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(ISEP)

Artificial Neural Network (ANN)
design using Compute-in-Memory

By

Tatiana Moposita

Headed by Lionel Trojman, Felice Crupi

Presented on December, 2023



ARTIFICIAL NEURAL NETWORK (ANN) DESIGN USING
COMPUTE-IN-MEMORY

Thesis committee:

Prof. Lionel Trojman
Institut supérieur d’électronique de Paris
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Università della Calabria
Director

Prof. Marco Lanuzza
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Abstract

Nowadays, the era of ”More than Moore” has arisen as a significant influence in

light of the limitations anticipated by Moore’s law. The computing systems are

exploring alternative technologies to sustain and enhance performance

improvements. The idea of alternative innovative technologies has emerged in

solving challenges to overcome the development of electronic systems inspired by

biological neural networks, commonly referred to as Artificial Neural Networks

(ANN).

An ANN is based on interconnected units (nodes or neurons) which contains the

synapses in order to transmit and process the information to other neurons.

Accordingly ANN are able to determine patters and make predictions base on the

input data. Therefore, ANNs are considered computational models designed to

process information, recognize patterns, and make decisions with the goal of

replicate the human brain functionality. However, as ANNs become larger and more

complex, processing them with traditional Von Neumann computing systems is

limited by the need to shuttle massive amounts of data between processing and

memory units resulting in significant cost in latency and power consumption.

Hence, hardware solutions have been developed to mitigate this bottleneck and

improve the efficiency of ANNs. Different design solutions can be utilized to build

these hardware ANNs, ranging from traditional digital circuits to the development

of new approaches such as Compute-in-Memory (CIM) and Neuro-Inspired

neuromorphic computing , which seek to improve the speed and efficiency of ANN

computation.

In this context, memory technologies and their integration with computing

elements in hardware implementations of ANNs have recently achieved significant



impact. Therefore, the use of emerging non-volatile memory (eNVM) technologies

(i.e., resistive memory, magnetic memory, and memristors) are being explored as

promising alternatives. These technologies offer several advantages over traditional

CMOS technology, such as increased speed, higher densities, and lower power

consumption. As a result, CIM employs eNVMs to perform computation within the

memory itself, hence increasing memory capacity and processing speed.

The objective of this thesis focuses on the research of Artificial Neural Networks

design using Compute in Memory, by employing efficient hardware solutions for

ANNs at both circuit- and architecture-level. Recent research work in this context

has proposed very efficient circuit designs to optimize the enormous computational

needs required by data processing by ANNs.

To explore the capabilities of an ANN at the output node, the design of

activation function (AF) are proposed. An AF is utilized within ANN to introduce

nonlinearity into the output of a neuron. The selection of an AF is significant as it

determines the power and capabilities of the neural network. The accuracy of

predictions is primarily dependent on this choice. To assess the effectiveness of an

activation function designed for analog implementation, the sigmoid and the

softmax activation function are proposed.

Besides, this project explores the integration of emerging memory devices like

Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) with

CMOS technology. This combined approach aims to leverage the intrinsic

capability of in-memory computing offered by these devices. STT-MRAMs based

on state-of-the-art perpendicular magnetic tunneling junction (MTJ) and FinFETs

has been considered for this study.

Single-barrier magnetic tunnel junction (SMTJ) and double-barrier magnetic

tunnel junction (DMTJ) devices are considered to evaluate the impact of

STT-MRAM cell based on DMTJ against the conventional SMTJ counterpart on the
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performance of a two-layer multilayer perceptron (MLP) neural network. The

considered MLP is a fully connected neural network where the standard MNIST

benchmark handwritten dataset is used. The assessment is carried out through a

customized simulation framework from device and bitcell levels to memory

architecture and algorithm levels. The SMTJ- and DMTJ-based 2-layer MLP neural

network performance is evaluated in terms of learning accuracy versus latency and

energy consumption, calculated at the run-time.

Moreover, to improve the energy-efficiency of a Logic-in-Memory (LIM)

architecture based on STT-MTJ devices, a new architecture (SIMPLY+) from the

Smart Material Implication (SIMPLY) logic and perpendicular MTJ based

STT-MRAM technologies was developed. The SIMPLY+ scheme is a promising

solution for the development of energy-efficient and reliable in-memory computing

architectures. The proposed architecture is benchmarked against its conventional

counterpart. Overall, the results prove that the SIMPLY+ scheme is an outstanding

solution for the development of energy-efficient and reliable in-memory computing

architectures.

All circuit solutions are evaluated using commercial circuit simulators (e.g.

Cadence Virtuoso). Circuit design activity involving emerging memory devices also

required the use and calibration of Verilog-A based compact models to integrate the

behavior of such devices into the circuit design tool. The solutions presented in this

thesis involve techniques that offer significant advancements for future applications.

From a design perspective, the integration of logic modules with STT-MRAM

memory is highly feasible due to the seamless compatibility between STT-MRAMs

and CMOS circuits. This approach not only proves advantageous for standard

CMOS technology but also leverages the potential of emerging technologies.
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Résumé

De nos jours, l’ère du ”More than Moore” se profile comme une influence

significative à la lumière des limitations anticipées par la loi de Moore. Les

systèmes informatiques explorent des technologies alternatives pour maintenir et

améliorer les performances. L’idée de technologies innovantes alternatives a émergé

pour résoudre les défis liés au développement de systèmes électroniques inspirés par

les réseaux neuronaux biologiques, communément appelés Réseau Neurones

Artificiels (ANN).

Un ANN est basé sur des unités interconnectées (noeuds ou neurones) qui

contiennent les synapses afin de transmettre et traiter l’information vers d’autres

neurones. Ainsi, les ANN sont capables de déterminer des modèles et de faire des

prédictions basées sur les données en entrée. Par conséquent, les ANN sont

considérés comme des modèles computationnels conçus pour traiter l’information,

reconnaı̂tre des modèles et prendre des décisions dans le but de reproduire la

fonctionnalité du cerveau humain. Cependant, à mesure que les ANN deviennent

plus grands et plus complexes, les traiter avec des systèmes informatiques

traditionnels de type Von Neumann est limité par la nécessité de faire circuler

d’énormes quantités de données entre les unités de traitement et de mémoire,

entraı̂nant des coûts importants en termes de latence et de consommation d’énergie.

Par conséquent, des solutions matérielles ont été développées pour atténuer ce

goulot d’étranglement et améliorer l’efficacité des ANN. Différentes solutions de

conception peuvent être utilisées pour construire ces ANN matériels, allant des
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circuits numériques traditionnels au développement de nouvelles approches telles

que le Compute-in-Memory (CIM) et Neuro-Inspired neuromorphic computing, qui

visent à améliorer la vitesse et l’efficacité du calcul des ANN.

Dans ce contexte, les technologies de mémoire et leur intégration avec les

éléments de calcul dans les implémentations matérielles des ANN ont récemment eu

un impact significatif. Ainsi, l’utilisation de technologies émergentes de mémoire

non volatile (comme les mémoires résistives, magnétiques et les memristors) est

explorée comme des alternatives prometteuses. Ces technologies offrent plusieurs

avantages par rapport à la technologie CMOS traditionnelle, tels qu’une vitesse

accrue, des densités plus élevées et une consommation d’énergie moindre. Par

conséquent, le CIM utilise des eNVM pour effectuer le calcul directement dans la

mémoire, augmentant ainsi la capacité de la mémoire et la vitesse de traitement.

L’objectif de cette thèse se concentre sur la recherche de la conception de Réseau

Neurones Artificiels en utilisant le Compute-in-Memory, en employant des solutions

matérielles efficaces pour les ANN à la fois au niveau du circuit et de l’architecture.

Des travaux de recherche récents dans ce contexte ont proposé des conceptions de

circuits très efficaces pour optimiser les besoins de calcul énormes requis pour le

traitement des données par les ANN.

Pour explorer les capacités d’un ANN au niveau de la sortie, la conception de la

fonction d’activation (AF) est proposée. Une AF est utilisée dans les ANN pour

introduire de la non-linéarité dans la sortie d’un neurone. Le choix d’une AF est

significatif car il détermine la puissance et les capacités du réseau neuronal.
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L’exactitude des prédictions dépend principalement de ce choix. Pour évaluer

l’efficacité d’une fonction d’activation conçue pour une implémentation analogique,

les fonctions d’activation sigmoı̈de et softmax sont proposées.

En outre, ce projet explore l’intégration de dispositifs mémoires émergents

comme la Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM)

avec la technologie CMOS. Cette approche combinée vise à exploiter la capacité

intrinsèque de calcul en mémoire offerte par ces dispositifs. Les STT-MRAM

basées sur la technologie de pointe des perpendicular magnetic tunneling junction

(MTJ) et les transistors FinFET ont été pris en considération pour cette étude.

Single-barrier magnetic tunnel junction (SMTJ) et double-barrier magnetic

tunnel junction (DMTJ) sont considérés pour évaluer l’impact des cellules

STT-MRAM basées sur DMTJ par rapport à leur homologue conventionnel SMTJ

sur les performances d’un réseau neuronal à multilayer perceptron (MLP) à deux

couches. Le MLP considéré est un réseau neuronal entièrement connecté où

l’ensemble de données standard MNIST de chiffres manuscrits est utilisé.

L’évaluation est réalisée grâce à un cadre de simulation personnalisé, de niveaux de

dispositif et de cellule binaire à niveaux d’architecture de mémoire et d’algorithme.

Les performances des réseau neurones MLP à 2 couches basés sur SMTJ et DMTJ

sont évaluées en termes de précision d’apprentissage par rapport à la latence et à la

consommation d’énergie.

De plus, pour améliorer l’efficacité énergétique d’une architecture

Logic-in-Memory (LIM) basée sur les dispositifs STT-MTJ, une nouvelle
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architecture (SIMPLY+) issue de la logique Smart Material Implication (SIMPLY)

et des technologies STT-MRAM basées sur les MTJ perpendiculaires a été

développée. Le schéma SIMPLY+ représente une solution prometteuse pour le

développement d’architectures de calcul en mémoire économes en énergie et fiables.

L’architecture proposée est comparée à sa contrepartie conventionnelle.

Dans l’ensemble, les résultats prouvent que le schéma SIMPLY+ constitue une

solution exceptionnelle pour le développement d’architectures de calcul en mémoire

économes en énergie et fiables.

Toutes les solutions de circuit sont évaluées à l’aide de simulateurs de circuits

commerciaux (par exemple, Cadence Virtuoso). L’activité de conception de circuits

impliquant des dispositifs mémoires émergents a également nécessité l’utilisation et

l’étalonnage de modèles compacts basés sur Verilog-A pour intégrer le comportement

de ces dispositifs dans l’outil de conception de circuits. Les solutions présentées

dans cette thèse impliquent des techniques qui offrent des avancées significatives

pour les applications futures. D’un point de vue de la conception, l’intégration de

modules logiques avec la mémoire STT-MRAM est parfaitement réalisable en raison

de la compatibilité sans faille entre les STT-MRAM et les circuits CMOS. Cette

approche est non seulement avantageuse pour la technologie CMOS standard, mais

elle exploite également le potentiel des technologies émergentes.
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CHAPTER 1

INTRODUCTION

Today’s computing architectures and device technologies face challenges in meeting

the growing demands on low-power capabilities and high-performance. Therefore,

alternative architectures leverages the novel post-CMOS device technologies to

provide a promising solution to overcome these limitations. The eNVM

technologies such as magnetoresistive random access memory (MRAM), resistive

random access memory (RRAM), phase change memory (PCM), and ferroelectric

field-effect transistor (FeFET) could greatly benefit the exploration of alternative

computing architectures.

These technologies offer several advantages over traditional CMOS technology,

such as increased speed, higher densities, and lower power consumption. The

research in the area of memory technologies has focused on exploring new materials

and device architectures that can offer improved performance, energy efficiency, and

reliability.

Computation-In-Memory architectures based on eNVM technologies, perform

computation within the memory units, reducing data transfer and hence, energy

consumption. It stands out as potential alternatives capable of satisfying the

compute and memory requirements of high-performance applications. CIM

introduces a groundbreaking computing paradigm with the goal of addressing the

long-standing difficulty faced by the memory bottleneck in traditional Von

Neumann architectures. This paradigm change has the potential to transform the

way we approach computing tasks, allowing us to achieve new levels of efficiency
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and performance.

In neuromorphic computing eNVM technologies are employed for synaptic

weight storage, which are crucial for neural network operations and accelerating

machine learning tasks. By utilizing eNVM technologies, neuromorphic computing

systems can efficiently store and manipulate these synaptic weights, enabling

efficient and parallel computation.

As eNVM technology has undergone substantial evolution, the potential for its

applications in neuromorphic computing and compute-in-memory is expanding,

paving the way for next-generation computing architectures.

The objective of this thesis is research on Artificial Neural Networks design

using Compute in Memory, by employing efficient hardware solutions for ANNs at

both circuit- and architecture-level. Due to the increasing interest in developing new

memory technologies, this project studies not only the capabilities about classical

models and computational algorithms based on neural networks but also the

integration of emerging memory devices such as STT-MRAM with CMOS

technology to exploit their intrinsic capability of in-memory computing.

In the following, we propose a detailed overview of compute in memory

technologies, describing the promising nonvolatile memory candidates in the

Beyond CMOS paradigm followed by a discussion on the potential of

STT-MRAMs, highlighting the benefits and applications. Section section 1.2

provides the purpose of the thesis research and the main contributions to the thesis

objectives.
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1.1 Overview on Compute in memory technologies and challenges for Neural

Networks

In this section, we present a comprehensive overview of the current and emerging

memory technologies that enable performing deep learning computations directly

within the memory units. Furthermore, we provide a detailed comparison of these

memory technologies, allowing us to gain valuable insights into the future prospects

of memory development. We specifically emphasize the significance of STT-MRAM

in this context.

1.1.1 Review of Deep Learning

Artificial Intelligence is a broad term for a programming methodology and techniques

that aims to enable computers to perform tasks that mimic human intelligence. One of

the primary goals of the field of AI is to produce fully autonomous agents that interact

with their environments to learn optimal behaviors, improving over time through trial

and error[6].

ML is a subset of AI that focuses on enabling machines to learn from data and

make predictions or decisions without being explicitly programmed to perform the

specific task. ML uses a variety of algorithms and techniques to train models. Then,

deep learning (DL) is a specialized form of ML that involves the use of artificial

neural networks, also referred to as deep neural networks (DNN). In short, DL is a

specific technique within the broader field of ML. The relationship of deep learning

and machine learning to the whole of artificial intelligence is illustrated in Figure 1.1.

In essence, deep learning employs a cascade of multiple layers of nonlinear

processing units for analyzing and extracting features and patterns from large and

complex datasets, making it particularly effective in tasks like image and speech

recognition [7].
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ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

Deep Neural NetworkInput Output

Model

Figure 1.1: Relationship between Artificial Intelligence, Machine Learning and Deep
Learning.

The field of deep learning is constantly evolving and there is a still lot of scope

for digging deep into.

The popularity of deep learning nowadays can be attributed to several key

advancements in the fields of machine learning, signal processing, and the

substantial improvement in processing capabilities of computer chips, particularly

those equipped with Graphics Processing Units (GPUs) [8]. They are currently

widely used for many AI applications, including computer vision, speech

recognition, and robotics, and are often delivering better than human accuracy.

DNNs can offer outstanding accuracy at the cost of high computational complexity.

Therefore, to expand the deployment of DNNs in both existing and new domains,

strategies that enable efficient processing of DNNs to improve energy efficiency and

throughput without sacrificing accuracy with cost-effective hardware are significant

[9].

Today’s the grand challenge for deep learning acceleration is the frequent data

transfer between compute units and memory units [9]. CIM technologies have the

potential to perform any computational tasks within the memory units, reducing the
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need for data transfer between the memory and processing units, which can be a time-

consuming and energy-intensive operation. As well as alleviating the costs in latency

and energy associated with data transfer, CIM also has the potential to significantly

improve the computational time complexity associated with certain computational

tasks by minimizing data transfer overheads, enabling massive parallelism, handling

large datasets efficiently, and optimizing for data-intensive operations. [10].

The operation which takes the most part of DNN processing is vector-matrix

multiplication between the input vector and weight matrix, which essentially

performs multiply-and-accumulate (MAC) operation. To this end,

compute-in-memory is proposed as a promising paradigm since it emerges

computation directly into memory sub-arrays [11]. As schematically illustrated in

Figure 1.2.

Figure 1.2: Compute-in-memory framework, the computational tasks are performed
within the confines of the memory array. Static Random Access Memory (SRAM),
Resistive Random Access Memory (RRAM), Phase-change Memory (PCM) and
Magnetic Random-Access Memory (MRAM) technologies, can serve as elements
of such a computational memory unit.

The weights of a DNN model could be represented as the conductance of memory

cells in sub-array, while the input vector is supplied in parallel as voltage to the rows,

then the multiplication is performed in analog way (i.e. input voltage multiplied by
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weight conductance), and current summation along columns is used to generate the

output vector. Here we use a black-box to conceptually represent the memory cell

that could have multilevel states (for multi-bit weight), but actual implementation is

often done with a series transistor to form a 1-transistor-1-resistor (1T1R) structure

[11]. The block diagram of the memory array is shown in Figure 1.3. .
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Figure 1.3: Compute-in-memory paradigm, crossbar nature of memory sub-array
with perpendicular input rows and output columns.

To implement CIM, mature SRAM technologies (possibly with modified bit cell)

have been proposed [12–16]. Even though SRAM is a fast and efficient memory

technology, it has the drawback of being inherently volatile. This means that the

data stored in SRAM is lost when the power supply is turned off. Besides that,

it consumes significant standby leakage power, especially for the dynamic power

gating often used in the edge devices[11].

With this perspective, eNVM are well-suited for use in memory applications.

eNVM technologies [17–20] outstanding features involves non-volatility (save data

even when power is turned off), energy efficiency (less power consumption compared
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to MOSFET devices), high density (design at much smaller scales than traditional

memory technologies) and high read/write speeds [21, 22]. Further, eNVM are more

appropriate for the area/power constraint platforms, as they could be turned on and off

instantly without losing the stored weights [11]. Therefore the increasing interest in

exploiting eNVMs consider RRAM [23–25], phase change memory (PCM) [26–28],

STT-MRAM [29–31], and ferroelectric field-effect transistor (FeFET) [32–34].

One of the promising candidates over the eNVM is STT-MRAM because of its

fast read/write operation, very low standby power and high endurance. Furthermore,

data is stored as a resistance value which is a function of the magnetization angle of

the MTJ. Due to the limited resistance difference between the distinct resistance

states of MTJ, multi-bit storage in STT-MRAM cells is difficult to achieve. As a

consequence, the majority of STT-MRAM-based in-memory processing systems

concentrate on bit-wise operations (i.e., operate individual bits within a binary

representation of data) [21].

1.1.2 Review of Emerging Non-Volatile memory technologies

In recent years, eNVMs have emerged as promising candidates for future trends,

thanks to their excellent scaling, high density, energy-efficient analog computing

capabilities, and near-zero leakage power[21, 35]. Table 1.1 provides a comparison

between traditional SRAM, and popular eNVM STT-MRAM, PCM and RRAM.

Among these eNVM technologies, STT-MRAM stands out for its exceptional

access speed and minimal energy consumption. However, it is worth noting that

STT-MRAM requires a relatively larger cell area [36–38]. Nevertheless, the cell

area required for STT-MRAM is significantly lower when compared to SRAM.

Both PCMs and RRAMs have demonstrated the ability to store multiple logic bits in

a single memory cell, showcasing superior density as technology scaling progresses

[39–41].
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Moreover, a qualitative comparison of STT-MRAM, RRAM, and PCM

technologies is presented in Table 1.2, considering metrics such as scalability,

speed, power, and reliability for evaluating the performance of memory devices.

Table 1.1: EMERGING NON-VOLATILE MEMORY COMPARISON WITH SRAM [42,
43]

SRAM STT-RAM RRAM PCM
Non-volatility No Yes Yes Yes
Cell size (F 2) 120-200 6-50 4-10 4-19

Multibit 1 1 > 2 2-7
Write Endurance 1016 1012-1015 108-1011 108-109

Read Latency ∼0.2-2 ns 2-35 ns ∼10 ns 20-60 ns
Write Latency ∼0.2-2 ns 3-50 ns ∼50 ns 20-150 ns

Table 1.2: KEY METRICS FOR MEMORY PERFORMANCE ASSESSMENT

AND A QUALITATIVE COMPARISON OF STT-MRAM, PCM, AND RRAM
TECHNOLOGIES[44].

Memory performance metrics STT-MRAM RRAM PMC

Scalability

Size and proximity limit high high medium
MLC (multi-level cell) medium medium high
3D capability worst high high
Cell structure(1T1R, crossbar,...) medium high high

Speed Writing: switching mechanism high medium medium
Reading: on/off ratio, variability,
sensing scheme, array layout high high high

Power Writing: switching I/V medium high worst
Reading: sensing schemes high high high

Reliability
and Variability

Retention high medium high
Endurance high worst medium
Variability high worst medium

This comparison highlights the diverse strengths and characteristics of these

eNVM technologies, each offering unique advantages for specific applications such

as brain-inspired neuromorphic computing, hardware security, storage class

memory, electronic synapses, neuromorphic architectures, and the Internet of

Things (IoT).

Phase-Change Materials offer a range of useful properties, including high
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energy storage density, fast response time, and long-term stability of stored data,

making them valuable in applications such as data storage, energy storage, and

thermal management, making them ideal candidates for crossbars [45]. PCMs have

the ability to absorb, store, and release large amounts of latent heat during phase

transitions between solid and liquid states or between solid and amorphous states.

PCMs can be switched from one state to the other by heat, by applying a series of

low- and highamplitude voltage pulses [35]. The relative volumes of the switching

domain (amorphous/crystalline) allow multi-level conductance states to be stored

[46].

Resistive Random Access Memory has attracted interest for its low-power

consumption, high-density storage, and fast switching speed. The device is based on

a typical metal-insulator-metal (MIM) structure. Once a sequence of voltage pulses

is applied, the dielectric undergoes a soft breakdown, leading to the creation of

conductance levels at multiple tiers [35]. RRAM offers just two states. Despite

suffering from low endurance, power consumption is better along with the latency,

see Table 1.2 and Table 1.1.

1.1.3 Magnetoresistive Random Acces Memory

Spin-based memory – MRAM have gained attention as a potential platform for logic

circuit design. The discovery of Giant Magnetoresistance (GMR) [47–49] led to the

development of spintronics [50]. Spintronic devices are based on the MTJ structure,

which is the physics phenomenon involved in the MRAM behavior. MTJ is a

multilayer magnetic nano-pillar structure, as shown in Figure 1.4. The MTJ can be

categorized as an in-plane MTJ (i-MTJ) (see Figure 1.4(a-b)) if both the pinned and

free ferromagnetic layers have their magnetic orientation in the plane of the MTJ.

Conversely, if the ferromagnetic layer’s magnetic orientation is perpendicular to the

MTJ plane, then it is a perpendicular plane MTJ (p-MTJ)(see Figure 1.4(c-d)).
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Figure 1.4: in-plane MTJ (i-MTJ) at (a) low resistance state, (b) high resistance state
versus perpendicular MTJ (p-MTJ) at (c) low resistance state and (d) high resistance
state .

The MTJ consists of two ferromagnetic CoFeB layers, i.e. one layer with a fixed

magnetization called reference layer (RL) and the other with a variable

magnetization orientation called free layer (FL). Both layers are separated by a

non-magnetic insulating layer, i.e. thin MgO oxide barrier. The magnetization

orientation can be changed by applying a switching current greater than the critical

switching current of the device [38, 51]. When the magnetization orientation of the

reference layer and free layer are parallel (P), the resulting resistance is lower (RP),

consequently this state is considered as a stored bit of ”1”. In contrast if the the

magnetization orientation of the reference layer and free layer are anti-parallel (AP),

it corresponds to high resistance state (RAP) and the state is considered as a stored

bit of ”0” (see Figure 1.4).

The ratio between the two resistance values is named Tunneling Magneto

resistance Ratio (TMR) and is expressed as TMR=(RAP-RP)/RAP, when the

magnetizations of the two electrodes are aligned in parallel and antiparallel,

respectively. The higher TMR, the better can be distinguished the cell state. Thus,

TMR is adopted as the main performance metric of MRAM cell, regardless of the

materials and structures used and remarkable improvement of the memory array.
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Conventional MTJs, exibit a TMR up to 70% with amorphous Al2O3 with

crystalline MgO as barrier material at room temperature [52]. In 2001, two separate

studies conducted by Mathon et al and Butler et al exhibited a remarkably theory of

high TMR ratios, surpassing 1000% in Fe/MgO/Fe sandwiched structures [53, 54].

In 2004, Yuasa et al reported a TMR value of 180% in an epitaxial Fe/MgO/Fe MTJ,

and Parkin et al obtained a TMR value of 220% in a sputtered CoFe/MgO/CoFe

MTJ [55, 56]. The successive invention [57] of the CoFeB/MgO/CoFeB MTJ

structure reported in 2005 was decisive in the mass production of MgO based MTJs,

it has been observed with a TMR ratio up to 230% at room temperature. From other

recent reports a TMR of 213% at room temperature in Fe3GaTe2-based MTJs with a

bias current down to 10 nA was reported in [58].

MRAM is a type of non-volatile memory technology that uses magnetic

properties to store data. In MRAM, data is stored in magnetic elements, often

referred to as magnetic tunnel junctions MTJs. The development of MRAMs has

emerged as a exceptional technology in the field of non-volatile memory, promising

high-speed, high Reliability, low-power consumption, and robust data storage

solutions. The invention of spin-transfer torque (STT) magnetization switching and

the enhancement of the TMR effect through the use of MgO barriers have led to

commercial production of MRAMs [59]. Among the various types of MRAM

devices, two prominent contenders have emerged: Spin-Orbit Torque MRAM

(SOT-MRAM) and STT-MRAM. In SOT-MRAM, data is stored by applying an

electric current that induces a spin-orbit torque on the magnetic layer of a memory

cell. This torque effectively switches the magnetic orientation, allowing for writing

and reading of data. SOT-MRAM offers advantages such as lower write currents,

faster switching speeds, and potentially higher endurance.

STT-MRAMs differ from their predecessor MRAMs in terms of the magnetic

reversal process. While MRAMs use an external magnetic field to reverse the
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magnetic polarization, STT-MRAMs use a direct current for this purpose. One

significant advantage of STT-MRAMs over MRAMs is that the magnitude of the

required switching current reduces proportionately with the size of MTJ. This

reduction in switching current allows STT-MRAMs to be scaled down further in

size. Further the discovery of STT provided a perfect solution to the poor scalability

of MRAM [60–62]. As a result, STT-MRAMs can be implemented in smaller

technology nodes, making them viable for use in devices with limited space [63].

The scaling down of the MTJ size in STT-MRAMs results in a proportional

reduction in the required switching current. This reduction enables STT-MRAMs to

further scale down in size, making their implementation feasible in smaller

technology nodes [63].

These magnetoelectronic circuits offer non-volatility and the potential for lower

power consumption compared to traditional electronics. Various proposals have been

made for using magnetic devices to construct logic circuits, with some independent of

CMOS technology and others tightly integrated with it [64]. MTJs have the potential

to compete with and replace conventional SRAM-based memory technologies since

they provide a low write latency and high endurance.

Hence, STT-MRAMs are actually considered as a strong competitor for

non-volatile cache applications due to their promising features. These include high

integration density, high speed, almost zero standby power, long data retention time,

and full compatibility with CMOS process, [65–68].

As a result, the technology quickly gained recognition as an appealing choice

for persistent memory in embedded applications [69–73]. STT-MRAMs garnered

significant attention from academia and attracted substantial investments from the

industry.
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1.2 Objective, scope and framework of the thesis

Within the above context, the research in this thesis presents efficient hardware

solutions for ANNs at both circuit- and architecture-level. In particular, the activity

is focusing on the integration of emerging memory devices (e.g. spintronic

memories) with CMOS technology to exploit their intrinsic capability of in-memory

computing. As a result of the significant advantages of spintronic devices such as,

their non-volatile nature, consuming less power, high read and write speeds and

good endurance, the spintronic devices possess unique features that make them

attractive for applications that require high-density, non-volatile, and

energy-efficient memory technologies. Hence, the thesis focuses in finding out

efficient and optimized solutions for compute in memory. Circuit design activity

involving emerging memory devices requires the use and calibration of Verilog-A

based compact models [74, 75] to integrate the behavior of such devices into the

circuit design tool.

Likewise the thesis project evaluates and improves circuit solutions to implement

the building blocks of an ANN (i.e. artificial synapses and artificial neurons) using

commercial circuit simulators (e.g. Cadence Virtuoso).

The detailed thesis organization is as follows.

Chapter 2 provides a comprehensive description of the technological aspects,

devices, and topology used throughout the research. Additionally, the methodology

employed for simulation and evaluation, with a specific emphasis on integrating

spintronic memories with CMOS technology is analyzed.

Chapter 3 explores the architecture of an ANN with a particular focus on the

activation function used at the output node. The analog implementation of sigmoid

and softmax activation function is described.

Chapter 4 presents the efficiency of STT-MRAM cell based on double-barrier
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MTJ on the performance of a two-layer MPL neural network. The DMTJ-based cell

is benchmarked against the conventional single-barrier MTJ (SMTJ) counterpart by

means of a comprehensive evaluation carried out through a state-of-the-art device-to-

algorithm simulation framework.

Chapter 5 introduces an advanced Logic-in-Memory (LIM) architecture

developed from the smart material implication (SIMPLY) logic scheme. SIMPLY+

scheme is proposed and benchmarked against its conventional counterpart, both

implemented using STT-MRAM devices.

Chapter 6 concludes the dissertation and proposes future work.
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CHAPTER 2

MRAM TECHNOLOGY FOR ANN METHOD AND

IC STRATEGY

This chapter have been written using the publication reported by T. Moposita et al

[29]. The combination of MRAM technology and IC strategy has gained attention in

the context of ANN methods as it contributes to the advancement of memory

technologies and the development of more efficient and powerful electronic devices.

MRAM technology offers advantages that can be leveraged in the design and

implementation of integrated circuit. The non-volatile nature of MRAM allows for

the preservation of trained neural network models and data, even when power is

turned off, simplifying circuit design and reducing power consumption.

This chapter describes the methodology for simulation and evaluation, focusing

on the integration of emerging memory devices, such as spintronic memories, with

CMOS technology. Starting with an overview from the algorithm level, focusing

on an overview of ANNs and their importance in hardware implementations, to the

device level, where MTJ devices and their switching mechanisms are detailed due to

their impact on the performance of STT-MRAM. The goal is to take advantage of the

inherent capacity of these memory devices for in-memory computing.

2.1 Overview Framework

Biological neural systems are incredibly complex and efficient machines that are

capable of solving a wide range of problems with high speed and energy efficiency.
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This has led researchers to try and develop electronic systems that are inspired by

these biological neural networks, known as artificial neural networks (ANNs).

ANNs are able to ”learn” from input data and examples, and then make predictions

or classifications on new input data without being explicitly programmed with a set

of predefined rules. ANNs have emerged as powerful tools in various fields,

including pattern recognition, machine learning, and artificial intelligence. Their

ability to mimic the human brain’s functionality has led to significant advancements

in solving complex problems.

However, as the demand for more efficient and powerful computing systems

continues to grow, traditional computing architectures still face limitations in terms

of speed, energy efficiency and scalability. To address these challenges, researchers

have been exploring alternative computing paradigms that can harness the unique

properties of emerging technologies. One such promising avenue is the integration

of spintronic devices with ANNs. Spintronics, which exploits the intrinsic spin of

electrons in addition to their charge, offers several advantages such as non-volatility,

low power consumption, and high-speed operation. This methodology aims to

develop a comprehensive framework for the design and implementation of

spintronic-based ANNs, spanning from algorithmic formulation to device-level

integration. As shown in Figure 2.1, the methodology encompasses four main

levels: device, bitcell, architecture and algorithm.

At the device level (see Figure 2.1(a)), the design and characterization of

spintronics devices such as MTJs (perpendicular SMTJ and DMTJ devices featuring

circular geometries) are considered. Then, moving to bitcell- and architecture level

(see Figure 2.1(b)-(c)), the analysis involves the design of specialized hardware

architectures optimized for spintronic-based ANNs integrated with the CMOS

technology to realize fully functional neural network accelerators. Finally, at the

algorithm level (see Figure 2.1(d)), the focus lies on the study of neural network
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Figure 2.1: General framework including four levels of abstraction: (a) algorithm-,
(b) architecture-, (c) bitcell-, and (d) device-level.

models, training techniques and the computation unit which involves the activation

function.

In the following subsections, each aspect is further explored.

2.1.1 Spintronics: Material and Device-to-Circuit analysis

Basis of MTJ Device

MTJ, a basic unit of MRAM, is a multilayer magnetic nano-pillar structure, as shown

in Figure 2.2. The perpendicular magnetic orientation of the ferromagnetic layer in

the p-MTJ, as depicted in Figure 2.2(a), offers advantages in terms of potentially

requiring smaller write current while maintaining equivalent thermal stability.

Figure 2.2(b) describes the switching process during the AP → P transition

compared with the the P → AP transition. One common method to accomplish this

is through spin-transfer-torque switching, which involves using spin-polarized

current to invert the magnetization direction. Hence the switching process refers to
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Figure 2.2: Schematic views of MTJ device. (a) Structure of p-MTJ. (b) Resistance-
voltage characteristics of the MTJ

the transition that takes place when the magnetization orientations of the reference

layer and free layer align either in parallel (resulting in lower resistance and a stored

bit of ”1”) or in antiparallel (resulting in higher resistance and a stored bit of ”0”)

due to a switching current applied to the MTJ.

The efficiency and stability of the switching process can be influenced by several

factors, including the thermal-induced statistical magnetization process, the

perpendicular magnetic anisotropy constant, and the TMR. Parameters such as the

write current and external factors like heating can also have an impact on the

effectiveness of the switching process [76].

Magnetic anisotropy

Magnetic anisotropy is a critical parameter that determines the orientation of the

magnetic moment of the ferromagnetic layers in the device. It refers to the directional

dependence of the magnetic material’s properties, where the magnetic moment of the

material tends to align itself along its easy axis [43] in the absence of an external

magnetic field or voltage.

The effective magnetic anisotropy (keff ) refers to the effective energy associated

with the preferred direction of magnetization in a magnetic material and is
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represented in Equation 2.1

keff = kv +
2ks
t

(2.1)

Where, kv is the volume contribution, ks the interface contribution and t the

thickness of the magnetic layer. This relationship depicts the weighted average of

magnetic anisotropy, in bulk materials, anisotropy is dominated by the volume

component, whereas, in the thin films, the surface term is dominant. Critical

thickness (tCO) is represented in Equation 2.2. In thin-film material, the thickness is

below the tCO, and for bulk materials, the thickness exceeds tCO.

tCO =
−2ks
kv

(2.2)

The correlation between in-plane magnetic anisotropy and perpendicular plane

magnetic anisotropy is dependent on both the effective thickness and effective

anisotropy constant. Additionally, the easy axis for the i-MTJ lies on the plane of

the FL and its shape is elliptical, while the p-MTJ is circular. This comparison

between i-MTJ and p-MTJ is briefly outlined in Table 2.1.

Spin transfer torque (STT)

STT devices are a type of spintronics-based electronics that use a spin-polarized

current to flip the spin of electrons in a thin magnetic layer. The applied current

generates a spin-polarized current that transfers an angular momentum to the

magnetic layer, resulting in a change in the spin of the electrons.

The spin-transfer effect can be described by a simple s-d model as shown in

Figure 2.3(a). The s-electrons flow among the localized d-electrons and contribute

to a charge and spin current, while d electrons create a single large local magnetic

moment because of strong d–d exchange interaction. s–d exchange interaction
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Table 2.1: COMPARISON BETWEEN I-MTJ AND P-MTJ IN TERMS OF ITS BASIC

MAGNETIC ANISOTROPY PROPERTIES

Characteristics In-plane magnetic Perpendicular plane magnetic

Free layer dimension
Dominan anisotropy Shape Volume
Switching current Larger Smaller
Scaling Difficult / not desirable Easy / desirable
Thermal stability Low High
Shape Elliptical Circular

causes a precession of s- and d-electrons. Since d-electrons create a single large spin

moment, the precession angle of the d-electron system is considerably smaller than

that of s-electrons.

Figure 2.3(b) describes the electrons flow from the RL to the FL, s-electrons

are spin-polarized and aligned in the magnetic direction of the RL. Then the spin

angular momentum is transferred to the d-electrons of the FL to conserve the total

spin angular momentum. A large torque called STT is applied, causing the magnetic

orientation of the FL to align with the RL. Hence, if MTJ was in AP configuration,

it switches to P configuration. The opposite occurs when the electrons flow from the

FL to the RL (see Figure 2.3(c)), causing the magnetic orientation of the FL to align

with the RL and switching the MTJ from P to AP configuration.

As a result, bidirectional STT is applied in the form of a write current (IW ) to

switch the MTJ between P and AP configurations. The magnetization state of the

FL can only change if the applied torque is strong enough, which is determined by
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Figure 2.3: Schematic representation of STT switching mechanism (a) A simple s–d
model to describe the spin-transfer effect, (b) s-electrons flow from RL to FL to
change the MTJ resistance from RAP to RP , and (c) s-electrons flow from FL to RL
to change the MTJ resistance from RP to RAP [43].

the critical current density (Jc). Although large currents significantly above Jc can

quickly switch the magnetization of the FL, this also results in significant power

dissipation. Jc can be defined through Equation 2.3 [77].

Jc =

(
α

η

)(
2e

ℏ

)
Ms tF Heff + 2πMs (2.3)

where α is Gilbert damping constant, η is the STT efficiency parameter, e is

electron charge, ℏ is reduced Plank constant, Ms is the saturation magnetization, tF

is thickness of the FL and Heff is effective magnetic field.

The STT switching mechanism is heavily influenced by magnetic anisotropy.

While the p-MTJ is relatively problem-free when used in circuit applications, the

i-MTJ suffers from a number of issues, including a shorter data retention time,

lower thermal stability, and a higher critical current (Ic0) required to switch the
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magnetic orientation of the FL [43].

STT effect enables bidirectional switching of the state of an MTJ by applying a

current greater than a critical current, denoted as Ic0. This effect offers advantages

such as high density and low power consumption , making it widely used in memory,

logic, and hybrid circuit designs. This has enabled the launch of commercial products

based on MRAM, and it also promises the scaling of circuits for even higher density

[78, 79].

The MTJ behavior model i-MTJ and p-MTJ is given by the following equations,

Ic0 ⊥ = α
γe

µBg
(µ0Ms) Hk V (2.4)

Ic0 ∥ = α
γe

µBg
(µ0Ms) V

(
Hk +

Ms

2

)
(2.5)

E =
µ0 Ms Hk V

2
(2.6)

Where α is the magnetic damping constant, γ is the gyromagnetic ratio, e is the

elementary charge, µB is the Bohr magneton, g is the spin polarization efficiency

factor, µ0 is the permeability of free space, Ms is the saturation magnetization, Hk is

the effective anisotropy field and V is the volume of the free layer.

Moreover Equation 2.7 gives the average MTJ state switching delay time;

τ = τ0 exp

(
E

kBT

(
1− I

Ic0

))
when I < Ic0 (2.7)

Where τ0 is the attempt period, kB is the Boltzman constant and T is the

temperature. Besides, the MTJ thermal stability is represented in the following

expression, Equation 2.8.
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∆ =
Hk Ms

2 kB T
V (2.8)

The higher ∆ (and Ic0) is, the more stable against the thermal fluctuation noise is the

MTJ state.

Comparison between Equation 2.4 and Equation 2.5 elicits that STT must

overcome additional Ms/2 factor in i-MTJ for satisfactory performance. Therefore

p-MTJ requires lower write current than i-MTJ. Some studies have reported the

CoFeB/MgO-based STT p-MTJ as high performance, with a TMR of 150% at room

temperature, a small size of ∼ 20 nm diameter, a good thermal stability factor of

∆ = 40, and low Ic0 of ∼ 9 µA [37, 38].

Device-level analysis

STT-MRAMs have emerged as top contenders for replacing conventional

semiconductor-based cache memories at smaller technology nodes. Nonetheless, a

significant hurdle in the widespread adoption of STT-MRAMs is the need to reduce

their write currents to achieve energy and area savings[68]. In this regard, one

effective strategy concerns the use of DMTJs with two reference pinned

layers[80–83] instead of conventional SMTJs [38].

For Single-barrier MTJ, see Figure 2.4, based on the relative magnetization

direction of the FL and RL, the SMTJ resides in one of two stable states: parallel or

antiparallel. If two FM layers have the same magnetization directions, i.e., RL and

FL in P, the resistance of the MTJ is low (R0), indicating a “0” state. Conversely, if

the two layers have different magnetization directions, i.e., RL and FL in AP, the

resistance of the MTJ is high (R1), indicating a “1” state [38].

For Double-barrier MTJ, see Figure 2.4, the FL is sandwiched between two

MgO oxide barriers, each of them interfaced with one RL. The low resistance state
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Figure 2.4: Single-barrier MTJ and Double-barrier MTJ devices

(“0”) corresponds to FL in P and AP with respect to the RL top and RL bottom,

respectively. As for the high resistance state (“1”), the FL is in AP and P with

respect to RL bottom and RL top, respectively. Accordingly, the DMTJ resistances

in states ‘0’ and ‘1’ can be calculated as R0=RP,T+RAP,B and R1=RAP,T+RP,B,

respectively, [38]. Due to the presence of the second reference layer, the

spin-transfer torque is enhanced. Thanks to the reduced switching current in

DMTJs, the DMTJ-based non-volatile flip-flop demonstrates a 3× reduction in

backup time and a 6× decrease in energy compared to its SMTJ-based counterpart.

Such benefits are obtained along with smaller area occupation and better

performance in the flip-flop active operation mode [75].

In this thesis, we explore STT-SMTJ/DMTJ devices with circular PMA

geometry, which were developed by our group [74, 75], this devices have been

validated against full micromagnetic and experimental results. Our group has

developed Verilog-A based compact models for perpendicular STT MTJs that

describe these devices. These models calculate the MTJ resistance in both states

accounting for bias voltage dependence of the TMR ratio, and the critical switching

current (Ic0) for 0 → 1 and 1 → 0 transitions. The main physical device parameters
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Table 2.2: MAGNETIC TUNNEL JUNCTION PARAMETERS

Parameter Description Value Units
Ms Saturation magnetization (300 K) 1000×103 A/m
α Gilbert damping factor 0.03 –
r MTJ radius 15 nm

tOX(σ/µ) Oxide thickness (variability) 0.85 (1%) nm
tFL(σ/µ) FL thichness (variability) 1.0 (1%) nm

φB Oxide energy barrier 0.4 eV
RA Resistance-area product 7.0 Ω· µm2

RP MTJ resistance in P state 9.9 kΩ
TMR TMR ratio (300 K and 0 V) 65% –
VH Bias voltage for TMR = 0.5× TMR(0) 0.5 V
η Spin-polarization factor 0.66 –

Nxy In-plane demagnetizing factor 0.0439 –
Nz Perpendicular demagnetizing factor 0.9122 –
keff Effective anisotropy (300 K and 0 V) 0.405 –

Jc(P→AP ) P → AP critical current density ∼ 2.5 MA/ cm2

Jc(AP→P ) AP → P critical current density ∼ 1.0 MA/ cm2

ξ Magnetoelectric coefficient (300 K) 40 fJ/V·m
Troom Room temperature 300 K
λ Thermal conductivity 20 W/m·K
Cv Heat capacity per unit volume 3.5×106 J/ m3 · K

for FinFETs and MTJs at 28- nm, 24- nm, and 20- nm technology nodes are

presented in Table 2.2. The table also includes the impact of the MTJ process

variability on parameters such as tOX , tFL, cross-section area, and TMR.

The implemented model devices take into account the effects of

voltage-dependent perpendicular magnetic anisotropy, temperature-dependent

parameters, thermal heating/cooling, MTJ process variations, and the spin-torque

asymetry of the Slonczewski spin-polarization function in the switching process

[77, 84].

2.1.2 STT-MRAM Bitcell-level analysis

The physical phenomena described in the section above can be utilized in the design

of non-volatile storage devices for on-chip memory applications. Studies have
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demonstrated that STT-MRAM exhibits significant potential as a future on-chip

memory technology thanks to its nonvolatile nature [85, 86], compatibility with

CMOS fabrication processes [87, 88], high endurance [89, 90], and scalability [91,

92].

The bit-cell assessment was developed by E.Garzón et al [37, 38], which

involved conducting analyses at various levels of abstraction, from device-level to

circuit-level analyses for the single memory bitcell. The device models were

imported into the Cadence Virtuoso environment for a circuit-level analysis, using

Verilo-A. This analysis was carried out to evaluate the performance of the single

bitcell with respect to writing and reading operations under the impact of scaling

and variation effects. In Figure 2.5, a typical STT-MRAM bit-cell is presented,

which comprises an access transistor and a MTJ, commonly referred to as the

1T-1MTJ configuration. Similarly, another bit-cell configuration known as 2T-1MTJ

is used, which utilizes complementary CMOS transistors.

MTJ can be connected to the access transistor(s) of an STT-MRAM bitcell in two

ways, the standard connection (SC) and the reversed connection (RC), see Figure 2.5

[93, 94]. When using reversed connection, the access transistor(s) is connected to

the free layer of the MTJ. Conversely, in standard connection, the access transistor

is connected to the reference layer of the MTJ. Owing to their inherent asymmetry,

the SC and RC configurations exhibit distinct switching behaviors and are subject to

differing degrees of the source degeneration effect. This phenomenon refers to the

reduction in write current resulting from the gate-source voltage droop when the MTJ

is driven by the transistor source rather than its drain terminal [93].

These asymmetries adversely affect both performance and energy consumption.

Specifically, SC bit-cells exhibit source degeneration during the P-AP transition,

while RC bit-cells experience it during the AP-P transition. To address this issue,

STT-MRAM bit-cells with two transistors (2T-1MTJ) have been developed, as
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Figure 2.5: Connection of bottom-pinned STT-MRAM bit-cell (a) 1T-1MTJ RC, (b)
1T-1MTJ SC (c) 1T-1DMTJ (d) 2T-1MTJ RC (e) 2T-1MTJ SC (f) 2T-1DMTJ

shown in Figure 2.5(d-f) [63, 94]. These are based on complementary CMOS

architectures, only one transistor is subject to source degeneration at a time, while

the other delivers its maximum current, thus mitigating such asymmetries.

2.1.3 Architecture Level

STT-MRAM-based Binarized Neural Network (BNN) in-memory accelerators are

a novel computing architecture that promises advantages in terms of density and

leakage power [71, 95]. These architectures have the potential to greatly improve the

efficiency and performance of computing systems [96].
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Employing the MTJ based pseudo crossbar array architecture, it is possible to

transform the current to operate as massively parallel computational units,

transforming it into a standard STT-MRAM memory array capable of functioning as

both nonvolatile memory and in-memory logic [71, 72, 97–103].

As we have demonstrated in earlier works referenced in [5], the proposed logic

circuit based on hybrid CMOS and STT-MTJ has shown promising potential for

designing efficient non-volatile logic-in-memory (NV-LIM) architectures, ensuring

low power consumption and increased speed.

In light of the context presented, one segment of this thesis is devoted to analyzing

the performance of conventional BNNs when implemented on STT-MRAM array

architectures, with particular emphasis on single bit XNOR bit-cells [71] utilized for

conducting the MAC operation.

STT-XNOR Architecture

This strategy has been explored in SRAM, emerging nonvolatile memories such as

resistive random-access memory (XNOR-RRAM), and magnetic tunnel

junction-based magnetic random-access memories (MRAMs) [97]. We use the MTJ

physic model described in Verilog-A in Cadence Virtuoso to describe the XNOR

architecture proposed by [104].

The process of computing the scalar product of weights and inputs in-memory

has been identified as an XNOR operation, leading to the reference of designs using

this method as XNOR-BNNs.

Through the usage of modified sense amplifiers, MTJ devices can activate two

or more memory rows that store weights and inputs, and execute parallel X(N)OR

operations on the Bit-lines that are essential in BNNs with a reduced cycle.

Nevertheless, an increase in write power may occur when storing input feature maps

of BNNs on-chip, but this can be prevented by utilizing modern design approaches
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such as [105, 106].

The STT-XNOR architecture was introduced by [71] to perform unrestricted

accumulation across rows for full utilization of array and BNN model scalability.

Figure 2.6 displays the conventional architectures for in-memory BNN

acceleration considering the traditional column-level accumulation. The wordlines

of the array are feed with the inputs of a given layer, and the corresponding weights

are stored within a column are multiplied bit-wise and subsequently summed up to

produce a cumulative current, which is featured in the corresponding bitline.
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Figure 2.6: Generic BNN model and mapping onto conventional in-memory STT-
MRAM architecture.

The adopted bitcell of the memory array is based on the popular 2T-2MTJ as

shown in Figure 2.7, the access transistors M1 and M2 are configured such that their

gates are connected to the wordline (WL), while the source is linked to the select

line (SL). The magnetic junction, MTJ0, is established with either high resistance

(anti-parallel magnetization resistance, RAP ) or low resistance (parallel

magnetization resistance, RP ) to store weights of -1 or +1, respectively. The other
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magnetic junction, MTJ1, is arranged in a complementary state. The two bitlines

BL0 and BL1 connected to the bitcell and its associated column are used to feed the

input features on a column basis.
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tox
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SL
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tox

M1 M2

RMTJ,0 RMTJ,1

input IN

weight W 

Ibitcell

Figure 2.7: 2T-2MTJ STT-MRAM bitcell for single-bit XNOR (proposal of [71]).

To feed +1, the voltages are setted up to a proper VBL,0 > 0 and VBL,1 = 0 against

to VBL,1 > 0 and VBL,0 = 0 to feed -1. The non-zero bitline voltage determines the

current pushed by the bitcell onto the select line, according to the resistance of the

MTJ, it is high (i.e., +1 output) in the MTJ has a low resistance (parallel), conversely,

it is low (i.e., -1 output) under high resistance (antiparallel), as presented in Table 2.3.

Table 2.3: IN XNOR W

MTJ0,MTJ1 AP, P P, AP
BL0,BL1 (-1) (+1)

VBL0 > 0,VBL1 = 0
(+1)

Low
(-1)

High
(+1)

VBL0 = 0,VBL1 > 0
(-1)

High
(+1)

Low
(-1)

Hence, the bitcell’s current that is applied to the select line corresponds to the

XNOR of the input registered in the bitline and the stored weight that is retained
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within the cell, see Equation 2.9.

Ibitcell =
VBL

RMTJ +Raccess

(2.9)

For each case the Ibitcell is expressed as

Ibitcell(IN = +1) =


VBL

RP+Raccess,0
if W = +1

VBL

RAP+Raccess,0
if W = −1

(2.10)

Ibitcell(IN = −1) =


VBL

RAP+Raccess,1
if W = +1

VBL

RP+Raccess,1
if W = −1

(2.11)

The overall resistance called Rbitcell is calculated as follows;

Rbitcell = (RMTJ,0 +Raccess) ∥ (RMTJ,1 +Raccess) (2.12)

The resulting SL voltage for a single bit-cell is expressed as

VSL = Rbitcell · Ibitcell =


VBL·Rbitcell

RAP+Raccess
if Wij ⊕ INj = −1

VBL·Rbitcell

RP+Raccess
if Wij ⊕ INj = 1

(2.13)

Finally, in BNNs, the output OUTi of the accumulator is a digital value that

corresponds to the binarized select line voltage VSL,i. The logic output of the

accumulator OUTi at the generic row i is equal to the sum of the XNOR

computations across bitcells:

OUTi =
N−1∑
j=0

Wij ⊕ INj (2.14)

Based on this novel architecture [71], we decided to evaluate the proposed bit
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cell considering the double barrier magnetic tunnel junction device (see Figure 2.8)

by means of the device-to-system level simulation framework.
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Figure 2.8: 2T-2DMTJ STT-MRAM bitcell for single-bit XNOR (modified proposal
of [71]).

This simulation provides a validation for both Single and Double-barrier applied

in XNOR cell. During the read operation, the WL is enabled, the SL is set to ground.

The voltage at the bitline is then determined by the effective resistance of the bitcell,

which is established by the MTJ state. In order to determine the state of the resistance,

(i.e., high for AP state o low for P state), the senseamp is applied to compare the

bitline voltage to an intermediate reference voltage VREF .

The sensing margin at AP and P state, determine the robustness of the design. It

is defines as the maximum deviation of the bitline voltage from the nominal value

that can be tolerated (performed during the read operation) [104]. All simulation

results reported below were obtained by means of electrical simulations within

Cadence Virtuoso environment. The simulation include the effect of MTJ process
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variations obtained from Monte Carlo simulations with 1000 runs. Based on the

schemes shown in Figure 2.7 and Figure 2.8, the performed simulations include the

MTJ device model developed by our group [74, 75] and 65-nm CMOS technology.

Accordingly, Figure 2.9 and Figure 2.10 shows the statistical distribution of

sensing voltage in P and AP estate under process variations concerning to the read

operation. The nominal Read Margin is defined as the difference between mean

values of VSL distributions for the states at P-AP and AP-P in each case (see

Table 2.3). The extracted results indicate the variability of the bitcell (i.e., ratio of

the standard variation (σ) and mean value (µ)). Besides, its reliability is determined

by considering the BER, i.e., the failure probability in distinguishing one state from

the other.

As a result, the corresponding estimated values for the RM, BER and reference

voltage (VREF ) are presented in Figure 2.9 and Figure 2.10 regarding to 2T-2MTJ

STT-MRAM bitcell when using SMTJ and DMTJ, respectively.

From Figure 2.9(a) and Figure 2.10(a), the nominal Read Margin obtained for

Single and Double-barrier MTJ device results of about 95.9 mV and 78 mV,

respectively. Likewise the corresponding Read Margin determined at 3σ are 60.35

mV and 48.2 mV.

Furthermore, Equation 2.15 and Equation 2.16 display the calculation of BER

set up using the Cumulative Distribution Function (CDFnormal) and the sense

variability expressed as the ratio of the standard deviation and the mean value

during each configuration state APMTJO, PMTJ1 or PMTJO, APMTJ1.

BERAP,P = 1 + CDFnormal

(
− 1

σAP,P

µAP,P

)
(2.15)

BERP,AP = CDFnormal

(
1

σP,AP

µP,AP

)
(2.16)
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Figure 2.9: Statistical Distribution with SMTJ device.

The overall BER due to inadequate sensing margin is defined by the worst-case

value (i.e., the largest) amongst BERAP,P and BERP,AP in

Equation 2.15,Equation 2.16 [104].

After all, the minimum error rate is achieved when VREF is selected once

BERAP,P and BERP,AP are matched. The optimal value is closest to the state

where its standard deviation is smaller compared to the other configuration state.

Accordingly, the optimum VREF is calculated as follows.

VREF,opt = µAP,P + σAP,P · µP,AP − µAP,P

σAP,P + σP,AP

(2.17)

Then, the expression to obtain the optimum overall sensing margin variability is

presented in Equation 2.18.
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Figure 2.10: Statistical Distribution with Double-Barrier MTJ device.

(
σ

µ

)
opt

=
σAP,P + σP,AP

µP,AP − µAP,P

(2.18)

Correspondingly, from Figure 2.9(b), it shows the sensing margin variability for

APMTJO − PMTJ1 and PMTJO − APMTJ1 state versus VREF under VWL = 0.3V ,

σAP,P = 6.2mV, σP,AP = 5.65mV and considering µAP,P = 98.44mV and

µP,AP = 194.91mV. As a consequence the optimal VREF that minimizes BER

results to 149.18 mV and the corresponding variability of sensing margin is 0.122.

Likewise, from Figure 2.10(b), the mean values are µAP,P = 104.86mV and

µP,AP = 183.085mV, respectively. Hence, the optimal VREF results to 145.74 mV,

leading a BER of 1.747e-15. The optimal variability of sensing margin is 0.127.

Therefore, from the above results we can observe that the variability sensing margin
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is sensible to small changes in VREF producing BER degradation.

Table 2.4: COMPARISON SMTJ AND DMTJ WITH THE REFERENCE

Unit SMTJ DMTJ Comparison
SMT vs DMTJ

Reference
[104]

AP,P P,AP AP,P P,AP % AP,P P,AP
µ mV 98.45 194.91 104.86 183.08 - 85 165
σ mV 6.24 5.62 5.19 4.74 - 3.6 8.5

RM mV 96.467 78.219 23.32 80
BER - 2.22E-16 1.747E-15 -87.29 ∼1E-10
VREF mV 149.18 145.74 2.36 -
σ/µ - 0.122 0.127 -3.93 0.152

Regardless the results when performing the comparative study between SMTJ-

and DMTJ-based solutions (see Table 2.4) the SMTJ-based cell shows an

improvement in terms of Read Margin of 23.32% , a low BER under read operation

(-87.29%) and a standard deviation and mean value ratio of less than 4%, compared

with the DMTJ-based cell.

As a result, the cell implemented with the compact models developed by our

working group is an excellent option to use in-memory computing for BNN. Our

results display a better behaviour at bit-cell level, compared to the studies carried out

in reference [104].

2.1.4 Algorithm-Level

Background of Artificial Neural Networks

ANN have been based on the human brain and its biological neural networks, it

consists of a network of interconnected units or nodes, also known as artificial

neurons, which replicates the behavior of neurons in a biological neural network.

These neurons receive signals from other neurons and produce an output signal

using an activation function (AF), see Figure 2.11. The connections between the

neurons in an ANN mimic the synapses in biological neural networks. Each
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connection in an ANN is assigned a specific weight that represents its relative

strength, the weights associated with these connections have to be properly adjusted

to improve the accuracy of the network.

Figure 2.11: Model of a biological neuron and model of an artificial neuron. (As
the brain is composed of connections of numerous neurons, the neural network is
constructed with connections of nodes, which are elements that correspond to the
neurons of the brain [107]).

The architecture of a neural network is structured by multiple interconnected

artificial neurons, called units or nodes, into a sequence of layers. Each single

neuron as shown in Figure 2.12 contains the synapses, which are the connections

between neurons and a weight associated with them. Likewise, the weights can be

adjusted through a process called training to improve the accuracy of the network.

Figure 2.12: Representation of a single neuron.

The input signals xi from the outside is multiplied by the associated weight wi
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before it reaches the node. Equation 2.19 shows the expression of the weighted sum

of the input signals (the expression can even be written using matrices).

v = (w1 × x1) + (w2 × x2) + ...+ (wn × xn) (2.19)

Once the weighted signals are collected at the node, these values are added to be

the weighted sum. After summation the neural node applies the weighted sum into

the activation function φ resulting in output y, see Equation 2.20.

y = φ (v) = φ

(
n∑

i=1

(wi · xi)

)
(2.20)

Finally, the node enters the weighted sum into the activation function and yields

its output. The activation function validates the behavior of the node and determines

when the neurons are activated or not.

Most neural networks are constructed with the layered nodes. The layers in

between the input and output layers are called hidden layers. For the layered neural

network, the signal enters through the input layer, passes through the hidden layer,

and exits through the output layer. A multi-layer neural network that contains two or

more hidden layers is called a DNN, as depicted in Figure 2.13.

In Figure 2.13, the square nodes represent the input data, for instance, when

using MNIST dataset, it contains handwritten black and white images and each

pixel represents one input. The input layer receives the input data and passes it on to

the next layer, the hidden layer performs the computation required for the network

and the output layer predict the output data.

The neural network has undergone significant development in architecture, from

a simple structure to a more complex one. Initially, neural network pioneers

employed a basic layout enclosing only input and output layers, resulting in a

single-layer neural network. A neural network that has a single hidden layer is
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Figure 2.13: A layered structure of nodes .

referred to as a shallow neural network or a vanilla neural network. The addition of

hidden layers to the single-layer network produces a multi-layer neural network,

known as a deep neural network. In practical applications, deep neural networks are

more commonly employed than shallow ones [107].

ANN are able to learn how to perform tasks without being explicitly

programmed with task-specific rules (e.g. it determines patterns and make

predictions based on the input data). Hence, ANNs are typically ”trained” on a set

of data using a process called ”supervised learning”. For the neural network,

supervised learning implements the process to adjust the weights to reduce the

discrepancies between the correct output and output of the neural network [107].

Most applications in an artificial neural networks often requires several hundred

neurons, and the number of weights are proportional to the square of the number

of neurons. An essential aspect of implementing neural hardware is the mechanism

used to represent and manipulate the weights. In ANN, online learning and offline

learning, also known as batch learning, represent two distinct approaches to training
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Figure 2.14: Training process for supervised learning [107]).

the network. Online learning updates the model’s parameters after each individual

training example, making adjustments in real-time as data is processed. In contrast,

batch learning, updates the parameters after processing the entire training dataset.

Online learning is indeed more challenging to implement compared to

straightforward weight adjustment. It is considered a vital component for the

majority of neural network applications.

Although some approaches rely on off-line learning to train artificial neural

systems, being able to learn on the chip as more data becomes available to the

system is an invaluable feature. This is because it enables the model to adapt and

learn dynamically from new data, making it a crucial ingredient for successful

deployment in real-world scenarios. However, creating an artificial neural-system

chip with on-chip, on-line learning capability is a challenging task. Even for limited

learning capacity, the network design becomes highly intricate.

Traditional implementations of ANNs using Von Neumann machines are limited

by the separation of computing and memory.

In Von Neumann architecture, which is the basis for most modern computers,

there are separate units for processing data (CPU) and storing data (memory). When

the computation is performed, data must be moved back and forth between the
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processor and memory. For ANNs, which involve a large number of computations

on vast datasets, this constant movement of data can be a significant bottleneck.

This back-and-forth data transfer consumes time and energy, limiting the speed and

efficiency of ANN computations.

Therefore, hardware solutions have been developed to mitigate this bottleneck

and improve the efficiency of ANNs. Different design solutions can be utilized to

build these hardware ANNs, ranging from traditional digital circuits to more recent

compute-in-memory or neuromorphic computing approaches. Analog and digital

approaches have been proposed for the implementation regarding ANNs, analog

processing seems much more efficient than purely digital computation since

response times for the inherently parallel analog hardware are significantly smaller

than for digital hardware. Still, some efficient implementations of neural processors

can be made as combinations of analog and digital hardware. In this context,

memory technologies and their integration with computing elements in hardware

implementations of ANNs have recently garnered significant attention. This

integration could potentially overcome the Von Neumann bottleneck and lead to

significant improvements in the performance and efficiency of ANNs.

Overall, ANNs have become an effective and mandatory tool for applications

which include image recognition [108], speech recognition, object detention [109],

pattern recognition, natural language processing and predictive analysis. [110–112].

Nowadays, ANNs are mostly used for universal function approximation in

numerical paradigms because of their excellent properties of self-learning,

adaptivity, fault tolerance, nonlinearity, and advancement in input to an output

mapping [113]. Despite the extensive applications of ANNs, there is an increasing

need to address the problem of adopting a systematic approach in ANNs

development phase to improve its performance.
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2.2 Overview of the Simulation Environment

This research activity focuses on integrating this emerging memory device, such as

spintronic memories, with CMOS technology to leverage their inherent capability of

compute-in-memory. We use a specific environment for circuit simulation.

We utilize the Cadence Virtuoso commercial circuit simulator to design circuits

that employ MOS technologies. This allows us to generate netlists using Verilog-A

models, which in turn helps us solve electrical property equations. To incorporate

the behavior of these devices into our circuit designs, we rely on the use and

calibration of Verilog-A based compact models. The simulation environment

provided by Cadence Virtuoso enables us to create test benches, providing detailed

information on circuit performance.

Moreover, we used the emulator NeuroSim to benchmark synaptic devices and

array architectures in terms of system-level learning accuracy and hardware

performance metrics. NeuroSim is an integrated simulation framework used to

support a 2-layer MLP neural network to benchmark the DNN architecture, relied to

digital synapse devices, in online learning and offline classification with MNIST

handwritten dataset. The simulator was performed by Pai-Yu Chen, Xiaochen Peng

and Yandong Luo and developed in C++ to emulate the online learning/offline

classification scenario with MNIST handwritten dataset in a 2-layer multilayer

perceptron (MLP) neural network based on SRAM, eNVM and FeFET array

architectures [114, 115].

For benchmarking neuro-inspired architectures, NeuroSim used to assessment

area, latency, dynamic energy, and leakage power of neuromorphic hardware

accelerators to simplify the design space exploration. [115]

The target for this simulator is to estimate the system-level performance using

the user-derived analog synaptic device data. The parameters are adjusted at device,
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circuit and algorithm level. Figure 2.15 shows an overview of NeuroSim framework

from Device to Algorithm-level. The input MNIST images are cropped and encoded

into black/white data for simplification and the weights input-hidden and hidden-

output are mapped to synaptic cores.

The MNIST dataset is a widely used database of handwritten digits ranging from

the numbers 0 to 9. It consists of 60,000 training images and 10,000 test images.

The dataset is commonly used for image classification tasks and is often used for

training deep learning models, such as convolutional neural networks (CNNs) and

MLPs [116].

ARCHITECTURE LEVEL

PERIPHERY PERIPHERY

WEIGHT UPDATE

ALGORITHM PARAMETERS

DEVICE-LEVEL
PARAMETERS

Synapse

20x20 

Handwritten Digits

OUTPUT 

PARAMETERS
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Energy

Accuracy

Synaptic Core

(Input-Hidden)

Synaptic Core

(Hidden-Output)

eNVM

Figure 2.15: NeuroSim framework.

At the circuit level, several design options are available, such as the analog

synaptic array architecture (eNVM crossbar, eNVM pseudo-crossbar or FeFET), or

digital synaptic array architecture (eNVM crossbar, eNVM 1T1R, or SRAM). At

the algorithm level, a simple 2-layer MLP neural network is provided for evaluation,

thus only limited options are available to the users to modify, such as the size of
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each layer and the size of weight matrices.

In this thesis, a variety of software tools were utilized including MATLAB,

Cadence-Virtuoso, and the NeuroSim emulator. The Cadence-Virtuoso environment

is leveraged for circuit-level design, while the NeuroSim+ emulator is used to

support the MLP neural network. The objective is to propose techniques and

designs to improve the performance of the circuits and evaluate their efficacy

through the implementation of digital non-volatile memory technology.

Having described the simulators with its design tools details, Figure 2.16

illustrates the simulation environment used to evaluate the performance of each

stage.

The design process begins at the device level and the performance varies

depending on the category of proposal chosen. In certain instances,

Cadence-Virtuoso is employed to develop Verilog-A code, such as in the case of

SMTJ and DMTJ devices. After creating the schematic design at the circuit level,

simulations are performed considering test criteria (i.e optimization or integration).

To ensure the accuracy of Monte Carlo simulations, it is crucial to take into account

the impact of the standard deviation, as it plays a significant role in determining the

dependency on the Bit Error Rate. It is a key parameter used to measure the

performance of a data.

The NeuroSim+ emulator approaches simulation stages differently, considering

device, cell design, and network training parameters. This allows for customization

of each design to better approximate the real architecture. Once each parameter is

configured, the relevant data can be extracted. During the simulation, execution time

is critical as it is influenced by the number of training and test images, as well as the

number of epochs utilized.
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Figure 2.16: Schematic of the Simulation Framework using Cadence-Virtuoso and NeuroSim+ emulator

45



CHAPTER 3

ACTIVATION FUNCTIONS FOR ANN

ANNs are designed to process information, recognize patterns, and make decisions

in a way that is similar to the human brain. ANNs consist of multiple layers of

interconnected nodes or ”neurons”, and the strength of these connections (i.e.,

weights) is adjusted through a process known as training, which allows the network

to improve its accuracy over time. The neurons work all together to perform

complex tasks. Activation functions are used to calculate the output of the ANN

once processed the input signals with their corresponding weights.

This chapter provides a comprehensive study on the AF used in ANN to

transform input signals into and output signal. Then the Sigmoid and Softmax AF

circuit implementation for analog Neural networks are discussed.

3.1 State of Art

As we mention in the previous chapter, the architecture of a neural network is

structured with interconnected neurons called nodes. Each neuron in a layer

receives inputs from the neurons in the previous layer and produces an output that is

passed on to the next layer. For each layer, input data are first processed by a linear

vector-matrix multiplier (VMM), then they pass through a nonlinear AF, which

emulates the behavior of a biological neuron [117].

An activation function is a mathematical function that is utilized within artificial

neural networks to introduce nonlinearity into the output of a neuron. Its significance

lies in determining the power and the capabilities of the neural network, bearing in
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mind that the accuracy of predictions is primarily dependent on the selection of the

activation function.

The hardware implementation of ANN is a key area of research [118], with a

focus on developing efficient and effective computational methods.

The main challenges regarding this field is the realization of activation function of

neurons, which is a critical component of ANNs because it introduces non-linearity

into the model. Activation function is essential for the network to effectively model

and learn from complex data.

Some widely used activation functions include the sigmoid function [3, 118, 119],

Softmax function [1, 120, 121], hyperbolic tangent function[122–124], and rectified

linear unit (ReLU) function [125], among others, as depicted in Figure 3.1. Each

activation function has its own strengths and weaknesses, and the selection of an AF

often depends on the specific task and the architecture of the neural network.

Figure 3.1: Types of activation functions; Sigmoid, Softmax, Hyperbolic tangent and
ReLU.
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3.2 Overview of Activation Function Types

The ReLU (rectified linear unit) activation function, see Figure 3.1 (a), is a popular

non-linear function used in neural networks. It is considered more efficient than

other activation functions because it only activates a certain number of neurons at a

given time, unlike other functions where all neurons may be activated

simultaneously. Specifically, ReLU sets all negative inputs to zero, while retaining

all positive inputs. This allows neural networks using ReLU to learn faster and

avoid the vanishing gradient problem that can occur with other activation functions.

The Tanh (hyperbolic tangent) function, see Figure 3.1 (b), has similarities with

the sigmoid function. However, Tanh is symmetric about the origin, and this results in

negative inputs being mapped to strong negative values, while zero inputs are mapped

near zero in the Tanh graph. Both the Tanh and Sigmoid functions are used in feed-

forward neural networks, but Tanh is preferred over Sigmoid because it enables the

calculus of a gradients that are not restricted to vary in a certain direction, and its

output is centered around zero. Additionally, the gradient of the Tanh function is

steeper than the Sigmoid function.

The sigmoid function, see Figure 3.1 (c), is a non-linear, bounded function that

maps a real-valued input to an output between 0 and 1. It is widely used in artificial

neural networks for binary classification in logistic regression models, where the

output represents a decision between two options. One of the limitations of the

sigmoid function is that the probabilities of its outputs do not necessarily add up to

1. Despite this, sigmoid remains a popular activation function in neural networks

due to its simple structure and ease of use.

Unlike sigmoid, Softmax function, see Figure 3.1 (d), is an unbounded and

non-linear mathematical function that maps a real-valued input to an output between

0 and 1, with the property that the outputs for each input vector sum to 1. The
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Softmax activation function is commonly used in artificial neural networks,

convolutional neural networks (CNN) and reinforcement learning models to provide

classification outputs. It is commonly used in logistic regression models for

multi-class classification tasks such as image recognition and natural language

processing (NLP).

Sigmoid and Softmax are two commonly used activation functions in ANNs.

Both functions introduce nonlinearity to the model, allowing it to capture more

complex relationships between input and output. Table 3.1, shows some relevant

characteristics between sigmoid and Softmax AF.

Table 3.1: DIFFERENCE BETWEEN SIGMOID AND SOFTMAX AF.

Sigmoid function Softmax function
Often used in the hidden layers Regularly used in the output layer

Used when the output
of the neural network is continuous.

Used when the output
of the neural network is categorical.

Bounded function that maps a
real-valued input to an output

in between 0 and 1.

Unbounded function that maps
a real-valued input to an output

in between 0 and 1 that
sums to 1 for each input vector.

The selection of activation functions in neural networks is a pivotal design

consideration, which depends on the specific tasks. Different activation functions

introduce varying levels of non-linearity, influencing the model’s capacity to learn

complex relationships in data.

3.2.1 Analog Softmax AF Design

Among the AF implementations, the Softmax function - normalizing with respect to

all input signals of the output layer - is frequently utilized to simulate the neuron

output in multi-class problems. By assigning probabilities to each class, the

Softmax is a sigmoid function normalized, combining the input signals of other

neurons belonging to the same level with its corresponding input to drive output.
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While an overwhelming majority of implementations have been in the digital

implementations [126–129], analog circuit-oriented proposals for Softmax are

especially thin on the ground, with only two references available [121, 130].

In this work, we collaborated with the proposal of a low-power analog

current-mode Softmax topology, where both transfer-function slope and amplitude

can be dynamically adjusted. This circuit is composed of three stages: the first

implements a linear current–voltage conversion of the input signal, the second

performs the exponential function of the signal coming from the first stage, and the

third one acts as an analog divider.

The topology can also operate with voltage-mode inputs by using only the second

and the third stages. Simulation results demonstrated that the proposed topology

features a good match to the theoretical Softmax, a low voltage operation and a low

power dissipation, and a strong robustness against PVT variations, exploiting the

variability of the slope and of the amplitude of the transfer function [1].

An M-sized Softmax function, also known as normalized exponential function,

composed by an array of M elements performing the normalization to the (0:1)

interval of an array of M real-number input signals (i.e., the outputs of the

multiply-and-accumulate operations). The analytical expression of the Softmax is

given in Equation 3.1, which shows that the probability associated with each i-th

class is proportional to the exponential of the corresponding xi, and normalized by

the sum of the exponentials performed on each input:

f(x) =
eαx1∑M
k=1 e

αxk

(3.1)

The proposal pretend to develop an analog circuit to imitate the Softmax

Activation function utilizing the device physics of MOSFET by exploiting

exponential function, sum, and division. Figure 3.2 represents a block-level
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representation of the Softmax circuit. The proposed circuit is implemented in a

modular fashion, being composed of three building blocks, which can be replicated

and shared, to achieve a Softmax function with an arbitrary number of inputs and

outputs. The first stages linearly convert the input current signals to voltage signals,

the second stages implement a voltage-to-current exponential conversion, and the

last stage realizes the analog division [1].

Therefore, Figure 3.3 showcases the transistor-level schematic of the current-

voltage conversion and exponential blocks (a) and analog divider (b).

Figure 3.2: Softmax diagram, composed of M conversion blocks, M + 1 exponentials,
and one analog divider. Exponential blocks and the analog divider must be replicated
to produce the other outputs [1].

Analog Softmax Circuit Design and Performance

The proposed Softmax circuit was designed and simulated with the 180 nm TSMC

technology node using a supply voltage (VDD) of 500 mV. The nominal full-scale

output current of 10 nA corresponds to the 1 output of the Softmax operation (i.e.,

100% probability). Softmax transfer characteristics were measured by sweeping just

one normalized input from -5 to 5. The input scale was normalized to get a nominal

slope α equal to 1 for an easy comparison with the theoretical equation (see

Equation 3.1).
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Figure 3.3: Transistor-level schematics of the (a) input conversion block (current-
to-voltage linear conversion and exponential conversion) and (b) the analog divider
block [1].

From Figure 3.3(b) it is possible to express the IOUT as following:

IOUT = ISCALE · IA
IB

= ISCALE ·
IEXP (1)∑M
k=1 IEXP (k)

(3.2)

ISCALE is set to a fixed value, since it represents the Softmax amplitude.

Figure 3.4(a) illustrates the proposed circuit implementation compared with the

theoretical Softmax model considering the input range of the transfer characteristics

into three regions: in regions I and III showing exponential approximations, whereas

in region II, it demonstrates nearly linear behavior.

Figure 3.4(b) displays the relative error, which is the deviation between the

transfer characteristics of the circuit and the theoretical function. The proposal

shows a peak error of 2.2% in region II, which can be ascribed to an input offset,

and an average value of ∼1.4%.
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Figure 3.4: (a) Proposed Softmax design simulated transfer function and theoretical
analytical model (M = 2). The simulated input signals have been arbitrarily
normalized to get a Softmax slope α = 1, while the output has been normalized
to the output full scale (10 nA). (b) Relative error of the proposed Softmax[1].

Mismatch and Process Variations

Figure 3.5 displays the circuit behavior regarding mismatch and process variations,

where transfer characteristics were computed for 1000 statistical Monte Carlo runs.

In Figure 3.5(a), the impact of mismatch variations is mainly related to the

deviation of the characteristic amplitude. The maximum standard deviation of the

output current variation is 2.97% with respect to the mean value. On the other hand,

the process variation behavior is depicted in Figure 3.5(b), it leads mainly to a

variation of the slope. Specifically, the ratio between standard deviation and mean

value is about of 16.83%, with a negligible variation of the amplitude.

Impact of the Technology Node Scaling

The process of technology node scaling involves of reducing the size of transistors

and other components on integrated circuits to enhance performance and reduce

costs. In this regard, the following simulations analyze the impact of scaling on the
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Figure 3.5: Impact of (a) mismatch and of (b) process variations on the Softmax
transfer characteristics for 100 MC runs. [1].

proposed Softmax implementation. Figure 3.6a depicts the Softmax activation

function characteristic at three distinct technology nodes, namely TSMC 180 nm,

65 nm, and 40 nm. On the other hand, Figure 3.6 illustrates the corresponding error

concerning the theoretical equation.

Figure 3.6: (a)Transfer characteristic and corresponding relative error (b) for three
technology node (180 nm, 65 nm, 40 nm) Softmax circuits. [1].

After all, we can observe that as the design implementation decrease in

technological node, the absolute error increases. This is attributed to an increased
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offset resulting from the adjustment of ISCALE to match the upper part.

Moreover, Figure 3.7 displays the area estimation of the proposed design

considering two blocks of conversion and one of division, giving a result of about

134 µm2.

15um

8.93um

Figure 3.7: Layout schema for Softmax AF at 180 nm technology node.

Finally, a novel analog implementation of the Softmax activation function is

presented, and the main features of the circuit are the good match to the theoretical

function. In addition the impact of mismatch and process variation are quite

acceptable with a ratio standard deviation and mean value of about 16.83%. These

improvements are achieved with limited precision degradation, considering and

average relative errors respect to the theoretical Softmax equation,of 0.9% only.

3.2.2 Analog Sigmoid AF Design for ANN

The development of efficient and accurate methods for realizing activation functions

in hardware is essential for the widespread adoption of ANNs in various fields such
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as image processing, speech recognition, natural language processing, predictive

analytics, robotics, etc [131–135].

Hardware implementations of neural networks can use both digital and analog

modules to realize activation functions, depending on the specific neural network

being used. While digital implementations are more flexible and easier to scale,

analog implementations can offer improved power efficiency and potentially higher

performance. Neural networks can be generally categorized into three groups: digital

[136–139], analog [3, 118, 119, 121, 140], and hybrid (mixed-signal) [20, 141–143]

neural networks.

Furtherance in CMOS technology has played a crucial role in addressing the

growing need for energy-efficient high-performance computing solutions. As the

demand for processing power and data storage grows, energy consumption has

become an essential factor in the design and operating computing systems. CMOS

technology has allowed for greater integration density and power efficiency within

integrated circuits. Improved analog design for hardware implementations have

enabled greater advantage of transistors’ unique features. This has led to the

development of more efficient and effective electronic systems.

Proposed Sigmoid AF

The proposed neuron circuit is based on the Resistive-Type Sigmoidal Neuron

introduced in [118]. Sigmoid function is a nonlinear function which determines the

output of a neuron based on the weights of its inputs by converting input values to

probability-like outputs in the range of 0 and 1. The sigmoid function is a common

S-shaped curve defined as follows:

y = φ (v) =
1

1 + e−αv
(3.3)
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where α is the steepness of the slope in the linear region (v ≈ 0).

The Sigmoid circuit in this reference uses transistors operating both in triode and

saturation regions, and converts the total input summation current into a voltage at

the output node. The sigmoid function is designed by using a nonlinear resistive load

that takes current as input and delivers a voltage at the output of the neuron.

In order to upgrade the design developed in [118], we add a pseudo-differential

input I- V conversion stage to enable a voltage signal as input data to generate the

sigmoid function by using 180nm technology which is more affordable for

fabrication.
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M2

M4

M5

M6

M7M8

M9

M10

M11M12

VDD

+Vin

-Vin

Iout Vout

Ib

Ia

va

vb

vP

Figure 3.8: Schematic of the proposed sigmoidal neuron.

Figure 3.8 shows the circuit implementing the sigmoid activation function. The

circuit consists of two parts: the shaded area, on the right, represents the sigmoid

function generator of [118] having the current Itot as input and producing the sigmoid

function as Vout. The un shaded area represents the V to I converter enabling AF

generator to take Vin as input and produce Itot to drive the right-hand circuit.

Transistors M1 - M6 represent the core from referenced design, M1 and M3 are

sized to generate the biasing voltage of V P ≈ VDD/2 and M2-M4-M5-M6 generate

the sigmoid function by controlling the gain in linear operation and therefore the

steepness of the curve i.e. the α parameter in Equation 3.3.
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All the transistors of the circuit are biased using only a single supply voltage

VDD. By operating the MOSFETs both in triode and saturation regions, the core of

the neuron circuit can provide an accurate approximation of the sigmoid function.

The operation of the right-hand is designed such that when Itot = 0, Vout =

VDD/2 . When Itot is negative, transistors M6 and M4 are in off and deep triode

region (VDS4 ∼ 0), respectively, while the other two transistors M5 and M2 are in

saturation region, causing Vout to be close to ground, (Equation 3.4). As Itot increases

towards 0, i.e. becomes less negative, transistors M4 gets into saturation having

its VDS and therefore also Vout increase; M2 stays in saturation and the other two

transistors M5-M6 are off, causing Vout to increase towards VDD/2, (Equation 3.5).

As Itot increases and becomes positive, transistor M5 and M2 eventually are in off

and deep triode region (VDS2 ∼ 0), respectively, connecting Vout to VDD, while M6

and M4 are in saturation, (Equation 3.6) [118]. Current in each state is approximated

as follows:

Itot =− 1

2
knS5 (VP − Vout − Vth)

2 − 1

2
kpS5 (VDD − VP − Vth)

2

+ knS4

[
(VP − Vth)Vout −

1

2
Vout

]2 (3.4)

Itot =− 1

2
kpS2 (VDD − VP − Vth)

2 +
1

2
knS4 (VP − Vth)

2 (3.5)

Itot =− 1

2
knS6 (Vout − VP − Vth)

2 − 1

2
knS4 (VP − Vth)

2

− kpS2

[
(VDD − VP − Vth)(VDD − Vout)Vout −

1

2
(VDD − Vout)

]2 (3.6)

For simplicity channel modulation is ignored (λ = 0), such assumption is just to

have an idea of the behavior of the circuit. In all the equations the threshold voltage
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for P-channel transistor and N-channel transistor are expressed as follows:

Vth = Vthp = Vthn

The variable k is expressed as follows:

kn/p = µn/pCox

where µn/p is the charge-carrier effective mobility and Cox is the gate oxide

capacitance per unit area. The ratio between the gate length and width is represented

by Si =
Wi

Li

The added input stage M7-M12 transforms the input voltage into current (Itot)

by using an unbalanced pseudo-differential structure and a current mirror to generate

the input current to the shaded circuit [118] is shown in Fig. 4. The voltage Vin is

swept from −Vin to +Vin with the + connected to M10 and the – to M9. When the

input voltage is negative transistor M10 is on, the current in transistor M10 flows

through the current mirror M11-M12 to replicate and obtain Ib, which corresponds

to Itot negative (flowing out of Vout), as depicted in Figure 3.9.

As the input voltage increases the current Ib decreases and when the input

voltage becomes positive, transistor M10 is off and Ib is zero. The opposite is the

case with the transistor M9, when Vin is negative the gate voltage at M9 (Vin) is

positive therefore the transistor is off; as voltage Vin becomes positive, the VGS9

turns negative and the transistor turns on, consequently the current Ib decreases and

most current, Ia, flows through the current mirror M7-M8 into Vout as Itot.

Current that comes from transistors M7 (Ia) and M11 (Ib) is defined as follows:

Ia = −W7

W8

kpS9

(
Va − Vin− − Vth

)2 (3.7)

59



Figure 3.9: Current behavior for Ia, Ib and Itot

Ib =
W11

W12
kpS10

(
VDD − Vin+ − Vth

)2 (3.8)

We defined the relative errors as the difference between the circuit

transfer-characteristics and the mathematical function in the transition region

between 0 and 1, as follows:

error =
|ϕTHEORICAL − ϕSIMULATED|

ϕTHEORICAL

× 100 (3.9)

Circuit Sizing

The advantages of this solution over earlier AF circuits include that it does not

require an additional I-V or V-I conversion unit, reducing circuit complexity. The

implementation can be employed in the node of the hidden layer of the neural

network also in the output layer. To set biasing and steepness parameter, transistors

M1-M4 are sized to generate biasing VP ≈ VDD/2, and M9-M10 are sized to
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generate enough current to obtain the desired value of the α parameter. The sizing is

asymmetrical for both transistors including their respective current mirrors and

varies according to the steepness parameter and the smallest error.

Notice that M10 will drive a current Ib through the mirror current M11-M12 while

M9 will drive the current Ia, through the mirror current M7-M8. It is important to

highlight that M10 will conduct if VDD − Vin+ > Vth while M9 will conduct when

Va − Vin− > Vth where Va ≈ VD7. This asymmetric configuration ensures to cause

drain current when VDS9 is greater than −Vth, this current controls the positive part

of the Sigmoid function.

Table 3.2: TRANSISTOR SIZING OF THE PROPOSED SIGMOID FUNCTION .

Transistor α = 1 α = 2 α = 10
L[ µm] W[ µm] L[ µm] W[ µm] L[ µm] W[ µm]

M1 0.18 6 0.18 4 0.18 0.22
M2 0.18 6.7 0.18 4.7 0.18 0.3

M3-M4 0.18 4.5 0.18 3.1 0.18 1
M5 0.18 0.22 0.18 0.22 0.18 0.22
M6 0.18 0.22 0.18 0.22 0.18 0.22

M7-M8 0.18 3 0.18 3 0.18 6
M9 3 0.22 2 0.22 0.5 0.22

M10 11 0.22 7 0.22 6 0.22
M11 0.18 4.6 0.18 3.7 0.18 1.1
M12 0.18 0.22 0.18 0.22 0.18 0.22

Based on Equation 3.7 and Equation 3.8, Table 3.2 lists the size of the transistors

used in the implementation to generate a sigmoid approximation when the steepness

parameter α for three different values of 1, 2 and 10. As reported in Table 3.2, it

can be determined that in order to increase α, it is necessary to reduce the widths of

transistors M1-M4 and the lengths of transistors M9 and M10.
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Simulation Results

The proposed neuron is simulated in Virtuoso with HSPICE models using 180 nm

CMOS TSMC technology and selecting the minimum allowable transistor sizes. The

circuit design in Figure 3.8 is asymmetric having rail-to-rail supply of 1V.

Figure 3.10: Comparison of the proposed sigmoidal neuron and the ideal Sigmoid
function at different values of steepness parameter (α).

Figure 3.10 illustrates the Input/Output characteristics of the proposed neuron by

varying input voltage Vin from −2[V ] to +2[V ]. Furthermore, the graph compares

the ideal Sigmoid function (referenced as Equation 3.3) for three different values of

the steepness parameter.

In contrast Figure 3.11, Figure 3.12 and Figure 3.13 summarizes the behavior of

Ia, Ib and Itot for different values of steepness.

Finally, Figure 3.14 shows the corresponding errors between the proposed neuron

and the sigmoid activation function, when the steepness parameter α is set to 1 / 2

/ 10, the maximum and average error are determined at 2.87% / 3.27% / 5.29% and
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Figure 3.11: Current behavior when α = 1 for Ia, Ib and Itot

Figure 3.12: Current behavior when α = 2 for Ia, Ib and Itot

1.09% / 1.12% / 1.94%, respectively.

Figure 3.15 illustrates the average power consumption variation with different
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Figure 3.13: Current behavior when α = 10 for Ia, Ib and Itot

steepness levels. Specifically, with a steepness parameter of 1, power consumption

reaches 18.21 µW whereas at a steepness parameter of 2, consumption drops to 1.14

µW. Finally, at a steepness parameter of 10, power consumption measuring is 6.77

µW.

Table 3.3 presents a comparison between our proposed design and the reported

work. The circuit presented in [118] uses a single supply voltage and combines

NMOS/PMOS transistors to approximate the Sigmoid function, with an I-V

Input/Output characteristic. In contrast, our design achieves lower power

consumption and is implemented with twice as many MOSFETs at a more

affordable 180nm technology node, rather than 90 nm.

Similarly, in [144] showcases a circuit which employs two differential pairs to

produce both tan-sigmoid and log-sigmoid neuron Activation Functions, with an I-

I Input/Output characteristic. This design allows for the external programming of

slope and threshold levels through the adjustment of bias voltages. In contrast, our
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Figure 3.14: Relative error between proposed sigmoid neuron and sigmoid function
for α = 1, α = 2 and α = 10

proposed system adjusts the steepness parameter by modifying the size of transistors,

providing a means to achieve lower power consumption.

The circuit design presented in [119], utilizing 180 nm TSMC CMOS technology,

is a Sigmoid Activation Function neuron that operates across three phases: an input

signal weighting circuit , a current-voltage conversion circuit, and a Sigmoid AF

fitting circuit. This circuit employs differential pairs to establish the current-voltage

relationship of the Sigmoid function. The total area of the layout is measured at 375

µm x 238 µm. However, our proposed design outperforms this circuit in terms of

area, since the maximum value obtained is measured at 20.72 µm and 8.10 µm when

considering the design for steepness parameters equal to 1.

Figure 3.16 depicts an estimation of the behavior of power consumption and
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Figure 3.15: Power consumption when α = 1, α = 2 and α = 10.

Table 3.3: COMPARISON OF PROPOSED SIGMOID FUNCTION IMPLEMENTATIONS.

Reference Tech Supply Avg Power Error Transistor
[ nm ] [ V ] [ µW ] [%] number

[118] 90 1.2 21.6 7.67 6
[144] 90 1.5 8.4 3 17
[119] 180 1.8 8.02 1.76 10

Prop. (α = 1) 180 1 18.21 1.09 12
Prop.(α = 2) 180 1 14.13 1.12 12

Prop. (α = 10) 180 1 6.7 1.93 12

relative error, contrasted across different steepness levels.

Furthermore, we developed the area estimation of the proposed designs by using

Calibre-Cadence Virtuoso for all configurations at different steepness parameter. For

instance, as shown in Figure 3.17 and Figure 3.18.

The proposed designs were evaluated using TSMC 180 nm CMOS technology

giving an area cost when the steepness parameter is 1, 2 and 10 of about 167.83 µm2,

156.86 µm2 and 113.98 µm2, respectively.
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Figure 3.16: Approximation of power consumption and error behavior using the
results from the implementation at different values of steepness.

20.7 um

8.1 um

Figure 3.17: Layout schema at steepness parameters of 1 .

Table 3.4 presents an minimum increase in terms of the absolute error which is

calculated considering Pre- and Post-Layout Simulation of the Sigmoid AF fitting

circuit.

The proposed circuitry introduces a single-bias voltage V to V Sigmoidal

neuron, which relies on the transfer characteristics of a CMOS pseudo-differential
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14.7 um

7.8 um

Figure 3.18: Layout schema at steepness parameters of 10 .

Table 3.4: AREA AND ABSOLUTE ERROR CALCULATION BETWEEN PRE- AND

POST-LAYOUT ANALYSIS FOR THE PROPOSED SIGMOID AF.

Case Layout
Dimensions Absolute Error ( mV)

α X ( µm) Y ( µm) A ( µm2) Pre-Layout Post-Layout
1 20.72 8.10 167.83 16.99 20.55
2 17.39 9.02 156.86 15.25 16.34

10 14.65 7.78 113.98 21.93 29.84

pair. The circuit's analysis has been assessed across varying steepness parameters,

demonstrating more precise approximations of the sigmoid function compared to

earlier designs. The results from this circuit present a favorable topology for AF

confirming the superior performance of the proposed design. Additionally, it

highlights the cost advantage attributed to the use of the 180nm technology.

3.3 Discussion Softmax and Sigmoid

Sigmoid and Softmax are both activation functions used in ANNs to introduce non-

linearity into the network’s computations. Being crucial components, particularly in

classification tasks.

Sigmoid is used for binary classification task, while Softmax is employed for
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multi-class classification tasks. Instead, it’s crucial to appreciate that each of these

functions serves a unique purpose.

In summary, the choice between sigmoid and softmax depends on the specific

task and the number of classes involved. Both have their strengths and weaknesses,

and their suitability should be considered in the context of the specific problem at

hand.

The proposed solutions, tailored to their respective contexts, emerge as

compelling and promising approaches that hold significant potential for addressing

diverse challenges in ANN.

3.4 Conclusion

A sigmoidal V-to-V neuron with only one bias voltage has been proposed. The

circuit design utilizes the transfer characteristics of a CMOS pseudo-differential pair

and the performance of this circuit has been evaluated at various steepness

parameter values. The minimum error between the output of Sigmoid AF and the

ideal Sigmoid function is only 1.09% considering the steepness parameter 1 and the

minimum power consumption is 6.77 µW when the steepness parameter is 10.

Shows a very accurate approximation compared with other references, with

improvements of absolute error, power consumption and area.

Besides, a novel analog implementation of the softmax AF largely used in deep

neural networks is presented in this paper. The proposed circuit is implemented in a

modular fashion, being composed of three building blocks, which can be replicated

and shared, to achieve a softmax function with an arbitrary number of inputs and

outputs. A ten-input/ten-output implementation of the proposed softmax circuit,

designed in a 180 nm CMOS technology. These improvements are achieved with

limited precision degradation, considering that the maximum and average relative
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errors, with respect to the theoretical softmax equation, are of 2.2% and 0.9% only,

respectively.
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CHAPTER 4

STT-MRAM DEVICES FOR NEURO-INSPIRED

COMPUTING USING NEUROSIM

The terminology ”neuromorphic” is utilized to describe systems and devices that

aim to mimic some of the functionalities of biological neural systems. Carver Mead,

located at the California Institute of Technology, was responsible for coining the term

in the latter part of the 1980s [145, 146].

Neuro-inspired computing is an emerging field that seeks to mimic the behavior

and functionality of the human brain using artificial intelligence and computing

technology. It encompasses various approaches including analog [147–149], digital

[150, 151], and hybrid circuits using resistive [152, 153], phase change [154], and

other non-volatile memory technologies [29, 155]. The goal of neuro-inspired

computing is to develop high-performance computing systems that can perform

cognitive tasks in a way that is more efficient, robust, and adaptable than traditional

computing systems. This field is quickly developing and is expected to lead to

significant advancements in artificial intelligence and computing technology in the

coming years. This technology will be important for the future of computing, but

much of the work in neuromorphic computing has focused on hardware

development [156, 157].

Indeed, conventional Von-Neumann computer architecture faces the ”memory

wall” problem due to the slow data transfer speeds between the microprocessor and

off-chip memory/storage, which becomes more severe when large amounts of data

are required for neural network training and testing [158, 159]. Neuro-inspired
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architecture provides a promising solution to this problem, as it leverages the

distributed computing in neurons and localized storage in synapses to perform

large-scale matrix operations directly on-chip, thereby taking advantage of

parallelism at a finer grain level, see Figure 4.1.
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Figure 4.1: Comparison of the von Neumann architecture with the neuromorphic
architecture.[160].

Furthermore, neuro-inspired computing presents various advantages in

comparison to conventional computing approaches, such as enhanced energy

efficiency, accelerated execution speed, increased accuracy, and improved resilience

against local failures. These benefits are primarily achieved through the utilization

of eNVMs that include RRAM, PCM, STT-MRAM, and FeFET, which offer

enhanced flexibility for the development of DNN.

In order to emulate the synaptic connections between neurons in an artificial

neural network, a computational unit known as a synaptic core is implemented. The

synaptic core is responsible for performing weighted summation and weight updates

[114, 115]. Depending on the type of bitcell used, the synaptic core architecture can

be either analog, digital, or hybrid.
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Although analog synapse eNVM-based architectures could be competitive in

terms of energy and latency, they mainly suffer from low online learning accuracy

[161]. To deal with this issue, digital synapse based architectures have been widely

considered [162, 163].

As potential eNVM candidate for digital synapse devices, STT-MRAM cell offers

low operating voltage, enough good speed operation, high-density, relatively large

endurance, low fabrication cost, low-power consumption, and scalability [38, 164,

165].

The following chapter explores the outstanding features when considering SMTJ

and DMTJ-based STT-MRAM cell on DNN, by using Cadence-Virtuoso

environment for circuit-level simulations, along with the MLP + NeuroSimV3.0

simulator computing-in-memory based neural network accelerator [163].

4.1 Neurosim: Simulation Framework

NeuroSim simulator allows to estimate the algorithm-level performance by

emulating the online learning and offline classification scenario with MNIST

handwritten dataset in a 2-layer multilayer perceptron (MLP) neural network based

on SRAM, eNVM and FeFET array architectures [163, 166–168]. NeuroSim

enables a comprehensive framework for circuit-level performance estimation;

therefore, it is used to compare neurologically inspired architectures in terms of

circuit-level metrics such as area, latency, dynamic energy, and leakage power.

Precisely, we propose an impact evaluation based on SMTJ and DMTJ devices.

The input parameters of the simulation tool include memory type, non-ideal

device parameters, transistor technology node, network topology and array size,

training dataset and traces, etc. For the full list of input parameters/variables, the

reader is referred to [163]. The outputs of the simulator include: (1) the memory
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architecture-level performance metrics, such as area, latency, dynamic energy, and

(2) algorithm-level learning accuracy in run-time.

Figure 4.2 displays an overview of NeuroSim framework considering for the

whole system from device and bitcell levels to memory architecture and algorithm

levels.
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Figure 4.2: Overview of NeuroSim framework from Device to Algorithm-level, (a)
STMJ and DMTJdevice, (b) SMTJ-based and DMTJ-based bitcell configurations,
(c) Circuit block diagram of digital eNVM synaptic core, (d) Circuit block diagram
for hardware implementation of the 2-layer MLP NN. The weights are mapped
through synaptic cores (e) Training flow of Neural Network, the MNIST images
are crooped and encoded into black and white data for simplification on hardware
implementation.

4.1.1 Algorithm-Level

NeuronSim is a hierarchical structure from the algorithm layer to the device layer,

taking into account detailed properties of the synaptic array and realistic devices.

It can be viewed as an independent functional simulator capable of assessing the

learning accuracy at the circuit level performance specifically for the synaptic array

during learning [166].
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Furthermore, it is a simple 2-layer MPL neural network for performance

benchmark. As shown in Figure 4.2(e) the network consists of an input layer,

hidden layer and output layer (the input layer is not included when counting the

number of layers). The considered MLP is a fully connected neural network, where

each neuron node in one layer connects to every neuron node in the following layer.

We remind that the connection between two neuron nodes is through a synapse with

its strength representing the weight. The connections between input-hidden and

hidden-output layers represent the weight matrix WIH and WHO, respectively.

The MNIST dataset itself consists of input image data depicting handwritten

digits, with each image comprising 20x20 pixels. Besides, Figure 4.2(e) displays the

network topology, consisting of an input layer with 400 neurons (corresponding to

the 20x20 MNIST image), a hidden layer with 100 neurons, and an output layer

with 10 neurons (representing the 10 classes of digits).

During the training process, see Figure 4.2(f), it consists of two key operations:

feed forward and back propagation. In feed forward, input data are passed from the

input layer to the output layer via a series of weighted sum operations and neuron

activation functions. The output is then compared to the correct answer to calculate

the prediction error. In back propagation, this error is used to adjust the weights

of each layer in order to minimize the prediction error. Stochastic gradient descent

is used to update the weights during back propagation, with the back propagation

performed after the feed forward of each image. During testing and classification,

only the feed forward operation is used to make predictions and the weights are not

changed.

Lastly, considering the training time, we employ 15 epochs (i.e., number of

training iterations), 8000 and 1000 MNIST images for training and testing,

respectively, giving a total of 12000 MNIST images being trained. We used the

online learning in hardware configuration, which handle testing and training for
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both weight sum and weight update all in hardware.

4.1.2 Memory Architecture-Level

Among the available design options for the synaptic cores, we considered the digital

eNVM based on pseudo-crossbar array as shown in Figure 4.2(c), as the digital

synaptic devices can only store binary 0 or 1, the digital synaptic devices must be

grouped together to represent the weight precision [163].

By contrast Figure 4.2(d) depicts the circuit block diagram for hardware

implementation of the 2-layer MLP considered. Each synaptic core is a computation

unit specifically designed for weighted sum and weight update [163, 166].

The embedded non-volatile memory makes up the majority of the digital synaptic

core and is responsible for storing the synaptic weights of a neural network. It plays

a crucial role in the processing of neural network information through write and read

operations, allowing for efficient and accurate execution of machine learning tasks.

The size of the synaptic core area is an important factor to consider in achieving

optimal performance and energy efficiency in digital synapse devices, as reducing

its size can lead to a smaller overall circuit architecture and potentially lower power

consumption [166].

Therefore, the bit-cell selected for the digital synapse core is an STT-MRAM cell

based on SMTJ and DMTJ.

4.1.3 MTJ Devices and operation-bitcells

As shown in Figure 4.2(a), we consider STT-SMTJ/DMTJ devices, whose main

physical and performance parameters are listed in Table 4.1. Chapter 4 provides

comprehensive details regarding SMTJ and DMTJ devices. The main device

parameters considered in the referenced work [38] for both perpendicular-MTJ and

FinFET devices is at 28 nm technological node and T = 300 K.
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The STT-MTJs are described through Verilog-A based compact models [169,

170], which have been validated against full micromagnetic and experimental

results. This parameters are extracted since are needed to incorporated the SMTJ

and DMTJ parameters at the device level in NeuroSim tool (see Table 4.1). In

particular, the STT-MTJ models utilize experimental data reported in [171]. These

models further account for the impact of process variability on the STT-MTJs.

Specifically, the variability, modeled by incorporating Gaussian-distributed

variations, was set to 1% for both the free-layer and oxide thickness, 3% for TMR

ratio, and 5% for the cross-section area [38].

Table 4.1: SMTJ AND DMTJ DEVICE PARAMETERS [38].

Parameter Units Value
Diameter (d)a nm 28
Saturation magnetization (Ms)a A/m 1000 × 103

Magnetic damping (α)a - 0.025
Spin-polarization factor (η)a - 0.67
FL thickness (tFL)a nm 1.2
SMTJ oxide thickness nm 0.85
DMTJ top oxide thickness nm 0.85
DMTJ bottom oxide thickness nm 0.4
TMR at 0 V (TMR(0))c % 150
a Same value for SMTJ and DMTJ devices.
c Same value for SMTJ barrier and DMTJ top/bottom barriers

This analysis considers the SMTJ-based and DMTJ-based bit-cell developed by

E.Garzón et al [37, 38]. Figure 4.2(b) shows the considered SMTJ-based and

DMTJ-based bitcell configurations designed exploiting a 28 nm FinFET technology

featuring a nominal supply voltage of 0.8 V. These are referred to the two

complementary FinFET and one MTJ (2T1MTJ) cells in reverse and standard

connection (2T1MTJ-RC and 2T1MTJ-SC) for the SMTJ- and DMTJ-based

bitcells, According to the study carried out in [38], those considered are the most

write energy-efficient bitcell configurations.
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4.2 Efficiency of DMTJ-based Digital eNVM

NeuroSim framework shown in Figure 4.2 was properly calibrated with the 0.8 V

FinFET technology parameters, along with the bitcell electrical characteristics of the

considered 2T1MTJ-based bitcells, which are the cells of the pseudo-crossbar eNVM

digital synaptic core. Bitcell-level results consider both SMTJ/DMTJ and FinFET

device-to-device variability through extensive Monte Carlo simulations. Table 4.2

shows the bitcell-level parameters of the energy-optimal cell size and configurations

(refer to Figure 4.2(b)).

It is worth to mention that these results are carried out at parity of TMR, and

oxide thickness, i.e., tox,SMTJ = tox,t,DMTJ = 0.85 nm. Performance results for write

and read operations are obtained, assuring a write-error-rate (WER) of 10−7 and read

disturbance rate (RDR) of 10−9, respectively.

Table 4.2: NOMINAL VALUES FOR STT-SINGLE AND DOUBLE BARRIER CELL

(tox = 0.85 nm)

Parameters Units SMTJ DMTJ
Cell Area F 2 231 131
Resistance ON Ω 9513 11370
Resistance OFF Ω 16390 22170
Read Pulse Width ns 1.00 1.00

Read Mode Read Current fJ 26.12 7.20
Read Power ns 20.89 5.76
Reset Current µA 54.77 49.27

Reset Mode Reset Pulse ns 3.39 1.16
Reset Energy pJ 0.1929 0.0552
Set Current µA 82.85 49.62

Set Mode Set Pulse ns 3.39 1.16
Set Energy pJ 0.177 0.0409

From Table 4.2, it is clear that thanks to the reduced switching and read currents,

the DMTJ-based bitcell is the most energy-efficient alternative under write/read

operations. Overall, at bitcell-level, the DMTJ-based alternative shows energy
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savings of about 72% and 97% for read and write operations, while assuring faster

(65.7%) switching in contrast to the SMTJ-based bitcell.

Moreover, from Table 4.2, Resistance ON is related to the Low-Resistance-State

(LRS) and Resistance OFF corresponds to the High-Resistance-State (HRS) when

sensing (i.e,. during reading operation). Reset Mode and Set Mode corresponds to

the operation during writing when writing a ”zero”(AP→P) and ”one”(P→AP) into

STT-MRAM cell, respectively. Likewise, Reset Pulse and Set Pulse stand for the

pulse duration over the AP→P and P→AP switching operation, respectively.

The calculation of parameters that must be inserted when setting up the eNVM

bitcell digital specifications for the synaptic core are; Read Voltage, Read Energy,

Read and Write Pulse Width, Write Energy, Write Voltage long-term depression and

long-term potentiation (LTD and LTP). As mention in the following equations:

ReadV oltage = ReadCurrent · RON +ROFF

2
(4.1)

ReadEnergy = ReadPower ·ReadPulseWidth (4.2)

WriteEnergy =
ResetEnergy + SetEnergy

2
(4.3)

LTP and LTD involve modifying the strength of the connections between neurons

by increasing or decreasing the synaptic weight over time. Below the equation is

presented as:

WriteV oltageLTP = ResetCurrent ·ROFF (4.4)

WriteV oltageLTD = SetCurrent ·RON (4.5)
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In summary, Table 4.3 displays the parameters obtained from the equations shown

above, in order to evaluate the algorithm-level performance of 2-layer MPL neural

network.

Table 4.3: BITCELL-LEVEL PARAMETERS FOR SMTJ AND DMTJ (tox=0.85 nm)

Parameter Unit STMJ DTMJ

bitcell

Cell Area F 2 231 131
Resistance ON Ω 9513 11370
Resistance OFF Ω 16390 22170
Conductance ON/OFF − 1.79 1.97
Read Voltage V 0.338 0.121
Read Energy fJ 20.9 5.76
Read Pulse Width ns 1.00 1.00
Write Energy fJ 185 4.80
Write Voltage LTD V 0.788 1.09
Write Voltage LTP V 0.898 0.564
Write Pulse Width ns 3.39 1.16

4.2.1 Performance Analysis

The SMTJ- and DMTJ-based 2-layer MLP neural network performance is evaluated

in terms of learning accuracy versus latency and energy consumption, calculated at

the run-time.

The read (weighted sum-feed forward operation) and write (weight update

operation) latency and energy are shown in Figure 4.3. We can observe that the

weighted sum and weight update operations associated to the DMTJ-based eNVM

cell achieve the highest accuracy much faster as compared to the SMTJ-based

counterpart, while at the same time ensuring less energy consumption. This is due to

the reduced energy/write-pulse width of the DMTJ-based bitcell (refer to Table

Table 4.2).

From Figure 4.3(a), it is worth noting that the delta latency (i.e, time between
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Figure 4.3: Trace of Latency and Energy in feed forward and weight update during
online learning for both STMJ- and DMTJ-based when considering a top barrier of
tox,SMTJ = tox,t,DMTJ = 0.85 nm

iterations) in feed forward operation, for both STMJ- and DMTJ-based alternatives,

is roughly the same, mainly do to the similar requirement for the read pulse width.

As for the weight update operation, the delta latency between each epoch is 14ms
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and 4.7ms, respectively. This can be explained due to the larger pulse width required

for writing operation. As compared with the SMTJ-based alternative, the DMTJ-

based cell shows an improvement in terms of latency, of about 18% and 66% in feed

forward and weight update operations, respectively, during online learning. Similar

results have been obtained for the energy consumption, as shown in Figure 4.3(b).

The DMTJ-based cell shows lower energy consumption as compared to the SMTJ-

based alternative, owing to its reduced bitcell read/write energy. The results showed

an improvement of about 61% and 54% during feed forward and weight update,

respectively.

The benchmark results show that, while the DMTJ-based solution achieves a

good accuracy of (> 90%), the SMTJ-based neural network reaches a learning

accuracy of about 83%.

The cause of degradation in terms of learning accuracy is attributed to the devices’

poor conductance ON/OFF ratio [161].

In addition, we estimate the area occupation as extracted from NeuroSim. Fig.

Figure 4.4 shows the total area footprint. The area occupation for the SMTJ-based

and DMTJ-based alternatives is 0.0788mm2 and 0.0531mm2, respectively. DMTJ-

based bitcell can achieve the smallest area footprint due to the smaller bitcell area

(see Table 4.3), which corresponds to the energy-optimal cell size.

4.2.2 Impact of Synaptic Device Properties on Accuracy

During the weight update, the conductance of the device should be sufficiently large,

i.e., the lowest conductance state (OFF-state) should be low enough to represent the

zero weight in the algorithm [161]. To quantify the impact of the device properties

on the learning accuracy, we carried out an analysis for both STT-MTJ alternatives

by varying tox/tox,t.

If we decrease the oxide thickness for both devices, the ON and OFF resistance
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Figure 4.4: Area of MLP NN architecture for both SMTJ-based and DMTJ-based
synaptic cores.

of the bitcell will be affected. Accordingly, the performance results for write and

read operations obtained at oxide thickness tox,SMTJ=tox,t,DMTJ = 0.80 nm are shown in

Table 4.4

Table 4.4: NOMINAL VALUES FOR STT-SINGLE AND DOUBLE BARRIER CELL

(tox = 0.80 nm)

Parameters Units SMTJ DMTJ
Cell Area F 2 231 131
Resistance ON Ω 6975 8838
Resistance OFF Ω 13340 16650
Read Pulse Width ns 1.00 1.00

Read Mode Read Current µA 26.12 7.20
Read Power µW 20.89 5.76
Reset Current µA 69.44 60.96

Reset Mode Reset Pulse ns 2.119 0.971
Reset Energy pJ 0.1462 0.0533
Set Current µA 110.0 56.88

Set Mode Set Pulse ns 2.119 0.971
Set Energy pJ 0.1503 0.0394

Likewise, Table 4.5 depict SMTJ-base and DMTJ-base bitcell parameters
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required for the NeuroSim tool.

Table 4.5: BITCELL-LEVEL PARAMETERS FOR SMTJ AND DMTJ (tox=0.80 nm)

Parameter Unit STMJ DTMJ

bitcell

Cell Area F 2 231 131
Resistance ON Ω 6975 8838
Resistance OFF Ω 13340 16650
Conductance ON/OFF − 1.913 1.88
Read Voltage V 0.265 0.0917
Read Energy fJ 20.9 5.76
Read Pulse Width ns 1.00 1.00
Write Energy fJ 148 46.4
Write Voltage LTD V 0.767 0.503
Write Voltage LTP V 0.926 1.01
Write Pulse Width ns 2.119 0.971

When considering a top barrier of tox,SMTJ = tox,t,DMTJ = 0.80 nm, the conductance

ON/OFF ratio for SMTJ- and DMTJ-based cell are 1.91 and 1.88, respectively.

Therefore the conductance ON/OFF ratio for SMTJ-based cell increases by 6.4%,

while DMTJ-based cell decreases by 4.8%, as shown in Figure 4.5. The reduced

ON/OFF conductance ratio in the DMTJ-based cell can be explained by the

presence of the second oxide barrier.

The read (weighted sum-feed forward operation) and write (weight update

operation) latency and energy, when oxide thickness of the SMTJ-base and

DMTJ-based bitcell is 80nm, are shown in Figure 4.6.

We can notice that during the feed forward and weight update operation, DMTJ-

based eNVM is much faster to reach the highest accuracy as compared to the SMTJ-

based counterpart, conversely ensuring less energy consumption.

Furthermore, we can observe that during the read and write operations associated

to the SMTJ-based and DMTJ-based eNVM cell the achieved accuracy are almost

close, giving results of 90.52% and 89.86 %, respectively. Therefore, the accuracy

for SMTJ-based cell increases by 5.9%, while DMTJ-based cell decreases by 2.4%,
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DMTJ-based neural networks.

see Figure 4.7.

Note that the use of very thin oxide barriers could lead to breakdown of the MTJ

structure. To deal with this reliability issue, the write voltages have to be reduced

[172].

Table 4.6 shows the assessment of energy, latency, accuracy, and area results

obtained at different values of oxide thickness, for SMTJ- and DMTJ-based cells.

From table Table 4.6, the SMTJ-based cell at tox=0.85 nm has less latency and

energy consumption compared with SMTJ-based cell at tox=0.80 nm in feed forward

operation. In contrast, during the weight update, the latency and energy

consumption increases when tox=0.85 nm. Moreover, during the feed forward and

weight update operation the DMTJ-based cell at tox=0.80 nm results less energy

hungry than its tox=0.85 nm counterpart. Furthermore, the DMTJ-based cell at

tox=0.85 nm is faster compared with tox=0.80 nm along the weight sum. During the
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Figure 4.6: Trace of Latency and Energy in feed forward and weight update during
online learning for both STMJ- and DMTJ-based when considering a top barrier of
tox,SMTJ = tox,t,DMTJ = 0.85 nm

weight update, the DMTJ-based cell at tox=0.80 nm has improved latency over the

tox=0.85 nm counterpart.

Finally, we have also performed the comparative study of the DMTJ- and
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Table 4.6: BENCHMARK RESULTS OF SMTJ- AND DMTJ-BASED CELL AT

TOX,SMTJ = TOX,T,DMTJ = 0.85 nm AND TOX,SMTJ = TOX,T,DMTJ = 0.80 nm.

Parameter Oxide
thickness

Energy (mJ) Latency (ms)
Read Write Read Write

SMTJ 0.80 nm 0.712 2 76.2 128
0.85 nm 0.695 2.15 61.8 204

DMTJ 0.80 nm 0.273 0.899 58.8 55.4
0.85 nm 0.2731 0.996 50.9 70.0

SMTJ
(0.8 nm vs 0.85 nm) (%) 2.45 -6.98 23.3 -37.25

DMTJ
(0.8 nm vs 0.85 nm) (%) -0.04 -9.74 15.52 -20.86

DMTJ vs SMTJ
(@ 0.80 nm) (%) -61.66 -55.05 -22.83 -56.72

SMTJ-based solutions considering tox=0.80 nm. The DMTJ-based cell shows an

improvement in terms of latency, of about 23% and 57% in feed forward and weight

update operations, respectively, compared with the SMTJ-based cell. As for the

energy consumption, the analysis shows similar results compared with tox,SMTJ =
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tox,t,DMTJ = 0.85 nm, showing accuracy improvements of about 62% and 55% during

feed forward and weight update, respectively.

4.3 Conclusion

We have explored the STT-MTJ synaptic pseudo-crossbar array architecture and

device/transistor models in NeuroSim. Our results show that, at parity of TMR and

oxide thickness, as compared to the conventional SMTJ-based alternative, the

DMTJ-based solution proves to be faster during feed forward and weight update

operations of about 18% and 66%, respectively, more energy efficient under read

(-60.7%) and write operation (-53.7%), and less area hungry (-35%) at an

energy-optimal bitcell configuration/size. This occurs while also achieving an

accuracy closed to 91% when running the neural network with the MNIST dataset.
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CHAPTER 5

STT-MTJ BASED SMART MATERIAL

IMPLICATION ARCHITECTURE FOR

IN-MEMORY COMPUTING

Material implication (IMPLY) logic shows great potential as a prospective solution

for defining LIM architectures designed to execute fast and energy-efficient

computations directly within memory units. This approach effectively mitigates the

von-Neumann bottleneck of conventional computing platforms, specifically the

need to read/write data to/from off-chip memories [31, 173–180]. However, the

conventional IMPLY logic scheme faces significant challenges, including the

degradation of the logic states and the limited design flexibility associated with

operating voltages [181]. To overcome these drawbacks, an alternative smart

IMPLY (SIMPLY) LIM scheme was recently proposed [181–184]. The SIMPLY

solution integrates an output comparator into the classical IMPLY scheme. This

comparator is exploited to execute a preliminary 2-bit read operation, which is then

used to execute the SET operation selectively, based on the specific need (i.e., only

when both inputs are at low logic level [181]). Such an approach effectively

alleviates the issue of logic state degradation, while also reducing energy

consumption with minimal impact on circuit area and complexity when compared to

the conventional IMPLY scheme [181].

Although the SIMPLY logic was originally proposed and validated for RRAM

devices [181–184], recent investigations have extended its applicability to
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STT-MRAM devices[185, 186]. The latter represents an appealing option for LIM

applications owing to faster read/write operations, very low standby power

consumption, and high endurance [5, 29, 38, 71, 72, 187]. According to findings in

[185], the STT-MRAM-based SIMPLY scheme exhibits the expected advantage of

improved energy-efficiency and reliability as compared to its IMPLY counterpart.

However, as highlighted in [186], the reliability of STT-MRAM-based SIMPLY

logic is significantly impacted by the preliminary read operation. This influence is

primarily due to the relatively narrow read memory window inherent in

STT-MRAM devices, constrained by their TMR ratio [188–190]. Consequently, this

limitation results in suboptimal read margins, which lead to a higher level of design

complexity in the sensing circuitry [186].

In response to the above issue, this chapter introduces SIMPLY+, i.e., an

advanced STT-MRAM-based SIMPLY logic scheme that allows enhanced operation

reliability compared to its conventional counterpart. SIMPLY+ scheme, which is an

STT-MTJ-based SIMPLY scheme with large read sensing margins, reliable for

IMPLY operations, is exhaustively evaluated by means of extensive Monte Carlo

(MC) simulations and benchmarked against the conventional SIMPLY logic.

5.1 STT-MTJ Modeling

The behavior and characteristics of the STT-MTJ are described using an analytical

macrospin-based Verilog-A compact model [191]. The main physical parameters of

the 30- nm STT-MTJ device considered in this work are summarized in Table 5.1,

referring to room temperature (300 K) [192–194].

As results of the modeling, Figure 5.1 shows the trend of the resistance and

switching characteristic across temperatures.
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Table 5.1: STT-MTJ parameters (300 K)

Parameter Description Value Units
d Diameter 30 nm
tFL FL thichness (variability) 1.15 nm
tOX Oxide thickness (variability) 0.85 nm
RA Resistance-area product 10 Ω· µm2

η Spin-polarization factor 0.66 –

VH
Bias voltage for

0.5 V
TMR = 0.5 · TMR(0)

MS Saturation magnetization 1.58 T
α Gilbert damping factor 0.03 –

Ki
Interfacial perperdicular

1.3 mJ/ m2
anisotropy constant

∆ Thermal stability factor ∼44 –

2 
 

2. STT-MTJ Modeling 

The sketch of a perpendicular STT-MTJ device with 
circular geometry is shown in Fig. 1. Its structure basically 
consists of three layers, i.e., a thin MgO oxide barrier 
sandwiched between two CoFeB ferromagnetic (FM) 
layers. One FM layer, namely reference layer (RL) has 
fixed magnetization orientation, whereas the other FM 
layer, namely free layer (FL) has variable magnetization 
orientation. This entails two stable configurations as 
determined by the relative magnetization orientation of the 
FL with respect to that of the RL (parallel or antiparallel). 
These two stable configurations involve two different 
resistance states, i.e., low resistance (RL) in parallel state 
and high resistance (RH) in antiparallel state (here 
corresponding to bit 1 and bit 0, respectively), whose 
difference is quantified by the tunnel magnetoresistance 
(TMR) ratio, as shown in Fig. 1. The switching from one 
state to the opposite is achieved through the STT 
mechanism, i.e., by applying a proper current flowing 
through the device [13].  

To describe the STT-MTJ behavior and characteristics, 
we employed an analytical macrospin-based Verilog-A 
compact model [13]. Table 1 summarizes the main 
physical parameters of the 30-nm STT-MTJ device 
considered in this work [14–16]. As reported in Table 1, 
the model also accounts for the temperature dependence 
of physics parameters such as spin polarization factor (P), 
saturation magnetization (MS), and interfacial 
perpendicular anisotropy constant (Ki). Such temperature-
dependent parameters are modeled through semi-empirical 
laws [17, 18], as detailed in [19]. As a result of our 
modeling, Fig. 2(a)-(d) shows the trend of resistance and 
switching characteristics across temperatures. More 
specifically, Fig. 2(a) shows the temperature behavior of 
resistance values and corresponding TMR ratio at zero 
bias voltage. From this figure, RL is almost independent of 
temperature, whereas RH decreases with increasing 

temperature, as experimentally evidenced in [20–23]. This 
implies a TMR degradation at higher temperature, i.e., 
from 166% at 250 K down to 134% at 350 K as shown in 
Fig. 2(a). Fig. 2(b) and (c) show the behavior of the 
thermal stability factor (Δ) and critical switching current 
(Ic), respectively. Within our macrospin modeling, such 
parameters are given by 

 (1) 

 (2) 

where μ0 is the vacuum permeability, Hk,eff is the effective 
anisotropy field, VFL is the FL volume, kB is the 
Boltzmann constant, T is the FL temperature, α is the 
Gilbert damping factor, e is the electron charge, γ is the 
gyromagnetic ratio, μB is the Bohr magneton, and gSTT is 
the STT spin efficiency term depending on the P [13]. 
Owing to the decrease of MS and Ki with increasing 
temperature (see Table 1) and according to (1)-(2), both Δ 
and Ic expectedly tend to decrease as temperature 
increases [23], as shown in Fig. 2(b) and (c). Then, Fig. 
2(d) shows the write error rate (WER) vs. bias voltage 
(VMTJ) curves for 0→1 switching transition (i.e., from RH 
to RL) at a pulse width (tpulse) of 10 ns and different 
temperatures. According to the decrease of RH, Δ and Ic 
with increasing temperature, the bias voltage for a target 
WER (10-7 in Fig. 2(d)) decreases as temperature 
increases. In turn, for a given bias voltage, the WER 
decreases with increasing temperature.  

3. SIMPLY Logic Scheme 

Fig. 3(a) illustrates the basic architecture of the 
SIMPLY logic. It consists of two MTJs (P and Q) and a 
load resistor RG as in the conventional IMPLY scheme [6–
9], along with an additional comparator. A control logic 
block equipped with analog tri-state buffers as in the 

Fig. 1. STT-MTJ sketch and resistive states. 
 

TABLE 1 
STT-MTJ Parameters 

Parameter Description (unit) Value (250 K, 300 K, 350 K) 

d Diameter (nm) 30 
tFL FL thickness (nm) 1.15 
tOX Oxide barrier thickness (nm) 0.85 

RA Resistance-area product 
 in parallel state (Ω∙µm2) 10 [14] 

P Spin polarization factor  (0.68, 0.66 [15], 0.64) 

VH Bias voltage for  
TMR = TMR(0)/2 (V) 0.5 

MS Saturation magnetization (T) (1.64, 1.58 [16], 1.51) 
α Gilbert damping factor 0.03 

Ki 
Interfacial perpendicular  

anisotropy constant (mJ/m2) (1.41, 1.3 [16], 1.18) 

 

Fig. 2. Temperature-dependent STT-MTJ characteristics: (a) resistance in 
low (RL) and high (RH) states at zero bias voltage with the detail of 
corresponding tunnel magnetoresistance (TMR) ratio, (b) thermal stability 
factor (Δ), (c) critical switching current (Ic) for 0→1 switching (i.e., from 
antiparallel to parallel state), (d) write error rate (WER) vs. bias voltage 
(VMTJ) for 0→1 switching at pulse width tpulse = 10 ns. 
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Ki 
Interfacial perpendicular  

anisotropy constant (mJ/m2) (1.41, 1.3 [16], 1.18) 

 

Fig. 2. Temperature-dependent STT-MTJ characteristics: (a) resistance in 
low (RL) and high (RH) states at zero bias voltage with the detail of 
corresponding tunnel magnetoresistance (TMR) ratio, (b) thermal stability 
factor (Δ), (c) critical switching current (Ic) for 0→1 switching (i.e., from 
antiparallel to parallel state), (d) write error rate (WER) vs. bias voltage 
(VMTJ) for 0→1 switching at pulse width tpulse = 10 ns. 
 

LRS
HRS

(a) (b)

Figure 5.1: STT-MTJ structure and its resistive states. (a) Resistance in low (LRS)
and high (HRS) states at zero bias voltage with tunnel magnetoresistance (TMR)
ratio values at 250K, 300K, and 350K. (b) Critical switching current (Ic) for 0 → 1
switching (i.e., from antiparallel to parallel state)[186].

5.2 Logic-in-Memory Architectures

BNN implementation based on the SIMPLY architecture have gained significant

attention in recent years due to their energy efficiency and potential for hardware

implementation.

Figure 5.2 shows the top-level diagram of the designed STT-MRAM SIMPLY-

based architecture. A control logic, equipped with analog tri-state buffers (TSBs)
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Figure 5.2: Top-level STT-MRAM SIMPLY architecture.

delivers the appropriate voltages to the STT-MRAM devices while the sensing circuit

involves the topology needed to perform the IMPLY operation. The architecture

also employs transistors to enable specific array columns and to connect adjacent

columns.

5.2.1 Conventional IMPLY Scheme

The IMPLY logic is based on two logic operations: IMPLY and sFALSE. The IMPLY

operation involves two inputs (P and Q) with a load resistor RG and one output, while

the sFALSE operation is a one-input one-output operation that always results in a

logic-‘0’.

These operations can be implemented with MTJ devices, and replace the tail

resistor [186] with a NMOS transistor (refer to the Mn in Figure 5.3), along with

a control logic and analog tri-state buffers, to apply the appropriate voltages to the
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(Q’= P IMPLY Q)

Q’ ≠ Q only for P=Q=0
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Figure 5.3: (a) Conventional STT-MTJ based IMPLY logic gate circuit with a tail
transistor (instead of resistor) and truth table of the IMPLY logic operation.

MTJs. IMPLY truth table presented at the right of Figure 5.3. To perform the P

IMPLY Q operation, the control logic sends voltage pulses to P and Q. Then the

output Q’ is determined by the state read on Q.

The input P maintains its state regardless of the input combination, while Q

should only switch from ‘0’ to ‘1’ in the case where P and Q are both ‘0’. As for the

sFALSE operation, a negative voltage pulse is applied to a single device. Due to

logic state degradation [181], the resistance that is supposed to keep the logic ‘0’

during IMPLY computation gets slightly reduced. To deal with this, IMPLY

operation is repeated. However, this leads into bit corruption after a few cycles, thus

requiring inefficient memory refresh cycles [195].
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5.2.2 SIMPLY Scheme

Figure 5.4 sketches the conventional SIMPLY scheme [183], which was introduced

to overcome the shortcoming of the traditional IMPLY design [181–184].

TSB
EN
SN

VDC

VDD

VSS

EN

SN

VDC

Enable (EN)
Signal IN (SN)

Baseline: SIMPLY

x

HI-Z

RL

FL

tox

MTJ

P
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FL

tox

MTJ

Q

VREAD

CONTROL LOGIC W/ 
ANALOG TRI-STATE BUFFER (TSB)

VRESET VSET VRESET

x

HI-Z VREAD

VG +
-

VREF

Vbias Mn

VOUT

Figure 5.4: Conventional STT-MTJ based SIMPLY logic gate circuit with a tail
transistor (instead of resistor).At the top: Tri-state buffer topology (TSB).

Indeed, both IMPLY and FALSE operations are performed more efficiently

within this architecture as SIMPLY and sFALSE operations, respectively [182]. The

IMPLY or SIMPLY operation involves two inputs and one output, according to the
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truth table reported in Figure 5.3 (right). The inputs are represented by the initially

stored states of the two MTJs P and Q in Figure 5.4, while the output is given by the

final state of the MTJ Q after the execution. On the other hand, the FALSE or

sFALSE operation is a one-input one-output operation that always results in a logic

‘0’ stored in the considered MTJ. Accordingly, as shown in Figure 5.4, the core of

the conventional SIMPLY logic scheme consists of two MTJs (P and Q) and an

NMOS tail transistor (Mn) driven by the Vbias voltage, here used to implement the

load resistor RG [186]. Moreover, the SIMPLY scheme presents an output

comparator and a control logic block including analog tri-state buffers (TSBs),

shown at the top of Figure 5.4, to apply the appropriate voltages to the MTJs and to

manage the execution of the operations.

Within this scheme, ensuring the proper execution of the P IMPLY Q operation

involves maintaining the state of MTJ P, regardless of the input combination. At the

same time, the MTJ Q should only switch from ‘0’ to ‘1’ when P = Q = ‘0’. A

preliminary read operation is performed with the aim of distinguishing the input

combination P = Q = ‘0’ from all other possibilities. To accomplish this, a proper

voltage pulse with an amplitude VREAD and width tREAD is applied the top electrode

of both MTJ devices through the control logic block. Then the voltage VG across the

transistor Mn is compared to an appropriate reference voltage VREF using the output

comparator. In this way, the P = Q = ‘0’ input combination is effectively detected,

thus allowing the subsequent SET operation on MTJ Q to take place only in this

specific case. This is achieved by applying an appropriate voltage pulse with

amplitude VSET and width tSET on Q, while keeping the P driver in a high impedance

(HI-Z) state, as shown in Figure 5.5(a). On the contrary, for the other input

combinations the control logic forces both MTJ drivers into a HI-Z state, thus

enabling significant energy savings [181, 183, 186], see Figure 5.5(b).

Similarly to the SIMPLY operation, the sFALSE operation also requires a
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Figure 5.5: Timing diagram of applied voltage pulses when the sensing circuitry
detects the input condition P=Q=‘0’ and in all other cases [186].

preliminary read operation, but on a single device. Thereby, the subsequent RESET

operation requiring a negative voltage pulse is performed only when the detected

MTJ state is ‘1’ [182].

5.2.3 Proposed SIMPLY+

Figure 5.6 shows the SIMPLY+ scheme proposed in this work and purposely

designed to enhance the reliability of the preliminary read operation. This latter is

the most critical operation for the STT-MRAM-based SIMPLY framework, owing to

the relatively narrow read memory window offered by MTJ devices [186]. Our

approach involves the use of a CS amplifier stage with a diode-connected load

(M1-M2). The CS input is represented by the voltage VG across the transistor Mn,

while the output drives the gate terminal of the same transistor. This allows for

significantly enlarging the read margins in terms of VG voltages developed for the P

= Q = ‘0’ input combination and the others,thus enabling more reliable operation, as

demonstrated in the subsequent subsection.
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Figure 5.6: STT-MRAM-based SIMPLY+ scheme, including the tail transistor, a
common source stage with diode-connected load, and the output comparator.

5.3 Simulation Results and Discussion

In the following, we will present and discuss the simulation results referred to the

preliminary two-device read operation in the SIMPLY+ scheme, while also

benchmarking it against the conventional SIMPLY counterpart. All the reported

data is based on electrical simulations performed at room temperature (300 K) by

using the Cadence Virtuoso environment. Transistors’ modeling refers to a

commercial 65 nm 1.2 V CMOS process, while our Verilog-A compact model [191]

is used for the 30- nm STT-MTJ devices.

Figure 5.7 shows the timing diagram for key signals involved in the preliminary

read operation when using both the conventional SIMPLY and the enhanced

SIMPLY+ approaches. The data refers to a nominal simulation with the transistor
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Figure 5.7: Timing diagram of the signals involved in the SIMPLY and SIMPLY+
schemes during the preliminary read operation as obtained from nominal simulations
at 300 K considering Wn/Ln = 1 µm/3 µm size for the transistor Mn, VREAD = 0.5 V
and Vbias = 1 V.

Mn size of Wn/Ln = 1 µm/3 µm and VREAD = 0.5 V in both schemes. In the

SIMPLY scheme, Vbias is set to 1 V. From Figure 5.7, when the EN and SN signals

are switched ON in the TSBs, the VREAD is set to 0.5 V. This results in a

corresponding VG voltage across transistor Mn, dependent on the input

combinations, , specifically the states of the MTJs P and Q. For the conventional

SIMPLY architecture, the VG voltages obtained for the scenarios where P = Q = ‘0’

and P ̸= Q yield a nominal read margin (RM) of just 55 mV. On the other hand, due

to the additional CS stage, the SIMPLY+ scheme exhibits a nominal RM of 209 mV
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(a)

(b)

µ µ

Figure 5.8: Simulation results of the conventional SIMPLY scheme for the
preliminary read operation under process variations at 300 K considering Wn/Ln =
1 µm/3 µm size for the tail transistor Mn, VREAD = 0.5 V, Vbias = 1 V and tREAD

=10 ns. (a) VG statistical distributions for the different input combinations and (b)
estimation of the bit error rate (BER) and reference voltage (VREF).

at 10 ns and 183 mV at 20 ns. This leads to an improvement of 3.8× and 3.3×,

respectively, when compared to its conventional counterpart.

The reliability of the preliminary read operation in both schemes was also

investigated while considering the effect of process variations on transistor and MTJ

devices. This analysis was performed by means of extensive MC simulations.

Transistor process variations were included using statistical models provided by the

commercial PDK. For the MTJs, we assumed Gaussian distributed variations in the

adopted Verilog-A compact model by setting the variability (defined as the ratio of

the standard variation (σ) to the mean value (µ)) of 1% and 5% for the oxide

99



thickness (tOX) and the cross-section area, respectively [185, 186, 191].

Figure 5.8(a)-(b), Figure 5.9(a)-(b) and Figure 5.10(a)-(b) show the MC

simulation results obtained for the SIMPLY and SIMPLY+ architectures. More

specifically, these figures report the statistical distributions of the voltage VG for the

different input combinations, while highlighting the corresponding estimated values

for the RM, bit error rate (BER), and VREF. The RM is evaluated both at the nominal

corner (as given by the difference between the mean VG values associated with the P

= Q = ‘0’ and P ̸= Q cases) and at the 3σ corner (RM3σ), with σ being the standard

deviation of VG distributions. The BER refers to the failure probability in

distinguishing the input combination P = Q =‘0’ from the other combinations during

the preliminary read operation [186] and it is estimated by properly setting the VREF

used as input of the output comparator. In particular, the appropriate VREF is

determined by the voltage value that results in the same BER for the cases P = Q =

‘0’ and P ̸= Q [104]. It is worth pointing out that in our analysis, the BER was

evaluated by assuming an ideally stable VREF and an ideal comparator with zero

offset.

Figure 5.8(a)-(b) show the MC simulation results achieved within the

conventional SIMPLY scheme for tREAD =10 ns. From Figure 5.8(a), the obtained

nominal RM is equal to 55 mV, whereas the corresponding RM3σ is about 15 mV.

From Figure 5.8(b), the VREF to be used in the SIMPLY scheme is about 250 mV,

which leads to a BER of 1.68 × 10−5 for the P = Q = ‘0’ and P ̸=Q input

combinations, i.e., the worst-case BER.

Figure 5.9(a)-(b) report the statistical results of the SIMPLY+ scheme for tREAD

=10 ns. The nominal RM and RM3σ values are respectively 202.5 mV and 103.4 mV,

i.e., 3.7× and 6.8× larger than the conventional SIMPLY scheme. The appropriate

VREF is 362.9 mV, which corresponds to a worst-case BER of 4.37×10−10, i.e., more

than four orders of magnitude better as compared to its conventional counterpart.
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Figure 5.9: Simulation results of the SIMPLY+ scheme for the preliminary read
operation under process variations at 300 K considering Wn/Ln = 1 µm/3 µm size for
the tail transistor Mn, VREAD = 0.5 V and tREAD =10 ns. (a) VG statistical distributions
for the different input combinations and (b) estimation of the bit error rate (BER) and
reference voltage (VREF).

The reliability of the preliminary read operation in the SIMPLY+ scheme can be

further improved by enlarging the read voltage pulse duration. This can be observed

in Figure 5.10(a)-(b), which show the statistical results of the SIMPLY+ scheme for

tREAD =20 ns. Indeed, despite a reduction of the nominal RM down to 181.1 mV

compared to the 202.5 mV obtained at tREAD =10 ns, increasing the tREAD up to tREAD

=20 ns leads to a RM3σ of about 121.6 mV, i.e., 8× and 1.2× larger than the

conventional SIMPLY scheme and the SIMPLY+ scheme at tREAD =10 ns,

respectively, owing to the reduced standard deviation values of VG distributions.
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Figure 5.10: Simulation results of the SIMPLY+ scheme for the preliminary read
operation under process variations at 300 K considering Wn/Ln = 1 µm/3 µm size for
the tail transistor Mn, VREAD = 0.5 V and tREAD =20 ns. (a) VG statistical distributions
for the different input combinations and (b) estimation of the bit error rate (BER) and
reference voltage (VREF).

This results into a worst-case BER of 3.32 × 10−20 at VREF = 423.7 mV, which

corresponds to an improvement by more than fourteen and ten orders of magnitude

as compared to the the conventional SIMPLY scheme and the SIMPLY+ scheme for

tREAD =10 ns, respectively. Obviously, such an improvement comes at the cost of

higher energy consumption. This can be observed in Table 5.2, which summarizes

the comparative results obtained within the SIMPLY and SIMPLY+ schemes for the

preliminary read operation under process variations.

Our analysis was also extended with the aim of evaluating the effect of the tail
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Table 5.2: Comparative results SIMPLY vs SIMPLY+ for the preliminary read
operation under process variations

SIMPLY
(tREAD =10 ns)

SIMPLY+
(tREAD =10 ns)

SIMPLY+
(tREAD =20 ns)

P=Q=‘0’ P̸=Q P=Q=‘0’ P ̸=Q P=Q=‘0’ P ̸=Q
µ of VG

( mV) 224.0 279.0 259.7 462.2 289.5 470.6

σ of VG

( mV) 6.24 7.02 16.83 16.20 14.69 5.14

RMnom

( mV) 55.0 202.5 181.1

RM3σ

( mV) 15.2 103.4 121.6

Worst-case
BER 1.7×10−5 4.4×10−10 3.3×10−20

Energy
( pJ) 1.73 2.60 5.19

transistor (Mn) sizing on SIMPLY+ performance during the preliminary read

operation. In this regard, Figure 5.11(a)-(f) show the color maps of the nominal RM,

the RM at the 3σ corner, the worst-case read disturbance rate (RDR), i.e., referred to

the case P = Q =‘0’ [186], the VREF, the worst-case BER, and the worst-case overall

read error rate (RER), both referred again to the case P = Q =‘0’ [186]. All this data

was obtained from statistical simulations at 300 K, VREAD = 0.5 V and tREAD =10 ns

while varying the size (Ln and Wn) of Mn, i.e., its strength. In particular, the RDR

is an important metric to assess the reliability of the read operation performed within

the SIMPLY/SIMPLY+ framework, as it refers to the probability of unintentionally

switching the stored data during this operation [38, 186]. Accordingly, for a given

Mn size, the overall RER is given by the combination of the RDR and BER. From

Figure 5.11(a)-(b), we can observe that the Mn sizing strongly affects the RM.

More specifically, we can identify a relatively small design space for size around

Wn/Ln = 1 µm/3 µm leading to nominal RM and RM3σ values in the neighborhood

of 200 mV and 100 mV, respectively. More precisely, we obtain a nominal RM of
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Figure 5.11: Simulation results of the SIMPLY+ scheme for the preliminary read
operation under process variations at 300 K, VREAD = 0.5 V and tREAD =10 ns while
varying the size (Ln and Wn) of the tail transistor Mn: (a) nominal read margin
(RM), (b) RM at the 3σ corner, (c) worst-case read disturbance rate (RDR) referred
to the case P = Q =‘0’, (d) reference voltage (VREF), (e) worst-case bit error rate
(BER) referred to the case P = Q =‘0’, and (f) worst-case overall read error rate
(RER) again referred to the case P = Q =‘0’.

202.5 mV and a RM3σ of 103.4 mV for Wn/Ln = 1 µm/3 µm, according to

Figure 5.9(a). From Figure 5.11(c), the worst-case RDR increases when increasing

the strength of the transistor Mn, i.e., for larger (smaller) Wn (Ln), as given by the

corresponding increase in the current flowing through the MTJ devices. In

particular, for Wn/Ln = 1 µm/3 µm we obtain a worst-case RDR equal to 1.05×10−9.
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An opposite trend as compared to that of the RDR can be seen for the VREF in

Figure 5.11(d), where its value tends to increase when decreasing the transistor

strength, i.e., when increasing its resistance. From Figure 5.11(e), the worst-case

BER expectedly shows a similar trend to the RM, hence with an optimal design

space for Mn size around Wn/Ln = 1 µm/3 µm leading to BER values in the order of

10−10 as in Figure 5.9(b). The discussed trends of the RDR and BER thus result in

the map of the RER shown in Figure 5.11(f), where its optimal value of 1.05×10−9

is achieved at Wn/Ln = 1 µm/3 µm size, i.e., that used in the above analysis.

5.4 Improved SIMPLY+ design
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Figure 5.12: (a) Improved SIMPLY+ scheme, including a common source (CS) stage
with diode-connected load and a two-stage inverter as output block.
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Figure 5.13: Time diagram of VREAD, VG and VOUT signals involved in the
preliminary 1-bit and 2-bit read operations to be performed respectively for sFALSE
and SIMPLY operations within the improved SIMPLY+ scheme of Figure 5.12, as
obtained from nominal simulations at 300 K and VREAD = 0.5 V.

In addition to the introduction of the CS stage as discussed in the previous

section, we propose a further modification of the conventional SIMPLY scheme,

which consists of replacing the conventional sense amplifier-based output

comparator [182, 185, 186] with a lower complexity two-stage buffer, thus resulting

in an enhanced SIMPLY+ scheme, as depicted in Figure 5.12. The two-stage

inverter-based output block acts as a sense amplifier to discriminate the VG values

associated with the different input combinations, using the logic threshold as the

reference voltage. To this aim, skewed inverters are employed to strengthen the
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output data (VOUT) and to improve the capability to discriminate the input

combinations.

Furthermore, transistors highlighted in red in Figure 5.12 are used to enable both

1-bit and 2-bit read operations within the same circuit block, respectively needed

to execute sFALSE and SIMPLY operations. This is achieved by properly setting

the SREAD signal, which allows adjusting the logic threshold of the first inverter in the

output block on the basis of the operation to be performed. More specifically, SREAD =

‘0’ (‘1’) enables the 1-bit (2-bit) read operation for the sFALSE (SIMPLY) execution,

as reported in Figure 5.12. The proposed approach is demonstrated in Figure 5.13,

which shows the timing diagram of the VREAD, VG and VOUT signals when performing

the 2-bit and 1-bit read operations within the scheme of Figure 5.12. Here, data

refers to nominal simulations at 300 K and VREAD = 0.5 V. From this figure, we can

observe that the proper tuning of the logic threshold through the SREAD signal allows

distinguishing the input combination P = Q =‘0’ (i.e., VOUT =‘0’) from the others

(i.e., VOUT =‘1’) in the 2-bit read operation, as well as the case P =‘0’ (i.e., VOUT

=‘0’) from the case P =‘1’ (i.e., VOUT =‘1’) in the 1-bit read operation. The improved

SIMPLY+ presents an average energy consumption of about 2.07 pJ. This is ∼ 25%

less as compared to the SIMPLY+ scheme of Figure 5.12.

5.5 Conclusion

We proposed SIMPLY+, a reliability enhanced STT-MTJ-based LIM logic scheme.

Our design exploits a commercial 65 nm CMOS PDK, as well as a

macrospin-based Verilog-A compact model used to describe the behavior of a 30 nm

diameter perpendicular STT-MTJ device. We evaluate SIMPLY+ circuit

performance by means of exhaustive Monte Carlo simulations. As a main result of

our study, the SIMPLY+ nominal read margin is about 4× compared with the
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convectional SIMPLY scheme. The SIMPLY+ scheme proves a better performance,

accordingly the BER and RDR by more than four orders of magnitud. In addition

the improved SIMPLY+ achieves higher energy efficient, meaning an energy saving

of ∼ 25%, as compared with the SIMPLY+ scheme.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The earlier chapters of this thesis focused on overcoming the key challenges that

hardware solutions for ANNs have faced, especially when exploring the integration

of emerging memory devices like STT-MRAMs with CMOS technology. This

chapter summarizes the main contributions and presents areas for research

improvement.

6.1 Key thesis contribution and related future work

As starting point, a sigmoid and softmax AF were introduced to explore the

capabilities of an ANN at the output node. In Chapter 3, the proposed solutions

demonstrated optimal performance compared to existing references. A sigmoidal

V-to-V neuron with only one bias voltage is proposed. The sigmoidal circuit

proposed has been evaluated for different values of steepness parameter. The

simulation results show that the proposed design approximates the sigmoid function

more accurately than previous designs, being superior in terms of power

consumption, error, and area.

Contrastingly, a low-power, low-voltage analog implementation of the softmax

activation function used in deep neural networks is proposed. The softmax circuit

are good match to the theoretical function, leading to good stability performance

against process and temperature variations. The design occupies a small area and

low power consumption compared to the digital counterparts. The design shows

limited precision degradation and lower average relative errors, with respect to the
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theoretical softmax equation.

In regard to the integration of emerging memory devices (STT-MRAMs) with

CMOS technology, Chapter 4 evaluates the impact of STT-MRAM cells based on

DMTJ against the conventional SMTJ counterpart on the performance of a

two-layer MLP neural network. The STT-MTJ synaptic pseudo-crossbar array

architecture and device/transistor models in NeuroSim is explored. Considering the

NeuroSim emulator to evaluate the learning accuracy with 2-layer MPL neural

networks at the run-time of online learning in eNVM devices such as MTJ-based

STT-MRAM. Our results show that, at parity of TMR and oxide thickness, as

compared to the conventional SMTJ-based alternative, the DMTJ-based solution

proves to be faster during feed forward and weight update operations, more energy

efficient, and less area hungry at an energy-optimal bitcell configuration/size. This

occurs while also achieving a high accuracy when running the neural network with

the MNIST dataset. Our study suggests that DMTJ-based eNVM synaptic cores are

good candidates to replace conventional SRAM-based solutions.

Likewise, Chapter 5 proposes SIMPLY+, a new architecture designed for

in-memory computing built from the smart material implication logic and

perpendicular MTJ based STT-MRAM technologies. The proposed architecture is

benchmarked against its conventional counterpart. Obtained results show a

significant improvement in terms of reliability in terms of nominal read margin and

exhibit a better performance in terms of BER. Our results prove that the SIMPLY+

scheme is a very promising solution for designing reliable in-memory computing

architectures. Such results prove that SIMPLY+ scheme is an outstanding solution

for the development of reconfigurable in-memory computing architectures.

Finally, the capabilities of today’s hardware platforms are limited by the need to

transfer large volumes of data between memory and compute units, also known as the

memory wall [196]. The existing hardware accelerator confronts several challenges
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in achieving a design that meets the desired performance and cost criteria. These

challenges encompass power/energy consumption, throughput, area, speed, learning

performance, and resource consumption.

To address these challenges, future work will be centered on performing analog

in-memory vector-matrix operations through the integration of emerging

technologies. The overarching goal is to develop robust architecture models,

focusing on frameworks like the STT-MTJ-based SIMPLY+ logic scheme which is

performed for BNN inference. SIMPLY+ can be used as an effective solution for the

in-memory computation of logic operations (e.g., XNOR [195], full adders [197]).

Also thanks to its reconfigurability, SIMPLY+ enables the possibility to easily

implement different neural networks topologies.

Furthermore, exploring new approaches will be pivotal in this endeavor. The

main objective is to exploit novel architectures to fulfill optimal computational

requirements. By leveraging emerging technologies and innovative design

paradigms, future work aims to overcome the limitations of existing hardware

accelerators and usher in a new era of high-performance, cost-effective computing

solutions.

6.2 Impact of Logic-in Memory

LIM is a solution to overcome the limitations of Von Neumann’s architecture. By

integrating simple logic circuits within or near memory elements, local computations

can be performed without the need to carry data from the main memory.

From a design perspective, the integration of logic modules with STT-MRAM

memory is highly feasible due to the seamless compatibility between STT-MRAMs

and CMOS circuits. This integration allows for the implementation of logic using

non-volatile or CMOS logic, as well as the modification of the readout circuit to
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enable logic operations in the analog domain. It notable that this approach not only

proves advantageous for standard CMOS technology but also leverages the potential

of emerging technologies.

Moreover, several proposed sensing schemes have demonstrated improvements

in reliability, energy efficiency, and area efficiency within LIM architectures. These

findings highlight that the impact of this thesis extends beyond the realm of

STT-MRAM memories and has the potential to shape the development of promising

architectures appropriate for high-priority tasks.
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