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1 Introduction

Over the past few years, Machine Learning (ML) architectures have witnessed an expansion
in terms of usage and performance, resulting in a remarkable increase in complexity,
particularly in Deep Learning (DL) approaches such as Convolutional Neural Networks
(CNNs) and Transformers. The high complexity of these models has raised interpretability
problems that prevent humans from understanding the reasoning behind the decisions
they make, whether correct or erroneous. This problem is most acute in sensitive domains,
where the cost of a wrong prediction or lack of understanding can amount to a human
life, or put its safety at risk. Here, we are talking about defense, healthcare, autonomous
driving, and so on.

Inspired by recent advances in the field of machine translation, researchers have in-
creasingly explored the combination of Computer Vision and Natural Language Processing
(NLP), giving rise to a thriving field of study at the intersection of these two fields, known
as "Vision-to-Language". A specific facet of this field, known as Image Captioning (IC),
has received particular attention. IC aims to generate accurate and representative textual
descriptions of image content. For instance, in the context of biomedical imaging, IC has
gained considerable momentum recently due to its remarkable capacities in assisting and
accelerating the diagnosis processes [Pavlopoulos et al., 2019]. It has found applications
in radiology reporting, where it aids in the interpretation of medical images, facilitating
diagnostic and treatment decisions. Additionally, IC also enables improved communica-
tion among medical professionals and between professionals and patients, enhancing the
exchange of medical information. Another compelling domain where IC demonstrates its
utility is in natural disaster management [Klerings et al., 2019]. By augmenting disaster-
scene images with descriptive captions, IC systems help structuralize the imagery content.
This enrichment significantly enhances the effectiveness of image search and query, enabling
emergency services to react rapidly in critical situations. Moreover, autonomous driving
is one of the areas in which IC plays a decisive role [Mori et al., 2021]. It equips both
autonomous vehicles and drivers with a deeper understanding of their surroundings. By
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generating descriptive captions for images captured by on-board cameras, IC enables these
vehicles to identify and describe objects including obstacles, pedestrians, traffic signs, etc.
It also provides information on road and weather conditions, enhancing decision-making for
safe navigation. IC is not limited to the vehicle alone, it also extends to driver monitoring
in semi-autonomous (Level 2) vehicles, where the driver may be asked to take control of
the vehicle when necessary, namely in ambiguous or dangerous situations.

Most of these IC architectures adhere to the Encoder-Decoder framework, leveraging
deep learning modules like CNNs and Long Short-Term Memory (LSTM). Whatever
the particularities of each model used in IC, the inner workings of the encoding and
decoding components are often treated as black boxes, as their operating mechanisms are
hidden from the end user and do not provide any explanations as to how their decisions
were reached. In the context of the above-mentioned critical and sensitive domains, the
need for an explanation becomes more obvious, as an erroneous prediction or ambiguity,
however small, can have far-reaching consequences. Detecting a pathology from a machine-
generated X-ray description without knowing the explicit reasons for its identification will
necessarily lack public adoption and trust, and may therefore expose the patient’s life to
high risks in the event of errors. The actions of autonomous vehicles must be accompanied
by explanations in order to identify safety-critical situations and mitigate risks, a measure
through which accidents like Uber’s fatal crash1 in Tempe, Arizona (2018) [Daisuke, 2018]
could have been avoided.

Explainable Artificial Intelligence (XAI) is an evolving field aimed at making
Artificial Intelligence (AI) systems more transparent and understandable to hu-
mans [Adadi and Berrada, 2018], enabling users to comprehend how and why these
systems reach specific results. Despite the growing interest in XAI, the realm of
explainability for IC models remains relatively underexplored. This is not due to
underestimating its importance but rather stems from the inherent complexity that
characterizes this field. Only a few studies have therefore been proposed in the literature,
most of which primarily seek to identify causal relations that link model outputs and
inputs. For instance, in their pursuit of multimodal explanations2, [Sun et al., 2022]
have attempted to trace the captioning model decisions back to both vision-level and

1In March 2018, an Uber self-driving car struck and killed a pedestrian in Arizona who was walking her
bicycle across a multi-lane road at night outside a designated crosswalk. The vehicle’s system detected
the pedestrian about six seconds before impact, classified her first as an unknown object, then as a
vehicle, and finally as a bicycle with an unknown trajectory.

2By multi-modal explanations we refer to those involving different modalities of the original black box
model.
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language-level explanations. In the same fashion, in the context of medical image
captioning, [Beddiar and Oussalah, 2023] have designed an explainable module that
relates generated words to image regions. Additionally, it emphasizes word importance,
highlighting the words that significantly influenced the encoder when calculating the
word embedding of the target/current word. However, when it comes to multi-modal DL
models, these explanation methods tend not to explicitly outline the roles of individual
modalities in predicting the target outcome, such as a word in the caption for IC models,
or even the weight of the explanations relative to the modality from which they result.
Many of these methods share the same limitations as conventional XAI approaches,
notably lacking to consider the influence of architecture components/modalities on the
decision process and, therefore, on the explanatory information subsequently obtained.
Merely establishing a relevance-based connection between model output and input data
or intermediate representations, without emphasizing the relevance of each component,
may inappropriately suggest uniform explanatory power across all modalities. Such a
theory may prove insufficient to achieve a comprehensive understanding of the model’s
behavior. Moreover, the challenge also lies in the intricate nature of multimodal systems
compared to other deep learning-based methods. This complexity stems mainly from the
need to accurately integrate and interpret heterogeneous data from various modalities
while carefully managing cross-modal dependencies.

If we assume that a specific modality should play a crucial role in generating expla-
nations for IC models, it opens up a wide range of possibilities for exploring different
approaches to extract and represent explanation elements from that modality. However,
an important question that has often been overlooked is whether the choice of a specific
approach can have a significant impact on the quality of the explanations. While there
are numerous techniques available for generating explanations, ranging from simpler sur-
rogate methods (e.g. LIME3[Ribeiro et al., 2016]) to more complex and time-consuming
approaches like back-propagation-based methods (e.g. LRP4 [Bach et al., 2015]), it is not
clear whether the use of more computationally intensive methods necessarily leads to better
quality explanations. Moreover, in the general context of XAI, it is essential to consider
the trade-off between the computational cost of generating explanations and the resulting
explanation quality. While time-consuming methods can, in certain scenarios, offer a more
detailed and fine-grained understanding of the model’s behavior, it is worth noting that
their granularity and depth of view might occasionally align with that of simpler techniques.

3LIME (Local Interpretable Model-Agnostic Explanations): a Post-hoc Model-agnostic technique.
4LRP (Layer-wise Relevance Propagation): a Post-hoc Model-agnostic technique.
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It is also essential to recognize that such elaborate methods often require considerable
computational resources and may be impractical for real-time applications or use with
large-scale datasets. To determine the impact of various approaches on the quality of
explanations, it becomes imperative to engage in comprehensive empirical evaluations and
comparative studies that can systematically assess the relationship between the complexity
of the method and the enhancement it brings to the overall understanding.

There are also ongoing concerns among deep learning researchers regarding the
lack of visibility and comprehensive understanding of the representation/latent space.
This space is considered crucial as it embodies essential information within the model
[Rudin et al., 2022]. The data undergoes complex transformations and is ultimately trans-
formed into a latent representation that captures key features and patterns. However,
the nature and organization of this representation space remain somewhat elusive. De-
spite numerous efforts to explore this space, including the use of probing techniques
[Ilinykh and Dobnik, 2021, Yu et al., 2022], we have yet to reach a definitive understand-
ing of its underlying structure and the specific meaning associated with each element
within the representation space embeddings. This concern is particularly more pronounced
in the field of computer vision, where comprehending how models perceive and interpret
visual information is a persistent challenge. For instance, it is essential to comprehend how
models assign importance to salient objects, foregrounding them to exert more influence on
predictions. This issue arises in various computer vision tasks, such as image classification,
image captioning, and visual question answering.

1.1 Research questions and contributions

Within this specific context of explainability in IC, we have identified several key research
questions that will guide our investigation. These research questions aim to address the
aforementioned problems and could be listed as follows:

➔ RQ 1: How different components in the representation space of IC archi-
tecture contribute to the overall understanding of the model’s decision
process?
By analyzing the influence of different components or modalities within the representa-
tion/latent space (Chapter 3), we can gain insights into their relative importance
to the prediction. This analysis involves investigating how variations in specific com-
ponents or modalities impact the subsequently generated captions. By considering
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the varying strengths and objectives of different modalities, we would be able to
uncover the interplay between visual and linguistic information and gain a deeper
understanding of how the model combines and integrates these components to generate
captions. Such knowledge is crucial for developing more interpretable and reliable
image captioning models. Furthermore, it aids in pinpointing the pivotal components
within the architecture from which subsequent explanations should be derived.

➔ RQ 2: Does the scope/functioning of an explanation method for IC models
have any effect on the quality of the explanations it provides? Furthermore,
is there a more effective manner to evaluate the quality of explanations,
that is closely aligned with the representation space?
The scope of an explanation method refers to the extent to which the explanation
method explores and captures the underlying factors. It encompasses considerations
such as the range of elements covered by the explanation process (local instances or
global behavior etc.). When comparing explanations generated by different methods,
considering the scope and the functioning (surrogate vs back-propagation) may help
identify potential causal relationships between these elements and the quality of the
explanations provided (Chapter 4). Additionally, the evaluation technique used to
assess explanation quality plays a crucial role, and leveraging the inherent strengths
of the representation space may offer opportunities for enhancing this evaluation
process. This approach, combined with the confrontation of methods with different
scopes and functioning, allows for a more comprehensive comparison and analysis
and can significantly enhance our understanding of the strengths and limitations of
explainability techniques.

➔ RQ 3: Does the latent space have a discernible manner in which visual
concepts, such as object quantity, are represented and structured? do these
concepts have an explicit impact on object saliency in the final prediction?
The lack of a clear structure and interpretability in the representation space poses
significant obstacles to fully comprehending the inner workings of deep learning models.
By manipulating the latent representations (Chapter 5), we attempted to uncover
the model’s sensitivity, in both latent space and outputs, to changes in the quantitative
visual concept. This provides insights into how it leverages this information to make
decisions and whether these concepts hold any impact on objects’ saliency within a
scene.
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1.2 Thesis overview

The remaining content of this thesis is structured and presented in the following manner.

• Chapter 2: This chapter begins by presenting an overview of image captioning (IC),
highlighting recent advancements in the field. It then proceeds to review the existing
research on XAI while providing a brief history, discussing the existing terminology,
presenting a taxonomic overview of methods, categorizing different methods summarizing
recent progress, and posing the problems and challenges emanating from this domain.
Finally, it offers a comprehensive review of explainability in IC, including the latest
approaches and evaluation techniques. It also discusses the existing gaps in this field
and emphasizes the need for further exploration, while providing more detailed insights
into our contributions.

• Chapter 3: This chapter highlights the use of two fundamental concepts: latent space
and the perturbation paradigm. It embarks on comprehensive discussions and provides
essential definitions. It then introduces the standard captioning architecture that has
been adopted throughout this research work. The focal point is dedicated to the detailed
presentation of the component influence identification approach, accompanied by the
presentation of the experimental protocol. Finally, it wraps up with an in-depth analysis
and discussion of the results obtained, offering valuable insights and implications.

• Chapter 4: This chapter provides a formal exposition of two novel attribution expla-
nation approaches, BU-LRP and BU-LIME. These approaches draw inspiration from
Layer-wise Relevance Propagation (LRP) and Local Interpretable Model-Agnostic Ex-
planations (LIME) approaches while leveraging the representation space. Additionally,
it introduces our new evaluation framework, known as Latent Ablation. Subsequently,
it conducts an exhaustive comparative analysis between the two proposed techniques
and engages in a thorough discussion of the results.

• Chapter 5: This chapter presents a new explanatory approach enabling a deeper
exploration of latent space. It introduces a probing methodology tailored for image
captioning models, with a specific emphasis on the quantitative dimension of visual
information and its impact on visual saliency. This methodology relies on input editing
techniques to reveal hidden facets of model behavior. The chapter presents the formal
definition of the approach, followed by a series of experiments and in-depth discussions
of the results.
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This chapter first embarks on an exploration of the realm of image captioning (IC),
starting with a thorough overview of the field. Recent developments and advancements in
IC are discussed, shedding light on the current state of the art. Subsequently, it delves into
a survey of existing research on Explainable Artificial Intelligence (XAI). Recent advances
in the field are summarized, while concurrently categorizing the various approaches that
have been employed thus far. Then it provides a broad review of explainability in IC.
This includes an analysis of the latest explanation methods and evaluation techniques
employed in this area. Notably, it goes beyond a surface-level review by engaging in a
more explicit discussion of the gaps present in current research.
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2.1 Image Captioning

2.1.1 General framework

Image captioning (IC) is the process of generating textual descriptions (captions) for images
that faithfully reflect their content, such as biomedical image captioning or autonomous
driving scene descriptions. This is one of the well-known Vision to Language tasks, in
which computer vision techniques are used to understand and encode the visual information
contained in the image, and natural language processing (NLP) techniques to translate
the encoded information into a coherent caption. The general captioning framework could
be summarized in the following key steps:

1. Data collection and processing: Gathering a large dataset is the first step toward
designing any learning-based model. Images are collected, resized to fixed dimensions,
and aligned with human-annotated reference captions. Captions are tokenized and
processed to create a vocabulary of words, which defines the lexicon from which the
words forming the output caption will be selected during inference.

2. Feature extraction: The input images are encoded into visual features (image
embeddings) that encapsulate the visual content. This process is often referred to
as "feature extraction" and, depending on the image encoder, this step results in
either a single feature map when using a CNN-based encoder, or several Bottom-Up
(BU) visual features when opting for a Region-based Convolutional Neural Network
(RCNN)-based one. Feature extraction is often decoupled from the captioning model
which enables the reuse of pre-trained CNN models (such as ResNet, VGG, Inception,
and Faster-RCNN), which are trained on large-scale image classification tasks, without
the need to train the entire image captioning model from scratch. These pre-trained
models have demonstrated their ability to learn rich visual representations thanks
to the large amount of labeled data on hand, which enables captioning models to
benefit from knowledge transfer through transfer learning. Furthermore, as feature
extraction is computationally expensive, the pre-extracted features significantly reduce
the computational burden, as the image features are computed offline and stored
separately. The pre-computed features enable generalization to many image-related
downstream tasks, such as image classification and visual question answering. Although
feature extraction is often considered a separate step, it is an integral part of the image
captioning pipeline.

3. Captioning model design and training: Most of the captioning architectures are
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designed under the Encoder-Decoder [Karpathy and Fei-Fei, 2015] framework, with
typically a CNN as encoder and Recurrent Neural Network (RNN) as decoder, such as
LSTM or GRU, or more recently, transformer [Vaswani et al., 2017]-based models like
the Vision Transformer (ViT) [Dosovitskiy et al., 2021] or the Caption Transformer
(CPTR) [Liu et al., 2021]. The pre-extracted visual features are transformed/translated
at each time step by the decoder into textual data (words) constituting the out-
put caption. An attention mechanism is often incorporated between the two previ-
ous components resulting in a more sophisticated architecture (Encoder-Attention-
Decoder) [Xu et al., 2015]. Its main role is to guide the model at each decoding step
to focus only on relevant information (region) within the image and selectively weigh
different visual features based on the current context, which results in more accurate and
context-aware captions. During training, the model takes in aligned (Visual Features-
Caption) pairs among the train data split, generates a system caption, compares it
to the ground-truth1 caption using a suitable loss function, and updates the model
parameters through backpropagation and optimization techniques.

4. Caption inference and evaluation: Once the captioning model is trained,
it is used to infer the system caption for new images (e.g. test split), word
by word until a maximum caption length is reached. The evaluation of
the output caption quality consists of measuring the discrepancy between
the predicted caption and the target (reference) caption. Several metrics
have been proposed in the literature including BLEU [Papineni et al., 2002],
CIDEr [Vedantam et al., 2015], SPICE [Anderson et al., 2016], ROUGE [Lin, 2004],
and METEOR [Banerjee and Lavie, 2005]. Further details are given in Section 2.1.3.

2.1.2 Captioning architectures

Image captioning (IC), which draws inspiration from machine translation, initially adopted
the Encoder-Decoder architecture, popularly used in translation tasks. Nevertheless, the
rapid advancements in IC have led to the development of more sophisticated architectures.
These architectures have evolved from incorporating attention mechanisms within the
Encoder-Decoder framework to embracing transformer-based and reinforcement-based
approaches.

1The terms "ground-truth" and "gold standard", both referring to reference data used for evaluation,
are often used interchangeably, but they can have slightly different connotations depending on the
specific task or context.
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Encoder-Decoder: The Encoder-Decoder architecture is the most widely adopted
framework in IC (Section 2.1.1). It consists of two main components: an encoder and
a decoder. The encoder (typically a CNN-like architecture) processes the input image
and generates intermediate latent representations, capturing visual features. These
representations are then passed to the decoder (typically an RNN-like architecture), which
transforms them into a sequence of words that form the output caption describing the
image [Kiros et al., 2014].

Encoder-Attention-Decoder: This framework extends the Encoder-Decoder
architecture by incorporating an attention mechanism that allows the model to focus
on the most important parts of the image while generating captions and enabling visual
and textual information to be better aligned. To this end, many attention mechanisms
were proposed in the literature. These include: semantic attention [You et al., 2016],
adaptive attention [Lu et al., 2017], X-linear attention [Pan et al., 2020] and attention
on attention [Huang et al., 2019]. [Liu et al., 2022] designed a specialized captioning
method for Chinese based on visual attention and topic modeling. By leveraging the
strengths of visual attention to understand the details of the image on the one hand,
and the non-negative matrix factorization (NMF) topic model to include topic textual
information to guide the caption generation on the other hand, their method has proven
to be effective in generating more diverse and accurate sentences. Driven by the lack of
image information and the deviation of the generated captions from the main content
of the image, [Liu et al., 2020] took captioning a step further by incorporating image
labels from the convolutional network into the decoding model and proceeding with a
dual attention mechanism consisting of visual attention on image features, and textual
attention on the aforementioned textual labels, whose role is to increase information
integrity in the generated caption.

Transformer and semi-Transformer: The transformer [Herdade et al., 2019]
architecture, initially proposed for NLP, has revolutionized various natural language
processing tasks and has recently gained attention in the field of image captioning (IC).
In some recent works, there has been a shift towards incorporating transformer-based
decoders in the traditional frameworks, replacing the conventional RNN-based decoders.
These approaches, which we can qualify as "semi-transformer-based architectures," aim to
take advantage of the benefits offered by transformers, such as their ability to capture
long-range dependencies and enable efficient parallel processing. While early attempts at
utilizing these architectures in IC did not yield significant improvements in caption quality,
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more recent works, such as [Liu et al., 2021] have shown considerable enhancements by
extending the transformer to both the vision and language levels.

Reinforcement Learning: It has been utilized in IC to optimize the caption
generation process. Self-critical Sequence Training (SCST) is a prominent method
proposed by [Rennie et al., 2017] that employs reinforcement learning to optimize the
evaluation metric (such as CIDEr). The key idea is to use the predicted captions obtained
during inference as a reference to normalize the rewards. By doing so, SCST helps
mitigate the exposure to bias problem, where models are trained using ground-truth
captions during training but exposed to their imperfect predictions during inference. This
enables the model to learn from its mistakes and improve the quality of the generated
captions. Reinforcement Learning with Monte Carlo Search (RL-MCTS), introduced by
[Yao et al., 2017], is an approach that combines reinforcement learning and Monte Carlo
tree search to enhance the captioning process. RL-MCTS iteratively builds a tree structure
that represents different captioning actions (trajectories) and their corresponding rewards.
By simulating multiple trajectories and back-propagating the rewards, RL-MCTS selects
the most promising actions to generate high-quality captions.

Scene-Graph: Focusing on the relationships between objects detected in the
image constitutes a different branch of research in IC, resulting in more detailed and
fine-grained captions. The scene-graph representation, introduced by [Zellers et al., 2018],
builds a structured semantic graph where nodes represent objects and edges represent
predicates (relationships between pairs of objects or attributes like colors and adjectives,
etc.). The model relies on a Graph Convolutional Network (GCN) that aggregates
neighborhood information within the graph and enriches the representation with
contextual information that binds objects and predicates. During training, the model
is typically optimized using a combination of language generation loss and scene graph
alignment loss. In the context of scene-graph captioning, [Zhong et al., 2020] proposed a
method that utilizes semantic representation through scene-graph decomposition. This
approach allows for a more comprehensive understanding of the relationships within the
scene, leading to improved caption generation.

2.1.3 Evaluation of caption quality

Many works in the literature have focused on developing methods for evaluating texts
produced by text generation tasks, such as machine translation (text-to-text), image
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captioning (image-to-text), visual question answering ("text+image"-to-text), and the
examples are even more numerous. However, the challenge for tasks that include a visual
aspect is much greater, since the visual content plays a key role in determining the
quality of the corresponding output, which is not the case in some NLP tasks where
the evaluation is uni-modal (text-text), requiring only the reference text to determine
the quality of the output. Some works [Hessel et al., 2021] have already discussed the
existing approaches for IC evaluation and how different metrics differ in their functioning.
From our perspective, the existing paradigms in evaluating captioning models could be
categorized under the three following classes:

Reference-based evaluation: This approach involves comparing the system
(generated) caption with one or more reference captions that are considered to be
ground-truth. Various evaluation methods exist for this purpose, including n-gram
matching and overlapping metrics like BLEU [Papineni et al., 2002] and ROUGE
[Lin, 2004], n-gram weighting metrics like CIDEr [Vedantam et al., 2015], word-level
alignment metrics like METEOR [Banerjee and Lavie, 2005], token embedding similarity
evaluation using BERTScore [Zhang et al., 2020b], and text semantic-graph comparison
like SPICE [Anderson et al., 2016]. However, some authors [Jiang et al., 2019] argue that
these metrics may not fully capture the image content and advocate for the inclusion of
image content in the evaluation process, considering the inherent ambiguity of natural
language.

Reference+Image-based evaluation: To address the mentioned problem of
considering image content in the evaluation process of image captioning, several metrics
have been proposed. One such approach is TIGEr [Jiang et al., 2019], which learns
a model to ground and match text captions (reference and candidates) to the image
content. VIFIDEL [Madhyastha et al., 2019] measures the Word Mover’s Distance
(WMD) [Kusner et al., 2015] between the candidate caption and object labels (from
the object detection) previously weighted based on the reference captions. LEIC
[Cui et al., 2018] on the other hand, is a learning-based discriminative metric that
distinguishes between human and machine-generated captions using a trained neural
network model. It utilizes this trained model to evaluate the quality of candidate
captions within their context, which is composed of the input image and the reference
caption. [Wang et al., 2021] introduced FAIEr, a metric that utilizes scene graph
embeddings for both reference captions and input images. By fusing and comparing
these embeddings with the candidate scene graph, FAIEr incorporates image content into
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the evaluation process. However, like other metrics in this category, the effectiveness of
FAIEr relies on the availability of large-scale datasets with aligned pairs of images and
reference captions, which may not always be readily accessible or straightforward to obtain.

Image-based evaluation: This type of metric, commonly known as "reference-
free", evaluates the quality of generated captions without relying on reference captions
for comparison. Instead, it assesses the quality of the generated caption solely based on
the input image content. One example is CLIPScore, introduced by [Hessel et al., 2021],
which computes the cosine similarity between the embeddings of the image and the
candidate caption using the cross-modal retrieval model CLIP [Radford et al., 2021].
Another metric is UMIC [Lee et al., 2021], which utilizes contrastive learning to compare
and discriminate ground-truth captions from synthetic negative ones. However, these
metrics may face challenges such as biases inherited from pre-training data, poor
correlation with human judgments, lack of interpretability, and difficulty in detecting
subtle errors in captions [Sai et al., 2022, Ahmadi and Agrawal, 2023].

While each category of metrics brings its strengths and weaknesses, certain metrics
have garnered broader adoption in IC. Below, we provide detailed insights into key
evaluation metrics, each discussed separately:

1. BLEU (Bilingual evaluation understudy) [Papineni et al., 2002]: is a precision-based
metric used for evaluating the quality of generated captions. It compares the n-grams
(segments) of the predicted caption with those of the reference high-quality caption.
The scores are then averaged to obtain a similarity score ranging from 0 (low similarity)
to 1 (high similarity). While BLEU is computationally efficient, it has limitations when
applied to long texts, and an increase in the BLEU score does not always indicate good
overall text quality. BLEU as defined in the original paper is given by Equation 2.1,
where c and r are the lengths of the candidate caption and reference captions (closest
value to c), respectively. BP denotes the Brevity Penalty which penalizes overly short
candidates. pn refers to the precision of n-grams matching between the candidate and
the reference, with a modification to handle cases where a candidate n-gram appears
more times in the candidate text than in any of the reference texts. The global BLEU
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score combines the precision scores for multiple n-gram lengths ranging from 1 to N .

BP = {

1 if c > r,

exp(1− r/c) if c <= r

}

(2.1)

BLEU = BP ∗ exp(

N∑
n=1

log(pn)) ; BLEU ∈ [0, 1] (2.2)

2. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [Lin, 2004]: is a set of
metrics commonly used for evaluating text summarization and machine translation.
It measures the overlap of sequences, such as words and n-grams. ROUGE-N, for
example, measures the n-gram overlap at various orders (unigram, bigram, trigram,
etc.). ROUGE-L measures the longest matching sequence of words. Unlike BLEU,
ROUGE focuses on the ability to retrieve important information from the reference
caption. The formula of ROUGE-L is given by Equation 2.3. LCS refers to the longest
common sequence between the candidate and the reference.

prec = (LCS/c)

rec = (LCS/r)
(2.3)

ROUGE − L =
2 ∗ prec ∗ rec

prec + rec
; ROUGE − L ∈ [0, 1] (2.4)

3. METEOR (Metric for Evaluation of Translation with Explicit Ordering)
[Banerjee and Lavie, 2005]: is a metric that combines precision and recall by cal-
culating their harmonic mean, with recall weighted more than precision. It incorporates
explicit word-to-word alignment and takes into account stemming and synonymy match-
ing using WordNet2 [Miller, 1995], making it more effective than previous metrics. It
puts a penalty if the word order is not respected, using the concept of chunks which
represent groups of adjacent unigrams. METEOR is designed to correlate well with
human judgments at the sentence level, unlike BLEU and ROUGE, which operate
at the corpus level. The METEOR formula is given in Equation 2.5. METEOR’s
precision and recall involve matching and counting words that are common between the

2WordNet: is a large semantics-based lexical corpus for the English language grouping words into sets of
synonyms
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candidate and reference sentences, in the candidate and the reference, respectively. pen
represents the penalty for word order differences, and α is a parameter that balances
precision and recall, typically set to 0.5 for equal weighting.

METEOR = (1− α) ∗ prec+ α ∗ rec ∗ (1− Pen) ; METEOR ∈ [0, 1] (2.5)

4. CIDEr (Consensus-based Image Description Evaluation) [Vedantam et al., 2015]: is a
metric specifically proposed for image captioning. It measures the similarity between a
candidate caption and a set of ground-truth captions. CIDEr first transforms the words
in candidate and reference sentences to their stem or root form and represents them
using sets of n-grams. It applies TF-IDF weighting to penalize frequently occurring
n-grams, which are likely to be less informative. This metric aims to capture the
visual relevance of the captions. Considering a set of M reference sentences C and a
candidate sentence Ĉ, gn(Ci) stands for the vector formed by the TF-IDF weighting
for all n-grams of length n in the ith reference sentence, and similarly for gn(Ĉ). N

is the maximum length of the n-grams (typically N = 4). A variation of this metric
with several modifications, known as CIDEr-D [Vedantam et al., 2015], has also been
proposed to capture caption diversity, and a factor of 10 is added to make the CIDEr-D
scores numerically similar to other metrics.

CIDErn(Ĉ, C) =
1

M

M∑
i=1

gn(Ĉ) · gn(Ci)

∥gn(Ĉ)∥∥gn(Ci)∥
(2.6)

CIDEr(Ĉ, C) =
N∑

n=1

1

N
CIDErn(Ĉ, C) ; CIDEr ∈ [0, 1] (2.7)

5. SPICE (Semantic Propositional Image Caption Evaluation) [Anderson et al., 2016]: is
a novel approach that is based on comparing the semantic graph representations of the
candidate and reference captions. It utilizes a scene-graph parser to extract semantic
graphs and computes the F1 score by matching tuples, which represent semantic
relations in the scene graph. By analyzing the components of scene graphs and the
semantic propositions extracted from captions, SPICE can capture semantic similarity,
including handling synonyms or related terms based on its internal knowledge. While
SPICE correlates well with human judgments, it only considers semantic similarity and
disregards the syntactic structure of the sentence. The exact formula for SPICE is
quite complex and involves multiple steps, including parsing captions into semantic
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propositions and extracting semantic triplets (subject-predicate-object). Here is a
simplified representation of the SPICE metric equation:

SPICE =
SemanticContentMatches

TotalNumberofSemanticTriplets
; SPICE ∈ [0, 1] (2.8)

6. LEIC (Learning to Evaluate Image Captioning) [Cui et al., 2018]: addresses the limi-
tations of SPICE by proposing a learning-based discriminative evaluation metric. It
trains a binary classifier to distinguish between human-written and machine-generated
captions. The classifier is trained with high-level features extracted from the train-set
images using ResNet pre-trained on ImageNet, and their language context vectors,
i.e. the candidate and reference caption encodings generated using an LSTM encoder.
During evaluation, the learned classifier is used to measure the quality (to classify) of the
candidate caption, while also taking into account its context (the image feature). LEIC
outperforms existing metrics and correlates better with human judgments, adapting to
both long and short sentences and capturing syntactic quality.

7. BERTscore [Zhang et al., 2020b]: is a recent word-to-word matching metric that lever-
ages contextual word embedding representations. It extracts embeddings from both the
candidate and reference captions using a BERT pre-trained language model, such as
the original BERT model [Devlin et al., 2019] and computes cosine similarity between
them. The metric employs a greedy pick strategy to select the maximum similarity
values. It also offers the option to apply weighting by inverse document frequency (IDF).
In the context of IC, the IDF weighting operates on the corpus composed of all images’
captions. BERTscore excels at matching paraphrases and handles order differences and
long distances well. However, it runs the risk of under-penalizing reference words that
are not accompanied by matching candidate words.

8. CLIPScore [Hessel et al., 2021]: is an evaluation metric that utilizes a pre-trained cross-
modal model called CLIP [Radford et al., 2021], trained on a large dataset of image-
caption pairs. It calculates the cosine similarity between the latent vectors obtained
from the input image and the candidate caption. CLIPScore has demonstrated a
stronger correlation with human judgments compared to traditional reference-based and
reference+image-based metrics like CIDEr and LEIC. However, a potential drawback of
this metric is that the CLIP model is trained on heterogeneous images, which may pose
challenges in generalizing the embeddings to specialized or domain-specific datasets.
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It is crucial to acknowledge that ongoing debates surround the validity of learning-
based explanation generation methods and evaluation metrics, as is the case with the last
three metrics mentioned above. In situations where explanations are obtained and/or
assessed through AI methods, a fundamental question arises: to what extent do the
results of these methods themselves require further explanation? This scenario can give
rise to a complex cycle of "explainability on explainability". Moreover, metrics such as
CLIPScore and BERTScore rely on pre-trained models like CLIP and BERT to evaluate
other models. Consequently, any biases present in the original models may lead to biased
evaluations. These metrics not only tend to favor the outputs of their underlying models
but also exhibit biases towards outputs from models that resemble their own. While it
is acknowledged that any system dependent on third-party resources may introduce a
certain bias, the issue becomes more pronounced when evaluations are based on resources
integrated into a model’s architecture. For example, CLIPScore evaluation of a CLIP
embeddings-based captioning model can introduce a significant bias. Several studies
have addressed the limitations of learning-based evaluation methods, including works like
[Deutsch et al., 2022, Otani et al., 2023].

2.2 Explainable Artificial Intelligence (XAI)

The increasing complexity of AI systems has given rise to a crucial challenge: the lack of
interpretability, hindering our understanding of the reasons behind these systems’ decisions.
Since then, the AI community has been actively working on methods and techniques to
strike a trade-off between the robustness of AI-based systems and their interpretability.
This pursuit of providing explanations that enhance our understanding of decision-making
is nowadays called Explainable Artificial Intelligence (XAI).

2.2.1 Brief history

The XAI paradigm traces back to many years ago. While it does not have a definitive
starting point associated with a specific date or event, the need for explainability was
commonly recognized as intelligent systems experienced a resurgence, following a period
marked by relative stagnation such was the case for expert systems (the 1970s) and
recommendation systems (the 2000s). Early intelligent systems attempted to mimic human
expertise but were often unable to provide comprehensible explanations for their decisions
although the concept of explanation has already emerged [Buchanan and Smith, 1988,
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Moore and Swartout, 1988]. The growing sophistication of AI-based systems, particularly
with the rise of complex models such as Deep Neural Network (DNN), has allowed for
more predictive power. Yet this has not come without a cost; in fact, it has often been
at the expense of the effectiveness of the model’s explanation, leading to much sharper
challenges and greater needs in terms of XAI.

The concept of explainability has been a longstanding concern in various fields,
including AI, social sciences (philosophy, social and cognitive psychology, etc.), and human-
computer interaction, as indicated by [Miller, 2019]. In his view, the scope of explainable
AI is circumscribed to human-agent interaction problems, which lie at the intersection of
the aforementioned fields.

2.2.2 Terminology

Before embarking on the definition of XAI, it is first necessary to circumscribe the
terminology that will be used throughout this manuscript. The field of XAI has seen
the introduction of numerous terms and related concepts, such as "Interpretability" and
"Transparency" which often leads to their interchangeable usage. However, the lack
of clear distinctions between these terms has caused confusion and poses challenges in
establishing common ground. Although these terms seem semantically close to each
other, there are some important differences. In [Guidotti et al., 2018], the authors
define Interpretability as the extent to which the ML model and/or its predictions are
understandable to humans. Similarly, in [Doshi-Velez and Kim, 2017], Interpretability is
described as the ability to explain or to present in understandable terms to a human. On
the other hand, authors in [Barredo Arrieta et al., 2020] suggest that Interpretability is
a passive characteristic of a model, while Explainability is an active characteristic that
involves any action taken by the model in order to reveal its internal functioning. In line
with this, some studies such as [Adadi and Berrada, 2018] note that explainability and
interpretability are closely related, with interpretability being more commonly used within
the machine learning community. They also define transparency as the need to describe,
inspect, and reproduce the mechanisms used by AI systems to make their decisions. A
system is thus considered transparent if it has good interpretability. In an effort to clear
up confusion, researchers such as [Clinciu and Hastie, 2019] conducted an analysis of the
existing literature to gain a deeper understanding of the terminology used in XAI and
ensure their consistent and accurate use within the field.
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The term XAI was first employed in 2004 by [Van Lent et al., 2004] to address ex-
plainability issues for AI systems in military simulations and computer games. They
defined XAI as the extension of an AI system so that it can elucidate its behavior to
a given user, either during execution or afterward, and can take the form of a chain of
reasoning that leads to the result obtained. However, due to the diverse backgrounds
and disciplines of researchers involved in XAI research, there is currently no universally
agreed-upon definition of explainability or XAI.

Drawing from our extensive research and stance on this matter, we put forth the
subsequent definitions that will serve for the remainder of this manuscript. Explainability
refers to the extent to which a decisional system can elucidate its decisions, behavior,
and internal workings, either through self-explanations or with the help of an auxiliary
module or system. Interpretability , on the other hand, refers to the inherent self-
explanatory power of a decisional system, and an interpretable model can be attributed
to a model whose behavior and decisions are understandable. Explainable Artificial
Intelligence (XAI) encompasses the set of methods and techniques aimed at providing
insights into the inner workings of AI systems, facilitating a deeper understanding of their
decisional processes. In the context of XAI, an explanation is a representation provided
by an explanation technique or a self-interpretable model, allowing users to comprehend
the factors contributing to a specific decision. An explanation element , as the most
elementary unit of an explanation, refers to a specific piece of information or evidence
that, when combined, constitutes a coherent explanation. It can take various forms such
as a logical rule or feature importance. Lastly, the term black-box designates a specific
type of ML model characterized by a lack of interpretability and an inability to provide
clear insights into their inner workings or mechanisms.

2.2.3 The need of XAI, motivations and application domains

Obviously, risks induced by AI-based systems such as biased decision-making and security
vulnerabilities were among the earliest factors that paved the way for the recognition of
the necessity/importance of explainability and opened the door to many leads of research.
According to [Van Lent et al., 2004], the main challenge was the difficulty encountered by
users in understanding the actions taken by AI systems. As these systems have become
more complex and used across a wider spectrum, the challenges have become even more
acute. Nowadays, the need for XAI arises from several considerations, such as but not
limited to:
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➔ Trust: Making AI-generated decisions trustworthy is essential for their widespread
adoption.

➔ Accountability: In the realm of AI, ensuring accountability for decisions can be a
complex endeavor. However, it remains imperative to establish clear responsibility
especially when it comes to critical domains, such as healthcare and finance. XAI
can provide insights that help attribute responsibility for the outcomes of AI systems,
which fosters a framework where individuals or entities can be held accountable for the
actions and impacts of AI systems.

➔ Regulatory requirements: Regulations such as the General Data Protection Reg-
ulation (GDPR)3 emphasize the need to explain and the right to explanation. They
provide regulators with powerful means to ensure compliance, carry out audits or
inspections, and mitigate risks.

➔ Fairness: Bias and discriminatory patterns ingrained in AI systems due to biased
data are a pressing concern. XAI methods may offer potent means to identify and
mitigate biases and foster equity in those systems.

➔ Ethical Considerations: It enables the detection of potential ethical violations and
facilitates the design of AI systems that adhere to ethical principles and respect societal
values.

According to [Adadi and Berrada, 2018], there are four principal reasons that encom-
pass all motivations for XAI that can be listed as follows:

➔ Justification: XAI aims to provide explanations to justify and elucidate reasons
for specific outcomes, especially when they are unexpected. By having an auditable
and provable way to understand the model’s decisions, trust in the system can be
established.

➔ Control: It helps identify errors and correct them before they occur, similar to
operating in a debug mode. This is particularly relevant in scenarios like simulations
for autonomous cars, where understanding the decision-making process can help improve
safety and performance.

➔ Improvement: Explainable models are known to be easily improved, because the
inner workings and logic are well understood by the user. With transparency into

3GDPR: adopted by the European Union in 2018 (https://gdpr.eu/)
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the model’s operations, it becomes easier to identify areas for enhancement and make
informed modifications.

➔ Discovery: Making a model explainable facilitates the collection of new information
and the acquisition of knowledge. For instance, in games like chess, an explainable
model can provide insights into its decision process, enabling humans to learn new
strategies and movements.

Over time, the need for XAI has been emphasized in numerous domains where the
aforementioned factors (human understanding, accountability, fairness, etc.) play a critical
role. In healthcare, XAI is gaining traction in critical applications such as medical
diagnoses, treatment recommendations, and clinical research. It helps doctors understand
pathologies and the rationale behind recommending specific treatments based on their
relationship with patient history and characteristics. Another domain where XAI holds
immense promise is autonomous driving. Here it can contribute by providing explanations
for traffic accidents, helping to improve autonomous systems and ensure safety. In the legal
domain, certain AI-based systems, such as COMPAS [Tan et al., 2017], have demonstrated
biases in criminal risk assessment. Anti-discriminatory tools were therefore needed under
the guise of explainable systems, aimed at promoting fairness and accountability in legal
decision-making. Cybersecurity, finance, and military also represent areas where the need
for XAI has been widely recognized.

Authors in [Doshi-Velez and Kim, 2017] have pointed out two situations where ex-
plainability may not be necessary. First, when incorrect decisions have minimal impact
or consequences. Second, when the problem at hand has been sufficiently studied and
validated in the real world, and the system’s decisions inspire great trust despite its
imperfections. It follows that, in scenarios where incorrect predictions lead to high-stakes
consequences, interpretability becomes crucial, shifting the focus accordingly.

In light of all these considerations, it can be argued that the development of XAI
methods plays a central role in building trust, reinforcing accountability, and mitigating
potential biases. Also, taking into account the particularities of each consideration and
depending on the overreaching goal of the explanation, the latter should be adapted to
the corresponding target audience.
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2.2.4 Reasoning in XAI

Advances in XAI research have led to the emergence of a wide range of reasoning types
that cover almost all existing explainable approaches and techniques. While the ex-
act categorization may vary, some of these types take common logical reasoning forms
[Cau et al., 2020] such as Inductive, Abductive, and Deductive reasoning. Abductive
reasoning is concerned with generating plausible explanations or hypotheses for observed
outcomes. It operates by abducting a cause from an effect and a rule. Inductive reasoning,
on the other hand, focuses on extracting general patterns or rules from specific data or
observations. It involves inducing a rule from a cause and an effect. Lastly, deductive
reasoning involves drawing specific conclusions from established rules, knowledge, or logical
principles. It entails deducing an effect from a cause and a rule. Counterfactual and
contrastive reasoning, although originating several decades ago in domains like philosophy
and cognitive science, have gained significant momentum due to the growing need for
explainability [Miller, 2019]. Both types of reasoning share the causal side of reasoning in
seeking explanations but differ in their approach and purpose. Counterfactual explanations
focus on understanding the impact of changing inputs on a particular decision or outcome,
by providing alternative scenarios, while contrastive explanations focus on comparing
different instances or situations to highlight the distinguishing factors that lead to different
outcomes.

While there is no standard rule to privilege among those types of reasoning, the choice
of a reasoning method may depend on the specific characteristics of the problem domain,
the explainee (user) requirements, and the goals of the explanation. The question of
how explainability can be achieved in AI goes beyond discussing existing reasoning types.
Further details on the various existing approaches in XAI will be given in section 2.2.

2.2.5 Taxonomy of XAI methods

In response to the increasing need for explainability, especially for deep learning mod-
els, a wide range of explainability methods has been developed to provide clues ex-
plaining the decision-making process. While many works have surveyed the litera-
ture on XAI, such as [Tjoa and Guan, 2021, Ras et al., 2022, Burkart and Huber, 2021,
Adadi and Berrada, 2018, Carvalho et al., 2019, Došilović et al., 2018], there exist various
criteria by which, XAI methods are grouped and categorized, as depicted in figure 2.1
which highlights the general landscape of XAI techniques.
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Figure 2.1: The XAI general landscape

Complexity: Explainability in AI can be approached in two main ways, depending on
the complexity of the task and the nature of the data. Firstly, for less complex tasks
or when the data is well-handled and annotated, interpretability by design or more
commonly Intrinsic interpretability is a suitable strategy. This involves developing
inherently interpretable models [Adadi and Berrada, 2018], also known as white boxes
such as decision trees [Letham et al., 2015]. These methods provide explainability while
maintaining good accuracy and relevance of results. As long as the model remains accurate
for the task and utilizes a reasonably limited number of internal components, intrinsic
interpretable models are sufficient. On the other hand, for more complex tasks and
lightly processed data [Burkart and Huber, 2021], an alternative approach is to construct
a black-box model with high accuracy, without considering any complexity constraints.
Subsequently, separate techniques often referred to as Post-hoc explainability methods
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can be employed, such as surrogate models [Ribeiro et al., 2016] and attributions
[Sundararajan et al., 2017]. These techniques act as additional interpretable layers that
overlay the original complex model. It should be noted that the choice between intrinsic
and post-hoc methods may be influenced by factors other than the complexity of the task,
such as the level of explainability we are seeking to achieve. Post-hoc methods can offer
richer and more refined explanations which, in some cases, may make them prevail over
intrinsic methods.

Scope: In terms of scope, explainability techniques fall into two main categories:
Local methods and Global methods. However, the precise definition of each cate-
gory within this scope-based perspective requires further discussion. According to
[Adadi and Berrada, 2018], Local explainability refers to the set of methods that generate
explanations for a specific single prediction [Lundberg and Lee, 2017]. Conversely, Global
methods aim to unveil the entire logic of a black-box model, encompassing all possible
outcomes [Nguyen et al., 2016]. It is worth noting that some techniques are capable of
operating at both local and global levels [Bastani et al., 2017, Bach et al., 2015]. The
distinction between local and global methods extends beyond the mere number of
decisions for which explanations are sought. From our perspective, Local explainability
consists of explaining individual decisions and targeted outputs using local information
around the target instance, (see LIME [Ribeiro et al., 2016] in Section 2.2.6), offering
insights into the immediate context and factors that influenced the model’s decision. This
approach aims to reveal only the logic associated with that particular decision. On the
other hand, by adopting a Global perspective, the focus shifts to comprehending the
overall functioning of the model, understanding the underlying patterns and relationships
within all the data, and elucidating the model’s entire behavior, including the knowledge
acquired during training and utilized during inference to explain individual or multiple
predictions, as offered by decision trees.

Dependency: We find the term "dependency" to be the most representative in
distinguishing between two classes of explainability methods commonly referred to in the
literature: Model-specific and Model-agnostic explainability. The first class includes
methods that are specifically designed to explain the inner workings of a particular
model architecture, making the intrinsic interpretable models inherently Model-specific.
However, a drawback of such methods [Letham et al., 2015] is their limited applicability,
as they can only be used with models for which they are specifically designed. In contrast,
Model-agnostic methods are designed to provide explanations for any type of black-box
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model, regardless of their internal structure or architecture [Casalicchio et al., 2019].
They offer a more flexible and generalizable approach to explainability.

The classification of explainability methods proposed by [Carvalho et al., 2019]
extends the framework established by [Adadi and Berrada, 2018] by introducing two
additional criteria:

Pre-Model vs. In-Model vs. Post-Model explainability (we propose the
term "chronological criterion"). It reflects the point at which the explanation method
is applied, distinguishing between three main stages. The Pre-Model explainability
focuses on explaining the data used to train the model, while In-Model explainability
aims to discern the internal workings of the model during its construction. Post-Model
explainability involves explaining the model’s outputs during inference.

Results (of Explanation Methods): This criterion groups explanation methods
based on the nature of their outcomes. Feature summaries [Sundararajan et al., 2017]
provide statistical information about the model’s input features, such as their importance
or relevance. Model internals are the results of intrinsic methods, such as the
conditions of a decision tree [Letham et al., 2015] or the weights of a linear model,
which provide insights into the inner workings of the model. Some techniques generate
Data points, often representative instances from the training dataset, to describe and
interpret the model’s decision process [Gurumoorthy et al., 2019]. Finally Surrogate
intrinsically interpretable models (SIIM) are simpler models serving as interpretable
representations or an approximation of the original black-box model [Bastani et al., 2017].

In table 2.1, we aim to extend the associations identified by [Carvalho et al., 2019]
between the first three criteria to include the later ones. This extension enables a more
complete and nuanced understanding of the relationships between different aspects of
explainability methods.

Chronology Dependency Scope Complexity Results

Pre NA NA L/G Data Points
In Intrinsic Specific L/G Model internals

Post Post-hoc L/G Agnostic Feature summary, Data Points, SIIM

Table 2.1: Associations between classes of XAI techniques according to the five above-
mentioned criteria. L/G denotes Local/Global methods.
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From our perspective, complexity itself should not be considered as a criterion for
categorizing explanation methods into Intrinsic and Post-hoc, as the very nature of an
explanation method implies its operation at a post-hoc stage. Intrinsic interpretability,
on the other hand, refers to the inherent explanatory power of an AI system, where
the system itself is designed to be interpretable (Section 2.2.2). While complexity may
influence the choice and implementation of explanation methods, it should not be used as
a defining criterion for distinguishing between post-hoc explainability and interpretability
by design. Therefore, it is important to differentiate between the categorization criteria
of explanation methods and the nature of explainability.

The criterion based on the nature of explanations primarily serves to distinguish the
different forms of explanation results (see Figure 2.1), often referred to as communication
types of explanations (e.g. visualizations, textual descriptions, etc.) as discussed
in [Burkart and Huber, 2021]. This criterion is also considered in other works, such
as [Adadi and Berrada, 2018], to categorize explanation methods, particularly those
belonging to the Model-agnostic class. While not comprehensive, the following provides
an outline of these categories.

Visualizations: In this category, explanations take the specific form of visual
representations that provide a visual understanding of how different parts of the
input contribute to the model’s decision, such as relevance/importance heatmaps
[Sun et al., 2022, Selvaraju et al., 2017]. They are particularly effective in computer
vision domains such as image classification, image captioning, and object detection. While
some works categorize visualizations as a distinct form of explanation, they can also be
considered as part of the broader category of attributions, where they offer an intuitive
way to interpret and communicate the attribution values.

Attributions: Attribution values refer to importance/relevance scores assigned
to input features or model’s components. These scores indicate the degree to which
each feature/component influences the model’s decision. These include scene-graphs
[Zellers et al., 2018], surrogate model weights [Ribeiro et al., 2016], attention and
relevance heatmaps [Guo and Farrell, 2021], etc.

Textual explanations: Some explanation methods provide written descriptions
that aim to convey the reasoning processes of the explained models in a human-
understandable manner [Huk Park et al., 2017].
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Examples: These stand apart from the other forms of explanations as they do
not create the explanation in itself, but rather select instances from the dataset to
elucidate the behavior of the ML model. These instances can serve different purposes:
alternative scenarios that, if applied or observed, would have resulted in different model
predictions (counterfactuals) [Jeanneret et al., 2023], or representative instances that
capture the key characteristics of a specific decision and help us understand the factors
driving the model’s generalizations (prototypes) [Tan et al., 2020, Li et al., 2018].

Rule-based explanations: Refer to the use of symbolic descriptions capturing the knowl-
edge learned by the ML model. Rule-based explanations can take various forms, including
logical expressions, decision trees and rule lists [Letham et al., 2015, Zilke et al., 2016],
etc. This form provides a human-readable way in which explanations can easily be
understood and aligned with human reasoning, but may not capture the complexity of
certain compound ML models.

2.2.6 Common explainability methods for DNNs

Prompted by trends in machine learning, the explainability of deep learning models has in
turn taken the lead in XAI. The community has rapidly embarked on the development of
explanatory methods for various deep learning-based models, and the number of such
approaches continues to grow. According to [Ras et al., 2022], foundational explainability
methods for DNN models can be grouped into three main classes, Visualization,
Distillation, and Intrinsic. Visualization methods attempt to highlight features of
the input that significantly affect the output, such as LRP [Bach et al., 2015] and
Integrated Gradients [Sundararajan et al., 2017]. Distillation is a class of methods often
known as "white-box" methods, which are supposed to approximate the functioning
of the black-box model by a simpler one, such as LIME [Ribeiro et al., 2016] and
Anchors [Ribeiro et al., 2018]. The last so-called Intrinsic class is similar to the one
presented above in the previous section but has a more general scope. In addition to
intrinsically interpretable models, there are also models that are capable of generating
explanations along with the inference itself [Tavanaei, 2020]. Here are some of the most
common XAI methods found in the literature.

LIME [Ribeiro et al., 2016]: is a perturbation-based approach that approxi-
mates the behavior of the black-box model for individual predictions by a simpler linear
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model (surrogate) within a local neighborhood around the input instance. In the context
of image classification [Schallner et al., 2020], LIME employs image segmentation to
divide the image into super-pixels/regions. Perturbations are then applied to these
regions to generate neighbor instances. The black-box model is queried with these
perturbed instances, and the resulting predictions are used to train a linear model.
The weight assigned to each region by the linear model indicates its relevance for a
specific class decision. In terms of explanation results, LIME falls into the category of
attribution-based methods, as it generates importance scores for input features. From the
method-dependency perspective, LIME is regarded as a model-agnostic method.

LRP [Bach et al., 2015]: is a back-propagation-based method that, instead of
gradients, back-propagates relevance scores to provide an explanation of how each
input feature or neuron contributes to the model’s prediction. It works by distributing
relevance scores from the output layer to the input layer back along the architecture
of the black-box model, following a set of rules that adhere to the conservation
property. The conservation principle ensures that the sum of relevance scores at
each layer is equal to the relevance score at the output layer. There are multiple
variants of LRP each employing a different propagation rule such as ϵ-rule and β-rule,
etc. LRP can be categorized as a global model-agnostic explanation method in
the sense that it uses global information learned by the model during training and
the one saved during inference to compute relevance scores. However, it can also be
viewed as a local method since it provides explanations at the level of individual predictions.

SHAP: Originally proposed by [Lundberg and Lee, 2017], SHAP is an attribution-based
method that assigns importance scores to input features. It is based on cooperative
game theory that seeks to measure the contribution of each feature (the player) to the
model’s prediction (the payoff), taking into account the interaction between features and
considering all their possible combinations (effect of including or excluding each feature
from the input features). SHAP can be applied to various ML models, including complex
architectures to explain individual predictions which makes it a local model-agnostic
explanation method. One of the key strengths of SHAP is its ability to provide detailed
explanations for individual predictions. However, it is important to note that recent
research [Huang and Marques-Silva, 2023] has highlighted the potential limitations of
SHAP. Specifically, it has been shown that SHAP can assign non-zero importance scores
to features that may be irrelevant to the prediction. This raises concerns about the
potential for misleading explanations when relying solely on SHAP values.
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2.2.7 XAI problems and challenges

The major problems with XAI are deeply rooted in the subjective nature of the domain.
This subjectivity mainly arises from the reliance on human interpretation and judgment,
as humans play a crucial role in understanding and evaluating AI explanations. The same
explanation can be perceived differently by different individuals, based on their cognitive
biases, knowledge, and social expectations. Different users may have different expectations
and requirements for what constitutes a good/satisfactory explanation [Miller, 2019],
leading to variations in interpretation and trust. Addressing the problems of subjectivity
in XAI requires careful consideration of the human factor, along with the development
of simple and robust explanation methods. Efforts should be made to engage users in
the design and evaluation of XAI systems to account for their diverse perspectives and
requirements.

The definition of XAI and how it should be assessed has been the subject of various
points of view. At present, a consensus on the precise definition of XAI is yet to be reached,
which may pose further problems of subjectivity and hinder the development of XAI
methods. However, ongoing debates and discussions within the research community are
actively addressing this issue and striving to establish a more unified understanding of XAI.
[Carvalho et al., 2019] in their review, highlight the problem of the lack of explainabil-
ity/interpretability evaluation, particularly in the ML community where most efforts focus
on improving interpretability in prediction tasks and maintaining the trade-off between ex-
plainability and predictive accuracy without developing measures and approaches for XAI
evaluation. They also note that existing work in this domain primarily focuses on defining
properties for explanations (e.g. accuracy, fidelity, consistency, stability, comprehensi-
bility, Certainty, Novelty, Representativeness, etc. [Robnik-Šikonja and Bohanec, 2018]).
Various indicators have also been proposed to measure these interpretability properties
[Sundararajan et al., 2017, Honegger, 2018]. However, the practical application of these
properties and measures in assessing the quality of explanations and the effectiveness of
explanation methods remains largely unclear. The challenge lies in establishing concrete
guidelines or frameworks that utilize these properties and measures to provide meaningful
assessments of explanations in practice.

One fundamental issue that arises in many explanation methods for ML models is the
lack of consideration for determining which components of the model are most suitable
for generating explanations and how to represent them effectively. These methods often
assume equal explanatory power for all model components [Sun et al., 2022] as long as the
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explanation meets user expectations. However, this overlooks the possibility of imbalances
in the importance of different explanation modalities. It is crucial to recognize that certain
explanation modalities may inherently carry more weight or be more effective in conveying
information than others. Neglecting the varying strengths and capabilities of different
modalities can lead to overlooking valuable sources of explanation or placing excessive
emphasis on the wrong modality. To address this issue, it is imperative to ensure that the
selection of explanation modalities aligns with the objectives of the explanation and is
tailored according to the design of the ML model. In cases where prioritizing one modality
over another is not feasible, different modalities can excel at conveying different aspects of
the model’s behavior and, thus, be complementary.

Although some work [Wu and Song, 2019, Rudin et al., 2022] has pointed to the
importance of latent space in increasing the interpretability of ML models, the exploration
of this space remains largely untapped. Questions such as how a neural network-based
model gradually learns concepts over layers could be addressed by disentangling the latent
structures [Chen et al., 2020]. [Wu and Song, 2019] take a notable stride by defining model
interpretability as the capability to methodically explore the latent space corresponding to
a given task, while capturing the fundamental statistical insights within this latent space
in a coherent and structured manner. It is evident that there exists considerable room
for further investment of effort in this particular direction. Exploring the latent space,
comprehending its dynamics, and devising methodologies to harness its interpretability
potential hold much promise for advancing our understanding of ML models. All the
issues and challenges mentioned above provide fertile ground for ongoing research, which
continues to shape the landscape of XAI.

2.3 Explainability in Image Captioning (XIC)

The increased awareness of the need to develop more accurate captioning models, mainly
based on deep learning, has led to exponential progress in terms of complexity. However,
the lack of interpretability remains a challenge, as it is difficult to understand why these
models generate specific captions. The field of explainability in image captioning (XIC)
aims to address this issue by providing insights into the inner functioning of captioning
models. Most of the very few existing approaches in XIC adhere to the post-hoc explanation
paradigm. These techniques mainly focus on answering questions such as "Which parts of
the image contribute the most to the generated caption?" or even "How does each word
in the caption relate to specific image regions?". In the following, we discuss the leading
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works in this field of XIC.

The paper by [Han and Choi, 2018] presents an explainable approach to IC, providing
a visual connection between a specific image region/object and the corresponding word
in the generated caption. This connection is achieved through the utilization of an
explanation module with a dual role. First, during the training phase, it serves as a loss
function that evaluates the correlation between the words generated in the caption and
the objects detected in the image. It then back-propagates the error, thereby enhancing
the performance of the captioning model. Subsequently, during the inference step, the
same module generates a weight matrix that assigns attention coefficients (importance
scores) to regions within the input image according to their involvement in predicting
each word of the output caption.

The authors in [Sahay et al., 2021] employed the LIME [Ribeiro et al., 2016] surrogate
technique to approximate the behavior of the black-box captioning model by a simpler
linear model for each data instance (image). The core idea behind this approach is to
create a set of perturbed instances locally around a given image. These perturbed instances
are generated using operations like blurring and blacking on the original input (the image
pixels). The goal is to assess the impact of these perturbations on predictions, which are
then integrated into the cost function of the linear model. During the training of this
surrogate model, weights are assigned to various regions/patches that were perturbed
in the input image. These weights are determined based on how effectively each region,
through its presence or absence in the perturbed instances, influences the prediction of
specific words in the caption. This approach essentially allows for the interpretation of
the contribution of different parts of the input image to the captioning process.

In their study, the authors of [Sun et al., 2022] proposed several attribution-based
explanation methods, including an adapted version of Layer-wise Relevance Prop-
agation (LRP) [Bach et al., 2015], as well as Grad-CAM and Guided Grad-CAM
[Selvaraju et al., 2017] which are based on Gradient-weighted Class Activation Mapping.
The new LRP-based method proposed in their research generates pixel-wise visual
explanations in the form of heatmaps, highlighting both supporting and opposing pixels
for predicting a target word in the output caption (Figure 2.2a). Additionally, linguistic
explanations are provided, indicating the contribution of each word in the generated
caption to the prediction of the target word in the same caption (Figure 2.2b). By
obtaining explanations at both the visual and linguistic levels, the authors claim that the
dependencies between words and image regions become more explicit.
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Figure 2.2: Image and linguistic explanations from [Sun et al., 2022].

In the medical application, [Beddiar and Oussalah, 2023] have designed an explanatory
module within their captioning model by exploiting the attention scores generated by a
self-attention mechanism, the encoder-decoder attention weights, and the convolutional
layer feature maps from a pre-trained CNN. Visual features were extracted from images
using a pre-trained Resnet model. The feature maps from the convolutional layers were
visualized and exploited as perspective explanations, showcasing features that correspond
to a specific prediction (Figure 2.3a). Additionally, the explanation module incorporated
word importance visualizations by leveraging the weights of the self-attention module,
which served to highlight the most important words in the generated caption to the
computation of the word embedding (i.e. the prediction) of other words within the same
output caption. These self-attention weights were computed intrinsically to the generated
caption and were independent of the input image (Figure 2.3c). Furthermore, attention
maps were also computed through the attention-based encoder-decoder. These maps were
used to illustrate the regions of the image considered most important by the decoder when
generating captions (Figure 2.3b).

Continuing in the medical application, a study by [Wu et al., 2023] presents an ap-
proach using expert-defined keywords as interpretability boosters for retinal IC models.
The main objective of their approach is to align human-comprehensible keywords with
specific local image patches and guide the captioning model to accurately predict these key-
words within the output caption. To achieve this, they first generate image features from a
classical CNN, which are then fed into a multi-label classifier to predict relevant keywords
(labels). These keywords are used in conjunction with expert-defined keywords, which may
not always be available. The embeddings of these keywords serve as semantic features
and are fused with the image content by an image-keyword attention-based encoder. The
keyword-centric strategy employed in their approach proved to be effective in advanced
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Figure 2.3: Qualitative explanations from [Beddiar and Oussalah, 2023].

word sampling and the generation of precise and contextually meaningful captions for
retinal images. However, a notable limitation of their approach is its dependence on the
availability of expert-defined image keywords. Consequently, for datasets lacking such
keywords, the performance of their method may be compromised. Additionally, it is
essential to note that their approach primarily focuses on enhancing caption quality rather
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than generating detailed explanations.

Regarding the utilization of Shapley values in XIC, there are limited works where these
values have been explored. In a recent study by [DEWI et al., 2023], a Shapley-based
approach was introduced. This approach involves segmenting images into superpixels along
specific axes and subsequently attributing importance scores to these superpixels based
on their relevance to predicting each word in the generated caption. Figure 2.4 represents
the heatmaps involving image patches, generated through Shapley value explanations,
corresponding to each output word in the predicted caption.

Figure 2.4: Qualitative explanations from [DEWI et al., 2023].

Although other recent explanation approaches for IC have been proposed, such as
the PIC-XIC and iPIC-XIC frameworks in [Al-Shouha and Szűcs, 2023], these methods
almost all point in the same direction. In their work, [Al-Shouha and Szűcs, 2023] express
the target words in the output caption needing explainability as queries, and the generated
explanations as answers to those queries. Their approach mainly relies on segmented
patches (pixels) from the original input image to generate explanation proposals and
measure the proposal’s relevance by combining these patches to various uniform back-
grounds constituting new test images that will further be passed to the captioning model
to generate captions. They consider that an explanation proposal is good if the query
(word to be explained) appears in any of the generated captions. Qualitative examples of
the explanations generated by their method are presented in Figure 2.5, showcasing from
left to right: the original input image and the answers/explanations from PIC-XAI and
iPIC-XAI explanation methods, respectively.

Several techniques have been proposed to improve the explainability of image classifi-
cation models. For instance, [Hendricks et al., 2016] introduced a method that generates
natural language explanations for classification decisions by combining textual class defini-
tions, such as a bird species, and image descriptions (captions). Their method was found
to produce relevant explanations that take into account both class-discriminative image
features and class definitions. These explanations are intended to explain why a specific
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Figure 2.5: Qualitative explanations from [Al-Shouha and Szűcs, 2023].

class label has been assigned to a given image. To condition sentence generation, they
also incorporated a reinforcement module that learns to generate sentences that embody a
global property of the sentence, such as class specificity. [Fong and Vedaldi, 2017] used
a perturbation paradigm in the original input space (the image) to generate meaning-
ful explanations. In their model, they employed an optimization technique that learns
perturbation masks that most or least affect the model’s output. In another approach,
[Yang et al., 2021] employed morphological fragmentation to divide the input image into
multi-scale fragments. These fragments were then subjected to masking via perturbation
to generate heatmap explanations.

The landscape of Explainable Image Captioning (XIC) research reveals some prevailing
trends and characteristics, as summarized in Table 2.2. Most notably, many existing XIC
approaches operate in a post-hoc fashion, primarily offering local explanations. While IC
primarily deals with the linguistic modality on the output side, some research endeavors
venture into seeking explanations within this modality. This can occur either in conjunction
with the visual modality or independently. The mechanisms used in these approaches offer
a perceptible means of representing explanations. Furthermore, it is worth mentioning
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that XIC research predominantly relies on well-established large-scale datasets, such as
MSCOCO and Flickr, while domain-specific applications may lack open-source data. This
particular challenge raises several fundamental questions, which will be examined in the
next section.
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[Han and Choi, 2018] Attention Vision Weight matrix PH Local MSCOCO/Flickr30K
[Sahay et al., 2021] LIME Vision Image patches PH Local Flickr30K
[Sun et al., 2022] LRP Vision+Language Heatmaps PH Global/Local MSCOCO/Flickr30K

[Beddiar and Oussalah, 2023] Attention Vision+Language Feature maps+Heatmaps I+PH Local ImageCLEF4

[Al-Shouha and Szűcs, 2023] Region proposals Vision Image patches PH Local MSCOCO/Flickr8K
[Wu et al., 2023] Keywords Language Image patches I Local DeepEyeNet5

[DEWI et al., 2023] SHAP Vision Heatmaps PH Local –

Table 2.2: Overview of key contributions in Explainable Image Captioning. I/PH denotes
intrinsic/post-hoc, respectively.

2.4 Discussion and conclusion

Our literature review, covering both the broader field of XAI and the specific field of
XIC, alongside the challenges in XAI previously explored in Section 2.2.7, has brought
to light several problems and shortcomings within the realm of IC explainability. These
insights have allowed us to identify several ongoing challenges in this field, as outlined in
the introduction to this study (Chapter 1), and we reiterate them below.

Building upon the insights gleaned from previous research endeavors, particu-
larly those that delve into both visual and linguistic explanations [Sun et al., 2022,
Beddiar and Oussalah, 2023], where a certain degree of parity between these two
modalities is implicitly assumed, our first contribution was directed towards addressing
a foundational question concerning the reliability of explanations and the sources from
which explanations should be derived. This investigation aimed to discern whether
these modalities play particular roles in the decision process, a facet that has often
been underexplored in the broader context of XAI. The core concept revolved around

4ImageCLEF: a medical captioning dataset [Pelka et al., 2021].
5DeepEyeNet: a retinal captioning dataset [Wu et al., 2023].

36



identifying and isolating the components of the architecture that exhibit the most
significant involvement in the captioning process. The aim was to determine whether
decisions are based exclusively on the input data or are influenced by other elements such
as imbalances in the degree of influence exerted by various components/modalities within
the captioning architecture. This enables the behavior of the internal components to be
implicated in the subsequent explanation process.

Leveraging the results of our former investigations, we have embarked on an in-depth
study taking into account the specificities of the architecture components, highlighting
the crucial issue of explainability-complexity trade-off. While certain approaches opt for
more complex explanation methods [Sun et al., 2022, DEWI et al., 2023] such as back-
propagation two-pass (forward/backward) techniques and others, we find it essential to
examine whether these time-consuming methods truly provide added value compared
to simpler alternatives [Al-Shouha and Szűcs, 2023, Sahay et al., 2021]. Drawing from
the advantages we observed within the latent space, our second contribution extends
its application in both explanation generation and evaluation. This holistic approach
allows us to extract more concrete and tangible insights to elucidate the decision processes
in IC. In our pursuit, we have designed variants of two popular explanation methods,
LIME and LRP, adhering them to the paradigm of latent space. The choice of these two
methods was certainly far from being arbitrary. It aimed to investigate the potential
causal relationships between the quality of the explanations, the scope of the explanation
methods (local vs. global), and their intricacies. Notably, BU-LRP stands out as a new
contribution in the field, as it exploits the BU features, exploring their eventual potential
in providing improved explanations in the latent space. Regarding the evaluation of
explanation quality, our new method, Latent Ablation, leverages the strengths of the
latent space. This manifests in the manipulation of low-level features considered to be very
close to internal model theory enabling us to characterize its functioning, as well as the
ways in which data is encoded. Depending on the granularity of the concepts manipulated
within the latent space, whether they are partial such as individual features, or complete
as entire objects, we have designed two versions of the LIME-based method and Latent
Ablation. Our objective is to study the impact of this granularity on the construction and
evaluation of explanation methods.

Constructing complex data dependencies to help improve overall performance has
become relatively straightforward for many machine learning models. However, disen-
tangling the complex structures that these models tend to form within their internal
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components proves to be a much more challenging endeavor. As highlighted by numerous
researchers in the literature (Section 2.2.7), exploring the latent space presents a valuable
means for investigating how ML models structure information, as well as their encoding
and decoding processes. Surprisingly, only a few studies have ventured down this path,
probably due to its inherent difficulty.

In our third contribution, we focus on investigating semantic concepts such as object
position, size, and quantity, through latent space manipulation. This approach helps
bridge the gap between the low-level encoding and the high-level semantic understanding
of captioning models. To this end, we aim to delve into the intricate process of how the
visual concept of quantity is manipulated within the captioning architecture, its impact
on object saliency and how it is processed by the captioning model components before it
can be captured in the output text description.

It is crucial to highlight a notable distinctive facet of the whole present work: our
exclusive focus on operating within the latent space for both seeking and deriving expla-
nations. This approach represents an ambitious endeavor within the realm of eXplainable
Image Captioning (XIC), setting it apart from established methodologies. This approach
not only underscores the potential of exploiting the latent space but also opens up exciting
new leads for advancing the field of explainability of captioning systems in particular, and
multimodal systems more generally.
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3 Component Influence Identification
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The problem of opacity in AI systems, especially those based on deep learning,
has prompted extensive research in the field of XAI. However, although XAI tools rep-
resent important strides toward explainability, they may present some incompleteness
[Gilpin et al., 2018]. By incorporating insights from the humanities and social sciences,
XAI can benefit from a more holistic understanding of explanations and how they might
be attained [Borch and Min, 2022]. Decisiveness, as defined in psychology, refers to “the
ability of the individual to engage in the decision-making process” [Weissman, 1976]. While
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decisiveness shares a close relationship with explainability, as far as we know, it has not
been the subject of any previous research in the field of XAI. In this specific context of
XAI, we define the concept of decisiveness as:

“A measure of the active engagement exhibited by individual components of
a decision model in producing the final outcome, how each of these

components interacts with the others and how it influences the decision
process.”

The analogy to the psychological definition can be illustrated as follows: Consider a
team of experts working collaboratively towards a shared objective, symbolizing a complex
system characterized by a collective decision process. In this analogy, each team member
represents a distinct component within the decision model, contributing their unique exper-
tise and knowledge. Similar to how each team member contributes to the team’s success,
the decisiveness of each component determines its influence/impact on the overall decision
outcomes. Some components may possess specialized skills and assume leadership roles in
making pivotal decisions, while others provide support and complementary contributions.
Decisiveness exhibited by each component has a fundamental impact on the collective
decision process and ultimately shapes the system’s ability to achieve optimal outcomes.

Carefully considering the possible limitations of delving into fine-grained explanations
without fully incorporating the internal behavior of components can help prevent potential
issues related to explainability, such as the risk of providing irrelevant and unjustified
explanations or the presence of biases. This becomes particularly relevant when it comes
to providing multi-modal explanations [Sun et al., 2022, Beddiar and Oussalah, 2023],
notably in sensitive areas such as biomedical image description. In that case, the reasoning
behind the decisions made by the model may not be straightforward to decipher and we
cannot state that these decisions are exclusively made based on inputs or whether they are
affected by other elements within the captioning architecture. In addition, explanations
from different modalities may not have the same significance and should therefore not be
interpreted and considered in the same way. Studying the influence of each component
that belongs to the IC architecture, individually and comparatively to each other, allows us
to identify the components that are more or less decisive and impactful in the captioning
process and highlight their respective roles in making decisions.

In this chapter, we present a meta-explainability approach for common IC architectures.
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Our proposed approach incorporates a formal perturbation protocol that allows us to
systematically investigate the influence of model components at both the vision and
language levels. Through this protocol, we aim to address fundamental questions regarding
the decision process in IC. Specifically, we seek to understand which components play
the most influential roles in shaping the generated captions. Additionally, we explore
the idea of component decisiveness, questioning whether all components have an equal
impact on the captioning process or if certain components are more decisive than others.
Through this meta-explainability approach, we gain valuable insights into the inner
workings of IC models, shedding light on the importance and contribution of individual
components. Consequently, the insights gained from our study have significant implications
for subsequent explainability choices in IC. For example, this can inform regarding the
modality from which the most relevant explanations should be derived, or even more, the
possibility of assigning different levels of importance to the components based on their
contribution to the captioning process and their respective roles.

3.1 Latent space

Latent space refers to a fundamental concept that has emerged through the development
of various deep learning (DL) methods. It has been widely used and discussed in the
machine learning literature [Bengio et al., 2013] including their representation learning
capabilities and applications such as in self-supervised learning. During training, this
space is capable of capturing representations of a lower dimension than the original inputs.
Formally, a latent space Ĩ can be defined as the codomain of a function f , which maps
each input I from a given input space I to a compact representation Ĩ in the latent space
Ĩ. This can be expressed as:

f : I 7−→ Ĩ

I 7−→ Ĩ = f(I)
(3.1)

The function f can be as simple as a linear projection or can involve more complex
transformations often implemented using DNN models. Those transformations can be
learned through various techniques such as auto-encoders and convolutions. The learning
process involves training the model until the latent vectors reach an optimal representation
that best encodes the input.

The strengths of the latent space stem from its ability to underlie patterns of the data
and the extent to which factors can be disentangled, for example, specific dimensions might
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correspond to object attributes including the size, color, and position, or other meaningful
factors (Chapter 5). The way in which information is compressed and processed, or even
structured, often allows irrelevant or redundant aspects to be discarded and the focus to
be placed on the most salient and informative aspects. This can be clearly discerned in
certain image-related tasks such as IC and image classification, where priority during the
decision process is given to foreground and most conspicuous objects in the image rather
than less salient objects in the background scene for example.

Although the usage and exploration of latent space have evolved over time in the
DL community, notably to develop more sophisticated learning techniques and capture
richer representations, this concept remains less exploited for explainability despite its
remarkable ability to derive insights about the data and the inner workings of the model.
In the present work, we have focused exclusively on the latent space to develop explainable
approaches for IC systems. This endeavor represents a first step, but also a breakthrough
in our ongoing efforts toward gaining more explainability within the confines of our research
scope.

3.2 The perturbation paradigm

In the context of XAI, the perturbation paradigm refers to a methodology that aims to
understand the behavior of a decisional system by modifying/altering specific information.
Perturbations have been widely employed in post-hoc explainers, such as in building
surrogate models like LIME that approximate the functioning of black-box models by means
of perturbed instances generated locally around a given input (Section 2.2.6). Perturbations
have also been used in sensitivity analysis, which aims to measure how intentional changes
in the model’s inputs impact its output/decision. [Fong and Vedaldi, 2017] in their work,
focused on employing meaningful perturbations explicitly editing the input image, in a way
that preserves their semantic meaning while inducing changes in the model’s predictions.
Their method helps identify the image regions that significantly influence the model’s
output scores when perturbed.

It is worth mentioning that some research has used the perturbation paradigm for
adversarial attacks and/or training. [Liu et al., 2023] proposed a score-based attack model
for the textual attack task. Their method was based on selecting important words using a
self-attention mechanism and generating a correlation degree of words inside the texts,
which is to some extent related to the aspect of explainability. In [Xian et al., 2021], the
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authors sought to identify the vulnerability of link prediction methods for graph-structured
data using a deep architecture-based adversarial attack method. They also investigated
other adversarial attack methods such as heuristic and evolutionary perturbation methods.
Other methods have also been proposed for various adversarial attack-based tasks such as
Graph Neural Networks (GNNs) structure enhancement [Wu et al., 2022b] and time-series
prediction [Wu et al., 2022a]. Regarding the image captioning domain, we are only aware
of the methods proposed in [Xu et al., 2018, Zhang et al., 2020a] where the authors focus
only on improving the robustness and stability of captioning models, but do not address
the explainability issues in the domain.

More generally, we define the perturbation paradigm as the process that involves
introducing changes, denoted as η, to a specific component, denoted as ωi, among the set of
all components Ω = {ω1, ..., ωi, ...} within an AI system and observing the resulting output
changes. In this context, a component refers to any unit of the system that represents
data or a module that can be reused in other architectures. This includes raw input data,
data encodings, attention mechanisms, language decoders, and more. The perturbation η

is applied to a predefined set of elements of interest within the selected component. These
elements could be regions of an image, extracted features, latent vectors, model weights,
and so on. Perturbations can take various forms, such as random perturbations involving
random increases or decreases in element values, adding random noise, or patterned
perturbations that introduce specific variations or meaningful changes.

By leveraging perturbations, one can gain a deeper understanding of the contributions
and sensitivities of different components, and identify critical factors that determine system
decisions, thus facilitating the explainability of complex models.

3.3 Selected captioning architecture

We employ the standard captioning architecture Ada-LSTM from [Sun et al., 2022] which
is designed upon the common topology of Encoder-Attention-Decoder (Figure 3.1) and rely
on the use of Bottom-Up (BU) image features rather than classical global CNN features.
The main difference between these two types of features lies in the level of granularity
and spatial information they capture. The CNN global features are obtained from the
last layer of a classical CNN architecture when encoding the input image. They represent
a high-level overview of the image content and provide low-granularity representations
encoding the global context. Bottom-up features, on the other hand, are obtained following
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an object detection operation that provides region-based encodings. These encodings
represent target regions or objects in the image and capture fine-grained information such
as objects and people. Bottom-up features also show good object localization capabilities
and allow captioning models to attend to specific regions of the image using attention
mechanisms, resulting in more contextualized and detailed captions.

Several key factors influenced the selection of this architecture for our work. First
and foremost, from a captioning standpoint, the use of BU features proved more effective
in generating more accurate and descriptive captions, as stated in [Anderson et al., 2018].
Many recent captioning models have embraced the use of BU features, as they enable the
capture of more fine-grained information compared to traditional global CNN features.
Additionally, the Encoder-Attention-Decoder framework has emerged as a widely adopted
architecture in the IC community. By leveraging this framework, our findings can be
generalized to various IC architectures that follow this structure, enhancing the applicability
of our approach.

Secondly, from an explainability standpoint, it is crucial to emphasize that the
original black box model must inherently possess a high level of accuracy. Indeed, if the
original model fails to generate accurate outcomes, any subsequent attempts at employing
explainability methods would inherently lack the capacity to provide relevant explanations.
Therefore, to assess the effectiveness of our explainability method, it becomes essential,
even at this preliminary stage, to possess a captioning model and system references of
a certain level of relevance. Without such baseline quality, the assessment of provided
explanations remains impractical. In fact, explanations derived from an inaccurate
model, then also compared with low-quality references derived from the same inaccurate
model, can potentially introduce biased or irrelevant information, ultimately skewing
the entire explainability process. Finally, it is noteworthy to highlight that the work of
[Sun et al., 2022] represents one of the pioneering efforts in addressing the challenge of
explainability, specifically within the captioning task, thus representing a benchmark for
our work.

Although more sophisticated architectures exist, such as Transformer-based ones
(Sec. 2.1) which have gained significant attention, when it comes to explainability, they
can pose challenges due to their inherent characteristics. The high complexity of these
architectures relative to their ordinary performances for the IC domain in particular,
makes them less appropriate for explainability issues, where a trade-off must be pre-
served [Adadi and Berrada, 2018]. For example, Transformers operate on distributed
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representations and perform complex computations, making it challenging to trace the
influence of individual input features or tokens on the model’s predictions. Furthermore,
those models are known by their large number of parameters and it is often very compli-
cated to disassociate the components of the architecture from each other since they have
a lot of interactions and dependencies. Given all these arguments, we are convinced that
for applications that prioritize explainability, alternative architectures or approaches that
are inherently easier to manipulate, such as the Encoder-Attention-Decoder, may be more
suitable options.

Figure 3.1: Bottom-Up captioning architecture overview.

3.3.1 Image encoding:

In their work, [Sun et al., 2022] used Faster-RCNN [Ren et al., 2015] to generate the
BU features. Faster-RCNN is an object detection algorithm designed to localize and
delimit objects in an image using bounding boxes. It comprises three key components: a
backbone network, a region proposal network (RPN), and a region-CNN. The backbone
network, typically a pre-trained CNN like VGG16 [Simonyan and Zisserman, 2015] or
ResNet [He et al., 2016], extracts high-level features from the input image. These features
are fed into the RPN, which generates region proposals representing regions likely to
contain objects. The RPN consists of a classifier and a regressor. By sliding a window
(called anchor) over the image at various scales, the classifier predicts an objectness score,
indicating the likelihood of an object’s presence. The regressor iteratively refines the
anchor coordinates based on the classifier’s predictions. Finally, the region-CNN takes
the proposed regions from the RPN and performs feature extraction (encoding) and
classification to generate feature vectors and assign an object label/class to each region
along with a confidence score/probability. The backbone network is typically pre-trained
on a large-scale classification dataset, while the RPN and region-CNN are systematically
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fine-tuned on the data at hand based on the bounding box (anchor) regression loss and
the region classification loss. The number of BU features to generate with Faster-RCNN
may vary depending on several factors such as the complexity of the images within the
dataset, the diversity of objects present, and the requirements of the downstream tasks.
In the present work, we choose to utilize the Faster-RCNN encoder as our image encoder.
The Faster-RCNN architecture has gained significant popularity in the field of image
captioning due to its widespread adoption and robust performance compared to other
state-of-the-art CNN architectures.

Given an aligned pair (I, S) consisting of an image instance I and its corresponding
ground-truth captions S, the Faster-RCNN algorithm extracts a set of bottom-up (BU)
visual features (latent representations), denoted as Ĩ (Equation 3.2). These features are
obtained by applying the region-CNN encoder to the set of regions detected within the
image using the RPN. The resulting BU features Ĩ form a set of latent vectors, where each
vector vi represents an individual region (ideally an object). The number of BU features
is denoted as V , and each feature has a dimensionality of dv.

Ĩ = (vi)
V
i=1 , vi ∈ Rdv (3.2)

3.3.2 Attention and decoding:

The process of combining visual features, the previous hidden state, and the word em-
bedding is a crucial step in the caption generation process. It involves creating a global
visual feature Ĩg by averaging the set of visual features. This global visual feature is then
combined with the previous hidden state ht− 1 generated by the LSTM decoder and
the word embedding of the previous word in the sequence E(wt−1). The combination of
these components is fed into the LSTM decoder, which generates the current hidden state
ht using the specified equation (Equation 3.3). The dimensions dw and dh refer to the
dimensions of the word embedding and hidden state vectors, respectively. The hidden state
vector, represented by ht, captures the linguistic context preceding the current word wt in
the caption generation process, providing essential information for generating accurate
and contextually appropriate captions.

ht = LSTM(Ĩg, ht−1, E(wt−1)) , ht ∈ Rdh (3.3)

The adaptive attention mechanism [Lu et al., 2017], as employed in this architecture, plays
a crucial role in selectively attending to specific regions of the image during the caption
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decoding process. By dynamically assigning attention weights to the BU visual features
based on the information contained in the hidden state, the model generates a context
representation ct of dimension dc (as shown in Equation 3.4). This context representation
captures the most informative and relevant visual information for word prediction at each
decoding step, resulting in more accurate and contextually rich captions.

ct = ATT (ht, Ĩ) , ct ∈ Rdc (3.4)

Finally, both the hidden state and context vector are used by the language LSTM to
predict a score over vocabulary for the current word wt (Equation 3.5) of the output
sequence C (Equation 3.6). The word with the highest score is returned. L is the caption
length.

wt = WordPredict(ht, ct) (3.5)

Ĉ = (wl)
L
l=1 (3.6)

During training, the IC model is optimized with cross-entropy loss measuring the dis-
crepancy between the predicted caption Ĉ and the ground-truth one C. To calculate
the cross-entropy loss, these captions are compared word by word. Each word in the
predicted caption is treated as a probability distribution over the vocabulary, representing
the model’s confidence in generating each word. Similarly, the ground-truth caption is
represented as a one-hot encoded vector, where the position corresponding to the correct
word is assigned a value of 1, and all other positions are assigned a value of 0. For a single
training instance, the cross-entropy loss can be calculated as follows:

Lce(pĉ, pc) = −
1

L

L∑
l=1

Q∑
q=1

pcl,q log(pĉl,q) (3.7)

where Q is the vocabulary size, pc is the ground truth one-hot vector, where pcl,q = 1 if the
lth token is the qth word in the vocabulary, and pcl,q = 0 otherwise. pĉl,q is the probability
of the lth word being the qth word in the vocabulary. The inner sum computes the cross
entropy loss for each word in the caption, and the outer sum averages the losses across
all the words in the caption. The loss formula can therefore be simplified as given in
Equation 3.8.

Lce = −
L∑
l=1

log(pĉl ) (3.8)
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3.4 Our approach

In this section, we introduce a novel perturbation approach that aims to capture the
decisiveness and sensitivity of the components in IC architectures, as outlined in our
work [Elguendouze et al., 2022]. Our approach stands out by operating entirely in the
representation space, rather than the original space (images, text), to achieve explainability
[Sun et al., 2022, Han and Choi, 2018]. Specifically, we focus on two distinct latent levels
within the architecture: Vision and Language as shown in Figure 3.2. rV , rC , rW , rH in
red boxes represent perturbations on VF, CT, WE, and HT components respectively. ⊕
denotes the direct sum.

➔ Vision: we introduce perturbations to the BU visual features (VF) and context rep-
resentations (CT), which result from the image encoder and attention mechanism,
respectively. By perturbing these two components, we aim to understand the impact
of the visual part of the IC model on the overall captioning process.

➔ Language: the perturbation concerns the word representations (WE) and hidden states
(HT) generated by the word embedding encoder and the language decoder, respectively.
This allows us to explore the influence of these language-related components on the
captioning process.

The intuition behind targeting these specific levels (Vision, Language) with our pertur-
bation approach is mainly guided by their mutual complementarity. By analyzing the
effects of perturbation on both levels, we gain insights into their individual behaviors
and can compare them to each other, thereby covering all crucial parts of the architec-
ture. Each level consists of two essential components that need to be carefully examined
and compared to assess their involvement in the captioning process. In addition, these
components embody important sub-tasks such as encoding, attention, and decoding,
further elucidating their respective roles in the overall captioning task. Gaussian pertur-
bations have often been applied to original images in computer vision (CV) to mimic
common real-life distortions, such as changes in lighting conditions, focus, and con-
trast [Borkar and Karam, 2019, Laugros et al., 2019]. Building upon this understanding,
we extend the application of perturbations in a different context, specifically in the latent
space rather than the original input space (i.e., images) and for explainability purposes.
Our objective is to uncover patterns and dependencies that may not be immediately
apparent in the original input space. By applying Gaussian perturbations in the latent
space, we get the possibility to explore how the model behaves and responds towards these
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Figure 3.2: Overview of the latent perturbation protocol.

changes, which can provide valuable insights about the inner workings of deep models in
general and captioning models in particular, at different stages of the decision process.

To introduce our perturbation approach, we focus on the four key components involved
in the captioning process: visual features (VF), word embeddings (WE), context vectors
(CT), and hidden states (HT). We adopt a perturbation function, denoted as r(ϕ),
which adds random noise η = (ηj)

dη
j=1 element-wise to a representation vector ϕ ∈ Rdϕ .

Intuitively, the dimensions of the perturbation vectors (dη) match the dimensions of the
corresponding component latent vectors (dϕ). The random noise ηj is sampled from a
Gaussian distribution N (Equation 3.9), where µ represents the mean and σ represents the
standard deviation. By utilizing this Gaussian distribution, we enable the perturbation to
cover a range of possible variations in the component representations.

ηj ∼ N (µ, σ2) (3.9)

To ensure consistent perturbations within the definition domain of each component, we
impose a condition on ηj using Equation 3.10. This condition guarantees that each random
value lies within the boundaries defined by minG and maxG, representing the global
minimum and maximum values for the component, respectively.

minG ≤ ηj ≤ maxG (3.10)
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Below, we present comprehensive details regarding the perturbation applied to both
the visual and linguistic levels of the captioning architecture, which is systematically
carried out on each module within these architectures.

3.4.1 Perturbation of the visual level

Visual features (VF): This perturbation is applied to the BU visual features at the
output of the Faster-RCNN. For each visual feature vi (Section 3.3.1), we add random
noises ηj to all the dimensions of the feature vector, as shown in Equation 3.11. To ensure
that the perturbed feature remains within the valid range, a second condition is placed on
each perturbed dimension as given in Equation 3.12. In this equation, vij represents the
jth dimension of the original visual feature vi, and minj and maxj represent the global
minimum and maximum values for the jth dimension across the entire latent space of the
visual feature component.

r(vi) = (vij + ηj)
dv
j=1 (3.11)

minj ≤ vij + ηj ≤ maxj (3.12)

Context representations (CT): The context vector ct, generated by the attention
module, indicates the regions of the image that are most relevant for generating the current
word in the output sequence, i.e. the ones that should acquire more attention/focus by
the decoding module afterward. In this perturbation, random values η are added to ct

at each time step t, as shown in Equation 3.13. As the values of the context vectors
may vary across different executions, the second condition above is slightly adjusted for
this perturbation to consider the global minimum and maximum values instead of per
dimension, as shown in Equation 3.14.

r(ct) = (ctj + ηj)
dc
j=1 (3.13)

minG ≤ ctj + ηj ≤ maxG (3.14)

The perturbation of the visual component is a central aspect of our investigation, as
it specifically targets the encoding stage within the captioning process. Subsequently, the
next phase of the perturbation methodology addresses the linguistic part responsible for
decoding the caption, another essential aspect.
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3.4.2 Perturbation of the language level

Word embeddings (WE): Similarly, we define the perturbation of the word embeddings
at the output of the embedding module. At each time step t, a random perturbation
η is added to the embeddings of the predecessor word wt−1, as shown in Equation 3.15.
The same condition as for the context representation perturbation applies to ensure the
perturbed embeddings remain within the valid range.

r(E(wt−1)) = (E(w(t−1)j) + ηj)
dw
j=1 (3.15)

Hidden states (HT): The perturbation of hidden states involves the hidden represen-
tations generated by the LSTM decoder. These representations encapsulate the textual
information that has been generated up to the previous word, wt−1. The perturbation is
applied to each dimension of the hidden states ht, as illustrated in Equation 3.16. The
same condition as for context representations must be complied with.

r(ht) = (htj + ηj)
dh
j=1 (3.16)

Once the overall methodology has been carefully outlined, we now delve into the
intricacies of the experimental protocol that was followed. This protocol, meticulously
designed to validate the proposed concepts, deserves in-depth exploration.

3.5 Experimental protocol

In this section, we present the detailed experimental protocol that we followed in this work.
We begin by introducing the datasets utilized and describing the steps taken to prepare
them for our specific study. Next, we provide a technical overview of the captioning
model employed, including hyper-parameters values, the encoder implementation, and the
vector dimensions. We then delve into the experimental settings of Gaussian perturbation,
explaining the specific parameters and choices. Finally, we outline the evaluation metrics
that were used to assess the results of our explanation method.
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3.5.1 Dataset selection

In this work, we utilized two popular benchmarks for sentence-based image descriptions:
MSCOCO2017 [Lin et al., 2014] and Flickr30k [Young et al., 2014]. MSCOCO2017, short
for Microsoft Common Objects in Context, is a large-scale dataset consisting of images
paired with human-annotated captions. It comprises approximately 123,000 images, each
accompanied by 5 captions, resulting in a total of around 616,000 captions. The images
in MSCOCO are collected from professional photographers and cover a wide range of
object categories in various everyday scenes, thereby offering greater diversity in terms
of content. In contrast, the Flickr30k dataset includes 31,783 images and approximately
158,915 captions. It consists of images from the Flickr platform focusing on people involved
in everyday human-centric activities and events. Furthermore, there is a distinction in
caption style between the two datasets. MSCOCO captions are in general shorter and more
concise, focusing on describing the main objects and their relationships in the image. On
the other hand, the captions in Flickr30k tend to be longer and more detailed, providing
additional contextual information and describing various aspects of the scene. Table 3.1
presents a comparative summary highlighting the key differences between the MSCOCO
and Flickr30k datasets, regarding their inherent characteristics and pre-processing results
for our specific context of image captioning.

Dataset MSCOCO2017 Flickr30k
Size 123k images, +600k captions 32k images, +158k captions
Image Source Professional photographers User-contributed images on Flickr
Caption Style Short, concise Longer, more detailed
Content composition Wide range of subjects, objects and styles Human-centric scenes and activities
Caption Diversity Multiple (5) captions per image Multiple (5) caption per image
Vocabulary size 11023 9582
Karpathy split 110k/5k/8k 29k/1k/1k

Table 3.1: Summary of comparison between MSCOCO2017 and Flickr30k datasets.

Although other datasets such as "Conceptual Captions" and "nocaps" are available for
IC, we were unable to use them in our work for several reasons. In the case of the Google
"Conceptual Captions" dataset, we conducted a preliminary evaluation using a sample
from this dataset to assess the quality of the captions. However, the evaluation scores of
common metrics on a test set of 6,500 images for the Ada-LSTM model trained on a subset
of 150,000 images, were significantly lower compared to those obtained for MSCOCO2017
and Flickr30k (Table 3.2). This discrepancy in performance would introduce biased results
in our perturbation experiments and subsequent explanation methods in the next chapters.
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Dataset Train/Test BLEU-4 CIDEr-D SPICE ROUGE METEOR MSICE
MSCOCO2017 110k/5k 0.3403 1.0774 0.2007 0.5522 0.2692 0.5747

Flickr30k 29k/1k 0.2543 0.5258 0.1512 0.4680 0.2081 0.5033
Concept. Cap. (subset) 150k/6.5k 0.0417 0.4154 0.0991 0.1874 0.0685 0.1231

Table 3.2: Evaluation results of Ada-LSTM captioning model on MSCOCO2017,
Flickr30k, and Conceptual Captions.

The low quality of the alternative texts in the Conceptual Captions dataset may
constitute the major factor contributing to these results. These captions, which serve as
alternative texts for web images, do not necessarily reflect the most salient content of the
images and often contain errors, as we have manually verified. Our hypothesis is that
these alternative texts may emphasize a salient target object in the scene with regard to
the author’s purpose, given that the images are labeled according to the concept they
are meant to represent. In contrast, datasets like MSCOCO2017 allow for descriptions
of the entire image, without being biased towards a specific purpose. Additionally, the
Conceptual Captions dataset comprises highly diverse images in terms of context and
quality, and it often includes synthetic images, which can further affect the performance
of captioning models. The scores obtained on this dataset for some common captioning
architectures are also not as impressive as those achieved on MSCOCO2017 and Flickr30k,
as we can notice when comparing the results reported in the original papers presenting
these models with those on the dataset platform.

As for the "nocaps: novel object captioning at scale" dataset, it is important to note
its unique focus on capturing a wider variety of visual concepts. However, when used
in conjunction with our explanation methods, the dataset’s emphasis on novel objects
may introduce challenges in interpreting the absence of specific objects in the captions.
Specifically, our perturbation method relies on the model’s ability to predict objects in the
output caption following the Gaussian perturbation. However, since the nocaps dataset is
designed to evaluate the model’s capacity to recognize novel objects, it becomes difficult to
distinguish whether the absence of an object is due to perturbation or simply due to the
inherent composition of the image from the nocaps dataset, which intentionally includes
novel objects that the model has never encountered before.

Considering these factors, we opted to focus on well-established datasets like
MSCOCO2017 and Flickr30k for our experiments, as they provide more consistent
results, aligning with the common practices in the captioning community. While the
Conceptual Captions dataset may not be widely employed in the captioning community for
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experimental purposes, it still holds potential for other tasks such as vision-language model
pre-training and representation learning [Radford et al., 2021, Mokady et al., 2021].

To evaluate the performance of our perturbation method with these two datasets,
we follow the widely adopted "Karpathy" split [Karpathy and Fei-Fei, 2015] for reporting
results. This split divides a dataset into three subsets: train, validation, and test. The
Karpathy split method provides a standardized evaluation setup, allowing for consistent
comparison of different models and algorithms. By adhering to this split, we ensure
compatibility and enable meaningful comparisons with prior work in the field. Following
a similar approach to [Sun et al., 2022], we construct the vocabularies based on the
captions from the training sets of each dataset. Words that appear less than 3 times in
MSCOCO2017 and 4 times in Flickr30k are encoded using the unknown token "<unk>".
We believe that the intuition behind the choice of these thresholds is that words that
appear with such occurrences are so rare that they do not even appear simultaneously
on all five ground-truth captions associated with the same caption, implying that they
are either outliers or unfamiliar terms, and therefore necessarily have a substitute in the
vocabulary. The results presented in Section 3.7 are reported on the test partition of
MSCOCO2017 and Flickr30k, consisting of 5,000 and 1,000 instances, respectively.

3.5.2 Captioning model preparation

As indicated earlier in Section 3.3, we utilized the standard captioning architecture
based on BU features from [Sun et al., 2022] for our experiments. It is worth recalling
that this architecture consists of a Faster-RCNN encoder, an adaptive attention module,
an LSTM decoder, and an LSTM word predictor. The model was retrained on the
train partitions of the MSCOCO2017 [Lin et al., 2014] dataset (110k instances) and the
Flickr30k [Young et al., 2014] dataset (29k instances). The training process was stopped
automatically when the best CIDEr score was achieved, which occurred at the 21st epoch
for MSCOCO2017 and the 8th epoch for Flickr30k.

For the image encoder, we utilized the Detectron2 [Wu et al., 2019] implementation of
Faster-RCNN. It selects the top V = 36 detections (regions) per image, and each detection
was represented by a BU visual feature of dimension dv = 2048. This choice of 36
features is a common practice in image captioning as it captures a spectrum of diverse and
informative visual information. In order to reduce their sparsity and condense them into
more compact vectors, these BU features underwent a further transformation via a simple
linear layer which reduced them to 1024 dimensions. The dimensions of the context vectors,
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word embeddings, and hidden state vectors were set to dc = 512, dw = 512, dh = 1024,
respectively. The maximum length of the output caption sequence was capped at T = 20.

3.5.3 Perturbation settings

We conducted experiments using Gaussian perturbations with mean µ = 0 and various
standard deviation σ values. To determine the appropriate σ values for each perturbed
component, we empirically computed the upper and lower bounds of their representation
space. These interval bounds served to determine the range of σ values as shown in
Table 3.3. Intuitively, the σ controls the magnitude of the perturbations applied to the
values of each component.

Dataset VF WE CT HT

[minG,maxG]
MSCOCO2017 [0, 16.5] [-5, 5] [-1, 9.5] [-1, 1]

Flickr30k [0, 16.5] [-5, 5] [-1, 14.6] [-1, 1]
σ ≤ 1.5 1.5 1.5 0.375

Table 3.3: Global range bounds and standard deviation values per perturbed component.

To find the optimal range of σ values, we started by initializing σ with the highest
possible value that gives the maximum perturbation. We then iteratively halved the σ

and applied the perturbation until we observed stationarity in the quality of the captions.
Stationarity was reached when the difference in caption scores became negligible, with
a difference less than a predefined threshold (ϵ = 10−2), indicating that the component
became insensitive to perturbations. At this point, we stopped the process and recorded the
previous σ value as the lower boundary for the perturbation. This process was repeated for
all the components, ultimately retaining only the intervals of sigma values that were most
representative of the results. Figure 3.3 illustrates the evolution of evaluation scores for a
VF perturbation across varying sigma (perturbation magnitude) values. The results reveal
that the informative range, where the most representative results are observed, lies within
[0.1875, 1.5]. The evaluation scores were obtained by comparing the captions generated
after perturbation with those before perturbation, using several metrics introduced in
Section 2.1.3.

The sigma values selected for the perturbation experiments were (1.5, 0.75, 0.375,
0.1875) for VF, CT, and WE, and (0.375, 0.1875, 0.0938, 0.0469) for HT. It is worth
noting that for the HT component, the values of σ were adjusted by shifting the interval to
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Figure 3.3: Perturbation magnitude retrieval for the Visual Features component.

accommodate its smaller definition range compared to the other components. This adjust-
ment was necessary to ensure consistency across all perturbed components and maintain a
balanced level of perturbation. By tailoring the sigma values to each component’s specific
range, we ensured that the perturbation process remained within the appropriate bounds
and allowed for meaningful comparisons between the components.

To ensure the reliability and stability of our findings, we repeated the perturbation
process 30 times for each sigma value and each component. By repeating the experiments,
we accounted for the inherent randomness in the perturbation process. We evaluated
and reported the results on the test partitions of both the MSCOCO2017 and Flickr30k
datasets, allowing us to analyze the robustness and sensitivity of the captioning model
under different levels of perturbation.

3.6 Explanation evaluation

3.6.1 Evaluation measures

We evaluate the quality of captions for different perturbation configurations
using well-established evaluation measures commonly employed in image cap-
tioning (Section 2.1.3). These metrics include BLEU [Papineni et al., 2002],
METEOR [Banerjee and Lavie, 2005], CIDEr-D [Vedantam et al., 2015],
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SPICE [Anderson et al., 2016], and ROUGE [Lin, 2004], which have gained widespread
adoption in IC evaluation due to their long-standing presence in the NLP domain. Our
selection of these metrics was driven by multiple factors, including their suitability for the
particularities and requirements of our specific task, which focuses on the explainability of
IC models rather than the pure comparison of different IC systems. While we prioritize
explainability throughout this work, the selected metrics appear most appropriate for
our analyses as there is an ongoing debate about the use of learning-based approaches
for either explanation generation or evaluation, such as ClipScore and BERTScore, as
we previously discussed in Section 2.1.3. Nonetheless, it is crucial to acknowledge that
conventional metrics might also have inherent limitations, paving the way for developing
new evaluation measures that better cater to our specific requirements of explainability.

To address this need, we introduce a new evaluation metric called MSICE (Morphology-
semantic-based Image Caption Evaluation). Unlike some existing metrics, such as BLEU,
ROUGE-L, and CIDEr, which primarily rely on n-gram overlap, MSICE incorporates
two crucial linguistic aspects: morphology, concerning the surface form of the captions,
and semantics. Existing measures often overlook lemmatization and synonymy when
computing scores, leading to unfair penalization of the output captions, especially in the
context of our goal of improving explicability. Specifically, in terms of synonymy, lexically
different yet semantically similar words (e.g., car and vehicle) in different sentences (e.g.,
"a car is driving down a street"; "a vehicle is driving down a street") should be considered
equivalent. In addition, from an explainability perspective, the presence of desired objects
holds greater importance than quantifiers. Therefore, under MSICE, sentences like "Four
chairs around a table" and "A chair and a chair and a chair and a chair around a table"
would be considered highly similar, capturing the essence of the explanation task more
effectively, especially as we successfully manage to rebuild visual sequentiality on the
language side. These two features of MSICE enable us to refine the evaluation scores,
aligning with our specific objectives of explainability.

To further define our metric in this section, it is essential to understand some key
concepts in the domain of NLP. A parser is an algorithm that analyzes the grammatical
structure of a sentence and assigns a tree structure to represent the internal organization
of a text. This process, known as "parsing", enables us to determine the relationships
between words in a sentence, such as subject-verb-object relationships, and to represent
the sentence’s structure in the form of a syntactic tree. Part-of-speech (POS) tagging
involves assigning a specific category to each word in a sentence, indicating its syntactic
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role within the text (noun, verb, adjective, etc.). Lemmatization is the process that enables
reducing words to their base form, called lemma, for example: the lemma of the word
"explainability" is "explain". The preferred forms of lemmas are typically singular for
nouns and infinitive for verbs, as these forms often serve as dictionary entries. Spacy1 and
NLTK2 are open-source libraries that provide a vast collection of corpora, lexical resources
(such as Wordnet3), and pre-trained models to assist in developing methods for various
NLP tasks including lemmatization, parsing, and part-of-speech tagging.

MSICE employs three key functions to process the text: fO extracts objects from a
sequence of words using a POS-tagger and a parser, from Spacy and NLTK, respectively.
The POS-tagger identifies words representing nouns (subjects and objects), while the parser
handles polylexical expressions, also known as noun chunks, which are nouns composed of
two or multiple words (e.g., "fire hydrant" corresponds to "firehydrant"). fL converts sets
of objects into lemmas using the lemmatizer from Spacy and fS retrieves synonyms for all
lemmas from the Wordnet corpus. For a given evaluation instance (C, Ĉ), composed of one
or multiple reference captions C and a candidate caption Ĉ, we first apply fO to extract
the object sets for both references and the candidate. Next, we transform these object
sets into lemmas using fL and then find synonyms for the candidate object lemmas with
fS . Finally, we compute the proportion of common words between the reference object
lemmas and the synonyms of the candidate object lemmas. Finally, the scores obtained
for individual evaluation instances are averaged to obtain the overall MSICE score. To
optimize finding synonyms and avoid redundancy, we only search for synonyms for words
in candidate captions and not in references, as the search would be slower in the presence
of multiple reference captions. The formal definition of MSICE for a single evaluation
instance is given in Equations 3.17 through 3.21, where ◦ is the function composition, |.|
signifies the cardinality and L represents the caption length.

MSICE = |A| (3.17)

A = {fL ◦ fO(C)} ∩ {fS ◦ fL ◦ fO(Ĉ)} (3.18)

fO : x 7→ fO(x) = {oi} , 1 ≤ i ≤ L (3.19)

fL : y 7→ fL(y) = {li} (3.20)

fS : z 7→ fS(z) = {sj} , i ≤ j (3.21)

1Spacy: https://spacy.io/
2NLTK (Natural Language Toolkit): https://www.nltk.org/
3WordNet: https://wordnet.princeton.edu/
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3.6.2 Evaluation protocol

We adopt a tripartite evaluation protocol to comprehensively assess the effects of per-
turbation. This protocol builds upon the classical IC evaluation, where the predicted
captions are conventionally compared to the ground-truth captions. Then, we go beyond
this evaluation by further investigating the impact of perturbation related to each of these
references separately, as depicted in Figure 3.4.

Figure 3.4: The tripartite perturbation evaluation protocol.

The first evaluation, referred to as Machine-Machine (M-M), involves comparing
the perturbed system captions (candidates) with the original system captions before
perturbation (references). This evaluation focuses solely on the system’s performance
without considering human influence. By comparing the perturbed system captions with
their unperturbed counterparts, we gain valuable insights into the perturbation’s effects
on the system’s output independent of human judgments.

In addition, we conduct a second evaluation called Machine-Human (M-H), where
we compare the perturbed system captions (candidates) against the ground-truth human
captions (references). This evaluation allows us to gauge how well the system performs in
relation to human-generated captions, providing insights into the system’s alignment with
human language understanding.
By employing this tripartite evaluation, it is possible to investigate and identify potential
artifacts that may arise from human involvement represented by human-annotated captions,
in the evaluation process.
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3.7 Results and discussion

Figure 3.5 provides a visual illustration of the qualitative outcomes achieved through
perturbation on samples from the MSCOCO2017 test set, using the maximum perturbation
magnitudes, i.e. σ = {1.5, 1.5, 1.5, 0.375} for {VF, WE, CT, HT} respectively. Captions
contained within purple boxes denote the system references. The captions presented in the
lower boxes correspond to the respective perturbations indicated alongside. The results
highlight distinct trends in the various perturbation types. Notably, the VF perturbation
displays the highest divergence from the reference captions, leading to captions that do
not effectively reflect the image’s content. In contrast, the CT perturbation manages to
capture some fundamental concepts such as the color "white" of the mug (depicted in
the left example) and the "room" (depicted in the right example), though these captions
remain incomplete and incoherent. Remarkably, both the WE and HT perturbations
exhibit positive results, successfully generating captions that encompass nearly all the
essential elements needed to describe the image content.

Figure 3.5: Qualitative examples of perturbation on MSCOCO2017 test set.

The qualitative analysis of the perturbation results on the Flickr30k dataset reveals
consistent trends in the perturbation results compared to the MSCOCO dataset. The
model does, however, exhibit a heightened ability to correctly identify the subject in
various contexts, such as the man or the baseball player depicted in Figure 3.6. This
increased robustness in subject identification could be attributed to the distinctive content
composition of the Flickr30k dataset. The nature of the Flickr30k images predominantly
centers around people engaged in diverse everyday scenarios. As a consequence, the model
has been extensively exposed to these particular entities enabling it to preserve better
performance in identifying subjects even when subjected to perturbations.

Tables 3.4a, 3.4b, 3.4c, 3.4d and Tables 3.5a, 3.5b, 3.5c, 3.5d provide comprehensive
summaries of the Machine-Machine (M-M) and Machine-Human (M-H) evaluations
following the perturbation experiments conducted on VF, CT, WE, and HT components,
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Figure 3.6: Qualitative examples of perturbation on Flickr30k test set.

respectively, using the MSCOCO2017 test set. The presentation of results follows a
systematic approach to highlight the impact of perturbation magnitudes, denoted by σ,
on each component. These tables encapsulate valuable insights into the performance of
the model under various perturbation conditions.

For each σ value, which signifies the extent of perturbation, the final results are
presented as the average scores across the 30 iterations in the first row. Additionally, to
gauge the influence of randomness, the standard deviations for each metric are reported in
the second row. As a point of reference, it is important to reiterate the evaluation metrics
employed and their respective ranges of definition: BLEU-4 [0,1], CIDEr-D [0,10]4, SPICE
[0,1], ROUGE-L [0,1], METEOR [0,1], and MSICE [0,1].

Controlling for randomness:
In line with experimental procedures, the reliability of our measurements can be influenced
by inherent stochasticity. To address this, we employ an approach to quantify the extent of
dispersion within our measurement outcomes, encompassing each σ value and component
configuration. A noteworthy observation, as can be observed in Tables 3.4a, 3.4c, 3.4b, 3.4d
and Tables 3.5a, 3.5c, 3.5b, 3.5d, is the remarkably low standard deviations displayed across
our measurements. This underlines the fact that each iteration consistently exhibited
similar performance behaviors for both evaluation configurations (M-M/M-H), thereby
minimizing the potential influence of random factors and substantiating the validity and
reproducibility of our experimental results.

Comparing Scores: Understanding Sensitivity and Influence
An insightful lens through which we examine our perturbation experiments is by analyzing
their comparative impact across different components, as elaborated in Tables 3.4a, 3.4c,

4In the literature, CIDEr-D is multiplied by a factor of 10 to make CIDEr-D scores numerically similar
to other measures.
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σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.1875 0.5684 5.3097 0.6150 0.7253 0.4093 0.6442
0.0021 0.0212 0.0017 0.0013 0.0010 0.0013

0.3750 0.3000 2.6216 0.3610 0.5241 0.2657 0.4447
0.0019 0.0166 0.0017 0.0013 0.0008 0.0018

0.7500 0.1127 0.7211 0.1350 0.3261 0.1432 0.1861
0.0014 0.0102 0.0013 0.0015 0.0008 0.0019

1.5000 0.0485 0.1897 0.0402 0.1787 0.0633 0.0574
0.0013 0.0058 0.0011 0.0016 0.0009 0.0013

(a) Visual Features (VF)

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.1875 0.7706 7.4036 0.7945 0.8599 0.5279 0.7540
0.0043 0.0464 0.0040 0.0030 0.0028 0.0030

0.3750 0.6275 5.8390 0.6718 0.7714 0.4415 0.6802
0.0047 0.0524 0.0043 0.0034 0.0026 0.0034

0.7500 0.3728 3.3176 0.4679 0.6149 0.3194 0.5521
0.0027 0.0230 0.0026 0.0020 0.0013 0.0029

1.5000 0.0633 0.4643 0.1467 0.2917 0.1116 0.1985
0.0015 0.0086 0.0020 0.0015 0.0009 0.0027

(b) Context Vectors (CT)

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.1875 0.7785 7.4913 0.8016 0.8654 0.5337 0.7569
0.0047 0.0534 0.0044 0.0031 0.0034 0.0027

0.3750 0.6396 5.9709 0.6819 0.78 0.4489 0.6815
0.0041 0.0427 0.0038 0.0023 0.0022 0.0028

0.7500 0.4337 3.8493 0.5138 0.6536 0.3486 0.567
0.004 0.0418 0.0043 0.0028 0.0019 0.0033

1.5000 0.1785 1.579 0.3182 0.4812 0.2453 0.3962
0.0024 0.0176 0.0025 0.0021 0.0012 0.0027

(c) Word Embeddings (WE)

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.0469 0.8577 8.3793 0.8708 0.9134 0.5940 0.7989
0.0029 0.0325 0.0028 0.0018 0.0026 0.0021

0.0938 0.7620 7.3058 0.7862 0.8551 0.5225 0.7472
0.0038 0.0425 0.0036 0.0024 0.0025 0.0024

0.1875 0.6201 5.7628 0.6651 0.7689 0.4390 0.6706
0.0038 0.0374 0.0034 0.0028 0.0022 0.0031

0.3750 0.3956 3.5411 0.4888 0.6385 0.3419 0.5540
0.0031 0.0296 0.0034 0.0024 0.0015 0.0026

(d) Hidden States (HT)

Table 3.4: M-M evaluation of latent components perturbation

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.1875 0.3059 0.9787 0.1868 0.5292 0.2556 0.5561
0.0013 0.0027 0.0005 0.0008 0.0004 0.0013

0.3750 0.2193 0.7225 0.1457 0.4604 0.2135 0.4651
0.0016 0.0034 0.0006 0.0011 0.0006 0.0018

0.7500 0.1128 0.2643 0.0708 0.3397 0.1448 0.2434
0.0012 0.0025 0.0006 0.0011 0.0006 0.0022

1.5000 0.0541 0.0639 0.0237 0.2150 0.0750 0.0862
0.0013 0.0014 0.0004 0.0012 0.0007 0.0015

(a) Visual Features (VF)

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.1875 0.3365 1.0685 0.1986 0.5503 0.2675 0.5714
0.0013 0.0035 0.0006 0.0008 0.0005 0.0016

0.3750 0.3267 1.0449 0.1959 0.5450 0.2637 0.5653
0.0024 0.0057 0.0009 0.0013 0.0008 0.0019

0.7500 0.2732 0.9207 0.1829 0.5154 0.2455 0.5388
0.0023 0.0055 0.0011 0.0012 0.0008 0.0024

1.5000 0.07330 0.2359 0.0722 0.3169 0.1227 0.2559
0.0016 0.0038 0.0009 0.0016 0.0008 0.0030

(b) Context Vectors (CT)

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.1875 0.3371 1.0700 0.1990 0.5506 0.2679 0.5716
0.0015 0.0032 0.0006 0.0010 0.0005 0.0016

0.3750 0.3301 1.0555 0.1971 0.5468 0.2654 0.5661
0.0023 0.0056 0.0008 0.0010 0.0006 0.0021

0.7500 0.2982 0.9830 0.1894 0.5290 0.2550 0.5454
0.0025 0.0061 0.0009 0.0017 0.0009 0.0020

1.5000 0.1814 0.6824 0.1633 0.4595 0.2225 0.4647
0.0021 0.0053 0.0010 0.0015 0.0008 0.0035

(c) Word Embeddings (WE)

σ BLEU-4 CIDEr-D SPICE ROUGE-L METEOR MSICE

0.0469 0.3389 1.0744 0.1993 0.5516 0.2686 0.5728
0.0016 0.0042 0.0006 0.0009 0.0005 0.0013

0.0938 0.3362 1.0687 0.1986 0.5508 0.2679 0.5708
0.0016 0.0037 0.0007 0.0009 0.0005 0.0019

0.1875 0.3257 1.0463 0.1963 0.5452 0.2644 0.5654
0.0025 0.0050 0.0008 0.0014 0.0007 0.0020

0.3750 0.283 0.953 0.1894 0.5233 0.2554 0.5444
0.0031 0.0062 0.0010 0.0015 0.0010 0.0024

(d) Hidden States (HT)

Table 3.5: M-H evaluation of latent components perturbation

3.4b, 3.4d and Tables 3.5a, 3.5c, 3.5b, and 3.5d. Evidently, discernible patterns emerge,
highlighting distinct behaviors among the various components in response to perturbations.
Specifically, for the Visual Features (VF) and Context Vectors (CT) components, there
is a discernible trend of significantly diminishing scores as the perturbation magnitude
escalates. This suggests that these components are more susceptible to perturbations,
resulting in reduced performance. In contrast, the Word Embeddings (WE) and Hidden
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States (HT) components demonstrate robust stability in their respective scores despite
varying degrees of perturbation. This observation suggests that the captioning model
exhibits a heightened resilience against the latter perturbations.

To visually depict these trends, Figure 3.7a portrays curves that capture the im-
pact of perturbation for each component, assessed through the M-M evaluation. These
graphics display the average perturbation scores of MSICE, CIDEr-D, and METEOR
on MSCOCO2017’s test set. Higher scores mean lower sensitivity, hence lower influence,
and vice-versa. straight lines in purple represent the reference scores (i.e. the captions
generated without perturbation compared to ground-truth). This graphical representation
highlights a parallel behavior between VF and CT components exhibiting a steeper descent
in their curves, as well as between WE and HT components that demonstrate a more
gradual decline. MSICE emerges as a cohesive thread that aligns harmoniously with other
metrics, evincing a smoother penalty curve in response to perturbations.

Transposing our analysis to the M-H evaluation mode, Figure 3.7b broadly mirrors the
patterns observed in Figure 3.7a on the various components. This synchronization of trends
between M-M and M-H evaluations effectively neutralizes potential biases stemming from
human-generated references in the context of our explanation approach. However, some
subtle variations in the values obtained between the two evaluation modes appear, with the
M-M evaluation tending to produce higher values compared to the M-H evaluation. This
discrepancy was expected, as the reference captions in the M-M evaluation originate from
the captioning model before perturbation, making them closer in nature and structure
to the captions generated by the same model after perturbation than those curated by
human annotators.

Figure 3.8 depicts the curves obtained for the two evaluation modes on the Flickr30k
dataset, mirroring the trend observed in the MSCOCO dataset with some distinctions.
Notably, the decay rate of the curve representing the CT component perturbation appears
swifter than that of the VF component. This reversal of behavior prompts an inquiry into
the reasons underlying this shift when compared to the MSCOCO dataset. We attribute
this phenomenon to a confluence of factors linked to the intrinsic characteristics of the
Flickr30k dataset. This dataset is renowned for its emphasis on human-centric scenes,
featuring complex human interactions and detailed scenarios. In such datasets, subjects
(humans) and their interactions often carry paramount semantic significance. Given the
pivotal role of the attention mechanism in accurately highlighting these salient entities and
their relationships within the scene, any perturbations affecting the recognition of these
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(a) M-M evaluation

(b) M-H evaluation

Figure 3.7: Graphical representations of perturbation scores on MSCOCO2017 test set.

interactions can lead to greater distortion in attention weights, consequently amplifying
the impact of perturbation relative to other components.

Irrespective of the dataset considered, a key rationale behind these findings can be
attributed to the varying dominance levels of the visual and linguistic modalities, along
with their distinct roles in vision-to-language tasks. The imbalance in the potency of
these modalities fosters a deeper involvement of the first one in the captioning process,
rendering it more susceptible to alterations and changes. This nuanced observation forms
a pivotal cornerstone for further explanatory endeavors.

Our experiment unveils that the visual part, composed of the image encoder and
attention mechanism, stands as the central element in IC architectures. The greater
sensitivity of visual features and context vectors to perturbations translates into a more
pronounced influence on the decision process compared to the linguistic part, encompassing
word embeddings and the LSTM decoder. An illuminating study by [Sun et al., 2022]
conducted a word ablation experiment. In this experiment, they attempted to generate a
target word by dropping the three preceding words in the generated captions. The outcome
displayed a nearly 50% decline in the quality of the newly generated word following random
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(a) M-H evaluation

(b) M-M evaluation

Figure 3.8: Graphical representations of perturbation scores on Flickr30k test set.

ablation and an 85% decline when the three words with the highest relevance scores were
deleted (words that significantly contributed to predictions as indicated by LRP scores).
These findings suggested that the ablated words held crucial importance for the model in
predicting target words. However, it is crucial to note that the ablation process introduces
potential gaps within the sequence. This raises ambiguity as to whether the decline in
scores can be attributed to the words’ significance for generating the target word, their
sequential positioning, or the inconsistency in the structure of the previous sequence due
to ablation. This can also shed light on the internal nature of vectors. Specifically, it may
suggest that visual vectors tend to be more compositional, while language vectors exhibit
greater density and complexity. Further research in this area could make a significant
contribution to our understanding of the inner workings of these vectors.

In our WE perturbation, we sidestep sequence gaps by altering all words within the
sequence rather than removing them. This approach ensures that captions maintain
structural coherence, and counteracts positional bias. Here, the only variable is the
magnitude of perturbation, which signifies the extent of changes made to preceding words
before generating the current one. Under such assumptions, we can infer that the primary
reason behind captions’ resistance to WE perturbation lies in the relatively weak influence
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of this component (WE). In contrast, VF perturbation leads to a marked drop in caption
quality. Analogous to WE, this perturbation strategy averts introducing gaps in the image,
unlike ablation, by modifying all extracted features simultaneously. CT perturbation
yields comparable effects owing to the pivotal role of attention mechanisms in the model.
In fact, context features encapsulate the degree of attention required by the word predictor
for each visual feature during word generation. Such perturbation disrupts the focus of
the word predictor, resulting in a random emphasis on the image content during decoding.
We deduce that both the VF and CT components exert a higher influence on captioning
decisions than the WE component.

The final experiment, focusing on the hidden states (HT) of the LSTM decoder
supports our findings. It reveals significant stability in caption quality post perturbation,
implying that the preceding sequence encoded by HT vectors has minimal impact on
word prediction. Notably, the word predictor takes as input both context vectors,
encompassing the visual features and their attention weights, and the hidden states.
This elucidates that the word predictor prioritizes visual information over linguistic
information, accentuating the role of the visual modality. It may also be plausible that
the reduced sensitivity of the language component to perturbations emanates from
its lower robustness compared to the visual component. Recent endeavors in IC have
ventured into enhancing captioning architectures by intervening at the language decoder
level [Herdade et al., 2019, Li et al., 2019], particularly through the substitution of the
RNN decoder with a transformer module [Vaswani et al., 2017]. Surprisingly, these
methods have not yielded significant progress and have, at times, even yielded lower
scores compared to classical CNN+RNN models. On the other hand, the study by
[Liu et al., 2021] shows that the integration of transformers in the visual part markedly
improves caption quality. This underscores the notion that the language component’s
insensitivity -or low sensitivity- to perturbations is not indicative of its robustness but
rather its modest influence. Our current findings reinforce the argument that the linguistic
modality exerts a relatively weak impact on captioning decisions when juxtaposed with
the powerful influence of the visual modality. This comparison is facilitated by the
operation of perturbation on a shared intermediate latent space. Moreover, our conclusions
go beyond the faster R-CNN architecture and also encompass CNN encoder-based
architectures, as both models converge on a common latent space, namely the image
latent space, and share a common step when encoding the image input.
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The nuanced dynamics within the component influence landscape seem to steer vision-
to-language tasks, such as IC, towards a greater emphasis on enhancing and explaining the
visual modality, encompassing encoding and attention mechanism. However, this emphasis
on the visual part does not completely nullify the significance of the language component
in the overall captioning process. Our study operates at a post-hoc stage, facilitating the
evaluation of architecture components and offering insights that pave the way for more
comprehensive investigations into the specific roles of each element. Notably, the language
component appears to primarily play a stylistic role within the captioning process, while
the visual component shoulders the responsibility of generating the lexical items in the
output. This division underscores the distinct contributions of these two modalities in the
creation of coherent and informative captions. We believe that understanding the behavior
of the model’s components serves as an inaugural but fundamental step towards achieving
more explainability in black-box models. Such understanding can provide invaluable
insights into their inner functioning. The identification and assessment of the influence
exerted by each component can significantly shape subsequent choices for enhancing
explainability. A component exhibiting a higher influence is likely to hold more potential
for insightful explanations than its counterparts. The relevance and subtlety of these
explanations will intrinsically depend on the levels of influence and sensitivity specific to
each component.

Pioneering this quest for linguistic explanations, [Sun et al., 2022] laid the foundation.
In this study, we go a step further by conducting comprehensive experiments that under-
score the role of the linguistic modality in the realm of IC. Our findings illuminate that,
in the pursuit of explanations, the linguistic modality may not wield as much significance
as the visual aspect. This realization resonates particularly strongly in several fine-tuned
IC domains, more acutely in scenarios marked by high risks and contexts where the
cost of an erroneous decision or explanation is exceptionally steep. Take, for instance,
biomedical IC, such as describing X-rays. In such contexts, the utmost precision is crucial
in pinpointing the reasons behind specific words within a caption, which often depict
pathologies. In such a case, it is necessary to explain to the end-users that a detected
pathology in a radiology examination emanates from a particular region in the image, and
this explanation must specifically exclude any ambiguity caused by previously generated
words in the caption, which could potentially be misleading. In line with our first definition
of decisiveness presented at the outset of this chapter, a clear demarcation can be made
between the contribution of the visual modality manifested through visual regions and that
of the linguistic modality materialized by the words in the generated caption. The former
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guarantees the accurate prediction of target pathologies, while the latter constructs the
scientific description of the medical image, both cooperating to deliver relevant captions.
A fair conclusion is that explanations of specific diseases should be sought primarily in
the visual component, rather than in the linguistic side.

3.8 Conclusion

In this chapter, we introduced an explanation approach for deep learning models in image
captioning (IC), exploiting the representation space of information. We demonstrated
that explainability in deep models extends beyond establishing links between outputs
and inputs, and does not necessarily have to be perceptive. To do so, we proposed a
perturbation paradigm, where information within deep models is modified rather than
truncated. Perturbations proved to be a more coherent and insightful means of dissecting
model behavior, transcending mere ablation. Central to our endeavor is the novel MSICE
evaluation protocol, which stands as a new advancement in the evaluation of IC and
explainability. This protocol, rooted in morphology and semantics, addresses the intrinsic
challenge of evaluating sentences with similar semantics but different surface forms. Our
results illuminate that this approach enhances the evaluation process and offers a finer-
grained assessment of captions. The most pivotal revelation of this study is the discernment
of the substantial influence exerted by the visual component within captioning architectures,
overshadowing the impact of the language element. Consequently, we expect the visual
part to constitute a key point for subsequent model’s explanations. Beyond its impact on
the field of IC, our findings bear significance for a broader array of vision-language tasks.
The current results hold the potential to catalyze the development of accurate, subtle,
and trustworthy explanations across various domains, ensuring that the synergy between
vision and language yields insights that are both complementary and dependable.
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4 Attribution-based explanations

Contents

4.1 Bottom-up Layer-wise Relevance Propagation Explanations 70

4.1.1 Background of LRP . . . . . . . . . . . . . . . . . . . . . . 70

4.1.2 LRP for Bottom-up captioning architectures . . . . . . . . . 72

4.2 Bottom-up Local Interpretable Model-Agnostic Explanations 73

4.2.1 Background of LIME . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 LIME for Bottom-up captioning architectures . . . . . . . . . 74

4.2.3 Object aware BU-LIME . . . . . . . . . . . . . . . . . . . . 77

4.3 Evaluation of explanation quality . . . . . . . . . . . . . . . . 78

4.3.1 Correlation measure . . . . . . . . . . . . . . . . . . . . . . 78

4.3.2 Latent Ablation measure . . . . . . . . . . . . . . . . . . . 80

4.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . 85

4.4.1 The correlation of explanations to object detection scores . . . 89

4.4.2 Latent Ablation . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.3 Discussion on attribution explanations . . . . . . . . . . . . 93

4.4.4 Limitations of attribution explanations . . . . . . . . . . . . 98

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

In our prior research [Elguendouze et al., 2022], we established that the visual compo-
nents of IC models stand as key elements for subsequent explanatory endeavors. Building
upon this insight and on the distinctive strengths gleaned from the representation space,
in this chapter we embark on a more intricate exploration of the visual modality. Our goal
is to extract more overt insights shedding light on the complex workings of captioning
models and latent space.

To achieve this, we extend the work of [Sun et al., 2022] by adapting the LRP (Layer-
wise Relevance Propagation) explanation technique to IC models that leverage bottom-up
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(BU) visual features extracted via Faster-RCNN. This adaptation marks a departure from
the conventional use of global CNN features. Simultaneously, we exploit latent space to
develop a variant of the popular attribution-based explanation method called LIME. It is
worth reiterating that attribution methods are those that operate in post-hoc explainability
mode, assigning relevance scores, or attributions (Section 2.2), to inputs based on their
importance for output predictions. While LRP and LIME are conventionally deployed on
the original input space, we propose a shift to the latent space, thereby emphasizing its
role in generating finer-grained explanations.

It is worth noting that BU features diverge from CNN features by being anchored in
local image pixels. Each BU feature encapsulates a specific region of the image, unlike
CNN features that encompass the entire image as a global entity. The above distinction,
outlined earlier in Section 3.3, aligns with our choice of a standard architecture founded
on BU features. This choice retains its validity, as contemporary captioning models widely
adopt BU features. Moreover, the incorporation of these features augments our capacity
to unveil further insights about the captioning pipeline, the way in which the input image
is analyzed, as well as the intricate encoding and decoding of data within the latent space.

Operating within the latent space while subjecting attribution-based explanation
methods, LRP and LIME, to a meticulous comparative analysis based on their distinct
operational scopes (Section 2.2.6), offers us a deeper grasp of how the scope and mechanisms
of these methods influence the quality of explanations. It is important to distinguish
the term "scope" in its contextual usage here, referring to the operational range, not the
scope of explanation outcomes. LRP and LIME, while both producing attributions as
explanations, diverge in their approach, LRP following a backpropagation paradigm and
LIME adopting a perturbation-based paradigm in their explanation generation.

4.1 Bottom-up Layer-wise Relevance Propagation
Explanations

4.1.1 Background of LRP

Layer-wise Relevance Propagation (LRP) [Bach et al., 2015] is an explainability technique
aimed at uncovering the contribution of input features to output prediction. This method,
as introduced earlier in Section 2.2.6, operates through a backward propagation process.
Given a neural network, LRP back-propagates the final prediction (output) along the

70



network by recursively assigning a relevance score to each neuron within the network,
ultimately reaching the input layer. Specifically, this approach dissects the relevance of
individual neurons by iteratively re-distributing the scores to each of the neurons in the
preceding layer. This decomposition is guided by various propagation rules defined by
[Bach et al., 2015], including ϵ-rule (presented hereafter) and β-rule. LRP unfolds in two
main stages, illustrated in Figure 4.1: on the left, the forward pass, where predictions are
made by the neural network model during inference, and on the right, the backward pass,
where the relevance is retrogressively disseminated.

Figure 4.1: Forward inference Vs. relevance propagation [Bach et al., 2015].

Consider a neural network composed of a sequence of interconnected neural layers,
following a layer-wise architecture. A neuron denoted as xj within a given layer (l) is
characterized by a linear transformation of all neurons from the preceding layer (l 9 1),
followed by an activation function g(·) (as depicted in Equation 4.1). Here, xi represents
an input neuron, yj denotes the linear output, xj is the output following activation, and
wij corresponds to the network weights.

xj = g(yj) ; yj =
∑
i

xiwij + bj (4.1)

R
(l91,l)
i←j = R

(l)
j · xiwij

yj + ϵ
(4.2)

R
(l91)
i =

∑
j

Ri←j (4.3)

Given a neuron xj in a specific layer (l) with a relevance score R
(l)
j , LRP employs a

decomposition rule, such as ϵ− rule (Equation 4.2), to assign a contribution score R
(l91,l)
i←j

to each input neuron xi from the preceding layer (l 91). Regardless of the propagation rule
used to compute the relevance scores, this essentially quantifies the proportional influence
of neuron xi among all neurons within the same layer that collectively contribute to the
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computation of neuron xj . In the case of ϵ− rule, the parameter ϵ works as a stabilizer,
preventing the relevance scores Ri←j from becoming unbounded, particularly when the
linear output yj attains small values. Finally, to derive the overall relevance score for
neuron xi, the contributions stemming from all incoming connections within layer (l) to
neuron xi are summed, as illustrated in Equation 4.3.

4.1.2 LRP for Bottom-up captioning architectures

Adapting Layer-wise Relevance Propagation (LRP) to the bottom-up (BU) captioning
architecture employed in the Ada-LSTM model outlined by [Sun et al., 2022] involves
customizing the method to align with the distinctive components of this BU-based
architecture. The Ada-LSTM captioning model encompasses a Faster-RCNN encoder,
an adaptive attention module, and an LSTM decoder. The authors in [Sun et al., 2022]
stated that, as far as the entire captioning architecture is concerned, the LRP rules adhere
the same topological flow as backpropagation (component by component). In this regard
and in line with the architecture’s sequence, we initialized the relevance scores for the
words within the output caption using the logits generated by the last layer of the word
predictor sub-module. We back-propagate each word’s relevance score R(wt) across the
architecture. This process traverses through the Word predictor, LSTM decoder, and
Attention components, halting at the encoder’s output, as illustrated in Figure 4.2. The
feature referring to a tennis ball attained the highest importance score for predicting the
word "tennis" in the caption. Of particular note is our focus on the BU visual features
that were originally employed for prediction during the forward pass. These visual
features, totaling V in number, have their individual relevances computed through the
LRP mechanism, tailored to the specifics of the BU architecture.

Figure 4.2: LRP flow through the BU-based captioning architecture.
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At each component’s output within the backpropagation pathway, we derive the
relevance scores corresponding to the respective data flow. Specifically, denoted as R(ct),
R(ht), R(Ĩg), and R(Ĩ), these relevance scores respectively pertain to the context vectors,
hidden states, global image feature, and BU image features, respectively. Our primary
focus lies in investigating the relevance of the BU features concerning the final word
prediction. This emphasis on BU features stems from our prior findings (as highlighted
in Section 3.8) that, during this phase of explanation, the linguistic modality exhibits
comparatively reduced significance.

The relevance scores vector R(vi) for each individual BU feature vi obviously aligns
with the shape of the feature vector, i.e. R(vi) ∈ Rdv . Consequently, the global relevance
score for a specific BU feature is the summation of all the elements R(vij) within the
relevance vector. This process yields a coefficient vector α̂ ∈ RV as the final outcome of
the explanation (Equation 4.4), encompassing the importance of all BU features to the
prediction of a given word within the caption.

α̂ = R(Ĩ) = {R(vi)}Vi=1 , R(vi) =

dv∑
j=1

R(vij) (4.4)

4.2 Bottom-up Local Interpretable Model-Agnostic
Explanations

4.2.1 Background of LIME

LIME, an acronym for Local Interpretable Model-Agnostic Explanations, is a perturbative
method that can be used to explain any black-box model. This methodology becomes
particularly valuable in scenarios where the complexity of the original model prevents it
from being explained globally. LIME’s central idea lies in its ability to transform complex
models into locally interpretable explanations around each input instance. It achieves that
by introducing perturbations to the original input, generating similar yet slightly altered
neighbor instances. These perturbed instances are then utilized to predict new outcomes
and train a linear model whose inputs and labels are the perturbed instances and the
associated outputs. The resulting coefficients of the linear model provide local explanations
in the form of importance attributions assigned to individual input features based on
their role in predicting a specific output. It is crucial to clarify the terminology here.
Throughout the subsequent sections of this chapter, the term "Intrinsic perturbations"
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will refer to the perturbations intrinsic to the LIME technique itself. This should be
differentiated from the Gaussian perturbations introduced in Chapter 3, which served a
distinct purpose in the previous context.

The core procedure of a typical LIME approach can be distilled into five key steps,
as illustrated in Figure 4.3. For a given input instance requiring explainability, LIME
initiates by generating a set of P perturbed samples in the vicinity of the input. These
modifications might involve conventional operations like darkening or blurring, particularly
applicable to image data. Subsequently, both the original input and these perturbed
samples are passed to the original black-box model to predict their respective labels (e.g.
classes for image classification). This set of instances, coupled with their predicted labels,
serves as the training dataset for constructing a simple linear model designed to mimic the
intricate behavior of the complex original model. The coefficients learned by the surrogate
model then offer insights into the importance of input features in making the prediction.
In this manner, LIME is capable of approximating the behavior of a black-box model
locally, without necessitating any knowledge about the model’s internal mechanisms.

4.2.2 LIME for Bottom-up captioning architectures

In this section, we introduce our BU-LIME method by adapting the principles of Local
Interpretable Model-Agnostic Explanations (LIME) [Ribeiro et al., 2016] to the context
of IC in architectures that employ BU visual features. To develop BU-LIME, we adhere
to the same underlying rationale as in the original LIME framework, albeit with a distinct
approach to perturbation. Specifically, we adopt gradual intrinsic Gaussian perturbations
in latent space (i.e. visual features). These perturbations show good performances and
better consistency compared to the alternative of altering the original image through
techniques like blurring and blackening [Sahay et al., 2021]. Such conventional operations
can often lead to issues like data truncation or information loss.

The process of BU-LIME can be outlined as follows. Initially, we generate a set of P
neighboring instances Γ = { ´̃I(p)}Pp=1 around a given image I. Each perturbed instance
is obtained by introducing random perturbations to a subset of its visual features. The
selection of this feature subset can be approached in various ways, which will be detailed
in the experimental section. However, it is crucial to ensure a degree of randomness in
feature selection while maintaining consistency in the number of selected features. A
binary vector X(p) ∈ {0, 1}V is associated with each perturbed instance ´̃I(p) through an
indexing mechanism, where ‘1’ denotes perturbed features and ‘0’ represents unperturbed
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Figure 4.3: Overview of LIME.

features. Here, V represents the number of BU features, and the set of all binary vectors
X = {X(p)}Pp=1 is denoted as the binary matrix X ∈ {0, 1}P×V . Subsequently, each
perturbed instance is fed into the captioning model. While the generated captions
themselves lack coherence due to the applied perturbations, our focus is on the generated
weights (logits from the last layer of the LSTM) associated with every word in the
vocabulary during caption prediction.

Since the probability of each word is computed during every decoding step, we
aggregate the maximum probabilities from all decoding steps to derive the final probability.
For instance, if we consider the word ’man’ and obtain weights of 0.5, 0.3, 0.33, 0.4, and 0.7
across five decoding steps for the first perturbed instance, the final weight for that word is
0.7. This process is repeated for all words in the vocabulary for each perturbed instance.
Upon this stage, we obtain a weight matrix ∆ = (δpq) ∈ RP×Q, where Q represents the
size of the vocabulary.
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To obtain explanations for a specific word wq from the vocabulary, we build a linear
regression model (Equation 4.5) using the paired data (Binary matrix X, Weight vector
y) as the training set, where y = δ.q ∈ RP represents the qth column of ∆. Each training
instance is composed of a pair (Xp, yp). The cost and objective functions of the regression
model are given in Equations 4.6 and 4.7 respectively. β ∈ RV denotes the vector of
coefficients to be estimated, while β̂ is the estimator, and γ ∈ RV is a noise vector.

Y = X · β + γ (4.5)

cost =
1

P
∥Y −Xβ∥22 + λ∥β∥22 =

1

P

P∑
p=1

( yp −
V∑

v=1

(Xpv ∗ βv) )2 + λ
V∑

v=1

βv
2 (4.6)

β̂ ∈ argmin(cost) (4.7)

The entire approach is illustrated in Figure 4.4. In this visualization, the coefficients
of the linear model reflect the importance of individual visual features in predicting
the word ’man’, with the highest coefficient corresponding to the feature representing a
man. A concise and formal summary of this approach is provided in Algorithm 1. In
this algorithm, wq denotes the word for which we seek explanations, β̂ represents the
explanation vector (Equation 4.7), Γ represents the set of all perturbed instances, X is
the set of all perturbation indexes, and y is the vector of predicted captioning weight.
The functions perturb, capt, and linear denote the perturbation, captioning, and linear
regression functions, respectively.

Figure 4.4: BU-LIME method overview.
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Algorithm 1 BU-LIME algorithm.

Inputs: Ĩ , q
Outputs: β̂
Γ← {∅}
X ← {∅}
for p ∈ {1, ..., P} do

´̃I(p) , X(p) ← perturb(Ĩ(p))

Γ← Γ ∪ { ´̃I(p)}
X ← X ∪ {X(p)}
δp. ← capt( ´̃I(p))

end for
y ← δ.q
β̂ ← linear(X, y)
return β̂

Knowing that images often encode regions or objects through multiple visual features,
which can sometimes introduce redundancy or ambiguity, we propose in the next section
a more complete investigation. This entails exploring the effect of manipulating such
features through an extended version of the LIME-based explanation method, wherein we
shift our focus from individual visual features to entire objects within the image. The key
difference lies in the intrinsic perturbation process of LIME.

4.2.3 Object aware BU-LIME

Referred to as BU-LIME-N -OBJ, this new method involves perturbing for up to N
objects within the image. The number of perturbed instances per image, in this case, is
determined by P =

∑N
i=0C

i
n, with n representing the number of objects detected in the

image. Obviously, we only retain images where n ≥ N . We experiment with two values
of N (5 and 8). Our choice to avoid lower values for N is because this could result in
an insufficient number of instances to train the LIME linear model. For instance, with
N = 2 and n = 7, we would have P = 29 instances. Perturbing entire objects amounts to
manipulating all the visual features associated with that particular object, irrespective of
whether the corresponding region precisely delimits the object or only represents a partial
detection. To this end, we leverage the class labels generated by the object detector to
select all the features that correspond to each individual object, ensuring a comprehensive
perturbation of the object’s representations.
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Interestingly, through empirical exploration, we’ve found that the maximum number
of unique objects within an image rarely exceeds 15, not accounting for overlapping or
redundant regions. Consequently, we adopt the practice of perturbing at most half of the
detected objects, aiming to mitigate the risk of excessive perturbation. It is worth noting
that from experimental observations, employing a larger number of perturbed objects
tends to penalize the learning of the linear model. For a clearer grasp of the concept of
redundant visual features, please refer to the illustrative example in Figure 4.7.

4.3 Evaluation of explanation quality

The existing research on IC explainability assessment predominantly revolves around a
qualitative [Xu et al., 2015, Huang et al., 2019, Han and Choi, 2018, Sahay et al., 2021]
evaluation (e.g. saliency maps) and quantitative [Sun et al., 2022] evaluation (e.g.ablation
measures), focusing on the fidelity aspect of generated attributions. These approaches
entail either a visual validation of the correctness of the explanation with regard to the
explained item or quantifying the disparity between a new prediction, obtained by the
omission of the explanation element from the input, and the original prediction. However,
the visual validation of the explanation’s quality might not capture subtle or complex
patterns in the data, and it can be time-consuming and resource-intensive when applied
to large datasets or complex models. The traditional masking of the explanation element
in the input, also called ablation, to evaluate the prediction changes, inherits the same
limitations as conventional perturbation techniques, like blackening and blur, as already
discussed in the previous section.

In this section, we introduce two novel evaluation techniques. The first method gauges
the correlation between the explanations and the object detection scores, while the second
relies on the Latent Ablation principle. These two evaluation metrics hold the potential
to not only advance explanation evaluation but also establish comparative benchmarks.
The current dearth of evaluation metrics in the realm of explainability poses a challenge
to this evolving research domain. The ensuing sections provide detailed descriptions of
both evaluation methods.

4.3.1 Correlation measure

This metric measures the correlation between the explanations and the classification scores
of the regions (objects) jointly generated by the object detector during image encoding.
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However, this evaluation does not involve an absolute comparison between the explanations
generated by the attribution methods and the object detector probabilities (Faster-RCNN).
Rather, we have developed an evaluation strategy that projects the compared items into a
unified ranking space. Building upon our earlier findings regarding the role of the visual
modality, our initial motivation in employing this evaluation method is to gain insights
into how well the explanations align with the object detection scores, a component integral
to the visual modality. This evaluation serves as a complementary perspective to other
evaluation methods that will be discussed subsequently.

Consider the candidate (predicted) caption Ĉ for a given image I. Let OĈ represent
the object words that appear in Ĉ, and let OV denote the labels corresponding to the
visual objects detected by the Faster-RCNN. The evaluation process focuses exclusively on
the explanations for the words that jointly appear within OĈ and OV . The core concept
involves quantifying the disparity between the importance of a given region vi in the
prediction of its label l ∈ {OĈ ∩ OV } within the output caption, and the class (label)
probability as anticipated by the object detector. This could be achieved by using the
explanation vectors α̂ and β̂ derived from the BU-LRP and BU-LIME methods respectively
when applied to the word l. These vectors contain the attribution (importance) scores
assigned to the BU features. The elements of each vector are sorted and indexed in
descending order using the sort_index function resulting in Eα̂ and Eβ̂, respectively
(Equation 4.8). Therefore, the features (regions) considered most relevant for predicting
the word l will occupy the initial positions in these vectors, with less important ones
following suit. The evaluation consists in measuring the distance that separates the
position of the region vi in both Eα̂ and Eβ̂ as determined by position function, and
its corresponding ranking from Faster-RCNN’s output (i.e. the index i). Note that the
Faster-RCNN ranks the regions in descending order according to their class probabilities,
bringing those with the most confident prediction at the top of the list and the least
certain further down the list.

Eα̂ = sort_index(α̂) ; Eβ̂ = sort_index(β̂) (4.8)

dα̂i = max( 0 , position(Eα̂, vi)− i ) (4.9)

s1α̂i =
1

1 + dα̂i
∈ [0, 1/(V + 1)] (4.10)

s2α̂i = 1− dα̂i
V
∈ [0, 1] (4.11)
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Nevertheless, if the region vi attains a position in the sorted vectors Eα̂ and Eβ̂

that is equivalent to or surpasses its position in the ranking provided by the object
detector (in terms of importance), the resulting distance is reduced to the minimum
value ‘0’ (as outlined in Equation 4.9). In such situations, this would mean that the
explanation produced by the concerned method precisely correlates with the classification
score associated with the predicted label for a given BU feature. The computed distance
is subsequently transformed into a similarity score [Segaran, 2007], further quantifying
the alignment between the explanation and the object detection score, as expressed by
Equation 4.10. However, we propose a new similarity score in Equation4.11, which seems
to more accurately capture this correlation concept by providing a fairer penalization
for medium and long distances. In fact, consider the maximum possible distances that
can separate the position of the feature index in the explanation vector and the one in
the classification scores vector, which, in this case, is equal to V (let’s take V=36 as an
example). According to Equation4.10, the similarity score reaches a minimum value of
s1 = 1/37 in this scenario, whereas it attains s2 = 0 according to Equation4.11. Similarly,
if we take a distance equal to one-third of the maximum distance, i.e., 12, the similarity
scores would be s1 = 1/13 based on the first similarity formula, whereas it would reach
s2 = 1/2 for the second one. This demonstrates that the second similarity formula better
matches our quest for a fair score in such situations.

4.3.2 Latent Ablation measure

In addition to the correlation metric defined above, we also propose Latent Ablation.
The original concept of ablation, as depicted in Figure 4.5, consists of removing specific
explanation elements from the input data to assess the resulting impact on prediction. For
instance, in their study, [Sun et al., 2022] evaluated the quality of captioning explanations,
both visual and linguistic, by masking the top 20 high-relevant image patches (parts) for
predicting a specific word in the output caption, as well as the top 3 high-relevant words
in a separate experiment. The objective is to eliminate their contribution to the prediction
and measure the change in the output caption’s quality compared to the original one.

Our Latent Ablation differs from conventional ablation methods by operating in
the latent space (features) rather than the original input space (i.e. images, as in
[Sun et al., 2022]), aiming to explore the potential benefits offered by this space with
regard to explainability evaluation. Analogous to our earlier proposal in Section 4.2
where we discussed two versions of the LIME-based explanation approach (visual features
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Figure 4.5: Standard ablation applied to XIC evaluation.

versus objects), we extend this concept to Latent Ablation. Here, we suggest investigating
two variants of Latent Ablation: the first involves masking the k most important visual
features, while the second masks the top k entire objects, both within the latent space.
This dual approach enables us to delimit the impact of handling individual visual features
versus whole objects when assessing the explanatory capacity of the proposed methods.

The process of masking the top k visual features, as depicted in Figure 4.6, amounts
to neutralizing (ablating) those features that are deemed most influential for the final
prediction while keeping the other features unaltered. We conduct this procedure with
various ablation magnitudes. The first level of intensity operates by applying Gaussian
perturbations to the visual features. It is essential not to confuse this perturbation with
the Gaussian perturbation discussed in the first chapter or the intrinsic perturbation
employed in the BU-LIME explanation method. The second one involves saturating the
visual features by setting them to either the minimum or maximum values of the VF
component (refer to Section 3.5.3). Following this, we re-generate the image caption and
examine whether the word associated with the explanation remains present in the new
caption. Our evaluation includes all object words, excluding stop words and predicates.
The results are reported as the percentage of missing words, which reflects the fidelity of
the explanation elements in relation to their corresponding predictions.

Algorithm 2 provides a formal synthesis of the ablation process for BU-LRP expla-
nations applied to a single explanation instance (word). In this regard, Ĩ represents the
set of visual features, C is the original caption, w∗ is the target word for explanation, α̂
denotes the BU-LRP explanation vector, k stands for the number of features for ablation,
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mode captures the ablation configuration, and eval encapsulates the ablation evaluation
function. It is important to note that the same process applies to BU-LIME explanations,
and the instances/words considered for evaluation are identical.

Figure 4.6: Latent ablation for XIC evaluation.

Algorithm 2 Latent feature ablation algorithm.

Inputs: Ĩ , C, w∗, α̂, k,mode
Outputs: Ĉ, P̂
Global variables: MinV F ,MaxV F , σ
for i ∈ {1, .., k} do

if mode = Normal then
Ĩα̂i
← Ĩα̂i

+N (0, σ)
else if mode = Min then

Ĩα̂i
←MinV F

else if mode = Max then
Ĩα̂i
←MaxV F

end if
end for
Ĉ, P̂ ← capt(Ĩ)
return Ĉ, P̂

The second version of ablation involves masking the top k objects rather than individual
features. An object is represented by a set of visual features, and each visual feature
corresponds to a single object within the image. For a specific object, there may be
multiple visual features generated, often detected by Faster-RCNN as partial portions of
the object. These partial areas typically possess lower label probabilities than the entire
object as the object detector is less confident in assigning the correct object category to
the partial detection. For instance, Figure 4.7 illustrates the object detection outcomes
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on an image representing a man playing tennis. In this case, the main object "man" is
enclosed by several bounding boxes, each assigned a different probability (man 83%, man
80%, man 35%...). Consequently, the latent space accommodates multiple visual features
that correspond to various segments of the main object "man". These features often
represent fragments of the entire object "man", which is assigned the highest probability.

Figure 4.7: Illustrative example of object detection results using Faster-RCNN.

The selection of the top k objects is determined by the ranking of their first occurrence
in the explanation vector, which is composed of indices representing the 36 extracted
features, ranked by importance. This well-ranked position corresponds to the most
probable feature among all those associated with the same object.

As discussed earlier in this section, conventional ablation experiments are commonly
evaluated by measuring changes in new captions following ablation and comparing them
to captions before ablation. This assessment often involves quantifying the presence or
absence of target words or assessing caption quality through established metrics such as
CIDEr and ROUGE. In our latent ablation method, besides quantifying the absence of
target words, we introduce two additional evaluation measures: average probability drop
and probability drop frequency.
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The average probability drop reflects the decrease in a word’s probability during the
prediction of the new caption. Given that words’ probabilities are generated for the entire
vocabulary in each decoding step, only the maximum value is retained, indicating the
highest level of confidence the decoder attains for that particular word during caption
decoding. Subsequently, probability drop frequency is defined as the number of instances
where such a decrease in word probability occurs. An instance here refers to a word
considered for explanation. Algorithm 3 defines the evaluation function, which takes
two inputs: the reference prediction (prior to ablation) consisting of the vocabulary
probabilities P, and the new prediction post ablation, comprising the new caption and
new vocabulary probabilities P̂. The fO function stands for the object words extractor
from a caption text.

Algorithm 3 Explanation fidelity assessment algorithm.

Inputs: w∗, Ĉ, P, P̂
Outputs: missing_word, prob_drop, drop_freq
λ← fO(Ĉ)
if w∗ /∈ λ then

missing_word← 1
else

missing_word← 0
end if
prob_drop← max(0,Pw∗ − P̂w∗)
if prob_drop ̸= 0 then

drop_freq ← 1
else

drop_freq ← 0
end if
return missing_word, prob_drop, drop_freq

While quantifying the absence of the target words relies only on the captions, the
other two metrics, average probability drop and probability drop frequency, employ word
probabilities. All three metrics are applied across all evaluation instances, considering
only object terms within the captions as target words for explanation. The final fidelity
scores are obtained by averaging individual scores across the entire test set.
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4.4 Results and discussion

In this section, we conduct an evaluation and comparative analysis of the explanations
provided by the two distinct explanation methods, BU-LRP and BU-LIME. Our evalua-
tion protocol employs the two evaluation methods presented in Section 4.3: correlation
with object detection scores and Latent Ablation, specifically tailored for evaluating the
explainability of BU-based IC models. Both BU-LRP and BU-LIME operate within the
representation space and rely on the visual component to derive explanation elements.
However, they differ in the nature of their scope, with a global scope for BU-LRP and
local explanations for BU-LIME. Given this distinction, it is interesting to assess the
precision of their outcomes in relation to this criterion.

Figure 4.8: Object detection applied to an image featuring a herd of giraffes.

Figure 4.8 illustrates object detection applied to an image featuring a herd of giraffes.
Detected regions are encoded as BU features and assigned category labels through classifi-
cation, accompanied by classification scores/probabilities. Figure 4.9 displays BU-LRP’s
explanation outcomes at the level of individual visual features. The two heatmaps/matrices
indicate the relevance scores attributed to each element of the first and third BU feature
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vectors (v0 and v2) in the prediction of the word "giraffe" belonging to the image caption
in Figure 4.8. These two selected features correspond to the labels "giraffe" and "ground"
with probabilities of 81% and 80%, respectively. Cumulative importance scores for these
two visual features (R(v0) = 0.00051 and R(v0) = −0.000045) are reported above the
heatmaps. These scores are derived by averaging the elements of each feature’s explanation
vector, as indicated earlier in Equation4.4).

Figure 4.9: Visualization of importance distribution explanations for individual visual
features.

It is important to note that, for the sake of simplicity of visualization, the importance
vectors, each comprising 2048 elements, are displayed here as compact heatmaps of
dimension (64*32). In these heatmaps, warmer colors correspond to higher importance
values, while cooler colors indicate lower values. One notable observation is that explanation
values within the same vector tend to exhibit a remarkable level of homogeneity. This is
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demonstrated by the consistency of heatmap colors within the same feature’s importance
vector, with a few exceptions characterized by notable high or low importance values.
This pattern hints at the possibility that certain dimensions of a specific feature could be
disproportionately influential, either negatively or positively, in predicting a particular
word within the caption.

In cases where the contribution is extremely high, these dimensions may encapsulate
the most crucial information within the corresponding feature’s region, such as the patterns
representing the core concept present within that particular region of the image. Conversely,
when confronted with very low contribution values, these dimensions could potentially
impede the prediction of the desired word, i.e. "giraffe" in this example. This may
arise due to the presence of information or patterns that either counteract the essence of
the studied concept (in other words, they cannot coexist simultaneously in the output)
or, intriguingly, contain information that, when viewed in a negating context, actually
aligns with the target concept. Nonetheless, at this juncture, it remains challenging
to definitively assert whether negative and positive (or high and low) relevance scores
act in direct competition, as there is also merit in considering them as complementary
contributions, mutually supporting to highlight different facets of the explanation.

At a broader scale, Figure 4.10 presents a good example of heatmap explanations
generated for the word "giraffe" within the image caption showcased in Figure 4.8. The
heatmaps in Figure 4.10a indicate the relevance distribution across the 36 visual features,
while Figure 4.10b portrays the explanation vector derived from BU-LRP. For both
heatmaps, warm colors indicate higher importance, and vice versa. Remember that these
explanatory visualizations are obtained by applying the BU-LRP explanation method,
reflecting the back-propagated contribution throughout the captioning architecture. The
back-ward process starts with the end outcome, i.e. probability of the predicted word
in the output caption, and reiterates back to obtain the importance of each element of
the BU visual feature vector, and finally, the overall importance of each visual feature
when averaged. For each word in the caption, we get 36 importance vectors displayed as
heatmaps, each corresponding to a visual feature (Figure 4.10b).

In Figure 4.10, it becomes clear that some visual features exert a greater influence on
the prediction of the word "giraffe". These features manifest as warmer-colored heatmaps,
specifically those corresponding to the 9th, 10th, 18th, 21st, 27th, and 28th features,
matching respectively with regions labeled as giraffe, roof, ground, giraffe, enclosure, and
giraffe, respectively. For a clearer perspective, Figure 4.10b presents the ranking of visual
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Figure 4.10: Larger-scale explanatory visualizations.

features based on BU-LRP relevance scores, ranging from the most to the least important.
In contrast, certain features exhibit a negative contribution to the prediction of this same
word "giraffe", notably the 12th and 13th features, corresponding to labels "giraffes" and
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"pond" with probabilities of 55% and 53%, respectively. It may appear odd to observe a
negative contribution for a feature representing the same entity as indicated by the word
being explained (i.e., giraffe). This apparent paradox can be rationalized by considering
that the captioning model, during its inference process, tends to focus on the most salient
features, even if other features comprising similar content are also present. This could
apply, for example, when the object detector generates multiple partial detections, leading
the captioning model to focus primarily on the feature encapsulating the entire object.

However, it is important to note that not all instances adhere to this behavior. In
some cases, features representing partial objects gain higher relevance scores than those
representing entire objects. Given the complex interactions between visual features within
the captioning model, their fusion, and aggregation, we opt to further discuss this concept
in the third chapter of this manuscript. In the current chapter, however, our focus remains
confined to studying and comparing the outcomes of attribution explanations.

4.4.1 The correlation of explanations to object detection scores

Table 4.1 reports the evaluation results on the MSCOCO2017’s test set, presenting the
total average distance d separating the position of a feature in the explanation vector
from the rank assigned by the Faster-RCNN, along with the average correlation scores
expressed in terms of two similarity scores s1 and s2, as described in Section 4.3.1. The
common_words and non_common_words represent the number of instances where the
word to be explained either appears or does not appear (i.e. word to be ignored while
computing scores) in the list of detected objects.

Our experimentation involved two versions of the BU-LIME model, each with distinct
strategies for generating perturbed instances. In the case of BU-LIME-1-2, we performed
a comprehensive perturbation approach, encompassing all combinations, for up to two
visual features simultaneously. This led to a total of 676 instances per image, one of which
remains unperturbed. On the other hand, BU-LIME-5 is built based on a random selection
strategy, perturbing five features simultaneously. Given the large number of possible
combinations (C5

36) and the proportional increase in execution time, we constrained the
number of perturbed instances to 50 per image. The insights provided by the results in
Table 4.1 will be discussed in Section 4.4.3.

Illustrated in figure 4.11, the distribution shows how the elements of the explanation
vectors stack up in terms of position against the object rankings identified by Faster-RCNN.
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common_words non_common_words d s1 s2

BU-LRP 8256 6422 10.2633 0.3754 0.7149
BU-LIME-1-2 13.9510 0.3492 0.6125
BU-LIME-5 13.7025 0.3418 0.6194

Table 4.1: Global correlation scores for BU-LRP and BU-LIME explanations.

These distributions reveal any patterns followed by the explanation techniques, helping
to determine whether the scores listed in Table 4.1 are influenced by specific peaks at
particular positions, or if they show a more global trend. It also enables us to better assess
the extent of the conclusions drawn from the aforementioned table.

4.4.2 Latent Ablation

Latent Ablation experiments were conducted using various experimental configurations,
as outlined in Section 4.3.2. These configurations involved latent ablation of either the
individual visual features most influential in predicting object words in output captions,
or of whole objects, based on their corresponding visual features. The main objective was
to discern the potential impact of manipulating these two concepts. Experimental results
are reported on the MSCOCO2017 test set.

Individual features manipulation

Table 4.2 shows the results of the visual features ablation for all explanation methods,
expressed as the percentage of missing words in new captions following ablation. k denotes
the total number of visual features masked simultaneously. It is important to remember
that our visual feature ablation employs three distinct levels of intensity: Gaussian/Normal
perturbations and saturation of features using the minimum (min) and maximum (max)
values within the VF component (BU features). Specifically, the magnitude of normal
ablation involves perturbing the visual features by adding Gaussian values with σ = 1.5,
the maximum standard deviation achievable within the VF component. The min and the
max magnitudes correspond to substituting the feature values with the minimum and
maximum values of the respective vector dimensions. In addition to BU-LRP, and BU-
LIME along with its two versions, we also include a random ablation baseline (explanations
generated randomly) for comparison purposes.
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(a) BU-LRP positions

(b) BU-LIME positions

Figure 4.11: Distribution of the distances separating the explanation elements from
object detection rankings.
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k Explanation method Ablation magnitude
normal min max

1
Random 0.1159 0.2823 0.2735
BU-LRP 0.1211 0.2840 0.2756

BU-LIME-1-2 0.1057 0.2797 0.2619
BU-LIME-5 0.1089 0.2807 0.2648

3
Random 0.1403 0.5116 0.6094
BU-LRP 0.1445 0.5170 0.6125

BU-LIME-1-2 0.1160 0.5189 0.6015
BU-LIME-5 0.1224 0.5154 0.5997

6
Random 0.1779 0.6881 0.8452
BU-LRP 0.1948 0.6892 0.8456

BU-LIME-1-2 0.1616 0.6944 0.8364
BU-LIME-5 0.1559 0.6847 0.8340

9
Random 0.2338 0.7700 0.9019
BU-LRP 0.2418 0.7744 0.9012

BU-LIME-1-2 0.2029 0.7725 0.8945
BU-LIME-5 0.1985 0.7703 0.8910

Table 4.2: Explanation coherence scores for individual features ablation experiment.

Object features manipulation

The second ablation experiment, manipulating whole objects instead of individual features,
yields different results, as reported in Table 4.3. Evaluation here is expressed by the
percentage of missing words, as well as two additional metrics: the average probability
drop and the frequency of probability drops. The average probability drop quantifies
the decrease in the prediction probability of a target word in the new caption after
ablation. This decrease is measured in relation to the probability of the same word before
ablation. The probability drop frequency, on the other hand, tracks the frequency of such
a probability drop. It should be noted that, for brevity, only latent object ablation with
the minimum value of the visual component is presented and discussed hereafter. This is
based on the observation that the results showed similar trends for the three perturbation
magnitude settings: min, max, and normal.
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k explanation method Avg Prob drop Prob drop Freq % of missing words

1
Random 1.3521 0.9028 0.4460
BU-LRP 2.1259 0.9311 0.5931

BU-LIME-1-2 2.1548 0.9242 0.5922
BU-LIME-5 2.1322 0.9224 0.5960

BU-LIME-5-OBJ 1.3781 0.9011 0.4568
BU-LIME-8-OBJ 1.1813 0.8908 0.4191

3
Random 2.8782 0.9507 0.7309
BU-LRP 3.4346 0.9595 0.8033

BU-LIME-1-2 3.4776 0.9600 0.8068
BU-LIME-5 3.4396 0.9589 0.8091

BU-LIME-5-OBJ 2.4333 0.9417 0.6598
BU-LIME-8-OBJ 2.1437 0.9374 0.6284

5
Random 3.4810 0.9332 0.8061
BU-LRP 3.8915 0.9623 0.8617

BU-LIME-1-2 3.9280 0.9640 0.8677
BU-LIME-5 3.9019 0.963 3 0.8654

BU-LIME-5-OBJ 2.8814 0.9486 0.7414
BU-LIME-8-OBJ 2.5787 0.9458 0.7097

Table 4.3: Explanation coherence scores for object features ablation experiment.

4.4.3 Discussion on attribution explanations

Based on the results presented in Table 4.1 within Section 4.4.1, the correlation scores
observed across different explanation models appear promising, even better results may
be expected. The average distance d separating the positions of explanations and the
predictions from Faster-RCNN is close to one-third of the total number of positions (36),
with a correlation score s2 ranging between 61% and 71%. As can be noticed, the average
similarity scores given by s2 align better with the average distance scores d, while s1

shows a large mismatch, which confirms our hypothesis regarding these two metrics. The
new metric provides better readability of results and better reflects method performance.
These results indicate that, on average, explanations highlighting the most important
features for the prediction of a specific word are displaced by around one-third of the
expected position compared to Faster-RCNN predictions, which is fairly promising.
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A closer look at the distribution of position distances, which reflect the gap between the
explanations and the object detector’s classification scores, reveals a clear outperformance
of BU-LRP over BU-LIME in the context of this evaluation. In particular, the distribution
is mostly concentrated towards the left side of the graph, implying smaller distances. As
the distance widens, the number of matching explanation instances decreases. Remarkably,
BU-LRP achieves its peak at distances (gaps) of one and two positions. On the other hand,
BU-LIME’s peak occurs at the maximum distance of 36 positions. The emergence of such
a particular difference, while the rest of the distances show a comparable behavior to that
of BU-LRP, can be attributed to several factors. The first one is the BU-LIME’s intrinsic
perturbations, which focus mainly on BU’s characteristics. In essence, the detected
regions within input images by Faster-RCNN are provided with their encoded features,
together with their classification probabilities and labels. Manipulating these features by
introducing considerable noise to build the linear model substantially alters the existing
relationship between these features and their associated probabilities for certain "sensitive"
instances. Consequently, this perturbation can introduce an artifact that surfaces during
evaluation. This effect is particularly pronounced in the correlation evaluation, given that
the reference criterion revolves around the probability scores of these perturbed features.
It is important to note that the instances affected by this scenario constitute around
one-fifth of the total instances evaluated, which remains within acceptable limits for the
current context.

Elaborating on instances characterized by large position distances, this could be
attributed to insufficient correlation between the probabilities generated by the object
detection module (Faster-RCNN) and some specific instances of explanation. Indeed, the
presence of several features designating the same object can lead to ambiguities during
comparison. To illustrate this, let’s consider the scenario described in Figure 4.7, which
features a man playing tennis. In this example, the explanation technique highlights the
importance of the feature man 80% in predicting the term "man" in the caption. However,
this importance does not necessarily translate into a misalignment of the importance
ranking, simply because man 83% is deemed to be the most important feature according
to Faster-RCNN’s rating, as both features represent a man and have a high probability of
detection. Redundant detections by the Faster-RCNN may therefore be one of the main
causes of such misalignment. Nevertheless, it is reasonable to expect that certain objects,
whose probability is lower under the Faster-RCNN, could hold considerable importance
under the explanation method. This tendency becomes particularly evident in instances
of singular detections where redundancy is absent.
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The results of latent ablation evaluation, involving the visual features masking, may
not appear highly promising at this initial stage. The results are expressed in terms of the
percentage of missing words, as shown in Table 4.2. Notably, the explanation methods do
not seem to demonstrate a significant advantage over the random baseline, with BU-LRP
explanations displaying a slight superiority over BU-LIME explanations. This observation
could be attributed to several factors. One plausible explanation is that manipulating
individual visual features during evaluation, especially ones that often represent partial
objects rather than complete concepts could potentially introduce artifacts that negatively
impact the evaluation process. Additionally, an essential aspect is that the information
masked by individual feature ablation can be recovered using the rest of the features. This
phenomenon may be underpinned by two key facts: firstly, predictions may be influenced by
the contextual surroundings, represented by neighboring regions/visual features. Secondly,
the presence of many redundant features for a single object, whether complete or partial,
allows missing information from an ablated feature to be easily reconstructed using other
overlapping features.

In our investigation of individual features ablation, we conducted experiments with
four distinct ablation parameter values, specifically k ∈ {1, 3, 6, 9}. We have chosen this
range of k values to explore both small-scale and moderate ablation scenarios. Notably, the
upper limit of k = 9 corresponds to approximately a third of the total features detected
within an image. Beyond this threshold, ablation could lose its interpretability due to
the difficulty in distinguishing whether high percentages of missing words are primarily
due to the relevance of the ablated features or over-ablation causing a total absence
of information and loss of context. Impressively, with an ablation of only 9 features,
we achieve relatively high scores, reaching up to 90% for the MAX ablation mode. An
important observation emerges when comparing the fidelity scores (percentage of missing
words) between 1-feature and 3-feature ablation, which consistently exhibits substantial
improvement regardless of the explanation model or ablation magnitude. However, the
increase in scores becomes less pronounced for the remaining values of the k parameter.
This suggests a strong dependency of score augmentation on the k parameter. Specifically,
the greatest sensitivity is observed when transitioning from a single feature to multiple
features, followed by a less marked increase when progressing from multiple features to
even more features. These results cast fresh insights into word prediction dynamics in
captioning systems. Indeed, they highlight that the prediction of a specific word in a
caption is influenced by several features of the input image, although some of these features
do not correspond to the object designated by the word in the caption. This implies that
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words attributed to objects in output captions do not depend exclusively on the associated
object in the image, but extend to the image’s contextual neighbors. These findings
highlight the complex interplay between object representations during caption decoding,
reinforcing our initial assertion that achieving explainability in captioning systems requires
surpassing a simple one-to-one link between output and input. The internal workings of
these systems are considerably less obvious than this straightforward connection would
suggest.

To further investigate the possible undesirable impact of manipulating individual
features rather than complete concepts in latent ablation and its consequences on the
evaluation process, we proceeded to explore Object-based latent ablation. This approach
takes into consideration the concern that manipulating individual features might introduce
artifacts that adversely affect the evaluation process. Instead of masking individual
features, Object-based ablation involves masking entire objects. The results, as reported
in Table 4.3, show a marked increase in the percentage of missing words and the average
probability drop across different explanation methods. Notably, the BU-LIME-5 model
shows a clear shift in performance between object-based and visual feature-based ablation
(0.5960 for object ablation vs. 0.2648 for visual feature ablation), along with a notable
difference between all proposed methods and the random baseline.

The BU-LIME-N model performs best among all models in most scenarios. Conversely,
the BU-LIME-N-OBJ models, which utilize intrinsic object perturbation to LIME instead
of perturbing individual features, show lower performance than expected. This suggests
that the manipulation of complete objects instead of isolated visual features holds more
value when employed for Latent Ablation-based evaluation rather than being integrated
intrinsically into the development of explanation models, such as the case with LIME.
Therefore, this approach does not appear to enhance the efficacy of the explanation
method itself. These observations lead us to believe that methods based on object
manipulation when designing surrogate explanation models may introduce gaps within
the data, potentially causing inconsistencies in the weights and activations of the linear
model during the training phase. This may explain the lower scores often observed for
these models, some of which even fall below the random baseline (BU-LIME-5-OBJ and
BU-LIME-8-OBJ in Table 4.3). Thus, As a result, we argue that object manipulation
may be more appropriate for post-hoc evaluations such as latent ablation, but is not
recommended for intrinsic use when designing explanatory approaches, as it does not
necessarily improve the quality of explanations.
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As far as the "Prob drop freq" column is concerned, the advantage of one approach
over the other is less expressive. This can be attributed to the introduction of noise into the
visual features representing the object, which obviously leads to a change in predictions (a
natural consequence). This is reflected in the large number of cases where such alterations
occur (more than 90% of the cases), irrespective of whether the explanation elements
(objects) in question are determined by the explanation methods or if they are chosen at
random. Notably, this change tends to be negative, leading to a decrease in probability,
which aligns with rational expectations. This decrease is reasonable since, if a word
was already present in the caption before the ablation, it implies that its probability
was sufficiently high to have appeared in the caption. Thus, after feature ablation, the
model’s confidence in predicting that specific word is likely to decrease due to the lack
of information compared to the pre-ablation situation. In the specific case of the "Prob
drop freq" measure, this rationale contributes to the minor variation between randomly
generated explanations and other explanations produced by BU-LRP and BU-LIME.

Regarding the parameter k, in this experiment, we explored various values that
determine the number of objects subject to latent ablation. The maximum number of
objects to ablate was set to 5. This number corresponds to approximately one-third of
the total number of objects within MSCOCO’s images, as the total count of distinct
objects in MSCOCO images does not exceed 15, a fact based on empirical observations.
Analogous to our observations in the individual features ablation, the transition from
ablation of a single object to ablation of multiple objects is characterized by significantly
larger discrepancies across various scores, as opposed to the shift from multiple objects to
the ablation of an even larger number of objects. This observation further reinforces our
earlier findings, emphasizing that predicting object-related words in the caption’s output
does not depend exclusively on the corresponding labeled object in the image, but rather
on several objects, which essentially encompass neighboring objects.

Overall, both LRP-based and LIME-based explanations demonstrate a good quality
in comparison with the only existing (random) baseline. In the context of explainability
within the latent space, these two techniques show remarkable similarity in the correctness
of their explanations. It becomes apparent that the scope of the explanation technique does
not significantly affect the quality of explanations for captioning models. Furthermore, it
appears that the global method, which back-propagates the relevance of a given prediction
back to the input, is not that instrumental for capturing the most important aspect of an
image. In contrast, the local method achieves equivalent performance by opting for a more
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direct shortcut, bypassing the intricacies of the captioning architecture’ mechanisms. It
does so by considering only the linkage of the output prediction to the input via a causal
dependency.

This observation may also depend on the extent to which a detailed and nuanced
explanation is desired. BU-LRP, by virtue of its precision-oriented mechanisms and
customized adaptations to captioning architectures, is able to generate precise, fine-
grained explanations that delve into a remarkably low level of granularity. This capability
enables it to pinpoint the involvement of each element of the feature vectors in the overall
prediction process. This characteristic holds considerable importance from an explanatory
perspective, as it facilitates a more profound exploration of sub-components in deep neural
networks, particularly within captioning models. This is particularly crucial in critical
domains where even the minutest detail carries importance. Conversely, in scenarios
where the granularity of explanations is not a central concern, priority is given to other
factors such as computational efficiency, data volume, and complexity. These methods
are often faster and more practical to realize in real-world applications than those of
global explainability [Adadi and Berrada, 2018], the latter requiring more complex and
time-consuming techniques.

4.4.4 Limitations of attribution explanations

Having explored the strengths of both explanation methods, it is now appropriate to
examine their possible shortcomings and limitations. For an illustrative test image sourced
from the MSCOCO2017 dataset, Figure 4.12 presents a scenario in which the accuracy of
the explanations appears somewhat compromised. For instance, the prediction of the word
"stop" in the output caption seems to be roughly related to features representing a "stop
sign". However, the explanation method has prioritized other features, specifically those
representing more common concepts such as "sky" and "building". These concepts are
broader and less contextually specific. In our opinion, these explanation errors could be
attributed to several factors. Firstly, the presence of redundant visual features introduces
a certain bias into the captioning model, making it unclear whether decisions are based
on a particular feature or its duplicates. Secondly, some common concepts such as "sky",
"tree", or even "road" are frequent objects in a large part of the dataset. This widespread
occurrence can lead to explanation biases that are not intrinsic to the explanation methods
themselves but rather inherited from the biases present within the captioning models.

Moreover, the ablation experiments carried out in Section 4.4.2 reveal that masking
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such objects based on their explanation importance significantly affects the prediction
of the target word. This is particularly noteworthy given that, logically, there is no
inherent correlation between these objects and the target word present in the caption
("stop" in this case). These results highlight a key insight further supporting our finding
in the previous section: captioning models have the ability to establish inter-dependencies
between different concepts during the learning process by recognizing the coexistence of
specific objects in a scene. Then, this acquired coexistence knowledge is subsequently
translated into predicting specific words from the vocabulary during the inference stage.

Figure 4.12: Comparative example of BU-LIME-5 and BU-LRP explanation outcomes.

4.5 Conclusion

This chapter dived deeper into the visual modality, which stands as the most decisive
component of captioning architecture. Within this framework, we have tailored two
attribution-based explanation methods that are distinct in their scope and functioning,
LRP and LIME, to the context of Image Captioning (IC). Through a comparative study,
we evaluated the effectiveness of these methods in providing accurate explanations. The
two approaches yielded comparative results in terms of the quality of their explanations.
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In addition, we have introduced the new concept of "Latent Ablation" to assess
explanation quality. In contrast to classical ablation, Latent Ablation operates within the
latent stages of the architecture. This allowed for a finer manipulation of image objects,
offering several levels of alteration and enabling a more precise evaluation. We have
also scrutinized the impact of concept completeness, i.e. entire object versus individual
features, on the performance and evaluation of explainability. This has led us to design
two versions of LIME and Latent Ablation, each focusing on either full object handling or
individual feature-based approaches. Intriguingly, our results indicated that while object
handling does not necessarily enhance the robustness of the surrogate explanation model,
it remains a crucial element in assessing explanation quality, particularly in the case of
Latent Ablation.

The scope of the explanation method proved to be less decisive in the quest for
superior explanation quality, but instead plays a role in determining the granularity of the
explanations produced. It is noteworthy that the choice between these two approaches is
not dictated purely by their scope, but extends to the degree of subtlety of the expected
results. In this context and building upon the subtle explanation provided by BU-LRP,
the next chapter will showcase how explanations obtained at the level of individual feature
vector elements can extend the horizons of explainability. This move will help to affirm
established facts, uncover new insights, and pave the path for promising future endeavors
in the field.
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5 Discerning latent concepts
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In the preceding chapter, we delved deeper into the visual modality, seeking to extract
more tangible clues from the latent space and explore the possible correlation between
the quality of the explanation and the scope/complexity of the explanation method. In
addition to the results obtained within the scope of the approach, the endeavor yielded
promising related findings, unveiling important facts about the structuring and patterning
of information in this space. The heatmap explanations showcasing the contributions of
bottom-up features suggested a highly structured representation in the latent space. Such
structured encoding of information holds significant implications for understanding the
inner workings of the captioning model.

Building on these foundations, this chapter embarks on an in-depth exploration of the
latent representations seeking for a better understanding of how the latent space effectively
handles specific visual concepts. Our focus in this work is confined to the concept of object
appearance frequency in the original image. Our investigation delves into the process of
encoding this visual concept in the latent space and how it is subsequently processed by
the captioning model before leading to the output caption. Our primary objective is to
unveil the underlying mechanisms governing crucial aspects such as the visual saliency
of objects within a given scene. Consequently, this study is particularly interested in
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examining potential correlations between the saliency aspect and the aforementioned
quantity concept. Through this exploration, we also endeavor to illuminate the role of
saliency in the complex interplay between vision and language during image captioning.

It is important to note that the primary aim of this chapter is to provide a stepping
stone for further explorations of latent space that may lead to a deeper grasp of its inner
workings and its role in the IC process.

5.1 Probing IC models via input editing

In the quest to comprehend the inner workings of ML models and gain insights into their
decision-making processes, probing-based methods play a pivotal role. These methods
encompass a range of specialized analyses aimed at exploring the internal states, inputs,
and outputs of ML models. By exploring these components, probing-based methods not
only help to unveil the nature of the information they encapsulate but also shed light
on how they are utilized/produced during the decision process. Probing includes several
techniques, such as sensitivity experiments where the model’s reaction to specific linguistic
or visual alterations (similar to perturbation) is evaluated, and neuron activations within
the model’s hidden layers are examined. This aims to detect potential biases within
the data or the model itself, comprehend the model’s behavior patterns, and even make
comparisons between different ML architectures. Probing methods provide a practical
approach to studying the inner workings of complex ML models and improving the
understanding of how these models represent, encode, and decode information.

The concept of probing has been used in various forms in earlier research, namely in
the field of linguistics, where researchers have employed probing techniques to investigate
the linguistic knowledge encoded in the human brain. Recently, probing methods have
gained widespread adoption within the NLP field. In the work of [Clark et al., 2019], the
authors proposed a probing method to analyze the attention mechanisms of BERT. An-
other approach proposed by [van Aken et al., 2019] intended to inspect question-answering
models by visualizing token representations that reveal information about the internal
state of Transformer networks. [Tenney et al., 2019] probe the syntactic and semantic
information captured by contextualized word representations obtained from pre-trained
language models like BERT, ELMo, and GPT-1, and investigate whether these represen-
tations encode sentence-level structural information. Their study allows us to understand
how contextualized word representations learn and encode higher-level linguistic features.
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Several studies in the machine learning literature have adopted probing techniques to as-
sess and compare the performance of different systems [Wexler et al., 2020, Yu et al., 2022,
Ilinykh and Dobnik, 2021]. For instance, [Yu et al., 2022] introduced a meta-morphic test-
ing approach for validating IC systems. Their approach involved evaluating changes in
model predictions after inserting objects into images to identify and report any issues
present in the models. To achieve this, they inserted objects into selected backgrounds
using object resizing and location tuning algorithms and analyzed image pairs (background-
synthetic) whose captions exhibited unexpected differences.

In the context of IC systems, probing techniques may involve analyzing hidden
representations to understand how visual information is processed and linked to textual de-
scriptions. Inspired by the concepts of object size and location explored in [Yu et al., 2022],
we extend the probing techniques in this work to investigate the crucial concept of quan-
tification in the context of image captioning explainability. We aim to explore and analyze
the latent and output spaces to gain insights into how this concept is represented and
processed by the IC architectures. Specifically, we make quantity-related changes to the
input images and examine their impact on latent representations through an analysis of
visual encoding on the one hand, and model output by analyzing predicted captions on
the other. This study enables us to understand how IC models deal with the concept of
quantification and how it is reflected in the various stages of captioning.

5.2 Quantification concept probing

The quantification concept refers to the representation of quantities related to entities
present in the image. During the captioning process, the system needs to describe the
(precise) count of certain objects within the scene. For instance, in an image containing a
group of people, the encoder detects each person by assigning a bounding box, a label,
and a feature vector. The attention mechanism and the decoding module then aggregate
this information to predict the appropriate quantifiers in the output sequence, which can
be generic quantifiers (e.g., "a group of") or exact quantifiers (e.g., "four," "five," etc.).

The ability of an IC system to effectively handle quantification is crucial for generating
informative captions that accurately describe the visual content of the image. As part of
the probing study, investigating the quantification concept helps to gain insights into how
well the system captures quantity aspects of the scene and how it relates this information
to the corresponding textual description. One of the aims was also to investigate the
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concept of "saliency" in this context. Our working hypothesis posits a possible dependency
relationship between an object’s correct identification and two factors: its saliency and its
appearance frequency within the image. This exploration could potentially shed light on
the role of saliency in the interaction between vision and language during captioning.

5.2.1 Object corpus preparation

The idea of probing IC models using input editing consists of introducing meaningful
changes to the input images and then observing the subsequent changes in the latent
structures and the output. These meaningful changes are typically achieved by inserting
new objects into original background images from the dataset. To avoid novel object biases
that could result from inserting objects external to the dataset used throughout this study,
we extract objects from the train partition of the same dataset (MSCOCO2017). This
approach ensures the homogeneity of the inserted objects with the background images, as
they share a common source.

To attain a satisfactory level of object diversity and quality, a semi-automated
extraction approach is adopted. By semi-automated extraction, we mean an automated
image segmentation algorithm followed by a manual selection of objects based on their
classification scores and edge quality. Objects with high classification scores and well-
defined contours are selected. In our implementation, we use Mask-RCNN, an extension
of Faster R-CNN by [He et al., 2017] which produces object masks in addition to object
class labels and bounding boxes. This mask guarantees a more precise extraction of an
object’s spatial layout.

Figure 5.1 illustrates the object extraction process for an instance from the
MSCOCO2017 train set. As exemplified, the object segmentation module identifies
multiple objects within the scene. Among these, two objects share the same label ("bus"),
accompanied by the highest classification scores of 99.97% and 99.81%, respectively. In
such cases where the objects of interest are not unique, the one with the highest score
is selected, as can be seen in Figure 5.1d. This chosen object is then isolated from its
background, and cropped to its bounding box. The object corpus obtained at the end of
this process comprises an assortment of categories, including Humans (woman, man),
Animals (dog, bird, giraffe), and Objects (car, chair, clock, bus).
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Figure 5.1: Illustrative example for object extraction.

5.2.2 Quantification probing method

The quantification probing process covers several stages, including the generation of
quantification data, the prediction of new captions, and evaluation. The main objective
is to introduce quantity-related modifications to original inputs and then to examine
the subsequently undergone changes in the information, particularly those related to
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the quantification aspect. Figure 5.2 provides an overview of the quantification probing
method and its various stages, using an illustrative example. In the following, we present
a detailed breakdown of each of these stages.

Figure 5.2: Quantification probing pipeline.

1. Synthetic data generation: Given a background image IB and an object image IO,
generating a synthetic image IkS consists of inserting a number (k) of objects IO into IB at
random coordinates, as indicated in Equation 5.1. At each step, the previously generated
synthetic image becomes the background for the current insertion.

IkS = Combine(Ik−1S , IO, random_coordinates) ; I0S = IB (5.1)

During this stage, two challenges emerged concerning the size of inserted objects and
their spatial location in the image. Certain studies attempted to address these issues,
such as [Yu et al., 2022] where the authors, in their specific context of IC models testing,
proposed object resizing and location tuning algorithms during the synthetic images
generation phase. However, their approach presupposed that the inserted object in the
background image should always be salient.

By taking a distinct perspective, we argue that the parameters governing the saliency of
an object within a scene remain enigmatic and deserve further exploration. Our hypothesis
is based on the premise that this saliency factor may depend on various concepts, such as
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the position of the object, its size, and the frequency of appearance of similar objects. To
elucidate these complex relationships, our methodology isolates the specific concept of
quantity, while keeping the others invariant. This approach serves to mitigate the risk of
the interplay between these concepts. It enables gaining a clearer understanding of the
specific impact of the quantitative aspect first by examining it individually while laying
the foundations for more comprehensive studies of the other aspects in further dedicated
studies.

To this end, regarding the size of inserted objects, a fixed and shared rescaling param-
eter (λ = object_image_size/background_image_size) has been uniformly applied to
all the images we experimented with. The new size of each object image is then given
by (object_image_size = λ · background_image_size). This ratio plays an essential
role in maintaining a normalized object scale in the background image and prevents the
inserted objects from appearing overly large or excessively small. Its value is derived
from empirical observations of the average object size in the images. Concerning the
positioning of each inserted object, we generate random coordinates within the range of the
height and width of the background image and ensure a slight buffer equal to the object’s
height and width to avoid overflow. After each iteration, we record the coordinates of the
inserted object, which we use as reference points to avoid overlaps when placing subsequent
objects. Concerning the number of objects inserted in background images, we explore
configurations with a maximum of K occurrences. By doing so, we examine the potential
impact of this parameter on object saliency and assess how quantification information
evolves across various settings. The process of generating synthetic quantification data for
a single instance is summarized in Algorithm 4. The Check_overlap() function returns
True if no overlap is identified between objects previously inserted in the background
image, False otherwise.

2. Captioning: Once the quantification data is prepared, the set of synthetic images
associated with each background image is fed into the captioning model. Image encodings,
including object detections with their labels and newly generated captions, are saved for
further examination in the evaluation stage.

3. Quantification evaluation: In this approach, we focus on inspecting quantification
information at two main levels: input encodings and output decodings. The primary
objective of this evaluation is to facilitate a thorough examination of quantification
information from its appearance in the raw data to its manifestation in the final outcomes.
This encompasses the visual and linguistic aspects, enabling a nuanced exploration of
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Algorithm 4 Synthetic image generation for quantification probing.
Inputs: IB, IO,K, λ
Outputs: {IkS}Kk=1

IO ← Rescale(IO, IB, λ)
list_coordinates← {∅}
for k ∈ {1, ..,K} do

coordinatesk ← Random()
while Check_overlap(coordinatesk, list_coordinates) is False do

coordinatesk ← Random()
end while
list_coordinates← list_coordinates ∪ {coordinatesk}
IkS ← Combine(IB, IO, coordinatesk)
IB ← IkS

end for

return {I1S , ..., IKS }

the unique properties present in both modalities with regard to the representation of
quantification information.

On the visual part, the evaluation consists of identifying the successful detections of
the inserted objects and their number. This is achieved by using the labels generated by
the detection module. Concerning the language part, the evaluation is less straightforward
to achieve. The linguistic structures, by their intrinsic complex forms, require several
case-by-case studies. The evaluation consists of checking the presence of both object
tags and quantifiers in the output caption. The quantifiers considered for this study
are extracted from English dictionaries (e.g. Cambridge dictionary1), we then propose
a classification into two categories: generic quantifiers, and specific quantifiers. These
quantifiers are listed in Table 5.1. Some quantifiers that are not part of the dataset
vocabulary are simply excluded. The evaluation principle in this context is to assess
the change in quantification information between the reference and the synthetic image
captions. This assessment is based on the presence (or not) of the object tag and the
quantifier. To facilitate this evaluation, we have introduced an evaluation grid detailed in
Table 5.2, where scores range from 0 to 1.

The evaluation considers a range of scenarios: the highest score is granted when both
the object and the quantifier appear in the candidate caption after being absent in the

1https://dictionary.cambridge.org/
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Generic quantifiers Cardinal (precise) quantifiers
some, many, few, several, much, enough,
a couple of, lot of, lots of, plenty of, tons
of, ton of, loads of, bit of, deal of, number
of, little of, bunch of, pile of, hundreds,
thousands, amount, herd, group, crowd,
flock, quantity, quantities, numerous

a, one, two, three, four, five, six, seven,
eight, nine, ten

Table 5.1: Quantification terms in English.

reference (the first row). A high score is also assigned when only the quantifier appears in
the candidate caption while the object remains absent, indicating it corresponds to the
inserted objects (the second row). On the other hand, if only the object appears in the
candidate caption and the quantification information remains unchanged, this suggests
that the quantifier may not have been successfully detected in case of absence, or that it is
ambiguous whether the quantifier refers to the inserted objects or one of the objects already
present in the image in case of presence. For both cases, we award half of the maximum
score (the third and fourth rows, resp). Another scenario is where the object appears
but the quantifier disappears, possibly because the object originally associated with that
quantifier has been hidden by newly inserted objects, in which case a low score should be
assigned (the fifth row). Lastly, cases where there is no change between the reference and
the candidate, in both object and quantifier or when the quantifier disappears while the
object remains absent, represent the worst-case scenarios and are awarded a score of zero.
Cases not falling into these categories (N/A) are excluded from the evaluation, as we do
not take into account images where the inserted object was already present.

5.2.3 Experimental protocol

For our quantification experiment, we utilized background images from the test partition
of MSCOCO2017 dataset (5,000 instances). For each instance, we systematically inserted
objects ranging in quantity from 1 to 10, as illustrated in Figure 5.3. This procedure
resulted in approximately a total of 50,000 synthetic images for each object, excluding
instances where background images initially contained objects with the same label as the
inserted one and those with technical problems during insertion. The various quantities
of objects inserted enable us to study the evolution of object identification and how the
quantification information is captured at both the visual and language levels.
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Reference Candidate ScoreObject Quantifier Object Quantifier
✗ ✗ ✓ ✓ 1
✗ ✗ ✗ ✓ 0.75
✗ ✗ ✓ ✗ 0.5
✗ ✓ ✓ ✓ 0.5
✗ ✓ ✓ ✗ 0.25
✗ ✗ ✗ ✗ 0
✗ ✓ ✗ ✓ 0
✗ ✓ ✗ ✗ 0
✓ ✗ ✗ ✗ N/A
✓ ✗ ✗ ✓ N/A
✓ ✗ ✓ ✗ N/A
✓ ✗ ✓ ✓ N/A
✓ ✓ ✗ ✗ N/A
✓ ✓ ✗ ✓ N/A
✓ ✓ ✓ ✗ N/A
✓ ✓ ✓ ✓ N/A

Table 5.2: Quantification evaluation grid. ✗and ✓denote Object/Quantifier absence and
presence, respectively, N/A denotes the not supported cases.

The resizing ratio of objects with respect to the background image size is consistently
set at 2%. This specific value was determined empirically, with the intention of creating
synthetic images that minimize inserted object overlap with pre-existing objects. However,
it is important to note that achieving entirely automated object insertion without any
overlap with existing objects is practically unfeasible due to the complex nature of real-
world images. Nevertheless, maintaining a fixed ratio of 2% ensures uniformity in object
size throughout the entire dataset. This standardization of object size is essential to
isolate and investigate the quantity aspect of objects without interference from variations
in size. Consequently, for any given object category, the inserted objects share identical
dimensions.

Remember that the evaluation of quantification information consists of two main
stages: the latent level of the visual part which consists of bottom-up visual features
detected by the Faster-RCNN, and the linguistic output level, which explores the captions
generated from synthetic images. Through this dual-stage analysis, we aim to track and
compare the progression of the quantification information in these two modalities and
investigate its impact on the concept of saliency in both the visual and linguistic parts.
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Figure 5.3: An illustrative example of object insertion.

5.2.4 Results and discussion

Quantification analysis at the vision level

In this experiment, we investigate the distribution of object occurrences in detections for
synthetic images across different quantities ranging from 1 to 10. An object is considered
"well detected" if it is absent in the original background image but becomes part of the
set of detected regions identified by the Faster-RCNN in the new synthetic image. When
the number of inserted objects exceeds 2, collective detections may occur. To automate
the identification of individual and collective detections, we leverage the Faster-RCNN
detection labels, by examining the number of singular labels corresponding to the inserted
object or their plural forms. Results showing the evolution of quantification information
detection at the vision level (Faster-RCNN encoding outputs) for the various objects we
experimented with are presented in Figure 5.4.

On these histograms, there seems to be a consistent overall pattern for various objects,
notably "clock", "bird" and "chair". In certain synthetic instances, these inserted objects
are promptly and successfully detected upon their first appearance. It is natural to observe
a gradual decrease in this number as we move from one insertion stage to the next since we
exclusively account for first-time detections. However, for objects like "giraffe" and "car",
detections are occasionally deferred until subsequent insertions, with the object being
detected on the second insertion in roughly the same number of cases. In such scenarios,
the object only reaches saliency at subsequent stages of insertion. This phenomenon
strongly suggests that the concept of saliency may indeed be tied to the quantitative
aspect of objects within a given scene. Additionally, one could consider the influence
of an object’s frequency within the dataset, which might lead to certain objects being
consistently regarded as part of the background. However, analyzing data for "giraffe"
and "car" classes reveals a substantial imbalance, with 2647 images containing "giraffe"
versus 12786 for "car" in the MSCOCO dataset. This disparity refutes the hypothesis
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Figure 5.4: Distributions of detection results at visual level, in the function of the
quantity at which the object is identified.

that an object’s frequency within the dataset alone drives the observed behavior.

The insightful patterns continue, particularly when we examine the behavior of the
object "car". The number of successful detections increases steadily, as the number of
objects inserted increases, meaning that objects that gain saliency in the later stages are
more numerous than those in the earlier ones. However, for some objects, detection does
not occur even after multiple insertions, extending up to the tenth insertion stage. This
occurrence suggests that certain inserted objects are still not recognized by the object
detector. Objects like "giraffe" and "car" fall into this category, representing the majority
of such cases. The reasons behind this phenomenon can be attributed to the inherent
nature of the object itself. It might indicate a kind of reluctance on the part of the
object detector to manifest the object. It is plausible that this reluctance results from
the detector’s perception that the object does not seamlessly fit within the context of the
overall image content, which could give rise to a form of contextual inconsistency.
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Quantification analysis at the output level

From the language output perspective, it is essential to study the evolution of quantification
information in synthetic image captions. This exploration helps us understand how
information aggregates within the captioning model and how the language component
selects what information to incorporate into the captions. The first key aspect to study
is the evolution of the prediction of the object tag and quantification information (i.e.
their saliency) in output captions when the number of inserted objects varies from one to
ten. The objective here is not only to determine object saliency after a certain number of
occurrences, but also to characterize how quantification information is mirrored in these
outputs, either simultaneously with the presence of the target object or not.

Figure 5.5: Distributions of object/quantifier tags prediction at the output level, in the
function of the quantity from which they appear.

In Figure 5.5, the histograms display the frequency of successful object and quantifi-
cation information identifications starting from a specific number of inserted objects. The
"none" category represents cases where the object/quantifier has not been successfully
predicted in any of the previous insertion steps. Our initial observation reveals a similar
behavior in the identification of objects and quantifiers in output captions across a range of
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object classes, including "dog", "bird", "clock", "chair", "car", and "bus". In these cases,
both the object and quantifier predictions reach their peak at a specific insertion step,
which varies depending on the object class. A qualitative example showcasing the evolution
of quantity information at both the visual and language levels is presented in Table 5.3.
In this example, the ✓symbol indicates a successful object detection at the visual level.
It is evident that for this object class, the more objects we insert into the image, the
more confident the model becomes, allowing it to accurately identify the inserted objects.
Notably, in terms of vision-level detection results, the detector successfully located all
objects from the second insertion stage onwards.

Image Quantity Vision Language
0 - "a man on a surfboard in the water"
1 - "a man in a wet suit standing on a

surfboard in the water"
2 ✓ "a man and a dog are on a boat in the

water"
3 ✓ "a couple of people that are standing

in the water"
4 ✓ "a couple of dogs that are standing in

the water"
5 ✓ "a group of people that are standing

in the water"
6 ✓ "a group of people that are standing

in the water"
7 ✓ "a group of people that are standing

in the water"
8 ✓ "a group of dogs that are standing in

the water"
9 ✓ "a group of dogs that are standing in

the water"
10 ✓ "a group of dogs are standing in the

water"

Table 5.3: A qualitative illustration of quantification probing with object "dog".

The object "giraffe" however exhibits a distinctive behavior in which quantification
information appears in the output captions independently of the specific object being
inserted. This suggests that the quantity aspect, although inserted objects are not explicitly
detected by the image encoder, can still influence the captioning outputs. In such scenarios,
the quantification information may not necessarily correspond to the specific quantified
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item in the scene. As illustrated in Table 5.4, this inconsistency between quantifier and
object is evident, with the "giraffe" object remaining undetected until the ninth insertion.
Notably, at the linguistic level, the object tag is not successfully predicted in any of
the insertion steps, while the quantification information begins to appear from the third
insertion. Moreover, the predicted quantifier is associated with one of the existing objects
in the scene (in this case, the "man"). It is worth highlighting that the model pluralizes
the most salient object, "man," within the predicted caption, even though the synthetic
image contains a single occurrence of that object. These observations raise questions
about the captioning model’s ability to accurately relate quantitative information to the
various elements of a scene and the potential hallucinations that may occur, its ability to
withstand input perturbation attacks, and the relevance of the explanations provided in
the case of objects with multiple occurrences in a scene.

Image Quantity Vision Language
0 - "a man on a surfboard in the water"
1 - "a man riding a surfboard on top of a

body of water"
2 - "a man riding a surfboard on top of a

body of water"
3 - "a group of people that are standing

in the water"
4 - "a group of people that are standing

in the water"
5 - "a group of people that are standing

in the water"
6 - "a group of people that are standing

in the water"
7 - "a group of people that are standing

in the water"
8 - "a group of people that are standing

in the water"
9 ✓ "a group of people that are standing

in the water"
10 ✓ "a group of people that are standing

in the water"

Table 5.4: A qualitative illustration of quantification probing with object "giraffe".

The patterns observed in the qualitative examples presented in Table 5.4 and Table 5.3
diverge significantly due to the model’s inability to consistently link the quantifier to
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the object (giraffe), a connection successfully established in the first example (dog).
This divergence can be attributed to the specific class of objects manipulated in both
experiments. In the case of the "dog," it typically appears in scenes alongside humans
or near water, leading the model to confidently integrate the "dog" into the context of
the background image representing a man doing water surfing, both at the visual and
language levels. However, when dealing with the "giraffe," the model exhibits hesitancy
and only allows the quantification information to appear, while the object itself is not as
readily incorporated. This distinct behavior appears to be unique to the "giraffe" among
all the object classes considered in this experiment. It may be influenced by the nature of
the images within the MSCOCO dataset, where giraffes are rarely found in conjunction
with other object categories that typically feature in everyday human activities. As a
result, the model struggles to identify giraffes in contexts where they are not commonly
encountered.

Another notable pattern that surfaces from these graphics is the distinctive trend
exhibited by some objects in relation to their saliency. Objects like "clock" and "bird"
exhibit peaks in both object and quantification information prediction around the fourth or
fifth object insertion. This observation lends further credence to our hypothesis regarding
the correlation between object saliency and the quantity aspect. A stronger presence of
an object in a scene, possibly beyond a certain threshold, implies a greater saliency and,
consequently, a more explicit reflection in the captioning result.

Furthermore, a closer examination of the results concerning some object classes
like "bird" reveals an intriguing phenomenon when contrasting object detection at the
visual level with object prediction at the output level. In many cases, even when the
image encoder accurately identifies an object, it fails to appear in the output caption,
despite multiple object insertions. This hints at a deliberate dismissal of this information,
exclusively by the language decoder which may have reservations about incorporating
the object into the generated text. Such behavior probably stems from a contextual
misalignment between the well-detected inserted object and other objects in the scene that
might possess greater saliency and contextual appropriateness within the output caption.
Table 5.5 provides a set of comparative statistics that shed light on this contrast between
object detection on the visual part, and object and quantifier prediction on the language
level. Each column in the table, corresponding to an insertion quantity/step, displays the
count of instances where at least one of the occurrences of an inserted object was identified
at that step, without prior identifications in earlier insertions. More specifically, out of a
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total of 3,839 synthetic instances, the object "bird" was successfully detected by the image
encoder at the first insertion step in 929 instances, and this number steadily declined until
the tenth insertion, where it was detected in 63 new instances. In 84 instances, the object
was not detected in any of the ten insertion steps. On the language level, the object tag
was successfully predicted in the output caption in only 219 instances, while the quantifier
was successfully predicted in 270 instances. This presents a notable disparity compared to
the detection at the visual level. The visual saliency of the inserted object peaks at the first
insertion step, i.e. even with small quantities, whereas the peak for both the object and
the quantifier occurs at a later insertion step (the fifth) on the language level. It follows
that the reluctance to consider the inserted object and the evaluation of object coherence
within the context of the scene is predominantly handled by the language decoder. These
findings are broadly applicable to all objects under investigation in this study, as the
results across various objects demonstrate consistent patterns when comparing the two
modalities.

Insertion Quantity 1 2 3 4 5 6 7 8 9 10 None Total
Object detection (Vision) 929 793 579 433 360 239 173 108 78 63 84 3839Object prediction (Language) 219 282 306 313 362 334 328 292 235 212 956
Quantifier prediction (Language) 270 148 224 252 308 344 349 321 250 197 1176

Table 5.5: Visual detection Vs. Language prediction evolution for object "bird".

As a second step in this analysis, we examine the overall distribution of quantification
information predictions for each object within their respective synthetic images’ captions.
Figure 5.6 offers histograms that illustrate the frequency of occurrences for different
quantification cases. These quantification cases are based on the evaluation grid presented
in Table 5.2. For the sake of clarity and a more compact representation, we encode these
diverse quantification information prediction cases in a binary format using four bits. In
this encoding scheme, 0 indicates the absence of the object or quantifier, while 1 signifies
their presence. For example, a code like "0011" represents the scenario in which the object
tag and the quantifier were initially absent in the reference caption (the bits "00"), and
they have subsequently been successfully predicted in the output caption (the bits "11").

These graphics yield several noteworthy observations. Firstly, the scenario "0000", in
which both the objects and quantifiers remain absent, dominates the majority of cases for
most objects. This observation suggests a pattern of information dismissal by the language
decoder, which aligns with the findings in Figure 5.5 (the "none" category). For objects
such as "bird" and "clock," there is a marked presence of cases where both the object
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Figure 5.6: Distribution of the cases per quantification scenario at the output level.

and quantifier are accurately predicted. Additionally, a sort of correlation can be noticed
between two scenarios: the stable case when the object is absent in the output caption
but the quantifier is present (indicated as "0101"), and the case where the object is absent
but the quantifier appears in the new caption (noted as "0001"). This suggests that in
the latter scenario, the quantification information in the output caption may be related
to the inserted objects, much like in the first scenario. As a result, cases in which the
quantifier is reflected in the output caption without the presence of the associated object
are frequent. This observation hints that information about quantity may be encoded
within the image features, and it raises questions about the capacity of current captioning
models to effectively link quantification information to the correct object.

In addition to these global statistics across all insertion steps, it is insightful to
explore the average quantification scores per object quantity to gain more detailed insights
into the relationship between object quantity and object saliency. Table 5.6 provides
the quantification scores obtained based on the evaluation grid previously presented in
Section 5.2.2. These scores, ranging from 0 to 1, are also summarized in Figure 5.7.
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Insertion Quantity 1 2 3 4 5 6 7 8 9 10
Dog 0.0699 0.1478 0.2215 0.3036 0.3893 0.4635 0.5376 0.5945 0.6374 0.6683
Giraffe 0.0052 0.0899 0.1138 0.1406 0.1769 0.2202 0.2565 0.2886 0.3223 0.3567
Bird 0.0547 0.1235 0.1813 0.2433 0.3372 0.4286 0.5194 0.6010 0.6704 0.7250
Clock 0.0449 0.1328 0.2044 0.2982 0.3959 0.4924 0.5887 0.6626 0.7250 0.7716
Chair 0.0140 0.0761 0.0939 0.1201 0.1418 0.1698 0.1966 0.2262 0.2677 0.3006
Car 0.0101 0.0648 0.0821 0.1027 0.1298 0.1641 0.1972 0.2334 0.2678 0.3090
Bus 0.0314 0.1807 0.2272 0.2692 0.3212 0.3612 0.4091 0.4503 0.4893 0.5202
Woman 0.0668 0.1234 0.1763 0.2398 0.3010 0.3597 0.4152 0.4606 0.5002 0.5267
Man 0.1282 0.1899 0.2711 0.3582 0.4210 0.4947 0.5431 0.5721 0.5915 0.6015
Average 0.0258 0.0974 0.1351 0.181 0.2363 0.295 0.3517 0.4024 0.4506 0.4926

Table 5.6: Detailed quantification scores per object.

Figure 5.7: Quantification scores.

The overall trend observed in these results is that as the quantity of objects increases,
more quantification information is retrieved, even in the later stages of insertion. This
further supports our earlier findings regarding the correlation between object quantity
and the saliency of objects and their quantifiers. It is also worth noting that certain
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objects, such as "bird" and "clock," achieved higher scores compared to other objects,
and demonstrated a better ability to predict both the object and its quantifiers as already
discussed above. This can be attributed to the object encoder’s superior performance in
detecting these two objects compared to the others, which, in turn, translates into more
accurate object/quantifier predictions in the language output.

5.3 Conclusion

In this chapter, we embarked on an exploration of explainability in captioning architectures,
dealing with the representation of visual concepts and the saliency aspect. We introduced
a probing approach that employs input editing to uncover hidden facets of model behavior,
with a particular emphasis on the quantitative concept of visual information. This approach
provided us with valuable insights into the role of this concept and its influence on model
decisions at both input encoding and output decoding levels. Notably, our findings revealed
a dynamic relationship between the number of object insertions and shaping the object’s
saliency in the visual detection and language prediction processes. It was also found that
for certain objects, saliency may not manifest even after multiple insertions, potentially
owing to contextual inconsistency or selective omission by the language decoder.
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6 General conclusion

Throughout this work spanning multiple chapters, we tackled the challenge of improving
explainability within image captioning systems. Each chapter addressed a distinct facet
of this endeavor, and our investigation took us through various methodologies. In this
research, we primarily investigated image captioning architectures based on the Encoder-
Attention-Decoder framework, which incorporates deep learning components such as CNNs
and LSTMs.

The third chapter dissected the core components of these captioning systems, examin-
ing their roles and influence in the caption prediction process. A perturbation approach
operating on the latent space of the captioning models was introduced. This investigation,
centered around an important aspect called decisiveness, highlighted the predominant
importance of the visual component, demonstrating its central role in captioning models
compared to the language component, resulting in more subtle explanations. The merits of
these findings are much more pronounced in some domain-specific tasks like biomedical IC,
where the need for precision and accurate explanations is paramount, and any ambiguity
in explanations can make AI technologies unusable. In this context, understanding the
interaction between different modalities to derive the appropriate explanations poses an
important challenge.

Continuing our quest for deeper insights, the fourth chapter dived into the latent
space of the visual modality, seeking to extract more tangible and concrete clues. Novel
explainability methods were introduced, and their effectiveness was evaluated within
this image captioning framework. Through comparisons of LIME and LRP latent-based
variants, the chapter unveiled that the scope of an explanation method does not explicitly
impact the quality of explanations, but instead plays a central role in determining the
granularity of the explanations produced. The concept of "Latent Ablation", which
operates within the latent space, provided a new lens to assess granularity and precision
in explanations. The findings highlighted the complex interplay between visual and
linguistic modalities, emphasizing the nuanced factors guiding the choice of explanation
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methods. Furthermore, promising results, unveiling important facts about how information
is structured and encoded within this space, have been revealed. The explanation elements
showcasing the contributions of visual features suggested a highly structured representation
in the latent space. Such structured encoding of information holds significant implications
for understanding the inner workings of the captioning model.

In the fifth chapter, through the introduction of a probing-based method, an isolated
analysis of the quantitative aspect of objects within visual scenes has been carried out,
enabling a clearer understanding of its specific impact on both visual encoding and language
decoding. This exploration yielded interesting insights, notably a robust correlation
between object saliency and quantity, shedding light on how these models prioritize
and generate information based on these factors. A second noteworthy finding was the
phenomenon of "information dismissal" by the language decoder, where objects well-
detected visually did not appear in the language output. This highlights the complexities
of multimodal systems and their behavior, as well as the need for further investigation.
Additionally, our research has shown that quantification information can appear in output
captions even when the corresponding objects are absent. This raises questions about the
models’ capacity to effectively link quantification information to specific objects.

The diverse findings emerging from this thesis have revealed promising leads for
further research and exploration. These research directions align with the continuation
of our contributions and can be categorized into multiple dimensions. A compelling
line to consider involves conducting an in-depth investigation into the potential sources
of bias and hallucinations in captioning architectures. Particular attention should also
be directed toward understanding how salient objects are identified and distinguished
from the background scene within an image. These factors may play a pivotal role
in influencing captioning decisions and warrant thorough investigation. Although a
part of this work has focused primarily on the LRP and LIME explanation methods
due to their widespread adoption in the field, the latent space approach developed in
this thesis can be extended to encompass other explanation techniques. For instance,
future studies could explore the applicability of Shapley’s explanations and assess their
compatibility with our proposed framework. Our exploration of the quantification aspect
and its potential correlation with the saliency aspect has laid a solid foundation for
further investigations. In-depth studies can delve into other visual attributes, such as the
position and size of objects, and assess their potential relationships with object saliency.
The findings within this thesis, in conjunction with the prospective research directions
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mentioned above, hold promise for expanded applicability to complex architectures such
as Transformer-based and Graph-based structures. Such an expansion would encompass a
thorough assessment and comparative explanatory exploration across a diverse spectrum
of existing image captioning architectures, thereby offering a more profound insight into
their unique operational mechanisms and distinctive characteristics. At both fundamental
and application levels, in this thesis, we have pursued the goal of making the captioning
architectures more interpretable, which helped pave the way for further research enabling
to address growing problems in captioning systems explainability.

Publications during this thesis

1. Explainability in Image Captioning based on the Latent Space. Neurocomputing,
2023 (Impact Factor: 5.779, SJR: Q1). [Elguendouze et al., 2023]

2. Towards Explainable Deep Learning for Image Captioning through Representation
Space Perturbation. IJCNN, 2022 (CORE B). [Elguendouze et al., 2022]
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7 Résumé substantiel de la thèse en français

" Approches d’Intelligence Artificielle eXplicables
pour le Sous-titrage d’Images "

Introduction

Au cours des dernières années, les architectures d’apprentissage automatique ont connu
une expansion en termes d’utilisation et de performance, entraînant une augmentation
remarquable de leur complexité, en particulier dans les approches d’apprentissage profond
telles que les réseaux de neurones convolutifs (CNNs) et les Transformers. La grande
complexité de ces modèles a soulevé des problèmes d’interprétabilité qui empêchent les
humains de comprendre le raisonnement qui sous-tend les décisions qu’ils prennent, qu’elles
soient correctes ou erronées. Ce problème est particulièrement aigu dans les domaines
sensibles, où le coût d’une prédiction erronée ou d’un manque de compréhension peut
s’élever à une vie humaine, ou mettre sa sécurité en danger. Nous parlons ici de défense,
de la santé, de conduite autonome, etc.

Inspirés par les récentes avancées dans le domaine de la traduction automatique, les
chercheurs ont de plus en plus exploré la combinaison de la vision par ordinateur et du
traitement automatique des langues, donnant naissance à un champ d’étude florissant
à l’intersection de ces deux domaines, à savoir la "Vision au Langage". Une facette
spécifique de ce domaine, connue sous le nom de sous-titrage d’images, a fait l’objet d’une
attention particulière. Le sous-titrage vise à générer des descriptions textuelles précises
et représentatives du contenu des images. Par exemple, dans le contexte de l’imagerie
médicale, le sous-titrage d’images a récemment pris un essor considérable en raison de ses
capacités remarquables à assister et à accélérer les processus de diagnostic et de traitement
[Pavlopoulos et al., 2019]. En outre, la conduite autonome est l’un des domaines dans
lesquels le sous-titrage d’images joue un rôle important [Mori et al., 2021]. Il permet
aux véhicules autonomes et aux conducteurs de mieux comprendre ce qui les entoure, en
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générant des descriptions pour les images capturées par les caméras embarquées, ce qui
permet à ces véhicules d’identifier et de décrire des objets tels que des obstacles, des piétons,
des panneaux de signalisation, etc. La gestion des catastrophes naturelles est un autre
domaine dans lequel le sous-titrage d’images démontre son utilité [Klerings et al., 2019]
en facilitant l’analyse des images provenant des satellites/réseaux sociaux, ce qui pourrait
contribuer à accélérer les opérations de sauvetage.

La plupart des architectures de sous-titrage adhèrent au cadre Encodeur-Décodeur, en
se fondant sur des modules d’apprentissage profond tels que les CNN et LSTM. Quelles que
soient les particularités de chaque modèle utilisé dans le sous-titrage, le fonctionnement
interne des composants d’encodage et de décodage est souvent considéré comme boîte
noire, car leurs mécanismes de fonctionnement sont cachés à l’utilisateur final et ne
fournissent aucune explication sur la manière dont leurs décisions ont été prises. Dans le
contexte des domaines critiques et sensibles susmentionnés, la nécessité d’une explication
devient plus évidente, car une prédiction erronée ou une ambiguïté, aussi minime soit-
elle, peut avoir des conséquences considérables. Détecter une pathologie à partir d’une
description radiographique générée par une machine sans connaître les raisons explicites
de son identification ne sera pas nécessairement adopté par le public et ne suscitera pas sa
confiance, et peut donc exposer la vie du patient à des risques élevés en cas d’erreur. Les
actions des véhicules autonomes doivent être accompagnées d’explications afin d’identifier
les situations critiques pour la sécurité et d’atténuer les risques.

L’intelligence artificielle explicable (XAI) est un domaine en pleine évolution
visant à rendre les systèmes d’IA plus transparents et compréhensibles pour les
humains [Adadi and Berrada, 2018], permettant aux utilisateurs de comprendre comment
et pourquoi ces systèmes atteignent des résultats spécifiques. Malgré l’intérêt croissant
pour la XAI, l’explicabilité des modèles de sous-titrage reste relativement peu exploré
en raison de la complexité inhérente à ce domaine. Seules quelques études ont donc
été proposées dans la littérature, la plupart d’entre elles cherchant principalement
à identifier les relations causales qui lient les sorties et les entrées du modèle. Par
exemple, dans leur recherche d’explications multimodales, [Sun et al., 2022] ont tenté de
retracer les décisions du modèle de sous-titrage à partir d’explications au niveau de la
vision et du langage. De la même manière, dans le contexte du sous-titrage d’images
médicales, [Beddiar and Oussalah, 2023] ont conçu un module explicable qui relie les
mots générés aux régions de l’image. En outre, il met l’accent sur l’importance des mots,
en soulignant les mots qui ont influencé de manière significative l’encodeur lors du calcul
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des plongements des mots cibles/courants.

Cependant, lorsqu’il s’agit de systèmes multimodaux, ces méthodes d’explication ont
tendance à ne pas souligner explicitement les rôles des modalités individuelles dans la
prédiction du résultat cible (mot de la légende dans le cadre du sous-titrage d’images). La
plupart de ces méthodes présentent les mêmes limites que les approches XAI convention-
nelles, notamment l’absence de prise en compte de l’influence des composantes/modalités
de l’architecture sur le processus de décision et, par conséquent, sur les informations
explicatives obtenues par la suite. Le simple fait d’établir un lien basé sur la pertinence
entre les résultats du modèle et les données d’entrée ou les représentations intermédiaires,
sans mettre l’accent sur la pertinence de chaque composant, peut suggérer de manière
inappropriée un pouvoir explicatif uniforme pour toutes les modalités. Une telle théorie
peut s’avérer insuffisante pour parvenir à une compréhension globale du comportement
du modèle. En outre, le défi réside également dans la nature complexe des systèmes
multimodaux par rapport à d’autres méthodes basées sur l’apprentissage profond. Cette
complexité découle principalement de la nécessité d’intégrer et d’interpréter avec précision
des données hétérogènes provenant de diverses modalités tout en gérant soigneusement les
dépendances intermodales.

Étude de la littérature

Au vu des recherches menées dans ce domaine, il apparaît que certaines tendances
et caractéristiques prévalent. En particulier, de nombreuses approches de sous-titrage
d’images explicable (XIC) existantes fonctionnent de manière post-hoc, en proposant
principalement des explications locales. Alors que le sous-titrage d’images traite la
modalité linguistique du côté de la sortie, certains travaux de recherche se sont concentrés
récemment à rechercher des explications au sein de cette modalité. Cela peut se faire
en conjonction avec la modalité visuelle ou indépendamment. Les mécanismes utilisés
dans ces approches offrent un moyen perceptible de représenter les explications. En outre,
il convient de mentionner que la pluspart des travaux en XIC s’appuie principalement
sur des ensembles de données à grande échelle bien établis, tels que MSCOCO et Flickr,
alors que les applications spécifiques à un domaine peuvent manquer de données librement
accessibles.
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Identification de l’influence des composants

S’appuyant sur les idées tirées de ces travaux antérieurs, en particulier ceux qui portent sur
les explications visuelles et linguistiques [Sun et al., 2022, Beddiar and Oussalah, 2023],
où un degré de parité entre ces deux modalités est implicitement supposé, notre première
contribution visait à répondre à une question fondamentale concernant la fiabilité des
explications et les sources à partir desquelles celles-ci devraient être dérivées. Cette
étude visait à déterminer si ces modalités jouent un rôle particulier dans le processus de
décision, une facette qui a souvent été sous-explorée dans le contexte plus large de l’XAI.
Le concept de base s’articule autour de l’identification et de l’isolement des composants
de l’architecture qui jouent le rôle le plus important dans le processus de sous-titrage.
L’objectif était de déterminer si les décisions sont basées exclusivement sur les données
d’entrée, ou si elles sont influencées par d’autres éléments, tels que des déséquilibres dans
le degré d’influence exercé par divers composants/modalités au sein de l’architecture de
sous-titrage. Cela permet d’impliquer le comportement des composants internes dans le
processus d’explication qui s’ensuit.

Nous avons proposé une approche explicative pour les modèles de sous-titrage d’images,
en exploitant l’espace de représentation (latent) de l’information. Nous avons démontré
que l’explicabilité dans les modèles profonds va au-delà de l’établissement de liens simples
entre les sorties et les entrées, et qu’elle ne doit pas nécessairement être perceptive. Pour
ce faire, nous avons proposé un paradigme de perturbation, dans lequel l’information au
sein des modèles profonds est modifiée plutôt que tronquée. Les perturbations se sont
avérées être un moyen plus cohérent et plus perspicace de disséquer le comportement du
modèle, transcendant le simple mécanisme de masquage. Nous avons également proposé
une nouvelle mesure d’évaluation "MSICE" ancrée dans la morphologie et la sémantique,
relevant le défi intrinsèque de l’évaluation de phrases ayant une sémantique similaire mais
des formes de surface différentes.

Nos résultats montrent que cette approche améliore le processus d’évaluation et permet
une évaluation plus fine des légendes. La révélation la plus importante de cette étude est
le discernement de l’influence substantielle exercée par la composante visuelle dans les
architectures de sous-titrage, éclipsant l’impact de l’élément linguistique. Par conséquent,
nous nous attendons à ce que la partie visuelle constitue un point clé pour les explications
ultérieures du modèle. Au-delà de leur impact sur le domaine du sous-titrage d’images, nos
résultats sont significatifs pour un éventail plus large de tâches vision-langage ou encore de
systèmes multimodaux. Les résultats actuels ont le potentiel de catalyser le développement
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d’explications précises, subtiles et fiables dans divers domaines, en s’assurant que la
synergie entre la vision et le langage produit des idées qui sont à la fois complémentaires
et fiables.

Explications basées sur les attributions

En nous appuyant sur les résultats de nos recherches antérieures, nous avons entrepris
une étude approfondie tenant compte des spécificités des composants de l’architecture,
en mettant en évidence la question cruciale du compromis entre la capacité d’explication
d’un modèle et sa complexité. Alors que certaines approches optent pour des méthodes
d’explication plus complexes [Sun et al., 2022, DEWI et al., 2023] telles que les techniques
de rétropropagation de la pertinence et autres, nous estimons qu’il est essentiel d’examiner
si ces méthodes chronophages apportent réellement une valeur ajoutée par rapport à des
alternatives plus simples [Al-Shouha and Szűcs, 2023, Sahay et al., 2021].

S’appuyant sur les avantages que nous avons observés dans l’espace latent, notre
deuxième contribution étend son application à la fois à la génération et à l’évaluation
d’explications. Cette approche holistique nous permet d’extraire des informations plus
concrètes et tangibles pour élucider les processus de décision en sous-titrage d’images.
Nous avons ainsi conçu des variantes de deux méthodes d’explication populaires, LIME et
LRP, en les adaptant au paradigme de l’espace latent. Le choix de ces deux méthodes est
loin d’être arbitraire. Il visait à étudier les relations causales potentielles entre la qualité
des explications, la portée des méthodes d’explication (locale ou globale) et leurs subtilités.
En particulier, la méthode BU-LRP se distingue comme une nouvelle contribution dans
le domaine, car elle exploite les caractéristiques de type bas-en-haut, en explorant leur
potentiel éventuel pour fournir des explications améliorées dans l’espace latent. Grâce
à une étude comparative, nous avons évalué l’efficacité de ces méthodes à fournir des
explications précises. Les deux approches ont donné des résultats comparables en termes
de qualité des explications.

En outre, nous avons introduit le nouveau concept d’ablation latente (masquage latent)
pour évaluer la qualité des explications. Contrairement à l’ablation classique, l’ablation
latente opère dans les couches latentes de l’architecture. Cela a permis une manipulation
plus fine des objets de l’image, offrant plusieurs niveaux d’altération et permettant une
évaluation plus précise. Nous avons également examiné l’impact de la complétude du
concept, c’est-à-dire de l’objet entier par rapport aux caractéristiques individuelles, sur
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la performance et l’évaluation de l’explicabilité. Cela nous a conduits à concevoir deux
versions de LIME et d’ablation latente, une se concentrant sur le traitement de l’objet
complet ou des caractéristiques individuelles.

Nos résultats indiquent que si le traitement de l’objet n’améliore pas nécessairement
la robustesse du modèle d’explication, il reste un élément crucial dans l’évaluation de la
qualité de l’explication, en particulier dans le cas de l’ablation latente. La portée d’une
méthode explicative s’est avéré moins décisif dans la quête d’une qualité d’explication
supérieure, mais joue plutôt un rôle dans la détermination de la granularité des explications
produites. Il convient de noter que le choix entre ces deux approches n’est pas uniquement
dicté par leur portée, mais s’étend au degré de subtilité des résultats escomptés. Dans ce
contexte et en s’appuyant sur l’explication subtile fournie par BU-LRP, le chapitre suivant
montrera comment les explications obtenues au niveau des éléments individuels du vecteur
de caractéristiques peuvent élargir les horizons de l’explicabilité.

Discernement des concepts latents

Construire des dépendances complexes entre les données pour améliorer les performances
globales est devenu relativement simple pour de nombreux modèles d’apprentissage au-
tomatique. Cependant, démêler les structures complexes que ces modèles ont tendance
à construire au sein de leurs composants internes s’avère être une tâche beaucoup plus
difficile. Comme l’ont souligné de nombreuses recherches dans la littérature, l’exploration
de l’espace latent constitue un moyen précieux d’étudier la manière dont les modèles
d’apprentissage automatique structurent l’information, ainsi que leurs processus d’encodage
et de décodage. Étonnamment, seules quelques études se sont aventurées dans cette voie,
probablement en raison de sa difficulté inhérente.

Dans cette contribution, nous nous concentrons sur l’étude des concepts sémantiques
tels que la position, la taille et la quantité des objets. Cette approche permet de combler
le décalage entre l’encodage de bas niveau et la compréhension sémantique de haut niveau
des modèles de sous-titrage. À cette fin, nous avons introduit une approche d’exploration
qui utilise l’édition d’entrée pour découvrir les facettes cachées du comportement du
modèle, en mettant particulièrement l’accent sur le concept quantitatif de l’information
visuelle. Cette approche nous a permis d’obtenir des informations précieuses sur le rôle de
ce concept et son influence sur les décisions du modèle, tant au niveau de l’encodage de
l’entrée que du décodage de la sortie. Nos résultats ont notamment révélé une relation
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dynamique entre le nombre d’insertions d’un objet et sa saillance dans les processus de
détection visuelle et de prédiction langagière. Nous avons également constaté que pour
certaines catégories d’objets, la saillance peut ne pas se manifester même après de multiples
insertions, potentiellement en raison d’une incohérence contextuelle ou d’une omission
sélective par le décodeur de langage.

Conclusion

Tout au long de ce travail qui s’étend sur plusieurs chapitres, nous avons relevé le défi
d’améliorer l’explicabilité dans les systèmes de sous-titrage d’images. Chaque chapitre
aborde une facette distincte de cette tâche, et nos recherches nous ont amenés à utiliser dif-
férentes méthodologies. Nous avons principalement étudié les architectures de sous-titrage
d’images basées sur le cadre Encoder-Attention-Decoder, qui incorpore des composants
d’apprentissage profond tels que les CNN et les LSTM. Il est essentiel de souligner une
facette distinctive notable de l’ensemble du présent travail : notre concentration sur
l’exploitation de l’espace latent pour la recherche et la dérivation d’explications ce qui
représente une démarche ambitieuse dans le domaine de l’explicabilité en sous-titrage
d’images (XIC).

Les divers résultats de cette thèse ont révélé des pistes prometteuses pour la poursuite
de la recherche et de l’exploration pouvant être classées en plusieurs catégories. Une piste
intéressante à envisager consiste à mener une étude approfondie des sources potentielles de
biais et d’hallucinations dans les architectures de sous-titrage. Une attention particulière
devrait également être accordée à la compréhension de la manière dont les objets saillants
sont identifiés et distingués de l’arrière-plan des scènes visuelles. Ces facteurs peuvent jouer
un rôle déterminant dans les décisions prises par les systèmes de sous-titrage et méritent
d’être étudiés en profondeur. Bien qu’une partie de ce travail se soit concentrée sur les
méthodes d’explication LRP et LIME en raison de leur adoption généralisée dans le domaine,
l’approche de l’espace latent développée dans cette thèse peut être étendue pour englober
d’autres techniques d’explication. Par exemple, des études futures pourraient explorer
l’applicabilité des explications de Shapley et évaluer leur compatibilité avec le cadre proposé.
Notre exploration de l’aspect de la quantification et de sa corrélation potentielle avec
l’aspect de la saillance a posé des bases solides pour des recherches ultérieures. Des études
approfondies peuvent porter sur d’autres attributs visuels, tels que la position et la taille
des objets, et évaluer leurs relations potentielles avec l’aspect de la saillance. Les résultats
de cette thèse, en conjonction avec les directions de recherche prospectives mentionnées
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ci-dessus, promettent une applicabilité élargie à des architectures plus complexes telles que
celles basées sur les transformers ou les graphes. Une telle expansion comprendrait une
évaluation approfondie et une exploration explicative comparative à travers un spectre
diversifié d’architectures de sous-titrage d’images existantes, offrant ainsi un aperçu
plus approfondi de leurs mécanismes opérationnels uniques et de leurs caractéristiques
distinctives.

Dans cette thèse, nous avons poursuivi l’objectif de rendre les architectures de sous-
titrage plus interprétables, tant au niveau fondamental qu’au niveau de l’application, ce
qui a permis d’ouvrir la voie à d’autres recherches permettant d’aborder les problèmes
croissants de l’explicabilité des systèmes de sous-titrage en particulier et multimodaux en
général.
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Sofiane ELGUENDOUZE

Approches d’Intelligence Artificielle eXplicables pour le Sous-titrage d’Images

Résumé : L’évolution rapide des modèles de sous-titrage d’images, impulsée par l’intégration de
techniques d’apprentissage profond combinant les modalités image et texte, a conduit à des systèmes
de plus en plus complexes. Cependant, ces modèles fonctionnent souvent comme des boîtes noires,
incapables de fournir des explications transparentes de leurs décisions. Cette thèse aborde l’explicabilité
des systèmes de sous-titrage d’images basés sur des architectures Encodeur-Attention-Décodeur, et ce
à travers quatre aspects. Premièrement, elle explore le concept d’espace latent, s’éloignant ainsi des
approches traditionnelles basées sur l’espace de représentation originel. Deuxièmement, elle présente
la notion de caractère décisif, conduisant à la formulation d’une nouvelle définition pour le concept
d’influence/décisivité des composants dans le contexte de sous-titrage d’images explicable, ainsi qu’une
approche par perturbation pour la capture du caractère décisif. Le troisième aspect vise à élucider
les facteurs influençant la qualité des explications, en mettant l’accent sur la portée des méthodes
d’explication. En conséquence, des variantes basées sur l’espace latent de méthodes d’explication
bien établies telles que LRP et LIME ont été développées, ainsi que la proposition d’une approche
d’évaluation centrée sur l’espace latent, connue sous le nom d’Ablation Latente. Le quatrième
aspect de ce travail consiste à examiner ce que nous appelons la saillance et la représentation de cer-
tains concepts visuels, tels que la quantité d’objets, à différents niveaux de l’architecture de sous-titrage.

Mots clés : Intelligence Artificielle Explicable, Sous-titrage d’Image, Sous-titrage d’Image Explicable,
Espace de représentation / Espace latent, Caractère décisif, Saillance.

Explainable Artificial Intelligence approaches for Image Captioning

Abstract: The rapid advancement of image captioning models, driven by the integration of deep
learning techniques that combine image and text modalities, has resulted in increasingly complex
systems. However, these models often operate as black boxes, lacking the ability to provide transparent
explanations for their decisions. This thesis addresses the explainability of image captioning systems
based on Encoder-Attention-Decoder architectures, through four aspects. First, it explores the
concept of the latent space, marking a departure from traditional approaches relying on the original
representation space. Second, it introduces the notion of decisiveness, leading to the formulation of a
new definition for the concept of component influence/decisiveness in the context of explainable image
captioning, as well as a perturbation-based approach to capturing decisiveness. The third aspect aims
to elucidate the factors influencing explanation quality, in particular the scope of explanation methods.
Accordingly, latent-based variants of well-established explanation methods such as LRP and LIME
have been developed, along with the introduction of a latent-centered evaluation approach called
Latent Ablation. The fourth aspect of this work involves investigating what we call saliency and the
representation of certain visual concepts, such as object quantity, at different levels of the captioning
architecture.

Keywords: Explainable Artificial Intelligence (XAI), Image Captioning (IC), Explainable Image
Captioning (XIC), Representation space / Latent space, Decisiveness, Saliency.
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