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Analyse multi-échelle de la mécanique de l’actine ramifiée

La polymérisation de filaments d’actine contre une membrane peut générer des forces
importantes entrâınant l’endocytose chez la levure ou la formation de lamellipodes à
l’extrémité de cellules motiles comme les kératocytes. Cette polymérisation est thermo-
dynamiquement favorable car l’ajout d’un monomère s’accompagne d’une diminution du
potentiel chimique. Cependant, la croissance du filament ralentie lorsqu’une contrainte
lui est opposée, évaluant la force de décrochage à quelques pN. Si ce schéma est bien
établi pour un filament unique, il n’est pas évident de le transposer à un réseau com-
posé de centaines de filaments comme le lamellipodium. Plus généralement, comprendre
l’émergence de caractéristiques à grande échelle à partir des propriétés moléculaires reste
un défi majeur en biologie. Ainsi, l’objectif global de cette thèse est d’étudier l’émergence
des propriétés mécaniques de l’actine ramifiée d’un point de vue numérique, théorique et
statistique. Pour ce faire, nous nous appuyons sur des simulations numériques de réseaux
à grande échelle dans lesquelles les caractéristiques macroscopiques peuvent être mesurées.

Dans la première partie de notre travail, nous utilisons des simulations stochastiques
(dynamique de Langevin) pour créer des réseaux ramifiés en croissance soumis à une
contrainte mécanique externe, imitant ainsi la résistance de la matrice extracellulaire.
Précisément, nous étudions comment les propriétés stationnaires du système sont détermi-
nées à la fois par la force de décrochage et par la contrainte. Pour un réseau de filaments
avec une force de décrochage infinie, la vitesse de croissance présente un maximum lorsque
la contrainte tend vers zéro et diminue ensuite comme une loi de puissance de la contrainte.
Une théorie mécanique des réseaux ramifiés fondée sur l’enchevêtrement des filaments
s’accorde sur cette loi de puissance. La valeur maximale à faible contrainte peut être
expliquée par la trâınée du réseau, qui devient ici le principal facteur déterminant. Par
l’étude de filaments plus réalistes nous montrons qu’il existe un seuil de force de décrochage
à partir duquel le mouvement est possible. Ce seuil est proportionnel à la contrainte
externe. Enfin, pour mieux comprendre le régime de faible contrainte, nous avons étudié
les réseaux à croissance libre et avons montré qu’ils s’adaptent d’eux-mêmes en ralentissant
et en devenant plus denses.

Dans la deuxième partie, nous cherchons à quantifier l’information qui peut être
obtenue à partir de statistiques réalisées sur de nombreuses simulations. Plus précisément,
nous cherchons à identifier les combinaisons de paramètres (e.g. rigidité de l’actine,
longueur du filament) qui influencent le plus les observables de notre système ramifié (e.g.
densité, module d’Young). Afin de les identifier, nous appliquons des outils issus de la
théorie de l’information aux statistiques générées par nos simulations, ces dernières ayant
été répétées en appliquant de petites modifications aux paramètres. Sur la base de travaux
antérieurs sur la dynamique des microtubules, nous avons calculé la matrice d’information
de Fisher (MIF) associée qui permet de quantifier la dépendance observable-paramètre.
En supposant que chaque observables suit localement une distribution normale, et grâce
à une meilleure utilisation des statistiques de simulation, nous avons pu obtenir un calcul
plus efficace de la MIF. L’analyse des vecteurs et valeurs propres de la MIF fournit une
hiérarchie de modes de sensibilité dans l’espace des paramètres. Ces modes peuvent être
interprétés géométriquement comme les directions pour lesquelles les caractéristiques du
réseau sont le plus influencées par les paramètres. Ainsi, nous avons caractérisé notre
système branché avec ses principaux modes de sensibilité, correspondant à une dimension
effective de notre système, dont la valeur, deux, a été confirmée à l’aide d’un modèle
analytique.

Mots clefs: biophysique, actine, polymérisation, réseau, mécanique, simulations, infor-
mation, dimensionnalité, réduction
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Multiscale analysis of the mechanics of branched actin material

Polymerization of actin filaments against membranes can generate significant forces,
leading to endocytosis in yeast or to the formation of lamellipodium protrusions at the
leading edge of motiles cells like keratocytes. This polymerization is thermodynamically
favorable, as the addition of a monomer is accompanied by a decrease in chemical po-
tential. However, filament growth slows down when a stress opposes its growth, with a
stall force of a few pN. While this picture is well established for a single filament, it is
not clear how it translates to a network of hundreds of filaments like the lamellipodium.
More generally, understanding the emergence of large-scale characteristics from molecular
properties remains a major challenge in biology. Thus, the overall aim of this thesis is
to understand the emergence of the mechanical properties of branched actin from a nu-
merical, theoretical and statistical point of view. To achieve this, we rely on numerical
simulations of large-scale networks in which macroscopic characteristics can be measured.

In the first part of our work, we use stochastic simulations (Langevin dynamics) to
create growing branched networks subjected to external mechanical stress, mimicking
the resistance of the extracellular matrix. Specifically, we investigate on how stationary
properties of the system are determined by both stall force and stress. For a network made
of filaments with an infinite stall force, the growth velocity exhibits a maximum when the
stress tends towards zero and then decreases as a power law of the stress. A mechanical
theory of branched networks based on filaments entanglement agrees with this power law.
The maximum value at low stress can be explained by the drag of the network, which
becomes the main determining factor here. By studying more realistic filaments, we show
that there is a stall force threshold above which movement is possible. This threshold is
proportional to the external stress. Finally, to better understand the low-stress regime,
we studied free-growing networks and showed that they self-adapt by slowing down and
densifying.

In the second part, we aim at quantify the information that can be obtained from
statistics carried out on numerous simulations. More specifically, we seek to identify the
combinations of parameters (e.g. actin stiffness, filament length) that most influence the
observables of our branched system (e.g. density). To identify them, we apply tools
from information theory to the statistics generated by our simulations, which have been
repeated by applying small modifications to the parameters. Based on previous work on
microtubule dynamics, we have calculated the associated Fisher information matrix (FIM),
which quantifies the observable-parameter dependence. By assuming that each observable
locally follows a normal distribution, and by a better use of simulation statistics, we were
able to obtain a more efficient calculation of the FIM. Analysis of the eigenvectors and
eigenvalues of the FIM provides a hierarchy of sensitivity modes in the parameter space,
which can be interpreted geometrically as the direction in which network characteristics
can be most influenced by the parameters. Thus, we characterize our branched system
with its main sensitivity modes, corresponding to an effective dimension of our system.
We find that this system has two effective dimensions, which has been confirmed using an
analytical model.

Keywords: biophysics, actin, polymerization, network, mechanics, simulations, infor-
mation, dimensionality, reduction
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Résumé substantiel

La seconde moitié du vingtième siècle a vu les collaborations entre physiciens et biol-
ogistes s’intensifier. Ces derniers, se sont entre autres consacrés à la compréhension des
principes régissant la régulation cellulaire , en se penchant particulièrement sur des as-
pects tels que le développement, la morphogenèse et le cycle cellulaire. Aujourd’hui, la
recherche portant sur les propriétés mécaniques des cellules et de leurs composants revêt
une importance croissante, contribuant de manière significative à notre compréhension
des phénomènes biologiques, notamment au niveau cellulaire. Le cytosquelette est l’acteur
central de la régulation mécanique des cellules : ce réseau de biopolymères intracellu-
laire assure un rôle essentiel dans le maintien des propriétés structurales et mécaniques
des cellules, qu’il s’agisse d’eucaryotes, de bactéries ou d’archées. Il s’agit d’un système
actif, caractérisé par la polymérisation et la dépolymérisation qui assurent un renouvelle-
ment constant de ses composants, en utilisant l’hydrolyse de l’ATP. Les fonctions du
cytosquelette englobent diverses tâches cruciales, notamment la régulation de la forme
cellulaire, le trafic membranaire et la contraction des cellules musculaires. En outre, il as-
sure un rôle fondamental dans le processus de division cellulaire Le cytosquelette se décline
en trois principales familles : les microtubules, les filaments intermédiaires et l’actine.
L’actine fait l’objet de notre étude. Il s’agit d’une protéine versatile, qui se présente
sous de très nombreuses formes et qui se situe la plupart du temps sous la membrane.
Elle est l’élément du cytosquelette le plus largement étudié. L’actine s’associe à de nom-
breuses autres protéines, notamment les moteurs moléculaires, les protéines de coiffe et
les protéines de nucléation telles que Arp2/3, pour créer, maintenir ou détruire des struc-
tures qui remplissent des fonctions biologiques spécifiques. Parmi ces structures, citons
le lamellipode, le filopode, l’actine corticale et le podosome. Notre attention se porte sur
les réseaux d’actine branchés, qui constituent une structure élémentaire présente dans de
nombreux contextes tels que le lamellipode et le podosome. La polymérisation des fila-
ments d’actine contre une membrane peut engendrer des forces significatives, entrâınant
des phénomènes tels que l’endocytose chez les levures ou la formation de lamellipodes à
l’extrémité de cellules motiles comme les kératocytes. La polymérisation de l’actine est
thermodynamiquement favorable, car l’ajout d’un monomère s’accompagne d’une diminu-
tion du potentiel chimique. Cependant, la croissance du filament ralentit de manière ex-
ponentielle en présence d’une contrainte mécanique externe, avec une force de décrochage
estimée à quelques piconewtons. Cette diminution de la vitesse de croissance s’explique
par le fait que l’application d’une force réduit la probabilité qu’un intervalle suffisamment
large entre le filament et la membrane permette l’insertion d’un monomère. Ce modèle
stochastique dit du ”cliquet brownien”, a été validé expérimentalement.
Bien que ce schéma soit bien établi pour un filament individuel, son application à un réseau
composé de centaines de filaments, comme dans le cas du lamellipode, demeure complexe.
De nombreuses études expérimentales se sont penchées sur les propriétés mécaniques et
la vitesse de croissance des réseaux d’actine branchés. En général, elles ont confirmé que
la croissance ralentissait en présence d’une contrainte externe, bien que des divergences
notables subsistent en fonction des conditions expérimentales. Dans notre travail, nous
passons en revue l’état actuel des connaissances relatives à la croissance des filaments
individuels, des faisceaux de filaments et des réseaux d’actine branchés. Nous soutenons
ainsi l’idée que ces réseaux branchés s’adaptent en réponse aux contraintes extérieures,
réduisant leur vitesse de croissance et ajustant leurs propriétés mécaniques, en devenant
plus rigides lorsque la contrainte augmente. Plusieurs modèles théoriques et simulations
ont été proposés pour étayer ces constats.

iv



Toutefois, une analyse plus approfondie de la littérature met en lumière certaines
limites des travaux actuels que nous abordons dans notre propre recherche. En particulier,
la force requise pour immobiliser des réseaux d’actine branchés n’a été que peu explorée,
et sa dépendance à la force de décrochage individuelle des filaments n’a pas encore été
clairement établie. De manière plus générale, l’impact de la force de décrochage sur la
dynamique des réseaux demeure méconnu, et le processus d’adaptation des réseaux aux
contraintes, en termes de vitesse ou de module d’élasticité, n’a pas encore été encadré
théoriquement. Enfin, l’évolution des propriétés mécaniques du réseau dans le temps,
en dehors de toute intervention biologique, requiert une exploration plus approfondie.
Plus généralement, la compréhension de l’émergence de caractéristiques à grande échelle
à partir des propriétés moléculaires demeure un défi majeur en biologie, thématique que
nous abordons dans la seconde partie de notre travail.

Ainsi, l’objectif global de cette thèse est d’étudier l’émergence des propriétés mécaniques
de l’actine ramifiée, en adoptant une approche numérique, théorique et statistique. Pour
ce faire, nous nous appuyons sur des simulations numériques de réseaux à grande échelle,
au sein desquelles les caractéristiques macroscopiques peuvent être mesurées.

Dans la première partie de notre étude, nous avons employé des simulations stochas-
tiques basées sur la dynamique de Langevin (en utilisant l’outil de simulation de cy-
tosquelette Cytosim) pour générer des réseaux ramifiés en croissance soumis à une con-
trainte mécanique externe. Cette contrainte reproduit la résistance de la matrice ex-
tracellulaire. Initialement, nous positionnons des protéines de nucléation Arp2/3 à la
base d’un cylindre qui définit notre espace de travail. Ces protéines sont libres de dif-
fuser aléatoirement à la surface du cylindre. Lorsqu’une de ces protéines de nucléation
s’approche suffisamment d’un filament, elle s’y attache, induisant ainsi la création d’un
nouveau filament. Le processus démarre avec quelques filaments pour amorcer la crois-
sance du réseau, et le réservoir de protéines de nucléation est alimenté à un taux con-
stant. Le réseau ainsi formé crôıt de manière substantielle, nous permettant d’étudier
ses propriétés. La contrainte appliquée est maintenue constante, elle peut être assimilée à
l’implémentation numérique d’un microscope à force atomique. Après une série d’étalonnages
visant à affiner les paramètres de notre système, nous avons examiné comment les pro-
priétés stationnaires du réseau sont influencées à la fois par la force de décrochage indi-
viduelle des filaments et par la contrainte mécanique.

Pour un réseau de filaments présentant une force de décrochage infinie, la vitesse de
croissance atteint un maximum constant lorsque la contrainte tend vers zéro, puis diminue
conformément à une loi de puissance en fonction de la contrainte. Une théorie mécanique
des réseaux ramifiés, basée sur le concept d’enchevêtrement des filaments est cohérente avec
cette loi de puissance. Dans une autre partie de notre recherche, nous avons approfondi les
aspects théoriques liés à cette théorie mécanique des réseaux ramifiés. La valeur maximale
de la vitesse de croissance à faible contrainte peut s’expliquer par la trâınée exercée par
le réseau, celle-ci devient le facteur déterminant lorsque la contrainte imposée est faible.
En étudiant des filaments plus réalistes, nous avons démontré l’existence d’un seuil de
force de décrochage en deçà duquel le mouvement n’est pas possible pour des contraintes
non négligeables. Ce seuil est proportionnel à la contrainte externe. Par conséquent,
nous pouvons caractériser la transition entre la phase de non-mouvement et la phase de
mouvement (qui suit la loi de l’enchevêtrement) au moyen d’une surface seuil. Cependant,
nous n’avons pas pu établir une correspondance directe entre la valeur de cette surface seuil
et une surface caractéristique issue des caractéristiques physiques de notre système. Enfin,
pour mieux appréhender le régime de faible contrainte, nous avons étudié les réseaux à
croissance libre, montrant qu’ils s’auto-ajustent en ralentissant et en devenant plus denses
avec le temps.
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Plus précisément, les nouvelles couches de filaments se développent en présence d’une plus
grande quantité de matériel et sont donc soumis à une force de trâınée plus significative.
Cela entrâıne un ralentissement du réseau. Une approche théorique, en partie fondée sur
la théorie de l’enchevêtrement, a confirmé ces résultats numériques.

Dans la seconde partie de notre travail, nous cherchons à quantifier l’information que
nous pouvons extraire des statistiques provenant d’un grand nombre de simulations. Plus
précisément, notre objectif est d’identifier les combinaisons de paramètres (par exemple,
la rigidité de l’actine ou la longueur d’un filament) qui exercent la plus grande influence
sur les observables de notre système ramifié, tels que la densité ou le module d’élasticité.
Pour parvenir à cette identification, nous avons appliqué des outils issus de la théorie de
l’information aux données statistiques générées par nos simulations, en réalisant de légères
variations des paramètres à chaque itération.
S’inspirant de travaux antérieurs portant sur la dynamique des microtubules, nous avons
calculé la matrice d’information de Fisher associée, qui nous permet de quantifier la
dépendance entre les observables et les paramètres. De manière générale, l’infirmation
de Fisher mesure la dépendance d’un modèle probabiliste par rapport à un paramètre.
Techniquement, il s’agit de la variance de la fonction de score qui est elle même la dérivée
de log-vraisemblance. Dans le contexte d’un système comportant plusieurs paramètres,
on parle de matrice d’information de Fisher. L’analyse des espaces propres de la matrice
d’information de Fisher révèle les combinaisons de paramètres qui exercent la plus grande
influence sur le système, conduisant à ce que l’on nomme la “compression de l’espace
des paramètres”. Après avoir décrit l’estimation numérique de la matrice de Fisher pour
un système biologique complexe, en l’occurrence la dynamique des microtubules, nous
avons identifié les limitations de cette approche qui se fonde sur une estimation de la
densité de probabilité du système. Afin de minimiser les effets du bruit d’estimation sur
les espaces propres, nous avons opté pour une étude locale des effets induits par les vari-
ations de paramètres sur les moments de la loi de probabilité. De plus, pour maximiser
l’information obtenue, nous avons considéré des ensembles d’observables, ce qui a permis
une caractérisation plus détaillée des espaces propres.
Ainsi, en supposant que chaque observable suit localement une distribution normale, et
grâce à une utilisation plus efficace des statistiques de simulation, nous avons développé
une méthode plus précise pour le calcul de la matrice de Fisher en estimant localement
les dérivées premières et la matrice de covariance. L’analyse des vecteurs propres et des
valeurs propres de la matrice de Fisher a permis d’établir une hiérarchie des modes de sen-
sibilité dans l’espace des paramètres. Ces modes peuvent être interprétés géométriquement
comme les directions dans lesquelles les caractéristiques du réseau sont le plus fortement
influencées par les paramètres. Finalement, nous avons caractérisé notre système ram-
ifié en identifiant ses principaux modes de sensibilité, déterminant ainsi une dimension
effective pour notre système, dont la valeur, égale à deux, a été confirmée grâce à un
modèle analytique. Nous détaillons les limites de notre travail et proposons plusieurs voix
d’améliorations et potentielles applications afin d’étendre ces résultats statistiques. Nous
estimons par ailleurs que cette approche pourrait se révéler fructueuse pour orienter des
collaborations entre expérimentateurs et théoriciens.
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Acronyms

• ABP: Actin Binding Protein

• ADP: Adenosine Diphosphate

• AFM: Action Force Microscopy

• ARP: Actin Related Protein

• ATP: Adenosine Triphosphate

• FI: Fisher Information

• FIM: Fisher Information Matrix

• GDP: Guanosine Diphosphate

• GTP: Guanosine Triphosphate

• NPF: Nucleation Promoting Factor

• PCA: Principal Component Analysis

• PSC: Parameter Space Compression

• PDF: Probability Density Function

• RG: Renormalization Group

• SD: Standard Deviation

• SDEM: Standard Error of the Mean

• SVD: Singular Value Decomposition

• WASP: Wiskott–Aldrich Syndrome protein
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L’enseignement a joué un rôle central durant mes trois années de thèse. J’ai une
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Faites rhizome et pas racine, ne plantez jamais! Ne semez pas,
piquez! Ne soyez pas un ni multiple, soyez des multiplicités!

Gilles Deleuze et Félix Guatarri - Mille Plateaux

Since the second half of the twentieth century, physicists have approached the question
of what is at stake in living processes, essentially through the lens of statistical physics. Er-
win Schrödinger, one of the fathers of quantum mechanics, had the insight of an aperiodic
crystal a decade before Watson and Crick, wherein genetic information would reside in the
configuration of covalent chemical bonds. This unique structure aimed to elucidate the
physical and chemical foundations of biological events and genetic inheritance [1]. In par-
ticular, scientists have investigated the emergence of biological order and identity through
fluctuations and chaos, establishing the theoretical framework of dissipative structures to
account for deviations from the second law of thermodynamics [2] or developing pioneering
studies on morphogenesis [3]. In addition, since early studies on the motility of cells [4],
soft matter advances, the active matter framework and the advent of new experimental
and numerical tools have fostered a closer collaboration between physicists and biologists.
This interdisciplinary approach seeks to understand the underlying principles governing
cellular regulation, with specific attention to developmental processes, morphogenesis, and
the regulation of the cell cycle. Collaborations focusing on the study of the mechanical
properties of cells, including their origins and self-regulation processes, are particularly
noteworthy.

A fundamental aspect of cellular self-regulation is attributed to the cytoskeleton: a
dynamic network of intracellular polymers that endows the cell with most of its me-
chanical and architectural properties. The cytoskeleton operates as an active system,
constantly undergoing polymerization and depolymerization processes to renew its com-
ponents. Consequently it is permanently pushed out of equilibrium due to the continuous
energy consumption of its components. The functions of the cytoskeleton encompass vari-
ous crucial tasks, including the regulation of cell shape, membrane trafficking, and muscle
cell contraction. Additionally, it plays a fundamental role in cell division mechanisms [5].
The influence of the cytoskeleton extends beyond mechanical frameworks, as it impacts
processes such as protein transport, regulation of gene expression or cell differentiation
and proliferation. The comprehensive scope of the cytoskeleton’s involvement in cellular
processes cannot be exhaustively enumerated, as ongoing research in this field continu-
ally reveals new roles and functions. Depending on their designated tasks, cytoskeletal
structures exhibit different organization patterns, leading to distinct mechanical behav-
iors. Consequently, fibers can aggregate collectively to form stable networks, with their
defined properties emerging from both the individual fiber characteristics and the external
biological and mechanical environment. This observation prompts scientists to question
the emergence of collective order in a manner that transcends reductionist principles, as
stated by P.W. Anderson in his work “More Is Different.” [6]. Specifically, today, there is
no comprehensive understanding of how macroscopic mechanical properties manifest from
microscopic parameters. Deciphering this enigma stands as a significant challenge in the
realm of cell biology and soft matter physics.
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The overall objective of this thesis is to understand the emergence of mechanical prop-
erties within actin networks through numerical, theoretical, and statistical perspectives.
The manuscript is structured into two distinct parts, each addressing a specific problem
investigated during my PhD research.

The first part focuses on the issue of stress adaptation in growing branched actin net-
works. Following an introduction to the components of the cytoskeleton, actin dynamics,
and mechanics, I will present simulation-based results obtained on the adaptation of net-
work growth speed. The findings reveal how both filament properties (in particular stall
force) and external stress collectively determine the velocity of the actin network in this
particular scenario.

More generally, the mechanical features of branched actin networks are contingent
upon molecular properties, including actin filament stiffness or stall force. However, given
the overlapping roles of many molecular properties, perturbations at the molecular level
can affect the mechanical features of the network in a limited number of ways.

In this second part, the objective is to identify the specific combinations of molecular
properties that exert the most significant influence to the features of the system. To
achieve this, the study employs information theory tools to analyze the statistical data
generated by the simulations. This approach enables novel means of characterizing systems
by capturing the essential features of their compressed parameter space, in between black
boxes and the spherical cow 1

Bon voilà toute l’introduction. J’en conviens parfaitement, elle ne sert à
rien du tout, mais, puisqu’elle est écrite, qu’elle reste. Sur ce, au fait.

Fiodor Dostöıevski - Les Frères Karamazov

1Milk production at a dairy farm was low, so the farmer wrote to the local university, asking for help
from academia. A multidisciplinary team of professors was assembled, headed by a theoretical physicist,
and two weeks of intensive on-site investigation took place. The scholars then returned to the university,
notebooks crammed with data, where the task of writing the report was left to the team leader. Shortly
thereafter the physicist returned to the farm, saying to the farmer, “I have the solution, but it works only
in the case of spherical cows in a vacuum.”



Part I

The stress adaptation of growing
branched actin networks
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Introduction

Actin, a highly versatile protein and a key component of the cytoskeleton, plays a crucial
role in cell motility. When assembled into networks, actin can generate forces through
two main mechanisms: motor contractility and polymerization. Motors within the actin
network can induce significant contractile stresses, leading to mechanical contraction [7].
In addition, polymerization of actin filaments against membranes can generate substan-
tial forces, resulting in various processes such as endocytosis in yeast [8], lamellipodium
protrusions at the leading edge of motile cells such as keratocytes [9] or propulsion of
intracellular pathogen [10]. This thesis will specifically focus on actin polymerization as a
force generation mechanism [11], to overpass mechanical stress induced by membranes or
cytoplasmic material.

More precisely, the growth of an actin filament is governed by the difference in chemical
potential between the monomers in solution and those attached to the filaments. Ther-
modynamically, it is more favorable for an actin monomer to join the barbed end of a
filament rather than diffuse freely in solution. The conversion of this chemical energy
into a mechanical energy generates a force. The addition of a new monomer occurs when
thermal fluctuations create sufficient space for its stochastic insertion, despite counteract-
ing forces [12], [13]. However, filament growth becomes increasingly unfavorable when an
opposing mechanical stress hinders its expansion. The stall force, estimated to be a few
pN, represents the point at which filament growth is impeded [14]. While this picture is
well established for individual fibers, it remains unclear how it applies to a network com-
posed of hundreds of fibers. Determining the individual contribution of the fiber to the
behavior of the network poses a significant challenge. Several theoretical and experimen-
tal relationships between network growth velocity and applied stress have been proposed,
with a variety of predictions directly linked to experimental conditions and theoretical
assumptions. In this study, we investigate the relationship between stress and velocity in
branched actin networks. Through a minimalist simulation model in physiologically rele-
vant conditions, we explore the roles of stress and stall force in determining the velocity.

The manuscript begins by reviewing the actin machinery and the process of individual
force generation. Subsequently, we delve into the established findings on the rheology of
actin structures, specifically focusing on the stress-velocity relationship in branched actin
systems. Then, we provide a brief introduction to our simulation tool, Cytosim, along with
an explanation of our force generation model. Finally, we present our results concerning
stress dependence and stall force, separately.

5



Chapter 1

Cytoskeleton and actin

The evolution of cells has led to the development of complex and diverse structures. To-
day, biological classifications categorize cellular life into three domains: Archaea, Bacteria,
and Eukaryota. Despite their differences, all cells are enclosed by a membrane and con-
tain genetic material. Eukaryotic cells, have organelles that compartmentalize different
functions within the cell, such as the nucleus that contains DNA. In contrast, cells lacking
organelles are referred to as prokaryotes (bacteria and archea). The cytoskeleton, present
in eukaryotic cells, plays a crucial role in providing mechanical support and maintaining
the structural integrity of the cell. It is also determining for cell division and cellular
transport.

Figure 1.1: Eukaryotic cell, adapted from Raven, G.B Johnson, Mason et al. 2017.
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7 1.1. The cytoskeleton

Figure 1.2: First division of a sea urchin embryo with DNA in red and microtubules in green -
with the courtesy of Jérémy Sallé - Minc Lab.

1.1 The cytoskeleton

The cytoskeleton is composed of various fibers that are formed through polymerization and
regulated by associated proteins. It is typically divided into three types: microtubules,
intermediate filaments, and actin filaments. From a physicist’s perspective, these fibers
are considered dynamic, semi-flexible filaments in an non-equilibrium state [15]. Let’s take
a closer look at microtubules, intermediate filaments and actin with their characteristics
and functions.

1.1.1 Microtubules

Microtubules are hollow tubes with a diameter of approximately 24 nm. They consist of
α-tubulin and β-tubulin subunits that associate as dimers and can form protofilaments
when associated to guanosine triphosphate (GTP). Thirty protofilaments come together
to create a microtubule, GTP hydrolysis occurs during the growth process. Due to their
heterodimeric composition, microtubules exhibit a polarity, with a plus end and a minus
end. When the nucleotides at the growing tip are completely hydrolyzed, the microtubule
becomes unstable and undergoes depolymerization, a process known as catastrophe [16].

Microtubules are the most rigid fibers having a persistence length of approximately 5
mm [17], which is much larger than the typical cell size. Thus, they play a crucial role in
defining cellular shape and serve as tracks for intracellular motor proteins like dyneins or
kinesins [18]. In addition, microtubules are responsible of DNA segregation during mitotis,
through the formation of complex assembles called mitotic spindles [19], as seen in Figure
1.2. They also form large structures called asters, which help drive the male pronucleus
to the center during fertilization, facilitating its fusion with the female pronucleus. The
centering mechanism of microtubule asters is partly governed by geometric principles [20].

1.1.2 Intermediate filaments

Intermediate filaments represent a diverse family of apolar fibers with diameters rang-
ing from 8 to 12 nm. The most studied types of intermediate filaments are vimentins,
lamins, and keratins. Intermediate filaments assemble into fibers through a slower dy-
namics compared to other cytoskeletal fibers, they maintain a relatively stable structure
over time. Their persistence length varies between a few hundred nanometers and a few
micrometers, making them the most flexible cytoskeleton fibers. As a result, intermediate
filaments provide an important part of the mechanical support to the cell. Vimentin, the
major intermediate filament in most animal cells plays an important role in maintaining
cell integrity under high deformations. Nuclear lamins form a protective shell around the
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nucleus and act as mechanosensors to preserve chromatin. Keratin, is widely known for
its presence in structures such as hair or nails [21].

1.1.3 Actin

Actin monomer proteins form microfilaments, also known as F-actin, which play crucial
roles for various motile and morphogenesis processes such as migration, endocytosis or
organelles dynamics [5].

The individual units of actin, referred to as G-Actin (globular actin), are compact, small
globular proteins of approximately 42 kDa, measuring about 5.5 nm in diameter [22].
Each G-Actin monomer consists of a single polypeptide chain composed of 375 amino
acids, which undergoes precise folding to adopt a well-defined structure. G-Actin can
be subdivided into four distinct domains arranged in two lobes. These lobes create two
distinct clefts or gaps between them. The upper gap functions as a binding site for a
nucleotide: adenosine triphosphate (ATP) or adenosine biphosphate (ADP), (multicolor
sticks in Figure 1.3 (Left)). It also serves as a binding site for a divalent cation such as
calcium (Ca2+) or magnesium (Mg2+) (green dot in Figure 1.3, (Left)) [23]. The lower
gap serves as a binding site for other actin-related proteins (ARPs), including profilin.
The process of filament formation, referred as polymerization, occurs through this lower
gap as new actin monomers are added to the growing filamentous structure.

The asymmetry observed at the level of the monomer is translated at the fiber scale,
where the actin filament display polarization. At each end, the dynamics are governed by
the association kon and dissociation rates koff of actin monomers. Under physiologically
salt conditions, the disparity in these rates leads to a directional growth. Specifically, actin
filament grow more rapidly from the barbed end (+) compared to the pointed end (-). At
steady state, ATP-G-Actin is mostly added at the barbed end, while ADP-G-Actin dis-
sociates from the pointed end, see Figure 1.4. During filament assembly, actin monomers
undergo a conformational change that triggers the ATPase activity of the protein. It has
been shown that this conformal change is enabled by the Mg2+ cation located at the upper
cleft [25] [26].

During the process, there is a rapid hydrolysis of ATP (rate of 0.3 s-1), followed by
a slower release of inorganic phosphate (Pi) (rate of 0.002 s-1). The surplus of ATP in
the system facilitates the regeneration of ATP-G-Actin through a nucleotide exchange
mechanism. This ensures the availability of monomers for polymerization. Thus, actin
filaments exhibit treadmilling, where the rates of polymerization and depolymerization are
balanced, resulting in a constant filament length.

Figure 1.3: (Left) Ribbon diagram of G-Actin adapted from [24]. (Right) Representation of a 13
monomers F-Actin, work of Thomas Splettstoesser.
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Figure 1.4: Actin dynamics at both ends with associations and dissociation rates, from [30].

Once assembled, the filament exhibits a right-handed helix structure of two protofil-
aments with a 37 nm step and a diameter of 7 nm [27], see Figure 1.3, (Right). Their
persistence length is of the order of 10 µm [17] [28]. In addition, actin filaments are rather
resistant to stretching, bending being their main elastic response [29].

1.2 Regulation of actin assembly

In eukaryotic cells, the dynamic process of actin polymerization and the diverse range of
observed structures are facilitated by actin-related proteins (ARPs). These proteins play a
regulatory role in actin polymerization and exert influence on the formation of well-defined
structures. They inhibit uncontrolled and spontaneous polymerization focusing assembly
at needed sites. For instance, they help to maintain a pool of actin monomers, to restrict
the length of filaments or to cross-link filaments into networks or bundles.

1.2.1 Nucleators

Actin fiber nucleation from a small number of monomers is energetically unfavorable until
a four-monomer oligomer is formed [31]. Cells employ various mechanisms, including the
recruitment of nucleators, to overcome this energetic barrier. These nucleating proteins
not only facilitate the formation of new filaments but also play a role in determining the
architecture of the resulting actin network.

Formins

One class of nucleators involved in the regulation of cytokinesis and stress fibers formation
is known as formins. In budding yeast, two specific formins, Bni1p and Bnr1p, are respon-
sible for orchestrating the assembly of actin cables. These actin cables are bundles that
facilitate polarized growth and the segregation of organelles within the cell [32]. Formins
initiate the process of actin polymerization by interacting with G-actin monomers and
remain associated with the growing barbed-end of the filament with their FH2 domain.
They not only stabilize oligomers but also catalyze the nucleation of actin filaments with
their scaffold shape. By maintaining their connection to the barbed-end, formins actively
participate to the elongation of the filament, resulting in the generation of straight, linear
fibers [33]. Formins can also segregate profilin-actin monomers with their FH1 domain
making them accessible and ready for polymerization [30], see Figure 1.5. Similarly but
with a different underlying mechanism, an other class of proteins the Ena/VASP family
proteins catalyzes the elongation of the filament barbed-end [34].
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Figure 1.5: Acceleration of the barbed-end elongation of F-Actin by formins, from [30].

Arp2/3

The Arp2/3 complex constitutes the other primary class of nucleators involved in actin
dynamics. Unlike formins that generate straight linear filaments, the Arp2/3 complex
is responsible for producing branched filament networks. These branched networks are
abundant in cells, at the leading-edge lamellipodium of migrating cells or at the sites of
endocytosis for instance. The Arp2/3 complex is composed of seven sub-units, including
Arp2 and Arp3, as well as five scaffolding sub-units. Basically, when the complex binds
to the side of an existing filament, Arp2 and Arp3 undergo reorganization, coming closer
together and providing a template for the elongation of a daughter filament. The branching
occurs at a conserved angle of 1.23 rad (approximately 70°) with respect to the mother
filament [35]. To enhance the stability of the daughter branch, two subunits of the mother
branch undergo a conformational change [36]. While the cooperative action between the
Arp2/3 complex and the mother branch is crucial for branch generation, the involvement
of nucleation-promoting factors (NPFs) is required to activate Arp2/3 and initiate the
branching process [37]. These NPFs, activated by GTPases such as Rac1 and Cdc42, are
anchored to lipid bilayers and play a role in triggering endocytosis in the case of WASP
family proteins or promoting cell migration for the WAVE family proteins.

NPFs

As the dynamics and functional implications of nucleation-promoting factors (NPFs) are
crucial for our modelisation, we will delve further into their characteristics and functional
aspects. When these proteins become associated with cell membranes, they exhibit a
carboxy-terminal (C-terminal) region known as the “WCA domain”. This WCA domain
can be further divided into four distinct domains. The first domain is the WH2 (W)
domain, which has the ability to bind to actin monomers. The central (C) domain and the
acidic (A) domain can bind to the Arp2/3 complex. Lastly, the WCA domain contains
a proline-enriched (P) domain, which facilitates binding to other actin-related proteins
(ARPs) such as profilin or myosin. The (P) domain, in particular, may play an important
role in delivering G-Actin enriched with profilin, thereby promoting branching in the actin
network [38].
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Figure 1.6: Activation of Arp2/3 by NPFs and formation of a new branch, from [30].

The activation of the Arp2/3 complex requires the presence of two NPFs. Once bound
to the Arp2/3 complex along with two actin monomers, a conformational change is trig-
gered in the complex. This conformational change allows the scaffolding units of Arp2/3
to attach to the mother filament, thereby stabilizing the entire structure. Subsequently,
when the WCA domain of the NPFs detaches from the complex, it allows for the growth
of the daughter filament. This liberation of the NPFs enables its availability for future
activation, see Figure 1.6.

1.2.2 Regulators

Regulatory mechanisms play a pivotal role in governing the processes of polymerization,
depolymerization, and the maintenance of the G-Actin reservoir. Three distinct protein
families are distinguished, profilin, capping proteins, and severing proteins.

Profilin

Profilin prevents the spontaneous initiation of filaments elongation by binding to the G-
Actin polymerization site. In doing so, it sequesters monomers from the pool of polymer-
izable G-Actin molecules. However it has been demonstrated that the complex formed
by profilin and actin can bind to the barbed end of the filament, promoting its directed
elongation [39]. In addition, profilin acts as a catalyzer in the nucleotide exchange process,
facilitating the conversion of ADP-bound actin monomers, which have limited polymer-
ization capabilities, into ATP-bound actin monomers that readily polymerize. As a result,
profilin enhances the polarity of filaments. Profilin exhibits a higher affinity for polypro-
line sequences compared to actin. This affinity enables profilin to readily bind to the FH1
domains of formin proteins, leading to an acceleration of filament elongation. This phe-
nomenon also applies to NPFs such as the WASP-family proteins and their (P) domain
[38].

Capping proteins

Capping proteins exert their regulatory function by binding to the barbed end of growing
actin filaments, thereby preventing the addition of new monomers. This action halts fila-
ment elongation and restricts the filament’s length [40]. Furthermore, recent research has
revealed the involvement of capping proteins in the branching process.
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The WH2 (W) domain of NPFs can bind to actin monomers and interact with filament
barbed ends that are not capped by other binding proteins. This mechanism, known as
“barbed end interference” hinders the binding of NPFs to globular actin, which impedes
the activation of Arp2/3 complex. Consequently, capping proteins promote branching
[41]. Capping proteins exhibit a Brownian ratchet dynamics, which means their response
to stress is similar to that of actin monomers. This characteristic has a significant impact
on how branched actin networks adapt their architectural organization in response to
changing loads [42].

Severing proteins

The ADF/cofilin protein family represents a prominent group of severing proteins. Over-
all, these proteins facilitate the disassembly of actin filaments by inserting themselves
between actin monomers, thereby catalyzing filament severing. In addition, they also pro-
mote depolymerization at both ends of the filament [43]. During this process, ADF/cofilin
proteins form protein-rich domains along the filament, leading to a conformational change
that modifies the twist of the fiber. Consequently, a mechanical torque is exerted, further
enhancing the severing mechanism [44]. It is worth to note that the fragmentation is hap-
pening at the boundaries between bare and ADF/cofilin-decorated segments. In addition,
ADF/cofilins have a low affinity with ATP-actin sub-units, targeting ADB-bound ones,
which preserves the integrity of networks on their growing site.

1.2.3 Cross-linkers and molecular motors

While regulators are important to control the assembly, disassembly and the pool of actin,
they poorly participate to connect filaments to each others to generate structures. This
is, at first glance the role of crosslinkers and molecular motors.

Cross-linkers

Cross-linking proteins create physical connections between actin filaments. By doing so,
they contribute to the stabilization of higher-order structures such as lamellipodia or
filopodia [45]. These cross-linkers typically possess two actin-binding domains (ABDs),
with each domain connecting to an individual actin fiber. The distance between ABDs
influences the ability to establish connections between filaments and affects the mechanical
properties of the cross-linker. In addition, the flexibility of the link between the ABDs
impacts the mechanical response of the system. Small crosslinkers like fascin, fimbrin or
α-actinin (∼ 10 - 40 nm) form compact bundles, whereas larger and more compliant ones
like filamin (∼ 150 nm) form looser bundles or mesh-like networks [46].

Overall, an increase in connectivity through cross-linking leads to an increase in the
stiffness of the actin network [15]. However, it is worth noting that the attachment and
detachment kinetics of cross-linking proteins are considerably rapid compared to artificial
polymers. They can attach to and detach from actin filaments on a timescale of the order of
seconds to tens of seconds. Theses rates, vary between the different forms of cross-linkers
[47], temperature and the force applied. This finding is crucial in understanding why
cells exhibit stiffness on short timescales but possess a softer and more flow-like behavior
on longer timescales. The rapid dynamics of cross-linkers allow them to rearrange and
contributes to the overall mechanical response [48].
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Molecular motors

Molecular motors are a class of proteins capable of undergoing conformational changes to
move along fibers in an ATP-dependent manner. This energy consumption enables them
to perform work and permits directed motion. Among these motors, myosins specifically
associate with actin fibers and exhibit movement toward the barbed end of the filament.
Myosins are composed of a tail region that is connected to one or two heads, which can
attach to and detach from actin fibers. Myosin I consists of a single head domain, with
its tail region connected to a vesicle. When organized in groups, these myosins transport
vesicles along actin fibers in proximity to the plasma membrane, facilitating processes such
as endocytosis or exocytosis.

On the other hand, myosin II functions as a dimer, featuring two heads. This class
of myosins is primarily responsible for generating muscle contraction in the majority of
muscle cells by connecting several fibers. In actin bundles, Myosin II activity can induce
contraction forces of the order of 100 pN [49]. In addition Myosin II contraction has been
shown to induce actin filament fragmentation, as contraction can induce buckling and lead
to breakage [50].

1.3 Actin structures

Therefore, the polymerization of actin filaments and their interaction with actin binding
proteins give rise to a wide range of structures. Notably, rapidly growing filaments have a
tendency to form a fine meshwork, while slowly elongating fibers organize themselves into
tightly packed bundles. This architectural diversity is governed by kinetic factors. The
unique arrangement of each filament contributes to the distinct mechanical properties and
biological functions of the resulting structure. In the subsequent discussion, we will present
a concise summary of several common actin structures, as illustrated in Figure 1.7.

Figure 1.7: Scheme of the main actin structures in an eukaryotic cell, from [5].
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Filopodium

Filopodia are assemblies of elongated fibers that exhibit parallel growth, with their barbed
ends directed towards the cell membrane [51]. This orientation is achieved through the
involvement of formins and Ena/VASP proteins, which help anchor the barbed ends at the
tip by facilitating polymerization. The individual fibers within filopodia are interconnected
by small and tight crosslinkers like fascin. With a diameter of a few hundred nanometers,
filopodia can extend to lengths of a few micrometers. On average, they consist of about
ten to thirty fibers. Studies have demonstrated that an optimal number of thirty fibers
permits to prevent buckling when the fiber count is low and to avoid high diffusion of
G-Actin when there is an excessive number of fibers [52]. As filopodia grow, they induce
deformations in the cell membrane, enabling them to explore their surroundings at the tip
and sense the environment. They protrude at velocities about 0.16 µm.s-1.

Lamellipodium

Lamellipodia are almost two-dimensionally growing, branched structures that are sta-
bilised by cross-linking proteins, see Figure 1.8. These protrusions help the cell sense their
environment and enable movement through crawling motility. WAVE Nucleation Pro-
moting Factors (NPFs) located at the cell membrane activate the Arp2/3 complex, which
triggers nucleation of new actin branches and causes membrane deformation. Branch
elongation is limited by capping proteins that promote the orientation of short branches
towards the membrane to activate the branching process. The structure of the lamel-
lipodium adapts to mechanical forces, resulting in a denser actin network and a wider
distribution of branching points [53].

Cortical actin

The cortex is a thin layer of cross-linked filaments, beneath the plasma membrane that is
contractile due to the presence of myosins motors. It is large of a few hundred nanometers
and also composed of actin bundles. Its dynamics plays an important role in cell shape
changes [54]. For instance, the induced cortical contractility, balanced by the osmotic
pressure difference explains the rounding of cells just before division [55].

Figure 1.8: Actin filament organization in a lamellipodium at the leading edge of a fish epidermal
keratocyte, from [56].
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Stress fibers

Stress fibers are bundles of elongated fibers that exhibit an anti-parallel orientation. These
fibers are interconnected throughout the structure by α-actinin cross-linkers and non-
muscle myosin II motors. Stress fibers extend over significant portions of the cell and have
the ability to anchor to focal adhesion points. The contractility generated by stress fibers
contributes to the maintenance of these focal adhesions. By anchoring to these points,
stress fibers are able to probe and assess the mechanical properties of their surrounding
environment. This enables them to adapt their structure in response to the stiffness of
the environment, which is crucial for cell motility [57]. Stress fibers also play important
roles in processes such as morphogenesis, cell migration, and mechanotransduction.

Endocytosis

During endocytosis, external materials, such as nutrients or signaling molecules, are en-
gulfed by the cell through the formation of membrane protrusions facilitated by branched
actin networks. The branching of actin filaments in endocytosis patches is activated by
proteins belonging to the WASP family. Once the membrane protrusion surrounds the
external material, the endocytosis patch undergoes budding, leading to the internalization
of the cargo and the formation of a vesicle containing the substances within. This pro-
cess allows the cell to regulate various cellular functions such as nutrient uptake, receptor
internalization or membrane remodeling.

Podosomes

Podosomes are adhesion sites that establish connections between the actin cytoskeleton
and the extracellular matrix, see Figure 1.9. In macrophages cells, for example, podosomes
play a role in sensing the stiffness of the surrounding extracellular environment by gener-
ating forces that can reach tens of nN, as measured by atomic force microscopy (AFM)
[58]. A podosome typically consists of a central core rich in actin filaments that protrude
into the extracellular space, surrounded by an adhesion ring. The protrusion of the core is
made possible by the counteracting forces exerted by the adhesion ring through traction.
The forces generated by the protrusive action of podosomes surpass the force produced
by the polymerization (pNs) of actin fibers at the core membrane. To explain this phe-
nomenon, a recent model based on the storage of elastic energy within bent filaments has
been proposed and investigated. In this model, the actin network within podosomes acts
as spring-loaded material, enabling podosomes to exert nN forces that overcome the limits
of actin polymerization [59].

Furthermore, podosomes and endocytosis structures highlight the importance of branched
actin force generation, which can rely on the stored elastic energy through polymerization.
Overall, these diverse cytoskeletal organizations and processes highlight the versatility and
importance of actin dynamics in various cellular functions.
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Figure 1.9: Confocal immunofluorescence image of podosomes in a primary human macrophage.
F-actin (red) and WASP (green) colocalize in the core structure of podosomes (yellow) (scale bar

= 10 µm), from [60].



Chapter 2

Actin mechanics and rheology

In order to execute diverse essential cellular functions, actin relies upon its intrinsic semi-
flexible filament nature [15], and on the variety of network configurations. Before delving
into investigations on network mechanics, we provide a concise introduction of the me-
chanics of semi-flexible polymers and a brief overview of viscoelasticity.

2.1 Semi-flexible polymer

2.1.1 Worm-like chain model

Bio-polymers, particularly those found in the cytoskeleton, are composed of proteins that
are significantly larger than the atomic or molecular scales. As a result, they form fibers
that are more rigid compared to synthetic polymers. They serve as prime examples of
semi-flexible fibers, exhibiting configurations that deviate from the random coil structures
commonly observed in polymer physics, demonstrating distinct elastic and viscoelastic
properties.

In general, a polymer is considered semi-flexible when its resistance to bending, or
bending modulus, is sufficiently high to overcome entropic effects. While bending modu-
lus promotes straight conformations, maximizing entropy typically leads to the formation
of random coils. In their native state, semi-flexible polymers display minor thermal fluctu-
ations around a relatively straight inextensible conformation. In fact, in the total absence
of thermal fluctuations (T = 0), it appears as a rod with the countour length Lc identical
to the shortest length between the two ends L. However, thermically induced transverse
fluctuations (T > 0) lead to the contraction of L, such that L < Lc, see Figure 2.2, (Right).

To quantitatively describe the regime of thermal equilibrium, the persistence length
serves as an intuitive measure, representing the contour length at which significant bending
fluctuations occur. In the case of the widely used worm-like chain (WLC) model, the
bending energy is described by the following expression:

Figure 2.1: Scheme of a semi-flexible polymer of radius a, t⃗(s) defines the local orientation of the
fiber on the curvilinear abscissa s, from [15].

17
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HB =
κ

2

∫
ds

∣∣∣∣∂t⃗∂s
∣∣∣∣2 (2.1)

With κ the bending modulus, s the curvilinear abscissa and t⃗(s) the tangent vector
along the chain, see Figure 2.1:

t⃗(s) =
∂r⃗

∂s
, with r⃗(s) the chain position

Moreover, considering that the bending modulus κ is measured in units of energy mul-
tiplied by length, and taking into account that kBT is the inherent energy scale resulting
from Brownian fluctuations, the expression for the persistence length arises naturally as
ℓp = κ/kBT .

Indeed, it is possible to demonstrate this relationship by considering that small vari-
ations in orientation are independent degrees of freedom that adhere to the equipartition
theorem. Thus it can be shown that the correlation function of the orientation vector
decays according to the following expression:

< t⃗(s) · t⃗(s′) >= e−|s−s′|/ℓp where ℓp =
κ

KBT
(2.2)

Hence, when a fiber is in a thermal equilibrium at temperature T, the persistence
length serves as a geometric measure of its stiffness. It is crucial to note that this quantity
is only meaningful in the context of thermal equilibrium, and Brownian fluctuations.

2.1.2 Buckling threshold

We now assume that our fiber of length Lc << ℓp is under tension or compression τ , along
an axis x. For the sake of simplicity, we just consider a single transverse deflection u(x, t).
Moreover, if we consider that the chain is in-extensible, the end-to-end contraction of the
chain ∆L = Lc − L can be approximated as :

∆L ≈ 1

2

∫
dx

∣∣∣∣∂u∂x
∣∣∣∣2 (2.3)

Thus, the energy with bending and tension terms is :

H =
1

2

∫
dx

[
κ

(
∂2u

∂x2

)2

+ τ

(
∂u

∂x

)2]
(2.4)

Figure 2.2: (Left) Electron microscopy image of F-actin network with a 1 µ m scale bar. (Right)
Variation of the end-to-end length L, adapted from [61].
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Then, if u(x) is represented by its Fourier Series decomposition:

u(x, t) =
∑
q

uq sin(qx) (2.5)

We obtain the following expression for the energy:

H =
Lc

4

∑
q

(κq4 + τq2)u2q (2.6)

Here, for τ positive, each term in the sum contributes positively so that increasing
uq goes with increasing the overall stored energy, which accounts for stability. However,
in the scenario of compressive stress where τ is negative, this is no longer the case when
τ < −κq2. Here increasing the value of uq leads to a decrease in energy, indicating
instability. This onset, known as buckling instability, occurs at the smallest possible value
of q determined by the length of the fiber: ql = π/Lc. This leads to the expression of the
buckling force threshold:

FBuckling = κ
( π
Lc

)2
(2.7)

2.1.3 Force extension response

As seen in Figure 2.2, right, at room temperature, Brownian fluctuations reduce the end-
to-end distance below the contour length. Here we will review the overall force response of
F-Actin, plotted in Figure 2.3. In general, for small positive or negative forces the filament
behaves like a linear entropic spring (red dotted line). Then for forces larger than 0.1 pN,
as the end-to-end distance is approaching the contour length, the entropic spring becomes
non-linear. In the case of an in-extensible fiber the force required for extension quickly
diverges (black dotted curve). As actin-filaments are not completely inextensible, their
length can be extended beyond the contour length for forces larger than 100 pN (blue
dotted line) [29]. Under compression, the buckling force is ∼ 0.4 pN, which allows for a
large range of distances under nearly constant force. The overall picture is summarized
in the dark line [62]. In addition, it is worth to note that the helicity of F-Actin induces
coupling between bending and twisting [63].
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Figure 2.3: Force extension of an actin filament with a 1 µm contour length, normal-log plot,
from [62].

2.2 Viscoelasticity

2.2.1 Solid and liquids

Solid materials exhibit elastic behavior, which refers to the capacity to return to their
original configuration after deformation. When a stress σ is applied to a material, it
induces a corresponding strain ϵ, and vice-versa. The elastic modulus, specifically describes
the relationship between stress and strain. In the case of a uni-axial stress situation, where
the material is subjected to compression or tension, the Young modulus E characterizes
the elastic response of the material:

σ = E ϵ (2.8)

In addition, different kinds of elastic modulus can be defined, depending on the di-
rection of the applied stress. For instance, as introduced before, the bending modulus κ
measures the resistance to bending while the shear modulus G measures the response to
a shear deformation.

In simple materials, the elastic modulus remains constant regardless the applied strain,
indicating a linear elastic behavior. However, when the material exhibits a dependence
on the strain (E = E(ϵ)), it deviates from linearity. When the elasticity increases with
increasing applied stress, materials are said to be stress-stiffen, in contrast when the elas-
ticity decreases they are stress-soften.

Additionally, beyond the yield point, the material undergoes irreversible plastic de-
formations, losing its elastic behavior. Moreover, the relationship between the bending
modulus κ and the Young Modulus E is the following for a semi-flexible polymer [64]:

κ =
π

4
Ea4 (2.9)
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In contrast to solids, liquids are characterized by their viscosity. The stress experienced
by a liquid is determined by the rate at which it undergoes strain, with this relationship
being governed by its viscosity, also known as dynamic viscosity. The viscosity of a liquid
weighs the strain rate, indicating how resistant the liquid is to flow under the influence of
applied stress [65].

σ = η ϵ̇ (2.10)

2.2.2 Complex materials

In general, cytoskeletal polymer networks exhibit viscoelastic behavior, characterized by
a combination of elasticity (response to deformation) and viscosity (response to the rate
of deformation). At short time scales, these networks display elastic behavior, meaning
they can store and recover energy upon deformation. However, at longer time scales, they
exhibit viscous behavior due to the rearrangement of the network structure. For instance,
the viscoelastic response of the cell cortex, plays a crucial role in maintaining cell integrity
and shape.

Viscoelastic properties are not limited to cytoskeletal networks but are also observed
across different scales and structures. Developing tissues, for example, demonstrate dy-
namic organization and reorganization, indicating fluid-like characteristics in their material
properties over long time scales. However, when subjected to mechanical deformations,
they exhibit elastic relaxation [66]. The adaptation and response of epithelial tissues to
stress or laser ablation have been extensively studied, revealing their viscoelastic proper-
ties [67]. At the cellular scale, viscoelastic properties have been identified as markers of
cancer cells.

In addition, recent studies have shed light on the significance of cytoplasmic viscoelas-
tic properties in the proper alignment of the mitotic spindle during the initiation of cell
division. These properties play a crucial role in facilitating symmetric division when dis-
rupted [68]. Interestingly, it has been observed that viscoelastic properties depend on the
size of the object being moved. This phenomenon arises due to hydrodynamic interactions
between the moving object and the static cell surface [69].

In order to characterize and quantify viscoelastic properties, different combinations
of springs and dashpots arranged in parallel or series are employed to construct models
that replicate the observed behavior. For example, the Maxwell model consists of a spring
and a dashpot connected in series, while the Kelvin-Voigt model comprises a spring and
a dashpot connected in parallel.

2.2.3 Rheology measurements

Given the frequency-dependent nature of viscoelastic properties in biopolymer networks,
it is advisable to investigate their response under periodic stimulation. Consequently,
in order to characterize their linear response, oscillatory shear strain is applied to the
material, and the resulting stress is measured. The in-phase response corresponds to the
shear elastic modulus, representing the storage of mechanical energy within the material.
On the other hand, the out-of-phase response corresponds to the viscous loss modulus,
representing the dissipation of mechanical energy within the material. By employing a
rheometer, we can determine the shear modulus G, which consists of a real part denoting
the elastic response G′ and an imaginary part denoting the viscous response G′′.
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Figure 2.4: Frequency-dependent elastic and viscous modulus of a solution of flexible polymers
(black) and a F-Actin newtork (grey), from [61].

G(ω) = G′ + iG′′ (2.11)

Therefore, the behavior of materials can vary between solid-like and liquid-like states
depending on the frequency. This phenomenon is particularly relevant when studying
the dynamics of F-Actin, as it exhibits frequency-dependent behavior, see Figure 2.4. In
contrast to flexible polymer solutions (represented by black symbols), which predominantly
manifest viscous properties over a broad range of frequencies, the solution containing F-
Actin filaments (represented by grey symbols) primarily demonstrates the prevalence of
the elastic modulus at frequencies below 0.1 Hz, but transitions to a dominance of viscosity
at higher frequencies. Consequently, it is necessary to consider the influence of frequency-
dependent dynamics when constructing mechanical models. Moreover, the dynamics and
rates at which crosslinkers attach to and detach from F-Actin filaments assume a pivotal
role in determining the frequency-dependent behavior.

2.3 Rheology of actin networks

2.3.1 Free networks

Entangled networks

In the absence of crosslinkers, filaments assemblies tend to form homogeneous networks
with filaments evenly spaced at a relative uniform distance known as the mesh size ξ.
When the persistence length ℓp of the filaments is significantly larger than the mesh size,
it becomes feasible to express the mesh size in terms of the volume fraction ϕ and the
radius of the fiber a.

ξ =
a√
ϕ

(2.12)
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When filaments exceed the mesh size, they become entangled within the network,
leading to motion constraints and the emergence of viscoelastic behavior, which occurs on
a length scale basis [70]. It is noteworthy that this entanglement also artificially enhances
network connectivity and prevents the realignment of filaments into bundles [71].

In Figure 2.5, the storage modulus G′(ω) and loss modulus G′′(ω) are represented for
a 1 mg.mL-1 solution of F-Actin, both in the presence and absence of crosslinkers (specif-
ically, biotin-neutravidin bonds with high irreversibility) [72]. This experimental findings
of Koenderink et al. are compared to a theoretical framework proposed by Gittes and
MacKintosh [73], which addresses the shear modulus of entangled and cross-linked net-
works at high frequencies, assuming an affine network behavior (where the macroscopic
deformations closely resemble the microscopic deformations). According to the theory, the
shear modulus at high frequencies is primarily determined by the relaxation of individ-
ual polymer chains in both solutions. Increasing the frequency results in a higher shear
modulus. Specifically, on shorter time scales, fewer bending modes can relax, leading to
reduced compliance and increased stiffness of the fiber. The authors derive the following
scaling relationship:

G(ω) ≈ 1

15
ρκℓp

(
− 2iζ/κ

)3/4
ω3/4 − iωη (2.13)

The scaling relationship observed in the form of ω3/4 is noteworthy in the context of
the mentioned system, where ρ represents the filament density, κ denotes the bending
modulus, ζ is the lateral drag coefficient per unit length, and η stands for the viscosity.
Notably, the dependence of the elastic modulus G′(ω) on density ρ is highly pronounced.
Furthermore, this scaling relationship is independent of network parameters such as the
mesh size ξ. Since filaments contribute independently to the shear modulus, there is no
distinction observed between entangled and cross-linked networks, as indicated by the
black lines in Figure 2.5.

In the figure presented, it can be observed that cross-linked networks display higher
viscosity compared to entangled ones, and this observation aligns with theoretical predic-
tions across a broader range of frequencies. The storage modulus of entangled networks
consistently remains lower than that of cross-linked solutions, and coincides with theo-
retical expectations particularly at extremely high frequencies. At lower frequencies, the
storage modulus of the non-cross-linked solution is approximately 0.2 Pa, corroborating
previous conventional rheology measurements [48] [65] which exhibit the same plateau.

Rigidly crosslinked networks

As depicted in the Figure 2.5, the introduction of cross-linkers leads to a notable enhance-
ment in both elastic and viscous moduli of the networks [48] [72]. Having examined the
frequency-dependent behavior of actin rheology, we now shift our focus to its dependence
on stress (or strain), thereby discerning different regimes based on variations in actin
concentration and filament lengths.

In the presence of non-dynamic and rigid cross-linkers, it is assumed that the mechani-
cal response is primarily determined by the flexibility of the actin filaments. Furthermore,
when cross-linkers exhibit a high binding affinity and remain bound to F-Actin for ex-
tended periods, their dynamics can be neglected. In such cases, there is no active remod-
eling the network can only adapt through bending and tension. Avidin-biotin cross-links
[72] [74] and scruin [75] serve as examples of this scenario.
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Figure 2.5: (a) Storage modulus G′(ω) and loss modulus G′′(ω) (b) of a 1 mg.mL-1 solution of
F-actin filaments (∼ 25 µM) against frequency f , from [72].

Two characteristic regimes govern the mechanics of actin networks. On the one hand,
in networks composed of densely cross-linked long filaments, deformations exhibit self-
similarity across macroscopic and microscopic length scales, thus referred to as affine net-
works. In this regime, the mechanical response is primarily governed by filament stretching
[75], as illustrated in the bottom-left panel of Figure 2.6. Specifically, stretching occurs
when applied stress restricts the range of accessible fluctuation configurations, known as
the affine entropic regime. However, when the distance between cross-links ℓc is smaller
than the persistence length ℓp, the system resembles a dense network composed of macro-
scopic rods. In this scenario, stretching arises from the Young modulus of the filaments
in an enthalpic response, referred to as the affine mechanical regime, as depicted in the
right panel of Figure 2.6.

In stretch-dominated networks, an intriguing stress stiffening behavior is observed,
as illustrated in Figure 2.7. This phenomenon arises from the nonlinear force-extension
characteristics of individual filaments, as depicted in Figure 2.3. The storage modulus G′

increases until reaching a maximum stress σmax or strain γmax, at which point the network
“breaks”. The breaking stress exhibits a linear relationship with the density of F-Actin
filaments, indicating the rupture of individual filaments [65]. The maximum strain is pro-

portional to the distance between cross-links, which scales approximately as ℓp ≈ c
−2/5
A

[75].
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Figure 2.6: (Left) Schemes indicating the bend-dominated deformations in low density and
sparsely cross-linked networks (top), and stretch-dominated deformations that occur in high

density and densely cross-linked networks. (Right) Phase Space of the types of network
deformations as a function of actin concentration log(c) and filament lengths (presuming that

every overlap has a rigid cross-linker, from [61].

On the other hand in the limit of poorly cross-linked networks with short filaments,
stress imposed by an external shear result in non affine deformations throughout the net-
work [76], see Figure 2.6, bottom-left. Indeed, under a shear stress, filaments will tend to
bend and buckle resulting in a deformation that is not self-similar [75]. These bending-
dominated networks soften under increasing stress [62] as seen in Figure 2.7. Thus, exper-
iments and theory have demonstrated the complexity in even a model of system with rigid
and nondynamic cross-linkers that can exhibit both enthalpic and entropic contribution
to the mechanical response.

Both experimental findings and theoretical investigations have revealed the complex
nature of systems even with rigid and non-dynamic cross-linkers, which display a com-
bination of enthalpic and entropic contributions to the mechanical response. However,
as discussed previously, physiological F-Actin cross-linking proteins have a finite binding
affinity and a significant compliance. This affinity determines the timescale over which
forces are efficiently transmitted through the network.

Cross-linked dynamics limited networks

The contribution of cross-linkers kinetics and compliance has been studied in vitro. This
dynamic nature enables networks to support stresses and reorganize in a “fluid-like” man-
ner at long time scales. Here we will quickly review some studies that stress the impact
of temperature, force and concentration on the systems’s properties. Firstly, tempera-
ture has been studied has a a way to alter the binding affinity of α-actinin, resulting in
modifications of bulk viscoelastic properties. At low temperature (around 6°C) networks
are stiff and behaving like rigid-static cross-linked ones, whereas when the temperature
is raised (to 25°C), the elastic modulus decreases drastically making the network become
more “fluid-like” as expected [77]. Although temperature is rather unlikely to be a key
control parameter in vivo, it highlights the importance to have dynamic cross-linkers to
relax stress. More generally, the increase of binding affinity is associated with crosslinkers
abnormalities which can favor kidney diseases [78].
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Figure 2.7: Shear Elastic modulus as a function of the applied stress for a network that is stretch
dominated, which exhibit stress stiffening and failure (grey) and for a bending dominated one,

which exhibit stress-softening (black), from [62].

In filamin-A networks, an increase in the length of cross-linkers results in a transition
towards a more fluid-like structure, where the elastic modulus becomes highly sensitive
to frequency. The modulus decreases more rapidly and exhibits lower overall values [79].
Remarkably, filamin-A networks demonstrate a non-linear stress-stiffening behavior sim-
ilar to that observed in scruin networks. The elastic modulus increases by two orders of
magnitude, reaching stiffness levels characteristic of living cells (around 1 kPa), as shown
in Figure 2.8. This quantitative comparison between the characteristics of pre-stressed
networks in vitro and the mechanical properties of adherent cells in vivo emphasizes the
potential importance of non-linear elastic effects in determining the mechanical response of
the cytoskeleton. Notably, in contrast to scruin networks where the concentration of actin
was the limiting factor for network failure, in filamin-A networks, it is the concentration
of cross-linkers that governs the breaking point [80].

In summary, freely self-assembling actin networks exhibit a wide range of mechanical
behaviors, which are influenced by the lengths of the fibers and the nature and number of
cross-linkers that connect them. However, these networks lack the specific structures and
organization observed in living cells, as they arrange themselves in a loosely constrained
environment. Overcoming this challenge of achieving directed dense structures has been
performed by the discovery of the Arp2/3 machinery in the late 1990s: Cdc42 triggers
the interaction between N-WASP and the Arp2/3 complex [81]. This breakthrough has
allowed researchers to mimic cytoskeletal structures observed in living cells, such as Lis-
teria monocytogenes motility using purified proteins [82]. Thus, mastering the Arp2/3
machinery enables the nucleation and elongation of actin filaments in a polarized manner
on functionalized surfaces, achieving densities comparable to those observed in cells.
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Figure 2.8: Differential shear modulus as a function of pre-stress (f = 0.2 Hz) for physiological
relevant filamin-A networks, cA = 48 µM, R = 1/100, from [61] [80].

2.3.2 Constrained networks and stress adaptation

Micro-pipettes and actin comet

The team led by Cecile Sykes conducted the initial measurements of the mechanical prop-
erties of dense branched actin networks, primarily to quantitatively investigate the forces
generated by branched-actin-based propulsion of Listeria monocytogenes [83], relying on
purified proteins. The experimental setup involved attaching a bead coated with N-WASP
to a force probe, a flexible rod capable of measuring forces through its deflection. Upon ac-
tivation of Arp2/3 by the NPFs at the bead surface, a comet-like structure of actin formed
and extended from the bead. The tail of this actin comet was held by a micro-pipette,
which could apply pulling or pushing forces on the network, up to a few nN, as shown in
Figure 2.9 (Left). The experimental solution comprised purified proteins, including actin,
Arp2/3, profilin, ADF and gelsolin (a capping protein).

In the experiments, the actin comet was pulled at a velocity higher than the free-
growing velocity of actin filaments, resulting in an elastic deformation of the comet tail
(v = 10 µm.min-1). Since the contribution of the comet growth can be neglected, the
force-displacement relationship of the system exhibits a linear response, allowing the de-
termination of the rigidity of the comet, as shown in Figure 2.9 (Right). Using the dimen-
sions of the structure, it becomes possible to estimate the Young Modulus of the material,
the mean value was found to be 3.7 kPa. This value is notably higher compared to the
elastic moduli discussed earlier, such as those of entangled networks, which are less than a
pascal at low frequency measurements (as seen in Figure 2.5). This substantial difference
highlights the distinct mechanical behaviors of actin networks. Furthermore, the stress
required to tear the comet apart and break the gel-bead interface was estimated to be 250
Pa.
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Figure 2.9: (Left) Experimental scheme: Actin comet in dark gray grows from the flexible handle
bead in white and is held in its end by the comet holding micro-pipette: the deflection of the

fiber, provides information on the force applied, (Right) Force as a function of the lengthening of
the comet δL. The slope of 2.7 nN.µm-1 corresponds to the comet rigidity, adapted from [83].

AFM cantilever

Later, Dan Fletcher and his team employed a modified AFM (Atomic Force Microscope)
cantilever to investigate the characteristics of dendritic actin networks. Their experimental
setup allowed them to reach the stall force, which was not achieved in the previous work
by Sykes team [84]. The AFM cantilever was coated with ActA, a nucleation-promoting
factor found in Listeria, before being immersed in cytoplasmic extract from Xenopus laevi
eggs. This functionalized surface triggered the formation of branches [85]. The cantilever
exerted a restoring force that was proportional to its deflection, as depicted in Figure 2.10
(Right). By using AFM-based microrheology, Parekh et al., assuming minimal growth
during their measurements, measured the frequency-dependent elastic and viscous moduli.
In this setup, the functionalized surface was driven sinusoidally (shown in blue), and the
force transmitted through the network was transduced by the cantilever, whose response
was analyzed, Figure 2.10 (Left) [86].

Figure 2.10: (Left) Cartoon illustrating the transmission of the sinusoidal surface displacement to
the cantilever. (Right) Scheme of the growth of branched actin on the ActA coated AFM

cantilever, adapted from [84] and [86].
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Figure 2.11: (Left) Frequency dependence of elastic (filled triangles, E’) and viscous (open
triangles, E”) moduli. (Right) Averaged and normalized trace of nonlinear elasticity of actin

networks: increased (black) and decreased stress (red).

As evident from Figure 2.11, the micro-rheology results demonstrate a frequency-
dependent behavior with a predominance of the elastic response at low frequencies, while
the viscous moduli increases and become dominant at higher frequencies, consistent with
previous observations in Figure 2.4. The elastic modulus follows a power-law rheology
with E′ ∼ fα, where α is approximately 0.13, yielding an average value of around 1 kPa.

Additionally, the stress dependence of the elastic modulus was explored under 5 Hz
stimulation, revealing various regimes. Initially, there is a linear regime for stresses up
to approximately 15 Pa that leads to a stress-stiffening behavior until a critical stress
σc. Beyond σc, the elasticity gradually decreases. The stress-stiffening is attributed to
entropic elasticity. Beyond σc the stress-softening cannot be explained by the fracture
of fibers or cross-linkers or by the network rearrangement since it is entirely reversible.
The explanation lies in the fact that when the stress exceeds the threshold value, the
compressional force surpasses the Euler buckling threshold. Buckling filaments display
infinite compliance, rendering them unable to contribute to the network’s elasticity. As
a result, the network undergoes a transition where the stress-softening behavior becomes
evident, and the elastic modulus decreases.

Ten years later, Peter Bieling and his team adapted the protocol used by Parekh et al
[84]. to study the force-feedback of self-assembling branched actin networks [87]. To mimic
the natural enrichment of WASP-family NPFs on cellular membranes, they enriched the
base coverslip with the Arp2/3 activating region of WAVE1. Unlike Parekh et al., they
loaded the system with purified components, including actin monomers, Arp2/3, capping
proteins and profilin. The actin networks formed three-dimensional pillars, growing from
WAVE1-coated squares with an area of 200 µm2. Before the assembly initiation, an AFM
cantilever was positioned over the coated surface to apply forces and measure the growing
velocity, as depicted in Figure 2.12 (Top).

Indeed, by applying a constant force and using an optical feedback mechanism to
maintain a constant deflection of the cantilever, they were able to study the stress adap-
tation of the growth velocity. Following a short adaptation phase, the network reached a
steady-state condition characterized by a constant velocity regime, as depicted in Figure
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Figure 2.12: (Top) NPF patches, bound to a PEG passivated coverslip, rapidly assemble
dendritic networks from profilin-actin, CP and Arp2/3. (Bottom) Confocal microscopy

(reconstructed axial view) of actin assembly (Alexa488-actin, green) from WAVE1 micropatterns
(magenta) after indicated time of protein addition, from [87].

2.12 (Bottom). This steady-state allowed the investigation of the effects of stress on both
the velocity and the density of the network. Overall, when the stress increases, so does
the density and the velocity decreases. The next section will likely delve into a detailed
discussion of the observed effects on density and growth rate.

In their study, Bieling and his team used AFM-based micro-rheometry to investigate
the material properties of the actin networks grown under various test loads. To stop the
network growth, they introduced Latrunculin B, a compound that binds to actin monomers
and halts polymerization, when the network reached a height of 10 µm. Surprisingly, when
the growth stress was released, the height of the network increased only slightly (less than
10%), suggesting that the increase in density was more a result of architectural reorgani-
zation rather than elastic compression. The elasticity measurements fell within the range
of 103 to 104 Pa, consistent with previous measurements, and both the elastic and viscous
moduli increased with the growth stress.

The most striking finding was that when the response of the networks was investigated
under various test loads, the networks were stiffer when the test load matched the original
growth force experienced during assembly, as depicted in Figure 2.13 (Left). Similarly, the
viscous modulus displayed a local minimum when the test load equaled the growth force.
These results indicate that growing branched actin networks adapt to a specific growth
force, becoming maximally stiff and minimally viscous at that load. This stress adaptation
of the actin networks reveals a remarkable ability of the system to tailor its mechanical
properties according to the mechanical environment it experiences during assembly.
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Figure 2.13: (Left) Network elasticity as a function of test load for networks assembled at
different growth stresses as indicated. (Right) Network elasticity as a function of test load for
networks assembled at a growth stress of 25 (light) or 510 pN.µm2 (dark) growth stress and

additionally crosslinked with either filamin-A (red) or α-actinin (blue) or a buffer control (black)

Indeed, the study by Bieling and his team further confirmed the significant influence
of crosslinkers on the elasticity of branched actin networks. The crosslinkers used, namely
α-actinin (short cross-linkers) and Filamin A (long cross-linkers), were introduced after
the networks had terminated their growth with Latrunculin B. Both types of crosslink-
ers stiffened the network, although interesting differences in behavior were observed. For
dense networks assembled under high forces, α-actinin caused the most significant stiff-
ening effect. However, in sparse networks assembled under low load, Filamin A has the
greatest impact, as shown in Figure 2.13 (Right).

Notably, while crosslinkers did impact the stiffness of the networks, they did not quali-
tatively change the shape of the stress-stiffening curve. This finding indicates that the me-
chanical response of branched actin networks is primarily governed by their load-adaptive
architecture rather than by the specific properties of the crosslinkers themselves.

Magnetic colloids

Olivia du Roure and Julien Heuvingh’s team has developed a micro-rheology measure-
ment technique using supra-magnetic colloids to study the mechanics of dense branched
actin networks. These colloids are coated with the VCA domain of neuronal WASP, which
triggers the activation of Arp2/3. By using a minimal set of purified proteins, including G-
Actin, Arp2/3, cofilin, and gelsolin, they activate the assembly of branched actin networks
on the surface of these colloids. The growth of the gel is stopped after 15 min by dilution in
buffer containing phalloidin, obtaining a stable network with a 650 nm thickness in average.

When a magnetic field is applied, the colloids become magnetic dipoles and self-
assemble into chains of beads (Figure 2.14 Top-Inset). To measure the elastic modulus of
the actin gel, they apply an increasing magnetic field which bring beads closer together,
inducing a deformation of the gel between them. This allows them to measure the force
required to compress the actin gel and bring the colloids closer together (Figure 2.14 Top).
This technique enables access to the elastic modulus through a direct force-displacement
relationship. An advantage of this method is that each pair of beads acts as a sensor,
increasing the number of measurements for each batch of experiments.
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Using this approach, they found that the average elastic modulus of the stable actin
network was approximately 5200 Pa, in good agreement with other studies [88].

In the same work, they investigated the effects of varying Arp2/3 and gelsolin concen-
trations independently. While the estimated density of the network barely increased with
increasing Arp2/3 or gelsolin, the gel exhibited a significant stiffening response in both
cases, Figure 2.14 (Bottom), for the case of Arp2/3. When Arp2/3 concentration was in-
creased further, the Young modulus reached a plateau, indicating a saturation of Arp2/3
activation by the NPFs. In fact, increasing the concentration of branching or capping pro-
teins led to a decrease in the distance between branching points, which modified the origin
of elasticity from an entropic stretching regime to a coupled enthalpic bending-stretching
regime.

Figure 2.14: (Top) Typical force-distance curve. Compression in blue circles, decompression in
red crosses with a Hertzian fit in black. Inset: BF (bright-field) and fluorescent images of a chain,
with three beads covered by an actin gel. Scale bar = 4 µm.(Bottom) Young modulus of the gel
as a function of increasing Arp2/3. Inset: Evolution of the fluorescence density as an estimate of

the actin concentration.
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Figure 2.15: Chain of magnetic cylinders (6 µm in diameter) in an horizontal magnetic field.
Top: Bright field image. Bottom: Fluorescent image (actin is labelled). Actin networks have

grown from cylinders covered by the activator of the polymerization for around 15 minutes. Non
actin-covered cylinders have been passivated. The cylinders are seen from the side, the circular

faces being perpendicular to the image. Scale bar 10 µm, from [89].

In subsequent studies, the focus shifted to analyzing actin gels reconstructed from
cell extracts still using the magnetic colloids technique. In collaboration with the team
of Alphée Michelot, Planade et al. investigated the link between the elasticity of actin
patches and the efficiency of endocytosis. They found that gels made from yeast cell ex-
tracts were significantly stiffer (∼ 6000 Pa) compared to gels made from purified proteins
(∼ 900 Pa). This difference in stiffness could be attributed to the absence of connecting
proteins, such as cross-linkers, or to variations in the network architecture induced by other
accessory proteins present in the extract [90]. Moreover, in this study, they discovered a
clear correlation between softer actin networks and a decreased efficiency of endocytosis.

However, one limitation of using magnetic colloids as force sensors is their round ge-
ometry at the interface, which introduces non-linearities in the force measurements. This
challenge was overcome by a more recent technique that uses cylindrical-shaped colloids
with a flat surface at the interface, providing more accurate results [89].

In Bauer et al. [89], pioneering results on actin mechanics at low stresses were pre-
sented, specifically investigating the behavior at stresses lower than 100 Pa with purified
proteins. Actin gels grown on cylindrical structures (as shown in Figure 2.15) in a medium
containing purified proteins were subjected to increasing stresses ranging from 0 to 30 Pa.
The observed strain resulting from the applied stress was measured, providing access to
the corresponding Young modulus. The stress-strain curve obtained from the experiments
was not linear. Instead, it displayed a positive slope, which is a characteristic signature
of stress-stiffening behavior. This phenomenon had been previously encountered in other
studies involving actin suspensions [75] and gels [84] [87]. The inset of Figure 2.16 shows
that the non-linear elastic modulus follows a global linear increase. However, it is note-
worthy that the elastic modulus vanishes (∼ 20 Pa) for stresses approaching or falling
below 1 Pa. This particular behavior had not been previously reported, as most AFM
measurements in previous studies were performed starting from stresses of 25 or 100 Pa.
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Figure 2.16: Stress-strain curve for a given actin network obtained by application of an increasing
force. The tangent of the curve on four points is represented by short colored lines whose slope is
a measure of the local non linear modulus. Insert: the non linear modulus measured all along the

stress strain curve, from [89].

The authors hypothesise, that this vanishing stiffness at low stresses is the direct
consequence of the origin of elasticity in branched networks. As branched networks with-
out crosslinkers have a critical connectivity, they are expected to build-up their stiffness
through entanglement which appear as the growing network is submitted to increasing
load. Thus, almost free-growing gels exhibit a vanishing elasticity as they lack supple-
mentary connections provided by entanglement. This suggests that the origin of elasticity
in branched actin networks is strongly influenced by entanglement, and in the absence of
such connections, the network exhibit a loss of stiffness. The study of this phenomenon
is still a work in progress in the field, although we will provide recent theoretical aspects
recently developed by researchers.

All in all, the uniqueness of growing branched actin networks lies in their dynamic
nature, where they continuously define and redefine their properties in response to the
chemical and mechanical environment, influencing the mesh size or the distance between
branching points. This is evident in the significant differences observed between networks
grown in purified protein mediums and those reconstructed from cell extracts. Further-
more, at some point, studying the elasticity of these gels boils down to the analysis of
the load-dependent growth process of networks, whose first building block is actin force
generation through polymerization.
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In the subsequent discussion, we will delve into the theoretical and experimental as-
pects of the force generation process of polymerizing actin filaments, focusing on the
force-velocity relationship. We will then provide an overview of bundles and branched
networks growth in experiments and explore theoretical approaches and findings related
to this process.



Chapter 3

Actin network force production

3.1 Force generation of actin filaments through polymerization

The Brownian ratchet is the paradigmatic conceptual framework for elucidating force gen-
eration mechanisms during polymerization processes. The model relies on the conversion
of biochemical energy into mechanical energy. More fundamentally it is a stochastic model
that is built upon thermal fluctuations. Here we will review the main approaches of the
model and present some experimental results.

3.1.1 Stochastic approach

The model described in Peskin et al. [13] is widely acknowledged and frequently cited. It
adopts a convection-diffusion approach to describe the phenomenon. A filament undergoes
linear polymerization against a diffusing barrier, characterized by a diffusion coefficient
denoted as D. A force f is exerted on the filament, as illustrated in the inset of Figure 3.1.
The insertion of a monomer into the gap between the wall and the polymer tip (position
denoted as x) is feasible when the gap size exceeds half the monomer dimension (δ), owing
to the helical structure of actin. Consequently, the growth of the filament is influenced by
both the applied force and the magnitude of fluctuations in the system.

Figure 3.1: Velocity of elongation as a a function of ω = fδ/kBT (dimensionless force). The solid
line represents the case when depolymerization is negligible (β → 0). The dashed line is based on

3.3 when both polymerization and depolymerization are negligible compared to ideal ratchet
velocity: αδ, βδ ≪ 2D/δ, from [13].

36
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In the context where the position x is greater than or equal to the monomer size δ (i.e.,
x ≥ δ), the polymerization rate is represented by α. Conversely, when x is less than or
equal to δ (i.e., x ≤ δ), the polymerization rate becomes null. Additionally, the constant
depolymerization rate is denoted by β. In addition, α can be expressed as α = kon ·M ,
where kon represents the rate per monomer andM denotes the monomer concentration. In
the article, the authors derive the load-velocity relationship by treating the wall as a diffus-
ing particle moving in a one-dimensional space with a diffusion coefficient D. The particle
experiences a force field of magnitude −f , which imparts a drift velocity of −Df/kBT
(where kB is the Boltzmann constant and T is the temperature). The polymerization
process, where a monomer attaches to the tip and extends the length by δ, is analogous
to the particle making a jump from position x to position x− δ.

Interestingly, rather than directly analyzing the diffusion of the particle itself, the focus
of the study is on the system itself, represented as c(x, t), which denotes the density of
systems with gaps at position x at time t. Thus, they describe the dynamics of systems
in an ensemble at position x and time t. Two situations can be distinguished, when the
gap permits polymerization and when it is not wide enough. This leads to two equations:

∂c

∂t
= D

∂2c

∂x2
+
( Df
kBT

) ∂c
∂x

+ αc(x+ δ, t)− βc(x, t), x ≤ δ

∂c

∂t
= D

∂2c

∂x2
+
( Df
kBT

) ∂c
∂x

+ α
[
c(x+ δ, t)− c(x, t)

]
+ β

[
c(x− δ, t)− c(x, t)

]
, x ≥ δ

(3.1)

Furthermore, the authors propose the following expression for the steady state velocity:

v = δ
α
∫ +∞
δ

c(x)dx− β
∫ +∞
0

c(x)dx∫ +∞
0

c(x)dx
(3.2)

Here,
∫ +∞
δ c(x)dx represents the number of systems for which polymerization is made

possible, while
∫ +∞
0 c(x)dx is the total number of systems in the ensemble. Thus, the

upper term is the net growth rate for the ensemble, which has to be divided by the total
number of systems and multiplied by the increment length δ to obtain the velocity per
system.

Additionally, by assuming totally reflecting boundary conditions at the wall, i.e., x = 0
(when there is contact between the tip and the wall), where the monomer cannot be
knocked off due to the polymerization free energy difference, and by enforcing the conti-
nuity of the density of states at x = δ, two necessary boundary conditions are derived.

Despite the complexity of the model, an exact solution can be obtained for the system
under certain conditions. This occurs when the rates of polymerization and depolymer-
ization are much slower than the ideal Brownian ratchet velocity, specifically when αδ and
βδ are both much smaller than 2D/δ. In this regime, the formula is remarkably simple
and stands as:

v = δ
[
αe−ω − β

]
(3.3)

With ω = fδ/kBT , the dimensionless force. Remarkably, in this limiting case, the
formula does not depend on the diffusion coefficient of the load.
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In Figure 3.1, the function is represented in dashed line using rates from [91]. From
3.3, it is straightforward to extract the stall force expression:

fs = −kBT
δ

ln
(β
α

)
(3.4)

Relying on values from [91], the stall force was estimated to be of the order of 10 pN
in vivo.

3.1.2 Thermodynamical approach

Prior to Peskin et al. work, Hill had developed a model concerning force production as-
sociated with microfilament assembly and disassembly [12]. Although Hill model lacked a
detailed mechanistic explanation of energy transduction, it offered simpler results through
its thermodynamic approach. In this review, we will delve into Hill’s work from 1981
and derive the force-velocity relationship. This result will serve as a crucial foundation
for our simulations and analysis, allowing us to better understand the force generation
mechanisms during microfilament dynamics and polymerization processes.

We consider a scenario in which a fiber exerts a constant force against a wall. The
growth of the fiber is facilitated by a pool of NS sub-units, each of length a, which we
assume to be present in a dilute solution.

Gibbs free energy

Let’s call µs the chemical potential of sub-units in solution, at concentration c:

µs = µ0
s +RT ln(c) (3.5)

Where R is the gaz constant, T the temperature and µ0s the chemical potential at
standard state. Let’s note µ0 the chemical potential of the sub-unit attached to the poly-
mer. For the sake of simplicity we will consider it independent of length and force (which
meant to neglect the ATPase activity of actin at short time scales). We also have α the
assembling rate per concentration, α′ the disassembling rate and F the applied force per
mole.

At constant pressure and temperature, the Gibbs Free Energy G is the Thermodynamic
Potential, thus the quantity of interest. We write its variation induced by the assembly
and disassembly of sub-units as :

dG = −SdT + V dP − µsdNs + µ0dNs + FadNs (3.6)

F is positive when we compress the filament, negative when we pull on it. Besides, as
we assume temperature and pressure to remain constant, and considering (3.5) we get :

dG =
[
µ0 − µ0s −RT ln(c) + Fa

]
dNs

As it is a potential, and for this reaction to be spontaneous we must have dG < 0,
which means :

µ0 − µ0
s −RT ln(c) + Fa < 0 (3.7)
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At steady state, we have :

µ0 = µ0s +RT ln(c)− FSa

⇐⇒ µ0 = µs − FSa
(3.8)

Where we have introduced the stall force per mole FS . We define ∆µ the difference
between the chemical potential of the sub-unit attached to the polymer and the sub-unit
in solution: ∆µ = µ0 − µs. Thus, we get:

FS = −∆µ

a
(3.9)

In addition, we have for ∆µ:

∆µ = µ0 − µ0
s −RT ln(c)

= RT ln
(c0e
c

) (3.10)

With c0e the equilibrium concentration, with no force. Using 3.10 and 3.9 we can derive
the value of FS :

FS =
RT

a
ln
( c
c0e

)
(3.11)

Then, the stall force expression is straightforward.

fs =
kBT

a
ln
( c
c0e

)
(3.12)

Interestingly, this expression reveals the correspondence between the kinetic rates ratio
of Peskin’s expression 3.4 and the ratio of concentration here, in Hill’s work.

In the same time, we can derive the equation linking equilibrium concentrations with
and without force.

ln(c)

ln(c0e)
=
Fa

RT

The quantity
∣∣∣ Fa
∆µ

∣∣∣ can be seen as the free energy transduction efficiency (thermody-

namics to mechanics).

Detailed balance as an equilibrium condition

Considering that our system is at equilibrium, we must respect the Detailed Balance
condition between attached and detached states :

P (A)P (A→ D) = P (D)P (D → A)

With P (D → A) = αce and P (A→ D) = α′
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Thus we obtain :

P (A)

P (D)
=
αce
α′ (3.13)

Moreover, as we are at equilibrium the probability of being in Attached or Detached
States is given by the Boltzmann-Gibbs distribution:

P (A) =
e−β̄EA

Z
; P (D) =

e−β̄ED

Z
with β̄ = 1/RT

Thus (3.13) becomes :

αce
α′ = e−β̄∆EAB ; ∆EAB = EA − EB (3.14)

Or, we know that ∆EAB = ∆µ+ Fa

Finally we obtain :

α

α′ =
e−β̄∆µ

ce
e−β̄Fa (3.15)

Besides, we know that v+ = αca and v− = α′a. In addition, v = v+ − v−.

Then, let’s fix the value of α′, because, as long as the the ratio is conserved the physics
remains the same. Thus, we get the velocity of the system :

v = α′a
[
e−β̄
(
∆µ+Fa

)
− 1
]

(3.16)

3.1.3 Elastic ratchet

In Mogilner et al. [11], they generalize the Brownian ratchet concept to incorporate
the semi-flexible nature of actin filaments and accounts for the approximately orthogonal
growth networks observed in lamellipodia, unlike the assumption of colinear growth for
infinitely stiff filaments in Peskin et al.’s model [13].

The setup involves an actin filament of length ℓ, anchored to a rigid actin network as
a fixed support, and growing against an external load f at an angle θ (see Figure 3.2). In
this configuration, the gap required for adding a monomer is δ cos(θ), where δ represents
half the size of a monomer, as mentioned earlier. The actin filament exhibits a persistence
length denoted as λ (approximately 1 µ m). The mechanical behavior of the system can be
equated to that of a Hookean spring, where the elastic constant of the spring is expressed
as follows:

κ(ℓ, λ, θ) =
4λkBT

ℓ3 sin2(θ)
=
κ0(ℓ, λ)

sin2(θ)
(3.17)

The statistical motion of the tip, subjected to the restoring force of the spring and the
load force, can be described by a Fokker-Planck equation. In the scenario where thermal
fluctuations of the tip occur much more rapidly than the polymerization rate, it becomes
feasible to solve the Fokker-Planck equation using perturbation theory.
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Figure 3.2: (Right) Scheme of the actin filament growing against the load at an angle θ. (Left)
Mechanical equivalent of the system with a Hookean spring of stiffness κ, adapted from [11]

As a result of this approach, the force-velocity relationship can be expressed as follows:

v ≈ δ cos(θ)
[
konMp(θ, f)− koff

]
(3.18)

The obtained result can be interpreted as the increment of length multiplied by the
difference between the polymerization and depolymerization rates. The free polymeriz-
ing rate konM is modulated by the steady-state probability of a gap with width δ cos(θ),
denoted as p(θ, f). The expression for this probability, which we won’t delve into the
details here, depends on the flexibility of the filament, characterized by parameters ℓ and
λ. The computation of this probability can be performed numerically, as demonstrated in
the paper for motion analysis of Listeria or lamellipodium extension.

An interesting observation is that the velocity is not a monotonic function of the angle
θ but instead exhibits a maximum at a critical angle θc. This behavior arises because, on
one hand, thermal fluctuations may not be able to bend a stiff filament that is pushing
normally against the surface. On the other hand, a filament growing nearly parallel to
the load cannot generate axial displacement. Hence, there must exist an optimal angle
that allows for maximum force generation, as depicted in Figure 3.3 (Left). This finding
highlights the significance of filament flexibility and angle in determining the force-velocity
relationship and provides crucial insights into the mechanics of actin-based cellular pro-
cesses.

In addition, it is possible to qualitatively estimate the stall force. At large forces, the
filament becomes almost parallel to the wall, and we can approximate cos(θ) ≈ kBT/fsδ.
In this state, the average equilibrium distance between the tip and the wall can be esti-
mated as y0 ≈ fs/κ. When the distance y0 becomes equal to ℓ cos(θ), it indicates that the
filament is bent nearly parallel to the load and the velocity drops to zero. This can be
expressed as ℓ cos(θ) ≈ ℓkBT/fsδ ≈ fs/κ. Tacking theses considerations into account, we
can derive the following expression for the stall force per filament.

fs ≈
kBT

δl

√
ℓ2 + 4λδ (3.19)

Applying this framework, Mogilner et al. obtained the load-velocity curve for a
crosslinked lamellipodium network with a 45° angle distribution comprising 5000 pushing
filaments at the front. According to their model, they derived the stall force per filament,
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approximately fs ∼ 5 pN. Considering the collective contribution of all filaments, the total
stall force for the lamellipodium was estimated to be Fs ∼ 25 nN. The force-velocity curve
is represented on Figure 3.3 (Right). Remarkably, their results are in good agreement with
experimental measurements using micro-needles to assess the force required to halt the
advancement of a keratocyte’s lamellipodium. The experimental measurements indicated
a stall force of approximately ∼ 45 nN [92].

Additionally, their approach allows for the discrimination of different limiting regimes
based on the values of two dimensionless parameters: ω, representing the dimensionless
work of the load, and ϵ = κ0δ

2/2kBT , representing the dimensionless mean elastic energy
stored in a filament. In situations where long microtubule bundles are subjected to large
forces (ω ≫ 1), the bending energy becomes relatively low compared to the thermal
energy (ϵ≪ 1). Consequently, in this regime, the authors demonstrate that the assembly
rate is predominantly determined by a deterministic Boltzmann factor ef∆/kBT , with ∆
the displacement of the wall. This distinction between regimes, taking into account the
relative contributions of bending energy and thermal energy, provides key insights into the
dominant factors influencing the filament dynamics under different force conditions. For
microtubule bundles experiencing large forces, the mechanical work exerted on the system
becomes the primary driving force for the assembly rate, while the influence of bending
energy diminishes due to its low magnitude compared to thermal energy. In a broader
scope, this study significantly alters the results for low forces, revealing the existence of
a local convex regime characterized by a slowly decreasing velocity. Nonetheless, when
dealing with higher forces, the load-velocity curve maintains its convex nature. Let us now
shift to describe some experimental results.

3.1.4 Experimental results

The initial investigations drawing evidences of force generation by single growing actin
filaments were documented in Kovar et al’s work. The barbed-end of an actin filament is
anchored to the FH2 domain of formins, which are secured on microscopic slides, while the
pointed-end is immobilized by myosin heads. Consequently, elongation at the barbed-end
results in filament buckling between these two anchoring points, with segments as short as
0.7 µm displaying forces on the order of 1 pN. To our knowledge, direct measurement of
force production by single actin filaments remains unexplored. However, researchers have
gleaned insights from the collective motion of actin fiber bundles, which will be discussed
in subsequent sections.

Figure 3.3: (Left) Velocity v as a function of the load f and filament incidence angle θ. The
critical angle θc, for fastest growth depends on the load, its trajectory is shown on the v(f, θ)

surface. (Right) Computed load-velocity curve for a network consisting of 5000 filaments actin on
a membrane area of 5 µm x 0.2 µm.
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Figure 3.4: Force measurement for actin filament growth with monomeneric actin at 4 µM. Grey
traces show raw data, the black line is the best-fit curve, adapted from [14].

Conversely, force-velocity relationships have been evaluated for growing microtubules,
allowing for significant inferences. These microtubules are attached to a substrate on one
end while the other end remains free, exerting force on a rigid barrier [93]. As the mi-
crotubules grow, they eventually buckle while continuing to elongate at a slower velocity.
Analyzing the shape of the bent filament enables the computation of the corresponding
stored elastic energy, facilitating the derivation of the force-velocity relationship, up to ap-
proximately 4 pN. Surprisingly, in these experiments, the velocity decreased more rapidly
with the applied force than anticipated by the Peskin et al. model [13], which had overes-
timated the growth rate. This discrepancy could be attributed to the composite nature of
microtubules, consisting of several proto-filaments, where only a limited number of them
would contribute significantly to the work, leading to an accelerated exponential decay.

The subsequent section will delve into the investigation of aligned bundles of filaments
or protofilaments, which have been the focal point of numerous scientific inquiries. Despite
their apparent simplicity, these systems offer valuable insights into how geometric factors
influence the overall dynamics of parallel ensembles, such as microtubules or actin bundles,
changing the overall force-velocity shape or the stall force scaling.

3.2 Force production of filament bundles

3.2.1 Experimental results

Footer et al. [14] conducted an investigation into the growth capabilities of actin filaments
and corroborated the presence of a stall force. To achieve this, they employed an optical
trap to directly measure the positional effects of polymerization on eight parallel filaments.
By assessing the displacement of the bead within the trap, they were able to calculate the
associated force. In experiments with low G-Actin concentrations, they observed a stall
force of approximately 1 pN for 2 µM actin and 1.5 pN for 4 µM, as depicted by the
plateau in Figure 3.4. This observed small value aligns with theoretical predictions for
their low concentration conditions involving only one filament.
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A plausible explanation for this outcome lies in the likelihood that only the longest
filament comes into direct contact with the barrier. This suggests that parallel bundles
of actin filaments do not inherently collaborate to enhance force generation, necessitating
a more intricate mechanism. Alternatively, the authors propose that actin bundles may
exhibit lower efficiency in converting biochemical energy into mechanical work compared to
other forms of actin filament organization. This idea will be revisited later, highlighting
the trade-off between force and displacement for various structures, resembling a gear
mechanism [94]. Moreover, Tsekouras et al. [95] propose an alternative explanation for
this unexpected result, pointing to the influence of profilin, which is utilized to suppress
spontaneous actin nucleation in Footer et al. [14]. Specifically, when profilin binds to
actin monomers, it could interfere with ATP hydrolysis during polymerization, thereby
modifying the thermodynamics of the system. This may contribute to the observed stall
force behavior in the experiments.

An interesting configuration

Furthermore, it is worth to mention the experiments carried out by Brangbour et al. [96],
which, although not directly studying the growth of fiber bundles, provide valuable in-
sights. In their study, they employed the magnetic beads setup detailed in the previous
section to investigate the force-velocity response of individual growing actin filaments. To
trap the barbed-end of the actin fiber and allow the pointed-end to grow freely, the beads
were coated with gelsolin (which has an impact on the polymerization kinetics). The total
number of gelsolin molecules per bead was denoted as NGS . In the presence of G-actin,
gelsolin initiated growth at the pointed-end, following this a magnetic field was applied
to align the colloids, as previously described by Pujol et al. [88]. The magnetic force and
the distance between the beads were monitored by adjusting the field accordingly.

The authors measured the bead-to-bead distances for various forces and obtained the
corresponding velocities. In Figure 3.5, they plotted the velocity against the force for two
actin densities. Increasing actin filament densities had no impact on the zero-force velocity
but diminished the decay rate (with force). Both curves exhibited convex behavior, and
the system appeared to approach zero force without any observed stall or negative velocity,
suggesting no depolymerization induced by the applied force. Additionally, the authors
investigated the effect of force on actin filament growth and found that the growth was un-
affected by the load, contrary to what is predicted by the Brownian ratchet model. They
performed experiments starting with growing filaments at a low load (0.8 pN) and then
significantly increased the force to freeze the distance between the beads. Subsequently,
the force was reduced back to its original value. Interestingly, the distance versus time
before and after the application of the high force collapsed onto the same line, indicating
that filaments grew at the same speed regardless of the load.

This rapid recovery suggests a soft elasticity which was found to be not compatible
with buckling. Instead, the authors considered that elasticity originated from the soft
biotin-gelsolin link that fixes fibers on the beads Thus, in response to increasing opposing
forces, filaments tilt (without bending) which reduces the number of accessible configura-
tions, which leads to entropic elasticity. This entropic repulsion was found to dictate the
force-velocity profile, their entropic-based model successfully predicted the experimental
points, as shown in Figure 3.5. This innovative setup presented an alternative to the Brow-
nian ratchet mechanism, suggesting that the force-velocity behavior of those ensemble of
filaments might be different from what was previously assumed, as they continue to grow
as if they were in solution, disregarding their stall threshold.
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Figure 3.5: (Left) When the distance between black surfaces is large enough (X ≥ L), the
filament explores the whole half sphere shaded on the figure because of thermal fluctuations.
When X ≤ L, the accessible surface V decreases leading to an entropic repulsive force. (Right)
Velocity versus force for different filament densities with NGS = 10000 for red circles, NGS =

4000 for blue triangles. The curves are the predictions of the model, adapted from [96].

Indeed, the experimental results discussed above shed light on the limitations of a
simple Brownian ratchet approach when dealing with small fiber ensembles. The stall force
of such ensembles may not scale directly with the number of filaments, and the dynamics
of individual filaments might not be the sole limiting factor in certain complex structures.
However, it is worth questioning the physiological relevance of the last system studied.
Regrettably, there is a dearth of experimental results concerning small actin ensembles,
despite the abundance of theoretical and numerical work on the subject. Nevertheless,
the theoretical and numerical investigations have provided valuable insights, particularly
regarding the scaling of the stall force in such ensembles. In the following sections, we will
present some of these works, which have contributed significantly to our understanding of
force generation in small fiber ensembles.

3.2.2 Theoretical and numerical approaches

In 1999 Mogilner et al. [97] extended upon their elastic ratchet framework to incorporate
the findings of Dogterom’s work on microtubules growth. It had been observed that the
velocity decreased more rapidly with the applied force than predicted by the Brownian
ratchet model. To account for this, the authors proposed that the force generated by the
ensemble of filaments is not simply the sum of forces produced by individual filaments.
Indeed certain proto-filaments positioned close to the membrane could not polymerize as
rapidly due to insufficient space for the insertion of a tubulin dimer. Nonetheless, these
filaments could indirectly support the growth of more distant fibers by effectively bearing
a significant portion of the load.

They approached the system as a bundle of N cross-linked filaments that polymerize
independently against a perpendicular barrier. The authors made the assumption that the
force influenced the assembly rate of sub-unit addition solely for filaments whose tips were
closer than the size of a sub-unit (x ≤ δ), while the disassembly rate remained constant
regardless of tip positions. Treating the tip distributions as a continuum, they numerically
solved the model, focusing on the case of koff = 0 where kon ≫ koff .
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Although their predicted velocity values were somewhat higher than observed experi-
mentation, their results aligned notably well with the experimental trends. In their anal-
ysis, the authors quantified the number of working filaments, those falling within the δ
range, and found that this count was smaller than N but increased with the applied force.
They further employed their model to predict the stall force, introducing a finite koff and
found that it was scaling as the square root of the number of filaments:

Fstall =
kBT

δ

√
kon
koff

√
N (3.20)

The square root scaling of the stall force proposed by Mogilner et al. was subsequently
scrutinized and questioned in subsequent studies, as thermodynamic considerations would
generally suggest a simpler linear scaling. Addressing this, Van Doorn et al. [98] undertook
a study using a discrete version of the model previously described. They paid particular
attention to the treatment of the off-rate term. To facilitate computations, they introduced
a step size σ = δ/N and arranged filaments at positions separated by σ such that each
position marked by n (x = nσ) could accommodate at most one filament tip, as illustrated
in Figure 3.6 (Left).

Figure 3.6: (Left) Discrete version of the Mogilner-Oster model for a polymer with N = 5
independently growing filaments. The addition of a monomer permits a displacement of the wall
∆xon, despite the force F . At the stall force, the two configurations are in equilibrium leading to
detailed balance. (Right) The force-velocity relation for growing microtubules. Squares are the
experiments from Dogterom et al. Solid lines are simulation results from the discrete theory:
koff = 50 min-1 for the thick line, koff = 10 min-1 for the thin line. Dashed lines are the

corresponding curves predicted by the Brownian ratchet model. The inset shows the probability
distribution of filament tips at the stall force. Adapted from [98].
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The authors conducted simulations to analyze the dynamics of the system, ultimately
deriving the force-velocity relationship for a growing microtubule with N = 13, as depicted
in Figure 3.6 (Right). Remarkably, the theoretical predictions closely matched Dogterom
et al.’s experimental results, and importantly, the stall force obtained aligned with what is
anticipated from thermodynamic considerations, specifically Fstall = N · fs. This finding
reinforced the compatibility of the model with thermodynamics and highlighted the dis-
tinct shape differences compared to the Brownian ratchet, with the curve declining more
steeply than an exponential decay. Furthermore, this result was achieved analytically. At
the stall force, the net velocity is zero (vpol = vdepol), implying that the detail balance con-
dition can be imposed between pairs of tip configurations transformable by a single event
(addition or removal). This condition led to the same stall force prediction as inferred
from thermodynamic arguments:

Fstall =
NkBT

δ
ln
( kon
koff

)
(3.21)

Subsequent findings provided further support for the linear scaling of the stall force
through a more general analysis based on decomposition into polymerization cycles, specif-
ically in the absence of lateral interactions between filaments [99]. In their study, Krawczyk
et al. underscored that their analytical approach revealed the universal nature of the ex-
pression for models of this nature.

In a more recent study, a novel theoretical framework was proposed to address this
problem by modeling the dynamics across a range of force values, rather than exclusively
focusing on the stall force. This approach also accommodated an arbitrary number of
filaments in contact with the moving wall [95]. Notably, this theoretical framework in-
troduced the possibility of a condensation transition concerning the number of filaments
at the wall. Given that multiple filaments could be in contact with the wall simultane-
ously, the manner in which the load was shared at these points needed precise specification.

When a monomer is added to the tip of a filament, it supports the full load and induces
movement of the barrier (kon = U(f)). During this step, the other filaments are consid-
ered free (kon = U0). Similarly, filaments are assumed to depolymerize freely (koff =W0),
unless they are the sole filament in contact with the barrier (koff =W (f)). Consequently,
depolymerization results in work when only one filament interfaces with the barrier, as
it leads to the barrier’s motion. However, when multiple fibers interact with the load, a
growing filament must exert work against the entire load. It is worth noting that this study
adopts a “no-load sharing” scenario, distinguishing it from previous investigations [98] [99].

Applying these principles, the authors obtained equations of the dynamics and ex-
tended their analysis to the large N limit to derive mean-field expressions. These expres-
sions yielded the mean velocity of the moving barrier and the mean number of filaments
in contact with the wall:

v = δ
[
UN0 −Wq

]
N0 =

(U0 +Wq −W0)N

U0 + U(N − 1) + (W −W0)q

(3.22)
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With q = ⟨δN0=1⟩ representing the time-averaged probability that there is only one
filament in contact (N0 = 1). Despite efforts, a method to extract q directly from the equa-
tions could not be established. Consequently, its value was computed from simulations
and subsequently incorporated into the mean-field theory. The outcome of this approach
demonstrated remarkable agreement between simulations based on exact equations (using
the Gillespie algorithm) and the predictions of the mean-field theory, as depicted in Fig-
ure 3.7. These graphs emphasize the occurrence of a condensation transition as the force
increases. At low forces, the barrier velocity closely approximates its maximum value,
determined by the free-polymerization velocity, and only a small number of fibers contact
the barrier, leading to q ≈ 1. This scenario is referred to as the non-condensed regime.
Conversely, at higher loads, filaments accumulate at the barrier, the velocity approaches
stall, and q ≈ 0, constituting the condensed regime. After the initial plateau, the velocity
decline exhibits a convex shape.

Figure 3.7: (Top) Mean velocity of the barrier versus the force. (Bottom) Mean number of
filaments in contact with the barrier. Red cross symbols represent the simulations results, the

blue dotted-line is the mean-field prediction based on 3.22, with N = 100. The inset represent the
tips density profiles (red bars) with the mean-field theory predictions (black lines) as a function
of the distance to the barrier, for non-condensed (left) and condensed regimes (right). From [95]
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Then, having established the linear scaling of the stall force, the authors delved into
studying the system’s behavior as it approaches stall. This examination was motivated
by the observation (seen in Figure 3.7 - Top) that the velocity approaches zero at forces
significantly below the stall force. To quantify this effect, the authors introduced the
notion of an apparent stall force, defined as the force at which the velocity drops to less
than a small fraction α = 2.5% of its initial value. This concept bears particular relevance
in experimental scenarios where this threshold might correspond to the resolution limit
of velocity measurements. Near stalling (q ≪ 1), their calculations yielded the following
approximation:

Fapparent stall ≃
kBT

δ
ln
(
1 +

N

α
−N

)
(3.23)

In the simulated regime, the calculated value of the apparent stall force was approxi-
mately 12.7 pN, force for which the velocity approaches the resolution limit of measure-
ment. In addition, their theoretical analysis indicated that condensation occurs at this
apparent stall force, a noteworthy observation that is evident in the graph. Consequently,
the apparent stall force, scaling logarithmically with the number of filaments (ln(N)), ap-
pears to be a significant quantity at this scale.

In summary, the paper highlighted the gradual approach to stalling, pointing out that
this slow process could result in the underestimation of the true stall force. However, the
authors acknowledged that their model might be too simplistic to comprehensively ad-
dress various in vivo scenarios. Expanding beyond the parallel organization would likely
be necessary to capture the complexities of real-world situations. Additionally, none of
the discussed models accounted for the nucleation of filaments from existing ones, a phe-
nomenon evident in branched systems. This omission underscores the need for more in-
tricate models to truly capture the dynamics of force generation in complex actin networks.

More generally, while unraveling the mechanisms underlying polymerization-driven me-
chanical power, the previously mentioned approaches disregard the influence of growth on
the pre-existing network. By focusing solely on surface interactions, these models overlook
potential viscoelastic changes within the bulk of the system, which could impact its overall
behavior. Notably, as discussed earlier, branched actin networks are particularly prone
to undergoing viscoelastic adaptations in response to stress [87]. However, as pointed out
in the work of Tsekouras et al., the intricate interplay between buckling and polymeriza-
tion forces complicates the isolation of each contribution to the system’s behavior. In the
subsequent section, we will provide an overview of experimental and theoretical findings
concerning the force-velocity behavior of growing branched actin networks. Many experi-
mental results will be drawn from the same studies that were examined in the preceding
section, where the mechanics of such networks were discussed. This approach aims to
provide a comprehensive understanding of how branched actin networks respond to me-
chanical forces and how their growth dynamics interact with their mechanical properties.
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3.3 Force velocity relationship in growing branched actin net-
works

3.3.1 Experimental results

Here we review experimental works (that have for the most been introduced in section
2.3.2) which describe the effects of loads on branched actin growth distinguishing between
micro-pipette, AFM and magnetic cylinder experiments.

Micro-pipette and actin comet

In the case of Listeria Monocytogenes the load-adaptation of velocity is an important
feature, as the bacteria needs to cross cell membranes to propagate. In the beginning of the
twenty-first century, indirect approaches relying on increasing the viscosity of the medium
led to opposing results: (bio-mimetic bead propulsion) [100] (Listeria) [101]. In addition,
people strived to assess the value of the propulsive force, though the investigation range
was limited to ∼ 100 pN . Beyond providing information on branched actin mechanics,
experiments realized by Marcy et al., applied larger forces up to a few nN to probe the
velocity response [83]. Indeed, Gerbal et al. suggested that forces of the order of a nN
were necessary to slow down the bacteria, relying on a mesoscopic elastic analysis [102].
We will come back to their theoretical analysis and results later on in subsection 3.3.2.

Using the experimental setup previously presented in subsection 2.3.2, they applied
pulling (negative) and pushing (positive) forces yielding to a force-velocity plot, see Figure
3.8 (c). The force applied is maintained through a feedback loop system as seen in (a), the
constant velocity is fitted on the lengthening increase δL. The velocity at a given force is
normalized, measuring the zero-force velocity VF=0 for each flexible handle. In average the
zero force velocity was around 2 µm.min-1. Overall, there is a linear decrease for pulling
forces, whereas the velocity decreases more gently for pushing forces, leading to a velocity
roughly equal to 20 % of the zero load one at the maximum applied force. Although the
stall force could not be reached experimentally, it was estimated to 7 nN by the fitting
curve.

Figure 3.8: Force-velocity diagram : Typical measurement for one point with the Force (a), set to
1.7 nN, and the lengthening (b) δL as a function of time. (c) The velocity is normalized by the
velocity at zero force measured for each flexible handle, and fitted with an expression from [102]

analysis.
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AFM cantilever

Dan Fletcher and his team took up the challenge of studying the velocity of networks
approaching their stall force [84]. In those work they present the actin network growth
against a flexible cantilever, relying on an AFM assay, as previously detailed in subsec-
tion 2.3.2. As the cantilever exerts a restoring force that is proportional to its deflection
(KAFM ∼ 20 - 30 pN.µm-1), the growing network faces an increasing load until stall.
This force microscopy technique is capable of exerting forces up to hundreds nN in a flat
nucleating surface which avoids ambiguities caused by the curvature of the substrate.

As seen in Figure 3.9, a load independent phase precedes the stall phase, where the
elongation rate decreases until a stall at a force of 294 nN, which corresponds to a pres-
sure of ∼ 1 kPa. Notably, the observed convex shape differs from previous experimental
concave decrease as predicted by the Brownian ratchet [12] [13] or elastic gel models [102].
At first glance, the load independent phase could whether be explained by actin force-
independent kinetics or by load adaptation as seen in the auto-catalytic [103] model which
will be introduced in subsection 3.3.2. To lift the indeterminacy, the team performed
force-reduction experiments.

Surprisingly, by reducing the force during the load-independent phase and by main-
taining it at constant value, the velocity quickly increased maintaining a constant value
for long times, as seen in Figure 3.10. This result discarded both results as no change in
velocity was expected in the first hypothesis, while the short increase (second time scale)
should lead to an exponential decay toward the original value in auto-catalytic model. In
the same way, Parekh et al. showed that their could be two velocities for the same applied
stress, exhibiting the load history dependence. This hysteresis phenomenon is explained
by the structural remodelling of the network with an increase of filaments pushing the load.

Figure 3.9: Force-velocity relationship for the experiment: A load independent phase precedes
the stall one, from [84]
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Figure 3.10: Force reduction experiments showing two stable velocities at a single force. (Bottom)
After remaining constant for 73 min, force is allowed to increase to 83 nN before being reduced to
its initial value of 68 nN 6 min after. (Top) The increase of the force in the second phase causes a
decrease of the velocity, during the last phase the velocity increases to a value higher than the

original one demonstrating multiple stable growth rate for a single force, from [84]

In Bieling et al. [87], the researchers measured the steady-state growth velocity of
branched actin networks while applying a constant stress, as shown in Figure 3.11. Re-
markably, the measured velocity exhibited a sharp decrease under small loads but did not
completely stall until the load exceeded 1250 Pa, which is comparable to stresses observed
in crawling cells [61]. The observed velocity curve, though convex, did not follow a simple
exponential decay as expected by elastic Brownian ratchet models of a fixed number of
growing filaments [13]. The more gradual decrease at higher forces suggested a possible
load-dependent effect on filament density, which was further confirmed in the same study.

By using TIRF microscopy, they found that the density of the actin filaments increased
as the applied stress was increased. Furthermore, they examined the energy efficiency (me-
chanical power over the energy consumption rate) of the growing actin networks and found
that it was highly load-dependent. At higher forces, the energy efficiency increased from
3% to 14%. This indicated that under high load, polymerizing filaments appeared to share
the mechanical burden more evenly.
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Overall, the changes in velocity and density under different stress conditions seemed to
nearly compensate each other, as the flux of actin (product of velocity and density) exhib-
ited only a weak decrease with increasing stress. This delicate balance between velocity
and density suggests that the growth of branched actin networks is tightly regulated to
adapt to varying mechanical environments, possibly to optimize mechanical performance
and energy efficiency. It remains to be seen to what extent this adaptation can be ex-
plained by physical criteria.

Investigating more precisely the density increase, Fletcher and his team deciphered
that it was primarily due to an increase in polymerizing filaments, but that it was, more
significantly resulting from a change in the network’s architecture. Surprisingly, they found
that this architecture adaptation did not involve a change in filament length. The mean
filament length remained constant at approximately 300 nm regardless of the applied load.
This discovery led to the understanding that there was a close match between the load
response of filament elongation and capping.

They later confirmed this by showing that capping proteins indirectly stimulated
Arp2/3 activity by inhibiting the interaction between NPFs and free barbed-ends, a mech-
anism known as “barbed-end interference” [41]. They further demonstrated that capping
proteins also followed Brownian ratchet dynamics, similar to actin monomers [42]. This
revelation indicated that the same theoretical framework is governing both force-response
processes, which explains the high regulation of filaments length for changing loads. All
in all, the Brownian ratchet not only underlies the ability of growing filaments to gen-
erate forces but also plays a critical role in their capacity to dynamically modify their
architecture in response to mechanical loads.

Figure 3.11: Steady-state growth velocities of branched actin networks as a function of growth
stress. Raw data in grey, averages in black with SD. Inset: semi-logarithmic plot with a single
exponential fit (dashed blue line) stresses the divergence with the Brownian ratchet, from [87].



3.3. Force velocity relationship in growing branched actin networks 54

Magnetic colloids

In their study previously introduced in section 2.3.2, Bauër et al. [89] provided evidences
of a stress stiffening behavior and a non linear response at small stresses with magnetic
colloids. In addition, they were able show the slow down of network assembly as force
is increased. They gradually increased the magnetic field and studied the displacement
as a function of time. As they only focus small displacement (less than 100 nm), they
assume that the imposed stress is constant during these growth steps, see Figure 3.12
(Left). From this they can extract the velocity as the function of the stress as seen in
Figure 3.12 (Right). Even though the overall shape (convex) is similar to previous studies
in rather close conditions (with purified proteins), the obtained velocities at zero force are
remarkably slow: around 0.2 µm.min-1 here, ∼ 2 µm.min-1 in [83], 8 µm.min-1 in [87]. To
date, this difference has not been discussed, nor explained.

In the next section we will provide some theoretical results and insights on branched
actin growth. We will explore two sides of the literature that have been lacking in parallel
growth models: the importance of the elastic nature of filaments in networks as well as
the interplay between branching, capping and elongation which is key for the formation
of branched structures. While the second has been extensively studied and has recently
performed significant advances, we think that the role of elasticity in branched networks
is lacking theoretical and quantitative studies.

Figure 3.12: (Left) Actin gel length measured by the distance between the faces of two cylinders
as a function of time. The magnetic field is increased by 15 s steps from 3 mT to 80 mT. The
displacement as a function of time is fitted at each step of constant magnetic field (red lines).
(Right) Normalized speed as a function of applied stress for several actin networks, inset:

distribution of the normalizing velocity measured at low stress. The shaded area represents the
95% confidence interval, from [89].
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3.3.2 Theoretical and numerical approaches

Gerbal et al.

One of the initial theoretical investigations into network response were led by Gerbal et
al. in their work on the elastic model of Listeria monocytogenes propulsion [102]. This
study introduced a continuous elastic gel model to elucidate how the accumulation of actin
filaments into the tail leads to the bacterium’s propulsion. In this model, filaments are
cross-linked, and the tail is firmly attached to the bacterium. This conceptual framework
refutes the notion of propulsion based on a simplistic Brownian ratchet model, where the
filaments exert force on the bacterium without any attachment. Observations suggest that
the propulsion of Listeria monocytogenes relies on the relaxation of a continuous elastic
medium. The addition of a new filament through polymerization induces elastic deforma-
tion in the gel: the incorporation of a new layer compresses the previously formed layers.
To simplify the system, the authors employ a two-gel model, with an internal gel produced
at the back hemisphere and an external gel generated on the surface of the cylinder, as
illustrated in Figure 3.13 (Left).

Computationally, by equating the forces exerted on the bacterium, it becomes feasible
to determine the velocity of the entire structure. Here, we will outline the steady-state
outcomes derived from the simplified one-dimensional model. In this scenario, the authors
exclusively consider the propulsion within the internal gel, treating it as a purely elastic
medium characterized by a constant strain. They also account for the dependence of
polymerization speed at the surface on the applied force, which encompasses the Brownian
ratchet mechanism. Incorporating these factors along with volume and mass conservation
assumptions, they arrive at the following expression:

vp =
vp0

1 + Fext/Y Sb

e−(Fextad2)/(kBTSb) (3.24)

Figure 3.13: (Left) Elastic model of the propulsion of the material: new filaments are polymerized
and expand the older layers, inducing a stress in the gel. The motion is caused by the relaxation
of this stress in the tail. In light grey is depicted the internal gel, in dark grey the external one.
(Right) Force-velocity curve for the two gel model for various values of the friction parameter γ.

The dashed-line is the curve obtained for the one-dimensional model. Adapted from [102]

In this equation, Y represents the Young modulus of the gel (approximately 103 to 104

Pa), Sb is the cross-sectional area of the bacterium, vp0 denotes the velocity at zero force,
d stands for the mesh size, and a corresponds to the length of a monomer. The velocity
not only exhibits exponential decay but also decreases more rapidly as it scales inversely
with Fext, as depicted in Figure 3.13 (Right).
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The inverse term captures the elastic compression, while the exponential term accounts
for the change in polymerization speed. Additionally, the term YSB emerges as the char-
acteristic force of the model, which is on the order of 1 nN. However, due to the omission
of filament depolymerization, their analysis does not yield a stall force.

In the two-gel model, the authors also consider the normal polymerization of fibers
at the surface of the bacterium, leading to the expansion of older layers outward and the
accumulation of elastic energy. This radial energy accumulation is subsequently released
in the tail. Intriguingly, the authors augment this elastic motor with the force induced
by filament surface friction. Transient links formed by actin fibers at the surface result
in a friction force that is parameterized by a drag coefficient γ. The resulting curves ob-
tained from numerical simulations are illustrated in Figure 3.13 (Right) for various drag
values. The overall shape of the curves remains consistent with the one dimension model,
although the drag coefficient introduces a new dimension. Increasing friction or external
force qualitatively yield similar effects, slowing down the movement of the bacteria. No-
tably, at zero force, the velocity no longer equals the polymerization rate. Depending on
γ, the velocity can be greater or less than vp0 , representing a significant departure from
the one-dimensional model.

The analysis conducted by Gerbal et al. laid the groundwork for a significant theoret-
ical framework in modeling the propulsion of Listeria. These fundamental insights were
subsequently adapted to situations explored in studies like Marcy et al. [83], resulting in
fitting models as depicted in Figure 3.8. Nevertheless, while these models incorporated
both elasticity and polymerization, they assumed stiffness as a fixed parameter due to the
presence of crosslinkers and the magnitude of applied stresses. De facto, these assump-
tions might not align with the specific scope of the study under consideration. In addition,
they do not take into account the branching or the nucleating process and their effect on
density.

Carlsson

In 2003, Carlsson introduced a series of kinetic rate models based on the orientation-
dependent number density of actin filaments [103]. In this work, he deliberately excludes
the elastic nature of actin to underscore the impacts of branching and capping on the
density of filament ends. Broadly, two variants are considered: one where new branches
originate from existing ones (auto-catalytic behavior), and another where branches emerge
independently (nucleation behavior), as depicted in Figure 3.14 (Top). Despite experimen-
tal evidence showing that branches indeed arise from existing filaments, the simulations
in the auto-catalytic scenario suggest that the growth velocity should remain constant
regardless of the applied force. This contradicts observations from experiments. In the
nucleation hypothesis, the velocity decreases as force is applied, resembling the overall
shape of the “tethered ratchet” model proposed by Mogilner et al. [104], as shown in
Figure 3.14 (Bottom).

A plausible explanation for the unexpected behavior of the auto-catalytic model is
rooted in one of the author’s assumptions. Carlsson suggests that the rate of nucleation
should increase under load due to the auto-catalytic nature of Arp2/3. However, this
hypothesis had not been experimentally tested until a recent study led Li et al. [42] who
demonstrated the opposite. Their work indicate that under compressive forces, the overall
nucleation rate actually decreases. In this study they provide pioneering results on the
molecular mechanism underlying load adaptation of branched networks. We will detail
their main results and interpretations in a subsequent paragraph.
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Figure 3.14: (Top) Scheme of an auto-catalytic vs nucleation-based branch generation process,
with d the branching layer thickness and θ the angle between filament and growth

directions.(Bottom) Force-velocity for nucleation and auto-catalytic models, with side and end
branching. Vmax is the maximum free-filament velocity, Fobst the force exerted by the obstacle

and a the size of a monomer. Adapted from [103]

Lee et al.

Before concluding this section with the findings from Li et al. [42], it is worth mentioning
a study by Lee et al. [105] that delved into the force generation process using Brownian
dynamics simulations. In their work, Lee et al. investigated semi-flexible filaments that
self-assemble into branched networks with Arp2/3 and exert force on a disk. Notably,
unlike typical scenarios where Arp2/3 is activated by NPFs at the surface of the disk, in
this case, the disk releases Arp2/3 from its rear side, inducing the formation of F-actin. To
introduce a load on the disk, the authors applied a drag force by altering the disk radius
RD and the viscosity experienced by the disk, denoted as ηD: Fdrag = ζDV ∝ 2ηDRDV .
By doing so, they aimed to mimic the approach employed in the analysis of Listeria, where
viscosity was increased by adding methyl-cellulose (well-known for its versatility of use)
to the system [100] [101]. This adjustment does not influence the motion of free actin
monomers, as they are much smaller than the mesh size of the methylcellulose polymer
solution. The researchers also conducted simulations involving the application of a con-
stant force on the disk, yielding similar results.

In Figure 3.15 (Left), velocity is plotted against the load force for different disk sur-
faces. Additionally, the experimental results from Parekh et al. [84] are shown on the same
plot. Notably, the velocity remains constant until it reaches a certain point denoted as F ∗,
beyond which it begins to decline (typically in the range of 10 - 100 pN). The authors of
the study observe that F ∗ appears to scale proportionally with approximately half of the
stall force (0.5·Fstall), which aligns with the observations made in the work by Parekh et al.
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Figure 3.15: (Left) Velocity scaled by the zero force-velocity V0 as a function of the force scaled
by F1/2, with F1/2 the force when the velocity drops to half its free value: V0/2. Data are shown
for different disk sizes ( RD= 30nm, △; 35nm, ■; 40cm, ▽; 45nm, ▲; and 50nm, •) and compared
to experimental results from Parekh et al. [84]. F ∗ the maximum load the system can sustain
while maintaining V0, scales like ≈ 0.5 · Fstall. (Right) Steady-state density profiles of actin
monomers in filaments, ρf , as a function of position z in the frame of the moving disk, whose
position is z = 0. Profiles are shown for different applied loads for flexible filaments ℓp = 0.01

µm. Adapted from [105]

The simulations of Lee et al. had been done for a persistence length of ∼ 0.1 µm,
which is particularly low (ℓp ≈ 10 µm) but much greater than the mesh size which ensures
that they are in the correct regime. They repeated their experiments for stiffer and softer
filaments and concluded that the constant behavior of V at small loads is a property of
stiff filaments that disappear for sloppy ones.

Furthermore, the study examined the impact of filament stiffness on their properties
by analyzing the density profiles ρf as a function of the distance to the disk (z). Right
behind the disk, the density is near zero as the disk repels actin. Moving towards more
negative z values, the density increases, reaching a maximum (associated with Arp2/3
recruitment), before subsequently declining due to depolymerization. Of particular inter-
est is the behavior observed for flexible polymers (ℓp = 0.01 µm), as depicted in Figure
3.15 (Right). The system displays sensitivity to applied loads, with the maximum density
increasing notably for higher forces due to buckling effects. Notably, under high Fload

conditions, the peak density eventually saturates.

This study reveals intriguing insights: for small loads and relatively rigid filaments,
the velocity remains constant regardless of stress, as the velocity is determined by the
polymerization rate. On the other hand, at high loads, the comet tail can withstand
forces up to a certain threshold, reaching the stall point. This analysis underlines the fact
that the force-velocity relationship is influenced by filament stiffness, resulting in a shorter
plateau, even though stiffness does not affect the low-load regime.
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Li et al.

In the study conducted by Li et al. [42], researchers provide a molecular-level explana-
tion for the phenomenon in which branched actin networks become denser when growing
against an external load. They employed a similar experimental setup to that presented
in [87], using actin pillars growing against an AFM tip. The researchers identified three
crucial reactions that collectively define the structure of the network: nucleation, elonga-
tion, and capping.

Remarkably, they established that the capping process follows the dynamics of a Brow-
nian ratchet, similar to elongation. This process decreases exponentially with the applied
load. While the number of sites at which nucleation occurs (corresponding to immobilized
NPFs at the surface) remains constant, nucleation decreases with load. This reduction
is attributed to a phenomenon termed “barbed-end interference”. Essentially, the actin
barbed-ends interfere with the WH2 (or V) domain of NPFs, hindering the activation
of Arp2/3 proteins. Consequently, the applied force leads to an increase in the number
of free barbed-ends, which can subsequently interact with a greater number of NPFs in
non-nucleating complexes [41]. This negative feedback mechanism elucidates the decrease
in Arp2/3 nucleation, a behavior that contradicts the auto-catalytic model proposed by
Carlsson.

Lappalainen et al.

Globally, the steady-state growth is sustained by the equilibrium between capping and
nucleating rates:

Rcap = kcap[CP]E = Rnuc (3.25)

Here, kcap is the capping rate constant (in µM-1.s-1), [CP] the capping rate concentra-
tion (in µ M) and E the surface density of free barbed-ends (in µm-2).

In their recent review on the regulation of actin dynamics, Lappalainen et al. reevalu-
ate this dynamic equilibrium and propose a comprehensive framework to explain steady-
state growth (as depicted in Figure 3.16 (Left)) [30]. For the capping process, the re-
action rate increases exponentially with the surface density. This increase occurs as
the load is distributed across more filament ends, the reaction rate scales according to
exp(−F1a/dAkBT ), where d represents the density of barbed-ends and A denotes the
surface area of the membrane decorated with NPFs. On the other hand, branching (or
nucleation) reaction rates decrease with density due to the finite pool of available NPFs
and the phenomenon of “barbed-end interference”. By balancing these two reaction rates,
a steady-state is established, resulting in an equilibrium density of the network.

When the external mechanical load increases from F1 to F2, this change has relatively
minor effects on the branching process itself. However, it notably lowers the capping re-
action rate curve due to the Brownian ratchet. Consequently, the system dynamically
adjusts to a new steady-state characterized by reduced reaction rates (leading to a de-
crease in velocity) and higher network density (as illustrated in Figure 3.16 (Right)). This
comprehensive model provides a coherent explanation for the observed phenomenon of
network densification during growth against an applied mechanical load. In summary,
these recent studies have successfully captured essential features of branched filament net-
works, shedding light on the intricate molecular mechanisms that underlie their behavior.
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Figure 3.16: Molecular explanation for branched network mechanical adaptation. (Left) At
steady-state, the surface density of growing barbed ends results from an equilibrium between
branching and capping reaction rates. (Right) An increase of the mechanical load significantly
changes the capping curve, slightly the branching one. This leads to the establishment of new

steady state with increasing density. From [30]

Based on the information presented earlier, it is evident that several key aspects of the
branched actin force generation problem remain to be explored. First and foremost, the
determination of the stall force for branched filament networks in such complex structures
is still an open question. Investigating the pivotal role of the stall force in this process
would yield valuable insights. For instance, the condensation transition observed in the
calculations of Tsekouras et al. [95] has not been demonstrated in the context of branched
networks and could be an intriguing avenue of investigation. Secondly, the phenomenon
of stress-stiffening in branched networks, which significantly influences the growth against
a membrane, lacks comprehensive theoretical explanations. Understanding how the me-
chanical properties of these networks are affected by stress and how this relates to growth
dynamics is a critical challenge that warrants further exploration. Finally, considering
the aging of the network and the evolution of segments that have already experienced
growth presents an additional layer of complexity. Investigating how the network proper-
ties change over time, and how this might impact force generation and overall behavior, is
an intriguing avenue for future research. Addressing these key issues would contribute sig-
nificantly to our understanding of the mechanics and dynamics of branched actin networks,
providing insights into their intricate behavior under various conditions and mechanical
constraints.



Chapter 4

A theoretical framework for branched actin elasticity

Prior to delving into the research carried out within this thesis, it is pertinent to highlight
recent theoretical advancements that share a close affinity with our subject matter. In a
yet-to-be-published study, Mehdi Bouzid and Martin Lenz address the issue of elasticity
of branched network structures, placing a particular emphasis on the pivotal role of entan-
glement. These insights hold significant relevance to our investigations, as they furnish a
comprehensive theoretical framework for understanding the stress-stiffening phenomenon.

4.1 Vanishing elasticity of branched networks

We first start by considering elasticity of branched networks without entanglement. In this
context, the network is conceptualized as an assembly of discrete components interlinked
with one another. This perspective allows us to treat it as an ensemble of N interconnected
vertices existing within a d-dimensional space. These vertices are arranged in adherence
to stipulated conditions that dictate optimal distances and angles between them.

Dating back a century and a half, Maxwell introduced a fundamental principle to
quantify the stability and elasticity of networks [106]. This principle treats interactions as
constraints, and stipulates that the count of constraints must be equal to or exceed the
number of internal degrees of freedom (d.o.f) to avert the emergence of soft deformation
modes. We shall enumerate these d.o.f within the context of a minimal branched structure.
With four vertices existing in three-dimensional space, the structure possesses a total of
12 d.o.f. Among these, 6 are classified as global d.o.f (comprising three translational and
three rotational ones), thereby leaving 6 internal d.o.f. Notably, three constraints enforce
the fixation of fiber lengths, while two angular constraints impose the linearity of the prin-
cipal filament, and an additional constraint dictates the branching angle, as illustrated in
Figure 4.1. As a result, the network attains an isostatic point, signifying the threshold
between undercoordinated and overcoordinated regimes. Introducing a new branch entails
the addition of a vertex, thereby accompanying it with three d.o.f and three constraints
(one related to length and two to angles). Consequently, through this recursive process,
the network consistently maintains its isostatic state.

In this context, as elucidated in [15], networks at the critical coordination point exhibit
a diminishing linear elasticity as the thermodynamic limit is approached. Instead, they
display non-affine displacements, wherein branches undergo substantial and uncoordinated
movements when the network experiences compression. These substantial displacements
facilitate the emergence of entanglement points, which in turn strengthens the network.
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Figure 4.1: Scheme of the minimal structure of branched networks with four vertices and three
edges (Left), and the appearance of a new branch with a new vertex on (Right).

Consequently, while the critical coordination of branched networks might seemingly
obliterate their rigidity, it paradoxically enables its self-establishment through the creation
of entanglement points induced by applied forces. These entanglement points contribute
to the augmentation of the material’s rigidity. In the subsequent section, we will elucidate
the theoretical analysis conducted by Bouzid and Lenz in this context.

4.2 An analytical theory based on entanglement

The authors establish their theoretical framework by building upon Van Wyk’s analysis of
another weakly coordinated network, specifically sheep’s wool [107]. Drawing inspiration
from this work, they derive a Pressure-Volume relationship for branched systems, initially
up to an integration constant. This constant is subsequently determined in a secondary
step, specifically for networks that have grown under compressive stress.

The network is conceptualized as a unique filament of length L, radius r, and bending
rigidity κ, placed within a confined volume V . As the volume is diminished, the filament
undergoes compression, prompting it to coil and establish numerous contacts with itself.
To further elaborate, the filament is subdivided into L/r pseudo-monomers of length r,
and it is naturally assumed that the number of contacts is proportional to the length of a
monomer and its volume fraction ϕ ∼ Lr2/V . Consequently, a mean-field approximation
is derived for estimating the number of contacts.

Ncontacts ≈ ϕL/r ≈ L2r/V (4.1)

Thus the long filament can be seen as divided into ∼ Ncontacts segments of character-
istic length ξ = L/Ncontacts ≈ V/Lr, see Figure 4.2 (Left).

Within this confined volume defined by parameters V and P , a typical segment of the
filament maintains its bent configuration due to an applied force f . When an additional
strain dγ = dV/V is introduced (where dγ < 0 signifies compression), it results in an in-
crement of pressure P by an amount dP . Assuming that this added pressure is distributed
among all the filaments in a horizontal cross-sectional plane and that the segments are,
on average, separated by a distance of ∼

√
V/L, an expression for the increase in load

experienced by a filament can be derived:

df ≈ (V/L)dP (4.2)

Following this, the introduction of the additional strain dγ induces a relative displace-
ment of the filament ends, given by:

dy ≈ −ξdγ = −ξdV
V

(4.3)
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Figure 4.2: (Left) A filament confined in a volume V finally randomly forms contact with itself.
The characteristic length between consecutive contacts is xi. (Right) As filaments grow, the

deflection y of a segment located at the growing surface of the network increases until it forms a
contact with a neighboring filament, which is typically located at a distance

√
V/L. The typical

segment length for which this happens fixes the value of ξ.

Now, if we consider the mechanics of a single bent filament segment, we note that
moving its end by a length dy typically requires an elastic force df = (κ/ξ3)dy. As a
result, we have:

dP ≈ L

V
df ≈ L

V

κ

ξ3
dy ⇒ dP

dV
= −γ̄ κL

3r2

V 4
, (4.4)

Here, γ̄ represents an undetermined numerical pre-factor of order one. Integrating this
equation across the volume V yields the pressure-volume relationship for this system:

P =
γ̄κL3r2

3V 3
− P0,

= P0

[(V0
V

)3
− 1
]
,

(4.5)

This expression reveals the existence of a resting volume V0, directly related to the
integration constant P0 = (γ̄κL3r2)/3V 3

0 . This relationship is the main result from van
Wyk theory [107] which leaves out an explicit expression of P0. Additionally, Equation
4.5 introduces the ensuing stiffness-stress expression:

K = −V dP

dV
= 3(P + P0) (4.6)

It is noteworthy that this theory might overestimate the stiffness at extremely low
stresses, K0 = 3P0. This plateau might not accurately describe networks with finite
length branches, which display stiffness that decreases according to their simulations. The
authors emphasize the importance of considering the limitations of the infinite-filament-
length hypothesis when the distance between contact points ξ approaches the length of the
branches. To determine the dependence of P0 on the growth conditions of the network,
the authors examine the scenario of growth under significant compressive stress σ0. They
assume that σ0 is sufficiently large to ensure that ξ remains smaller than the branch length.
Consequently, during growth, filament deformation leads to the formation of contacts that
increase and reinforce entanglement points, which persist even after the compressive force
is removed. This accounts for the existence of a finite resting volume V0 and pressure P0.
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Now, let us delve into the details of the entanglement process and derive an expression
for ξ(σ0). With a surface density of filaments of L/V , each growing filament experiences a
force f ≈ V σ0/L during growth. Under this force, the deflection y of a segment of length
ξ can be approximated as: y ≈ fξ3/κ. The contact with a neighboring filament occurs
when this deflection y is on the order of the lateral distance between segments,

√
V/L, as

seen in Figure 4.5. This growth-stability condition can be expressed as:

V σ0
L

ξ3

κ
=

√
V

L
(4.7)

Or, as ξ ≈ V/Lr:

ξ(σ0) ≈
( κ
σ0

)2/7
r−1/7 (4.8)

And then,

K0 ≈ P0 ≈
κL3r2

V 3
0

≈ κ1/7

r4/7
σ6/7
g (4.9)

Thus, we obtain the scaling of the plateau modulus:

K0 ≈ κ1/7r−4/7σ
6/7
0 (4.10)

In addition, as ξ ≈ V0/Lr = V0r/Lr
2, we get: ξ ≈ r/ρ0.

Then, using Equation 4.8, this naturally leads to:

ρ0 ≈ κ−2/7r8/7σ
2/7
0 (4.11)

In this regime, the formulas for the stiffness modulus plateau (4.10) and the equilib-
rium density (4.11) are solely dependent on the bending rigidity κ, the filament radius r,
and the growth stress σ0. Remarkably, the length of the filament does not play a signifi-
cant role in this context, as it is replaced by the distance between contact points, which
is uniquely determined by the three aforementioned parameters.

Hence, we believe that these scaling relationships offer valuable insights into the stress-
stiffening phenomenon observed in branched actin networks, shedding light on the broader
stress response mechanisms. These findings are poised to provide essential context for in-
terpreting our research outcomes.

Furthermore, while the Brownian ratchet concept is well-established for individual
fibers, its applicability to networks composed of numerous branched fibers remains less
clear. Our study is designed to address this gap by predicting how the growth speed
is influenced by fiber properties and external stress. Specifically, we aim to address the
challenges raised in our earlier discussion, building upon observations from the existing
literature. This includes investigating the stress response, the significance of the stall force,
and the aging of networks. To achieve this, we rely primarily on Cytosim simulations,
constructing a system akin to the setups employed in the studies by Bieling et al. and
Li et al. [87] [42]. Arp2/3 complexes activated on a disk introduce new actin fibers from
existing ones, generating an upward actin flow hindered by opposing stress.
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In the subsequent section, we provide a concise introduction to Cytosim and detail our
simulation setup and our force generation model. We then present our results, analyzing
the response of velocity and density to stress, followed by an exploration of the influence of
the stall force within the system. In the third step, we delve into the question of network
evolution and aging.



Chapter 5

A numerical force velocity framework

5.1 The Cytosim environment

5.1.1 General description

To run simulations, we employ Cytosim, an open-source simulation engine founded on
Langevin dynamics [108]. This software, accessible on GitLab equips users with a toolkit
for simulating various cellular structures within a virtual cell environment. It enables
the construction and manipulation of cytoskeletal structures such as asters or bundles.
Cytosim’s versatility has been demonstrated across several applications, including the ex-
ploration of disordered contractile cytoskeletal networks [109] and the organization of actin
filaments [110].

Cytosim offers four primary object types, allowing for the representation of diverse
structures: fibers, hands, solids, and spaces. Fibers are oriented line segments composed
of connected points. Each point is identified by its position vector ri. Within a fiber,
consecutive points are separated by a segmentation step ds. Key characteristics of a fiber
encompass its rigidity, length, directionality, and growth process. Hands are functional
entities that can be free or attached to fibers, solids, or spaces as illustrated in Figure
5.1. When two hands are coupled, they can emulate motors or cross-linkers. The binding
and unbinding rates, along with the binding range, are fundamental attributes of hands.
Solids represent rigid assemblies of points, although they are not utilized in our study.
Spaces generally define the boundaries of the simulated environment.

Cytosim incorporates forces acting on cytoskeletal structures. Considering their finite
rigidity, fibers are amenable to bending, and their bending force can be computed: F ∼
κ
ds(2ri − ri+1 − ri−1), see Figure 5.2. However, fibers cannot be compressed, a Lagrangian
parameter enforces a constant step size (ds) between points. Nonetheless, the tension
applied during simulations can be extracted from the outputs. Attached couples are
characterized by the rigidity of their link (k in Figure 5.2), which behaves as a Hookean
spring and responds to extension or compression. To confine a fiber within a space, a
confinement force is implemented as another Hookean spring. Points located outside this
confinement area experience a restoring force proportional to their displacement δr and the
confinement stiffness Kconfine, as illustrated in Figure 5.2. This feature will be important
for our implementation of a numerical AFM. Furthermore, within Cytosim, objects are
subject to steric repulsion effects still modeled as a Hookean spring of stiffness Ksteric.
Objects need to be close enough (within the range of a screen length) to feel each other.
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Hand 
Fiber 

Attached Hand

Couple 

Figure 5.1: Numerical description of a fiber as a set of points {ri}i distanced by ds. Hands can
be free or attached, two connected hands form a couple.

5.1.2 Simulation dynamics

Fibers, with a length of L, are composed of p+1 equidistant points separated by L
p distance

from each other. During fiber growth, new points are introduced, added while minimizing
the difference |ds− L

p |, where ds represents the specified segmentation length in the model.
This interpolation process is depicted in Figure 5.3.

Let us consider a scenario where we are dealing with N fibers in a d-dimensional space.
A vector r of size Nd collects the positions of the points on the fibers. The governing
equation for motion is a Langevin equation, which can be expressed as follows:

dr = µF(r, t)dt+ η(t) (5.1)

The mobility coefficients are encapsulated within the matrix µ of dimensions Nd×Nd.
The forces acting on the points at time t are represented by the matrix F(r, t), also of
dimensions Nd × Nd. F(r, t) encompasses various forces: bending rigidity, linker and
confinement stiffness, and steric repulsion. Lastly, η(t), also with dimensions Nd × Nd,
encapsulates the effects of random molecular collisions, leading to Brownian motion. This
term, which is a Gaussian white noise, introduces randomness since the values differ for
each simulation. Cytosim employs a pseudo-random number generator, and the random
seed is derived from the clock time during initialization.

Crucially, Cytosim does not explicitly solve the system, as this would necessitate very
small time steps to avoid instabilities. Instead, it employs an implicit approach, considering
the current state of the system and the subsequent state. Equation 5.1 can thus be
expressed as:

δr = dtµF(r+ δr) +
√
dtξ (5.2)

At each time step, Cytosim solves the linear problem involving δr by diagonalizing a
matrix of size Nd×Nd, ultimately determining the positions of the points.
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Bending rigidity
Linker stiffness

Confinement stiffness Steric repulsion

Figure 5.2: Implementation of forces in Cytosim: Bending rigidity, Linker stiffness, confinement
stiffness and steric repulsion.

To simulate the Brownian ratchet dynamics, we incorporate the following expression
for the growth of actin fibers within the Cytosim framework.

v = v0e
− f

f0 − vdep ; f ≥ 0 (5.3)

f0 is the growing force, v0 the polymerization velocity and vdep the de-polymerization
velocity. The stall force is thus the following :

fs = f0 ln
( v0
vdep

)
(5.4)

Identifying (3.12) and (5.4) we get :

f0 =
kBT

a
(5.5)

In this context, the stall force fs becomes a crucial parameter for quantifying the
dynamics of the fiber, along with the bending rigidity κ, length l, and radius r. With
the understanding of the Cytosim framework and the foundational components required
for constructing our model, we will proceed to elaborate on the simulation setup in the
upcoming section.
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Figure 5.3: Dynamic fibers: the model-points of a fiber are updated when the tips grow, but they
are always equally distributed over the fiber. Points are added or removed as necessary to ensure

an optimal coverage.

5.2 The force generation model

General description

In this section, we outline the force generation model that we employed within the Cy-
tosim framework, emulating the environment introduced by Bieling et al. We initiate the
simulation with a disk containing diffusing Arp2/3 nucleators on its surface, accompanied
by a small number of initial fibers (5). The diameter of the base disk is denoted as d = 1
µm, corresponding to a surface area of approximately 0.8 µm2, which is notably smaller
than Bieling’s experimental setup with an area of 200 µm2. This choice stems from our
desire to achieve dense network formations while controlling the numerical complexity.
Indeed, our aim was to model a system with a significant surface area that would produce
dense networks under stresses of around 500 Pa, without incurring excessive computational
costs.

Figure 5.4: Scheme of the simulation system: A branched actin network is growing from the
bottom and facing a stress σ0.
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In our entangled system, the characteristic length ξ represents the distance between
contact points, as defined in Equation 4.8. By leveraging the properties of our fibers (e.g.,
κ = 0.0042 pN.µm, r = 0.005 µm) and considering an intermediate stress value σ0 = 500
Pa, we estimate the characteristic length as ξ ∼ 0.15 µm. This choice ensures that we
are operating in a regime where ξ is much smaller than d, validating the accuracy of our
simulations.

In a simulation, when a diffusing Arp2/3 (depicted in yellow in Figure 5.4) approaches
a polymerized filament, it binds to the filament, transforms into a nucleator (depicted
in green), and initiates the generation of a new polymerizing filament with a preserved
branching angle of 70° between the mother and daughter branches. The source of Arp2/3
is renewed at a constant rate, thereby sustaining network expansion. This setup aims to
replicate the in vivo activation of Arp2/3 by NPFs from the WASP family proteins on
cellular membranes.

5.2.1 AFM implementation

To emulate external load, we apply a constant stress σ0 to the growing network using a
numerical AFM mechanism. At the beginning the AFM tip is positioned at leq piston

= 0.1 µm, which corresponds to the height of the cylinder. The stress applied opposes the
motion of the network and influences its properties, as depicted in Figure 5.4. Here we
will explain its functioning.

Fibers that reach the upper boundary exert a force depending on their penetration
length, as seen in Figure 5.2. The cumulative contribution of all fibers determines the
stress applied by the entire system −σtop, which is the opposite of the stress applied by
the AFM tip to the top of the network. If the stress σtop is below the target stress σ0,
the tip moves downward; however, if it exceeds σ0, the tip moves upward to maintain the
stress at the desired value.

Naturally, the tip does not move if its new length is lower than the original length of
the piston: leq piston = 0.1 µm. This avoids the collapse of the AFM at early moments
of growth when there are not enough pushing fibers to challenge σ0. In addition, the
AFM displacement cannot exceed a certain threshold per time step: max displacement,
to avoid a too rapid growth. Details on the parameters of the simulations like the time
step or the max displacement value are provided in Appendix A.1.1, an extract of the
numerical AFM algorithm is presented in Appendix A.1.2. Thus, the displacement of the
piston dx is:

dx =
∆σS

Kconfineα
(5.6)

∆σ = σtop − σ0 is the difference of stress, α the attenuation parameter and Kconfine

the stiffness of confinement. As the determination of Kconfine and α are of crucial interest
for our study we present some methods verification here. For our simulations we fixed the
value of the attenuation α arbitrary at 1 and focused on Ksteric. In fact, later simulations
showed us that it only has a small impact on the average displacement, see Appendix
A.1.2, Figure A.2.
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Figure 5.5: Stress measured by penetration length computation for top σtop (Left) and bottom
σbottom (Right) as a function of time t for various Kconfine, with: σ0 = 637 Pa, fs = inf pN and

Kconfine = 5000 pN.µm-1. The horizontal grey line is the target stress σ0.

In Figure 5.5, we count the number of penetrating fibers to compute the applied stress
at the top (Left) and at the bottom (Right) for various potential stiffness Kconfine. we
compare it with the target stress σ0. Remarkably the stress applied at the bottom corre-
sponds to the one applied at the top, which accounts for a homogeneous transmission of
the stress, which is particularly important as fibers are growing from the bottom. When
Kconfine is too low the network takes more time to reach its steady-state as more fibers
are required to apply a stress approaching the target one. Consequently, this may lead
to an overshoot in density before reaching the expected steady state causing a delay in
the response. However when Kconfine is too high, the system reaches the steady-state
quicker but looses in precision and fluctuates more. Overall, between these two extremes
the system behaves in a similar manner. This can also be observed in Appendix A.1.2,
Figure A.1 (Center), with networks growing at the same velocity when Kconfine is within
[50 - 1000] pN.µm-1. We fixed Kconfine = 1000 pN.µm-1, although we recognize that it
could have been better to use something close to 200 pN.µm-1 to reduce stress fluctuations.

The steric potential stiffness Ksteric accounts for the ability to overlap fibers and to
store some elastic energy in their contact. Ideally, Ksteric should be really high to get as
close as possible to a high core repulsion. However this goes with increasing the simulation
time as it is more complex to find a satisfying configuration in our dense regimes. Also,
increasing Ksteric goes with an increase of the velocity as depicted in Figure 5.6 for infinite
stall force fibers. As a trade-off, we fixed Ksteric = 5000 pN.µm-1. The same behavior has
been observed for finite stall force fibers.

5.2.2 Length of actin

We consider filaments with a defined maximum length ℓ of 0.3 µm, mimicking the effect
of capping proteins. Filaments grow according to the numerical implementation of the
Brownian ratchet model, as described in Equation 5.3. Once a filament reaches its max-
imal length, it maintains this length. Since capping proteins exhibit dynamics consistent
with a Brownian ratchet mechanism, the average length of the filament remains indepen-
dent of the applied stress. This choice simplifies the system and ensures physiological
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Figure 5.6: Height h(t) as a function of time t for various steric stiffness Ksteric, with: σ0 = 637
Pa, fs = inf pN and Kconfine = 1000 pN.µm-1

relevance, as both capping proteins and actin monomers respond to stress in a similar
manner. Throughout the simulations, v0 was set at 1 µm.s-1, and vdep at 0.1 µm.s-1.
The growing force value, f0, was adjusted to explore the impact of the stall force fs. To
streamline the simulation process, we set the Arp2/3 nucleation rate (500 Arp2/3 s-1) and
the system size (d = 1 µm) to values that reduce the time spent in the transitional regime,
where the network’s applied stress falls below the AFM target. Notably, no accumulation
of Arp2/3 was observed in the steady-state condition, see Appendix A.1.3. The influence
of the quantity of actin on the velocity has been explored and discussed further in section
6.3.2. We present in Figure 5.7, snapshots extracted from a simulation.

Figure 5.7: Simulation of a growing branched actin network with infinite stall force under σ0 ≈
60 Pa, at different times. (Left) τ = 0.7 s, (Center) τ = 2.5 s, (Right) τ = 4.5 s. Scale bar = 0.5

µm. Actin filaments are in red, diffusing Arp2/3 are in red, activated ones in green.
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Finally, our numerical simulation setup enables the investigation of stress adaptation
in branched networks under various conditions, with a particular emphasis on velocity
and density changes. As previously mentioned, our analysis revolves around the opposing
stress σ0 and the dependency on the stall force fs. To isolate the stress contribution, we
initially focused on filaments with infinite stall force, ensuring that they always reach their
final length (0.3 µm) with a constant velocity of 0.9 µm.s-1.



Chapter 6

Results

6.1 Infinite stall force

We conducted a total of 300 simulations of our system, varying the value of the applied
stress σ0, while considering filaments with infinite stall force. After a stress-dependent
transition period, a growing steady-state was observed, characterized by nearly constant
velocity. Notably, the network’s growth rate slows down as the applied stress increases,
as depicted in Figure 6.1 (Left). Simultaneously, within the same time as the velocity,
the network’s density reaches a stationary value. The network becomes denser as the ap-
plied stress is increased, as shown in Figure 6.1 (Right). However, it is worth noting that
for low applied stress, the density continues to increase, which seemingly contradicts the
expectation of a constant velocity, given that the actin flux must be conserved. Indeed,
since we consider filaments with infinite stall force, they quickly reach their finite length
(in τ = 0.33 s), which maintains a constant actin flux (see Figure A.6 for the mean length
of actin and for the volume in Appendix A.2.2). This particular discrepancy will be ad-
dressed and discussed in section 6.3.
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Figure 6.1: Height h(t) (Left) and density d(t) (Right) of the network as a function of time t for
various stress σ0 with fs = inf pN.
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with fs = inf pN. We see a power-law behavior for high stress after a constant value phase that
ends around 80 Pa (yellow dotted line). The fit for the power-law scaling is represented in the

log-log plot.

Analyzing the nearly stationary velocity as a function of stress reveals a decreasing con-
vex shape that does not reach stall due to the continuous recruitment of Arp2/3 complexes
that generate new filaments (we detail the stationary velocity and density estimations and
discuss the stability of measurement in Appendix A.2.1). The log-log representation of
this relationship highlights a transition between two distinct phases, as shown in Figure
6.2. For stress values lower than ∼ 80 Pa, the velocity appears to remain relatively con-
stant, albeit with fluctuations. In the high-stress regime, the velocity exhibits a power-law
decay, scaling as v ∝ σηvs with ηvs = - 0.31. Similarly, the near-stationary density follows
a two-phase behavior, as observed in Figure 6.3. Beyond the transition, the density scales
with the stress as ρ ∝ σηds with ηds = 0.34, ensuring that the flux (j = ρv) remains
constant regardless of the applied stress.

We now compare the scalings we obtained to those of the entanglement theory, from
which we have the equilibrium density in Equation 4.11. From this, we can derive the
expression of the growth velocity v, with j the flux of actin:

ρ0 = κ−2/7σ
2/7
0 r8/7 ; v = jκ2/7σ

−2/7
0 r−8/7 (6.1)

The alignment of their theoretical predictions with our simulation outcomes is sat-
isfying (2/7 ≈ 0.29). Consequently, we can deduce from these results that in scenarios
where ξ ≤ ℓ, the system’s mechanics adhere to the entanglement theory. However, when
the distance between contact points ξ approaches ℓ, velocity and density are no longer
governed by the network’s mechanics. To illustrate, at σ0 = 50 Pa, we observe ξ ∼ 0.28
µm, which is comparable to ℓ = 0.3 µm. This signifies a departure from the entanglement
regime as predicted by the theory. Exploring how velocity manifests at low stress becomes
essential, as one would anticipate it to be solely determined by the polymerization rate.
Nevertheless, a substantial disparity between our observed value v(σ0 → 0) ∼ 0.2 µ m.s-1

and the fiber’s intrinsic velocity v0 = 0.9 µm.s-1 emerges. Section 6.3 provides insights on
this subjects.
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Furthermore, although our outcomes exhibit the same general trend as Bieling et al.
and Li et al. (increase of velocity and decrease of density with stress), the rate of decay
for the velocity is considerably slower in our case. Specifically, their decay is characterized
by a two-exponential decline (a rapid and a minor one), in contrast to our observations,
see Figure 3.11. Currently, we lack an explanation for such discrepancies.

Now, turning our attention to the impact of stall force, we sought to investigate if the
same two-phase behavior persists when working with more realistic fibers with finite stall
force. We computed the stall force corresponding to a physiologically relevant growing
force f0, as described in Equation 5.5. Given kBT = 0.042 pN.µm and a = 0.0025 µm
(half the size of a G-Actin monomer), we determined fs ≈ 3.87 pN. In this context, anal-
ogous simulations yielded outcomes largely akin to those observed previously, featuring a
constant phase followed by power-law decay, see Appendix A.3.1. It is worth noting that
the constant phase appeared to persist over a wider stress range, and the decay seemed
steeper. However, the transition between the two regimes is less sharp.

6.2 Stall force transition

To further explore the complex interplay between stall force and growth dynamics, and to
investigate the observed change in slope, we conducted an extensive series of simulations
covering a broad range of stall force and stress values. This study involved 300 simulations
distributed randomly across stall force values ranging from 10−4 to 104 pN. We selected
stress values from a predefined list spanning between 64 and 1910 Pa. When stress levels
are low, the growth velocity exhibits little dependency on stall force, which is consistent
with the expectation that growth should not rely significantly on stall force in the absence
of stress. However, as stress levels increase, stall force becomes a limiting factor. At low
stall force, for stresses roughly above 500 Pa, network growth ceases. Interestingly, once a
certain threshold stall force is surpassed, velocity appears to become independent of stall
force, as depicted in Figure 6.4. However, the data presented in this figure does not pro-
vide enough information to draw conclusions about the stress dependency of the transition.
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Figure 6.4: Appearance of a stall force transition threshold for different stress values: Stationary
velocity vs as a function of stall force fs, for various stress values σ0, x-axis in log.

We explored the dependence of the stall force transition on the applied stress by con-
ducting simulations over a smaller range of stall forces, with an increased number of
simulations (1000) and for high stress [500 - 1900] Pa. Our results indicate that the stall
force transition value is indeed dependent on the applied stress, as demonstrated in Figure
6.5. The stall force required for growth varies with stress, as all points collapse on a single
threshold. In addition, we see that once growth becomes feasible, network behavior ap-
pears consistent regardless of the stall force and obeys the entanglement theory as shown

by the σ
−2/7
0 scaling.

As fs/σ has unit of surface, the observed transition can be characterized by a fixed
surface value str ≈ 2.02 × 10−3 µm3. However, it has been challenging to link this value
to any simple characteristic surface of the system, whether it is the total surface area of
the system S = 7.8 × 10−1 µm2, or the short cross-sectional area of an actin filament:
s0 = 7.8 × 10−5 µm2. To date, we have not been able to find a satisfying candidate.
However, the closest surface value seems to be the cross-section of actin in its long axis:
slong = 3 × 10−3 µm3 for a perfectly polymerized filament. It is possible to reduce this
value by considering the distance between contact points ξ instead of the total length of
actin, which would give an associated cross-sectional area of ≈ 1.5× 10−3 µm3 at 500 Pa.
It is indeed intriguing to observe that the detachment of velocity from ground is associated
with entanglement, which appears to play a critical role in powering the system.
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Figure 6.5: Re-scaled velocity with respect to entanglement theory versus stall force over stress
for different stress values. The yellow dotted-line represents the transition surface str.

In addition, one could be tempted to weight the surface transition value with the den-
sity of the system although it is a stress-dependent quantity. However it has been shown
that random packing of cylinders would ultimately reach a maximum density function of
their aspect ratio ℓ/(2r), which is different from 1 [111]. In our case it would be of the
order of 0.2 which is coherent with Figure 6.1. While those observations provides valu-
able insights, further research may be needed to conclusively establish this relationship
and understand the underlying mechanisms in more detail.

Exploring the determinants of velocity at small stresses when entanglement theory
fails to offer a suitable explanation, represents a crucial avenue for further inquiry. Dis-
regarding explanations predicated on Brownian ratchet behavior and simplistic scaling
with fibers velocity underscores the necessity to consider alternative factors. Notably, the
incorporation of network drag within Cytosim emerges as a compelling prospect. As ev-
ident from A.5, Figure A.16, there is a substantial augmentation in stress experienced at
the bottom σbottom over time, which is particularly remarkable for low initial stress values
σ0. Investigating this hypothesis holds the potential to furnish valuable insights into the
system’s response to low external forces.
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6.3 Drag dominated regime

6.3.1 Estimation of the drag of the network

The total drag of the network, as implemented in our simulations, was computed in accor-
dance with the approach detailed in [112]. This computation was specifically conducted for
our simulations of infinite stall force, as illustrated in Figure 6.6 (Left). Since there are no
complex hydrodynamic interactions in Cytosim, the network’s drag is a cumulative result
of individual fiber drags, primarily contingent on their respective lengths. Mathematically,
this is expressed as follows:

Γ(t) =

Nfibers(t)∑
i=1

3πηℓi(t)

ln
( ℓi(t)

2r

)
+ 0.312

(6.2)

Here η represents the dynamic viscosity of the medium, ℓi(t) denotes the length of
fiber i at time t, and r signifies the radius of the fiber. Additionally, Nfibers(t) repre-
sents the count of fibers at time t. When comparing the stress associated with drag,
σdrag(t) = Γ(t)v(σ0), with the externally applied stress σ0, it becomes evident that under
conditions of low opposing stress, the network’s drag governs the motion, as shown in
Figure 6.6 (Right).

Subsequently, our investigation shifted to examine the behavior in scenarios where no
external force was applied. In Figure Appendix A.9, we presented velocity profiles for
a network subject to no applied force but possessing finite stall force. Both the height
and density profiles exhibited continuous trends with low stress levels. Consequently, we
postulate that analyzing the behavior of this limiting case can yield insights applicable
to the broader regime. Given the continual increase in the number of fibers over time,
exerting a pronounced influence on motion, we hypothesize that the network’s motion
should slow down as a consequence.

5 10
t in s

50

100

150

σ
d
ra
g
(t

)
in

P
a

5 10
t in s

10−2

10−1

100

101

σ
d
ra
g
(t

)/
σ

0

101

102

103

σ0 in Pa

101

102

103

σ0 in Pa

Figure 6.6: (Left) Drag stress σdrag(t) as function of time t for various stress σ0. (Right) Ratio of
the drag stress over the imposed stress: σdrag(t)/σ0 as a function of time for various σ0, with fs
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6.3.2 Free growth and adaptation

In the absence of applied stress, we assume that the Arp2/3 rate, denoted as kArp2/3,
emerges as the pivotal parameter governing network growth as it determines the actin
mass at any given moment. To assess its significance, we conducted 100 simulations with
varying values of kArp2/3 in the absence of external force. The results are presented in
Figure 6.7, where the left panel displays the network’s height h(t), and the right panel
shows the network’s density d(t). As expected, higher values of kArp2/3 correspond to
increased velocities and greater network density. Nevertheless, it is noteworthy that, over
time, the network experiences a deceleration and a densification, which can be attributed
to the increase in network drag.
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Figure 6.7: Height h(t) (Left) and density d(t) (Right) as a function of time t for various kArp2/3

with fs = inf pN.

Indeed, as the network expands, newly formed slices encounter an increasing amount
of actin, leading to a rise in the density of these fresh slices. Furthermore, over extended
time intervals, slices are expected to undergo elastic relaxation, which can be inferred
from a declining density as time progresses. This phenomenon of layering densification
and subsequent relaxation is clearly depicted in Figure 6.8 (Right). In this figure, each
data point represents the average density within a volume centered on a segment of the
fiber. The color code denotes the time of appearance of each layer. On the left side of
the figure, we depict the velocities of all fiber segments, still labeled with their respective
appearance times. Intriguingly, it becomes evident that the velocity of a slice does not
depend on its position within the network, indicating a homogeneous growth pattern.
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Figure 6.8: Evolution of slices with Height h(t) (Left) and density d(t) on (Right) as a function of
time t. The color code represents the appearance time. For each point the density is calculated
inside the slice centered on the point position and with a height δz = 0.2 µm. Here, fs = inf pN

and kArp2/3 = 1378 µm-2.s-1

It is essential to highlight that the presented data have been obtained from a system
characterized by a high kArp2/3 rate. Nevertheless, we have encountered challenges in
constructing a comprehensive model that accounts for both the evolution of slices and
describes both the densification and relaxation phenomena. Therefore, we propose a sim-
plified framework based on straightforward assumptions.

Overall, the instantaneous velocity vτ (t) of the network can be expressed as:

vτ (t) = v(t) + h(t)¯̇ϵ(t) , ¯̇ϵ(t) =

∫ h(t)

0

dx

h(t)
∂tϵ(x, t) (6.3)

Here, v(t) stands for the velocity induced by both polymerization and the drag of the
network, while h(t)¯̇ϵ(t) represents the elastic relaxation of the network.

As evident from Figure 6.8 (Right), while density relaxation does occur, it can be
reasonably neglected at the time scales of our observations. In fact, the most notable
density relaxation observed is approximately 10% over a time span of approximately 10
s. This observation has been corroborated for lower values of kArp2/3, which are closer to
those employed in our previous simulations, as shown in the Appendix A.5 in Figure A.17.
Thus, we assume that:

|h(t)¯̇ϵ(t)| ≪ v(t) ⇒ vτ (t) ≃ v(t) (6.4)

In this approach, we conceptualize our system as comprising polymerizing fibers ex-
erting force against a drag that progressively increases with time, denoted as σ0(t). Given
that growing fibers ultimately reach their maximum length, the relationship between the
drag σ0(t) and the velocity v(t) becomes straightforward. Moreover, under the assumption
that we are still operating within the entanglement regime, we can make use of Equation
6.1.
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As a result, we employ the following equations:

σ0(t) =
γ0 Nactin(t)

S
v(t)

v(t) = j κ2/7 r−8/7 σ0(t)
−2/7

(6.5)

With j = ks0ℓ0, and NActin(t) = kSt. S is the surface of the enclosure and s0 the
cross section of a filament, γ0 is the drag of a fiber of length ℓ0:

γ0 =
3πηℓ0(t)

ln
( ℓ0(t)

2r

)
+ 0.312

(6.6)

Then, mixing both equations in 6.5, we derive expressions for growth velocity and
density:

v(t) = t−2/9γ
−2/9
0 κ2/9r8/9k5/9(s0ℓ0)

7/9

ρ(t) = t2/9γ
2/9
0 κ−2/9r−8/9k4/9(s0ℓ0)

2/9
(6.7)

Thus, from previous equations we can derive a simple scaling of v(t) and ρ(t) with k
as the main parameter.

v(t) ∝ v0(k)t
−2/9

ρ(t) ∝ ρ0(k)t
2/9

(6.8)

This implies:

h(t) ∝ 9

7
v0t

7/9 (6.9)

In Figure 6.9, we present power-law fits for the position h(t) (Left) and the density
ρ(t). We have chosen to retain only fits that achieve a coefficient of determination R2 of
at least 0.9. Notably, we excluded systems with lower values of kArp2/3, specifically those
below 200 s−1 in our study. The observed deviations from the theoretical predictions
can be attributed to a combination of factors, including discrepancies with entanglement
theory and the presence of significant elastic relaxation effects that cannot be disregarded.
Systems with lower kArp2/3 values may require more time to establish a cohesive network
capable of exerting a sufficiently high drag to enhance entanglement. Additionally, as illus-
trated in Figure 6.10, lower kArp2/3 values result in less regular networks that collectively
exhibit a higher degree of density relaxation over time.
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Figure 6.9: Power law fit of the height h(t) (Left) and density d(t) (Right) as a function of time t
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Figure 6.10: Evolution of slices with height h(t) (Left) and density d(t) on (Right) as a function
of time t. The color code represents the appearance time. For each point the density is calculated
inside the slice centered on the point position and with a height δz = 0.2 µm. Here, fs = inf pN

and kArp2/3 = 390 µm-2.s-1

Based on our previous power-law fits, we have directed our attention toward examining
the rate dependencies of the pre-factors, namely v0 and d0. In Figure 6.11, we illustrate
their dependence on kArp2/3 with a power-law fit. Notably, both exponents deviate from
the anticipated values according to our theory, although they are not significantly diver-
gent. To elucidate the origins of these discrepancies, further investigations and a more
precise analysis are warranted.
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Finally, the flux derived from the pre-factors v0 and d0 aligns precisely with the ex-
pectations based on the simulation setup, as exemplified in Figure 6.12.
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Figure 6.12: Flux of actin j in µm.s-1 as a function of kArp2/3. Comparison between the points
from the power law fit of v0 and j0 and what is expected from the model.



Conclusion

Within the scope of our study, we have undertaken a comprehensive exploration of criti-
cal mechanical aspects pertaining to force generation in branched actin networks, with a
particular focus on the pivotal roles played by stress and stall force. Our findings have en-
compassed several key aspects: Firstly, we have validated the predictions of entanglement
theory concerning the definition of network characteristics via its responses to external
stress, as expected from experiments. Furthermore, we have introduced the stress induced
by the drag of the network as a limiting factor of its expansion and have expanded the
scope of the theoretical framework. Secondly, our investigation has unveiled the existence
of a threshold transition associated with stall force, a critical point at which motion be-
comes feasible irrespective of the specific stall force magnitude. Remarkably, within our
dense systems, we have observed a notable accumulation of fibers at the leading edge, while
fiber density tends to diminish under low-stress conditions. This phenomenon, resembling
a condensation transition, bears resemblance to observations made by Tsekouras et al.
[95] in the context of parallel growth. It would be of interest to provide a more detailed
quantification of this transition by determining among other quantities the precise stress
values at which it occurs. However, it is worth noting that extracting any discernible
orientation order from our results may prove challenging, given the seemingly random
filament orientations.
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Discussion

Finally, we end this first part by assessing the constraints inherent to our numerical setup
and the associated interpretations.

Force generation model

To enhance the fidelity of our setup, as previously elucidated, one potential avenue is to
increase the size of the system in an effort to approximate the experimental conditions
outlined by Bieling et al. Furthermore, we posit that increasing the steric repulsion co-
efficient Ksteric and reducing the confinement coefficient Kconfine may yield a simulation
environment that better mirrors actual filament interactions while reducing fluctuations
of the AFM.

Furthermore, a way to improve the biological relevance of the setup involves the in-
clusion of capping proteins, instead of emulating their actions by imposing a maximum
reachable filament length. Subsequent advancements could entail the incorporation of ad-
ditional ABP, such as crosslinkers, to more faithfully replicate the complexity of biological
systems.

Entanglement theory

We delineate several limitations of the entanglement theory in the context of our study.
Firstly, this theoretical framework does not account for the polymerization process, wherein
the number of filaments in the system increases over time. This increase in filament num-
ber has multifaceted effects, including an associated rise in drag. Besides, the theory does
not explicitly address filament branching when the distance between contact points (ξ)
is smaller than the length of individual fibers. Notably, the spacing between branching
points may emerge as a pivotal parameter, akin to another characteristic length scale
ξArp2/3. Intuitively, this distance should diminish with increasing filament density since
more fibers are available for binding. Consequently, ξArp2/3 should exhibit a scaling be-
havior analogous to that of ξ.

Secondly, we encountered challenges in fitting the theoretical predictions of entan-
glement theory, specifically with respect to parameters such as filament radius (r) and
bending rigidity (κ). The inability to establish a scaling relationship may be attributed,
in part, to the value of the steric hindrance coefficient (Ksteric), which, if increased, might
enable the system to more accurately perceive the actual filament radius (r). Addition-
ally, as energy is stored in both bending elasticity and Arp2/3 link elasticity, elevating the
stiffness of the Arp2/3 interactions could potentially emphasize the bending response and
contribute to resolving the discrepancies observed between our results and the theoretical
predictions.
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Stall force transition model

In our analysis of stall force transitions, we have encountered a challenge in formulating
an explicit expression for the surface transition value str, which does not readily correlate
with any straightforward geometric or surface-related parameter in the system. We suggest
that this transition value might be contingent on the bending rigidity (κ). For instance,
we speculate that fibers with infinite rigidity should exhibit a surface transition value (str)
that approximates the initial surface coverage (s0). This conjecture hints at a potential
relationship between bending rigidity and the observed transition behavior, which warrants
further investigation and analysis.

Drag dominated regime and free growth

In general, our analysis of free actin network growth indicates that branched actin net-
works consistently adhere to the principles outlined in entanglement theory, whether stress
is imposed externally (e.g., by AFM) or arises due to the escalating drag generated within
the network. One limitation of this approach is the necessity to generate a sufficiently
large network to exert substantial stress on pre-existing fibers.

From a biological perspective, one limitation arises from our simplified treatment of
drag, which should ideally consider the influence of hydrodynamic interactions. Recent
developments have introduced a novel method that models ensembles of fibers as porous
mediums [113] and were successfully applied in the study of mitotic spindle positioning
[114]. We believe that a more accurate treatment of drag, accounting for hydrodynamic
interactions, would enhance the biological relevance of our study, although it is expected
to preserve the fundamental stress adaptation mechanisms we have observed.



Part II

An example of parameter space
compression on branched actin
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Introduction

With four parameters I can fit an elephant, and
with five I can make him wiggle his trunk.

von Neumann to Fermi

In science, success often hinges on the ability to formulate efficient theories that can
predict phenomena within specific time and length scales. Consequently, it is not always
necessary to delve into the underlying layers to achieve an effective description of a sys-
tem. For instance, the mean-field approach in fluid mechanics does not demand a precise
understanding of quantum mechanics at the molecular level. Similarly, thermodynamics
can abstract away from the stochastic origins of diffusion and heat transfer. Thus, in
physics, many lower-level theories can be systematically coarse-grained or renormalized
into macroscopic effective models. This idea underscores the effective hierarchical nature
of models [6].

Building models is a challenging endeavor, and there may be a temptation to incorpo-
rate as many parameters as possible in an attempt to enhance their performance. However,
the inclusion of unnecessary parameters can obscure the significance of the pivotal ones,
ultimately resulting in a less interpretable model. In summary, complex models can resem-
ble black boxes, a situation typically avoided in physics for the sake of clarity. Therefore, a
significant scientific challenge lies in discerning the pertinent directions within parameter
space to make sense of complex models. Fortunately, in various scientific domains, the
exploration of parameter space has underscored the hierarchy hypothesis, as demonstrated
in [115]. As depicted in Figure 2.1, critical predictions often rely on a small number of
parameter combinations, followed by a series of geometrically less significant ones. This
recurring attribute, referred to as sloppiness, aligns with findings previously emphasized
by the renormalization group (RG) [116].

Furthermore, various techniques have been proposed since the 1980s to address the
parameter space problem, offering diverse solutions to the challenge. In the 1980s, clas-
sical principal-component analysis emerged as a technique to reduce ordinary differential
equations (ODE)-based models of biochemical systems [117]. More recently, the mani-
fold boundary approximation method has been developed to fit data while minimizing
dimensionality [118], and fitness-based asymptotic parameter reduction can identify the
core working module of a model [119]. Additionally, other machine-learning approaches
can construct realistic models with a minimal number of parameters, such as through the
use of Bayesian information criterion [120]. However, it is worth noting that these meth-
ods primarily target ODE-based models, highlighting the need for universal techniques
applicable to stochastic computational systems.
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More recently, Parameter Space Compression (PSC) [121] has proposed new reasons to
explain why fundamental models operate successfully with a minimum set of parameters.
We rely on this foundational idea for our work. Here, in this second part, we first introduce
the properties of Fisher information, a statistical quantity upon which PSC is defined. We
then detail the main results associated with PSC before presenting our own approach and
results applied to branched actin systems.

Figure 1: A Fermi-Neumann elephant based on Fourier analysis, Equations 1, from [122].

{
x(t) = −60 cos(t) + 30 sin(t)− 8 sin(2t) + 10 sin(3t)

y(t) = 50 sin(t) + 18 sin(2t)− 12 cos(3t) + 14 cos(5t)
(1)



Chapter 1

The Fisher information

1.1 Introduction

In this section, we introduce the Fisher information and its associated properties for con-
tinuous variables, which serve as the basis for our analysis of parameter space compression.
It is worth noting that much of the foundational concepts in this area trace back to the
pioneering work of Fisher, as documented in his seminal publication [123].

1.1.1 Intuitive approach

Here we qualitatively introduce the concept of Fisher information, denoted as I(θ), which
serves as a measure of the amount of information contained in an observable variable X
regarding an unknown parameter θ. This parameter θ is intrinsic to the probability den-
sity function fθ(X) upon which the observed data X depends. The overall objective is
to determine the true value of θ based on the available data. We commonly call fθ(X)
the likelihood function. In essence, if the probability density function fθ exhibits a sharp
and well-defined peak in response to changes in θ, it indicates that the data is conducive
to accurately determining the true value of θ from the observations. Conversely, if the
probability density function fθ is flat and spread out, estimating the actual true value of
θ necessitates a larger sample size, akin to using the entire population for sampling.

As an example, consider a normal distribution where the mean value is contingent on
a parameter θ. Figure 1.1 illustrates two scenarios: on the left panel, the distribution
is moderately sensitive to changes in the parameter, while on the right panel, the same
parameter change results in a more significant alteration of the distributions. Conse-
quently, in the second case, we can envision that fθ is sharply peaked concerning changes
in θ, while fθ in the first case is less sensitive. Later in our discussion, we will refer to
parameters as either stiff (right panel) or sloppy (left panel) based on these characteristics.

More generally, the Fisher Information has shown great interest in other scientific
fields such as natural gradient descent in neural networks. In the following, we will define
properly this quantity.
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x

fθ(x)

fθ+δθ(x)

x

hθ(x)

hθ+δθ(x)

Figure 1.1: Scheme of the variation of Gaussian distribution of fixed standard deviation whose
mean is a function of a parameter θ and is whether slightly (Left) or strongly (Right) affected by

a shift of the parameter.

1.1.2 Definition

We start by defining L(θ), the log-likelihood as:

L(θ|X) = log fθ(X) (1.1)

The score, denoted as S(θ|X), is the gradient of the log-likelihood function concerning
changes in the parameter θ. It quantifies the sensitivity of the log-likelihood to alterations
in parameter values:

S(θ|X) =
∂

∂θ
log fθ(X) (1.2)

It is crucial to emphasize that the quantities we derive, namely L(θ) and S(θ), are
estimations based on the observed data X. The Fisher information, denoted as I(θ), is
formally defined as the variance of the score:

I(θ) = V [S(θ|X)] (1.3)

Subsequently, because the expected score, denoted as E [S(θ)], equals zero, we can
simplify the expression of I(θ). Specifically, under certain regularity conditions (which
are typically satisfied), we can interchange integration and differentiation. Indeed, we
have:

E
[
∂

∂θ
log fθ(X)

]
=

∫ [ ∂
∂θ
fθ(x)

fθ(x)

]
fθ(x)dx

=

∫
∂

∂θ
fθ(x)dx

=
∂

∂θ

∫
fθ(x)dx

= 0

(1.4)
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Furthermore, using the variance formula for any random variable Z, which states that
V [Z] = E

[
Z2
]
− E [Z]2, we can straightforwardly derive:

I(θ) = E

[(
∂

∂θ
log fθ(X)

)2
]

(1.5)

Which can also be written as:

I(θ) =
∫
R

(
∂

∂θ
log fθ(x)

)2

fθ(x)dx (1.6)

It is worth noting that the Fisher information is not contingent on any specific obser-
vation, as the random variable X has been averaged out. Naturally, I(θ) ≥ 0, as expected
for a variance. In intuitive terms, the Fisher information quantifies the dispersion of the
Score, implying that a large Fisher information signifies a dispersed score function.

For instance, let us designate θ̂ as a good estimator of θ, typically the one that maxi-
mizes the log-likelihood L(θ|X). Essentially, a high Fisher information suggests that θ̂ will
provide more information about X than if the Fisher information were smaller. In other
words, the Fisher information determines the rate at which the observed score converges
towards the true score function.

1.1.3 An alternative definition

In this section, we introduce an alternative definition of the Fisher information, which
possesses the advantage to highlight the geometric nature of this quantity by revealing a
second-order derivative. To begin, assuming that fθ is twice differentiable, we observe:

∂2

∂θ2
log fθ(x) =

∂

∂θ

[
∂
∂θ
fθ(x)

fθ(x)

]

=
∂2

∂θ2
fθ(x)

fθ(x)
−
[

∂
∂θ
fθ(x)

fθ(x)

]2

=
∂2

∂θ2
fθ(x)

fθ(x)
−
[
∂

∂θ
log fθ(x)

]2
(1.7)

Once again, if we presume that we can interchange integration and differentiation, we
can demonstrate that the expected value of the first term in the equality becomes zero:

E

[
∂2

∂θ2
fθ(x)

fθ(x)

]
=

∫ [ ∂2

∂θ2
fθ(x)

fθ(x)

]
fθ(x)dx

=

∫
∂2

∂θ2
fθ(x)dx

=
∂2

∂θ2

∫
fθ(x)dx

= 0

(1.8)
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Thus we obtain an alternative definition of the Fisher information:

I(θ) = −E
[
∂2

∂θ2
log fθ(x)

]
(1.9)

Consequently, the Fisher information can be construed from a geometric perspective as
the local curvature of the log-likelihood curve. In the vicinity of the maximum likelihood
estimate, a low Fisher information implies that the maximum appears to be relatively
blunt. Conversely, a high Fisher information signifies that the maximum is characterized
by a sharper and more pronounced peak in the likelihood curve.

1.1.4 The Cramer-Rao bound

Interestingly, we can demonstrate that the precision with which we can estimate θ is con-
strained by the Fisher information. Technically, the Cramer-Rao bound asserts that the
inverse of the Fisher information serves as a lower bound for the variance of any unbiased
estimator of θ. We will now outline one method to derive this result.

Let us start by considering an unbiased estimator of θ, denoted as θ̂(X). By unbiased,
we mean:

E
[
θ̂(X)− θ|θ

]
= 0

⇐⇒
∫ (

θ̂(x)− θ
)
fθ(x)dx = 0

(1.10)

As this is true for any value of θ, we obtain:

∂

∂θ

∫ (
θ̂(x)− θ

)
fθ(x)dx = 0

⇐⇒
∫ (

θ̂(x)− θ
) ∂fθ(x)

∂θ
dx−

∫
fθ(x)dx = 0

(1.11)

Therefore, as fθ is a probability density function (PDF), it satisfies:∫
fθ(x)dx = 1 (1.12)

The next step involves a re-expression of the first derivative of fθ as follows:

∂fθ(x)

∂θ
= fθ(x)

∂ log fθ(x)

∂θ
(1.13)

Using the two aforementioned facts, equation 1.11 can be rewritten as follows:∫ (
θ̂(x)− θ

)
fθ(x)

∂ log fθ(x)

∂θ
dx = 1 (1.14)

Then, we use a clever factorization that allows for the application of the Cauchy-
Schwartz inequality:∫ [(

θ̂(x)− θ
)√

fθ(x)
] [∂ log fθ(x)

∂θ

√
fθ(x)

]
dx = 1 (1.15)

Hence, squaring the integral enables us to apply the Cauchy-Schwartz inequality:
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(∫
dx
[(
θ̂ − θ

)√
fθ

] [∂ log fθ
∂θ

√
fθ

]
dx

)2

≤
∫

dx
(
θ̂ − θ

)2
fθ ·

∫
dx

(
∂

∂θ
log fθ

)2

fθ

(1.16)
The first bracket represents the variance of the estimator θ̂, while the second bracket

corresponds to the Fisher information. By rearranging the expression, we arrive at:

V(θ̂) ≤ 1

I(θ) (1.17)

The inverse of the Fisher information is an upper-bound of the variance of θ̂.

1.2 Multi-parametric case

The FI can naturally be extended to multi-parametric cases when the probability density
function is defined upon several parameters.

1.2.1 Definition

In cases involving p parameters, where θ represents a p × 1 vector, denoted as θ =
(θ1, . . . , θp)

T, the Fisher information assumes the structure of a p× p matrix. The typical
element of the Fisher information matrix (FIM), designated as I, is given by:

[I(θ)]i,j = E
[(

∂

∂θi
log fθ(X)

)(
∂

∂θj
log fθ(X)

)]
(1.18)

Similarly, under some regularity conditions the matrix can be written as:

[I(θ)]i,j = −E
[

∂2

∂θi∂θj
log fθ(X)

]
(1.19)

It can be demonstrated that the Fisher information matrix (FIM) is a positive semi-
definite matrix, which can be expressed as:

{
xT Ix ≥ 0, ∀x ∈ Rp − 0

}
. This is equivalent

to stating that all eigenvalues of I are non-negative. Since I is a real symmetric matrix, it
can be diagonalized, as per the Spectral theorem. When the Fisher information matrix I
is strictly positive-definite, it defines a Riemannian metric in an N-dimensional parameter
space. In the realm of information geometry, this metric is explored and analyzed as the
Fisher information metric [124]. In the next section we explicitly state this result, with
the Kullbach-Leibler divergence.

1.2.2 The Kullbach - Leibler divergence and information geometry

In mathematical statistics, the Kullback-Leibler divergence is a metric used to quantify
the dissimilarity between two probability distributions, denoted as P and Q. It is defined
as follows:

DKL(P ||Q) =
∑
x

P (x) log

(
P (x

Q(x)

)
(1.20)
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Strictly speaking, the Kullback-Leibler divergence is not a distance because it has an
asymmetric definition: In general, DKL(P ||Q) ̸= DKL(Q||P ). In qualitative terms, it
assesses how well distribution Q can predict data generated by distribution P .

Now, let us consider two probability distributions with parameters infinitesimally close
to each other: Pθ and Pθ+δθ. The infinitesimal Kullback-Leibler divergence takes on the
following form:

DKL(Pθ||Pθ+δθ) = gµνδθ
µδθν +Oδθ3 (1.21)

We provide calculations leading to the earlier results in Appendix B.1. Specifically,
gµν is the Fisher information matrix and is expressed as follows:

gµν(θ) = −
∑
x

Pθ(x)
∂2 log fθ(x)

∂θµ∂θν
(1.22)

Hence, the local quadratic approximation of the KL-divergence unveils the role of the
Fisher information matrix (FIM) as a metric on parameter space. More precisely, it defines
a Riemannian manifold known as the statistical manifold, where each point corresponds
to a probability distribution, as depicted in Figure 1.2. It can be rigorously demonstrated
that the tensor gµν satisfies all the mathematical prerequisites of a Riemannian metric,
although we will not delve into the technical details, which are well-documented in the
literature [124]. This outcome establishes the groundwork for the field of information
geometry, where distances on the statistical manifold quantify how distinguishable two
models are from their data in dimensionless units of their standard deviations.

Naturally, Equation 1.22 can be reformulated in a continuous form as follows:

gµν(θ) = −
∫
∂2 log fθ(x)

∂θµθν
fθ(x)dx (1.23)

Or, equivalently:

gµν(θ) =

∫
∂ log fθ(x)

∂θµ

∂ log fθ(x)

∂θν
fθ(x)dx (1.24)

Figure 1.2: Representation of a statistical manifold upon which the density probability fθ is
defined with associated metric gµν . Arrows associated to θµ and θν represent displacements on

the manifold.
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1.2.3 Multi-parametric and multi-observable case

In cases involving p parameters, and n observables where X represents an n × 1 vector,
denoted as X = (X1, . . . , Xn)

T, the Fisher information still assumes the structure of a
p× p matrix:

[I(θ)]i,j = E
[(

∂

∂θi
log fθ(X)

)(
∂

∂θj
log fθ(X)

)]
(1.25)

Since our application (branched actin system) involves dealing with many observables
in multi-parametric systems, we will focus on this form of interest. As Gaussian distribu-
tions are central to our study we introduce them as well as the specific associated form of
the FIM in this context.

1.3 Multivariate Gaussian distribution

1.3.1 Definition

Let X be a random variable following a Gaussian distribution N (µ, σ), whose associated
probability density function is:

f(x) =
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)

(1.26)

We now consider a vector of random variables X = (X1, . . . , Xn)
T ∈ Rn = Ω. Let

µ ∈ Rn be the mean vector and Σ = [σij ] a n× n symmetric positive-definite covariance
matrix:

µ = (E[X1],E[X2], . . . ,E[Xn])
T

Σi,j = E[(Xi − µi)(Xj − µj)]
(1.27)

In order to clarify the notations, we will write µ in this way:

µ = (µ1, µ2, . . . , µn)
T (1.28)

The multivariate Gaussian distribution N (µ,Σ) has associated probability density
function:

f(x) = (2π)−n/2|Σ|−1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.29)

With Σ−1 the inverse covariance matrix, also known as precision matrix, and |Σ| the
determinant of the covariance matrix.
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1.3.2 Gaussian FIM

Let X follow a n-multivariate Gaussian distribution parameterized by a vector θ of dimen-
sion p: X ∼ N (µ(θ), Σ(θ)). In this context the FIM has a particular form:

[I(θ)]i,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
Tr

(
Σ−1∂Σ

∂θi
Σ−1∂Σ

∂θj

)
(1.30)

∂µ

∂θi
=

[
∂µ1

∂θi

∂µ2

∂θi
· · · ∂µN

∂θi

]T
(1.31)

∂Σ

∂θi
=



∂Σ1,1

∂θi

∂Σ1,2

∂θi
· · · ∂Σ1,N

∂θi
∂Σ2,1

∂θi

∂Σ2,2

∂θi
· · · ∂Σ2,N

∂θi
...

...
. . .

...
∂ΣN,1

∂θi

∂ΣN,2

∂θi
· · · ∂ΣN,N

∂θi


(1.32)

Computations leading to this result have been detailed in literature [125]. Interestingly,
in the particular but very common case where the covariance matrix does not depend on
the parameter θ, Σ(θ) = Σ, we obtain:

[I(θ)]i,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
(1.33)

Adopting the tensor style, we have:

gµν =
∂µT

∂θµ
Σ−1 ∂µ

∂θν
(1.34)

In the following section, we will explore how Fisher information has been employed in
the literature to compress the parameter space of physical systems. We will begin with
the general concept introduced in Machta et al. [121] and then delve into a numerical
implementation as demonstrated in Hsu et al. [126].



Chapter 2

State of the Art

2.1 Fisher information for Parameter Space Compression

2.1.1 Introduction

In their work, Machta et al. [121] expand upon the observation that multi-parameter mod-
els from various scientific fields primarily rely on a few stiff combinations of parameters,
as already discussed in [115]. This recurring characteristic may lead one to interpret it
as an inherent property that could potentially explain a form of universality, akin to the
concept of renormalization group in physics.

To investigate this hypothesis further, they conducted an information-theoretic anal-
ysis on models for which the continuum limit or the renormalization group (RG) had
already offered a satisfying explanation for the emergence of an effective model capable of
abstracting away microscopic details.

Figure 2.1: Eigenvalues of the FIM for various models. Eigenvalues are normalized to unit of
stiffest value. The thick grey line accounts for the distribution of eigenvalues predicted by

Wishart statistics often found in least square problems.
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Building upon the definition of the Fisher Information Matrix (FIM) (see Equation
1.19), they derived a Gaussian metric for a hopping model of diffusion and a statistical
mechanics metric for the Ising model of ferromagnetism. Intriguingly, in both cases, they
demonstrated that at long time and length scales, analytical investigations yielded a similar
hierarchical arrangement of eigenvalues corresponding to relevant macroscopic parameters
(such as the diffusion constant in the first model). In this context, we will focus on the
diffusion model as a straightforward proof of concept, while the second model explores
the efficiency of the approach at phase transitions where microscopic fluctuations become
significant, which is far from our considerations.

2.1.2 A hopping model of diffusion

Let us consider a simple microscopic model of stochastic motion on a discrete 1-dimensional
lattice of sites. This system is governed by 2N + 1 parameters denoted as θµ for −N ≤
µ ≤ N . These parameters describe the probability that a particle will hop from site j to
site j+µ in a discrete time step, as illustrated in Figure 2.2. Consequently, the observables
are represented by vector y⃗, which describes the densities of particles at time t. At the
initial time, all particles are located at the origin, given by ρ0(j) = δj,0. Subsequently,
after one time step, the distribution becomes:

ρ1(j) = θj (2.1)

At long time and length scales, in the continuum limit, the particle density should be
governed by the classical diffusion equation.

∂ρ(x, t)

∂t
= D

∂2ρ

∂x2
− v

∂ρ

∂x
(2.2)

With D the diffusion coefficient and v the drift. Here, for the sake of simplicity we
assume no particle creation.

Let us retrieve the characteristics of the diffusion equation using Parameter Space
Compression. To tackle this problem, we employ a simplified version of the Gaussian
model, which we will present here.

An example of the Gaussian metric

This approach, initially inspired by nonlinear least squares, involves a model in which the
data vector yj is assumed to follow a normal distribution around a parameter-dependent
mean yj0(θ) with a standard deviation σj . Therefore, the probability distribution of the
data y⃗ given θ is expressed as follows:

Pθ(y⃗) ∝ exp

(
−
(
yj − yj0(θ)

)2
2(σj)2

)
(2.3)

Given this Gaussian distribution, it can be demonstrated that the FIM can be simply
expressed as:

gµν =
∑
j

1

σj

∂yj0(θ)

∂θµ

1

σj

∂yj0(θ)

∂θν
(2.4)

In this simplified version of the Gaussian metric, it is assumed that there is no correla-
tion between observables. Since the hopping events from one site to another are completely
independent, the resulting observables in vector x⃗ are uncorrelated.



101 2.1. Fisher information for Parameter Space Compression

The uncertainties σj do not depend on the parameters. In addition, using σj = 1 does
not have an impact on the metric because all observables have the same dimension and
are measurable with equal accuracy. This simplifies the expression to:

gµν =
∑
j

JjµJjν ; Jjµ =
∂yj0(θ)

∂θµ
(2.5)

Figure 2.2: FIM eigenvalues of a model of stochastic motion on a 1D lattice. The seven
parameters describe probabilities of transitioning to nearby sites (bottom, inset). Observations
are taken after a given number of time steps for the case in which all parameters take the value
qm = 1/7. The top row shows the resulting densities plotted at times t = 1, 3, 5, and 7. The

bottom plot shows the eigenvalues of the FIM versus number of steps, with emerging R, v and D,
from [121]. R being the rate of addition of particles when the mass is not conserved.

Coarsening the diffusion equation at high scales

In our case, our observables are time-dependent, denoted as ρt(j), which means the FIM
also varies with time

gµν(t) =
∑
j

∂ρt(j)

∂θµ

∂ρt(j)

∂θν
(2.6)

After a single time step, the particle density distribution becomes ρ1(j) = θj . This
simplifies the expression of the FIM to:
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gµν(1) =
∑
j

∂θj
∂θµ

∂θj
∂θν

=
∑
j

δj,µδj,ν

= δµν

(2.7)

Hence, it is clear that the FIM in this case has 2N + 1 eigenvalues, all with a value
λ = 1. This is shown in Figure 2.2 after a single time step. In other words, all parameters
are equally measurable. To discern global trends and dependencies, one would need to
study the behavior of the FIM over multiple time steps.

In order to calculate the density of particles at position j and time t ρt(j) one can
introduce the Fourier transform of the hopping rates and of the particle density:

θ̃k =
N∑

µ=−N

e−ikµθµ

ρ̃kt =
∞∑

µ=−∞
e−ikjρt(j)

ρt(j) =
1

2π

∫ π

−π

dkeikj ρ̃kt

(2.8)

The density distribution at time t is the convolution between the density at t− 1 and
the hopping rates. In the Fourier space, this becomes:

ρ̃kt = θ̃kρ̃kt−1 (2.9)

Initially all particles are at the origin i.e. ρ0(j) = δj,0, which translates as ρ̃k0 = 1.
Thus, we obtain:

ρ̃kt = (θ̃k)t

ρt(j) =
1

2π

∫ π

−π

dkeikj(θ̃k)t
(2.10)

Subsequently, we get:

J t
jµ = ∂µρt(j) =

t

2π

∫ π

−π

dkeik(j−µ)(θ̃k)t−1

gµν(t) =
t2

2π

∫ π

−π

dkeik(µ−ν)(θ̃k)t−1(θ̃−k)t−1

(2.11)

The examination of the eigenvalues of the Fisher Information Matrix (FIM) resulted in
the sloppy spectrum depicted in Figure 2.2, obtained from numerical computations. This
analysis enables us to identify the three stiffest eigendirections of gµν , which correspond
to the three terms of the diffusion equation at later times (when we consider a creation
term R).
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In addition, by assuming that all hopping rates θµ are positives and that their sum is
equal to one, then they are each less than 1. Thus, logically at late time t, the integral
is predominantly influenced by small values of k, low spatial frequencies. Therefore, for
small values of k, we have:

θ̃k =
N∑

µ=−N

e−ikµθµ

≈
(
1− ikv −∆

k2

2

)
+ o(k3)

= e−ikv−D k2

2 + o(k3)

(2.12)

Hence, we retrieve the drift v and the diffusion constant D:

v =
∑
µ

µθµ

∆ =
∑
µ

µ2θµ

D = ∆− v2

(2.13)

Thus, for late times, it is possible to extend the domain of the integral as high frequency
terms vanish exponentially. The FIM can be approximated as:

gµν(t) ≈
t2

2π

∫ ∞

∞
dkeik(µ−ν)e−Dtk2 (2.14)

Using results from Gaussian integrals, this becomes:

gµν(t) ≃
t2

(Dt)1/2
e−(µ−ν)2/4Dt (2.15)

This can be expanded in powers of the small parameter −(µ − ν)2/4Dt. Then, we
obtain:

gµν(t) ≃
∞∑
n=0

(−1)n(µ− ν)2n

n!(4Dt)n+1/2
(2.16)

Thus, each term of the series contributes to an eigenvalue that scales as:

λn ≃ t2
(
Dt

N2

)−n−1/2

n ≥ 0 (2.17)

Consequently, after several time steps, a hierarchy of eigenvalues naturally emerges,
capturing the macroscopic characteristics of the system.

Hence, this diffusion model has effectively demonstrated, as a proof of concept, how
PSC offers a methodology for unveiling the inherent sloppiness inherent in multi-parameter
models by simplifying the coarsening the observables. It enables the distinction between
stiff and sloppy parameters, effectively capturing high-scale collective behaviors while
discarding irrelevant changes. In practice, PSC compresses the higher moments of the
distribution (such as skewness or kurtosis), whose contribution diminish over time, as
illustrated in Figure 2.2. This suggests that the primary characteristics of stochastic
variables can be encapsulated in variations of mean and variance.
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2.2 A numerical implementation

Hsu et al. [126] extended the application of PSC by introducing a numerical approach
that can be employed with computational models. This expansion allowed PSC to be
applied to a broader range of systems, including those that lack analytical solutions.
They verified the robustness of their method using analytical models of random walks
and protein production before applying it to the microtubule dynamic instability problem.
While we will not delve into the details of the random walk and protein production systems,
we will explore their computational approach and the outcomes of their study concerning
microtubule instability.

2.2.1 A simplification of the Gaussian metric

Let us present their overall approach. Regarding the observables, rather than assuming a
specific probabilistic model, they make an assumption about the deviations of the noisy
probability from the true model. Specifically, they assume that these deviations follow a
Gaussian distribution with respect to the true model. Let us walk through the derivation.
We begin with the assumption that our model observable is defined by the PDF fθ(x).
We also introduce di as the experimentally measured probability of the value xi. Note
that di deviates from the true value fθ(xi) due to measurement error:

di = fθ(xi) + σiri (2.18)

The measurement error ri is assumed to be Gaussian distributed, centered in 0 with
variance 1. σi accounts for the local variance measurement which should depend on ob-
servable x.

ri(θ) =
di − fθ(xi)

σi
(2.19)

Logically, errors {ri} are independent and the PDF of the residuals r⃗ = {ri} is:

pθ(r⃗) =
1

(2π)M/2
exp

(
−1

2

M∑
i=1

ri(θ)
2

)
(2.20)

with M the number of points on the curve where we try to fit the data.

Hence, we define gµν as the FIM of the residuals r⃗. As r⃗ is Gaussian distributed, the
computations are straightforward, obtaining a form close to Equation 1.34.

gµν =

〈
−∂

2 log pθ(r⃗)

∂θµ∂θν

〉
=

〈
∂2
∑

i
1
2
r2i

∂θµ∂θν

〉
=
∑
i

〈
ri

∂2ri
∂θµ∂θν

+
∂ri
∂θµ

∂ri
∂θν

〉
=
∑
i

〈
ri

∂2ri
∂θµ∂θν

〉
+

〈
∂ri
∂θµ

∂ri
∂θν

〉
(2.21)

By substituting the expressions for {ri} as defined in Equation 1.34, we find that the
first term vanishes. Indeed, di is independent of θ, and fθ(xi) does not depend on ri. This
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leads to −∑i ∂µνfθ(xi) < ri >, where < ri >=0. Regarding the second term, it becomes
fully deterministic as follows:

∂ri
∂θµ

= − 1

σi

∂fθ(xi)

∂θµ
(2.22)

Finally, we obtain:

gµν(t) =
∑
i

1

σ2
i

∂fθ(xi, t)

∂θµ

∂fθ(xi, t)

∂θν
(2.23)

The expression presented is a straightforward function of the Jacobian matrix con-
cerning its parameters. Besides, the main strength of the results lies in the fact that they
are purely determined by the model fθ(x, t), as r⃗ has been averaged out. For practical
reasons, all σi were assumed to be equal to 1. In addition, as biological models often mix
rates and energies, the authors proposed to rescale kinetic rates by using their logarithm
as rates are exponentially related to the rescaled energy (in kBT units):

∂fθ(x)

∂ log(θµ)
=
∂fθ(x)

∂θµ
θµ (2.24)

Therefore, the final expression is:

gµν(t) =
∑
i

∂fθ(xi, t)

∂θµ

∂fθ(xi, t)

∂θν
θαν
µ θαν

ν (2.25)

where αµ = 0, if θµ is an energy and αµ = 1, if θµ is a kinetic rate.

Numerically, the finite derivatives are evaluated this way:

∂fθ(x, t)

∂θµ
=
fθ(x, t | θµ +∆θµ)− fθ(x, t | θµ −∆θµ)

2∆θµ
(2.26)

The initial step involves the generation of a set of probability distributions denoted
as fθ(x, t | θµ ± ∆θµ), totaling 2N + 1 distributions for each observable x. Notably,
even though the choice of ∆θ is arbitrary, authors suggest that the most robust choice to
obtain significant changes while avoiding artifacts and numerical instabilities was to vary
energies by 0.05kBT (which means a 5% change for kinetic rates). Subsequently, these
probability distributions enable the computation of the time-dependent FIM, as depicted
in Equation 2.25, specifically for the observable x. The resultant eigenvalues derived from
this computation yield time-varying eigendirections.

2.2.2 Application to the microtubule dynamics

We now present the outcomes obtained through the numerical methodology, applied to a
model representing microtubule growth. As previously elucidated in section 1.1.1, micro-
tubules undergo dynamic instability, a stochastic process involving intermittent transitions
between growth and shrinkage phases. This intricate non-equilibrium phenomenon was
initially simulated in the 1980s [127] [128] and continues to captivate the interest of the
computational biology community [129]. Over the years, numerous models of increasing
complexity have been introduced to comprehend this phenomenon. However, in contempo-
rary research, the pursuit is to construct a minimal model capable of retaining predictive
power. Consequently, the application of PSC becomes appropriate in ascertaining whether
these models exhibit an inherent low-dimensional structure that manifests through slop-
piness.
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A microtubule growth model

The model used draws inspiration from the seminal work of VanBuren et al. [130], which
has undergone several adaptations in the literature. This model is visually represented
in Figure 2.3 (Top). In essence, it hinges on the principle of tubulin dimers associating
end-to-end to form protofilaments. These longitudinal bonds are characterized by vari-
ations in Gibbs free energy denoted as ∆Go

long. To construct the tubular structure, 13
protofilaments are interconnected with a parameter denoted as ∆Go

lat.

The rate at which these associations occur is represented by k+. Additionally, tubu-
lin undergoes hydrolysis of GTP (Guanosine Triphosphate), a process known as GTPase,
which occurs at a constant rate denoted as kH . The hydrolysis of GTP and subsequent
release of phosphate weakens the bonds between subunits within the polymer, ultimately
giving rise to the phenomenon of dynamic instability. Specifically, the association of new
GDP-tubulin subunits is accompanied by an increase in energy denoted as ∆∆Go

lat. The
selection of these model parameters aligns with existing literature [131], as illustrated in
Figure 2.3 (Top). The process was simulated using Gillespie algorithm [132] and they
successfully replicate experimental data derived from in vitro reconstitutions [133]. In
summary, microtubules undergo growth as long as their end is shielded by a GTP-tubulin
cap. However, once this cap disappears, growth transitions to shrinkage, a phenomenon
referred to as catastrophe.

Figure 2.3: (Top) Base model of microtubule simulations dynamics, (Bottom) plot of the length
as a function of time for one simulation, adapted from [126].
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Numerical PSC results

In order to streamline the model, all five parameters, namely ∆Go
long, ∆G

o
lat, k+, kH , and

∆∆Go
lat, were systematically varied around their initial values. Four distinct observables

were subsequently measured: the microtubule length, the decay constant characterizing
the conversion of GTP-tubulin into GDP-tubulin, the microtubule lifetime, and the post-
catastrophe rate. Notably, the length and decay constant could be continuously tracked
throughout the simulation duration, distinguishing them from the other observables. The
numerical FIM analysis yielded an eigenvalues hierarchy, conforming to expectations. In
general, all independent observables underscored the preeminence of a single eigenvalue
that gradually emerged over time, a phenomenon clearly illustrated in Figure 2.4, which
pertains to microtubule length. Within the same figure, the primary eigenvector decom-
position is represented as a percentage of the initial parameters. Remarkably, it became
evident that ∆Go

long and ∆Go
lat played pivotal roles in determining microtubule length.

Although this analysis elucidated that most observables could be characterized by a
single effective parameter, it did not provide insights into the extent to which the key
factor influencing microtubule length also influenced observables such as the decay rate.
Subsequently, to discern shared effective parameters, the authors conducted a Singular
Value Decomposition (SVD) analysis by merging eigenvectors from all observables. The
number of prominent singular values obtained from this analysis offer insights into how
many dimensions are required to accurately represent the original matrix. In a sense, SVD
can be regarded as a generalization of diagonalization, applicable to non-square matrices.
The SVD analysis yielded a sloppy distribution of singular values, with two dominant ones,
signifying a two-dimensional characterization of the problem. The first vector, primarily
influenced by the energy of lattice bonds (∆Go

long and ∆Go
lat), accounted for polymeriza-

tion. The second vector is associated with the binding and unbinding dynamics of dimers
(k+ and ∆∆Go

lat) and represents a GTP-cap parameter. Intriguingly, these two parame-
ters formed a two-dimensional “ribbon” within the five-dimensional parameter space.

While this approach has successfully revealed the sloppy nature of a microtubule model,
as well as its underlying dimensions, we have also identified several limitations. These
limitations serve as the foundation upon which we base our own iteration of numerical
PSC in the subsequent chapter.

Figure 2.4: Numerical PSC for the five parameter microtubule model. Eigenvalues and main
eigenvector decomposition as a function of time in s, adapted from [126].



Chapter 3

Toward a local Gaussian approximation1

3.1 Limits and potential improvements of the numerical approach

In this section, we articulate the motivations behind the development of our novel numer-
ical PSC method by listing the limitations introduced by the approach employed by Hsu
et al.

3.1.1 The inner dimension of the model

The observables derived from the microtubule study can, for the most part, be reasonably
approximated using common PDFs such as Gaussian, exponential, or Gamma distribu-
tions. For example, as depicted in Figure 3.1, the probability density of the microtubule
length conforms to an exponential model, while the decay constant can be effectively mod-
eled as a Gaussian distribution.

Thereafter, it is crucial to emphasize that a PDF can be completely characterized by
its cumulants, which represent mathematical functions derived from the underlying prob-
ability parameters. Furthermore, it is worth noting the direct connection between the
conventional FIM and a FIM constructed based on the cumulants, as elaborated upon in
the work of Prasad et al. [134]. Consequently, one can expect that an exponential decay
model would be associated with a one-dimensional parameter space, represented by the
parameter λ, while a Gaussian model would require a two-dimensional parameter space
to adequately capture its characteristics, involving parameters for mean and variance.

Our primary goal in this context is to demonstrate that the FIM methodology intro-
duced by Hsu et al. inherently yields a rank-1 matrix when applied to scenarios involving
one-parameter models, such as Gaussian distributions with fixed widths or exponential
distributions. To begin our analysis, we revisit the expression of the approximated FIM,
particularly when the probability density function is not time-dependent:

gµν =
∑
i

1

σ2
i

∂fθ(xi)

∂θµ

∂fθ(xi)

∂θν
(3.1)

Let us approximate this sum as an integral by considering the step size ∆x between
sampled points. We also consider that the uncertainties on probability measurements do
not depend on the sampled point: σi = σα, which leads to:

gµν ≃ 1

σ2
α∆x

∫
dx
∂fθ(x)

∂θµ

∂fθ(x)

∂θν
(3.2)

1sorry for the spoiler. . .
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Figure 3.1: (Left) Probability distribution of the length from simulations and analytic expression
from an exponential law modelling. (Right) Plot of the decay constant distribution for two

∆Go ±
long values. We observe the shift of the PDF when switching the parameter. Adapted from

[126]

Gaussian example

First, let us assume that fθ(x) is a Gaussian probability density function, whose mean is
a function of θ but not its variance:

fθ(x) =
1

σ
√
2π
e(x−x0(θ))

2/(2σ2) (3.3)

Thus, we have:

gµν ≃ 1

σ2
α∆x

∫
dx

1

4σ4
fθ(x)

2(x− x0(θ))
2∂x0(θ)

∂θµ

∂x0(θ)

∂θν
(3.4)

To make things more concise, we write ∂x0(θ)
∂θµ

= ∂µx0:

gµν ≃ 1

4σ2
α∆xσ

2

∂µx0 ∂νx0
σ2

∫
dxfθ(x)

2(x− x0(θ))
2 (3.5)

Or, we retrieve here the expression of the Gaussian FIM for a unique observable:

Gµν =
∂µx0 ∂νx0

σ2
(3.6)

This leads to:

gµν ≃ Gµν

4σ2
α∆xσ

2

∫
dxfθ(x)

2(x− x0(θ))
2 (3.7)

Then, as the integral remains to be calculated we start by re-expressing f2θ :

fθ(x)
2 =

1

σ22π
e(x−x0(θ))

2/σ2

=
1

σ
√
2π

1

σ
√
2π
e(x−x0(θ))

2/2(σ/
√
2)2

=
1

σ
√
4π

1√
2π σ√

2

e(x−x0(θ))
2/2(σ/

√
2)2

(3.8)
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We define Σ = σ/
√
2,

fθ(x)
2 =

1

σ
√
4π

1√
2πΣ

e(x−x0(θ))
2/2Σ2

(3.9)

Then, the integral becomes:

I =

∫
dxfθ(x)

2(x− x0(θ))
2

=
1

σ
√
4π

∫
dx

1√
2πΣ

e(x−x0(θ))
2/2Σ2

(x− x0(θ))
2

=
Σ2

σ
√
4π

=
σ

4
√
π

(3.10)

Finally, the metric becomes:

gµν ≃ Gµν

16
√
πσ2

α∆xσ
(3.11)

Thus, for a Gaussian PDF, the Hsu metric is directly proportional to the the single
observable Gaussian metric with mean dependency.

Exponential example

As another example, we consider that fθ(x) is an exponential probability density function
defined over R+, whose unique parameter λ is a function of θ:

fθ(x) = λ(θ)e−λ(θ)x (3.12)

Here we write the metric hµν

hµν ≃ 1

σ2
α∆x

∫
dx ∂µλ ∂νλ (1− λx)2 e−2λx

≃ ∂µλ ∂νλ

σ2
α∆x

∫
dx
(
1− 2λx+ (λx)2

)
e−2λx

≃ ∂µλ ∂νλ

σ2
α∆x

[∫
dxe−2λx −

∫
dx2λxe−2λx +

∫
dx(λx)2e−2λx

]
≃ ∂µλ ∂νλ

σ2
α∆x

[
− 1

2λ
− 2λ

2λ
+

1

4λ

∫
du u2e−u

]
(3.13)

In the last step, we performed a change of variable with u = 2λx for the last integral
which is a Gamma function: ∫

du u2e−u = Γ(3) (3.14)

Or, a property of the Gamma function is:

Γ(n) = (n− 1)! (3.15)

Finally, the metric is:



111 3.1. Limits and potential improvements of the numerical approach

hµν ≃ −∂µλ ∂νλ
σ2
α∆x

(3.16)

In addition, it can be shown that the metric associated to an exponential PDF is :

Hµν = −∂µλ ∂νλ
λ2

(3.17)

Thus, we obtain:

hµν ≃ λ2Hµν

σ2
α∆x

(3.18)

Therefore, in both cases, it is feasible to establish an association between the metric
computed using the Hsu method and the intrinsic metric of the one-dimensional model.

A rank one matrix by construction

With this consideration in mind, our objective is to demonstrate that this metric ultimately
results in a rank-one matrix. To illustrate this point, we begin with the single Gaussian
example Gµν :

Gµν =
∂µx0 ∂νx0

σ2
(3.19)

We define V as the re-scaled partial derivative vector, with V ∈ Rp:

V =
1

σ
(∂1x0, ∂2x0, · · · , ∂px0)t (3.20)

Thus the FIM G can be expressed as:

G = V · V t (3.21)

Let us demonstrate that G is a rank one matrix. We consider a vector X ∈ Rp. We
have:

GX =
(
V V t

)
X

= V
(
V tX

) (3.22)

Since V tX is a scalar we call it k and write:

GX = kV (3.23)

From this it follows that if X is an eigenvector of G, it must be a multiple of V . In
other words, the eigenspace of G is:

span(X) = {αV , α ∈ R} (3.24)

Thus, G is a rank-1 matrix whose only eigendirection is V .

Naturally, it follows that an exponential metric obtained from Equation 3.18 would
yield the same outcome. In conclusion, metrics derived from both a basic Gaussian prob-
ability and an exponential probability distribution will exhibit a rank of 1, limiting the
amount of information that can be collected from such analyses. This leads us to think that
it might be necessary to consider multiple observables in such situations to characterize a
system.
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3.1.2 Eigenspaces sensitivity to the numerical integration

Furthermore, we suppose that one limitation of the numerical analysis of the FIM stems
from its sensitivity to the numerical integration method. In this context, we present vari-
ous techniques for computing the FIM and assess the sensitivity of the resultant eigenspace
to numerical parameters. To streamline our analysis, we concentrate on a Gaussian dis-
tribution associated with a single observable. Notably, both the mean and the standard
deviation of this distribution are products of power laws that involve parameters.

fθ(x) =
1

σ(θ)
√
2π
e−(x−x0(θ))/(2σ2(θ)), with x0(θ) =

p∏
i

θαi
i , σ(θ) =

p∏
i

θβi

i (3.25)

{αi} and {βi} are generated randomly as integers between 1 and 5. We derive the
expression of the FIM, adapting Equation 1.30 to our context:

gµν =
x20αµαν

σ2θµθν
+ 2

βµβν
θµθν

(3.26)

To ensure the absence of sloppy parameters, all parameters θµ were normalized to
a value of 1. Consequently, our expectation was that the eigenanalysis would reveal the
emergence of two eigenvalues. Following this, we performed an eigenvalue analysis, relying
on the exact computation of the FIM with a parameter count of p = 5. This analysis
yielded two eigenvalues of substantial magnitude (approximately ≈ 10), accompanied by
three eigenvalues of notably smaller values (approximately ≈ 10−15). It follows logically
that our system exhibits two distinct dimensions, aligning with the two parameters that
govern the probability distribution x0 and σ.

Numerical integration of the FIM

Using the exact PDF defined above, we performed a numerical integration process of step
size dx to calculate the FIM based on:

gµν ≃ −
∫

dxfθ(x)
δ log fθ(x)

δθµ

δ log fθ(x)

δθν
(3.27)

We examined the effects of two key numerical parameters: the differentiation parameter
δθ and the integration step dx on the eigenvalues, as depicted in Figure 3.2.
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Figure 3.2: Numerical FIM: Eigenvalues as a function of δθ (Left) and dx on (Right). The blue
dots are the eigenvalues obtained from the exact FIM analysis. By default dx=0.01 and δθ=0.01.
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Notably, our numerical integration introduced a third eigenvalue with a magnitude on
the order of 10−3 independently of the integration step. Furthermore, it is evident (Left)
that the magnitude of this third eigenvalue exhibits a direct correlation with variations
in the differentiation parameters, increasing with δθ. In essence, these findings strongly
suggest that artifacts arising from numerical integration have the potential to yield unex-
pected eigenvalues.

FIM obtained from a discrete sampling

Thereafter, we proceeded with the numerical computation of the FIM first sampling the
PDF from a Gaussian number generator. In fact, for each parameter θµ, two histograms of
size S were generated to compute the required derivative (on θµ and θµ+δθ. Subsequently,
we applied the numerical integration procedure to the sampled distributions. Once again,
we examined the influence of the differentiation parameter δθ, the integration step dx as
well as the sample size S as depicted in Figure 3.3. Our analysis revealed that the eigen-
values exhibit a strong dependence on the sample size S, bin size dx, and differentiation
step δθ once again revealing the emergence of unexpected high eigenvalues.

Therefore, to mitigate the influence of these unexpected eigenvalues, it becomes im-
perative to employ a large sample size and carefully balanced values of δθ and dx allowing
for a trade-off between the precision of the leading eigenvalues and the vanishing of the
others. Consequently, this underscores the necessity for a methodology to obtain a precise
FIM in the presence of finite sampling and numerical integration. With this objective in
mind, it is worth noting that obtaining the entire global shape variation of the PDF may
not be an essential requirement, as one might consider primarily capturing the principal
changes in the PDF with respect to parameters, specifically focusing on mean and variance.

This consideration leads us to contemplate that for PDFs closely resembling Gaussians,
the FIM for the overall system could be approximated as the one of a multivariate Gaussian
distribution, as delineated in Equation 1.30, which we reiterate here:

[I(θ)]i,j =
∂µT

∂θi
Σ−1 ∂µ

∂θj
+

1

2
Tr

(
Σ−1∂Σ

∂θi
Σ−1∂Σ

∂θj

)
(3.28)

Indeed, drawing from our previous findings, we aim to underscore the importance of
handling multiple observables (which implies working with multivariate distributions) in
order to circumvent the emergence of rank-1 matrices.
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Figure 3.3: Sampling FIM: Eigenvalues as a function of δθ (Left) and dx on (Right). The
dotted-lines represent the eigenvalues obtained from the exact FIM analysis. By default dx =

0.01, δθ = 0.01 and S = 100000
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Hence, the FIM is just dependent on variations of the mean and of covariance that are
numerically easy to track:

∂µ

∂θj
≃ δµ

δθj
∂Σ

∂θi
≃ δΣ

δθi

(3.29)

Furthermore, by incorporating a covariance correction to disentangle information, this
approach offers the added benefit of accounting for correlations between observables. Con-
sequently, it becomes feasible to investigate observables that do not exhibit scaling behav-
ior akin to energies or kinetic rates.

3.1.3 Gaussian FI as a limit of the Gamma FI

Nonetheless, while the Gaussian approximation appears promising, it is prudent to assess
its consistency when dealing with a skewed and peaked distribution. In this context, we
examine the Fisher information (FI) for a one-dimensional problem, specifically focusing
on the example of a Gamma distribution. We estimate the divergence between the FI of
the Gamma distribution and the Gaussian FI with the same mean and variance, as a func-
tion of the skew parameter. Our objective is to gauge to what extent skewed distributions
can be approximated as Gaussian distributions in the low skewness limit. Naturally, we
anticipate that the ratio will approach 1 as the skewness parameter approaches zero.

Let us define fθ(x) and hθ(x), respectively Gaussian and Gamma PDF.

fθ(x) =
e(x−x0(θ)/(2σ2)

√
2πσ2

(3.30)

hθ(x) =
xk(θ)−1e−x/Λ(θ)

Γ(k(θ))Λ(θ))k(θ)
(3.31)

With k the shape parameter and Λ the scale parameter. We recall the definition of
the Γ function:

Γ(x) =

∫ +∞

0

dt tx−1e−t (3.32)

In order to ensure that both probability distributions will have same mean and vari-
ance, we specify:

k =
x20
σ2

Λ =
σ2
x0

(3.33)

For both distributions the FI is:

If (θ) = −x
′
0(θ)

2

σ2

Ig(θ) =
x′0(θ)

2 [3σ2 − 4ψ1(x0(θ)
2/σ2)x0(θ)

2]

σ4

(3.34)
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With ψm(z), the polygamma function defined as:

ψm(z) =
dm+1

dzm+1
ln Γ(z) (3.35)

Then, we can rewrite this as a function of the skewness s:

s =
2√
k

(3.36)

Thus the ratio between Gaussian and Gamma information is:

η(s) = −3 +
16ψ1

(
4
s2

)
s2

(3.37)

In Figure 3.4 (Right), we plot the ratio η as a function of the skew s. As expected,
as s goes to 0, the Gamma FI converges to the Gaussian FI.Thus, this result supports
the idea that the effective Gaussian approach is appropriate in the low skew regime. In
the appropriate context, we insist on its promising interest to capture main cumulants
variations despite finite sampling.
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Figure 3.4: (Left) Plot of different PDF fΓ(x) for various skewness values s. (Right) Ratio of FI
η(s) as a function of skewness s in log scale. We arbitrarily plot ηs = 1.05 as a transition

threshold.
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3.2 Introducing a local Gaussian approach for numerical PSC

In the end, we aim to conclude this section by introducing our own approach of numerical
PSC. To compute the Fisher Information Matrix, we adopt an approach that presumes
the local Gaussian behavior of our observables. This Gaussian assumption is considered
suitable because it effectively captures the primary alterations in the probability density
function, mainly the mean and variance, without assuming significant changes in its shape.

In particular, we aim to quantify the impact of the add of an observable to the
eigenspace of the system. Before presenting a simple geometrical interpretation let us
derive the iteration process computations.

3.2.1 Iteration process

As first hypothesis, we assume that the covariance matrix does not depend on the vector
parameter θ : Xk ∼ Nk(µk(θ), Σk). Here Xk is a random vector of size k which accounts
for k observables.

We start from the definition of the FIM:

[I(θ)]ki,j =
∂µk,T

∂θi
Σ−1,k ∂µ

k

∂θj
(3.38)

Then, we would like to know what happens to the FIM when we increase the size of the
vector by adding one observable: Xk+1 ∼ Nk+1(µk+1(θ), Σk+1), which can be expressed
as:

Xk+1 = Xk +Xk+1 · ek+1 (3.39)

After performing calculations, we obtained for [I(θ)]k+1
i,j :

[I(θ)]k+1
i,j = [I(θ)]ki,j +

k∑
l=1

σ−1
l,k+1

[
∂µl

∂θi

∂µk+1

∂θj
+
∂µl

∂θj

∂µk+1

∂θi

]
+ σ−1

k+1,k+1

∂µk+1

∂θi

∂µk+1

∂θj

(3.40)
In the special case when there is no covariance between our random variables, we get :

[I(θ)]k+1
i,j = [I(θ)]ki,j +

∂µk+1

∂θi

∂µk+1

∂θj
σ−1
k+1,k+1 (3.41)

From the previous result, we can extrapolate that the FIM of the whole vector can be
expressed as the sum of the FIM for each random variable as a first approximation.

I(θ) =
k∑

l=1

Il(θ) (3.42)

Intuitively even though the previous results relies on a strong approximation we pre-
sume that it provides a great sensation of what is stake. Basically, by adding a new
observable we load the global FIM with its associated information. Covariance weights
the information increase.
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3.2.2 Geometrical interpretation of sensitivity modes

The analysis of the eigenvectors and corresponding eigenvalues of the FIM unveils the
hierarchical structure of sensitivity modes within parameter space aiding in the discrimi-
nation between stiff and sloppy directions.

Here, we propose a straightforward geometric analysis of our methodology. First,
let us consider a single Gaussian observable, where the primary influence is associated
with variations of its mean. For the sake of simplicity, we neglect the impact of variance
dependency on parameters. In this context, and as previously discussed in subsection
3.1.1, the system is associated to a single direction in the parameter space, represented
by the vector v1 in Figure 3.5. Now, if we introduce another observable, it can either
reinforce the existing direction, generate a new direction represented by v2 or induce a
rotation in the system. As we accumulate more observables, our objective is to obtain
the proper basis of the biophysical system within the parameter space. In the following
chapter we detail on our results concerning this numerical PSC procedure applied to our
branched actin system.

Figure 3.5: The addition of a new observable to the FIM can lead to the appearance of a new
sensitivity mode v2 or to the rotation of the overall basis.



Chapter 4

Application to our branched actin system

4.1 Simulation model

4.1.1 Setup

Here, we introduce the branched actin system to which we have applied numerical PSC.
This system closely resembles the one studied in the first part of the thesis (refer to sub-
section 5.2 for a detailed description), with a few minor variations. However, a significant
modification lies in the use of a dashpot with a constant drag coefficient denoted as γ0 as
opposed to the AFM used previously. The simulation model is schematically represented
in Figure 4.1. A example on configuration file is proposed in Appendix B.2.1. In addition,
it is worth noting that we conducted this study prior to the work presented in the first part
of the thesis, when the numerical AFM had not yet been implemented. Nevertheless, the
dashpot offers the advantage of simplicity, as it can be adjusted with a single parameter
to monitor γ0 (refer to subsection 5.2.1 for a comparison).

Figure 4.1: Scheme of the simulation system: A branched actin network is growing from the
bottom and facing a constant drag γ0.
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For the sake of simplicity, we used infinite stall force fibers (fs = inf pN) with a constant
velocity of vpol = 1 µm.s-1. While we did not include the stall force fs in our sloppiness
analysis, we believe it could have served as an judicious bridge between the two parts of
the thesis. Additionally, Kconf was set to 100 pN.µm-1, with the understanding that its
parameter value is not as critical in this setup as there is no involvement of an AFM. The
steric stiffness Ksteric was configured at 400 pN.µm-1, which, while still acceptable, should
be elevated to enhance the relevance and precision of our results. Notably, our situation
can be likened to the one depicted in Figure 5.6, as we encountered induced stresses σ
on the order of 600 Pa. This adjustment in Ksteric accounts for the overall reduction in
velocity compared to the first part of the study. As expected, the growth of the network
induces the motion of the piston at a constant velocity after a brief exponential transition
period, as illustrated in Figure 4.2 (Right). In essence, the dynamics of the piston is
governed by:

FActin = γ0vs

⇐⇒ σ0S = γ0vs
(4.1)

The value of γ0 was intentionally set to a relatively high value, approximately 5000
pN.s.µ m-1, to effectively neglect the influence of network drag, denoted as γnet. Our
study revealed that the contribution of γnet did not surpass 300 pN.s.µm-1, as illustrated
in Appendix B.2.2, Figure B.1.

4.1.2 Observables estimation

Our study focused on a set of five parameters and four observables. The parameters under
consideration are as follows: the Arp2/3 adding rate kArp2/3, the drag coefficient of the
dashpot γ0, the length of actin fibers ℓ0, the bending rigidity of the fibers κ, and the radius
of the fiber r0. We posit that all these parameters collectively determine the mechanics of
the actin network. From our investigation, we aimed to extract the following observables:
the velocity vs, the stationary density ρs, the applied stress σ0 and an elastic response
modulus Y.
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Figure 4.2: (Left) Number of fibers Nfibers and height h(t) (Right) as a function of time. The
thick line is the mean value obtained over 300 simulations with small kArp2/3 variation. The

shaded area delimits the standard deviation.
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The following table presents the original values of our parameters:

kArp2/3 γ0 ℓ0 κ r0

500 s−1 5000 pN.s.µm-1 0.3 µm 0.004 pN.µm2 0.005 µm

We let the system grow, and after τ1 = 7.5 seconds, we froze it by setting γ to infinity,
which effectively halts growth. Simultaneously, we set kArp2/3 to 0, which stopped the
addition of new fibers, as illustrated in Figure 4.2. After 5 seconds, at τ2 = 12.5 seconds,
we allowed the network to relax by resetting γ0 to its initial value. Finally, at τ3 = 14.5
seconds, we returned to the infinite drag condition. In Appendix B.2.2, Figure B.1 we
illustrate the evolution of the stored elastic energy all along these steps. Elastic relaxation
is explicit here. In the initial phase, we determined the stationary velocity vs through a
linear fit, as well as the applied stress σ (according to Equation 4.1). Naturally, we expect
these observables to provide the same information.

Figure 4.3 displays the evolution of density and force throughout these steps. The
density ρ rapidly increases before reaching its steady-state value. This value remains
constant during the stall phase but exponentially decreases when γ0 is reset to its initial
value before stabilizing at a new plateau. From the first plateau we extract the stationary
density value ρs. A similar behavior is observed for the measured Force F. Based on
this data, we extract an estimation of the elastic modulus Y. Below, we elaborate on our
method, which is derived from a minimalist elastic model.

An elastic modulus measurement

During the relaxation step, we assume that the primary response of our network is elastic.
As a result, we propose the following linear Hookean elastic model, which possesses the
advantage of diverging for compressive forces.

F = −Y S
(
ℓ− ℓ0
ℓ0

)
(4.2)
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Figure 4.3: (Left) Density ρ(t) and force F (Right) as a function of time. The thick line is the
mean value obtained over 300 simulations with small kArp2/3 variation. The shaded area delimits

the standard deviation.
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Thus, from the two previous Figures (4.2, 4.3) we obtain the following system with the
two set (ℓ1,F1) and (ℓ2,F2) one for each stall phase:

F1 = −Y S
(
ℓ2 − ℓ0
ℓ0

)
F2 = −Y S

(
ℓ2 − ℓ0
ℓ0

) (4.3)

Hence, with this two points it is possible to estimate the value of Y:

Y =
F2 − F1

(
ℓ1
ℓ2

)
S
(

ℓ1
ℓ2
− 1
) (4.4)

We obtained modulus of the order of 1 kPa, which is accordance with the experimental
studies on branched actin mechanics that we discussed in subsection 2.3.2, [86] [87] [89].
Having outlined our method for estimating the relevant observables, we proceed to assess
the statistical consistency of our stochastic simulations.

4.2 Results

In this section, our objective is to compute the Gaussian FIM for our system under the
assumption that variance modifications are neglected:

gµν =
∂µT

∂θµ
Σ−1 ∂µ

∂θν
(4.5)

We first check the consistency of our estimation of µ, before dealing with Σ.

4.2.1 Estimation of the PDF

In Figure 4.4 (Left), we present the histogram estimation for the PDF of the velocity for
our actin system, with a higher value of kArp2/3 at 2000 s−1. We conducted the same
stochastic simulation a thousand times, resulting in a thousand different estimations of
the stationary velocity vs. Additionally, we fitted a Gaussian PDF to the data.
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Figure 4.4: (Left) Histogram and Gaussian fit for the PDF fθ(v). (Right) Effects of a shift of 2%
on kArp2/3 on the PDF with k0 2000 s−1.



4.2. Results 122

0.35 0.40 0.45

v in µm.s−1

0

5

10

15

20

25
f θ

(v
)

-5%

-2%

-1%

-0.5%

k0

+0.5%

+1%

+2%

+5%

1900 2000 2100
k

0.37

0.38

0.39

v 0
(k

)

v0(k) = 0.00014*k + 0.09878

Figure 4.5: (Left) Multiple Gaussian Fit of shifted PDF for various kArp2/3 modifications.
(Right) Mean value of the Gaussian as a function of the value of kArp2/3, with a linear fit. Small

black lines are the standard error of the mean (SDEM).

Consequently, the Gaussian hypothesis aligns well with the displayed data. When we
introduce a small variation in kArp2/3 by increasing its value by 2%, we observe a significant
shift in the mean of the PDF with minimal alteration to its variance, further reinforcing
our confidence in our primal hypothesis. We conducted similar simulations with shifts in
the range of [-5%, +5%] and fitted the resulting histograms with Gaussian PDFs. The
various Gaussian shapes are presented in Figure 4.5 (Left), and the corresponding mean
values as a function of kArp2/3 are shown on the right side of the figure. Consequently,
from this plot, it is straightforward to extract the slope, which corresponds to the first
partial derivative of the mean:

∂v0
∂k

≈ δv0
δk

(4.6)

Nonetheless, it is important to note that this technique demands a considerable number
of simulation points to obtain the mean of the Gaussian v0(k) for various values of k.
Despite this drawback, we chose to maintain the [-5%, +5%] interval around the central
parameter point as a reasonable variation range for estimating the first-order derivative.
In the subsequent section, we introduce our more computationally efficient method for
estimating mean and covariance.

4.2.2 Partial derivative and covariance estimation

We transitioned to a broader sampling approach by simulating the system for random
points within the [-5%, +5%] range. More precisely, we randomly selected one parameter
within the [-5%, +5%] range around its initial value while keeping the others constant (as
shown in Table 4.1.2) to calculate partial derivatives. For each parameter, we conducted
300 simulations, recorded the associated observable values (vs, Y, ρs, and σ), and fitted
the data using a linear model. Consequently, we obtained partial derivatives for all pairs of
observables and parameters. Figure 4.6 depicts scatter plots illustrating the relationship
between observables and variations in kArp2/3 (where kArp2/3 = kArp2/3/S). We performed
a series of bootstrap tests on the slope evaluations for each observable parameter couple, to
quantify the variance of the estimation. We based our analysis on 300 bootstrap samples.
The results are presented as a boxplot in Figure 4.7 for the kArp2/3 case.
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Now, we proceed with the calculation of the covariance matrix Σ to ultimately derive
gµν (Equation 4.5). Let us examine the covariance between an observable Xi and another
observable Xj (e.g., Y and vs). With N simulation points, we can obtain an unbiased
estimator for the term Σi,j in the covariance matrix Σ:

Σi,j =
1

N − 1

N∑
k=1

(Xi,k − µi)
(
Xj,k − µj

)
(4.7)

Here, Xi,k represents an output of the random variable Xi (e.g., one data point for vs),
and µi is the mean value of Xi. We applied this method to the five sets of simulations,
resulting in five covariance matrices. We then calculated the average of these covariance
matrices, we used this one as estimator for Σ. While this approach may neglect slight
variations induced by changes in parameters, we assume that covariance does not depend
on the parameters. In Figure 4.8, we plot the normalized distance between the averaged
covariance matrix Σ and the one associated to each observable Σu. This plot comforts us
in our mean covariance hypothesis. This quantity is written as:

d(Σ,Σu) =
||Σ−Σu||

||Σ|| (4.8)

With:

||Σ|| =

√√√√ n∑
i=1

n∑
j=1

(Σi,j)
2 (4.9)
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Figure 4.8: Normalized distance between the averaged covariance matrix Σ and the one
associated to each observable Σu.

Therefore, we have extracted partial derivatives and estimated covariance, for our FIM
computation. Data related to shifts and bootstrap tests in other parameters can be found
in Appendix B.2.3. With these preparations completed, we now move on to compute the
FIM, and in the next section, we will present the results and provide interpretations based
on eigen-analysis.
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4.2.3 Eigen-analysis

Firstly, we computed the FIM for individual observables, and as anticipated, we obtained
one-dimensional (1D) eigen-spaces. Figure 4.9 illustrates the eigenvalue rankings on a
logarithmic scale for each observable. In all cases, only one dominant direction emerges
in the phase space
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Figure 4.9: Ranking of the eigenvalues of the FIM computed for single observables. VValues have
been re-scaled by the highest eigenvalue.

Therefore, we expanded our analysis by computing the FIM for different combinations
of observables, merging two and three of them before computing the total FIM. Figure 4.10
displays the results of our eigenvalue rankings. In most cases, a single dominant direction
is followed by a rather distant one. It becomes evident that our system can primarily be
characterized by a single compressed parameter. Therefore, we assume that most of what
follows in this result can be interpreted as noise or less significant information.
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Figure 4.10: Ranking of the eigenvalues of the FIM computed for two (Left) and three (Right)
combined observables. The combination of all observables is designated as T. Values have been

re-scaled by the highest eigenvalue.
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However, as a second eigenvalue appears to emerge from the ground ensemble, we have
decided to take it into account in the following analysis. In Figure 4.11, we present the
normalized projection of individual observable eigenvectors ui onto the first and second
eigenvectors wλ1 and wλ2 . Projections are calculated using a simple scalar product between
the two vectors of interest. Consequently, individual sensitivity modes are mostly oriented
along the same direction, the main mode of the system. This observation further reinforces
the dominance of a single compressed parameter in characterizing the system’s behavior.
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Figure 4.11: (Left) Scaled scalar product between the first eigenvector of the system wλ1 and the
first eigenvector associated to a single a observable ui. (Right) Same plot for the second

eigenvector of the system wλ2
.

In Figure 4.12, we illustrate the decomposition of the two main eigenvectors, wλ1 and
wλ2 , in terms of the percentage contribution of our initial parameters. It appears that a
combination of r0 and κ plays a dominant role in determining the behavior of our system
in the phase space. In the next paragraph, we will aim to develop a simple analytical
model which confirms our one dimension space eigen-space.
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Figure 4.12: Decomposition in percentage of the initial parameters of the two main eigenvectors
wλ1 (Left) and wλ2 (Right).
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4.2.4 Analytical solution

During the growth phase, the balance of stresses leads to the following equation:

σ0S = γ0vS (4.10)

In addition as fs is infinite, the flux of actin is conserved which induces:

j = ρsvs (4.11)

Besides, j the density of flux of actin can be expressed as the volume of actin entering
the system per unit of time:

j =
πkArp2/3ℓ0r

2
0

S
(4.12)

Thus, by mixing (4.10), (4.11) and (4.12), we get:

σ0 =
πkArp2/3ℓ0r

2
0γ0

ρsS2
(4.13)

Moreover, we can add to this entanglement mechanical equations that predict the
scalings of ρs and Y, as discussed in the previous part in section 4:

ρs = b8/7κ−2/7σ
2/7
0

Y = b−4/7κ1/7σ
6/7
0

(4.14)

Thus, we finally obtain the following scaling for σ0:

σ0 ∼ (ℓ0kγ0)
7/9 r

6/9
0 κ2/9 (4.15)

Afterwards, it is, to an exception, possible to express the other observables as a function
of σ and of an other parameter α:

vs =
σ0
γ0

ρs =
α

σ0

Y =
σ
3/2
0√
α

(4.16)

With α defined as:

α = kr20ℓ0γ0 (4.17)

Thus, we have nearly assessed the inner dimensionnality of our system. However, it is
important to note that this particular setting of compressed parameters is just one among
many others, and it cannot be directly used to compare with the directions resulting from
the FIM analysis. Performing such a comparison would indeed require a more elaborate
analysis that we have not undertaken. We address this point in the discussion that follows.



Conclusion

Let us summarize what we have achieved. Within the scope of this study, we have in-
troduced a novel numerical implementation of PSC, a method designed to quantify the
inner dimension of complex multi-parameter models. Our application of this approach
was focused on a branched actin system. Notably, we aimed to push the boundaries of
previous analyses by concentrating on key statistical cumulants, namely mean and vari-
ance, as the primary variables of interest. This approach allowed us to circumvent the
need for a comprehensive examination of the entire PDF across parameter variations to
calculate the FIM. Thus, within this hypothesis we delved into the Gaussian approxima-
tion framework, emphasizing the importance of incorporating multiple observables in the
analysis to maximize the quantity of information captured. We made the critical assump-
tion that this hypothesis holds true, particularly when dealing with PDFs characterized
by low skewness. The eigen-analysis of the Gaussian FIM uncovered sensitivity modes
within the parameter space, with the primary modes associated with the most substantial
variations in the system’s behavior. Those main directions are associated to the inner di-
mensionnality of the system under investigation. We conducted this methodology on our
branched actin system finding an inner dimension of two, whose value was substantiated
by a simple analytic model.
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Discussion

We now turn our attention to the limits of our work and outline potential avenues for
future improvements and research.

Simulation setup and Gaussian FIM approach

Firstly, one could be tempted to increase the steric stiffness parameter, Ksteric, in our sim-
ulations. Doing so would reduce filament overlap, thereby increasing the reliability of our
results. While this would imply increase computational costs, the gains in result robust-
ness would be substantial. Secondly, the precision of our elastic modulus measurement
should be refined. A viable approach could involve conducting repeated small relaxation-
compression steps to yield an averaged value over multiple measurements, ensuring a linear
response and mitigating hysteresis effects. In addition, linking the model predictions to
the FIM results is something that remains to be studied notably by introducing more
complex propositions.

Moreover, we consider the incorporation of additional novel observables into our anal-
ysis. These observables could offer different types of information, potentially enriching our
understanding of the system. As previously discussed, the orientation order is one such
candidate, as explored in the Conclusion of the first part of our study. The question arises
as to how many observables are truly necessary to adequately characterize our system.
While one might argue for limiting observations to what is accessible in during experi-
ments, we think there is merit in exploring the full spectrum of possibilities. Determining
the optimal number of sufficient observables to provide high quality information promises
to be an intriguing area for future research.

Guidelines for the future

As we conclude our work, we propose some promising directions for further investigations
related to PSC. Beyond augmenting the number of observables and refining precision, we
contemplate introducing additional parameters to modulate the system’s behavior. For
example, assessing the impact of cross-linkers on the sensitivity modes could be a valuable
endeavor. Previous research has indicated that while crosslinkers affect network stiffness,
they do not qualitatively alter the stress-stiffening curve, suggesting a minor influence on
the compressed space [87]. However, this idea would necessitate a comparison of manifolds
embedded in parameter spaces of varying dimensions. Additionally, exploring the predic-
tive capacity of a manifold built on compressed parameters, particularly in scenarios with
a reduced dimensionality (e.g., 2 dimensions in a 5-dimensional parameter space for our
case) is of particular interest at short time.

In a broader context, such research could provide valuable insights for theoreticians
seeking to construct minimalist yet potent models, particularly when addressing systems
with numerous potential mechanisms [135].
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Appendix A

The stress adaptation of growing branched actin net-
works

A.1 Force generation model

A.1.1 Cytosim simulation parameters

Here we will review the main elements of the configuration file that setup the parameters
of a simulation. kBT = 0.0042 pN.µm accounts for T ≃ 304 K. The viscosity η is set to
0.1 Pa.s, which is in accordance with most experimental measures: the viscosity of the
cytoplasm being a few hundred times the viscosity of water (ηwater ≈ 0.001 Pa.s) [69].
The time step is set to 0.0005 s.

max displacement of the AFM is 0.002 per time step, which means a maximum dis-
placement of 4 µm per second, a velocity that had never been reached in our study.

The bending rigidity of actin κ is set to 0.04 pN.µm, which means a persistence length
ℓp ≃ 9.52 µm, in accordance with literature [17]. The segmentation ds is 0.03 µm, which
means 10 points by fibers when they reach their maximum length.

Arp2/3 stiffness of the link was arbitrarily set to 0.5 pN.rad−1.

For this simulation example, considering the number of frame nb frames, the number of
steps nb steps and the time step, we obtain the frame step τ = 0.1 s.

set simul system

{

dim = 3

kT = 0.0042

time_step = 0.0005

steric = 1, 5000,

viscosity = 0.1

display = ( point_value=0.01; style=3; back_color=white;

window_size=1920,1080; zoom=0.5; rotation= 0.81 -0.59 0 0;)

}

set space core

{

shape = afm

viscosity = 0.1
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stiff_piston = 0

leq_piston = 0.1

display = (color = 0x0000FF88; visible=1)

}

new core

{

radius = 0.5

top = 0.1

bottom = 0

max_displacement = 0.002

aimed_force = 700

attenuation = 1

}

set space base

{

shape = cylinderZ

display = ( color=0x0000FF44; visible=1 )

}

new base

{

radius = 0.5

top = 0.005

bottom = 0

}

set fiber actin

{

rigidity = 0.04

drag_radius = 0.005

segmentation = 0.03

confine = inside, 1000, core

lattice = 1, 0.00275

activity = grow

growing_speed = 1

growing_off_speed = -0.1

growing_force = 17.433288221999874

min_length = 0

max_length = 0.3

persistent = 1

display = (style = line; line_width = 1; color=red, dark_red)

steric = 1, 0.005

}

new 1 actin

{

length = 0.01

position = 0 0 0

orientation = 1 1 0
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}

new 1 actin

{

length = 0.01

position = 0.25 0.25 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = 0.25 -0.25 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = -0.25 -0.25 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = -0.25 0.25 0

orientation = 1 1 0

}

set hand activator

{

binding = 1000, 0.01

unbinding = 0, inf

display = (size=3; width=1; color=red, dark_red; visible=1;)

}

set hand nucleator

{

unbinding = 0, inf

activity = nucleate

nucleate = 1000, actin, (length=0.0055;)

display = (size=3; width=1; color=green; visible=1;)

}

set couple arp23

{

hand1 = activator

hand2 = nucleator

diffusion = 1

stiffness = 100
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activity = fork

torque = 0.5, 1.23

trans_activated = 1

confine = surface,, base

}

run system

{

nb_steps = 10000

nb_frames = 50

event = 500 , (new 1 couple arp23 (disc 0.1 at 0 0 0.001))

}

A.1.2 AFM parameters and confinement stiffness

The first part of the following piece of code computes the total force applied by counting
the difference in position between the point considered and the current position of the tip:
(pos.ZZ - T). When this difference is positive it is multiplied by Kconfine (stiff here)
and added to the force .

The second part computes the next position of the tip top by comparing the target
force aimed force and the previously measured one force . top cannot be greater than
max displ and less than leq piston.

void SpaceForcePiston::setInteraction(Vector const& pos, Mecapoint const& pe,

Meca & meca, real stiff, const real rad, const real B, const real T) const

{

#if ( DIM >= 3 )

SpaceCylinderZ::setInteraction(pos, pe, meca, stiff, rad, B, T);

if ( pos.ZZ > T )

{

force_ += stiff * ( pos.ZZ - T);

df_dx_ -= stiff;

}

#endif

}

//---------------------------------------------------------------------------

/// Update cylinder height

//---------------------------------------------------------------------------

void SpaceForcePiston::step()

{

if (std::abs(df_dx_)>0 & std::abs(force_)>0) {

real dx = (aimed_force_-force_)/(attenuation_*df_dx_);

if (std::abs(dx)>max_displ_) {

dx = dx * max_displ_ /std::abs(dx);

}

top_ += dx;

if (top_< prop->leq_piston ) { top_ = prop->leq_piston ;}
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}

last_force = force_;

df_dx_ = 0;

reset_force();

}

The following plot Figure A.1 accounts for the effect of Kconfine on the velocity of the
system for three different stress values at infinite stall force. We conclude from this graph
that for Kconfine in the range [50, 2000] Pa the behavior is rather similar, although more
stable for smaller values.
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Figure A.1: Height h(t) as a function of time t for various confinement stiffness parameters
Kconfine under three stress σ0: 1273 Pa (Right), 636 Pa (Center) and 64 (Right). fs = inf pN,

Ksteric = 5000 pN.µm-1.

Previous plots had been done with an attenuation parameter of 1, we show in Figure A.2
that it does not have an impact on the velocity.
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A.1.3 Activation of Arp2/3

Arp2/3 is quickly activated in our system turning from a Free-Free (FF) state to and
Activated-Activated (AA) state. The set up of a steady state takes approximately 1s,
to setup the steady-state, see Figure A.3. Indeed at the beginning there are not enough
fibers to bind to nucleators. On Figure A.3 (Right) we see that time to reach the plateau
slightly depend on σ0. With higher stress we reduce the transition time, as the network
gets denser and we have more accessible fibers to nucleate on.
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Figure A.3: (Left) Mean fraction of Arp2/3 AA (Activated-Activated) and FF (Free-Free) with
respect to time, shaded part are standard deviation bounds. (Right) Detail on the AA curve for

different stress values.

A.2 Infinite stall force

A.2.1 Estimation of velocity and density

In order to extract velocity from our position data we used a simple gradient method com-
bined with a Savitzky-Golay filter. Basically, we define n fitting intervals each centered
on a data point (x0, y0) (whenever it is possible) whose width is 2ℓ + 1. We also consider
a polynomial of degree d, Pd with d < 2ℓ + 1. For each interval we do a regression and
minimize the mean squared error to obtain the best fitting polynomial function P ∗

d . Then
we defined the smoothed value y∗ = P ∗

d (x0). This technique has the advantage of being
less abrupt than a simple rolling average.

In Figure A.4 (Left) we plot the smoothed velocity for various σ0 with parameters p =
3 and l = 20. Brown dotted lines delimit the fitting region to estimate the stationary
velocity. For small σ0 we can observe the slow down of the system which forces us to
average for small time interval to neglect drag-induced effects. To estimate the stationary
density we simply compute the average over the last frames, see Figure A.4 (Right).
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Figure A.4: (Left) Instantaneous velocity fitted with a Savitzky-Golay filter as a function of time
for different stress σ0, with fs = inf pN. Brown dotted lines delimit the fitting region, between 5s
and 7s. (Right) Brown dotted lines delimit the fitting region for the estimation of the stationary

density, between 14s and 15s.

To establish the consistency of our measurements we performed a Bootstrap test on the
velocity slope ηvs and on the density slope ηds . We sampled without replacement on the
original fitting ensemble and obtained Nsamples = 300 bootstrap ensembles and conducted
the same power law fitting for each. We represent the obtained box plots on Figure A.5,
for our infinite stall force simulations. Our original measurement (red cross) overlaps with
the bootstrap mean (orange line).
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Figure A.5: Bootstrap test on the exponent for velocity ηvs on (Left) and ηds on (Right). The
test has been done for Nsample = 300 times. For each figure, the red cross is the original value

while the orange line represents the bootstrap mean.
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A.2.2 Flux of actin

From Figure A.6 (Left), we see that the volume of actin doesn’t depend on the applied
stress for infinite stall force fibers. From the (Right) one we conclude that the mean length
of fibers ⟨ℓ(t)⟩ reaches a value near its maximum possible one independently of the stress
σ0.
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Figure A.6: Total volume of actin Vactin(t) on (Left) and mean length of fibers ⟨ℓ(t)⟩ (Right) as a
function of time for different stress σ0, with fs = inf pN.

A.2.3 Energy

Fibers energy
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Figure A.7: (Left) Fibers bending energy as a function of time t for various stress σ0 in Pa.
(Right) Fibers bending energy per fiber length, with fs = inf pN.

Directly from data we obtain the stored elastic energy though the bending rigidity of
fibers. We represent on Figure A.13 (Left) the overall elastic energy as a function of
time. Notably, we see on the (Right) Figure that the energy per unit of length increases
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significantly with increasing σ0, which accounts for enhanced flexion. Bending of fibers as
well as entanglement might be the main source of the overall network elasticity.

Arp2/3 energy
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Figure A.8: (Left) Arp2/3 elastic energy as a function of time t for various stress σ0 in Pa.
(Right) Arp2/3 elastic energy per Arp2/3, with fs = inf pN.

As Arp2/3 couples exhibit a finite rigidity between hands, it is possible to store elastic
energy in their deformation. Similarly, we obtain the overall energy stored Figure A.8
(Left) as well as the energy per Arp2/3 which reaches an almost stationary state (Right).

A.3 Finite stall force

A.3.1 Velocity and density
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Figure A.9: Height h(t) (Left) and density d(t) (Right) of the network as a function of time t for
various stress σ0 with fs = 3.87 pN.



A.3. Finite stall force 140

0 500 1000 1500
σ0 in Pa

0.050

0.075

0.100

0.125

0.150

0.175

0.200

v
in
µ
m
.s
−

1

101 102 103

σ0 in Pa - log

10−1

6× 10−2

2× 10−1

v
in
µ
m
.s
−

1
-

lo
g

ηvs = -0.42

σt = 100 Pa

Figure A.10: Near-stationary velocity for various stress in normal (Left) and log-log scales
(Right), with fs = 3.87 pN. We see a power-law behavior for high stress after a constant value

phase that ends around 100 Pa (yellow dotted line). The fit for the power-law scaling is
represented in the log-log plot.
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Figure A.11: Near-stationary density for various stress in normal (Left) and log-log scales
(Right), with fs = 3.87 pN. We see a power-law behavior for high stress after a constant value

phase that ends around 100 Pa (yellow dotted line). The fit for the power-law scaling is
represented in the log-log plot.

For finite stall force simulations, fs = 3.87 pN, we obtain the same two phase behavior as
the infinite stall force one. The entanglement threshold is shifted to higher stresses. Also,
we see that the free growth (σ = 0 Pa) has a behavior close to the small σ0 networks.
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A.3.2 Flux of actin

Here, for high stress, we observe a decrease of the flux of actin at early times before
reaching the constant flux steady state, see Figure A.12. We observe the same delay for
the mean length with high decrease at the beginning, before reaching a stationary value.
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Figure A.12: Total volume of actin Vactin(t) on (Left) and mean length of fibers ⟨ℓ(t)⟩ (Right) as
a function of time for different stress σ0, with fs = 3.87 pN.

A.3.3 Energy

In the same way as before with infinite stall force fibers, we obtain an increase of the
stored elastic energy as well as the Arp2/3 energy with increasing σ0. Notably, free
growing networks exhibit a non-vanishing elastic energy, which accounts for entanglement
of the network.
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Figure A.13: Fibers bending energy as a function of time t for various stress σ0 in Pa on (Left).
Fibers bending energy per fiber length on (Right), with fs = 3.87 pN.
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Figure A.14: Arp2/3 elastic energy as a function of time t for various stress σ0 in Pa on (Left).
Arp2/3 elastic energy per Arp2/3 on (Right), with fs = 3.87 pN.
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Figure A.15: Velocity vs stall force for different stress values at the stall force transition.
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A.5 Free growth
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Appendix B

An example of parameter space compression on branched
actin

B.1 Quadratic form of the KL-divergence

Here we define the KL-divergence, and show how the Fisher information naturally appears
when dealing with close PDF.

DKL(P ||Q) =
∑
x

P (x) log

(
P (x

Q(x)

)
(B.1)

Thus,

DKL(Pθ||Pθ+δθ) =
∑
x

Pθ(x) log

(
Pθ(x)

Pθ+δθ(x)

)
=
∑
x

Pθ(x) log

(
Pθ(x)

Pθ(x) + δθµ∂θµPθ(x) + δθµδθν∂θµθνPθ(x) +O(δθ3)

)
= −

∑
x

Pθ(x) log

(
1 +

δθµ∂θµPθ(x) + δθµδθν∂θµθνPθ(x) +O(δθ3)

Pθ(x)

)
(B.2)

Then, as Pθ(x) is defined upon the maximum likelihood estimator:

∂θµPθ(x) = 0 (B.3)

Then,

DKL(Pθ||Pθ+δθ) = −
∑
x

Pθ(x) log

(
1 +

δθµδθν∂θµθνPθ(x) +O(δθ3)

Pθ(x)

)
= −

∑
x

δθµδθν∂θµθνPθ(x) +O(δθ3)

= −δθµδθν
∑
x

∂θµθνPθ(x) +O(δθ3)

= gµνδθ
µδθν +O(δθ3)

(B.4)

But we have:

144
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∂θµθν logPθ(x) = ∂θµ

(
∂θνPθ(x)

Pθ(x)

)
=
Pθ(x)∂θµθνPθ(x)− ∂θµPθ(x)∂θνPθ(x)

Pθ(x)2

=
∂θµθνPθ(x)

Pθ(x)

(B.5)

Which means:

∂θµθνPθ(x) = Pθ(x)∂θµθν logPθ(x) (B.6)

Hence, the KL-divergence becomes:

DKL(Pθ||Pθ+δθ) = −δθµδθν
∑
x

Pθ(x)∂θµθν logPθ(x) +O(δθ3)

= −δθµδθν
〈
∂θµθν logPθ(x)

〉
+O(δθ3)

(B.7)

Finally, we obtain:

DKL(Pθ||Pθ+δθ) = −δθµδθνgµν +O(δθ3) (B.8)
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B.2 Results

B.2.1 Example of a configuration file

set simul system

{

dim = 3

kT = 0.0042

time_step = 0.0005

steric = 1, 5000,

viscosity = 0.1

display = ( point_value=0.01; style=3; back_color=white;

window_size=1920,1080; zoom=0.5; rotation= 0.81 -0.59 0 0;)

}

set space core

{

shape = piston

viscosity = 5000

stiff_piston = 0

leq_piston = 0.5

display = (color = 0x0000FF88; visible=1)

}

new core

{

radius = 0.5

top = 0.1

bottom = 0

}

set space base

{

shape = cylinderZ

display = ( color=0x0000FF44; visible=1 )

}

new base

{

radius = 0.5

top = 0.005

bottom = 0

}

set fiber actin

{

rigidity = 0.04

drag_radius = 0.005

segmentation = 0.01

confine = inside, 100, core

lattice = 1, 0.00275

activity = grow
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growing_speed = 1

growing_off_speed = 0

growing_force = inf

min_length = 0.01

max_length = 0.3

persistent = 1

}

new 1 actin

{

length = 0.01

position = 0 0 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = 0.25 0.25 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = 0.25 -0.25 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = -0.25 -0.25 0

orientation = 1 1 0

}

new 1 actin

{

length = 0.01

position = -0.25 0.25 0

orientation = 1 1 0

}

set hand activator

{

binding = 1000, 0.01

unbinding = 0, inf

display = (size=3; width=1; color=red, dark_red; visible=1;)
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}

set hand nucleator

{

unbinding = 0, inf

activity = nucleate

nucleate = 1000, actin, (length=0.0055;)

display = (size=3; width=1; color=green; visible=1;)

}

set couple arp23

{

hand1 = activator

hand2 = nucleator

diffusion = 1

stiffness = 100

activity = fork

torque = 0.5, 1.23

trans_activated = 1

confine = surface,, base

}

new 1 arp23

run system

{

nb_steps = 7500

nb_frames = 75

event = 500 , (new 1 couple arp23 (disc 0.1 at 0 0 0.001))

}

change core {viscosity = infinity;}

run system

{

nb_steps = 5000

nb_frames = 50

}

change core {viscosity = 5000;}

run system

{

nb_steps = 2500

nb_frames = 25

}

change core {viscosity = infinity;}
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run system

{

nb_steps = 5000

nb_frames = 50

}

B.2.2 Drag of the network and stored elastic energy
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Figure B.1: (Left) Drag of the network Γ(t) in pN.s.µm-1 and elastic energy E(t) in pN.µm
(Right) as a function of time. The thick line is the mean value obtained over 300 simulations

with small kArp2/3 variation. The shaded area delimits the standard deviation.
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B.2.3 Local slopes of the observables and bootstrap test
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Figure B.2: Scatters plots of observables values as a function of κ in pN.µ2. The thick line is
obtained through a local linear fit which provides the slope.
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Drag - γ0
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Figure B.4: Scatters plots of observables values as a function of γ0/S in pN.s.µm-3. The thick
line is obtained through a local linear fit which provides the slope.
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Y

−100000

−75000

−50000

−25000

0

25000

50000

vs

−1.5

−1.0

−0.5

0.0

0.5

ρs
88

90

92

94

σ
−15000

−10000

−5000

0

5000

Figure B.7: Bootstrap test on the different slopes estimation for the r0 parameter. The red dot is
the original value.



153 B.2. Results

Fiber length - ℓ0

0.29 0.30 0.31

1000

1200

Y in Pa

-2.83E+01

0.29 0.30 0.31

0.0575

0.0600

0.0625

0.0650

vs in µm.s−1

7.87E-02

0.29 0.30 0.31

0.22

0.23

0.24

ρs

5.48E-01

0.29 0.30 0.31

480

500

520

σ0 in pN.µm−2

6.38E+02

Figure B.8: Scatters plots of observables values as a function of ℓ0 in µm. The thick line is
obtained through a local linear fit which provides the slope.
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