
HAL Id: tel-04543927
https://theses.hal.science/tel-04543927v1

Submitted on 12 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contribution to SAT-based Bounded Model Checking
Anissa Kheireddine

To cite this version:
Anissa Kheireddine. Contribution to SAT-based Bounded Model Checking. Computational Complex-
ity [cs.CC]. Sorbonne Université, 2023. English. �NNT : 2023SORUS566�. �tel-04543927�

https://theses.hal.science/tel-04543927v1
https://hal.archives-ouvertes.fr

Thèse présentée pour l’obtention du grade de

Docteur de Sorbonne Université

École doctorale EDITE de Paris (ED130)
Informatique, Télécommunication et Éléctronique

Laboratoire de Recherche de l’EPITA (LRE)

Laboratoire d’Informatique de Paris 6 (LIP6)

Contribution to SAT-based Bounded Model
Checking

Contribution à la vérification de modèles bornés basée sur la résolution SAT

Anissa Kheireddine
Soutenu le : 19/12/2023, devant le jury composé de :

Rapporteurs :
Vijay GANESH, Professeur des universités, GT, Georgia Institute of Technology
Ahmed BOUNEKKAR, Maître de Conférences, ERIC, Université Claude Bernard Lyon 1

Examinateurs :
Laure PETRUCCI, Professeure des universités, LIPN, Université Sorbonne Paris Nord
Emmanuelle ENCRENAZ, Professeure des universités, LIP6, Sorbonne Université

Sous la supervision de :
Étienne RENAULT, Compilers, Libraries and Tools Team Leader, SiPearl (Co-encadrant)
Souheib BAARIR, Professeur des universités, LRE, EPITA (Directeur de thèse)

ii

Abstract

Keywords: Bounded model checking, Boolean satisfiability, Linear Temporal Logic,
parallelism, portfolio, learned clause database, clause sharing

Computer systems have become omnipresent in our daily lives. Ensuring the reli-
ability and robustness of these systems is an absolute necessity. Model-Checking is
one of the approaches dedicated to this purpose. Its objective is to either prove the
absence of failures or identify potential ones. Model-Checking is declined into sev-
eral technique. Among these, there is Bounded Model Checking (BMC), a technique
that relies on Boolean satisfiability (SAT). The core idea behind BMC is to verify that
a model, restricted to executions bounded by some integer k, satisfies its specifica-
tion, often defined as a set of temporal logic expressions. In this approach, system
behaviors are expressed as SAT problems. Unlike other formal verification methods,
SAT-based BMC is generally not prone to the state space explosion problem, which
can be problematic when dealing with designs involving millions of variables and
constraints. However, the trade-off lies in the time complexity, as SAT problems are
known to be NP-complete.

Over the past few decades, significant advancements have been made in sequen-
tial SAT solving. These developments have mainly focused on utilizing dynamic
information, acquired during the solving process (e.g., Learning Binary Clauses), or
static information, extracted from the inherent structure of the SAT problem (e.g.,
community structure). However, less attention has been given to the structural in-
formation embedded within the original problem. For instance, when a BMC prob-
lem is reduced to SAT, critical information is lost in the translation. As this thesis
emphasizes, reintegrating this lost information can greatly enhance the solving pro-
cess. This work explores ways to improve SAT-based BMC problem-solving, both in
sequential and parallel settings, by harnessing and leveraging pertinent information
extracted from the problem’s inherent characteristics. This may involve improving
existing generic heuristics or effectively breaking down the formula into partitions.

iii

Résumé long en français

Context

Les systèmes informatiques, qu’il s’agisse du matériel ou des logiciels, sont devenus
une partie fondamentale de notre vie quotidienne. Ils vont des programmes simples
qui contrôlent des appareils ménagers tels que les micro-ondes aux logiciels com-
plexes qui gèrent des systèmes critiques, comme les centrales nucléaires, en passant
par nos smartphones et nos voitures. Cette omniprésence des systèmes informa-
tiques a suscité une préoccupation majeure : en cas de défaillance de ces systèmes,
cela peut entraîner des conséquences graves. Par conséquent, il est essentiel de
garantir le bon fonctionnement de ces systèmes critiques. Pour répondre à cette
préoccupation, des techniques de vérification formelle ont été développées. Con-
trairement aux méthodes de test traditionnelles, qui évaluent les performances des
systèmes sur un ensemble limité de scénarios, les techniques de vérification formelle
sont exhaustives. Elles explorent tous les scénarios possibles, ce qui renforce consid-
érablement la confiance dans la fiabilité de ces systèmes. Par conséquent, la vérifica-
tion formelle est devenue un outil essentiel dans l’industrie pour éliminer les bugs
et renforcer la confiance dans les produits matériels et logiciels.

Le processus de développement des systèmes critiques peut être résumé en trois
étapes clés : (i) la modélisation du système, (ii) l’expression des exigences et (iii)
la vérification du modèle par rapport à ces exigences. Généralement, le système,
ou le modèle, est représenté dans un langage formel, tel que le langage SMV [1],
VERILOG [2] ou PROMELA [3], décrivant tous les états potentiels du système. Les
exigences sont constituées de propriétés que le système doit respecter pour garantir
son bon fonctionnement. Ces propriétés sont souvent définies à l’aide de logiques
temporelles, telles que LTL [4, 5] ou CTL [6], car elles offrent des opérateurs pour
exprimer les comportements temporels, ce qui est précieux pour spécifier les exi-
gences. Avec le modèle et un ensemble d’exigences, la conception et la mise en œu-
vre de haut niveau du système peuvent être vérifiées à l’aide de méthodes formelles.
L’une des méthodes de vérification les plus courantes dans l’industrie est le model
checking (vérification de modèle). Le model checking [7] peut fournir un contre-
exemple (CEX) lorsqu’un modèle ne satisfait pas une exigence. Ce CEX correspond
à un chemin d’exécution du système, ce qui aide considérablement les concepteurs à
comprendre où se situe le problème dans le système. Pour réaliser cette vérification,
il est nécessaire d’effectuer une traversée complète de l’espace des états représentant
les comportements du modèle. Deux approches ont été utilisées : la vérification de
modèle explicite [8] et la vérification de modèle symbolique [9, 10].

Vérification de modèle explicite. Dans la vérification de modèle explicite, le com-
portement du modèle ainsi que la propriété sont représentés sous forme d’automates :
une structure de Kripke pour le modèle [11] et un automate de Büchi pour

iv

la propriété LTL [12, 13]. Ensuite, un produit synchronisé est effectué en-
tre la structure de Kripke et l’automate de la propriété après négation. Si le
produit est vide, la propriété est vérifiée ; sinon, elle est violée. Le princi-
pal inconvénient de cette technique est le problème de l’explosion de l’espace
d’états [14], ce qui signifie que la taille de l’espace d’états du système augmente
de manière exponentielle.

Vérification de modèle symbolique. Pour surmonter le problème de l’explosion de
l’espace d’états, la vérification de modèle symbolique représente les états de
manière implicite en utilisant des fonctions booléennes, telles que les Dia-
grammes de Décision Binaires (BDD) [10] ou les formules booléennes SAT [15].
Les BDD sont utilisés pour représenter de manière symbolique la relation de
transition de l’automate ou des structures de Kripke sous analyse, ainsi que
les ensembles d’états manipulés par l’algorithme de vérification de modèle.
Depuis leur création, la vérification de modèle symbolique basée sur les BDD a
révolutionné la vérification formelle et les méthodes formelles. Elle a permis la
vérification pratique de systèmes industriels, commençant par le matériel [16]
et s’étendant au logiciel [17].

Dans cette thèse, nous nous concentrons sur les techniques symboliques qui utilisent
des procédures de résolution SAT, qui sont devenues un pilier de la vérification de
modèle moderne. En effet, les BDD ont ouvert la voie à d’autres formes de véri-
fication de modèle symbolique, principalement les vérificateurs de modèle (model
checkers) basés sur SAT [18, 19]. Les solveurs SAT modernes sont devenus la tech-
nologie centrale de nombreux model checkers, améliorant considérablement leur
capacité par rapport aux model checkers basés sur BDD [20]. En particulier, les
procédures SAT sont largement utilisées dans la version bornée de la vérification de
modèle, notamment pour la vérification des spécifications LTL. Le Bounded Model
Checking (BMC) [15, 19, 21] désigne une approche de vérification de modèle où la
vérification de la propriété est effectuée à l’aide d’une traversée limitée, c’est-à-dire
une traversée d’une représentation symbolique de l’espace d’états qui est bornée par
un entier k. Cette approche ne nécessite pas le stockage de l’ensemble de l’espace
d’états, ce qui la rend plus souple et utile [18, 22].

Vers une résolution efficace du BMC basée sur le SAT

Ces dernières décennies, de nombreuses améliorations ont été développées dans le
domaine de la résolution séquentielle SAT [23–26], pour n’en citer que quelques-
unes. Ces approches sont assez génériques et sont basées sur l’exploitation d’informations
dynamiques, obtenues à partir de la progression de l’algorithme de résolution lui-
même (e.g., LBD [23]), ou d’informations statiques, dérivées de la structure sous-
jacente du problème SAT (e.g., structure communautaire [24], symétrie [25, 27, 28]).

Le principal inconvénient de la vérification de modèle symbolique et plus précisé-
ment des procédures SAT réside dans le fait qu’un problème BMC est réduit à une
formule propositionnelle. Lors de cette transformation, des informations cruciales
sont perdues, lesquelles auraient pu être très utiles pour le processus de résolution.
L’efficacité des procédures SAT est principalement due aux nombreuses optimisa-
tions "génériques" qui ont été développées pour orienter les procédures SAT vers
des espaces de recherche prometteurs, réduisant ainsi les temps de résolution. Une

v

optimisation particulièrement remarquable implique la génération et l’utilisation
d’informations de haute qualité (apprentissage) provenant des solveurs SAT, à base
d’apprentissage par conflit [29, 30] (Conflict Driven Clause Learning algorithm, CDCL),
ce qui permet l’élagage de sous-espaces inutiles. Il est essentiel de s’assurer que ces
précieuses informations apprises ne sont pas rejetées prématurément au cours du
processus de résolution [29, 31]. Ces informations apprises ont également prouvé
leur efficacité dans des contextes parallèles où plusieurs solveurs partagent dynamique-
ment les informations qu’ils ont apprises. Ainsi, les optimisations proposées dans les
solveurs SAT bien connus [32, 33] et les stratégies de résolution SAT parallèles [34,
35] restent génériques et n’exploitent pas les caractéristiques spécifiques du prob-
lème en question.

Comme nous le soulignerons dans cette thèse, lorsqu’elles sont réintégrées, ces in-
formations peuvent considérablement améliorer le processus de résolution. Par con-
séquent, cette thèse se concentre principalement sur l’ajustement fin et l’amélioration
des mécanismes d’apprentissage dans le domaine des problèmes BMC basés sur
SAT. Plus précisément, nous avons tenté à différents niveaux d’identifier et de générer
des informations pertinentes pour accélérer la résolution d’instances BMC, que ce
soit dans un environnement séquentiel ou parallèle. Ces contributions participent
collectivement à améliorer de manière significative l’efficacité du BMC pour la véri-
fication de propriétés LTL.

Résumé de nos contributions

La littérature a montré un intérêt significatif pour l’amélioration de la vérification de
modèle bornée (BMC) en utilisant des procédures SAT (satisfiabilité). Les chercheurs
ont réussi à atteindre cet objectif en adaptant les heuristiques internes des solveurs et
en parallélisant la résolution du problème en le divisant en sous-parties spécifiques.
Toutes ces contributions ont considérablement accéléré le processus de résolution.
Cet intérêt accru a conduit au développement d’approches qui prennent en compte
des caractéristiques spécifiques des problèmes, telles que les spécificités des vari-
ables des formules propositionnelles et la symétrie des formules, des aspects dont
les procédures SAT ne tiennent généralement pas compte.

Cette thèse apporte une petite pierre à cet édifice. Elle se concentre sur l’extraction
d’informations de haut niveau qui caractérisent les problèmes BMC dans le but
d’identifier et/ou de construire des clauses pertinentes, permettant la suppression
efficace des sous-espaces inutiles en injectant ces clauses dans le solveur SAT. La
thèse propose diverses techniques orthogonales à cette fin pour améliorer les perfor-
mances des procédures SAT dans l’évaluation des instances BMC, aussi bien dans
des contextes séquentiels que parallèles. Trois axes d’exploration principaux ont été
suivis, qui sont totalement indépendants. Chacun a contribué à l’identification ou
à la génération de clauses apprises pertinentes. Ces travaux peuvent être combinés
afin de contribuer à la création d’un solveur spécialisé dans la résolution d’instances
BMC.

Contribution I: Identification de clauses apprises pertinentes

Le concept d’informations pertinentes dans les procédures SAT reste vague. De
nombreuses techniques existantes gèrent les bases de clauses apprises en utilisant

vi

des métriques génériques (e.g., LBD [23], Activity [26], etc.) qui aident à caractériser
potentiellement des clauses apprises de haute qualité. Cependant, dans notre étude,
qui se concentre spécifiquement sur la résolution de problèmes BMC, nous n’avons
pas trouvé de recherche fournissant une mesure significative permettant de carac-
tériser les clauses apprises intéressantes.

Ce travail a donné lieu à une publication à la conférence CP’2021, et son extension
a été publiée ultérieurement dans le journal CONSTRAINT. Notre principal objectif
porte sur la caractérisation des "clauses apprises" avec l’intuition que : bien que
la métrique générique LBD [23], qui a été utilisée par les meilleurs solveurs SAT
à ce jour, identifie efficacement les clauses apprises pour la plupart des types de
problèmes, elle peut être fortement ajustée avec des informations structurelles dans
le contexte de BMC.

L’objectif est de concevoir une nouvelle méthode pour déterminer la pertinence d’un
ensemble de clauses, en se basant sur leur valeur LBD et leur appartenance à une
catégorie de clauses CX, une notion que nous avons introduite au Chapitre 3. Cette
classification permet de regrouper les clauses en fonction des variables qui les com-
posent. Plus formellement, pour un ensemble de clauses F et V(ω) l’ensemble des
variables contenu dans la clause ω:

CX = {ω ∈ F , |, ∀v ∈ V(ω), v ∈ X}

CX représente les catégories de clauses, où X représente l’un des ensembles suivants
: P qui est l’ensemble des variables qui interviennent dans l’encodage de la pro-
priété en CNF,M correspond aux variables encodant le système (à l’exclusion des
variables P), J inclut les variables auxiliaires introduites pour compléter la traduc-
tion du modèle en CNF, PJ est un ensemble qui font intervenir les variables de la
propriété et les variables auxiliaires, PM comprend les variables de la propriété et
du modèle, MJ regroupe les variables du modèle et les variables auxiliaires, ou
PMJ qui englobe les variables de la propriété, du modèle et les variables auxili-
aires.

Pour ce faire, nous introduisons la notion de sélecteur. Elle représente un vecteur
spécifiant la valeur LBD appropriée pour chaque catégorie de clauses CX. Cela per-
met d’adapter la politique de suppression de clauses en fonction de la catégorie de
clause. Par exemple, un sélecteur pourrait indiquer que les clauses apprises de type
CP doivent être protégées jusqu’à une valeur LBD ≤ 8, CJ avec LBD ≤ 4, et ainsi de
suite.

En particulier, nos contributions présentée dans le Chapitre 4 sont les suivantes :

- Nous proposons de nouvelles heuristiques pour le calcul de sélecteurs perme-
ttant de préserver des clauses apprises intéressantes contre la suppression lors
de la résolution séquentielle SAT.

- Nous utilisons ces sélecteurs pour faciliter l’échange d’informations entre dif-
férents solveurs CDCL dans le contexte de la résolution SAT parallèle, en util-
isant une stratégie de parallélisme basée sur un portefeuille.

- Nous démontrons l’applicabilité de cette étude à n’importe quel solveur SAT
basé sur CDCL en menant des expériences avec nos approches sur les deux

vii

principaux solveurs SAT : MAPLECOMSPS [32] et KISSAT-MAB [33].

Nous avons étudié l’impact de la classification des clauses CX et sur la base de cette
étude, nous avons développons deux heuristiques, HS et HLP, pour calculer des
sélecteurs adaptés permettant l’identification de clauses apprises pertinentes à la
résolution du BMC.

La partie expérimentale de cette recherche a renforcé l’importance de prendre en
compte les variables composant les clauses apprises. Par conséquent, la méthodolo-
gie de classification des clauses peut être appliquée à n’importe quel solveur CDCL
et est adaptable aux problèmes pouvant partitionner les variables qui constituent le
problème.

Par la suite, nous avons exploré l’application de ces sélecteurs dans un contexte
de parallélisme, en présentant notre stratégie de partage pour l’échange de clauses
apprises pertinentes entre les solveurs CDCL dans une stratégie parallèle basée sur
un portefeuille. Notre stratégie de partage basée sur le selecteur HLP a donné lieu à
des résultats prometteurs. Tout ce travail est intégré dans notre outil BSALTIC1.

Contribution II: Exploiter la structure de la formule BMC

Certaines des techniques SAT les plus avancées pour la BMC présentées dans le
Chapitre 3 ont montré des résultats prometteurs, qui ont contribué à guider la procé-
dure SAT vers des espaces de recherche intéressants, réduisant ainsi le temps de
résolution. Une telle optimisation implique notamment la décomposition de la for-
mule propositionnelle 1.1 en plusieurs sous-formules.

En tirant parti des caractéristiques uniques des instances BMC, nous avons intro-
duit, dans le Chapitre 5, un schéma de partitionnement qui divise la formule en
plusieurs sous-parties indépendantes. Ces sous-parties sont structurées de manière
à encapsuler des transitions successifs du système. Ensuite, il s’agit d’enrichir le
problème avec des informations qui ne sont pas explicitement encodées. Ces infor-
mations sont déduites de l’analyse des relations entre les différentes parties. Cela est
accompli grâce à l’exploitation des interpolantions de Craig [36].

Pour atteindre nos objectifs, nous revisitons le concept présenté dans [37], qui décrit
un schéma de réconciliation employant les procédures d’interpolation. Leur objectif
principal était de relever les défis de la résolution de formules extrêmement grandes
dans des environnements distribués au travers d’un découpage aléatoire du prob-
lème (LZY-D). Nous avons adapté ce schéma de réconciliation à nos besoins. Tout
d’abord, nous introduisons une nouvelle méthode de décomposition spécialement
adaptée à la résolution de problèmes BMC (BMC-D). Ensuite, nous utilisons le mé-
canisme d’interpolation comme moyen de générer des clauses apprises, accélérant
ainsi la résolution SAT. Cela nous permet de tirer parti des connaissances acquises
grâce à la décomposition BMC dans deux dimensions distinctes :

Les interpolants comme moteur de prétraitement : Notre approche exploite l’introduction
d’interpolants avant la résolution, en tant que procédure de prétraitement,
dans un contexte séquentiel. Cette nouvelle utilisation des interpolants améliore

1For a description of our setup, detailed results and code, see https://akheireddine.github.
io/

https://akheireddine.github.io/
https://akheireddine.github.io/

viii

l’efficacité du processus de résolution SAT en introduisant des clauses perti-
nentes déduites de l’interpolation.

Les interpolants dans un environnement parallèle : Pour exploiter davantage la richesse
d’informations fournie par les interpolants, nous étendons l’application des in-
terpolants dans des environnements parallèles en partageant ces interpolants
pour guider d’autres solveurs CDCL vers des espaces de recherche promet-
teurs. Cette approche collaborative entre les solveurs améliore leurs capacités
de raisonnement collectif et conduit finalement à une résolution de problème
plus efficace.

Notre contribution comprend le développement d’un solveur BMC basé sur la dé-
composition (BMC-D), un composant polyvalent qui fonctionne comme un généra-
teur de clauses utilisant des techniques d’interpolation à la fois dans des environ-
nements séquentiels et parallèles. BMC-D exploite les propriétés structurelles de la
formule BMC en la divisant en plusieurs segments, ce qui permet de générer des
interpolants hautement pertinents.

Étant donné que le calcul d’interpolation est généralement consommateur de temps,
les interpolants obtenus à partir de l’approche de décomposition aléatoire intro-
duite dans [37] (LZY-D) et notre décomposition basée sur BMC (BMC-D) peuvent
être utilisés lors du prétraitement pour améliorer l’efficacité de la résolution séquen-
tielle. De plus, on peut partager ces interpolants au sein d’un portefeuille de solveurs
CDCL classiques (qui n’ont pas cette vue en partition) pour améliorer la communica-
tion et la collaboration efficaces entre eux. Dans les deux cas, ces interpolants, issus
d’une approche de partitionnement prenant en compte la structure du problème,
ont amélioré les performances du solveur en comparaison avec un partitionnement
aléatoire.

Contribution III: Combiner model-checking explicite et sym-
bolique

Le Chapitre 6 introduit une approche alternative pour incorporer des informations
structurelles dans les problèmes SAT, sans nécessiter une plongée profonde dans le
code du solveur SAT. Ce concept est connu sous le nom de résolution SAT program-
matique (Programmatic SAT solving). De manière programmatique, il présente un
moyen simplifié d’interagir avec le solveur pour le guider pendant le processus de
résolution. Cette interaction se produit via une entité externe, qui est généralement
spécialisée dans les connaissances spécifiques au domaine du problème à traiter.
Dans notre contexte, cette entité est adaptée aux problèmes de model-checking.

Notre contribution principale consiste à introduire une nouvelle approche pour ex-
ploiter la représentation automates de la vérification de modèles afin d’extraire les
informations perdues lors de l’encodage du problème BMC original en une formule
propositionnelle.

Ces informations, lorsqu’elles sont transformées en un ensemble de clauses, peuvent
orienter efficacement le solveur SAT vers des sous-espaces de recherche significat-
ifs. Fondamentalement, nous pouvons générer des informations que le solveur SAT
n’avait pas connaissance.

ix

Cette étude a été menée dans le but de combiner les deux mondes du model check-
ing : la représentation explicite du système à l’aide de techniques basées sur des au-
tomates et la représentation symbolique via la résolution de formules SAT booléennes.
Ceci est réalisé grâce au nouveau composant externe (boîte noire). Plus précisément,
lorsque le solveur SAT l’invoque, en fournissant l’affectation partielle actuelle α,
la boîte noire extrait des faits cachés pour le solveur. Ces faits sont dérivés de
l’automate de Büchi représentant le produit synchronisé de la propriété évaluée φ
et d’une représentation de l’affectation α fournie par le solveur. Les informations
extraites sont ensuite encodées en CNF pour être injectées dans le solveur SAT. Le
concept de programmatic SAT a été utilisé pour simplifier la mise en œuvre afin
d’incorporer des informations structurelles dans les procédures SAT sans nécessiter
une plongée profonde dans le code du solveur SAT. Pour ce faire, nous introduisons
un composant externe dans l’algorithme CDCL vu comme une boite noire (black-
box). Lorsque cette dernière est invoqué par le solveur SAT, recevant l’affectations
des variables actuelles du SAT solver, la boite noire va fonctionner de manière simi-
laire que les algorithmes de vérification de vacuité (emptiness checking) qui constru-
isent l’automate du produit synchronisé entre l’exécution fournie par l’affectation
du SAT solver, qui représente le modèle, et la propriété à évaluer. Cela repose sur
l’énumération des composants fortement connexes (SCC). L’objectif est d’identifier
les SCC qui contiennent des cycles acceptants, indiquant si l’execution fournie mène
à une violation de la propriété. En conséquence, la boite noire construit des infor-
mations sous forme de clauses apprises, qui sont ensuite injectées dans le solveur
SAT.

Cependant, l’inconvénient des procédures basées sur les automates réside dans le
temps et la consommation de mémoire que l’invocation de la boîte noire peut en-
traîner. Cela est principalement dû à la surcharge computationnelle de la construc-
tion du produit synchronisé, qui peut devenir substantielle à mesure que la com-
plexité du problème augmente. Pour atténuer cela, nous avons tenté de contrôler le
flux des appels à la boîte noire. Cependant, cela nécessite encore une paramétrisa-
tion plus fine, qui fera l’objet d’investigations futures.

Jusqu’à présent, aucune expérimentation n’a donné des résultats encourageants. Par
conséquent, ce chapitre présente la théorie derrière la combinaison des procédures
de vérification de modèles explicites et symboliques dans l’objectif d’exploiter les
forces des deux mondes dans la résolution des problèmes BMC.

x

Remerciements

Je tiens tout d’abord à exprimer ma sincère reconnaissance envers Souheib Baarir et
Étienne Renault pour leur soutien indéfectible. Leur disponibilité et leur écoute ont
rendu l’élaboration de cette thèse plus qu’agréable.

Je souhaite exprimer ma gratitude envers les personnes suivantes :

• Vijay Ganesh et Ahmed Bounekkar d’avoir accepté d’être rapporteurs de ma
thèse. Je remercie également Laure Petrucci et Emmanuelle Encrenaz-Tiphène
d’avoir accepté d’être membres de mon jury.

• Yann Thierry-Mieg, qui m’a offert l’opportunité d’intégrer le LIP6 en tant que
stagiaire en Licence. Sans ce stage, je n’aurais pas eu l’occasion de rencontrer
Souheib.

• Mes enseignants de master, particulièrement Pierre Fouilhoux dont sa passion
pour la recherche transparaît durant ses cours et à mes encadrants de stage
Thibaut Lust et Carola Doerr, dont les conseils et l’encadrement ont été pré-
cieux.

• Tous les collègues du LRE et LIP6 : Isabelle Mounier, Daniela Becker, Alexan-
dre Duret-Lutz, Claude Dutheillet, Philipp Schlehuber, Nicolas Boutry, Joseph
Chazalon, Jonathan Fabrizio, Thierry Géraud, Elodie Puybareau, Esteban Bap-
tiste, Michaël Roynard, ...

• Une mention spéciale à mes collègues de bureau : Sabrine Saouli, Vincent Val-
lade, Antoine Martin, Hao Xu et Florian Renkin (finalement, c’était toi qui
m’avait ralenti dans le travail !)

• Et à tous ceux que j’ai pu côtoyer de près ou de loin durant ces 4 années.

Enfin, je ne saurais passer sous silence le rôle essentiel de ma famille. Leur soutien a
été déterminant dans la réussite de mes études. Merci à vous !

xi

Contents

Abstract ii

Résumé long en français iii

Remerciements x

List of Figures xiv

List of Tables xvi

Introduction 1
1 Context . 1
2 Towards an efficient SAT-based BMC solving 2
3 Manuscript Structure . 4

1 Model checking 6
1.1 Transition system . 6

1.1.1 Paths & executions . 7
1.1.2 Labelled transitions and Kripke Structures 8

1.2 Linear Temporal Logic . 10
1.2.1 Semantic . 11
1.2.2 LTL properties classification . 12

1.3 Automata-based procedure for LTL verification 14
1.3.1 Büchi automata . 14
1.3.2 From LTL to Büchi automata . 17
1.3.3 Kripke structures to Büchi automata 18
1.3.4 Automata verification of LTL procedure 18

1.4 Bounded model-checking . 19
1.4.1 Boolean SATisfiability (SAT) . 21
1.4.2 SAT-based Bounded Model-Checking 23

1.5 Conclusion . 25

2 SATisfiability solving 26
2.1 Sequential SAT solving . 26

2.1.1 CDCL Algorithm . 27
Unit Propagation . 28
Decision variable . 28
Clause learning from conflict-analysis 29
Clause deletion policy . 30
Restart policy . 32

2.1.2 (In/Pre)-processing phase optimization 32
Simplifying the problem’s formula 33

xii

Adding relevant clauses to the formula 34
2.2 Parallel SAT solving . 35

2.2.1 Portfolio (competition-based) . 35
Diversification . 35
Intensification . 36

2.2.2 Divide-and-Conquer (cooperation-based) 37
2.2.3 Sharing strategies . 38

2.3 Conclusion . 39

3 SAT-Based BMC - Positioning, Analysis and Benchmarking 40
3.1 State-of-the-art SAT-based BMC . 41

3.1.1 Decision heuristics . 41
3.1.2 Learnt clause metric . 42
3.1.3 (In/Pre)processing . 43

3.2 Parallel SAT-based BMC . 44
3.2.1 Portfolio-based . 45
3.2.2 Decomposition-based . 45

3.3 Analysis of SAT-based BMC formula . 46
3.3.1 A running example . 46
3.3.2 Observations from propositional formula 49
3.3.3 BMC features . 50

3.4 Benchmarking . 52
3.5 Summary & Discussion . 52

4 Tuning the learnt clause databases 54
4.1 Analysis of clause classification feature 55
4.2 Heuristics to identify interesting clauses 59

4.2.1 Non-automated procedure (HS) 59
4.2.2 Semi-automated procedure (HLP) 59

4.3 Experimental Evaluation of BMC-based Selectors 61
4.4 BMC-based Sharing strategy . 63
4.5 Parallel Experiments . 63
4.6 Global conclusion . 67

5 Decomposition-based BMC 69
5.1 An Interpolant-based decision procedure 70

5.1.1 Craig Interpolation . 71
5.1.2 Reconciliation algorithm . 71

5.2 Decomposition-based strategies . 73
5.2.1 Lazy Decomposition (LZY-D) . 73
5.2.2 BMC Decomposition (BMC-D) 74
5.2.3 Comparing LZY-D and BMC-D 76

5.3 Interpolation-based Offline Learning . 77
5.4 Interpolation-based Learning in Parallel Solving 79
5.5 Conclusion . 83

6 Programmatic SAT for BMC 85
6.1 Literature and motivations . 86

6.1.1 State-of-the-art . 86
6.1.2 Usage in a BMC context . 87

6.2 Inside the Black-box . 88

xiii

6.2.1 Extracting Model executions . 89
6.2.2 Learnt constraints from the Synchronized product automaton . 92

6.3 Interaction between Black-box and SAT solver 97
6.4 Discussion and future works . 99

7 Conclusion 101
7.1 Short-term Perspectives . 103

7.1.1 LTL-based tuning . 103
7.1.2 Tuning learnt clauses in Incremental SAT-based BMC 103

7.2 Long-term Perspectives . 104

A Implementation details of ongoing works 105
A.1 LTL-based tuning of learnt clauses databases 105

A.1.1 Optimization . 105
A.1.2 Discussion & perspectives . 107

A.2 Tuning learnt clauses in Incremental SAT-based BMC 107
A.2.1 Identify relevant information dynamically 108
A.2.2 Preliminary Experiments . 110
A.2.3 Discussion & perspectives . 110

Bibliography 111

xiv

List of Figures

1.1 Transition system T S1 of Example 1.1 7
1.2 Kripke structure of microwave-like of Example 1.3 with AP = {placed, closed, started} 10
1.3 LTL semantic scheme. Each line represents an infinite word σ and

each circle is σ’s positions and the label on top of the ith circle specifies
the propositions σ(i) . 12

1.4 Hierarchy of Manna & Pnueli S ∪ G ⊆ O ⊆ R ∪ P ⊆ T 12
1.5 Büchi automaton A1 accepts the language a(a + b)ω. 14
1.6 Buchi automata A and B of Example 1.6 15
1.7 Resulting Büchi automton C of A and B intersection 16
1.8 Kripke structure to Büchi automoaton 17
1.9 Cycle example where |u| = m ≥ 0 and |v| = n > 0 19
1.10 Büchi automaton of microwave-like system 20

2.1 Resolution graph . 29
2.2 Portfolio based approach . 36
2.3 Dynamic Divide-and-Conquer approach 37

3.1 SMV program of bit counter example 46
3.2 Kripke structure of bit-like counter example 47
3.3 Bit-like counter example propositional formula unrolled up to bound

k = 2 . 48
3.4 System format mapping . 51
3.5 The dashed box marks the BSALTIC framework 51

4.1 Measures on the training benchmark with MAPLECOMSPS solver, show-
ing learnt clauses usage in conflict-analysis phase. Each class of clauses
is colored and annotated by its LBD value. 56

4.2 Measures on the training benchmark with KISSAT-MAB solver, show-
ing learnt clauses usage in conflict-analysis phase. Each class of clauses
is colored and annotated by its LBD value. 56

4.3 Measures of learnt clauses usage with MAPLECOMSPS solver, dur-
ing conflict-analysis phase. Blue dots denote LBD while red points de-
pict the Pareto front of HLP strategy. 57

4.4 Measures of learnt clauses usage with KISSAT-MAB solver, during
conflict-analysis phase. Blue dots denote LBD while red points depict
the Pareto front of HLP strategy. 57

4.5 Scatter-plot comparing state-of-the-art portfolio (MAPLECOMSPS us-
ing HORDESAT-strategy) to our best one (MAPLECOMSPS with SHLP-
strategy) . 65

4.6 Scatter-plot comparing state-of-the-art portfolio (PARKISSAT-RS that
shares clauses of LBD≤2 only) to our best one (PARKISSAT-RS-HLP
with HLP-strategy) . 67

xv

5.1 Reconciliation scheme . 70
5.2 Portfolio of solvers with sharing scheme using the framework PAIN-

LESS . 80
5.3 Runtime comparison between Portfolios 82

6.1 Programmatic SAT scheme . 86
6.2 Automata-based approach for model checking 88
6.3 Kripke structure K of a segment of the model M 89
6.4 Kripke structure K with a labeling function 90
6.5 Büchi automaton of G(a ∧ b) . 91
6.6 Büchi automaton AK . 91
6.7 Synchronized Product automaton AS of AK ⊗A¬φ 91
6.8 SCCs of a Büchi automaton . 93
6.9 Büchi automata of Example 6.1 . 93
6.10 Büchi automata of Example 6.2 . 94
6.11 Synchronized product AS3 between AΛ3 and A¬φ of Example 6.4 . . . 95

A.1 Measures on the training benchmark with MAPLECOMSPS solver, show-
ing learnt clauses usage in conflict-analysis phase. Each class of clauses
is colored and annotated by its LBD value. 106

xvi

List of Tables

1.1 Truth table of operators ¬,∧, and =⇒ 22

4.1 Selectors computed using HS or HLP on MAPLECOMSPS and KISSAT-
MAB training information. 59

4.2 Comparison between state-of-the-art MAPLECOMSPS and KISSAT-
MAB solvers and HS and HLP heuristics. MAPLECOMSPS-LBD≤4
(resp. KISSAT-MAB-LBD≤3) uses a strategy where learnt clauses with
LBD≤4 (resp. LBD≤3) are considered as relevant. 61

4.3 Comparison between state-of-the-art MAPLECOMSPS Portfolio and
our modified portfolio MAPLECOMSPS-HLP for various sharing ap-
proaches. 63

4.4 Comparison between state-of-the-art PARKISSAT-RS Portfolio and our
tuned portfolio PARKISSAT-RS-HLP for various sharing approaches. . 66

5.1 Comparison of LZY-D and BMC-D decomposition approaches for dif-
ferent partition sizes n . 76

5.2 Impact of interpolants’ clauses on the solving 77
5.3 Average rate of interpolants size . 78
5.4 Performance comparison between different Portfolios 81
5.5 Number of solved instances of P-BMC-D versus P-MINISAT and P-

LZY-D for different frame sizes ρ . 83

A.1 Number of solved instances by each heuristic 110
A.2 Number of solved bounds by each heuristic 110

1

Introduction

Context

Computer systems, both hardware and software, have become a fundamental part
of our daily lives. They range from simple programs that operate household appli-
ances like microwaves to complex software running critical systems, such as nuclear
power plants, passing by our smartphones and cars. This ubiquity of computer sys-
tems has brought about a significant concern: if these systems fail, it can lead to
severe consequences. Hence, ensuring the flawless behavior of these critical sys-
tems is of utmost importance. To address this concern, formal verification techniques
have been developed. Unlike traditional testing methods, which assess the perfor-
mance of systems under a limited set of scenarios, formal verification techniques are
exhaustive. They explore every possible scenario, which significantly boosts confi-
dence in the reliability of these systems. Therefore, formal verification has become
an essential tool in the industry for eliminating bugs and enhancing trust in hard-
ware and software products.

The process of developing critical systems can be broadly summarized into three key
steps: (i) system modeling, (ii) expressing requirements, and (iii) verifying the model
against these requirements. Usually, the system, or model, is represented in a formal
language, like SMV [1], VERILOG [2], or PROMELA [3], detailing all potential system
states. The requirements consist of properties that the system must adhere to, ensur-
ing its proper functioning. These properties are often defined using temporal logics,
such as LTL [4, 5] or CTL [6], as they offer operators to express temporal behaviors,
which are valuable for specifying requirements. With the model and a set of require-
ments, the high-level design and implementation of the system can be verified using
formal methods. One of the most common verification methods in the industry is
model checking. Model checking [7] can provide a counterexample (CEX) when a
model fails to meet a requirement. This CEX corresponds to an execution path of the
system, which provides substantial assistance to designers in understanding where
the issue lies in the system. To achieve this verification, a complete traversal of the
state-space representing the model’s behaviors is required. Two approaches have
been used: explicit model checking [8] and symbolic model checking [9, 10].

Explicit model-checking. In explicit model checking, the behavior of the model as
well as the property are represented as automata: a Kripke structure for the
model [11] and a Büchi automaton for the LTL property [12, 13]. Then, a syn-
chronous product is performed between the Kripke and the automaton of the
(negated) property. If the product is empty, the property is verified; otherwise,
it is violated. The main drawback of this technique is the state-space explosion
problem [14], meaning the size of the system state-space grows exponentially.

Symbolic model-checking. To overcome the state-space explosion issue, symbolic

2 List of Tables

model checking represents states implicitly using Boolean functions, such as
Binary Decision Diagrams (BDD) [10] or Boolean SAT formula [15]. BDDs
are used to symbolically represent the transition relation of the automaton or
Kripke structures under analysis, and sets of states manipulated by the model
checking algorithm. Since its inception, BDD-based symbolic model check-
ing has revolutionized formal verification and formal methods. It has enabled
practical verification of industrial systems beginning with hardware [16] and
extending to software [17].

In this thesis, we focus on symbolic techniques that use SAT solving procedures,
which have become a cornerstone of modern model checking. In fact, BDDs have
paved the way for other forms of symbolic model checking, primarily SAT-based
model checkers [18, 19]. Modern SATisfiability (SAT) solvers have since become the
core technology in many model checkers, greatly improving their capacity compared
to BDD-based model checkers [20]. In particular, SAT procedures are extensively
applied in the bounded version of model checking, specifically for verifying LTL
specifications. Bounded model checking (BMC) [15, 19, 21] refers to a model check-
ing approach where the verification of the property is performed using a bounded
traversal, meaning a traversal of a symbolic representation of the state-space that
is bounded by an integer k. Such an approach does not require storing the entire
state-space and is thus found more scalable and useful [18, 22].

Towards an efficient SAT-based BMC solving

These last decades, many improvements have been developed in the field of sequen-
tial SAT solving [23–26], to name just a few. These approaches are quite generic and
are based on exploiting either dynamic information, obtained from the progress of
the solving algorithm itself (e.g., LBD [23]), or static information, derived from the
underlying structure of the SAT problem (e.g., community structure [24], symme-
try [25, 27, 28]).

The major drawback of symbolic model checking and more precisely SAT proce-
dures arises when a BMC problem is reduced to a propositional SAT formula. In
this transformation, crucial information is lost, which could have been very use-
ful for the resolution process. The efficiency of SAT procedures is primarily due to
the numerous "generic" optimizations that have been developed to guide SAT proce-
dures towards promising search spaces, ultimately reducing solving times. One par-
ticularly noteworthy optimization involves the generation and utilization of high-
quality (learnt) information from Conflict-Driven Clause Learning SAT solvers [29,
30], which enables the pruning of unuseful subspaces. It’s essential to ensure that
these valuable learnt information are not prematurely discarded during the solving
process [29, 31]. These learnt information have also proven their effectiveness in par-
allel contexts where multiple solvers dynamically share the information they have
learnt. Hence, the optimizations provided in well-known SAT solvers [32, 33] and
parallel SAT solving strategies [34, 35] remain generic and do not exploit the specific
characteristics of the problem at hand.

As we will emphasize in this thesis, when reintegrated, this information can signif-
icantly boost the solving process. Therefore, this thesis primarily focuses on fine-
tuning and enhancing the learning mechanisms within the domain of SAT-based

List of Tables 3

BMC problems. More specifically, we’ve attempted at different levels to identify and
generate relevant information to speed up the solving of BMC instances, whether in
a sequential or parallel environment. These contributions collectively contribute to
significantly improving in the efficiency and effectiveness of BMC for verifying LTL
properties.

Contribution I: Relevant learnt clauses identification

The concept of relevant information in SAT procedures remains ambiguous. Sev-
eral existing techniques handle learnt clause databases using generic metrics (e.g.,
LBD [23], Activity [26], etc.) that help characterize potentially high-quality learnt
clauses.

Our primary focus lies in the characterization of "learnt clauses" with the intuition
that although the generic LBD metric [23], used by the best SAT solvers to date, effi-
ciently characterizes learnt clauses for most problem instances, it can be significantly
adjusted with structural information in the context of BMC. The goal is to develop
a new method to assess the relevance of a set of clauses, based on their LBD value
and the new metric we proposed that enables to classify the clauses according to the
meaning of their variables.

The experimental part of this research has emphasized the importance of consid-
ering variables composing the learnt clauses. Therefore, the clause classification
methodology can be applied to any CDCL solver and is adaptable to problems that
can partition the problem variables. Subsequently, we explored the application of
this clause classification in a parallel context by adapting the sharing policy for ex-
changing relevant learnt clauses among CDCL solvers in a portfolio-based parallel
strategy. Our sharing strategy based on the HLP selector has yielded promising re-
sults.

Contribution II: Exploiting the BMC formula structure

Some of the most advanced SAT techniques for BMC involve decomposing the propo-
sitional formula 1.1 into multiple sub-formulas. By leveraging the unique charac-
teristics of BMC instances, in Chapter 5, we introduced a partitioning scheme that
divides the formula into several independent sub-parts. These parts are structured
to encapsulate successive transitions of the system. The next step involves enriching
the problem with information not explicitly encoded. This information is deduced
from analyzing the relationships between the different parts. This is accomplished
through the application of Craig interpolants [36].

We introduced a new decomposition method tailored specifically for solving BMC
problems (BMC-D). Then, we used the interpolation mechanism as a means to gen-
erate learnt clauses, thereby speeding up SAT resolution. This allowed us to leverage
the insights gained from BMC decomposition during the pre-processing phase but
also in a parallel context by sharing these interpolants to guide other CDCL solvers
toward promising search spaces.

4 List of Tables

Contribution III: Combine explicit and symbolic model-checking

We investigate in Chapter 6 a new way of generating new constraints from the
unique structure of the problem. This approach aims to efficiently resolve BMC by
reintegrating high-level information into the SAT solver. To achieve this, we devel-
oped a new entity specifically designed to manipulate the automata representation
of the problem, to extract the information lost during the encoding of the BMC prob-
lem into a Boolean formula.

To achieve this, we utilized the concept of SAT-based programming, allowing a non-
expert user with no prior knowledge of SAT algorithms to easily introduce domain-
specific information. The modifications are limited to a function call that involves
the external entity en question. In the context of BMC, we specialized this entity to
generate facts translated into clauses derived from the explicit problem representa-
tion. These clauses either aid in terminating the search in a dead-end subspace or
complete the path to reach a state that invalidates the property. Fundamentally, we
can generate information that the SAT solver was previously unaware of.

This contribution aims to merge the two worlds of model-checking: explicit and
symbolic, by reintegrating the structural information of the problem into symbolic
techniques.

Manuscript Structure

The structure of this manuscript is organized into six chapters, with the first two
serving as an in-depth description and explanation of model checking explicit and
symbolic procedures, as well as the SAT solving procedure in both sequential and
parallel settings. The third chapter reviews prior work on SAT-based BMC and high-
lights some features of BMC formulas that will be explored in the remainder of the
thesis.

Model Checking. Chapter 1 offers a detailed explanation of both explicit represen-
tations of the model using automata-based verification and implicit represen-
tations through SAT procedures.

SATisfiability solving. Chapter 2 provides a comprehensive overview of SAT solv-
ing, encompassing the historical DPLL algorithm and the nowadays used CDCL
algorithm. It also delves into various heuristics and structures embedded in
modern efficient SAT sequential solvers. Furthermore, it discusses well-known
parallelization techniques for solving SAT problems that can be found in the
literature.

SAT-Based BMC - Positioning, Analysis and Benchmarking. Chapter 3 surveys the
landscape of SAT-based BMC solving in both sequential and parallel environ-
ments. It conducts an in-depth analysis of BMC characteristics, which will
serve as the foundation for the subsequent chapters that propose BMC-based
heuristics.

Tuning the learnt clause databases. Chapter 4 introduces a methodology for devel-
oping SAT heuristics tailored for BMC problems. These optimizations are

List of Tables 5

achieved by exploiting the structure of BMC problems in the sequential con-
text, which involves characterizing the variables encoding the BMC problem
as a Boolean SAT formula. Whereas in the parallel context, a heuristic tailored
for solving BMC is presented, specifying the information to be communicated
between different solvers. These parallel heuristics are then combined with the
sequential ones.

Decomposition-based BMC. Chapter 5 introduces a decomposition-based BMC for-
mula method that utilizes interpolation techniques to reconcile subparts of the
whole problem. This technique partitions the BMC formula into segments, fa-
cilitating the generation of highly relevant interpolants used in both sequential
and parallel environments.

Programmatic SAT-based BMC Chapter 6 gives an introduction to programmatic
SAT solving within the context of BMC. It offers an alternative approach for
incorporating structural information into SAT problems without requiring an
extensive understanding of the SAT solver’s code. This structural informa-
tion takes the form of learnt constraints generated by an external entity (de-
signed by us). The entity utilizes explicit model checking procedures through
automaton-based representation to extract hidden information from the SAT
solver.

The last chapter 7 concludes this manuscript and discusses various short-term and
long-term directions for future research.

6

Chapter 1

Model checking

Contents
1.1 Transition system . 6

1.1.1 Paths & executions . 7
1.1.2 Labelled transitions and Kripke Structures 8

1.2 Linear Temporal Logic . 10
1.2.1 Semantic . 11
1.2.2 LTL properties classification 12

1.3 Automata-based procedure for LTL verification 14
1.3.1 Büchi automata . 14
1.3.2 From LTL to Büchi automata 17
1.3.3 Kripke structures to Büchi automata 18
1.3.4 Automata verification of LTL procedure 18

1.4 Bounded model-checking . 19
1.4.1 Boolean SATisfiability (SAT) 21
1.4.2 SAT-based Bounded Model-Checking 23

1.5 Conclusion . 25

In this chapter, we introduce some necessary definitions for understanding this the-
sis. We review both explicit [8] and symbolic [9] model checking. We begin by defin-
ing the notion of transition system 1.1 that serves to encode the system at hand into
a Kripke structure [11]. We review the semantics and the categories of Linear Tem-
poral Logics properties 1.2, and then in Section 1.3, we provide a detailed explana-
tion of the explicit representation of model checking problems using automata-based
verification procedures. Section 1.4 presents the bounded version of model checking
and Boolean satisfiability problems before delving into the symbolic representation
of model checking using SAT-based verification approaches in Section 1.4.2.

1.1 Transition system

A system is a collection of interacting components designed to perform a specific
task. It consists of variables, typically finite in number, that have significance in the
execution of the task. These variables change their states, usually within a finite set
of values, as the system operates.

To verify the validity of a property, which means checking whether the property is
satisfied at every state of the system, it is necessary to build a model of the system.

1.1. Transition system 7

s0
LunchTime

s1
ReadyToHeat

s2
HeatingDoorClose

s3
HeatingDoorOpen

FIGURE 1.1: Transition system T S1 of Example 1.1

This can be accomplished using a transition system formalism (T S). Transition sys-
tems are directed graphs whose vertices symbolically represent the internal states of
a system, and whose edges indicate the way in which states can evolve. The states
from which such a system can start are referred to as initial states (e.g., the initial
state of a program when its variables are initialized).

Definition 1.1 (Transition System). A transition system is defined as a triplet
T S = ⟨S, T, I⟩ where:

– S is a set of elements called states,

– T ⊆ S× S is a transition relation,

– I ⊆ S represents the set of initial states.

Such a system T S is said to be finite if its set of states S is finite.

Example 1.1. Let’s consider the following finite transition system T S1 = ⟨S, T, I⟩
that illustrates a microwave-like system:

– S = {
s0︷ ︸︸ ︷

LunchTime,

s1︷ ︸︸ ︷
ReadyToHeat,

s2︷ ︸︸ ︷
HeatingDoorClose,

s3︷ ︸︸ ︷
HeatingDoorOpen},

– I = {s0},

– T = {(s0, s0), (s0, s1), (s0, s3), (s1, s2), (s2, s1), (s3, s3)}.

and its graphical representation is shown in Figure 1.1

1.1.1 Paths & executions

Consider the transition system T S = ⟨S, T, I⟩. A finite path is a finite sequence of
states s0s1s2 . . . sn−1sn for n ∈ N, such that ((s0, s1)(s1, s2) . . . (sn−1, sn)) ∈ T. Simi-
larly, an infinite path is an infinite sequence of states s0s1s2 . . . such that T(s0, s1)T(s1, s2)
We say that a path is initial if s0 ∈ I; and it is maximal if it is infinite, or if it is finite

8 Chapter 1. Model checking

and its last state sn is terminal, i.e. it has no successors (no existing path leaving from
that state). An execution of T S is an initial and maximal path.

Example 1.2. Let’s reconsider the transition system T S1 of Example 1.1 and dis-
played in Figure 1.1. The sequence ρ := s1s2 is a finite path of T S1 and the sequence
ρ′ := s0s1s2s1s2 . . . is an infinite path of T S1. The path ρ′ is an execution since it is
initial and infinite (infinite repetition of the sequence s1s2). The path ρ is not initial
as s1 is not initial. Neither is ρ maximal since s2 is not a terminal state, i.e., it has an
immediate successor which is s1. In fact, T S1 has no terminal state.

1.1.2 Labelled transitions and Kripke Structures

Transition systems can be used to describe the behaviors of a system expressed in a
formal language (e.g., SMV [1], VERILOG [2], AIG [38], etc.). This formalism extends
to Labelled transitions systems (LTS), which provide additional information to rea-
son about the properties of these behaviors. In an LTS, each transition is labelled with
an action (proposition).

Definition 1.2 (Labelled Transition System). An LTS is a system labelled on transi-
tions, G = ⟨S, T, I, Act⟩, is defined as follows:

– S is the set of finite states,

– I ⊆ S is the set of initial states,

– Act is the set of actions, and

– T ⊆ S× Act× S represents the transition relation, given in the form of triplets
(origin state, action, destination state), which are referred to as transitions. if
(s, α, d) ∈ T, we write s α−→ d.

Atomic proposition & Languages

A proposition is a combination of atomic propositions, that capture a portion of a
system’s state at a given moment and can take on the values true (⊤) or false (⊥).
The non-empty and finite set of atomic proposition variables is denoted as AP,
where 2AP represents the set of subsets of AP. For instance, if AP = {a, b}, then
2AP = {∅, {a}, {b}, {a, b}}. Each variable in the model can be converted into a set
of atomic propositions. For example, an integer variable can simply be represented
by a set of atomic propositions, each representing an individual bit.

The set of atomic propositions 2AP can be seen as the letters (or symbols) of a finite set
called an alphabet, denoted by Σ. Thus, a word over Σ is a finite (or infinite) sequence
of symbols from Σ and can be defined by the function σ : N −→ Σ. A word of size 0
is denoted by ϵ and is called the empty word; an infinite word is denoted by ω-word
and has a size ω where ω ̸∈ N is the infinite ordinal. This gives the following sets:
Σ⋆ represents the set of finite words over Σ, Σω the set of ω-words, and Σ+ = Σ⋆ \ ϵ
the set of non-empty finite words.

The ω-words are expressed using the ω-regular expressions, an extension of regular
expressions. The syntax of ω-regular expressions over the alphabet Σ is defined by

1.1. Transition system 9

this grammar, where p ∈ Σ:

s ::= rω | (r · s) | (s + s) (ω-regular expr.)
r ::= r⋆ | (r · s) | (r + r) | p | ϵ (regular expr.)

Thus, the operator rω is a variant of the operator r⋆ where, instead of concatenating
words a finite number of times, an infinite number of concatenations are performed.

For all finite words u ∈ Σ⋆ and v ∈ Σ+, we denote by uvω the infinite word uvvv . . . ,
which means that u is followed by an infinite repetition of v. For all σ ∈ Σω and
i ∈N, we define:

σ[i . . .] := σ(i)σ(i + 1) . . .
σ[. . . i] := . . . σ(i− 1)σ(i)

In other words, σ[i . . .] (resp. σ[. . . i]) is the infinite suffix (resp. prefix) of σ obtained
by starting (resp. ending) at index i. For example, the word abω is formally the
function σ such that σ(0) = a and σ[1 . . .] = bbbbbb . . . , meaning that σ(i) = b for
all i > 0

Thus, a finite language in Σ⋆, is a finite set of words over Σ; an ω-language L is a
finite set of infinite words, i.e., L ⊆ Σω. Since we are interested in ω-languages, we
will use the term "language" to refer to ω-languages and specify when discussing
finite word languages.

System representation

Kripke structures [11] allow the representation of the state space induced by a model.
In this structure, each state is labelled with a set of propositions. Transitions indicate
state changes and symbolize the model’s evolution. Thus, a Kripke structure differs
from an LTS only in the labeling of states with propositions and not in the transitions.

Definition 1.3 (Kripke Structure). A Kripke structure is defined as K = ⟨S, T, I, Act, AP, L⟩
with:

– ⟨S, T, I, Act⟩ is an LTS with Act = ∅,

– AP is a set of atomic propositions,

– L : S −→ 2AP is the labeling function.

The function L associates a subset of AP with each state. The propositions described
by the subset L(s) are considered satisfied in state s ∈ S, whereas those of AP \ L(s)
are said to be unsatisfied in state s.

Example 1.3. Reconsider the previous Example 1.1 and let complete the T S1 with
atomic propositions that represent its Kripke structure representation. Suppose the
atomic propositions are AP = {placed, closed, started} correspond respectively to
the action of placing the meal in the microwave’s plate, the door of the microwave
is closed and the last means that the microwave started the heating process.

Figure 1.2 depicts the Kripke structure of the microwave-like system example. At
the top or bottom of each state is a label that represents its valuation of the atomic

10 Chapter 1. Model checking

s0
LunchTime

∅

s1
ReadyToHeat

{placed, closed}

s2
HeatingDoorClose

{placed, closed, started}

s3
HeatingDoorOpen

{started}

FIGURE 1.2: Kripke structure of microwave-like of Example 1.3 with
AP = {placed, closed, started}

propositions. Thus, L(s0) = ∅, signifying that in the initial state of this system, the
microwave is not in use as there is no meal placed, and its door is open.

We may wonder if the microwave is always launched with a closed door. Some possible
executions would be:

ρ := s0 s1 s2 s1 s2 . . .
ρ′ := s0 s0 s0 s3 s3 . . .

Only ρ′ results in an undesirable situation where the microwave is launched with
the door open.

The verification of an undesirable situation in this system example has been briefly
demonstrated. In the following sections, we will delve into the formalization of
such properties using temporal logic, as opposed to natural language, in order to
eliminate ambiguity and facilitate automated verification.

1.2 Linear Temporal Logic

The correctness of a system depends on checking whether its execution validate
given properties. To verify formally if such properties are satisfied, they must be
modeled formally, rather than in natural language, for two main reason: to avoid
ambiguity, and to provide a structure that can be manipulated by an algorithm.
Logic is the appropriate way to achieve this. Propositional logic is not sufficient
to model interesting system properties since it lacks the ability to reason about be-
haviors and has no concept of discrete time. For example, propositional logic cannot
express statements like "every time a process wants to enter the critical section, it will get
there eventually".This limitation is addressed by temporal logic; a logic that extends
propositional logic with operators allowing reason about time.

In this thesis, we focus on Linear-time Temporal Logic (LTL) since it expresses many
properties of interest and has been extensively studied [39–41]. For instance, Manna
& Pnueli [39] established a full hierarchy of specifications that can be expressed us-
ing LTL. It has also been used to optimize the performance of certain model check-
ing problems [42–44]. Since this thesis is oriented towards symbolic approaches

1.2. Linear Temporal Logic 11

to bounded model checking using SAT procedures, some temporal logics, such as
Computation Tree Logic (CTL or CTL⋆) [6], which provide more expressiveness than
LTL, cannot be directly applied in a bounded context of model checking. The work
presented in this thesis focuses exclusively on LTL logics. Nevertheless, it’s note-
worthy that McMillan [45] introduced a SAT-based unbounded CTL model checker,
which opens the possibility of extending the scope of the work presented in this
thesis to other logics beyond LTL.

1.2.1 Semantic

LTL logic was introduced by Amir Pnueli [4] to specify the behavior of systems over
time. Based on propositional logic, LTL logic is defined over a set of atomic propo-
sitions AP, expressing infinite sequences. For any infinite word σ ∈ Σω, σ |= φ
denotes that the word σ satisfies the formula φ. This relationship is defined inductively
as follows:

σ |= true
σ |= p ⇐⇒ p ∈ σ(0)
σ |= φ1 ∧ φ2 ⇐⇒ σ |= φ1 ∧ σ |= φ2

σ |= ¬φ ⇐⇒ σ ̸|= φ

σ |= Xφ ⇐⇒ σ[1 . . .] |= φ

σ |= φ1 U φ2 ⇐⇒ ∃j, σ[j . . .] |= φ2, and ∀i ∈N, 1 ≤ i < j, σ(i) |= φ1

In addition, LTL encompasses four essential temporal operators: F (Finally something
happens), G (Globally something holds), R (Release) and W (Weak until):

σ |= Fφ ⇐⇒ ∃j ≥ 0, σ[j . . .] |= φ

σ |= Gφ ⇐⇒ ∀j ≥ 0, σ[j . . .] |= φ

σ |= φ1 R φ2 ⇐⇒ σ |= ¬(¬φ1 U ¬φ2)

σ |= φ1 W φ2 ⇐⇒ σ |= φ2 R (φ1 ∨ φ2)

The first operator F ensures that the system will "eventually" reach a state where the
specified formula is true. The second operator G checks whether a property is "glob-
ally" true for all states in the execution. The third operator R ensures that a formula
will continuously hold up to a certain point and must satisfy another formula until
that point. Finally, the last operator W guarantees that a formula is satisfied until
another formula is satisfied. For example, one can specify some atomic proposition:
the variable a is equal to 42 (”a = 42” ∈ AP) that must hold at every point in time
(G ”a = 42”). It means that the execution must always verify that ”a = 42” holds
starting from the first time step. The atomic proposition ”a = 42” must eventually
hold at some future point in time (F (a = 42)). This translates to an execution where
”a = 42” will hold in future steps. Figure 1.3 illustrates the semantics of some basic
LTL formulas.

Definition 1.4 (LTL languange). The language Lφ of an LTL formula φ over the set
of atomic propositions AP is defined as:

Lφ = {v ∈ Σω | v ∈ [[φ]]}

12 Chapter 1. Model checking

p:
p

X p:
p

F p:
p

G p:
p p p p p

q R p:
q q q p p

FIGURE 1.3: LTL semantic scheme. Each line represents an infinite
word σ and each circle is σ’s positions and the label on top of the ith

circle specifies the propositions σ(i)

Reactivity∧
GFpi ∨ FGqi

Recurrence
GFp

Persistence
FGp

Obligation∧
Gpi ∨ Fqi

Safety
Gp

Guarantee
Fp

T

R P

O

S G

FIGURE 1.4: Hierarchy of Manna & Pnueli S ∪ G ⊆ O ⊆ R ∪ P ⊆ T

with [[φ]] := {σ ∈ Σω : σ |= φ} the set of words that satisfy the LTL formula φ on
AP.

Thus, a system satisfies a property if and only if its language is included in that of
the property, i.e., if we denote K, the Kripke structure modeling the system, then:

LK ⊆ Lφ

1.2.2 LTL properties classification

Lamport [46] classified the properties expressed by LTL into two classes: safety (some
bad thing never happens) that uses the G operator and liveness (some good thing eventu-
ally happens) with the F operator. More precisely, a liveness property does not forbid
any execution prefix, whereas a safety property forbids certain prefixes and allows
the expression of invariants on the system. Based on the combination of the F and

1.2. Linear Temporal Logic 13

G operators, Manna & Pnueli [39] further refined Lamport’s classification into six
categories:

• Safety (S): similar to the one described in the Lamport [46] classification. It
consists of all infinite words σ such that every prefix of σ is in [[φ]].

[[Gp]] = (p + (p · q))ω︸ ︷︷ ︸
occurrences of p

with p, q ∈ AP

• Guarantee (G): some good thing happens at least once in the future. It consists
of all words σ such that some prefix of σ is in [[φ]].

[[Fp]] = (∅ + q)⋆︸ ︷︷ ︸
no occurrences of p

(p + (p · q))ω︸ ︷︷ ︸
occurrences of p

with p, q ∈ AP

• Obligation (O): combines safety and guarantee properties. This enforces more
restrictions on the sequences, leading to some good things.

[[Gp ∧ Fq]] = [[Gp]] ∧ [[Fq]] = (p)⋆(p · q)(p + (p · q))ω︸ ︷︷ ︸
occurrences of p

• Persistence (P): at some point, a good thing will happen and hold forever. It
consists of all words σ such that all but finitely many prefixes of σ is in [[φ]].

[[FGp]] = (∅ + p + q)⋆︸ ︷︷ ︸
possible occurrences of p

(p + (p · q))ω︸ ︷︷ ︸
occurrences of p

with p, q ∈ AP

• Recurrence (R): some good things will appear infinitely often. It consists of all
words σ such that infinitely many prefixes of σ is in [[φ]].

[[GFp]] = ((∅ + q)⋆︸ ︷︷ ︸
no occurrences of p

(p + (p · q))︸ ︷︷ ︸
occurrences of p

)ω with p, q ∈ AP

• Reactivity (T): combines recurrence and persistence properties. This enforces
more restrictions on the sequences between good things.

[[FGp ∧GFq]] = [[FGp]] ∧ [[GFq]] = (∅ + p + q)⋆︸ ︷︷ ︸
possible occurrences of p

(p · q)(p + (p · q))ω︸ ︷︷ ︸
occurrences of p

Figure 1.4 illustrates the relationship between LTL formulas and the classes in the
hierarchy proposed by Manna & Pnueli [39]. Each category of property has inherent
characteristics that can be leveraged to optimize the performance of model checkers.

14 Chapter 1. Model checking

A : s0 s1
a

a, b

FIGURE 1.5: Büchi automaton A1 accepts the language a(a + b)ω.

1.3 Automata-based procedure for LTL verification

In this section, we will review the verification procedure of LTL specifications on
Kripke structures. This procedure relies on the construction and manipulation of
Büchi automata. The first subsections will introduce the Büchi structure and explain
how specifications and systems are transformed into automata. The last subsection
will detail the verification procedure [47], which requires these early transformations
to determine if a system satisfies a given specification.

1.3.1 Büchi automata

A Büchi automaton [12, 13] is an LTS that represents a finite automaton operating
on ω-words. A finite LTS accepts a finite word σ if it reaches an accepting state.
The languages recognized by finite automata precisely correspond to the languages
described by regular expressions. However, this concept doesn’t apply in the context
of an infinite word since there is no end to the word. Instead, a Büchi automaton
accepts an infinite word σ expressed in ω-regular expressions if, while reading σ, it
visits an accepting state infinitely often.

Definition 1.5 (Büchi Automata). A Büchi automaton is defined by a quintuplet
A = ⟨Q, Σ, δ, I, F⟩, where:

— Q is a finite set of states,

— Σ is a finite alphabet,

— δ : Q× Σ −→ 2Q is the transition function,

— I ⊆ Q is the set of initial states,

— F ⊆ Q is the set of accepting states.

Since it operates on ω-words, a Büchi automaton is an ω-automaton. Unlike Kripke
structures, the states in Büchi automata are not labelled; only the transitions are
labelled (Action ̸= ∅).

Example 1.4. Consider the Büchi automaton A1 shown in Figure 1.5.

- Q = {s0, s1},

- Σ = {a, b},

- δ(s0, a) = {s1}, δ(s1, a) = {s1}, δ(s1, b) = {s1},

- I = {s0},

- F = {s1}.

1.3. Automata-based procedure for LTL verification 15

A: B:

s0 s1

s2

a

b b

a

c

a, b, c

s′0 s′1

c

a, b c

a, b

FIGURE 1.6: Buchi automata A and B of Example 1.6

The automaton A1 begins in the initial state s0 reads the letter a, then loops forever
on the accepting state s1 over an arbitrary letter. This automaton accepts words
beginning with a.

Automata language

We write si
a−→ sj to denote that sj ∈ δ(si, a), and thus indicates that the automaton

has a transition from si to sj labelled by the letter a. An infinite word σ ∈ Σω is ac-
cepted by a Büchi automaton A = ⟨Q, Σ, δ, I, F⟩ if there exists an (infinite) sequence
of states s0, s1, · · · ∈ Q such that:

– s0
σ(0)−−→ s1

σ(1)−−→ . . . si
σ(...)−−−→ . . . ,

– s0 ∈ I,

– si ∈ F for an infinity of i ∈N.

That is: an infinite word σ is accepted by A if it is possible to read its letters starting
from an initial state then passing by a series of transitions that visit infinitely often
accepting states.

Definition 1.6 (Büchi Automata Language). The Büchi automaton language A, de-
noted by LA, is the set of infinite words it accepts:

LA := {σ ∈ Σω : σ is accepted by A} .

Example 1.5. Back to automaton A of previous example depicted in Figure 1.5. We
say that A accepts the word abab . . . since it visits infinitely often the state s1 which
is an accepting state (s1 ∈ F). On the other hand, the word ba . . . is not accepted by
A. So, the language of A is equivalent to:

LA = a(a + b)ω

16 Chapter 1. Model checking

s0, s′0, 1 s1, s′0, 1

s2, s′1, 1 s2, s′0, 2

s2, s′1, 2 s2, s′0, 1

a

b b

a

c

a, b
a, b

cc
c

a, b

c

a, b

FIGURE 1.7: Resulting Büchi automton C of A and B intersection

Büchi automata intersection

Given two Büchi automata A and B defined on a common alphabet, we can think
of each of these automata as data structures that symbolically represent specific lan-
guages. It is interesting to combine them to obtain a representation of the common
words they accept. To achieve this combination, we construct an automaton that ac-
cepts the intersection of their languages. This results in a Büchi automaton, denoted
as A ⊗ B, such that LA⊗B = LA ∩LB . This automaton will precisely accept the
words that are accepted by both A and B.

If the alphabets of these automata are not the same, one way to be able to apply the
intersection procedure would be to add new "dead state". If we suppose that Σ1 is
the alphabet for A and Σ2 for B with Σ1 ̸= Σ2, ∀x ∈ Σ2 \ Σ1, add a dead state sd to
A with transitions si

x−→ sd, from every state si of A labelled with x to the dead state

and a transition to itself sd
Σ1∪{x}−−−−−→ sd, labelled with all letters in Σ1 ∪ {x}. Similarly,

apply the same procedure on B. In this way, we have provided a common alphabet
Σ1 ∪ Σ2 that enables to reason about the intersection of their languages.

Definition 1.7 (Büchi Automata Intersection). Consider two Büchi automata A =
⟨QA, Σ, δA, IA, FA⟩, and B = ⟨QB , Σ, δB , IB , FB⟩. The automaton intersection C ofA⊗
B, C := ⟨Q, Σ, δ, I, F⟩ is defined as follows:

- States. Q := QA ×QB × {1, 2},

- Initial states. I := IA × IB × {1},

1.3. Automata-based procedure for LTL verification 17

K: AK:

s0

p

s1

∅

s2

p, q
s0

s1

s2

p

p

∅

p, q

p

FIGURE 1.8: Kripke structure to Büchi automoaton

- Accepting states. F := FA ×QB × {1}.

The construction of C involves simultaneously traversing both automata and retain-
ing only those pairs of states reachable in both automata. Two markers, 1 and 2,
are added to C to indicate which automaton is being evaluated between A and B,
respectively.
Therefore, the transition function δ is defined as follows: for a ∈ Σ, if sA

a−→ s′A in A
and sB

a−→ s′B in B, then we add the transition for n, m ∈ {1, 2} as follows:

(sA, sB , n) a−→ (s′A, s′B , m) where m :=

2 if n = 1 and sA ∈ FA
1 if n = 2 and s′B ∈ FB
n otherwise.

Example 1.6. Consider the Büchi automata A and B of Figure 1.6.
The automaton A accepts words that contain at least one c and an even number of
a before the first occurrence of c. B automaton accepts words containing an infinite
number of occurrences of c. The resulting automaton A⊗ B is drawn in Figure 1.7.
It accepts words containing an infinite number of c and an even number of a before
the first occurrence of c.

1.3.2 From LTL to Büchi automata

For an alphabet Σ = 2AP, where AP is a set of atomic propositions, any LTL formula
φ over AP, [[φ]] is a subset of Σω. This means that [[φ]] corresponds to a language of
infinite words over the alphabet Σ. Consequently, the LTL formula can be translated
into a Büchi automaton1. It is important to emphasize that the language associated
with an LTL formula is defined recursively in terms of repetition, concatenation,
union, intersection, and complementation operations:

[[φ ∧ ψ]] = [[φ]] ∪ [[ψ]] [[Xφ]] = Σ [[φ]]

[[φ ∨ ψ]] = [[φ]] ∩ [[ψ]] [[FXφ]] = Σ⋆ [[φ]]

[[¬φ]] = [[φ]] [[Gφ]] = Σ⋆ [[φ]]

[[true]] = Σω [[p]] =
⋃

{p}⊆A⊆AP

A Σω

1The reverse is not necessarily true

18 Chapter 1. Model checking

[[φ ∪ ψ]] =
⋃

j∈N

 ⋂
0≤i<j

Σi[[φ]]

 ∩ Σj[[ψ]]

This way, we can construct a Büchi automaton recursively. Still, the complemen-
tation of a Büchi automaton is a task that is far from being simple and relies on
relatively complex constructions. It is established in [48, 49], that for any Büchi au-
tomaton A with n states, there exists a Büchi automaton B such that LB = LA, and
B has 2O(n log n) states.

Numerous approaches have been developed to generate automata with a reduced
number of states or to minimize the size of already constructed automata. Modern
tools such as SPOT2 [50] and OWL3 [51] offer dedicated workflows for these tasks.

1.3.3 Kripke structures to Büchi automata

To apply verification using an automata-based procedure, both the LTL formula and
the model must be represented as automata. Converting the system, which is char-
acterized by a Kripke structure, into a Büchi automaton is a straightforward process.
This is because a Kripke structure already exhibits similarities with an automaton.

Let K1 = ⟨S, T, I, Act, AP, L⟩ denotes a Kripke structure. We associate to K1 the Büchi
automaton AK1 . This automaton is derived from K1 by transforming all its states
into accepting ones and labeling each transition T(si, sj) with L(si) (as illustrated in
Figure 1.8).

Although all states of theAK1 automaton are marked as accepting, it does not neces-
sarily accept all words. Indeed, the outgoing transitions from a state are all labelled
with the same letter p. In particular, as we can see from the Figure 1.8, the empty
word ∅ω is not recognized by AK1 (∅ω ̸∈ LAK1

).

1.3.4 Automata verification of LTL procedure

To verify whether a Kripke structure K satisfies a given LTL formula φ represented
using automata-based techniques [47], it is sufficient to:

1. Build the Büchi automaton A¬φ representing the negated specification φ,

2. Build the Büchi automaton AM representing the model M, and

3. Check if the intersection of the languages is empty, LAM ∩LA¬φ
= ∅.

Recall that in prior subsection 1.3.1, we have seen an algorithm capable of computing
the intersection of two Büchi automata. Thus, the verification of whether M |= φ
reduces to determining whether their intersection produces an empty set, i.e., LAM ∩
LA¬φ

= ∅. This problem, commonly referred to as the emptiness check, allows for
testing whether the language of an automaton is empty.

Most explicit emptiness check algorithms rely on a Depth First Search (DFS) explo-
ration of the automaton. These algorithms can be categorized into two families:

2https://spot.lre.epita.fr/
3https://github.com/odoo/owl

1.4. Bounded model-checking 19

s0 si

sj

u1 · · · um

v1 v2

· · ·
vn

FIGURE 1.9: Cycle example where |u| = m ≥ 0 and |v| = n > 0

Nested Depth First Search algorithms [52], which use a second DFS to detect an ac-
cepting cycle, and algorithms [53] based on the enumeration of Strongly Connected
Components (SCC) to identify SCCs that contain accepting cycles.

In both families of algorithms, the verification procedure is reduced to the problem
of detecting an accepting cycle. When the emptiness check detects an accepting cy-
cle or an accepting strongly connected component, it can return a counterexample,
meaning an execution that invalidates the property.

Cycle

A Büchi automaton is said to be non-empty if it accepts an infinite word, i.e., if it
contains a finite prefix followed by an accepting cycle.

First, a necessary and sufficient condition is stated to determine if the language of a
Büchi automaton is empty. Let C = ⟨Q, Σ, δ, I, F⟩ be a Büchi automaton. A cycle of C
is a sequence of the form:

s0
σ(0)−−→ si

σ(1)−−→ sj
σ(2)−−→ · · · σ(...)−−−→ si

where s0 ∈ I, si ∈ F, sj ∈ Q, and σ ∈ Σω. Figure 1.9 illustrates such a cycle.
The existence of a cycle with an accepting state, characterizes the emptiness of a
Büchi automaton:

Proposition 1.1. Let C be a Büchi automaton. We have LC ̸= ∅ if and only if C has a cycle.

In the rest of the manuscript, we will also refer to a cycle as the term loop.

1.4 Bounded model-checking

Bounded Model Checking (BMC) [19, 21] refers to a model checking approach where
the verification of the property is performed using a bounded traversal, i.e., a traver-
sal of symbolic representation of the state-space that is bounded by some integer k.
Such an approach does not require storing state-space, and hence is found to be more
scalable and useful [18, 22]. It is now an industrial practice to simply run BMC for a
certain amount of time and gradually increase the bound k, looking for witnesses in
longer and longer traces.

20 Chapter 1. Model checking

k = 0

k = 1

k = 2

s0 s1

s2s3

¬p ∧ ¬c ∧ ¬s

¬p ∧ ¬c ∧ ¬s

p ∧ c ∧ ¬sp ∧ c ∧ s¬p ∧ ¬c ∧ ¬s

¬c ∧ s

FIGURE 1.10: Büchi automaton of microwave-like system

There are several disadvantages to BMC, however. While the method may be ex-
tendable, the method is generally not complete, meaning one cannot be guaranteed
a true or false determination for every specification. This is because the length of
the propositional formula subject to satisfiability solving grows with each time step,
and this greatly inhibits the ability to find long witnesses or counterexamples and
certainly inhibits the ability to check all possible paths through a machine. However,
even with these disadvantages, the advantages of the method make it a valuable
complement to existing verification techniques. It is able to find bugs and some-
times determine correctness in situations where other techniques fail completely.

A crucial observation is that, though the prefix of a path is finite (up to length k), it
still might represent an infinite path if there is a cycle from the last state of the prefix
to any of the previous states as shown in Figure 1.9. If there is no such loop, then the
prefix does not say anything about the infinite behavior of the path beyond step k.
For instance, only a prefix with a loop can represent a witness for Gp. Even if p ∈ Σ
holds along all the states from s0 to sk, but there is no loop from sk to a previous state,
we cannot conclude that we have found a witness for Gp, since p might not hold at
sk+1.

The notion of k-loops to define the bounded semantics of model checking is derived
from the following definitions [19]:

Definition 1.8 ((k,l)-loop). For l ≤ k, a path σ is called a (k, l)-loop if a transition
exists between σ(k) and σ(l) and σ = uvω with u = σ[. . . l − 1] and v = σ[l . . . k].

Definition 1.9 (k-loop). We call a path σ a k-loop if there exists k ≥ l ≥ 0 for which
σ is a (k, l)-loop.

Here, only finite prefixes of a path are considered. In particular, only the first k + 1
states (s0, . . . , sk) of a path are used to determine the validity of a formula along that
path. If a path is a k-loop, all the information about this (infinite) path is contained
in the prefix of length k.

1.4. Bounded model-checking 21

Definition 1.10 (Bounded Semantics for a Loop). Let k ≥ 0 and path σ be a k-loop.
Then an LTL formula φ is valid along the path σ with bound k (σ |=k φ) iff σ |= φ.

Now let’s describe how the model checking problem with model M and property φ
can be reduced to a BMC problem (M |=k φ). The basis for this reduction lies on the
following two lemmas [19]:

Lemma 1.1. Let φ be an LTL formula and σ a path, then σ |=k φ⇒ σ |= φ.
Lemma 1.2. Let φ be an LTL formula and M a Kripke structure. If M |= φ then there
exists k ≥ 0 with M |=k φ.

Based on lemmas 1.1 and 1.2, it states the following theorem [19]:

Theorem 1.1. Let φ be an LTL formula and M be a Kripke structure. Then M |= φ iff there
exists k ≥ 0 s.t. M |=k φ.

Example 1.7 Let’s revisit the microwave example from Example 1.3 and its Büchi
representation in Figure 1.10. We have renamed the atomic propositions AP =
{placed, closed, started} to AP = {p, c, s}, respectively, for clarity. We want to en-
sure that φ = G(s −→ c) is always satisfied. This seeks to find an execution where it
is possible to launch the microwave with an opened door. We will check if there exist an
execution on the model that verify the negation of φ: F(s ∧ ¬c).
As can be seen in Figure 1.10, at the initial bound k = 0, the specification is not sat-
isfied. This does not provide information about the validity of the property, so we
continue by unrolling the transition relation. Therefore, at k = 1, there exists a path
starting from the initial state s0 leading to s3 that violates the property. The proce-
dure can stop at this bound, resulting in the execution ρ = s0s1 that loops infinitely
often at state s3, violating the property.

BMC is primarily solved by symbolic model checking procedures, such as BDD [10]
and Boolean SAT solving. This thesis focuses solely on resolution through SAT pro-
cedures, detailed in the following subsections. We first define the concept of Boolean
satisfiability, then discusses the reduction of BMC to a Boolean formula.

1.4.1 Boolean SATisfiability (SAT)

The satisfiability problem (SAT) is the canonical NP-complete problem [54], aiming to
determine whether a given formula is satisfiable or unsatisfiable. Despite its theo-
retical complexity, it has found widespread practical application, particularly in the
field of formal verification.

Propositional logic is a subset of logic without quantifiers, where variables can have
two possible values: true (⊤) or f alse (⊥). It enables the formulation of logical de-
ductions using operators such as negation (¬), disjunction (∨), and conjunction (∧).
Other operators like implication (⇒), equivalence (⇔), and exclusive disjunction
(xor) can be expressed in terms of these three first operators. For instance, the for-
mula a⇔ b is equivalent to (¬a ∨ b) ∧ (a ∨ ¬b).
The operators have a predefined order of precedence, listed in decreasing priority:
negation (¬), conjunction (∧), disjunction (∨), implication (⇒), equivalence (⇔), and
exclusive disjunction (xor).

22 Chapter 1. Model checking

x y ¬x x ∧ y x =⇒ y

0 0 1 0 1
0 1 1 0 1
1 0 0 0 0
1 1 0 1 1

TABLE 1.1: Truth table of operators ¬,∧, and =⇒

To evaluate a formula, we assign each variable a value from the set B = {true, f alse} =
{⊤,⊥} = {1, 0}. Here, the truth values signify 0 for f alse and 1 for true. The value of
the entire formula is then obtained by replacing the variables by their assigned val-
ues and apply the truth table rules illustrated in Table 1.1 for some operators (¬,∧,
and =⇒).

Definition 1.11 (Literal). A literal l can take the form of a propositional variable (x)
or its negation (¬x). For a given variable x, a positive literal is represented by x,
while a negative one is denoted by ¬x.

The value that is given to different variables within a formula is referred to as an
assignment. An assignment, also denoted by the symbol α and can be defined as
follows:

α : V ⇒ B

where V represents the set of variable in the given formula.

Depending on whether all the variables of the formula receive values through an as-
signment, α is said to be total (or complete), when all elements of V have correspond-
ing values in α; otherwise, it is considered partial. By abuse of notation, an assign-
ment is often represented by the set of its true literals. For instance, α = {x1,¬x4}
signifies that x1 is set to true and x4 is set to f alse.

Definition 1.12 (Satisfiability). A formula is said to be satisfiable if there exists at
least one assignment α of its variables for which the formula evaluates to true. This
assignement is then called a model. Conversely, a formula is said to be unsatisfiable
if no assignment α can make the formula evaluate to true. In this case, it is said to
have a counter-model.

In Boolean logic, there are particular characteristic forms of formulas known as nor-
mal forms. To introduce some of these, we must first introduce the concepts of cube
and clause:

Definition 1.13 (Cube). A cube is a finite conjunction of n literals, represented equiv-
alently by

n∧
i=1

li

Definition 1.14 (Clause). A clause ω is a finite disjunction of n literals, represented
equivalently by:

ω =
n∨

i=1

li

1.4. Bounded model-checking 23

A clause with a single literal is called a unit clause. A binary, ternary, or n-ary clause
is a clause that contains two, three or n ∈N⋆ literals, respectively.

Definition 1.15 (CNF). A conjunctive normal form (CNF) formula F is a finite con-
junction of clauses:

F =
n∧

i=1

ωi

For a given formula F and an assignment α, a clause ω ∈ F is satisfied when it
contains at least one literal that, according to α, evaluates to true.

Example 1.8. Given the propositional formula F =

ω1︷ ︸︸ ︷
(a ∨ b ∨ ¬c)∧

ω2︷︸︸︷
(¬a)∧

ω3︷ ︸︸ ︷
(¬d ∨ ¬b),

and assignement α = {¬a, b,¬c, d}. The clause ω1, ω2 are satisfied, but not ω3.

It is possible to transform any propositional formula into a logically equivalent nor-
mal form. The conjunctive normal form (CNF) is the preferred input format for
state-of-the-art SAT solvers. The transformation of any propositional formula into
CNF can be achieved in polynomial time [55, 56]. Therefore, the definition of the
Boolean Satisfiability problem (SAT) is as follow:

Definition 1.16 (Boolean SATisfiability). The Boolean satisfiability (SAT) problem
is the problem of determining the satisfiability of a given formula in CNF.

1.4.2 SAT-based Bounded Model-Checking

The introduction of BMC by Biere et al. [15] in 1999, along with the increasing
efficiency of SAT solvers (GRASP [29] and CHAFF [30]), paved the way for SAT-
based model checking and enabled systems with millions of variables to be studied.
The advantage of SAT-based approaches over BDD-based ones [10] lies in their re-
duced need for hand manipulation. Additionally, SAT tools are capable of finding
paths (models) of minimal length, which helps the user understanding the generated
model.

The SAT-based BMC approach constructs a propositional formula, represented in
CNF, that encapsulates both the system M and the negated specification ¬φ, both
unrolled up to length k. This propositional formula (M⊗¬φ) is deemed satisfiable if
and only if there exists a violation of the property within the first k steps. Otherwise,
it is unsatisfiable, meaning that the property is verified up to length k.

In the previous section we defined the semantics for bounded model checking. We
now show how to reduce BMC to propositional satisfiability. This reduction enables
us to use efficient propositional SAT procedures to perform model checking.

Definition 1.17 (BMC Propositional Formula). Given a Kripke structure
M = ⟨S, T, I, Act, AP, L⟩, an LTL formula φ and a bound k, we construct a proposi-
tional formula JM, φKk. Let s0, . . . , sk be a finite sequence of states of the system M
on a path σ. Each si represents a state at time step i and consists of an assignment of
truth values to the set of state variables. The formula JM, φKk encodes constraints on
s0, . . . , sk such that it is satisfiable if and only if σ is a witness for φ of length k. The

24 Chapter 1. Model checking

definition of JM, φKk can be synthesized as follows:

[[M, φ]]k =

Initial states︷ ︸︸ ︷
I(s0) ∧

k−1∧
i=0

Transitions relation︷ ︸︸ ︷
T(si, si+1)︸ ︷︷ ︸

Model

∧ [[¬φ]]k︸ ︷︷ ︸
Property

(1.1)

where I defines the initial states, T represents the transition relation of the model M
and [[φ]] encodes the property. More specifically, this formula can be broken down
into two main components:

1. [[M]]k : is a propositional formula that imposes constrains on states s0 to sk to
form a valid path, starting from an initial state. It is defined as:

[[M]]k := I(s0) ∧
k−1∧
i=0

T(si, si+1)

2. Lk: a propositional formula that evaluates to true only if the path σ contains a
loop (cycle). The loop condition is defined by l Lk, which is set to true if and
only if there’s a transition from state sk to state sl with k ≥ l ≥ 0. By definition,
l Lk is equivalent to the existence of a back loop T(sk, sl). Thus, Lk is defined
through l Lk as:

Lk =
k∨

l=0
l Lk

It combines all possible cycle of distinct lengths, beginning from the final state
sk.

The General formula [19] can be written as follows: for a given LTL formula φ, a
Kripke structure M and a bound k ≥ 0:

[[M, φ]]k := [[M]]k ∧

(¬Lk ∧ [[¬φ]]k)︸ ︷︷ ︸
no loop

∨
k∨

l=0

(l Lk ∧ l [[¬φ]]k)︸ ︷︷ ︸
all possible (k,l)-loops

 (1.2)

The left hand side of the disjunction represents the case where there is no back loop
and the property is invalid. This corresponds to a path without a loop. The right
hand side encompasses all possible ending points l of a loop, translating a (k, l)-
loop with the corresponding l Lk loop condition. The presence of a loop is conjoined
with the validity of the property from step sk to step sl , noted by l [[φ]]k.

Thus, to solve this formula 1.2, a translation step into CNF form is necessary for
its verification through a SAT procedure. Several techniques exist for converting
propositional formulas into CNFs, with the most well-known being the Tseitin [56]
transformation, followed by the compact conversion that minimizes the number of
produced clauses [55].

In addition to the above, there are alternative approaches involving SAT solvers in

1.5. Conclusion 25

BMC context, often referred to as Induction-based methods, which are used in both in-
dustry and academic tools. These methods fall into three categories: (i) k-induction [57],
(ii) interpolation (ITP) [58, 59], and (iii) more recent approaches like IC3 (Incremental
Construction of Inductive Clauses for Indubitable Correctness [60]) and PDR (Prop-
erty Directed Reachability [61]). They are all based on the principle of inductive
proof but differ in the inductive invariant they build. The k-induction is an exten-
sion of proof by induction, where the inductive invariant is a path of length k that
satisfies the property. ITP computes an over-approximation of the reachable states
using interpolants [36], which are themselves calculated from proofs of unsatisfia-
bility returned by a SAT solver during BMC calls. It is worth noting that k-induction
or ITP techniques require unfolding the transition relation of the system. IC3, on the
other hand, incrementally refines a sequence of sets of states step by step and locally,
meaning with queries to a solver that contain only a single transition relation.

1.5 Conclusion

This chapter has introduced necessary definitions to facilitate the understanding of
this manuscript. It has been demonstrated that a system can be represented through
a Kripke structure with a structure similar to that of a LTS, or through a more com-
pact representation as a Boolean SAT formula.

In this manuscript, we primarily focus on the verification process through its sym-
bolic representation. Only Chapter 6 deals with the automaton-based representation
of the verification process.

26

Chapter 2

SATisfiability solving

Contents
2.1 Sequential SAT solving . 26

2.1.1 CDCL Algorithm . 27
2.1.2 (In/Pre)-processing phase optimization 32

2.2 Parallel SAT solving . 35
2.2.1 Portfolio (competition-based) 35
2.2.2 Divide-and-Conquer (cooperation-based) 37
2.2.3 Sharing strategies . 38

2.3 Conclusion . 39

This chapter aims to explore the mechanics of SAT solvers through the most well-
known algorithm Conflict Driven Clause Learning (CDCL), firstly in a sequential
context and then transition towards parallel SAT procedures.

2.1 Sequential SAT solving

In this thesis, we exclusively deal with complete SAT solvers that can, in a finite time,
determine a solution or prove the unsatisfiability of a CNF formula. In contrast, in-
complete approaches [62–64] are generally unable to prove the unsatisfiability of a
formula. These approaches often involve a non-systematic search of the solution
space for a given amount of time. Consequently, since such approaches do not guar-
antee a complete exploration of the formula’s search space, regardless of the amount
of time and memory allocated, it is impossible to assert that there is no solution.
When we talk about complete SAT solvers, we generally refer to CDCL algorithm,
with significant improvements that considerably enhance its efficiency. Initially in-
troduced by Marques-Silva and Sakallah [29] and later improved by Moskewicz et
al. [30], the CDCL algorithm incorporates the concept of learning into the previous
DPLL algorithm [65]1, allowing it to learn from conflicts (past errors) to avoid simi-
lar conflicts in the future.
Here, we present the essential concepts of the CDCL algorithm, which are fonda-
mental for the understanding this thesis. For a complete details of this algorithm,
you can refer to [66].

We begin this section by explaining how the CDCL algorithm works (Section 2.1.1),
with a particular focus on some of its crucial components. Each of these components

1The fundamental concepts of DPLL have been kept in modern CDCL algorithms

2.1. Sequential SAT solving 27

employs generic heuristics that have proven effective in various problem domains.
In each component description, we will review the different heuristics and metrics
used in sequential SAT solving during the most critical steps of CDCL. External
approaches to the CDCL algorithm that aim to simplify the initial formula or add
new clauses before/during solving will be discussed in subsection 2.1.2.

2.1.1 CDCL Algorithm

Algorithm 1 CDCL

Require: F : CNF formula
Ensure: ⊤ if satisfiable, ⊥ otherwise

1: α←− ∅
2: decisionLevel ←− 0
3: forever
4: (F′, α′)←− UNITPROPAGATION(F, α)
5: α←− α ∪ α′

6: if F′ = ∅ then
7: return ⊤
8: else if {} ∈ F′ then
9: if decisionLevel = 0 then

10: return ⊥
11: ω ←− CONFLICTANALYSIS(F, α)
12: F ←− F ∪ {ω}
13: decisionLevel ←− BACKJUMPANDRESTART(decisionLevel, ω, . . .)
14: α←− {l ∈ α|LEVEL(l) ≤ decisionLevel}
15: else
16: α←− α ∪ {DECISIONVARIABLE(. . .)}
17: decisionLevel ←− decisionLevel + 1

SAT solvers are often referred to as highly optimized black-boxes, performing the
Boolean SATisfiability problem. This black-box approach is one of the reasons for
SAT’s success. Most solvers take as input a formula in CNF and output a variable
assignment if the formula is satisfiable, without any knowledge of the meaning of
the variables and encoded clauses. They can also produce a proof of unsatisfiabil-
ity [67]. An early approach to solving the SAT problem, DP [68], involves elimi-
nating variables one by one, using the solver rule. The elimination step is repeated
until the empty clause is found (UNSATisfiable), or until the formula becomes empty
(SATisfiable). However, due to the combinatorial explosion memory problem, this
technique was soon abandoned in favor of backtracking (DPLL [65]). DPLL back-
tracking is the process of being able to return to the previous decision level. Never-
theless, variable elimination remains an important preprocessing step in all modern
solvers. The elimination of a variable simply consists in performing all possible
resolutions on this variable, then removing from the formula all clauses contain-
ing this variable, and finally adding all resolution clauses. Since the introduction
of the clause learning technique [29] and its refinement [30], the vast majority of
SAT problem-solving algorithms for real-world problems are Conflict-Driven Clause
Learning (CDCL) procedures (Algorithm 1), also known as modern solvers.

Mechanisms. The CDCL algorithm performs a backtrack search; selecting at each
node of the search tree, a decision literal which is set to a Boolean value (line 16 of
Algorithm 1). This assignment is followed by an inference step that deduces and

28 Chapter 2. SATisfiability solving

propagates (line 4) some forced unit literal assignments (procedure called Boolean
Propagation Procedure). This branching process is repeated until finding a model
(line 6) or reaching a conflict (line 9). In the first case, the formula is answered to
be satisfiable, and the model is reported, whereas in the second case, a learnt clause
is generated by resolution (line 11), following a bottom-up traversal of the implication
graph [29] (a procedure called conflict-analysis). If a conflict occurs without a decision
having been made, the formula is considered unsatisfiable (line 9).

CDCL procedure combines several components (DECISIONVARIABLE, CONFLICT-
ANALYSIS, . . .) amenable to optimization. These components are based on generic
heuristics that have demonstrated their effectiveness in various problem domains.

Unit Propagation

Unit propagation (also referred to Boolean Constraint Propagation procedure), used
as an optimization component, assigns variables that logically have only one option
due to unit clauses. A clause is considered unit under a partial assignment when
this assignment yields in every literal in the clause unsatisfied, except for a single
unassigned literal. The algorithm simply makes its next guess in a way that ensures
the literal will be true, thus making the clause true.

One noteworthy feature of having a CNF formula is that, to satisfy the formula,
every clause must include at least one true literal. Consequently, the propagation
step entails traversing the set of formula clauses (a lazy traversal approach [30]),
searching for clauses that contain one unassigned literal while all other literals are
assigned to f alse.

Example 2.1. We take the formula F = (¬a∨¬b)∧ (a∨ c)∧ (b∨ c)∧ (¬c∨ b)∧ (a).
The unit clause (a) is automatically assigned to true. Removing all clauses where
the variable a appears, we obtain F = (¬b) ∧ (b ∨ c) ∧ (¬c ∨ d).

Unit propagation involves the repetitive application of this procedure until the clause
database no longer contains unit clauses, ultimately reaching a fixed point.

Decision variable

The decision phase consists in selecting a variable from the set of unassigned vari-
ables in the formula, assigning it a value (either true or f alse), and subsequently
adding the variable to the current assignment stack. When no more variables re-
main unassigned (i.e., all variables have been assigned), the formula is satisfiable.
In this case, the solver returns the current assignment, which represents a model for
the formula.

The selection of the next variable to assign is undeniably the most critical criterion
for SAT solvers [69]. Regrettably, it is also a computationally challenging task (NP-
hard) to choose a variable that leads to a satisfying assignment, just as it is to find
such an assignment in the first place [70]. Nonetheless, variable selection during the
search significantly impacts the number of steps performed by CDCL and, conse-
quently, execution time [71]. To overcome this difficulty, several heuristics have been
developed to estimate the compatibility between a model and the as-yet-unassigned
variables based on a given partial interpretation. To be effective, these heuristics

2.1. Sequential SAT solving 29

conflict sidereason side

Level Decision Unit Prop.

0 ∅

1 h ¬e

2 b

3 i

4 a c e f ⊥

d g
×

ω4
ω1

ω1

ω2

ω3

ω3

ω4

ω5

ω6

ω6

FIGURE 2.1: Resolution graph

must minimize the size of the search tree constructed by the CDCL as much as pos-
sible. Nevertheless, a heuristic that significantly reduces the search tree size but con-
sumes too much computational time may be less efficient than a less time-consuming
heuristic that generates more nodes. Therefore, a good heuristic is a balanced com-
promise between the computation time allocated to it and the "quality" of its choices.
Here, we present some well-known decision heuristics used by modern SAT solvers.

VSIDS. The Variable State Independent Decaying Sum heuristic introduced by Zhang
et al. [31] in the CHAFF solver [30], maintains a score for each variable. Vari-
ables with higher scores are given preference when making decisions. Af-
ter learning a clause, the scores associated with its variables (referred to as
"touched" variables) are incremented. More specifically, these touched vari-
ables are those that appear in resolutions during conflict-analysis. The list of
scores is sorted based on the descending order of the scores. The decision pro-
cedure selects the next decision variable with the highest score from the last
sorting operation.

CHB & LRB. The Conflict History-Based [72] and Learning Rate Branching heuris-
tic [73], both based on the concept of Exponential Recency Weighted Average
(ERWA) [74], share similarities with VSIDS in that they favors variables that
have been involved in recent conflicts. CHB rewards variables that have been
recently assigned by decision or propagation. These rewards are higher when
a conflict is detected. The LRB heuristic extends CHB by exploiting locality
and introduces the learning rate (LR) of the variables. LR is defined as the ca-
pacity of variables to generate learnt clauses. Thus, LRB decision process aims
to select the variable that maximizes this LR.

Clause learning from conflict-analysis

The purpose of learning new clauses is to prevent the recurrence of the same failure
throughout the search process. These learnt clauses are derived by analyzing the set
of literals responsible for a conflict during the conflict-analysis step.

When CDCL encounters a conflict, it examines the decisions it has made and all
the assignments it was forced to deduce through unit propgation, which ultimately

30 Chapter 2. SATisfiability solving

resulted in the conflict. To determine this subset of the assignment responsible for
the conflict, solvers construct an implication graph representing the current state of
the proof system. It is a directed acyclic graph where vertices represent assignments,
and edges denote the reasons behind these assignments. It is continually updated
every time a variable is assigned (via decision or propagation) or unassigned (due to
backjumping or restarts). By analyzing this graph, CDCL can learn a clause that is
potentially more informative than just knowing that the current partial assignment
was problematic (by negating the current partial assignment). This way, CDCL can
avoid repeating the same mistake multiple times and skip over large chunks of bad
partial assignments DPLL will get stuck in. Figure 2.1 illustrates this implication
graph.

Example 2.2. Consider a formula F composed of the variables a, b, c, d, e, f , g, h and
i and the following constraints:

F = (a ∨ ¬b ∨ c)︸ ︷︷ ︸
ω1

∧ (¬a ∨ d)︸ ︷︷ ︸
ω2

∧ (¬c ∨ ¬d ∨ e)︸ ︷︷ ︸
ω3

∧ (¬h ∨ ¬e ∨ f)︸ ︷︷ ︸
ω4

∧ (¬e ∨ g)︸ ︷︷ ︸
ω5

∧ (¬ f ∨ ¬g)︸ ︷︷ ︸
ω6

.

Given this formula F , the SAT solver decides on the variables in the following order,
as depicted in Figure 2.1: h is first to be decided (level 1), b next (level 2), i at level 3,
and a at level 4. We can observe from the figure that several unit propagation have
been applied by these decisions.

The conflict-analysis procedure analyzes this graph to identify the reason of the con-
flict. To do so, a search of a Unique implication point (UIP) is performed. A UIP at
the last decision level of the implication graph is a variable that exists on every path
from the decision to the conflict. It’s worth noting that there can be multiple UIPs
for a given decision level. First Unique Implication Point (FUIP) [31, 75]) or 1-UIP is
a method for generating learnt clauses from an implication graph. It is considered to
be the most effective strategy since it provides the smallest set of assignment that is
responsible for the contradiction. The UIP procedure divides the implication graph
in two sides; the reason side (highlighted in orange on the example graph 2.1), which
contains decision variables that are responsible of the contradiction and the conflict
side (in green), that contains the conflict itself. A UIP always resides in the reason
side. Once the reason side of a conflict is established, a conflict clause is produced.
To build this clause, it is sufficient to negate the literals that have an ongoing edge
to the cut that contains the UIP. In the above example, the resulting learnt clause
would be (¬h ∨ ¬e). Since the information in this clause is redundant regarding the
original formula, it can be added without any restrictions. All these learnt clauses
are stored in a clause database.

Clause deletion policy

Conflict analysis and learning play a crucial role in improving the efficiency of mod-
ern SAT solvers. However, the expansion of the learnt clause database can signifi-
cantly slow down unit propagation. This is because a larger number of learnt clauses
requires more unit propagation during resolution (CDCL solvers can learn more
than 5000 clauses per second [23]).

In order to avoid such a slowdown, modern SAT solvers must efficiently manage the
learnt clause database. Given these challenges, it has become essential to selectively
remove or temporarily discard some learnt clauses. However, determining which

2.1. Sequential SAT solving 31

clauses to delete or discard is a complex task. It requires assessing the "quality" of
the clauses using a heuristic that ranks them based on their "usefulness" within a
given search subspace. Moreover, deciding when to discard certain learnt clauses
also relies on heuristics. So, the issue here is to find the best trade-off between what
is considered to be a relevant information and how much of this information must
be kept. Below, we describe some state-of-the-art heuristics used in the world’s top
solvers2 for addressing these challenges:

Size bounded learning [76]. This approach protects learnt clauses that are sized less
than a a predefined threshold. The majority of modern SAT solvers consis-
tently protect unit and binary clauses. This is because these clauses can be
managed more easily and their preservation effectively constrains the search
space, thereby enhancing unit propagation.

Activity bounded learning [26]. This approach discards learnt clauses when they
are no longer deemed relevant according to the activity metric. The concept
of activity is the same as in VSIDS [30] and is thus dynamic. It is a positive
integer associated with a specific learnt clause, initially set to 0. The activity
value is incremented each time the learnt clause is utilized in any way during
conflict-analysis and propagation. Thus, this metric provides a general estima-
tion of how much the clause is used. Consequently, as the number of conflicts
increases, the solver is less inclined to remove learnt clauses.

Literal block distance (LBD) [23]. LBD is a positive integer, that is used as a learnt
clause quality metric in almost all competitive sequential CDCL-like SAT-solvers
and parallel sharing strategies (see next Section 2.2). The LBD of a clause is
defined as the number of different decision levels at which variables within
the clause have been assigned. Hence, the LBD of a clause can change over-
time, and it can be (re)computed whenever the clause is fully assigned. If
LBD(ω) = n, then the clause ω spans on n propagation blocks, where each
block has been propagated within the same decision level.

Example 2.3. The learnt clause of Example 2.2, obtained during conflict anal-
ysis of the implication graph (ω = (¬h ∨ ¬e)) has LBD(ω) = 2, as variable h
was decided at level 1 and e at level 4.

The concept behind this heuristic is that a decision often leads to a large num-
ber of propagation blocks. Thus, adding dependencies between independent
blocks can be a way to reduce the number of decisions. This can be achieved by
introducing the strongest possible constraints (learnt clauses) between these
blocks. More precisely, the LBD value of a learnt clause is equivalent to the
number of blocks of literals that are propagated. Therefore, lower LBD scores
are considered better. Indeed, it has been proven that Glue Clauses [23], clauses
with LBD scores of 2, are the most important type of learnt clauses. The solver
GLUCOSE [23] keeps all glue clauses throughout the resolution process. The
learnt clause reduction function eliminates half of the total learnt clauses based
on their LBD values. This reduction function is triggered after a specified num-
ber accumulated learnt clauses since the beginning of the search. The choice
of when to reduce the learnt clause database is dynamically adjusted based on

2As per the results of the SAT competitions (https://satcompetition.github.io/2023/
results.html)

https://satcompetition.github.io/2023/results.html
https://satcompetition.github.io/2023/results.html

32 Chapter 2. SATisfiability solving

data collected during the search to adapt to the specific instance [77].

Restart policy

In the DPLL algorithm, when a conflict is detected, a backtrack to the previous deci-
sion level is performed. In its enhanced version, CDCL, conflict analysis enables the
computation of backjumps, which can be longer than simple backtracks and repre-
sent potentially better checkpoints to continue the search for a solution. Specifically,
it must backjump to the highest level that allows the learnt clause to be asserted.
However, if the search fails for a certain amount of time (evaluated in number of
backtracks), then it is considered unlikely for the search to succeed in a reasonable
time. Indeed, Gomes et al. [78] have shown experimentally that running the same
approach on the same problem but with different initial choices leads to totally het-
erogeneous resolution times. These experiments allowed to identify a phenomenon
of heavy tail. One way to escape from this zone is to restart the search while keep-
ing useful information (e.g. learnt clauses, variable’s scores, . . .). Modern CDCL
solver restart their search from time to time in order to avoid long tail problems,
while keeping useful information such as learnt clauses. Below, we present a non-
exhaustive list of well-known restart heuristics:

Luby. The default restart strategy of MINISAT (version 2.1 [79]) has become a stan-
dard. This strategy is based on the Luby sequence [80]: {1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 4, 8, . . . }.
In this solver, the intervals between restarts (in terms of conflicts) are deter-
mined by the numbers in the Luby sequence, multiplied by 100. This strategy
is considered static because it is predetermined and does not change based on
the information obtained during the search.

LBD. The idea behind the restart strategy in solvers like MAPLECOMSPS and GLU-
COSE is as follows: to generate a maximum number of good clauses (based on
their LBD values), restarts can occur when the latest learnt clauses produced
have excessively high LBD values. To implement this, the authors of [81] com-
pare the current average LBD values of the last n conflicts with the overall av-
erage of all LBD values from the beginning of the search. If the current average
is significantly higher than the overall average, a restart is initiated.

Machine Learning Restart. In a recent work, an ML-based restart policy [82] has
been introduced to trigger a restart whenever an unfavorable prediction re-
garding the expected quality of newly created learnt clauses emerges. The re-
searchers observed a correlation between the LBDs of successive learnt clauses.
To leverage this correlation, they employed a machine learning mechanism to
predict the LBD of the next clause. This prediction is based on the previous
three LBDs and their pairwise products. A restart is initiated if the prediction
indicates that the LBD of the next learnt clause is below a dynamic threshold
determined by the solver’s history on the specific input formula.

2.1.2 (In/Pre)-processing phase optimization

Preprocessing has become a crucial component of the SAT solving workflow in re-
cent years. A significant milestone in the history of preprocessing is the technique of
bounded variable elimination (BVE), first implemented in the SATELITE preprocessor
and later integrated into MINISAT 2.0 [83].

2.1. Sequential SAT solving 33

Preprocessing in SAT solving occurs between the encoding phase and the solving
phase. However, it’s not straightforward to consider this preprocessing phase as a
separate procedure. Indeed, it can be seen as an automated re-encoding of a formula,
making it part of the encoding phase. Alternatively, it can be viewed as a form of
reasoning itself, which would place it within the solving phase. The latter perspec-
tive has gained prominence with the emergence of inprocessing techniques [84, 85].
In inprocessing, preprocessing techniques are applied intermittently during solving.
The following points provide an overview of existing preprocessing and inprocess-
ing techniques.

Simplifying the problem’s formula

In order to optimize resolution time, a SAT formula can be preprocessed before solv-
ing it. This preprocessing is carried out using a preprocessing engine. One of the
preprocessing method is to simplify the formula by reducing the number of unnec-
essary variables and clauses. Various techniques are implemented in preprocessing
engines such as SATELITE [86], and NIVER [87]. Here are some of these techniques:

BVE. Bounded Variable Elimination is the elimination of variables through distri-
bution. It’s a highly effective method for preprocessing CNF formulas when
applied to variables that do not increase the total number of clauses when elim-
inated. The key idea is to avoid the combinatorial explosion of the method.
BVE preserves satisfiability, meaning the original formula and the simplified
version are equisatisfiable. The algorithm performs resolution between clauses
containing a literal x (denoted by X+) and its negation¬x (denoted by X−). Let
C be the set of resulting clauses. If the number of clauses in C is less than or
equal to the number of clauses in X+ ∪ X−, then the algorithm eliminates x
by replacing X+ ∪ X− by C. This procedure has swiftly evolved into an indis-
pensable preprocessing step, with the majority of modern solvers incorporat-
ing it as a standard practice. This has also inspired the work in [88] to develop
its complementary technique: Bounded Variable Addition (BVA). Instead of
exchanging variables for clauses, BVA substitutes clauses for variables, while
retaining the same heuristic principle of substitution to reduce the size of the
CNF formula.

Subsumption & self-subsumption. Subsumption [86] is applied when some clauses
share a particular pattern. A clause ω1 is said to subsume another clause ω2 if
ω1 ⊆ ω2, meaning that ω1 is more specific than ω2 so it can be discarded from
the CNF formula. Self-subsumption is a special case where one clause almost
subsumes another except for one literal. For instance, if ω1 = (β1 ∨ x) and
ω2 = (β2 ∨¬x) where β1 is a clause subsumed by the clause β2, then resolving
on x will produce a clause ω′1 = (β1) that subsumes ω1. Thus, ω1 is strength-
ened through self-subsumption using ω2. It has been proved in [86] that com-
bining self-subsumption with BVE improves preprocessing significantly.

Vivification. Rather than incorporating additional variables or clauses which can
lead to a harder formula resolution than initial, the authors of [89] led to a new
preprocessor called REVIVAL. It aims to strengthen (vivify) redundant clauses
from the original formula without introducing additional variables or clauses.
To this end, they applied a limited check of redundancy on each clause of the

34 Chapter 2. SATisfiability solving

CNF formula in order to derive or to approximate through unit propagation,
one of its minimally redundant subclauses.

These preprocessing methods can also be applied during the solving process (in-
processing). For example, some approaches in [90] continue to perform BVE during
the solving phase if it doesn’t increase the size of the assertive clause, allowing the
removal of redundant literals in learnt clauses immediately after their creation. Oth-
ers have used subsume techniques to discover subsumed clauses during conflict
analysis [91, 92]. Furthermore, authors of [93] have introduced an inprocessing tech-
niques applying Learnt Clauses Minimization (LCM) that eliminate redundant literals
in learnt clauses by proceeding unit propagation on clause literals. Such a procedure
has a significant cost and is applied only at certain restarts and on specific clauses.

Adding relevant clauses to the formula

From the structural composition of the problem, it is possible to learn relevant clauses
that will be added to speed-up the resolution. Whether during the preprocessing or
inprocessing phases, several well-established studies propose harnessing the con-
cept of community structure [24] or symmetrie breaking [27] to achieve this.

Community structures. In this approach [24, 94], the CNF formula at hand is repre-
sented as a graph. The shape of this graph is then analyzed to extract commu-
nity structure. Roughly speaking, variables within the same community ex-
hibit denser interconnections compared to variables in different communities.
The concept of community structure is utilized as a preprocessing step. This
involves identifying the communities and subsequently launching a solver on
subparts of the formula for a limited time. These parts are created by ap-
portioning the different clauses regarding the communities. In [95] Valuable
clauses can be learnt from these preliminary searches and added to the initial
formula. This approach notably enhances solver performance in many cases,
especially for satisfiable formulas. Given that, this graph-based structuring
yields superior performance in industrial problems [94]. The authors of [96]
propose a methodology based on the community structure of the formula to
categorize industrial instances from random/crafted ones. This categorization
is then used to parameterize the SAT solving process. Furthermore, in [97], this
concept is leveraged to introduce a new metric aimed at identifying during the
solving high-quality learnt clauses and a parallel clause-sharing policy based
on a combination of (low) LBD and community number (the community num-
ber of a clause ω quantifies the number of different communities of a formula
that the variables in ω span).

Symmetries. The underlying idea in leveraging symmetries is to generalize learnt
clauses based on an understanding of the repetitive structure inherent in SAT-
encoded formulas. Intuitively, if a learnt clause solely depends on clauses that
are inherently replicated at different time points, it is possible to replicate the
learnt clause at these other time points as well. The clause duplication method
is thus rooted in the symmetrical structure of formulas. SAT problems often ex-
hibit symmetries [27], and not accounting for them forces solvers to needlessly
explore isomorphic segments of the search space. Indeed, symmetries can fa-
cilitate the learning of interesting clauses that classical learning approaches
may fail to capture [28, 98–100]. Static symmetry breaking [28, 101] identifies

2.2. Parallel SAT solving 35

equivalent subspaces (asymmetric constraints) within the search space, allow-
ing the solver to cutoff certain subspaces by incorporating these constraints
into the initial formula before resolution. These clauses can also be introduced
during the search as a form of inprocessing, referred to as dynamic symmetry
breaking [25]. Many of these techniques are based on learning symmetric coun-
terparts of previously learnt clauses [99, 100]. A combination of static and
dynamic symmetry breaking has been implemented in COSYSEL [102].

2.2 Parallel SAT solving

Parallel procedures have become a prominent axis for enhancing SAT solver effi-
ciency due to the emergence of multi-core machines. In a general sense, parallelism
involves executing multiple actions simultaneously. Today, most computers possess
parallelism to varying degrees through various techniques, depending on the num-
ber of instructions executed simultaneously.
We observe three main components on the classical architecture of a parallel SAT
solver: the parallel strategy specifies the split of the workload among threads, the
sharing strategy handles the exchange of relevant information, and the solver strat-
egy determines the SAT algorithm to use for given thread(s). The primary objective
of all existing parallel SAT solvers is to find the best trade-off between these three
components. For instance, using a sharing strategy that exchanges too much infor-
mation may degrade the overall performances by flooding the underlying solvers.
Conversely, no sharing at all might not help solve more problems.

In this section, we will explore the two main strategies for parallel SAT solving:
the « portfolio » approach (Section 2.2.1) and the « divide and conquer » approach
(Section 2.2.2). We will discuss how these strategies are employed through CDCL-
based SAT procedures and the conditions for sharing information (Section 2.2.3).

2.2.1 Portfolio (competition-based)

Portfolio approaches [103] consist in deploying multiple solvers to compete on the
same problem, with the winner being the first to provide an answer (illustrated in
Figure 2.2). At that point, the search by the other solvers is stopped. Each solver
consumes its own CPU time. The problem-solving time is then determined by the
real-time of the solver that finds the solution. The first parallel portfolio solver
was MANYSAT [103]. This approach is highly effective on industrial instances, as
it has won numerous competitions in this category. In fact, several solvers based
on this concept have gained the first place in the SAT competitions, such as: P-
MCOMSPS [34] in 2021 and PARKISSAT-RS [35] 2022.
This strategy aims to increase the probability of finding a solution using the diversi-
fication and intensification principles [104].

Diversification

As we can observe, the justification for using portfolio-like approaches is that the
performance of the CDCL algorithm is greatly influenced by numerous parameters,
especially those used in decision or restart heuristics. Indeed, at this stage, there
are numerous possible heuristics, and none of them dominates all others on all in-
stances.

36 Chapter 2. SATisfiability solving

Sharing

SAT solver

Solution
found

SAT solver

FIGURE 2.2: Portfolio based approach

In order to avoid too much redundant work, it is desirable for different solvers not
to explore the search space in the same way. To prevent this, it is necessary to choose
heterogeneous strategies; this is diversification [104]. This diversification is achieved
through some parameters known to be highly sensitive in the CDCL algorithm, such
as decision variables, restart policies, learning schemes, the used random seed, and
more. For example, in MANYSAT [103], a fixed number of workers (threads) are
used, each with differences in their restart strategies, decision heuristics, and learnt
clause schemes. Others achieve diversification through block branching [105]. Each
worker focuses on a particular subset of variables. For each worker, the decision
ranking score of the variables (e.g., VSIDS) it is in charge of is periodically adjusted.
This strategy forces workers to choose decision variables within their own subset.

Intensification

Nevertheless, the use of completely orthogonal approaches can reduce the relevance
of shared clauses. When a solver learns a new clause, it is within a certain relevant
search space. When this clause is shared with another solver, that solver may be
in a different part of the search space, so the clause is of no interest to it (already
satisfied, for example). Thus, it is sometimes useful to direct multiple CDCL solvers
towards the same search space to take advantage of shared learnt clauses; this is
intensification [104].

To intensify the search, a master transmits to a slave a set of literals that appeared in
conflict analysis during its search (obtained from 1-UIP) and the set of learnt clauses
during the search. The goal is for the slave to consider the research conducted by
the master around the same conflicts and ensure that it does not duplicate the work
of the master by adding the received learnt clauses. To achieve this, when a slave
receives this set of literals, it increases their scores (e.g., VSIDS) to have a higher
chance of choosing them as decision literals. It’s worth noting that conflict analysis
in MANYSAT is extended to include clauses satisfied in implication graphs. This

2.2. Parallel SAT solving 37

FIGURE 2.3: Dynamic Divide-and-Conquer approach

latter improvement is not common and introduces a new way to reduce the size of
assertive clauses. Finally, it should be noted that when the master restarts, the slaves
also restart and enter a new intensification phase.

Diversification and intensification are two orthogonal axes. The challenge, therefore,
is to find the right "distance" between different processing units, that is, to strike the
right balance between intensification and diversification.

2.2.2 Divide-and-Conquer (cooperation-based)

The Divide and Conquer approaches (cooperation-based) involve recursively divid-
ing the search tree into multiple subproblems (Figure 2.2.2). Several approaches are
proposed in the literature, with one of the most commonly used being the guiding
path [106]. It divides the search tree in the form of a path to guide solvers to disjoint
subspaces. However, this method has a drawback on the computational loads gen-
erated by the subspaces being unbalanced. Indeed, dividing a search tree into two
parts can result in two completely different subspaces in terms of resolution time:
one very easy to solve (in a few seconds) and the other much more difficult, poten-
tially remaining undetermined. The decomposition into subproblems can be done
in two different ways:

Static decomposition. The first approach, known as static, decomposes the search
space into subspaces before resolution. It is employed in the CUBEANDCON-
QUER solver [107]. In this method, a large number of subspaces is generated to
reduce their complexities and solve them more quickly in parallel. However,
this division into subproblems can be time-consuming, even if it is limited to
a certain number of subproblems. On some problems, the time spent on this
division can be longer than their resolution.

Dynamic decomposition. The second approach is called dynamic since it divides the

38 Chapter 2. SATisfiability solving

search tree during resolution (Figure 2.3). When a solver is idle and there are
no subspaces pi left to solve, a load balancing policy must be implemented.
The most well-known is work stealing: when a solver is idle, it "steals" a portion
of a subspace from another solver by dividing it in two. For instance, in the
Figure 2.3, the first solver terminates its search on the subspace p1, so it steals a
portion from the second solver subspace p2 leading to p2′ being solved by the
first and p2′′ by the second solver. However, when all dynamically created sub-
spaces become too easy, the parallel solver then performs a very large number
of subspace splitting, slowing down the search [108].

Unlike the competitive method, these two Divide and Conquer methods must wait
for all solvers to finish their searches to prove that an instance is unsatisfiable. In-
deed, it is necessary to prove that all subproblems are unsatisfiable to demonstrate
that the initial instance is unsatisfiable. However, to prove that an instance is satisfi-
able, it is sufficient to show that one of the subspaces is satisfiable.

2.2.3 Sharing strategies

In the aforementioned parallel approaches, solvers can dynamically share informa-
tion. This exchange warrants a particular focus: if a solver shares its knowledge
(consisting of its learnt clauses), then this information will allow the other solvers
to avoid recomputing the same information (i.e., descending into parts of the search
tree that have already been proven to be unsatisfiable). Thus, exchanging learnt
clauses is helpful in increasing the performance of the global system. However, shar-
ing all learnt clauses can have a negative impact on the overall behavior. Indeed, a
massive exchange can either flood the solver or redirect it towards an irrelevant part
of the search space. Therefore, existing approaches [103, 104, 109, 110] raise the ques-
tions of "what are the relevant clauses to share?" and "between which workers?".

To answer the second question, in almost almost all parallel SAT solvers, clauses are
shared between all workers. However, a more complex solution is to allow each
workerto choose its emitters [111]. In this approach, each worker selects the ones
that are allowed to send it clauses. The workers sending the most relevant clauses
(according to some metric) are invited to continue. If a worker has a bad score, it is
then removed from the emitters and another one takes its place.

When it comes to identifying the relevant clauses to share, the literature outlines two
main strategies for efficiently filtering the learnt clauses:

Static threshold. Many solvers rely on the standard measures defined for sequen-
tial solvers (i.e., activity [26], clause size [76] or the LBD value [23]). Only
clauses with values below a given threshold for these measures are shared.
One straightforward way to determine this threshold is to define it as a con-
stant. For example, clauses up to size 8 are shared in MANYSAT [103], while re-
cent strategies using parallel MAPLECOMSPS engines [34] share clauses with
LBD values of up to 4 or LBD≤2 for parallel PARKISSAT-RS portfolio [35]. In
the SYRUP parallel solver [112], when a worker learns a clause, it waits for the
clause to be used at least once before sending it to the others. The idea be-
hind this is to send only clauses that appear to be useful because already used
locally.

2.3. Conclusion 39

Dynamic threshold Other approaches adapt the above thresholds during the search.
This allows fine control of the flow of learnt clauses during the solving time.
Based on the additive increase multiplicative decrease (AIMD) algorithm used in
TCP to avoid congestion, authors of [113] proposed dynamically adjusting the
size of exchanged clauses between pairs of workers. In HORDESAT [114] shar-
ing is limited in each round to a certain number of literals (i.e., sum of clause
sizes). If too few clauses are shared, the threshold of the measure limit is in-
creased.

2.3 Conclusion

In this chapter, we have explored how sequential SAT solver operates, primarily fo-
cusing on the CDCL algorithm composed of heuristics (BVE, VSIDS, LBD, . . .) that
have demonstrated their effectiveness in various problem domains. It is evident
that the impressive performance of modern sequential solvers arises from the com-
bination of multiple techniques, making the associated sequential program highly
complex. However, there are still unresolved problems that require considerable
time to solve. Thanks to the power of multi-core machines, parallelism paradigms
have opened up new possibilities for improving SAT solving. We have reviewed in
this chapter, a (non exhaustive) of the techniques used in the literature to parallelize
SAT solving, providing a comprehensive understanding of this thesis. It has allowed
us to glimpse the advantages of parallel SAT solving as well as the challenges that
emerged such as clause sharing strategies, fair distribution of search space among
workers, etc. The next chapter is dedicated to the studies conducted in the context
of BMC resolved via SAT procedures on both sequential and parallel settings.

40

Chapter 3

SAT-Based BMC - Positioning,
Analysis and Benchmarking

Contents
3.1 State-of-the-art SAT-based BMC . 41

3.1.1 Decision heuristics . 41
3.1.2 Learnt clause metric . 42
3.1.3 (In/Pre)processing . 43

3.2 Parallel SAT-based BMC . 44
3.2.1 Portfolio-based . 45
3.2.2 Decomposition-based . 45

3.3 Analysis of SAT-based BMC formula 46
3.3.1 A running example . 46
3.3.2 Observations from propositional formula 49
3.3.3 BMC features . 50

3.4 Benchmarking . 52
3.5 Summary & Discussion . 52

Early chapters have shown that propositional formula and thus SAT solving are left
with no information about the problem at hand.

While other external approaches to the CDCL algorithm (In/Pre-processing 2.1.2)
aim to simplify the initial formula or add new clauses before/during the solving,
it’s worth noting that while these approaches study the structure of the formula,
they rarely exploit the specific problem type. Most existing works in this area focus
on developing generic approaches to fine-tune SAT-based CDCL solving.

The first two sections (Sections 3.1, and 3.2) of this chapter provide a state-of-the-
art overview of approaches that exploit the characteristics of BMC problems. Fol-
lowing this, an in-depth analysis of the characteristics of the BMC instance will be
conducted in Section 3.3. Some of these features will be studied to varying degrees
in the remainder of the document in order to propose SAT optimization heuristics
for solving BMC problems. To conclude, a description of the benchmark used for
conducting experiments in this thesis is presented in Section 3.4.

3.1. State-of-the-art SAT-based BMC 41

3.1 State-of-the-art SAT-based BMC

After reviewing the fundamental concept and heuristics employed by CDCL-like
SAT solvers, it becomes evident that some of the proposed heuristics can be adapted
to the BMC context. Considering the specific structure of BMC, this can lead to
optimizations of the SAT solver and accelerates its performance. The remainder
of this section provides an overview of state-of-the-art BMC-based heuristics from
decision ordering passing by learnt clause metric and symmetry detection in the
BMC propositional formula.

3.1.1 Decision heuristics

Most heuristics in the literature leverage the incremental nature of BMC. SAT tech-
niques aim to exploit the commonality between different unrolling depths instances
and reuse previously learnt conflict clauses to prune the current search tree. For in-
stance, Wang et al. [115] propose an algorithm to exploit the correlation among a
sequence of successive bounds. They do this by predicting and successively refining
a partial variable ordering. This variable ordering is computed based on the analy-
sis of all previous unsatisfiable instances. It’s then combined with the SAT solver’s
existing decision heuristic (e.g., VSIDS), to determine the final variable decision or-
dering. For each previous unsatisfiable instance, they identify all the variables ap-
pearing in its unsatisfiable core. Before solving the next SAT formula of the next un-
rolling depth k + 1, variables from all the previous unsatisfiable cores are combined
to determine a partial linear variable ordering. This is called "partial" because only
a subset of the variables may appear, and each variable is assigned a score. When
solving the current instance, variables with higher scores are given higher priorities
in the decision-making process. Yin et al. [116] propose an algorithm to analyze the
transition system model, and then utilize the structure information hidden in the
model to dynamically refine the decision ordering of variables in SAT solving. The
basic idea is to guide the SAT solving search process based on the structure of the
transition system: a transition variable can be set true only if its preceding transition
has already been taken. If several variables have the same priority, it relies on the
default heuristic like VSIDS to make decisions.

Nonetheless, other studies do not take into consideration the incremental nature
of BMC and thus focus solely on a single unrolling depth. For instance, Strich-
man’s [117] main idea is to exploit the variable of the original propositional formula,
i.e., system’s variables without auxiliary variables used to convert the BMC problem
in CNF. Indeed, in the Davis-Putnam decision procedure, the variables are decided
in a specific static order. This static order is determined following either a forward
or a backward Breadth - First Search (BFS) of the k-unfolding of the variable de-
pendency graph. The search starts from the set of variables encoding the evaluated
property. Roughly speaking, the intuition behind this approach is that it’s possible
to assign variables belonging to different time frame without the SAT solver realiz-
ing that these assignments are already contradicting each other. It might be the case,
for example, that all variables between steps 2 and 10 are already assigned, and as
are all variables between steps 12 and 15. To the SAT solver, the assignments are still
consistent until it tries to assign the variables with the index 11, revealing that there
is no transition between the currently assigned index 10 and index 12 states. Thus,
many of the previous assignments have been tried in vain.

42 Chapter 3. SAT-Based BMC - Positioning, Analysis and Benchmarking

Authors of [118] have implemented, in the ISAT solver [119], the static order in [117]
providing a BMC-BACKWARD and BMC-FORWARD ordering of the variables. These
heuristics favor variables depending on the smallest (resp. the highest) unrolling it-
eration. They also provide other ordering schemes such as DOMINANT-FIRST (resp.
DOMINANT-LAST) which starts (resp. ends) by deciding on the non-auxiliary vari-
ables (i.e., the original variables that encode the BMC problem before conversion to
CNF). The BOOLEAN-FIRST heuristic gives priority to Boolean variables originating
from the BMC problem before conversion. As Boolean can only have the value 0
or 1 they can only be decided once. Deciding them first is assumed to cutoff large
portions of the search space at an early stage of the algorithm. They proposed others
optimization, but the first effective one they observed was a combination of multi-
ple heuristics, including the BOOLEAN-FIRST and SHRUNK-INTERVAL-FIRST which
decides first on variables whose their definition intervals (integer and real) have de-
creased (shrinked) the most since the beginning of the solving process.

It’s worth noting that the majority of studied BMC problems involve a single prop-
erty at a time. Chen et al. [120] present efficient decision ordering techniques that can
improve the overall verification time of a cluster of similar properties. The method
exploits the assignments of previously generated execution and incorporates it in
the decision ordering heuristic for current evaluating property. Similar properties
generally have a large intersection on both corresponding CNF clauses and coun-
terexample assignments. Because of the significant overlap in the counterexample
assignments, the result of previously checked properties can be used as a learning
tool for unchecked properties.

3.1.2 Learnt clause metric

Here, we can see that there is a multitude of diverse research on decision order-
ing optimizations. This highlights the heightened sensitivity of CDCL algorithms to
the selection of branching variables. Furthermore, it’s important to note that learnt
clauses are also of great significance as they allow for the identification of unnec-
essary subpaths to be revisited. However, to the best of our knowledge, very few
studies have been conducted in providing a specific measure to asses the quality of
the learnt clauses to protect when dealing with BMC problem resolution. It’s worth
mentioning that the sole study approaching this topic is the one found in [121]. The
research conducted by [121] investigate the origin of each variable with respect to
its unrolling depth. Their study reveals that the LBD [23] measure, widely used in
nearly all modern SAT solvers to identify good learnt clauses, is correlated to the
unrolling steps measure they have defined. This measure represents the difference
between the maximum depth (max) and the minimum depth (min) of the variables
within a clause, denoted by the (MAX-MIN)-DEPTH measure. They attempted sev-
eral strategies to harness the information from variable unrolling iterations. How-
ever, the proposed heuristics did not yield positive results. These attempts included
enforcing variable elimination based on their unrolling iterations, adjusting variable
scores, and protecting clauses using a metric other than LBD. In the latter approach,
they experimented replacing the strategy for protecting clauses from deletion, which
primarily relies on the LBD score of clauses, with the (MAX-MIN)-DEPTH measure.
Nevertheless, they observed a slight decline in performance. The given explana-
tion for these results is that in the solver they employed for experimentation, GLU-
COSE [23], the LBD score is used not only in assessing clauses but also in triggering
restarts. Consequently, they suggest that it might be necessary to adapt the restart

3.1. State-of-the-art SAT-based BMC 43

heuristic using this new metric to achieve performance levels that are, at the very
least, comparable.

3.1.3 (In/Pre)processing

All the preprocessing techniques discussed earlier (Section 2.1.2, Chapter 2) can be
applied to a BMC problem with a fixed time bound k. However, many of these tech-
niques cannot be directly used in the incremental version of BMC. The reason for this
limitation lies in the fact that when variables are removed during the preprocessing
phase for the initial bound k, their reintroduction in a later step (when increasing
k) of the algorithm may yield to an incomplete and incorrect variable elimination
process. For example, latch variables can be eliminated from the transition relation
T(s0, s1) when solving the problem unrolled to k = 1. However, this can create
inconsistencies when adding T(s1, s2) and solving the problem with k = 2, as the
variables connecting T(s0, s1) to T(s1, s2) are no longer properly represented.

The authors of SATELITE [86] attempted, on a small benchmark of BMC problems,
to preprocess the entire formula each time they reran the instance after unwind-
ing the depth by one. However, multiplying the calls to the preprocessing engine
can be time-consuming when dealing with problems involving large iteration steps.
To leverage this issue, the authors of [122] came up with the idea of invoking the
preprocessing engine only once. They introduced the concept of Don’t Touch vari-
ables, which restricts the variables and clauses that the preprocessor is allowed to
eliminate. They demonstrated that these variables can be easily calculated and are
relatively few in number.

For the inprocessing approaches lots of studies have been conducted, especially on
the use of the symmetrical feature of a BMC formula. Indeed, due to the succes-
sive unrolling of the transition relation, the formulas generated by BMC contain a
symmetrical part:

I(s0) ∧ T(s0, s1) ∧ T(s1, s2) ∧ · ∧ T(sk−1, sk)︸ ︷︷ ︸
symmetric part

∧[[¬φ]]k

In other words, if we ignore the parts related to initial states and the property, the
formula is perfectly symmetrical. This means that if the CDCL solver deduces a new
clause by performing resolutions only on the symmetrical part, then this new clause
can be duplicated in other time frame simply by renaming the variables.

Strichman’s approach [117] aims to encourage the learning of identical clauses at
different time steps by forcing variable assignments to generate conflicts that result
in the desired clause learning. Each of these clauses can be viewed as a constraint
on the state-space, which, on the one hand preserves the formula’s satisfiability, and
on the other hand, it prunes the search tree.

Example 3.1. Consider the current variable assignments for a formula F : x2 =
⊤, y6 = ⊥ and z10 = ⊥ where the variable’s index corresponds to the time step
it belongs to. This leads to a conflict, which is added to F : µ = (¬x2 ∨ y6 ∨ z10).
According to [117], the assignment x3 = ⊤, y7 = ⊥ and z11 = ⊥ will also result in a
conflict, leading in the replicated clause µ = (¬x3 ∨ y7 ∨ z11) being added to F.

44 Chapter 3. SAT-Based BMC - Positioning, Analysis and Benchmarking

This reasoning only works if the formula is entirely symmetrical (excluding I(s0)
and [[¬φ]]k). When considering the entire BMC formula, which is no longer com-
pletely symmetrical, the approach needs adjustment. One way to do this, as sug-
gested by Strichman [117] is to simulate an assignment µ for every potentially du-
plicable clause and check if it leads to a conflict. The additional computational over-
head of adding and simulating the replicated clauses was found to be small, leading
to an acceleration in the search, although not dramatically so.

Continuing the research on clause duplication, other alternatives to simulating po-
tentially duplicable clauses were proposed. The approaches in [123, 124] involved
marking clauses as duplicable (those that do not depend on I(s0) or [[¬φ]]k). This
marking allows for determining, during a conflict, if all the clauses used in the con-
flict analysis are marked as duplicable; if so, then the new clause is also considered
duplicable.

In a similar context, Yin et al. [125] proposed to use additional variables, referred
to as activation literals, to characterize duplicable clauses. To achieve this, they sug-
gested adding activation literals to all transition relations. Thus, through the conflict
analysis process, the parts of the formula from which the new learnt clause is de-
rived can be identified simply by examining the variables in that clause. If a learnt
clause contains one of the activation literals for initial states or the property, then the
clause is considered non-duplicable. Otherwise, the clause can be duplicated based
on the same methodology as [123, 124]. Their approach is primarily dedicated to
incremental BMC resolution but remains applicable to a fixed bound as well.

Other works, such as [126], propose a method called Symmetry reduction in BMC
(SBMC). This approach is used as a preprocessing procedure with the aim of re-
ducing the problem’s size by generating a set of representative transitions. These
transition sequences consist of sequences of representative transitions that represent
their equivalence classes. As a result, during model checking, the number of se-
quences dealt with is limited to these representative transition sequences, which are
significantly smaller in number than the total number of transition sequences in the
initial model.

Elsewhere, community structures have enabled the characterization of many indus-
trial problems [94], including BMC. In [121], various experiments were conducted,
revealing a relationship between the time steps of variables in BMC instances and
the communities found in its CNF encoding. This demonstrates that the community
structure has allowed the identification of a strong dependency between variables
from different time steps. They observed that when the value k is sufficiently large,
the total number of communities approximates this value. There is a clear pattern,
suggesting that the correlation may be very strong. Notably, they observed that
communities computed by the clustering algorithm contain variables from different
unrolling depths, rather than simply aggregating all variables of the same depth.
This suggests that communities are spread over successive time steps, revealing a
non-trivial structure existing in the CNF encoding, as also pointed out in [127].

3.2 Parallel SAT-based BMC

Most parallel methods employed for BMC resolution leverage two key factors: the
incremental nature of BMC and its structure into time frames, allowing for parallel

3.2. Parallel SAT-based BMC 45

formula decomposition and the concurrent resolution of multiple distinct unrolling
depths. Numerous studies have been conducted, and this section aims to summarize
these findings.

3.2.1 Portfolio-based

Generally when we talk about portfolio parallel architecture on BMC instances, we
generally refer to the execution of multiple BMC problem with different unrolling
depths. Like in [22, 128], who proposed distributing successive bound values k to a
network of workstations. As soon as a satisfiable assignment is found, the search is
terminated. If a task finishes without finding a satisfiable assignment, the next task
is assigned to the idle workstation until there are no tasks left. A generic framework,
called TARMO, was developed for the same purpose [129], which parallelizes BMC
for shared memory environments and clusters of workstations. The framework in-
cludes a generic architecture for a shared clause database that enables easy clause
sharing between SAT solver threads solving different instances with distinct bounds
k.

3.2.2 Decomposition-based

On parallelizing the decomposition of the BMC formula, several approaches have
been studied, including the one proposed by [130] that extended the concept from
a non-specific solving problem (generic) [131] to the domain of BMC. This method
involves distributed-SAT solving across a network of workstations using a Master/-
Client model, wherein each Client workstation holds an exclusive partition of the
SAT problem. While authors of [131] aimed to address the scalability issue by par-
titioning the clauses disjointedly, the variables appearing in these clauses are not
disjoint. In this setup, diagnosis is performed by the Master, and each Client ex-
ecutes a local backtrack when requested by the Master. However, when a Client
completes a unit propagation on its set of clauses, it needs to broadcast the newly
implied variables to all other processors, including the Master and other Clients. The
authors observed that over 90% of messages are broadcast messages. In contrast, the
work in [130] optimized communication within the context of BMC by introducing
a structural partitioning approach. This strategy allocates at each processor, a dis-
tinct set of consecutive BMC time frames. As a result, when a Client workstation
completes unit propagation on its assigned clauses, it only broadcasts the newly im-
plied variables to specific Clients. This approach capitalizes on the knowledge of the
SAT-problem partition topology possessed by each Client. This allows for effective
communication between Clients and ensures that receiving Clients never need to
process a message not intended for them.

Still, many researches have exploited the structure of a BMC formula and have
proposed finer partitioning methods, mostly used in the incremental SAT-based
BMC [132] framework. We can cite the work of [133] who proposed a disjunctive
decomposition of BMC instances into simpler and independent subproblems based
on tunnels, which are sets of control paths. Each subproblem is then simplified using
slicing, data path simplification, and tunnel-specific control flow constraints before
being solved independently. At each increment of the unrolling depth k, they re-
compute the number of tunnels needed to partition the problem. The approach was
tested within an SMT-based BMC framework.

46 Chapter 3. SAT-Based BMC - Positioning, Analysis and Benchmarking

The authors of [134, 135] have used the symmetry of the formula to decompose it
into partition as a Master/Slave scheme. The master collects the non-symmetric
parts (initial state and property) and sends a different partial assignment to each
slave. Besides, the unrolling of the transition relation is postponed and performed
locally by each individual slave (partition). The first slave is in charge of the tran-
sition T(s0, s1), the second slave with T(s1, s2) and so forth. The similarity between
partitions allows for sharing and replication of conflict clauses between partitions
in a natural way; if a conflict occurs in the partition in charge of T(s2, s3), it can be
added to the partition T(s3, s4) by just changing the indexes of the conflict’s clause
variables. When all slaves terminate, the master increases the bound limit k to k + 1
and shares these conflicting clauses among the slaves.

3.3 Analysis of SAT-based BMC formula

As we have seen in the previous sections, a profound study of the specificities of the
problem at hand leads to adaptations of the CDCL algorithm’s components, result-
ing in a faster and more efficient resolution.

In this section, we summarize the various features of BMC problems that piqued our
interest during this thesis. Specifically, the first feature provides additional informa-
tion about the variables in the SAT formula, specifying the unrolling depth associ-
ated with each variable within the BMC problem. The second piece of information
determines beforehand, the category of the evaluated LTL specification from the hi-
erarchy of Manna & Pnueli [39]. Last but not least, in light of all this, we introduce
an additional metric used to characterize the learnt clauses during solving. This new
metric is based on the meaning of the variable’s clause in the BMC problem.

In the rest of this section, we give the intuition behind extracting these information,
illustrating it with an example.

3.3.1 A running example

Let’s consider an example of a bit-like
counter system with four bits: x, y, z,
and w. A representation of this system is
displayed in Figure 3.3.1 in an SMV lan-
guage [1]. This program is divided into
several parts:

(1). It starts by enumerating the system
variables and their definition inter-
vals. The provided program deals
with Boolean variables only.

(2). The initialization part sets the initial
values of the system variables.

Variables
x : boolean; y : boolean;
w : boolean; z : boolean;

Initialization
x := FALSE; y := FALSE;
w := TRUE; z := TRUE;

Transitions
x := !(x = y)
y := !y

w :=
{

!w if x ̸= y
w otherwise

z :=
{

z if w ̸= z
!z otherwise

LTLSPEC
G(!x | !y)

FIGURE 3.1: SMV program
of bit counter example

3.3. Analysis of SAT-based BMC formula 47

s0

¬x ∧ ¬y ∧ w ∧ z

s1

¬x ∧ y ∧ ¬w ∧ ¬z

s2

x ∧ ¬y ∧ w ∧ ¬z

s3

x ∧ y ∧ ¬w ∧ z

s4

¬x ∧ ¬y ∧ ¬w ∧ z

s5

¬x ∧ y ∧ ¬w ∧ z

FIGURE 3.2: Kripke structure of bit-like counter example

(3). The different states each variable can take during the execution, are encoded
as constraints. These constraints set the next value that each variable will take.

(4). The last section encodes the LTL property φ that will be checked on this model1.
In this case, it expresses the condition where x and y must not hold at the same
time at any stage in the system. The negation of G(!x | !y) would be a liveness
property2 of the form: F(x & y), indicating that at some point in the future,
both x and y will be simultaneously true.

We can naturally encode this model into its Kripke structure representation as de-
picted in Figure 3.2, where M = ⟨S, T, I, Act, AP, L⟩ with:

- S = {s0, s1, s2, s3, s4, s5},

- T = {(si, si+1)|0 ≤ i ≤ 4} ∪ {(s5, s4)},

- I = {s0},

- Act = ∅,

- AP = {x, y, w, z},

- L = {s0 : ¬x ∧ ¬y ∧ w ∧ z, s1 : ¬x ∧ y ∧ ¬w ∧ ¬z, . . . }.

The complete representation of this system is thus reduced to 6 states. In the bounded
semantics, we limit the model representation K up to specific depth k. For instance,
at k = 0, s0 serves as the initial state that represents the state of the variables during
the initialization phase of the program. Here, x and y are set to f alse, while w and z
are set to true. The property is still verified at this moment.
With this initial assignment, the program can progress to only one possible situation,
represented by the state s1. At this stage, the system is unrolled up to bound k = 1,
where we observe no violation of φ: x and y are not true simultaneously in either s0
or s1 also. Therefore, we cannot draw any conclusions about the validity of the prop-
erty. One can apply automata-based verification procedures to evaluate the validity

1It is possible to specify multiple properties that will be checked one by one.
2specifically a guarantee property according to Manna & Pnueli’s hierarchy

48 Chapter 3. SAT-Based BMC - Positioning, Analysis and Benchmarking

(x0 ∧ y0 ∧ w0 ∧ z0)︸ ︷︷ ︸
I(s0)

∧
(3.1)

(
x1 = (x0 ̸= y0) ∧ y1 = ¬y0 ∧ z1 = (w0 ̸= z0) ∧ w1 = y0

)
︸ ︷︷ ︸

T(s0,s1)

∧
(3.2)

(
x2 = (x1 ̸= y1) ∧ y2 = ¬y1 ∧ z2 = w1 ∧ w2 = (x1 ̸= y1)

)
︸ ︷︷ ︸

T(s1,s2)

∧
(3.3)

∨ x0 ∧ y0 ∨

∨ x1 ∧ y1 ∨

∨ x2 ∧ y2 ∨

︸ ︷︷ ︸

[[¬φ]]2

(3.4)

FIGURE 3.3: Bit-like counter example propositional formula unrolled
up to bound k = 2

of property φ in this system K. By closely examining the automaton in Figure 3.2,
we can deduce that at k = 3, the sequence s0s1s2s3 is sufficient to invalidate property
φ.

In a SAT-based verification, we need to encode the model and the property into a
propositional formula. By specifying the unrolling depth value k to 2, the resulting
propositional formula is displayed in Figure 3.3. The set of variables {xi, yi, wi, zi}
are decision variables, where each of them represents the state of the corresponding
system variables x, y, w, and z, respectively, at step i = 0, . . . , k. The encoding uses
the simplified SAT formula 1.1 for simplifying the reading (this explains why cycle
constraints do not appear in the encoding). Mainly, the constraints encode:

- Initial. Subformula 3.1 translates the initial states I(s0). Since there is only one
initial state, this results in only one constraint.

- Transition. Subformulas 3.2 and 3.3 refer to the transition relation unwound
down to depth 1 and 2, respectively. The first subformula encodes the tran-
sition T(s0, s1) (s0 −→ s1) whereas the second encodes the transition T(s1, s2)
(s1 −→ s2).

- Property. Formula 3.4 describes the negation of the property φ. Each of these
constraints expresses the same condition: x and y should be true simultane-
ously, on at least one step i = 0, 1, 2.

Formula 3.3 is then encoded in CNF to be evaluated by the SAT solver. Initially,
with k = 2, the property is not invalidated. Therefore, the SAT solver will not find
any possible assignment of variables xi, yi, wi, zi that invalidates the property. Con-
sequently, it will deduce that the formula is UNSATISFIABLE.

3.3. Analysis of SAT-based BMC formula 49

3.3.2 Observations from propositional formula

We can observe quite clearly that the constraints highlighted in blue (e.g., x0 ∧ y0),

involve variables used to encode the property only, i.e. x and y. We refer to these
variables as property variables. Where other constraints highlighted in blue, such

as x1 = (x0 ̸= y0) , use property variables but the difference with blue constraints

is that it will bring in extra variables derived from the conversion of some logical
operators (̸=, =⇒ , . . .) to allow their conversion to a CNF. Therefore, the constraints
in yellow include auxiliary variables not originating from the original problem.

In contrast, the green-highlighted constraints, such as z2 = w1 , define the state of

the problem variables, excluding those implicated in the encoding of the property,
meaning the constraints that involve only w and z. Similar to the yellow constraints,

the brown-highlighted constraint z1 = (w0 ̸= z0) also introduces new auxiliary

variables (due to ̸= operator).

Based on these observations, we can deduce a partitioning of the SAT formula vari-
ables into two disjoint subsets: M’ and J ’, whereM’ is the set of variables of the
original problem, corresponding to x, y, z, and w, while J ’ is a set of auxiliary vari-
ables used to finalize the conversion into a CNF formula. For instance logical oper-
ators (↔, =⇒ , ̸=, . . .) will rely on auxiliary variables for their representation. Since
the standard CNF conversion is obtained by the distributive properties of ∧ and ∨;
this results in an exponential increase in the size of the formula. A common tech-
nique to reduce the size of clauses is to introduce extra variables to represent the
truth value of subformulas [55, 56]. Usually, these extra variables represent more
than 80% of the total number of variables in the CNF formula.

Example 3.1. Consider the formula F = (A ∨ ¬B) ∧ ¬(C ∨ D) where A, B, C and D
are subformulas already in CNF. F may be converted more succinctly by the intro-
duction of a variable xC∨D that represents the subformula (C∨D). Thus, F = ((A∨
B) ∧ ¬xC∨D) ∧ (xC∨D ↔ (C ∨ D)). After converting each equivalence into CNF, we
obtain F = (A ∨ ¬B) ∧ xC∨D ∧ (C ∨ D ∨ ¬xC∨D) ∧ (¬C ∨ xC∨D) ∧ (¬D ∨ xC∨D). We
can state that the previous formulation of F is equisatisfiable with the new formula
that introduces the variable xC∨D. The transformation clearly preserves satisfiabil-
ity [55, 56].

The encoding of the property φ involves variables fromM’ (x and y). It may include
some auxiliary variables already present in J ’ due to CNF transformation but can
also introduces new auxiliary variables denoted by the set D.

LetM’φ denotes the set of variables fromM’ involved in φ and J ’φ denotes the set
of variables from J ’ involved in φ. These definitions lead to the definition of three
disjoint sets:

• P = J ’φ ∪M’φ ∪ D, the set of the variables used to encode the property
(meaning, x and y),

• M = M’\M’φ, the set of variables that encodes the model excluding the
property variables (i.e. w and z only), and

50 Chapter 3. SAT-Based BMC - Positioning, Analysis and Benchmarking

• J = J ’\J ’φ, the set of auxiliary variables not involved in the encoding of the
specification.

3.3.3 BMC features

It turns out when switching from a system representation (SMV [1], VERILOG [2],
AIGER [38], . . .) to a propositional formula, valuable information may be lost. Among
them the inability to differentiate the variables related to the property from those
generated by the CNF conversion algorithm. Additionally, having insights into the
unrolling depth to which each variable belongs, or having indications within the
SAT solving process regarding the nature of the property (e.g., safety, guarantee,
etc.), can be beneficial. Unfortunately, all of these details remain hidden from SAT
procedures.

The starting point of our investigation is to extract some features of BMC problems.
As a first insight, one can observe that SAT-based BMC variables can be trivially di-
vided according to the step each variable belongs to. In our example, there are three
possible partitions: variables associated with the initial state ({x0, y0, w0, z0}), those
belonging to step 1 ({x1, y1, w1, z1}), and finally, those of step k = 2. Many studies on
SAT-based BMC have pointed out this characterization and proposed optimizations
particularly in the decision variable ordering heuristic (see Section 3.1).

Secondly, even though the majority of works on SAT-based BMC solving, presented
subsequently, focus on the verification of safety properties, it would be interesting
to apply the syntactic characterization of Manna & Pnueli [39]. This could be done
in order to compute the corresponding class in the hierarchy, given that the LTL for-
mula is known a priori. This allows to propose a parametrization of the SAT solving
tailored to each category of the hierarchy.

Clause classification metric CX

Finally, since we can categorize the CNF variables into three disjoint sets: variables
encoding the modelM, those for the property P and auxiliary variables J used for
the conversion, it would be interesting to integrate this information within the learnt
clauses. Typically, a learnt clause spans on variables that belong to both the model
and the LTL property. Therefore, we suggest here a sharper classification based on
the composition of clause variables.

In the remainder of this section, we introduce a classification of variables, and con-
sequently, a classification of clauses, based on the underlying BMC problem. The
approach outlined here can be applied to any problem, provided that the relevant
information is captured during the conversion of the original problem into a propo-
sitional SAT formula. For instance, one can consider the graph coloring problem,
used for register allocation. Basically this process assigns one variable per register.
This is achieved by translating an interference graph into a set of constraints. Dur-
ing this translation, the information about "critical" variables is lost, i.e. which node
is in conflict with most of others. One could use this information to split the set of
variables into multiple classes. Thus, a clause could be characterized by summing
the degree of each of its variables.

For a set of clauses F , CX = {ω ∈ F | ∀v ∈ V(ω), v ∈ X} denotes the categories
of clauses, where X can be either P (the property),M (the model), J (the auxiliary

3.3. Analysis of SAT-based BMC formula 51

SMV

VERILOG

BTOR

BLIF

AIGER DIMACS

LTL

nusmv

nusmv

verilog2smv

yosys

yosys Boolector
aigtobtor

aigtoblif

bliftoaig

aigtosmv

aigtocnf

ltl2smv

FIGURE 3.4: System format mapping

FIGURE 3.5: The dashed box marks the BSALTIC framework

variables of the model), PJ (property and auxiliary variables), PM (property and
model variables), MJ (model and auxiliary variables) or PMJ (property, model
and auxiliary variables).

As a result, the colored boxes of the formula 3.3 highlight clauses according to this
classification: red box defines CPMJ clauses covering variables from the three sets
P ,M, and J . The brown boxes encompass CMJ clauses containing model variables
({w, z} ∈ M) and auxiliary variables, etc. Consequently, we can study the utility of
each of the above classes of clauses during the solving process. Further analyses are
conducted and presented in the subsequent Chapter 4.

52 Chapter 3. SAT-Based BMC - Positioning, Analysis and Benchmarking

3.4 Benchmarking

A wide range of openly available LTL model checking problems come under the
formats SMV [1], VERILOG [2], AIGER [38], etc. For the purpose of this thesis, the
SMV language appeared to be the most suitable for facilitating the extraction of the
aforementioned features.

The graph in Figure 3.4 provides an overview of the possible translations between
these languages into SMV, and consequently into a propositional formula in CNF
(DIMACS file format).

During this thesis, we combined several tools that led to the development of a frame-
work called BSALTIC3, tailored to our needs. Figure 3.5 displays the architecture
of the framework, which involves NUSMV [136], SPOT [50], and PAINLESS [137]
frameworks. BSALTIC takes three parameters as input, which are required for any
BMC problem:

1. the modeling system M in SMV language,

2. the LTL specification φ, and

3. the bound k ≥ 0.

SPOT is used to identify, syntactically, the class of LTL formula it belongs to accord-
ing to the hierarchy of Manna & Pnueli. Additionally, it was also used to compute
the automata representation of the problem (see Chapter 6). On the other hand,
NUSMV [136] provides direct access to conversion procedures such as the Tseitin
transformation [56] or the compact conversion of Sheridan [55]. Consequently, the
produced DIMACS file serves as an encoding of the BMC problem into a CNF for-
mula. These two pieces of information are then processed by the PAINLESS interface,
which acts as an aggregator of solvers [137]. Our modified versions of the CDCL
solvers, such as MAPLECOMSPS solver [32] or KISSA-MAB [33], are integrated into
this interface. This interface also facilitates the integration of parallel approaches.

Our dataset comprises SMV hardware programs (each with its respective LTL prop-
erties) collected from various benchmarks, including the HWMC Competition (20174

and 20205), hardware verification problems [136], the BEEM database [138], and the
RERS Challenge6. Some LTL properties have been generated using Spot [50] on var-
ious bound k = {10, 20, 40, 60, . . . , 1000}.

3.5 Summary & Discussion

We have observed a rich state-of-the-art, indicating significant interest in BMC and
its impact on the SAT solving. We have also taken a global view of the studies con-
ducted in the context of parallel SAT solving, noticing that most of these studies
take into account the specific structure of the BMC formula, leading to a multitude
of decomposition strategies that effectively enhance the solving process.

3For a description of our setup, detailed results and code, see https://akheireddine.github.
io/

4http://fmv.jku.at/hwmcc17/
5http://fmv.jku.at/hwmcc20/
6RERS models translated using NUSMV: https://tinyurl.com/29a4jcme

https://akheireddine.github.io/
https://akheireddine.github.io/
https://tinyurl.com/29a4jcme

3.5. Summary & Discussion 53

Through a bit-counter example, we have listed interesting features of BMC that can
allow fine-tuning of some components of the CDCL algorithm.
The main focus of this thesis revolves around the learning mechanism, whether in
adapting the clause deletion heuristic for BMC solving or generating more mean-
ingful learnt clauses to share with the SAT solver. All of this is carried out in both
sequential and parallel contexts.

For the remainder of this thesis, the next chapter presents our first contribution,
which leverages the clause classification presented above to propose an adaptation
of the clause deletion and sharing policies with the aim of protecting or share inter-
esting learnt clauses.

54

Chapter 4

Tuning the learnt clause databases

Contents
4.1 Analysis of clause classification feature 55
4.2 Heuristics to identify interesting clauses 59

4.2.1 Non-automated procedure (HS) 59
4.2.2 Semi-automated procedure (HLP) 59

4.3 Experimental Evaluation of BMC-based Selectors 61
4.4 BMC-based Sharing strategy . 63
4.5 Parallel Experiments . 63
4.6 Global conclusion . 67

The concept of relevant information in SAT procedures is quite unclear. Many exist-
ing techniques manage learnt clause databases using generic metrics (e.g., LBD [23],
Activity [26], etc.) that help characterize potentially high-quality learnt clauses.
However, in our study, which specifically focuses on solving BMC problems, we
have not come across any research that provides a meaningful measure that allow
the characterization of relevant learnt clauses.

This work resulted in a publication at the CP’2021 conference, and its extension
was later published in the CONSTRAINT journal. Our primary focus is on the "learnt
clause" features with the intuition that: while the generic LBD metric [23], which has
been used by the best SAT solvers to date, efficiently characterizes learnt clauses for
most problem instances, it can be sharply adjusted with structural information in
the context of BMC. The goal is to design a new way of detecting the relevance of a
set of clauses characterized by their LBD value and, in addition, their belonging to a
class of clauses CX, a feature that we have introduced in Chapter 3.

To achieve this, we introduce the concept of a SELECTOR, which is a vector that
specifies the appropriate LBD value for each category of clauses CX. This allows
to tailor the clause deletion policy based on the clause’s category. For example, a
selector might indicate that learnt clauses of type CP should be protected up to LBD
≤ 8, CJ with LBD ≤ 4, and so on.

In particular, our contributions in this chapter are as follows:

- We propose new heuristics for computing selectors that preserve interesting
learnt clauses from deletion during sequential SAT solving.

4.1. Analysis of clause classification feature 55

- We employ these selectors to facilitate the exchange of information among dif-
ferent CDCL workers in the context of parallel SAT solving, utilizing a portfolio-
based strategy.

- We demonstrate the applicability of this study to any CDCL-based SAT solver
by conducting experiments with our approaches on the two leading SAT solvers:
MAPLECOMSPS[32] and KISSAT-MAB[33].

We begin by investigating the impact of clause classification CX in Section 4.1. Based
on this study, we develop two heuristics, HS and HLP, to compute suitable selectors
for identifying valuable learnt clauses within the SAT solver (Section 4.2). We then
experimented these heuristics in the context of sequential SAT solving using the
well-known solvers MAPLECOMSPS and KISSAT-MAB (Section 4.3). Subsequently,
we explore the application of these selectors in parallel settings. Section 4.4 presents
our sharing strategy for exchanging relevant learnt clauses among CDCL workers
in a parallel portfolio-based strategy. Finally, Section 4.5 presents the experimental
results for the parallel setting, as well as its combination with sequential ones.

4.1 Analysis of clause classification feature

A clause is considered useful when it is involved in either the conflict-analysis proce-
dure or unit propagation. In both cases, the clause is deemed interesting, as it either
contributes to the generation of a conflict clause or aids in propagating a unit clause.

To assess the impact of clause classification, we measured the usage rate of the learnt
clauses during the conflict-analysis procedure1. To do this, through our BSALTIC3

tool, we conducted analyses on MAPLECOMSPS and KISSAT-MAB, the winners
of the SAT competition in the main track 2016 and 2021, respectively. Unlike MIN-
ISAT [79] or GLUCOSE [81] solvers, these solvers do not have a single clause database;
instead, it is divided into three distinct databases (core, tier-2 and local), and the cri-
terion used for detecting new learnt clauses to store is based on their LBD value:

core. A permanent database that stores clauses with LBD≤3 in MAPLECOMSPS
and LBD≤2 in KISSAT-MAB. Clauses in this database are considered highly
important and are never deleted. It mainly contains unit clauses and glue
clauses (LBD= 2).

tier-2. A temporary database containing potentially useful information. It stores
learnt clauses with LBD≤ 6. Clauses in this database can be promoted to the
core if their LBD decreases to LBD≤ 3, or they can be moved to the third
database if they are not used during conflict-analysis or unit propagation.

local. Also a temporary database that holds remaining clauses with LBD> 6. These
clauses may be permanently deleted if they are not used during the last con-
flicts, or they can be upgraded to the tier-2 database if they satisfy the LBD
bound constraint of tier-2.

1Unit propagation analysis was omitted since we observed similar information to the conflict-
analysis.

56 Chapter 4. Tuning the learnt clause databases

0 5 10 15 20 25 30
% of learnt clauses

0

10

20

30

40

50

60

70

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis

0
1
2
345678910

012 3 4 5 6 7 8 910
0

1

2

3

4
5

6 7 8 9 10

3 4 5678910

C
C

C
C

C
C
C

FIGURE 4.1: Measures on the training benchmark with MAPLECOM-
SPS solver, showing learnt clauses usage in conflict-analysis phase.

Each class of clauses is colored and annotated by its LBD value.

The difference between MAPLECOMSPS and KISSAT-MAB lies in the optimization
heuristics and their memory footprint improvements. KISSAT-MAB has demon-
strated its efficiency on satisfiable problems, while MAPLECOMSPS remains com-
petitive on unsatisfiable ones.

0 5 10 15 20
% of learnt clauses

0

10

20

30

40

50

60

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis

01
2345678910

01

2 3 4 5 6 7 8 9 10

0

1

2 3 4 5 6 7 8 9 10

3 4 5 6 78910

C
C

C
C

C
C
C

FIGURE 4.2: Measures on the training benchmark with KISSAT-MAB
solver, showing learnt clauses usage in conflict-analysis phase. Each

class of clauses is colored and annotated by its LBD value.

4.1. Analysis of clause classification feature 57

0 10 20 30 40 50 60
% of learnt clauses

0

20

40

60

80

100

%
 u

sa
ge

 in
 c

on
fli

ct
-a

na
ly

sis

1

2

3

4
5

6 7 8 9 10

set of clauses: LBDx
Pareto front

FIGURE 4.3: Measures of learnt clauses usage with MAPLECOMSPS
solver, during conflict-analysis phase. Blue dots denote LBD while red

points depict the Pareto front of HLP strategy.

0 10 20 30 40 50 60
% of learnt clauses

0

20

40

60

80

100

%
 u

sa
ge

 in
 c

on
fli

ct
-a

na
ly

sis

1

2 3 4 5 6 7 8 9 10

set of clauses: LBDx
Pareto front

FIGURE 4.4: Measures of learnt clauses usage with KISSAT-MAB
solver, during conflict-analysis phase. Blue dots denote LBD while red

points depict the Pareto front of HLP strategy.

58 Chapter 4. Tuning the learnt clause databases

Measures

The experiments were conducted on a benchmark consisting of 620 BMC instances.
The distribution of properties within the benchmark is as follows: 50% of Safety
problems, 27% Guarantee, 3% Persistence, and 10% Recurrence, based on the Hier-
archy of Manna & Pnueli [39]. Additionally, 10% of the instances were generated
using Spot [50], including 1% Obligation and 9% Reactivity properties. Trivial in-
stances that were solved in less than 1 second using the MAPLECOMSPS solver
were omitted from the benchmark.

The analysis was performed on 23% of the entire benchmark, referred to as the train-
ing benchmark. For each instance, information related to each learnt clause used in
the conflict-analysis procedure was logged, including the LBD value and the corre-
sponding class CX of the clauses. The results are presented in Figure 4.1 for MAPLE-
COMSPS and Figure 4.2 when using KISSAT-MAB solver.

The x-axis of the figures represents the cumulative mean percentage of learnt clauses
for the training benchmark, while the y-axis corresponds to the cumulative mean us-
age percentage of these clauses during conflict-analysis phase. Each point on the
graph represents the percentage of learnt clauses of a certain LBD (from 1 to 10) for
a particular class of clauses. For example, in Figure 4.1, the yellow triangle with the
left annotation "4" indicates that 10% of learnt clauses of class PJ have an LBD≤4
and were used, in average, 58% of the solving time.

In both MAPLECOMSPS and KISSAT-MAB results, we observe that the CPJ clauses,
which implies the property, has a significant usage rate (around 60%) with a total
coverage of approximately 20%. This suggests that these clauses are good candidates
for being considered as relevant information in the solving process.

To further investigate the impact of LBD metric on the relevance of the gathered
information, we can refer to Figure 4.3 and Figure 4.4. These figures display the
same data as the previous ones, but without clause classification. Here, we ob-
serve that the default strategy for characterizing relevant information stored in the
core database on MAPLECOMSPS (LBD≤3), covers 70% of usage for only 12% of
the learnt clauses. Similarly, the core database selection strategy in KISSAT-MAB
(LBD≤2) covers 86% of usage with 7% of the involved learnt clauses. Notably, more
than 70% of the relevant information in both solvers is attributed to clauses belong-
ing to the core database. However, this observation is somewhat biased since the
core clauses are never deleted, making them naturally more frequently used than
clauses in the tier-2 and local databases.
Interestingly, however, we can observe that, on both solver’s figures (Figure 4.1 and
Figure 4.2), more than half of the relevant information came from one category of
clause: CPJ clauses.

These findings reinforce the idea that the performance of the SAT solver is heavily
influenced by a specific class of clauses. The fine-grained classification CX reveals
that clauses implying the property are more pertinent and crucial for the solving
process, while auxiliary clauses are primarily there to connect with the model.

4.2. Heuristics to identify interesting clauses 59

Solver Heur. CJ CM CMJ CPM CP CPMJ CPJ Orig. Core

MAPLECOMSPS
HS 3 3 3 3 5 3 3 3

HLP 10 3 3 3 4 3 5

KISSAT-MAB
HS 2 2 2 2 4 2 2 2

HLP 3 3 2 3 3 2 3

TABLE 4.1: Selectors computed using HS or HLP on MAPLECOMSPS
and KISSAT-MAB training information.

4.2 Heuristics to identify interesting clauses

Based on the previous studies, we present our strategies for enhancing the resolution
of SAT-based BMC problem. Our proposal involves identifying and protecting from
deletion new sets of clauses that hold high relevance during the solving process. To
achieve this, we introduce two new heuristics HS and HLP, designed to compute a
selector that will effectively highlight the clauses of interest.

4.2.1 Non-automated procedure (HS)

The heuristic HS is derived from a simple observation made from the previous fig-
ures (Figure 4.1 and Figure 4.2). The idea behind this heuristic is to encourage the
solver to prioritize clauses that involve the LTL property variables (P variables),
such as clauses from the CPJ class, as they appear significantly more often than CP
clauses. Given that model checking procedures heavily depend on the structure of
the LTL property, protecting additional clauses that implicate the property in SAT
learning can only be of benefit.

To implement this idea, we expand the core database of the solver with a subset of
clauses from CPJ . Specifically, we select all clauses from CPJ that have an LBD≤5
for MAPLECOMSPS and LBD≤4 for KISSAT-MAB, resulting in the selectors shown
in the first line of each solver in Table 4.1. Table 4.1 summarizes the LBD values for
each class of clauses, highlighting in bold the values that have changed compared to
the base selector (last column) for each solver. The base selector represents a single
LBD value because it does not take into account the clause classification metric.

The LBD thresholds were chosen based on the inflection points observed in the
curves of the above figures. These inflection points indicate that beyond a certain
LBD value, no further relevant information is captured. Hence, selecting clauses
with LBD values below the threshold ensures that the focus is on the most pertinent
and useful clauses while avoiding the inclusion of less useful ones.

4.2.2 Semi-automated procedure (HLP)

This approach aims to mathematically predict the usefulness of each learnt clause.
It involves determining the appropriate selector by optimizing the overall usage
of learnt clauses while minimizing their quantity. This optimization is achieved
through solving a linear programming system, which yields multiple solutions. The
procedure is termed semi-automated since it requires an expert inputs to select the
most suitable solution among the possible solutions.

60 Chapter 4. Tuning the learnt clause databases

The linear program is formulated with the an objective that combines the two afore-
mentioned criteria: maximizing the usage with a minimum number of involved
learnt clauses. The constraints of the linear programming system restrict the search
space to selecting at most one LBD value per category of clauses. The input informa-
tion for these constraints is extracted from the analysis results presented in Figure 4.3
and Figure 4.4.
To describe the linear system, we introduce the following notations:

- uX
i : the percentage of learnt clauses (x-axis) with LBD≤i of class X.

- vX
i : the percentage usage of learnt clauses (y-axis) with LBD≤i of class X.

- xX
i : a Boolean variable representing the decision variable of the linear system.

It takes the value 1 if the LBD≤i is chosen for the class of clauses X, 0 if not.

- S={P ,M,J ,PM,PJ ,MJ ,PMJ } denotes the set of classes.

Hence, our modeling of the optimization problem is as follows:

maximize fµ = (µ− 1)

O1︷ ︸︸ ︷
10

∑
i=1

∑
X∈S

uX
i xX

i + µ

O2︷ ︸︸ ︷
10

∑
i=1

∑
X∈S

vX
i xX

i

subject to

10

∑
i=1

xj
i ≤ 1 ∀X ∈ S //At most one LBD value per class

xX
i ∈ {0, 1} ∀i ∈ [[1; 10]], ∀X ∈ S

The function fµ is the aggregation function, defined as a weighted sum and param-
eterized with a value µ (0 ≤ µ ≤ 1). It combines two criteria: O1, representing the
number of learnt clauses to be minimized (switched into maximization in the ob-
jective fµ, by reversing the sum’s sign), and O2, the total usage percentage of learnt
clauses to be maximized. It is noteworthy that other aggregation functions, such as
Ordered Weighted Average or Choquet integral, could also be used for this purpose.

The bi-objective optimization problem is transformed into a single maximization
problem that can be solved with different values for parameter µ. In fact, the larger
the value of µ, the more importance is given to searching for a solution that opti-
mizes criterion O2, and vice-versa. By solving this system with different values of
µ with the data collected from the training benchmark analysis, we can draw a Pareto
front representing a set of optimal solutions where no other solution exists that im-
proves one criterion without degrading another and there are no other solutions that
are better in both criteria. The Pareto front of the data collected from MAPLECOM-
SPS experiments (resp. KISSAT-MAB) is highlighted with red points in Figure 4.3
(resp. Figure 4.4). Each red point on the front corresponds to a specific selector (i.e.,
solution) derived from the optimization procedure with a specific µ value. How-
ever, it’s important to note that the resulting Pareto front may not be the optimal
front due to the variation of µ with a fixed increment of 0.001. Thus, there may be
better solutions that we didn’t generate. Nevertheless, since our increment value is
quite small, the set of solutions obtained tend to an (almost) optimal front solutions.

4.3. Experimental Evaluation of BMC-based Selectors 61

Solver UNSAT SAT TOTAL PAR-1 PAR-2 CTI

MAPLECOMSPS 255 113 368 523h00 943h00 91h50

MAPLECOMSPS-LBD≤4 254 114 368 522h00 942h00 91h50

MAPLECOMSPS-HS 253 116 369 524h40 943h00 94h50
MAPLECOMSPS-HLP 258 117 375 521h30 929h50 93h30

KISSAT-MAB 310 144 454 384h20 661h00 86h20

KISSAT-MAB-LBD≤3 302 142 444 397h00 690h20 92h30

KISSAT-MAB-HS 311 142 453 386h10 664h30 84h20
KISSAT-MAB-HLP 319 142 461 379h40 644h40 80h40

TABLE 4.2: Comparison between state-of-the-art MAPLECOMSPS
and KISSAT-MAB solvers and HS and HLP heuristics. MAPLECOM-
SPS-LBD≤4 (resp. KISSAT-MAB-LBD≤3) uses a strategy where
learnt clauses with LBD≤4 (resp. LBD≤3) are considered as relevant.

Our analysis reveals that the red points on both Figure 4.3 and Figure 4.4, which rep-
resent our proposed approach, dominate the blue points (representing the standard
LBD-based approach). This suggests that our filter, which combines the LBD metric
and the classification of clauses, can significantly improve the solver’s performance
by choosing one of these points as a basis for detecting new relevant information.

To determine the most promising point on the Pareto front, we focus on the inflection
point of the curves. For MAPLECOMSPS, the most promising point is located be-
tween the blue points tagged with 3 and 4, which correspond to LBD≤3 and LBD≤4,
respectively. This promising point covers 81.8% of usage for a total of 16.5% involved
learnt clauses. The selector associated with this point characterizes the clauses with
properties shown in the second line of Table 4.1: it fixes an LBD≤3 for all classes
except CP , CJ , and CPJ , which have LBD≤4, LBD≤10, and LBD≤5, respectively.
For KISSAT-MAB, the most promising point is located between the blue points tagged
with 2 and 3, which correspond to LBD≤2 and LBD≤3, respectively. This promising
point covers 87.3% of the conflict-analysis for a total of 9.57% of learnt clauses. The
selector associated with this point is shown in the last line of Table 4.1. It has LBD≤3
for CM, CJ , CPM, and CPJ , and LBD≤2 for the remaining classes.

These results confirm the importance of clauses with LBD≤3 (for MAPLECOMSPS)
and LBD≤2 (for KISSAT-MAB) as identified in the standard approach but also reveal
new interesting ones.

4.3 Experimental Evaluation of BMC-based Selectors

To assess the relevance of our heuristics on the learnt clause deletion component of
CDCL-like solvers, we conducted experiments on 620 BMC instances (detailed in
Section 4.1). Each instance was executed on an Intel Xeon@2.40GHz machine with
12 processors and 64 GB of memory, with a time limit of 6000 seconds, using the
BSALTIC tool.

Table 4.2 summarizes these results, comparing the basic strategies of MAPLECOM-
SPS and KISSAT-MAB solvers with their versions that integrate the HS and HLP

62 Chapter 4. Tuning the learnt clause databases

heuristics. The table displays the number of UNSAT (unsatisfiable) and SAT (satis-
fiable) solved instances, the total number of solved instances, the cumulative time
(PAR-1) and PAR-2 metric2. The last column gives the Cumulated Execution Time
of the Intersection (CTI) of solved instances by all solvers. It consists of 357 in-
stances for MAPLECOMSPS experimentation and 433 for KISSAT-MAB. The heuris-
tics HS and HLP do not include pre-processing time, which corresponds to 68 hours
in MAPLECOMSPS experiments and 47 hours in KISSAT-MAB. The computation
time of the Pareto front from resolving the linear systems fµ of the HLP heuristic
does not take more than one second.

From the first line of the table, we can observe that the state-of-the-art MAPLECOM-
SPS solves 368 instances with a PAR-2 metric of 943 hours. Increasing the core
database to protect learnt clauses with LBD≤4 (MAPLECOMSPS-LBD≤4) yields
similar results. This indicates that while some problems were not overwhelmed
by the additional clauses (with LBD=4), simply increasing the number of relevant
clauses based solely on LBD does not significantly improve performance.

The next two lines display the results using the HS and HLP approaches, respec-
tively. Both outperform the state-of-the-art approach: MAPLECOMSPS-HLP shows
a notable improvement with a gain of 13 hours in the PAR-2 metric, solving 4 UN-
SAT and 2 SAT instances more. MAPLECOMSPS-HS gave a PAR-2 metric similar to
the original strategy but manages to solve 1 additional SAT instance. However, the
PAR-1 and CTI times of these modified solvers are slightly slower than the original
solver, with at most 1 hour 40 minutes more on the PAR-1 and 3 hours on the CTI
metric. These variations are left to the user consideration, whether it is the number
of solved instances to prioritize or the limited time to solve them.

The remain segment displays the experimentation results on the KISSAT-MAB en-
gine. The state-of-the-art solver solves 454 instances with a PAR-2 of 661 hours.
However, augmenting the core database with LBD≤3 (KISSAT-MAB-LBD≤3) de-
teriorates the solver’s performance: 10 instances less with a PAR-2 (resp. CTI) of
29 hours (resp. 6 hours) slower. The last two lines present its modified versions.
KISSAT-MAB-HS solves 1 UNSAT instance more but 2 instances less than the state-
of-the-art, whereas KISSAT-MAB-HLP solves 9 UNSAT instances more but 2 SAT in-
stances less and manages to decrease the PAR-2 time to 3 hours.

In conclusion, both solvers perform better with the HLP heuristic. KISSAT-MAB
seems more suitable when solving BMC problems, especially UNSAT instances, known
to be challenging. The two heuristics highlight the importance of the information
captured by CPJ : when performing the model-checking approach, a synchronous
product between the Kripke structure of the model and the automaton of the (negated)
property is executed. Thus, forcing the SAT procedure to consider property clauses
will eliminate invalid paths in the property automaton, leading to a smaller syn-
chronized product. Additionally, HLP captures other important information such
as: CJ (and CM when considering KISSAT-MAB) configuration. CJ is composed of
auxiliary variables used for the conversion of the problem into a CNF formula [55],
making the connection between the property and the model. Consequently, they
also help to compute information related to the synchronous product.

2PAR-k is a measure used in SAT competitions that penalizes the run-time, counting each timeout
as k times the running time cutoff.

4.4. BMC-based Sharing strategy 63

4.4 BMC-based Sharing strategy

The majority of works on parallelizing SAT-based BMC applies to different unrolling
depths that spawn multiple solvers in parallel. These employ portfolio-based schemes
where each worker solves the same BMC problem but with a different bound k [22,
128, 129]. However, to the best of our knowledge, no work has attempted to tune the
clause exchange policy between workers for the sake of BMC. Some works [134, 135]
have considered the symmetry structure of the formula to decompose it into parti-
tions to parallelize the resolution procedure, where each worker handles a portion
of the formula. This can result in exchanged clauses that could be useful, as each
worker focuses on a part (one unrolling depth), and the learnt clauses produced
might be duplicated due to the symmetry of the formula. Instead of embarking on
complex procedures that involve partitioning the formula or dealing with multiple
unrolling depths k, we turned our attention to the filtering of shared clauses between
CDCL solvers that work on the same bound k. We propose the first BMC-based port-
folios that use specialized sharing strategies for exchanging clauses.

In Chapter 3, we identified seven classes of clauses and utilized them in the context
of sequential SAT solving to develop two new heuristics designed for BMC (Sec-
tion 4.2). These heuristics aim to protect relevant clauses from deletion. In this sec-
tion, we suggest applying a similar approach in the parallel SAT solving context.
Through a portfolio of concurrent workers, we propose modifying the metric used
for limiting the exchanged clauses between workers by incorporating the clause clas-
sification measure. More precisely, the filter that characterizes the clauses of interest
to exchange is the selector from prior studies.
Currently, procedures in parallel SAT solving employ generic metrics to identify
clauses to share, with the most common one being the LBD value. In this strategy,
only learnt clauses with a fixed LBD threshold are shared between solvers, without
distinguishing between classes CX. However, as observed in previous analyses (Sec-
tion 4.1), some classes of clauses are more valuable for the solving process than oth-
ers. To leverage the importance of these relevant classes and significantly increase
their sharing, we propose adjusting their corresponding LBD threshold.

We introduce the SHLP sharing strategy that exports clauses identified by HLP selec-
tor, w.r.t, the used solver (Table 4.1). For example, CJ clauses with an LBD≤10 are
allowed to be shared among other MAPLECOMSPS workers.

4.5 Parallel Experiments

SAT strat. Sharing strat. UNSAT SAT TOTAL PAR-1 PAR-2 CTI (472)

MAPLECOMSPS
HORDESAT 357 120 477 342h50 590h35 107h20
SHLP 362 120 482 339h20 578h50 106h50

MAPLECOMSPS-HLP
HORDESAT 361 119 480 343h05 585h50 107h00
SHLP 362 120 482 341h20 580h40 108h00

TABLE 4.3: Comparison between state-of-the-art MAPLECOMSPS
Portfolio and our modified portfolio MAPLECOMSPS-HLP for var-

ious sharing approaches.

In this section, we evaluate the impact of the BMC-based sharing heuristics in a par-
allel portfolio setting. All experiments were conducted on the same benchmark as

64 Chapter 4. Tuning the learnt clause databases

the sequential evaluation, using an Intel Xeon@2.40GHz machine with 12 proces-
sors, 64 GB of memory, and a time limit of 6000 seconds. The portfolios consist of 10
CDCL solvers (workers).

Table 4.3 presents the results of different portfolios: MAPLECOMSPS and MAPLE-
COMSPS-HLP based portfolios. The latter uses our modified version of MAPLE-
COMSPS, which incorporates the HLP selector described in Section 4.2. For each
portfolio, workers vary in their diversification strategy [104].

The table displays the different sharing strategies: SHLP and HORDESAT [114], which
dynamically increases the LBD threshold based on certain constraints. This strategy
is employed by the best parallel solver of the parallel track in the SAT competition
2021. For each strategy, the number of solved UNSAT and SAT instances, the PAR-1,
PAR-2, and CTI metrics are displayed.
We divide the analysis of the results into two parts:

Choice of the Sharing strategy

The first observation pertains to the sharing strategy; comparing the HORDESAT

strategy to our proposed SHLP strategy:

MAPLECOMSPS. When employing the BMC-based sharing strategy (SHLP) in a
MAPLECOMSPS portfolio, it outperforms the state-of-the-art sharing strategy
HORDESAT. Specifically, SHLPsolves 5 more UNSAT instances and reduces the
running time by 12 hours (PAR-2) and 30 minutes for the CTI.

MAPLECOMSPS-HLP: Similarly, when using the SHLP sharing strategy in a MAPLE-
COMSPS-HLP portfolio, it outperforms the HORDESAT strategy on both SAT

and UNSAT instances. The SHLP strategy solves 2 more instances in total, with
a PAR-2 time reduced by 5 hours.

These results indicate that using a BMC-based sharing strategy, tailored to the spe-
cific characteristics of the BMC problem, yields better performance compared to
generic strategies. The BMC-based sharing strategy, SHLP, effectively identifies and
shares relevant clauses, leading to improved solving efficiency in the parallel port-
folio setting.

Figure 4.5 provides a detailed view of the comparison between the state-of-the-art
portfolio and our best approach. The scatter-plot illustrates the solving time (in sec-
onds) for each solved instance. Red dots represent UNSAT instances and blue ones
for SAT instances. The y-axis represents the solving time for our best portfolio, while
the x-axis represents the solving time for the state-of-the-art portfolio.

The scatter-plot clearly shows that a MAPLECOMSPS-based portfolio using the SHLP
sharing strategy performs significantly faster than the generic portfolio, especially
on UNSAT problems. The majority of the red dots (representing UNSAT instances) are
located below the diagonal line, indicating that SHLP strategy leads to faster solving
times for these instances compared to the state-of-the-art strategy.

This visual comparison provides further evidence that the BMC-based sharing strat-
egy, SHLP, significantly improves the performance of the parallel portfolio.

4.5. Parallel Experiments 65

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

MAPLECOMSPS-HORDESAT (seconds)

M
A

P
L

E
C

O
M

SP
S-

SH
LP

(s
ec

on
ds

)

UNSAT
SAT

FIGURE 4.5: Scatter-plot comparing state-of-the-art portfolio
(MAPLECOMSPS using HORDESAT-strategy) to our best one

(MAPLECOMSPS with SHLP-strategy)

Choice of the SAT solver

The second observation is related to the choice of the SAT solver depending on
whether it integrates the HLP heuristic:

HORDESAT Sharing. Among the tested configurations, the MAPLECOMSPS-HLP
portfolio stands out as the most suitable solver with 480 solved instances. This
is an improvement over the generic MAPLECOMSPS portfolio, which solves
3 instances less. This result highlights the effectiveness of using our tuned
solver for the HORDESAT strategy, leading to better performance in terms of
the number of solved instances.

SHLP Sharing. In this case, both engines (MAPLECOMSPS and MAPLECOMSPS-
HLP) achieve similar results in terms of the number of solved instances, with
362 UNSAT and 120 SAT instances solved. However, the original MAPLECOM-
SPS-based portfolio (without tuning) stands out by achieving a reduction in
running time (PAR-1, PAR-2, and CTI) by at least 2 hours. This finding sug-
gests that the information captured by the tuned SAT solver may not con-
tribute significantly to improving the sharing strategy’s performance. Thus, fo-
cusing on tuning the sharing strategy may be sufficient when using a MAPLE-
COMSPS solver.

We conclude that the combination of a BMC-based SAT solver and a tuned sharing
strategy for the MAPLECOMSPS portfolio is the best configuration, which performs
better overall on both SAT and UNSAT instances.

PARKISSAT-RS experiments

Based on the above results, we go further and conduct the experiments displayed
in Table 4.4. These are realized using a parallel portfolio PARKISSAT-RS, the win-
ner of the the Parallel SAT Competition 2022 that uses Kissat-MAB as a back-end
engine, and we compared it when using our tuned Kissat-MAB-HLP solver, namely

66 Chapter 4. Tuning the learnt clause databases

SAT strat. Sharing strat. UNSAT SAT TOTAL PAR-1 PAR-2 CTI (514)

PARKISSAT-RS
LBD≤2 368 148 516 248h00 429h20 81h30
SHLP 372 149 521 246h40 416h20 79h25

PARKISSAT-RS-HLP
LBD≤2 373 149 522 248h40 415h40 80h10
SHLP 375 150 525 244h10 405h40 77h20

TABLE 4.4: Comparison between state-of-the-art PARKISSAT-RS
Portfolio and our tuned portfolio PARKISSAT-RS-HLP for various

sharing approaches.

PARKISSAT-RS-HLP. PARKISSAT-RS uses the PAINLESS framework [137] to imple-
ment the clause sharing method, and each thread shares clauses with LBD≤2. Di-
versification is also used. The experiments conducted using the parallel portfolio
PARKISSAT-RS, which uses KISSAT-MAB as a back-end engine, provide further in-
sights into the effectiveness of the SHLP sharing strategy:

The results in Table 4.4 show that the state-of-the-art PARKISSAT-RS portfolio, which
uses static sharing with LBD≤2, solves 516 instances and achieves a PAR-2 metric
of 429 hours. On the other hand, our best portfolio PARKISSAT-RS-HLP with SHLP
sharing solves 9 instances more with a faster PAR-2 of 23 hours. This finding indi-
cates that the PARKISSAT-RS-HLP portfolio, with the SHLP sharing strategy, is the
most suitable configuration for parallelism when using the KISSAT-MAB solver.

The detailed analysis of the experiments focusing on fixed SAT solvers reveals the
following insights:

PARKISSAT-RS. The best configuration in this case employs the SHLP sharing strat-
egy, which solves 5 instances more and reduces the PAR-2 time by 13 hours, as
well as the CTI time by 2 hours.

PARKISSAT-RS-HLP. When tuning both the SAT solver and the sharing mechanism,
the performance is even better compared to sharing only clauses of LBD≤2.
The PARKISSAT-RS-HLP portfolio solves 3 instances more and reduces the com-
putation time on the PAR-2 metric by 4 hours.

The experiments support the conclusion that BMC-based sharing strategies indeed
enhance the solving performance in terms of both the total number of solved in-
stances and the computation time. When combined with a tuned SAT solver, the
effectiveness of these sharing strategies is further amplified, resulting in better over-
all performance and efficiency.

The scatter-plots in Figure 4.6 provides a visual comparison between PARKISSAT-
RS with LBD≤2 sharing to our best one (PARKISSAT-RS-HLP with SHLP). Based
on these comparisons and the detailed analysis, the following observations on the
sharing approach can be made:

LBD≤2 Sharing. The tuned portfolio, PARKISSAT-RS-HLP, outperforms the orig-
inal portfolio, PARKISSAT-RS, when both use the LBD≤2 sharing strategy.
PARKISSAT-RS-HLP solves 5 more UNSAT instances and 1 more SAT instance
compared to PARKISSAT-RS. Additionally, it reduces the computation time
(PAR-2) by 13 hours and PAR-1 and the CTI time by 1 hour.

4.6. Global conclusion 67

0 1 000 2 000 3 000 4 000 5 000 6 000 7 000
0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

PARKISSAT-RS-LBD≤2 (seconds)

PA
R

K
IS

SA
T
-R

S-
H

LP
-H

LP
(s

ec
on

ds
)

UNSAT
SAT

FIGURE 4.6: Scatter-plot comparing state-of-the-art portfolio
(PARKISSAT-RS that shares clauses of LBD≤2 only) to our best one

(PARKISSAT-RS-HLP with HLP-strategy)

SHLP Sharing. PARKISSAT-RS-HLP remains the best performer. It solves 4 more
UNSAT instances and reduces the computation time (PAR-2) by 10 hours com-
pared to the state-of-the-art PARKISSAT-RS.

In conclusion, the observations derived from Tables 4.3, Table 4.4, Figure 4.5 and Fig-
ure 4.6 confirm that incorporating components specifically tuned for BMC (sharing
heuristics, relevant clauses heuristics) has a significant impact on the performance
and efficiency of parallel SAT solvers. Utilizing BMC-based sharing strategies and
relevant clauses heuristics can lead to a substantial improvement in the number of
solved instances and computation time, making them valuable additions to parallel
SAT solving portfolios.

4.6 Global conclusion

Our journey towards building new heuristics for SAT procedures started with the
observation that the relevant information used by SAT solvers can be refined. We
proposed a generic methodology to classify learnt clauses and we applied it to the
special case of BMC using two of the best SAT solvers: MAPLECOMSPS and KISSAT-
MAB. These learnt clauses have been classified according to their meaning in the
original problem which helped us to suggest two heuristics (HS and HLP) based on
the information carried by the LTL property. The two heuristics improve the state-
of-the-art approach, with the particularity of having a structural reasoning behind
HS heuristics. In the other hand, the procedure used to build HLP relies on a mathe-
matical reasoning.

We extended this idea to the context of parallel BMC solving by offering a new shar-
ing strategy, namely SHLP. This focuses on tuning two, out of the three, components
of a parallel SAT solving, i.e., the sharing strategy and the SAT strategy.

68 Chapter 4. Tuning the learnt clause databases

Our ongoing work aims to refine the proposed classification by exploiting the spec-
ification of the property (using the Hierarchy of Manna & Pnueli).

69

Chapter 5

Decomposition-based BMC

Contents
5.1 An Interpolant-based decision procedure 70

5.1.1 Craig Interpolation . 71
5.1.2 Reconciliation algorithm . 71

5.2 Decomposition-based strategies . 73
5.2.1 Lazy Decomposition (LZY-D) 73
5.2.2 BMC Decomposition (BMC-D) 74
5.2.3 Comparing LZY-D and BMC-D 76

5.3 Interpolation-based Offline Learning 77
5.4 Interpolation-based Learning in Parallel Solving 79
5.5 Conclusion . 83

Some of the state-of-the-art SAT-based BMC techniques presented in Chapter 3 have
demonstrated promising results, that have helped to guide the SAT procedure to-
wards interesting search spaces, thereby reducing the solving time. One such op-
timization involves decomposing the propositional formula 1.1 into multiple sub-
formulas. We explore a clause learning framework that leverages Craig interpola-
tion [36]: Starting from the SAT formula representing the BMC problem to be solved,
the idea here is to decompose the formula into parts. Then, it is a matter of enriching
the problem with information that are not explicitly encoded. These information are
derived from the analysis of the relationships between the different parts. This is
accomplished through the exploitation of interpolants.
In pursuit of our objectives, we revisit the concept presented in [37], which outlines
a reconciliation scheme employing interpolation. Their primary aim was to address
the challenges of solving exceptionally large formulas in distributed environments.
We have adapted this reconciliation scheme to suit our purposes. Firstly, we intro-
duce a novel decomposition method tailored specifically for BMC problem-solving.
Secondly, we harness the interpolation mechanism as a means to generate learnt
clauses, thereby accelerating SAT solving. This enables us to leverage the knowl-
edge acquired from BMC-based decomposition in two distinct dimensions:

• Interpolants as a Preprocessing Engine: Our approach harnesses the intro-
duction of interpolants before the solving, as preprocessing procedure, within
a sequential context. This novel utilization of interpolants enhances the ef-
ficiency of the SAT solving process by introducing valuable clauses derived
from interpolation.

70 Chapter 5. Decomposition-based BMC

• Interpolants in a Parallel Environment: To further leverage the wealth of in-
formation provided by interpolants, we extend the application of interpolants
into parallel environments by sharing these interpolants to guide other CDCL
solvers towards promising search spaces. This collaborative approach among
solvers improves their collective reasoning capabilities and ultimately leads to
more efficient problem-solving.

Our contribution includes the development of a decomposition-based BMC solver
(BMC-D), a versatile component that functions as a clause generator using interpo-
lation techniques in both sequential and parallel environments. BMC-D leverages
the structural properties of the BMC formula by partitioning it into multiple seg-
ments, enabling the generation of highly relevant interpolants.
Considering that interpolation computation are generally time consuming, the in-
terpolants obtained from the random decomposition approach introduced in [37]
(LZY-D) and our BMC-based decomposition (BMC-D) can be used during prepro-
cessing to improve sequential solving efficiency. Additionally, one can share these
interpolants within a portfolio of CDCL solvers to enhance effective communication
and collaboration among them.

The chapter is structured as follows: We start by reviewing the reconciliation pro-
cedure of [37]. This procedure employs communication mechanisms among these
subformulas based on Craig interpolation mechanisms [36]. This is discussed in Sec-
tion 5.1. Section 5.2 recalls the random decomposition presented by the authors [37]
and investigates the adaptation of this approach within the context of BMC in sub-
section 5.2.2. Section 5.3 and 5.4 study the effectiveness of interpolation-based learn-
ing on both sequential an parallel settings, respectively.

5.1 An Interpolant-based decision procedure

G

ψ1

UNSAT

ψ2

SAT

ψn−1

UNSAT

ψn

UNSAT

m

I1

m mIn−1 m
In

FIGURE 5.1: Reconciliation scheme

The section outlines the framework proposed in [37], describing an interpolation-
based decision procedure for SAT formulas. We start by defining the notion of inter-
polation, then we delve into the reconciliation framework.

5.1. An Interpolant-based decision procedure 71

5.1.1 Craig Interpolation

The Craig interpolation theorem [36] provides a powerful tool for analyzing the rela-
tionship between two formulas A and B in the context of satisfiability. It guarantees
the existence of an interpolant when A∧ B =⇒ ⊥, allowing us to extract additional
information about the logical structure of A and B.

Given an unsatisfiable conjunction of formulas, specifically A ∧ B, an interpolant,
denoted as I, is a formula that adheres to the following properties:

- A =⇒ I: This implies that if A holds true, then I must also be true.

- B ∧ I =⇒ ⊥: The conjunction of B and I is unsatisfiable, indicating that there
is no assignment of variables that simultaneously satisfies both B and I.

- I is defined over the common language of A and B: I is constructed using
variables that appear in both A and B, ensuring that it captures the relevant
information shared by both formulas.

The interpolant I provides an over-approximation of formula A while still conflict-
ing with formula B. It can be thought of as a logical abstraction of A that captures
the essential features needed to demonstrate the conflict with B.

While the Craig interpolation theorem guarantees the existence of an interpolant, it
does not provide an algorithm for finding it. However, there are known algorithms
for generating interpolants for various logics. One common approach is to derive an
interpolant for A ∧ B from a proof of unsatisfiability of the conjunction. By analyzing
the proof structure, it is possible to extract the necessary information to construct the
interpolant. Importantly, these algorithms have the advantage of operating in linear
time relative to the size of the proof, making them efficient for practical use.

In the context of SAT procedures, McMillan’s interpolation [58] has been widely em-
ployed. It has been shown to be competitive with SAT solving algorithms and can
provide effective interpolants for Model Checking problems. To gain a deeper un-
derstanding of McMillan’s interpolation and other interpolation systems, a complete
study can be found in [139].

It is worth noting that interpolants are generally not in clausal form. If an interpolant
is to be retained as part of the problem (as learnt clauses, for example), it may require
conversion. Simply expanding the interpolant into CNF can lead to exponential
growth in its size. The Tseitin transformation [56] provides an alternative method
that introduces new variables while maintaining a linear increase in size.

5.1.2 Reconciliation algorithm

Apart from the usage of interpolation mechanisms in IC3 [60, 140], PDR [61], some
incremental SAT-based BMC [141–143], to the best of our knowledge, no one has ex-
plored their usage on one single BMC instance. Used either during a preprocessing
phase where interpolants are injected to the original problem or shared among classi-
cal CDCL solvers in a parallel setting. The most closely work related to ours is [143].

72 Chapter 5. Decomposition-based BMC

This preliminary research [143] proposes to extract information from an interpolant-
based model-checking engine during the solving process (in-processing). They man-
age to derive an over-approximation of fixed time frames with the aim of early de-
tecting invalid variable assignments at a specific time frame. This initial study can
provide additional insights when integrated with our ongoing work, where pre-
processing and in-processing interpolation procedures are simultaneously applied.
However, it’s worth noting that the effectiveness of this approach for various types
of specifications is not known, as their study was exclusively applied to invariant
properties, while our approach is applied for any type of LTL property.

Hamadi et al. [37] used an interpolation-based technique when treating formulas
that are too large to be handled by a single computing unit. To achieve this, they
propose decomposing the formulas into partitions that can be solved by individual
computing units. Once each partition is solved, the partial results are combined us-
ing Craig interpolation [36] (McMillan [58] or HKP [144] interpolation computation
techniques), to obtain the final solution. Craig interpolation is chosen for its effec-
tiveness in reconciling partial results and its ability to enable arbitrary splitting of
formulas without restrictions on the nature or size of the cut. The paper demon-
strated the effectiveness of this approach in handling large formulas by comparing
its efficiency to state-of-the-art CDCL solver techniques. However the proposed ap-
proach did not use any structural information of the problem at hand.

The main idea is to compute partial solutions for different parts of the formula at
hand and then calculate a global solution using interpolation mechanisms. Indeed,
they implemented the reconciliation schema depicted in Figure 5.1, where each par-
tition of the formula is reconciled through the variables they share.

Let’s denote by ψi for i = 1, . . . , n, the subformulas of the studied formula F . These
subformulas are solved by individual SAT solver units. However, when the parti-
tions happen to share variables (i.e., V(ψi) ∩ V(ψj) ̸= ∅, for some j ̸= i), the reso-
lutions of the different partitions must be reconciled and synthesized into a feasible
global solution.

To do so, another solver is added to the schema. Named as the manager G, it is re-
sponsible for finding a global solution accepted by each partition ψi. It reconciles the
solutions returned by each partition into a feasible global solution that satisfies the
entire formula F . The reconciliation procedure is build using the following lemma:

Lemma 1. Let F = ψ1 ∧ · · · ∧ ψn and let m be a model for G that covers the shared

variables of the decomposition, V(G) =
n⋃

i,j=1

(
V(ψi) ∩ V(ψj)

)
. Let 1 ≤ i ≤ n, if I is

an interpolant for ¬(ψi ∧m), then F =⇒ I.

The resulting interpolant I (red arrows in Figure 5.1) from ¬(ψi ∧m) is incorporated
into G eliminating the model m (green arrows in Figure 5.1) in future iterations.

Using the above lemma, authors of [37] present a reconciliation algorithm, for solv-
ing SAT problems (in a distributed manner) using any decomposition method. The
algorithm takes as input a CNF formula F and a number of partitions n.

5.2. Decomposition-based strategies 73

The entire procedure has been implemented in a framework called DESAT1. It inte-
grates various interpolation algorithms (ex. McMillan [58], HKP [144], etc.) and sev-
eral decomposition methods, including the lazy decomposition that will be detailed in
Section 5.2.1. DESAT uses MINISAT1.14P [83] as a core engine. Compared to newer
versions of MiniSat, this older version has the ability to provide a proof of unsatisfia-
bility.

Discussion. As previously mentioned, Hamadi et al.’s approach was originally de-
signed as a comprehensive decision procedure for satisfiability problems. However,
it heavily relies on computationally intensive methods, with interpolation being the
primary one. This characteristic diminishes its practical feasibility for direct appli-
cation. Nevertheless, it is entirely conceivable to adapt and repurpose this approach
for other purposes.

One potential utility lies in using it as a preprocessing tool that furnishes insights
about the problem at hand, thereby assisting classical SAT solvers in achieving more
efficient resolutions.

Hence, the idea we will explore here is to leverage the interpolants generated by
a (potentially partial) execution of this approach as a set of auxiliary information
that can be incorporated into the original problem. This additional information can
enhance the resolution process. We will delve into this concept further in both se-
quential and parallel contexts in the remainder of the paper.

5.2 Decomposition-based strategies

To formally explore the idea mentioned earlier, we begin by examining how the
formula is decomposed. We first study the initial decomposition proposed in [37],
and then we detail our new splitting method tailored to the BMC problem.

Throughout this work, we maintain using the DESAT framework (cited in Sec-
tion 5.1) for all the presented experiments since it has already in place the inter-
polation algorithms and the reconciliation mechanism. The integration of modern
CDCL SAT solver, like KISSAT-MAB [33], is in our perspective.

5.2.1 Lazy Decomposition (LZY-D)

The process of finding sparsely connected partitions in a formula and eliminating
connections to make the partitions independent is not a straightforward operation.
Hamadi et al. [37] propose a computationally-free decomposition (LZY-D), known
as lazy decomposition:

Definition Lazy Decomposition (LZY-D). Let F be in conjunctive normal form of
q clauses, i.e., F = F1 ∧ · · · ∧ Fq. A lazy decomposition of F into n partitions is an
equivalent set of formulas ψ1, . . . , ψn, where each ψi is equivalent to some conjunc-
tion of clauses from F . In other words, there exist integers a and b (with a < b < n)
such that ψi = Fa ∧ · · · ∧ Fb.

1https://www.winterstiger.at/christoph/

74 Chapter 5. Decomposition-based BMC

The lazy decomposition approach (LZY-D) does not explicitly enforce independence
among the partitions. Instead, it divides the clauses of the problem into a number
of equally sized partitions. The clauses are ordered as they appear in the input file,
and each partition ψi is assigned the clauses numbered from i · ⌊ q

n⌋ to (i + 1) · ⌊ q
n⌋.

This decomposition allows for the separate processing and solving of each partition,
without explicitly ensuring their independence. Consequently, the resulting subfor-
mulas ψ1, . . . , ψn can be solved using parallel computing devices by applying the
reconciliation procedure discussed in Section 5.1.

5.2.2 BMC Decomposition (BMC-D)

Cutting the set of clauses randomly remains a generic approach which do not utilize
the knowledge of the problem’s structure. Indeed, consider the specific structure of
the BMC problem, characterized by a finite state system. As the system operates in
discrete states, each state can be represented by a set of variables and its correspond-
ing constraints in the SAT formula. It becomes evident that isolating each state en-
coding from the SAT formula is a straightforward task. By leveraging this inherent
structure, we can partition the SAT-based BMC formula into subformulas based on
the k + 1 states of the system (k steps + initial state). This finer decomposition will
allows us to create (relatively) more independent and smaller subproblems. More-
over, it enables the extraction of relevant information about the system’s behavior to
easily split potential error paths through the generation of precise interpolants.

In light of this observation, we propose a decomposition-based BMC (BMC-D) ap-
proach that takes advantage of the problem’s structure.

Recall the encoding of BMC problem into propositional formula 1.1, unrolled up to
bound k:

I(s0) ∧ T(s0, s1) ∧ T(s1, s2) ∧ ...∧ T(sk−1, sk) ∧
k∧

j=0

[[φ]]j

where I(s0) defines the initial states, T(si, si+1) for i = 0 . . . k are the transition rela-
tions between two successive states si and si+1 and [[φ]]k encodes the negated prop-
erty up to bound k.

The partitioning approach we propose is based on system states, where each parti-
tion ψi (for i = 1 . . . n) is assigned a subset of adjacent states of equal size ρ = ⌊ k+1

n ⌋.
Formally:

ψi =
i·ρ−2∧

j=(i−1)·ρ
T(sj, sj+1)

i·ρ−1∧
j=(i−1)·ρ

[[φ]]j (5.1)

Each partition encompasses a segment of the transition unrolling T as well as the
constraints encoding a portion of the property φ. The partitions on both ends, ψ1
and ψn, contain more information than the internal partitions which follow the above
formula 5.1:

– ψ1 includes constraint encoding the initial states I(s0) .

5.2. Decomposition-based strategies 75

– ψn includes the remaining transition constraints .

Example 5.1. Consider a partitioning with n = 4 for a BMC problem that has been
unrolled up to bound k = 20 that verifies an invariant property (e.g., ”Gp” for any
p ∈ AP). Each partition groups ρ = ⌊ 21

4 ⌋ = 5 frames. V(ψ1) contains variables of
steps s0 to s4, implying that the constraints assigned to:

• ψ1 are I(s0) ∧T(s0, s1) ∧ · · · ∧ T(s3, s4) ∧ [[φ]]0 ∧ · · · ∧ [[φ]]4,

• ψ2 encloses variables of state s5 to state s9, i.e. T(s5, s6)∧ · · · ∧ T(s8, s9)∧ [[φ]]5 ∧
· · · ∧ [[φ]]9,

• ψ3 are T(s9, s10) ∧ · · · ∧ T(s14, s15) ∧ [[φ]]10 ∧ · · · ∧ [[φ]]14, and,

• ψ4 with T(s15, s16) ∧ · · · ∧ T(s19, s20) ∧ [[φ]]15 ∧ · · · ∧ [[φ]]20 .

Two successive partitions ψi and ψi+1 are connected through the last and first state of
the partition, respectively. In the example above, partitions ψ1 and ψ2 are connected
through the transition T(s4, s5) where state s4 is included in the first partition and
s5 on the second. Thus, this transition involves variables from both partitions. Due
to the ambiguity of including these constraints in either ψi or ψi+1, it is reasonable
for G to integrate them into its clause database. This ensures consistent decisions
across different partitions and prevents conflicting decisions regarding the shared
variables.

This last observation leads to a modification, where G is initialized with a subset
of the problem’s clauses corresponding to the transitions linking the n partitions to-
gether. This initialization also encompasses a segment of the property’s constraints.
This adaptation proves particularly relevant for certain types of formulas where
their interpretation involves adjacent time steps. For instance, consider the specifi-
cation ”G X p” for any p ∈ AP. Its propositional formula encoding implies variables
at time steps i and i + 1, which correspond to states si and si+1 of the system’s au-
tomaton. This implies that G incorporates the following constraints of the problem:

G =
N∧

i=1

T(si·t−1, si·t) ∧
n−1∧
j=1

n∧
j<l

j[[φ]]l with N =

{
n if n mod k = 0
n− 1 otherwise

where j[[φ]]l represents the property’s constraints that entail the j-th and l-th parti-
tions, meaning that a state from ψj is linked to a state in ψl in the property formula.
Hence, G will be in charge of deciding on the following shared variables among all
partitions:

V(G) =
n−1⋃
i=1

V(ψi) ∩ V(ψi+1)︸ ︷︷ ︸
common variables

between two partitions

⋃
V(G)︸ ︷︷ ︸

variables that
compose G’s clauses

When solving G, the process involves the assigning of values to a subset of the whole

76 Chapter 5. Decomposition-based BMC

part. n 5 10 20 30 40 50

#S P #S P #S P #S P #S P #S P

BMC-D 15 622h 28 586h 44 541h 35 561h 21 604h 49 534h

LZY-D 4 654h 6 649h 5 653h 9 642h 10 638h 9 642h

TABLE 5.1: Comparison of LZY-D and BMC-D decomposition ap-
proaches for different partition sizes n

formula’s variables (V(G) ⊂ V(F)). This approach narrows down the focus to a
limited set of variables, thereby decreasing the communication overhead with the
partitions.

It’s worth noting that G has a partial view of the problem, incorporating the transi-
tions between successive partitions. Each partition can be seen as a representation
of a portion of the paths connecting the initial state s0 (contained in ψ1) to the final
state sk (in ψn). Consequently, the generated models m are constructed in a way that
aligns the partitions in order to identify a complete path that violates the property.
Where, in contrast, the manager G of the LZY-D strategy starts with no initial con-
straints. This decomposition is conducted randomly, distributing constraints encod-
ing a transition or property constraints at a fixed depth unevenly among partitions.
The following section will allow a comparison of these two decomposition methods.

5.2.3 Comparing LZY-D and BMC-D

This first experiment aims to compare the aforementioned decomposition approaches
when employed as complete solving procedures for BMC problems. This will shed
light on the quality of the interpolants generated by each approach.
It is important to reiterate that the primary goal of our work is to use the interpola-
tion learning mechanism differently than Hamadi et al. [37] approach (see Section 5.3
and Section 5.4).

Benchmark setup. Our BMC benchmark comprises SMV [1] programs. These pro-
grams, along with their respective LTL properties, have been sourced from a di-
verse range of benchmarks, including the HWMC Competition (20172 and 20203),
hardware verification problems [136], the BEEM database [138], and the RERS Chal-
lenge4.
Additionally, certain LTL properties have been generated using Spot [50] to ensure
that each category of the Manna & Pnueli hierarchy [39] is represented. We utilized
various bounds k for each BMC problem, with k ranging in {60, 80, ..., 800, 1000}. We
excluded trivial instances that executed in less than 1 second on the MINISAT1.14P

solver [83].

Table 5.1 presents the results of the approaches on 200 randomly selected BMC
problems from the aforementioned benchmark. The partition sizes used were n =
5, 10, 20, 30, 40, 50, and a time limit of 6000 seconds was applied to both LZY-D and

2http://fmv.jku.at/hwmcc17/
3http://fmv.jku.at/hwmcc20/
4RERS models translated into NuSMV: https://tinyurl.com/29a4jcme

https://tinyurl.com/29a4jcme

5.3. Interpolation-based Offline Learning 77

part. n 5 10 20 30 40 50

#S P #S P #S P #S P #S P #S P

BMC-D-ITP 111 328h 110 333h 111 329h 111 329h 109 331h 110 329h

LZY-D-ITP 109 335h 107 338h 105 341h 110 327h 107 338h 107 338h

original inst. 107 337h

TABLE 5.2: Impact of interpolants’ clauses on the solving

BMC-D approaches. We restricted the evaluation to these 6 partition sizes, aligning
with the choices made in the original paper’s experiments [37], employing the same
interpolation algorithm (McMillan [58]). The table highlights the number of solved
instances (#S) and the PAR-2 time (P).

We observe that BMC-D outperforms LZY-D significantly, especially when deal-
ing with larger partition sizes (n = 50). BMC-D successfully solves 49 instances,
leading to a noteworthy reduction of 108 hours in PAR-2 time compared to LZY-
D. These results seem to imply that the improvement is attributed to concentrating
the majority of clauses in partition G, resulting in empty partitions within φi as n
approaches the bound k of the considered problem. This brings us back to the sce-
nario of a standard (flat) resolution. However, our concrete observations invalidate
this hypothesis, revealing that the φi partitions do indeed encompass a fair portion
of the problem’s clauses. On the contrary, the BMC-D strategy helps to separate
independent subspaces providing better performances than LZY-D strategy.

Due to interpolation computation, neither of the two approaches managed to sur-
pass the performance of a classical solver (MINISAT1.14P). This is in contradiction
with the reported results in [37]. Actually, LZY-D fails to outperform MINISAT1.14P

within a verification benchmark context. One potential explanation is that the bench-
mark used by the authors is composed of fully symmetrical problems, whereas the
BMC benchmark contains relatively fewer symmetries than expected: the conver-
sion of BMC problems into CNF format disrupts symmetries, largely due to the in-
troduction of extra variables during the encoding.

In light of these results, we draw two conclusions: (1) the clauses produced by the
interpolants appear to provide valuable insights, and (2) the current approach is
hindered by the computational complexity of interpolation. This prompts the ques-
tion: how can we leverage these interpolants in an optimal solving process? Our
suggestions for addressing this question are discussed in the following two sections.

5.3 Interpolation-based Offline Learning

It is intriguing to thoroughly assess the relevance and quality of information gener-
ated by interpolation when compared to that naturally acquired by a state-of-the-art
SAT solver during its learning process. Our intuition suggests that clauses derived
from interpolants could be highly beneficial in aiding a SAT solver, potentially lead-
ing to reduced solving times.

To validate our intuitions and hypotheses, we conducted an experiment employing

78 Chapter 5. Decomposition-based BMC

part. n 5 10 20 30 40 50 Avg aug.

BMC-D 1.14 % 1.24 % 1.53 % 1.63 % 1.48 % 1.48 % 1.41 %
LZY-D 4.13 % 2.68 % 2.03 % 1.16 % 0.69 % 0.79 % 1.91 %

TABLE 5.3: Average rate of interpolants size

LZY-D and BMC-D as preprocessing steps for a classical SAT solver. All exper-
iments were conducted within the context of the BMC problem benchmark intro-
duced in Section 5.2.3. The primary objective here was to evaluate the information’s
value provided by interpolants in contrast to the information gathered by a conven-
tional SAT solver, all within the same time constraints.

To be more specific, each of the two algorithms was run for a specified time period,
with a particular partition size, on a BMC instance. The interpolants generated dur-
ing this period were converted into clauses and added to the initial instance. We
refer to this process as “offline learning”. The augmented instance was then solved
by a CDCL-like SAT solver.

In this context, we randomly selected a set of 200 BMC instances from the benchmark
setup described in Section 5.2.3. Each instance underwent an enrichment process in-
volving the incorporation of interpolation clauses generated through offline learning
over a period of 600 seconds. These instances were solved by MINISAT1.14P within
a timeout of 6000 seconds.

For reference, the original instances (without additional clauses) were also solved
by MINISAT1.14P within a timeout of 6600 seconds to accommodate the additional
time required for offline learning.

Table 5.2 highlights the obtained results. BMC-D-ITP (resp. LZY-D-ITP) indicates
the line where instances are augmented with BMC-D (resp. LZY-D) interpolants.
The line labeled as original inst refers to the original instances without any addi-
tional clauses. The rest of the reported information is the same as in Table 5.1.

Both decomposition approaches exhibit improved solving times and succeed in re-
solving additional instances that could not be tackled without the offline learning.
Notably, interpolants obtained through BMC-D decomposition have enhanced the
solving. They showcase superior performance with a partition size of n = 20, solv-
ing 4 instances more and reducing the PAR-2 time by up to 8 hours compared to
solving the original problem. LZY-D decomposition yields optimal outcomes with
n = 30, resolving 3 instances more while achieving a PAR-2 time that is 9 hours
shorter than solving the original instances.

These results substantiate our initial intuition regarding the significance of informa-
tion acquired through the interpolation process. Furthermore, it becomes evident
that the interpolants obtained from the structural decomposition method BMC-D
prove to be more valuable compared to those derived from LZY-D.

Indeed, Table 5.3 illustrates the average percentage of the number of additional
clauses added to the original problems, that were learnt by the LZY-D and BMC-D
strategies during the offline learning phase, and across various partitioning sizes n.

5.4. Interpolation-based Learning in Parallel Solving 79

The last column displays the average percentage increase across all partition sizes.

The BMC-D decomposition consistently generates a stable and equivalent set of
clauses across all partitioning sizes. The increase in the total number of clauses re-
mains limited, reaching a maximum of 1.63 % of additional clauses, with an average
augmentation of 1.41 %. Regardless of the chosen partition size, on the contrary,
the LZY-D approach tends to produce a larger number of clauses, including up to
4.13 % of interpolation clauses with an average augmentation of 1.91 %. We observe
a decrease in the number of generated interpolants relative to the partition size.

These two trends can be explained as follows: the decomposition-based BMC strat-
egy allowed us to generate a relatively consistent amount of information within the
600-second time frame. This consistency arises from two related aspects: (a) the
distribution of shared variables between two partitions is homogeneous, with the
exception of the first and last partitions, each containing more or less information
than the others (ψ1 contains the initial state I(s0) and ψn the remaining states if any).
These shared variables are designed to connect the partitions, thereby identifying a
complete path that violates the property; (b) The partial assignment m, generated by
G, consistently produces conflicts, i.e., interpolants, regardless of the partition size.
For instance, when using a partitioning scheme with n = 5 (resp. n = 50), BMC-
D generates an average of 4.40 (resp. 34.06) interpolants per round, where a round
signifies when the procedure has traversed all partitions over the current model m.

In contrast, the random partitioning approach LZY-D generates fewer interpolants
per round, with an average of 1.81 interpolants for n = 5 and 2.86 for a partition size
of n = 50. We observed that the distribution of shared variables is less homoge-
neous between partitions. This non-homogeneity arises because the partitioning is
random, leading to some partitions sharing many more variables than others. Thus,
due to this randomness in the shared variables, it becomes challenging to produce
many conflicts regardless of the given assignment m. Additionally, the manager G
of the LZY-D approach starts with no constraints in its database, which can result
in the generation of assignments m that do not differ significantly. Consequently, it
becomes more challenging for G to find a model m that violates a majority of the
partitions, leading to a reduced number of interpolants.

Based on these measurements, this analysis clearly underscores the competitive and
efficient nature of a decomposition approach that takes into consideration the struc-
tural aspects of the BMC problem, in contrast to a randomized decomposition strat-
egy. Hence, it is entirely conceivable to utilize interpolation-based learning as a pre-
processing phase to enhance performance in a sequential setting.

5.4 Interpolation-based Learning in Parallel Solving

As demonstrated earlier, interpolation clauses have a positive impact on the overall
resolution time for BMC problems (refer to Table 5.2). This finding underscores the
potential advantages of integrating our concept within a parallel computing context.

One of the most effective strategies in parallel SAT solving is the “portfolio” ap-
proach. In essence, a portfolio consists of a set of sequential SAT solvers that run
in parallel and compete to solve a problem. These core engine solvers vary in sev-
eral ways, including the algorithms they employ and their initialization parameters.

80 Chapter 5. Decomposition-based BMC

SharingParallelization

SW

SW

...

SW

PF

ControlFlow

Sharer

Sequential
Engines

...
CDCL solver

CDCL solver

...
CDCL solver

CDCL solver

SW

SW

...

......

Decomposition-based

In
te
rp
o
la
n
ts

solver

FIGURE 5.2: Portfolio of solvers with sharing scheme using the frame-
work PAINLESS

Moreover, they can exchange information to expedite problem-solving and avoid
repeating the same mistakes. This aspect forms the basis for the integration of the
approaches discussed thus far.

Indeed, we seamlessly incorporate our decomposition-based solver into a portfo-
lio solver (utilizing the PAINLESS framework [137]), alongside multiple sequential
CDCL engines, as illustrated in Figure 5.2. Three main components arise when treat-
ing parallel SAT solvers:

• sequential engines. it can be any CDCL state-of-the art solver,

• parallelization. is represented by a tree-structure of arbitrarily depth. The in-
ternal nodes of the tree represent parallelization strategies, and leaves are core
engines (SW), and

• sharing. is in charge of receiving and exporting the set of clauses provided by
the sequential engines during the resolution process. Its behaviour is reduced
to a loop of sleeping and exchange phases.

In this integration, the interpolation-derived clauses are shared among the CDCL
solvers. This aims to enhance the knowledge base of CDCL solvers and support
them throughout the solving process. In this framework, the decomposition-based
solver does not import information from other solvers; instead, it exclusively pro-
vides its interpolants to them. It functions as a "black box", serving as a specialized
clause generator designed for BMC problems.

For the sake of simplicity, the exchange phase of the sharing component is to share
clauses with a limited LBD5 value [23]. Specifically, CDCL solvers export learnt

5LBD is a positive integer used as a learnt clause quality metric in nearly all competitive sequential
CDCL-like SAT solvers and parallel sharing strategies.

5.4. Interpolation-based Learning in Parallel Solving 81

Portfolio part. n SAT UNSAT Total sol. PAR-2

P-BMC-D
5 186 115 301 356h05
50 186 119 305 345h40

P-LZY-D
5 184 113 297 371h09
50 185 113 298 367h20

P-MINISAT - 185 113 298 362h57

TABLE 5.4: Performance comparison between different Portfolios

clauses identified by an LBD ≤ 4, a threshold that has been empirically proven to
be effective in recent portfolios and has demonstrated competitive performance in
parallel SAT competitions6.

Upon receiving the interpolants from the n partitions, the manager G calculates their
corresponding LBD values and shares only those with LBD ≤ 4, following a similar
approach as used for sharing conflicting learnt clauses.

To encourage the solvers to explore diverse search subspaces, it is essential to in-
troduce some variation in the solver’s parameters, such as the initial phase of the
variables. By ensuring that each solver runs with a different initialization phase,
they are more likely to make distinct decisions, leading to exploration of distinct
search subspaces. This diversification approach will be applied to all the portfolios
evaluated in the subsequent analysis.

Experimental evaluation

The experiments were conducted on the same benchmark described in Section 5.2.3,
which consists of 400 randomly selected BMC instances. Each instance had a time
limit of 6000 seconds for execution. The portfolio setups comprised 10 threads, and
the solvers used in these portfolio configurations were as follows:

- P-MINISAT : This portfolio exclusively employed the state-of-the-art MIN-
ISAT1.14P solver.

- P-BMC-D : In this configuration, one MINISAT1.14P solver was replaced with
a decomposition-based solver using BMC-D decomposition.

- P-LZY-D : Similar to P-BMC-D , this portfolio incorporated LZY-D decom-
position instead.

Table 5.4 presents the results for both smaller (n = 5) and larger (n = 50) partition
sizes. The remaining configurations yielded outcomes similar to those with n = 5.
The table provides information on the number of solved SAT and UNSAT instances,
along with the total instances. Additionally, it indicates the PAR-2 metrics7.

6https://satcompetition.github.io/2023/
7PAR-k is a measure used in SAT competitions that penalizes the average run-time, counting each

timeout as k times the running time cutoff

82 Chapter 5. Decomposition-based BMC

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

P-MINISAT (seconds)

P
-B

M
C

-D
-5

0
(s

ec
on

ds
)

UNSAT
SAT

(A) Scatter-plot comparing P-MINISAT to our
best approach P-BMC-D with n = 50

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000

P-LZY-D-50 (seconds)

(B) Scatter-plot comparing P-LZY-D to our
best approach P-BMC-D with n = 50

FIGURE 5.3: Runtime comparison between Portfolios

Unsurprisingly, P-BMC-D outperforms the state-of-the-art P-MINISAT by solving
6 more UNSAT instances and 1 additional SAT instance, all within a remarkable
17 hours reduction in PAR-2 solving time. Furthermore, P-BMC-D exhibits a clear
advantage over the randomized approach P-LZY-D for both partitioning sizes (n =
5, 50), solving at least 7 more instances and achieving a PAR-2 time reduction of at
least 21 hours.

A visual representation of this comparison is illustrated in the scatter plots shown in
Figures 5.3a and 5.3b. Figure 5.3a depicts a comparison of the running times in sec-
onds for UNSAT and SAT instances between P-BMC-D with n = 50 and P-MINISAT

. Similarly, Figure 5.3b provides the same comparison of P-BMC-D with P-LZY-D
on the same partition size n = 50. These figures demonstrate significant enhance-
ments achieved by P-BMC-D in solving known challenging UNSAT problems, while
maintaining a competitive edge in solving SAT instances.

Given these results, we sought to examine the relationship between the partitioning
size and the unrolling depth k of the BMC problem. To do this, we conducted an
analysis in which we categorized the entire benchmark of 400 BMC problems based
on the value the number of frames within a single partition ψi, noted ρ. This catego-
rization was performed for various partition sizes, namely n = 5, 10, 20, 30, 40, 50.

Table 5.5 provides an overview of the additional instances solved (+) or lost (-) by
P-BMC-D in comparison to the P-LZY-D and P-MINISAT portfolios, indicated in
the first and second rows, respectively. We categorized the BMC problems into three
groups based on the number of frames ρ contained within a partition ψi. The first
column ([1,7]) includes instances where each partition contains at least one frame
and at most 7 frames (1 ≤ ρ ≤ 7). The next column corresponds to instances where ρ
falls within the range of 8 to 30. Finally, the last column groups the remaining values
of ρ up to 200. This upper limit is dictated by the fact that the evaluated instances

5.5. Conclusion 83

Portfolio
num. steps ρ

[1 , 7] [8 , 30]]30, 200]

P-LZY-D 0 +12 -1

P-MINISAT +3 +10 -1

TABLE 5.5: Number of solved instances of P-BMC-D versus P-
MINISAT and P-LZY-D for different frame sizes ρ

have lengths k varying from 10 to 1000 steps. Thus, for the smallest partition size
(n = 5), we have ρ = 1000

n = 200 frames.

An interesting observation is that clustering a large number of frames within a single
partition (30 < ρ ≤ 200) negatively impacts the performance of P-BMC-D . This is
evident from Table 5.5, where P-BMC-D failed to solve one instance compared to
the other two portfolios.

The most significant improvement is observed when ρ ∈ [8, 30], where P-BMC-
D solved 10 and 12 additional problems compared to P-MINISAT and P-LZY-D ,
respectively.

Furthermore, grouping a small number of frames within a single partition ([1,7])
only marginally enhances the performance of P-BMC-D . It results in solving 3 ad-
ditional instances compared to P-MINISAT, while showing no increase in solved
instances compared to P-LZY-D .

Based on the above analysis, it becomes evident that utilizing interpolation-based
clause learning through a BMC-based partitioning approach, which balances the in-
clusion of a reasonable number of frames within each partition (between 8 and 30),
yields the most favorable outcomes in terms of solving efficiency. This suggests that
the granularity of partitioning n and the total number of frames ρ within each parti-
tion play a key role in enhancing the computation of relevant interpolants.

5.5 Conclusion

In this work, we embarked on a journey to enhance the efficiency of SAT-based BMC
solvers by harnessing the interpolation mechanism as a mean to generate learnt
clauses. We drew inspiration from the work of Hamadi et al. [37], who introduced a
partitioning-based technique (reconciliation algorithm) utilizing interpolation theo-
rems for generating relevant clauses. Their "lazy decomposition" approach (LZY-D)
focused on partitioning without considering the problem’s structure.

We introduced a novel decomposition technique, BMC-D, which capitalizes on the
inherent structure of the BMC problem. This approach involves partitioning the
formula based on system states, with each partition encapsulating a subset of adja-
cent states. We showcased the effectiveness of incorporating interpolation clauses
into the solving process. This integration can occur during the preprocessing phase,
within a limited time frame, or as part of clause exchange in a portfolio of classi-
cal CDCL solvers. In both of these scenarios, the use of interpolation-based clauses

84 Chapter 5. Decomposition-based BMC

stemming from the structural decomposition (BMC-D) consistently demonstrated
superior solving efficiency compared to state-of-the-art methods, for both UNSAT

and SAT instances.

Our ongoing work will extend this concept to more recent solvers, such as KISSAT-
MAB [33], which has the potential to provide robust unsatisfiable proofs and conse-
quently more informative interpolants. It is also plausible to consider using more ef-
fective interpolation algorithms such as those implemented in the PERIPLO frame-
work [145], in the context of software verification.

We also intend to use the partitioning size of the problem as a diversification param-
eter by running multiple BMC-D solvers within a parallel strategy. Each BMC-D
engine will employ a different partition size. Additionally, conducting a more in-
depth analysis of the type of property being evaluated would be valuable to develop
a partitioning method customized for each specification, following the hierarchy of
Manna & Pnueli [39]

85

Chapter 6

Programmatic SAT for BMC

Contents
6.1 Literature and motivations . 86

6.1.1 State-of-the-art . 86
6.1.2 Usage in a BMC context . 87

6.2 Inside the Black-box . 88
6.2.1 Extracting Model executions 89
6.2.2 Learnt constraints from the Synchronized product automaton 92

6.3 Interaction between Black-box and SAT solver 97
6.4 Discussion and future works . 99

As seen in the previous chapters, the quality of learnt clauses stands as a critical
factor that affects the performance of CDCL solvers.

This chapter introduces an alternative approach to incorporate structural informa-
tion during the SAT solving without necessitating a deep dive into the SAT solver’s
code. This concept is known as Programmatic SAT. Programmatically, it presents
a simplified means of interacting with the solver to guide it during the resolution
process. This interaction occurs through an external entity (a black-box), which is
typically specialized in domain-specific knowledge related to the problem at hand.
In our context, this entity is tailored for model checking problems.

Our primary contribution entails introducing a novel approach for harnessing the
automata representation of model checking to extract information lost during the
encoding of the original BMC problem into a propositional formula. These pieces
of information, when transformed into a set of clauses, can effectively steer the SAT
solver within significant search subspaces. Essentially, we can generate information
that the SAT solver might have overlooked. This is achieved through the new ex-
ternal component (the black-box). More precisely, when the SAT solver invokes it,
providing a current partial assignment α, the black-box extracts some facts hidden
from the solver. These facts are derived from the Büchi automaton representing the
synchronized product between α and the evaluated property φ. The extracted in-
formation are then encoded into a set of clauses that will be injected into the SAT
solver.

The drawback of automata-based procedures, however, is the time and memory
consumption that invoking the black-box can entail. This is primarily due to the
computational overhead of building the synchronized product, which can become

86 Chapter 6. Programmatic SAT for BMC

CDCL solver

black-box

(2)

(1)

FIGURE 6.1: Programmatic SAT scheme

substantial as the problem’s complexity increases. To mitigate this, we attempted to
control the flow of calls to the black-box. But, still, this requires more refined pa-
rameterization, which will be the subject of future investigation. In fact, so far, no
experimentation has yielded encouraging results. Therefore, this chapter presents
the theory behind combining both explicit and symbolic model checking procedures
to harness the strengths of both worlds in solving BMC problems.

In the subsequent sections of this chapter, we begin by providing a brief definition to
summarize the concept of Programmatic SAT solving and some related works em-
ploying this concept along with presenting our motivation for using this technique
in the context of BMC in Section 6.1. We then introduce the theoretical aspect we
build inside the black-box (Section 6.2) and communication control flow between
these two entities (Section 6.3). Finally, we conclude with an overall and short-term
perspectives for this work.

6.1 Literature and motivations

6.1.1 State-of-the-art

The concept of a programmatic SAT solver was first introduced in LYNX [146] used
to learn facts about potential solutions to guide the solver’s search that standard
solvers cannot acquire. It is an extension of DPLL(T) or nowadays known as SMT
(SAT modulo Theory) [147]. Concretely, a programmatic SAT solver is a standard
SAT procedure with an extra piece of code incorporated on the solving phase of the
SAT solver tested periodically. This piece of code encodes conditions with respect to
the domain-specific requirements of the evaluated instance. These conditions spec-
ify the requirements that the SAT solver’s solution must meet, whether by learning
new clauses, deciding on the next variable to branch on, etc. In essence, this extends
any of the fundamental components of the CDCL solver to guide it toward more
effective search spaces. Since our focus in this thesis is on learning new clauses, the
current partial assignment computed by the SAT solver is provided to the additional
code for evaluation. If it violates a condition from the provided code, then a conflict
clause or multiple conflicting clauses are generated encoding this fact. The conflict
clauses are then added to the SAT solver’s database of learnt clauses, with the aim
of increasing the efficiency of the remainder of the search. These clauses generation

6.1. Literature and motivations 87

have proven their usefulness on many applications such as on instances derived
from RNA folding problems [146], Cryptography [148], Williamson matrices [149],
etc. This is due to the fact that the SAT solver could not learn such facts since it has
no knowledge of the domain of the problem at hand.

This extra expressiveness of the domain specific knowledge is also a feature of SMT
solvers [147]. The different, however, is that SMT solvers deal with a specific theory
of first-order logic, requiring more overhead to use. This is because SMT solvers re-
quire prior knowledge of how a SAT solver functions since they apply modifications
directly within the internal code of the SAT solver.

To the best of our knowledge, no one has studied this paradigm in light of the BMC
problem and model checking in general. As discussed in Chapter 3, the state-of-the-
art on SAT-based BMC indicates that the enrichment of the SAT solver with struc-
tural information and the adaptation of these heuristics to the types of problems
being handled are developed directly inside the solver, such as symmetry proce-
dures, decision heuristics, and so on. The only study we have found that can come
close to the programmatic context of SAT-based BMC is the work by [150], imple-
mented in a framework called DIVER. Their aim is to generate relevant information
from the original problem. To achieve this, they use a BDD structure that randomly
selects a node representing a subspace of the search space. This selection is repeated
after a certain number of decisions. The call to the BDD produces potentially in-
teresting clauses to further guide the solver. The authors categorized the clauses
according to their importance (we have employed a similar methodology discussed
in Section 6.3) and tested several configurations by excluding certain categories and
clause sizes to avoid overloading the solver. It should be noted that the work of [150]
was used in the incremental context of BMC (which remains applicable for a fixed
bound), something we have not experimented in this present work but which will
be the subject of future work.
The difference with our approach is that instead of using a BDD structure, we con-
struct the automaton representation of the property and reason about the resulting
automaton from the synchronized product with the current assignment α transmit-
ted by the SAT solver.

6.1.2 Usage in a BMC context

As previously mentioned, programmatic SAT procedures allows non-expert users to
easily introduce domain-specific code into CDCL SAT solvers [29, 30, 33, 79], thus en-
abling users to guide the behavior of the solver. Our objective is to enhance the SAT
solver with structural information from BMC. The black-box interface (Figure 6.1)
will be capable of sending such information to the solver. The user-provided black-
box will examine the partial assignment α, generated by the solver during its search,
and will respond by dynamically adding clauses to the solver. As a result, the user-
provided code can finely tune and guide the solver’s search. The callback interface
(black-box) acts as a bridge between two realms. It allows non-experts in model
checking to utilize a SAT-oriented BMC solver, and simultaneously, model checking
experts can enhance this black-box with their expertise.

For this interaction to occur, the SAT solver sends the current partial assignment to
the black-box. The black-box then determines whether the given partial assignment

88 Chapter 6. Programmatic SAT for BMC

could lead to a violation (or not) of the property at hand, resulting in an accepting or
rejecting path within the model.

Accepting-path. This means that the finite path encoded from the partial assign-
ment could be extended to an infinite path (an execution) that violates the
property. Consequently, the black-box generates new constraints to commu-
nicate to the solver, with the aim of completing the provided assignment, ef-
fectively creating a counter-example (1).

Rejecting-path. This indicates that the finite path encoded from the partial assign-
ment cannot be extended to an infinite path that violates the property. Conse-
quently, there is no need from the SAT solver to further explore this decision
subtree, and should be cutoff (2).

The following section will provide details on how to detect both (1) and (2) situa-
tions.

Remark: Throughout the remainder of this chapter, the term "path" will refer to an infinite
path and thus an infinite execution, meaning an infinite sequence of states that starts from an
initial state. We might occasionally interchangeably use both terms, "path" and "execution",
which have the same meaning. We will specifically mention "finite path" when necessary.

6.2 Inside the Black-box

LTL formula φ

Translate LTL to
Büchi automata

Büchi automaton
of the negated
formula A¬φ

High-level M
(SMV program)

Generate Kripke
structure K

Büchi automa-
ton of AK

Synchronized
product automa-

ton AK⊗A¬φ

Emptiness check

Empty M |= φCounter-example

FIGURE 6.2: Automata-based approach for model checking

Figure 6.2 recalls and summarizes the broad lines of the automata-based model
checking procedure. At the top of the figure, the model and the LTL formula are

6.2. Inside the Black-box 89

s0

?

s1

?

s3

?

s2

?

FIGURE 6.3: Kripke structure K of a segment of the model M

the two elements provided by user who aims to determine whether the model M
satisfies the LTL formula φ. The result, at the bottom of Figure 6.2, can either be the
assurance that the model verifies the formula (M |= φ) or the detection of a counter-
example, which is an execution of the model that invalidates the formula.

The high-level representation of the system M initially transformed into a Kripke
structure K and subsequently into a Büchi automaton AK, whose language repre-
sents the set of feasible executions of the model. In parallel, the negated LTL formula
φ is also translated into a Büchi automaton A¬φ, representing the set of executions
that invalidate the formula (or that validate the negation of the formula).

As we introduced in Chapter 1, to determine whether a model M satisfies a formula
φ, it is enough to examine if the language associated with the automaton AK is con-
tained within the language ofA¬φ (LAK ∩LA¬φ

̸= ∅). This procedure, known as the
emptiness check, is performed by traversing the synchronized product AK ⊗A¬φ.
It characterizes the set of model executions that refute the property.

Thus, we have defined the behavior of the black-box for BMC, which will apply the
operations of an explicit model checker. In this strategy, the automaton for the LTL
property, as well as a segment of the model, are constructed to facilitate reasoning
about the resulting synchronized product automaton.

In the following subsection, we will delve into the inner workings of the black-box,
explaining how it generates and deduces information from the synchronized prod-
uct. The insights derived from this process are critical for guiding the solver towards
relevant search spaces.

6.2.1 Extracting Model executions

Through an example, we will illustrate the first part of the BMC-based black-box
mechanism. This part shows how model and property automata are constructed.
The second part, detailed in the next subsection, will provide more insight into how
the automata are manipulated to deduce relevant information.

In the context of programmatic SAT for solving BMC problems, we have restricted
the provided assignment to pertain to specific variables of the CNF formula. More
precisely, it involves variables responsible for encoding the property (i.e., a set of
variablesP in the CNF formula that excludes auxiliary variables, see Chapter 3). This
restriction allows us to analyze a segment of the model, preventing the need for a full
representation of the model and thus avoiding memory-related issues. Hence, the
Kripke structure representation of the model M is a limited subset of the alphabet Σ

90 Chapter 6. Programmatic SAT for BMC

s0

ab

s1

1

s2

b

s3

a

FIGURE 6.4: Kripke structure K with a labeling function

and, consequently, the set of atomic propositions AP involved in describing the LTL
property.

We recall that each variable in the SAT formula translates the system variable do-
main value1. For the sake of simplicity and without lose of generality, for the rest
of this chapter, we assume that all atomic propositions encoding the property use
Boolean variables. Thus, if we need to check a specification G”p”, this means that
the atomic proposition "p" represents a Boolean variable of the system p that must
be true throughout model executions. Therefore, its representation in CNF simply
corresponds to a Boolean variable xj

p that is set to true when the atomic proposition
"p" is true at time step 0 ≤ j ≤ k.

Given a BMC problem unrolled up to bound k = 3, involving 4 atomic propositions
AP = {a, b, c, d}, and their representation in the SAT formula is composed of the
following Boolean variables: {xj

a, xj
b, xj

c, xj
d} for j = 0, . . . , 3. Suppose that {a, b} are

the only atomic propositions involved in the LTL. We illustrate the Kripke structure
K = ⟨S, T, I, Act, AP, L⟩ of the model in Figure 6.3, where the labeling function L is
not yet defined. Multiple executions can be constructed from K; to be precise, there
are k + 2 executions:

• ρ0 = s0s1s2s3 • ρ1 = s0s1s2 s3s3s3 . . .︸ ︷︷ ︸
inf. repetition

of s3

• ρ2 = s0s1 s2s3s2s3s2s3 . . .︸ ︷︷ ︸
inf. repetition

of s2s3

• ρ3 = s0 s1s2s3s1s2s3s1s2s3 . . .︸ ︷︷ ︸
inf. repetition

of s1s2s3

• ρ4 = s0s1s2s3s0s1s2s3s0s1s2s3 . . .︸ ︷︷ ︸
inf. repetition

of s0s1s2s3

where ρ0 represent a finite execution and ρ1, ρ2, ρ3 and ρ4 are infinite executions with
a cycle of length of 1, 2, 3, and 4, respectively.

The labeling function L (L : S → 2AP), with S a finite set of states) of K defines, at
each time step of the system, the state of variables describing the (negation) of the
property. It is defined through the partial assignment α and is updated each time the
SAT solver sends a query (a new α) to the black-box. Thus, from the set of variables

1If we take a model that defines a 32-bit variable denoted by a, its encoding in the SAT formula
is represented by 32 Boolean variables at each k steps (xj

”a=i” for i = 1, . . . , 32 and 0 ≤ j ≤ k). An

atomic proposition "a = 12" is translated into a Boolean variable xj
”a=12”, that is set to true if the atomic

proposition "a = 12" holds at time step 0 ≤ j ≤ k)

6.2. Inside the Black-box 91

0′

ab

FIGURE 6.5: Büchi automaton of G(a ∧ b)

0 1 2 3
ab 1

b
a

a

a

a

FIGURE 6.6: Büchi automaton AK

encoding the property in the CNF formula, we redefine the labeling function L of K.
Nonetheless, not all state propositions are defined due to the CDCL solver has not
yet decided on all the variables in P . Some state propositions are thus undefined.

Suppose the given partial assignment α is as follows:

α = {x0
a , x0

b, x2
b, x3

a}

We can observe that at step 1, neither x1
a , nor x1

b were assigned by the SAT solver. To
address this situation and to have a complete labeling function, we over-approximated
the missing state’s labels by setting them the full set of labels: 2AP (marked with 1 in
the automata illustrations). We define the function L of K according to α as follows:

−L(s0) = {{a, b}} − L(s1) = 2AP︸︷︷︸
all propositions

−L(s2) = {{b}} − L(s3) = {{a}}

This completes the representation of K shown in Figure 6.4.

Let’s now consider that the LTL specification the model should satisfy is: φ =
F(¬a ∨ ¬b). The translation of this negated property into an automaton is drawn
in Figure 6.5, involving only the variables a and b. The other variables, c and d, are

0, 0′ 1, 0′ 2, 0′ 3, 0′
ab ab

ab
ab

ab

ab

ab

FIGURE 6.7: Synchronized Product automaton AS of AK ⊗A¬φ

92 Chapter 6. Programmatic SAT for BMC

discarded since they are not used in φ. The construction of the automaton for the
property A¬φ is built only once by the black-box.

The black-box will construct the model structure K from Figure 6.4 into a Büchi au-
tomaton AK displayed in Figure 6.6.

From A¬φ and AK, the black-box initiates the language intersection procedure (de-
tailed in Section 1.3.4 of Chapter 1). Figure 6.7 showcases the synchronized product
automaton AS from AK and A¬φ intersection. We can already deduce from the ob-
servation of AS 6.7 that φ is invalidated because AS is not empty: there exist only
executions where a and b hold. This means that the specification φ is never verified
since there exist no execution that results in a and b becoming f alse.

In summary, the BMC-based black-box mechanism determines the validity of the
property φ through the model executions, which have been constructed using the
partial assignment α provided by the SAT solver.

6.2.2 Learnt constraints from the Synchronized product automaton

The obtained automaton AS from the synchronized product (AK ⊗ A¬φ) allow us
to analyze the paths that might lead to a violation of the property and discard the
exploration of unnecessary subspaces for the SAT solver. This is done by pruning
uninteresting search subtrees through the addition of new clauses.

By adopting a concept similar to emptiness check algorithms [53], which are based
on the enumeration of Strongly Connected Components (SCC) to identify SCCs that
contain accepting cycles, we can determine the interesting parts of the AS automa-
ton. More precisely, this approach will help identify whether paths of the model can
lead to an accepting or rejecting path only if it passes through SCCs.

Definition 6.1 (Strongly connected graph). A graph G = (V, E) is connected if, for
every pair of distinct vertices (u, v) ∈ V2, there exists a path from u to v or a path from v to
u. A graph is strongly connected if, for every pair of vertices (u, v) ∈ V2, there exists a path
from u to v.

Definition 6.2 (Strongly connected component). An SCC is a maximal set of states V
such that there is a finite path between any two distinct states of V.

- Accepting: An SCC is said to be accepting iff it contains an accepting cycle.

- Non-Accepting: There are two kinds of non-accepting SCCs. If an SCC can only
reach other non-accepting SCCs, it is useless and may be removed from the automa-
ton without changing its language. This simplification is traditionally performed right
after the translation into an automaton. If the non-accepting SCC can reach an accept-
ing one, it is transient. For the sake of simplicity, we assume that that useless SCCs
have been removed, i.e., all non-accepting SCCs are transient.

Figure 6.8 shows an example of a Büchi automaton with three accepting cycles. The
dashed boxes highlight the SCCs of the automaton. Red boxes C1 and C2 are tran-
sient SCCs that can reach an accepting SCC (in green box). C1 can reach the accepting
SCC C3, where C2 can reach C3 and C4.

6.2. Inside the Black-box 93

0 1

2 3

4

5

6 7

C1

C2

C3

C4

1
1

āb̄

ab̄

b

ab̄b

b

āb̄

b̄

1

ab

1

b̄

FIGURE 6.8: SCCs of a Büchi automaton

0 1 2

3

ab a

āb
1

1

1
1

(A) AK1 automaton

0, 0′ 1, 0′ 2, 0′
ab ab

(B) Synchronized product be-
tween AK1 and A¬φ

FIGURE 6.9: Büchi automata of Example 6.1

Based on the notion of SCC, we can deduce two types of information depending on
whether there exists an accepting-paths in the synchronized product between AK of
the model structure and A¬φ.

The existence of an SCC proves that there is an infinite path that can lead to the
violation of the property φ, i.e., there exists a path containing an accepting cycle.
However, when there is no accepting SCC, this result in K not invalidating the prop-
erty. The intersection of the two automata languages is empty.

1. Empty intersection. this implies the non-existence of any accepting SCC. This
signifies that the partial assignment α provided by the SAT solver can not be
extended to any assignment capable of violating the property φ. Continuing
along this set of decisions would be pointless, as they will not result in any con-
tradiction. It is possible to halt the solver from exploring the subspace prefixed
by the decisions α. This can be achieved by constructing a clause representing
the negation of α. Consequently, communicating this information to the CDCL
solver, will result in the elimination of this irrelevant path.

Example 6.1. Let’s revisit the same specification φ = F(¬a ∨ ¬b), as depicted
in Figure 6.5. It has been verified up to k = 3. Let α = {x0

a , x0
b, x1

a ,¬x2
a , x2

b}. We
initialize the labeling function L of the model Kripke structure K1 following
α. We depict the set of executions of the model in Figure 6.9a. The resulting
synchronized product automaton contains no accepting SCC (Figure 6.9b). As
such, the constraint that effectively removes this unuseful path would be a

94 Chapter 6. Programmatic SAT for BMC

0

1

2

āb̄c̄ c̄

a

a

a

(A) Büchi automaton AK2

0′

6′ 1′

2′ 5′

4′3′

āc ac

ac

āc c

bc̄

b
c̄

1 c̄

b̄
b

bc̄

b̄

b̄

b̄c̄

b̄c

(B) Büchi automaton A¬φ2 with ¬φ2 =
(FG¬c ∧ Fb) ∨G(¬b ∧ Fc) ∨ (Gc U (a ∧Gc))

FIGURE 6.10: Büchi automata of Example 6.2

clause C¬α, representing the negation of the assignment α:

C¬α = (¬x0
a ∨ ¬x0

b ∨ ¬x1
a ∨ x2

a ∨ ¬x2
b).

2. Transition constraints. The automaton AS is non-empty if there exists an SCC
containing an accepting cycle. This implies the existence of at least one ac-
cepting SCC leading to a witness violating φ. As a result, it becomes possible
to trace one or multiple paths leading to an accepting cycle under the pro-
vided partial assignment α. When α contains gaps, meaning there are some
unassigned variables related to the property, we can infer these missing as-
signments from the synchronized product automaton. This information is for-
warded to the SAT solver as a set of constraints, denoted as fi, each of which
dictates the values the unassigned variables in the property should assume at
time step i. All of these constraints are formulated under the assumption of α.
Therefore, we can formulate the the constraints generated for this purpose:

Cα =⇒ fi for i = 0, . . . , k (6.1)

with the clause Cα is constructed from partial assignment α.

Example 6.2. Consider the formula φ2 = (¬a W F¬c) ∧ (GFc ∨G¬b) ∧ F(b ∨
G¬c) for a system unrolled up to k = 2, as depicted in Figure 6.10b. Let the
partial assignment provided by the SAT solver be:

α = {¬x0
a ,¬x0

b,¬x0
c ,¬x1

c , x2
a}

After defining the labeling function L of K2, Figure 6.10a displays executions

6.2. Inside the Black-box 95

0,
0′

1,
3′

2,
3′

0,
3′

1,
4′

2,
4′

0,
4′

2,
2′

0,
2′

1,
2′

2,
1′

0,
1′

1,
1′

āb̄
c̄

āb̄
c̄

b̄c̄
ab̄

c

ab̄
c̄

ab̄
c

ab̄
c̄

ab̄
c

ab̄
c̄

āb̄
c̄

b̄c̄

bc̄

bc̄

ab̄
āb̄

c̄

ab̄

ab̄

ab

ab
c̄

ab
c̄

ab
c̄

ab

ab

a

ac̄

ac̄

ac̄

a

ac̄

c̄

āb̄
c̄

āb̄
c̄

ac̄

ac̄c̄

ac̄
āb̄

c̄

FI
G

U
R

E
6.

11
:S

yn
ch

ro
ni

ze
d

pr
od

uc
tA

S 3
be

tw
ee

n
A

Λ
3

an
d
A
¬

φ
of

Ex
am

pl
e

6.
4

96 Chapter 6. Programmatic SAT for BMC

of the system’s automaton AK2 . The computed synchronized product AS2 de-
picted in Figure 6.11 contains thirteen states, two transient SCCs, and two ac-
cepting SCCs. Note that dashed edges colored in gray are not part of the
accepting paths transitions.

There are multiple paths of length k+ 1 (k + initial state) leading to an accepting
SCC:

− (0, 0′) āb̄c̄−→ (1, 3′) b̄c̄−→ (2, 3′) ab̄c−→ (2, 3′)

− (0, 0′) āb̄c̄−→ (1, 3′) b̄c̄−→ (2, 3′) ab̄c−→ (0, 3′)

− (0, 0′) āb̄c̄−→ (1, 4′) bc̄−→ (2, 1′) ac̄−→ (2, 1′)

− (0, 0′) āb̄c̄−→ (1, 4′) bc̄−→ (2, 1′) ac̄−→ (1, 1′)

− (0, 0′) āb̄c̄−→ (1, 4′) b̄c̄−→ (2, 1′) ac̄−→ (0, 1′)

− (0, 0′) āb̄c̄−→ (1, 4′) b̄c̄−→ (2, 4′) abc̄−→ (1, 1′)

− (0, 0′) āb̄c̄−→ (1, 4′) b̄c̄−→ (2, 4′) abc̄−→ (0, 1′)

− (0, 0′) āb̄c̄−→ (1, 4′) b̄c̄−→ (2, 4′) abc̄−→ (2, 1′)

From these paths, we can deduce a global constraint for each transition of the
automaton AK2 :

(T1) The first transition from the initial state 0 to state 1 is already complete,
so no additional information can be deduced from AS2 .

(T2) The second transition between states 1 and 2 results in:

b̄c̄ + b̄c̄ + bc̄ + bc̄ + b̄c̄ + b̄c̄ + b̄c̄ + b̄c̄ ≡ c̄

We can’t deduce any extra information that we already have: c̄.

(T3) The last transition between states 2 and 0 yields the following formula:

ab̄c + ab̄c + ac̄ + ac̄ + ac̄ + abc̄ + abb̄ + abc̄ ≡ ac̄ + ab̄

We deduce information specifying that for the transition from state 2 to
other states of AK2 , it is required that:

2

1

0
(ac̄ + ab̄)

(ac̄ + ab̄)

(ac̄ + ab̄)

The resulting formula to be sent to the solver is:

Cα =⇒ (a ∧ ¬c) ∨ (a ∧ ¬b)

6.3. Interaction between Black-box and SAT solver 97

To summarize, the operations performed by the black-box are as follows:

1. Creation of the Büchi automaton AK associated with the partial assignment α
sent by the SAT solver.

2. Computation of the synchronized product automaton AS between AK and
A¬φ.

3. Extraction of new information from AS: empty intersection, transition con-
straints.

This theoretical concept seeks to combine the two realms of model checking (explicit
and symbolic), with the goal of uncovering structural information that is hidden
from SAT procedures. All of this can be accomplished with minimal modifications
to the SAT solver’s code. The operations involving automata are carried out using
SPOT framework [50]. This tool specializes in ω-automata and provides optimized
algorithms, including synchronized product computation.

6.3 Interaction between Black-box and SAT solver

The internal processes of the black-box entail computationally intensive operations,
which include generating automata from the provided partial solution α and per-
forming synchronized product calculations. These operations impose significant de-
mands on computational time and memory resources. Therefore, it is crucial to make
well-informed decisions about when to initiate these processes. Moreover, flooding
the solver with external clauses, can have counterproductive effects. Therefore, it
becomes essential to control the volume of exchanged information.

In this section, we will thoroughly examine the communication process between
these two entities and the strategies for managing the flow of calls and shared infor-
mation. Algorithm 2 offers a succinct representation of the code lines integrated into
the CDCL SAT solver. Importantly, the invocation of the black-box (CALLBLACKBOX)
occurs only when the solver fails to detect a conflict (when unit variables are propa-
gated without detecting any conflict).

(CDCL) −→ (Black-box): This involves a straightforward exchange initiated by the
SAT solver towards the black-box (indicated by arrow (1) in Figure 6.1). As
introduced earlier, this exchange entails sending a partial assignment α of the
problem’s variables. Importantly, this assignment is limited to variables within
the property, spanning from the initial to the final time step k. Within the con-
text of automata-based model checking, this partial solution α translates into
set of finite paths leading to multiple infinite paths (executions). The black-box
aims to evaluate the intersection of this set of executions with the language of
the property’s automaton.
However, calling upon the black-box can be redundant or unproductive, given
the computational overhead associated with its use. To streamline the commu-
nication flow in this direction, it is prudent to restrict calls to the black-box
(as indicated in line 9 of Algorithm 2) only when there have been substantial
changes in the assignment α compared to the previous successful call (α′). For
instance, when this threshold is set at 5%: it signifies that for the SAT solver to

98 Chapter 6. Programmatic SAT for BMC

Algorithm 2 CDCL[BMC] - search method

Require: F : CNF formula
1: learntCls: []
2: α = { }, α′ = { }
3: forever
4: (F′, α′)←− UNITPROPAGATION(F, α)
5: if conflict then
6: · · ·
7: else
8: · · ·
9: if |α′ ∩ α| ≥ X then

10: learntCls←− CALLBLACKBOX(α)
11: α′ ←− α
12: for c ∈ learntCls do
13: if Satisfied(c) then
14: continue
15: else if Falsified(c) or Assertive(c) or LBD(c) ≤ Y then
16: addClause(c)
17: · · ·
18: · · ·
19: end for

engage the black-box, there must be a 5% change in property decision variables
compared to the last successful call.

(Black-box) −→ (CDCL): The second exchange (arrow tagged by (2) in Figure 6.1)
involves the black-box, which, upon receiving a partial solution α, constructs
automata that recognize this assignment applying the procedure detailed in
Section 6.2. The synchronization procedure generates constraints, which can
be categorized based on their utility for the solver. Specifically, within the
CDCL algorithm, when importing an external clause, that clause can be in one
of four states: (i) all literals of the clause are f alse, (ii) The clause contains only
one unassigned literal, (iii) the clause is already satisfied, or (iv) any other type
of clauses that do not fall into the first three categories:

(i) Falsified clause. All variables in the clause are assigned to f alse. This
type of clause is produced by the black-box when the intersection of the
two automata languages is empty, leading to the creation of a clause that
represents the negation of the provided assignment α (C¬α). It has a sig-
nificant impact on the solver as it systematically cuts off the current search
subtree. Therefore, it is crucial and must be retained by the solver.

(ii) Assertive clause. The clause contains only one unassigned literal or one
that has been assigned in the opposite polarity through the propagation
process. Two situations arise here: (1) The variable corresponding to
the last literal in the clause has not yet been assigned. The propagation
process then forces the assignment of the remaining literal to satisfy the
clause. (2) The variable corresponding to the last literal in the clause has
already been assigned in the opposite polarity. This leads to a conflict,
indicating a contradiction in the variable assignment. The solver must

6.4. Discussion and future works 99

backtrack and change this assignment. This is useful for the solver as it
forces the satisfiability of the clause by propagating the implicated vari-
able.

(iii) Satisfied clause. This clause is already satisfied, meaning it contains a lit-
eral that is true in the current assignment. These clauses are not of imme-
diate interest during the resolution process. While it is possible to retain
them and hope they become useful (falsified or assertive) at a later point
in the resolution, in our study, we completely ignored them to avoid over-
burdening the solver given the substantial number of clauses received
(line 13 in Algorithm 2).

(iv) Others. These are clauses that do not fall into any of the previous cat-
egories at the time of import. They contain many undefined variables.
For these clauses, their level of importance is challenging to determine,
and they can be numerous. We chose to limit the storage of these clauses
based on their corresponding LBD values. As shown in Algorithm 2, the
last condition in line 15 states that any clause that is neither f alse nor as-
sertive can be added to the solver’s learnt clause database if its LBD is
less than or equal to a fixed threshold.

Therefore, these restrictions on both sides ensure that the black-box is called at
more critical moments, and the resulting information will not overwhelm the
solver.

6.4 Discussion and future works

This study introduces a new way to leverage the structure of BMC instances. This
idea allows combining two worlds: explicit and symbolic model checking, resulting
in an intertwined integration of these two techniques with the objective of producing
a robust summation of their orthogonal strengths.

As of now, we haven’t achieved fruitful results, and there are several reasons for this.
Firstly, it’s primarily due to the parameters that regulate the number of calls and
the quantity of exchanged clauses. Excessive communication with the black-box in-
evitably leads to longer times for automaton creation, intersection computation, and
synchronized product automaton traversal. Thus, when the given partial assign-
ment α contains few gaps, it implies that most of the property’s variables are already
assigned. In such cases, there is no need to invoke the black-box. Additionally, this
also affects the size of the clauses exported by the black-box. The constraints defined
in Formula 6.1 become larger as α becomes more complete. Similarly, the formulas
fi derived from synchronized product computations are not in clausal form (CNF).
This means that if the formula fi is large and complex, it will result in a substantial
number of clauses.

Another factor that might influence the results is the quality of the information ex-
tracted from the synchronized product. Further investigation is required to deter-
mine whether more concise and informative data can be deduced.

The future directions of this work are being pursued. We are considering a shift to a
parallel context in which the black-box communicates with multiple CDCL workers.

100 Chapter 6. Programmatic SAT for BMC

These workers will share their assignments α with the black-box. The black-box will
process each received α from the workers and share the learnt clauses with all CDCL
workers in the portfolio. This approach not only prevents the SAT solvers from being
blocked but also ensures that the information learnt from the assignment α of one
solver is shared with all workers. This prevents the other workers from making the
same mistake.

101

Chapter 7

Conclusion

The literature has shown significant interest in improving bounded model check-
ing using SAT procedures. Researchers have achieved this by adapting internal
solver heuristics and by parallelizing problem resolution, breaking it down into spe-
cific subparts. All of these contributions have significantly accelerated the solving
process. This heightened interest has driven the development of approaches that
consider specific problem characteristics, such as the characteristics of propositional
formula variables and formula symmetry, aspects that SAT procedures typically are
unaware of.

This thesis contributes a tiny building block to this area. It focuses on extracting
high-level information that characterizes bounded model checking problems with
the goal of identifying and/or constructing relevant clauses, enabling the efficient
removal of unnecessary subspaces by injecting these clauses into the SAT solver.
The thesis proposes various orthogonal techniques for this purpose to improve the
performance of SAT procedures in evaluating BMC instances, both in sequential and
parallel contexts. Three primary axes of exploration were pursued:

Tune clause deletion policy. We observed that integrating additional information
from the new classification clause metric, allowed us to propose an approach
for detecting relevant learnt clauses based on this new metric. During our
study, we observed that certain classes of learnt clauses were significantly more
valuable to keep in memory than others due to their usefulness in the solving
process. Therefore, we introduced two heuristics as HS and HLP, which rely
on the LBD metric. These heuristics aid in determining the appropriate LBD
value for each type of learnt clause, prioritizing the protection of useful cat-
egories to be kept in the clause database throughout the resolution process.
Across the two leading modern SAT solvers, MAPLECOMSPS and KISSAT-
MAB, the experiments demonstrated a significant improvement. Based on
these results, we proposed using this classification method to identify relevant
clauses for sharing among multiple workers in a portfolio-based environment.
The experimental part of this research has reinforced the importance of con-
sidering clause composition variables. As a result, the methodology for classi-
fying clauses can be applied to any CDCL solver and is adaptable to problems
that can partition the variables that constitute the problem. All of this work is
integrated into our BSALTIC framework.

Exploiter BMC formula structure. By leveraging the unique characteristics of BMC
instances, we introduced a partitioning scheme that divides the formula into

102 Chapter 7. Conclusion

several independent subparts. These subparts are structured in a way that
they encapsulate successive states together. To reconcile them, we integrated
Hamadi et al.’s reconciliation scheme [37], which involves communication be-
tween the subparts using Craig interpolation mechanisms. The end result is
a global solution validated across all partitions. Our contribution involves
proposing a BMC-based decomposition that isolates segments of the model’s
path. We can then reason about them independently, leading to the genera-
tion of more expressive interpolants compared to partitioning methods that
don’t consider the original problem’s structure. We presented two approaches
to leverage these interpolants: (1) by generating and injecting them into the
original problem during the preprocessing phase of the SAT solver (this was
experimented with in a sequential context), and (2) by introducing a solver
into a portfolio-based approach that operates this decomposition and shares
the interpolants returned by the partitions throughout the resolution process
with other classical CDCL solvers that lack this partition view. In both cases,
these interpolants, stemming from a partitioning approach that considers the
problem’s structure, significantly improved solver performance.

Combine explicit & symbolic model checking. A preliminary investigation was con-
ducted to combine two worlds of model checking: explicit system represen-
tation through automata-based techniques and symbolic representation via
Boolean SAT formula resolution. Here, the high-level knowledge from explicit
model checking was integrated into SAT resolution. The concept of Program-
matic SAT solving was employed to streamline the implementation in order to
incorporate structural information into SAT problems without necessitating a
deep dive into the SAT solver’s code. To achieve this, we introduce an external
component within the CDCL algorithm, referred to as the black-box. When in-
voked by the SAT solver and provided with the current variable assignments,
this black-box operates in a manner akin to emptiness check algorithms be-
tween that compute the synchronized product automaton between the exe-
cution provided by the given assignment, which represents the model, and
the evaluated property. This relies on the enumeration of Strongly Connected
Components (SCCs). The objective is to identify SCCs that contain accepting
cycles, indicating the presence of a path that violates the property. Conse-
quently, the black-box extracts information in the form of learnt clauses, which
are then injected to the SAT engine. Nevertheless, the experimental results
yielded unpromising outcomes, and these findings are discussed in greater de-
tail in the corresponding Chapter 6, along with potential directions for future
work.

These three axes, which are completely independent, have each contributed in their
own way to identifying or generating relevant learnt clauses. These works can be
merged together to create a solver that is nearly specialized in solving BMC in-
stances.

7.1. Short-term Perspectives 103

7.1 Short-term Perspectives

In addition to the theoretical work introduced in Chapter 6, which will be the subject
of further investigation, we have simultaneously explored other interesting direc-
tions that extend the work presented in Chapter 4. The first idea involves consider-
ing the category of the evaluated LTL property according to the Hierarchy of Manna
& Pnueli. The second idea is to apply the concept of clause classification to charac-
terize relevant learnt clauses in the incremental version of BMC using incremental
SAT solvers.

7.1.1 LTL-based tuning

One aspect that our previous research did not extensively investigate is the consid-
eration of LTL properties category within the hierarchy defined by Manna & Pnueli.
In this work, we dive deeper into tailoring the verification process to each class of
the hierarchy. Our current focus is on investigating the impact of the clause clas-
sification CX metric on each type of LTL property. This entails categorizing BMC
problems based on the specific type of property under consideration. Indeed, we ob-
served differences in the usage of the class of clauses when the analysis is performed
on a partitioned benchmark according to the type of property being checked.

For more detailed insights, Section A.1 in Appendix A provides additional infor-
mation about these analyses. We propose a new heuristic based on solving a linear
program that, instead of producing multiple optimal solutions, changes the system’s
objective to find a single optimal solution. The linear system seeks to maximize the
overall usage frequency of the classes CX.

Up to this point, the experimental results using MAPLECOMSPS solver have not
outperformed a generic approach that does not account for property classes (HLP
heuristic). This may be attributed to the proposed heuristic, which involves multiple
parameters.

Ongoing work in this area focuses on refining the frequency heuristic to be applied in
both sequential and parallel approaches, and extending this concept to recent CDCL
solvers such as KISSAT-MAB [33].

7.1.2 Tuning learnt clauses in Incremental SAT-based BMC

This preliminary study is a result of a collaboration with Guillaume Carrières1, fo-
cusing on incremental SAT-based BMC. Our goal was to investigate the impact of
clause classification CX and its role in identifying relevant learnt clauses within the
context of incremental SAT-based BMC. As a part of this study, we extended the con-
cept presented in Chapter 4 in an incremental manner. More precisely, we adapt the
HLP heuristic to compute a selector for identifying learnt clauses that require protec-
tion. This selector is refined dynamically, during the solving between two unrolling
iterations.

Our purpose is to explore the potential of leveraging BMC’s gradual nature to speed
up the overall verification process. Incremental resolution provides us with the flex-
ibility to adjust the selector from one iteration to the next, based on prior learning.

1An engineering student from EPITA

104 Chapter 7. Conclusion

We investigated heuristics designed to enhance incremental SAT-based BMC solv-
ing by incorporating external information derived from the original model check-
ing problem, particularly through the clause classification measure. A comprehen-
sive description of our approach can be found in Section A.2 in Appendix A. The
results indicate a slight increase in the number of solved instances. While these
are promising findings, they also suggest that further exploration of using external
BMC information is warranted. Additionally, we demonstrated that (MAX-MIN)-
DEPTH of [121] could be considered as a substitute for LBD, albeit with occasional
modest performance improvements. The nature of this measure makes it a valuable
candidate for fine-tuning BMC solving, and further investigations into this metric,
along with a broader comparison with modern incremental BMC approaches such
as IC3 [60] and PDR [61] techniques, should be considered.

7.2 Long-term Perspectives

With the emergence of more sophisticated procedures, such as IC3, which leverage
SAT solving techniques to approximate the search space at each time frame, it would
be interesting to consider replacing the SAT solver with a solver more tailored to
BMC, in line with one of the ideas presented in this manuscript.

Additionally, an intriguing aspect that hasn’t yet surfaced from BMC features is
whether the synchronicity of the system (synchronous or asynchronous models) be-
ing evaluated has different characteristics. Much like our attempt to exploit property
categories, as presented in the short-term perspectives, segmenting the benchmark
according to the synchronicity of the model could reveal additional insights or, at the
very least, allow for parameter adjustments (i.e., the selector) based on the model’s
synchronicity.

In a parallelism context, this thesis has focused on BMC problem resolution through
solver portfolios. It would be interesting to explore the second form of parallelism,
which is the Divide and Conquer approach. More specifically, by employing the
guiding path method [106], we can dynamically partition the search tree during res-
olution, employing the work-stealing concept. Given the structure of the BMC for-
mula, the decomposition here would be intuitive and could, for instance, depend on
the system’s state variables.

105

Appendix A

Implementation details of ongoing
works

A.1 LTL-based tuning of learnt clauses databases

The hierarchy of Manna & Pnueli [39] has been used to fine-tune explicit model-
checkers [42–44]. These studies suggested various strategies, including a decom-
position of the input automaton or propose optimizations for specific classes of
the hierarchy. To the best of our knowledge, our idea is the first covering all the
classes of this hierarchy within the context of SAT-based BMC. Most existing litera-
ture gives attention to safety or guarantee properties [57, 124] only, such as IC3 [140]
or PDR [61] procedures. While there exist some rigorous methods to convert live-
ness properties into safety properties [151] for application in IC3/PDR approaches,
our work delves deeper into tailoring the verification procedure for each class of this
hierarchy. We investigate the impact of the clause classification metric on each type
of property. This involves categorizing BMC problems based on the type of property
under study.

Indeed, we observed differences in the analysis of the usage rate of the class of
clauses1, when we partition the benchmark based on the type of property being
checked. Figures A.1 display these differences in the analysis when applied to Re-
currence and Reactivity properties, respectively.

From these findings, we aim to identify the most suitable selector for each class
of property. Instead of using the HLP heuristic, we introduce a novel automated
heuristic called "HF . This heuristic is based on a linear programming system that
leverages insights gained from the preliminary study to compute a selector specific
to each LTL category. This introduces a way of finding interesting selectors based on
the usage frequency of the clause class CX, precisely:

f =
%usage of class CX

%generated learnt class CX

A.1.1 Optimization

The idea is to derive a selector that does not overpass a given threshold on the num-
ber of generated learnt clauses, while ensuring a higher usage frequency. To achieve

1Similar study as in Section 4.1 of Chapter 4

106 Appendix A. Implementation details of ongoing works

FIGURE A.1: Measures on the training benchmark with MAPLECOM-
SPS solver, showing learnt clauses usage in conflict-analysis phase.

Each class of clauses is colored and annotated by its LBD value.

this, we formulate a linear program M(b,ϵ), that seeks to maximize the total usage
frequency while adhering to three major constraints:

(1) A constraint to ensure that the total number of learnt clauses does not exceed
a specified threshold (LBD≤b) with a precision of ϵ > 0. For example, when
using the MAPLECOMSPS engine, the program would concentrate on a num-
ber of learnt clauses, at most equal to b = 3, meaning, those of LBD≤3, that
construct the core database.

(2) A constraint which ensures that the total usage rate is, at worst, equal to that
corresponding to LBD≤b.

(3) Constraints that reflect the importance of each class of clauses. Indeed, from
the Figures A.1, we can observe that some classes are more relevant than others
(CMJ). This must have an influence on the resolution of the linear system. To
account for this, we constraint the linear program to prioritize the protection
of the more relevant classes of clauses by requiring a solution that provide
them to have an LBD≥b. To do so, we associate a probability to each class CX,
according to their relevance from prior study (Figures A.1). If the probability
for a class is above a specified threshold, we require the program to generate a
solution where the LBD score of that class is at least equal to b (LBD≥b).

The formal description of the linear system needs the introduction of the following
notations:

- S={P ,M,J ,PM,PJ ,MJ ,PMJ }: denotes the set of classes.

- xX
i : a Boolean variable representing the decision variable of the linear system.

It takes the value 1 if the LBD≤i is chosen for the class of clauses X, 0 if not.

- LX
i : percentage of generated learnt clauses (x-axis) with LBD≤i and X ∈ S .

- UX
i : usage rate of class X ∈ S (y-axis) with an LBD≤i.

A.2. Tuning learnt clauses in Incremental SAT-based BMC 107

- b: LBD value of reference used in the constraints.

- ϵ: precision gap.

Hence, our optimization problem, M(b,ϵ), is as follows:

M(b, ϵ) = maximize ∑
X∈S

fX = ∑
i≥1

∑
X∈S

% usage︷ ︸︸ ︷
xX

i UX
i

xX
i LX

i︸ ︷︷ ︸
% learnt

s.t.

∑
i≥1

∑
X∈S

xX
i LX

i ≤ (
b
∑

i=1
∑

X∈S
LX

i) + ϵ (1)

∑
X∈S

∑
i≥1

xX
i UX

i ≥
b
∑

i=1
∑

X∈S
UX

i (2)

b - 1
∑

i=1
xX

i = 0 ∀X ∈ S (3)

∑
i≥1

xX
i = 1 ∀X ∈ S

xX
i ∈ {0, 1} ∀X ∈ S , ∀i, 0 < i ≤ 22

A.1.2 Discussion & perspectives

The experimental results have not yet outperformed the prior HLP heuristic that does
not account for property classes. This may be attributed to the proposed HF heuris-
tic, which involves multiple parameters. We did not yet evaluated prior heuristic
HLP into a partitioned benchmark.

Ongoing work in this area focuses on refining the frequency heuristic to be applied in
both sequential and parallel approaches, and extending this concept to recent CDCL
solvers such as KISSAT-MAB [33].

A.2 Tuning learnt clauses in Incremental SAT-based BMC

The principle of an incremental solver, and more precisely an incremental CDCL
solver [152, 153], applies when a problem requires checking the satisfiability of sev-
eral similar formulas, i.e., containing a subset of common clauses. Rather than check-
ing the satisfiability of each of the formulas one at a time, the idea is to take advan-
tage of the learnt clauses that concern the part common to these formulas during
successive calls. This particularity adapts naturally well to incremental BMC, by
producing a multitude of similar SAT-based BMC instances with different bound
k. Learnt clauses from previous bounds can be of benefit for solving the following
bounds. However, not all the specificity of BMC is used though, where most CDCL-
based SAT solvers use heuristics to perform the solving.

Our purpose is to investigate the possibility of exploiting BMC’s gradual nature for
speeding up the overall verification time. We will show how it is possible to exploit
information gathered while solving a k-instance, for solving faster the consecutive
instance. To do so, we will extend the idea of finding good-quality learnt clauses as
presented in the previous Chapter 4 within an incremental manner. More precisely,

108 Appendix A. Implementation details of ongoing works

incremental resolution gives us the ability to adjust the selector from one iteration to
another, based on what has been learnt previously.

Strichman [123] was among the first to observe that in BMC some clauses are known
to survive through all instances in the sequence. A formula passed by BMC to the
SAT solver contains clauses that describe the transition relation of the model un-
rolled a number of times. These clauses are not discarded when the length of the
counterexample is increased, from k to k + 1 for instance. Hence, a conflict clause
that depends only on them can be forwarded. Its first application was originally
done within the SATIRE [153] framework. Incremental SAT for BMC was also used
to tune variable ordering heuristic [115, 154]. They enhanced the default variable
order of the SAT solver with structural information from BMC without tampering
with the internal details of the solver.

During this section, we will introduce the heuristics for building a selector in the
incremental context. We’ll also review the use of clause (MAX-MIN)-DEPTH, a metric
presented in [121], to replace the generic LBD metric. We close the section with some
preliminary experiments.

A.2.1 Identify relevant information dynamically

Static selectors to protect relevant learnt clauses don’t fully exploit the potential of
the incremental procedure. Similarly to variable ordering heuristics [115, 154], we
can apply a dynamic approach that will recalculate the selector at the end of each it-
eration, thereby predicting an adequate patterns of learnt clauses that may be useful
for the upcoming iterations. It allows for that, a better adaptability to the problem
from a step to another.

Therefore, we have built a new dynamic procedure called HLPD that is entirely based
on the HLP heuristic. Indeed, the objective remains the same: at the end of each
iteration, we seek to maximize the usage rate of clauses during the conflict-analysis
phase, whilst limiting their quantity. Let’s recall the linear program formula:

maximize fµ = µO1 + (1− µ)O2

HLP lists all feasible solutions by varying the weight value µ ∈ [0, 1]. This parameter
µ defines how much importance we give to the usefulness of clauses compared to
their number. This means that the only parameter that changes between incremental
and non-incremental is µ value. HLP utilizes a static value of µ ∈ [0, 1] to generate
a solution, i.e. a selector. Only one of the multitude of solutions is chosen in the
light of our observation. In the incremental scheme, however, the procedure has to
be fully autonomous, so the suitable selector is automatically elected. The following
points outline how to update µ value during the incremental solving:

1. Initialization: Firstly, we arbitrarily initialized µ to 0.5, providing equal im-
portance to both objectives O1 and O2.

2. µ-value: Secondly, to determine when it’s worth prioritizing the usage rate cri-
teria (increasing µ) over learnt clauses generation (decreasing µ) and inversely,
we’ve based our measurements on the number of unit propagation per the

A.2. Tuning learnt clauses in Incremental SAT-based BMC 109

number of performed conflicts. We define the Performance value as follow:

Perfk =
#(unit propagation)k

#(conflict literals)k

So the more propagation occur the better, meaning that learnt clauses we are
protecting from the deletion are used and contributes in the solving.

3. µ-refinement: Lastly, we need to update µ value whenever we move to the
next bound, so the resulting selector will be more appropriate. µ is increased
whenever the average performance of previous bounds is inferior to the cur-
rent average performance. Conversely, µ is then decreased. In this way, using
the Performance value will allow to converge to the ideal µ.

The selector retrieved by HLPD will protect potential relevant clauses using a soften
protection and act around the purge of the temporary databases of MAPLECOMSPS
solver (tier-2 and local) rather than an aggressive protection (core), where they are
never deleted. Indeed, in this incremental context, the learnt clauses stored in the
permanent database since the first iteration are never removed. By adding them to
the temporary databases, we allow the solver to potentially discard the additional
clauses obtained from the selector, thereby preventing an overload of the solver.

Although we did tried some variations of HLPD. Here are two of them:

Use previous iterations (HLPD-R). When solving a specific bound k, learnt clause
usage can vary greatly that sometimes the resulting selector provides extreme
variation in comparison to the previous iteration k− 1. To solve this problem,
instead of limiting the computation of selector on one iteration’s collected in-
formation, we can reuse information of all previous solving. We use for that,
the weighted average across iterations of LBD value. Thus, recent steps have
a heavier weight since they are more relevant than earlier ones. We arbitrarily
set the weight to 1− 1

2k .

The advantage in considering previous steps is an increase in stability, with
less sensibility to individual variations in the learnt clauses usage.

Use of (MAX-MIN)-DEPTH measure (HLPD-D). As described in [121], the (MAX-MIN)-
DEPTH metric has been shown to be correlated to the LBD metric albeit with
much more information. We were interested on computing selectors using the
(MAX-MIN)-DEPTH measure in replacement of the LBD.

Example: a BMC problem unrolled up to bound k = 3 with set variables
{xi, yi, zi} for i ∈ {0, 1, 2, 3} encoding the step i. We have the set of clauses
F = (x0 ∨ ¬x1 ∨ y0) ∧ (x1 ∨ z1) ∧ (x1 ∨ ¬y2 ∨ ¬z0). The (MAX-MIN)-DEPTH

value for each clause is respectively 1, 0, and 3.

To this end, we can redefine the selector as a configuration where each clause
of class has its corresponding (MAX-MIN)-DEPTH value.

110 Appendix A. Implementation details of ongoing works

Heuristic # Solved instances
HLPD-D 232
HLPD-RD 230
MAPLECOMSPS 229
HLPD-R 229
HLPD 228

TABLE A.1: Number
of solved instances by

each heuristic

Heuristic # Solved bounds
HLPD-R 54147
HLPD 53810
MAPLECOMSPS 53784
HLPD-RD 53730
HLPD-D 53724

TABLE A.2: Number of
solved bounds by each

heuristic

A.2.2 Preliminary Experiments

We experiment the HLPD heuristic and its two modified versions: HLPD-R and HLPD-
D, plus the combination of both HLPD-RD. We compared them to state-of-the-art
incremental MapleCOMSPS on a benchmark of 754 SMV instances, with a mix of
SAT, UNSAT and UNKNOWN problems. For each instance, an incremental BMC reso-
lution using each configuration has been executed with a time limit of 6000 seconds
and a bound limit of 10000, although this bound limit has never been reached.

Table A.1 displays the number of solved instances while Table A.2 shows the total
sum of bounds solved by each configuration (in order to distinguish performance
on potential UNSAT problems).

First observation is that from both tables, our heuristics perform slightly better than
state-of-the-art with 3 SAT instances more by HLPD-D and 363 more iterations by
HLPD-R approach than MAPLECOMSPS. Meaning that, HLPD-D seems to perform
generally well on SAT problems where HLPD-R performs well on the long-term when
solving potentially UNSAT instances.

Though none of the approaches shows up, it is noticeable that using previous itera-
tions seems to bring better results on both criteria - in terms of solved instances and
reached depths.

A.2.3 Discussion & perspectives

This section presents an overview of incremental SAT-based BMC optimization. We
explored numerous different heuristics designed to improve the MapleCOMSPS in-
cremental SAT solver on BMC problems using external information coming from the
original model checking problem, notably through the classification measure. These
heuristics span on multiple aspects of the solver such as clause storage or variable
ordering that we did not present here. The result is a small increase of solved in-
stances with our best performing heuristics. These are promising results, and show
that further work on using external BMC information should be considered. We
have also shown that (MAX-MIN)-DEPTH could be used as a replacement for LBD al-
beit with an occasional modest performance’s improvement. However, the nature of
this measure still makes it a good candidate for tuning the BMC solving, and further
investigation on this metric could be considered.

111

Bibliography

[1] Kenneth L. McMillan. “The SMV System”. In: Symbolic Model Checking. Boston,
MA: Springer US, 1993, pp. 61–85. ISBN: 978-1-4615-3190-6.

[2] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis. USA:
Prentice-Hall, Inc., 1996. ISBN: 0134516753.

[3] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual. First.
Addison-Wesley Professional, 2003. ISBN: 0321228626.

[4] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium
on Foundations of Computer Science (sfcs 1977). 1977, pp. 46–57. DOI: 10.1109/
SFCS.1977.32.

[5] Kristin Y. Rozier. “Survey: Linear Temporal Logic Symbolic Model Check-
ing”. In: Comput. Sci. Rev. 5.2 (May 2011), pp. 163–203. ISSN: 1574-0137. DOI:
10.1016/j.cosrev.2010.06.002. URL: https://doi.org/10.
1016/j.cosrev.2010.06.002.

[6] Edmund M. Clarke and E. Allen Emerson. “Design and synthesis of synchro-
nization skeletons using branching time temporal logic”. In: Logics of Pro-
grams. Ed. by Dexter Kozen. Berlin, Heidelberg: Springer Berlin Heidelberg,
1982, pp. 52–71. ISBN: 978-3-540-39047-3.

[7] Edmund Clarke, E. Emerson, and Joseph Sifakis. “Model checking”. In: Com-
munications of the ACM 52 (Nov. 2009). DOI: 10.1145/1592761.1592781.

[8] Gerard J. Holzmann. “Explicit-State Model Checking”. In: Handbook of Model
Checking. Ed. by Edmund M. Clarke et al. Cham: Springer International Pub-
lishing, 2018, pp. 153–171. ISBN: 978-3-319-10575-8. DOI: 10.1007/978-3-
319-10575-8_5. URL: https://doi.org/10.1007/978-3-319-
10575-8_5.

[9] E. Clarke et al. “Symbolic model checking”. In: Computer Aided Verification.
Ed. by Rajeev Alur and Thomas A. Henzinger. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 419–422. ISBN: 978-3-540-68599-9.

[10] Randal E. Bryant. “Graph-Based Algorithms for Boolean Function Manipula-
tion”. In: IEEE Trans. Comput. 35.8 (Aug. 1986), pp. 677–691. ISSN: 0018-9340.
DOI: 10.1109/TC.1986.1676819. URL: https://doi.org/10.1109/
TC.1986.1676819.

[11] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008. ISBN: 026202649X.

[12] J. Richard Büchi. “On a Decision Method in Restricted Second Order Arith-
metic”. In: The Collected Works of J. Richard Büchi. Ed. by Saunders Mac Lane
and Dirk Siefkes. New York, NY: Springer New York, 1990, pp. 425–435. ISBN:
978-1-4613-8928-6. DOI: 10.1007/978-1-4613-8928-6_23. URL: https:
//doi.org/10.1007/978-1-4613-8928-6_23.

[13] M.Y. Vardi and P. Wolper. “Reasoning about Infinite Computations”. In: Infor-
mation and Computation 115.1 (1994), pp. 1–37. ISSN: 0890-5401. DOI: https:
//doi.org/10.1006/inco.1994.1092.

https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/https://doi.org/10.1006/inco.1994.1092
https://doi.org/https://doi.org/10.1006/inco.1994.1092

112 Bibliography

[14] Edmund M. Clarke et al. “Model Checking and the State Explosion Problem”.
In: Tools for Practical Software Verification: LASER, International Summer School
2011, Elba Island, Italy, Revised Tutorial Lectures. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 1–30. ISBN: 978-3-642-35746-6.

[15] Armin Biere et al. “Symbolic Model Checking without BDDs”. In: Tools and
Algorithms for the Construction and Analysis of Systems. Ed. by W. Rance Cleave-
land. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 193–207. ISBN:
978-3-540-49059-3.

[16] Jerry R. Burch et al. “Symbolic model checking for sequential circuit verifi-
cation”. In: IEEE Trans. on CAD of Integrated Circuits and Systems 13.4 (1994),
pp. 401–424. DOI: 10.1109/43.275352. URL: TCAD94.pdf.

[17] Dirk Beyer and Andreas Stahlbauer. “BDD-Based Software Model Checking
with CPAchecker”. In: Mathematical and Engineering Methods in Computer Sci-
ence. Ed. by Antonín Kučera et al. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2013, pp. 1–11. ISBN: 978-3-642-36046-6.

[18] Malay K. Ganai. “SAT-Based Scalable Formal Verification Solutions”. In: Se-
ries on Integrated Circuits and Systems, Springer-Verlag New York. 2007.

[19] Armin Biere et al. Bounded Model Checking. Dec. 2003. DOI: 10.1016/S0065-
2458(03)58003-2.

[20] Armin Biere and Daniel Kröning. “SAT-Based Model Checking”. In: Handbook
of Model Checking. Ed. by Edmund M. Clarke et al. Cham: Springer Interna-
tional Publishing, 2018, pp. 277–303. ISBN: 978-3-319-10575-8. DOI: 10.1007/
978-3-319-10575-8_10. URL: https://doi.org/10.1007/978-3-
319-10575-8_10.

[21] Edmund Clarke et al. “Bounded Model Checking Using Satisfiability Solv-
ing”. In: Form. Methods Syst. Des. 19.1 (July 2001), pp. 7–34. ISSN: 0925-9856.
DOI: 10.1023/A:1011276507260. URL: https://doi.org/10.1023/
A:1011276507260.

[22] Emmanuel Zarpas. “Simple Yet Efficient Improvements of SAT Based Bounded
Model Checking”. In: Formal Methods in Computer-Aided Design. Ed. by Alan
J. Hu and Andrew K. Martin. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 174–185. ISBN: 978-3-540-30494-4.

[23] Laurent Simon and Gilles Audemard. “Predicting Learnt Clauses Quality in
Modern SAT Solver”. In: Twenty-first International Joint Conference on Artificial
Intelligence (IJCAI’09). Pasadena, United States, July 2009. URL: https://
hal.inria.fr/inria-00433805.

[24] Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. “The Community Struc-
ture of SAT Formulas”. In: Theory and Applications of Satisfiability Testing – SAT
2012. Ed. by Alessandro Cimatti and Roberto Sebastiani. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 410–423. ISBN: 978-3-642-31612-8.

[25] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. “Symmetric Expla-
nation Learning: Effective Dynamic Symmetry Handling for SAT”. In: Aug.
2017. ISBN: 978-3-319-66262-6. DOI: 10.1007/978-3-319-66263-3_6.

[26] Matthew L. Ginsberg and David A. McAllester. “GSAT and Dynamic Back-
tracking.” In: PPCP. Ed. by Alan Borning. Vol. 874. Lecture Notes in Com-
puter Science. Springer, 1994, pp. 243–265. ISBN: 3-540-58601-6. URL: http:
//dblp.uni- trier.de/db/conf/ppcp/ppcp94- lncs.html#
GinsbergM94.

https://doi.org/10.1109/43.275352
TCAD94.pdf
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1007/978-3-319-10575-8_10
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://hal.inria.fr/inria-00433805
https://hal.inria.fr/inria-00433805
https://doi.org/10.1007/978-3-319-66263-3_6
http://dblp.uni-trier.de/db/conf/ppcp/ppcp94-lncs.html#GinsbergM94
http://dblp.uni-trier.de/db/conf/ppcp/ppcp94-lncs.html#GinsbergM94
http://dblp.uni-trier.de/db/conf/ppcp/ppcp94-lncs.html#GinsbergM94

Bibliography 113

[27] James M. Crawford et al. “Symmetry-Breaking Predicates for Search Prob-
lems”. In: Proceedings of the Fifth International Conference on Principles of Knowl-
edge Representation and Reasoning. KR’96. Cambridge, Massachusetts, USA:
Morgan Kaufmann Publishers Inc., 1996, pp. 148–159. ISBN: 1558604219.

[28] F.A. Aloul, K.A. Sakallah, and I.L. Markov. “Efficient symmetry breaking for
Boolean satisfiability”. In: IEEE Transactions on Computers 55.5 (2006), pp. 549–
558. DOI: 10.1109/TC.2006.75.

[29] João P. Marques Silva and Karem A. Sakallah. “GRASP—a New Search Al-
gorithm for Satisfiability”. In: Proceedings of the 1996 IEEE/ACM International
Conference on Computer-Aided Design. ICCAD ’96. San Jose, California, USA:
IEEE Computer Society, 1997, pp. 220–227. ISBN: 0818675977.

[30] Matthew W. Moskewicz et al. “Chaff: Engineering an Efficient SAT Solver.”
In: DAC. ACM, 2001, pp. 530–535. ISBN: 1-58113-297-2. URL: http://dblp.
uni-trier.de/db/conf/dac/dac2001.html#MoskewiczMZZM01.

[31] Lintao Zhang et al. “Efficient Conflict Driven Learning in a Boolean Satisfi-
ability Solver”. In: Proceedings of the 2001 IEEE/ACM International Conference
on Computer-Aided Design. ICCAD ’01. San Jose, California: IEEE Press, 2001,
pp. 279–285. ISBN: 0780372492.

[32] Jia Hui Liang et al. “Maple-comsps, maplecomsps lrb, maplecomsps chb”. In:
Proceedings of SAT Competition 2016 (2016).

[33] Mohamed Sami Cherif, Djamal Habet, and Cyril Terrioux. “Un bandit man-
chot pour combiner CHB et VSIDS”. In: Actes des 16èmes Journées Franco-
phones de Programmation par Contraintes (JFPC). Nice, France, June 2021. URL:
https://hal-amu.archives-ouvertes.fr/hal-03270931.

[34] Vallade Vincent et al. “New Concurrent and Distributed Painless solvers: P-
MCOMSPS P-MCOMSPS-COM P-MCOMSPS-MPI and P-MCOMSPS-COM-
MPI”. In: 2021.

[35] Cai S. Zhang X. Chen Z. “ParKissat: Random Shuffle Based and Pre-processing
Extended Parallel Solvers with Clause Sharing”. In: 2022, p. 51.

[36] Burton Dreben. “William Craig. Linear reasoning. A new form of the Herbrand-
Gentzen theorem. The journal of symbolic logic, vol. 22 (1957), pp. 250–268.
- William Craig. Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory. The journal of symbolic logic, vol. 22 (1957),
pp. 269–285.” In: Journal of Symbolic Logic 24.3 (1959), pp. 243–244. DOI: 10.
2307/2963831.

[37] Youssef Hamadi, Joao Marques-Silva, and Christoph Wintersteiger. “Lazy
Decomposition for Distributed Decision Procedures”. In: Proceedings 10th In-
ternational Workshop on Parallel and Distributed Methods in verifiCation (PDMC’11).
Vol. 72. Nov. 2011, pp. 43–54.

[38] Armin Biere, Keijo Heljanko, and Siert Wieringa. AIGER 1.9 And Beyond. Tech.
rep. 11/2. Altenbergerstr. 69, 4040 Linz, Austria: Institute for Formal Models
and Verification, Johannes Kepler University, 2011.

[39] Z. Manna and A. Pnueli. “A hierarchy of temporal properties (invited paper,
1989)”. In: PODC ’90. 1990.

[40] Bowen Alpern and Fred B. Schneider. “Recognizing Safety and Liveness”.
In: Distrib. Comput. 2.3 (Sept. 1987), pp. 117–126. ISSN: 0178-2770. DOI: 10.
1007/BF01782772.

[41] Doron Peled and Klaus Havelund. “Refining the Safety–Liveness Classifica-
tion of Temporal Properties According to Monitorability”. In: Models, Mind-
sets, Meta: The What, the How, and the Why Not? Essays Dedicated to Bernhard

https://doi.org/10.1109/TC.2006.75
http://dblp.uni-trier.de/db/conf/dac/dac2001.html#MoskewiczMZZM01
http://dblp.uni-trier.de/db/conf/dac/dac2001.html#MoskewiczMZZM01
https://hal-amu.archives-ouvertes.fr/hal-03270931
https://doi.org/10.2307/2963831
https://doi.org/10.2307/2963831
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/BF01782772

114 Bibliography

Steffen on the Occasion of His 60th Birthday. Cham: Springer International Pub-
lishing, 2019, pp. 218–234. ISBN: 978-3-030-22348-9.

[42] Etienne Renault et al. “Strength-Based Decomposition of the Property Büchi
Automaton for Faster Model Checking”. In: Proceedings of the 19th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’13). Ed. by Nir Piterman and Scott A. Smolka. Vol. 7795. Lecture
Notes in Computer Science. Springer, 2013, pp. 580–593.

[43] Stefan Edelkamp, Stefan Leue, and Alberto Lluch-Lafuente. “Directed explicit-
state model checking in the validation of communication protocols”. In: Inter-
national Journal on Software Tools for Technology Transfer 5.2–3 (2004), pp. 247–
267.

[44] Sami Evangelista et al. “Improved Multi-Core Nested Depth-First Search”.
In: Proceedings of the 10th international conference on Automated technology for
verification and analysis (ATVA’12). Vol. 7561. Lecture Notes in Computer Sci-
ence. Springer-Verlag, 2012, pp. 269–283.

[45] Ken L. McMillan. “Applying SAT Methods in Unbounded Symbolic Model
Checking”. In: Computer Aided Verification. Ed. by Ed Brinksma and Kim Guld-
strand Larsen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 250–
264. ISBN: 978-3-540-45657-5.

[46] L. Lamport. “Proving the Correctness of Multiprocess Programs”. In: IEEE
Trans. Softw. Eng. 3.2 (Mar. 1977), pp. 125–143. ISSN: 0098-5589. DOI: 10 .
1109/TSE.1977.229904. URL: https://doi.org/10.1109/TSE.
1977.229904.

[47] M.Y. Vardi and P. Wolper. “An automata-theoretic approach to automatic pro-
gram verification”. In: In Proceedings of the 1st Symposium on Logic in Computer
Science. Cambridge, Massachusetts, USA, 1986, pp. 322–331.

[48] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. “The complementation
problem for Büchi automata with applications to temporal logic”. In: Theoret-
ical Computer Science 49.2 (1987), pp. 217–237. ISSN: 0304-3975. DOI: https:
//doi.org/10.1016/0304-3975(87)90008-9. URL: https://www.
sciencedirect.com/science/article/pii/0304397587900089.

[49] Moshe Y. Vardi. “The Büchi Complementation Saga”. In: Proceedings of the
24th Annual Conference on Theoretical Aspects of Computer Science. STACS’07.
Aachen, Germany: Springer-Verlag, 2007, pp. 12–22. ISBN: 9783540709176.

[50] Alexandre Duret-Lutz et al. “Spot 2.0 — a framework for LTL and ω-automata
manipulation”. In: Proceedings of the 14th International Symposium on Auto-
mated Technology for Verification and Analysis (ATVA’16). Vol. 9938. Lecture Notes
in Computer Science. Springer, Oct. 2016, pp. 122–129.

[51] Jan Křetínský, Tobias Meggendorfer, and Salomon Sickert. “Owl: A Library
for omega-Words, Automata, and LTL: 16th International Symposium, ATVA
2018, Los Angeles, CA, USA, October 7-10, 2018, Proceedings”. In: Sept. 2018,
pp. 543–550. ISBN: 978-3-030-01089-8. DOI: 10.1007/978-3-030-01090-
4_34.

[52] Costas Courcoubetis et al. “Memory-Efficient Algorithms for the Verification
of Temporal Properties.” In: Formal Methods in System Design 1.2/3 (1992),
pp. 275–288. URL: http://dblp.uni-trier.de/db/journals/fmsd/
fmsd1.html%5C#CourcoubetisVWY92.

[53] Jaco Geldenhuys and Antti Valmari. “Tarjan’s Algorithm Makes On-the-Fly
LTL Verification More Efficient”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Ed. by Kurt Jensen and Andreas Podelski. Berlin,

https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/https://doi.org/10.1016/0304-3975(87)90008-9
https://doi.org/https://doi.org/10.1016/0304-3975(87)90008-9
https://www.sciencedirect.com/science/article/pii/0304397587900089
https://www.sciencedirect.com/science/article/pii/0304397587900089
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-030-01090-4_34
http://dblp.uni-trier.de/db/journals/fmsd/fmsd1.html%5C#CourcoubetisVWY92
http://dblp.uni-trier.de/db/journals/fmsd/fmsd1.html%5C#CourcoubetisVWY92

Bibliography 115

Heidelberg: Springer Berlin Heidelberg, 2004, pp. 205–219. ISBN: 978-3-540-
24730-2.

[54] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Pro-
ceedings of the Third Annual ACM Symposium on Theory of Computing. STOC
’71. Shaker Heights, Ohio, USA: Association for Computing Machinery, 1971,
pp. 151–158. ISBN: 9781450374644. DOI: 10.1145/800157.805047. URL:
https://doi.org/10.1145/800157.805047.

[55] Paul Jackson and Daniel Sheridan. “Clause Form Conversions for Boolean
Circuits”. In: Theory and Applications of Satisfiability Testing. Ed. by Holger H.
Hoos and David G. Mitchell. Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 183–198. ISBN: 978-3-540-31580-3.

[56] G. S. TSEITIN. “On the complexity of derivation in propositional calculus”.
In: Structures in Constructive Mathematics and Mathematical Logic (1968), pp. 115–
125. URL: https://ci.nii.ac.jp/naid/10030021172/en/.

[57] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. “Checking Safety Prop-
erties Using Induction and a SAT-Solver”. In: Formal Methods in Computer-
Aided Design. Ed. by Warren A. Hunt and Steven D. Johnson. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2000, pp. 127–144. ISBN: 978-3-540-40922-9.

[58] K. L. McMillan. “Interpolation and SAT-Based Model Checking”. In: Com-
puter Aided Verification. Ed. by Warren A. Hunt and Fabio Somenzi. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 1–13. ISBN: 978-3-540-45069-
6.

[59] Kenneth L. McMillan. “Interpolants and Symbolic Model Checking”. In: Veri-
fication, Model Checking, and Abstract Interpretation, 8th International Conference,
VMCAI 2007, Nice, France, January 14-16, 2007, Proceedings. 2007, pp. 89–90.
DOI: 10.1007/978-3-540-69738-1_6. URL: https://doi.org/10.
1007/978-3-540-69738-1%5C_6.

[60] Aaron R. Bradley. “SAT-Based Model Checking without Unrolling”. In: Ver-
ification, Model Checking, and Abstract Interpretation. Ed. by Ranjit Jhala and
David Schmidt. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 70–
87. ISBN: 978-3-642-18275-4.

[61] Niklas Een, Alan Mishchenko, and Robert Brayton. “Efficient implementa-
tion of property directed reachability”. In: 2011 Formal Methods in Computer-
Aided Design (FMCAD). 2011, pp. 125–134.

[62] Jin-Kao Hao and Raphaël Dorne. “An Empirical Comparison of Two Evolu-
tionary Methods for Satisfiability Problems”. In: Proceedings of the First IEEE
Conference on Evolutionary Computation, IEEE World Congress on Computational
Intelligence, Orlando, Florida, USA, June 27-29, 1994. IEEE, 1994, pp. 451–455.
DOI: 10.1109/ICEC.1994.349908. URL: https://doi.org/10.1109/
ICEC.1994.349908.

[63] Shaowei Cai, Chuan Luo, and Kaile Su. “CCAnr: A Configuration Checking
Based Local Search Solver for Non-random Satisfiability”. In: Theory and Ap-
plications of Satisfiability Testing – SAT 2015. Ed. by Marijn Heule and Sean
Weaver. Cham: Springer International Publishing, 2015, pp. 1–8. ISBN: 978-3-
319-24318-4.

[64] Pierre Hansen, Nenad Mladenovic, and Dionisio Perez-Britos. “Variable Neigh-
borhood Decomposition Search”. In: Journal of Heuristics 7 (July 2001), pp. 335–
350. DOI: 10.1023/A:1011336210885.

[65] Martin Davis, George Logemann, and Donald Loveland. “A Machine Pro-
gram for Theorem-Proving”. In: Commun. ACM 5.7 (July 1962), pp. 394–397.

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://ci.nii.ac.jp/naid/10030021172/en/
https://doi.org/10.1007/978-3-540-69738-1_6
https://doi.org/10.1007/978-3-540-69738-1%5C_6
https://doi.org/10.1007/978-3-540-69738-1%5C_6
https://doi.org/10.1109/ICEC.1994.349908
https://doi.org/10.1109/ICEC.1994.349908
https://doi.org/10.1109/ICEC.1994.349908
https://doi.org/10.1023/A:1011336210885

116 Bibliography

ISSN: 0001-0782. DOI: 10.1145/368273.368557. URL: https://doi.
org/10.1145/368273.368557.

[66] Nicolas Szczepanski. “Thesis: SAT en paralléle”. In: (2017). URL: http://
www.cril.univ-artois.fr/~szczepanski/res/SATenParalleleSzczepanskiNicolas.
pdf.

[67] Nathan Wetzler, Marijn J. H. Heule, and Warren A. Hunt. “DRAT-trim: Effi-
cient Checking and Trimming Using Expressive Clausal Proofs”. In: Theory
and Applications of Satisfiability Testing – SAT 2014. Ed. by Carsten Sinz and
Uwe Egly. Cham: Springer International Publishing, 2014, pp. 422–429. ISBN:
978-3-319-09284-3.

[68] Martin Davis and Hilary Putnam. “A Computing Procedure for Quantifica-
tion Theory”. In: J. ACM 7.3 (July 1960), pp. 201–215. ISSN: 0004-5411. DOI:
10 . 1145 / 321033 . 321034. URL: https : / / doi . org / 10 . 1145 /
321033.321034.

[69] João Marques-Silva. “The Impact of Branching Heuristics in Propositional
Satisfiability Algorithms”. In: Progress in Artificial Intelligence. Ed. by Pedro
Barahona and José J. Alferes. Berlin, Heidelberg: Springer Berlin Heidelberg,
1999, pp. 62–74. ISBN: 978-3-540-48159-1.

[70] Paolo Liberatore. “On the complexity of choosing the branching literal in
DPLL”. In: Artificial Intelligence 116.1 (2000), pp. 315–326. ISSN: 0004-3702.
DOI: https://doi.org/10.1016/S0004-3702(99)00097-1. URL:
https://www.sciencedirect.com/science/article/pii/S0004370299000971.

[71] Chu Min Li and Anbulagan Anbulagan. “Heuristics Based on Unit Propa-
gation for Satisfiability Problems”. In: Proceedings of the 15th International Joint
Conference on Artifical Intelligence - Volume 1. IJCAI’97. Nagoya, Japan: Morgan
Kaufmann Publishers Inc., 1997, pp. 366–371.

[72] Jia Hui Liang et al. “Exponential Recency Weighted Average Branching Heuris-
tic for SAT Solvers”. In: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 3434–3440.

[73] Jia Hui Liang et al. “Learning Rate Based Branching Heuristic for SAT Solvers”.
In: Theory and Applications of Satisfiability Testing – SAT 2016. Ed. by Nadia
Creignou and Daniel Le Berre. Cham: Springer International Publishing, 2016,
pp. 123–140. ISBN: 978-3-319-40970-2.

[74] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA, 1998. URL: https://www.worldcat.org/
oclc/37293240.

[75] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. “Towards a Better
Understanding of the Functionality of a Conflict-Driven SAT Solver”. In: The-
ory and Applications of Satisfiability Testing – SAT 2007. Ed. by João Marques-
Silva and Karem A. Sakallah. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 287–293. ISBN: 978-3-540-72788-0.

[76] Daniel Frost and Rina Dechter. “Dead-End Driven Learning”. In: Proceedings
of the National Conference on Artificial Intelligence 1 (Aug. 2000).

[77] Gilles Audemard and Laurent Simon. “Extreme Cases in SAT Problems”. In:
Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings. Ed. by Nadia Creignou
and Daniel Le Berre. Vol. 9710. Lecture Notes in Computer Science. Springer,
2016, pp. 87–103. DOI: 10.1007/978-3-319-40970-2_7. URL: https:
//doi.org/10.1007/978-3-319-40970-2%5C_7.

https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
http://www.cril.univ-artois.fr/~szczepanski/res/SATenParalleleSzczepanskiNicolas.pdf
http://www.cril.univ-artois.fr/~szczepanski/res/SATenParalleleSzczepanskiNicolas.pdf
http://www.cril.univ-artois.fr/~szczepanski/res/SATenParalleleSzczepanskiNicolas.pdf
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/10.1145/321033.321034
https://doi.org/https://doi.org/10.1016/S0004-3702(99)00097-1
https://www.sciencedirect.com/science/article/pii/S0004370299000971
https://www.worldcat.org/oclc/37293240
https://www.worldcat.org/oclc/37293240
https://doi.org/10.1007/978-3-319-40970-2_7
https://doi.org/10.1007/978-3-319-40970-2%5C_7
https://doi.org/10.1007/978-3-319-40970-2%5C_7

Bibliography 117

[78] Carla P. Gomes et al. “Heavy-Tailed Phenomena in Satisfiability and Con-
straint Satisfaction Problems”. In: J. Autom. Reason. 24.1/2 (2000), pp. 67–100.
DOI: 10.1023/A:1006314320276. URL: https://doi.org/10.1023/
A:1006314320276.

[79] Niklas Eén and Niklas Sörensson. “Minisat 2.1 and minisat++ 1.0 sat race
2008 editions”. In: 2008.

[80] Michael Luby, Alistair Sinclair, and David Zuckerman. “Optimal speedup
of Las Vegas algorithms”. In: Information Processing Letters 47 (Apr. 1997),
pp. 173–180. DOI: 10.1016/0020-0190(93)90029-9.

[81] Gilles Audemard and Laurent Simon. “GLUCOSE: a solver that predicts learnt
clauses quality”. In: (Jan. 2009).

[82] Jia Hui Liang et al. “Machine Learning-Based Restart Policy for CDCL SAT
Solvers”. In: Theory and Applications of Satisfiability Testing – SAT 2018. Ed. by
Olaf Beyersdorff and Christoph M. Wintersteiger. Cham: Springer Interna-
tional Publishing, 2018, pp. 94–110. ISBN: 978-3-319-94144-8.

[83] Niklas Eén and Niklas Sörensson. “An Extensible SAT-solver”. In: Interna-
tional Conference on Theory and Applications of Satisfiability Testing. 2003.

[84] Matti Järvisalo, Marijn Heule, and Armin Biere. “Inprocessing Rules”. In: Pro-
ceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR
2012). Ed. by Bernhard Gramlich, Dale Miller, and Uli Sattler. Vol. 7364. Lec-
ture Notes in Computer Science. Springer, 2012, pp. 355–370.

[85] Katalin Fazekas, Armin Biere, and Christoph Scholl. “Incremental Inprocess-
ing in SAT Solving”. In: Theory and Applications of Satisfiability Testing - SAT
2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019,
Proceedings. Ed. by Mikolás Janota and Inês Lynce. Vol. 11628. Lecture Notes
in Computer Science. Springer, 2019, pp. 136–154.

[86] Niklas Eén and Armin Biere. “Effective Preprocessing in SAT Through Vari-
able and Clause Elimination”. In: Theory and Applications of Satisfiability Test-
ing. Ed. by Fahiem Bacchus and Toby Walsh. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 61–75. ISBN: 978-3-540-31679-4.

[87] Sathiamoorthy Subbarayan and Dhiraj K. Pradhan. “NiVER: Non-increasing
Variable Elimination Resolution for Preprocessing SAT Instances”. In: Theory
and Applications of Satisfiability Testing. Ed. by Holger H. Hoos and David G.
Mitchell. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 276–291.
ISBN: 978-3-540-31580-3.

[88] Norbert Manthey, Marijn Heule, and Armin Biere. “Automated Reencoding
of Boolean Formulas”. In: Jan. 2013, pp. 102–117. ISBN: 9783642396106. DOI:
10.1007/978-3-642-39611-3_14.

[89] Cedric Piette, Youssef Hamadi, and Lakhdar Sais. “Vivifying Propositional
Clausal Formulae”. In: Jan. 2008, pp. 525–529. DOI: 10 . 3233 / 978 - 1 -
58603-891-5-525.

[90] Niklas Sörensson and Armin Biere. “Minimizing Learned Clauses”. In: The-
ory and Applications of Satisfiability Testing - SAT 2009. Ed. by Oliver Kullmann.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 237–243. ISBN: 978-
3-642-02777-2.

[91] Hyojung Han and Fabio Somenzi. “On-the-Fly Clause Improvement”. In:
Theory and Applications of Satisfiability Testing - SAT 2009. Ed. by Oliver Kull-
mann. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 209–222. ISBN:
978-3-642-02777-2.

https://doi.org/10.1023/A:1006314320276
https://doi.org/10.1023/A:1006314320276
https://doi.org/10.1023/A:1006314320276
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1007/978-3-642-39611-3_14
https://doi.org/10.3233/978-1-58603-891-5-525
https://doi.org/10.3233/978-1-58603-891-5-525

118 Bibliography

[92] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. “Learning for Dynamic
subsumption”. In: CoRR abs/0904.0029 (2009). arXiv: 0904.0029. URL: http:
//arxiv.org/abs/0904.0029.

[93] Mao Luo et al. “An Effective Learnt Clause Minimization Approach for CDCL
SAT Solvers”. In: Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence. IJCAI’17. Melbourne, Australia: AAAI Press, 2017, pp. 703–
711. ISBN: 9780999241103.

[94] Carlos Ansótegui et al. Community Structure in Industrial SAT Instances. 2019.
arXiv: 1606.03329 [cs.AI].

[95] Carlos Ansótegui et al. “Using Community Structure to Detect Relevant Learnt
Clauses”. In: Theory and Applications of Satisfiability Testing – SAT 2015. Ed.
by Marijn Heule and Sean Weaver. Cham: Springer International Publishing,
2015, pp. 238–254. ISBN: 978-3-319-24318-4.

[96] Chunxiao Li et al. “On the Hierarchical Community Structure of Practical
SAT Formulas”. In: CoRR abs/2103.14992 (2021). arXiv: 2103.14992. URL:
https://arxiv.org/abs/2103.14992.

[97] Vincent Vallade et al. “Community and LBD-Based Clause Sharing Policy for
Parallel SAT Solving”. In: June 2020, pp. 11–27. ISBN: 978-3-030-51824-0. DOI:
10.1007/978-3-030-51825-7_2.

[98] Hakan Metin et al. “CDCLSym: Introducing Effective Symmetry Breaking in
SAT Solving”. In: Proceedings of the 24th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’18). Vol. 10805.
Lecture Notes in Computer Science. Thessaloniki, Greece: Springer, Apr. 2018,
pp. 99–114.

[99] Belaid Benhamou et al. “Enhancing Clause Learning by Symmetry in SAT
Solvers”. In: vol. 1. Nov. 2010, pp. 329–335. DOI: 10.1109/ICTAI.2010.55.

[100] Jo Devriendt, Bart Bogaerts, and Maurice Bruynooghe. “Symmetric Expla-
nation Learning: Effective Dynamic Symmetry Handling for SAT”. In: Aug.
2017. ISBN: 978-3-319-66262-6. DOI: 10.1007/978-3-319-66263-3_6.

[101] Jo Devriendt et al. “Improved Static Symmetry Breaking for SAT”. In: July
2016, pp. 104–122. ISBN: 978-3-319-40969-6. DOI: 10.1007/978-3-319-
40970-2_8.

[102] S. Saouli et al. “CosySEL: Improving SAT Solving Using Local Symmetries”.
In: 24th International Conference on Verification, Model Checking, and Abstract
Interpretation. Vol. 13881. Springer, Jan. 2023, pp. 252–266. DOI: 10.1007/
978-3-031-24950-1_12. URL: https://doi.org/10.1007/978-3-
031-24950-1%5C_12.

[103] Youssef Hamadi, Saïd Jabbour, and Lakhdar Sais. “ManySAT: a Parallel SAT
Solver.” In: J. Satisf. Boolean Model. Comput. 6.4 (2009), pp. 245–262. URL: http:
//dblp.uni-trier.de/db/journals/jsat/jsat6.html#HamadiJS09.

[104] Long Guo et al. “Diversification and Intensification in Parallel SAT Solving”.
In: Principles and Practice of Constraint Programming – CP 2010. Ed. by David
Cohen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 252–265.
ISBN: 978-3-642-15396-9.

[105] Tomohiro Sonobe and Mary Inaba. “Portfolio with Block Branching for Par-
allel SAT Solvers”. In: Revised Selected Papers of the 7th International Conference
on Learning and Intelligent Optimization - Volume 7997. LION 7. Catania, Italy:
Springer-Verlag, 2013, pp. 247–252. ISBN: 9783642449727. DOI: 10.1007/
978-3-642-44973-4_25. URL: https://doi.org/10.1007/978-3-
642-44973-4_25.

https://arxiv.org/abs/0904.0029
http://arxiv.org/abs/0904.0029
http://arxiv.org/abs/0904.0029
https://arxiv.org/abs/1606.03329
https://arxiv.org/abs/2103.14992
https://arxiv.org/abs/2103.14992
https://doi.org/10.1007/978-3-030-51825-7_2
https://doi.org/10.1109/ICTAI.2010.55
https://doi.org/10.1007/978-3-319-66263-3_6
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1007/978-3-031-24950-1_12
https://doi.org/10.1007/978-3-031-24950-1_12
https://doi.org/10.1007/978-3-031-24950-1%5C_12
https://doi.org/10.1007/978-3-031-24950-1%5C_12
http://dblp.uni-trier.de/db/journals/jsat/jsat6.html#HamadiJS09
http://dblp.uni-trier.de/db/journals/jsat/jsat6.html#HamadiJS09
https://doi.org/10.1007/978-3-642-44973-4_25
https://doi.org/10.1007/978-3-642-44973-4_25
https://doi.org/10.1007/978-3-642-44973-4_25
https://doi.org/10.1007/978-3-642-44973-4_25

Bibliography 119

[106] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang. “PSATO: a Distributed
Propositional Prover and its Application to Quasigroup Problems”. In: Jour-
nal of Symbolic Computation 21 (Dec. 1996), pp. 543–560. DOI: 10 . 1006 /
jsco.1996.0030.

[107] Marijn J. H. Heule et al. “Cube and Conquer: Guiding CDCL SAT Solvers by
Lookaheads”. In: Hardware and Software: Verification and Testing. Ed. by Kerstin
Eder, João Lourenço, and Onn Shehory. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 50–65. ISBN: 978-3-642-34188-5.

[108] Bernard Jurkowiak, Chu Min Li, and Gil Utard. “Parallelizing Satz Using
Dynamic Workload Balancing”. In: Electronic Notes in Discrete Mathematics
9 (2001). LICS 2001 Workshop on Theory and Applications of Satisfiabil-
ity Testing (SAT 2001), pp. 174–189. ISSN: 1571-0653. DOI: https://doi.
org / 10 . 1016 / S1571 - 0653(04) 00321 - X. URL: https : / / www .
sciencedirect.com/science/article/pii/S157106530400321X.

[109] Gilles Audemard et al. “Revisiting Clause Exchange in Parallel SAT Solv-
ing”. In: 15th International Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT’12). Vol. 7962. Lecture Notes in Computer Science (LNCS).
Trento, Italy: Springer, 2012, pp. 200–213. URL: https://hal.archives-
ouvertes.fr/hal-00865596.

[110] Michael Kaufmann et al. “SArTagnan - a parallel portfolio SAT solver with
lockless physical clause sharing”. In: In Pragmatics of SAT. 2011.

[111] Said Jabbour et al. “Cooperation control in Parallel SAT Solving: a Multi-
armed Bandit Approach”. In: Workshop on Bayesian Optimization and Decision
Making. Lake Tahoe, United States, 2012. URL: https://hal.archives-
ouvertes.fr/hal-00870946.

[112] Gilles Audemard and Laurent Simon. “Lazy Clause Exchange Policy for Par-
allel SAT Solvers”. In: Theory and Applications of Satisfiability Testing – SAT
2014. Ed. by Carsten Sinz and Uwe Egly. Cham: Springer International Pub-
lishing, 2014, pp. 197–205. ISBN: 978-3-319-09284-3.

[113] Youssef Hamadi, Said Jabbour, and Jabbour Sais. “Control-Based Clause Shar-
ing in Parallel SAT Solving”. In: Autonomous Search. Ed. by Youssef Hamadi,
Eric Monfroy, and Frédéric Saubion. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2012, pp. 245–267. ISBN: 978-3-642-21434-9. DOI: 10.1007/978-3-
642-21434-9_10. URL: https://doi.org/10.1007/978-3-642-
21434-9_10.

[114] Tomas Balyo, Peter Sanders, and Carsten Sinz. HordeSat: A Massively Parallel
Portfolio SAT Solver. 2015. arXiv: 1505.03340 [cs.LO].

[115] Chao Wang et al. “Refining the SAT Decision Ordering for Bounded Model
Checking”. In: Proceedings of the 41st Annual Design Automation Conference.
DAC ’04. San Diego, CA, USA: Association for Computing Machinery, 2004,
pp. 535–538. ISBN: 1581138288. DOI: 10.1145/996566.996713. URL: https:
//doi.org/10.1145/996566.996713.

[116] Liangze Yin, Fei He, and Ming Gu. “Optimizing the SAT Decision Ordering
of Bounded Model Checking by Structural Information”. In: Proceedings of
the 2013 International Symposium on Theoretical Aspects of Software Engineering.
TASE ’13. USA: IEEE Computer Society, 2013, pp. 23–26. ISBN: 9780769550534.
DOI: 10.1109/TASE.2013.11. URL: https://doi.org/10.1109/
TASE.2013.11.

[117] Ofer Shtrichman. “Tuning SAT Checkers for Bounded Model Checking”. In:
Computer Aided Verification. Ed. by E. Allen Emerson and Aravinda Prasad

https://doi.org/10.1006/jsco.1996.0030
https://doi.org/10.1006/jsco.1996.0030
https://doi.org/https://doi.org/10.1016/S1571-0653(04)00321-X
https://doi.org/https://doi.org/10.1016/S1571-0653(04)00321-X
https://www.sciencedirect.com/science/article/pii/S157106530400321X
https://www.sciencedirect.com/science/article/pii/S157106530400321X
https://hal.archives-ouvertes.fr/hal-00865596
https://hal.archives-ouvertes.fr/hal-00865596
https://hal.archives-ouvertes.fr/hal-00870946
https://hal.archives-ouvertes.fr/hal-00870946
https://doi.org/10.1007/978-3-642-21434-9_10
https://doi.org/10.1007/978-3-642-21434-9_10
https://doi.org/10.1007/978-3-642-21434-9_10
https://doi.org/10.1007/978-3-642-21434-9_10
https://arxiv.org/abs/1505.03340
https://doi.org/10.1145/996566.996713
https://doi.org/10.1145/996566.996713
https://doi.org/10.1145/996566.996713
https://doi.org/10.1109/TASE.2013.11
https://doi.org/10.1109/TASE.2013.11
https://doi.org/10.1109/TASE.2013.11

120 Bibliography

Sistla. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 480–494. ISBN:
978-3-540-45047-4.

[118] Linus Feiten. “Development and Analysis of Decision Heuristics for an Inter-
val Constraint Solver Handling Non-linear Arithmetic”. PhD thesis. Diplo-
marbeit, Albert-Ludwigs-Universität Freiburg im Breisgau, Germany, 2010 . . .,
2010.

[119] “The iSAT web page”. In: URL: http://isat.gforge.avacs.org.
[120] Mingsong Chen, Xiaoke Qin, and Prabhat Mishra. “Efficient decision order-

ing techniques for SAT-based test generation”. In: 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010). 2010, pp. 490–495. DOI:
10.1109/DATE.2010.5457156.

[121] Guillaume Baud-Berthier, Jesús Giráldez-Cru, and Laurent Simon. “On the
Community Structure of Bounded Model Checking SAT Problems”. In: Pro-
ceedings of the 20th International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’17). 2017, pp. 65–82.

[122] Stefan Kupferschmid et al. “Incremental preprocessing methods for use in
BMC”. In: Formal Methods in System Design 39 (Oct. 2011), pp. 185–204. DOI:
10.1007/s10703-011-0122-4.

[123] Ofer Shtrichman. “Pruning Techniques for the SAT-based Bounded Model
Checking Problem”. In: LNCS (Dec. 2002).

[124] Ofer Strichman. “Accelerating Bounded Model Checking of Safety Proper-
ties”. In: Formal Methods Syst. Des. 24.1 (2004), pp. 5–24.

[125] Liangze Yin et al. “Clause Replication and Reuse in Incremental Temporal
Induction”. In: 2014 19th International Conference on Engineering of Complex
Computer Systems. 2014, pp. 108–115. DOI: 10.1109/ICECCS.2014.23.

[126] Brahim Nasraoui, Syrine Ayadi, and Riadh Robbana. “SBMC: Symmetric Bounded
Model Checking”. In: (July 2010). DOI: 10.14236/ewic/vecos2010.9.

[127] Xavier Gillard and Charles Pecheur. “On the community structure of SAT-
BMC problems”. In: PhD Symposium at iFM’17 on Formal Methods: Algorithms,
Tools and Applications (PhD-iFM’17). 2017.

[128] Erika Ábrahám et al. “Parallel SAT Solving in Bounded Model Checking”. In:
Formal Methods: Applications and Technology. Ed. by Luboš Brim et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 301–315. ISBN: 978-3-540-
70952-7.

[129] Siert Wieringa, Matti Niemenmaa, and Keijo Heljanko. “Tarmo: A Frame-
work for Parallelized Bounded Model Checking”. In: Proceedings 8th Interna-
tional Workshop on Parallel and Distributed Methods in verifiCation, PDMC 2009,
Eindhoven, The Netherlands, 4th November 2009. Ed. by Lubos Brim and Jaco
van de Pol. Vol. 14. EPTCS. 2009, pp. 62–76. DOI: 10.4204/EPTCS.14.5.
URL: https://doi.org/10.4204/EPTCS.14.5.

[130] Malay Ganai et al. “Efficient distributed SAT and SAT-based distributed Bounded
Model Checking”. In: International Journal on Software Tools for Technology Trans-
fer 8 (Aug. 2006), pp. 387–396. DOI: 10.1007/s10009-005-0203-z.

[131] Ying Zhao et al. “Accelerating Boolean Satisfiability through Application Spe-
cific Processing”. In: Proceedings of the 14th International Symposium on Sys-
tems Synthesis. ISSS ’01. Montréal, P.Q., Canada: Association for Computing
Machinery, 2001, pp. 244–249. ISBN: 1581134185. DOI: 10.1145/500001.
500059. URL: https://doi.org/10.1145/500001.500059.

[132] Siert Wieringa. “On Incremental Satisfiability and Bounded Model Check-
ing”. In: CEUR Workshop Proceedings 832 (Jan. 2011), pp. 13–21.

http://isat.gforge.avacs.org
https://doi.org/10.1109/DATE.2010.5457156
https://doi.org/10.1007/s10703-011-0122-4
https://doi.org/10.1109/ICECCS.2014.23
https://doi.org/10.14236/ewic/vecos2010.9
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.4204/EPTCS.14.5
https://doi.org/10.1007/s10009-005-0203-z
https://doi.org/10.1145/500001.500059
https://doi.org/10.1145/500001.500059
https://doi.org/10.1145/500001.500059

Bibliography 121

[133] Malay Ganai and Aarti Gupta. “Tunneling and Slicing: Towards Scalable BMC”.
In: Proceedings of the 45th Annual Design Automation Conference. DAC ’08. Ana-
heim, California: Association for Computing Machinery, 2008, pp. 137–142.
ISBN: 9781605581156. DOI: 10.1145/1391469.1391507. URL: https:
//doi.org/10.1145/1391469.1391507.

[134] H. Barros et al. “Exploring Clause Symmetry in a Distributed Bounded Model
Checking Algorithm”. In: 14th Annual IEEE International Conference and Work-
shops on the Engineering of Computer-Based Systems (ECBS’07). 2007, pp. 531–
538. DOI: 10.1109/ECBS.2007.40.

[135] S. Campos et al. “Distributed BMC: A Depth-First Approach to Explore Clause
Symmetry”. In: 2009 16th Annual IEEE International Conference and Workshop
on the Engineering of Computer Based Systems. 2009, pp. 89–94. DOI: 10.1109/
ECBS.2009.26.

[136] A. Cimatti et al. “NuSMV Version 2: An OpenSource Tool for Symbolic Model
Checking”. In: Proc. International Conference on Computer-Aided Verification (CAV
2002). Vol. 2404. LNCS. Copenhagen, Denmark: Springer, July 2002.

[137] Ludovic Le Frioux et al. “PaInleSS: a Framework for Parallel SAT Solving”.
In: Proceedings of the 20th International Conference on Theory and Applications of
Satisfiability Testing (SAT’17). Vol. 10491. Lecture Notes in Computer Science.
Springer, Cham, Aug. 2017, pp. 233–250.

[138] Radek Pelánek. “BEEM: Benchmarks for Explicit Model Checkers”. In: Model
Checking Software. Ed. by Dragan Bošnački and Stefan Edelkamp. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, pp. 263–267. ISBN: 978-3-540-73370-
6.

[139] Vijay D’Silva. “Propositional Interpolation and Abstract Interpretation”. In:
Programming Languages and Systems. Ed. by Andrew D. Gordon. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2010, pp. 185–204. ISBN: 978-3-642-11957-
6.

[140] Aaron R. Bradley. “Understanding IC3”. In: SAT. Vol. 7317. Lecture Notes in
Computer Science. Springer, 2012, pp. 1–14.

[141] Yakir Vizel, Arie Gurfinkel, and Sharad Malik. “Fast Interpolating BMC”. In:
Computer Aided Verification. Ed. by Daniel Kroening and Corina S. Păsăreanu.
Cham: Springer International Publishing, 2015, pp. 641–657. ISBN: 978-3-319-
21690-4.

[142] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. “Interpolation-
Based Function Summaries in Bounded Model Checking”. In: Hardware and
Software: Verification and Testing. Ed. by Kerstin Eder, João Lourenço, and Onn
Shehory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 160–175.
ISBN: 978-3-642-34188-5.

[143] Gianpiero Cabodi et al. “Interpolation-Based Learning as a Mean to Speed-
Up Bounded Model Checking (Short Paper)”. In: Software Engineering and For-
mal Methods. Ed. by Alessandro Cimatti and Marjan Sirjani. Cham: Springer
International Publishing, 2017, pp. 382–387. ISBN: 978-3-319-66197-1.

[144] Pavel Pudlák. “Lower Bounds for Resolution and Cutting Plane Proofs and
Monotone Computations”. In: The Journal of Symbolic Logic 62.3 (1997), pp. 981–
998. ISSN: 00224812. URL: http://www.jstor.org/stable/2275583
(visited on 07/17/2023).

[145] S.F. Rollini et al. “PeRIPLO: A Framework for Producing Efficient Interpolants
for SAT-based Software Verification”. In: Logic for Programming Artificial Intel-
ligence and Reasoning (LPAR). Stellenbosch, South Africa, 2013.

https://doi.org/10.1145/1391469.1391507
https://doi.org/10.1145/1391469.1391507
https://doi.org/10.1145/1391469.1391507
https://doi.org/10.1109/ECBS.2007.40
https://doi.org/10.1109/ECBS.2009.26
https://doi.org/10.1109/ECBS.2009.26
http://www.jstor.org/stable/2275583

122 Bibliography

[146] Vijay Ganesh et al. “Lynx: A Programmatic SAT Solver for the RNA-Folding
Problem”. In: Theory and Applications of Satisfiability Testing – SAT 2012. Ed.
by Alessandro Cimatti and Roberto Sebastiani. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 143–156. ISBN: 978-3-642-31612-8.

[147] Clark Barrett et al. “Satisfiability modulo theories”. English (US). In: Hand-
book of Satisfiability. 1st ed. Frontiers in Artificial Intelligence and Applications
1. IOS Press, 2009, pp. 825–885. ISBN: 9781586039295. DOI: 10.3233/978-
1-58603-929-5-825.

[148] Saeed Nejati et al. “Algebraic Fault Attack on SHA Hash Functions Using
Programmatic SAT Solvers”. In: Principles and Practice of Constraint Program-
ming. Ed. by John Hooker. Cham: Springer International Publishing, 2018,
pp. 737–754. ISBN: 978-3-319-98334-9.

[149] Curtis Bright, Ilias Kotsireas, and Vijay Ganesh. “A SAT+CAS Method for
Enumerating Williamson Matrices of Even Order”. In: Proceedings of the AAAI
Conference on Artificial Intelligence 32.1 (Apr. 2018). DOI: 10.1609/aaai.
v32i1.12203. URL: https://ojs.aaai.org/index.php/AAAI/
article/view/12203.

[150] A. Gupta et al. “Learning from BDDs in SAT-based bounded model check-
ing”. In: Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
2003, pp. 824–829. DOI: 10.1145/775832.776040.

[151] Armin Biere, Cyrille Artho, and Viktor Schuppan. “Liveness Checking as
Safety Checking”. In: Electronic Notes in Theoretical Computer Science 66 (Dec.
2002), pp. 160–177. DOI: 10.1016/S1571-0661(04)80410-9.

[152] Niklas Eén and Niklas Sörensson. “Temporal Induction by Incremental SAT
Solving”. In: Electronic Notes in Theoretical Computer Science 89.4 (2003). BMC’2003,
First International Workshop on Bounded Model Checking, pp. 543–560. ISSN:
1571-0661. DOI: https://doi.org/10.1016/S1571-0661(05)82542-
3. URL: https://www.sciencedirect.com/science/article/pii/
S1571066105825423.

[153] J. Whittemore, J. Kim, and K. Sakallah. “SATIRE: A new incremental satisfi-
ability engine”. In: Proceedings of the 38th Design Automation Conference (IEEE
Cat. No.01CH37232). 2001, pp. 542–545. DOI: 10.1145/378239.379019.

[154] Liang Zhang, M.R. Prasad, and M.S. Hsiao. “Incremental deductive & in-
ductive reasoning for SAT-based bounded model checking”. In: IEEE/ACM
International Conference on Computer Aided Design, 2004. ICCAD-2004. 2004,
pp. 502–509. DOI: 10.1109/ICCAD.2004.1382630.

https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1609/aaai.v32i1.12203
https://doi.org/10.1609/aaai.v32i1.12203
https://ojs.aaai.org/index.php/AAAI/article/view/12203
https://ojs.aaai.org/index.php/AAAI/article/view/12203
https://doi.org/10.1145/775832.776040
https://doi.org/10.1016/S1571-0661(04)80410-9
https://doi.org/https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/https://doi.org/10.1016/S1571-0661(05)82542-3
https://www.sciencedirect.com/science/article/pii/S1571066105825423
https://www.sciencedirect.com/science/article/pii/S1571066105825423
https://doi.org/10.1145/378239.379019
https://doi.org/10.1109/ICCAD.2004.1382630

	Abstract
	Résumé long en français
	Remerciements
	List of Figures
	List of Tables
	Introduction
	1 Context
	2 Towards an efficient SAT-based BMC solving
	3 Manuscript Structure

	Model checking
	Transition system
	Paths & executions
	Labelled transitions and Kripke Structures

	Linear Temporal Logic
	Semantic
	LTL properties classification

	Automata-based procedure for LTL verification
	Büchi automata
	From LTL to Büchi automata
	Kripke structures to Büchi automata
	Automata verification of LTL procedure

	Bounded model-checking
	Boolean SATisfiability (SAT)
	SAT-based Bounded Model-Checking

	Conclusion

	SATisfiability solving
	Sequential SAT solving
	CDCL Algorithm
	Unit Propagation
	Decision variable
	Clause learning from conflict-analysis
	Clause deletion policy
	Restart policy

	(In/Pre)-processing phase optimization
	Simplifying the problem's formula
	Adding relevant clauses to the formula

	Parallel SAT solving
	Portfolio (competition-based)
	Diversification
	Intensification

	Divide-and-Conquer (cooperation-based)
	Sharing strategies

	Conclusion

	SAT-Based BMC - Positioning, Analysis and Benchmarking
	State-of-the-art SAT-based BMC
	Decision heuristics
	Learnt clause metric
	(In/Pre)processing

	Parallel SAT-based BMC
	Portfolio-based
	Decomposition-based

	Analysis of SAT-based BMC formula
	A running example
	Observations from propositional formula
	BMC features

	Benchmarking
	Summary & Discussion

	Tuning the learnt clause databases
	Analysis of clause classification feature
	Heuristics to identify interesting clauses
	Non-automated procedure hs
	ω

	Experimental Evaluation of BMC-based Selectors
	BMC-based Sharing strategy
	Parallel Experiments
	Global conclusion

	Decomposition-based BMC
	An Interpolant-based decision procedure
	Craig Interpolation
	Reconciliation algorithm

	Decomposition-based strategies
	Lazy Decomposition (LZY-D)
	BMC Decomposition (BMC-D)
	Comparing LZY-D and BMC-D

	Interpolation-based Offline Learning
	Interpolation-based Learning in Parallel Solving
	Conclusion

	Programmatic SAT for BMC
	Literature and motivations
	State-of-the-art
	Usage in a BMC context

	Inside the Black-box
	Extracting Model executions
	Learnt constraints from the Synchronized product automaton

	Interaction between Black-box and SAT solver
	Discussion and future works

	Conclusion
	Short-term Perspectives
	LTL-based tuning
	Tuning learnt clauses in Incremental SAT-based BMC

	Long-term Perspectives

	Implementation details of ongoing works
	LTL-based tuning of learnt clauses databases
	Optimization
	Discussion & perspectives

	Tuning learnt clauses in Incremental SAT-based BMC
	Identify relevant information dynamically
	Preliminary Experiments
	Discussion & perspectives

	Bibliography

