OL(ξ) and ON,L the finite-system ver-
sions of O(ξ) and ON . Since there is no spontaneous
symmetry breaking for a finite system, OL(ξ = 1) = 0.
What we should do instead, to obtain the order param-
eter defined in (8), is to first take the thermodynamic

limit: O = limξ→1− limL→∞OL(ξ). This follows simply
from the fact that Hξ contains a symmetry-breaking field
which by construction vanishes in the limit ξ → 1 where
the symmetry of the physical hamiltonian is restored.
Explicitly, Hξ = Hkin−

∑
σ [(1− ξ)µ0,σ + ξ µσ] Nσ+(1−

ξ)H
(∆0)
pair + ξ Hint, which is equal to H(ηeff=(1−ξ) ∆0) plus

corrections that have no effect to leading order in the
limit ξ → 1.

Diagrams and CDet algorithm. Each coefficient ON
is a sum of connected Feynman diagrams with N ver-
tices. We compute these coefficients up to a maximal
order Nmax using the CDet algorithm generalized to
the broken-symmetry phase. In addition to the normal
propagator lines, diagrams contain anomalous propaga-
tor lines, where particles are destroyed at both ends, or
created at both ends. These anomalous propagators are
the off-diagonal elements of the 2 by 2 propagator matrix

Gαα′(X −X ′) = −〈T Ψ†α(X) Ψα′(X
′)〉H0

(9)

with the Nambu spinor notation (Ψ0,Ψ1) := (c↑, c
†
↓).

Here X ≡ (i, τ) stands for space and imaginary-time,
and T is the time-ordering operator.

Following the CDet approach, we express the diagram-
matic series for the order parameter, or for the densities,
as

〈Ψ†α(0)Ψα′(0)〉Hξ =

−
∞∑

N=0

(ξ U)N

N !

∫
dX1 . . . dXN cdet(X1, . . . , XN ) (10)

where
∫
dX :=

∑
i

∫ β
0
dτ with β the inverse temperature,

and cdet(X1, . . . , XN ) is the sum of all connected Feyn-
man diagrams with internal vertex positions X1, . . . , XN ,
which is evaluated by recursively subtracting out all dis-
connected diagrams from the sum of all connected plus
disconnected diagrams, the latter being given by the de-
terminant of the (2N+1) by (2N+1) propagator matrix




0 δsh ... G00(X1n) G01(X1n) G0i0 (X1)

δsh 0 ... G10(X1n) G11(X1n) G1α(X1)

...
...

. . .
...

...
...

G00(Xn1) G01(Xn1) ... 0 δsh G0α(Xn)
G10(Xn1) G11(Xn1) ... δsh 0 G1α(Xn)
Gα′0(−X1) Gα′1(−X1) ... Gα′0(−Xn) Gα′1(−Xn) Gα′α(0)




where Xij := Xi − Xj , and δsh := 〈Ô〉H0 + ∆0/U is
the anomalous tadpole minus a counter-term, which van-
ishes when ∆0 = ∆MF. The zeros on the diagonal reflect
the cancellation of normal tadpoles by chemical-potential
counter-terms, ensured by (4). We will also evaluate the
series for the pressure, P (ξ) = ln Tr exp(−βHξ)/(βL

3) =∑∞
N=0 PNξ

N , whose coefficients PN are given by fully
closed diagrams and are obtained with CDet by remov-
ing the last row and column from the above propagator
matrix.
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FIG. 1. Benchmark at zero Zeeman field: Order parameter
at T = 1/8 ≈ Tc/2. Green circles: CDet results vs. trunca-
tion order Nmax (Nmax = 0 corresponds to BCS mean field
theory). Blue line with grey error-band: Nmax → ∞ extrap-
olated result. Pink diamonds: DDMC benchmark vs. system
size L (CDet data are in the thermodynamic limit L→∞).

Our computer code is based on a library [38] providing
a generic implementation of CDet, the integration over
the internal vertex positions being done for all diagram
orders N ≤ Nmax at once thanks to a recently introduced
many-configuration Monte Carlo algorithm [39].

Results. Taking the hopping t = 1 as unit of energy,
we set U = −5, and µ = −3.38 so that the density n =
n↑ + n↓ is close to 0.5 particles per site, i.e. quarter
filling – a standard choice of generic filling that differs
from the special half-filled case. For h = 0, AFQMC
is sign free and provides the critical temperature curve
Tc(U) [23]: Our choice of U lies in the strongly correlated
regime where the curve has a broad maximum – we have
Tc(U = −5) ≈ 0.25, which is not far from the maximal
value 0.33, and much larger than in the weak-coupling
regime where Tc vanishes exponentially with 1/|U |.

We start with a benchmark at h = 0. We compute the
order parameter at T = 1/8 ≈ Tc/2 and compare with
the DDMC method [26, 40] also known as continuous-
time interaction expansion in the context of impurity
solvers [41]. Our data for the partial sum

∑Nmax

N=0 ON
converge as a function of the truncation order Nmax to
a result which agrees with the DDMC benchmark, see
Fig. 1. Here and in what follows we use Padé approxi-
mants for the Nmax → ∞ extrapolation [42]. We used
∆0 = ∆MF and checked that the extrapolated results
agree for different choices of ∆0.

We turn to the polarized regime h > 0, where conven-
tional approaches such as AFQMC and DDMC have a
sign problem and unbiased results are unavailable. We
start by setting the temperature to T ≈ Tc/4, increase
the Zeeman field h, and compute the thermodynamic

FIG. 2. Grand-potential density vs. Zeeman field, at
T = 1/16 ≈ Tc/4. Circles: superconducting phase, obtained
by expanding around BCS mean-field theory (∆0 = ∆MF).
Squares: normal phase, obtained by expanding around the
normal mean-field solution (∆0 = 0). The crossing between
the curves signals the first-order phase transition. Inset: same
quantity vs. truncation order Nmax, at h = 0.8; horizontal
lines with error bands are the Nmax → ∞ extrapolated re-
sults also shown in the main panel.

grand potential per unit volume, Ω/L3 = −P with P
the (electronic) pressure. We obtain the pressure of the
superconducting phase using again the expansion around
the broken-symmetry mean-field solution (∆0 = ∆MF).
We also evaluate the expansion around the normal mean-
field solution (∆0 = 0) which yields the normal-phase
pressure. As shown in Fig. 2, the two curves cross, which
indicates a first order phase transition. The error bars
are dominated by the Nmax →∞ extrapolation, and are
larger for the normal phase because we could only eval-
uate the series up to order 7, instead of 12 for the super-
conducting phase. We attribute this difference to the fact
that the superconducting-phase propagators are gapped,
and hence decay faster with position, which reduces the
Monte Carlo variance. Within error bars, the supercon-
ducting pressure is independent of h, which means that
the magnetization m := n↑ − n↓ is zero. This indicates
that we are in the regime where h is smaller than the pair-
ing gap Eg, i.e. the Zeeman field is not large enough to
overcome the energy cost of having an unpaired fermion,
and the magnetization is exponentially suppressed at low
temperature, m ∼ e−(Eg−h)/T . So the pairing gap es-
sentially prevents the superconducting phase from po-
larizing, until a first-order phase transition occurs when
the polarized normal phase becomes energetically favor-
able. Ultracold atom experiments [43] and fixed-node
Monte Carlo calculations [44] in continuous space are
consistent with this scenario. This is also what is pre-
dicted by BCS mean-field theory [15, 45] albeit with a
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FIG. 3. Magnetization vs. maximal expansion order at
T = 0.19 ≈ 3Tc/4 and h = 0.35, for different choices of the
unperturbed pairing field (from bottom to top: ∆0 = 1.357 ≈
∆MF,∆0 = 0.9, 0.5, 0.4, 0.37, 0.34, and 0.3), from which we
obtain m = 0.0206(9). The BCS mean-field result (the value
of the bottom curve at Nmax = 0) is 30 times smaller. Inset:
Pressure vs. external symmetry-breaking field η, whose slope
at the origin, and hence the order parameter, is non-zero.

critical field nearly twice larger than our unbiased result
hc = 0.62(11).

For h > hc the superconducting phase is metastable.
We have checked that the order parameter is still non-
zero at h = 0.8. In this regime the convergence of the
series

∑ON is slower and the extrapolation becomes less
stable. Therefore, instead of computing the order param-
eter directly, we extracted it from the response to a small
symmetry-breaking field: 2O = −dP (η)/dη|η=0+ , where

P (η) is the pressure in presence of the field η (i.e. for
the hamiltonian H(η)), whose expansion can be extrapo-
lated reliably [46]. As always, the notion of a metastable
phase has to be taken with a grain of salt: It is only well
defined asymptotically close to the first-order transition
point, where the energy barrier for nucleating the stable
phase inside the metastable phase diverges. Accordingly,
the diagrammatic expansion must actually diverge, but
as long as we are not too deep in the metastable regime,
this divergence is slow and only visible at very large or-
ders, see below. Similarly, the normal phase is metastable
for h < hc, and we are able to follow it all the way to
h = 0 without encountering the divergence of the series
within the 7 orders that are accessible to us.

While we have seen that the pairing gap prevents the
superfluid from polarizing at low temperature, the situ-
ation changes at higher temperature. At T ≈ 3Tc/4 and
h = 0.35, we find a magnetization m = 0.0206(9), which
corresponds to a polarization (n↑−n↓)/(n↑+n↓) of 4.1%.
This is 30 times larger than the BCS mean-field predic-
tion. Therefore, BCS mean-field is not a good starting
point for the expansion in this case, and we had to tune

∆0 away from ∆MF in order to obtain convergence of the
partial sums within accessible orders, see Fig. 3. Fur-
thermore we can again check that the order parameter is
non-zero by computing P vs. external field η, see inset
of Fig. 3. We thus observe a polarized superconducting
phase. This phase is possibly metastable, since its pres-
sure (at η = 0) does not differ from the one of the normal
phase within our error bars.

We end with a discussion of the large-order behavior
of the expansion for the superconducting phase, which
is determined by the singularities as a function of the
formal expansion parameter ξ. In the limit ξ → 1−, we
effectively have an external field ηeff = (1− ξ) ∆0, hence
the long-wavelength thermal fluctuations of the Gold-
stone mode lead to a singularity O(ξ) − O ∼ C

√
1− ξ,

with C = [O/(2Ds)]
3/2 T

√
∆0/π, O ≡ O(ξ → 1−),

and Ds the superfluid stiffness [47]. This yields the
power-law asymptotics ON ∼ −C/(N3/2 2

√
π) and PN ∼

C ∆0/(N
5/2
√
π) for N → ∞. When T → 0 there is a

crossover to the quantum-fluctuation regime where the
Goldstone singularity is only logarithmic [48], leading to
a faster 1/N3 decay of PN . We expect another, weaker
singularity at ξ = 1, given that the change of sign of
1− ξ causes a first-order phase transition associated to a
change of sign of the equilibrium order parameter. Such
a first-order transition is generally expected to cause
an essential singularity, with a branch-cut discontinuity
∼ e−βB(ξ) for ξ → 1, with B(ξ) the grand-potential bar-
rier for nucleating a critical bubble of the stable phase
inside the metastable phase [49], which diverges like a
power of 1/|1− ξ| [50], This gives a streched-exponential
large-order behavior ∼ exp(−#Na) with a < 1. In the
vicinity of the physical first-order transition from Fig. 2,
we expect a third singularity at a point ξc that moves con-
tinuously from the right to the left of the physical point
ξ = 1 when h changes from below to above hc, with
a branch-cut discontinuity ∼ e−βB(ξ) for ξ → ξc with
B(ξ) the barrier for nucleating the stable normal phase
inside the metastable superconducting phase, which di-
verges like a power of 1/|ξc − ξ| [51], hence a large-order
behavior (1/ξc)

N times a streched exponential. None of
these three singularities lead to a divergence of the series,
except for the third one in the metastable regime where
ξc < 1, but this is a slow divergence only visible at very
large N as long as ξc is close to 1, as anticipated. In
the stable regime, the Goldstone singularity dominates
asymptotically, but the prefactor C is much smaller than
what would correspond to our numerically obtained coef-
ficients, assuming that Ds is not much smaller than the
value 0.5 predicted by DMFT at T = 0 [21]. Thus at
N = 12 we are still far from the true large-N behavior;
furthermore the smallness of C implies that the contri-
bution of the Goldstone singularity to the final result is
negligible. To estimate the effect of the sub-exponential
decay of the coefficients, we supplemented the Padé re-
sults with Dlog-Padé, as well as with power-law extrap-
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olations of the series shifted by Ns orders with |Ns| ≤ 3,
and we increased the final error bars to include all ob-
tained results. As seen in Fig. 2 and in the inset of Fig. 3,
the resulting error bars are still remarkably small. In this
sense, 12 loops are sufficient for accurate extrapolation.

Outlook. BCS mean-field theory predicts [29] that in
a large part of the phase diagram, the true equilibrium
state is an exotic FFLO [52] phase. This open ques-
tion can be tackled with the present approach by making
∆0 space dependent. Stronger couplings can be accessed
using renormalized expansions, following [36, 53]. This
would allow to look for the breached-pair gapless super-
conducting phase [31] and to extend the continuous-space
approach of [35] to superfluid phases. For the repulsive
Hubbard model, the d-wave superconducting phase is ac-
cessible by expanding around a momentum-dependent
∆0, as was done to second order in [54]. Another natural
extension would be to go beyond the third-order expan-
sion for open-shell nuclei [55].
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Lan, J. Li, F. Ma, A. J. Millis, N. V. Prokof’ev, U. Ray,
G. E. Scuseria, S. Sorella, E. M. Stoudenmire, Q. Sun,
I. S. Tupitsyn, S. R. White, D. Zgid, and S. Zhang,
Phys. Rev. X 7, 031059 (2017); J. Carlström and E. J.
Bergholtz, Phys. Rev. B 98, 241102(R) (2018); J. Carl-
ström, Phys. Rev. B 97, 075119 (2018); I. S. Tupitsyn
and N. V. Prokof’ev, Phys. Rev. B 99, 121113(R) (2019);
K. Chen and K. Haule, Nature Comm. 10, 3725 (2019);
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Résumé : Les matériaux fortement corrélés révèlent des
phénomènes physiques remarquables à basse température. Selon
les paramètres externes, ils présentent des phases électroniques
extrêmement différentes, allant d’ordres magnétiques isolants à
une phase supraconductrice présentant une conductivité électrique
infinie. La richesse de ces phénomènes physiques prend ses ra-
cines dans les interactions fortes qui impactent le comportement
des électrons. Ces matériaux ne peuvent pas être compris par un
traitement effectif à un seul corps. Pour décrire avec précision leurs
propriétés, il faut résoudre le problème quantique à N corps. Il s’agit
d’un problème complexe qui nécessite des approches numériques
efficaces pour obtenir des résultats quantitativement précis. Dans
cette thèse, nous abordons le développement de nouveaux algo-
rithmes pour résoudre les systèmes fermioniques à fortes interac-
tions.
Après avoir introduit les systèmes à fortes interactions, nous mon-
trons que la théorie des perturbations est un outil puissant pour
étudier le problème à N corps quantique. En considérant les inter-
actions électroniques comme une perturbation du système sans
interaction, nous exposons comment calculer de manière effi-
cace, et jusqu’à des ordres élevés, la série perturbative qui peut
être exprimée comme une somme de diagrammes de Feynman.
Nous présentons l’algorithme CDet (Connected Determinants) qui
nous permet d’atteindre des ordres de perturbation élevés. Nous

dépassons l’une des principales limites de la théorie des perturba-
tions en introduisant un changement de potentiel chimique qui brise
une symétrie du système. Cette approche permet de décrire de
façon perturbative la physique des phases ordonnées dans la limite
thermodynamique. Ce nouvel algorithme est appliqué au modèle
de Hubbard à moitié rempli et sur un réseau cubique. Il fournit une
description quantitative de l’ordre de Néel à la fois près de la tran-
sition de phase et à basse température jusqu’au régime de cou-
plage fort. Cette étude nous permet de détailler les limites de notre
méthode et de présenter les outils numériques qui assurent une
mise en œuvre efficace de l’algorithme CDet et une resommation
précise des séries perturbatives. La version attractive de ce modèle
présente une phase supraconductrice qui est décrite en adaptant
notre approche d’expansion dans une phase à symétrie brisée.
Dans le dernier chapitre de cette thèse, nous nous intéressons aux
systèmes à forte interaction et hors équilibre. Le problème hors
équilibre dans les matériaux fortement corrélés est exceptionnel-
lement difficile à résoudre exactement, et nous nous appuyons sur
une approximation diagrammatique NCA (Non Crossing Approxi-
mation). Nous implémentons un solveur d’impuretés efficace et ra-
pide en alternant entre les domaines en temps réel et en fréquence,
dans la limite du régime permanent. Ce solveur nous permet de cal-
culer les propriétés de transport dans des systèmes qui sont main-
tenus hors équilibre par un champ électrique extérieur.

Title : When perturbation theory becomes non-perturbative : applications to strongly-correlated systems

Keywords : Numerical physics - Condensed Matter - Strongly correlated materials - Phase transition - Algorithms

Abstract : Strongly correlated materials reveal remarkable physi-
cal phenomena at low temperatures. Depending on external para-
meters, they exhibit extremely different electronic phases, ranging
from insulating magnetic orders to strong superconductivity with in-
finite electrical conductivity. The richness of these physical pheno-
mena takes its roots in the strong interactions that impact heavily
the behaviour of electrons. These materials can not be understood
by an effective one-body treatment. To accurately describe these
properties, one must solve the quantum many-body problem of in-
teracting particles. This is a complex problem that requires nume-
rical approaches to obtain quantitatively accurate results. In this
thesis, we focus on the development of new algorithms to address
strongly interacting fermionic systems.
After introducing strongly interacting systems, we show that the per-
turbation theory framework is a powerful tool for studying the many-
body problem. By considering electronic interactions as a pertur-
bation to the non-interacting system, we focus on computing effi-
ciently, and up to high orders, the perturbation series, which can
be expressed as sums of Feynman diagrams. We present the CDet
(Connected Determinants) state-of-the-art algorithm which allows
us to reach high perturbation orders. We overcome one of the main
limitations of perturbation theory by introducing a novel chemical

potential shift that breaks a symmetry. We show that this approach
allows us to describe perturbatively the physics of ordered phases
in the thermodynamic limit. We apply this new algorithm to the cubic
half-filled Hubbard model and provide a quantitative description of
the Néel order both near the phase transition and at low tempera-
ture up to the high coupling regime. This study enables us to detail
the limitations to our method and to present the numerical tools
that ensure an efficient implementation of the CDet algorithm and
an accurate resummation of the resulting perturbative series. The
attractive counterpart of this model shows a superconducting phase
that can also be described by adapting our symmetry-breaking ap-
proach.
In the last chapter of this thesis we turn our attention to out-of- equi-
librium interacting systems. The non-equilibrium interacting pro-
blem in real materials is extraordinarily difficult to solve exactly,
and we rely on a diagrammatic approximation : the Non-Crossing-
Approximation. We implement an efficient and fast impurity solver
by alternating between the real-time and frequency domains in the
steady-state limit. This solver allows us to compute transport pro-
perties in systems that are driven out-of-equilibrium by an external
electric field.
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