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Abstract

In this thesis we present four models for type II superconductors: the London model, the time

dependent Ginzburg-Landau (TDGL) model, the steady state Ginzburg-Landau model and an Abelian-

Higgs model. For the London model a problem with cylindrical symmetry was considered. A hydro-

dynamic formulation of the problem was established through the introduction of a stream function.

Well-posedness of the problem was proved. The external magnetic field was computed for 2D and 3D

domains. In 3D, a boundary element method was implemented using a recent feature of FreeFEM.

For the TDGL model two codes based on two variational formulations were proposed and tested on

classical benchmarks of the literature in 2D and 3D. In the steady state GL model, a Sobolev gradient

technique was used to find the equilibrium state. The results were compared with the ones given by

the TDGL model. In the Abelian-Higgs model, a 1D finite differences code written in Fortran was

developed and tested with the construction of a manufactured system. The model was used to retrieve

some of the properties of magnetization of superconductors.

Keywords : superconductor, London, Ginzburg-Landau, Abelian-Higgs, convergence order, mixed

scheme, FreeFEM.

MODÉLISATION DES SUPRACONDUCTEURS DE TYPE II.

IMPLÉMENTATION AVEC FREEFEM.

Résumé

Nous présentons dans cette étude quatre modèles pour les supraconducteurs de type II : le modèle

de London, le modèle de Ginzburg-Landau dépendant du temps (TDGL), le modèle de Ginzburg-

Landau stationnaire et un modèle de type Abelian-Higgs. Pour le modèle de London, nous avons étudié

un problème à symétrie cylindrique. Nous avons établi une formulation hydrodynamique du modèle

grâce à l’introduction d’une fonction courant. Le caractère bien posé du problème a été prouvé. Le

champ magnétique extérieur a été calculé pour des domaines 2D et 3D. En 3D une méthode par

éléments frontières a été implémentée en utilisant une fonctionalité récente de FreeFEM. Pour le

modèle TDGL deux codes fondés sur deux formulations variationnelles ont été implémentées et va-

lidées sur des cas tests classiques de la littérature en 2D et 3D. Pour le modèle GL stationnaire, une

méthode de gradient de Sobolev a été utilisée pour trouver l’état d’équilibre. Ces résultats ont été com-

parés avec ceux du modèle TDGL. Pour le modèle Abelian-Higgs un code Fortran différences finies

en 1D a été développé et validé par la construction d’un système manufacturé. Ce modèle a été utilisé

pour retrouver certaines propriétés de magnétisation des supraconducteurs.

Mots-clefs : supraconducteur, London, Ginzburg-Landau, Abelian-Higgs, ordre de convergence, schéma

mixte, FreeFEM.
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l’INSA). I deeply appreciated the calm and serenity of my office there.

I wish to address special thanks to my colleagues from LMRS: George
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1. Introduction

1.1. Key notions in superconductivity

We introduce here the main features and concepts of superconductivity. Throughout the manuscript we

often refer to these notions. All units are SI units.

1.1.1. Meissner effect, penetration depth and coherence length

We begin with two experimental observations.

1. If a conductor is cooled to a given temperature, called critical temperature and denoted by Tc, a

state of perfect conductivity (zero resistance to electric current) appears. Moreover if an external

magnetic field is applied during this cooling (Field Cooled process or FC), its properties will be

unaffected.

2. If an external field is raised from 0 to some value after the cooling of the superconductor below

Tc (Zero Field Cooling process or ZFC), then shielding currents (called supercurrents) are flow-

ing in the material with zero electrical resistance. This results in the complete expulsion of the

magnetic flux as long as the applied field is kept below a critical value denoted by Bc.

Table (1.1) reproduced from en Science (2011) shows for different compounds the critical tempera-

ture and the maximum critical field denoted by Bmax
c (it means that the superconductivity is destroyed

beyond this value). Bmax
c = Bc for type I superconductors only; for type II Bmax

c is greater than Bc.

We have the following relation (Kittel, 2005):

fn(T )� fs(T ) =
B2

c (T )

2µ0
, (1.1)

where fn (resp. fs) is the free energy per unit volume of the normal phase (resp. superconducting

phase). The difference fn(T ) � fs(T ) is called the condensation energy. We also have an empirical

relation for Bc:

Bc(T ) ⇡ Bc(0)

 

1�
✓

T

Tc

◆2
!

. (1.2)

The complete expulsion of flux is called the Meissner effect. It was first discovered by Meissner

and Ochsenfeld in 1933. In 1935 Fritz and Heinz London brothers explained this phenomena and

thus founded the eponymous model. Basically it states that the supercurrent density Js is directly

proportional to the vector magnetic potential:

A = �µ0�
2Js, (1.3)

1



Chapter 1. Introduction

Family Examples Tc (K) Type Bmax
c (T) ξ (nm) λ (nm)

Metals Hg 4.1K I up to 0.1T ⇡ 1000 65

Alloys Nb3Sn 18K II 24T 3 65

Diborure de magnesium MgB2 39K II up to 50 T 15 50

Fullerenes K3C60 40K II up to 30T 3 240

Cuprate YBa2Cu3O7 92K II 115T 0.5 to 2.5 150 to 500

Pnictide Ba(Fe1�xCox)2As2 56K II 60T a few nm A few hundred

Table 1.1. Main quantities characterizing some superconductors.

where
B = r⇥ A,

�2 =
✏0mc2

ne2
,

(1.4)

with ✏0, µ0 being the vacuum permittivity and permeability respectively; c the velocity of light; n is

the density of electrons, m and e the mass and charge of the electron respectively. Taking the curl on

both sides of (1.3) and using (1.4)1 we deduce the London equation:

B = �µ0�
2r⇥ Js. (1.5)

Formula (1.5) accounts for the Meissner effect in the sense that it does not allow a uniform field B

to be a solution.

Experimental values for � in pure metals appear to differ considerably from formula (1.4)2. Pip-

pard and Bragg (1953) introduced a new length called coherence length and denoted ⇠ to explain the

experiments. Ginzburg-Landau theory of superconductivity provides the following expression for ⇠:

⇠ =
~

p

2m(�↵)
, (1.6)

where ↵ is a negative coefficient which appear in the expression of the energy density of a supercon-

ductor (see Section 3.1, Eq. (3.1)).

Remark 1.1.1. Formula (1.6) actually coincides with Pippard results only for pure metals and well

below Tc (for more details see Tinkham (2004), chapter 4).

In superconductivity the London length and the coherence length play a fundamental role in classi-

fying the types of superconductors (I or II). The central concept of the wall energy is presented in the

next section.

1.1.2. Intermediate state and wall energy

In a superconductor we find two phases, superconducting (denoted by S in the sequel) and normal

(denoted by N). The boundary between the two is called the wall interface. The phase N corresponds

to the penetration of the magnetic flux and the absence of supercurrents (n = 0); whereas the phase S

corresponds to the presence of supercurrents (n > 0) and absence of magnetic flux. Figure 1.1 shows

this interface schematically.

2



1.1. Key notions in superconductivity

Figure 1.1. Wall interface between the S (superconducting) and N (normal) phase.

The concept of wall energy and the role played by the London length � and the coherence length ⇠

were first explained by Ginzburg and Landau (1950). We outline below their ideas. At the interface,

n cannot actually fall abruptly to 0 but vanishes within a distance of the order of the coherence length

⇠. The same goes for the magnetic flux B within a distance of the order of the London length �. This

results in the following wall energy contribution of the interface to the free energy of the whole system

Finterface =
B2

c

2µ0
(⇠ � �) . (1.7)

As a result, when ⇠ > �, the wall energy is positive and the superconductor tends to minimize the

surface between N and S; large N domains mix with S domains in an intricate manner (Fig. 1.2 left

panel). The superconductor is named type I.

When ⇠ < � the wall energy is negative and the superconductor tends to multiply interfaces. We

observe well-ordered flux tubes: these tubes are called vortices and the vortex pattern is called a flux-

line lattice (Fig. 1.2 right panel). The superconductor is named type II. The amount of magnetic flux in

each tube is the same: it is called the quantum flux or fluxoid or fluxon and is denoted by �0. We have

�0 =
h

2e
⇡ 2.0678⇥ 10�15 T m2. (1.8)

The magnetic field generated by Earth is 5⇥ 10�6 T and �0 is very small in comparison.

Figure 1.2. Intermediate state in a Pb film in a perpendicular magnetic field (left). Flux-line

lattice in Nb in a perpendicular magnetic field (right).

3



Chapter 1. Introduction

1.1.3. Special case of superconductors of type II

Formula (1.7) is actually qualitative. A quantitative calculation conducted originally by Ginzburg and

Landau (1950) shows that the separation between type I and type II is given by the line  =
1p
2

where

 :=
�(T )

⇠(T )
.  is dimensionless and is called the Ginzburg-Landau parameter.

In type I superconductors, in the case of ZFC, the expulsion of the flux is total until the critical value

Bc is reached. At Bc a first order phase transition occurs, i.e. the flux enters completely the sample and

destroys superconductivity. The magnetisation curve M =
1

µ0
(B � Bapplied) shown in Fig. 1.3 (left)

reflects this behaviour.

Figure 1.3. Magnetisation curve of a type I superconductor (left) and of a type II supercon-

ductor (right).

In type II superconductors there exists a first critical field denoted by Bc1 < Bc where the magnetic

flux starts to enter the domain. However superconductivity remains in the sense that currents are still

flowing with no resistance. The phase transition at Bc1 is called second order. The superconductivity

is eventually destroyed when the applied field reaches a second critical field denoted Bc2 that may be

well above Bc1 (it corresponds to the value Bmax
c reported in Tab. 1.1). The magnetisation curve of a

type II superconductor is shown in Fig. 1.3 (right).

An interesting consequence of the London theory is the quantization of the magnetic flux through

a superconducting ring. The effect is described in a very elegant manner in Feynman et al. (1971).

From quantum mechanics, we can describe the superconducting particle by a complex wave function

 (r) = ⇢(r)ei✓(r). The velocity vs of the particle is defined by

vs :=
1

ms
(~r✓ � esA) :=

1

es⇢2
|Js|, (1.9)

where es (resp. ms) denotes the charge (resp. the mass) of the superconducting charge carrier. es
(resp ms) are a priori different from the electron charge e (resp. mass m). It is actually a current of

probabilistic nature, fundamentally different from the electrical current which induces a resistance. It

is known from London theory (see Chapter 2) that currents flow only on the surface of the material

within a typical distance of �. As a result, if we integrate (1.9) on a path Γ (see Fig. 1.4) passing

through the centre of each cross-section (on Γ we have Js = 0 if the sample is sufficiently thick) we

find
Z

Γ

r✓ · ds = 2⇡q =
es

~
Φ, (1.10)

4



1.1. Key notions in superconductivity

where Φ denotes the total amount of flux passing through the ring and q is an integer. The formula

(1.10) was stated by London and Onsager with es the charge of the electron. The first experimental

evidence by Deaver Jr and Fairbank (1961) showed that es is actually twice the charge of the electron:

in superconductivity, the current is due to a pair of electrons called a Cooper pair.

Feynman (1998) has introduced a model for superconductivity. In Appendix A.1 of this thesis we

present this model.

Figure 1.4. Superconducting ring.

Remark 1.1.2. By convention the mass ms is taken equal to 2m (see Tinkham (2004) for a discussion).

Hence, if we denote by ns the density of the superconducting particles, we have n = 2ns and we see

that
ms

nse2s
=

m

ne2
. (1.11)

As a consequence, the formula (1.4)2 for � is invariant considering electrons or superconducting par-

ticles.

1.1.4. Classification of models

We can classify the various models in three categories: phenomenological models, semi-phenomenological

models, and microscopic ones.

Phenomenological models need experiments to adjust their parameters so that it fits each particular

case. They rely on their simplicity and good agreement with experimental data. In particular, they

are reliable tools to describe the behaviour of high Tc superconductors (e.g. cuprates or pnictides),

for which no microscopic theory is available. They were pioneered by Bean in the 60’s (Bean, 1964).

He introduced a phenomenological law for describing supercurrents inside the material. Basically it

states that the values for Js have to be ±Jc or 0. Jc is adjusted experimentally and is called the critical

current density. After the work of Bean, many refinements of the theory have been done by suggesting

other laws for the supercurrent or assuming dependencies of Jc with the local magnetic flux B or the

temperature. For a review of these models see Ainslie and Fujishiro (2019). The general name for

these models is critical state models. They are studied for describing the macroscopic features of a

superconductor. Of particular interest for applications is the so called trapped flux, i.e. the amount of

the magnetic flux that a superconductor can store without losing the perfect conductivity property. The

5



Chapter 1. Introduction

trapped flux property is the basis for applications such as magnetic levitation (Bernstein and Noudem,

2020) or MRI (Magnetic Resonance Imagery). However such models cannot resolve fluxoids or the

dynamics of N/S phases. In that case we need to use semi-phenomenological models.

Semi-phenomenological models stem from quantum mechanics. London model and its generaliza-

tions (see Huebener (2001) for a review) describe accurately the Meissner effect and superconductors

of type II in the limit �� ⇠. Ginzburg-Landau (GL) models were pioneered by Ginzburg and Landau

(1950). Their model was an extension to superconductors of Landau’s theory of second order phase

transition. Later in 1959, Gorkov (1959) was able to derive the GL model from first principles of quan-

tum mechanics but within a limited range of temperature near Tc. Several models have been derived

to include time dynamics (Gorkov and Eliashburg, 1968; Schmid, 1966; Caroli and Maki, 1967; Maki,

1969). However the theory is valid under highly restricted conditions: the temperature has to be close

to Tc where the order parameter  is small; moreover, time and spatial variations of  should not be too

slow. For a detailed discussion of these issues we refer the reader to Huebener (2001) or Cyrot (1973).

In this manuscript we consider the set of equations established by Gorkov and Eliashburg (1968) for a

gapless superconductor which can be obtained by adding for example magnetic impurities.

The only microscopic theory up to this date is the BCS theory (Bardeen et al., 1957). It explains

superconductivity for materials with low Tc such as metals or alloys but fails to explain high Tc super-

conductivity in cuprates or pnictides, for example. Basically it states that the electrons arrange in pairs

called Cooper pairs. We do not detail the theory and refer to Tinkham (2004) for an introduction or

de Gennes (1966) for a complete description.

1.2. State of art in numerical simulations

In this section, we provide references for the London model, the TDGL model and the steady state GL

model. The cited articles are related to the material found in this thesis. Du (2005) gives a review of

numerical techniques used to solve GL models.

For the London theory, analytic solutions are known for the infinite slab or cylinder in parallel H,

and for the sphere (see Brandt and Mikitik (2000) and the references cited therein). Fiolhais and Essén

(2014) have reported exact solutions for the infinite cylinder in transversal H. Caputo et al. (2013)

have made 2D simulations of the London equations for a cylindrical problem: a similar approach is

used in this thesis. Prozorov (2021) have made a quantitative description of the magnetic susceptibility

of the circular cylinder of finite length; the author also provides simulations of the 3D London equa-

tions using a finer mesh near the edges of the superconductor; the computations are made for various

London lengths. A time dependent approach of the London model with moving vortices has also been

developed (Prozorov and Kogan, 2018; Kogan and Nakagawa, 2022).

For the TDGL model, early simulations used finite difference methods. In particular, the link vari-

able method has proved successful (Frahm et al., 1991; Kato et al., 1993; Gropp et al., 1996; Winiecki

and Adams, 2002). These methods are still used extensively by the physical community. Barba-Ortega

et al. (2010) have reported 2D simulations in circular geometries; they take into account material

properties by using De Gennes boundary conditions (de Gennes, 1966). Barba-Ortega et al. (2015)

have made 3D simulations in a rectangular geometry. Sadovskyy et al. (2015) have reported a tech-

nological breakthrough. The authors have simulated the TDGL model in a square of size 4096⇠20 ,

which is roughly the size of an experimental 2D superconducting film. They use an implicit Crank-

Nicolson scheme in time, and suppose � 1, so that the field is supposed homogenous. Subsequently,

Sadovskyy et al. (2016) have computed critical currents (maximum electric current a superconductor
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can maintain without resistance) in 3D domain of macroscopic size; in particular, they showed the

influence of defects on vortex dynamics. Willa et al. (2017) show impressive 3D pinning landscapes.

Progress have been made as regards the numerical properties of the TDGL model in its simplest form

(without defect and with homogenous boundary conditions). Richardson et al. (2004), using a finite

difference scheme, have studied the influence of the size of the mesh on TDGL numerical solutions.

Besides finite difference methods, finite element methods have been investigated, mostly by the math-

ematical community. Algorithms for the temporal gauge have been proposed by Du (1994a), Mu and

Huang (1998), Yang (2014). To deal with some numerical issues (in particular abnormal values at cor-

ners), Gao and Sun (2015) have proposed a mixed finite element scheme (for more on these techniques

see Boffi et al. (2013)). The method has proved successful (Gao and Sun, 2016; Gao, 2017). Li and

Zhang (2017) have reported another approach using the Helmholtz decomposition of the vector poten-

tial; this method apply in 2D only, but allows the use of Lagrange finite elements. Recently, Gao and

Xie (2023) have proposed an algorithm to solve the TDGL system under the Coulomb gauge. Hong

et al. (2023) have used the Newton method to solve the TDGL model under the temporal gauge; the au-

thors use a GMRES algorithm and build a time independent preconditioner. Finally, TDGL model can

be solved by finite element solvers such as COMSOL (Zimmerman, 2006). Alstrom et al. (2011) have

reported a now classical benchmark: a disk with a boundary defect. This example leads to numerical

issues that prompted the finding of other methods such as the mixed finite element formulation.

The steady state GL model have been tackled by the mathematical community. In particular Sobolev

gradient methods have been developed (Neuberger, 2009). These methods have been used to find

critical points of the GL energy (Neuberger and Renka, 1998, 2000, 2003; Kazemi, 2008). Kazemi and

Renka (2013) provide a Sobolev gradient algorithm using a trust region method.

1.3. Presentation of the free software FreeFEM

FreeFEM (Hecht, 2012) is a 2D and 3D partial differential equations solver. It offers an easy way

to write variational formulations of physical problems. The unknown fields (e.g. the density, the

vector potential, the magnetic field, currents, ...) are approximated by finite elements (FEs). FreeFEM

provides a large choice of FEs. In the next section we introduce Lagrange FE, Raviart-Thomas FE and

Nedelec FE.

1.3.1. Examples of finite elements

Our goal here is to give some intuition about the FEs used in the thesis. For a complete exposition of

the theory, we refer the reader for example to Ciarlet (2002). We denote the computational domain by

Ω. Let Th a triangulation of Ω, h being the typical size of a triangle in 2D (or a tetrahedron in 3D). Let

v be a physical quantity to be approximated on Th. Given a choice of a FE, v can be decomposed in

a discrete space, often denoted by Vh, called the interpolation space. Let (�)i a basis of Vh, then we

have

v =

N
X

i=1

vi�i, (1.12)

where N is the dimension of Vh called the number of degrees of freedom.

If v is a scalar field, Lagrange FE can be used. In the case of linear Lagrange FE denoted by P 1, we

have

vi = v(ai), (1.13)

7



Chapter 1. Introduction

where (ai) are the vertices of each triangle in 2D or tetrahedron in 3D (see Fig. 1.5). Hence v is

approximated by a linear function on each triangle or tetrahedron. In the case of piecewise quadratic

Lagrange FE, v is approximated by a polynomial of degree 2 on each triangle or tetrahedron.

If v is a vector field, we can use Raviart-Thomas FE or Nedelec FE. In the case of Raviart-Thomas

FE of degree 0 denoted by RT0, we have

vi =

Z

Fi

v · ni, (1.14)

where ni is the normal of the edge (respectively face) Fi of a triangle (respectively tetrahedron).

In the case of Nedelec FE of degree 0 denoted by N0, we have

vi =

Z

ei

v · ti, (1.15)

where ti is the tangent of the edge ei of a triangle in 2D or a tetrahedron in 3D.

Figure 1.5. From left to right: Lagrange FEs P 1, P 2, Raviart-Thomas RT0, and Nedelec

N0 in 2D and in 3D.

In the next section, we show how to solve a Poisson problem with FreeFEM and illustrate the use of

Raviart-Thomas FE.
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1.3.2. Two ways to solve a Poisson problem

We want to solve the following Poisson problem

�∆u = f in Ω,

u = 0 on Γ1 [ Γ2 [ Γ3,

ru · n = 0 on Γ4.

(1.16)

Figure 1.6. Computational domain Ω

The variational formulation of (1.16) is obtained by multiplying by a test function v which vanishes

on Γ1 [ Γ2 [ Γ3 ; then we integrate by parts. Noticing that the surface term vanishes, we obtain the

following variational formulation:

find u 2 V such that,
Z

Ω

ru ·rv �
Z

Ω

fv = 0 8v 2 V, (1.17)

where V = {u 2 H1(Ω) such that u = 0 on Γ1 [ Γ2 [ Γ3}.

The FreeFEM syntax to solve the problem (1.17) is

Listing 1.1 Poisson equation with Lagrange FE

int M = 100; // mesh size

func f = 4.; // right hand side

mesh Th = square(M,M,[2*x-1, 2*y-1]); // build the mesh

fespace Vh(Th,P1); // Lagrange FE space

Vh u,v; // FE unknown and test function

problem laplace2d(u,v) =

int2d(Th)(dx(u)*dx(v)+dy(u)*dy(v))

+ int2d(Th)(-f*v)

+ on(1,2,3,u=0); // variational formulation

laplace2d; // solve the problem

plot(u,wait=1,fill = 1,value = true); // plot the solution

In physics, the interesting quantity is often the gradient of the unknown ru. Hence the idea of a

mixed form of problem (1.16). The variable σ := ru is introduced as a supplementary unknown.

Problem (1.16) becomes:

� div(σ) = f in Ω,

σ = ru in Ω,

u = 0 on Γ1 [ Γ2 [ Γ3,

σ · n = 0 on Γ4.

(1.18)

9



Chapter 1. Introduction

The variational formulation of (1.18) is

Find σ 2 H(div) and u 2 L2 such that,
Z

Ω

divσv +

Z

Ω

fv = 0 8v 2 L2,
Z

Ω

σ · χ+

Z

Ω

u · divχ = 0 8χ 2 H(div) such that χ · n = 0 on Γ4,

(1.19)

where H(div) := {u 2 L2(Ω), div u 2 L2(Ω)}.

The FreeFEM syntax to solve the variational problem (1.19) is

Listing 1.2 Poisson equation with Raviart-Thomas FE

int M = 100; // mesh size

func f = 4.; // right hand side

mesh Th = square(M,M,[2*x-1, 2*y-1]); // build the mesh

fespace Vh(Th,RT0); // Raviart-Thomas FE space

fespace Ph(Th,P0);

Vh [sigma,sigmay],[chi,chiy];

Ph u,v;

problem laplaceMixte([sigma,sigmay,u],[chi,chiy,v]) =

int2d(Th)( sigma*chi + sigmay*chiy + u*(dx(chi)+dy(chiy)) + (dx(sigma)+dy(sigmay))*v )

+ int2d(Th)(f*v)

+ on(4,sigma=0,sigmay=0); // variational formulation

laplaceMixte; // solve the problem

plot([sigma,sigmay],coef=0.1,wait=1,value=true);

plot(u,wait=1,fill = 1,value = true); // plot the solution

Figure 1.7 shows the solution of problem (1.16) computed with the two methods.

Figure 1.7. Solution of the Poisson problem (1.16) with the standard formulation (1.17)

(left), the mixed formulation (1.19) (middle: σ, right: u).

Remark 1.3.1. Raviart-Thomas FEs are used to deal with the boundary condition σ · n = 0. The

transposition of this condition with FreeFEM is simply on(4,sigma=0,sigmay=0).
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1.4. Outline of the thesis

Our goal is to study different models for type II superconductors and build efficient codes and algo-

rithms written with FreeFEM.

Chapter 2 is devoted to the London theory. We focus here on a superconductor in the Meissner state.

We derive the model from the energy as originally done in de Gennes (1966). We study the problem of

existence and uniqueness of the model in 2D and 3D. To this purpose a stream function is introduced

as done in Danaila et al. (2021) in the context of vortex ring theory. We present numerical results in 2D

and 3D. We end the chapter by considering an unbounded domain in 3D. We exploit a recent feature

of FreeFEM (boundary elements) to couple the interior and the exterior of the superconductor.

Chapter 3 is devoted to the time dependent Ginzburg-Landau theory (TDGL). The TDGL model

in its simplest form is considered (no defects and homogenous boundary conditions). An important

characteristic of the model is the gauge invariance. We define gauges in the TDGL framework and in

particular the !-gauge which is extensively used in the last section. We outline several mathematical

results about the well-posedness of the model; we mainly rely on the pioneering work by Du (1994b).

Our goal is to familiarize the reader with the variational formulation of the model. We describe two

numerical schemes based on two variational formulations and give the main ingredients to implement

them with FreeFEM. Many examples, both in 2D and 3D, are treated. We close the chapter by a

convergence study in the general framework of the !-gauge.

Chapter 4 is devoted to the steady state GL model. The earliest mathematical results on supercon-

ductors were obtained using this model. We present mathematical properties of the steady state equa-

tions. We solve numerically the equations by using a steepest descent algorithm based on a Sobolev

gradient. We finally show results in 2D and draw a comparison with the TDGL model.

Chapter 5 is devoted to an Abelian-Higgs model originally introduced by Nielsen and Olesen (1973).

We derive the equations of motion and a 1D model. We construct a manufactured problem to demon-

strate the validity of our finite difference code. Our goal is to recover some classical features of mag-

netisation of superconductors.

In Appendix A, we first establish formal links between three equations: the Feynman’s point of view

from Feynman (1998), the Ginzburg-Landau equation for  and the Gross-Pitaevskii (GP) equation.

The GP equation is used to model superfluids (Pitaevskii and Stringari, 2003); vortex pattern can be

observed in a very similar manner as in type II superconductors (Yarmchuk et al., 1979; Tilley, 2019).

Then, as a complement, we show that the weighted Sobolev space H1(!) introduced in Chapter 2 is a

Hilbert space.
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2. London model

The London model was established by Fritz and Heinz London in 1935. It is valid when the coherence

length ⇠ is much smaller than the London penetration depth �. In transition metals or intermetallic

compound (Wb3Sn, V3Ga), London theory applies well in weak fields.

The London model explains the Meissner effect, i.e. the total expulsion of the magnetic flux from

the interior of the superconductor. This effect is accompanied by a demagnetizing field. Our goal is to

capture numerically the magnetic field outside the sample.

2.1. Derivation of the London model

The presentation below follows de Gennes (1966). The free energy F of a sample can be written as

F =

Z

S
Fsdr + Ekin + Emag,

Ekin =

Z

S

1

2
mv2snsdr,

Emag =

Z

S

1

2µ0
B2dr,

(2.1)

where Fs denotes the energy density of the superconducting phase, Ekin the kinetic energy density due

to currents, Emag the magnetic energy density; vs is the velocity and ns the density of the electrons.

By definition of the Maxwell-Ampere equation in quasi-static approximation

r⇥ B = µ0Js. (2.2)

and since Js = nsevs, we deduce that

F = E0 +
1

2µ0

Z

S

⇥

B2 + �2|r⇥ B|2
⇤

dr. (2.3)

We have E0 =

Z

S
Fsdr and � =

✓

m

µ0nse2

◆ 1

2

is the London length.

Now, we introduce a small variation �B:

�B2 = 2B · �B,

�|r⇥ B|2 = 2r⇥ �B ·r⇥ B.
(2.4)

Then

�F =
1

µ0

Z

S

⇥

B + �2r⇥r⇥ B
⇤

· �Bdr = 0. (2.5)
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Chapter 2. London model

Finally we obtain the equation for the magnetic field B in the domain S of the superconductor

B + �2r⇥r⇥ B = 0 in S. (2.6)

Let us get some intuition about (2.6). We consider a semi-infinite superconductor occupying the

half space x > 0 as in Fig. 2.1.

• First case: B k (Ox).

From div B = 0 we deduce
@B

@x
= 0, then B(x) is constant. Since the current Js is proportional

to r⇥ B, hence there is no current inside S . This case actually cannot happen.

• Second case: B k (Oz).

Equation (2.6) reads

d2B

dz2
=

1

�2
B, (2.7)

and the solution is

B(z) = B(0) exp
⇣

� z

�

⌘

. (2.8)

Figure 2.2 illustrates this case. Eq. (2.8) explains the Meissner effect. It corresponds to an

exponential decay of the magnetic flux inside the superconductor within a length scale equal to

the London length �.

Figure 2.1. Case B k (Ox) (left) and case B k (Oz) (right).

Figure 2.2. Amplitude B of the magnetic field in the case B k (Oz).
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2.1. Derivation of the London model

We can formulate (2.6) using the vector potential A such that r⇥ A = B. We have

r⇥ A + �2r⇥ (r⇥r⇥ A) = 0. (2.9)

From (2.9) the rotational of A + �2r ⇥ r ⇥ A vanishes. If we make the Coulomb gauge choice

div A = 0 then the divergence of A + �2r⇥r⇥ A also vanishes. We conclude that

A + �2r⇥r⇥ A = 0. (2.10)

Moreover since r⇥r⇥ A = rdiv A �∆A = �∆A, we deduce that

�∆A +
1

�2
A = 0. (2.11)

Equation (2.11) is valid for a constant and uniform applied magnetic field. In the general case, we

need to consider the Gibbs free energy G := F �
Z

S
B ·H, where H is called the thermodynamic field.

It is known (de Gennes, 1966) that H can be identified with the external field produced for instance by

a coil. Considering (2.2) and (2.3) we have

G = E0 +
1

2µ0

Z

S

⇥

B2 + �2|r⇥ B|2
⇤

dr �
Z

S
B · H. (2.12)

From (2.10) and (2.2) we have Js = � 1

µ0�2
A and

G = E0
0 +

1

2µ0

Z

S



|r⇥ A � µ0H|2 +
A2

�2

�

dr. (2.13)

Varying this expression with respect to A gives

Z

S



r⇥ (A � µ0H) ·r⇥ �A +
1

�2
A · �A

�

dr = 0. (2.14)

After integrating by parts we obtain

Z

S



r⇥ (r⇥ A � µ0H) +
1

�2
A

�

· �Adr = 0. (2.15)

Assuming the Coulomb gauge, we end up with the following equation for A in S:

�∆A +
1

�2
A = µ0r⇥ H. (2.16)

Since outside S we have that r⇥B = µ0r⇥H and denoting by 1 := 1S the indicator function of

S we can generalize (2.16) for both the interior and exterior:

�∆A + 1
1

�2
A = µ0r⇥ H. (2.17)
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Chapter 2. London model

2.2. Existence and uniqueness of solutions in a

cylindrical problem

2.2.1. 3D case

In this section we consider a 3D problem of geometry shown in Fig. 2.3. An external cylinder O of

radius Rmax and half height Zmax encloses a cylindrical superconductor of radius Rs and half height

Zs. We suppose the sample is in the Meissner state and obeys the London model (2.17). We assume

cylindrical symmetry and thus A = Ae✓. A uniform and static magnetic field B0 = B0ez is applied.

Moreover we assume that Rmax � Rs and Zmax � Zs, so that the magnetic field on @O is equal to

B0. From r⇥ A = B and applying Stokes formula on a disk D of radius r = Rmax as in Fig. 2.4 we

Figure 2.3. Three dimensional domain with cylindrical symmetry.

have

Z

D

B · nda = A|r=Rmax
⇥ 2⇡Rmax. (2.18)

Moreover the divergence of the magnetic field is zero so that the integral on the left hand side in

(2.18) does not depend on the disk chosen. Hence, if we choose D = D1 for example, we obtain
Z

D

B · nda = B04⇡R
2
max since the field is uniform on D1. Finally we deduce the value of A on Dlat

A|Dlat
= B0

Rmax

2
. (2.19)

We also easily get that A|D1[D2
= B0

r

2
.

In conclusion the London model amounts to solve the following non-homogenous Dirichlet bound-
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2.2. Existence and uniqueness of solutions in a cylindrical problem

Figure 2.4. Disk of radius r in the (xOy) plane.

ary value problem:
8

>

>

>

>

<

>

>

>

>

:

�∆A + 1
A

�2
= 0 in O,

A|D1[D2
= B0

r

2
,

A|Dlat
= B0

Rmax

2
.

(2.20)

Equation (2.20) can be rewritten in Cartesian coordinates

8

>

>

>

>

>

<

>

>

>

>

>

:

�∆A + 1
A

�2
= 0 in O,

Ax = �B0
y

2
on @O,

Ay = B0
x

2
on @O,

Az = 0 on @O.

(2.21)

The variational formulation of (2.21) is

8

<

:

Find Ai 2 H1(O) such that,
Z

O
rAi ·rv +

Z

O
1
Ai

�2
v = 0 8v in H1

0 (O).
(2.22)

It is known from classical results (Cioranescu et al., 2018) that (2.22) has a unique solution.

2.2.2. 2D case

In this section we study the problem (2.20) in a radial cross-section of the cylinder O denoted by

Ω :=]0, Rmax[⇥]0, Zmax[. Since A = Ae✓ we know that in cylindrical coordinates

∆A = ∆A� A

r2
, (2.23)

17



Chapter 2. London model

where ∆A =
@2A

@z2
+
@2A

@r2
+

1

r

@A

@r
. Therefore problem (2.20) in Ω becomes:

8

<

:

�∆A+
A

r2
+ 1

1

�2
A = 0,

A|@Ω = B0
r

2
.

(2.24)

Remark 2.2.1. In the previous section, we have seen that A = B0
r

2
far from the superconductor.

However in problem (2.24) we have made the stronger hypothesis that A(z, 0) = 0 for all z, i.e. A

vanishes on the (Oz) axis. This is actually a direct consequence of (2.18) applied to an arbitrary disk

perpendicular to the z axis; we have

Z

D

B · nda = A(r, z)2⇡r. (2.25)

Moreover the left hand side in (2.25) is bounded by ⇡r2supDB. Hence

|A(z, r)|  r

2
supDB. (2.26)

We conclude that A �!
r!0

0.

Equation (2.24) corresponds to the London model of a cylindrical superconductor. It can actually

be cast in a simpler form using a the stream function Ψ = rA as is done in Danaila et al. (2021) in the

context of vortex ring theory.

Observing that
@

@r

✓

1

r

@(Ar)

@r

◆

=
@A

@r

✓

@

@r
+

A

r

◆

=
@2A

@r2
+

1

r

@A

@r
� A

r2
, we have

∆A� A

r2
=

@

@z

✓

1

r

@(Ar)

@z

◆

+
@

@r

✓

1

r

@(Ar)

@r

◆

. (2.27)

Setting Ψ = rA, (2.24) has the form

8

>

<

>

:

�r̄ · (
1

r
r̄Ψ) + 1

1

�2
Ψ

r
= 0 in Ω,

Ψ = B0
r2

2
on @Ω,

(2.28)

where r̄ =

0

B

@

@

@x
@

@y

1

C

A
denotes the 2D nabla operator. If we make the change of variable

Ψ̃ = Ψ� B0
r2

2
, (2.29)

we see that Ψ̃ verifies the following homogenous Dirichlet problem:

8

<

:

�r̄ · (
1

r
r̄Ψ) + 1

1

�2
Ψ

r
= f,

Ψ = 0, on @Ω,
(2.30)
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2.2. Existence and uniqueness of solutions in a cylindrical problem

where f = 1
B0

�2
r2

2
. In the sequel we study existence and uniqueness for the system (2.30) where f is

a function in L2(Ω).

Remark 2.2.2. we could have also formulate a homogenous Dirichlet problem for the vector potential.

If we make the change of variable

Ã = A� B0
r

2
, (2.31)

we see that (2.24) becomes

8

<

:

�∆Ã+ Ã

✓

1
1

�2
+

1

r2

◆

=
B0

2

✓

1
1

�2
� 1

r

◆

,

Ã|@Ω = 0.
(2.32)

The right hand side of (2.32) is not in L1. This prevents the use of the classical Lax-Milgram theory.

However, the model (2.30) with the stream function can be solved with the Lax-Milgram theorem as we

show below.

We consider two different domains Ω. The first, Ω =]", Rmax[⇥]0, Zmax[ is the simplest since the

singularity introduced by the axis is avoided. The other Ω =]0, Rmax[⇥]0, Zmax[ is more difficult

since classical results do not apply.

• Case of Fig. 2.5 : Ω =]", Rmax[⇥]0, Zmax[.

Figure 2.5. Domain Ω =]ε, Rmax[⇥]� Zmax, Zmax[.

The variational formulation corresponding to (2.30) is

8

<

:

find Ψ 2 H1
0 (Ω) such that,

8v 2 D(Ω),

Z

Ω

1

r
r̄Ψr̄v +

Z

Ω

1
1

�2
Ψ

r
v =

Z

Ω

fv.
(2.33)
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We remark that �r̄ · (
1

r
r̄Ψ) = �r̄ · (Mr̄Ψ) where M is the matrix

0

B

@

1

r
0

0
1

r

1

C

A
.

If � is a vector in R
2, we observe that A� ·� � 1

Rmax
|�|2 and |A�|  1

"
|�|. As a consequence,

we can use the Lax-Milgram theorem (Cioranescu et al., 2018) and the above problem admits a

unique solution.

• Case of fig (2.6): Ω =]0, Rmax[⇥]� Zmax, Zmax[.

Figure 2.6. Domain Ω =]0, Rmax[⇥]� Zmax, Zmax[.

One notice that the weight
1

r
is not bounded in Ω. To give a meaning to integrals in (2.30) we

require that
1

r
Ψ and

1

r
r̄Ψ belong to L2; or equivalently that Ψ and r̄Ψ belong to L2

! defined

as

L2
! :=

⇢

u mesurable Ω ! R,

Z

Ω

|u|2! < 1
�

, (2.34)

where ! =
1

r
is called a weight (Rudin, 1987).

Firstly one can see easily that L2
! ⇢ L1

loc; indeed let B a ball compactly included in Ω and u in

L2
!; then by Hölder inequality

Z

B

u =

Z

B

u
1p
!

p
! 

Z

B

u2! ⇥
Z

B

1

!
< 1. (2.35)

As a result we can define weak derivatives of any function in L2
!. Hence the following definition

makes sense

H1(!) := {u 2 L2
!,ru 2 L2

!}. (2.36)
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H1(!) is called a weighted Sobolev space. We show in Appendix A.2 that it is a Hilbert space

for the scalar product

(Φ,Ψ)H1(!) :=

Z

Ω

1

r
ΦΨ+

Z

Ω

1

r
rΦ ·rΨ. (2.37)

The associated norm is

||Ψ||H1(!) :=
⇣

|| ||2L2
ω
+ ||r̄ ||2L2

ω

⌘ 1

2

. (2.38)

We denote H1
0 (!) the closure of compactly supported functions in H1(!) for the norm (2.38).

It is also a Hilbert space since it is a closed subspace of H1(!).

We are now ready to define the variational formulation associated to (2.30):

8

<

:

find Ψ 2 H1
0 (!) such that,

Z

Ω

1

r
r̄Ψr̄v +

Z

Ω

1
1

�2
Ψ

r
v =

Z

Ω

fv 8v 2 H1
0 (!).

(2.39)

To show that problem (2.39) has a unique solution, we apply the classical Lax-Milgram theory.

Let a denote the bilinear form on H1
0 (!) given by

a(Ψ, v) =

Z

Ω

1

r
r̄Ψr̄v +

Z

Ω

1
1

�2
Ψ

r
v. (2.40)

Applying Cauchy-Schwarz inequality and the definition (2.38) we have

|a(Ψ, v)|  ||r̄Ψ||L2
ω
||r̄v||L2

ω
+

1

�2
||Ψ||L2

ω
||v||L2

ω

 max(1,
1

�2
)||Ψ||H1

0
(!)||v||H1

0
(!).

(2.41)

To prove H1
0 (!)-ellipticity we need the following Poincaré inequality in H1

0 (!):

Proposition 2.2.3. There exists a constant K which depends only on Ω such that for all Ψ in

H1
0 (!)

||Ψ||L2
ω
 Kkr̄ΨkL2

ω
. (2.42)

Using (2.42) we have

||Ψ||2
H1

0
(!) = ||Ψ||2L2

ω
+ ||r̄Ψ||2L2

ω
 (1 +K2)||r̄Ψ||2L2

ω
. (2.43)

From inequality (2.43) we get

|a(Ψ,Ψ)| � ||r̄Ψ||2L2
ω
� 1

1 +K2
||Ψ||2

H1
0
(!), (2.44)

which means that a is H1
0 (!)-elliptic.

We now prove the Poincaré inequality (2.42).
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Chapter 2. London model

Proof. Let u in D(Ω). From the fundamental theorem of integration we have:

u(r, z) =

Z z

0

@u

@z
(r, t)dt. (2.45)

From Cauchy-Schwartz inequality, we obtain:

�

�

�

�

Z z

0

@u

@z
(r, t)dt

�

�

�

�

2


✓Z z

0

�

�

�

�

@u

@z
(r, t)

�

�

�

�

dt

◆2


Z Zmax

0
dt

Z Zmax

0

�

�

�

�

@u

@z
(r, t)

�

�

�

�

2

dt

 Zmax

Z Zmax

0

�

�

�

�

@u

@z
(r, t)

�

�

�

�

2

dt.

(2.46)

We deduce:

|u(r, z)|2  Zmax

Z Zmax

0

�

�

�

�

@u

@z
(r, t)

�

�

�

�

2

dt. (2.47)

The bound on the right being independent with z. Then we multiply (2.47) by ! and integrate

over Ω to obtain:

Z

Ω

! |u| 
Z Rmax

0

Z Zmax

0

"

!Zmax

Z Zmax

0

�

�

�

�

@u

@z
(r, t)

�

�

�

�

2

dt

#

drdz

 Z2
max

Z

Ω

"

!

�

�

�

�

@u

@z
(r, t)

�

�

�

�

2
#

drdt

 Z2
max

Z

Ω

! |ru|2 .

(2.48)

We have proved that for all u 2 D(Ω) there exist a generic constant C independent of u such

that

||u||L2
ω
 C||ru||L2

ω
. (2.49)

Since by definition D(Ω) is dense in H1
0 (!) the proof is complete.

Remark 2.2.4. The Poincaré inequality (2.42) happens to be true for a general class of weight

! belonging to a class called the Muckenhoupt class and denoted by A2 (Fabes et al., 1982).

It implies in particular that

Z

B

! has to be bounded independently of a closed ball B ⇢ Ω. In

our case ! =
1

r
does not verify the latter condition, hence classical results on weighted Sobolev

spaces (Turesson, 2000) do not apply. What makes the Poincaré inequality works in this simple

case is that ! depends only on one variable.

2.3. An integral formulation for the stream function in

the London 2D stationary problem

In this section we establish an integral formula for the stream function Ψ solution of (2.30). The

equation to solve is

�r̄ ·

✓

1

r
r̄ 
◆

+ 1
1

�2
 

r
= �1

B0

�2
r

2
in Ω. (2.50)
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It can be rewritten

✓

@2

@r2
+

1

r

@

@r
� 1

r2
+

@2

@z2

◆✓

 

r

◆

= 1
B0

�2
r

2
� 1

1

�2
 

r
. (2.51)

Here we consider the cylindrical superconductor of Fig. 2.3 as a superposition of ”Circular Vortex

Filament” (CVF). This terminology is borrowed from the vortex dynamics (Danaila et al., 2021). A

CVF is characterized by its radius ⇢s 2 [0, Rs] and its altitude ⇣s 2 [�Zs, Zs] (see Fig. 2.7).

Figure 2.7. The Circular Vortex Filament

Equation (2.51) for a CVF is

✓

@2

@r2
+

1

r

@

@r
� 1

r2
+

@2

@z2

◆✓

 

r

◆

= �(r � ⇢s)�(|z|� ⇣s)



B0⇢s

2�2
� 1

�2
 (⇢s, ⇣s)

⇢s

�

. (2.52)

Equation (2.52) is identical to the stream function of a CVF in vortex theory (Danaila et al., 2021).

It is known that

 CV F (r, z) = Γ0(⇢s, ⇣s)

p
r⇢s

2⇡

✓

2


� 

◆

K()� 2


E()

�

, (2.53)

where Γ0(⇢s, ⇣s) =
B0⇢s

2�2
� 1

�2
 (⇢s, ⇣s)

⇢s
is the strength of the vortex and  =

4r⇢s
z2 + (r + ⇢s)2

. E(k)

and K(k) are elliptic integrals of the first and second kind respectively (see Eqs. (2.70)).

By superposition we deduce a formula for the solution of (2.51):

 (r, z) =

Z

⇢s2[0,Rs],⇣s2[0,Zs]
Γ0(⇢s, ⇣s)

✓

2


� 

◆

K()� 2


E()

�

. (2.54)
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Chapter 2. London model

2.4. Numerical results

In this section we model a cylindrical superconductor using the London model (2.16). In the first

paragraph we study the 2D case from two different points of view. We compute the induced magnetic

field either with the vector potential or by a stream function. We show the agreement between the two

methods. The first point of view has been treated by Caputo et al. (2013), the second is original. We

conclude the paragraph by considering a non homogenous applied field created by a coil. In the third

paragraph we study the 3D case. First we compute the magnetic field inside a bounded external box;

then we consider the more general case of an unbounded external domain; to this purpose we introduce

a boundary element method. Finally, we compare the results with the bounded case.

2.4.1. 2D study

We consider a cylindrical superconductor enclosed in a cylindrical box as in Fig. 2.3. The goal of this

section is to compute the vector potential A = Ae✓ solution of (2.24). Due to the symmetry of the

problem, it is sufficient to consider the domain Ω = [0, Rmax]⇥ [�Zmax, Zmax] shown in Fig 2.8. We

denote S = [0, Rs]⇥ [�Zs, Zs] the superconducting domain.

Figure 2.8. Computational domain Ω and boundaries Γi, i = 1..9.
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2.4. Numerical results

The problem to solve is
8

>

>

<

>

>

:

�∆A+
A

r2
+ 1

1

�2
A = 0 in Ω,

A = 0 on [i2{4,8,9} Γi,

A = B0
r

2
on [i2{5,6,7} Γi.

(2.55)

In the sequel we use the following values for parameters (in SI units):

8

>

>

>

>

<

>

>

>

>

:

Rmax = 37.5⇥ 10�3, Zmax = 32.5⇥ 10�3,

Rs = 1⇥ 10�2, Zs = 6.5⇥ 10�3,

� = 1.6⇥ 10�7,

B0 = 1,
M = 40.

(2.56)

where M refers to the number of nodes on the length Rmax.

Variational formulation and discretization

We use a finite element method to discretize numerically the problem (2.55). To this aim we need to

work in relevant normed spaces called Sobolev spaces. Then we write the variational formulation of

the problem (for a precise definition see Cioranescu et al. (2018)).

We use the following definitions for the Sobolev spaces:

H1(Ω) := {u 2 L2(Ω),ru 2 L2(Ω)},
H1

0 (Ω) := {u 2 L2(Ω),ru 2 L2(Ω), u = 0 on @Ω},
V := {u 2 H1(Ω), u = 0 on Γ4 [ Γ8 [ Γ6 [ Γ7}.

(2.57)

To find the variational formulation, we multiply Eq. (2.55) by a function called a test function v

and integrate by parts; we end up with an integral formulation of the problem with only first order

derivatives. The variational form of (2.55) is to find A in H1(Ω) such that for all v in V

Z

Ω

r̄A · r̄v �
Z

Ω

1

r

@A

@r
v +

Z

Ω

1

r2
Av +

Z

Ω

1
1

�2
Av = 0, (2.58)

where r̄ =

0

B

@

@

@x
@

@y

1

C

A
denotes the 2D nabla operator.

To discretize the variational formulation (2.58) we use the standard piecewise quadratic Lagrange

FE P 2. FreeFEM allows a straightforward coding of (2.58):

varf Vpot(A,v) = int2d(Th)(dx(A)*dx(v)+dy(A)*dy(v)

- int2d(Th)(dx(A)*v/x)

+ int2d(Th)(A*v/xˆ2)

+ int2d(Th)(Indicatrix/lambdaˆ2*A*v)

+ on(4, 8, 9, 5, 6, 7, A = 0);

The magnetic field B(Br, Bz, B✓) is computed by the formula B = r ⇥ A which, in cylindrical
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Chapter 2. London model

coordinates, becomes

8

>

>

>

<

>

>

>

:

Br = �@A
@z

,

Bz =
1

r

@(rA)

@r
=
@A

@r
+

A

r
,

B✓ = 0.

(2.59)

The implementation of (2.59) with FreeFEM is made by a variational formulation:

//===== Br component

varf champBr(Br,v) = int2d(Th)(Br*v)

+ on(4,5,6,7,8,9, Br=0);

varf Brbc(Br,v) = int2d(Th)(-1.*dy(A)*v)

+ on(4,5,6,7,8,9, Br=0); // right hand side

//===== Bz component

varf champBz(Bz,v) = int2d(Th)(Bz*v)

+ on(5,6,7,Bz=B0);

varf Bzbc(Bz,v) = int2d(Th)(A*v/x)

+ int2d(Th)(dx(A)*v)

+ on(5,6,7,Bz=B0); // right hand side

Figures 2.10-2.11 show the vector potential and the magnetic field computed on the uniform mesh

Fig. 2.9. We observe an enhancement of the field near the edge Γ2: it is the classical demagnetization

effect due on the one hand to the divergencefree nature of the magnetic field and, on the other hand to

its expulsion from the bulk of the superconductor. Similar effects are observed near the edges of an

obstacle immersed in a potential flow with zero viscosity.

In Fig. 2.10 we observe a sharp variation of the magnetic field near Γ2. To better capture the solution

we use mesh adaptivity, a standard function in FreeFEM (Hecht, 1998). The mesh is refined where a

specified function varies sharply. In this case the function is Bz . Figure 2.11 shows the adapted mesh

and the magnetic field on the new mesh. The values of the magnetic field near the edges are computed

more accurately. Indeed, The mesh adaptation strategy is to compute the best mesh with respect to

a given numerical error (Loseille and Alauzet, 2011). Moreover this optimization process keeps the

number of triangles approximately constant. Hence the new linear system to solve is of the same size

than the one with a uniform mesh.

Figure 2.9. London model in 2D. Uniform mesh.
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2.4. Numerical results

Figure 2.10. London model in 2D. Stationary solution for the vector potential (left), for the

magnetic field ||B|| (right).

Figure 2.11. London model in 2D. Mesh after anisotropic adaptation (left), magnetic field

on the adapted mesh ||B|| (right).

Alternative formulation using a stream function

In this section we study the alternative formulation (2.30) of problem (2.55). The system to solve is

8

<

:

�r̄ ·

✓

1

r
r̄Ψ

◆

+ 1
1

�2
Ψ

r
= �1

B0

�2
r

2
in Ω,

Ψ = 0 on @Ω.

(2.60)
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The variational formulation of (2.60) is to find Ψ in H1(Ω) such that for all v in H1
0 (Ω) we have

Z

Ω

1

r
r̄Ψ · r̄v +

Z

Ω

1
1

�2
Ψ

r
v +

Z

Ω

1
B0

�2
r

2
v = 0. (2.61)

Implementing (2.61) with FreeFEM gives

varf VPsi(Psi,v)= int2d(Th)((dx(Psi)*dx(v)+dy(Psi)*dy(v))/x)

+int2d(Th)(Indicatrix/lambdaˆ2*Psi/x*v)

+on(4,5,6,7,8,9,Psi=0); // matrix

varf VrhsPsi(Psi,v)= - int2d(Th)(Indicatrix/lambdaˆ2*B0*x/2*v)

+ on(4,5,6,7,8,9,Psi=0); // right hand side

From the change of variables (2.29), we have A =
1

r

⇣

Ψ+ B0
r

2

⌘

; hence the magnetic field is

deduced from formula (2.59) 8

>

>

>

<

>

>

>

:

Br = �1

r

@Ψ

@z
,

Bz =
1

r

@Ψ

@r
+ B0,

B✓ = 0.

(2.62)

Figure 2.12 (left) shows the stream function Ψ. It resembles the vorticity distribution in a vortex

ring we can find in Danaila et al. (2021). It is not surprising since we have seen in (2.3) that the

superconductor can be viewed as a superposition of circular vortex filaments.

The magnetic field on Fig. 2.12 (middle) is visually close to the one computed with the vector

potential (2.10). More precisely, Fig. 2.12 (right) shows the norm ||B � BA|| of the difference

between magnetic fields computed with the two methods. The agreement is very good.

Figure 2.12. London model in 2D. Stream function (left), magnetic field ||B|| (middle), error

||B � BA|| between the two methods (2.61) and (2.58) (right).
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2.4. Numerical results

London problem coupled with the finite solenoid

The goal of this section is to compute the magnetic field resulting from the interaction between a coil of

finite length and a superconductor in the Meissner state. First we recall the formulae used to compute

the vector potential and the magnetic field created by a finite solenoid. Then we solve the London

equation when a non-uniform magnetic field is applied, in particular the one generated by a coil.

We consider a finite solenoid of length L along the z axis and radius a along the r axis (see Fig.

2.13).

Figure 2.13. Solenoid of finite length L and radius a.

We suppose that the solenoid is constituted of N turns of wire and i is the current circulating in the

wire. We denote I = Ni the total current carried by the coil. Then the surface current density K can

be written

K =
I

L
�(r � a)e✓, (2.63)

where � is the Dirac function.

By the Ampere’s law of magnetostatic we know that r⇥ B = µ0K. Since B = r⇥ A we deduce

r⇥r⇥ A = µ0K. (2.64)

By cylindrical symmetry A = A(r, z)e✓, hence div A = 0. As a result r ⇥ r ⇥ A = �∆A and we

end up with the Laplace equation:

�∆A = µ0K. (2.65)

The solution of (2.65) is well known:

A(r, z) =
µ0

4⇡

Z

R3

K(x0)

|x � x0|
dx0, (2.66)

where x = (r, z, ✓) is the point of observation and K =
I

L
�(r0 � a).
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Formula (2.66) can be made explicit using special functions (Jackson, 1999):

A(r, z) = �µ0

4⇡

I

L

r

a

r



⇣k

✓

k2 + h2 � h2k2

h2k2
K(k)� 1

k2
E(k) +

h2 � 1

h2
Π(h, k)

◆�⇣+

⇣−

, (2.67)

where

⇣± = z ⌥ L

2
,

k2 =
4ar

⇣2 + (a+ r)2
,

h2 =
4ar

(a+ r)2
,

K(k), E(k),Π(h, k), are the first, second and third elliptic integral, respectively.

(2.68)

Thanks to the formula (2.59), we can calculate the magnetic field which is contained in the (z, r)
plane:

Br = �µ0

2⇡

I

L

r

a

r



k2 � 2

k
K(k) +

2

k
E(k)

�⇣+

⇣−

,

Bz = �µ0

2⇡

I

L

1

2
p
ar



⇣k

✓

K(k) +
a� r

a+ r
Π(h, k)

◆�⇣+

⇣−

.

(2.69)

FreeFEM offers a practical way to compute the elliptic integrals. We recall that by definition

E(k) =

Z π
2

0

p

1� k2 sin2 ✓d✓,

K(k) =

Z π
2

0

d✓
p

1� k2 sin2 ✓
,

Π(h, k) =

Z π
2

0

d✓
p

1� k2 sin2 ✓(1� h2 sin2 ✓)
.

(2.70)

The segment
h

0,
⇡

2

i

is partitioned using the meshL type:

meshL Th = segment(100, [pi/2.*x, y]);

The trigonometric functions under the integral signs are discretized using a standard linear Lagrange

FE P 1; then the integral is computed in one line. For example the macro for E(k) is

macro secondKind(k) int1d(Th)(sqrt(1. - (k*sin(x))*(k*sin(x))))//

Figure 2.14 shows the vector potential and the magnetic field obtained with Eqs. (2.67) and (2.69).

Only the domain r � 0 is represented; the solution for r  0 is obtained by symmetry with respect to

the z axis. The parameters are the following:

a = 1.5⇥ 10�2,

L = 1.3⇥ 10�2,

I = 1.

(2.71)
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2.4. Numerical results

Figure 2.14. Vector potential (left) and magnetic field (right) created by a solenoid.

We now consider a cylindrical superconductor inserted in a coil. Figure 2.15 (left) shows the exper-

imental set-up used to magnetize superconductors. To simplify the problem, we assume the coil is a

strip encircling the superconductor (see Fig. 2.15 right).

Figure 2.15. Experimental set-up (left). Computational domain (right).

We have seen in section (2.1) that, in the case of non homogenous applied field, the London equation

is

�∆A + 1
1

�2
A = µ0r⇥ H. (2.72)

We denote µ0H = r ⇥ AH where AH is the vector potential associated to the coil; it is given by

formula (2.67). Since div AH = 0, (2.72) becomes

�∆A + 1
1

�2
A = �∆AH . (2.73)
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In the same way as we obtained (2.58), we deduce the variational formulation of (2.73):

Z

Ω

r̄A · r̄v �
Z

Ω

1

r

@A

@r
v +

Z

Ω

1

r2
Av +

Z

Ω

1
1

�2
Av =

Z

Ω

r̄AH · r̄v �
Z

Ω

1

r

@AH

@r
v +

Z

Ω

1

r2
AHv.

(2.74)

We use linear Lagrange finite elements P1 in space. Figure 2.16 shows the results. The parameters

for the coil are given by (2.71).

Figure 2.16. Magnetic field resulting from the interaction of a superconductor in the Meiss-

ner state and a finite solenoid.
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2.4.2. 3D study

In this section we wish to solve directly the 3D problem (2.17) using Cartesian coordinates. Firstly, we

wish to recover the solution computed in the 2D case where we used cylindrical coordinates. Second,

we would like to get rid of the constraint of a bounded external domain which is an approximation of

reality. We treat the unbounded case using a boundary element approach, a recent feature of FreeFEM.

We recall the parameters (2.56):

8

>

>

>

>

<

>

>

>

>

:

Rmax = 37.5⇥ 10�3, Zmax = 32.5⇥ 10�3,

Rs = 1⇥ 10�2, Zs = 6.5⇥ 10�3,

� = 1.6⇥ 10�7,

B0 = 1,
M = 40.

(2.75)

where M refers to the number of nodes on the length Rmax.

First case : the bounded external domain

We rewrite here the London model in Cartesian coordinates as seen in Section 2.2. We denote O an

external cylindrical box and S a cylindrical superconductor (see Fig. 2.3):

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

�∆Ax + 1
Ax

�2
= 0 in O,

�∆Ay + 1
Ay

�2
= 0 in O,

Ax = �B0
y

2
on @O,

Ay = B0
x

2
on @O,

Az = 0 on @O.

(2.76)

To find the variational formulation of problem (2.76) we multiply each equation by a test function

vµ (µ = x, y, z) and perform an integration by parts. We have to find Aµ component of A in H1(O)
such that for every vµ in H1

0 (O)

X

µ

(rAµ,rvµ) +
1

�2

X

µ

(1Aµ, vµ) = 0, (2.77)

where we use the standard notation (u, v) =

Z

O
uv for the scalar product in L2.

To discretize (2.77) we use linear Lagrange FE P 1. The transposition of (2.77) in FreeFEM syntax

is simple:

varf vPb([A, Ay, Az], [v, vy, vz]) =

int3d(Th)(grad(A)’ * grad(v)

+ grad(Ay)’ * grad(vy)

+ grad(Az)’ * grad(vz)

+ Ind/lambdaˆ2 * [A, Ay, Az]’*[v, vy, vz])

+ on(1, 2, 3, A = -B0*y/2., Ay = B0*x/2., Az = 0.);

Here grad is a macro defined by the user:

macro grad(u)[dx(u), dy(u), dz(u)]//
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The magnetic field B = (Bx, By, Bz) is computed taking the curl of A. Since we assume Az = 0 it

is given by:
8

>

>

>

>

<

>

>

>

>

:

Bx = �@Ay

@z
,

By =
@Ax

@z
,

Bz =
@Ay

@x
� @Ax

@y
.

(2.78)

Figures 2.17-2.18 show the results. We recover the demagnetization effect with an increase of the

field near the edge of the superconductor. However the effect is stronger than in the 2D results. An

exclusion zone appears clearly above and below the superconducting cylinder. This ability to expel the

magnetic flux called shielding is extensively used in medical or military applications.

In Fig. 2.18 (right) we compare the amplitude of the vector potential in the (y, z) plane with the

one computed in 2D with Eq. (2.58). To be consistent we use linear Lagrange finite elements P 1 for

both. The error is maximum along the edge of the superconductor. It is understandable since the vector

potential varies rapidly near the edges (see Fig. 2.18 left).

Figure 2.17. London model in 3D, bounded case. Magnetic field in the (yz) plane (left).

Magnetic field on the (xy) plane (right).

Figure 2.18. London model in 3D, bounded case. Projection of the vector potential on the

yz plane (left). Difference between the 3D and 2D solutions (right).
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2.4. Numerical results

In an unbounded domain

As we said in the introduction of the section, we want to treat the more realistic case of an unbounded

external domain. For a uniform and static external magnetic field B0 the problem is

�∆A + 1
A

�2
= 0,

r⇥ A !
|r|!1

B0.
(2.79)

The continuity of A and of the Neumann trace rA · n is required across the boundary Γ := @Ω; the

reason for this will appear in the sequel. Therefore we add the jump conditions

[A]
Γ
= 0,

[rA · n]
Γ
= 0.

(2.80)

We make the change of variables

A = A0 + A0, (2.81)

where r⇥ A0 = B0 since we want to have homogenous boundary conditions at infinity. In this case

we have A0 =

0

B

@

�B0

2
y

B0

2
x

1

C

A
.

Plugging (2.81) in (2.79)-(2.80) and dropping the primes, we obtain the London model in the un-

bounded case
8

>

>

>

>

<

>

>

>

>

:

�∆A + 1Ω

A

�2
= �1Ω

A0

�2
,

r⇥ A !
|r|!0

0,

[A]
Γ
= 0,

[rA · n]
Γ
= 0.

(2.82)

From now on, we expose the method to solve (2.82): it is called boundary element method (BEM).

We can find a very similar problem in Bielak and MacCamy (1983). They studied the propagation of a

wave of a given frequency in an elastic material; in addition they introduce an obstacle. The interface

condition between the surrounding material and the obstacle are identical to (2.80). By analogy the

obstacle is the superconductor and the elastic material is the air outside.

We follow the presentation of Bielak and MacCamy (1983) and introduce the necessary mathemat-

ical tools. The main idea of the BEM is the following. In the exterior, the vector potential obeys the

simple Laplace equation

�∆A = 0 in R
3\Ω. (2.83)

An interesting property of the Laplacian operator is that we can find the solution of (2.83) at any point

in the exterior of the superconductor provided we know it on its surface. The goal is then to build a

system equivalent to (2.82) but replacing the unbounded exterior by the surface Γ of the superconductor

(see the system (2.91)). Finally we are left with discretizing “only” the interior and the surface of the

superconductor. Finite elements defined on the surface are called boundary elements. The final linear

system is written in (2.94).

Let χ be a vector function defined on Γ. We first define the single layer potential SL and the double
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layer potential DL

SL(χ)(x) :=

Z

Γ

G(x, y)χ(y)d�(y) 8x 2 R
3\Γ,

DL(χ)(x) :=

Z

Γ

@

@ny
G(x, y)χ(y)d�(y) 8x 2 R

3\Γ,
(2.84)

where G is the Green function of the Laplace equation in R
3. It is given by:

G(x, y) =
1

4⇡|x � y|
. (2.85)

We now define the boundary integral operators (BIO) S,N ,D. For every function χ defined on the

boundary

S(χ)(x) :=

Z

Γ

S(x, y)χ(y)d�(y), S(x, y) = G(x, y)

�

�

�

�

�

x2Γ

,

N (χ)(x) :=

Z

Γ

N (x, y)χ(y)d�(y), N (x, y) =
@G

@nx
(x, y)

�

�

�

�

�

x2Γ

,

D(χ)(x) :=

Z

Γ

D(x, y)χ(y)d�(y), D(x, y) =
@G

@ny
(x, y)

�

�

�

�

�

x2Γ

.

(2.86)

The main result is that we have explicit formulae for the Dirichlet and Neumann traces of the poten-

tials (2.84); and these traces can be expressed with the BIO (2.86) as follows

�D
+ � SL(χ) = S(χ), �N

+ � SL(χ) = 1

2
χ+N (χ), (2.87)

where �+D and �+N are Dirichlet (resp. Neumann) traces taken from the exterior, N being the normal to

the boundary Γ oriented towards the exterior R3\Ω̄.

Moreover we know that there exist a unique function χ defined on the boundary Γ such that

A = SL(χ) in R
3\Ω̄. (2.88)

From (2.87) and (2.88) we deduce that

�D
+ � A = S(χ) and �N

+ � A =
1

2
χ+N (χ). (2.89)

From the jump conditions at the boundary (2.80) and using (2.89) we have

�D
� � A = S(χ) and �N

� � A =
1

2
χ+N (χ). (2.90)

Finally the problem is

36



2.4. Numerical results

�∆A +
1

�2
A = � 1

�2
A0 in Ω,

�D
� � A = S(χ) on Γ,

�N
� � A =

1

2
χ+N (χ) on Γ.

(2.91)

Multiplying (2.91)1 by a test function Ã and (2.91)2 by a test function χ̃ then integrating by parts

we obtain the following variational formulation: find A and χ such that for every Ã, χ̃

(rA,rÃ)� (�N
� � A, �D

� � Ã) +
1

�2
(A, Ã) +

1

�2
(A0, Ã) = 0,

(A, χ̃) = (S(χ), χ̃).
(2.92)

We solve each component Ai, �i with i 2 {1, 2} separately since they are not coupled. We drop the

index i since the system is formally identical for each component and rewrite (2.92)

(rA,rÃ)� (�N
� �A, �D� � Ã) +

1

�2
(A, Ã) +

1

�2
(A0, Ã) = 0,

(A, �̃) = (S(�), �̃).
(2.93)

We now discretize the system (2.93). We approximate the domain Ω by a Ωh = [K2ThK where

Th is a set of tetrahedrons and h is the mesh size. The boundary Γh := Γh is a union of triangles. We

approximate the fields A and � by their projections Ah and �h on the spaces of linear Lagrange FEs

denoted by V and W respectively. The system (2.92) becomes finite dimensional and its projection on

a basis (vi)⇥ (wj) of V ⇥W can be written

✓

L �N

M �S

◆ ✓

Ah

�h

◆

=

✓

F

0

◆

, (2.94)

S 2 R
nW⇥nW , Sij =

Z

Γ⇥Γ

G(x, y)wi(x)wj(y)d�(x)�(y),

N 2 R
nV⇥nW , Nij =

1

2

Z

Γ

viwj +

Z

Γ⇥Γ

@

@nx
G(x, y)vi(x)wj(y)d�(x)d�(y),

M 2 R
nW⇥nV , Mij =

Z

Γ

wivj .

(2.95)

Figures 2.19-2.20 show the results. In Fig. 2.19, the edges of the superconductor appear to be well

delimited compared to (2.17); the reason is that we use piecewise constant FEs in the present case

instead of P 1. In Fig. 2.20, we compare the amplitude of the vector potential in the (y, z) plane with

the one computed in 2D with Eq. (2.58). Linear Lagrange finite elements P 1 is used for both. As

expected, the error is maximum on the z = 0 plane for y = Rmax. In 2D flux lines are indeed assumed

straight at y = Rmax but they are not in the present model; moreover their curvature is maximum on

the plane z = 0.
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Chapter 2. London model

Figure 2.19. London model in 3D, unbounded case. Vector potential in the yz plane (left).

Magnetic field in the (yz) plane (right).

Figure 2.20. London model in 3D, unbounded case. Difference between the BEM and 2D

solutions.

In this chapter we have studied the Meissner state of a superconductor. The superconductor expels

the magnetic flux as long as the applied field is below the first critical field Hc1. Between Hc1 and

Hc2 the superconductor is in a mixed state with flux lines or vortices entering the domain. This is the

subject of the next chapter.
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3. The time dependent
Ginzburg-Landau model

In this chapter we introduce the TDGL model. We begin by a definition of the GL Gibbs free energy.

Then we describe the TDGL model, the main scalings used in the literature, the concept of gauge and

!-gauge. Next, we outline the main results about existence and uniqueness of solutions. Subsequently,

we present numerical examples in 2D and 3D. We end the chapter by a study of convergence orders

for a mixed scheme using the !-gauge.

3.1. Ginzburg-Landau free energy

Ginzburg and Landau, in their original paper (Ginzburg and Landau, 1950), decided to apply Landau’s

theory of second order phase transition to superconductors. Hence they postulated the existence of

a complex valued function called the order parameter and denoted by  . This function describes

completely the state of a superconductor. In particular the modulus | |2 corresponds to the density of

Cooper pairs in the material.

They introduced the following energy density:

f = fn + ↵| |2 +
�

2
| |4 +

B2

2µ0
+

1

2ms
|(�i~r� esA) |2 . (3.1)

where fn is the free energy of the normal phase; ↵ and � are parameters which depend on the super-

conductor and the temperature. Near Tc we have at the first order:

↵ = ↵0 (T � Tc) , ↵0 > 0,
� = �0.

(3.2)

Notice that ↵ < 0 below Tc.

As in the London expression of the free energy (2.1) we have three terms:

Fs := ↵| |2 +
�

2
| |4 : the condensation energy density,

Ekin :=
1

2ms
|(�i~r� esA) |2 : the kinetic energy density,

Emag :=
B2

2µ0
: the magnetic energy density.

(3.3)

It happens that the free energy density (3.1) is adapted to the case where the magnetic induction B

and temperature T are fixed. However the situation of interest is the case where the applied magnetic

field H and the temperature T are fixed. Therefore we shall consider the Gibbs free energy (see
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Chapter 3. The time dependent Ginzburg-Landau model

de Gennes (1966) for details):

g = f � B · H. (3.4)

Then using (3.1) we find that

g = fn + ↵| |2 +
�

2
| |4 +

B2

2µ0
+

1

2ms
|(�i~r� esA) |2 � B · H. (3.5)

Since B = r⇥ A we deduce

g = fn + ↵| |2 +
�

2
| |4 +

1

2ms
|(�i~r� esA) |2 +

1

2µ0
|r⇥ A � µ0H|2 . (3.6)

The total Gibbs free energy of the superconductors is then obtained by integrating (3.6) over the

domain Ω of the superconductor

G = G0 +

Z

Ω

↵| |2 +
�

2
| |4 +

1

2ms
|(�i~r� esA) |2 +

1

2µ0
|r⇥ A � µ0H|2 , (3.7)

where G0 =

Z

Ω

fn is a constant.

3.2. Definition of the TDGL model and scaling

The equations of motion for the order parameter  and the vector potential A are the Euler-Lagrange

equations associated to the Gibbs free energy density (3.7). We denote by Ω the superconducting

domain and Γ := @Ω its boundary. In the SI units, the TDGL system reads:

~
2

2msD

✓

@

@t
+ i

es

~
�

◆

 =
~
2

2ms

⇣

r� i
es

~
A
⌘2
 � ↵ � �| |2 in Ω,

�

✓

@A

@t
+r�

◆

=
es~

2msi
( ⇤r �  r ⇤)� e2s

ms
| |2A � 1

µ0
r⇥ (r⇥ A � µ0H) in Ω.

(3.8)

The boundary conditions read:

(i~r � esA ) · n = 0 on Γ,

r⇥ A ⇥ n =
1

µ0
H ⇥ n on Γ,

E · n = 0 on Γ.

(3.9)

The initial conditions read:
 (x, 0) =  0(x) in Ω,

A(x, 0) = A0(x) in Ω.
(3.10)

D is a phenomenological diffusion coefficient, � the electric potential and � has the dimension of
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3.2. Definition of the TDGL model and scaling

an electrical conductivity. We can rewrite Eq. (3.8)2 for the vector potential as

1

µ0
r⇥ (r⇥ A � µ0H) = Js + Jn, (3.11)

where

Js =
es~

2msi
( ⇤r �  r ⇤)� e2s

ms
| |2A,

Jn = ��
✓

@A

@t
+r�

◆

.

(3.12)

Hence we see that (3.11) is similar to the usual Maxwell-Ampere equation taking into accounts two

kind of currents: Js called supercurrent and Jn called normal current.

Boundary condition (i~r � esA ) · n = 0 implies that Js · n = 0; it means that the supercurrent

does not escape from the superconductor. In the same manner E ·n = 0 implies that Jn ·n = 0. Finally

r⇥A⇥n =
1

µ0
H⇥n ensures the continuity of the tangential component of the magnetic field, which

is the usual condition in electromagnetism provided there are no surface currents.

In order to non-dimensionalize (3.8) we start from the general scaling:

x0 =
x

x0
,  0 =

 

 0
, A0 =

A

A0
,

�0 =
�

�0
, H0 =

x0µ0

A0
H, �0 =

�

�0
.

(3.13)

Plugging (3.13) in (3.8) and dropping the primes for clarity we obtain:

~
2

2msDt0

✓

@

@t
+ i

est0�0

~
�

◆

 = � 2
0

"

~
2

2msx
2
0� 

2
0

✓

r� i
esx0A0

~
A

◆2

 � ↵

� 0
 � | |2 

#

,

A0

µ0x
2
0

r⇥
�

r⇥ A0 � H
�

=
~es 

2
0

msx0



1

2i
( ⇤r �  r ⇤)

�esx0A0

~
| |2A +

A0x0es

~

ms��0

e2s 
2
0t0

✓

�r� �0t0
A0x0

� @A

@t

◆�

.

(3.14)

We set the following:

 2
0 =

�↵
�

, A0 =
~

es⇠
,

�0t0

A0x0
= 1, �0 =

1

2Dµ0
. (3.15)

where ⇠ :=

s

~2

2ms(�↵)
is the coherence length and  =

�

⇠
. Then (3.14) reads:

⇠2

Dt0

✓

@

@t
+ i

x0

⇠
�

◆

 =
⇠2

x20

✓

r� i
x0

⇠
A

◆2

 +  � | |2 ,

�2

x0⇠
r⇥ (r⇥ A � H) =

1

2i
( ⇤r �  r ⇤)� x0

⇠
| |2A +

x0⇠

t0D
�

✓

�r�� @A

@t

◆

,

(3.16)
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where � :=

s

ms�

µ0e2s(�↵)
is the London length.

In the sequel we describe three possible choices for x0 and t0 that can be found in the literature. The

first choice can be found for example in Chapman (2000), the second choice in Winiecki and Adams

(2002) and the third choice in Gropp et al. (1996).

• Choice 1

We set:
8

<

:

x0 = �,

t0 =
�2

D
.

(3.17)

Then (3.16) reads:

1

2

✓

@

@t
+ i�

◆

 =

✓

1


r� iA

◆2

 +  0 � | |2 ,

r⇥ (r⇥ A � H) =
1

2i
( ⇤r �  r ⇤)� | |2A +

�

2

✓

�r�� @A

@t

◆

.

(3.18)

• Choice 2

We set:
8

<

:

x0 = ⇠,

t0 =
⇠2

D
.

(3.19)

Then (3.16) reads:

✓

@

@t
+ i�

◆

 = (r� iA)2  +  � | |2 ,

2r⇥ (r⇥ A � H) =
1

2i
( ⇤r �  r ⇤)� | |2A + �

✓

�r�� @A

@t

◆

.

(3.20)

• Choice 3

We set:
8

<

:

x0 = �,

t0 =
⇠2

D
.

(3.21)

Then (3.16) reads:

✓

@

@t
+ i�

◆

 =

✓

1


r� iA

◆2

 +  � | |2 ,

r⇥ (r⇥ A � H) =
1

2i
( ⇤r �  r ⇤)� | |2A + �

✓

�r�� @A

@t

◆

.

(3.22)

Scaling (3.21) is the most common in the literature and we will use it in the sequel. Using the scaling
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3.3. Gauge definition and properties

(3.15) for A and  and the London length � as unit length, the Gibbs free energy (3.7) becomes in

units of
↵2

�
:

G = G0 +

Z

Ω

1

2

�

| |2 � 1
�

+

�

�

�

�

✓

1


r� iA

◆

 

�

�

�

�

2

+ |r⇥ A � H|2 . (3.23)

3.3. Gauge definition and properties

Energy (3.23) is invariant under certain mathematical transformations called gauge transformations.

Therefore the physical properties of the system do not depend on these transformations. In Du (1994b)

we find the general definition of a gauge for the TDGL model:

Definition 3.3.1. Given a function �, a gauge transformation is a linear transformation G� given by

G�( ,A,�) = (⇣,Q,Θ),

where ⇣ =  ei�,Q = A +r�,Θ = �� @�

@t
.

(3.24)

If G�( ,A,�) = (⇣,Q,Θ) then (⇣,Q,Θ) and ( ,A,�) are said to be gauge equivalent. It is easily

seen from (3.24) that r⇥ Q = r⇥ A and |⇣|2 = | |2; hence the magnetic field or the density of the

charge carriers, two physically relevant quantities, do not depend on the gauge. Moreover we see that:

✓

1


r� iQ

◆

⇣ =

✓

1


r� iA

◆

 ei�. (3.25)

As a result the kinetic term

�

�

�

�

✓

1


r� iA

◆

 

�

�

�

�

2

in (3.23) is invariant under the transformation (3.24).

We conclude that the energy (3.23) is gauge invariant.

In the literature three kind of gauges are usually employed. We now detail each of them.

Definition 3.3.2. (Coulomb gauge)

Given a solution ( ,A,�) we can find a function � such that

∆� = � divA in Ω,

r� · n = �A · n on Γ.
(3.26)

The transformed A verifies divA = 0 in Ω and A · n = 0 on Γ. Moreover TDGL equations (3.22)

with � = 1 are given by the following proposition.

43



Chapter 3. The time dependent Ginzburg-Landau model

Proposition 3.3.3. (TDGL model under Coulomb gauge)

✓

@

@t
+ i�

◆

 =

✓

1


r� iA

◆2

 +  � | |2 in Ω,

@A

@t
+r⇥r⇥ A +r� =

1

2i
( ⇤r �  r ⇤)� | |2A +r⇥ H in Ω,

�∆� = div

✓

1

2i
( ⇤r �  r ⇤)� | |2A

◆

in Ω,

divA = 0 in Ω,

r · n = 0, r� · n = 0 on Γ,

rA ⇥ n = H ⇥ n, A · n = 0, on Γ.

(3.27)

Remark 3.3.4. The Coulomb gauge seems attractive since we have the simplification r ⇥r ⇥ A =
�∆A. However the null divergence condition is in general difficult to impose numerically. Moreover

the use of a Laplacian for A classically implies Dirichlet or Neumann type boundary conditions which

is not the case in (3.27).

Definition 3.3.5. (Lorentz gauge � = � divA)

Given a solution ( ,A,�) we can find a function � such that

@�

@t
�∆� = �+ divA in Ω,

r� · n = �A · n on Γ,

at t=0, ∆� = � divA in Ω, r� · n = �A · n on Γ.

(3.28)

The transformed A verifies � = � divA in Ω and A · n = 0 on Γ. Moreover the TDGL equations

(3.22) with � = 1 are given by the following proposition.

Proposition 3.3.6. (TDGL model under Lorentz gauge)

✓

@

@t
� i divA

◆

 =

✓

1


r� iA

◆2

 +  � | |2 in Ω,

@A

@t
�∆A +r� =

1

2i
( ⇤r �  r ⇤)� | |2A +r⇥ H in Ω,

rA ⇥ n = H ⇥ n, A · n = 0, r · n = 0 on Γ.

(3.29)

Definition 3.3.7. (Temporal gauge � = 0)

Given a solution ( ,A,�) we can find a function � such that

@�

@t
= � in Ω,

r� · n = �A · n on Γ,

at t=0, ∆� = � divA in Ω r� · n = �A · n on Γ.

(3.30)

The transformed A verifies � = 0 in Ω and A · n = 0 on Γ. Moreover TDGL equations (3.22) with

� = 1 are given by the following proposition.
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Proposition 3.3.8. (TDGL model under temporal gauge)

@ 

@t
=

✓

1


r� iA

◆2

 +  � | |2 in Ω,

@A

@t
+r⇥r⇥ A =

1

2i
( ⇤r �  r ⇤)� | |2A +r⇥ H in Ω,

rA ⇥ n = H ⇥ n, A · n = 0, r · n = 0 on Γ.

(3.31)

The system (3.31) actually coincides with the classical descent method used in physics to find the

state of lowest energy. Using the Gibbs energy (3.23), the descent method is

@ 

@t
= � @G

@ ⇤
( ,A),

@A

@t
= �@G

@A
( ,A).

(3.32)

Replacing the expressions of the derivatives in (3.32), we obtain a system identical to (3.31). Hence,

TDGL model is equivalent to a descent method. We will come back to this remark in Chapter 4.

Remark 3.3.9. It is interesting to note that in the temporal gauge A may not be divergence free. Indeed

we have the following lemma

Lemma 3.3.10.
@

@t
divA = � i

2


✓

 
@ ⇤

@t
�  ⇤@ 

@t

◆

. (3.33)

In hydrodynamic coordinates  =
p
⇢ei✓ then the lemma reads

@ divA

@t
= �⇢@✓

@t
.

It has been noticed by Fleckinger-Pellé et al. (1997) that we can define a more general gauge by

� = �! divA, (3.34)

where ! � 0. It is called the !-gauge. If ! = 0 then � = 0 and we observe that we recover the

temporal gauge; if ! = 1 then � = � divA and we recover the Lorentz gauge; finally if ! ! 1 then

we must have divA = 0 and we find the Coulomb gauge. The !-gauge is therefore an interesting tool

that allows us to consider several gauges within a unified framework. In Section 3.7, we use extensively

this property. The TDGL under the !-gauge is:

✓

@

@t
� i! divA

◆

 =

✓

1


r� iA

◆2

 +  � | |2 in Ω,

@A

@t
+r⇥r⇥ A � !r divA =

1

2i
( ⇤r �  r ⇤)� | |2A +r⇥ H in Ω,

r⇥ A ⇥ n = H ⇥ n, A · n = 0, r · n = 0 on Γ.

(3.35)
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Chapter 3. The time dependent Ginzburg-Landau model

3.4. Mathematical results about TDGL solutions

In this part we describe some important mathematical properties of the TDGL model: the boundedness

of | |, the decrease of the energy with time and eventually existence and uniqueness results for the

TDGL model under the temporal gauge.

Let us introduce some notations. In the following Hs(Ω) denotes the Sobolev space of order s,

Hs(Ω) the complex Sobolev space of order s, and Hs(Ω) := (Hs(Ω))d where d = 2 or d = 3. Each

of these spaces are Hilbert spaces equipped with a norm denoted by || · ||s. For more details about

Sobolev spaces one may consult Adams and Fournier (2003) or Cioranescu et al. (2018). Similarly

we use Lp(Ω), Lp(Ω) and Lp(Ω) for the Lebesgue spaces of p-integrable functions. In addition, we

introduce:
H1

n(Ω) := {A 2 H1(Ω),A · n = 0 on @Ω},
H1

n(div,Ω) := {A 2 H1
n(Ω), divA = 0},

H(div) := {A 2 L2(Ω), divA 2 L2(Ω)},
H0(div) := {A 2 L2(Ω), divA 2 L2(Ω) and A · n = 0},
H(curl) := {γ 2 L2(Ω),r⇥ γ 2 L2(Ω)},
H0(curl) := {γ 2 L2(Ω),r⇥ γ 2 L2(Ω) and γ ⇥ n = 0}.

(3.36)

The following proposition sets out a bound for | |.

Proposition 3.4.1. Hoffmann and Tang (2001) Let ( ,A,�) a solution of the TDGL model. Assume

that, at initial time, | 0(x)|  1, then

| (x, t)|  1 for almost all x 2 Ω, t > 0. (3.37)

The next result gives an explicit formula for the time derivative of the Gibbs energy (3.23).

Proposition 3.4.2. Hoffmann and Tang (2001) Let u = ( ,�,A) be a triplet of solutions of (3.22), H

be independent of time. We have

d

dt
G(u) = �||

@ 

@t
+ i� ||2L2(Ω) � ||

@A

@t
+r�||2L2(Ω). (3.38)

An immediate consequence of proposition (3.38) is that the energy is a decreasing function of time.

Remark 3.4.3. Both propositions (3.37) and (3.38) are of great importance when doing numerics. In

practice, an increase of the energy or the breaking of condition (3.37) are visible signs of a convergence

or stability issue.

Several authors have tackled the problem of existence and uniqueness of a solution. Finite element

methods have been studied in Du (1994b), Chen et al. (1993), Tang and Wang (1995). We can find an-

other point of view in Fleckinger-Pellé et al. (1997): here the authors show the existence of a dynamical

process for the TDGL equations.

We outline here the method of Du (1994b) for the TDGL model under the temporal gauge (3.30).

In the sequel Ω is an open bounded set in R
d (d = 2 or 3) with smooth boundary. We also use the

following time dependent Sobolev space:

V := L1(0, T ;H1
n(Ω)) \ H1(0, T ;L2(Ω)),

V := L1(0, T ;H1(Ω)) \H1(0, T ;L2(Ω)).
(3.39)
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We begin by writing the weak formulation of (3.31):

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

find ( ,A) 2 V ⇥ V such that

d

dt
( ,  ̃) +

✓

1


r � iA 

�

,



1


r ̃ � iA ̃

�◆

+ ([| |2 � 1] ,  ̃) = 0 for all  ̃ 2 H1(Ω),

d

dt
(A, Ã) + (r⇥ A,r⇥ Ã) + (| |2A, Ã)� 1

2i
( ⇤r �  r ⇤, Ã)

= (H,r⇥ Ã) for all Ã 2 H1
n(Ω),

with at t = 0,  0 2 H1(Ω) , A0 2 H1
n(div,Ω),

(3.40)

where the scalar product for  is the sesquilinear form in L2(Ω) defined by (u, v) =

Z

Ω

uv⇤. Then we

introduce a modified form of (3.40). Let ✏ > 0,
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>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

find ( ✏,A✏) 2 V ⇥ V such that

d

dt
( ✏,  ̃) +

✓

1


r ✏ � iA✏ ✏

�

,



1


r ̃ � iA✏ ̃

�◆

+ ([| ✏|2 � 1] ✏,  ̃) = 0 for all  ̃ 2 H1(Ω),

d

dt
(A✏, Ã) + (r⇥ A✏,r⇥ Ã) + ✏(divA✏, div Ã) + (| ✏|2A✏, Ã)

� 1

2i
( ⇤r �  r ⇤, Ã) = (H,r⇥ Ã) for all Ã 2 H1

n(Ω).

(3.41)

Existence and uniqueness of solutions for (3.41) follow from classical methods used in Navier-

Stokes equations (Temam, 2001).

Finite dimensional subspaces Λn (resp. Zn) of H1
n (resp H1) are introduced. The Galerkin approx-

imation of (3.41) is:
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

find ( ✏n(t),A✏
n(t)) 2 Zn ⇥Λn such that

(r ✏n(0),r ̃n) + ( ✏n(0),  ̃n) = (r (0),r ̃n) + ( (0),  ̃n) for all  ̃n 2 Zn,

(rA✏
n(0),rÃn) + (A✏

n(0), Ãn) = (rA(0),rÃ) + (A(0), Ãn) for all Ãn 2 Λn,

d

dt
( ✏n,  ̃n) +

✓

1


r ✏n � iA✏

n 
✏
n

�

,



1


r ̃n � iA✏

n ̃n

�◆

+ ([| ✏n|
2 � 1] ✏n,  ̃n) = 0 for all  ̃n 2 Zn,

d

dt
(A✏

n, Ãn) + (r⇥ A✏
n,r⇥ Ãn) + ✏(divA✏

n, div Ãn) + (| ✏n|
2A✏

n, Ãn)

� 1

2i
( ⇤

nr n �  nr ⇤
n, Ãn) = (H,r⇥ Ãn) for all Ãn 2 Λn.

(3.42)

The main result is the following:

Theorem 3.4.4. Du (1994b) Given ✏ > 0 and a final time T > 0, there exist ( ✏,A✏) in V⇥V solution

of (3.41), weak limit of a sequence ( ✏nk
,A✏nk

) of solutions of (3.42) as nk �! +1. Moreover such a

solution is unique.
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Chapter 3. The time dependent Ginzburg-Landau model

To obtain the solution for (3.40) we need to pass to the limit as ✏ �! 0. The main result is:

Theorem 3.4.5. Du (1994b) Given a final time T > 0, there exists a solution of (3.40) ( ,A) in V⇥V

which is the weak limit of a subsequence ( ✏k ,A✏k) of solutions of (3.41) as ✏k �! 0. Moreover for

any given initial conditions, the solution of (3.40) is unique.

Remark 3.4.6. The well-posedness of TDGL presented here is still valid if Ω is a convex polygon

(d = 2) or polyhedra (d = 3). Well-posedness in non-convex domains has been studied by Li and

Zhang (2017).

3.5. Numerical results in 2D

In this section, we first describe the numerical schemes that we used for the discretization of the TDGL

model (3.35). Then various examples from the literature are treated. In particular we describe in detail

each equilibrium pattern. Finally, we address the problem of varying the gauge through the use of the

!-gauge.

3.5.1. Numerical schemes

We describe below two schemes based on two variational formulations of the TDGL model. We will

make use of the !-gauge so that our study covers both ! = 0 (temporal gauge) and ! = 1 (Lorentz

gauge).

First scheme

From (3.40) and (3.35), we deduce the following variational formulation in the !-gauge setting:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

find ( ,A) 2 H1(Ω)⇥ H1
n(Ω) such that

d

dt
( ,  ̃)� i!( divA,  ̃) +

✓

1


r � iA 

�

,



1


r ̃ � iA ̃

�◆

+([| |2 � 1] ,  ̃) = 0 for all  ̃ 2 H1(Ω),
d

dt
(A, Ã) + (r⇥ A,r⇥ Ã)� !(div(A), div(Ã)) + (| |2A, Ã)

� 1

2i
( ⇤r �  r ⇤, Ã) = (H,r⇥ Ã) for all Ã 2 H1

n(Ω),

(3.43)

with initial condition  0 2 H1(Ω), A0 2 H1
n(div,Ω).

For time discretization we use a Crank-Nicolson approximation for the two linear parts rA :=
i


r+ A and LA(A, v) := (r⇥ A,r⇥ v) + !(divA, div v) + | n|2(A, v).

We approximate the nonlinear part N ( ) := (1 � | |2) in the equation for  by an Adams-

Bashforth scheme. Fields A and  are approximated by Lagrange FEs.

The transcription of formulation (3.43) in terms of time differences qA := An+1 � An and q =
 n+1 �  n with FreeFEM syntax is:
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3.5. Numerical results in 2D

varf vqA([qA,qAy], [B, By]) = int2d(Th)(1/dt*[qA,qAy]’*[B,By]

- 0.5*opLinA(qA,B,psiold))

+ on(1, qAy = 0)

+ on(2, qA = 0) ; // matrix for A

varf vrhsA(def(qA),def(B)) = int2d(Th)(opJs(psiold,psioldConj,B))

+ int2d(Th)(opLinA(Aold,B,psiold))

+ int2d(Th)(h0*Curl(B))

+ on(1, qAy = 0)

+ on(2, qA = 0); // right-hand side for A

varf vqPsi(qPsi, v) = int2d(Th)(1/dt*qPsi*v - 0.5*opGradA(qPsi, v, Aold));

// matrix for psi

varf vrhsPsi(qPsi,v) = int2d(Th)(1.5*opN(psiold)*v - 0.5*opN(psiold2)*v)

+ int2d(Th, mpirank)(I*kappa*omega*div(Aold)*psiold*v)

+ int2d(Th)(opGradA(psiold, v, Aold)); // right-hand side for psi

where opLinA, opGradA, opN , opJs are macros defined by the user corresponding to LA, rA, N

and supercurrent Js =
1

2i
( ⇤r �  r ⇤) respectively.

Second scheme

This scheme has been originally proposed by Gao and Sun (2015). It is a mixed scheme in the sense

that � = r ⇥ A is introduced as a supplementary unknown. In 2D, � is taken as a scalar with

� =
@A2

@x
� @A1

@y
, where A = (A1(x, y), A2(x, y)). The mixed form of the TDGL model in the

!-gauge is:

@ 

@t
� i! divA =

✓

1


r� iA

◆2

 +  � | |2 in Ω,

� = r⇥ A in Ω,
@A

@t
� !r divA +r⇥ � =

1

2i
( ⇤r �  r ⇤)� | |2A +r⇥ H in Ω,

(3.44)

with boundary and initial conditions:

@ 

@n
= 0, � = H, A · n = 0 on Γ,

 (x, 0) = 1, �(x, 0) = 0, A(x, 0) = (0, 0) in Ω.
(3.45)

The variational form of (3.44) (Gao and Sun, 2018) is to find  2 H1(Ω) and (�,A) 2 H1(Ω) ⇥
H0(div) where � = H on @Ω such that
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>

>

>

:

✓

@ 

@t
, w

◆

� i! ((div(A) , w) +

✓✓

1


r� iA

◆

 ,

✓

1


r� iA

◆

w

◆

+
��

| |2 � 1
�

 , w
�

= 0 for all w 2 H1(Ω),

(�,�)� (r⇥ A,�) = 0 for all � 2 H1
0(Ω),

✓

@A

@t
, v

◆

+ (r⇥ �, v) + (! divA, div v)� 1

2i
( ⇤r �  r ⇤, v)

+(| |2A, v) = (r?H, v) for all v 2 H0(div),

(3.46)
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Chapter 3. The time dependent Ginzburg-Landau model

a.e. for t 2 (0, T ) with  (x, 0) =  0(x), �(x, 0) = r⇥ A0(x) and A(x, 0) = A0(x).

A conformal approximation of the vector potential A in H(div) is obtained by Raviart-Thomas

FEs (for the theory of these elements see Boffi et al. (2013)). In the case of Raviart-Thomas FEs of

degree 0, the degrees of freedom of A are the fluxes of A computed through the edges of each triangle.

An important consequence is the continuity of the normal component of the approximated field at

each edge. Triangular Raviart-Thomas FEs are available in FreeFEM for degree 0, 1 and 2 (denoted

hereafter by RT0, RT1, RT2).

The homogenous boundary condition A · n = 0 is simply implemented thanks to the function on(. . . ).
 and � are approximated by Lagrange FEs. Table 3.1 summarizes the possible choices for different

degrees of finite elements:

A ψ γ

degree 0 RT0 P1 P1

degree 1 RT1 P1 P2

degree 2 RT2 P2 P3

Table 3.1. Finite elements of various degrees used for each quantity.

Now the transposition of the formulation (3.46) in FreeFEM syntax is:

varf vSys([sigma, A, Ay],[ki, v, vy]) =

int2d(Th)(sigma*ki)

+ int2d(Th)(-1.*[A, Ay]’*Curl(ki))

+ int2d(Th)(1/dt*[A, Ay]’*[v,vy])

+ int2d(Th)(omega*div(A)*div(v))

+ int2d(Th)(Curl(sigma)’*[v,vy])

+ on(1, sigma = H, A = 0., Ay = 0.); // matrix for A

varf vrhsSys([sigma, A, Ay],[ki, v, vy]) =

int2d(Th)(1/dt*[Aold, Aoldy]’*[v,vy])

+ int2d(Th)(opJs(psiold, psioldConj, Aold)’*[v,vy])

+ on(1, sigma = H, A = 0., Ay = 0.); // right-hand side for A

varf vPsi(psi, w) = int2d(Th)(1/dt*psi*w + 1./kappaˆ2*Grad(psi)’*Grad(w));

// matrix for psi

varf vrhsPsi(psi,w) = int2d(Th)(1/dt*psiold*w)

+ int2d(Th)(I*kappa*omega*div(Aold)*psiold*w)

+ int2d(Th)(I/kappa*div(Aold)*psiold*w)

+ int2d(Th)(2*I/kappa*psiold*[Aold, Aoldy]’*Grad(w))

+ int2d(Th)(opN(psiold,Aold)*w); // right-hand side for psi

3.5.2. Examples

In this section, our goal is to retrieve classical benchmarks of the literature. In the first paragraph,

we study three basic examples: the unit square, an L-shape domain and the disk. The goal is to

show the effectiveness of the numerical schemes on convex and non-convex geometries. In the second

paragraph, we study two classical benchmarks from the literature.

In all examples, the nondimensionalized form of the TDGL model corresponds to (3.22). We take

A0 = 0 and  0 = 1 (pure S state) as initial condition. Hereafter mixed scheme refers to the discretiza-

tion of (3.46) and Lagrange scheme to the discretization of (3.43).

The parameters and energy of equilibrium state of each examples is summarized in Tab. 3.2. r

denotes the degree of the finite element (see Tab. 3.1 for the mixed scheme). ∆t is the chosen time
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3.5. Numerical results in 2D

step. M refers to the number of nodes per unit length of the mesh. Gtmax
denotes the Gibbs free energy

(3.23) computed at t = tmax:

Scheme r ω M ∆t κ H tmax Gtmax

Example 1 Lagrange 1 0 100 0.05 10 3.5 500 0.2362

Example 2 Lagrange 1 0 100 0.05 10 5 500 0.2045

Example 3 Mixed 1 1 50 0.1 10 5 500 0.4873

Example 4 Lagrange 1 0 21 0.05 2 0.95 3000 51.1546

Example 5 Mixed 2 1 12 0.05 4 0.9 5000 16.4711

Table 3.2. Parameters and energy of the final state in Examples 1-5.

Basic examples

The unit square domain (Example 1) has been treated several times in the literature to test proposed

numerical schemes (Du, 1994b; Yang, 2014; Li and Zhang, 2015; Gao et al., 2014). The L-shape

domain (Example 2) has also been frequently used: it serves as a test on a non-convex geometry since

the regularity of the solution is worse (Gao and Sun, 2018; Li and Zhang, 2015; Gao and Sun, 2015).

• Example 1: we consider the unit square [0, 1]2. We set the GL parameter  = 10 and the applied

magnetic field H = 3.5. Figures 3.1-3.3 shows the results. Fig. 3.1 shows the evolution of

the density | |. We see two patterns that forms successively; at the beginning, vortices enter by

each side all at once forming the metastable state shown at t = 100; then they slowly arrange

themselves in an energetically more favourable pattern at t = 500.

Figure 3.2 (left) shows the supercurrent at t = 500. Near the boundary, Js rotates clockwise,

opposing the applied field: it is a shielding current; around each vortex, Js rotates counterclock-

wise producing a magnetic field shown on the right panel.

In Fig. 3.3 we show the evolution of the energy and relative energy differences
|Gt+1 � Gt|

Gt
(note that, in order to reduce the computational cost, we evaluate this expression only for integer

values of t from 0 to tmax). The sharp decrease of the energy at the beginning corresponds to the

entry of vortices; then, at t ⇡ 200, the energy is decreasing a little: it corresponds to the rotation

of the vortex pattern; it is the cause of the bump observed on the relative energy differences plot.

Figure 3.1. Example 1. Density |ψ| at instants t = 10, 100, 250, 500.
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.2. Example 1. Supercurrent Js (left) and magnetic field r⇥ A (right).
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Figure 3.3. Example 1. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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• Example 2: we consider an L shape domain:

Ω := {(x, y) 2 [0, 1]2 , x  0.5 or y  0.5}. (3.47)

We set  = 10 and H = 5. Figures 3.4-3.6 show the results. We see that the usual final state

is recovered. It shows that the Lagrange scheme is efficient in non convex domains where the

solution is expected to have low regularity (Li and Zhang, 2017).

Figure 3.4. Example 2. Density |ψ| at instants t = 2, 6, 20, 500.

Figure 3.5. Example 2. Supercurrent Js (left) and magnetic field r⇥ A (right).

1x10-6

1x10-5

0.0001

0.001

0.01

0.1

1

0 50 100 150 200 250 300 350 400 450 500

|G
(t
+
1
)
-
G
(t
)|
/G
(t
)

time

Plot of relative energy differences

Figure 3.6. Example 2. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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• Example 3: we consider a disk of radius R =

p
2

2
. We set  = 10 and H = 5. Figures 3.7-3.9

show the results. In Fig. 3.7, we see that the vortices arrange in circle at t ⇡ 50. In Fig. 3.9,

energy varies little until t ⇡ 200. This reflects the low values of relative energy differences

(10�7). The state is actually metastable and we observe that a vortex is slowly moving towards

the centre of the disk at t ⇡ 300. This corresponds to the increase of relative energy differences

seen in Fig. 3.9 between t ⇡ 150 and t ⇡ 370.

We obtain a good approximation of the magnetic field shown in Fig. 3.8. The magnetic field

r⇥ A is introduced as a supplementary unknown in the mixed scheme, hence the convergence

order is equal or even higher than the one for the vector potential (see Section 3.7).

Figure 3.7. Example 3. Density |ψ| at instants t = 5, 50, 300, 500.

Figure 3.8. Example 3. Supercurrent Js (left) and magnetic field r⇥ A (right).
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Figure 3.9. Example 3. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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Remark 3.5.1. The boundary condition A · n = 0 is naturally present in the mixed scheme.

Indeed this condition reads as a homogenous Dirichlet condition in the case of Raviart-Thomas

finite elements. In example 1 and 2 we use the Lagrange scheme. In this case the condition

A · n = 0 is satisfied by imposing Ax = 0 on edges parallel to the y-axis and Ay = 0 on edges

parallel to the x-axis. Due to this constraint it has not been possible for us to use a Lagrange

scheme on a general curved polygon. In the literature, Li and Zhang (2015) have reported a

new formulation of the TDGL equations based on a Hodge decomposition of the vector potential

written as the sum of its divergence-free part and curl-free part. The authors have built a scheme

valid only in 2D where the condition A · n = 0 does not appear explicitly.

Benchmarks from the literature

• Example 4: this benchmark was first proposed by Gropp et al. (1996); we can also find it in

Richardson et al. (2004).

We consider a square [�6, 6]2. We set  = 2 and H = 0.95. The results are shown on Figs.

3.10-3.12. We observe that vortices arrange first in a metastable state at t = 1000. Then, the four

central vortices rotate, forcing the peripheral ones to align in a perfect square array at t = 3000.

These two consecutive moves reflect in the shape of the relative energy differences curve shown

in Fig. 3.12.

Figure 3.10. Example 4. Density |ψ| at instants t = 1000, 1300, 1400, 3000.
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Figure 3.11. Example 4. Supercurrent Js (left) and magnetic field r⇥ A (right).
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Figure 3.12. Example 4. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).

• Example 5 : this benchmark was originally studied by Alstrom et al. (2011). We also find it in

Gao and Sun (2015), Li and Zhang (2015) and Gao (2017). The domain Ω consists of a disk

with a triangular defect (see Fig. 3.13). In Alstrom et al. (2011), the authors use Lagrange finite

elements and find equilibrium patterns with so called “giant vortices”. Since then, Gao and

Sun (2015) have shown that Lagrange finite elements can lead to spurious solutions that may

appear perfectly converged. In their article the authors, propose the scheme we have presented

in Section 3.5.1, based on an approximation of A by Raviart-Thomas FEs. We consider here the

case where  = 4 and H = 0.9. Figures 3.14-3.16 show the results. From Fig. 3.14 we see that

the vortices first enter the domain via the defect; then 17 vortices enter from the circular part

of the boundary; at t = 50, the domain contains 20 vortices; eventually, the 21st vortex enter

at t = 200. In total, 4 vortices have entered via the defect. The entrant corner appear to be a

privileged location for the nucleation of vortices. This is closely related to the high value of the

velocity vs =
1

| |2
Js at that place (see Fig. 3.15). In Vodolazov et al. (2003), it is shown that
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the vortex nucleation is controlled by vs on the sample surface. Specifically, if |vs ⇥ n| > vcr,

where vcr ⇡ 1 is a critical value, then a modulation instability occurs at the edge. Moreover, the

vortex entry field (i.e. the minimum field corresponding to an entry of a vortex) is lowered in

the case of defects.

Figure 3.13. Example 5. Symmetric mesh with respect to the (Ox) axis with M = 12.

Figure 3.14. Example 5. Density |ψ| at instants t = 10, 20, 30 (above) and t = 50, 200, 5000
(below).
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.15. Example 5. Supercurrent Js (left) magnetic field r ⇥ A (middle) and velocity

vs = Js/|ψ|
2 (right).
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Figure 3.16. Example 5. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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3.6. Numerical results in 3D

In the previous section, we have studied the TDGL model in 2D. In 3D, numerical simulations are

more challenging due to the high number of degrees of freedom. In the first paragraph, we describe

the numerical schemes we have used. In the second paragraph, we present examples with different ge-

ometries: a cube, a parallelepiped with an inclined applied field, a sphere and a sphere with a boundary

defect.

3.6.1. Numerical schemes

The Lagrange scheme presented in the previous section is used directly for the 3D case without modi-

fication. Thus, we only describe the mixed scheme. In 3D the magnetic field γ = r⇥A is not a scalar

as in the 2D case, but a vector. TDGL mixed formulation is:

@ 

@t
� i! divA =

✓

1


r� iA

◆2

 +  � | |2 in Ω,

γ = r⇥ A in Ω,
@A

@t
� !r divA +r⇥ γ =

1

2i
( ⇤r �  r ⇤)� | |2A +r⇥ H in Ω,

(3.48)

with boundary and initial conditions

@ 

@n
= 0, γ ⇥ n = H ⇥ n, A · n = 0 on Γ,

 (x, 0) = 1, γ(x, 0) = 0, A(x, 0) = (0, 0) in Ω.
(3.49)

The variational form of (3.44) (Gao and Sun, 2018) is to find  2 H1(Ω) and (�,A) 2 H(curl) ⇥
H0(div) where γ ⇥ n = H ⇥ n on Γ, such that
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◆
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◆

 ,

✓

1


r� iA

◆

w

◆

+
��

| |2 � 1
�

 , w
�

= 0 for all w 2 H1(Ω),
(�,χ)� (r⇥ A,χ) = 0 for all � 2 H0(curl),
✓

@A

@t
, v

◆

+ (r⇥ �, v) + (! divA, div v)� 1

2i
( ⇤r �  r ⇤, v)

+(| |2A, v) = (r⇥ H, v) for all v 2 H0(div),

(3.50)

a.e. for t 2 (0, T ) with  (x, 0) =  0(x), �(x, 0) = r⇥ A0(x) and A(x, 0) = A0(x).

A conformal approximation of the magnetic field γ in H(curl) is obtained by Nedelec FEs (for

the theory of these elements see Boffi et al. (2013)). In the case of Nedelec FEs of degree 0, the

degrees of freedom of the field are the integral of the field along the edges of each tetrahedron. An

important consequence is the continuity of the tangential component of the approximated field at each

edge. Tetrahedral Nedelec finite elements of degree 0, 1 and 2 are available in FreeFEM. In numerical

examples, we use Nedelec FEs of degree 0.

The vector potential A is approximated by Raviart-Thomas FEs of degree 0 and by linear Lagrange

FEs P 1.

The transposition of formulation (3.50) in FreeFEM syntax is similar to the 2D case:
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Chapter 3. The time dependent Ginzburg-Landau model

varf vSys([sigma, sigmay, sigmaz, A, Ay, Az],[ki, kiy, kiz, v, vy, vz]) =

int3d(Th, mpirank)([sigma, sigmay, sigmaz]’*[ki, kiy, kiz])

+ int3d(Th, mpirank)(-1.*[A, Ay, Az]’*Curl(ki))

+ int3d(Th, mpirank)(1/dt*[A, Ay, Az]’*[v, vy, vz])

+ int3d(Th, mpirank)(omega*div(A)*div(v))

+ int3d(Th, mpirank)(Curl(sigma)’*[v, vy, vz])

+ on(1, sigma = Bax, sigmay = Bay, sigmaz = Baz, A = 0., Ay = 0., Az = 0.);

// matrix for A

varf vrhsSys([sigma, sigmay, sigmaz, A, Ay, Az],[ki, kiy, kiz, v, vy, vz]) =

int3d(Th, mpirank)(1/dt*[Aold, Aoldy, Aoldz]’*[v,vy,vz])

+ int3d(Th, mpirank)(opJs(psiold, psioldConj, Aold)’*[v, vy, vz])

+ on(1, sigma = Bax, sigmay = Bay, sigmaz = Baz, A = 0., Ay = 0., Az = 0);

// right-hand side for A

varf vPsi(psi, w) = int3d(Th,mpirank)(1/dt*psi*w + 1./kappaˆ2*Grad(psi)’*Grad(w));

// matrix for psi

varf vrhsPsi(psi,w) = int3d(Th,mpirank)(1/dt*psiold*w)

+ int3d(Th,mpirank)(I*kappa*omega*div(Aold)*psiold*w)

+ int3d(Th,mpirank)(I/kappa*div(Aold)*psiold*w)

+ int3d(Th,mpirank)(2*I/kappa*psiold*[Aold, Aoldy, Aoldz]’*Grad(w))

+ int3d(Th,mpirank)(opN(psiold,Aold)*w); // right-hand side for psi

3.6.2. Examples

In this paragraph we analyse some particular geometries, some of them extracted the literature. The

cube has been treated in Gao and Sun (2015), the parallelepiped with inclined applied field in Richard-

son et al. (2004); the sphere and the sphere with a geometrical defect are original. In Tab. 3.3, we

report the parameters of the model and the energy of the final configuration Gtmax
.

Scheme r ω M ∆t κ H tmax Gtmax

example 1 Mixed 0 1 30 0.1 10 (0,0,3.5) 500 0.2084

example 2 Mixed 0 1 6 0.1 2 (0.3,0.3,1) 500 50.7318

example 3 Mixed 0 1 30 0.1 10 (0,0,5) 500 0.4888

example 4 Mixed 0 1 30 0.1 10 (0,0,5) 500 0.4869

Table 3.3. Parameters and energy of the final state in Examples 1-4.

• Example 1: we consider the unit cube



�1

2
,
1

2

�3

. We set  = 10 and H = (0, 0, 3.5). We use

a uniform mesh with M = 30 (i.e. three nodes per unit of the coherence length ⇠). The results

are shown on Figs. 3.17-3.20. In Fig. 3.17, we observe a metastable state with 4 vortices at

t = 100; however one vortex is ejected at t ⇡ 185; three vortices remain afterwards and arrange

in a regular triangle shape. It is somewhat surprising since in 2D (see Example 1, Section 3.5.2),

with identical parameters, the four vortices rotate to form a square. We would expect the same

behaviour in 3D. It is not due to the choice of the mixed scheme, since the Lagrange scheme

gives the same result. It may be due to the mesh since the 2D case is much more refined (10

nodes per ⇠); a finite thickness effect is also possible.

The magnetic field is shown in Fig. 3.18. We observe that isovalues are very close. It is due to

the relatively high value for . In the limit ! 1, we would obtain a uniform field. Flux tubes

are shown on the right panel. We see that the tubes are straight, hence there is no surface effect.

This could be surprising since in type I superconductors, it is known that flux tubes become

larger near the surface (de Gennes, 1966).
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3.6. Numerical results in 3D

In Fig. 3.20, the energy shows a dramatic decrease due to the loss of one vortex at t ⇡ 185. It is

worth noting that relative energy differences are increasing as soon as t ⇡ 50. Relative energy

differences is a reliable indicator to tell whether the current state is going to evolve or not.

Figure 3.17. Example 1. Isosurfaces of the density |ψ| = 0.25 at t = 10, 100, 180, 500.

Figure 3.18. Example 1. Section of the magnetic field along the plane z = 0 at t = 500 (left),

section of the magnetic field along a plane of normal n = (�0.55, 0.83, 0) at

t = 500 (right).
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.19. Example 1. Supercurrent Js on the surface at t = 500 (left), supercurrent on

the mid-plane at t = 500 (right).
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Figure 3.20. Example 1. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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• Example 2: we consider a parallelepiped



0,
20

3

�

⇥


0,
20

3

�

⇥


0,
10

3

�

. We set  = 2 and

H = (0.3, 0.3, 1). We use a uniform mesh with M = 30. The results are shown in Figs. 3.21-

3.24. In Fig. 3.21 we observe that, at t = 100, the state is not stable and at t = 500, vortices

have rotated by �45� using the right hand rule. We see that vortices are inclined along the

applied field and meet the upper surface along the normal. It is due to surface currents shown in

Fig. 3.23. These currents flow in circles in a plane perpendicular to the z-axis; as a consequence

they locally induce a magnetic field along the z-axis that distorts the vortices near the edges.

The interior of flux tubes is shown in Fig. 3.22. We clearly see that the diameter of the tubes are

larger near the surface.

Figure 3.21. Example 2. Isosurfaces of the density |ψ| = 0.25 at instants t =
10, 100, 250, 500.
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.22. Example 2. Magnetic field at t = 500 (left), section of the magnetic field along

the plane x� y = 0 (right).

Figure 3.23. Example 2. Supercurrent Js on the surface at t = 500 (left), supercurrent on

the mid-plane (middle), supervelocity vs = Js/|ψ|
2 at t = 500 (right).
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Figure 3.24. Example 2. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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3.6. Numerical results in 3D

• Example 3: we consider a sphere of radius R =

p
2

2
. We set  = 10 and the applied field

is H = (0, 0, 5). Figures 3.25-3.29 show the results. We use a uniform tetrahedral mesh with

M = 30. In Fig. 3.25, we see that vortices nucleate from the equator; this happens because

the supervelocity is maximum at the equator (see Fig. 3.28 at t = 10). At t = 30, we observe

8 vortices but, at t = 40, only 7 remain. Afterwards, they slowly arrange in an hexagonal

lattice with a central vortex. Vortex lines are straight in the middle since they are aligned with

the applied magnetic field which is along the z-axis. In addition they meet the sphere along

its normal: it is due to the currents on the surface shown in Fig. 3.27; these currents induce a

magnetic field locally aligned with the normal (see the isovalues of the magnetic field shown on

Fig. 3.26).

Figure 3.25. Example 3. Isosurfaces of the density |ψ| = 0.2 at t = 10, 20, 30 (above) and

t = 40, 500 (below).

Figure 3.26. Example 3. Magnetic field r⇥ A (left), section of the magnetic field along the

equatorial plane (middle), magnetic field r⇥ A along the z-axis (right).
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.27. Example 3. Section along the equatorial plane of supercurrent Js (left), view

of the surface currents (right).

Figure 3.28. Example 3. Supervelocity vs = Js/|ψ|
2 at instants t = 10 (left) and t = 20

(right).
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Figure 3.29. Example 3. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).
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• Example 4: we consider a sphere of radius R =

p
2

2
with a geometrical defect (see Fig. 3.30).

We set  = 10 and H = (0, 0, 5). Figures 3.31-3.35 show the results. We use a uniform

tetrahedral mesh with M = 30. In Figs. 3.31-3.32, at t = 5, we see that the first vortex enters

the domain via the defect; the other 6 vortices then nucleates from the equator; eventually, at

t = 500, the pattern is identical to the case of the sphere without defect. The supervelocity,

shown in Fig. 3.33, highlights the role of the defect. We observe that vs is maximum in the

vicinity of the defect from the very beginning. This inhomogeneity of vs appear to enhance the

nucleation of vortices at the defect, but also nearby, as can be seen from Fig. 3.32 at t = 10.

Figure 3.30. Example 4. Tetrahedral mesh with M = 30.

Figure 3.31. Example 4. Isosurfaces of the density |ψ| = 0.2 at t = 5, 10, 20, 500.
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.32. Example 4. Sections along the equatorial plane of the density at t =
5, 10, 20, 500.

Figure 3.33. Example 4. Section of the supercurrent Js at t = 500 along the equatorial

plane (left), supervelocity vs = Js/|ψ|
2 at t = 1 (right).
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3.6. Numerical results in 3D

Figure 3.34. Example 4. Section of the magnetic field at t = 500 along the equatorial plane

(left), magnetic field on the surface (right).
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Figure 3.35. Example 4. Evolution of the Gibbs energy (left) and relative energy differences

|Gt+1 � Gt|/Gt (right).

69



Chapter 3. The time dependent Ginzburg-Landau model

3.7. Influence of the gauge parameter

In this section we conduct a detailed study of convergence orders for the mixed scheme using the

general !-gauge (3.34). In the first paragraph we come back to Example 3.5.2; that allows us to study

the role of the !-gauge via the parameter ! and the degree r of finite elements. In the second paragraph,

we study the convergence orders for the mixed scheme using two different techniques. We conclude

on the existence of an optimal gauge for some !0 2 (0, 1).

3.7.1. Study of a benchmark in non convex geometry

We give here a detailed numerical description of Example 3.5.2 when the gauge parameter ! and the

degree r of finite elements vary.

We set the applied field H = 0.9 and  = 4. The number of nodes per unit of coherence length is

3, corresponding to M = 12. Figure 3.36 shows the vortex patterns at t = 5000 in the case r = 1 for

different values of !. We observe a normal zone (i.e. a zone where | | = 0) growing near the indent

when ! is decreasing. It indicates that our scheme is becoming less efficient for that mesh size and

values of ! close enough to 0. This issue is standard in TDGL numerical treatment and can be solved

by a refinement of the mesh (Richardson et al., 2004).

In Fig. 3.37, we show the results in the case r = 2 and Tab. 3.4 reports details about the observed

vortex patterns. We do not see any normal zone; however the final state varies with ! which contradicts

the gauge invariance property. Moreover, we see that the pattern we called circle with 21 vortices is

not the one with the lowest energy. The pattern circle is the one we usually find in the literature (Gao

and Sun, 2015; Li and Zhang, 2015; Gao, 2017). In Chapter 4, we will present other original states of

lowest energy for this geometry.

Figures 3.38 and 3.39 show the relative energy differences
|Gt+1 � Gt|

Gt
, for t = 0 . . . 5000, in the

Lorentz and temporal gauge. Clearly the convergence is much better in the Lorentz gauge. The results

for other values of ! indicate that the convergence is improving when we increase !. Moreover, for

each gauge, the convergence also improves when r is larger.

ω Pattern type |Gt+1 � Gt| Gtmax
tmax

(Number of vortices) at t = tmax

1 line 1 (21) < 10�10 16.4711 5000

10�1 line 1 (21) < 10�10 16.4711 5000

10�2 line 2 (22) 1.6⇥ 10�7 16.0959 5000

10�3 circle (21) 7.4⇥ 10�8 16.4362 5000

10�4 circle (21) 4.3⇥ 10�7 16.4310 5000

0 circle (21) 1.3⇥ 10�6 16.4338 5000

Table 3.4. Case r = 2. Characteristics of equilibrium patterns for each ω.
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3.7. Influence of the gauge parameter

Figure 3.36. Case r = 1. Vortex patterns for the disk with a boundary defect for dif-

ferent values of the ω parameter (from left to right and top to bottom :

ω = 1, 10�1, 10�2, 10�3, 10�4, 0).

Figure 3.37. Case r = 2. Vortex patterns for the disk with a boundary defect for dif-

ferent values of the ω parameter (from left to right and top to bottom :

ω = 1, 10�1, 10�2, 10�3, 10�4, 0).
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Figure 3.38. Case r = 1. Relative Energy difference |Gt+1 � Gt|/Gt in logarithmic scale for

the Lorentz gauge (left) and in the temporal gauge (right).
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Figure 3.39. Case r = 2. Relative energy difference |Gt+1 � Gt|/Gt in logarithmic scale for

the Lorentz gauge (left) and in the temporal gauge (right).

3.7.2. Convergence analysis of the mixed scheme when r = 1

We present in this paragraph two techniques: a graphic method inspired by Gao and Sun (2015) and the

Richardson extrapolation technique. The graphical method is very accurate since it computes directly

the difference between the exact solution of our equations and the ones computed with the numerical

scheme. The drawback is that it is highly time consuming. The Richardson extrapolation technique is

fast and accurate but relies on parameters chosen ”by hand”.

Before starting the analysis itself, we introduce the manufactured system we use. We call it manu-

factured since it is built in such a way that we know the exact solution of this system. In our case it is

defined on the unit square [0, 1]2 and the equations read:

@ 

@t
� i! divA �

✓

1


r� iA

◆2

 �  + | |2 = g in Ω,

@A

@t
� !r divA +r⇥r⇥ A � 1

2i
( ⇤r �  r ⇤) + | |2A = r⇥ H + f in Ω,

(3.51)

with boundary and initial conditions

r · n = 0, r⇥ A = H, A · n = 0 on Γ. (3.52)
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f and g are defined such that the exact solution of (3.51) is:

 = exp(�t) (cos(⇡x) + i cos(⇡y)) ,

A =

✓

exp(y � t) sin(⇡x)
exp(x� t) sin(⇡y)

◆

,

H = exp(x� t) sin(⇡y)� exp(y � t) sin(⇡x).

(3.53)

The graphical method

We start by choosing a space step ∆x =
1

M
. M is an integer and belongs to the set {8, 16, 32, 64, 128}.

Increasing values for M means a smaller space step, a finer mesh and eventually a more accurate

approximation for our solution. We choose a time step ∆t =
1

M3
and we iterate our scheme

M3

8

times. We end up with an approximation for the solutions of (3.51) at the final time tmax =
1

8
. Then

we compare this approximation to the exact solution (3.53) by taking the L2 norm of the difference.

Figures 3.40-3.41 show the results for A, divA,  , �,r⇥ � and for different values of !.

In Fig. 3.41, we see that quantities  , �,r⇥ � are unaffected by the change of gauge: convergence

curves exhibit an order 2 (dashed line) and are nearly superimposed.

In Fig. 3.40 the vector potential shows an order 2 when ! = 1 and an order 1 when ! = 0. For

values of ! between ! = 5⇥10�5 and ! = 10�3 the order is greater than 2 for small size of the mesh.

The divergence of A shows an order 1 when ! = 1 and an order 0 when ! = 0: it means that this

quantity is not converging to the exact value when ! = 0. For values of ! between ! = 5⇥ 10�5 and

! = 10�3 the order is 2 for small sizes of the mesh and then it decreases; however the beginning of

the decrease depends on !.

Figure 3.40. Orders for the vector potential (left) and its divergence (right).

These results can be recovered and extended by the Richardson extrapolation method we now intro-

duce.
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.41. Orders for the magnetic field ψ, γ and r⇥ γ.

The Richardson extrapolation method

We begin by a description of the method. Consider a quantity u to be evaluated numerically. We denote

uex its exact value and uh its approximation where h is the step to be refined. If p is the order of the

numerical scheme then
uex = uh + Chp,

uex = uh

2

+ C

✓

h

2

◆p

,

uex = uh

4

+ C

✓

h

4

◆p

.

(3.54)

Then by substitution we deduce

p =
1

log 2
log

 

uh

2

� uh

uh

4

� uh

2

!

. (3.55)

Since u is a field, we shall consider: p =
1

log 2
log

 

||uh

2

� uh||L2

||uh

4

� uh

2

||L2

!

.

The Richardson extrapolation method is reliable once a time step is carefully chosen. In our case

we choose ∆t = 10�3; the final time is the same as the graphical method: tmax =
1

8
= 0.125. As a

consequence we iterate our scheme 125 times and compute the approximated solution uh; we do the

same for uh

2

and uh

4

; eventually we compute p given by Eq. (3.55). Hereafter we denote p ⌘ o(u) the

order for a quantity u.

Table 3.5 shows the results for the Lorentz gauge (! = 1) where (h,
h

2
,
h

4
) = (

1

16
,
1

32
,
1

64
); we

retrieve the graphical results of Figs. 3.40-3.41 for ! = 1.

Err ErrA Err� Errdiv A Errr⇥�

||uh

2

� uh||L2 0.00283065 0.00149477 0.00133044 0.00704915 0.0101429

||uh

4

� uh

2

||L2 0.000709576 0.000374159 0.000332586 0.001772 0.00252371

order 1.99611 1.9982 2.0001 2.00685 1.99207

Table 3.5. Computed L2 norm errors of ψ, A, γ, r⇥ γ and divA for the Lorentz gauge.

Table 3.6 shows the results for 10 values of ! between 0 and 1. We retrieve that the order for  , �,
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r⇥ � is two and unaffected by the change of gauge.

For A and divA, the orders for ! = 0 or ! = 1 coincide again with the graphical results. In passing,

we note the great accuracy of the values. For values of ! between 0 and 1, we report in Tabs. 3.7-3.8

a comparison with the graphical results. The reported graphical values are the average slope obtained

with the 3 points used in the Richardson method; hence the graphical values correspond to the points

of abscissa
1

M
= (

1

16
,
1

32
,
1

64
) in Fig. 3.40. The agreement between the two methods is very good.

Richardson method is fast and we can get a broader picture than the one we obtain from Figs.

3.40. In Fig. 3.42, we report computations of the orders for A and divA for 30 values of !. Four

sets of values for M are shown: M = 16, 32, 64, M = 32, 64, 128, M = 64, 128, 256 and M =
128, 256, 512. We observe that given a mesh size h, there exists a value !0(h) in (0, 1) with better

convergence properties than the Lorentz gauge; in particular, when r = 1, we have

!0(h) = inf{!, o(A) > 2, o(divA) = 2}. (3.56)

Our results indicate that o(A) is maximum at !0(h).

! = 1 ! = 10�1 ! = 10�2 ! = 10�3 ! = 10�4 ! = 10�5 ! = 10�6 ! = 0
Errψ 1.99594 1.99294 1.99083 1.98507 1.9919 1.99305 1.99307 1.99307

ErrA 1.9982 1.999 2.07292 2.55124 1.36199 1.05806 1.01602 1.0111

Errγ 2.00008 1.99683 1.99408 1.98795 1.99617 1.99733 1.99735 1.99735

Errr⇥γ 2.00681 2.00412 2.00279 2.00014 2.00375 2.00425 2.00425 2.00425

Errdiv A 1.99169 2.00495 2.00072 1.67622 0.941629 0.116245 -0.00869583 -0.0230222

Table 3.6. Computed orders of ψ, A, γ, r⇥ γ and divA for different gauges.

! = 1 ! = 10�1 ! = 10�2 ! = 10�3 ! = 10�4 ! = 10�5 ! = 10�6 ! = 0
o(A) Richardson 1.9982 1.999 2.07292 2.55124 1.36199 1.05806 1.01602 1.0111

o(A) graphic 1.9982 1.9991 2.07829 2.41946 1.31109 1.05595 1.02201 1.01808

Table 3.7. Comparison of the order for A between the Richardson method and the graphical

method.

! = 1 ! = 10�1 ! = 10�2 ! = 10�3 ! = 10�4 ! = 10�5 ! = 10�6 ! = 0
o(divA) Richardson 1.99169 2.00495 2.00072 1.67622 0.94162 0.11624 -0.00869 -0.0230

o(divA) graphic 1.97904 1.99031 1.95232 1.77475 0.58941 0.01583 -0.06348 -0.0643

Table 3.8. Comparison of the order for divA between the Richardson method and the graph-

ical method.
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Chapter 3. The time dependent Ginzburg-Landau model

Figure 3.42. Convergence orders for A (left) and divA (right) with respect to the gauge

parameter ω.

In this chapter we have thus studied the TDGL model. The choice of the gauge is essential to define

a well-posed problem and thus “to know what we compute”, as a professor told us during a conference.

However it is sometimes not sufficient, since numerical issues can still happen, as we have seen in the

benchmark of the disk with a boundary defect. Even when this last obstacle is overcome, we often end

up with different equilibrium states (see Fig. 3.37) and one may ask which is the right one. In the case

of the TDGL model, the ”right one” is a solution of the steady state GL model. The next chapter is

then a natural path to explore.
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4. The steady state Ginzburg-Landau
model

In this chapter, we study the steady state GL model. From the historical point of view, it is interesting

to notice that the steady state GL model has been introduced by Ginzburg and Landau (1950), 18 years

before the TDGL model. A general physical principle states that a system tends to minimize its energy.

We have seen in the previous chapter that, in the case of a superconductor of domain Ω, this energy is

G = G0 +

Z

Ω

1

2

�

| |2 � 1
�2

+

�

�

�

�

✓

1


r� iA

◆

 

�

�

�

�

2

+ |r⇥ A � H|2 . (4.1)

The goal of this chapter is then to minimize (4.1) and compute the minimizers ( ,A); hence, the

constant G0 is of no importance and we omit it in the sequel. The outline of this chapter is as follows.

In the first section, we detail mathematical results about this model: we define the concept of gauge,

we study the existence of minimizers and give some of their known properties. In the second section,

we present numerical results: we introduce a steepest descent algorithm using Sobolev gradients; then,

we apply our algorithm to some benchmarks of the literature.

4.1. Mathematical results on the steady state GL

model

4.1.1. Concept of gauge and existence of minimizers

In Du et al. (1992) we find the following definition of gauges in the steady state GL framework.

Definition 4.1.1. For any � 2 H2(Ω), let the linear transformation G� from H1(Ω) ⇥ H1(Ω) into

itself be defined by:

G�( ,A) = (⇣,Q) := ( ei�,A +r�). (4.2)

Two couples ( ,A) and (⇣,Q) related through (4.2) are said to be gauge equivalent.

The following proposition justifies the introduction of gauges. It states that the Gibbs free energy is

invariant under the gauge transformation G�.

Proposition 4.1.2. (Du et al., 1992)

8� 2 H2(Ω), ( ,A) 2 H1(Ω)⇥ H1(Ω), G( ,A) = G(G�( ,A)). (4.3)

The following lemma characterises the classes of equivalence of solutions of the GL equations. It
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Chapter 4. The steady state Ginzburg-Landau model

states that we can look for minimizers ( ,A) in the ”smaller” space H1(Ω) ⇥ H1
n(div,Ω) instead of

H1(Ω)⇥ H1(Ω). It is equivalent to choose the Coulomb gauge for the vector potential A.

Lemma 4.1.3. (Du et al., 1992) Every (⇣,Q) in H1(Ω)⇥ H1(Ω) is gauge equivalent to an element of

H1(Ω)⇥ H1
n(div,Ω).

The next lemma echoes the traditional U(1) symmetry of the linear Schrödinger equation

Lemma 4.1.4. (Du et al., 1992) ( ,A) and (⇣,Q) in H1(Ω)⇥H1
n(div,Ω) are gauge equivalent if and

only if there exists c 2 R such that A = Q and ⇣ =  eic.

To introduce the existence of minimizers rigorously, we need to define what is a critical point of the

GL energy (4.1). At a critical point, the derivatives of G are zero in every direction; mathematically, it

is given by the following definition.

Definition 4.1.5. (Sandier and Serfaty, 2008) ( ,A) is a critical point of GL energy (4.1) if for every

smooth and compactly supported functions  ̃ and Ã we have:

d

dt
G( + t ̃,A + tÃ)|t=0 = 0. (4.4)

We can show by standard calculations that a critical point of the GL energy satisfies the following

set of equations and boundary conditions called steady state GL model:

�
✓

1


r� iA

◆2

 + (| |2 � 1) = 0 in Ω,

r⇥r⇥ A �r⇥ H =
1

2i
( ⇤r �  r ⇤)� | |2A in Ω,

✓

1


r � iA 

◆

· n = 0 on Γ,

r⇥ A ⇥ n = H ⇥ n on Γ.

(4.5)

In addition, minimizers are critical points since, when you achieve the minimum of a function, any

direction you choose or its opposite, the function will increase; hence, its derivative is zero. We deduce

that minimizers verify the steady state GL model (4.5).

In the previous chapter (see Eqs. (3.32)), we have already noticed that the TDGL under the temporal

gauge is equivalent to a minimization of the energy (4.1). In this case, Proposition 3.38 becomes:

d

dt
G(u) = �

�

�

�

�

�

�

�

�
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�

2

L2(Ω)

. (4.6)

In the steady state GL model framework, the time t is not the physical time any more; we call it

imaginary time. We still denote this time t in the sequel.

In Du et al. (1992), existence of minimizers is proved, hence we deduce the existence of solutions

for (4.5). More precisely we have the following theorem.

Theorem 4.1.6. G has at least one minimizer belonging to H1(Ω)⇥ H1(Ω). Moreover

min
H1(Ω)⇥H1(Ω)

G = min
H1(Ω)⇥H1

n(Ω)
G = min

H1(Ω)⇥H1
n(div,Ω)

G. (4.7)
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4.1. Mathematical results on the steady state GL model

In the next section we detail some known results about minimizers.

4.1.2. Properties of solutions of the steady state GL model (4.5)

The earliest description of the solutions for a superconductor of type II has been made by Abrikosov

(1957). He showed that, for  >
1p
2

, a periodic solution for the order parameter  exists: it is called

flux-line lattice. Later, it has been shown by Kleiner et al. (1964) that the triangular lattice is the

state of lowest energy near Hc2. These results are valid only when the domain Ω is unbounded. For

bounded domains, regular polygons, regular stars have been observed experimentally when the number

of vortices is such that n  8; beyond this threshold, vortices appear to arrange in concentric circles

(Grigorieva et al., 2006).

4.1.3. Basic solutions

When the domain Ω is unbounded, there exists two ”simple” solutions of equations (4.5)1,2: the pure

superconducting state S and the normal state N.

• in state S,  = 1 (all electrons are superconducting) and A = 0 (no magnetic field penetrate the

domain). Replacing  and A in (4.1) we obtain

G =

Z

Ω

H2 = |Ω|H2, (4.8)

where |Ω| is the area (or volume) of the domain.

• in state N,  = 0 (all the electrons are normal) and r⇥ A = H (the field inside the domain is

equal to the applied field). In this case we have

G =

Z

Ω

H2 =
1

2
|Ω|. (4.9)

From (4.8)-(4.9) we deduce the critical value for the applied field Hc =
1p
2

; this is the critical field

for type I superconductor. But as we have seen in the introduction, type II superconductors have two

critical values for the applied magnetic field, Hc1 and Hc2; in between, the superconductor is in the

mixed state. A rigorous mathematical description of the mixed state is a difficult task; this work has

been pioneered by Bethuel et al. (1994) and continued by many authors. A detailed exposition of the

results can be found in Sandier and Serfaty (2008). In the next section, we present two of these results.

4.1.4. Two theorems towards Abrikosov mixed state

In this section our goal is to present the ideas behind two results. We do not want to be technical and

refer the interested reader to Sandier and Serfaty (2008).

For convenience, we start by rescaling energy (4.1). If we make the additional change of variables

A0 = A, H0 = H, G0 =
2

2
G and omitting primes, we find the following Gibbs energy (Neuberger,

79



Chapter 4. The steady state Ginzburg-Landau model

2009):

G =

Z

Ω

2

4

�

| |2 � 1
�2

+
1

2
|(r� iA) |2 +

1

2
|r⇥ A � H|2 . (4.10)

Since we intend to consider large values for , we set ✏ =
1


. Moreover, we denote rA = r� iA

so that (4.10) becomes:

G✏ :=
1

2

Z

Ω

|rA |
2 + |r⇥ A � H|2 +

1

2✏2
�

| |2 � 1
�2

. (4.11)

When H = 0 we denote:

F✏ :=
1

2

Z

Ω

|rA |
2 + |r⇥ A|2 +

1

2✏2
�

| |2 � 1
�2

. (4.12)

The first theorem is due to Sandier (1998) and establishes a lower bound on F✏. Suppose a super-

conductor is in a mixed state with N vortices around which supercurrents rotate in the same sense; you

can think of Fig. 3.15 but with N possibly very large and vortices densely packed. The theorem says

that you can cover the areas where the amplitude | | is below a given threshold (in particular areas

where there are vortices) by a family of disjoint disks if we are in 2D. Denoting r the sum of the radii

of the disks, then the following inequality holds:

F✏ � ⇡N
⇣

log
⇣ r

N✏

⌘

� C
⌘

, (4.13)

where C is a universal constant. The term ⇡N log
⇣ r

N✏

⌘

can be seen as N times the energy of a single

vortex which is ⇡ log
⇣ r

N✏

⌘

. The energy of a single vortex line E1 vortex is known: in de Gennes (1966)

for example we find the expression

E1 vortex =

✓

�0p
4⇡µ0�

◆2

log . (4.14)

After a suitable scaling, we have E1 vortex = ⇡ log , to be compared to ⇡ log
⇣ r

N

⌘

given by Theorem

4.13 for a large number of vortices.

The second theorem characterizes the limit of the energy G✏ when ✏ ! 0 and
H

log ✏
! � > 0, i.e.

for large values of  and suitable large applied magnetic field. We do not state the convergence result

mathematically since it would lead us too far but rather give a physical interpretation. It states that

if H is sufficiently large, then there is a blow-up of the number of vortices, and they are uniformly

distributed. This justifies rigorously the existence of the first critical field Hc1 in an asymptotic sense.

The density of the vortex distribution is described mathematically by a measure denoted by µ⇤, and

we have that µ⇤ is proportional to the Lebesgue measure:

µ⇤ =

✓

1� 1

2�

◆

1!λ
dx, (4.15)

where !� is a compact set.
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4.2. Numerical results

The limiting magnetic field hµ∗ is also characterized as the unique minimizer of an obstacle problem:

min
h�12H1

0(Ω)
h≥1− 1

2λ

1

2

Z

Ω

|rh|2 + |h|2. (4.16)

An interesting consequence of (4.16) is that hµ∗ is constant on !�.

4.2. Numerical results

The goal of this section is to find the vortex pattern in the equilibrium state. Since we are interested

in equilibrium patterns, we choose an algorithm known for its fast convergence: the steepest descent

method with Sobolev gradients (Neuberger and Renka, 1998; Neuberger, 2009; Danaila and Kazemi,

2010; Kazemi and Renka, 2013).

In the first part, we recall the essential features of Sobolev gradients and describe the algorithm. In

the second part, we show some numerical examples on various geometries.

4.2.1. The steepest descent algorithm using Sobolev gradient

method

We begin by recalling the definition of the Fréchet derivative of a functional with real values since we

use this concept several times in the manuscript.

Definition 4.2.1. Let H a Hilbert space and Ω ⇢ H an open subset. A functional G : Ω ! R+ is

Fréchet differentiable at u in Ω if it exits a continuous and linear functional denoted by duG : H ! R

such that

G(u+ h) = G(u) + dGu(h) + ||h||H✏(h), (4.17)

and ✏(h) ! 0 when h ! 0.

In what follows, we consider partial derivatives of Fréchet type. We state the following definition.

Definition 4.2.2. Let H1 and H2 two Hilbert spaces and Ω1 ⇥ Ω2 ⇢ H1 ⇥ H2 an open subset. A

functional G : Ω1 ⇥ Ω2 ! R+ is Fréchet differentiable at u = (u1, u2) in the direction of u1 if it exits

a continuous and linear functional denoted by @u1
G : H1 ! R such that

G(u1 + h, u2) = G(u) + @u1
G(h) + ||h||H1

✏(h), (4.18)

and ✏(h) ! 0 when h ! 0.

Fréchet derivative of the Gibbs energy with respect to ψ

In view of definition (4.2.2) the Fréchet derivative of (4.1) with respect to  is:

@ G( ̃) = 2<
✓Z

Ω

✓

1


r � iA 

◆

·

✓

1


r ̃⇤ � iA ̃⇤

◆

+

Z

Ω

�

| |2 � 1
�

  ̃

◆

. (4.19)
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Chapter 4. The steady state Ginzburg-Landau model

If we do an integration by parts on the first term of the right hand side, and suppose that  verifies the

boundary conditions (4.5)3, we deduce:

@ G( ̃) = 2<
 

Z

Ω

�
✓

1


r� iA

◆2

  ̃ +

Z

Ω

�

| |2 � 1
�

  ̃

!

. (4.20)

Then

@ G( ̃) = 2<
⇣

r 

L2G,  ̃
⌘

L2
, (4.21)

where (u, v)L2 =

Z

Ω

uv⇤ is the usual scalar product on L2 and where we called L2-gradient of G with

respect to  :

r 

L2G = �
✓

1


r� iA

◆2

 +
�

| |2 � 1
�

 . (4.22)

The descent equation for  can be written (see also (3.32)):

@ 

@t
= �r 

L2G. (4.23)

Fréchet derivative of the Gibbs energy with respect to A

In view of definition (4.2.2) the Fréchet derivative of (4.1) with respect to A is

@AG(Ã) = 2<
✓Z

Ω

i ⇤

✓

1


r � iA 

◆

· Ã

◆

+ 2

Z

Ω

(r⇥ A � H) ·r⇥ Ã. (4.24)

By noting that <(iz) = �=(z) = � 1

2i
(z+ z̄) and doing an integration by parts on the second term

of the right hand side, with A verifying boundary condition (4.5)4, we obtain:

@AG(Ã) = 2

Z

Ω



� 1

2i
( ⇤r �  r ⇤) + A| |2

�

· Ã + 2

Z

Ω

r⇥ (r⇥ A � H) · Ã. (4.25)

We can rewrite (4.25):

@AG(Ã) = 2
⇣

rA
L2G, Ã

⌘

L2
, (4.26)

where (X,Y )L2 =

Z

Ω

X · Y is the usual scalar product on L2 and where we called L2-gradient of G

with respect to A:

rA
L2G = � 1

2i
( ⇤r �  r ⇤) + A| |2 +r⇥ (r⇥ A � H) . (4.27)

The descent equation for A can be written (see also (3.32)):

@A

@t
= �rA

L2G. (4.28)
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4.2. Numerical results

Sobolev gradients

Equations (4.23) and (4.28) are used to find the state of minimum energy. The minus sign on the

right hand sides of (4.23) and (4.28) means that we follow the direction opposite to the gradient of the

energy: it is called the gradient flow technique. Doing this, we are indeed minimizing energy (4.1),

since we recall that (Hoffmann and Tang, 2001; Du, 1994b):

d

dt
G(u) = �
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. (4.29)

To explain Sobolev gradients, we recall a powerful theorem of functional analysis called the Riesz

representation theorem.

Theorem 4.2.3. Any continous linear functional f on a Hilbert space H can be represented by a vector

fH in the sense that

f(x) = (fH , x)H 8x 2 H, (4.30)

where (·, ·) denotes the scalar product on H .

Now, if we denote H and HA two Hilbert spaces (that we will define later), (4.30) shows the

existence of two vectors denoted by r 
SG and rA

SG such that

⇣

r 

L2G,  ̃
⌘

L2
=
⇣

r 
SG,  ̃

⌘

Hψ

,
⇣

rA
L2G, Ã

⌘

L2
=
⇣

rA
SG, Ã

⌘

HA

.
(4.31)

We interpret (4.31) saying that we can follow a gradient descent called Sobolev gradient in H (or HA),

instead of L2. If we choose wisely these Hilbert spaces the convergence towards the state of minimum

energy can be faster. In what follows, we detail the spaces H and HA and the descent algorithm.

The descent algorithm

A first choice for H is to choose H := H1. In that case solving Eq. (4.31)1 amounts to find a

function � such that
Z

Ω

� ̃ +

Z

Ω

r� ·r ̃ =
⇣

r 

L2G,  ̃
⌘

L2
. (4.32)

Another choice has been proposed by Danaila and Kazemi (2010). The authors set:

H := { 2 L2(Ω),

Z

Ω

|rA |
2 < 1}, (4.33)

where we denote rA :=
1


r� iA. H is equipped with the scalar product

(u, v)H =

Z

Ω

uv⇤ +

Z

Ω

rAu · (rAv)
⇤. Solving Eq. (4.31)1 amounts to find a function � such that

Z

Ω

� ̃ +

Z

Ω

rA� ·rA ̃ =
⇣

r 

L2G,  ̃
⌘

L2
. (4.34)
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For the vector potential, a possible choice can be HA := H1, but in view of (4.1.6), we choose HA :=
H1

n. For simplicity, we do not impose div A = 0. Then solving Eq. (4.31)2 amounts to find a function

B such that
Z

Ω

B · Ã +

Z

Ω

rB : rÃ =
⇣

rA
L2G, Ã

⌘

L2
. (4.35)

The Sobolev gradients are found by solving (4.32) or (4.34) and (4.35). We use linear Lagrange FEs

P 1. Then the solution is advanced following the general descent method:

✓

 n+1

An+1

◆

=

✓

 n

An

◆

� �t

✓

r 
SG(un,An)

rA
SG(un,An)

◆

. (4.36)

4.2.2. Results in 2D

In this section we study three benchmarks of the literature. The first example is taken from Kazemi

(2008); the second one is a well-known benchmark (Gropp et al., 1996; Richardson et al., 2004); the

third one has been proposed by Alstrom et al. (2011) and has been studied by many authors since then

(Gao and Sun, 2015; Li and Zhang, 2015; Gao, 2017). In all examples, the pure superconducting state

is taken as initial state ( 0 = 1 and A0 = 0). Then we compute iterates ( n,An) using Algorithm

4.36. Table 4.1 summarizes the parameters of each simulation and the choice for the Hilbert space H .

M refers to the number of nodes per unit length of the mesh. We also report the energy at final time

Gtmax
.

H M ∆t κ H tmax Gtmax

Example 1 H1 40 0.1 4 1.5 2000 7.0186

Example 1 HrA
40 0.1 4 1.5 2000 6.9494

Example 2 H1 20 0.1 2 0.95 4000 46.7124

Example 2 HrA
20 0.1 2 0.95 2000 51.2324

Example 3 HrA
20 0.1 4 0.9 2000 17.1803

Table 4.1. Parameters, Hilbert space H and energy of the final state in Examples 1-3

• Example 1: we consider the square



�5

2
,
5

2

�

. We set  = 4 and H = 1.5. We use a uniform

mesh with M = 40. Figures 4.1-4.3 show the results.

For the case H = H1 the vortex pattern (Fig. 4.1 left) is similar to the one obtained by Kazemi

(2008). Relative energy differences (Fig. 4.2 left) indicate that the state is converged.

For the case H = HrA
, the vortex pattern (Fig. 4.1 right) appear to be of lower energy (see

Tab. 4.1). In addition we notice two successive rearrangements of vortices: they corresponds to

rises of relative energy differences (see Fig. 4.2 right).

The TDGL results are shown in Fig. 4.3. The vortex pattern is similar to the case H =
HrA

, with almost the same final energy Gtmax
= 6.9476. Moreover, from the relative energy

differences curve, the convergence appear to be faster; however our computation for the TDGL

uses a mixed scheme that require 528527 degrees of freedom to compute A whereas the Sobolev

gradient method use a Lagrange scheme that requires 77440 degrees of freedom for A. As a

consequence, Sobolev gradient methods are much less resource consuming.

84



4.2. Numerical results

Figure 4.1. Example 1. Density |ψ| at t = 2000 with H = H1 (left) and H = HrA
(right).
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Figure 4.2. Example 1. Relative energy differences corresponding to H = H1 (left) and

H = HrA
(right).
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Figure 4.3. Example 1. TDGL results at t = 2000. Density ψ (left) and relative energy

differences (right).
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Chapter 4. The steady state Ginzburg-Landau model

• Example 2: we consider the square [�6, 6]. We set  = 2 and H = 0.95. We use a uniform

mesh with M = 20. Figures 4.4-4.5 show the results. In Fig. 4.4 we observe two very different

outcomes.

For H = H1 we observe 24 vortices that may appear randomly organised; but if we look

carefully, the pattern is composed by 4 chains of 6 vortices each.

For H = HrA
we recover the TDGL result (see Fig. 3.10). What is surprising is that the

energy Gtmax
in Tab. 4.1 is much larger. This is rather unexpected since from our experience the

choice H = HrA
usually gives the best result.

Figure 4.4. Example 2. Density |ψ| with H = H1 (left) and H = HrA
at t = 2000 (right).
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Figure 4.5. Example 2. Relative energy differences corresponding to H = H1 (left) and

H = HrA
(right).

• Example 3: we consider a disk with a boundary defect (3.13). We set  = 4 and H = 0.9. We

use a uniform mesh with M = 20. Fig. 4.6 shows the results. We observed 21 vortices arranged

in concentric circles. This pattern is close to the TDGL results in the Lorentz gauge (see Fig.

3.36).

We note that the choice H = H1 leads to a pattern with large normal zones for the same

parameters. As we have already seen in Section 3.7.1, this indicates bad convergence properties

of the scheme. We emphasize that, in this example, the boundary condition A · n = 0 is not

imposed due to the use of Lagrange finite elements (see Remark 3.5.1). This may explain the

encountered difficulties.
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4.2. Numerical results
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Figure 4.6. Example 3. Density |ψ| with H = HrA
at t = 2000 (left) and energy relative

differences (right).

During our investigations on this example, we have discovered original equilibrium states of lower

energy than the ones already presented. We know that the TDGL is equivalent (via a gauge transfor-

mation) to a descent method in L2 (see Eqs. (3.32)). As a consequence the final result, if correct, is a

minimizer of the Gibbs free energy (4.1) and therefore a solution to the steady state GL model. This

has been shown rigorously by Fleckinger-Pellé et al. (1997). However numerics only capture critical

points of the Gibbs free energy (i.e. solutions of rG = 0), that are usually not the state of lowest

energy. To find it, we can apply a perturbation of the numerical result (e.g. a change in the mesh, a

perturbation of the solution or a change of the initial conditions). Two new configurations are shown

in Fig. 4.7. On the left, the pattern contains 23 vortices and the Gibbs energy value is 15.7694; on

the right, the pattern contains 24 vortices and its energy is 15.5547. The latter does not have a sym-

metry with respect to the x-axis. Moreover, we observe a similar structure with the minimizer of the

following energy wn for n = 24 introduced by Sandier and Serfaty (2008) and computed in Gueron

and Shafrir (1999): under the constraint

n
X

i=1

|xi|
2 = 1,

wn(x1, . . . , xn) = �⇡
X

i 6=j

log|xi � xj |+ C⇡n

n
X

i=1

|xi|
2. (4.37)

Figure 4.7. The two configurations of lowest energy with 23 and 24 vortices (left and mid-

dle). Minimizer of w24 (Gueron and Shafrir, 1999) (right).
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5. An Abelian-Higgs model

In Nielsen and Olesen (1973), it is shown that vortex line solutions can be obtained from a Higgs

type of Lagrangian. The Higgs model can also be considered as a relativistic generalisation of the GL

phenomenological theory of type II superconductors.

5.1. Definition

The Higgs Lagrangian in SI units, as written in Nielsen and Olesen (1973) is:

L = � 1

4µ0
Fµ⌫F

µ⌫ +
1

2ms
|(�i~@µ + esAµ) |

2 � ↵| |2 � �

2
| |4, (5.1)

where ↵ and � are the usual temperature dependent GL parameters, with ↵ < 0; ms and es are the

mass and charge of the superconducting particle respectively.

Notation Fµ⌫F
µ⌫ follows the Einstein’s convention of summation over repeated index

Fµ⌫F
µ⌫ =

X

µ,⌫2{t,x,y,z}

Fµ⌫F
µ⌫ . (5.2)

Fµ⌫ and Fµ⌫ are called covariant and contravariant tensors of the electromagnetic field:

Fµ⌫ =

0

B

B

B

B

B

B

B

@

0
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Ez

c

�Ex

c
0 �Bz By

�Ey

c
Bz 0 �Bx

�Ez

c
�By Bx 0

1

C

C

C

C

C

C

C

A

, Fµ⌫ =

0

B

B

B

B

B

B

B

@

0 �Ex

c
�Ey

c
�Ez

c
Ex

c
0 �Bz By

Ey

c
Bz 0 �Bx

Ez

c
�By Bx 0

1

C

C

C

C

C

C

C

A

. (5.3)

The second term in (5.1) is computed following the rule for a vector field Xµ of components

(Xt, Xx, Xy, Xz):

|Xµ|
2 = XµX̄µ = XtX̄t +XxX̄x +XyX̄y +XzX̄z

= |Xt|
2 � |X|2.

(5.4)

Using rules (5.2), (5.4) and the following classical definitions of the 4-vector potential and 4-

derivatives:
8

>

<

>

:

Aµ = (
V

c
,�A), Aµ = (

V

c
,A),

@µ = (
1

c

@

@t
,r), @µ = (

1

c

@

@t
,�r),

(5.5)
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Chapter 5. An Abelian-Higgs model

Lagrangian (5.1) can be rewritten as:

L =
1

2µ0

✓

E2

c2
�B2

◆

+
1

2msc2

�

�

�

�

✓

�i~
@

@t
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◆

 

�

�

�

�

2

� 1

2ms
|(i~r+ esA) |2 � ↵| |2 � �

2
| |4.

(5.6)

5.2. Scaling

In this section we derive a dimensionless form of the Lagrangian (5.6). We introduce the following

non-dimensional quantities:

x0 =
x

x0
, t0 =

t

t0
,  0 =

 

 0
,

A0 =
A

A0
, V 0 =

V

V0
.

(5.7)

Substituting in (5.6) and omitting primes we obtain:

L =
A2
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2µ0x
2
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✓
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(5.8)

We make the following choices:

x0 = ct0,
V0t0

A0x0
= 1,  2

0 =
�↵
�

, �↵ 2
0 =

A2
0

2µ0x
2
0

. (5.9)

We obtain:

L =
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(5.10)
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5.3. Equations of motion

Introducing the London length � =

s

ms�

�e2sµ0↵
and the coherence length ⇠ =

~p
�2ms↵

, we obtain:

L =
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(5.11)

We can choose x0 = � as the unit of length, and rescale the energy density L in units of
↵2

�
.

Denoting as usually  =
�

⇠
, we obtain the final expression of the dimensionless Lagrangian:

L =

✓
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+rV
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(5.12)

5.3. Equations of motion

To obtain the equation of motion from the Lagrangian (5.12), we use the least action principle. It states

that the action of the system defined by

S =

Z

L(A,
@A

@xi
, ,

@ 

@xi
)dΩ, (5.13)

where dΩ = dtdxdydz, is extremal. Hence, its derivatives with respect to  and A are equal to zero.

5.3.1. Equation of motion for the order parameter ψ

We take the Fréchet derivative (see Definition 4.2.2) of (5.13) with respect to  and we equal it to zero:
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
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
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�
Z

⇣

| |2 ̃ + | |2 ̃⇤
⌘

= 0,

(5.14)

for every test function  ̃. Integrating by parts with respect to time in the first integral, and with respect

to space in the second integral, we obtain the equation of motion and the boundary condition for the
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order parameter:

✓

� i
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@

@t
+ V

◆2

 �
✓

� i


r� A

◆2

 +  � | |2 = 0 in Ω,
✓

� i
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r� A

◆

 · n = 0 on Γ.

(5.15)

5.3.2. Equation of motion for the vector potential A

We take the Fréchet derivative of (5.13) with respect to A and we equal it to zero:

Z

2
@B

@t
·

✓

@A

@t
+rV

◆

�
Z

2r⇥ B ·r⇥ A

+

Z

B ·
1

i
( ⇤r �  r ⇤) +

Z

2B · A| |2 = 0,
(5.16)

for every test function B. An integration by parts with respect to time in the first integral, and space in

the second, gives the equation of motion and the boundary condition for the vector potential:

r⇥r⇥ A +

✓

@2A

@t2
+
@

@t
rV

◆

=
1

2i
( ⇤r �  r ⇤)� A| |2 +r⇥ H, in Ω,

r⇥ A ⇥ n = H ⇥ n on Γ.

(5.17)

Remark 5.3.1. The terms in red are added to the original model to take into account an applied field

H.

5.3.3. Constraint on the electric potential

To derive the constraint on the electric potential V , we take the Fréchet derivative of (5.13) with respect

to V and equal it to zero; we obtain:
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2rṼ ·

✓

@A

@t
+rV

◆

+

Z ✓

i



@ ⇤

@t
+ V  ⇤

◆

 Ṽ
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(5.18)

for every test function Ṽ . Integrating by parts with respect to space in the first integral, we deduce the

following constraint and boundary condition for the electric potential:

�div
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(5.19)

92



5.4. One-dimensional model

Since we have E = �
✓

@A

@t
+rV

◆

where E is the electric field, (5.19) can be rewritten as:

div E + V | |2 +
1


=
✓

 ⇤@ 

@t

◆

= 0 in Ω.,

E · n = 0 on Γ

(5.20)

Equations (5.16), (5.17) and (5.20) constitute the Abelian-Higgs model in its most general form. For

simplicity we concentrate on a 1D model.

5.4. One-dimensional model

We start by making a few hypotheses to rewrite the 3D Lagrangian (5.12) in a 1D form. We make the

following assumptions.

1. The vector potential can be written as A = (A, 0, 0), where A depends on x and t.

2. The order parameter  depends on x and t; it is complex valued.

3. r⇥ A is replaced by
@A

@x
.

4. The electric potential V is zero.

With these hypotheses the Lagrangian (5.12) can be written as:
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(5.21)

where I(x) = 1[�L,L] and [�L,L] is the domain of the superconductor. Considering the hypothesis

on V and developing (5.21) we obtain:
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The least action principle is equivalent to the following Euler-Lagrange system:
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The equation for A is:
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For  we obtain:

I(x)
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(5.24)

where �(x) is the Dirac distribution corresponding to the x-derivative of the characteristic function

I(x).

To obtain the boundary conditions, we integrate (5.23) over one of the edges of the domain. For

example, for x = �L we obtain:
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Taking the limit ✏ ! 0 and assuming bounded variations of the integrands, we obtain that
@A

@x
is

continuous at the interface x = �L. The second equation gives:
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Taking the limit ✏! 0 and assuming that the bracket in the integral is bounded, we recover the classical

boundary condition at the edge of the superconductor:

�iA +
1



@ 

@x
= 0. (5.25)

To summarize, we rewrite the system of equations of our 1D Abelian-Higgs model:
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(5.26)

We can rewrite the system (5.26) using hydrodynamic variables. We set  = ⇢ei✓, then (5.26)

becomes
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(5.27)

94



5.5. Numerical results

The interface condition at x = ±L is

@⇢

@x
= 0,

@✓

@x
= A. (5.28)

We have not used that standard notation  =
p
⇢ei✓ since in this case the system for ⇢ and ✓ is more

complex.

We notice from (5.27)1 and (5.27)3 that, apart from the trivial solution ⇢ = 1, A = 0, ✓ = ✓0 where

✓0 is a constant, we have the solution:

A = A1, ⇢ = 1,
@✓

@x
= A1, (5.29)

where A1 is a constant.

5.5. Numerical results

In this section, we study numerically the 1D Abelian-Higgs model (5.26). In the first paragraph we

describe, the finite difference scheme and construct a manufactured system to validate the convergence

of the scheme. We call manufactured system, a system of partial differential equations of which we

know the exact solution, called a manufactured solution. In the second paragraph, we analyse the

response of the model to a Gaussian pulse and highlight the importance of defects to get a non trivial

solution of type (5.29).

5.5.1. Study of a manufactured solution

Preliminary analysis

In this section, we construct a family of solutions for the simpler following system (it corresponds to

(5.26) where  is real so that we set all imaginary terms to zero):

8

>

>

>

<

>

>

>

:

@2A

@t2
=
@2A

@x2
�A| |2 in R,

1

2
@2 

@t2
=

1

2
@2 

@x2
+  (1�  2 �A2) in R,

A(t = 0) = A0(x),

(5.30)

where A0 is a given initial state.

We have found a particular solution of the Abelian-Higgs system (5.30). Our method is inspired

from the one used in Di Bartolo and Dorsey (1996) for the TDGL model. We search solutions of the

following form:

A(x, t) = Q(X),
 (x, t) = F (X),
with X = x� ct and F +Q = 1.

(5.31)

We have the following result:
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Proposition 5.5.1. The Abelian-Higgs (5.30) system is consistent with (5.31) if 2 =
1

2
.

Proof. With our notations, (5.30) becomes

@2A

@t2
=
@2A

@x2
�A| |2 ) F 3 � F 2 + (c2 � 1)F 00 = 0,

1

2
@2 

@t2
=

1

2
@2 

@x2
+  (1�  2 �A2) ) F 3 � F 2 +

1

22
(c2 � 1)F 00 = 0.

(5.32)

And the result follows.

In the above proof we see that if 2 =
1

2
then finding a solution of system (5.30) amounts to solving

the differential equation F 3 � F 2 + (c2 � 1)F 00 = 0. The following proposition gives a particular

solution.

Proposition 5.5.2. A particular solution for F 3 � F 2 + (c2 � 1)F 00 = 0 is given by F (X) =
6(c2 � 1)

X2 + 9
2(c

2 � 1)
.

Proof. We use the classical method for a conservative system: we multiply by F 0 then integrate. We

find:

F 02 = � 1

2(c2 � 1)
F 4 +

2

3(c2 � 1)
F 3 +K, (5.33)

where K is an arbitrary constant; we choose K = 0 for convenience. Provided F  4

3
we can take the

square root of both sides and obtain:

dF

dX
=

1
p

2(c2 � 1)

r

�F 4 +
4

3
F 3. (5.34)

We now separate variable F and X and integrate both sides:

X �X0 =
p

2(c2 � 1)

Z X

X0

dF

F
q

F (43 � F )
. (5.35)

We observe that a first integral of
1

F
q

F (43 � F )
is given by �3

2

s

4
3 � F

F
. Then taking F (X0) =

4

3

we deduce:

X �X0 = �3
p

2(c2 � 1)

2

s

4
3 � F

F
. (5.36)

Choosing X0 = 0 and raising (5.36) to the power of two we finally obtain:

F (X) =
6(c2 � 1)

X2 + 9
2(c

2 � 1)
. (5.37)
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We deduce from proposition (5.5.2) the following particular solution of the Abelian-Higgs system

in the real case:

(A(x, t), (x, t)) =

 

(x� ct)2 � 3
2(c

2 � 1)

(x� ct)2 + 9
2(c

2 � 1)
,

6(c2 � 1)

(x� ct)2 + 9
2(c

2 � 1)

!

. (5.38)

We now turn to the numerical solving of (5.30). It is discretized:

• in space using a second order centred finite difference scheme,

• in time using a Runge-Kutta 4 scheme.

We approximate the real line by a finite domain [�L,L] and take absorbing boundary conditions at

x = ±L.

The parameters are the following :

•  =
1p
2

,

• c =
p
2,

• ∆t = 5⇥ 10�4,

• (A0(x), 0(x)) = (A(0, x), (0, x)) from (5.38).

Figure (5.1) left shows the evolution of the solution, a solitary wave called soliton between t = 0 and

t = 40 when L = 60. Figure 5.1 right shows the convergence analysis results, for different choices of

L. We see that the order in space is two, which is consistent with our space discretization. In addition,

we see that L has to be sufficiently large to ensure good convergence properties at a given final time.
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Figure 5.1. Evolution of the particular solution ψ at t = 0 and t = 40 with a domain of

length L = 60 (left). Error ||ψ�ψexact||1 between exact and computed solution

in logarithmic scale at t = 1, for three lengths, L = 480, 960, 1920 (right).

Derivation of a manufactured system

In this section, we try to find a manufactured solution of (5.27). This system can be formally written

as F(A, ) = 0. No exact solution has been found, but it is possible to use a similar method as in the

previous section. We cast the system in the form F(A, ) = F(A0, 0) where F(A0, 0) is a non

zero right-hand-side term and (A0, 0) a particular solution. We also want F(A0, 0) to be as simple

as possible.

97



Chapter 5. An Abelian-Higgs model

We set
A(x, t) = Q(X),
⇢(x, t) = F (X),

Θ(X) =

Z

Q(X),

with X = x� ct and F +Q = 1.

(5.39)

We denote ✓ : (x, t) 7! Θ(x � ct). In the rest of the section, for clarity, we use the index notation for

derivatives (e.g. ux means
@u

@x
).

Proposition 5.5.3. Written with the variable Q, the system (5.27) becomes:

(i) (c2 � 1)Q00 = Q2(2+ 22)�Q3(22 + 2+ 1� c2),

(ii) Q0(3c2 � 3� 3) = �2
Q0

Q
,

(iii) (c2 � 1)Q00 = Q2 �Q3

✓

1


+ 1

◆

.

(5.40)

We cannot find (Q, c,) such that the system (5.40) is satisfied exactly but we can make it consistent

for (i) and (iii). For (i) and (iii) to be identical, we have to find (c,) such that

22 + 2 = 1,

22 + 2+ 1� c2 = 1 +
1


.

(5.41)

A solution of (5.41) is:

c = 3
1

4 ,

 =
�1�

p
3

2
.

(5.42)

The equation to solve is:

Q00 =
Q3

2
(�2 +

p
3)(1 +

p
3) +

Q2

2
(1 +

p
3). (5.43)

A similar analysis as in the previous section leads to the manufactured solution:

Q(X) =
12(2 +

p
3)

(1 +
p
3)(2 +

p
3)X2 + 9

. (5.44)

From (5.39) and (5.44) we deduce an explicit form of a particular solution (A0, 0):

A0 =
2X2 + 15

p
3� 33

2X2 + 27
p
3� 45

,

⇢0 =
12(2 +

p
3)

(1 +
p
3)(2 +

p
3)X2 + 9

,

✓0 =
4
p

2 +
p
3

p

1 +
p
3

arctan

✓

1

3

q

(1 +
p
3)(2 +

p
3)X

◆

,

(5.45)

where X = x� 30.25t.
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Equations (5.27)1 and (5.27)3 are verified exactly by solution (5.45). Equation (5.27)2 is not verified,

so we have additional terms. After calculation we end up with the following manufactured system,

written in hydrodynamic variables (A, ⇢, ✓):

⇢tt � ✓2t ⇢� ⇢xx + ✓2x⇢� 2A⇢✓x � ⇢2(1�A2 � ⇢2) = 0,

✓tt + 2✓t
⇢t

⇢
� (✓xx � 2

✓x⇢x

⇢
) + 2A

⇢x

⇢
+ Ax = �Q0

 

3

2
(1� 3

p
3) +

1 +
p
3

Q

!

,

Att �Axx �
1


⇢2✓x +A⇢2 = 0.

(5.46)

From (5.46) and (5.26) the manufactured system written in ordinary variables (A, u, v) where  =
u+ iv is:

utt � uxx � (Axv + 2Avx)� 2u(1� | |2 �A2) = �⇢0 sin(✓0)⇥RHS,

vtt � vxx + (Axu+ 2Aux)� 2v(1� | |2 �A2) = ⇢0 cos(✓0)⇥RHS,

Att �Axx �
1

2i
( ⇤ x �   ⇤

x) +A| |2 = 0,

(5.47)

where RHS := �Q0

 

3

2
(1� 3

p
3) +

1 +
p
3

Q

!

denotes the non-zero right-hand-side term obtained

in (5.46)2.

Numerical results

In this paragraph, we compute solutions of (5.47) and compare them to the exact solutions (5.45). We

study the convergence in time of three different schemes: explicit Euler, Runge-Kutta 2 and Runge-

Kutta 4. We use a second order centred scheme in space. Our goal is to retrieve the classical conver-

gence orders for these schemes. The computational domain is shown in Fig. 5.2.

Figure 5.2. Computational domain for the manufactured system (5.47). The amplitude of ψ

at initial time is shown.
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The results are shown in Figs. 5.3. The order in space is two, as expected from our discretization.

In time, the expected orders are correctly retrieved. We emphasize that we have to resort to a higher

order in space in order to show the order for Runge-Kutta 4. More specifically, if a quantity u is to be

computed and we denote uh its discretised value, then in the Runge-Kutta 4 case, we have:

||u� uh|| = O(∆t4 +∆xq), (5.48)

where q depends on the discretization in space and q > 4. In this case we choose a sixth-order compact

scheme Lele (1992) (q = 6).

Figure 5.3. Convergence curves. In red, convergence curves in time (above) and space (be-

low) for the three schemes. Dashed lines are the expected orders. All errors are

computed with the infinite norm.

In the next section we use our scheme to analyse the response of the model to a Gaussian pulse.
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5.5. Numerical results

5.5.2. Response to a Gaussian pulse

As already mentioned in the introduction, the trapped flux property is central in applications. One way

to achieve it is to apply and remove a large applied magnetic field. If the field is applied via a pulse

on a pre-cooled material then we speak of pulse field magnetization (PFM). Our goal is to describe the

response of our model to such a pulse.

Defects

To make the model (5.26) more realistic we introduce defects. In our case, this amounts to choose ↵ in

(5.1) as space dependent (Sørensen et al., 2017). Then the equation for  takes the form:

@2 

@t2
=
@2 

@x2
� i

✓

@A

@x
 + 2A

@ 

@x

◆

+ 2 
�

s� | |2 �A2
�

, (5.49)

where s(x) is a defect function. It takes the value �1 at nodes where there is a defect otherwise its

value is 1. We suppose that the defect consists of one node and that the defects are regularly spaced.

The applied pulse is of the form A0(x) = a0 exp(�
x2

2w0
). By making the change of variable

A = A0 +A0(x� t) the model becomes:

@2A0

@t2
� @2A0

@x2
= I(x)



i
1

2

✓

 
@ ⇤

@x
�  ⇤@ 

@x

◆

� (A0 +A0)| |
2

�

,

@2 

@t2
� @2 

@x2
= �i

✓

@A0

@x
 + 2(A0 +A0)

@ 

@x

◆

+ 2 
�

s(x)� | |2 � (A0 +A0)
2
�

,

�i(A0 +A0) +
1



@ 

@x
= 0, x = ±L.

(5.50)

Numerical results

Figure 5.4 shows the influence of defects on the average in space of the vector potential. We see that

defects trigger a non zero trapped A1. In addition, the gradient of the phase verifies
@✓

@x
= A1. In

Fig. 5.5, we report the average of  both in time and space. We observe a monotonic decrease with

respect to the density of defects (here defined as the ratio between the number of nodes with a defect

and the number of nodes without a defect). In a real material, defects are known to pin vortices, so

more defects mean more pinned vortices and as a consequence the mean value of  is reduced; our

results are consistent with this intuitive picture. We report below details about the chosen parameters:

? GL parameter:  = 1,

? xmin = �15, xmax = +15, L = 11.53,

? Abscissa of the pulse: x0 = �200,

? Width of the pulse: w0 = 50,

? Amplitude of the pulse = a0 = 3,

? Space step: ∆x = 7.69e � 3,
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? Time step: ∆t = 0.001,

? End time: t = 40000,

? size of the defect: 1 node,

? (for Fig. 5.5) number of nodes between defects: from 26 (3.8%) to 1 (50%),

? (for Fig. 5.4) number of nodes between defects: 6,

? Discretization in time: RK4 scheme.
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Figure 5.4. Time evolution of the averaged A (left) and the phase θ (right) considering the
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6. Conclusion

In this study, we have addressed the problem of modelling type II superconductors. Four models have

been tackled: the London model, the TDGL model, the steady state GL model and the Abelian-Higgs

model.

For the London model, we have focused on a problem with cylindrical symmetry. In 2D, the intro-

duction of an hydrodynamic variable, called stream function, has enabled to simplify the expression

of the London equation written originally with the vector potential. This has led us to prove a mathe-

matical result about existence and uniqueness of a solution for our problem. This formulation has also

provided an alternative way to model the magnetic field outside the superconductor. We have shown

remarkable agreement between the two methods. We have also conducted a 3D study. A classical

path was first followed by considering a bounded external box where conditions at infinity are applied.

Second, an alternative formulation was used to tackle the conditions at infinity by introducing bound-

ary elements. These elements have been recently added to FreeFEM. We have shown that the BEM

method indeed improves the results.

Out aim by studying the TDGL model was to provide efficient finite element discretizations in view

of an implementation with FreeFEM. We have first proposed a numerical scheme using only Lagrange

finite elements. It has been tested successfully in 2D for both convex and non convex geometries. The

drawback is that it has not been possible to consider a general curved polygonal domain due to the

condition A · n = 0 on the boundary. The second scheme was proposed by Gao and Sun (2015). It

is a mixed finite element formulation of the TDGL equations. The introduction of Raviart-Thomas

finite elements makes it simple to treat the condition A · n = 0. Moreover, defining a complex mesh

structure is not difficult with FreeFEM. We have been able to solve the TDGL equations in a sphere or

a sphere with a geometrical defect, for example. The codes have been written in the general !-gauge

framework. Besides, we have conducted a detailed analysis on the influence of the gauge parameter !

on the convergence properties of the numerical scheme. This has lead us to conclude in the existence

of an optimal gauge. However, this result depends on the size of the mesh and in practice the Lorentz

gauge gives the best convergence properties. Finally, a change of the gauge parameter can serve as a

perturbation of the final state; in this way we have discovered new vortex patterns for a 2D classical

benchmark.

The steady state GL model was an opportunity to look into more advanced numerical tools like the

Sobolev gradient flow techniques. These methods were introduced by the mathematical community

(Neuberger and Renka, 1998). These ideas were applied successfully to Gross-Pitaevskii equation by

Danaila and Kazemi (2010). We have extended this method to GL equations. In most cases, we have

retrieved the equilibrium patterns given by the classical TDGL model. However, a new pattern has been

discovered for a classical benchmark. The Sobolev Gradient method is an imaginary time technique,

i.e. that we lose the real physical dynamics and focus on the final state. The advantage is that we can

use Lagrange finite elements even in a curved polygonal domain as we have shown in the case of a

disk with a boundary defect. Another benefit is the low computational cost of the method compared to

TDGL simulations.

In investigating the Abelian-Higgs model, we have developed an original 1D model and a finite
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differences code in Fortran. To validate our scheme, we have constructed a manufactured solution

which is actually a soliton. Our goal was to predict a magnetization effect, which is standard in PFM

experiments. We reached the conclusion that a non zero vector potential can be trapped if we introduce

defects in the domain.

Future work

In the London model, we have fixed the London length to be � = 1.6 ⇥ 10�7. It means we cannot

actually see the penetration of the magnetic field in the superconducting domain. We could vary �

and analyse for instance the regularity of the fields (vector potential, magnetic field) near the edges of

the superconductor. We could also go further with the hydrodynamic approach, in particular with the

analogy with vortex rings. Explicit formula might be found for the stream function in some special

cases as is done in Danaila et al. (2021). Finally, one could try to extend these ideas to the GL equations.

In the TDGL simulations, we did not consider the coupling with the exterior as we have done for

the London model. This approach would be more rigorous since the external field is actually uniform

only at infinity due to the demagnetization field.

Sobolev gradient techniques have proven to be effective to solve steady state GL equations with

a very low computational cost. We could wonder if these ideas can extend to the TDGL model. In

addition we could improve the method itself by applying the descent method to the discretized energy

in the spirit of Kazemi and Renka (2013).

In conclusion, the dynamics of vortices have proven to be rich and complex both in 2D and 3D. It

could be of great interest to investigate cases with more vortices and see how they move, arrange and

possibly interact as is the case in quantum turbulence observed in superfluids (Brachet et al., 2023).
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A. Appendix A

A.1. Feynman’s model for superconductivity

In this section, we present the model for superconductors introduced by Feynman (1998). First we

show the correspondence between Feynman’s constants and GL coefficients ↵ and �. Then, we com-

pare Feynman’s model with the Gross-Pitaevskii equation used to model superfluids and in particular

Bose-Einstein condensates (Pitaevskii and Stringari, 2003). Our goal is to highlight formal links be-

tween these different models.

A.1.1. Comparison of Feynman’s model with Ginzburg-Landau

We start with the Lagrangian for a charged particle q of mass m moving in a magnetic field and an

electric potential �

Lf =
1

2m

✓

~

i
r� qA

◆

 

� ✓

~

i
r� qA

◆

 

�⇤

+q� ⇤ +
~

i
 ⇤ ̇ +

↵f

2
(| |2 � ⇢s)

2.

(A.1)

where the f in ↵f means Feynman so as not to confuse it with the ↵ from GL theory. It leads to the

following nonlinear Schrödinger equation, called Feynman’s model:

i~
@ 

@t
=

1

2m
[�i~r� qA]2  + q� + ↵f (| |

2 � ⇢s). (A.2)

The TDGL model (3.8)1 reads:

� ~
2

2mD

@ 

@t
=

1

2m
[�i~r� qA]2  +

~

2mD
q� + ↵ + �| |2 , (A.3)

The comparison between (A.2) and (A.3) in the steady state case and � = 0 gives the formal

equivalence:
⇢

↵f = �,

�↵f⇢s = ↵.
(A.4)

A.1.2. Comparison of Feynman’s model with the Gross-Pitaevskii

equation

The GL model and the Feynman’s model are very close to the GP equation. In Abid et al. (2003)

the following Lagrangian is introduced (to avoid confusion we add the index gp refering to Gross-
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Pitaevskii)

Lgp = ↵gpi

✓

 ⇤@ 

@t
�  

@ ⇤

@t

◆

� 2↵2
gp|r |2 � 2↵gpf(| |

2), (A.5)

where ↵gp =
~

2m
and f(| |2) = �Ω| |2 +

�gp

2
| |4.

The non linear Schrödinger equation associated with (A.5) is called the Gross-Pitaevskii equation.

It is given by:

i~
@ 

@t
= � ~

2

2m
∆ � ~Ω + ~�gp| |

2 . (A.6)

The correspondence between (A.2) and (A.6) is achieved provided that q = 0 and

8

<

:

Ω =
↵f⇢s

~
,

�gp =
↵f

~
.

(A.7)

Equations (A.4) and (A.7) link the three models (Feynman, Ginzburg-Landau and Gross-Pitaevskii)

from a formal point of view.
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A.2. Proof that H1(ω) is a Hilbert space

In this section we prove the following proposition.

Proposition A.2.1. H1(!) defined by (2.36) is a Hilbert space for the following scalar product:

(Φ,Ψ)H1(!) :=

Z

Ω

1

r
ΦΨ+

Z

Ω

1

r
rΦ ·rΨ. (A.8)

Proof. The bilinear form (·, ·)H1(!) is clearly positive. If we have (Ψ,Ψ)H1(!) = 0, then ||Ψ||2
L2
ω
= 0,

and since ! > 0, we have a.e. Ψ = 0. The bilinear form (·, ·)H1(!) is thus a scalar product. We now

prove that H1(!) is complete for the associated norm.

Let (un) ⇢ H1(!) a Cauchy sequence for the norm || · ||H1(!), then by definition (2.38), !
1

2un

and !
1

2 r̄un are Cauchy sequences in L2. Since L2 is complete they converge towards v and g in L2

respectively. We set

ṽ = !� 1

2 v,

g̃ = !� 1

2 g.
(A.9)

We have the following inequalities:

Z

Ω

(un � ṽ)2  Rmax

Z

Ω

(!
1

2un � v)2, (A.10)

Z

Ω

(r̄un � g̃)2  Rmax

Z

Ω

(!
1

2 r̄un � g)2. (A.11)

From which we infer that:

un �! ṽ, (A.12)

r̄un �! g̃. (A.13)

Now we verify that r̄ṽ = g̃, which is equivalent to

@ṽ

@xi
= g̃i i = 1, 2. (A.14)

Let � in D(Ω). We have from the definition of weak derivatives

Z

Ω

@un

@xi
� = �

Z

Ω

un
@�

@xi
. (A.15)

Passing to the limit, using (A.12) and (A.13), we obtain:

Z

Ω

g̃i� = �
Z

Ω

ṽ
@�

@xi
, (A.16)

which proves that
@ṽ

@xi
= g̃i.

From (A.9) and (A.14), we have ṽ 2 H1(!). In addition

||un � ṽ||H1(!) =

Z

Ω

(!
1

2un � !
1

2 ṽ)2 +

Z

Ω

(!
1

2 r̄un � !
1

2 r̄ṽ)2. (A.17)
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Passing to the limit, we have that un �! ṽ for || · ||H1(!), which concludes the proof.
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