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Chapitre 1

Introduction

Dans I’étude des équations aux dérivées partielles issues de la physique, les solutions qui mini-
misent ou maximisent certaines quantités - comme 1’énergie, le moment ou la masse - jouent un réle
primordial dans la dynamique des systémes considérés.

Cette these est dédiée a 1’étude de deux problémes de minimisation / maximisation dans l’espace
euclidien. Dans les deux cas, les suites minimisantes ou maximisantes manquent de compacité a cause
de l'invariance des problémes par des translations et/ou des dilatations. Pour pallier a ce défaut,
la mise en oeuvre d’outils adaptés a été nécessaire (décomposition en profils dans le premier cas,
concentration-compacité dans le second).

Dans une premiére partie on s’intéresse aux inégalités de Strichartz qui sont des outils essentiels
dans I’étude des équations dispersives, comme 1’équation de Schrédinger. Elles interviennent dans
I’étude du probleme de Cauchy, du scattering, du compotement qualitatif des solutions ou encore
de Texplosion. On consideére I’équation de Schrodinger avec Laplacien fractionnaire dans R x RV :

(1.0.1) i0U + (—A)°U = 0,

ott (—A)? = F1(|¢]*? Fu) et F ou "~ désignent la transformée de Fourier dans RY. Pour toute
donnée initiale u définie sur R, on note par U(t, z) = [S(t)u] (x) la solution de (1.0.1) qui vérifie la
condition initiale U(0, z) = u(z) et par (S(-))ier le groupe de Schrodinger associé au Laplacien frac-
tionnaire (—A)?. Plus précisément, on a S(t)u = F 1 (eitm% ﬁ) Pour toute distribution tempérée
u on définit |V|7u par |V|Yu = F~1 (] - |%). On considére les espaces fonctionnels suivants :

. Hg(RN) est le complété de C°(RY) pour la norme
[ull g = V" ull pamavy -

Bien évidemment, on a Hg = L9(RYN). Remarquons que H§ = H® est un espace de Hilbert et la
formule de Plancherel donne
1

(2m)"

JRGREGRS
RN

lull e =

1



. Lng‘ = LP(R, H?(RN)), muni de la norme de Strichartz

1
2 P
HUM@@?=<L(AWHVPUmequﬁ> lorsque. p,q € [1,0¢),

respectivement

1
o q
U1 = sup ([ 1910 )z ) powr g € [1,00)

Remarquons le comportement des normes par rapport aux dilatations : en posant u,(x) = u (g),

-
on a

N_, t
HUTHHg =74 ||“HH3 et S(t)ur = |S 30 ) U pour tout 7 > 0.

.
Lorsque U est une fonction definie sur R x RY et U, (t,2) = U (£, %), on a
1N,
[Uap(- + to, - + ‘TO)HLng =arbs ”UHLg’Hg‘

En particulier, quelque soient A € (0,00), to € R et 29 € RY on a

_N -+ty -+ 0 .20 N N
1.0.2 A *U| ——, ——— = ||U : —_t— = — — t
(10.2) \2 (vw A)ww L
_N -+
(1.03) T e | I L
Hst+v

Les inégalités de Strichartz donnent des estimations de la solution S(-)u de (1.0.1) avec donnée
initiale v en termes de certaines normes de v :

(1.0.4) ISOul g < Cs lull s -

Compte tenu du comportement des normes par changement d’échelle, 'inégalité (1.0.4) ne peut

e e . . 2 N _ N ey N
avoir lieu que si la relation ?‘7 +5 =3 —sest vérifiée. On suppose que s € (0, 5 ), de sorte que

espace H*(RYN) s’injecte continfiment dans L2"(RY), ot 2* = NQiVQS. Pour simplifier la notation,

on pose dp\u := A”‘zﬂ*u(j). On a alors
(1.0.5) o\ [S(t)u] = S(A\*t)opu.
Pour s fixé, les exposants (p, q) sont admissibles si p € [2,00], q € [2,00), et

20 N N N
1.0. 2o N_N__N
(1.0.6) p+q 5 5T o
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On a alors s = 5 — = — %". Si la paire (p,q) est admissible, on doit avoir p € [2,00] et g €

[2*, #ﬁ]ﬂ,) . Les paires admissibles eztremales sont (2, #ﬁﬁra)

sont non-extremales. Il existe une seule paire admissible avec p = ¢. On la note (¢,q) et on voit
facilement que § = Q(J]\,fo:) =24+ N %55+ On observe que Lqu = LI(RN*1); cette caractérisation
sera tres utile par la suite. Dans une longue série de travaux par des nombreux auteurs (commencée
par R. Strichartz en 1979, et jusqu’au résultats récents de V. D. Dinh en 2017), les inégalités de
Strichartz (1.0.4) ont été demontrées pour toutes les paires admisibles.

L’application u — S(-)u de H5*7 dans L? Hg est continue, mais n’est pas compacte a cause
des invariances par translations et par changement d’échelle. Nous montrons que ces invariances
sont les seuls obstacles a la compacité. Plus précisément, nous démontrons le résultat suivant de

décomposition en profils :

) et (00,2%). Toutes les autres

Theorem 1.0.1. Soit N € N* et 0 < s+ < % Soit u = (up)n>1 une suite bornée de Hs™. Il
existe une application strictement croissante j : N* — N*, des fonctions V' € H*T7, et pour tout
i € N* il existe des suites X' = (A )pen+ C (0,00), t! = (t))pen+ C R, x¥ = (20)pnen+ C RY telles
que :

a) Sii # L, les suites ()\i,ti,xi) et (Ag,té,xé) sont "orthogonales” dans le sens suivant :

hm—l—i—— [t —tl| |zl — oo
D Y D Ul
b) Pour tout n € N* et k € N* on a
k . . N _ . f = :1;7: k
(1.0.7) Wiy = > S(=t5) |(A) "=V N 2+ wy, et
=1 n
(1.0.8) Tim (liﬂsgp 1SCkll H2> 0.

s

¢) Les conditions de "presque orthogonalité" suivantes sont vérifiées pour tout k € N* :

i
(10.9) S 1S T Z SOV
(1010) Huj(n)H%er'y Z ”VZHHer'y + HwnHHaM + 0(1) et
=1
(1.0.11) lim sup (hm sup ||wn|H&+7) < limsup (| wjin) [| ot -
k—o00 n—00 n—00



Pour toute paire admissible (p,q) on a

k
Jim 1S()u, pHW < Z 1SV Lpin) + Oio)o lorsque p > ¢, respectivement
k
p 1
nh_{& HS( ) n)HLfH"’ ; HS V H LPH) + koilol lorsque p < g.

Il existe plusieurs résultats de décomposition en profils dans la littérature, a commencer par
celui de Patrick Gérard en 1998 dans les espaces H*, suivi de S. Keraani (2001). Le Théoréme 1.0.1
ci-dessus atteint une généralité jamais obtenue auparavant et fait appel & peu d’outils techniques.
L’ingrédient principal de la démonstration est le procédé d’extraction diagonale de Cantor. On fait
tres peu appel a des inégalités de Sobolev améliorées.

En utilisant le Théoréme 1.0.1 on obtient le résultat suivant.

Theorem 1.0.2. On suppose que 0 < s+v < % Soit (p,q) une paire admissible non-extremale. Il
existe des mazimiseurs pour l'inégalité (1.0.4), c’est a dire

ISCYull g
sup —————+%
w€HY uz0 ||u||H5+’Y

est atteint.

Dans la seconde partie de la thése on s’intéresse aux ondes progressives pour l’équation de

Schrodinger
oL 9

(1.0.12) za— + AD + F(|2]*)® =0 dans R* x R.
Pour A > 0 fixé, on cherche des solutions ® : R2xR — C de (3.1.1) A—périodiques par rapport a la
seconde variable, ®(z,y + A, t) = ®(x,y,t), qui satisfont la "condition aux limites" |®(x,y,t)] — 1
lorsque © — £o00. On suppose que la nonlinéarité F' satisfait F(1) = 0 et F'(1) = —1. Le cas
modele est celui de 'équation de Gross-Pitaevskii, ot F'(s) =1 —s.

On préfere normaliser la période A a 1 en posant ®(z,y,t) = ®(z, Ay,t). Il est évident que
est solution de (1.0.12) si et seulement si ¢ satisfait I’équation

o® 920 1 9%0

1.0.1 —+ — + —>— P?)P = 2,
(1.0.13) Z8t+8x2+A28 + F(|®]%) 0 dans R

On note A = % et on considere "l’énergie renormalisée”

(1.0.14) B =[O P v dedy,
Rx[0,1] | O Ay



ou V(s) = J 81 F(7)dr. Les ondes progressives de (1.0.13) sont des solutions spéciales de la forme
O(x,y,t) =(x + ct,y). Le profil 1) est 1—périodique par rapport a y et satisfait ’équation
oy 0% 1 0%

@ v, -~ 9v _ 2
(1.0.15) C8 tozt e B + F([Y*)y =0 dans R”.

L’équation (1.0.13) admet deux quantités conservées : Iénergie E) ci-dessus, et le moment.

Formellement le moment devrait étre Q(v) = /R 0 1)(@'(;1},1@ dx dy. Si 1 est une fonction telle
que E)\(¢) < oo, la fonction <i%>¢> n’est pas nécessairement intégrable et définir correctement
le moment est une difficulté en soi. Nous proposons une définition adéquate dans la section 3.3.
A cause des oscillations que les fonctions d’énergie finie peuvent avoir & oo, le moment est une
fonctionnelle qui prend des valeurs dans R/27Z.

On étudie d’abord les ondes progressives unidimensionnelles de (1.0.13). Ce sont les ondes pro-
gressives qui ne dépendent pas de la variable y. Leur profil ne dépend que de la variable x et satisfait
une équation différentielle ordinaire qu’on peut résoudre. On trouve ainsi toutes les ondes progres-
sives d’énergie finie. On résout ensuite le probléme qui consiste & minimiser I’énergie & moment
constant. Les minimiseurs sont des ondes progressives, et leurs vitesses ¢ sont précisément les multi-
plicateurs de Lagrange associés au probléme de minimisation. Dans le cas modeéle de la non-linéarité
de Gross-Pitaevskii F(s) = 1 — s, il était connu que toutes les ondes progressives d’énergie finie
étaient aussi des minimiseurs. Nous construisons des exemples de non-linéarités lisses pour lesquelles
il existe des ondes progressives qui ne sont pas des minimiseurs de 1’énergie & moment constant.

En dimension deux, on considere I’espace

& = {¢eL,.(R? | ¢ est 1—périodique par rapport a la seconde variable et
Vo e L3R x [0,1]) et V([0f2) € L' (R x [0,1])}.

On note par Q(7)) le moment de la fonction 1 et on définit

Exmin(p) = Inf{EX(Y) | ¥ € & et Q(¢) = p}.

ainsi que

EL. (p) =inf{Ex\(v) | ¥ € £, ne dépend pas de y et P(¢)) = p}.

On suppose que V' > 0 sur [0,00) \ {1}. Si V prend des valeurs négatives, on peut montrer que
E min(p) = —o0 pour tout p.
Nos principaux résultats peuvent étre résumés ainsi :

Theorem 1.0.1. Sous des conditions générales sur la non-linéarité F', on a :

i ) La fonction E} . est non négative, paire, 21— périodique et concave sur [0,2x], EL . (p) <
V2p et la demvee a droite de E mm a Uorigine est /2. Si, de plus, F' est C? dans un voisinage de 1

et F"(1) < 2 on a E},;,(p) < V2|p| pour tout p # 0.



Pour tout p € (0,7 tel que E . (p) < \/2p il existe des minimiseurs pour E} . (p) dans E(R)
et toutes les suites minimisantes sont pré-compactes.

it) Pour tout X > 0 fizé, la fonction p — Ej min(p) est 2m—périodique, concave sur [0, 2],
E)min(p) < V2p, la dérivée a droite de E\ min a lorigine est V2, et Ex\min(p) < EL . (p).

iii) Pour tout p fizé il existe Ai(p) > 0 tel que Uapplication X — E pmin(p) est strictement
croissante sur (0, A\e(p)] et Exmin(p) = ELin(p) pour tout A = Ai(p).

) Pour tout X\ > 0 et tout p € (0,7 qui satisfait Exmin(p) < V2p il existe des minimiseurs
pour Ex min(p) dans E et toutes les suites minimisantes sont pré-compactes modulo des translations.

Les minimiseurs donnés par le théoréme ci-dessus sont des fonctions lisses et sont des ondes
progressives ayant des vitesses ¢ comprises entre les dérivées a droite et a gauche de la fonction

E)\,m'in-
Lorsque A est grand (ce qui correspond a des périodes A = % petites), la dépendance d’une
o2
fonction v par rapport a la variable y est fortement pénalisée par le terme )\2‘%‘ qui apparait
Yy

dans I'énergie F)(¢)). C’est la raison pour laquelle les minimiseurs de E) i (p) ne dépendent que de
z. En revanche, lorsque A est petit on peut exploiter la concavité stricte de E}\,min dans un voisinage
de p pour construire des fonctions ¢ € £ qui ont un moment égal a p et une énergie strictement
inférieure a E}\mm(p) Cela signifie que pour p fixé et A\ suffisamment petit, les minimiseurs de
E) min(p) dépendent effectivement des deux variables z et y.



Chapitre 2

Profile decomposition and maximizers
for the Sobolev-Strichartz inequalities
for Schrodinger’s equation

2.1 Introduction
We consider the linear fractional Schrédinger equation
(2.1.1) iU + (=A)°U =0 in RY,

where (—A)7 = F~1 (|¢|?? Fu) and F (or ") is the classical Fourier transform,

Fu(€) = a(¢) = / 7€y () dx.

RN

For a given complex-valued function u defined on R”, the solution U of (2.1.1) satisfying U (0, z) =

u(x) is denoted by
U(t,z) = [S(t)u] (x).
Here (S(-))ter is the Schrodinger group associated to the fractionnal Laplacian (—A)7. We recall
that S(tju = F~1 (e€"7a), and § verifies S(0) = Id and S(t + t2) = S(t1)S(t2) for every
t1,to € R.
We denote by H (‘];“(RN ), or shortly H ¢ » the homogeneous Sobolev space which is the completion
of C°(RY) with respect to the norm

[ull g = V" ull pamavy

where |[V|* = (—=A)? is the operator defined by |V|*u = F~1 (] - |*@). Obviously, we have Hg = L9
In the case g = 2, Hg‘ = H® is a Hilbert space and by Plancherel’s formula we have

7



bl = (f, Jeelaopa)”

Let us recall that the Hé’—norm is invariant by the Schrodinger group associated to (2.1.1)
(21.2) 15(t)ull gy = llull . Vi € R.
By the Sobolev embedding theorem (see, e.g., [19], Theorem 8.1 p. 301) for any s € (O, %) the

space H*(R™N) is continuously embedded into L2 (RY), where 2* := NQiVQS.
We consider the space LV H & =LP(R, H 2(RY)), endowed with the Strichartz norm

1
2 P
1Ullpp e = (/R (/RN ]|V|QU(t,:c)|qu) dt) if p,q € [1,00),

1
o a .
101 2= s (/RN”V’ U(t,m)]qdm> if g € [1,00).

respectively

The following scaling properties hold. If u is a function defined on RY and u,(z) = u (%), we
have

N_ t
lurll o =70 “ull go and St)u, = {S <2> u] for any 7 > 0.
q q i ’

If U is a function defined on R x RY and U, 4(t,x) = U (£,%), then for all a, b > 0 we have
1N,
”Ua,bHLng =arbs ||UHL§’H5;‘

The LY H 4 and the H*+7 norms are invariant under translation in time and in space and appropriate
scaling : for all A € (0,00), tg € R and 79 € R" we have

20 N_N

_N -+ty -+ xo .
2.1.3 N0 = ||U : ded that — + — = — —
ery) oo (S5 )\H U1 provided that =7+ 5 = 5~
and
_N -+
(2.1.4) I | I T
Hs+Y

We define 0\u := X’_%u(j). Because of the aforementioned invariances of the Schrédinger equation,
we have the following relationship between scale change in space and scale change in time :

(2.1.5) 0 [S(t)u] = S(A*t)dou.

8



A pair (p,q) is called admissible if p € [2,00], ¢ € [2,00), and %—i— % < 8. If (p,q) is an
admissible pair and o is as in (2.1.1), we define

N N 2
(2.1.6) s=——— -2
2 ¢ p
Notice that s > 0 whenever 0 <o < 1. If 0 < s < %, (2.1.6) can be written as
20 N N N
(2.1.7) T S
P q 2 2*
where 2* = 225 is the Sobolev ezponent so that we have the embedding H*(RN) c L¥ (RV).

The following Strichartz inequalities hold : if (p, ¢) is an admissible pair and s is given by (2.1.6),
then for any v € R, there exist Cg > 0 depending only on v, N, p, q, o such that

(218) ISCull gy < O s -

Using scaling properties it is easily seen that (p,¢) must be an admissible pair for (2.1.8) to hold.
Establishing (2.1.8) for all Schrédinger admissible pairs (as in (2.1.7)) has been a long story.

When (p, ¢) = (00, 2), the estimate (2.1.8) follows immediately from (2.1.2). For the classical Schro-

dinger equation in LQ(RN ) (that is, in the case 0 = 1 and s = v = 0), the admissibility condition

(2.1.7) becomes 2 —|— = N . In this case the unlque admlssable pair with p = q is (2 + ]%,,2 + )

and inequality (2.1.8) Wlth exponents p = q¢ = 2 + N was proved by R. Strichartz in [21]. Inequa-
lity (2.1.8) has been established by J. Ginibre and G. Velo in [10] for all admissible pairs (p,q)
with p > 2. If N > 3, the pair (2, ]\2, ~—3) is admissible; the delicate endpoint estimate in the case
(p,q) = (2, A?Nz) has been proven by M. Keel and T. Tao in [12]. We refer to Theorem 2.3.3 p. 33 in
[5] for an elementary proof (inspired from [10]) of non-endpoint Strichartz estimates and for further
comments. The case of the fractional Laplacian (that is, o # 1, o # %) follows from the general
Strichartz-type estimates obtained by Y. Cho, T. Ozawa and S. Xia in [6]. For the the inequality
(2.1.8) above, see Corollary 14 p. 496 in the recent work [7] by Van Duong Dinh. We also refer to [6]
and [7] for further references. In the case o = %, equation (2.1.1) becomes the half-wave equation

and the Strichartz estimates are somehow different (see [7]).

In the sequel we will always assume that s € (0, %) and p, ¢, s satisfy (2.1.6). Then :

(i) For any s € (0, ) there exists a unique admissible pair of the form (g,q) satisfying (2.1.6)
and ¢ is given by § = 2(N+20) =2+ N4—025'

(ii) If (p, q) is admissible and (2.1.7) holds, then p € [2,00] and ¢ € [2*, #ﬁm)}

(iii) If (p,q) is admissible and ¢ < § we have necessarily p > § > ¢; if (p,q) is admissible and
q > q, then p < g < q.

Let ¢maz = #ﬁw), so that for any admissible pair (p, ¢) we have g € [2*, ¢imaz]. If ¢ € (2%, Gmaz)

then (p, q) is called a non- e:ctremal admissible pair. The pair (p, q) = (2, #]LU)) is called endpoint
admissible pair. If ¢ # 5= N2(s%0) then we say that (p,q) is a non-endpoint admissible pair.

9



Assume that (p1,q1), (p2,g2) and (p, q) are admissible pairs and % =t 1;—2“ for some a € (0, 1).
By (2.1.7) we have % = pﬁl + 1;—2” and then using Holder’s inequality we get

(2.1.9) ||u||H; < HuH"H;,1 ||l u| ;;: for any u € H;l N H;’Q,
(2.1.10) Ul oy < ”UHIZlegl HUHlLt;;HJQ for any U € L{" H) N L{*H),.

Using (2.1.10) we obtain the following interpolation inequalities for non-extremal admissible pairs
(p,q) :

_ N, 11-p/T N 1P/
(2.1.11) HS(-)UIILgHg SISOl gy 15Oz, e <q,
1—q q .
(2.1.12) SOyl iy < ISOulE, ISOull,, it p>a
11 11
(2L.18) [SOullzpay <ISOulfy ISCHullzy, #p<a  wherer = fT— = 2.
a q dmax 2 q

In this article we prove compactness of maximizing sequences for the Strichartz inequality (2.1.8)
for fractional Schrodinger equations and for any non-extremal admissible pair (p,q). To do this
we first establish a linear profile decomposition result (Theorem 3.1.1 below) in which "almost
orthogonality" is characterized using the L?Hg -norm. We believe that this new profile decomposition
result is of independent interest.

We will prove that it is possible to extract a suitable profile decomposition from every bounded
sequence u = (up)peN C H*t7._ To do this, we need to take into account the weak limits of u up
to translations and scaling invariances. We need the following

Definition 2.1.1. We say that two sequences (A, t,%)= (A, tn, Tn)n>1 and
A, %)=\, bny Tn)ns1 in (0,00) x R x RN are orthogonal if :

A A ta =l | on — 3
(2.1.14) lim — + IS, W +00.

He have the following profile decomposition result for bounded sequences in H517.

Theorem 2.1.1. Let N € N* and 0 < s+ < 5. Let u = (up)n>1 be a bounded sequence in H5.
Then there exists an increasing mapping j : N* — N*, there exist functions Vie H, and for all
i € N* there are sequences X' = (AL )nen+ C (0,00), t = (t))nen+ C R, x* = (2})nen+ C RY such
that :
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a) For i # {, the sequences (Ai,ti,xi> and (Ag,te,xe) are orthogonal.

b) For each n € N* and k € N* we have

k i
(2.1.15) wimy = D S(~t,) l(AZ)V‘g‘Vﬁ ( Mx”> b, and
=1 n
. . k . _
(2.1.16) i (tmsup Skl ) = 0.

¢) The following "almost orthogonality" conditions are satisfied for every k € N* :

(2.1.17) Jim ISl Tz, = ZHS VZHLqu
k .
(2.1.18) i) s = DNV Mgy + 10l + 0(1), and
(2.1.19) lim sup (hm sup Hwn]HgM) < lim sup [[un) [| grsv -
k—o0 n— n—00

For any admissible pair (p,q) and s € (0, %) satisfying (2.1.7), we have

k
(2.1.20) Jim 1S(-)u, L”H” Z IS¢V i 0( ) if p>q, respectively
k .
(21.21) tm 1800 g5y < SISOV g + o) p<a

Remark. Inequalities (2.1.11), (2.1.12), (2.1.13) together with (2.1.16) imply that
. . Nk ) i
Jim <hrrlr;sogp\|5( )wn|L§Hg> =0
for all (p,q) non-endpoint admissible pairs satisfying (2.1.7).
The functions V? are called profiles of u. Theorem 3.1.1 will be crucial in the proof of the

following theorem which gives the existence of maximizers for Sobolev-Strichartz inequality as well
as the precompactness, modulo the symmetries of the problem, of any maximizing sequence in H*%7.
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Theorem 2.1.2. Let N e N* and 0 < s+7v < % Let (p,q) be a non-extremal admissible pair and
let u be an optimizing sequence for the Strichartz inequality (2.1.8) in the following sense :

(2.1.22) lunl ey =1 for all n, and

(2.1.23) ISOuallzrzs — Cs(w.a,7)

where Cs(p,q,7y) :=  sup ||S(')UHL§’H; is the optimal Strichartz constant.
llull s+ =1

Then there exist V. € H*tY, an increasing mapping j : N* — N* and a sequence (A\,t,x) with
A= An)n>1 C (0,00), t = (tn)n>1 C R, x = (z)n>1 € RY such that

(2.1.24) 0ot [S(t )i (- + @a)| — Vim B,

In particular, V is a maximizer for (2.1.8), that is

(2.1.25) IVl gosr =1
and
(2.1.26) ISCVIiray = Cs(p,g,7)-

There are several results about the existence of optimal functions for the Strichartz inequalities

in the literature. We firstly mention M. Kunze [14], who proved the existence of maximizers of the
Lgm—Strichartz inequality for the 1-D Schrodinger equation. In [9], D. Foschi found the best constant
of the inequality and also the shape of the maximizers for the 1D and 2D-Schrédinger propagators.
L. Fanelli, L. Vega, and N. Visciglia proved the existence of maximizers in the case of a differential
operator h(D) more general than the classical Laplacian, for which Sobolev-Strichartz inequalities
hold in the L{LI-space (identified with LI(R'*V)). They used a result of H. Brezis about non-
vanishing sequences to recover compactness and they used operator continuity properties to extend
the properties of maximizing sequences to the limit.
S. Shao proved in [20] existence of maximizers in the case of classical Laplacian (o = 1) by using a
powerful profile decomposition result initiated by P. Gérard in [11] to describe the defect of com-
pactness of bounded sequences in homogeneous Sobolev spaces, and then developed by S. Keraani
([13]), J. Bourgain ([2]), F. Merle and L. Vega ([18]), and P. Bégout and A. Vargas ([4]).

In the next section we give some elementary results which will be used in our proofs, then we
prove Theorems 3.1.1 and 2.1.2 in section 3. The main observation in the proof of Theorem 2.1.2
is that there can be only one non-trivial profile V? in the profile decomposition of an optimizing
sequence, and all other profiles must be zero. This clearly implies the compactness of the optimizing
sequence up to the invariances of the problem.
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2.2 Preliminary results

An important technical tool that we use is Lieb’s Lemma (see Lemma 6 p. 447 in [15] in the H!
case or Lemma 6.1 and Lemma 6.2 in the appendix of [16] in the case of fractional derivatives).

Lemma 2.2.1. (E. H. Lieb, [15]) (i) Let N € N* and s € (0,00). Assume that u € H5(RN)
satisfies

lull grs < M and L ({CE e RN | |u(z)| = 5}) > a,

where M, ¢ and o are given positive constants and L is the Lebesque measure in RYN. Then for
all 6 € (0,¢), there exists a constant f = B(N,s, M,«a,e,d) > 0, independent of u, and there exists
zo € RN such that

L ({x € B(zo,1) | [u(x)| > 0}) > B.

(i) Let N € N*, s € (0,00) and v € [0,00). Assume that u € H*T satisfies
lull jrosr < M and £ ({z € RN [ [|V]u(2)] > €}) > a,

where M, € and « are given positive constants. Then for all § € (0,¢), there exists a constant
B = B(N,s,M,a,e, ) >0, independent of u, and there exists xo € R such that

(2.2.1) £ ({z € Blao, 1) | ||V[u()| > 6}) > 5.

We use part (ii) of the above lemma in the sequel, but it is merely a rephrase of part (i) with
|V|"u instead of u.

To prove Theorem 1.1, we will study weak limits after translation and rescaling of subsequences
of the bounded sequence u. We use the formalism in [17] (see the Proof of Theorem 1.9 there). For
any sequence u, we consider the set

there exist a subsequence (uy, )gen+ and sequences
L(u):={VeH (zi)ren+ € RN, (t)ren+ C€ R and (\;)pen+ C (0,00) such that
0,1 [S(tp)tn, (- +21)] — Vin HHY
k k—oo

and we denote

Af) = sup [|SOVIPem
() = s SOV

It is easy to see that if u is bounded in H*"7, we have always 0 € ['(u). The Strichartz inequality
(2.1.8) implies that for any admissible pair (p,q) satisfying (2.1.6), the mapping u —— S(-)u is
linear continuous from H*™(RY) to LYH]. Therefore, if

0y -1 [S(tk)un, (- +25)] — V. weakly in H*17,
k

k—oo
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then we have '
S(- )0/\ 1 [S(tk)un, (- + x1)] o S(-)V  weakly in LYH]

for any admissible pair (p,q), and using (2.1.5) and (2.1.3) we find
ISV Iz < Hminf [|S()o -1 [SE)un, (- + )] [l p gy = Uming [SC)un, || 1p iy

< limsup [|S(-)un, || 12 g7 < Cs(p, g, 7) imsup ||| grot~ -
k—o0 . =00

Since the above inequality holds for any V' € I'(u) and any admissible pair (p, q), we get

A(u) < Cs(00,2%,7)% limsup ||un|[%.-
n—oo

We recall some results about Lorentz spaces L7 (see Chapter 1.3 in [1]). Given a function f :
RY — C, the distribution function of f is the function F : (0,00) — [0,00] defined by F(s) :=

£ ({x € RV |f(@)] > s}). Let | fllzna = </0°°sq—1p(s)2ds) it 1< pg < ooand |[fllpre =

1
sup t (F(s))r. The Lorentz space LP? is the space of measurable functions f such that ||f||zr.q
>0

finite. It is well known that ||f||7, = p||f|| pp and that LPO C LP2 if ¢ < 2. If 0 < s < N/2 we
have the improved Sobolev embedding H5 C L?"? (see Theorem 8.1 page 301 in [19]), and there
exists a constant C' > 0 depending only on N and s such that

—e

S

(2.2.2) £l 22 < ClIf |l g5 for any u € H;.

On the other hand, Holder’s inequality gives

1-5%
(2.2.3) 1Al 2 < IIfIILQ* o[ fll 2

The next lemma is the "space-time" counterpart of Lemma 6.1 in [17].

Lemma 2.2.2. Let 0 < s < N/2, M >0, and a > 0. Let u = (up)n>1 be a sequence in H*TY such
that ||[un || gresr < M for all n. Assume that there is a sequence (t,)n>1 C R satisfying

(2.2.4) 1S(tn) (IV["un) || 25 0o mry = @ for all n.
Then there exists a constant 6 = §(a,~y,s,o, N, M) > 0 such that
(2.2.5) A(u) > 6.

Démonstration. Assume that u = (u,),>1 satisfies (2.2.4). Passing to a subsequence of u, stil
denoted the same, there exists sequences t = (¢,),>1 C R and s = (s5)n>1 C (0, 00) such that

*""

£ ({z e RN |St) V[ un(@)] > 50})* >

M\@
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2 .
Let A\, 1= s} and v, == 0,1 [S(tn)un]. Then v, € H*7, |vp| gossy = [lunll s+~ and

. ({x e RY| (V[T (2)] > 1}> _ 2 ({x e RY| S(t)|V [ un(z)| > sn}) > (621)2

Using Lieb’s lemma, there exist b > 0, depending only on N, s,~,a and M, and a sequence x C RV
such that

(2.2.6) L ({z € B(zy,1) | [|[V|[Tvp(x)] > 0.5}) > b, Vn € N.

Since H*17 is a Hilbert space, there exists V € H*t7 such that, up to a subsequence, v, (- +z,) — V

weakly in H5%7. Then |V|7v,(- + z,) — |V|7V weakly in H*. By compact Sobolev embeddings, up

to a subsequence we have |V[Yv, (- + z,,) — |V["V strongly in L9(B(0, R)) for all g € [1,2*) and
n—,oo

all R > 0. One can easily check that V' € I'(u) and then using (2.2.6), we infer that

1
11V [ vn (- + xn)HLq B(0,1)) = §bq for all n € N.

1

Passing to the limit we obtain |[|V|"V|[14(p(,1)) = > 1be. Then by Holder’s inequality we get

—_
*"“

_1. 1
aba,

VIV L2 (50,1 = £(B(O, 1)> 4 [V Vlza(so.) > 5L(B(0,1))?

[\)

from Wthh we deduce, by letting g * 2%, ( 0,1)) > 22*1) Thus we may take
= 9.

§:= 22* b. So far we have proved that V € T'(u) and || |V|VVHL2* = |S(0)V H”

On the other hand, we have S(t)V — V weakly in H*17. Indeed, for any ¢ € H**7 using the
dominated convergence theorem we find

1 . .

(SOV.9) e = Gy [ 6707 V(€15

1
J)) (2m)N

[ EEIVOFEE = (Vo) e

We infer that S(¢) (|V['V) v |V|"V in H*, from which we deduce that S(t) (|[V|'V) o V'V in
— —
L* and

O < IVPVIITe <Lminf|S@EIVIVTe < ISOIVIV T2 = [ISC )VIILooHv < A(u).

Moreover, by the interpolation inequality (2.2.3) we have immediately the following
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Corollary 2.2.1. Let s € (0, %), v € R and let u = (u,)n>1 be a sequence in H**Y such that
un || grsey < M for all n. We have

(2.2.7) Alu)=0 = Jim HS(-)unHL?OH;* = 0.
Moreover, if u' = (u},)n>1 are sequences in H**Y such that ||ul,|| e, < M for all n and i, then
(2.2.8) lim A(u’) =0 = lim (hmsup 1S ()il || oo g ) =0

1—00 1—00 n—o00 t 2%

Proof.  From Lemma 2.1 we deduce that if A(u) = 0 then [|S()[V[Yunl|pec 2% —2 0, and

then we use the interpolation inequality (2.2.3) and the improved Sobolev embedding (2.2.2) to get
the first part. The second part is similar. O

If a sequence u = (uy)n>1 is bounded in H*™ and S(-)u, tends to zero in L{°HJ., then the
interpolation inequality (2.1.11) implies that S(-)u, tends to zero in LgHg . The converse is also
true, as it can be seen in the following corollary.

Corollary 2.2.2. Let u = (uy)n>1 be a bounded sequence in H¥*7. Then

(2.2.9) ”S()u"HLng n;)OO = ”S(')UnHL;mH“’ — 0.

2% N—00

Démonstration. Suppose that [|S(-)un| 7 —2 Oand ||S(-)un|\Ltoon — 0. Then, by (2.2.3),
ttg

2% M—00

there exists a > 0 such that
limsup [|S()[V[ un|| peop2v.00 2 a.
n—oo

By Lemma 2.1, there exists a non-trivial profile V' # 0 € I'(u) and a triplet of sequences (A, t,x) C
(0,00) x R x RY such that up to a subsequence of u, we have

Uy =0, [S(tn)un(- + zp)] oL Voin H.

Then S(-)vy, e S(-)V in L?Hg and using the scale invariances (2.1.3)-(2.1.5) we find

— 00

0 < SOVl g0 < lminf [S()onll 70 = Hmind ()| 7, =0,
q t7g t™g

which is a contradiction. O

2.3 Proof of Theorem 1.1, Profile Decomposition

We start with the following simple lemmas. Their proofs are straightforward and are left to the
reader.
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Lemma 2.3.1. Let the sequences A C (0,00), t C R and x C RY. Assume that one of the following
conditions holds

— Ay — 0 or A\, = 00 and t, x are arbitrary, or
— A, t are arbitrary and |x,| — oo, or
— A, x are arbitrary and |t,| — oo.
Then for every u € H*TY we have S(t,)(0x,u)(- + n) = 0 H5H7,

Lemma 2.3.2. Assume that u, — u weakly in H57, N, — A, € (0,00), t, — t. € R and
n—oo n—o0

T — 2o € RY. Then S(t,)(0x, un) (- + 7) = S(t.)Oau)(- + @) in HY.

Lemma 2.3.3. Let (p,q) be a non-extremal admissible pair. Assume that the sequences A =
(An)n>1 C (0,00), t = (tp)n>1 C R and x € RNHL satisfy one of the following conditions :

— either A\, — 0 or A\, = 00, t and x are arbitrary, or
— X is arbitrary and |t,| — oo or |x,| — oo.

Then for any u, v € H** we have

(2.3.1) I, := /R (/RN 1S (- +tn) V| oA, 1] (- + )] X |S(.)|V|Vv“1*1 dx>q dt = 0.

Démonstration. For any U € LY(R x RY) = L?Lg and any A > 0, tp € R and 2o € RY we denote

t+1
U)\,to,xo(talﬂ) :)\_é\”‘U( + o $+x0>.

)\20’ ’ A
For tg € R, g € RY and R > 0 we consider the cylinder
Qo 0.k = (to — R??,to + R*) x B(zo,R) C R x RY.

A simple change of variables gives

(2.3.2) / |UA,tO,IO|§dxdt:/ U(t,2)|? da dt.
Qo,0,R QtTO 0
Ao’

S

We claim that for any U,V € L?Lg and any sequences A, t and x as in Lemma 2.3.3 we have

(2.3.3) T = / / Usy i |2|[VIEdadt — 0 asn — .
R /RN
To see this, fix e > 0. Since |U|7, [V|7 € LY (RN*1), there exists R. > 0 such that

(2.3.4) U|? dz dt < e, V|7 dz dt < e,

/R]\“rl\Qo,o,R€ /R]\“rl\Qo,o,RE

17



and and there is . > 0 such that for any tg € R and any zg € R" we have

(2.3.5) / U|%dzdt <e and / V| dzdt < e.
Q Q

tg,zQ,Te tg,zQ,Te

We have

q q q q
Jn:/ ]UAthn\?\VdedtJr/ U, |2 |[V]? decdt
.0.1: % .1,

l =
— 2
< (/ U e dt) (/ V|7 dz dt)
Q0,0,Re Q0.0.7 R
2.3.6 - 2 _ 3
(2.3.6) + (/ Ut | et (/ \V|*dx dt)
Qg,O,RE QS,O,Re
1
2 % %
_ _ ) B
S / ‘U|qudt </ |V|qd$dt> +e2 (/ ’U’qudt>
Q 4y an Re 0,0, Re RN+1
329 ' Xn ' Xn

If A, — o0, for all n sufficiently large we have )\5 < re and using (2.3.5) we see that for all

such n we have J,, < €2 (HU”LQ(RN+1) + HVHLq RN+1)> . Since & was arbitrary, (2.3.3) follows.

If A, — 0, a simple change of variables gives

Jn:/ RV, o eulddedr
RXRN n

An? )\20’ A

and (2.3.3) is proven exactly as above.

If there exist positive constants a, A such that a < A, < A for all sufficiently large n and
|tn| — o0 or |z,| — oo, for n large enough we have Q.+, 2, r. N Qoo r. = 0 and then using
)\2‘7 An’An

(2.3.4) and (2.3.6) we see that for all such n we have J,, < ez (HUHLQ(RN-H) + HVHLq RN+1)> . As

previously, we infer that (2.3.3) holds.
The above situations cover all possible cases and (2.3.3) is proven.

Let u,v € H*t7. Using (2.3.3) with U = S(-)|V|Yu and V = S(-)|V|"v we see that

// n) V[T [0, ] ('-an)S(.)‘vpvg

or equivalently

(2.3.7) 1S (- + t) [V ox, ] (- + 20) SOIV 0] 7 3 — 0 asn — .

* ol
Bkl

L7 L
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Using Holder’s inequality in R, then in R and (2.1.3), we have

(a=2)p

D
(2.3.8) Iy IS (4 tn) [V [ox,u] (- +20) SC)VT[|p o X |SC)ll o5 -
L2L? LiHg

Since the pair (p, ¢) is non-extremal, there exists another admissible pair (p, ¢*) satisfying (2.1.7)
and k € [0,1) such that % = 1_7” + ﬁ and % = 1_7"“ + ﬁ. Then using Holder’s inequality we get

1S( 4 tn) [V[7 [ox,u] (- + 2n) 5(')\VIWIIL§L§

NS (1) [V [ox,] (- + ) SOV 0I'S

LZL2
(2.3.9)
XIS (- + ) [V [or, 4] (- +20) SCIVIO)" e
L2 L2
<S¢+ ) [V [0, u] (- +xn)S(')\V|”vlllg”g IIS(-)ullzpn,-ﬂN IIS(-)vllzpnfﬁm :
LfLg t Ty t Ty

From (2.3.7) - (2.3.9) and Strichartz’ inequality (2.1.8) we deduce that I, — 0 as n — oo and
Lemma 2.3.3 is proven. O

Lemma 2.3.4. Let u = (uy)n>1 be a bounded sequence in HY. Assume that there exist sequences

(A, t,x) C (0,00) x R x RN and V € H*™ such that

01 [S(tn)un(- +2n)] =V in H5H7,

n— oo
Denote wy, == up — S(—tn)(0x, V) (- — zp). Then

I'(w) Cc I'(u).

Moreover, if there exist an increasing mapping j : N* — N* and a triplet of sequences ()\,E,i) C
(0,00) x R x RN such that

051 [SE)wjy (- +Fn)| = w0 in B,

n—oo
then (X, t,x);.y and (X, t,%) are orthogonal in the sense of Definition 1.1.

Démonstration. Assume that w € I'(w) and w # 0. Then there exists a subsequence (w;(,))neN-

and a triplet (X, t, %) such that 051 [S(fn)wj(n)(- + fn)} - win H**7, which we can rewrite by
n n—oo

using (2.1.5) as

~ N t~n —t j(n) In — Zj(n)
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We have to discuss two cases :
Case A. (A, t, X)j(.) and (X, t,%) are orthogonal. This means, by applying Lemma 3.1, that

bn—tj(n) ~ I IO R TN '
5’( G ) (0)\;1>\j<n) V) ( + T ) ol 0. In particular

051 {S(fn)uj(n)(- + :E'n)} LS win H*" and consequently w € I'(u).

Case B. (A t, x)j(.) and (X, t,%) are not orthogonal. We may assume, up to extracting a subse-

quence still denoted the same, that

fn—t-(n -1 Tp—Ti(n

R" as n — co. Then, by Lemma 3.2, we have
th — titn Tn — Ti(n
(2.3.11) S ((M;f’)> (aﬂgw(n) V) ( n /\JU> = SV ().

On the other hand, we can rewrite the first term in (2.3.10) by using again (2.1.5),

tn =t N
=5 (@ )éa ) 05,1 [ty (- + 50) + En = 2|
2 (o5, 01 ) [ -+ i) + Fn — Ti)]
()20 AN A i)/ %j(n) j(n) n = Lj(n)

ty —t: [ —y
n — tjn) n = Tjn)
=5 ( (;n)ig ) (Dx;uj(n)) (%J.(;) {S(tj(m)uj(n)(' +~”Cj<n>)]> ( + ;nj ) :

which converges weakly to S(t.)(0x.V) (- + ) by Lemma 3.2. Together with (2.3.10) and (2.3.11)
this implies that w = 0, which is a contradiction. We conclude that the second case does never
occur and that T'(w) C T'(u). O

Proof of Theorem 1.1. Let u be a bounded sequence in H517.

If A(u) = 0, by Corollary 2.1 we have lirrgsongunHL?oH;* = 0. By interpolation (2.1.12) this
implies that [|uy|| iy~ 0 as n — oo for any non-endpoint admissible pair (p,q) and we can take
wk :=u, and V? =0 for all 4 and k € N*.

If A(u) > 0, there exist V! € H*t7 a triplet of sequences (Al,tl,x1> C (0,00) x R x RY and
an increasing mapping j' : N* — N* such that

(2.3.12) Qo [St (- +ah)] = Vi B

n—o0
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and

(2:3.13) ISOVH ey, >

3
—A(u).
SAGw)
We denote w} :=u
A (wh) < Au).
Since H*17 is a Hilbert space, the weak convergence (2.3.12), the scaling invariance (2.1.4) and the
norm conservation (2.1.2) imply that

i1n) — S(=t3) (@ V1)(- — z,). Then by Lemma 3.4 we have I' (w') C I'(u) and

2

Hs+~

+ Hw711H28+7 +o(l).

n—o0

(2.3.14) [ |

Hs+v

Now we repeat the previous procedure, with u replaced by wl.
If A(w!) =0, take Vi =0 for i > 2 and wk = w) for all kK € N*. We have

+ wy,,

R |
ujrm) = S(—ty) [(A%)”_éivl ( )\1:%)

with lim sup||w}||; 2+ = 0 by Corollary 2.1.
n—oo t e

If A (w!) > 0, there exist V2 € H*%7, a triplet of sequences (A%, t2,x?) C (0,00) x R x RN and an
increasing mapping j2 : N* — N* such that

(2.3.15) Azt [S(ti)w}Q(n)(. +q;31)} Vi, and
* 3
2112 1
(2.3.16) 1SV LeHD, 2 ZA (w )

We denote

wy = way = S(=t2) (2 V?)(- = 23)

J

= trege(n) = St @a1, VI = 2hag) = SE) oV — a2,
By Lemma 3.4 we have ' (w®) C T’ (w') C T'(u) and consequently A (w?) < A (w') < A(u).
Using the fact that H*T7 is a Hilbert space, the weak convergence (2.3.15), the scaling invariance
(2.1.4) and the norm conservation (2.1.2) we get as above

(2.3.17) ijl'2(n)‘ Zsﬂ - Hv2Hj{s+v + Hw’%‘HjﬁM + T?Llol.
Combining (2.3.14) with (2.3.17), we get
L P g P i P o P )
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At this stage of the proof it is important to remark that thanks to Lemma 3.4, (A1, t!, xl)jz(,) and
(A% t2,x2) are orthogonal in the sense of Definition 1.1.

Next we repeat the process described above. If there is K € N* such that A(w’) = 0 we take
Vi=0and wF := wX for all k > K. Otherwise the inductive process continues forever and for all
i € N* we obtain a nontrivial function V¢ € H5"7, a sequence w C H*"7_ an increasing mapping
§i - N* — N*, and triplets of sequences (A, t?,x"), such that the following properties are satisfied :

D) Ve T(w ™) and SOV, > FAw ).

1) gyt [SEwil (+ad)] = Vi Ho4,

) wf, = widy — S(—1) 0y, VI)(- — at)

V) (Ai_l, tiL, xi_1> i) and ()\i, t?, x’) are orthogonal in the sense of Definition 1.1.
Jt

We will show that A (Wk> — 0 for & — oo. As above, we deduce from (II) and (III) that for all
i,n € N*

112 2
(2.3.18) ‘ + o(1),

n—oo

i
e

i—1 |2
i e = V71 -
) || frs+ Hs+v Hs+y

and we have constructed a decomposition of u of the form

+ wy,,

. C— b .
i . N it+lo. .05k (n
(2.3.19) Ujlo. .05k (n) = ZS(—tjiJrIO..Aojk(n)) [()\jiJrlo“'ojk(n))’y TV ( j ' ))
=1

7
Ajitto_ojh(n)

with the abuse of notation j* o j* = j¥ and j**! o j* = Id.
We claim that for all ¢ < £, ()\i, tf, xi> 4o, 0f¢() and ()\e,tf,xq are orthogonal in the sense of
gtTo..0g% (-
Definition 1.1. Indeed, we firstly remark that :

Dy S L (4 2]

jioji+1

gt gt il gt
n si41 . n 441
=9 - Jj*(n) ity v Vi C - Jj*(n)
T h2o O™ A ()

By Lemma 3.1, the first term above tends weakly to 0 in H*TY as n — oo because of the orthogo-
nality of (A%, t?, Xi)jﬂ-l(.) and (A1t xt1). By property (II), the second term tends weakly to
Vitl in H577 and then Lemma 3.4 implies that (Aiil,tiil,XZ’il)jiojH—l(,) and (AT ¢+ x¥ 1) are
orthogonal.

More generally, by the same argument we obtain that for all ¢ < ¢,

o)t [S(tfl,)w;i+1o...ojé(n)('+xfz)] -~ V¢ in {577,

n—oo
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Using again Lemma 3.4, our claim about orthogonality follows.
Now let j(n) := j' o...0j"(n) be the diagonal extraction map. To simplify notation we relabel

the subsequences and we denote )\j.iﬂomojn(n) simply by A ; we do the same for t* and for x*. Then

for any i # ¢, (A%, t%,x") and ()\f, t¢,x%) are orthogonal. Given any k € N* and n > k, we have

thus (2.1.15) holds. By (2.3.18) we get

k
; k
i) I Fgess = DIV Forn + gl sy + 0(1).
i=1

n—oo

This proves (2.1.18).

Then we have immediately lim sup (lim sup|jwk || HSM) < lim sup||w ) [l grot-
k—o0 n—00 n—00
Next we prove (2.1.16) which means that the reminder term w

Strichartz norm. We claim that for all £k € N*,

k

» must be small with respect to the

7
LTH?

< lim inf HS(-)Uj(n) ‘

q
Lng’ n—00
q

(2.3.20) Zf: 1SV

We fix k and we proceed by induction. As in the proof of Lemma 2.3.3, we denote €, r =
(t — R*.,t+ R%*) x B(x,R) C R x RY. Given € > 0, there exists R! > 0 such that

q

LZ’H% (QO,O,RI)

q
LI
q

|sev]

— g < HS(-)Vl‘

)

. q _ —1 (1. |17 it %7 1 a
where 180V Iz, /Q‘]-" (117" V) () dr .
: 1\, . . 1 N 1 TS+
Since d(y1)-1 [S(tn)u](n)( + xn)} = Vo in H*TY, we have
SC) (01 [SEuion (- +a)]) =2, SOV i L{HG
and consequently, after a straightforward change of variables we get

[ <limianS(‘)a(>\}L)—1 [S(t}z)uj(n)(.wi)”a

1
HS( )V ’LgH;{ 2 n—00 L?Hg(QO,O,Rl)

=liminf HS(‘)Uj(n) ’ !

9y :
n—o00 Lt HE (Qt,}L,m}.L,)\}.LR1>
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Similarly, there exists R? > 0 such that
q
LZ’H% (QO,O,R2 )

q
LI
q

)

|sev?]

— Z < HS(-)VQ‘

and we find

q e ) 2y, (23|
T 1 <lim inf HS( )O(az)-1 [S(tn)uy(n)( +$n)] ’ LT (9 0 )

Jscv?|

q

LEH;Y QQ 2,2 )
t g \ 272 22 A2 R2

=liminf HS(Juj(n)‘

n—0o0

1 1_..2
If, up to a subsequence, i—g — a € (0,00), then we have by orthogonality that w — 00 or

142 . . .
‘&2 )tg’;| — oo. Hence Q1 ;1 y1 g1 and (2 42 2 ge are disjoint for n sufficiently large and we obtain
q q € € q
S-Vl‘ _, —i—HS-V2’ _. —<+)<limianS-u- ‘ _
56 Lif ¥ Li; \2 4/ n=eo (st 2T () gy U922 0302)
q
<limianS-u- ‘ .
= ThSoo <) 3(n) L;IH'aY

1
Otherwise we may suppose that after permutation of the indices we have ;—3 — 0, and we have to

treat two sub-cases :
|z —22 | [th—ta] d th 0 d Q disioint f
— 5z - — OO Or \2)20 — 00, all en t1 zl ALR1 an 12 .22 A2 R2 are disjomt 1or n

sufficiently large. We argue exactly as above.

|x1 7332' 1.2 |t1 7t2| 1.2 .
— P — % or (;\12)2’}, — t"%, up to a subsequence still denoted the same. Then there

exists & > (0 such that

q
q 17y
Ly Hg (Qo,o,ﬁt2 \Qtlﬁ,xlﬁ,é)

q

HS(')Vz‘ LIH)

1< [sov]

< lim inf HS(-)%%)*1 [S ()0 (- + )] ’ ;

qrrY
n—oo LtHE (Q()’O,RQ\QtLQ’xl,Q’é)

)

= lim inf HS()UJ(R) ‘ 7

qErY
n—00 L{H} (Qt%,m%,/\%R2 \Qt%+(/\%>zat1,2’x%+A%x1,2’>\%5)
and it is easy to see that for n sufficiently large we have

Qi 21 At C Qg2 1 (A2)2041.2 22 122212 225
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As previously, we get the desired inequality :
e €
LiH2 2 4
o q
< lim inf HS(-)uj(n)‘

qrry
n—ro0 LiH; (Qt}wgg}wwl U Qt%,m%,A%RQ\Qt%-k(A%)Q”tlﬁz,x%+/\%:clv2,kié>

sl

+ HS VZ‘

LqH“Y

< lim inf HS(‘)Uj(n)‘ !

n—00 L?Hg )
Continuing this process, we may assume that after a permutation of indices 1, ...,k and extraction
of a subsequence we have either :\\—% — a € (0,00), 0 ;e — 0 for ¢ < L.

Suppose that for £ € {1,....k — 1} we have proved that there exists R!, ..., R! > 0 such that

vt € vt
HS( HLqH'y_?g“S() HLqH'y(QOORZ)’
and
. e . 7
Z 1S()v IILqHW - 2; 5 < liminf [SC)uje| i

Then we choose R“T! > 0 such that

041 _ 0+1
||S( )V ”LqH'y 2£+1 \ HS( )V ||LqH'\/(QO707R£+1)7
2+1 i £+1 %
and we define I; := {z’e {1,.., ¢}, lt)\uft% — 00 or % —>oo}
. {41 i .
and I :=<i € {1,.., ¢}, /\Hl_)t%' — t¥*+1 and ‘xn)\z%%l — 21 up to a subsequence

If i € I, the cylinders € i \i g and Q41 41 o414 are disjoint for n sufficiently large.
For i € I, there exists 6 > 0 such that

HS Vf-l—l’

_ e+1]]9

q
LIAY (QO o R’5+1\Uzel £, Z+17Ii,€+ly5)

< lim inf HS(‘)D()\ﬁJrl)—l [S(t?l)uj(n)( + le)”

n—oo

g
L{H] (QO,O,RHI\UieIQ Qtil*l,wiv“l,é)

- q
- hnrggéf HS( )u](n)’ LIH] (Qtfirl’zfjl7)\f1+1Re+1\U¢€12 Qtfl+1+(kfl+1)20ti,é+17zfl+1+)\fl+1zi,é+17>\fl+15) '
As previously, it is easy to see that there exists ngy1 such that for all n > ny4q and for all i € I we
have Qt%x%’)\%Ri C Qtfj1+(}\fjl)2"ti’[+l,wfl+1+>\fl+1zi’z+l7/\i+l5' Hence Qt%x%)\%Ri and
Qtfﬁ“,wﬁ“,kfl“}%”l \ Uielz Qtfl+1+(/\fl+1)%ti,g+17xfl+1+)\ﬁ+1wi,“1’Aﬁlé are disjoint and we get the desired

inequality :
041 £+1

D ISOV Iz =3 55 < iminf [SCyyn

7
LT
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Then we have for all kK € N* and for all € > 0,

q
975y
LtHa

n—oo

k
- 1
V9. — S im i RYTP
> ISOVTy,, ~ (1 Qk) < timint Sy
and this yields (2.3.20) because ¢ is arbitrary.

Lim]

It follows from (2.3.20) that the series (Z |S()VEe > converges and in particular
i>1
V| - AV .
|S(-)V HLgH; = 0. By Corollary 2.2.2 We have ||S(-)V HL?OH;* = 0 and property (I) above,
which derives from the construction of (V*);en+, enables us to affirm that
A(wF) — 0.
k—o0
By Corollary 2.2.1 we have
. . k _ .
Jim (llznj;plls( )wn\LgOH;*> =0,
and we get (2.1.16). By the interpolation inequalities (2.1.11)-(2.1.13) it is easy to see that
. . k ) .
Jim (hgs;pHS(anHLfH;) =0
for any admissible pair (p,q). Now, we claim that for all £ € N*,

k =

>SS t) [(A@)”f—ﬁvi ( ;f*)]

i=1

q

S+ 0(1),

P rry
Lth n—o0

< zkj |s(yv

L’y =0

(2.3.21)

where ¢, := min(p,q). We will use the following elementary inequality : for any £ € N* and any
q € (1,00), there exists C > 0, depending only on k and on ¢ such that

q k

—Z!Cbi!q

=1

k

>

=1

k
S Ck Z ‘ai‘q_1’a1’7 vala"wak e C.

il=1
il

We denote

x’L

fiv:= St =)V [(Afm—éivi ( ~ )] = S(t—13) (191 o, V'] (- = 2))

We fix t € R, and we denote the reminder of the sum

i L k -
R (t) = ol — fol dx.
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P
By using the elementary inequality above and the subadditivity of the norm in L; in the case

p = q, respectively the subadditivity of the mapping 7 — 74 on [0,00) and the fact that %* =1in
the case p < q we get

AN
ol )7 o : (1 #01g—1
RE(t th) <Cf / / Ll | dt
(L [mse LS o 05
i£l
a F et z >
<o S (L mstan) ar) "
k%(R [ gl
£l

By a change of variables we obtain the following identity :

/R (/RN |fé!|f,€ymdx>5dt

== . n n il . 1 . n n . v/l
_/R (/RN S( + ()\%)25> |V [DA;(%)AV} < + " )"S()]V\ 1% ‘ dx) dt,

The last expression tends to zero as n — co by Lemma 2.3.3 because (A’ ,t?,x?) and (A, t¢, x¢) are

orthogonal for ¢ # ¢. Then / ‘Rﬁ(t)
R

p
“dt = o(1) and using again the subadditivity of the norm in
n—oo

P
L} in the case p > ¢, respectively the concavity of the mapping 7 — 74 on [0,00) if p < g, as well

as (2.1.3), it is easy to see that

Sl = (oSl mio) )
<g</11</1w ff;qux)f;dt)p+</R(R’;;(t)5dt)q;

qx

fse

+ o(1),

P rry
Lt Hq n—oo

-

Il
—

2

and this yields (2.3.21). It remains to prove (2.1.17), (2.1.20) and (2.1.21). We have :

k i qx
i iy =Ny " Tn
ISCIusllZy gy = 30 5C — ) [(W by ( = >]+s<->wiﬁ,

=1 " i

k i e
4 iy—%vsi [T Tn Nk
< ( > 8(—t) [w =V ( v )] o+ |seyw LW) ,

i=1 n g
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and by using (2.3.21) and by passing to the limit,

IITILILSO%I) ||S() HLPH’Y
k . . N_ [ — l‘i )
. L4t L\Y— 5% |/ n
< hgl_)chp ;S( tr) [()\n) *V ( N )] . + 117131_>sol<1)p HS Jw ’ L2
1= Lth
k 4 "
n—oo ||: 5] )‘n L?H;/ ko0
k 4 *
. N — X
= lim sup ZS( —ty) [(AZV PRl VA ( . n)] + o(1)
n— 00 i—1 )‘n LfH; ko0
k s
< S v .+ o1
; H ©) LYHg kgol

and this yields (2.1.20) and (2.1.21). The above inequality in the case p = ¢ = g and (2.3.20) give
(2.1.17). 0

To prove Theorem 1.2, we will show that if we have a profile decomposition of an optimizing
sequence u as in Theorem 1.1, then there is only one non-trivial profile V' = 0 and we must have
Vi =0 for all i # ig.

Proof of Theorem 1.2. Let u be a maximizing sequence. We use the same notation as in Theorem
1.1.

Since HS(‘)YiHLng goes to zero as i — oo, there exists ip € N* such that ||S(')Vi0||LfH;’ =
sup [|S()V*{| e gy -

1EN*

o0
Moreover, by (2.1.18), Z "Vi||?;s+w < lim [Ju; n)”%rsﬂ = 1.

] n—00
1=
By Theorem 1.1, we get

o0

(Cs)t = nh_>n(§0 HS()uj(n LPH"/ X Z 15(-) Vl LPH"/
< ”S(')Vioui*p;jv Z HS VZHLPH“Y

< (Co) 2V 52 (O Y IV s
=1
Vi |2

Hs+v*

< (Co)™
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Then 1 < ||[V%|| 74, and this implies that [|[V®| 5., = 1 and ||V gery, = 0 for all i # 4. Recall
that by Theorem 1.1, O (xin)-1 [S(ti?)uj(n)(‘ + xi{’)] et Vioin HSY.

Since we have weak convergence and convergence of norms in the Hilbert space H*™7, we infer that

n—oo

0 (xi0)-1 [S(tf{’)uj(n)(- + xﬁ{’)} — Vo strongly in H7,

and this is the desired conclusion. O
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Chapitre 3

Periodic traveling waves for nonlinear
Schrodinger equations with non-zero
conditions at infinity in R?

3.1 Introduction

We consider the nonlinear Schrédinger equation

(3.1.1) i%(f+A<I>+F(|<I)|2)<I>:0 in R? x R.
For a given A > 0, we are interested in solutions ® : R? x R — C of (3.1.1) that are A—periodic
with respect to the second variable, namely ®(z,y + A, t) = ®(z,y,t) for all (z,y,t) and satisfy the
"boundary condition" |®(x,y,t)| — 19 as x — +oo, where 9 > 0 and F is a real-valued function
on [0, 00) such that F(r3) = 0.

If F'(r3) < 0 (which means that (3.1.1) is defocusing), a simple scaling enables us to assume
that 7o = 1 and F'(r3) = —1 (see [11], p. 108); we will do so throughout this paper. The sound

velocity at infinity associated to (3.1.1) is then vs = rgy/—2F'(12) = /2.
Equation (3.1.1) has a Hamiltonian structure. Indeed, let V(s) = jsl F(7)dr. It is then easy to

see that if ® is a solution to (3.1.1) and ® is A—periodic with respect to the second variable, then
at least formally, the "energy"

(3.1.2) B = [ gl g ver) ey

does not depend on ¢.
In the sequel we prefer to normalize the period to 1 : instead of working with functions ® that are
A—periodic with respect to the second variable, we will consider the function ®(x,y,t) = ®(z, Ay, t)
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which is is 1—periodic with respect to the second variable. It is clear that ® is a solution of (3.1.1)
if an only if ® satisfies the equation

o 9P 1 9% - -
2 +8—+—8—+F(\¢|2)<1>:0 in R2.

(3.1.3) 5 T 37t T 5y

We denote A = % and we consider the renormalized energy

ov 2 ov 2
3.1.4 E\I/:/ | X V() dady.
(3.1.4) A= 5, V¥ drdy

If ® and ® are as above, we have E(®) = %E)\(Ci)).

We are interested in traveling waves for (3.1.1), which are solutions of the form ®(z,y,t) =
Y(x+ct,y). If i is a traveling wave and is A—periodic with respect to the variable y, then ¢ (z,y) =
Y(x, Ay) = ¥ (x, §) is 1-periodic with respect to y and satisfies the equation

N 0*p 1 9%

(3.1.5) anx +@+p67y2

+ F(p)Y =0 in R?.

Assumptions and some comments on the assumptions. We will work with general
nonlinearities F'. We will consider the set of assumptions (A1), (A2), (B1), (B2) that we describe
below. We will assume throughout the paper that (A1) holds. The other assumptions are not needed
all the time and sometimes they can be slightly relaxed. For each result we will indicate the precise
conditions that we use. For instance, assumption (A2) is not necessary when we deal with one-
dimensional traveling waves to (3.1.1). We aimed to consider sufficiently general nonlinearities and
in the meantime to focus on ideas, avoiding irrelevant technicalities.

(A1) The function F is continuous on [0,00), C! in a neighborhood of 1, F(1) = 0 and
F'(1) < 0.

(A2) There exist C' > 0 and 1 < py < oo such that |F(s)| < C(1 + sP°) for any s > 0.

We denote

1
Vis) = [ F(rydr,
so that V(1) = 0 and V'(s) = —F(s). If assumption (A1) holds, we have

(3.1.6) V(s) = %(3 S’ 4o((s-1?) ass oL

If (A2) holds, there is €’ > 0 such that |V (s)| < C’sPo*t for all s > 2.
The natural function space associated to (3.1.3) is

E=1{¢ e L} (R? | 1 is 1—periodic with respect to the second variable,
Vi € L*(R x [0,1]) and V(J[?) € LY(R x [0,1])}.
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We will also consider the one-dimensional variant of £, namely
ER) ={y € Li,.(R?) | ¢’ € L*(R) and V(|¢|*) € L'(R)}

and the associated 1—dimensional energy
= [ W@+ V() (a)de

As we can see, assumption (A1) determines the behaviour of the nonlinear potential V in a
neighbourhood of 1, and (A2) gives upper bounds on V(s) for large s. In view of (3.1.6), the
renormalized Ginzburg-Landau energy

EGL,Aw)—/RX[M]]aw\ 25 5 (1 ) dody,

together with its 1—dimensional variant

Bou(w) = [ W@P+5 (1-W@P) do forv e ®)

will be relevant throughout the article. Notice that the renormalized Ginzburg-Landau energy is
simply the energy associated to the Gross-Pitaevskii nonlinear potential V(s) = 1(1 — s)? corres-
ponding to the nonlinearity F(s) =1 — s.

Whenever minimization of energy at fixed momentum is considered, we need to assume that
V > 0on [0,00) (for otherwise, the infimum is —o0). For simplicity, we will assume that V'(s) > 0 for
s # 1. The next assumptions give lower bounds on V' and will be useful to estimate the Ginzburg-

Landau energy Egr (1) in terms of E(v); see Lemmas 3.2.1 and 3.2.3 in the next section.

(B1) We have V > 0 on [0,00) \ {1} and, denoting H (s / |V (r? 2d7', we have
H(s) — o0 as s —» oo.

(B2) V > 0on [0,00)\ {1} and there exists v > 0 and s9 > 1 such that V(s) > s for all
s = Sp.

Clearly, (B2) is stronger than (B1). If V"> 0 on [0,00) \ {1}, then the function H is strictly
increasing on [0, 00) and H(1) = 0. If we do not assume that H(s) — oo as s — 00, it is possible
to construct sequences of functions v, : R — C such that E'(1,) is bounded, but the Ginzburg-
Landau energy EL; (i) is unbounded, a situation that we would like to avoid. Assumption (A1)
is enough to study 1—dimensional traveling-waves of (3.1.1) by using ODE arguments, as we do in
section 4. Assumptions (A1) and (B1) are sufficient to obtain 1—dimensional traveling-waves by
minimizing the energy at fixed momentum, as in section 5.

When we consider functions defined on the whole space R, N > 2, assumptions (A1) and
(A2) (with some pg smaller than the crtical Sobolev exponent) and the fact that V' > 0 are sufficient
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to prove that Eqr(¢) is bounded whenever E(7)) is bounded, and vice-versa ; see Lemma 4.8 p. 177
in [6]. This is no longer true in the one-dimensional space R or in a strip R x (0,1).

Momentum. There is another important quantity conserved by equations (3.1.1) and by
(3.1.3), namely the momentum. It carries some topological information and defining rigorously the
momentum is a difficulty in itself. We will address this issue in Section 3. Roughly speaking, the
momentum is a functional @ whose Gateaux differential is Q'(¢)) = Qi%. If b € £ is a function
such that there exists A > 0 such that ¢(z,y) = 1 if 2 < —A and if z > A, we have Q(¢)) =

fo[o,l] <ig—1£, ¥) dx dy. Given an arbitrary function ¢ € &, the function <i%, 1) does not necessarily

belong to L'(R x [0,1]) and giving a meaning to the above integral is not obvious. For functions
1 € E(R) there is a one-dimensional variant of the momentum that we will denote P(v). We will
see that the momentum can be defined only modulo 27.

Brief description of the results. In this article we will focus on traveling waves for (3.1.1)
that minimize the energy when the momentum is kept fixed. In view of a celebrated result by T.
Cazenave and P.-L. Lions [4], such solutions are expected to be orbitally stable by the flow associated
to (3.1.1).

We will denote

E\min(p) = Inf{Ex(¢) | ¢ € € and Q(¢) = p}.
and

Epin(p) = inf{Ex\(¢) | ¢ € E(R) and P(y) = p}.

The main results of this article can be summarized as follows.

Theorem 3.1.1. Assume that the conditions (A1), (A2), (B2) above are satisfied. Then :

i ) The function E. .
EL..(p) < V/2p and the right-derivative of E}.,

we have EL . (p) < V2|p| for any p # 0.
For any p € (0, 7] satisfying EL . (p) < /2p there exist minimizers for EL. (p) in E(R) and all

m
minimizing sequences are pre-compact' modulo translations.

is monnegative, 2w —periodic, concave on [0,2x], EL. (—p) = EL. (p),

at the origin is \/2. If F' is C* near 1 and F"'(1) < 2

n

it) For any fized A > 0 the function p —— E\ pmin(p) is 2m—periodic, concave on [0, 2],
Ex min(p) < V2p, the right-derivative of E) min at the origin is V2, and E) min(p) < E,lnm(p)

iii) For any fized p there exists A\.(p) > 0 such that the mapping X\ — E\ pmin(p) is strictly
increasing on (0, \«(p)], and Ex min(p) = EL,,(p) for all X = X\.(p).

m

i) For any A > 0 and any p € (0,7 satisfying Exmin(p) < V2p there exist minimizers for
Ex\min(p) in € and all minimizing sequences are pre-compact?® modulo translations.

1. This statement is vague because we did not introduce a distance on £(R). Please see Theorem 3.5.2 for a precise
statement.
2. See Theorem 3.6.6 for a precise statement.
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Outline of the paper. In the next section we present the functional setting and we show that
one can bound the energies E' and E) in terms of the associated Ginzburg-Landau energies, and
vice-versa. In Section 3 we give a rigorous definition of the momentum, firstly for functions in £(R)
and then for functions in £. Section 4 is devoted to the study of one-dimensional traveling waves by
using ODE arguments. In the case of the Gross-Pitaevskii equation (F(s) = 1—s) those results were
already known, see [1] and references therein. Different behaviour may occur when we consider other

nonlinearities. In section 5 we study the 1—dimensional minimization problem associated to EL .

and we prove part (i) in Theorem 3.1.1. Section 6 is devoted to the 2—dimensional minimization
problem for Ej ,,,;», and to the rest of the proof of Theorem 3.1.1.

Notation. We denote by (-,-) the usual scalar product in C ~ R?2, namely (a + ib, c + id) =
ac + bd, and by £V the Lebesgue measure in RY. We denote by C,, . 4, or by C(a1,...,a) a
positive constant that may change from line to line, but depends only on the parameters aq, ..., ay.

3.2 Energy and function spaces

The precise representative of a given function f € L; OC(RN ) is the function f* defined on R

1
by f*(z) = hm —_— f(y) dy if the limit exists, and 0 otherwise. It is well-known that for
=0 |B(z,7)| JB(.r)

any f € LZOC(RN) we have f = f* almost everywhere (see, e.g., Corollary 1 p. 44 in [7]). In the
sequel we will always replace functions in L}OC(RN ) by their precise representatives. We denote

ER) ={Y € Lio(R) | ¥' € L*(R), V([¢*) € L'(R)}
For any given 1) € £(R) and any interval I C R we denote
BYW) = [P +V(Pde  and  Egiw)= [P+ (P - 1%

When I = R we write simply E'(¢) and Bl ().

Lemma 3.2.1. Assume that (A1) and (B1) hold. Then :
i) Any function ¢ € E(R) is bounded and %—H()'lder continuous on R. There exists a function
b:[0,00) — [0,00) satisfying hi% b(t) =0, TILHSO b(1) = oo such that

ool = Ulremy SOE () for any ¢ € E(R).
ii) For any 1 € E(R) we have || —1 € HY(R) and

ER) = {Y€Hp(R) | ¢ €L*R)and [f]* - 1€ L*(R)}

= {Y e Hp(R) | ¥ € L*(R) and [¢| -1 € L*(R)}.
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Furthermore, there exist functions by, b : [0,00) — [0, 00) such that liIr%) bi(1) =0, li_)m bi(T) = 00
T— T—00
fori=1,2, and we have
E'(¢) < bi(Egr(v))  and  Egp(¥) <ba(E'(¥))  for any b € E(R).
For any ¢ € ER) and any v € HY(R) we have ¢ +v € E(R).

Proof. (i) Let ¢ € E(R). Since v € L} (R) and ¢’ € L} (R), it follows from Theorem 8.2 p.
204 in [3] that ¢ is equal almost everywhere to a continuous function and

= [(v(s)as
The Cauchy-Schwarz inequality gives
(3.2.1) () — (a)l < |b—al2 |/l 20y~ forany a,beR.
It is well-known that || € Lloc( ) and | |¢|' | < |¢'| almost everywhere. Using the Cauchy-Schwarz
inequality and denoting h(s) = 1/V (s?) we get for any a,b € R, a < b,
[ v s [ ) d

(3.2.2) b
2| [ o ds

= 2 (o)) ~ H([(a)))|

Using (3.2.2) and (B1) it is easily seen that any function ¢ € £(R) is bounded. Since V (|¢|?) €
L'(R), there are sequences a,, — —oo and b, — oo such that |1)(a,)| — 1 and | (b )| — 1. For
any € R we use (3.2.2) on [a,, ] and on [z,b,] and we let n — oo to get 4|H (|¢(z)|)| < E ().
We infer that

0@ - 1] < max (7 (3 @)) ~ 11— 17 (<38'@))) i< <2,

respectively |[¢(z)] —1 < H™! (iEl(d))) —1if [¢(x)| > 2, and (i) is proven.

(ii) Assume that ¢’ € L2(R) and V(|4|?) € L*(R). By (A1) and (B1) there exists C' > 0 such
that (1 — s)? < CV(s) for all s € [0,4]. Then (1 — W\Q)Z Liyi<2y < CV([9]?) € L'(R).
The set A = {x € R | |¢(z)| > 2} has finite Lebesgue measure in R. Indeed, by (i) we

know that 1 is bounded. If m := sup |[¢)| > 2, let i(m) = %ilf . V(s). By (B1) we know that
se|4,m

i(m) > 0 and we have the rough estimate [g V(|[¢|?)dz > [,V (|[v|*)dz > i(m)L'(A), hence
EI(A) < (1) (|¢’2)HL1(R) and

—1)2
SV ) -

/A (1 - WZ)Z dr < (m® —1)*L1(4) < Tim)
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It follows from the above estimates that 1 — |¢|> € L?(R) and there exists a function by with
the desired properties.

Conversely, if 1 — |¢|> € L%(R) a similar argument shows that 1 is bounded, V (|¢|?) € L'(R)
and E'(¢) can be estimated in terms of EL; ().
We have | [¢| — 1] = |“pr|i:11| < | [9f* — 1], hence || — 1 € L*(R) whenever [¢)|*> — 1 € L*(R).
Conversely, if ¢’ € L?(R) and || — 1 € L?(R) we see as above that v is bounded and therefore
> —1 e L*(R).

For the last statement proceed as in the proof of Lemma 3.2.4 (i) below. O

The following result is contained in Theorem 1.8 p. 134 in [§] :

Lemma 3.2.2. ([8]) Let ¢ € E(R). Then :

i) There exist a real-valued function ¢ € HY(R) and w € H'(R) such that 1) = ¥ + w.

it) If (p1,w1) and (p2,ws2) are as above, there exist k_,ky € Z such that o1 — w9 — 27ky €
L*(Ry).

iii) Moreover, the function ¢ can be chosen such that ¢ € C®°(R) and ¥ € L*(R) for any
ke N*.

As already mentioned in the introduction, the natural "energy space" for the study of (3.1.3) is

& = {¢e€L,.(R? | ¢ is 1—periodic with respect to the second variable and

(3.2.3) Vi € L*(R x [0,1]) and V(|¢[?) € L'(R x [0,1])}.

Obviously, for any 1 € £(R) the function v defined by 1*(x, y) = ¥(z) belongs to £. We will also
denote
H! ={veH..(R? | vis 1—periodic in the second variable and v € H'(R. x (0,1))}.

per

It is clear that E) () is well-defined for any ¢ € £ and for any A > 0, where E) is as in (3.1.4).
We will show in Lemma 3.2.3 below that for any v € & we have (|| — 1)2 € L*(R x [0,1]). For
any ¥ € £, A > 0 and for any interval I C R we denote

E{(¢) = /I><[0 . ’% ’ + )\2‘%‘2 +V(|[¢|*)dedy and
R0 2T R (o

We will simply write E)(1), respectively Egr () when I = R. We will write E(¢) and Egr ()
when A = 1.
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Lemma 3.2.3. Assume that the conditions (A1), (A2) and (B2) in the introduction are satisfied.
Let € be as in (3.2.8). Then we have

E = {y e H..(R? | ¢ is 1—periodic with respect to the second variable and
Vi € L*(R x [0,1]) and || — 1 € L*(R x [0,1])}

= {v € H. (R?) | v is 1—periodic with respect to the second variable and
Vi € LR x [0,1]) and ||*> —1 € L*(R x [0,1])}.

In particular, for any ¢ € € we have || —1 € H),.
Moreover, for any A > 0 there exist a,b,c,d > 0 such that for all v € £ and for any interval
I C R of length at least 1 we have

2
(3.24)  E{(¢) < aBLp 5 (%) + bEL \ ()P0t and E&pa() < cEX(Y) + dEX(¥)7,
where vy € (0,1] is the exponent appearing in (B2).

Proof. We have | [¢|2 — 1| = ||| = 1] - [ [¢o| + 1] = ||| — 1]. If 9|2 — 1 € L2(R x [0,1]), it is
obvious that |¢| — 1 € L?(R x [0,1]).

Conversely, assume that [1)| — 1 € L?(R x [0,1]) and V¢ € L%(R x [0, 1]). Since |V[¢|| < [V
almost everywhere, we infer that || — 1 € H*(R x [0,1]) and the Sobolev embedding implies that
|| —1 € LP(R x [0,1]) for any p € [2,00). We have

5) 2
[l = 1] < 5] [l = 1Lgyieay + 5 191 = 1 sy

and we infer that || — 1 € LR x [0, 1]).

We will repeatedly use the following simple observation. Let I C R be an interval of length
greater than or equal to 1. Proceeding as in [3], Section 9.2 we may use four successive "mirror
symmetries" to extend any function v € H'(I x (0,1)) to a function @ € H' (), where Q; is a
domain containing (I + (—1,1)) x (—1,2)). Then we choose a cut-off function x € CZ°(€) such
that 0 < x <1, x =1 on I x [0,1] and Vy is bounded independently of I. Denoting P(u) = x,
we see that P(u) € H'(R?) and ||Pul| y1®2) < Cllullgi(1%(0,1)), where C' is independent of I. Using
the Sobolev embedding in R? we see that for any p € [2, 00) there exists Cp > 0 depending only on
p such that

ullLr(rx0,1)) < I1P(W)llLrr2) < CpllP(w)ll w2y < COpllull grrx(0,1))-

Assume that ¢ € H} (R x (0,1)) and Egr(¢)) < co. From the above arguments it follows that
|Y| —1 € HY(R x (0,1)) and ||[¢| — 1||§{1(1><(0 1) S CFEL; () for any interval I of length at least 1.
By (A1) and (A2) there exist C1,Cs > 0 such that
2
V(s*) <Oy (52 — 1) f0<s<2, and V(s%) < Cy(s — 1)%02  if 5 > 2.
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Using the Sobolev embedding we have

2
[ viwPyar< [ e (1wl -1) + ol ol - 17 o
Ix(0,1) Ix(0,1)

< CLBLL($) + CoClpyal [0 = U 0.1y < CLEEL(W) + CoEGL ()P,

N

The first estimate in (3.2.4) is thus proven. If I = R we see that V (]1)|?) € LY(R x (0, 1)).

Conversely, assume that (B2) holds, Vi € L2(I x [0,1]) and V(|1|?) € L*(I x [0,1]). Without
loss of generality we may assume that 0 < v < 1. Take an increasing concave function G : R — R
such that G(s) = sif s < 4 and G(s) = s7 for s > s1, where s; > 4, and 0 < G’ < 1. By assumptions
(A1) and (B2) there is C' > 0 such that G (2| — 1)? < CV (|#?), hence G(|v| — 1) € L*(I x [0,1]).

We claim that G(|s)| — 1) € HY(I x (0,1)) and V (G(|¢| — 1)) = G'(J¢| — 1)V(|¢|) almost
everywhere. Indeed, let u, = min(|¢)| — 1,n). We have |Vu,| < |V¥| a.e., and there is C), > 0
such that |u,|? < C,V(|1]?), hence u,, € H*(I x (0,1)). By Proposition 9.5 p. 270 in [3] we have
G(un) € H'(Ix(0,1)) and V(G(upn)) = G (un) Vi = G (un)V([¢])Lfjp|<nt1} a-e. The claim follows
by letting n — oo and using the Dominated Convergence Theorem.

It is obvious that |V(G(|¢| — 1))| < |V¢| a.e. and we conclude that ||G(|¢| — )||H1 Ix(0,1)) S

CAEL(1). By the Sobolev embedding we have |G(|¢] — 1)||1e(rx(0,1)) < C(p, /\)EI(@D)2 for any
p € [2,00). We have
4
([91? = 1)? <25G (|| — 1)*Lyjay + CG([Y] = 1)7 Lyjpisay
and we infer that
2
/ (191 = 1)* <251 G(|Y] = DI Z2(1x 01y + CIG(¥] —1)||” < CLEN($) + C2EX ().
Ix(0,1) 7 (Ix(0,1))

This gives the second estimate in (3.2.4). g

Lemma 3.2.4. Assume that (A1), (A2) and (B2) hold. Then :
i) For any ¢ € € and any v € H',, we have ¢ +v € &.

per

it) Let ¢ € €. Then for almost all y € R the mapping ¥ (-,y) belongs to E(R) and for almost all
r € R the mapping 1 (z,-) belongs to H'((0,1)).

iii) For a given 1 € £, define (x) = fol Y(z,y) dy and vy(x,y) = Y(x,y) — U (x). Then we have
¥ e ER), vy € H},,. and

1 0
:/ gf(x,y) dy, T _ a—w almost everywhere.
0

dy Oy
For any interval I C R of length greater than or equal to 1 we have
(3.2.5) lou i xoy < 2MVEIT2axny ond EGL() < C(Eby () + BEL(4)) -
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w) For any 1 € € there exist a real-valued function ¢ € C(R) satisfying ©® € L*(R) for any
ke N* and w € H}, such that (z,y) = %@ +w(z,y).

per

Proof. (i) It is clear that ¥ +v € H} (R?) and V(¢ +v) € L*(R x [0,1]). We only need to show
that | +v[* =1 € L*(R x [0,1]). Recall that [¢| —1,v € H,, C LP(R x [0,1]) for any p € [2, 00)
by the Sobolev embedding. We have
(3.2.6) [+ o2 = 1= (JoP = 1) + 22, 0) + o]

It is clear that |[¢> — 1 € L*(R x [0,1]) because ¢ € £ and |[v|?* € L?*(R x [0,1]) because v €
LA(R x [0,1]). We have also

(3.2.7) [, ) < 9] o] <[] = 1] - o] + [v].
The last function is in L2(R x [0,1]) because || — 1,v € L*(R x [0,1]) and v € L3R x [0,1]).
(ii) is a consequence of Theorem 2 p. 164 in [7] and of Fubini’s Theorem.

(iii) By Fubini’s Theorem, ¢ is measurable. By the Cauchy-Schwarz inequality we have |@Zu1(x) ]2
fo 4b(z,y)|? dy and we infer that ¢) € L7 (R).

Let g(z) = 01 %($ y)dy. As above, using the Cauchy-Schwarz inequality we find |g(x)|?> <

fo ax (x,y ] dy and we infer that g € L?(R) and 9l 2y < Hg—fHLQ(IX(OJ)) for any interval I C R.
For any ¢ € C2°(R) we have

/1/1 da:-/(/wxy dy)dx

1
= /0 (/R U(x,y)¢'(x) dw) dy by Fubini because 1 (x, )¢’ (z) € L*(R x [0,1])

1 oL, 1
= —/ ( —(x,y)o(x) d$> dy  because ¢¥(-,y) € Hj,.(R) for a.e. y € [0,1]
0o \/r Oz

= /R (/01 gi} (x,y) dy) ¢(x)dz by Fubini again because ?ﬁ(ﬁ e L'(R x [0,1])
— - [ ga)é(a) da.
R

v o\ /
We conclude that ¢ € H. (R) and (1/}) =g.
It is clear that vy is 1— periodic with respect to the second variable and 8% = %’ For almost

every x € R we have vy(z, ) = ¥(x, ) — ¢(x) € H'((0,1)) and fo vy (2, y) dy = 0. For any such z,
using the Poincaré-Wirtinger inequality (see [3] p. 233) we get

1 ov 2
[ ool dy < oo o < | G /!a .9)
0 Yy
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Integrating with respect to = we infer that vy € L*(R x [0,1]) and we have vy ll 2 (rxjo1)) <
) for any interval I C R.

a(;;b(;[;’y) = %(ZL‘,Z/) - (J})/ (l') = g%(l'vy) - /01 Z—i(az,y) dy

and we see that for almost every z € R there holds

[Vl = [ 5wl a- ([ Geom) <[5

The above estimates imply that v, € H),, and the first estimate in (3.2.5) holds.

per

We have ¢ = 1) — vy Then using (3.2.6), (3.2.7) and the Sobolev inequality

[EAl
oy I1L2(1x]0,1]
We have

1
1] = Ulparxpon < CHYI = Ulaaxpo,) < CE{L ()2
as well as the similar estimate for vy, we get the second estimate in (3.2.5).

(iv) By Lemma 3.2.2 there exist ¢ € C®(R) such that o) ¢ L2(R) for any k > 1 and
w; € HY(R) such that 1) = €? + wy. Letting w(x,y) = vy(x,y) + w1 (x) we see that w € H1 and

pET’

(iv) holds. O

3.3 The momentum

3.3.1 Definition of the momentum on £(R)

From a mathematical point of view, the momentum should be a functional defined on £(R) such
that for any ¢ € £(R) and for any v € HI(R),

(3.3.1) lim (¢+tv —2/ (i, v

t—0

Notice that functions in £(R) may oscillate at infinity. One can introduce a distance and define
a manifold structure on £(R), see [8]. The tangent space of £(R) at 1 contains H'(R), but is
larger than H'(R) (see [8] p. 140). We require (3.3.1) to hold only for v € H'(R), hence condition
(3.3.1) is weaker than Gateaux differentiability and this allows some flexibility in the choice of the
definition of the momentum.

We were inspired by the definitions of the momentum in higher space dimensions given in [11, 6].
The energy space associated to eq. (3.1.1) in RY with "boundary condition" || — 1 as || — oo
is

ERN) ={y € H,L R") | V¢ € L*(R") and |¢| — 1 € L*(R")}
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(see (1.11) p. 154 in [6]). The momentum with respect to the x;—direction is a functional P :
E(RYN) — R satisfying

P tv) — P 0
lim (W + tv) () =2 (z—w, v)ydr for any v € H'(RY) with compact support.
t—0 t N Oxy
Formally we should take P(¢)) = / (i . ——, ) dx, except that for an arbitrary function ¢ € E(R™Y),

the function <i§—£, 1) is not necessarily in L'(R"). However, it has been shown in [11, 6] that for
any ¥ € E(RVN) there exist f € L'(R"Y) and g € H'(R") such that

N
<267£L'1’w> - f + afhg'

Obviously, f and g are not unique. However, if h € H'(R™) and 9,,h € L*(R"), then Lemma 2.3
p. 122 in [11] implies that necessarily [gn Oz hdz = 0. This allows to define unambiguously the
momentum by P(¢) = [g~ f(x)dz.

The situation is different in space dimension one. If h € H'(R) and h' € L'(R), the integral
[ I'(x) dx can take any value. This is due to the fact that functions in H'(R) may have different
limits or may oscillate at +-00. To give an example, let a € ( %, 1) and consider xy € C*°(R,R) such
that X' () = = on (—oo, —1JU[1,00). Then x(z) = ==2'"*+Cj on [1,00) and a similar formula

BREs a

holds on (—o0, —1]. We have x € H'(R), ¢X € £(R) and ¥’ & L'(R). For a,b € R, a < b, let
x(a) ifx<a,
Xa,b(m) = X(CL') ifr e [CL, b],
x(b) ifxz>b.

We have X, € H'(R), eXab € £(R), Xop € LYR) and [ Xo5(7) do may take any value in R as
a and b vary.

Assume that ¢ € H} (RY) can be written as ¢ = ¢° 4+ w, where ¢ is real-valued and ¢, w €
H} (RM). A simple computation gives

oY Oy ow

9 (. i i :
,¢> aml—i-a—xl((zw,e )) 2((%:1 Sé’w)—i—(za—xl,w).

In space dimension N = 2, a variant of Lemma 3.2.2 asserts that for any ¢ € £(R?) there exist
a real-valued function ¢ € H'(R?) and w € H'(R?) such that 1 = € + w (see Theorem 1.8
p. 134 in [8]). Then we have (iw,e™) € H'(R?) (see the proof of Lemma 2.1 p. 158 in [6]).
According to Lemma 2.3 p. 122 in [11] we must have [g» —g—f + 8% ((iw, €*)) dz dy = 0 whenever

(3.3.2) (i

92 + 9 ((iw,e)) € L'(R?). This observation enables to define unambiguously the momentum
on £(R?) by

0 0
QW) = [, —2(5Ee,w) + (15, w) da dy

X
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for any function 1) = € 4+ w, where ¢ and w are as above. The integrand belongs to L!(R?) by
the Cauchy-Schwarz inequality, and the value of the integral does not depend on the choice of the
functions ¢ and w satisfying the above properties.

The situation is more complicated in space dimension N = 1 because the integral of a derivative
of a function in H L(R), when it exists, does not necessarily vanish. Nevertheless, we will use an
analogy to the two-dimensional case. More precisely, for any real-valued function ¢ € H Y(R) and
for any w € H'(R)) we define

(3.3.3) (o, w) = /R —2(¢'e", w) + (iw', w) dx.

Notice that the integrand is in L!'(R) by the Cauchy-Schwarz inequality and consequently p(p,w)
is well-defined.

Assume that 1) € £(R) can be written as 1) = ¢! +w; = €?2 +wy, where (p1,w;) and (@2, ws)
are as in Lemma 3.2.2. By (3.3.2) we have

. L
—2(ghe™r,wy) + (iw), wy) = (@, ) + ) — ({iwy, €%))
for j = 1,2, therefore

(—2(phe™??, wa) + (iwh, wa)) — (—2(p)e™*, wi) + (iw], wr))
(3.3.4)
= — @] — (<iw27€i‘p2>)/ + ((iwh@m)),-

By Lemma 3.2.2 there exist ky, k_ € Z such that ps—¢1—2k_7 € L?((—00,0]) and ps— @1 —2k 7 €
L?([0,00)). Then we have gy — 1 — 2k_7 € H'((—00,0)) and @3 — 1 — 2ky7 € H'((0,00)), hence
o — 1 — 2k_m as x — —oo and w3 — 1 —> 2k T as r — 0.

It is easy to see that (iw;,e™¥’) € H(R) for j = 1,2. For any function f € H'(R) we have
f(s) — 0 as s — 400 and fFR f')dt = f(R) — f(—R) — 0 as R — oo. Using (3.3.3),
Lebesgue’s dominated convergence theorem, then (3.3.4) we get

p(p2, wa) — p(p1,w1)

R

(3:3.5) = Jim [ (<2(phei wn) + (i, wa)) — (<2(phe™™ wn) + (i, wn)) d

R , , ) / ) ’
= lim / 0y — P — ((iwg,el‘”)) + ((iwl,e’SDl)) dx =2m(ky — k).
R—oo J_R
Let ¢ = e +w € E(R), where ¢ and w are as in Lemma 3.2.2. Let k € Z. Consider a real-valued
function x € C*°(R) such that x = 0 on (—o00,0] and x = 1 on [1,00). Define ¢ = ¢ + 2kx and
W= w + e’ — . It is easily seen that 1) = ¥ + w, where ¢ and 1 also satisfy the conclusion of
Lemma 3.2.2, and the above computation shows that p(@,w) — p(p, w) = 2km.
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We conclude given any 1 € £(R), it can be written as ¢ = ¢? +w € £(R), where ¢ and w are
as in Lemma 3.2.2, but the quantity p(¢,w) is well-defined only modulo 27Z. We denote by |-] the
projection of R onto R/27Z, namely |x| = {x + 2k7 | k € Z}.

Definition 3.3.1. Given any 1 € E(R), the momentum of v is
LP] (%) = [p(p,w)],

where 1) = € +w and ¢ and w are as in Lemma 3.2.2 (i). We call a valuation of the momentum
of ¢ any number in the set | P](v), and the canonical valuation the only number in the set [0,27) N
LP]().

It follows from the above discussion that a number p € R is a valuation of the momentum of a
mapping ¢ € E(R) if and only if there exist ¢ € H'(R,R) and w € H'(R, C) such that ¢ = ¢ +w
and p(¢,w) = p.

For any ¢ = e + w € £(R) and any o € R we have e = (¥ 4 iy, It is clear that
p(p,w) = p(e + a,e®w), and consequently we have | P|(e!)) = | P|(v).

For all ¢ € H(R,R) we have ¢¥ € £(R) and E'(e'¥) = HSOIH%?(R)' Definition 3.3.1 gives
|P](e") = |p(,0)] = [0]. However, we have (i (¢?)',e") = —¢' and ¢’ does not necessarily
belong to L'(R); when it does, [g ¢'(z)dx can take any value.

Assume that ¢ € £(R) is constant outside a bounded interval [a, b], say 1 (z) = €'*! on (—oc0, a]
and v(x) = €' on [b, 00), where a1, as € R. Consider any function ¢ € C*°(R) such that p = a;
on (—oo,a] and ¢ = ay on [b,00). Let w = 1 — €. Then w € H*(R), supp(w) C [a, b] and using
(3.3.2) we get

b
plp,w) = as —ag + / (i) ) dx

In particular, if oy = ap we see that a valuation of the momentum of ¢ is [g (i, ¢) dx.
Given any ¢ = ¢ +w € £(R) and any v € H'(R), we have 1) + v = ¢ + (w + v), hence a
valuation of the momentum of v 4+ v is p(p, w + v). It is obvious that

p(p,w +v) — plp,w) = /R —2(¢'e", v) + 2(iw’, v) + (iv',v) dz = /R<z (2¢' + ') ,v) dx

and

t
lim plow+ U) plp,w = 2/ (—¢'e™,v) + (i, v) dx = 2/ (i), v) dx
t—0 R

Remark 3.3.2. Assume that ¢ € £(R) admits a lifting ¢(z) = p(x)e?@) where p = |¢| and
6 ¢ H'(R). By Lemma 3.2.3 we have 1 — p € H'(R). Let w = (p — 1)e. Tt is easy to see that
w € HY(R), ¢ = ¢ +w and

—26 e, w) + (i, w) = (1— p2)8.

Therefore a valuation of the momentum of 1 is p(0, w) / (1— p )0 dz. This is in perfect agreement
R
with formula (2.12) p. 123 in [11] and with formula (2.7) p. 159 in [6].
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3.3.2 Definition of the momentum on &
For any given ¢ € H'(R) and any w € H'(R x (0,1)) we define

dlip, w](z.y) = =2(¢ (@) w(z, y)) + <i%(% y), w(z,y)).

The Cauchy-Schwarz inequality implies that d[p,w] € L'(R x (0,1)), thus we may define
dew)= [ dip.wldudy.
Rx(0,1)

Assume that @1, 2 € H'(R), w1, ws € H' (R x(0,1)) and €' +w; = 2 +wy a.e. on Rx(0,1).
Let h(z) = ¢#2(*) —¢#1(#) Then we have h € H'(R) and h = w; —ws € H' (R x (0,1)). By Fubini’s
theorem it follows that h € L?(R), hence h € H'(R).

By Theorem 2 p. 164 in [7], there is a set A C (0,1) such that (0,1) \ A has zero Lebesgue
measure and for any y € A the mappings w;(-,y) belong to H'(R) for j = 1,2. For all y € A we
have (-, y) = €% + w;(-,y) € ER). Using Lemma 3.2.2 (ii), there exist ki,k_ € Z such that

lim @2(z) — p1(z) = 2mks. Using (3.3.2) we get

T—F00

dlip2,wa] = dipr, w1 = 0 — @ — o= ((iwa, €92) — (iw1, 1) ) = @) — @} + o ({ih, & +wn)) .

Proceeding exactly as in (3.3.5) we see that for any y € A there holds

[ dien wal(ay) = dipr,wilw.g) do = 2n(ks — k)
and then integrating with respect to y and using Fubini’s theorem we get

q(p2,w2) — q(p1,w1) = 2m(ky — k_).

Let ¢ € HY(R), w € H'(R x (0,1)) and k € Z be arbitrary. Take a real-valued function
x € C®(R) such that x = 0 on (—00,0] and x = 1 on [1,00) and define ¢ = ¢ + 2kx and
W= w+ ¥ — €. Tt is easily seen that e¥ +w = e + 1 and q(@, W) — q(¢, w) = 2kn.

Civen any ¢ € £, by Lemma 3.2.4 (iv) there exist ¢ € H'(R) and w € H'(R x (0,1)) such that
U(z,y) = @) 4 w(x,y). The previous discussion shows that the quantity g(p,w) is well-defined
modulo 27Z. This enables us to give the following

Definition 3.3.3. Given any ¢ € &£, the momentum of ¢ is

[QI(Y) = lalp, w)],

where ¢ € H'(R,R) and w € H' (R x (0,1),C) are such that ¢ = €' + w. A valuation of the
momentum of 1 is any number in the set |Q|(1)), and the canonical valuation is the only number

in the set |Q] (1) N[0, 27).
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Remark 3.3.4. i) As in the one-dimensional case, a number ¢ € R is a valuation of the momentum
of a mapping v € £ if and only if there exist ¢ € H'(R,R) and w € HI}W such that ¢ = e +w
and ¢(p,w) = ¢. If ¢, ¢ and w are as above, then for almost any y € R we have ¢(-,y) € E(R)
and w(-,y) € H'(R), and then p(¢,w(-,y)) is a valuation of the momentum of ¢(-,y) € £(R). By

Fubini’s Theorem we have .
q(p,w) =/0 p(p, w(-,y)) dy.

ii) Warning ! If Qo(¢)) and Py(¢(-,y)) are the canonical valuations of the momenta of ¢ € £
and of ¥(-,y) € £(R), respectively, we may have

1
Qo(v) £ /0 Py((-,y)) dy.

iii) For ¢ = ¢ + w € € and v € HY(R x (0,1)), a valuation of the momentum of ¢ + v is
q(v,w + v) and we have

~ ow ov
— = —2 e"? 21— ——
dpw o) —alpw) = [ 26 ) 4 2 o) g o) dedy
(3.3.6)
O .Ov 0y 0 +w)
- 21 2Y PV ) da dy = Y BTy dady.
Rx[0,1] <Zaxav>+<18$7v> £ ay /R,><[O,1]<Za$+z Oz 7U> T ay
Using the Cauchy-Schwarz inequality we get
oY oY +v) )
3. — < — _— .
331 oo+ o) = a0 < lollzmeiony (|5 ammon * 17 5 lremeon
From (3.3.6) we obtain
(3.3.8) lim 0 1) —aleyw) 2% vy do dy.
t—0 t Rx(0,1) ox

Notice that (3.3.6)-(3.3.8) are analogous to Lemma 2.5 and Corollary 2.6 p. 123-124 in [11] and to
Lemma 2.3 and Corollary 2.4 p. 159 in [6].

Lemma 3.3.5. Assume that i) € £ satisfies py = ( iglfR2 |(z,y)| > 0. Let p = |1|. There exists a
x,y)E

such that 1 = pe’® and a valuation of the momentum of 1 is

oo
1— p?) == dzdy.
/R><(0,1)( p)am S

Proof. Tt is well-known that p € H. (R?) and |Vp| < |Vt almost everywhere. The mapping %
belongs to H} (R? /S'), hence it admits a lifting, in other words there exists § € H .(R? R) such
that % = ¢ or equivalently v = pe'®. We have

real-valued function 6 € ngr

(V|2 = |Vp|? + p?|VA|?  almost everywhere
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and we infer that V8 € L2(R x [0, 1]).
We claim that 6 is 1—periodic with respect to the second variable y. Indeed, since 1 and p

are 1—periodic with respect to y, we infer that for any (z,y) € R? there holds 1 = wl(f(’y;)l) =

!0@y+1)=0@y)  The mapping (v,y) — 0(x,y + 1) — 6(x,y) belongs to H. (R? R) and takes
values in 27Z, hence it must be constant. We infer that there exists ky € Z such that 6(x,y + 1) =
0(x,y) + 27kg for any (z,y) € R2 For almost any € R we have 0(z,-) € H'((—1,2)) and then
using the Cauchy-Schwarz inequality we get

1,96 2
om|ko| = 0(z,1) — x0|_‘/ 9y (z,y) y‘</0 \a—y(w,y)\ dy.

Integrating the above inequality with respect to x and using the fact that g—z € L*(R x (0,1)) we
see that necessarily ky = 0 and the claim is proven.

Denote 6(z) = fol 0(x,y) dy and 0*(x,y) = 0(x,y) — 0(z). Proceeding as in the proof of Lemma
3.2.4 (iii) we see that §' € L2(R) and 6% € H'(R x (0,1)). Let w(z,y) = ¢(z,y) — @), We have

w=(p—1)e? + ¢ < )

It is easy to see that w € HY(R x (0,1)). Usmg (3.3.2) we have

) = (55} +0 (zwe )

98 - 0 0 o
339 = — 27 P ) 7 / - . -
( ) P oy +0 o ((zpe ) + + o (psm(@ 0))
99 0
— (122 . 2 # #
(1 p)&g—i-8 ( 6 +p81n(9))

By the Cauchy—Schwarz inequality we have d[f,w] € L*(R x (0,1)) and (1—p )89 € L'(R x (0,1)),
and then (3.3.9) gives 3 (0% + psin(0%)) € L'(R x (0,1)).

Next we use the following simple observation : whenever f € H'(R x (0,1)) satisfies 9, f €
LY(R x (0,1)) we must have Jrx(0,1)01f(2,y) dxdy = 0. Indeed, using Theorem 2 p. 164 in [7]
and Fubini’s Theorem we infer that for almost every y € (0,1) we have f(-,y) € H'(R) and

L1f(,y)] =0 f(-y) € L* N L*(R). For any such y we have

R
[ ot@ydz= lim [ 51f(s,5)ds = Jim (F(R.y) = (~R.v) =

Integrating with respect to y we get the desired result.

Since 6% € H'(R x (0,1)) and p — 1 € H*(R x (0,1)) it is easily seen that —6* + psin(#f) =
—0% +sin(6%) + (p — 1)sin(0%) € H'(R x (0,1)) and then using (3.3.9) and the above observation
we infer that

q(f,w) = / [0, w] dz dy = / (1— p2)@ dz dy.
Rx(0,1)) Ox
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This completes the proof of Lemma 3.3.5. Notice that this is in agreement with formula (2.12) p.
123 in [11] and with formula (2.7) p. 159 in [6]. O

Lemma 3.3.6. i) For any ¢ € E(R) there exist sequences (pn)n>1 C C®°(R,R) and (wn)n>1 C
C*(R) such that
| P] (ew" + wn) = |P](v) for all n,

. /
(e“"" + wn> — 1 in L*(R),
e fw, — ¢ in HE (R),
, . 2 2
V(ler +wal®) — V(¥ and (1 e +wal*)” — (1-[p?) in L'(R),
and there exist sequences of real numbers (Ap)n>1, (an)n>1, (Bn)n>1 such that A, — 00, supp(wy,) C
[—An, Ay, on(z) =y for x € (—o0, —A,], and p,(x) = B, for x € [4,,0).

it) For any ¢ € & there exist sequences (pn)n=1 C C®(R,R) and (wp)n>1 C C(R x (0,1))
satisfying
Q) (e +wn) = [QI()  foralln,

\% (ei“"" + um) — Vy in L*(R x (0,1)),
eigon + w, — ¢ m HIIOC(R X (05 1))7
Vv <|ei<ﬁn +wn|2) — V([¢*) and (1 — e +wn’2>2 — (1 - |¢‘2>2 in L'(R x (0,1)),

and there exist sequences (Ap)n>1, (an)n>1, (Bn)n>1 C R such that A, — oo, supp(w,) C
[—An, Ay X (0,1), op(x) = oy, for x € (—o0, —Ay], and ¢, (z) = B, for x € [Ay, 00).

Proof. We only prove (ii). The proof of (i) is similar.

If g—f =0 in L?(R x (0,1)), then for almost all y € (0,1) the mapping (-, y) belongs to H. (R)
and v(-,y) is constant. We infer that there exists h € H'(0,1) such that ¥(x,y) = h(y) almost
everywhere in R x (0, 1), and then % = h/(y). Since % € L*(R x (0,1)), using Fubini’s theorem
we see that A’ = 0 in L?(0,1) and consequently A is constant, hence 1 is constant. In this case it

suffices to take ¢, a constant function such that e*#» = ¢, and w,, = 0.
If % #0in L2(R x (0,1)), there exists v € C3°(R x (0,1)) such that

oY
Y W) dx dy # 0.
/R><(O,1)<Zal' vpdedy #

By Lemma 3.2.4 (iv) there exist ¢ € C®(R,R) such that o) € L*(R) for any k& € N* and
w € HL, such that ¢ = e + w. There exists a sequence (p)n>1 C C°(R x (0,1)) such that

per
W, — w in HY(R x (0,1)). We have
q(p, Wy, + tv) = q(p, 0y) + 2t/ <22 (ew + ﬂ)n) ,vyde dy + t2/ <Z@, v) dx dy.
Rx(0,1) OT Rx(0,1) Oz
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Since ¢(p, w,) — q(p,w) and fo(O,l)“% (e +wy,) ,v) dody — fo(0,1)< e V) drdy # 0, we
infer that there is a sequence t,, — 0 such that ¢(p, w, + t,v) = q(p,w) for all n sufficiently large.
Then we take w,, = W, + tyv. If supp(wy,) C [an,by] X (0,1), we choose A,, > 2max(|ay|, |by]) + 1
such that A, — co. Take x € C*°(R,R) such that supp(y) C [-2,2] and x =1 on [—1,1]. Take
on(z) = [ x (i—i) ¢'(s), so that ¢, = ¢ on [—A, /2, A,/2], and ¢, is constant on (—oo, —A,] and
on [A;,,00). It is easy to see that (ypn,wn)n>1 satisfy all desired properties. O

Lemma 3.3.7. Let ¢ € H'(R) and let w € C%*(R?) such that there exists a > 0 satisfying

supp(w) C [—a,a] x R. Let ¥(z,y) = %@ 4 w(z,y). Then for any y1,y2 € R, y1 < yo we
have

Pl w(-sy2)) — (s (-, 31)) = 2 (@20 90y e ay

R x[y1,y2] Oz’ Jy
and consequently

99
Ay NL2(Rx[y,2])
Proof. We have d[p, w], (i %}7 %) € LY(R x [y1,%2]) and a standard computation gives

(2w, 1)) — Pl w(-, )| < H >

L2(Rx[y1,y2])

p(e, w(-,y2)) — plo,w(- y1)) Z/Rd[%W](l‘,?ﬁ)—d[%W](m,m)dl‘
Y2 8
= dy dz
//y1 ay ,y)) dy
Y2 , ow 0w ow Ow
- _92, ip(z) ; Pt
J [ 2 @, G ) i) + g o dyde
y2/ (—2¢ (2)e?@), w
1 /R dy
:2/y2/ (= ()@ 8—w( ,Y)) + <8w 8w)dultdy (integration by parts)
n R 8 Ox 8
ow

Y2 , Yz o0y oY
- ei® bk ik 4
Z/y1 /(za + w), 3y —)dxdy = 2/,7;1 /(zax,ay)dazdy.

The second statement follows from the first one and the Cauchy-Schwarz inequality. O

 0%w Ow Ow

(z, )>+<Zm7w>+< 92 By )

dx dy (Fubini)

3.4 One-dimensional traveling waves for (3.1.1)

We consider (3.1.1) in R x R and we look for traveling waves, namely solutions of the form
®(x,t) = (x + ct). The traveling wave profile 1 satisfies the ordinary differential equation

(3.4.1) icy + " + F(|*) =0 in R.
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We will only consider solutions of (3.4.1) in £(R). In the case of the Gross-Pitaevskii equation
(F(s) =1—s), an extensive study of solutions to (3.4.1) has been carried out in [1], Section 2. For
more general nolinearities we refer to [5] and to [10] (the latter focuses mainly on the non-existence
of supersonic traveling waves).

If assumption (A1) is satisfied, it has been shown in Theorem 5.1 p. 1099 in [10] that the only
solutions of (3.1.1) with ¢ > v? = 2 are constants. It follows from the proof of Theorem 5.1 in [10]
that all traveling waves in £(R) are C? functions on R. Let ¢ € £(R) be a solution of (3.4.1) and
let o = [¢|?. Then p—1 € H'(R) by Lemma 3.2.1 and it can be shown that g satisfies the equation

(3.4.2) o' +c*(o—1)—2V(0) +20F(0) =0 in R
(for the proof see (5.10) p. 1100 in [10]). Multiplying (3.4.2) by 2¢’ and integrating we get
(3.4.3) (0)? + 20— 1) — 40V (o) = 0.

Denote
g(s,c) = 4sV (s) — *(s — 1)%

By (3.4.3), for any # € R we must have g(o(z),c) = 0 and ¢'(z) = £1/g(o(x), ). Since (0, ¢) = —c?,
we see that for any ¢ # 0, solutions of (3.4.3) must stay away from zero. This implies that for ¢ # 0,

any solution 1) € £(R) of (3.4.1) does not vanish, and therefore has a lifting ¢(z) = \/o(z)e??®,
where the function # is C? on R. Taking the scalar product of (3.4.1) with i) we get

c
5@’ + (00") = 0.

We infer that there is a constant k; € R such that $o + 06’ = ki in R. We have o(z) — 1 as

x — F00 because o — 1 € HY(R). Since [¢'|> = % +0l0'|?> € LY(R), we deduce that 6’ € L*(R),
therefore we must have k1 = § and consequently

(3.4.4) g =<-"2

Let ¢ # 0. If we are able to solve (3.4.2) and we get a solution g such that o — 1 € H'(R), it
follows from (3.4.3) that inff{ o(z) > 0, and then from (3.4.4) we obtain 6 up to a constant. Then by
ze

(3.4.4) we have 0/ € H'(R), \/oe” € £(R) and it is straightforward to see that ,/pe is a solution
of (3.4.1). Moreover, all solutions of (3.4.1) in £(R) are obtained in this way. Notice that (3.4.1) is
invariant by translations and by multiplication by complex numbers of modulus 1, so the phase 6
can be determined only up to a constant.

If assumption (A1) is satisfied, we have V(s) = 2(s—1)2+o((s—1)?) and g(s,c) = (2—?)(s —
)2 +o((s —1)?) as s — 1. If ¢ < v2 = 2 we have g(s,c) > 0 whenever s is sufficiently close to
1 and s # 1. Since g(0,c) = —c? < 0, we infer that there exists ¢ € [0,1) such that g({,c) = 0
and we denote ((c) = sup{¢ € [0,1) | g((,c) = 0}. It is clear that g(¢(c),c) =0, g > 0 on ({(c), 1)
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and the mapping ¢ — ((c) is even on (—+/2,v/2) and is strictly increasing on (0,/2). We denote
D = {(s,¢c) € (0,1) x (—v/2,v/2) | ¢(c) < s < 1}. The set D is connected, but not necessarﬂy open.
We consider a continuous function G : D — R such that BG exists and ‘9G Z(s,¢) = m for any

(s,¢c) € D, and G is C2 in D. (Such a function exists : it suffices to take a smooth curve ¢ — a(c)
defined on (—+/2,v/2) such that ¢(c) < a(c) < 1 for all ¢, then put G(s,c) = fas(c) \/% dr.) For any
g\7,c

fixed ¢ € (—v/2,v/2), the mapping s +— G(s, ¢) is strictly increasing on ({(c), 1) and tends to oo as
s — 1 because —=— —» Let L(c) = lim G(s,c). Then G(-,¢) is a C?—diffeomorphism
s e (c) = lim G(s,c) (0) p

between (((c),1) and (L(c), o0).

Proposition 3.4.1. Assume that assumption (A1) is satisfied and let ¢ € (—v/2,v/2). Then :
i) Equation (3.4.1) admits a solution ¢ € E(R) satisfying 1£Pf{ |(z)| <1 if and only if L(c) :==

lim G(s,c) is finite.
ww)( ) is f
Whenever L(c) is finite, let

G(,e)"HL(e) —z) ifx <0 A
0e(w) =4 <(0) o0 ad o) =5 [T pezo.
G(-,e)"HL(e) +2) ifz>0 0 0cls

If ¢ # 0 we define o(x) = \/o(z)e?®),
If ¢ = 0 there are three subcases :

- either there ezists s € (0,1) such that V(s) = 0, then we have ((0) > 0 and we put o(x) =

QO(x> ’

-or'V >0 onl0,1), so that ((0) = 0 and we put () = sgn(x)\/0o(z) ;

-orV >0 o0n(0,1) and V(0) = 0, and then V(s) < Cs for s sufficiently small and consequently
L(0) = —o0 ; in this subcase we do not define vy.

Whenever ). is defined as above, we have . € E(R) and . is a solution of (3.4.1).

it) Equation (3.4.1) admits a solution ¢ € E(R) satisfying sup | ()| > 1 if and only if
zeR

e the mapping g(-,c) admits zeroes in (1,00), and )
e denoting ((c) = inf{¢ > 1| g(¢,c) = 0} and by G(-,c) a primitive of

(1,¢), the limit L(c) := lim G(s,c) is finite.
s1¢(c)
In this case, define

1 .
on the interval
V g(~,c)
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Then V. € E(R) and . is a solution of (3.4.1).

i17) Let 1p € E(R) be a nonconstant solution of (3.4.1). We have either |y (x)| < 1 for any xz € R,
or || > 1 for any x € R. For any € € (0,v/2 — ¢?) there exist A, B: (depending on € and on 1)
such that

(3.4.5) e lIVI=EHE 2 — 1] < eTBIV2ZEE= o (—o0, AU [Be, ).

i) Any solution ¢ € E(R) of (3.4.1) satisfies |¢'(x)|? = V(|¢(x)|?) for any x € R. In particular,
we have E(5) = 2 o [¢/[? dv = 2 fg V(1) de.

v) If the nonlinearity F is locally Lipschitz, then any solution 1 € E(R) of (8.4.1) is either a
constant of modulus one, or is of the form e %e(- — x0) or €~ — x0) for some o, g € R, where
Ve and . are as in (i) and (ii), respectively.

vi) If co # 0 and the mapping c — ((c) is differentiable at cq, then L(co) is finite.
Consequently, equation (8.4.1) admits solutions in E(R) for almost every ¢ € (—v/2,/2).

Proof. (i) "=" Let v € £(R) be a solution of (3.4.1) and let o = |¢|>. Then ¢ — 1 at +o0,
0 is a C? function on R and satisfies (3.4.2) and (3.4.3). Assume that inf o < 1. Take 77 € R such
that o(z1) € (¢(¢),1). Let I = (a,b) be the maximal interval containing x; such that o(z) € ({(c), 1)
for any x € I. It follows from (3.4.3) that ¢’ # 0 on I, hence ¢’ has constant sign and g is strictly

¢ (z)

g(e(x),c)
G(o(w),¢) = x + kg on I, where k is a constant, hence o(z) = G(-,¢)"!(z + k2) on I. Then
necessarily b = oco. Indeed, if b is finite we have ((c) < o(x) < G(-,¢)"1(b+ k2) < 1 on I, hence
there is some € > 0 such that ((c¢) < o(z) < 1 on [b,b+ €), contradicting the maximality of I. If

monotonic on I. If ¢’ > 0 on I, from (3.4.3) we get = 1 on I, and integrating we obtain

L(c) = —oo we must have a = —oo (for otherwise, ((c) < G(-,¢) " (a + k2) = o(a) < o(z) < 1
for all z € I, and we would have ((c) < o(z) for € (a — ¢,a] for some positive &, contradicting
again the maximality of I). But if @ = —oo we have Erin o(x) = EIEI G(-,c) Ha + k2) = C(e),

impossible because o(x) — 1 as © — —o0. Thus necessarily L(c) is finite. This implies that a is
finite and p(a) = ((c), and we find a + k2 = L(c). In conclusion, if I is a maximal interval such that
((¢) < o< 1land ¢ >0 on I then necessarily I is of the form (a,c0) for some a € R and we have
o(x) = G(-,¢) Yz —a+ L(c)) on I. Similarly, if I is a maximal interval such that ¢(c) < ¢ < 1 and
o < 0 on I we show that L(c) must be finite (for otherwise I = R and ¢ would not tend to 1 at
o0) and I is of the form (—oo,b) for some b € R and o(z) = G(-,¢)~ (—x + b+ L(c)) on I.

"<=" One easily proves that . satisfies (3.4.3) and (3.4.2), and is C? in R.. It is obvious that 6,
satisfies (3.4.4) and then en easy computation shows that 1. solves (3.4.1). By (3.4.5) proven below
we have o. — 1 € L?(R), and then (3.4.3), the boundedness of g, and (A1) imply that o’ € L?(R).
By (3.4.4) we get ¢ € L?*(R) and then we infer that ¢. € £(R). Notice that ¢ may vanish only if
¢ =0, but in this case we have 6 = 0 in R* by (3.4.4).

(ii) The proof of (ii) is similar to the proof of part (i), so we omit it.
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(iii) Let 1 be a solution of (3.4.1) and let o = |1|. If o = 1, we may write ¢ = ¢ and (3.4.4)
implies that 8’ = 0, hence ¢ is constant. Assume that there exist x1,22 € R such that o(z1) < 1
and o(z2) > 1. If z1 < w9, there exists x3 € (x1,22) such that {(c¢) < o(z3) < 1 and ¢'(z3) > 0.
The argument in the proof of part (i) "=" shows that the maximal interval I containing x3 such
that ((¢) < o < 1 and ¢’ > 0 on I is of the form (b, ), contradicting the fact that o(x2) > 1. If
x1 > T, there exists x3 € (x2,x1) such that {(c) < o(z3) < 1 and o'(z3) < 0. As above, we have
then ((c) < p(z3) < 1 and ¢'(x3) < 0 on (—o0, x3], contradicting the fact that o(x2) > 1.

A similar argument leads to a contradiction if we assume that there exist x1, 22 € R such that
o(z1) > 1 and o(z2) < 1.

Fix € € (0, V2 — ¢?). There is 0. > 0 such that

(2—c2—eH(s—1)2<g(s,c) < (2— 2 +6%) for any s € (1 — 0,14 62).

and integrating we see that there exist constants C1,Cs € R such that

In|1—s| In|l—s|
(346) Cl - \/ﬁ < G(S,C) < CQ - m for s € [1 - 5&7 1) U (17 1+ (55)

If o < 1, there exist a,b, k1, k2 € R such that a < b, p(z) € (1 —6,,1) for all z € (—o0,a) U (b, 0),
and G(g(x),c) = —x+k; on (—o0,a), respectively G(o(z),c) = -+ ko on (b, 00). Then using (3.4.6)
we see that there are constants C3,Cy € R such that

Cae [TV +e% |1 — o(2)| < CueloIV2=E== on (—o0,a) U (b, 00).
We obtain (3.4.5) for any 0 < ¢’ < & by choosing conveniently Ao < a and B. > b. The proof of
(3.4.5) is similar if o > 1.

(iv) Taking the scalar product of (3.4.1) with 2¢" we get (|'|2) — (V(|¢|?))" = 0, hence [/ |> —
V(|1]?) is constant. Since |¢)'|? and V (|)|?) belong to L!(R), the constant must be zero.

(v) Let ¢ € £(R) be a traveling wave of speed c. Let o = [1)|?. Assume that o(x) < 1 for some
x € R. By (i) we know that L(c) is finite. There is some z; € R such that ((c¢) < o(z1) < 1 and
o'(r1) < 0. As in the proof of part (i), there exists 2o > x1 such that o(z) = G(-,¢) " (L(c) +x¢ — )
for all x € (—o0, ) and o(zg) = ((c). Using (3.4.3) and the continuity of o we get ¢'(z) =
limgyg, 0 (x) = limgtg, (—v/g(0(x), ¢)) = 0. Let o, be as in (i). Then (o, ¢’) and (oc(- —z0), 0L.(- —x0))
are both solutions of the Cauchy problem

yi(z) = ( )
(y(x) —1) + 2V (y(x)) — 2y(x) F(y(x))
(?/(330) ( 0)) = (€(¢),0)

in [zg,00). Since F is locally Lipschitz, the solution of the above Cauchy problem is unique and
we infer that ¢ = op.(- — @) on [zg,00), thus on R. Then using (3.4.4) we see that the difference
between the phase of ¥ and 0.(- — ) is a constant, say «, and therefore 1) = €**¢).(- — x0).
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The proof is analogous if there exists € R such that p(x) > 1.

(vi) We have g(¢(c),c) = 0 for any ¢ € (—+/2,+/2). If ( is differentiable at cg, differentiating this
equality we get
019(C(co); co) - ¢'(co) + D29(¢(co), co) =0,

that is 919({(co), co)-¢'(co) = 2¢0(¢(co)—1)% > 0. We infer that 91g(((co), co) # 0. Since g(((co), co) =

0 and g(s,cp) > 0 on ({(cp), 1), we have 919(¢(co),co) > 0. Then ~ sclo) 1 5 (as
9(s,co) d19(¢(co)sc0)
s \( ((cp), hence s — (1 ) is integrable on an interval ({(cop),((co) + €) and L(cp) is finite.
gis,co
It is well-known that a monotonic function is differentiable almost everywhere. O

The following question arises naturally : is it true that (3.4.1) admits solutions in £(R) for all
but countably many ¢’s?

Example 3.4.2. Consider the particular case of the Gross-Pitaevskii equation, namely F'(s) = 1—s.
We have V(s) = $(1 — 5)%, g(s,c) = (2s — ¢?)(1 — 5)2, ((c) = % and g(s,c) > 0if s > 1. One can
use the change of variable t = v/2s5 — ¢2 to compute a primitive of

= and it is easily seen that
gi,c
we may take

1 ) \/2—C2+\/28—62‘
n :
V2 — 2 V2 — 2 — /25 — 2

With this choice of G we have L(c) = %21(1 : G(s,c) = lim G(s,c) = 0 for all ¢ € (—v/2,v/2). For
S C \"c

(3.4.7) G(s,c) =

any fixed ¢, the function G(-,c) is an 1ncreasmg diffeomorphism between ( 5> 1) and (0, 00). We find

G(-,e) H(z) = % + % [tanh (7V22x)} . Proceeding as in Proposition 3.4.1 (i) we get

2 9 _ 2 9 _ 2
(3.4.8) oc(x) = % + 26 [tanh ( c )] for any = € R.
Using (3.4.4) and the change of variable ¢ = tanh ( ) we compute 6. and we find

(3.4.9) Oc(x) = g/ox 1= ods) ds = arctan [ 2= tanh < 22_ Cza:)] :

0c(8) c

L__ and sin(arctan(z)) = T e finally obtain

1422

Since cos(arctan(z)) =

Ye(r) = Volx)e?® = < 1i\/1- % tanh <7Vz278233)
(3.4.10)



It follows from Proposition 3.4.1 (i), (ii), (v) that all traveling waves for the Gross-Pitaevskii equation

in £(R) are either constants of modulus one, or are of the form '@, (- — xq) for some o, zg € R.

V2—c2 IIZ)
2

Using Proposition 3.4.1 (iv), then the change of variable ¢ = tanh ( we get

BY) = By = 2 [ WiPde=2 [ V(P)do= [ (1= oa)?da
(3.4.11)

Njw

2
2—c? 2 1 9 2 9
( 2 ) %}ﬂ?/l rdt 3( <)

If ¢ # 0, it follows from Remark 3.3.2, identity (3.4.4) and the change of variable ¢ = tanh ( ¥ 25 c x)
that a valuation of the momentum of v, is

/(1—Qc)9£dxzf/ ﬂdl‘zf@—c% / 2( t)2 gt
R 2 R Oc 4 71%_’_2%01;21_152

Njw

c 5 1 1—t2 c R
(3412) 4( C)2 _1%4_2_262152 2( 0)2 . 25262+t2
2 _ 2
= 2arctan <\/76> — V2 -2
C

For more information on traveling waves for the Gross-Pitaevskii equation and for further references
we refer to [1], Section 2. It has been shown in [1] that the functions 1. minimize the energy when
the momentum is kept fixed. Formulas (3.4.11) and (3.4.12) here above correspond to formulas
(2.23) and (2.24) p. 63 in [1], respectively.

Example 3.4.3. Consider a function V' € C*°(R, R) having the following properties :
e There exists §; > 0 such that V(s) = (1 — s)? for all s € [1 — 61,1+ &1],
e There exist cg € (0,1/2), so € (0,1) and a > 0, 63 > 0 such that

2
V(s) = 1 (cg(l —5)% +a?(s — 80)3) on (sg — 02,80 + d2], and V(s) > ————

o V(s) > % on (1,00).

Let F(s) = —V'(s). It is obvious that F' satisfies the assumption (A1). We consider equation
(3.1.1) with nonlinearity F'. Using Proposition 3.4.1 (i), (ii) and (v) it is easily seen that for ¢
sufficiently close to v/2 (more precisely, for ¢ € [\/2(1 — 61),v/2)), traveling waves of speed c for this
equation in £(R) are the same as traveling waves for the Gross-Pitaevskii equation (and they are
either constant, or are equal to functions . in Example 3.4.2 up to a translation and a phase shift).
Letting g(s,c) = 45V (s) — ¢?(s — 1)2, we have g(s, cy) = a®(s — co)® on (sg, 5o + d2) and g(s,cg) > 0
on (sp,1) U (1,00), hence ((cp) = sp and L(cp) = —oo. Then Proposition 3.4.1 (i) and (ii) implies
that all traveling waves of (3.1.1) in £(R)) with speed ¢y must be constant.
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Lemma 3.4.4. Assume that V >0 on [0,1). Then we have

inf {Elw) v e ER) and inf [i(x)| = o} - 4/01 JV(s2) ds

If the infimum is achieved by a function 1, then there exist ro,—,ay € R such that

o0(x — mg)e'~  if x < xo,
(3.4.13) b(x) =

o0(z + x0)e™ ™ if x > x0,
where go is as in Proposition 3.4.1 (i).

Proof. For any ¢ € £(R) we have || — 1 € H'(R), hence |¢| is continuous and tends to 1 at
+oo. If inlf1 |(z)| < 1, then the infimum is achieved at some zp € R.
TE

Consider any ¢ € £(R) such that (xg) = 0 for some xo € R. Take two sequences (z;"),>1 C R
such that z7 — +o0. For n sufficiently large we have x,; < zg < 27 and using (3.2.2) we get

) da > 20 (w0l — H (o))

and

LWV de > 2| H () - H(b o)

1
Summing up and letting n — oo we get E' () > 4|H(0)| = 4/ \/V(s?) ds.
0
If V(0) > 0 it follows that any primitive of the function s — —~— = —L__ has finite limit

\/g(s,O) 2\/8V(5)

at 0+ (in other words, L(0) is finite), and the function gy in Proposition 3.4.1 (i) is well-defined
and satisfies

%0 = —2y/20V (00) on (—00,0),  respectively oy = 24/00V (00) on (0,00).

Let po = +/00- It is easily seen that

(3.4.14) po = —\/V(p3) on (—o0,0), respectively po =1/ V(p3) on (0,00).

Using (3.4.14) and the change of variable 7 = pg(z) we obtain
/_ lool* +V(p5) d =—2/ VV(05(2))po(x dw—2/ VV(?)d
1
and a similar computation holds on [0, 00), hence E! =4 / V(r2)dr
b 0.0) (o) =4 [ V()
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Consider any 1 € £(R) such that E'(y) = 4]01 V'V (72) dr and there exists zp € R such that
¥(xg) = 0. As above, using (3.2.2) we see that

(3.4.15) / W2+ V(10]2) do > 2/01 JV(r2)dr and /xoo W2+ V(10]?) do > 2/01 SV (2 dr.

—00

Hence we must have equality in both inequalities in (3.4.15) and we infer that the point zy must
be unique, and p = |¢| must satisfy p/ = £1/V(p?) on each of the intervals (—oo,x¢) and (zp, 00).
Then it follows easily that p(- + z¢) satisfies (3.4.14), and finally that p(- + x¢) = po. The function
Y must be constant on each of the intervals (—oo,zo) and (zg,00) (for otherwise, we would have

¥ = pe? on those intervals for some 6 € H} , and then || = |p/|? + p2|0)2 = |p/|2. If @/ # 0 we
would get [ [¢'|?dx > [g |p'|* dz, hence E'(¢) > E'(p), a contradiction). O

1
Corollary 3.4.5. F. E(R) satisfying E' 4/1/1/ 2)d have inf 0
orollary or any Y 6' (R) satisfying E-(¢) < ; '(7‘ )dT we have ;2R|@Z1(x)| >

and there exists a lifting 1 = pe'?, where 1 — p € H'(R) and § € H'(R).

1
The same conclusion holds if E*(y) = 4/ \/V(72)dr and 1 is not one of the functions in

0

(3.4.13).

Remark 3.4.6. It can be shown that for any a € (0,1) we have

inf {El(w) v e ER) and inf |(x)| = a} _ 4/@1 JV(s2) ds.

Moreover, the only minimizers, up to translations in R and multiplication by complex numbers of
po(-—0) ifx <0,

pol-4b) ifz >0, “herepoisasin (3.4.14) and’b >0
o\’ =0,

modulus 1, are the functions p,(x) = {

is chosen so that po(b) = a.

3.5 Minimizing the energy at fixed momentum in £(R)

We define
Epin(p) = nf{E'(¢) | ¥ € E(R) and [P](4) = |p]}.

We collect in the next Lemma the main properties of the function E. ;. .
Lemma 3.5.1. Assume that V satisfies (A1). The function E! . has the following properties :
i) EL .. is non-negative, 2r—periodic, E}\ . (—p) = E! . (p) for allp € R and

E}in(p) = inf{E* (e + w) | ¢ € H'(R,R),w € H' (R, C) and p(p,w) = p}.
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iii) For any € > 0 there exists p- > 0 such that E} . (p) > (1 —¢)v/2p for any p € (0,p.).

min

w) E mm is sub-additive : for any p1,p2 € R there holds

Emin(pl +p2) < Erlm'n(pl) + Erlmn(pQ)

v) EL.. is Lipschitz on R and its best Lipschitz constant is vs = \/2.

vi) Assume that there exists § > 0 such that V(s) < $(1—s)*+ 2(1—s)3 for any s € [1 —6,1) 3.
Then we have EL . (p) < \/2p for any p > 0.

min

Assume, in addition, that V >0 on [0,1). Then :

vii) For any p € R we have E}. ( 4/ \VV(r?)d

viii) EL . is nondecreasing on [0, 7] and is concave on [0, 27].

Proof. (i) For any given ¢ € H'(R,R) and w € H'(R), let $(z) = ¢(—z) and w(z) = w(—x).
Then we have g € H'(R,R), w € H'(R), p(¢,w) = —p(p, w) and E*(e"? +w) = E'(e'¥ +w). This
implies that E. . (—p) = EL . (p) for any p € R.

Let p € R. Let k € Z. Consider ¢ € H'(R) and w € H}., satisfying p(¢,w) = p. Let x € C*(R)
such that x = 0 on (—00,0] and x = 1 on [1,00). Let ¢(x) = ¢(x) + 2krx(z) and w(z,y) =
(@) — (@) 1 qy(x,y). Then p(@,w) = p(p,w) + 2kr = p+ 2kr and € + w = €% 4 w. Since
for any (p,w) € H'(R,R) x H1 , satisfying p(¢, w) = p we may construct (@, w) as previously, we
conclude that EL . (p+ 2k7) = E1 (p). The rest of part (i) is obvious.

man

(ii) The proof is very similar to the proof of Lemma 3.3 p. 604 in [2] and of Lemma 4.5 p. 173
n [6]. Take y € C°(R) such that [g [x/(z)]*dz = 1 and [ x/(2)?dz = 0 (for instance, we may
take x an even function). Let A = [g [x"(t)]*dt and B = [g |x(t)|* dt. For e,\,0 > 0 (to be chosen

later), let po\(z) = 1 — $X' (§), Oro(®) = ox (5) and Yo xq(x) = per(2)e 50 #) Tt is clear that
Yz x0 € E(R) and a simple computation gives

| o @Pde = [ 1pA@F + lpeall6h,0 () da

2 g2 o? g2 5202
// 2 e 1 == / < ,t 2 dt o A BE o
= [ o+ SR (1= 50+ or ) =% ag; + 553
20¢ oe? 20¢
| =20 (@) de = [ SENOF - Son 0 dt = =,
R R A A
4e? 4¢? el 4e? el
2 \2 _ / 2 3 < 4 — s
/R(l pep)de = | —=Ix @) - )\2x(t) + 33X () dt = =+ B,

3. This condition is fulfilled, for instance, if F is C* near 1 and F"'(1) < 2.
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Fix p > 0. For A > 0 we choose ¢ = ¢(\) = 27%\/7)\ and 0 = o(\) = 27i\/pi)\. Let ¢y =
Ye) M\ o(n)- AS A — oo we have < ()‘) — 0, ()\)‘) — 0,and [1—|¢y,|| = ‘1 pg(A))\‘ (,\A)HX’HLOO —
0. For all X sufficiently large we have ¥y € E(R) and the above computations show that a valuation
of the momentum of 1 is p, and

2
2 _ 719 p .
/"”A JPde=275p+ 27 )\2A+4>\B V2 as A = oo,

By assumption (A1) we have V(s) = (% +o(]s — 1|)) (s —1)% as s — 1, hence

/RV(W})\P)d:E = (; +o0 (ig()\/\)lx’\lmo» /R(1 _pg(A)’A)quj N % a5 X — oo,

Since E} . (p) < E(1)) for all sufficiently large A and E'(¥()\)) — v/2p as A — oo, (ii) follows.
(iii) Fix € > 0. We may assume that € < 3. By assumption (A1) there exists § = §(¢) > 0 such
that (1 —9)? >1—¢ and
oy o Lo 232 _
V(p)>2(1 e)(1—p?) for any p € [1 — 4,1+ 4.

By Lemma 3.2.1 (i) there exists x > 0 such that for any ¢ € £(R) satisfying E'(v) < k we have
|1 —[9[l|Lem) < 6. Let p. = min (2\[, Z) and let p € (0,p.]. Consider any ¢ € H'(R) and any
w € H'Y(R) such that p(p,w) = p and E'(e® + w) < 2v/2p. Denoting 1 = € + w, we have
Y € E(R) and E'(v) < k, and then Lemma 3.2.1 (i) implies that |1 — W\HLm(R) < 4. We infer that

1 admits a lifting ¢ = pe'? where # € H'(R) and 1 — § < p(z) < 14 6 on R. Then we have

0 = [ 10P@ + o @0 @) + V(@) da
(3.5.1)

>/R(1_5)2|9'|2(x)+;(1—5)(1—;)2( N2z > (1—e) f\/ (1 - P(@)0 () da.

By Definition 3.3.1 and Remark 3.3.2, p = p(¢, w) and / (1 — p*(x))#(x) dz are both valuations of
R

the momentum of v, hence / (1—p*(2))0 (z) dx = p+2kn for some k € Z. Wehave 0 < p < p. < %
R

and by (3.5.1) we get ’ / (1 — p%(x))¢ (2) dm‘ < (fla()lﬁ)@ < 4p. < m, and we conclude that necessarily
R -

/ (1—p*(2))0'(z) dz = p. Then (3.5.1) gives E'(¢)) = E' ("’ 4+w) > (1—¢)+/2p. Since this inequality
R
holds for any ¢ and w as above, (iii) follows.

(iv) Let p1,p2 € R. Fix € > 0. By Lemma 3.3.6 (i) there exist ¢1, p2 € C*(R), wy, w2 € C(R)
and A > 0 such that supp(w;) C (-4, A), ¢; = o; on (—o0, A], p; = 5 on [A, 00),

o E
p(ej,wj) € |pj] and ENe"% +wj) < Erlm'n(pj) + 5

5 for j =1,2.
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Let ,
eler(@) 4 wy () if © < 24,

v()=4{ ‘
ci(B1—az) (ewz(év*?’A) + w(z — 3A)) if 2 > 2A.

Then we have ¢ € £E(R) N C*°(R) and
[PJ() = LPJ(e +wn) + |P] (/9170 (02030 (- = 34) ) ) = [pa] + [pe).
We infer that

Erlnin(pl +p2) < El (¢) = El (eiw + wl) =+ El (ei(ﬂl_‘m) (ei(<»02('—314)) + fw2(, _ 3A)))

= BN Fw) + BN (2 Fwz) < o (p1) + Eyin (p2) + .
Since ¢ is arbitrary, (iv) follows.

(v) The sub-additivity of E. . and part (ii) imply that

in
1B} in(02) — Epin(01)| < Bl (p2 — p1) < V2|p2 — pi for any p1,p2 € R.

Part (iii) implies that v/2 is the best Lipschitz constant of E}

(vi) The sub-additivity of E} . gives E! . (np) < nEL. (p) for any p > 0 and any n € N*.
Hence it suffices to show that E. . (p) < v/2p for sufficiently small p.

We use as "test functions" the traveling-waves for the Gross-Pitaevskii equation in Example
3.4.2. Proceeding as in (3.4.11) and using the change of variable ¢t = tanh (7V22_C2$) we get

in:*

_2\? 1
(3.5.2) /R(1— el?)’ dx:/R(1—gC(x))3dx: (2 . ) \/22_762/_1(1—752)2&: %(2—02) .

There is some cs € (0,+/2) such that for all ¢ € (c5,v/2) we have 1 —§ < |ib.| < 1. Using the fact
that V(s) < 3(1 —s)2+ 3(1 —s)3 for s € [1 — 6,1), (3.4.11) and (3.5.2) we get

N

3 2 3 1 5
El(wc) < EéL(wc) + g/R (1 — |¢C’2>3 dr < g(2 — 02)5 + E(2 — 02)5.

It is useful to denote £(c) = V2 — 2, so that £(¢) — 0 as ¢ v/2. The above inequality can be
written as
1 2., 1 .
E*(¢¢) < f(e(e)), where f(g) = §e + EE _

Recall that by (3.4.12), a valuation of the momentum of . is

m(c) := 2arctan ( 2= C2> — V2 —¢? = 2arctan <8(C)> —e(e)y/2 — 2(c) =: g(e(c)).

c 2 —¢2(c)
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We have ¢g(0) = 0 and an elementary computation gives ¢'(¢) = \/7 for e € (0,+/2). The function g

is increasing and continuous on [0, v/2), and therefore ¢ — m(c) is decreasing, positive on (cs, v/2),
and tends to 0 as ¢ 7 v/2. We have

Epin(m(c)) < E'(te) < f(e(c))

and it suffices to show that f(¢) < v/2g(¢) for all sufficiently small . A straightforward computation
gives

1 3

ge) =2 (62 + et + e+ 0(66)> and
4 32

3 20 224

Hence there is 9 > 0 such that f() < v/2g(e) for any € € (0,e0), as desired.

g(s):\@(ls —I—ie —I—is +o(e )> as e —» 0.

(vii) Let p € R. Fix € > 0. Choose ¢ > 0 such that 6V (0) < €. Let go be as in Proposition 3.4.1
(i). Define
00(x) it x <0,
p(x)y=<¢ 0 if 0 <z <o,
ooz —9) if x > m,

It is easily seen that 1 — p € H'(R). Choose § € C*(R) such that 6 is constant on (—oo,0] and
n [4,00), and f(f 0 dx = 0(5) — 0(0) = p. Let w = (p — 1)e? and ¢ = pe?? = € + w. We have
w e HY(R), ¥ € £(R) and using Remark 3.3.2 we get

pO.w) = [ (1=p20 do=p

We have |p'|? + V(p?) = V(0) on (0,9) and consequently

Bhan) < B0 = [ (0P V) doravi) <4 [V ar e

Since € was arbitrary, the conclusion follows.

(viii) We proceed in several steps.

Step 1. "Reflection" of functions in E(R) that have a lifting. Assume that ¢» € E(R) can be
written in the form ¢ = pe?, where p and  are real-valued functions, 1—p € H*(R) and § € H*(R)).
For any t € R we define 9 (z) = e~y (z) = p(z)e' @@ =0®) Tt is obvious that

P € ER), Wi(t) =p(t) €[0,00), E'(1h) =E'(¢) and [P|(¥y) = [P]().

We define

_ ) (@) ifz <t P2t — )itz <t
(3:5.3) Yrale) = { Jz(% —x)if z > ¢, Vi2(z) = { wi(:v) if x>t
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O(x) —0(t) if x < ¢,

(3.5.4) 0:1(z) = { o)+ 00 if e > 1, Br0(z) = { —0(2t —x)+0(t) if x < t,

O(x) —0(t) if x > t,

) pl)if z < ¢, ) p2t—2)ifx <t,
(3.5.5) pra(@) = { p(2t —z) if z > t, pr2(@) = { p(x) if x > t.

It is easy to check that p;; € HY(R), 6;; € H'(R), ¢r; € E(R) and by ; = py e = i + w,
for j = 1,2, where w; ; = (prj — 1)e®s € H(R). An immediate computation gives

t [e’e]
(3.5.6) E'Y(41) = 2/_ W2+ V([¢]*)de and  E'(i2) :2/t W' )? + V(|]?) de,

t
PO ) = [ =ptfhde=2 [ (=0 d
(3.5.7)

p(Or2, we2) = /R(l — p}o)bigdu = 2/t (1—p*)0 dz,
so that

(35.8)  E'(tr1) + E'(r2) = 2E' ()  and  p(Bp1,we1) + p(Br.a, wia) = 2p (9, (p— 1)6“’) .

1
Step 2. For any p € (0, 7] satisfying EL . (p) < 4/ \/V (s2)ds and for any e > 0 there exists ) €
0

E(R) such that E(y) < EL..(p)+¢e, ¥ = pe’ with p € H'(R), § € H'(R) and p (0, (p— 1)6”) =p,
and 1 is constant on some intervals (—oo, —A] and [A, c0).

1
Let p be as above. Let 0 < € < 4/ \/V(s2)ds — p. By the definition of E} . and by Lemma
0

1
+e< 4/ V(s?)ds
0
and 1 is constant on (—oo, —A] and on [A, co) for some A > 0. By Corollary 3.4.5 we have [¢| > 0
on R, hence there exist §,w € C™ such that 1 = pe'?, and supp(w),supp(#’) C [~A, A]. We have
p(0,w) = p+ 2km, where k € Z. If k = 0, the functions 1, 6 and p satisfy all requirements of Step
2.

3.3.6 (i), there exists ¢ € C*°(R) such that |P|(¢) = |p|, E'(v)) < E}

min

Otherwise we construct ¢ = pt,lew“ and o = pt,lew*ﬂl as in (3.5.3) - (3.5.5). Let wy; =
(prj — 1)ei for j = 1,2. By (3.5.7) we see that the mappings m;(t) := p(6; j,w; ;) are continuous,
my = 0 on (—oo, —A] and my = 2p + 4k7 on [A, 00), me = 2p + 4km on (—oo, —A] and mg = 0 on
[A, 00).

If £ > 1 we may choose t; < tg such that mq(t1) = ma(t2) = p. We have

B(gh,) + Bu2) =2 | WP+ V(102) do < 2B(0),

OO,tl}U[tQ,OO
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hence E(¢y, 1) < E(¥) or E(Yy,2) < E(¢). In the former case we replace ¢ by v, 1 and in the
latter case we replace ¢ by 1, 2.

If £ < —1 we have 2km +p < —7 < —p because p € (0,7]. In this case by (3.5.7) there exist
t1 < tg such that m;(t1) = —p and mg(t2) = —p. As above, we have E(¢y, 1) + E(¢t,2) < 2E(¢)
and we replace Y by ¢y, 1 if E(y, 1) < E(Y), respectively by 1y, o if E(tr,2) < E(1).

Step 3. EL ;.
1

Let 0 < p1 < p2 < . If Epyin(p2) = 4/ V(s%)ds we have E!. (p1) < EL. (p2) by (vii).
0

is nondecreasing on [0, 7).

1 . .
Otherwise, consider any ¢ such that 0 < & < 4/ \/V(s2)—=EL . (p2), then choose 1) = pe? = e +w
0

as in Step 2. Define ¢ ; = p; ;€% = e 4wy ; for j = 1,2 as in (3.5.3) - (3.5.5). Using (3.5.7)
we see that there exist t; < 3 such that p(64, 1, w, 1) = p(0ty2, Wty 2) = p1. By (3.5.6) we have
EY(t, 1) + B (1,,2) < 2E(3)). Then we have

Erlmn(pl) mln( 1(7/%1,1)’ E1(1/1t2,2)) <E (sz)) Ev%mn( )+ €.

Since € was arbitrary we get EL . (p1) < EL. (p2), as desired.

min

Step 4. EL,, is concave.

Let 0 <p; <py <mandletp= W. We will prove that

(3.5.9) EL, <p1+p2) > LEL (1) + 2 ELin(p2).

min 2 2 min 2 min

min

1
If £} (% = 4/ \/V(s?)ds, (3.5.9) obviously holds. Otherwise, take any ¢ such that 0 <

e < 4/ \/ V(s2)ds — EL ;. (p), then choose ¢ = pe’® = € + w as in Step 2. There exists ty € R
’ D . ° / _ p2
such that (1 — pA)0 dx = X and then we have necessarily (1—p*)0 de == Let ¢y, ; =
—0o0 to

Pty j€009 = ei +wy ; j = 1,2, be as in Step 1. It is clear that p(fy, j, wy, ;) = p] for j =1,2
and using (3.5.6) we get

E’rlmn( ) + Emm( ) El(@bto,l) + El(djto,?) = 2E(¢) 2E}mn( ) + 2¢.

Since £ was arbitrary, we infer that (3.5.9) holds.

We have shown that E} . is continuous and satisfies (3.5.9) for any 0 < p; < p2 < . It is then
standard to prove that E}mn is concave on [0, 7]. We have E.. (21 —p) = E}..(-p) = E%un( ) for
any p and we infer that E. . is non-decreasing and concave on [r,27], and then it follows that it

is concave on [0, 27]. O

Theorem 3.5.2. Assume that conditions (A1) and (B1) in the introduction hold and p € (0, ]
satisfies EL . (p) < v/2p. Let (¥n)n>1 C E(R) be a sequence satisfying

(3.5.10) | P|(¢n) — |p] and E(i) — EL .. (p) as n — oo.
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Then there exist a subsequence (¢, k=1, a sequence (xi)r>1 C R and ¢ € E(R) satisfying | P|(¢) =
\_pJf E! (w) = Emin(p), and

n, (- +xK) — ¢ uniformly on [—R, R| for any R > 0,
e (- F2R) — 4" in L*(R),
|Yn, (- +zx)| — || — 0 in LP(R) for 2 < p < oo.

Proof. Let p € (0, 7] such that EL. (p) < v2p and let (¢,)n>1 C £(R) be a sequence satisfying
(3.6.36). We denote by p,, € [0,27) the canonical valuation of the momentum of ¢,,. Then we have
Pn — P as n —» 0.

Denoting M := sup,,>1 [|¢y,[|L2r) < 00, by (3.2.1) we have

(3.5.11) | () — Yn(y)| < M|z — y]% for all z,y € R and all n € N*.

We will use the celebrated concentration-compactness principle introduced in [9]. The sequence
fn = |52+ V(|$n]?) is bounded in L'(R). We denote by A,, the concentration function of f,,
namely

M) =sup [ )7 + V()P .

zeR Jx—t

Obviously, A,, is a non-decreasing function on [0, 00), A, (0) = 0 and A, (t) — E'(¢y,) ast — 0o .
Proceeding as in [9] we see that there exists a subsequence of (¢, Ay,)n>1, still denoted (¢, Ap)n>1,
and there is a non-decreasing function A : [0, 00) — oo satisfying

(3.5.12) An(t) — A(t) a.e on [0,00) as n — 0.

Let a = tlim A(t). Tt is clear that 0 < a < lim (lim An(t)> = El. (p). We will show that
—00

n—oo \ t—o00
o = E}nm(p)
We prove first that o > 0. We argue by contradiction and we assume that o = 0. This implies
that A(t) = 0 for any ¢ > 0, which means that for any fixed ¢ > 0 we have

x4+t

(35.13) sup [~ WL +V(a)P)dy — 0 asn— oo,
zeR Jz—t

We claim that if (3.5.13) occurs we have [¢,| — 1 uniformly on R. By (A1) there is 1y > 0 such

that

i(l — %) < V(s%) < (1 —s%)? for all s € [1 —n9, 1+ nol.

Fixn € (0, 2]. Assume that there exists 2, € R such that | ¢, (2,)|—1| = 7. From (3.5.11) it follows
that there exists r > 0, independent of n, such that | ¢, (z,)| — 1| € [4, 37"] for y € [xy, — 1,20 + 7]
and therefore

Tntr Tntr |

| [n (@) — 1 dy = <nPr.

o =

An(r) = /

Tn—T

Vil dy > [

In—T 4
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By (3.5.13) there exists n, € N such that for all n > n, we have A,(r) < £n’r, and the above
inequalities imply that for any n > n, we must have 1 —n < |¢,| < 1+n. Thus |[¢,,| — 1 uniformly
on R.

Choose § € (0,1) such that E!. (p) < (1 — §)2/2p (this is possible because E}l . (p) < v/2p).
By (A1) there is 15 > 0 such that V(s?) > £(1 — 6)*(1 — s?)? for any s € [1 — 55,1 + n]. For all
sufficiently large n we have | |¢,| — 1| < min(d,7s) on R. For any such n we may write v, = predn
where 1 — p, € H'(R) and 6,, € H'(R,R), and we have

1
') > [ 02100+ V() da > (1= [ 10,2+ (1= p2) do
R R
(3.5.14)

> (1-02vE| [ (1 ) da

Recall that by Remark 3.3.2, / (1 — p2)0, dx is a valuation of the momentum of 1,,, hence there
R

exists ¢, € Z such that / (1 — p2)0., dz = p, + 2¢,7 and consequently
R

‘/ (1= p2)0., dz| > dist(py, 27Z).
R

Letting n — oo in (3.5.14) we get
El. (p) = (1-06)>%V2 li_>m dist(p,, 27Z) = (1 — 6)%V/2p,
n [e.9]
contradicting the choice of §. We have thus proved that « # 0.
Assume that 0 < o < E} . (p). Arguing as in the proof of Theorem 5.3 in [11] (see (5.12) p. 156

there) we infer that there is a nondecreasing sequence R,, — oo such that

lim A,(2R,) = lim A,(R,) = .

n—o0 n—oo

For each n choose x, € R such that

1
—

Tn+Rn
/x @R V() 2) dy > An(Ra) -

n n
Then we have

Tn+2Rn
An(Ry) — L < L T R+ V(@) dy < An(2R,),

n

n_2 n

and we infer that

Tn+Rn
(35.15) L R V() dy —

n
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Tn—Rn Tn+2Rn

3516) [ WL@E+ VP dy+ [T W @E V(a0 dy — 0, and

n n $n+Rn

Tn—2Rn
a5an) [T W@ VI i+ [ W) V()P dy — Bhial) = o

—0o0

Assume that for infinitely many n’s we have

Tn—2R, [e'e)
[ P VP dy > [ )P+ V()P d

—0o0 In+

(A similar argument will work if the opposite inequality holds true for infinitely many n’s.) Passing
to a subsequence, still denoted the same, we may assume that

Tn—2Rn
(3518) [ WP+ V()P dy — 550 asn—s oo, where 0 < § < Bl (p).

— 00

Let z, = x, — %Rn. For n sufficiently large we have [z, — 2,2, + 2] C [z, — 2R, z, — Ry].
Then using (3.5.11) and (3.5.16) and arguing as in the proof of the fact that o > 0 we infer

that sup | [¥n(y)] — 1] — 0 as n —> oc. For n large enough we have 3 < [¢,| < 3 on

y€len—1,2n+1]
[z, — 1, 2, + 1], thus we have a lifting 1, = p,e®" on that interval. Let 7, = p,(2,,) and oy, = 0,,(2y).
It is clear that r, — 1. Define

Yn(x) if © < 2,
Yna(@) =< (1 =rp)(x — 2) +10)e if € (2, 20 + 1),
elon if x> 2, + 1,

el if < 2, — 1,
Yna(@) =19 ((rn—1)(z —z) +rp)e if x € (2, — 1, 2p),
Un(x) if > 2.
It is easy to see that ¢ 1,¢n2 € E(R). It follows form (3.5. 16) and (3.5.18) that El(¢y,1) — B
and E'(¢n2) — E%lm( ) — B asn — oc. Since 0 < B < E},.(p) < 4[5 /V(s2)ds, for all n
sufficiently large we have E'(¢, ;) < 4/ V(s?)ds, j = 1,2, and then using Corollary 3.4.5 we
0

infer that v, 1 and 1, 2 do not vanish and consequently these functions admit liftings, thus we may
write ¥, j = pn €75 on R. Replacing 0,,; by 0, + 2k for some k € Z, we may assume that
On1 = oy on [z,,00) and that 0,2 = oy, on (—00, 2,]. Let

_ pn,l(x) if v < 2p, . gn,1($) if ¢ < 2y,
pn(x) - { pn,Q(x) lf > Zn, Hn(x) - { 67172(.'13) lf > Zn.
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Then 1—p, € H'(R),# € H'(R) and ¢, = p,e’’" on R. By Remark 3.3.2 and the fact that Op1 =0
on (2,,00), 0y, 5 = 0 on (—00, z,), valuations of momenta of 1, 1,1 and 1,2 are, respectively,

(3.5.19) B = /R(1 ~ RV de, P = / "= 2V, de, s :/ (1= )0, da.

Let pp, Pn.1, P2 € [0,27) be the canonical valuations of momenta of these functions, respectively.
From (3.5.19) it is obvious that p,, = pn1 + Dn,2, and this implies p, = p,.1 + pp2 (mod 27). Since
Pni + Pn2 € [0,47), we have

(3.5.20) Pnl + Pn2 = Pn or Pn1 + Pn2 = Pn + 27.

Choose pg € (0,p) such that

max(/B, mm(p) - ,6) < Erlmn(po) < Erlnm( )

For all n sufficiently large and for j = 1,2 we have

Evlnm(pn,j) = Erlmn(pn,j) (¢n,J) < E’mzn(po)

Since E},,,, is non-decreasing on [0, 7] and non-increasing on [r, 27|, we infer that for all large n we
have either p, ; € [0,po), or p, j € (2m—po, 2r|. We cannot have p, 1 € [0, po) and py, 2 € (27 —po, 27]

because this would give
p<2m—po < Pn2 < Pni1+ Pn2 <po+2m<p+2m,

contradicting (3.5.20). We deduce that one of the following situations occurs :

Case A : pn1,pn2 € [0,p0), or

Case B : pn.1,pn2 € (2m — po, 27].

Assume that we are in case A for infinitely many n’s. Passing to a further subsequence we may
assume that p, ; — p; € [0,po] for j = 1,2, and pj + p5 = p, hence p; > p — po. We have

Em'm(pn 1) + Em'm(pn 2) (7/)71 1) + E'! (1/}71 2) 1(¢n) + 0(1)

and letting n — oo we discover EL . (p}) + EL,,(p5) < EL..(p). The concav1ty of E

min in O [0, 271']

m
implies that E} . (p 5) > ;E%“n( ), and equality may occur if and only if E} . is linear on [0, p].
Summing up these 1nequahtles for j = 1,2 and comparing to the previous inequality we infer that

we must have equality, and consequently E!. must be linear on [0,p]. Taking into account the

behaviour of E! . at the origin (see Lemma 3.5.1 (ii) and (iii)) we infer that E} ; (s) = v/2s for all
s € [0, p], contradicting the fact that E.. (p) < v/2p.
Assume that we are in case B for infinitely many n’s. From (3.5.20) we see that necessarily

DPn1 + Pn2 = pn + 2, hence (2m — pp1) + (27 — pp2) = 27 — p,,. Passing again to a subsequence we
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may assume that (2m — p, ;) — pj [0, po] for j =1,2. Then we have p] +pg =271 — p = p, thus

necessarily pg > p — po. We have

Erlnm( - pn,j) = E%un@n J) (1/}71]>

Summing up for 7 = 1,2 and letting n — oo we get
Erlnm( ﬁ) + E%@”m( Ii) Erlmn( ) E’rlmn(27T - p)'

The last inequality and the concavity of E} . on [0, 27] imply that E . must be linear on [0, 2m —p].
Since 27 — p > 7, E}, is nondecreasing on [0, 7] and nonincreasing on [, 27] and is not constant,
we must have 27 — p = 7, hence p = m. Then by Lemma 3.5.1 (ii) and (iii) we get EL. (s) = \fs
for all s € [0,p], hence E! . (p) = v/2p, a contradiction.

min
We conclude that we cannot have 0 < a < E! . (p), thus necessarily o = EL . (p).

min

It is then standard to prove that there exists a sequence (x,),>1 C R" such that for any ¢ > 0
there exists R. > 0 satisfying

Tn—Re fe’)
[ VP de+ [T R V(i de < e
—00 Tn+Re

for all sufficiently large n. Let 1, = Un (- 4+ ). Then for any € > 0 there exist R, > 0 and n. € N
such that

£ o ~ oo ~
(3.5.21) / 10017+ V(|¢nl?) d +/ [P+ V([Yn)de <& foralln>n..
—00 R:

Take 79 > 0 such that 1(1 — s?)% < V( 2) < (1 —s%)2 for any s € [1 — g, 1 +no]. Let H be as
in assumption (B1). Let &1 = 2min(|H(3)|, H(3), |H(1 —mno)|, H(1+no)). Take Ry = R., > 0 such
that (3.5.21) holds with £; instead of . Usmg (3.2.2) we see that for all n sufficiently large and for
all x € (—oo, —R1] U [Ry,00) we have

(3:5:22) Wala)| € |55 | N =m0, 4 m] and (0= 1@ < V(da(@)?) < (1= (o))

22}

Then using (3.5.11) we see that v, are uniformly bounded on [— Ry, Ry], hence on R.. Since (/,)n>1
is bounded in L?(R), it is standard to prove that there exists a function ¢ € H} (R) such that
¢’ € L*(R) and there is a subsequence (¢, )r>1 Of (¢n)n>1 satisfying

1/:1;% — ¢ weakly in L?(R),
(3.5.23) Y, —> strongly in LP([—R, R]) for any R > 0 and any 1 < p < oo,

T —) uniformly on [—R, R] for any R > 0.

We may use (3.5.11) and the Arzela-Ascoli Theorem to get uniform convergence on compact inter-
vals. The weak convergence 1/1;% — ¢/ in L?(R) implies that for any interval I C R we have

(3.5.24) /W'|2d:z: <liminf/|¢~);lk]2d:n.
T n—oo I
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Fatou’s Lemma gives
(3.5.25) /V(|w|2)da: < liminf/V (19 ) d.
I n—o0 I

Fix £ > 0. Take R. as in (3.5.21). Since (¢, )r>1 is bounded in L®([—R., R.], converges to 1)
almost everywhere and V is continuous, the dominated convergence theorem gives V (|1, |?) —
V(|1?) in L*([—Re, Re]), hence we may choose n. > n. such that

R -
/R V(| |2) = V(2) de <& forall n > nl.

Then using (3.5.21) we have

| V00 = V(0P da
R

R ~
</ V(|9 |?) = V(9 |dx+/ V|t |?) + V([¥]?) dz < 3e.
—Re 00,— Re]U[Re,00)
Since ¢ was arbitrary we get V (|, [2) — V(|#[?) in L'(R), and in particular

(3.5.26) /RV(wnkF)dx — /RV(|¢|2)da: as k — oo.

Similarly we show that (1 — Wnk|2) — (1 — []?) strongly in LP(R) for any p € [2, o).

On (—o0, —R4] and on [R1, 00) we have liftings, that is we may write U, = pre' and ¢ = pe?.
Given € > 0, take R, > R; such that (3.5.21) holds. Since w%(iRa) — 1 as k — o0, we may
replace if necessary 0y by 0y + 2¢,m for some ¢}, € Z on (—oo, —R;] or on [R1,00) in such a way that
Or(—R:) = 0(—R:) + o, and O (R.) = §(R:) + a,':, where af —— 0 as k — oo. Then we extend
0 and 0j; as affine functions on [—Re, R.|. It is easily seen that ejek — €' uniformly on [~R., R.]
and in H'([~R., R.]), and that 65,0 € H'(R). Denote wy, = t,, — €% and w = 1 — €. From
(3.5.23) it follows that wg,w € HY(R), w), — w’ weakly in L?([~R., R.]), and wy — w strongly
in L?([-Re, R.]). Then we infer that

Re ) R )
(3.5.27) / —2(0},€% wy) + (iwl, wy) dz — / —2(0'e" w) + (iw',w)dr as n —s oco.
_RE

On the other hand, on (—oo, —R1] U [Ry, 00) we have —2(6, €% wy) + (iw}, wy) = (1 — p2)8),. Using
(3.5.22), proceeding as in (3.5.14), then using (3.5.21) we get

—R.
(3.5.28) ’/ (1 — p3)0, dz| < 2/ (1—pk a:§2/ P20 12 + V(p}) da < 2e.
—0o0
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A similar estimate holds true on [R., c0), as well as for the function ¢. Thus we get

‘ / 1 ek ) + (iwh, wy) do — /R —2(0'e" w) + (iw', w) dx

(3.5.29)

R ) )
< 8+ ’ / —2(0},€% wy) + (iw), wy) dx — / —2(0'e®  w) + (i, w) da
~R. R

for all k sufficiently large. Then using (3.5.27) we see that the right-hand side of (3.5.29) is smaller
than 9e if k is large enough. Since € was arbitrary, we have proved that

(3.5.30) p(O, wi) — p(6, w) as k — oo.

We infer that p(6, w) = p + 2w for some ¢ € Z, and consequently we have
k—)oo

On the other hand, we have / |02 da < likm inf/ Wf@sz dx because 1%% — ¢’ in L?(R). Taking
R —o0 JR

into account (3.5.26), we infer that necessarily \Wj%H%g(R) — |[¢¥'||32 as k — oo. The weak
convergence and the convergence of norms imply that 1%% — 1)’ strongly in L?(R). U

Proposition 3.5.3. Letp € (0, 7] and let ¢ € E(R) be a solution of the minimization problem consi-
dered above, that is | P|(y) = |p| and E'(¢)) = E} . (p). Then there exists ¢ € [(EL,;,).(0), (EL.)i(0)],

min min min
where (EL, ), (p) and (EL. ).(p) are the left and right derivatives of EL . at p, respectively, such
that

min)Z man

icy + " + F(|v*) =0 in R.

In other words, v is a one-dimensional traveling wave of speed ¢ for (3.1.1), and 1 € C*(R).
Moreover, for any p € (0,7 such that E}. (p) < v2p and (EL;,);(p) > (EL,.).(p), there
exist two minimizers V1,1 € ER) for EL,,.(p) that solve (3.4.1) with speeds c; = (E}.,,),(p) and

= (EL. ).(p), respectively.

min

The proof of Proposition 3.5.3 is standard and is similar to the proof of Proposition 4.14 in [6],
so we omit it.

Example 3.5.4. Consider V € C*([0,00) such that V(s) = 3(1 —s)? on [1 — §,00) for some

d > 0, V is decreasing on [0, 1) and 4 fol V'V (s?)ds > +/2r. Then all solutions of (3.4.1) are given by
Proposition 3.4.1 (i). Let {(c) be as in Proposition 3.4.1. If 4. is a solution of (3.4.1), the infimum
of 1|2 is ¢(c). We have ((c) — 0 as ¢ — 0, and using (3.2.2) we see that

E (1) 4|H —>4/ VV(s2)ds > V2r as ¢ — 0.
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By Lemma 3.5.1 (vi) we have E. .
any p € (0,7].

There is ¢y > 0 such that for ¢ € [0, o) we have E1(¢.) > EL. (7) > EL . (p) for any p € (0, 7).
Thus . cannot be a minimizer for E.,;, (p) if 0 < ¢ < co.

On the other hand, Theorem 3.5.2 implies that there exist minimizers for E' . (p) for allp € (0, ).
By Proposition 3.5.3, the minimizers are necessarily solutions of (3.4.1), but they must have speeds

(p) < v/2p for any p > 0, thus E., (p) < EL, (7) < /2~ for

!/
¢ > c¢g. We infer that sup (E1 )2 (p) > co, and E}, has a cusp at p = 7.

min
p<T

3.6 Minimizing the energy at fixed momentum in &

Throughout this section we suppose that the assumptions (A1), (A2), (B2) in the introduction
hold. We define

Exmin(q) = nf{Ex(¢) [ ¢ € £ and |Q(¥) = [q]}-

The next lemma collects the main properties of the function E,,;,.

Lemma 3.6.1. Assume that V satisfies the assumptions (A1), (A2) and (B2) in the introduction.
The function Ey min has the following properties :

i) Exmin is non-negative, 2w —periodic, Ex min(—p) = Exmin(p) for all p € R and

Ej min(p) = inf{E\(e” +w) | ¢ € H'(R,R),w € H,(R,C) and q(p,w) = p}.

per

i) For any p € R and any X > 0 we have Exmin(p) < EL..(p). Consequently we have
E)min(p) < V2|p| for all p.

iit) Ex min 15 sub-additive : for any p1,p2 € R there holds

E)\,min(pl +P2) g E/\,min<p1) + EA,min(p2)~
W) Exmin 18 V22— Lipschitz on R.
v) For any § > 0 there exists ps > 0 such that Ex yin(p) = (1 — 6)\/2p for any p € (0,ps).

vi) For any fized p, the mapping X — E) 1in(p) is non-decreasing. Assume that p € (0,2)
and there ezist p1,ps € (0,27) satisfying p = P22 and E},; (p) > L (EL,, (1) + E};(p2)) . Then
there exists A\(p) > 0 such that Ex pin(p) < EL. (p) for any A € (0, \(p)).

vii) Assume that py € (0,2m) satisfies

H

Then there exists \*(po) > 0 such that Ex min(po) = Elin (o) for any A = X*(po).

m
viii) EL . is concave on [0,27].
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Remark 3.6. 2 i) If the assumption in Lemma 3.6.1 (vi) does not hold for some p € (0, ], the
concavity of EL; implies that E}; (p) = 5 (E};,(p — 8) + EL,,(p+6)) for any 6 € (0, p), and then
we infer that E!, must be affine on [0, 2p] This is impossible if p € (5, 7] because E%lm(O) =0
and E} . achieves its positive maximum at 7. If V' > 0 on [0,1) and V( ) 11— +2(1-5s)3
on some interval (1 — 7, 1], Lemma 3.5.1 (ii) and (vi) implies that E! cannot be linear on [0, p]
for any p € (0, 7]. Remember that E) min(p) = Ex min(2m — p). Therefore the conclusion of Lemma
3.6.1 (vi) holds without any additional assumption if p € (Z,3F), and it holds for any p € (0, 27)

27 2
under the assumption of Lemma 3.5.1 (vi).

ii) It is well-known that a concave function is twice differentiable almost everywhere. The limit
in Lemma 3.6.1 (vii) exists and is equal to (E} . )"(p) for almost every p € (0,27), and for any
such p the conclusion of Lemma 3.6.1 (vii) holds true. Then parts (vi) and (vii) of the above lemma
show that there is some critical value A*(p) such that E) min(p) < E}.,(p) for A < X (p), and

min

E)min(p) = EL;,.(p) for A = X*(p). The proof shows that one can give upper bounds for the critical

min

value \*(p) if a lower bound for (E} . )"(p) is known (see (3.6.3) below).

Using an argument in the proof of part (viii) one can show that A\ —— E) i, (p) is strictly
increasing on (0, \*(p)].

The results in Lemma 3.6.1 (vi) and (vii) are not surprising. Recall that E} is a rescaled energy
that comes from minimizing the energy £ on R x'T 1 where T'; is the 1—dimensional torus of length
7. When A is large the torus T 1 is too narrow and variations with respect to the variable y would
be energetically too costly. On the contrary, on large tori one can find better competitors than the
1—dimensional minimizers of E} . .

In the case of the Gross-Pitaevskii nonlinearity F(s) = 1 — s, the function E!. is known

explicitly (see [1] or Example 3.4.2) and it turns out that it is C* on (0,27), hence in this particular
case the conclusion of Lemma 3.6.1 (vii) holds for any value of p.

Proof. The proof of (i) is similar to the proof of Lemma 3.5.1 (i).

(ii) Consider any ¢ € £(R) satisfying | P](v)) = p. Let ¥ (z,y) = 1 (). It is obvious that ¥f € £
and E\(¢f) = E'(¢) for any A > 0. If ¢ € H'(R) and w € H'(R) are such that ¢ = ¢ + w in
R, we have ¢! = €@ 4 ! where wi(z,y) = w(x). It is obvious that q(y,w!) = p(p,w), thus
1QI(¥*) = | P|(¥) = |p). We infer that E) uin(p) < Ex(¥*) = E(¥). Since the last inequality
holds for all ¢ € E(R) such that | P]()) = p, the conclusion follows.

The proofs of (iii) and (iv) are very similar to the proofs of Lemma 3.5.1 (iv) and (v), respectively,
and we omit them. For the proof of part (v) we need some results from [6] and [11]. These results
are stated in Lemma 3.6.4 below. We postpone the proof of part (v) after the proof of Lemma 3.6.5.

vi) If 0 < A\; < A2 it is obvious that Ey, (¢0) < E),(¢) for any ¢ € &, and this trivially implies
that Ex, min(p) < Ex, min(p) for all p.

It suffices to consider the case p € (0,7]. Fix p1,p2 € (0,27) and & > 0 such that p = 2122

and

10e < Erlmn( ) -5 (Erlmn(pl) + Erlmn(pQ)) .
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By Lemma 3.3.6 (i), there exist functions ¢; = etPi +w; € E(R) such that ¢; € H! NC*(R,R),
w; € C(R,C) and A > 0 such that supp(w;) C [~A, A], ¢; are constant on (—oo, —A] and on
[A, 00) and
plejwi)=p;  and  E'(y) < Epp(pj) ¢ forj=1.2.

If ;1 and ¢y take different values near oo, we modify ¢; on (—oo, —A] and on [4, c0) in such a
way that ¢1 = @9 = constant on (—o00, —AJU[A, c0) (where A may eventually be much larger than

~ —A A
A) and / ]cp}\? d:l?—l—/~ |<p;~]2 dx < € for j = 1,2. We still denote ¢; the modified functions. After
—A A

this modification we have p(p;,w;) = p; and E*(v;) < EL. (pj) + 2¢ for j =1,2.
Let 0 <n < % (the value of n will be chosen later). Take x € C*°(R) such that x is 1—periodic,

=1lon [01— ]U[S—i— 1] =0on [14- 3—} and/1 (y)d _1
X_ 74 77 4 777 ) X_ 4 7774 777 OXy y_2

Let
p(x) = 5(p1(z) + (),

w(z,y) = x(y) {ewl(x) + wl(m)} +(1—x(y)) [e’W(“’C) + wg(x)} — @) and

P(x,y) = %@ +w(z,y) = x(i() + (1 — x(y)v2(2).

Obviously, ¢ € H' N C®(R,R), w € C®(R?) and w is 1—periodic with respect to the second
variable, and w = 0 on ((—oo0, —A]U[A4,00)) x R. Let p(p,w) be as in (3.3.3) and let d[¢, w]| be
as at the beginning of section 3.3.2. Since ¢ = ¢1 = 2 = constant on (—oo, —A] U [A, o0), using
(3.3.5) we get

plej,wi) = plp,wj + e —e®)  for j=1,2.

Using this simple observation, after a straightforward computation we obtain

/R dlp, w](z,y) dz = x(y)p(e1,w1) + (1 — x(v))p(p2, w2)

. / . / . .
—X()(1 = x(v)) /R (e b wn) =i (€% +wn) € 4 wr — (€% + wp)) da
Integrating on [0, 1] we find

1 1

4(p,w) = Sp(p1,wi) + 5p(pa, wa) — /O1 x(y)(1 = x(y)) dy - /RWS — ithy, 1 — o) da.

Notice that 0 < [y x(y)(1 — x(y)) dy < n because 0 < x(y)(1 — x(¥)) < } and x(y)(1 — x(y)) =0

on [0, —n]U[X+n,2—nlU[2+n,1]. Denoting K = R<i7v/}/1 — i, 1 — o) da

, we have shown
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that
p1+ p2

(¢, w) — | < K.

We know that for any A > 0, the function E) .y, is v/2—Lipschitz. If nk < % we have

+
’E,\,mm(Q(SO, w)) — Ex min <p1 pz) ’ <e for any A > 0.

Let M = sup;epoq E' (ty1 + (1 — t)ihg — €'%) . Tt is straightforward to see that M is finite. Since
W(,y) =t fory € [0, 5 =] U[§ +n,1] and §(,y) = s for y € [3 + 1, § = 7], we infer that

/Rx[o 1) ’833‘ + V([¥l*) de dy < <; _277> B (y1) + <; _277> E*(32) + 4nM.

Now choose n such that 0 < 7 < min (\/%K, ﬁ) . Then for any A > 0 we have

E)\,min(p> = E/\,min (prgpz) < E/\,min(Q((pa w)) +e< E)\(w) +e€

_ a—wf—i—V(Mz)dxdy—i—)\z

+e
Rx[0,1] | 0%

L2(Rx[0,1])

5.1,

SE 1) + 5B () + 2 + X2

H oy ‘ L2(Rx[0,1])

2E71n7,n( ) + 2Emm(p2) +4e + >‘2

H oy ‘ L2(Rx[0,1])

< g, we get

For A sufficiently small, so that )\2‘ LR,
X

’%

E)\,I‘ﬂin( ) < 2Emzn( ) + 2Emzn( )+ 56 < E&mn( )

as desired.

vii) Choose ¢ > 0 sufficiently small and L > —oo such that (pg — d,po + J) C (0,27) and

Erlnzn(p(] + h) mzn(po - h) - 2E’rlnm( )
2
Let M = E. (pg) + 1. Consider any ¢ = €% + w(zx,y) € £, where p € H'(R,R), ¢ €

min

C?(R x [0,1]) and supp(w) C [~a,a] x [0, 1] for some a > 0 such that q(p,w) = py and

0y |*

oz

(3.6.1) >L> -0 for all h € (0, 9].

Ex(¢) = +/\2 +V(]1/1]2)dxdy<M

R x[0,1]

Ay
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In particular, we have ‘ g—w < VM and H Em \ﬁ . By Lemma 3.3.7, for any
THL2(Rx[0,1]) Yl L2(Rx]o, 1])

y1,y2 € [0,1] we have
oY 2M

3.6.2 ,w(s, — , < ik < ==

(36.2) Ip(e, (1 32)) = 2lr w0 1))l < H8w‘L2 (Rxtye) | Oy 2 (Roxtyr e A

Choose A\*(pp) sufficiently large, so that

2M 9 L (X (po))*
.6. — d — 4+ —— > 1.
(3.6.3) (o) <3 an 5 + ar

From now on we will assume that A > A\*(pg). For ¢ as above, let p, = p(p,w(-, 3)). By (3.6.2) we

have |p(o, w(:,y) — py| € [py — 3,y + 3] and then using Remark 3.3.4 (i) we see that a valuation
of the momentum of 1 is

1
(3.6.4) q(p,w) = /0 p(e,w(-y)) dy € {m - gva + g} :

By Lemma 3.3.6 (ii) and the discussion preceding Definition 3.3.3, there exist maps 1) = ¢ +w € &
such that ¢ € H'(R)NC>(R), w is the 1—periodic extension with respect to the second variable of
a function in C°(R x (0,1)), q(p, w) = po and Ey (1)) is arbitrarily close to E) 1in(po), in particular
Exmin(¥) < M. If X > X (pg), using (3.6.2) and (3.6.4) we see that for any such map and for any
y € [0,1] we have
p(e, w(-y)) = po| <6

Denote p(y) = p(p,w(-,y)) and let 6y = sup,c(o 1) [P(y) — pol- Obviously, for any y € [0,1] we have
Y(,y)e? +w(-,y) € ER) and consequently

If f:[a,b] — R is concave and continuous, for any ¢ € [a, b] we have

(f(b) = f(a)).

t—a

b—a
Since E}. is concave on (0,27) and p(y) € [po — 6y, po + 0y], we get

f(t) = fla) +

366 Ehinlo) > Bhnloo = 85)+ ELZ IO [BL G 4.6,) = Bl = 3,)]

1
Using Fubini’s Theorem, (3.6.5), (3.6.6) and the fact that / p(y) dy = po (see (3.6.4)) we obtain
0

0
Lo 2 vupyas = [ B> [ B
Rx[0,1] | 0T

| Brin(P0 + 65) + Brin(p0 — 85)|

(3.6.7)
1
> =
2
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By (3.6.2) the mapping y — p(y) is continuous, hence there exists yo € [0, 1] such that p(yo) = po.
From (3.6.2) we get

Oy

5y N |
v/ M

(3.6.8) ng]

(i}

=
L2((Rx[0,1]) 2‘ 99

L2((Rx]0,1])
From (3.6.7) and (3.6.8) we obtain

1 1 1 1 1 AQ(S?/J
E)\(¢> - Emin(po) > 5 {Emin(po + 6¢) + Emin<p0 - 5¢)] - Emin(p()) + m

+ R
2
2 5¢ AM

2 (1 Epin(po + 0p) + Epin(Po = 0p) = 2B, (p0) | N? 2
because d, < 0 and A > A*(pg) (see (3.6.3). Since the above estimate holds for any 1) as considered
above, the conclusion follows.

(viii) We proceed in several steps to prove the concavity of Ej nin.

Step 0. Functional setting. We consider the space

X = {w:R?— C | wis1— periodic with respect to the second variable,
is piecewise C? and there exists a > 0 such that supp(w) C [~a,a] x R}.

By "piecewise C?" we mean that w is continuous and there exist finitely many points 0 = yy <
y1 < --- < yn = 1 such that for each j € {1,...,n} there exists a mapping @/ that is C? on some
larger strip R x (yj—1 — d,y; +0), and wrx[y,_,.y,] = w\ij[yj,l,yj]' We consider the space X for
the following reasons : we need a function space X C H;er such that any function ¥ € £ can be
approximated by functions of the form e#®) 4+ w(z,y), where ¢ € H'(R) and w € X (this can
be done in view of Lemma 3.3.6 (ii)), we need to use Lemma 3.3.7 (which obviously extends to
functions in X), and we need X to be stable by a reflection procedure that we will describe below.

Given any w € X and yo € R, we define the functions T} ,,w and T5 4 w on R x [0, 1] as follows,
then we extend them to R? as 1—periodic functions with respect to the second variable :

_ ) w(z, g +y) if y € [0, 3],
T1,yOUJ(SE,y) = { w(z,yo+1—y) ifye [%, 1],

T2,y0w(l',y) = { w($,y0 _|_y) ify € [%’ 1]'

It is obvious that Ti y w and T5 4, w belong to X for any w € X and any yo € R, and we have
Tjyow(z,y) =T yow(x,1 —y) for all y € [0,1] and j =1, 2.
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For ¢ € HY(R) and w € X, let 9(x,y) = %) 4 w(x,y) and let d[p,w] and q(p,w) be as in
subsection 3.3.2. It is easily seen that

yo—i—2
q(, Ti yow / / [0, T1 yow](x,y) dv dy = 2/ dlp, w)(z,y) dx dy,

1 Y0
Q(% T2,y0w) = A A d[% T2,y0w]($v y) dx dy = 2/ d[(pa U}] (IE, y) dx dy)
Y

0—3

=

(3.6.9) vots

| P
B+ Tugu) =2 [ |22 |G Vil doay,

Yo

. Yo
E)\(ew + T2,y0w) =2

‘ —i—)\Z‘ ‘ + V(|4|?) dz dy, and
yo—*

E\(€" + Ty yow) + Ex(e? + Ty yow) = 2E)\(1).

For any ¢ and w as above, the function
t+1 t
Toult) = [ dipul(wg)dedy— [ dlp,ul(e,y)dody
2

is continuous, 1—periodic on R and Yy, (t + ) = =Y (t) for any t. We denote

w((p, w) = Ssup ‘ T(p,w(t) ’ .
te(0,1]

For any g € (0,27) and any A > 0, we denote
5(g) = inf (sup {w(o,w) | ¢ € H'(R),w € X, q(o,w) = g and Ex(€"? +w) < Exymin(q) +¢}).
Step 1. Assume that 0x(q) > 0. Then for any n € (0,0x(q)) we have

(3610) E)\,min(q - 77) + E)\,min(q + 77) < QE)\,min(Q)'

To see this, fix 7 € (0,65(¢)). Fix € > 0. By the definition of d)(q), there exist ¢ € H'(R) and
w € X such that ¢(p,w) = ¢, BE(e"’ +w) < E) min(q)+¢ and w(p, w) > n. Since Ty, ,, is continuous,
1—periodic and Ty (t+3) = =Yy, (t) for any ¢, there exists ¢y € [0, 1] such that Yo, ., (to) = 7. Let
wy = T ,w and wy = Th 4, w. From the first two equalities in (3.6.9) we get ¢(p,w1) = ¢+ n and
q(p, w2) = q¢—n, and we infer that Ex(e" +w1) = Exmin(q+mn) and Ex(€"? +w3) = Exmin(q —n).
Then using the last equality in (3.6.9) we find

Exmin(q — 1) + Exmin(q +n) < Ex(€"? +wa) + Ex(e" + w1) = 2E5(" + w) < 2E\ jmin(q) + 2¢.
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Since the above inequality holds for any € > 0, (3.6.10) is proven.
Step 2. If q € (0,27) is such that 6x(q) = 0, then E min(q) = E}in(q)-

min

Let M = E) pmin(q) + 1. Choose r > 0 such that (¢ —r,¢+r) C (0,27). Then choose ¢y € (0,1)

such that g < r and % <r.

Fix £ € (0,&0). By the definition of d5(g), there exist 1. > 0 such that for any ¢ € H'(R) and
w € X satisfying q(p,w) = ¢ and Ey(e® + w) < Ex min(q) + 2n. we have w(p,w) < . We may
assume that n. < e.

Consider ¢ € H'(R) and w € X such that ¢(p,w) = ¢ and E(e’? + w) < Exmin(q) + 7.
Proceeding as in step 1, we see that there exists yo € [0,1] such that Y., (y0) = 0. Denote w; =
T yow, wo = Tayow, P = €% 4w, and 1;(x,y) = €?®) + w;(z,y) for j = 1,2. By (3.6.9) we have

q(p,w1) = q(p,w2) = q(p,w) =q and  E\(P1) + Ex(v2) = 2E\(Y) < 2E) min(q) + 27

and we infer that

E)\,min(q) < E/\(wj) < E/\,min(Q) + 2776 for ] = 17 2.

Taking into account how 7. was chosen, we infer that w(p, w;) < e for j =1,2.
Let wj1 = T} 1w; and wjo = Ty, 1w; for j = 1,2, then let ¢ (z,y) = eie(®) 4 wje(x,y) for
74 74
J,¢ € {1,2}. Using the first equality in (3.6.9) we find

1

. w) = gl w)] = Voo (7 ) | <l < e

Similarly we get |q(¢, wje) — q(p, wj)| < e for j,¢ € {1,2}, and this gives q(p,w;¢) € (¢ —¢,q+¢).
Since E) mn is v/2—Lipschitz, we get

(3.6.11) Exmin(q(9,w5.0)) = Exmin(q) — V2¢ for j,0 € {1,2}.

Now we observe that by construction, the functions w;, are %—periodic with respect to the
second variable y. Let w;¢(x,y) = wj(z,¥). Then we have w;, € X and

! ;
Q(Qpa UN]j,E) = A /1:{ d[% wj,f] ([L‘, y) dx dy = 2/0 /1:{ d[@v /wj,f] (1"5 y) dx dy = Q(@v wj,f)

because/ / dle, wjel(z,y) dx dy —/ / dlp, wje](z,y) de dy (the last equality is a consequence

of the fact that wj, is 5 periodic Wlth respect to y). Denoting 1/1]3(33 y) = (@) 4 Wie(x,y) =
Vje(x, %) we have 9, € £ and using (3.6.11) we get

Ex(¥;0) = Exmin(q(9,0;0)) = Examin(q(0sw;0)) = Exmin(q) — V2¢.

79



A simple computation gives

Ex(j0) = Ex(thj0) ,)\2H pju

L2(Rx[071])'
From the last sequence of inequalities we obtain

o
15,

(3612) (1/13 @) E)\,min(q) + \/56.

Lszmu)

Summing up the inequalities (3.6.12) for j, ¢ € {1,2} we get

(3.6.13) 3N? < 4AEX () — 4Bx min(q) + 4V2e < 4. + 4v/2e < 12¢.

H oy ‘ L2(Rx[0,1))

Using (3.6.13),

< Ex(¢) < M and Lemma 3.3.7 we infer that
=l L2Rx[0,1])

< dveM

L2(Rx[0,1]) A

|p(g0,w(-,y2))—p(<,0, 5 Y1) ’\ H@J;‘LQ Rx[0,1] Hay‘

1
for any y1,y2 € [0, 1]. Since y — p(p, w(-,y)) is continuous and / p(p,w(-,y)) dy = q, there exists
0
€ [0, 1] such that p(p,w(-,y«)) = ¢ and consequently

4veM 4veM

(3.6.14) p(p,w(,y)) C (q - at ) for any y € [0,1].
Using the fact that E.,, is v/2—Lipschitz, we deduce that

oY 2 4v/2eM
(3.6.15) E' @) = [ |Go @] + V(P ) do > Ehla) - .

ROz A
Integrating (3.6.15) over [0, 1] we discover
1 4V 2eM

(3.6.16) Ermin(@) +2 > Ba®) > [ B'W(,0)) dy > Bhinle) = =5

Since (3.6.16) holds for any e € (0,g0), we infer that Ejmin(¢) = E}..(g¢). Thus necessarily
Emin(q) = EL;,.(q) (see part (ii)) and the proof of step 2 is completed.

min
Step 3. Conclusion. The concavity of Ej i, on [0,27] follows from steps 1 and 2 and from
Lemma 3.6.3 below with [a,b] = [0,27], f = Ex min and g = E}

man*

80



Lemma 3.6.3. Let f,g: [a,b] — R be two continuous functions. Assume that
a) g is concave and f < g on |[a,b], and
b) for any x € (a,b) we have either f(x) = g(x), or there exists 6 > 0 such that

(3.6.17) flx)==(flx—=n)+ f(z+n)) for any 0 < n < 6,.

Then f is concave on [a,b).

Proof. For any z € (a,b) there exists ¢, > 0 such that (3.6.17) holds. If f(z) < g(z), this follows
from assumption (b). If f(z) = g(x) we may take 6, = min(x — a,b — x). Indeed, if 0 < 7 <
min(z — a,b — ) we have  — n,z + 1 € [a,b]. By assumption (a) we get

flx)=g(x) = s(9(x —n) +g(z + 1) = (f(x —n) + f(z +n)).

N

Next we see that for any «, 8 € R, the function f, g(t) = f(t)—at—/ cannot achieve a minimum
on an interval (x1,22) C (a,b) unless it is constant on [z1,x2]. Indeed, assume that f, g reaches
a minimum on (x1,22) at some point y € (x1,22). It is obvious that f, s also satisfies (3.6.17).
Let S = {z € (x1,22) | fap(2) = fap)} By (3.6.17) we see that z — 7,z +n € S for any
0 < 1 < min(dy,y — 1,22 — y) and we infer that S is open in (x1,22). By the continuity of f, the
set S is also relatively closed in (z1,2z2). Hence S = (z1, z2).

Let 1,29 € [a,b], 1 < 9. The function t — f(t) — 22=L f(z1) — 2L f(x5) takes the value

r2—T1 T2—T1
0 at t = 21 and at ¢ = x9, hence it must be nonnegative on [z1, z2]. This means that

Tro — t t— X1
f(t) > f(z1) + f(z2) for any t € [x1, x2].
Tro9 — X1 Tr9 — X1
Since x; and xy were arbitrary, f is concave on [a, b]. O

To perform minimization of the energy at fixed momentum in £ we will use a "regularization
by minimization procedure" that has been developed in [11] and [6]. It will enable us to get rid of
small defects of Sobolev functions and to approximate functions in £ that have very small energy
on every ball of fixed radius by functions whose modulus is close to 1.

We consider a function v € C*°(R) such that v is odd, v(s) = s for s € [0,2],0 <2/ <1on R
and v(s) = 3 for s > 4. Given ¢ € £ and X > 0, the modified Ginzburg-Landau energy of ¢ in Q2 is

2
2 p—
(3.6.18) Baima@) = [ el 4o+ 5 (2w ~ 1) dody.
For any given ¥ € £, and h, A > 0 we consider the functional

GEAQ) = Earma©) + 1< =¥l 2@y

(3.6.19)
0 1

/R><[01]‘8i ‘ ‘ T3 ( |<’)—1> +ﬁ|C—w|2d:cdy.
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.- We will consider the problem of

Notice that G;f’/\(C) < oo for any ¢ € & satisfying ( — ) € H;
minimizing G;f,)\ in the set {¢ € & |¢—v € H).}.
Let A = % Denoting ¥ (z,y) = ¥(x, \y) and C(x,y) = ((x, \y) we see that o) and C are
A—periodic with respect to the second variable and
a2 10¢ 2
j‘ . ‘i
dy

) . 1 ~ 2 1 - A s
GhA© =2 o [5 5 (S = 1)+ 551¢ — v dedy = MG (Q).

Therefore ¢ is a minimizer for G;f , among 1—periodic functions with respect to the second variable

if and only if ¢ is a minimizer for @}f among functions that are A—periodic with respect to the
second variable. This observation enables us to use directly the results established in [6, 11].

Proceeding exactly as in Lemma 3.1 p. 160 and Lemma 3.2 p. 164 in [6] (see also Lemma 3.1 p.
126 and Lemma 3.2 p. 132 in [11]), we get :

Lemma 3.6.4. i) The functional G;fA has a minimizer in the set £, ={( € €| ¢ —1p € H), }.
it) Any minimizer ( satisfies

(3.6.20) Ecrma(Ch) < Egrma(¥);

(3.6.21) ||<h — w”%%Rx[O,l]) < hQEGLm,A(w)Q

36220 [ (206D ~1)" = (3D - 1) e dy < ChEoLma(w).
Rx[0,1] "

If ¢ = €% 4w with ¢ € HY(R) and w € H}

pers then we have

(3.6.23) (o, w + (Ch = ¥)) — (@, w)| < 2hEGrmA(Y)-
iii) Let L(z) = (v*(|z]) — 1) y(|z[)1/(]z\)é if z € C* and L(0) = 0. Then any minimizer (, of
Gﬁ)\ in &y satisfies the equation

(3.6.24) —AGy + L(Gy) + %(ch — ) =0  inD'(R3).

Moreover, we have (j € W/li’f(RQ) for 1 < p < oo, and consequently ¢, € CZIO’CO‘(RQ) for any
ae(0,1).

i) For any h > 0 and any 6 > 0 there exists a constant K = K(h,0) > 0 such that for any
Y € € satisfying Eqgrm\(¢¥) < K and for any minimizer ¢, of G;f)\ in &y we have

(3.6.25) 1-6<|G(x)] <146 in R2.
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v) Let (n)n>1 C € be a sequence of functions such that (Egr x(¥n))n>1 is bounded and

(3.6.26) lim_(‘sup B3 (6)) =0.
yeR ’

n—oo

There exists a sequence h, — 0 such that for any minimizer (, of G;’f:’)\ in Ey, we have
[ [¢nl = Ul oo (r2) — 0 as n — oc.

The proof of Lemma 3.6.4 is the same as the poof of Lemmas 3.1 and 3.2 in [6], and we refer the
interested reader to that article. See also Lemmas 3.1 and 3.2 in [11] for higher-dimensional variants.
The existence of a minimizer is straightforward using the direct method in calculus of variations. Es-
timates (3.6.20) and (3.6.21) folow immediately from the fact that G%(Ch) < Gﬁ/\(w) = Eqrm(v¥),
and (3.6.23) comes from (3.3.7), (3.6.20) and (3.6.21). Part (v) is a version of Lemma 3.2 p. 164 in
[6] in the periodic setting; see also Lemma 3.2 p. 132 in [11].

For |p| € R/27Z we denote ||p|| = inf{|p| | p’ € |p|}. Notice that ||p|| € [0,7] and the
infimum is achieved. The distance between the classes |p;| and |p2] is ||p1] — [p2]| = ||p1 — p2]|-
It follows from Lemma 3.6.1 (i) that for any p € R we have

E/\,min(p) = E/\,min(‘ I.pJ |)

Lemma 3.6.5. Assume that ({n)n>1 C € is a sequence of functions satisfying :
(a) There exists M > 0 such that Ex(1,) < M for all n,

; ([y—1,y+1]) _
(8) Jim, (sup £ (¥n)) =0,
(c) |LQ](¢n)] — ¢ € [0,7] as n — c.
Then we have linIr_1>i£f E\(¢n) = V2.

Proof. Using Lemma 3.2.3 we see that Eqy x(¥y) is bounded and (3.6.26) holds. We denote

M = sup Eqrx(1n) and En = sulg Egi;\l’zﬂb(wn).
xTe

n>1

Let u, = |¢n]| — 1. Then we have |Vu,| < |V,| almost everywhere on R2. We also have
[tun| < | [n] — 1] - | [tn] + 1] = | |¥n]? — 1]. We infer that u, € H'(R x (0,1)) and

1 1\ -~
HunHQI-Il(RX(O,l)) < max (17 )\2> EGL,/\(¢TI> < max (17 )\2) M.
Similarly we get HunH%p([x_l e+1]x(0,1)) S max (1,)\—12) en for any z € R. Let p € (2,00). By the
Sobolev embedding, there is C; > 0 such that |[ul|ze((a—1,a+1]x[0,1]) < Cpllull a1 ((a=1,a41)x(0,1)) for
any u € H'((a —1,a + 1) x (0,1)) and we infer that

p—2
o 2
/[a—l wrixo Ul BT S Collullr (o101 01)) S C@Nen® unllirs (ot .a41)x(0,1))-
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Take a sequence (ay)r>1 such that R = Ug>1]ar — 1,ax + 1] and each point x € R belongs to at
most two of the intervals [ax — 1, ag + 1]. We write the above inequality for each k and we sum over
k to get

pf 2 p—2 _

”unnip Rx[0.1 < C(p, )‘) Hun”H1 (Rx(0,1)) = C(p, >‘) EGL,)\(¢H) < C(p, )\)EFM
(Rx[0,1])

We have thus proved that |[un || r(rx[0,1)) — 0 as n — oo for any p € (2, c0).
Next we show that

1 2
(3.6.27) / IV (Jipn]?) — = (|¢n|2 - 1) |dedy — 0 asn — oco.
Rx[0,1] 2
Fix € > 0. By assumption (A1) there exists n(e) > 0 such that

[V (s?) — % (82 - 1)2 | < % (82 - 1)2 for any s € [1 —n(e), 1+ n(e)].

Choose p > min(4,2py + 2), where pg is as in (A2). By assumption (A2) there is C'(g,p) > 0 such
that

V(s?) — % (82 - 1)2 | < Cle,p)||s| — 17 for any s € [0,1 —n(e)] U1+ n(e), 00).

We find

V(gal?) — 5 (a2 = 1)" | < & (onl? = 1)" + Ole,p) 1l — 117

and integrating we obtain

1
/Rx[o,u V() = 5 (10af = 1) dody

l\D\(‘f)

(3.6.28)

p72

€ 2 2 » -
S92 Jrou ([enl® 1) dzdy + Cle.p)unlfoapo. < =M +Cle.p. N)en® M.

—2
Since &, — 0, there exists n(¢) € N* such that C(e,p, \)en® < € for all n > n(e). Then the
right-hand side in the above inequality is smaller than 2eM for all n > n(e). Since £ was arbitrary,
(3.6.27) is proven.
Assume that ¢ € & satisfies 1 — 0 < || < 1+ 6 for some § € (0,1). According to Lemma 3.3.5,
¢ admits a lifting pe?, a valuation of the momentum of ¢ is fo[o,l}(l — p%% dxdy, and we have

V2(1 -9 ’/ 1—p)86dxdy‘ / (1-0) ‘ ‘—i— (1 —p*)*dzdy
Rx[0,1] 0 Rx[0,1]
(3.6.29)

5] 00 1— p?)?
<[ ool Sy = [ S S0 P dedy < Bonna )
R><[01] oz 2 Ox
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We may use Lemma 3.6.4 (v) for the sequence (1,)n>1. We infer that there exists a sequence
hn, — 0 and for each n there is a minimizer ¢, of G;f:,)\ in &y, such that [[[n| — 1| pee(r2) — 0 as
n — 00. Denote 6, = || |G| — 1| oo (r2), SO that 1 — 6, < [Cn| < 1+ dy. For all n sufficiently large
we have &, < 1, and then ¢, admits a lifting ¢, = p,e®» and (3.6.29) holds for ¢,.

From (3.6.23) we have

LQ1(¢n) = [Q) ()] < 2hnEgrm () < 2haM — 0 as n — oo.

Since || Q] (¢n)| — ¢, we infer that ||Q]((,)| — ¢ as n — oc.
We have Egr\(¥n) 2 Ecrma(¥n) 2 Eqrm(¢n), and using (3.6.29) we obtain

B(Un) = Eor (o) + [ ViIal') = 568 wnl) — 1) dy
2 1 2 2
2 Barma@) + [ V)~ (@ () 1) dedy
> VI = 8IIQUG + [ V() = () ~ 1)

Letting n — oo in the above inequality and using (3.6.27) we get lin_l> inf Ey(¢,) > v2¢q and Lemma
n o
3.6.5 is proven. O

Proof of Lemma 3.6.1 (v). Fix p > max(4,2py + 2), where pg is as in (A2). Coming back to
(3.6.28) we see that for any £ > 0 there exists C(g,p) > 0 such that for any i) € £ we have

B\) = Bora@)| < [ V(wal) = 5 (10l = 1)° | dedy

R x[0,1]

3.6.30 2
(3.6.30) 2/ o (1nl —1) dady + C(e, p)|[1enl = 117, g o)

ya
2

SeEqra(¥) + Cle,p, A Ecra(¥)?.
Using (3.6.30) we infer that for any € > 0 and for any A > 0 there exists M (e, A) > 0 such that
(3.6.31) |E)\(1/J) — EGL,)\(Q,Z))| < 25EGL,)\(¢) for any ¢ € & satisfying EGL )\(¢) (8 )\)

Fix § € (0,1). Given any ¢ € £ and any h > 0, denoting by (; a minimizer of GhA in & we
have EGL7)\(1/J) > EGLm,)\(w) > EGLm,)\(gh) and therefore

Ex(9) — v2(1 - 9)|[Q)W)] > (Ex(¥) — Eara(¥)) + S Eara(®)

2
(3.6.32)
+ < - g)(EGLm,A(Ch) - i

g\/ﬂ 19 (Ch)l> + (1= V2 (LQJ(G| — [LQIW)]).
2
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Choose h = m. Using (3.6.23) we have
(3.6.33) (1= )2l LQI(@] - [LQUWI| < (1 = V3 (2hEarmale)) < §Fara(®)

For h as above, by Lemma 3.6.4 (iv) there exists a constant K(J) > 0 such that for any ¢ € £
satisfying Eqr A (¢) < K(6) and for any minimizer ¢, of G;ﬁ/\ in & we have 1 — 3 < |Gy < 1+ 8.
Then using (3.6.29) for (;, we see that

Vel < (1-5) VAILQIG)] < Eemal)
2

(3.6.34)

If Bara() < N (£5,)), using (3.6.31) we get

0

(3.6.35) |Ex(¥) — Eqra(¥)] < 3 aLA(¥).

By Lemma 3.2.3 there exists m > 0 such that for any ¢ € & satisfying E)(¢) < m we have
Ecra(y) < min (K((S), M (&, )) Then using (3.6.32)-(3.6.35) we infer that

Ex() ~ V31~ 5)|[Q)()] > SEora() >0 for all v € £ satisfying By(#) < m.

The above inequality and the fact that E) pin(p) — 0 as p — 0 imply that there exists ps > 0
such that Ey jin(p) = v2(1 — 0)p for all p € [0, ps]. O

Theorem 3.6.6. Assume that V satisfies (A1), (A2), and (B2). Let p € (0, 7] and A > 0 such
that Ex min(p) < V2p. Let (¥n)n>1 C € be a sequence satisfying

(3.6.36) Q] (Yn) — |p] and E\(¢n) — Exmin(p) as n — oo.

Then there exist a subsequence (Vn, )k>1, @ sequence (Tg)r>1 C R and ¢ € & satisfying |Q|(v¥) =
1], Ex(¢)) = Exmin(p), and

Wnk’('Jrka)— W —0 in LP<R> fOT'2<p<OO,
V(|4 (- + 2) ) — V([¥]?)  in L'(R x [0, 1)),
Vb, (- +x) — Voo in L2(R x [0, 1]).

min(@)- In this case the existence of minimizers
follows from Theorem 3.5.2 in the previous section. However, even in this case Theorem 3.6.6
above is interesting because it gives the stability of the minimizers under two-dimensional periodic
perturbations, and this stability does not follow directly from Theorem 3.5.2.

Remark 3.6.7. If A > \*(q) we have E) nin(q) = E}
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Proof of Theorem 3.6.6. Let (¢n)n>1 C £ be a sequence satisfying (3.6.36). Then E\(v,) is
bounded.
As in the proof of Theorem 3.5.2, we use the concentration-compactness principle ([9]). We

2
31%‘ + A2 &bn‘ + V(|¢n]?), that is
Ox

denote by A,, the concentration function of f, :=

D2 5| On
Ault) = sup | o) S [ V() dady,
a€R J[a—t,a+t]x[0,1] | Ox

It is clear that A, is a non-decreasing function on [0, 00), A, (0) = 0 and tle Ay (t) = Ex(¢p). Then
there exists a subsequence of (¢, Ay)n>1, still denoted (¢, Ay)n>1, and there is a non-decreasing
function A : [0,00) — [0, 00) satisfying

(3.6.37) An(t) — A(t) a.e on [0,00) as n — o0.

Let a = tli}m A(t). We have 0 < a < im0 EX(¥n) = Ex min(p)-
We will show that oo = E) in(p).

We prove first that o > 0. We argue by contradiction and we assume that « = 0. Then we have
A(t) =0 for all £ > 0, and in particular A(1) = 0. Then Lemma 3.6.5 implies that lilginf Ey\(¢n) 2
n o

V2 lim [LQ] (¢n)], that is Ex min(p) = v/2p, contradictiong the assumption of Theorem 3.6.6.
n oo
Assume that 0 < a < E) jmin(p). Proceeding as in the proof of Theorem 3.5.2 (see (3.5.15)

- (3.5.18) there) we see that there exist a sequence R, — 00, a sequence (an)n>1 C R, and
B € (0, Ex min(p)) such that, after possibly extracting a further subsequence, we have

(3.6.38) Bt By — 8, BTy — By nin(p) — B, and
(3.6.39) gy et il gy s 0.

Let ¢y (z) = fol Yn(x,y) dy and vy, (z,y) = Yn(x,y) — ¥n(z). From (3.6.39) and Lemma 3.2.4 we
infer that

(3.6.40) ELlen—RuantBalpy 50 and 0, 11 ((an— Bosant Rn)) — 0 @S 0 — 00.

Proceeding as in the proof of Theorem 3.5.2 we see that || |¢u}n| - — 0. For

1||L°°([anfRn+1,an+Rn71}
n sufficiently large, 1[1” admits a lifting 1/?”(33) = pn(x)ew"(””) on [a, — Ry, + 1,a, + R, — 1], where
Pn = |thn|. Since EL:[0n—BnantRal () ) 5 0 we have ||p, — | 11 (ja — By 41,am+ B —1]) — 0.

By Lemma 3.2.2 there exist ¢, € H'(R) and v, € H'(R) such that 1, = " + v,. We may
assume that ¢, = 6, and v, = (p, — 1)e’" on [an — Ry + 2,a, + Ry, — 2] (to see this, we take
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Xn € CX(R) such that supp(xy) C [an—Rn+1,a,+ R, —1] and Xn=1on [an, — Rp+2, an+ Ry —2]
and we replace ¢, by @, = (1 — xn)pn + Xnbn and v, by 0, = 1, — €"?"). Then we may write

wn _ ei@n(x) + 'U)n(ilf, y) on RQ,

where ¢y, (x) = 0, (z) and wy,(2,y) = (pn(2) — 1)@ £y, (z,y) on [a, — Ry +2,a, + R, — 2] and
satisfy

(3.6.41) en L2 (fan—Rnt2.an+Ra—2)) — 0 and [ wnll g1 (jan — Rn+2,an+Rn—2]x[0,1]) — 0

as n — oo. Consider a nondecreasing function y € C*°(R) such that x = 0 on (—oo,—1] and
X =1 on [0,00). Define

() it @ < ap, ) enlan)  ifz <anp,
pna(®) = { on(an) if x> ap, Pnalt) = on(an) if x> ap,
w1 (7, y) = x(an — )wn(z,y),  wpa(z,y) = x(T — ap)wn(z,y),

and ¥y, j(z,y) = eloni () 4 Wy, j(z,y) for j =1,2. It is then clear that v, ; € £ and we have

(3.6.42) Pp1 = Pp on (=00, ap), Yn1 = een(an) = constant on [an + 1,00),
e Yp2 = Pp on [ap,00),  Ypo = enlan) = constant on (—o0,an, — 1].

Using (3.6.38), (3.6.39) and (3.6.41) it is easily seen that

(3.6.43) Ex(Yn1) — B and Ex(Yn2) — Exmin(p) — B as n — 00.

Taking into account (3.6.42), valuations of the momenta of ¢, 1 and of 1, 2 are, respectively,

O s wp) dz dy

n,1, Wn = —2 ;ewnywn + {t—=—
doniwns) = [ el un) + i

+/ <i8wn’17wn71> drdy, and
[an,ant+1]x[0,1] OT

n,2, Yn = -2 ;leigﬁn’wn + Zi
donzrwnz) = [ e )+ i

+ i = W) dx dy.
[awl,an]x[o,u< g+l e
Since R, — 00 and |[wn, ;[ 1 ([0, — Ru+2,an+Rn—2]x[0,1]) — 0, it follows from the above that

(3.6.44) q(Pn1,Wn1) + q(Yn2, wn2) = q(en, wp) + o(1) as n — 00.
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|la]| + ||b]|- Passing to a further subsequence we may assume
| Q] (¥n2)| — p2 € [0,7]. Then using (3.6.44) we deduce that

(3.6.45) p1+p22p

For any a,b € R we have |[a+b]| <
that |[Q](¢n,1)| — p1 € [0,7] and |

We have E)\(¢n.;) = Exmin (||Q](¥n;)|). Passing to the limit and using (3.6.43) we see that

(3.6.46) B = Ex min(p1) and Exmin(p) — B 2 Exmin(p2)-

Since Ey min is nondecreasing on [0, 7], (3.6.46) implies that p; < p and p» < p and then from
(3.6.45) we infer that 0 < p; < p for j =1,2.

The concavity of Ej p, implies that Ey pnin(p;) < %E)\,min(p) for j = 1,2, and equality may
occur if and only if E) i is linear on [0, p]. Summing up these two inequalities we find E) i (p1)+
E) min(p2) = Exmin(p), and equality implies that E} ,,,;, must be linear on [0, p]. Comparing this to
(3.6.46) we infer that necessarily p1 + p2 = p and E) 1min(p1) + Exmin(D2) = Exmin(p), thus Ex 1in
is linear on [0, p]. Then using Lemma 3.6.1 (v) we deduce that E min(p) = v/2p, contradicting the
assumption that E) pin(p) < V2p. We conclude that we cannot have 0 < a < E \min (D)

So far we have proved that o = E) in(p). Then it is standard to prove that there is a se-
quence (z,)p>1 C RY such that for any ¢ > 0 there is R. > 0 satisfying EE\_OO’I”_RE)(wn) +

E/(\I”+RE’OO) (¢n) < € for all sufficiently large n. Denoting ), = ¥, (- + 2,,), we see that for any € > 0
there exist R, > 0 and n. € N such that

(3.6.47) BT (4,) + B (4,) < for all n > n..

Obviously, (an)n>1 is bounded in L2(R x (0,1)) and using the boundedness of Egr x(¢) it is
easy to see that (,,),>1 is bounded in L?((—R, R) x (0,1)) for any R > 0. By a standard argument,
there exist a function ¢ € HlOC(RQ) which is 1—periodic with respect to the second variable,
Vi € L*(R x (0,1)) and there is a subsequence (¢, )r>1 satisfying

Vi, = Vi) weakly in L*(R x (0,1)),

(3.6.48) Uy, = weakly in H'((—R, R) (0,1)) for any R > 0,
.6. Unyy — 9 strongly in LP((—R, R) x (0,1)) for any R > 0 and p € [1, ),
Uy — almost everywhere on R2.

The weak convergence implies that for any interval I C R we have

Oy 2 2| Oy |
3.6.49 / + 22|22 gz dy < lim inf e 4 2] ) g gy,
( ) Ix(0,1) ‘895 ’ ‘ ’ ySinR Ix(0,1) ! O oy Y
The almost everywhere convergence and Fatou’s Lemma give
- 2
(3.6.50) / (lvP? - 1) dz dy < lim in (o =1)" dzdy and
Ix]0,1] k—oo JIx[0,1]
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(3.6.51) / V(|[¢)?) dr dy < liminf V(|tn, |*) dz dy.
Ix[0,1] k—oo J1x[0,1]

From (3.6.49) - (3.6.51) we get

(3.6.52) EL (0) < lim inf EL, () and E{(y) < lin inf EX(n,).
—00 —00

We deduce in particular that ¢ € £, Ex(¢) < Ex min(p) and Eg_oo’_RE)(z/J) + E(RE’ )(1/1) <e.

Using Lemma 3.2.4 (and taking eventually a larger R.) we see that the sequence 1]1”,9 satisfies
(3.5.21). As in the proof of Theorem 3.5.2 we infer that there is a function ¢ € H} _(R) such that
¢’ € L*>(R) and we may extract a subsequence, still denoted the same, such that (3.5.23) holds for

1[)7% and (. It is then clear that (3.5.24) and (3.5.25) hold for zZ;nk and (, too, and consequently
¢ e &R).

Fix Ry > 0 such that 1, and ¢ satisty (3.5.21) and (3.5.22) on (—oo, —R;] U [Ry, 00). Then the
functions v, and ¢ admit liftings on (—oo, —R;] U [Ry, 00), say ¥, = pre® and ¢ = pe?, where
ps pr. € HY((—00, —R1] U [Ry, 00)), and 6, 0, are continuous and ¢, 6, € L*((—oo, —R1] U [Ry,00)).

Fix € > 0. Then choose R; > 0 and k. € N such that I;nk and v satisfy (3.6.47) and @nk and ¢
satisfy (3.5.21) and (3.5.22) on (—o0, —R:] U [R., 00) for all k > k.. We proceed as in the proof of
Theorem 3.5.2. We have 9, (£R.)/C(£R.) — 1 as k — oo, thus we may replace 0, by 0y, + 265
on (—oo, —R.] and on [Re, 00), where £ € Z, so that o := 0(+R.) — 0(+R.) — 0 as k — oo.
We extend ), and @ as affine functions on [~ R., R.]. Then we have 6,0 ¢ H'(R), and 6, — 6,
e — ¢ uniformly on [~ R., R.] as well as in H'([-R., R.]).

We write ) A ‘

Y, = e + wy, and Y =e"? +w,

where

wg, = (1[1% - eie’“) + (111 J)nk) , and w= (¢ —e?) + (- Q).
It is clear that w, € H'(R x (0,1)) and Vw € L?(R x (0,1)). On (—oo, —R.] and on [R., c0) we
have ¢ — e = (p — 1)e? € L?((—00, —R.] U [Re,0)) because ¢ € E(R), and clearly ¢ — ¢ €

L>®([-R.,R.]) € L*([-R., R.]), hence ¢ — ¢* € L?*(R). We have 9, — n, — ¢ — ¢ almost
everywhere on R?, and Lemma 3.2.4 gives

<c| % O, <oM.

L2(Rx(0,1))

~ < 2
|9y, — ¢nk||L2(Rx(o,1)) H%nk ”L2(R>< 0,1))

Then Fatou’s Lemma implies that ¢ — ¢ € L*(R x (0, 1)), hence w € H'(R x (0,1)).
Denoting v = 9 — (, an easy computation shows that on ((—oo, —R:]U[R., 00)) x (0,1) we have

d(0,w) = d(8, (p —1)e” +v) = (1 — p2)d + <z‘§x(z/} - ew),v> - <ig§;, (p—1)e).
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We may estimate each term :
1 1 2
_ 2\y/ ~1p'2 - 2
(=0 < Gl0P+5(1-0)

2w+ 0,0 < (|22 + |e’|) o1 < 5lge] + 5o+

.Ov 1)eif <1(9’U’ 1 ’

W%JP‘ Je |\§% 5 ‘ +10')? + 1(p —1)2

Since 1 and ( satisfy (3.6.47) and (3.5.21), respectively, we find

(3.6.53) |d(6, w)| dz dy < Ce,

-/((—OO,—RE]U[RE,OO))X(OJ)
where C' does not depend on e¢.

Using the fact that qﬁnk and 1[1,% satisfy (3.6.47) and (3.5.21), respectively, and proceeding
similarly we find that 0 and wy, also satisfy (3.6.53), with C' independent of € and of k.

On the other hand, we have

/ A0n, wy) dedy = [ o0 we) + (12w da dy
[—Re,Re]x(0,1) [—Re,R.]x(0,1) ox
(3.6.54)
!/ i0 Ow
—>/ —2(0'e", w) + (i—,w) d:z:dyz/ d(0,w) dx dy
Re,R]x(0,1) Oz [~ Re,R<]x(0,1)

because 0j,¢% — @'¢? and %k — 92 weakly in L?([~R., R.] x [0, 1], while wj, — w strongly in
L*([-R-, R.] x [0,1]).
From (3.6.53) and (3.6.54) we deduce that for all sufficiently large k we have

(00, w) — a(6,0)| = | |

d(O, wi) — d(0,w) dx dy‘ < (2C + 1)e.
Rx(0,1)

Hence there exists k(¢) € N such that for all k£ > k(e),

(3.6.55) 1LQ) (Fny) — Q) ()] < a0k, wr) — (6, w)| < (2C + 1)e.

We have thus shown that |Q|(¢) = klim |Q|(tn,) = |p|. Therefore we must have
—00

EA(¥) > Exmin(p) = lim Ex ().

Comparing the above inequality to (3.6.49), (3.6.51) and (3.6.52) (with I = R), we infer that
necessarily

EA($) = Banin(p) = lim Ej (v, )
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and

. Oy 12 2 0n
6. A2 drdy = 1 e N2 R e d
(3.6.56) /RxOl ‘(%‘ + ‘ ‘ T Rx(0,1) | Ox * oy vy
(3.6.57) / V() dady = lim V ([t |2) der dy.
Rx(0,1) Rx(0,1)

The weak convergence Vb, — Vi in L*(R x (0,1)) and (3.6.56) give the strong convergence
Vibn, — Vip in L*(R x (0,1)). The fact that V > 0, V(|{hn, [2) — V(|1[?) almost everywhere on
R? and (3.6.57) imply that V (|, [2) — V(|%|?) in L*(R x (0,1)).

Fix € > 0. Let R be as in (3.6.47). Using (3.6.47) and Lemma 3.2.3 we find

(3.6.58) [6n,] — 1) dady < CEG, ") (4, ) < 6(e),

/(\(—OO,—RE]U[R&OO))X [Ovl]

where d(¢) — 0 as ¢ — 0. It is obvious that a similar estimate holds for ¢. Since qﬂnk — 1 in
L%([-R:, Rc] x [0,1]), we have || [tb,, | — \w\\\%g(([_R&RE}X[O ) S ¢ for all sufficiently large k. It is

- 2 -
obvious that (W’nk| - \1/1|) < Ybn, | — 1|2 + 3] [v] — 1|2 and using (3.6.58) we get

(3.6.59) el = 191172 o 1) < 26(6) +<

for all sufficiently large k. We have thus shown that |y, | — [¢| — 0 in L?*(R x [0,1]). Since
\% (\lznk| - \1/J|) is bounded in L?(R x [0,1]), using the Sobolev embedding and interpolation we
infer that |9y, | —[¢| — 0 in LP(R x [0,1]) for any p € [2, 00). O
Proposition 3.6.8. Let A > 0 and p € (0,7]. Assume that ¢ € £ is a minimizer of Ey in the set
{6 € €|11QI(#) =p}. Then :

(i) There is ¢ € [(Exmin),. (D), (Exmin)y(p)] such that ¢ satisfies

(3.6.60) ey, + A+ F(|9]*) =0 in D' (R?).

(it) Any solution ¢ € £ of (3.6.60) satisfies b € W, ’p(RQ) for any p € [2,00), ¥ and Vi are
bounded and 1) € CH*(RN) for any a € [0,1).

(iii) If c1 = (E)\mm); (p) < (Exmin)y(p) = ca, there exist i1,y € E such that each 1; is a
minimizer of Ey in the set {¢ € €| ||Q](®)] = p} and solves (3.6.60) with ¢ = ¢j for j =1,2.

The proof of Proposition 3.6.8 is similar to the proof of Proposition 4.14 p. 187 in [6], so we
omit it.
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