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INTRODUCTION

Visual servoing is a mature area whose formalism is well established [23]. One of its
main aims is the control of a robot using the visual information coming from a camera,
which is typically mounted at the end effector of the robot. Classically, we assume that the
camera has six degrees of freedom and it is controllable in velocity, meaning that it is free
to move in any direction and with any angular velocity at any given moment. Additional
constraints, like joint limits and the robot’s workspace, as well as inertial effects, are
typically handled in a second phase, which is out of scope of this thesis.

The objective of all visual servoing controllers is to minimize an error e, which is
typically defined as:

e = s(x)− s∗, (0.1)

where x ∈ SE(3) is the state of the camera and s(x) are the so-called visual features,
representing the information that we can gather from the images coming in from the
camera. There is a rich literature on the choice of the visual features [19, 23, 28]. Clas-
sically, we distinguish between pose-based visual servoing, where we first reconstruct the
pose of the camera and use directly this information in the control loop, and image-based
visual servoing, where we use directly the image information (for instance, the Cartesian
coordinates of some markers in the screen) to design the controller, but other, hybrid
approaches can be found as well.

Even if visual servoing has lead to many successful applications and benefits in practice
from a large convergence domain and a large robustness to modeling and calibration errors,
its stability analysis is still an open theoretical issue when all the six degrees of freedom
of the system have to be controlled.

In this regard, pose-based visual servoing [100, 103] seems to be appealing since us-
ing a minimal representation of pose as input of the control scheme allows the system
to be globally asymptotically stable (i.e., the system will converge whatever its initial
configuration) in case the pose is assumed to be perfectly estimated all along the servo.
Without speaking about the visibility constraint that imposes a sufficient number of im-
age measurements are always available to estimate the pose, the assumption of perfect
pose estimations is very strong and can be violated, as exhibited in [20] for the case of a
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simple planar object. This is due to the fact that going from 2D image measurements to
pose is an inverse problem which can be ill-conditioned.

The situation is the same for the hybrid and 2 1/2 D approaches [21, 63, 68] that use
once again a minimal number of visual features as inputs of the control scheme, some
expressed in the image, others in 3D. In that case, global asymptotic stability can be
demonstrated by assuming the 3D data involved are perfectly estimated.

Another approach consists in using as visual features the image coordinates of at
least three points and their depth [16, 72]. It has been demonstrated in [92] that four
equilibrium poses exist in that case, one corresponding to the desired pose and the three
others corresponding to unstable equilibria, which means that the system will move away
from them as soon as noise will be introduced. Very recently, a deeper study of this scheme
has been performed in [34], leading to the nice result that the system is almost globally
asymptotically stable in perfect conditions, but also that there exists a set of particular
poses that will converge towards these unstable equilibria, meaning they correspond to
saddle points.

Very few results exist concerning image-based visual servoing. This approach has the
strong advantage of being the more robust to measurement noise since the inputs of the
closed-loop control scheme only rely on image measurements. Even if depth is involved
in the control scheme since it appears in the interaction matrix from which the control
scheme is designed, noise on depth will affect the transient phase of the dynamic system
(that is, the trajectory to reach the goal will be perturbed by noise or coarse approximation
on depth), but it will have no effect on the accuracy reached at the goal (if the system
converges to that goal!). However, up-to-now, only local asymptotic stability has been
demonstrated for image-based visual servoing [23], which means one is sure that the
system converges if the initial configuration is in the neighborhood of the desired one
(and determining quantitatively the size of this neighborhood is a clear open issue). This
is due to the fact that a redundant number of visual features, typically the coordinates
of at least four image points, are used as inputs of the control scheme for avoiding the
famous cylinder of singularities when only three image points are considered [73, 99], and
also since there usually exist four different poses such that the image of three points is
the same [44]. Global asymptotic stability seems to be out of reach since the existence
of attractive local minima has been exhibited in [20]. It concerned the case of coplanar
points with a desired configuration not parallel to the image plane, following the result
given in [80] that pose ambiguity exists in that particular case. More precisely, if a unique

10



Introduction

pose exists from the perspective projection of four points, two symmetric solutions exist
in the non-parallel case with the para-perspective model, leading to two similar (but
not exactly the same) images for the poses corresponding to these two solutions with
the perspective model. Designing one solution as the desired pose and starting from a
pose near the other solution, it was not surprising that the system converges toward the
latter, a local minimum, and not toward the former corresponding to the global minimum
and desired pose. Furthermore, attractive local minima have also been recently exhibited
in [84] for the case of four non coplanar points by looking at the behavior of the system
near singularities found in the case of four points.

Even though they are known to exist, the local minima of image-based visual servoing
systems have not received a lot of attention in the literature, possibly because of the
theoretical difficulty of characterizing them [20]. Their existence have only been exhibited
for some points’ configurations by simulation, and the number, or even the existence,
of local minima of arbitrary configurations is still an open problem. Clearly, these local
minima represent a serious issue in real-world applications, and being able to formally
characterize their properties and, in particular, their regions of attraction would represent
a big step forward in the usability of these simple and robust controllers in practice.

It is well known that some of the classical image-based visual servoing controllers
presents a natural Lyapunov function, at least under the assumption that no measure-
ment noise is present [28, 67]. This motivated us to deeply investigate how we can ex-
ploit Lyapunov theory in the quest of studying the stability properties of image-based
visual servoing systems. Lyapunov theory hardly needs presentations, being, arguably,
one of the most widely used tools to assess the stability of dynamical systems [52, 60],
which is broadly applied for both linear and non-linear systems, even if uncertain or
non-continuous [33]. Lyapunov theory is intrinsically local in its original formulation and,
while it allows for the analytical assessment of global stability in general (the so-called
LaSalle interpretation of Lyapunov theory), evaluating the exact region of attraction of
an equilibrium is a hard problem, even when the dynamics are known. The region of
attraction’s estimation problem has been extensively studied in the literature [10] and
we can find several well known approaches to the problem. Classically, we can estimate
the region of attraction by studying the invariant sublevel sets of a given Lyapunov func-
tion. In the case of polynomial systems, the evaluation is performed solving optimization
problems with linear matrix inequality constraints, exploiting the sum-of-squares relax-
ation in polynomial optimization [25, 26, 51]. It is possible to generalize this approach to
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allow for parametric Lyapunov functions [25, 101], while other authors rely on Zubov’s
method [104] to design a suitable Lyapunov function [88], even though, since in image-
based visual servoing we have a natural Lyapunov function already, we will not explore
these strategies.

Even though we have a substantial variation in the choice of method, all of the
Lyapunov-based strategies that we found to estimate regions of attraction rely on the
same general philosophy: we define a global optimization problem, whose solution let us
identify the largest sublevel set of the Lyapunov function so that its Lie derivative is
strictly negative inside the set. The literature is then mainly concerned about the best
way to solve this optimization problem [25, 48]. However, the very heart of this philos-
ophy causes two limitations with these approaches, which could be particularly severe
in the context of image-based visual servoing. The first one is that the estimate can be
overly conservative. Since we look for a sublevel set for which the Lie derivative is strictly
negative, it is clear that we cannot go any higher than the smallest sublevel set which
includes a second equilibrium. Thus, in image-based visual servoing, we surely cannot
go any higher than the value of the Lyapunov function at the local minimum, which is
known to be very similar to the one at the desired pose, at least when the points are
coplanar [20]. The second issue is more technical, but still relevant in our investigation.
While these approaches are methodologically sound, the global optimization problem can
be very complicated to solve in practice, even when the considered dynamical system
is defined in low-dimensional settings. The complex structure of the image-based visual
servoing systems, coupled with their definition on SE(3), makes us believe that applying
these methods is hardly a viable path, and our early attempts, carried out on simplified
visual servoing systems 1, turned out to be intractable.

A completely different approach comes from the mathematics literature on dynami-
cal systems theory, in particular from that part of mathematics that stems from Morse
theory [74, 78]. The original objectives of M. Morse were almost completely unrelated
from the stability analysis of dynamical systems, given that the aim of Morse theory is to
assess the topological properties of manifolds. However, the way in which these properties
are assessed bear a striking resemblance with some of the ideas coming from Lyapunov
theory: we define a function on the manifold of interest, called a Morse function, and
we study a class of dynamical systems, called gradient-like systems, which are such that

1. We considered that the camera is only allowed to move on a plane and only rotate with respect to
the axis perpendicular to the plane, restricting its state-space to (a subset of) SE(2).
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(a) Reeb graph example. (b) Connectivity tree example.

Figure 1 – A stylized torus (i.e., the function’s domain) and the corresponding Reeb graph
(a) and connectivity tree (b) for the height function.

the Lie derivative of the Morse function along the gradient-like flows is strictly negative,
outside of the Morse function’s critical points. The gradient-like systems also have some
additional hypotheses on their behavior when close to the critical points, thanks to which
it is possible to precisely characterize the topological properties of the underlying manifold
by studying the Morse function’s critical points.

A well-known example that comes from Morse theory is the celebrated Reeb theo-
rem [74, Theorem 4.1], that tells us that, if we have a differentiable function whose domain
is a compact manifold, and such that it only has two nondegenerate critical points, then
the manifold is homeomorphic (i.e., topologically equivalent) to a sphere. Another famous
example, which will be useful in the next section, is the so-called Reeb graph, which is a
graphical tool which reflects the evolution of the level sets of a function whose domain is a
manifold. The idea behind the Reeb graph is quite straightforward: for each level set, we
consider that all the points that lie in the same connected component of the level set are
equivalent, and we simply “collapse” each component to a dot. By drawing the evolution
of the level sets’ components as the function increases, we obtain a graph, whose nodes
represent the function critical points.

We can see a classical example of a Reeb graph in Figure 1a, where we consider the
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Figure 2 – The error function and the corresponding gradient flow, showing a two dimen-
sional saddle of index 1 separating two regions of attraction.

evolution of the height function on a (stylized) torus. As we move along the z-axis, the
function first has a single component (in the range −3 < z < −2), then, when it meets
the first saddle point, it splits into two components (for −2 < z < 2) which finally get
rejoined at the second saddle point’s level (z = 2). We clearly see this evolution on the
Reeb graph in the figure, and, intuitively, we can use this tool to detect holes in the
manifold, even when it is high-dimensional and impossible to visualize.

Later authors, and S. Smale in particular, brought Morse theory and dynamical sys-
tems’ theory closer together, with the development of the so-called Morse-Smale theory [8],
that, under stricter hypotheses than Morse, paints a precise relationship between the sta-
ble and unstable manifolds of gradient-like systems and the topology of their state-space.
Further developments in this field eventually moved closer towards the stability and the
regions of attraction of nonlinear dynamical systems: in [27], H.-D. Chiang and M. W.
Hirsch showed that, given a nonlinear system and a stable equilibrium point for it, the
boundary of the equilibrium’s region of attraction is the union of the stable manifolds
of other, unstable equilibria, under some generic-enough hypotheses that we will discuss
soon. This characterization gives a crucial importance to unstable equilibria in studying
the stability of dynamical system, which will be a central topic in our work.

Even though it is very difficult to prove this result in its full generality, the idea
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behind this property is quite intuitive, and we want to illustrate it with a simple example.
Consider the function v(x) = x1−4x2

1 + x4
1 + 2x2

2 and its corresponding gradient flow, i.e.,
the dynamical system defined by ẋ = −∇v(x), both depicted in Figure 2. The function
has two minima which correspond to stable equilibria of the gradient flow, towards which
almost all trajectories converge to. By looking at the vector field, we can see that the
saddle point acts as a “separator” between these minima: trajectories are not allowed to
cross its stable space (depicted in red), and so trajectories starting on either “side” of
the stable space must converge to the minimum on the same side. We can show that the
saddle’s stable space stretches towards infinity (in fact, it is easy to see that it is the x2-
axis), meaning that R2

+ = {x ∈ R2 : x1 > 0} and R2
− = {x ∈ R2 : x1 < 0} are the regions

of attraction of the local and global minima, respectively, while the saddle’s stable space
is the boundary between them. We have shown that the saddle’s stable space represents
the boundary of both regions of attraction of this simple example, and Chiang & Hirsch
confirm that this is always the case, as long as the the equilibria on the boundary are
hyperbolic, that all trajectories on the boundary converge towards one of the equilibrium
points and that the system is structurally stable 2.

As powerful (and beautiful) as this approach is, its direct application in the image-
based visual servoing context seems unrealistic. Verifying that the required hypotheses
hold for our systems is a big challenge per se; even taking them for granted, we would
need to compute all of the system’s equilibria (unstable ones included, which would be
practically impossible to find via simulation) and their stable and unstable manifolds.
However, throughout the thesis we will be able to see how these seemingly hopelessly
abstract ideas influenced our analysis.

All in all, in developing our own methodology to study the stability and the regions of
attraction of image-based visual servoing systems, we were able to take several elements
from both worlds, which ultimately allowed us to fill a gap that has existed in the visual
servoing literature for more than 25 years. As we show in the next section, our approach
gives us a new point of view on how to attack these problems, and, we believe, it strikes
a good balance between the information required from the system’s dynamics and its
applicability to “real-world” problems.

2. Structural stability, and its connection with the so-called transversality condition [97], has been
pioneered by J. Palis [82]. Interestingly, Smale was the doctoral advisor of both Palis and Hirsch.
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Contributions

The contributions of this thesis are twofold. The first “branch” is mainly concerned
with developing new methodological tools that allow us to study the stability and as-
sess the regions of attraction of dynamical systems which satisfy a global Lyapunov-like
condition. Basically all the important results concerning this first part of our work are
discussed in Chapter 1.

The second branch of our contributions is more practical in nature, and it is mainly
concerned with applying this newfound theoretical insight to study the stability and the
regions of attraction of image-based visual servoing systems. We develop this second part
of our work through Chapters 2, 3 and 4.

Finally, in Chapter 5, we present some preliminary works on the impact of uncertainties
on the equilibria and stability of dynamical systems. Even though the final objective is
the application of these strategies in the context of image-based visual servoing, we only
focused on the methodological aspects in this chapter, testing our ideas on some simple,
idealized dynamical systems.

In Chapter 1, we first introduce the energy-decreasing formalism, where we assume
that we are given an energy function and that we want to study the stability properties
of dynamical systems, that we call energy-decreasing systems, for which the Lie derivative
of the energy function is strictly negative outside of the energy’s critical points. We can
equivalently characterize them as those systems for which the energy along any non-
constant trajectory is strictly decreasing, which further motives their name.

In Section 1.2, we show that the energy-decreasing systems are closely related to one
another, and that their main stability properties can be directly inferred from the energy
function alone. We prove that they all have the same equilibria (both stable and unstable),
which coincide with the critical points of the energy function. Additionally, we show that
the type of critical point (i.e., whether it is a minimum, a maximum or a saddle) uniquely
determines the stability of the equilibrium (i.e., if they are sink, sources, etc.) for any
energy-decreasing system. These properties are intrinsically local in their formulation,
and our investigation is clearly influenced by Lyapunov-like arguments; this is perfectly
showcased by Lemma 1.1 (Section 1.2.2), in which, as a first step to show that the type
of equilibrium does not change, we provide a generalization of the classical Lyapunov
stability theorem for LTI systems which holds for any kind of equilibrium, and not only
for stable ones.
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Figure 3 – Comparison between the state-of-the-art estimates and the sublevel set at
the saddle point for the function shown in Figure 2, together with an energy-decreasing
trajectory starting just outside the saddle’s level.

It is well known that the sublevel sets of a Lyapunov function are invariant sets, and
it is clear that, for the characterization of energy-decreasing systems we have made, any
sublevel set of the energy function will be invariant for all energy-decreasing systems.
As we will see in Section 1.3, this allows us to talk about regions of attraction that are
agnostic to the choice of the particular energy-decreasing system, which, with a little
abuse of notation, we will call controller-independent regions of attraction.

As we have seen in the state-of-the-art section, there are several classical approaches
that try to find the largest possible controller-independent region of attraction, but we
argued that, especially in visual servoing, these approaches can yield very conservative
results. Looking at the example shown in Figure 2, however, it is intuitive to think that
increasing the energy level up to the one of the saddle point would improve the estimation,
as long as we focus on the sublevel set’s component connected to the minimum instead
of considering the entire sublevel set. We show a comparison between the state-of-the-
art estimates and the sublevel set at the saddle point in Figure 3, where we show, in
blue, the level set corresponding to the energy level at the local minimum, which is
the best estimate for the current state-of-the-art. In fact, we will be able to show that
the (connected component of the) saddle’s sublevel set represent the largest possible
controller-independent region of attraction for the minimum, and we showcase this by
plotting an energy-decreasing trajectory (in red in the figure) which, starting just outside
of the region, converges to the other local minimum.
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This idea motivated us to develop a tool with which we can study the energy function
and, in particular, how its sublevel sets are interconnected, which we call the connectivity
tree, which is the heart of our theoretical contributions on the study of energy-decreasing
systems. The connectivity tree is a graphical tool that tells us, for each energy level, how
many components the sublevel set has (thus, in particular, whether it is connected or
not). Its definition is clearly similar to the Reeb graph’s one, the difference being that we
consider the components of the sublevel sets for the connectivity tree, while we consider
the components of the level set for the Reeb graph. We can see a comparison between
the Reeb graph and the connectivity tree for the height function on the torus in Figure 1.
From a topological point of view, the connectivity tree carries less information than the
Reeb graph, but it is much easier to construct: the Reeb graph construction algorithm
usually requires an explicit description of the manifold under the form of a simplicial mesh,
with close-to-linear Lyapunov function on each simplex (see, e.g, [85]), which is simply
unrealistic in our context. By contrast, to construct the connectivity tree of an energy
function, we just need to know all its critical points and be able to do a finite number of
reliable simulations of the gradient flow (or, alternatively, any energy-decreasing system).

The most important contribution of the connectivity tree is that we can use it to find
the largest possible controller-independent region of attraction for each minimum (local
or global) of the energy function. It also allows us to discuss a weaker form of the region
of attraction, within which we allow the presence of other equilibria, as long as they
are unstable. We speak in this case of probability-1 region of attraction, whose name is
due to the fact that, for almost any initial position in the region, the trajectories of any
energy-decreasing system will converge to the minimum. The connectivity tree allows us
to find regions of attraction that potentially have a significantly larger size than classical
estimates, examples of which we will see in Section 1.3.

The connectivity tree is only applicable for those sublevel sets which are compact, but
the image-based visual servoing energy function have at least some unbounded level sets.
We were able to identify, in Section 1.4.1, two situations so that the sublevel sets of the
energy function become non-compact. The first one is very well known in the field, and
it is due to the presence of trajectories where the camera runs off to infinity [20]. The
other one though is seemingly unknown in the field, and it is due to trajectories where
the camera tries to converge towards the object, while decreasing the energy at all times.
This is a surprising behavior, especially because we expect that the energy goes to infinity
as the camera gets closer to the object, the reason why we decided to call this peculiar
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behavior a hole-in-the-wall. Analyzing these situations, we are able to compute a critical
energy level that guarantees compactness of all sublevel sets below it, which allows us to
make sense of the connectivity tree.

We now turn to the investigation of the second, more practical branch of our contribu-
tions. In Chapter 2, we study the critical points of the energy function of a class of classical
image-based visual servoing systems, namely the control schemes that use the Cartesian
coordinate of N points as visual features, which are known to be energy decreasing. In
Section 2.1, we propose a nonlinear change of variables that allows to formulate the equi-
librium condition directly in the extended features’ space. These new variables make the
exhaustive and verified computation of all equilibria for these systems a tractable prob-
lem, allowing, for the first time ever in the literature, to find and study their unstable
equilibria and to verify the number of local minima. We also show that, if we take the
camera’s state-space as domain, the change of variables is actually a bijection, allowing
to recover the corresponding equilibria in the camera’s state-space. This is discussed in
Section 2.2, where we also provide an algorithm that allows to reconstruct the camera’s
pose.

The exhaustive computation of all equilibria, together with the identification of the
critical energy level that guarantees compactness of all sublevel sets below it, allows us
to compute the connectivity tree of the image-based visual servoing energy function. In
Chapter 3, we apply our new methodology to a set of representative test cases. We first
compute all the equilibria and the corresponding heteroclinic orbits, for which we use the
Julia package VisualServoingToolbox.jl 3, developed by the author. Then, using this
information, we compute the connectivity tree and the controller-independent regions of
attraction for all minima, shining a new light on the dynamical properties of these robotic
systems.

Our change of variables allows for the equilibria computation of other well-know non-
energy-decreasing visual servoing systems, like the ones using an approximated version of
the interaction matrix in the control loop, for which we analyze a set of representative test
cases in Chapter 4. These approximated controllers have some advantages that are well
known in the field, and there have been several attempts in the literature to combine them
with the energy-decreasing ones. This motivated us to propose our own way of combining
them, making use of our new methodological tools.

This analysis led to the synthesis of the meta-controller, that is discussed in Sec-

3. https://github.com/acolotti/VisualServoingToolbox.jl
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tion 4.3. The meta-controller gives rise to an energy-decreasing system, and the intuition
behind it is that it wants to combine the “good behaved” trajectories of energy-decreasing
systems with the uniqueness of the minimum of non-energy-decreasing ones. We will see,
in Section 4.4, that this results in a substantial increase in size of the desired pose’s region
of attraction.

Finally, in Chapter 5, we collected some preliminary results, only tested on some
toy examples, on how to deal with uncertainties in the feedback loop. Throughout the
thesis we systematically assume that the system’s state and velocities are always perfectly
known, which is too idealistic of an hypothesis. We explored two approaches to handle
uncertainties. The first one, discussed in Section 5.1, aims to characterize the impact of
unmodeled uncertainties on the closed-loop system. The philosophy behind it is that, in
practice, we can accept a small imprecision on the final position of the robot, as long as
its macro-behavior is as expected. Based on this idea, we propose a new strategy that
allows to quantitatively assess the impact of uncertainties by identifying the system’s
attractor and its region of attraction. Talking about attractors generalize the concept of
stable equilibria and allows to discuss the practical stability of the system even when the
stable equilibria are not robust to perturbation.

The second part of the chapter is perhaps the least developed, and the farthest from
the image-based visual servoing applications. We shift our attention to sliding mode con-
trollers, which are known to be not sensitive to (small enough) unmodeled uncertainties.
We propose, in Section 5.2, only a technical contribution which concerns the convergence
properties of the so-called super twisting algorithm, where we provide new gain bounds
that ensure convergence with time-varying perturbations.

Thesis’ structure

This manuscript is organized as follows.
Chapter 1 is dedicated to the properties of energy-decreasing systems. We first show

that there is a link between these systems and a class of classical controllers in image-
based visual servoing, which motivates our investigation (Section 1.1). Then, we flesh out
all the properties that these systems have in common, like their fixed points and the type
of the equilibria, as well as the minimal hypotheses that we need to ensure these properties
(Section 1.2). We continue to what can be considered the heart of this chapter, in which
we propose a new graphical tool, the connectivity tree, that allows us to easily study
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the interconnection of the sublevel sets of an energy function. We also propose a simple
algorithm to compute it, which, by extension, lets us discuss the controller-independent
region of attraction of a given stable equilibrium (Section 1.3). We end the chapter by
showing that, when we use the points’ Cartesian coordinates as visual features, the natural
energy function in image-based visual servoing has some non-compact sublevel sets, and
characterize the maximal energy level that guarantees their compactness (Section 1.4).

In Chapter 2, we study a class of energy-decreasing image-based visual servoing con-
trollers (namely, the control schemes that use the Cartesian coordinate of N points as
visual features), for which we derive tractable polynomial models for their equilibrium
condition. A first polynomial model is naturally expressed in the state-space of the sys-
tem, but turns out to be intractable. We then propose a second model, expressed in an
extended space of visual features, which lead to systems of equations that are medium
size and strongly non-linear (Section 2.1). We then show that we can uniquely recover the
equilibria expressed in camera state-space by using the solution of the orthogonal Pro-
crustes problem (Section 2.2). We finally present the computational algebraic geometry
methods that can solve these systems of equations (Section 2.3).

In Chapter 3, we apply our methodology to study the stability and the controller-
independent regions of attraction for a benchmark of typical configurations of image-
based visual servoing systems, where, due to computational constraints, we only consider
configurations of N = 4 points. Thanks to a fruitful collaboration with Jorge García
Fontán and Mohab Safey El Din (LIP6 - Sorbonne Université), we were able to use the
msolve solver [9], which is a recent, highly optimized implementation based on Gröbner
bases computations, to compute all fixed points. This exhaustive equilibria computation
shows a striking regularity in the zoology of equilibrium points, while the resolution
timings, ranging from fractions of a second for simple configurations and up to 35 hours for
general ones on a 12 core server, demonstrate the difficulty of solving these problems. We
then compute the connectivity tree for each example, and use IBEX [5, 17, 18, 102], which
is a C++ library for constraint processing over real numbers based on interval arithmetic,
as a verified system solver to find a guaranteed enclosure of the energy function’s sublevel
sets.

Then, in Chapter 4, we turn our attention to a class of non-energy-decreasing image-
based visual servoing controllers. We show that the polynomial models derived in the pre-
vious chapter are still applicable in this case (Section 4.1), and we use once again msolve to
compute all fixed points for a benchmark of typical configurations (Section 4.2). We then
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show how we can exploit our newfound theoretical insight of energy-decreasing systems to
propose a new composite controller, called meta-controller, that combine the large region
of attraction of the non-energy-decreasing controllers with the nice convergence properties
of the energy-decreasing ones (Section 4.3). We prove that the meta-controller is at least
always continuous, and we display the improvement of the global minimum’s region of
attraction by applying it to image-based visual servoing (Section 4.4).

In Chapter 5 we can find some preliminary results on how to deal with uncertainties.
The content of this chapter is still far from being applicable in image-based visual servoing,
and, so, we focus mainly on the methodological aspects of our results, applying them to
simple toy examples. We explored two approaches to handle uncertainties: the first one
analyzes the so-called practical stability of the perturbed system, trying to identify a
bound on the error that guarantees a good macro-behavior of the system (Section 5.1).
The second approach aims at using a sliding mode controller, the super-twisting algorithm,
which is known to reject perturbations. Our contribution here is very technical and far
from the visual servoing applications, since we provide new gain bounds that ensure
convergence with time-varying perturbations (Section 5.2).
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Chapter 1

EQUILIBRIA AND STABILITY OF

ENERGY-DECREASING SYSTEMS

In this chapter, we want to argue why the exhaustive identification of all the equilib-
ria for a well-known class of image-based visual servoing controllers deeply characterizes
their behavior. We focus on energy-decreasing dynamical systems, which, intuitively, are
systems with an associated energy function which decreases along all trajectories, since
several classical visual servoing controllers are known to give rise to such a closed-loop
system.

The chapter is organized as follows. In Section 1.1, we present three classical image-
based visual servoing controllers that are known to be energy-decreasing in the visual
servoing literature. We then prove, using a new approach based on the change of the
Riemannian metric on SE(3), that we can see these systems as gradient systems, and
show how much information on their dynamics can be derived from the study of the
energy function alone. Motivated by this, we shift our focus to arbitrary energy-decreasing
dynamical systems, and, in Section 1.2, we generalize the properties derived in the context
of gradient systems to this larger class of systems, in particular for what concerns the
equivalence of their equilibria.

We will see that we put in a lot of effort to study the unstable equilibria of these
systems, and the reason for this is presented in Section 1.3. In this section, we present
one of the main contributions of the chapter, which is the construction of the connectivity
tree, a graphical tool that allows us to easily identify the controller-independent regions
of attraction of energy-decreasing systems.

Finally, in Section 1.4, after this long detour through the properties of energy-decreasing
systems, we come back to the specifics of the energy function that naturally arises in
image-based visual servoing. We analyze two peculiar behaviors of the classical image-
based visual servoing controllers, and we use them to identify two critical values that are
such that the corresponding sublevel sets of the energy function are non-compact, which
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will have important consequences in the determination of the connectivity tree for these
systems.

1.1 Gradient systems in image-based visual servoing

In this section, we first present a class of image-based visual servoing controllers that
are known to be energy-decreasing, which we be one of the main foci of this thesis, and
then discuss how these controllers share the equilibria and several associated properties.

To us, an energy-decreasing system is a time-invariant dynamical system with an
associated scalar, state-dependent energy function such that it is strictly decreasing along
all trajectories, except for the trivial ones where the system stays on an equilibrium. These
can be seen as a generalization of gradient systems (see, e.g., [53]), which are dynamical
systems whose vector field is defined as the negative gradient of a given energy function.
Gradient systems are of interest because their dynamics are greatly simplified: for instance,
the system’s equilibria coincide with the energy function’s critical points and there cannot
be periodic or chaotic trajectories, among other interesting properties. We will see how
this characterization fares for energy-decreasing systems in the next section.

In this thesis, we consider a traditional image-based visual servoing [23] task, where we
take the image-plane coordinates of N ≥ 4 1 points (not necessarily co-planar) as visual
features. We assume that we have an ideal pinhole camera, that the points are visible
from any direction and that the camera is controllable in velocity. The points’ Cartesian
coordinates oai, expressed in a given world frame, are constant and known a priori for
the analysis. The visual features xi, yi of the i-th point cai = (Xi, Yi, Zi), expressed in
the camera frame, are:

xi = Xi

Zi

, yi = Yi

Zi

(1.1)

With this choice of features, the interaction matrix Li related to si = (xi, yi) is given
by [23]:

Li =

−
1
Zi

0 xi

Zi

xiyi −(1 + x2
i ) yi

0 − 1
Zi

yi

Zi

1 + y2
i −xiyi −xi

 (1.2)

Denoting with s = (s1, . . . , sN) the (stacked) image features and with s∗ = (s∗
1, . . . , s∗

N)

1. While the strategies proposed throughout the thesis also work for N = 3, we don’t explicitly consider
this case because it is such that the fixed points are located on the cylinder of singularities evoked in the
Introduction.
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the desired ones, the dynamics of the features error e = s− s∗ are:

ė = Leτ c, Le = [L⊤
1 , . . . , L⊤

N ]⊤, (1.3)

where τ c = (vc, ωc) is the camera’s spatial velocity that represents the control inputs,
with vc being the linear velocity and ωc being the angular one.

The general goal of an image-based visual servoing task is to make the image features
s converge to the desired features s∗. Several strategies to design appropriate controllers
for these tasks exist in the literature. We mainly focus in this work on three such strate-
gies 2 [28, 67], that are all based on the general form:

τ c = −λCee with λ ∈ R+. (1.4)

More precisely, we consider:
— Transpose controller: Ce = L⊤

e ,
— Pseudo-inverse controller: Ce = L+

e ,
— Levenberg-Marquardt controller: Ce = (L⊤

e Le + µI)−1L⊤
e , with µ ∈ R+.

It is well known [28, 67] that these controllers give rise to energy-decreasing systems 3.
Their energy function v(x) is defined as:

v(x) = 1
2∥s(x)− s∗∥2, (1.5)

where x ∈ SE(3) represents the camera state, s ∈ Rm the output vector (or features) and
s∗ the desired features.

In fact, in [67], E. Malis goes a bit further in the characterization of these three
controllers in discrete time, making an explicit link between control and optimization.
In particular, it is shown that the transpose controller give rise to a gradient-descent
algorithm, while the pseudo-inverse and Levenberg-Marquardt controllers give rise to a
Gauss-Newton and, as the name implies, Levenberg-Marquardt algorithms, respectively
(see, e.g., [79] for an overview on these optimization algorithms).

2. While these controllers will be the protagonists of our work, we will later consider, in Chapter 4, an
approximation of these controllers where we assume that the depths Zi are unknown, since they typically
cannot be measured in practical applications.

3. In fact, the characterization of these controllers as energy-decreasing systems do not depend on the
fact that we track the points’ Cartesian coordinates. Thus, their analysis, that we will develop throughout
the whole chapter (with the exception of Section 1.4), does actually hold even for different choices of visual
features.
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We are interested in these three controllers because, intuitively, since we can see them
as optimization algorithms, we expect to be able to study them by analyzing the energy
function alone. In fact, our aim is to make this intuition rigorous, and we will show in
the following that it is possible to give a much stronger characterization to these systems:
we will prove that they all give rise to gradient systems, i.e., if we look at the closed-loop
system, their vector fields are the gradient flow (i.e., a dynamical system of the form
ẋ = −∇v(x)) of the energy function.

This claim could appear quite surprising, since, in the classical intuition that we have
from calculus, the gradient of a continuously differentiable function (and, by extension, its
gradient flow) is unique, while the vector fields associated to these controllers are clearly
different in general. However, this intuition relies on the rigid structure of Euclidean space.

In order to appreciate the difference with the case where our domain is a arbitrary
smooth manifold, we want to briefly show how we usually define the gradient in Euclidean
space, and what it takes to generalize it to functions defined on manifolds. The classical
way of presenting the gradient of a function f : Rn → R goes as follows (see, e.g., [98]):
we say that f is differentiable at x if there is a linear transformation Λ : Rn → R such
that:

lim
h→0

∥f(x + h)− f(x)− Λ(h)∥
∥h∥

= 0. (1.6)

It is then possible to prove that, if f is differentiable, this linear transformation is unique
and the (row) vector associated with it is ∇f(x).

This formulation certainly makes no sense when x is an element of a manifold, since
there is no such thing as “adding” together elements of a manifold. However, there is one
well-known property that links the gradient and the directional derivative of f which can
still make sense even in this situation. To define the directional derivative of f at x in
the direction d, we can consider a smooth curve γ(t) : (−ϵ, ϵ) → Rn such that γ(0) = x
and γ̇(0) = d, and take the derivative with respect to t of f(γ(t)), computed at t = 0.
Thus, by applying the chain rule, we get an explicit link between the gradient and the
directional derivative of f as:

∂

∂t
f(γ(t))

∣∣∣∣∣
t=0

=
(
∇f(γ(t))⊤γ̇(t)

)∣∣∣
t=0

= ⟨∇f(x), d⟩ (1.7)

where ⟨·, ·⟩ is the standard inner product on Rn.

It is possible to show that, in Euclidean space, this property is actually equivalent to
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1.1. Gradient systems in image-based visual servoing

the definition of gradient that we discussed above. Thus, since all the operations involved
in (1.7) can be carried out on (smooth) manifolds as well, it is possible to take it as the
definition of gradient for a function whose domain is a manifold. Before formalizing this
idea, though, we need to point out that both the direction d and the inner product are
now defined on the tangent space of the manifold at x. Contrarily to the Euclidean space
case, there is no natural choice of inner product on the tangent space, and, since each
point of the manifold has its own tangent space, the inner product can change as we
move on the manifold. We call the collection of inner products on a smooth manifold its
Riemannian metric, and we will soon see that it plays a crucial role in the definition of
gradient itself.

We formalize these ideas with the following definition, which is classical in the field of
differential geometry [8].

Definition 1.1. Let v : M → R be a smooth function on a manifold M endowed with
a Riemannian metric, i.e., for each x ∈ M the tangent space TxM is endowed with an
inner product ⟨·, ·⟩x. We call the gradient of v with respect to the metric onM the unique
vector ∇v(x) ∈ TxM such that:

Dxv(τ ) = ⟨∇v(x), τ ⟩x, (1.8)

for all τ ∈ TxM, where Dxv(τ ) denotes the directional derivative of v with respect to τ .

It should now be clear why we stressed the dependence on the Riemaniann metric: in
these more general settings, the gradient of a function is still uniquely determined, but
only up to a change in metric. Since there is no natural choice of metric, it is indeed
possible to define a whole family of gradient flows, which are all equivalent, in a sense
which will be discussed later in the section.

We can see how this impacts the image-based visual servoing case by computing the
gradient of the energy function (1.5). Taking the derivative with respect to time of v(x(t)),
and assuming that the pose and the velocity at zero are x(0) = x0 and ẋ(0) = τ c, we get
that the directional derivative of v in the direction τ c is:

d

dt
v (s(x(t)))

∣∣∣∣∣
t=0

= ∂

∂s
v(s)

∣∣∣∣∣
s=s(x(0))

∂

∂x
s(x)

∣∣∣∣∣
x=x(0)

d

dt
x(t)

∣∣∣∣∣
t=0

=

= (s(x0)− s∗)⊤ ∂

∂x
s(x0) τ c.

(1.9)
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Now, by the error’s dynamics (1.3), we have that ṡ = ∂
∂xs(x) τ c = Leτ c, obtaining:

d

dt
v(x(t))

∣∣∣∣∣
t=0

= (s(x)− s∗)⊤Le(x0)τ c, (1.10)

where we stress the dependency of the interaction matrix on the camera pose. Compar-
ing (1.10) with the gradient definition in Definition 1.1, we get that ∇v(x) is the unique
vector that satisfies:

⟨∇v(x), τ c⟩x = (s(x)− s∗)⊤Leτ c, (1.11)

which, considering the conventional inner product, clearly implies that:

∇v(x) = L⊤
e (s(x)− s∗). (1.12)

This derivation of the energy gradient is classical in the visual servoing literature, and it
is the reason why we conclude that the transpose controller give rise to a gradient-descent
algorithm, as discussed above (see, e.g., [28, 67]). However, this is not the only possible
choice of inner product, and framing the change of controller as a change of metric on
the manifold allows us to tell much more on their behavior.

Talking about a change of metric sounds like a hopelessly abstract argument. In prac-
tice, however, since any positive-definite bilinear form is an inner product, a change
of metric boils down to looking for a symmetric positive-definite matrix P such that
⟨u, v⟩ = u⊤Pv. In our context, we can easily define some new metrics of interest (i.e.,
finding some symmetric positive-definite matrices) that, as we will see, allow us frame the
three controllers introduced above as gradient systems.

We notice that the matrix L⊤
e Le is positive semi-definite, meaning that (L⊤

e Le + µI)
is positive-definite, for any choice of µ ∈ R+. Additionally, if we assume that Le is full
column rank (i.e., x is not a singularity), L⊤

e Le is positive-definite as well. Thus, we can
use them to easily define new metrics on the camera state-space (as long as, for the last
metric, x is not a singularity), which are:

⟨u, v⟩SD = u⊤v

⟨u, v⟩LM,x = u⊤(Le(x)⊤Le(x) + µI)v
⟨u, v⟩GN,x = u⊤(Le(x)⊤Le(x))v

, (1.13)

where we stress the dependency of Le on the camera state in order to highlight that the
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inner products change as the camera moves, or, said differently, to highlight that, con-
trarily to the conventional inner product ⟨·, ·⟩SD, the metric has a non-trivial dependency
on the tangent space itself.

We argue that defining the gradient as a function of the metric gives us a more abstract
but stronger point of view on the considered controllers, since all the nice properties of
gradient systems discussed at the beginning of the section are preserved for any choice
of metric. Coupled with the simplicity of identifying the inner products with a positive-
definite matrix, this allows us to easily show that the relationship between the three
considered controllers runs much deeper than what appears on the surface. We have the
following result.

Proposition 1.1. The transpose and Levenberg-Marquardt controllers give rise to gradi-
ent systems for the energy function (1.5). Under the assumption that no singularities are
present in the state space, the pseudo-inverse controller does as well.

Proof. As discussed above, in order to prove the proposition it is sufficient to find suitable
inner products so that we have the following equality:

⟨Cee, τ c⟩x = (s(x)− s∗)⊤Leτ c, (1.14)

with Ce being either the transpose, pseudo-inverse or Levenberg-Marquardt version of
Le. As we saw, the conventional inner product gives us ∇v(x) = L⊤

e (s(x)− s∗). Consider
now the inner product ⟨·, ·⟩LM,x defined in (1.13). We have:

(s(x)− s∗)⊤Leτ c = (s(x)− s∗)⊤Le(L⊤
e Le + µI)−1(L⊤

e Le + µI)τ c =
= ⟨(L⊤

e Le + µI)−1L⊤
e (s(x)− s∗), τ c⟩LM,x,

(1.15)

meaning that the Levenberg-Marquardt controller is a gradient system under the Rie-
mannian metric induced by ⟨·, ·⟩LM,x. Analogously, if we consider ⟨·, ·⟩GN,x, with the same
argument we can conclude that the pseudo-inverse controller is indeed a gradient system,
under the assumption that x is not a singularity.

The assumption that there are no singularities in the pseudo-inverse controller case
is unfortunate but expected. In fact, it is well known that the Gauss-Newton algorithm
is not, in general, error-decreasing at the points where the Jacobian matrix is singular
(see [79]). Since the pseudo-inverse direction might increase the energy, it cannot represent
the negative gradient direction, regardless of the metric.
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Chapter 1 – Equilibria and stability of energy-decreasing systems

This result shows that the equilibria for the three controllers are the same 4, with the
possible exception of the pseudo-inverse controller if a critical point of the energy function
is on a singularity of Le. However, a simple algebraic argument comes to our rescue in this
exceptional case: it is well known that the Moore-Penrose pseudo-inverse of a matrix has
the same kernel of its transpose (see, e.g., [13, Theorem 1.2.2]). Thus, ker L+

e = ker L⊤
e ,

meaning that the pseudo-inverse controller does indeed have the same equilibria of the
other two, regardless of the singularities.

The similarities between these three controllers do not end here. Their characterization
as gradient systems allows us to discuss the type of equilibrium in an unified fashion. In
general, we can characterize (isolated) equilibria of dynamical systems with their index 5,
i.e., the number of eigenvalues with positive real part of the vector field’s Jacobian eval-
uated at the equilibrium. For example, an index-0 equilibrium is stable, while an index-1
one is a saddle with one unstable direction. For gradient systems, an equilibrium’s in-
dex is completely determined by the spectrum of the energy function’s Hessian matrix,
computed at the equilibrium.

However, analogously to the gradient, the computation of the Hessian matrix depends
on the chosen metric, so it is fair to ask whether the index can change depending on the
metric. What we can show is that the equilibria’s indexes are an intrinsic property of
the energy function, regardless of the metric. Intuitively, the inner product can deform
the vector space (i.e., it can change the magnitude of the eigenvalues), but, because of
its positive-definiteness, it cannot change their signs. We formalize this intuition in the
following result.

Theorem 1.1. The index of a given equilibrium of a gradient system is preserved under
change of metric.

This result is definitely not new in the literature, but it is quite difficult to pinpoint
an exact reference for it, and for this reason we decided to provide an original proof in
Appendix A. In [95], Douglas Shafer hints at the fact that even stronger properties of
gradient systems are considered to be folklore in the community, stating that:

It is well known that when the singularity at 0 is nondegenerate the topological
type of X = gradgV is independent of [the metric] g, and that in fact vector-
fields arising from different Riemannian metrics are not only [topologically]
equivalent but conjugate in a neighborhood of 0.

4. By looking at the gradient definition (1.8), it is easy to convince ourselves that the gradient is zero
if and only if all directional derivatives are null, which implies that ∇v(x) = 0 regardless of the metric.

5. Not to be mistaken with the topological index, which will be used in the following section.
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1.1. Gradient systems in image-based visual servoing

Saying that two vector fields are topologically equivalent means that, in a neighborhood of
the equilibrium, there exists a homeomorphism carrying oriented orbits of one vector field
onto oriented orbits of the other, and it is possible to show that topological equivalence
implies that the index of hyperbolic equilibria is the same for the two vector fields 6.

Nevertheless, we not only believe that providing a self-contained proof of this fact could
be interesting per se, but it actually provides motivation for looking into general energy-
decreasing system. In fact, in the proof of Theorem 1.1 we proved something more 7: the
Jacobian matrix of a gradient vector field (i.e., the Hessian matrix of v under a given
metric) might not be symmetric, but it is guaranteed to have real eigenvalues. We then
have the following corollary.

Corollary 1.1. The Jacobian matrix J∇v(x) computed at x has real eigenvalues, regard-
less of the metric.

This result is important because, before rushing into the study of general energy-
decreasing system, a legitimate doubt might arise: are we sure there are energy-decreasing
systems which cannot be expressed as gradient systems, after a suitable change of metric?

To verify this, consider the error function v(x) = (1 + x1)2 + x2
2 + (−2 + x2

1 + x2
2)2, and

let f(x) be defined as:

f(x) = −
√

2
2 −

√
2

2√
2

2

√
2

2

∇v(x) = −R∇v(x). (1.16)

It is easy to show that the system ẋ = f(x) is error decreasing with respect to v(x). In
fact, if we notice that (R + R⊤) =

√
2I, we have that, for ∇v(x) ̸= 0:

v̇(x) = −∇v(x)⊤R∇v(x) = −1
2∇v(x)⊤(R + R⊤)∇v(x) = −

√
2

2 ∥∇v(x)∥2 < 0, (1.17)

where, in the second equality, we exploit the fact that the quadratic form associated to
a given matrix is equivalent to the quadratic form associated to the matrix’s symmetric
part. The graph of v(x) and the phase portrait of ẋ = f(x) are shown in Figure 1.1. The
error function only has one minimum, one saddle point and one maximum. At this local
maximum of the energy function (whose coordinates are x∗ =

(√
3−1
2 , 0

)
), the Jacobian of

the (smooth) energy-decreasing vector field f(x) has two complex-conjugate eigenvalues,

6. This is due to the fact that the stable and unstable manifolds’ dimensions are preserved under
homeomorphism.

7. See the remark at the end of Appendix A.
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Chapter 1 – Equilibria and stability of energy-decreasing systems

(a) Graph of v(x). (b) Phase portrait of ẋ = f(x).

Figure 1.1 – (a): Graph of v(x) = (1 + x1)2 + x2
2 + (−2 + x2

1 + x2
2)2. (b): Phase portrait

of an energy-decreasing systems defined on v(x). In green the unstable manifold of the
saddle, in red its stable manifold.

and we can also see, in Figure 1.1b, that the trajectories are spiraling out of it. This is
where Corollary 1.1 comes into play: since the Jacobian does not have real eigenvalues,
this system cannot be a gradient system. With the doubt dispelled, and motivated by the
fruitful analysis we developed so far, we indulge in the temptation of taking the general-
ization one step further, moving into the study of generic energy-decreasing systems.

1.2 Dynamical equivalence of generic energy-decreasing
systems

In this section, we dig deeper into the link between energy-decreasing systems, weak-
ening the hypotheses of only having gradient systems, i.e., systems whose vector field is
the energy function’s gradient under a suitable change of metric, and exploring which
of their interesting properties are preserved in these settings. In Section 1.2.1, we first
provide a more formal characterization of energy-decreasing system, and then show that
all such systems have the same equilibria and that these equilibria represent the only
points where the system can converge to. These properties hold true in great generality,
even when the system is not differentiable at the critical points. In Section 1.2.2, we will
need continuous differentiability to show that also the type of equilibrium is preserved.
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1.2. Dynamical equivalence of generic energy-decreasing systems

While the non-differentiability hardly impacts the role of stable and repulsive equilibria,
we will see two examples of non-differentiable energy-decreasing systems that showcase
that saddle points can be fundamentally different in these cases.

We might think that this sounds like we are in for a lot of work just to give a strong
characterization of the saddles, which seem to be of dubious practical interest. However,
we will see in the next section how these unstable equilibria can play a fundamental role
in the study of energy-decreasing systems, in particular for how they act as “separators”
of the local minima’s regions of attraction, which will have interesting applications in
visual servoing as well. The overall goal of these sections is to convince the reader that it
is possible to infer important dynamical properties of any energy-decreasing system just
by identifying the critical points of the associated energy function and studying how they
are connected to each other.

From here on, we will always consider that an energy function is at least two times
continuously differentiable and it only has nondegenerate critical points, i.e., the function’s
Hessian computed at a critical point is always invertible. Additionally, unless stated other-
wise, we consider that the energy function’s domain is an n-dimensional smooth manifold,
i.e., a topological manifold (which, to us, is a space that is locally Euclidean of dimension
n) together with a smooth atlas on it.

1.2.1 Fixed points

At the beginning of the chapter, we introduced energy-decreasing systems as dynamical
systems with an associated energy function such that it is strictly decreasing along all
trajectories, except for the trivial ones where the system stays on an equilibrium. This
characterization takes into account whole trajectories, but we can equivalently characterize
energy-decreasingness locally by saying that, at all points in the state-space outside of the
energy’s critical points, the energy function’s directional derivative with respect to the
vector field is strictly negative. We take this second point of view to provide our formal
definition of energy-decreasing system.

Definition 1.2. Let v ∈ C2(M) and f :M→ TM be locally Lipschitz 8. We say that the
system ẋ = f(x) is energy-decreasing for v if, for all x ∈ M, the Lie derivative is such
that Lfv(x) ≤ 0, with the equality holding if only if x is a critical point of v.

8. For the results presented in the following, requiring the continuity of the vector field would actually
be sufficient. However, local Lipschitzness entails existence and uniqueness of trajectories, which greatly
simplifies the presentation.
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Chapter 1 – Equilibria and stability of energy-decreasing systems

First of all, a couple comments on this definition. Energy-decreasing systems clearly
have a strong link with Lyapunov theory: if we take the classical Lyapunov stability theo-
rem into account (see, e.g., [60]), we can immediately see, by restricting to a neighborhood
of a local minimum of the energy function, that these local minima are stable equilibria
for any energy-decreasing system. Analogously, by reversing time, we can conclude that
local maxima of the energy function are repulsive equilibria.

However, Lyapunov theory does not help with saddle points, which, in a sense, rep-
resent one of the main protagonists of this section. As we will see, we need more sophis-
ticated theoretical tools to prove that these critical points are indeed equilibria for any
energy-decreasing system. Another area in which classical Lyapunov theory hardly helps
is a global description of the system’s behavior. In analogy with gradient systems, we are
going to show that all non-diverging trajectories converge to a critical point of the energy
function, as long as they are nondegenerate (which, again, will always be the case for us).

As promised, we have the following, comforting result.

Theorem 1.2. Let ẋ = f(x) be energy-decreasing for v ∈ C2(M). Then, x∗ ∈ M is an
equilibrium for the system if and only if it is a critical point of v.

Proof. We notice that, since the critical points of v are considered to be nondegenerate
(and, thus, isolated), we can restrict the discussion to a neighborhood U ∋ x∗ using local
coordinates.

Let (U, φ) be a smooth coordinate chart on M, with φ being a diffeomorphism from
U to an open subset Ũ ⊂ Rn. Additionally, let φ̂ denote the natural coordinates on
the tangent bundle TM. We can then define the local representations of v and f as
ṽ = v ◦ φ−1 : Ũ → R and f̃ = φ̂ ◦ f ◦ φ−1 : Ũ → Rn, which let us discuss the properties
of v and f in Euclidean settings.

In local coordinates, the Lie derivative Lfv(x) becomes simply ∇ṽ(z)⊤f̃(z), with z =
φ(x) ∈ Rn. Thus, in order to prove the theorem, it suffices to show that f̃(z) = 0 if and
only if ∇ṽ(z) = 0.

From the energy-decreasing definition, the =⇒ is trivial. For the other implication, we
show that −∇ṽ and f̃ have the same topological degree (see, e.g., [81]). Being z∗ = φ(x∗)
isolated, we can find a neighborhoodN (z∗) such that z∗ is the only solution of−∇ṽ(z) = 0
in N (z∗). Then, by [81, Proposition 3.2, Chap. IV], the degree d(−∇ṽ,N (z∗), 0) is either
1 or −1, depending on the sign of the Hessian’s determinant at z∗. By defining the
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1.2. Dynamical equivalence of generic energy-decreasing systems

(continuous) homotopy H : [0, 1]× Ũ → Rn as:

H(t, z) = −t∇ṽ(z) + (1− t)f̃(z), (1.18)

we have that d(f̃ ,N (z∗), 0) = d(−∇ṽ,N (z∗), 0) if H(t, z) ̸= 0 for all t ∈ [0, 1] and
z ∈ ∂N (z∗) (see [81, Proposition 2.4, Chap. IV]). For t = 0, 1 it is trivially true, while
for all t ∈ (0, 1) we have:

∇ṽ(z)⊤H(t, z) = −t∥∇ṽ(z)∥2︸ ︷︷ ︸
<0

+ (1− t)∇ṽ(z)⊤f̃(z)︸ ︷︷ ︸
<0

< 0, (1.19)

which implies that d(f̃ ,N (z∗), 0) ̸= 0 for any choice of N (z∗) sufficiently small. Thus,
f̃(z∗) = 0, which concludes the proof.

We now discuss the global behavior of trajectories, for which, intuitively, we want to
study where they converge to going forward or backwards in time. Formally, we do this by
using the idea of α- and ω-limit sets, which allow us to drop the assumption of converging
trajectories. Given a dynamical system ẋ = f(x), and denoting with x(t) an arbitrary
trajectory, we call the ω-limit set of x(t) the set defined as [60]:

ω(x) =
{

p ∈M : ∃{tn} → +∞ : lim
n→+∞

x(tn) = p
}

. (1.20)

Analogously, the α-limit set of x(t) is defined as:

α(x) =
{

p ∈M : ∃{tn} → −∞ : lim
n→+∞

x(tn) = p
}

. (1.21)

The study of α- and ω-limit sets of gradient systems is classical in dynamical systems’
theory (see, e.g., [53]). We adapt the following well known result to energy-decreasing
systems, where we don’t need the assumption that v only has nondegenerate critical
points.

Proposition 1.2. Let z be an α- or ω-limit point of an energy-decreasing system’s tra-
jectory. Then, z is an equilibrium.

Proof. Assume that z ∈ ω(x). We want to show that the energy is constant along the flow
φ(z, s). Since z = limn→+∞ x(tn) for some sequence {tn} → +∞, then, by the continuity
of v and the fact that the energy decreases along trajectories, we have that a = v(z) is
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Chapter 1 – Equilibria and stability of energy-decreasing systems

Figure 1.2 – Graph of the “Mexican hat” function.

the greatest lower bound of {v(x(t)) : t ≥ 0}. However, we can obtain the flow φ(z, s) by
shifting x(t), i.e., if x(tn) → z, then x(tn + s) → φ(z, s). The energy of φ(z, s) must
still be the greatest lower bound of {v(x(t)) : t ≥ 0}, meaning that v(φ(z, s)) = a for all
s ∈ R. Thus, v̇(z) = 0, meaning that it is an equilibrium by Theorem 1.2. If z ∈ α(x),
we have that it is an ω-limit point for ẋ = −f(x), which is energy-decreasing for −v,
meaning that v̇(z) = 0 as well.

If v only has isolated critical points, then all trajectories either tend to a critical point or
they run off to infinity. This property allow us to guarantee that energy-decreasing systems
always behave “nicely”, excluding the possibility of stable orbits or chaotic attractors.
Moreover, if all the sub-level sets of the energy function are compact (for instance, if
M = Rn and the energy function is radially unbounded), then all the trajectories converge
towards a critical point, and, if we additionally suppose that the manifoldM is compact,
then all orbits (i.e., the full trajectory’s curve, with the time spanning from −∞ to +∞)
connect two critical points.

As a final remark, one could think that, if the critical points are not isolated, then
the non-diverging trajectories still converge to some equilibrium. This is not the case:
surprisingly, there are examples of energy functions for which the corresponding gradient
system has trajectories whose ω-limit set is not a point. A famous example is the so-
called Mexican hat function by Curry [36], of which we can see the graph in Figure 1.2.
For the gradient system related to this function, it is possible to show that there exists
a trajectory for which its ω-limit set is the unit circle [82, Ex. 3, Sec. 1.1]. Intuitively,
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1.2. Dynamical equivalence of generic energy-decreasing systems

this is the case because there are trajectories that “wrap around” the unit circle infinitely
many times while converging towards it. Even though this example is quite pathological,
it shows that we cannot escape the assumption of having nondegenerate critical points
without renouncing having "well-behaved" trajectories 9.

1.2.2 Stable and unstable manifolds

We want now to investigate what is the relation between the indexes of the energy
function’s critical points and the index of the vector field’s Jacobian at those points. As
it is the case for gradient systems, we expect that the equilibrium type is the same for
all energy-decreasing systems. Pursuing this result, we first show, in the following lemma,
that this is the case for linear energy-decreasing systems on Rn, by proving that the
systems’ stable and unstable subspaces all have the same dimensions. We can consider
this lemma to be a weak generalization of the classical Lyapunov stability theorem for
LTI systems, since it holds for any kind of equilibrium but it only provides a sufficient
condition for the equilibrium’s type.

Lemma 1.1. Let ẋ = Ax be an n-dimensional linear system and P ∈ Rn×n be an
invertible symmetric matrix. Then, if:

A⊤P + PA ≺ 0, (1.22)

with ≺ denoting negative definiteness, the stable and unstable subspaces of A and −P
have the same dimensions. In particular, A doesn’t have any eigenvalue with null real
part.

Proof. Let As, Au and Ac denote the stable, unstable and center subspaces of A and
let αs, αu and αc be their dimensions. Define analogously the subspaces Qs and Qu with
respect to Q = −P, with κs and κu their dimensions.

We want to show that (As ⊕ Ac) ∩ Qu = {0}, where ⊕ denotes the direct sum. Let
x0 ∈ (As ⊕ Ac) and let x(t) denote the system’s trajectory such that x(0) = x0. Then,
∥x(t)∥ is bounded for all t ≥ 0. Now, let x0 ∈ Qu\{0} and define v(x(t)) = x(t)⊤Qx(t).
We have that:

v(x(t)) = v(x0) +
∫ t

0
v̇(x(t))dt, (1.23)

9. In fact, another condition that excludes this kind of behavior in Rn would be to significantly restrict
the class of energy functions: non-diverging trajectories of a gradient system are guaranteed to have an
ω-limit set which is a point if the energy function is real analytic, but not if it is C∞ [1].
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where v̇(x(t)) = x(t)⊤(A⊤Q + QA)x(t) > 0 denotes the time derivative of v. Suppose
that

∫ t
0 v̇(x(t))dt → v̄ as t → +∞, for some finite value v̄ ∈ R+. Then, v̇(x(t)) → 0,

meaning that, given the positive definiteness of A⊤Q + QA, x(t) → 0. However, this
would mean that v(x(t)) → 0 as well, which cannot happen since it is bounded from
below by v(x0) > 0. Thus, v(x(t))→ +∞, which implies ∥x(t)∥ → +∞, concluding that
there exists no x0 ∈ (As⊕Ac)∩Qu\{0}. Analogously, by taking Ã = −A and Q̃ = −Q,
we can show that (Ãs ⊕ Ãc) ∩ Q̃u = (Au ⊕Ac) ∩Qs = {0}.

Now, we recall that, given two linear subspaces S1 and S2 of Rn such that S1 ∩ S2 =
{0}, then dimS1 + dimS2 ≤ n. Paired with the results above, it gives us the following
relationships: αs + αc ≤ n− κu = κs

αu + αc ≤ n− κs = κu

, (1.24)

where we used the fact that κs + κu = n. Taking the sum of both equations, we obtain
αs + αu + 2αc ≤ n, which tells us that αc = 0 since αs + αu + αc = n. This leads to
αu + αs = n, which, together with (1.24), shows that αs = κs and αu = κu, concluding
the proof.

Being stability a local property, we can prove that the same holds for general nonlinear
systems on manifolds by restricting on a neighborhood of the equilibrium and studying
the system’s linearization in order to exploit Lemma 1.1. We have the following result.

Theorem 1.3. Let ẋ = f(x) be energy-decreasing for v ∈ C2(M), with f ∈ Cr(M), r ≥ 1,
and let x∗ ∈ M be an equilibrium of f . Then, if x∗ is hyperbolic, its stable and unstable
(sub)manifolds, denoted with W s(x∗) and W u(x∗), are of class Cr and have the same
dimension of the unstable and stable subspaces, respectively, of Hv(x∗), which denotes the
Hessian of v at x∗.

Proof. Analogously to Theorem 1.2, we can restrict to a neighborhood U ⊂M of x∗ and
consider local representations ṽ : Ũ → R and f̃ : Ũ → Rn under a smooth coordinate
chart (U, φ), with Ũ = φ(U) ⊂ Rn. Additionally, being x∗ both an equilibrium of f and
a critical point of v, the eigenvalues’ signs of Dfx∗ and Hv(x∗) are the same of Df̃z∗ and
Hṽ(z∗), with z∗ = φ(x∗), regardless of the choice of φ (see, e.g., [82, Sec. 2.4] and [8,
Sec. 3.1]). We finally assume, without loss of generality, that z∗ = 0 (see, e.g., [66]).

In order to apply Lemma 1.1, we want to study the energy-decreasing condition as we
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1.2. Dynamical equivalence of generic energy-decreasing systems

simultaneously linearize f̃ and ∇ṽ. Their Taylor expansions at the origin are given by:

∇ṽ(z) = Hṽ(0)z + ∥z∥ρv(z)
f̃(z) = Df̃0z + ∥z∥ρf (z)

, (1.25)

where the vectors ρv(z), ρf (z) are the so-called remainders, i.e., functions such that
ρv(z) → 0 and ρf (z) → 0 as z → 0 (see, e.g., [4, Chapter 9]). It is evident that the sum
of remainders is still a remainder; additionally, given a matrix B ∈ Rn×n and a remainder
ρ(z), any function of the form z⊤Bρ(z)

∥z∥ is a remainder as well, since, by Cauchy-Schwarz
inequality:

lim sup
z→0

∣∣∣∣∣zT Bρ(z)
∥z∥

∣∣∣∣∣ ≤ lim
z→0

∥z∥∥Bρ(z)∥
∥z∥

= 0. (1.26)

Thus, by denoting A := Df̃0 and P := Hṽ(0), we can rewrite the energy-decreasing
condition, for all z ∈ Ũ , as follows:

∇ṽ(z)⊤f̃(z) = (Pz + ∥z∥ρv(z))⊤ (Az + ∥z∥ρf (z)) =

= z⊤PAz + ∥z∥2
(

z⊤Pρf (z)
∥z∥

+ ρv(z)⊤Az
∥z∥

+ ρv(z)⊤ρf (z)
)

︸ ︷︷ ︸
ρ(z)

=

= 1
2z⊤

(
A⊤P + PA

)
z + ∥z∥2ρ(z) ≤ 0,

(1.27)

where ρ(z) is a remainder. Now, let z0 be a normalized eigenvector of
(
A⊤P + PA

)
corresponding to its largest eigenvalue, denoted with λ0. By restricting (1.27) along the
direction of z0, we can always find ϵ > 0 such that αz0 ∈ Ũ for all α ∈ [−ϵ, ϵ], leading to:

l(α) := ∇ṽ(αz0)⊤f̃(αz0) = α2
(

λ0

2 + ρ(αz0)
)
≤ 0, (1.28)

which clearly implies:
lim
α→0

l(α)
α2 = λ0

2 ≤ 0. (1.29)

Both A and P are invertible by hypothesis, since we assume that x∗ is hyperbolic for f(x)
and, as always, that it is a nondegenerate critical point for the energy function. Thus,
λ0 ̸= 0, meaning that all the eigenvalues of

(
A⊤P + PA

)
are strictly negative, i.e.:

A⊤P + PA ≺ 0. (1.30)
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(a) Graph of v(x). (b) Phase portrait of ẋ = f(x).

Figure 1.3 – Graph (left) of v(x) = 4.1x2
1 − 4x3

1 + x4
1 + 2x2

2 and phase portrait (right) of
the energy-decreasing system defined on v(x). Red lines represent the stable manifold of
the saddle, that separate the regions of attraction of the two minima.

We can then apply Lemma 1.1, concluding that the unstable subspace of A have the same
dimension of the stable subspace of P, and vice versa.

Finally, since the eigenvalues’ signs of Dfx∗ and A=Df̃0 agree, W s(x∗) and W u(x∗)
are Cr submanifolds ofM with the same dimension of the stable and unstable subspaces
of A, respectively (see [82, Sec. 2.6], in particular Props. 6.1-6.2 and the section’s conclu-
sion).

As discussed at the beginning of the section, even though Theorem 1.3 requires f to be
(at least) continuously differentiable, we can easily relax this hypothesis when x∗ is a local
minimum or a local maximum of v, since Lyapunov stability theorem guarantees that x∗

is an asymptotically stable or repulsive equilibrium, respectively, under the hypothesis
that f is Lipschitz continuous. However, losing continuous differentiability of f can lead
to unexpected results around saddle points, as the next examples show.

We consider an energy-decreasing control law defined using a strictly convex optimiza-
tion problem that depend continuously on instantaneous data. This kind of construction is
common in sensor-based control, and it will have important applications in Chapter 4. As
we will see, such a command law is continuous under mild hypothesis, but easily fails to
be differentiable: changes in active constraints produce loss of differentiability, and, even
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1.2. Dynamical equivalence of generic energy-decreasing systems

though this does not usually happens on fixed points, we can easily design controllers that
are not differentiable on fixed points.

Consider the energy function v(x) = 4.1x2
1−4x3

1+x4
1+2x2

2, whose global minimum is at
the origin, but also has a local minimum and a saddle in between them. The graph of v(x)
is shown in Figure 1.3a. We first consider an auxiliary system that is not error decreasing
but has good convergence properties toward the target, here for simplicity f0(x) = −x,
and then enforce error decrease by projecting it on a ball centered on c = −R∇v(x) of
radius r = (R−ϵ)∥∇v(x)∥ (with R = 100 and ϵ = 0.01) to obtain the following composite
error-decreasing system:

f(x) = arg min
u∈B(c,r)

∥u− f0(x)∥2. (1.31)

Note that when ∇v(x) = 0 we have B(c, r) = {0} and hence f(x) = 0. It is possible
to show that this composite control law is continuous, even though we will introduce
the right tools to prove it only in Chapter 4 (in fact, it is immediate to verify that the
hypotheses of Proposition 4.1 are satisfied). The phase portrait of ẋ = f(x) is shown in
Figure 1.3b, together with the stable manifold of the saddle in red, which separates the
region of attraction of the two attracting fixed points. The interesting fact is that this
stable manifold seems to be “broken”, which indicates a failure of Theorem 1.3 due to the
non-differentiability of the vector field at the saddle.

However, the stable manifold still appears to be a 1-dimensional non-smooth manifold.
Given this example, one could expect in this case that the system’s stable manifold still
has the same dimension of the unstable subspace of the energy’s Hessian, while being non-
smooth at the saddle point. Unfortunately, continuous differentiability of f is a crucial
property without which the dynamics around the saddles can be radically different from
the classical intuition provided by the stable manifold theorem, as the next example shows.

Consider the dynamical system ẋ = f(x) defined as:

f(x) =


(−x1,−x2), if |x1| ≤ |x2|

(x1 − 2|x2|,−x2), if x1 > |x2|

(x1 + 2|x2|,−x2), otherwise

(1.32)

It is easy to verify that f(x) is locally Lipschitz and that it is energy-decreasing with
respect to v(x) = 1

2(−x2
1 + 2x2

2), whose graph can be seen in Figure 1.4a. The energy
function has only one critical point at x = (0, 0), where the Hessian’s spectrum is {1,−2}.
However, the system’s phase portrait, which can be seen in Figure 1.4b, shows that the
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(a) Graph of v(x).
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(b) Phase portrait of ẋ = f(x).

Figure 1.4 – Graph (left) and phase portrait (right) of v(x) = 1
2(−x2

1 + 2x2
2) and the

energy-decreasing system defined in (1.32).

equilibrium’s stable set is not a manifold of dimension 1 (in fact, it appears to be a
2-dimensional manifold with boundary), definitely contradicting the conjecture that a
non-smooth version of Theorem 1.3 might be true. Additionally, and quite surprisingly,
it is possible to show that the unstable set is a 1-dimensional manifold (the x1-axis),
meaning that not only the sum of their dimensions does not match the dimension of the
state-space, but there does not seem to be any evident symmetry or pattern in how these
peculiar sets split the space.

Together, these two examples seem to imply that the smoothness properties of f are
indeed insufficient to characterize the system’s behavior in an equilibrium’s neighborhood
when f is not at least continuously differentiable, and, most likely, it will be necessary to
take additional properties into account to identify those cases where a non-smooth version
of Theorem 1.3 might be applicable.

1.3 Importance of unstable equilibria: the connectiv-
ity tree

Up to now, we focused on fully characterizing the equilibria of energy-decreasing sys-
tems defined on some common energy function. Unearthing the deep relationship that
exists between these systems is of self-evident theoretical interest; however, in more prac-
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1.3. Importance of unstable equilibria: the connectivity tree

tical settings, the impact of unstable equilibria might be perceived as less relevant, since
even small numerical errors are sufficient to destabilize trajectories converging towards
saddles making them inevitably fall into local minima of the energy function.

In this section, we want to argue that saddle points play an important role even in
practice, with key applications to robotics in general and image-based visual servoing in
particular. We return to one of the examples provided in the Introduction, and use it as
a stepping stone to show how saddle points have a crucial role in separating the regions
of attraction of the energy function’s local minima and, in particular, we will show that
saddles with index 1 are the only unstable equilibria of interest in the assessment of
how the regions of attraction are interconnected. We use the information coming from the
knowledge of all critical points to propose a new theoretical tools, that we call connectivity
tree, that allows us to visualize the interconnections of the energy function’s sublevel
sets, and we show how we can use this tool to propose the largest possible controller-
independent region of attraction for any local minimum, i.e., the minimal set of initial
states such that the corresponding trajectories are guaranteed to converge to the minimum
for any energy-decreasing system. Additionally, we discuss a slightly weaker form of region
of attraction, that we call probability 1 region of attraction, which can improve the region’s
size by introducing a relaxation that has no impact from a practical point of view: in this
region, trajectories are guaranteed to converge for almost any initial condition in the
set, i.e., there might be a zero-measure subset that converges to a different, unstable
equilibrium.

1.3.1 State-of-the-art and its limits

The simple examples that we considered back in the Introduction hints at the fact that
there is some sort of relationship between the boundary of regions of attraction and the
stable manifolds of other, unstable equilibria. In particular, it seems reasonable to expect
that these stable manifolds are (at least) part of the region of attraction’s boundary, given
that trajectories cannot cross them.

It turns out that not only this intuition is correct, but that it holds under very gen-
eral conditions [27]: given a nonlinear system and a stable equilibrium point for it, it is
possible to show that the boundary of the equilibrium’s region of attraction is the union
of the stable manifolds of other equilibria, as long as the system has only hyperbolic fixed
points, it is structurally stable 10 and that all trajectories on this boundary converge to an

10. Intuitively, a structurally stable system is such that the orbits connecting different equilibria do
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equilibrium (notice that the system needs not to be energy-decreasing!).
However, while this characterization gives a rigid structure to the minima’s regions of

attraction, it hardly provides a computationally-feasible approach for the identification
of these regions. When their dimension is greater than one, the computation of stable
manifolds in Rn alone is an extremely difficult problem [61]. Additionally, we will later see
that index 1 saddles play a special role in the separation of these regions, meaning that
we would need to compute (n− 1)-dimensional manifolds. In image-based visual servoing
applications, we typically consider n = 6, making the computation simply unfeasible.

In the context of energy-decreasing systems, the high dimensionality is not the only
limit of this approach: the region of attraction of a given minimum depends on the actual
system, which for energy-decreasing systems defined on the same energy function. Given
the unified point of view on energy-decreasing systems that we brought forth up until
now, it makes sense to search for a strategy that allows us to focus exclusively on the
energy function to propose at least an approximation of the minima’s regions of attraction
that works for all energy-decreasing systems defined on the same energy function.

Once again, Lyapunov theory comes to save us. It is well known that the sublevel sets
of a Lyapunov function are (positively) invariant sets for the corresponding dynamical
system. This fact is widely used in the literature, in particular to provide inner approxi-
mations of the region of attraction: a typical approach is to “cut” the Lyapunov function
at a value which is just below the level of the second-smallest equilibrium (see Figure 1.5a
for an illustrative example), which is used, for instance, in [25, 48]. If this sublevel set is
compact, then we can trivially apply LaSalle invariance principle (see, e.g., [60]) to show
that, for any initial state taken in this set, all trajectories converge to the global minimum
of the Lyapunov function.

If we now consider an energy function v(x), the same construction would provide us
with an inner approximation of the global minimum’s region of attraction that holds for all
energy-decreasing systems for v(x). It is then clear that this set is an inner approximation
of the global minimum’s controller-independent region of attraction, which is defined, in
the context of energy-decreasing systems, as the largest set for which these properties
hold true for all energy-decreasing systems, or, equivalently, as the intersection of all the
minimum’s regions of attraction for any energy-decreasing system.

not change under a small enough perturbation of the system’s parameters. Typical examples of not
structurally stable systems are systems for which the unstable manifold of a saddle coincide with the
stable manifold of a second one. For an introduction to structural stability, see [46, 82].
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(a) Global minimum’s classical approximation. (b) Sublevel set’s connected components.

Figure 1.5 – Illustration of Lyapunov sublevel sets as inner approximations of the minima’s
regions of attraction.

1.3.2 Sublevel sets’ connected components

We want to build upon this classical result to propose regions of attraction’s estimates
for any (possibly local) minimum, as well as improving the size of the estimate. A simple
way to extend this result is to focus on the connected component of the sublevel set
which includes the minimum of interest. Intuitively, if we have m local minima that are
included in the sublevel set, and no other critical points, we expect that the sublevel set
is formed by m disconnected component, each one representing an inner approximation
of the corresponding minimum’s controller-independent region of attraction. You can see
in Figure 1.5 a simple example with two minima, for which it is evident that any sublevel
set included between the green and red one has two disconnected components, which are
then joined together once we reach the saddle point’s energy level. We make this argument
rigorous with the following result.

Theorem 1.4. Consider an energy function v ∈ C2(M) with isolated critical points, and
let x∗ ∈M be a local minimizer. Let Vc be the sub-level set of v defined as:

Vc = {x ∈M : v(x) ≤ c} , (1.33)

and let V∗
c be the connected component to x∗ of Vc. Now, let c+ be the minimum value of

c such that V∗
c+ contains at least another critical point x+, with v(x+) = c+. Then, x+

is not a minimum and, for all v(x∗) ≤ c < c+ such that V∗
c is compact, V∗

c is an inner
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approximation of the region of attraction of x∗ for any energy-decreasing system.

Proof. We begin by noticing that, for all c(x∗) ≤ c < c+, on the boundary of V∗
c it

holds Lfv(x) < 0, for any energy-decreasing system. Since it is compact, V∗
c is then a

(positively) invariant set for any such system [10]. We can thus apply LaSalle’s theo-
rem [64], which says that the system converges to the largest (positively) invariant set in
Zc = {x ∈ V∗

c : Lfv(x) = 0}, for all initial conditions within V∗
c . Being Zc = {x∗} for all

v(x∗) ≤ c < c+, we have that any trajectory starting in V∗
c converges to x∗, meaning that

V∗
c is a subset of the controller-independent region of attraction of x∗.

Finally, we prove by contradiction that x+ is not a minimum. If we assume that x+ is
a minimum, then, being isolated, it’s possible to find a neighborhood N (x+) such that
v(x) > v(x+), for all x ∈ N (x+). In turn, by the definition of sub-level set, we have that
V∗

c+ ∩ N (x+) = {x+}, which means that x+ is an isolated point of the set V∗
c+ . Clearly,

this violates the connectedness of V∗
c+ , thus proving the theorem.

Remark. A sublevel set Vc is always a closed set, since it is the preimage of the (closed)
interval (−∞, c] through v, which is then closed by the continuity of v. If M = Rn, a
sufficient condition for the compactness of Vc is that it is bounded. However, when M is
an arbitrary smooth manifold, the compactness of its subsets is a significantly more subtle
concept (see, e.g., [65]). We will see an example of a counter-intuitively non-compact
subset in Sec. 1.4.2.

Theorem 1.4 tells us that it is not possible to have two (or more) minima inside the
same connected component without having at least another, unstable equilibrium that
acts as a connection between them. This indeed confirms that, if Vc only contains m

local minima, then it has m disconnected components. Then, if we focus on one of the
minima, we can at the very least improve the size of its region of attraction’s estimate
by “climbing” the energy’s level sets up to the first unstable equilibrium, and take the
connected component to the minimum of Vc as estimate.

While this improves the estimate, it still doesn’t completely clarify how to deal with
more complicated situations. Consider for instance the energy function shown in Fig-
ure 1.6. The first sublevel set which contains an unstable equilibrium is Vb, where b is the
energy level of the saddle xb. While Vb represents (the closure of) the actual controller-
independent region of attraction of the global minimum, it doesn’t tell us anything about
the two other minima. Moreover, even if we could remove xb and xc, the first unstable
equilibrium which we encounter is now xf : the interior of the sublevel set Vf has in-
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a

b

c d

e
f

g

Figure 1.6 – An example of energy function with non-trivial regions of attraction. High-
lighted points represent its critical points, where green points are minima, yellow ones are
saddles and the red one is a maximum. The letters are ordered according to the energy
level.
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deed three disconnected components, each one representing an (approximated) region of
attraction for each minimum, but the estimate for xe is clearly pessimistic.

1.3.3 The connectivity tree: definition and examples

By restricting a bit the class of energy functions, we can actually go much further in this
characterization. We propose a way to construct a graph, which we call the connectivity
tree, that allows us to visualize how the regions of attraction of minima are interconnected.
In particular, we want to show how we can use this tree as a graphical tool for deciding
the ideal energy level to find the (component of the) sublevel set that best represents the
region of attraction for a given minimum. We will also see that the connectivity tree will
allow us to discuss a weaker form of the controller-independent region of attraction, which
only guarantees us convergence with probability 1 to the minimum but could improve its
size.

As a class of energy functions, we will consider functions at least C2(M) with all
nondegenerate equilibria (as always so far) and such that all sublevel sets are compact.
Also, for simplicity, we will consider that the function has only a finite number of equilibria
and that no two different equilibria have the same energy level. We will assume that all
equilibria are known and that exact simulations can be made for an energy-decreasing
system, at least for trajectories whose orbits are compact.

For didactic purposes, we will first show how to construct and use the connectivity
tree for the example shown in Figure 1.6. We will make this construction more rigorous
in the sequel, thanking the readers for this small act of faith.

The idea is simple: we want to construct a tree that represents the connectivity of the
sublevel sets as the energy increases. Each leaf represents the creation of a new connected
component, each node the junction of two components or the self-junction of a component,
while each edge represents a connected component in the sublevel set, for all energy values
between the ones of the two nodes connected by the edge. You can see a very simple
example of a connectivity tree in Figure 1.7. Intuitively, we expect that the interior nodes
represent the unstable critical points, and that the critical point with the highest energy
is the root of the tree 11.

Let us now consider the function in Figure 1.6. We want to define an iterative algorithm
that builds the connectivity tree from the ground up, relying on exact simulations to see

11. Assuming the manifold is connected; otherwise, we will have as many disconnected trees as there
are components of the manifold.
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a a

b
c

b

c

Figure 1.7 – An example of connectivity tree for a simple energy function. Green points
are minima while the yellow one is a saddle. As we climb the energy levels, the sublevel
set firstly has a single component connected to the global minimum, then a second one
connected to the local minimum, and finally they are re-connected once we reach the
saddle’s energy level.

how the component of the sublevel sets are interconnected. We start with the lowest
energy equilibrium (i.e., xa), which, being a minimum, creates a new component. We add
our first leaf to the connectivity tree.

We then move up the energy lines, and the second equilibrium we encounter is xb,
which is a 1-saddle. By simulating 12 its heteroclinic orbits (i.e., the two trajectories that
form the saddle’s unstable manifold) we can see that they both converge to xa. Thus,
at the energy level of xb, the sublevel set “folds” into itself, which doesn’t change its
connectivity. We add a node to the connectivity tree, representing xb, and a single edge
connecting it to xa.

Moving up, we get to xc, which is a 2-saddle. In this case, its unstable manifold is
2-dimensional, meaning that we cannot fully characterize it with simulations. However,
we will see in the following that saddles of index > 1 cannot change the sublevel set’s
connectivity, which in turn means that all trajectories in its unstable manifold converge
to the same component of the sublevel set. Thus, we can identify this component by
simulating a single trajectory, which, in our example, converges either to xa or xb. We

12. To simulate the heteroclinic orbits, we can use any energy-decreasing system. We can easily verify
that they all lead to the same components by analyzing their unstable manifold in the chart defined by
Morse lemma [74], restricted on a neighborhood of the saddle.
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Figure 1.8 – An example of a nontrivial connectivity tree. Green points are minima, yellow
ones are saddles and the red one is a maximum.

add the node corresponding to xc in our tree together with an edge connecting it to xb.
We can iterate this algorithm, inspecting all the remaining equilibria in order of energy

level. Both xd and xe are minima, which correspond to isolated leaves on the tree. Then,
by simulating the heteroclinic orbits of xf (which is a 1-saddle), we see that it links
the components connected to xa and xd, and so the corresponding node has two edges
connecting it to xc and xd. Analogously, the node corresponding to xg links xe and xf ,
completing the tree, which you can see in Figure 1.8.

We summarize the algorithm in Algorithm 1. The connectivity tree that we propose can
be built in general for functions defined on n-dimensional manifolds, and, in our opinion,
it is a useful graphical tool both for deducing the minima’s controller-independent regions
of attraction and for visualizing some of the function’s properties that would otherwise
be impossible to see. From the tree alone, we can immediately see that the best possible
energy level to estimate the controller-independent region of attraction of xa is b = v(xb);
analogously, we can see that cutting the energy function just below f and g gives us
estimates for xd and xe, respectively.

With the connectivity tree we can also discuss a weaker form of the region of attraction,
which only guarantees convergence to the minimum with probability 1, i.e., we allow for a
zero-measure subset of initial positions so that the corresponding trajectories do not con-
verge to the minimum. For instance, if we take any sublevel set Vc with v(xb) < c < v(xf )
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Data: x1, . . . , xm, critical points of v(x) s.t. v(x1) < · · · < v(xm).
Result: (E, V ), edges and vertices of the connectivity tree.
E, V ← ∅, {x1}
for k = 2 to n do

V ← V ∪ {xk}
if index(xk) == 1 then

/* Get highest equilibria within the components where the
heteroclinic orbits converge to */

xa, xb ← heteroclinic(xk)
if xa ̸= xb then

E ← E ∪ {(xa, xk), (xb, xk)}
else

E ← E ∪ {(xa, xk)}
end

else if index(xk) > 1 then
/* Get highest equilibrium within the component where unstable

orbits converge to */
xa ← unstable(xk)
E ← E ∪ {(xa, xk)}

end

Algorithm 1: Pseudo-code for building the connectivity tree.
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in the tree depicted in Figure 1.8, the component connected to xa does not approximate
the region of attraction of xa, but still guarantees convergence with probability 1 to it,
since the stable manifolds of xb and xc have measure zero. We believe that this weak
region of attraction can be of great practical interest, since on the one hand, we could
sensibly improve the region’s size (as the considered example shows), while on the other,
any amount of noise would prevent the system to converge to the unstable equilibria
anyway.

1.3.4 The connectivity tree: formal justification

The inspiration for this construction comes from Morse theory, from which we will
take in full force to justify the algorithm. There are two crucial properties underlying
Algorithm 1, which are:

— Meeting a minimum creates a new connected component, and
— The connectivity of the sublevel set can change only when we encounter a saddle

of index 1.
These two points justify that all leaves and nodes are critical points, and tell us that all
unstable trajectories of a saddle of index > 1 converge to the same component, which
motivates our choice to do only one simulation for these equilibria.

The main argument to justify these two properties can be derived from the following
theorem, a classical result of Morse theory, which shows that the domain of a function such
as those we consider has the same topological properties as a CW-complex constructed
from the critical points of v. Intuitively, a CW-complex is a set E of closed balls ek ⊂ Rk,
0 ≤ k ≤ n, called cells or k-cells, together with a family of functions, called characteristic
maps, that tell us how the balls “fit together”. Specifically, we require that the boundary
of each cell must be connected in a "reasonable" way to lower-dimensional cells. For a
formal introduction to Morse theory and CW-complexes, see [74] and [65], respectively.

Theorem 1.5 (Theorem 3.5 in [74]). If v is a differentiable function on a manifold M
with no degenerate critical points, and if each of its sublevel sets is compact, then M has
the homotopy type of a CW-complex, with one cell of dimension k for each critical point
of index k.

We want to apply this theorem to each sublevel set of the energy function in order
to discuss their connectedness. However, if we restrict the domain to an (open) sublevel
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set of the energy function, then some sublevel sets of the restricted function will be non-
compact in the subspace topology. Additionally, in order to be able to appropriately apply
these results to the image-based visual servoing energy function, we want to generalize
our analysis to functions whose sublevel sets are compact up to a certain energy level.
Thus, we propose the following extension of Theorem 1.5 that allows for these relaxations.
Intuitively, this result formalizes a simple geometrical intuition: we modify the function
“stretching” it to infinity as we approach the boundary of the sublevel set, making all
sublevel sets of the restricted function compact while retaining the energy function’s
equilibria.

Corollary 1.2. Let v be a differentiable function on a manifold M and let c ∈ R be such
that, for all a < c, the sublevel sets Va are compact and the critical points with energy
level below c are nondegenerate. Then, the open sublevel set:

Mc = {x ∈M : v(x) < c} (1.34)

has the homotopy type of a CW-complex, with one cell of dimension k for each critical
point of index k within Mc.

Proof. Let ϵ > 0 be such that the set v−1([c − ϵ, c]) contains no critical points of v, and
let ρ : [0, c)→ [1, +∞) be defined as:

ρ(x) =


1, 0 ≤ x ≤ c− ϵ

1− (x− c + ϵ) log
(

1− x− c + ϵ

ϵ

)
, c− ϵ ≤ x < c

. (1.35)

We can see the graph of this function in Figure 1.9, and it is easy to check that it has a
vertical asymptote at x = c and that it is smooth on its domain.

Since, up to c, the sublevel sets are compact, v has a global minimum by its continuity.
We assume, without loss of generality, that this minimum is 0, so that the function
v̄(x) = ρ(v(x))v(x) is well defined onMc. We have that all its sublevel sets are compact,
since multiplying by ρ(v(x)) does not change the shape of the sublevel sets, meaning that
all sublevel sets of v̄ are equal to a sublevel set of v strictly below the energy level c,
which is compact by hypothesis. Additionally, v̄ and v coincide on Vc−ϵ (meaning that the
critical points are the same), while, on Mc\Vc−ϵ, we have that:

∇v̄(x) = (ρ(v(x)) + v(x)ρ′(v(x)))︸ ︷︷ ︸
>0

∇v(x), (1.36)
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Figure 1.9 – Graph of ρ(x) with c = 1 and ϵ = 0.25. The red dot denotes the point
(c− ϵ, 1).

which implies that v̄ does not have any critical points in the region. Finally, v̄ is differ-
entiable on Mc (by the smoothness of ρ and the differentiability of v), meaning that we
can apply Theorem 1.5, concluding the proof.

One of the critical information we can infer from the CW-complex is whether it is
connected or not: a classical theorem of topology (see, e.g., [65, Proposition 5.11]) tells
us that a CW-complex is connected if and only if its 1-skeleton (i.e, the subcomplex
formed only by 0- and 1-cells) is connected. This characterization justifies our choice to
focus only on minima and 1-cells in drawing the connectivity tree. As we move up the
energy values, when we encounter a minimum we add a 0-cell to the sublevel set (i.e.,
we add an isolated point, representing a new component), while when we encounter a
1-saddle we add a 1-cell (which we visualize as an arc) that either joins two components
or self-joins the same component. These two elements form the “building blocks” for the
connectivity tree, to which we finally add the (> 1)-index saddles (which do not impact
connectivity) that allow us to distinguish between regions of attraction in the strict sense
or with probability 1.

1.3.5 Detection and discrimination of regions of attraction

We end the section with a brief discussion on a practical issue in using our strategy
with high-dimensional systems: given an element in a sublevel set with several components,
how do we distinguish to which one the element belongs to? If we are able to provide a
way to discriminate the components, we could, on the one hand, extract more information
from them (e.g., compare their volumes), while, on the other, we could equip the system
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Figure 1.10 – An example of components’ separation in R2. We show the level sets of
v(x) = 0.1x2

1(x2
1 − 4

3x1 − 4) + x2
2, and we separate the sublevel set V−ϵ, whose boundary

is depicted in green. The separator function is g(x) = x1 − x2
2, and we depict the region

defined by g(x) ≥ 0 in red.

with a way to detect whether it fell into a controller-independent region of attraction.
This last possibility would also be, we believe, a first step in proposing control strategies
that allow to escape an undesired stable equilibrium.

Given a sublevel set Vc with m components, each of which we will denote with V(i), a
possible approach to identify a specific component V(0) is to determine (m− 1) functions
gi :M→ R such that each gi is strictly negative on V(0) and strictly positive on V(i); said
differently, the functions gi(x) are such that each level set {x ∈M : gi(x) = 0} separates
V(0) and V(i). You can see a very simple example of a separation of 2 components in
Figure 1.10. With this family of functions, we can easily compute whether a point x with
v(x) ≤ c is within V(0) by checking the signs of gi(x), and we can also characterize V(0)

as the intersection of Vc and all the sublevel sets G(i)
0 = {x ∈M : gi(x) ≤ 0}.

Unfortunately, there is no obvious way to identify these functions, especially when the
state-space is not Euclidean, and, at the current time, we only have partial answers on how
to deal with this problem. We present a simple strategy that approximates the separating
functions gi with hyperplanes, which we can always define under the assumption that the
state-space is Rn. Since we cannot expect that any two components can be separated by
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hyperplanes, we also allow for lowering the energy level: in this way, the components of
the sublevel set will shrink, resulting in more “leeway” in the choice of the hyperplane.
This always works if we want to identify the component connected to the global minimum,
since, in the worst case scenario, the other components eventually disappear as we decrease
the energy. For this reason, however, we cannot guarantee that this strategy lets us always
identify other components in general, even though we expect it to work satisfactorily on
average cases.

We propose the following heuristic to identify the separating functions. Let c ∈ R be
the energy level we are interested in, assume that Vc has m components and let m0, . . . ,
mm−1 be the minimizers within each component. Since the function gi must, at the very
least, allow us to discriminate between the minimizers within V(0) and V(i), we consider
as a candidate the hyperplane which is perpendicular to the segment connecting m0 and
mi and which passes through the point that maximizes the energy on this segment, which
we denote with pi. Then, in order to guarantee the separation of the components, we
evaluate the minimal energy ci ≤ c on the hyperplane and take this energy level as the
new c. In formulae, we solve these two optimization problems:


pi = arg max

x=tm0+(1−t)mi, t∈[0,1]
v(x),

ci = min
gi(x)=0

v(x)
. (1.37)

Then, we iterate over all the components to find all the separating functions and finally
identify the new energy level c̄ = min{c1, . . . , cm−1} that allows us to isolate V(0).

We can see an example of such a splitting in Figure 1.11, where we considered a
sublevel set immediately below the energy level of the 1-saddle xd, for which we wanted
to identify the component connected to the global minimum. We can clearly see in Fig-
ure 1.11a that this sublevel set has three components, one for each minimum. Using the
strategy described above, we were able to identify two straight lines that separate the
three components, with only a minimal decrease in energy level. Thanks to these sep-
arating function, we were able to explicitly compute V(0), which is shown in green in
Figure 1.11b.

It is easy to see some steps that we can take to improve the estimates provided by this
procedure. For instance, we could frame the two optimization problems (1.37) as a single
maximin problem, in order to find the point pi that maximizes the energy’s minimum on
the hyperplane. Other improvements can be obtained by parameterizing the hyperplanes,
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1.3. Importance of unstable equilibria: the connectivity tree

(a) Energy function.

(b) Separation of the sublevel set’s components.

Figure 1.11 – Separation of the sublevel set’s components with the procedure described
in Sec. 1.3.5. The local minima are depicted in green, while the saddle are in yellow. The
component connected to the global minimum is computed as V(0) = Vc ∩ G(1)

0 ∩ G
(2)
0 .
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Chapter 1 – Equilibria and stability of energy-decreasing systems

or selecting higher-order polynomials as candidates, and including these parameters in
the optimization process. Nevertheless, we decided to settle for the heuristic proposed
above because we expect it to have a computational cost which is comparable to the
one of computing all critical points of the energy function, since, as we will see, this
computation alone can be barely tractable in practice.

1.4 Non-compact sublevel sets in the visual servoing
context

Throughout this chapter, we investigated several interesting properties of what we call
energy-decreasing systems, with the final objective of applying these ideas to image-based
visual servoing systems. Our arguments above on using the energy function’s sublevel
sets as estimates of the regions of attraction rely on the application of LaSalle invariance
principle to show that a given sublevel set of the energy function is (positively) invariant
for any energy-decreasing system, and, furthermore, the construction of the connectivity
tree relies heavily on the Morse theorem (Theorem 1.5). However, both these important
results require that the sublevel sets are compact, which, as we will see, it is not always
the case for the energy function that we consider in image-based visual servoing.

It is possible to identify two significant behaviors, which showcase that some sublevel
sets are not compact. The first one is well known: we can find examples where, for some
trajectories, the camera’s position moves back towards infinity, even though an energy-
decreasing controller is employed. This means that the energy level can be bounded as we
approach infinity, implying that some level sets are unbounded, and, thus, non-compact.
The second behavior is more subtle, and, apparently, unknown in the literature: it is
possible for the camera’s position to approach one of the 3D points (i.e., make one of the
depths Zi converge to zero) while keeping a bounded energy level, and, in fact, we were
able to identify some edge cases, in the context of planar visual servoing, where energy-
decreasing trajectories converge towards one of the points. If we consider the state-space
of the camera to be the set of x ∈ SE(3) such that all the points are in the camera’s
field of view, we will see that this behavior leads to the surprising conclusion that some
sublevel sets are non-compact because of the state-space’s topology.

The strategy that we propose to manage the non-compactness is to characterize the
minimal energy level at which it arises and restrict our analysis to the sublevel sets
which are below this critical level. By taking this set as the camera’s state-space, we can
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1.4. Non-compact sublevel sets in the visual servoing context

Figure 1.12 – Example of critical energy level represented in the connectivity tree. The
function has an horizontal asymptote to the right, meaning that all sublevel sets above
the red square value will be non-compact.

safely discuss the convergence properties of any energy-decreasing system, at the cost of
“giving up” discussing what happens outside. We will see that, for a representative class
of examples in visual servoing, we can always find such a sublevel set which contains all
the critical points of interest, indicating that these problems do not prevent, in general,
to carry out a meaningful analysis of these systems.

In order to highlight the critical energy levels at which the sublevel sets become non-
compact, we include them as well in the connectivity tree. We can see an example of this
in Figure 1.12, where we consider a simple scalar function which presents an horizontal
asymptote as x tends to infinity. The critical energy level, represented by a red square
in the figure, marks the “safety limit” below which we can still discuss the convergence
properties. We will see this construction again in Chapter 3, where we use it to represent
the critical level sets discussed in this section for a set of image-based visual servoing
examples.

In the following, we will study the two situations separately. For both of them, we first
provide simple examples that let us visualize the issues in the comforting settings of R2,
and we then derive a strategy to compute their critical energy level.

1.4.1 Non-compactness of sublevel sets due to unboundedness

The first problem we tackle is to find the minimal energy level as the camera runs off to
infinity. Energy-decreasing systems in Euclidean settings with this behavior are very well
understood in the Lyapunov theory literature: if the Lyapunov function is not radially
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Chapter 1 – Equilibria and stability of energy-decreasing systems

Figure 1.13 – Example of a Lyapunov function which is not radially unbounded.

unbounded, then its sublevel sets are unbounded and error decreasing trajectories may
escape to infinity. A canonical example is given in [60], where we consider the Lyapunov
function:

v(x) = x2
1

1 + x2
1

+ x2
2. (1.38)

As we can also see in Figure 1.13, v(x) is not radially unbounded in the direction
u = (1, 0), since v(tu) = t2

1+t2 is bounded. Here we expect the gradient descent ẋ(t) =
−∇v(x(t)) to be globally asymptotically stable, but there exist some energy decreasing
trajectory that escape to infinity. Consider, for instance, x(t) = (t, 1

t
): the time derivative

of v(x) along this trajectory is d
dt

v(x(t)) = − 2(1+2t2)
t3(1+t2)2 , which is strictly negative for t > 0.

As discussed above, a well-known example in image-based visual servoing is represen-
tative of this situation 13: observing the Cartesian coordinates of 4 points, an escaping
trajectory is obtained by arranging the points in a square configuration and choosing a
desired pose such that the visual axis is perpendicular to the square and centered with
respect to it, and pick a starting pose with 180°axial rotation with respect to the desired
one [20]. Furthermore, we will show (in Chapter 2) that this system has one unique fixed
point, which is the global minimum of the energy function, which illustrates that such

13. It’s important to notice that, in general, boundedness is not properly defined on manifolds. However,
by seeing SE(3) = R3 × SO(3), we can indirectly use it to tell whether a subset S ∈ SE(3) is compact:
if its natural projection onto R3 is unbounded (i.e., not compact), then S cannot be compact, since the
natural projection is continuous [65, Corollary 3.28] and the image of a compact set under a continuous
function is compact [65, Theorem 4.32].
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1.4. Non-compact sublevel sets in the visual servoing context

escaping trajectories are not detectable by looking only at fixed points.
We now show how we can formally derive the minimal energy level at infinity. We

begin by noticing that, as the camera moves away from the tracking points, the features
si = (xi, yi) tend to get closer to each other. By the geometry of the problem, it’s easy to
convince ourselves that each point’s features all converge to an identical value (potentially
infinite) when the camera is infinitely far from the tracking points. We denote with s̄ this
limit value, i.e.:

lim
∥otc∥→∞

si = s̄, i = 1, . . . , N. (1.39)

It’s then possible to rewrite the energy function (1.5) as a function of s̄, as:

v(s̄) = 1
2

N∑
i=1
∥s̄− s∗

i ∥2, (1.40)

where s∗
i denotes the desired features for point i. We can find the minimum of v(s̄) by

checking where its gradient, taken with respect to s̄, is null. We have that:

∇v(s̄) =
N∑

i=1
s̄− s∗

i = 0 ⇐⇒ s̄ = 1
N

N∑
i=1

s∗
i (1.41)

This critical value of s̄ must be a minimum, being v(s̄) a sum of strictly convex functions
and, then, convex itself. Thus, we identified the minimal energy level c∞ such that the
sublevel set are unbounded, which is, simply:

c∞ = 1
2

N∑
i=1

∥∥∥∥∥
(

1
N

N∑
i=1

s∗
i

)
− s∗

i

∥∥∥∥∥
2

(1.42)

1.4.2 Non-compactness of sublevel sets due to the state-space’s
topology

As we already hinted here and there, compactness on manifolds does not always agree
with the intuition we have from Euclidean space. For instance, we might have a sublevel
set which is closed and bounded (for a given metric on the manifold), but non-compact.
We provide here an example that lets us introduce the second problematic behavior we
encounter in the context of image-based visual servoing, i.e., that the error may remain
finite if one point converges to the camera center while its depth tend to zero. Points’
features in the screen are foreseen to diverge to infinity when their depth tends to zero,
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Chapter 1 – Equilibria and stability of energy-decreasing systems

(a) Graph of v+(x). (b) Stream plot ẋ = −∇v+(x).

(c) Graph of v−(x).
0 1 2 3 4 5 6

-2

-1

0

1

2

(d) Stream plot ẋ = −∇v−(x).

Figure 1.14 – Graph (left) and stream plot (right) of an attractive (top) and a repulsive
(bottom) hole-in-the-wall.
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1.4. Non-compact sublevel sets in the visual servoing context

and, thus, the error is foreseen to diverge to infinity as well, enforcing compactness of the
sublevel set. But, as a consequence of the energy’s boundedness when the camera position
is superposed to a point, this wall of infinite error at zero depth contains a “hole” where
the error remain finite. We call this property a hole-in-the-wall. The following two energy
functions v+(x) and v−(x) represent two-dimensional instances of holes-in-the-wall:

v±(x) = x2
2

x2
1

+ (x1 ± 2)2 + x2
2, (1.43)

where we consider the state space to be X+ = {x ∈ R2 : x1 > 0}. In both cases, when
x2 ̸= 0 the energy function presents an infinite wall at x1 = 0, hence any error decreasing
controller will tend to increase small values of x1. However, v±(x1, 0) = (x1 ± 2)2, hence
it presents a finite limit value when x1 tends to 0 with x2 = 0. The graph and the phase
portrait of the gradient flow are shown in Figure 1.14. In the case of v+, the energy in
the hole-in-the-wall is the lowest, and all trajectories converge toward it. Since the vector
field is not defined there, the trajectories actually stop in finite time. Noticeably, all
nonempty sublevel sets are bounded for the metric inherited from R2; additionally, being
v+ continuous on M+, the preimage of a closed set is closed in the subspace topology,
meaning that the sublevel sets are closed as well. However, they are clearly not positively
invariant for the gradient flow: thus, by LaSalle invariance principle, they cannot be
compact.

In the case of v−, the energy in the hole-in-the-wall is not a local minimum, and all
trajectories seem to converge towards the global minimum (2, 0). In this case, we cannot
exploit LaSalle invariance principle. We can use a different, more direct characterization
of compactness on manifolds: we have that any sequentially compact set is compact [65,
Theorem 4.45], i.e., a set is compact if and only if every sequence of points in the set has
a subsequence that converges to a point in the set. Thus, it is clear that sublevel sets that
are above the energy of the hole-in-the-wall are not compact, since we can always pick
a sequence of points in the sublevel set that converges to the origin in R2, but does not
have any converging subsequence in X+. On the other hand, all lower sublevel sets are
compact.

Remark. Intuitively, we could think about compactness on manifolds in the following
terms: a closed 14 subset of a manifold M is not compact if there is a sequence {xk}+∞

k=1 ∈

14. For general topological spaces, a compact set doesn’t need to be closed: for instance, any proper
subset of a finite, discrete topological space endowed with the trivial topology is compact (since any
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Chapter 1 – Equilibria and stability of energy-decreasing systems

M that tries to “run off” to a point outside the manifold, in the same way of a closed,
unbounded set which is not compact because there is a sequence that runs off to infinity.
As an example, we can compare X+ (as defined above) and R2, which are homeomorphic
under the homeomorphism f(x) = [log x1, x2]. Since it is continuous, f(x) maps compact
sets to compact sets. However, any subset of X+ which touches its boundary, even if closed
and bounded, gets mapped to a unbounded set of R2.

These holes-in-the-wall have been unnoticed in the visual servoing literature until now,
most probably because their seemingly little practical interest. The dynamics in their
vicinity is not understood, and, in fact, some examples of image-based visual servoing
systems can be constructed in such a way that trajectories converge toward a hole-in-the-
wall. As discussed above, as a first step towards the investigation of these systems’ global
stability, we want to characterize their energy level in order to investigate the behavior of
the system below this energy level.

Contrarily to the previous section, we will not be able to derive a closed-form solution
that represents the minimal energy at the holes-in-the-wall, but we will instead frame
it as an optimization problem, and explicitly write the first-order optimality conditions.
Assume that the camera is superposed to the i-th point oai and that all the other points
are in front of the camera (which is always possible as long as the i-th point is not in
the convex hull of the others). The energy function (1.5) has a jump discontinuity at this
position, since the visual error ei corresponding to oai is not well defined but its limit
as the camera position approaches oai is, for any orientation such that all the points are
kept in front of the camera. Since this depends on the camera position alone, we actually
have a 3-dimensional continuum of discontinuities, due to the 3 degrees of freedom given
by the choice of orientation.

As a visual aid, we can see in Figure 1.15 a lower dimensional representation of this
situation, where we clumped together the position coordinates on axis t and the rotation
ones on axis R. Our objective is to identify the orientation that minimizes the energy
along the discontinuity (represented in red in the Figure). The strategy we propose is to
consider only the lower part of the jump and minimize it as a function of R alone. Since,
as we said, all the errors except ei are well defined on the discontinuity, we can trivially

open cover of the subset must be finite) but not closed. However, we assume that manifolds are always
Hausdorff by definition, which implies that closedness is necessary for compactness [65, Proposition 4.36].
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1.4. Non-compact sublevel sets in the visual servoing context

Figure 1.15 – Simplified representation of a hole-in-the-wall in image-based visual servoing.
When the camera position t is fixed on oai, the energy function is discontinuous for any
orientation. The choice of orientation that minimizes the energy on the discontinuity is
shown in red.

rewrite the energy function as:

v(x) =
N∑

k ̸=i

∥ek(x)∥2 + ∥ei(x)∥2. (1.44)

Thus, it is clear that the lower part of the jump is obtained by putting ei(x) = 0, if we
assume that, for any given orientation R, we can always find a sequence of camera poses
that converges to (oai, R) as ei converges to zero (we’ll verify this assumption shortly).
We finally have all the ingredients we need to find the minimal energy level at a hole-in-
the-wall: assuming that ei = 0 and fixing the position of the camera at oai, i.e., taking
x = (oai, R), the energy function (1.44) becomes a smooth function of R, meaning that
we can take its gradient and find the minimum as one of the solutions of ∇v(R) = 0.
Finally, since each point is a (possible) hole-in-the-wall, we perform the computation for
each of them and just keep the minimum among the energy levels.

As we said above, once we find the orientation that minimizes the energy, we need
to find a sequence of poses that converge to oai as ei goes to zero, which allows us to
verify that we actually obtained a minimum and not a lower bound for it. Actually, we
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Chapter 1 – Equilibria and stability of energy-decreasing systems

can easily build a sequence of camera poses that converges to oai while keeping the error
ei(x) null throughout the whole sequence. Let the camera be superposed to oai, meaning
that cai = 0, and consider the vector n = (x∗

i , y∗
i , 1) expressed in camera frame. If we

move the camera in the direction −n while keeping the orientation constant, then the
point’s features will be (xi, yi) = (x∗

i , y∗
i ) for any non-null position displacement, implying

ei(x) = 0. Additionally, we can easily see that, as the camera moves, all the points
(expressed in camera frame) undergo a translation in the direction of n, meaning that
they are all kept in front of the camera (since, by hypothesis, all the points have positive
depths at the minimal orientation). Thus, any sequence of poses such that the positions
are taken along this direction and the orientation is fixed to the minimal one converges
to oai keeping the error ei(x) null, regardless of the minimizing orientation.

In practice, this optimality condition is very complicated to solve, but we will see in
the next chapter a change of variables that renders the system of equations tractable.
Since the space of orientations is compact, we will be able to use a interval analysis-based
solver which allows us to find all the critical points of v(R) in a verified way, guaranteeing
that the global minimum is found.
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Chapter 2

COMPUTATION OF THE IMAGE-BASED

VISUAL SERVOING ENERGY’S CRITICAL

POINTS

In this chapter, we will apply all the strategies that we developed in Chapter 1 to a
class of energy-decreasing image-based visual servoing systems. As we will see, the main
difficulty in studying these systems is represented by the verified computation of all the
critical points of their energy function (i.e., their equilibria), which will take up most of
the chapter.

The chapter is organized as follows. In Section 2.1 we consider again three well-known
energy-decreasing image-based visual servoing controllers that use the Cartesian coor-
dinates in the image of N points as visual features, namely the pseudo-inverse, trans-
pose and Levenberg-Marquardt controllers. For these systems, we investigate the natural
parametrization of the equilibrium condition and we argue that, at the current state,
calculating all its solutions is out of reach of current complete solvers for systems of equa-
tions. Then, we propose a different strategy to compute the equilibria directly in features
space. Solving the equilibrium condition as a function of the features opens up questions
regarding the reconstruction of the camera pose and its uniqueness for a given set of fea-
tures, questions which are addressed in Section 2.2. In Section 2.3, we present a strategy
that we can use to rigorously find all the energy function’s critical points in practice,
namely a computational algebra-based method that rely on Gröbner bases to efficiently
solve systems of polynomial equations.

The equilibrium condition developed in this chapter can be used for other classes of
image-based visual servoing controllers, even ones which are not energy decreasing. We
will discuss one such class of controllers in Chapter 4, where we will show that their
equilibrium condition can then be seen as a (significantly simpler) particular case of the
energy-decreasing one.
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Table 2.1 – Equilibrium condition’s explicit expression.

N∑
i=1

 N∏
j ̸=i

Zj

 (x∗
i − xi)

 = 0 (2.2a)

N∑
i=1

 N∏
j ̸=i

Zj

 (y∗
i − yi)

 = 0 (2.2b)

N∑
i=1

 N∏
j ̸=i

Zj

(xi(xi − x∗
i ) + yi(yi − y∗

i )
) = 0 (2.2c)

N∑
i=1

xiyi(xi − x∗
i ) + (1 + y2

i )(yi − y∗
i ) = 0 (2.2d)

N∑
i=1

(1 + x2
i )(x∗

i − xi) + xiyi(y∗
i − yi) = 0 (2.2e)

N∑
i=1

(xiy
∗
i − yix

∗
i ) = 0. (2.2f)

2.1 Mathematical models for the visual servoing equi-
librium condition

As we saw in the previous chapter, the gradient of the energy function that we have in
Cartesian image-point-based visual servoing is L⊤

e [s(x)− s∗], where the explicit expres-
sion of the interaction matrix Le is given in (1.2). Thus, the strategy that we propose to
compute all the critical points is simply to solve:

L⊤
e [s(x)− s∗] = 0. (2.1)

However, as we will see in Section 2.3, in order to be able to solve (2.1) in practice we
need to find a polynomial system of equation which has the same solution set. Given the
interaction matrix structure, it is easy to polynomize (2.1), whose explicit expression is
given in (2.2) (Table 2.1). In (2.2), we simply multiplied the first three equations by the
product of all Zi’s to make the expression polynomial. Since the system’s state-space is
such that all the points depths Zi are strictly positive, this transformation does not change
the solution set. However, (2.2) is expressed in what is called the extended features ξ =
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2.1. Mathematical models for the visual servoing equilibrium condition

(s, Z) ∈ R3N [92], meaning that it only provides a necessary condition for the equilibrium:
it is a system of 6 equations in 3N > 6 unknowns, where infeasible extended features (i.e.,
extended features not corresponding to any camera pose) are equally considered together
with feasible extended features. Thus, it is imperative to find a strategy that allows us
to impose that the solutions of (2.2) are within the set of feasible extended features. We
propose two such strategies, which will be discussed in the following.

2.1.1 Camera state-space representation

A first attempt to solve the equilibrium condition is to consider the camera pose
cTo ∈ SE(3) as the system’s variables, from which features s(cTo) and their corresponding
depths Z(cTo) are easily computed, leading to intrinsically feasible extended features that
can be substituted in (2.2). However, SE(3) does not admit a unique representation. We
focus here on two of these representations, namely, rotation matrices and quaternions.
We then rewrite (2.2), which is naturally expressed as a function of ξ(cTo), for the two
parameterizations. First, considering the parameterization cTo = (cRo,

cto), we obtain the
points coordinates in camera frame by

cai = cRo
oai + cto, (2.3)

from which the image features can be retrieved using (1.1) and their depth from the third
component of cai. Second, this relation also allows us to rewrite (2.2) as a function of the
quaternion parameterization cTo = (cqo,

cto), by expressing cRo as a function of cqo (see,
e.g., [90]).

In order to actually solve the system on SE(3), it is additionally necessary to impose
the group constraints cRo ∈ SO(3) or cqo ∈ H for the two representations. Putting
all together, the explicit expression of (2.2) as a function of the camera state becomes
a huge degree 3N polynomial system of 12 equations in 12 variables with the (cRo,

cto)-
representation, while we have a degree 6N polynomial system of 7 equations in 7 variables
with the (cqo,

cto) representation. A comparison between the degrees of these systems is
detailed in Table 2.2. Because of their high degrees and substantial density, these systems
are out of reach of current state-of-the-art complete solvers for polynomial systems. Note
that similar conclusions are obtained using minimal representations of rotations, such as
the angle multiplied by the unitary rotation axis.
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2.1. Mathematical models for the visual servoing equilibrium condition

2.1.2 Extended features representation

As explained just above, expressing the system directly in SE(3) leads to a highly
complicated system, which cannot be solved as-is. The equilibria condition (2.2), consid-
ered directly in the extended features space, is seemingly far simpler than the system’s
expression in camera state-space. We aim here to replace the extended feature feasibility,
expressed in the previous system using the camera pose, by simpler constraints acting
only on the extended features.

To this end, we propose to check the feasibility of the extended features ξ by first
reconstructing the corresponding points in the camera frame by using the one-to-one
correspondence

Zi = Zi , Xi = xiZi , Yi = yiZi, (2.4)

and second imposing that point-to-point inter-distances in the camera frame to be the
same as in the world frame. This leads to the following CN

2 = 1
2N(N − 1) point-to-point

inter-distance constraints:

(xiZi − xjZj)2 + (yiZi − yjZj)2 + (Zi − Zj)2 = d2
ij, (2.5a)

for all i < j = 1, . . . , N , where the distances dij := ∥oai − oaj∥ are known a priori. The
new system (2.2) and (2.5a), which allows us to compute the system’s equilibria directly
in extended features space, has much lower degrees with respect to the camera state-
space representation (see Table 2.2) and it is in the scope of current complete solvers for
polynomial systems, as shown in Section 2.3.

This new expression offers a great simplification, but also comes with a drawback:
the point-to-point inter-distance constraints are only a necessary condition that is not
sufficient for an extended feature to be feasible. Informally, points in the camera frame
that have the same point-to-point inter-distance as in the world frame may come from
an improper rigid transformation belonging to the group of isometries E(3) and not to
SE(3).

It is possible to overcome this issue by noting that the handedness of a tetrahedron
is only preserved under proper isometries. Therefore, the following constraint is satisfied
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only by feasible extended features:

det


x1Z1 x2Z2 x3Z3 x4Z4

y1Z1 y2Z2 y3Z3 y4Z4

Z1 Z2 Z3 Z4

1 1 1 1

 = det
oa1 · · · oa4

1 · · · 1

 , (2.5b)

where {oai}4
i=1 are any 4 points in the configuration and where the two determinants are

proportional to the signed volume 1 of the tetrahedron represented in the camera-frame
and world-frame, respectively.

In the non-coplanar case, by taking 4 non-coplanar points in (2.5b), the feasibility con-
straints (2.5) select only the feasible extended features. In the coplanar case, handedness
loses meaning due to the tetrahedron’s degeneracy and the distance constraints (2.5a)
become sufficient for feasibility. Nevertheless, the addition of (2.5b) still has the benefit of
speeding up the computations: informally, extended features corresponding to proper and
improper isometries are merged in the coplanar case, leading to solutions of multiplicity
two, and the determinant constraint removes this multiplicity.

2.2 Pose reconstruction

As we saw in the previous section, formulating the equilibrium condition directly in
the extended features space gives us a system of equations which is within the reach of
state-of-the-art complete solvers for polynomial systems. However, the solutions we find
are extended features, while, in practice, it is crucial to find the corresponding camera
pose. In particular, it is not a priori evident if feasible extended features only have one
corresponding camera pose, or if several camera poses can lead to the same extended
features.

In this Section, we first provide a reconstruction algorithm based on a closed-form
solution of the orthogonal Procrustes’ problem [50]. We then give an original result showing
that, in general, the pose reconstruction might be non-unique, and explicitly derive the
set of all solutions of Procrustes’ problem. As a corollary, we show that, in the context of
image-based visual servoing, there is always a unique solution. Finally, we provide a few
examples, not coming from visual servoing, where we unexpectedly have a continuum of

1. By its definition, the absolute value of the determinant is 6 times the volume, and the sign of the
determinant corresponds to the handedness.
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2.2. Pose reconstruction

solutions.

2.2.1 Reconstruction algorithm

We discuss here a classical pose reconstruction strategy and we adapt it to recover
the camera pose given the extended features ξ and the points’ coordinates in world frame
{oai}N

i=1, depending on whether the points are coplanar or not. The proposed reconstruc-
tion algorithm is based on the solution of the orthogonal Procrustes problem, whose aim,
given two sets of points {Pi}N

i=1 and {Q}N
i=1, is to find an orthogonal matrix Ω that maps

Pi to Qi for all i in the best possible way. The problem allows for the points to undergo a
translation as well; in this case, the translation is first removed from the problem by shift-
ing the points’ centroid to the origin, and then reconstructed using Ω and the centroids’
information.

The reconstruction algorithm for a given solution ξ of (2.2) and (2.5) is detailed in
Table 2.3, where the different treatment due to the coplanarity is enclosed in Step 3.
The feasibility of ξ implies that there always exists at least one proper camera pose
that corresponds to it, or, equivalently, that there exists at least one proper isometry
between the two sets of points P and Q. Such isometry is a global minimizer of the
residual ∥ΩP−Q∥F , meaning that it is retrieved by the reconstruction algorithm, being
the reconstructed orientation guaranteed to minimize the residual (see [56, 57]). However,
since the algorithm computes only one camera pose, the uniqueness of such solution
is critical to ensure that no equilibrium is lost due to the reconstruction process. Said
differently, we want to prove that there exists a one-to-one correspondence between feasible
extended features and proper camera poses.

As we will see in the following, in the non-coplanar case, it is possible to show that
the (proper) solution Ω computed in Step 3a is unique. Similarly, when the points are
coplanar (but non-collinear), one can show that there are exactly one proper and one
improper solution in this case. We can then force the reconstructed pose to be the unique
proper rotation by using the classical strategy proposed in Step 3b (see, e.g., [56]). Thus,
in both the non-coplanar and the coplanar cases, the proposed reconstruction algorithm
always finds the unique corresponding camera pose for all solutions of (2.2) and (2.5).
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Table 2.3 – Pose reconstruction algorithm.
Input: {oai}N

i=1 and ξ which is a solution of (2.2)-(2.5)
Output: (cRo,

cto)

1. Determine, through (2.4), {cai}N
i=1 and define Qi := cai − ck and Pi :=

oai − ok, where ck and ok represent the points’ centroid in camera- and
world-frame, respectively.

2. Let Q and P be the 3 × N matrices that have the corresponding points
as columns, define the covariance matrix M = QP⊤ and let M = UΣV⊤

be its SVD decomposition.
3a. If the points are not coplanar, the best orientation-preserving rotation

matrix is Ω = UV⊤.
3b. If the points are coplanar, we have instead Ω = U diag(1, 1, d) V⊤, where

d is the sign of the determinant of UV⊤.
4. Return the reconstructed camera pose as (cRo,

cto) = (Ω, ck−Ωok).

2.2.2 Full solution set of the orthogonal Procrustes’ problem

The orthogonal Procrustes’ problem has been known for a very long time in the liter-
ature. The first reference to a solution for it is given by P. H. Schönemann in 1966 [91].
Schönemann proposes a very general discussion on this problem, proving that his solution
is always a global minimum of the cost and that it is unique if and only if the covari-
ance matrix M = QP⊤ is full rank. For the case when it is rank deficient, Schönemann
simply states that “it appears that [...] the transformation matrix is not unique” [91].
The solution for the orthogonal Procrustes’ problem that is shown in Table 2.3 has been
proposed by W. Kabsch in the ’70s. Kabsch seems to be motivated by practical needs,
and, even though he briefly discusses the fact that the solution he proposes attains the
global minimum of the cost function, he is not concerned with the uniqueness of this
solution. In [57], he shows that he is aware that his solution is not uniquely determined in
some cases, but he simply provides some additional steps to his procedure to at least find
one solution, and he does not investigate the issue further. Two years later, he proposes
a slightly different strategy that, only when the singular values of the covariance matrix
M are distinct, selects a rotation which is proper [56]. He also remarks that, seemingly
only coincidentally, this new strategy works even when the covariance matrix is of rank
2. In his theoretical development, Kabsch always assumes that M is full rank, and he
considers the loss of rank as an algorithmic, rather than mathematical, issue. In more
recent treatments of the orthogonal Procrustes’ problem, like [50] or [49], the uniqueness
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of its solution is once again proven when M is full rank, while the rank deficient case is
never discussed.

In the context of visual servoing, it is crucial to assess whether the pose reconstruction
leads to a unique possible pose, or if several poses which give the same extended features
can exist. Motivated by all of this, we decided to pursue a general study of the orthogonal
Procrustes’ problem, explicitly deriving its full solution set for any choice of points, as
we can see in the following result. We will then see how the uniqueness of the pose
reconstruction process in the visual servoing context presented above is an immediate
corollary.

Theorem 2.1. Let {ai}N
i=1 and {bi}N

i=1 be two sets of 3-dimensional points centered on
the origin, and let A, B ∈ R3×N be the matrices that have the corresponding points as
columns. Then, the orthogonal Procrustes’ problem:

arg min
Ω⊤Ω=I

∥ΩA−B∥2
F , (2.6)

can either have 1, 2 or a continuum of solutions depending on the rank of the covariance
matrix M = BA⊤ ∈ R3×3. Specifically, if M = UΣV⊤ is an SVD decomposition, we
have:

— If rank M = 3, the unique global minimizer is:

Ω = UV⊤. (2.7)

— If rank M = 2, there are two global minimizers, given by:

Ω = U


+1

+1
±1

V⊤. (2.8)

— If rank M = 1, there are two disjoint, 1-dimensional continuum of global mini-
mizers, both of which can be parameterized by θ ∈ [−π, π) as follows, where the
determinant of R(θ) discriminates between the two sets:

Ω = U

1
R(θ)

V⊤, R(θ) ∈ O(2) (2.9)

— Finally, if rank M = 0 (i.e., if M is the null matrix), then the cost function of (2.6)
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Chapter 2 – Computation of the image-based visual servoing energy’s critical points

does not depend on Ω, meaning that any Ω ∈ O(3) is a global minimizer.

Proof. Let M = UΣV⊤ be an SVD decomposition of M = BA⊤. By the properties of
the Frobenius product, and assuming that Ω is orthonormal, we have that:

∥ΩA−B∥2
F = ∥ΩA∥2

F + ∥B∥2
F − ⟨ΩA, B⟩F = ∥A∥2

F + ∥B∥2
F − ⟨Ω, BA⊤⟩F =

= ∥A∥2
F + ∥B∥2

F − ⟨U⊤ΩV, Σ⟩F .
(2.10)

Since Σ is a diagonal matrix with entries σ1 ≥ σ2 ≥ σ3 ≥ 0, and calling S = U⊤ΩV, we
obtain the equivalent formulation:

arg min
Ω⊤Ω=I

∥ΩA−B∥2
F = arg max

S⊤S=I

3∑
i=1

si,iσi. (2.11)

We notice that the number of σi ∈ R+ different than zero is the rank of M and that, by
the orthonormality of S, it is necessary that all of its entries are between −1 and 1. Thus,
we have the following conditions:

— If all σi > 0, then S = I is clearly the unique, global maximizer of (2.11), meaning
that Ω = UV⊤.

— If only σ3 = 0, then a global maximizer of (2.11) is such that s1,1 = s2,2 = 1. It is
easy to verify that the only two orthonormal matrices that satisfy this constraint
are such that s3,3 = ±1 with the rest of the entries null, which proves (2.8).

— If only σ1 > 0, we similarly have that s1,1 = 1. Thus, the first row and column
of S must be (1, 0, 0), while its 2 × 2 bottom-right submatrix just needs to be
orthonormal, proving (2.9).

— If M is the null matrix we trivially get ∥ΩA−B∥2
F = ∥A∥2

F + ∥B∥2
F , which does

not depend on Ω.
Finally, we remark that the singular value decomposition is not unique when two or more
singular values are equal. When this happens, we are allowed to pick any basis of the
eigenspace as the corresponding columns of U and V. However, this means that we are
multiplying U and V with an block-orthonormal matrix O, which, when substituted in
the expression of Ω, either elides (cases 1 and 2) or adds an uninfluential shift to the
matrix R (case 3).

Thanks to Theorem 2.1, we have a clear link between the number of solutions of the
orthogonal Procrustes problem and the covariance matrix of the two sets of points. We
want to remark here that, somewhat oddly, it is not easy to tell whether the covariance
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matrix will be rank deficient, and we will later show a few surprising examples of seemingly
arbitrary choices of points that admit an infinity of solutions. However, when the two sets
of points satisfy the feasibility constraints (2.5), as it is the case in the image-based visual
servoing context presented above, it is possible to show that the rank of the covariance
matrix is completely determined by points’ coplanarity, as we show in the next result.

Corollary 2.1. Let {ai}N
i=1 and {bi}N

i=1 be two sets of 3-dimensional points centered on
the origin and satisfying the feasibility constraints, i.e., they are such that the points’
interdistance and the signed volume is the same for both sets. Then, if the points {ai}N

i=1

are either non-coplanar or coplanar (but not collinear), then there is a proper rotation
which is the unique solution of (2.6).

Proof. We already discussed, in the previous section, that the feasibility constraints im-
pose that there exists a proper rotation that maps one set of points into the other, i.e.,
that there exists a matrix R ∈ SO(3) such that RA = B. We want to show here that this
matrix is unique.

If the points are non-coplanar, A is full rank, which implies that B = RA and M =
BA⊤ are full rank as well. By Theorem 2.1, (2.6) has a unique minimizer, which must
coincide with R being ∥RA−B∥2

F = 0.
On the other hand, if the points are coplanar (but not collinear), A and B = RA

both have rank 2. We argue that rank M = 2 as well. Since R is invertible, we have that,
for any x ∈ R3:

Mx = R(AA⊤x) = 0 ⇐⇒ AA⊤x = 0, (2.12)

meaning that M and AA⊤ have the same kernel and, hence, the same rank. Additionally,
it is well known [86] that rank AA⊤ = rank A, and so rank M = 2. By Theorem 2.1,
(2.6) has two global minimizers Ω1 and Ω2. However, it is clear that det Ω1 = − det Ω2,
meaning that only one of them is a proper rotation, which must coincide with R for the
reasoning above.

It should not be surprising that, when the points are all lying on a line, we have a
continuum of poses that result in the same extended features: intuitively, any rotation of
the camera with respect to the line on which the points lie will not change the extended
features. The surprising fact is that, when we do not require that the feasibility constraints
are satisfied, we completely lose any relationship between the coplanarity of either cloud
of points and the rank of the covariance matrix.
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Consider for instance the two following point clouds:

A =


−1 0 0 1
0 0 0 0
0 3 −1 −2

 , (2.13)

B =


−1 0 0 1
0 0 −1 1
0 0 0 0

 . (2.14)

Both clouds lie on a plane that passes through the origin, meaning that rank A = rank B =
2. Their covariance matrix is:

M = BA⊤ =


2 0 −2
1 0 −1
0 0 0

 , (2.15)

which is of rank 1, implying that there is an infinity of solutions. We show the point clouds
in Figure 2.1, together with the 1-dimensional set of proper orientations that does not
change the error ∥ΩA−B∥2

F .
If we consider more points, it is actually easy to construct seemingly arbitrary, non-

coplanar point clouds such that the covariance matrix is identically null. Let A represent
a cloud of N ≥ 7 non-coplanar points centered on the origin. We have that dim ker A ≥ 4,
meaning that we can always find at least three linearly independent vectors in the kernel
of A such that the sum of their elements is null. If we take these three vectors as the
rows of B, we obtain a second cloud of N non-coplanar points such that BA⊤ = 0.
We can see such an example in Figure 2.2. This idea can easily be adapted to build
similar examples where the ranks of A, B and M can be chosen independently from one
another, definitely proving that, outside of the visual servoing context discussed above,
no relationship between these values exists in general.

2.3 Verified computation of all critical points

Up to now, we only analyzed the equilibrium condition (2.2)-(2.5) from a purely theo-
retical point of view, showing that its solutions are always feasible extended features and
that we can always reconstruct a unique camera pose which correspond to this solution.
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2.3. Verified computation of all critical points

(a) Point clouds’ comparison. (b) Solution set representation.

Figure 2.1 – Point clouds (left) and representation of the 1-dimensional set of (proper)
solutions (right) of the orthogonal Procrustes problem.

(a) Point clouds’ comparison. (b) Pairing highlight.

Figure 2.2 – Point clouds (left) with identically null covariance matrix, and the same point
clouds with the points pairing highlighted (right).
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We now want to find a way to solve the equilibrium condition in practice, analyzing the
stability of image-based visual servoing systems using the strategies developed in Chap-
ter 1.

In order to build the connectivity tree for a given system, it is necessary that we know
all the critical points of the energy function. This is why, in this section, we propose a
method, based on computational algebraic geometry, to find all solutions of a polynomial
system of equations in a verified way, meaning that this method is guaranteed to not
artificially create or miss any of the system’s solutions. We first give a brief presentation
of this method and we show that we can solve the equilibrium condition for cases with 4
points, while cases with more points are still out of reach at the current time. We then
briefly discuss a modification to the equilibrium condition (2.2)-(2.5) which, in the case
when the 4 points are coplanar, significantly improves the solver’s performances.

For the material presented in this section, I want to dearly thank Jorge García Fontán
from LIP6 at Sorbonne Université, which allowed us to solve this complicated problem in
practice by single-handedly dealing with Gröbner bases methods and msolve.

2.3.1 Generalities on computational geometry

This section deals with the resolution of the polynomial systems derived in the previ-
ous sections by means of computational algebraic geometry methods and, in particular,
Gröbner bases computations.

The tools used to solve polynomial systems fall into two categories: numerical (e.g.
Newton’s method, numerical homotopy continuation, interval analysis) [2, 47, 71], and
symbolic (e.g. multivariate resultant, cylindrical algebraic decomposition, Gröbner bases) [12,
14]. Numerical methods are generally not successful in finding all solutions in an un-
bounded domain with certification, see, e.g., a comparison between Gröbner bases and
homotopy methods in [45], on problems similar to the ones that we consider. Symbolic
methods are thus privileged for applications where an exhaustive search of all solutions
is required.

Given a set of polynomials f1, . . . , fs in Q[x], the ring of polynomials in variables
x = (x1, . . . , xn) with rational coefficients, we say that they generate a polynomial ideal,
i.e. the set defined by all the polynomials that are algebraic combinations of f1, . . . , fs:

I = ⟨f1, . . . , fs⟩ =
{

s∑
i=1

hifi | hi ∈ Q[x1, . . . , xn]
}

. (2.16)
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For any other polynomial g in the ideal I we have that, if a point c ∈ Cn satisfies
f1(c) = · · · = fs(c) = 0, then g(c) = 0 too. This shows that the ideal I is an object to study
in order to obtain information about the solutions of the system f1(x) = · · · = fs(x) = 0.

The locus of all the complex solutions of this system is called the algebraic variety
defined by the ideal I, denoted

V(I) = {c ∈ Cn | f(c) = 0, ∀f ∈ I} . (2.17)

When the algebraic variety of an ideal consists of finitely many (complex) roots, we say
that the ideal is zero-dimensional (because its variety is a set of dimension zero). In this
case, we define the degree of the ideal as the number of complex roots of the system,
counted with multiplicity. We refer to [35] for more information about polynomial ideals
and varieties.

Gröbner bases are an essential tool in computer algebra for solving problems with poly-
nomial ideals. They can be used, among other things, to determine whether a polynomial
is contained in a given ideal, to eliminate a subset of variables from a system of equations,
to compute the projection of an algebraic set, or to obtain a rational parametrization of
the solutions.

Given a set of polynomials defining an ideal and given a monomial ordering (i.e. a
hierarchy of the monomials in the polynomial ring), which must be specified a priori, a
Gröbner basis is a set of generators of that ideal that have particularly useful computa-
tional properties. Different monomial orderings have different effects on the structure of
the final Gröbner bases and on the complexity of their computation. For instance, the
lexicographical ordering provides a triangular description of the ideal, but it is costly to
compute, while the degree reverse lexicographical ordering results in general in the fastest
computations and in polynomials of lower degree. We refer to [12, 35] for a more complete
introduction to Gröbner bases and their applications.

The current state-of-the-art methods for computing Gröbner bases are based on the
F4 [39] and F5 [40] algorithms by Faugère. The FGLM algorithm [42] for change of
ordering allows to compute a lexicographical ordering from a given Gröbner bases with
respect to an easier monomial ordering. Efficient implementations of these algorithms for
solving systems of polynomials exist in computer algebra systems like Magma or Maple,
or in libraries such as FGb [41] or msolve [9]. Here, we relied on msolve, an open-source,
high-performance library for computing the real roots of zero-dimensional polynomial
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systems, which is based on efficient implementations of F4 and FGLM and on a dedicated
univariate real root isolation algorithm.

Using msolve, all complex solutions of the system (2.2) and (2.5) are computed to-
gether with their multiplicity, real solutions being then easily selected. Note that this
system is overconstrained; while this may be a problem for many numerical polynomial
solving methods 2, Gröbner bases computations can deal with it nicely, since the extra
relations belonging to the same ideal provide more information about its algebraic struc-
ture. Nevertheless, the system (2.2) and (2.5) is still difficult to solve for msolve, and
we were able to improve the resolution process by breaking a symmetry present in the
coplanar case through a change of coordinates invariant to this symmetry.

2.3.2 Symmetry breaking in the coplanar case

In the coplanar case, the solutions of equations (2.2) and (2.5) present a symmetry
with respect to a reflection of the scene through the optical center of the camera 3. In this
section we explain how to exploit this symmetry to our advantage by applying a change
of coordinates invariant to this reflection. By means of Gröbner bases and algebraic elim-
ination, we derive a new system of equations in the new variables that is computationally
easier to solve.

In particular, consider the transformation that maps the observed points coordinates
to their reflection through the camera center by the mapping cai 7→ −cai. Each point
with coordinates (s, Z) in the space of the extended features is mapped to (s,−Z) by this
reflection. Applying this transformation to the system (2.2) and (2.5) results in a sign
change for the polynomials (2.2a-c), while the remaining equations are left unchanged.
The solution set is therefore invariant, i.e., if a point ξ = (s, Z) is a solution, then so is
ξ′ = (s,−Z).

Consider now the following change of variables from the Zi coordinates to a new set
of variables θij, which is invariant to the reflection described above

Z = (Z1, . . . , ZN) 7→ θ =
(
θ12, θ13, . . . , θ(N−1)N

)
, (2.18)

with θij = ZiZj. By applying this coordinate transformation to (2.2) and (2.5), we expect

2. It is possible to make it well-constrained by taking a suitable subset of equations in (2.5), but it is
not detailed here.

3. Note that this is not the case for non-coplanar configurations since this reflection changes the
handedness of the object, which is preserved by (2.5b).
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to remove the spurious symmetric solutions, and derive a system with half the total
number of solutions. Applying the change of variables by hand is extremely hard, but it
is possible using Gröbner bases and algebraic elimination [35].

From the definition of θij we trivially obtain relations between the old and new vari-
ables of the form θij −ZiZj = 0. For every polynomial fi in the original system (2.2) and
(2.5), we consider the ideal formed by appending these relations, along with a constraint
1− ℓ Z1 · · ·ZN = 0, with ℓ an auxiliary variable, to enforce Zi ̸= 0 for all i. This ideal lies
in the ring Q[ℓ, s, Z, θ]:

Ii = ⟨fi, 1− ℓ Z1 . . . ZN , θ12 − Z1Z2, θ13 − Z1Z3, . . . ⟩. (2.19)

The ideal Ii is then projected onto the space of variables (s, θ) by computing a Gröb-
ner basis with respect to an elimination ordering, that is, a monomial ordering which
eliminates the variables Z and ℓ:

Gi ← Ii ∩ Q[s, θ]. (2.20)

The basis Gi spans all the algebraic combinations of the polynomials in (2.19) that only
involve s and θ. It is equivalent to replacing the variables Z by θ in the polynomial
fi. However, the resulting Gi consists not of a single polynomial, but rather of a set of
polynomials.

Let us illustrate the algebraic elimination step with an example. Consider the case
N = 4 and let f1 be the first polynomial (2.2a). Then, by computing a Gröbner basis
for the ideal (2.19) with respect to the elimination ordering we obtain the following six
elements, where the first four ones are obtained by multiplying f1 with Zi, i = 1, . . . , 4:

G1 = [θ12 θ13 (x4 − x⋆
4) + θ12 θ14 (x3 − x⋆

3) + . . . ,

θ12 θ23 (x4 − x⋆
4) + θ12 θ24 (x3 − x⋆

3) + . . . ,

θ13 θ23 (x4 − x⋆
4) + θ12 θ34 (x3 − x⋆

3) + . . . ,

θ12 θ34 (x4 − x⋆
4) + θ14 θ24 (x3 − x⋆

3) + . . . ,

− θ12 θ34 + θ14 θ23,

−θ12 θ34 + θ13 θ24] .

(2.21)

The set union of all the Gröbner bases Gi computed in this form for all the polynomials
fi in (2.2) and (2.5) defines the new system of equations in variables (s, θ). Once again,
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a constraint of the form 1− ℓ θ12 . . . θ1N = 0 must be added to remove the solutions with
coordinates θij = 0 for some i and j, which correspond to solutions with some coordinate
Zi = 0. The new system is then

G(s, θ) = (G1, G2, . . . , Gs, 1− ℓ θ12 . . . θ1N). (2.22)

The system contains more equations and variables than the original one, but the number
of complex solutions (i.e. the degree of the ideal) is cut by half, and we observe an
improvement in the computation time of up to an order of magnitude (see Section 3.1).
For instance, for N = 4, the original system contains 13 equations and 12 variables, while
the system (2.22) consists of 59 equations in 14 variables.

Every solution (s, θ) for (2.22) maps to two points (s, Z) and (s,−Z), but we are only
interested in those for which all the 3D points are in the semi-space in front of the camera
(i.e., Zi > 0 for all i). One can easily verify that a solution with positive Zi exists if and
only if all θij are positive. In this case, the depths are recovered by

Zi =
√√√√θijθik

θjk

, (2.23)

where j and k are chosen arbitrarily such that i ̸= j ̸= k. The pose reconstruction
algorithm in Table 2.3 is then used to determine the proper camera poses corresponding
to these solutions.

Overall, the strategy detailed above allow halving the degree of the polynomial ideal
by projecting it onto the space of new variables that are symmetry invariant. This leads to
a significant reduction in the computation times, resulting in a more effective formulation
for computing the critical points of image point-based visual servoing systems.
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Chapter 3

REPRESENTATIVE TEST CASES IN

IMAGE-BASED VISUAL SERVOING

In this chapter, we apply the theory developed throughout Chapters 1 and 2 to a
selection of case studies considering configurations of 4 points. For each of the cases, we
compute all the equilibria, study their local stability and identify the equilibria’s indexes.
Then, we simulate the heteroclinic orbits of all unstable equilibria and compute the en-
ergy’s connectivity tree using Algorithm 1, which is presented in Section 1.3. Additionally,
for each example we compute the critical energy levels for which the sublevel sets become
non-compact, i.e., the energy level for which the projection onto R3 of the sublevel set
becomes unbounded and the energy level of the holes-in-the-wall, both of which were
discussed in Section 1.4. For all cases, we will see that these critical energy levels are
significantly higher than the equilibria’s energy, which allows to safely talk about the
sublevel sets’ invariance.

Thanks to the connectivity tree, we can identify an energy level of interest for each
test case, which is either the largest controller-independent regions of attraction, in cases
where we have multiple minima, or a compact sublevel set when there is a single minimum
(i.e., when the desired pose is the only stable equilibrium). We finally compute a paving
of the corresponding sublevel set, suitably projected onto R3 for visualization purposes.

The chapter is organized as follows. In Section 3.1, we present the test cases that we
consider and we give an overview of their analysis. Then, in each subsequent section, we
analyze the test cases one by one and present our findings.

All the simulations and plots are made using the VisualServoingToolbox.jl Julia
package, developed by the author 1.

1. https://github.com/acolotti/VisualServoingToolbox.jl
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3.1 Test cases overview

The test cases that we analyze in this chapter represent classical situations that are
encountered in image-based visual servoing. Each considered example is characterized by
the configuration of the 4 points in R3 together with the desired final pose of the camera.
We can split the points configurations into two main categories, which are coplanar and
non-coplanar configurations, and we can split again the coplanar examples by considering
desired poses such that the camera optical axis is orthogonal to the points plane or desired
poses where this is not the case.

This classification is typical in the visual servoing literature, and several conjectures
exist based on it. In particular, for the coplanar case, it is theorized that there are no
undesired stable equilibria when the optical axis is orthogonal to the object, while only
one undesired stable equilibrium exists when this is not the case. The non-coplanar case
is less studied in the literature 2, and the presence of undesired stable equilibria has been
observed only recently [84].

The test cases that we analyze can be found in Table 3.1, where we considered at least
one example for each of the categories that we just introduced: we have two examples
of non-coplanar configurations (Cases 1a and 1b), one example of coplanar configuration
with non-orthogonal desired pose’s optical axis (Case 2a), and five examples where the
desired pose’s optical axis is orthogonal to the object (Cases 2b and 3a to 3d). For each
of these examples, we compute all the equilibria and we perform a numerical analysis of
their local stability by computing the system’s Jacobian in state-space at the equilibrium
points and verifying the eigenvalues’ signs, where this Jacobian is defined as the derivative
of the control input τ c with respect to the camera pose. Then, by analyzing the unstable
equilibria’s heteroclinic orbits, we build the corresponding connectivity tree, identify an
energy level of interest and trace the (projection onto R3 of the) corresponding energy’s
sublevel set for each of them.

As we discussed in Chapter 1, the transpose, pseudo-inverse and Levenberg-Marquardt
controllers give rise to gradient systems, meaning that the stability properties of the
equilibria are the same for all of them 3, regardless of the choice of Levenberg-Marquardt’s
parameter µ. This equivalence is numerically verified for all the examples below, both by

2. It is important to remark that, in order to have a non-coplanar configuration in practice, the points
must lie on some 3-dimensional object. This means that, as the camera moves, one of the points could
be covered by the object itself, the reason why these cases are not as studied than the coplanar one.

3. Once again, there is one exception: if one of the equilibria is on a singularity, then the pseudo-inverse
controller might have different properties than the other two.
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the Jacobian’s analysis and by performing extensive simulations with the pseudo-inverse
and transpose controllers. Indeed, the Levenberg-Marquardt controller is highly dependent
on the choice of the parameter µ. By changing this parameter, we can, intuitively, adjust
the behavior of the controller to have performances more similar to the pseudo-inverse
(lower µ) or transpose (higher µ) controllers. Since there is no standard way to tune
this parameter, we will discuss only the pseudo-inverse and transpose controllers in the
following, considering the Levenberg-Marquardt controller as a compromise between these
two.

As anticipated in Chapter 2, the equilibria evaluations were made using msolve, a tool
developed by the LIP6 at Sorbonne Université, with which we collaborated closely to make
the resolution of this problem possible. All computations were performed on a computing
server generously made available by the LIP6, which is equipped with an Intel(R)
Xeon(R) Gold 6246R CPU running at 3.40GHz, and with 1.5 TB of total memory. As
we anticipated, we only consider cases having N = 4 points, since cases with N > 4 are
too complex to be tackled by the current version of our solver. The computation times
can be found in Table 3.1. As expected, exploiting the points’ coplanarity (as discussed
in Section 2.3.2) leads to a great reduction in computation time. We can also notice that,
as a rule of thumb, the symmetry of the chosen parameters plays a significant role in the
resolution complexity, with more symmetric cases requiring much shorter computation
times on average.

On the other hand, we computed a guaranteed enclosure of the energy’s sublevel
sets using IBEX, which is a C++ library for constraint processing over real numbers
based on interval arithmetic. We performed all the computations on a mid-range laptop
equipped with an Intel(R) CORE i7 vPro CPU and with 32 GB of total memory.
The computation times were significantly more homogeneous in this case, being all in the
10 hours range. The pavings computed in this way naturally lie in SE(3); we show in the
figures below their natural projection 4 onto R3.

Since IBEX relies on an interval version of Newton’s algorithm to rigorously solve the
sublevel set’s equation, it is not able to compute a paving for it in a close proximity of a
critical point of the energy function, because it represents a singularity for the sublevel
set’s equation. However, as we saw in Chapter 1, the controller-independent regions of
attraction are represented by a sublevel set whose energy level is arbitrarily close to

4. The 3-dimensional surface that we obtain is such that for any position within the surface, these
exists at least one corresponding orientation so that the full camera pose is inside the true region of
attraction in SE(3).
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3.1. Test cases overview

a saddle point’s one. Thus, only in the cases where we have several minima, we first
computed a guaranteed paving of a smaller sublevel set using IBEX, and then we “inflated”
it up to saddle’s energy level by using a non-verified solver. This procedure can create
some artifacts in the paving, as we can see in Figures 3.1c and 3.3c.

Our findings agree with the literature and corroborate the conjectures discusses above,
as well as providing for the first time new information regarding the unstable equilibria
and the regions of attraction of these systems. The three first test cases Case 1a, Case
1b (four non-coplanar points with two different desired poses) and Case 2a (four planar
points with non-parallel desired image plane), whose detailed descriptions are given in
Table 3.1, all have one local minimum in addition to the global minimum and two saddles
of index 1. They are represented in Figures 3.1, 3.3 and 3.5. These two index 1 saddles
have stable manifolds of dimension 5 that form the boundary of the region of attractions
of each minimum, as it can be guessed by looking at the corresponding 3-dimensional
trajectories (Figures 3.1a, 3.3a and 3.5a). In all these cases, the connectivity tree simply
has two leaves, corresponding to the two minima, which get connected at the first saddle
that we encounter when we increase the energy level. In each case, two heteroclinic orbits
leave the saddles with almost equal initial images and converge toward different minima
with their own but similar images, showing similar trajectories in the image (the similitude
of the image views of the two heteroclinic orbits is really remarkable in Cases 1a and 2a,
as shown in Figures 3.2 and 3.6). However, the corresponding trajectories in SE(3) start
in opposite directions and diverge from each other to eventually converge to different
minima. Overall, the computation of the minima, saddles and heteroclinic orbits show
the similar qualitative dynamics of these three examples. Additionally, we numerically
confirm our analysis by performing simulations with initial poses close to the saddles.
For each of them, we sample 1000 initial poses uniformly in a small neighborhood of the
saddle 5 and verify how many converge to which stable equilibrium (see Table 3.2 for an
overview).

Two cases of planar quadrilaterals with parallel desired image plane are then investi-
gated: Case 2b (four random planar points) and Case 3 (a typical rectangle with centered
desired pose). In both cases, these systems have only one minimum and one index 1 sad-
dle, therefore showing a qualitative behavior very different than the previous test cases.
The connectivity tree is even simpler in these cases, being all sublevel sets of the energy
function connected. Case 3 is investigated for different ratios for the rectangle sides, show-

5. We consider a maximum displacement of 1 cm in position and 0.5◦ in orientation.
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Chapter 3 – Representative test cases in image-based visual servoing

ing that the closer to a square the farther the saddle, see Figures 3.10-3.13. A closed-form
formula (3.1) is given for the distance of this saddle with respect to the ratio, proving
that it indeed diverges to infinity to finally disappear for a square in Case 3d.

3.2 Test case 1, non-planar configuration

In this example, we consider the case where the 4 points are arranged in a random
non-planar configuration. Two different desired poses are considered, one which is such
that the optical axis of the camera is perpendicular to one of solid’s faces (Case 1a in
Table 3.1) while the other is completely arbitrary (Case 1b). In both cases, we have 4
equilibria, one of which coincides with the desired pose (which is stable), a second stable
equilibrium (a local minimum) and two unstable equilibria (specifically, two saddles).

It is possible to see the computed equilibria and the corresponding heteroclinic or-
bits for Cases 1a and 1b in Figures 3.1 and 3.3. Comparing the controllers, we can see
(Figures 3.1a-3.3a) that the pseudo-inverse controller’s trajectories in SE(3) are slightly
different with respect to the transpose controller’s ones starting from S1. Nevertheless, all
trajectories converge to a stable equilibrium, and, as expected, roughly half of them con-
verge to the desired pose, regardless of the chosen control scheme (see Table 3.2). Since,
in both cases, the heteroclinic orbits of both saddles are connected to the two minima,
then the connectivity trees start with two leaves (the minima) which get connected at the
first saddle’s energy level, as we can see in Figures 3.1b-3.3b. The controller-independent
regions of attraction correspond then to the sublevel sets of the energy function computed
at the smallest saddle’s energy level, as we can see in Figures 3.1c-3.3c. As expected, due
to the difference in energy between the minima, we have that the regions of attraction of
the global minima are larger than the local minima ones, even though the asymmetry is
more pronounced in Case 1a.

As for the trajectories produced in the image, we can note in Figures 3.2a-3.2c and
Figures 3.4a-3.4c that the pseudo-inverse controller produces as expected straight line
trajectories for the four image points for converging either to the global minimum or
to the local one, while this is not the case for the transpose controller. Interestingly,
comparing the global and local minima in image space, we can see that, as it might be
expected, they are very similar for Case 1a (Figure 3.9a), while they are surprisingly
different for Case 1b (Figure 3.9b).
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3.2. Test case 1, non-planar configuration

(a)

(b)

(c)

Figure 3.1 – Computed equilibria, simulations around the saddles and connectivity tree
for Case 1a. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse (solid) and transpose (dashed) controllers. (b): connectivity tree, with the two
critical levels highlighted. (c): controller-independent regions of attraction, computed at
S2’s energy level.
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Image view: S1 → D.P. (P.-Inv.)

Image view: S2 → D.P. (P.-Inv.)

Initial image

Final image (des. pose)

Trajectories

(a)

Image view: S1 → D.P. (Tran.)

Image view: S2 → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(b)

Image view: S1 → L.M. (P.-Inv.)

Image view: S2 → L.M. (P.-Inv.)

Initial image

Final image (loc. min.)

Trajectories

(c)

Image view: S1 → L.M. (Tran.)

Image view: S2 → L.M. (Tran.)

Initial image

Final image (loc. min.)

Trajectories

(d)

Figure 3.2 – Heteroclinic orbits for Case 1a in image view, for the pseudo-inverse ((a) and
(c)) and traspose ((b) and (d)) controllers.
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(a)

(b)

(c)

Figure 3.3 – Computed equilibria, simulations around the saddles and connectivity tree
for Case 1b. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse (solid) and transpose (dashed) controllers. (b): connectivity tree, with the two
critical levels highlighted. (c): controller-independent regions of attraction, computed at
S2’s energy level.
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Image view: S2 → D.P. (P.-Inv.)

Image view: S1 → D.P. (P.-Inv.)

Initial image

Final image (des. pose)

Trajectories

(a)

Image view: S2 → D.P. (Tran.)

Image view: S1 → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(b)

Image view: S2 → L.M. (P.-Inv.)

Image view: S1 → L.M. (P.-Inv.)

Initial image

Final image (loc. min.)

Trajectories

(c)

Image view: S2 → L.M. (Tran.)

Image view: S1 → L.M. (Tran.)

Initial image

Final image (loc. min.)

Trajectories

(d)

Figure 3.4 – Heteroclinic orbits for Case 1b in image view, for the pseudo-inverse ((a) and
(c)) and traspose ((b) and (d)) controllers.
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Table 3.2 – Percentage of trajectories (out of 1000 simulations) converging to the desired
pose; the remaining ones converge to the other stable equilibrium, when it exists.

Ex. 1a Ex. 1b Ex. 2a Ex. 2b

P.-Inv. Sad. 1 51.6% 49.6% 50.1% 100%
Sad. 2 49% 51.4% 51.6% N.A.

Transp. Sad. 1 51.7% 49.4% 51.4% 100%
Sad. 2 49% 51.7% 52.3% N.A.

3.3 Test case 2, planar quadrilateral

In this example, we consider the case where the 4 points are coplanar (but non-aligned)
and arranged in a random quadrilateral configuration. Once again, two different desired
poses are considered, one which is completely arbitrary (Case 2a in Table 3.1) and the
other where the quadrilateral is parallel to the image plane (Case 2b). In the first case, we
have again 4 equilibria, two of which are stable (being one of them the desired pose), while
the other two are saddles. However, in the second case, we only have 2 equilibria, one of
which coincides with the desired pose (which is stable), while the other is a saddle. We
can note the symmetry between the desired pose and the local minimum with respect to
the object plane (even if it is not perfect) and the fact that the saddles are almost parallel
to the object plane. These results are fully coherent with the state-of-the art recalled in
the Introduction that a local minimum exists for a planar object in the non-parallel case.
In this specific example, we show for the first time that the local minimum is unique and
that it does not exist in the parallel case. We conjecture that this might be a general
property for this class of cases, even though it still remains an open question.

The computed equilibria for Cases 2a and 2b are illustrated in Figures 3.5 and 3.7,
together with trajectories starting in a neighborhood of the saddles and computed using
the two controllers. The overall behavior in Case 2a matches the ones in Cases 1a and
1b. In Case 2b, however, we only have one saddle and one stable equilibrium, and all the
trajectories converge to the desired pose; interestingly, though, they still do so following
two distinct orbits. In turn, this implies that the connectivity tree of Case 2a is analogous
to the ones in Cases 1a and 1b, as it is the case for the corresponding controller-independent
regions of attraction, both of which are shown in Figures 3.5b-3.5c. On the other hand, the
minimum’s uniqueness in Case 2b implies that the energy function’s sublevel sets always
have a single component, meaning that the connectivity tree is simply a straight line
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(a)

(b)

(c)

Figure 3.5 – Computed equilibria, simulations around the saddles and connectivity tree
for Case 2a. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse (solid) and transpose (dashed) controllers. (b): connectivity tree, with the two
critical levels highlighted. (c): controller-independent regions of attraction, computed at
S2’s energy level.
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Image view: S1 → D.P. (P.-Inv.)

Image view: S2 → D.P. (P.-Inv.)

Initial image

Final image (des. pose)

Trajectories

(a)

Image view: S1 → D.P. (Tran.)

Image view: S2 → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(b)

Image view: S1 → L.M. (P.-Inv.)

Image view: S2 → L.M. (P.-Inv.)

Initial image

Final image (loc. min.)

Trajectories

(c)

Image view: S1 → L.M. (Tran.)

Image view: S2 → L.M. (Tran.)

Initial image

Final image (loc. min.)

Trajectories

(d)

Figure 3.6 – Heteroclinic orbits for Case 2a in image view, for the pseudo-inverse ((a) and
(c)) and traspose ((b) and (d)) controllers.
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(a)

(b)

(c)

Figure 3.7 – Computed equilibria, simulations around the saddle and connectivity tree for
Case 2b. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-inverse
(solid) and transpose (dashed) controllers. (b): connectivity tree, with the two critical
levels highlighted. (c): paving of the energy’s level set at 0.1cS, with cS being S’s energy
level.
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Image view: S. → D.P. (P.-Inv.)

Image view: S. → D.P. (P.-Inv.)

Initial image

Final image (des. pose)

Trajectories

(a)

Image view: S. → D.P. (Tran.)

Image view: S. → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(b)

Figure 3.8 – Heteroclinic orbits for Case 2b in image view, for the pseudo-inverse (a) and
transpose (b) controllers.
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Stable equilibria comparison

Final image (des. pose)

Final image (loc. min.)

(a)

Stable equilibria comparison

Final image (des. pose)

Final image (loc. min.)

(b)

Stable equilibria comparison

Final image (des. pose)

Final image (loc. min.)

(c)

Figure 3.9 – Comparison between local minimum and desired pose in image space for
Cases 1a, 1b and 2a ((a), (b) and (c), respectively).

(Figure 3.7b) and that any sublevel set below c∞ is a probability-1 controller-independent
region of attraction for the minimum. One such sublevel set is shown in Figure 3.7c.

Since, in both cases, the heteroclinic orbits of both saddles are connected to the two
minima, then the connectivity trees start with two leaves (the minima) which get con-
nected at the first saddle’s energy level, as we can see in Figures 3.1b-3.3b. The controller-
independent regions of attraction correspond then to the sublevel sets of the energy func-
tion computed at the smallest saddle’s energy level, as we can see in Figures 3.1c-3.3c. As
expected, due to the difference in energy between the minima, we have that the regions
of attraction of the global minima are larger than the local minima ones, even though the
asymmetry is more pronounced in Case 1a.

In Case 2a, we can note that the positions of the four points in the image are almost
the same for the two stable equilibria and for the saddle located at their middle, while
they are very different for the other saddle (as well as for the single saddle in Case 2b).
Finally, the percentage of simulated trajectories that converge to the desired pose are
given in Table 3.2, where we can see that, as expected, roughly half of the trajectories
converge to the local minimum, when it is present.

Note that similar results are obtained when the 4 points are arranged in a rectangle
or square configuration, with the exception of the particular case exhibited below.
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3.4. Test case 3, from rectangle to square

3.4 Test case 3, from rectangle to square

In this last example, we want to showcase a peculiar behavior obtained while studying
the classical case where the 4 points are coplanar and arranged in a rectangle, and where
the desired pose is such that the rectangle is centered and parallel to the image plane.
We fix the desired pose and we consider four different points configurations, starting with
a narrow rectangle (Case 3a in Table 3.1) and making it gradually wider (Cases 3b and
3c) until it becomes a square (Case 3d). For the tested rectangles, there always exist 2
equilibria, one of which coincides with the desired pose (which is stable), while the other is
a saddle. As it can be seen in Figures 3.10-3.13, for all three cases the unstable equilibrium
is a “mirror image” of the desired pose, i.e., it is rotated 180°around the camera x-axis and
it is such that the optical axis is aligned with the desired pose’s optical axis. Furthermore,
the trajectories of the four points in the image are no more pure straight line but slighly
differ starting from one side of the saddle or the other. We can also note that the four
points become aligned in the image when the camera optical center crosses the rectangle
plane.

Interestingly, as the rectangle gets closer to a square, the saddle gets pushed farther
and farther and, when it becomes a square (Case 3d), we have only one equilibrium,
which coincides with the desired pose (which, again, is stable by design). Although, to
the best of our knowledge, this is the first time that the uniqueness of the equilibrium
is rigorously confirmed for the classical parallel and centered square configuration, it is
important to note that this does not imply that the system is globally asymptotically
stable; as already said, there exist unstable trajectories for this system, typically for a
rotation of 180° around the optical axis [20].

The previous result suggests that the saddle is moved backward at infinity for the
square configuration, which motivated us to investigate more deeply this particular case
of a parallel centered square. We consider the ratio k between the two sides of the rectangle
as a parameter, and we restrict the camera/square poses to a pure translation along the
optical axis while fixing their orientation to the saddle’s one. Doing so, the extended
features ξ only depend on k and the depth Z w.r.t. the points plane, which significantly
simplifies the system (2.2) and (2.5). It is possible to show that this new system is equal
to zero if and only if:

Z = Zd
1 + k2

|1− k2|
, (3.1)

where Zd > 0 represents the desired depth w.r.t. the points plane. This means that
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Chapter 3 – Representative test cases in image-based visual servoing

(a)
(b)

(c)

Figure 3.10 – Computed equilibria, simulations around the saddle and connectivity tree
for Case 3a. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse (solid) and transpose (dashed) controllers. (b): connectivity tree, with the two
critical levels highlighted. (c): paving of the energy’s level set at 0.07cS, with cS being
S’s energy level.
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(a)
(b)

(c)

Figure 3.11 – Computed equilibria, simulations around the saddle and connectivity tree
for Case 3b. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse (solid) and transpose (dashed) controllers. (b): connectivity tree, with the two
critical levels highlighted. (c): paving of the energy’s level set at 0.06cS, with cS being
S’s energy level.
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(a)
(b)

(c)

Figure 3.12 – Computed equilibria, simulations around the saddle and connectivity tree
for Case 3c. (a): 3D view, computed equilibria and heteroclinic orbits for the pseudo-
inverse (solid) and transpose (dashed) controllers. (b): connectivity tree, with the two
critical levels highlighted. (c): paving of the energy’s level set at 0.05cS, with cS being
S’s energy level.
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3.4. Test case 3, from rectangle to square

(a)

(b)

Figure 3.13 – Connectivity tree and region of attraction for Case 3d. (a): 3D view,
computed equilibria and heteroclinic orbits for the pseudo-inverse (solid) and transpose
(dashed) controllers. (b): connectivity tree, with the two critical levels highlighted. (c):
paving of the energy’s level set at 0.4c∞, with c∞ being the energy level of the first
non-compact sublevel set.
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Image view: S. → D.P. (P.-Inv.)

Image view: S. → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(a)

Image view: S. → D.P. (P.-Inv.)

Image view: S. → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(b)

Image view: S. → D.P. (P.-Inv.)

Image view: S. → D.P. (Tran.)

Initial image

Final image (des. pose)

Trajectories

(c)

Figure 3.14 – Heteroclinic orbits in image view for Cases 3a-3c (left to right). On the top
row: trajectories for the pseudo-inverse controller. On the bottom row: trajectories for the
transpose controller.
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3.4. Test case 3, from rectangle to square

there is exactly one equilibrium that lies on this restriction for any choice of k ̸= 1, and it
proves that the equilibrium’s position moves backwards and tends to infinity as the points
get closer and closer to a square configuration. On the other hand, it does not provide
any information on the presence of other equilibria lying outside of this restriction, even
though we conjecture that no other fixed points exist from the four examples we have
considered in this case.
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Chapter 4

ANALYSIS AND ENERGY-DECREASE

ENFORCEMENT FOR OTHER KNOWN

CONTROLLERS

In this chapter, we will turn our attention to a different class of well-known image-based
visual servoing controllers, that we will call the desired pose approximation controllers.
While similar to the control laws considered in the previous chapters, these controllers
are built using an estimate of the interaction matrix, and we will see that, in general,
the closed-loop dynamics of these systems are not energy decreasing, at least not for the
energy function that naturally arises in image-based visual servoing.

Because of this, we cannot expect their trajectories to be as “well behaved” as their
energy-decreasing counterparts. In fact, it often happens that the trajectories of these
systems fail (i.e., the Cartesian coordinates in the screen run off to infinity) in finite time,
especially if we take initial poses which are not in the immediate proximity of the desired
pose. However, thanks to the new theoretical tools that we derived in Chapter 2, we are
able to show that, in several common situations, these controllers only have one stable
equilibrium. This motivates us to try to modify the desired pose approximation controllers,
forcing them to be energy decreasing, in an attempt to combine the advantages of both
energy-decreasing and non-energy-decreasing strategies. We develop a method, that we
call meta-controller, which allows to modify any controller so that the closed-loop system is
energy decreasing, and we apply it to the desired pose approximation controllers, obtaining
a substantial improvement in the regions of attraction’s size with respect to the classical
energy-decreasing image-based visual servoing controllers.

The chapter is organized as follows. In Section 4.1, we present the desired pose ap-
proximation controllers and show that the equilibrium condition derived in Chapter 2 can
be easily adapted to exhaustively compute all of their equilibria. Additionally, in anal-
ogy to the energy-decreasing controllers that we already encountered, we show they all
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have the same equilibria. In Section 4.2, we consider a set of representative test cases for
these controllers, showing both the presence of failed trajectories and the stable equilib-
rium’s uniqueness. Then, in Section 4.3, we present our meta-controller and we show that,
under shallow hypotheses, it is always continuous. Finally, we test it on two examples,
performing a qualitative comparison between the desired pose’s region of attraction for
the meta-controller and the classical pseudo-inverse controller to show the improvement
of the region’s size.

4.1 Desired pose approximation controllers

We consider in this section three new image-based visual servoing controllers, which
represent an approximated version of the three energy-decreasing controllers that we con-
sidered up to now, namely the transpose, pseudo-inverse and Levenberg-Marquardt con-
trollers. Analogously to what we did back in Chapter 1, all of these new control laws will
be based on the general form:

τ c = −λCe∗e with λ ∈ R+, (4.1)

with three possible choices for Ce∗ , namely:
— Transpose: Ce∗ = L⊤

e∗ ,
— Pseudo-inverse: Ce∗ = L+

e∗ ,
— Levenberg-Marquardt: Ce∗ =

(
L⊤

e∗Le∗ + µI
)−1

L⊤
e∗ , with µ ∈ R+,

where Le∗ represents the usual interaction matrix evaluated at the desired extended fea-
tures, i.e. s = s∗ and Z = Z∗. We call these controllers the desired pose approximation
controllers.

Considering an approximation of the interaction matrix in the control loop is typical
in applications, since, in general, we cannot measure the points’ depths Zi directly [54].
The simple approximation that we consider here is interesting because we can almost
use as-is the equilibrium condition (2.2)-(2.5) that we derived in Chapter 2 to compute
the equilibria of the desired pose approximation controllers. In order to derive the new
equilibrium condition, though, we want to understand whether these three controllers have
the same equilibria or not. Similarly to the energy-decreasing case, we have the following
lemma, which shows how the equilibria characterization for all strategies can be actually
reduced to the case of the transpose controller.
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4.2. Representative test cases for desired pose approximation

Lemma 4.1. Given the approximated interaction matrix Le∗, the system’s equilibrium
configurations, characterized by:

L⊤
e∗e = 0, (4.2)

are the same for the pseudo-inverse, transpose and Levenberg-Marquardt controllers.

Proof. We argue that τ c = 0 if and only if L⊤
e∗e = 0 for all three controllers. This is

obvious for the transpose controller. It is well known [13] that ker L+
e∗ = ker L⊤

e∗ , proving
the equivalence for the pseudo-inverse controller. Finally, by the positive semi-definiteness
of L⊤

e∗Le∗ , (L⊤
e∗Le∗ + µI) is invertible for all µ > 0, meaning that (L⊤

e∗Le∗ + µI)−1L⊤
e∗e = 0

if and only if L⊤
e∗e = 0, concluding the proof.

Thus, not only the desired pose approximation controllers have the same equilibria,
but the equilibrium condition is the same as the corresponding energy-decreasing one,
with the exception of using the approximated interaction matrix Le∗ in the place of the
true one. The desired pose approximation equilibrium condition can be found in Table 4.1.
When put together with the feasibility constraints (2.5), we obtain a polynomial system
of equations with a significantly smaller degree with respect to the energy-decreasing
equilibrium condition, meaning that we can once again solve it with the computational
algebraic geometry methods described in Section 2.3. Once all solutions are computed, it
is then possible to retrieve the camera pose using the reconstruction strategy presented
in Section 2.2.

4.2 Representative test cases for desired pose ap-
proximation

Similarly to the energy-decreasing case, we propose here a set of representative test
cases. We study three examples of points’ configurations, analyzing a representative set of
desired poses for each example. Table 4.2 summarizes the examples’ parameters, where the
computation times can be found as well. As expected, exploiting the points’ coplanarity
(as discussed in Section 2.3.2) leads to a great reduction in computation time. We can
also notice that, as a rule of thumb, the symmetry of the chosen parameters plays a
significant role in the resolution complexity, with more symmetric cases requiring much
shorter computation times on average. Moreover, we can see the significant increase of
time as we add new points to the configuration.
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Table 4.1 – Explicit expression for the desired pose approximation’s equilibrium condition.

N∑
i=1

 N∏
j ̸=i

Z∗
j

 (x∗
i − xi)

 = 0 (4.3a)

N∑
i=1

 N∏
j ̸=i

Z∗
j

 (y∗
i − yi)

 = 0 (4.3b)

N∑
i=1

 N∏
j ̸=i

Z∗
j

(x∗
i (xi − x∗

i ) + y∗
i (yi − y∗

i )
) = 0 (4.3c)

N∑
i=1

x∗
i y

∗
i (xi − x∗

i ) + (1 + (y∗
i )2)(yi − y∗

i ) = 0 (4.3d)

N∑
i=1

(1 + (x∗
i )2)(x∗

i − xi) + x∗
i y

∗
i (y∗

i − yi) = 0 (4.3e)

N∑
i=1

(xiy
∗
i − yix

∗
i ) = 0. (4.3f)
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Chapter 4 – Analysis and energy-decrease enforcement for other known controllers

As we already discussed, this system is not energy decreasing anymore. In fact, we will
see that, in spite of a simpler expression due to the usage of a fixed interaction matrix,
it has in general more complex dynamics. Fixed points are not related anymore to the
error function, with the obvious exception of the global minimum, that still corresponds
to an attractive fixed point. Unstable fixed points can still be associated to an index
corresponding to the dimension of their unstable manifold, but we cannot use the infor-
mation coming from the heroclinic orbits to construct the regions of attraction anymore.
Surprisingly, all tested random cases (four and five points non-planar configurations, with
two desired poses in each case) have exactly one global minimum and one saddle. Even
more surprisingly, the saddle now has index 2, meaning that a surface of heteroclinic
trajectories leaves the saddle, here all converging toward the desired pose. All of them
have arbitrarily similar initial images and identical final images, but run very different
trajectories both in SE(3) and in image space, see Fig. 4.1 and Figures 4.3-4.4. Together
with some trajectories that do not converge due to physical constraints, this quantitative
analysis shows a complex global dynamics of this controller.

4.2.1 Test case 1, 4 points non-planar configuration

In this example, we reanalyze Case 1 from Chapter 3, where 4 points are arranged in
a random non-planar configuration. The same desired poses are considered, one which is
such that the optical axis of the camera is perpendicular to one of solid’s faces (Case 1a

in Table 4.2) while the other is completely arbitrary (Case 1b). Contrarily to the energy-
decreasing examples, we now have 2 equilibria for both cases, one of which coincides with
the desired pose (which is stable) and one unstable equilibrium (specifically, a saddle).

These equilibria are illustrated in Figures 4.1-4.2, where we also show a selection of
trajectories, both in camera state- and image space, starting in a close proximity of the
saddle. Comparing these trajectories with the ones obtained in the previous chapter, we
have a striking qualitative difference between the trajectories’ behavior in the two settings.
For both desired poses, the trajectories seem to develop on a surface connecting the saddle
to the desired pose (even though the surfaces appear to be significantly more regular for
Case 1b than Case 1a). This behavior is linked to the dimension of the saddle’s unstable
manifold: checking the eigenvalues of the system’s Jacobian computed at the saddle, we
can see that in both cases we have two positive eigenvalues.

Moreover, with respect to the energy-decreasing controllers, we have a new behavior
that arises, which is the presence of failed trajectories, i.e., trajectories that come too close
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4.2. Representative test cases for desired pose approximation

(a)

(b)

Figure 4.1 – Computed equilibria and simulations around the saddle for Case 1a. (a):
computed equilibria and a selection of heteroclinic orbits, both in 3D and image space,
for the pseudo-inverse controller. (b): idem for the transpose controller.
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(a)

(b)

Figure 4.2 – Computed equilibria and simulations around the saddle for Case 1b. (a):
computed equilibria and a selection of heteroclinic orbits, both in 3D and image space,
for the pseudo-inverse controller. (b): idem for the transpose controller.
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4.2. Representative test cases for desired pose approximation

to the object so that the depth Z of at least one object point becomes null (shown with
dashed lines in the figures). This phenomenon, however, is not surprising: the employed
control laws are based on a constant and very coarse approximation of the true interaction
matrix, and, by design, we expect them to be effective only when the camera is reasonably
close to the desired pose. In general, we have no guarantees for trajectories with arbitrary
initial conditions, and, as we will see, this behavior arises in almost all the examples
considered in this section. Additionally, considering the trajectories in the image, we see
that the points do not move at all along straight lines (while it is the case for the energy-
decreasing controllers). Once again, this validates the approximated nature of this class
of controllers, which leads to more unpredictable (but, also, richer) behavior.

Similar examples where the 4 points are arranged in a coplanar rectangle configuration
lead to comparable results with respect to Case 1, the reason why these cases were left
out from the current discussion.

4.2.2 Test case 2, 5 points non-planar configuration

In this example, we study a variation of Cases 1a and 1b. We consider a configuration
of 5 points, formed by the 4 points considered in the previous example and an additional,
random point, and we use the very same desired poses (Cases 2a and 2b in Table 4.2).
Again, in both cases, we have 2 equilibria, a stable one (coinciding with the desired pose)
and a saddle. Even though we have significant similarities with the previous example,
quite surprisingly the saddles do not bear any evident resemblance to what we found
above.

In Figures 4.3-4.4, we can see the computed equilibria and a selection of trajectories for
Cases 2a and 2b. While in Case 2b the trajectories seem to develop on a surface connecting
the saddle to the desired pose, matching the behavior of Cases 1a and 1b, in Case 2a the
trajectories quickly converge to one single orbit, as it was the case for the saddles seen
in Chapter 3. Once again, this behavior is due to the dimension of the saddle’s unstable
manifold: in Case 2a we have an index 1 saddle, while there are two positive eigenvalues
in Case 2b.

Finally, we can see that the trajectories in the image are far from developing along
straight lines, and they present an erratic behavior that changes conspicuously depending
on the initial pose, which showcases, once again, the approximated nature of these control
laws.
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(a)

(b)

Figure 4.3 – Computed equilibria and simulations around the saddle for Case 2a. (a):
computed equilibria and heteroclinic orbits, both in 3D and image space, for the pseudo-
inverse controller. (b): idem for the transpose controller.
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(a)

(b)

Figure 4.4 – Computed equilibria and simulations around the saddle for Case 2b. (a):
computed equilibria and a selection of heteroclinic orbits, both in 3D and image space,
for the pseudo-inverse controller. (b): idem for the transpose controller.
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(a) (b) (c)

Figure 4.5 – Cases 3a-3c (left to right). On the top row: 3D view, computed equilibria
and heteroclinic orbits for the pseudo-inverse (solid) and transpose (dashed) controllers.
On the bottom row: image view, one of the heteroclinic orbits for the pseudo-inverse
controller.

4.2.3 Test case 3, planar square

In this last example, we want again to showcase a curious behavior that arises in
the classical case where the 4 points are coplanar and arranged in a square, and where
the desired pose is such that the square is centered and parallel to the image plane. We
consider four different desired poses, all with the same orientation and lying on the same
axis, with only the distance from the points plane changing: we start farther away (Case
3a in Table 4.2) and we get increasingly closer (Cases 3b to 3d) to the points plane. In
the first three cases, we have 5 equilibria, four of which are saddles, while the fifth one is
the desired pose (stable by design). All the saddles lie on the points plane, and they are
arranged symmetrically with respect to the points. In the fourth case, instead, we only
have 1 equilibrium, coinciding with the desired pose. By looking at Fig. 4.5, we can see
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4.3. Meta-controller to enforce energy decrease of an arbitrary control law

that, as the desired pose approaches the points plane, the four saddles get closer to the
four points (Cases 3a and 3b), until they reach a position where they are superposed to the
points (Case 3c). Drawing the desired pose even closer, the saddles eventually disappear
(Case 3d), or, more precisely, they become such that at least one point is behind the
camera optical center, which excludes them to be a feasible solution.

In all cases, the four saddles share the same relative orientation, and only their distance
to the points changes from case to case, which motivated us to investigate this example
more deeply. In the same spirit of the analysis carried out in Section 3.4, we consider
the desired depth Zd as a parameter, and we restrict the camera’s position to be on one
of the axes where the saddles’ lie 1 and we fix its orientation to the saddle’s one. With
this restriction, the extended features ξ depend only on the (signed) distance d w.r.t. the
closest point, with d > 0 when the point lies in front of the camera (i.e., when the point’s
depth in camera-frame is positive). Substituting into the system (4.3)-(2.5), it is possible
to show that the equilibrium condition is equal to zero if and only if:

d = 1
2
(
Zd −

√
2L
)

, (4.4)

where L > 0 is the length of the square’s side. This means that these four, symmetrical
saddles are present for every choice of Zd ≥

√
2L, and, as Zd decreases, the saddles

positions get closer and closer to the points, until they eventually become superposed to
them at the equality. Interestingly, these saddles are solutions of (4.3)-(2.5) even in the
case where d < 0, and they tend to converge to the center of the square as Zd tends to
0; however, these solutions lose physical meaning, since one of the points is behind the
camera.

4.3 Meta-controller to enforce energy decrease of an
arbitrary control law

In this section, we will present a way to force an arbitrary control law to be energy
decreasing for a given energy function. The idea behind our approach is quite straight-
forward: we want to use the information coming from the energy function’s gradient to
define a set of energy-decreasing velocities, so that any velocity in the set is such that

1. We can choose any of the four axes; it has no impact on the result due to the symmetry of the
problem.
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Lfv(x) < 0, for any x which is not a critical point of the energy function. Then, we take
the velocity computed with the initial, non-energy-decreasing controller and project it
on this newly defined set of admissible velocities. In this way, we create a new, energy-
decreasing control law which is as close as possible to the original controller, effectively
combining the advantages of both approaches.

While keeping the image-based visual servoing applications in mind, we argue that
this control strategy can be applied in robotics at large. In fact, throughout the section,
we will assume that we have a fully actuated system of the form ẋ(t) = u(t), where u(t)
is an n-dimensional input and the state-space M is an n-dimensional manifold. This is
the model that we considered up to now for visual servoing free-floating camera systems,
but it is also a classical model for robotic arms, holonomic mobile robots and other fully
actuated robotic systems [59], as long as the dynamical effects are negligible. In practice, in
a real robotics system, we typically have embedded low-level controllers that manage the
force-velocity conversion, meaning that, at least as long as we assume that the movements
are slow enough, the robot will be able to precisely follow the velocity provided in input.

Additionally, we consider an output y = s(x) ∈ Rm, with m ≥ n, depending smoothly
on x but possibly nonlinear. We assume that the system is observable so that the state
can be accurately reconstructed from the output. Once again, this assumption is typical
in (but not restricted to) visual servoing where, e.g., the depth of the observed points
need to be estimated to compute the interaction matrix, and the impact of uncertain-
ties state estimation as well as the impact of imperfect state estimation on the stability
are investigated independently. As a consequence, the closed loop control law u(y) can
actually depend on the state and the closed loop system is eventually ẋ = u(x).

Being given a desired output y∗, which usually comes from a desired state x∗, i.e.,
y∗ = s(x∗), one naturally defines an energy function

v(x) = 1
2∥e(x)∥2, (4.5)

with e(x) = s(x)−y∗. As usual, the energy function v can be highly nonlinear with possi-
bly several local minimizers. The gradient of (4.5) can be defined by ∇v(x) = J(x)⊤e(x),
where J(x) is the Jacobian of the error such as ė = J(x)ẋ, for the canonical scalar product
associated to the vector representation of tangent vectors.

With these assumptions, we can generalize the energy-decreasing control laws that we
encountered in image-based visual servoing for any system of the form ẋ(t) = u(t). They
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are easily defined using the gradient information of v(x): the transpose, pseudo-inverse and
Levenberg-Marquardt controllers are given by u = −λJ(x)⊤e(x), u = −λJ(x)+e(x) and
u = −λ(J(x)⊤J(x) + µI)−1J(x)⊤e(x), respectively. Analogously, by taking J(x) = J(x∗),
we can define the corresponding desired pose control law.

The section is organized as follows. We propose a general construction that builds the
composite energy-decreasing law closest to a given non-energy-decreasing law, which is
introduced on an illustrative example in Section 4.3.1. In Section 4.3.2, this construction
is generalized to arbitrary systems of the form ẋ(t) = u(x), and an explicit algorithm for
the computation of the meta-controller is provided. In Section 4.3.3, we prove that the
meta-controller is continuous under reasonable hypotheses on the energy function and the
non-energy-decreasing control law. Finally, the framework is applied to visual servoing in
Section 4.4, using the desired pose approximation pseudo-inverse controller as the non-
energy-decreasing law. Additionally, we propose in this section a methodology to assess
the region of attraction of visual servoing system, by projecting error sublevel sets in R3

and deciding a preferred starting orientation. We illustrate this on two test cases taken
from Chapter 3, and we show that the region of attraction of the global minimizer is
greatly enlarged using the newly obtained control law.

4.3.1 Illustrative example

We consider the system ẋ = u where x(t), u(t) ∈ R2, and the output y(t) ∈ R3 whose
components are the squared distances yi = ∥x−ai∥2 to three known points ai. We consider
a1 = (5, 3), a2 = (−5, 3) and a3 = (5, 2), and desired outputs y∗ = (34, 34, 29) so that
the origin x∗ = 0 is the global minimizer of the energy function v(x) = ∥e(x)∥2, where
e(x) = y(x)− y∗. This energy function also has a local minimizer xloc ≈ (0.24, 5.34) and
a saddle xsad ≈ (−0.12, 2.90). The Jacobian matrix of the system is

J(x) = dy
dx

= 2


−5 + x1 −3 + x2

5 + x1 −3 + x2

−5 + x1 −2 + x2

 . (4.6)

The phase portraits of the transpose controller u = −J(x)⊤e(x) and the pseudo-inverse
one u = −J(x)+e(x) are shown in Figure 4.6a and Figure 4.6b respectively. As expected,
the fixed points of both systems correspond to the critical points of the energy function.
Also as expected, the transpose controller shows some directions with rapid and slow con-
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(a) Phase portrait of the transpose con-
troller.

(b) Phase portrait of the pseudo-inverse
controller.

(c) Phase portrait of the composite law
ẋ = up(x).

(d) Zoom, dashed areas are U(x1) and
U(x2).

Figure 4.6 – Stream plots of the three energy-decreasing controllers. Red lines represent
the stable manifold of the saddle, that separate the regions of attraction of the two
minimizers, while the blue lobes represent the sublevel sets of v(x) at the saddle’s energy
level. The last graphics shows one point entering the sublevel set and another sliding on
it.

vergence near the global minimizer, while the pseudo-inverse one shows a homogeneous
convergence, since they correspond to the steepest descent and Gauss-Newton optimiza-
tion algorithms, respectively. The derivative of the systems vector fields evaluated at the
saddle have the same eigenvectors associated to stable and unstable directions, hence the
stable manifolds of the saddle have the same initial direction. In both cases, these stable
manifolds separate the regions of attractions of the minimizers. All of these observations
agree with the energy-decreasing systems’ analysis carried out in Chapter 1.
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4.3. Meta-controller to enforce energy decrease of an arbitrary control law

We want now to consider a control law ẋ = ui(x) that is not energy decreasing globally,
but has appealing properties. To emphasize the benefit of the meta-controller approach,
we choose for this simple example ui(x) = −100x. This control law is trivially globally
asymptotically stable, and critical points of the energy function are not anymore fixed
point of the system. We specify requirements on the composite law up(x) to be defined:
first, we require it enforces a strong enough error decrease with respect to the steepest
descent:

∇v(x)⊤ up(x) ≤ −ϵ∇v(x)⊤∇v(x), (4.7)

where ϵ > 0 is a fixed ratio, here ϵ = 0.01. The second requirement is technical, to enforce
the continuity of the composite law: we require that its norm is not too much larger than
the norm of the gradient:

∥up(x)∥ ≤ ρ ∥∇v(x)∥, (4.8)

where ρ > 0 is a fixed ratio, here ρ = 100. These two constraints correspond to a set U(x)
of admissible commands:

U(x) = {u ∈ Rn : 1
ρ2 u⊤u ≤ gT g ≤ −1

ϵ
g⊤u}, (4.9)

where g = ∇v(x) for typesetting, so that the two requirements (4.7) and (4.8) express
equivalently up(x) ∈ U(x). The set U(x) is the intersection of a ball and a half space,
which is non-empty if and only if ϵ ≤ ρ. We require that ϵ < ρ so that U(x) has a
non-empty interior whenever ∇v(x) ̸= 0 (check that u = − ϵ+ρ

2 ∇v(x) satisfies strictly
both constraints). Otherwise we have U(x) = {0}. We are now in position to define the
composite law up(x): since we want up(x) to be as much similar to ui(x) as possible, it
is natural to define up(x) as the projection of ui(x) onto U(x):

up(x) = arg min
u∈U(x)

∥u− ui(x)∥2. (4.10)

The set U(x) being nonempty and convex, and the quadratic objective function strictly
convex, there is one unique minimal argument and up(x) is well defined.

The phase portrait of ẋ = up(x) is shown in Figure 4.6c. We see that the global
minimizer has a region of attraction that is greatly enlarged with respect to the transpose
and pseudo-inverse control laws. This is possible thanks to the very untypical saddle
stable manifold, which appears to be broken (and, thus, it is not a smooth manifold).
Because of this, similarly to an example that we saw back in Section 1.2.2, this system
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does not satisfy the hypotheses of Theorem 1.3, entailing that the composite control law
is not differentiable at the saddle. Interestingly, the broken stable manifold of the saddle
seems to slide on the saddle level set, which is a specific feature of this non-differentiable
composite control law. To understand this property, note first that since the control law
is energy decreasing, any trajectory starting inside the upper half sublevel containing the
local minimizer will converge to this local minimizer. Now, if it starts outside but close
to sublevel set then two cases arise: if it starts at x1 where ui(x1) is strongly energy
decreasing, see Figure 4.6d, then up(x1) = ui(x1) and the trajectory eventually converges
to the local minimizer. If it starts at x2 where ui(x2) is strongly energy-increasing instead,
see again Figure 4.6d, then the set of energy-decreasing velocities is approximately parallel
to the sublevel set and projecting onto it gives rise to a velocity approximately tangent
to the sublevel set and therefore the trajectory approximately slides on it.

The non-differentiability of the composite control law at the saddle opens up questions
related to its continuity properties in general, which will be discussed later in the section.
Nevertheless, if the saddle converges to the global minimizer for the input control law then
sliding on the saddle sublevel set corresponds to the largest region of attraction of any
energy-decreasing control law locally in the vicinity of the saddle. The global impact of the
composite control law on the region of attraction needs to be investigated for each system.
The next section presents the detailed application of the process to a general sensor-based
system, built on the pseudo-inverse of the desired pose approximation’s Jacobian matrix,
which is well known to have good properties but is not globally energy decreasing.

4.3.2 General definition of the meta-controller

Definitions (4.10) and (4.9) hold in the general n-dimensional case as well. For a fixed
x, finding the control law up(x) amounts to solving a constrained nonlinear optimization
problem. This optimization problem involves a convex quadratic cost function, a linear
constraint and a convex quadratic constraint, and can be solved formally using Karush-
Kuhn-Tucker optimality conditions. This lengthy computation process is not detailed here,
but instead a graphical illustration of the structure of the problem and its formal solution
is presented.

Due to the axial symmetry of the feasible set U(x) around the vector ∇v(x), the
projection up(x) of ui(x) onto U(x) lies in the plane formed of the vectors ∇v(x) and
ui(x). For a fixed ∇v(x) proportional to (1, 1), Figure 4.7 presents the feasible set and the
projection process emphasizing its piecewise structure. In green, the feasible set U(x) is
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Figure 4.7 – Projection of ui onto the set of feasible commands (depicted in green). Cases
0 to 3 represent the regions where different constraints are active.

the intersection of a disk and a half-plane. Blue arrows show how different ui projects onto
U(x). One can obviously see that four cases arise depending on the position of the vector
ui, which are represented with four colors. Each four cases enjoys a simple expression,
which is presented in Algorithm 2.

4.3.3 Continuity of the meta-controller

We investigate the continuity of the composite control law up(x) in more general
settings than the specific form introduced in (4.9). As usual, we assume that v(x) ∈
C2 with nondegenerate critical points. Additionally, we assume that the set of feasible
commands U(x) is defined by a family of continuous and convex inequality constraints, and
we show that U(x) being convex bounded with nonempty interior when ∇v(x) ̸= 0 and
being “well behaved” at critical points of v(x) are sufficient conditions for the continuity
of the composite law.

In order to provide a formal expression for these hypotheses, we need to introduce a few
key concepts from the theory of set-valued functions, in particular their upper and lower
hemicontinuity and the celebrated Berge Maximum Theorem [3, Theorem 17.31], which
provides sufficient conditions for characterizing continuity of the (set-valued) minimal
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Data: x, ϵ, ρ

Result: Solution up of (4.10) and (4.9)
ui, g, r ← ui(x),∇v(x), ρ∥∇v(x)∥

p2 ← ui −
g⊤ui

g⊤g
g− ϵg

if ||ui||2 ≤ r2 and g⊤ (ϵg + ui) ≤ 0 then
up ← ui ; // Case0

else if ||ui||2 > r2 and g⊤ (ϵ∥ui∥g + rui) ≤ 0 then
up ←

rui

||ui||
; // Case1

else if ||p2||2 ≤ r2 then
up ← p2 ; // Case2

else

up ←
(p2 + ϵg)

√
r2 − ||ϵg||2

||p2 + ϵg||
− ϵg ; // Case3

end

Algorithm 2: Analytic solution of (4.10) and (4.9).

argument of a nonlinear parametric optimization problem. We only provide here some
basic definitions, due to [3] 2, and we refer the interested reader to [3, 6] for a general
introduction on set-valued functions.

Definition 4.1. Let X and Y be topological spaces. A set-valued function U from X
to Y, denoted with U : X ⇒ Y, assigns to each x in X a subset U(x) of Y. Additionally,
we say that U is:

— Upper hemicontinuous (uhc) at x if for every neighborhood Y of U(x), there
is a neighborhood X of x such that z ∈ X implies U(z) ⊂ Y ,

— Lower hemicontinuous (lhc) at x if for every open set Y such that U(x)∩Y ̸=
∅, there is a neighborhood X of x such that z ∈ X implies U(z) ∩ Y ̸= ∅,

— Continuous at x if it is both upper and lower hemicontinuous.
As with functions, we say that U is uhc/lhc/continuous if it is so at every point of X .

We can assess the continuity of up(x) by applying Berge Maximum Theorem to the
parametric optimization problem (4.10), which requires, in addition to some shallow con-
ditions on the objective function ∥u−ui(x)∥2 which are easily verified, that the set-valued

2. The definitions of upper and lower hemicontinuity are not universally agreed upon, some authors
requiring additional properties for the upper hemicontinuity (see, e.g., [75] for an overview).

128



4.3. Meta-controller to enforce energy decrease of an arbitrary control law

function U(x) is continuous. In the following proposition, we provide sufficient conditions
for the continuity of U(x).

Proposition 4.1. Let U : E ⇒ Rn be defined as U(x) = (V ◦ ∇v)(x), where ∇v(x) is
continuous and V : Rn ⇒ Rn is defined as V (g) = {u ∈ Rn : ci(g, u) ≤ 0}. Assume that:

(H1) The constraints ci(g, u) are continuous with respect to g and u and convex with
respect to u,

(H2) g ̸= 0 implies that V (g) is bounded and int V (g) ̸= ∅,
(H3) For all ϵ > 0, there exists δ > 0 such that ∥g∥ ≤ δ implies V (g) ⊆ Bϵ(0).

Then, U(x) is continuous.

Remark. The hypothesis (H3) encodes the continuity of the set-valued map V (g) at g = 0,
which entail V (0) = {0}. This technical hypothesis is actually easy to check in practice,
see the proof of Corollary 4.1.

Proof. Since the composition of continuous set-valued functions is continuous [3, Theo-
rem 17.23] and being ∇v(x) continuous by hypothesis, we just need to prove that V (g)
is continuous. When g ̸= 0, (H1) and (H2) imply the continuity of V (g) by [7, Theo-
rem 3.2.1]; in particular, int V (g) ̸= ∅ trivially implies that the characteristic index set
(see [7]) of V (g) is the empty set. On the other hand, (H3) implies that V (0) = {0},
and it is trivial to verify that both the definitions of upper and lower hemicontinuity are
satisfied at g = 0. Thus, V (g) is continuous on Rn.

We can now show that the composite control law up is a continuous function when
the parametric optimization problem (4.10) satisfies the hypotheses of Proposition 4.1.
Finally, as a concluding corollary, we show that the set of feasible commands (4.9) lead
to a continuous control law.

Proposition 4.2. Consider the composite control law up defined in (4.10) and let ui be
continuous and U(x) = (V ◦∇v)(x) satisfy (H1), (H2) and (H3). Then, up is continuous.

Proof. Being both U(x) and the objective function continuous in their arguments, Berge’s
theorem [3, Theorem 17.31] states that the set-valued map up(x) is upper hemicontinuous.
However, being U(x) convex, the projection of ui onto U(x) is unique, meaning that up is a
singleton-valued function. Finally, for such a function, upper hemicontinuity is equivalent
to continuity [3, Lemma 17.6].

Corollary 4.1. Let ui be continuous. Then, the composite control law up, defined in (4.10)
with (4.9), is continuous.
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Table 4.3 – Visual servo configurations. 3D poses are expressed as the object-to-camera
pose with translation and angle-axis representation.

Configuration Desired pose
otc θu

1 oP =


-0.5 0.5 -0.5 0.5
-0.5 -0.5 0.5 0.5
0.0 0.0 0.0 0.0

 [
-0.59, -0.23, -0.77

] [
0.0,

√
2

2 , -
√

2
2

]

2 oP =


0.0 1.0 0.62 0.31
0.0 0.0 0.38 0.88
0.0 0.0 0.0 0.31

 [
-0.66, -0.43, 2.49

] [
-π, 0.0, 0.0

]

Proof. The proposed feasible set (4.9) trivially satisfies (H1) and, as discussed above, (H2)
as long as ϵ < ρ. For g = 0, let Bη(0) ⊂ Rn be an open ball of radius η. By (4.8), for all
z ∈ B η

ρ
(0) we have V (z) ⊂ Bη(0), meaning that (H3) is satisfied. Therefore Proposition 4.2

applies for (4.10) with (4.9).

4.4 Meta-controller in image-based visual servoing

In this section we illustrate some properties of the proposed controller in two different
image-based visual servoing configurations. The positions of the observed points, together
with the desired pose, are detailed in Table 4.3.

Scene 1 corresponds to a well-known configuration in image-based visual servoing
where a local minimum is present, with 4 points forming a square [23]. Scene 2 is a case
of 4 non-coplanar points, which has the same configuration of Case 1a that we saw back
in Chapter 3.

All simulations are carried using ViSP software [70]. Graphs are generated with log2plot
[58].

We consider in this section two of the control laws that we studied in this thesis, namely
the energy-decreasing and the desired posed approximation pseudo-inverse controllers.
These controllers are classically used in image-based visual servoing, and many works
have been carried to combine these two approaches [23], such as using the mean between
the two [67]. However, as far as the author is aware, none of these approaches are energy
decreasing, making the meta-controller the first energy-decreasing combination of these
well-known controllers. In our case, we rely on ui = −L+

e∗e for its convergence properties.
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This control is then projected onto a sector within the error-decrease space from (4.10).
In the simulations we compare the three approaches: current interaction matrix, de-

sired one and meta-controller, denoted in the graphics with L+, L∗+ and meta, respectively.
We then compare the separation between the regions of attraction induced by L+

e and the
proposed approach. All controllers use the same λ gain for comparison purposes.

Scene 1

Using Scene 1 from Table 4.3, two initial poses are considered. The behavior from
the first starting pose is depicted in Fig. 4.8 and corresponds to a classical case where
using L+

e makes the system converge to a local minimum (represented by a blue camera),
while using L+

e∗ leads to the global minimum (represented by a green one). The 3D graph
(Fig. 4.8a) shows that using L+

e∗ (purple trajectories) induces a non-desirable trajectory
as the camera passes to the other side of the observed object. On the opposite, L+

e (blue
trajectories) leads to almost a 3D straight line, though ending in the local minimum. Using
the proposed meta-controller (orange trajectories) leads to the desired pose. Figure 4.8b
highlights the behavior of the proposed controller, that is energy decreasing even if the
error almost stalls between 25 and 125 s. This behavior corresponds to the trajectory
“sliding” along the saddle’s level set, which is the same behavior that we saw in the
illustrative example above, where, as we see in Fig. 4.6c, the composite controller is able
to follow an almost-constant energy level while approaching the global minimum.

Finally, Fig. 4.8c shows the difference between the meta-controller and ui, which is
the result of the optimization (4.10). The control that is applied is ui for the first seconds,
then moves away as ui is not energy decreasing. The largest difference is found during the
stalling phase (25-100 s) when the constraints in (4.10) induce a very different behavior
compared to ui. Overall, Fig. 4.8b shows that in this case the meta-controller takes more
time than the desired pose approximation controller to converge to a small error level.

The same scene is now used with another starting pose in Fig. 4.9. This time all con-
trollers converge to the desired pose. Yet, the energy-decreasing pseudo-inverse controller
induces a very large 3D displacement (blue in Fig. 4.9a). Using L+

e∗ is not energy decreas-
ing at the beginning, hence the meta-controller greatly differs from it (Fig. 4.9c). After
a few seconds, the behavior induces by ui is energy decreasing and the meta-controller is
the same: the objective of (4.10) can be minimized to 0.

This example highlights that the proposed meta-controller keeps the good properties of
an arbitrary controller ui if the configuration is compatible. Besides, Fig. 4.9b shows that
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the composite controller takes in this case less time than the desired pose approximation
controller to converge to a small error level.

Scene 2

The same comparison is done on a scene with 4 non-coplanar points, as shown in
Fig. 4.10. Again, the initial and final poses are chosen so that the energy-decreasing
pseudo-inverse controller ends in the local minimum. This time, the meta-controller is
much closer to the motion induced by ui and their trajectories are almost indistinguishable
(orange and purple on Fig. 4.10a). As shown in Fig. 4.10c, the final control input is close
to ui except for the last part. This slight difference is enough to make it strictly energy
decreasing, while L+

e∗ is not as shown in Fig. 4.10b. This time again, the meta-controller
converges faster than using the desired pose approximation controller.

Separation between the regions of attraction

In order to have a rough idea of the region of attraction induced by the meta-controller,
extensive simulations have been carried out to determine the separation between the global
and local regions of attraction. This is done in Scenes 1 and 2 and for the energy-decreasing
pseudo-inverse controller and the meta-controller. While the separation is defined in SE(3),
we project it to R3 by associating to any starting camera position in R3, the orientation
that already minimizes the visual error with positive Z-depths for all the observed points.
This projection reduces the separation to a manifold in R3 which is possible to display
and compare. Similarly to what we did in Chapter 3, the surface that we find with this
procedure is such that for any position on each side of the surface, these exists at least
one corresponding orientation so that the full camera pose is inside the corresponding,
true region of attraction in SE(3).

The surface itself is built with the following steps:

1. Discretize the half-space where the desired pose lies;

2. For each starting point, apply the orientation that minimizes the visual error;

3. Simulate the controller and classify starting points between global or local region
of attraction;

4. For each pair of points not belonging to the same region, perform a dichotomy to
identify the separation;

5. Reconstruct the surface from the dichotomy results.

132



4.4. Meta-controller in image-based visual servoing

X−1.0
−0.5

0.0
0.5

1.0
Y

−1.0
−0.5

0.0
0.5

1.0

Z

−1.0

−0.5

0.0

0.5

1.0

Desired pose
Observed points
L+

L∗+

meta

(a) 3D behavior

25 50 75 100 125 150 175
time [s]

10−3

10−2

10−1

V
is

ua
le

rr
or

no
rm

L+

L∗+

meta

(b) Energy behavior

25 50 75 100 125 150 175
time [s]

0.0

0.2

0.4

0.6

0.8

1.0

D
iff

er
en

ce
w

ith
v∗

|v − v∗|
|v∗|

(c) Normalized difference between composite con-
troller and L∗+

Figure 4.8 – Classical local minimum configuration for pose 1 in Scene 1. The L+
e controller

(blue) converges to a local minimum (blue) while L+
e∗ (purple) and the proposed one

(orange) converge to the desired pose (green) (a). (b) log-scale of ||e||, showing that
the proposed controller is energy decreasing. (c) The composite controller takes a very
different path compared to ui, especially during the stalling phase (25-100 s).
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Figure 4.9 – Scene 1 with another starting pose. This time all controllers converge to the
desired pose (green) (a). The L+

e controller (blue) induces a very large 3D trajectory (blue,
a) while using L+

e∗ makes it not energy decreasing (purple, b). The proposed controller
(orange) converges to the desired pose (a) while remaining energy decreasing (b). (c) The
composite controller is very different from ui at the beginning, then follows a similar
direction.
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Figure 4.10 – Local minimum configuration in Scene 2. The L+
e controller (blue) converges

to a local minimum while L+
e∗ (purple) and the proposed one (orange) converge to the

desired pose (a). (b) log-scale of ||e||, showing that the proposed controller is energy
decreasing. (c) The meta-controller is close to ui except for the last seconds.
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Figure 4.11 – Separation between the regions of attraction of the local and global min-
imizers for Scene 1. Using L+

e (a) separates the space in two halves, each converging to
a given minimizer. Using the proposed meta-controller (b) the region of attraction of the
local minimizer is much smaller. In each case the saddle point (red) lies on the frontier.
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Figure 4.12 – Separation between the regions of attraction of the local and global min-
imizers for Scene 2. Using L+

e (a) separates the space in two halves, each converging to
a given minimizer. Using the proposed meta-controller (b) the region of attraction of the
local minimizer is much smaller. In each case the saddle point (red) lies on the frontier.

137



Chapter 4 – Analysis and energy-decrease enforcement for other known controllers

X−1
0

1
2

Y
−1

0

1

Z

−2

−1

0

1

Observed points
Global minimum
Local minimum

Saddle
Frontier (meta)
Saddle point energy level

(a) Scene 1

X0
1

2
3

Y −1

0

1

Z

0

1

2

3

Observed points
global minimum
local minimum

saddle
Frontier (meta)
Saddle point energy level

(b) Scene 2

Figure 4.13 – Comparison of the separation between the regions of attraction and the
component connected to the local minimum of the energy’s level set, computed at the
saddle’s energy level, for Scene 1 (a) and Scene 2 (b).
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Figures 4.11-4.12 shows the resulting separation. The classical local minimum configu-
ration is displayed in Fig. 4.11a where the separation for L+

e is a plane, meaning that each
minimizer has roughly the same region of attraction. This is also the case for non-coplanar
points in Scene 2 as shown in Fig. 4.12a, even if the separation is a deformed plane.

On the opposite, using the composite controller reduces the separation to a much
smaller surface, as shown in Fig. 4.11b for Scene 1 and Fig. 4.12b for Scene 2. Similarly
to what we had in the meta-controller’s illustrative example (Section 4.3.1), the region of
attraction of the local minimizer is the union of two volumes:

— The closed region around the local minimizer that has an energy smaller than the
saddle point (i.e., the component of the sublevel set which is connected to the local
minimizer);

— and an infinite branch corresponding to starting positions with an error greater
than the saddle point, that still converge to the local minimizer.

We can see a comparison between the separating surfaces and the sublevel set’s component
in Figure 4.13. The similarity with Figure 4.6c (again in Section 4.3.1) is striking: we
can see that, in a close proximity of the saddle point, its stable manifold is non-smooth
and it “envelopes” the level set’s component, meaning that trajectories starting close to
this boundary will slide along its surface. We want to highlight that the procedures we
employed to compute the level sets and the separating surfaces are very different, so
we find remarkable the almost perfect overlap between the two, which substantiates our
findings.

In conclusion, while the level set’s component around the local minimum represents
an inescapable region for any energy-decreasing controller, the infinite branch which com-
pletes its region of attraction depends on the employed control strategy, and we show
that it is much smaller for the meta-controller than for the classical energy-decreasing
pseudo-inverse approach.
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Chapter 5

HANDLING UNCERTAINTIES

In this last chapter, we will provide a preliminary investigation of the impact of un-
certainties on the equilibria of energy-decreasing dynamical systems.

Typically, uncertainties in image-based visual servoing come mainly from two different
sources, either from an imprecise knowledge of the camera intrinsic parameters or from
coarse estimation of the points’ depths [22]. The impact of these errors on the equilibria
and their stability is not well understood. Most works on the topic focus on the stability of
the global equilibrium alone, using simplified models of the camera dynamics [24, 37, 38].
In [69], it is shown that, again for the global equilibrium alone, a relatively low estimation
error on the points’ depths can make the desired pose unstable. Being a formal study of
the stability of these systems very complicated, it seems that later works in the field took
a different direction and focused mainly on the choice of different visual features.

No results that we are aware of treat the case of local minima, and it is quite easy to
guess why this is the case: even if we assume to have a perfect knowledge of the camera
intrinsic parameters (and, thus, the points’ Cartesian coordinates), we cannot expect the
equilibria to be robust with respect to uncertainties, since the interaction matrix depends
on the points’ depths as well. An incertitude on these depths will in particular change
the kernel of L⊤

e , meaning that, in general, this incertitude will impact all the solutions of
the equilibrium condition L⊤

e e = 0, except the trivial one e = 0. An imprecise estimation
of the camera intrinsic parameters additionally worsen the situation, making the whole
concept of equilibrium quite vacuous.

In an attempt to make sense of how to deal with uncertainties in image-based visual
servoing and energy-decreasing systems at large, we started to explore two strategies. The
first one is to characterize quantitatively what is the impact of unmodeled perturbations
on the closed-loop system. Intuitively, it is reasonable to expect that, if the perturbations
are bounded and small enough, the system will still try to converge towards a stable
equilibrium. Once it arrives in a neighborhood of the equilibrium, though, we also expect
the vector field to become negligible with respect to the perturbation, meaning that the
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system stays in the neighborhood but it is actually incapable of converging to the stable
equilibrium 1. In this settings, we say that the system is practically stable, and we propose
a strategy to find explicitly the invariant neighborhood of the stable equilibrium towards
which we are guaranteed to converge.

The second and final idea that we explored to deal with uncertainties in the closed-loop
system is to employ a control strategy which is robust to perturbation, i.e., such that the
stable equilibria do not change under (reasonable) errors in the model’s parameters. The
control strategy that we considered is the so-called super-twisting algorithm, which is a
sliding mode controller with well-known robustness and finite-time convergence properties.
Our contributions on this last approach are limited and very technical (we extended known
convergence conditions, allowing for an uncertain input gain), and, perhaps, they are the
less applicable to the visual servoing context at the current state.

Since we were not able to flesh out the impact of uncertainties in image-based visual
servoing, we focus in this chapter on the methodological aspects of handling uncertain-
ties, testing out our approaches on simple examples. Nevertheless, we believe that the
techniques that we studied, and the practical stability assessment in particular, could be
effective in image-based visual servoing as well.

The chapter is organized as follows. In Section 5.1, we introduce the practical stability
of perturbed dynamical system and we define the value function associated to the system,
which, as we will see, is the solution of a parametric optimization problem which allows
us to explicitly compute an invariant approximation of the system’s attractors and their
region of attraction. We then study the value function’s continuity, which will prove itself
to be a crucial property to simplify its computation, and we apply this method to a class of
perturbed linear system. Then, in Section 5.2, we introduce the super-twisting algorithm
and we show that, under a suitable change of variable, it is possible to guarantee finite-
time convergence to the origin even when the control input is multiplied by an unknown,
time-varying gain.

1. This intuition fails if the stable equilibrium is robust to perturbations. For instance, this is the
case, in the visual servoing context, for the desired pose when only the points’ depths are perturbed [69].
Nevertheless, as we will see, our methodology is still applicable in these cases, and it simply provides a
single point (the equilibrium) as the attractor’s estimate.

142



5.1. Practical stability of perturbed dynamical systems

5.1 Practical stability of perturbed dynamical sys-
tems

The estimation of regions of attraction for perturbed dynamical systems is an old
problem in the literature, and methods based on Lyapunov theory are probably the most
wide-spread [48, 55, 60]. As we saw back in Chapter 1, the main idea behind these ap-
proaches is to estimate the region of attraction as the invariant sub-level sets of a given
Lyapunov function. However, all these methods require that there exists a stable and ro-
bust (i.e. perturbation-independent) equilibrium for the system. This is a major drawback,
since in a large class of real-world problems this hypothesis is not satisfied. An important
example of this is the problem of tracking a moving target with unknown dynamics, which
is a common problem that cannot, a priori, allow for a robust equilibrium point. In these
problems it could still be possible however to discuss the practical stability of the system,
i.e. to assess whether the system, while technically unstable in theory, can be considered
to be stable in practice. Consider, for instance, the case where the tracking system quickly
reaches a small neighborhood of the target while never actually converging to it. Moti-
vated by this, we want to relax the requirement of a robust equilibrium by using instead
the concept of attractor. An attractor is a set of states which is positively invariant and
attracting, i.e. such that the system converges to it (possibly in infinite time) when its
initial state is close enough to the attractor. In the tracking system example discussed
above, the attractor would be the small neighborhood of the target; this characterization,
however, holds in more general settings.

The main contribution of this section is to characterize the practical stability of per-
turbed systems with bounded perturbations by exploiting a given candidate Lyapunov
function v(x). The proposed definition of value function associated to the system and
candidate Lyapunov function allows characterizing the system’s attractors, hence extend-
ing the classical Lyapunov analysis of attracting fixed points. Our formulation does not
require any underlying structure for the dynamics of the system, relaxing the classical hy-
pothesis of polynomial dynamics and allowing for the study of a large class of non-linear,
perturbed systems.

In practice, one can think of v to be the energy function for the nominal, unperturbed
system. In this case, we can then see our method as a characterization of the perturbation’s
effects on the nominal controller, which we could use in image-based visual servoing as
well. Nevertheless, this is not a strict requirement for our analysis, and we will not restrict
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to these settings throughout the section.
The section is organized as follows. In Section 5.1.1 we generalize the classical region

of attraction’s estimation problem to the identification of an attractor and the estimation
of its region of attraction, and we show that this problem can be framed as a parametric
optimization problem, using the candidate Lyapunov function’s level sets as parameter. In
Section 5.1.2 we study the continuity of the parametric optimization problem’s solution,
showing that, under common assumptions, we can expect it to be well-behaved. Finally, in
Section 5.1.3 we apply our results to discuss the practical stability of a class of perturbed
linear systems.

5.1.1 Value function definition

We consider a perturbed system ẋ = f(x, w), where w ∈ W represents a time-
dependent, unknown perturbation, with f locally Lipschitz with respect to x and con-
tinuous with respect to w. We further assume that W is a compact set, and we define a
candidate Lyapunov function, that we denote with v(x), to be a continuously differentiable
function satisfying:

v(x) ≥ 0 and v(x0) = 0 (5.1)

for some x0.
Given f and v, we propose to define the function m(c) that associates to a target value

c of the candidate Lyapunov function the worst-case Lie derivative on the corresponding
level set:

m(c) = sup
x∈Vc

Φ(x) (5.2a)

Φ(x) = sup
w∈W
∇v(x)⊤f(x, w), (5.2b)

where Vc = {x ∈ X : v(x) = c} is the level set 2 with value c. We call this function the
value function 3 associated to f and v, or simply the value function when the associated
system and candidate Lyapunov function are clear from the context. Sufficient conditions
for the two supremum to be maximum are investigated in the next section. The obvious

2. Please notice that this notation is different from the one introduced in Chapter 1, where Vc denotes
the sublevel sets.

3. Most of the theoretical machinery used throughout the section comes mainly from economics, the
field in which the name value function has been defined.

144



5.1. Practical stability of perturbed dynamical systems

usefulness of the value function is summarized in the following two properties, valid under
the typical assumption that the level sets of the candidate Lyapunov function involved in
these properties are compact:

1. If m(c) < 0 inside the interval (c, c], for some 0 < c < c, then the sublevel set V≤c

is an attractor and the sublevel set V≤c is inside its region of attraction, i.e. V≤c is
an estimated region of attraction for the attractor.

2. If m(c) < 0 inside (c, +∞) for some 0 < c, then the sublevel set Vc is a global
attractor.

As discussed in the introduction, for a practically stable system we typically expect that
m(c) > 0 inside (0, c∗) and m(c) < 0 inside (c∗, +∞): provided that v has bounded level
sets, all trajectories will converge inside the positively invariant set Vc∗ . The usefulness of
the value function defined here is of course balanced by the difficulty of computing it. Its
formal evaluation is carried out for a class of perturbed linear system in Section 5.1.3.

In the general case, the quest of finding an interval where the value function is neg-
ative provides a strong temptation: computing its roots is of course a simpler and ap-
pealing approach. The roots of the value function can be characterized by using the
Karush–Kuhn–Tucker (KKT) conditions applied to the optimization problem 4 (5.2):

∇2v(x)f(x, w) +
(
fx(x, w)⊤ + λI

)
∇v(x) = 0 (5.3a)(

fw(x, w)⊤ + µI
)
∇g(w) = 0 (5.3b)

v(x)− c = 0 (5.3c)
µg(w) = 0 (5.3d)

∇v(x)⊤f(x, w) = 0, (5.3e)

where ∇2v denotes the Hessian of v, fx, fw the Jacobians of f w.r.t. x and w, g(w)
represents the constraints on w (i.e. W = {w : g(w) ≤ 0}) and λ, µ ∈ R are the KKT
multipliers. In addition to the usual KKT conditions, we consider c as a variable and we
add the constraint v̇(x, w) = 0 in order to find a solution compatible with m(c) = 0.
However, this simple intuition hides a trap: if the value function is not continuous, we
might incur in a change of sign without passing through zero, rendering this approach
useless. Thus, before we succumb to temptation, it is crucial to characterize the properties

4. By substituting the definition of Φ(x) into (5.2a), we can see m(c) as the solution of a single
optimization problem in x and w.
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Figure 5.1 – Example of upper (on the left) and lower (on the right) semicontinuous
functions, where the solid black point denotes h(1). In practice, the only difference is
whether h(1) is at the top or bottom portion of the discontinuity.

of f , v that guarantee the value function’s continuity.

5.1.2 Continuity of the value function

As seen in the previous section, the continuity of the value function plays an important
role in choosing the strategy to evaluate it. We want to study the continuity of m(c) by
investigating its upper semicontinuity and lower semicontinuity separately. Intuitively,
the continuity property can be “split” into these two sub-properties, and we find that a
function is continuous when both hold at the same time. For a scalar function (like m(c)),
the following definition applies [3].

Definition 5.1. Let h : H ⊂ R→ R ∪ {−∞, +∞}. Then:

1. The function h is called upper semicontinuous at c̄ if, for any ϵ > 0, there exists
δ > 0 such that:

|c− c̄| < δ =⇒ h(c) ≤ h(c̄) + ϵ (5.4)

2. The function h is called lower semicontinuous at c̄ if, for any ϵ > 0, there exists
δ > 0 such that:

|c− c̄| < δ =⇒ h(c) ≥ h(c̄)− ϵ (5.5)

A function h which is upper (lower) semicontinuous on its whole domain is simply called
upper (lower) semicontinuous. If it is both upper and lower semicontinuous, then it is a
continuous function.

An example of the difference between upper and lower semicontinuity can be seen
in Figure 5.1. While, technically, in this definition we ask the codomain of h to be the
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extended reals R ∪ {−∞, +∞}, in practice, for m(c), we can consider to have the set of
real numbers R as codomain. Moreover, due to the positive definiteness of v, its domain
is R+.

We are ready to discuss our results. First of all, we show that, under typical assump-
tions on f and v, the function Φ(x) is continuous.

Proposition 5.1. Let v : X → R be a function of class C1, and let f : X ×W → Rn be
continuous in x and w, where W is a compact set. Then, Φ(x) is a continuous function
and the maximum is attained, i.e. Φ(x) can be written as a max instead of sup.

Proof. Being both ∇v(x) and f(x, w) continuous, the product ∇⊤v(x)f(x, w) is continu-
ous as well. Thus, by consideringW as a constant (and so continuous) set-valued function
with nonempty compact values, we can directly apply Berge’s maximum theorem [3, The-
orem 17.31], which proves that Φ(x) is continuous.

While promising, the continuity of Φ(x) is not sufficient to guarantee the continuity
of the value function. Consider, for instance, the unperturbed, scalar system defined as:

ẋ = f(x) =
 −

10x
(0.1x2+5)2 if x > 0
−2x if x ≤ 0

, (5.6)

and let:

v(x) =


x2

0.1x2+5 if x > 0
x2 if x ≤ 0

(5.7)

be its candidate Lyapunov function. The plot of v is shown in Figure 5.2.
It is easy to verify the continuity and continuous differentiability of f and v, respec-

tively. Moreover, we can see that f(x) = −v′(x), meaning that the Lie derivative is
v̇(x) = −(v′(x))2, which is negative for all x ∈ R\{0}. Even with a scalar and globally
asymptotically stable system, we can see, in Figure 5.2, that the value function is not
upper semicontinuous: this is due to a sudden change of the worst-case Lie derivative at
the level of the horizontal asymptote.

The lower semicontinuity of the value function is not guaranteed either. Consider, for
instance, the system:

ẋ = f(x) = −4x(x2 − x− 2), (5.8)
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Figure 5.2 – On the left, plot of v(x) defined in (5.7). The dotted line represents the
horizontal asymptote for x→ +∞. On the right, the corresponding value function, where
the solid black point denotes the value of m at the discontinuity.

Figure 5.3 – On the left, plot of v(x) defined in (5.9). On the right, the corresponding
value function, where the solid black points denote the values of m at the discontinuities.

with candidate Lyapunov function:

v(x) = x4 − 4
3x3 − 4x2 + 32

3 . (5.9)

Similarly to the previous example, we have a system of the form f(x) = −v′(x). As we can
see in Figure 5.3, in this case as well, the value function is discontinuous, in particular it
is not lower semicontinuous: this is due to sudden changes of the worst-case Lie derivative
at the levels of the local minimizer and local maximizer.

Motivated by this, we want, in the following theorem, to independently study the
upper and lower semicontinuity of the value function. The theorem’s proof relies on the
same foundations of the already introduced Berge’s maximum theorem: as we will see,
the upper and lower semicontinuity of m(c) depend on the continuity of Φ(x) and the
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hemicontinuity 5 of Vc, seen as a set-valued function Vc : R+ ⇒ X . We have the following.

Theorem 5.1. Let v, f satisfy the same hypotheses of Proposition 5.1. Then, the following
holds true:

1. If v is radially unbounded, then m(c) is upper semicontinuous and the maximum
is attained, i.e. m(c) can be written as a max instead of sup.

2. If, for all x ∈ Vc̄, ∇v(x) ̸= 0, then m(c) is lower semicontinuous at c̄.

Remark. Case 1 rules out situations illustrated by (5.6)–(5.7), while Case 2 rules out
situations illustrated by (5.8)–(5.9).

Proof. Due to Proposition 5.1, Φ(x) is continuous in the theorem’s hypotheses. Thus, we
focus in this proof on the upper and lower hemicontinuity of Vc.

We start with the first statement. Being v continuous, then the preimage of a closed set
through v is closed as well, meaning that Vc is closed. Moreover, the radial unboundness
of v implies that Vc is bounded, for all c ∈ R+. Thus, by [11, Corollary 21], Vc is upper
hemicontinuous, which means that, by [3, Lemma 17.30], m(c) is a max and it is upper
semicontinuous.
The second statement’s proof is proved in a similar fashion, albeit more involved. Firstly,
we show that Vc is inner hemicontinuous at c̄, which is a property equivalent to the
lower hemicontinuity [11, Proposition 23]. By its definition, we have that Vc is inner
hemicontinuous at c̄ if, for all x̄ ∈ Vc̄, it holds true that:

∀{ck} → c̄, ∃xk ∈ Vck
: xk → x̄ (5.10)

We prove the inner hemicontinuity of Vc by contradiction. Suppose that Vc is not inner
hemicontinuous at c̄. That means that there exists x̄ ∈ Vc̄ such that:

∃{ck} → c̄ : ∀xk ∈ Vck
, xk ̸→ x̄. (5.11)

Consider the restriction of v, centered in x̄ and along the direction of its gradient evaluated
at x̄, i.e. the scalar function v̄(h) = v(x̄ + h∇v(x̄)). Notice that, by the continuity of v, v̄

is continuous. Moreover, there exists an open interval H ⊂ R, with 0 ∈ H, such that v̄ is
strictly increasing over H. This is due to the fact that the derivative Dv̄(h) evaluated at
zero is:

Dv̄(h)|h=0 = ∥∇v(x̄)∥2 > 0, (5.12)
5. See Definition 4.1 in Section 4.3.3.
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and, by the continuity of ∇v, there exists a neighbourhood of the origin (i.e. an open
interval H containing zero) where (5.12) holds true, meaning that v̄ is strictly increasing
on H. Thus, v̄ admits a continuous inverse v̄−1 on H. Its continuity means that:

∀{ck} → c̄, v̄−1(ck)→ v̄−1(c̄) = 0 (5.13)

Let hk = v̄−1(ck). By defining the sequence {xk}k∈N as xk = x̄ + hk∇v(x̄), it follows from
(5.13) that:

∀{ck} → c̄, xk → x̄ (5.14)

which is in contradiction with 5.11, proving the inner (and, thus, lower) hemicontinuity
of Vc at c̄. By [3, Lemma 17.29], the lower hemicontinuity of Vc at c̄ implies that m(c) is
lower semicontinuous at c̄, concluding the proof.

5.1.3 Application to linear tracking systems with bounded ve-
locity target

Upper bound of the value function for linear systems with bounded uncertain
right hand side

We consider the linear system

ż = Az + w, (5.15)

where A is a stable matrix (i.e. all eigenvalues have negative real part) and the uncertainty
w is bounded inside W = {w ∈ Rn : ∥w∥ ≤M}. We consider a quadratic Lyapunov
function v(z) = z⊤Pz for the nominal system with P symmetric positive-definite (SPD).
The Lie derivative for the system with nominal w = 0 is given by z⊤(PA+A⊤P)z, which
is supposed to be negative-definite. Such a matrix P is usually obtained by choosing an
arbitrary SPD matrix Q, typically Q = I, and solving the Lyapunov equation

PA + A⊤P + Q = 0. (5.16)

The following theorem provides an upper bound for the value function associated to the
system and the Lyapunov function defined above.

Theorem 5.2. Let P, Q be positive-definite matrices so that Lyapunov’s equation (5.16)
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Figure 5.4 – Graph of −c +
√

c.

holds. Then, m(c) ≤ m(c) with

m(c) = σ1c + 2M
√

λ1
√

c, (5.17)

where σ1 is the greatest eigenvalue of (−P−1Q) and λ1 is the greatest eigenvalue of P.
Furthermore, σ1 < 0.

Proof. With these hypotheses, m(c) can be written as:

m(c) = max
z∈Vc

Φ(z). (5.18)

Here we have

Φ(z) = max
w∈W

(
−z⊤Qz + 2z⊤Pw

)
(5.19)

= −z⊤Qz + 2 max
w∈W

z⊤Pw. (5.20)

Using Cauchy-Schwarz inequality and the bound on the norm of w, we obtain z⊤Pw ≤
∥Pz∥ ∥w∥ ≤ M∥Pz∥, with the equality holding when w is parallel to Pz. Since W is
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a ball of radius M , such a w parallel to Pz with norm M exists and we have Φ(z) =
−z⊤Qz + 2M∥Pz∥. This leads us to:

m(c) = max
z∈Vc

[
−z⊤Qz + 2M∥Pz∥

]
(5.21a)

≤
(

max
z∈Vc

−z⊤Qz
)

+ 2M
(

max
z∈Vc

∥Pz∥
)

, (5.21b)

where the optimization problem is split into two independent subproblems that can be
solved independently.

For the second subproblem, we solve maxz∈Vc∥Pz∥2. Lagrange’s first-order conditions
yield P2z − µPz = 0, which must hold for some µ ∈ R. Being P invertible, this is
equivalent to solving Pz = µz, leading to

max
z⊤Pz=c

∥Pz∥2 = max
z⊤Pz=c
µ∈Λ(P)

µz⊤Pz = λ1c, (5.22)

where Λ(P) is the spectrum of P and λ1 = max {Λ(P)} is the greatest eigenvalue of P.
The second subproblem maximum is therefore

√
λ1c.

For the first subproblem, Lagrange’s first-order conditions of maxz∈Vc −z⊤Qz lead to
−Qz−µPz = 0 for some µ ∈ R. We notice that the values of µ that satisfy this equation
are the generalized eigenvalues [83] of the symmetric matrix pencil (−Q, P), whose set we
denote with Λ(−Q, P). Being P positive-definite, we know that we have n real generalized
eigenvalues (see [83, Theorem 15.3.3]), that we denote, w.l.o.g., with σ1 ≥ · · · ≥ σn. Thus,
by substitution, we have that:

max
z⊤Pz=c

−z⊤Qz = max
z⊤Pz=c

µ∈Λ(−Q,P)

µz⊤Pz = σ1c, (5.23)

which allows us to write:
m(c) ≤ σ1c + 2M

√
λ1
√

c. (5.24)

We conclude the proof by noticing that, being P invertible, the generalized eigenvalues of
the pencil (−Q, P) are equal to the eigenvalues of −P−1Q, and that, being −z⊤Qz < 0
for all z ̸= 0, we have that σ1c < 0 for c ̸= 0, proving that σ1 is indeed negative.

If M is not zero then m(c) starts with an infinite derivate at c = 0, has a single
maximum at c = λ1(M

σ1
)2 and limc→∞ m(c) = −∞. Its typical graph is shown in Figure 5.4.
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The function m(c) has a unique positive root

c∗ = 4M2λ1

σ2
1

, (5.25)

and is negative for greater values of c. The positive definite quadratic Lyapunov function
being radially unbounded, the sublevel set V≤c∗ is proved to be a global attractor of the
uncertain system (5.15). In the typical case where Q = I we have σ1 = −1

λ1
and the root’s

expression simplifies to
c∗ = 4M2λ3

1. (5.26)

Linear tracking systems with bounded velocity target

We consider a simple linear system with known input matrix gain A of the form:

ẋ = Au, (5.27)

where x ∈ Rn is the system’s state, u ∈ Rn its input and A ∈ Rn×n is stable. The target
reference signal r(t) ∈ Rn is measured at all times, and we assume the knowledge of an
upper bound M on ∥ṙ(t)∥. The proportional control u(t) = −k(x(t)− r(t)), k > 0, leads
to the following closed loop system:

ẋ(t) = kA
(
x(t)− r(t)

)
. (5.28)

The dynamic of the tracking error z(t) = x(t)− r(t) is then

ż(t) = kAz(t)− ṙ(t). (5.29)

We use Theorem 5.2 to find a globally attracting sublevel set V≤c∗ . In order to compare
the sublevel sets for different gains, we consider the Lyapunov function V (z) = z⊤Pz with
PA+A⊤P+I = 0 independently of the gain k. Therefore, the matrix Q that satisfies the
Lyapunov equation (5.16) is Q = kI. Since Q is proportional to I, the sublevel value (5.25)
now simplifies to

c∗ = 4M2λ3
1

k2 . (5.30)
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Figure 5.5 – Left: r(t); right: r′(t) with a circle of radius 6.

Table 5.1 – Values of c∗ obtained using Theorem 5.2 for different gain values.
k 5 10 50 100
c∗ 3.73 0.932 0.0373 0.00931

Numerical application

We consider the following highly oscillating target,

r(t) =
cos(2t) + 2 sin(2t) + 0.5 sin(3t)

sin(t)− cos(3t)

 , (5.31)

whose velocity is bounded by M = 6, see Figure 5.5. The matrix A is chosen to be non
symmetric and P follows solving PA + A⊤P + I = 0:

A =
−2 5
−1 −1

 and P =
 3

14
1
14

1
14

6
7

 . (5.32)

The largest eigenvalue of P is λ1 = 1
28(15 +

√
85) ≈ 0.86. The globally attractive sublevel

values obtained using Theorem 5.2 for different values of the gain k are given in Table 5.1.
The trajectories of the system and the globally attracting sublevel sets obtained by Theo-
rem 5.2 are shown in Figure 5.6, while in Figure 5.7 we can see the value of the Lyapunov
function with respect to time.
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Figure 5.6 – Tracking error of the proportional linear tracking system for the same initial
condition, whose initial error is denoted with a black point, together with the globally
attracting ellipsoids, for different values of the gain k ∈ {5, 10, 50, 100}, with western
reading direction.

Application of Theorem 5.1

The positive definite quadratic Lyapunov function satisfies the hypothesis of Theo-
rem 5.1, which proves that the exact value function m(c) is continuous. We can therefore
infer the sign of m(c) by computing its roots. The system (5.3) that characterizes its roots
is now

−Qx + Pw + λPx = 0 (5.33a)
Px + µw = 0 (5.33b)

x⊤Px = c (5.33c)
µ(w⊤w−M2) = 0 (5.33d)

−x⊤Qx + 2x⊤Pw = 0. (5.33e)

It is polynomial of degree three 6 and can be solved using formal computations. For each
gain value, we find four solutions showing two distinct values of c, given in Table 5.2. The

6. The only degree three monomial in the system is the complementarity constraint (5.33d), which is
actually a simple alternative. The system can therefore be solved as two degree two systems.
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Figure 5.7 – Lyapunov function’s value along the trajectories of the proportional linear
tracking system (in blue) together with the globally attracting level set’s value (in orange),
for different values of the gain k ∈ {5, 10, 50, 100}, with western reading direction.
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Table 5.2 – Values of c for the extremal values leading to a zero Lie derivative, with the
corresponding values of the value function.

k 5 10 50 100
c1 0.0507 0.0127 0.000507 0.000127
c2 3.73 0.932 0.0373 0.00931

m(c1) 2.21 1.10 0.221 0.110
m(c2) 0 0 0 0

solutions with c2 correspond exactly to the solutions previously computed, while c1 < c2.
We therefore expect the latter to be local maximizers. This is confirmed by evaluating
m(c1) and m(c2) as follows: for these values of c, we solve the system (5.33) with the last
equation removed. This is a square system of equations 7 that encodes Lagrange first order
conditions for the Lie derivative, its solutions therefore include the global maximizer. The
global maximizers obtained this way are shown in Table 5.2 and confirm that c2 is indeed
the unique positive root of m(c).

Surprisingly, both m(c) computed here and m(c) computed in the previous section
have the same unique positive root (compare Table 5.1 and Table 5.2), while the up-
per bound (5.21) should entail some overestimation. This coincidence is left for future
investigations.

5.2 Extended convergence condition for the super-
twisting algorithm

In this section, we will consider a one-dimensional system

ẋ(t) = h(t) + g(t)u(t), (5.34)

where x(t) is typically the sliding variable of an affine controlled system, g(t) and h(t)
being unknown with bounds discussed later. The sliding variable is to be driven to zero
in finite time, and we consider the so-called super twisting algorithm (STA) defined by

u(t) = −k1 ϕ(x(t))− k2

∫
τ

sign x(τ)dτ, (5.35)

7. With respect to the square system (5.33), the variable c is now fixed, and one equation has been
removed, hence leading to a new square system.
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where ϕ(x) = |x| 12 sign x. Introducing the new variables x1 = x and x2 = −k2
∫

τ sign x(τ)dτ ,
the system (5.34) and its control (5.35) are rewritten as the two-dimensional right-hand
side discontinuous ordinary differential equation

ẋ1(t) = h(t) + g(t)
(
−k1 ϕ(x1(t)) + x2(t)

)
(5.36a)

ẋ2(t) = −k2 sign x1(t), (5.36b)

whose solutions can be understood in the sense of Filippov [43]. The integral correction
x2(t) does not converge to zero, therefore only the finite time convergence of x1(t) to zero
is investigated.

As far as the authors know, the STA with such an uncertain input gain has only
been investigated using majorant curves arguments, e.g., in [96]. Lyapunov functions rep-
resent another key approach for proving the finite time stability of such sliding mode
controllers [76, 88, 93, 94], which offers several advantages. In addition to the simplicity
of the argument once the correct Lyapunov function is discovered, they often offer some
insights: e.g., the twisting controller can be assimilated to a nonsmooth harmonic oscilla-
tor with dissipation that enjoys an energy related Lyapunov function (see, e.g., Example
3 of [33, p.63]). The Lyapunov approach has been applied successfully to the STA by
several authors [76, 88, 93] in the particular case where g(t) = 1.

Here, we build on the approach of Seeber and Horn [93], who have investigated the
finite time stability of the STA subject to the following perturbation:

ẋ1(t) = −k1 ϕ(x1(t)) + x2(t) (5.37a)
ẋ2(t) = −k2 sign x1(t) + δ(t), (5.37b)

where δ(t) ∈ [−L, L] is absolutely continuous. Finite-time stability of the STA (5.37)
means converging to x1 = 0 and x2 = 0 in finite time. They provided the following
sufficient conditions for finite time stability:

Theorem 5.3 ([93]). The system (5.37) is finite time stable if k2 > L and k2
1 > k2 + L.

Theorem 5.3 also applies to (5.36) with fixed input gain g(t) = 1 by noticing that the
system (5.37) is equivalent to (5.34) and (5.35) with

h(t) = δ0 +
∫ t

τ=0
δ(τ)dτ. (5.38)
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5.2. Extended convergence condition for the super-twisting algorithm

This classical argument is to be used carefully in the context of Filippov solutions, the
change of variable used in Section 5.2.2 formalizes it.

In this section, we derive from Theorem 5.3 new finite time stability sufficient con-
ditions that applies to uncertain input gains in (5.36). We classically assume as in [96]
that g(t) and h(t) satisfy 0 < g ≤ g(t) ≤ g, |h(t)| ≤ ℏ, and that they are continuously
differentiable. As a consequence, γ(t) = h(t)/g(t) is also continuously differentiable, and
we furthermore assume |γ̇(t)| ≤M . If |ġ(t)| ≤ G and |ḣ(t)| ≤ H, then M = H/g + Gℏ/g2

is a valid bound for |γ̇(t)|. Our main result is the following theorem, whose proof is given
in Section 5.2.2:

Theorem 5.4. The system (5.36) is finite time stable if k2 > M and g k2
1 > k2 + M .

The differentiability with bounded derivative is typically assumed for the investiga-
tion of the finite time convergence of the STA, e.g., in [88, 96]. In [76] Theorem 3 and
in [93] Section 3, g(t) = 1 but h(t) is not assumed to be bounded or differentiable, and fi-
nite time convergence is proven only under some technical additional assumption entailing
that h(t) vanishes at the origin 8. Theorem 5.4 could be extended to handle the pertur-
bation η(t)

√
|x1| used in [93] but details are not provided here for the sake of simplicity

and clarity 9. Dealing with unbounded uncertainties that are allowed to grow linearly with
x1, typically satisfying |h(t)| ≤ α1 + α2|x1|, increases the practical scope of the investi-
gation. Up to the knowledge of the authors, it requires modifications of the STA, e.g.,
generalizing the command law [15, 76] 10. Other results on output feedback sliding mode
controllers also achieve handling unbounded perturbations, e.g., [89]. Multivariable STA
with uncertain input matrix is studied in [77], but it considers a generalized command
law as well.

In Section 5.2.2 two consecutive changes of variables will transform (5.36) into (5.37)
with a time-varying integral gain k2(t). The extension of stability properties to time
variable gains is not trivial (see, e.g., Section 6 in [76]). The extension of Theorem 5.3 to
time variable integral gain k2(t) is performed in Section 5.2.1. Finally, the conditions of
Theorem 5.4 is compared to the classical conditions [88, 96] in Section 5.2.3.

8. The condition |h(t)| ≤ η(t)
√
|x1| is used in [93] and the condition |h(t)| ≤ η(t)

√
|x1|+ x2

1 in [76].
Both allow unbounded |h(t)| but entail h(t) converges to zero when x1(t) does.

9. The constraint in Theorem 5.4 would then be g k2
1 > k2 + M + ηM , where ηM would be a bound

on η(t).
10. The conditions in [15, 76] do not apply to the STA.
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5.2.1 Extension to a time-varying integral gain

We consider here that the integral gain k2 in system (5.37) is a time-varying gain
k2(t), and we generalize Seeber and Horn’s sufficient conditions to accept a time-varying
integral gain k2(t). Its proof is an extension of Seeber and Horn’s original proof: their
argument is based on the (time-invariant) Lyapunov function,

v(x) =


2
√

x2
2 + 3α2k2

1x1 − x2 if x ∈ Σ1

2
√

x2
2 − 3α2k2

1x1 + x2 if x ∈ Σ2

3 |x2| otherwise,

(5.39)

where Σ1 = x1 ≥ 0 ∩ x2 ≤ αk1
√

x1 and Σ2 = x1 ≤ 0 ∩ x2 ≥ αk1
√
−x1. The argument

readily extends to a variable integral gain since k2 does not influence the Lyapunov func-
tion, preserving the negativeness of the Lie derivative where it exists. However, their proof
cannot be extended to time-varying gain k1(t) because (5.39) depends on k1.

We deal with the states where the locally Lipschitz Lyapunov function is not differ-
entiable by using the nonsmooth version of Lyapunov’s stability theorem (see, e.g., [33]).
Let L̃fv(x) denote the set-valued Lie derivative of v w.r.t. f evaluated at x, where f

represents the system’s vector field. Intuitively, at the points where v̇(x) does not exist
L̃fv(x) is the convex hull of the limit points of neighbor Lie derivatives. We recall that,
in analogy with Lyapunov’s stability theorem, one needs to investigate the negativeness
of max L̃fv(x) to assess the system’s stability (see, e.g., [33] for details). Before stating
Theorem 5.3, we introduce Lemma 5.1 which, when f is continuous, allows to assess the
negativeness of L̃fv(x) by considering only the values of v̇(x) where v(x) is differentiable.

Lemma 5.1. Consider an open subset N of the state space. We assume that f(t, x) is
continuous w.r.t. x for all x ∈ N and all t, and that v(x) be locally Lipschitz. Let r(x) be
a real valued function continuous on N . If, for all t, v̇(t, x) = ∇v(x)⊤f(t, x) ≤ r(x) on
every point where v is differentiable on N , then, for all t, max L̃fv(t, x) ≤ r(x) on N .

Proof. Let t be an arbitrary time instant and let Ωv be the set of non-differentiability
points of v inside N . On N\Ωv, L̃fv(t, x) = {v̇(t, x)}, so the lemma is trivially true. For
x ∈ Ωv, by the continuity of f we have that L̃fv(t, x) consists of the convex combinations
of limit points of v̇(t, xi) at neighboring points xi where v is differentiable (this is a direct
consequence of the definition of L̃fv and a few of its basic properties which can be found,
e.g., in [33]). Since L̃fv(t, x) is a compact interval of real numbers, its max is a vertex of
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5.2. Extended convergence condition for the super-twisting algorithm

the one dimensional convex hull, meaning that there exists a converging sequence xi → x
such that v̇(t, xi) → max L̃fv(t, x). But v̇(t, xi) ≤ r(xi) for every point in the sequence,
meaning that, by continuity of r, we have max L̃fv(t, x) ≤ r(x), which holds for all times
since t is arbitrary.

Remark. Lemma 5.1 allows for any function r(x) to be used, in practice r(x) = −ϵ or
r(x) = −v(x)α, 0 < α < 1, can be used to assess finite time stability.

The following theorem extends Seeber and Horn’s theorem to a time-varying integral
gain. The assumption that k2(t) is strictly greater than |δ(t)| can be stated in two natural
ways: first by using a lower bound k2 ≤ k2(t) and enforcing k2 ≥ L as in Theorem 5.3.
Second, by enforcing the inequality k2(t) ≥ |δ(t)|+ϵ at each time, with an arbitrary ϵ > 0.
The first condition is sensibly stronger than the second, and leads to a more restrictive
finite time stability condition than Theorem 5.4 (with an additional factor g/g). This is
why the second statement is used in the following time-varying integral gain version of
Theorem 5.3:

Theorem 5.5. The system (5.37) with time-varying integral gain k2(t) is finite time stable
if there exists ϵ > 0 such that k2(t) ≥ |δ(t)| + ϵ and k2

1 ≥ k2(t) + |δ(t)| + ϵ holds for all
times.

Proof. The same Lyapunov function (5.39) is used here, except for the choice of the
parameter α < 1 that needs to account for ϵ in the statement: here one can choose α such
that

(αk1)2 ≥ k2(t) + |δ(t)|+ 1
2ϵ (5.40)

Wherever the Lyapunov function is differentiable, the upper bound on the Lie derivative
computed in (14) in [93] still holds when k2 varies in time, meaning that

v̇ ≤ 3 max
{
k2(t)− δ(t)− (αk1)2, 1

2α(α− 1)k2
1

}
. (5.41)

As in the original proof, (5.40) entails k2(t)− δ(t)− (αk1)2 ≤ −1
2ϵ and 0 < α < 1 entails

α(α− 1) < 0, showing that the maximum of them is strictly negative.
Now, we need to investigate the states where v is not differentiable. It is well known

that no sliding motion can occur along the set S1 = {x|x1 = 0, x2 ̸= 0}, whether k2

is fixed or time-varying. The other set where v is not differentiable is S2 = {x|x2 =
αk1

√
|x1|, x1 ̸= 0}. Since system (5.37) is continuous on N := R2\S1, we can apply
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Lemma 5.1 with r(x) = 3 max
{
−1

2ϵ, 1
2α(α− 1)k2

1

}
to show that the same strictly negative

upper bound that holds when v is differentiable also holds on the whole set N , which
includes the set S2.

5.2.2 Extension to uncertain input gain

The STA (5.36) aims x1(t) = 0 and ẋ1(t) = 0, the integral correction x2(t) being
foreseen not to converge. Indeed, the value of x2(t) enforced at steady state can be com-
puted with respect to uncertainties: if x1(t) = 0 and ẋ1(t) = 0 then x2(t) = −h(t)/g(t).
Classically, by defining the system y1(t) = x1(t) and y2(t) = x2(t) + h(t)/g(t), we obtain
a system that is expected to converge to zero. It satisfies the following ODE:

ẏ1(t) = g(t)
(
− k1 ϕ(y1(t)) + y2(t)

)
(5.42a)

ẏ2(t) = −k2 sign y1(t) + γ̇(t), (5.42b)

with
γ̇(t) = d

dt

h(t)
g(t) = ḣ(t)

g(t) −
ġ(t) h(t)

g(t)2 . (5.43)

The change of variable x 7→ y is a diffeomorphism for all times, therefore Theorem 2
of [43, p.99] proves that Filippov solutions x(t) map to Filippov solutions y(t) and vice-
versa. Since y1(t) = x1(t) the finite time stability of the (5.42) is equivalent to the finite
time stability of (5.36).

We introduce a rescaling of time z(t) = y(τ(t)), that is going to move the impact of
the perturbation g(t) from (5.42a) to (5.42b), so as to match the perturbation structure
of (5.37). We define τ(t) by the following ODE:

τ̇(t) = 1
g(τ(t)) , (5.44)

with τ(0) = 0. Since g(t) ∈ [g, g] is bounded away from zero by g > 0 and is differentiable
with bounded derivative ġ(t) ∈ [−G, G], the function 1/g(τ) is continuously differentiable
with bounded derivative. As a consequence the ODE (5.44) has a unique solution, which
is globally defined in R. Furthermore, from (5.44) and the bounds on g(t) we obtain
1/g ≤ τ̇(t) ≤ 1/g, which proves that τ(t) is strictly increasing and satisfies,

t

g
≤ τ(t) ≤ t

g
. (5.45)
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5.2. Extended convergence condition for the super-twisting algorithm

This makes τ(t) a valid rescale of time. The time-rescaled system z(t) = y(τ(t)) satisfies
the following relation:

ż(t) = τ̇(t) ẏ(τ(t)) = 1
g(τ(t)) ẏ(τ(t)), (5.46)

obtained using the chain rule and (5.44). Finally using (5.42) we obtain the ODE governing
z(t):

ż1(t) = −k1 ϕ(z1(t)) + z2(t) (5.47a)

ż2(t) = − k2

g̃(t) sign z1(t) + γ̃(t)
g̃(t) , (5.47b)

where g̃(t) = g(τ(t)) and γ̃(t) = γ̇(τ(t)). The system (5.47) is in the scope of Theorem 5.5
with

k2(t) = k2

g̃(t) and δ(t) = γ̃(t)
g̃(t) . (5.48)

Its the finite time stability is equivalent to the finite time stability of (5.42) because
of (5.45). The bounds g(t) ∈ [g, g] and γ̇(t) ∈ [−M, M ] hold for their time-shifted coun-
terparts g̃(t) and γ̃(t).

We are finally ready to state the proof of Theorem 5.4.

Proof of Theorem 5.4. Suppose the conditions k2 > M and g k2
1 > k2 +M of Theorem 5.4

hold. Since γ̃(t) ∈ [−M, M ] and g̃(t) > g, there exists ϵ > 0 such that both k2 ≥ |γ̃(t)|+ ϵ

and g̃(t) k2
1 ≥ k2 + |γ̃(t)|+ ϵ hold for all times. Dividing both inequalities by g̃(t) < g, we

prove that
k2(t) ≥ |δ(t)|+ ϵ

g
and k2

1 ≥ k2(t) + |δ(t)|+ ϵ

g
, (5.49)

where k2(t) and δ(t) are defined in (5.48). This allows applying Theorem 5.5 to the
STA (5.47) with (5.48), hence proving its finite time stability.

5.2.3 Comparison to the state-of-the-art conditions

In order to handle the same differentiable perturbations g(t) and h(t) as in (5.36),
Shtessel, Edwards, Fridman and Levant [96] investigate a modified STA, where a switching
law is added to keep u bounded in [−Um, Um] and to prove the finite time convergence.
They proved some sufficient conditions on k1, k2 and Um for the finite time stability,
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see [96, p.156]. After some algebraic manipulations 11, one can prove that these conditions
imply

k2 > M and g k2
1 > 2

(
g

g

)2
(k2 + M), (5.50)

where M = H/g +G ℏ/g2. The first bound on k2 is the same as in Theorem 5.4. However,
the second bound on k2

1 is seen to be similar but more restrictive that the one in Theo-
rem 5.4 because of the factor 2(g/g)2. In particular, if the interval [g, g] is large and/or g

is close to zero then (g/g)2 is sensibly greater than 1 and the conditions of [96] become
sensibly more restrictive than Theorem 5.1.

11. Among other basic manipulations, setting q and Um to the best cases q ∈ {0, 1} and Um = C in
order to weaken the conditions, and using the fact that 0 < gk2−C ≤ gk2 +C with C = H +G ℏ/g = g M

being the smallest upper bound to |ḣ(t) + ġ(t) u(t)| subject to |u(t)| ≤ Um that can be obtained using
bounds on the perturbations provided above.
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CONCLUSION AND PERSPECTIVES

In this thesis, we deeply explored the stability properties of image-based visual servoing
systems, both by developing new theoretical tools that allow us to study the stability
of energy-decreasing systems and by creating a new, ad hoc strategy that makes the
computation of the full set of equilibria tractable in the context of visual servoing. Thanks
to our new methodology, which is inspired by Lyapunov and Morse theories, we were able
to rigorously characterize the interconnection between the equilibria of these systems and
to propose the controller-independent regions of attraction of the stable ones. Moreover,
while the main objective was the analysis of image-based visual servoing systems, the
tools that we developed allowed us to synthesize a new control paradigm, that we call
meta-controller, which provides a substantial improvement in size for the desired pose’s
region of attraction, showcasing the importance of understanding the stability of these
systems and the importance of saddles in their analysis.

Overall, our strategy grants us the ability to analyze a large class of classical situa-
tions in a more profound way, shining a new light on the behavior of these systems. In the
authors knowledge, this is the first time that all stable and unstable equilibria of these
systems have been identified, which allows us to provide a deeper qualitative understand-
ing on the system’s dynamics. Moreover, it opens the door to a rich set of previously
unknown behaviors, as well as providing a new way to study known phenomena in the
field. Hopefully, this might be just the beginning of a line of research that aims to build
up a global understanding of the dynamics of these systems.

From a computational point of view, we believe that, as the solving algorithms and
hardware evolve, attacking examples with configurations of 5 points will be within reach
in the near future. Other strategies could significantly improve the performances that we
obtained with msolve: for instance, it is possible to show that the equilibrium condition
that we derived back in Chapter 2 is equivalent to a non-linear optimization problem
with equality constraints, which means that we can reformulate the equilibrium condition
using the Lagrange multipliers formalism. Other non-trivial changes of variables, on the
same spirit of the one that we proposed in Section 2.3.2, could also lower the computation
time.
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A different approach would be to change the class of solvers that we use. In the past, we
briefly explored the possibility of using numerical solvers based on homotopy continuation,
which, unfortunately, are not guaranteed to find all solutions in a rigorous way (see [45]
for a comparison between msolve and these methods); however, developing our own solver
that rigorously perform the continuation is possible, in particular by employing interval
analysis-based methods.

Solving the equilibrium condition directly with interval analysis based solvers, like
IBEX, can also become a viable strategy if we can find a reasonable bounded initial do-
main that is guaranteed to contain all solutions. In this regard, we had some promising
preliminary results by homogenizing the equilibrium condition’s system of equation, which
is a classical technique that allows to project the set of solutions of an n-dimensional sys-
tem of polynomials onto a sphere in Rn+1, effectively compactifying the system’s domain.
These results, among others, were studied by Mattia Piras in his Master’s thesis [87],
carried out under our supervision.

Since, as we hinted in Section 1.1, the characterization of image-based visual servoing
controllers does not depend on the fact that we track the points’ Cartesian coordinates,
another interesting generalization would be a different choice of visual features, like the
polar coordinates of the points in the image, the lines or even the image moments. Each
of these choices leads to wildly different interaction matrices and, thus, equilibrium con-
ditions; however, we believe that the methodology that we propose of switching over to
the (extended) features space, together with the addition of new constraints to enforce
the feasibility of solutions, could represent a potential game changer also in these cases.

A last interesting line of research, for what concerns the more practical aspects of our
contributions, would be including the overall robotic system (i.e., the camera together
with the robotic arm or other “supports”) in the investigation of the stability. Not only
this would bring our results closer to real-world applications, but it would also allow us
to test our findings on real robotics systems. This is particularly interesting for validating
whether the more theoretical among our results do hold in practice, like, for instance, if
we can verify the presence of saddle points or the region of attraction’s enlargement for
the meta-controller.

The theoretical contributions of our thesis also open up several interesting questions,
some more technical than the others. As it is often the case when we study the properties of
a class of systems, we immediately feel the need to try and admit more and more systems
within the class, and there is a number of generalizations that feel natural in our case. The
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first restriction that we encountered in Chapter 1 was leaving out of the discussion stable
space of non-differentiable systems. However, we did present some examples where the
stable spaces seemed to make sense, simply losing its smoothness. Thus, it seems possible
to identify some additional hypotheses, so that we can discuss the stable and unstable
manifolds of a specific class of non-differentiable systems.

Another possible generalization could be relaxing the definition of energy-decreasing
systems, allowing the Lie derivative to be null outside of the energy function’s critical
points, as long as the set of states for which this happens is not invariant. With this
relaxation, we could consider extend our analysis, for instance, to dissipative physical
systems whose energy does not satisfy the Lyapunov condition globally, a classical example
being the pendulum with friction (whose Lie derivative is null at every peak of the swing).

At the current state, the construction of the connectivity tree only makes sense as
long as the sublevel sets are compact. However, we believe that, if we have unbounded
level sets in Rn, it is reasonable to model the sublevel set becoming unbounded as it
“reaching” a critical point which is arbitrarily far. Consider, for instance, the classical
example we presented in Figure 1.13 (Section 1.4): if we restrict on the x1-axis, as we let
x1 grow indefinitely, the function will increase up to a maximal, bounded value. In turn,
the same value is a local minimum along the x2 direction, so it seems intuitive to say that,
as x1 →∞ with x2 = 0, we are converging towards a saddle point. We believe that these
critical points at infinity could be identified and studied by using the techniques that we
discussed above to compactify the space, and their characterization could allow to push
the connectivity tree further up in these cases.

A final topic which has not been completely fleshed out is the separation of the sub-
level sets’ components. Back in Section 1.3.5, in order to make sense of the separating
hyperplanes we had to assume that our state-space was Euclidean. While we have little
hope to be able to find a generalization for the separating function that works on any ar-
bitrary manifold, it would be interesting to find such a generalization for some manifolds
of interest in robotics, like SE(3) or SE(2).
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Appendix A

PROOF OF THEOREM 1.1

Before diving into the proof, we recall two useful matrix properties and we state a
lemma that we will need for the theorem.

Remark. Consider A, B ∈ Rn×n. We have that:
— If they are similar (i.e., there exists an invertible matrix P such that A = P−1BP),

then they have the same eigenvalues.
— If they are symmetric and congruent (i.e., there exists an invertible matrix P such

that A = P⊤BP), then, by Sylvester’s law of inertia, they have the same signature.

Lemma A.1. Let A, B ∈ Rn×n be symmetric matrices and let A be positive definite as
well. Then, AB has real eigenvalues and the same signature as B.

Proof of Lemma A.1. Being A symmetric positive definite (SPD), there exists an SPD
matrix A 1

2 such that A 1
2 A 1

2 = B. By defining C = A 1
2 BA 1

2 , we have that:

A
1
2 CA− 1

2 = A
1
2 A

1
2 BA

1
2 A− 1

2 = AB, (A.1)

meaning that C and AB are similar. But since A 1
2 is symmetric, C is symmetric and it

can be written as C = (A 1
2 )⊤BA 1

2 , meaning that C and B are congruent. Having AB
the same eigenvalues of C, this means that they are real and that AB and B have the
same signature.

We are ready to prove the theorem.

Proof of Theorem 1.1. We argue that all gradient systems on the same energy function
have the same index as the system defined using the standard gradient, for any given
equilibrium. Let v :M→ R be the energy function and x ∈ M be an equilibrium. The
choice of metric on the tangent space TxM induces a map Φ : TxM → T ∗

xM from the
tangent space itself to its dual by:

Φ(u)(v) = ⟨u, v⟩x, (A.2)
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where u, v ∈ TxM. This map is an isomorphism, and as such it is invertible. Endowing
the tangent space and its dual with their canonical bases and identifying the inner product
with an SPD matrix P as before, we can find explicit expression for Φ and its inverse as:

 Φ(u) = u⊤P

Φ−1(u⊤) = P−1u
, (A.3)

where we denote elements of TxM as column vectors and elements of its dual as row
vectors to ease the notation.

We need now to be careful with how to discuss the Hessian of v, because, among the
several equivalent ways found in the literature, we want to use a formalism that highlights
the role of the metric. Let D2

xv : TxM× TxM → R be the usual second derivative of v

computed at x, which is a symmetric bilinear map independent from the metric. Based
on it, we can define two flavors of the Hessian. We call the Hessian map of v at x the
linear map Hx : TxM→ T ∗

xM defined by 1:

Hx(u)(v) = D2
xv(u, v). (A.4)

The Hessian map depends on the second derivative alone, and thus it is not influenced by
the metric. Building upon it, we define the Hessian matrix of v at x the endomorphism 2

Hx = Φ−1 ◦ Hx : TxM → TxM, which now clearly depends on the metric through Φ.
If we denote with ΦI the mapping induced by the standard inner product, we get that
Hx,I = Φ−1

I ◦Hx corresponds to the standard Hessian matrix, whose matrix representation
is then symmetric.

By choosing bases for the tangent space and its dual, and by committing the minor sin
of identifying endomorphisms with their matrix representations, we obtain the following
relation:

Hx = Φ−1 ◦ Hx = Φ−1 ◦ ΦI ◦ Φ−1
I ◦ Hx = (Φ−1 ◦ ΦI)Hx,I. (A.5)

We can derive the matrix representation of the endomorphism Φ−1 ◦ ΦI by using (A.3).

1. The identification of bilinear maps from a vector space to the reals with linear maps from a vector
space to its dual is actually a simple application of a much more general property: if L(E1, . . . , En; F )
denotes the set of n-linear maps from E1 × · · · × En to F , then there is a natural isomorphism between
L(E1, . . . , En+k; F ) and L(E1, . . . , En; L(En+1, . . . , En+k; F )), even when E1×· · ·×En and F are infinite-
dimensional (see, e.g., [62, Proposition 5.2]).

2. I.e., a linear map from a vector space to itself.
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Letting P denote the SPD matrix representing the inner product related to Φ, we have:

(Φ−1 ◦ ΦI)(u) = Φ−1(u⊤) = P−1u, (A.6)

which leads to:
Hx = P−1Hx,I. (A.7)

We can finally apply Lemma A.1, proving that Hx and Hx,I have the same signature and,
thus, that the index of x is the same for all gradient systems.

Remark. By applying Lemma A.1, we actually prove something stronger: even though
Hx might not be symmetric for a given metric, it must always have real eigenvalues, which
justifies Corollary 1.1.
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Titre : Stabilité et Régions d’Attraction de Systèmes d’Asservissement Visuel Basé Image

Mot clés : Asservissement visuel, analyse de la stabilité, régions d’attraction

Résumé : L’asservissement visuel est un do-
maine mature dont le formalisme est bien
établi. L’un de ses principaux objectifs est le
contrôle d’un robot à l’aide des informations
visuelles provenant d’une caméra, qui est gé-
néralement montée sur l’effecteur du robot.
Même si l’asservissement visuel a conduit
à de nombreuses applications réussies, son
analyse de stabilité reste une question théo-
rique ouverte, en particulier pour l’asservis-
sement visuel basé image. Dans cette thèse,
nous avons exploré en profondeur les pro-
priétés de stabilité de ces systèmes, à la
fois en développant de nouveaux outils théo-
riques qui nous permettent d’étudier la stabi-
lité des systèmes à énergie décroissante et
en définissant une stratégie qui rend le cal-
cul de l’ensemble complet des équilibres ré-

solvable dans le contexte de l’asservissement
visuel. Grâce à notre nouvelle méthodologie,
qui s’inspire des théories de Lyapunov et de
Morse, nous avons pu caractériser rigoureu-
sement l’interconnexion entre les équilibres de
ces systèmes et proposer les régions d’attrac-
tion indépendante des contrôleurs des équi-
libres stables, ce qui a permis d’éclairer d’un
jour nouveau le comportement de ces sys-
tèmes. De plus, les outils que nous avons dé-
veloppés nous ont permis de synthétiser un
nouveau paradigme de contrôle, que nous ap-
pelons meta-contrôleur, qui fournit une amé-
lioration substantielle de la taille de la région
d’attraction de la pose souhaitée, mettant en
évidence l’importance de la compréhension
de la stabilité de ces systèmes, et l’importance
des points selles pour son analyse.
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Abstract: Visual servoing is a mature area
whose formalism is well established. One of its
main aims is the control of a robot using the vi-
sual information coming from a camera, which
is typically mounted as the end effector of the
robot. Even if visual servoing has lead to many
successful applications, its stability analysis is
still an open theoretical issue, in particular for
image-based visual servoing. In this thesis,
we deeply explored the stability properties of
these systems, both by developing new theo-
retical tools that allow us to study the stability
of energy-decreasing systems and by creating
a strategy that makes the computation of the
full set of equilibria tractable in the context of
visual servoing. Thanks to our new methodol-

ogy, which is inspired by Lyapunov and Morse
theories, we were able to rigorously charac-
terize the interconnection between the equi-
libria of these systems and to propose the
controller-independent regions of attraction of
the stable ones, shining a new light on the be-
havior of these systems. Moreover, the tools
that we developed allowed us to synthesize
a new control paradigm, that we call meta-
controller, which provides a substantial im-
provement in size for the desired pose’s re-
gion of attraction, showcasing the importance
of understanding the stability of these systems
and the importance of saddles in their analy-
sis.
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