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Chapitre 1

Introduction

Dans l’étude des équations aux dérivées partielles issues de la physique, les solutions qui mini-
misent ou maximisent certaines quantités - comme l’énergie, le moment ou la masse - jouent un rôle
primordial dans la dynamique des systèmes considérés.

Cette thèse est dédiée à l’étude de deux problèmes de minimisation / maximisation dans l’espace
euclidien. Dans les deux cas, les suites minimisantes ou maximisantes manquent de compacité à cause
de l’invariance des problèmes par des translations et/ou des dilatations. Pour pallier à ce défaut,
la mise en oeuvre d’outils adaptés a été nécessaire (décomposition en profils dans le premier cas,
concentration-compacité dans le second).

Dans une première partie on s’intéresse aux inégalités de Strichartz qui sont des outils essentiels
dans l’étude des équations dispersives, comme l’équation de Schrödinger. Elles interviennent dans
l’étude du problème de Cauchy, du scattering, du compotement qualitatif des solutions ou encore
de l’explosion. On considère l’équation de Schrödinger avec Laplacien fractionnaire dans R × RN :

(1.0.1) i∂tU + (−∆)σU = 0,

où (−∆)σ = F−1 (|ξ|2σFu
)

et F ou ̂ désignent la transformée de Fourier dans RN . Pour toute
donnée initiale u définie sur RN , on note par U(t, x) = [S(t)u] (x) la solution de (1.0.1) qui vérifie la
condition initiale U(0, x) = u(x) et par (S(·))t∈R le groupe de Schrödinger associé au Laplacien frac-
tionnaire (−∆)σ. Plus précisément, on a S(t)u = F−1

(
eit|ξ|

2σ
û
)
. Pour toute distribution tempérée

u on définit |∇|γu par |∇|γu = F−1 (| · |γ û). On considère les espaces fonctionnels suivants :
• Ḣα

q (RN ) est le complété de C∞
c (RN ) pour la norme

∥u∥Ḣα
q

:= ∥|∇|αu∥Lq(RN ) .

Bien évidemment, on a Ḣ0
q = Lq(RN ). Remarquons que Ḣα

2 = Ḣα est un espace de Hilbert et la
formule de Plancherel donne

∥u∥2
Ḣα = 1

(2π)N
∫

RN
|ξ|2α|û(ξ)|2dξ.
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• Lpt Ḣα
q := Lp(R, Ḣα

q (RN )), muni de la norme de Strichartz

∥U∥Lpt Ḣα
q

:=
(∫

R

(∫
RN

||∇|αU(t, x)|q dx
) p
q

dt

) 1
p

lorsque p, q ∈ [1,∞),

respectivement

∥U∥L∞
t Ḣ

α
q

:= sup
t∈R

(∫
RN

||∇|αU(t, x)|qdx
) 1
q

pour q ∈ [1,∞).

Remarquons le comportement des normes par rapport aux dilatations : en posant uτ (x) = u
(
x
τ

)
,

on a
∥uτ∥Ḣα

q
= τ

N
q

−α∥u∥Ḣα
q

et S(t)uτ =
[
S

(
t

τ2σ

)
u

]
τ

pour tout τ > 0.

Lorsque U est une fonction definie sur R × RN et Ua,b(t, x) = U
(
t
a ,

x
b

)
, on a

∥Ua,b(· + t0, · + x0)∥Lpt Ḣα
q

= a
1
p b

N
q

−α∥U∥Lpt Ḣα
q
.

En particulier, quelque soient λ ∈ (0,∞), t0 ∈ R et x0 ∈ RN on a

(1.0.2)
∥∥∥∥λγ− N

2∗U

( · + t0
λ2σ ,

· + x0
λ

)∥∥∥∥
Lpt Ḣ

γ
q

= ∥U∥Lpt Ḣγ
q

si 2σ
p

+ N

q
= N

2 − s, et

(1.0.3)
∥∥∥∥λγ− N

2∗ u

( · + x

λ

)∥∥∥∥
Ḣs+γ

= ∥u∥Ḣs+γ .

Les inégalités de Strichartz donnent des estimations de la solution S(·)u de (1.0.1) avec donnée
initiale u en termes de certaines normes de u :

(1.0.4) ∥S(·)u∥Lpt Ḣγ
q

≤ CS ∥u∥Ḣs+γ .

Compte tenu du comportement des normes par changement d’échelle, l’inégalité (1.0.4) ne peut
avoir lieu que si la relation 2σ

p + N
q = N

2 − s est vérifiée. On suppose que s ∈ (0, N2 ), de sorte que
l’espace Ḣs(RN ) s’injecte continûment dans L2∗(RN ), où 2∗ = 2N

N−2s . Pour simplifier la notation,
on pose dλu := λγ− N

2∗ u( ·
λ). On a alors

(1.0.5) dλ [S(t)u] = S(λ2σt)dλu.

Pour s fixé, les exposants (p, q) sont admissibles si p ∈ [2,∞], q ∈ [2,∞), et

(1.0.6) 2σ
p

+ N

q
= N

2 − s = N

2∗ .
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On a alors s = N
2 − N

q − 2σ
p . Si la paire (p, q) est admissible, on doit avoir p ∈ [2,∞] et q ∈[

2∗, 2N
N−2(s+σ)

]
. Les paires admissibles extremales sont (2, 2N

N−2(s+σ)) et (∞, 2∗). Toutes les autres
sont non-extremales. Il existe une seule paire admissible avec p = q. On la note (q, q) et on voit
facilement que q = 2(N+2σ)

N−2s = 2∗ + 4σ
N−2s . On observe que LqtLqx = Lq(RN+1) ; cette caractérisation

sera très utile par la suite. Dans une longue série de travaux par des nombreux auteurs (commencée
par R. Strichartz en 1979, et jusqu’au résultats récents de V. D. Dinh en 2017), les inégalités de
Strichartz (1.0.4) ont été demontrées pour toutes les paires admisibles.

L’application u 7−→ S(·)u de Ḣs+γ dans Lpt Ḣγ
q est continue, mais n’est pas compacte à cause

des invariances par translations et par changement d’échelle. Nous montrons que ces invariances
sont les seuls obstacles à la compacité. Plus précisément, nous démontrons le résultat suivant de
décomposition en profils :

Theorem 1.0.1. Soit N ∈ N∗ et 0 ⩽ s + γ < N
2 . Soit u = (un)n≥1 une suite bornée de Ḣs+γ. Il

existe une application strictement croissante j : N∗ → N∗, des fonctions V i ∈ Ḣs+γ, et pour tout
i ∈ N∗ il existe des suites λi = (λin)n∈N∗ ⊂ (0,∞), ti = (tin)n∈N∗ ⊂ R, xi = (xin)n∈N∗ ⊂ RN telles
que :

a) Si i ̸= ℓ, les suites
(
λi, ti,xi

)
et
(
λℓ, tℓ,xℓ

)
sont "orthogonales" dans le sens suivant :

lim
n→∞

λin
λℓn

+ λℓn
λin

+ |tin − tℓn|
(λin)2σ + |xin − xℓn|

λin
= +∞.

b) Pour tout n ∈ N∗ et k ∈ N∗ on a

(1.0.7) uj(n) =
k∑
i=1

S(−tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]
+ wkn, et

(1.0.8) lim
k→∞

(
lim sup
n→∞

∥S(·)wkn∥L∞
t Ḣ

γ
2∗

)
= 0.

c) Les conditions de "presque orthogonalité" suivantes sont vérifiées pour tout k ∈ N∗ :

(1.0.9) lim
n→∞

∥S(·)uj(n)∥
q

Lqt Ḣ
γ
q

=
∞∑
i=1

∥S(·)V i∥q
Lqt Ḣ

γ
q

,

(1.0.10) ∥uj(n)∥2
Ḣs+γ =

k∑
i=1

∥V i∥2
Ḣs+γ + ∥wkn∥2

Ḣs+γ + o(1)
n→∞

, et

(1.0.11) lim sup
k→∞

(
lim sup
n→∞

∥wkn∥Ḣs+γ

)
⩽ lim sup

n→∞
∥uj(n)∥Ḣs+γ .
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Pour toute paire admissible (p, q) on a

lim
n→∞

∥S(·)uj(n)∥
q

Lpt Ḣ
γ
q
⩽

k∑
i=1

∥S(·)V i∥q
Lpt Ḣ

γ
q

+ o(1)
k→∞

lorsque p > q, respectivement

lim
n→∞

∥S(·)uj(n)∥
p

Lpt Ḣ
γ
q
⩽

k∑
i=1

∥S(·)V i∥p
Lpt Ḣ

γ
q

+ o(1)
k→∞

lorsque p < q.

Il existe plusieurs résultats de décomposition en profils dans la littérature, à commencer par
celui de Patrick Gérard en 1998 dans les espaces Ḣs, suivi de S. Keraani (2001). Le Théorème 1.0.1
ci-dessus atteint une généralité jamais obtenue auparavant et fait appel à peu d’outils techniques.
L’ingrédient principal de la démonstration est le procédé d’extraction diagonale de Cantor. On fait
très peu appel à des inégalités de Sobolev améliorées.

En utilisant le Théorème 1.0.1 on obtient le résultat suivant.

Theorem 1.0.2. On suppose que 0 ⩽ s+ γ < N
2 . Soit (p, q) une paire admissible non-extremale. Il

existe des maximiseurs pour l’inégalité (1.0.4), c’est à dire

sup
u∈Ḣs+γ ,u̸=0

∥S(·)u∥Lpt Ḣγ
q

∥u∥Ḣs+γ

est atteint.

Dans la seconde partie de la thèse on s’intéresse aux ondes progressives pour l’équation de
Schrödinger

(1.0.12) i
∂Φ
∂t

+ ∆Φ + F (|Φ|2)Φ = 0 dans R2 × R.

Pour Λ > 0 fixé, on cherche des solutions Φ : R2×R −→ C de (3.1.1) Λ−périodiques par rapport à la
seconde variable, Φ(x, y+ Λ, t) = Φ(x, y, t), qui satisfont la "condition aux limites" |Φ(x, y, t)| −→ 1
lorsque x −→ ±∞. On suppose que la nonlinéarité F satisfait F (1) = 0 et F ′(1) = −1. Le cas
modèle est celui de l’équation de Gross-Pitaevskii, où F (s) = 1 − s.

On préfère normaliser la période Λ à 1 en posant Φ̃(x, y, t) = Φ(x,Λy, t). Il est évident que Φ
est solution de (1.0.12) si et seulement si Φ̃ satisfait l’équation

(1.0.13) i
∂Φ̃
∂t

+ ∂2Φ̃
∂x2 + 1

Λ2
∂2Φ̃
∂y2 + F (|Φ̃|2)Φ̃ = 0 dans R2.

On note λ = 1
Λ et on considère "l’énergie renormalisée"

(1.0.14) Eλ(Ψ) =
∫

R×[0,1]

∣∣∣∂Ψ
∂x

∣∣∣2 + λ2
∣∣∣∂Ψ
∂y

∣∣∣2 + V (|Ψ|2) dx dy,
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où V (s) =
∫ 1
s F (τ) dτ . Les ondes progressives de (1.0.13) sont des solutions spéciales de la forme

Φ̃(x, y, t) = ψ(x+ ct, y). Le profil ψ est 1−périodique par rapport à y et satisfait l’équation

(1.0.15) ic
∂ψ

∂x
+ ∂2ψ

∂x2 + 1
Λ2

∂2ψ

∂y2 + F (|ψ|2)ψ = 0 dans R2.

L’équation (1.0.13) admet deux quantités conservées : l’énergie Eλ ci-dessus, et le moment.
Formellement le moment devrait être Q(ψ) =

∫
R×(0,1)

⟨i∂ψ
∂x

, ψ⟩ dx dy. Si ψ est une fonction telle

que Eλ(ψ) < ∞, la fonction ⟨i∂ψ∂x , ψ⟩ n’est pas nécessairement intégrable et définir correctement
le moment est une difficulté en soi. Nous proposons une définition adéquate dans la section 3.3.
À cause des oscillations que les fonctions d’énergie finie peuvent avoir à ±∞, le moment est une
fonctionnelle qui prend des valeurs dans R/2πZ.

On étudie d’abord les ondes progressives unidimensionnelles de (1.0.13). Ce sont les ondes pro-
gressives qui ne dépendent pas de la variable y. Leur profil ne dépend que de la variable x et satisfait
une équation différentielle ordinaire qu’on peut résoudre. On trouve ainsi toutes les ondes progres-
sives d’énergie finie. On résout ensuite le problème qui consiste à minimiser l’énergie à moment
constant. Les minimiseurs sont des ondes progressives, et leurs vitesses c sont précisément les multi-
plicateurs de Lagrange associés au problème de minimisation. Dans le cas modèle de la non-linéarité
de Gross-Pitaevskii F (s) = 1 − s, il était connu que toutes les ondes progressives d’énergie finie
étaient aussi des minimiseurs. Nous construisons des exemples de non-linéarités lisses pour lesquelles
il existe des ondes progressives qui ne sont pas des minimiseurs de l’énergie à moment constant.

En dimension deux, on considère l’espace

E = {ψ ∈ L1
loc(R2) | ψ est 1−périodique par rapport à la seconde variable et

∇ψ ∈ L2(R × [0, 1]) et V (|ψ|2) ∈ L1(R × [0, 1])}.

On note par Q(ψ) le moment de la fonction ψ et on définit

Eλ,min(p) = inf{Eλ(ψ) | ψ ∈ E et Q(ψ) = p}.

ainsi que
E1
min(p) = inf{Eλ(ψ) | ψ ∈ E , ψ ne dépend pas de y et P (ψ) = p}.

On suppose que V > 0 sur [0,∞) \ {1}. Si V prend des valeurs négatives, on peut montrer que
Eλ,min(p) = −∞ pour tout p.

Nos principaux résultats peuvent être résumés ainsi :

Theorem 1.0.1. Sous des conditions générales sur la non-linéarité F , on a :

i ) La fonction E1
min est non-négative, paire, 2π−périodique et concave sur [0, 2π], E1

min(p) ⩽√
2p et la dérivée à droite de E1

min à l’origine est
√

2. Si, de plus, F est C2 dans un voisinage de 1
et F ′′(1) < 9

4 on a E1
min(p) <

√
2|p| pour tout p ̸= 0.

5



Pour tout p ∈ (0, π] tel que E1
min(p) <

√
2p il existe des minimiseurs pour E1

min(p) dans E(R)
et toutes les suites minimisantes sont pré-compactes.

ii) Pour tout λ > 0 fixé, la fonction p 7−→ Eλ,min(p) est 2π−périodique, concave sur [0, 2π],
Eλ,min(p) ⩽

√
2p, la dérivée à droite de Eλ,min à l’origine est

√
2, et Eλ,min(p) ⩽ E1

min(p).

iii) Pour tout p fixé il existe λ∗(p) > 0 tel que l’application λ 7−→ Eλ,min(p) est strictement
croissante sur (0, λ∗(p)] et Eλ,min(p) = E1

min(p) pour tout λ ⩾ λ∗(p).

iv) Pour tout λ > 0 et tout p ∈ (0, π] qui satisfait Eλ,min(p) <
√

2p il existe des minimiseurs
pour Eλ,min(p) dans E et toutes les suites minimisantes sont pré-compactes modulo des translations.

Les minimiseurs donnés par le théorème ci-dessus sont des fonctions lisses et sont des ondes
progressives ayant des vitesses c comprises entre les dérivées à droite et à gauche de la fonction
Eλ,min.

Lorsque λ est grand (ce qui correspond à des périodes Λ = 1
λ petites), la dépendance d’une

fonction ψ par rapport à la variable y est fortement pénalisée par le terme λ2
∣∣∣∂ψ
∂y

∣∣∣2 qui apparaît
dans l’énergie Eλ(ψ). C’est la raison pour laquelle les minimiseurs de Eλ,min(p) ne dépendent que de
x. En revanche, lorsque λ est petit on peut exploiter la concavité stricte de E1

λ,min dans un voisinage
de p pour construire des fonctions ψ ∈ E qui ont un moment égal à p et une énergie strictement
inférieure à E1

λ,min(p). Cela signifie que pour p fixé et λ suffisamment petit, les minimiseurs de
Eλ,min(p) dépendent effectivement des deux variables x et y.

6



Chapitre 2

Profile decomposition and maximizers
for the Sobolev-Strichartz inequalities
for Schrödinger’s equation

2.1 Introduction

We consider the linear fractional Schrödinger equation

(2.1.1) i∂tU + (−∆)σU = 0 in RN ,

where (−∆)σ = F−1 (|ξ|2σFu
)

and F (or ̂ ) is the classical Fourier transform,

Fu(ξ) = û(ξ) =
∫

RN
eix·ξu(x)dx.

For a given complex-valued function u defined on RN , the solution U of (2.1.1) satisfying U(0, x) =
u(x) is denoted by

U(t, x) = [S(t)u] (x).

Here (S(·))t∈R is the Schrödinger group associated to the fractionnal Laplacian (−∆)σ. We recall
that S(t)u = F−1

(
eit|ξ|

2σ
û
)
, and S verifies S(0) = Id and S(t1 + t2) = S(t1)S(t2) for every

t1, t2 ∈ R.
We denote by Ḣα

q (RN ), or shortly Ḣα
q , the homogeneous Sobolev space which is the completion

of C∞
c (RN ) with respect to the norm

∥u∥Ḣα
q

:= ∥|∇|αu∥Lq(RN ) ,

where |∇|α = (−∆)
α
2 is the operator defined by |∇|αu = F−1 (| · |αû). Obviously, we have Ḣ0

q = Lq.
In the case q = 2, Ḣα

2 = Ḣα is a Hilbert space and by Plancherel’s formula we have

7



∥u∥Ḣα = 1
(2π)

N
2

(∫
RN

|ξ|2α|û(ξ)|2dξ
) 1

2
.

Let us recall that the Ḣα
2 -norm is invariant by the Schrödinger group associated to (2.1.1)

(2.1.2) ∥S(t)u∥Ḣα
2

= ∥u∥Ḣα
2
, ∀t ∈ R.

By the Sobolev embedding theorem (see, e.g., [19], Theorem 8.1 p. 301) for any s ∈
(
0, N2

)
the

space Ḣs(RN ) is continuously embedded into L2∗(RN ), where 2∗ := 2N
N−2s .

We consider the space Lpt Ḣα
q := Lp(R, Ḣα

q (RN )), endowed with the Strichartz norm

∥U∥Lpt Ḣα
q

:=
(∫

R

(∫
RN

||∇|αU(t, x)|q dx
) p
q

dt

) 1
p

if p, q ∈ [1,∞),

respectively

∥U∥L∞
t Ḣ

α
q

:= sup
t∈R

(∫
RN

||∇|αU(t, x)|qdx
) 1
q

if q ∈ [1,∞).

The following scaling properties hold. If u is a function defined on RN and uτ (x) = u
(
x
τ

)
, we

have
∥uτ∥Ḣα

q
= τ

N
q

−α∥u∥Ḣα
q

and S(t)uτ =
[
S

(
t

τ2σ

)
u

]
τ

for any τ > 0.

If U is a function defined on R × RN and Ua,b(t, x) = U
(
t
a ,

x
b

)
, then for all a, b > 0 we have

∥Ua,b∥Lpt Ḣα
q

= a
1
p b

N
q

−α∥U∥Lpt Ḣα
q
.

The Lpt Ḣγ
q and the Ḣs+γ norms are invariant under translation in time and in space and appropriate

scaling : for all λ ∈ (0,∞), t0 ∈ R and x0 ∈ RN we have

(2.1.3)
∥∥∥∥λγ− N

2∗U

( · + t0
λ2σ ,

· + x0
λ

)∥∥∥∥
Lpt Ḣ

γ
q

= ∥U∥Lpt Ḣγ
q

provided that 2σ
p

+ N

q
= N

2 − s,

and

(2.1.4)
∥∥∥∥λγ− N

2∗ u

( · + x

λ

)∥∥∥∥
Ḣs+γ

= ∥u∥Ḣs+γ .

We define dλu := λγ− N
2∗ u( ·

λ). Because of the aforementioned invariances of the Schrödinger equation,
we have the following relationship between scale change in space and scale change in time :

(2.1.5) dλ [S(t)u] = S(λ2σt)dλu.
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A pair (p, q) is called admissible if p ∈ [2,∞], q ∈ [2,∞), and 2
p + N

q ≤ N
2 . If (p, q) is an

admissible pair and σ is as in (2.1.1), we define

(2.1.6) s = N

2 − N

q
− 2σ

p
.

Notice that s > 0 whenever 0 < σ < 1. If 0 < s < N
2 , (2.1.6) can be written as

(2.1.7) 2σ
p

+ N

q
= N

2 − s = N

2∗ ,

where 2∗ = 2N
N−2s is the Sobolev exponent so that we have the embedding Ḣs(RN ) ⊂ L2∗(RN ).

The following Strichartz inequalities hold : if (p, q) is an admissible pair and s is given by (2.1.6),
then for any γ ∈ R, there exist CS > 0 depending only on γ, N , p, q, σ such that

(2.1.8) ∥S(·)u∥Lpt Ḣγ
q

≤ CS ∥u∥Ḣs+γ .

Using scaling properties it is easily seen that (p, q) must be an admissible pair for (2.1.8) to hold.
Establishing (2.1.8) for all Schrödinger admissible pairs (as in (2.1.7)) has been a long story.

When (p, q) = (∞, 2), the estimate (2.1.8) follows immediately from (2.1.2). For the classical Schrö-
dinger equation in L2(RN ) (that is, in the case σ = 1 and s = γ = 0), the admissibility condition
(2.1.7) becomes 2

p + N
q = N

2 . In this case the unique admissible pair with p = q is
(
2 + 4

N , 2 + 4
N

)
,

and inequality (2.1.8) with exponents p = q = 2 + 4
N was proved by R. Strichartz in [21]. Inequa-

lity (2.1.8) has been established by J. Ginibre and G. Velo in [10] for all admissible pairs (p, q)
with p > 2. If N ≥ 3, the pair (2, 2N

N−2) is admissible ; the delicate endpoint estimate in the case
(p, q) = (2, 2N

N−2) has been proven by M. Keel and T. Tao in [12]. We refer to Theorem 2.3.3 p. 33 in
[5] for an elementary proof (inspired from [10]) of non-endpoint Strichartz estimates and for further
comments. The case of the fractional Laplacian (that is, σ ̸= 1, σ ̸= 1

2) follows from the general
Strichartz-type estimates obtained by Y. Cho, T. Ozawa and S. Xia in [6]. For the the inequality
(2.1.8) above, see Corollary 14 p. 496 in the recent work [7] by Van Duong Dinh. We also refer to [6]
and [7] for further references. In the case σ = 1

2 , equation (2.1.1) becomes the half-wave equation
and the Strichartz estimates are somehow different (see [7]).

In the sequel we will always assume that s ∈ (0, N2 ) and p, q, s satisfy (2.1.6). Then :
(i) For any s ∈ (0, N2 ) there exists a unique admissible pair of the form (q, q) satisfying (2.1.6)

and q is given by q = 2(N+2σ)
N−2s = 2∗ + 4σ

N−2s .

(ii) If (p, q) is admissible and (2.1.7) holds, then p ∈ [2,∞] and q ∈
[
2∗, 2N

N−2(s+σ)

]
.

(iii) If (p, q) is admissible and q < q we have necessarily p > q > q ; if (p, q) is admissible and
q > q, then p < q < q.

Let qmax = 2N
N−2(s+σ) , so that for any admissible pair (p, q) we have q ∈ [2∗, qmax]. If q ∈ (2∗, qmax)

then (p, q) is called a non-extremal admissible pair. The pair (p, q) =
(
2, 2N

N−2(s+σ)

)
is called endpoint

admissible pair. If q ̸= 2N
N−2(s+σ) then we say that (p, q) is a non-endpoint admissible pair.
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Assume that (p1, q1), (p2, q2) and (p, q) are admissible pairs and 1
q = κ

q1
+ 1−κ

q2
for some a ∈ (0, 1).

By (2.1.7) we have 1
p = κ

p1
+ 1−κ

p2
and then using Hölder’s inequality we get

(2.1.9) ∥u∥Ḣγ
q

≤ ∥u∥κ
Ḣγ
q1

∥u∥1−κ
Ḣγ
q2

for any u ∈ Ḣγ
q1 ∩ Ḣγ

q2 ,

(2.1.10) ∥U∥Lpt Ḣγ
q

≤ ∥U∥κ
L
p1
t Ḣγ

q1
∥U∥1−κ

L
p2
t Ḣγ

q2
for any U ∈ Lp1

t Ḣ
γ
q1 ∩ Lp2

t Ḣ
γ
q2 .

Using (2.1.10) we obtain the following interpolation inequalities for non-extremal admissible pairs
(p, q) :

(2.1.11) ∥S(·)u∥
Lqt Ḣ

γ
q

⩽ ∥S(·)u∥1−p/q
L∞
t Ḣ

γ
2∗

∥S(·)u∥p/q
Lpt Ḣ

γ
q

if p < q,

(2.1.12) ∥S(·)u∥Lpt Ḣγ
q
⩽ ∥S(·)u∥1−q/p

L∞
t Ḣ

γ
2∗

∥S(·)u∥q/p
Lqt Ḣ

γ
q

if p > q,

(2.1.13) ∥S(·)u∥Lpt Ḣγ
q
⩽ ∥S(·)u∥κL2

t Ḣ
γ
qmax

∥S(·)u∥1−κ
Lqt Ḣ

γ
q

if p < q, where κ =
1
q − 1

q
1
q − 1

qmax

=
1
p − 1

q
1
2 − 1

q

.

In this article we prove compactness of maximizing sequences for the Strichartz inequality (2.1.8)
for fractional Schrödinger equations and for any non-extremal admissible pair (p, q). To do this
we first establish a linear profile decomposition result (Theorem 3.1.1 below) in which "almost
orthogonality" is characterized using the Lqt Ḣ

γ
q -norm. We believe that this new profile decomposition

result is of independent interest.
We will prove that it is possible to extract a suitable profile decomposition from every bounded

sequence u = (un)n∈N ⊂ Ḣs+γ . To do this, we need to take into account the weak limits of u up
to translations and scaling invariances. We need the following

Definition 2.1.1. We say that two sequences (λ, t,x)= (λn, tn, xn)n⩾1 and
(λ̃, t̃, x̃)=(λ̃n, t̃n, x̃n)n⩾1 in (0,∞) × R × RN are orthogonal if :

(2.1.14) lim
n→∞

λn

λ̃n
+ λ̃n
λn

+ |tn − t̃n|
(λn)2σ + |xn − x̃n|

λn
= +∞.

He have the following profile decomposition result for bounded sequences in Ḣs+γ .

Theorem 2.1.1. Let N ∈ N∗ and 0 ⩽ s+γ < N
2 . Let u = (un)n⩾1 be a bounded sequence in Ḣs+γ.

Then there exists an increasing mapping j : N∗ → N∗, there exist functions V i ∈ Ḣs+γ, and for all
i ∈ N∗ there are sequences λi = (λin)n∈N∗ ⊂ (0,∞), ti = (tin)n∈N∗ ⊂ R, xi = (xin)n∈N∗ ⊂ RN such
that :
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a) For i ̸= ℓ, the sequences
(
λi, ti,xi

)
and

(
λℓ, tℓ,xℓ

)
are orthogonal.

b) For each n ∈ N∗ and k ∈ N∗ we have

(2.1.15) uj(n) =
k∑
i=1

S(−tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]
+ wkn, and

(2.1.16) lim
k→∞

(
lim sup
n→∞

∥S(·)wkn∥L∞
t Ḣ

γ
2∗

)
= 0.

c) The following "almost orthogonality" conditions are satisfied for every k ∈ N∗ :

(2.1.17) lim
n→∞

∥S(·)uj(n)∥
q

Lqt Ḣ
γ
q

=
∞∑
i=1

∥S(·)V i∥q
Lqt Ḣ

γ
q

,

(2.1.18) ∥uj(n)∥2
Ḣs+γ =

k∑
i=1

∥V i∥2
Ḣs+γ + ∥wkn∥2

Ḣs+γ + o(1)
n→∞

, and

(2.1.19) lim sup
k→∞

(
lim sup
n→∞

∥wkn∥Ḣs+γ

)
⩽ lim sup

n→∞
∥uj(n)∥Ḣs+γ .

For any admissible pair (p, q) and s ∈ (0, N2 ) satisfying (2.1.7), we have

(2.1.20) lim
n→∞

∥S(·)uj(n)∥
q

Lpt Ḣ
γ
q
⩽

k∑
i=1

∥S(·)V i∥q
Lpt Ḣ

γ
q

+ o(1)
k→∞

if p > q, respectively

(2.1.21) lim
n→∞

∥S(·)uj(n)∥
p

Lpt Ḣ
γ
q
⩽

k∑
i=1

∥S(·)V i∥p
Lpt Ḣ

γ
q

+ o(1)
k→∞

if p < q.

Remark. Inequalities (2.1.11), (2.1.12), (2.1.13) together with (2.1.16) imply that

lim
k→∞

(
lim sup
n→∞

∥S(·)wkn∥Lpt Ḣγ
q

)
= 0

for all (p, q) non-endpoint admissible pairs satisfying (2.1.7).
The functions V i are called profiles of u. Theorem 3.1.1 will be crucial in the proof of the

following theorem which gives the existence of maximizers for Sobolev-Strichartz inequality as well
as the precompactness, modulo the symmetries of the problem, of any maximizing sequence in Ḣs+γ .
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Theorem 2.1.2. Let N ∈ N∗ and 0 ⩽ s+ γ < N
2 . Let (p, q) be a non-extremal admissible pair and

let u be an optimizing sequence for the Strichartz inequality (2.1.8) in the following sense :

(2.1.22) ∥un∥Ḣs+γ = 1 for all n, and

(2.1.23) ∥S(·)un∥LptLqx −→
n→∞

CS(p, q, γ),

where CS(p, q, γ) := sup
∥u∥Ḣs+γ=1

∥S(·)u∥Lpt Ḣγ
q

is the optimal Strichartz constant.

Then there exist V ∈ Ḣs+γ, an increasing mapping j : N∗ → N∗, and a sequence (λ,t,x) with
λ = (λn)n⩾1 ⊂ (0,∞), t = (tn)n⩾1 ⊂ R, x = (xn)n⩾1 ⊂ RN such that

(2.1.24) dλ−1
n

[
S(tn)uj(n)(· + xn)

]
−→
n→∞

V in Ḣs+γ .

In particular, V is a maximizer for (2.1.8), that is

(2.1.25) ∥V ∥Ḣs+γ = 1

and

(2.1.26) ∥S(·)V ∥Lpt Ḣγ
q

= CS(p, q, γ).

There are several results about the existence of optimal functions for the Strichartz inequalities
in the literature. We firstly mention M. Kunze [14], who proved the existence of maximizers of the
L6
t,x-Strichartz inequality for the 1-D Schrödinger equation. In [9], D. Foschi found the best constant

of the inequality and also the shape of the maximizers for the 1D and 2D-Schrödinger propagators.
L. Fanelli, L. Vega, and N. Visciglia proved the existence of maximizers in the case of a differential
operator h(D) more general than the classical Laplacian, for which Sobolev-Strichartz inequalities
hold in the LqtLqx-space (identified with Lq(R1+N )). They used a result of H. Brezis about non-
vanishing sequences to recover compactness and they used operator continuity properties to extend
the properties of maximizing sequences to the limit.
S. Shao proved in [20] existence of maximizers in the case of classical Laplacian (σ = 1) by using a
powerful profile decomposition result initiated by P. Gérard in [11] to describe the defect of com-
pactness of bounded sequences in homogeneous Sobolev spaces, and then developed by S. Keraani
([13]), J. Bourgain ([2]), F. Merle and L. Vega ([18]), and P. Bégout and A. Vargas ([4]).

In the next section we give some elementary results which will be used in our proofs, then we
prove Theorems 3.1.1 and 2.1.2 in section 3. The main observation in the proof of Theorem 2.1.2
is that there can be only one non-trivial profile V i in the profile decomposition of an optimizing
sequence, and all other profiles must be zero. This clearly implies the compactness of the optimizing
sequence up to the invariances of the problem.
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2.2 Preliminary results

An important technical tool that we use is Lieb’s Lemma (see Lemma 6 p. 447 in [15] in the H1

case or Lemma 6.1 and Lemma 6.2 in the appendix of [16] in the case of fractional derivatives).

Lemma 2.2.1. (E. H. Lieb, [15]) (i) Let N ∈ N∗ and s ∈ (0,∞). Assume that u ∈ Ḣs(RN )
satisfies

∥u∥Ḣs ⩽M and L
(
{x ∈ RN

∣∣ |u(x)| ⩾ ε}
)
⩾ α,

where M, ε and α are given positive constants and L is the Lebesgue measure in RN . Then for
all δ ∈ (0, ε), there exists a constant β = β(N, s,M,α, ε, δ) > 0, independent of u, and there exists
x0 ∈ RN such that

L
(
{x ∈ B(x0, 1)

∣∣ |u(x)| ⩾ δ}
)
⩾ β.

(ii) Let N ∈ N∗, s ∈ (0,∞) and γ ∈ [0,∞). Assume that u ∈ Ḣs+γ satisfies

∥u∥Ḣs+γ ⩽M and L
(
{x ∈ RN

∣∣ ||∇|γu(x)| ⩾ ε}
)
⩾ α,

where M, ε and α are given positive constants. Then for all δ ∈ (0, ε), there exists a constant
β = β(N, s,M,α, ε, δ) > 0, independent of u, and there exists x0 ∈ RN such that

(2.2.1) L
(
{x ∈ B(x0, 1)

∣∣ | |∇|γu(x)| ⩾ δ}
)
⩾ β.

We use part (ii) of the above lemma in the sequel, but it is merely a rephrase of part (i) with
|∇|γu instead of u.

To prove Theorem 1.1, we will study weak limits after translation and rescaling of subsequences
of the bounded sequence u. We use the formalism in [17] (see the Proof of Theorem 1.9 there). For
any sequence u, we consider the set

Γ(u) :=

V ∈ Ḣs+γ
∣∣∣∣∣

there exist a subsequence (unk)k∈N∗ and sequences
(xk)k∈N∗ ⊂ RN , (tk)k∈N∗ ⊂ R and (λk)k∈N∗ ⊂ (0,∞) such that
dλ−1

k
[S(tk)unk(· + xk)] ⇀

k→∞
V in Ḣs+γ


and we denote

Λ(u) := sup
V ∈Γ(u)

∥S(·)V ∥2∗

L∞
t Ḣ

γ
2∗
.

It is easy to see that if u is bounded in Ḣs+γ , we have always 0 ∈ Γ(u). The Strichartz inequality
(2.1.8) implies that for any admissible pair (p, q) satisfying (2.1.6), the mapping u 7−→ S(·)u is
linear continuous from Hs+γ(RN ) to Lpt Ḣγ

q . Therefore, if

dλ−1
k

[S(tk)unk(· + xk)] ⇀
k→∞

V weakly in Ḣs+γ ,
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then we have
S(·)dλ−1

k
[S(tk)unk(· + xk)] ⇀

k→∞
S(·)V weakly in Lpt Ḣ

γ
q

for any admissible pair (p, q), and using (2.1.5) and (2.1.3) we find

∥S(·)V ∥Lpt Ḣγ
q
⩽ lim inf

k→∞
∥S(·)dλ−1

k
[S(tk)unk(· + xk)] ∥Lpt Ḣγ

q
= lim inf

k→∞
∥S(·)unk∥Lpt Ḣγ

q

⩽ lim sup
k→∞

∥S(·)unk∥Lpt Ḣγ
q
⩽ CS(p, q, γ) lim sup

n→∞
∥un∥Ḣs+γ .

Since the above inequality holds for any V ∈ Γ(u) and any admissible pair (p, q), we get

Λ(u) ⩽ CS(∞, 2∗, γ)2∗ lim sup
n→∞

∥un∥2∗

Ḣs+γ .

We recall some results about Lorentz spaces Lp,qx (see Chapter 1.3 in [1]). Given a function f :
RN → C, the distribution function of f is the function F : (0,∞) −→ [0,∞] defined by F (s) :=

L
(
{x ∈ RN | |f(x)| > s}

)
. Let ∥f∥Lp,q :=

(∫ ∞

0
sq−1F (s)

q
pds

) 1
q

if 1 ⩽ p, q < ∞ and ∥f∥Lp,∞ :=

sup
s>0

t (F (s))
1
p . The Lorentz space Lp,q is the space of measurable functions f such that ∥f∥Lp,q is

finite. It is well known that ∥f∥pLp = p∥f∥pLp,p and that Lp,q1 ⊂ Lp,q2 if q1 < q2. If 0 < s < N/2 we
have the improved Sobolev embedding Ḣs

2 ⊂ L2∗,2 (see Theorem 8.1 page 301 in [19]), and there
exists a constant C > 0 depending only on N and s such that

(2.2.2) ∥f∥L2∗,2 ⩽ C∥f∥Ḣs
2

for any u ∈ Ḣs
2 .

On the other hand, Hölder’s inequality gives

(2.2.3) ∥f∥L2∗ ⩽ ∥f∥
2

2∗
L2∗,2∥f∥1− 2

2∗
L2∗,∞ .

The next lemma is the "space-time" counterpart of Lemma 6.1 in [17].

Lemma 2.2.2. Let 0 < s < N/2, M > 0, and a > 0. Let u = (un)n⩾1 be a sequence in Ḣs+γ such
that ∥un∥Ḣs+γ ⩽M for all n. Assume that there is a sequence (tn)n⩾1 ⊂ R satisfying

(2.2.4) ∥S(tn) (|∇|γun) ∥L2∗,∞(RN ) ⩾ a for all n.

Then there exists a constant δ = δ(a, γ, s, σ,N,M) > 0 such that

(2.2.5) Λ(u) ⩾ δ.

Démonstration. Assume that u = (un)n⩾1 satisfies (2.2.4). Passing to a subsequence of u, stil
denoted the same, there exists sequences t = (tn)n⩾1 ⊂ R and s = (sn)n⩾1 ⊂ (0,∞) such that

snL
(
{x ∈ RN | |S(tn)|∇|γun(x)| > sn}

) 1
2∗
>
a

2 .
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Let λ−1
n := s

2∗
N
n and vn := dλ−1

n
[S(tn)un]. Then vn ∈ Ḣs+γ , ∥vn∥Ḣs+γ = ∥un∥Ḣs+γ and

L
(
{x ∈ RN | ||∇|γvn(x)| > 1}

)
= s2∗

n L
(
{x ∈ RN | |S(tn)|∇|γun(x)| > sn}

)
>

(
a

2

)2∗

.

Using Lieb’s lemma, there exist b > 0, depending only on N, s, γ, a and M , and a sequence x ⊂ RN

such that

(2.2.6) L
(
{x ∈ B(xn, 1)

∣∣ ||∇|γvn(x)| > 0.5}
)
> b, ∀n ∈ N.

Since Ḣs+γ is a Hilbert space, there exists V ∈ Ḣs+γ such that, up to a subsequence, vn(·+xn) ⇀ V
weakly in Ḣs+γ . Then |∇|γvn(· + xn) ⇀ |∇|γV weakly in Ḣs. By compact Sobolev embeddings, up
to a subsequence we have |∇|γvn(· + xn) −→

n→∞
|∇|γV strongly in Lq(B(0, R)) for all q ∈ [1, 2∗) and

all R > 0. One can easily check that V ∈ Γ(u) and then using (2.2.6), we infer that

∥|∇|γvn(· + xn)∥Lqx(B(0,1)) ⩾
1
2b

1
q for all n ∈ N.

Passing to the limit we obtain ∥|∇|γV ∥Lqx(B(0,1)) ⩾
1
2b

1
q . Then by Hölder’s inequality we get

∥|∇|γV ∥L2∗
x (B(0,1)) ⩾ L(B(0, 1))

1
2∗ − 1

q ∥|∇|γV ∥Lq(B(0,1)) ⩾
1
2L(B(0, 1))

1
2∗ − 1

q b
1
q ,

from which we deduce, by letting q ↗ 2∗, that ∥|∇|γV ∥2∗

L2∗
x (B(0,1)) ⩾ 1

22∗ b. Thus we may take
δ := 1

22∗ b. So far we have proved that V ∈ Γ(u) and ∥ |∇|γV ∥L2∗
x

= ∥S(0)V ∥2∗

Ḣγ
2∗

⩾ δ.
On the other hand, we have S(t)V ⇀ V weakly in Ḣs+γ . Indeed, for any φ ∈ Ḣs+γ using the

dominated convergence theorem we find

⟨S(t)V, φ⟩Ḣs+γ = 1
(2π)N

∫
RN

|ξ|2(s+γ)eit|ξ|
2σ
V̂ (ξ)φ̂(ξ)dξ

−→
t→0

1
(2π)N

∫
RN

|ξ|2(s+γ)V̂ (ξ)φ̂(ξ)dξ = ⟨V, φ⟩Ḣs+γ .

We infer that S(t) (|∇|γV ) ⇀
t→0

|∇|γV in Ḣs, from which we deduce that S(t) (|∇|γV ) ⇀
t→0

|∇|γV in
L2∗ and

δ ⩽ ∥|∇|γV ∥2∗

L2∗ ⩽ lim inf
t→0

∥S(t)|∇|γV ∥2∗

L2∗ ⩽ ∥S(·)|∇|γV ∥2∗

L∞
t L

2∗ = ∥S(·)V ∥2∗

L∞
t Ḣ

γ
2∗

⩽ Λ(u).

Moreover, by the interpolation inequality (2.2.3) we have immediately the following
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Corollary 2.2.1. Let s ∈
(
0, N2

)
, γ ∈ R and let u = (un)n⩾1 be a sequence in Ḣs+γ such that

∥un∥Ḣs+γ ⩽M for all n. We have

(2.2.7) Λ(u) = 0 =⇒ lim
n→∞

∥S(·)un∥L∞
t Ḣ

γ
2∗

= 0.

Moreover, if ui = (uin)n⩾1 are sequences in Ḣs+γ such that ∥uin∥Ḣs+γ ≤ M for all n and i, then

(2.2.8) lim
i→∞

Λ(ui) = 0 =⇒ lim
i→∞

(
lim sup
n→∞

∥S(·)uin∥L∞
t Ḣ

γ
2∗

)
= 0

Proof. From Lemma 2.1 we deduce that if Λ(u) = 0 then ∥S(·)|∇|γun∥L∞
t L

2∗,∞ −→
n→∞

0, and
then we use the interpolation inequality (2.2.3) and the improved Sobolev embedding (2.2.2) to get
the first part. The second part is similar. □

If a sequence u = (un)n⩾1 is bounded in Ḣs+γ and S(·)un tends to zero in L∞
t Ḣ

γ
2∗ , then the

interpolation inequality (2.1.11) implies that S(·)un tends to zero in Lqt Ḣ
γ
q . The converse is also

true, as it can be seen in the following corollary.

Corollary 2.2.2. Let u = (un)n⩾1 be a bounded sequence in Ḣs+γ. Then

(2.2.9) ∥S(·)un∥
Lqt Ḣ

γ
q

−→
n→∞

0 =⇒ ∥S(·)un∥L∞
t Ḣ

γ
2∗

−→
n→∞

0.

Démonstration. Suppose that ∥S(·)un∥
Lqt Ḣ

γ
q

−→
n→∞

0 and ∥S(·)un∥L∞
t Ḣ

γ
2∗

↛
n→∞

0. Then, by (2.2.3),
there exists a > 0 such that

lim sup
n→∞

∥S(·)|∇|γun∥L∞
t L

2∗,∞ ⩾ a.

By Lemma 2.1, there exists a non-trivial profile V ̸= 0 ∈ Γ(u) and a triplet of sequences (λ, t,x) ⊂
(0,∞) × R × RN such that up to a subsequence of u, we have

vn := dλn [S(tn)un(· + xn)] ⇀
n→∞

V in Ḣs+γ .

Then S(·)vn ⇀
n→∞

S(·)V in Lqt Ḣ
γ
q and using the scale invariances (2.1.3)-(2.1.5) we find

0 < ∥S(·)V ∥
Lqt Ḣ

γ
q

⩽ lim inf
n→∞

∥S(·)vn∥
Lqt Ḣ

γ
q

= lim inf
n→∞

∥S(·)un∥
Lqt Ḣ

γ
q

= 0,

which is a contradiction.

2.3 Proof of Theorem 1.1, Profile Decomposition

We start with the following simple lemmas. Their proofs are straightforward and are left to the
reader.

16



Lemma 2.3.1. Let the sequences λ ⊂ (0,∞), t ⊂ R and x ⊂ RN . Assume that one of the following
conditions holds

— λn → 0 or λn → ∞ and t, x are arbitrary, or
— λ, t are arbitrary and |xn| → ∞, or
— λ, x are arbitrary and |tn| → ∞.

Then for every u ∈ Ḣs+γ we have S(tn)(dλnu)(· + xn) ⇀
n→∞

0 in Ḣs+γ.

Lemma 2.3.2. Assume that un ⇀
n→∞

u weakly in Ḣs+γ, λn →
n→∞

λ∗ ∈ (0,∞), tn → t∗ ∈ R and
xn → x∗ ∈ RN . Then S(tn)(dλnun)(· + xn) ⇀

n→∞
S(t∗)(dλ∗u)(· + x∗) in Ḣs+γ.

Lemma 2.3.3. Let (p, q) be a non-extremal admissible pair. Assume that the sequences λ =
(λn)n⩾1 ⊂ (0,∞), t = (tn)n⩾1 ⊂ R and x ⊂ RN+1 satisfy one of the following conditions :

— either λn → 0 or λn → ∞, t and x are arbitrary, or
— λ is arbitrary and |tn| → ∞ or |xn| → ∞.

Then for any u, v ∈ Ḣs+γ we have

(2.3.1) In :=
∫

R

(∫
RN

|S (· + tn) |∇|γ [dλnu] (· + xn)| × |S(·)|∇|γv|q−1 dx

) p
q

dt −→
n→∞

0.

Démonstration. For any U ∈ Lq(R × RN ) = LqtL
q
x and any λ > 0, t0 ∈ R and x0 ∈ RN we denote

Uλ,t0,x0(t, x) = λ− N
2∗U

(
t+ t0
λ2σ ,

x+ x0
λ

)
.

For t0 ∈ R, x0 ∈ RN and R > 0 we consider the cylinder

Ωt0,x0,R = (t0 −R2σ, t0 +R2σ) ×B(x0, R) ⊂ R × RN .

A simple change of variables gives

(2.3.2)
∫

Ω0,0,R

∣∣Uλ,t0,x0

∣∣q dx dt =
∫

Ω t0
λ2σ ,

x0
λ
,R
λ

∣∣U(t, x)
∣∣q dx dt.

We claim that for any U, V ∈ LqtL
q
x and any sequences λ, t and x as in Lemma 2.3.3 we have

(2.3.3) Jn :=
∫

R

∫
RN

∣∣Uλn,tn,xn∣∣ q2 ∣∣V ∣∣ q2 dx dt −→ 0 as n −→ ∞.

To see this, fix ε > 0. Since
∣∣U ∣∣q, ∣∣V ∣∣q ∈ L1(RN+1), there exists Rε > 0 such that

(2.3.4)
∫

RN+1\Ω0,0,Rε

∣∣U ∣∣q dx dt < ε,

∫
RN+1\Ω0,0,Rε

∣∣V ∣∣q dx dt < ε,
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and and there is rε > 0 such that for any t0 ∈ R and any x0 ∈ RN we have

(2.3.5)
∫

Ωt0,x0,rε

∣∣U ∣∣q dx dt < ε and
∫

Ωt0,x0,rε

∣∣V ∣∣q dx dt < ε.

We have

(2.3.6)

Jn =
∫

Ω0,0,Rε

∣∣Uλn,tn,xn∣∣ q2 ∣∣V ∣∣ q2 dx dt+
∫

Ωc0,0,Rε

∣∣Uλn,tn,xn∣∣ q2 ∣∣V ∣∣ q2 dx dt

⩽

(∫
Ω0,0,Rε

∣∣Uλn,tn,xn∣∣q dx dt
) 1

2
(∫

Ω0,0,Rε

∣∣V ∣∣q dx dt) 1
2

+
(∫

Ωc0,0,Rε

∣∣Uλn,tn,xn∣∣q dx dt
) 1

2
(∫

Ωc0,0,Rε

∣∣V ∣∣q dx dt) 1
2

⩽

∫
Ω tn
λ2σ
n

,
xn
λn

,
Rε
λn

∣∣U ∣∣q dx dt


1
2 (∫

Ω0,0,Rε

∣∣V ∣∣q dx dt) 1
2

+ ε
1
2

(∫
RN+1

∣∣U ∣∣q dx dt) 1
2
.

If λn −→ ∞, for all n sufficiently large we have Rε
λn

< rε and using (2.3.5) we see that for all

such n we have Jn ⩽ ε
1
2

(
∥U∥

q
2
Lq(RN+1) + ∥V ∥

q
2
Lq(RN+1)

)
. Since ε was arbitrary, (2.3.3) follows.

If λn −→ 0, a simple change of variables gives

Jn =
∫

R×RN

∣∣U ∣∣ q2 ∣∣V 1
λn
,− tn

λ2σ
n
,− xn

λn

∣∣ q2 dx dt
and (2.3.3) is proven exactly as above.

If there exist positive constants a,A such that a ⩽ λn ⩽ A for all sufficiently large n and
|tn| −→ ∞ or |xn| −→ ∞, for n large enough we have Ω tn

λ2σ
n
, xn
λn
,Rε
λn

∩ Ω0,0,Rε = ∅ and then using

(2.3.4) and (2.3.6) we see that for all such n we have Jn ⩽ ε
1
2

(
∥U∥

q
2
Lq(RN+1) + ∥V ∥

q
2
Lq(RN+1)

)
. As

previously, we infer that (2.3.3) holds.
The above situations cover all possible cases and (2.3.3) is proven.

Let u, v ∈ Ḣs+γ . Using (2.3.3) with U = S(·)|∇|γu and V = S(·)|∇|γv we see that∫
R

∫
RN

∣∣∣S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv
∣∣∣ q2dx dt −→

n→∞
0.

or equivalently

(2.3.7) ∥S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv∥
L
q
2
t L

q
2
x

−→ 0 as n −→ ∞.
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Using Hölder’s inequality in RN , then in R and (2.1.3), we have

(2.3.8) In ⩽ ∥S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv∥
p
q

L
p
2
t L

q
2
x

× ∥S(·)v∥
(q−2)p
q

Lpt Ḣ
γ
q
.

Since the pair (p, q) is non-extremal, there exists another admissible pair (p♯, q♯) satisfying (2.1.7)
and κ ∈ [0, 1) such that 1

p = 1−κ
q + κ

p♯
and 1

q = 1−κ
q + κ

q♯
. Then using Hölder’s inequality we get

(2.3.9)

∥S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv∥
L
p
2
t L

q
2
x

⩽ ∥S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv∥1−κ

L
q
2
t L

q
2
x

× ∥S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv∥κ
L
p♯

2
t L

q♯

2
x

⩽ ∥S (· + tn) |∇|γ [dλnu] (· + xn)S(·)|∇|γv∥1−κ

L
q
2
t L

q
2
x

∥S(·)u∥κ
Lp
♯

t Ḣ
γ

q♯

∥S(·)v∥κ
Lp
♯

t Ḣ
γ

q♯

.

From (2.3.7) - (2.3.9) and Strichartz’ inequality (2.1.8) we deduce that In −→ 0 as n −→ ∞ and
Lemma 2.3.3 is proven.

Lemma 2.3.4. Let u = (un)n⩾1 be a bounded sequence in Ḣs+γ. Assume that there exist sequences
(λ, t,x) ⊂ (0,∞) × R × RN and V ∈ Ḣs+γ such that

dλ−1
n

[S(tn)un(· + xn)] ⇀
n→∞

V in Ḣs+γ .

Denote wn := un − S(−tn)(dλnV )(· − xn). Then

Γ(w) ⊂ Γ(u).

Moreover, if there exist an increasing mapping j : N∗ → N∗ and a triplet of sequences (λ̃, t̃, x̃) ⊂
(0,∞) × R × RN such that

dλ̃−1
n

[
S(t̃n)wj(n)(· + x̃n)

]
⇀

n→∞
w ̸= 0 in Ḣs+γ ,

then (λ, t,x)j(·) and (λ̃, t̃, x̃) are orthogonal in the sense of Definition 1.1.

Démonstration. Assume that w ∈ Γ(w) and w ̸= 0. Then there exists a subsequence (wj(n))n∈N∗

and a triplet (λ̃, t̃, x̃) such that dλ̃−1
n

[
S(t̃n)wj(n)(· + x̃n)

]
⇀

n→∞
w in Ḣs+γ , which we can rewrite by

using (2.1.5) as

(2.3.10) dλ̃−1
n

[
S(t̃n)uj(n)(· + x̃n)

]
− S

(
t̃n − tj(n)

(λ̃n)2σ

)(
dλ̃−1

n λj(n)
V
)(

· +
x̃n − xj(n)

λ̃n

)
⇀

n→∞
w.

19



We have to discuss two cases :

Case A. (λ, t,x)j(·) and (λ̃, t̃, x̃) are orthogonal. This means, by applying Lemma 3.1, that

S

(
t̃n−tj(n)
(λ̃n)2σ

)(
dλ̃−1

n λj(n)
V
) (

· + x̃n−xj(n)
λ̃n

)
⇀

n→∞
0. In particular

dλ̃−1
n

[
S(t̃n)uj(n)(· + x̃n)

]
⇀

n→∞
w in Ḣs+γ and consequently w ∈ Γ(u).

Case B. (λ, t,x)j(·) and (λ̃, t̃, x̃) are not orthogonal. We may assume, up to extracting a subse-

quence still denoted the same, that t̃n−tj(n)
(λ̃n)2σ → t∗ ∈ R, λ̃−1

n λj(n) → λ∗ ∈ (0,∞) and x̃n−xj(n)
λ̃n

→ x∗ ∈
RN as n → ∞. Then, by Lemma 3.2, we have

(2.3.11) S

(
t̃n − tj(n)

(λ̃n)2σ

)(
dλ̃−1

n λj(n)
V
)(

· +
x̃n − xj(n)

λ̃n

)
⇀

n→∞
S(t∗)(dλ∗V ) (· + x∗) .

On the other hand, we can rewrite the first term in (2.3.10) by using again (2.1.5),

dλ̃−1
n

[
S(t̃n)uj(n)(· + x̃n)

]
= dλ̃−1

n

[
S(t̃n − tj(n))S(tj(n))uj(n)(· + xj(n) + x̃n − xj(n))

]
= S

(
t̃n − tj(n)

(λ̃n)2σ

)
dλ̃−1

n

[
S(tj(n))uj(n)(· + xj(n) + x̃n − xj(n))

]
= S

(
t̃n − tj(n)

(λ̃n)2σ

)(
dλ̃−1

n λj(n)
dλ−1

j(n)

) [
S(tj(n))uj(n)(· + xj(n) + x̃n − xj(n))

]
= S

(
t̃n − tj(n)

(λ̃n)2σ

)(
dλ̃−1

n λj(n)

)(
dλ−1

j(n)

[
S(tj(n))uj(n)(· + xj(n))

])(
· +

x̃n − xj(n)

λ̃n

)
,

which converges weakly to S(t∗)(dλ∗V ) (· + x∗) by Lemma 3.2. Together with (2.3.10) and (2.3.11)
this implies that w = 0, which is a contradiction. We conclude that the second case does never
occur and that Γ(w) ⊂ Γ(u).

Proof of Theorem 1.1. Let u be a bounded sequence in Ḣs+γ .

If Λ(u) = 0, by Corollary 2.1 we have lim sup
n→∞

∥un∥L∞
t Ḣ

γ
2∗

= 0. By interpolation (2.1.12) this
implies that ∥un∥Lpt Ḣγ

q
→ 0 as n → ∞ for any non-endpoint admissible pair (p, q) and we can take

wkn := un and V i = 0 for all i and k ∈ N∗.

If Λ(u) > 0, there exist V 1 ∈ Ḣs+γ , a triplet of sequences
(
λ1, t1,x1

)
⊂ (0,∞) × R × RN and

an increasing mapping j1 : N∗ → N∗ such that

(2.3.12) d(λ1
n)−1

[
S(t1n)uj1(n)(· + x1

n)
]
⇀

n→∞
V 1 in Ḣs+γ
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and

(2.3.13) ∥S(·)V 1∥2∗

L∞
t Ḣ

γ
2∗

⩾
3
4Λ(u).

We denote w1
n := uj1(n) − S(−t1n)(dλ1

n
V 1)(· − x1

n). Then by Lemma 3.4 we have Γ
(
w1) ⊂ Γ(u) and

Λ
(
w1) ⩽ Λ(u).

Since Ḣs+γ is a Hilbert space, the weak convergence (2.3.12), the scaling invariance (2.1.4) and the
norm conservation (2.1.2) imply that

(2.3.14)
∥∥∥uj1(n)

∥∥∥2

Ḣs+γ
=
∥∥∥V 1

∥∥∥2

Ḣs+γ
+
∥∥∥w1

n

∥∥∥2

Ḣs+γ
+ o(1)
n→∞

.

Now we repeat the previous procedure, with u replaced by w1.
If Λ(w1) = 0, take V i = 0 for i ⩾ 2 and wkn = w1

n for all k ∈ N∗. We have

uj1(n) = S(−t1n)
[
(λ1
n)γ− N

2∗ V 1
(

· − x1
n

λ1
n

)]
+ w1

n,

with lim sup
n→∞

∥w1
n∥L∞

t L
2∗
x

= 0 by Corollary 2.1.

If Λ
(
w1) > 0, there exist V 2 ∈ Ḣs+γ , a triplet of sequences (λ2, t2,x2) ⊂ (0,∞) × R × RN and an

increasing mapping j2 : N∗ → N∗ such that

(2.3.15) d(λ2
n)−1

[
S(t2n)w1

j2(n)(· + x2
n)
]
⇀

n→∞
V 2 in Ḣs+γ , and

(2.3.16) ∥S(·)V 2∥2∗

L∞
t Ḣ

γ
2∗

⩾
3
4Λ

(
w1
)
.

We denote

w2
n : = w1

j2(n) − S(−t2n)(dλ2
n
V 2)(· − x2

n)

= uj1◦j2(n) − S(−t1j2(n))(dλ1
j2(n)

V 1)(· − x1
j2(n)) − S(−t2n)(dλ2

n
V 2)(· − x2

n).

By Lemma 3.4 we have Γ
(
w2) ⊂ Γ

(
w1) ⊂ Γ(u) and consequently Λ

(
w2) ⩽ Λ

(
w1) ⩽ Λ(u).

Using the fact that Ḣs+γ is a Hilbert space, the weak convergence (2.3.15), the scaling invariance
(2.1.4) and the norm conservation (2.1.2) we get as above

(2.3.17)
∥∥∥w1

j2(n)

∥∥∥2

Ḣs+γ
=
∥∥∥V 2

∥∥∥2

Ḣs+γ
+
∥∥∥w2

n

∥∥∥2

Ḣs+γ
+ o(1)
n→∞

.

Combining (2.3.14) with (2.3.17), we get∥∥∥uj1◦j2(n)

∥∥∥2

Ḣs+γ
=
∥∥∥V 1

∥∥∥2

Ḣs+γ
+
∥∥∥V 2

∥∥∥2

Ḣs+γ
+
∥∥∥w2

n

∥∥∥2

Ḣs+γ
+ o(1)
n→∞

.
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At this stage of the proof it is important to remark that thanks to Lemma 3.4, (λ1, t1,x1)j2(·) and
(λ2, t2,x2) are orthogonal in the sense of Definition 1.1.

Next we repeat the process described above. If there is K ∈ N∗ such that Λ(wK) = 0 we take
V i = 0 and wkn := wKn for all k > K. Otherwise the inductive process continues forever and for all
i ∈ N∗ we obtain a nontrivial function V i ∈ Ḣs+γ , a sequence wi ⊂ Ḣs+γ , an increasing mapping
ji : N∗ → N∗, and triplets of sequences (λi, ti,xi), such that the following properties are satisfied :

I) V i ∈ Γ(wi−1) and ∥S(·)V i∥2∗

L∞
t Ḣ

γ
2∗

⩾ 3
4Λ(wi−1).

II) d(λin)−1

[
S(tin)wi−1

ji(n)(· + xin)
]
⇀

n→∞
V i in Ḣs+γ ,

III) win = wi−1
ji(n) − S(−tin)(dλinV

i)(· − xin)

IV)
(
λi−1, ti−1,xi−1

)
ji(·)

and
(
λi, ti,xi

)
are orthogonal in the sense of Definition 1.1.

We will show that Λ
(
wk
)

→ 0 for k → ∞. As above, we deduce from (II) and (III) that for all
i, n ∈ N∗

(2.3.18)
∥∥∥wi−1

ji(n)

∥∥∥2

Ḣs+γ
=
∥∥∥V i

∥∥∥2

Ḣs+γ
+
∥∥∥win∥∥∥2

Ḣs+γ
+ o(1)
n→∞

,

and we have constructed a decomposition of u of the form

(2.3.19) uj1◦...◦jk(n) =
k∑
i=1

S(−tiji+1◦...◦jk(n))

(λiji+1◦...◦jk(n))
γ− N

2∗ V i

 · − xi
ji+1◦...◦jk(n)

λi
ji+1◦...◦jk(n)

+ wkn,

with the abuse of notation jk ◦ jk = jk and jk+1 ◦ jk = Id.
We claim that for all i < ℓ,

(
λi, ti,xi

)
ji+1◦...◦jℓ(·)

and
(
λℓ, tℓ,xℓ

)
are orthogonal in the sense of

Definition 1.1. Indeed, we firstly remark that :

d(λi+1
n )−1

[
S(ti+1

n )wi−1
ji◦ji+1(n)(· + xi+1

n )
]

= S

(
ti+1
n −ti

ji+1(n)
(λi+1
n )2σ

)(
d(λi+1

n )−1λi
ji+1(n)

V i

)(
· +

xi+1
n −xi

ji+1(n)
λi
ji+1(n)

)

+d(λi+1
n )−1

[
S(ti+1

n )wiji+1(n)(· + xi+1
n )

]
.

By Lemma 3.1, the first term above tends weakly to 0 in Ḣs+γ as n → ∞ because of the orthogo-
nality of (λi, ti,xi)ji+1(·) and (λi+1, ti+1,xi+1). By property (II), the second term tends weakly to
V i+1 in Ḣs+γ and then Lemma 3.4 implies that (λi−1, ti−1,xi−1)ji◦ji+1(·) and (λi+1, ti+1,xi+1) are
orthogonal.

More generally, by the same argument we obtain that for all i < ℓ,

d(λℓn)−1

[
S(tℓn)wiji+1◦...◦jℓ(n)(· + xℓn)

]
⇀

n→∞
V ℓ in Ḣs+γ .
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Using again Lemma 3.4, our claim about orthogonality follows.
Now let j(n) := j1 ◦ ... ◦ jn(n) be the diagonal extraction map. To simplify notation we relabel

the subsequences and we denote λiji+1◦...◦jn(n) simply by λin ; we do the same for ti and for xi. Then
for any i ̸= ℓ, (λi, ti,xi) and (λℓ, tℓ,xℓ) are orthogonal. Given any k ∈ N∗ and n ⩾ k, we have

uj(n) =
k∑
i=1

S(−tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]
+ wkn,

thus (2.1.15) holds. By (2.3.18) we get

∥uj(n)∥2
Ḣs+γ =

k∑
i=1

∥V i∥2
Ḣs+γ + ∥wkn∥2

Ḣs+γ + o(1)
n→∞

.

This proves (2.1.18).
Then we have immediately lim sup

k→∞

(
lim sup
n→∞

∥wkn∥Ḣs+γ

)
⩽ lim sup

n→∞
∥uj(n)∥Ḣs+γ .

Next we prove (2.1.16) which means that the reminder term wkn must be small with respect to the
Strichartz norm. We claim that for all k ∈ N∗,

(2.3.20)
k∑
i=1

∥∥∥S(·)V i
∥∥∥q
Lqt Ḣ

γ
q

⩽ lim inf
n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

.

We fix k and we proceed by induction. As in the proof of Lemma 2.3.3, we denote Ωt,x,R :=(
t−R2σ, t+R2σ)×B (x,R) ⊂ R × RN . Given ε > 0, there exists R1 > 0 such that∥∥∥S(·)V 1

∥∥∥q
Lqt Ḣ

γ
q

− ε

2 <
∥∥∥S(·)V 1

∥∥∥q
Lqt Ḣ

γ
q (Ω0,0,R1) ,

where ∥S(·)V ∥q
Lqt Ḣ

γ
q

(Ω)
=
∫

Ω

∣∣∣F−1
(∣∣ · ∣∣γeit|·|2σ V̂ ) ∣∣∣q(x) dx dt.

Since d(λ1
n)−1

[
S(t1n)uj(n)(· + x1

n)
]
⇀

n→∞
V 1 in Ḣs+γ , we have

S(·)
(
d(λ1

n)−1

[
S(t1n)uj(n)(· + x1

n)
])

⇀
n→∞

S(·)V 1 in Lqt Ḣ
γ
q

and consequently, after a straightforward change of variables we get∥∥∥S(·)V 1
∥∥∥q
Lqt Ḣ

γ
q

− ε

2 < lim inf
n→∞

∥∥∥S(·)d(λ1
n)−1

[
S(t1n)uj(n)(· + x1

n)
]∥∥∥q
Lqt Ḣ

γ
q (Ω0,0,R1)

= lim inf
n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

(
Ω
t1n,x

1
n,λ

1
nR

1

) .
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Similarly, there exists R2 > 0 such that∥∥∥S(·)V 2
∥∥∥q
Lqt Ḣ

γ
q

− ε

4 <
∥∥∥S(·)V 2

∥∥∥q
Lqt Ḣ

γ
q (Ω0,0,R2) ,

and we find ∥∥∥S(·)V 2
∥∥∥q
Lqt Ḣ

γ
q

− ε

4 < lim inf
n→∞

∥∥∥S(·)d(λ2
n)−1

[
S(t2n)uj(n)(· + x2

n)
]∥∥∥q
Lqt Ḣ

γ
q (Ω0,0,R2)

= lim inf
n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

(
Ω
t2n,x

2
n,λ

2
nR

2

) .
If, up to a subsequence, λ1

n
λ2
n

−→ α ∈ (0,∞), then we have by orthogonality that |x1
n−x2

n|
λ2
n

−→ ∞ or
|t1n−t2n|
(λ2
n)2σ −→ ∞. Hence Ωt1n,x

1
n,λ

1
nR

1 and Ωt2n,x
2
n,λ

2
nR

2 are disjoint for n sufficiently large and we obtain

∥∥∥S(·)V 1
∥∥∥q
Lqt Ḣ

γ
q

+
∥∥∥S(·)V 2

∥∥∥q
Lqt Ḣ

γ
q

−
(
ε

2 + ε

4

)
< lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

(
Ω
t1n,x

1
n,λ

1
nR

1
⋃

Ω
t2n,x

2
n,λ

2
nR

2

)
⩽ lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

.

Otherwise we may suppose that after permutation of the indices we have λ1
n
λ2
n

−→ 0, and we have to
treat two sub-cases :

— |x1
n−x2

n|
λ2
n

−→ ∞ or |t1n−t2n|
(λ2
n)2σ −→ ∞, and then Ωt1n,x

1
n,λ

1
nR

1 and Ωt2n,x
2
n,λ

2
nR

2 are disjoint for n
sufficiently large. We argue exactly as above.

— |x1
n−x2

n|
λ2
n

−→ x1,2 or |t1n−t2n|
(λ2
n)2σ −→ t1,2, up to a subsequence still denoted the same. Then there

exists δ > 0 such that∥∥∥S(·)V 2
∥∥∥q
Lqt Ḣ

γ
q

− ε

4 <
∥∥∥S(·)V 2

∥∥∥q
Lqt Ḣ

γ
q

(
Ω0,0,R2 \Ωt1,2,x1,2,δ

)
⩽ lim inf

n→∞

∥∥∥S(·)d(λ2
n)−1

[
S(t2n)uj(n)(· + x2

n)
]∥∥∥q
Lqt Ḣ

γ
q

(
Ω0,0,R2 \Ωt1,2,x1,2,δ

)
= lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

(
Ω
t2n,x

2
n,λ

2
nR

2 \Ω
t2n+(λ2

n)2σt1,2,x2
n+λ2

nx
1,2,λ2

nδ

) ,
and it is easy to see that for n sufficiently large we have

Ωt1n,x
1
n,λ

1
nR

1 ⊂ Ωt2n+(λ2
n)2σt1,2,x2

n+λ2
nx

1,2,λ2
nδ
.
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As previously, we get the desired inequality :∥∥∥S(·)V 1
∥∥∥q
Lqt Ḣ

γ
q

+
∥∥∥S(·)V 2

∥∥∥q
Lqt Ḣ

γ
q

−
(
ε

2 + ε

4

)
< lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

(
Ω
t1n,x

1
n,λ

1
nR

1
⋃

Ω
t2n,x

2
n,λ

2
nR

2 \Ω
t2n+(λ2

n)2σt1,2,x2
n+λ2

nx
1,2,λ2

nδ

)
⩽ lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

.

Continuing this process, we may assume that after a permutation of indices 1, . . . , k and extraction
of a subsequence we have either λin

λℓn
−→ α ∈ (0,∞), or λin

λℓn
−→ 0 for i ⩽ ℓ.

Suppose that for ℓ ∈ {1, ..., k − 1} we have proved that there exists R1, ..., Rℓ > 0 such that

∥S(·)V ℓ∥q
Lqt Ḣ

γ
q

− ε

2ℓ ⩽ ∥S(·)V ℓ∥q
Lqt Ḣ

γ
q

(
Ω0,0,Rℓ

),
and

ℓ∑
i=1

∥S(·)V i∥q
Lqt Ḣ

γ
q

−
ℓ∑
i=1

ε

2i ⩽ lim inf
n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

.

Then we choose Rℓ+1 > 0 such that

∥S(·)V ℓ+1∥q
Lqt Ḣ

γ
q

− ε

2ℓ+1 ⩽ ∥S(·)V ℓ+1∥q
Lqt Ḣ

γ
q

(
Ω0,0,Rℓ+1

),
and we define I1 :=

{
i ∈ {1, .., ℓ}, |tℓ+1

n −tin|
(λℓ+1
n )2σ −→ ∞ or |xℓ+1

n −xin|
λℓ+1
n

−→ ∞
}

and I2 :=
{
i ∈ {1, .., ℓ}, |tℓ+1

n −tin|
(λℓ+1
n )2σ −→ ti,ℓ+1 and |xℓ+1

n −xin|
λℓ+1
n

−→ xi,ℓ+1 up to a subsequence
}

.
If i ∈ I1, the cylinders Ωtin,x

i
n,λ

i
nR

i and Ωtℓ+1
n ,xℓ+1

n ,λℓ+1
n Rℓ+1 are disjoint for n sufficiently large.

For i ∈ I2, there exists δ > 0 such that∥∥∥S(·)V ℓ+1
∥∥∥q
Lqt Ḣ

γ
q

− ε

2ℓ+1 <
∥∥∥S(·)V ℓ+1

∥∥∥q
Lqt Ḣ

γ
q

(
Ω0,0,Rℓ+1 \

⋃
i∈I2

Ω
ti,ℓ+1,xi,ℓ+1,δ

)
⩽ lim inf

n→∞

∥∥∥S(·)d(λℓ+1
n )−1

[
S(tℓ+1

n )uj(n)(· + xℓ+1
n )

]∥∥∥q
Lqt Ḣ

γ
q

(
Ω0,0,Rℓ+1 \

⋃
i∈I2

Ω
ti,ℓ+1,xi,ℓ+1,δ

)
= lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

(
Ω
tℓ+1
n ,xℓ+1

n ,λℓ+1
n Rℓ+1 \

⋃
i∈I2

Ω
tℓ+1
n +(λℓ+1

n )2σti,ℓ+1,xℓ+1
n +λℓ+1

n xi,ℓ+1,λℓ+1
n δ

) .
As previously, it is easy to see that there exists nℓ+1 such that for all n ⩾ nℓ+1 and for all i ∈ I2 we
have Ωtin,x

i
n,λ

i
nR

i ⊂ Ωtℓ+1
n +(λℓ+1

n )2σti,ℓ+1,xℓ+1
n +λℓ+1

n xi,ℓ+1,λℓ+1
n δ. Hence Ωtin,x

i
n,λ

i
nR

i and
Ωtℓ+1

n ,xℓ+1
n ,λℓ+1

n Rℓ+1 \
⋃
i∈I2 Ωtℓ+1

n +(λℓ+1
n )2σti,ℓ+1,xℓ+1

n +λℓ+1
n xi,ℓ+1,λℓ+1

n δ are disjoint and we get the desired
inequality :

ℓ+1∑
i=1

∥S(·)V i∥q
Lqt Ḣ

γ
q

−
ℓ+1∑
i=1

ε

2i ⩽ lim inf
n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

.
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Then we have for all k ∈ N∗ and for all ε > 0,

k∑
i=1

∥S(·)V i∥q
Lqt Ḣ

γ
q

− ε

(
1 − 1

2k
)
⩽ lim inf

n→∞

∥∥∥S(·)uj(n)

∥∥∥q
Lqt Ḣ

γ
q

,

and this yields (2.3.20) because ε is arbitrary.

It follows from (2.3.20) that the series
(∑

∥S(·)V i∥q
Lqt Ḣ

γ
q

)
i⩾1

converges and in particular

∥S(·)V i∥
Lqt Ḣ

γ
q

−→
i→∞

0. By Corollary 2.2.2 we have ∥S(·)V i∥L∞
t Ḣ

γ
2∗

−→
i→∞

0 and property (I) above,

which derives from the construction of (V i)i∈N∗ , enables us to affirm that

Λ(wk) −→
k→∞

0.

By Corollary 2.2.1 we have

lim
k→∞

(
lim sup
n→∞

∥S(·)wkn∥L∞
t Ḣ

γ
2∗

)
= 0,

and we get (2.1.16). By the interpolation inequalities (2.1.11)-(2.1.13) it is easy to see that

lim
k→∞

(
lim sup
n→∞

∥S(·)wkn∥Lpt Ḣγ
q

)
= 0

for any admissible pair (p, q). Now, we claim that for all k ∈ N∗,

(2.3.21)
∥∥∥∥∥
k∑
i=1

S(· − tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]∥∥∥∥∥
q∗

Lpt Ḣ
γ
q

⩽
k∑
i=0

∥∥∥S(·)V i
∥∥∥q∗

Lpt Ḣ
γ
q

+ o(1)
n→∞

,

where q∗ := min(p, q). We will use the following elementary inequality : for any k ∈ N∗ and any
q ∈ (1,∞), there exists Ck > 0, depending only on k and on q such that∣∣∣∣∣∣

∣∣∣∣∣
k∑
i=1

ai

∣∣∣∣∣
q

−
k∑
i=1

|ai|q
∣∣∣∣∣∣ ⩽ Ck

k∑
i,l=1
i̸=l

|ai|q−1|al|, ∀a1, ..., ak ∈ C.

We denote

f in := S(t− tin)|∇|γ
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]
= S(t− tin)

(
|∇|γ

[
dλinV

i
]

(· − xin)
)
.

We fix t ∈ R, and we denote the reminder of the sum

Rkn(t) :=
∫

RN

∣∣∣∣∣
k∑
i=1

f in

∣∣∣∣∣
q

−
k∑
i=1

∣∣∣f in∣∣∣q dx.
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By using the elementary inequality above and the subadditivity of the norm in L
p
q

t in the case
p ⩾ q, respectively the subadditivity of the mapping τ 7→ τ

p
q on [0,∞) and the fact that q∗

p = 1 in
the case p < q we get

(∫
R

∣∣∣Rkn(t)
∣∣∣ pq dt) q∗

p

⩽ C
q∗
q

k


∫

R

∣∣∣∣∣∣∣∣
k∑

i,ℓ=1
i ̸=ℓ

∫
RN

|f in||f ℓn|q−1dx

∣∣∣∣∣∣∣∣
p
q

dt


q∗
p

⩽ C
q∗
q

k

k∑
i,ℓ=1
i ̸=ℓ

(∫
R

(∫
RN

|f in||f ℓn|q−1dx

) p
q

dt

) q∗
p

.

By a change of variables we obtain the following identity :∫
R

(∫
RN

|f in||f ℓn|q−1dx

) p
q

dt

=
∫

R

(∫
RN

∣∣∣∣∣S
(

· + tℓn − tin
(λℓn)2σ

)
|∇|γ

[
dλin(λℓn)−1V i

](
· + xℓn − xin

λℓn

)∣∣∣∣∣ ∣∣∣S(·)|∇|γV ℓ
∣∣∣q−1

dx

) p
q

dt,

The last expression tends to zero as n → ∞ by Lemma 2.3.3 because (λi ,ti,xi) and (λℓ, tℓ,xℓ) are
orthogonal for i ̸= ℓ. Then

∫
R

∣∣∣Rkn(t)
∣∣∣ pq dt = o(1)

n→∞
and using again the subadditivity of the norm in

L
p
q

t in the case p ⩾ q, respectively the concavity of the mapping τ 7→ τ
p
q on [0,∞) if p < q, as well

as (2.1.3), it is easy to see that∥∥∥∥∥
k∑
i=1

f in

∥∥∥∥∥
q∗

LptL
q
x

=

∫
R

(∫
RN

k∑
i=1

∣∣∣f in∣∣∣q dx+Rkn(t)
) p
q

dt


q∗
p

⩽
k∑
i=1

(∫
R

(∫
RN

∣∣∣f in∣∣∣q dx) p
q

dt

) q∗
p

+
(∫

R

∣∣∣Rkn(t)
∣∣∣ pq dt) q∗

p

=
k∑
i=1

∥∥∥S(·)V i
∥∥∥q∗

Lpt Ḣ
γ
q

+ o(1)
n→∞

,

and this yields (2.3.21). It remains to prove (2.1.17), (2.1.20) and (2.1.21). We have :

∥S(·)uj(n)∥
q∗
Lpt Ḣ

γ
q

=
∥∥∥∥∥
k∑
i=1

S(· − tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]
+ S(·)wkn

∥∥∥∥∥
q∗

Lpt Ḣ
γ
q

⩽

∥∥∥∥∥
k∑
i=1

S(· − tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]∥∥∥∥∥
Lpt Ḣ

γ
q

+
∥∥∥S(·)wkn

∥∥∥
Lpt Ḣ

γ
q

q∗

,

27



and by using (2.3.21) and by passing to the limit,

lim sup
n→∞

∥S(·)uj(n)∥
q∗
Lpt Ḣ

γ
q

⩽

lim sup
n→∞

∥∥∥∥∥
k∑
i=1

S(· − tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]∥∥∥∥∥
Lpt Ḣ

γ
q

+ lim sup
n→∞

∥∥∥S(·)wkn
∥∥∥
Lpt Ḣ

γ
q

q∗

=

lim sup
n→∞

∥∥∥∥∥
k∑
i=1

S(· − tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]∥∥∥∥∥
Lpt Ḣ

γ
q

+ o(1)
k→∞

q∗

= lim sup
n→∞

∥∥∥∥∥
k∑
i=1

S(· − tin)
[
(λin)γ− N

2∗ V i

(
· − xin
λin

)]∥∥∥∥∥
q∗

Lpt Ḣ
γ
q

+ o(1)
k→∞

⩽
k∑
i=1

∥∥∥S(·)V i
∥∥∥q∗

Lpt Ḣ
γ
q

+ o(1)
k→∞

.

and this yields (2.1.20) and (2.1.21). The above inequality in the case p = q = q and (2.3.20) give
(2.1.17).

To prove Theorem 1.2, we will show that if we have a profile decomposition of an optimizing
sequence u as in Theorem 1.1, then there is only one non-trivial profile V i0 ̸= 0 and we must have
V i = 0 for all i ̸= i0.

Proof of Theorem 1.2. Let u be a maximizing sequence. We use the same notation as in Theorem
1.1.
Since ∥S(·)V i∥Lpt Ḣγ

q
goes to zero as i → ∞, there exists i0 ∈ N∗ such that ∥S(·)V i0∥Lpt Ḣγ

q
=

sup
i∈N∗

∥S(·)V i∥Lpt Ḣγ
q
.

Moreover, by (2.1.18),
∞∑
i=1

∥V i∥2
Ḣs+γ ⩽ lim

n→∞
∥uj(n)∥2

Ḣs+γ = 1.

By Theorem 1.1, we get

(CS)q∗ = lim
n→∞

∥S(·)uj(n)∥
q∗
Lpt Ḣ

γ
q
⩽

∞∑
i=1

∥S(·)V i∥q∗
Lpt Ḣ

γ
q

⩽ ∥S(·)V i0∥q∗−2
Lpt Ḣ

γ
q

∞∑
i=1

∥S(·)V i∥2
Lpt Ḣ

γ
q

⩽ (CS)q∗−2∥V i0∥q∗−2
Ḣs+γ (CS)2

∞∑
i=1

∥V i∥2
Ḣs+γ

⩽ (CS)q∗∥V i0∥q∗−2
Ḣs+γ .
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Then 1 ⩽ ∥V i0∥Ḣs+γ and this implies that ∥V i0∥Ḣs+γ = 1 and ∥V i∥Ḣs+γ = 0 for all i ̸= i0. Recall
that by Theorem 1.1, d(λi0n )−1

[
S(ti0n )uj(n)(· + xi0n )

]
⇀

n→∞
V i0 in Ḣs+γ .

Since we have weak convergence and convergence of norms in the Hilbert space Ḣs+γ , we infer that

d(λi0n )−1

[
S(ti0n )uj(n)(· + xi0n )

]
→

n→∞
V i0 strongly in Ḣs+γ ,

and this is the desired conclusion.
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Chapitre 3

Periodic traveling waves for nonlinear
Schrödinger equations with non-zero
conditions at infinity in R2

3.1 Introduction

We consider the nonlinear Schrödinger equation

(3.1.1) i
∂Φ
∂t

+ ∆Φ + F (|Φ|2)Φ = 0 in R2 × R.

For a given Λ > 0, we are interested in solutions Φ : R2 × R −→ C of (3.1.1) that are Λ−periodic
with respect to the second variable, namely Φ(x, y+ Λ, t) = Φ(x, y, t) for all (x, y, t) and satisfy the
"boundary condition" |Φ(x, y, t)| −→ r0 as x −→ ±∞, where r0 > 0 and F is a real-valued function
on [0,∞) such that F (r2

0) = 0.
If F ′(r2

0) < 0 (which means that (3.1.1) is defocusing), a simple scaling enables us to assume
that r0 = 1 and F ′(r2

0) = −1 (see [11], p. 108) ; we will do so throughout this paper. The sound
velocity at infinity associated to (3.1.1) is then vs = r0

√
−2F ′(r2

0) =
√

2.
Equation (3.1.1) has a Hamiltonian structure. Indeed, let V (s) =

∫ 1
s F (τ) dτ . It is then easy to

see that if Φ is a solution to (3.1.1) and Φ is Λ−periodic with respect to the second variable, then
at least formally, the "energy"

(3.1.2) E(Φ) =
∫

R×[0,Λ]

∣∣∂Φ
∂x

∣∣2 +
∣∣∂Φ
∂y

∣∣2 + V (|Φ|2) dx dy

does not depend on t.
In the sequel we prefer to normalize the period to 1 : instead of working with functions Φ that are

Λ−periodic with respect to the second variable, we will consider the function Φ̃(x, y, t) = Φ(x,Λy, t)
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which is is 1−periodic with respect to the second variable. It is clear that Φ is a solution of (3.1.1)
if an only if Φ̃ satisfies the equation

(3.1.3) i
∂Φ̃
∂t

+ ∂2Φ̃
∂x2 + 1

Λ2
∂2Φ̃
∂y2 + F (|Φ̃|2)Φ̃ = 0 in R2.

We denote λ = 1
Λ and we consider the renormalized energy

(3.1.4) Eλ(Ψ) =
∫

R×[0,1]

∣∣∣∂Ψ
∂x

∣∣∣2 + λ2
∣∣∣∂Ψ
∂y

∣∣∣2 + V (|Ψ|2) dx dy.

If Φ and Φ̃ are as above, we have E(Φ) = 1
λEλ(Φ̃).

We are interested in traveling waves for (3.1.1), which are solutions of the form Φ(x, y, t) =
ψ(x+ct, y). If ψ is a traveling wave and is Λ−periodic with respect to the variable y, then ψ̃(x, y) =
ψ(x,Λy) = ψ(x, yλ) is 1−periodic with respect to y and satisfies the equation

(3.1.5) ic
∂ψ̃

∂x
+ ∂2ψ̃

∂x2 + 1
Λ2

∂2ψ̃

∂y2 + F (|ψ̃|2)ψ̃ = 0 in R2.

Assumptions and some comments on the assumptions. We will work with general
nonlinearities F . We will consider the set of assumptions (A1), (A2), (B1), (B2) that we describe
below. We will assume throughout the paper that (A1) holds. The other assumptions are not needed
all the time and sometimes they can be slightly relaxed. For each result we will indicate the precise
conditions that we use. For instance, assumption (A2) is not necessary when we deal with one-
dimensional traveling waves to (3.1.1). We aimed to consider sufficiently general nonlinearities and
in the meantime to focus on ideas, avoiding irrelevant technicalities.

(A1) The function F is continuous on [0,∞), C1 in a neighborhood of 1, F (1) = 0 and
F ′(1) < 0.

(A2) There exist C > 0 and 1 < p0 < ∞ such that |F (s)| ≤ C(1 + sp0) for any s ≥ 0.
We denote

V (s) =
∫ 1

s
F (τ) dτ,

so that V (1) = 0 and V ′(s) = −F (s). If assumption (A1) holds, we have

(3.1.6) V (s) = 1
2(s− 1)2 + o

(
(s− 1)2

)
as s −→ 1.

If (A2) holds, there is C ′ > 0 such that |V (s)| ⩽ C ′sp0+1 for all s ⩾ 2.
The natural function space associated to (3.1.3) is

E = {ψ ∈ L1
loc(R2) | ψ is 1−periodic with respect to the second variable,

∇ψ ∈ L2(R × [0, 1]) and V (|ψ|2) ∈ L1(R × [0, 1])}.
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We will also consider the one-dimensional variant of E , namely

E(R) = {ψ ∈ L1
loc(R2) | ψ′ ∈ L2(R) and V (|ψ|2) ∈ L1(R)}

and the associated 1−dimensional energy

E1(ψ) =
∫

R
|ψ′(x)|2 + V (|ψ|2)(x) dx.

As we can see, assumption (A1) determines the behaviour of the nonlinear potential V in a
neighbourhood of 1, and (A2) gives upper bounds on V (s) for large s. In view of (3.1.6), the
renormalized Ginzburg-Landau energy

EGL,λ(ψ) =
∫

R×[0,1]

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂y

∣∣∣2 + 1
2
(
1 − |ψ|2

)2
dx dy,

together with its 1−dimensional variant

E1
GL(ψ) =

∫
R

|ψ′(x)|2 + 1
2
(
1 − |ψ(x)|2

)2
dx for ψ ∈ E(R)

will be relevant throughout the article. Notice that the renormalized Ginzburg-Landau energy is
simply the energy associated to the Gross-Pitaevskii nonlinear potential V (s) = 1

2(1 − s)2 corres-
ponding to the nonlinearity F (s) = 1 − s.

Whenever minimization of energy at fixed momentum is considered, we need to assume that
V ⩾ 0 on [0,∞) (for otherwise, the infimum is −∞). For simplicity, we will assume that V (s) > 0 for
s ̸= 1. The next assumptions give lower bounds on V and will be useful to estimate the Ginzburg-
Landau energy EGL(ψ) in terms of E(ψ) ; see Lemmas 3.2.1 and 3.2.3 in the next section.

(B1) We have V > 0 on [0,∞) \ {1} and, denoting H(s) =
∫ s

1

∣∣V (τ2)
∣∣ 1

2dτ , we have

H(s) −→ ∞ as s −→ ∞.

(B2) V > 0 on [0,∞) \ {1} and there exists γ > 0 and s0 ⩾ 1 such that V (s) ⩾ sγ for all
s ⩾ s0.

Clearly, (B2) is stronger than (B1). If V > 0 on [0,∞) \ {1}, then the function H is strictly
increasing on [0,∞) and H(1) = 0. If we do not assume that H(s) −→ ∞ as s −→ ∞, it is possible
to construct sequences of functions ψn : R −→ C such that E1(ψn) is bounded, but the Ginzburg-
Landau energy E1

GL(ψn) is unbounded, a situation that we would like to avoid. Assumption (A1)
is enough to study 1−dimensional traveling-waves of (3.1.1) by using ODE arguments, as we do in
section 4. Assumptions (A1) and (B1) are sufficient to obtain 1−dimensional traveling-waves by
minimizing the energy at fixed momentum, as in section 5.

When we consider functions defined on the whole space RN , N ⩾ 2, assumptions (A1) and
(A2) (with some p0 smaller than the crtical Sobolev exponent) and the fact that V ⩾ 0 are sufficient
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to prove that EGL(ψ) is bounded whenever E(ψ) is bounded, and vice-versa ; see Lemma 4.8 p. 177
in [6]. This is no longer true in the one-dimensional space R or in a strip R × (0, 1).

Momentum. There is another important quantity conserved by equations (3.1.1) and by
(3.1.3), namely the momentum. It carries some topological information and defining rigorously the
momentum is a difficulty in itself. We will address this issue in Section 3. Roughly speaking, the
momentum is a functional Q whose Gâteaux differential is Q′(ψ) = 2i∂ψ∂x . If ψ ∈ E is a function
such that there exists A ⩾ 0 such that ψ(x, y) = 1 if x ⩽ −A and if x ⩾ A, we have Q(ψ) =∫

R×[0,1]⟨i
∂ψ
∂x , ψ⟩ dx dy. Given an arbitrary function ψ ∈ E , the function ⟨i∂ψ∂x , ψ⟩ does not necessarily

belong to L1(R × [0, 1]) and giving a meaning to the above integral is not obvious. For functions
ψ ∈ E(R) there is a one-dimensional variant of the momentum that we will denote P (ψ). We will
see that the momentum can be defined only modulo 2π.

Brief description of the results. In this article we will focus on traveling waves for (3.1.1)
that minimize the energy when the momentum is kept fixed. In view of a celebrated result by T.
Cazenave and P.-L. Lions [4], such solutions are expected to be orbitally stable by the flow associated
to (3.1.1).

We will denote
Eλ,min(p) = inf{Eλ(ψ) | ψ ∈ E and Q(ψ) = p}.

and
E1
min(p) = inf{Eλ(ψ) | ψ ∈ E(R) and P (ψ) = p}.

The main results of this article can be summarized as follows.

Theorem 3.1.1. Assume that the conditions (A1), (A2), (B2) above are satisfied. Then :

i ) The function E1
min is nonnegative, 2π−periodic, concave on [0, 2π], E1

min(−p) = E1
min(p),

E1
min(p) ⩽

√
2p and the right-derivative of E1

min at the origin is
√

2. If F is C2 near 1 and F ′′(1) < 9
4

we have E1
min(p) <

√
2|p| for any p ̸= 0.

For any p ∈ (0, π] satisfying E1
min(p) <

√
2p there exist minimizers for E1

min(p) in E(R) and all
minimizing sequences are pre-compact 1 modulo translations.

ii) For any fixed λ > 0 the function p 7−→ Eλ,min(p) is 2π−periodic, concave on [0, 2π],
Eλ,min(p) ⩽

√
2p, the right-derivative of Eλ,min at the origin is

√
2, and Eλ,min(p) ⩽ E1

min(p).

iii) For any fixed p there exists λ∗(p) > 0 such that the mapping λ 7−→ Eλ,min(p) is strictly
increasing on (0, λ∗(p)], and Eλ,min(p) = E1

min(p) for all λ ⩾ λ∗(p).

iv) For any λ > 0 and any p ∈ (0, π] satisfying Eλ,min(p) <
√

2p there exist minimizers for
Eλ,min(p) in E and all minimizing sequences are pre-compact 2 modulo translations.

1. This statement is vague because we did not introduce a distance on E(R). Please see Theorem 3.5.2 for a precise
statement.

2. See Theorem 3.6.6 for a precise statement.
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Outline of the paper. In the next section we present the functional setting and we show that
one can bound the energies E1 and Eλ in terms of the associated Ginzburg-Landau energies, and
vice-versa. In Section 3 we give a rigorous definition of the momentum, firstly for functions in E(R)
and then for functions in E . Section 4 is devoted to the study of one-dimensional traveling waves by
using ODE arguments. In the case of the Gross-Pitaevskii equation (F (s) = 1−s) those results were
already known, see [1] and references therein. Different behaviour may occur when we consider other
nonlinearities. In section 5 we study the 1−dimensional minimization problem associated to E1

min

and we prove part (i) in Theorem 3.1.1. Section 6 is devoted to the 2−dimensional minimization
problem for Eλ,min, and to the rest of the proof of Theorem 3.1.1.

Notation. We denote by ⟨·, ·⟩ the usual scalar product in C ≃ R2, namely ⟨a + ib, c + id⟩ =
ac + bd, and by LN the Lebesgue measure in RN . We denote by Ca1,...,aℓ or by C(a1, . . . , aℓ) a
positive constant that may change from line to line, but depends only on the parameters a1, . . . , aℓ.

3.2 Energy and function spaces

The precise representative of a given function f ∈ L1
loc(RN ) is the function f∗ defined on RN

by f∗(x) = lim
r→0

1
|B(x, r)|

∫
B(x,r)

f(y) dy if the limit exists, and 0 otherwise. It is well-known that for

any f ∈ L1
loc(RN ) we have f = f∗ almost everywhere (see, e.g., Corollary 1 p. 44 in [7]). In the

sequel we will always replace functions in L1
loc(RN ) by their precise representatives. We denote

E(R) = {ψ ∈ L1
loc(R) | ψ′ ∈ L2(R), V (|ψ|2) ∈ L1(R)}

For any given ψ ∈ E(R) and any interval I ⊂ R we denote

E1,I(ψ) =
∫
I

|ψ′|2 + V (|ψ|2) dx and E1,I
GL(ψ) =

∫
I

|ψ′|2 + 1
2(|ψ|2 − 1)2 dx.

When I = R we write simply E1(ψ) and E1
GL(ψ).

Lemma 3.2.1. Assume that (A1) and (B1) hold. Then :
i) Any function ψ ∈ E(R) is bounded and 1

2−Hölder continuous on R. There exists a function
b : [0,∞) −→ [0,∞) satisfying lim

τ→0
b(τ) = 0, lim

τ→∞
b(τ) = ∞ such that

∥ |ψ| − 1∥L∞(R) ⩽ b(E1(ψ)) for any ψ ∈ E(R).

ii) For any ψ ∈ E(R) we have |ψ| − 1 ∈ H1(R) and

E(R) = {ψ ∈ H1
loc(R) | ψ′ ∈ L2(R) and |ψ|2 − 1 ∈ L2(R)}

= {ψ ∈ H1
loc(R) | ψ′ ∈ L2(R) and |ψ| − 1 ∈ L2(R)}.
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Furthermore, there exist functions b1, b2 : [0,∞) −→ [0,∞) such that lim
τ→0

bi(τ) = 0, lim
τ→∞

bi(τ) = ∞
for i = 1, 2, and we have

E1(ψ) ⩽ b1(E1
GL(ψ)) and E1

GL(ψ) ⩽ b2(E1(ψ)) for any ψ ∈ E(R).

For any ψ ∈ E(R) and any v ∈ H1(R) we have ψ + v ∈ E(R).

Proof. (i) Let ψ ∈ E(R). Since ψ ∈ L1
loc(R) and ψ′ ∈ L1

loc(R), it follows from Theorem 8.2 p.
204 in [3] that ψ is equal almost everywhere to a continuous function and

ψ(b) − ψ(a) =
∫ b

a
ψ′(s) ds.

The Cauchy-Schwarz inequality gives

(3.2.1) |ψ(b) − ψ(a)| ⩽ |b− a|
1
2 ∥ψ′∥L2([a,b]) for any a, b ∈ R.

It is well-known that |ψ| ∈ L1
loc(R) and

∣∣ |ψ|′
∣∣ ⩽ |ψ′| almost everywhere. Using the Cauchy-Schwarz

inequality and denoting h(s) =
√
V (s2) we get for any a, b ∈ R, a < b,

(3.2.2)

∫ b

a
|ψ′|2 + V (|ψ|2) dx ⩾

∫ b

a

∣∣ |ψ|′
∣∣2 + h2(|ψ|) dx

⩾ 2
∣∣∣∣ ∫ b

a
h(|ψ|) · |ψ|′ dx

∣∣∣∣ = 2
∣∣∣H(|ψ(b)|) −H(|ψ(a)|)

∣∣∣.
Using (3.2.2) and (B1) it is easily seen that any function ψ ∈ E(R) is bounded. Since V (|ψ|2) ∈

L1(R), there are sequences an −→ −∞ and bn −→ ∞ such that |ψ(an)| −→ 1 and |ψ(bn)| −→ 1. For
any x ∈ R we use (3.2.2) on [an, x] and on [x, bn] and we let n −→ ∞ to get 4

∣∣H(|ψ(x)|)
∣∣ ⩽ E1(ψ).

We infer that∣∣ |ψ(x)| − 1
∣∣ ⩽ max

(
H−1

(1
4E

1(ψ)
)

− 1, 1 −H−1
(

−1
4E

1(ψ)
))

if 0 ⩽ |ψ(x)| ⩽ 2,

respectively |ψ(x)| − 1 ⩽ H−1
(

1
4E

1(ψ)
)

− 1 if |ψ(x)| > 2, and (i) is proven.

(ii) Assume that ψ′ ∈ L2(R) and V (|ψ|2) ∈ L1(R). By (A1) and (B1) there exists C > 0 such
that (1 − s)2 ⩽ CV (s) for all s ∈ [0, 4]. Then

(
1 − |ψ|2

)2
1{|ψ|⩽2} ⩽ CV (|ψ|2) ∈ L1(R).

The set A = {x ∈ R | |ψ(x)| > 2} has finite Lebesgue measure in R. Indeed, by (i) we
know that ψ is bounded. If m := sup |ψ| > 2, let i(m) = inf

s∈[4,m2]
V (s). By (B1) we know that

i(m) > 0 and we have the rough estimate
∫

R V (|ψ|2) dx ⩾
∫
A V (|ψ|2) dx ⩾ i(m)L1(A), hence

L1(A) ⩽ 1
i(m)∥V (|ψ|2)∥L1(R) and

∫
A

(
1 − |ψ|2

)2
dx ⩽ (m2 − 1)2L1(A) ⩽ (m2 − 1)2

i(m) ∥V (|ψ|2)∥L1(R).
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It follows from the above estimates that 1 − |ψ|2 ∈ L2(R) and there exists a function b2 with
the desired properties.

Conversely, if 1 − |ψ|2 ∈ L2(R) a similar argument shows that ψ is bounded, V (|ψ|2) ∈ L1(R)
and E1(ψ) can be estimated in terms of E1

GL(ψ).

We have
∣∣ |ψ| − 1

∣∣ =
∣∣ |ψ|2−1

∣∣
|ψ|+1 ⩽

∣∣ |ψ|2 − 1
∣∣, hence |ψ| − 1 ∈ L2(R) whenever |ψ|2 − 1 ∈ L2(R).

Conversely, if ψ′ ∈ L2(R) and |ψ| − 1 ∈ L2(R) we see as above that ψ is bounded and therefore
|ψ|2 − 1 ∈ L2(R).

For the last statement proceed as in the proof of Lemma 3.2.4 (i) below. □

The following result is contained in Theorem 1.8 p. 134 in [8] :

Lemma 3.2.2. ([8]) Let ψ ∈ E(R). Then :
i) There exist a real-valued function φ ∈ Ḣ1(R) and w ∈ H1(R) such that ψ = eiφ + w.
ii) If (φ1, w1) and (φ2, w2) are as above, there exist k−, k+ ∈ Z such that φ1 − φ2 − 2πk± ∈

L2(R±).
iii) Moreover, the function φ can be chosen such that φ ∈ C∞(R) and φ(k) ∈ L2(R) for any

k ∈ N∗.

As already mentioned in the introduction, the natural "energy space" for the study of (3.1.3) is

(3.2.3) E = {ψ ∈ L1
loc(R2) | ψ is 1−periodic with respect to the second variable and

∇ψ ∈ L2(R × [0, 1]) and V (|ψ|2) ∈ L1(R × [0, 1])}.

Obviously, for any ψ ∈ E(R) the function ψ♯ defined by ψ♯(x, y) = ψ(x) belongs to E . We will also
denote

H1
per = {v ∈ H1

loc(R2) | v is 1−periodic in the second variable and v ∈ H1(R × (0, 1))}.

It is clear that Eλ(ψ) is well-defined for any ψ ∈ E and for any λ > 0, where Eλ is as in (3.1.4).
We will show in Lemma 3.2.3 below that for any ψ ∈ E we have

(
|ψ|2 − 1

)2 ∈ L1(R × [0, 1]). For
any ψ ∈ E , λ > 0 and for any interval I ⊂ R we denote

EIλ(ψ) =
∫
I×[0,1]

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂x

∣∣∣2 + V (|ψ|2) dx dy and

EIGL,λ(ψ) =
∫
I×[0,1]

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂x

∣∣∣2 + 1
2
(
|ψ|2 − 1

)2
dx dy.

We will simply write Eλ(ψ), respectively EGL,λ(ψ) when I = R. We will write E(ψ) and EGL(ψ)
when λ = 1.
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Lemma 3.2.3. Assume that the conditions (A1), (A2) and (B2) in the introduction are satisfied.
Let E be as in (3.2.3). Then we have

E = {ψ ∈ H1
loc(R2) | ψ is 1−periodic with respect to the second variable and

∇ψ ∈ L2(R × [0, 1]) and |ψ| − 1 ∈ L2(R × [0, 1])}

= {ψ ∈ H1
loc(R2) | ψ is 1−periodic with respect to the second variable and

∇ψ ∈ L2(R × [0, 1]) and |ψ|2 − 1 ∈ L2(R × [0, 1])}.

In particular, for any ψ ∈ E we have |ψ| − 1 ∈ H1
per.

Moreover, for any λ > 0 there exist a, b, c, d > 0 such that for all ψ ∈ E and for any interval
I ⊂ R of length at least 1 we have

(3.2.4) EIλ(ψ) ⩽ aEIGL,λ(ψ) + bEIGL,λ(ψ)p0+1 and EIGL,λ(ψ) ⩽ cEIλ(ψ) + dEIλ(ψ)
2
γ ,

where γ ∈ (0, 1] is the exponent appearing in (B2).

Proof. We have
∣∣ |ψ|2 − 1

∣∣ =
∣∣ |ψ| − 1

∣∣ ·
∣∣ |ψ| + 1

∣∣ ⩾ ∣∣ |ψ| − 1
∣∣. If |ψ|2 − 1 ∈ L2(R × [0, 1]), it is

obvious that |ψ| − 1 ∈ L2(R × [0, 1]).
Conversely, assume that |ψ| − 1 ∈ L2(R × [0, 1]) and ∇ψ ∈ L2(R × [0, 1]). Since

∣∣∇|ψ| | ⩽ |∇ψ|
almost everywhere, we infer that |ψ| − 1 ∈ H1(R × [0, 1]) and the Sobolev embedding implies that
|ψ| − 1 ∈ Lp(R × [0, 1]) for any p ∈ [2,∞). We have

∣∣ |ψ|2 − 1
∣∣ ⩽ 5

∣∣ |ψ| − 1
∣∣1{|ψ|⩽4} + 5

3
∣∣ |ψ| − 1

∣∣21{|ψ|>4}

and we infer that |ψ|2 − 1 ∈ L2(R × [0, 1]).
We will repeatedly use the following simple observation. Let I ⊂ R be an interval of length

greater than or equal to 1. Proceeding as in [3], Section 9.2 we may use four successive "mirror
symmetries" to extend any function u ∈ H1(I × (0, 1)) to a function ũ ∈ H1(ΩI), where ΩI is a
domain containing (I + (−1, 1)) × (−1, 2)). Then we choose a cut-off function χ ∈ C∞

c (ΩI) such
that 0 ⩽ χ ⩽ 1, χ = 1 on I × [0, 1] and ∇χ is bounded independently of I. Denoting P (u) = χũ,
we see that P (u) ∈ H1(R2) and ∥Pu∥H1(R2) ⩽ C∥u∥H1(I×(0,1)), where C is independent of I. Using
the Sobolev embedding in R2 we see that for any p ∈ [2,∞) there exists Cp > 0 depending only on
p such that

∥u∥Lp(I×(0,1)) ⩽ ∥P (u)∥Lp(R2) ⩽ Cp∥P (u)∥H1(R2) ⩽ CCp∥u∥H1(I×(0,1)).

Assume that ψ ∈ H1
loc(R × (0, 1)) and EGL(ψ) < ∞. From the above arguments it follows that

|ψ| − 1 ∈ H1(R × (0, 1)) and ∥|ψ| − 1∥2
H1(I×(0,1)) ⩽ CEIGL(ψ) for any interval I of length at least 1.

By (A1) and (A2) there exist C1, C2 > 0 such that

V (s2) ⩽ C1
(
s2 − 1

)2
if 0 ⩽ s ⩽ 2, and V (s2) ⩽ C2(s− 1)2p0+2 if s > 2.
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Using the Sobolev embedding we have∫
I×(0,1)

V (|ψ|2) dx ⩽
∫
I×(0,1)

C1
(

|ψ|2 − 1
)2

+ C2
∣∣ |ψ| − 1

∣∣2p0+2
dx

⩽ C1E
I
GL(ψ) + C2C2p0+2∥ |ψ| − 1∥2p0+2

H1(I×(0,1)) ⩽ C1E
I
GL(ψ) + C ′

2E
I
GL(ψ)p0+1.

The first estimate in (3.2.4) is thus proven. If I = R we see that V (|ψ|2) ∈ L1(R × (0, 1)).
Conversely, assume that (B2) holds, ∇ψ ∈ L2(I × [0, 1]) and V (|ψ|2) ∈ L1(I × [0, 1]). Without

loss of generality we may assume that 0 < γ < 1. Take an increasing concave function G : R −→ R
such that G(s) = s if s ⩽ 4 and G(s) = sγ for s ⩾ s1, where s1 > 4, and 0 < G′ ⩽ 1. By assumptions
(A1) and (B2) there is C > 0 such that G(|ψ| − 1)2 ⩽ CV (|ψ|2), hence G(|ψ| − 1) ∈ L2(I × [0, 1]).

We claim that G(|ψ| − 1) ∈ H1(I × (0, 1)) and ∇ (G(|ψ| − 1)) = G′(|ψ| − 1)∇(|ψ|) almost
everywhere. Indeed, let un = min(|ψ| − 1, n). We have |∇un| ⩽ |∇ψ| a.e., and there is Cn > 0
such that |un|2 ⩽ CnV (|ψ|2), hence un ∈ H1(I × (0, 1)). By Proposition 9.5 p. 270 in [3] we have
G(un) ∈ H1(I×(0, 1)) and ∇(G(un)) = G′(un)∇un = G′(un)∇(|ψ|)1{|ψ|⩽n+1} a.e. The claim follows
by letting n −→ ∞ and using the Dominated Convergence Theorem.

It is obvious that
∣∣∇(G(|ψ| − 1))

∣∣ ⩽ |∇ψ| a.e. and we conclude that ∥G(|ψ| − 1)∥2
H1(I×(0,1)) ⩽

CλE
I
λ(ψ). By the Sobolev embedding we have ∥G(|ψ| − 1)∥Lp(I×(0,1)) ⩽ C(p, λ)EIλ(ψ)

p
2 for any

p ∈ [2,∞). We have

(|ψ|2 − 1)2 ⩽ 25G(|ψ| − 1)21{|ψ|⩽4} + CG(|ψ| − 1)
4
γ 1{|ψ|>4}

and we infer that∫
I×(0,1)

(|ψ|2 − 1)2 ⩽ 25∥G(|ψ| − 1)∥2
L2(I×(0,1)) + C∥G(|ψ| − 1)∥

4
γ

L
4
γ (I×(0,1))

⩽ C1E
I
λ(ψ) + C2E

I
λ(ψ)

2
γ .

This gives the second estimate in (3.2.4). □

Lemma 3.2.4. Assume that (A1), (A2) and (B2) hold. Then :
i) For any ψ ∈ E and any v ∈ H1

per we have ψ + v ∈ E.
ii) Let ψ ∈ E. Then for almost all y ∈ R the mapping ψ(·, y) belongs to E(R) and for almost all

x ∈ R the mapping ψ(x, ·) belongs to H1((0, 1)).
iii) For a given ψ ∈ E , define ψ̆(x) =

∫ 1
0 ψ(x, y) dy and vψ(x, y) = ψ(x, y) − ψ̆(x). Then we have

ψ̆ ∈ E(R), vψ ∈ H1
per and

(ψ̆)′(x) =
∫ 1

0

∂ψ

∂x
(x, y) dy, ∂vψ

∂y
= ∂ψ

∂y
almost everywhere.

For any interval I ⊂ R of length greater than or equal to 1 we have

(3.2.5) ∥vψ∥2
H1(I×(0,1)) ⩽ 2∥∇ψ∥2

L2(I×(0,1)) and E1,I
GL(ψ̆) ⩽ C

(
EIGL(ψ) + EIGL(ψ)2

)
.
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iv) For any ψ ∈ E there exist a real-valued function φ ∈ C∞(R) satisfying φ(k) ∈ L2(R) for any
k ∈ N∗ and w ∈ H1

per such that ψ(x, y) = eiφ(x) + w(x, y).

Proof. (i) It is clear that ψ+v ∈ H1
loc(R2) and ∇(ψ+v) ∈ L2(R × [0, 1]). We only need to show

that |ψ + v|2 − 1 ∈ L2(R × [0, 1]). Recall that |ψ| − 1, v ∈ H1
per ⊂ Lp(R × [0, 1]) for any p ∈ [2,∞)

by the Sobolev embedding. We have

(3.2.6) |ψ + v|2 − 1 =
(
|ψ|2 − 1

)
+ 2⟨ψ, v⟩ + |v|2.

It is clear that |ψ|2 − 1 ∈ L2(R × [0, 1]) because ψ ∈ E and |v|2 ∈ L2(R × [0, 1]) because v ∈
L4(R × [0, 1]). We have also

(3.2.7) |⟨ψ, v⟩| ⩽ |ψ| · |v| ⩽
∣∣ |ψ| − 1

∣∣ · |v| + |v|.

The last function is in L2(R × [0, 1]) because |ψ| − 1, v ∈ L4(R × [0, 1]) and v ∈ L2(R × [0, 1]).
(ii) is a consequence of Theorem 2 p. 164 in [7] and of Fubini’s Theorem.

(iii) By Fubini’s Theorem, ψ̆ is measurable. By the Cauchy-Schwarz inequality we have
∣∣ψ̆(x)

∣∣2 ⩽∫ 1
0 |ψ(x, y)|2 dy and we infer that ψ̆ ∈ L2

loc(R).
Let g(x) =

∫ 1
0
∂ψ
∂x (x, y) dy. As above, using the Cauchy-Schwarz inequality we find |g(x)|2 ⩽∫ 1

0
∣∣∂ψ
∂x (x, y)

∣∣2 dy and we infer that g ∈ L2(R) and ∥g∥L2(I) ⩽
∥∥∂ψ
∂x

∥∥
L2(I×(0,1)) for any interval I ⊂ R.

For any ϕ ∈ C∞
c (R) we have∫

R
ψ̆(x)ϕ′(x) dx =

∫
R

(∫ 1

0
ψ(x, y)ϕ′(x) dy

)
dx

=
∫ 1

0

(∫
R
ψ(x, y)ϕ′(x) dx

)
dy by Fubini because ψ(x, y)ϕ′(x) ∈ L1(R × [0, 1])

= −
∫ 1

0

(∫
R

∂ψ

∂x
(x, y)ϕ(x) dx

)
dy because ψ(·, y) ∈ H1

loc(R) for a.e. y ∈ [0, 1]

= −
∫

R

(∫ 1

0

∂ψ

∂x
(x, y) dy

)
· φ(x) dx by Fubini again because ∂ψ

∂x
ϕ ∈ L1(R × [0, 1])

= −
∫

R
g(x)ϕ(x) dx.

We conclude that ψ̆ ∈ H1
loc(R) and

(
ψ̆
)′

= g.
It is clear that vψ is 1− periodic with respect to the second variable and ∂vψ

∂y = ∂ψ
∂y . For almost

every x ∈ R we have vψ(x, ·) = ψ(x, ·) − ψ̆(x) ∈ H1((0, 1)) and
∫ 1

0 vψ(x, y) dy = 0. For any such x,
using the Poincaré-Wirtinger inequality (see [3] p. 233) we get∫ 1

0

∣∣vψ(x, y)
∣∣2 dy ⩽ ∥vψ(x, ·)∥2

L∞(0,1) ⩽
∥∥∥∂vψ
∂y

(x, ·)
∥∥∥2

L1((0,1))
⩽
∫ 1

0

∣∣∣∂ψ
∂y

(x, y)
∣∣∣2 dy.
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Integrating with respect to x we infer that vψ ∈ L2(R × [0, 1]) and we have ∥vψ∥L2(I×[0,1]) ⩽∥∥∂ψ
∂y

∥∥
L2(I×[0,1]) for any interval I ⊂ R.

We have
∂vψ
∂x

(x, y) = ∂ψ

∂x
(x, y) −

(
ψ̆
)′

(x) = ∂ψ

∂x
(x, y) −

∫ 1

0

∂ψ

∂x
(x, y) dy

and we see that for almost every x ∈ R there holds∫ 1

0

∣∣∣∂vψ
∂x

(x, y)
∣∣∣2 dy =

∫ 1

0

∣∣∣∂ψ
∂x

(x, y)
∣∣∣2 dy −

(∫ 1

0

∂ψ

∂x
(x, y) dy

)2
⩽
∫ 1

0

∣∣∣∂ψ
∂x

(x, y)
∣∣∣2 dy.

The above estimates imply that vψ ∈ H1
per and the first estimate in (3.2.5) holds.

We have ψ̆ = ψ − vψ. Then using (3.2.6), (3.2.7) and the Sobolev inequality

∥ |ψ| − 1∥L4(I×[0,1]) ⩽ C∥ |ψ| − 1∥H1(I×[0,1]) ⩽ CEIGL(ψ)
1
2

as well as the similar estimate for vψ we get the second estimate in (3.2.5).

(iv) By Lemma 3.2.2 there exist φ ∈ C∞(R) such that φ(k) ∈ L2(R) for any k ⩾ 1 and
w1 ∈ H1(R) such that ψ̆ = eiφ + w1. Letting w(x, y) = vψ(x, y) + w1(x) we see that w ∈ H1

per and
(iv) holds. □

3.3 The momentum

3.3.1 Definition of the momentum on E(R)
From a mathematical point of view, the momentum should be a functional defined on E(R) such

that for any ψ ∈ E(R) and for any v ∈ H1(R),

(3.3.1) lim
t→0

P (ψ + tv) − P (ψ)
t

= 2
∫

R
⟨iψ′, v⟩ dx.

.
Notice that functions in E(R) may oscillate at infinity. One can introduce a distance and define

a manifold structure on E(R), see [8]. The tangent space of E(R) at ψ contains H1(R), but is
larger than H1(R) (see [8] p. 140). We require (3.3.1) to hold only for v ∈ H1(R), hence condition
(3.3.1) is weaker than Gâteaux differentiability and this allows some flexibility in the choice of the
definition of the momentum.

We were inspired by the definitions of the momentum in higher space dimensions given in [11, 6].
The energy space associated to eq. (3.1.1) in RN with "boundary condition" |ψ| −→ 1 as |x| −→ ∞
is

E(RN ) = {ψ ∈ H1
loc(RN ) | ∇ψ ∈ L2(RN ) and |ψ| − 1 ∈ L2(RN )}
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(see (1.11) p. 154 in [6]). The momentum with respect to the x1−direction is a functional P :
E(RN ) −→ R satisfying

lim
t→0

P (ψ + tv) − P (ψ)
t

= 2
∫

RN
⟨i ∂ψ
∂x1

, v⟩ dx for any v ∈ H1(RN ) with compact support.

Formally we should take P (ψ) =
∫

RN
⟨i ∂ψ
∂x1

, ψ⟩ dx, except that for an arbitrary function ψ ∈ E(RN ),

the function ⟨i ∂ψ∂x1
, ψ⟩ is not necessarily in L1(RN ). However, it has been shown in [11, 6] that for

any ψ ∈ E(RN ) there exist f ∈ L1(RN ) and g ∈ Ḣ1(RN ) such that

⟨i ∂ψ
∂x1

, ψ⟩ = f + ∂x1g.

Obviously, f and g are not unique. However, if h ∈ Ḣ1(RN ) and ∂x1h ∈ L1(RN ), then Lemma 2.3
p. 122 in [11] implies that necessarily

∫
RN ∂x1h dx = 0. This allows to define unambiguously the

momentum by P (ψ) =
∫

RN f(x) dx.
The situation is different in space dimension one. If h ∈ Ḣ1(R) and h′ ∈ L1(R), the integral∫∞

−∞ h′(x) dx can take any value. This is due to the fact that functions in Ḣ1(R) may have different
limits or may oscillate at ±∞. To give an example, let α ∈ (1

2 , 1) and consider χ ∈ C∞(R,R) such
that χ′(x) = 1

|x|α on (−∞,−1] ∪ [1,∞). Then χ(x) = 1
1−αx

1−α +C1 on [1,∞) and a similar formula
holds on (−∞,−1]. We have χ ∈ Ḣ1(R), eiχ ∈ E(R) and χ′ ̸∈ L1(R). For a, b ∈ R, a < b, let

χa,b(x) =


χ(a) if x < a,
χ(x) if x ∈ [a, b],
χ(b) if x > b.

We have χa,b ∈ Ḣ1(R), eiχa,b ∈ E(R), χ′
a,b ∈ L1(R) and

∫∞
−∞ χ′

a,b(x) dx may take any value in R as
a and b vary.

Assume that ψ ∈ H1
loc(RN ) can be written as ψ = eiφ + w, where φ is real-valued and φ,w ∈

H1
loc(RN ). A simple computation gives

(3.3.2) ⟨i ∂ψ
∂x1

, ψ⟩ = − ∂φ

∂x1
+ ∂

∂x1

(
⟨iw, eiφ⟩

)
− 2⟨ ∂φ

∂x1
eiφ, w⟩ + ⟨i ∂w

∂x1
, w⟩.

In space dimension N = 2, a variant of Lemma 3.2.2 asserts that for any ψ ∈ E(R2) there exist
a real-valued function φ ∈ Ḣ1(R2) and w ∈ H1(R2) such that ψ = eiφ + w (see Theorem 1.8
p. 134 in [8]). Then we have ⟨iw, eiφ⟩ ∈ H1(R2) (see the proof of Lemma 2.1 p. 158 in [6]).
According to Lemma 2.3 p. 122 in [11] we must have

∫
R2 −∂φ

∂x + ∂
∂x

(
⟨iw, eiφ⟩

)
dx dy = 0 whenever

−∂φ
∂x + ∂

∂x

(
⟨iw, eiφ⟩

)
∈ L1(R2). This observation enables to define unambiguously the momentum

on E(R2) by
Q(ψ) =

∫
R2

−2⟨∂φ
∂x

eiφ, w⟩ + ⟨i∂w
∂x

,w⟩ dx dy
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for any function ψ = eiφ + w, where φ and w are as above. The integrand belongs to L1(R2) by
the Cauchy-Schwarz inequality, and the value of the integral does not depend on the choice of the
functions φ and w satisfying the above properties.

The situation is more complicated in space dimension N = 1 because the integral of a derivative
of a function in Ḣ1(R), when it exists, does not necessarily vanish. Nevertheless, we will use an
analogy to the two-dimensional case. More precisely, for any real-valued function φ ∈ Ḣ1(R) and
for any w ∈ H1(R) we define

(3.3.3) p(φ,w) =
∫

R
−2⟨φ′eiφ, w⟩ + ⟨iw′, w⟩ dx.

Notice that the integrand is in L1(R) by the Cauchy-Schwarz inequality and consequently p(φ,w)
is well-defined.

Assume that ψ ∈ E(R) can be written as ψ = eiφ1 +w1 = eiφ2 +w2, where (φ1, w1) and (φ2, w2)
are as in Lemma 3.2.2. By (3.3.2) we have

−2⟨φ′
je
iφj , wj⟩ + ⟨iw′

j , wj⟩ = ⟨iψ′, ψ⟩ + φ′
j −

(
⟨iwj , eiφj ⟩

)′

for j = 1, 2, therefore

(3.3.4)
(−2⟨φ′

2e
iφ2 , w2⟩ + ⟨iw′

2, w2⟩) − (−2⟨φ′
1e
iφ1 , w1⟩ + ⟨iw′

1, w1⟩)

= φ′
2 − φ′

1 −
(
⟨iw2, e

iφ2⟩
)′ +

(
⟨iw1, e

iφ1⟩
)′
.

By Lemma 3.2.2 there exist k+, k− ∈ Z such that φ2−φ1−2k−π ∈ L2((−∞, 0]) and φ2−φ1−2k+π ∈
L2([0,∞)). Then we have φ2 −φ1 − 2k−π ∈ H1((−∞, 0)) and φ2 −φ1 − 2k+π ∈ H1((0,∞)), hence
φ2 − φ1 −→ 2k−π as x −→ −∞ and φ2 − φ1 −→ 2k+π as x −→ ∞.

It is easy to see that ⟨iwj , eiφj ⟩ ∈ H1(R) for j = 1, 2. For any function f ∈ H1(R) we have
f(s) −→ 0 as s −→ ±∞ and

∫ R
−R f

′(t) dt = f(R) − f(−R) −→ 0 as R −→ ∞. Using (3.3.3),
Lebesgue’s dominated convergence theorem, then (3.3.4) we get

(3.3.5)

p(φ2, w2) − p(φ1, w1)

= lim
R→∞

∫ R

−R
(−2⟨φ′

2e
iφ2 , w2⟩ + ⟨iw′

2, w2⟩) − (−2⟨φ′
1e
iφ1 , w1⟩ + ⟨iw′

1, w1⟩) dx

= lim
R→∞

∫ R

−R
φ′

2 − φ′
1 −

(
⟨iw2, e

iφ2⟩
)′

+
(
⟨iw1, e

iφ1⟩
)′
dx = 2π(k+ − k−).

Let ψ = eiφ+w ∈ E(R), where φ and w are as in Lemma 3.2.2. Let k ∈ Z. Consider a real-valued
function χ ∈ C∞(R) such that χ = 0 on (−∞, 0] and χ = 1 on [1,∞). Define φ̃ = φ + 2kχ and
w̃ = w + eiφ − eiφ̃. It is easily seen that ψ = eiφ̃ + w̃, where φ̃ and w̃ also satisfy the conclusion of
Lemma 3.2.2, and the above computation shows that p(φ̃, w̃) − p(φ,w) = 2kπ.
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We conclude given any ψ ∈ E(R), it can be written as ψ = eiφ +w ∈ E(R), where φ and w are
as in Lemma 3.2.2, but the quantity p(φ,w) is well-defined only modulo 2πZ. We denote by ⌊·⌋ the
projection of R onto R/2πZ, namely ⌊x⌋ = {x+ 2kπ | k ∈ Z}.

Definition 3.3.1. Given any ψ ∈ E(R), the momentum of ψ is

⌊P ⌋(ψ) = ⌊p(φ,w)⌋,

where ψ = eiφ + w and φ and w are as in Lemma 3.2.2 (i). We call a valuation of the momentum
of ψ any number in the set ⌊P ⌋(ψ), and the canonical valuation the only number in the set [0, 2π) ∩
⌊P ⌋(ψ).

It follows from the above discussion that a number p ∈ R is a valuation of the momentum of a
mapping ψ ∈ E(R) if and only if there exist φ ∈ Ḣ1(R,R) and w ∈ H1(R,C) such that ψ = eiφ+w
and p(φ,w) = p.

For any ψ = eφ + w ∈ E(R) and any α ∈ R we have eiαψ = ei(φ+α) + eiαw. It is clear that
p(φ,w) = p(φ+ α, eiαw), and consequently we have ⌊P ⌋(eiαψ) = ⌊P ⌋(ψ).

For all φ ∈ Ḣ1(R,R) we have eiφ ∈ E(R) and E1(eiφ) = ∥φ′∥2
L2(R). Definition 3.3.1 gives

⌊P ⌋(eiφ) = ⌊p(φ, 0)⌋ = ⌊0⌋. However, we have ⟨i
(
eiφ
)′
, eiφ⟩ = −φ′ and φ′ does not necessarily

belong to L1(R) ; when it does,
∫

R φ′(x) dx can take any value.
Assume that ψ ∈ E(R) is constant outside a bounded interval [a, b], say ψ(x) = eiα1 on (−∞, a]

and ψ(x) = eiα1 on [b,∞), where α1, α2 ∈ R. Consider any function φ ∈ C∞(R) such that φ = α1
on (−∞, a] and φ = α2 on [b,∞). Let w = ψ − eiφ. Then w ∈ H1(R), supp(w) ⊂ [a, b] and using
(3.3.2) we get

p(φ,w) = α2 − α1 +
∫ b

a
⟨iψ′, ψ⟩ dx.

In particular, if α1 = α2 we see that a valuation of the momentum of ψ is
∫

R⟨iψ′, ψ⟩ dx.
Given any ψ = eiφ + w ∈ E(R) and any v ∈ H1(R), we have ψ + v = eiφ + (w + v), hence a

valuation of the momentum of ψ + v is p(φ,w + v). It is obvious that

p(φ,w + v) − p(φ,w) =
∫

R
−2⟨φ′eiφ, v⟩ + 2⟨iw′, v⟩ + ⟨iv′, v⟩ dx =

∫
R

⟨i
(
2ψ′ + v′) , v⟩ dx

and
lim
t→0

p(φ,w + tv) − p(φ,w)
t

= 2
∫

R
⟨−φ′eiφ, v⟩ + ⟨iw′, v⟩ dx = 2

∫
R

⟨iψ′, v⟩ dx.

Remark 3.3.2. Assume that ψ ∈ E(R) admits a lifting ψ(x) = ρ(x)eiθ(x) where ρ = |ψ| and
θ ∈ Ḣ1(R). By Lemma 3.2.3 we have 1 − ρ ∈ H1(R). Let w = (ρ − 1)eiθ. It is easy to see that
w ∈ H1(R), ψ = eiθ + w and

−2⟨θ′eiθ, w⟩ + ⟨iw′, w⟩ = (1 − ρ2)θ′.

Therefore a valuation of the momentum of ψ is p(θ, w) =
∫

R
(1−ρ2)θ′ dx. This is in perfect agreement

with formula (2.12) p. 123 in [11] and with formula (2.7) p. 159 in [6].
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3.3.2 Definition of the momentum on E

For any given φ ∈ Ḣ1(R) and any w ∈ H1(R × (0, 1)) we define

d[φ,w](x, y) = −2⟨φ′(x)eiφ(x), w(x, y)⟩ + ⟨i∂w
∂x

(x, y), w(x, y)⟩.

The Cauchy-Schwarz inequality implies that d[φ,w] ∈ L1(R × (0, 1)), thus we may define

q(φ,w) =
∫

R×(0,1)
d[φ,w] dx dy.

Assume that φ1, φ2 ∈ Ḣ1(R), w1, w2 ∈ H1(R×(0, 1)) and eiφ1 +w1 = eiφ2 +w2 a.e. on R×(0, 1).
Let h(x) = eiφ2(x) −eiφ1(x). Then we have h ∈ Ḣ1(R) and h = w1 −w2 ∈ H1(R×(0, 1)). By Fubini’s
theorem it follows that h ∈ L2(R), hence h ∈ H1(R).

By Theorem 2 p. 164 in [7], there is a set A ⊂ (0, 1) such that (0, 1) \ A has zero Lebesgue
measure and for any y ∈ A the mappings wj(·, y) belong to H1(R) for j = 1, 2. For all y ∈ A we
have ψ(·, y) = eiφj + wj(·, y) ∈ E(R). Using Lemma 3.2.2 (ii), there exist k+, k− ∈ Z such that

lim
x→±∞

φ2(x) − φ1(x) = 2πk±. Using (3.3.2) we get

d[φ2, w2] − d[φ1, w1] = φ′
2 − φ′

1 − ∂

∂x

(
⟨iw2, e

iφ2⟩ − ⟨iw1, e
iφ1⟩

)
= φ′

2 − φ′
1 + ∂

∂x

(
⟨ih, eiφ1 + w2⟩

)
.

Proceeding exactly as in (3.3.5) we see that for any y ∈ A there holds∫
R
d[φ2, w2](x, y) − d[φ1, w1](x, y) dx = 2π(k+ − k−)

and then integrating with respect to y and using Fubini’s theorem we get

q(φ2, w2) − q(φ1, w1) = 2π(k+ − k−).

Let φ ∈ Ḣ1(R), w ∈ H1(R × (0, 1)) and k ∈ Z be arbitrary. Take a real-valued function
χ ∈ C∞(R) such that χ = 0 on (−∞, 0] and χ = 1 on [1,∞) and define φ̃ = φ + 2kχ and
w̃ = w + eiφ − eiφ̃. It is easily seen that eiφ + w = eiφ̃ + w̃ and q(φ̃, w̃) − q(φ,w) = 2kπ.

Given any ψ ∈ E , by Lemma 3.2.4 (iv) there exist φ ∈ Ḣ1(R) and w ∈ H1(R × (0, 1)) such that
ψ(x, y) = eiφ(x) + w(x, y). The previous discussion shows that the quantity q(φ,w) is well-defined
modulo 2πZ. This enables us to give the following

Definition 3.3.3. Given any ψ ∈ E, the momentum of ψ is

⌊Q⌋(ψ) = ⌊q(φ,w)⌋,

where φ ∈ Ḣ1(R,R) and w ∈ H1(R × (0, 1),C) are such that ψ = eiφ + w. A valuation of the
momentum of ψ is any number in the set ⌊Q⌋(ψ), and the canonical valuation is the only number
in the set ⌊Q⌋(ψ) ∩ [0, 2π).
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Remark 3.3.4. i) As in the one-dimensional case, a number q ∈ R is a valuation of the momentum
of a mapping ψ ∈ E if and only if there exist φ ∈ Ḣ1(R,R) and w ∈ H1

per such that ψ = eiφ + w
and q(φ,w) = q. If ψ, φ and w are as above, then for almost any y ∈ R we have ψ(·, y) ∈ E(R)
and w(·, y) ∈ H1(R), and then p(φ,w(·, y)) is a valuation of the momentum of ψ(·, y) ∈ E(R). By
Fubini’s Theorem we have

q(φ,w) =
∫ 1

0
p(φ,w(·, y)) dy.

ii) Warning ! If Q0(ψ) and P0(ψ(·, y)) are the canonical valuations of the momenta of ψ ∈ E
and of ψ(·, y) ∈ E(R), respectively, we may have

Q0(ψ) ̸=
∫ 1

0
P0(ψ(·, y)) dy.

iii) For ψ = eiφ + w ∈ E and v ∈ H1(R × (0, 1)), a valuation of the momentum of ψ + v is
q(φ,w + v) and we have

(3.3.6)

q(φ,w + v) − q(φ,w) =
∫

R×[0,1]
−2⟨φ′eiφ, v⟩ + 2⟨i∂w

∂x
, v⟩ + ⟨i ∂v

∂x
, v⟩ dx dy

=
∫

R×[0,1]
2⟨i∂ψ

∂x
, v⟩ + ⟨i ∂v

∂x
, v⟩ dx dy =

∫
R×[0,1]

⟨i∂ψ
∂x

+ i
∂(ψ + v)

∂x
, v⟩ dx dy.

Using the Cauchy-Schwarz inequality we get

(3.3.7) |q(φ,w + v) − q(φ,w)| ⩽ ∥v∥L2(R×[0,1])

(∥∥∥∂ψ
∂x

∥∥∥
L2(R×[0,1])

+
∥∥∥∂(ψ + v)

∂x

∥∥∥
L2(R×[0,1])

)
.

From (3.3.6) we obtain

(3.3.8) lim
t→0

q(φ,w + tv) − q(φ,w)
t

= 2
∫

R×(0,1)
⟨i∂ψ
∂x

, v⟩ dx dy.

Notice that (3.3.6)-(3.3.8) are analogous to Lemma 2.5 and Corollary 2.6 p. 123-124 in [11] and to
Lemma 2.3 and Corollary 2.4 p. 159 in [6].

Lemma 3.3.5. Assume that ψ ∈ E satisfies ρ0 := inf
(x,y)∈R2

|ψ(x, y)| > 0. Let ρ = |ψ|. There exists a

real-valued function θ ∈ H1
per such that ψ = ρeiθ and a valuation of the momentum of ψ is∫

R×(0,1)
(1 − ρ2)∂θ

∂x
dx dy.

Proof. It is well-known that ρ ∈ H1
loc(R2) and |∇ρ| ⩽ |∇ψ| almost everywhere. The mapping ψ

ρ

belongs to H1
loc(R2, S1), hence it admits a lifting, in other words there exists θ ∈ H1

loc(R2,R) such
that ψ

ρ = eiθ, or equivalently ψ = ρeiθ. We have

|∇ψ|2 = |∇ρ|2 + ρ2|∇θ|2 almost everywhere
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and we infer that ∇θ ∈ L2(R × [0, 1]).
We claim that θ is 1−periodic with respect to the second variable y. Indeed, since ψ and ρ

are 1−periodic with respect to y, we infer that for any (x, y) ∈ R2 there holds 1 = ψ(x,y+1)
ψ(x,y) =

ei(θ(x,y+1)−θ(x,y)). The mapping (x, y) 7−→ θ(x, y + 1) − θ(x, y) belongs to H1
loc(R2,R) and takes

values in 2πZ, hence it must be constant. We infer that there exists kθ ∈ Z such that θ(x, y + 1) =
θ(x, y) + 2πkθ for any (x, y) ∈ R2. For almost any x ∈ R we have θ(x, ·) ∈ H1((−1, 2)) and then
using the Cauchy-Schwarz inequality we get

2π|kθ| = |θ(x, 1) − θ(x, 0)| =
∣∣∣∣ ∫ 1

0

∂θ

∂y
(x, y) dy

∣∣∣∣ ⩽ ∫ 1

0

∣∣∣∂θ
∂y

(x, y)
∣∣∣2 dy.

Integrating the above inequality with respect to x and using the fact that ∂θ
∂y ∈ L2(R × (0, 1)) we

see that necessarily kθ = 0 and the claim is proven.
Denote θ̆(x) =

∫ 1
0 θ(x, y) dy and θ♯(x, y) = θ(x, y) − θ̆(x). Proceeding as in the proof of Lemma

3.2.4 (iii) we see that θ̆′ ∈ L2(R) and θ♯ ∈ H1(R × (0, 1)). Let w(x, y) = ψ(x, y) − eiθ̆(x). We have

w = (ρ− 1)eiθ + eiθ̆
(
eiθ

♯ − 1
)
.

It is easy to see that w ∈ H1(R × (0, 1)). Using (3.3.2) we have

(3.3.9)

d[θ̆, w] = ⟨i∂ψ
∂x

, ψ⟩ + θ̆′ − ∂

∂x

(
⟨iw, eiθ̆⟩

)

= −ρ2 ∂θ

∂x
+ θ̆′ − ∂

∂x

(
⟨iρeiθ − ieiθ̆, eiθ̆⟩

)
= −ρ2 ∂θ

∂x
+ θ̆′ + ∂

∂x

(
ρ sin(θ − θ̆)

)

= (1 − ρ2)∂θ
∂x

+ ∂

∂x

(
−θ♯ + ρ sin(θ♯)

)
.

By the Cauchy-Schwarz inequality we have d[θ̆, w] ∈ L1(R × (0, 1)) and (1 −ρ2) ∂θ∂x ∈ L1(R × (0, 1)),
and then (3.3.9) gives ∂

∂x

(
−θ♯ + ρ sin(θ♯)

)
∈ L1(R × (0, 1)).

Next we use the following simple observation : whenever f ∈ H1(R × (0, 1)) satisfies ∂1f ∈
L1(R × (0, 1)) we must have

∫
R×(0,1) ∂1f(x, y) dx dy = 0. Indeed, using Theorem 2 p. 164 in [7]

and Fubini’s Theorem we infer that for almost every y ∈ (0, 1) we have f(·, y) ∈ H1(R) and
d
dx [f(·, y)] = ∂1f(·, y) ∈ L1 ∩ L2(R). For any such y we have∫

R
∂1f(x, y) dx = lim

R→∞

∫ R

−R
∂1f(s, y) ds = lim

R→∞
(f(R, y) − f(−R, y)) = 0.

Integrating with respect to y we get the desired result.
Since θ♯ ∈ H1(R × (0, 1)) and ρ − 1 ∈ H1(R × (0, 1)) it is easily seen that −θ♯ + ρ sin(θ♯) =

−θ♯ + sin(θ♯) + (ρ − 1) sin(θ♯) ∈ H1(R × (0, 1)) and then using (3.3.9) and the above observation
we infer that

q(θ̆, w) =
∫

R×(0,1))
d[θ̆, w] dx dy =

∫
R×(0,1))

(1 − ρ2)∂θ
∂x

dx dy.
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This completes the proof of Lemma 3.3.5. Notice that this is in agreement with formula (2.12) p.
123 in [11] and with formula (2.7) p. 159 in [6]. □

Lemma 3.3.6. i) For any ψ ∈ E(R) there exist sequences (φn)n⩾1 ⊂ C∞(R,R) and (wn)n⩾1 ⊂
C∞
c (R) such that

⌊P ⌋
(
eiφn + wn

)
= ⌊P ⌋(ψ) for all n,(

eiφn + wn
)′

−→ ψ′ in L2(R),

eiφn + wn −→ ψ in H1
loc(R),

V
(∣∣eiφn + wn

∣∣2) −→ V (|ψ|2) and
(
1 −

∣∣eiφn + wn
∣∣2)2

−→
(
1 − |ψ|2

)2
in L1(R),

and there exist sequences of real numbers (An)n⩾1, (αn)n⩾1, (βn)n⩾1 such that An −→ ∞, supp(wn) ⊂
[−An, An], φn(x) = αn for x ∈ (−∞,−An], and φn(x) = βn for x ∈ [An,∞).

ii) For any ψ ∈ E there exist sequences (φn)n⩾1 ⊂ C∞(R,R) and (wn)n⩾1 ⊂ C∞
c (R × (0, 1))

satisfying
⌊Q⌋

(
eiφn + wn

)
= ⌊Q⌋(ψ) for all n,

∇
(
eiφn + wn

)
−→ ∇ψ in L2(R × (0, 1)),

eiφn + wn −→ ψ in H1
loc(R × (0, 1)),

V
(∣∣eiφn + wn

∣∣2) −→ V (|ψ|2) and
(
1 −

∣∣eiφn + wn
∣∣2)2

−→
(
1 − |ψ|2

)2
in L1(R × (0, 1)),

and there exist sequences (An)n⩾1, (αn)n⩾1, (βn)n⩾1 ⊂ R such that An −→ ∞, supp(wn) ⊂
[−An, An] × (0, 1), φn(x) = αn for x ∈ (−∞,−An], and φn(x) = βn for x ∈ [An,∞).

Proof. We only prove (ii). The proof of (i) is similar.
If ∂ψ

∂x = 0 in L2(R × (0, 1)), then for almost all y ∈ (0, 1) the mapping ψ(·, y) belongs to H1
loc(R)

and ψ(·, y) is constant. We infer that there exists h ∈ H1(0, 1) such that ψ(x, y) = h(y) almost
everywhere in R × (0, 1), and then ∂ψ

∂y = h′(y). Since ∂ψ
∂y ∈ L2(R × (0, 1)), using Fubini’s theorem

we see that h′ = 0 in L2(0, 1) and consequently h is constant, hence ψ is constant. In this case it
suffices to take φn a constant function such that eiφn = ψ, and wn = 0.

If ∂ψ
∂x ̸= 0 in L2(R × (0, 1)), there exists v ∈ C∞

c (R × (0, 1)) such that∫
R×(0,1)

⟨i∂ψ
∂x

, v⟩ dx dy ̸= 0.

By Lemma 3.2.4 (iv) there exist φ ∈ C∞(R,R) such that φ(k) ∈ L2(R) for any k ∈ N∗ and
w ∈ H1

per such that ψ = eiφ + w. There exists a sequence (w̃n)n⩾1 ⊂ C∞
c (R × (0, 1)) such that

w̃n −→ w in H1(R × (0, 1)). We have

q(φ, w̃n + tv) = q(φ, w̃n) + 2t
∫

R×(0,1)
⟨i ∂
∂x

(
eiφ + w̃n

)
, v⟩ dx dy + t2

∫
R×(0,1)

⟨i ∂v
∂x
, v⟩ dx dy.
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Since q(φ, w̃n) −→ q(φ,w) and
∫

R×(0,1)⟨i
∂
∂x

(
eiφ + w̃n

)
, v⟩ dx dy −→

∫
R×(0,1)⟨i

∂ψ
∂x , v⟩ dx dy ̸= 0, we

infer that there is a sequence tn −→ 0 such that q(φ, w̃n + tnv) = q(φ,w) for all n sufficiently large.
Then we take wn = w̃n + tnv. If supp(wn) ⊂ [an, bn] × (0, 1), we choose An > 2 max(|an|, |bn|) + 1
such that An −→ ∞. Take χ ∈ C∞(R,R) such that supp(χ) ⊂ [−2, 2] and χ = 1 on [−1, 1]. Take
φn(x) =

∫ x
0 χ

(
2s
An

)
φ′(s), so that φn = φ on [−An/2, An/2], and φn is constant on (−∞,−An] and

on [An,∞). It is easy to see that (φn, wn)n⩾1 satisfy all desired properties. □

Lemma 3.3.7. Let φ ∈ Ḣ1(R) and let w ∈ C2(R2) such that there exists a > 0 satisfying
supp(w) ⊂ [−a, a] × R. Let ψ(x, y) = eiφ(x) + w(x, y). Then for any y1, y2 ∈ R, y1 < y2 we
have

p(φ,w(·, y2)) − p(φ,w(·, y1)) = 2
∫

R×[y1,y2]
⟨i∂ψ
∂x

,
∂ψ

∂y
⟩ dx dy

and consequently

|p(φ,w(·, y2)) − p(φ,w(·, y1))| ⩽ 2
∥∥∥∂ψ
∂x

∥∥∥
L2(R×[y1,y2])

∥∥∥∂ψ
∂y

∥∥∥
L2(R×[y1,y2])

Proof. We have d[φ,w], ⟨i∂ψ∂x ,
∂ψ
∂y ⟩ ∈ L1(R × [y1, y2]) and a standard computation gives

p(φ,w(·, y2)) − p(φ,w(·, y1)) =
∫

R
d[φ,w](x, y2) − d[φ,w](x, y1) dx

=
∫

R

∫ y2

y1

∂

∂y
(d[φ,w](x, y)) dy dx

=
∫

R

∫ y2

y1
⟨−2φ′(x)eiφ(x),

∂w

∂y
(x, y)⟩ + ⟨i ∂

2w

∂y∂x
,w⟩ + ⟨i∂w

∂x
,
∂w

∂y
⟩ dy dx

=
∫ y2

y1

∫
R

⟨−2φ′(x)eiφ(x),
∂w

∂y
(x, y)⟩ + ⟨i ∂

2w

∂y∂x
,w⟩ + ⟨i∂w

∂x
,
∂w

∂y
⟩ dx dy (Fubini)

= 2
∫ y2

y1

∫
R

⟨−φ′(x)eiφ(x),
∂w

∂y
(x, y)⟩ + ⟨i∂w

∂x
,
∂w

∂y
⟩ dx dy (integration by parts)

= 2
∫ y2

y1

∫
R

⟨i ∂
∂x

(eiφ + w), ∂w
∂y

⟩ dx dy = 2
∫ y2

y1

∫
R

⟨i∂ψ
∂x

,
∂ψ

∂y
⟩ dx dy.

The second statement follows from the first one and the Cauchy-Schwarz inequality. □

3.4 One-dimensional traveling waves for (3.1.1)

We consider (3.1.1) in R × R and we look for traveling waves, namely solutions of the form
Φ(x, t) = ψ(x+ ct). The traveling wave profile ψ satisfies the ordinary differential equation

(3.4.1) icψ′ + ψ′′ + F (|ψ|2)ψ = 0 in R.
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We will only consider solutions of (3.4.1) in E(R). In the case of the Gross-Pitaevskii equation
(F (s) = 1 − s), an extensive study of solutions to (3.4.1) has been carried out in [1], Section 2. For
more general nolinearities we refer to [5] and to [10] (the latter focuses mainly on the non-existence
of supersonic traveling waves).

If assumption (A1) is satisfied, it has been shown in Theorem 5.1 p. 1099 in [10] that the only
solutions of (3.1.1) with c2 > v2

s = 2 are constants. It follows from the proof of Theorem 5.1 in [10]
that all traveling waves in E(R) are C2 functions on R. Let ψ ∈ E(R) be a solution of (3.4.1) and
let ϱ = |ψ|2. Then ϱ− 1 ∈ H1(R) by Lemma 3.2.1 and it can be shown that ϱ satisfies the equation

(3.4.2) ϱ′′ + c2(ϱ− 1) − 2V (ϱ) + 2ϱF (ϱ) = 0 in R

(for the proof see (5.10) p. 1100 in [10]). Multiplying (3.4.2) by 2ϱ′ and integrating we get

(3.4.3) (ϱ′)2 + c2(ϱ− 1)2 − 4ϱV (ϱ) = 0.

Denote
g(s, c) = 4sV (s) − c2(s− 1)2.

By (3.4.3), for any x ∈ R we must have g(ϱ(x), c) ⩾ 0 and ϱ′(x) = ±
√
g(ϱ(x), c). Since g(0, c) = −c2,

we see that for any c ̸= 0, solutions of (3.4.3) must stay away from zero. This implies that for c ̸= 0,
any solution ψ ∈ E(R) of (3.4.1) does not vanish, and therefore has a lifting ψ(x) =

√
ϱ(x)eiθ(x),

where the function θ is C2 on R. Taking the scalar product of (3.4.1) with iψ we get

c

2ϱ
′ + (ϱθ′)′ = 0.

We infer that there is a constant k1 ∈ R such that c
2ϱ + ϱθ′ = k1 in R. We have ϱ(x) −→ 1 as

x −→ ±∞ because ϱ− 1 ∈ H1(R). Since |ψ′|2 = |ϱ′|2
4ϱ + ϱ|θ′|2 ∈ L1(R), we deduce that θ′ ∈ L2(R),

therefore we must have k1 = c
2 and consequently

(3.4.4) θ′ = c

2
1 − ϱ

ϱ
.

Let c ̸= 0. If we are able to solve (3.4.2) and we get a solution ϱ such that ϱ − 1 ∈ H1(R), it
follows from (3.4.3) that inf

x∈R
ϱ(x) > 0, and then from (3.4.4) we obtain θ up to a constant. Then by

(3.4.4) we have θ′ ∈ H1(R), √
ϱeiθ ∈ E(R) and it is straightforward to see that √

ϱeiθ is a solution
of (3.4.1). Moreover, all solutions of (3.4.1) in E(R) are obtained in this way. Notice that (3.4.1) is
invariant by translations and by multiplication by complex numbers of modulus 1, so the phase θ
can be determined only up to a constant.

If assumption (A1) is satisfied, we have V (s) = 1
2(s− 1)2 +o((s− 1)2) and g(s, c) = (2 − c2)(s−

1)2 + o((s − 1)2) as s −→ 1. If c2 < v2
s = 2 we have g(s, c) > 0 whenever s is sufficiently close to

1 and s ̸= 1. Since g(0, c) = −c2 ⩽ 0, we infer that there exists ζ ∈ [0, 1) such that g(ζ, c) = 0
and we denote ζ(c) = sup{ζ ∈ [0, 1) | g(ζ, c) = 0}. It is clear that g(ζ(c), c) = 0, g > 0 on (ζ(c), 1)
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and the mapping c 7−→ ζ(c) is even on (−
√

2,
√

2) and is strictly increasing on (0,
√

2). We denote
D = {(s, c) ∈ (0, 1) × (−

√
2,

√
2) | ζ(c) < s < 1}. The set D is connected, but not necessarily open.

We consider a continuous function G : D −→ R such that ∂G
∂s exists and ∂G

∂s (s, c) = 1√
g(s,c)

for any

(s, c) ∈ D, and G is C2 in D̊. (Such a function exists : it suffices to take a smooth curve c 7−→ a(c)
defined on (−

√
2,

√
2) such that ζ(c) < a(c) < 1 for all c, then put G(s, c) =

∫ s
a(c)

1√
g(τ,c)

dτ.) For any

fixed c ∈ (−
√

2,
√

2), the mapping s 7−→ G(s, c) is strictly increasing on (ζ(c), 1) and tends to ∞ as
s −→ 1 because 1−s√

g(s,c)
−→ 1√

2−c2 . Let L(c) = lim
s↓ζ(c)

G(s, c). Then G(·, c) is a C2−diffeomorphism

between (ζ(c), 1) and (L(c),∞).

Proposition 3.4.1. Assume that assumption (A1) is satisfied and let c ∈ (−
√

2,
√

2). Then :

i) Equation (3.4.1) admits a solution ψ ∈ E(R) satisfying inf
x∈R

|ψ(x)| < 1 if and only if L(c) :=
lim
s↓ζ(c)

G(s, c) is finite.

Whenever L(c) is finite, let

ϱc(x) =


G(·, c)−1(L(c) − x) if x < 0
ζ(c) if x = 0,
G(·, c)−1(L(c) + x) if x > 0

and θc(x) = c

2

∫ x

0

1 − ϱc(s)
ϱc(s)

ds if c ̸= 0.

If c ̸= 0 we define ψc(x) =
√
ϱ(x)eiθc(x).

If c = 0 there are three subcases :
- either there exists s ∈ (0, 1) such that V (s) = 0, then we have ζ(0) > 0 and we put ψ0(x) =√
ϱ0(x) ;

- or V > 0 on [0, 1), so that ζ(0) = 0 and we put ψ0(x) = sgn(x)
√
ϱ0(x) ;

- or V > 0 on (0, 1) and V (0) = 0, and then V (s) ⩽ Cs for s sufficiently small and consequently
L(0) = −∞ ; in this subcase we do not define ψ0.

Whenever ψc is defined as above, we have ψc ∈ E(R) and ψc is a solution of (3.4.1).

ii) Equation (3.4.1) admits a solution ψ ∈ E(R) satisfying sup
x∈R

|ψ(x)| > 1 if and only if

• the mapping g(·, c) admits zeroes in (1,∞), and
• denoting ζ̃(c) = inf{ζ > 1 | g(ζ, c) = 0} and by G̃(·, c) a primitive of 1√

g(·,c)
on the interval

(1, ζ̃c), the limit L̃(c) := lim
s↑ζ̃(c)

G̃(s, c) is finite.

In this case, define

ϱ̃c(x) =


G̃(·, c)−1(L̃(c) + x) if x < 0,
ζ̃(c) if x = 0,
G̃(·, c)−1(L̃(c) − x) if x > 0,

and θ̃c(x) = c

2

∫ x

0

1 − ϱ̃c(s)
ϱ̃c(s)

ds if c ̸= 0.

Let ψ̃c(x) =
√
ϱ̃c(x)eiθ̃c(x) if c ̸= 0, respectively ψ̃0(x) =

√
ϱ̃0(x) if c = 0.
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Then ψ̃c ∈ E(R) and ψ̃c is a solution of (3.4.1).

iii) Let ψ ∈ E(R) be a nonconstant solution of (3.4.1). We have either |ψ(x)| < 1 for any x ∈ R,
or |ψ| > 1 for any x ∈ R. For any ε ∈ (0,

√
2 − c2) there exist Aε, Bε (depending on ε and on ψ)

such that

(3.4.5) e−|x|
√

2−c2+ε2
⩽
∣∣|ψ|2 − 1

∣∣ ⩽ e−|x|
√

2−c2−ε2 on (−∞, Aε] ∪ [Bε,∞).

iv) Any solution ψ ∈ E(R) of (3.4.1) satisfies |ψ′(x)|2 = V (|ψ(x)|2) for any x ∈ R. In particular,
we have E(ψ) = 2

∫
R |ψ′|2 dx = 2

∫
R V (|ψ|2) dx.

v) If the nonlinearity F is locally Lipschitz, then any solution ψ ∈ E(R) of (3.4.1) is either a
constant of modulus one, or is of the form eiαψc(· − x0) or eiαψ̃c(· − x0) for some α, x0 ∈ R, where
ψc and ψ̃c are as in (i) and (ii), respectively.

vi) If c0 ̸= 0 and the mapping c 7−→ ζ(c) is differentiable at c0, then L(c0) is finite.
Consequently, equation (3.4.1) admits solutions in E(R) for almost every c ∈ (−

√
2,

√
2).

Proof. (i) "=⇒" Let ψ ∈ E(R) be a solution of (3.4.1) and let ϱ = |ψ|2. Then ϱ −→ 1 at ±∞,
ϱ is a C2 function on R and satisfies (3.4.2) and (3.4.3). Assume that inf ϱ < 1. Take x1 ∈ R such
that ϱ(x1) ∈ (ζ(c), 1). Let I = (a, b) be the maximal interval containing x1 such that ϱ(x) ∈ (ζ(c), 1)
for any x ∈ I. It follows from (3.4.3) that ϱ′ ̸= 0 on I, hence ϱ′ has constant sign and ϱ is strictly

monotonic on I. If ϱ′ > 0 on I, from (3.4.3) we get ϱ′(x)
g(ϱ(x), c) = 1 on I, and integrating we obtain

G(ϱ(x), c) = x + k2 on I, where k2 is a constant, hence ϱ(x) = G(·, c)−1(x + k2) on I. Then
necessarily b = ∞. Indeed, if b is finite we have ζ(c) < ϱ(x) < G(·, c)−1(b + k2) < 1 on I, hence
there is some ε > 0 such that ζ(c) < ϱ(x) < 1 on [b, b + ε), contradicting the maximality of I. If
L(c) = −∞ we must have a = −∞ (for otherwise, ζ(c) < G(·, c)−1(a + k2) = ϱ(a) < ϱ(x) < 1
for all x ∈ I, and we would have ζ(c) < ϱ(x) for x ∈ (a − ε, a] for some positive ε, contradicting
again the maximality of I). But if a = −∞ we have lim

x→−∞
ϱ(x) = lim

x→−∞
G(·, c)−1(x + k2) = ζ(c),

impossible because ϱ(x) −→ 1 as x −→ −∞. Thus necessarily L(c) is finite. This implies that a is
finite and ϱ(a) = ζ(c), and we find a+ k2 = L(c). In conclusion, if I is a maximal interval such that
ζ(c) < ϱ < 1 and ϱ′ > 0 on I then necessarily I is of the form (a,∞) for some a ∈ R and we have
ϱ(x) = G(·, c)−1(x− a+L(c)) on I. Similarly, if I is a maximal interval such that ζ(c) < ϱ < 1 and
ϱ′ < 0 on I we show that L(c) must be finite (for otherwise I = R and ϱ would not tend to 1 at
∞) and I is of the form (−∞, b) for some b ∈ R and ϱ(x) = G(·, c)−1(−x+ b+ L(c)) on I.

"⇐=" One easily proves that ϱc satisfies (3.4.3) and (3.4.2), and is C2 in R. It is obvious that θc
satisfies (3.4.4) and then en easy computation shows that ψc solves (3.4.1). By (3.4.5) proven below
we have ϱc − 1 ∈ L2(R), and then (3.4.3), the boundedness of ϱc and (A1) imply that ϱ′ ∈ L2(R).
By (3.4.4) we get θ′ ∈ L2(R) and then we infer that ψc ∈ E(R). Notice that ϱ may vanish only if
c = 0, but in this case we have θ′

0 = 0 in R∗ by (3.4.4).

(ii) The proof of (ii) is similar to the proof of part (i), so we omit it.
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(iii) Let ψ be a solution of (3.4.1) and let ϱ = |ψ|2. If ϱ = 1, we may write ψ = eiθ and (3.4.4)
implies that θ′ = 0, hence ψ is constant. Assume that there exist x1, x2 ∈ R such that ϱ(x1) < 1
and ϱ(x2) ⩾ 1. If x1 < x2, there exists x3 ∈ (x1, x2) such that ζ(c) < ϱ(x3) < 1 and ϱ′(x3) > 0.
The argument in the proof of part (i) "=⇒" shows that the maximal interval I containing x3 such
that ζ(c) < ϱ < 1 and ϱ′ > 0 on I is of the form (b,∞), contradicting the fact that ϱ(x2) ⩾ 1. If
x1 > x2, there exists x3 ∈ (x2, x1) such that ζ(c) < ϱ(x3) < 1 and ϱ′(x3) < 0. As above, we have
then ζ(c) < ϱ(x3) < 1 and ϱ′(x3) < 0 on (−∞, x3], contradicting the fact that ϱ(x2) ⩾ 1.

A similar argument leads to a contradiction if we assume that there exist x1, x2 ∈ R such that
ϱ(x1) > 1 and ϱ(x2) ⩽ 1.

Fix ε ∈ (0,
√

2 − c2). There is δε > 0 such that

(2 − c2 − ε2)(s− 1)2 ⩽ g(s, c) ⩽ (2 − c2 + ε2) for any s ∈ (1 − δε, 1 + δε).

and integrating we see that there exist constants C1, C2 ∈ R such that

(3.4.6) C1 − ln |1 − s|√
2 − c2 + ε2

⩽ G(s, c) ⩽ C2 − ln |1 − s|√
2 − c2 − ε2

for s ∈ [1 − δε, 1) ∪ (1, 1 + δε).

If ϱ < 1, there exist a, b, k1, k2 ∈ R such that a < b, ϱ(x) ∈ (1 − δε, 1) for all x ∈ (−∞, a) ∪ (b,∞),
and G(ϱ(x), c) = −x+k1 on (−∞, a), respectively G(ϱ(x), c) = x+k2 on (b,∞). Then using (3.4.6)
we see that there are constants C3, C4 ∈ R such that

C3e
−|x|

√
2−c2+ε2

⩽
∣∣1 − ϱ(x)

∣∣ ⩽ C4e
−|x|

√
2−c2−ε2 on (−∞, a) ∪ (b,∞).

We obtain (3.4.5) for any 0 < ε′ < ε by choosing conveniently Aε′ < a and Bε′ > b. The proof of
(3.4.5) is similar if ϱ > 1.

(iv) Taking the scalar product of (3.4.1) with 2ψ′ we get (|ψ′|2)′ − (V (|ψ|2))′ = 0, hence |ψ′|2 −
V (|ψ|2) is constant. Since |ψ′|2 and V (|ψ|2) belong to L1(R), the constant must be zero.

(v) Let ψ ∈ E(R) be a traveling wave of speed c. Let ϱ = |ψ|2. Assume that ϱ(x) < 1 for some
x ∈ R. By (i) we know that L(c) is finite. There is some x1 ∈ R such that ζ(c) < ϱ(x1) < 1 and
ϱ′(x1) < 0. As in the proof of part (i), there exists x0 > x1 such that ϱ(x) = G(·, c)−1(L(c)+x0 −x)
for all x ∈ (−∞, x0) and ϱ(x0) = ζ(c). Using (3.4.3) and the continuity of ϱ′ we get ϱ′(x0) =
limx↑x0 ϱ

′(x) = limx↑x0(−
√
g(ϱ(x), c)) = 0. Let ϱc be as in (i). Then (ϱ, ϱ′) and (ϱc(·−x0), ϱ′

c(·−x0))
are both solutions of the Cauchy problem

y′(x) = z(x)
z′(x) = −c2(y(x) − 1) + 2V (y(x)) − 2y(x)F (y(x))
(y(x0), z(x0)) = (ζ(c), 0)

in [x0,∞). Since F is locally Lipschitz, the solution of the above Cauchy problem is unique and
we infer that ϱ = ϱc(· − x0) on [x0,∞), thus on R. Then using (3.4.4) we see that the difference
between the phase of ψ and θc(· − x0) is a constant, say α, and therefore ψ = eiαψc(· − x0).
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The proof is analogous if there exists x ∈ R such that ϱ(x) > 1.

(vi) We have g(ζ(c), c) = 0 for any c ∈ (−
√

2,
√

2). If ζ is differentiable at c0, differentiating this
equality we get

∂1g(ζ(c0), c0) · ζ ′(c0) + ∂2g(ζ(c0), c0) = 0,

that is ∂1g(ζ(c0), c0)·ζ ′(c0) = 2c0(ζ(c0)−1)2 > 0. We infer that ∂1g(ζ(c0), c0) ̸= 0. Since g(ζ(c0), c0) =
0 and g(s, c0) > 0 on (ζ(c0), 1), we have ∂1g(ζ(c0), c0) > 0. Then

√
s−ζ(c0)√
g(s,c0)

−→ 1√
∂1g(ζ(c0),c0)

> 0 as

s ↘ ζ(c0), hence s 7−→ 1√
g(s,c0)

is integrable on an interval (ζ(c0), ζ(c0) + ε) and L(c0) is finite.
It is well-known that a monotonic function is differentiable almost everywhere. □

The following question arises naturally : is it true that (3.4.1) admits solutions in E(R) for all
but countably many c’s ?

Example 3.4.2. Consider the particular case of the Gross-Pitaevskii equation, namely F (s) = 1−s.
We have V (s) = 1

2(1 − s)2, g(s, c) = (2s − c2)(1 − s)2, ζ(c) = c2

2 and g(s, c) > 0 if s > 1. One can
use the change of variable t =

√
2s− c2 to compute a primitive of 1√

g(·,c)
and it is easily seen that

we may take

(3.4.7) G(s, c) = 1√
2 − c2

ln
∣∣∣√2 − c2 +

√
2s− c2

√
2 − c2 −

√
2s− c2

∣∣∣.
With this choice of G we have L(c) = lim

s↘ζ(c)
G(s, c) = lim

s↘ c2
2

G(s, c) = 0 for all c ∈ (−
√

2,
√

2). For

any fixed c, the function G(·, c) is an increasing diffeomorphism between ( c2

2 , 1) and (0,∞). We find
G(·, c)−1(x) = c2

2 + 2−c2

2

[
tanh

(√
2−c2

2 x
)]2

. Proceeding as in Proposition 3.4.1 (i) we get

(3.4.8) ϱc(x) = c2

2 + 2 − c2

2

[
tanh

(√
2 − c2

2 x

)]2

for any x ∈ R.

Using (3.4.4) and the change of variable t = tanh
(√

2−c2

2 s
)

we compute θc and we find

(3.4.9) θc(x) = c

2

∫ x

0

1 − ϱc(s)
ϱc(s)

ds = arctan
[√

2 − c2

c
tanh

(√
2 − c2

2 x

)]
.

Since cos(arctan(z)) = 1√
1+z2 and sin(arctan(z)) = z√

1+z2 , we finally obtain

(3.4.10)
ψc(x) =

√
ϱ(x)eiθ(x) = c√

2 + i
√

1 − c2

2 tanh
(√

2−c2

2 x
)

= i

[√
1 − c2

2 tanh
(√

2−c2

2 x
)

− i c√
2

]
.
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It follows from Proposition 3.4.1 (i), (ii), (v) that all traveling waves for the Gross-Pitaevskii equation
in E(R) are either constants of modulus one, or are of the form eiαψc(· − x0) for some α, x0 ∈ R.

Using Proposition 3.4.1 (iv), then the change of variable t = tanh
(√

2−c2

2 x
)

we get

(3.4.11)

E1(ψc) = E1
GL(ψc) = 2

∫
R

|ψ′
c|2 dx = 2

∫
R
V (|ψc|2) dx =

∫
R

(1 − ϱc(x))2 dx

=
(

2 − c2

2

)2 2√
2 − c2

∫ 1

−1
1 − t2 dt = 2

3(2 − c2)
3
2 .

If c ̸= 0, it follows from Remark 3.3.2, identity (3.4.4) and the change of variable t = tanh
(√

2−c2

2 x
)

that a valuation of the momentum of ψc is

(3.4.12)

∫
R

(1 − ϱc)θ′
c dx = c

2

∫
R

(1 − ϱc)2

ϱc
dx = c

4(2 − c2)
3
2

∫ 1

−1

(1 − t2)2

c2

2 + 2−c2

2 t2
1

1 − t2
dt

= c

4(2 − c2)
3
2

∫ 1

−1

1 − t2

c2

2 + 2−c2

2 t2
dt = c

2(2 − c2)
1
2

∫ 1

−1

1 − t2

c2

2−c2 + t2
dt

= 2 arctan
(√

2 − c2

c

)
− c
√

2 − c2.

For more information on traveling waves for the Gross-Pitaevskii equation and for further references
we refer to [1], Section 2. It has been shown in [1] that the functions ψc minimize the energy when
the momentum is kept fixed. Formulas (3.4.11) and (3.4.12) here above correspond to formulas
(2.23) and (2.24) p. 63 in [1], respectively.

Example 3.4.3. Consider a function V ∈ C∞(R,R) having the following properties :
• There exists δ1 > 0 such that V (s) = 1

2(1 − s)2 for all s ∈ [1 − δ1, 1 + δ1],
• There exist c0 ∈ (0,

√
2), s0 ∈ (0, 1) and a > 0, δ2 > 0 such that

V (s) = 1
4s
(
c2

0(1 − s)2 + a2(s− s0)3
)

on (s0 − δ2, s0 + δ2], and V (s) > c2
0(1 − s)2

4s on (s0, 1),

• V (s) ⩾ (s−1)2

2s on (1,∞).
Let F (s) = −V ′(s). It is obvious that F satisfies the assumption (A1). We consider equation

(3.1.1) with nonlinearity F . Using Proposition 3.4.1 (i), (ii) and (v) it is easily seen that for c
sufficiently close to

√
2 (more precisely, for c ∈ [

√
2(1 − δ1),

√
2)), traveling waves of speed c for this

equation in E(R) are the same as traveling waves for the Gross-Pitaevskii equation (and they are
either constant, or are equal to functions ψc in Example 3.4.2 up to a translation and a phase shift).
Letting g(s, c) = 4sV (s) − c2(s− 1)2, we have g(s, c0) = a2(s− c0)3 on (s0, s0 + δ2) and g(s, c0) > 0
on (s0, 1) ∪ (1,∞), hence ζ(c0) = s0 and L(c0) = −∞. Then Proposition 3.4.1 (i) and (ii) implies
that all traveling waves of (3.1.1) in E(R) with speed c0 must be constant.
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Lemma 3.4.4. Assume that V > 0 on [0, 1).Then we have

inf
{
E1(ψ) | ψ ∈ E(R) and inf

x∈R
|ψ(x)| = 0

}
= 4

∫ 1

0

√
V (s2) ds.

If the infimum is achieved by a function ψ, then there exist x0, α−, α+ ∈ R such that

(3.4.13) ψ(x) =


√
ϱ0(x− x0)eiα− if x < x0,√
ϱ0(x+ x0)eiα+ if x ⩾ x0,

where ϱ0 is as in Proposition 3.4.1 (i).

Proof. For any ψ ∈ E(R) we have |ψ| − 1 ∈ H1(R), hence |ψ| is continuous and tends to 1 at
±∞. If inf

x∈R
|ψ(x)| < 1, then the infimum is achieved at some x0 ∈ R.

Consider any ψ ∈ E(R) such that ψ(x0) = 0 for some x0 ∈ R. Take two sequences (x±
n )n⩾1 ⊂ R

such that x±
n −→ ±∞. For n sufficiently large we have x−

n < x0 < x+
n and using (3.2.2) we get∫ x0

x−
n

|ψ′|2 + V (|ψ|2) dx ⩾ 2
∣∣H(|ψ(x0)|) −H(|ψ(x−

n )|)
∣∣

and ∫ x+
n

x0
|ψ′|2 + V (|ψ|2) dx ⩾ 2

∣∣H(|ψ(x−
n )|) −H(|ψ(x0)|)

∣∣.
Summing up and letting n −→ ∞ we get E1(ψ) ⩾ 4

∣∣H(0)| = 4
∫ 1

0

√
V (s2) ds.

If V (0) > 0 it follows that any primitive of the function s 7−→ 1√
g(s,0)

= 1
2
√
sV (s)

has finite limit
at 0+ (in other words, L(0) is finite), and the function ϱ0 in Proposition 3.4.1 (i) is well-defined
and satisfies

ϱ′
0 = −2

√
ϱ0V (ϱ0) on (−∞, 0), respectively ϱ′

0 = 2
√
ϱ0V (ϱ0) on (0,∞).

Let ρ0 = √
ϱ0. It is easily seen that

(3.4.14) ρ′
0 = −

√
V (ρ2

0) on (−∞, 0), respectively ρ′
0 =

√
V (ρ2

0) on (0,∞).

Using (3.4.14) and the change of variable τ = ρ0(x) we obtain∫ 0

−∞
|ρ′

0|2 + V (ρ2
0) dx = −2

∫ 0

−∞

√
V (ρ2

0(x))ρ′
0(x) dx = 2

∫ 1

0

√
V (τ2) dτ

and a similar computation holds on [0,∞), hence E1(ρ0) = 4
∫ 1

0

√
V (τ2) dτ.
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Consider any ψ ∈ E(R) such that E1(ψ) = 4
∫ 1

0
√
V (τ2) dτ and there exists x0 ∈ R such that

ψ(x0) = 0. As above, using (3.2.2) we see that

(3.4.15)
∫ x0

−∞
|ψ′|2 +V (|ψ|2) dx ⩾ 2

∫ 1

0

√
V (τ2) dτ and

∫ −∞

x0
|ψ′|2 +V (|ψ|2) dx ⩾ 2

∫ 1

0

√
V (τ2) dτ.

Hence we must have equality in both inequalities in (3.4.15) and we infer that the point x0 must
be unique, and ρ = |ψ| must satisfy ρ′ = ±

√
V (ρ2) on each of the intervals (−∞, x0) and (x0,∞).

Then it follows easily that ρ(· + x0) satisfies (3.4.14), and finally that ρ(· + x0) = ρ0. The function
ψ
ρ must be constant on each of the intervals (−∞, x0) and (x0,∞) (for otherwise, we would have
ψ = ρeiθ on those intervals for some θ ∈ H1

loc, and then |ψ′|2 = |ρ′|2 + ρ2|θ′|2 ⩾ |ρ′|2. If θ′ ̸≡ 0 we
would get

∫
R |ψ′|2 dx >

∫
R |ρ′|2 dx, hence E1(ψ) > E1(ρ), a contradiction). □

Corollary 3.4.5. For any ψ ∈ E(R) satisfying E1(ψ) < 4
∫ 1

0

√
V (τ2) dτ we have inf

x∈R
|ψ(x)| > 0

and there exists a lifting ψ = ρeiθ, where 1 − ρ ∈ H1(R) and θ ∈ Ḣ1(R).

The same conclusion holds if E1(ψ) = 4
∫ 1

0

√
V (τ2) dτ and ψ is not one of the functions in

(3.4.13).

Remark 3.4.6. It can be shown that for any a ∈ (0, 1) we have

inf
{
E1(ψ) | ψ ∈ E(R) and inf

x∈R
|ψ(x)| = a

}
= 4

∫ 1

a

√
V (s2) ds.

Moreover, the only minimizers, up to translations in R and multiplication by complex numbers of

modulus 1, are the functions ρa(x) =
{
ρ0(· − b) if x < 0,
ρ0(· + b) if x ⩾ 0, where ρ0 is as in (3.4.14) and b > 0

is chosen so that ρ0(b) = a.

3.5 Minimizing the energy at fixed momentum in E(R)
We define

E1
min(p) = inf{E1(ψ)

∣∣ ψ ∈ E(R) and ⌊P ⌋(ψ) = ⌊p⌋}.

We collect in the next Lemma the main properties of the function E1
min.

Lemma 3.5.1. Assume that V satisfies (A1). The function E1
min has the following properties :

i) E1
min is non-negative, 2π−periodic, E1

min(−p) = E1
min(p) for all p ∈ R and

E1
min(p) = inf{E1(eiφ + w)

∣∣ φ ∈ Ḣ1(R,R), w ∈ H1(R,C) and p(φ,w) = p}.

ii) E1
min(p) ⩽

√
2p.
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iii) For any ε > 0 there exists pε > 0 such that E1
min(p) ⩾ (1 − ε)

√
2p for any p ∈ (0, pε).

iv) E1
min is sub-additive : for any p1, p2 ∈ R there holds

Emin(p1 + p2) ⩽ E1
min(p1) + E1

min(p2).

v) E1
min is Lipschitz on R and its best Lipschitz constant is vs =

√
2.

vi) Assume that there exists δ > 0 such that V (s) ⩽ 1
2(1 − s)2 + 3

8(1 − s)3 for any s ∈ [1 − δ, 1) 3.
Then we have E1

min(p) <
√

2p for any p > 0.

Assume, in addition, that V > 0 on [0, 1). Then :

vii) For any p ∈ R we have E1
min(p) ⩽ 4

∫ 1

0

√
V (τ2) dτ .

viii) E1
min is nondecreasing on [0, π] and is concave on [0, 2π].

Proof. (i) For any given φ ∈ Ḣ1(R,R) and w ∈ H1(R), let φ̃(x) = φ(−x) and w̃(x) = w(−x).
Then we have φ̃ ∈ Ḣ1(R,R), w̃ ∈ H1(R), p(φ̃, w̃) = −p(φ,w) and E1(eiφ̃+ w̃) = E1(eiφ+w). This
implies that E1

min(−p) = E1
min(p) for any p ∈ R.

Let p ∈ R. Let k ∈ Z. Consider φ ∈ Ḣ1(R) and w ∈ H1
per satisfying p(φ,w) = p. Let χ ∈ C∞(R)

such that χ = 0 on (−∞, 0] and χ = 1 on [1,∞). Let φ̃(x) = φ(x) + 2kπχ(x) and w̃(x, y) =
eiφ(x) − eiφ̃(x) + w(x, y). Then p(φ̃, w̃) = p(φ,w) + 2kπ = p + 2kπ and eiφ + w = eiφ̃ + w̃. Since
for any (φ,w) ∈ Ḣ1(R,R) ×H1

per satisfying p(φ,w) = p we may construct (φ̃, w̃) as previously, we
conclude that E1

min(p+ 2kπ) = E1
min(p). The rest of part (i) is obvious.

(ii) The proof is very similar to the proof of Lemma 3.3 p. 604 in [2] and of Lemma 4.5 p. 173
in [6]. Take χ ∈ C∞

c (R) such that
∫

R |χ′(x)|2 dx = 1 and
∫

R χ′(x)3 dx = 0 (for instance, we may
take χ an even function). Let A =

∫
R |χ′′(t)|2 dt and B =

∫
R |χ(t)|4 dt. For ε, λ, σ > 0 (to be chosen

later), let ρε,λ(x) = 1 − ε
λχ

′ (x
λ

)
, θλ,σ(x) = σχ

(
x
λ

)
and ψε,λ,σ(x) = ρε,λ(x)eiθλ,σ(x). It is clear that

ψε,λ,σ ∈ E(R) and a simple computation gives∫
R

|ψ′
ε,λ,σ(x)|2 dx =

∫
R

|ρ′
ε,λ(x)|2 + |ρε,λ|2|θ′

λ,σ(x)|2 dx

=
∫

R

ε2

λ3 |χ′′(t)|2 + σ2

λ
|χ′(t)|2

(
1 − 2ε

λ
χ′(t) + ε2

λ2 |χ′(t)|2
)
dt = σ2

λ
+A

ε2

λ3 +B
ε2σ2

λ3 ,

∫
R

(1 − ρ2
ε,λ)θ′

λ,σ(x) dx =
∫

R

2σε
λ

|χ′(t)|2 − σε2

λ2 χ
′(t)3 dt = 2σε

λ
,

∫
R

(1 − ρ2
ε,λ)2 dx =

∫
R

4ε2

λ
|χ′(t)|2 − 4ε3

λ2 χ
′(t)3 + ε4

λ3χ
′(t)4 dt = 4ε2

λ
+B

ε4

λ3 .

3. This condition is fulfilled, for instance, if F is C2 near 1 and F ′′(1) < 9
4 .
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Fix p > 0. For λ > 0 we choose ε = ε(λ) = 2− 3
4
√
pλ and σ = σ(λ) = 2− 1

4
√
pλ. Let ψλ =

ψε(λ),λ,σ(λ). As λ −→ ∞ we have ε(λ)
λ −→ 0, σ(λ)

λ −→ 0, and
∣∣1−|ψλ|

∣∣ =
∣∣1−ρε(λ),λ

∣∣ ⩽ ε(λ)
λ ∥χ′∥L∞ −→

0. For all λ sufficiently large we have ψλ ∈ E(R) and the above computations show that a valuation
of the momentum of ψλ is p, and∫

R
|ψ′
λ,(x)|2 dx = 2− 1

2 p+ 2− 3
2
p

λ2A+ p2

4λB −→ p√
2

as λ −→ ∞.

By assumption (A1) we have V (s) =
(

1
2 + o(|s− 1|)

)
(s− 1)2 as s −→ 1, hence∫

R
V (|ψλ|2) dx =

(1
2 + o

(
ε(λ)
λ

∥χ′∥L∞

))∫
R

(1 − ρ2
ε(λ),λ)2 dx −→ p√

2
as λ −→ ∞.

Since E1
min(p) ⩽ E1(ψλ) for all sufficiently large λ and E1(ψ(λ)) −→

√
2p as λ −→ ∞, (ii) follows.

(iii) Fix ε > 0. We may assume that ε ⩽ 1
2 . By assumption (A1) there exists δ = δ(ε) > 0 such

that (1 − δ)2 ⩾ 1 − ε and

V (ρ2) > 1
2(1 − ε)(1 − ρ2)2 for any ρ ∈ [1 − δ, 1 + δ].

By Lemma 3.2.1 (i) there exists κ > 0 such that for any ψ ∈ E(R) satisfying E1(ψ) ⩽ κ we have
∥1 − |ψ|∥L∞(R) ⩽ δ. Let pε = min

(
κ

2
√

2 ,
π
4

)
and let p ∈ (0, pε]. Consider any φ ∈ Ḣ1(R) and any

w ∈ H1(R) such that p(φ,w) = p and E1(eiφ + w) ⩽ 2
√

2p. Denoting ψ = eiφ + w, we have
ψ ∈ E(R) and E1(ψ) ⩽ κ, and then Lemma 3.2.1 (i) implies that ∥1 − |ψ|∥L∞(R) ⩽ δ. We infer that
ψ admits a lifting ψ = ρeiθ where θ ∈ Ḣ1(R) and 1 − δ ⩽ ρ(x) ⩽ 1 + δ on R. Then we have

(3.5.1)
E1(ψ) =

∫
R

|ρ′|2(x) + ρ2(x)|θ′|2(x) + V (ρ2(x)) dx

⩾
∫

R
(1 − δ)2|θ′|2(x) + 1

2(1 − ε)(1 − ρ2(x))2 dx ⩾ (1 − ε)
√

2
∣∣∣ ∫

R
(1 − ρ2(x))θ′(x) dx

∣∣∣.
By Definition 3.3.1 and Remark 3.3.2, p = p(φ,w) and

∫
R

(1 − ρ2(x))θ′(x) dx are both valuations of

the momentum of ψ, hence
∫

R
(1−ρ2(x))θ′(x) dx = p+2kπ for some k ∈ Z. We have 0 < p ⩽ pε ⩽ π

4

and by (3.5.1) we get
∣∣∣ ∫

R
(1 − ρ2(x))θ′(x) dx

∣∣∣ ⩽ E1(ψ)
(1−ε)

√
2 ⩽ 4pε < π, and we conclude that necessarily∫

R
(1−ρ2(x))θ′(x) dx = p. Then (3.5.1) gives E1(ψ) = E1(eiφ+w) ⩾ (1−ε)

√
2p. Since this inequality

holds for any φ and w as above, (iii) follows.
(iv) Let p1, p2 ∈ R. Fix ε > 0. By Lemma 3.3.6 (i) there exist φ1, φ2 ∈ C∞(R), w1, w2 ∈ C∞

c (R)
and A > 0 such that supp(wj) ⊂ (−A,A), φj = αi on (−∞, A], φj = βj on [A,∞),

p(φj , wj) ∈ ⌊pj⌋ and E1(eiφj + wj) < E1
min(pj) + ε

2 for j = 1, 2.
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Let

ψ(x) =


eiφ1(x) + w1(x) if x ⩽ 2A,

ei(β1−α2)
(
eiφ2(x−3A) + w2(x− 3A)

)
if x > 2A.

Then we have ψ ∈ E(R) ∩ C∞(R) and

⌊P ⌋(ψ) = ⌊P ⌋(eiφ1 + w1) + ⌊P ⌋
(
ei(β1−α2)

(
ei(φ2(·−3A)) + w2(· − 3A)

))
= ⌊p1⌋ + ⌊p2⌋.

We infer that

E1
min(p1 + p2) ⩽ E1(ψ) = E1 (eiφ1 + w1

)
+ E1

(
ei(β1−α2)

(
ei(φ2(·−3A)) + w2(· − 3A)

))
= E1 (eiφ1 + w1

)
+ E1 (eiφ2 + w2

)
< E1

min(p1) + E1
min(p2) + ε.

Since ε is arbitrary, (iv) follows.

(v) The sub-additivity of E1
min and part (ii) imply that

|E1
min(p2) − E1

min(p1)| ⩽ E1
min(p2 − p1) ⩽

√
2|p2 − p1| for any p1, p2 ∈ R.

Part (iii) implies that
√

2 is the best Lipschitz constant of E1
min.

(vi) The sub-additivity of E1
min gives E1

min(np) ⩽ nE1
min(p) for any p > 0 and any n ∈ N∗.

Hence it suffices to show that E1
min(p) <

√
2p for sufficiently small p.

We use as "test functions" the traveling-waves for the Gross-Pitaevskii equation in Example
3.4.2. Proceeding as in (3.4.11) and using the change of variable t = tanh

(√
2−c2

2 x
)

we get

(3.5.2)
∫

R

(
1 − |ψc|2

)3
dx =

∫
R

(1−ϱc(x))3 dx =
(

2 − c2

2

)3 2√
2 − c2

∫ 1

−1
(1−t2)2 dt = 4

15(2−c2)
5
2 .

There is some cδ ∈ (0,
√

2) such that for all c ∈ (cδ,
√

2) we have 1 − δ < |ψc| < 1. Using the fact
that V (s) ⩽ 1

2(1 − s)2 + 3
8(1 − s)3 for s ∈ [1 − δ, 1), (3.4.11) and (3.5.2) we get

E1(ψc) ⩽ E1
GL(ψc) + 3

8

∫
R

(
1 − |ψc|2

)3
dx ⩽

2
3(2 − c2)

3
2 + 1

10(2 − c2)
5
2 .

It is useful to denote ε(c) =
√

2 − c2, so that ε(c) −→ 0 as c ↗
√

2. The above inequality can be
written as

E1(ψc) ⩽ f(ε(c)), where f(ε) = 2
3e

3 + 1
10ε

5.

Recall that by (3.4.12), a valuation of the momentum of ψc is

m(c) := 2 arctan
(√

2 − c2

c

)
− c
√

2 − c2 = 2 arctan
(

ε(c)√
2 − ε2(c)

)
− ε(c)

√
2 − ε2(c) =: g(ε(c)).
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We have g(0) = 0 and an elementary computation gives g′(ε) = 2ε2
√

2−ε2 for ε ∈ (0,
√

2). The function g
is increasing and continuous on [0,

√
2), and therefore c 7−→ m(c) is decreasing, positive on (cδ,

√
2),

and tends to 0 as c ↗
√

2. We have

E1
min(m(c)) ⩽ E1(ψc) ⩽ f(ε(c))

and it suffices to show that f(ε) <
√

2g(ε) for all sufficiently small ε. A straightforward computation
gives

g′(ε) =
√

2
(
ε2 + 1

4ε
4 + 3

32ε
6 + o(ε6)

)
and

g(ε) =
√

2
(1

3ε
3 + 1

20ε
5 + 3

224ε
7 + o(ε7)

)
as ε −→ 0.

Hence there is ε0 > 0 such that f(ε) <
√

2g(ε) for any ε ∈ (0, ε0), as desired.

(vii) Let p ∈ R. Fix ε > 0. Choose δ > 0 such that δV (0) < ε. Let ϱ0 be as in Proposition 3.4.1
(i). Define

ρ(x) =


√
ϱ0(x) if x < 0,

0 if 0 ⩽ x ⩽ δ,√
ϱ0(x− δ) if x ⩾ x0,

It is easily seen that 1 − ρ ∈ H1(R). Choose θ ∈ C∞(R) such that θ is constant on (−∞, 0] and
on [δ,∞), and

∫ δ
0 θ

′ dx = θ(δ) − θ(0) = p. Let w = (ρ − 1)eiθ and ψ = ρeiθ = eiθ + w. We have
w ∈ H1(R), ψ ∈ E(R) and using Remark 3.3.2 we get

p(θ, w) =
∫

R
(1 − ρ2)θ′ dx = p.

We have |ρ′|2 + V (ρ2) = V (0) on (0, δ) and consequently

E1
min(p) ⩽ E1(ψ) =

∫
(−∞,0]∪[δ,∞)

(
|ρ′|2 + V (ρ2)

)
dx+ δV (0) ⩽ 4

∫ 1

0

√
V (τ2) dτ + ε.

Since ε was arbitrary, the conclusion follows.

(viii) We proceed in several steps.
Step 1. "Reflection" of functions in E(R) that have a lifting. Assume that ψ ∈ E(R) can be

written in the form ψ = ρeiθ, where ρ and θ are real-valued functions, 1−ρ ∈ H1(R) and θ ∈ Ḣ1(R).
For any t ∈ R we define ψt(x) = e−iθ(t)ψ(x) = ρ(x)ei(θ(x)−θ(t)). It is obvious that

ψt ∈ E(R), ψt(t) = ρ(t) ∈ [0,∞), E1(ψt) = E1(ψ) and ⌊P ⌋(ψt) = ⌊P ⌋(ψ).

We define

(3.5.3) ψt,1(x) =
{
ψt(x) if x ⩽ t,
ψt(2t− x) if x > t,

ψt,2(x) =
{
ψt(2t− x) if x < t,
ψt(x) if x ⩾ t,
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(3.5.4) θt,1(x) =
{
θ(x) − θ(t) if x ⩽ t,
−θ(2t− x) + θ(t) if x > t,

θt,2(x) =
{

−θ(2t− x) + θ(t) if x < t,
θ(x) − θ(t) if x ⩾ t,

(3.5.5) ρt,1(x) =
{
ρ(x) if x ⩽ t,
ρ(2t− x) if x > t,

ρt,2(x) =
{
ρ(2t− x) if x < t,
ρ(x) if x ⩾ t.

It is easy to check that ρt,j ∈ H1(R), θt,j ∈ Ḣ1(R), ψt,j ∈ E(R) and ψt,j = ρt,je
iθt,j = eiθt,j + wt,j

for j = 1, 2, where wt,j = (ρt,j − 1)eiθt,j ∈ H1(R). An immediate computation gives

(3.5.6) E1(ψt,1) = 2
∫ t

−∞
|ψ′|2 + V (|ψ|2) dx and E1(ψt,2) = 2

∫ ∞

t
|ψ′|2 + V (|ψ|2) dx,

(3.5.7)
p(θt,1, wt,1) =

∫
R

(1 − ρ2
t,1)θ′

t,1 dx = 2
∫ t

−∞
(1 − ρ2)θ′ dx,

p(θt,2, wt,2) =
∫

R
(1 − ρ2

t,2)θ′
t,2 dx = 2

∫ ∞

t
(1 − ρ2)θ′ dx,

so that

(3.5.8) E1(ψt,1) + E1(ψt,2) = 2E1(ψ) and p(θt,1, wt,1) + p(θt,2, wt,2) = 2p
(
θ, (ρ− 1)eiθ

)
.

Step 2. For any p ∈ (0, π] satisfying E1
min(p) < 4

∫ 1

0

√
V (s2) ds and for any ε > 0 there exists ψ ∈

E(R) such that E(ψ) < E1
min(p)+ε, ψ = ρeiθ with ρ ∈ H1(R), θ ∈ Ḣ1(R) and p

(
θ, (ρ− 1)eiθ

)
= p,

and ψ is constant on some intervals (−∞,−A] and [A,∞).

Let p be as above. Let 0 < ε < 4
∫ 1

0

√
V (s2) ds − p. By the definition of E1

min and by Lemma

3.3.6 (i), there exists ψ ∈ C∞(R) such that ⌊P ⌋(ψ) = ⌊p⌋, E1(ψ) < E1
min + ε < 4

∫ 1

0

√
V (s2) ds

and ψ is constant on (−∞,−A] and on [A,∞) for some A > 0. By Corollary 3.4.5 we have |ψ| > 0
on R, hence there exist θ, w ∈ C∞ such that ψ = ρeiθ, and supp(w), supp(θ′) ⊂ [−A,A]. We have
p(θ, w) = p+ 2kπ, where k ∈ Z. If k = 0, the functions ψ, θ and ρ satisfy all requirements of Step
2.

Otherwise we construct ψt,1 = ρt,1e
iθt,1 and ψt,2 = ρt,1e

iθt,1 as in (3.5.3) - (3.5.5). Let wt,j =
(ρt,j − 1)eiθt,j for j = 1, 2. By (3.5.7) we see that the mappings mj(t) := p(θt,j , wt,j) are continuous,
m1 = 0 on (−∞,−A] and m1 = 2p+ 4kπ on [A,∞), m2 = 2p+ 4kπ on (−∞,−A] and m2 = 0 on
[A,∞).

If k ⩾ 1 we may choose t1 < t2 such that m1(t1) = m2(t2) = p. We have

E(ψt1,1) + E(ψt2,2) = 2
∫

(−∞,t1]∪[t2,∞)
|ψ′|2 + V (|ψ|2) dx ⩽ 2E(ψ),
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hence E(ψt1,1) ⩽ E(ψ) or E(ψt2,2) ⩽ E(ψ). In the former case we replace ψ by ψt1,1 and in the
latter case we replace ψ by ψt2,2.

If k ⩽ −1 we have 2kπ + p ⩽ −π ⩽ −p because p ∈ (0, π]. In this case by (3.5.7) there exist
t1 ⩽ t2 such that m1(t1) = −p and m2(t2) = −p. As above, we have E(ψt1,1) + E(ψt2,2) ⩽ 2E(ψ)
and we replace ψ by ψt1,1 if E(ψt1,1) ⩽ E(ψ), respectively by ψt2,2 if E(ψt2,2) ⩽ E(ψ).

Step 3. E1
min is nondecreasing on [0, π].

Let 0 ⩽ p1 < p2 ⩽ π. If Emin(p2) = 4
∫ 1

0

√
V (s2) ds we have E1

min(p1) ⩽ E1
min(p2) by (vii).

Otherwise, consider any ε such that 0 < ε < 4
∫ 1

0

√
V (s2)−E1

min(p2), then choose ψ = ρeiθ = eiθ+w

as in Step 2. Define ψt,j = ρt,je
iθt,j = eiθt,j + wt,j for j = 1, 2 as in (3.5.3) - (3.5.5). Using (3.5.7)

we see that there exist t1 < t2 such that p(θt1,1, wt1,1) = p(θt2,2, wt2,2) = p1. By (3.5.6) we have
E1(ψt1,1) + E1(ψt2,2) ⩽ 2E1(ψ). Then we have

E1
min(p1) ⩽ min(E1(ψt1,1), E1(ψt2,2)) ⩽ E1(ψ) ⩽ E1

min(p2) + ε.

Since ε was arbitrary we get E1
min(p1) ⩽ E1

min(p2), as desired.
Step 4. E1

min is concave.
Let 0 < p1 < p2 ⩽ π and let p = p1+p2

2 . We will prove that

(3.5.9) E1
min

(
p1 + p2

2

)
⩾

1
2E

1
min(p1) + 1

2E
1
min(p2).

If E1
min

(
p1+p2

2

)
= 4

∫ 1

0

√
V (s2) ds, (3.5.9) obviously holds. Otherwise, take any ε such that 0 <

ε < 4
∫ 1

0

√
V (s2) ds − E1

min(p), then choose ψ = ρeiθ = eiθ + w as in Step 2. There exists t0 ∈ R

such that
∫ t0

−∞
(1 − ρ2)θ′ dx = p1

2 , and then we have necessarily
∫ ∞

t0
(1 − ρ2)θ′ dx = p2

2 . Let ψt0,j =

ρt0,je
iθt0,j = eiθt0,j + wt0,j j = 1, 2, be as in Step 1. It is clear that p(θt0,j , wt0,j) = pj for j = 1, 2

and using (3.5.6) we get

E1
min(p1) + E1

min(p2) ⩽ E1(ψt0,1) + E1(ψt0,2) = 2E(ψ) ⩽ 2E1
min(p) + 2ε.

Since ε was arbitrary, we infer that (3.5.9) holds.
We have shown that E1

min is continuous and satisfies (3.5.9) for any 0 < p1 < p2 ⩽ π. It is then
standard to prove that E1

min is concave on [0, π]. We have E1
min(2π− p) = E1

min(−p) = E1
min(p) for

any p and we infer that E1
min is non-decreasing and concave on [π, 2π], and then it follows that it

is concave on [0, 2π]. □

Theorem 3.5.2. Assume that conditions (A1) and (B1) in the introduction hold and p ∈ (0, π]
satisfies E1

min(p) <
√

2p. Let (ψn)n⩾1 ⊂ E(R) be a sequence satisfying

(3.5.10) ⌊P ⌋(ψn) −→ ⌊p⌋ and E(ψn) −→ E1
min(p) as n −→ ∞.
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Then there exist a subsequence (ψnk)k⩾1, a sequence (xk)k⩾1 ⊂ R and ψ ∈ E(R) satisfying ⌊P ⌋(ψ) =
⌊p⌋, E1(ψ) = Emin(p), and

ψnk(· + xk) −→ ψ uniformly on [−R,R] for any R > 0,
ψ′
nk

(· + xk) −→ ψ′ in L2(R),
|ψnk(· + xk)| − |ψ| −→ 0 in Lp(R) for 2 ⩽ p < ∞.

Proof. Let p ∈ (0, π] such that E1
min(p) <

√
2p and let (ψn)n⩾1 ⊂ E(R) be a sequence satisfying

(3.6.36). We denote by pn ∈ [0, 2π) the canonical valuation of the momentum of ψn. Then we have
pn −→ p as n −→ ∞.

Denoting M := supn⩾1 ∥ψ′
n∥L2(R) < ∞, by (3.2.1) we have

(3.5.11) |ψn(x) − ψn(y)| ⩽M |x− y|
1
2 for all x, y ∈ R and all n ∈ N∗.

We will use the celebrated concentration-compactness principle introduced in [9]. The sequence
fn := |ψ′

n|2 + V (|ψn|2) is bounded in L1(R). We denote by Λn the concentration function of fn,
namely

Λn(t) = sup
x∈R

∫ x+t

x−t
|ψ′
n(y)|2 + V (|ψn(y)|2) dy.

Obviously, Λn is a non-decreasing function on [0,∞), Λn(0) = 0 and Λn(t) −→ E1(ψn) as t −→ ∞ .
Proceeding as in [9] we see that there exists a subsequence of (ψn,Λn)n⩾1, still denoted (ψn,Λn)n⩾1,
and there is a non-decreasing function Λ : [0,∞) −→ ∞ satisfying

(3.5.12) Λn(t) −→ Λ(t) a.e on [0,∞) as n −→ ∞.

Let α = lim
t→∞

Λ(t). It is clear that 0 ⩽ α ⩽ lim
n→∞

(
lim
t→∞

Λn(t)
)

= E1
min(p). We will show that

α = E1
min(p).

We prove first that α > 0. We argue by contradiction and we assume that α = 0. This implies
that Λ(t) = 0 for any t > 0, which means that for any fixed t > 0 we have

(3.5.13) sup
x∈R

∫ x+t

x−t
|ψ′
n(y)|2 + V (|ψn(y)|2) dy −→ 0 as n −→ ∞.

We claim that if (3.5.13) occurs we have |ψn| −→ 1 uniformly on R. By (A1) there is η0 > 0 such
that

1
4(1 − s2)2 < V (s2) < (1 − s2)2 for all s ∈ [1 − η0, 1 + η0].

Fix η ∈ (0, η0
2 ]. Assume that there exists xn ∈ R such that

∣∣ |ψn(xn)|−1
∣∣ = η. From (3.5.11) it follows

that there exists r > 0, independent of n, such that
∣∣ |ψn(xn)| − 1

∣∣ ∈ [η2 ,
3η
2 ] for y ∈ [xn − r, xn + r]

and therefore

Λn(r) ⩾
∫ xn+r

xn−r
V (|ψn(y)|2) dy ⩾

∫ xn+r

xn−r

1
4
∣∣ |ψn(xn)| − 1

∣∣2 dy ⩾
1
8η

2r.
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By (3.5.13) there exists nη ∈ N such that for all n ⩾ nη we have Λn(r) < 1
8η

2r, and the above
inequalities imply that for any n ⩾ nη we must have 1−η < |ψn| < 1+η. Thus |ψn| −→ 1 uniformly
on R.

Choose δ ∈ (0, 1) such that E1
min(p) < (1 − δ)2√

2p (this is possible because E1
min(p) <

√
2p).

By (A1) there is ηδ > 0 such that V (s2) ⩾ 1
2(1 − δ)2(1 − s2)2 for any s ∈ [1 − ηδ, 1 + ηδ]. For all

sufficiently large n we have
∣∣ |ψn| − 1

∣∣ < min(δ, ηδ) on R. For any such n we may write ψn = ρne
iθn

where 1 − ρn ∈ H1(R) and θn ∈ Ḣ1(R,R), and we have

(3.5.14)

E1(ψn) ⩾
∫

R
ρ2
n|θ′

n|2 + V (ρ2
n) dx ⩾ (1 − δ)2

∫
R

|θ′
n|2 + 1

2(1 − ρ2
n)2 dx

⩾ (1 − δ)2√
2
∣∣∣∣ ∫

R
(1 − ρ2

n)θ′
n dx

∣∣∣∣.
Recall that by Remark 3.3.2,

∫
R

(1 − ρ2
n)θ′

n dx is a valuation of the momentum of ψn, hence there

exists ℓn ∈ Z such that
∫

R
(1 − ρ2

n)θ′
n dx = pn + 2ℓnπ and consequently

∣∣∣∣ ∫
R

(1 − ρ2
n)θ′

n dx

∣∣∣∣ ⩾ dist(pn, 2πZ).

Letting n −→ ∞ in (3.5.14) we get

E1
min(p) ⩾ (1 − δ)2√

2 lim
n→∞

dist(pn, 2πZ) = (1 − δ)2√
2p,

contradicting the choice of δ. We have thus proved that α ̸= 0.

Assume that 0 < α < E1
min(p). Arguing as in the proof of Theorem 5.3 in [11] (see (5.12) p. 156

there) we infer that there is a nondecreasing sequence Rn −→ ∞ such that

lim
n→∞

Λn(2Rn) = lim
n→∞

Λn(Rn) = α.

For each n choose xn ∈ R such that∫ xn+Rn

xn−Rn
|ψ′
n(y)|2 + V (|ψn(y)|2) dy > Λn(Rn) − 1

n
.

Then we have

Λn(Rn) − 1
n
<

∫ xn+2Rn

xn−2Rn
|ψ′
n(y)|2 + V (|ψn(y)|2) dy ⩽ Λn(2Rn),

and we infer that

(3.5.15)
∫ xn+Rn

xn−Rn
|ψ′
n(y)|2 + V (|ψn(y)|2) dy −→ α,
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(3.5.16)
∫ xn−Rn

xn−2Rn
|ψ′
n(y)|2 + V (|ψn(y)|2) dy +

∫ xn+2Rn

xn+Rn
|ψ′
n(y)|2 + V (|ψn(y)|2) dy −→ 0, and

(3.5.17)
∫ xn−2Rn

−∞
|ψ′
n(y)|2+ V (|ψn(y)|2) dy +

∫ ∞

xn+2Rn
|ψ′
n(y)|2+ V (|ψn(y)|2) dy −→ E1

min(p) − α.

Assume that for infinitely many n’s we have∫ xn−2Rn

−∞
|ψ′
n(y)|2+ V (|ψn(y)|2) dy ⩾

∫ ∞

xn+2Rn
|ψ′
n(y)|2+ V (|ψn(y)|2) dy.

(A similar argument will work if the opposite inequality holds true for infinitely many n’s.) Passing
to a subsequence, still denoted the same, we may assume that

(3.5.18)
∫ xn−2Rn

−∞
|ψ′
n(y)|2+ V (|ψn(y)|2) dy −→ β > 0 as n −→ ∞, where 0 < β < E1

min(p).

Let zn = xn − 3
2Rn. For n sufficiently large we have [zn − 2, zn + 2] ⊂ [xn − 2Rn, xn − Rn].

Then using (3.5.11) and (3.5.16) and arguing as in the proof of the fact that α > 0 we infer
that sup

y∈[zn−1,zn+1]

∣∣ |ψn(y)| − 1
∣∣ −→ 0 as n −→ ∞. For n large enough we have 1

2 < |ψn| < 3
2 on

[zn−1, zn+1], thus we have a lifting ψn = ρne
iθn on that interval. Let rn = ρn(zn) and αn = θn(zn).

It is clear that rn −→ 1. Define

ψn,1(x) =


ψn(x) if x ⩽ zn,(
(1 − rn)(x− zn) + rn

)
eiαn if x ∈ (zn, zn + 1),

eiαn if x ⩾ zn + 1,

ψn,2(x) =


eiαn if x ⩽ zn − 1,(
(rn − 1)(x− zn) + rn

)
eiαn if x ∈ (zn − 1, zn),

ψn(x) if x ⩾ zn.

It is easy to see that ψn,1, ψn,2 ∈ E(R). It follows form (3.5.16) and (3.5.18) that E1(ψn,1) −→ β
and E1(ψn,2) −→ E1

min(p) − β as n −→ ∞. Since 0 < β < E1
min(p) ⩽ 4

∫ 1
0
√
V (s2) ds, for all n

sufficiently large we have E1(ψn,j) < 4
∫ 1

0

√
V (s2) ds, j = 1, 2, and then using Corollary 3.4.5 we

infer that ψn,1 and ψn,2 do not vanish and consequently these functions admit liftings, thus we may
write ψn,j = ρn,je

iθn,j on R. Replacing θn,j by θn,j + 2kπ for some k ∈ Z, we may assume that
θn,1 = αn on [zn,∞) and that θn,2 = αn on (−∞, zn]. Let

ρn(x) =
{
ρn,1(x) if x ⩽ zn,
ρn,2(x) if x > zn,

θn(x) =
{
θn,1(x) if x ⩽ zn,
θn,2(x) if x > zn.
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Then 1−ρn ∈ H1(R), θ ∈ Ḣ1(R) and ψn = ρne
iθn on R. By Remark 3.3.2 and the fact that θ′

n,1 = 0
on (zn,∞), θ′

n,2 = 0 on (−∞, zn), valuations of momenta of ψn, ψn,1 and ψn,2 are, respectively,

(3.5.19) p̃n =
∫

R
(1 − ρ2

n)θ′
n dx, p̃n,1 =

∫ zn

−∞
(1 − ρ2

n)θ′
n dx, p̃n,2 =

∫ ∞

zn
(1 − ρ2

n)θ′
n dx.

Let pn, pn,1, pn,2 ∈ [0, 2π) be the canonical valuations of momenta of these functions, respectively.
From (3.5.19) it is obvious that p̃n = p̃n,1 + p̃n,2, and this implies pn = pn,1 + pn,2 (mod 2π). Since
pn,1 + pn,2 ∈ [0, 4π), we have

(3.5.20) pn,1 + pn,2 = pn or pn,1 + pn,2 = pn + 2π.

Choose p0 ∈ (0, p) such that

max(β,E1
min(p) − β) < E1

min(p0) < E1
min(p).

For all n sufficiently large and for j = 1, 2 we have

E1
min(pn,j) = E1

min(p̃n,j) ⩽ E1(ψn,j) < E1
min(p0).

Since E1
min is non-decreasing on [0, π] and non-increasing on [π, 2π], we infer that for all large n we

have either pn,j ∈ [0, p0), or pn,j ∈ (2π−p0, 2π]. We cannot have pn,1 ∈ [0, p0) and pn,2 ∈ (2π−p0, 2π]
because this would give

p < 2π − p0 < pn,2 ⩽ pn,1 + pn,2 < p0 + 2π < p+ 2π,

contradicting (3.5.20). We deduce that one of the following situations occurs :
Case A : pn,1, pn,2 ∈ [0, p0), or
Case B : pn,1, pn,2 ∈ (2π − p0, 2π].
Assume that we are in case A for infinitely many n’s. Passing to a further subsequence we may

assume that pn,j −→ p∗
j ∈ [0, p0] for j = 1, 2, and p∗

1 + p∗
2 = p, hence p∗

j ⩾ p− p0. We have

E1
min(pn,1) + E1

min(pn,2) ⩽ E1(ψn,1) + E1(ψn,2) = E1(ψn) + o(1)

and letting n −→ ∞ we discover E1
min(p∗

1) +E1
min(p∗

2) ⩽ E1
min(p). The concavity of E1

min on [0, 2π]
implies that E1

min(p∗
j ) ⩾

p∗
j

p E
1
min(p), and equality may occur if and only if E1

min is linear on [0, p].
Summing up these inequalities for j = 1, 2 and comparing to the previous inequality we infer that
we must have equality, and consequently E1

min must be linear on [0, p]. Taking into account the
behaviour of E1

min at the origin (see Lemma 3.5.1 (ii) and (iii)) we infer that E1
min(s) =

√
2s for all

s ∈ [0, p], contradicting the fact that E1
min(p) <

√
2p.

Assume that we are in case B for infinitely many n’s. From (3.5.20) we see that necessarily
pn,1 + pn,2 = pn + 2π, hence (2π− pn,1) + (2π− pn,2) = 2π− pn. Passing again to a subsequence we
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may assume that (2π − pn,j) −→ p♯j ∈ [0, p0] for j = 1, 2. Then we have p♯1 + p♯2 = 2π − p ⩾ p, thus
necessarily p♯j ⩾ p− p0. We have

E1
min(2π − pn,j) = E1

min(pn,j) ⩽ E1(ψn,j).

Summing up for j = 1, 2 and letting n −→ ∞ we get

E1
min(p♯1) + E1

min(p♯2) ⩽ E1
min(p) = E1

min(2π − p).

The last inequality and the concavity of E1
min on [0, 2π] imply that E1

min must be linear on [0, 2π−p].
Since 2π − p ⩾ π, E1

min is nondecreasing on [0, π] and nonincreasing on [π, 2π] and is not constant,
we must have 2π − p = π, hence p = π. Then by Lemma 3.5.1 (ii) and (iii) we get E1

min(s) =
√

2s
for all s ∈ [0, p], hence E1

min(p) =
√

2p, a contradiction.
We conclude that we cannot have 0 < α < E1

min(p), thus necessarily α = E1
min(p).

It is then standard to prove that there exists a sequence (xn)n⩾1 ⊂ RN such that for any ε > 0
there exists Rε > 0 satisfying∫ xn−Rε

−∞
|ψ′
n|2 + V (|ψn|2) dx+

∫ ∞

xn+Rε
|ψ′
n|2 + V (|ψn|2) dx < ε

for all sufficiently large n. Let ψ̃n = ψn(· + xn). Then for any ε > 0 there exist Rε > 0 and nε ∈ N
such that

(3.5.21)
∫ −Rε

−∞
|ψ̃′
n|2 + V (|ψ̃n|2) dx+

∫ ∞

Rε
|ψ̃′
n|2 + V (|ψ̃n|2) dx < ε for all n ⩾ nε.

Take η0 > 0 such that 1
4(1 − s2)2 < V (s2) < (1 − s2)2 for any s ∈ [1 − η0, 1 + η0]. Let H be as

in assumption (B1). Let ε1 = 2 min(
∣∣H(1

2)
∣∣, H(3

2),
∣∣H(1 − η0)

∣∣, H(1 + η0)). Take R1 = Rε1 > 0 such
that (3.5.21) holds with ε1 instead of ε. Using (3.2.2) we see that for all n sufficiently large and for
all x ∈ (−∞,−R1] ∪ [R1,∞) we have

(3.5.22) |ψ̃n(x)| ∈
[1

2 ,
3
2

]
∩ [1 − η0, 1 + η0] and 1

4(1 − |ψ̃n(x)|2)2 < V (|ψ̃n(x)|2) < (1 − |ψ̃n(x)|2)2.

Then using (3.5.11) we see that ψ̃n are uniformly bounded on [−R1, R1], hence on R. Since (ψ̃′
n)n⩾1

is bounded in L2(R), it is standard to prove that there exists a function ψ ∈ H1
loc(R) such that

ψ′ ∈ L2(R) and there is a subsequence (ψ̃nk)k⩾1 of (ψ̃n)n⩾1 satisfying

(3.5.23)
ψ̃′
nk
⇀ ψ′ weakly in L2(R),

ψ̃nk −→ ψ strongly in Lp([−R,R]) for any R > 0 and any 1 ⩽ p ⩽ ∞,

ψ̃nk −→ ψ uniformly on [−R,R] for any R > 0.

We may use (3.5.11) and the Arzelà-Ascoli Theorem to get uniform convergence on compact inter-
vals. The weak convergence ψ̃′

nk
⇀ ψ′ in L2(R) implies that for any interval I ⊂ R we have

(3.5.24)
∫
I

|ψ′|2 dx ⩽ lim inf
n→∞

∫
I

|ψ̃′
nk

|2 dx.
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Fatou’s Lemma gives

(3.5.25)
∫
I
V (|ψ|2) dx ⩽ lim inf

n→∞

∫
I
V
(
|ψ̃nk |2

)
dx.

Fix ε > 0. Take Rε as in (3.5.21). Since (ψ̃nk)k⩾1 is bounded in L∞([−Rε, Rε], converges to ψ
almost everywhere and V is continuous, the dominated convergence theorem gives V (|ψ̃nk |2) −→
V (|ψ|2) in L1([−Rε, Rε]), hence we may choose n′

ε ⩾ nε such that∫ Rε

−Rε

∣∣V (|ψ̃nk |2) − V (|ψ|2)
∣∣ dx < ε for all n ⩾ n′

ε.

Then using (3.5.21) we have∫
R

∣∣V (|ψ̃nk |2) − V (|ψ|2)
∣∣ dx

⩽
∫ Rε

−Rε

∣∣V (|ψ̃nk |2) − V (|ψ|2)
∣∣ dx+

∫
(−∞,−Rε]∪[Rε,∞)

V (|ψ̃nk |2) + V (|ψ|2) dx ⩽ 3ε.

Since ε was arbitrary we get V (|ψ̃nk |2) −→ V (|ψ|2) in L1(R), and in particular

(3.5.26)
∫

R
V (|ψ̃nk |2) dx −→

∫
R
V (|ψ|2) dx as k −→ ∞.

Similarly we show that
(
1 − |ψ̃nk |2

)
−→

(
1 − |ψ|2

)
strongly in Lp(R) for any p ∈ [2,∞).

On (−∞,−R1] and on [R1,∞) we have liftings, that is we may write ψ̃nk = ρke
iθk and ψ = ρeiθ.

Given ε > 0, take Rε > R1 such that (3.5.21) holds. Since ψ̃nk
ψ (±Rε) −→ 1 as k −→ ∞, we may

replace if necessary θk by θk +2ℓkπ for some ℓk ∈ Z on (−∞,−R1] or on [R1,∞) in such a way that
θk(−Rε) = θ(−Rε) + α−

k and θk(Rε) = θ(Rε) + α+
k , where α±

k −→ 0 as k −→ ∞. Then we extend
θ and θk as affine functions on [−Rε, Rε]. It is easily seen that eiθk −→ eiθ uniformly on [−Rε, Rε]
and in H1([−Rε, Rε]), and that θk, θ ∈ Ḣ1(R). Denote wk = ψ̃nk − eiθk and w = ψ − eiθ. From
(3.5.23) it follows that wk, w ∈ H1(R), w′

k ⇀ w′ weakly in L2([−Rε, Rε]), and wk −→ w strongly
in L2([−Rε, Rε]). Then we infer that

(3.5.27)
∫ Rε

−Rε
−2⟨θ′

ke
iθk , wk⟩ + ⟨iw′

k, wk⟩ dx −→
∫ Rε

−Rε
−2⟨θ′eiθ, w⟩ + ⟨iw′, w⟩ dx as n −→ ∞.

On the other hand, on (−∞,−R1] ∪ [R1,∞) we have −2⟨θ′
ke
iθk , wk⟩ + ⟨iw′

k, wk⟩ = (1 − ρ2
k)θ′

k. Using
(3.5.22), proceeding as in (3.5.14), then using (3.5.21) we get

(3.5.28)
∣∣∣∣ ∫ −Rε

−∞
(1 − ρ2

k)θ′
k dx

∣∣∣∣ ⩽ 2
∫ −Rε

−∞

1
4 |θ′

k|2 + 1
4(1 − ρ2

k) dx ⩽ 2
∫ −Rε

−∞
ρ2
k|θ′

k|2 + V (ρ2
k) dx ⩽ 2ε.
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A similar estimate holds true on [Rε,∞), as well as for the function ψ. Thus we get

(3.5.29)

∣∣∣∣ ∫
R

−2⟨θ′
ke
iθk , wk⟩ + ⟨iw′

k, wk⟩ dx−
∫

R
−2⟨θ′eiθ, w⟩ + ⟨iw′, w⟩ dx

∣∣∣∣
⩽ 8ε+

∣∣∣∣ ∫ Rε

−Rε
−2⟨θ′

ke
iθk , wk⟩ + ⟨iw′

k, wk⟩ dx−
∫

R
−2⟨θ′eiθ, w⟩ + ⟨iw′, w⟩ dx

∣∣∣∣
for all k sufficiently large. Then using (3.5.27) we see that the right-hand side of (3.5.29) is smaller
than 9ε if k is large enough. Since ε was arbitrary, we have proved that

(3.5.30) p(θk, wk) −→ p(θ, w) as k −→ ∞.

We infer that p(θ, w) = p+ 2ℓπ for some ℓ ∈ Z, and consequently we have

E1(ψ) ⩾ E1
min(p) = lim

k→∞
E1(ψ̃nk).

On the other hand, we have
∫

R
|ψ′|2 dx ⩽ lim inf

k→∞

∫
R

|ψ̃′
nk

|2 dx because ψ̃′
nk
⇀ ψ′ in L2(R). Taking

into account (3.5.26), we infer that necessarily ∥ψ̃′
nk

∥2
L2(R) −→ ∥ψ′∥2

L2 as k −→ ∞. The weak
convergence and the convergence of norms imply that ψ̃′

nk
−→ ψ′ strongly in L2(R). □

Proposition 3.5.3. Let p ∈ (0, π] and let ψ ∈ E(R) be a solution of the minimization problem consi-
dered above, that is ⌊P ⌋(ψ) = ⌊p⌋ and E1(ψ) = E1

min(p). Then there exists c ∈
[
(E1

min)′
r(p), (E1

min)′
ℓ(p)

]
,

where (E1
min)′

ℓ(p) and (E1
min)′

r(p) are the left and right derivatives of E1
min at p, respectively, such

that
icψ′ + ψ′′ + F (|ψ|2)ψ = 0 in R.

In other words, ψ is a one-dimensional traveling wave of speed c for (3.1.1), and ψ ∈ C2(R).
Moreover, for any p ∈ (0, π] such that E1

min(p) <
√

2p and (E1
min)′

ℓ(p) > (E1
min)′

r(p), there
exist two minimizers ψ1, ψ2 ∈ E(R) for E1

min(p) that solve (3.4.1) with speeds c1 = (E1
min)′

ℓ(p) and
c2 = (E1

min)′
r(p), respectively.

The proof of Proposition 3.5.3 is standard and is similar to the proof of Proposition 4.14 in [6],
so we omit it.

Example 3.5.4. Consider V ∈ C∞([0,∞) such that V (s) = 1
2(1 − s)2 on [1 − δ,∞) for some

δ > 0, V is decreasing on [0, 1) and 4
∫ 1

0
√
V (s2) ds >

√
2π. Then all solutions of (3.4.1) are given by

Proposition 3.4.1 (i). Let ζ(c) be as in Proposition 3.4.1. If ψc is a solution of (3.4.1), the infimum
of |ψ|2 is ζ(c). We have ζ(c) −→ 0 as c −→ 0, and using (3.2.2) we see that

E1(ψc) ⩾ 4
∣∣H(

√
ζ(c))

∣∣ −→ 4
∫ 1

0

√
V (s2) ds >

√
2π as c −→ 0.
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By Lemma 3.5.1 (vi) we have E1
min(p) <

√
2p for any p > 0, thus E1

min(p) ⩽ E1
min(π) <

√
2π for

any p ∈ (0, π].
There is c0 > 0 such that for c ∈ [0, c0) we have E1(ψc) > E1

min(π) ⩾ E1
min(p) for any p ∈ (0, π].

Thus ψc cannot be a minimizer for E1
min(p) if 0 ⩽ c < c0.

On the other hand,Theorem 3.5.2 implies that there exist minimizers for E1
min(p) for all p ∈ (0, π].

By Proposition 3.5.3, the minimizers are necessarily solutions of (3.4.1), but they must have speeds
c ⩾ c0. We infer that sup

p⩽π

(
E1
min

)′

ℓ
(p) ⩾ c0, and E1

min has a cusp at p = π.

3.6 Minimizing the energy at fixed momentum in E
Throughout this section we suppose that the assumptions (A1), (A2), (B2) in the introduction

hold. We define
Eλ,min(q) = inf{Eλ(ψ)

∣∣ ψ ∈ E and ⌊Q⌋(ψ) = ⌊q⌋}.

The next lemma collects the main properties of the function Emin.

Lemma 3.6.1. Assume that V satisfies the assumptions (A1), (A2) and (B2) in the introduction.
The function Eλ,min has the following properties :

i) Eλ,min is non-negative, 2π−periodic, Eλ,min(−p) = Eλ,min(p) for all p ∈ R and

Eλ,min(p) = inf{Eλ(eiφ + w)
∣∣ φ ∈ Ḣ1(R,R), w ∈ H1

per(R,C) and q(φ,w) = p}.

ii) For any p ∈ R and any λ > 0 we have Eλ,min(p) ⩽ E1
min(p). Consequently we have

Eλ,min(p) ⩽
√

2|p| for all p.

iii) Eλ,min is sub-additive : for any p1, p2 ∈ R there holds

Eλ,min(p1 + p2) ⩽ Eλ,min(p1) + Eλ,min(p2).

iv) Eλ,min is
√

2−Lipschitz on R.

v) For any δ > 0 there exists pδ > 0 such that Eλ,min(p) ⩾ (1 − δ)
√

2p for any p ∈ (0, pδ).

vi) For any fixed p, the mapping λ 7−→ Eλ,min(p) is non-decreasing. Assume that p ∈ (0, 2π)
and there exist p1, p2 ∈ (0, 2π) satisfying p = p1+p2

2 and E1
min(p) > 1

2
(
E1
min(p1) + E1

min(p2)
)
. Then

there exists λ∗(p) > 0 such that Eλ,min(p) < E1
min(p) for any λ ∈ (0, λ∗(p)).

vii) Assume that p0 ∈ (0, 2π) satisfies

lim inf
h→0

E1
min(p0 + h) + E1

min(p0 − h) − 2E1
min(p0)

h2 > −∞.

Then there exists λ∗(p0) > 0 such that Eλ,min(p0) = E1
min(p0) for any λ ⩾ λ∗(p0).

viii) E1
min is concave on [0, 2π].
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Remark 3.6.2. i) If the assumption in Lemma 3.6.1 (vi) does not hold for some p ∈ (0, π], the
concavity of E1

min implies that E1
min(p) = 1

2
(
E1
min(p− δ) + E1

min(p+ δ)
)

for any δ ∈ (0, p), and then
we infer that E1

min must be affine on [0, 2p]. This is impossible if p ∈ (π2 , π] because E1
min(0) = 0

and E1
min achieves its positive maximum at π. If V > 0 on [0, 1) and V (s) ⩽ 1

2(1 − s)2 + 3
8(1 − s)3

on some interval (1 − η, 1], Lemma 3.5.1 (ii) and (vi) implies that E1
min cannot be linear on [0, p]

for any p ∈ (0, π]. Remember that Eλ,min(p) = Eλ,min(2π − p). Therefore the conclusion of Lemma
3.6.1 (vi) holds without any additional assumption if p ∈ (π2 ,

3π
2 ), and it holds for any p ∈ (0, 2π)

under the assumption of Lemma 3.5.1 (vi).

ii) It is well-known that a concave function is twice differentiable almost everywhere. The limit
in Lemma 3.6.1 (vii) exists and is equal to (E1

min)′′(p) for almost every p ∈ (0, 2π), and for any
such p the conclusion of Lemma 3.6.1 (vii) holds true. Then parts (vi) and (vii) of the above lemma
show that there is some critical value λ∗(p) such that Eλ,min(p) < E1

min(p) for λ < λ∗(p), and
Eλ,min(p) = E1

min(p) for λ ⩾ λ∗(p). The proof shows that one can give upper bounds for the critical
value λ∗(p) if a lower bound for (E1

min)′′(p) is known (see (3.6.3) below).
Using an argument in the proof of part (viii) one can show that λ 7−→ Eλ,min(p) is strictly

increasing on (0, λ∗(p)].
The results in Lemma 3.6.1 (vi) and (vii) are not surprising. Recall that Eλ is a rescaled energy

that comes from minimizing the energy E on R×T 1
λ

where Tτ is the 1−dimensional torus of length
τ . When λ is large the torus T 1

λ
is too narrow and variations with respect to the variable y would

be energetically too costly. On the contrary, on large tori one can find better competitors than the
1−dimensional minimizers of E1

min.
In the case of the Gross-Pitaevskii nonlinearity F (s) = 1 − s, the function E1

min is known
explicitly (see [1] or Example 3.4.2) and it turns out that it is C2 on (0, 2π), hence in this particular
case the conclusion of Lemma 3.6.1 (vii) holds for any value of p.

Proof. The proof of (i) is similar to the proof of Lemma 3.5.1 (i).

(ii) Consider any ψ ∈ E(R) satisfying ⌊P ⌋(ψ) = p. Let ψ♯(x, y) = ψ(x). It is obvious that ψ♯ ∈ E
and Eλ(ψ♯) = E1(ψ) for any λ > 0. If φ ∈ Ḣ1(R) and w ∈ H1(R) are such that ψ = eiφ + w in
R, we have ψ♯ = eiφ(x) + w♯, where w♯(x, y) = w(x). It is obvious that q(φ,w♯) = p(φ,w), thus
⌊Q⌋(ψ♯) = ⌊P ⌋(ψ) = ⌊p⌋. We infer that Eλ,min(p) ⩽ Eλ(ψ♯) = E1(ψ). Since the last inequality
holds for all ψ ∈ E(R) such that ⌊P ⌋(ψ) = p, the conclusion follows.

The proofs of (iii) and (iv) are very similar to the proofs of Lemma 3.5.1 (iv) and (v), respectively,
and we omit them. For the proof of part (v) we need some results from [6] and [11]. These results
are stated in Lemma 3.6.4 below. We postpone the proof of part (v) after the proof of Lemma 3.6.5.

vi) If 0 < λ1 < λ2 it is obvious that Eλ1(ψ) ⩽ Eλ2(ψ) for any ψ ∈ E , and this trivially implies
that Eλ1,min(p) ⩽ Eλ2,min(p) for all p.

It suffices to consider the case p ∈ (0, π]. Fix p1, p2 ∈ (0, 2π) and ε > 0 such that p = p1+p2
2 and

10ε < E1
min(p) − 1

2
(
E1
min(p1) + E1

min(p2)
)
.
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By Lemma 3.3.6 (i), there exist functions ψj = eiφj +wj ∈ E(R) such that φj ∈ Ḣ1 ∩C∞(R,R),
wj ∈ C∞

c (R,C) and Ã > 0 such that supp(wj) ⊂ [−Ã, Ã], φj are constant on (−∞,−Ã] and on
[Ã,∞) and

p(φj , wj) = pj and E1(ψj) < E1
min(pj) + ε for j = 1, 2.

If φ1 and φ2 take different values near ±∞, we modify φj on (−∞,−Ã] and on [Ã,∞) in such a
way that φ1 = φ2 = constant on (−∞,−A] ∪ [A,∞) (where A may eventually be much larger than

Ã) and
∫ −Ã

−A
|φ′
j |2 dx+

∫ A

Ã
|φ′
j |2 dx < ε for j = 1, 2. We still denote φj the modified functions. After

this modification we have p(φj , wj) = pj and E1(ψj) < E1
min(pj) + 2ε for j = 1, 2.

Let 0 < η < 1
8 (the value of η will be chosen later). Take χ ∈ C∞(R) such that χ is 1−periodic,

0 ⩽ χ ⩽ 1,

χ = 1 on
[
0, 1

4 − η

]
∪
[3

4 + η, 1
]
, χ = 0 on

[1
4 + η,

3
4 − η

]
, and

∫ 1

0
χ(y) dy = 1

2 .

Let
φ(x) = 1

2(φ1(x) + φ2(x)),

w(x, y) = χ(y)
[
eiφ1(x) + w1(x)

]
+ (1 − χ(y))

[
eiφ2(x) + w2(x)

]
− eiφ(x), and

ψ(x, y) = eiφ(x) + w(x, y) = χ(y)ψ1(x) + (1 − χ(y))ψ2(x).

Obviously, φ ∈ Ḣ1 ∩ C∞(R,R), w ∈ C∞(R2) and w is 1−periodic with respect to the second
variable, and w = 0 on ((−∞,−A] ∪ [A,∞)) × R. Let p(φ,w) be as in (3.3.3) and let d[φ,w] be
as at the beginning of section 3.3.2. Since φ = φ1 = φ2 = constant on (−∞,−A] ∪ [A,∞), using
(3.3.5) we get

p(φj , wj) = p(φ,wj + eiφj − eiφ) for j = 1, 2.

Using this simple observation, after a straightforward computation we obtain∫
R
d[φ,w](x, y) dx = χ(y)p(φ1, w1) + (1 − χ(y))p(φ2, w2)

−χ(y)(1 − χ(y))
∫

R
⟨i
(
eiφ1 + w1

)′
− i

(
eiφ2 + w2

)′
, eiφ1 + w1 − (eiφ2 + w2)⟩ dx.

Integrating on [0, 1] we find

q(φ,w) = 1
2p(φ1, w1) + 1

2p(φ2, w2) −
∫ 1

0
χ(y)(1 − χ(y)) dy ·

∫
R

⟨iψ′
1 − iψ′

2, ψ1 − ψ2⟩ dx.

Notice that 0 ⩽
∫ 1

0 χ(y)(1 − χ(y)) dy < η because 0 ⩽ χ(y)(1 − χ(y)) ⩽ 1
4 and χ(y)(1 − χ(y)) = 0

on [0, 1
4 − η] ∪ [1

4 + η, 3
4 − η] ∪ [3

4 + η, 1]. Denoting K =
∣∣∣ ∫

R
⟨iψ′

1 − iψ′
2, ψ1 − ψ2⟩ dx

∣∣∣, we have shown
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that ∣∣q(φ,w) − p1 + p2
2

∣∣ < ηK.

We know that for any λ > 0, the function Eλ,min is
√

2−Lipschitz. If ηK < ε√
2 we have

∣∣∣Eλ,min(q(φ,w)) − Eλ,min

(
p1 + p2

2

) ∣∣∣ < ε for any λ > 0.

Let M = supt∈[0,1]E
1 (tψ1 + (1 − t)ψ2 − eiφ

)
. It is straightforward to see that M is finite. Since

ψ(·, y) = ψ1 for y ∈ [0, 1
4 − η] ∪ [3

4 + η, 1] and ψ(·, y) = ψ2 for y ∈ [1
4 + η, 3

4 − η], we infer that∫
R×[0,1]

∣∣∣∂ψ
∂x

∣∣∣2 + V (|ψ|2) dx dy ⩽
(1

2 − 2η
)
E1(ψ1) +

(1
2 − 2η

)
E1(ψ2) + 4ηM.

Now choose η such that 0 < η < min
(

ε√
2K ,

ε
4M

)
. Then for any λ > 0 we have

Eλ,min(p) = Eλ,min
(
p1+p2

2

)
⩽ Eλ,min(q(φ,w)) + ε ⩽ Eλ(ψ) + ε

=
∫

R×[0,1]

∣∣∣∂ψ
∂x

∣∣∣2 + V (|ψ|2) dx dy + λ2
∥∥∥∂ψ
∂y

∥∥∥2

L2(R×[0,1])
+ ε

⩽
1
2E

1(ψ1) + 1
2E

1(ψ2) + 2ε+ λ2
∥∥∥∂ψ
∂y

∥∥∥2

L2(R×[0,1])

⩽
1
2E

1
min(p1) + 1

2E
1
min(p2) + 4ε+ λ2

∥∥∥∂ψ
∂y

∥∥∥2

L2(R×[0,1])
.

For λ sufficiently small, so that λ2
∥∥∥∂ψ∂y ∥∥∥2

L2(R×[0,1])
< ε, we get

Eλ,min(p) < 1
2E

1
min(p1) + 1

2E
1
min(p2) + 5ε < E1

min(p),

as desired.

vii) Choose δ > 0 sufficiently small and L > −∞ such that (p0 − δ, p0 + δ) ⊂ (0, 2π) and

(3.6.1) E1
min(p0 + h) + E1

min(p0 − h) − 2E1
min(p0)

h2 ⩾ L > −∞ for all h ∈ (0, δ].

Let M = E1
min(p0) + 1. Consider any ψ = eiφ(x) + w(x, y) ∈ E , where φ ∈ Ḣ1(R,R), φ ∈

C2(R × [0, 1]) and supp(w) ⊂ [−a, a] × [0, 1] for some a > 0 such that q(φ,w) = p0 and

Eλ(ψ) =
∫

R×[0,1]

∣∣∣∣∂ψ∂x
∣∣∣∣2 + λ2

∣∣∣∣∂ψ∂y
∣∣∣∣2 + V (|ψ|2) dx dy ⩽M.
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In particular, we have
∥∥∥∂ψ∂x ∥∥∥L2(R×[0,1])

⩽
√
M and

∥∥∥∂ψ∂y ∥∥∥L2(R×[0,1])
⩽

√
M
λ . By Lemma 3.3.7, for any

y1, y2 ∈ [0, 1] we have

(3.6.2) |p(φ,w(·, y2)) − p(φ,w(·, y1))| ⩽ 2
∥∥∥∂ψ
∂x

∥∥∥
L2((R×[y1,y2])

∥∥∥∂ψ
∂y

∥∥∥
L2((R×[y1,y2])

⩽
2M
λ
.

Choose λ∗(p0) sufficiently large, so that

(3.6.3) 2M
λ∗(p0) <

δ

2 and L

2 + (λ∗(p0))2

4M > 1.

From now on we will assume that λ > λ∗(p0). For ψ as above, let pψ = p(φ,w(·, 1
2)). By (3.6.2) we

have |p(φ,w(·, y) − pψ| ∈ [pψ − δ
2 , pψ + δ

2 ] and then using Remark 3.3.4 (i) we see that a valuation
of the momentum of ψ is

(3.6.4) q(φ,w) =
∫ 1

0
p(φ,w(·, y)) dy ∈

[
pψ − δ

2 , pψ + δ

2

]
.

By Lemma 3.3.6 (ii) and the discussion preceding Definition 3.3.3, there exist maps ψ = eiφ+w ∈ E
such that φ ∈ Ḣ1(R)∩C∞(R), w is the 1−periodic extension with respect to the second variable of
a function in C∞

c (R×(0, 1)), q(φ,w) = p0 and Eλ(ψ) is arbitrarily close to Eλ,min(p0), in particular
Eλ,min(ψ) < M . If λ ⩾ λ∗(p0), using (3.6.2) and (3.6.4) we see that for any such map and for any
y ∈ [0, 1] we have

|p(φ,w(·, y)) − p0| < δ.

Denote p(y) = p(φ,w(·, y)) and let δψ = supy∈[0,1] |p(y) − p0|. Obviously, for any y ∈ [0, 1] we have
ψ(·, y)eiφ + w(·, y) ∈ E(R) and consequently

(3.6.5) E1(ψ(·, y)) ⩾ E1
min(p(φ,w(·, y))) = E1

min(p(y)).

If f : [a, b] −→ R is concave and continuous, for any t ∈ [a, b] we have

f(t) ⩾ f(a) + t− a

b− a
(f(b) − f(a)).

Since E1
min is concave on (0, 2π) and p(y) ∈ [p0 − δψ, p0 + δψ], we get

(3.6.6) E1
min(p(y)) ⩾ E1

min(p0 − δψ) + p(y) − (p0 − δψ)
2δψ

[
E1
min(p0 + δψ) − E1

min(p0 − δψ)
]
.

Using Fubini’s Theorem, (3.6.5), (3.6.6) and the fact that
∫ 1

0
p(y) dy = p0 (see (3.6.4)) we obtain

(3.6.7)

∫
R×[0,1]

∣∣∣∣∂ψ∂x
∣∣∣∣2 + V (|ψ|2) dx =

∫ 1

0
E1(ψ(·, y)) dy ⩾

∫ 1

0
E1
min(p(y)) dy

⩾
1
2
[
E1
min(p0 + δψ) + E1

min(p0 − δψ)
]
.
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By (3.6.2) the mapping y 7−→ p(y) is continuous, hence there exists y0 ∈ [0, 1] such that p(y0) = p0.
From (3.6.2) we get

(3.6.8)
∥∥∥∂ψ
∂y

∥∥∥
L2((R×[0,1])

⩾
δψ

2
∥∥∥∂ψ∂x ∥∥∥L2((R×[0,1])

⩾
δψ

2
√
M
.

From (3.6.7) and (3.6.8) we obtain

Eλ(ψ) − E1
min(p0) ⩾ 1

2
[
E1
min(p0 + δψ) + E1

min(p0 − δψ)
]

− E1
min(p0) +

λ2δ2
ψ

4M

= δ2
ψ

(
1
2
E1
min(p0 + δψ) + E1

min(p0 − δψ) − 2E1
min(p0)

δ2
ψ

+ λ2

4M

)
> δ2

ψ

because δψ ⩽ δ and λ ⩾ λ∗(p0) (see (3.6.3). Since the above estimate holds for any ψ as considered
above, the conclusion follows.

(viii) We proceed in several steps to prove the concavity of Eλ,min.

Step 0. Functional setting. We consider the space

X = {w : R2 −→ C | w is 1 − periodic with respect to the second variable,
is piecewise C2 and there exists a > 0 such that supp(w) ⊂ [−a, a] × R}.

By "piecewise C2" we mean that w is continuous and there exist finitely many points 0 = y0 <
y1 < · · · < yn = 1 such that for each j ∈ {1, . . . , n} there exists a mapping w̃j that is C2 on some
larger strip R × (yj−1 − δ, yj + δ), and w|R×[yj−1,yj ] = w̃j|R×[yj−1,yj ]. We consider the space X for
the following reasons : we need a function space X ⊂ H1

per such that any function ψ ∈ E can be
approximated by functions of the form eiφ(x) + w(x, y), where φ ∈ Ḣ1(R) and w ∈ X (this can
be done in view of Lemma 3.3.6 (ii)), we need to use Lemma 3.3.7 (which obviously extends to
functions in X ), and we need X to be stable by a reflection procedure that we will describe below.

Given any w ∈ X and y0 ∈ R, we define the functions T1,y0w and T2,y0w on R × [0, 1] as follows,
then we extend them to R2 as 1−periodic functions with respect to the second variable :

T1,y0w(x, y) =
{
w(x, y0 + y) if y ∈ [0, 1

2 ],
w(x, y0 + 1 − y) if y ∈ [1

2 , 1],

T2,y0w(x, y) =
{
w(x, y0 + 1 − y) if y ∈ [0, 1

2 ],
w(x, y0 + y) if y ∈ [1

2 , 1].

It is obvious that T1,y0w and T2,y0w belong to X for any w ∈ X and any y0 ∈ R, and we have
Tj,y0w(x, y) = Tj,y0w(x, 1 − y) for all y ∈ [0, 1] and j = 1, 2.
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For φ ∈ Ḣ1(R) and w ∈ X , let ψ(x, y) = eiφ(x) + w(x, y) and let d[φ,w] and q(φ,w) be as in
subsection 3.3.2. It is easily seen that

(3.6.9)

q(φ, T1,y0w) =
∫ 1

0

∫
R
d[φ, T1,y0w](x, y) dx dy = 2

∫ y0+ 1
2

y0
d[φ,w](x, y) dx dy,

q(φ, T2,y0w) =
∫ 1

0

∫
R
d[φ, T2,y0w](x, y) dx dy = 2

∫ y0

y0− 1
2

d[φ,w](x, y) dx dy,

Eλ(eiφ + T1,y0w) = 2
∫ y0+ 1

2

y0

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂y

∣∣∣2 + V (|ψ|2) dx dy,

Eλ(eiφ + T2,y0w) = 2
∫ y0

y0− 1
2

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂y

∣∣∣2 + V (|ψ|2) dx dy, and

Eλ(eiφ + T1,y0w) + Eλ(eiφ + T1,y0w) = 2Eλ(ψ).

For any φ and w as above, the function

Υφ,w(t) =
∫ t+ 1

2

t
d[φ,w](x, y) dx dy −

∫ t

t− 1
2

d[φ,w](x, y) dx dy

is continuous, 1−periodic on R and Υφ,w(t+ 1
2) = −Υφ,w(t) for any t. We denote

ω(φ,w) = sup
t∈[0,1]

| Υφ,w(t) | .

For any q ∈ (0, 2π) and any λ > 0, we denote

δλ(q) = inf
ε>0

(
sup

{
ω(φ,w) | φ ∈ Ḣ1(R), w ∈ X , q(φ,w) = q and Eλ(eiφ + w) < Eλ,min(q) + ε

})
.

Step 1. Assume that δλ(q) > 0. Then for any η ∈ (0, δλ(q)) we have

(3.6.10) Eλ,min(q − η) + Eλ,min(q + η) ⩽ 2Eλ,min(q).

To see this, fix η ∈ (0, δλ(q)). Fix ε > 0. By the definition of δλ(q), there exist φ ∈ Ḣ1(R) and
w ∈ X such that q(φ,w) = q, E(eiφ+w) < Eλ,min(q)+ε and ω(φ,w) > η. Since Υφ,w is continuous,
1−periodic and Υφ,w(t+ 1

2) = −Υφ,w(t) for any t, there exists t0 ∈ [0, 1] such that Υφ,w(t0) = η. Let
w1 = T1,t0w and w2 = T2,t0w. From the first two equalities in (3.6.9) we get q(φ,w1) = q + η and
q(φ,w2) = q− η, and we infer that Eλ(eiφ +w1) ⩾ Eλ,min(q+ η) and Eλ(eiφ +w2) ⩾ Eλ,min(q− η).
Then using the last equality in (3.6.9) we find

Eλ,min(q − η) + Eλ,min(q + η) ⩽ Eλ(eiφ + w2) + Eλ(eiφ + w1) = 2Eλ(eiφ + w) < 2Eλ,min(q) + 2ε.
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Since the above inequality holds for any ε > 0, (3.6.10) is proven.

Step 2. If q ∈ (0, 2π) is such that δλ(q) = 0, then Eλ,min(q) = E1
min(q).

Let M = Eλ,min(q) + 1. Choose r > 0 such that (q − r, q + r) ⊂ (0, 2π). Then choose ε0 ∈ (0, 1)
such that ε0 < r and 4

√
Mε0
λ < r.

Fix ε ∈ (0, ε0). By the definition of δλ(q), there exist ηε > 0 such that for any φ ∈ Ḣ1(R) and
w ∈ X satisfying q(φ,w) = q and Eλ(eiφ + w) < Eλ,min(q) + 2ηε we have ω(φ,w) < ε. We may
assume that ηε ⩽ ε.

Consider φ ∈ Ḣ1(R) and w ∈ X such that q(φ,w) = q and E(eiφ + w) < Eλ,min(q) + ηε.
Proceeding as in step 1, we see that there exists y0 ∈ [0, 1] such that Υφ,w(y0) = 0. Denote w1 =
T1,y0w, w2 = T2,y0w, ψ = eiφ + w, and ψj(x, y) = eiφ(x) + wj(x, y) for j = 1, 2. By (3.6.9) we have

q(φ,w1) = q(φ,w2) = q(φ,w) = q and Eλ(ψ1) + Eλ(ψ2) = 2Eλ(ψ) < 2Eλ,min(q) + 2ηε

and we infer that

Eλ,min(q) ⩽ Eλ(ψj) < Eλ,min(q) + 2ηε for j = 1, 2.

Taking into account how ηε was chosen, we infer that ω(φ,wj) < ε for j = 1, 2.
Let wj,1 = T1, 1

4
wj and wj,2 = T2, 1

4
wj for j = 1, 2, then let ψj,ℓ(x, y) = eiφ(x) + wj,ℓ(x, y) for

j, ℓ ∈ {1, 2}. Using the first equality in (3.6.9) we find

∣∣q(φ,w1,1) − q(φ,w1)
∣∣ =

∣∣Υφ,w1

(1
4

) ∣∣ ⩽ ω(φ,wj) < ε.

Similarly we get
∣∣q(φ,wj,ℓ) − q(φ,wj)

∣∣ < ε for j, ℓ ∈ {1, 2}, and this gives q(φ,wj,ℓ) ∈ (q − ε, q + ε).
Since Eλ,min is

√
2−Lipschitz, we get

(3.6.11) Eλ,min(q(φ,wj,ℓ)) ⩾ Eλ,min(q) −
√

2ε for j, ℓ ∈ {1, 2}.

Now we observe that by construction, the functions wj,ℓ are 1
2−periodic with respect to the

second variable y. Let w̃j,ℓ(x, y) = wj,ℓ(x, y2 ). Then we have w̃j,ℓ ∈ X and

q(φ, w̃j,ℓ) =
∫ 1

0

∫
R
d[φ, w̃j,ℓ](x, y) dx dy = 2

∫ 1
2

0

∫
R
d[φ,wj,ℓ](x, y) dx dy = q(φ,wj,ℓ)

because
∫ 1

2

0

∫
R
d[φ,wj,ℓ](x, y) dx dy =

∫ 1

1
2

∫
R
d[φ,wj,ℓ](x, y) dx dy (the last equality is a consequence

of the fact that wj,ℓ is 1
2−periodic with respect to y). Denoting ψ̃j,ℓ(x, y) = eiφ(x) + w̃j,ℓ(x, y) =

ψj,ℓ(x, y2 ) we have ψ̃j,ℓ ∈ E and using (3.6.11) we get

Eλ(ψ̃j,ℓ) ⩾ Eλ,min(q(φ, w̃j,ℓ)) = Eλ,min(q(φ,wj,ℓ)) ⩾ Eλ,min(q) −
√

2ε.
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A simple computation gives

Eλ(ψ̃j,ℓ) = Eλ(ψj,ℓ) − 3
4λ

2
∥∥∥∂ψj,ℓ
∂y

∥∥∥2

L2(R×[0,1])
.

From the last sequence of inequalities we obtain

(3.6.12) 3
4λ

2
∥∥∥∂ψj,ℓ
∂y

∥∥∥2

L2(R×[0,1])
⩽ Eλ(ψj,ℓ) − Eλ,min(q) +

√
2ε.

Summing up the inequalities (3.6.12) for j, ℓ ∈ {1, 2} we get

(3.6.13) 3λ2
∥∥∥∂ψ
∂y

∥∥∥2

L2(R×[0,1])
⩽ 4Eλ(ψ) − 4Eλ,min(q) + 4

√
2ε < 4ηε + 4

√
2ε < 12ε.

Using (3.6.13), the fact that
∥∥∥∂ψ∂x ∥∥∥2

L2(R×[0,1])
⩽ Eλ(ψ) ⩽M and Lemma 3.3.7 we infer that

∣∣p(φ,w(·, y2)) − p(φ,w(·, y1))
∣∣ ⩽ 2

∥∥∥∂ψ
∂x

∥∥∥
L2(R×[0,1])

∥∥∥∂ψ
∂y

∥∥∥
L2(R×[0,1])

⩽
4
√
εM

λ

for any y1, y2 ∈ [0, 1]. Since y 7−→ p(φ,w(·, y)) is continuous and
∫ 1

0
p(φ,w(·, y)) dy = q, there exists

y∗ ∈ [0, 1] such that p(φ,w(·, y∗)) = q and consequently

(3.6.14) p(φ,w(·, y)) ⊂
(
q − 4

√
εM

λ
, q + 4

√
εM

λ

)
for any y ∈ [0, 1].

Using the fact that E1
min is

√
2−Lipschitz, we deduce that

(3.6.15) E1(ψ(·, y)) =
∫

R

∣∣∣∂ψ
∂x

(x, y)
∣∣∣2 + V (|ψ|2)(x, y) dx ⩾ E1

min(q) − 4
√

2εM
λ

.

Integrating (3.6.15) over [0, 1] we discover

(3.6.16) Eλ,min(q) + ε > Eλ(ψ) ⩾
∫ 1

0
E1(ψ(·, y)) dy ⩾ E1

min(q) − 4
√

2εM
λ

.

Since (3.6.16) holds for any ε ∈ (0, ε0), we infer that Eλ,min(q) ⩾ E1
min(q). Thus necessarily

Eλ,min(q) = E1
min(q) (see part (ii)) and the proof of step 2 is completed.

Step 3. Conclusion. The concavity of Eλ,min on [0, 2π] follows from steps 1 and 2 and from
Lemma 3.6.3 below with [a, b] = [0, 2π], f = Eλ,min and g = E1

min.
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Lemma 3.6.3. Let f, g : [a, b] −→ R be two continuous functions. Assume that
a) g is concave and f ⩽ g on [a, b], and
b) for any x ∈ (a, b) we have either f(x) = g(x), or there exists δx > 0 such that

(3.6.17) f(x) ⩾ 1
2(f(x− η) + f(x+ η)) for any 0 < η < δx.

Then f is concave on [a, b].

Proof. For any x ∈ (a, b) there exists δx > 0 such that (3.6.17) holds. If f(x) < g(x), this follows
from assumption (b). If f(x) = g(x) we may take δx = min(x − a, b − x). Indeed, if 0 < η <
min(x− a, b− x) we have x− η, x+ η ∈ [a, b]. By assumption (a) we get

f(x) = g(x) ⩾ 1
2(g(x− η) + g(x+ η)) ⩾ 1

2(f(x− η) + f(x+ η)).

Next we see that for any α, β ∈ R, the function fα,β(t) = f(t)−αt−β cannot achieve a minimum
on an interval (x1, x2) ⊂ (a, b) unless it is constant on [x1, x2]. Indeed, assume that fα,β reaches
a minimum on (x1, x2) at some point y ∈ (x1, x2). It is obvious that fα,β also satisfies (3.6.17).
Let S = {z ∈ (x1, x2) | fα,β(z) = fα,β(y)}. By (3.6.17) we see that z − η, z + η ∈ S for any
0 ⩽ η < min(δy, y − x1, x2 − y) and we infer that S is open in (x1, x2). By the continuity of f , the
set S is also relatively closed in (x1, x2). Hence S = (x1, x2).

Let x1, x2 ∈ [a, b], x1 < x2. The function t 7−→ f(t) − x2−t
x2−x1

f(x1) − t−x1
x2−x1

f(x2) takes the value
0 at t = x1 and at t = x2, hence it must be nonnegative on [x1, x2]. This means that

f(t) ⩾ x2 − t

x2 − x1
f(x1) + t− x1

x2 − x1
f(x2) for any t ∈ [x1, x2].

Since x1 and x2 were arbitrary, f is concave on [a, b]. □

To perform minimization of the energy at fixed momentum in E we will use a "regularization
by minimization procedure" that has been developed in [11] and [6]. It will enable us to get rid of
small defects of Sobolev functions and to approximate functions in E that have very small energy
on every ball of fixed radius by functions whose modulus is close to 1.

We consider a function ν ∈ C∞(R) such that ν is odd, ν(s) = s for s ∈ [0, 2], 0 ≤ ν ′ ≤ 1 on R
and ν(s) = 3 for s ≥ 4. Given ψ ∈ E and λ > 0, the modified Ginzburg-Landau energy of ψ in Ω is

(3.6.18) EGLm,λ(ψ) =
∫

R×[0,1]

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂y

∣∣∣2 + 1
2
(
ν2(|ψ|) − 1

)2
dx dy.

For any given ψ ∈ E , and h, λ > 0 we consider the functional

(3.6.19)

Gψh,λ(ζ) = EGLm,λ(ζ) + 1
h2

∥∥ζ − ψ
∥∥2
L2(R×[0,1])

=
∫

R×[0,1]

∣∣∣∂ζ
∂x

∣∣∣2 + λ2
∣∣∣∂ζ
∂y

∣∣∣2 + 1
2
(
ν2(|ζ|) − 1

)2
+ 1
h2 |ζ − ψ|2 dx dy.
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Notice that Gψh,λ(ζ) < ∞ for any ζ ∈ E satisfying ζ − ψ ∈ H1
per. We will consider the problem of

minimizing Gψh,λ in the set {ζ ∈ E | ζ − ψ ∈ H1
per}.

Let Λ = 1
λ . Denoting ψ̃(x, y) = ψ(x, λy) and ζ̃(x, y) = ζ(x, λy) we see that ψ̃ and ζ̃ are

Λ−periodic with respect to the second variable and

Gψh,λ(ζ) = λ

∫
R×[0,Λ]

∣∣∣∂ζ̃
∂x

∣∣∣2 +
∣∣∣∂ζ̃
∂y

∣∣∣2 + 1
2
(
ν2(|ζ̃|) − 1

)2
+ 1
h2 |ζ̃ − ψ|2 dx dy = λG̃ψ̃h (ζ̃).

Therefore ζ is a minimizer for Gψh,λ among 1−periodic functions with respect to the second variable
if and only if ζ̃ is a minimizer for G̃ψ̃h among functions that are Λ−periodic with respect to the
second variable. This observation enables us to use directly the results established in [6, 11].

Proceeding exactly as in Lemma 3.1 p. 160 and Lemma 3.2 p. 164 in [6] (see also Lemma 3.1 p.
126 and Lemma 3.2 p. 132 in [11]), we get :

Lemma 3.6.4. i) The functional Gψh,λ has a minimizer in the set Eψ = {ζ ∈ E | ζ − ψ ∈ H1
per}.

ii) Any minimizer ζh satisfies

(3.6.20) EGLm,λ(ζh) ⩽ EGLm,λ(ψ);

(3.6.21) ∥ζh − ψ∥2
L2(R×[0,1]) ⩽ h2EGLm,λ(ψ);

(3.6.22)
∫

R×[0,1]

∣∣∣ (ν2(|ζh|) − 1
)2

−
(
ν2(|ψ|) − 1

)2 ∣∣∣ dx dy ⩽ ChEGLm,λ(ψ).

If ψ = eiφ + w with φ ∈ Ḣ1(R) and w ∈ H1
per, then we have

(3.6.23) |q(φ,w + (ζh − ψ)) − q(φ,w)| ⩽ 2hEGLm,λ(ψ).

iii) Let L(z) =
(
ν2(|z|) − 1

)
ν(|z|)ν ′(|z|) z

|z| if z ∈ C∗ and L(0) = 0. Then any minimizer ζh of
Gψh,λ in Eψ satisfies the equation

(3.6.24) −∆ζh + L(ζh) + 1
h2 (ζh − ψ) = 0 in D′(R2).

Moreover, we have ζh ∈ W 2,p
loc (R2) for 1 ⩽ p < ∞, and consequently ζh ∈ C1,α

loc (R2) for any
α ∈ [0, 1).

iv) For any h > 0 and any δ > 0 there exists a constant K = K(h, δ) > 0 such that for any
ψ ∈ E satisfying EGLm,λ(ψ) ≤ K and for any minimizer ζh of Gψh,λ in Eψ we have

(3.6.25) 1 − δ < |ζh(x)| < 1 + δ in R2.
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v) Let (ψn)n⩾1 ⊂ E be a sequence of functions such that (EGL,λ(ψn))n⩾1 is bounded and

(3.6.26) lim
n→∞

(
sup
y∈R

E
([y−1,y+1])
GL,λ (ψn)

)
= 0.

There exists a sequence hn −→ 0 such that for any minimizer ζn of Gψnhn,λ in Eψn we have
∥ |ζn| − 1∥L∞(R2) −→ 0 as n −→ ∞.

The proof of Lemma 3.6.4 is the same as the poof of Lemmas 3.1 and 3.2 in [6], and we refer the
interested reader to that article. See also Lemmas 3.1 and 3.2 in [11] for higher-dimensional variants.
The existence of a minimizer is straightforward using the direct method in calculus of variations. Es-
timates (3.6.20) and (3.6.21) folow immediately from the fact thatGψh,λ(ζh) ⩽ Gψh,λ(ψ) = EGLm,λ(ψ),
and (3.6.23) comes from (3.3.7), (3.6.20) and (3.6.21). Part (v) is a version of Lemma 3.2 p. 164 in
[6] in the periodic setting ; see also Lemma 3.2 p. 132 in [11].

For ⌊p⌋ ∈ R/2πZ we denote |⌊p⌋| = inf{|p′| | p′ ∈ ⌊p⌋}. Notice that |⌊p⌋| ∈ [0, π] and the
infimum is achieved. The distance between the classes ⌊p1⌋ and ⌊p2⌋ is |⌊p1⌋ − ⌊p2⌋| = |⌊p1 − p2⌋|.
It follows from Lemma 3.6.1 (i) that for any p ∈ R we have

Eλ,min(p) = Eλ,min(|⌊p⌋|).

Lemma 3.6.5. Assume that (ψn)n⩾1 ⊂ E is a sequence of functions satisfying :
(a) There exists M > 0 such that Eλ(ψn) ⩽M for all n,
(b) lim

n→∞

(
sup
y∈R

E
([y−1,y+1])
λ (ψn)

)
= 0,

(c) |⌊Q⌋(ψn)| −→ q ∈ [0, π] as n −→ ∞.

Then we have lim inf
n→∞

Eλ(ψn) ⩾
√

2q.

Proof. Using Lemma 3.2.3 we see that EGL,λ(ψn) is bounded and (3.6.26) holds. We denote

M̃ = sup
n⩾1

EGL,λ(ψn) and εn = sup
x∈R

E
([x−1,x+1])
GL,λ (ψn).

Let un = |ψn| − 1. Then we have |∇un| ⩽ |∇ψn| almost everywhere on R2. We also have
|un| ⩽ | |ψn| − 1| · | |ψn| + 1| = | |ψn|2 − 1|. We infer that un ∈ H1(R × (0, 1)) and

∥un∥2
H1(R×(0,1)) ⩽ max

(
1, 1
λ2

)
EGL,λ(ψn) ⩽ max

(
1, 1
λ2

)
M̃.

Similarly we get ∥un∥2
H1([x−1,x+1]×(0,1)) ⩽ max

(
1, 1

λ2

)
εn for any x ∈ R. Let p ∈ (2,∞). By the

Sobolev embedding, there is Cp > 0 such that ∥u∥Lp([a−1,a+1]×[0,1]) ⩽ Cp∥u∥H1((a−1,a+1)×(0,1)) for
any u ∈ H1((a− 1, a+ 1) × (0, 1)) and we infer that∫

[a−1,a+1]×[0,1]
|un|p dx dy ⩽ Cpp∥u∥pH1((a−1,a+1)×(0,1)) ⩽ C(p, λ)ε

p−2
2

n ∥un∥2
H1((a−1,a+1)×(0,1)).
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Take a sequence (ak)k⩾1 such that R = ∪k⩾1[ak − 1, ak + 1] and each point x ∈ R belongs to at
most two of the intervals [ak − 1, ak + 1]. We write the above inequality for each k and we sum over
k to get

∥un∥pLp(R×[0,1]) ⩽ C(p, λ)ε
p−2

2
n ∥un∥2

H1(R×(0,1)) ⩽ C(p, λ)ε
p−2

2
n EGL,λ(ψn) ⩽ C(p, λ)ε

p−2
2

n M̃.

We have thus proved that ∥un∥Lp(R×[0,1]) −→ 0 as n −→ ∞ for any p ∈ (2,∞).
Next we show that

(3.6.27)
∫

R×[0,1]

∣∣V (|ψn|2) − 1
2
(
|ψn|2 − 1

)2 ∣∣ dx dy −→ 0 as n −→ ∞.

Fix ε > 0. By assumption (A1) there exists η(ε) > 0 such that

∣∣V (s2) − 1
2
(
s2 − 1

)2 ∣∣ ⩽ ε

2
(
s2 − 1

)2
for any s ∈ [1 − η(ε), 1 + η(ε)].

Choose p ⩾ min(4, 2p0 + 2), where p0 is as in (A2). By assumption (A2) there is C(ε, p) > 0 such
that ∣∣V (s2) − 1

2
(
s2 − 1

)2 ∣∣ ⩽ C(ε, p)
∣∣ |s| − 1

∣∣p for any s ∈ [0, 1 − η(ε)] ∪ [1 + η(ε),∞).

We find ∣∣∣V (|ψn|2) − 1
2
(
|ψn|2 − 1

)2 ∣∣∣ ⩽ ε

2
(
|ψn|2 − 1

)2
+ C(ε, p)| |ψn| − 1|p

and integrating we obtain

(3.6.28)

∫
R×[0,1]

∣∣V (|ψn|2) − 1
2
(
|ψn|2 − 1

)2 ∣∣ dx dy
⩽
ε

2

∫
R×[0,1]

(
|ψn|2 − 1

)2
dx dy + C(ε, p)∥un∥pLp(R×[0,1]) ⩽ εM̃ + C(ε, p, λ)ε

p−2
2

n M̃.

Since εn −→ 0, there exists n(ε) ∈ N∗ such that C(ε, p, λ)ε
p−2

2
n < ε for all n ⩾ n(ε). Then the

right-hand side in the above inequality is smaller than 2εM̃ for all n ⩾ n(ε). Since ε was arbitrary,
(3.6.27) is proven.

Assume that ζ ∈ E satisfies 1 − δ ⩽ |ζ| ⩽ 1 + δ for some δ ∈ (0, 1). According to Lemma 3.3.5,
ζ admits a lifting ρeiθ, a valuation of the momentum of ζ is

∫
R×[0,1](1 − ρ2) ∂θ∂x dxdy, and we have

(3.6.29)

√
2(1 − δ)

∣∣∣∣ ∫
R×[0,1]

(1 − ρ2)∂θ
∂x

dx dy

∣∣∣∣ ⩽ ∫
R×[0,1]

(1 − δ)2
∣∣∣∂θ
∂x

∣∣∣2 + 1
2(1 − ρ2)2 dx dy

⩽
∫

R×[0,1]
ρ2
∣∣∣∂θ
∂x

∣∣∣2+ (1− ρ2)2

2 dx dy =
∫

R×[0,1]

∣∣∣∂ζ
∂x

∣∣∣2+ 1
2(1− |ζ|2)2 dx dy ⩽ EGLm,λ(ζ).
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We may use Lemma 3.6.4 (v) for the sequence (ψn)n⩾1. We infer that there exists a sequence
hn −→ 0 and for each n there is a minimizer ζn of Gψnhn,λ in Eψn such that ∥ |ζn| − 1∥L∞(R2) −→ 0 as
n −→ ∞. Denote δn = ∥ |ζn| − 1∥L∞(R2), so that 1 − δn ⩽ |ζn| ⩽ 1 + δn. For all n sufficiently large
we have δn < 1, and then ζn admits a lifting ζn = ρne

iθn and (3.6.29) holds for ζn.
From (3.6.23) we have

|⌊Q⌋(ζn) − ⌊Q⌋(ψn)| ⩽ 2hnEGLm,λ(ψn) ⩽ 2hnM̃ −→ 0 as n −→ ∞.

Since |⌊Q⌋(ψn)| −→ q, we infer that |⌊Q⌋(ζn)| −→ q as n −→ ∞.
We have EGL,λ(ψn) ⩾ EGLm,λ(ψn) ⩾ EGLm,λ(ζn), and using (3.6.29) we obtain

Eλ(ψn) = EGL,λ(ψn) +
∫

R×[0,1]
V (|ψn|2) − 1

2(φ2(|ψn|) − 1)2 dx dy

≥ EGLm,λ(ζn) +
∫

R×[0,1]
V (|ψn|2) − 1

2(φ2(|ψn|) − 1)2 dx dy

≥
√

2(1 − δn)|⌊Q⌋(ζn)| +
∫

R×[0,1]
V (|ψn|2) − 1

2(φ2(|ψn|) − 1)2 dx.

Letting n −→ ∞ in the above inequality and using (3.6.27) we get lim inf
n→∞

Eλ(ψn) ⩾
√

2q and Lemma
3.6.5 is proven. □

Proof of Lemma 3.6.1 (v). Fix p ⩾ max(4, 2p0 + 2), where p0 is as in (A2). Coming back to
(3.6.28) we see that for any ε > 0 there exists C(ε, p) > 0 such that for any ψ ∈ E we have

(3.6.30)

∣∣Eλ(ψ) − EGL,λ(ψ)
∣∣ ⩽ ∫

R×[0,1]

∣∣V (|ψn|2) − 1
2
(
|ψn|2 − 1

)2 ∣∣ dx dy
⩽
ε

2

∫
R×[0,1]

(
|ψn|2 − 1

)2
dx dy + C(ε, p)

∥∥|ψn| − 1
∥∥p
Lp(R×[0,1])

⩽ εEGL,λ(ψ) + C(ε, p, λ)EGL,λ(ψ)
p
2 .

Using (3.6.30) we infer that for any ε > 0 and for any λ > 0 there exists M̃(ε, λ) > 0 such that

(3.6.31)
∣∣Eλ(ψ) − EGL,λ(ψ)

∣∣ ⩽ 2εEGL,λ(ψ) for any ψ ∈ E satisfying EGL,λ(ψ) ⩽ M̃(ε, λ).

Fix δ ∈ (0, 1). Given any ψ ∈ E and any h > 0, denoting by ζh a minimizer of Gψh,λ in Eψ we
have EGL,λ(ψ) ⩾ EGLm,λ(ψ) ⩾ EGLm,λ(ζh) and therefore

(3.6.32)

Eλ(ψ) −
√

2(1 − δ)
∣∣⌊Q⌋(ψ)

∣∣ ⩾ (Eλ(ψ) − EGL,λ(ψ)) + δ

2EGL,λ(ψ)

+
(
1 − δ

2

)(
EGLm,λ(ζh) − 1 − δ

1 − δ
2

√
2
∣∣⌊Q⌋(ζh)

∣∣)+ (1 − δ)
√

2
(∣∣⌊Q⌋(ζh)

∣∣− ∣∣⌊Q⌋(ψ)
∣∣) .
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Choose h = δ
16

√
2(1−δ) . Using (3.6.23) we have

(3.6.33) (1 − δ)
√

2
∣∣∣∣∣⌊Q⌋(ζh)

∣∣− ∣∣⌊Q⌋(ψ)
∣∣∣∣∣ ⩽ (1 − δ)

√
2 · (2hEGLm,λ(ψ)) ⩽ δ

8EGL,λ(ψ).

For h as above, by Lemma 3.6.4 (iv) there exists a constant K(δ) > 0 such that for any ψ ∈ E
satisfying EGL,λ(ψ) ⩽ K(δ) and for any minimizer ζh of Gψh,λ in Eψ we have 1 − δ

2 ⩽ |ζh| ⩽ 1 + δ
2 .

Then using (3.6.29) for ζh we see that

(3.6.34) 1 − δ

1 − δ
2

√
2
∣∣⌊Q⌋(ζh)

∣∣ ⩽ (
1 − δ

2

)√
2
∣∣⌊Q⌋(ζh)

∣∣ ⩽ EGLm,λ(ζh).

If EGL,λ(ψ) ⩽ M̃
(
δ
16 , λ

)
, using (3.6.31) we get

(3.6.35)
∣∣Eλ(ψ) − EGL,λ(ψ)

∣∣ ⩽ δ

8EGL,λ(ψ).

By Lemma 3.2.3 there exists m > 0 such that for any ψ ∈ E satisfying Eλ(ψ) ⩽ m we have
EGL,λ(ψ) ⩽ min

(
K(δ), M̃

(
ε

16 , λ
))

. Then using (3.6.32)-(3.6.35) we infer that

Eλ(ψ) −
√

2(1 − δ)
∣∣⌊Q⌋(ψ)

∣∣ ⩾ δ

4EGL,λ(ψ) ⩾ 0 for all ψ ∈ E satisfying Eλ(ψ) ⩽ m.

The above inequality and the fact that Eλ,min(p) −→ 0 as p −→ 0 imply that there exists pδ > 0
such that Eλ,min(p) ⩾

√
2(1 − δ)p for all p ∈ [0, pδ]. □

Theorem 3.6.6. Assume that V satisfies (A1), (A2), and (B2). Let p ∈ (0, π] and λ > 0 such
that Eλ,min(p) <

√
2p. Let (ψn)n⩾1 ⊂ E be a sequence satisfying

(3.6.36) ⌊Q⌋(ψn) −→ ⌊p⌋ and Eλ(ψn) −→ Eλ,min(p) as n −→ ∞.

Then there exist a subsequence (ψnk)k⩾1, a sequence (xk)k⩾1 ⊂ R and ψ ∈ E satisfying ⌊Q⌋(ψ) =
⌊p⌋, Eλ(ψ) = Eλ,min(p), and

|ψnk |(· + xk) − |ψ| −→ 0 in Lp(R) for 2 ⩽ p < ∞,
V (|ψnk(· + xk)|2) −→ V (|ψ|2) in L1(R × [0, 1]),
∇ψnk(· + xk) −→ ∇ψ in L2(R × [0, 1]).

Remark 3.6.7. If λ ⩾ λ∗(q) we have Eλ,min(q) = E1
min(q). In this case the existence of minimizers

follows from Theorem 3.5.2 in the previous section. However, even in this case Theorem 3.6.6
above is interesting because it gives the stability of the minimizers under two-dimensional periodic
perturbations, and this stability does not follow directly from Theorem 3.5.2.
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Proof of Theorem 3.6.6. Let (ψn)n⩾1 ⊂ E be a sequence satisfying (3.6.36). Then Eλ(ψn) is
bounded.

As in the proof of Theorem 3.5.2, we use the concentration-compactness principle ([9]). We
denote by Λn the concentration function of fn :=

∣∣∣∂ψn
∂x

∣∣∣2 + λ2
∣∣∣∂ψn
∂y

∣∣∣2 + V (|ψn|2), that is

Λn(t) = sup
a∈R

∫
[a−t,a+t]×[0,1]

∣∣∣∂ψn
∂x

∣∣∣2 + λ2
∣∣∣∂ψn
∂y

∣∣∣2 + V (|ψn|2) dx dy.

It is clear that Λn is a non-decreasing function on [0,∞), Λn(0) = 0 and lim
t→∞

Λn(t) = Eλ(ψn). Then
there exists a subsequence of (ψn,Λn)n⩾1, still denoted (ψn,Λn)n⩾1, and there is a non-decreasing
function Λ : [0,∞) −→ [0,∞) satisfying

(3.6.37) Λn(t) −→ Λ(t) a.e on [0,∞) as n −→ ∞.

Let α = lim
t→∞

Λ(t). We have 0 ⩽ α ⩽ limn→∞Eλ(ψn) = Eλ,min(p).
We will show that α = Eλ,min(p).

We prove first that α > 0. We argue by contradiction and we assume that α = 0. Then we have
Λ(t) = 0 for all t ⩾ 0, and in particular Λ(1) = 0. Then Lemma 3.6.5 implies that lim inf

n→∞
Eλ(ψn) ⩾

√
2 lim
n→∞

∣∣⌊Q⌋(ψn)
∣∣, that is Eλ,min(p) ⩾

√
2p, contradictiong the assumption of Theorem 3.6.6.

Assume that 0 < α < Eλ,min(p). Proceeding as in the proof of Theorem 3.5.2 (see (3.5.15)
- (3.5.18) there) we see that there exist a sequence Rn −→ ∞, a sequence (an)n⩾1 ⊂ R, and
β ∈ (0, Eλ,min(p)) such that, after possibly extracting a further subsequence, we have

(3.6.38) E
(−∞,an−Rn)
λ (ψn) −→ β, E

(an+Rn,∞)
λ (ψn) −→ Eλ,min(p) − β, and

(3.6.39) E
[an−Rn,an+Rn]
λ (ψn) −→ 0.

Let ψ̆n(x) =
∫ 1

0 ψn(x, y) dy and vψn(x, y) = ψn(x, y) − ψ̆n(x). From (3.6.39) and Lemma 3.2.4 we
infer that

(3.6.40) E1, [an−Rn,an+Rn](ψ̆n) −→ 0 and ∥vψn∥H1(([an−Rn,an+Rn]) −→ 0 as n −→ ∞.

Proceeding as in the proof of Theorem 3.5.2 we see that
∥∥|ψ̆n| − 1

∥∥
L∞([an−Rn+1,an+Rn−1] −→ 0. For

n sufficiently large, ψ̆n admits a lifting ψ̆n(x) = ρn(x)eiθn(x) on [an − Rn + 1, an + Rn − 1], where
ρn = |ψ̆n|. Since E1, [an−Rn,an+Rn](ψ̆n) −→ 0 we have ∥ρn − 1∥H1([an−Rn+1,an+Rn−1]) −→ 0.

By Lemma 3.2.2 there exist φn ∈ Ḣ1(R) and vn ∈ H1(R) such that ψ̆n = eiφn + vn. We may
assume that φn = θn and vn = (ρn − 1)eiθn on [an − Rn + 2, an + Rn − 2] (to see this, we take
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χn ∈ C∞
c (R) such that supp(χn) ⊂ [an−Rn+1, an+Rn−1] and χn = 1 on [an−Rn+2, an+Rn−2]

and we replace φn by φ̃n = (1 − χn)φn + χnθn and vn by ṽn = ψ̆n − eiφ̃n). Then we may write

ψn = eiφn(x) + wn(x, y) on R2,

where φn(x) = θn(x) and wn(x, y) = (ρn(x) − 1)eiθn(x) + vψn(x, y) on [an −Rn + 2, an +Rn − 2] and
satisfy

(3.6.41) ∥φ′
n∥L2([an−Rn+2,an+Rn−2]) −→ 0 and ∥wn∥H1([an−Rn+2,an+Rn−2]×[0,1]) −→ 0

as n −→ ∞. Consider a nondecreasing function χ ∈ C∞(R) such that χ = 0 on (−∞,−1] and
χ = 1 on [0,∞). Define

φn,1(x) =
{
φn(x) if x ⩽ an,
φn(an) if x > an,

φn,2(x) =
{
φn(an) if x < an,
φn(an) if x ⩾ an,

wn,1(x, y) = χ(an − x)wn(x, y), wn,2(x, y) = χ(x− an)wn(x, y),

and ψn,j(x, y) = eiφn,j(x) + wn,j(x, y) for j = 1, 2. It is then clear that ψn,j ∈ E and we have

(3.6.42) ψn,1 = ψn on (−∞, an], ψn,1 = eiφn(an) = constant on [an + 1,∞),
ψn,2 = ψn on [an,∞), ψn,2 = eiφn(an) = constant on (−∞, an − 1].

Using (3.6.38), (3.6.39) and (3.6.41) it is easily seen that

(3.6.43) Eλ(ψn,1) −→ β and Eλ(ψn,2) −→ Eλ,min(p) − β as n −→ ∞.

Taking into account (3.6.42), valuations of the momenta of ψn,1 and of ψn,2 are, respectively,

q(φn,1, wn,1) =
∫

(−∞,an]×[0,1]
−2⟨φ′

ne
iφn , wn⟩ + ⟨i∂wn

∂x
,wn⟩ dx dy

+
∫

[an,an+1]×[0,1]
⟨i∂wn,1

∂x
,wn,1⟩ dx dy, and

q(φn,2, wn,2) =
∫

[an,∞)×[0,1]
−2⟨φ′

ne
iφn , wn⟩ + ⟨i∂wn

∂x
,wn⟩ dx dy

+
∫

[an−1,an]×[0,1]
⟨i∂wn,2

∂x
,wn,2⟩ dx dy.

Since Rn −→ ∞ and ∥wn,j∥H1([an−Rn+2,an+Rn−2]×[0,1]) −→ 0, it follows from the above that

(3.6.44) q(φn,1, wn,1) + q(φn,2, wn,2) = q(φn, wn) + o(1) as n −→ ∞.
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For any a, b ∈ R we have
∣∣⌊a+ b⌋

∣∣ ⩽ ∣∣⌊a⌋
∣∣+ ∣∣⌊b⌋∣∣. Passing to a further subsequence we may assume

that
∣∣⌊Q⌋(ψn,1)

∣∣ −→ p1 ∈ [0, π] and
∣∣⌊Q⌋(ψn,2)

∣∣ −→ p2 ∈ [0, π]. Then using (3.6.44) we deduce that

(3.6.45) p1 + p2 ⩾ p.

We have Eλ(ψn,j) ⩾ Eλ,min
(∣∣⌊Q⌋(ψn,j)

∣∣). Passing to the limit and using (3.6.43) we see that

(3.6.46) β ⩾ Eλ,min(p1) and Eλ,min(p) − β ⩾ Eλ,min(p2).

Since Eλ,min is nondecreasing on [0, π], (3.6.46) implies that p1 < p and p2 < p and then from
(3.6.45) we infer that 0 < pj < p for j = 1, 2.

The concavity of Eλ,min implies that Eλ,min(pj) ⩽ pj
p Eλ,min(p) for j = 1, 2, and equality may

occur if and only if Eλ,min is linear on [0, p]. Summing up these two inequalities we find Eλ,min(p1)+
Eλ,min(p2) ⩾ Eλ,min(p), and equality implies that Eλ,min must be linear on [0, p]. Comparing this to
(3.6.46) we infer that necessarily p1 + p2 = p and Eλ,min(p1) +Eλ,min(p2) = Eλ,min(p), thus Eλ,min
is linear on [0, p]. Then using Lemma 3.6.1 (v) we deduce that Eλ,min(p) =

√
2p, contradicting the

assumption that Eλ,min(p) <
√

2p. We conclude that we cannot have 0 < α < Eλ,min(p).

So far we have proved that α = Eλ,min(p). Then it is standard to prove that there is a se-
quence (xn)n≥1 ⊂ RN such that for any ε > 0 there is Rε > 0 satisfying E

(−∞,xn−Rε)
λ (ψn) +

E
(xn+Rε,∞)
λ (ψn) < ε for all sufficiently large n. Denoting ψ̃n = ψn(· + xn), we see that for any ε > 0

there exist Rε > 0 and nε ∈ N such that

(3.6.47) E
(−∞,−Rε)
λ (ψ̃n) + E

(Rε,∞)
λ (ψ̃n) < ε for all n ≥ nε.

Obviously, (∇ψ̃n)n⩾1 is bounded in L2(R × (0, 1)) and using the boundedness of EGL,λ(ψ̃n) it is
easy to see that (ψ̃n)n⩾1 is bounded in L2((−R,R)× (0, 1)) for any R > 0. By a standard argument,
there exist a function ψ ∈ H1

loc(R2) which is 1−periodic with respect to the second variable,
∇ψ ∈ L2(R × (0, 1)) and there is a subsequence (ψ̃nk)k≥1 satisfying

(3.6.48)

∇ψ̃nk ⇀ ∇ψ weakly in L2(R × (0, 1)),
ψ̃nk ⇀ ψ weakly in H1((−R,R) × (0, 1)) for any R > 0,
ψ̃nk −→ ψ strongly in Lp((−R,R) × (0, 1)) for any R > 0 and p ∈ [1,∞),
ψ̃nk −→ ψ almost everywhere on R2.

The weak convergence implies that for any interval I ⊂ R we have

(3.6.49)
∫
I×(0,1)

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂y

∣∣∣2 dx dy ⩽ lim inf
k→∞

∫
I×(0,1)

∣∣∣∂ψ̃nk
∂x

∣∣∣2 + λ2
∣∣∣∂ψ̃nk
∂y

∣∣∣2 dx dy.
The almost everywhere convergence and Fatou’s Lemma give

(3.6.50)
∫
I×[0,1]

(
|ψ|2 − 1

)2
dx dy ≤ lim inf

k→∞

∫
I×[0,1]

(
|ψ̃nk |2 − 1

)2
dx dy and
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(3.6.51)
∫
I×[0,1]

V (|ψ|2) dx dy ≤ lim inf
k→∞

∫
I×[0,1]

V (|ψ̃nk |2) dx dy.

From (3.6.49) - (3.6.51) we get

(3.6.52) EIGL(ψ) ≤ lim inf
k→∞

EIGL(ψ̃nk) and EIλ(ψ) ≤ lim inf
k→∞

EIλ(ψ̃nk).

We deduce in particular that ψ ∈ E , Eλ(ψ) ⩽ Eλ,min(p) and E
(−∞,−Rε)
λ (ψ) + E

(Rε,∞)
λ (ψ) ⩽ ε.

Using Lemma 3.2.4 (and taking eventually a larger Rε) we see that the sequence ˘̃ψnk satisfies
(3.5.21). As in the proof of Theorem 3.5.2 we infer that there is a function ζ ∈ H1

loc(R) such that
ζ ′ ∈ L2(R) and we may extract a subsequence, still denoted the same, such that (3.5.23) holds for
˘̃ψnk and ζ. It is then clear that (3.5.24) and (3.5.25) hold for ˘̃ψnk and ζ, too, and consequently
ζ ∈ E(R).

Fix R1 > 0 such that ˘̃ψnk and ζ satisfy (3.5.21) and (3.5.22) on (−∞,−R1] ∪ [R1,∞). Then the
functions ˘̃ψnk and ζ admit liftings on (−∞,−R1] ∪ [R1,∞), say ˘̃ψnk = ρke

iθk and ζ = ρeiθ, where
ρ, ρk ∈ H1((−∞,−R1] ∪ [R1,∞)), and θ, θk are continuous and θ′, θ′

k ∈ L2((−∞,−R1] ∪ [R1,∞)).
Fix ε > 0. Then choose Rε > 0 and kε ∈ N such that ψ̃nk and ψ satisfy (3.6.47) and ˘̃ψnk and ζ

satisfy (3.5.21) and (3.5.22) on (−∞,−Rε] ∪ [Rε,∞) for all k ⩾ kε. We proceed as in the proof of
Theorem 3.5.2. We have ˘̃ψnk(±Rε)/ζ(±Rε) −→ 1 as k −→ ∞, thus we may replace θk by θk + 2ℓ±k π
on (−∞,−Rε] and on [Rε,∞), where ℓ±k ∈ Z, so that α±

k := θk(±Rε) − θ(±Rε) −→ 0 as k −→ ∞.
We extend θk and θ as affine functions on [−Rε, Rε]. Then we have θk, θ ∈ Ḣ1(R), and θk −→ θ,
eiθk −→ eiθ uniformly on [−Rε, Rε] as well as in H1([−Rε, Rε]).

We write
ψ̃nk = eiθk + wk and ψ = eiθ + w,

where
wk =

( ˘̃ψnk − eiθk
)

+
(
ψ̃nk − ˘̃ψnk

)
, and w = (ζ − eiθ) + (ψ − ζ).

It is clear that wk ∈ H1(R × (0, 1)) and ∇w ∈ L2(R × (0, 1)). On (−∞,−Rε] and on [Rε,∞) we
have ζ − eiθ = (ρ − 1)eiθ ∈ L2((−∞,−Rε] ∪ [Rε,∞)) because ζ ∈ E(R), and clearly ζ − eiθ ∈
L∞([−Rε, Rε]) ⊂ L2([−Rε, Rε]), hence ζ − eiθ ∈ L2(R). We have ψ̃nk − ˘̃ψnk −→ ψ − ζ almost
everywhere on R2, and Lemma 3.2.4 gives

∥ψ̃nk − ˘̃ψnk∥2
L2(R×(0,1)) = ∥vψ̃nk∥2

L2(R×(0,1)) ⩽ C
∥∥∥∂ψ̃nk
∂y

∥∥∥2

L2(R×(0,1))
⩽ CM.

Then Fatou’s Lemma implies that ψ − ζ ∈ L2(R × (0, 1)), hence w ∈ H1(R × (0, 1)).
Denoting v = ψ− ζ, an easy computation shows that on ((−∞,−Rε] ∪ [Rε,∞)) × (0, 1) we have

d(θ, w) = d(θ, (ρ− 1)eiθ + v) = (1 − ρ2)θ′ +
〈
i
∂

∂x
(ψ + eiθ), v

〉
+ ⟨i ∂v

∂x
, (ρ− 1)eiθ⟩.

90



We may estimate each term :

∣∣(1 − ρ2)θ′∣∣ ⩽ 1
2 |θ′|2 + 1

2
(
1 − ρ2

)2
,

∣∣∣〈i ∂
∂x

(ψ + eiθ), v
〉∣∣∣ ⩽ (∣∣∣∂ψ

∂x

∣∣∣+ |θ′|
)

|v| ⩽ 1
2

∣∣∣∂ψ
∂x

∣∣∣2 + 1
2 |θ′|2 + |v|2,

∣∣⟨i ∂v
∂x
, (ρ− 1)eiθ⟩

∣∣ ⩽ 1
2

∣∣∣∂v
∂x

∣∣∣2 + 1
2(ρ− 1)2 ⩽

∣∣∣∂ψ
∂x

∣∣∣2 + |θ′|2 + 1
2(ρ2 − 1)2.

Since ψ and ζ satisfy (3.6.47) and (3.5.21), respectively, we find

(3.6.53)
∫

((−∞,−Rε]∪[Rε,∞))×(0,1)

∣∣d(θ, w)
∣∣ dx dy ⩽ Cε,

where C does not depend on ε.
Using the fact that ψ̃nk and ˘̃ψnk satisfy (3.6.47) and (3.5.21), respectively, and proceeding

similarly we find that θk and wk also satisfy (3.6.53), with C independent of ε and of k.
On the other hand, we have

(3.6.54)

∫
[−Rε,Rε]×(0,1)

d(θk, wk) dx dy =
∫

[−Rε,Rε]×(0,1)
−2⟨θ′

ke
iθk , wk⟩ + ⟨i∂wk

∂x
,wk⟩ dx dy

−→
∫

[−Rε,Rε]×(0,1)
−2⟨θ′eiθ, w⟩ + ⟨i∂w

∂x
,w⟩ dx dy =

∫
[−Rε,Rε]×(0,1)

d(θ, w) dx dy

because θ′
ke
iθk ⇀ θ′eiθ and ∂wk

∂x ⇀ ∂w
∂x weakly in L2([−Rε, Rε] × [0, 1], while wk −→ w strongly in

L2([−Rε, Rε] × [0, 1]).
From (3.6.53) and (3.6.54) we deduce that for all sufficiently large k we have

|q(θk, wk) − q(θ, w)| =
∣∣∣ ∫

R×(0,1)
d(θk, wk) − d(θ, w) dx dy

∣∣∣ ⩽ (2C + 1)ε.

Hence there exists k(ε) ∈ N such that for all k ⩾ k(ε),

(3.6.55)
∣∣⌊Q⌋(ψ̃nk) − ⌊Q⌋(ψ)

∣∣ ⩽ ∣∣q(θk, wk) − q(θ, w)
∣∣ ⩽ (2C + 1)ε.

We have thus shown that ⌊Q⌋(ψ) = lim
k→∞

⌊Q⌋(ψ̃nk) = ⌊p⌋. Therefore we must have

Eλ(ψ) ⩾ Eλ,min(p) = lim
k→∞

Eλ
(
ψ̃nk

)
.

Comparing the above inequality to (3.6.49), (3.6.51) and (3.6.52) (with I = R), we infer that
necessarily

Eλ(ψ) = Eλ,min(p) = lim
k→∞

Eλ
(
ψ̃nk

)
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and

(3.6.56)
∫

R×(0,1)

∣∣∣∂ψ
∂x

∣∣∣2 + λ2
∣∣∣∂ψ
∂y

∣∣∣2 dx dy = lim
k→∞

∫
R×(0,1)

∣∣∣∂ψ̃nk
∂x

∣∣∣2 + λ2
∣∣∣∂ψ̃nk
∂y

∣∣∣2 dx dy,

(3.6.57)
∫

R×(0,1)
V (|ψ|2) dx dy = lim

k→∞

∫
R×(0,1)

V (|ψ̃nk |2) dx dy.

The weak convergence ∇ψ̃nk ⇀ ∇ψ in L2(R × (0, 1)) and (3.6.56) give the strong convergence
∇ψ̃nk −→ ∇ψ in L2(R × (0, 1)). The fact that V ⩾ 0, V (|ψ̃nk |2) −→ V (|ψ|2) almost everywhere on
R2 and (3.6.57) imply that V (|ψ̃nk |2) −→ V (|ψ|2) in L1(R × (0, 1)).

Fix ε > 0. Let Rε be as in (3.6.47). Using (3.6.47) and Lemma 3.2.3 we find

(3.6.58)
∫

((−∞,−Rε]∪[Rε,∞))×[0,1]

∣∣|ψ̃nk | − 1
∣∣2 dx dy ⩽ CE

(−∞,−Rε]∪[Rε,∞)
GL,λ (ψ̃nk) ⩽ δ(ε),

where δ(ε) −→ 0 as ε −→ 0. It is obvious that a similar estimate holds for ψ. Since ψ̃nk −→ ψ in
L2([−Rε, Rε] × [0, 1]), we have ∥ |ψ̃nk | − |ψ|∥2

L2(([−Rε,Rε]×[0,1]) ⩽ ε for all sufficiently large k. It is

obvious that
(

|ψ̃nk | − |ψ|
)2

⩽ 1
2
∣∣ψ̃nk | − 1

∣∣2 + 1
2
∣∣ |ψ| − 1

∣∣2 and using (3.6.58) we get

(3.6.59)
∥∥ |ψ̃nk | − |ψ|

∥∥2
L2(R×[0,1]) ⩽ 2δ(ε) + ε

for all sufficiently large k. We have thus shown that |ψ̃nk | − |ψ| −→ 0 in L2(R × [0, 1]). Since
∇
(
|ψ̃nk | − |ψ|

)
is bounded in L2(R × [0, 1]), using the Sobolev embedding and interpolation we

infer that |ψ̃nk | − |ψ| −→ 0 in Lp(R × [0, 1]) for any p ∈ [2,∞). □

Proposition 3.6.8. Let λ > 0 and p ∈ (0, π]. Assume that ψ ∈ E is a minimizer of Eλ in the set
{ϕ ∈ E

∣∣ |⌊Q⌋(ϕ)| = p}. Then :
(i) There is c ∈ [(Eλ,min)′

r (p), (Eλ,min)′
ℓ(p)] such that ψ satisfies

(3.6.60) icψx1 + ∆ψ + F (|ψ|2)ψ = 0 in D′(R2).

(ii) Any solution ψ ∈ E of (3.6.60) satisfies ψ ∈ W 2,p
loc (R2) for any p ∈ [2,∞), ψ and ∇ψ are

bounded and ψ ∈ C1,α(RN ) for any α ∈ [0, 1).
(iii) If c1 = (Eλ,min)′

r (p) < (Eλ,min)′
ℓ(p) = c2, there exist ψ1, ψ2 ∈ E such that each ψj is a

minimizer of Eλ in the set {ϕ ∈ E
∣∣ |⌊Q⌋(ϕ)| = p} and solves (3.6.60) with c = cj for j = 1, 2.

The proof of Proposition 3.6.8 is similar to the proof of Proposition 4.14 p. 187 in [6], so we
omit it.
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