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RÉSUMÉ EN FRANÇAIS

L’intelligence artificielle est généralement définie comme la tentative de reproduire ar-
tificiellement un équivalent de la cognition humaine. Cette idée peut être retrouvée dans
la célèbre question posée par Allan Turing dans son article fondateur [Tur50] : « Les
machines peuvent-elles penser ? ». Cette définition, vague et théorique, masque en réalité
un terme générique. En pratique, l’intelligence artificielle regroupe un ensemble de tech-
niques, copiant plus ou moins directement la cognition humaine, qui visent à automatiser
des tâches habituellement considérées comme intellectuelles – c’est-à-dire faisant apparem-
ment usage de processus cognitifs de haut niveau plutôt que de processus mécaniques –
et qui étaient donc considérées comme difficilement automatisables avant la naissance
de l’informatique. On peut souligner que la frontière entre les tâches intellectuelles et
les tâches manuelles est floue, car la plupart des tâches traditionnellement réalisées par
l’humain font appel à des processus cognitifs de haut niveau ; par conséquent, la dif-
férence entre l’automatisation mécanique et l’intelligence artificielle est en grande partie
arbitraire. Cependant, cela souligne le fait que l’IA, plus qu’un nouveau paradigme dans
la production humaine, est globalement une extension naturelle, provoquée par l’invention
des technologies informatiques, du processus global d’automatisation de la production –
dont les origines ne peuvent pas être correctement retracées, mais qui s’est accéléré et qui
est devenu prédominant depuis la révolution industrielle. Cet aspect de l’IA est devenu
particulièrement clair au cours de la dernière décennie, avec l’explosion de l’apprentissage
profond qui, malgré l’inspiration initiale des réseaux neuronaux en tant que copie des neu-
rones biologiques, n’a pas pour objectif principal de reproduire ou d’imiter la cognition
humaine, mais de résoudre des tâches en apprenant des jeux de données massifs d’entrée-
sortie 1. Cependant, cette distanciation avec la cognition naturelle pose un problème ma-
jeur, comme montré par Rudin [Rud19] et diverses controverses 2 : comment peut-on faire
confiance à un résultat si les étapes intermédiaires pour obtenir ce résultat ne peuvent
pas être comprises et si l’utilisateur·ice n’a aucun contrôle sur le résultat produit ? La

1. C’est pourquoi le terme apprentissage machine est parfois préféré au terme intelligence artificielle
pour décrire ce type de technologie.

2. La plus connue étant sans doute le cas de COMPAS, un modèle utilisé dans certains tribunaux aux
États-Unis pour prédire les risques de récidive, et qui s’est avéré avoir un biais raciste.
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question de l’explicabilité est devenue un domaine prédominant de l’IA ces dernières an-
nées [BH21] alors que, malgré le développement de travaux sur les systèmes interactifs, la
question du contrôle humain et de l’IA centrée sur l’humain est encore peu étudiée.

Le point de vue le plus classique sur la question du rapport entre l’automatisation
informatique et le contrôle humain est, tel qu’il a été formalisé entre autres par Para-
suraman et al. [PSW00], le modèle de compromis entre ces deux aspects. Dans cette
conception, l’automatisation et le contrôle humain sont antagonistes : un contrôle humain
élevé implique une faible automatisation, et une automatisation élevée implique un faible
contrôle humain. Par exemple, Parasuraman propose une échelle pour évaluer le niveau
d’automatisation et de contrôle humain d’un système, en le classant entre « 1. L’ordinateur
n’offre aucune assistance ; l’homme doit prendre toutes les décisions et actions » et "10.
L’ordinateur décide de tout, agit de manière autonome, sans tenir compte de l’homme".
Ce point de vue classique a été réévalué ces dernières années, en raison de l’ampleur des
utilisations et des applications de l’intelligence artificielle au cours de la dernière décennie.
Dans [Shn20], l’auteur propose un nouveau cadre théorique bi-dimensionnel pour raison-
ner sur ce sujet. Dans cette perspective, le contrôle humain et l’automatisation ne sont
plus antagonistes, mais constituent des variables indépendantes : un système peut com-
biner à la fois un niveau élevé d’automatisation et un niveau élevé de contrôle humain, ce
qui permet d’obtenir des systèmes fiables, sûrs et dignes de confiance (reliable, safe and
trustworthy, RST). L’exemple d’un distributeur d’analgésiques illustre bien cette idée. Un
système entièrement contrôlé par la·e patient·e, sans surveillance, permettrait un contrôle
précis de l’utilisateur·ice, mais présenterait un risque de surdosage. Un système entière-
ment automatisé, sans aucun contrôle humain, garantirait une utilisation sûre, mais la·e
patient·e pourrait subir une douleur évitable ou une sédation excessive. Dans ce cas, un
système RST assurant à la fois un bon niveau de contrôle humain et d’automatisation
consisterait en un distributeur contrôlé par la·e patient·e et doté d’un module de sécurité
contrôlant la dose d’analgésique injectée, afin de réduire le risque de surdose ou d’état de
manque.

Le domaine du traitement automatique du langage naturel (TALN) est aujourd’hui un
exemple de la tension entre le contrôle humain et la performance. Par nature, comme cela
est montré en philosophie du langage [Wit53], le langage naturel est ambigu, dépendant
du contexte et implicite, et les langues construites logiques et non ambiguës telles que le
Lojban [NC03] ou Loglan [Coo60] existent, mais ne comptent qu’un nombre restreint de
locuteur·ices. Par conséquent, son traitement (génération, analyse, classification, etc.) est
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une tâche difficile. Cependant, en raison de l’omniprésence du langage dans la vie humaine,
la plupart des gens peuvent facilement résoudre de nombreuses tâches de TALN. Par con-
séquent, la question de l’implication humaine dans ces tâches se pose naturellement. On
peut souligner que, si les premiers systèmes de TALN utilisaient des connaissances linguis-
tiques de sens commun ou d’expert·es, avec le développement de l’apprentissage profond,
l’utilisation de connaissances externes a en grande partie disparu, et l’intervention hu-
maine ne subsiste que pour l’annotation des données. Cette évolution culmine aujourd’hui
avec les grands modèles de langue basés sur des transformateurs, tels que BERT [Dev+19]
pour l’analyse ou GPT [Bro+20] pour la génération. Cette évolution s’accompagne d’un
gain impressionnant en termes de performances, mais malgré ces progrès, de nombreuses
tâches restent trop difficiles pour être entièrement automatisées sans intervention humaine.

La construction de graphes de connaissances à partir de textes est une tâche impor-
tante qui reste difficile à automatiser. Cette tâche est apparue du fait de plusieurs dy-
namiques parallèles. Normalisé en 2001 par Tim Berners-Lee [BHL01], et malgré une lente
émergence, le web sémantique est devenu au cours de la dernière décennie un domaine
dynamique, à la fois dans l’industrie et la recherche : des graphes de connaissances massifs
tels que YAGO [PWS20] ou Wikidata [VK14] sont apparus, le linked open data cloud 3 con-
tient plus de 1 250 graphes de connaissances, et il existe de nombreuses techniques et outils
pour explorer, construire, compléter, raisonner sur ou interroger les graphes de connais-
sances. Parallèlement, la popularisation des ordinateurs personnels et d’internet depuis
1995 a entraîné une numérisation massive des textes, et il est aujourd’hui raisonnable
de dire que la plupart des connaissances humaines existent sous la forme de données
numériques textuelles. Ces deux dynamiques créent naturellement un besoin d’intégrer
ces connaissances au web sémantique. Couplé aux progrès décrits ci-dessus dans le do-
maine du TALN, cela a naturellement provoqué l’émergence de méthodes pour construire
des graphes de connaissances à partir de textes.

Si l’apprentissage profond – et plus généralement l’apprentissage statistique – est de-
venu le paradigme prédominant en IA ces dernières décennies, ce domaine a une longue
histoire avec le raisonnement automatisé et l’intelligence artificielle symbolique. Ces deux
domaines ont pour objectif d’étudier et de reproduire des processus de raisonnement
pour comprendre ou représenter des données et extrapoler des connaissances, sur la
base de représentations symboliques de ces données. Ceux-ci possèdent des ramifications
dans de nombreux domaines tels que l’analyse de données, le data mining, l’analyse

3. https://lod-cloud.net/
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de programmes, les méthodes formelles ou le raisonnement sémantique, et recoupent
d’autres domaines tels que les mathématiques, l’informatique théorique, l’algorithmique
ou la philosophie. Parmi ceux-ci, l’analyse formelle des concepts (formal concept analysis,
FCA) [GW99] est un cadre mathématique permettant de raisonner sur des données sym-
boliques en les décrivant en termes d’objets ayant des attributs et en les regroupant en
concepts. Formalisée pour la première fois en 1982 [Wil82], la FCA reste à ce jour dotée
d’une communauté de recherche active, avec des applications dans de nombreux domaines,
de la robotique [Zha+23] à l’exploration de règles [BKO21]. En particulier, des travaux
ont été développés pour adapter ce cadre aux tâches d’apprentissage automatique [Kuz04;
Kuz13b]. L’apprentissage automatique basé sur la FCA a la propriété intéressante d’être
interprétable, car il repose sur l’exploitation de concepts formels, dont la description est
symbolique.

Dans cette thèse, nous présentons une théorisation d’une IA centrée sur l’utilisateur·ice
pour la construction de connaissances à partir de textes. Se présentant d’abord comme
une interface complète pour la construction de graphes de connaissances à partir de textes,
cette approche est basée sur une automatisation progressive des actions de l’utilisateur·ice.
Pour ce faire, elle met en œuvre un système explicable de suggestions basé sur la FCA,
utilisé pour produire des suggestions de qualité croissante à partir des actions passées de
l’utilisateur·ice, et permettant à cellui-ci – ou à d’autres – de valider ou de rejeter les expli-
cations pour les suggestions valides. Les explications validées sont ensuite transformées en
règles d’inférence, afin d’automatiser entièrement les cas similaires. La structure du work-
flow de ce système, en particulier le cycle "production manuelle → suggestion → automa-
tisation", peut être adaptable à d’autres tâches de transformation de données. Comme les
principales normes utilisées pour représenter des graphes de connaissances sont limitées
aux connaissances factuelles, nous limitons l’application aux textes factuels. Ces textes
tendent à être spécifiques à un domaine et ont donc un vocabulaire restreint, ce qui permet
une automatisation efficace du processus. Par conséquent, les cas d’utilisation pourraient
être la numérisation du contenu de corpus de textes factuels spécifiques à un domaine –
par exemple, des rapports de procès ou d’expertise médicale – pour une exploitation plus
facile de leur contenu. Afin de développer un tel système, cette thèse présente également
des contributions en FCA, à travers l’extension des travaux théoriques et algorithmiques
derrière la notion de concepts de voisins [Fer17a]. Ces travaux sont ensuite utilisés pour
développer une nouvelle approche pour l’extraction de relations explicables, qui est une
tâche centrale dans la construction de graphes de connaissances à partir de textes.
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Contributions

Le travail présenté dans cette thèse est composé de plusieurs contributions, à la
fois théoriques et appliquées, dans plusieurs domaines de recherche – IA centrée sur
l’utilisateur·ice, traitement automatique du langage naturel, analyse formelle de concepts,
extraction d’informations et web sémantique.

Workflow centré sur l’utilisateur·ice pour la construction de graphes de con-
naissances Nous présentons un nouveau modèle de workflow centré sur l’utilisateur·ice
pour la construction de graphes de connaissances à partir de textes. Celui-ci est basé
sur une modélisation sémantique et syntaxique intermédiaire des textes, générée par une
unité de prétraitement. Il comporte également une unité interactive permettant au système
d’apprendre à partir des actions de l’utilisateur·ice, et une unité automatisée permettant
d’inférer des connaissances fiables directement à partir des actions passées de cellui-ci.
Dans son utilisation, ce workflow suit le cycle "production manuelle → suggestions →
automatisation" : il est conçu pour agir d’abord comme une interface manuelle pour la
création de graphe de connaissances, sur laquelle un module de suggestion vient assis-
ter l’utilisateur·ice. Iel peut alors permettre l’automatisation complète de l’extraction des
faits en validant certaines de ces suggestions. Ce travail a été publié dans [Aya22].

Modélisation du texte en tant que graphe Dans le prolongement de la contri-
bution précédente, nous proposons une modélisation syntaxique et sémantique du texte
sous forme de graphe, utilisable comme représentation intermédiaire dans le workflow
précédent. Cette modélisation, basée sur l’utilisation d’outils classiques de TALN pour
l’analyse syntaxique et sur une base de données lexicale, utilise le standard RDF – dont
RDF Schemas – pour sa représentation. Cette contribution est publiée dans [ACF21;
ACF22a].

Concepts de voisins Dans le domaine de l’analyse formelle de concepts, plusieurs
contributions ont été apportées au cadre mathématique et algorithmique qui sous-tend
la notion de concepts de voisins. Tout d’abord, nous formalisons cette notion dans le
paradigme général de l’analyse formelle de concepts, au lieu de Graph-FCA, une de ses
extensions aux données graphe. Ensuite, nous complétons le travail existant dans Graph-
FCA pour permettre un traitement efficace du cas des concepts n-aires. Nous formalisons
également la transformation des graphes RDF en graphe contextes – le format des données
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dans Graph-FCA – en tenant compte des schémas RDF. Enfin, nous présentons CONNOR,
une bibliothèque Java pour le calcul des concepts de voisins sur les graphes RDF. Ces
travaux sont publiés dans [ACF24; ACF22b].

Extraction de relations dans les textes Nous proposons une nouvelle approche pour
l’extraction de relations dans les textes, basée sur les concepts de voisins et conçue pour
être compatible avec le workflow introduit précédemment. Tout d’abord, nous présentons
une architecture en deux étapes pour l’extraction de relations dans les textes, basée sur la
séparation entre la détection des relations (différencier les exemples positifs des négatifs)
et la classification des relations (identifier le type de relation pour les exemples positifs).
Deuxièmement, nous introduisons un module de détection des relations, en affinant un
large modèle de langue existant. Ce module est également conçu pour faire partie de l’unité
de prétraitement du workflow. Troisièmement, nous proposons une nouvelle approche
symbolique et explicable pour la classification des relations, basée sur la modélisation des
textes en tant que graphes et sur les concepts de voisins. Cette approche est également
conçue pour faire partie de l’unité interactive du workflow présenté précédemment. Enfin,
nous évaluons, séparément et conjointement, ces modules sur les tâches de détection, de
classification et d’extraction de relations sur un benchmark d’extraction de relations bien
connu. Ce travail a été publié dans [ACF21; ACF22a].
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INTRODUCTION

Artificial Intelligence is usually defined as the attempt to artificially reproduce an
equivalent to human cognition. This is formulated in the famous question of Allan Turing
in his seminal paper [Tur50]: “Can machines think ?”. This definition, vague and theoret-
ical, masks in reality an umbrella term. In practice, it groups a set of techniques, more or
less directly copying human cognition, that practically aims to automate tasks that are
usually considered as intellectual, i.e., that have an apparent need for high-level cognitive
processes over mechanical processes, and therefore were considered as hardly automatable
before the birth of computer science. It can be pointed out that the line between intel-
lectual tasks and manual tasks is blurry, as most traditionally human-made tasks make
use of high-level cognitive processes; by consequence, the difference between mechanical
automation and artificial intelligence is mostly arbitrary. However, this points out the fact
that AI, more than a new paradigm in human production, is overall a natural extension,
caused by the invention of computing technologies, of the global automation process of
production – whose origins cannot be properly traced, but that accelerated and became
predominant since the industrial revolution. This aspect of AI became particularly clear
this last decade, with the explosion of deep learning which, despite the initial inspiration
of the neural networks as a copy of biological neurons, has not for main goal to reproduce
or imitate human cognition, but to solve a task through the learning from massive input-
output datasets 1. However, this distance with natural cognition causes a major issue, as
shown in [Rud19] and through diverse controversies 2: how can a result be trusted if the
intermediate steps for obtaining this result cannot be understood and if the user has no
control on the produced output? The question of explainability became a predominant
field in AI those last years [BH21], while, despite the development of works on interactive
systems, the question of human control and of human-centered AI is still understudied.

The most classical point of view on the question of computer automation and human
control, as formalized by Parasuraman et al. [PSW00] for example, is the trade-off model

1. This is why the term machine learning is sometime preferred to the term artificial intelligence to
describe this kind of technology.

2. The most famous one is probably the case of COMPAS, a black-box system used in some US courts
to evaluate the recidivism risk of a defendant, and which has shown a racist bias.
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between those two aspects. In this conception, automation and human control are an-
tagonized: having high human control implies having low automation, and having high
automation implies having low human control. For example, Parasuraman proposes a
scale for evaluating the level of automation and human control of a system, rating it be-
tween “1. The computer offers no assistance; human must take all decisions and actions”
and “10. The computer decides everything, acts autonomously, ignoring the human”. This
classical point of view has been reevaluated those last years, due to the extent of the
usages and applications of Artificial Intelligence this last decade. In [Shn20] the author
proposes a new bi-dimensional framework for reasoning on this subject. In this framework,
human control and automation are no longer antagonized, but are independent variables:
a system can combine both high automation and high human control, which allows for Re-
liable, Safe and Trustworthy (RST) systems. This can be illustrated with the example of
a painkiller dispenser. A fully patient-controlled system without surveillance would allow
a fine control of the user, but would present a risk of overdose. A fully automated system
with no human control would ensure a safe usage, but the patient may suffer excessive
pain or may be over-sedated. In this case, an RST system ensuring both a good level of
human control and automation would consist in a patient-controlled dispenser having a
safety module monitoring the painkiller dose injected, in order to reduce risk of overdose
or craving.

The field of Natural Language Processing (NLP) is today an example of the ten-
sion between human control and performance. By nature, as studied in philosophy of
language [Wit53], natural language is ambiguous, context-dependent, and implicit, while
logical, non-ambiguous constructed languages such as Lojban [NC03] or Loglan [Coo60]
exist but keep a restrained number of speakers. Therefore, its automated processing (gen-
eration as well as analysis, classification and so on) is a hard task. However, due to the
omnipresence of language in human life, most people can easily resolve many NLP tasks.
Therefore, the question of human implication on these tasks naturally appears. It can
be pointed out that, if the first NLP systems were using common sense or expert lin-
guistic knowledge, with the growth of deep learning, expert intervention disappeared,
and human intervention only remains on data annotation. This culminates today with
the transformer-based large language models, such as BERT [Dev+19] for analysis or
GPT [Bro+20] for generation. This evolution comes with an impressive gain in terms of
performance, but despite those progresses, many tasks stay too hard to be fully automated
without human intervention.
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An important task that remains hard to fully automate is the knowledge graph con-
struction from texts. This task emerged because of several parallel dynamics. Standardized
in 2001 by Tim Berners-Lee [BHL01], and despite a slow emergence, the semantic web
became during the last decade a dynamic field, both amongst industrials and researchers:
massive knowledge graphs such as YAGO [PWS20] or Wikidata [VK14] appeared, the
linked open data cloud 3 contains over 1,250 knowledge graphs, and techniques and tools
to explore, build, complete, reason on or query knowledge graphs have been developed. In
parallel, the popularization of personal computers and of the internet since 1995 caused
a massive digitalization of texts, and today it is reasonable to say that most of human
knowledge exists in the form of textual data. These two dynamics naturally creates a need
for integrating this knowledge to the semantic web. Coupled to the progresses described
above in NLP, this naturally caused an emergence of methods for constructing knowledge
graphs from texts.

If deep learning – and more generally statistical learning – became the predominant
paradigm in AI those last decades, this domain has a long history with automated rea-
soning and symbolic artificial intelligence. Those two fields have for objective to study
and reproduce reasoning processes for understanding or representing data and extrapo-
lating knowledge, based on symbolic representations of those data. These domains have
ramifications in numerous fields such as data analysis, data mining, program analysis,
formal methods or semantic reasoning, and intersect with other domains such as mathe-
matics, theoretical computing, algorithmic or philosophy. Amongst those, Formal Concept
Analysis (FCA) [GW99] is a mathematical framework for reasoning on symbolic data by
describing it in terms of objects having attributes and by grouping them into concepts.
First formalized in 1982 [Wil82], FCA still has an active research community, with appli-
cations in numerous fields, from robotics [Zha+23] to rule mining [BKO21]. In particular,
works have been developed to adapt this framework to machine learning tasks [Kuz04;
Kuz13b]. FCA-based machine learning has the interesting property of being interpretable,
as it relies on the exploitation of formal concepts, whose description is symbolic.

In this thesis, we present a theorization of a user-centric AI for knowledge construction
from text. First presenting itself as a comprehensive interface for the construction of
knowledge graphs from text, this approach is based on a progressive automation of the
user’s actions. To do so, it implements an FCA-based explainable suggestion system,
used to produce suggestions of increasing quality based on the user’s past actions, and to

3. https://lod-cloud.net/
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allow the user to validate or reject explanations for the valid suggestions. The validated
explanations are then transformed in inference rules, in order to fully automate the similar
cases. The structure of this system’s workflow, in particular the cycle “manual production
→ suggestion → automation”, is thought to be adaptable to other data transformation
task. As the main knowledge graph standards are restrained to factual knowledge, we
restrain the application to factual texts. Datasets of such texts tends to be domain specific,
and therefore having a restrained vocabulary, which allows for an efficient automation of
the process. Therefore, use-cases could be the digitalization of the content of factual
domain-specific corpora of texts – e.g., trial reports or medical expertise reports – for an
easier exploitation of their content. In order to develop such a system, this thesis also
presents contributions in FCA, through extending the theoretical and algorithmic work
behind the notion of Concepts of Neighbors [Fer17a]. This work is then used to develop
a novel approach for explainable relation extraction, which is a central task in knowledge
graph construction from text.

Contributions

The work presented in this thesis is composed of several contributions, both theoretical
and applied, in several research fields – User-Centric AI, Natural Language Processing,
Formal Concept Analysis, Information Extraction and Semantic Web.

User-centric Workflow for Knowledge Graph Construction We introduce a novel
workflow model for user-centric knowledge graph construction from text. This workflow
is based on an intermediate semantic and syntactic modeling of texts produced by a pre-
processing unit. It also features an interactive unit for the system to learn from the user’s
action, and an automated unit, for inferring reliable knowledge directly from the user’s
past actions. In its use, this workflow is following on the “manual production → suggestion
→ automation” cycle: it is conceived to act at first as a manual interface for the knowledge
graph completion, on which a suggestion module comes to assist the user. The user then
can allow for the full automation of the extraction of facts by validating some of those
suggestions. This work has been published in [Aya22].

Text Modeling as Graphs In the following of the previous contribution, we propose a
syntactic and semantic modeling of text as graph to use as intermediate representation in
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the previous workflow. This modeling, based on the use of classical NLP tools for syntactic
analysis and on a lexical database, makes use of the RDF standard – in particular of RDF
Schemas – for its representations. This contribution is published in [ACF21; ACF22a].

Concepts of Neighbors In the domain of Formal Concept Analysis, several contribu-
tions were made to the mathematical and algorithmic framework underlying the notion
of concepts of neighbors. First, we formalize this notion in the general paradigm of formal
concept analysis (FCA), instead of Graph-FCA as before. Then, we complete the existing
work in Graph-FCA to make the efficient handle of the case of n-ary concepts easier. We
also formalize the transformation of RDF graphs into graph contexts, taking into account
RDF schemas. Finally, we introduce CONNOR, a Java library for computing concepts of
neighbors on RDF graphs. These works are published in [ACF24; ACF22b].

Relation Extraction in Texts We propose a novel approach for relation extraction
in text, based on Concepts of Neighbors and conceived to be compatible with the intro-
duced workflow. First, we present a two-step architecture for relation extraction in texts,
based on the separation between relation detection (differencing positive examples from
negative ones) and relation classification (identifying the relation type for positive exam-
ples). Second, we introduce a relation detection module, by fine-tuning an existing Large
Language Model. This module is also tailored to be part of the pre-processing unit of
the previously introduced workflow. Third, we propose a novel, symbolic and explainable
approach for relation classification, based on the modeling of texts as graphs and on the
Concepts of Neighbors. This approach is also tailored to be part of the interactive unit of
the previously introduced workflow. Finally, we evaluate, separately and conjointly, those
modules on the relation detection, classification, and extraction tasks on a well-known
relation extraction benchmark. This work has been published in [ACF21; ACF22a].

Thesis Outline

This thesis is divided in two parts. Part I presents the state of the art and elements
of theoretical background. Chapter 1 summarizes the existing works in the domains
adjacent to this thesis, namely knowledge graph construction, user-centric AI, relation
extraction and Formal Concept Analysis. Chapter 2 presents the pre-existing theoretical
background in Formal Concept Analysis used in the rest of the thesis. Part II presents

17



Introduction

the different contributions of this thesis, divided in three chapters. Chapter 3 introduces
the novel workflow model for user-centric knowledge graph construction from text, as well
as the modeling of texts as RDF graphs. Chapter 4 presents the different contributions
made in the domain of Formal Concept Analysis and introduces CONNOR, a Java library
for the computation of Concepts of Neighbors. Chapter 5 presents the new, explainable,
two-step relation extraction method, by detailing its different modules and presenting a
full experimental evaluation of it. Finally, Chapter 6 recapitulates the content of the
thesis, discusses the contributions and presents different perspectives for future works.
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Chapter 1

RELATED WORK

The work presented in this thesis overlaps several active research fields: natural lan-
guage processing, semantic web, symbolic and statistical machine learning, graph mining.
This chapter presents the state of the art in the fields and tasks analogous to our work.
This chapter is structured as follows. Section 1.1 summarizes the history behind the no-
tion of knowledge graphs, and presents the different existing approaches for constructing
knowledge graphs. Section 1.2 presents the different methods for knowledge discovery in
graph data, through graph mining, rule mining and instance-based learning on graphs.
Finally, Section 1.3 presents the existing works on user-centric AI and interactive data
mining.

1.1 Knowledge Graphs and their Construction

As shown in the chronological review by Gutierrez and Sequeda [GS21], the desire
to represent knowledge in data can be traced back to the origins of computer science :
semantic networks were introduced as early as 1956 in the context of machine transla-
tion [Ric56], and many formalisms from different fields were proposed for representing
knowledge during the following decades, before converging with the normalization by the
World Wide Web Consortium (W3C) in 1999 [LS99] and the 2001 seminal paper on the
Semantic Web [BHL01]. In this section, we present the RDF formalism and its overlay for
ontology representation, before summarizing the existing approaches for knowledge graph
construction.

1.1.1 Knowledge Graph Representation

Standardized in 1999 by the W3C [LS99], the resource description framework (RDF)
became the dominant format for knowledge graph notations.

Definition 1 Let U be the set of unified resources identifiers (URI) as defined by the
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Subject Relation Object
urn:royal:person#william urn:royal:rel#spouse urn:royal:person#kate
urn:royal:person#kate urn:royal:rel#spouse urn:royal:person#william
urn:royal:person#george urn:royal:rel#parent urn:royal:person#kate
urn:royal:person#george urn:royal:rel#parent urn:royal:person#william
urn:royal:person#charlotte urn:royal:rel#parent urn:royal:person#kate
urn:royal:person#charlotte urn:royal:rel#parent urn:royal:person#william
urn:royal:person#kate rdf:type urn:royal:gender#female
urn:royal:person#william rdf:type urn:royal:gender#male
urn:royal:person#charlotte rdf:type urn:royal:gender#female
urn:royal:person#george rdf:type urn:royal:gender#male
urn:royal:person#kate urn:royal:rel#birthYear "1982"
urn:royal:person#william urn:royal:rel#birthYear "1982"
urn:royal:person#charlotte urn:royal:rel#birthYear "2015"
urn:royal:person#george urn:royal:rel#birthYear "2013"

Table 1.1 – Textual representation of an RDF graph presenting an extract of the British
royal family

W3C in [BFM05], B be an infinite set of variables called blank nodes, and L the set of
finite alphanumerical strings called literals. A RDF graph is a set T of triples, each
triple being of the form (s, r, o) with the subject S ∈ U ∪ B, the relation R ∈ U and the
object O ∈ U ∪ B ∪ L.

Table 1.1 presents an example of RDF graph in the form of triples, and Figure 1.1
shows its graphical representation. Each triple is the representation of an atomic fact
– e.g., the triple (kate, birthyear, ”1992”) expresses the fact that Kate was born in
1982. The nodes – called entities – are URIs representing members of the British royal
family and literals representing years. The edges – called relations – are URIs representing
properties of those entities and the URI rdf:type used for typing the entities.

In a RDF graph, blank nodes form anonymous entities (e.g., an entity with an unknown
value), while literals give fixed alphanumeric values (e.g., dates). In practice, the RDF
standard expresses labelled directed multigraphs, as multiple triples can have the same
subject and object.

Several notations for RDF graph serialization exist. The more used are the XML-
RDF notation [Swa04] – representing the RDF triples in a XML tree – and the Turtle
notation [Bec+23] – using a more readable and less verbose structure.

In addition to the triples representing facts (also called A-box), an RDF graph can also
contain a series of triples representing an ontology (also called schema or T-box) on the
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Figure 1.1 – Graphical representation of the RDF graph presented in Table 1.1

Subject Relation Object
urn:royal:gender#male rdfs:subClassOf urn:royal:type#person
urn:royal:gender#female rdfs:subClassOf urn:royal:type#person
urn:royal:rel#parent rdfs:subPropertyOf urn:royal:rel#ancestor
urn:royal:rel#parent rdfs:domain urn:royal:type#adult
urn:royal:rel#spouse rdfs:domain urn:royal:type#adult
urn:royal:rel#spouse rdfs:range urn:royal:type#adult

Table 1.2 – Example of RDF schema

graph (see [HKR09]), in the RDFS language. This schema gives extra information on the
facts by adding a hierarchy over the types (with the triples of relation rdfs:subClassOf)
and over the relations (with the triples of relation rdfs:subPropertyOf), and type con-
straints on the subjects and objects of a relation (with the triples of relation rdfs:range
or rdfs:domain).

Table 1.2 presents an example of RDF schema for the RDF graph presented in Ta-
ble 1.1. This schema expresses that an entity typed as male or female is a person, that
the parent of someone is also their ancestor, that the object of a parent relation is an
adult and that entities lined by a spouse relation are adults.

The role of RDF schema is to model knowledge on the vocabulary of an RDF graph, so
that more triples can be inferred. This inference step is called saturation. Several strategies
exist for saturating an RDF graph, depending on the application: either saturation is
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Subject Relation Object
urn:royal:person#kate rdf:type urn:royal:type#person
urn:royal:person#william rdf:type urn:royal:type#person
urn:royal:person#george rdf:type urn:royal:type#person
urn:royal:person#charlotte rdf:type urn:royal:type#person
urn:royal:person#george urn:royal:rel#ancestor urn:royal:person#kate
urn:royal:person#george urn:royal:rel#ancestor urn:royal:person#william
urn:royal:person#charlotte urn:royal:rel#ancestor urn:royal:person#kate
urn:royal:person#charlotte urn:royal:rel#ancestor urn:royal:person#william
urn:royal:person#kate rdf:type urn:royal:type#adult
urn:royal:person#william rdf:type urn:royal:type#adult

Table 1.3 – Triples inferred from the A-box presented in Table 1.1 and the T-box presented
in Table 1.2

made after each edition of the graph – which is a relatively cheap operation, but has to
be applied often –, or saturation is done only when needed, and then can be more costly
but rarely executed.

In the case of the A-box presented in Table 1.1 and the T-box presented in Table 1.2,
the saturation produces the triples presented in Table 1.3.

Let us point out that RDF schema ontology can be used to infer new facts, but it
cannot invalidate facts. It also cannot express more complex rules such as “an ancestor
of an ancestor of an entity is an ancestor of this entity”, or any other properties using
cardinality, symmetry, equality and so on. However, RDF-based tools exist for those fea-
tures. Constraints on the dataset can be expressed through the shapes constraint language
(SHACL) [W3C17], while more complex ontologies can be expressed with the web ontology
language (OWL) [Cal+12] – which is an overlay of RDF.

1.1.2 Knowledge Graph Construction

Several types of approaches co-exist for the construction and edition of knowledge
graphs: manual – with tools for free or guided edition – automated from structured data
and automated from natural language texts. This last type of approaches are part of the
information extraction field, and can be divided between approaches having no previous
vocabulary (i.e., classes and properties) – called open information extraction (open IE)
approaches – and those using a pre-existing vocabulary – called closed information extrac-
tion (closed IE) approaches. See [MHL20] for a survey on the intersection of the semantic
web and information extraction.
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Manual approaches The most obvious approach for constructing knowledge graphs
is the manual one, with systems used for the free edition of knowledge graphs, and sev-
eral tools have been developed for facilitating it. The most famous in this category is
Protégé [Mus15], an ontology editor developed since the end of the 1990s by Stanford
University. Until today, some massive knowledge graphs are still built using manual ap-
proaches, such as Wikidata [VK14], which relies on open contribution through a form-like
web interface.

UTILIS [HFD12], on its side, is a tool for assisted edition of knowledge graph. Its role
is to assist a user when adding a new entity to a knowledge graph by looking up similar
entities in the graph and suggesting on this basis triples to add to the graph.

Automated approaches from structured data Other existing massive knowledge
graphs, such as YAGO [PWS20] or DBpedia [Aue+07] are built through automated ex-
traction of facts from structured web pages. Both those approaches rely on the exploita-
tion of websites known for having structured data. DBpedia is focused on the parsing of
Wikipedia infoboxes and article structures, in order to extract general knowledge facts.
On its side, YAGO relies on the exploitation of Wikidata to reprocess its contents in order
to obtain a more easily processable knowledge graph.

Open IE approaches A few methods of knowledge graph construction from texts rely
on open information extraction techniques, i.e., information extraction without previous
knowledge on the information to extract. In the case of knowledge graph construction, it
traduces by an absence of preexisting ontology or vocabulary over the resulting knowl-
edge graph. [MLR18] presents a method for the construction of reified knowledge graphs
directly from natural language texts in English, based on grammatical patterns in texts
for identifying entities and their linkages. This kind of approach raises several problems.
First, querying and exploiting a knowledge graph without information on its structure or
vocabulary is a hard task. Second, as there is no control on the extracted facts, there is
no guarantee on their relevancy, and depending on the text it can produce a noisy result.

Closed IE approaches Today, most of the methods for knowledge graph construction
from texts are closed information extraction methods, based on a pre-existing vocabulary
– in our case entity types and relation types. In this context, knowledge graph construction
can be divided in two different tasks: (named) entity recognition (extracting entities from
text) and relation extraction (identifying the relation – if any – between two entities).
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The goal of named entity recognition (NER) is to identify where are located the entities
in the text, and associate a type to each of them. For this task, as for many NLP tasks,
systems based on Long Short Term Memory recurrent neural networks (LSTM) were pre-
dominant, sometimes combined with other types of layers. We can cite LSTM-CNN [CN16]
that combines LSTM with Convolutional Neural Network layers, or LSTM-CRF and
Stack-LSTM that combine LSTM with Conditional Random Field layers [Lam+16]. To-
day, as for many other tasks, those models have been outdated by methods using pre-
trained transformer-based Large Language Models (LLMs) such as ERNIE [Sun+20] or
K-BERT [Liu+20].

The task of NER can be completed with two other tasks. First, coreference resolution
aims to identify the textual spans that refer to the same entity in a text. See [Suk+20] for
a recent review on the subject. Second, entity linking (also called entity disambiguation)
has for objective to identify which entity of a knowledge graph a textual entity span is
an instance of. This task is useful in the case of completion of a pre-existing knowledge
graph. Amongst contemporary methods, we can cite EDKate [Fan+16], using a simple
disambiguation model over a joint embedding of graph entities and text spans. Le and
Titov [LT18] present another approach, exploiting latent representation of relations be-
tween coreferences of a same entity.

Most approaches addressing the relation extraction (RE) task use deep learning meth-
ods. Historically, convolutional neural networks [NG15] and LSTM [Xu+15] were used
first, then were replaced by graph convolution networks methods [ZQM18; WZ19], which
allow taking into account the syntactic structure of sentences. Currently, the approaches
that give the best results for the RE task use LLMs such as BERT [Dev+19] and its vari-
ants [Jos+20; Yam+20]. In this category, RECENT [AHH19] fine-tunes a LLM for each
pair (subjecttype, objecttype), and DeepStruct [Wan+22] specialize a LLM for structure
prediction before fine-tuning. However, the performance of those approaches – with an
F-score between 70 and 77% on the TACRED benchmark [Zha+17] – are still too low to
allow a full automation. In addition, those fully statistical approaches lack of explanations
for their predictions, which limits the possibilities of introducing human control in the
process to improve reliability.

Symbolic approaches have also been proposed for the RE task. Their performance
are often lower than deep learning methods, but by definition they provide interpretable
results that can be used in a process with human control. The first symbolic approaches
use rules such as regular expressions [GLR06] or syntactic patterns [FKZ07]. However,
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these rules are handcrafted, and thus those approaches are time-consuming and often
devoted to a specific corpus – such as biomedical literature for example. Some symbolic
approaches automatically learn the linguistic rules. For instance, [Cel+15] uses pattern
mining techniques to automatically extract those rules. The method presented in [BZ11]
combines symbolic and machine learning techniques and proposes to learn patterns from
a list of seed terms, i.e., pairs of entities known to be in some target relation. In [Lee+15],
a symbolic approaches based on FCA is proposed.

Today, modular NLP toolboxes such as SpaCy [HM17] or Stanford CoreNLP [Man+14]
include modules for information extraction tasks.

1.2 Knowledge Discovery in Graphs

The Concepts of Neighbors approach, to which this thesis contributes, can be seen
as a method for knowledge discovery in graph data: the objective is to find concepts
related to a specific object 1. Each concept is a description of objects – forming a rooted
graph pattern – paired with the set of the objects matching this description, both the
description and the set of objects being maximal. Those concepts can then be transformed
in rules or used to perform instance-based machine learning. In that sense, Concepts of
Neighbors is a method to extract structured knowledge from graphs, and therefore is part
of the knowledge discovery field. In this section, we present the existing approaches for
knowledge discovery in graphs related to the Concepts of Neighbors. First, we summarize
the existing approaches in pattern mining on graphs. Then, we present the state of the
art for rule mining. Finally, we present the existing works on instance-based learning on
graphs.

1.2.1 Graph Mining

The domain of graph mining has been largely explored these last decades, and several
types of approaches can be distinguished. We first present the graph mining methods
using a measure of support to determine the pertinent set of patterns. Then we introduce
more recent approaches, that focus on selecting an interesting set of patterns based on
the optimization of measures based in information theory notions. Finally, we introduce

1. As stated later, Concepts of Neighbors, as part of Graph-FCA, can handle the case of tuples of
objects, but we omit this here for the sake of simplification.
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FCA, a method for knowledge discovery on symbolic data, and its extensions to graph
data. For more complete surveys on the subject of graph mining, refer to [Fou+20; JCZ13]

Frequence-Based Graph Mining The most classic ones, such as AGM [IWM00],
FFSM [HWP03] or gSpan [YH02], are complete approaches, mining all patterns over a
given frequency – as does the Apriori algorithm on itemset mining [Agr+94]. Specifi-
cally on knowledge graph mining, SWApriori [RNS20] transforms knowledge graphs into
itemsets in order to apply Apriori on it. However, these methods encounter the pattern
explosion problem: either the frequency threshold is too high and the approaches return
almost no pattern, or the frequency threshold is too low, and an intractable number of
patterns (millions or more) is returned. This problem led to more parsimonious graph
mining approaches. Some of them such as Gprune [Zhu+07] rely on the user for speci-
fying constraints on the patterns, others choose to select specific subsets of the frequent
patterns, such as SPIN [Hua+04] for the maximal patterns – i.e., the set of the frequent
patterns such as for each pattern, none of the larger patterns are frequent – and CloseG-
raph [YH03] for the closed patterns – i.e., the set of the largest frequent patterns such as
for each pattern, no larger pattern has the same support.

Information Theory-Based Graph Mining More recently, frameworks have been
developed to drastically reduce the amount of mined patterns: e.g., the Minimum De-
scription Length (MDL) principle or the Maximum Entropy (MaxEnt) principle. Those
principles, both based on information theory notions, aim to optimize a measure for se-
lecting a significant set of patterns.

On one hand, the MDL principle states that “the best model is the one that compresses
the data the best”, i.e., the set of patterns – called model – that best represents a dataset
is the one that minimizes the description of the dataset by the model [Gal22]. In MDL
for data mining, the model and dataset description lengths are defined as the minimal
number of bits needed to encode it. GraphMDL+ [BCF21] is an example of MDL-based
approach for graph mining.

On the other hand, the MaxEnt principle states that, for a given dataset and given
constraints, the most representative modeling of this dataset is the one of higher entropy
respecting the constraints. This principle is used in [Lee+15] for graph mining, encoding
user subjectiveness as constraints.

28



1.2. Knowledge Discovery in Graphs

Formal Concept Analysis on graphs First introduced in [Wil82], Formal Concept
Analysis (FCA) is a mathematical framework used in data analysis to extract knowledge
from categorical data. As presented in the reference book [GW99], this framework is used
on finite sets of objects, each object matching a set of properties (also called attributes),
and describes them in terms of formal concepts. A concept is defined as a set of objects
Oc (its extension) and a set of attributes Ac (its intension), with the property that all the
objects of Oc have Ac as set of common attributes and that Oc contains all the objects
matching the attributes in Ac. For example, if we take for context the human beings,
the concept of mother has for intension Ac the attributes being a woman and having a
child, and have for extension Oc all the people matching those two attributes. If we add
an attribute (e.g., “being adult”) to – or remove one from – Ac, the pair (Oc, Ac) no
longer forms a concept, as the intension no longer describes the extension. From a pattern
mining perspective, we can state that FCA mine concepts, each concept being a pattern
– its intension – and a set of objects matching this pattern – its extension.

Several extensions of FCA were conceived to handle more complex data than two-
valued attributes and singular objects, such as Fuzzy FCA [Yan+08] that uses fuzzy logics
or Logical Concept Analysis [FR00] that extends FCA to logical formulas. Amongst them,
several are developed to handle relational data, especially with the growth of the semantic
web field and its knowledge graphs. First, Ganter and Kuznetsov theorized the notion of
pattern structures [GK01], which enables to use graph patterns as object descriptions.
However, in this framework graphs are used to describe individual objects, not as a set
of relationships between objects. Relational Concept Analysis (RCA) [Rou+13] has been
theorized as an extension of FCA for handling relational data. However, RCA does not
implement the handling of cycles in the intensions, as well as n-ary relations with n > 2.
To solve this problem, the Graph-FCA framework [FC20] has been theorized in order to
extend the FCA framework to directed labelled multi-hypergraphs, with no constraint on
the form of the intensions. In Graph-FCA, the intensions are rooted – or projected – graph
patterns, while the extensions are tuples of vertices of the graph matching this pattern.
The main issue with FCA for relational data is its computational cost: the computation of
the whole set of concepts in Graph-FCA become rapidly intractable for massive graphs.

1.2.2 Instance-Based Machine Learning

Instance-based machine learning – also called lazy learning – describes a paradigm
in machine learning in which a local model is computed from the training data at each
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query for performing a generation (or prediction, classification, . . . ). This opposes to eager
learning, the dominant paradigm, in which a general model is computed from the training
data, and is able to perform generation (resp. prediction, classification, . . . ) whatever is the
query. The most famous instance-based classification algorithm is the k nearest neighbors
(kNN) algorithm: for a given object to classify, it lists the k most similar individuals in the
training data, and predict the most represented class amongst the annotations of those
individuals.

As far as we know, instance-based learning on graph data has rarely been stud-
ied. The most known approach on this subject is Relational Instance-Based Learning
(RIBL) [HWB01]: it consists in defining a numerical distance between items in a rela-
tional dataset and then applying an algorithm similar to the kNN algorithm to classify
query instances. A similar approach has been used by UTILIS [HFD12], this time in the
context of the instance-based guided edition of RDF graphs. However, as far as we know,
all existing approaches use a numerical distance between objects.

Because of its relatively low computational cost, the idea of using instance-based learn-
ing to perform classification has been considered in FCA-based machine learning [Kuz04]:
instead of computing the whole concept lattice of a context, it consists into computing
only the concepts related to the object to be classified. Therefore, for a single classifica-
tion, the number of concepts to compute is reduced from exponential to linear. This idea
has been applied to relation classification in biomedical texts [Lee+15]. This principle
has been extended with other techniques such as approximation, random sampling and
parallelization to be applied to big data [Kuz13a; Kuz13b]. On a different task, informa-
tion retrieval, the user query is considered as the query instance, and a notion of cousin
concepts enables to find approximate answers to the user query and to rank them by
increasing distance [CLN14]. However, the cousin concepts are found by navigating the
concept lattice, which therefore has to be computed beforehand.

The notion of Concepts of Neighbors, initially presented in [Fer17a], has been de-
veloped at the intersection of those two aspects – FCA on relational data and FCA for
machine learning – by proposing a theoretical and algorithmic frame for instance-centered
computation of concepts in Graph-FCA. The main idea behind of Concepts of Neighbors
is, for a given object, to compute only the concepts related to this object. In practice,
this produces a set of concepts forming, by their extensions, a hierarchical partitioning
of the objects of the graph. The produced concepts are then used as a symbolic distance
– that can be degraded into a numerical one – allowing for the use of kNN -like algo-
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rithms. Chapter 2 presents in detail the theoretical background of FCA, Graph-FCA and
Concepts of Neighbors. This method has been used on several tasks, including knowledge
graph completion [Fer20] and query relaxation [Fer18].

1.2.3 Rule Mining

Knowledge graphs aim to represent real world knowledge. But the real world knowledge
– and the reality itself – is varying all the time, and a knowledge graph can only represent
a fraction of it. Therefore, the knowledge graphs are by nature incomplete. This has been
formulated as the open world assumption:

Definition 2 The open world assumption (OWA) is the assumption that a given
database is incomplete, and therefore that we cannot suppose the truth value of a fact that
is not in the database. This is opposed to the closed world assumption (CWA), in
which we assume that an absent fact is false.

Today, most applications on knowledge graphs work under OWA 2. Thus, from this
assumption, approaches have been developed to infer new triples based on the existing
triples of a knowledge graph. This task is called link prediction – or knowledge graph
completion – and aims, for a subject s and a relation r, predicting o such as the triple
(s, r, o) is true 3. Amongst different approaches for link prediction, a popular family of
symbolic efficient approaches is called rule mining. Those approaches aim to discover
reliable association rules based on the knowledge graph, and use those rules to predict new
triples. As negative facts are not represented in knowledge graphs, rule mining approaches
aim to produce Horn rules:

Definition 3 For T a RDF graph, E the set of entities of T , R the set of relations of
T , and V an infinite set of variables. A Horn rule R : H ← B is a rule of the form:

(s0, r0, o0)←−
n
∧

i=1
(si, ri, oi)

such that for i ∈ [0, n], the atoms of the body of the rule (si, ri, oi) are such that si ∈ E ∪V,
ri ∈ U and oi ∈ E ∪ V. H is called the head of the rule, and B the body.

2. However, some applications use more restrictive assumptions, like the partial completeness assump-
tion, that states that, for an entity s and a relation r, if o exists such as the knowledge graph contains
the triple (s, r, o), then for any entity o′, the triple (s, r, o′) is either in the knowledge graph or false.

3. This link prediction instance can be denoted (s, r, ?)
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An instantiation of a rule is a copy of the rule, where all variables have been substituted
by entities, such that all triples of body are in the RDF graph. A prediction of a rule is
the head atom of an instantiated rule. We denote inst(R) the set of instantiations of a
rule and pred(R′) the prediction of an instantiated rule R′.

Definition 4 The confidence of a rule R is defined as:

conf(R) = #{R′ ∈ inst(R) | pred(R′) ∈ T }
#inst(R)

The confidence of a rule represents the proportion of instantiated rules having their
head verified.

The goal of rule mining methods is to discover rules with a confidence over a given
threshold. However, the search space of rules is too big to be fully explored. Then, each
rule mining method introduces a language bias – i.e., the subset of generated and tested
rules – through its generation method. We here present several state-of-the-art rule mining
methods.

AnyBURL AnyBURL [Mei+19] (for Anytime Bottom-Up Rule Learning) is a method
for rule mining with the good property of being an anytime algorithm: the longer the
execution is, the richer the result is. As its name indicates, this is a bottom-up method: rules
are abstracted from patterns directly sampled from the knowledge graph. The patterns
sampled by AnyBURL are straight ground paths, i.e., paths without internal cycles (but
the whole rule can form a loop). Each path is abstracted as a straight ground path rule, by
using the first atom of the path as head of the rule and the rest of the atoms as body, and
by replacing the entities in the queue of the rule by variables. The AnyBURL algorithm
mines rules by increasing length: rules of length 1 are mined until most of the mined rules
are redundant, the rules of length 2 are mined, and so on. The main drawback of this
approach is the language bias: the rules cannot form internal cycles or trees, which causes
a loss in expressiveness.

AMIE First presented in [Gal+13], then refined for faster execution in AMIE+ [Gal+15]
and AMIE 3 [LGS20], AMIE (for Association rule-Mining under Incomplete Evidence)
is one of the major rule-based approaches. This is a top-down method: the algorithm
generates rules, keep those with high confidence and then refine them to get longer rules,
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and so on, through a classical breadth-first search. The generation and the refinement
processes are designed such as the mined rules respect those three given properties :

— Connectivity: two triples are connected if they share a variable or an entity. A
rule is connected if each triple is connected transitively to every other triple of the
rule. In other terms, the triples of the rule form a connected graph. For example,
the following rule is not connected:

(vs, spouse, vo)←− (v1, parent, vs) ∧ (v2, parent, v3)

— Closure: a variable in a rule is closed if it appears at least twice in the rule. A
rule is closed if each variable of this rule is closed. For example, in the following
rule, the variable v2 is not closed, and thus the rule is not closed:

(vs, spouse, vo)←− (v1, parent, vs) ∧ (v1, parent, vo) ∧ (v2, parent, vo)

— Non-reflexivity: a reflexive rule is a rule admitting triples of the form (x, r, x),
with x a variable or an entity. For example, (v0, spouse, v0) is a reflexive atom.
Reflexive rules are not mined because reflexive atoms are absent of most knowledge
graphs.

The language bias of this approach is much less strong than for AnyBURL: rules
can have cycles and form trees. Contrarily to AnyBURL, AMIE is not anytime: for a
given RDF graph T , a minimum confidence C and maximum rule length l, it computes
all closed, connected, non-reflexive rules with a confidence higher than C and a length
smaller than l.

Concepts of Neighbors In [Fer20], Concepts of Neighbors are used for link prediction,
by transforming the rooted graph patterns used as concept intensions into rule bodies.
This approach is instance-based: instead of computing a set of general rules beforehand
and using them for all instances of link prediction on this KG, we compute a set of specific
rules for each link prediction instance.

Let T be a RDF graph, s an entity of T and r a relation of T . In this approach, to
resolve the link prediction problem (s, r, ?), rules are generated by using intensions of the
concepts of neighbors of s as rule bodies, and by generating triples for rule heads. For a
given intension I having vs as projected variable, two types of rules are generated:

— by-copy rules: (vs, r, o)←− I, for each entity o of the knowledge graph.
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— by-analogy rules: (vs, r, vo) ←− I, for each variable vo ̸= vs appearing in the
triples of the intension I;

By-copy rules semantically state that, when an entity e matches I as vs, then it has
a given fixed property. An example of a by-copy rule would be that “If someone is the
parent of someone else, then they are an adult” :

R : (vs, rdf : type, adult)←− (v0, parent, vs)

By-analogy rules have a different semantics: the head triple is a shorter way to express
– or generalize – the semantics expressed by the intension – or at least by a part of it.
An example of by-analogy rule would be that “if X has Y for parent of one of her parent,
then X has Y for grandparent” :

R : (vs, grandparent, vo)←− (vs, parent, v1) ∧ (v1, parent, vo)

GBS More recently, [SL22] has introduced the grammar-based pattern system (GBS), a
method using a generative grammar for rule mining. This grammar is used for generating
item patterns, that are assembled to form triple patterns, themselves assembled to form
rule patterns, that can be instantiated into rules. As AMIE, this approach is top-down:
it generates abstract rule patterns, that are instantiated. Then the non-matching rules
are pruned, and the kept ones are refined. Once rules are generated, a pruning strategy
is applied in order to keep a set of rules that minimizes the overlap of the instantiation
of head atoms.

The specificity of GBS is that, contrarily to the other approaches presented here, its
main goal is not link prediction but RDF graph compression: the idea is to mine a set of
rules, then to remove from the RDF graph the set of triples that are generated by these
rules in order to minimize its size. Therefore, it can hardly be compared to the other
approaches in terms of score on the link prediction task. However, it can be pointed out
that effectively, the produced set of rules has a better compression ratio than AMIE, and
the execution time is inferior to AMIE+ 4.

Comparison AnyBURL, AMIE and Concepts of Neighbors have similar performances
on link prediction benchmarks. The difference resides in other properties. The main differ-
ence is that Concepts of Neighbors is instance-based: it mines rules specifically matching

4. No comparison with AMIE 3 – the fastest version of AMIE – has been found in the literature.
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a specific link prediction instance (e, r, ?), while AMIE and AnyBURL mine sets of gen-
eral rules, with only some of them being usable for a given instance. Therefore, Concepts
of Neighbors is more appropriate for knowledge graphs that are regularly updated, while
AMIE and AnyBURL have to be preferred if the knowledge graph is fixed once and for all.
Concerning computing performance, AMIE – especially with its enhancements AMIE+
and AMIE 3 – is faster for mining a great number of rules. However, AnyBURL and the
Concepts of Neighbors have the property to be anytime, and therefore execution time can
be fixed a priori.

1.3 User-Centric AI

As evoked in the introduction, the domain of user-centric AI is quite understudied.
The framework proposed by Shneiderman [Shn20] – that replaces the unidimensional
tradeoff between human control and automation by a bi-dimensional space allowing for
simultaneous high human control and high computer automation – is still young, and the
search for performance over user control in machine learning stays the dominant paradigm.
However, several pre-existing systems for diverse applications are, by their relation with
the user, analogous to the work presented in this thesis.

In the domain of data mining, [Lee14] presents methods for interactive data explo-
ration, while [Lee+16] introduce a measure of subjective interestingness in graph mining.

As evoked earlier, in [HFD12] is presented UTILIS, a system for assisted edition of
knowledge graphs based on a suggestion module using logical rules extracted from the
description of existing objects. This approach is similar to the suggestion system developed
in our work. In addition, its purpose is also the edition of knowledge graphs. However,
contrarily to our work, it is neither text-centered nor featuring automation.

In [FR02], the authors present an FCA-based interactive system for progressive au-
tomation of e-mail classification. This approach is based on the incremental build of a
logical concept analysis (LCA) context, based on the interaction with the user. By its use
of FCA theory and by its incremental aspect based on the user’s action, this approach is
formally close to the work presented in this manuscript. However, it significantly differs
by the difficulty of the task, and therefore by the complexity of the model: by the simple
construction of a logical context, this approach solves the proposed task with accuracy
superior to 85% after the processing of 100 individuals, while the best systems of the state-
of-the-art scores a f-score of 0.75 on relation extraction, which is a subtask of knowledge
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graph construction.

1.4 Conclusion

This chapter summarizes the existing scientific works related to the contributions pre-
sented in this thesis. First, it recapitulates the notions of semantic web and knowledge
graph, its formalisms and the existing approach for the construction or edition of knowl-
edge graphs. Then, it presents the state of the art in the domain of knowledge discovery
on graphs, focusing on graph mining, instance-based machine learning and rule mining.
Finally, it exposes the existing works in the domain of user-centric AI and interactive
knowledge discovery.

As shown in this chapter, today the existing methods for constructing or editing knowl-
edge graphs are very diversified: manual, with an automatic assistance, as well as fully
automatized, from structured data and from texts, based on an existing vocabulary or
not. The work presented in this thesis differs of those existing works by several aspects.
Being a method for constructing knowledge graphs from texts, it is part of the information
extraction field, but it differs from the other approaches by its user-centered aspect. As
UTILIS [HFD12], it can be seen initially as an assisted manual method with a suggestion
system, except that this method is based on texts, and that it features an automation
process that, in the end, makes it similar to fully automated methods. In addition, our pro-
posed system features interpretability properties, by the use of symbolic machine learning,
that greatly differs from the state-of-the-art systems for information extraction.

Concepts of Neighbors, contrarily to other graph mining methods, produce a local
set of patterns that are relevant to a query instance. Moreover, the generated patterns
are rooted patterns, i.e., they have a distinguished tuple of nodes that corresponds to the
query instance. This property makes them fit for downstream inference tasks, such as
instance-based machine learning, as evoked before.

Concerning the user-centered aspect, our work falls within the recent theoretical frame-
work for human-centered AI developed in [Shn20]. It presents similarity with existing
approaches, by its finality as well as by its functioning, but distinguish itself by the com-
plexity of the task of construction of knowledge graphs from texts, and therefore by the
complexity of the technologies used.
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Chapter 2

THEORETICAL BACKGROUND

An important part of the work presented in this thesis relies on notions developed
in Formal Context Analysis (FCA), as introduced in Chapter 1. This chapter introduces
the mathematical and algorithmic background developed in Formal Context Analysis
and used in the presented work. Section 2.1 introduces the main definitions from the
FCA framework. Section 2.2 presents Graph-FCA, an extension of FCA to graph data.
Section 2.3 presents the notions related to the Concepts of Neighbors in the context of
Graph-FCA, and the algorithmic framework developed for its computation.

2.1 Formal Concept Analysis

This section presents the basic notions of FCA, as introduced in the seminal pa-
per [Wil82] and presented in the reference book [GW99].

Definition 5 A formal context is a triple K = (O, A, I) where O is a set of objects, A

a set of attributes and I ⊆ O×A is an incidence relation between objects and attributes.
For each object o ∈ O, we define I(o) = {a ∈ A | (o, a) ∈ I} as the description of o.

Table 2.1 gives an example of a formal context. The set of objects is an excerpt of the
British royal family and the attributes are some human characteristics, here to be a man,
a woman, an adult, a kid, and married. The incidence relation associates each person to
their characteristics. For instance, in this context, Charles is a man, an adult and married.

Definition 6 We define the instances of a set of attributes as the function

inst : P(A)→ P(O)
Y 7→ {o ∈ O | Y ⊆ I(o)}
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man woman adult kid married
Charles × × ×
Charlotte × ×
Diana × × ×
George × ×
Harry × × ×
Kate × × ×
William × × ×

Table 2.1 – Example of a formal context where the set of objects is an excerpt of the
British royal family.

that maps a set of attributes to the set of the objects that have all the attributes in their
description 1.

Definition 7 We define the properties of a set of objects as the function

prop : P(O)→ P(A)
X 7→

⋂
o∈X

I(o)

that maps a set of objects to the set of their common attributes 2.

For instance, in the context presented in Table 2.1, inst({woman, adult}) = {Diana, Kate}
and prop({Charles, William}) = {man, married, adult}.

Property 1 The pair of functions (inst, prop) forms a Galois connection between
P(O) and P(A), i.e., for Oc ⊆ O and Ac ⊆ A:

prop(Oc) ⊆ Ac ⇐⇒ inst(Ac) ⊆ Oc

For instance, with Ac = {man, adult, married} and Oc = {Charles, Diana, Harry,

Kate, William} we have prop(Oc) = {adult, married} ⊆ Ac and inst(Ac) = {Charles,

Harry, William} ⊆ Oc.

Definition 8 Let K be a formal context. A concept is a pair C = (Oc, AC) such that:
— Oc = inst(Ac)

1. In the literature, inst(Y ) is usually denoted Y ′ or ext(Y ).
2. In the literature, prop(X) is usually denoted X ′ or int(X).
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— Ac = prop(Oc)
Oc ⊆ O is called the extension of C and Ac ⊆ A is called the intension of C.

For example, in Table 2.1, ({Charles, William}, {man, married}) is not a concept
whereas ({Charles, William, Harry}, {man, adult, married}) is a concept. Indeed:

ext({man, adult, married}) = {Charles, William, Harry}

int({Charles, William, Harry}) = {man, adult, married}

Definition 9 Let K = (O, A, I) be a formal context and C1 = (O1, A1) and C2 = (O2, A2)
be two concepts of K. Concept C1 is more specific than C2 (or C2 more general than
C1) – denoted by C1 ≤ C2 – if and only if:

— O1 ⊆ O2 and
— A1 ⊇ A2.

Property 2 Let C1 and C2 be concepts. As (int, ext) is a Galois connection, C1 is more
specific than C2 if and only if A2 ⊆ A1

For example, the concept of adult married man is more specific than the concept of
man:

({Charles, Harry, William}, {man, adult, married}) ≤ ({Charles, George,

Harry, William}, {man})

Theorem 1 Let K = (O, A, I) be a formal context. The set of all concepts of K ordered
by generalization forms a concept lattice.
It means that for all pairs of concepts of K C1 and C2 there exist:

— an infimum C1 ∧ C2, i.e., the most general concept that is more specific than the
2 concepts;

— a supremum C1∨C2, i.e., the most specific concept that is more general than the
2 concepts.

Figure 2.1 shows the concept lattice of the context given in Table 2.1. The concepts
are represented by circles. Concepts – except the top and bottom ones – are labelled by
their intension (in gray boxes on top of concepts) or by their extension (in white boxes on

39



Partie I, Chapter 2 – Theoretical Background

Figure 2.1 – Concept lattice derived from the context in Table 2.1.

the bottom of concepts). The concept labelled by “George” represents all persons in this
context that are a man and a kid, for this example only George has those two attributes
in its description. This concept is the infimum of the concepts labelled by “man” and the
concept labelled by “kid”.

2.2 Graph-FCA

Graph-FCA [Fer15; FC20] is an extension of FCA for knowledge graphs, and more
generally for relational data. Indeed, in FCA, objects can be described individually but
not the relationships between objects. The equivalent of a formal context for Graph-FCA
is called a graph context.

Definition 10 A graph context is a triple K = (O, A, I) where O is a set of objects, A

a set of attributes and I ⊆ O∗ × A is an incidence relation between tuples of objects and
attributes.

Theoretically, this definition allows defining labelled directed multi-hypergraphs as
graph contexts. However, for conciseness we only consider labelled directed multigraphs
(and therefore I ⊆ (O ∪O2)× A), but definitions and concepts used below also apply to
multi-hypergraphs. In such a context, o ∈ O represents a vertex of the graph, a ∈ A an
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Figure 2.2 – Graph context representing the British royal family

incidence label (also called attribute) and i ∈ I a unary (vertex label) or binary (labelled
directed edge) hyperedge (also called incidence).

Figure 2.2 is a graphical representation of a graph context. It represents an excerpt of
the British royal family. The boxes are the objects (e.g., Charlotte or Harry), the labels
next to boxes are unary attributes (e.g., man, woman), and the arrow labels are binary
attributes (e.g., parent or spouse). The unary incidence ((Kate), woman) ∈ I says that
Kate is a woman; we call it a node label and also write it woman(Kate) for readability and
by analogy to predicate logic. The binary incidence ((George, Kate), parent) ∈ I says that
Kate is a parent of George; we call it a labeled edge and also write it parent(George, Kate).

The purpose of FCA is to discover patterns shared by objects. Whereas in classical
FCA a pattern is a subset of attributes, in Graph-FCA a pattern is a projected graph
pattern, which expresses a common graph structure rooted in one or several nodes.

Definition 11 Let V be an infinite set of variables. A graph pattern P ⊆ V∗ × A is a
set of pairs (y, a), with y a tuple of variables and a an attribute. Each of those pairs can
be seen as an n-ary directed incidence (with n = |y|) labelled by attribute a.

A projected graph pattern (PGP) is a pair Q = (o, P ) where o ∈ V∗ a tuple of
variables – called projected variables – and P is a graph pattern such as each incidence
of P is transitively connected to at least one element of o. The arity of a PGP is the
length of o. A PGP of arity k is also called a k-PGP. The set of PGPs of arity k over a
set of attributes A is denoted by PGPk(A).

41



Partie I, Chapter 2 – Theoretical Background

Figure 2.3 – PGP representing the relation between siblings of a married heterosexual
couple

Figure 2.3 represents a 2-PGP describing the binary relation between siblings of a
married heterosexual couple. Projected variables are in double boxes. In practice, PGPs
can be seen as queries on the graph context, and we reuse the notation of such queries
for the textual representation of PGPs:

Psibling(x, y) = [x, y ← man(u), woman(v), parent(x, u), parent(x, v),
parent(y, u), parent(y, v), spouse(u, v), spouse(v, u)]

A PGP inclusion relation – noted Q1 ⊆P GP Q2 – expresses that a k-PGP Q1 is
more general than another k-PGP Q2, or that Q2 is more specific than Q1, i.e., that
by renaming the variables of Q1 we can obtain a PGP having the same projection tuple
than Q2 and having its graph pattern included in the graph pattern of Q2). If Q1 ⊆P GP Q2

and Q2 ⊆P GP Q1, the two PGPs are said equivalent (Q1 ≡P GP Q2). In addition, for two
k-PGP Q1 and Q2, we define Q1 ∩Q2 as the most specific generalization of Q1 and Q2.

Besides, we define the description of the tuple of objects o as the PGP Q(o) = (o, P (o)),
where P (o) ⊆ I is the subset of incidences that are transitively connected to any element
of o. It is the union of the connected components of the graph context containing the
elements of o, rooted in those elements.

Definition 12 We define the set of answers of a PGP as the set of answers of this PGP
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seen as a query.

ans : PGPk(A)→ P(Ok)
Q 7→ {o | Q ⊆P GP Q(o)}

In the example PGP of Figure 2.3, the set of answers over the example graph con-
text is made of the pairs (Harry, William) and (George, Charlotte), and also their in-
verse because of the pattern symmetry, and also the identity pairs like (Harry, Harry)
and (Charlotte, Charlotte) because there is no inequality constraints between variables x

and y. The answers of Q(o) is the set of all tuples of objects that match everything that
is known about o.

Definition 13 We define the most specific query of a set of k-tuples of objects as the
largest query according to ⊆P GP whose set of answers contains R.

msq : P(Ok)→ PGPk(A)
R 7→

⋂
o∈R

Q(o)

In the example graph context, the most specific query of Charlotte and Kate is that
they are women: msq({Charlotte, Kate}) = [x← woman(x)]. The most specific query of
Charlotte and William is [x ← Psibling(x, y), man(y)], where Psibling is the pattern of the
above example PGP. It says that Charlotte and William have in common married parents
(Psibling) and a brother (man(y)). As proven in [FC20], the pair of functions (ans, msq)
forms a Galois connection between P(Ok) and PGPk(A), for any k. This leads to the
definition of graph concepts.

Definition 14 Let K = (O, A, I) be a graph context. A graph concept of arity k (also
called a k-concept) is a pair C = (R, Q) ∈ P(Ok)× PGPk(A) such that R = ans(Q) and
Q = msq(R). R is called the extension of the concept, and Q is called the intension.

Definition 15 Let K = (O, A, I) be a graph context and C1 = (R1, Q1) and C2 =
(R2, Q2) be two concepts of K.
Concept C1 is said more specific than C2 (or C2 more general than C1) denoted by
C1 ≤ C2 if and only if R1 ⊆ R2.

Property 3 As C1 and C2 are concepts and, as (int, ext) is a Galois connection, C1 is
more specific than C2 if and only if Q2 ⊆PGP Q1
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Theorem 2 Let K = (O, A, I) be a formal context. The set of all k-concepts of K ordered
by generalization forms a concept lattice.
It means that for all pairs of concepts of K there exist:

— an infimum, i.e., the most general concept that is more specific than the 2 con-
cepts;

— a supremum, i.e., the most specific concept that is more general than the 2 con-
cepts.

2.3 Concepts of Neighbors

Concepts of Neighbors is a method for exploring the k-concept lattice of a graph
context, by restricting this exploration to the concepts related to a given k-tuple of objects.
This notion has been introduced in [Fer17a], and a reference journal paper on this subject
is under review. In this section, we present the main notions related to Concepts of
Neighbors, and gives a detailed overview of the existing algorithmic framework for the
computation of concepts of neighbors.

2.3.1 Formal Definitions

The Concepts of Neighbors method relies on two major notions : the notion of con-
ceptual distance and the notion of concepts of neighbors itself.

Definition 16 Let K = (O, A, I) be a graph context. The conceptual distance between
two k-tuples of objects o1 and o2 is the k-concept δ(o1, o2) = (R, Q) where the intension
Q is the most specific k-PGP such that the extension R contains o1 and o2.

Property 4 Let o1 and o2 be two k-tuples of objects, and δ(o1, o2) = (R, Q). Then:
— Q = msq(o1) ∩msq(o2)
— R = ans(Q)

It can be proven that this conceptual distance has properties similar to a numerical
distance, such as positivity, symmetry and triangle inequality, by using the concept exten-
sion inclusion as a partial order and a notion of conceptual supremum as addition [Fer17a].
The extensional distance d(o1, o2) = |δ(o1, o2).ext| can be used as a (degraded) numer-
ical distance to evaluate the dissimilarity between o1 and o2 as the number of k-tuples
between them.
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Figure 2.4 – Concepts of Neighbors of Charlotte

Definition 17 The concepts of neighbors of a k-tuple o is the set of k-concepts
C -N (o) = {δ(o′, o)|o′ ∈ Ok}.

The rank of a concept δ ∈ C -N (o) is recursively defined as:
— rank(δ(o, o)) = 0
— ∀δ ∈ C -N (o), rank(δ) = 1 + max{rank(δ′)|δ′ ∈ C -N (o), δ′.ext ⊆ δ.ext}
The proper extension of a concept δ.proper for δ ∈ C -N (o) is the set of k-tuples

of its extension that are not in the extension of a more specific concept. The set of
proper extensions forms a partition of Ok, and the set of extensions forms a hierarchical
clustering of Ok.

Figure 2.4 presents the five concepts of neighbors of Charlotte in the graph context
presented in Figure 2.2 (a). On the right, the extensions are presented as a Venn diagram,
and on the left the intensions are expressed in plain English for simplicity. The first
concept has for intension the whole graph centered on Charlotte and has only Charlotte
in its extension. Then there are two larger concepts, one describing the children of Kate
and William (Charlotte and George), and another one describing the women. Then there
is an even larger concept describing the people having a father, a mother, and a sibling
(Harry, William, Charlotte, and George). Finally, there is the top concept, having an
empty intension and O as extension.

2.3.2 Algorithms

This section describes an efficient and anytime algorithm for the computation of con-
cepts of neighbors, published in [Fer17a; Fer18]. The algorithm inputs are a graph con-
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text K = (O, A, I), and a k-tuple of objects u ∈ Ok, called the query instance. The
algorithm output is the collection of concepts of neighbors C -N (u), with for each concep-
tual distance δ ∈ C -N (u) the concept intension δ.int, the concept extension δ.ext, and
the proper extension δ.proper.

This section describes the partitioning algorithm that explores the generalization space
top-down to compute concepts of neighbors. Then an essential optimization in the com-
putation of sets of answers is presented, by introducing the lazy join algorithm.

Iterative Partitioning of Instances into Concepts of Neighbors

This algorithm relies on the notion of pre-concept of neighbors, which is intuitively
similar to a concept, except that the PGP is not necessarily the most specific query for
those answers. The definition of pre-concept relies itself on the notion of match-set.

Definition 18 Let K = (O, A, I) be a graph context, and V an infinite set of variables.
A match-set is a pair M = (x, R) ∈ Vk × P(Ok), for some arity k. It defines a set
of mappings from the k variables in x to objects of the context: x = dom(M) is called
the domain of the match-set, and R = rel(M) is called the relation of the match-set.
Match-sets are equipped with two operations from relational algebra [Cod70]:

— the projection πy M of a match-set on a sub-tuple y of the match-set variables;
— the(natural) join M1 ▷◁ M2 of two match-sets.

Definition 19 Let K be a graph concept, u be the query instance with arity k, and
Ok be the set of candidate instances. A partition of the set of candidate instances is
a collection {Cl}l of pre-concepts (of neighbors), where each pre-concept is a structure
Cl = (Ql, Rl, Vl, Ml, Hl), s.t.:

— Ql = [u← Pl] is a k-PGP that is a generalization of Q(u), with xl being the tuple
of all variables occurring in u or in Pl;

— Rl = ans(Ql) ∩Ok is the set of answers of Ql in Ok;
— Vl ⊆ Rl is a subset of answers such that the collection {Vl}l forms a partition of Ok;
— Ml = (xl, ans((xl, Pl))) is the match-set containing all matchings of the pattern Pl

on the graph context;
— Il ⊆ I is a set of incidences from the description of the query instance that remain

available for specializing Ql.

Initially, there is a single pre-concept, the initial pre-concept that uses the empty PGP
and that contains all candidate instances.
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Definition 20 The initial pre-concept is the pre-concept Cinit s.t.:
— Qinit = [u← ∅] is the empty PGP (xinit = u);
— Rinit = ans(Qinit) ∩Ok = Ok is the set of all candidate instances;
— Vinit = Ok is the set of all candidate instances;
— Minit = (u, Ok);
— Iinit = I is the set of all incidences from the graph context.

Each pre-concept Cl s.t. Il ̸= ∅ may be split in two pre-concepts Ci and Cj by using an
incidence (w, a) ∈ Il to discriminate among instances Vl those that match the incidence
from those that do not.

Definition 21 The specialization of a pre-concept Cl by an incidence (w, a) ∈ Il leads to
two new pre-concepts Ci and Cj that replace Cl in the partition, and that are defined as
follows (the definitions of R and M follow from the definition of Q):

Qi = [u← Pl ∪ {(w, a)}] Qj = Ql

Vi = Vl ∩Ri Vj = Vl \Ri = Vl \ Vi

Ii = Il \ {(w, a)} Ij = Il \ {(w, a)}

According to the above definition, the cost of specializing a pre-concept looks very
small. It amounts to add an incidence to a PGP, to perform basic set operations on
sets of instances, and to remove an element from the set of incidences. However, the
computation of Vi and Vj requires the set of answers Ri = ans(Qi) of the specialized
PGP. This computation can be made incremental by relying on the match-set of pre-
concepts. The match-set M of a graph pattern P is equal to the join of the match-sets of
all incidences (w, a) ∈ P :

M = ▷◁(w,a)∈P M(w,a)

where M(w,a) = (w, ans([w ← a(w)]))

As the join operator is associative and commutative, the match-set of the specialized PGP
can be computed incrementally from the parent PGP.

Mi = Ml ▷◁ M(w,a)
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Algorithm 1 Partition(K, u)
Require: A graph context K = (O, A, I)
Require: An arity k > 0 and a query instance u ∈ Ok

Require: An optional timeout
Ensure: A collection of pre-concepts C partitioning V w.r.t conceptual distance to u

1: C ← {Cinit}
2: while no timeout and there is a pre-concept Cl ∈ C such that Il ̸= ∅ do
3: pick some (w, a) ∈ Il that is connected to u in Ql

4: Qi ← [u← Pl ∪ {(w, a)}]
5: Mi ←Ml ▷◁ M(w,a)
6: Ri ← rel(πu Mi)
7: Vi ← Vl ∩Ri

8: Vj ← Vl \ Vi

9: Iij = Il \ {(w, a)}
10: C ← C \ {Cl}
11: C ← C ∪ {Ci}, if Vi ̸= ∅, where Ci = (Qi, Ri, Vi, Mi, Iij)
12: C ← C ∪ {Cj}, if Vj ̸= ∅, where Cj = (Ql, Rl, Vj, Ml, Iij)
13: end while

Finally, the set of answers is simply the projection of the match-set on the projected
variables.

Ri = rel(πu Mi)

Algorithm 1 details the partitioning algorithm. Given a graph context, a query in-
stance, and a set of candidate instances, it starts with a single pre-concept, the initial
pre-concept (Definition 26). It then iteratively applies specialization steps (Definition 21)
to pre-concepts in order to refine the partition. The process runs until no specialization
is possible, or until a timeout has been attained. This timeout is optional, but it has
the advantage to make the algorithm anytime (more on this below). Figure 2.5 shows an
execution trace as a binary tree of pre-concepts. It represents the computation of the con-
cepts of neighbors of Charlotte (see Figure 2.4): u = Charlotte. The initial pre-concept
contains the seven persons in the context, from Charles (C) to Charlotte (A). The first
specialization uses the incidence woman(Charlotte), separating the women (Diana, Kate,
and Charlotte) on the left from the men on the right. Those women remain in the exten-
sion of the concept on the right but no more in the proper extent. The concept on the
left is further split in two pre-concepts: woman with a parent on the left (A), and woman
without a parent on the right (DK). Pre-concept (A) cannot be split further, although
incidences can still be added to it. From pre-concept (DK), all remaining incidences lead
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Figure 2.5 – Trace of the partition algorithm applied on the graph context in Figure 2.2
with u = Charlotte. Pre-concepts are shown via their extension, with the proper extension
on the left and the remainder on the right, if any. Objects are abbreviated by their initial,
except for Charlotte (A). The same abbreviations in lowercase are used as variables in the
incidences used for pre-concept specialization. Boxed pre-concepts at the leaves are the
concepts of neighbors, and the number at their right is the extensional numerical distance.

to an empty extension because Diana and Kate have nothing else in common with Char-
lotte. The boxed pre-concepts at the leaves are the results of the algorithm. Their intent is
the set of incidences that label the path from the root to this pre-concept. They coincide
with the concepts of neighbors shown in Figure 2.4.

Lazy Join of Match-Sets

The partitioning algorithm of the previous section has good properties w.r.t. the ex-
ploration of the search space, but it hides a bottleneck in the computation of match-sets,
that grow exponentially in size. It is actually possible to do better because the expected
end result is the set of answers R = πu M , whose size is bounded by the number of
candidate instances |O|k.

We here describe a compact representation of a match-set M , called a match-tree,
that is made of several local joins instead of the global join. It supports the incremental
computation of match-sets assumed by the partitioning algorithm, and it performs joins
in a local and lazy way to keep the representation as compact as possible.

A match-set Ml results from the set of incidences Pl. A match-tree is based on a tree
structure over those incidences.
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Algorithm 2 LazyJoin(T, i, i∗, D∗, M∗, ∆∗)
Require: a match-tree T , a current incidence i in T labeled with (D, M, ∆),

and a new incidence i∗ labeled with (D∗, M∗, ∆∗)
Ensure: two sets of variables ∆+, ∆−

1: ∆+ ← ∅; ∆− ← ∅
2: for all ic ∈ children(i), labeled with (Dc, Mc, ∆c) do
3: ∆+

c , ∆−
c ← LazyJoin(T, ic, i∗, D∗, M∗, ∆∗) {recursive call on each child node}

4: ∆+ ← ∆+ ∪∆+
c ; ∆− ← ∆− ∪∆−

c

5: M ←M ⋊⋉ π∆c Mc, if ∆c or Mc was modified {update of local join}
6: end for
7: if D ∩∆∗ ̸= ∅ then {if this node defines a variable of the new element}
8: if i∗ not yet inserted in T then {insert new node, if not yet inserted}
9: ∆− ← ∆− ∪ (∆∗ \D); M ←M ⋊⋉ π∆∗ M∗; parent(i∗)← i

10: else
11: ∆+ ← ∆+ ∪ (∆∗ ∩D)
12: end if
13: end if
14: ∆+ ← ∆+ \∆−

15: ∆− ← ∆− \∆+

16: ∆← ∆ ∪∆+ ∪∆− {update ∆}
17: return ∆+, ∆−

Definition 22 A match-tree is a rooted n-ary tree T where each node is an incidence i =
(w, a) and is labeled by a tuple (D, M, ∆) where 3:

— D ⊆ w is a subset of the variables used by incidence i;
— M is the local match-set s.t. w ⊆ dom(M);
— ∆ ⊆ dom(M) is the subdomain that is useful to the node’s ancestors.

The initial match-tree Tinit is used in the initial pre-concept in place of the initial
match-set. It has a single root node that is a pseudo-incidence i = ⊤(u) and that is
labeled with (u, Minit, u).

The line Mi ←Ml ▷◁ M(w,a) doing the incremental join in Algorithm 1 is replaced by

Ti ← LazyJoin(Tl,⊤(u), (w, a), D∗, M∗, ∆∗)

where LazyJoin is defined by Algorithm 2. It is based on a recursive traversal of the
match-tree (lines 2-3) starting at the root ⊤(u), inserting the new incidence i∗ = (w, a)
at an appropriate place (line 9), and updating local match-sets accordingly (line 5). The

3. By abuse of notation, we allow tuples of variables to be used as sets of variables.
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Figure 2.6 – Match-tree before and after lazy join with incidence i∗ = parent(g, k).

new incidence is labeled as follows, where for recall xl is the tuple of all variables in the
current pattern Pl:

D∗ = w \ xl, ∆∗ = w ∩ xl, M∗M(w,a).

Considering the variables ∆∗ of the new incidence that are already in the match-set,
the new incidence i∗ is inserted as a child of the first visited node whose defined variables
D contains at least one variable in ∆∗ (lines 7-9). The common variables between D and
∆∗ provide a connection between the current pattern and the new incidence. If some
variables in ∆∗ are not defined at the insertion node, they are returned and propagated
through ∆− as missing variables for join (line 4, 9, 17), and they are propagated from
the incidences that define them through ∆+ as available variables for join (line 4, 11, 17).
Those missing and available variables are added to the ∆+/∆− of incidences upward (line
16), except when they meet each other (lines 14-15).

Finally, the set of answers R corresponding to a match-tree T is rel(πu M⊤), where
M⊤ is the local match-set of the root.

Figure 2.6 shows the effect of the lazy join of the new incidence i∗ = parent(g, k) at
the pre-concept with proper extension WHG in Figure 2.5. The input match-tree is on
the left, and the output match-tree is on the right. The input match-tree corresponds to
the PGP

[a← man(w), woman(k), parent(a, w), parent(a, k), parent(g, w)],

and it is hence the result of 5 successive lazy joins, each introducing an incidence. Changes
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(shown in bold on the right side) are propagated from the two incidences that define g

and k (see D), and the new leaf is inserted under one of the two nodes as a child (here,
under the node defining k). The insertion of other incidences, which led to the match-tree
on the left, change only one path in the match-tree because they do not introduce a cycle.
In Algorithm 2, the computation of ∆+, ∆− is used to correctly handle cycles. They are
sets of variables of the new incidence i∗ that are not in the match-set of its parent (g
in the example), and hence need to be joined with distant nodes in the match-tree. ∆−

propagates up the tree branch of the parent (incidence parent(a, k) in Figure 2.6), and
∆+ propagates up the tree branch of distant incidences (incidence parent(g, w)). When
they meet at their common ancestor (incidence ⊤(a) here), the distant join can be done,
and their propagation stops.

2.4 Conclusion

This chapter resumes the theoretical foundations of FCA, as well as the main defini-
tions of Graph-FCA. In addition, it sums up the notion of Concepts of Neighbors and
the linked notions, in the framework of Graph-FCA. Finally, it presents the algorithmic
framework developed for the computation of concepts of neighbors. The elements pre-
sented in this chapter are used as a theoretical base for the work presented in Chapter 4,
and an application of this is developed in Chapter 5.
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Chapter 3

A WORKFLOW PROPOSAL FOR

USER-CENTRIC EXPLAINABLE

ARTIFICIAL INTELLIGENCE

As presented before, with the rapid expansion of artificial intelligence appeared a need
for human centered systems that guarantee a finer control of the user on the outcome,
in order to obtain systems having both a high level of automation and a high level of
human control. Those are designated in [Shn20] as Reliable, Safe and Trustworthy (RST)
systems.

The work presented in this chapter introduces a workflow model for a system ensuring
good level of both automation and human control, on the specific task of knowledge graph
construction from texts. This workflow, based on progressive automation by imitation,
aims to automatize most of the user’s action whilst ensuring a maximal control on the
produced graph, being therefore an RST system. Such a design for this task is particularly
adapted because, even if knowledge graph construction is not necessarily per se a critical
task, several elements make human control central for having a usable resulting knowledge
graph. First, by the complex and sometime ambiguous aspects of the semantics of natural
language, it is today illusory to have a fully automated system with high performance,
and human curation is fastidious. In addition, for a given text, several knowledge graphs
could be built, depending on the vocabulary and the knowledge the user is interested in,
therefore user feedback is necessary to obtain the desired graph as output.

Theoretically, the proposed workflow could be used for any use case of knowledge
graph construction from text, with any vocabulary and any scope, from the translation
of an encyclopedia into a massive public knowledge graph to the archiving of knowledge
contained in domain-specific text in a personal small RDF database. However, several
design choices make this workflow fit better on domain-specific texts composed of short,
factual sentences. This is caused by the iterative aspect of this workflow: the larger the
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vocabulary is and the more diverse the formulations are, the longer the progressive au-
tomation will take and therefore the smaller is the benefit from this approach. Anyway,
many use-cases can be imagined even with this constraint. For example, this system could
be used by a medical professional for the processing and archiving of facts contained in
medical evaluation reports, or by a lawyer for processing textual case reports. Once the de-
sired knowledge graph obtained, it could be explored and queried thanks to user-friendly
knowledge graph exploration tools such as Sparklis [Fer17b].

This chapter details a full presentation of this workflow. First, Section 3.1 presents
a detailed overview of the workflow, its global structure, its use cases and its overall
functioning. Then, the different units of this workflow are detailed: Section 3.2 details the
design of the pre-processing unit; Section 3.3 presents the interactive unit; Section 3.4
presents the automated unit. Finally, Section 3.5 concludes this chapter.

3.1 Global Overview

The main concept behind this workflow of user-centric A.I. is progressive automation.
It comes from the idea that the best way to have a result close to what would the user do
by hand is to imitate its actions. From this idea, a progressive automation process emerges.
Initially, the system behaves as a manual edition system with a naive suggestion module,
letting the user in full control of the output. Then, based on the user’s previous actions,
the suggestion module begins to suggest more accurate actions to the user, fastening the
process, as well as explanations for each of those actions. As the interaction history grows,
the suggestions, as well as the provided explanations, become more and more accurate.
Finally, the explanations validated by the user are used as trustworthy rules, used to fully
automate a growing proportion of actions. In an advanced state, this system should be
almost fully automated, only the ambiguous or novel cases should need actions from the
user.

As it is shown on Figure 3.1, this workflow can be divided in three units. The first
one is the pre-processing unit. This unit takes text as input and produces an intermediate
modeling of it. This modeling is built from two pipelines. The first pipeline, consisting
of a set of NLP tools and a modeling module, produces a syntactic and semantic graph
modeling of text. This modeling is completed by the second pipeline, consisting of a
relation detection module, that detects which pairs of entities in the text are likely to
be linked by a semantic relation – and therefore could be transformed into triples. This
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Figure 3.1 – Workflow overview

intermediate modeling is then used by the two other parallel units. One of them, the
interactive unit, is composed of an explainable AI for relation classification. This module
aims to produce triples that are candidates to add to the knowledge base, as well as an
explanation for each of those predictions. Both the candidates and the explanations are
then submitted to the user through a user-machine interaction module. Validated triples
are used to populate the knowledge graph, and validated explanations are transformed
into inference rules. Those rules are then used by the last unit, the automated unit, that
uses them to directly generate reliable triples from the text modeling, using an inference
module.

It can be pointed out that this workflow contains two different internal bases, in
addition to the input set of texts and the output knowledge base. The first one, part
of the interactive unit, is a learning base composed of annotated examples for relation
classification, used by the relation classification module. The second one, part of the
automated unit, is composed of inference rules that come from explanations produced by
the relation classification module and that are used by the inference to produce triples.
Based on the initial state of these bases, several cases can appear. The basic case is the
case where the two bases are initially empty. In this case, the system is fully independent
of any preexisting vocabulary, and works incrementally: initially, as the learning base
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is empty, the relation extraction module is not able to produce predictions. Therefore,
the system acts as an interface for guided edition of RDF graphs, as the user creates
manually the first triples and populates the learning base. As this base gets bigger, the
relation classification module becomes able to produce more and more reliable predictions
to help the user. Finally, as the user validates some predicted triples and explanations,
inferences rules are produced and come to populate the base used by the automated unit,
and therefore automating progressively the whole process. From this basic case, various
cases can be derived: if a pre-existing vocabulary can be used, the learning base can be
initialized with generic examples containing this vocabulary; if it exists an annotated base
of examples matching the desired vocabulary, it can be used as an initial learning base to
bootstrap the suggestion module; if another instance of the system has already been used
on a compatible corpus, its learning base and/or rule base can be both used to bootstrap
the system.

3.2 Preprocessing Unit

As presented in Figure 3.1, the main objective of this unit is to produce, from the
input texts, a comprehensive graph modeling representing the necessary knowledge to
transform the texts into a knowledge graph, as well as listing the pairs of entities that
could be linked by a relation. In this section, a global overview of this unit is first presented.
Then, an example of semantic and syntactic modeling, based on a syntactic-level graph
representation of sentences, is proposed and discussed.

3.2.1 Unit Overview

As evoked before, the main role of this subsystem is to transform the input natural
language text into a modeling that can be used by the two other units. This modeling has
to have two main properties. First, it should represent enough semantic and/or syntactic
knowledge to be able to identify the facts to transform into RDF triples. In addition,
this unit has to detect and specify which pairs of named entities could be linked by a
relation that could be translated into a triple. This is needed for two separate reasons.
First, this allows the system to suggest to the user couples of entities to transform into
triples before the learning base has enough data for the relation classification module to
be effective. Second, the module used for relation classification is not able to perform
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relation detection, and therefore the couples that can be linked by a relation should be
annotated as so. This point is discussed later in Chapter 5.

As a consequence, this pre-processing unit can be decomposed in three modules. The
first one is a NLP pipeline able to extract linguistic and semantic data from text (e.g.,
named entities, part-of-speech tags, sets of synonyms, semantic representation, depending
on the modeling choice). The data produced by this module is then used by a second
module to produce a graph modeling of the text. In parallel, a relation detection module
is used to detect which pairs of named entities of the text could be linked by a relation
that can be translated in triple. It can be pointed out that in this pre-processing unit,
explainability is not needed: we look for the most efficient tools, and we rely on the
interactivity of the other parts of the system to correct possible omissions and errors.

The choice to use a graph modeling for this intermediate representation is motivated by
the symbolic, reasonable and interpretable aspects of graphs. As we seek for an interactive
and reliable system, the decisions must be interpretable by the user. Using numerical rep-
resentations (such as sentence embeddings) would be a prejudice, as those representations
are hardly understandable by a non-expert user. This is why we opted for a more readable,
symbolic representation, and more precisely for a representation as graphs, because of the
comprehensiveness and the reasonable aspect of graph data.

3.2.2 A Proposal for Modeling Texts as Graphs

This section presents a proposal for modeling texts as graph. This modeling aims to
model a text sentence by sentence, grouping syntactic and semantic knowledge in a graph.
For practical reasons, this modeling is made using the RDF model. However, this graph
is not a proper knowledge graph, but an intermediate modeling. The proposed modeling
does not include the relation detection module described before, this aspect is discussed
in Chapter 5. This section first presents the performed extraction of linguistic knowledge,
then presents the processing made on this knowledge, then finally presents the modeling
itself.

Linguistic Knowledge Extraction

The first step for modeling the semantic and syntactic aspect of a sentence is to extract
this semantic and syntactic knowledge. For the proposed modeling, the syntactic aspect
includes extracting tokens, part-of-speech tags, lemmas, dependency relations and named
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ID token lemma POS NER head deprel
1 The the DT - 2 det
2 University University NNP ORG. 6 nsubj
3 of of IN ORG. 4 case
4 Rennes Rennes NNP ORG. 2 nmod
5 is be VBZ - 6 cop
6 French french JJ NATIO. - ROOT
7 . . . - 6 punct

Table 3.1 – Example of a processed sentence.

entities, and the semantic aspect includes the set of synonyms of each verb and noun of the
text, and their hypernym hierarchies. Other semantic aspects could be used to enrich this
modeling, such as using the Abstract Meaning Representation [Ban+13] of the sentences.

NLP Pipeline For the syntactic aspects, a standard NLP pipeline is built in order to
extract the needed knowledge. This pipeline contains a tokenizer, a part-of-speech (POS)
tagger, a lemmatizer, a dependency parser and a named entity recognizer. In our case,
Stanford CoreNLP [Man+14] is used to create this pipeline.

Table 3.1 shows the result of the processing of the sentence “The University of Rennes
is French” by such a pipeline. For example, it shows that the 4th token is Rennes, has
for lemma Rennes and for POS tag NNP (a proper noun). It is part of a named entity of
type ORGANIZATION. It has for parent in the dependency tree the 2nd token, and it is
linked to this token via relation nmod (linking a nominal modifier to its parent noun).

Lexical Enrichment This data is completed by using a hierarchical lexical database
such as WordNet [Mil98] to enrich it semantically. Once a set of text has been processed
by the NLP pipeline, we extract from WordNet the sets of synonyms (called synsets) of
each lemma of noun or verb. Then for each of these synsets, we retrieve recursively its
hypernym hierarchy, i.e., the synsets that generalize its meaning. For example, Table 3.2
presents the hypernym hierarchy of two noun lemmas (school and university). It can
be seen that all those hierarchies overlap on the most general synset (entity) and that
a few other synsets have an overlapping hypernym hierarchy. This shows the semantics
similarity of both those lemmas.
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Lemma Synset Hypernyms
school school (institution) educational institution, organization, social

group, group, abstraction, entity
school (process) education, learning, basic cognitive process,

cognitive process, cognition, psychological
feature, abstraction, entity

school (body) body, social group, group, abstraction, entity
. . . . . .

university university (body) body, social group, group, abstraction, entity
university (establishment) establishment, structure, artifact, whole, ob-

ject, physical entity, entity
university (institution) educational institution, organization, social

group, group, abstraction, entity

Table 3.2 – Example of hypernym hierarchy

Linguistic Knowledge Processing

Once this knowledge has been retrieved, post-processing is made in order to remove
useless data and redundancies.

Removing punctuation. It has been observed that in the dependency trees, the punc-
tuation tokens (dots, question marks, commas, parenthesis. . . ) are systematically leaves.
Additionally, those tokens bear little, if any, semantic knowledge that is not present in
the syntactic structure itself. Therefore, removing them does not imply transformations
on the syntactic tree and allows reducing easily the size of the modeling without losing
much information. For example, in Table 3.1, token 7, which represents the dot token,
can be removed from the data without losing significant knowledge.

Compound named entities. A named entity can overlap several contiguous tokens,
for instance University of Rennes overlaps tokens 2-4 in the example. However, a named
entity is a semantic unit: it holds its own meaning, which can be very different from the
meaning of its individual tokens. Therefore, manipulating a named entity as a succession
of tokens can cause an important loss of semantics. For example, a sentence evoking the
“United States of America” and another one about a “united family” cannot be considered
as referring to the same meaning in its use of the token “united”. Except when there is a
parse error, an entity forms itself a tree in the dependency tree. We call it a tree factor
(i.e. a subtree from which have been removed subtrees), by analogy with the definition of
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ID token lemma POS NER head deprel
1 The the DT - 2 det
2 University of Rennes University of Rennes NNP ORG. 4 nsubj
3 is be VBZ - 6 cop
4 French french JJ NATIO. - ROOT

Table 3.3 – Example of sentence after post-processing.

a string factor (i.e., a string suffix from which has been removed a suffix). The proposed
solution is to collapse the tree factor into its root. Then the sentence retains a valid
syntactic and semantic structure (no dangling link, for instance). Moreover, the linguistic
properties of the root of a tree factor are most of the time a fair summary of the linguistic
property of the whole tree factor. For example, in the sentence presented in Table 3.1,
the named entity “University of Rennes” is collapsed into token 2, and tokens 3 and 4
disappear. The expression “University of Rennes” can indeed be seen as a proper noun
(POS tag NNP). In case of a parse error, the named entity is collapsed to the last token
as a fallback.

Table 3.3 presents the result of this processing on the data presented in Table 3.1. This
shows that, even with the punctuation removed and the named entity collapsed to one
token, the data stays syntactically coherent, while keeping all the significant knowledge.

Graph Modeling

In order to model a set of processed sentences as one RDF graph, each token is repre-
sented by an RDF node (e.g. in Figure 3.2, id:1_2 for the 2nd token of the 1st sentence),
and each dependency link is represented by an RDF edge. The lemmas, POS tags, and
named entity types of a token are represented by RDF types on the corresponding node
(see discussion below). Figure 3.2 gives the RDF representation for the example in Ta-
ble 3.3. The 2nd token is modeled by node id:1_2, which has as types lemma University of
Rennes, POS tag NNP, and named entity type organization, and is linked to node id:1_6
by relation nsubj.

Representation of lemmas and POS tags as RDF types. In this modeling, we use
relation rdf:type instead of defining specific relations for linking a node to its lemma or POS
tag. This choice has been made because most of RDF applications process rdf:type triples
not as binary relations, but as unary labels, labelling the typed RDF entity. Therefore,
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Figure 3.2 – Example of a sentence modeled as an RDF graph.

using this relation type has several advantages. First, it keeps the different sentences
unconnected: without this mechanism, two sentences sharing a POS tag or a lemma would
be connected, what could cause problems while exploring this modeling. Second, it allows
for those labels to be treated atomically: without it, patterns presenting for example an
entity having an unspecified POS tag could appear, which is useless information. Finally,
as presented below, by the fact that the RDF specification allows for ontology presenting
type hierarchy, this permits relaxation over the lemmas and POS tags.

Lemmatization of named entities. If, in the general case, the lemma of a token is a
good representation of its semantics, it does not stand in the case of named entities. For
instance, the concatenation of lemmas unite state of America is not a good representation
of the named entity United States of America. Then, for the entity representing a named
entity, instead of giving the lemma as an RDF type in the modeling, the list of tokens
itself is used.

Type Hierarchies As evoked before, RDF graph can be enriched with inferred types
and edges by declaring domain knowledge. The most common form of domain knowledge
is hierarchies of types, based on the RDFS property rdfs:subClassOf. The inference rule
is that: if node X has type A and A is a subclass of B, then X also has type B. We use
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Figure 3.3 – POS tag hierarchy

several type hierarchies to enrich this modeling.
First, the set of POS tags [Tou+03] is fine-grained enough to create a hierarchy on a

few POS tags: for example, the gerund of a verb (POS-tag VBG) is a subclass of verb
(POS tag VB). In total, we have 11 rdfs:subClassOf triples added to the modeling’s
ontology, as presented in Figure 3.3.

Second, the previously retrieved lemma and synset hierarchy is added to the modeling.
Each synset of a lemma is considered as a superclass of the lemma, and each hypernym of
a given synset is considered as a superclass of this synset. Figure 3.4 shows a fragment of
this lemma hierarchy for the lemmas university, school, religion and faith. It can be seen
that those three lemmas can be relaxed into institution, but only university and school
can be relaxed in educational institution. The lemma hierarchy thus increases the chance
to find similarities between sentences using words that have different lemmas but close
meanings.

Modeling Discussion

This modeling represent text with token-level entities linked by syntactic relation. This
choice relies on the intuition that the semantics of a sentence reside on both the individual
semantics of the tokens and the syntactic structure of the sentence. In the modeling, the
semantics of individual tokens is represented by the lemmas and the hierarchy created
over their synsets, and the syntactic structure is represented by the part-of-speech tags
and dependency relations. Therefore, this modeling necessarily relies on the quality of the
NLP tools used to extract this linguistic knowledge, each associated NLP task being a
subject of research on its own.

The proposed modeling could be enriched by using higher level semantic represen-
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Figure 3.4 – Fragment of a type hierarchy obtained from WordNet

tations of NLP texts, such as Abstract Meaning Representation (AMR, see [Ban+13]).
However, a trade-off between the comprehensiveness of the modeling and its size have to
be found, in order to guarantee low enough execution times for the system to be interac-
tive.

3.3 Interactive Unit

This unit has two main roles. First, it has to contain an explainable module for relation
classification, able to reason on the modeling produced by the pre-processing unit. As
the learning base of this module evolves, becoming richer through the interactions with
the user, this module needs to rely on an instance-based learning approach (also called
lazy learning approach), i.e., a method that, instead of computing a general prediction
model from a fixed learning base, computes a local prediction model for each instance
to classify. In addition, this relation extraction module needs to produce explanations
that simultaneously have to be easily understandable by the user and can be transformed
into inference rules to be used by the last unit. Chapter 5 presents a proposition for this
module, based on the Formal Concept Analysis framework.

The second main role of this unit is to provide a comprehensive interface for the
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Figure 3.5 – Interaction model for prediction and explanation validation

edition of RDF graph, taking into account the modeling and entity couples created by
the pre-processing unit, but also allowing for manual edition and typing of entities and
relations, making the user able to correct the omissions and mistakes made by the pre-
processing unit. This interface would be used to populate both the RDF graph and the
learning base for the relation classification module. This interface should also manage the
suggestions and related explanations formulated by the relation classification module, in
order to submit them to the user for validation. Figure 3.5 details the interactive process
for managing the suggestions: first, the interface suggests to the user a triple to add to
the knowledge graph. The user can then accept or reject the suggestion. If the triple is
accepted, it is added to the knowledge graph and to the learning base, and the explanation
is displayed to the user. If they accept this explanation, it is translated into an inference
rule and transmitted to the automated unit.

3.4 Automated Unit

This unit, simpler than the two others, is composed of only two elements: an inference
module and its base of inference rules.
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This has for consequence that the rules produced, and by extension the explanations
returned by the relation classification module, have to be necessarily applicable on the
text modeling, directly or after a transformation conserving the semantics. Therefore,
those rules have to be of the form xRy ← P (x, y), with x and y two variables, xRy an
RDF triple and P (x, y) a graph pattern that can be queried in the text modeling. In
the case where the modeling is, as presented earlier, an RDF graph, P (x, y) could be a
SPARQL graph pattern, returning tuples matching a given pattern that has been tagged
as trustworthy for predicting the relation R.

3.5 Conclusion

In this chapter is presented a novel workflow model for knowledge graph construction
from natural language text. This workflow, designed to provide both a high level of human
control and a high level of automation, is based on a progressive automation of the user’s
actions. The system rely on an intermediate modeling of the input natural language texts
as graph. On this modeling is then used a suggestion module that, coupled to a user-
machine interaction module, suggest triples to add to the produced knowledge graph, each
suggestion being coupled with an explanation. The validated triples enrich the learning
base of the suggestion module (that therefore continuously improves its suggestions) while
the validated explanations are used by an automated inference module, that automatically
produce triples from the intermediate modeling.

Several aspects of this contribution could be subject to future works. First, if this
workflow model has been conceived for the construction of knowledge graphs from text,
the concept and structure behind this workflow could be adapted for automating other
tasks demanding a high level of human control on the result. For example, by replacing
the text modeling by a graph representation of structured data and by replacing the re-
lation extraction module by a module producing JSON data, a similar workflow could
be conceived for user-centric translation, refactor and selection of XML documents into
JSON data. Second, concerning the intermediate modeling, some enrichment using se-
mantic representations of texts could be tested and evaluated, as well as the impact of
the chosen tools used for the extraction of linguistic knowledge. Finally, concerning the
automated unit, reliability could be enhanced by associating confidence values to rules,
confidence that could vary during the interactions with the user. Then a threshold value
could be defined: over this value, rules are applied automatically while under this value,
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user confirmation is required. Further work would be needed to determine the nature
of this confidence, the form that takes the interactions with the user, the value of this
threshold and the pertinence of such a system.

68



Chapter 4

CONCEPTS OF NEIGHBORS:
FORMALIZATION AND APPLICATION TO

RDF GRAPHS

With the domination of deep learning techniques – which is due to their impressive
performances – in the machine learning fields, symbolic machine learning has been on the
back burner, despite the interesting properties of some of these approach, such as explain-
ability, interpretability, incementality and so on. However, issues around explainability
and interpretability has come to the fore in these recent years, mainly with questioning
around critical applications. In [Rud19], the author advocates for the development and
use of interpretable models – i.e., models for which the decision-making process can be
understood by the user – over post-hoc explanations of black-box models. Most symbolic
approaches, by being closer to human reasoning than statistical approaches, are suitable
for having this property of interpretability. The different properties are also central in
order to conceive user-centered applications, as evoked in the previous chapter.

Concepts of Neighbors, as presented in Chapter 1, is a pattern mining and instance-
based machine learning approach for symbolic data. This approach relies on Formal Con-
cept Analysis (FCA, [GW99]), a mathematical framework for reasoning on symbolic data,
and was initially developed for graph data. This chapter, presenting works both published
in [ACF22b] and in [ACF24], regroups our contributions to this approach made in the
course of this thesis.

This chapter is structured as follows. Section 4.1 presents a new formalism of Con-
cepts of Neighbors in the classical FCA framework, and its extension to other FCA-based
frameworks. In Section 4.2 the tractability issues in the Graph-FCA case, caused by the
existence of n-ary concepts, are addressed. Section 4.3 presents works made on using
Concepts of Neighbors on RDF graphs, through the relation between Graph-FCA and
RDF graphs, the handling of RDF schemas by the Concepts of Neighbors algorithmic
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man woman adult kid married
Charles × × ×
Charlotte × ×
Diana × × ×
George × ×
Harry × × ×
Kate × × ×
William × × ×

Table 4.1 – Example of a formal context where the set of objects is an excerpt of the
British royal family.

framework, and the introduction of CONNOR, a Java implementation of the Concepts of
Neighbors on RDF graphs.

4.1 Formalization of Concepts of Neighbors on FCA

Concepts of neighbors define a distance/similarity scheme in terms of FCA concepts,
in a literal way because concepts are used directly as a measure of the distance/similarity
between two objects. This is in contrast with the usual definitions of distance or similarity
that use numerical values, even when applied to discrete structures. Concepts of neighbors
also offer a local instance-based view of concepts – with FCA objects playing the role of
instances – compared to the global view of concept lattices that is common with FCA.

In this section, we first define the notion of concepts of neighbors on standard FCA
in order to explain the key ideas on a simple and well known formalism. We then show
how this notion can be extended to FCA extensions, including the Graph-FCA extension.
This formalization is a generalization of the initial formalization of concepts of neighbors,
which is presented in Chapter 2.

4.1.1 The FCA Case

Table 4.1 presents an FCA formal context as defined in Chapter 2, and Figure 4.1
represents the concept lattice of this context. This example is used in the following of this
section.

We first define the conceptual distance between two objects as the most specific concept
that contains both of them.
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Figure 4.1 – Concept lattice derived from the context in Table 4.1.

Definition 23 Let K = (O, A, I) be a formal context, and u, v ∈ O be two objects in this
context. The conceptual distance between objects u and v is the concept δ(u, v) = (X, Y )
s.t. Y = prop({u, v}) = I(u) ∩ I(v), and X = inst(Y ).

In other terms, the conceptual distance between two objects δ(u, v) is the most specific
concept having both u and v in its extension. Or, from another point of view, this is the
supremum of the most specific concept containing u in its extension and of the most
specific concept containing v in its extension.

Intuitively, the more similar the two objects are, the more specific the conceptual
distance is. A more specific concept has fewer objects and more attributes. Having more
attributes means being more similar. The objects in the concept extent can be seen as in
between the two objects, and hence fewer objects means a smaller distance. For example,
in the formal context presented in Table 4.1, the conceptual distance between Charles and
Charlotte has an empty intension and an extension containing all the objects, while the
conceptual distance between Charles and Harry has for intension {man, adult, married}
and for extension {Charles, Harry, William}. It can be seen that the conceptual distance
between Charles and Harry has three attributes in its intension while the conceptual
distance between Charles and Charlotte has none. Therefore, Charles is more similar
to Harry than to Charlotte. Reciprocally, the conceptual distance between Charles and
Charlotte has seven objects in its extension, while the conceptual distance between Charles
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and Harry has only three objects. Therefore, Charles is more distant to Charlotte than
to Harry.

The duality between distance and similarity is here embodied in the duality between
the extension and intension of a concept. Actually, the conceptual distance between two
objects is at the same time their conceptual similarity. The above definition satisfies the
properties of a distance if we take the partial order ≤ on concepts as distance order, and
concept supremum ∨ as addition. It means that, for all objects u, v, w ∈ O:

1. (positivity) δ(u, u) ≤ δ(u, v), (δ(u, u) represents distance zero)

2. (symmetry) δ(u, v) = δ(v, u),

3. (triangular inequality) δ(u, v) ≤ δ(u, w) ∨ δ(w, v).

Because of the ordering being partial, it is common to have objects, say v and w, that
are at incomparable distances from u: i.e., δ(u, v) ̸≤ δ(u, w) and δ(u, w) ̸≤ δ(u, v).

Numerical versions of distance and similarity can be derived from the conceptual
distance by using the cardinal of the extension or intension. Given the conceptual distance
δ(u, v) = (X, Y ):

— the extensional distance d(u, v) = |X| is the cardinal of the extension,
— the intensional similarity sim(u, v) = |Y | is the cardinal of the intension.
Note that those numerical versions are degraded versions, as they flatten the partial

ordering over conceptual distances to a total ordering. This can lead to consider two
objects as being at the same distance, whereas the conceptual distances are completely
different.

Definition 24 Let K = (O, A, I) be a formal context, and u ∈ O be an object. The
concepts of neighbors of u is the set of all conceptual distances from u to any other
object in the context: C -N (u) = {δ(u, v) | v ∈ O}.

For example, Figure 4.2 presents the set of concepts of neighbors of Charlotte by their
extensions, based on the formal context defined in Table 4.1. C -N (Charlotte) contains
four concepts. The first one has for intension {woman, kid} and for extension {Charlotte}.
Then there are two more general concepts: ({Charlotte, Diana, Kate}, {woman}) and
({Charlotte, George}, {kid}). Finally, there is the most general concept, with an empty
intension and the whole set of objects as extension.

For any context K = (O, A, I) and any object u ∈ O, the concepts of neighbors
C -N (u) provide an instance-based view over the context, by partitioning the set of ob-
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Figure 4.2 – Representation of the concepts of neighbors of Charlotte
by their extensions

jects according to their conceptual distance with u. Therefore, the set of the concepts of
neighbors of u is a subset of the formal concepts of C having u in their extension.

A direct consequence of the definition of the concepts of neighbors is that, whereas the
number of concepts of K is majored by 2n (with n = card(O)), the number of concepts
of neighbors of u card(C -N (u)) is bounded by n.

Each concept of neighbors δ ∈ C -N (u) induces the subset of objects δ.proper := {o ∈
O | δ(u, o) = δ}, i.e., the objects that are exactly at distance δ from u. This is a subset of
the extension of δ, called the proper extension of δ.

A notion of rank can also be defined on the concepts of neighbors. As shown in
Figure 4.2, for any object u ∈ O, the extensions of the concepts of neighbors of u form a
hierarchical clustering of O. From this observation, we can define recursively the rank of
a concept such as:

— rank(δ(u, u)) = 0
— for δ ∈ C -N (u), rank(δ) = 1 + max{rank(d)|d ∈ C -N (u), d ≤ δ}

In the example presented in Figure 4.2, there is one concept of rank 0 (the one in red
containing only Charlotte in its extension), two of rank 1 (the concept in brown describing
the women and the concept in blue describing the kids) and one of rank 2 (the top concept,
in green). From this notion can be defined the notion of concepts of nearest neighbors
of u, i.e., the concepts of neighbors of u of rank 1. The concepts of nearest neighbors of
u are the concepts describing the objects the more similar to u. Here, the concepts of
nearest neighbors of Charlotte are the concept in blue (the concept describing the kids)
and the one in brown (describing the women).
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4.1.2 Concepts of Neighbors and FCA extensions

As presented in the previous section, the central notion for defining the concepts of
neighbors is the notion of conceptual distance between two objects, i.e., the most specific
concept containing those two objects in their extension. Therefore, as long as this notion
can be transposed, the notion of concepts of neighbors can be defined on any extension
of FCA. Among those extensions, we can cite Logical Concept Analysis (LCA, [FR00])
for logical expressions, Fuzzy Formal Concept Analysis (FFCA, [Yan+08]) for fuzzy sets,
or Relational Concept Analysis (RCA, [Rou+13]) and Graph-FCA [FC20] for relational
data. Once the notion of conceptual distance is defined, the notion of concepts of neighbors
of an object u is naturally defined as the set of the conceptual distances of u to the other
objects.

In the case of Graph-FCA – that is, as presented in Chapter 1, a comprehensive exten-
sion of FCA to relational data –, when we extend the definitions of conceptual distance we
naturally fall back on the initial definitions of concepts of neighbors, as presented in [FC20]
(see Chapter 1). By consequence, the algorithms presented for the efficient computation
of concepts of neighbors in Graph-FCA in Section 2.3.2 still stand.

4.2 Graph-FCA and the Case of n-ary Concepts

As presented in Chapter 2, an algorithmic framework for the efficient computation of
concepts of neighbors in Graph-FCA case has been developed [Fer18].

A specificity of Graph-FCA is that, unlike in classical FCA, there is a notion of arity.
A graph concept of arity k (also called a k-concept) is a concept having as extension
a set of k-uples of objects and as intension a k-PGP. This has a direct combinatorial
consequence: in FCA, the set of the concepts of neighbors of an object u ∈ O contains at
most n = card(O) concepts, whereas in Graph-FCA the set of concepts of neighbors of a
k-uple u ∈ Ok contains at most nk elements.

However, the algorithm for the efficient computation of concepts of neighbors works by
partitioning the whole set of candidate instances (i.e., the whole set of k-tuples of object)
into proper extensions of concepts. Therefore, the explosion of the number of candidate
instances makes this computation intractable. In previous works, even if Concepts of
Neighbors have been theorized in the n-ary case, the existing applications were on the
unary case (for knowledge graph completion [Fer20] or query relaxation [Fer18]) or on
small datasets, and this tractability issue has not been addressed. But in the relation
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classification application (see Chapter 5), we encounter this tractability issue. To address
it, we propose to restrain the set of candidate instances to a subset of Ok.

The nature of the subset V ⊆ Ok is not fixed and depending on the application. For
example, as evoked in the introduction, the Concepts of Neighbors can be used to perform
instance-based learning on graphs. In this case, V can be restrained to the set of annotated
tuples of entities, as those are the entities used for classifying a new query instance. This
is the solution used in Chapter 5 on the relation classification task.

Definition 25 Let K = (O, A, I) be a graph context, u ∈ Ok a tuple of objects, and
V ⊆ Ok a set of candidate instances. The projected concepts of neighbors of u on V

is defined as:

C -N V (u) = {(R ∩ V, Q) | (R, Q) ∈ C -N (u), R ∩ V ̸= ∅}

This definition brings an adaptation of the definition of the initial pre-concept in
the partitioning algorithm for the computation of the concepts of neighbors in order to
compute C -N V (u) instead of C -N (u).

Definition 26 The initial pre-concept is the pre-concept Cinit s.t.:
— Qinit = [u← ∅] is the empty PGP (xinit = u);
— Rinit = ans(Qinit) ∩ V = V is the set of all candidate instances;
— Vinit = V is the set of all candidate instances;
— Minit = (u, V );
— Iinit = I is the set of all incidences from the graph context.

Once this initialization modified, Algorithm 1 presented in Section 2.3.2 can be applied
as it is, in order to compute C -N V (u).

4.3 Concepts of Neighbors on RDF graphs

Graph-FCA, as evoked before and as presented in Chapter 1, is an FCA extension
to relational data. More specifically, a graph context K = (O, A, I) is a labelled oriented
multi-hypergraph, O being its set of vertices, A being its set of hyperedge labels (also called
relations), and I being its incidence relation. Meanwhile, the RDF format (Resource Data
Framework, the standard format for describing knowledge graphs in the semantic web),
describes a set of (subject, relation, object) triples, forming a labelled oriented multigraph,
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Figure 4.3 – RDF graph representing the British royal family

including an ontology – called schema – and an inference mechanism. In this section, we
first present how to transform an RDF graph into a context graph. Then, we present how
to integrate the inference mechanisms in the Concepts of Neighbors. Finally, we present
CONNOR, a Java implementation of the Concepts of Neighbors on RDF graphs.

4.3.1 RDF Graph as Graph Context

An RDF graph is a set of triples (s, r, o), s (the subject) being a URI or a blank node,
r (the predicate) being a URI and o (the object) being a URI, a blank node or a literal
value. s and o are entities, while r is a relation. Figure 4.3 represents an RDF of an excerpt
of the British royal family. Here, entities are represented by ovals, and relations by arrows.

Algorithm 3 presents a procedure to translate RDF graphs into graph context. In this
procedure, the triples that define the type of an entity (i.e., triples having rdf:type as
relation) are treated specifically: the subject is associated to a variable, and a label (i.e.,
a unary hyperedge) is added to the graph context, labelling this variable with the subject
of the triple. In the other case, the subject and the object are associated to variables, and
an edge (i.e., a binary hyperedge) labelled by the relation is added between these two
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Algorithm 3 Translation of RDF graph as graph context
Require: An RDF graph T
Require: An infinite set of variables V
Ensure: A graph context K = (O, A, I) equivalent to the RDF graph

1: O ← ∅, A← ∅, I ← ∅
2: D ← an empty dict
3: for each (s, r, o) ∈ T do
4: if s ∈ keys(D) then
5: vs ← D.get(s)
6: else
7: vs ← a new variable from V
8: D.put(s, vs)
9: end if

10: O ← O ∪ {vs}
11: if s is an URI then
12: A← A ∪ {s}
13: I ← I ∪ {((vs), s)}
14: end if
15: if r = rdf:type then
16: A← A ∪ {o}
17: I ← I ∪ {(v, o)}
18: else
19: if o is a literal then
20: vo ← a new variable from V
21: else if o ∈ keys(D) then
22: vo ← D.get(o)
23: else
24: vo ← a new variable from V
25: D.put(o, vo)
26: end if
27: O ← O ∪ {vo}
28: if i is an URI or a litteral then
29: A← A ∪ {o}
30: I ← I ∪ {(vo, o)}
31: end if
32: A← A ∪ {r}
33: I ← I ∪ {((vs, vo), r)}
34: end if
35: end for
36: return (O, A, I)
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Figure 4.4 – Translation of Figure 4.3 as a graph context

variables. In addition, if an entity is a URI or a literal, the variable associated with this
entity is labelled with its URI or literal. Note that each instance of a literal has its own
variable.

In this representation, each RDF entity is represented by an object labeled by its URI
or literal – or unlabeled in the case of a blank node. The advantage of this representation
is that each object is an anonymous variable, and the name of the entity encoded by this
variable is considered as a property of this variable. This allows for RDF entities to be
processed anonymously. In the case of Concepts of Neighbors, it allows having anonymous
entities in the intension of the concept.

Figure 4.4 represents the same data as Figure 4.3 translated into a graph context. In
this representation, objects are represented as boxes with their labels listed under, and the
edges are represented by arrows. It can be observed that the entity representing George
in Figure 4.3 is translated as an object v2, labelled by its URI (person#george) and its
types (gender#male and age#kid), and is linked to the objects v1 and v4 by two edges of
attribute rel#parent.

78



4.3. Concepts of Neighbors on RDF graphs

1 @pref ix r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#> .
2
3 urn : r oya l : age#adult
4 r d f s : subClassOf urn : r oya l : human .
5
6 urn : r oya l : age#kid
7 r d f s : subClassOf urn : r oya l : human .
8
9 urn : r oya l : r e l#spouse

10 r d f s : domain urn : r oya l : age#adult ;
11 r d f s : range urn : r oya l : age#adult .
12
13 urn : r oya l : r e l#parent
14 r d f s : range urn : r oya l : age#adult .

Table 4.2 – Example of T-box in turtle notation

4.3.2 RDF Ontology and Concepts of Neighbors

In addition to the triples representing facts (also called A-box), an RDF graph can
also contain a series of triples representing an ontology (also called schema or T-box) on
the graph (see [HKR09]). This schema gives extra information on the facts by adding
a hierarchy over the types (with the triples of relation rdfs:subClassOf ) and over the
relations (with the triples of relation rdfs:subPropertyOf ), and type constraints on the
subjects and objects of a relation (with the triples of relation rdfs:range or rdfs:domain).

Table 4.2 shows a T-box for the RDF graph represented in Figure 4.3. This T-box
indicates that entities that are adults or kids are humans, that if an entity has a spouse
or is the spouse of another entity then it is an adult, and that only adults can be parents.

The existence of a T-box implies a saturation mechanism: the A-box can be saturated
with new facts thanks to the T-box. However, the saturation process of a graph can be
costly, and has to be run after any modification of the graph.

In order to palliate the cost implied by this saturation, mechanisms can be added to the
partitioning algorithm in order to take into account the type and relation hierarchy while
computing the concepts of neighbors. This way, this information is taken into account
into the intensions of the concepts, even while working on an unsaturated RDF graph. To
do so, we first need to define a function for listing the relaxation of an incidence according
to the T-box.
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Algorithm 4 Relax((o1, . . . , ok), a)
Require: A graph context K = (O, A, I) corresponding to the A-box of the RDF graph
Require: An incidence ((o1, . . . , ok), a)
Require: A set of triplets T forming the T-box of the RDF graph
Ensure: A set of incidences J induced by ((o1, . . . , ok), a) and the T-box

1: J ← ∅
2: if k = 1 then
3: S ← {c | (a, rdfs:subClassOf, c) ∈ T}
4: for c ∈ S do
5: J ← J ∪ {((o1), c)}
6: end for
7: else if k = 2 then
8: S ← {p | (a, rdfs:subPropertyOf, p) ∈ T}
9: for p ∈ S do

10: J ← J ∪ ((o1, o2), p)
11: end for
12: S ← {c | (a, rdfs:domain, c) ∈ T}
13: for c ∈ S do
14: J ← J ∪ ((o1), c)
15: end for
16: S ← {c | (a, rdfs:range, c) ∈ T}
17: for c ∈ S do
18: J ← J ∪ ((o2), c)
19: end for
20: end if
21: return J

Algorithm 4 presents this function: for a given incidence, if this incidence is a label,
then it relaxes the incidence into the superclasses of this label. If the incidence is an
edge, then it relaxes this incidence into the superproperties of the edge’s relation type,
and types the object and subject of the edge according to the domain and range of this
relation type.

For example, we can apply this algorithm to the incidence ((v2, v4), rel#parent) of
the graph context presented in Figure 4.4 with the T-box detailed in Table 4.2. As in the
T-box, the relation rel#parent has the class age#adult as range, line 18 of the algorithm
adds ((v4), age#adult to the induced incidences. Then, if we apply the same algorithm
to this new incidence, as age#adult has for superclass human, we obtain the incidence
((v4), human.

Once this relaxation function is defined, the algorithm for the computation of concepts
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1 ConnorModel model = new ConnorModel ( rdfModel ) ;
2 Li s t <Str ing > ta rg e t = new ArrayList <>({" urn : r oya l : person#

c h a r l o t t e " }) ;
3 Table t ab l e = Table . o fAr i ty (1 ) ;
4 rdfModel . l i s t S u b j e c t s ( ) . forEachRemaining ( s −>
5 tab l e . addInitRow ( IntStream . o f (1 )
6 . mapToObj( i −> s . asNode ( ) )
7 . c o l l e c t ( C o l l e c t o r s . t o L i s t ( ) ) ) ;
8 ) ;
9 ConnorPart i t ion p a r t i t i o n = new ConnorPart i t ion ( model , ta rget ,

tab le , 0) ;
10 AtomicBoolean cut = new AtomicBoolean ( fa l se ) ;
11 ConnorThread thread = new ConnorThread ( pa r t i t i on , cut ) ;
12 thread . s t a r t ( ) ;
13 thread . j o i n (2 ∗ 1000) ; // 2000ms = 2s
14 cut . s e t ( true ) ;
15 System . out . p r i n t ( p a r t i t i o n . toJson ( ) ) ;

Table 4.3 – Example of usage of CONNOR

of neighbors has to be modified in order to add the relaxed incidences to the set of
incidences to explore. To do so, line 9 Algorithm 1 in Chapter 2 has to be modified
as:

Iij = Relax(w, a) ∪ (Il \ {(w, a)})

4.3.3 CONNOR: a Java Implementation

The main implementation of the Concepts of Neighbors is CONNOR, a Java library,
presented in the article [ACF22b]. This library is a free and open-source software 1, based
on Apache Jena 2, a well-known Java library for representing and reasoning on the RDF
graphs of the Semantic Web. In this library, graph contexts are represented as RDF graphs
and handled with the Jena library. This library gives a comprehensive interface for the
handling of graph contexts and concepts of neighbors, and provides classes encapsulating
the algorithms for the efficient computation of concepts of neighbors.

Table 4.3 presents an example code for the computation of the concepts of neighbors
of person#charlotte in the RDF graph presented in Figure 4.3.

1. Accessible here: https://gitlab.inria.fr/hayats/CONNOR
2. https://jena.apache.org/
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The CONNOR library is structured into four main classes, which are detailed below.

ConnorModel This class encapsulates an RDF model that represents a graph context.
In addition to this model are added data structures made in order to access more rapidly
to the triples of the graph, as well as structures to keep in memory results of queries made
on the model. There are two ways to create a model using this class. The first way consists
in creating an empty model and adding triples one by one. The second way consists in
creating a model from a pre-existing RDF model. Line 1 of Table 4.3 shows an example
of creation of ConnorModel from an RDF graph.

ConceptOfNeighbors As its name tells, this class represents a concept of neighbors,
and hence a graph concept too. As expected, an object of this class is characterized by
its intension (decomposed into two attributes: the list of the projection variables and the
graph pattern), its extension and its proper extension. Those elements can be accessed
through usual getter methods. An object of this class can easily be transformed into a
JSON object serialization and further processing via the toJson method. The creation of
objects of this class is handled by the ConnorPartition class, and should not be done by
library users.

ConnorPartition This class is central to the computation of concepts of neighbors.
It takes its name from the fact that, as presented above, the proper extensions of the
concepts of neighbors form a partition of the set of objects. This class contains all the
information needed for the computations of concepts of neighbors, such as of course the
graph context (represented by a ConnorModel), the concepts of neighbors once the com-
putation is done (represented by a collection of ConceptOfNeighbors objects), but also
the tuple of objects (called target) for which we want to compute the concepts of neigh-
bors. A ConnorPartition object can be translated into JSON for serialization and further
processing. An example of serialization in JSON is given by Line 15 of Table 4.3.

This class implements the algorithms presented in Section 2.3.2, as well as the relax-
ation mechanism presented in Section 4.3.2.

To use this class, the base constructor of this object takes as argument a ConnorModel
object, the target (represented by a list of URIs), the set of candidate instances and a
maxDepth parameter. An example of usage is given by Section (4) of Table 4.3. The set
of candidate instances is represented by the parameter initializationTable, which is
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a Table object which represents a set of tuples of entities. An example of construction
of such a table is given in Table 3-8 of Table 4.3. Concerning the maxDepth parameter,
its role is to set, if desired, a limit to the depth of the intension from the elements of the
target. If set to zero, no limit is applied.

The class method to call in order to launch the computation of concepts of neighbors
is called fullPartitioning(cut). Taking a mutable Boolean named cut as a parameter,
it refines the partition until convergence or until cut is switched to true.

ConnorThread This class encapsulates the computation of concepts of neighbors using
a ConnorPartition in a Java thread, so that the main thread just needs to launch this
thread and switch cut to true when desired. An example of usage is given by Lines 10-14
of Table 4.3.

4.4 Conclusion

This chapter presents various contributions made on Concepts of Neighbors, an FCA-
based approach for instance-based learning on symbolic data. First, we present a new
formalization of Concepts of Neighbors in the general FCA framework, and a method for
extending those notions to FCA extensions, including Graph-FCA. Then we introduce how
to manage the case of n-ary concepts, which is a specificity of concepts of neighbors in the
Graph-FCA framework. Finally, we introduce the application of Concepts of Neighbors on
RDF graphs, by presenting a translation of RDF graphs into graph context, introducing
the management of RDF schemas in the computation of concepts of neighbors, and by
promoting CONNOR, a Java library specialized for Concepts of Neighbors on RDF graphs.

Several aspects of this work would need further researches. For example, the existing
algorithms for the computation of concepts of neighbors in the Graph-FCA case could be
adapted and extended to other FCA extensions, in order to expand the applications of
this approach. Still from an algorithmic point of view, an enhancement of the LazyJoin
algorithm (presented as Algorithm 2 in Section 2.3.2) have been theorized, through a
post-insertion downward propagation reducing the size of the match-sets. Preliminary
experiments have been run and have shown a positive impact of this modification on unary
cases, but further work is needed to adapt it to the n-ary case. In complement, different
strategies for choosing an incidence in the partitioning algorithm would need exploration
and further enhancements. From a more global point of view, it can be pointed out that
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Concepts of Neighbors are still a quite novel approach, still subject to new applications
and diverse enhancements.
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Chapter 5

TWO-STEP EXPLAINABLE RELATION

EXTRACTION WITH CONCEPTS OF

NEIGHBORS

The semantic web (SW ) and its knowledge graphs (KGs), as evoked before, evolved
during the last decade from a concept theorized early in the History of computer sci-
ence [GS21] and formalized in 2001 [BHL01] to a field both invested by academics and
industrial actors [Hit21]. Coupled with the growth of the usage of the World Wide Web,
which caused a great amount of texts and knowledge to be freely accessible, this created
a need for information extraction (IE) methods able to translate the semantic data con-
tained in texts into knowledge graphs. Amongst the tasks of IE, we focus here on the
relation extraction (RE) task – the task consisting into identifying the relation (if any)
between two entities.

The work presented in this chapter proposes a novel, two-step explainable RE method.
This approach divides the RE task into two sub-tasks – relation detection and relation
classification – and while using a state-of-the-art deep learning model for the relation
detection task, it grants interactivity and interpretability by using a novel, symbolic and
explainable method for relation classification. This method is based on the modeling
presented in Section 3.2.2 and on the Concepts of Neighbors, a FCA-based approach that
can be used for instance-based classification of graph entities. This chapter presents the
results published in [ACF21; ACF22a].

In this chapter, we detail this two-step method for relation extraction. Section 5.1
presents an overview of the proposed method, and how the different modules of this
method are inserted in the workflow presented in Chapter 3; Section 5.2 presents the Re-
lation Detection module; Section 5.3 describes the Concepts of Neighbors-based Relation
Classification module; Section 5.4 shows the experimental evaluation of this approach and
of its modules; Section 5.5 concludes the chapter.
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Figure 5.1 – Two-step relation classification process

5.1 Method Overview

Nowadays, as presented in Chapter 1, state-of-the-art systems for relation extraction
use deep-learning large language models. However, these approaches do not fit the require-
ments presented in Chapter 3: they do not present the needed explainability properties,
and they do not rely on an instance-based learning method. Therefore, we developed a new
instance-based learning approach for relation extraction, using the modeling presented in
Section 3.2.2. As this method works by similarity between the annotated examples, this
conflicts with the fact that, to perform relation extraction, a method has to distinguish
positive examples (i.e., pairs of entities having a semantic relation between them) and
negative ones (i.e., pairs of entities that do not have such a semantic relation between
them). Indeed, if it seems reasonable to consider that a positive example of a given rela-
tion class is similar to other examples of the same class, there is no reason for a negative
example to be similar to any other negative example. Therefore, the developed method
does not discriminate between positive and negative examples (a task called relation de-
tection), but performs relation classification, i.e., the task of determining the relation type
presented in an example, knowing that this example is positive.

This is why we developed a two-step workflow for relation extraction, as presented in
Figure 5.1. In this workflow, the method for relation detection discriminates the positive
examples from the negative examples, and our instance-based method classifies the pos-
itive examples among the existing relation types. Such a two-step approach has already
been exploited with promising results [Mal+21].

In addition, the relation detection and relation classification modules presented in this
chapter are usable in the workflow presented in Chapter 3 and reproduced in Figure 5.2:
the deep learning-based relation detection module fits in the preprocessing unit, while
the FCA-based relation classification module, as an explainable instance-based learning,
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Figure 5.2 – Workflow overview

module fits in the interactive unit.

5.2 Relation Detection with Large Language Models

As there is, as far as we know, no efficient symbolic or fully explainable method for
relation detection that we know of, we decided to favor performance and therefore to use
a state-of-the-art deep learning approach. Moreover, there is not much need to explain the
non-existence of a relation, and an explanation for a type of relation is also an explanation
for the existence of a relation.

Today, the state-of-the-art in relation extraction is dominated by transformer-based
large language models (LLM) such as BERT [Dev+19] and its variants. One of those
variants, LUKE [Yam+20], has the particularity to handle both single words and multi-
word entities, and has shown good results on diverse entity-based NLP tasks, including
relation extraction. We decided to use this LLM as a relation detector.

We consider several configurations of LUKE for relation detection. The first one, called
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luke-base, simply consists in reusing the fully trained model for relation extraction and
post-process the output in order to merge all the positive predictions into one class. A sec-
ond configuration, called luke-detect consists in specializing LUKE for relation detection.
We remove LUKE’s last classification layer, and replace it by two layers: a fully connected
layer of size n and an output neuron with a sigmoid activation function. Then the model
is fine-tuned in order for it to predict 1 on the positive examples and 0 on the negative
examples.

As this second configuration is specialized for relation detection (where the first per-
forms relation detection through relation extraction), we expect this second configuration
to show better results. Several sizes for the hidden fully-connected layer could be tested.

5.3 Relation Classification with Concepts of Neigh-
bors

As presented in Chapters 1 and 4, the Concepts of Neighbors is an FCA-based approach
for instance-based learning that can be applied on entities in graph data. In this section, we
present how to perform relation classification, using the Concepts of Neighbors approach
on the modeling of texts as RDF graphs presented in Chapter 3. First, this section presents
the setting for using the Concepts of Neighbors method on this graph modeling. Then,
it presents scoring strategies used for performing relation classification from concepts of
neighbors.

The task is the following: from a test example, which is a sentence annotated with
the position and type of two entities (a subject and an object), and from a set of training
examples, which are additionally annotated with a relation type, and assuming that a
relation linking those two entities exists, how to predict the relation type linking the
subject and the object of the test example? The proposed idea is, from the modeling
presented in Section 3.2.2, to compute the concepts of neighbors of the (subject, object)
pair of entities, and deduce from the annotation of the training examples what is the
relation type that is the more likely to link the subject to the object.

Table 5.1 presents an example of training dataset and test example for the relation
classification task. Here, the objective is to predict the relation linking Gödel7 to Austria7

in the given sentence, based on the six annotated examples. Entities are numbered in
order to distinguish two spans of the same entity (e.g., Russel6 designate the entity span
of Russel in the sixth example).
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# Sentence Subject Subj. type Object Obj. type Relation type
Training examples

(1) Wittgenstein was
born in Austria

Wittgenstein1 person Austria1 place place_of_birth

(2) Wittgenstein died
in England

Wittgenstein2 person England2 place place_of_death

(3) Wittgenstein is a
philosopher

Wittgenstein3 person philosopher3 title pers:title

(4) Russel was born in
England

Russel4 person England4 place place_of_birth

(5) Russel died in Eng-
land

Russel5 person England5 place place_of_death

(6) Russel is a philoso-
pher

Russel6 person philosopher6 title pers:title

Test example
(7) Gödel was born in

Austria
Gödel7 person Austria7 place

Table 5.1 – Training dataset and test example for the relation classification task

In this section, we first present how to compute concepts of neighbors on the modeling
for performing relation classification while keeping tractable execution time. Then, we
introduce scoring methods for transforming a set of concepts of neighbors into a relation
type prediction.

5.3.1 Concepts of Neighbors for Relation Extraction in Texts

In order to use the Concepts of Neighbors approach on the modeling presented in
Section 3.2.2, a few aspects need to be addressed. First, we need to clearly identify the
RDF nodes representing the subject and the object in each sentence. Then, as presented in
Chapter 4, the problem of the explosion of number of candidate instances has to be faced,
due to the fact that we need to compute the concepts of neighbors for a (subject, object)
couple of entities. This problem is addressed in this specific case of relation classification
through several optimizations, in order to keep a tractable computing time.

Identification of the Subjects and Objects Let us consider a set of sentences in
which are identified (subject, object) couples of entities by their textual spans 1. Once a
relation detection module has been used to identify the couples of entities that are linked
by a relation, and once the sentences are modeled according to the modeling presented

1. Note that there can be several couples of entities identified by sentence.
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in Section 3.2.2, there is a need to unambiguously identify the nodes of the RDF graph
forming the (subject, object) couples. The issue is that subjects or objects can overlap
several tokens. The strategy to collapse the named entities presented in Section 3.2.2
solves this problem in the vast majority of cases, as subjects and objects are most of the
time either named entities or one-token expressions. However, ambiguous cases still exist
in a small proportion of the sentences. This problem can appear in three cases: first, when
the subject or object is expressed as a nominal group (e.g., “the man”, “the university”);
second, when the subject or object includes a named entity but is longer than it (e.g.,
“the President of the United States of America” is a subject, whereas only “United States
of America” is tagged as a named entity); third, when the subject or object is a named
entity that has not been tagged by the named entity recognition module.

The solution proposed to solve these cases is similar to the solution presented in
Section 3.2.2 to collapse named entities: as a subject or an object is necessarily a group of
contiguous tokens with a particular meaning, it must form a tree factor in the dependency
tree. Therefore, it can be considered that the root of this factor carries the semantic and
syntactic information, and then can be pointed out as the subject or the object. Like for
named entities, if the tokens do not form a tree factor because of a wrong annotation or a
parsing error, the last token is used instead of the root. It can be pointed out that, unlike
for named entities for which the whole tree factor was merged into a unique token, the
choice has been made not to merge the tokens constituting the subject or the object as
their syntactic structure (if any) is generally informative, like in “the President of X”.

Restriction to Annotated Examples The other main issue is the large number of
candidate instances: as detailed in [Fer20], to compute the Concepts of Neighbors for
a tuple of k objects in a graph involving n objects, the algorithm has to generate and
partition nk tuples. Therefore, for a large graph, the computation of concepts of arity
greater than 1 is rapidly intractable. In the present case, if we consider a dataset composed
of several thousands sentences, there are billions of candidate instances. This issue is solved
by computing the projected concepts of neighbors of the (subject, object) couple from a test
sentence on the (subject, object) couples of training sentences, as presented in Section 4.2.
It permits to simultaneously drastically reduce the computation cost and remove useless
data from the computed concepts – i.e., the couples of entities that are not annotated –
while keeping all the knowledge of interest. From a numerical point of view, in the case of
a training dataset of n sentences having in average k tokens, this optimization reduces the
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number of candidate instances from k2n2 to n. For a training dataset of 10,000 sentences
with average length of 20 tokens per sentence, we obtain a reduction of the numbers of
candidate instances from 40 billions to 10,000.

In the case of the example presented in Table 5.1, the set of candidate instances V

contains the following pairs:

V = {(Wittgenstein1, Austria1), (Wittgenstein2, England2),
(Wittgenstein3, philosopher3), (Russel4, England4),
(Russel5, England5), (Russel6, philosopher6)}

The other pairs, such as (Wittgenstein1, Wittgenstein1), (Wittgenstein2, Russel4) or
(England5, Russel5) are removed from this set, as we have no interest to include them in
our concepts of neighbors.

Relation Type Restriction In addition, in a relation extraction dataset each subject
and object has a type, and these types can be used to reduce the set of candidate instances
further. For example, if an example has for subject a person and for object a location,
it can be seen that the relation expressed by this example could be place_of_birth or
place_of_living, but cannot be age or parent. Therefore, for a given couple (subject type,
object type), a set of compatible relations can be deduced from the training dataset. If
there is only one compatible relation, this relation can be predicted without computing
Concepts of Neighbors for this example, and if there are several possible relations, the set
of (subject, object) couples from the training dataset that are annotated with compatible
relation types can be used as the set of possible neighbors in the algorithm. From an
external point of view, this optimization is equivalent to the fact of having a different
classifier for every pair of subject and object type. This idea of using the types of the
subject and of the object to restrain the set of possible relation types has been developed
independently and simultaneously to our work as the RECENT paradigm in [LC21].

In our case example, our test individual (7) has for subject type person and for object
type place. By searching in the learning dataset, we can observe that to this pair of
types are is only associated two relation types: place_of_birth and place_of_death.
Therefore, only the training examples annotated with one of those relation types are
conserved in the set of candidate instances, i.e., examples (1), (2), (4) and (5).
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Figure 5.3 – Extensions of the concepts of neighbors of (Gödel7, Austria7)

Dependency Tree Pruning Another optimization has been proposed, this time on
the modeling itself. The idea, first proposed in [ZQM18], states that not all dependencies
are of the same interest for extracting relations: only those close to the path between
the subject and the object carry useful information. However, it can be easily seen that
reducing the dependency tree to a path would remove essential information for relation
extraction, e.g., in the case of a negation attached to a verb that is on the path. Our
solution is to prune the dependency tree to keep only the path between the subject and
the object, plus the tokens up to maximal distance K from this path. Several values of K

were tested, and the value K = 1 appears to be a good trade-off between size reduction
and performance.

5.3.2 Scoring Methods

The computation of Concepts of Neighbors of a (subject, object) pair from the test
dataset returns a set of concepts, each concept is associated to a set of neighbor couples,
and to an extensional distance. In addition, the specialization presented in the previous
section ensures that each neighbor couple is annotated with a compatible relation type.
From this result, in order to be able to predict a relation, we need to associate a score
to each relation type. In the following, we present two scoring methods: one based on a
weighted vote, and another based on the confidence measure.

Figure 5.3 represents the extensions of the concepts of neighbors of the couple (Gödel7,

Austria7) amongst the training examples of the dataset presented in Table 5.1, once the
restriction on the set of candidate instances have been made. The objective here is, based
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on these concepts, to produce a prediction for the relation type of individual (7). Note
that in this figure, we represent the concept c0 for readability reasons, but as it does not
contain any annotated example, it is not part of the projected concepts of neighbors, and
therefore it is not used for classification.

Exponential-weighted Vote (EV). For this scoring method, each neighbor (s, o) of
each concept “votes” for its annotated relation type, denoted r(s, o). However, if not
weighted, this method will only reflect the proportion of each relation among all training
examples annotated with a compatible relation. To avoid this problem, the extensional
distance dist(c) of concept c can be used to weight each vote. The extensional distance of
a concept of neighbors measures the degree of similarity between the couple from which
the concept has been computed and the neighbors that the concept contains: the lower
the distance, the higher the similarity. Therefore, each vote is weighted by a decreasing
function of the extensional distance.

score(R, C) :=
∑
c∈C

∑
(s,o)∈proper(c)

w(c) 1r(s,o)=R where w(c) = e− dist(c)
A

Here, 1r(s,o)=R denotes the binary function that returns 1 if r(s, o) = R, 0 otherwise.
We have chosen the inverse exponential function to define each weight w(c) because of
its rapid decrease, which privileges nearest neighbors. This way, the relation of one very
similar example is preferred to the relation of many vaguely similar examples. As the
exponential function is rapidly decreasing, the constant A is here to keep the value of
w(c) above the floating point numbers precision.

In the example presented in Table 5.1 and Figure 5.3, by taking A = 1, the relation
types would have the following scores:

score(place_of_birth, C) = e−1 + e−2 ≊ 0.503
score(place_of_death, C) = 2× e−5 ≊ 0.036

From those scores, we can predict that individual (7) has for relation type place_of_birth,
which is true.

Maximum Confidence (MC). The second method is similar to the method used by
AnyBURL [Mei+19], and has been successfully used with Concepts of Neighbors for link
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prediction [Fer20]. The idea is to consider the intension int(c) = [s, o ← Pc] of each
concept c, to use the graph pattern Pc as the body of a rule, and for each relation type r

to compute the confidence of the rule Rc,r : Pc → r(s, o), defined as usual as:

conf (Rc,r) = |{(s, o) | r(s, o)} ∩ ext(c)|
|ext(c)|

For each relation type r, the score is the list of the confidences of all rules Rc,r pre-
dicting that relation, in descending order.

score(r, C) := (conf (Rc,r))c∈C in descending order

Such scores are ranked according to inverse lexicographic ordering. That is, the predicted
relation type is the relation type with the higher maximal confidence. If several relation
types have the same maximal confidence, the relation type with the higher second maximal
confidence is predicted, and so on.

In our example Figure 5.3, we obtain the following confidence values:

conf(Rc1,place_of_birth) = 1
1 = 1

conf(Rc2,place_of_birth) = 2
2 = 1

conf(Rc3,place_of_birth) = 2
4 = 0.5

conf(Rc1,place_of_death) = 0
1 = 0

conf(Rc2,place_of_death) = 0
2 = 0

conf(Rc3,place_of_death) = 2
4 = 0.5

It gives us the following scores:

score(place_of_birth, C) = (1, 1, 0.5)
score(place_of_death, C) = (0.5, 0, 0)

As with the previous scoring method, the predicted relation is place_of_birth, which
is correct.
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5.4 Experiments

In this section, we present the different experiments made with our relation extraction
system and the subsequent results. Those experiments can be divided in three parts: 1)
the LUKE-based relation detection module, 2) the Concepts of Neighbors-based relation
classification module, and 3) the whole RE method.

All experiments were made on the TACRED dataset [Zha+17], a widely-used stan-
dard dataset for relation extraction. This dataset is made of 106,264 examples, split into
a training corpus (68,124 examples), a development corpus (22,631 examples) and a test
corpus (15,509 examples). Each example of this dataset is a sentence with two entity men-
tions (a subject and an object), each mention being typed among 23 possible types (e.g.,
person, organization, place or date), and annotated with a relation type among 41 effective
classes (e.g., per:date_of_birth or org:city_of_headquarter) plus a negative no_relation
class representing the absence of relation between the subject and the object. For greater
fidelity with real-world data, in which two entities randomly chosen are probably not
linked by any relation, 79.5% of the examples are in the no_relation class. 2

5.4.1 Relation Detection

We evaluate the different configurations of LUKE [Yam+20] presented in Section 5.2,
in order to choose the best one for relation detection.

Experiment Design As presented in Section 5.2, several configurations of LUKE were
tested. But first, on the luke-detect configuration, the hyperparameter n, fixing the size
of the hidden fully-connected layer, has to be determined. Then, in addition to luke-base
and luke-detect, a third configuration, called luke-reprod has been tested. Theoretically
equivalent to luke-base, it consists into reproducing the fine-tuning on TACRED to see if
this fine-tuning is reproducible, and to have another comparison point for luke-detect.

The code is freely accessible 3, and the experiments were run using a Tesla V100 GPU.

Results Table 5.2 presents the precision, recall and F1 scores obtained by luke-detect on
the development dataset with several values for n, the size of the hidden layer. It appears

2. A complete description of the dataset can be found here: https://nlp.stanford.edu/projects/
tacred/

3. See https://gitlab.inria.fr/hayats/luke-redect
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n P R F1
50 74.1 80.6 77.2
100 71.5 83.3 77.0
200 72.4 83.6 77.2
400 74.5 80.8 77.5
600 73.2 81.0 76.9
800 71.9 83.8 77.4
1000 73.3 81.6 77.2
1200 71.8 83.4 77.1
1400 73.0 81.9 77.2

Table 5.2 – Precision, recall and F-score for luke-detect with different sizes for the hidden
layer on the development dataset

Approach P R F1
luke-base 74.8 79.9 77.3
luke-reprod 76.8 75.2 76.0
luke-detect 73.1 80.1 76.4

Table 5.3 – Precision, recall and F-score for relation detection methods on the test dataset

that, even if this approach is not very sensitive to the size of the hidden layer, a maximum
for the F1 is attained for n = 400. This is the value of n used in the following.

Table 5.3 shows the performance for the three detailed configurations. It can be read
that, contrary to our expectations, luke-reprod does not reproduce the results from luke-
base, by having an F-score inferior by 1.3 points. LUKE’s implementation being in Python,
this is probably due to a problem in dependency versioning. However, even if the repro-
duction was a failure, we can observe that luke-detect’s F-score is superior by 0.4 points to
luke-reprod’s one. Therefore, it can be hoped that if we were able to reproduce perfectly
luke-base, luke-detect would have a better F-score.

It is interesting to point out that if luke-base has an overall better F-score, luke-reprod
outperforms its precision and luke-detect outperforms its recall. However, having a lower
recall means having more false-negative examples, which means missing some examples
expressing a relation, which we want to avoid, while having a lower precision means trying
to classify a relation on examples that express none, which is also problematic. This is
why we prefer F-score over precision or recall, and therefore we use luke-base as a relation
detection module in the following experiments.
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Timeout (s) 10 20 30 60 120 300 600 1200
Ours (EV) 79.5 79.7 79.6 80.1 80.4 80.3 80.4 80.4
Ours (MC) 82.0 82.1 82.7 82.9 83.4 83.6 83.6 83.6
Baseline 80.4

Table 5.4 – Accuracy for relation classification, compared to the baseline.

5.4.2 Relation Classification

We now evaluate our Concepts of Neighbors-based relation classification module indi-
vidually on the Relation Classification task.

Experiment Design These experiments are made on the positive examples of TA-
CRED, i.e., the examples that have an annotation other than no_relation. As our method
does not have any use of a development corpus, we merge this corpus with the training
one. We finally obtain a dataset composed of 18,446 training examples and 3,325 test
examples. The quality measure usually used on TACRED is the micro-averaged F-score.
However, as there is no negative class on this task, this measure does not make sense, and
therefore we use accuracy.

In these experiments, as we work on a subset of TACRED we cannot compare this
approach directly to other existing methods. Therefore, we compare our approach to a
basic baseline in the RECENT ([LC21], see Section 5.3.1) paradigm. This baseline simply
predicts, for given subject and object types, the relation type that appears the most often
amongst the training examples with the same subject and object types. Therefore, scoring
over this baseline implies that useful knowledge based on the semantics of the sentences
has been used to make predictions.

As the algorithm for the computation of Concepts of Neighbors is anytime, we have
to choose a timeout for our experiments. In order to see how the timeout influences the
classification task, several timeouts were tested between 10 and 1200 seconds. In addition,
the dependency tree pruning strategy (see Section 5.3.1) was used with K = 1. Finally,
experiments were run using both the MC and the EV scoring method.

Our approach was implemented in Java 4 and uses the CONNOR library ([ACF22b],
see Section 4.3.3) for the computation of Concepts of Neighbors.

4. Accessible here: https://gitlab.inria.fr/hayats/conceptualknn-relex
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Figure 5.4 – Average number of computed (pre-)concepts per example and proportion of
examples having a fully computed sets of Concepts of Neighbors

Results Table 5.4 presents the accuracy for the baseline and for our approach. First, it
can be observed that the baseline has an accuracy of 80.4%, which is particularly high,
which means that the dataset leaves little space for progress. Second, it shows that our
approach with the EV scoring method shows negative result, hardly competing with the
baseline for timeouts over 600 seconds. Then, it can be read that for any timeout, the
proposed approach with the MC scoring method has a better accuracy than the baseline,
surpassing it by 3.2 points for a timeout of over 300s.

In addition, this table clearly shows a saturation phenomenon: there is an important
gain when timeout gets from 10s to 120s, a gain that is far smaller from 120s to 1200s. It
can be intuited that this comes from the fact that most concepts are computed before 120
seconds, and only a few concepts are added after 120s. This is confirmed by Figure 5.4:
the first graph shows that effectively most of the concepts are computed in less than 120s,
and the second graph shows that, for a timeout of over 600s, for over 99% of the examples
the full set of concepts of neighbors is computed, i.e., the prediction is made from the
exact set of concepts of neighbors, and not from an approximation of it.

In the light of the results, in the following, this relation classification method is used
with the MC scoring method and a timeout of 300 seconds.
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Method F1 score
LUKE [Yam+20] 72.7
BERT-LSTM-Base [SL19] 67.8
Ours 66.9
C-GCN [ZQM18] 66.4
GCN [ZQM18] 64.0

Table 5.5 – F-score for several Relation Extraction methods on TACRED

5.4.3 Relation Extraction

Now that we have shown that our Concepts of Neighbors-based method is a valid
approach for relation classification and that we have chosen a deep learning relation
detection module, both can be assembled to form a full relation extraction method. In
this subsection, we present the experimental process to evaluate this method, as well as
both quantitative and qualitative results.

Experiment Design We evaluate our two-step approach on the full TACRED dataset
in order to compare it to existing approaches. To do so, according to the structure pre-
sented in Figure 5.1, we process the test examples of TACRED with luke-base, and obtain
examples classified as positive or negative. Then, each example classified as positive is
processed by our Concept of Neighbors module for relation classification. Note that, as
the relation detection step is made separately, the relation classification cannot predict
the no_relation class.

Quantitative Results Table 5.5 compares our method with previous Relation Extrac-
tion methods. It shows that although our method is not competitive with pre-trained
language models such as BERT or LUKE, it outperforms approaches based on graph con-
volution networks. Indeed, our method beats by 2.9 F-score points the basic graph con-
volution network (GCN) and by 0.5 points the contextualized graph convolution network
(C-GCN). This is interesting because our method and those two methods are conceptually
close: both are based on the representation of sentences as a graph, both use the pruned
dependency tree of the sentences, and both add to this modeling a semantic layer (a word
embedding for GCN and C-GCN, WordNet for our approach). The main benefit of our
approach is its ability to provide explanations for the examples classified as positive.
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Figure 5.5 – Example of rule body

Qualitative Results To illustrate the explainability of our approach, let us take for
example the sentence “Sollecito has said he was at his own apartment in Perugia,
working at his computer.” luke-base predicts that there is a relation between the sub-
ject (his) and the object (Perugia). As the subject is a person and the object a city,
there are only three compatible relations: per:cities_of_residence, per:city_of_death or
per:city_of_birth. After computation of the Concepts of Neighbors, we observe that the
relation per:city_of_residence is predicted, as six rules of confidence 1 predict it, while
only one rule each predicts the other two compatible relations. Figure 5.5 shows the body
of one of those rules. It can be read as:

— The subject has lemma he and is the possessor of an apartment;
— The object is the name of a city in which there is something.
Even if this pattern is too specific to form a general rule, it can be inferred that,

knowing there is a relation between the subject and the object, we can be pretty sure
that any sentence following this pattern has the relation per:cities_of_residence between
its subject and its object. To complete this explanation, we can look at the training
examples matching this rule. In our case, there is one sentence matching it: “Wilbert
Gibson walked from his apartment to the grocery store earlier this week – that’s what
people do in New York City – and thought this must be what it’s like to be a celebrity.”
We can see that this sentence effectively expresses the relation per:cities_of_residence,
but quite implicitly. Therefore, this is interesting to see that this kind of pattern can be
captured and exploited by our approach.

In practice, we observe that the rules of maximum confidence have systematically a
confidence equal to 1. This is due to the fact that Concepts of Neighbors compute rules
specific enough to match a few cases, and therefore to have a low extensional distance.
After reviewing the explanations for ten randomly chosen correct predictions, we can ob-
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serve that 56% of the 172 graph patterns seem reliable. Most of those reliable explanations
are considered as such because of a lemma or a synset appearing in the graph pattern (for
example, the word daughter to characterize the relation per:children). In addition, we ob-
serve that the reliability of the explanations depends on the relation type. For example, it
can be pointed out that for an example predicting the relation per:top_member/employee,
most of the explanations are invalid. This is caused by the fact that there is a great variety
of words or formulations expressing this relation, and therefore the same one is rarely used
several times.

5.5 Conclusion

This chapter presents a two-step explainable approach for relation extraction. This
approach is based on the division of the relation extraction task in two sub-tasks. The
first one, relation detection, is addressed with a fine-tuned transformer-based LLM. The
second one, relation classification, relies on the modeling presented in Chapter 3, and is
addressed by an explainable, instance-based approach using the Concepts of Neighbors
method. Both the relation detection and the relation classification modules are conceived
to be integrated in the workflow presented in Chapter 3. This work has been evaluated
on TACRED, a standard dataset for relation extraction. It has shown positive results
on both the sub-tasks, and even if it cannot compete with state-of-the-art transformers-
based approach on relation extraction, the performances are similar to graph convolution
deep-learning approaches while presenting an explicit gain in terms of explainability.

Several aspects of the presented work need further research. First, concerning the
relation detection module, as presented before the fine-tuning of LUKE has not been
possible to reproduce, and an equivalent fine-tuning would probably have shown better
performances. In addition, the domain of LLM is evolving rapidly, and new, more efficient
models are published regularly. Concerning the relation classification module, it relies on
both the graph modeling of texts presented in Chapter 3 and on the Concepts of Neighbors
method presented in Chapter 4. Possible enhancement for those aspects are presented in
those chapters. Concerning the experimental settings, the TACRED dataset has raised
criticisms through the years, due to the low reliability of its annotations, especially for the
harder cases, as presented in [AGH20]. In addition, TACRED is composed of examples
extracted mainly from newspapers, written in literary English, and with a wide spectrum
of themes. Therefore, this is quite far from the considered use-cases (described in Chap-
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ter 3), with domain-specific texts composed of short, factual sentences. The creation of a
new dataset (based on the WebNLG dataset [Gar+17], originally made for natural lan-
guage generation) with domain-specific sub-datasets and more factual examples has been
initiated during this thesis, but this has not been published yet.

Finally, the main aspect needing enhancement is the explainable aspect of this method.
As for today, this method is explainable for an expert user, capable of interpreting con-
fidence values and concept intensions. In order to make this method explainable for a
non-expert user, and therefore allowing interaction as presented in Chapter 3, the current
explanation (i.e., the set of confidence values and the set of concepts of neighbors) has to
be reduced and transformed into a concise explanation. Preliminary works are being made
on this aspect, using a graph mining method to extract the significant patterns from the
intensions of the concepts used for the prediction.
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Chapter 6

CONCLUSION AND PERSPECTIVES

This thesis is part of the current research in both the semantic web and the natu-
ral language processing fields, by attacking the problem of knowledge graph construction
from text. This problem is crucial today, for several reasons. First, the mass of avail-
able text data is bigger than ever and virtually covers the whole human knowledge, but
can be hard to access. Second, many semantic web technologies are now for querying,
exploring, completing or editing knowledge graphs. Finally, diverse approaches exist for
making a knowledge graph usable by an end-user. Therefore, transforming text in knowl-
edge graph could allow for an easier process, completion, and access to diverse forms of
knowledge, from generalist encyclopedic knowledge to domain-specific or context-specific
knowledge. However, due to the ambiguity of language and of the task itself, knowledge
graph construction from text is far from being trivial.

The approach proposed in this work has the specificity to be user-centered: instead
of proposing an end-to-end system trained on pre-existing data, we present a system
that learns by interacting with the user, and co-construct the knowledge graph with
them. To do so, the system is designed according to a user-centered workflow, allowing
for interaction during the whole process. The overall objective is to produce a resulting
knowledge graph This workflow relies on different technologies and methods in terms of
text representation, human-machine interaction, machine learning and inference systems,
and some of them are studied in this thesis.

The first contribution of this thesis is the workflow model itself (Chapter 3). The
workflow relies on an intermediate representation of text as a graph, representing both
its semantic and syntactic aspects. This intermediate representation also embeds a pre-
annotation to the elements that could appear in the resultant knowledge graph – this
pre-annotation being made by a machine learning approach. Two units use this represen-
tation. The first is an interactive channel, based on a human-machine interface as well as
an instance-based, explainable machine learning approach using Concepts of Neighbors,
a technique issued from the Formal Concept Analysis (FCA) framework. This channel
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aims to assist the user in the manual construction of the knowledge graph. The second
is an automated channel that, based on the actions of the user through the interactive
unit and through a rule-based inference system, extracts knowledge from the intermediate
representation into the knowledge graph. The second contribution (Chapter 4), mainly
theoretical, is a set of additions to the FCA framework, especially on the Concepts of
Neighbors method, in order to adapt it for the desired task: relation extraction on graphs.
These contributions consist into a new, more general formalization of the notion of con-
cepts of neighbors, an adaptation of it for the n-ary case, and a method for handling RDF
graphs in this framework. The last contribution (Chapter 5) is the conception and evalua-
tion of a relation extraction system, composed of a deep learning relation detection module
and a Concepts of Neighbors-based relation classification module. Both those modules are
conceived to be compatible with the workflow – for the construction of the intermediate
representation for the relation detection module, and for the interactive unit for the rela-
tion classification module. This method presents results comparable to pre-existing deep
learning approach, while presenting advantages in terms of interpretability.

Perspectives

Several aspects of the contributions of this thesis require further research. Those dif-
ferent points are detailed below.

Explainability of the Concepts of Neighbors As of today, our relation classification
method presented in Chapter 5 is explainable for an expert user: the classification results
from a scoring made on the set of concepts of neighbors of a given individual, and an expert
can interpret the score and the intensions and extensions of the concepts to comprehend
and verify the explanation. However, a non-expert end user cannot understand easily such
an explanation, nor validate it. In addition, as presented in Chapter 3, the explanation
should take the form of a rule applicable by the inference system on the intermediate
modeling. Preliminary works exploring the idea of using a graph mining method (namely
GraphMDL+ [BCF21]) on the intensions of the concepts used in the prediction in order
to produce such rules have been conducted, and have shown promising results.

New Relation Extraction Dataset TACRED [Zha+17], the standard dataset in Re-
lation Extraction used in this thesis, which is a widely used benchmark in the domain, can
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be criticized. First, from a general point of view, as shown in [AGH20], the annotations
of TACRED, obtained by crowdsourcing, are of poor quality, especially for the hardest
individuals. In addition, the data of TACRED itself is noisy: it should contain annotated
plain sentences in English, mainly extracted from newspapers, but some of those sentences
either are malformed (e.g., by merging the headline of an article and its first sentence) or
contains artifacts (such as metadata of newspaper article or special characters replaced
by strings – e.g., “-RRB-” replacing “(“). Finally, this dataset contains longs, complex
sentences written in a literary style, which is quite far from our use cases on factual texts.
Therefore, we decided to create a new relation extraction dataset. This dataset is based
on WebNLG [Gar+17], a dataset for text generation from RDF triples already adapted
to the reverse task (RDF triples generation from text). The sentences are shorter, fac-
tual, and domain-centric, and therefore should be more adapted to our needs. The main
task for transforming this dataset into a relation extraction dataset is entity alignment
on text, which is not trivial and asks for more development work before evaluation and
publication.

Human-Machine Interface The user interface, core of the interactive channel of the
workflow, should have several properties. First, it should be an edition tool for the pro-
duced knowledge graph. Second, it should map the text (or its intermediate representa-
tion) with the knowledge graph. In addition, it should present and permit validation of
the suggestions and explanations produced by the relation extraction module. In other
terms, even if technically part of the interactive unit, this interface has to interact with
modules and bases in the whole system. Initially, a basic command line interface could
be developed for experimenting with interactions scenarios, before developing a graphical
interface.

Automated Unit This unit is constituted of two elements: a rule base and an inference
system. A basic implementation would be using a plain set of rules and a query system
for the inference. For example, the rules could be formulated as SPARQL queries and the
inference system could be a basic query engine applying those queries on the intermediate
representation. Then, the system could be enriched by adding a confidence values on the
rules, confidence that could evolve through user interactions.

Extension of the Pattern Language of Projected Graph Patterns In the pre-
sented Graph-FCA theory, the pattern language of PGP is quite restrictive, as it does not
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allow unlabeled hyper-edges or paths of unspecified length. This pattern language could
be extended in order to handle more complex graph patterns, on the model of regular
expressions. This would impact the PGP inclusion definition, as well as the combinatorics
of the graph concepts. In particular, for what concerns the concepts of neighbors, this
could have an important impact on the algorithmic complexity, that should be studied.

Algorithmic Enhancements for the Computation of Concepts of Neighbors In
a more theoretical and algorithmic side, several aspects of the algorithmic framework of
the Concepts of Neighbors could be developed. The point of these enhancements is to
reduce the computation time of Concepts of Neighbors, in order to grant interactivity
even while working on important datasets.

First, as no strategy for choosing an incidence in the partitioning algorithm is specified,
the current implementations use a basic first in, first out strategy. However, there is no
reason to believe this strategy is optimal, neither in terms of computation time nor in
terms of relevance of the explored concepts. Therefore, diverse strategies, based on the
structure of the data and the already processed incidences, could be explored. In addition,
it has been experimentally observed that the choice of some specific incidences provokes
an explosion of the computation time due to a combinatorial problem. Those problematic
cases could be characterized, and specific strategies to avoid them could be conceived.

The lazy join algorithm is also subject to enhancement. A post-insertion downward
propagation algorithm has been developed in order to reduce the size of the match-sets –
and by consequence of the match-trees – and therefore have better performance in terms
of memory and time. However, if this enhancement has shown positive results in the case
of unary concepts of neighbors, further work is needed to adapt it to the n-ary case, due
to the potentially disjoint nature of the intensions. Some strategies have already been
considered, but this needs further research before publication.
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Titre : Construction de graphes de connaissances à partir de textes avec une intelligence
artificielle explicable et centrée-utilisateur·ice

Mot clés : Traitement automatique du langage naturel, explicabilité, IA centrée-utilisateur·ice,

analyse de concepts formels, web sémantique, graphes de connaissances

Résumé : Avec les progrès récents dans le
domaine de l’intelligence artificielle, la ques-
tion du contrôle humain est devenu cen-
trale. Aujourd’hui, cela passe à la fois par
des recherches en explicabilité et des sys-
tèmes centrés autour de l’interaction avec
l’utilisateur·ice. De plus, avec l’expansion du
web sémantique et des méthodes de traite-
ment automatique du langage naturelle, la
tâche de construction de graphes de connais-
sances à partir de textes est devenu un enjeu
important. Cette thèse présente un système
centré-utilisateur·ice pour la construction de
graphes de connaissances à partir de textes.

Cette thèse présente plusieurs contributions.
Tout d’abord, nous introduisons un workflow
centré-utilisateur·ice pour la tâche sus-citée,
ayant la propriété d’automatiser progressive-
ment les actions de l’utilisateur·ice tout en lui
laissant un contrôle fin du résultat. Ensuite,
nous présentons nos apports dans le domaine
de l’analyse de concepts formels, utilisés afin
de concevoir un module d’apprentissage fai-
néant et explicable pour la tâche de classifica-
tion de relations. Enfin, nous présentons nos
apports dans le domaine de l’extraction de re-
lations, et comment ces apports s’inscrivent
dans le workflow présenté précédemment.

Title: Knowledge Graph Construction from Text with an Explanable, Human-Centered Artificial
Intelligence

Keywords: Natural Language Processing, Explainability, User-Centric AI, Formal Concept

Analysis, Semantic Web, Knowledge Graphs

Abstract: With recent advances in artificial in-
telligence, the question of human control has
become central. Today, this involves both re-
search into explainability and designs cen-
tered around interaction with the user. What’s
more, with the expansion of the semantic web
and automatic natural language processing
methods, the task of constructing knowledge
graphs from texts has become an important is-
sue. This thesis presents a user-centered sys-
tem for the construction of knowledge graphs
from texts. This thesis presents several con-

tributions. First, we introduce a user-centered
workflow for the aforementioned task, hav-
ing the property of progressively automating
the user’s actions while leaving them a fine-
grained control over the outcome. Next, we
present our contributions in the field of formal
concept analysis, used to design an explain-
able instance-based learning module for rela-
tion classification. Finally, we present our con-
tributions in the field of relation extraction, and
how these fit into the presented workflow.
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