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Nomenclature

Throughout this text, bold symbols denote vector and matrix quantities. Calligraphic typesetting is reserved for
stochastic fields, except for the Lagrangian.

Latin symbols

A Area of cross-section of the blade

A(t) State matrix of time-periodic system

B(t) State load matrix of time-periodic system

Bb Matrix of Fourier coefficients of state load matrix for b− th harmonic

Cm,Cd Morison’s inertia and drag coefficients

C•
j Rayleigh-Ritz modal coefficients

Dpile Diameter of pile

D Damping component of velocity coefficient matrix

E [•] Mathematical expectation

fp Frequency of the system, pumping frequency

f̄ Modally adapted excitation or force

F(t) Load vector, excitation vector

FH Hydrodynamic force

FT [•] Fourier Transform

f ∗ Frequency variable

G Limit state function of reliability problem; objective function of optimization problem

G̃ Coordinate of the center of mass of rotor component, or disc

Gx,Gy,Gz Components of G

G(t) Gyroscopic matrix, velocity coefficient matrix;

GG Gyroscopic component of velocity coefficient matrix

Hsea Sea depth
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Hpile Pile height

h(t) First order impulse response function

h2 (t1, t2) Second order impulse response function

ib, jm Indexes of blade and modal discretization, respectively

Id ,Jd Diametral moment of inertia of the disc

Ip,Jp Polar moment of inertia of the disc

K(t) Stiffness matrix, displacement coefficient matrix

KE,PE Kinetic and potential energy

KED,PED Kinetic and potential energy of disc/hub/rotor

KEBib ,PEBibKinetic and potential energy of blade ib

Lb Length of blade

Lρ Correlation length

L(t) Matrix of left periodic modes

Ll Matrix of Fourier coefficients of left periodic modes for l − th harmonic

L Lagrangian

Mr Mass of rotor component

M(t) Mass matrix, inertia matrix

nH Higher integer multiple in Fourier series expansion

n j Total number of terms in Fourier series expansion

N (a,b) Normal, or Gaussian distribution of mean a and variance or covariance or PSD b

N (u,a,b) Number of crossings over level u, interval (a,b)

Oxyz Origin of inertial reference frame, inertial reference frame

p(t) Modally adapted excitation or force

P [⋆] Probability operator

P1,P2 Coordinate vector of supports of rotor-shaft assembly

PX , pX Cumulative Distribution function (CDF), Probability Density Function (PDF) of X

PXM Extreme value distribution (EVD) of X , CDF of XM

q, q̇ Vector of modal generalized coordinates and velocities

R Available resistance

Rr Radius of disc or rotor

RFF Correlation function of F

R(t) Matrix of right periodic modes
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Rq Matrix of Fourier coefficients of right periodic modes for q− th harmonic

R̃(t) Rotation matrix

s Pole of characteristic equation, eigenvalue problem

S Response in reliability problem

SXX Power Spectral Density (PSD) of X

Tp Period of the system, pumping period

T I Turbulence Intensity Index

u Crossing level, threshold

V Flow velocity

Wi;W s
i ,W

f
i Beam or blade displacement field of blade i; spanwise component; flapwise component

WWW Block diagonal Hill matrix

x, ẋ, ẍ Position, velocity, acceleration vector of physical coordinates

xh Coordinate vector of the center of mass of the hub or disc

XM Extreme value of process X

X Spatio-temporal stochastic field

y, ẏ State vectors

Y Fundamental solution matrix

Z (t) Stochastic process, output of an integral transformation

Greek symbols

α Steepness coefficient

β Directional/angular variable in stochastic sea simulation

λ Eigenvalue, Lagrange multiplier, Lamé coefficient

λ
+
X (u) Mean number of upcrossings by process X over threshold u

ΛΛΛ( f ) Modal Frequency response matrix

ΛΛΛ 0,ΛΛΛ m Group or set of characteristic exponents

ξ Spatial dummy variable

ξi Damping ration

ρ Blade density

ρf Fluid density

ρρρ Matrix of characteristic multipliers

θ1,θ2 Tilt angles, Euler angles, Generalized angular coordinates
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τ Time shift, time delay, time difference

κ0 Initial configuration of rigid body

Θ(m) Function of passage of characteristic exponents and periodic modes from group zero

Φ(t, t0) State transition matrix, Floquet transition matrix

ϕ•
j (Xb,) Modal shape form, blade mode shape

ϕϕϕ Eigenvector

φ •
i Rayleigh-Ritz modal basis

φ(i, j),k First influence factor

Ψj,k (t) Wavelet function of scale j and translation k

Ψi, j Second influence factor

ΨΨΨR,ΨΨΨL
i Right and left eigenvector, LTI system

µF Mean of F

µi i− th Floquet multiplier

σFF Variance of F

σx Normal stress on x direction

ΣFF Covariance function of F

η Surface elevation

γ Spatial frequencies on stochastic simulation of sea state

ρi i− th Lyapunov characteristic exponent

ν+
u Crossing intensity or rate of upcrossing over threshold u

ν ( f ) Frequency shift function

ω Natural frequency, circular natural frequency

ϖ Subset of probability space Ω , probabilistic event

Ω Angular velocity, parametric term in periodic component

Ω Probability space

ΩΩΩG Angular velocity vector
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Abbreviations

BEM Blade Element Momentum

BVP Boundary Value Problem

CDF Cumulative Distribution Function

DOF Degree of Freedom

EPSD Evolutionary Power Spectral Density

EOM Equation of Motion

EVD Extreme Value Distribution

FT Fourier Transform

IVP Initial Value Problem

IFT Inverse Fourier Transform

LTI Linear time-invariant

LTP Linear time-periodic

MCS,MCM Monte-Carlo simulation, Monte-Carlo method

ODE Ordinary Differential Equation

PDF Probability Density Function

PGHW Periodic Generalized Harmonic Wavelet

RBM Root Bending Moment

STFT Short Time Fourier Transform
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Introduction

“It is possible I already had some presentiment
of my future.”

Gene Wolfe, The Book of the New Sun

General motivation

Technological innovation relies on the robustness of the body of knowledge that allows implementation and
execution to be carried out effectively. This manifests in the design and analysis tools that intervene in the
implementation process, impacting the performance, reliability, and cost-efficiency of systems, machines, and
structures. The field of mechanics serves as a foundational discipline in a large proportion of technologies in
various domains. This has resulted in an ever-increasing degree of complexity and sophistication in studying
mechanical systems. This degree of complexity is evidenced in two conceptual axes:

• System complexity: modeling the mechanical behavior that arises from the interaction between multi-
ple components, the variability or uncertainty of system properties, and such behaviors as nonlinearity,
parametric effects, and time-varying properties;

• Excitation complexity: modeling the environmental interactions in more general forms, such as stochastic
descriptions of forces;

this increase in complexity requires the extension of existing analytical tools to these new considerations and
the development of new techniques to accommodate these constraints.

In a similar vein, the approaches to address the challenges mentioned above can be placed on a gradient: from
simplified models that permit the application of analytical tools and result in profound insights into the behavior
of the system under study to very detailed models that require efficient and procedural computation yielding
realistic results. In the case of stochastic mechanics, the broad class of Monte-Carlo methodologies plays a
key role, given the generality of its underlying principle. Nonetheless, the drawback of this approach is the
steep, often prohibitive computation time entailed in the simulation and analysis of large and realistic systems.
Additionally, analysis under this approach is limited with respect to the other side of the spectrum. Conversely,
analytical methods are limited to simplified models, and the degree of simplification could lead to a loss of
fidelity with respect to the desired application.

This thesis focuses on studying the vibrational motion of deterministic mechanical systems undergoing large
rotations and under stochastic loads within the previously established framework. A central model in this
category is the rotor-blade system, composed of a rigid, often discrete, component that can be described in
terms of the theory of rotordynamics; in addition, continuum elements are attached to this component, and
these can be modeled in terms of standard vibrating beam theory, with the particularity that the rotational effect
results in a significant behavior change. This model category describes various technologies: wind and tidal
turbines, helicopter propulsion, steam and gas turbines, compressors, and mechatronics or robotic devices.
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In terms of loading, the environmental interactions over a structure or machine can feature a high degree of
variability or complexity, making them suitable candidates for a stochastic description instead of a fully deter-
ministic one. Oceanic environments are a primary example of high variability, featuring the effects of waves,
tides, swell, turbulence, and wind effects over the state of the waters. This variability manifests itself through
two key design considerations: the advent of extreme events and random fatigue damage.

The methodological approach is semi-analytical: the aim is to develop simplified models that are sufficiently ac-
curate to apply and develop methods that give some insight into the behavior of the system as opposed to merely
a solution. This inherently multi-disciplinary task involves applied mechanics and rotordynamics, probability
and stochastic processes, extreme value theory, theory of ordinary differential equations and dynamical systems,
numerical analysis, signal processing, and scientific computing. We now introduce a conceptual framework to
consider the type of problems inherent to the engineering practice. This will permit a more precise discussion
of this work’s objectives and further developments.

Conceptual framework

From a broader perspective, the goals of this study are primarily concerned with analyzing systems, although
considerable attention is paid to enabling the applicability to design problems. It is of practical and conceptual
use to formally distinguish between different classes of problems in the engineering and design practice, some
of which are perhaps shared with other disciplines. We take an abstract approach to construct this distinction,
dwelling on the particulars as the need arises. . Let S stand for a system in the broadest sense possible, its
behavior described by some mathematical structure: from systems of equations to systems of partial differential
equations.

• • Type A: some perturbation, say F , acts on S, producing a response q . The objective is: given F
and with known S , determine q , the response: F,S → q . We call this type of problem an analysis
problem. In the practice of mechanics, the most fundamental response is expressed in terms of motion:
movement, displacement, velocity, and momentum (quantity of motion, quantity of angular motion).
From this fundamental response, one may apply certain behavior laws or some additional transformation
to obtain kinetic quantities: reaction force, stress, mechanical moment, or torque. Applying more intricate
relationships and obtaining complex responses as complex as fatigue is also possible. The importance of
these second or third-order quantities of the response is related to the assessment of the performance of S
. The obtention of these second or third-order quantities of the response from the fundamental response
we will call post-processing. Of course, the fact that motion is the most fundamental form of obtaining
the response does not preclude the existence of methods of analysis formulated in such a way that the
fundamental response is some other quantity: in this sense, we will call the raw output of a method
the fundamental response quantity. Second and third-order responses are established in terms of the
intervention or not of intermediate quantities for the calculation.

• • Type B: Some perturbation F is known, and restrictions ψq on the admissible q are established. The ob-
jective is to select the appropriate system S such that, given F , the response q conforms to the restrictions
ψq :

{
F,ψq

}
→
{

S,q ∈ ψq
}

. We call this type of problem a design or synthesis problem. In practice, the
general architecture of S is known in this type of problem, and what needs to be selected is some set of
specific parameters to fully define it. One may think of a spring-mass-damper system S → M,C,K where
the behavior is well known, but one may need to select the appropriate value of C to ensure a prescribed
dynamical behavior. This type of problem forces one to confront an issue in terminology. Rather than
considering one particular system, considering them broad families of possible systems is often useful.
Not a system but a manifold of them. An S → M,C,K system is characterized by its behavior, but the
particular details will depend on the specific values of each parameter. Once the values of M,C,K are
specified, we say we have an instance of system S . In this light, Type B problems become a search for
the appropriate instance of S.
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Figure 1: Representation of problem-type framework

• Type C: The response q is known along with F . The objective is to determine the unspecified quantity
s ⊂ S , the system. The determination of s is not the same as the one previously discussed in type B:
here, we seek to determine a subset of S that produces q given F . In practice, this type of problem arises
when the particular characteristics of an already existing instance need to be found. We call this type of
problem a system characterization problem. We may write {q,F}→ S (s).

• Type D: The response q is known along with S. The objective is to determine the unspecified quantity F
, the excitation. In practice, this problem arises when the instance of S is known, and q is available from
some measurement, so one seeks to characterize F for external purposes. We call this type of problem a
load characterization problem. We may write {q,S}→ F .

The value of this conceptual framework is twofold: First, a method to address one type of problem might
be modified to tackle another type of problem. This modification can result in important variations in the
advantages and disadvantages, so it is important to have a conceptual tool to distinguish each instance; second,
it helps disentangle the different but related notions of a system S, which can be a broad category of instances
that share a similar behavior but which have particular characteristics.

Determinism, randomness, and stochasticity

We call deterministic any quantity fully specified within an established numerical error threshold from the in-
formation available. On the other hand, random is a quantity that can not be fully specified in the same way
since its behavior will incur an unpredictable evolution. While random quantities can not be fully determined,
these can usually still be characterized or described in some way: if the quantity can be "sampled" (measured,
evaluated, repeated), then it is often possible to describe general trends that hold if the number of samples is suf-
ficiently descriptive. This description of general trends relies heavily on an interconnection between probability
theory and statistical tools. Finally, we call stochastic a quantity that displays some measure of randomness but
is subject to stringent deterministic relationships.
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Conceptually, one may think of the stochastic category as containing a gradient going from deterministic to
random: to see this, we can imagine a simple variable specified by its mean and variance. The mean and
variance are deterministic quantities, so we conceptualize the behavior of this variable for different variances
while the mean remains fixed: when the variance is infinite, the determination of general trends previously
discussed becomes less meaningful in characterizing the variable; when the variance degenerates to zero, there
is no randomness in the variable, and we recover a deterministic variable identical to the mean.

We call a system causal when its past fully determines its present. In contrast, when a system’s present is not
fully determined by its past, the system is said to be acausal. This terminology results in the emergence of two
obvious and distinct types of acausal systems: 1) systems that are deterministic but whose present is caused
not only by the past but also by its future (this implies the propagation of information backward in time); 2)
systems that are not fully determined by the past because there is an element of randomness intrinsic to them.
This further leads to the notions of deterministic acausality and random acausality.

One final observation concerns the notion of randomness. There are physical phenomena that happen to be
intrinsically random; this is known from direct observation. On the other hand, some phenomena emerge from
some complex interactions but are still deterministic in principle. While deterministic, characterizing these
complex phenomena is either impractical or impossible. It is sometimes useful to model these determinis-
tic complex phenomena using the same or similar mathematical theory to describe random ones. When this
modeling is performed, one may refer to the modeling quantities as random in the mathematical sense, but
the underlying phenomena modeled by these are not truly random. This suggests the classification of pseudo-
random, or perhaps even epistemically random or random in the epistemic sense: it is practically impossible
to obtain (or process) the necessary information to determine the phenomenon, so it is random not from some
intrinsic physical trait, but from our limited knowledge of the relevant information associated with it.

Approaches to Type A problems in mechanics

• Analytical: integration of Equations of Motion.

• Numerical: time-domain integration.

• Numerical: frequency domain resolution.

• Numerical: Monte-Carlo successive numerical resolution with statistical post-processing.

Criteria of interest in Type B problems in mechanics

• Maximum stress and strain.

• Vibration amplitude.

• Other extreme events.

• Reliability.

• Fatigue and long-term events.

Taxonomy of mechanical systems

• Based on the system: deterministic or uncertain.

• Based on rotation: natural (no rotational motion along a principal axis), rotodynamical (rotational motion
along a principal axis).

• Based on motion: static, dynamic.
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• Based on behavior: linear, nonlinear.

• Based on temporal characteristics: time-invariant, periodically time-variant, quasi-periodically-time-variant,
generally time-variant.

• Based on dimensionality: discrete, continuous, mixed or complex.

• Based on number of subsystem: single-body, multi-body.

Objectives

The first part of this work aims to develop and describe the deterministic mechanical system under study. To
this end, the approach selected is that of analytical mechanics in the vein of the following texts: [96], [6],
[43]. The Lagrangian formalism is utilized, and results from rotordynamics, as covered in [42] and [39], inform
the modeling choices. The flexible elements are described from the general Continuum mechanics theory, and
kinematic discretization methods are imposed on the continuum, as well as the relevant beam theory hypotheses
and material behavior. The aim is to arrive at a concrete model while laying the theoretical foundation to
adjust for different cases of interest. The description of the dynamical system is then analyzed using the theory
of ordinary differential equations with periodic coefficients. The Floquet- Lyapunov and Hill methods are
examined and applied. Besides the comprehensive review of these methods, pertinent extensions are proposed:
time-frequency and modal tools are implemented to describe the response.

As shown in the next chapter, the model developed can be seen as a generalization of the rotating blade prob-
lem. The study of this type of system is not new, being the intense object of research during the last century in
aerospace disciplines. Similarly, studying LTP systems and ODE with periodic coefficients is a robust, estab-
lished area that intersects many domains. This manuscript’s goal remains to review and synthesize the existing
body of knowledge in both areas and adapt it for the study at hand. This need arises from considering stochastic
inputs into this type of system, especially when these inputs are considered with some degree of complexity.

The second part focuses on the stochastic aspects of the excitation and response. We follow the developments
introduced by [134] to describe stochastic processes and fields. Simulation aspects and propagation techniques
are discussed and presented; an emphasis is placed on the moment propagation of nonstationary processes. This
type of transformation plays a key role given the following facts: first, nonstationarity arises when force models
are applied to rotating systems as a result of the relative motion between solid and medium; second, the response
of LTP systems will be shown to be generally nonstationary even to a stationary input, this fact can be readily
noticed from the study of Floquet’s theorem, as the Floquet periodic modes act as periodic modulation of the
response; finally, nonstationarity expresses environmental states of interest in many applications, such as tidal
turbines.

Probabilistic moments provide useful information about the stochastic response, and they are prioritized because
their obtention has practical advantages. However, they only provide a full description in specific cases, such
as Gaussian processes. Thus, the advantages and limitations of this approach are discussed and exemplified,
particularly in the approximation of the distribution of extremes of the response. The Monte-Carlo approach is
taken to contrast these findings as the generality of the method serves as a baseline comparison. At the same
time, the steep computational requirements to reach a valid result from MCS constitute a major motivation for
the semi-analytical approach taken in this work.

Finally, the third part consists of concrete applications of the established results. The main application pertains
to tidal turbines, their analysis, and potential design schemes. The bibliography of the field is reviewed, and
based on current trends and research needs, the techniques developed are used. Several contributions are pro-
posed: the dynamical model and Floquet analysis applied to this type of machine, the detailed stochastic model
to represent and simulate the current-tide-turbulence medium, and applications of reliability criteria under these
circumstances. Throughout the thesis, the interplay between theoretical and computational aspects is analyzed.
While the central problem is of type A, insights into problems of type B are considered.
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Figure 2: Conceptual flow of the thesis

Contributions

The main contributions of the thesis are summarized here, providing a concise description and the innovative
elements.

• In chapter 2:

– a. A new reduced-order rotor-blade theoretical model is proposed, valid for constant intrinsic spin
or rotational velocity. The model is based on a 5 DOFs rigid rotor and Euler-Bernoulli beam theory
with modal representation describing the blades. The innovative aspects include 1) the use of a
relatively general rotor in a reduced-order model; 2) the inclusion of spanwise-flapwise motion
on the blades, including possible coupling arising from blade section asymmetry; 3) theoretical
developments allowing the description of blades with different material behavior.

– b. A fast Rayleigh-Ritz algorithm is proposed, providing a polynomial approximation of the modal
parameters of the rotating beam problem in spanwise and flapwise directions. The algorithm is
flexible regarding the range of angular velocities that can be considered and the number of modes
and degree of desired polynomial approximation.

• In chapter 3:

– a. A synthesis of Floquet modal analysis is proposed. It combines results from different fields of
application, such as ODE theory, Aerospace/helicopter analysis, and control theory. The synthesis
aims to recover key results established in the literature and make them accessible from a unified
framework.
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– b. A detailed study of Floquet Periodic Modes is presented. The existing methods for calculating
the Floquet Periodic Modes are discussed and contrasted. The indeterminacy of the characteristic
exponents is reinterpreted, using the results from Peters et al., and extended to a simple rule allowing
the determination of the periodic mode corresponding to a shifted characteristic exponent.

– c. A change of basis theorem on Hilbert spaces is applied to analyzing periodic modes, focusing on
the Fourier-PGHW bases. The result facilitates time-frequency analysis of the periodic modes using
Wavelet theory.

– d. The Campbell-Lyapunov diagram is proposed: it is a parametric diagram showing the evolution
of the Lyapunov characteristic exponents of the Floquet system with varying rotational velocity or
pump frequency.

– e. A new development of LTP systems’ existing spectral response formula is presented. The devel-
opment, based on the combination of the Fourier series representation of Floquet Periodic Modes
and the Fourier transform of the input, aims to provide clarity in the use and interpretation of the
formula.

• In chapter 4:

– a. An Extreme value distribution approximation method is proposed: it consists of analytical mo-
ment propagation from loads to response, followed by PDF reconstruction using the principle of
maximum entropy relying on optimization techniques. The method is applied to the rigid submerged
pile under the action of a Morison load, with Gaussian input velocity field and acceleration.

• In chapter 5:

– a. Analytical expressions for moment propagation of periodic stochastic processes and their deriva-
tive are presented.

– b. The Wither conjecture is presented and tested: application of Wither theorem to Gaussian stochas-
tic processes for moment propagation, allowing the determination of moments of polynomial trans-
formations of Gaussian processes.

– c. An Interval approximation method to estimate the Extreme value distribution of periodic stochas-
tic processes is proposed and tested. The method circumvents a limitation in the corresponding
literature, particularly for processes with moments that cross zero, resulting in the indeterminacy of
the quantities involved.

– d. Analytical expressions for moment propagation in Floquet modal variables are proposed. These
expressions are more detailed than those found in the literature and include high-order moments, a
result not identified in the literature.

• In chapter 6:

– a. Synthesis showing the connection between: the time-dependent reliability problem and extreme
value theory, particularly for a limit-state of constant available resistance and nonstationary re-
sponse. The result aims to bridge the gap between the results in both domains and to facilitate the
application of results to the study of tidal turbine blades.

– b. A Monte-Carlo method based on Floquet modal theory (spectral formula) is proposed, providing
the steady-state response of LTP systems subjected to nonstationary non-gaussian loads.

– c. A Convolution semi-analytical method based on Floquet modal theory is proposed, providing
the transient response of LTP systems subjected to nonstationary non-gaussian loads. The practical
limitations of this approach are explored and described.

– d. The concept of moment modal decomposition is presented and tested: it contributes to each
periodic mode to the moments of the response.

– e. A reliability analysis of a simplified tidal turbine model in three loading regimes is presented.
The failure mode under analysis is formulated in terms of the normal stress associated with the root
bending moment from the combined spanwise-flapwise vibration of the blade.
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Structure of the thesis

The structure of this thesis is as follows:

1. The first chapter presents an overview of previous relevant results: Floquet ODE theory, the evolution
of the physical problem in the literature, developments in different disciplines, stochastic models, and
extreme value and reliability results.

2. The second chapter develops the dynamical model to be studied: kinematics and geometry, the Euler-
Lagrange formalism, and the kinematic modal discretization of the blade elements are treated.

3. Chapter 3 presents the results of the modal analysis of the system from the Floquet, Hill, and an innovative
approach adopted for the analysis of the Floquet periodic modes based on Wavelet analysis. An example
of the modal solution of a simplified Floquet system describing a rotor-blade system is presented.

4. In Chapter 4, some notational and technical developments for moment propagation are presented, with
examples including Morison’s model in memoryless integral transformation. The problem of moments
for this type of transformation is addressed and formulated in terms of the maximum entropy distribution
as an optimization problem.

5. Chapter 5 combines the results from chapters 3 and 4 to study the stochastic response of time-periodic
systems through moment propagation. A first example is proposed considering the time-modulation of
a stationary point process, followed by a study of the upcrossing and maxima estimation of the Gaus-
sian case. Moment transformations are established regarding Floquet modal theory for the steady-state
response of Floquet systems.

6. Chapter 6 presents an application of the developed results to a tidal turbine model. Reliability criteria are
applied to analyze the blades.
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Chapter 1

Previous works

“The miracle of hindsight is how it transforms
great military geniuses of the past into
incompetent idiots, and incompetent idiots of the
present into great military geniuses.”

Steven Erikson, Toll the Hounds

This chapter presents the most relevant antecedents of the research problem and surveys some alternative ap-
proaches that have been explored. The different aspects of the problem are covered. First, a review of the
evolution of the dynamical problem is presented, starting from the rotating beam problem in the early 20th
century. Then, the results of LTP theory are addressed, covering various fields that have contributed to the
current state of knowledge. Finally, the advancements in stochastic analysis and extreme value distribution are
discussed.

The general equation of the system under consideration takes the following form:

M(t,Ω) ẍ+G(t,Ω) ẋ+K(t,Ω)x = f(t) (1.1)

where x is a vector of generalized displacements, the usual over dot notation is adopted for differentiation with
respect to time, the matrices involved are such that, for instance, M(t +nTp) = M(t) of any n ∈ Z; the vector
f(t) here consists of a stochastic vector process which is not necessarily Gaussian and generally nonstationary.
This system can be cast into first order or state form:

ẏ = A(t,Ω)y+B(t,Ω) f(t) , (1.2)

with the substitution y = [x, ẋ]T.

System Eq. 1.2 is known as a Floquet system of period Tp. This type of equation of motion emerges when
modeling a broad class of mechanical systems we refer to as rotor-blade models. They consist of a rotor
component, which undergoes large continuous rotation around a main axis, and additional elements radially
attached undergoing deformation. The periodicity of the system is associated with the rotational velocity of the
rotor Ω = 2π fp, Tp = 1

fp
, respectively the angular velocity, rotating frequency, and period. In the sequel, the

explicit functional dependence on Ω of the matrices in Eq. 1.1 and Eq. 1.2 is omitted to facilitate readability.
Given the periodic parameters, the dynamical behavior of this type of system is qualitatively more complex than
that of natural systems. We begin our review with the emergence of an associated problem whose generalization
leads to this: the rotating blade problem.
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1 Rotor-blade model

Considering a system like Eq. 1.1 with the simplifying assumption that the rotor element is fixed in translation,
we arrive at a system of the form:

Mẍ+G(Ω) ẋ+Kx = f(t) , (1.3)

this system, while not LTP, is dependent on the parameter Ω. It has been used to study the vibration of a blade
in turbo-machinery since the early 20th century. The model is that of a disc with radially attached blades; a
description of the transverse vibration of the blades is the subject. The terminology spanwise and flapwise refer
to the direction of the deformation: in-plane or out-of-plane, respectively, referencing the plane of rotation. The
distinguishing features of this class of system are the stress stiffening and spin softening effects on the dynamics
of the blade and from the associated eigenvalue problem [44]:

(s2M+ sG(Ω)+K)ΨΨΨ = 000 (1.4)

the next important feature can be observed: the vibration frequency of the system will depend on the parameter
Ω. This type of system can display parametric resonance, which results in peak amplitudes for critical angular
velocity values.

Early techniques to analyze this type of system rely on the Southwell method which relies on the approximation
of small Ω, and more accurate techniques started emerging in the mid-20th century. The paper by [17] provides
a formal deduction of the equation of motion of such a system. It utilizes energetic analytical techniques to study
the frequency of the system with respect to the parametric term. Similarly, [149] studies the modal behavior
of the problem with an added tip mass, accentuating the centrifugal stiffness effect. In the reference [108],
the finite element method is used to calculate the system frequency and normal modes for a range of angular
velocities. Further, it shows the effects on different beam models. In [70], an adapted finite element method is
used to study the frequencies of the system with an added tip mass. From our perspective, the main limitations
of these results lie in two factors: first, the rotor was considered fixed, thus the study of the blade led to the
study of a rotating beam or plate; second, analysis was confined to the modal and frequency behavior, and the
type of excitation considered, if any, were relatively simple and usually deterministic functions. This, however,
helps to illustrate the types of effects that result from parametric behavior.

The problem described by Eq. 1.4 is characteristic of rotor systems, as exposed in texts such as [42] and [39].
Following [42], a rotor is understood as a system component undergoing rotation with significant angular mo-
mentum. When the motion of the rotor (other than its angular velocity) is included in the description, the
interplay between the different reference frames results in periodicity in the parameters. From a physical per-
spective, this effect includes the gyroscopic term seen in Eq. 1.4 and a time-dependent change in the system’s
inertial M and stiffness K parameters.

2 Linear time-periodic systems

2.1 The Floquet-Lyapunov-Hill approach

The mathematical theory of differential equations with periodic coefficients began to emerge with the works of
Mathieu ([86]), who found the namesake equation when studying the vibration of elliptical membranes; Hill
([54]) who arrived at his equation and method in his study of Lunar motion; more formally with the work of
Floquet in his treaty on the subject[35]. The main result from this period is a series of theorems and methods
by Floquet, Lyapunov, and Hill. Floquet’s theorem provides the form of the fundamental solution of this type
of system. Lyapunov reducibility theorem demonstrates the existence of a change of variable that renders the
associated homogeneous equation to Eq. 1.2 into a time-independent form. Consider the homogeneous associate
of Eq. 1.2:
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Stability of Solution Condition
Stability of trivial solution Re(ρk)≤ 0,∀k

Asymptotic stability Re(ρk)< 0,∀k
Instability of trivial solution Re(ρk)> 0,∃k

Existence of Tp−periodic solution ρkTp = 2πni,∃k,n ∈ Z
Existence of Tp−anti-periodic solution ρkTp = 2π (n+1) i,∃k,n ∈ Z

Table 1.1: Stability criteria of solutions of Floquet system from characteristic exponents

ẏ = A(t)y, (1.5)

a fundamental solution of Eq. 1.5, Y, is a linearly independent set of solutions. Floquet’s theorem states [119]:

Theorem 1. Floquet’s theorem: Let Y(t) be a fundamental solution matrix of the Floquet system Eq. 1.5 with
period Tp, that is, a matrix whose columns are solutions to the system. Then the matrix Z(t) = Y(t +Tp) is
also a fundamental solution matrix of the Floquet system. There is a function R(t) of period Tp and a constant
matrix ρρρ such that: Y(t) = R(t)exp [ρρρt],

where exp [ρρρt] is understood as the matrix exponential of ρρρ . The matrix function R(t) is what we interpret as
the Floquet modal matrix, each column being a Floquet periodic mode. This theorem guarantees the existence
of R(t), while Hill’s method provides a concrete procedure to compute it. The matrix ρρρ contains the so-called
characteristic exponents of the Floquet system. The stability of the solutions of Eq. 1.5 can be established from
the analysis of the characteristic exponents, as synthesized in [119], see Tab. 1.1.

Hill’s method consists of the Fourier series expansion of the periodic terms, and the solution reduces to finding
the unknown Fourier coefficients of the solution. Modern texts on the subject of ODE, such as [119], [20] and
[69], provide a comprehensive treatment of the subject from a mathematical perspective.

These works focus predominantly on results for the homogeneous equation. The application of these mathemat-
ical tools to engineering problems can be found in earlier works on helicopter dynamics and design. In the text
[66] (initial version is from 1980), Hill’s method is applied to the modal analysis of an LTP system modeling
the helicopter rotor-blade system. In the work [25], Hill’s method is used to study the stability of the aeroelastic
response of helicopters in forward fly. In contrast, in works such as [99] during the 1970s, Peters expands the
application of Floquet theory to this domain. Notably, Peters introduces the formula:

R(t) = Φ(t,0)R(0)ρρρ (t) (1.6)

which allows the determination of the Floquet modal matrix from the transition matrix of the system. In the
following years, numerical approaches to Floquet analysis of this type of system greatly develop. Friedmann
and Hammond, in [37] and [38] discuss the numerical aspects of computing the transition matrix of LTP sys-
tems while proposing efficient methods for its determination. The state transition matrix Φ(t,0) permits the
representation of the homogeneous solution given initial conditions. The methods developed by Friedmann
and Hammond are relatively general, making their application to any other LTP system other than helicopter
rotor blades straightforward. In the same vein, [124] later presents sophisticated numerical schemes that use
orthogonal polynomial integration to study stability from the state transition matrix.

Xu and Gasch, in [151], present the development of Floquet Modal analysis of an arbitrary LTP system. Parallels
with the modal analysis of LTI systems are emphasized. The connection between Floquet-Lyapunov and Hill’s
method is exploited. The non-homogeneous (forced) response of the Floquet system is obtained using the
modal basis, convolution integral, and Fourier transform. Their development leads to an LTP equivalent of the
mechanical compliance matrix used in LTI mechanical systems. Finally, an application is provided in the form
of a wind turbine subjected to an arbitrary wind excitation. Building on their work, [22] applies the same modal
approach to design active control strategies.
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In his thesis [144], Wereley studies general LTP systems with applications in control theory. The thesis provides
a detailed exposition of both Floquet’s and Hill’s methods, introducing useful theoretical manipulations that are
absent in the literature up to that point. The Harmonic Transfer Function (HTF) is introduced here as an LTP
equivalent to the LTI transfer function. As with the work of Xu and Gasch, this development facilitates studying
the forced response of LTP systems.
Although most of the research thus far presented focuses on stability analysis or deterministic response, some
exceptions are worth highlighting for completeness. These exceptions will help frame the innovative elements
of the present work. In note [103], the problem of helicopter flapping with random inputs is considered. An
LTP system as Eq. 1.2 is studied with a stochastic force that is weakly periodic nonstationary:

µ f (t) =µ f (t +Tp)

R f f (t1, t2) =R f f (t1 +Tp, t2 +Tp) , (1.7)

where µ f (t) is the mean function of the process f (t) and R f f (t1, t2) is its correlation function, periodic on Tp.
The transition matrix and convolution integral are used to establish some of the probabilistic moments of the
response. Expressions for the mean function, correlation function, and a version of an evolutive Power Spectral
Density (EPSD) are established.
In the reference [141], the flapping motion with a rigid rotor is considered under random forces. No mention
is made of results from Floquet theory. Still, it can be seen by comparison that the impulse response function
utilized here is equivalent to the state transition matrix of the system, which is obtained by direct successive
integration. Different stochastic models are used for the forces, including white and correlated noise. In addition
to moments, the response is characterized by upcrossing intensity.
Reference [131] proposes a numerical method using Chebyshev polynomials to estimate the state transition
matrix and then compares two methods to obtain the response. Deterministic and random inputs are considered.
Two types of processes are considered: a modulated white noise and a process with an exponential correlation
function.
These early solutions to the stochastic response of LTP systems have certain limitations that we aim to address
in this thesis. While results from Floquet theory are capitalized on, little attention is paid to the behavior and
characteristics of the Floquet periodic vectors, which offer valuable information about the behavior of the total
solution. These works also demonstrate the fact that the LTP forced response to a stochastic input is, in general,
a nonstationary stochastic process, but the rich theory of this class of process is not involved in the analysis.
For instance, different proposals to generalize the PSD in nonstationary cases have been proposed, and time-
frequency distributions can be utilized to study the time evolution of the spectrum: Harmonic Wavelets, Short-
time Fourier Transform, and the Wigner-Ville distribution, among others. The stochastic excitations selected
in these publications are relatively simple, but a more detailed description of the force processes is possible,
which leads to a more realistic application of the results obtained. These points are addressed in our work, and
the connection between the stochastic description of the response and design criteria is made, particularly with
reliability criteria.
Having covered the classic results from the literature, we now turn to more recent developments. In his thesis,
[22] applies an approach similar to that of [151] to the modal analysis of an LTP system. The goal of this
work is active control strategies for LTP systems. An important difference with respect to other efforts is that
the blades in his proposed model are deformable bodies, and the interaction between blade modes and rotor
modes is presented in the Floquet modes obtained. A fully spectral method is proposed in the reference [3],
the frequency response of the LTP system is determined iteratively, and the stability of the response is also
analyzed. Comparisons are made to a Monte-Carlo resolution scheme.
In the reference [9], an LTP system describing a wind turbine is considered, and a coordinate transformation is
proposed for this type of system. The Multi-blade coordinate transformation is used to express the response in
the fixed reference frame. The relevant part of the analysis is related to the evolution of the modal frequencies;
this is done numerically using specialized analysis software. Floquet analysis is integrated into the modal
analysis after the coordinate transformation.
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Hansen [51] focuses on the modal analysis of a wind turbine using Hill’s method. A rotor-blade model describes
two types of turbines: two-bladed and three-bladed. The periodic modes are contrasted for each case, and the
particularities of Hill’s method are discussed. The redundancy of modes inherent to Hill’s method is solved by
applying filtering criteria to the obtained candidate eigenvalues. Additionally, the paper provides a synthetic
review of the emergence of Floquet and Hill techniques in wind turbine technologies from the late 2000s to
mid-2010s, in publications by himself (Hansen) and Skjoldan [125], Bottasso and Cacciola [14], among others.

To conclude the wind energy review, in [118], the forced response is studied using modal techniques from
the results found in the preceding publications. A reduced-order model is selected to describe the key aspects
of floating wind turbine motion. The Colemann transformation and Floquet analysis are applied. Special
attention is paid to the effect of system anisotropy on the stability of the solution. Different wind velocities are
also considered, and the loads are calculated using Blade Element Momentum Theory (BEMT). No stochastic
description of loads is presented.

In recent years, other domains have integrated Floquet analysis and proposed adapted stability and response
analysis methods. For instance, in reference [49] Floquet analysis is applied to studying periodic flexible multi-
body systems. A numerical technique is proposed for the determination of the stability and the simulation of
such systems. The Galerkin method is the basis of the numerical method, which aims to find the system’s
periodic solutions.

2.2 Alternative approaches

We now briefly summarize some alternative approaches that have been explored for the resolution of the problem
in this thesis; as detailed in [50], three trends can be identified:

• Artificial intelligence tools: [4] proposes an emulator to study the response as a function of uncertain
mistuning; [19] utilizes different machine learning methodologies to study uncertainties inherent to the
manufacture of rotor blades in helicopters.

• Experimental techniques have been implemented to characterize in-service systems: [143] proposes a
novel experimental technique based on optical fiber to measure the response of a helicopter rotor blade
system; [101] utilizes a hybrid method involving digital image correlation to characterize the properties
(particularly the sectional stiffness) of a helicopter rotor blade.

• Computational and analytical developments have been applied to the study of stochastic LTP systems:
[76] combines a reduced-order model with an arbitrary polynomial chaos (aPC) basis with random spatial
heterogeneities; [81] takes an analytical and experimental approach to study multi-source nonlinearities
in rotor-blade systems; [36] proposes a method based in chaos exponentials (related to polynomial chaos
method) to project the Blade Element Momentum equations that describe the loading on a wind turbine to
obtain estimations of the unsteady long-term load; [16] takes an analytical approach based in stochastic
calculus to address error and noise in the inputs of wind turbines with a particular emphasis on the flutter-
type dynamical instability; [156] focuses on the dynamic reliability of a compressor rotor system with
stochastic stresses and strengths. In reference [31], the approach to determining the forced response of
time-varying systems is developed using a Wavelet representation to extend the concept of transmissibility
in LTI systems to the case of time-varying ones.

Some of the ideas in these alternative approaches might prove useful to our purposes. Yet, many are aimed at
fundamentally different tasks: some are focused on addressing nonlinear systems, others are formulated for type
C or type D problems, and others consider uncertainties in the system rather than the excitation. This summary,
however, offers a modern perspective on the state of the field. This concludes the review of the system side
of the problem. The following section addresses developments in stochastic load modeling and other relevant
aspects of the stochastic component of our work.
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3 Stochastic modeling, simulation, and extreme value theory

This section recovers some existing results useful to our treatment of stochastic quantities. We follow many of
the ideas and methods introduced in his thesis [134] by Suptille, adapting them to our application. Other key
references covering fundamental topics are the monographs by Papoulis [98] for probability theory, Preumont
[104] and Lutes and Sarkani [85] for the application of random processes to mechanical vibrations, and Chris-
takos [21] for the treatment of spatio-temporal stochastic fields. We first present some definitions and notational
aspects that will be used throughout this work.

A scalar stochastic process X (t) in the probability space {Ω ,F ,P}, where Ω is a sample space, F is a sigma-
algebra over Ω , and P is a probability measure, continuous t, is an infinite set of random variables indexed by
time, each random variable is characterized by its Cumulative Distribution Function (CDF):

PX (x, t) = P [X (t)≤ x] , (1.8)

for a fixed t; this is also referred to as the marginal CDF of process X (t) at the indicated time and also the first-
order distribution of the process. A more thorough description of the process requires the finite-dimensional
distributions (FDDs) of the process, which are the joint CDFs of a finite number of the constituent random
variables, for instance, the second-order distributions read:

PXX (x1,x2, t1, t2) = P [X (t1)≤ x1,X (t2)≤ x2] , (1.9)

and similarly, the n− th order distributions read:

PX ...X (x1, . . . ,xn, t1, . . . , tn) = P [X (t1)≤ x1, . . . ,X (tn)≤ xn] . (1.10)

The instantaneous n − th probabilistic moment with respect to the origin, also called ordinary moment, of
process X (t), is defined as:

µXn (t) = E [Xn (t)] =
ˆ
R

xn pX (x, t)dx, (1.11)

where E [•] denotes the expectation operator, x covers the range of the possible values of the process, and px (x, t)
is its marginal Probability Density Function (PDF): px (x, t) =

∂PX (x,t)
∂x if the derivative exists. For the ordinary

moments, we may also expand the subscript and write µXn = µX×X ...×X (n times); for instance the following
equivalences are often practical: µX2 (t) = µXX (t), µX3 (t) = µXXX (t) and µX4 (t) = µXXXX (t), but after the
fourth moment the subscript expansion becomes cumbersome so the original form is given preference in our
developments when n > 4. We refer to the first ordinary moment as the mean of process X (t). Similarly, the
instantaneous n− th probabilistic moment with respect to the mean, so-called central moment, is defined as:

σXn (t) = E [(X (t)−E[X (t)])n] , (1.12)

we observe that with this indicial notation: ordinary moments are invariant under index permutation, while
central moments are not. We refer to the second central moment as the variance of process X (t).

The instantaneous moments can be generalized to the inter-instant moments:

RXX (t1, t2) =E [X (t1)X (t2)]

ΣXX (t1, t2) =E [(X (t1)−E [X (t1)])(X (t2)−E [X (t2)])] (1.13)

the correlation function and covariance function of process X (t), respectively; more generally:
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RXn (t1, t2, . . . , tn) =E

[
n

∏
i=1

X (ti)

]

ΣXn (t1, t2, . . . , tn) =E

[
n

∏
i=1

(X (ti)−E [X (ti)])

]
, (1.14)

for n = 3 we have the bi-correlation and bi-covariance, for n = 4 the tri-correlation and tri-covariance, and so
on.
A process is strongly stationary if its marginal distributions are invariant to time. A weakly stationary process
up to the second order is one such that:

µX (t) =µX

ΣXX (t1, t2) =ΣXX (t2 − t1) , (1.15)

the mean is constant and the covariance function depends on the time difference τ = t2 − t1 rather than the time
instants. The Wiener-Khinchin theorem provides the following result:

SXX ( f ) =FT [ΣXX (τ)] , (1.16)

where FT [•] is the Fourier transform, and SXX ( f ) is the Power Spectral Density (PSD) of process X (t).
A stochastic process can be interpreted as a sequence of random variables indexed by a time variable. In many
domains, a sequence of random variables is called a stochastic field. The term spatio-temporal stochastic field
(see [21]) denotes a sequence of random variables indexed by time and space variables. Throughout this work,
the term stochastic field refers to spatio-temporal fields. We thus note a stochastic field by X (x, t), which
depends on the 3D space coordinate x and time t. The moments of field X (x, t) are expressed as:

µX (x1)···X (xn) (t) = E [X (x1, t) · · ·X (xn, t)]

σX (x1)···X (xn) (t) = E [(X (x1, t)−E [X (x1, t)]) · · ·(X (xn, t)−E [X (xn, t)])]

RX (x1)...X (xn) (t1, . . . , tn) = E [X (x1, t1) . . .X (xn, tn)]

ΣX (x1)...X (xn) (t1, . . . , tn) = E [(X (x1, t1)−E [X (x1, t1)]) . . .(X (xn, tn)−E [X (xn, tn)])] , (1.17)

where the index quantities are to be interpreted as varying on the x space. For instance, the instantaneous second
ordinary moment of field X (x, t) is µX (x1)X (x2) (t), a function of a time variable and two space variables.

3.1 Stochastic force models and simulation

Stochastic modeling is a powerful tool that allows us to take into account the high variability in structural
properties and physical phenomena. This approach results in mechano-probabilistic models with an intrinsic,
probabilistic notion of risk/safety, from which emerges the study of system reliability in probabilistic mechanics.
Already in the 1990s, as can be noted in reference [127], probabilistic approaches had been gaining traction to
the point of being integrated into international guidelines and reports in the context of structural design (for
instance, the JCSS’s General Principles on Reliability for Structural Design, used by ISO in the revision of
ISO 2394, as well as in the ISO in the revision of ISO 2394; the Commission of the European Communities
followed these guidelines in a first draft of the Eurocode n° 1 (EUR 8847, 1984), and subsequently in the drafting
of Eurocodes 2 to 8). Schuller [121] offers an insightful perspective of the field in the mid-2000s, highlighting
the fact that offshore applications have led the way in stochastic methods and reliability applications.
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Given the complexity of the physical phenomena involved in their dynamics, marine and oceanic mediums
are strong candidates for stochastic modeling. An offshore or submerged structure or machine is potentially
subject to wind, waves, tides, currents, and additional turbulent effects that characterize the background sea
environment. The question of how to characterize these effects and determine the behavior or response of
structures and machines subject to them has been a subject of research for a long time.
In the classic work of Morison [90], the namesake and popular semi-empirical formula is proposed with the
objective of calculating the forces produced by waves on slender offshore structures:

FH = ρfCm
π

4
D2

pileV̇ +
1
2

ρfCdDpileV |V | , (1.18)

where ρf is the density of the water, Dpile is the effective diameter of the slender element, Cm and Cd are
empirical constants describing inertial and drag effects, V and V̇ are the particle velocity and acceleration of the
fluid respectively, and FH is the hydrodynamic force per unit of area. While the original result was proposed in
a deterministic context, it was soon extended to the stochastic domain. Borgmann pioneered the early efforts
in this front in reference [12], where he considered the particle velocity and acceleration as centered Gaussian
stochastic processes and obtained expressions for the PDF and moments of the response.
The investigation of the stochastic version of Eq. 1.18 eventually led to the question of determining the ex-
tremes of such forces and the consideration of deformable elements and their dynamic response. In the paper
[47], Grigoriu studies the extremes of Morison force when the particle velocity is Gaussian. He utilizes the
upcrossing rate of the force and the theory of Translated Gaussian Processes to compute the crossing intensity.
The paper identifies an important issue: statistical linearization yields a Gaussian response and does not provide
a good approximation except for inertially dominated regimes. The nonlinearity of the Morison model breaks
Gaussianity and leads to underestimation of mean and variance, so the maxima are poorly approximated. We
remark that given a stochastic process X (t) under consideration in the interval [0,T ], we call the extreme value
distribution (EVD) the CDF of the quantity:

XM = max
[0,T ]

[X (t)] (1.19)

that is, for a process X (t), the largest value in [0,T ] is described as the random variable XM , its CDF PXM (xM) =
P [XM ≤ xM] expressing the probability that the largest value attained by the process in the interval is at most
xM .
The extremes and statistics of Morison-type loading have been extensively researched with different types of
methods being proposed: Moe [89] utilizes probabilistic and spectral methods and discusses the distinction be-
tween short-term and long-term statistics; Baar [2] studies the extremes of Morison forces using approximations
and compares the different regimes, the qualitative difference of the distribution when one term is dominant over
the other; Lindgren [82] studies the extremes using probabilistic methods and applies Rice formula, which will
be discussed in more detail in the next subsection; Naess [91] uses analytical methods to describe extreme value
statistics. We stress the fact that these results are about the Morison force itself, not the response of a given
structure or machine to it.
Apart from the previous developments, the study of the response to Morison-type loads has also been studied
in depth. Koliopulos [71] studied the case of a single-degree-of-freedom linear system, described the response
in terms of moments, deduced PDF estimations, and used Rice’s formula to determine the upcrossing of the
response process. More recent works include Zheng and Liaw’s [158] study of a linear oscillator subject to
a Morison-type force, proposing a method based on Cumulants, and spectral analysis is used to obtain the
response; Najafian [94] proposed probabilistic models for the response validated by simulation; Naess et al.
[92] propose a Monte-Carlo approach to obtain the extremes of the drag-dominated response to a Morison load.
Winterstein [145] considers nonlinear oscillators and describes the response through its moments, introducing
probabilistic models compatible with the analytically obtained moments. The model proposed is compared
to Charlier and Edgeworth series representation of the response PDF based on moments; the results include
extremes and fatigue descriptors. This approach has been further explored by Winterstein and collaborators and
intersects with wind energy applications: [146] and [147].
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Algorithm 1.1 Moment propagation conceptual flow

1. Describe the stochastic input and system.

2. Propagate moments from input to output.

3. Use the output or response moments to “reconstruct” the PDF of the response.

Figure 1.1: Example of Lognormal and modified Lognormal distributions

Analytical results for complex systems and general excitation, like nongaussian and nonstationary input pro-
cesses, are limited. The strategy exemplified by Winterstein and others (see Alg. 1.1) is based on the fact that
moment propagation is often convenient for these complex cases, yet different approaches are possible to this
reconstruction of the response PDF, and much of the previously cited research focuses on the practicality and
accuracy of these different approaches: from Maximum entropy to Charlier or Edgeworth series. An additional
theoretical limitation must be considered in this approach: finite moments do not fully determine the PDF of
a general process, as put by Diaconis in [28]: “Natural examples show that distributions can match in many
moments and still not be equal”. As an example, consider the following two distributions characterized by the
following PDF:

p(x) =
1√
2π

(
1
x

)
exp

[
− (log [x])2

2

]
pa (x) =p(x)(1+asin [2π log [x]]) (1.20)

with x ≥ 0 and −1 < a < 1, these PDF can be visualized in Fig. 1.1, the non-central moments up to 4 for a =−1
are: µ f = 10.359, µ f f = 46.427, µ f f f = 565.57, µ f f f f = 18730; it can be shown (see: [30]) that these two
different distributions have equal moments.
Another approach available to determine the response in complex situations is what we will call Monte-Carlo
methods or Monte-Carlo simulations (MCM or MCS) throughout this work, as shown in Alg. 1.2. If sufficient
realizations have been simulated, then the statistical descriptors should approach the probabilistic quantities
of the response process. This approach is taken in the previously referenced work by Naess. The advantages
of the MCM approach are its generality and conceptual simplicity and its compatibility with computational
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Algorithm 1.2 MCM conceptual flow

1. Describe the stochastic input and system.

2. Simulate the stochastic input for a sufficiently large number of independent realizations.

3. Solve the dynamic equation subject to each input realization in a deterministic fashion.

4. Perform statistical analysis on the solutions.

parallelization owing to the independence between realizations. Among the disadvantages we note scaling
constraints, as convergence in the statistical sense may require a very large number of realizations, and for
large systems the resolution time can be substantial or even prohibitive in the computational time sense; the
implementation requires efficient methods to simulate the stochastic input, which is available for Gaussian and
stationary processes, but are much more limited for more general processes. The scaling problem is particularly
pronounced when the quantity under estimation is related to the extremes of the response: by definition, these are
rare events and an accurate description requires either a very large number of realizations or the implementation
of some modification of the standard MCM, such as biased sampling. For the simulation of Gaussian stationary
processes, a widely popular method was proposed in reference [123], and many alternatives and versions have
been developed over the years, for instance, [135] based on the inverse Fourier Transform. Alternatives to
the nongaussian and nonstationary cases include: Gaussian Translation ([122]) and Karhunen–Loève–based
approaches ([102]).

Using the problem category presented in the introduction, further remarks are made with respect to the MCS
approach to response characterization with stochastic inputs. MCS is usually well adapted to type A or analysis
problem since a single execution of the sequence Alg. 1.2 is required. The previously discussed scaling problems
can be addressed with parallelization and code optimization (vectorization, selection of an efficient solver).
In the case of type B problems, the MCS approach becomes impractical: since this type of problem can be
framed as a search of parameters in a design space, a generally large number of executions of Alg. 1.2 would
be required. On the other hand, design specifications can be expressed in terms of constraints to be met by
moments in Alg. 1.1, which would then allow a much more effective implementation of a solution.

3.2 Extreme value distribution

The study of the largest value attained by a process on an interval [0,T ] plays a central role in the analysis of
applied stochastic phenomena. From an engineering perspective, the motivation is straightforward: extreme
response is one of the main design considerations of systems. The connection between the descriptive concept
of EVD and design concept of probability of failure Pf can be evidenced by considering a sufficiently high
failure level u f and considering the CDF of Eq. 1.19:

Pf = 1−PXM

(
u f
)
, (1.21)

the probability of failure Pf in the observation time [0,T ] is the probability of the random variable XM attaining
or surpassing the level u f . The complement of Pf in the probabilistic sense is the probability of no failure
(safety), or reliability: PR = 1−Pf = PXM

(
u f
)
.

A pivotal result in the study of extremes of stochastic processes was made by Rice in references [112] and [113],
where the namesake formula is proposed for the zero crossings of a differentiable stochastic process, yielding
the crossing intensity of rate of upcrossing νX (t):

νX (t)dt = dt
ˆ

∞

−∞

|y| pXẊ (0,y, t)dy (1.22)
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where pXẊ is the joint PDF of the stochastic process X (t) and its derivative Ẋ (t). When applied to a stationary
Gaussian process, this yields:

ν
+
X (t) = exp

[
− u2

2ΣXX (0)

](
1

2π

)(
Σ̈XX (0)
ΣXX (0)

) 1
2

, (1.23)

where ΣXX is the covariance function of the process, Σ̈XX = ∂ 2ΣXX
∂ t2 .

More broadly, and considering the number of crossings over the level u on [0,T ] as N (u,0,T ) one has:

λ
+
X (u) =E [N (u,0,T )]

E [N (u,0,T )] =
ˆ T

0
ν
+
X (u, t)dt, (1.24)

where λ
+
X (u) is the mean number of upcrossings of X over u in [0,T ]. To obtain λ

+
X (u) here, Eq. 1.22 can be

applied, although the main difficulty consists in the accurate determination of the joint PDF of the processes
involved, particularly in this case of time-varying processes. With λ

+
X known, the Poisson hypothesis can be

used to seek an EVD of the form:

PXM (u) = PX (u, t = 0)× exp
[
−λ

+
X (u)

]
, (1.25)

where PX (u, t = 0) is the probability of the process X (t) remaining below the threshold u at the initial time of
observation t = 0.

In the subsequent decades, these two formulas saw application in many fields, from ocean engineering ([132])
to vibration theory ([24]). Theoretical and practical developments were published in the same period: Lead-
better [78] and Yang [152] worked to ameliorate the understanding of nonstationary and nongaussian cases. A
historical and technical perspective on the influence of Rice’s formula is given in the reference [83].

We now turn to two results of interest in the literature on nonstationary Gaussian processes related to their EVD
and first-passage time. A more formal approach is taken in [74].

Hasofer and Petocz [52] This result is enunciated in terms of the following quantities:

σYY (t) =E
[
Y 2 (t)

]
= RYY (t1, t1) ;

σYẎ (t) =E
[
Y (t)Ẏ (t)

]
= ṘYY (t1, t1) ;

σẎẎ (t) =E
[
Ẏ (t)Ẏ (t)

]
= R̈YY (t1, t1) ; (1.26)

where Ẏ (t) = d
dt [Y (t)], and ṘYY = ∂

∂ t [RYY ]. The following time-dependent functions are introduced:

γ (t) =

[
1−

σ2
YẎ (t)

σYY (t)σẎẎ (t)

] 1
2

η (t) =
uσYẎ (t)

γ (t)σYY (t)
√

σẎẎ (t)

(1.27)

then the rate of upcrossings over a level u are expressed as :
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ν
+
Y (u; t) =

γ (t)√
2π

√
σẎẎ (t)
σYY (t)

exp
[
− u2

2σYY (t)

][
φ (η (t))

η (t)Φ (η (t))

]
(1.28)

where φ is the standard normal PDF and Φ the standard normal CDF. Asymptotically, u → ∞:

ν
+
Y (u; t) :≈ 1√

2π

[
γ (t)

σYY (t)

][
u√

σYY (t)

]
exp
[
− u2

2σẎẎ (t)

]
. (1.29)

Knowing that the rate of upcrossings over a sufficiently high level u allows for the computation of the first
passage :

LY (u; t) = Pr [TY (u)> t] = exp
[
−
ˆ t

0
ν
+
Y (u;τ)dτ

]
(1.30)

with TY (u) is the first time at which Y surpasses the level u in the interval under study. This last formula
relies on the assumption that the random variable counting the exceedances has a Poisson distribution. The
Poisson hypothesis (particularly with respect to the independence of peaks) tends to break down with narrow-
band processes because of the clumping of extremes. Under such situations, the envelope of the process can be
studied in the same manner as here.

Ambetkar, Kuppa and Gupta [1] Considering a random vector of components Yi (t), the number of crossings
of level ui on the [0,T ] interval is introduced as Ni (ui,0,T ), with Ymi = max

[0,T ]
Yi (t). The joint EVD is written as:

PYm (u1, ...,ui) = exp

− (u+1)u
2

∑
j=1

λ j

 , (1.31)

which means the problem is reduced to finding or estimating the Poisson parameters λ j.

Limitations The results on both of these references seem to have a similar limitation: the modulating function
is of a very specific type composed of decaying exponentials. Our interest is in periodic or quasi-periodic
modulations. The consequence of this disparity is that, in the postulated modulation we explore, of type a(t) =
∑i ai (t,ω), the introduced functions such as η (t) in [52] and [1] are arbitrarily large due to the variance in the
denominator approaching zero, resulting in issues evaluating: Eq. 1.28.

An important limitation in the applicability of equation Eq. 1.22 is the fact that realistic loading processes are
often nongaussian and, as we shall see in detail in Chapter 3, lead to nonstationary response processes when
applied to LTP systems; these two facts lead to serious challenges in the determination of the joint PDF of
the response process and its derivative in analytical terms. As illustrated in Fig. 1.1, moment propagation
is a powerful tool but moments might not be sufficient to reproduce the required PDF accurately, a problem
compounded by the fact that usually, limited moments are available for the response. In practice, usually, the
first 4 moments are considered in much of the literature. The few examples where this limit is crossed are
from very specific types of prescribed distributions and not in applied fields of study. Additionally, in the case
of stochastic processes, the instantaneous moments may not be a good descriptor, so higher-order covariances
might need be computed. Higher order covariances increase their dimension with order, and the scaling from a
computational perspective is cumbersome. We proceed by example:

1. A load process in a type of LTP system, the rotor-blade system, emerges from a governing law such as
Morison’s Eq. 1.18, but from a physical perspective, even if the velocity field is assumed stationary, it is
the relative velocity that is required in the cited equation. Because of this, the Morison force perceived
by the system is nonstationary.
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2. The breaking in Gaussianity comes from nonlinearities in the interaction laws. Assume a stationary
Gaussian velocity point process X (t) ∼ N (µX ,ΣXX (τ)). Gaussianity implies that the moments must
follow the following relationship:

µXXX =µ
3
X +3µX σXX , (1.32)

now considering the drag term of Eq. 1.18: F = aX2, we have:

µF =aµXX

σFF =a2
σXX (1.33)

and since µFFF = a3µX6 , µX6 = µ6
X +15µ4

X σXX +45µ2
X σ2

XX +15σ3
XX :

a3
(

µ
6
X +15µ

4
X σXX +45µ

2
X σ

2
XX +15σ

3
XX

)
̸= a3 (

µ
3
XX +3µXX σXX

)
(1.34)

we conclude that F can not be Gaussian.

3. The Floquet modal transformation of Eq. 1.1 with x(t) = R(t)q(t) leads to the modal (LTI) form of the
problem: q̇(t)−ρρρq(t) = f̄(t), whose forced response is ([151]):

q(t) =−
ˆ +∞

0
[exp [ρρρ (t − τ)]] f̄(τ)dτ (1.35)

taking the expectation:

µµµq (t) =−
ˆ +∞

0
[exp [ρρρ (t − τ)]]µµµF (τ)dτ (1.36)

as discussed in the previous point, µµµF (t) is not constant since f is not stationary in general, but further,
even if µµµF (t) = µµµF is assumed constant and µµµq is too, the physical response is: µµµX = R(t)µµµq, with
R(t) the Floquet modal matrix of period Tp, the mean response ,in this case, is nonstationary due to the
periodic modulation of the periodic eigenvectors. In any case, the response is not stationary.

Nevertheless, different strategies have been developed to address these limitations:

• Moment propagation and probabilistic models based on the available moments have proved effective in
specific domains: [146],[147].

• The theory of Gaussian Translation introduced by Grigoriu [46] has been expanded to some effect into
the nonstationary domain [34], [157].

• Approximate formulas [84] have been developed for the nonstationary nongaussian case.

• Efficient MCS-based approaches to the study of extremes have been proposed [63], in some cases using
reliability methods and numerical tools [62].

• The case of multivariate extremes has been explored to some extent [48].

The determination of the EVD of nongaussian nonstationary processes remains a challenge.
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Chapter 2

Dynamics of rotating mechanical
systems: The rotor-blade model

“As stated, every constraint that is not holonomic
is nonholonomic. One will readily understand
that it is not possible to give a general discussion
of nonholonomic constraints such as can be done
for holonomic ones because the latter is a
narrowly circumscribed class while the former is
not. (Thus, bananas are readily discussed, while
nonbananas are not.) Nevertheless, some
classification of frequently encountered
nonholonomic constraints is possible.”

Reinhardt M. Rosenberg, Analytical Dynamics
of Discrete Systems

In this chapter, the dynamical model of a rotor-blade system is constructed. The kinematic description of the
system is established, informed by a priori knowledge of rotordynamics and relevant applications. The ener-
getic expressions are deduced for general cases and then adapted to our case of interest. The Euler-Lagrange
formulation of classical mechanics is chosen to establish a general equation of motion for a family of mechan-
ical systems. The parameters of this family of systems consist of the constituents’ geometric, physical, and
mechanical properties, as well as the selected architecture of the structure under analysis.

A key aspect is the description of blade elements. A section is devoted to the modeling of blades taking a
similar approach to that of the general system case: geometry of motion, energetic expressions derived from
a continuum onto which we impose classical beam hypotheses and material behavior laws, and derivation of
the equations of motion. Modal kinematic discretization is then applied to the equations of motion to obtain a
discrete modal representation of blade vibration of arbitrary order. A balance between generality and practicality
is sought.

Several innovative aspects of our development will be highlighted during the chapter. First, the application of
a rich body of results in analytical mechanics of rigid bodies, as presented in [96], to this type of model, to
our knowledge not present in the corresponding literature; second, we relax some restrictions usually found
in the available literature concerning the description of the "hub/disc" or rotor component, leading to coupling
terms that affect the modal and vibration behavior of the system; third, many approaches found in the pertinent
literature either consider a rigid body, or discretize the entire system in terms of Finite Elements (FE), in contrast
our model considers a multi-body system in which only the rotor element is rigid while mounted on elastic
supports, and the blades are deformable. These modeling choices permit us to study the vibration behavior of
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blades, considering the inherent coupling of this type of system. The fact that kinematic discretization methods
are used instead of Finite Element techniques implies that the interpretation and analysis are more intuitive and
manageable, particularly when the stochastic aspects come into play.

1 Architecture of rotor-blade systems

The rotor-blade model comprises two main types of constituents: a rotor subsystem, also called a hub out
of practicality, and the blade elements. Depending on the application, additional elements, such as blade tip
masses, vibration control, or suppression devices, can be integrated into the model. Additionally, the rotor-
blade system can be integrated into a support structure: in tidal energy applications, the supports can be towers
fixed to the sea floor or suspended floating platforms; in wind energy, various types of tower structures are
utilized, and in offshore cases, floating and fixed supports exist. Two and three blades are the most common
configurations for horizontal tidal turbines.
The rotor subsystem consists of an axisymmetric shaft with a mounted disc. The system has a spin or angular
velocity parallel to the axis of symmetry of the disc. A diversity of models have been proposed concerning the
characteristics of the shaft and kinematic hypotheses of motion([42],[39]):

1. Concerning the shaft and supports of the shaft, the following models have been proposed: rigid shaft on
flexible supports, flexible shaft on rigid supports, and flexible shaft and supports.

2. Concerning kinematic considerations: the Jeffcott rotor in which motion is confined to the rotational
plane (2 DOFs); different 4 DOFs models with different configurations, the degrees of freedom being two
translations of the center of mass of the disc, and two angles describing the orientation of the disc. The
spin is usually a prescribed quantity and, thus, is not a motion parameter. Translation in the direction of
spin is usually neglected. The Stodola-Green rotor is characterized by the cantilever support conditions
of the shaft.

Qualitatively, 2-DOF models such as the Jeffcott rotor do not display gyroscopic effects, a key feature of 4-DOF
rotors. The gyroscopic term, which appears as a consequence of the conservation of angular momentum in the
system, is the source of parametric vibrations in this type of model. To see this, consider the general equation:

Mẍ+G(Ω) ẋ+Kx = 0 (2.1)

where the matrix G(Ω)has the form:

G(Ω) =


0 0 0 0
0 0 0 0
0 0 0 −IpΩ

0 0 IpΩ 0

 (2.2)

with Ip the polar moment of inertia of the disc and Ω the angular speed. This system can be cast into modal
form seeking a solution of the form:

x = αΨΨΨexp(st); α,s ∈ C (2.3)

which results in the following eigenvalue problem:

(s2M+ sG(Ω)+K)ΨΨΨ = 000 (2.4)

making it evident that the resonant frequencies associated with this problem’s eigenvalues will depend on the
angular speed Ω. The Campbell diagram is a parametric plot that displays the values of the frequencies of the
system for a selected range of Ω. A schematic representation of this type of system is shown in Fig. 2.1. An
example of a Campbell diagram is shown in Fig. 2.2.
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Figure 2.1: Schematic representation of 4 DOFs rotor system with rigid shaft and flexible supports

Figure 2.2: Example of Campbell diagram for 4 DOF rotor model
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Figure 2.3: Transverse vibration of blade: a) flapwise; b) spanwise

The modeling of the blades, as described in the next chapter, is closely associated with the problem of the ro-
tating beam. The blades are radially attached to the disc and undergo transverse vibration. Depending on the
application, different directions are prioritized in the blade description. A variety of terms have been coined to
refer to these ([108],[40],[75]): the transverse vibration inside the plane of rotation is called spanwise, lead-lag
or in-plane, the transverse vibration is called flapwise or out-of-plane. The Euler-Bernoulli and Timoshenko
beam models are often employed ([40],[108],[68]). Two boundary conditions are predominant based on ap-
plication: cantilever, often selected in wind and tidal applications, and pinned, more often found in helicopter
ones.

Centrifugal stiffening (also called geometric stiffening) and spin softening are the main effects that make the
rotating beam problem qualitatively different from the non-rotating one. These effects manifest in the stiffness
property of the system, as the centrifugal force acts similarly to the pre-stress effect in beams ([43]).

2 Kinematic description

Based on the previous section, we make the following modeling choices to start the kinematic description of the
system:

• The rotor model selected has 5 DOFs: three translations of the center of mass of the disc, two rotations
describing its orientation, and the spin is prescribed and considered constant.

• A rigid shaft on flexible supports is assumed.

• As the focus is the vibration of the rotor-blade assembly, the modeling of support is ignored, although its
integration process is outlined.

• The blade is described as an Euler-Bernoulli (slender) beam undergoing bending-bending deformation in
both flapwise and spanwise directions.

While we adopt these hypotheses for the following development, some of the analysis will go into relaxing them
if necessary and the type of change these would entail.

We describe the initial, undeformed configuration κ0 with respect to an inertial reference frame Oxyz that remains
fixed, that remains fixed; its origin coincides with the center of mass of the disc in this configuration G̃ =
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[Gx,Gy,Gz]
T, the disc is contained in the x− y plane, while z coincides with the axis of symmetry of the disc-

shaft assembly. The disc is characterized by its mass Mr, radius Rr , and, given its axial symmetry, by the
following moments of inertia [60]:

Jp = IZ =

ˆ
A

(
Y 2 +X2)dm

IX = IY =

ˆ
A

(
X2 +Z2)dm

Jd =IX = IY (2.5)

where we have adopted the rotor-dynamics convention: Jp is called the polar moment of inertia of the disc,
and Jd is the diametral moment of inertia of the disc. Additionally, the shaft’s mass and inertia are considered
negligible with respect to the disc. The position of the supports of the shaft with respect to the referential in
this configuration can be done using the following vectors: P1 = [0,0,L1] and P2 = [0,0,L2]. Notice that if both
L1 and L2 are negative, the model resembles the Stodola-Green cantilever rotor; if they have different signs,
we have a model that resembles the standard 4-DOF rotor (that is, pinned-pinned boundary condition). In any
event, the characteristics of the support can always be reduced to equivalent terms; the difference between these
choices is the relationships among the corresponding stiffness and damping coefficients. Given this fact, we
ignore any particular sign on L as the particular case can be applied once the model has been established.
The final aspect in the description of the system in configuration κ0 concerns the description of the blades.

We will assume the existence of the vector functions Wib (ξ , t) =
[
ξ ,W s

ib
(ξ , t) ,W f

ib
(ξ , t)

]T
, that describe the

position of an arbitrary point over the ib − th blade with respect to its axis, here ξ is dummy variable specifying
the coordinate along the length of the beam, the superscript distinguished the spanwise and flapping component
of the deflection of the beam. It is the case that 0 ≤ ξ ≤ Lb, where Lb is the length of the blade. We assume all
blades are identical, so Lbi = Lb for all i. We will show the existence of such functions and their construction in
section 4. With this, the position of an arbitrary point over the ib − th blade with respect to Oxyz is Pib (ξ , t) =
Wib (ξ , t)+ [Rr,0,0]

T. In configuration κ0, Pib (ξ ,0) = [Rr +ξ ,0,0]T. The other blades can be specified by
their angle with respect to the first one, and for convenience, we will write αi, where α1 = 0. For the two-blade
case α2 = π is the most useful case as it describes a symmetric configuration. A visual representation of this
configuration is presented in Fig. 2.4.
We now introduce an arbitrary perturbed configuration κ . The kinematic description of the system requires the
passage κ0 → κ; to this end, a series of intermediate reference systems will be defined. First, a non-inertial
reference frame Gxyz follows the center of mass and keeps the same orientation as Oxyz, the passage between
the two is a translation that coincides with the displacement of the point G. Second, three rotations are required
to pass from the referential GXY Z which preserves the orientation of the disc, and Gxyz. These rotations are
describes using a 3−2−1 sequence of Euler angles ([96],[42]):

R1 =

1 0 0
0 cos(θ1) sin(θ1)
0 −sin(θ1) cos(θ1)


R2 =

cos(θ2) 0 −sin(θ2)
0 1 0

sin(θ2) 0 cos(θ2)


R3 =

 cos(θ3) sin(θ3) 0
−sin(θ3) cos(θ3) 0

0 0 1

 (2.6)

where θ1, θ2 and θ3 are the respective Euler angles: θ1 corresponds to a rotation around the instantaneous x
axis, θ2 a rotation around the instantaneous y axis (clearly not the same axis as y in the κ0 configuration since
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Figure 2.4: Diagram of the rotor-blade model with two blades

the first rotation has been applied) and θ3 is a large rotation called the spin or intrinsic rotation of the rotor, in
this application θ3 = Ωt; θ̇3 = Ω = constant. Thus, the passage from an arbitrary vector rG in the referential
GXY Z to the inertial referential Oxyz is:

rO =G̃+ R̃(t)rG

=G̃+
(
RT

1 RT
2 RT

3
)

rG (2.7)

where R̃(t) = RT
1 RT

2 RT
3 is:

R̃(t)=

 cos(θ2)cos(θ3) −cos(θ2)sin(θ3) sin(θ2)
sin(θ1)sin(θ2)cos(θ3)+ cos(θ1)sin(θ3) cos(θ3)cos(θ1)− sin(θ1)sin(θ2)sin(θ3)−sin(θ1)cos(θ2)
−cos(θ1)sin(θ2)cos(θ3)+ sin(θ1)sin(θ3) cos(θ1)sin(θ2)sin(θ3)+ sin(θ1)cos(θ3) cos(θ1)cos(θ2)

 .

(2.8)
The energies can be obtained from this kinematic description, as will be shown in the next section. An interesting
result can be established at this point. Each one of the matrices in Eq. 2.6 is a proper orthogonal matrix:
RT

i Ri = I, det(Ri) = 1. It follows that R̃(t) is a proper orthogonal matrix. This implies that the following
eigenvalue problem is guaranteed to have one solution such that Λ = 1:

R̃r = Λr (2.9)

or: R̃r = r. The corresponding eigenvector r is the instantaneous axis of rotation. An analytic expression for r
is ([96]):

r1
r2
r3

=− 1
2sin [Ψ ]

−cos(θ1)sin(θ1)− cos(θ3)sin(θ1)+ cos(θ1)sin(θ2)sin(θ3)
sin(θ1)sin(θ3)− cos(θ1)cos(θ3)sin(θ2)− sin(θ2)

−cos(θ2)sin(θ3)− cos(θ3)sin(θ1)sin(θ2)− cos(θ1)sin(θ3)

 (2.10)

where cos [Ψ ] = 1
2 (cos(θ2)cos(θ3)+ cos(θ1)cos(θ3)− sin(θ1)sin(θ2)sin(θ3)+ cos(θ1)cos(θ2)−1).

42



3 Equation of motion: Energy and Lagrangian

In this section, we build on the parametrization of motion to obtain the energies of the system. With the
energies available, the Lagrangian of the system is obtained, and thus, the equations of motion.. With the
energies available, the Lagrangian of the system is obtained and thus the equations of motion. The generalized

coordinates of the system are: x =
[
Gx,Gy,Gz,θ1,θ2,q•ib jm

]T
, where the first five variables correspond to the

position and orientation of the disc, and the variables q•ib jm are generalized modal variables resulting from the
discretization of the blades, subindex jm denotes the corresponding mode, ib denotes the corresponding blade
and the overdot is a placeholder for s referencing spanwise motion or f referencing flapping motion.

At this stage, it is also important to discuss the nonlinear nature of the general rotation expressed by R̃(t). The
presence of nonlinear terms, combined with the quadratic form of the energetic expressions applicable to this
type of system, leads to strong nonlinearities in the equations of motion. If the standard small angle assumptions
are made on the angles other than the spin: cos(θi) ≈ 1,sin(θi) ≈ θi; i ∈ [1,2] we arrive at what we will call
reduced rotation matrix:

Rred =

 cos(θ3) −sin(θ3) θ2
θ1θ2 cos(θ3)+ sin(θ3) cos(θ3)−θ1θ2 sin(θ) −θ1
θ1 sin(θ3)−θ2 cos(θ3) θ1 cos(θ3)+θ2 sin(θ3) 1

 (2.11)

which still will produce nonlinearities. A stronger hypothesis must be made to fully linearize the result: θ1θ2 ≈
0:

Rlin =

 cos(θ3) −sin(θ3) θ2
sin(θ3) cos(θ3) −θ1

θ1 sin(θ3)−θ2 cos(θ3) θ1 cos(θ3)+θ2 sin(θ3) 1

 (2.12)

the latter we call linearized rotation matrix. In practice, this hypothesis seems justified given the structural
characteristics of the type of system we seek to model: operating conditions of tidal turbines and wind turbines
demand a high degree of alignment, which is often enforced by control mechanisms. Nevertheless, exploring
the nonlinear problem in this context seems like a promising research problem. The justification for this interest
comes mainly from the opportunities in type B problems (design) and from the exploration of nonlinear time-
periodic phenomena.

The linearized version will be used in the sequel unless otherwise specified. Using the complete matrix and the
linearization of the energetic terms that result from it will help illustrate the challenge involved in the nonlinear
case.

3.1 Kinetic energy

The energies of the system consist of the following contributions: kinetic energies KE = KED+∑ib KEBib of
disc and ib blades; potential energies: PE = PED+∑ib PEBib of the elastic supports of the disc and ib blades;
the kinetic energies will consist of a translation term and a rotation term. The rotational kinetic energy requires
the angular velocity expressed in the referential GXY Z . We introduce the following:

G̃ =

Gx
Gy
Gz

 ; ˙̃G =

Ġx
Ġy
Ġz

 , (2.13)

now the angular velocity vector takes the following representation ([42]):
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ΩΩΩG =R3

R2

 θ̇1
0
0

+

 0
θ̇2
0

+

 0
0
θ̇3


=

 θ̇1 cos(θ2)cos(θ3)+ θ̇2 sin(θ3)
−θ̇1 cos(θ2)sin(θ3)+ θ̇2 cos(θ3)

θ̇1 sin(θ2)+ θ̇3

 , (2.14)

the interpretation of this representation is the following: in the passage from Gxyz to GXY Z after the first rotation
we transform the angular velocity vector around the local axis by R2 and add it to the angular velocity vector
around the local axis in this second referential; the sum of the two are then transformed by R3 into the referential
GXY Z , where it is added to the spin. The kinetic energy of the disc is then:

KED =
1
2

˙̃G
T

M 0 0
0 M 0
0 0 M

 ˙̃G+
1
2

ΩΩΩ
T
G

Jd 0 0
0 Jd 0
0 0 Jp

ΩΩΩG (2.15)

where the first term is the translation energy and the second term is the energy of the angular motion. This
results in the following:

KED =
Jpθ̇ 2

3
2

+
1
2

MĠ2
x +

1
2

MĠ2
y +

1
2

MĠ2
z ++

1
2

Jd
(
θ̇

2
1 + θ̇

2
2
)
+ Jpθ̇1θ2θ̇3 (2.16)

we recognize in this expression the source of the characteristic gyroscopic term θ̇1θ2θ̇3, and since θ̇3 is constant,

we also note that the term Jpθ̇ 2
3

2 is a constant and so it entails no variation of energy.

3.2 Potential energy

First, we compute the elastic energy in the flexible supports of the shaft. We assume springs at points P1 =
[0,0,−L1] and P2 = [0,0,−L2] in κ0

1, we also write the following elastic matrices for each support, which
assumes linear elastic behavior of the springs:

K1 =

KX1 0 0
0 KY1 0
0 0 KZ1


K2 =

KX2 , 0 0
0 KY2 0
0 0 KZ2

 . (2.17)

In the configuration κ the coordinates of these points in the inertial referential are:

1As mentioned earlier, the signs are related to the support condition of the rotor. They can be taken into account at the stage in which
the equivalent elastic matrix is constructed.
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(P1)κ0
=G̃+Rlin (P1)κ

=G̃+

 cos(θ3) −sin(θ3) θ2
sin(θ3) cos(θ3) −θ1

θ1 sin(θ3)−θ2 cos(θ3) θ1 cos(θ3)+θ2 sin(θ3) 1

 0
0

−L1


=G̃+

−L1θ2
L1θ1
L1


=

Gx −L1θ2
Gy +L1θ1
Gz −L1

 (2.18)

and after a similar development for the second support the corresponding expression is obtained:

P2 =

Gx −L2θ2
Gy +L2θ1
Gz −L2

 , (2.19)

then the displacement on each support at an arbitrary configuration of motion can be expressed in terms of the
parameters of motion and the constants characterizing the architecture of the system:

δP1 =

Gx −L1θ2
Gy +L1θ1
Gz −L1

−

 0
0

−L1

=

Gx −L1θ2
Gy +L1θ1

Gz


δP2 =

Gx −L2θ2
Gy +L2θ1
Gz −L2

−

 0
0

−L2

=

Gx −L2θ2
Gy +L2θ1

Gz

 . (2.20)

The potential energy can then be written as follows:

PED =
1
2

δPT
1

KX1 0 0
0 KY1 0
0 0 KZ1

δP1 +
1
2

δPT
2

KX2 , 0 0
0 KY2 0
0 0 KZ2

δP2, (2.21)

which, upon expansion results in:

PED =
1
2

(
KX1 (Gx −L1θ2)

2 +KY1 (Gy +L1θ1)
2 +KZ1G2

z

)
+

1
2

(
KX2 (Gx −L2θ2)

2 +KY2 (Gy +L2θ1)
2 +KZ2G2

z

)
. (2.22)

It can be seen from equation Eq. 2.22 that this potential will lead to elastic coefficients on these 5 degrees
of freedom, some of which will be a combination of the spring constant at each support and the relationship
between the positions of each support. Consequently, the support condition of the shaft results in particular
relationships among these coefficients and the equivalent elastic matrix. This type of analysis is well-known
in the field of rotordynamics ([39],[42],[60]), and we will apply to the equations of motion in the upcoming
section.
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3.3 Energy of blades

It is convenient to introduce the first aspects of the modal discretization scheme that will be completed in
section 4 to the calculation of the energy. As previously introduced, we will assume the existence of such func-
tions that, in GXY Z an arbitrary point over the blade can be described by the function Pib (Xb, t) =W •

ib (Xb, t)+
[Rr,0,0]

T, Rr < Xb < Rr +Lb, these functions have the form W •
ib (Xb, t) = ∑ jm ϕ•

jb (Xb)q•ib jm where ϕ•
jm is a mode

shape function dependent on Xb; q•ib, jm is a generalized modal coordinate. Since a beam is a continuum and
thus has infinite degrees of freedom and modes, in principle, the previous expression is an approximation in the
sense that modal truncation has been applied ([43],[111]):

W •
ib (Xb, t) =

∞

∑
jm=1

ϕ
•
jm (Xb)q•ib, jm

∞

∑
jm=1

ϕ
•
jm (Xb)q•ib, jm ≈

Nmodes

∑
jm=1

ϕ
•
jm (Xb)q•ib, jm ,N → ∞ (2.23)

in practice, the higher order terms tend to decay quickly. A few modes give an accurate description of the
vibration of the system. We relegate the rest of the arguments justifying this choice to the section concerning
the computation of the mode shapes.

The velocity field of the blade from the inertial reference frame is:

(Pi)κ0 =G̃+ R̃(t)(Pi)κ(
V2

i
)

κ0
= ˙(Pi)κ0 · ˙(Pi)κ0 (2.24)

and considering a blade modeled as an Euler-Bernoulli (or slender) beam, with cross-section area A(Xb) = A,
Young’s modulus E (Xb) = E, moment of inertia I (Xb) = I, density ρ (Xb) = ρ , we can write the kinetic energy
density of the ib − th blade as:

KEBib =
1
2

ρA
ˆ Lb

0
Ṗib O · Ṗib Odx, (2.25)

it turns out that this kinetic energy density contains a large number of nonlinear terms. The symbolic computa-
tion of this expression has been carried out using Wolfram Mathematica 12.1, and 6,271 terms result from the
corresponding inner product. The reduced version of R̃(t) has been used to overcome the difficulties imposed
by the nonlinearities, and the resulting expression has been linearized by hand. By way of verification, the result
has been compared to the one obtained using the linearized version of R̃(t) , and the results coincide. After
linearization, the kinetic energy densities of the ib − th blade take the form:

KEBib = KEBFib +KEBSib +KEBCib (2.26)

with the following expressions for each term:
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KEBFib =
1
2

Lbˆ

0

ρA
(

Ẇ f
ib

)2
dx−ΩρARr cos(tΩ)θ̇1

Lbˆ

0

(
W f

ib

)
dx

−ΩρARr sin(tΩ)θ̇2

Lbˆ

0

(
W f

ib

)
dx+ρARr sin(tΩ)θ̇1

Lbˆ

0

(
Ẇ f

ib

)
dx

+ρAĠz

Lbˆ

0

(
Ẇ f

ib

)
dx−ρAcos(tΩ)θ̇2

Lbˆ

0

x
(

Ẇ f
ib

)
dx

+ρAsin(tΩ)θ̇1

Lbˆ

0

xẆ f
ib

dx−ΩρAcos(tΩ)θ̇1

Lbˆ

0

xW f
ib

dx

−ρARr cos(tΩ)θ̇2

Lbˆ

0

Ẇ f
ib

dx

−ρAΩsin(tΩ)θ̇2

Lbˆ

0

xW f
ib

dx (2.27)

KEBSib =
1
2

ρA

Lbˆ

0

(
Ẇ s

ib

)2 dx+
1
2

Ω
2
ρA

Lbˆ

0

(
W s

ib

)2 dx

−ρAsin(tΩ)Ġx

Lbˆ

0

(
Ẇ s

ib

)
dx+ρAcos(tΩ)Ġy

Lbˆ

0

(
Ẇ s

ib

)
dx

−ρAΩcos(tΩ)Ġx

Lbˆ

0

(
W s

ib

)
dx−ρAΩsin(tΩ)Ġy

Lbˆ

0

(
W s

ib

)
dx (2.28)

KEBCib =
1

12
AρLb

(
2Ω

2
θ2

2 (3RrLb +L2
b +3R2

r
)

sin2(tΩ)+2Ω
2
θ̇1

2 (3RrLb +L2
b +3Rrr2)cos2(tΩ)+6Ġx

2 +6Ġy
2 +6Ġz

2)
+

1
12

AρLb
(
−3RrLbθ̇1

2 cos(2tΩ)+3RrLbθ̇1
2 +12Lbθ̇1 sin(tΩ)Ġz −3R2

r θ̇1
2 cos(2tΩ)+3R2

r θ̇1
2 +12Rrθ̇1 sin(tΩ)Ġz

)
+

1
12

AρLb
(
−L2

bθ̇1
2 cos(2tΩ)+L2

bθ̇1
2 −12Lbθ̇2 cos(tΩ)Ġz −6r2

θ̇1θ̇2 sin(2tΩ)−12rθ̇2 cos(tΩ)Ġz
)

+
1

12
AρLb

(
−12RrLbθ̇1θ̇2 sin(2tΩ)+3RrLbθ̇2

2 cos(2tΩ)+3RrLbθ̇2
2 −4L2

bθ̇1θ̇2 sin(2tΩ)+3R2
r θ̇2

2 cos(2tΩ)+3R2
r θ̇2

2)
+

1
12

AρLb
(
2Ωθ2 sin(tΩ)

(
2
(
3RrLb +L2

b +3R2
r
)(

θ̇1 sin(tΩ)− θ̇2 cos(tΩ)
)
+3(Lb +2Rr) Ġz

)
+ L2

bθ̇2
2 cos(2tΩ)+L2

bθ̇2
2)

+
1

12
AρLb2Ωθ1 cos(tΩ)

(
2
(
3RrLb +L2

b +3R2
r
)(

θ̇1 sin(tΩ)− θ̇2 cos(tΩ)
)

+ 2Ωθ2
(
(3Rr +1)Lb +3R2

r
)

sin(tΩ)+3(Lb +2Rr) Ġz
)

(2.29)
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where the explicit dependence of W •
ib (Xb, t) has been dropped for convenience and given that clarity is ensured.

Here we note:

• The terms KEBFib describe kinetic energy associated with the vibration in the flapwise sense.

• The terms KEBSib describe kinetic energy associated with the vibration in the spanwise sense.

• The term KEBCib contains coupling terms between the degrees of freedom of the disc and those of the
blade.

The first term in KEBFib and KEBSib remain identical to those of planar rotation (as presented in [22] or [17]);
however, coupling terms manifest in both the spanwise and flapwise sense, the drastic change in the flapwise
case is remarkable since many references consulted neglect the rotor translation in the z direction, so the effect
recovered in this development can not be obtained with such hypothesis.
The elastic deformation potential can be deduced by considering a traditional continuum, applying the cor-
responding kinematic hypotheses, introducing a selected constitutive material law, and finally, including the
inertial centrifugal effect. The general displacement for a continuum is:

Ux =Ux (X ,Y,Z, t)

Uy =Uy (X ,Y,Z, t)

Uz =Uz (X ,Y,Z, t) (2.30)

the Green strain tensor:

EEE =

Exx Exy Eyz
Exy Eyy Ezy
Eyz Ezy Ezz

 (2.31)

with the following components:

Exx =
∂Ux

∂X
+

1
2

((
∂Ux

∂X

)2

+

(
∂Uy

∂X

)2

+

(
∂Uz

∂X

)2
)

Eyy =
∂Uy

∂Y
+

1
2

((
∂Ux

∂Y

)2

+

(
∂Uy

∂Y

)2

+

(
∂Uz

∂Y

)2
)

Ezz =
∂Uz

∂Z
+

1
2

((
∂Ux

∂Z

)2

+

(
∂Uy

∂Z

)2

+

(
∂Uz

∂Z

)2
)

Exy =
1
2

(
∂Ux

∂Y
+

∂Uy

∂X

)
+

1
2

(
∂Ux

∂X
∂Ux

∂Y
+

∂Uy

∂X
∂Uy

∂Y
+

∂Uz

∂X
∂Uz

∂Y

)
Exz =

1
2

(
∂Ux

∂Z
+

∂Uz

∂X

)
+

1
2

(
∂Ux

∂X
∂Ux

∂Z
+

∂Uy

∂X
∂Uy

∂Z
+

∂Uz

∂X
∂Uz

∂Z

)
Eyz =

1
2

(
∂Uy

∂Z
+

∂Uz

∂Y

)
+

1
2

(
∂Ux

∂Y
∂Ux

∂Z
+

∂Uy

∂Y
∂Uy

∂Z
+

∂Uz

∂Y
∂Uz

∂Z

)
. (2.32)

From these expressions and with a constitutive law, the stresses are obtained as σi j = Ci jklεkl , where Ci jkl is a
tensor describing the material behavior. The stress allows for the definition of strain energy densities:

W (εi j) =

ˆ
εi j

0
σi jdεi j. (2.33)
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The Euler-Bernoulli beam is a uni-dimensional model, which can be expressed as:

Ux =Ux (X ,Y,Z, t)

Uy =Uy (X , t)

Uz =Uz (X , t) , (2.34)

furthermore, it entails the following relationship:

Ux (X ,Y,Z) =−Y
∂Uy

∂X
−Z

∂Uz

∂X
. (2.35)

From these assumptions we can simplify the displacement field:

∂Ux

∂X
=−Y

∂ 2Uy

∂X2 −Z
∂ 2Uz

∂X2

∂Ux

∂Y
=−

∂Uy

∂X
∂Ux

∂Z
=− ∂Uz

∂X
, (2.36)

and the non-vanishing strain terms are :

Exx =

(
−Y

∂ 2Uy

∂X2 −Z
∂ 2Uz

∂X2

)
+

1
2

((
Y

∂ 2Uy

∂X2

)2

+

(
Z

∂ 2Uz

∂X2

)2

+ZY
∂ 2Uy

∂X2
∂ 2Uz

∂X2 +

(
∂Uy

∂X

)2

+

(
∂Uz

∂X

)2
)

Eyy =
1
2

(
∂Uy

∂X

)2

Ezz =
1
2

(
∂Uz

∂X

)2

Exy =
1
2

(
Y

∂ 2Uy

∂X2
∂Uy

∂X
+Z

∂ 2Uz

∂X2
∂Uy

∂X

)
Exz =

1
2

(
Y

∂ 2Uy

∂X2
∂Uz

∂X
+Z

∂ 2Uz

∂X2
∂Uz

∂X

)
Eyz =

1
2

(
−

∂Uy

∂X
∂Ux

∂Z

)
. (2.37)

At this point, the choice of the constitutive law is required. For the sake of simplicity, an isotropic material will
be assumed in what follows. However, the same procedure presented here can be carried out with an alternative
constitutive law. The importance of this is the fact that in many fields of interest to our investigation, composite
blades with particular material behavior have gained popularity. The constitutive law for an isotropic material
is expressed in terms of the so-called Lamé parameters as follows:


σxx
σyy
σzz
σyz
σxz
σxy

=


λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




Exx
Eyy
Ezz

2Eyz
2Exz
2Exy

 , (2.38)
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the linear part of strain energy V can be obtained considering the linear terms: Exx = −Y ∂ 2Uy
∂X2 −Z ∂ 2Uz

∂X2 ;Eyy =
0;Ezz = 0;Exy = 0;Exz = 0;Eyz = 0:

E2
xx =

(
−Y

∂ 2Uy

∂X2 −Z
∂ 2Uz

∂X2

)2

=Y 2
(

∂ 2Uy

∂X2

)2

+Z2
(

∂ 2Uz

∂X2

)2

+2Y Z
∂ 2Uy

∂X2
∂ 2Uz

∂X2 (2.39)

EP =

(
1
2

)
(λ +2µ)

ˆ
A

ˆ
Lb

Y 2
(

∂ 2Uy

∂X2

)2

+Z2
(

∂ 2Uz

∂X2

)2

+2Y Z
∂ 2Uy

∂X2
∂ 2Uz

∂X2 dxdA

=

(
1
2

)
(λ +2µ) IZZ

ˆ
Lb

(
∂ 2Uy

∂X2

)2

dx

+

(
1
2

)
(λ +2µ) IYY

ˆ
Lb

(
∂ 2Uz

∂X2

)2

dx

+(λ +2µ) IY Z

ˆ
Lb

(
∂ 2Uy

∂X2
∂ 2Uz

∂X2

)
dx (2.40)

with IZZ =
´

A Y 2dA; IYY =
´

A Z2dA; IY Z =
´

A Y ZdA. Substituting the general displacement notation by the se-
lected deflection notation resulting from the modal expansion in Eq. 2.40 we arrive at the following expression:

PEBib =(λ +2µ)
IZZ

2

ˆ
Lb

(
∂ 2W s

ib
∂X2

)2

dX +(λ +2µ)
IYY

2

ˆ
Lb

(
∂ 2W f

ib
∂X2

)2

dX

+(λ +2µ) IY Z

ˆ
Lb

(
∂ 2W s

ib
∂X2

∂ 2W f
ib

∂X2

)
dX +

1
2

ˆ
L

N0 (X ,Ω)

(
∂W s

ib
∂X

)2

dX (2.41)

with the centrifugal force function along the blade ([43],[22]): N0 = Ω2(Aρ)
(
(Lb +Rr)

2 − (Rr +X)2
)
. As an

approximation, only the spin angular velocity is being considered as the source of centrifugal stiffening. We
recognize the terms:

• from deformation strain energy in the principal inertia directions, the first two terms,

• a coupling term,

• the centrifugal stiffness term on the spanwise motion obtained by introducing the centrifugal (inertial,
fictitious) force function N0.

It is often convenient to substitute the Lamé parameters:

λ =
Eν

(1+ν)(1−2ν)

µ =
E

2(1+ν)
, (2.42)

where E is the corresponding Young modulus and ν is the Poisson ratio.
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3.4 Lagrangian and equation of motion

The total Lagrangian of the model can be written in terms of the energies resulting from the previous develop-
ments. The Lagrangian is L = KE −PE, which can be broken down as follows KE = KED+∑ib KEBib of
disc and ib blades; potential energies: PE = PED+∑ib PEBib

KE =KED+
Nblades

∑
ib=1

KEBib

KED =KEDT +KEDR

KEBib =KEBFib +KEBSib +KEBCib (2.43)

where KE is the total kinetic energy, KED is the kinetic energy of the disc with components KEDT associated
to the translations and KEDR associated to the angular motion; KEBib is the kinetic energy of blade ib, with
components related to the flapwise, spanwise and coupling respectively. Similarly, for the potential energy:

PE =PED+
Nblades

∑
ib=1

PEBib

PED =PEDT +PEDR +PEDC

PEBib =PEBFib +PEBSib +PEBCib +PEBNib (2.44)

with PE the total potential energy, PED the disc potential, broken down into the constituents: PEDT for poten-
tial associated with translation motion, PEDR associated to the rotation and PEDC for coupling terms; PEBib
is the total potential of blade ib with terms in flapwise PEBFib , spanwise PEBSib deformation directions, a cou-
pling term PEBCib , and a term from the centrifugal effects PEBNib . This breakdown of terms is useful from
a practical perspective, as it allows for the writing of subterms of the Lagrangian, which can then be used to
obtain the contribution of each effect to the equation of motion. The Lagrangian can be written then as:

L = KEDT +KEDR +
Nblades

∑
ib=1

(
KEBFib +KEBSib +KEBCib

)
−EDT −PEDR −PEDC

−
Nblades

∑
ib=1

(
PEBFib +PEBSib +PEBCib +PEBNib

)
. (2.45)

The Lagrangian Eq. 2.45 can be supplemented with a dissipation function to take into account this effect. A
viscous damping model, for instance, can be treated similarly to the stiffness in the support; some examples are
presented in [22] and [39]. A more complex development applies if a corrotational damping term is assumed
at the base, which has been the approach of previous investigations in which the bearing interactions are inves-
tigated; a detailed discussion is presented in [42]. Similarly, the topic of dissipation mechanisms in the beams
requires more in-depth considerations. We have taken a more empirical approach: mild viscous and modal
damping terms will be added a posteriori to the equations of motion. Our development, however, is such that
these terms can be adjusted, provided the appropriate system characterization of dissipation.
With the Lagrangian Eq. 2.45 available, the Euler-Lagrange equation of the system can be formulated on the

generalized coordinates and generalized velocities : x=
[
Gx,Gy,Gz,θ1,θ2,q•ib, jm

]T
and ẋ=

[
Ġx, Ġy, Ġz, θ̇1, θ̇2, q̇•ib, jm

]T
:

d
dt

(
∂

∂ ẋi
[L ]

)
=

∂

∂xi
[L ] , i ∈ [1,DOF] (2.46)
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yielding N = DOF equations describing the dynamics of the system. In practice, Eq. 2.46 can be easily pro-
grammed into a computerized algebraic system (CAS) to systematically compute the required operations and
group the resulting system of equations into matrix form. This is particularly useful in our case, given the high
dimensionality of the systems considered in this work and given the complexity of the expressions involved in
these operations. Our developments have been carried out using Wolfram Mathematica 12.1.

The developments established so far have been relatively general, which allows us to obtain different versions
of the general model established.In the subsequent chapters, different versions of the model will be applied
to examine the desired effects or theories; for instance, the most simple model of interest can be obtained by
considering exclusively one translation DOF of the base and one modal response on one blade, resulting in a
2 DOFs system that displays LTP characteristics. Another reduced model is similar to that of [22], in which
only planar motion and the corresponding spanwise blade vibration are described; this is: the disc has two
translational DOFs, and each blade has two modal DOFs. In the cited work, four blades are used, but we have
decided on two blades as they fit our final application better. The largest model employed considers the 5 DOFs
of the disc, eight modal variables for each of the two blades, and four modal variables per blade per direction of
deformation (spanwise or flapwise); this results in a 21-DOF model. In the sequel, mention will be made of the
corresponding version of the model being employed.

To conclude the section, we present a simplified version of the system matrices with only two modes per
deformation direction (flapwise or spanwise) to illustrate the features of the system. In the complete 21-DOF
case, the corresponding submatrices are simply expanded accordingly. This illustrative model of 13 DOFs has

the generalized coordinates x =
[
Gx,Gy,Gz,θ1,θ2,qs

1,1,q
s
1,2,q

f
1,1,q

f
1,2,q

s
2,1,q

s
2,2,q

f
2,1,q

f
2,2

]T
, where for instance

x7 = qs
1,2 denotes the spanwise modal variable of the first blade corresponding to the second blade mode shape.

The Stiffness matrix K(t) can be represented as:

K(t) =
[

KA
13×5

KB
13×4

KC
13×4

]
, (2.47)

the submatrix KA
13×5

:

KA
13×5

=



KX ,T 0 0 0 KX ,R
0 KY,T 0 KY,R 0
0 0 KZ,T 0 0
0 KY,R 0 Kθ1θ1 sin2(tΩ)+KY,C Kθ1θ2 sin(2tΩ)

KX ,R 0 0 Kθ2θ1 sin(2tΩ) Kθ2θ2 cos2(tΩ)+KX ,C
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(2.48)

with the following values for the coefficients:
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KX ,T =KX1 +KX2

KY,T =KY1 +KY2

KZ,T =KZ1 +KZ2

KY,R =KY1L1 +KY2L2

KX ,R =−KX1L1 −KX2L2

KY,C =KY1 L2
1 +KY2L2

2

KX ,C =KX1L2
1 +KX2L2

2 (2.49)

and:

Kθ1θ1 =− 1
3

2AρΩ
2Lb
(
3RrLb +L2

b +3Rrr2)
Kθ1θ2 =

1
3

AρΩ
2Lb
(
(3Rr −1)Lb +2L2

b +3R2
r
)

Kθ2θ1 =
1
3

AρΩ
2Lb
(
(3Rr −1)Lb +2L2

b +3R2
r
)

Kθ2θ2 =− 1
3

2AρΩ
2Lb
(
3RrLb +L2

b +3R2
r
)
. (2.50)

The submatrix KB
13×4

is:

KB
13×4

=



KB
1,1 KB

1,2 0 0
KB

2,1 KB
2,2 0 0

0 0 0 0
0 0 KB

4,3 KB
4,4

0 0 KB
5,3 KB

5,4
KB

6,1 KB
6,2 KB

6,3 KB
6,4

KB
7,1 KB

7,2 KB
7,3 KB

7,4
KB

8,1 KB
8,2 KB

8,3 KB
8,4

KB
9,1 KB

9,2 KB
9,3 KB

9,4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



(2.51)

with nonzero elements:

KB
1,1 = AρΩ2 sin(tΩ)(

´
ϕs

1 dx) KB
1,2 = AρΩ2 sin(tΩ)(

´
ϕs

2 dx) KB
2,1 =−AρΩ2 cos(tΩ)

´
ϕs

1 dx KB
2,2 =−AρΩ2 cos(tΩ)

´
ϕs

2 dx

KB
8,1 = EIY Z

´
ϕ

f
1
′′
ϕs

1
′′ dx KB

8,2 = EIY Z
´

ϕ
f

1
′′
ϕs

2
′′ dx KB

9,1 = EIY Z
´

ϕs
1
′′
ϕ

f
2
′′

dx KB
9,2 = EIY Z

´
ϕ

f
2
′′
ϕs

2
′′ dx

KB
4,3 = AρΩ2 sin(tΩ)(r

´
ϕ

f
1 dx+

´
xϕ

f
1 dx) KB

4,4 = AρΩ2 sin(tΩ)(Rr
´

ϕ
f

2 dx+
´

xϕ
f

2 dx)

KB
5,3 =−AρΩ2 cos(tΩ)(Rr

´
ϕ

f
1 dx+

´
xϕ

f
1 dx) KB

5,4 =−AρΩ2 cos(tΩ)(Rr
´

ϕ
f

2 dx+
´

xϕ
f

2 dx)

KB
6,3 = EIY Z

´ (
ϕ

f
1

)
(ϕs

1)
′′ dx KB

6,4 = EIY Z
´

ϕs
1
′′
ϕ

f
2
′′

dx KB
7,3 = EIY Z

´
ϕ

f
1
′′
ϕs

2
′′ dx KB

7,4 = EIY Z
´

ϕ
f

2
′′
ϕs

2
′′ dx

KB
8,3 = EIYY

´
ϕ

f
1
′′2 dx KB

8,4 = EIYY
´

ϕ
f

1
′′
ϕ

f
2
′′

dx KB
9,3 = EIYY

´
ϕ

f
1
′′
ϕ

f
2
′′

dx KB
9,4 = EIYY

´
ϕ

f
2
′′2 dx

KB
6,1 = 2AρRrΩ

2Lb
(´

ϕs
1
′(x)2 dx

)
+AρΩ2L2

b

(´
ϕs

1
′(x)2 dx

)
−2AρRrΩ

2
(´

xϕs
1
′(x)2 dx

)
−AρΩ2

(´
x2ϕs

1
′(x)2 dx

)
−

AρΩ2
(´

ϕs
1

2 dx
)
+EIZZ

´
ϕs

1
′′2 dx
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KB
6,2 = 2AρRrΩ

2Lb
(´

ϕs
1
′
ϕs

2
′ dx
)
+AρΩ2L2

b

(´
ϕs

1
′
ϕs

2
′ dx
)
−2AρRrΩ

2
(´

xϕs
1
′
ϕs

2
′ dx
)
−AρΩ2

(´
x2ϕs

1
′
ϕs

2
′ dx
)
−

AρΩ2(
´

ϕs
1ϕs

2 dx)+EIZZ
´

ϕs
1
′′
ϕs

2
′′ dx

KB
7,1 = 2AρRrΩ

2Lb
(´

ϕs
1
′
ϕs

2
′ dx
)
+AρΩ2L2

b

(´
ϕs

1
′
ϕs

2
′ dx
)
−2AρRrΩ

2
(´

xϕs
1
′
ϕs

2
′ dx
)
−AρΩ2

(´
x2ϕs

1
′
ϕs

2
′ dx
)
−

AρΩ2(
´

ϕs
1ϕs

2 dx)+EIZZ
´

ϕs
1
′′
ϕs

2
′′ dx

KB
7,2 = 2AρRrΩ

2Lb
(´

ϕs
2
′2 dx

)
+AρΩ2L2

b

(´
ϕs

2
′2 dx

)
−2AρRrΩ

2
(´

xϕs
2
′2 dx

)
−AρΩ2

(´
x2ϕs

2
′2 dx

)
−AρΩ2

(´
ϕs

2
2 dx
)
+

EIZZ
´

ϕs
2
′′2 dx,

and KC
13×4

can be expressed with the same coefficients as KB
13×4

:

KC
13×4

=



−KB
1,1 −KB

1,2 0 0
−KB

2,1 −KB
2,2 0 0

0 0 0 0
0 0 −KB

4,3 −KB
4,4

0 0 −KB
5,3 −KB

5,4
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

KB
6,1 KB

6,2 KB
6,3 KB

6,4
KB

7,1 KB
7,2 KB

7,3 KB
7,4

KB
8,1 KB

8,2 KB
8,3 KB

8,4
KB

9,1 KB
9,2 KB

9,3 KB
9,4



. (2.52)

The gyroscopic matrix G(t) is skew-symmetric, the nonzero elements above the main diagonal are as follows:

G4,5 =
1
3 Ω
(
2AρL3

b +6AρR2
r Lb +6AρRrL2

b +3Jp
)

G1,6 =−2AρΩcos(tΩ)
´

ϕs
1dx

G1,7 =−2AρΩcos(tΩ)
´

ϕs
2dx G1,10 = 2AρΩcos(tΩ)

´
ϕs

1dx G1,11 = 2AρΩcos(tΩ)
´

ϕs
2dx

G2,6 =−2AρΩsin(tΩ)
´

ϕs
1dx G2,7 =−2AρΩsin(tΩ)

´
ϕs

2dx

G2,10 = 2AρΩsin(tΩ)
´

ϕs
1dx G2,11 = 2AρΩsin(tΩ)

´
ϕs

2dx

The mass-inertia matrix M(t) is symmetric, with the following nonzero elements over the main diagonal:

M1,1 = M2,2 = M3,3 = 2AρLb +M M4,4 = M5,5 =
1
3 AρL3

b +AρR2
r Lb +AρRrL2

b + Jd

M6,6 = M10,10 = Aρ
´

ϕs
1

2dx M6,7 = M10,11 = Aρ
´

ϕs
1ϕs

2dx M7,7 = M11,11Aρ
´

ϕs
2

2dx

M8,8 = M12,12 = Aρ
´

ϕ
f

1
2dx M8,9 = M12,13 = Aρ

´
ϕ

f
1 ϕ

f
2 dx M9,9 = M13,13 = Aρ

´
ϕ

f
1

2dx

M1,6 =−M1,10 =−Aρ sin(tΩ)
´

ϕs
1dx M1,7 =−M1,11 =−Aρ sin(tΩ)

´
ϕs

2dx M2,6 =−M2,10Aρ cos(tΩ)
´

ϕs
1dx

M2,7 =−M2,11 = Aρ cos(tΩ)
´

ϕs
2dx M3,8 = M3,12 = Aρ

´
ϕ

f
1 dx M3,9 = M3,13 = Aρ

´
ϕ

f
2 dx

M4,8 =−M4,12 = Aρ sin(tΩ)(Rr
´

ϕ
f

1 dx+
´

xϕ
f

1 dx) M4,9 =−M4,13 = Aρ sin(tΩ)(Rr
´

ϕ
f

2 dx+
´

xϕ
f

2 dx)

M5,8 =−M5,12 =−Aρ cos(tΩ)(Rr
´

ϕ
f

1 dx+
´

xϕ
f

1 dx) M5,9 =−M5,13 =−Aρ cos(tΩ)(Rr
´

ϕ
f

2 dx+
´

xϕ
f

2 dx) .

It can be seen that the resulting system of equations is of the form:

M(t) ẍ+G(t) ẋ+K(t)x = 0, (2.53)

that is, the rotor-blade model is indeed LTP. The periodic terms describe time-dependent interactions between
the degrees of freedom of the disc and those of the blades. For instance, the term:

−Aρ sin(tΩ)(

ˆ
ϕ

s
1,1 dx) (2.54)
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is a coupling term that reflects the influence of the inertia of blade 1 in its first mode of spanwise motion over
the translational motion of the disc, it takes into account the variation in mass distribution as the blade rotates
given the spin of the body.
We end the section by enumerating the key features of the model presented:

1. The model includes the axial motion of the rotor and represents the axial-flapwise coupling, with an
approach we have not identified in the corresponding literature.

2. The spanwise-flapwise coupling has been included.

3. The rotor or disc has been described using two angular coordinates that are usually neglected in favor of
planar motion models.

4. The model can describe the effects of coupling between blade deformation and disc motion, an effect often
neglected in the applied literature or taken into account by means of “black-box” approaches (specialized
FEM codes for instance).

5. The reduced order provides an ideal dynamical system for the stochastic study by semi-analytical tools, as
many of the expressions will be tractable; at the same time, abundant structural and vibratory information
remains in the model.

We consider these virtues to be the key innovative aspects of the developments presented in this chapter.

4 Blade modeling and modal discretization

4.1 Modal determination by kinematic methods

This section is devoted to the description of the modal discretization assumed to be available in the previous

developments, as stated earlier: the existence of the vector functions Wib (ξ , t) =
[
ξ ,W s

ib
(ξ , t) ,W f

ib
(ξ , t)

]T

describing the transverse vibration of the ib − th blades, in the following the index ib refers to the blade under
consideration; or similarly, the modal representation W •

ib (Xb, t) = ∑ j ϕ•
jm (Xb)q•ib jm , where jm denotes the m− th

normal mode of the blade. The general strategy adopted here has been described as the “assumed modes”
methods (see: [67] or [22]), while the particular method used to approximate the functions ϕ•

jm (Xb) is a version
of the well-known Rayleigh–Ritz method, a kinematic discretization scheme based in Rayleigh’s principle.
In terms of implementation, the main feature of our approach is the capability to update the solution to any
variation in the parameters of the blade. The method is also highly adaptable to different orthogonal base
functions, although we employ simple polynomial approximation as it proved satisfactory to the problem at
hand.
With regards to the Rayleigh–Ritz method, despite being a relatively old technique, it remains a popular choice
in mechanical sciences. Reference [59] provides an in-depth discussion of the more modern aspects of the
method, including the choice of basis function and penalty methods to increase its applicability. Reference [40]
provides an introduction to the method in the context of Finite Element analysis of rotating beams, while [15]
utilizes it in the treatment of problems in multi-body dynamics; more recently, it has been applied in uncertain
mechanical systems in [27]. Reference [77] provides a literature review of the application of the method in
dynamical problems of beams, plates, and shells.
The assumed modes method consists of the following ([67]):

1. an elastic structure is represented by a combination of space-dependent functions multiplied by time-
dependent amplitude functions that are considered Lagrangian Generalized coordinates,

2. the space-dependent functions, traditionally selected as a set of orthogonal functions, are selected in such
a way that the boundary conditions of the dynamical problem are satisfied,
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3. if available, the eigenfunctions (or normal modes) are selected as the space-dependent functions,

in other words, the method makes the assumption that the space-dependent functions approximate the actual
eigenfunctions of the system. This translates into:

f (Xb, t) =
∞

∑
j=1

φ j (Xb)q j (t)

≈
N

∑
j=1

φ j (Xb)q j (t) (2.55)

so the true mode shapes (or eigenfunctions) of f (Xb, t) are approximated by the “assumed” modes: ϕ jm (Xb)≈
∑

∞
j=1 C jφ j (Xb) with C j a constant to be determined, and the index j is related to the truncation order of the

expansion. With an orthonormal basis of infinite dimension, this is guaranteed. The key difficulty of this
approach is the correct choice of mode shapes φ j to ensure a good approximation of ϕ jm with as few terms as
possible.
We start by writing the energies of the rotating beam, with W f and W s the flapwise and spanwise displacement
functions of a blade:

KE f
B =

ˆ Lb

0

1
2

ρA
(

∂W f

∂ t

)
2dX+

1
2

IpΩ
2 (2.56)

and:

KEs
B =

ˆ Lb

0

1
2

ρA
(

∂W s

∂ t

)
2dX+

1
2

IpΩ
2 +

ˆ Lb

0
ρAXΩ

(
∂Ws

∂ t

)
dX (2.57)

while the potentials are PEB = PEelastic +PErotation:

PE f
B =

ˆ Lb

0

1
2

EIYY

(
∂ 2W f

∂X2

)2

dX+

ˆ L

0

1
2

Ω
2N0

(
∂W f

∂X

)2

dX (2.58)

PEs
B =

ˆ Lb

0

1
2

EIZZ

(
∂ 2W s

∂X2

)2

dX+

ˆ Lb

0

1
2

Ω
2N0

(
∂W s

∂X

)2

dX−
ˆ Lb

0

1
2

Ω
2
ρAWs2dX (2.59)

now, introducing modal solutions of the form W s (X , t)=Qs (t)ϕs (X), W f (X , t)=Q f (t)ϕ f (X), where Qs (t) ,Q f (t)
have the usual harmonic form Qi = exp [iωit], and using the Euler-Lagrange equations on these new generalized
variables, we arrive at a modal form of the equation of motion for each deformation direction:

−ω
2
f

ˆ Lb

0
ρA
(

ϕ
f
)2

−EIYY(
(

ϕ
f
)′′

)2 −Ω
2N0(

(
ϕ

f
)′
)2dX = 0 (2.60)

−(ω2
s +Ω

2)

ˆ L

0
ρA(ϕs)2 −EIZZ((ϕ

s)′′)2 −Ω
2N0((ϕ

s)′)2dX = 0 (2.61)

or, in differential form[43]:

−ω
2
f ρAϕ

f − d
dX

(
N0(Ω,X)

dϕ f

dX

)
+

d2

dX2

(
EIYY

d2ϕ f

dX2

)
= 0 (2.62)

−
(
ω

2
s +Ω

2)
ρAϕ

s − d
dX

(
N0(Ω,X)

dϕs

dX

)
+

d2

dX2

(
EIZZ

d2ϕs

dX2

)
= 0. (2.63)
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To solve the eigenvalue problems in Eq. 2.62 and Eq. 2.63, we apply the Rayleigh–Ritz method: we seek the
mode shapes in the form: ϕs (Xb)≈ ∑

N
j=1 Cs

jφ
s
j (Xb) and ϕ f (Xb)≈ ∑

N
j=1 C f

j φ
f
j (Xb), where the functions φ

f
j and

φ s
j chosen as monomial terms satisfying the natural or boundary conditions, in the case of a cantilever beam

these are: ψ• (0) = 0 and (ψ•)′ (0) = 0. We have:

φ
•
i =

ξ i+1

Li+1
b

(2.64)

now substituting this type of solution into the corresponding energetic expressions we obtain:

KEBmax =
ω2

2

n

∑
i=1

n

∑
j=1

mi jC•
i C•

j

PEBel
max =

1
2

n

∑
i=1

n

∑
j=1

kel
i jC

•
i C•

j

PEBstiffening
max =

1
2

n

∑
i=1

n

∑
j=1

kstiffening
i j C•

i C•
j

PEBsoftening
max =− 1

2

n

∑
i=1

n

∑
j=1

ksoftening
i j C•

i C•
j (2.65)

here the implied matrices are computed as follows:

mi j =

ˆ Lb

0
ρA
(

ξ

Lb

)i+ j+2

dξ =
ρALb

i+ j+3
(2.66)

kel
i j =

1
L4

ˆ Lb

0
EI((i+1)i( j+1) j

(
ξ

Lb

)i+ j−2

)dξ =
EI
L3

b

i j(i+1)( j+1)
(i+ j−1)

(2.67)

kstiffening
i j =

ˆ Lb

0
N0(Ω,ξ )

(
ξ

L

)i+ j

dξ = Ω
2
ρA
ˆ L

0
(L2 +2RrL−2Rrξ −ξ

2)

(
ξ

L

)i+ j

dξ (2.68)

kstiffening
i j = Ω

2
ρA(i+1)( j+1)

(
Lb

(
1

i+ j+1
− 1

i+ j+3

)
+Rr

(
1

(i+ j+1)L
− 1

i+ j+2

))
(2.69)

ksoftening
i j =

ˆ Lb

0
Ω

2
ρA
(

ξ

Lb

)i+ j+2

dξ =
Ω2ρAL

(i+ j+3)
= Ω

2mi j (2.70)

with i, j = [1,2, ...,N]indexes related to the discretization order of the expansion. This leads to the eigenvalue
problem:

KC = ω
2MC (2.71)

where the flapwise version of the problem utilizes: K = K(Ω) = kel + kstiffening(Ω), while the spanwise uti-
lizes K = K(M,Ω) = kel +kstiffening(Ω)−ksoftening(M,Ω). The solution of this eigenvalue problem yields an
approximation of the natural frequencies of the corresponding mode of vibration of the beam: ωk

s and ωk
f , and

the vector of coefficients C, with which the mode shape can be reconstructed: ϕs (Xb) ≈ ∑
N
j=1 Cs

jφ
s
j (Xb) and

ϕ f (Xb)≈ ∑
N
j=1 C f

j φ
f
j (Xb) respectively.

This algorithm is implemented in the subroutine rritz (Matlab) Alg. 2.1.
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Algorithm 2.1 Algorithm rritz for rotating beam discretization

1. Initialize beam parameters: I, E, A, ρ , Lb, Rr

2. Fix angular velocity

3. Fix polynomial order, monomial family:
{

x2,x3,x4, . . . ,xPoly
}

4. Assemble primitive discretized matrices: M0, KE0 , KS0 :

(a) M0 = M0,(i, j) =
1

i+ j+3

(b) KE0 = KE0,(i, j) =
i j(i+1)( j+1)

(i+ j−1)

(c) KS0 = KS0,(i, j) = (i+1)( j+1)
(

Lb

(
1

i+ j+1 −
1

i+ j+3

)
+Rr

(
1

(i+ j+1)L − 1
i+ j+2

))
5. Calculate discretized system matrices with the primitives: Meffective, Kelastic,Kstiffening, Ksoftening

(a) Meffective = ρALbM0

(b) Kelastic = EI
L3

b
KE0

(c) Kstiffening = Ω2ρAKS0

(d) Ksoftening = Ω2M0

6. Calculate the effective mass and stiffness matrix for each case (flapwise or spanwise)

7. Solve the two associated eigenvalue problems, command Eig, to obtain beam frequencies and polynomial
coefficients

8. Adjust coefficient scaling from normalization

9. Returns coefficient array and frequencies of the beam
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4.2 Load determination in modal basis

We now consider a blade under the effect of a surface external load Ls (t,Xb), for instance, a hydrodynamic load
in the case of a tidal turbine. The potential energy injected into the system from this external perturbation can
be written utilizing the kinematic description Eq. 2.55:

PEext =−
ˆ

S
Ls (t,Xb)W •

ib (Xb, t)dS

=−
ˆ

S
Ls (t,Xb)

N

∑
j=1

ϕ
•
jm (Xb)q•ib jm (t)dS

=−
N

∑
j=1

(ˆ
S

Ls (t,Xb)
Nmodes

∑
jm=1

ϕ
•
jm (Xb)dS

)
q•ib jm (t) , (2.72)

where we define the modal projection of the load over the jm−th mode shape by Lϕ•
jm
(t)=

(´
S Ls (t,Xb)ϕ•

jm (Xb)dS
)

.
Invoking again the Euler-Lagrange equation Eq. 2.46 for this potential alone, we obtain the generalized loads in
the modal basis:

− ∂

∂xi
[PEext ] =Lϕ•

jm
(t) , i ∈ [1,N] (2.73)

for a discretization up to N mode shapes, this yields a load vector of form:

Lϕ• (t) =

Lϕ•
1
(t)

. . .
Lϕ•

N
(t)

 . (2.74)

For the discretization scheme developed in this chapter, the modal projections can be written more concretely
in terms of the blade parameters:

Lϕ•
jm
(t) =

ˆ Lb

0
Ls (t,Xb)ϕ

•
j (Xb)dX , (2.75)

in this last equation the prismatic nature of the blade has been applied, which permits to reduce the surface
integral into a simple integral along the span of the beam.

4.3 Stress determination from modal variables

The Rayleigh–Ritz method, as developed in this section, offers an effective estimation of the bending moment
across the blade, which can be utilized to analyze the normal stresses produced in pure or oblique bending in the
section of the blade. Provided that the mode shape functions ϕs

jm (Xb) ,ϕ
f
jm (Xb) and modal variables qs

ib, jm
,q f

ib jm
are known, one may write the corresponding bending moments at point Xb = a as:

Ma
s (t) =EIZZ

Nmodes

∑
jm=1

ϕ
′′s
jm (a)qs

ib jm (t)−EIY Z

Nmodes

∑
jm=1

ϕ
′′ f
j (a)q f

ib jm (t)

Ma
f (t) =EIYY

Nmodes

∑
jm=1

ϕ
′′ f
j (a)q f

ib jm (t)−EIY Z

Nmodes

∑
jm=1

ϕ
′′s
jm (a)qs

ib jm (t) , (2.76)
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where ϕ ′′s
jm (Xb) =

d
dX2

[
ϕs

jm (Xb)
]

and ϕ
′′ f
jm (Xb) =

d
dX2

[
ϕ

f
jm (Xb)

]
are respectively the curvature of the blade in

the spanwise and flapwise direction, and Ma
s (t) is the spanwise bending moment in a while Ma

f (t) is the flap-
wise bending moment in a. If the cross-section of the blade is symmetrical, then IY Z = 0. In the cantilever
boundary condition selected in our model, the bending moments are maximal at the fixed end a = 0. In the
corresponding literature, these quantities are termed root bending moment (RBM), and constitute a key design
consideration in tidal and wind turbines. In the sequel, we will write M0

s (t) = EIZZ ∑
N
jm=1 ϕ ′′s

jm (0)qs
ib jm (t)−

EIY Z ∑
Nmodes
jm=1 ϕ

′′ f
j (0)q f

ib jm (t)=MRBM
s (t) and M0

f (t)=EIYY ∑
N
jm=1 ϕ

′′ f
jm (0)q f

ib jm (t)−EIY Z ∑
Nmodes
jm=1 ϕ ′′s

jm (0)qs
ib jm (t)=

MRBM
f (t). Additionally, the normal stress due to a given moment component through the cross-section can be

expressed as:

σ
s
x (t,Y ) =−

IYY MRBM
s (t)+ IY ZMRBM

f (t)

IYY IZZ − I2
Y Z

Y

σ
f

x (t,Z) =−
IZZMRBM

f (t)+ IY ZMRBM
s (t)

IZZIYY − I2
Y Z

Z, (2.77)

where the sign convention entails that a positive moment MRBM
s (t) deforms the blade in compression in the

first and second quadrants, and in tension in the third and fourth quadrants, from where the sign of the normal
stress follows; similarly, a positive moment MRBM

f (t) results in compression in the second and third quadrants,
and tension in the first and fourth quadrants. As usual, the maximal normal stresses in magnitude for each
component are attained at the furthest fiber from the neutral plane.
Considering a prismatic, rectangular profile as displayed in Fig. 2.5, we distinguish four critical points where the
corresponding maximal normal stresses due to biaxial bending may be present. Since the profile is symmetrical,
IY Z = 0. This particular section is selected for exposition purposes to ensure the clarity of the developments.
When the blade deflects in the positive Y direction, MRBM

s (t) is positive and the fiber A−B is in compression,
while the fiber C−D is in tension. Similarly, when the blade deflects in the positive Z direction MRBM

f (t) is
positive, the fiber A−D is in tension, while the fiber B−C is in compression. If the coordinates of the critical
points are A =

(
− b

2 ,+
h
2

)
, B =

(
+ b

2 ,+
h
2

)
, C =

(
+ b

2 ,−
h
2

)
, D =

(
− b

2 ,−
h
2

)
where b is the base and h the height,

we may write:

σ
A
x =− MRBM

s (t)
IZZ

(
h
2

)
+

MRBM
f (t)

IYY

(
b
2

)
+σ

Ω
x

σ
B
x =− MRBM

s (t)
IZZ

(
h
2

)
−

MRBM
f (t)

IYY

(
b
2

)
+σ

Ω
x

σ
C
x =

MRBM
s (t)
IZZ

(
h
2

)
−

MRBM
f (t)

IYY

(
b
2

)
+σ

Ω
x

σ
D
x =

MRBM
s (t)
IZZ

(
h
2

)
+

MRBM
f (t)

IYY

(
b
2

)
+σ

Ω
x , (2.78)

from where we can conclude that if both moments are positive, the maximum normal stress in compression
is attained in B and the maximum normal stress in tension is attained in D, and A and C remain submaximal.
The stress σΩ

x is due to the centrifugal effect over the blade as it rotates with spin Ω, the axial force at X = 0
being N0 (0) = Ω2bhρ

(
(Lb +Rr)

2 − (Rr)
2
)
= Ω2bhρ

(
L2

b +2LbRr
)

and introducing the total mass of the blade
mb = bhρLb then N0 (0) = Ω2 (Lb +2Rr)mb, finally:

σ
Ω
x = Ω

2mb
(Lb +2Rr)

b×h
. (2.79)
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Figure 2.5: Blade cross-section

4.4 Numerical implementation: example and comparisons

To conclude the section, we present an example of the implementation of Alg. 2.1 with a comparison to two
references from the literature. The same normalization as each respective publication has been utilized to make
the comparisons. The offset value is the ratio Rr

Lb
. In Fig. 2.6 the reference is [149], while in Fig. 2.7 the reference

is [108].

5 Numerical example of the dynamical model

To conclude the chapter, we will discuss some numerical aspects of the implementation of the dynamical system,
followed by some basic numerical simulations to illustrate the behavior of the system. As the main result of
section 3 suggests, the equations of motion will depend on coefficients that are obtained by integrating different
quantities involving the mode shapes and their spatial derivatives. These coefficients account for the mass
distribution, elastic behavior, centrifugal and geometric effects of the rotation. The practical implementation of
Eq. 2.53, along with the matrix quantities established in the previous section, is as follows:

1. The parameters of the system are defined. For the rotor: mass, polar and diametral inertia and radius
of the disc, elastic and damping properties of the supports, length of shaft and position of the supports.
For the blades: length, elastic moduli, inertia, cross-section and density. Globally: Spin velocity of the
system.

2. The modal discretization routine is used to obtain the frequency and mode shape approximations of the
corresponding rotating beam problem. The polynomial order of the approximation can be adjusted as
required. The frequency values are provided in Tab. 2.3.

3. The subroutine "Shape Form Integrals" uses the polynomial approximations provided by the previous
step and the parameters of the system to carry out the corresponding operations of differentiation of shape
functions, multiplication by the corresponding factors, and integration along the length of the blade. It
returns the required coefficients necessary to express the matrices of the system.

4. The assembly subroutine takes the output of the previous step and the parameters of the system and
assembles the mass, gyroscopic, stiffness, and damping matrices into a function dependent on the time
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Parameter Value[units]
M 10000[kg]
Jp 5.5125×103

[
kgm2

]
Jd 4.0062×103

[
kgm2

]
Rr 1.05[m]

KX1 ,KY1 ,KZ1 [12,21,23]
[
×107

]
[Nm−1]

KX2 ,KY2 ,KZ2 [13,22,24]
[
×107

]
[Nm−1]

Table 2.1: Disc parameters for simulation

Parameter Value[units]
ρ 440[kgm−3]
Lb 8.95[m]

A 8.0000×10−1[m2]

E 25×106[Pa]
IZZ , IYY [14,27.8]

[
kgm2

]
Table 2.2: Blade parameters for simulation

variable.

The result of this process yield the necessary functions to perform a numerical treatment of Eq. 2.53. As we
shall see in the coming chapters, this function can be expressed to first order, or state form. The state form
results in a Floquet system, which can be analyzed by time integration or by spectral methods, as Chapter 3 will
show. The parameters used for the simulation are shown in Tab. 2.1 for the disc-shaft-support and Tab. 2.2 for
the blades. Two blades with eight modes each have been considered, and the angular velocity has been set to
Ω = 1.5[rads−1]. For each case, selected degrees of freedom are visualized, and each case corresponds to an
initial excitation on the generalized velocity: Ġx = 1[ms−1], q̇s

1,1 = 1[s−1] and θ̇1=0.05[rads−1] respectively.
We will briefly comment on the features of each case:

1. In Fig. 2.8 we can see the effects of coupling among the x coordinate and the corresponding angle, and
modal coordinates. The impact over the z direction is negligible. The flapwise modal components are
more sensitive to the perturbation, and it is observed that the lower modes of each case see a larger
magnitude than the higher modes. The x response also features the characteristic modulated behavior of
LTP systems, as the next chapter will explore.

2. In Fig. 2.9 we note the effect of the modal variable in the spanwise direction predominantly over the Gx
and θ1 degrees of freedom in the rotor. We also notice that the other modes of the same blade are slightly
affected, which is to be expected since a mild coupling among modes has been included in the model. An
interesting feature is the influence of the excitation on the same spanwise modes in the other blade.

3. Finally, in Fig. 2.10, a small angular velocity is imposed over the θ1 degree of freedom. The lower
flapwise and spanwise modes of both blades are sensitive to this perturbation, although the same trend

ωk
s

2π
[Hz]

ωk
f

2π
[Hz]

Mode 1 9.81 6.97
Mode 2 61.52 43.66
Mode 3 172.25 122.24
Mode 4 337.55 239.54

Table 2.3: Blade frequencies from discretization algorithm Alg. 2.1
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can be noticed: the higher modes respond in a negligible manner. The effects over the Gx and θ1 degrees
of freedom are the highest, as is expected from the coupling relationships established throughout the
chapter.
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Figure 2.6: Frequencies of rotating beam flapwise vibration, comparison with reference [149] ; offsets 0, 0.1
and 1
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Figure 2.7: Frequencies of rotating beam spanwise vibration, comparison with reference [108] ; offset 0,1 and
5
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Figure 2.8: Response to initial excitation on Ġx = 1

Figure 2.9: Response to initial excitation on q̇s
1,1 = 1
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Figure 2.10: Response to initial excitation on θ̇1 = 0.05
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Chapter 3

Theory of ordinary differential equations
with periodic coefficients with
applications to deterministic mechanical
systems with stochastic input

„Die Devise der Geschichte überhaupt müßte
lauten: Eadem, sed aliter. Hat Einer den Herodot
gelesen, so hat er, in philosophischer Absicht,
schon genug Geschichte studirt. Denn da steht
schon Alles, was die folgende Weltgeschichte
ausmacht: das Treiben, Thun, Leiden und
Schicksal des Menschengeschlechts, wie es aus
den besagten Eigenschaften und dem physischen
Erdenloose hervorgeht.“

Arthur Schopenhauer, Die Welt als Wille und
Vorstellung

The objective of this chapter is to recover the essential results from the theory of ordinary differential equations
with periodic coefficients, Floquet theory, and adapt them to the treatment of our subject. The role played by
Floquet theory in this sense is an extension of the modal analysis of LTI systems into the LTP domain. Floquet’s
theorem is the source of what will be called the Floquet modal matrix: a matrix whose columns correspond
to Floquet periodic eigenvectors or Floquet periodic modes. Lyapunov’s reducibility theorem, connected to
Floquet’s, is the basis for developing a solution in modal variables. Two parallel but complementary methods
are predominant in the study of the free response of LTP systems: a) a class of methods we will refer to
as Floquet or Floquet-Lyapunov or direct integration method, which is based in successive integration of the
system with appropriate initial conditions to form the state transition matrix, thus characterizing the response
of the system; b) a class of methods we will refer to as Hill’s, based on developing the periodic matrix of the
Floquet system in Fourier series and then formulating an eigenvalue problem that results from the concept of
harmonic balance, yielding the Fourier coefficients of the Floquet periodic eigenvectors and by extension the
state transition matrix of the system. This chapter will describe both approaches, and their advantages and
disadvantages will be contrasted.

Once the modal description of the Floquet system has been established, the goal shifts to the determination of
the inhomogeneous or forced response of the Floquet system. Different approaches can be taken to achieve this
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goal, and we will explore them in terms of their applicability to the case of stochastic inputs or forces. The
convolution solution in the time domain, a viable strategy for LTI systems, will be shown to permit moment
propagation when stochastic inputs are considered. Depending on the formulation, the convolution in the Fourier
domain will be shown to result in a version of the frequency response or the Power Spectral Density. A third
approach will be presented based on recent developments in wavelet analysis and, in many ways, an extension
of the Fourier determination of stochastic responses.

First, we will synthesize some key results from deterministic ordinary differential equations as applied to me-
chanical systems, among these the results concerning the nature of the solution, its modal form, and its behavior.
This will allow us to highlight the fundamental differences between linear time-invariant (LTI) systems and lin-
ear time-periodic systems (LTP) when the Floquet theory is introduced. We then formulate the characteristics
of the solution to a stochastic excitation and discuss the different resolution strategies. The synthesis recovers
key results presented in classical works from the literature, such as [87], [105], [44] and [109].

1 Results for LTI systems

The general equation of a forced LTI system is:

Mẍ+Gẋ+Kx = f (3.1)

with x = [x1,x2, ...,xn]
T , for n Degrees of Freedom (DOF). This equation can be transformed into state form as:

ẏ = Ay+Bf (3.2)

where y = [x1,x2, ...,xn, ẋ1, ẋ2, ..., ẋn]
T and the reduced order system has dimension 2n.

Free response When G = 0 and f = 0, the associated free undamped response of Eq. 3.1 can be studied by
introducing the assumed form x =ΨΨΨR exp [st], which is nontrivial if [109]:

(
K+ s2M

)
ΨΨΨ

R = 0 (3.3)

from this eigenvalue problem, one can study the nature of the solutions by analyzing the characteristic equation
derived from it:

det
[
K+ s2M

]
= 0. (3.4)

Alternatively, one can formulate a quadratic eigenvalue problem (s2M+ sG+K)ΨR = 000 in the form [44]:

Uψψψ
R = Vψψψ

Rs or Aψψψ
R =ψψψ

Rs (3.5)

with ψψψR =

[
ΨΨΨR

ΨΨΨRs

]
and:

U =

[
0 K

−K −G

]
; VVV =

[
K 0
0 M

]
; A = V−1U, (3.6)

assuming V is invertible. One arrives at the following characteristic equation:

det
[
s2M+ sG+K

]
= 0 (3.7)

which gives n pair of poles s[1,2],i = −ζiωi ±
√

ζ 2
i −1ωi, i ∈

[
1, . . . , n

]
where the ζi are the damping factors

in the case of a viscous damping model. Stable vibrations are guaranteed if 0 ≤ ζi < 1 and ωi > 0, in which
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case the poles appear in complex conjugate pairs and ωi = |si|, where the ωi are the natural frequencies1 of the
system.

To each ωi corresponds an associated right eigenvector ΨΨΨR
i , and the right modal matrix ΨΨΨR contains the right

eigenvectors as columns. In addition, a set of left eigenvectors ΨΨΨL
i also corresponds to the same pole si,(

ΨL
)T

(s2
i M+siG+K) = 000, leading to the left modal matrix ΨΨΨL. Then, ψψψR together with ψψψL =

[
ΨΨΨL

ΨΨΨLs

]
enabled

the diagonalization of A.

Forced response to an arbitrary excitation The solution of Eq. 3.2 with a general excitation f can be ex-
pressed as:

y(t) = Φ(t)y(0)+
ˆ t

0
Φ(t − τ)Bf(τ)dτ (3.8)

where y(0) is a vector of initial values (initial conditions), and Φ(t) is the state transition matrix:

Φ(t − τ) =exp [A(t − τ)]

=I+(t − τ)A+
(t − τ)2

2!
A2 + ... (3.9)

here exp [A(t − τ)] is to be interpreted as the matrix exponential of the matrix A. We remark that Eq. 3.8
contains a homogeneous and a particular solution. The homogeneous solution is related to the initial conditions
of the problem, while the convolution part of the solution is the forced response:

y(t) =yh (t)+y f (t)

yh (t) =Φ(t)y(0)

y f (t) =
ˆ t

0
Φ(t − τ)Bf(τ)dτ, (3.10)

two additional concepts apply to the characterization of the response of dynamical systems: the transient re-
sponse and the steady-state response. For a system with damping, the homogeneous response is a part of the
transient response and decays to zero as motion evolves. The forced response has transient and steady-state
components, the former decaying to zero for damped systems; the steady-state response then is the component
that persists from the forced response once the transient part has decayed.

2 Free Response of LTP systems and Floquet modal analysis

We now consider the following equation:

M(t) ẍ+G(t) ẋ+K(t)x = 0 (3.11)

where the matrices of the system are such that for a given period Tp: M(t +nTp) = M(t) ,n ∈ Z, which can
similarly be cast in state form:

ẏ(t) = A(t)y(t) . (3.12)

1Strictly speaking, ωi is the circular natural frequency; the distinction is important because fi =
ωi
2π

where fi is an actual frequency: its
units are Hertz as opposed to radians per second.
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We assume in the sequel that matrix A(t) has the same period as the matrices of the system. The free response
of Eq. 3.12 for an initial condition y(0) is:

y(t) = Φ(t, t0)y(0) (3.13)

where Φ(t,τ) is the state transition matrix, now a function of two variables. This solution can be identified as
the transient response associated with the initial conditions y(0).

2.1 Free response and modal analysis: Elements of Floquet theory

The general theory of ordinary differential equations with periodic coefficients is termed Floquet theory. Its
subject of study is the following initial value problem (IVP):

ẏ(t) = A(t)y(t) ,y(0) = y0, (3.14)

where matrix A(t) is of dimension n×n, it is assumed to be continuous and have minimum period Tp. As in the
time-independent case, a solution set of the ODE can be written as the matrix Y(t) of size n× k with elements
Yi, j (t) i = 1, ...n; j = 1, ...,k, every column represents a solution. If k = n, then we call Y(t) a fundamental
solution matrix of the ODE. If det [Y(0)] ̸= 0, so the solutions are linearly independent, any other fundamental
solution Y1 (t) can be expressed as a linear combination of the columns of Y(t): Y1 (t) = Y(t)C, with C =
Y−1

1 (0)Y(0), C is an n×n constant matrix; under these conditions we say that Y(t) constitutes a basis for the
vector space of solutions of the ODE.
A particular case of the fundamental solution is one such that Y(0) = In, which we call the Matrizant ([119]) of
the system. From this, we can see that using the Matrizant, any fundamental solution matrix can be expressed as:
C = Y−1

1 (0)Y(0) = Y−1
1 (0), Y1 (t) = Y(t)Y−1

1 (0). From the Matrizant, we can obtain any particular solution
by applying the initial value: y(t) = Y(t)y0. In a more general sense, we can write the solution in terms of
the state transition matrix ([144]), which we note as Φ(t, t0), and as with the Matrizant: Φ(t0, t0) = In, it also
satisfies the differential equation: d

dt Φ(t, t0) = A(t)Φ(t, t0). The response of the system with initial condition
y0 can be written as y(t) = Φ(t, t0)y0; the state transition matrix merely generalizes the Matrizant in the sense
that t0 is not necessarily 0, although we will adopt this convention throughout the following developments.
The monodromy matrix of the system, in terms of the state transition matrix, is the constant matrix Φ(t0 +Tp, t0);
that is, the monodromy matrix is the value of the state transition matrix (or also the Matrizant) at the end of a
period. The eigenvalue problem associated with the monodromy matrix:

det [Φ(t0 +Tp, t0)−µnIn] = 0 (3.15)

yields the n quantities µn called Floquet multipliers of the system. The stability of the solutions of the ODE can
be established from the analysis of the Floquet multipliers. It’s clear from this exposition that the state transition
matrix is the key problem in the determination of the solution of the free response of the Floquet system, as it
provides access to any particular solution by applying the appropriate initial conditions; the monodromy matrix
and with it the Floquet multipliers and the stability of solutions. We will later see how this matrix plays a key
role in determining the ODE’s forced response.
We now turn to the central results of Floquet theory, which are presented as two separate theorems whose results
are complementary to our perspective. The first one, Floquet’s theorem, is a statement about the fundamental
solution matrices of Floquet systems, and the second one, called Lyapunov reducibility theorem, deals with a
change of variable that transforms a Floquet system into an LTI one in new variables.
Floquet’s theorem, as stated by [69] reads:

Theorem 2. Floquet’s theorem: Let Y(t) be a fundamental solution matrix of the Floquet system Eq. 3.14 with
period TΩ, that is, a matrix whose columns are solutions to the system. Then the matrix Z(t) = Y(t +Tp) is
also a fundamental solution matrix of the Floquet system. There is a function R(t) of period Tp and a constant
matrix ρρρ such that: Y(t) = R(t)exp [ρρρt].
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The Lyapunov reducibility theorem as presented by [119], reads:

Theorem 3. Lyapunov reducibility theorem: Let ẏ(t) = A(t)y(t) be a Floquet system with A(t +Tp) = A(t).
There exists a non-singular, TΩ-periodic matrix function R(t) such that the substitution:

y(t) = R(t)q(t) (3.16)

transforms ẏ(t) = A(t)y(t) to:

q̇(t) = ρρρq(t) , (3.17)

where ρρρ is a constant matrix.

From theorem 2 and with the fact that y(t) = Y(t)y0, we obtain:

Y(t) =R(t)exp [ρρρt]

Y(t)y0 =R(t)exp [ρρρt]y0

y(t) =R(t)exp [ρρρt]y0, (3.18)

to visualize the implication of this result and of theorem 3, let us consider an example. y(t) = yi, i = 1, ...,n, the
matrix R(t) = Ri, j, i, j = 1, ...,n. Each component of the solution then has the form:

yi (t) =∑
j

Ri, j (t)exp [ρ jt]y0, j (3.19)

in words, each component is a sum of terms modulated by periodic coefficients of the matrix R(t). The matrix
R(t) is the basis of our extension of LTI modal analysis; we will refer to it as Floquet modal matrix and its
columns as Floquet periodic modes or simply Floquet modes. Before focusing on this matrix, we focus first on
the expressions exp [ρρρt] and ρρρ in both preceding theorems.

Matrix Exponential and Jordan Canonical Form The development here synthesizes the result in [69] to
adapt it to our situation.

Suppose Φ0 is a n×n constant matrix. There is a nonsingular n×n matrix P such that Φ0 = PµµµP−1, where µµµ

is either: a) diagonal if the eigenvalues of Φ0 are unique, with the eigenvalues in its main diagonal, b) block
diagonal if Φ0 has repeated eigenvalues.

Suppose Φ0 is a nonsingular n×n matrix. Then, there is a matrix ρρρ such that: exp [ρρρ] = Φ0. Here ρρρ is said to
be the matrix logarithm of matrix Φ0. We have the following cases:

1. If Φ0 is diagonal with µi distinct elements along the diagonal, then ρi,i = ln [µi] and ρi, j = 0, i ̸= j,
exp [ρρρ] = Φ0

2. If Φ0 is upper triangular with repeated µ1 elements along the main diagonal and 1 in the upper entry, then
ρi,i = ln [µ1] and its upper element is 1

µ1
, exp [ρρρ] = Φ0

3. If Φ0 is an arbitrary matrix, then Φ0 = PµµµP−1, and µµµ is either diagonal or in Jordan Canonical Form, so
the previous two cases apply to µµµ: exp [ρρρ∗] = µµµ and ultimately: ρρρ = Pρρρ∗P−1 so Φ0 = Pexp [ρρρ∗]P−1.

These results can be applied to the main result in theorem 2 as follows: suppose Φ(t, t0) is a fundamental solu-
tion matrix, then one can express Φ(t +Tp, t0) as Φ(t +Tp, t0) = Φ(t, t0)Φ(t0 +Tp, t0), where Φ(t0 +Tp, t0) is
the monodromy matrix, now Φ(t0 +Tp, t0) = exp [ρρρTp], defining R(t) = Φ(t, t0)exp [−ρρρt] we have: Φ(t, t0) =
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Φ(t, t0)exp [−ρρρt]exp [ρρρt] = Φ(t, t0). Additionally, since the eigenvalues of Φ(t +Tp, t0) are the Floquet multi-
pliers µi, we find the following quantities:

Φ(t0 +Tp, t0) = R(0)exp [ρρρTp]R−1 (0)

ρi =
1
Tp

ln [µi] (3.20)

these are known as Lyapunov Characteristic exponents. In the following, we will note R−1 (t) = L(t) as the left
periodic modes. Considering now theorem 3: y(t) = R(t)q(t) and

ẏ(t) =Ṙ(t)q(t)+R(t) q̇(t)
q̇(t) =

(
L(t)A(t)R(t)−L(t) Ṙ(t)

)
q(t)

q̇(t) =ρρρq(t) (3.21)

with ρρρ =
(
L(t)A(t)R(t)−L(t) Ṙ(t)

)
, this is the modal LTI form of the corresponding Floquet system on the

new modal variables q(t). If the monodromy matrix has distinct eigenvalues, that is, if the system has distinct
Floquet multipliers, then the Lyapunov transformation not only reduces the system to an LTI one, but ρρρis also
diagonal so the modal equations are also decoupled.
Some commentary about this development is in place. First, notice that since R(t) = Φ(t, t0)exp [−ρρρt] and the
convention has been adopted that Φ(t0, t0) = In, it follows that R(t0) = Φ(t0, t0) = In = L(t0) we adopt as a
convention that the Floquet modal matrix of left and right periodic modes reduce to the identity matrix in the
extremes of a period R(t0) = R(t0 +Tp) = In, L(t0) = L(t0 +Tp) = In. If this condition is not adopted, then
one has: Φ(t, t0) = R(t)exp [ρρρt]L(t0), which in t0 yields In = R(t0)InL(t0), in other words, the normalization
condition for the eigenvectors becomes R(t0)L(t0) = In. This second condition is sometimes more convenient,
given the fact that the R(t) ,L(t) pairs are often complex so one need not impose that they are real and unit
for conditioning. Second, the Floquet multipliers are not, in general, positive real numbers, so the logarithm
involved in the computation of the Characteristic Exponents is a complex function. The complex logarithm is
such that:

ln [µi] = ln |µi|+ i(arg [µi]+2πn) ,n ∈ Z,µi ∈ C (3.22)

where |µi| is the absolute value of the complex number; so the imaginary part of the logarithm is defined up to
an addition of n times the factor 2π . Consequently:

ρi =
ln |µi|

Tp
+ i

arg [µi]+2πn
Tp

,n ∈ Z,µi ∈ C (3.23)

we will work with the principal value of the logarithm unless otherwise specified, but this ambiguity will be in-
strumental in the discussion around Hill’s method in the next section. Third, a conclusion on the homogeneous
solution of the Floquet system under consideration is that the form: y = r(t)exp [ρit] provides the desired gen-
eralization to the LTI methodology, an approach that has been applied effectively in works such as [144],[151]
and [22].
The developments in this section suggest a straightforward methodology for the characterization of the homo-
geneous response of an LTP system:

1. Select n linearly independent initial conditions, such as In.

2. Solve Eq. 3.13 n times, subject to each set of initial conditions on the interval [0,Tp]; this can be done
using numerical integration for complex systems and is a highly parallelizable process.
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3. Form the monodromy matrix from the computed solutions at the end of the interval.

4. Solve the eigenvalue problem associated with the monodromy matrix to find the Floquet multipliers.

5. Use Eq. 3.23 to compute the characteristic exponents.

6. Use R(t) = Φ(t, t0)exp [−ρρρt] and R−1 (t) = L(t) to compute the periodic eigenvectors.

From this procedure, the stability of the solutions can be assessed, as remarked in Chapter 1; the behavior of the
periodic eigenvectors can also be analyzed. An alternative method is widely used for this analysis, introduced
in reference [54]. We proceed now to summarize this approach.

2.2 Hill’s method for modal analysis of LTP systems

The modern form of Hill’s method consists of expanding the system’s matrix and modal solutions in Fourier
series and then formulating the corresponding eigenvalue problem in terms of the corresponding Fourier co-
efficients. The coefficients of A(t) are known quantities, while the unknowns are the characteristic exponents
(the eigenvalues) and the Fourier coefficients of the periodic modes. The method circumvents the successive
integration step required in the Floquet-Lyapunov approach and provides a spectral description of the periodic
eigenvectors. One of the drawbacks comes in the form of the multiplicity of the solutions obtained, which we
will show to be related to the apparent ambiguity in the determination of the characteristic exponents described
in the previous section. Another limitation comes from the error incurred in the truncation of the infinite Fourier
series for the implementation, which can lead to deviations in some sets of the computed exponents. These two
problems are subject to active investigation in different domains: different sorting criteria for the eigenvalues
and eigenvectors have been proposed [14] and [51] discuss the criteria in the field of tidal turbines, while [7]
proposes a sort-free implementation of Hill’s approach based on Koopman theory in the context of nonlinear
systems, also discussing issues of discretization error and computational cost of this sorting process.

First, A(t) in Eq. 3.12 is expanded in Fourier series:

A(t) =
+∞

∑
a=−∞

Aa exp [i(2π f a) t] , (3.24)

where Aa is a matrix of Fourier coefficients at the harmonic a. Next, a modal fundamental solution is assumed
and expressed in terms of Fourier series :

Yk (t) =Rk (t)exp [ρkt]

Rk (t) =
+∞

∑
j=−∞

Rk, j exp [i(2π f j) t]

Ẏk (t) =Rk (t)
d
dt

[exp [ρkt]]+ Ṙk (t)exp [ρkt]

d
dt

[exp [ρkt]] =ρk exp [ρkt]

Ṙk (t) =

(
+∞

∑
j=−∞

(i(2π f j))Rk, j exp [i(2π f j) t]

)
, (3.25)

where the subindex k denotes the corresponding mode, for instance, Rk (t) is the k− th column vector of the
Floquet modal matrix. This allows the formulation of an eigenproblem on the Fourier coefficients, substituting
Eq. 3.24 and Eq. 3.25 in Eq. 3.12:
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ρk

+∞

∑
j=−∞

Rk, j +
+∞

∑
j=−∞

(i(2π f j))Rk, j −

(
+∞

∑
a=−∞

Aa

)(
+∞

∑
j=−∞

Rk, j

)
= 0, (3.26)

here the Rk (t) are n× 1 vectors, Aa are n× n matrices, and the ρk are the corresponding characteristic expo-
nents. This can be cast into a hyper-eigenvalue problem of infinite dimension by applying harmonic balance
([151],[22]). In practice, this requires truncation to be applied, which leads to the following expression:

(ρkIn −WWW )Rk, j = 0, (3.27)

where the matrixWWW has the structure (different presentations with similar results in [144],[7], [49] to cite a few):

WWW =



... ... ... ... ... ... ...

... A0 − i2π (2 f )In A1 A2 A3 A4 ...

... A−1 A0 − i2π f In A1 A2 A3 ...

... A−2 A−1 A0 A1 A2 ...

... A−3 A−2 A−1 A0 + i2π f In A1 ...

... A−4 A−3 A−2 A−1 A0 + i2π (2 f )In ...

... ... ... ... ... ... ...


(3.28)

for each eigenvalue ρk of ρρρ , there is a modal vector of Fourier coefficients Rk, j from which the modal matrix R j
can be constructed as R = Rk, j, where j denotes the corresponding Fourier expansion term, and k correspond to
the given Floquet periodic mode. The previous approach, when adapted for the initial conditions in the physical
system x(t0) = x0 ([151]):

b0 =exp [−ρρρt0]L(t0)x0

Φ(t, t0) =R(t)exp [ρρρt]L(t0)

x(t) =R(t)exp [ρρρt]b0 (3.29)

provides an expression that allows for the study of the modal behavior of the system.

If n j = 2nH +1 terms are considered in the truncated Fourier series, where nH is the largest harmonic integer,
the size of WWW in Eq. 3.28 is (nH +1)n× (nH +1)n, which will result in (nH +1) sets of n eigenvalues that
approximate the characteristic exponents, and the corresponding sets of eigenvectors. The difference of the
eigenvalues between sets is, as expected, in the imaginary part up to an integer multiple of 2πk,k ∈ Z. So we
will note ΛΛΛ l =

{
ρkl

}
the set of n characteristic exponents ρkl for which the imaginary part is ρ0

k + 2πl, where
ρ0

k corresponds to the principal value of the corresponding logarithm in Eq. 3.23 as defined in the previous
subsection. As discussed in [100], this unintuitive fact about the Hill solution has resulted in some misunder-
standing on the interpretation of the Floquet periodic eigenvectors and their associated eigenvalues. All sets are,
in principle, equally valid to describe the Floquet modal response (and stability); the main consideration that
applies concerns the potential numerical error inherent to the truncation of the associated Fourier series. The
choice of ΛΛΛ l becomes a matter of convenience.

An interesting result from the previous development can be arrived at using Eq. 3.23 and the expression:

R(t) = Φ(t, t0)exp [−ρρρt] , (3.30)

considering the two sets ΛΛΛ 0 and ΛΛΛ m and their associated Floquet modal matrices: R(0) and R(m). Rewriting ρk
in the form ρk = αk + iσk, we arrive at:
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ρk0 =
ln |µi|

Tp
+ i

arg [µi]

Tp

αk0 =
ln |µi|

Tp

σk0 =
arg [µi]

Tp
(3.31)

for ΛΛΛ 0, while for ΛΛΛ m:

ρkm =
ln |µi|

Tp
+ i

arg [µi]+2πm
Tp

αkm =
ln |µi|

Tp

σkm =
arg [µi]+2πm

Tp
(3.32)

this implies that αk0 = αkm , and σkm = σk0 +
2πm
Tp

, so we have the exponential expressions:

exp [ρ0t] =exp
[(

αk0 + iσk0

)
t
]

exp [ρkmt] =exp
[(

αk0 + i
(

σk0 +
2πm
Tp

))
t
]

exp [ρkmt] =exp [ρ0t]exp
[

i
2πm
Tp

t
]
, (3.33)

this change in phase (or argument) Θ(m) = exp
[
i 2πm

Tp
t
]

reflects on the eigenvectors of ΛΛΛ m :

R(m) =R(0)
Θ(m) , (3.34)

higher choices of m lead to higher frequency Floquet modal eigenvectors. This will be illustrated in the examples
of this section.
Another aspect of the modal representation of the solution in terms of Fourier series is based on Parseval or
Plancherel’s theorems, which pertain to the power of the associated eigenvectors. The Floquet modal matrix
has the following components:

R(t) = Ri, j (t) , i, j = 1, ...,n (3.35)

where i describes the corresponding degree of freedom associated, and j describes the corresponding mode. For
each of these functions we have:

ˆ Tp

0

∣∣Ri, j (t)
∣∣2 ≈ nH

∑
k=−nH

∣∣R(i, j),k
∣∣2 (3.36)

where R(i, j),k is the k− th Fourier coefficient of Ri, j (t); this expression describes the power of the component of
the modal matrix. Since R(t0) = In is a consequence of the initial normalization selected for the state transition
matrix, one can think about introducing an initial energy on a given degree of freedom in each mode, in which
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case one may think about describing the distribution of this initial energy among the other degrees of freedom
in each mode. A participation factor can be introduced as follows:

∥∥Ri, j
∥∥2 ≈

nH

∑
k=−nH

∣∣R(i, j),k
∣∣2

D j =∑
i

∥∥Ri, j
∥∥2

Ψi, j =

∥∥Ri, j
∥∥2

D j
, (3.37)

this factor gives the fraction of energy in the degree of freedom i in mode j from the total energy in the mode
D j. Similarly, one can define the modal participation factor ([100]) :

Ei, j =
nH

∑
k=−nH

∣∣R(i, j),k
∣∣2

φ(i, j),k =

∣∣R(i, j),k
∣∣2

Ei, j
(3.38)

which gives the relative magnitude of the k− th harmonic in the expansion of a component Ri, j.
A major drawback of this formulation can be highlighted if we consider the form of the solution in the state
variables y. As stated earlier:

yi = ∑
j

Ri, j (t)exp [ρ jt]y0, j (3.39)

this expression makes it clear that the response of Eq. 3.12 consists of a sum of harmonic terms exp [ρ jt]
modulated by the periodic functions Ri, j (t). This suggests that the yi are nonstationary signals, and in the
stochastic analysis of the system, it will be shown that this feature results in a nonstationary response. The
Fourier representation does not provide any information about the time-evolution of the frequency content that
characterizes nonstationary signals, and for the stochastic case, one arrives at the necessity of expanding the
traditional definitions and descriptions of quantities such as the PSD. Time-frequency representations have been
an intense subject of study for both deterministic and stochastic phenomena. References such as [11] provide an
in-depth treatment of the classic results in the field from the signal processing perspective, and [116] similarly
for nonstationary processes.
An approach that has gained much traction in the treatment of nonstationary signals and processes is based on
wavelet analysis. The classic text [95] provides an introduction to wavelet analysis as applied to mechanical
vibrations and the family of wavelets introduced by Newland; the Harmonic wavelets have been applied to
different classes of problems with great efficacy, for instance, eigenvalue problems of integral equations ([18])
and to transient response determination of time-varying mechanical systems ([150]). In references [129] and
[73], the Periodized Generalized Harmonic wavelet (PGHW) is used in the characterization of the response of
mechanical systems, linear and nonlinear, respectively, with stochastic inputs. The latter of these references
addresses the subject of PSD estimation with this wavelet basis. More recently, in [50] the PGHW has been
applied through a Galerkin approach to study the response of rotor-blade systems with nonlinear components
and stochastic nongaussian nonstationary inputs.

2.3 PGHW representation of Floquet modes: change of basis approach

The central idea of this subsection is to capitalize on the time-frequency and multi-scale properties of the PGHW
basis to analyze the candidate Floquet eigenvectors that emerge in Hill’s or Floquet’s method. The formulation
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of the equivalent eigenvalue problem Eq. 3.27 in the wavelet series expansion is possible but numerically chal-
lenging. To address this issue, we rely on a theoretical result from Hilbert bases on a Hilbert space, using the
fact that both the Fourier basis and the PGHW basis are Hilbert bases over the vector space of functions defined
on [0,T ]. The PGHW basis vectors have the interesting property of being periodic in the temporal interval over
which they have been defined, which is one of the motivations for choosing this particular family of wavelets
to study the modal properties of LTP systems given the knowledge that the modes in the sense of Floquet are
periodic functions.

Periodic Generalized Harmonic wavelets and time-frequency representation The Periodic Generalized
Harmonic wavelet (PGHW) of scale parameter j and translation parameter k in the [0,T ] interval is :

Ψj,k (t) =
1
Nt

n j−1

∑
j=m j

exp
[

i(2π f j)
(

t − kT
Nt

)]

=
1
Nt

n j−1

∑
j=m j

exp [i(2π f j) t]exp
[
−i(2π f j)

kT
Nt

]

=
1
Nt

n j−1

∑
j=m j

w j,k exp [i(2π f j) t] (3.40)

where w j,k = exp
[
−i(2π f j) kT

Nt

]
can be interpreted as a weight coefficient (or as a localization window in the

time-frequency representation), the sum in j is over a set of integers such that n j −m j = Nt , where N j is the
corresponding scale number; f = 2π

T ; the parameter k ∈ [0,1, ...Nt ]; and the following relationship applies:
N = 2NtN j where N is the number of sampling points in [0,T ] and Nt is the bandwidth of each scale (here taken
uniform for each scale).
The inner product of a given function g(t) and the PGHW basis can be obtained using the wavelet transform:

G j,k =
Nt

T

ˆ T

0
g(t)Ψ̄j,k (t)dt

=
〈
g(t) ,Ψ̄j,k (t)

〉
(3.41)

where G j,k is the corresponding wavelet coefficient. This allows the approximation of g(t) through a PGHW-
Fourier series of the form:

g(t) = ∑
j
∑
k

G j,kΨj,k (t)+∑
j
∑
k

G̃ j,kΨ̄j,k (t)

= ∑
j
∑
k

(
G j,kΨj,k (t)+ G̃ j,kΨ̄j,k (t)

)
(3.42)

where Ψ̄j,k (t) stands for the complex conjugate of Ψj,k (t), and G̃ j,k =
〈
g(t) ,Ψj,k (t)

〉
2.

The following result can be seen as a corollary to theorem 7.17 in [128].

Theorem 4. Change of basis on Hilbert spaces.

Let {Ei, i ∈ Z} and {Bi, i ∈ Z} be two orthonormal Hilbert bases on V . For a given u ∈V , then u = ∑i∈ZUE
i Ei,

and u = ∑i∈ZUB
i Bi, then:

2Notice that if g(t) is a real function, then G̃ j,k = Ḡ j,k given the properties of the inner product, but in this investigation, functions with
complex values play a key role, and so the distinction will be maintained.
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UB
i = ∑

j∈Z
Fi, jUE

j (3.43)

with Fi, j =
〈
E j,Bi

〉
.

Proof. First, from (v) in [128] one has: UB
i = ⟨u,Bi⟩ . Then, from (vi) :

⟨u,Bi⟩= ∑
j∈Z

〈
u,E j

〉〈
Bi,E j

〉
, (3.44)

and finally from (v):

UE
i = ⟨u,Ei⟩ (3.45)

so:

⟨u,Bi⟩= ∑
j∈Z

UE
j
〈
Bi,E j

〉
UB

i = ∑
j∈Z

UE
j
〈
Bi,E j

〉
Fi, j =

〈
Bi,E j

〉
.

In words, given the series expansion of a function g(t) in a Hilbert basis {Ei, i ∈ Z} with the associated gener-
alized Fourier coefficient GE

i given by the inner product GE
i =
´

∞

−∞
g(t)E∗

i dt, it is possible to define a change
of basis to another Hilbert basis {Bi, i ∈ Z}. This change of basis is equivalent to determining the generalized
Fourier coefficients GB

i in the new basis, which can be achieved through the change of basis matrix Fi, j.
The previous result allows us to circumvent the formulation and resolution of the eigenvalue problem on the
PGHW basis. The classic Hill method is applied to obtain the Floquet periodic eigenvector candidates, and
these are projected into the PGHW basis from where a time-frequency representation of each mode can be
easily constructed employing the scalogram of the wavelet functions.
Choosing {Ei, i ∈ Z} as the Fourier basis: En (t) = exp [i(2π f n) t] with the inner product:

⟨g(t) ,En⟩=
ˆ

∞

−∞

g(t)E∗
n dt

=

ˆ T

0
g(t)E∗

n dt, (3.46)

where g(t) is defined on [0,T ] and E∗
n is the complex conjugate of En, and we note GE

i = ⟨g(t) ,Ei⟩. Similarly,
choosing {Bi, i ∈ Z} as the PGHW basis Ψj,k (t) = 1

Nt
∑

n j−1
j=m j

w j,k exp [i(2π f j) t], with inner product:

⟨g(t) ,Bn⟩=
ˆ

∞

−∞

g(t)B∗
ndt

=

ˆ T

0
g(t)B∗

ndt, (3.47)

and GB
i = ⟨g(t) ,Bi⟩.

For the determination of matrix Fi, j, we have:
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En (t) =exp [i(2π f n) t]

E−n (t) =Ēn (t) (3.48)

for Fourier, and:

Bp,q (t) =
1
Nt

np−1

∑
l=mp

wl,q exp [i(2π f l) t]

B−p,q (t) =B̄p,q (t) , (3.49)

for the PGHW, the inner products read:

FB
i, j,k =

〈
Ei (t) ,B j,k (t)

〉
, (3.50)

for instance:

〈
En (t) ,Bp,q (t)

〉
=

Nt

T

ˆ T

0
exp [i(2π f n) t]Ψ̄p,q (t)dt

=
Nt

T

ˆ T

0
exp [i(2π f n) t]

1
Nt

n−p−1

∑
l=m−p

wl,q exp [i(2π f l) t]dt

=
1
T

ˆ T

0

np−1

∑
l=mp

wl,q exp [i(2π f (l +n)) t]dt (3.51)

so we may write: {〈
En (t) ,Bp,q (t)

〉
= 1

T ∑
np−1
l=mp

wl,k
(exp[i(2π f (n+l))T ]−1)

i(2π f (n+l)) n+ l ̸= 0〈
En (t) ,Bp,q (t)

〉
= 1

T ∑
np−1
l=mp

wl,qT n+ l = 0
(3.52)

from here FB
i, j,k can be assembled.

The development in this subsection then suggests the following method of analysis:

1. Apply Hill’s method as described in subsection 2.2, obtaining ΛΛΛ l sets of eigensolutions.

2. Select the corresponding PGHW parameters to define the associated PGHW basis.

3. Compute the transformation matrix between the Fourier and the PGHW bases FB
i, j,k.

4. Transform the Fourier coefficients associated to the ΛΛΛ l set under analysis into the PGHW coefficients
using FB

i, j,k.

5. Compute the desired quantities of analysis using the PGHW coefficients: the wavelet scalogram is a
time-frequency representation of the power of the modes; the stochastic section will illustrate how this
approach can be used to approximate the evolutive PSD of a nonstationary process.

This approach can be, in principle, combined with the idea central to the reference [100] to analyze not only
the eigenvectors but the frequency content of the complete solution of the ODE. Additionally, the PGHW
coefficients open new approaches to study the forced response of the system, for instance, the wavelet-Galerkin
method or the wavelet-transmissibility spectral method explored in reference [31] which extends the LTI concept
of transmissibility (and frequency response) to time-varying systems using wavelet transform.
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Exponent Hill Analytic Deviation
ρ−2 0.5 - 3.9685i 0.5 - 4i Re = 0, Im = 3.1499×10−2

ρ−1 0.5 - 2.0002i 0.5 - 2.0000i Re = 0, Im = 2.4934×10−4

ρ0 0.5 + 0i 0.5+0i Re = 0, Im = 0
ρ1 0.5 + 2.0002i 0.5 + 2.0000i Re = 0, Im = 2.4934×10−4

ρ2 0.5 + 3.9685i 0.5 + 4i Re = 0, Im = 3.1499×10−2

Table 3.1: Candidate characteristic exponents by Hill method for example 1

2.4 Selected examples

Example 1 From [69], consider the (scalar) Floquet system :

ẏ = A(t)y

A(t) = sin2 [Ωt] (3.53)

with Ω = 1 and smallest period Tp = π . The general solution is: y = cexp
[ 1

2 t
]

exp
[
− 1

4 sin [2t]
]

where c is an
arbitrary constant. By Floquet’s theorem, we can see that: R(t) = cexp

[
− 1

4 sin [2t]
]

is a periodic eigenvector.
By identification exp [ρt] = exp

[ 1
2 t
]

so, the characteristic exponent is ρ0 = 1
2 .

From the developments in this chapter, we have the following:

• with m = 1 and α1 = α0 =
1
2 , σ1 = σ0 +

2π

π
= 2 so ρ1 = 1

2 + i2 is also a Floquet exponent,

• with m =−1 and α1 = α0 =
1
2 , σ1 = σ0 − 2π

π
=−2 so ρ−1 = 1

2 − i2 is also a Floquet exponent,

• Θ(1) = exp [i2t] so R(1) (t) = cexp
[
− 1

4 sin [2t]
]

Θ(1) is the periodic eigenvector associated to ρ1,

• Θ(−1) = exp [−i2t] so R(−1) (t) = cexp
[
− 1

4 sin [2t]
]

Θ(−1) is the periodic eigenvector associated to ρ−1,

in each case, the Floquet multiplier is µ = exp
[ 1

2 π
]

exp
[
− 1

4 sin [2π]
]
= 4.8105.

In the Hill method, with nH = 4 and n j = 9, since n = 1 the matrix WWW of the truncated Hyper-eigenvalue
problem is of size 5× 5, so the eigenvalue problem will yield 5 characteristic exponents, which are shown in
Tab. 3.1. It is noted that the most “central” characteristic exponent candidates estimated by the method are better
approximations of the true characteristic exponents of the system. Finally, in Fig. 3.1, the real and imaginary
parts of the periodic eigenvectors associated with ρ1 and ρ−1, including the analytic expression, the result by
Floquet-Lyapunov, and the result from Hill’s method.

To conclude the example, in Fig. 3.2, the fraction of power in each harmonic or Fourier term is shown for each
periodic eigenvector. For this very simple case, it can be seen that most of the power is concentrated in the
harmonic associated with the integer multiple selected for the corresponding characteristic exponent. It has
been shown ([100]) that no one harmonic may have over half of the power for a given eigenvector in more
realistic cases. The relevance of this type of representation remains in the capability of selecting a convenient
set of eigenvectors.

Commentary The previous example highlights several practical considerations concerning Hill’s method.
The number of Fourier coefficients for the periodic eigenvectors in this method depends on the size of the ma-
trixWWW , the truncated hyper-eigenvalue problem, which in turn requires a set number of expansion coefficients of
the matrix of the system A(t). If N j Fourier terms are desired for the R(t) vectors, then 2N j +1 coefficients are
required in the expansion of A(t) for the correct formation of WWW . This suggests a steep cost in the computation
of the associated eigenvalue problem: a higher number of terms to describe R(t) results in a larger problem
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Figure 3.1: Periodic eigenvectors of example 1: top R(0), top center R(−1), bottom R(1), left is the real part, right
is the imaginary part
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Figure 3.2: Fraction of power on each harmonic component for periodic eigenvectors in example 1: top R(0),
top center R(−1), bottom R(1)

and increases the number of candidate sets of characteristic exponents. This downside can be mitigated by the
application of algorithms that compute, for instance, the k “smallest” eigenvalues and their associated eigenvec-
tors. In many practical situations, however, the terms in the Fourier expansion decay rapidly after a few terms,
which means that WWW often has a sparse structure dominated by a band centered on its main diagonal.

Example 2 Consider a reduced version of the rotor-blade model introduced in the previous chapter, with 1
DOF describing the lateral motion of the disc and one blade with one modal variable in the spanwise direction
for a total of 2 DOF. The equation of motion has the form:

M(t) ẍ+G(t) ẋ+Kx = 0, (3.54)

the numerical values of these matrices are:

M(t) =
(

12.848×103 −41.791sin(Ωt)
−41.791sin(Ωt) 1

)
, (3.55)

for G(t) = GG (t)+D:

GG (t) = Ω

(
0 −41.791cos(Ωt)

41.791cos(Ωt) 0

)
, (3.56)

and:

D =

(
100 0
0 0.5

)
, (3.57)

finally for K:

K =

(
2×105 0

0 7.0181×102

)
. (3.58)
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Quantity Value(Units)
M 104[kg]
KX 2×105

[
Nm−1

]
DX 1×102

[
Nsm−1

]
Ds1 0.5
E 25×106[Pa]
I 4.7[kgm]
L 9[m]
ρ 211[kgm−3]
A 1.5[m2]
Rr 1[m]
Ω 1.15[rads−1]

Table 3.2: Parameters of the system in example 2

The physical parameters can be found in Tab. 3.2. For the modal analysis, we will neglect the damping of the
system, setting the corresponding parameters to zero.
In state form, the system is:

ẏ =A(t)y, (3.59)

with the usual substitution: y = [x, ẋ]T and A(t) =
(

02 I2
−M−1K −M−1G

)
, with A(t) = A(t +nTp) ,n ∈ Z, A(t)

is of size 4×4. Since Ω = 1.15 rad
s , we have Tp = 5.4636s. For this system, A(t) can be written as:

A(t) =


0 0 1 0
0 0 0 1

k11
m11−m2

1 sin2(tΩ)
− k12m1 sin(tΩ)

m11−m2
1 sin2(tΩ)

D11
m2

1Ωsin(tΩ)cos(tΩ)

m11−m2
1 sin2(tΩ)

k21m1 sin(tΩ)

m11−m2
1 sin2(tΩ)

k22m11
m11−m2

1 sin2(tΩ)
−m2

1Ωsin(tΩ)cos(tΩ)

m11−m2
1 sin2(tΩ)

D22

 . (3.60)

Solving the system with the 4 initial conditions y(1)0 =
[

1 0 0 0
]T,y(2)0 =

[
0 1 0 0

]T,y(3)0 =
[

0 0 1 0
]T,y(4)0 =[

0 0 0 1
]T we obtain a monodromy matrix:

Φ(Tp, t0) =


−0.88102 4.1768×10−5 0.10798 6.0981×10−6

0.1123 0.1878 0.07166 −0.00493
−1.6806 −0.00018 −0.88187 1.0553×10−5

0.047259 3.4567 0.22584 0.19025

 (3.61)

and the Floquet multipliers are then: µ1 = −0.88144 + 0.426i, µ2 = −0.88144 − 0.426i,µ3 = 0.18902 +
0.13048i,µ4 = 0.18902−0.13048i. The exponents will have the form:

ρkm =
ln |µi|

Tp
+ i

arg [µi]+2πm
Tp

=
ln |µi|

Tp
+ i
(

arg [µi]

Tp
+1.15m

)
(3.62)

for instance, the characteristic exponents for m= 0 are: ρ0
1 =−0.00389+0.49260i,ρ0

2 =−0.00389+0.49260i,ρ0
3 =

−0.26924+ 0.11058i,ρ0
4 = −0.26924− 0.11058i, the Floquet eigenvectors associated to these exponents are

shown in Fig. 3.4.
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Figure 3.3: Diagram of the 2DOF rotor-blade system

The Hill method can be equally applied. Choosing N j = 9, there will be 9 sets of candidate characteris-
tic exponents. We have selected the following set to display the characteristics of the eigenvectors: ρ0

1 =
−0.00389− 0.49260i,ρ0

2 = −0.00389+ 0.4926i,ρ∗
3 = −0.26924+ 27.489i,ρ∗

4 = −0.26924− 27.489i, notice
that this is a mixed set: the first two characteristic exponents correspond to m = 0, while the other two corre-
spond to the added multiple m = 24 approximately. The eigenvectors are shown in Fig. 3.5.

Commentary The physical interpretation of these eigenvectors requires some consideration. While the Flo-
quet system under analysis has 4 DOF, the associated mechanical system has 2, so two modes are associated
with the physical displacement variables of the system. At the same time, the other two are, in fact, a descrip-
tion of the generalized velocity variables introduced in the state reduction. In both eigenvector sets, one can
distinguish two modes dominated by the fourth DOF while the rest remain almost constant. In comparison, the
other two modes contain fairly mixed activation among all degrees of freedom. The fourth degree of freedom
is the generalized velocity of the blade modal variable. In the same vein, the physical interpretation of the unit
initial condition imposed to find the fundamental matrix of the system imposes an impulse-like initial condition
that affects all the generalized variables and highlights the coupling effects that can be seen in the equation of
motion.

Each mode has been characterized by the DOF participation and the harmonic participation per mode, as dis-
played in Fig. 3.6. In terms of DOF participation, the two modes dominated by the velocity of the blade modal
variable can be easily identified, whereas the other two modes reveal the activation of the disc translation and
blade deformation; this permits a more quantitative interpretation of the preceding graphics. The harmonic im-
portance factor shows that the central frequencies provide the majority of the power in each mode, a behavior
that justifies early truncation in the Fourier expansion.

Parametric study of Floquet exponents with respect to the pumping frequency To conclude the study of
the free system with 2 DOFs, we present two additional analytical tools that result from our developments on
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Figure 3.4: Floquet eigenvectors for the ρ0
i exponents, example 2, Floquet-Lyapunov method
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Figure 3.5: Floquet eigenvectors for the ρi mixed exponents, example 2, Hill method
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Figure 3.6: Participation factors in Floquet modes, a) DOF participation per mode, b) Harmonic importance per
mode
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Figure 3.7: Lyapunov-Campbell and stability plots

Floquet exponents and stability. The objective is to show the parametric dependence of the Floquet exponents
of the system with respect to the periodicity of the properties of the system; more specifically, the parameter Ω

or fp =
Ω

2π
from where the period of the system is derived by Tp =

1
fp

. The quantity fp is sometimes referred to
in the literature as pumping frequency. The first diagram resembles the Campbell diagram described in section
section 1 of chapter 2, with the distinction that the natural frequencies are replaced by the magnitude of the
characteristic exponents ∥ρi∥. Such graphical representation would be meaningless if the stability properties of
the solution as predicted by the real part of the Floquet exponents were left out, so a simple indicator is devel-
oped to accompany the diagram: ξi = −Re(ρi)

∥ρi∥ , knowing that the stability criteria in terms of the characteristic
exponents require Re(ρk)≤ 0 so the sign of ξi provides the equivalent information to the modal damping factor
in an LTI analogy.

The Lyapunov-Campbell and stability diagrams of system Eq. 3.54 with D = 0 is presented in Fig. 3.7. Due
to their conjugate nature, only two characteristic exponents of the Floquet system are included. Given that the
undamped version of the system is studied, the amount of unstable solutions is expected. The low-frequency
exponents show high oscillation until the pumping frequency fp = 2.08Hz is reached; after this frequency, the
exponents increase monotonically for the rest of the study. Although this result shows high sensitivity of the
exponents to the pumping frequency in the low regime, further investigation is necessary since, as shown in
Eq. 3.39, the Floquet eigenvectors modulate the modal response and thus introduce an additional frequency
component into the physical or state solution.

For reference, in the case of Ω= 0, the blade frequency from the discretization scheme is fblade = 4.2094Hz, and
frequencies of the disc-blade assembly are respectively f sys

1 = 0.6279Hz and f sys
2 = 4.2096Hz; for Ω = 60 at the

end of the represented interval, the blade frequency from the discretization scheme is fblade = 6.8143Hz. These
values allow us to assign some correspondence to the quantities in Fig. 3.7: the lower frequency component in
black corresponds to the base DOF, whereas the higher frequency component in blue corresponds to the blade
modal DOF. As Ω is increased, the first frequency (black) oscillates with an upward trend until it reaches the
vicinity of the non-rotating frequency of the base DOF, f sys

1 = 0.6279Hz at approximately fp = 1.3435Hz, and
then slowly increases in monotonic fashion. The second frequency shows a similar monotonic increase after
fp = 2.9978Hz, although its value lags the equivalent frequency for the rotating blade problem.
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3 Forced response of LTP systems

We now consider the following equation:

M(t) ẍ+G(t) ẋ+K(t)x = f(t) , (3.63)

where the matrices of the system are such that for a given period Tp: M(t +Tp) = M(t), which can similarly be
cast in state form:

ẏ(t) = A(t)y(t)+B(t) f(t) , (3.64)

which is a forced Floquet system, and matrix B(t) =
[

0
M−1 (t)

]
. Having established the modal analysis

foundation and the characterization of the state transition matrix for the Floquet system in the previous section,
we now turn to the study of the forced or steady-state response. The deterministic methods presented here will
enable, in the next chapter, the moment propagation of LTP systems; some of the spectral results can be applied
to estimate the PSD in stochastic situations.
Provided the state transition matrix of the Floquet system Φ(t, t0), the total solution of Eq. 3.64 can be expressed
as follows([144] ):

y(t) = Φ(t, t0)y(0)+
ˆ t

t0
Φ(t,τ)B(τ) f(τ)dτ, (3.65)

where Φ(t,τ) is again the state transition matrix (as in Eq. 3.8), each term can be recognized as a homogeneous
solution related to the initial conditions yh = Φ(t, t0)y(0), and a forced response associated with the load
y f =

´ t
t0

Φ(t,τ)B(τ) f(τ). As seen in the previous section, the substitution y(t) = R(t)q(t) transforms system
Eq. 3.64 into the LTI system in modal variables q(t). One resolution strategy is to solve the forced LTI problem
in the modal variables q(t) subject to the corresponding adapted force:

q̇(t) =ρρρq(t)+p(t) , (3.66)

where we have introduced the adapted force p(t) = L(t)B(t) f(t). Once the modal response is found, the re-
turn to the state or physical variables is straightforward. Another alternative is the passage to the frequency
domain or some other representation basis associated with a convenient integral transform, such as the tradi-
tional Fourier transform approach or a wavelet treatment. In each case, the convenience of the method comes
from the improved efficiency in operations such as the convolution in Eq. 3.65.

3.1 Time-domain resolution in modal variable

The goal is to find:

y f (t) =
ˆ t

t0
Φ(t,τ)B(τ) f(τ)dτ (3.67)

where the subindex stands for steady-state. Admitting the previous development we have:

q̇(t) = ρρρq(t)+p(t) , (3.68)

where the system is LTI and ρρρ is a constant, diagonal matrix. The forced response of Eq. 3.68 is well known in
vibration theory ([111],[104],[85]); given the impulse response h(t) of the system, one obtains:

q(t) =
ˆ

∞

−∞

h(t − τ)p(τ)dτ =

ˆ
∞

−∞

h(τ)p(t − τ)dτ, (3.69)
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since Eq. 3.68 is a first-order system, its impulse response is : h(t) = exp [ρρρt]; we also know that the system is
causal, so the integration limits can be adjusted since h(t) = 0, t < 0. This results in:

q(t) =
ˆ

∞

0
h(τ)p(t − τ)dτ =

ˆ
∞

0
exp [ρρρ (t − τ)]p(τ)dτ, (3.70)

with h(τ) = exp [ρρρτ] and we remark that as before exp [ρρρt] is a matrix exponential. This last expression, pro-
vided that the characteristic exponents ρρρ are known, can be integrated numerically to obtain q(t) and ultimately
y(t) = R(t)q(t):

q(t) =
ˆ

∞

0
h(τ)p(t − τ)dτ

y(t) =R(t)q(t)

=R(t)
ˆ

∞

0
h(τ)p(t − τ)dτ. (3.71)

3.2 Spectral approach

A class of spectral methods based on the Fourier transform have wide application in LTI dynamics, taking
advantage of the fact that convolutions in the time–domain transform into a simple product in the spectral
(Fourier) domain. The monograph by Bentvelsen [8] provides a detailed exposition of spectral approaches
in the aeroelastic domain under forced conditions, with the main application being in a Ziegler column. The
approach taken in this section is similar to that in [151], although this will be revisited in chapter 5 to yield the
stochastic quantities of interest. The main limitation of the deterministic approaches found in the literature is
the fact that they are focused on the spectrum, yet from a stochastic perspective, the second-order quantities,
particularly the PSD, are more descriptive.
We start from the relationship3.68 first, focusing on the description of the adapted excitation p(t)=L(t)B(t) f(t).

Recalling that B(t) =
[

0
M−1 (t)

]
, we write the Fourier expansion as:

B(t) =
+∞

∑
b=−∞

Bb exp
[

i
(

2π

Tp
b
)

t
]

≈
+nH

∑
b=−nH

Bb exp
[

i
(

2π

Tp
b
)

t
]
, (3.72)

where each coefficient matrix Bb has dimension [2n×n] and . Next, we proceed similarly with the left modal
matrix:

L(t) =
+∞

∑
l=−∞

Ll exp
[

i
(

2π

Tp
l
)

t
]

≈
+nH

∑
l=−nH

Ll exp
[

i
(

2π

Tp
l
)

t
]
, (3.73)

which yields the following truncated representation of p(t):

p(t) =L(t)B(t) f(t)

≈

(
+nH

∑
l=−nH

Ll exp
[

i
(

2π

Tp
l
)

t
])( +nH

∑
b=−nH

Bb exp
[

i
(

2π

Tp
b
)

t
])

f(t) . (3.74)
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Next, we proceed with the modal representation of the response y(t) = R(t)q(t), as before the right modal
matrix is:

R(t) =
+∞

∑
q=−∞

Rq exp
[

i
(

2π

Tp
q
)

t
]

≈
nH

∑
q=−nH

Rq exp
[

i
(

2π

Tp
q
)

t
]

(3.75)

and by substitution:

y(t) =R(t)q(t)

≈

(
nH

∑
q=−nH

Rq exp
[

i
(

2π

Tp
q
)

t
])

q(t) (3.76)

and more specifically, the convolution solution y = R(t)
(
−
´

∞

0 exp [ρρρ (t − τ)]p(τ)dτ
)
:

y(t) =

(
nH

∑
q=−nH

Rq exp
[

i
(

2π

Tp
q
)

t
])(

−
ˆ

∞

0
exp [ρρρ (t − τ)]p(τ)dτ

)
. (3.77)

Substituting the adapted force representation then:

y(t) =

(
nH

∑
q=−nH

Rq exp
[

i
(

2π

Tp
q
)

t
])

(
−
ˆ

∞

0
exp [ρρρ (t − τ)]

(
+nH

∑
l=−nH

Ll exp
[

i
(

2π

Tp
l
)

τ

])( +nH

∑
b=−nH

Bb exp
[

i
(

2π

Tp
b
)

τ

])
f(τ)dτ

)
(3.78)

rearranging terms and grouping the Fourier kernels:

y(t) =
nH

∑
q=−nH

+nH

∑
l=−nH

+nH

∑
b=−nH

Rq

(
−
ˆ

∞

0
exp
[
ρρρ (t − τ)+ i

(
2π

Tp
(b+ l)

)
τ

]
LlBbf(τ)dτ

)
exp
[

i
(

2π

Tp
q
)

t
]
,

(3.79)

the Fourier transform of f(t) if it exists is:

F( f ) =
ˆ

∞

−∞

f(t)exp [−i2π f t]dt, (3.80)

Applying Fourier transform over the entire expression Eq. 3.79:

Y( f ) =
nH

∑
q=−nH

+nH

∑
l=−nH

+nH

∑
b=−nH

Rq

ˆ
∞

−∞

{(
−
ˆ

∞

0
exp
[
ρρρ (t − τ)+ i

(
2π

Tp
(b+ l)

)
τ

]
LlBbf(τ)dτ

)
exp
[
−i2π

(
f − q

Tp

)
t
]}

dt, (3.81)
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the Fourier transform of this convolution results in:

Y( f ) =
nH

∑
q=−nH

+nH

∑
l=−nH

+nH

∑
b=−nH

RqΛΛΛ( f )LlBbF(ν ( f )) (3.82)

where F(ν ( f )) is the Fourier transform of the force, but with a shifted frequency argument ν ( f )= ν ( f ,Tp, l,b,q)=

f + (q+l+b)
Tp

, that is: F(ν ( f )) := F
(

f + (q+l+b)
Tp

)
, and the matrix ΛΛΛ( f ) = Λi, j ( f ,Tp, l,b,ρρρ) is diagonal with

terms:

Λi, j ( f ,Tp, l,b,ρρρ) =


1

i2π

(
f+ (l+b)

Tp

)
−ρi

, i = j

0 i ̸= j
, (3.83)

this last expression warrants some exposition. First, ΛΛΛ is a function of the independent frequency variable
variable f . Second, in the main diagonal, the ρi terms in the denominator are the characteristic exponents of
the system; for each value of q, l,b in the triple sum, a diagonal matrix function is defined, with each of the
multipliers in the main diagonal. Third, it is clear that this expression allows us to diagnose the occurrence
of peaks in amplitude and that these peaks will arrive not only when i2π f −ρi is close to zero, which is the
behavior of natural systems, but also at the additional instances in which i2π

(
f + (l+b)

Tp

)
−ρi approach zero.

This type of behavior is characteristic of forced LTP systems.

Example 3 To illustrate the spectral developments, we consider the same Floquet system described in 2.4
with the Floquet exponents and periodic eigenvectors obtained from Hill’s method and subjected to the simple
external load:

f(t) =
(

c1 sin
(
2π f f t

)
c2 sin

(
2π f f t

)) (3.84)

with c1 = 103, c2 = 104 and f f = 5Hz. The relevant quantities in the frequency domain are available from
the modal study performed on the system, these quantities are the Fourier coefficients Rq, Ll , Bb, and the
characteristic exponents ρ0

1 =−0.00389−0.49260i,ρ0
2 =−0.00389+0.4926i,ρ∗

3 =−0.26924+27.489i,ρ∗
4 =

−0.26924−27.489i. We also recall that the Fourier expansion consists of 9 terms with integers −4,−3,−2,−1,0,1,2,3,4,
and with Tp: the base period in the expansion is selected as the fundamental period of the Floquet system. In-
voking 3.83 we obtain:

ΛΛΛ( f ) =



1
i2π

(
f+ (l+b)

Tp

)
−ρ0

1

0 0 0

0 1
i2π

(
f+ (l+b)

Tp

)
−ρ0

2

0 0

0 0 1
i2π

(
f+ (l+b)

Tp

)
−ρ∗

3

0

0 0 0 1
i2π

(
f+ (l+b)

Tp

)
−ρ∗

4


, (3.85)

and after applying Eq. 3.82 the response in frequency Y( f ) is obtained, the four components are shown in
Fig. 3.8.
Taking the first component of Y( f ) for analysis purposes, in Fig. 3.9, we can identify the location of the main
peaks in amplitude as they relate to the Floquet exponents and the pumping period. Writing the imaginary part of
the characteristic exponents in Hertz we have the following system frequencies: f sys

1 = 4.38Hz, f sys
2 =−4.38Hz,

f sys
3 = 0.08Hz, f sys

4 =−0.08Hz, and taking into account the integer multiples of the pumping period we further
obtain f pump

n = n
Tp

= 0.18×n, with n an integer in [−4,4]. We say, for instance, that a frequency f sys
1 + f pump

n is
a harmonic of f sys

1 . There are 36 base frequency harmonics to consider, and these are shown in Tab. 3.3. Given
the structure of ΛΛΛ( f ) and ν ( f ), we find derived frequencies as a result of the combination of the various integer
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Hz n =−4 n =−3 n =−2 n =−1 n = 0 n = 1 n = 2 n = 3 n = 4
f sys
1 3.64 3.83 4.01 4.19 4.38 4.56 4.74 4.92 5.11

f sys
2 -5.11 -4.92 -4.74 -4.56 -4.38 -4.19 -4.01 -3.83 -3.64

f sys
3 -0.65 -0.47 -0.29 -0.10 0.08 0.26 0.44 0.63 0.81

f sys
4 -0.81 -0.63 -0.44 -0.26 -0.08 0.10 0.29 0.47 0.65

Table 3.3: Harmonics of base system frequencies

Figure 3.8: Response Y( f ) in frequency domain

indexes, for instance, the peaks near 5.85Hz and −5.85Hz, which result from f sys
1 + 0.18× n with n = 8 and

f sys
2 + 0.18× n with n = −8 respectively. One final frequency peak location is evident in Fig. 3.9: that of the

pumping frequency itself 0.18Hz and its multiples, among which the predominant is 0.54Hz.
To conclude the example, we show in Fig. 3.10 the time-domain reconstruction of the state variables y1 (t) and
y2 (t) by making use of the inverse Fourier Transform. The solution in Fig. 3.10 represents the steady-state
regime of the forced response.
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Figure 3.9: Component Y1 ( f ) of the response with harmonic peaks

Figure 3.10: Time-domain reconstruction of y1 and y2
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Chapter 4

Load description and moment
propagation with PDF estimation

“To ensure maximum readability, we have
omitted all unnecessary mathematical
formalisms and set-theoretical jargon
(epsilonics), and have, instead, chosen an
informal style (à la Lagrange!) that stresses
physical concepts and ideas; and a notation in
line with the best classical traditions of the
subject...”

John G. Papastavridis, A panoramic overview of
the principles and equations of motion of

advanced engineering dynamics

This chapter details the load description in stochastic terms and introduces the techniques of moment propaga-
tion and PDF reconstruction from propagated moments. The goal is to introduce the necessary mathematical
developments to describe stochastic quantities and the methods and results obtained by moment propagation.
To this end, we will first introduce the relevant definitions and concepts formulated in the notation introduced
by Suptille in [134]. Much of our treatment of stochastic processes and fields follows the methods and results
in this thesis. However, we will adapt them to the particularities of our problem and extend those results. We
will then proceed to develop moment propagation relationships for stochastic processes and fields and provide
particular results for the Gaussian case. The problem of moment-based PDF reconstruction is addressed. In this
chapter, the proposed examples are primarily related to the Morison force on a rigid pile; the next chapter will
combine these results with the Floquet description of LTP systems established earlier.
Before the first section, we will discuss the motivations for the approach and the methods involved. The global
strategy adopted can be summarized as follows:

1. Characterize the deterministic response of the system under study.

2. Model the input forces: moments, spectral characteristics, distribution.

3. Apply the characterization of the response with the moments of the force as inputs, obtaining the moments
of the response.

4. Reconstruct any stochastic quantity of interest of the response using the moments.

5. Apply analysis criteria and inference.
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Once a modeling decision has been made, this strategy capitalizes on the moments of processes and fields being
usually available in the sense that they are easy to compute. Since the moments are deterministic functions,
one can treat them as inputs to compute the moments of the response. We call this broad procedure moment
propagation. The limitations of the approach are manifold: first, a distribution may have an infinite number of
moments, which from a numerical perspective requires a form of truncation in the computation of the moments
propagated; second, the computational cost of calculating moments grows rapidly with order, a fact that is par-
ticularly pronounced in the case of inter-instant moment quantities such as the bi-covariance and tri-covariance;
third, as commented in the introduction, moments alone do not fully describe any arbitrary distribution, which
highlights the fact that these probabilistic descriptors offer valuable but limited information about the response;
fourth, and in connection to the previous point, quantities such as the PDF or CDF are not as easy to propagate
to the response, and reconstruction of these based on propagated moments is challenging in the most general
case.
An alternative approach to moment propagation is the broad class of Monte-Carlo methods. In this approach,
the input process is simulated, usually in the time domain, and the system’s response to each process realization
is computed as in the deterministic case. The statistics of this ensemble of responses estimate the true stochastic
response. This approach is widely regarded as the most general. Yet, it is not without limitations: first, while
the simulation of stationary Gaussian processes and fields is relatively simple and computationally efficient, the
simulation of more general processes such as nongaussian and nonstationary ones is still a challenging task;
second, the validity of the statistical inference of the ensemble response depends on the number of samples
or realizations that have been generated, this puts a potentially prohibitive computational cost on a reliable
estimate, for instance in large complex systems whose resolution per iteration demands an important resolution
time.
Many of the developments in this section will be compared against an MCS benchmark, and some convergence
measures will be applied to this Monte-Carlo estimate. Relatively simple force models will be utilized in this
section. However, the final chapter will illustrate that realistic force models often can not be easily treated ana-
lytically, so the "input-output" flow must go through a computational "black box" that applies some numerical
estimation of the load model.

1 Notation

1.1 Generalities

Throughout this chapter, unless otherwise specified, random variables will be noted as upper case letters such
as X , processes as upper case with an explicit time dependence such as X (t), while fields will be noted in
calligraphic script such as X (x, t). Let us consider first the simple scalar temporal random process X (t), where
t denotes the time. This section’s basic definitions and results can be consulted in texts such as [98] or [104].
At a fixed time t, its instantaneous n− th probabilistic moment with respect to the origin, which is also called
ordinary moment, is defined as:

E [Xn (t)] =
ˆ
R

xn f (x, t)dx (4.1)

where E [•] denotes the expectation operator, x covers the range of the possible values of the process and fx (x, t)
is its marginal probability density function (PDF). We note this n− th probabilistic moment by µXn (t). Hence:

µXn (t) = E [Xn (t)] (4.2)

and we further write µXn = µX×X ...×X (n times). For instance, the quantity µX2 (t) is equivalent to the quantity
µXX (t), µX3 (t) = µXXX (t) and so on. With this proposed notation, we have encoded the information about
the kernel, i.e., the operand, of the expectation operator in the index of the moment symbol. Moreover, when
stationary processes are of interest, instantaneous moments read:

µXn = E [Xn (t)] . (4.3)
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A first result, easy to read with this notation, comes while considering another process W (t), called the output,
defined in terms of a transformation of this initial process X (t), viewed as an input process. As an example, let
us consider the case W (t) =X2 (t) from a simple but nonlinear model. This type of transformation is extensively
used, for instance, in offshore engineering in the modeling of wave forces that are defined as a function of a
velocity field in the oceanic medium (see, for instance, [13, 93]). The first moments of the input stationary
process are written:

µX (t) = E [X (t)]

µXX (t) = E
[
X2 (t)

]
µXXX (t) = E

[
X3 (t)

]
...

µXXXXXXXX (t) = E
[
X8 (t)

]
(4.4)

...

and now, turning to the first four output moments, we get:

µW (t) = E [W (t)] = E
[
X2 (t)

]
= µXX (t) = µX2 (t)

µWW (t) = E
[
W 2 (t)

]
= E

[
X4 (t)

]
= µXXXX (t) = µX4 (t)

µWWW (t) = E
[
W 3 (t)

]
= E

[
X6 (t)

]
= µXXXXXX (t) = µX6 (t)

µWWWW (t) = E
[
W 4 (t)

]
= E

[
X8 (t)

]
= µXXXXXXXX (t) = µX8 (t) (4.5)

which is a very simple result to derive with the proposed notation. This example makes it clear that the proposed
notation is convenient for establishing and programming general relationships for output processes defined from
a known model. A first useful application of the notation lies in the computation of output moments, given that
the moments of X (t) are known quantities since they are part of the description of an input of the problem.

Again, considering the random process X (t), the instantaneous n− th probabilistic moment with respect to the
mean, the so-called central moment, is defined as:

E [(X (t)−E[X (t)])n] =

ˆ
R
(x−µXn (t))n f (x, t)dx (4.6)

in which case the proposed notation is:

E [(X (t)−E[X (t)])n] = E [(X (t)−E[X (t)])× (X (t)−E[X (t)])×·· ·× (X (t)−E[X (t)])]

= σX×X ...(n times) (4.7)

with the observation that for this central moment, the equivalence in the subscript notation can not be preserved,
for example, σX2X (t) ̸= σXXX (t). However, useful relationships exist between the central moments and those

centered in the origin. Indeed, since (X (t)−µX )
n =

n

∑
k=0

(
n
k

)
Xn−k (t)(−µX )

k, if we drop the writing of the time

dependence of the moments for easier reading of the current developments, we can then apply the expectation
operator to obtain an explicit expression thanks to the proposed notation:

σX×X ...(n times) = E

[
n

∑
k=0

(
n
k

)
Xn−k (t)(−µX )

k

]

=
n

∑
k=0

(
n
k

)
µXn−k (−µX )

k (4.8)
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where
(

n
k

)
denotes the binomial coefficient or each arrangement of k elements taken from n. As expected,

when n = 2, we obtain the well-known relationship for the variance: σXX (t) = µXX (t)− µ2
X (t). Thus, the

above expression Eq. 4.8 establishes a link between the central moment of any order and the moments with
respect to the origin.

Furthermore, Eq. 4.8 can be inverted to express the moments with respect to the origin in terms of the mean and
central moments. To do this, we introduce the random process:

V (t) = X (t)−µX (t) . (4.9)

By definition (relation Eq. 4.2): µXn (t) = E [(V (t)+µX (t))n] for n ≥ 1, so knowing that (V (t)+µX )
n =

n

∑
k=0

(
n
k

)
V n−k (t)(µX )

k, we find:

µXn = E

[
n

∑
k=0

(
n
k

)
V n−k (t)(µX )

k

]

=
n

∑
k=0

(
n
k

)
E
[
V n−k (t)

]
(µX )

k

=
n

∑
k=0

(
n
k

)
µV n−k (µX )

k . (4.10)

Another important aspect of the proposed notation is that it allows the handling of probabilistic information
among different processes in a compact form. This can be easily seen when considering the simplest case of
two input processes, X (t) and Y (t). As an example, we define the output with a third process from a simple
weighted linear model:

W (t) = aX (t)+bY (t) . (4.11)

This type of expression arises if, for instance, the input processes model different ambient forces acting on a
structure, so the output process is simply the resulting force. The instantaneous moments of the output can be
written:

µW (t) = E [W (t)]

µWW (t) = E
[
W 2 (t)

]
µWWW (t) = E

[
W 3 (t)

]
µWWWW (t) = E

[
W 4 (t)

]
... (4.12)

and using the definition Eq. 4.11, these expressions can be developed as:

µW (t) = E [W (t)] = E [aX (t)+bY (t)] = aµX (t)+bµY (t)

µWW (t) = E
[
W 2 (t)

]
= E

[
(aX (t)+bY (t))2

]
= a2

µXX (t)+2abµXY (t)+b2
µYY (t)

µWWW (t) = E
[
W 3 (t)

]
= a3

µXXX (t)+3a2bµXXY (t)+3ab2
µXYY (t)+b3

µYYY (t)

µWWWW (t) = E
[
W 4 (t)

]
= a4

µXXXX (t)+4a3bµXXXY (t)+6a2b2
µXXYY (t)+4ab3

µXYYY (t)+b4
µYYYY (t) (4.13)
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where cross moments between the processes X (t) and Y (t) have been introduced. For the second moment
of W (t), the quantity µXY (t) = E [X (t)Y (t)] is a second-order cross moment, and it contains probabilistic
information about the correlation of the two processes X (t) and Y (t). Besides, we can note that µXY (t) =
µY X (t): subscript commutativity of ordinary cross moments. For higher moments of W (t), higher crossed
moments appear in the resulting expressions.
The instantaneous moments discussed previously are evaluated at the same instant in the time variable. These
can be generalized to describe probabilistic relationships between the random variables at different times of a
given process and/or among different processes, and the proposed notation can be extended to these generaliza-
tions of the moments in a very similar way. Let us consider first the random process X (t). It can be interpreted
as a set of random variables indexed by the variable t. From this, it is known that the auto-correlation function
RXX (t1, t2) of the process X (t), being the correlation of a process with itself, is a generalization of the moments
around the origin, describing the behavior between any two of the underlying random variables as:

RXX (t1, t2) = E [X (t1)X (t2)] . (4.14)

Thus, if t1 = t2 = t, the auto-correlation function yields: RXX (t, t) = E [X (t)X (t)] = µXX (t) in the proposed
notation.
Furthermore, the auto-correlation function can describe more complex information among the different points in
time or equivalently among different random variables, and we propose to write the n−th order auto-correlation
as:

RXn (t1, t2, ..., tn) = E

[
n

∏
i=1

X (ti)

]
, (4.15)

and similar relationships exist between these higher-order correlations and the conventional moments around
the origin: RXn (t, t, ...) = µXn (t).
Next, the central moments can be generalized using the auto-covariance function:

ΣXX (t1, t2) = E [(X (t1)−E [X (t1)])(X (t2)−E [X (t2)])] , (4.16)

and similar relationships are valid between the auto-covariance function and the central moments. For example,
if t1 = t2 = t, ΣXX (t1, t2) = ΣXX (t, t) = σXX using the proposed notation. Another useful result is the known
relationship between covariance and correlation functions of order two:

ΣXX (t1, t2) = E [(X (t1)−E [X (t1)])(X (t2)−E [X (t2)])]

= E [X (t1)X (t2)−µX (t1)µX (t2)]

= RXX (t1, t2)−µX (t1)µX (t2) . (4.17)

It is also possible to generalize the covariance function to higher orders, giving rise to the bi-covariance and
tri-covariance functions, and further. As before, we can write:

ΣXn (t1, t2, ..., tn) = E

[
n

∏
i=1

(X (ti)−E [X (ti)])

]
. (4.18)

As with the two types of moments evaluated at the same point in time, centered around the origin and centered
around the mean, we state that it is possible to establish a general relationship between the covariances and the
correlation functions analogous to the expression Eq. 4.8. This result can be demonstrated with the proposed
notation. First, the expression inside the expectation operator of the definition Eq. 4.18 can be developed using
the multi-binomial theorem:

n

∏
i=1

(X (ti)−E [X (ti)]) =
n

∏
i=1

(X (ti)+(−µX (ti)))

= ∑
I⊆{1,...n}

∏
i∈I

X (ti) ∏
i∈{1,...n}\I

(−µX (ti)) . (4.19)
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Applying the expectation:

E

[
n

∏
i=1

(X (ti)−E [X (ti)])

]
= E

[
∑

I⊆{1,...n}
∏
i∈I

X (ti) ∏
i∈{1,...n}\I

(−µX (ti))

]

= ∑
I⊆{1,...n}

E

[
∏
i∈I

X (ti)

]
∏

i∈{1,...n}\I
(−µX (ti)) (4.20)

where we recognize the term E [∏i∈I X (ti)] as a moment with respect to the origin, its order determined by the
index of the product I. From this, we can finally express the general useful result as:

ΣXn (t1, t2, ..., tn) = ∑
I⊆S

RXk (t1, t2, ..., tk) ∏
i∈S\I

(−µX (ti)) (4.21)

where S is the partition of {1,2, ...n} with the inclusion of the null set, that is, the set of all groupings of elements
such that each element is in one and only one grouping or subset; k = card(I) is the cardinality of I; I is a subset
of S, and S\ I refers to the elements of S excluding those of the current I.

As an example, we take n = 2 for the covariance function ΣXX (t1, t2). In this case, S = { /0,{1} ,{2} ,{1,2}}.
The sum takes place over these four I with cardinalities 0,1,1,2 respectively. The correlation term is 1 for k = 0,
reduces to µX (ti) for k = 1, and is a correlation function RX2 (ti, t j) for k = 2. This yields:

ΣXX (t1, t2) = ∑
I⊆S

RXk (t1, t2, ..., tk) ∏
i∈S\I

(−µX (ti))

= 1× (−µX (t1))(−µX (t2))+µX (t1)(−µX (t2))+µX (t2)(−µX (t1))+RX2 (t1, t2)

= RX2 (t1, t2)−µX (t1)µX (t2) (4.22)

which is consistent with the known relationship Eq. 4.17. Another interesting example is the bi-covariance
function ΣXXX (t1, t2, t3), for which n = 3, that gives:

ΣXXX (t1, t2, t3) =RX3 (t1, t2, t3)+2µX (t1)µX (t2)µX (t3)

− (µX (t1)RX2 (t2, t3)+µX (t2)RX2 (t1, t3)+µX (t3)RX2 (t1, t2)) (4.23)

In addition, we can also demonstrate and propose a writing for the relationship between the correlation functions
and the covariances functions. Introducing again the process V (t) = X (t)−µX (t) which verifies:

• µV (t) = 0 and µVV (t) = σXX (t), or in general µV n (t) = σXn (t),

• µX (t) = E [V (t)+µX ] or µXn (t) = E [(V (t)+µX (t))n],

• RXn (t1, ..., tn) = E

[
n

∏
i=1

(V (ti)+µX (ti))

]
,

• RV n (t1, ..., tn) = ΣXn (t1, ..., tn).

Knowing these relations, we proceed as before by expressing first:

n

∏
i=1

(V (ti)+E [X (ti)]) =
n

∏
i=1

(V (ti)+µX (ti))

= ∑I⊆{1,...n} ∏
i∈I

V (ti) ∏
i∈{1,...n}\I

µX (ti) , (4.24)
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then we write the correlation functions as:

RXn (t1, t2, ..., tn) =E

[
n

∏
i=1

(V (ti)+µX (ti))

]

=E

[
∑

I⊆{1,...n}
∏
i∈I

V (ti) ∏
i∈{1,...n}\I

µX (ti)

]

= ∑
I⊆{1,...n}

E

[
∏
i∈I

V (ti)

]
∏

i∈{1,...n}\I
µX (ti)

= ∑
I⊆{1,...n}

RV k (t1, t2, ..., tk) ∏
i∈{1,...n}\I

µX (ti) (4.25)

to finally get the following result:

RXn (t1, t2, ..., tn) = ∑
I⊆{1,...n}

ΣXk (t1, t2, ..., tk) ∏
i∈{1,...n}\I

µX (ti) . (4.26)

Note that, to obtain this result, we have recognized that the term E[∏i∈I V (ti)] is a correlation function whose
order will depend on I, as seen before, with respect to the origin of V (t), which by construction corresponds to
the covariance of analogous order of X (t).

1.2 Extension to vector processes

Consider now a random vector X(t) = [X1 (t) ,X2 (t) , ...,Xn (t)]
T where each component is a stochastic process.

The first non-central moment is:

µX (t) = E [X(t)] , (4.27)

which is a column vector of the same dimension as X(t), and by extension of the notation, we can write, for
instance µXi (t) = E [Xi (t)] to denote the mean of a particular component. The second moment is:

µµµXX (t) = E
[
X(t)XT (t)

]
, (4.28)

where the matrix of moments µµµXX (t) has dimension n× n: the diagonal elements are the second moments of
each component, while the off-diagonal elements are the cross-moments between different components:

µXiX j (t) = E [Xi (t)X j (t)] , (4.29)

in the case of instantaneous moments µXiX j (t) = µX jXi (t), and µµµXX (t) is symmetric. The higher-order moments
involve high dimensional arrays, which can be described by components. There are N ×N ×N third-order
moments:

µXiX jXk (t) = E [Xi (t)X j (t)Xk (t)] , i, j,k ∈ [1,2, ...,N] , (4.30)

and similarly for the fourth moment, with N ×N ×N ×N components:

µXiX jXkXl (t) = E [Xi (t)X j (t)Xk (t)Xl (t)] , i, j,k, l ∈ [1,2, ...,N] , (4.31)

in general, one may write of the k− th non-central moment:

µXi...Xk (t) = E [Xi (t)× ...×Xk (t)] , i, ...,k ∈ [1,2, ...,N] , (4.32)

with Nk components. The central moments admit a similar representation; for instance, the variance is:
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σσσXX (t) = E
[
(X(t)−µX (t))(X(t)−µX (t))T

]
, (4.33)

with a similar interpretation: the diagonal terms contain the variance of components and off-diagonal terms
contains cross-variance terms. In general, one has:

σXi...Xk (t) = E
[
(Xi (t)−µXi (t))× ...×

(
Xk (t)−µXk (t)

)]
, i, ...,k ∈ [1,2...N] . (4.34)

The first inter-instant moments, or the correlation and covariance functions, are expressed as:

RXX (t1, t2) =E
[
X(t1)XT (t2)

]
ΣΣΣXX (t1, t2) =E

[
(X(t1)−µX (t1))(X(t2)−µX (t2))

T
]
, (4.35)

or by component:

RXiX j (t1, t2) =E [Xi (t1)X j (t2)]

σXiX j (t1, t2) =E
[
(Xi (t1)−µXi (t1))

(
X j (t2)−µX j (t2)

)]
, (4.36)

and the k− th order inter-instant moments have the general representation:

RXi...Xk (t1, ..., tk) =E [Xi (t1)× ...×Xk (tk)] , i, ...,k ∈ [1,2, ...,N]

ΣXi...Xk (t1, ..., tk) =E
[
(Xi (t1)−µXi (t1))× ...×

(
Xk (tk)−µXk (tk)

)]
, i, ...,k ∈ [1,2, ...,N] . (4.37)

An important practical remark is that for cross-correlation and cross-covariance terms in nonstationary pro-
cesses, symmetry is not preserved, in general:

RXiX j (t1, t2) ̸= RX jXi (t1, t2) ; i ̸= j, (4.38)

the symmetry is achieved if index and time are permuted:

RXiX j (t1, t2) = RX jXi (t2, t1) ; i ̸= j. (4.39)

In the case of a random vector with complex values X(t) = [X1 (t) ,X2 (t) , ...,Xn (t)]
T, Xi (t) ∈ C, once has the

following expressions for the second order probabilistic moments([98]):

µµµXX (t) = E
[
X(t)XH (t)

]
σσσXX (t) = E

[
(X(t)−µX (t))(X(t)−µX (t))H

]
RXX (t1, t2) = E

[
X(t1)XH (t2)

]
ΣΣΣXX (t1, t2) = E

[
(X(t1)−µX (t1))(X(t2)−µX (t2))

H
]
, (4.40)

where XH (t) is the conjugate transpose of X(t).
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1.3 Extension to fields

We now consider spatio-temporal random fields of the form X (x, t), which depend on 3D space with coordinates
x and time t . Then, thinking first of a notation for ordinary moments of the second order, we propose to write:

µX (x1)X (x2) (t) = E [X (x1, t)X (x2, t)] (4.41)

which allows us to extend the results obtained when stochastic processes are considered into results for stochas-
tic fields directly. The moments of the stochastic field X (x, t) for 1, . . . ,n coordinates are noted as follow:

µX (x1)···X (xn) (t) = E [X (x1, t) · · ·X (xn, t)] , (4.42)

σX (x1)···X (xn) (t) = E [(X (x1, t)−E [X (x1, t)]) · · ·(X (xn, t)−E [X (xn, t)])] (4.43)

RX (x1)...X (xn) (t1, . . . , tn) = E [X (x1, t1) . . .X (xn, tn)] (4.44)
ΣX (x1)...X (xn) (t1, . . . , tn) = E [(X (x1, t1)−E [X (x1, t1)]) . . .(X (xn, tn)−E [X (xn, tn)])] . (4.45)

When two stochastic fields X1 (x, t) and X2 (x, t) are considered, moments are written:

µX1(x1)X2(x2) (t) = E [X1 (x1, t)X2 (x2, t)] , (4.46)

the extension to several stochastic fields X j (x, t) for j = 1, . . . ,n is written:

µX1(x1)···Xn(xn) (t) = E [X1 (x1, t) · · ·Xn (xn, t)] , (4.47)

σX1(x1)···Xn(xn) (t) = E [(X1 (x1, t)−E [X1 (x1, t)]) . . .(Xn (xn, t)−E [Xn (xn, t)])] . (4.48)

RX1(x1)···Xn(xn) (t1, . . . , tn) = E [X1 (x1, t1) · · ·Xn (xn, tn)] (4.49)
ΣX1(x1)···Xn(xn) (t1, . . . , tn) = E [(X1 (x1, t1)−E [X1 (x1, t1)]) . . .(Xn (xn, tn)−E [Xn (xn, tn)])] . (4.50)

This covers the main features of the notation and the key idea behind moment propagation as we will apply it.
In the following sections, concrete examples will be developed and compared with results from the literature.
The main advantage of this notation and the inherent propagation technique lies in its practicality to applied
mechanical problems. It also permits a very intuitive numerical implementation of the developed expressions.

2 Morison force in offshore engineering

The Morison force describes the interaction between the oceanic wave-induced flow and a submerged cylindrical
structure. Under certain conditions and after a transformation of variables, the equation can be expressed as
W (t) = a20X2

1 (t)+a01X2 (t), where X1 (t) is a particle velocity, and X2 (t) is an acceleration, the time derivative
of X1 (t): X2 (t) =

dX1(t)
dt = Ẋ1 (t). These random processes are assumed to be differentiable and to have a finite

variance. The description of the statistical properties of W (t) is important in the design of offshore structures
and machines. Based on widely general assumptions in this field on that which relates to the characteristics of
the velocity field as well as the response of the structure, the essential statistical descriptors are the first two
moments of the response and its correlation or covariance function. These assumptions include the stationarity
of the input process and the linearity of the response to the input.
We first develop the general results of interest by a direct application of the obtained formulas, thus demon-
strating the ease inherent to the proposed notation and concepts. Then, to go further, assuming a Gaussian
process hypothesis for X1 (t), we theoretically show that some terms in the covariance function can vanish. In
addition, analytically, it is shown how the higher-order moments can be related to the first two moments when
this assumption is taken into account. Although these additional developments are not necessary for a numeri-
cal application of the obtained results, they allow us to compare our proposed results with the literature results
provided in references [47] and [12].
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2.1 General results

For the first moment of the output W (t), we get:

µW = a20µX1X1 +a01µX2 (4.51)

where µX2
1
= µX1X1 = σX1X1 +µ2

X1
. Then, for the second moment with respect to the origin, we have:

µWW = a2
20µX2

1 X2
1
+a2

01µX2X2 +a20a01µX2
1 X2

+a20a01µX2X2
1

= a2
20µX1X1X1X1 +a2

01µX2X2 +2a20a01µX2
1 X2

(4.52)

and we have for the variance :

σWW = a2
20σX2

1 X2
1
+a2

01σX2X2 +a20a01σX2X2
1
+a20a01σX2

1 X2
. (4.53)

For the auto-correlation and auto-covariance functions we have:

RWW (t1, t2) = a2
20RX2

1 X2
1
(t1, t2) + a2

01RX2X2 (t1, t2) + a20a01

(
RX2X2

1
(t1, t2)+RX2

1 X2
(t1, t2)

)
(4.54)

ΣWW (t1, t2) = a2
20ΣX2

1 X2
1
(t1, t2) + a2

01ΣX2X2 (t1, t2) + a20a01

(
ΣX2X2

1
(t1, t2)+ΣX2

1 X2
(t1, t2)

)
. (4.55)

2.2 Covariance result for a stationary Gaussian process input

If we assume that X1 (t) is a stationary Gaussian process, it can be shown that the term ΣX2X2
1
(t1, t2)+ΣX2

1 X2
(t1, t2)

in equation Eq. 4.55 vanishes, while the term ΣX2
1 X2

1
(t1, t2) can be expressed as ΣX2

1 X2
1
(τ) with τ = t2 − t1, from

stationarity, and it can be related to ΣX1X1 (τ) and µX1 since Gaussian processes are completely defined by their
two moments only.
Indeed, first, we note that:

ΣX2
1 X2

(τ) = ΣX2
1 Ẋ1

(t1, t2) =
∂

∂ t2

(
ΣX2

1 X1
(t1, t2)

)
(4.56)

where the following equality has been used: ΣX2
1 X1

(t1, t2) = 2µX1ΣX1X1 (t1, t2) = 2µX1ΣX1X1 (τ); thus:

ΣX2
1 X2

(τ) = 2µX1

∂

∂ t2
(ΣX1X1 (t1, t2)) = 2µX1

∂

∂τ
(ΣX1X1 (τ)) = 2µX1 Σ̇X1X1 (τ) . (4.57)

Then, from another side, we have:

ΣX2X2
1
(τ) = ΣẊ1X2

1
(t1, t2) =

∂

∂ t1

(
ΣX1X2

1
(t1, t2)

)
(4.58)

by using ΣX1X2
1
(t1, t2) = 2µX1ΣX1X1 (t1, t2) = 2µX1ΣX1X1 (τ); it follows that:

ΣX2X2
1
(τ) = 2µX1

∂

∂ t1
(ΣX1X1 (t1, t2)) =−2µX1

∂

∂τ
(ΣX1X1 (τ)) =−2µX1 Σ̇X1X1 (τ) . (4.59)

As a consequence, it is deduced that ΣX2X2
1
(τ)+ΣX2

1 X2
(τ)= 0 from relations Eq. 4.57 and Eq. 4.59, and equation

Eq. 4.55 simplifies to:
ΣWW (t1, t2) = a2

20ΣX2
1 X2

1
(t1, t2)+a2

01ΣX2X2 (t1, t2) (4.60)

where ΣX2
1 X2

1
(τ) = RX2

1 X2
1
(t1, t2)−µX2

1
µX2

1
. From the application of the result by [148], we deduce that:

RX2
1 X2

1
(t1, t2) = µX2

1
µX2

1
+2Σ

2
X1X1

(t1, t2)+4µX1 µX1ΣX1X1 (t1, t2) (4.61)
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thus:

ΣX2
1 X2

1
(τ) =2Σ

2
X1X1

(τ)+4µX1 µX1ΣX1X1 (τ) (4.62)

and finally we can express the covariance of the output purely in terms of the covariance of the input as:

ΣWW (τ) = a2
20
(
2Σ

2
X1X1

(τ)+4µX1 µX1ΣX1X1 (τ)
)
+a2

01ΣX2X2 (t1, t2) . (4.63)

2.3 Comparison with two existing results in the literature

Results of reference [47] In reference [47], a method is proposed to study of the extremes of the Morison
force, for which some statistical characteristics are necessary. The proposed method is applicable beyond the
case without current, a condition that limited many of the results available at the time. Using an analytical
approach consisting of normalization of the input processes, the results presented with respect to dimensionless
parameters and under the assumption of Gaussianity and stationarity are:

mW = ξ y2
0

s2
W =

(
ζ

2 +β
2)y4

0 (4.64)

where the notation used is mW for the mean of the response process W (t), s2
W for the variance of this response,

y0 for the mean of the input velocity X1 (t), being the current velocity, and ξ ,ζ ,β are dimensionless variables
related to the statistical properties of the inputs adjusted by some scale measure:

ξ =
m1

y2
0
, ζ =

s1

y2
0
, β =

αsX2

y2
0

, α =
sX1

y2
0

(4.65)

where m1 and s1 are the mean and standard deviation of X2
1 (t), sX1 is the standard deviation of X1 (t), sX2 is the

standard deviation of the acceleration X2 (t). In this development, the Gaussianity of the velocity implies the
decorrelation between velocity and acceleration when evaluated at the same time.
Coming back to our formulation and making a20 = 1 in expression Eq. 4.51, we get the expression for the first
moment, introducing the zero mean of the acceleration µX2 = 0:

µW = µX1X1 +a01µX2

= µX1X1 (4.66)

while, for the variance, taking the result Eq. 4.53 and introducing µX2
1 X2

= 0 (decorrelation among the variables):

σWW = σX2
1 X2

1
+a01σX2X2

=
(
µX1X1X1X1 −µ

2
X1X1

)
+a01µX2X2 (4.67)

since the process X2 (t) has zero mean from which it follows that µX2X2 = σX2X2 . Hence, we can notice the
consistency of the results with those in the reference by studying the substitutions:

mW =
m1

y2
0

y2
0 = m1

s2
W =

((
s1

y2
0

)2

+

(
αsX2

y2
0

)2
)

y4
0 = s2

1 +α
2s2

X2
(4.68)

Thus, for a normalized process where a20 = 1, it is possible to recognize the similarity between these two re-
sults. The mean of the response m1 is the mean of X2

1 (t), and the variance of the response is a combination
of the variances of X2

1 (t) and X2 (t). However, the comparison is not direct at first reading, given the succes-
sive normalization and approximation or assumption taken in the reference [47]. In practice, as seen in the
first developments, our proposed notation allows us to easily consider the parameters’ general values without
normalization to see how they propagate into the results with no more development steps.
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Monte-Carlo Borgman [12] Proposed
µW [Nm] 5.213×104 5.213×104 5.213×104

µW 2
[
N2m2

]
3.291×109 3.287×109 3.291×109

Table 4.1: Results comparison with Monte-Carlo simulation, reference [12], and proposed formulas

Results of reference [12] In reference [12], another analytical approach is used to characterize the output
process W (t) of a Morison force. These results are valid for an input Gaussian process X1 (t). The following
expressions are presented in the theorem 4.4 of [12]:

µW =

[
γZ (γ)+

(
γ2 +1

)
P (γ)

]
α

µW 2 =

[
γ4 +6γ2 +3

]
4α2 +1

(4.69)

where α = ρk
2cs2 and γ = m

s for m = µX1 , Z (x) = (2π)−
1
2 exp

[
− x2

2

]
, and P (x) =

´ x
0 Z (y)dy, while s is the stan-

dard deviation of the velocity, ρ is the standard deviation of the acceleration; c = a20, k = a01 are the Morison
constants, and m is the mean velocity. Compared to already established expressions Eq. 4.51 and Eq. 4.52 ob-
tained in the proposed notation, we get a more readable result. Moreover, we remark that, while very precise in
numerical terms, the initial expressions for P (x) and Z (x) functions require a non-trivial computational effort
in their evaluations.

A numerical comparison in Tab. 4.1 is presented with the results for the first two non-central moments calculated
by a Monte-Carlo simulation, the results from Borgman, reference [12], and the equations obtained using the
proposed notation. The values of the coefficients are c = 2.7038×104; k = 2.9729×105; the processes have:
σX1X1 = 0.0873; σX2X2 = 0.0010 and µX1 = 1.3568; µX2 = 0. For the Monte-Carlo simulation, the computational
procedure detailed in reference [135]1 is used to simulate 10,000 samples of X1 (t) and X2 (t), and the empirical
statistics obtained are averaged over one hundred runs. Tab. 4.1 demonstrates the consistency among these
results.

For the correlation function, Borgman demonstrates the following expression in theorem 5.1:

RWW (t1, t2) = c2s2
1s2

2G(rvv)+ k2
ρ1ρ2raa

+ck
(

8
π

) 1
2 (

ρ2s2
1rva +ρ1s2

2rav
)

(4.70)

with:

G(r) =

[(
2+4r2

)
arcsinr+6r

(
1− r2

) 1
2

]
π

(4.71)

where s1, s2 are the standard deviations of the velocity at times t1, t2, ρ1,ρ2 are the standard deviations of
the acceleration, rvv,raa,rav,rva are the correlation coefficients of the corresponding processes. Noticing that
s2

1s2
2G(rvv) = RX2

1 X2
1
(t1, t2) is a result derived from the properties of Gaussian processes, ρ1ρ2raa = RX2X2 (t1, t2)

and
( 8

π

) 1
2
(
ρ2s2

1rva +ρ1s2
2rav
)
=RX2X2

1
(t1, t2)+RX2

1 X2
(t1, t2), the correspondence between the expressions Eq. 4.70

and Eq. 4.54 can be checked.
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Figure 4.1: Diagram of the problem

3 Morison load with stochastic field input and PDF reconstruction

3.1 System description and input field

This application concerns the probabilistic characterization of the mechanical moment2 that results from a flow
that acts on a submerged pile, assuming it is a rigid cylinder of height Hpile and diameter Dpile. The flow is
assumed to be aligned along the y-direction, without diffraction effects, and modeled by X1(x, t), a stochastic
field describing the velocity of a turbulent flow that depends on the depth which is aligned with the z-coordinate.
This stochastic field is assumed to be differentiable and to have a finite variance.
The bending moment can be expressed as:

Z(t) =
ˆ
V
a220 (x)(x)X 2

1 (x, t)+a201 (x)X2(x, t)dx j = 1,2 (4.72)

where X2(x, t) = d
dt [X1(x, t)], a120 (x) = kdrag, a101 (x) = kinertia, a220 (x) = kdragz, a201 (x) = kinertiaz, kd =

1
2 ρfCdragDpile, kinertia = π

4 ρfCinertiaD2
pile for ρf the fluid density, Cdrag the drag coefficient, Cinertia the inertia

coefficient, and V the support of x = [x,y,z]T. Expression Eq. 4.72 comes from the Morison formula [90] when
X1(x, t)> 0 ∀t.
Classical assumptions for the statistical characterization of the input stochastic field are stationarity over a given
period of time and Gaussianity. Consequently, it can be described by only its mean µX1(x), which models
the physical current, and its covariance function to model the physical turbulence. For this application, the
covariance function is assumed to be of the following form:

1Annex D contains a synthetic overview of this and other procedures to simulate stochastic processes
2At this stage, we inevitably find ourselves referring to two entirely different quantities as moments: probabilistic moments and me-

chanical moments. We will insist on the distinction to prevent confusion.

109



ΣX1(x1)X1(x2)(τ) = ρX1(x1)X1(x2)(τ)
√

σX1(x1)X1(x1)σX1(x2)X1(x2) (4.73)

where τ = t2 − t1 and ρX1(x1)X1(x2)(τ) is the covariance coefficient of the stochastic field, decomposed into a
spatial ρ

space
X1(x1)X1(x2)

and a temporal function ρ time(τ) as:

ρX1(x1)X1(x2)(τ) = ρ
space
X1(x1)X1(x2)

ρ
time(τ). (4.74)

Moreover, from the Gaussianity assumption, it is known that:

ΣX 2
1 (x1)X 2

1 (x2)
(τ) = 2Σ

2
X1(x1)X1(x2)

(τ)+4µX1(x1)µX1(x2)ΣX1(x1)X1(x2)(τ) (4.75)

ΣX 2
1 (x1)X 2

1 (x2)X 2
1 (x3)

(τ1,τ2) = 8
[
µX1(x1)µX1(x2)ΣX1(x1)X1(x3)(τ2 − τ1)ΣX1(x2)X1(x3)(τ2)

+µX1(x2)µX1(x3)ΣX1(x1)X1(x2)(τ1)ΣX1(x1)X1(x3)(τ2 − τ1)

+µX1(x1)µX1(x3)ΣX1(x1)X1(x2)(τ1)ΣX1(x2)X1(x3)(τ2)

+ ΣX1(x1)X1(x2)(τ1)ΣX1(x1)X1(x3)(τ2 − τ1)ΣX1(x2)X1(x3)(τ2)
]

(4.76)

Tab. 4.2 shows the parameters used for the numerical implementation. In addition, the mean velocity is ex-
pressed as a polynomial of the fourth degree in order to fit measured data presented in reference [79] :

µX1(x) =−4.414×10−6z4 +3.312×10−4z3 −8.350×10−3z2 +9.700×10−2z+9.215×10−1[m/s] (4.77)

and the variance is expressed as:

σX1(x)X1(x) = (T I)2
µ

2
X1(x)

(
z

Hsea

) 1
α

(4.78)

where TI is the turbulence index of the flow and α is identified from measurements [79]. The correlation
function is modeled by:

ρ
space
X1(x1)X1(x2)

=
(

1−
( z2−z1

L

)2
)

exp
(
−
( z2−z1

L

)2
)

Spatial correlation

ρ time(τ) = FT−1[S( f )] Temporal correlation
(4.79)

where L is the correlation length, FT [•] is the Fourier Transform operator and f is the frequency, while S( f ) is
expressed by (see Fig. 4.2):

S( f ) =
1
f 4 exp

(
−8×10−4

f
5
3

)
[
m2

s2 Hz−1] (4.80)

to fit the experimental data presented in reference [137].
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Figure 4.2: Power Spectral Density (PSD) function S of the velocity field

Property Value
ρf 1030 [kgm−3]
D 3.5 [m]

Cdrag 1.15
Cinertia 2
Hsea 40 [m]
Hpile 30 [m]

α 7.1
TI 25

100
Lρ

Hsea
3 [m]

Table 4.2: Physical properties of the submerged pile application

3.2 PDF reconstruction from moments

Maximum entropy distribution The maximum entropy (ME) principle is used to fit a probability density
function (PDF) given a number of constraints in the centered or non-centered moments of the underlying random
variable. The advantage of this method is that the least number of assumptions about the distribution needs to
be made. Among the limitations of this approach, the most concerning one is that the process of finding the
associated coefficients (or Lagrange multipliers) involves the resolution of a system of nonlinear equations,
which is a problem that has a heavy sensitivity to the choice of the initial point from a numerical perspective.

The maximum entropy problem can be written as [5, 136]:

´
S hi(x) f (x)dx = αi

H[ f (x)] =
´

S f (x)log( f (x))dx
f (x) = exp[λo +∑

∞
i=1 λihi(x)]

(4.81)

where H[ f (x)] is the entropy functional f (x) is the PDF of a random variable X , x are realizations of said
random variable, S is the support of X , αi are the moments of f (x) and the functions hi(x) allow us to define
these moments. For instance, with non-centered moments, one has hi(x) = xi; i= 1,2.... In practice, the previous
expression is truncated to a finite number of terms. Notice that f (x), as defined in the previous equation, is the
solution to the variational problem defined before. Since f (x) is the PDF that maximizes the entropy functional,
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the problem is reduced to finding the corresponding λi. The system of equations that needs to be solved, given
a truncated summation, is the following :

´
S f (x)dx = 1´

S h1(x) f (x)dx = α1´
S h2(x) f (x)dx = α2´
S h3(x) f (x)dx = α3´
S h4(x) f (x)dx = α4

(4.82)

which can be rearranged, introducing f̂ (x) = exp[λo +∑
4
i=1 λihi(x)], and defining the objective vector function:

G(λi) =


1−
´

S f̂ (x)dx
α1 −

´
S x f̂ (x)dx

α2 −
´

S x2 f̂ (x)dx
α3 −

´
S x3 f̂ (x)dx

α4 −
´

S x4 f̂ (x)dx

 , (4.83)

so the optimization problem can be formulated as:

minimize
λi

[G(λi)] (4.84)

in other words, we seek the λi that solve the previous system of equations within certain numerical tolerance.

Addressing sensitivity to initial conditions The problem defined in Eq. 4.84 is very sensitive to the choice
of initial λi selected to search for the solution. Two steps are sketched to address this issue from a practical
perspective:

1. The maximum entropy distribution with two moments results in the PDF of a Gaussian process. By
comparing the ME PDF and the standard PDF of a Gaussian random variable, one can deduce an initial
point very close to the solution.

2. From empirical observations, the PDF with four moments has the shape of a Gaussian with some minor
“perturbations” applied to it. So, given four statistical moments, we solve the ME problem for the first two
moments using the relationships mentioned in the previous point. Then, the ME problem is formulated
with four moments, and as starting point, we pick the solution of the Gaussian case. The two new
multipliers are initially set to zero.

The relationships for the Gaussian approximation are:

λ0 = lnσ
√

2π + 1
2

(
µ

σ

)2

λ1 =− µ

σ2

λ2 =
1

2σ2

(4.85)

where we have committed the sub-indexes in the mean and variance, given the clarity of the context.

3.3 Results

Probabilistic moments of the response Recasting Eq. 4.72 as:

Z(t) =
ˆ

V

a(z)X (z, t)+b(z)Y (z, t)dz, (4.86)
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notice the fact that this transforms the sum of two fields into a stochastic process, in the case at hand the
mechanical or “overturning” moment at the base of the pile. As Z(t) is a process, it can be treated with our
previous developments concerning PDF reconstruction. The general relationships for the first four non-central
moments are as follows:

µZ =

ˆ

L

aµX (z)X (z)+bµY(z)dz, (4.87)

µZZ =

ˆ

L

ˆ

L

a2
µX 2(z1)X 2(z2)

+b2
µY(z1)Y(z2)+2abµX 2(z1)Y(z2)

dz1dz2, (4.88)

the third moment reads:

µZZZ =

ˆ

L

ˆ

L

ˆ

L

a3
µX 2(z1)X 2(z2)X 2(z3)

+b3
µY(z1)Y(z2)Y(z3)

+3a2bµX 2(z1)X 2(z2)Y(z3)
+3ab2

µX 2(z1)Y(z2)Y(z3)
dz1dz2dz3, (4.89)

the fourth:

µZ4 =

ˆ

L

ˆ

L

ˆ

L

ˆ

L

a4a3
µX 2(z1)X 2(z2)X 2(z3)X 2(z4)

+b4
µY(z1)Y(z2)Y(z3)Y(z4)+4a3bµX 2(z1)X 2(z2)X 2(z3)Y(z4)

+6a2b2
µX 2(z1)X 2(z2)Y(z3)Y(z4)

+4ab3
µX 3(z1)Y(z2)Y(z3)Y(z4)

dz1dz2dz3dz4, (4.90)

and the variance:

σZZ =

ˆ

L

ˆ

L

a2
σX 2(z1)X 2(z2)

+b2
σY(z1)Y(z2)+dz1dz2, (4.91)

and in a similar manner the inter-temporal moments can be obtained, for instance the covariance:

ΣZZ(t1, t2) =
ˆ

L2

a2
ΣX 2(z1)X 2(z2)

(t1, t2)dz1dz2

+

ˆ

L2

b2
ΣY(z1)Y(z2) (t1, t2)dz1dz2

+

ˆ

L2

abΣX 2(z1)Y(z2)
(t1, t2)dz1dz2

+

ˆ

L2

abΣY(z1)X 2(z2)
(t1, t2)dz1dz2. (4.92)
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Transformation Empirical(MC) Equation
E [Z]

[
×106

]
[Nm] 6.8318 6.8313 Eq. 4.87

E
[
Z2
][
×1013

][
N2m2

]
5.1697 5.1670 Eq. 4.88

E
[
Z3
][
×1020

][
N3m3

]
4.2693 4.2692 Eq. 4.89

E
[
Z4
][
×1027

][
N4m4

]
3.8153 3.8151 Eq. 4.90

Var [Z]
[
×1012

][
N2m2

]
5.0240 5.0036 Eq. 4.91

Table 4.3: Moments of the response, integral transformation formula vs empirical (MC)

Figure 4.3: Covariance of Z and one-sided PSD, Transformation (4.92) vs empirical (MC)

These developments are broadly general, at least within the confines of the input processes considered in ap-
plication. These expressions simplify considerably when the Gaussian hypothesis is introduced, as previously
stated; for instance, considering a Gaussian X (t1) and Y (t1) = Ẋ (t1), these two processes are independent,
hence decorrelated, and their inter-covariance is zero. It is worth noting that, by means of Wiener’s theorem,
this moment description also yields the PSD of the response: SZZ ( f ) = T F [ΣZZ(t1, t2)], which is the basis of
the spectral characterization of the response process.

The results of implementing these equations have been compared with the corresponding MC simulation, as
shown in Tab. 4.3 and Fig. 4.3. The way in which the computations have been made is as follows:

• The MCS has been carried out by spatial and temporal discretization of the field as vector processes.
The number of processes has been selected by testing the convergence in mean and variance, with 20
processes being employed at convergence and for comparison.

• The transformation equations are computed numerically, first expressing the required input probabilistic
moments as functions and then evaluating the corresponding integrals by adaptive quadrature integration.
The implementation has been done in the Matlab framework.

• In terms of ensemble convergence, 1×104 realizations have been selected, with similar criteria over mean
and variance convergence.

PDF reconstruction and EVD We use the results in the preceding sections to calculate the ME estimator
of the response PDF. The problem specifications remain the same as before, while the comparison is among a
Monte-Carlo simulation with an empirical PDF commercial subroutine, an ME fit with two specified moments
(ME-2M), and an ME fit with four specified moments (ME-4M). It can be shown that the maximum entropy
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Figure 4.4: PDF and CDF of Z: empirical (MC) and ME distribution (2 and 4 moments)

PDF with two moments is equivalent to that of a Gaussian distribution, and so the non-Gaussianity of the
response becomes evident from the comparison in Fig. 4.4. It must be noted that the flexibility of the approach
presented is one of its main advantages. The shape of the PDF will be heavily reliant on the ratio of the drag

component to the inertia component; for instance, [2] defines K =
2CDσXX

πCMD
√

σYY
, and the response tends to the

Gaussian as K → 0, and its non-Gaussianity is more prominent as K → ∞. The case under study corresponds to
K ≈ 0.25. The sensitivity of the PDF on this parameter is clear, given how close to the extreme of Gaussianity
it is while producing a PDF that has considerable asymmetry. For situations in which K is higher, additional
moments may be warranted to ensure an accurate fit of the maximum entropy to the resulting PDF.
The ME PDF is integrated to obtain the ME CDF, with which an isoprobabilistic transformation can be estab-
lished such that the non-gaussian process Z (t) can be simulated by Gaussian Translation ([65]). In particular, by
sampling a Gaussian parent process, the mean number of upcrossings λ

+
Z of Z (t) can be estimated, and under

the Poisson hypotheses Eq. 1.25 yields the estimated EVD: the ME+TGP+Poisson estimation of the EVD. The
results obtained from this methodology are compared with two MCMs: 1) directly counting the upcrossings of
the 1×104 samples of process Z (t) to obtain an empirical mean number of upcrossings λ

+
Z in combination with

Eq. 1.25 to obtain the Counting+Poisson estimation of the EVD, 2) using a commercial subroutine to find the
maximum value of each of the 1×104 samples of process Z (t), to then find the CDF of this sample of extreme
values to obtain what we term MC empirical estimation of the EVD. Finally, the statistical method, usually
referred to as the Square Root of the Sum of Squares (SRSS), is also used for comparison, the motivation being
the widespread usage of this technique as a first-resolution attempt in various practical domains.
The results for the EVD are shown in Fig. 4.5; the most remarkable feature is also the most expected: the
SRSS, despite its practicality, behaves poorly for random quantities that are not uncorrelated. While the
ME+TGP+Poisson estimation is close to the empirical MCS, a significant deviation exists. These deviations
can not be attributed to the Poisson assumption in the modeling of the extremes, as the direct counting method
relies on the same choice and yet results in a much closer fit. The logical conclusion is a deficient estimation of
λ
+
Z by the TGP method.
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Figure 4.5: Extreme value distribution: Empirical (black), Direct upcrossing counting (dashed black), SRSS
(blue), and proposed (red)
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Chapter 5

Moment propagation in LTP systems
with periodic modal representation

“This is exactly the sort of thing that happens
when you recklessly try to have fun without
taking the time to analyze your situation
mathematically.”

Hannah Fry, The Indisputable Existence of Santa
Claus: The Mathematics of Christmas

This chapter combines the key results in Floquet theory and moment propagation to produce a systematic
treatment of Floquet systems under stochastic excitation. The first section extends the methods developed
in the previous chapter to a basic cyclic process, taking a concrete but typical example that will allow us to
establish some features of this type of transformation. The second section utilizes the same technique and
shows how it combines with extreme value methods pertaining to Gaussian processes; it includes an analysis of
the variance of this type of process as related to the mean upcrossing rate to a certain level. The third section
picks up from the deterministic results in Chapter 3 to establish moment propagation relationships, constructing
a Floquet-based moment propagation technique.

1 Moment transformation of nonstationary processes

1.1 Cyclic Gaussian scalar process

The development that follows is based on a concrete and simple example. The motivation for this approach is
twofold: on the one hand, it illustrates the moment propagation approach described in the previous chapter as
it is extended seamlessly to this class of nonstationary process; on the other hand, the example considered can
be thought of as a building block of the type of processes that will be considered during the rest of the chapter,
some features can be discerned with clarity and can then be identified in the more complex cases. The features
identified for the cyclic Gaussian case will then be referenced as necessary throughout the chapter.

We seek to obtain the probabilistic moments of the cyclic process Y (t) = sin [Ωt]X (t), where X (t) is a narrow
band stationary Gaussian process, defined from its mean µX = 10 and its covariance function:

ΣXX (τ) =
f2sinc(2 f2τ)− f1sinc(2 f1τ)

f2 − f1
(5.1)

117



Figure 5.1: Covariance function of the stationary process X (t)

with τ = t2 − t1, f1,2 = f0 ∓ δ/2, f0 = 1
2π

Hz, δ = 0.1 Hz. Then, X (t) is such that σXX = 1, and its first four
moments with respect to the origin are: µX = 10; µXX = 101; µXXX = 1030; µXXXX = 10603. These can be
obtained either by using the equations deduced from the Moment Generating function (see subsection 1.2) or
by applying Withers’ theorem at the same time instant (see subsection 1.2). The covariance function can be seen
in Fig. 5.1. To complete the description of X (t), we recall that RXX (τ) = ΣXX (τ)+µ2

X and, from the Withers’
theorem:

RXXX (t1, t2, t3) = µX
(
ΣXX (t2, t3)+ΣXX (t1, t3)+ΣXX (t1, t2)+µ

2
X
)
. (5.2)

The process Y (t) is typical of a Gaussian force acting on a rotating system with angular velocity Ω.

Using the definition of the central moments with respect to the origin and the framework detailed in Chapter 4,
we can write the first four moments of Y (t):

µY (t) = sin [Ωt]µX

µYY (t) = sin2 [Ωt]µXX

µYYY (t) = sin3 [Ωt]µXXX

µYYYY (t) = sin4 [Ωt]µXXXX (5.3)

and we can further establish that the variance is σYY (t) = sin2 [Ωt]σXX . Taking Ω = 1, a comparison of these
formulas with a Monte-Carlo simulation with empirical statistics is shown in Fig. 5.2-Fig. 5.3. The simulation
has been carried out on a time interval of T = [0,2π], over 10,000 realizations. In Fig. 5.2, we particularly
highlight the values at t = π/2 s where sin [Ωt] = 1, µY = µX , µYY = µXX , µYYY = µXXX , µYYYY = µXXXX . The
Fig. 5.3 shows a contrast between the stationary covariance function of the input X (t) and the cyclic covariance
function of process Y (t) obtained from MCS. Empirical statistics for thirty runs of the MCS are displayed in
this figure, using the computational procedure detailed in reference [135] to simulate the stationary Gaussian
process X (t). These figures evidence the consistency of the results obtained.

Some observations from these results will be useful for later cases. First, the mean of the output preserves
the same periodicity as the modulating function. Second, from Eq. 5.3, Fig. 5.2 and Fig. 5.3, we notice that
second-order moments have a fundamental period that is half of the original, the source being the squaring of
the modulating sinusoidal function. We will refer to this as period halving, and we take the opportunity to stress
that the original period of the modulating function is still a period of the second-order moments, just not the
fundamental period.
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Figure 5.2: First four moments with respect to the origin of Y (t): one typical Monte-Carlo simulation vs.
formula

Figure 5.3: Variance of Y (t): thirty runs of Monte-Carlo simulation vs. formula
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Figure 5.4: Correlation functions of Y (t): one typical Monte-Carlo simulation (left) vs. formula (right)

A similar procedure can be applied to determine relationships among X (t) and Y (t) for the covariance function,
correlation function, and their higher-order equivalents. We find:

RYY (t1, t2) = sin [Ωt1]sin [Ωt2]RXX (t1, t2)

ΣYY (t1, t2) = sin [Ωt1]sin [Ωt2]ΣXX (t1, t2) (5.4)

and since Y (t) is not stationary, the equivalence between its correlation function and covariance function must
be expressed as ΣYY (t1, t2) = RYY (t1, t2)− µY (t1)µY (t2). Before testing these expressions numerically, we
proceed to enunciate a conjecture concerning this nonstationary process and Withers’ theorem:

Withers’ theorem can be extended to cyclic processes generated from a Gaussian stationary process.

Therefore, if we consider the bi-correlation function, the following expression holds for the cyclic process Y (t):

E [Y (t1)Y (t2)Y (t3)] = RYYY (t1, t2, t3)

= µY (t1)µY (t2)µY (t3)+µY (t1)ΣYY (t2, t3)

+µY (t2)ΣYY (t1, t3)+µY (t3)ΣYY (t1, t2) . (5.5)

In Fig. 5.4 and Fig. 5.5, we compare the empirical statistics from a typical Monte-Carlo simulation with results
from Eq. 5.4. Then, we put the conjecture to test. In Fig. 5.6, we compare a slice of the bi-correlation of Y (t)
at t3 = π/2 s. The graph on the left of the figure is from the conjecture Eq. 5.5 using the covariance function of
Y (t), while the one on the right is generated from:

RYYY (t1, t2, t3) = sin [Ωt1]sin [Ωt2]sin [Ωt3]RXXX (t1, t2, t3) (5.6)

using Eq. 5.2. All these results support the validity of the proposed approach and the correctness of the conjec-
ture for this problem.
For this application, it is particularly noticeable that a benefit of the proposed notation resides in that it provides
a systematic encoding of probabilistic information that is particularly suitable for computer implementation,
making it unnecessary to develop, for example, the handwritten expression of the bi-covariance function of
the nonstationary process Y (t) from that of the Gaussian process X (t). This may also be true for the evalu-
ation of the higher-order statistics of the Gaussian process X (t) from Withers’ results in the form we give in
subsection 1.2.

1.2 On Withers’ theorem and Gaussian moments

In reference [148], Withers’ theorem for multivariate Gaussian random variables is stated as follows: let X =
[X1,X2, . . . ,Xp]

T be a p-dimensional joint Gaussian vector with known mean µµµX and covariance ΣΣΣ =
{

σi j
}

.
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Figure 5.5: Covariance functions of Y (t): one typical Monte-Carlo simulation (left) vs. formula (right)

Figure 5.6: Bi-covariance functions of Y (t) for t3 = π/2 s from relations 5.5 (left) and 5.6 (right)
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Then, for {α1,α2, . . . ,αr} in {1,2, . . . , p}:

E [Xα1 . . .Xαr ] = ∑
l+2k=r

m

∑µa1 . . .µal σb1b2 . . .σb2k−lb2k (5.7)

where the second summation takes places over m permutations m= r!
l!2kk! of the {a1 . . .alb1b2 . . .b2k} in {α1α2 . . .αr}.

This subsection expands on the technical aspects of the application of this result, particularly when the expres-
sion is generalized to Gaussian stochastic processes.

First, assuming stationary Gaussian random processes, for instance, X1 (t) and X2 (t), this theorem provides a
direct form of computing the noncentral cross moment. The result is also valid for the cross moment among
different random variables that constitute a given process as defined, for instance, the cross moments among
X1 (t1) and X1 (t2). The result is valid for nonnull mean Gaussian variables, which is its main advantage over
the analogous Isserlis’ theorem exposed in the reference [61], in the sense that it provides a clear identification
of the effects of the mean value when these moments are used on the moment propagation expressions used in
this work.

As expressed at the start, we have:

µXα1 ...Xαr = E
[
X (t)

α1
. . .X (t)

αr

]
. (5.8)

The script r indicated the number of variables involved in the product or the order of the moment. The script l is
associated with the noncentral moments involved, and the k is associated with the central moments or variances.
The procedure to apply this result is:

1. Establish the order of the cross moment and the variables involved, r and {α1α2 . . .αr}, for example, if
X = (X1,X2,X3,X4), we can write µX1X1X2 = µX2

1 X2
with {α1α2α3} and α1 = α2 = 1, the αi need not be

different, and clearly r = 3, so this expresses a cross moment or order 3.

2. Solve l+2k = r for positive integer (and zero) values of l and k and the given r. For r = 3, (l = 1,k = 1)
and (l = 3,k = 0), two solutions.

3. For each solution in the previous step, determine the permutations with m = r!
l!2kk! , m1 =

3!
1!211! = 3 and

m2 =
3!

3!201! = 1, these permutations can be expressed as {a1b2b3} ,{a2b1b3} ,{a3b2b1} (one index for µ

because l = 1 and two for σ because 2k = 2) for m1 and {a1a2a3} for m2 (no index for σ because 2k = 0,
and three for µ because l = 3).

4. Finally we develop these sums with the information established:

µX1X2X3 =
1

∑µa1 . . .µal σb1b2 . . .σb2k−lb2k +
3

∑µa1 . . .µal σb1b2 . . .σb2k−lb2k

= µa1 µa2 µa3 +µa1σb2b3+µa2σb1b3+µa3σb2b1 (5.9)

which can be written as:

µX1X2X3 = µX1 µX2 µX3 +µX1σX2X3+µX2σX1X3+µX3σX2X1 . (5.10)

For the product:
µX1X2X3X4 = E [X1 (t)X2 (t)X3 (t)X4 (t)] (5.11)

we have the following results:

1. Order 4, r = 4.

2. Solutions: (l = 4,k = 0) ,(l = 2,k = 1) ,(l = 0,k = 2).

122



3. Permutations are m1 =
4!
4!1 = 1, m2 =

4!
2!2×1 = 6,m3 =

4!
1222! = 3.

4. The permutations are, for m1: {a1a2a3a4}, for m2 and m3 respectively:

m2 :{a1a2b3b4} ,{a1a3b2b4}
{a1a4b2b3} ,{a2a3b1b4}
{a2a4b1b3} ,{a3a4b1b2}

m3 :{b1b2b3b4}
{b1b3b2b4}
{b1b4b2b3} .

5. The sum gives

µX1X2X3X4 = µX1 µX2 µX3 µX4

+µX1 µX2σX3X4 +µX1 µX3σX2X4

+µX1 µX4σX2X3 +µX2 µX3σX1X4

+µX2 µX4σX1X3 +µX3 µX4σX1X2

+σX1X2σX3X4 +σX1X3σX2X4

+σX1X4σX2X3 . (5.12)

We now present an argument for the application of this theorem for the computation of the moment generaliza-
tions between points in time, more precisely, the correlation function and its generalizations. We can interpret
a random process as a set of random variables indexed by a so-called time parameter. A Gaussian random
process is such that any two of its component random variables are jointly Gaussian. In the discrete case, this
condition fits the assumptions under which Withers’ theorem has been proved. The discrete case is precisely
the case of interest when it comes to numerical simulations of the process: a time discretization is performed,
and the relevant quantities are calculated at those discrete points. Thus, when applying the theorem, it suffices
to replace ΣΣΣ =

{
σi j
}

, by the covariance function evaluated at the relevant points in time: ΣXX (t1, t2).

To illustrate the previous argument, we consider the Gaussian random process X (t) with mean function µX (t)
and correlation function ΣXX (t1, t2). The bi-correlation function reads:

E [X (t1)X (t2)X (t3)] = RXXX (t1, t2, t3) (5.13)

where:

RXXX (t1, t2, t3) = µX (t1)µX (t2)µX (t3)+

µX (t1)ΣXX (t2, t3)+µX (t2)ΣXX (t1, t3)+µX (t3)ΣXX (t1, t2) (5.14)

and if the process under consideration is stationary, then µX (t) = µX = constant;∀t, ΣXX (t1, t2) = Σ(τ) ;τ =
t2 − t1, and we can write:

RXXX (τ1,τ2) = µX µX µX +µX (ΣXX (τ1)+ΣXX (τ2)+ΣXX (τ2 − τ1)) (5.15)

with τ1 = t2 − t1;τ2 = t3 − t1;τ2 − τ1 = t3 − t2.

MGF of Gaussian variables A Gaussian random variable is fully determined by its first two moments. Con-
ventionally, this information about a Gaussian random variable is presented in terms of its first-order moment
with respect to the origin, its mean, and its second-order moment with respect to the mean, its variance. Every
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Moment Formula
µX µX

µXX µ2
X +σXX

µXXX µ3
X +3µX σXX

µX(4) µ4
X +6µ2

X σXX +3σ2
XX

µX(5) µ5
X +10µ3

X σXX +15µX σ2
XX

µX(6) µ6
X +15µ4

X σXX +45µ2
X σ2

XX +15σ3
XX

µX(7) µ7
X +21µ5

X σXX +105µ3
X σ2

XX +105µX σ3
XX

µX(8) µ8
X +28µ6

X σXX +210µ4
X σ2

XX +420µ2
X σ3

XX +105σ4
XX

Table 5.1: First eight moments of a Gaussian random variable in terms of mean and variance

other moment can be expressed in terms of these two. A convenient way of expressing these moments is by
using the Moment Generating Function (MGF) of the Gaussian random variable:

mX (s) =exp[sµX +
1
2

σXX s2] (5.16)

where µX is the mean and σXX is the variance of the Gaussian random variable X . The n− th moment of X with
respect to the origin can be obtained by differentiation of the MGF and the evaluation of this derivative at s = 0,
that is:

µX(n) =
d(n)

ds(n)
[mX (s)]

∣∣∣∣∣
s=0

(5.17)

so using this expression, all the moments of the variable X can be obtained, and the analytic expressions of the
first eight ones are given in Tab. 5.1. Moreover, it is noticed that odd moments will be null when µX = 0.

Commentary In principle, the approach taken in this development is equally valid for the more general case
Y (t)= a(t,Ω)X (t) where the modulation function a(t,Ω) is periodic on Tp =

2π

Ω
, but not necessarily as selected

in the example of subsection 1.1. The motivation of this example is precisely the fact that the Floquet periodic
modes act as time modulators in the passage from the Floquet modal variables to the state variables. Indeed,
from the results in chapter 3, we write:

y(t) =R(t)q(t)
q̇(t) =ρρρq(t)+p(t)
p(t) =L(t)B(t) f, (5.18)

the forced response in the modal variables is:

q f (t) =
ˆ

∞

−∞

h(t − τ)p(τ)dτ (5.19)

so considering the modal solution q f (t) as a stochastic variable, the return to the state variable is:

y f (t) = R(t)q f (t) (5.20)

where we know that R(t) is periodic; in this case, R(t) replaces a(t,Ω). Taking the first DOF of y f (t), for
instance, one has:
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y(1)f =
N

∑
j=1

R1, j (t)q( j)
f , (5.21)

with N the number of modes; this suggests the application of the previous development to sums of periodic
terms of the form:

Y (t) = a1 (t,Ω)X1 (t)+a2 (t,Ω)X2 (t)+ . . .+aN (t,Ω)XN (t) , (5.22)

for which the notation and methodology introduced in the previous chapter is particularly well-suited to handle.
It is worth highlighting that the moment equations obtained are not limited to the Gaussian case; if the input
moments can be computed, these relationships can be equally applied. Input moments of unknown distributions,
such as those emerging by complex transformations of an underlying field, can be computed by MCS sampling.

2 Extreme value distribution of periodic zero-mean nonstationary pro-
cesses

Building on the previous method, we turn to the problem of estimating the CDF of the extreme values of a
nonstationary Gaussian stochastic process generated by applying a periodic modulation to a weakly stationary
underlying or antecedent Gaussian stochastic process. Concretely, we study the following class of stochastic
processes:

Y (t) = a(t,Ω)X (t) , (5.23)

where X (t) is a Gaussian stationary process with finite variance |σXX (t)| < ∞,∀t, and a(t,Ω) is periodic on
Tp =

2π

Ω
, a deterministic modulating function. In this case, Y (t) is nonstationary and Gaussian. For simplicity,

we assume X (t)→ N (0,ΣXX (τ)): the underlying Gaussian is centered. The mean of Y (t) is:

µY = a(t,Ω)µX = 0, (5.24)

the covariance function of Y (t) will coincide with its correlation:

E [Y (t1)Y (t2)] =E [a(t1,Ω)X (t1)a(t2,Ω)X (t2)]

RYY (t1, t2) =a(t1,Ω)a(t2,Ω)RXX (t1, t2)

ΣYY (t1, t2) =RYY (t1, t2) . (5.25)

The periodicity of a(t,Ω) implies that a(t1,Ω) = a(t1 +nTp,Ω) where Tp is the period, and n ∈ Z. Since the
stationarity of X (t) implies RXX (t1, t2) = RXX (τ) with τ = t2 − t1, we have:

µY (t) =µY (t +nTp) = 0,∀t ∈ [0,T ] (5.26)

and:

RYY (t1, t2) =a(t1,Ω)a(t2,Ω)RXX (t1, t2)

RYY (t1 +nTp, t2 +nTp) =a(t1 +nTp,Ω)a(t2 +nTp,Ω)RXX (t1 +nTp, t2 +nTp)

(5.27)
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from the modulating functions: a(t1 +nTp,Ω) = a(t1, ,Ω) ;a(t2 +nTp,Ω) = a(t2,Ω). From the correlation
τ = t2 − t1, (t2 +nTp)− (t1 +nTp) = t2 − t1 = τ , RXX (t1 +nTp, t2 +nTp) = RXX (τ) = RXX (t1, t2) , so:

RYY (t1 +nTp, t2 +nTp) =RYY (t1, t2) (5.28)

a centered stationary stochastic process modulated by a periodic function is a wide-sense cyclostationary ([110])
stochastic process.
Given the probabilistic descriptors of X (t) one can establish transformation relationships for Y (t), as we have
done in the previous development. Our interest is to use these probabilistic descriptors to obtain the extremes of
Y (t). Different formulations of the extremes of Y (t) are interconnected. On the interval [0,T ], one can define
the random variable: MY = max [Y (t)], 0 ≤ t ≤ T . We call the CDF of MY the Extreme Value Distribution
(EVD) of Y (t). An associated problem is the first-passage probability: P [∃t ∈ [0,T ] : Y (t)≥ u]. Both problems
are related to the upcrossing (or outcrossing) rate at which the stochastic process surpasses a threshold u in
[0,T ], indeed as shown in Eq. 1.24 and Eq. 1.25, knowledge of the mean number of upcrossings λ

+
X (u) is

instrumental in the determination of Poisson-type EVD. The relevance of Eq. 1.22 is precisely the fact that it
provides the crossing intensity that enables the obtention of λ

+
X (u), but it can be seen that the Rice formula

requires information about the derivative of the process under analysis. We now proceed to extend the analysis
to consider the moment propagation of the derivative process.

2.1 Moment propagation of derivative process

We consider again the transformation:

Y (t) = a(t,Ω)X (t) , (5.29)

where the stationary input X (t) has mean µX = 0, variance σXX = µXX , correlation function RXX (t1, t2) =
ΣXX (t1, t2); we further define the derivative of X (t) as Ẋ (t) = d

dt [X (t)] which has mean µẊ = 0, variance
σẊ Ẋ = µẊ Ẋ , and correlation function RẊ Ẋ (t1, t2) = ΣẊ Ẋ (t1, t2). Further, the correlation function of Ẋ (t) can
be obtained from the correlation function of X (t): RẊ Ẋ (t1, t2) = ∂

∂ t1∂ t2
[RXX (t1, t2)]. The stationarity of X (t)

implies µXẊ = σXẊ = 0, or the process is orthogonal to its derivative. It follows that:

µY (t) =a(t,Ω)µX = 0
µẎ (t) =ȧ(t,Ω)µX +a(t,Ω)µẊ = 0

σYY (t) =a2 (t,Ω)σXX

σẎẎ (t) =ȧ2 (t,Ω)σXX +a2 (t)σẊ Ẋ

σYẎ (t) =a(t,Ω) ȧ(t,Ω)σXX

µŸ =ä(t,Ω)µX +2ȧ(t,Ω)µẊ +a(t,Ω)µẌ = 0

µYŸ =a(t,Ω) ä(t,Ω)µXX +a2 (t,Ω)µXẌ , (5.30)

we introduce the relationship µXẌ =−µẊ Ẋ =−σẊ Ẋ , resulting in:

µYŸ = a(t,Ω) ä(t,Ω)σXX −a2 (t,Ω)σẊ Ẋ . (5.31)

Additionally, from the relationship between mean, variance, and second-order moment, we can establish σYŸ =
µYŸ −���: 0

µY µŸ , which results in:

σYŸ (t) = a(t,Ω) ä(t,Ω)σXX −a2 (t,Ω)σẊ Ẋ . (5.32)

These relationships characterize the first two moments (mean and variance) of the output process and its deriva-
tive.
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Figure 5.7: Mean and variance of modulated Gaussian process and its derivative

3 Analyzing upcrossings of Gaussian periodically modulated processes

This section analyzes the link between upcrossing and peak variance in periodically modulated Gaussian pro-
cesses. The result is a methodology to estimate the upcrossing and EVD of periodic Gaussian processes. We
consider a process of the form:

Y (t) = cos(Ωt)X (t) , (5.33)

where X (t) is a stationary, zero-mean Gaussian process with µX = 0 and σXX = µXX = 0.2275, for the modu-
lation function Ω = 0.0209. Using the relationships in Eq. 5.31, we can propagate moments towards the output
Y (t) and its derivative Ẏ (t). The moments obtained from the established equations are shown in Fig. 5.7. We
now proceed to the upcrossings analysis and EVD determination.

3.1 Preliminaries

We start with the formula for the expected number of upcrossings:

λ
+
X = E [N (ui,0,T )] =

ˆ T

0
ν
+
X (ui, t)dt, (5.34)

for the stationary Gaussian process X (t), the closed-form solution exists in the following form:

λ
+
X = E [N (ui,0,T )] =

T√
2π

√
σẊ Ẋ
σXX

exp
[
− u2

i
2σXX

]
. (5.35)

The formula in Eq. 5.35 can be interpreted as the integral in Eq. 5.34 for the Gaussian stationary case on the
interval [0,T ]. Our aim is to try to approximate the λ

+
Y of the nonstationary Gaussian process Y (t) by finding

appropriate equivalent stationary Gaussian processes such as X (t), defined on a given subinterval of [0,T ], and
applying Eq. 5.35.
To gain some insight into the relationship between the variance of the nonstationary process and the expected
number of upcrossings, we construct the following visualization in Fig. 5.8, where we count the exceedances of
level u within a given time interval, and compare it to the time evolution of the variance. The values selected as
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Figure 5.8: Mean number of upcrossings λ
+
Y for five levels ui on discretized time bins vs. variance

ui are u1 = 0.5437, u2 = 0.9536, u3 = 1.3634, u4 = 1.7733 and u5 = 2.1831. The test is performed over 10,000
realizations of the modulated Gaussian process introduced in Eq. 5.33.
The interpretation of Fig. 5.8 is the following: lower values of the threshold ui are more likely to be reached,
so we see the highest λ

+
Y in blue for u1 = 0.5437; the bars are stacked to facilitate visualization, for instance,

the occurrence of u1 is many times the occurrence of u2 = 0.9536; for the highest thresholds, a separate plot is
made since these are completely overshadowed by the larger scale of the first three ui; the second vertical axis
shows the value of σYY (t) as it evolves in time; finally, as expected, the upcrossing occurrence is concentrated
in the regions of high variance, a region that narrows significantly as ui increases.
The occurrence of upcrossings is concentrated on the intervals of high variance, as has been noted in the litera-
ture, particularly clear in [72] but in terms of the covariance function.

3.2 Method of interval approximation

Based on the preliminaries, the general idea of the proposed method is to approximate the expected number
of upcrossings of periodically modulated processes in a piece-wise fashion using the stationary result on each
subinterval of high variance (Alg. 5.1). For the example on which Fig. 5.8 is based, we take NSC = 3, with T1 =
[0,50] ;T2 = [125,175] ;T3 = [250,300]; the intervals have the same length ∆t = 50s. The mid-point variances
are shown in Tab. 5.2. Formula Eq. 5.35 is applied using Tab. 5.2 and replacing T with ∆t = 50; this yields the
“partial” CDF in Fig. 5.9. Finally, we compare the method with:

• an empirical CDF obtained with a Matlab routine over the 10,000 realizations of the process,

• direct count of the upcrossings of the realizations to calculate the mean number of upcrossings,

the results are shown in Fig. 5.10. While the method provides a very satisfactory result for a Gaussian process,
the ultimate goal would be to extend this idea to more general distributions. Indeed, the main challenge, as
already outlined, consists in the reconstruction of the joint PDF of the propagated moments for general distri-
butions.
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Algorithm 5.1 Interval approximation method

1. Select a number of time subintervals Nsc of high variance: T1, T2. . .TNSC , and compute their length ∆t.

2. Approximate the mean number of upcrossings for each subinterval. This is done using the stationary
formula: the time-varying process is approximated as a stationary process in that subinterval. The vari-
ance of Y and Ẏ in each interval are chosen as that of the mid-point in that interval, although it is worth
evaluating different choices.

3. Each subinterval produces its contribution to the total estimated CDF: P1
Ym

(u) = exp [−λ1] ;P2
Ym

(u) =
exp [−λ2] ; ...P

NSC
Ym

(u) = exp
[
−λNSC

]
.

4. The total CDF of Ym is PYm (u) = P1
Ym

(u)×P2
Ym

(u)× . . .×PNSC
Ym

(u).

Variance t1 t2 t3
σYY 0.1706 0.2274 0.1706
σẎẎ 0.0666 0.0888 0.0666

Table 5.2: Interval variance approximation at mid-point

Finally, this method has been developed for the simplified case of a zero-mean process. For processes with non-
zero mean, adjustments must be made in Eq. 5.35 to account for the mean value, and the choice of interval will
also require the consideration of the mean. These adjustments will be exemplified in section 5 of Chapter 6. The
key idea of the method, however, remains the same: the periodic process can be analyzed by temporal intervals
in which the intervening moments result in a high likelihood of threshold crossing, and each contributing interval
can be combined to yield the estimated EVD. In this sense, for a zero-mean process, peak variance is the main
consideration; conversely, a process with low variance with respect to its mean value would be more likely to
realize a crossing at peak mean points.

4 Floquet moment transformation

The goal of this section is to use the results from the Floquet modal theory to establish moment propagation
relationships between input and output variables. Unlike the results established so far, which fall into the
category of memoryless transformations (See: [134] or [104]), the input-output relationship of a dynamical
system belongs to the class of memory transformations. We will proceed as in Chapter 3, from the modal
representation of the forced response. The key distinction is that now the inputs are considered as stochastic
processes.

Consider the LTP system:

M(t) ẍ+G(t) ẋ+K(t)x = f(t) , (5.36)

with period Tp such that M(t +nTp) = M(t) ,n ∈ Z and equally for G(t) and K(t); where f(t) is a stochastic

vector of loads. The system can be cast into state form with the substitutions y=
[

x
ẋ

]
, A(t) =

[
0 I

M−1K M−1G

]
,

B(t) =
[

0
M−1

]
:

ẏ = A(t)y+B(t) f(t) , (5.37)
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Figure 5.9: Partial CDF with NSC = 3 and mid-point variance

Figure 5.10: Estimated CDF by proposed method compared to 2 other approaches for T = 300s
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which is a forced Floquet system. The original or physical system has dimension Ndim, or Ndim DOFs, whereas
the state form has 2Ndim DOFs. The pumping frequency of the system is fp =

1
Tp

. The Lyapunov substitution
y(t) = R(t)q(t) leads to the modal LTI system:

q̇(t) = ρρρq(t)+p(t) , (5.38)

where the q(t) are the new modal variables, R(t) is the right modal matrix of periodic eigenvectors, ρρρis a diag-
onal matrix containing the characteristic exponents of the system, and the adapted load p(t) = L(t)B(t) f(t),
where L(t) = R−1 (t) is the left modal matrix, in practice the inverse of the right modal matrix. In general,
the periodic eigenvectors in R(t) and L(t) are functions of complex values, the implication being that the
adapted excitation p(t) = L(t)B(t) f(t) is a complex function, and the modal variables q(t) are equally com-
plex. This fact requires some care in the computation of the corresponding moments of both p(t) and q(t). We
recall the relationships established in Chapter 4 for random vector processes with complex values, in particular
p(t) = [pi (t)], pi (t) ∈ C, the second moments are:

µpi p j (t) = E
[
pi (t) p∗j (t)

]
(5.39)

where p∗j (t) is the complex conjugate of component j in the complex random vector p(t). During the section,
the complex conjugate transpose of a matrix, say h(t), will be expressed as hH (t).

4.1 Convolution relationships

Consider the LTI system in Eq. 5.38, with ρρρ ∈ C2Ndim×2Ndim a constant diagonal matrix, and q(t) , q̇(t) ,p(t) ∈
C2Ndim . Assuming the system at rest before a certain initial time of interest, by convention set to t0 = 0, and
provided an initial condition in such a state: q(0) = q0, the general solution of this equation is:

q(t) = exp [ρρρ (t)]q0 +

ˆ t

0
exp [ρρρ (t − τ)]p(τ)dτ, (5.40)

where qh (t) = exp [ρρρ (t)]q0 is called the homogeneous response, and q f (t) =
´ t

0 exp [ρρρ (t − τ)]p(τ)dτ is the
forced response. It is convenient to introduce the impulse response function, the following matrix quantity:

h(t) = exp [ρρρt] , (5.41)

from where it can be seen that qh (t) = h(t)h−1 (0)q0; the forced response is then:

q f (t) =
ˆ t

0
h(t − τ)p(τ)dτ, (5.42)

a convolution equation often termed Duhamel integral. Based on our developments in Chapter 3, it is apparent
that h(t) is a fundamental solution of the system, and the origin of the convolution solution can be traced to the
variation of constants method for inhomogeneous ODEs.
A different classification of the response is useful when damping is involved: a part of the response, said to be
transient, decays with time; another part of the response, said to be steady-state, is persistent so long as p(t)
is acting on the system. The homogeneous response qh (t) in damped systems is transient, whereas the forced
response q f (t) has a transient component and a steady-state component:

q f (t) =q(tr)
f (t)+q(ss)

f (t)

q(tr)
f (t)
t→∞

→0

q f (t)
t→∞

→q(ss)
f (t) . (5.43)
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In the sequel, we focus on the forced response q f (t), which is to say q0 = 0, and hence the subscript in q f (t) is
dropped for convenience.
Consider again the convolution equation:

q(t) =
ˆ t

0
h(t − τ)p(τ)dτ t > 0, (5.44)

in the developments that will follow from this expression, it is equally assumed that t > 0; we may introduce
the change of variable τ1 (τ) = t − τ , dτ1 =−dτ , τ1 (0) = t, τ1 (t) = 0, which results in:

q(t) =
ˆ t

0
h(t − τ)p(τ)dτ

=

ˆ 0

t
h(τ1)p(t − τ1)(−dτ1)

=

ˆ t

0
h(τ1)p(t − τ1)dτ1, (5.45)

the passage from the penultimate to the last equality being a direct consequence of the fundamental theorem
of calculus, and the result shows that this convolution equation is commutative. It is also important to remark
on the implicit initial condition inherent to the convolution equation: the system starts at rest in t0 = 0, and the
perturbation p(t) begins to act over the system at this instant. The complex, periodically modulated stochastic
input p(t) is indeed defined in −∞ < t < ∞, implicit in the convolution equation is the fact that the input begins
its action at the initial time of interest.
We may convert back to the state variables with:

y(t) =R(t)q(t)

=R(t)
ˆ t

0
h(t − τ)p(τ)dτ. (5.46)

In the modal variables, we can apply the expectation to obtain:

E [q(t)] =E
[ˆ t

0
h(t − τ)p(τ)dτ

]
µµµq (t) =

ˆ t

0
h(t − τ)µµµ p (τ)dτ (5.47)

giving the mean between adapted input and modal output. Introducing now V = q(t)−µµµq (t) and computing
E
[
VVH

]
:

V =q(t)−µµµq (t)

VH =qH (t)−µµµ
H
q (t)

VVH =q(t)qH (t)−q(t)µµµ
H
q (t)−µµµq (t)qH (t)+µµµq (t)µµµ

H
q (t)

E
[
VVH]=µµµqq (t)−µµµq (t)µµµ

H
q (t) , (5.48)

so the variance is:

σσσqq (t) = µµµqq (t)−µµµq (t)µµµ
H
q (t) , (5.49)
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the second moment with respect to the origin µµµqq (t) = E
[
q(t)qH (t)

]
is:

µµµqq (t) =E

[ˆ t

0
h(t − τ1)p(τ1)dτ1

(ˆ t

0
h(t − τ2)p(τ2)dτ2

)H
]

=E
[ˆ t

0
h(t − τ1)p(τ1)dτ1

(ˆ t

0
pH (τ2)h(t − τ2)

H dτ2

)]
=E
[ˆ t

0

ˆ t

0
h(t − τ1)p(τ1)pH (τ2)h(t − τ2)

H dτ1dτ2

]
=

ˆ t

0

ˆ t

0
h(t − τ1)E

[
p(τ1)pH (τ2)

]
(τ2)h(t − τ2)

H dτ1dτ2

=

ˆ t

0

ˆ t

0
h(t − τ1)RRRpp (τ1,τ2)h(t − τ2)

H dτ1dτ2. (5.50)

In the same way, the inter-instant moments can be obtained, for instance, the correlation function is obtained as
Rqq (t1, t2) = E

[
q(t1)qH (t2)

]
:

Rqq (t1, t2) =E
[
q(t1)qH (t2)

]
=E

[(ˆ t1

0
h(t1 − τ1)p(τ1)dτ1

)(ˆ t2

0
h(t2 − τ2)p(τ2)dτ2

)H
]

=E
[ˆ t2

0

ˆ t1

0
h(t1 − τ1)p(τ1)pH (τ2)h(t2 − τ2)

H dτ1dτ2

]
=

ˆ t2

0

ˆ t1

0
h(t1 − τ1)E

[
p(τ1)pH (τ2)

]
h(t2 − τ2)

H dτ1dτ2

=

ˆ t2

0

ˆ t1

0
h(t1 − τ1)Rpp (τ1,τ2)h(t2 − τ2)

H dτ1dτ2, (5.51)

and the covariance function can be deduced from correlation and mean ΣΣΣqq (t1, t2)=E
[
(q(t1)−µµµq (t1))(q(t2)−µµµq (t2))

H
]
:

ΣΣΣqq (t1, t2) =Rqq (t1, t2)−µµµq (t1)µµµ
H
q (t2) , (5.52)

or directly from the covariance function of the adapted load:

ΣΣΣqq (t1, t2) =E
[
(q(t1)−µµµq (t1))(q(t2)−µµµq (t2))

H
]

=E
[(ˆ t2

0

ˆ t1

0
h(t1 − τ1)p(τ1)pH (τ2)hH (t2 − τ2)dτ1dτ2 −

ˆ t2

0

ˆ t1

0
h(t1 − τ1)µµµ p (τ1)pH (τ2)hH (t2 − τ2)dτ1dτ2

)]
=

ˆ t2

0

ˆ t1

0
h(t1 − τ1)Rpp (τ1,τ2)hH (t2 − τ2)dτ1dτ2 −

ˆ t2

0

ˆ t1

0
h(t1 − τ1)µµµ p (τ1)µµµ

H
p (τ2)hH (t2 − τ2)dτ1dτ2

=

ˆ t2

0

ˆ t1

0
h(t1 − τ1)

(
Rpp (τ1,τ2)−µµµ p (τ1)µµµ

H
p (τ2)

)
hH (t2 − τ2)dτ1dτ2

=

ˆ t2

0

ˆ t1

0
h(t1 − τ1)ΣΣΣpp (τ1,τ2)hH (t2 − τ2)dτ1dτ2 (5.53)

For a system with N degrees of freedom, µµµq (t) is a vector with N components; µµµqq (t), σσσqq (t), Rqq (t1, t2)
and ΣΣΣqq (t1, t2) are matrices of dimension N ×N. The higher order moments require a tensor description, as
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they are expressed by multi-index arrays; for instance the third moment with respect to the origin µµµqqq (t) has
dimension N ×N ×N and the fourth µµµqqqq (t) has N ×N ×N ×N. Generally, µµµqk (t) will have Nk components,
from a computational perspective this imposes a high memory demand even for relatively low order systems, a
limitation remarked before in the literature, for instance [158] for nonlinear systems.

Working by components, we note µ
i, j,k
qqq (t) =E

[
qi (t)q∗j (t)qk (t)

]
, i, j,k ∈N, where qi (t) is the i−th component

of q; introducing hi, j (t) = exp [ρi, j (t − τ)] the indicial representation of the components of h(t), we write:

qi (t) =∑
j

(ˆ t

0
hi, j (t) p j (τ)dτ

)
(5.54)

where p j is the j− th component of the adapted load vector. With this approach, we can write:

µ
i, j,k
qqq (t) =E

[
∑

l

(ˆ t

0
hi,l (t) pl (τ1)dτ1

)
∑
m

(ˆ t

0
h∗i,m (t) p∗m (τ2)dτ2

)
∑
n

(ˆ t

0
hi,n (t) pn (τ3)dτ3

)]

=∑
n

∑
m

∑
l

(ˆ t

0

ˆ t

0

ˆ t

0
hi,n (t)h∗i,m (t)hi,l (t)Rl,m,n

ppp (τ1,τ2,τ3)dτ1dτ2dτ3

)
, (5.55)

and similarly for the fourth order moment:

µ
i, j,k,l
qqqq (t) =∑

n
∑
m

∑
o

∑
s

(ˆ t

0

ˆ t

0

ˆ t

0

ˆ t

0
hi,n (t)h∗i,m (t)hi,o (t)h∗i,s (t)Rn,m,o,s

pppp (τ1,τ2,τ3,τ4)dτ1dτ2dτ3dτ4

)
.

(5.56)

These expressions can serve as the basis of frequency-domain descriptors, for instance the PSD Sqq ( f1, f2) =
FT [ΣΣΣqq (t1, t2)]:

Sqq ( f1, f2) =

ˆ
∞

−∞

ˆ
∞

−∞

ΣΣΣqq (t1, t2)exp [−i2π ( f1t1 + f2t2)]dt1dt2, (5.57)

the main limitation of this definition of the PSD is that it does not provide a temporal description of the time
evolution of the frequency content. Several contending definitions of the nonstationary PSD exist, for instance,
the Wigner spectrum ([116],[11]):

SW
qq (t, f ) =

ˆ
∞

−∞

ΣΣΣqq (t,τ)exp [−i2π f τ]dτ (5.58)

where ΣΣΣqq (t,τ) is the instantaneous covariance function, the following adjustment has been made on the covari-
ance function: ΣΣΣqq (t,τ) =ΣΣΣqq

(
t + τ

2 , t −
τ

2

)
. More broadly, time-varying processes can be treated from a signal

analysis perspective with tools from time-frequency analysis, as remarked in [120]:

• Wavelet basis with the associated Wavelet Transforms: Wavelets provide time-frequency representation
as well as multi-resolution characteristics;

• Short-Time Fourier Transform (STFT): it offers a localized distribution of the energy with time-frequency
resolution;

• Wigner-Ville Distribution: it provides a time-frequency representation with many additional properties
useful to stochastic analysis.
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Inspired by the results in [120], some preliminary results about the application of time-frequency representations
to LTP systems with stochastic inputs have been explored in [64], where one of the simplest LTP systems is
considered and the PGHW, STFT, Wigner-Ville and Fourier representations are tested.
Another relevant proposal for nonstationary PSD is the Priestley spectrum ([106],[107]):

SPriestley
qq (t, f ) =

∣∣Ã(t, f )
∣∣2 Ss

qq ( f ) (5.59)

where the underlying nonstationary process has been represented in terms of the slowly varying modulating
function Ã(t, f ), and Ss

qq ( f ) corresponds to a stationary PSD [104]:

q(t) =
ˆ

∞

−∞

Ã(t, f )dZ ( f ) (5.60)

where Z (t) is an independent increment process. A technique that has seen much attention in the last decade is
the Harmonic Wavelet estimation of Eq. 5.59, as seen in [32], [73], [130], and [129]. In fact, the slowly varying
modulating function Ã(t, f ) in the previous expression is not unique, and several families of functions fulfill the
requirements, resulting in different versions of the evolutionary PSD. Reference [56] recontextualizes the main
results from Priestley’s proposal, arguing that it is equivalent to a Short-Time Fourier Transform (STFT) where
the family of functions Ã(t, f ) acts as a temporal window that localizes the energy decomposition of the EPSD.
In this framework, the Harmonic Wavelet estimation consists of projecting the solution in the corresponding
Wavelet basis, which amounts to selecting a temporal window associated with the corresponding family of
Wavelets. In [129], we have, for a stochastic process X (t):

SXX ( fi, tk) =
T0

n−m
E
[∣∣W X

i,k

∣∣2] (5.61)

where W X
i,k is the Wavelet coefficient of the i− th scale and k− th translation of X (t), T0 is the final time of the

observation of the signal or process, n−m is the bandwidth of a given scale (traditionally selected as uniform),
and: mi∆ f ≤ fi < ni∆ f , k T0

n−m ≤ tk < (k+1) T0
n−m define the frequency and time intervals in which a given

coefficient is localized.

State variable relationships Having established the convolution expressions for moment propagation in
modal variables for the forced response, we now propagate the moments to the state variables. From y(t) =
R(t)q(t), we have the following relationships:

µµµy (t) = R(t)µµµq (t) , (5.62)

for the first moment, for the second moment µµµyy (t) = E
[
y(t)yH (t)

]
:

µµµyy (t) =R(t)µµµqq (t)RH (t) , (5.63)

and the correlation and covariance functions, respectively:

RRRyy (t1, t2) =R(t1)Rqq (t1, t2)RH (t2)

ΣΣΣyy (t1, t2) =R(t1)ΣΣΣqq (t1, t2)RH (t2) . (5.64)

The higher-order instantaneous moments can be transformed as:

µ
i, j,k
yyy (t) =∑

n
∑
m

∑
l

Ri,n (t)R∗
j,m (t)Rk,l (t)µ

n,m,l
qqq (t)

µ
i, j,k,l
yyyy (t) =∑

n
∑
m

∑
o

∑
s

Ri,n (t)R∗
j,m (t)Rk,o (t)R∗

l,s (t)µ
n,m,o,s
qqqq (t) , (5.65)
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some care is required in the interpretation of these expressions, as R(t) without index stands for the modal
matrix from the Floquet representation, with components Ri, j (t) ; i, j ∈ N; while Rqq (t1, t2), with stochastic
variable index stands for the correlation function of the corresponding stochastic quantity.

4.2 Transformations of the adapted excitation

We now apply moment propagation to the adapted excitation p(t) = L(t)B(t) f(t) from the physical excitation
f(t), which we will assume to be nonstationary. We recall the fact that L(t) and B(t) are periodic with the same
period of the system. First, the mean is:

E [p(t)] =µµµ p (t)

µµµ p (t) =E [L(t)B(t) f(t)]
µµµ p (t) =L(t)B(t)µµµ f (t) , (5.66)

the second moment is:

E
[
p(t)pH (t)

]
=µµµ pp (t)

µµµ pp (t) =L(t)B(t)µµµ f f (t)BH (t)LH (t) , (5.67)

the correlation function:

E
[
p(t1)pH (t2)

]
=Rpp (t1, t2)

Rpp (t1, t2) =L(t1)B(t1)R f f (t1, t2)BH (t2)LH (t2) (5.68)

and the covariance function:

ΣΣΣpp (t1, t2) =L(t1)B(t1)ΣΣΣ f f (t1, t2)BH (t2)LH (t2) . (5.69)

Some peculiar facts emerge from this development concerning the adapted excitation. Let us assume that the
physical excitation has the form:

f(t) =


a1 (t,Ω) f1 (t)
a2 (t,Ω) f2 (t)

. . .
aN (t,Ω) fN (t)

 , (5.70)

where the ai (t,Ω) are deterministic modulating function, and each fi (t) is a stationary stochastic process. We
note:

• If ai (t,Ω) = ai is a constant, the excitation is stationary, the adapted excitation p(t) = L(t)B(t) f(t) will
be periodic with the same periodicity of the system.

• If ai
(
t +nTf ,Ω

)
= ai (t,Ω) is periodic with period Tf , the adapted excitation may or may not be peri-

odic, depending on the relationship between the period Tf and the period of the system Tp, that is their
commensurability.

• Since L(t) is, in general, a matrix function with complex values, the adapted excitation is usually com-
plex, too.
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• From a stochastic perspective, the adapted excitation will be a mixture of several input processes.

• As discussed in Chapter 3, the periodic eigenvectors are not unique, and the choice of integer in the
imaginary part that determines the characteristic exponent from the Floquet multipliers has an effect on
the shape of the eigenvector. This choice will impact the shape of the adapted excitation, which suggests
that for the study of the forced response through convolutional relationships, certain sets ΛΛΛ m formed by
the characteristic exponents ρk = αk + iσk and their associated periodic eigenvectors may be preferred
from a computational perspective. As shown in the example of Chapter 3, certain eigenvectors may have
a high-frequency oscillatory behavior as opposed to their counterparts from an alternative ΛΛΛ m, a behavior
that makes the evaluation of the corresponding convolution computations substantially more challenging.

Example Consider the following excitation over a 4-DOF Floquet system:

B(t) f(t) =


0
0

a1 (t,Ω) f1 (t)
a2 (t,Ω) f2 (t)

 , (5.71)

where, for exposition purposes, B(t) =
[

0
diag

[
M−1

]] and the time-varying terms have been assimilated into

a1 (t,Ω) and a2 (t,Ω); the adapted excitation has the form:

p(t) = a1 (t,Ω)


f1L13 (t)
f1L23 (t)
f1L33 (t)
f1L43 (t)

+a2 (t,Ω)


f2L14 (t)
f2L24 (t)
f2L34 (t)
f2L44 (t)


= a1 (t,Ω) f1Li,3 (t)+a2 (t,Ω) f2Li,4 (t) , (5.72)

where Li,3 (t) is the third column of L(t) corresponding to the third periodic mode. Considering h(t):

h(t) =


exp [ρ1t] 0 0 0

0 exp [ρ2t] 0 0
0 0 exp [ρ3t] 0
0 0 0 exp [ρ4t]

 , (5.73)

we can apply the previous developments, for instance considering the first moment of the adapted excitation:

µµµ p (t) =


µp1 (t)
µp2 (t)
µp3 (t)
µp4 (t)

 , (5.74)

the four convolution expressions to evaluate to obtain the modal forced response are:

µq1 (t) =
ˆ t

0
h1,1 (t − τ)µp1 (τ)dτ

µq2 (t) =
ˆ t

0
h2,2 (t − τ)µp2 (τ)dτ

µq3 (t) =
ˆ t

0
h3,3 (t − τ)µp3 (τ)dτ

µq4 (t) =
ˆ t

0
h4,4 (t − τ)µp4 (τ)dτ, (5.75)
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the second moments of the adapted excitation are:

µµµ pp (t) =


µp1 p1 (t) µp1 p2 (t) µp1 p3 (t) µp1 p4 (t)
µp2 p1 (t) µp2 p2 (t) µp2 p3 (t) µp2 p4 (t)
µp3 p1 (t) µp3 p2 (t) µp3 p3 (t) µp3 p4 (t)
µp4 p1 (t) µp4 p2 (t) µp4 p3 (t) µp4 p4 (t)

 , (5.76)

where: µpi p j (t) = E
[

pi (t) p∗j (t)
]
, µp j pi (t) = E [p j (t) p∗i (t)], letting pi (t) = pRe

i (t) + ipIm
i (t), and p j (t) =

pRe
j (t)+ ipIm

j (t) we have:

µpi p j (t) =E
[
pi (t) p∗j (t)

]
=E
[(

pRe
i (t) pRe

j (t)+ pIm
i (t) pIm

j (t)
)
+ i
(

pRe
j (t) pIm

i (t)− pRe
i (t) pIm

j (t)
)]

µp j pi (t) =E [p j (t) p∗i (t)]

=E
[(

pRe
i (t) pRe

j (t)+ pIm
i (t) pIm

j (t)
)
+ i
(

pRe
i (t) pIm

j (t)− pRe
j (t) pIm

i (t)
)]

µ
∗
p j pi

(t) =E
[(

pRe
i (t) pRe

j (t)+ pIm
i (t) pIm

j (t)
)
+ i
(

pRe
j (t) pIm

i (t)− pRe
i (t) pIm

j (t)
)]

µ
∗
p j pi

(t) =µpi p j (t) , (5.77)

or µµµ pp (t) is a hermitian matrix. The second moments of the modal forced response are obtained through the
following expression:

µµµqq (t) =
ˆ t

0

ˆ t

0


h1,1 (t − τ1)h∗1,1 (t − τ2)Rp1 p1 (τ1,τ2) h1,1 (t − τ1)h∗2,2 (t − τ2)Rp1 p2 (τ1,τ2)

h2,2 (t − τ1)h∗1,1 (t − τ2)Rp2 p1 (τ1,τ2) h2,2 (t − τ1)h∗2,2 (t − τ2)Rp2 p2 (τ1,τ2)

h3,3 (t − τ1)h∗1,1 (t − τ2)Rp3 p1 (τ1,τ2) h3,3 (t − τ1)h∗2,2 (t − τ2)Rp3 p2 (τ1,τ2)

h4,4 (t − τ1)h∗1,1 (t − τ2)Rp4 p1 (τ1,τ2) h4,4 (t − τ1)h∗2,2 (t − τ2)Rp4 p2 (τ1,τ2)

h1,1 (t − τ1)h∗3,3 (t − τ2)Rp1 p3 (τ1,τ2) h1,1 (t − τ1)h∗4,4 (t − τ2)Rp1 p4 (τ1,τ2)

h2,2 (t − τ1)h∗3,3 (t − τ2)Rp2 p3 (τ1,τ2) h2,2 (t − τ1)h∗4,4 (t − τ2)Rp2 p4 (τ1,τ2)

h3,3 (t − τ1)h∗3,3 (t − τ2)Rp3 p3 (τ1,τ2) h3,3 (t − τ1)h∗4,4 (t − τ2)Rp3 p4 (τ1,τ2)

h4,4 (t − τ1)h∗3,3 (t − τ2)Rp4 p3 (τ1,τ2) h4,4 (t − τ1)h∗4,4 (t − τ2)Rp4 p4 (τ1,τ2)

dτ1dτ2, (5.78)

another way of writing this result is by introducing the following matrix:

h2 (t1, t2) =


h1,1 (t1)h∗1,1 (t2) h1,1 (t1)h∗2,2 (t2) h1,1 (t1)h∗3,3 (t2) h1,1 (t1)h∗4,4 (t2)
h2,2 (t1)h∗1,1 (t2) h2,2 (t1)h∗2,2 (t2) h2,2 (t1)h∗3,3 (t2) h2,2 (t1)h∗4,4 (t2)
h3,3 (t1)h∗1,1 (t2) h3,3 (t1)h∗2,2 (t2) h3,3 (t1)h∗3,3 (t2) h3,3 (t1)h∗4,4 (t2)
h4,4 (t1)h∗1,1 (t2) h4,4 (t1)h∗2,2 (t2) h4,4 (t1)h∗3,3 (t2) h4,4 (t1)h∗4,4 (t2)



=


exp [ρ1t1 +ρ∗

1 t2] exp [ρ1t1 +ρ∗
2 t2] exp [ρ1t1 +ρ∗

3 t2] exp [ρ1t1 +ρ∗
4 t2]

exp [ρ2t1 +ρ∗
1 t2] exp [ρ2t1 +ρ∗

2 t2] exp [ρ2t1 +ρ∗
3 t2] exp [ρ2t1 +ρ∗

4 t2]
exp [ρ3t1 +ρ∗

1 t2] exp [ρ3t1 +ρ∗
2 t2] exp [ρ3t1 +ρ∗

3 t2] exp [ρ3t1 +ρ∗
4 t2]

exp [ρ4t1 +ρ∗
1 t2] exp [ρ4t1 +ρ∗

2 t2] exp [ρ4t1 +ρ∗
3 t2] exp [ρ4t1 +ρ∗

4 t2]

 (5.79)

and making use of the Shur or element-wise product RRRpp (t1, t2)⊙h2 (t1, t2), then:

µµµqq (t) =
ˆ t

0

ˆ t

0
RRRpp (τ1,τ2)⊙h2 (t − τ1, t − τ2)dτ1dτ2. (5.80)

A similar expression applies to the covariance function, for instance:
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Σq1q1 (t1, t2) =
ˆ t1

0

ˆ t2

0
h1,1 (t1 − τ1)h∗1,1 (t2 − τ2)Σp1 p1 (τ1,τ2)dτ1dτ2, (5.81)

with Σp1 p1 (τ1,τ2) the auto-covariance function of the first entry of the adapted excitation. As before, using
h2 (t1, t2) we obtain:

ΣΣΣqq (t1, t2) =
ˆ t1

0

ˆ t2

0
ΣΣΣpp (τ1,τ2)⊙h2 (t1 − τ1, t2 − τ2)dτ1dτ2. (5.82)

The matrix function h2 (t1, t2) expresses the interactions between all possible combinations of impulse response
components in the Floquet modal variable. It is analogous to the quadratic impulse response function found
in the corresponding literature pertaining to nonlinear systems, for instance, in [53] and [153]. A remarkable
conclusion from the preceding development is that the stochastic characterization of higher moments involves
higher-order generalizations of this function. From the example at hand, for instance, the third-order impulse
response will have the form:

hq1q2q3 (t1, t2, t3) = exp [(ρ1t1 +ρ
∗
2 t2 +ρ3t3)] (5.83)

where the quantity at hand is a third order tensor with 4×4×4 = 64 components.

5 Illustrative example

We now test the Floquet modal transformation approach developed in this chapter with a concrete example.
The Floquet system employed is the 2-DOF simplified system introduced in Chapter 3, with the ΛΛΛ 0 modal
representation consisting of the characteristic exponents: ρ1 = −0.0038+ i0.4926, ρ2 = −0.0038− i0.4926,
ρ3 = −0.26924+ i0.11058, ρ4 = −0.26924− i0.11058, and the corresponding periodic eigenvectors. For this
system, we remark that using the previously introduced extension to the critical damping ratio ξi =−Re(ρi)

∥ρi∥ , we
have ξ[1,2] = 0.0079 and ξ[3,4] = 0.9250. We subject the system to a Gaussian excitation vector constructed by
modulation of a stationary process. We will propagate the moments to define the input from this antecedent
Gaussian vector, apply the relationships established to describe the adapted load, and finally apply the convolu-
tion relationships to obtain the moments. Finally, we will use the PGHW representation to extract the EPSD of
the response.

5.1 Load description

Input load We consider the following input process on the interval [0,3Tp] with Tp = 5.4636s:

f(t) =
(

f1 (t)
f2 (t)

)
, (5.84)

the process f1 (t) is Gaussian and stationary:

f1 (t)→

{
µ f1 = 5000
µ f1 f1 = 2.5×107 (5.85)

and the process f2 (t) is obtained from modulation of another Gaussian stationary process, the first two moments
have the following form:

f2 (t)→

{
µ f2 (t) = 5000cos(1.15t)
µ f2 f2 (t) = 2.5×107 cos2 (1.15t)

. (5.86)
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Figure 5.11: Components of the covariance functions of input load

The second-order cross moments are µ f1 f2 (t) = µ f2 f1 (t) = 2.5× 107 cos(1.15t). The components of the co-
variance function are shown in Fig. 5.11.

We highlight the fact that the auto-covariance function of the first process is stationary, while the auto-covariance
function of the second, as expected, is similar to the modulated processes described at the beginning of this
chapter, a feature that propagates to the cross-covariance functions. The first moment of f(t) is thus:

µµµ f (t) =
(

µ f1
µ f2 (t)

)
, (5.87)

and the second moments are:

µµµ f f (t) =
(

µ f1 f1 µ f1 f2 (t)
µ f1 f2 (t) µ f2 f2 (t)

)
, (5.88)

the variances can be easily obtained from the covariance function as σ fi f j (t) =ΣΣΣ fi f j (t, t), or using the following
expressions:

σ f1 f1 =µ f1 f1 −µ
2
f1

σ f2 f2 (t) =µ f2 f2 (t)−µ
2
f2 (t)

σ f1 f2 (t) =µ f1 f2 (t)−µ f1 µ f2 (t) . (5.89)

Adapted load Applying the modal transformations on the load expressions Eq. 5.66 and Eq. 5.68, we obtain
the moments of the adapted excitation seen in Fig. 5.12 for the mean and Fig. 5.13 for the auto-correlation
components of the correlation matrix. As remarked previously, these probabilistic descriptors are now complex
quantities. The mean function of each pair of adapted load components µp1 , µp2 and µp3 , µp4 differ in their
imaginary part: one of the pair is the conjugate of the other; we can also notice a higher frequency of oscillation
in mean function for µp3 and µp4 , with a well-defined envelope.
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Figure 5.12: Mean of adapted excitation

5.2 Response and analysis

Two resolution methods have been used to determine the response of the system to the excitation:

1. MCS, in which the prescribed input process has been simulated, and the equation of motion has been
solved numerically for each realization, producing an ensemble of solutions from which statistical ap-
proximations of the response can be drawn. For this application, 10,000 samples have been generated in
the [0,3Tp] interval, with null initial conditions. The numerical algorithm for the resolution is Matlab’s
ODE113, which is an implementation of the Adams-Bashforth-Moulton method of order 1–13.

2. The convolution solution is obtained by applying formulas Eq. 5.47, Eq. 5.50, Eq. 5.52, and Eq. 5.51 to
the previously described adapted excitation and with the corresponding impulse response depending on
the characteristic exponents of the system.

We use the MCS as a reference to test the consistency of the convolution relationships established earlier. The
choice of 10,000 samples has been made under stochastic convergence and computational resources considera-
tions; the mean and variance obtained from increasing samples are shown in Fig. 5.14. One of the advantages of
the convolution approach relates to the computational cost incurred with respect to MCS. To offer some perspec-
tive, the total time required to complete the MCS resolution with 10,000 samples was tcomp,MCS = 461.76s with
14 parallel cores, without accounting for the time incurred in computing the statistics of the ensemble. The con-
volution response required tcomp,conv = 239.68s accounting for load adaptation 134.31s and proper convolution
time 105.37s. In addition to this significant time saving, additional advantages can be noted: no convergence
considerations are required for the convolution method, as the moments are propagated directly from the inputs
and not from an ensemble, whereas tcomp,MCS scales with the number of samples; tcomp,MCS is very sensitive to
the integration length [0,3Tp], if a long observation time is required then the MCS time becomes prohibitive,
while the convolution computation also scales with the length of the signals involves, this scaling is less pro-
nounced.
From Fig. 5.15, we can draw several important conclusions about the behavior of the system and the particular-
ities of each solution. The mean functions are not periodic on Tp due to the presence of transient components
of the solution, however some trends are apparent. Consider the temporal average of the mean function in the
observed interval, that is: µ̄x =

1
3Tp

´ 3Tp
0 µx (t)dt, which is approximately 0.0247, and it represents a constant
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Figure 5.13: Auto-correlation functions of adapted excitation
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Figure 5.14: Convergence in mean and variance

value around which the mean µx (t) oscillates; conversely, µqs (t) does not show a similar oscillation around
a constant value, but it features a moving average over which smaller oscillations occur. This behavior is a
manifestation of the fact that the DOF x is perturbed by a stationary process, while qs is perturbed by a cyclic
process; in fact, the moving average of µqs (t) is approximately µ̄qs (t) = 7cos(1.15t), the same shape as the
mean excitation with an adjusted magnitude that reflects the amplitude of the response of the system. These
quantities can be visualized in Fig. 5.16.
The second moments in Fig. 5.17 show a similar pattern: transient components at the beginning of motion,
which subside as time progresses; the second moments also display similar behavior to the one studied in
Fig. 5.2 concerning the halving of periods. As explored in the first section of the chapter, this halving of the
period has its origins in the products of sinusoidal periodic terms involved in the moments of second order
(central and non-central). From Fig. 5.18, the halving of the period can be seen in the variance of qs, but not in
the variance of x; in fact, σxx (t) displays a behavior that is analogous to the rise of variance in LTI stochastic
processes ([85], [104]) and has been noticed in LTP systems in previous works1 ([131]).
The rise of variance, along with the decrease of the mean, can be explained in terms of the characteristic
exponents of the system and the transient-steady-state formulation of the response introduced in Eq. 5.43. The
total stochastic response is:

xtotal (t) = xh (t)+x f (t) = xh (t)+x(tr)f (t)+x(ss)
f (t) , (5.90)

from where we can see that the total transient response is x(tr)total (t) = xh (t)+x(tr)f (t). The part of the response
xh (t) depends on the initial conditions of the dynamical problem, and so by making x(t0) = 0 one has xh (t) = 0,
leaving x(tr)total (t) = x(tr)f (t). As motion evolves, x(tr)total (t)→ 0 through dissipation mechanisms in the system. In
stochastic terms, the mean of the response decreases with time because the transient component goes to zero;
it is a deterministic behavior that is preserved in the stochastic case. This reasoning can be justified further by
considering that for linear systems, the mean of the response ensemble to an ensemble of realizations of a load
is equal to the response of the system to the mean function of the load. The rate at which x(tr)total (t) decays is

1In the work of Spires and Sinha, a zero-mean load is considered, so σxx (t) = µxx (t).

143



Figure 5.15: Mean response, MCS vs. Convolution

directly linked to the quantity ξi =−Re(ρi)
∥ρi∥ : as this quantity increases, so does the rate at which x(tr)total (t) decays,

and the steady-state regime is approached faster.
In the case of the rise of variance, at t0, the system is fixed in the configuration x(t0) = x0, so in t0, there is
no randomness and consequently no variance. As motion evolves, the variability in each realization of the load
manifests in the response, causing the variance to increase. As x(tr)total (t) goes to zero, the variance decreases
in magnitude again until it stabilizes when the steady state is reached. In Fig. 5.18, σqsqs (t) reaches a peak at
around t = 0.12s and then decreases, converging on the halved period pattern observed in the early example
Fig. 5.3, this fast arrival at the steady-state comes from the fact that ξ[3,4] = 0.9250. In the case of σxx (t), the
variance is increasing during the entire observation time; the steady-state is far from being reached given that
ξ[1,2] = 0.0079.
The understanding of the stochastic response in the terms established in this subsection has far-reaching impli-
cations from an analysis and design perspective (problems of type A and type B). Considering the link between
mean, variance, and the occurrence of extreme events, this development suggests the existence of two regimes
of interest: a transient regime, early in the time-evolution of the system where mean and variance undergo peak
values, resulting in high probabilities of threshold crossings; and a steady-state regime that is more representa-
tive of the long-term response of the system and features considerably lower values for mean and variance.
The correlation functions of both methods are compared in Fig. 5.19, with good agreement between both solu-
tions. The correlation of the base variable shows a structure similar to the ones exemplified at the start of the
chapter, while the blade variable contains an additional modulation that is more clearly visualized in Fig. 5.17
since:

µqsqs (t) = Rqsqs (t, t) , (5.91)

so looking at the second moment is equivalent to looking at a slice of Rqsqs (t, t) along the t1 = t2 = t line.
In terms of applications, consider the blade modal variable qs = qs

1: we can write the mechanical moment at the
root of the blade adapting Eq. 2.76 with Nmodes = 1, IY Z = 0: MRBM

s (t) =−EIZZϕ ′′s
1 (0)qs

1 (t), the probabilistic
moments of this key design variable are readily available from the results established by simple arithmetic
operations. The response stochastic process MRBM

s (t) can then be treated for design or analysis purposes using
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Figure 5.16: Mean functions, average and moving average

Figure 5.17: Second moments of response, MCS vs. Convolution
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Figure 5.18: Variances of response, MCS vs. Convolution

the established convolution relationships. In fact, the transformation expressions introduced in Chapter 4 reveal
that, for this simplified example, the moments of MRBM

s (t) differ from those of qs
1 by a multiplicative constant.

This approach will be used later in the modeling of a more realistic system.

PGHW analysis and EPSD To conclude the example, we will make use of the sampled transient response
to obtain the EPSD with the PGHW family of Wavelets as expressed in Eq. 5.61. The procedure consists of
projecting each realization of the response in the PGHW basis, obtaining the corresponding wavelet coefficients,
at which point the Wavelet coefficients are treated as random variables: the expected value of the square of their
absolute value results in a local description of the PSD, an EPSD, for the corresponding time and frequency
intervals of a particular coefficient. The PGHW parameters are collected in Tab. 5.3; these have been chosen
in such a way that: 1) each realization is well described in the associated Wavelet series; 2) a reasonable time-
frequency resolution is obtained.

An important aspect of the technique used to estimate the EPSD using PGHW is ensuring that the wavelet pa-
rameters selected result in a family of basis functions that accurately approximate each sample of the studied
stochastic variable. A concrete way of verifying this requirement is by applying the wavelet reconstruction for-
mula Eq. 3.42 and comparing the reconstructed response with the original. Formula Eq. 3.42 and the traditional
PGHW formulation is applicable to zero-mean2 functions, so the function is transformed to zero-mean before
applying the corresponding wavelet integral transform. We will proceed in the traditional form since our goal
is PSD estimation, which, by virtue of its relationship with the covariance function, traditionally ignores mean
components on signals. It is important to highlight that it is possible to modify formula Eq. 3.42 to include a so-
called constant level Wavelet coefficient that accounts for the mean component of the signal. Indeed, the classic
text of Newland [95], as well as more recent publications such as [18], integrate this constant level coefficient
for HW and PHW families, respectively. In Fig. 5.20, we present the comparison between one realization of the
solution to the example under study and the respective PGHW reconstruction. The close agreement between
function and reconstruction shows that the parameters selected are adequate and further illustrate that the cal-
culated Wavelet coefficients used to approximate the EPSD capture the key information in the processes they

2Here, zero-mean is used in the signal or functional sense, not in the stochastic sense.
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Figure 5.19: Auto-Correlations of response, MCS vs. Convolution
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Parameter Value
Nt 10
N f 125
T0 3TΩ

Table 5.3: PGHW parameters for EPSD estimation

Figure 5.20: PGHW reconstruction for the selected realization of the response

represent.
In Fig. 5.21, the EPSD of the selected DOFs are displayed. The base DOF features an almost constant PSD
in time, except for the rapidly decaying frequency component close to the 0.5Hz mark. On the other hand, the
blade DOF has an oscillating amplitude in the 0.30Hz, which goes from 0.82 to 0.85, and a rapidly decaying
frequency component in the 4−5Hz frequency band.
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Figure 5.21: Transient EPSD by PGHW
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Chapter 6

Application: reliability of a tidal turbine
model

“Without the Principia, for example,
measurements made with the Atwood machine
would have meant nothing at all.”

Thomas S. Kuhn, The Structure of Scientific
Revolutions

This chapter applies the results obtained throughout this work to the concrete problem of studying the reliability
of a tidal turbine subjected to hydrodynamic force driven by wave, current, and ambient turbulence. First,
some perspective of the tidal turbine domain is provided in the first section. The reliability problem is also
formulated, and the main concepts at play are introduced. Second, the dynamical model developed in Chapter
2 is parametrized to describe an arbitrary tidal turbine, and its Floquet modal representation is obtained. The
third section describes the underlying velocity field’s modeling particulars that induce the hydrodynamic force.
Finally, section four compiles the relevant results: moment propagation in Floquet modal form, time-domain
ODE-based MCS, Floquet-based spectral MCS for the steady-state regime, the corresponding EVD estimation
by each method with the associated reliability prediction, and the PGHW estimation of the EPSD of the design
variable in the transient regime.

1 Background

1.1 Tidal stream turbines

The demand for renewable and reliable energy sources has led to major research efforts on tidal stream power.
Tidal stream turbines are subjected to very complex loads given their environment of operation, involving such
effects as waves, tidal cycles, and turbulent flow, a complexity that warrants the application of stochastic tools
to describe the intricacies of these phenomena. The feasibility of this ongoing development rests upon the
available energy potential and the reliable operation of the generators in terms of efficiency and integrity. These
facts underscore the relevance of developing advanced tools to apply in the design process of tidal stream
turbines, such as stochastic descriptions of the oceanic medium and reliability-based methodologies that permit
a more robust design.

As discussed in [140], major failure modes in technology deployments are those of blades and supporting
structure. In recent years, important research efforts have gone into developing a more detailed understanding
of the different loads involved during the operation of tidal stream turbines in terms of extreme loads and
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Figure 6.1: Methodology of the application
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fatigue. These investigations include scaled experimental tests as well as computational simulations. We now
turn to some key results from the recent literature to provide context. In [29], an experimental investigation
is carried out on a scaled tidal turbine to assess the extreme loads of the structure produced by waves. The
NewWave group methodology is utilized to produce the most probable extreme wave associated with a given
elevation spectra, and the quantities analyzed include the power, root-bending moment (RBM), thrust, and
overturning moments at the base of the supporting structure. The results show an important effect of waves on
the extreme loads on both blade and support. The wave-current-turbulence effect on thrust, power, and RBM
is investigated in [80] using numerical simulation, and it is demonstrated that neglecting this interaction leads
to important discrepancies between the predicted values and the observed ones. It is found that the current-
turbulence interaction can not be neglected and that turbulence plays a major role in the loading of the structure.
These results are consistent with the finding in [126], where experimental tests are performed on three scaled
prototypes to establish the effects of turbulence on turbine loads, and it is found that increased turbulence
is a major driver of load fluctuation; more broadly, an earlier experimental investigation presented in [41]
demonstrates how wave effects are a major driver of fatigue over the blades, while also highlighting the fact that
the main effect of current-wave interaction is found in the variance of the response. In [55], three approaches are
contrasted: CFD simulation, the traditional BEM method, and experimental results from which the simulation
conditions were established. Three wave types were analyzed. While the results again show the effects of
waves on fatigue considerations found in later works mentioned before, this particular work highlights the steep
computational cost of performing detailed simulations, as various simplifying assumptions had to be applied
to reduce computation time. More recent studies, such as [117] , have shed more light on the complex effects
of realistic flow conditions on the loading over blades, including not only wave and high ranges of turbulence
but also flow misalignment with the turbine; in [26], the effects of blade deformation on the hydrodynamic
characteristics are analyzed, showing an effect on performance, and in loads affecting the blades. These results
demonstrate 1) the necessity for schemes that permit a complex description of the flow, including wave, current,
and turbulence contributions; 2) the importance of taking into account deformations on blades.
In addition to the previous advances, some efforts have been focused on the study of the reliability of the blades
of tidal or hydrokinetic turbines: [58] studies the reliability of composite blades of a hydrokinetic turbine using
sampling techniques and finite element analysis to determine the response, the randomness of the river flow and
material properties are considered, and Stochastic Polynomial Chaos is used to construct a surrogate model to
then apply the time-dependent reliability analysis on the output of this surrogate. In [139], a probabilistic model
is constructed to model the reliability of pitch-controlled tidal turbines considering turbulence. The failure mode
under consideration is the extreme bending moment in the flapping direction.

1.2 Time-dependent reliability

A time-dependent reliability problem has the form:

G(t) = R(t)−S (t) , (6.1)

where G(t) is termed limit-state or performance function, R(t) is the available resistance, and S (t) is the re-
sponse, or design variable; the safety region corresponds to G(t) > 0. The failure criteria are described using
the performance function, with the condition G(t)≤ 0, so the probability of failure in the observed time interval
[0,T ] is:

Pf (0,T ) = P [G(t)≤ 0, t ∈ [0,T ]] . (6.2)

If the Extreme Value Distribution (EVD) of S (t) is known or can be estimated, SM = Max[0,T ] [S (t)], PSM is the
CDF of the random variable SM , then:

Pf (0,T ) = 1−PSM (ϖ)

Ps (0,T ) = PSM (ϖ) (6.3)
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is an alternative formulation of the desired probability, where Ps is the reliability and ϖ ∈ Ω is the set of events
such that SM does not surpass the set threshold or available resistance R(t). Assuming that the occurrence
of the extreme sea state is a rare event over the design life of the system and making use of their statistical
independence, one can further describe the reliability of the system in its total expected service life:

P∗
s = (PSM ( f ))α (6.4)

with α the total number of occurrences of the specified state during operation life. Traditionally, R(t) is used
in reliability analysis to describe material degradation over time through mechanisms such as corrosion. This
is the most common source of time-dependent reliability found in the literature. Conversely, S (t) describes the
response and is often taken as a random variable.

Adapting Eq. 6.1 to our problem entails:

G(t) = R−S (t) , (6.5)

where:

• The maximum available stress R is constant, given that no material degradation is considered.

• The response S (t)is a nonstationary non-Gaussian stochastic process. The nonstationarity is a conse-
quence of it being a linear combination of the response of an LTP system and also because of the non-
stationarity of the load vector, which will be expanded on in the next section; the non-Gaussianity is
a consequence of the non-Gaussian load vector, a consequence of the nonlinear load models at play to
describe the fluid-structure interactions, as shown in Chapters 4 and 5 for the Morison model.

The challenge of solving the reliability problem is accurately evaluating Eq. 6.2 from the available response
variable characterization S (t). The main difficulties arise from the nonstationary and non-Gaussian nature of
the response.

More broadly, time-dependent reliability analysis has seen much attention in the past decade. We briefly remark
on some related developments:

• In [58], a simulation approach is taken to assess the reliability of a hydrokinetic turbine. The failure mode
considered is the Tsai–Hill criterion for fatigue on composite blades. The challenges of nonstationarity
from a computational perspective are discussed. The FORM method is applied to the simulation results.
A major conclusion is the importance of the environmental load description (the river variability in their
case study) to correctly assess the reliability indicator.

• In [57], the JUR/FORM method is introduced, standing for Joint Upcrossing Rate/First-Order Reliability
Method; the method extends the FORM approach to a broad class of time-dependent limit-state functions.

• In [139], a problem close to ours is considered; the approach consists of a logarithmic fitting of the
bending moment of the blade to the flow input velocity. The flapwise direction is considered, and and the
results apply to pitch-controlled turbines. Only turbulence is considered in this case.

• In [45], the NEWREL procedure is introduced and contrasted with two broadly used methods: direct
MCS and the PHI2+ ([133]). Roughly speaking, this methodology approximates the response process
as a series of random variables at discrete time instants, and the limit-state function is evaluated for
each instant in time. The total limit-state is obtained by considering each discrete limit-state as a series
reliability system.
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Parameter Value Parameter Value Parameter Value
Kx1 1.2×107[Nm−1] Ky1 2.1×107[Nm−1] Kz1 2.3×107[Nm−1]

Kx2 1.3×107[Nm−1] Ky2 2.2×107[Nm−1] Kz2 2.4×107[Nm−1]
L1 0.5[m] L2 1[m] Rr 1[m]

Mr 10000[kg] Jp 5×103[kgm2] Jd 3.75×103[kgm2]

Table 6.1: Disc-shaft parameters

Parameter Value[units]
N blades 2

Aρ 352[kgm−1]

EIZZ 3.5×108[Nm2]

EIYY 6.95×108[Nm2]
Lb 9[m]

Table 6.2: Blade parameters

2 System description

2.1 Dynamical model

The dynamical model used in this section has been described in Chapter 2, consisting of 21 DOF: 5 DOF
corresponding to the disc-shaft, three translations, and two tilt or angular variables; 2 blades deforming in
spanwise and flapwise direction, each discretized with four mode shapes per blade per direction. The system is
lightly damped, and the spin is constant, set at Ω = 1.5

[ rad
s

]
. The resulting equation of motion of this system

corresponds to an LTP system of form:

M(t) ẍ+G(t) ẋ+K(t)x = f(x, t) , (6.6)

where the corresponding matrices are such that M(t) = M(t +nTp) ,n ∈ N, and similarly for G(t) and K(t),
and f(x, t) is a nonstationary non-Gaussian stochastic vector of loads. This class of model emerges in the
description of physical systems combining rotors and continuum media undergoing vibrations, as is the case
of the rotor-blade model in which a disc or hub rotates with large angles around a main spin axis, with blades
attached radially, the latter being described as beams or plates that vibrate in the two transverse directions.
The detailed structure of the matrices in Eq. 6.6 is provided in Annex A; we will briefly comment on some
aspects of the parameter selection. The disc-shaft and support parameters are displayed in Tab. 6.1, where the
base stiffnesses have been chosen so that the underlying rotor is anisotropic, implying that there will be angular
coupling on the equivalent stiffness matrix. The total turbine rotor diameter is 20m, with a disc diameter of
2m and a blade length of 9m. The blade parameters are presented in Tab. 6.2. The parameter selection is a
simplification of the profile studied in [10], adapted to our dynamical model and blade discretization scheme;
unlike this reference, the profile is assumed to be uniform and rectangular, and the material behavior is assumed
to be isotropic. In our case, the quantity Aρ is equivalent to the mass per unit of length used in the reference, for
one blade: AρLb = 3168 [Kg] is its total mass. Similarly, with the equivalent properties E = 10 [GPa] and IYY =
6.67

[
m−4

]
, IZZ = 3.36

[
m−4

]
, the prescribed products EIYY = 6.95×108[Nm2] and EIZZ = 3.5×108[Nm2] are

satisfied.
A simple diagonal damping matrix has been considered for the application, ensuring light damping of each
degree of freedom. For the disc, the damping parameters are of the order of 103Nsm−1, and for the blades
of 101Nsm−1. General damping values for this application are not widely found in the literature but provide
an adequate characterization; for instance, in the case of an experimental prototype, these values can be easily
integrated into the model. In this sense, the model presented here should be interpreted as describing a generic
tidal turbine, and it can be adapted to more concrete studies that provide adequate characterization.
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Two other known fluid-structure interaction effects have been ignored in our model: the added mass and hy-
drodynamic damping. The added mass effect results from the volume of fluid displaced by the structure under
accelerated motion, and it manifests in an additional unsteady load component that can be expressed as an ad-
ditional mass contribution. This effect results in a higher effective mass parameter and consequently tends to
reduce the response frequency of the blades ([155]). Hydrodynamic damping results from the fluid’s viscous
properties being displaced by the structure. It can be described as an additional term on the velocity-dependent
system matrix; it tends to extract energy from the system just like conventional structural damping. The added
mass and hydrodynamic damping effects are sensitive to the amplitude of the motion that displaces the cor-
responding fluid volume. Consequently, these effects are particularly pronounced in floating horizontal axis
tidal turbines since this type of support results in important structure displacements due to surge motion in the
free surface. Considering these two effects requires the coupling between the fluid dynamic equations in the
vicinity of the structure and the dynamic equations of the structure, which results in a steep computational ex-
pense. Recent investigations in the literature have aimed their efforts at estimating these effects by deducing
compensatory added mass and hydrodynamic damping matrices that modify the value of the structural matrices
and circumvent the need for coupled resolution; these results, however, are highly dependent on the prescribed
displacement motion (See for instance: [97] and [23]). Our choice to ignore these effects is based on two main
considerations: first, as previously argued, we aim to describe a generic situation and leave the study of more
specialized conditions to further studies; second, the small displacement regime under which our case study
evolves warrants the assumption that these effects will be negligible. One final and obvious simplification in
our model is the neglect of the gravitational force over the turbine, the reasoning being the counteracting static
lift force exerted by the fluid.
System Eq. 6.6 can be cast into state form:

ẏ =A(t)y+B(t) f(t)

A(t) =
[

0 I
M−1K M−1G

]
(6.7)

B(t) =
[

0
M−1

]
,

which will serve as the basis of our analysis: on the one hand, this system can be integrated numerically to
provide the Floquet modal characterization of the system using the methods presented in Chapter 3; on the other
hand, direct integration can be used in a MCS approach to obtain samples of the solution in state variables. The
Eq. 6.6 can be supplemented with an observability matrix C which allows the recovery of mechanical quantities
of interest in design and analysis:

S(t) = Cy(t) , (6.8)

where S(t) is the response in Eq. 6.5, in reliability terms it is the response, in a dynamics and control sense it
is an observed quantity, and in an applied sense it is a design variable. For simplicity, we will consider a single

design variable: S(t) =
(

S1 (t)
0

)
. Following the developments in subsection 4.3 of Chapter 2, the selected

design variable in this chapter is the magnitude of the maximal normal stress due to the combined effects of
spanwise and flapwise root bending moment:

S1 (t) = σ
RBM
x (t)

=

∣∣MRBM
s (t)

∣∣
IZZ

(
h
2

)
+

∣∣∣MRBM
f (t)

∣∣∣
IYY

(
b
2

)
, (6.9)

where 2.78 is being utilized, the blade cross-section is symmetric (IZY ≈ 0), and given the slow spin velocity of
this type of system, the centrifugal axial stress is neglected.
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Figure 6.2: Characteristic exponents with integer multiple of imaginary part zero (group zero)

Exponents ∥ρi∥
2π

[Hz] −Re[ρi]
∥ρi∥ Exponents ∥ρi∥

2π
[Hz] −Re[ρi]

∥ρi∥ Exponents ∥ρi∥
2π

[Hz] −Re[ρi]
∥ρi∥

1, 2 0.0310 0.0157 15,16 0.0868 0.0835 29,30 0.0673 0.1007
3,4 0.0647 0.0103 17,18 0.0908 0.0996 31,32 0.0256 0.9847
5,6 0.0821 0.0821 19,20 0.0470 0.1542 33,34 0.0297 0.412
7,8 0.0770 0.1046 21,22 0.0515 0.1328 35,36 0.0325 0.3478

9,10 0.1020 0.1361 23,24 0.0623 0.2539 37,38 0.01 1
11,12 0.1120 0.0892 25,26 0.0571 0.1613 39,40 0.0129 0.9796
13,14 0.1177 0.1029 27,28 0.0654 0.2219 41,42 0.0306 0.4439

Table 6.3: Frequency and damping ratio associated with each conjugate pair of characteristic exponents in set
zero

2.2 Modal analysis

The Floquet-Lyapunov approach has been applied to the system, providing the characteristic exponents for
group zero, the state transition matrix, and the corresponding periodic modes of the system. The set ΛΛΛ 0 of char-
acteristic exponents is shown in Fig. 6.2 on the real-imaginary plane. Additionally, in Tab. 6.3, the frequencies
and associated damping factors are shown for every conjugate pair of characteristic exponents of the set. The
system is stable as every real part of every exponent is on the left half of the plane; that is, every characteristic
exponent has a negative real part.

Some visualization and simplification will be imposed to analyze the periodic modes. For each selected mode,
the real and imaginary part of each degree of freedom is illustrated for one period. The imaginary part is always
shown right underneath the corresponding real part. For each mode, the displacement degrees of freedom are
displayed; moreover, the representations have been divided: the DOF associated to the disc-shaft are shown in
the top left-most square; followed by the spanwise and flapwise modal DOF of the first blade; in the following
row, the spanwise and flapwise DOF of the second blade are displayed. The legend provides some reference
for which quantities are in display: qs

1,2 denotes the spanwise variable of the first blade, second mode shape, for
instance. Given the large size of the system and the fact that many modes display similar behavior, the analysis
presented is restrained to one representative mode for each type of behavior.

1. The first mode, Fig. 6.3, shows the participation of translational and rotational DOF in the disc except for
Gz, as well as the lower flapwise and spanwise mode shapes of the blades.

2. The sixth mode, Fig. 6.4, is dominated by the spanwise blade motion, although the translational DOF of
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Figure 6.3: First periodic mode

Figure 6.4: Sixth periodic mode
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Figure 6.5: Ninth periodic mode

Figure 6.6: Seventeenth periodic mode

159



Figure 6.7: Nineteenth periodic mode

the disc and the lower flapwise mode shapes of the blades show some motion; this mode resembles the
planar motion of this type of system.

3. The ninth mode, Fig. 6.5, is a coupled flapwise and Gz mode, with some spanwise motion present in the
higher mode shapes; a remarkable feature is the high oscillation frequency.

4. The seventeenth mode, Fig. 6.6, is another form of coupled motion dominated by the translation of the
disc and the lower mode shapes of each blade; a distinguishing feature is the well-defined envelope on
each active DOF.

5. The nineteenth mode, Fig. 6.7, is a form of coupled motion involving predominantly the angular DOF
of the disc and some of the higher mode shapes of the blades in spanwise and flapwise directions; the
angular DOFs seem to have a 1

4 delay with respect to one another.

More broadly, some general behaviors seem to hold: modes dominated by DOF with lower frequencies, such
as the translational DOF of the base, oscillate with low frequencies regardless of the observed DOF; those
dominated by higher frequency DOFs contain some combination of fast fluctuation and modulated behavior
across active DOFs.

Another important observation about the modal analysis of the system concerns the nature of the periodic
modes. Broadly accepted interpretations of LTI modes involve the ratio of amplitudes among the DOF remain-
ing constant, for instance [111], or that of synchronous motion patterns such as [87] or [43]. In the case of
periodic modes, the previous interpretation does not hold, and as seen in Chapter 3, the relationship between
the frequency content among the modes seems more relevant.

3 Load modeling and simulation

3.1 Preliminaries

The load acting over a tidal turbine arises from the interaction of the structure with the fluid flow of the oceanic
medium, a complex phenomenon to which several environmental events can substantially contribute to 1) the
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surface elevation of the ocean in which waves are propagating, 2) submarine current, 3) turbulent flow patterns
that can be the result of different conditions, for instance the flow disruption by the interaction of other struc-
tures, as is the case in tidal farms where several devices are installed. The determination of the loads over the
structure then requires the description of these quantities and their interactions. The complexity and variability
of some of these quantities make the choice of a stochastic description fit, provided that enough information
about these processes is available. Once the effective velocity perceived by the structure has been determined,
the following expression provides the hydrodynamic load [115] 1:

F(Xb, t) =
1
2

ρwc(Xb)VVV 2
rel (X, t)C(Xb) (6.10)

where ρw is the density of the fluid, c(Xb) is the local cord, C(Xb) contains the local lift and drag coefficients
that are empirical descriptors of a given hydrodynamic profile, and VVV rel (X, t) is the relative velocity of the
flow with respect to the point of interest over the blade Xb. F(Xb, t) is the distributed load in the lift and drag
directions. Notice here that VVV rel (X, t) is the relative velocity of the flow with respect to the rotating structure.

We will briefly inspect the construction of VVV rel (X, t) from the perceived velocity field VVV (X, t). Let VVV (X, t) be a
spatio-temporal stochastic field on {Ω ,F ,P} describing the velocity of the fluid flow on the ocean environment.
We make the following hypotheses about this field:

• The field is unidirectional: VVV (X, t) =

 0
0
Vz

 ;∀(t,X).

• The field has finite moments E [VVV (X, t)n] = µVn(X) < ∞.

• It is a Gaussian, stationary field E [VVV (X, t)] = µV(X,t1) = µV(X);Var [VVV (X, t)] = σV(X,t)V(X,t) = σV(X)V(X).

• The field is homogeneous in the X and Z directions, so VVV (X, t) = VVV (Y, t).

• A diagram of the velocity field under these assumptions and in the inertial reference frame of the rotor-
blade system is shown in Fig. 6.8 for various time instants of an arbitrary realization of the stochastic
field.

The unperturbed velocity of the fluid is VVV (X, t) =

 0
0

−Vz

 in the inertial referential, with norm ∥VVV (X, t)∥ =√
V 2

z . From the Blade Element Momentum theory, this velocity becomes:

VVV (X, t) =

 0
0

−(1−aZ (Xb))Vz

+
−aX (Xb)Ω(Rr +Xb)

0
0


=

−aX (Xb)Ω(Rr +Xb)sin(Ωt)
0

−(1−aZ (Xb))Vz

 , (6.11)

the corresponding induction factors that account for the changes in momentum on the flow: ax (Xb) , aZ (Xb);
now taking into account the velocity ṖO of a point on the blade in the inertial referential:

ṖO = Ω

−(Rr +Xb)sin(Ωt)
(Rr +Xb)cos(Ωt)

0

 , (6.12)

1the following equation is the vector form of the couple of equivalent relations used, for instance, in lift and drag components

161



Figure 6.8: Visual representation of velocity field with inertial reference

we compute the relative velocity as follows VVV rel (X, t) =VVV (X, t)− ṖO:

VVV rel (X, t) =

−(aX (Xb)+1)Ω(Rr +Xb)sin(Ωt)
−Ω(Rr +Xb)cos(Ωt)
−(1−aZ (Xb))Vz

 , (6.13)

since Eq. 6.10 requires the square of the velocity, we have:

VVV 2
rel (X, t) =

1
8
(
8Ω

2a2
x (Xb +Rr)

2 sin2(tΩ)+16Ω
2ax (Xb +Rr)

2 sin2(tΩ)+8V 2
z a2

z

−16V 2
z az −8RrΩ

2Xb cos(2tΩ)−2RrΩ
2Xb cos(4tΩ)

+10RrΩ
2Xb −4Ω

2X2
b cos(2tΩ)−Ω

2X2
b cos(4tΩ)+5Ω

2X2
b

− 4R2
r Ω

2 cos(2tΩ)−R2
r Ω

2 cos(4tΩ)+5R2
r Ω

2 +8V 2
z
)
, (6.14)

this shows that VVV 2
rel (X, t) will not, in general, be a stationary field, even if VVV (X, t) is stationary; the nonstation-

arity of the load emerges, as in the previous chapter, from the relative motion of the rotating system.

The resolution of Eq. 6.13 involves an iterative procedure that amounts to enforcing momentum equilibrium
over some idealized ring elements representing the rotor. This approach is based on considering a turbine fixed
in space and with rigid blades. Before discussing the modeling of the velocity fieldVVV (X, t) from its antecedents,
some thought should be placed in the justification of our approximation of the loads given that our model is not
fixed in space and the blades do undergo deformation. The system occupies the following positions:

x(ti) , ti = ti−1 +∆t,(t, ti) ∈
[
T0,Tf

]
, (6.15)

but the positions depend on the forces induced by the velocity x(ti) = f(VVV (x(ti) , ti) , ti), and since the x(ti)
are the unknowns of our problem, this couples the simulation and resolution steps of the procedure. Some
simplifications are imposed to escape this limitation:
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1. The resolution of Eq. 6.13 is carried out assuming a fixed, rigid rotor with a similar geometry to the one
described by the dynamical system.

2. With the solution from the previous step, Eq. 6.10 is applied to compute the loads acting at discrete points
over the rigid rotor, providing a field of hydrodynamic forces.

3. The hydrodynamic force field is used as the load vector of our dynamical system.

This approach is akin to approximating the deformable system as rigid for load determination. The accuracy of
this approach will be determined by the amplitude of the displacements x(ti) and the correlation and continuity
properties of VVV (X, t). To see this, consider the following notion of continuity ([114]):

lim
t1→t2

E
[
|V (t1)−V (t2)|2

]
→ 0

(6.16)

in terms of sample paths. If t1 → t2, then V (t1,ϖ)→ V (t2,ϖ) “for almost all ϖ” and if V (∗,ϖ) is continuous,
the process is said to be continuous in sample paths. In the case of a field:

lim
x1→x2

E
[
|V (x1,t)−V (x2, t)|2

]
→ 0,∀t,

(6.17)

or in terms of the correlation function:

RV(x1)V(x2) (t1, t2) =
¨

L2
V(x1, t1)V (x2, t2) pVV (V(x1, t1),V (x2, t2))dx1dx2, (6.18)

freezing time:

RV(x1)V(x2) (t, t)→ 1,∃L = (x1 − x2) , (6.19)

in words: if the input velocity field has a spatial correlation structure with a characteristic length L that satisfies
the previous expression, two constituent stochastic processes of this field at a spatial separation L = (x1 − x2)
have an arbitrarily high correlation. In this case, the process in x1 provides a good approximation for the
process in x2. Since the dynamical system undergoes small vibrations, given that this is a prerequisite for the
operational condition of the device, this approximation appears justified. Empirically, the order of magnitude
of the displacements of the disc-shaft is at most 10−2m, while spatial correlation is in the order of 101m. The
physical interpretation of this development is that the velocity field, even though a stochastic quantity, needs to
conform to continuity relationships that bind its spatial and temporal variability to provide a hydrodynamically
sound model. If these continuity conditions are met, then the error in the proposed approximation is small.

3.2 modeling the velocity field

We will adapt Suptille’s [134] generalized stochastic description of the velocity field with wave-current inter-
action, to which an ambient turbulence component is superimposed. A similar procedure is adopted in [80],
although we find the present development somewhat more general given the generalized representation of the
component processes, particularly the surface elevation. The quantities involved are:

1. Intrinsic surface elevation ηint (x, t), characterized by its omnidirectional PSD Sηint ηint ( f ).

2. The spread function D( f ,β ), from which the directional PSD is obtained.
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3. The perceived particle velocity due to ηint (x, t), or V (z, t), and its intrinsic counterpart Vint (z, t).

4. The current u(t).

5. The ambient turbulence component Sturbulence
VV ( f ).

Given a surface elevation process ηint (x, t) with PSD Sηint ηint ( f ), the directional PSD Eηη ( f ,β ) is obtained:

Eηη ( f ,β ) = Sηint ηint ( f )D( f ,β )ˆ 2π

0
D( f ,β )dβ = 1, (6.20)

and the particle velocity can be obtained from the potential relationship:

ϕ (x, t) =
ˆ

γ, f
i

f
γ

cosh [2πγ (h+ z)]
sinh [2πγh]

exp
[
i2π
(

f t −γγγ
Tx
)]

dZηη , (6.21)

with x = [x,y,z]T, and γγγ = [−γ sin [β ] ,γ cos [β ] ,0]T, and with:

V (x, t) =∇ϕ (x, t)

=

ˆ
γ, f

exp
[
i2π
(

f t −γγγ
Tx
)]

dZVV

dZVV (z,γγγ, f ) =Ã(z,γγγ, f )dZηη , (6.22)

where:

Ã(z,β , fint (γ)) =
2π f

sinh [2πγh]

−sin [β ]cosh [2πγ (h+ z)]
cos [β ]cosh [2πγ (h+ z)]

i sinh [2πγ (h+ z)]

 , (6.23)

and dZVV = Ã(z,γ, f )dZηη . The perceived particle velocity by component, before turbulence addition, is thus
expressed as:

SVxcVxc ( fint ,z1,z2,β ) =A∗
x ( fint ,z1,β )Ax ( fint ,z2,β )Sηint ηint ( fint ,β )

SVycVyc ( fint ,z1,z2,β ) =A∗
y ( fint ,z1,β )Ay ( fint ,z2,β )Sηint ηint ( fint ,β )

SVzcVzc ( fint ,z1,z2,β ) =A∗
z ( fint ,z1,β )Az ( fint ,z2,β )Sηint ηint ( fint ,β ) , (6.24)

where the relationship between the intrinsic frequency fint and the perceived frequency f comes from the dis-
persion relationship:

f 2
int =

gγ

2π
tanh [2πγh] . (6.25)

Essentially, the surface elevation ηint (x, t) induces a particle velocity under the surface mediated by Eq. 6.21,
and the interaction with current results in a frequency shift described by the dispersion relationship. The ob-
served PSD is then:
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EVV ( f ,z1,z2,β ) =EVintVint ( fint ,z1,z2,β )
d fc

d f
, (6.26)

to conclude the sequence, the turbulent PSD is superimposed:

EVV ( f ,z1,z2,β ) = EVV ( f ,z1,z2,β )+Sturbulence
VV ( f ,z1,z1) . (6.27)

A von Karman PSD has been selected for the ambient turbulence as described (and empirically verified) in [88];
the hydrodynamic profile characteristics have been interpolated from the tables presented in [115].
The PSD EVV ( f ,z1,z2,β ) is discretized in time and space, allowing for the generation of realizations of a
stochastic vector process that approaches VVV (X, t). The selected parameters are shown in Tab. 6.4 for the appli-
cation under development. The samples of VVV (X, t) are used, as described before, to obtain the discretized force
field acting over the blades using a BEMT iterative procedure. In Fig. 6.9, the two-sided PSDs of VVV (X, t) at
discrete depths under the sea surface are displayed, and we remark on some pertinent details:

• The amplitude of the PSD decays rapidly with depth, because the component corresponding to the surface
elevation decays exponentially with depth ([33]).

• The effect of surface elevation is relevant when z ≤ λ

2 , where z is the depth. This can be expressed taking
into account λ = 1

γ
so |z| ≤ 1

2γ
. The interval of depths used can be written as: z(t) = Hpile −Hsea −

(Rrot +Lb)sin(Ωt) where:

– Hpile the height of the supporting pile of the turbine,
– Hsea is the sea height,
– Rrot ,Lb are the rotor radius and blade length,
– Ω is the intrinsic rotational speed of the turbine,
– λ is the wavelength, γ is the spatial frequency.

• Considering the interpretation of the PSD as a frequency decomposition of the variance of a process, then
the reduction in amplitude with depth suggests that ηint (x, t) has a predominant effect on the variance of
VVV (X, t).

• Reference [55] suggests that in the case of steep or irregular waves (not considered here), ηint (x, t) also
has an important contribution to the mean of VVV (X, t).

These remarks provide evidence that the stochastic model and associated simulation preserve many of the
features of the physical phenomena they describe and with alternative analysis methods such as CFD simulation.
The input to the dynamical system is obtained following the developments in subsection 4.2 of Chapter 2, with
the hydrodynamic loads induced by the discretized velocity field VVV (X, t) following a BEMT numerical proce-
dure, which limits the applicability of the moment propagation formulas for integral transformations established
in Chapter 4.

4 Methodology

This section outlines the methods utilized to obtain and analyze the response of the system under the selected
stochastic inputs. The challenges and strengths of each approach are described, and these are seen as comple-
mentary tools in the study of the problem at hand. Three methods are considered for evaluating the response y,
from which the design or observable variable S can be computed in terms of probabilistic descriptors or ensem-
ble sets from which EVD and, ultimately, the reliability of the system can be estimated. The three methods start
from the premise that a load sample is available, in our case, following the procedure detailed in subsection 3.2
of this chapter.
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Parameter Value
Frequency range 0.0022−0.43 [Hz]
Frequency step 0.0022 [Hz]

Time range 0−30 [s]
Time step 0.0300 [s]

Number of samples 15,000
Number of processes 10

Table 6.4: Parameters of velocity field simulation

Figure 6.9: PSD of the velocity field at discrete depth point
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4.1 MCS-ODE method

The Monte-Carlo simulation with ODE resolution consists of solving the forced Eq. 6.7 with each realization
of the load sample, generating an ensemble of responses that can then be statistically processed to provide
estimators of the probabilistic descriptors of the response. The method is easy to implement, general, and its
outputs are an ensemble of responses; one may generate an ensemble of the design variable S and the limit state
function G, providing what we call empirical measures of reliability. In this context, empirical refers to the fact
that it is obtained from a given sample instead of an analytic or semi-analytic estimation.
Two main limitations apply to this method: on the one hand, a large number of samples is required to obtain
statistically convergent results, with consequences in the required computation time and memory; on the other
hand, the method is time-intensive, as each ODE has to be solved independently resulting in large computational
time. Associated with the time constraints of the method comes dimensional scaling and time span scaling: the
computational time required to solve one sample has a sensitive dependence on the dimension of the system
and on the resolution interval. The applicability of this procedure to long integration times in systems with low
dissipation and to identifying the transient-to-steady transition is impractical. However, tt does provide a good
estimate for the early stages of the loading process and, with some preconditioning techniques, may provide a
rough estimation of the steady state.
We consider the following practical adaptation to improve the resolution of the problem, the modulating func-
tion:

gmod (t) =

{
1 t > 4Tp

( t
4Tp

)5 0 < t ≤ 4Tp
, (6.28)

applied to the stochastic input so: f̄(x, t) = gmod (t) f(x, t), and f̄ is taken as the effective load. This adaptation
amounts to a slow and progressive application of the load to the system, and it mitigates the peak associated
with the early stages of the transient regime that was discussed in the example of Chapter 5. From a numerical
perspective, this modulation type improves the performance of MCS-ODE methods.
In structural reliability, a manifestation of the sample size requirements is most notable when high survival
probabilities are required: by their very nature, extreme events are rare, so a precise description of the tail
of the involved distributions requires a very large number of samples. Compounding these considerations is
the fact that physically realistic environmental and load conditions involve correlated random processes, which
demands a sample generation strategy that ensures these correlation structures in the ensemble of samples.
More concretely, MCS involving statistically independent random variables benefits from the computational
simplicity of independent sample generation, which can not be done for spatiotemporal correlated fields. Even
when the required samples have been generated, computing the response of complex structural or mechanical
systems for every generated sample constitutes the largest component of the total computational effort.
In its most basic form, the approach taken here consists of:

1. Generating the required spatio-temporal Gaussian velocity field samples from the selected sea state con-
ditions.

2. Pre-treatment of these velocity samples to obtain the load processes over the required elements, in this
case the blades of the tidal turbine.

3. Numerically solving the non-homogeneous Ordinary Differential Equations (ODE) problem.

4. Post-treatment of the response and probabilistic characterization.

The two main challenges from these steps come from 1 and 3.
To mitigate the difficulties in 1, a judicious spatial discretization scheme has been applied, selecting the relevant
simulated processes to be placed in space within the diameter of action of the dynamical system. The error
resulting from the spatial discretization is related to the degree of variation of the velocity field with depth. This
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Algorithm 6.1 Spectral MCS method for steady-state analysis

1. Generate Ns samples of physical load vector f(t), denoted f̂

2. Recover the modal parameters of the Floquet system, in Fourier domain if applicable: characteristic
exponents ρρρ , right and left periodic modes Rq, Ll , matrix of passage to state form for the load Bb

3. For each Ns:

(a) Compute F̂( f ) = FT
[
f̂(t)
]

(b) Apply 3.82 with F̂( f ) to obtain the frequency response of the ensemble Ŷ( f )

(c) Compute ŷ(t) = IFT
[
Ŷ( f )

]
to obtain the sample steady-state response of the corresponding Ns

variation can be mesured in terms of the covariance function of the field and the smoothness of its sample paths
with space but not time. From the point of view of memory handling, the generation of samples has been done
in sets where each set of samples is sufficiently large to verify the basic correlation constraints prescribed for
the process.

The implicit, high-order Runge-Kutta subroutine Radau IIa method of variable order (1,5,9,13) by [142] has
been used in step 3, as it has been empirically verified that it provides a substantial saving in resolution time.
This is conjectured to be due to the multiscale nature of the dynamical system, which results from the combina-
tion of discrete DOFs (notably the base) and modally discretized continuum elements (the blades). The relative
error tolerance selected has been 10−6 throughout the application section.

4.2 Modal spectral MCS method

The idea of the modal spectral MCS method is capitalizing on 3.82 by applying the Fourier transform to the loads
in each realization of the ensemble, producing an ensemble of loads in the frequency domain. This procedure
results in an ensemble of responses in the frequency domain that corresponds to the steady-state response of the
system, which can be transformed into the temporal domain using the inverse Fourier transformation to yield a
time-domain steady-state ensemble of the response variables amenable to probabilistic characterization in terms
of temporal moments. In the same way, the reconstructed time-domain steady-state response can serve as the
basis for empirical reliability estimation. The procedure is described in 6.1.

Once the temporal samples of steady-state responses have been obtained using 6.1, it is possible to apply 6.8 to
obtain the ensemble of steady-state design variable S (t) and its derivative Ṡ (t).

The method has two main strengths: first, the passage to the frequency domain results in substantial savings in
computational time, as highly efficient algorithms such as FFT and IFFT can be capitalized on, and the response
is obtained by simple multiplication and summation of terms; second, the method provides a direct estimation
of the steady-state response, circumventing the long integration times inherent to the MCS-ODE approach. In
terms of limitations, the method does not provide information about time-of-arrival to the steady-state regime.
Like any MCS approach, it is still constrained to large sample sizes to result in a good estimation of the desired
probabilistic quantities. Additionally, the response obtained from this method is highly sensitive to errors in the
determination of the Floquet characterization in the Fourier domain, in other words, the Fourier coefficients of
R(t), L(t) and B(t).

4.3 Floquet modal convolution

The Floquet modal convolution is the same approach explored in section 4. The key relationships are reproduced
here for convenience. In the Floquet modal variables q, taking as input the adapted excitation p, the following
relationships apply:
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µµµq (t) =
ˆ t

0
h(t − τ)µµµ p (τ)dτ

µµµqq (t) =
ˆ t

0

ˆ t

0
h(t − τ1)RRRpp (τ1,τ2)h(t − τ2)

H dτ1dτ2

σσσqq (t) =
ˆ t

0

ˆ t

0
h(t − τ1)ΣΣΣpp (τ1,τ2)h(t − τ2)

H dτ1dτ2

Rqq (t1, t2) =
ˆ t2

0

ˆ t1

0
h(t1 − τ1)Rpp (τ1,τ2)h(t2 − τ2)

H dτ1dτ2

ΣΣΣqq (t1, t2) =
ˆ t2

0

ˆ t1

0
h(t1 − τ1)ΣΣΣpp (τ1,τ2)hH (t2 − τ2)dτ1dτ2

µµµqq (t) =Rqq (t, t)

σσσqq (t) =ΣΣΣqq (t, t) , (6.29)

respectively the mean, second moment, correlation function, covariance function, and variance of q. From the
Floquet modal variables, the following passage to the state variable is possible:

µµµy (t) =R(t)µµµq (t)

µµµyy (t) =R(t)µµµqq (t)RH (t)

σσσ yy (t) =R(t)σσσqq (t)RH (t)

RRRyy (t1, t2) =R(t1)Rqq (t1, t2)RH (t2)

ΣΣΣyy (t1, t2) =R(t1)ΣΣΣqq (t1, t2)RH (t2) , (6.30)

again the mean, second moment, correlation function, covariance function, and variance of y. An additional
development concerns the modal contribution in the forced response, which can be expressed as:

y(t) =
42

∑
i=1

yi (t) , (6.31)

where i denotes the corresponding periodic mode such that:

yi (t) =qiRi (t) (6.32)

where Ri (t) = [R1,i (t) ...R42,i (t)]
T is the i− th column vector of R(t). This mode-wise decomposition can be

applied to the mean response:

µµµ
(mode i)
y (t) =µqi (t)Ri (t) , i = 1, ...,42 (6.33)

where µqi (t) is the i− th element of the mean vector µµµq (t). Finally, applying Eq. 6.8, it is possible to express
the contribution of each mode to the observable of interest:

µµµ
(mode i)
S (t) = Cµµµ

(mode i)
y (t) . (6.34)

A remarkable aspect of this development is that it enables the analysis of the response in terms of mode activa-
tion. In this way, the notion that a particular sea state associated with the corresponding load process activates
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a certain group of periodic modes emerges. A similar idea would apply to the variance contribution per mode.
An interesting idea that will not be explored here is implementing Floquet design, or designing a system with
specific periodic mode characteristics using information from load activation of the periodic modes.

The main advantage of Floquet modal convolution is that it is not constrained by ensemble stochastic conver-
gence as the MCS-based methods do. It can be applied very efficiently if analytical expressions for the input
moments are available, as shown in section 5 of Chapter 5; it can also be applied if a numerical function pro-
vides a discretized evaluation of the required moments, in the case of complex stochastic inputs this function
can be constructed from MCS sampling, without much additional computation time. A key limitation concerns
the required sampling to achieve an accurate evaluation of the convolution integrals: for high-frequency terms,
a precise evaluation of the convolution expressions requires a very small sampling period, resulting in large
arrays of data being required to obtain accurate results, with critical consequences when long integration times
are required. Unlike the MCS-ODE approach, the criticality that comes with long integration does not come
from the computation time, but from memory storage. Indeed, fast algorithms are available to compute the
convolution of a very large size, such as Conv2_FFT ([154]), which performs 2D convolution relying on the
convolution theorem and the FFT algorithm. This memory limit implies that the method, as implemented, is
most applicable to the study of the transient-steady transition and may need additional adjustments to arrive
at the fully developed steady state, at least for moderate-to-large dimension systems with low dissipation. By
way of example, we consider the second-order moments Rpp (t1, t2) and ΣΣΣpp (t1, t2), both of which scale in the
following sequence:

N = 42,Nt = 1×102 →0.14GB

N = 42,Nt = 1×103 →14.11GB

N = 42,Nt = 2×103 →52.60GB

N = 42,Nt = 5×103 →328.60GB, (6.35)

where N is the number of DOFs and Nt is the number of time-points of the selected functions.

5 Results

This section considers three regimes of the response informed by the analysis of the stochastic response of LTP
systems in section 5 of Chapter 5. First, we seek to capture the approach towards the steady-state with MCS-
ODE and Floquet modal convolution, using the adjustment Eq. 6.28 to mitigate the peaks associated with early
transient stages and speed the approach to the steady regime. Second, we use the Floquet modal convolution to
describe the transient regime for three cycles, providing the modal contribution in mean to the design variable
S. Third, we use the Modal spectral MCS method to characterize the established steady-state regime for one
cycle. In each case, the design variable is studied, and a reliability estimation is provided for the system under
the selected failure mode on S. The reliability estimates are provided from empirical measures, that is, by
reconstructing the EVD from the obtained samples of the solution; in the applicable case, the Gaussian interval
estimation introduced in Chapter 5 will serve to estimate the EVD and thus the reliability. During the section,
the available resistance is taken to be R = 1.95×105Pa.

5.1 Transient to steady transition

We first consider the load with the modulation in Eq. 6.28 for the MCS-ODE, adding the result obtained from
Floquet modal convolution as a reference. The system is solved on the [0,7Tp] interval, but only the last three
cycles, t = [4Tp,7Tp], are taken as an approximation of the vicinity of the steady-state. The responses of a
selected group of DOFs are shown in Fig. 6.10 and Fig. 6.11, showing the means of Gx, θ1, qs

11, and q f
11, with
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good agreement between the two approaches. As specified in Tab. 6.4, 15×103 realizations of the load process
have been used, yielding as many response samples for the MCS-ODE method.

This first result helps establish the validity of the MCS-ODE approach from the stochastic convergence per-
spective, as the Floquet modal convolution is essentially a numerical evaluation of an analytical expression.
Additionally, some conclusions can be reached about the computational time required for each method: the
total computational time required for the MCS resolution has been 4.7× 104s with parallel computation on
14 cores, whereas the Floquet modal convolution incurred in a resolution time of the order of 102s including
load conditioning. We summarize that the MCS-ODE approach is time-intensive, whereas the Floquet modal
convolution is memory-intensive.

MCS-ODE characterization Taking the last three cycles t = [4Tp,7Tp] the design variable S (t) has been
calculated from the MCS-ODE response ensemble. The mean, variance and normalized skewness coefficient
are shown in Fig. 6.12, including the moving average in the case of mean and variance. We observe that the
normalized skewness σSSS

σ
3/2
SS

serves as a measure of deviation from Gaussian behavior, as this quantity is 0 for the

Gaussian distribution.

The mean value of the design variable, µS (t) oscillates around the value of 7.6× 104 Pa. From the moving
average of the variance σSS (t) it can be noted that it is still in growth regime, this behavior is consistent with the
findings in section 5 in Chapter 5, implying that the steady-state has not yet been achieved, despite the seemingly
stable value of the mean. This highlights an intrinsic limitation of the MCS-ODE: while it provides abundant
information about the response, reaching the steady-state involves the consideration of long time intervals, for
which the method scales poorly in terms of computational time. Concerning the normalized skewness, we
observe regular peaks around 0: the design variable S (t) deviates from Gaussian behavior consistently.

PGHW estimation of the EPSD The empirical samples obtained from MCS provide the basis for the PGHW
estimation of the evolutionary PSD (in the sense of Priestley), as introduced in Chapters 3 and 5. The method
consists of transforming the MCS solutions into the design variable using relationship Eq. 6.8, and then pro-
jecting each realization on an appropriate PGHW basis. Once this is achieved, the wavelet coefficients obtained
from this projection can be used to construct an approximation to the EPSD of the design variable. The proce-
dure requires some trial to obtain the appropriate resolution between time and frequency description.

In Fig. 6.13, the PGHW reconstructions for four arbitrary realizations of S are compared with the original
solution obtained from MCS after removing the mean component of each realization. As detailed in the example
of Chapter 5, this step is crucial to ensure that the selected Wavelet parameters result into a basis of Wavelets
that correctly capture the features of the functions being analyzed. In this case, the selected wavelet parameters
are Nt = 25 and N f = 50. These results illustrate the fact that these parameters result in an adequate Wavelet
basis that captures the features of each realization.

The EPSD in Fig. 6.14 shows oscillatory activation in the frequency bands around 9Hz and 11Hz, with the
particularity that the oscillations happen out of phase from one another, although their period is that of the
system: Tp = 4.19. The frequencies 9Hz and 11Hz correspond to the lowest frequencies of the discretized
blades from the Rayleigh-Ritz discretization; the mode in each case is kinematically identical to the static
deformation of a similar beam. Other oscillations in lower frequency components can be observed ,too, notably
around the 7Hz frequency, and around 1Hz.

These results are consistent with the expectation since the excitation introduced has been applied to the blades
only, so no major amplitude involving the base DOF is dominant; additionally, from Eq. 6.8, it can be inferred
that the design variable consists of a superposition of the response stochastic processes that are the blade modal
variables. This representation of the EPSD also highlights the shortcomings of a two-dimensional Fourier
transform in this type of scenario: the notion of time-evolution of frequency components and their associated
modes is lost in such an approach, as the temporal evolution of these frequencies is decomposed and mixed into
the two-dimensional frequency space. The flexibility of the PGHW provides a reasonable location in time and
frequency, with an efficient numerical advantage for the study of transient events.
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Figure 6.10: Mean response for selected DOFs, (part 1): Floquet modal convolution (black), MCS-ODE (blue),
modulation interval in shade box
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Figure 6.11: Mean response for selected DOFs, (part 2): Floquet modal convolution (black), MCS-ODE (blue),
modulation interval in shade box
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Figure 6.12: Mean, variance and skewness of S (t), moving average in red, MCS-ODE method

Figure 6.13: PGHW reconstruction for selected realizations of S
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Figure 6.14: EPSD by PGHW of design variable S

MCS-ODE: EVD and reliability The EVD for the MCS-ODE method can be computed empirically from
the available samples of S (t), as shown in Fig. 6.152. For the selected available resistance, we can compute the
probability of failure in the [4Tp,7Tp] interval:

P1
f (4Tp,7Tp) = 1−PSM (R)≈ 4.67×10−4, (6.36)

this equals a reliability level of about 99.95%. This initial result serves two main functions: first, it sketches
the entire process of computing the reliability of the system from our proposed MCS-ODE method; second, it
provides a concrete value to contrast with the other regimes of analysis in this section. From a practical per-
spective, higher levels of reliability entail lower failure probabilities, making the failure event very rare, which
requires a larger number of samples to accurately estimate lower probabilities of failure and higher reliability
levels. The conclusion is that if very high reliability levels are the goal, much larger MCS samples would be
required, with the associated computational time requirement that has been outlined in this development. This
fact serves as the motivation for the development of alternative methods.

5.2 Floquet modal convolution: early transient regime

We now turn our analysis to the early transient regime by considering the stochastic load without the modu-
lation Eq. 6.28. From a methodological perspective, this sudden application of loads drastically increases the
resolution time for the MCS-ODE method, while the Floquet modal convolution is unaffected by it. We will
thus utilize the latter method and the additional developments that permit us to describe the modal contribution
to the observable variable S (t).

The resolution is carried out in the [0,3Tp] interval; the mean and variance of the response are shown in Fig. 6.16.
The mean of the blade modal variables in the spanwise direction shows a clear dominance of the lowest mode
shape of the blade; in the flapwise direction the participation of additional mode shapes can be noticed; the
disc-shaft DOF which are not directly loaded begin to react to the application of load as time progresses. As
expected, the variance is still in development, characteristic of the transient regime.

The mean and variance of the design variable S (t) and its derivative Ṡ (t) are shown in Fig. 6.17. It is possible to
see the transition of the mean µS (t) from an amplitude in the order of 105Pa towards 104Pa as in the previously
analyzed regime. The consequence of µS (t) attaining such a high value at the very beginning of motion suggests

2The confidence bounds here are embedded in the Empirical CDF estimation algorithm, it relies on the Kaplan-Meier probabilistic
estimator and applies Greenwood’s formula to obtain both 95% bounds.
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Figure 6.15: EVD estimation of S (t), interval [4Tp,7Tp], MCS-ODE method

that in this regime, failure is likely to arrive in the very first cycle. This result illustrates the assertion that two
distinct regimes can be distinguished: the transient one, dominated by high mean values as a result of the pres-
ence of the transient part of the response; a steady regime where the transient component has decayed, resulting
in a lower magnitude of the mean and a more substantial effect of the variance in the resulting probability of
failure.

The contribution to µS (t) by each one of the k = 42 periodic modes is shown in Fig. 6.18. The mode contribu-
tions have been grouped in terms of their amplitude, we remark that 4 modes have amplitudes in the order of
104, 20 modes are in the order of 103, the remaining 18 modes having comparatively small amplitudes.

EVD and reliability To conclude with the analysis related to the convolution moment relationships, the last
period of the solution is analyzed in terms of the extreme value analysis introduced in Chapter 5. The mean and
variance of S (t) for this last period are represented in Fig. 6.19 to better appreciate the features, and the peak
mean values are marked. The estimation of the EVD with this method is presented in Fig. 6.20.

For a sufficiently high set upcrossing level u, the likelihood of upcrossing is first best considered analyzing the
mean of S (t), a consequence of the discussion in Chapter 5; as the mean decays and the variance increases
towards its asymptotic value, the mean is no longer the predominant factor and the direct variance interval
approximation can be applied. Considering Fig. 6.20, it is clear that for the selected available resistance R =
1.95×105 Pa, the system fails almost surely during the transient phase. This result is coherent, given the high
value of the mean during this phase. Conversely, this result also suggests that if this early stage of loading is
taken as the critical design scenario as far as extreme load is concerned, the steady-state is likely to remain in
the safe region.

From a broader perspective, the loading scenario in this section is somewhat extreme. With more realistic
information about the transient regime of flow and with some adjustments in the quantitative aspects of the
chosen model (precise measurements of the effective damping, relaxing the hypothesis of constant spin angular
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Figure 6.16: Mean (top) and variance (bottom) of state variables, disc and first blade, Floquet modal convolution
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Figure 6.17: Mean and variance of S (t) and Ṡ (t) on the [0,3Tp] interval, Floquet modal convolution
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Figure 6.18: Modal decomposition of µS (t), Floquet modal convolution

Figure 6.19: Mean and variance of S (t) in the last period of analysis [2Tp,3Tp], Floquet modal convolution

179



Figure 6.20: Estimation of EVD of S in last period of analysis [2Tp,3Tp], Floquet modal convolution, interval
approximation method (Chapter 5)

velocity, selecting more realistic initial conditions), the convolution method presented here is fit to perform
transient analysis of the response.

5.3 Steady-state

The steady-state analysis using the Modal spectral MCS method outlined in Alg. 6.1 has been performed on the
system for a single period [nTp,(n+1)Tp]; here n is sufficiently large for the steady-state to have been reached.
The same ensemble of loads generated from the 15×103 velocity samples in Tab. 6.4 has been used, with the
appropriate time reduction. In terms of computational aspects, the method seems substantially faster, the whole
computation requiring 2.7×104s, although the comparison is not ideal given the different time intervals studied.
The comparison, however, helps to put into perspective the advantage of the spectral method in obtaining the
steady-state response, in the sense that the approximation of the steady-state using the MCS-ODE approach
would entail a substantial increase in integration time and, thus, in total simulation time.
An additional advantage of the spectral method comes from using Eq. 3.82. The expression permits the integra-
tion of the knowledge of the modal representation of the involved matrices to obtain important improvements
in computational time. If any of the matrices R(t),L(t) or B(t), with the corresponding matrix of Fourier
coefficients for the k− th harmonic Rk, Lk, Bk, have null projection over a given element of the Fourier basis
ek = exp

[
i
(

2π

Tp
k
)

t
]
, then the corresponding matrix of Fourier coefficients is zero and the entire term can be

skipped from the sum.
As with the MCS-ODE method, the mean for selected DOFs of the response is shown in Fig. 6.21. As expected,
the most active DOFs in terms of magnitude are those under direct load: the flapwise and spanwise lowest mode
shapes. The mean of the two DOFs associated with the disc shows the important coupling effect, particularly
among the Gx DOF and the spanwise modes of the blade. In the case of the angular DOF, the amplitude of
oscillation of the mean is about 0.28 degrees ( 0.005 rad), a value consistent with the small angle assumption
made at the modeling stage.
The mean, variance, and normalized skewness of the design variable S (t) computed from the samples obtained
in the Modal spectral MCS method are shown in Fig. 6.22, in a similar format to Fig. 6.12, although the mov-
ing average is omitted given the clear trend around a single value for the steady-state statistics. The orders of
magnitude of mean and variance are the most remarkable feature concerning EVD analysis: 104 for the mean
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Figure 6.21: Mean response for selected DOFs, Modal spectral MCS method
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Figure 6.22: Mean, variance, and skewness of S (t), Modal spectral MCS method

and 107 for the variance, the implication being that the consideration of mean alone, as is the case in determin-
istic modeling, would not provide a satisfactory assessment of the true extreme response. In a post-hoc way,
this validates the choice of stochastic modeling for this type of problem. Concerning the normalized skewness
coefficient, it is interesting to note the weak value of this indicator within the precision of the computations. As
noted before, this coefficient is 0 of the Gaussian distribution, making it an easy test to detect non-Gaussianity,
but zero skewness does not guarantee Gaussianity; it suggests a symmetric distribution. The result implies that
the steady response of the design variable has an approximately symmetric distribution.

EVD and reliability The EVD of S (t) is shown in Fig. 6.15; it has been calculated from the response samples
obtained from the Modal spectral MCS method, along with their upper and lower 95% confidence bounds. As
predicted by the values of the moment quantities of the design variable, in this scenario, the probability of the
threshold established by the available resistance R = 1.95×105Pa is almost null. The main implication of this
fact is that the limit state function is unlikely to cross into the unsafe region for the set extreme value threshold.
If failure in the selected failure mode is to occur, it will do so during the early transient regime. Although it is
recognized that a more exhaustive analysis could be performed, for instance, considering a much larger sample,
the relationship between the transient regime and the steady-state regime holds.

5.4 Synthesis of extreme values and reliability indicators

The synthesis of the EVD analysis for the three loading scenarios considered is shown in Fig. 6.24, where the
available resistance is shown in read for reference. In the steady-state, the probability of staying below the set
threshold is practically 1; in the intermediate transient regime, as established earlier, the likelihood of staying
below the set threshold is very high; conversely, in the early transient regime, the threshold is almost certainly
crossed, resulting in failure of the system in the prescribed mode. These results suggest a very intuitive design
reasoning: for extreme value analysis, the early stages of loading are the predominant consideration; the steady-
state regime entails other failure modes, such as fatigue, under the assumption that the loading conditions persist
in time, in which case the selected representative period of analysis could be considered as a descriptor of such
loading long term history.
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Figure 6.23: EVD estimation of S (t), Modal spectral MCS method, interval [nTp,(n+1)Tp]

Figure 6.24: Synthesis of EVD in different regimes

From a broader perspective, we highlight the fact that this application has been developed for very particular
conditions, permitting us to illustrate the proposed methods and arrive at clear conclusions for the structural
analysis and design of tidal turbine blades. Once the response has been obtained from any of the proposed
methodologies in any given regime, other failure modes can be easily considered by modifying the design or
observable variable, and the methods established would remain viable. If lower probabilities of failure need
to be assessed, conforming to established design considerations, the same methods presented here would still
apply with an expanded sample in the case of MCS-based methodologies.
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Conclusion and future work

« L’expérience à l’extrême du possible demande
un renoncement néanmoins : cesser de vouloir
être tout. »

George Bataille, L’experience interieur

This work aimed to study the response of a class of deterministic mechanical systems characterized by large ro-
tations and elastic deformation elements to stochastic loads induced by environmental effects. The complexity
of the problem demands a holistic approach that covers modeling decisions of the rotating mechanical sys-
tem, a subset of these concerning the judicious description of the vibration of the elastic elements that are part
of the system; it also covers rational modeling decisions to produce stochastic descriptions of environmental
phenomena that act on the system causing its response; an effective strategy is required to obtain useful re-
sponse descriptors. Much of the value of this effort rests on the applicability of the results obtained to concrete
engineering practice, so a connection ought to be established with specific theories of analysis and design.

A robust analysis of previous results was established in the first chapter, offering a perspective on the evolution
of the problem at hand and showing the connection with various parallel fields. The first antecedent of the
rotating mechanical system is identified as the rotating beam problem, which was studied extensively in the
early 20th century in helicopter and turbine design and analysis. A tendency to produce more elaborate models
from this initial approach was evident in the literature. These more detailed models included aspects such as
the coupled study of the rotating beam with the oscillating body supporting them: a disc on a shaft mounted
on deformable supports, conventionally referred to as a rotor in much of the associated literature. However,
much of the revised literature considers relatively simple descriptions of the motion of the rotor component
and very particular solutions to the modeling of the rotating beam. The more elaborate models proved to yield
systems of ordinary differential equations with periodic coefficients, and the connection between the study
of the rotor-blade model with the theory of differential equations with periodic coefficients, Floquet theory,
gained traction in the mid-20th century. It was shown that this Floquet approach extended to domains such
as helicopter design and wind energy from a mechanical design and control design perspective. In parallel,
a perspective of probabilistic mechanics was provided, particularly as it concerns the study of deterministic
mechanical systems subjected to complex loads modeled as stochastic processes or, more broadly, as spatio-
temporal stochastic fields. The problem of determining the probability of upcrossing of a certain threshold
and its associate problem, the determination of the Extreme Value Distribution, were historically shown to be
intimately linked to the study of the response in deterministic mechanical systems subjected to stochastic inputs.

A dynamical model for rotor-blade systems has been developed conforming to the general philosophy in this
thesis: a reduced model that captures the rich behavior of the class of system under study. The theory of analyt-
ical mechanics has been integrated to produce a comprehensive description of the rotor component, modeled as
a rigid body supported on elastic foundations. Three degrees of freedom in translation and two tilt angles have
been included, addressing some of the limitations in much of the existing literature for this type of system, where
planar motion is often assumed and decoupling in the axial direction of the shaft is enforced from a modeling
perspective. The consideration of tilt has been shown to result in additional coupling and gyroscopic terms,
a result that is consistent with theoretical expectations but is presented here in concrete terms. Similarly, the
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deformation of elastic elements, the blades, includes the two main deformation modes: spanwise (or in-plane)
and flapwise (out-of-plane). The coupling between these two flexion modes has been introduced by applying
the corresponding constitutive material behavior law, addressing a simplification that appears to be pervasive in
the respective literature. The description of blade vibration has been carried out in a modal form, producing an
intuitive interpretation of the vibrational response in the generalized modal variables; this stands in contrast to
the popular approach of spatial discretization with finite element methods. The developments strike a balance
between concreteness and flexibility: although specific choices have been made, the expressions provided allow
for the adaptation of the general model to different scenarios. As shown, the model can be reduced to the planar
motion case with ease; it can also be implemented using different constitutive laws in the material of the blades
and with the appropriate description of the modal behavior of the blade to different blade geometries.

An analysis of the rotor-blade model reveals, as theoretically expected, strong nonlinearities inherent to the
general motion of the rigid body describing the rotor. While these nonlinearities have been ignored under
small-angle assumptions, the result may have interesting research prospects when considered from a design
perspective. While outside of the scope of this work, it is the case that certain nonlinear mechanisms have been
studied for their vibration suppression characteristics (for instance, Nonlinear Energy Sinks, NES). We consider
this a potential avenue for future inquiry.

The dynamical model is a system of ordinary differential equations with periodic coefficients. In this context,
the existing results from Floquet theory and its implementations across many disciplines have been synthesized
into a modal theory for LTP systems. The development adopted here highlights the connections among results
available in the literature and presents these results as an extension of linear time-invariant (LTI) or "standard"
modal analysis. The LTI frequency is replaced by the Lyapunov Characteristic Exponents; the LTI normal
modes or eigenvectors are replaced with Floquet modes or periodic eigenvectors; the test solution broadly
utilized in LTI analysis has been shown to have an equivalent in the modulated complex exponential form,
as already proposed in works such as Xu & Garsch ([151]) and Wereley ([144]). The indeterminacy of the
characteristic exponents has been elucidated from its origin in the complex logarithm function, and the formula
proposed by Peters ([100, 99]), as well as his perspective on the subject, has been used to provide a cogent
description of the characteristic exponents and their associated periodic eigenvectors. Instead of indeterminacy,
the interpretation is more accurately characterized as a free choice of integer multiples on the imaginary part
of the complex logarithm. It has also been shown by example that, because the Floquet modes diagonalize
the matrix of the system, so-called "mixed" sets of characteristic exponents are viable choices. In our context,
a mixed set is a set of characteristic exponents with different integer multiples added to its imaginary part.
A new methodology to study and select candidate periodic eigenvectors has been proposed, based on time-
frequency representations as instantiated by the PGHW class of Wavelets and making use of an intuitive yet
innovative result that extends the notion of change of basis in traditional vector spaces to change of Hilbert
basis in Hilbert spaces, where the corresponding Hilbert space reflects the representation basis. This approach
allows the passage from the traditional Fourier basis to the polychromatic time-frequency basis formed by
Periodic Generalized Harmonic Wavelets.

A new notation and moment propagation strategy has been applied in the response study, adapted from an
important antecedent of this work, Suptille ([134]). The convenience of this methodology is illustrated with
examples in Chapter 4, where many results from the literature are easily recovered, and the convenience for
the treatment of stochastic loads is shown in the same chapter and Chapter 5 when Floquet modal theory is
integrated into the description. An extensive example from offshore engineering is developed in chapter 4, the
mechanical moment of a rigid pile under the effects of Morison load. The case of scalar processes and that of
fields are considered, the latter requiring an integral transformation of the velocity and acceleration stochastic
fields. The moment propagation scheme is contrasted with the converged Monte-Carlo simulation regarding
precision and computational cost. The PDF of the response has been reconstructed employing a maximum
entropy approach with 2 and 4 moments; these are equally compared to statistical analysis of the Monte-Carlo
results, showing that the 4-moment PDF result is satisfactory for this type of response. The innovative aspects of
the development presented are a) the modeling of inputs as spatiotemporal fields, b) the four-moment maximum
entropy implementation through an optimization problem with enhanced initial point, c) intermediate results
that are valid for a broad class of stochastic fields, applying the Gaussian property on the underlying velocity
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field at a late stage in the development. In addition, concerning a), to our knowledge, this is a new computational
approach to the handling of stochastic fields in this domain: instead of approximating the field by a discrete mesh
of processes, the underlying moment functions have been implemented as numerical functions and combined
with an adaptive step integration scheme. The advantage of this implementation is that the spatial discretization
is automatically adjusted from tolerance constraints enforced by the integrator. The notation framework in the
corresponding chapter has made this approach possible.

The proposed moment propagation strategy has been extended to the nonstationary case. First, a scalar Gaussian
process is considered, where the nonstationarity comes from a periodic modulation of an underlying stationary
process. Expressions for the instantaneous moments and correlation and covariance functions are provided, as
before: first for the general case and later for the particular Gaussian case. The oscillating mean and variance
that result from moment propagation are utilized to analyze the upcrossing of the response. The probability of
the event of the response process crossing a certain level has been approximated in a simple fashion, what we
refer to as the interval approximation method: the response is discretized in "nodes" of high variance, and each
node is considered as an independent event, and its crossing probability is calculated using traditional expres-
sions for stationary Gaussian processes, the total crossing probability is computed as the product of the nodal
probabilities. The approach has proved very effective and coincides with the benchmarks selected to control for
accuracy: two Monte-Carlo methodologies based, respectively, on statistical analysis of the response and in the
direct verification of crossings of the generated ensemble. The approach appears promising to address the limi-
tations around nongaussian processes. However, some work remains to be done on this front. Alternatively, the
ubiquitous Rice formula was directly applied to the simulation results, providing the mean upcrossing number
and the EVD of the response.

The Floquet modal analysis and the load modeling have revealed some important characteristics of the form
of the response. First, from an applied perspective, the load acting on the class of LTP system under consid-
eration is nonstationary, given the relative motion between flow and structure, which introduces a first form of
time-dependent modulation on the loads. Second, the forced response admits a Floquet modal representation,
which implies that the total forced response is a sum of terms modulated by the corresponding periodic Floquet
eigenvectors.

Two methods have been proposed to study the stochastic response: a time-domain method based on the con-
volution of the load with the impulse response in the Floquet modal variables and a frequency-domain method
based on the spectral characterization of load and Floquet periodic modes. An MCS simulation methodology
has also been implemented to complement these two approaches. The strengths and limitations of each method
are described. The Floquet convolution in the time domain effectively describes the transient regime; the MCS
spectral method describes the steady-state regime. The tools introduced accommodate for the entire motion
regime of the model.

The results obtained throughout this work have been applied to the practical problem of reliability analysis
of a tidal turbine. A stochastic velocity field with wave, current, and ambient turbulence has been simulated.
The dynamical model has been fitted to a horizontal axis tidal turbine with two blades. The loads have been
applied over the dynamical model by implementing a BEMT numerical tool. The normal stress resulting from
the maximal blade root bending moment has been defined as the failure mode, and it has been shown that this
reliability problem is time-dependent on account of the nonstationary response. The probability of failure has
been obtained through the estimated EVD. The approach taken in this work is slightly more general than other
recent works that use stochastic modeling to describe loads. The dynamical model is more detailed than the
surveyed reduced-order models found in the literature, including tilt motion, several modal degrees of freedom
to describe blade vibration, and flapwise and spanwise deformation directions. Compared with full-scale, finite
element models with complex CFD simulation, the advantage we identify in the present work comes from its
treatment of the coupled mechanical behavior and the modal interpretation made possible by the choice of blade
description and the results synthesized in the Floquet analysis of the system.
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Future work

Several research avenues can be envisioned as continuations of the present work, some very direct, others
tangentially related to some of our results and developments. In order of proximity, these are outlined as
follows:

1. Calibrating the proposed model to an experimental setting. The theoretical results might offer useful
predictions of vibratory behavior on tidal prototypes, a growing area of applied research and development.

2. Some elements of the theory of stochastic processes appear to apply to the Floquet modal representation
established in this thesis, the most promising being the Priestley representation of evolutionary stochastic
processes and the Wigner spectrum.

3. A possible connection between the Floquet representation of the forced response and the Karhunen–
Loève decomposition of stochastic processes seems promising. The connection can be noticed from the
input-output relationships established here between the covariance functions. It remains to be explored
how the eigenfunctions, in the K-L sense, may be related to the eigenfunctions of the forced response of
the system, which will be related to the system eigenfunctions in the Floquet sense. This treatment could
provide a modal way of relating input and output and could lead to improved simulation schemes for the
stochastic response.

4. The eigenvalue problem in Hill’s method is the source of an open problem in the state of the art, as
the method provides a multiplicity of viable characteristic exponents and associated eigenvectors. This is
often called in the literature the sorting problem or filtering problem. Hill’s method relies on Fourier series
expansion of the periodic terms; its limitations have been discussed extensively in this work. A time-
frequency representation has been proposed in this work, and the PGHW and a transformation theorem
are the basis of the proposed methodology: Fourier expansion, resolution of the eigenvalue problem,
and projection onto the selected time-frequency basis. It remains to be seen if the associated eigenvalue
problem inherent to the Hill development can be directly formulated in terms of other basis functions, and
whether a more efficient basis might simplify the computational effort, or ease the sorting problem. The
potential of the change of basis methodology, considering other time-frequency representations, is also to
be explored.

5. The nonlinearities inherent to the general rotor motion have been linearized in this work. Studying a
nonlinear version of this model seems an interesting venture from the design perspective. This would
imply a combination of two generalizations of the normal mode approach prevalent in LTI dynamics: one
is the Floquet version presented in this thesis, and the other is that of Nonlinear Normal Modes prevalent
in nonlinear systems. This would result in a modal theory of Nonlinear time-periodic systems (NLTP).

6. Vibration suppression could be studied from the framework provided here in connection with the pre-
vious point. The effects of nonlinear energy sinks (NES) or other components could be established by
capitalizing on the modal and frequency representation provided here.

7. The most challenging aspect of the present work pertains to the description of general stochastic quanti-
ties. While moment propagation with PDF reconstruction has proved efficacious to the particular cases
studied here, which are justified by the applications, it would be satisfactory to consider other method-
ologies that accommodate more general distributions. Some techniques were identified during the prepa-
ration of this thesis; these offer a direct estimation of the PDF as opposed to moment-base reconstruction
or fitting. However, considerable effort is required in the complete application of these theories. Among
these, we can identify: a) projection methods based on Polynomial Chaos; b) Galerkin approximate so-
lutions of an adapted version of the Fokker-Planck-Kolmogorov equations, providing the evolution of
the PDF of the response. This latter approach requires formulating the problem as a proper stochastic
differential equation, an approach we have not covered in this work.
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8. In relation to the previous point, extreme value theory remains challenging. While judicious approxima-
tions can be effectively exploited in some cases, and "brute force" high sampling Monte-Carlo simulation
can complement this approach, as has been done in this work, a more general treatment of the subject
would be desirable. Some theoretical developments were identified in the literature during the preparation
of this work, but again, their application to complex models is far from trivial. In this sense, the works of
Piterbarg and Konstantinides ([74]) seem to be a relevant starting point.

9. Finally, following the trends in reliability and probabilistic mechanics, the feasibility of applying machine
learning strategies could be explored.
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Appendix A

Matrix specification of various dynamical
systems developed
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1 The 2 DOF mass-blade

Symbols and definitions

• M mass of the disc

• r radius of the disc

• L length of the blade

• Ω angular velocity ( around axis z)

• x,y,z variables in the fixed referential; X ,Y,Z variables in the corotational referentials

• Φi mode shape i of the blade ; qi modal variable i of the blade

• α angle of the corrotational frame with respect to the fixed frame at rest

• Jp polar moment of inertia of the disc

• A cross-section of the blade; I moment of inertia of the cross-section of the blade with respect to the Z
axis

• ρ density of the blade ( by volume, not by unit of length)

• KX spring constants describing the flexibility of the base supporting the rotor, DX damping coefficients
describing energy dissipation of the base

• DS damping coefficient on the blade .

Matrix form of the equations of motion Using the previously defined energies and Euler-Lagrange equation,
the following system of equations can be established in matrix form with q = [xh,q1]

T :

M(t)q+(D+G(t))q+Kq = 0. (A.1)

.The mass/inertia matrix is:

M(t) =
(

M+AρL −φ1 sin(Ωt+α)
−φ1 sin(Ωt+α) φ11

)
, (A.2)

with:

φ1 =Aρ(

ˆ
Φ(X)dX)

φ11 =Aρ

ˆ
Φ(X)Φ(X)dX . (A.3)

The matrices with damping and gyroscopic effects are :

D =

(
Dx 0
0 DSφ11

)
(A.4)

with Ds1 = DSφ11, and :

G(t) = Ω

(
0 −φ1 cos(Ωt+α)

φ1 cos(Ωt+α) 0

)
. (A.5)
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Quantity Value(Units)
M 10e3[kg]
KX 2e5[ N

m ]
DX 9e3[ Ns

m ]
Ds1 10
E 25e6[Pa]
I 4.7[kg×m]
L 9[m]
ρ 211[ kg

m3 ]
A 1.5[m2]
r 1[m]
Ω 1.15[ rad

s ]

Table A.1: Parameters

The stiffness matrix is :

K =

(
Kx 0
0 Kq

)
(A.6)

with:

Kq =−φ11Ω
2 +AL(L+2r)ρ

(ˆ (
Φ

′
11
)2 dX

)
Ω

2

−2Arρ

(ˆ
X
(
Φ

′
11
)2 dX

)
Ω

2 −Aρ

(ˆ
X2(

Φ
′
11
)2 dX

)
Ω

2 +EI
ˆ (

Φ
′′
11
)2 dX , (A.7)

in these expressions:

• E is Young’s modulus, I is the section’s moment of inertia;

• A is the area of the cross-section, ρ is the density of the material;

• r is the radius of the rotor hub, L is the lengh of the blade;

• Integration with respect to X is done on the interval [0,L], the length of the blade;

• Dot is differentiation with respect to time, prime is differentiation with respect to X .

Numerical values and parameters The previous development allows the description of different systems.
The selected values of the physical parameters will be dependent on the application, and some of these require
extensive experiments ( particularly the damping coefficients). The parameters selected are detailed in the
following table:
With these values, the numerical values of the system matrices can be written. The stiffness matrix is :

K =

(
2e+05 0

0 7.0181e+02

)
(A.8)

The damping matrix:

D =

(
9000 0

0 10

)
. (A.9)
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The mode shape integrals after multiplication are:

φ1 =41.791
φ11 =1,

so the mass matrix is, with α = 0 :

M(t) =
(

12.848e+03 −41.791sin(1.15t)
−41.791sin(1.15t) 1

)
. (A.10)

Finally, the gyroscopic matrix:

G(t) = 1.15
(

0 −41.791cos(1.15t)
41.791cos(1.15t) 0

)
. (A.11)

2 The 21 DOF model

The stiffness matrix can be decomposed in an elastic term and a term related to Ω:
K = KE +KΩ, dim[21,21] :

KE =

KEH 0 0
0 KEB1 0
0 0 KEB2

 . (A.12)

The elastic term can be subdivided in the following submatrices:KEH → [5,5] ;KEBk → [8,8] ; k designates the
corresponding blade:

KEH =


KXX 0 0 0 KXθ2

0 KYY 0 KY θ1 0
0 0 KZZ 0 0
0 KY θ1 0 Kθ1θ1 0

KXθ2 0 0 0 Kθ2θ2

 (A.13)

KXX =kx1+kx2
KYY =ky1+ky2
KZZ =kz1+kz2

Kθ1θ1 =ky1L2
1 +ky2L2

2

Kθ2θ2 =kx1L2
1 +kx2L2

2

KXθ2 =−kx1L1 −kx2L2

KY θ1 =ky1L1 +ky2L2 (A.14)

KEBi =

(
Ksi j

EBk
Ks f i j

EBk

Ks f i j
EBk

K f i j
EBk

)
(A.15)
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Ksi j
EBk

=EIZZ

ˆ
(ϕs

i )
′′(

ϕ
s
j
)′′ dx, i, j ∈ [1,2,3,4]

K f i j
EBk

=EIYY

ˆ (
ϕ

f
i

)′′(
ϕ

f
j

)′′
dx, i, j ∈ [5,6,7,8]

Ks f i j
EBk

=EIY Z

ˆ
(ϕs

i )
′′
(

ϕ
f
j

)′′
dx, i ∈ [5,6,7,8] , j ∈ [1,2,3,4] (A.16)

the matrix KΩ can be subdivided as:

KΩ =

KHH KHB1 KHB2
0 KB1B1 0
0 0 KB2B2

 (A.17)

with the following form: KHH → [5,5]

KHH =AρΩ
2Lb


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 − 2

3

(
3rLb +L2

b +3r2
)

sin2(tΩ) 1
3

(
(3r−1)Lb +2L2

b +3r2
)

sin(2tΩ)
0 0 0 1

3

(
(3r−1)Lb +2L2

b +3r2
)

sin(2tΩ) − 2
3

(
3rLb +L2

b +3r2
)

cos2(tΩ)

 (A.18)

for KHB1 → [5,8]:

KHB1 = A1ρ1Ω
2


sin(tΩ)Ksϕ1 sin(tΩ)Ksϕ2 sin(tΩ)Ksϕ3 sin(tΩ)Ksϕ4

−cos(tΩ)Ksϕ1 −cos(tΩ)Ksϕ2 −cos(tΩ)Ksϕ3 −cos(tΩ)Ksϕ4
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

sin(tΩ)K f rϕ1 sin(tΩ)K f rϕ2 sin(tΩ)K f rϕ3 sin(tΩ)K f rϕ4
−cos(tΩ)K f rϕ1 −cos(tΩ)sin(tΩ)K f rϕ2 −cos(tΩ)K f rϕ3 −cos(tΩ)K f rϕ4

 (A.19)

KHB2 = A2ρ2Ω
2


−sin(tΩ)Ksϕ1 −sin(tΩ)Ksϕ2 −sin(tΩ)Ksϕ3 −sin(tΩ)Ksϕ4
cos(tΩ)Ksϕ1 cos(tΩ)Ksϕ2 cos(tΩ)Ksϕ3 cos(tΩ)Ksϕ4

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

−sin(tΩ)K f rϕ1 −sin(tΩ)K f rϕ2 −sin(tΩ)K f rϕ3 −sin(tΩ)K f rϕ4
cos(tΩ)K f rϕ1 cos(tΩ)sin(tΩ)K f rϕ2 cos(tΩ)K f rϕ3 cos(tΩ)K f rϕ4

 (A.20)
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Ksϕi =

ˆ
ϕ

s
i dx

K f ϕi =

ˆ
ϕ

f
i dx

K f rϕi =(rK f ϕi +

ˆ
xϕ

f
i dx) (A.21)

KBkBk = A1ρ1Ω
2



K11
BkBk K12

BkBk K13
BkBk K14

BkBk 0 0 0 0
K21

BkBk K22
BkBk K23

BkBk K24
BkBk 0 0 0 0

K31
BkBk K32

BkBk K33
BkBk K34

BkBk 0 0 0 0
K41

BkBk K42
BkBk K43

BkBk K44
BkBk 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(A.22)

Ki j
BkBk = 2rLb

ˆ
(ϕs

i )
′(

ϕ
s
j
)′dx+L2

b

ˆ
(ϕs

i )
′(

ϕ
s
j
)′dx

−2r
ˆ

x(ϕs
i )

′(
ϕ

s
j
)′dx−

ˆ
x2(ϕs

i )
′(

ϕ
s
j
)′dx−

ˆ
(ϕs

i )
(
ϕ

s
j
)
dx. (A.23)

The coefficient matrix on the time derivatives G can be decomposed into two terms G = GH +GG:

GH =

(
GHH 0 [5,16]

0 [16,5] 0 [16,16]

)
(A.24)

with:

GHH =
1
3

Ω


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0

(
2AρL3

b +6Aρr2Lb +6AρrL2
b +3Jp

)
0 0 0 −

(
2AρL3

b +6Aρr2Lb +6AρrL2
b +3Jp

)
0

 (A.25)

and the matrix GG = 2AρΩGi, j
G has the nonzero elements:
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G10,4
G =cos(tΩ)(r

ˆ
ϕ1f(x)dx+

ˆ
xϕ1f(x)dx)

G11,4
G =cos(tΩ)(r

ˆ
ϕ2f(x)dx+

ˆ
xϕ2f(x)dx)

G12,4
G =cos(tΩ)(r

ˆ
ϕ3f(x)dx+

ˆ
xϕ3f(x)dx)

G13,4
G =cos(tΩ)(r

ˆ
ϕ4f(x)dx+

ˆ
xϕ4f(x)dx)

G18,4
G =− cos(tΩ)(r

ˆ
ϕ1f(x)dx+

ˆ
xϕ1f(x)dx)

G19,4
G =− cos(tΩ)(r

ˆ
ϕ2f(x)dx+

ˆ
xϕ2f(x)dx)

G20,4
G =− cos(tΩ)(r

ˆ
ϕ3f(x)dx+

ˆ
xϕ3f(x)dx)

G21,4
G =− cos(tΩ)(r

ˆ
ϕ4f(x)dx+

ˆ
xϕ4f(x)dx) (A.26)

G10,5
G =sin(tΩ)(r

ˆ
ϕ1f(x)dx+

ˆ
xϕ1f(x)dx)

G11,5
G =sin(tΩ)(r

ˆ
ϕ2f(x)dx+

ˆ
xϕ2f(x)dx)

G12,5
G =sin(tΩ)(r

ˆ
ϕ3f(x)dx+

ˆ
xϕ3f(x)dx)

G13,5
G =sin(tΩ)(r

ˆ
ϕ4f(x)dx+

ˆ
xϕ4f(x)dx)

G18,5
G =− sin(tΩ)(r

ˆ
ϕ1f(x)dx+

ˆ
xϕ1f(x)dx)

G19,5
G =− sin(tΩ)(r

ˆ
ϕ2f(x)dx+

ˆ
xϕ2f(x)dx)

G20,5
G =− sin(tΩ)(r

ˆ
ϕ3f(x)dx+

ˆ
xϕ3f(x)dx)

G21,5
G =− sin(tΩ)(r

ˆ
ϕ4f(x)dx+

ˆ
xϕ4f(x)dx) (A.27)

G10,4
G =−G1,6

G

G11,4
G =−G1,7

G

G12,4
G =−G1,8

G

G13,4
G =−G1,9

G

G18,4
G =−G1,14

G

G19,4
G =−G1,15

G

G20,4
G =−G1,16

G

G21,4
G =−G1,17

G (A.28)
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G10,5
G =−G2,6

G

G11,5
G =−G2,7

G

G12,5
G =−G2,8

G

G13,5
G =−G2,9

G

G18,5
G =−G2,14

G

G19,5
G =−G2,15

G

G20,5
G =−G2,16

G

G21,5
G =−G2,17

G . (A.29)

The inertia matrix can be subdivided into a time-dependent component and a time-independent component:
M = Mt +MC, withMC = MC1 +MCC:

MC1 =


MH 0 0 0 0

0 MS
B1B1 0 0 0

0 0 M f
B1B1 0 0

0 0 0 MS
B2B2 0

0 0 0 0 M f
B2B2

 (A.30)

MH =


A1ρ1Lb +A2ρ2Lb +M 0 0

0 A1ρ1Lb +A2ρ2Lb +M 0
0 0 A1ρ1Lb +A2ρ2Lb +M
0 0 0
0 0 0

0 0
0 0
0 0

Jd
1
3 AρL3

b ++Aρr2Lb +AρrL2
b 0

0 Jd
1
3 AρL3

b ++Aρr2Lb +AρrL2
b

 (A.31)

MS
BkBk = Akρk


´
(ϕs

1)(ϕ
s
1)dx

´
(ϕs

1)(ϕ
s
2)dx

´
(ϕs

1)
(
ϕs

3
)

dx
´
(ϕs

1)(ϕ
s
4)dx´

(ϕs
1)(ϕ

s
2)dx

´
(ϕs

2)(ϕ
s
2)dx

´
(ϕs

2)
(
ϕs

3
)

dx
´
(ϕs

2)(ϕ
s
4)dx´

(ϕs
1)
(
ϕs

3
)

dx
´
(ϕs

2)
(
ϕs

3
)

dx
´ (

ϕs
3
)(

ϕs
3
)

dx
´ (

ϕs
3
)
(ϕs

4)dx´
(ϕs

1)(ϕ
s
4)dx

´
(ϕs

2)(ϕ
s
4)dx

´ (
ϕs

3
)
(ϕs

4)dx
´
(ϕs

4)(ϕ
s
4)dx

 (A.32)

M f
BkBk = Akρk



´ (
ϕ

f
1

)(
ϕ

f
1

)
dx
´ (

ϕ
f

1

)(
ϕ

f
2

)
dx
´ (

ϕ
f

1

)(
ϕ

f
3

)
dx
´ (

ϕ
f

1

)(
ϕ

f
4

)
dx´ (

ϕ
f

1

)(
ϕ

f
2

)
dx
´ (

ϕ
f

2

)(
ϕ

f
2

)
dx
´ (

ϕ
f

2

)(
ϕ

f
3

)
dx
´ (

ϕ
f

2

)(
ϕ

f
4

)
dx´ (

ϕ
f

1

)(
ϕ

f
3

)
dx
´ (

ϕ
f

2

)(
ϕ

f
3

)
dx
´ (

ϕ
f

3

)(
ϕ

f
3

)
dx
´ (

ϕ
f

3

)(
ϕ

f
4

)
dx´ (

ϕ
f

1

)(
ϕ

f
4

)
dx
´ (

ϕ
f

2

)(
ϕ

f
4

)
dx
´ (

ϕ
f

3

)(
ϕ

f
4

)
dx
´ (

ϕ
f

4

)(
ϕ

f
4

)
dx

 (A.33)

in the case of MCC is has the following components: MCC = MCC and:

Mi,3
CC =Aρ(

ˆ
ϕ

f
1 dx) (A.34)
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i ∈ [10,11,12,13,18,19,20,21], similarly:

M3,i
CC =Mi,3

CC (A.35)

the rest of the elements are zero. In the case of Mt , it can be assembled from the following matrix:

M1t =



A1ρ1 sin(tΩ)(−
´

ϕ1s(x)dx) A1ρ1 cos(tΩ)(
´

ϕ1s(x)dx) 0
A1ρ1 sin(tΩ)(−

´
ϕ2s(x)dx) A1ρ1 cos(tΩ)(

´
ϕ2s(x)dx) 0

A1ρ1 sin(tΩ)(−
´

ϕ3s(x)dx) A1ρ1 cos(tΩ)(
´

ϕ3s(x)dx) 0
A1ρ1 sin(tΩ)(−

´
ϕ4s(x)dx) A1ρ1 cos(tΩ)(

´
ϕ4s(x)dx) 0

0 0 0
0 0 0
0 0 0
0 0 0

A2ρ2 sin(tΩ)(
´

ϕ1s(x)dx) A2ρ2 cos(tΩ)(
´

ϕ1s(x)dx) 0
A2ρ2 sin(tΩ)(

´
ϕ2s(x)dx) A2ρ2 cos(tΩ)(

´
ϕ2s(x)dx) 0

A2ρ2 sin(tΩ)(
´

ϕ3s(x)dx) A2ρ2 cos(tΩ)(
´

ϕ3s(x)dx) 0
A2ρ2 sin(tΩ)(

´
ϕ4s(x)dx) A2ρ2 cos(tΩ)(

´
ϕ4s(x)dx) 0

0 0 0
0 0 0
0 0 0
0 0 0

0 0
0 0
0 0
0 0

A1ρ1 sin(tΩ)(r
´

ϕ1f(x)dx+
´

xϕ1f(x)dx) A1ρ1(−cos(tΩ))(r
´

ϕ1f(x)dx+
´

xϕ1f(x)dx)
A1ρ1 sin(tΩ)(r

´
ϕ2f(x)dx+

´
xϕ2f(x)dx) A1ρ1(−cos(tΩ))(r

´
ϕ2f(x)dx+

´
xϕ2f(x)dx)

A1ρ1 sin(tΩ)(r
´

ϕ3f(x)dx+
´

xϕ3f(x)dx) A1ρ1(−cos(tΩ))(r
´

ϕ3f(x)dx+
´

xϕ3f(x)dx)
A1ρ1 sin(tΩ)(r

´
ϕ4f(x)dx+

´
xϕ4f(x)dx) A1ρ1(−cos(tΩ))(r

´
ϕ4f(x)dx+

´
xϕ4f(x)dx)

0 0
0 0
0 0
0 0

A2ρ2 sin(tΩ)(−r
´

ϕ1f(x)dx+
´

xϕ1f(x)dx) A2ρ2(cos(tΩ))(r
´

ϕ1f(x)dx+
´

xϕ1f(x)dx)
A2ρ2 sin(tΩ)(−r

´
ϕ2f(x)dx+

´
xϕ2f(x)dx) A2ρ2(cos(tΩ))(r

´
ϕ2f(x)dx+

´
xϕ2f(x)dx)

A2ρ2 sin(tΩ)(−r
´

ϕ3f(x)dx+
´

xϕ3f(x)dx) A2ρ2(cos(tΩ))(r
´

ϕ3f(x)dx+
´

xϕ3f(x)dx)
A2ρ2 sin(tΩ)(−r

´
ϕ4f(x)dx+

´
xϕ4f(x)dx) A2ρ2(cos(tΩ))(r

´
ϕ4f(x)dx+

´
xϕ4f(x)dx)



. (A.36)

Ultimately:

Mt =

(
0 (M1t)

T

M1t 0

)
, (A.37)

the matrix M is symmetric, while K is not.
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Appendix B

Description of the stochastic load
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1 Description of the stochastic load

Let V (X, t) be a spatio-temporal stochastic field on {Ω,F ,P} describing the velocity of the fluid flow on the
ocean environment. We make the following hypotheses about this field:

• The field is unidirectional: V (X, t) =

 0
0
Vz

 ;∀(t,X)

• The field has finite moments E [V (X, t)n] = µVn(X) < ∞

• It is a gaussian, stationary field E [V (X, t)] = µV(X,t1) = µV(X);Var [V (X, t)] = σV(X,t)V(X,t) = σV(X)V(X)

• The field is homogeneous in the X and Z directions, so V (X, t) = V (Y, t)

our goal is to describe the effect of this load over the LTP system. From a practical perspective, this entails a
problem common to tidal energy system simulation and wind turbine simulation, which we describe now:

1. The system occupies the positions q(ti), with ti = ti−1 +∆t, t, ti ∈
[
T0,Tf

]
2. The positions depend on the forces induced by the velocity q(ti) = f(V (q(ti) , t) , ti)

3. Since the positions are not known before the resolution, when simulating V (X, t) a very dense discreti-
sation grid is required as to cover all the possible configurations of q(ti); this approach is prohibitively
expensive from a computational perspective and the complexity in both

[
T0,Tf

]
and dim [q] is very poor

by way of example, let us consider a system where the rotor diameter is Dsys = 20m, with a simulation time of
360s; we assume that the displacements and rotations are very small, so V (Y +∆q, t)≈ V (Y, t); this simulation
requires the generation of a grid that covers the area A = 314.15m2 at each point of discretisation time. This
problem is compounded by the fact that in general, the constituent random variables of V (X, t) need to comply
with a prescribed correlation structure, so the generation of V (X, t) can not rely on independent sampling of
its constituent RVs: the entire grid needs to be generated at every ti even if just a small fraction of them are
ultimately applied to the system.

We envision the following strategies to mitigate these limitations:

1. Field interpolation: instead of generating a fine grid for V, a coarse grid is generated which is then used
to interpolate the remaining required points as required from the evolution of q(ti). The main drawback
is related to the convergence of this approach: the interpolation has to appropiately describe the field.
The criteria to ensure this relies on the smoothness of the sample paths of the processes, which ultimately
depends on the covariance functions.

2. Predictor-corrector approach: run a first simulation assuming a non-deformable system to estimate the
positions of the system, and then run a second simulation with the velocities sampled in the predictor step
over the system. This approach remains computationally expensive.

3. Semi-analytic estimation: estimate some of the probabilistic quantities of the part of V acting on the
system, like the first 4 moments, the covariance function or the power spectral density. These can be
estimated analytically. This provides a partial description of the processes acting on the system, so V (X, t)
incident on q(ti) can be approximated as a process that fits the aforementioned statistical descriptors.

The characterisation of V (X, t) in terms of its moments is as follows:

• Instantaneous probabilistic moments with respect to the origin:
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µV(X) (t) =E [V (X, t)]

µV(X1)V(X2) (t) =E [V (X1, t)V (X2)]

µV(X1)V(X2)V(X3) (t) =E [V (X1, t)V (X2)V (X3)]

µV(X1)V(X2)V(X3)V(X4) (t) =E [V (X1, t)V (X2)V (X3)V (X4)] (B.1)

• Instantaneous probabilistic moments with respect to the mean:

σV(X1)V(X2) (t) =E
[(
V (X1, t)−µV(X1) (t)

)(
V (X2, t)−µV(X2) (t)

)]
σV(X1)V(X2)V(X3) (t) =E

[(
V (X1, t)−µV(X1) (t)

)(
V (X2, t)−µV(X2) (t)

)(
V (X3, t)−µV(X3) (t)

)]
σV(X1)V(X2)V(X3)V(X4) (t) =E

[(
V (X1, t)−µV(X1) (t)

)(
V (X2, t)−µV(X2) (t)

)(
V (X3, t)−µV(X3) (t)

)(
V (X4, t)−µV(X4) (t)

)]
(B.2)

• Inter-instantaneous moments:

RV(X1)V(X2) (t1, t2) =E [V (X1, t1)V (X2, t2)]

RV(X1)V(X2)V(X3) (t1, t2, t3) =E [V (X1, t1)V (X2, t2)V (X3, t3)]

RV(X1)V(X2)V(X3)V(X4) (t1, t2, t3, t4) =E [V (X1, t)V (X2, t2)V (X3, t3)V (X4, t)] (B.3)

and

ΣV(X1)V(X2) (t1, t2) =E
[(
V (X1, t1)−µV(X1) (t1)

)(
V (X2, t2)−µV(X2) (t2)

)]
ΣV(X1)V(X2)V(X3) (t1, t2, t3) =E

[(
V (X1, t1)−µV(X1) (t1)

)(
V (X2, t2)−µV(X2) (t2)

)(
V (X3, t3)−µV(X3) (t3)

)]
(B.4)

ΣV(X1)V(X2)V(X3)V(X4) (t1, t2, t3, t4) = E
[(
V (X1, t1)−µV(X1) (t1)

)(
V (X2, t2)−µV(X2) (t2)

)(
V (X3, t3)−µV(X3) (t3)

)(
V (X4, t4)−µV(X4) (t4)

)]
(B.5)

from these last quantities, the generalized N covariance functions, one may compute the corresponding N Power
Spectral Densities ( the Power Spectrum, bispectrum and trispectrum from the covariance, bicovariance and
tricovariance). In the case of gaussian processes, the following quantities suffice for its complete specification:

µV(X) (t) =E [V (X, t)]

ΣV(X1)V(X2) (t1, t2) =E
[(
V (X1, t1)−µV(X1) (t1)

)(
V (X2, t2)−µV(X2) (t2)

)]
. (B.6)

Blade Element Theory The hydrodynamical aspects of a given section of the blade are characterized by its

local chord c(Xb), its lift and drag coefficients C (Xb) =

 0
CL
CD

, a twist angle θβ (Xb). Since the rotor interaction

perturbs the fluid velocity, it is convenient to supplement the previous description with the introduction of the
corresponding induction factors that account for the changes in momentum on the flow: ax (Xb) ,aZ (Xb). The
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unperturbed velocity of the fluid is V (X, t) =

 0
0

−Vz

 in the inertial referential, with norm ∥V (X, t)∥ =
√

V 2
z .

From Blade Element Momentum theory, this velocity becomes:

V (X, t) =

 0
0

−(1−aZ (Xb))Vz

+
−aX (Xb)Ω(r+Xb)

0
0


=

−aX (Xb)Ω(r+Xb)sin(Ωt)
0

−(1−aZ (Xb))Vz

 (B.7)

taking into account the velocity ṖO of a point on the blade in the inertial referential: ṖO =Ω

−(r+Xb)sin(Ωt)
(r+Xb)cos(Ωt)

0

,

we compute the relative velocity as follows Vrel (X, t) = V (X, t)− ṖO

Vrel (X, t) =

−aX (Xb)Ω(r+Xb)sin(Ωt)
0

−(1−aZ (Xb))Vz

−Ω

−(r+Xb)sin(Ωt)
(r+Xb)cos(Ωt)

0


=

−aX (Xb)Ω(r+Xb)sin(Ωt)−Ω(r+Xb)sin(Ωt)
−Ω(r+Xb)cos(Ωt)
−(1−aZ (Xb))Vz


=

−(aX (Xb)+1)Ω(r+Xb)sin(Ωt)
−Ω(r+Xb)cos(Ωt)
−(1−aZ (Xb))Vz

 (B.8)

it is convenient to introduce the following substitutions: CV X (Xb) = −(aX (Xb)+1)Ω(r+Xb) ;CVY (Xb) =
−Ω(r+Xb) ;CV Z (Xb) =−(1−aZ (Xb)), which allows to recognize:

Vrel (X, t) =

CV X (Xb)sin(Ωt)
CVY (Xb)cos(Ωt)

CV Z (Xb)Vz

 (B.9)

in an unidirectional flow, the only stochastic component corresponds to the Z direction.

The forces on a given point on a blade is:

F(Xb, t) =
1
2

ρwc(Xb)V2
rel (X, t)C (Xb) (B.10)

it requires the evaluation of the square of the relative velocity:

V2
rel (X, t) =

1
8
(
8Ω

2a2
x (Xb + r)2 sin2(tΩ)+16Ω

2ax (Xb + r)2 sin2(tΩ)+8V 2a2
z −16V 2az

−8rΩ
2Xb cos(2tΩ)−2rΩ

2Xb cos(4tΩ)+10rΩ
2Xb −4Ω

2X2
b cos(2tΩ)−Ω

2X2
b cos(4tΩ)

+5Ω
2X2

b −4r2
Ω

2 cos(2tΩ)− r2
Ω

2 cos(4tΩ)+5r2
Ω

2 +8V 2) (B.11)

which we separate into a deterministic and a random component V2
rel (X, t) = V2

rand (X, t)+V2
det (X, t):
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V2
rand (X, t) =V 2

z (az −1)2 (B.12)

V2
det (X, t) =

1
2

Ω
2 (Xb + r)2 sin2(tΩ)

(
2a2

x +4ax + cos(2tΩ)+3
)
. (B.13)

If Vz is gaussian stationary process, we can immediately conclude that:

µV 2
z (x) =σVz(x)Vz(x)+µ

2
Vz(x)

µV 4
z (x) =µ

4
Vz(x)+6µ

2
Vz(x)σVz(x)Vz(x)+3σ

2
Vz(x)Vz(x)

µV 6
z (x) =µ

6
Vz(x)+15µ

4
Vz(x)σVz(x)Vz(x)+45µ

2
Vz(x)σ

2
Vz(x)Vz(x)+15σ

3
Vz(x)Vz(x)

µV 8
z (x) =µ

8
Vz(x)+28µ

6
Vz(x)σVz(x)Vz(x)+210µ

4
Vz(x)σ

2
Vz(x)Vz(x)+420µ

2
Vz(x)σ

3
Vz(x)Vz(x)+105σ

4
Vz(x)Vz(x) (B.14)

ΣV 2
z (x1)V 2

z (x2)
(τ) =2Σ

2
V 2

z (x1)V 2
z (x2)

(τ)+4µVz(x1)µVz(x2)ΣVz(x1)Vz(x2)(τ) (B.15)

ΣV 2
z (x1)V 2

z (x2)V 2
z (x3)

(τ1,τ2) = 8
[
µVZ(x1)µVZ(x2)ΣVZ(x1)VZ(x3)(τ2 − τ1)ΣVZ(x2)VZ(x3)(τ2)

+µVZ(x2)µVZ(x3)ΣVZ(x1)VZ(x2)(τ1)ΣVZ(x1)VZ(x3)(τ2 − τ1)

+µVZ(x1)µVZ(x3)ΣVZ(x1)VZ(x2)(τ1)ΣVZ(x2)VZ(x3)(τ2)

+ ΣVZ(x1)VZ(x2)(τ1)ΣVZ(x1)VZ(x3)(τ2 − τ1)ΣVZ(x2)VZ(x3)(τ2)
]

(B.16)

Force projection Assuming a force F(Xb, t) defined on Rrot ≤ Xb ≤ Lb; t0 ≤ t ≤ t f :

CF (t) =
ˆ Lb

Rrot

F(Xb, t)dx

C2
F (t) =

ˆ Lb

Rrot

∥F(Xb, t)∥2 dx (B.17)

we seek to express F(Xb, t) in the following projection basis ϕi (x), where each of these functions are such that´ Lb
Rrot

ϕi (x)ϕ j (x)dx = δi j. We have:

Cϕi (t) =
ˆ Lb

Rrot

F(Xb, t)ϕi (x)dx

Cϕ (t) =
N

∑
i=1

Cϕi (t) (B.18)

from Rayghley’s theorem:

ˆ Lb

Rrot

∥F(Xb, t)∥2 dx =
∞

∑
i=1

∥∥Cϕi (t)
∥∥2 (B.19)

since a truncated basis is used, we adjust the projections to ensure
´ Lb

Rrot
∥F(Xb, t)∥2 dx = ∑

N
i=1 λi

∥∥Cϕi (t)
∥∥2.
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Appendix C

Energy expression of beam from
continuum mechanics and material
constitutive laws
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The general displacement for a continuum is:

Ux =Ux (X ,Y,Z, t)

Uy =Uy (X ,Y,Z, t)

Uz =Uz (X ,Y,Z, t) (C.1)

the Green strain tensor:

EEE =

Exx Exy Eyz
Exy Eyy Ezy
Eyz Ezy Ezz

 (C.2)

with:

Exx =
∂Ux

∂X
+

1
2

((
∂Ux

∂X

)2

+

(
∂Uy

∂X

)2

+

(
∂Uz

∂X

)2
)

Eyy =
∂Uy

∂Y
+

1
2

((
∂Ux

∂Y

)2

+

(
∂Uy

∂Y

)2

+

(
∂Uz

∂Y

)2
)

Ezz =
∂Uz

∂Z
+

1
2

((
∂Ux

∂Z

)2

+

(
∂Uy

∂Z

)2

+

(
∂Uz

∂Z

)2
)

(C.3)

and:

Exy =
1
2

(
∂Ux

∂Y
+

∂Uy

∂X

)
+

1
2

(
∂Ux

∂X
∂Ux

∂Y
+

∂Uy

∂X
∂Uy

∂Y
+

∂Uz

∂X
∂Uz

∂Y

)
Exz =

1
2

(
∂Ux

∂Z
+

∂Uz

∂X

)
+

1
2

(
∂Ux

∂X
∂Ux

∂Z
+

∂Uy

∂X
∂Uy

∂Z
+

∂Uz

∂X
∂Uz

∂Z

)
Eyz =

1
2

(
∂Uy

∂Z
+

∂Uz

∂Y

)
+

1
2

(
∂Ux

∂Y
∂Ux

∂Z
+

∂Uy

∂Y
∂Uy

∂Z
+

∂Uz

∂Y
∂Uz

∂Z

)
. (C.4)

From these expressions and with a constitutive law, the stresses are obtained as σi j = Ci jklεkl , where Ci jkl is a
tensor describing the material behavior. The stress allows for the definition of strain energy densities:

W (εi j) =

ˆ
εi j

0
σi jdεi j. (C.5)

The Euler-Bernoulli beam is a uni-dimensional model, so:

Ux =Ux (X ,Y,Z, t)

Uy =Uy (X , t)

Uz =Uz (X , t) , (C.6)

furthermore, it entails:

Ux (X ,Y,Z) =−Y
∂Uy

∂X
−Z

∂Uz

∂X
. (C.7)
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From these assumptions we can simplify:
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=− ∂Uz
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(C.8)

and:
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The constitutive law for an isotropic material are expressed as follows:


σxx
σyy
σzz
σyz
σxz
σxy

=


λ +2µ λ λ 0 0 0

λ λ +2µ λ 0 0 0
λ λ λ +2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ




Exx
Eyy
Ezz

2Eyz
2Exz
2Exy

 , (C.11)

the linear part of strain energy V can be obtained considering the linear terms: Exx = −Y ∂ 2Uy
∂X2 −Z ∂ 2Uz

∂X2 ;Eyy =
0;Ezz = 0;Exy = 0;Exz = 0;Eyz = 0:
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with IZZ =
´

A Y 2dA; IYY =
´

A Z2dA; IY Z =
´

A Y ZdA.
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Appendix D

Generation of stochastic processes
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This annex describes some of the methods that permit the numerical simulation of a prescribed stochastic pro-
cess, simulation being understood as the generation of samples or realizations of said process. The importance
of generation methods comes from the fact that the entire branch of Monte-Carlo methodologies for probabilis-
tic mechanics requires the availability of an ensemble of the processes considered as inputs; since MCMs tend
to be very general in their scope of application, they tend to serve as benchmark for new approaches in problems
involving uncertainties. Most of the results here pertain to a very particular, if widely utilized, class of process:
stationary centered Gaussian processes. From the stationary centered Gaussian case, more complex processes
can be constructed by relatively simple means: addition and multiplication by the appropriate quantities per-
mit the scaling of mean and variance, preserving Gaussianity; polynomial transformations produce generally
non-Gaussian processes that are useful in the modeling of loads; multiplication by a time-modulating function
results in Gaussian non-stationary processes.
The following notation will be employed to denote the distribution of a given random variable:

• U (a,b) Uniform distribution with parameters a,b.

• R(σ) Rayleigh distribution with parameter σ .

• N (µ,σ) Gaussian distribution with mean µ and variance σ .

1 Preliminaries

Let Ω be a sampling space with associated sigma-algebra F and probability measure P, forming the probability
space {Ω,F ,P}. A random variable x with distribution P is characterized by its CDF:

Px (a) = P [x ≤ a] ,a ∈ Ω (D.1)

from where we define a stochastic process as a group of random variables indexed by a time variable:

X (t) = xt , (D.2)

if a spatial domain r = (x,y,z) is considered, then it is possible to establish a scalar spatiotemporal stochastic
field:

X (r, t) = Xr (t) , (D.3)

or also a vector spatiotemporal stochastic field:

X (r, t) =

X x
r (t)

X y
r (t)

X z
r (t)

 . (D.4)

Unlike random variables, the CDF of a stochastic process does not provide a complete description of processes
and fields; more concretely, the marginal CDF of a stochastic process reads:

PX (x, t) = P [X (t)≤ x] , (D.5)

the finite-dimensional distributions (FDDs) of the process are the joint CDFs of a finite number of the constituent
random variables, for instance the second-order distributions read:

PXX (x1,x2, t1, t2) = P [X (t1)≤ x1,X (t2)≤ x2] , (D.6)

and similarly, the n− th order distributions read:

PX ...X (x1, . . . ,xn, t1, . . . , tn) = P [X (t1)≤ x1, . . . ,X (tn)≤ xn] . (D.7)

An analogous partial characterization applies to spatiotemporal stochastic fields in terms of finite-dimensional
distributions, the key distinction being the spatial dimension on which these are indexed.
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1.1 Karhunen-Loève representation

The Karhunen-Loève representation is introduced here because it will facilitate the interpretation of the for-
mulas of key methods presented here. The process X (t) of mean µX (t) = E [X (t)] and covariance function
ΣXX (t1, t2) = E [(X (t1)−µX )(X (t2)−µX )], variance σXX (ti) = ΣXX (ti, ti), allows the following Karhunen-
Loève (K-L) representation:

X (t) = µX (t)+
M

∑
i=1

√
λiζi fi (t) (D.8)

where the M is the order of the K-L series, and fi (t) ,λi are eigenfunctions and eigenvalues of the following
eigenvalue problem:

ˆ

D

ΣXX (t1, t2) fi (t2)dt2 = λi fi (t1) , (D.9)

with ζi a set of uncorrelated random variables verifying:

E [ζi] =0
E [ζiζ j] =δi j. (D.10)

In the case of a stationary Gaussian process, then ζi → N (0,1).

2 Simulation of Gaussian processes

The following quantities fully determine a Gaussian process X (t):

1. Its mean function µX (t)

2. Its covariance function ΣXX (t1, t2), or its correlation function RXX (t1, t2), or its Power Spectral Density
(PSD) SXX ( f ); these three quantities provide equivalent information about the process.

We consider a Gaussian process X (t) which is stationary up to the second order, µX (t) = µX and ΣXX (t1, t2) =
ΣXX (τ) , where τ = t2 − t1; and centered, µX = 0. We recall, from the Wiener–Khinchin theorem, the following
relationships:

SXX ( f ) =FT [ΣXX (τ)]

σXX =

∞̂

−∞

SXX ( f )d f , (D.11)

the covariance function and the PSD are FT pairs; the practical interpretation of the PSD is that of a decomposi-
tion of the variance in the frequency domain. Additionally, the shape of the PSD allows for the classification of
processes in two groups: narrowband processes, where the magnitude of the PSD is clustered in the vicinity of
a given frequency, and broadband processes, where the magnitude of the PSD is spread across a wide interval
of frequency values.
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Method 1: Harmonic function with random amplitude The process is approximated with the following
formula:

X (t) =
N

∑
i=1

Ai cos [2π fit]+Bi sin [2π fit] (D.12)

with Ai,Bi → N
(
0,
√

Si∆ fi
)

a set of independent Gaussian random variables of mean 0 and variance σi =√
Si∆ fi; the pair ( fi,Si) corresponds to the i− th discretized frequency and associated value of the PSD. To

note, in the discretization:

∆ fi =
fi+1 − fi−1

2
∆ f1 = f2 − f1

∆ fN = fN − fN−1. (D.13)

Notice that this approximation of the process is Gaussian in distribution for any given N, as it is a sum of
Gaussian variables.

The algorithmic implementation of this method has the form:

1. Define time interval of the observation t ∈
[
Tin,Tf

]
, frequency discretization N, and number of samples

NS.

2. Compute the N discretized pairs ( fi,Si).

3. Compute the discretized variance terms σi =
√

Si∆ fi.

4. Generate N ×NS pairs of (Ai,Bi)→ N
(
0,
√

Si∆ fi
)
, these pairs being statistically independent.

5. Perform the sum in formula Eq. D.12.

Method 2: Random phase and random amplitude Formula Eq. D.12 can be rewritten as:

X (t) =
N

∑
i=1

Ci cos [2π fit +φi] , (D.14)

where Ci =
√

A2
i +B2

i and φi = arctan
(
−Bi

Ai

)
; it can be shown ([138]) that if (Ai,Bi) → N

(
0,
√

Si∆ fi
)
, then

Ci →R
(√

Si∆ fi
)

and φi → U (0,2π). The algorithmic implementation of this method has the form:

1. Define the time interval of the observation t ∈
[
Tin,Tf

]
, frequency discretization N, and number of samples

NS.

2. Compute the N discretized pairs ( fi,Si).

3. Generate N ×NS independent random variables φi → U (0,2π) and Ci →R
(√

Si∆ fi
)
.

4. Perform the sum in formula Eq. D.14.

It should be stressed that formula Eq. D.14, when used with Ci =
√

2Si∆ fi (non-random amplitude), produces
samples that converge to the Gaussian distribution only asymptotically: N → ∞, as a result of the central limit
theorem. While this approach may be useful in theoretical developments where the limit can be imposed,
simulation imposes a high requirement on N to approach Gaussianity in distribution. Consequently, the method
with non-random Ci is not recommended in practical settings.
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Method 3: Random amplitude with IFFT algorithm The random amplitude method can be implemented
with the aid of the Inverse Fast Fourier Transform (IFFT) algorithm, resulting in a substantial reduction of the
computational time cost. First, we note the following identities:

exp [i2π fit] =cos [2π fit]+ i sin [2π fit]

Re [exp [i2π fit]] =cos [2π fit]

sin [2π fit] =cos
[
2π fit −

π

2

]
, (D.15)

so we may write Eq. D.12 in the following form:

X (t) =
N

∑
i=1

Ai cos [2π fit]+Bi sin [2π fit]

=
N

∑
i=1

Ai cos [2π fit]+Bi cos
[
2π fit −

π

2

]
=

N

∑
i=1

AiRe [exp [i2π fit]]+BiRe
[
exp [i2π fit]exp

[
−i

π

2

]]
=Re

[
N

∑
i=1

Di exp [i2π fit]

]
, (D.16)

with Di = (Ai −Bi), and the sum is equivalent to an Discrete Inverse Fourier Transform. Concerning Di, since
Ai,Bi are independent, we may write:

µDi =µAi +µBi = 0
σDiDi =µDiDi

=E
[
A2

i +B2
i −2AiBi

]
=σAiAi +σBiBi

=2
√

Si∆ fi, (D.17)

which means that Di → N
(
0,2

√
Si∆ fi

)
.

The algorithmic implementation of this method has the form:

1. Define time interval of the observation t ∈
[
Tin,Tf

]
, frequency discretization N, and number of samples

NS.

2. Compute the N discretized pairs ( fi,Si).

3. Compute the discretized variance terms σi = 2
√

Si∆ fi.

4. Generate N ×NS values of Di → N
(
0,2

√
Si∆ fi

)
.

5. Use the IFFT algorithm to evaluate Eq. D.16.

2.1 Multivariate case

In the case of i processes, the prescribed spectral matrix reads:
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S( f ) =


S11 ( f ) S12 ( f ) ... S1i ( f )
S∗12 ( f ) S22 ( f ) ...
... ...

S∗1i ( f ) Sii ( f )

 (D.18)

where S∗i j ( f ) denotes the complex conjugate of Si j ( f ). The correlation of any two processes is ρi j, with which
one can express the coherence function:

γi j ( f ) = ρi j exp [iφi j] . (D.19)

The methods for univariate processes can be extended, for instance:

Xp (t) =
N

∑
i=1

n

∑
q=1

Mipq cos [2π fiqt + arg [Hpq ( fi)]+φi j] , (D.20)

where i and j are frequency indexes, and p denotes the corresponding process, and additionally:

H ( fi) =S
1
2 ( fi)

Mipq =
∣∣Hpq ( fi)

∣∣√∆ fi

φi j →U (0,2π)

fiq = fi +
q
n

∆ fi. (D.21)

The Inverse Fourier Transform method reads:

Xp (t) =
n

∑
q=1

N

∑
i=1

Cipq exp [i2π fiqt] (D.22)

∣∣Cipq
∣∣=Mipq

arg(Cipq) =arg [Hpq ( fi)]+φiq

φiq →U (0,2π) . (D.23)

Karhunen-Loève connection We write, from Eq. D.8 and Eq. D.16:

X (t) =
M

∑
i=1

√
λiζi fi (t)

X (t) =
N

∑
i=1

Di exp [i2π fit] , (D.24)

by identification:

fi (t) =exp [i2π fit]

Di =
√

λiζi,

and considering ζi → N (0,1) then:
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µDi =0
σDiDi =λiσζiζi

=λi.

This suggests that the methods presented in this section can be interpreted as instances of the K-L series rep-
resentation of the corresponding Gaussian processes: with eigenfunctions fi (t) = exp [i2π fit], eigenvalues λi
associated to the PSD discretization ( fi,Si) and ∆ fi, and basis ζi → N (0,1).

3 Simulation of non-Gaussian processes

The topic of non-Gaussian simulation remains an active field of research, a consequence of the challenges
involved in such a task. The difficulties involved in the simulation of non-Gaussian processes are caused, in
no small part, by the fact that the class “non-Gaussian” encompasses a very broad type of process with very
different characteristics. Phoon’s algorithm is included in this section, the aim being to provide a concise
illustration of the type of adjustments that are required to extend K-L-based stochastic simulation into the realm
of the non-Gaussian.

K-L Phoon’s algorithm ([102])

1. Generation of m samples using X (k)
M (t)=∑

M
i=1

√
λiζ

(k)
i fi (t), with k the iteration number and m the number

of samples,

2. Estimate the marginal CDF: F̂(k)
M (y |t ) = 1

n ∑
n
m=1 I

(
X (k)

M (t)≤ y
)

, where I is the indicating function, 1if

X (k)
M (t)≤ y, 0 otherwise,

3. Transform the samples to match the prescribed CDF: η
(k)
M = F−1

[
F̂(k)

M

(
X (k)

M

)]
4. Estimate the new ζ

(k)
i with ζ

(k+1)
i = 1√

λ1

´
D

[
η
(k)
M −E

[
η
(k)
M

]]
fi (t)dt

5. Transform ζ
(k+1)
i to unit variance (LHS is suggested to minimize cross-correlations among these vari-

ables)

6. Iterate through steps 1 to 5 until the target CDF is achieved
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Résumé

Un grand nombre de technologies reposent sur des machines ou des structures qui peuvent être suffisamment
bien décrites par un modèle rotor-pâle avec des pâles constituées d’éléments de poutre attachés radialement et
subissant des vibrations transversales. Or les chargements agissants sur ces systèmes peuvent être de nature
aléatoire et très complexes, en particulier pour des applications telles que les hydroliennes ou les machines
hydrocinétiques. Pour l’analyse et la conception de ces systèmes en tenant compte des considérations de fiabil-
ité, un modèle mécano-probabiliste intégrant les aspects mécaniques du système de rotor-pâle et les différents
aspects du processus de chargement stochastique est d’intérêt. L’approche fiabiliste permet d’améliorer les
systèmes et les structures du point de vue du coût, de la sécurité et de la performance.
D’un point de vue théorique, certaines limitations peuvent être identifiées par rapport aux travaux précédents
dans le domaine des modèles rotor-pâle, de la dynamique stochastique, de la fiabilité et de l’analyse des valeurs
extrêmes. Elles comprennent les problèmes de dimensionnalité du modèle dynamique, qui limitent la capacité
d’analyse stochastique fine ; la non prise en compte de certaines coordonnées du mouvement ; ainsi que des
hypothèses de simplification strictes sur les chargements stochastiques considérés, la gaussiannité et la station-
narité étant les plus courantes.
Pour répondre aux questions précédemment identifiées, une première étape est la construction d’un nouveau
modèle dynamique pour le système rotor-pâle. Il s’agit d’un modèle d’ordre réduit, établi sur la base d’informations
préliminaires provenant des domaines de la dynamique des rotors, des vibrations et de la mécanique des mi-
lieux continus, tenant compte des variables de conception les plus importantes. La philosophie préalable à sa
création se base sur la capture des principales caractéristiques vibratoires et mécaniques de ce type de système
physique, tout en conservant une dimension réduite afin de faciliter l’analyse stochastique de la réponse. Une
description détaillée de la construction du modèle est présentée, y compris l’analyse cinématique et énergétique
du système, le schéma de discrétisation modale qui permet une représentation efficace des vibrations des pales
et la reconstruction de la réponse physique.
Le modèle rotor-pâle ainsi établi entre dans la catégorie des systèmes de Floquet : un système d’équations dif-
férentielles ordinaires avec des coefficients temporels, aussi dit problème mécanique non-standard. Pour traiter
ce type de système, la théorie modale de Floquet est exploitée. Une revue synthétique de cette théorie est d’abord
présentée, capitalisant à la fois les avancées numériques et les perspectives d’interprétation dans des domaines
très différents : de la dynamique des hélicoptères à la théorie moderne des équations différentielles ordinaires,
en passant par la mécanique appliquée et la dynamique des rotors. À partir de cette base théorique, nous présen-
tons une discussion approfondie sur l’application et l’interprétation des modes périodiques de Floquet et des
exposants caractéristiques de Lyapunov ; les méthodes de détermination de ces quantités sont présentées et
évaluées de manière critique. Les exposants caractéristiques du système de Floquet sont interprétés comme une
généralisation des caractéristiques vibratoires clés pour les systèmes invariants dans le temps : fréquence vi-
bratoire naturelle et amortissement modal ; Une généralisation du diagramme de Campbell, nommé diagramme
de Campbell-Lyapunov, est proposée par l’étude paramétrique de l’évolution de la fréquence du système en
fonction de la vitesse angulaire propre, ou, de manière équivalente, la fréquence de l’excitation paramétrique.
La réponse déterministe du système de Floquet dans le domaine des fréquences est obtenue en utilisant la
méthode de Hill. Une démonstration nouvelle est proposée pour l’équation reliant la réponse en fréquence
du système aux sollicitations. Elle apporte une certaine clarté dans l’application de la formule, ce qui facilite
l’amélioration de certains aspects de sa mise en œuvre numérique. Cette équation sert de base à la méthode de
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Monte-Carlo spectrale, qui fournit la réponse en régime établi du système rotor-pâle en cas d’entrées stochas-
tiques. Une stratégie innovante est également proposée pour l’analyse modale des systèmes de Floquet, basée
sur un outil temps-fréquence particulier : l’ondelette harmonique généralisée périodique. Elle établit une con-
nexion entre la méthode traditionnelle de Hill dans le domaine des fréquences et le domaine temps-fréquence des
ondelettes, sélectionnées par un schéma de projection parmi les bases de Hilbert. Plus généralement, l’ondelette
harmonique généralisée est utilisée tout au long de cette thèse comme outil pour estimer des quantités instation-
naires telles que le spectre évolutif de la réponse qui caractérise un système de Floquet.
La propagation des moments statistiques est choisie comme principale stratégie pour la description des réponses
mécaniques, en raison des complexités inhérentes à la caractérisation stochastique de ces processus. À cette fin,
une méthodologie systématique pour la propagation des moments est élaborée et illustrée. La méthodologie
et la notation associée sont discutées en détail, et des exemples du génie offshore sont utilisés pour montrer
l’efficacité de l’approche proposée en comparaison des publications de référence dans ce domaine. La théorie
modale de Floquet et la propagation des moments ont ainsi été combinées pour établir des expressions analy-
tiques de convolution multidimensionnelles reliant les quantités probabilistes de la sollicitation d’entrée stochas-
tique à la réponse du système rotor-pâle. Ces expressions constituent la base de la méthode semi-analytique
proposée pour caractériser les réponses par les moments. Les particularités de la méthode, ses avantages et ses
limites, ainsi que plusieurs aspects d’implémentation numérique sont discutés. La propagation des moments
obtenue, la densité de probabilité de la réponse peut alors être reconstruite par une méthode d’estimation basée
sur le principe d’Entropie maximale, pour finalement obtenir la distribution des valeurs extrêmes.
Après avoir étudié les processus instationnaires obtenus par une modulation uniforme de processus station-
naires, des relations de propagation des moments sont déduites pour cette classe de processus et sa dérivée
temporelle. Nous présentons une analyse détaillée de la relation entre les moments de ce type de processus et
les franchissements d’un certain seuil atteint par le processus et, finalement, la distribution des valeurs extrêmes.
Cette analyse est à l’origine d’une méthodologie proposée pour estimer la distribution des valeurs extrêmes des
processus instationnaires et non gaussiens : la méthode d’approximation par intervalles, dont la simplicité et les
performances surprenantes sont un point fort de cette thèse.
L’ensemble des développements théoriques et méthodologiques ainsi produits nous ont permis de traiter une
étude de fiabilité de pales d’hydroliennes. Certains défis de la conception mécanique dans ce domaine sont
résumés, ainsi que les tendances actuelles en termes de modélisation stochastique des états de mer et de sol-
licitations sur la turbine. L’analyse de Floquet du système simplifié est réalisée, ce qui permet d’obtenir la
caractérisation modale périodique correspondante. Un modèle stochastique de vague-courant-turbulence est
utilisé pour décrire le processus de vitesse d’écoulement agissant sur l’hydrolienne, et trois méthodologies sont
mises en œuvre pour obtenir les réponses du système dans différents régimes de mouvement. Pour chaque
cas, des estimateurs de fiabilité sont obtenus et comparés. Les résultats illustrent la faisabilité des solutions
proposées pour résoudre ce type de problème. En particulier, la combinaison des modèles de sollicitations par
des processus stochastiques élaborés et de modèles dynamiques d’ordre réduit capables de tenir compte des
variables de conception essentielles.
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Abstract

Many technologies rely on machines or structures that can be effectively described by a rotor-blade model: a
rotor component with continuum elements attached radially undergoing transverse vibrations. The loads acting
over these systems can be quite complex, particularly for such applications as tidal or hydrokinetic turbines;
the complexity of these loads makes them good candidates to be described through stochastic modeling tools.
The usefulness of a mechano-probabilistic model integrating the mechanical aspects of the rotor-blade model
and the different elements of the stochastic load process includes the analysis and design of such systems under
reliability considerations. The reliability approach results in improved systems and structures from the cost,
safety, and performance perspective.
From a theoretical perspective, certain limitations can be identified concerning the previous works in the joint
domain of rotor-blade models, stochastic dynamics, reliability, and extreme value analysis. The limitations
include dimensionality issues in the dynamical model, which hampers the capability of insightful or refined
stochastic analysis; neglect of specific coordinates of motion; stringent simplification hypotheses on the stochas-
tic loads considered- Gaussianity and stationarity being the most common.
Our first step is to construct a new dynamical model for rotor-blade systems to address the previously identified
issues. The model is of reduced order, established by the careful consideration of preliminary information from
the fields of rotordynamics, vibration theory, and continuum mechanics; the philosophy of its inception has
been to capture key vibrational and mechanical features of this type of physical system while maintaining a
reduced dimension to facilitate stochastic analysis of the response. A detailed description of the construction of
the model is presented, including the kinematic and energetic analysis of the system, the modal discretization
scheme that allows the efficient representation of blade vibration, and the recovery of design variables from the
response.
The mathematical rotor-blade model falls under the category of a Floquet system, a system of Ordinary Dif-
ferential Equations with time-periodic coefficients. To treat this type of system, the modal theory of Floquet
has been harnessed. A synthetic review of Floquet theory is presented, capitalizing on technical advances and
interpretation insights in different domains: helicopter dynamics to the modern theory of ordinary differential
equations, passing through applied mechanics and rotordynamics. From this theoretical foundation, we present
an in-depth discussion on applying and interpreting Floquet Periodic Modes and Lyapunov Characteristic Ex-
ponents; the methods for determining such quantities are presented and critically evaluated. The Characteristic
exponents of the Floquet system are interpreted as a generalization of the vital vibrational characteristics for
time-invariant systems: natural vibrational frequency and damping ratio; the generalization of the Campbell
diagram, the Campbell-Lyapunov diagram, is proposed as a parametric study of the evolution of the system’s
frequency with the spin angular velocity or equivalently the frequency of parametric excitation. An innovative
strategy is put forward for the modal analysis of Floquet systems; it is based on a particular time-frequency
tool: the Periodic Generalized Harmonic Wavelet; it establishes a connection between the traditional method
of Hill in the Frequency domain and the time-frequency domain of the selected Wavelets using a projection
scheme among Hilbert bases. More broadly, the PGHW is used throughout the thesis to estimate nonstationary
quantities, such as the response evolutionary spectra that characterize Floquet systems.
The response of the Floquet system on the frequency domain is obtained using Hill’s method. A new demon-
stration is presented for the equation relating the system’s frequency response and the load’s Fourier transform.
This new demonstration clarifies the application of the formula, which facilitates improving some numerical as-
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pects of the implementation. This spectral equation serves as the basis for the proposed Floquet-based spectral
Monte-Carlo, a method that provides the steady-state response of the rotor-blade system under stochastic input.
Owing to the inherent complexities of stochastic characterization, moment propagation is selected as the primary
strategy for response description. To this end, a systematic methodology for moment propagation is constructed
and exemplified. The method and associated notation are discussed in detail, and examples from offshore
analysis problems are used to contrast the efficacy of our approach with benchmark publications in this domain.
Moment propagation is combined with a Maximum Entropy PDF estimation method to reconstruct the PDF of
the response and, ultimately, the distribution of extreme values of the response quantity.
Floquet’s modal theory and moment propagation have been combined to establish analytical expressions relating
the probabilistic quantities of the stochastic input load with the response of the rotor-blade system. These
multidimensional convolution expressions are the basis of a proposed semi-analytical method to characterize
the system’s response through its moments. The particularities of the method, its advantages and limitations,
and several computational aspects are discussed.
After studying nonstationary processes obtained by uniform modulation of stationary processes, moment propa-
gation relationships are deduced for this class of process and its temporal derivative. We present a detailed anal-
ysis of the relationship between the moments of this type of process and the crossings over a certain threshold
attained by the process and, ultimately, the extreme value distribution. This analysis is the origin of a proposed
methodology to estimate the extreme value distribution of nonstationary processes: the interval approximation
method, its simplicity, and surprising performance are a highlight of the present work.
The theoretical and methodological developments obtained throughout this work are put together in a case
study corresponding to the blade reliability of tidal turbines. Some challenges to the mechanical design in
this field are summarized, as well as current trends in stochastic modeling of sea states and loadings over the
turbine. The Floquet analysis of a simplified generic system is performed, obtaining its corresponding modal
characterization. A stochastic wave-current-turbulence model describes the flow velocity process acting over
the tidal turbine, and three methodologies are used to obtain the system’s response under different regimes of
motion. The reliability estimators are obtained for each case and compared. The results illustrate the feasibility
of the proposed techniques to solve this type of problem, particularly the combination of elaborate stochastic
load processes and reduced-order dynamical models that capture important design variables.
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