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Chapter 1

Introduction

Confidence isn’t optimism or pessimism,

and it’s not a character attribute. It’s the

expectation of a positive outcome

– Rosabeth Moss Kanter

In the fast paced world of technology, where confidence is a crucial factor, the reliabil-
ity of operating systems becomes paramount for ensuring the optimal performance of com-
puter systems. Operating system refers to the programs and code that operate at a low-level
and provide the basic functions of a computer, including device drivers and utility software.
Nevertheless, a minor error or bug in an operating system can have major consequences,
such as failures, data leakage, safety violations, etc. However, given that the C language
combines the features of both high-level and low-level languages, it is commonly used for
low-level programming. Consequently, several low-level operating system components are
written in C or C++ (e.g. Linux kernel, FreeBSD, and MacOS’s kernel). Yet, a critical con-
cern arises: Pertaining to the responsibility of managing memory safety of these software.
C, being a language that does not automatically handle memory management, places this
responsibility squarely on the programmer’s shoulders. Relying solely on the programmer
becomes a matter of confidence. Even experienced C programmers may unintentionally
introduce errors that compromise memory safety, leading to significant issues.

The majority of software vulnerabilities can be traced back to programming errors con-
cerning memory management [89, 49]. These errors encompass memory leaks, use after
free, uninitialized memory, and double free errors [31, 40, 86]. To elaborate, consider a C
programwith two pointers pointing to the same memory location. If the first pointer modi-
fies the memory’s value, it silently alters the value pointed to by the second pointer as well.
This can lead to critical consequences. Additionally,Windows, awidely-used operating sys-
tem, has suffered damages partly due to being primarilywritten in two unsafe programming
languages, namely "C and C++". Even a minor mistake in the code of such foundational sys-
tems can render them vulnerable to attackers, leaving them exposed. Consequently, these
errors can result in severe and intrusive effects, including privilege escalation. In fact, ap-
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proximately 70% of security vulnerabilities in software products are attributed to memory
safety violations, specifically errors with C/C++ pointers [92].

A significant endeavor has been underway to address memory errors in the C language,
particularly concerning memory safety. However, the concept of safety extends beyond
memory and type safety; it also involves safeguarding programming languages’ abstrac-
tions, such as controlling aliasing. To tackle this challenge, various approaches have been
explored. High-level programming languages like Java and SML employ a garbage col-
lector, an automatic mechanism for managing memory allocation and deallocation in pro-
grams [50, 98]. While effective, this solution can lead to the accumulation of unused data,
potentially slowing down the program. The garbage collector periodically scans the pro-
gram’s memory at runtime to identify and reclaim unused data, freeing up space for future
allocations. Over three decades of research, alternative solutions have been proposed, in-
cluding linear types, ownership types [33, 71, 58], and region-based memory management
[95, 41, 37, 88], which incorporate concepts like borrowing and unique pointers [30]. The
effort [30] presents a static method for ensuring data race freedom by enforcing at most
one mutable reference to an existing object, mitigating issues related to aliased and muta-
ble memory. Moreover, [95] explores the combination of regions and linear types. Among
these solutions, region-basedmemorymanagement has been a prominent focus in research.
For instance, ML KIT [93], Cyclone [37], and real-time Java memory management in "Real-
Time" systems [79, 57] draw from region-based approaches. In the pursuit of pragmatism,
the development team behind Rust [84] has succeeded in combining the efficiency of high-
level programming languages with the memory safety found in high-level languages.

Sponsored by Mozilla and collaboratively developed by a broad and varied community
of contributors, Rust is a statically-typed programming language designed for performance,
reliability and safety. As a new language, Rust is designed to mitigate the wave of security
vulnerabilities, namely safe concurrency and memory management without the need for
garbage collection. Rust’s type system effectively limits aliasing possibilities, ensuring that
accessible memory addresses are safely deallocated when a variable’s scope is exited. How-
ever, strictly adhering to this type system can be overly restrictive. Here, Rust’s pragmatism
comes into play, allowing developers to create libraries where the type system can be dis-
abled using the "unsafe" keyword. Features like Rc and Mutexes rely on this mechanism.
Rcs are read-only references with safety based on reference counting, allowing flexibility
in breaking lexical scope constraints. Nonetheless, libraries utilizing the unsafe feature
must adhere to specific invariants to maintain memory safety [52]. In Rust, a multithread-
ing library, referred to as "std::thread::spawn" in Rust terminology, enables concurrent
programming using system threads. While the concurrent programming model is widely
used, it can be too resource-intensive for certain systems, such as low-resource embedded
systems. Several attempts have beenmade to explore the Rust type system, including Patina
[82], one of the initial efforts, Oxide [97], and FR [73], which focused on formally modeling
the Rust type system and proving their type and borrowing safety. They concentrated on
the safe aspect of the Rust language. Meanwhile, Rustbelt [52] offers formal research that
centers on the unsafe aspect of Rust.

Until now, we have explored memory issues in software in general. Let us now narrow
our focus and delve into reactive systems, which are computer systems designed to respond
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in real time to events or stimuli from their environment. Reactive systems can adopt various
concurrency models, and some leverage cooperative threads to achieve their goals (e.g., the
Akka framework for building concurrent and distributed systems in Java and Scala). Coop-
erative threads, implemented in user space, present a viable alternative. However, like any
concurrency model, they comewith their own set of trade-offs and require careful attention
to ensure effective and efficient implementation. Several synchronous languages have been
proposed for implementing reactive systems, including well-known examples like Esterel
[22], Lustre [43], and Signal [60]. These languages have demonstrated their effectiveness in
designing and verifying reactive systems. The design of these languages enables the use of
formal methods to ensure strong reliability properties. However, achieving these guaran-
tees often comes at the expense of reduced expressiveness, similar to automata. With the
proliferation of IoT systems relying on microcontrollers and microprocessors rather than
integrated circuits, there is a growing demand for more expressive programming languages
that can maintain strong reliability properties. Some proposals have emerged to extend the
model of synchronous reactive programming languages to general-purpose programming
languages. Two notable examples are Reactive-C [26, 29] and ReactiveML [63] languages.
However, when it comes to safety-critical or resource-constrained systems, these propos-
als encounter a familiar challenge. On one hand, Fairthreads, being a C library, places the
burden of memory allocation on users, introducing the risk of dangling pointer errors or
double-free errors. On the other hand, ReactiveML, as an extension of Ocaml [100], relies on
a garbage collector for memorymanagement, introducing execution overhead. However, as
mentioned previously, garbage collection is not a suitable alternative for embedded systems
as it causes breaks at runtime to deallocate unused memory. Ultimately, this comparison
provided a good challenge for this thesis. Specifically, focusing on the Rust language, which
is one of the most reliable languages nowadays to meet the requirements of reactive sys-
tems. Thus, the main objective is to have a synchronous reactive language dedicated to
embedded systems, which is between Reactive-C and Reactive-ML such as to refrain from
using the garbage collector and to provide a type safety without performance overhead.

In Synchronous Programming Languages, a collection of behaviors is executed in suc-
cessive rounds called instants as shown in Figure 1.1. During each instant, behaviors react
to signals, which may have values, produced either by the environment or by the behaviors
themselves. An instant terminates when all reactions are completed, producing an output
in response to the environment. At the start of each instant, the state of signals is cleared,
and they receive new inputs from the environment. In synchronous languages like Esterel,
reactions to the absence of a signal can occur instantaneously. However, such reactions
can result in non-causal behaviors, which are detected and rejected through static checks.
Similarly, the compiler ensures that programs are reactive or productive. However, these
checks heavily rely on strict language restrictions, such as the absence of dynamic data and
static scheduling. Fairthreads builds upon the SL language [29] and proposes a different ap-
proach by delaying reactions to the absence of a signal until the next instant. This approach
avoids causality issues and allows for dynamic data and thread spawning. Solutions based
on formal methods have been developed to guarantee productivity [6, 7, 5, 4]. However,
these solutions assume the absence of memory errors.

In this thesis, we revisit Fairthreads by introducing a Rust-like type system in an exper-
imental language called MSSL (Memory Safe Synchronous Language). MSSL is a reactive
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Figure 1.1: Round-Robin Scheduling

programming language based on cooperative threads and synchronous execution. In this
programmingmodel, threads run in turn. The change of control is done on demand through
a yield command. A notion of signal allows threads to synchronise. Owing to the notion
of logical time, called instants, threads progress synchronously with a coherent view of the
state of signals (present or absent) at each instant. Due to the use of cooperative schedul-
ing, all threads execute simultaneously. Consequently, there is no necessity to safeguard
shared data among these threads using locking primitives. Nonetheless, even if the exe-
cution of threads is cooperative, the Rust type system requires adaptations to allow data
sharing between threads since it introduces a new form of aliasing that must be controlled.
Reference counting, as proposed by Rust, appears to be an interesting solution since it al-
lows to get rid of lexical scope constraints. This is necessary to authorize the sharing of data
between different threads. This solution is however limited by the fact that these references
are read-only. Removing this constraint would break the memory safety properties at the
thread level. We therefore propose to combine the reference counting approach with the
aliasing constraints of standard Rust references. This new type of smart pointers, which
is the main contribution of this thesis, is named Trc (Thread Reference Counting), which
supports cooperative multithreading. Similar to Rust’s Rc pointers, Trc pointers utilise a
reference counting mechanism for their management. Intuitively, Trc pointers encapsulate
shared data, akin to Rust’s Mutexes. Unlike Mutexes, the data contained within Trc point-
ers does not require unpacking each time it is accessed. This feature effectively eliminates
the intricate deadlock issues associated with Mutexes. One key distinction between Trc
pointers and Rust’s Rc lies in the mutability of their content. Our type system prohibits (1)
aliasing of a Trc by single threads and (2) holding a reference to the content of a Trc at
cooperation points. In both cases pointer invalidation could occur.

Overview and contributions

This thesis has led to the development of MSSL as a synchronous reactive language, in-
heriting the safety aspects of the Rust language. Our efforts have resulted in five main
contributions: (1) we shed the light on FR

FT
, a cooperative kernel of MSSL that lacks syn-

chronization operations, and it extends FR [73]. (2) We introduce the new design of the
smart pointer, Trc. In addition, as in Rust, we provide copy and move semantics, includ-
ing mutable and immutable references, re-borrowing, lifetime, dynamic allocation via Box
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that allows partial moves. Consequently, we supply a type system able of capturing all
the aforementioned aspects. (3) Next, we provide the type, borrow and concurrency safety
theorem results for FR

FT
, based on the approach of [99]. This presented a challenge as we

needed to argue that a program allowing data sharing between well-typed threads would
execute safely without encountering issues. Additionally, we relied on the concept of logi-
cal instant, indicating that the execution of a safe program could be an infinite sequence of
instants while preserving memory safety between threads. This ensures that when a thread
executes, it maintains its type by preventing any dangling reference. Moreover, its execu-
tion preserves the type of other threads without creating undesired data in their memories,
while adhering to the rules of Trc, lifetimes, and borrowing. (4) We provide the complete
MSSL syntax, along with several reactive and non-reactive extensions to address any miss-
ing elements. We enrich MSSL with the notion of signals. Signals are powerful, flexible,
and have compelling communication capabilities. At this point, threads can create signals,
emit signals, etc. Besides, we outline how method invocation can be implemented. (5) Fi-
nally, we present an implementation of the full MSSL language in Java using the ANTLR
framework [11], with a focus on Trc and borrows, while also incorporating other MSSL
extensions. This implementation is based on the semantic and type rules outlined in this
thesis, providing a comprehensive understanding of how to verify the soundness of our
rules in relation to the actual implementation.

Trc vs Safe Rust

Continuing with the exploration of one of the key contributions of MSSL, let us now com-
pare this novel alternative with the existing Rust constructs to emphasize the innovation
brought by Trc. We will examine three examples written in Rust, each of which has a
limitation. However, we will also present an example written in MSSL, leveraging the Trc
extension, and highlighting its advantages. Listing 1.1 showcases a rejected example in
Rust using the Box smart pointer, as follows:

1 fn createVec(){

2 let mut x = Box::new(0);

3 // Thread

4 // Transfert Ownership

5 thread::spawn(move||modifyVec(x));

6 *x=1; // x is moved!

7 }

8 fn modifyVec(x:Box<i32>){

9 *x=2; }

10 }

Listing 1.1: Rust with Box

In Listing 1.1, we introduce two functions: createVec and modifyVec. At line 2, we declare
a smart pointer, Box, initialized to 0, and bind it to x. Subsequently, at line 5, we spawn a new
thread using "thread::spawn" following Rust’s syntax. This new thread will execute the
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"modifyVec" function, taking the variable x as an argument. Consequently, the new thread
has exclusively taken ownership of x, rendering it inaccessible to the current thread. This
explains the error displayed on line 6. The characteristics of the Box pointer are as follows:

• Box is a smart unique pointer that is used to allocate memory on the heap

• Weak point: it transfers the ownership of that memory to the new thread

In Listing 1.2, we present the same example as in Listing 1.1 using the smart pointer Rc
provided by Rust. This example is also rejected by the Rust type system as follows:

1 fn createVec(){

2 let mut x = Rc::new(0);

3 // Thread

4 // Multiple Ownership

5 thread::spawn(move||modifyVec(x.clone()));

6 *x=1; //Error: x is read-only!

7 }

8 fn modifyVec(x:Rc<i32>){

9 *x=2; }

Listing 1.2: Rust with Rc

In Listing 1.2, on line 2, we declare a smart pointer, Rc, initialized to 0, and associate it
with x. Unlike Box in the previous listing, Rc is a reference-counted pointer character-
ized as read-only. Additionally, multiple instances of the same Rc can be created using the
"clone" keyword in Rust syntax, incrementing the reference count by 1 for each instance.
Consequently, on line 5, instead of transferring full ownership of x, we provide the new
thread with a reference copy of x. This implies that both threads share the same read-only
data. Hence, an error occurs when attempting to modify the contents of x on line 6. Fur-
thermore, another error is displayed on line 5 because, according to Rust’s type system, Rc
is not considered safe for concurrent use between threads. Another proposed solution is
demonstrated in Listing 1.3. The characteristics of the Rc pointer are as follows:

• Rc is an immutable counting reference. It allows multiple ownership of the same data
created by Rc ∶∶ clone()

• Weak point: Rc is not safe to communicate with threads

Rust provides another type of reference counting pointer called Arc, which stands for
Atomic Reference Counting. Arc is a solution specifically designed for safely sharing data
between threads in a concurrent environment. Listing 1.3 displays the same example as in
Listings 1.1 and 1.2, but this time using the smart pointer Arc. Unfortunately, this example
is also rejected by the Rust type system, as depicted below:

1 fn createVec(){

2 let mut x = Arc::new(Mutex::new(0));
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3 // Thread

4 // Multiple Ownership

5 thread::spawn(move||modifyVec(x.clone()));

6 // Mutate the value

7 *x.lock().unwrap()=1;

8 }

9 fn modifyVec(x:Arc<Mutex<i32>>){

10 *x.lock().unwrap()=2;

11 }

Listing 1.3: Rust with Arc

In Listing 1.3, accepted by the Rust type system, on line 2, we declare a smart pointer, Arc,
initialized to 0, and bind it to x. Similar to Rc in the previous listing, Arc is a reference-
counting pointer characterized as read-only, but it can be safely shared between threads.
To modify the contents of Arc, which is immutable but has multiple aliases, Rust employs
a model called inner mutability, akin to Mutex, which safeguards data from unsafe access.
Consequently, no errors are displayed on line 7 when modifying the contents of x. The
characteristics of the Arc pointer are as follows:

• Arc is an atomically reference counted. As Rc, it is immutable but it is thread-safe.

• Weak point: To mutate the Arc’s content, amutex is required! However, in cooper-
ative mode, no mutex is needed

Now let’s present the same example as the previous listings, using the MSSL syntax.
This example uses the Trc extension provided by MSSL as follows:

1 fn createVec(){

2 // Shared value is encapsulated in a Trc

3 let mut x=trc(0);

4 // Thread

5 // Multiple Ownership

6 spawn(modifyVec(x.clone));

7 // Mutate the value

8 *x=1;

9 }

10 fn modifyVec(x:Trc<i32>){

11 *x=2; }

Listing 1.4: MSSL with Trc

Listing 1.4 is written in MSSL, where on line 3, we declare a smart pointer, Trc, initialized
to 0, and link it to x. Similar to Rc and Arc, on line 6, we provide a copy of Trc’s reference
to the new thread. However, unlike Arc, on line 8, we modify the contents of x without
requiring a mutex. Finally, the characteristics of the Trc pointer are as follows:
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• Trc is a smart pointer. As Rc, it allows multiple ownership of the same data and as
Arc, it is safe-thread

• strong point: Trc combines data sharing and mutability between threads without
requiring the use of locking primitives

To conclude, after comparing the constructs offered by the Rust language with the new Trc
extension provided by MSSL, we reach to the following conclusions:

• Trc has multiple ownership (shared data between threads) compared to Box.

• Trc is thread-safe, unlike Rc.

• Trc allows mutable references, unlike Rc and Arc.

• Trc does not require a mutex for data mutation, unlike Arc.

Outline

This thesis is structured into the following chapters:

Chapter 2:

Chapter 2 is divided into two sections. The first section provides an overview of reac-
tive systems and synchronous languages. In this part, we delve into the characteristics
of three prominent synchronous languages: Lustre [72], Signal [60], and Esterel [23]. We
thoroughly examine the essential concepts and clock operators for each language, with a
particular focus on addressing the causality problem for the Esterel language. Furthermore,
we discuss the requirements of these languages to ensure the safe functioning of IoT sys-
tems and real-time systems. In the second section, we delve into the Rust language, placing
emphasis on its type system, dynamic allocation, and memory management features.

Chapter 3:

In Chapter 3, we introduce FR
FT
as a subset of MSSL, encompassing the cooperative kernel

of MSSL. FR
FT

serves as a formal model of the core Rust language, extended with a novel
smart pointer and two multi-threading extensions. This chapter primarily focuses on ex-
ploring the characteristics of the Rust type system, including ownership, borrowing (and
re-borrowing), and lifetimes. These aspects include copy semantics, move semantics, and
partial semantics. Subsequently, we delve into the central contributions of FR

FT
, particu-

larly Trc. Building upon the concepts introduced in FR [73], we formalize the semantics
of this language in the context of operational semantics. This semantic model incorporates
three new extensions: the first extension facilitates data sharing between threads without
the need for locks, the second extension enables the creation of cooperative threads, and
the last extension provides explicit cooperation between threads until the end of an instant.
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Chapter 4:

Chapter 4 presents the FR
FT

type system and delves into its ability to preserve the prop-
erties of the new Trc extension between threads, while ensuring memory safety during
cooperation. In this chapter, we provide a comprehensive proof of soundness for FR

FT
,

leveraging the syntactic approach introduced by Wright and Felleisen [99]. Specifically,
we demonstrate that a well-typed expression in FR

FT
is inherently either a value or a re-

ducible expression, relying on the lemma of Step Progress 4.9. Furthermore, we establish
the lemma of Step Preservation 4.10, which confirms that when a semantic rule is applied
to a well-typed expression, the resulting evaluation step remains well-typed with the same
type, all while preserving the borrowing and Trc invariants. Moreover, this lemma ensures
that other threads also maintain their well-typed property. Building upon the Step Progress
and Step Preservation lemmas, we derive two additional lemmas: the Slice Progress lemma
4.14, which affirms that a well-typed thread can be executed more than once, and the Slice
Preservation lemma 4.15, which guarantees that a well-typed thread remains well-typed
even after multiple executions, with other threads also maintaining their well-typed status.
Continuing from the Slice Progress and Slice Preservation lemmas, we deduce the Instant
Progress lemma 4.16, asserting that a well-typed program can perform an instant. Addi-
tionally, the Instant Preservation lemma 4.17 claims that a well-typed program remains
well-typed after making an instant. Finally, chapter 4 concludes with our theorem of type,
borrow, and concurrency safety. This essential theorem establishes that if we execute a pro-
gram from an initial state, it is capable of performing one or more instants while adhering
to type safety, borrowing safety, and concurrency safety principles in the context of FR

FT
.

Chapter 5:

In chapter 5, we present the MSSL language as a whole, encompassing various extensions.
We extend FR

FT
to incorporate the invocation of methods outside the spawn expression, and

we elaborate on how the MSSL type system effectively supports and handles this extension.
Furthermore, we enhance the reactive aspect of FR

FT
by introducing the concept of a signal.

This enriches MSSL with multiple reactive extensions, such as signal creation, signal emis-
sion, and signal awaiting, among others. These extensions highlight the system’s reactivity
and underscore the significance of signals, showcasing the inherent flexibility present in the
core of MSSL.

Chapter 6:

Chapter 6 showcases an implementation of the complete MSSL language that combines
the practical aspects of Rust, specifically FR [73], with a new smart pointer called Trc and
reactive constructs. This implementation is carried out in Java and is publicly available on
GitHub. As previously mentioned, MSSL aims to enhance the Fairthreads programming
model. To achieve this goal, we conduct a thorough inspection of references and data shared
between threads in an MSSL program. Subsequently, we facilitate an automatic translation
to Reactive-C. By utilizing this implementation, we ensure high local memory safety for
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each thread and maintain robust global memory safety between threads, leveraging the
characteristics of Rust. Additionally, we provide examples of Fairthreads and demonstrate
how MSSL programs are translated into Fairthreads. Finally, we summarize our findings
and conclusions in Chapter 7.
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State of the Art

Education is the most powerful weapon

which you can use to change the world

– Nelson Mandela

In this chapter, we start with an introduction to synchronous languages, where detailed
outlines of Esterel, Lustre, and Signal are provided. Following that, we explore the syntax
and type system of the Rust language. Lastly, the chapter concludes with a discussion on
the diverse efforts undertaken to formalize the semantics of Rust and showcase its safety
and reliability.

Dans ce chapitre, nous commençons par une introduction aux langages synchrones, où des

contours détaillés d’Esterel, Lustre et Signal sont fournis. Ensuite, nous explorons la syntaxe

et le système de types du language Rust. Enfin, le chapitre se conclut par une discussion sur

les divers efforts entrepris pour formaliser la sémantique de Rust et démontrer sa sécurité et sa

fiabilité.
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1 Background and Overview

Reactive programming [76] has experienced a significant surge in popularity from the 1980s
to the present day, making it a well-suited paradigm for developing interactive and event-
driven applications. The ever-growing number of connected objects in the embedded sys-
tems industry has led to the continuous emergence of new techniques and opportunities.
Reactive programming simplifies the development of such applications by providing ab-
stractions to express time-varying values. These real-time systems, known as reactive sys-
tems, operate in constant interaction with the environment and are bound by strict non-
functional constraints, such as limited time and memory resources. Often, these systems
are safety-critical, where even a minor data leak at the memory level can lead to unfore-
seen failures, posing risks to the mission, the system, or its surroundings. Most real-time
reactive systems comprise components that evolve simultaneously and communicate with
each other. Ensuring reliability is crucial in such systems. To address the requirements of
reactive systems and implement their fundamental concepts, the first three synchronous
languages were developed: (1) Esterel [28] is an imperative and control-flow language, (2)
Lustre [43] is a declarative and data-flow language, and (3) Signal [60] is also a declarative
and data-flow language. Additionally, other synchronous languages have been proposed,
including SL [29], Reactive-C [26, 29], Lucid [32, 80] and ReactiveML [63].

However, the majority of these languages, like Esterel, are primarily implemented using
host languages, particularly the C language. Real-time reactive systems, which require
"soft real-time" constraints, demand safe programming. One notable concern [31, 39] is the
careless use ofmutable pointers, leading to aliasing issues. For instance, in a C programwith
two pointers pointing to the same memory location, any modification performed by the
first pointer will silently affect the value pointed to by the second pointer. Unfortunately,
the C compiler is not equipped to handle data races, dangling pointers, or prevent use-
after-free scenarios reliably. In response to this problem, various efforts have been made
to mitigate memory errors in the C language, specifically focusing on aliasing control. A
garbage collector is often employed to manage active objects that are no longer in use and
are considered garbage. Additionally, the relationship between dangling pointers and the
garbage collector is defined as follows: the last reference to an object is destroyed with its
garbage [50]. In the context of a language called Cyclone (resembling C but with improved
safety), [37] concentrates on region-based memory management. Each object in Cyclone
belongs to a specific region, and heap regions can be garbage collected. [37] introduces
a static typing discipline to prevent dangling pointer dereferences and space leaks. Their
approach ensures that each pointer is bound to a unique region, thereby determining the
validity of the data being pointed to.

Rust, a statically typed programming language, focuses on three main objectives: speed,
safety and concurrency. It is sponsored by Mozilla and developed collaboratively by a di-
verse community of contributors in an open-access manner. Its standout feature is the
ownership and borrowing system, which sets it apart from other languages. This system
ensures both high performance and memory safety, effectively avoiding the issues often
encountered in languages like C. The type system in Rust guarantees that pointers used
in a program are always valid, a marked departure from the C language’s behavior. This
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is achieved through the concept of unique ownership, which controls aliasing. In Rust,
there are two types of pointers: mutable pointers (&mut T ), which can mutate data and
are unique, and immutable or shared pointers (& T ), which are only allowed to read data
and can be duplicated. Furthermore, each pointer in Rust is bound to a lifetime, defining
its validity throughout the program. These rules, along with others, play a crucial role in
ensuring memory safety. To enforce these rules and guarantee memory safety, Rust em-
ploys static analysis known as "borrow checking". This analysis verifies the adherence to
the ownership and borrowing system, preventing potential memory-related issues.

This chapter begins by providing an overview of synchronous languages, offering de-
tailed outlines of Esterel, Lustre, and Signal. It then delves into the syntax and type system
of Rust. Finally, the chapter concludes by discussing the various efforts made to formalize
the semantics of Rust and demonstrate its safety and reliability.

2 Reactive System

The term "reactive system" was introduced by D. Harel and A. Pnueli [47]. It pertains to in-
formation systems that engage in dynamic interactions with their environment, responding
to external stimuli at a rate determined by the environment [45]. Reactive systems react
swiftly and consistently, capable of bringing about changes in their surroundings. This
is crucial in domains like embedded applications, transportation, mobile systems, human-
machine interfaces, and real-time operating systems. Several reactive programming frame-
works, such as ReactiveX, the Akka toolkit for distributed systems, and the Reactive Man-
ifesto with principles for building reactive systems, have been developed. These systems
employ a combination of asynchronous and synchronous approaches to design and verify
their behavior. The synchronous approach, assuming instantaneous reactions with zero
processing time, is a more recent development and offers several advantages.

3 Synchronous Languages

The synchronous paradigm emerged in the 1980s, coinciding with the rapid growth of
real-time embedded systems in various domains like surveillance systems, multimedia, and
factories. These systems are often critical, necessitating safe and efficient programming
methods. To address these requirements, synchronous languages [17] were developed. The
synchronous approach caters to the needs of real-time systems programming by providing
elegant, simple, and expressive mathematical foundations, enabling efficient formal anal-
yses and property verification. In the synchronous approach, real-time considerations are
abstracted, and reasoning is done on a logical time scale. This logical time is structured as
a sequence of instants, where each instant represents a system reaction, transforming in-
coming information (input signals) into outgoing information (output signals). Signals play
a central role in this reaction calculation and serve as a means of communication among
different components of a synchronous program. Dedicated research conducted by vari-
ous teams, including experts in automation and computer science, has led to the creation
of specialized languages such as Esterel [28], an imperative event-driven and control-flow
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oriented language; Lustre [43], a declarative event-driven and data-flow oriented language;
and Signal [60], a declarative, sample-driven, and data-flow oriented language. Addition-
ally, other formalisms and languages like SyncCharts [9, 85], SL [29], Scade [34], Argos
[64], Reactive-C [27], Lucid Synchrone [32], ReactiveML [63], Zelus [24], and SCCharts
[46] have incorporated further ideas and advancements. In the remainder of this chapter,
we will provide a brief overview of the features of the first three synchronous languages.

3.1 Lustre

Overview

Lustre [43] is a programming language for synchronous data-flow systems developed in
1984, specifically designed for reactive systems that interact with their environments in
real-time. Its inception was inspired by the concurrency model proposed by Gilles Kahn in
the 1970s [54], which was originally intended for describing signal processing systems. Lu-
cid Synchrone [32], another data-flow language, is based on Lustre’s synchronous model. It
was introduced to address the need for extending Lustrewith higher-levelmechanisms. The
primary aim of Lucid Synchrone is to be easily understandable and accessible to control en-
gineers who are familiar with various systems of equations, such as differential equations,
finite difference equations, Boolean equations, etc. These engineers are also accustomed to
working with synchronous data-flow formalisms like block diagrams, analogue networks,
and logic circuits. Furthermore, the data-flow model used in the Lustre language has influ-
enced the development of the industrial language Scade [34], which supports a graphical
version of this language.

Main Concept

A Lustre program consists of a series of modules called nodes, each comprising a set of
equations that determine the values of program variables at each time step. These equations
are commonly treated as "time invariants" [44]. For instance, if we have the equation X =

(X1, X2, ..., Xn) at time n (logical time), the value of the variable X would be Xn. In Basic
Lustre, each variable or expression is referred to as a flow, which represents an infinite
sequence of values. As these flows are described by equations and not assignments, their
order is not significant. Lustre is generally categorized as a mono-clock program, meaning
that all processes within the system share the same logical time scale. Although some
processes may be deactivated at specific instants using clocks, they execute at the same
periodic real-time rate when active. The clock keyword plays a crucial role in Lustre and is
closely related to flows. It is represented as a Boolean that determines when a flow is active
or inactive (i.e., the activation conditions). For example, in Lustre, z = x + y, the flow z is
defined by the expression x + y, indicating that the arithmetic operation extends to flows.
Thus, at any instant t, zt = xt + yt.
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Clock Operators

Lustre not only supports data operators but also temporal operators, encompassing various
operations that define sequential and dependent functions. One essential temporal operator
is the "pre" (short for "previous") operator, acting as memory or delay, allowing Lustre to
retain values from previous cycles. For instance, if we have the flow X = (x0, x1, ..., xn), then
pre(X ) corresponds to the flow (nil, x0, ..., xn−1), where "nil" denotes an undefined value
("uninitialized", similar to imperative languages). To ensure safety, the Lustre compiler
guarantees that data operators cannot be applied to nil.

To establish initial values, Lustre introduced the "->" ("followed by") operator. For flows
X = (x0, x1, ..., xn) and Y = (y0, y1, ..., yn) of the same type, "X -> Y " results in (x0, y1, ...,

yn). The first argument of the resulting flow remains equal to X, while the rest adopts the
values of Y in subsequent instants, effectively concealing the "nil" value introduced by the
pre operator.

In a Lustre program, cycles are employed to compute the value of each variable, leading
to cyclic behavior. However, variables can be defined conditionally, enabling their com-
putation only under specific conditions. Two temporal operators facilitate this: (1) "X =

E when B", where E is an expression and B is a Boolean, produces a sequence of values
of E when the Boolean B is true (i.e., X is computed on clock B). The time of X is then
the sequence of cycles where B is true. (2) The "current" operator allows us to define an
expression E of clock B, and "current(E)" yields the same clock as the Boolean B. For each
cycle of this clock, the computed value is the value taken by E during the last cycle where
B was true.

Importantly, Lustre programs cannot contain syntactically cyclic definitions. An acyclic
equation has a unique solution, ensuring a unique order of static dependence between flows
(topological sorting). For example, "x = x and pre(x)" is cyclic, but "x = y and pre(x)" is
acyclic. Having cyclic equations can lead to causality problems, making it crucial for con-
trol engineers to avoid zero delay loops in their systems to guarantee functional behavior,
as specified in Esterel for reactive and deterministic programs to be logically correct and
constructive. Here is a Lustre example illustrating the equations provided below:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Y1 =
X1

2

Yn =
Xn +Xn−1

2

node filter (i: real) returns (o: real);

let

o = (i + 0 -> pre(i))/2;

tel

Table 2.1: Example in Lustre with corresponding equations
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3.2 SIGNAL

Overview

SIGNAL [60, 19, 8] is a declarative synchronous language specifically designed for spec-
ifying real-time systems [18, 19]. Similar to Lustre, SIGNAL is a data-flow language that
handles infinite sequences of typed values, known as signals instead of flows. However,
SIGNAL differs from Lustre in its extensive utilisation of the concept of absence of sig-
nals. In SIGNAL, clocks can be explicitly defined as first-class objects, allowing for greater
flexibility. Additionally, SIGNAL permits the interconnection of clocks within the same
program. For example, the expression "z = x default y" denotes that the clock of z is
the union of the clocks of x and y. This feature makes SIGNAL a multi-clock language,
while Lustre, in comparison, is a single-clock language where all clocks are sub-clocks of
the program’s base clock.

Main Concept

In SIGNAL, the fundamental building blocks are known as signals, which are represented
by ordered sequences of values of the same type. These values are implicitly indexed on a
discrete logical time, where the logical time is considered a partially ordered set [20]. This
logical time determines the clock of a signal, defining the set of instants when the signal is
present.

Within SIGNAL, there are specific signals known as pure signals, which solely represent
their presence and have an event type. When two signals share the same clock, they are
termed synchronous signals. A SIGNAL program comprises equations that define local
and output signals as block diagrams. Each signal is associated with a clock, and its value,
whenever present, must be well-defined. The sum of the clocks of the signals involved in a
program forms its activation clock.

Interconnections between signals in SIGNAL are established using operators, enabling
the creation of new signals and more. The clock model is integral to SIGNAL’s system
of equations. Therefore, the SIGNAL compiler ensures that the clocks of signals are well-
defined, consistent, and free from circular references. This verification process, known as
clock calculus, synthesizes the order of calculation to enhance the program’s execution
efficiency.

Signal Operators

The SIGNAL core language consists of a concise set of primitive constructs (operators) that
each defines its own meaning and imposes constraints on clocks and evaluation order, i.e.,
causality:

• z := x op y. Similar to Lustre [43], these operators are mono-clock. For example, an
operation like "z := x+y" requires z, x, and y to have the same clock, meaning they
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need to be present simultaneously. These operations extend instantaneous relations
to relations dealing with flows, where ∀ t, zt = xt + yt.

• y:= x$1. This operator is specific to the SIGNAL language and enables access to past
values of a signal. Similar to the previous operator, it requires the input signal and
output signal to be present simultaneously. Consequently, the output signal y is de-
layed by one step ($1) with respect to the input signal x. Additionally, for initialisa-
tion, y := x$ init x0 is introduced, where x0 denotes a constant.

• z := x when b (b is boolean). This is a multi-clock operator that results in an event-
based downsampling of signals. Specifically, the output signal z is equal to signal
x when both x and b are true. Otherwise, z is not generated. The example below
illustrates the behavior of the when construction. It is important to note that we use
"⊥" to indicate the absence of data:

b ∶ ff tt ⊥ ⊥ tt ff ⊥ ff

x ∶ x1 x2 x3 ⊥ x4 ⊥ x5 ⊥

z ∶ ⊥ x2 ⊥ ⊥ x4 ⊥ ⊥ ⊥

• z := x default y. This is a multi-clock operator that enables a deterministic merging
of two signals. The output signal z is the combination of the input signals x and y.
In essence, this operation is deterministic, with priority typically given to signal x.
If x is present, z will take its value; otherwise, if y is present, z will adopt the value
of y. Conversely, if neither x nor y is present, z will be absent. The example below
illustrates the behavior of the merge construction:

x ∶ x1 ⊥ ⊥ x2 x3 x4 ⊥ x5

y ∶ ⊥ y1 ⊥ y2 ⊥ y3 ⊥ y4

z ∶ x1 y1 ⊥ x2 x3 x4 ⊥ x5

• p ∣ q. This is a communication operator that allows two programs, p and q, to com-
municate by sharing the same signals. For example: z := x + y ∣ x := z $ init a. Here,
’a’ represents a constant value. The result is as follows:

zt = xt + yt and
xt = zt−1 such that x1 = a and t ≽ 1

As a result: zt = zt−1 + yt and z0 = a.

3.3 Esterel

Overview

Esterel [28, 23, 21], conceived by Gerard Berry in the early 1980s, is an imperative syn-
chronous language that embraces an event-driven style through control-flow description.
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Its primary purpose is to program real-time systems, particularly embedded systems. These
systems operate in response to the dynamic evolution of external processes (e.g., their en-
vironment) with which they interact, requiring precise control over their behavior. Such
systems are subject to temporal constraints [42], making Esterel suitable for real-time pro-
cess controllers, GSM terminals, smart cards, human-machine interfaces, and more.

By contrast with Lustre [43] and SIGNAL [60] languages, which adopt a data-flow
approach [54] using systems of equations to manipulate data flows, an Esterel program
consists of multiple concurrent processes communicating via broadcast signals and orga-
nized into modules. SyncCharts [9], a graphical formalism, is employed for the Esterel
synchronous language, and determinism plays a crucial role in ensuring the control and
correctness of reactive systems. Additionally, it is noteworthy that a commercial version of
SyncCharts, known as Safe State Machine [10], is also available.

Main Concept

In Esterel, signals serve as the fundamental means of communication. Each signal is char-
acterised by a name, a type and a state (either present or absent). At the control level, sig-
nals enable conditional activation of specific parts of the program, known as pure signals.
These signals play a role in controlling the program flow, such as using "present then
else" constructions. Additionally, at the data level, signals act as a mechanism for sharing
valued variables between concurrent processes. These signals are referred to as valuated
signals, and they allow sharing information via emit operations. Through instantaneous
broadcasts, all processes within the signals’ visibility area can access their state, promoting
deterministic behavior. Moreover, in line with the synchronous approach, a signal can only
have one state at a time during an instant, and it is re-evaluated at each instant, reflecting
its event-driven nature.

The Esterel language offers a range of high-level control structures that empower pro-
grammers to implement synchronous reactive systems. Here is a sample list of instructions
used to define the control flow based on signal operations:

• emit S. This instruction is instantaneous and emits the signal S, terminating imme-
diately after emission.

• pause. This instruction suspends the execution until the next instant.

• await S. This instruction suspends the execution until the next occurrence of the
signal S. If the signal S is already present in the current instant, "await immediate
S" terminates immediately.

• present S then p else q end. This instructions checks the presence of the signal S
and executes the instruction p if S is present. Otherwise, it executes the instruction
q.

• signal S in ... end. This instruction declares a local signal S, starting at "in" and
terminating at "end".
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• suspend p when S. In this case, if the signal S is present, instruction p remains in its
state. If S is absent, p is executed for the current instant.

• abort p when S. The statements of the instruction p are killed as soon as the signal S
occurs (i.e., strong preemption). If p terminates, the block terminates as well.

• [ p || q ]. This instruction executes instructions p and q in parallel. The parallel con-
struction completes only when both p and q have terminated. For example, [await
S1 || await S2]; emit S3 indicates that the S3 signal is emitted when both S1 and S2
have been emitted.

• [ p ; q ]. This instruction executes instruction q immediately after instruction p
terminates.

Constructive causality analysis

The Esterel language possesses a notable characteristic known as the "coherence law",
wherein it can react to the absence of a signal in each reaction, ensuring that each sig-

nal undergoes a single evaluation in each instant. This implies that if a signal is absent,
emissions cannot be executed in the current reaction. However, in Esterel, this feature
becomes complex due to the possibility of having several potential emitters for the same
signal. Below, we provide two examples of Esterel programs to illustrate this behavior. In
the first example, we have the relation:

present s1 else emit s2 end (2.1)

Under the synchronous assumption, the state of signal s2 is determined simultaneously
with the state of signal s1. This instantaneous feedback, characteristic of synchronous
formalisms, can lead to issues. For instance, the second example:

present s else emit s end (2.2)

Example 2.2, though syntactically correct, does not hold a meaningful interpretation. Here,
the instantaneous reaction to the absence of signal s results in its immediate emission (with
the else emit s end branch). As per the law of signal coherence, if s is a local signal,
it should not be emitted elsewhere. Consequently, two possible executions arise for this
program: (1) assuming that s is present, then s is not emitted (a contradiction); (2) assuming
that s is absent, then s is emitted (another contradiction). The presence or absence of a signal
at a given instant leads to an incoherent or, more accurately, causally incorrect program.
Similarly, it introduces the possibility of obtaining incorrect programs through the parallel
composition of correct modules. For example, the below program is also non-deterministic:

signal s1, s2 in
present s1 then emit s2 end present
present s2 then emit s1 end present

end signal

(2.3)

Over the years, numerous solutions have been proposed to address the issue mentioned
earlier in Esterel, known as "causality cycles." The objective is to accommodate the widest
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range of programs that exhibit "reasonable" behavior. For instance, in a study by [23], a
program is deemed logically correct if, for any stage of its execution (i.e., for any sequence
of inputs), there exists only one evaluation of its signals that adheres to the signal con-
sistency law. This ensures a deterministic execution without any possibility of deadlock.
Another approach, known as the constructive semantics [21], draws inspiration from digi-
tal circuits and three-valued logic. It avoids making assumptions about the presence state of
signals. Instead, this approach employs pre-determined information and performs a sym-
bolic execution to ascertain which signals can no longer be transmitted. Such a program
is referred to as constructive, where the behavior is determined systematically based on
symbolic execution.

The Esterel "causality cycles" problem has been investigated and as a result the pro-
posal of several synchronous languages was born. One such language is SL (Synchronous
Language) [29], which is based on Esterel’s semantics but introduces a new approach to
solve the issue. In SL, a signal is considered absent under the condition of a construc-
tion (if/else), which delays the evaluation of the else branch to the next instant. This
approach ensures that a signal cannot be simultaneously present and absent, avoiding con-
flicting states. Subsequent research has led to the development of several synchronous
programming paradigms based on the SL language, such as SML (SugarCubes [25]) [81],
ReactiveML [63], Scheme [62], and Reactive-C [26]. The latter Reactive-C, proposed by
Boussinot, aimed to improve the C language by incorporating reactive systems similar to
Esterel, while avoiding the "causality cycles" problem. Similar to SL, Reactive-C resolves
the issue by delaying the time following the reaction to the absence of a signal. This is
achieved by introducing new instances of reactive procedures, which are utilised dynami-
cally in concurrent execution. Reactive-C introduces a concept called "Fairthreads", which
sets it apart from other formalisms relying on standard parallel operators adapted to in-
stants. Fairthreads demonstrate efficiency by sharing a memory between threads without
overhead. Additionally, they can be executed cooperatively when linked to a scheduler
or preemptively (unlinked threads). These threads can also dynamically migrate from one
scheduler to another within the same application. In Fairthreads, an application consists
of multiple logical clocks instead of a single clock, as seen in other formalisms like Lustre.
Each clock is associated with a scheduler controlling the fair threads cooperatively linked
to it, allowing simultaneous use of clocks. The program in Listing 2.1 demonstrates the use
of the Fairthreads library through C programming.

1 #include "fthread.h"

2 #include "stdio.h"

3

4 void r (void *id)

5 {

6 while (1) {

7 fprintf (stderr,"Reactive ");

8 ft_thread_cooperate ();

9 }

10 }

11
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12 void p (void *id)

13 {

14 while (1) {

15 fprintf (stderr,"Programming!\n");

16 ft_thread_cooperate ();

17 }

18 }

19

20 int main(void)

21 {

22 ft_scheduler_t sched = ft_scheduler_create ();

23 ft_thread_create (sched,r,NULL,NULL);

24 ft_thread_create (sched,p,NULL,NULL);

25 ft_scheduler_start (sched);

26 ft_exit ();

27 return 0;

28 }

Listing 2.1: Print Reactive Programming with Fairthreads

Listing 2.1 presents a C program using the Fairthreads library. Starting with the main func-
tion, from line 20 to line 28, one scheduler and two fair threads are created using the ft_-
scheduler_create and ft_thread_create functions. These fair threads are linked to
the same scheduler based on the parameters of the ft_thread_create function, and each
executes the r and p functions respectively. Subsequently, once the fair threads and the
scheduler have been successfully created, the scheduler starts using the ft_scheduler_-
start function. On line 26, we call the ft_exit function to prevent the whole program
from immediately terminating. This program is designed to print "Reactive programming!"
at regular intervals. This rhythm is maintained by using the ft_cooperate function, in-
voked on lines 8 and 16. In accordance with the Fairthreads library, ft_cooperate serves
as a way of explicitly relinquishing control to the scheduler operating within it. Note that
an error will be generated if the fair thread is not linked to a scheduler. In the following
Listing, we demonstrate the synchronization of fair threads using events as follows:

1 #include "fthread.h"

2 #include <stdio.h>

3 #include <unistd.h>

4

5 ft_event_t e1, e2;

6

7 void b1 (void *args)

8 {

9 //broadcast e1

10 ft_thread_generate (e1);

11 //wait e2
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12 ft_thread_await (e2);

13 fprintf (stdout,"receive e2\n");

14 }

15

16 void b2 (void *args)

17 {

18 //wait e1

19 ft_thread_await (e1);

20 fprintf (stdout,"receive e1\n");

21 //broadcast e2

22 ft_thread_generate (e2);

23 }

24

25 /*************************************/

26 int main(void)

27 {

28 int c, *cell = &c;

29 ft_thread_t th1, th2;

30 ft_scheduler_t sched = ft_scheduler_create ();

31

32 //create events

33 e1 = ft_event_create (sched);

34 e2 = ft_event_create (sched);

35

36 th1 = ft_thread_create (sched,b1,NULL,NULL);

37 th2 = ft_thread_create (sched,b2,NULL,NULL);

38 ft_scheduler_start (sched);

39 pthread_join (ft_pthread (th1),(void**)&cell);

40 pthread_join (ft_pthread (th2),(void**)&cell);

41 fprintf (stdout,"exit\n");

42 exit (0);

43 }

Listing 2.2: Fairthreads with events

In Listing 2.2, similar to Listing 2.1, one scheduler is created using the ft_scheduler_-
create function, along with two threads created via the ft_thread_create function,
each executing functions b1 and b2 respectively. However, these two threads communi-
cate through events. Consequently, two events are created using the ft_event_create
function and linked to e1 and e2 respectively. Subsequently, within the body of the b1
function, the fair thread promptly generates the e1 event in the scheduler it belongs to via
the ft_thread_generate function. Through this action, e1 will be broadcasted to all fair
threads associated with the same scheduler. The fair thread then implicitly waits for the e2
event, which hasn’t been generated yet, using the ft_thread_await function. The same
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process applies to the b2 function. Finally, the pthread_join function suspends the exe-
cution of the thread call until the fair thread provided as a parameter terminates. Note that
in Chapter 6, we use examples to demonstrate how we translate the MSSL program into
Fairthreads.

While the development of reliable and safe systems is critical, many embedded systems
continue to be implemented in efficient yet "insecure" languages, like C. Such languages
lack memory safety and expose systems to time-dependent errors that go unchecked by
the compilers. To achieve a safe Esterel-like language and avoid unknown vulnerabilities,
the need to replace C with a more reliable language arises. Some languages, like Reactive-
ML, implement garbage collectors for automatic storage management (as an extension of
Ocaml [100]). However, garbage collection introduces significant overhead and is not suit-
able for real-time embedded systems. To address this challenge, Rust is introduced as a
language that combines ownership and region types to manage memory without garbage
collection. Rust ensures safe use of pointers at compile time, providing strong safety for
embedded software. The rest of this chapter will go through into Rust’s type system and
its key characteristics.

4 An Introduction to Rust

In 2006, Mozilla introduced Rust, a modern, secure, concurrent, and convenient systems
programming language. Unlike languages like C, Python, or Java, Rust ensures zero-cost
memory safety without incurring runtime performance penalties. Rust manages memory
internally, avoiding direct memory management functions like calloc or malloc, thereby
preventing the memory-related errors commonly associated with the C languages [31, 74,
39, 40, 13].

While Rust supports both functional and imperative paradigms, it is renowned for its
performance, concurrency, and memory safety. Released as Rust version 1.0 in 2015, it has
undergone continuous development since then. The distinctive feature that sets Rust apart
from other languages lies in its "type system," which plays a pivotal role in addressing
memory trust issues. Rust’s type system is built on two key concepts: Ownership and
Borrowing. These concepts concede developers control over the lifetime of data and the
ability to manage mutations, ensuring safe memory usage.

The foundation of Rust’s type system is influenced by the works of [33, 71, 58], focusing
on linear types and ownership, and [41, 37], emphasizing region-based memory manage-
ment. In this section, we present a subset of Rust, thoroughly examining Rust source code
through various examples. We will introduce the most important syntax constructs and
key concepts of Rust’s type system, which will be essential for the subsequent parts of this
thesis. For a comprehensive introduction to Rust, we recommend The Rust Programming
Language [84], an introductory book authored by the Rust developers.
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4.1 Syntax of Rust

Rust is primarily considered an imperative language. Specifically, local bindings are created
using the "let" keyword, and by default, they are immutable. To obtain mutable bindings,
the "mut" keyword is employed. Additionally, these local variables are stored in the stack
by default:

1 //creates an integer on the stack and binds it to x;

2 //by default, x is declared as immutable.

3 //this means that it cannot modify its content;

4 let x: i32 = 1;

5 //error: cannot assign twice to immutable variable;

6 x = 5;

7 //creates an integer on the stack and binds it to y;

8 //y is declared as mutable;

9 //then the content of y can be modified;

10 let mut y: i32 = 1;

11 //ok!

12 y = 5;

Listing 2.3: Creation of new Bindings

Listing 2.3 demonstrates the creation of two local variables: x, which is immutable by de-
fault (i.e., cannot be modified), and y, which is mutable using the mut keyword (i.e., can
be modified). Similar to C/C++, Rust includes concepts of integers, unsigned integers, and
floats. However, the syntax for these types is different. In Rust, signed integers are denoted
by i and unsigned integers by u, and these types are explicitly sized with 8, 16, 32, or 64.
For instance, u8 represents an 8-bit unsigned integer, and i16 represents a 16-bit signed
integer. Rust also provides two forms of floating-point size: f32 and f64.

Besides local bindings, Rust incorporates several familiar elements found in other pro-
gramming languages. These include structs, traits (comparable to Java’s interfaces),
enumerations, lambda functions, and modules.

1 // struct

2 struct Circle {

3 a: i32,

4 b: i32,

5 }

6 //enums

7 enum Option<T> {

8 None,

9 Some(T),

10 }

Listing 2.4: Destructuring Structures and Enumerations in Rust
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In Listing 2.4, we define a type called "Circle", which consists of two integer fields: a and
b. In Rust, product types (i.e., structs) resemble C/C++ structs, where each struct
contains a set of fields that can be accessed using the dot operator. Furthermore, Rust uses
enumerations (enums) to define sum types, and they are declared using the "enum" keyword.
An enum can have one ormore variants, and each variant has a constructor that takes a fixed
number of arguments with specified types. In Listing 2.4, we showcase an enum named
"Option<T>", where "T" represents a generic type parameter, making it suitable for any
type. This enum defines two variants: "Some" and "None". Also, in Rust, an optional value
can either have a specific value represented by "Some" or no value at all represented by
"None" (equivalent to NULL in some other languages). In addition, Rust provides additional
pre-defined enums, such as "Result", which is often used to represent the outcome of an
operation. The "Result" enum has two variants: "Success", which denotes a successful
result, and "Failure", which indicates an error message.

When it comes to functions, Rust utilises the "fn" keyword for both definition and dec-
laration. Similar to other programming languages, Rust functions can take one or more
arguments and can have a return type specified using the "return" keyword, although it is
not mandatory. Below is an example showcasing the declaration of a function in Rust, as
seen in Listing 2.5:

1 //declaring a function without arguments and return value;

2 fn hello() { println!("Hello World!"); }

3 //declaring a function with an argument and a return value;

4 fn foo(mut x: i32) -> i32 {

5 return x;

6 }

Listing 2.5: Declaration of a function in Rust

Regarding control flow structures, Rust employs a syntax similar to Java and C for con-
structs like "if," "while", "loop", and "for". Additionally, akin to the switch statement in
C++, Java, and JavaScript, Rust offers a "matching" expression, which is simpler and more
practical compared to intricate if/else constructions. For instance, consider the following
example:

1 let x = Some(5);

2 //pattern matching to test for the Value of x Being 0 or not;

3 match x {

4 Some(0) => println!("Ok!"), //result of the pattern;

5 // result of this pattern is y = 5

6 Some(y) => println!("Default case, x = {:?}", y),

7 // the default option;

8 _ => println!("Error!"),

9 }

Listing 2.6: Pattern Matching in Rust

Listing 2.6 showcases several syntax differences, where we utilize "⇒" to transition from
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the corresponding value to the expression that should be executed. Furthermore, the last
match ("arm") serves as an optional default or wildcard case. Apart from matching strings,
integers, and other data types, we can also match variants of enums, structs, tuples,
and references. Referring back to Listing 2.4, where the Option enum was introduced,
it is commonly used to check if an element is "None" before performing operations on it,
essentially testing whether T is None (similar to NULL) or not. However, when dealing with
a value of type Option<T>, a question arises: how to extract the value of type T from a
Some variant in order to use it? In such cases, the match expression proves useful as it
automatically handles the internal T value if we have a Some(T) variant.

In conclusion, we have provided an overview of a subset of Rust’s syntax. Moving
forward, we will now delve into the feature set of the Rust type system.

4.2 Affine Types and Ownership

After addressing the memory safety issue, particularly aliasing, which affects the confi-
dence level [31, 74, 39, 40], Rust distinguishes itself from most other programming lan-
guages by its specific memory model: "unique ownership". This distinctive feature grants
Rust an efficient memory safety. The literature suggests that Rust’s unique ownership bears
similarities to affine systems [94], where each variable is limited to being used at most once
[75]. In the case of Rust’s affine types, they ensure that each value possesses a single unique
owner. Unlike languages like C, Rust manages aliasing through move semantics and em-
ploys affine types to prevent it. The following example demonstrates how Rust effectively
handles "unique ownership":

1

2 fn hello(mut str3: String){

3 //ensuring Safe String mutation: exclusivity of access by "str3"

4 str3.push_str(" World!");

5 println!(str3);

6 }

7

8 fn main(){

9 //dynamic memory allocation for Strings on the heap;

10 let mut str1: String = String::from("Hello");

11 //transfer ownership of "str1" to "str2"

12 let mut str2 = str1;

13 //str1 is now statically inaccessible, and logically uninitialized

14

15 //transfer ownership of "str2" to "hello" function

16 hello(str2);

17 //str2 is now statically inaccessible, and logically uninitialized

18 }

Listing 2.7: Rust’s Approach to Mutability and Move Semantics
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As previously mentioned and evident in Listing 2.7, Rust’s ownership system encompasses
two crucial aspects: (1) control over where and when data exists, and (2) control over where
and when mutation is allowed to occur. In this specific example, local variables are im-
mutable by default, and the mut keyword grants the owner the ability to modify their val-
ues. In the listing, a new string is created and bound to str1 on line 10, thereby establishing
str1 as the owner of the newly created string. The use of the mut keyword indicates that
the value can be read from and written to by str1. On line 12, the ownership of str1 is
moved to the new variable str2 (directly moving the value out of the identifier). Conse-
quently, str1 relinquishes the ownership of its contents, and now str2 becomes the new
owner of the value. As a result, str1 is no longer accessible; this is the essence of the "move
semantics" mechanism. This behavior applies even when moving variables as parameter
values in a function (e.g., line 17).

The concept of unique ownership in Rust ensures that any value in a Rust program has
only one owner, and this unique ownership is maintained through Rust’s move semantics.
In simple terms, when a variable holds a value in memory and is assigned to another vari-
able or passed to a function, the ownership of the value is transferred to the new location.
Consequently, the previous location loses access to the value, while the new location gains
the ability to read and modify it. At any given time, only one location in memory has access
to the contents of a value, granting the owner exclusive access control (preventing aliasing).

In addition tomove semantics, Rust’s type system also provides an alternative for unique
ownership called "copy semantics". For example, primitive types like integer and Boolean
have copy semantics. When an integer value (e.g., i32) is assigned to another variable, a
deep copy of the contents is created, and the original value remains valid. The Rust type
system infers affine types to protect other types (e.g., structures, enumerations, vectors,
strings, etc). These types can implement copy semantics if their contents also support copy
semantics recursively. Otherwise, they default to move semantics. To achieve copying be-
havior for data structures, Rust offers the Clone trait feature, where all types used in the
structure definition must also implement Clone.

1 //declaring a Circle struct;

2 struct Circle{

3 name: String

4 a: i32,

5 b: i32,

6 }

7

8 fn main(){

9 //instantiates a Circle struct and assigns it to "circle";

10 //circle owns their content

11 let mut circle = Circle{

12 name: String::new("origin"),

13 a: 0,

14 b: 0};

15 //the field "circle.name" is moved to "point";
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16 let mut point = circle.name;

17 //error: read a partial move location;

18 println!("circle :{:?}", circle);

19 }

Listing 2.8: Partial Moves in Rust

Rust not only supports move semantics but also offers "partial move semantics", allowing us
to move specific parts of a data structure. In such scenarios, the data is treated as partially
moved. Referring to the aforementioned Listing 2.8, on line 16, we observe a field (name)
being moved from circle to point (i.e., the type of name has move semantics). After
this line, the Rust type system considers the circle type as "partially moved" because it
contains a field that has been moved. Consequently, although the other fields of circle
remain accessible, the entire instance of circle cannot be used. This is why line 18 results
in a compile-time error.

4.3 Memory Management

In the context of memory management, Rust uses the special concept of ownership, which
is defined by a set of rules. As mentioned earlier, each value in Rust must have a variable
as its owner, meaning that at any given time, there can only be one owner per variable.
When the owner goes out of scope, its destructor is automatically called, freeing the asso-
ciated resources and releasing the memory used by values on the stack or the heap (values
created on the heap will be discussed later). This approach ensures that memory is not re-
leased manually, and there is no need to worry about memory leaks, as is often the case in
languages like C. For instance, in Listing 2.7, the value of "str3" is automatically removed
as soon as the execution of the method is finished. Similarly, in Listing 2.8, when the owner
"point" goes out of scope as shown on line 19, its value is automatically deallocated. Unlike
languages with garbage collectors, Rust does not rely on such mechanisms. Instead, own-
ership rules are checked and enforced by the borrow checker, and the destructors of each
variable in a program are automatically called at runtime. This design choice eliminates the
overhead or pause time caused by a garbage collector and, in turn, achieves robust memory
optimization [50].

4.4 Rust’s Borrow Checker

According to "The Rust Programming Language" book [84], Rust’s ownership model oper-
ates as an intermediary model that meticulously monitors the usage of data within the pro-
gram. When dealing with a particular variable, programmers have three options: (1) mov-
ing the variable (data) itself, (2) making a copy of it, or (3) temporarily borrowing it while
keeping track of its ownership (refer to section 4.5). Tomanage and enforce these ownership
rules, Rust employs a crucial mechanism known as the "borrow checker", which possesses
a special flow-sensitive nature. By analyzing the data traces, the borrow checker ensures
the enforcement of unique ownership and verifies borrowed references, as explained in
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Section 4.5. Consequently, Rust achieves automatic insertion and release of memory allo-
cations, ensuring memory safety without the need for a garbage collector.

4.5 Regions and Borrowing in Rust

Rust’s first feature in its type system tackled the problem of aliasing by introducing default
move semantics. However, constantly moving values on every access is not practical. To
maintain practicality while addressing the issue, Rust’s type system provides a second fea-
ture: "borrowing". Although borrowing is more restrictive than unique ownership, it is a
crucial aspect when sharing data.

Rust’s primary goal is to prevent memory errors, especially those arising from refer-
ences, such as use-after-free and dangling pointers seen in the C language. While Java’s
garbage collection resolves such issues related to memory allocation, Rust has introduced
its own solution based on regions, drawing inspiration from languages like the Cyclone
programming language [95, 88, 37, 41, 37]. Tofte and Talpin [93] introduced the concept of
regions, where each reference is associated with a region of the program. Within a region,
a reference remains valid, and the compiler ensures that the reference does not outlive its
associated region, guaranteeing valid values at every usage. This reference verification is
performed statically at compile time by Rust’s borrow checker, eliminating the need for a
garbage collector.

In Rust, regions correspond to lexical scopes (pairs of matching braces) and are known
as "lifetimes". There are two implementations for lifetimes: the original implementation
based on lexical scopes (lexical lifetimes) and the newer one called non-lexical lifetimes
[67], which provides more flexibility and accepts a wider range of programs. While lexical
lifetimes are straightforward and have been implemented since Rust version 1.0, they are
sufficient for most needs.

Rust introduces a distinction between two kinds of references: "shared references" (im-
mutable references) and "mutable references" (unique references). To retain Rust’s main
objective, mutable references impose certain restrictions on their usage. Shared references
borrow data immutably for the lifetime of the reference, allowing only read access but no
modifications. The borrow checker permits multiple immutable references to the same data
since reading a value does not lead to modifications [101]. Additionally, the owner of the
data is not allowed to modify it as long as it is borrowed as immutable (during the lifetime
of the references). Consequently, the borrow checker enforces that only read access to the
data is allowed. In Listing 2.9, we will explore an example of immutable references:

1 struct Circle{

2 a: i32,

3 b: i32,

4 }

5

6 fn main(){

7 //creating a struct Circle and bind it to the variable "circle";
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8 //circle: exclusively owning its contents

9 let mut circle = Circle{

10 a: 0,

11 b: 0};

12 //c1 borrows the circle.a field immutably;

13 //circle cannot modify the content of a

14 //as long as c1 exists;

15 let mut c1 = &circle.a;

16 //c2 borrows the circle.a field immutably; ok!

17 let mut c2 = &circle.a;

18

19 }

Listing 2.9: Immutable Borrowing in Rust

Mutable references in Rust, unlike immutable references, have the ability to modify the
content they point to. However, to adhere to the principle of unique ownership (where only
one variable can modify data at a time) and avoid concurrent and potentially conflicting
updates, the Rust type system imposes restrictions on mutable references. Specifically, only
one mutable reference to the same data is allowed at any given time. Moreover, during this
period, the data owner is not permitted to read or write the data. From a deeper perspective,
creating a mutable reference can be seen as a temporary transfer of ownership from the
data’s owner to the mutable reference. Consequently, when the reference’s lifetime expires,
the owner regains "read/write" access to its data. The example provided in Listing 2.10
illustrates the use of mutable borrowings.
1 struct Circle{

2 a: i32,

3 b: i32,

4 }

5 fn main(){

6 //creating a struct Circle and bind it to the variable "circle";

7 //circle: exclusively owning its contents

8 let mut circle = Circle{

9 a: 0,

10 b: 0};

11 //c1 borrows the circle.a field mutably;

12 //circle cannot use a

13 let mut c1 = &mut circle.a;

14 //error: circle.a is also borrowed as mutable;

15 println!("cricle: {:?}", circle.a);

16

17 println!("cricle: {:?}", c1);

18 }

Listing 2.10: Mutable Borrowing in Rust
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In Listing 2.10, on line 13, creating a mutable reference for the fields of the struct "circle"
results in the ownership of the value of "circle.a" being transferred to the reference "c1"
as long as it remains active (i.e., in scope). Consequently, circle.a cannot be used in any
way while c1 is still in scope. As a result, a compile-time error occurs on line 15.

Another limitation imposed by the borrow checker is preventing data from being bor-
rowed simultaneously as both mutable and immutable. This restriction is illustrated in the
provided Listing 2.11:

1 struct Circle{

2 a: i32,

3 b: i32,

4 }

5

6 fn main(){

7 //creating a struct Circle and bind it to the variable "circle";

8 //circle: exclusively owning its contents

9 let mut circle = Circle{

10 a: 0,

11 b: 0};

12 //c1 borrows the circle.a field immutably;

13 let mut c1 = &circle.a;

14 //c2 borrows the circle.a field mutably;

15 //error:cannot borrow circle.a as mutable

16 //because it is also borrowed as immutable;

17 let mut c2 = &mut circle.a;

18 println!("cricle: {:?}", *c1);

19 }

Listing 2.11: Special Scenarios in Rust’s Borrow Checker

In scenarios where (1) multiple mutable references or (2) a mutable and an immutable ref-
erence exist at the same memory location simultaneously, unexpected errors like data races
may occur. For instance, if a value is shared between two threads, one reading the value
from a shared reference while the other is modifying it via a mutable reference, it could lead
to spurious data inconsistencies. Borrowing consistently imposes restrictions on the owner
of the value, whether it is mutable or immutable. If the value is borrowed immutably, the
owner will also have immutable access to it. However, the value cannot be written ormoved
while the borrowing is in effect. On the other hand, if the value is mutably borrowed, the
owner cannot read or write until the reference is dropped. These restrictions play a crucial
role in maintaining memory consistency and avoiding potential data hazards.
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4.6 Dynamic Allocation in Rust

By default, all values in Rust are allocated on the stack, provided the compiler can determine
their size. However, in cases where the size of the value cannot be determined at compile
time, Rust requires us to allocate the values on the heap. This dynamic allocation can be
achieved through various methods such as using Vec<T>, String, Box<T>, and more. For
instance, Vec<T> represents a resizable array type, different from the fixed-size arrays in C
(e.g., array[length]), where the size must be specified at creation. Since Vec<T> has an
arbitrary size, it cannot be stored in the stack and must be dynamically allocated.

Rust shines over other languages due to its unique ability to dynamically allocate mem-
ory without requiring manual deallocation as in C or a garbage collector as in Java. This
feature ensures that the responsibility of deallocating data allocated on the heap is not on
the programmer. In Rust, memory deallocation is triggered automatically when, for exam-
ple, the owner of a Box<T> goes out of scope, freeing the memory on the heap by invoking
its destructor. This thesis focuses specifically on the Box<T> type, which creates a unique
reference to a value of type T allocated on the heap, offering automatic memory manage-
ment and deallocation without extra manual intervention.

4.7 Exploring Concepts of Lifetimes in Rust

As previously detailed, every variable in Rust, whether it is a reference or not, has a lifetime.
Generally, the lifetime of each owner is the scope in which it is created. However, according
to [67], the lifetime of a reference begins when the reference is created and ends when the
reference is last used. Each reference in Rust is annotated with a lifetime, providing the
compiler with information on how long a reference can be safely used.

The initial implementation of lifetimes in Rust focused on lexical scope, where the life-
time of each variable, reference, or not, typically lasts until the end of the block containing
it. In contrast, the newer implementation, known as Non-Lexical Lifetimes [65] (or Polo-
nius), aims to be as short as possible and more accurate. Lifetimes are computed to form
the minimal set of program points required to satisfy all constraints imposed by the borrow
checker. Consequently, the borrow checker can determine that borrows have shorter life-
times than the containing scope. As an example, following the Non-Lexical-Lifetime (NLL)
concept, in Listing 2.10, the lifetime of "c1" starts upon its creation (line 13) and concludes
when "c1" is last used (line 17). However, if we consider the same example and eliminate
line 17, the program executes without encountering any errors. For the purpose of this
thesis, we have followed the concept of the first implementation, lexical lifetimes, as it is a
more straightforward approach to develop and aligns with our intended objectives.

4.7.1 The Significance of Rust Lifetimes

Regarding the concept of the Rust ownership model, specifically "borrowing", the borrow
checker plays a crucial role in managing memory allocation and deallocation. It ensures
that references do not point to memory that has been released by checking lifetimes at
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compile time. As a result, borrowers must ensure that valid references remain valid every
time they are used. Paying attention to lifetimes becomes particularly important when
returning references from functions and when creating data structures with references.

In essence, lifetimes serve as a mechanism to inform the borrow checker about the va-
lidity of a reference. Based on the information provided by this mechanism, the borrow
checker enforces the lifetime rules, ensuring that the reference remains accessible for at
least the desired duration. This process guarantees that references are handled appropri-
ately and safely throughout the program’s execution.

4.7.2 Generic Lifetime Parameters in Rust

The lifetime notation in Rust reveals that all references come with attached lifetime pa-
rameters as part of their type. This feature becomes particularly convenient for complex
scenarios where the borrow checker cannot infer the validity of borrows, such as in func-
tions. To address such cases, Rust introduces lifetime parameters, also known as generic
lifetimes, which are typically denoted using simple lowercase letters, starting with ’a, ’b,
and so on.

1 fn foo<’a, ’b>(x: &’a i32, y: &’b i32) -> &’b i32{ return y;}

2

3 fn longest<’a>(x: &’a i32, y: &’a i32) -> &’a i32{

4 if x > y {

5 x

6 } else {

7 y

8 }

9 }

Listing 2.12: Function Declarations with Lifetime Parameters in Rust

In Listing 2.12, we define two functions: foo and longest. The foo function takes two
references to integers as parameters and returns one reference. In the function signature,
we will notice new arguments denoted as ’a and ’b, which are lifetime parameters used to
bound the lifetimes of the input and output.

When dealing with the foo function, the Rust type system binds the second argument
"y" to the output reference during compile time. It enforces the rule that a reference cannot
outlive the object it refers to, ensuring that the reference is created after the creation of the
object and destroyed before the object itself is destroyed. The Rust compiler considers the
return type of the function to be a subtype of y, meaning it outlives itself (i.e., reflexivity).
Technically, a lifetime is not a type that can be constructed as an instance, unlike regular
types such as i32, Box, Vec, etc. However, in the context of a function signature, lifetime
parameters are used as type parameters. For example, the type of y is not just a reference
to an integer; it also includes its lifetime. Moreover, we cannot assume that the return
type is a subtype of "x", as the Rust compiler lacks information about whether a lifetime
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’a is a subtype of a lifetime ’b (i.e., whether ’a completely encloses lifetime ’a: ’b).
Consequently, the function body cannot return x using the same return signature.

Moving on to the "longest" function in Listing 2.12, we observe that its return signature
is a subtype of both x and y. As a result, the Rust compiler infers that the return type is
the union of the types of x and y. However, for memory safety, the lifetime of the return
type is determined to be the minimum lifetime of x and y during the function invocation,
adhering to the concept of minimizing the cases to ensure memory safety.

4.7.3 Lifetime Elision in Rust

In Rust’s type system, we are required to explicitly introduce lifetime annotations for ref-
erences in function arguments or data structures when the lifetime of reference parameters
and return types cannot be inferred by the compiler. However, to reduce the burden of
annotations, Rust allows for the elision of lifetime parameters in certain common scenar-
ios. For example, when a function does not return a reference or when there is only one
reference input parameter, etc.

This process of minimizing annotations is governed by "lifetime elision rules," which
are built into the Rust compiler. These rules facilitate the automatic omission of certain
lifetime annotations, simplifying code without sacrificing safety. However, it is essential
to note that the elision rules do not provide complete inference. If the rules are applied
deterministically, but ambiguity remains regarding the lifetime of references, the compiler
will be unable to determine the lifetime of the remaining references, leading to an error.

1

2 fn foo(x: &i32, y: u32){...} //lifetime elided

3 fn foo<’a>(x: &’a i32, y: u32){...} // expanded

4

5 fn bar(x: &i32, y: u32)->&i32{...} //lifetime elided

6 fn bar<’a>(x: &’a i32, y: u32)->&’a i32{...} // expanded

7

8 fn foobar(&mut self) -> &mut T {...} // elided

9 fn foobar<’a>(&’a mut self) -> &’a mut T{...} // expanded

10

11

12 fn f_foo(x: &i32, y: &i32){...} // illegal

13 fn b_bar(x: &i32, y: &i32)->&i32 {...} // illegal

14 fn f_b_foo(x: i32, y: i32)->&i32 {...} // illegal

Listing 2.13: Function Declarations with Elided Lifetime Parameters in Rust

In the absence of explicit annotations, the Rust compiler applies three rules to determine
reference lifetimes:

1. Each parameter that is a reference gets its own lifetime parameter. For instance, in
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Listing 2.13, the "foo" function, which has one reference parameter, obtains a lifetime
parameter.

2. When there is only one elided lifetime in the input, it is associated with all elided life-
times in the output. In the "bar" function shown above, which has a single reference
parameter, the return type lifetime takes the same lifetime as the input.

3. If there are multiple elided lifetimes in the input, but one of them is associated with
"self" or "mut self", it is then associated with all elided lifetimes in the output. This
rule is illustrated in the "foobar" function in the given Listing.

In cases where these rules do not apply or ambiguity persists, explicit lifetime annotations
are necessary.

4.8 State Sharing in Rust

To prevent memory issues, particularly data races, Rust’s ownership and borrowing con-
cept disallows aliasing and mutation simultaneously. This is crucial when multiple threads
access the same memory location in an unsynchronized manner, with one thread reading
and another writing. Rust offers various concurrency mechanisms for implementing mul-
tiple threads, maximizing performance, and ensuring robustness with fewer errors. Conse-
quently, Rust is inherently thread-safe by default.

To achieve controlled aliasing and mutation, Rust provides a synchronization mecha-
nism called a mutex. A mutex allows interior mutability in a thread-safe manner, enabling
the sharing of a value among multiple threads. When a thread takes ownership of a mutex,
it can safely use the data within it. After completing its tasks, the thread releases the lock,
preventing other threads from accessing the data simultaneously. The use of mutexes is a
fundamental requirement in Rust’s type system to ensure a thread-safe environment and
prevent data races.

Another feature of Rust’s type system is the provision of shared ownership between
multiple threads to optimize memory usage. The smart pointer Rc<T> allows shared own-
ership of an immutable value of type T allocated on the heap, functioning similarly to a
Box. The clone function creates a new instance of Rc, pointing to the same allocation on
the heap and increasing the number of references. When the last Rc pointer in a given
allocation is destroyed, the value stored in that allocation is dropped.

However, the approach taken by Rc in handling references lacks concurrency primitives
when the counter is increased or decreased, making it non-thread-safe. To address this,
Rust offers another type of reference counting called Arc<T>. Similar to Rc, Arc provides
shared ownership between multiple parts of a read-only program, but the key distinction
lies in being thread-safe due to its "atomic reference counting" nature. Arc utilizes atomic
operations, ensuring that changes to the counter cannot be interrupted by another thread.

To share ownership in a mutable manner, Rust’s type system combines Arc and mutex.
The combination of Arc and mutex allows multiple threads to safely share and modify data.
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The provided example in Listing 2.14 demonstrates how two threads share the same value,
with one thread incrementing it and the other displaying the value, all while maintaining
a thread-safe environment without data races.
1 use std::sync::{Arc, Mutex};

2 use std::thread;

3

4 fn increment_count(mut counter : Arc<Mutex<i32>>){

5 let handle = thread::spawn(move || {

6 //acquire a lock on the shared state in this thread

7 let mut num = counter.lock().unwrap();

8 // mutate the shared state

9 *num += 1;

10 });

11 }

12 fn print_count(mut counter : Arc<Mutex<i32>>){

13 let handle = thread::spawn(move || {

14 //acquire a lock on the shared state

15 println!("Counter: {:?}", *counter.lock().unwrap());

16 });

17 }

18 fn main() {

19 // create a mutex to shared state

20 // Wrap it in an Arc object to share safely

21 let counter = Arc::new(Mutex::new(0));

22 // create an atomic copy of the shared state

23 increment_count(counter.clone());

24 // create another atomic copy of the shared state

25 print_count(counter.clone());

26

27 handle.join().unwrap();

28 //acquire a lock on the shared state and

29 //print it in the main thread

30 println!("Result: {}", *counter.lock().unwrap());

31 }

Listing 2.14: Concurrent Ownership with Multiple Threads in Rust

In Listing 2.14, we create a value ’0’ of type i32 and enclose it first in a mutex to enable
mutability for sharing. Subsequently, we wrap the mutex object in an Arc to ensure atom-
icity across threads. We then call two functions, ’increment_count’ and ’print_count’.
These functions spawn two child threads, each taking a clone of the counter (i.e., a copy of
the pointer that refers to the same piece of data in the heap). Consequently, both threads
will use this shared state, with one thread incrementing the value to ’1’, and the other print-
ing it. After completing the usage of the ’join()’ function, we print the final value of the
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shared state in the main thread. It is important to note that to use the features shown in
the above Listing, they must be imported from the standard library, as they are libraries
and not native language features. In conclusion, this Listing illustrates Rust’s approach to
limiting concurrency features to ensure safety and proper thread management.

4.9 The Unsafe Features of Rust Language

Rust is divided into two languages: Safe Rust and Unsafe Rust. This thesis is centered
around Safe Rust. However, Unsafe Rust [52, 69] is not a safe language; it is simply a su-
perset of Safe Rust. Similar to Safe Rust, Unsafe Rust includes features such as lifetimes,
unique ownership, and other powerful constructs that contribute to building robust pro-
grams. However, unlike Safe Rust, Unsafe Rust does not provide compile-time memory
safety guarantees, although it still maintains some level of safety.

With Unsafe Rust, we have the flexibility to perform unsafe behaviors that are forbid-
den in Safe Rust. For example, in a C program, we can read uninitialized or NULL values,
but with Unsafe Rust, such errors are avoided. While this allows us to work with unverified
data, it also comes with the risk of problems like index exceeding the table size. Unsafe Rust
is essential for providing various operating API systems and enabling certain low-level op-
erations, such as implementing low-level data structures like linked lists or dereferencing
raw pointers, interacting with foreign function interfaces (FFIs), etc. Many standard Rust
libraries include pieces of unsafe operations, but Rust developers ensure that this unsafe
code is properly encapsulated within the APIs. Sometimes, even for experienced program-
mers, it becomes necessary to break the constraints imposed by the Rust type system and
express safe programs that go beyond static checking. In such cases, the ’unsafe’ key-
word is used explicitly in the program, signaling to the Rust compiler to bypass some of its
standard safety checks. However, it then becomes the responsibility of the programmer to
ensure that Rust’s safety guarantees are preserved within the unsafe code. Just like in C,
extra caution and careful handling of the code are required in such situations.

4.10 A Survey of Rust Semantics

Thus far, we have introduced the Rust language. However, to thoroughly analyze the be-
havior of a Rust program, it becomes essential to grasp the underlying semantics and type
system of Rust. This understanding is particularly significant as the main objective of this
thesis is to develop a language with a type system inspired by Rust’s (enabling precise con-
trol over aliasing and mutation). In this section, we explore existing research that delves
into the Rust type system. Several endeavors have been made in the literature to formalize
the semantics of Rust, proposing various models for its type system and establishing proofs
of memory safety and soundness.

Metal. Rusty Types developed by [16] and inspired from the Rust programming lan-
guage, its goal is to achieve reliable memory management by avoiding errors commonly
encountered in C/C++ languages. The Metal language, a practical language, is presented
as a result of the influence of Rust’s ownership and borrowing concepts. Metal models
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ownership and reference invariants as capabilities, where each variable possesses indirect
capabilities on memory locations, based on [35]. These capabilities are represented as K
whereK::= move ∣ read ∣ write. By incorporating this information, the behavior of each
variable is governed when the capability changes, enabling flow-sensitive move type judg-
ments and ensuring memory safety.

Patina. Patina, a significant development by Reed [82], represents the first formal
semantics for the Rust Type System. The primary focus of this work lies in providing
progress and preservation proofs for memory safety, unique pointers, and borrowed ref-
erences within Rust. Central to Patina’s objectives is the establishment of a clear memory
model to ensure Rust’s memory safety properties. Patina also describes how the borrow
checker is able to determine where data needs to be initialized and where it needs to be
freed. It achieves this by defining three layers: inner, intermediate, and outer. The inner
layer is responsible for enforcing safety constraints on references, preventing occurrences
of dangling pointers. The intermediate layer ensures that variables consistently adhere
to initialisation or borrowing restrictions. Finally, the outer layer handles the safety of
variable declarations and guarantees reliable memory deallocation. Moreover, like Box in
Rust, Patina defines a unique pointer using a specific syntax (e.g. x :∼int), incorporating
move semantics to prevent duplicate frees in memory. To further ensure successful mem-
ory deallocation without leaving inappropriate data behind, Patina introduces a "shallow
free" statement. This statement enforces static checks on constraints, preventing the deal-
location of a single pointer that is still borrowed. One notable contribution of Patina is
the introduction of the "shadow heap" concept, which captures information regarding the
initialisation status of memory locations. This work laid the foundation for subsequent
research endeavors focused on formalizing Rust’s ownership and borrowing systems.

Oxide. Oxide, a recent formally-defined programming language developed by Weiss et
al. [97], closely resembles a version of the Rust source code. While Rust lacks a formal spec-
ification for memory layout, especially concerning its unsafe code base, Oxide primarily
focuses on formalizing the property system, particularly the safe aspects of Rust. Libraries
implemented with unsafe code are disregarded in Oxide’s scope. The main objective of the
work is to model ownership and borrowing from Rust’s type system. One of the key mo-
tivations behind Oxide’s development is the adoption of Non-Lexical-Lifetime (NLL) from
the second version of Rust [67]. This feature alters the lifetime of references, making it dif-
ferent from the blocks in which they are created. Instead, the lifetime of a reference starts
upon creation and ends when it is most recently used. As a result of this unique aspect of
Rust, based on regions, Oxide has introduced a new contribution regarding regions to track
aliasing. Oxide proposes a fresh perspective on lifetimes, treating them as an approximation
of "reference provenances" through region-based alias management, represented as sets of
locations. Similar to Rust, Oxide enforces the ownership of use-once variables through the
application of move and copy semantics. Additionally, Oxide adopts the concept of alias-
ing, restricted to references, by introducing shared and unique references with loans [1]. A
unique reference corresponds to zero shared references, while multiple shared references
are allowed with zero unique references. However, this approach also means that during
type checking, the borrower checker will reject inappropriate alias models.

In Oxide, each reference in a program is linked to a region, which represents a collection
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of loans. A loan designates the state that arises when a reference is created. The borrow
checker in Oxide utilizes this region information to analyze if the creation of a reference
complies with the borrowing restrictions. To demonstrate this approach, let’s consider the
following example:

1 struct Circle(u32,u32);

2 // explicitly define a region

3 //’a->{}, ’b->{}

4 letrgn<’a,’b>{

5 let c = Circle(0,0);

6 // create a unique reference with a region " ’a "

7 let x = &’a uniq c;

8 // create a shared reference with a region " ’b "

9 let y = &’b shrd c; // Error

10 *x.0 = 1; // a unique loan is live

11 }

Listing 2.15: Shared and Unique References in Oxide

In Listing 2.15, we introduce a type called "Circle", which consists of a pair of u32 values
(similar to Rust). On line 5, we create a new Circle(0,0) instance and assign it to the
variable c. Following the ownership concept in Rust, we establish that the variable c is the
sole owner of the created value.

Next, on line 7, we create a unique reference to c. In Oxide, when borrowing is initiated,
it includes an annotation for its associated region (already declared on line 3). Moving on
to line 9, we attempt to create a new shared reference to c. Similar to Rust’s Non-Lexical-
Lifetime (NLL) concept, it is not allowed to have a shared reference while the mutable ref-
erence still exists. In accordance with Oxide’s approach, since we have a unique (mutable)
loan for c, attempting to create a shared reference on line 9 results in an error. In Oxide,
the loan consists of a place and an ownership qualifier. The references forms (i.e., shrd and
uniq) serve as ownership qualifiers. For instance, on line 7, when x is created, the region
associated with it, ’a, is mapped to the loan {uniqc}. Then, on line 9, when y is introduced,
the region related to it, ’b, is mapped to the loan {shrdc}. By examining the set of loans,
the borrow checker in Oxide effectively detects any violation of uniqueness for the unique
reference.

The borrow checker in Oxide effectively enforces the reference invariant and is capable
of detecting whether memory parts are moved or not. To represent this information in the
type of a variable, Oxide marks the entire type with a dagger symbol (e.g., c ∶ Circle

†

indicates that the location is dead), which differs from the approach used in Patina [82].
Additionally, Oxide provides a comprehensive set of inference rules and syntax-like safety
proofs using progress and preservation [99]. However, Oxide lacks a clear modeling of
value allocation in the heap. The judgments used in the paper do not explicitly explain
how memory allocated to the heap is modeled. The main focus of the examples in Oxide is
on their novel contribution of "region-based alias management" and how the borrow checker
effectively identifies and handles violations of the appropriation constraints using loans.
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Lightweight. Pearce [73] introduced FR, a lightweight formal programming language
that represents a subset of Rust, encompassing the safe part and including explicit model-
ing of boxes (i.e., heap-allocated memory). Unlike Oxide, FR does not support Non-Lexical
Lifetimes [67]. This work draws inspiration from Featherweight Java [48] to achieve a rel-
atively lightweight formalization of Rust. FR closely resembles Rust 1.0, which introduced
lifetimes based on the lexical structure of programs (i.e., lexical scope). Compared to Rust,
FR closely aligns with Rust’s syntax and supports copy and move semantics, partial moves
(applicable to tuples), the ability to define mutable and immutable references, and explicit
lifetime annotations (e.g., ’a) included in the reference signature, specifically for function
cases. For other cases, such as blocks, all variables declared within a block, including ref-
erences, automatically inherit their lifetimes. Similar to Oxide, FR utilises partial types
(denoted as ⌊T ⌋, where T is a type in FR) and partial values (denoted as v⊥, where v is a
value in FR) in its dynamic syntax. These partial types and values allow FR to statically cap-
ture valuable information about whether a location has been moved or not, helping identify
whether a location is currently undefined. In FR, a reference type can be either a shared
reference type or a mutable reference type. For instance, "&x" denotes a shared reference
type, which makes it easy to identify that x is borrowed as immutable in the environment.
Moreover, FR allows a reference type in the program to refer to multiple locations. For ex-
ample, "&mut x,y" is a reference type indicating that the reference refers to both x and y.
Although this shape might be meaningless in physical terms or not yet possible for the type
system, this information plays a crucial role in enforcing reference safety. The following
example illustrates the application of this idea in FR:

1 {

2 let mut x = 0;

3 let mut y = 1;

4 let mut z = &x;

5 if (x==y){

6 z = &y;

7 }

8 else {}

9 }

Listing 2.16: Control Flow in an FR Program

In FR, variable declarations correspond to mutable locations, and the language emphasizes
mutability to differentiate between the two types of references. In the provided example,
we create two variables, x and y, on lines 2 and 3, respectively. Then, on line 4, we create
a shared reference to x and bind it to z. The control flow on line 5 checks if x == y;
however, during type checking, the type system lacks information about this condition.
Consequently, it cannot determine which branch should be executed at runtime. To address
this, the type system assumes the union of the two branches, resulting in the merge of
the two environments of the if and else statements. This merge denotes the coherent
combination of types presented in these environments (i.e., T3 = T1 ⊔ T2 where T1 ⊑ T3
and T2 ⊑ T3). As a result, after line 8, the type of z refers not only to x (&x) but also to y,
as dictated by the if branch. Thus, the updated type of z becomes &x,y.
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As previouslymentioned, FR’s approach is based on the lexical structure of the program.
This means that every variable declared within a block assumes the lifetime of the outer
block. For instance, in Listing 2.17, the variables x, y, and z have the lifetime of the outer
block (note that the assignment of lifetimes to blocks is designed to reflect their relative
nesting, e.g., {let mut x = 0; { let mut y = 1;}m}l such that l ⪰ m). Consequently, at the end
of a block, all declared variables are automatically deallocated, a behavior enforced by the
type system while handling blocks.

In addition to Oxide [97], FR also provides a clear approach for modeling heap memory
allocation by explicitly introducing the box expression. Similar to Rust, FR treats the box as
a unique pointer (or owning reference) that allows memory allocation on the heap (i.e., the
heap location has only a single owner by enforcing the ownership transfer). On the other
hand, borrowed references (shared/mutable references) are not responsible for memory
deallocation. Instead, owning references are responsible for recursively abandoning the slot
they refer to when they are dropped. It is crucial to consider this difference in the typing
semantics when determining when dropping is appropriate. To highlight these essential
features, consider the following example:
1 {

2 let mut x = box(box(0));

3 {

4 let mut y = &*x;

5 }// the end of the lifetime of y

6 }// the end of the lifetime of x

Listing 2.17: Smart Pointers in FR Program

In the above example, within the outer block, we create a box to box containing the value
0 and bind it to x. Inside the inner block, we create a shared reference to the contents
of x (*x). The lifetime of y terminates at the end of the inner block, and since y has a
borrowed reference value, this means that it is not responsible for the deallocation of the
value it refers to. Otherwise, at the end of the outer block or when x’s lifetime ends, all
the values that x refers to will be deallocated recursively (on line 6). FR also extends its
syntax to include tuples, thus transforming the strictly linear form (e.g. as x in Listing 2.17)
and turning it into a tree form (e.g. let mut x = (box(0), box(0))). Additionally, FR
introduces a valuable mechanism for lifting types from typing environments to signatures:
Γ1 ⊢ (S) � (S) ⇐ (T ) � (T ) ⊣ Γ2. This mechanism enables the computation of
return types while adhering to the constraints of references and their lifetimes, following
the subtyping relation introduced by Rust and its side effects. This mechanism ensures type
compatibility within the function declaration and invocation.
1 fn foo(mut x: &’r mut &’q int, mut y: &’q int) {....}

2 {

3 let mut a = 0;

4 let mut b = 1;

5 let mut c = &a;

6 foo(&mut c, &b);

7 // additional code that uses c
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8 }

Listing 2.18: Addressing Side Effects through Function Invocations in FR

In Listing 2.18 and after the execution of the foo function on line 6, the type of c must be
upgraded from &a to &a,b, as anticipated by the lifting mechanism. The type system has
no knowledge of what may occur after the execution of foo, so it examines the signatures
of the function’s parameters. In this case, x is a mutable reference that can change its
content, and y is a shared reference. Since the content of x is a shared reference with the
same lifetime and type as y, we can claim that ’q int is a subtype of ’q int. This implies
that the type system assumes that, perhaps in the body of foo, we have the statement: *x
= y. The result of the mechanism is: Γ2[a ↦ ⟨int⟩l, b ↦ ⟨int⟩l, c ↦ ⟨&a, b⟩l]. Finally,
this work provides a soundness proof for checking whether the semantic and typing rules
can preserve type safety and reference invariants using progress and preservation [99]. In
conclusion, we have expanded upon this research and introduced a new extension to FR
called FR

FT
. Consequently, the detailed aspect of FR in this section is not exhaustive, as we

intend to provide a comprehensive explanation in Chapters 3 and 4 while presenting FR
FT
.

RustBelt. RustBelt, developed by Jung et al. [52], is a formal semantic model of Rust
that aims to verify the safety and soundness of programs. It primarily focuses on the unsafe
part of Rust, as many standard Rust libraries include appropriately "encapsulated" unsafe
operations. The goal is to prove that any safe Rust program using such unsafe libraries
remains safe for memory and threads. To achieve this, RustBelt introduces a core Rust lan-
guage with a type system called λRust. In comparison with FR [73] and Oxide [97], λRust

is considerably more closely related to MIR [66] than to surface Rust. MIR is the mid-
level intermediate representation of the Rust compiler on which proper borrowing usage
is checked. On the other hand, λRust incorporates the essence of Rust such as: borrow-
ing, lifetimes, and the inclusion of lifetimes. This work has also been implemented in Coq
where it gives a proof by outlining the verification conditions that an unsafe feature must
be satisfied to be considered a safe extension of the language.

The initiative was to prove that a program in Rust is safe even if it contains unsafe
code. While FR and Oxide use the standard "progress and preservation" technique intro-
duced by Wright and Felleisen [48] to prove type safety, RustBelt uses the Coq proof assis-
tant [91] to formally prove the safety of each (new) library that uses unsafe Rust features
since the former technique does not apply to languages where there is an open interaction
between the safe and unsafe parts of Rust. Subsequently, λRust semantics takes a seman-
tic approach to type safety [3, 2, 70]. Additionally, this effort also verified several stan-
dard Rust libraries that use unsafe code as: Arc, Rc, Cell, RefCell, Mutex, RwLock,
mem::swap, thread::spawn, etc. Beyond the RustBelt project [52] , this endeavor has in-
spired other works in the Rust ecosystem. For example, GhostCell [101] is a safe extension
of Rust, providing a zero-cost abstraction for thread-safe interior mutability (akin to Mutex,
RwLock, etc.). The focus of this effort is to provide a new design for interior mutability that
is improved over existing ones. For example, wrapping each list of structs with a Mutex
or Rwlock by sharing it across threads (to keep the mutation safe) leads to unnecessary
overhead for the program because it binds permissions to data. Inspired by this challenge,
this effort avoids this overhead by separating permissions from data with a single permis-

sion. Moreover, various other efforts [90, 53, 51, 61] have emerged, building on the Rust

43



Chapter 2

discipline and aiming to verify safe system programming in Rust.

KRust [96] and K-Rust [55]. They are two distinct works that followed RustBelt,
despite their similar names. The primary objective behind both endeavors was to create
executable formal semantics for the Rust language using the K-framework [83]. However,
they differ in scope and completeness. K-Rust encompasses all the safe libraries of Rust and
fully incorporates the entire Rust type system. On the other hand, KRust focuses on a real-
istic subset of the Rust language, making it more limited in its coverage. Finally, to advance
the task of program verification in Rust, researchers have proposed several approaches that
harness Rust’s type discipline to enable deductive proof, as demonstrated in works such as
[12, 38, 68, 59].
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FRFT Language and its Semantics

Insanity: doing the same thing over and

over again and expecting different results

– Albert Einstein

This chapter focuses on introducing the main objective of MSSL in a reactive syn-
chronous context. Additionally, we present FR

FT
’s syntax, which serves as the cooperative

kernel of MSSL and represent a formal version of the Rust language subset with two exten-
sions for multi-threading. FR

FT
introduces a novel abstraction called Trc, which presents a

challenge in ensuring the safety of shared memory among multiple threads. This challenge
is addressed by combining the reference counting approach with Rust’s standard reference
aliasing constraints. Subsequently, we examine the features of Trc and introduce the op-
erational semantics of the FR

FT
language. Finally, we describe the cooperative operational

semantics of FR
FT
.

Ce chapitre met l’accent sur l’introduction de l’objectif principal de MSSL dans un contexte

réactif synchrone. De plus, nous présentons la syntaxe de FR
FT
, qui sert de noyau coopératif de

MSSL et représente une version formelle du sous-ensemble du langage Rust avec deux exten-

sions pour le multi-threading. FR
FT

introduit une nouvelle abstraction appelée Trc, qui pose
un défi pour garantir la sécurité de la mémoire partagée entre plusieurs threads. Ce défi est

résolu en combinant l’approche de comptage de références avec les contraintes standard de

référencement aliasing de Rust. Ensuite, nous examinons les caractéristiques de Trc et intro-

duisons la sémantique opérationnelle du langage FR
FT
. Enfin, nous décrivons la sémantique

opérationnelle coopérative de FR
FT
.
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1 MSSL, Formally

In this chapter, we present MSSL, a memory-safe synchronous reactive language that fo-
cuses on enhancing the Fairthreads programming model by providing memory safety in-
spired by the Rust language. Similar to Fairthreads, MSSL utilizes cooperative execution
of threads via a round-robin scheduler, accompanied by signals for self-synchronization
among threads. The cooperative scheduling eliminates the need for protecting shared data
with locking primitives. Threads in MSSL are automatically linked to the scheduler and ex-
ecuted cooperatively at the same rate. As depicted in Figure 3.1, the threads reside within
a synchronous area connected to a single scheduler. Each thread is executed one at a time,
while the others wait in a queue, following a cyclic pattern. When a thread finishes its
execution for the current instant, the scheduler passes the control to the next thread in
the queue within the same instant. This cycle of execution repeats until all threads are
completely executed. This programming model offers a high degree of predictability and
determinism in program execution, making it particularly valuable in safety-critical ap-
plications like avionics, automotive systems, medical devices, etc. The scheduler defines
instants shared by all linked threads based on the concept of logical instant, facilitating
automatic synchronization between threads at the end of each instant. The sequence of
instants is represented as a sequence of discrete time steps or cycles. Essentially, a thread
executes until its next cooperation point, at which it relinquishes control to the scheduler.
The cycle time is determined when all threads have completed their execution for the cur-
rently running cycle.

1.1 Synchronized Areas in MSSL

In MSSL, signals are a way of communicating between threads. They offer a powerful and
flexible means of communication throughout the program. Signals can be broadcasted, re-
ceived, and emitted simultaneously, ensuring instantaneous reactions. Additionally, signals
can be either absent or present at any instant. Intuitively, a thread can create a signal with
an absent state by default or emit a signal to make it present. The responsibility of broad-
casting the emitted signals to all other threads lies with the scheduler. In an MSSL program,
every thread executes for an instant until its next cooperation point. This leads to two ways
of defining cooperation points for threads: (1) the explicit way, wherein the thread executes
the cooperation expression (further elaborated later), and (2) the implicit way, where the
thread waits for a signal that has not yet been emitted. In both scenarios, the thread yields
control to the scheduler. It is important to highlight that in the second scenario, the thread
can regain control in the next cycle at the same instant if the awaited signal is emitted later,
even by another thread.

Signal. The concept of signals in MSSL shares similarities with events found in syn-
chronous reactive languages. Moreover, MSSL is distinguished by its memory management
of signals. In MSSL, signals are implemented using reference counting, following the de-
fault copy semantics as in Rust. As a result, threads synchronize with each other using
signals, and each thread can possess a copy of any signal. Due to the reference counting
mechanism, when the counter falls to 1 at the end of the scope, the signal’s destructor
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is automatically called, indicating that it is no longer referenced by any other part of the
program. Note that, in MSSL syntax, we have separated signals from standard values.

Instant. In MSSL, a program is defined as a set of threads (T ) and is composed of
a sequence of instants. At the start of each instant, all executable threads belong to T . As
each thread completes its execution for the current round, it is removed from T and resumes
execution in the subsequent round (cycle). Consequently, an instant is deemed complete
only when all threads in the set T have finished executing for that instant. During an
instant, threads may be either suspended (cooperating), awaiting a signal that has not been
emitted, or have finished executing. However, if a signal is emitted within an instant, the
instant is not finished, and the threads will be executed in another round. This initiates a
new round of execution.

Inter-Instant. MSSL incorporates a form of weak watchdog instruction, which we will
explore in chapter 5 (referred to as weak preemption [29]). This instruction consists of a
signal and a body. Irrespective of whether the specified signal is present, the body of this
instruction is always executed. However, at the end of the current instant, if the body has
not been entirely reduced, we then check for the presence of the signal. If the signal is
emitted, the body of the weak preemption instruction is killed. To facilitate this behavior,
MSSL introduces a new phase known as the "inter-instant" phase, specifically dedicated to
watching. During this phase, the non-terminating body is terminated in each thread.

In the upcoming sections, we dig into FR
FT
, a cooperative kernel of MSSL that operates

without signals. Our proposal extends FR [73] by introducing a novel type of smart point-
ers known as Trc (Thread Reference Counting), which enables cooperativemulti-threading.
Despite this extension, FR

FT
retains key features from Rust’s ownership discipline, includ-

ing ownership, borrowing, re-borrowing, lifetimes, and lifetime inclusion. In contrast to
the full syntax of MSSL, FR

FT
as a language is restricted by the "cooperate" command, a

special form of synchronization. To enhance our comprehension, we initially omit signal-
based synchronization and focus on demonstrating the soundness of the FR

FT
type system

through our contribution, the safety of shared data between threads. The limitation of
thread cooperation until the end of the instant through the "cooperate" command blurs
the distinction between an instant and a round. In this context, an instant concludes when
all threads have finished their execution, either entirely or for the current instant. In the
ensuing sections, we present FR

FT
, starting by highlighting its novelty, followed by intro-

ducing its syntax, and finally demonstrating its operational semantics.

1.2 FRFT’s Latest Breakthrough: the Trc

In comparison to FR [73], FR
FT

introduces two key aspects: (1) it incorporates reactivity
into the language by providing reactive multi-threading instructions, which include threads
spawning and explicit cooperation (see Figure 3.5). (2) One of our primary contributions is
the introduction of a novel type of smart pointer called Trc (Thread reference counting),
specifically designed for inter-thread communication. To facilitate this, any shared data
between threads must be encapsulated in a Trc. This concept emerged from the combi-
nation of the reference counting approach (as it untie from the lexical scope constraints,
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which are necessary for sharing data between different threads) and the standard Rust ref-
erence aliasing constraints (ownership). Consequently, the FR

FT
type system enforces this

property, protecting the shared data from any concurrent corruption. Designing this new
kind of smart pointer presented the challenge of combining sharing and mutability without
necessitating a locking discipline (as in Rust). Specifically, Trc offers three main features:
(1) enabling sharing among threads, (2) ensuring uniqueness of Trc per thread, and (3) en-
suring that a thread cannot possess references to shared data during cooperation. Finally,
Trc pointers can be categorized into two types: (1) active Trc (Figure 3.2) and (2) inactive
Trc (Figure 3.3).

Features of a Trc Smart Pointer

In Figure 3.2, the active Trc, x, is dedicated to Thread 1. It allocatesmemory on the heap, and
x serves as the entry point to the shared part of the heap, allowing read andwrite operations
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Figure 3.4: Ensuring Memory Safety Across Threads

on it. The active Trc provides access to the shared data. Note that data associatedwith a Trc
is automatically allocated in the heap. On the other hand, Figure 3.3 illustrates the inactive
Trc, represented by y. The inactive Trc is a copy of the active Trc x but with a restriction
that it cannot access the shared data in the heap, shown by the shaded area. This restriction
ensures the uniqueness of mutability, as imposed by the Rust type system. Both x and y

share the same data and are associated with the same thread (e.g., Thread 1). However,
Thread 1 can access the heap data over x, but not over y, following the "use_once" variables
approach [14, 15]. An inactive Trc is intended to be communicated to other threads. When
it is communicated to another thread, the inactive Trc becomes active, meaning that only
an active Trc can access the shared data. This transformation is demonstrated in Figure 3.4,
which shows that when Thread 2 receives y (considered inactive in Thread 1’s environment),
it automatically becomes active in Thread 2’s environment.

Nonetheless, many features in FR
FT
closely resemble those in FR. FR

FT
, like FR, is an im-

perative language that embraces copy and move semantics, along with support for mutable
and immutable borrowing, partial moves, and reference lifetimes essential in function sig-
natures. The lifetimes in FR

FT
are primarily determined by the lexical structure of programs,

i.e., the lexical scope. However, the recent versions of Rust have introduced the concept of
Non-Lexical Lifetimes (NLL) [67].

Prior to introducing the syntax of FR
FT
, we will provide an example written in FR

FT
as

follows:
fn bar(mut x ∶ ⬩int) {*x = 1; cooperate; *x = 2}m

{let mut x = trc(0); spawn(bar(x.clone)); let mut y = x.clone; spawn(bar(y))}l

This example showcases the dynamic syntax of FR
FT
, with a "bar" function that takes a

parameter x of type Trc active. The body of the bar function is a block denoted by a
lifetime "m", containing a sequence of expressions separated by semicolons (i.e. e where e
represents an expression). Subsequently, we encounter a block associated with the lifetime
"l", representing the main program. Similarly structured, this block includes a sequence of
expressions:

• let mut x = trc(0): this expression allocates a new active Trc in the heap and
associates it with variable x.
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• spawn(bar(x.clone)): this expression spawns a new thread to execute the bar func-
tion, passing as a parameter an inactive Trc by copying the active Trc x via "clone".

• let mut y = x.clone: the active Trc is copied, and the copy is linked to the variable
y. Consequently, y represents an inactive Trc.

• spawn(bar(y)): another thread is created to execute the bar function, using the in-
active Trc y as a parameter.

Using the Trc extension, the two threads share the same memory region. Then we can
represent this example as follows (Listing ??), demonstrating the source-level expressions
that a user could write:

1 fn bar(mut x: trc<int>) {

2 *x = 1;

3 cooperate;

4 *x = 2;

5 }

6

7 // the main of the program

8 {

9 let mut x = trc(0);

10 // T1

11 spawn(bar(x.clone)); //OK

12 let mut y = x.clone;

13 // T2

14 spawn(bar(y)); //OK

15 }

Listing 3.1: Example FR
FT
at source level

1.3 Syntax of FRFT

In this section, we introduce FR
FT
, a subset of the Rust language featuring a novel pointer

type called Trc. We will start by presenting its syntax and then proceed to examine its
operational semantics. Figure 3.5 introduces the FR

FT
syntax, which is organised into five

main groups: (1) values associated with each memory location (respectively partial values).
(2) Types related to variables (respectively partial types). (3) Lvals representing the names of
memory locations. (4) Actual expressions in the language. Finally, (5) Signature functions.
The final sentence of Figure 3.5 showcases the program layout using the FR

FT
syntax. Now,

let us demonstrate the key features of FR
FT
:

Values. A value in FR
FT

can take different forms, including a special constant ϵ, an
integer n, a Boolean (true/false) or a memory location. A value ϵ is produced by an
expression that finishes, such as the reduction of an assignment expression. According to
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Values v ∶∶= ϵ ∣ n ∣ true ∣ false ∣ ℓ▪a ∣ ℓ⬩a ∣ ℓ⋄a ∣ ℓ◦a ∣ ℓ◦m∶∶x
Partial Values v

⊥ ∶∶= v ∣ ⊥
Types τ ∶∶= ϵ ∣ int ∣ bool ∣ &mut ω ∣ & ω ∣ ⋄ω ∣ ⬩τ ∣ ▪τ
Partial Types τ̃ ∶∶= τ ∣ ▪τ̃ ∣ ⌊τ⌋
LVals ω ∶∶= x ∣ ∗ω
Expressions e ∶∶= v ∣ ω ∣ ω̂ ∣ e ∣ {e}l ∣ let mut x = e ∣ box(e) ∣ &[mut] ω ∣ ω = e

∣ trc(e) ∣ ω.clone ∣ e1 ⊕ e2 ∣ e1 ⊗ e2 ∣ spawn(f(e)) ∣ cooperate
Functions f ∶∶= fn f(mut x ∶ S){e}l
Signatures S ∶∶= ϵ ∣ int ∣ bool ∣ ▪S ∣ ⬩S
Programs p ∶∶= f p ∣ {e}l

Figure 3.5: Syntax of FR
FT

Figure 3.5, we distinguish five kinds of memory locations: (1) a value ℓ▪a denotes an owning
reference as a result of the reduction of box(e) expression, (2) a value ℓ⬩a denotes an active
Trc, which is the result of the reduction of trc(e), (3) a value ℓ⋄a denotes an inactive Trc
obtained through the reduction of ω.clone. Similar to ℓ▪a, we have ℓ

⬩
a and ℓ

⋄
a that also denote

an owning reference. (4) A value ℓ◦a denotes a borrowed reference from a location in the
heap, and a value ℓ◦m∶∶x denotes a borrowed reference from the location of a variable x with
a lifetime m. Note that, ℓa is a location that is not bound to any variable contrary to ℓm∶∶x.
To differentiate the aforementioned, we have added the subscript a. We use the form ℓ to
refer to ℓm∶∶x or ℓa (e.g. ℓ◦ can be either ℓ◦m∶∶x or ℓ◦a). The key distinction between owning
and borrowed references is that owning references are responsible for recursively dropping
their values whereas borrowed references do not.

Partial values. extend values with a special constant (⊥) denoting a moved value,
signifying the need to prevent any reading or writing to an inaccessible memory location
after the move operation. This behavior models the move semantics in FR

FT
.

Types. Types include primitive types ϵ, int and bool, reference types (&mut ω and& ω)
and box types (▪τ ), similar to their counterpart in FR [73]. In the context of types, &mut ω
denotes a mutable reference to the location held of the lvals ω, where ω denotes a list of
lvals (e.g. & x, y, z), while & ω denotes an immutable reference. Additionally, borrowing
types can reference multiple locations, which is crucial for capturing type information and
enforcing borrow invariance in FR

FT
.

The type ▪τ denotes a heap-allocated value of type τ . New types are represented as ⋄ω and
⬩τ . A value of type ⬩τ signifies an active Trc, while ⋄ω denotes an inactive Trc. Similarly
to references, the type of an inactive Trc may refer to several paths (e.g. ⋄x, y).

Partial types. We use the notation ⌊τ⌋ to represent partial types, indicating that one
or more components of the type are currently undefined. This notation is used to signify
a value that might contain moved locations, which is relevant for typing partial values.
Furthermore, a type of the form ▪τ̃ means that the content of the box type is moved (e.g.
{let mut x = box(0); let mut y = ∗x}l where, in this case, the type of y changes from
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▪int to ▪⌊int⌋). Note that, according to Figure 3.5, a Trc type cannot have the same
previous case since it is not possible to move out of a Trc (explained later).

Expressions. Expressions e in FR
FT

are numerous, but largely standard and some of
these are cooperative constructions. We reuse the definition of the expressions of FR, aug-
mented by the following ones: (1) trc(e) allocates a new active Trc initialized with the
value denoted by e, (2) ω.clone returns an inactive copy of the active Trc denoted by ω, (3)
spawn(f(e)) runs f(v) as a new thread where v are the values denoted by e, (4) cooperate
yields the control to other threads. Other expressions are identical to those in FR. In more
details, {e}l denotes a block, the scope of which is expressed by the lifetime l and e is a
sequence of expressions separated by semicolons (e.g. " {let mut x = 0; x = 1}l "). The
lifetimes in FR

FT
form a partial ordering (l ⪰ m stands for m is inside l and l ⪰ l is always

valid) that reflects the nesting property. For example " {let mut x = 0; {let mut y =

box(x); }m x = 2}l ": x is declared in the external block where its lifetime is l while y is
declared in the internal block where its lifetime is m. Following this example, we can deduce
that the lifetime of y is smaller than that of x according to the relation l ⪰ m. This means
that y must be removed from the memory before x. The expression ω̂ denotes a non de-
structive read of the value held at ω; otherwise ω specifies a destructive reading of the value
held at ω. The box(e) construct allocates a new Box in the heap memory, initialized with
the value denoted by e. The rest of our expressions are standards. They include sequencing
e, assignment w = e, and arithmetic and Boolean expressions (respectively e1 ⊕ e2 and
e1 ⊗ e2) according to Figure 3.5.

Functions and Signatures. In FR
FT
, functions are declared using the fn keyword, sim-

ilar to Rust. However, when it comes to the function call inside the spawn expression,
functions are declared without specifying a return type. The shapes of the function signa-
tures are illustrated in Figure 3.5. It’s important to emphasize that these signatures cannot
have the form &

′
l[mut] S as references are not allowed when invoking spawn(f(v)) due

to their limited lifetime. Similarly, the signatures cannot be ⋄S since the inactive Trc be-
comes active by applying the activate function (as defined in section 3.6) at spawn time.
Lastly, when declaring functions, parameters are defined using the mut keyword to main-
tain consistency with the syntax of variable declarations, where all variables are mutable
according to Figure 3.5.

The mut keyword in Rust serves two distinct purposes. However, to simplify our se-
mantics, we explicitly introduce mut in the variable declaration syntax, emphasizing its
essential roles, namely, as a mutable reference and as a shared reference. Consequently,
each variable in FR

FT
is linked to a corresponding lifetime, which means that a variable in

FR
FT

corresponds to a mutable location that can be updated as the program proceeds and
whose lifetime is bound to the block that encloses it. At this point, FR

FT
manages mem-

ory without relying on garbage collection mechanisms, but instead, it centers around the
lifetime of each variable. As execution proceeds within a block, a new mutable location is
generated for every declared variable, which is then automatically deallocated when the
block ends. Finally, FR

FT
enforces the rule of no "variable shadowing", in other words a

variable can only be instantiated once.

An insight into typing. The missing signature of the form ⋄S is due to the activation of
an inactive Trc at spawn time. Therefore, when typing the spawn expression, a verification
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is performed to ensure that two active Trc’s in the signatures do not belong to the same
shared data. This is necessary to guarantee the uniqueness of the active Trc in the thread
environment as explained in Listing 3.3 below.

1.4 FRFT Restrictions

Our motivation for developing our approach lies in addressing mutable data sharing in the
context of cooperative threading. To achieve this objective, we introduce a crucial technical
contribution named Trc. Below, we provide three user-level examples written in FR

FT
, each

describing a specific behavior of Trc.

1 {

2 let mut x = trc(0);

3 let mut y = x.clone;

4 *x = 1; // OK: mutation is done!

5 *y = 2;// ERROR: cannot assign to data in an ‘inactive Trc‘

6 }

Listing 3.2: Inaccessible Data with an inactive Trc

In this example, we begin by creating a new active Trc and assigning it to the variable
x, rendering x the owner of the new value inside the Trc. Then, on line 3, we explicitly
create an inactive Trc by copying the active Trc using the clone expression and binding
it to y. As mentioned earlier, the key distinction between an active and an inactive Trc lies
in their roles regarding shared data on the heap. An active Trc serves as the entry point
for shared data, while an inactive Trc cannot read or write its contents. Consequently,
when attempting to modify the data via y on line 5, we encounter an error because y is an
inactive Trc, and it lacks the permission to read or write its contents. On the other hand,
the mutation is successfully performed via an active Trc on line 4. Note that if we present
Listing 3.2 using the syntax shown in Figure 3.5, it would appear as follows:

{let mut x = trc(0); let mut y = x.clone; *x = 1; *y = 2}l

1 fn bar(mut x: trc<int>, mut y: trc<int>) {

2 // additional code that uses x and y

3 }

4

5 {

6 let mut x = trc(0);

7 //ERROR: No more than one inactive trc is allowed

8 spawn(bar(x.clone, x.clone));

9 }

Listing 3.3: Strengthening the uniqueness of Trc
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In Listing 3.3, similar to the previous example, we initialise x as an active Trc. However,
instead of creating an inactive Trc, on line 8, we create two separate inactive Trcs and pass
them as arguments to the function called bar. Specifically, using the spawn expression on
line 8, we create a new thread that will execute the bar function. When this new thread
takes control, the previous inactive Trcs become active. Since these Trcs are copies of the
same source, it leads to a violation of the uniqueness of Trc ownership. Due to this violation,
we encounter an error on line 8 to enforce the uniqueness ownership of Trcs. As with the
previous Listing, Listing 3.3 will be represented as follows using the syntax presented in
Figure 3.5:

fn bar(mut x ∶ ⬩int, mut y ∶ ⬩int){. . . }m
{let mut x = trc(0); spawn(bar(x.clone, x.clone))}l

1 fn foo(mut x: trc<int>) {

2 // additional code that uses x

3 }

4

5 // T1 ( the main of the program)

6 {

7 let mut x = trc(0);

8 // T2

9 spawn(foo(x.clone)); //OK

10 // T3

11 spawn(foo(x.clone)); //OK

12 }

Listing 3.4: Sharing Data Across Multiple Threads
In Listing 3.4, we replace the bar function with the foo function. On lines 9 and 11, we
explicitly create two threads using the spawn expression, and for each function, we create
a copy of x, which is an active Trc. Subsequently, these two threads are meant to execute
the same function and share the same data in the heap. The FR

FT
type system accepts this

example since the threading is cooperative, and it is safe for each thread to have access to
the same mutable data. This safety is ensured as only one thread is active at a time, and
there is no need for mutexes to manage the accessibility to the shared data, as described
in Figure 3.6. This prevents the potential deadlock problems that may arise when utilizing
mutexes.

2 Operational Semantics of FRFT

The operational semantics of FR
FT
is established through a set of small-step rules presented

in this section. These rules introduce various general forms of reduction, as outlined below:
Expression. Firstly, a state in FR

FT
is represented as T, S where T is a set of threads, and S

is a program store that maps locations to the partial values associated with a lifetime m, i.e.
⟨v⊥⟩m. The domain of S is a mapping from Locations×Lifetimes → Partial Values×Lifetimes

where Locations and Lifetimes are sets of locations and lifetimes, respectively. Pertaining
to the locations, two forms are used: (1) ℓm∶∶x a location that is bound to the variable x with
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T1 T3

T2

data

Cooperative Scheduling

No mutex

Figure 3.6: Accessing Data through Cooperative Threads

a lifetime m, (2) ℓa a location that is not bound to any variable. Each thread is identified as a
pair (t, {e}l)where t is the thread’s name and {e}l is the code which is currently executed
by t under the lifetime l. In a FR

FT
program, threads are grouped in a set bound to be sched-

uled in a round-robin scheduler. Reduction rules have the form ⟨T, S T0
−→i T

′
, S

′⟩l where T0
is a, possibly empty, set of threads spawned during the reduction. The index i, ranging over
0 and 1, denotes either a computation termination (0) or a cooperation (1). These rules rely
on an auxiliary kind of rules having the form ⟨S ⊳ e

T0
−→i S

′
⊳ e

′⟩l denoting local compu-
tation of threads, where the state has the form S ⊳ e. A global environment D represents
a declaration context consisting of a series of high-level function definitions. D is added
when a FR

FT
program is reduced to store the declared functions. Then, for all f such that

f ∶∶= fn f(mut x ∶ S){e}l, we have D[f ↦ λ(x){e}m]. To simplify the reduction rules, D
is excluded as it remains unchanged during expression execution. Consider the following
reduction block: ⟨S ⊳ {let mut x = trc(0)}l →0 {ℓa ↦ ⟨0⟩1} ⊳ {let mut x = ℓ

⬩
a}⟩l

is a simple reduction that creates a location ℓa in S by reducing the trc(0) expression
where the counter is initialized to 1. Continuing the execution, the reduction proceeds
to ⟨{ℓa ↦ ⟨0⟩1} ⊳ {let mut x = ℓ

⬩
a}l →0 {ℓl∶∶x ↦ ⟨ℓ⬩a⟩l, ℓa ↦ ⟨0⟩1} ⊳ ϵ⟩l. Here, a

variable x is created which has a location ℓl∶∶x allocated in lifetime l and actually has the
value ℓ⬩a , referring to the previously created location ℓa. Finally, the expression terminates
immediately (represented by ϵ).

Thread. Secondly, to execute a thread for more than one step, the reduction rule is de-
noted as : ⟨S ⊳ e

T
⟹ S

′
⊳ e

′⟩l.

Instant. Thirdly, at the beginning of each instant, all threads are assumed to be in a set T .
When a thread executes, it is removed from T and resumed in the next instant. When all
threads in T have been executed, it indicates that the current instant is finished, denoted
as follows: T, S ⟹ T

′
, S

′. Lastly, a sequence of instants can be represented by the rule:
T, S ⟹

∗
T
′
, S

′ corresponding to the reflexive transitive closure of⟹.
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2.1 Preliminaries

Most of reduction rules in FR
FT
rely on specific functions to ensure safe reduction. In this

section, we present the supporting functions required for this purpose.

As previously mentioned, the program store S maps locations ℓ with partial values
⟨v⊥⟩l. Hence, it is therefore useful to identify the location of a given lval as follows:

Definition 3.1 (Location) For a given program store S, an lval ω and a lifetime l, loc is a

partial function that returns the location related toω in S. Subsequently, we define loc(S, ω, l)
as follows:

loc(S, x, l) = ℓm∶∶x where S(ℓm∶∶x) = ⟨.⟩m and m ⪰ l

loc(S,∗ω, l) = ℓ where loc(S, ω, l) = ℓ
′
and S(ℓ′) = ⟨ℓη⟩m

As previously indicated, we represent the location of a variable x in the program store S
as ℓm∶∶x. Additionally, the lifetime l represents the lifetime of the enclosing block in which
loc(S, ω, l) is performed. This lifetime information is crucial to ensure that the values
returned are bound to the current thread, considering that we have only one store for the
entire FR

FT
program. Furthermore, the notation ℓη designates any possible kind of locations:

ℓ
▪
a, ℓ

⬩
a , ℓ

⋄
a , ℓ

◦. However, this means that loc(S, ω, l) not only handles simple variables where
their values are in S but also handles reference values. For example, in the given program
{let mut x = trc(0); let mut a = &mut x}m, when attempting to retrieve the location of
*a, the above function is used as follows: S = {ℓm∶∶x ↦ ⟨ℓ⬩c ⟩m, ℓc ↦ ⟨0⟩1, ℓm∶∶a ↦ ⟨ℓ◦m∶∶x⟩m}
is the existing store program and loc({ℓm∶∶x ↦ ⟨ℓ⬩c ⟩m, ℓc ↦ ⟨0⟩1, ℓm∶∶a ↦ ⟨ℓ◦m∶∶x⟩m}, *a, m) =
ℓm∶∶x. Finally, as outlined above, loc is a partial function, it manages undefined cases and
returns an error when necessary. For instance, consider the same example again, if we have
loc({ℓm∶∶x ↦ ⟨ℓ⬩c ⟩m, ℓc ↦ ⟨0⟩1, ℓm∶∶a ↦ ⟨ℓ◦m∶∶x⟩m}, ***a, m), an error occurs at compile time
since the location of ***a has not been defined in S, thus preventing unauthorized reading
and writing.

Having introduced the loc function to obtain the location of a given lval ω, the next step
involves reading the value associated with that location in the program store S:

Definition 3.2 (Read) For a given lval ω, the partial function read(S, ω, l) retrieves the

value of ω stored in S as follows:

read(S, ω, l) = S(ℓ) where loc(S, ω, l) = ℓ

In the given program store S = {ℓm∶∶x ↦ ⟨0⟩m, ℓm∶∶y ↦ ⟨ℓ◦m∶∶x⟩m}, the value of *y, according
to definition 3.2 is read as follows:

• loc(S, *y, l) = ℓm∶∶x where loc(S, y, l) = ℓm∶∶y and S(ℓm∶∶y) = ⟨ℓ◦m∶∶x⟩m

• read(S, *y, l) = ⟨0⟩m
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Now, we present the function utilised to update the value of a given lvalω in the program
store S as follows:

Definition 3.3 (Write) For a given lval ω, the partial function write(S, ω, v⊥) updates the
value of ω stored in S as follows:

write(S, ω, v⊥, l) = SJℓ↦ ⟨v⊥⟩mK where loc(S, ω, l) = ℓ and S(ℓ) = ⟨.⟩m

The notation SJℓ ↦ ⟨v⊥⟩mK returns a program store S by modifying the existing value
of ℓ with a partial value (v⊥). It is important to note that the lifetime of ω remains un-
changed, and only the value is updated. Both the read read(S, ω, l) and write(S, ω, v⊥, l)
functions are implicitly partial since the loc(S, ω, l) is a partial function. As an exam-
ple, let us consider a given program store S = {ℓm∶∶x ↦ ⟨0⟩m}. Changing the value of
x where ℓm∶∶x ∈ dom(S) according to the definition 3.3 can be demonstrated as follows:
loc(S, x, l) = ℓm∶∶x where S(ℓm∶∶x) = ⟨0⟩m. Thence, write(S, x, 1, l) = SJℓm∶∶x ↦ ⟨1⟩mK.

A key characteristic of FR
FT

is its ability to manage the memory without relying on a
garbage collector. Consequently, in the subsequent function, we elucidate how FR

FT
safely

drops values in the program store S.

Definition 3.4 (Drop) Let S be a program store and let m be a lifetime. The drop(S, m)
function is responsible for deallocating values with a lifetime m. Then, drop(S, m) is defined as
drop(S, ρ) where ρ is a drop set as follows:

drop(S,∅) = S

drop(S, ρ ∪ {v⊥}) = drop(S, ρ) if (v⊥ ≠ ℓ
▪
a ∧ v

⊥
≠ ℓ

⬩
a ∧ v

⊥
≠ ℓ

⋄
a)

drop(S, ρ ∪ ℓ▪a) = drop(S − {ℓa ↦ ⟨v⊥⟩∗}, ρ ∪ {v⊥}) where S(ℓa) = ⟨v⊥⟩∗

drop(S, ρ ∪ ℓ⬩a) = { drop(S − {ℓa ↦ ⟨v⊥⟩1}, ρ ∪ {v⊥}) where S(ℓa) = ⟨v⊥⟩1
drop(SJℓa ↦ ⟨v⊥⟩iK, ρ} where S(ℓa) = ⟨v⊥⟩i+1

drop(S, ρ ∪ ℓ⋄a) = drop(SJℓa ↦ ⟨v⊥⟩iK, ρ} where S(ℓa) = ⟨v⊥⟩i+1

As described in definition 3.4, drop(S, ρ) traverses owning references recursively, dropping
the associated locations if necessary. Here, ρ identifies the locations allocated by a given
block based on its lifetime m. Partial values are dropped by traversing their defined parts.
The deallocation of slots allocated by a Trc depends on the counter (represented by i), and
deallocation occurs only when the counter decreases to 1. When the counter is 1, it indi-
cates that there is only one reference to that slot, making the deallocation safe to perform.
Moreover, it is assumed that only active Trcs are responsible for deallocating the locations
they refer to. Specifically, when the lifetime of an inactive Trc expires, decrementing the
counter by 1 is sufficient, as indicated above.

2.2 Reduction Rules

In this section, we present and explain the FR
FT
reduction rules for a given thread t begin-

ning with the expressions and according to the syntax presented in Figure 3.5.
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2.2.1 General Rules

As a start, we introduce the notation of evaluation contexts to demonstrate the reduction
of the sub-expressions of our language.

Definition 3.5 (Evaluation Context) An evaluation context is an expression containing a

single occurrence of J.K (the hole) instead of a sub-expression. In other words, it is used to

describe where the next reduction step takes place in the program. The evaluation contexts for

the FR
FT
expressions are defined as follows:

E ∶∶= J.K ∣ E; e ∣ let mut x = E ∣ ω = E ∣ box(E) ∣ trc(E) ∣ E ⊕ v ∣ v ⊕ E ∣ E ⊗ v

∣ v ⊗ E ∣ spawn(f(v, E, e))

Now, we employ one single rule for E:

⟨S ⊳ e
T
→i S

′
⊳ e

′⟩l

⟨S ▷ EJeK
T
→i S

′ ▷ EJe′K⟩l
(R-Sub)

2.2.2 Read and Write

We proceed to present and explain the FR
FT

reduction rules, beginning with the R-Copy

rule, which is used to reduce the copy expression. For the sake of simplicity, we will use
(→i) in the reduction rule notation when there is no spawned thread involved.

read(S, ω, l) = ⟨v⟩m
⟨S ⊳ ω̂ →0 S ⊳ v⟩l (R-Copy) (R-Copy)

The R-Copy rule is introduced to create a copy of an lval ω using the read function.
This rule does not modify the program store S, making it a non-destructive read. In situ-
ations where the R-Copy rule cannot be applied, the R-Move rule is defined to handle such
situation:

read(S1, ω, l) = ⟨v⟩m S2 = write(S1, ω,⊥, l)
⟨S1 ⊳ ω →0 S2 ⊳ v⟩l (R-Move)

In contrast to R-Copy, R-Move enforces a destructive read by rendering lval ω inacces-
sible. As a consequence, this rule is responsible for reducing ω and effectively replacing its
value in the resulting program store S2 with⊥, signifying that ω is now read-inaccessible.
The notation (⊥) is used to indicate this inaccessibility. For instance, consider a variable x
where S(ℓl∶∶x) = ⟨⊥⟩l. In this scenario, read({ℓl∶∶x ↦ ⟨⊥⟩l}, x, l) is prohibited, and any
attempt to read x would result in an error at compile time.

To provide a semantic understanding of the concept of copy and move, and to illustrate
the performance of the R-Copy and R-Move rules, we present the following example written
in FR

FT
in a user level:
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1 {let mut x = trc(0); let mut y = 0; {let mut a = y; let mut b = x} }

Listing 3.5: The effect of R-Copy and R-Move rules

Listing 3.5 demonstrates a valid program in FR
FT
. It contains two blocks where, in the inner

block, the R-Copy rule is applied to the following expression let mut a = y; precisely in
case the value of y is a primitive type. On the other hand, the R-Move rule is automatically
applied to the second expression in the inner block when the type of x is a Trc type, imple-
mentingmove semantics. Furthermore, the trc(0) expression automatically allocates a new
Trc on the heap, initialized to 0, with its counter set to 1. Consequently, after the reduction
of the inner block, the program store S now contains only the variables x and y, with x
having a partial value as follows: S = {ℓm∶∶x ↦ ⟨⊥⟩m, ℓm∶∶y ↦ ⟨0⟩m}. Finally, this program
presents the source-level expressions which could be written by a user. However, the syntax
shown in Figure 3.5 only appears at execution time. To clarify, Listing 3.5 is represented in
the following form {let mut x = trc(0); let mut y = 0; {let mut a = ŷ; let mut b =
x; }n}m. Last but not least, not all reference values are accessible at the source level (e.g.
x = ℓ

⬩
a , where ℓ

⬩
a is the reduction of the trc(0) expression by the R-Trc rule). A dynamic

syntax at execution time is necessary to accurately model runtime memory management
in FR

FT
, especially when adding memory locations to expressions.

Let us continue with the same example and introduce a new expression as follows:

1 {let mut x = trc(0); let mut y = 0;

2 {let mut a = y; let mut b = x; let mut c = x} }

Listing 3.6: The effect of R-Copy and R-Move rules

In contrast to the previous example, this example is not valid in FR
FT
. Since the content of x

is moved by b, x becomes inaccessible until it is reinitialized. Tomaintain the ownership dis-
cipline and prevent any violations, we prohibit all the accesses to x, such as let mut c = x.

2.2.3 Box and Trc

Concerning dynamic allocation, FR
FT

manages heap allocation in two distinct ways, de-
pending on whether it involves a Box or a Trc. The R-Box rule is responsible for creating
a new location in the program store S1 to represent the newly allocated Box. In this case,
the slots in the heap receive the global lifetime (*). In general, (*) corresponds to a static
variable in C/C++, where the lifetime is equal to the duration of the program execution.
The R-Box rule is defined as follows:

ℓa ∉ dom(S1) S2 = S1[ℓa ↦ ⟨v⟩∗]
⟨S1 ⊳ box(v) →0 S2 ⊳ ℓ▪a⟩l

(R-Box)

The R-Box rule creates a new location in the heap and initialises it with the value v. As
demonstrated, the lifetime of the value in the heap is global (*). For example:

{let mut x = box(0); {let mut y = x; }m;x = box(1)}l (3.1)

In Example 3.1, during the reduction of the first expression in the outer block, the R-Box rule
comes into play to reduce the expression "box(0)". As a result, a new location ℓa is allocated
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in the heap with a global lifetime "*", yielding S = {. . . , ℓa ↦ ⟨0⟩∗}. Subsequently, we link
this location to the variable x, implying that the deallocation of the contents of ℓa in the
heap depends on the owner’s lifetime, i.e., x. Later, in the inner block, wemove the contents
of x into y. Consequently, the new owner of the data in the heap becomes y. Hence, when
the lifetime of y, m, expires, the contents of ℓa are automatically deallocated.

Reference counting is a widely adopted memory management technique in various pro-
gramming languages like C++, Rust, and others. It proves particularly valuable in systems
where garbage collection is not feasible or preferred, such as real-time systems, embed-
ded systems, or those with limited resources. The following rule showcases the semantic
effectiveness of our new reference counting, Trc:

ℓa ∉ dom(S1) S2 = S1[ℓa ↦ ⟨v⟩1]
⟨S1 ⊳ trc(v) →0 S2 ⊳ ℓ⬩a⟩l

(R-Trc)

The R-Trc creates a fresh location in the program store, representing the active Trc. Unlike
the Box case, where the lifetime is set to (*), Trc uses reference counting, so the counter i
is set to 1. The i counter serves the purpose of keeping track of the number of references
(active and inactive Trc’s) to a specific memory location. When the number of references
drops to 1, the memory is automatically deallocated. This means that the location of the
heap, ℓa, is determined by setting the counter to 1. Additionally, we can create multiple
instances of inactive Trc’s that point to the same location on the heap as the active Trc
source. This functionality is achieved using R-Clone, as presented below:

⟨ℓ⬩a⟩m = read(S1, ω, l) S1(ℓa) = ⟨v⟩i S2 = S1Jℓa ↦ ⟨v⟩i+1K
⟨S1 ⊳ ω.clone→0 S2 ⊳ ℓ⋄a⟩l

(R-Clone)

The R-Clone rule increments the number of references (i) that point to the same location on
the heap; denoted as ⟨v⟩i+1. Note that the following premise S2 = S1Jℓa ↦ ⟨v⟩i+1K refers
to the updated existing location ℓa, where ℓa ∈ S1. To provide a clearer understanding of
how active and inactive Trc’s are managed in FR

FT
, let us consider the following example:

1 {let mut x = trc(0); let mut y = box(trc(0));

2 {let mut a = x; let mut b = *y.clone }}

Listing 3.7: Memory Management in FR
FT

In Listing 3.7, in the outer block, we create a new location in the heap via trc(0) expression
and bind it to x. In the second expression, we also create a new location in the heap, which
contains another new location, and link it to y. In the inner block, we apply the R-Move

rule to move the contents of x into a. Additionally, using the R-Clone rule with *y.clone,
we create a copy of the active Trc (representing the contents of y) without affecting y,
and then link it to b. Once all expressions in the inner block are successfully reduced, we
apply the drop function (definition 3.4) to recursively deallocate the owned slots. For a, the
contents (owned slots) on the heap are safely dropped (i.e., the counter is set to 1), while
for b, the drop function recursively drops the slot owned by it. In more detail, the drop

decrements the counter of the contents of the Box to 1. Finally, at the end of the outer
block, the drop function safely and recursively deallocates the contents of y, leading to the
program reducing to ϵ.
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2.2.4 Borrow

Like Rust, FR
FT
also supports the concept of borrowing. Hence, the R-Borrow rule is respon-

sible for determining the location of an lval ω that already exists in the program store S,
and it operates as follows:

loc(S, ω, l) = ℓ

⟨S ⊳ &[mut]ω →0 S ⊳ ℓ◦⟩l (R-Borrow)

As illustrated in the above rule, to create a reference to a given lval ω, the R-Borrow rule
retrieves the location of ω (which can be either ℓl∶∶x or ℓa) in the program store S.

2.3 Assign and Declare

In the rest of this section, we introduce the reduction rules for the FR
FT
expressions that can

be more complex and may have sub-expressions (e.g., x = box(trc(0))). In such cases, and
in accordance with definition 3.5, we utilise the R-Sub rule.

Now, let us move on to presenting the R-Assign rule for the reduction of assignments as
follows:

read(S1, ω, l) = ⟨v⊥1 ⟩m S2 = drop(S1, {v⊥1 }) S3 = write(S2, ω, v2, l)
⟨S1 ⊳ ω = v2 →0 S3 ⊳ ϵ⟩l (R-Assign)

The R-Assign rule updates the value of a given lval ω by its new value using the write

function 3.3. Before updating the value, it first drops the old value using the drop function.
The drop function is responsible for deallocating any location associated with the value v⊥.

To declare a new variable, a new corresponding location for the variable in the program
store is added and the R-Declare rule is then introduced as follows:

S2 = S1[ℓl∶∶x ↦ ⟨v⟩l]
⟨S1 ⊳ let mut x = v →0 S2 ⊳ ϵ⟩l (R-Declare)

Using the R-Declare rule, we create a new variable x and bind it to its corresponding location
in S1, denoted as ℓl∶∶x with the lifetime l. Additionally, as demonstrated by this rule, the
new value assumes the lifetime l of the enclosing block. In this scenario, the function write

cannot be utilised as it requires an lval as a parameter that already exists in S1. However,
since x is newly created with its new location, we utilise the following notation: S2 =

S1[ℓl∶∶x ↦ ⟨v⟩l].

2.4 Sequence and Block

Reducing a sequence of expressions in FR
FT
allows these expressions to be reduced sequen-

tially from left-to-right. We introduce the following rule:

S2 = drop(S1, {v})
⟨S1 ⊳ v; e→0 S2 ⊳ e⟩l (R-Seq)
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The reduction with R-Seq rule involves removing the completed values from the left by
utilising drop(S1, {v}). The concept of the drop function remains the same as introduced
in definition 3.4, but here it is specifically responsible for the recursive deallocation of v.

To handle the reduction of a block in FR
FT
, two reduction rules have been introduced.

The R-BlockA rule is responsible for reducing the block body until only one value remains,
and it operates as follows:

⟨S1 ⊳ e1
T
→i S2 ⊳ e2⟩m

⟨S1 ⊳ {e1}m
T
→i S2 ⊳ {e2}m⟩l

(R-BlockA)

The R-BlockA rule is responsible for reducing the expression e1 within the block. If the
reduction of e1 results in a value, it indicates that the block has been completely reduced.
In such cases, we introduce the second reduction rule, R-BlockB.

The R-BlockB rule is utilised to deallocate any remaining owned locations in the block
using drop(S1, m). This ensures that all resources are properly managed and deallocated
after the block’s execution is completed:

S2 = drop(S1, m)
⟨S1 ⊳ {v}m →0 S2 ⊳ v⟩l (R-BlockB)

Subsequently, at the end of each block, the drop function is responsible for deallocating
all the owned locations by retrieving all the variables associated with them and having a
lifetime m.

Intuitively, for a {e}l FR
FT
program, the execution of e is the sequence of global states

such that at the beginning, S is empty, denoted S∅ and, also T is an empty set. Then, let
us thoroughly go over and highlight the rules for reducing block in FR

FT
program using the

syntax presented in Figure 3.5 as follows:

S∅ ⊳ {let mut x = trc(0); let mut y = box(box(5));
{let mut a = x.clone; let mut b = ∗y; ∗b}m}l

(3.2)

While reducing the first two instructions using the R-Trc and R-Box rules, a total of five
locations are created: one for x, one for y, and the other three are dynamically allocated via
trc(0), box(box(5)), respectively. Once the evaluation is successfully completed, a new
state is achieved, which can be described as follows:

{ℓl∶∶x ↦ ⟨ℓ⬩e ⟩l, ℓe ↦ ⟨0⟩1, ℓl∶∶y ↦ ⟨ℓ▪k⟩l, ℓk ↦ ⟨ℓ▪r⟩∗, ℓr ↦ ⟨5⟩∗} ⊳
{{let mut a = x.clone; let mut b = ∗y; ∗b}m}l

(3.3)

As x holds an owned reference at location ℓe, the location ℓe will not be released unless x is
also released and the counter is equal to 1. Likewise, y holds an owned reference to location
ℓk, which in turn holds another owned reference to location ℓr. Both locations ℓk and ℓr
have a global lifetime (*) as they have been dynamically allocated by the box expression.
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Similar to ℓe, ℓk will be dropped recursively when y is dropped. In the following rule, only
one more location is created for the variable a, resulting in the following state:

{ℓl∶∶x ↦ ⟨ℓ⬩e ⟩l, ℓe ↦ ⟨0⟩2, ℓl∶∶y ↦ ⟨ℓ▪k⟩l, ℓk ↦ ⟨ℓ▪r⟩∗, ℓr ↦ ⟨5⟩∗, ℓm∶∶a ↦ ⟨ℓ⋄e ⟩m} ⊳
{{let mut b = ∗y; ∗b}m}l

(3.4)

The value of a in the program store is a copy of the owned reference of x (i.e. it results from
an inactive Trc). Again and as stated above, after creating the variable a, the counter of the
reference is incremented by 1 and reaches 2, which is true since we have two references to
the same value in the heap. The execution of the next expression moves the contents of y
as follows:

{ℓl∶∶x ↦ ⟨ℓ⬩e ⟩l, ℓe ↦ ⟨0⟩2, ℓl∶∶y ↦ ⟨ℓ▪k⟩l, ℓk ↦ ⟨⊥⟩∗, ℓr ↦ ⟨5⟩∗, ℓm∶∶a ↦ ⟨ℓ⋄e ⟩m,
ℓm∶∶b ↦ ⟨ℓ▪r⟩m} ⊳ {{∗b}m}l

(3.5)

As discussed in the R-Move rule, the contents of y became inaccessible, exemplified by ⊥.
Last but not least, when evaluating the final instruction using the R-Seq rule and the R-Move

rule, the content of bwill be returned as the value of the inner block. At this point, the inner
block is completed, and all the locations associated with a and bmust be dropped using the
R-BlockB rule. As a result, the new state is as follows:

{ℓl∶∶x ↦ ⟨ℓ⬩e ⟩l, ℓe ↦ ⟨0⟩1, ℓl∶∶y ↦ ⟨ℓ▪k⟩l, ℓk ↦ ⟨⊥⟩∗} ⊳ { }l (3.6)

Similar to the inner block, we must also complete the outer block by dropping all the ex-
isting locations in the program store. Finally, we reach the final state where S is empty at
the end of the program:

S∅ ⊳ 0 (3.7)

2.5 Arithmetic and Conditional Operations in FRFT

FR
FT
provides conditional support required for control flow extension, as explained in chap-

ter 5 (Section 1.4). The syntax in Figure 3.5 includes Boolean types, values, and standard
comparison conditional operators (==, >, <), represented by⊗. The corresponding semantic
rule for these conditional operators is given as R-Cond, as shown below:

v3 = v1⊗v2
⟨S ⊳ v1⊗v2 →0 S ⊳ v3⟩l

(R-Cond)

In this rule, we introduce the function (⊗), which takes two values and a comparison oper-
ator as input. The function evaluates the result based on the operator’s parameters and re-
turns a Boolean value. Following the same approach as the standard conditional operators,
we now present the reduction rules that support arithmetic expressions (+, -), represented
by ⊕, as follows:

v3 = v1⊕v2
⟨S ⊳ v1⊕v2 →0 S ⊳ v3⟩l

(R-Arithm)
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The R-Arithm rule incorporates the function (⊕), which operates on two values and an
arithmetic operator to calculate the corresponding result. Let us consider a typical example
to illustrate the usage of arithmetic expressions in FR

FT
:

{let mut x = box(1); let mut y = 1; {let mut a = *x + y}m}l (3.8)

In this example, we will use the FR
FT
syntax presented in Figure 3.5. During the execution

of the declaration in the inner block, we create a variable "a" and initialize it to the sum of
the contents of x and y.

2.6 Function Declaration in FRFT

We explain how FR
FT
accommodates the memory to add function declarations and invoca-

tions inside the spawn expression. Similar to FR, FR
FT
does not allow variable shadowing,

meaning that a variable can only be instantiated once in the stack of each thread. Since vari-
ables in the program store S are associated with a lifetime, therefore, in accordance with
this approach, we associate each thread with a distinct lifetime that lies within the global
lifetime of the FR

FT
program. As a result, the variables associated with each thread have

lifetimes that match or are nested within their respective thread lifetimes. For example, we
assume that we have three threads: th1, th2 and th3 where each has a well-defined lifetime
such as l1, l2 and l3 respectively. Thus, according to the above approach, we have ∗ ≽ l1,
∗ ≽ l2 and∗ ≽ l3, indicating that each thread’s lifetime is nestedwithin the global lifetime.
However, there is no ordering or relationship between the lifetimes of the different threads.
In other words, there is no relationship between l1, l2 and l3. This ensures that variables
associated with th1 have a lifetime of l1 or are nested within l1, variables associated with
th2 have a lifetime of l2 or are nested within l2, and so on. This scoping mechanism en-
sures that variables are properly scoped and accessible within their corresponding threads,
while maintaining separation and independence between threads.

According to this approach, when managing function invocation inside a spawn ex-
pression, we integrate the function body within a block. Specifically, {spawn(f(x))}l is
equivalent to {{e}m}∗ where {e}m is the body of f . The lifetime m is inside the global life-
time (i.e. ∗ ≽ m), since the function is called in spawn. This means that the lifetime of the
invoked function is tied to the lifetime of the thread in which it is called, and the function
will terminate when the thread itself completely terminates.

3 FRFT Cooperative Operational Semantics

FR
FT

is as a synchronous reactive language, especially for concurrent programming lan-
guages. In FR

FT
, threads are executed cooperativelywithin an environmentwhere all threads

have guaranteed access to the scheduler. Cooperative threading involves a paradigmwhere
only one thread executes at a given time, and threads voluntarily relinquish control of the
scheduler to enable other waiting threads to execute. This approach requires each thread to
explicitly yield the processor once it has completed its task or is awaiting a signal. Notably,
in cooperative threading, the operating system does not preempt the thread, implying that
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the thread can run indefinitely if it does not yield the processor. Cooperative threading
is often employed in scenarios where multiple threads need to collaborate and share re-
sources, such as in user interface programming or event-driven systems. In FR

FT
, threads

follow a deterministic semantics, which is based on previous works involving the reactive
approach [76, 27, 45, 47]. In this section, we present a model for synchronous cooperative
scheduling in the cooperative part of FR

FT
, wherein explicit cooperation is achieved using

the cooperate expression.

Eventually, we need to present the reduction rules for each reactive construct in FR
FT
.

Let us begin with the semantic rule that allows us to create a thread. This is achieved
through the R-Spawn rule, which reduces the expression spawn(f(v)) as follows:

t ∈ fresh D(f) = λ(x){e}m Θ(* ⇒ {e}m) = {e}n

(S ′, v′) = activate(S1, v) S2 = S
′[ℓn∶∶x ↦ ⟨v′⟩n]

⟨S1 ⊳ spawn(f(v)) {(t,{e}n)}
−−−−−−→0 S2 ⊳ ϵ⟩l

(R-Spawn)

The R-Spawn rule creates a new thread represented as a pair {(t, {e}n)}, where t is the name
of the newly created thread, and {e}n is the expression that the thread t should execute
with the lifetime n. The declaration context D is also taken into account, as it is necessary
to load the declared functions into the program. Notably, the spawn expression invokes
a function f that will be executed at the next instant. To ensure that all lifetimes in the
expression e are instantiated to lifetimes within the global lifetime *, while adhering to the
partial order (e.g. ∗ ≽ n), we use the Θ(∗ ⇒ e) function, which recursively performs the
instantiation. Furthermore, inactive Trc’s become active in the runtime environment of the
new thread, and this is achieved using the activate function from Definition 3.6. Therefore,
with (S ′, v′) = activate(S1, v), we perform the activation recursively along the sequence
v, starting with S1.

Definition 3.6 (Activate) Let S be a program store and let v be a value. Then, activate(S, v)
is used to recursively activate an inactive Trc value. It is defined as follows:

activate(S, ℓ⋄a) = (S, ℓ⬩a)
activate(S, ℓ▪a) = (S ′′, ℓ▪a) where S

′′
= S

′Jℓa ↦ ⟨v′⟩∗K s.t.
(S ′, v′) = activate(S, v) and ⟨v⟩∗ = S(ℓa)

activate(S, v) = (S, v) otherwise

Note that, the value of a borrowed reference (ℓ◦) is excluded from this function. This
function is specifically used when creating a new thread and does not allow references at
this stage due to the reference’s lifetime.

Cooperative Threading Model

As previously explained, in the FR
FT
program scheduler, instants are defined as the time dur-

ing which all threads are allowed to execute. However, a thread will not relinquish control
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to the scheduler until it completes its execution or cooperatively reaches its next coopera-
tion point. In FR

FT
, a thread can suspend its execution using the cooperate construct. This

allows the thread’s execution to be divided into several successive instants, preserving its
progress from the current location for the next instant. When the cooperate expression
is executed, it signifies that the thread has completed its work for the current instant and
will not resume control until the next instant. The R-Cooperate rule is utilised to reduce the
cooperate expression as follows:

⟨S ⊳ cooperate →1 S ⊳ ϵ⟩l (R-Cooperate)

The R-Cooperate rule yields the value ϵ and is uniquely identified by the (→1) notation, while
all other rules have an index of 0 instead. The index 1 signifies that the current thread is
giving control to another thread, which is crucial for facilitating the instant semantics in
FR

FT
.

3.1 Thread Execution

We have described the execution of a thread in a single step. In this section, we will in-
troduce the reduction rules for executing a thread more than once (i.e. big-step). This
involves the execution of a thread until it either completes its task or is suspended for its
next cooperation point.

(1) The following rule enables the execution of a thread more than once, as long as it
maintains control:

⟨S ⊳ e
T0
−→0 S

′′
⊳ e

′′⟩l ⟨S ′′ ⊳ e
′′ T1
⟹ S

′
⊳ e

′⟩l

⟨S ⊳ e
T0∪T1
⟹ S ′ ⊳ e′⟩l

(R-Thread)

(2) The following rule indicates that the current thread has finished its execution:

⟨S ⊳ v
∅

⟹ S ⊳ v⟩l
(R-ThreadTerm)

(3) The following rule indicates that the current thread is suspended, meaning that it is
cooperating:

⟨S ⊳ e
T0
−→1 S

′
⊳ e

′⟩l

⟨S ⊳ e
T0
⟹ S ′ ⊳ e′⟩l

(R-ThreadCoop)

In this case, the current thread relinquishes control to the scheduler, enabling another
thread to execute.

3.2 Instant

Using the notion of logical time called instant, the scheduler defines instants during which
all threads execute until their next point of cooperation. When a thread executes the
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cooperate expression, it only resumes control at the beginning of the next instant. As
previously discussed, FR

FT
employs a cooperative round-robin scheduler, where at the start

of each instant, all threads are part of the set T , containing those ready for execution. Dur-
ing an instant, when a thread is executed, it is removed from the set T (T\t) and will be
resumed in the subsequent round. The set T ′ represents the remaining threads after all the
threads in T have been executed in that instant. This section outlines the rewriting rules
that define the semantics of executing an instant:

1) The end of an instant is reached when all threads in the set T , which represents
the threads that are ready for execution in the current instant, have been executed. This
condition is expressed by the following rule:

∅, S ⟹ ∅, S
(R-InstantEnd)

2) To execute an instant in FR
FT
, we introduce the following big-step rule as follows:

(t, {e}l) ∈ T ⟨S ⊳ e
T0
⟹ S

′
⊳ e

′⟩l
T\t, S

′
⟹ T

′
, S

′′

T, S ⟹ T ′ ∪ {(t, {e′}l)} ∪ T0, S
′′ (R-Instant)

The R-Instant rule states that for each thread belonging to the set T , we apply one of the
semantic rules defined in section 3.1. The premise T\t, S

′
⟹ T

′
, S

′′ indicates that when a
thread finishes its execution, it will be added to the new set T ′ to be executed again in the
next instant. It is important to note that threads (T0) created during the current instant do
not immediately execute after their creation to avoid any interferencewith running threads.
Instead, they are added to T ′ as follows: T ′ ∪ (t, {e′}l) ∪ T0.

3.3 Chaining of Instants

FR
FT
relies on the fundamental concept of logical instants, which ensures deterministic and

predictable behavior. By dividing program execution into discrete logical instants, FR
FT

guarantees consistent and reliable operation, independent of the hardware or software plat-
form. In FR

FT
, all threads execute sequentially at the same pace, while sharing the same

instants and automatically synchronizing at the end of each instant. A program in FR
FT

consists of multiple instants, and the semantics aim to demonstrate that the program’s ex-
ecution is a sequence of states (T, S), (T ′, S ′), . . . denoted as (T, S) ⟹ (T ′, S ′) ⟹ . . .
In this context, we introduce a sequence of complete instants known as "chaining of in-
stants." We define the operational semantics of a chaining of instants using the notation
⟹

∗, which represents the reflexive transitive closure of⟹.

4 Discussion

In this chapter, we introduce a subset of MSSL called FR
FT
, which includes a new smart

pointer type named Trc, along with two multi-threading constructs. The main goal of
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this chapter is to demonstrate that the pointer Trc can be safely shared between multiple
threads without using a mutex, and to formally model how a FR

FT
program executes one or

more instants.

Unlike Rust semantics, FR
FT

does not support variable shadowing, which means that
some examples accepted by the Rust type systemmay be rejected in FR

FT
. As an illustration,

consider the following example, which is not valid in FR
FT
:

1 {

2 let mut x = box(0);

3 {

4 let mut x = 1;

5 }

6 }

Listing 3.8: Variable shadowing prohibited in FR
FT

This example is rejected by FR
FT
, because when reducing the declaration in the inner block,

the R-Declare rule creates a new location for x in the program storeS. Otherwise, inS, there
is already a location for a variable x. As a comparison, let us consider the same Example
3.8 where this time it is written in Rust syntax and compiled with rustc:

1 fn main() {

2

3 let mut x = Box::new(0);

4 { let mut x = 1;}

5 }

Listing 3.9: Variable shadowing allowed in Rust

Unlike Example 3.8, Example 3.9 is accepted by rustc (the Rust compiler). In this case, in
the inner block, the value of variable x is 1, and at the end of the inner block, x reverts to
its value in the outer block. Additionally, FR

FT
supports lexical scope to manage memory,

while the recent version of Rust supports NLL (non-lexical lifetimes, [67]). Nevertheless,
we found the former approach to be satisfactory for achieving our objective.

Clearly, in the syntax presented in Figure 3.5, we have distinguished between copy and
move semantics (using the notation ω̂ and ω , respectively). Furthermore, in chapter 6, we
have enriched our type system with additional features. Leveraging inference typing, our
type system can automatically determinewhether variables in anMSSL program should use
copy or move semantics. This allows for more concise and expressive code. For instance,
consider the following example:

1 {

2 let mut x = trc(0);

3 let mut y = 1;

4 {

5 let mut a = x;

6 let mut b = y;
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7 }

8 }

Listing 3.10: Copy and Move Operations

In this example, from an implementation standpoint, the FR
FT

type system intelligently
infers that variable x should apply move semantics, while variable y should use copy se-
mantics. However, when we translate this example into the syntax presented in Figure 3.5,
we get the following result:

{let mut x = trc(0); let mut y = 1; {let mut a = x; let mut b = ŷ}n}m

Hence, it is clear that x is no longer the owner of Trc since Trc implements move seman-
tics. Instead, a becomes the new owner. On the other hand, y, which uses copy semantics,
remains accessible even after the last expression has been reduced.
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The Type System and Soundness of FRFT

The difference between the right word

and the almost right word is the

difference between lightning and a

lightning bug

– Mark Twain

In this chapter, we introduce the FR
FT

type system, which addresses the issue of un-
desired data in the memory of threads when cooperation occurs, as another thread as-
sumes control for execution. The FR

FT
type system serves to safeguard shared data between

threads, especially during cooperation, while ensuring the validity of references each time
they are used. Furthermore, this chapter provides evidence of type, borrow, and concur-
rency safety theorem results for FR

FT
. The latter theorem guarantees that a well-typed syn-

chronous reactive program will execute one or more instants or reach a terminal state. A
terminal state implies that the expression of all threads is a value.

Dans ce chapitre, nous présentons le système de types de FR
FT
, qui traite le problème des

données indésirables dans la mémoire des threads lors de la coopération, lorsqu’un autre thread

prend le contrôle pour l’exécution. Le système de type de FR
FT

sert à protéger les données

partagées entre les threads, en particulier lors de la coopération, tout en garantissant la validité

des références à chaque utilisation. De plus, ce chapitre fournit des preuves des résultats des

théorèmes de sécurité de type, d’emprunt et de concurrence pour FR
FT
. Ce dernier théorème

garantit qu’un programme réactif synchrone bien typé exécutera un ou plusieurs instants ou

atteindra un état terminal. Un état terminal implique que l’expression de tous les threads est

une valeur.
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1 Typing of FRFT Expressions

A type system in a programming language enforces a set of rules and constraints on the
types of values used in a program. Utilising a type system brings several advantages, includ-
ing enhanced program reliability, code maintainability, and increased developer productiv-
ity. It serves the purpose of ensuring a program is well-typed and free from certain types of
errors, such as type matching errors when using a type value in a context that requires a
different type. One of the key benefits of a type system is its ability to detect many common
programming errors during compile-time rather than run-time. This reduces the likelihood
of bugs and facilitates the process of error identification and correction. In essence, well-
typed expressions should either diverge or terminate on a value.

In this section, our type system aims not only to achieve typing safety but also to ensure
type and borrowing safety between threads, thus preventing type and borrowing errors.
The system’s purpose is to guarantee that well-typed programs possess necessary prop-
erties, such as the ownership invariant for mutable references, to ensure valid references
on every use. Additionally, it ensures that sharing data between threads does not result
in inappropriate data being stored in thread memory. Hereunder is an example statically
rejected by the FR

FT
type system:

fn f1(mut x ∶ ⬩int){let mut a = &mut *x; cooperate;

*a = 1}l2
fn f2(mut y ∶ ⬩int){ //additional code that uses y}l3

{let mut x = trc(0); spawn(f1(x.clone));
spawn(f2(x.clone))}l1

(4.1)

Example 4.1 is rejected by the FR
FT
type system. This is because the thread that executes the

f1 function passes control to another thread at some point. Since these two threads share
the same memory region, if the second thread modifies the contents of this memory region,
it may lead to unintended data changes in the first thread’s memory, such as a dangling
pointer on variable a. Although our syntax imposes some restrictions to mitigate these
types of errors, when dealing with structures, tuples, and similar constructs, the situation
becomes more critical. Therefore, it becomes imperative to avoid using references in such
cases. Let’s examine the following example that is not valid according to our type system:

{let mut x = trc(0); let mut y = x.clone; *y = 1}m (4.2)

Example 4.2 is considered ill-typed because it violates the uniqueness of Trc. In this case,
both variables x and y can access the same memory block simultaneously, leading to poten-
tial conflicts and data integrity issues. Similar to Rust, the FR

FT
type system also safeguards

the use of references to prevent such problems. For instance:

{let mut x = 0; let mut a = &x; let mut b = &mut a; {let mut y = 0; ∗b = &y}n; b}m
(4.3)

Example 4.3 exhibits unsafe borrowing. The assignment "∗b = &y" in practice modifies
the value of "a" by creating a borrowed reference to the variable y that exists outside of its
lifetime. As a result, this example leads to a dangling pointer when using b after y has been
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dropped. However, similar to Rust, our type system prevents such errors by enforcing the
constraint that the type of y must be a subtype of the type of a. In FR

FT
, a program can be

considered safe in terms of type and borrowing when it satisfies the following conditions:
(1) It guarantees the use of valid references, disallowing the use of dangling references. (2)
It safeguards the property invariant for mutable borrowed references. (3) It preserves the
uniqueness of Trc extension. In this chapter, we first introduce such a type system for FR

FT

expressions and then ensure its soundness by proving standard progress and preservation
theorems [99].

1.1 The Type System in FRFT

The type system of FR
FT

is defined inductively by the set of typing rules presented in the
following. Each rule yields a judgment in the form: Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 where Γ1 is
the typing environment mapping variables to a slot type ⟨τ̃⟩m with an allocated lifetime m.
When evaluating the expression e under the typing environment Γ1, a new environment Γ2

is produced. The difference between the two environments represents the effect caused by
the expression e. Specifically, as in Rust, type checking in FR

FT
is responsible for enforcing

ownership discipline. This occurs in the flow-sensitive phase, where borrowing can have
effects, like when borrowing a variable x immutably, which prohibits writing its contents
as long as the reference exists to x. This constraint is captured by the borrow checker. Note
that, as in chapter 3, we define the declaration contextD in order to maintain the signatures
of the functions present in the program. Then, for all f such that f ∶∶= fn f(mut x ∶ S){e}l,
we haveD[f ↦ (S)]. Going forward, l is the lifetime context and σ is the store typing. The
presence of σ in typing judgment is necessary to keep track of the heap-allocated location
as described in [56]. For example:

S∅ ⊳ {let mut x = trc(1)}l then, we have: {ℓa ↦ ⟨1⟩1} ⊳ {let mut x = ℓ
⬩
a}l

As previously explained, Γ, maps each variable to its type. However, in this particular
example, ℓa is not represented in any typing environment. Specifically, it refers to the lo-
cation ℓa allocated in the heap and this appears in the program store S. This raises the
question: "What is the type of location ℓ⬩a when typing the let mut x = ℓ

⬩
a expression?".

In this context, our expression involves a concrete location, and its type depends on the
content of the program store S that we start with. For instance, in this example, ℓ⬩a has the
type ⬩int since it is initialized in our program store by "0" (i.e. int). In other words, we
can infer that the type of a location is dependent on the type of its current contents in S.
Additionally, as mentioned in [56], the type of a location can be determined when it is cre-
ated in memory. Therefore, even if we change the initial value stored in this location, the
type remains the same, preserving the original value’s type. To handle this scenario, we in-
troduce the metavariable σ to describe the program store, allowing us to compute the type
of locations without directly searching in S. For example: σ ⊢ ℓ

⬩
a ∶ ⬩int or σ(ℓ⬩a) = ⬩int.
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Trc types

Similar to the Box type in Rust, the Trc type implements the move semantics. In Rust,
the ownership can either be completely consumed or temporarily transferred using the
borrowing approach. To exemplify this point, consider the following:

{let mut x = trc(0); let mut y = x}l (4.4)

In this example, we create a reference of Trc type and bind it to x. Then we create the
variable y by initializing it with the value of x. The Trc type applies the move semantics,
whereby the value of x is moved to y. At this point, x is currently uninitialized and its value
takes the lifetime of the new variable, which in this case is y. In the following example,
instead of moving x, we create a copy of the reference:

{let mut x = trc(0); let mut y = x.clone}l (4.5)

The clone expression copies the reference into x and stores it into y. Due to the two
categories of Trc, in this example, y is of type ⋄x. To manage this type correctly, the type
system prohibits moving x as long as y exists. Our type systemmust be able of determining,
based on the typing environment, whether a given variable is forbidden to move or not. For
instance, it must identify if x is cloned into that environment (e.g. ⋄x). Now, we have the
capability to temporarily move the ownership of x as follows:

{let mut x = trc(0); {let mut y = &mut x}m}l (4.6)

Unlike in 4.4, in this case, we have borrowed ownership of variable x for the lifetime of
y (i.e., for lifetime m). After y is dropped, ownership reverts to x for its location. Similar
to the approach in 4.5, our type system needs to capture this information from the typing
environment. The last example is the following:

{let mut x = box(trc(0)); {let mut y = &*x}m}l (4.7)

In 4.7, x refers to a heap location of Box type which, in turn, refers to another heap location
of Trc type containing an integer. We can then see the equivalence between the program
store and the typing environment after reducing the first instruction as follows: {ℓl∶∶x ↦

⟨ℓ▪a⟩l, ℓa ↦ ⟨ℓ⬩b ⟩∗, ℓb ↦ ⟨0⟩1} ∼ {x ↦ ⟨▪ ⬩ int⟩l}. Note that to ensure the safety of the
Trc type, the type system prevents the possibility of having a Trc inside a Trc and so on
(for example, ⬩ ▪ ⬩int is not permitted but ▪ ▪ int is allowed). Additionally, through the
inner block, we have borrowed the contents of x for the lifetime of y.

1.2 Preliminaries

As in the previous chapter, we introduce some supportive functions that facilitates the
explanation of the typing rules. In FR

FT
, as well as in Rust, types carry the semantics copy

and move. We can state that our type system encodes both type and borrow checking rules
that are required to determine when it is safe to copy or move a variable.
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Definition 4.1 (Copy and Move Types) A type τ has a copy semantics denoted by copy(τ),
when τ is either a basic type int, bool, or τ is a shared reference &ω. Otherwise, all other

types (mutable references, box and Trc) have move semantics.

If we extend our syntax to struct or tuple, the copy semantics only apply if all its elements
also apply the copy semantics. Moreover, ensuring safety in FR

FT
demands the ability to

distinguish between mutable, immutable borrowed, or cloned locations. For example, let
Γ be a typing environment such that Γ = {x ↦ ⟨⬩int⟩l, y ↦ ⟨&mut x⟩l}. Based on
the information captured by Γ, we can guess that x is mutably borrowed by y and thus
x cannot be assigned or moved. Henceforth, we say that x is read prohibited by y. In
other words, as long as y exists as a reference to x in this environment, x is not allowed
to be read or written. Accordingly, we require a mechanism to determine if a location is
borrowed as mutable (readProhibited) or as immutable (writeProhibited) or if a location is
cloned (TrcMoveProhibited):

Definition 4.2 (Path, Path Conflict and Type Containment) A path π is defined as a

sequence of zeros (π = ϵ) or more dereferences (π = π
′
.∗). In addition, the notation u = πx ∣ x

denotes a destructuring of an lval u into its base x and path πx. Therefore, it is rewarding to

verify if two given lvals share the same path. In that case, let u = πx ∣ x and ω = πy ∣ y be

lvals. Then, u is said to be in conflict with ω, denoted u ⋈ ω, if x = y. Finally, for a given

environment Γ and x ∈ dom(Γ) s.t. Γ(x) = ⟨τ̃⟩l for some l, we define that x contains the

type τ
′
, denoted Γ ⊢ x↝ τ

′
and is set as contains(Γ, τ̃ , τ ′):

contains(Γ, τ̃ , τ ′) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

contains(Γ, τ̃ 1, τ ′) if τ̃ = ▪τ̃ 1 or τ̃ = ⬩τ̃ 1
true if τ̃ = τ

′

false otherwise

In the given example:

{let mut x = trc(box(0)); let mut y = &x; let mut z = &*x}m (4.8)

The typing environment can be represented as: Γ = [x → ⟨⬩ ▪ int⟩m, y → ⟨&x⟩m, z →

⟨&*x⟩m]. According to the provided Definition, the path of x is defined as π = ϵ, while the
path of *y implies the appending of a selector on another path (i.e. π = π

′
.∗). Moreover,

we observe that y and z are in conflict (i.e. y ⋈ z) since they both refer to the same base,
x. Lastly, regarding the contains functions, if we denote Γ(x) = ⟨⬩ ▪ int⟩m, then it follows
that contains(Γ,⬩ ▪ int, ▪int) holds true.

1.2.1 Read and Write Function

The FR
FT
type system needs to ascertain, for a given lval ω, whether it is prohibited to read

or write. Let’s consider the following example:

{let mut x = trc(0); {let mut y = &x; *x = 1}n}m (4.9)
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Example 4.9 is rejected by the FR
FT

type system. After typing the "let mut y = &x" ex-
pression in the inner block, we get the following typing environment: {x↦ ⟨⬩int⟩m, y ↦

⟨&x⟩n}. Therefore, when typing the "*x = 1" expression, the borrow checker detects that
x is already borrowed as immutable by y. In order to achieve these requirements, we intro-
duce the following Definitions:

Definition 4.3 (Read Prohibited) For a given lval ω, readProhibited(Γ, ω) is defined as

follows: there exists x ∈ dom(Γ) such that Γ ⊢ x↝ &mut u ∧ ∃ i.(ui ⋈ ω).

Definition 4.4 (Write Prohibited) For a given lval ω, writeProhibited(Γ, ω) is defined as:
there exists x ∈ dom(Γ) such that Γ ⊢ x↝ & u ∧ ∃ i.(ui ⋈ ω) or readProhibited(Γ, ω).

1.2.2 A Safe Path

A crucial aspect of the FR
FT
system is ensuring inter-thread memory safety. In essence, it

aims to prevent one thread from compromising the stability of another thread’s memory
when they share data, which could potentially lead to issues like creating dangling point-
ers. Consequently, it becomes essential to verify, at specific points in a program, whether
there are references to data shared between threads, especially during cooperation. For in-
stance, when a thread cooperates, it means another thread takes control, highlighting the
significance of avoiding the presence of borrowed shared data in the current thread’s en-
vironment. This helps prevent other threads from triggering unexpected errors. Thus, we
introduce the following mutually recursive Definitions:

Definition 4.5 (Safe Trc) An environment Γ is said to be safeTrc if the content of an active

Trc is not borrowed in Γ. Then, safeTrc(Γ) is a function defined as: for all x ∈ dom(Γ) if

Γ ⊢ x↝ &[mut] u then ¬∃ i.(traversTrc(Γ, ui)).

Definition 4.6 (TraversTrc) Let Γ be an environment and let ω be an lval. Then, traversTrc

function is responsible to determine whether the path describing ω traverses an active Trc type.

Thus, for some l, ω = πx ∣ x s.t. Γ(x) = ⟨τ̃⟩l, traversTrc(Γ, ω) is defined as check(Γ, πx ∣
τ̃):

check(Γ, ϵ ∣ τ) = false

check(Γ, (π.∗) ∣ ⋄ω) = false

check(Γ, (π.∗) ∣ ⬩τ) = true

check(Γ, (π.∗) ∣ ▪τ) = check(Γ, π ∣ τ)
check(Γ, (π.∗) ∣ &[mut] ω) = ⋁

i

traversTrc(Γ, π.ωi)

Figure 4.1 presents an example written in FR
FT
at source level that illustrates this partic-

ular approach. Let’s consider a scenario where thread 1 executes the createVec function,

77



Chapter 4

fn createVec(){

let mut x=trc(vec![1,2]); Γ = [x ↦ ⟨⬩vec⟨int⟩⟩l]
let mut a=&*x[1]; Γ = [x ↦ ⟨⬩vec⟨int⟩⟩l, a ↦ ⟨&*x[1]⟩l]

// Thread
spawn(modifyVec(x.clone)); Γ = [...]
cooperate; Error Γ = [x ↦ ⟨⬩vec⟨int⟩⟩l, a ↦ ⟨&*x[1]⟩l]
print!(*a); }l

fn modifyVec(mut y:trc<vec<int> >){ *y=vec![0]; }
n

Figure 4.1: An Empowering Type System

and another thread 2 executes the modifyVec function. In the createVec function, we
intuitively create a heap location of Trc type, containing a vector. In Rust, the vector
is a resizable contiguous array where the contents are allocated in the heap. Then, after
creating the variable x, we create a reference to the second vector case and bind it to a.
Following this, we create another thread (thread 2) using the spawn expression. When
the first thread continues to execute, it cooperates and thread 2 takes control. At this
point, when thread 2 executes the modifyVec function, it inadvertently creates a dan-
gling pointer in the memory of thread 1, as depicted in Figure 4.1. To prevent such errors
and maintain a well-typed FR

FT
program, the type system rejects this program at coopera-

tion expression typing time by employing the safeTrc function. Note that in the semantics of
this thesis, we have not considered the semantics of a vector, struct, or tuple, however
FR

FT
supports all the functionality to add these types. Furthermore, to stress the efficiency

of our semantics and type system, we have implemented in the experimental section the
tuple type.

Next, we simulate an intriguing feature that the FR
FT

type system must accommodate
in Listing 4.1:

1 {

2 let mut x = trc(0);

3 let mut y = &x;

4 let mut a = &mut *y;// Error: "a" involves an immutable borrow

5 *a = 1;

6 }

Listing 4.1: An Lval Involving an Immutable Borrow

Listing 4.1 is rejected by both Rust and the FR
FT

type system. In FR
FT
, all variables are

declared with the mut keyword, making them mutable by default. However, on line 4 of
the example, creating a mutable reference to the contents of y contradicts the borrowing
property, as it allows "a" to modify the contents of y afterward. Due to the path of "a"
traversing an immutable reference, it is assumed to be immutable. Consequently, we must
reject this example. To reinforce this feature, we introduce the following definition:
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Definition 4.7 (Mutable) An lval ω is said to be mutable if the path it describes never crosses

an immutable borrow as mentioned above. Then, for some l, ω = πx ∣ x s.t. Γ(x) = ⟨τ̃⟩l,
mut(Γ, ω) function is defined as mutable(Γ, πx ∣ τ̃):

mutable(Γ, ϵ ∣ τ) = true

mutable(Γ, (π.∗) ∣ & ω) = false

mutable(Γ, (π.∗) ∣ ⋄ω) = false

mutable(Γ, (π.∗) ∣ ▪τ) = mutable(Γ, π ∣ τ)
mutable(Γ, (π.∗) ∣ ⬩τ) = mutable(Γ, π ∣ τ)

mutable(Γ, (π.∗) ∣ &mut ω) = ⋀
i

mut(Γ, π.ωi)

The distinction between the definitions in 4.4 and 4.7 is highlighted as follows: in general,
variables in FR

FT
are mutable by default. The mut(., .) function is employed to safeguard

against having mutable access through immutable borrowing. For example {let mut a =

trc(0); let mut b = &a}m where Γ = {a ↦ ⟨⬩int⟩m, b ↦ ⟨&a⟩m}, we have ¬mut(Γ, *b)
since *b involves an immutable borrow. ThewriteProhibited(., .) function is responsible for
protecting against achievingmutable access by immutable borrowing. In the same example,
a is write prohibited by b.

1.2.3 Move Function

As mentioned earlier, types in FR
FT

encompass both move and copy semantics. Now, the
question arises as to how our type systemmodels the behavior of moving values. To address
this, let us consider the following example:

{let mut x = trc(0); {let mut y = x}n}m (4.10)

In example 4.10, the inner block "let mut y = x" signifies that the content of x is moved to
y, and consequently, y becomes the new owner of the value. The type system effectively
identifies this behavior by directly examining the typing environment, leading to the fol-
lowing representation: Γ = [x ↦ ⟨⌊⬩int⌋⟩m, y ↦ ⟨⬩int⟩n]. This implies that the type
of x is currently undefined, denoted by ⌊τ⌋. Furthermore, as we discussed in chapter 2,
Rust also supports the semantics of partial move, which indicates that a part of a struct or
tuple is moved, for example. However, in FR

FT
, partial moves are limited to the Box type

exclusively. The example provided below illustrates such a case:

{let mut x = box(box(0)); {let mut y = *x}n}m (4.11)

Following this example and after the execution of the declaration in the outer block, the
typing environment is as follows: Γ = [x↦ ⟨▪▪int⟩m]. Subsequently, when we create the
variable y, we move the content of x into y. As a consequence, the new type of x becomes
Γ(x) = ⟨▪⌊▪int⌋⟩m, indicating that only a part of the box type is moved. Note that, akin
to Rust’s Rc, it is prohibited in FR

FT
to move out of a Trc. In conclusion, to enforce move

semantics in the type system, we define the following:
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Definition 4.8 (Move) The move(Γ, ω) partial function returns the resulting environment

after moving the value of an lval ω. Then for a given lval ω such that ω = πx ∣ xwhere Γ(x) =
⟨τ̃1⟩l for some lifetime l, move(Γ, ω) is defined as Γ[x↦ ⟨τ̃2⟩l] where τ̃2 = strike(πx ∣ τ̃1)
defined as:

strike(ϵ ∣ τ1) = ⌊τ1⌋
strike((π.∗) ∣ ▪τ̃1) = ▪τ̃2 where τ̃2 = strike(π ∣ τ̃1)

Note that in the case of dereferencing, the strike function is exclusively applicable to box
types. In the case of active and inactive Trc types, their contents cannot be moved.

1.2.4 Trc property safety

It is crucial not to permit a Trc type containing another Trc type, as it would compromise
the property of the inactive Trc. For instance, the following scenario is not allowed in FR

FT
:

fn f1(mut x ∶ ⬩ ⬩ int){cooperate; **x = 0}n
fn f2(mut x ∶ ⬩ ⬩ int){let mut a = trc(0); *x = a.clone}m

{let mut x = trc(trc(0)); spawn(f1(x.clone)); spawn(f2(x.clone))}l
(4.12)

In this example, if the function f1 is executed after f2, it means that the content of x becomes
an inactive Trc that is not allowed to access the data. Therefore, the execution of the **x
expression is inconsistent and violates the property of the inactive Trc. Accordingly, in
order to statically protect shared data between threads, namely data encapsulated in Trcs,
we adhere to the following solution: avoid having complex Trc types (i.e. Trc within Trc)
as follows:

Definition 4.9 (Contains Trc) Let Γ be an environment and let τ be a type. Then, the func-

tion containsTrc(Γ, τ) is responsible for recursively verifying whether τ contains an active Trc
type (respectively an inactive Trc type) and it is defined as follows:

containsTrc(Γ, τ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

containsTrc(Γ, τ ′) if τ = ▪τ ′ or (τ = &[mut] ω where ∀i.(Γ(ωi) = τ
′))

true if τ = ⬩τ ′ or τ = ⋄ω
false otherwise

Henceforth, the following example is akin to 4.12, with the exception that the Trc type is
not composed of another Trc, as illustrated in 4.13:

fn f1(mut x ∶ ⬩int){cooperate; *x = 0}n
fn f2(mut x ∶ ⬩int){let mut a = trc(0);x = a.clone}n

{let mut x = trc(0); spawn(f1(x.clone); spawn(f2(x.clone))}l
(4.13)

In comparison to 4.12, this example is completely safe and is accepted by the FR
FT

type
system.

An interesting property of moving Trc types is demonstrated in the following example:
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1 {

2 let mut x = box(trc(0));

3 {

4 let mut y = *x.clone;

5 let mut a = x; // error: cannot move out

6 } // of ‘x‘ as it is cloned

7 }

Listing 4.2: Preserving the Integrity of Move Semantics

On line 4, the typing environment is : Γ = [x ↦ ⟨▪ ⬩ int⟩l, y ↦ ⟨⋄ ∗ x⟩l]. Then, if
we move the content of x on line 5, y becomes ill-typed. Hence, to ensure that y remains
well-typed, we must prevent x from being moved or becoming inactive as long as y exists
in Γ. This concept is akin to the idea of that x is borrowed in Γ. To enforce this property,
the following definition is introduced:

Definition 4.10 (Trc Move Prohibited) Let Γ be an environment and let ω be an lval, then

ω is said to be move-prohibited, denoted TrcMoveProhibited(Γ, ω), if there exists y ∈ dom(Γ)
such that Γ ⊢ y ↝ ⋄u ∧ ∃i(ui ⋈ ω).

1.2.5 Type and Environment Join

Another crucial function is to determine the union of two types and, consequently, the
union of two environments. This is necessary, for instance, for the control flow extension:

Definition 4.11 (Type Join) For the given partial types τ̃ 1 and τ̃ 2, we define τ̃3 the resulting

type from the union of τ̃ 1 and τ̃ 2, denoted τ̃3 = τ̃ 1⊔τ̃ 2 and is defined as union(τ̃1, τ̃2) according
to Figure 4.2 as follows:

union(τ̃1, τ̃2) = τ̃2 if τ̃1 ⊑ τ̃2

union(τ̃1, τ̃2) = τ̃1 if τ̃2 ⊑ τ̃1

union(▪τ̃1, ▪τ̃2) = ▪union(τ̃1, τ̃2)
union(⬩τ1,⬩τ2) = ⬩union(τ1, τ2)
union(⋄ω,⋄u) = ⋄ω, u
union(&ω,&u) = &ω, u

union(&mut ω,&mut u) = &mut ω, u

Note that, we use ⊆ for sequences, as seen in (W-Bor) and (W-Clone) in Figure 4.2. There
are constraints when it comes to joint borrowings or inactive Trcs. For example, we can
have union(&x,&y) = &x, y . However, the case union(&x,&mut y) can never exist. Sim-
ilarly, for Trc types, we can have union(⋄x,⋄y) = ⋄x, y. On the other hand, the case
union(⋄x,⬩int) is not possible, as an inactive Trc type cannot be simultaneously active
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τ̃ 1 ⊑ τ̃ 1
(W−Reflex)

τ̃ 1 ⊑ τ̃ 2

▪τ̃ 1 ⊑ ▪τ̃ 2
(W−Box)

u ⊆ ω

&[mut]u ⊑ &[mut]ω (W−Bor)

τ1 ⊑ τ2
⌊τ1⌋ ⊑ ⌊τ2⌋

(W−UndefA)
τ1 ⊑ τ2
τ1 ⊑ ⌊τ2⌋

(W−UndefB)
τ̃ 1 ⊑ ⌊τ2⌋
▪τ̃ 1 ⊑ ⌊▪τ2⌋

(W−UndefC)

τ 1 ⊑ τ 2
⬩τ 1 ⊑ ⬩τ 2

(W−Trc)
u ⊆ ω

⋄u ⊑ ⋄ω
(W−Clone)

Figure 4.2: Type Strengthening

and inactive. Another important feature to consider is the undefined type. This implies that
certain information in a type is incomplete. When combining two undefined types, the re-
sulting type contains the least amount of information to ensure an expected result and
enforce the soundness of the type system. For example, suppose τ̃1 is of the form ▪⌊▪ ▪ τ⌋
and τ̃2 is of the form ▪ ▪ ⌊▪τ⌋. The first type represents a box of undefined type, while the
second type represents a box of a box of an undefined type. Obviously, the first type gives
less information than the second one. Thence, the result of the joining between τ̃1 and τ̃2
returns τ̃1 according to Figure 4.2.

Moreover, the same concept can be extended to the joining of the environments as
follows:

Definition 4.12 (Environment Join) Let Γ1 and Γ2 be typing environments. Then, Γ1 re-

inforces Γ2, denotes Γ1 ⊑ Γ2, if dom(Γ1) = dom(Γ2) and for each variable x ∈ dom(Γ1)
where Γ1(x) = ⟨τ̃1⟩l, we have its match in Γ2 such as Γ2(x) = ⟨τ̃ 2⟩l where τ̃1 ⊑ τ̃2. Ad-

ditionally, for the given typing environments Γ1 and Γ2, we define Γ3 the strongest resulting

typing environment from the union of Γ1 and Γ2, denoted Γ3 = Γ1 ⊔ Γ2 such that Γ1 ⊑ Γ3

and Γ2 ⊑ Γ3.

1.2.6 Drop and Update

Figure 4.3 showcases several essential support functions, detailed as follows:

1. drop(Γ, m) handles the deallocation of locations with a lifetime m by removing them
from the environment Γ.

2. writek(Γ, ω, τ) is responsible for updating the type of a given lvalω, whereω = πx ∣ x
and Γ(x) = ⟨τ̃ 1⟩l for some lifetime l. In addition, for some k ≥ 0, writek(Γ, ω, τ) is
defined as Γ2[x ↦ ⟨τ̃ 2⟩l] where (Γ2, τ̃2) = update

k(Γ1, πx ∣ τ̃1, τ) as presented in
Figure 4.3.
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drop(Γ, m) = Γ − {x↦ ⟨τ̃⟩m ∣ x↦ ⟨τ̃⟩m ∈ Γ}
write

k(Γ1, ω, τ) = Γ2[x↦ ⟨τ̃ 2⟩l] s.t. (Γ2, τ̃ 2) = update
k(Γ1, πx ∣ τ̃ 1, τ)

where ω = πx ∣ x and k ⩾ 0

update
0(Γ1, ϵ ∣ τ̃ 1, τ2) = (Γ1, τ2)

update
k≥1(Γ1, ϵ ∣ τ1, τ2) = (Γ1, union(τ1, τ2))

update
k(Γ1, (π.∗) ∣ ▪τ̃ 1, τ) = (Γ2, ▪τ̃ 2) where (Γ2, τ̃ 2) = update

k(Γ1, π ∣ τ̃ 1, τ)
update

k(Γ1, (π.∗) ∣ ⬩τ 1, τ) = (Γ2,⬩τ 2) where (Γ2, τ 2) = update
k(Γ1, π ∣ τ 1, τ)

update
k(Γ1, (π.∗) ∣ &mut u, τ) = (⊔iΓi,&mut u) where Γi = write

k+1(Γ1, π ∣ ui, τ)
and 1 ⩽ i ⩽ len(u)

Figure 4.3: Drop and Update Functions

In line with Rust’s borrow checker analysis, the FR
FT

write
k function supports two well-

known features: strong update and weak update. The strong update approach is based on
concepts from previous work on static analysis, such as pointer analysis [77]. In FR

FT
, strong

update is applicable to primitive types, references, boxes, and Trc types (i.e. when the rank
k = 0 in the update function in Figure 4.3). The weak update applies to mutable references
when the rank k ≥ 0. Let is consider this simple example of a strong update, which is
accepted by the FR

FT
type system:

1 {

2 let mut x = 0;

3 let mut y = 1;

4 let mut a = &mut x;

5 a = &mut y;

6 print!(*a); // 1

7 }

Listing 4.3: Strong update in FR
FT

As demonstrated in this example, the borrow checker quickly identifies that the value
of "a" is overwritten in the assignment on line 5. Consequently, it can safely release the
borrow on x. However, a slight modification to this example renders the strong update

inapplicable, as shown below:

1 {

2 let mut x = 0;

3 let mut y = 1;

4 let mut a = &mut x;

5 let mut b = &mut a;

6

7 *b = &mut y;

8 print!(x);//Error: cannot borrow ‘x‘ as immutable

9 //because it is also borrowed as mutable
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10 print!(**a);

11 }

Listing 4.4: Weak update in FR
FT

In this example, we have changed the type of "a". Since Rust’s borrow checker is well
aware about invariants of this type (mutable reference), which allows for a weak update,
this example is rejected by Rust and therefore by FR

FT
. Similar to the example 4.4, the below

example also applies the weak update using box types as follows:

1 {

2 let mut x = 0;

3 let mut y = 1;

4 let mut a = Box::new(&mut x);

5 *a = &mut y;

6 print!(x);//Error: cannot borrow ‘x‘ as immutable

7 //because it is also borrowed as mutable

8 print!(**a);

9 }

Listing 4.5: Weak update in Rust using box type

Again, the same error as in Listing 4.4 except this time with the box type. Perhaps it makes
more sense not to apply the strong update with the box type because ▪τ ( Box<T> in Rust)
is only a user-defined type. On the other hand, it is not necessary for the borrow checker
to have knowledge of its invariants. Research projects [61] have adopted the approach of
strong and weak updates.

1.2.7 Compatibility of types

For an environment Γ, two partial types τ̃1 and τ̃2 are said to be compatible type, denoted
as Γ ⊢ τ̃1 ≈ τ̃2, following the rules (S-*) outlined in Figure 4.4. Notably, the (S-Bor) rule
requires that the two types shall have the same mutability in order to be compared. For
example, Γ ⊢ & x ≈ & y is valid, but Γ ⊢ & x ≈ & mut y is not. Moreover, compatibility
for borrows disregards their lifetimes, assuming that borrows can be compatible even if
the referred slots have different lifetimes. In the context of Trc types, an active Trc is
compatible with an inactive Trc type (S-ATrcL, S-ATrcR). For instance, consider the code
snippet {let mut x = trc(0); let mut y = x.clone; y = trc(1)}l.

Before delving further, it is essential to address the subtyping feature in Rust and how
FR

FT
embraces and supports this aspect. This will be outlined in the following section.
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Γ ⊢ int ≈ int
(S−Int)

Γ ⊢ bool ≈ bool
(S−Bool)

Γ ⊢ τ1 ≈ τ̃2

Γ ⊢ ⌊τ1⌋ ≈ τ̃2
(S−UnL)

Γ ⊢ τ̃1 ≈ τ̃2

Γ ⊢ ▪τ̃1 ≈ ▪τ̃2
(S−Box)

Γ ⊢ τ1 ≈ τ2
Γ ⊢ ⬩τ1 ≈ ⬩τ2

(S−ATrc)
Γ ⊢ τ̃1 ≈ τ2

Γ ⊢ τ̃1 ≈ ⌊τ2⌋
(S−UnR)

∀i,j(Γ(ui) = τ1 ∧ Γ(ωj) = τ2 ∧ Γ ⊢ τ1 ≈ τ2)
Γ ⊢ &[mut]u ≈ &[mut]ω (S−Bor)

∀i,j(Γ(ui) = ⬩τ1 ∧ Γ(ωj) = ⬩τ2 ∧ Γ ⊢ τ1 ≈ τ2)
Γ ⊢ ⋄u ≈ ⋄ω

(S−ITrc)

∀i(Γ ⊢ τ1 ≈ τ2 ∧ Γ(ωi) = ⬩τ2)
Γ ⊢ ⬩τ1 ≈ ⋄ω

(S−ATrcL)
∀i(Γ(ui) = ⬩τ1 ∧ Γ ⊢ τ1 ≈ τ2)

Γ ⊢ ⋄u ≈ ⬩τ2
(S−ATrcR)

Figure 4.4: Compatible Type

1.3 Understanding the Subtyping Relationship

Subtyping can be generally defined as a relationship between types where, if A is a sub-
type of B, then the set of values belonging to A is a subset of the set of values belonging to
B. This concept plays a crucial role in object-oriented programming (OOP) languages like
Java, Python, and C++, as it enables the creation of modular, reusable, and extensible code.
Drawing from a widely recognized example, in the context of subtyping, we can consider
"Dog" as a subtype of "Animal". This relationship arises because the set of dogs is encom-
passed within the larger set of animals, effectively meaning that we can refer to all dogs as
animals. On the aspect of typing, subtyping has significance in statically typed languages,
making them more permissive and adaptive. By allowing subtyping between types, these
languages gain increased flexibility in handling various data structures and interactions
between different types.

In statically typed languages, subtyping allows for a certain degree of permissiveness
and adaptability. However, it is important to note that in Rust, subtyping differs from tra-
ditional notions. Rust introduces a new subtyping relationship involving lifetimes. For
instance, &’a str is a subtype of &’b str if ’a outlives ’b. This might seem counter-
intuitive since "sub" implies smaller, but in this case, the longest lifetime takes precedence,
making it the subtype.

In the context of Rust, the type of references consists of two components: the lifetime
and the type itself. This new subtyping relationship based on lifetimes adds to Rust’s ca-
pabilities and uniqueness. Moreover, FR

FT
also supports subtyping based on the lifetime

relationship, following Rust’s approach. Specifically, this applies to the reference and inac-
tive Trc types, allowing for more nuanced and flexible handling of lifetimes and types, as
follows:
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Γ ⊢ int ⪰ l
(L-Int)

Γ ⊢ bool ⪰ l
(L-Bool)

Γ ⊢ τ ⪰ l

Γ ⊢ ▪τ ⪰ l
(L-Box)

Γ ⊢ τ ⪰ l

Γ ⊢ ⬩τ ⪰ l
(L-AcTrc)

Γ ⊢ ω ∶ ⟨⬩τ⟩m m ⪰ l

Γ ⊢ ⋄ω ⪰ l
(L-IncTrc)

Γ ⊢ u ∶ ⟨τ⟩m m ⪰ l

Γ ⊢ &[mut] u ⪰ l
(L-BoR)

Figure 4.5: Well-formed Type

Definition 4.13 (Well-formed Type) For a given environmentΓ, a type τ is said to be well-

formed with respect to a lifetime l, denoted Γ ⊢ τ ⪰ l according to the rules (L-*) in Figure

4.5.

The Γ ⊢ τ ⪰ l represents the subtyping requirements in FR
FT
. To explain the subtyping

relationship between lifetimes, let us consider the following example:

{let mut x = 0; let mut a = &x; {let mut y = 1; a = &y}m; *a}l (4.14)

The FR
FT
type system rejects Example 4.14 due to a specific issue that arises when the inner

block is executed. In this scenario, the variable a becomes a reference to y instead of x.
Consequently, when outside the inner block, a turns into a dangling pointer, as it points
to y, which is dropped when the inner block is reduced. However, the lifetime of the new
value must be greater than the lifetime of the current value. In the mentioned example, this
condition is not met, as illustrated in Figure 4.5 (i.e. Γ ⊢ &y ≽ l is not satisfied).

1.4 The Typing Rules

In this section, we describe the typing rules of FR
FT
, explaining each of them in detail ac-

cording to Figure 3.5. Let us define that ϵ in the typing rules stands for ϵ in the program
store. We start with the typing of lvals in the FR

FT
program as follows:

Γ(x) = ⟨τ̃⟩m

Γ ⊢ x ∶ ⟨τ̃⟩m ( T-LvVar) Γ ⊢ ω ∶ ⟨⬩τ⟩m
Γ ⊢ *ω ∶ ⟨τ⟩m (T-LvTrc) Γ ⊢ ω ∶ ⟨▪τ̃⟩m

Γ ⊢ *ω ∶ ⟨τ̃⟩m
(T-LvBox)

Γ ⊢ ω ∶ ⟨&[mut]u⟩n Γ ⊢ u ∶ ⟨τ⟩m
Γ ⊢ *ω ∶ ⟨⊔iτi⟩⊓imi

(T-LvBorrow)

Based on the aforementioned rules (T-Lv*), an lval denoted by ω is considered well-typed

concerning the typing environment Γ, expressed as Γ ⊢ ω ∶ ⟨τ̃⟩m. This premise ensures
that ω belongs to Γ and currently possesses the type ⟨τ̃⟩m. In the T-LvBorrow rule, two
notations are used: (1) ⊔iτi represents the join of the types of u, utilizing the union func-
tion 4.11. (2) ⊓imi indicates the lowest lifetime of m0, . . . , mn, ensuring that the sequence of
active lifetimes remains defined within an expression.
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Consider the following example: Γ = {y ↦ ⟨⬩int⟩m, b ↦ ⟨⋄y⟩m, c ↦ ⟨&y⟩m} it fol-
lows that Γ ⊢ *y ∶ int and Γ ⊢ *c ∶ ⬩int. Since Γ ⊢ b ∶ ⋄y, then *b cannot be typed
(i.e. only active Trc type can be accessed). In addition, lvals can have partial types as long
as their internal "path" is defined ( Definition 4.2). For instance, if Γ = {x ↦ ▪⌊▪int⌋} it
follows that x and *x can be typed while **x cannot since **x is a partial type(i.e. ⌊▪int⌋)
and we cannot access a value that has a partial type (e.g. we cannot read the content of
**x). Note that this situation is not possible with the active Trc type, as moving out of an
active Trc type (i.e., ⬩τ̃ ) is not permitted. For example:

{let mut x = 0; {let mut y = & x; let mut a = &mut y;

let mut z = 1; *a = & z}m}l (4.15)

In example 4.15, in the inner block, we create a shared reference to x and link it to y.
Subsequently, we create a mutable reference to y and bind it to a. Then we mutate the
contents of a by creating a immutable reference to z. Consequently, in this case, the type
of y becomes (& x, z) and the lifetime of its contents is determined by the lowest lifetime
between x and z (i.e. min(l,m)).

1.4.1 Read and Write

After introducing the typing rules of an lval in an FR
FT
program, next we will present and

explain the typing rules for FR
FT
expressions. The first rule is: T-Const, its role is to handle

constant values that can have a FR
FT

program such as: unit value, integer, Boolean and
reference values using the store typing, σ, given in the form of the judgement as follows:

σ ⊢ v ∶ τ

Γ ⊢ ⟨v ∶ τ⟩lσ ⊣ Γ
(T-Const)

As previously mentioned, the metavariable σ represents the program store S and helps
determine the type of locations in our typing rules. Its significance becomes evident when
typing an expression containing a reference value. However, to ensure the appropriate
application of copy and move semantics, we need specific typing rules for each. For this
purpose, we introduce the T-Copy and T-Move rules. The T-Copy rule handles copying value
of an lval that has copy semantics 4.1:

Γ ⊢ ω ∶ ⟨τ⟩m copy(τ) ¬readProhibited(Γ, ω)
Γ ⊢ ⟨ω̂ ∶ τ⟩lσ ⊣ Γ

(T-Copy)

Therefore, it is considered safe to keep the output typing environment Γ unchanged in
this rule. For this to apply, ω must not be borrowed as mutable, which is confirmed by
¬readProhibited(Γ, ω). Note that to copy an lval, its contents must be read. However, if the
lval is borrowed as mutable, accessing its data is forbidden. With the T-Move rule, rather
than copying the value, we move it out of ω that has move semantics:

Γ1 ⊢ ω ∶ ⟨τ⟩m ¬writeProhibited(Γ1, ω)
¬TrcMoveProhibited(Γ1, ω) Γ2 = move(Γ1, ω)

Γ1 ⊢ ⟨ω ∶ τ⟩lσ ⊣ Γ2

(T-Move)
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This rule must satisfy that ω must not be borrowed or cloned in Γ (checked by ¬ writePro-

hibited(Γ1, ω) and ¬ TrcMoveProhibited(Γ1, ω) respectively). Once validated, the output
environment removes ω by using themove function which replaces exactly one occurrence
of τ with ⌊τ⌋. Note that, only box type can move its content, while all other types cannot
(i.e. similar to Rc in Rust, it is forbidden in FR

FT
to move out of a Trc). Hence, to elaborate,

we consider the following examples:

1 {

2 let mut x = trc(0);

3 let mut y = x.clone;

4 {

5 let mut z = x; //ERROR: x cannot move as long as y exists

6 }

7 }

Listing 4.6: An inactive Trc is well-typed

In Listing 4.6, on line 3, we create a copy of the reference in x (of the active Trc). The
input environment is now as follows: Γ = [x↦ ⟨⬩int⟩l, y ↦ ⟨⋄x⟩l]. If we proceed with
the expression reduction on line 5, x will be moved into z, leading to its type becoming a
partial type (e.g. τ̃ ). This results in the loss of consistency between the active and inactive
Trc types since the type of y is ⋄x. Due to this inconsistency and in accordance with the
T-Move rule, this program is rejected. Let’s consider another example:

1 {

2 let mut x = trc(box(0));

3 let mut y = *x; //ERROR: cannot move out of x

4 }

Listing 4.7: Cannot move out of an active Trc

As in Rust, it is not allowed to move out of a reference counting. Hence, an error is encoun-
tered on line 3 when trying to move the contents of an active Trc x into y. This situation is
addressed by defining the move function 4.8. However, the last example is accepted by the
FR

FT
type system:

1 {

2 let mut x = box(trc(0));

3 let mut y = *x; //OK

4 }

Listing 4.8: Move out of a Box

According to the T-Move rule, the variable x is not borrowed in its typing environment and
the reduction of the expression on line 3 is therefore achieved. Thus, after the reduction on
line 3, the type of x becomes ▪⌊⬩int⌋.
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1.4.2 Borrowing and inactive Trc

Considering the borrowing invariants, we encounter two possibilities: (1) having onemuta-
ble reference and no immutable reference, or (2) having no mutable reference and multiple
immutable references. To ensure that our environment, Γ, adheres to these two possibili-
ties, we introduce the following rules:

- The T-MutBorrow rule demands that the lval ω should not be write-prohibited to allow
safe borrowing of the lval:

Γ ⊢ ω ∶ ⟨τ⟩m mut(Γ, ω) ¬writeProhibited(Γ, ω)
Γ ⊢ ⟨&mut ω ∶ &mut ω⟩lσ ⊣ Γ

(T-MutBorrow)

Before creating a borrow toω, the T-MutBorrow rule ensures two conditions aremet. Firstly,
ω should not already be borrowed as an immutable reference, which is checked using the
writeProhibited function. Secondly, this rule verifies that ω is mutable by employing the
mut function. Themut function confirms that the path of ω does not involve traversing an
immutable reference, as defined in Definition 4.7.

- The T-ImmBorrow rule necessitates that the lval ω is not read-prohibited. In both situ-
ations, it is crucial for the type ⟨τ⟩m of ω to be well-formed, meaning it must not be a partial
type:

Γ ⊢ ω ∶ ⟨τ⟩m ¬readProhibited(Γ, ω)
Γ ⊢ ⟨& ω ∶ & ω⟩lσ ⊣ Γ

(T-ImmBorrow)

In the ensuing rules, we evaluate expressions e rather than lvals ω. Hence, the effect
of evaluating e propagates outwards. As a result, we will have typing environments in the
rules but they do not appear in the final evaluation result.

1.4.3 Box and Trc

In FR
FT
, dynamic allocation is handled either by returning a box type with the T-Box rule, or

an active Trc typewith T-Trc rule. These types represent an owned pointer to a dynamically
allocated location in the heap. Furthermore, to safely share an active Trc type between
threads, the T-Trc rule necessitates that after evaluating e, the resulting type (τ ) must not
contain an active Trc type. This constraint is satisfied by the previously introduced function
containsTrc 4.9 :

Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

Γ1 ⊢ ⟨box(e) ∶ ▪τ⟩lσ ⊣ Γ2

(T-Box)

Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 ¬containsTrc(Γ2, τ)
Γ1 ⊢ ⟨trc(e) ∶ ⬩τ⟩lσ ⊣ Γ2

(T-Trc)

Using the T-Box rule, we begin by typing the expression e, which results in a new typing
environment Γ2. We then encapsulate the type of e within the box type. However, with
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the T-Trc rule, an additional requirement is imposed to ensure that the type of e in Γ2 does
not include an active or inactive Trc. Lastly, the T-Clone rule returns an inactive Trc type,
ensuring that ω has an active Trc type as follows:

Γ ⊢ ω ∶ ⟨⬩τ⟩m
Γ ⊢ ⟨ω.clone ∶ ⋄ω⟩lσ ⊣ Γ

(T-Clone)

The following example is rejected by the FR
FT
type system:

1 {

2 let mut x = box(trc(1));

3 let mut y = trc(x);

4 }

Listing 4.9: Creation of an active Trc is unsafe

As shown in Listing 4.9, x is of type ▪ ⬩ int which means that x contains an active Trc
type. Hence, using the T-Trc rule, this program is rejected.

1.4.4 Sequence and Block

The T-Sequence rule captures how variable environments are threaded into programs as
follows:

Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ ⊣ Γ2 ... Γn ⊢ ⟨en ∶ τn⟩lσ ⊣ Γn+1

Γ1 ⊢ ⟨e ∶ τn⟩lσ ⊣ Γn+1
(T-Sequence)

After evaluating an expression in a sequence, the resulting environment is straightfor-
wardly carried over to the subsequent expression, as some expressions may alter the envi-
ronment during type checking. Importantly, the type of a sequence is determined by the
final expression within it, as outlined in the T-sequence rule.

Every block expression in FR
FT
has a unique lifetime. The latter is essential to statically

manage memory without the use of a garbage collector:

Γ1 ⊢ ⟨e ∶ τ⟩mσ ⊣ Γ2 Γ2 ⊢ τ ≽ l Γ3 = drop(Γ2, m)
Γ1 ⊢ ⟨{e}m ∶ τ⟩lσ ⊣ Γ3

(T-Block)

This rule exploits the lifetime associated with a given block to determine which variables
should be dropped while ensuring that there are no dangling references. Thus, the premise
Γ2 ⊢ τ ≽ l ensures that the resulting type τ does not contain a reference or inactive Trc
pointing to a dropped location. Additionally, drop(Γ, m) deallocates variables that have a
lifetime m, as depicted in Figure 4.3.

1.4.5 Assign and Declare

With T-Declare, the creation of a new location (owner) requires that the variable should
not exist in the environment. From then on, this rule produces an output environment,
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Γ3, by adding the new variable whose lifetime matches that of the enclosing block as the
following:

x /∈ dom(Γ1) Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 Γ3 = Γ2 [x↦ ⟨ τ ⟩l]
Γ1 ⊢ ⟨let mut x = e ∶ ϵ⟩lσ ⊣ Γ3

(T-Declare)

To assign a value to a given lval ω, the T-Assign rule is introduced as follows:

Γ1 ⊢ ω ∶ ⟨τ̃1⟩m Γ1 ⊢ ⟨e ∶ τ2⟩lσ ⊣ Γ2 Γ2 ⊢ τ̃1 ≈ τ2
Γ2 ⊢ τ2 ⪰ m Γ3 = write

0(Γ2, ω, τ2)
¬writeProhibited(Γ3, ω) ¬TrcMoveProhibited(Γ3, ω)

Γ1 ⊢ ⟨ω = e ∶ ϵ⟩lσ ⊣ Γ3

(T-Assign)

The T-Assign rule is subject to several conditions: (1) ω must not be borrowed or cloned.
This is verified using the¬writeProhibited(Γ3, ω) and¬TrcMoveProhibited(Γ3, ω) functions
to prevent unchecked mutation in the presence of aliasing. (2) τ̃1 and τ2 must be compatible

type (Γ2 ⊢ τ̃1 ≈ τ2 according to Definition 4.4). (3) The new type τ2 has to be well-formed

with respect to lifetime m (i.e. τ2 ⪰ m as a subtype requirement) as described in Definition
4.5. Furthermore, in this case, ω can have a partial type. The following example outlines
point (3) mentioned above:

{let mut x = trc(0); let mut y = & x; {let mut z = box(trc(0)); y = &*z}m}l

This example is rejected by the FR
FT
type system. Upon closer inspection, we see that this

example creates a dangling pointer since the lifetime of & x is greater than that of &*z (i.e.
l ≽ m). Therefore, this example must be rejected.

The arithmetic operations in FR
FT
are straightforward since we only have integer values

so far. The T-Arithm rule handles an arithmetic expression as follows:

Γ1 ⊢ ⟨e1 ∶ int⟩lσ ⊣ Γ2 Γ2 ⊢ ⟨e2 ∶ int⟩lσ ⊣ Γ3

Γ1 ⊢ ⟨e1 ⊕ e2 ∶ int⟩lσ ⊣ Γ3

(T-Arithm)

The T-Arithm rule requires the operands to have an integer type. For completeness, a typing
rule for conditional operations (e.g. equality comparator) is necessary as well, especially
for control flow extension :

Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ ⊣ Γ2 Γ2[γ ↦ ⟨τ1⟩l] ⊢ ⟨e2 ∶ τ2⟩lσ ⊣ Γ3

Γ4 = Γ3 \ {γ ↦ ⟨τ1⟩l} Γ4 ⊢ τ1 ≈ τ2 copy(τ1) copy(τ2) γ ∈ fresh

Γ1 ⊢ ⟨e1 ⊗ e2 ∶ bool⟩lσ ⊣ Γ4

(T-Cond)

The T-Cond rule is more complex than the T-Arithm rule. Namely, when typing the left
operand, we need to keep in mind its type in order to enforce the ownership invariants, es-
pecially for borrowing. In the following example {let mutx = 0; let mut y = 1; if (&x! =
&mut x){x = y}nelse{...}m}l, when typing the control flow, we create a new fresh vari-
able for the left operand. However, this example is rejected by FR

FT
because it violates

the ownership invariant by creating two references to x, where one is immutable and the
other mutable in the conditional part. Hence, to protect this ownership, the type of the
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left operand is added in the typing environment Γ2 via γ. In addition, Rust applies the
deref coercion approach in different cases. For example, {let mut x = 0; let mut y =

1; if (&mut x == &mut y){x = y; }nelse{...}m}l here Rust applies deref coercion to both
operands to compare the contents of these operands instead of comparing the two refer-
ences themselves. Similarly, Rust applies the deref coercion for box types. Otherwise, as in
FR, this example is rejected by the FR

FT
type system as the concept of deref coercion does not

apply. This is achieved by ensuring that the left and right operands are not copied using the
copy function. Finally, the resulting typing environment, Γ4, does not contain the type of
the left or right operand, which means that once the comparison is performed, the values
are dropped.

1.5 The Typing Function in FRFT

FR
FT
supports function extension, as explained in the previous chapter. There are limitations

imposed by our type system since the invoked function can only be executed within the
spawn expression. One of these limitations is that a reference cannot be used as a parameter
because the lifetime of its content can be shorter than the lifetime of the thread that is
created. These restrictions are manifested in the form of the signature that a FR

FT
function

can have, as depicted in Figure 3.5. For clarity, a signature with a form compatible with
the inactive Trc type or a reference is not allowed. Note that in the next chapter, we will
introduce the call function to FR

FT
, extending its usage beyond the spawn expression and

considering all the different conditions that arise from these extensions.

1.5.1 Establishing the Connection between Signatures and Types in FRFT

The shape of the signatures in FR
FT

is similar to that of the types, as illustrated in Figure
3.5. In the next chapter, we will introduce signatures that are not similar to types. In this
case, we need a mechanism to establish a correspondence between the signature and the
type when a function is declared or invoked [73]. We establish this correspondence as
follows: Γ ⊢ (S) ⟹ (τ). The concept behind the latter is to map the signature S of the
declaration function to the typing environment. Alternatively, we ignore the return type in
this mechanism since the function call inside the spawn expression does not return a value.
Afterwards, it remains to present the typing rule dedicated to function declaration in FR

FT

as follows:

Γ ⊢ (S) ⟹ (τ) Γ1 = Γ[x↦ ⟨τ⟩m]
Γ1 ⊢ ⟨{e}m ∶ ϵ⟩lσ ⊣ Γ2

Γ ⊢ ⟨fn f(mut x ∶ S){e}m ∶ ϵ⟩lσ ⊣ Γ
(T-Function)

As demonstrated in the T-Function rule, the mechanism Γ ⊢ (S) ⟹ (τ) is used to obtain
an appropriate type τ . Thus, we declare the parameters in Γ with their suitable type, which
produces Γ1. Moreover, as the T-Function depicts, we type the body of f .

To illustrate the typing of an FR
FT
program more comprehensively, we provide the fol-
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lowing example:

fn f1(mut x ∶ ⬩int, mut y ∶ ▪ ⬩ int){...}l
{let mut x = trc(0); let mut y = trc(0); spawn(f1(x.clone, box(y.clone)))}m

(4.16)
We begin by typing the declared function f1. At this stage, the T-Function rule comes into
play, utilizing the mechanism: Γ ⊢ (S) ⟹ (τ). Consequently, after mapping signatures
to types, the typing environment Γ of f1 is as follows: Γ = [x↦ ⟨⬩int⟩l, y ↦ ⟨▪⬩int⟩l],
corresponding to the result of the mechanism: Γ1 ⊢ (⬩int, ▪⬩int) ⟹ (⬩int, ▪⬩int).
Subsequently, we can proceed to safely type the body of the function, and so on.

1.5.2 Function Invocation and Typing

In FR
FT
, according to Figure 3.5, a potential case of the reduction function arises when a

function is called within the spawn expression. In this section, we explore how the FR
FT
type

system manages the typing of function invocations while ensuring strong typing. Similar
to function declaration, for function call typing, we also employ a mechanism to pass types
from the typing environments to the function signatures. This mechanism is achieved by
using the previous mechanism, but in a slightly different manner, where types are passed
to signatures, such as: Γ ⊢ (S) ⟸ (τ). It is worth noting that in this mechanism, we can
observe that the execution of the function call has no effects on the typing environment
Γ, thus leaving Γ unchanged. In essence, function invocation typing encompasses both
the typing of arguments and the aforementioned mechanism, which enforces constraint
resolution to allow the two-way flow of information: from types to signatures and from
signatures to types.

Function Invocation inside the spawn expression

We consider a scenario where the function call is reduced within the spawn expression. As
a consequence of the general idea of the Trc extension, the inactive Trc becomes active
in the new thread environment. This raises the question of how to formally maintain this
activation during the evaluation of the spawn expression. To address this, we must retrieve
the argument types (τ ) and activate all inactive Trc types accordingly. For this purpose,
we introduce the following definition, which facilitates the transition from the inactive Trc
type to the corresponding active Trc:

Definition 4.14 (Activate) LetΓ be an environment and let τ be a type. Then, activate(Γ, τ)
function is responsible for returning a suitable type for τ such that the type is safely activated

when requested as follows:

activate(Γ,⋄ω) = τω for some ω ∈ dom(Γ) such as Γ ⊢ ω ∶ ⟨τω⟩l

activate(Γ, ▪τ) = ▪activate(Γ, τ)
activate(Γ, τ) = τ otherwise
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The Definition 4.14 assumes a typing environment Γ and a type τ . Then, if τ is an inactive
Trc, it is necessarily of the form ⋄ω. Therefore, we only need to retrieve the type of ω in Γ.
Otherwise, if it is of type box ▪τ , activate function is recursively called to activate the type
if needed (e.g. τ ≈ ▪ ⋄ ω). Note that, activate function does not support reference types or
active Trc’s since we cannot have references in the arguments (i.e. due to the lifetime of
references). Additionally, it is forbidden to have active Trc’s in the arguments. To shed light
on the performance of the above functions, let’s consider the following example written in
FR

FT
according to Figure 3.5 :

fn f1(mut r ∶ ⬩int, mut q ∶ ▪ ⬩ int){..}l
{let mut a = trc(0); let mut b = trc(0); let mut x = a.clone;

let mut z = box(b.clone); spawn(f1(x, z))}m
(4.17)

Example 4.17 demonstrates a function f1 that takes two parameters: (1) an active Trc type
and (2) a box to an active Trc type. In the body of the program, we create an active Trc of
type integer and bind it to a. It is similar to the b variable. Then we clone the reference
into a and link it to x. Here, x is of type ⋄a. Same as z variable, except that we encapsulate
the Trc in a box type (▪⋄b). Thus far, our input environment Γ is: Γ = [a↦ ⟨⬩int⟩m, b↦
⟨⬩int⟩m, x ↦ ⟨⋄a⟩m, z ↦ ⟨▪ ⋄ b⟩m]. Then, when typing the spawn expression, we need to
apply the activate function to activate the necessary type as follows:

activate(Γ,⋄a), activate(Γ, ▪ ⋄ b)
τa ⊔ ▪activate(Γ,⋄b)

Γ(a), ▪τb
Γ(a), ▪Γ(b)

τ ′ = ⬩int, ▪ ⬩ int

As a result, the new sequence of argument types corresponding to the new thread is as
follows: τ ′ = ⬩int, ▪ ⬩ int (i.e. τ = ⋄a, ▪ ⋄ b).

For a given invocation function, it is required to verify if the types of these arguments
correspond to the signatures of its parameters. Therefore we introduce the following defi-
nition:

Definition 4.15 (Signature and type compatibility) For an environment Γ, a signature

S and a type τ are said to be compatible, denoted as Γ ⊢ S ∼ τ according to the following

rules:

Γ ⊢ ϵ ∼ ϵ
C-Unit

Γ ⊢ int ∼ int
C-Int

Γ ⊢ bool ∼ bool
C-Bool

Γ ⊢ S ∼ τ

Γ ⊢ ▪S ∼ ▪τ
C-Box

∀i(Γ ⊢ S ∼ τ ∧ Γ(ωi) = ⬩τ)
Γ ⊢ ⬩S ∼ ⋄ω

(C−Trc)

As shown above, an active Trc signature is compatible with an inactive Trc type. How-
ever, the situation does not hold for an active (inactive, respectively) Trc signature being
compatible with an active or (inactive, respectively) Trc type. The rationale behind this is
that an active Trc serves as the entry point to the shared part of the heap, and the thread
must not lose it. Furthermore, it should be emphasized that the case of references does not
exist due to the limited lifetime of the reference.
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Definition 4.16 (Argument Typing) Let Γ and Γ
′
be environments, σ a store typing and

l a lifetime. Let e be a sequence of zeros or more expressions and τ a matching sequence of

types. Typing the arguments over e results in a left-to-right typing of the expressions, denoted

Γ ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ
′
, and defined as Γ

′
= Γn − {γ − Γn(γ)} where Γn = typeArg

0(Γ, e):

typeArg
i(Γi,∅) = Γi

typeArg
i(Γi, ei e) = typeArg

i+1(Γ′i[γi ↦ ⟨τi⟩l], e) s.t. Γi ⊢ ⟨ei ∶ τi⟩lσ ⊣ Γ
′
i

Here, γ represents a freshly introduced variable when typing the expression e, as illustrated
in definition 4.16. The purpose of γ is to maintain the constraints of the mutable reference
and the inactive Trc while typing the function arguments.

Before presenting the specific typing rule for the spawn expression, let us first explain
the necessary constraints that need to be checked during typing. The typing of the function
call is limited to typing the arguments (definition 4.16 and checking the restrictions imposed
by the mechanism: Γ ⊢ (S) ⟸ (τ). The imposed constraints are the following:

• The arguments must be well-typed in the typing environment.

• As discussed in section 1.5.2, inactive Trc types become active in the new thread
environment. Hence, it is essential to ensure the uniqueness of Trc by guarantee-
ing that no two inactive Trc types point to the same location in memory. For ex-
ample, if we consider the same example 4.17 and modify the spawn expression to
spawn(f1(x, box(a.clone))), it breaks the ownership invariant as when the inactive
Trc is activated, the new thread has two active Trcs pointing to the same location in
memory.

• With respect to active Trc types, we prevent an argument from having a type that
contains an active Trc. The reason being that an active Trc serves as the primary
access point to a location, and the thread must not lose it when passing it to another
thread.

• Likewise, since the lifetime of a thread is static in FR
FT
, we avoid arguments containing

references in their type (i.e., the lifetime of a borrowing is shorter than that of a
thread).

• It is necessary to ensure compatibility between the signatures of the function’s pa-
rameters and the types of the function’s arguments before activating the inactive
Trc types. Additionally, the absence of references in the function call prevents the
possibility of producing side effects in the output environment, hence Γ remains un-
changed.

Now, let’s consider the T-Spawn rule to handle the creation of a new thread that executes
the function given in parameters, as follows:

D(f) = (S) Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

Γ2 ⊢ (S) ⟸ (τ)
Γ1 ⊢ ⟨spawn(f(e)) ∶ ϵ⟩lσ ⊣ Γ2

(T-Spawn)
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As demonstrated by the T-Spawn rule, the invoked function does not have a return type
(ϵ). The latter is limited to: (1) typing the arguments of the function f (definition 4.16), (2)
retrieving the signature of the function f from the declaration contextD, and (3) enforcing
two necessary constraints dictated by the mechanism (Γ2 ⊢ (S) ⟸ (τ)):

• It is important to ensure uniqueness of Trc by guaranteeing that there are no two
inactive Trc types pointing to the same location in the memory. Knowing that, inac-
tive Trc types become active in the new thread environment. In other words, for all
τ1, τ2 ∈ τ if contains(Γ, τ1,⋄ω) and contains(Γ, τ2,⋄u), then ¬∃i,j.(ωi ⋈ uj).

• It is necessary to ensure the compatibility between signatures and types, denoted
Γ2 ⊢ S ∼ τ , by using the C-* rules (definition 4.15). This compatibility prevents the
presence of an active Trc or a reference in the argument types. After verifying the
necessary constraints, the mechanism is able to activate the inactive Trc type in τ .

The main objective of this mechanism is to prevent the following scenarios: (1) having two
inactive Trcs pointing to the same memory location, for instance, Γ ⊢ (⬩int,⬩int) ⟸̸
(⋄x,⋄x); and (2) having an active Trc as one of the function arguments, for example,
Γ ⊢ (⬩int) ⟸̸ (⬩int). To illustrate these constraints, let’s consider a simple example
that is rejected by the FR

FT
type system:

fn f1(mut x ∶ ⬩int, mut y ∶ ⬩int){. . . }l
{let mut x = trc(0); spawn(f1(x.clone, x.clone))}m

(4.18)

Example 4.18 is not permitted since the invoked function in the spawn expression has two
inactive Trc arguments as parameters pointing to the same memory location. As the inac-
tive Trc’s become active in the new thread’s environment, the uniqueness property of the
Trc extension (i.e. uniqueness ofmutable location)must be preserved by preventing two ac-
tive Trc’s pointing to the samememory location. Accordingly, we achieve an unsatisfactory
constraint by the T-Spawn rule mechanism as follows: Γ1 ⊢ (⬩int,⬩int) ⟸̸ (⋄x,⋄x).
However, the following example is accepted by the FR

FT
type system:

fn f1(mut x ∶ ⬩int, mut y ∶ ⬩int){. . . }l
{let mut x = trc(0); let mut y = box(trc(0));

spawn(f1(x.clone, *y.clone))}m
(4.19)

Example 4.19 is permitted since the invoked function in the spawn expression has two
inactive Trc arguments as parameters not pointing to the same memory location. As the
inactive Trc’s become active in the new thread’s environment, the uniqueness property
of the Trc extension is preserved after the inactive Trc type is activated. Accordingly,
we achieve a satisfactory constraint by the T-Spawn rule mechanism as follows: Γ1 ⊢

(⬩int,⬩int) ⟸ (⋄x,⋄*y).

1.6 Cooperative Typing Rules for FRFT

Up to this point, we have presented the FR
FT

type system for non-reactive expressions.
In this section, we introduce the necessary typing rules for reactive expressions. The main
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objective of the typing system presented in this section is to ensure that the synchronization
and cooperation between threads do not compromise the safety of the threads’ memory.

Our focus in this chapter is limited to the cooperative part of the FR
FT
language, which

includes only the cooperate expression as shown in Figure 3.5. Therefore, we introduce
the typing rule to handle the cooperate expression. The cooperate expression signifies
that the current thread has completed its execution at the current instant, allowing another
thread to assume control. This implies that the other thread can share data with the current
thread via the Trc extension. However, the Trc extension can potentially lead to memory
safety issues, such as creating a dangling pointer (as illustrated in the example in Figure
4.1). Thus, it becomes crucial to safeguard shared data between threads, especially during
cooperation. The T-Cooperate rule is introduced to serve this purpose:

safeTrc (Γ)
Γ ⊢ ⟨cooperate ∶ ϵ⟩lσ ⊣ Γ

(T-Cooperate)

To maintain memory safety and prevent potential errors, it is crucial to ensure that shared
data (i.e., the content of a Trc) is not borrowed in the typing environment of the current
thread during cooperation. To achieve this, the safeTrc(Γ) function, introduced in definition
4.5, is utilised to verify this condition.

2 Soundness of FRFT

In this section we present the soundness of the FR
FT
type system that we introduced in Sec-

tion 1 using the syntactic approach ofWright and Felleisen [48]. Accordingly, the soundness
is a consequence of two lemmas: Progress and Preservation. Such results allow us to argue
that a type-safe, borrowing-safe and concurrency-safe synchronous reactive program does
not deadlock while it preserves borrow and Trc invariants. Furthermore, we can guarantee
that at any given point in the program:

• References always point to valid locations in the program store, avoiding dangling
pointers. This ensures that references are valid and do not point to non-existent or
deallocated memory.

• The uniqueness of the active Trc’s in each thread’s environment is maintained.
• References to shared data (active Trc) do not exist when a thread cooperates. This
precautionarymeasure prevents any potential data corruption or inconsistencies from
occurring.

The Progress lemma is typically responsible for ensuring that a well-typed expression in a
program is either a value or a reducible expression. Meanwhile, the Preservation lemma
guarantees that applying a semantic rule to a well-typed expression will result in a well-

typed evaluation step of the same type. However, with our type system, which is similar to
Rust, we inherit the sensitivity of the Borrow checker. Therefore, this sensitivity needs to
be taken into account in these lemmas. In the case of an FR

FT
program, the program’s store

is shared between different threads and at each point of the program. On top of that, it is
crucial to guarantee that the execution of one thread does not violate the well-typed and
memory-safe state of other threads at any point in the program. Also, an FR

FT
program is
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Figure 4.6: Step Preservation

divided into logical instants, and it must be ensured that a well-typed FR
FT
program never

gets stuck and progresses through one or more instants. Consequently, we decompose
our proof to take into account the reactive nature of the language, as follows: First, we
prove progress (4.9) and preservation (4.10) lemmas for individual execution steps. The
main challenge, compared to FR [73], is to demonstrate that the reduction steps not only
preserve the typing of the current thread but also do not affect the typing of other threads.
Second, we prove progress (4.14) and preservation (4.15) for maximal thread executions
(referred to as "slices"). Finally, we establish progress (4.16) and preservation (4.17) of an
instant. Several additional definitions are necessary to introduce these lemmas, fromwhich
it follows that our type system is sound. Hence, for more clarity, according to Figure 4.6,
after an execution (a step), the thread must preserve its typing. Furthermore, to ensure
that the program remains well-typed, the thread must not modify the typing of the other
threads.

The notion of the program store S∣l refers to S which is restricted to the lifetime l. More
precisely, S∣l only maps the locations of the variables having the lifetime l (or less than l,
∀n, l ≽ n) to their partial values and all other locations accessible from these values.

2.1 Local and Global Valid States

In essence, we are required to ensure that our state is always valid. The validity here is
related to the notion of ownership. To better understand, we present an unsatisfied example
in Figure ??. The example in Figure ?? describes a program in FR

FT
with two threads (Thread

1 and Thread 2). As we observe, the state of this program is considered invalid because: (1)
between the expressions and the program store S of this program, there are two owning
box references to ℓa. Furthermore, (2) from these two threads, we can access ℓa via two
different paths, one through a Trc and the other outside the Trc. Hence, we must ensure
that if there exists a path to a location ℓa in S, then there cannot be another one. For
example, for a location (ℓa), either it is reachable by a single thread and there is thus only
one path in S, or it is shared between several threads within a Trc. For this reason, we
introduce the following definition:
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Definition 4.17 (Unique Location) LetS be a program store and let ℓa, ℓb be locations∈ S.

We note S ⊢ ℓa ↝ ℓb if either S(ℓa) = ℓb or there exists ℓc ∈ S such that S(ℓa) = ℓc and
S ⊢ ℓc ↝ ℓb. Then, ℓa is said to be a unique location to access ℓb, denoted S ⊢u ℓa ↝ ℓb,

if S ⊢ ℓa ↝ ℓb and if there exists ℓc ∈ S such that ℓc ≠ ℓa and S ⊢ ℓc ↝ ℓb then, either

S ⊢ ℓc ↝ ℓa or S ⊢ ℓa ↝ ℓc.

In order to ensure the validity of the global state T, S, we must first guarantee the
validity of the expressions e, then the validity of the program store S and lastly the validity
of the local state S ⊳ e as follows:

An expression e is considered a well-typed expression if and only if: (1) it does not con-
tain distinct owning box references to the same location (e.g. {let mut x = ℓ

▪
a; let mut y =

ℓ
▪
a}l), and as well (2) it does not contain distinct owning Trc references to the same location
(e.g. {let mut x = ℓ

⬩
a ; let mut y = ℓ

⬩
a}l):

Definition 4.18 (Valid expression) Let e be an expression. Let v be the sequence of distinct

values in e. Then e is said to be valid when ¬∃i,j.(i ≠ j∧∃ℓ⬩a .(vi = vj = ℓ
⬩
a)) and ¬∃i,j.(i ≠

j ∧ ∃ℓ▪b
.(vi = vj = ℓ

▪
b)).

According to definition 4.18, a program storeS is considered to be valid for some lifetime
l if and only if: (1) it does not contain distinct owning box references to the same location
(e.g. S = {ℓa ↦ ⟨0⟩∗, ℓb ↦ ⟨ℓ▪a⟩∗, ℓc ↦ ⟨ℓ▪a⟩∗}), and (2) it does not contain distinct
owning Trc references to the same location (e.g. S = {ℓa ↦ ⟨0⟩2, ℓb ↦ ⟨ℓ⬩a⟩1, ℓc ↦

⟨ℓ⬩a⟩1, ...}). Moreover, if there are two owning box references to the same location, they
must necessarily be under a Trc and among different threads:

Definition 4.19 (Valid Store) Let S be a program store and let l be a lifetime. Let v be the

sequence of distinct values inS∣l. Then, S is said to be valid for lwhen¬∃i,j.(i ≠ j∧∃ℓ⬩a .(vi =
vj = ℓ

⬩
a)) and ¬∃i,j.(i ≠ j ∧ ∃ℓ▪b

.(vi = vj = ℓ
▪
b)).

After establishing the validity of an expression e and a program storeS for some lifetime
l, we now define the validity of a local state S ⊳ e as follows:

Definition 4.20 (Valid Local State) Let S ⊳ e be a local state and let l be a lifetime such

that e is valid and S is valid for l. Let v be the sequence of distinct values in e and let u be the

sequence of distinct values in S∣l. Then, S ⊳ e is said to be valid for l when ¬∃i,j.(∃ℓ⬩a .(vi =
uj = ℓ

⬩
a)) and ¬∃i,j.(∃ℓ▪b

.(vi = uj = ℓ
▪
b)).

Finally, after introducing definition 4.20, we can derive the validity of the global state
as follows:

Definition 4.21 (Valid Global State) Let T = {ti, {ei}li ∣ 1 ⩽ i ⩽ N} be a set of threads,
let S be a program store such that for all i ∈ {1, ..., N}, S ⊳ ei is a valid local state for li.
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For some i, j ∈ {1, ..., N} where i ≠ j, let v be the sequence of distinct values in S∣li and ei,

and let u be the sequence of distinct values in S∣lj and ej . Then T, S is said to be valid if for

all ℓ
▪
a such that ℓ

▪
a = vi = uj , there exists a unique ℓ

⬩
b such that S ⊢u ℓb ↝ ℓa.

The progress lemma indicates that if a thread (t, {e}l) ∈ T of an FR
FT

program starts
from a valid global state and its expression e is well-typed, then it is guaranteed that the
threadwill eventually reduce to either a value or another expression. To ensure the safety of
this progress and the connection between the program store S and the typing environment
Γ, the following requirements must be satisfied:

• Existence of locations in S: the memory locations associated with the variables must
exist in the program store S. The latter maintains the correspondence between the
memory locations and their values.

• Type-value match: variable types defined in Γ must match their runtime values in S.
This ensures that the program is consistent and that variables are assigned values of
the correct type at runtime.

In the following section, we introduce the definitions needed to establish this safety con-
nection.

2.2 Maintaining Safe Abstraction

As previously mentioned, a safe connection between the program store S and the typing
environmentΓmust bemaintained. To illustrate this concern, let us go through an example:
consider a program store S represented by {ℓl∶∶x ↦ ⟨ℓ⬩a⟩l, ℓa ↦ ⟨0⟩1, ℓl∶∶y ↦ ⟨ℓ◦l∶∶x⟩l},
accompanied by a corresponding typing environment Γ denoted as: {x ↦ ⟨⬩int⟩l}. In
this scenario, S does not serve as a safe abstraction of Γ due to the presence of the variable y
in S with a runtime value, which currently does not exist in Γ. Now, let us explore another
instance where an unsatisfied condition arises with the same program store S, but with
a distinct typing environment Γ, defined as Γ = {x ↦ ⟨▪int⟩l, y ↦ ⟨&mut x⟩l}. Once
again, S fails to be a safe abstraction of Γ as the type of the variable x in S does not align
with its runtime value. To establish a safe abstraction connection between S and Γ, we
introduce the following definitions:

Definition 4.22 (Valid Value Type) Let S be a program store, τ̃ a partial type and v
⊥
a

partial value, then v
⊥
is said to be abstracted by τ̃ in S, denoted S ⊢ v

⊥
∼ τ̃ , according to

Figure 4.7.

In Section 1 (Chapter 4), we discussed the store typing σ, which is used when typing
an expression e containing locations, for example: let mut x = ℓ

⬩
a . At this point, it is

worthwhile guaranteeing the validity of σ when typing e as follows:
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S⊢ϵ∼ϵ
(V−Unit)

S⊢c∼int
(V−Int)

S⊢b∼bool
(V−Bool)

∃ i.(loc(S,ωi,l) = ℓ)
S⊢ℓ◦∼&[mut]ω (V−Borrow)

S⊢⊥∼⌊τ⌋ (V−Undef) S(ℓa) = ⟨v⊥⟩∗ S⊢v
⊥
∼τ̃

S⊢ℓ▪a∼▪τ̃
(V−Box)

S(ℓa) = ⟨v⟩i S⊢v∼τ

S⊢ℓ⬩a∼⬩τ
(V−Trc) ∃ i.(read(S,ωi,l)=⟨ℓ⬩a⟩l)

S⊢ℓ⋄a∼⋄ω
(V−Clone)

Figure 4.7: Valid value type

Definition 4.23 (Valid Store Typing) Let S be a program store, σ a store typing and e an

expression. Let v be the sequence of distinct values in e. Then, σ is said to be valid for S ⊳ e,

denoted S ⊳ e ⊢ σ, if for all i we have S ⊢ vi ∼ σ(vi).

On top of that and to expand the notion of safe abstraction between S and Γ, we intro-
duce Θ as a function defined as Θ(dom(Γ)) = {ℓm∶∶x ∣ x ↦ ⟨τ̃⟩m ∈ Γ}. Additionally, we
designate by L the set of all heap locations:

Definition 4.24 (Safe Abstraction) Let Γ be a typing environment and S a valid program

store for some lifetime l. Then, S is safely abstracted by Γ, denoted S ∼ Γ, iff (dom(S)\L)
= Θ(dom(Γ)) and for all x ∈ dom(Γ) such that Γ(x) = ⟨τ̃⟩m, there exists v

⊥
such that

S ⊢ v
⊥
∼ τ̃ where S(ℓm∶∶x) = ⟨v⊥⟩m.

In chapter 3, the concept of S is elucidated. Within the program store S, there exists not
only the information about variable locations and their respective values, but also about the
heap locations. In contrast, the typing environment Γ associates variables with their types.
To establish a safe abstraction between S and Γ, Definition 4.24 introducesLwhich encom-
passes all locations in the heap. In this context, (dom(S)\L) pertains to the subset of S that
exclusively includes variable locations mapped to their values. Furthermore, for a precise
equivalence alignment between the domains of S and Γ, the notation Θ is introduced.

2.3 Ensuring Borrow and Trc Invariance

Four important invariants about typing environments are to be observed: first, to avoid the
presence of invalid borrowings as reflected below in (1) and (2). Second, to have precisely
one mutable reference as shown in (3) (i.e. having one or more immutable references to
a memory location or having exactly one mutable reference to this location). Finally to
ensure that for every inactive Trc, there exists one or more active Trc as witnessed in
(4). These properties are named borrow and Trc invariance and they are captured in the
well-formedness property over environments as follows:

Definition 4.25 (Borrow and Trc Invariance) Let Γ be a typing environment, then Γ is

said to be well-formed with respect to some lifetime l if :
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1. for all x ∈ dom(Γ) and ω ∈ Lval
+
where Γ ⊢ x ↝ &[mut]ω ∧ Γ(x) = ⟨.⟩n, we

have Γ ⊢ ω ∶ ⟨τ⟩m ∧ m ≽ n.

2. for all x ∈ dom(Γ) where Γ(x) = ⟨.⟩n, we have n ≽ l.

3. for all u, ω ∈ Lval
+
and for all x, y ∈ dom(Γ) where Γ ⊢ x ↝ & mutω and Γ ⊢

y ↝ &[mut]u and ∃i,j.(ωi ⋈ uj), we have x = y.

4. for all x ∈ dom(Γ) andω ∈ Lval
+
whereΓ ⊢ x↝ ⋄ω, we haveΓ ⊢ ω ∶ ⟨⬩τ⟩m ∧ m ≽ l.

2.4 Lemmas and Proofs

In this section, we introduce some additional lemmas needed to establish our soundness as
follows:

2.4.1 Strengthening Type Lemmas

Lemma 4.1 (Safe Strengthening) Let S be a program store. Let Γ be a well-formed typing

environment with respect to a lifetime l such that S ∼ Γ. Let τ1, τ2 be types such that τ1 ⊑ τ2
and let v be a value. If S ⊢ v ∼ τ1 then S ⊢ v ∼ τ2.

Proof. By induction on the structure of τ1 ⊑ τ2 and according to Figure 4.2:

• Base Case. [τ1 ⊑ τ1]. The result is immediate since by hypothesiswe haveS ⊢ v ∼ τ1.

• Base Case. [&[mut] u ⊑ &[mut] ω]. By hypothesis we have &[mut] u ⊑ &[mut] ω
and for some v = ℓ

◦ we have S ⊢ ℓ
◦
∼ &[mut] u. By W-Bor, we have u ⊆ ω and

by inspection of Figure 4.7, there exists i such that loc(S, ωi, l) = ℓ and S ⊢ ℓ
◦
∼

&[mut] ω (by V-Borrow).

• Base Case. [⋄ u ⊑ ⋄ ω]. By hypothesis we have ⋄ u ⊑ ⋄ ω and for some v = ℓ
⋄ we

have S ⊢ ℓ
⋄
∼ ⋄u. ByW-Clone, we have u ⊆ ω and by inspection of Figure 4.7, there

exists i such that read(S, ωi, l) = ⟨ℓ⬩a⟩l and S ⊢ ℓ
⋄
∼ ⋄ω (by V-Clone).

• Inductive Case. [▪τ1 ⊑ ▪τ2]. By hypothesis, ▪τ1 ⊑ ▪τ2 and for some v = ℓ
▪
a we have

S ⊢ ℓ
▪
a ∼ ▪τ1. Then, by inspection of definition 4.22, ℓ

▪
a is safely abstracted by ▪τ1 and

by V-Box (Figure 4.7 ), there exists v′ in S such that S(ℓa) = ⟨v′⟩∗ where S ⊢ v
′
∼ τ1.

ByW-Box, τ1 ⊑ τ2 and by induction hypothesis we have S ⊢ v
′
∼ τ1 and S ⊢ v

′
∼ τ2.

Since, S(ℓa) = ⟨v′⟩∗ and S ⊢ v
′
∼ τ2 then, we can deduce by V-Box (Figure 4.7) that

S ⊢ ℓ
▪
a ∼ ▪τ2.

• Inductive Case. [⬩τ1 ⊑ ⬩τ2]. By hypothesis, ⬩τ1 ⊑ ⬩τ2 and for some v = ℓ
⬩
a we

have S ⊢ ℓ
⬩
a ∼ ⬩τ1. Then, by inspection of definition 4.22, ℓ⬩a is safely abstracted

by ⬩τ1 and by V-Trc (Figure 4.7 ), there exists v′ in S such that S(ℓa) = ⟨v′⟩i where
S ⊢ v

′
∼ τ1. By W-Trc, τ1 ⊑ τ2 and by induction hypothesis we have S ⊢ v

′
∼ τ1
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and S ⊢ v
′
∼ τ2. Since, S(ℓa) = ⟨v′⟩i and S ⊢ v

′
∼ τ2 then, we can deduce by V-Trc

(Figure 4.7) that S ⊢ ℓ
⬩
a ∼ ⬩τ2.

□

Lemma 4.2 (Transitive Strengthenning) Let τ̃ 1, τ̃ 2 and τ̃ 3 be partial types. If τ̃1 ⊑ τ̃2
and τ̃2 ⊑ τ̃3, then τ̃1 ⊑ τ̃3.

Proof.By structural induction on the structure of τ̃2 according to Figure 3.5:

• Base Case τ̃2 ≜ [ϵ]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-Reflex,
according to Figure 4.2, we have τ̃1 ⊑ τ̃1. Consequently, we can deduce that τ̃1 = ϵ.
If τ̃3 = ϵ, then we can deduce that τ̃1 ⊑ τ̃3 by W-Reflex. Now if τ̃3 = ⌊τ⌋, since
τ̃2 ⊑ τ̃3 then byW-UndefBwe have τ̃2 ⊑ τ and byW-Reflex we can deduce that τ = ϵ
since τ̃2 = ϵ. Additionally, since τ̃1 = ϵ then τ̃1 ⊑ τ by W-Reflex and τ̃1 ⊑ ⌊τ⌋ by
W-UndefB. Finally, τ̃1 ⊑ τ̃3.

• Base Case τ̃2 ≜ [int]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-Reflex,
according to Figure 4.2, we have τ̃1 ⊑ τ̃1. Consequently, we can deduce that τ̃1 = int.
If τ̃3 = int, then we can deduce that τ̃1 ⊑ τ̃3 by W-Reflex. Now if τ̃3 = ⌊τ⌋, since
τ̃2 ⊑ τ̃3 then by W-UndefB we have τ̃2 ⊑ τ and by W-Reflex we can deduce that
τ = int since τ̃2 = int. Additionally, since τ̃1 = int then τ̃1 ⊑ τ by W-Reflex and
τ̃1 ⊑ ⌊τ⌋ byW-UndefB. Finally, τ̃1 ⊑ τ̃3.

• Base Case τ̃2 ≜ [bool]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-

Reflex, according to Figure 4.2, we have τ̃1 ⊑ τ̃1. Consequently, we can deduce that
τ̃1 = bool. If τ̃3 = bool, then we can deduce that τ̃1 ⊑ τ̃3 by W-Reflex. Now if
τ̃3 = ⌊τ⌋, since τ̃2 ⊑ τ̃3 then by W-UndefB we have τ̃2 ⊑ τ and by W-Reflex we can
deduce that τ = bool since τ̃2 = bool. Additionally, since τ̃1 = bool then τ̃1 ⊑ τ by
W-Reflex and τ̃1 ⊑ ⌊τ⌋ by W-UndefB. Finally, τ̃1 ⊑ τ̃3.

• Base Case τ̃2 ≜ [&[mut]z]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-Bor,
according to Figure 4.2, we have τ̃ 1 = &[mut]u such that u ⊆ z. Moreover, we have
τ̃ 3 = &[mut]ω such that z ⊆ ω. Since, u ⊆ z and z ⊆ ω then we have u ⊆ ω by the
transitivity of subset relation. Therefore, byW-Bor we can deduce that τ̃1 ⊑ τ̃3. Now,
if τ̃ 3 = ⌊τ⌋ and since τ̃2 ⊑ τ̃3 then, τ̃2 ⊑ τ by W-UndefB according to Figure 4.2. If
τ = &[mut]ω then we have z ⊆ ω and since we have u ⊆ z hence, u ⊆ ω. Therefore,
by W-UndefB we can deduce that τ̃1 ⊑ τ̃3.

• Base Case τ̃2 ≜ [⋄z]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-Clone,
according to Figure 4.2, we have τ̃ 1 = ⋄u such that u ⊆ z. Moreover, we have τ̃ 3 = ⋄ω
such that z ⊆ ω. Since, u ⊆ z and z ⊆ ω then we have u ⊆ ω by the transitivity of
subset relation. Therefore, byW-Clone we can deduce that τ̃1 ⊑ τ̃3. Now, if τ̃ 3 = ⌊τ⌋
and since τ̃2 ⊑ τ̃3 then, τ̃2 ⊑ τ byW-UndefB according to Figure 4.2. If τ = &[mut]ω
then we have z ⊆ ω and since we have u ⊆ z hence, u ⊆ ω. Therefore, by W-UndefB

we can deduce that τ̃1 ⊑ τ̃3.

103



Chapter 4

• Inductive Case τ̃2 ≜ [▪τ̃a]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-

Box, according to Figure 4.2, we have τ̃1 = ▪τ̃ b such that τ̃b ⊑ τ̃a. Moreover, we
have τ̃3 = ▪τ̃ c such that τ̃a ⊑ τ̃c. By induction hypothesis, we have τ̃b ⊑ τ̃c and
therefore we can deduce byW-Box that τ̃1 ⊑ τ̃3. Now, if τ̃3 = ⌊▪τc⌋ and since τ̃2 ⊑ τ̃3
hence, τ̃a ⊑ ⌊τ̃c⌋ by W-UndefC. Then, by induction hypothesis, we have τ̃b ⊑ ⌊τ̃c⌋.
Therefore, byW-UndefC we can deduce that τ̃1 ⊑ τ̃3.

• Inductive Case τ̃2 ≜ [⬩τa]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-Trc,
according to Figure 4.2, we have τ̃1 = ⬩τ b such that τb ⊑ τa. Moreover, we have
τ̃3 = ⬩τ c such that τa ⊑ τc. By induction hypothesis, we have τb ⊑ τc and therefore
we can deduce by W-Trc that τ̃1 ⊑ τ̃3. Now, if τ̃3 = ⌊τ⌋ and since τ̃2 ⊑ τ̃3 hence,
⬩τa ⊑ τ by W-UndefB. Then, by induction hypothesis, we have ⬩τb ⊑ τ . Therefore,
by W-UndefB we can deduce that τ̃1 ⊑ ⌊τ⌋. Finally, τ̃1 ⊑ τ̃3.

• Inductive Case τ̃2 ≜ [⌊τa⌋]. By hypothesis we have τ̃1 ⊑ τ̃2 and τ̃2 ⊑ τ̃3. By W-

UndefA, according to Figure 4.2, we have τ̃1 = ⌊τb⌋ such that τb ⊑ τa. Moreover, we
have τ̃3 = ⌊τc⌋ such that τa ⊑ τc. By induction hypothesis, we have τb ⊑ τc and
therefore we can deduce byW-UndefA that τ̃1 ⊑ τ̃3. Now, if τ̃1 = τb and since τ̃1 ⊑ τ̃2
then we have τb ⊑ τa by W-UndefB. By induction hypothesis we have τb ⊑ τc then
we can deduce that τ̃1 ⊑ τ̃3 by W-UndefB.

□

2.4.2 Intermediate Preservation

In Definition 4.24, we stipulated that there exists a safe abstraction connecting the program
store S and the typing environment Γ. Therefore, we can assume that for a well-typed lval
ω in Γ, it always corresponds to a valid location in S according to Definition 4.22. Then, to
establish this safety relation, we introduce the following lemma:

Lemma 4.3 (Location) Let S be a program store. Let Γ be a well-formed typing environment

with respect to a lifetime l such that S ∼ Γ. Let τ̃ be a partial type and let ω be an lval such

that Γ ⊢ ω ∶ ⟨τ̃⟩m for some lifetime m. Then, loc(S, ω, l) = ℓ for some location ℓ such that

S(ℓ) = ⟨v⊥⟩n and S ⊢ v
⊥
∼ τ̃ such that n ∈ {m, *} ∪N.

Proof.By structural induction on the structure of ω according to Figure 3.5:

• Base Case. ω ≜ [x]. By T-LvVar, we have Γ(x) = ⟨τ̃⟩m. By Definition of Θ, we
have ℓm∶∶x ∈ Θ(dom(Γ)). By hypothesis, S ∼ Γ then, by inspection of Definition
4.24, (dom(S)\L) =Θ(dom(Γ)) and for all x ∈ dom(Γ) such that Γ(x) = ⟨τ̃⟩m, there
exists v⊥ such that S ⊢ v

⊥
∼ τ̃ where S(ℓm∶∶x) = ⟨v⊥⟩m. From thewell-formedness of Γ,

we know that by inspection of Definition 4.25, for all x ∈ dom(Γ)where Γ(x) = ⟨.⟩m,
we have m ≽ l. Then, according to Definition 3.1, we have loc(S, x, l) = ℓm∶∶x and
S(ℓm∶∶x) = ⟨v⊥⟩m such that m ⪰ l where S ⊢ v

⊥
∼ τ̃ .
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• Inductive case. ω ≜ [∗u]. We have Γ ⊢ ∗u ∶ ⟨τ̃⟩n and only T-LvBox, T-LvTrc, and
T-LvBorrow apply. Then, We proceed by case:

– IfΓ ⊢ u ∶ ⟨▪τ̃⟩m: by induction hypothesis, loc(S, u, l)=ℓ′where S(ℓ′) = ⟨ℓ▪a⟩m and
S ⊢ ℓ

▪
a ∼ ▪τ̃ . By inspection of rules of Figure 4.7, only V-Box applies, and there

exists ℓ▪a and v⊥ such that S(ℓa) = ⟨v⊥⟩∗ and S ⊢ v
⊥
∼ τ̃ . Furthermore, by

inspection of Definition 3.1, we have loc(S,∗u, l)=ℓa and hence S(ℓa) = ⟨v⟩∗
where S ⊢ v

⊥
∼ τ̃ .

– If Γ ⊢ u ∶ ⟨⬩τ⟩m: by induction hypothesis, loc(S, u, l)=ℓ′ where S(ℓ′) = ⟨ℓ⬩a⟩m
and S ⊢ ℓ

⬩
a ∼ ⬩τ . By inspection of rules of Figure 4.7, only V-Trc applies, and

there exists ℓ⬩a and v such that S(ℓa) = ⟨v⟩i and S ⊢ v ∼ τ . Furthermore, by
inspection of Definition 3.1, we have loc(S,∗u, l)=ℓa and hence S(ℓa) = ⟨v⟩i
where S ⊢ v ∼ τ .

– If Γ ⊢ u ∶ ⟨&[mut]q⟩m: by induction hypothesis, loc(S, u, l)=ℓ′ where S(ℓ′) =
⟨ℓ◦⟩m and S ⊢ ℓ

◦
∼ &[mut]q. By T-LvBorrow (section 1.4), we haveΓ ⊢ q ∶ ⟨τ⟩n

for some n ≽ l from the well-formedness of Γ. As S ⊢ ℓ
◦
∼ &[mut]q then, by

inspection of Definition 4.22 and by Figure 4.7, only V-Borrow applies and there
exists i such that loc(S, qi, l) = ℓ where S(ℓ) = ⟨v⟩n where S ⊢ v ∼ τ (since
S ∼ Γ and by Definition 4.24). Since S ∼ Γ and qi ⊆ q then by W-Bor (Figure
4.2) and by applying Lemma 4.1, we have S ⊢ v ∼ τ and S ⊢ v ∼ τq0 ...τqk (
where k is the sequence length). Therefore, we can deduce that S ⊢ v ∼ ⊔τ .
Finally, by inspection of Definition 3.1, we have loc(S,∗u, l)=ℓ where S(ℓ) =
⟨v⟩n and S ⊢ v ∼ ⊔τ .

Note that the following is prohibited: ω ≜ [∗u]where Γ ⊢ u ∶ ⟨⋄q⟩m. In this case, we have
u is an inactive Trc. Hence, u cannot access its own content. Moreover, this constraint is
checked by the typing rules where there is no specific rule that defines this behavior in the
typing part of T-Lv* (Section 1.4). □

In the following, we introduce the intermediate Lemmas necessary to guarantee the
notion of safe abstraction between the program store S and the typing environment Γ
after reading, writing, and dropping. For example, ensuring that a value is not dropped
when it is still needed, especially when the value is borrowed.

Lemma 4.4 (Read Preservation) Let S be a program store. Let Γ be a well-formed typing

environment with respect to a lifetime l such that S ∼ Γ. Let τ be a type and let ω be an lval

such that Γ ⊢ ω ∶ ⟨τ⟩m for some lifetime m. Then, read(S, ω, l) = ⟨v⟩n for some value v and

n ∈ {m, *} ∪N such that S ⊢ v ∼ τ .

Proof. By hypothesis we have Γ ⊢ ω ∶ ⟨τ⟩m and S ∼ Γ then, by applying Lemma 4.3,
we have loc(S, ω, l) = ℓ where S(ℓ) = ⟨v⟩n where n ∈ {m, *}∪N and S ⊢ v ∼ τ . Finally,
according to Definition 3.2, we have read(S, ω, l) = ⟨v⟩n such that loc(S, ω, l) = ℓ and
S(ℓ) = ⟨v⟩n. □

Lemma 4.5 (Drop Preservation) Let S be a program store. Let Γ be a well-formed typing

environment with respect to a lifetime l such that S ∼ Γ. Then, drop(S, l) ∼ drop(Γ, l).
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Proof. In order to establish the safe abstraction between drop(S, l) ∼ drop(Γ, l), as per
Definition 4.24, we need to validate the following three aspects:

1. Ensuring that S ′ = drop(S, l) remains valid.

2. Let Γ′ = drop(Γ, l) then, showing that (dom(S ′)\L) = Θ(dom(Γ′)).

3. For all x ∈ dom(Γ′) such that Γ′(x) = ⟨τ̃⟩m, there exists v⊥ such that S ′ ⊢ v
⊥
∼ τ̃

where S ′(ℓm∶∶x) = ⟨v⊥⟩m.

By hypothesis, S ∼ Γ then, by inspection of Definition 4.24, we have:

1. S is valid for l.

2. (dom(S)\L) = Θ(dom(Γ)).

3. For all x ∈ dom(Γ) such that Γ(x) = ⟨τ̃⟩m, there exists v⊥ such that S ⊢ v
⊥

∼ τ̃
where S(ℓm∶∶x) = ⟨v⊥⟩m.

Firstly, according to Definition 4.19, S is valid for l, indicating that all locations in the
values of S have a unique occurrence. By applying the drop(S, l) function, as defined in
Definition 3.4, we can recursively remove all locations owned in the lifetime l from S.
This implies that for all v⊥ in S∣l, if v

⊥
= ℓ

▪
a, the drop function recursively removes all the

values accessible from ℓa. As S is valid for l, there exists only one occurrence of ℓa in S, and
removing ℓa does not invalidate S. Similarly, if v⊥ = ℓ

⬩
a , the drop function verifies whether

the counter i is 1. If the counter i is 1, it indicates that ℓa can only be accessed by the current
thread, and thus the drop function recursively removes the values accessible from ℓa. Again,
since S is valid for l, there exists only one occurrence of ℓa in S, and removing ℓa does not
invalidate S. Otherwise, the drop function decrements the counter by 1, and therefore ℓa
is no longer accessible by the current thread. However, ℓa is always accessible via other
threads. Lastly, if v⊥ = ℓ

⋄
a , the drop function decrements the counter by 1, as specified in

Definition 3.4. Consequently, the resulting program store S ′ = drop(S, l) contains all the
locations in S except those owned in lifetime l while maintaining the validity of S ′.

Secondly, we need to prove that (dom(S ′)\L) = Θ(dom(drop(Γ, l))). By hypothesis,
Γ is well-formed with respect to l, referring to Definition 4.25, for all x ∈ dom(Γ) where
Γ(x) = ⟨.⟩n, we have n ≽ l. By applying the drop function depicted in Figure 4.3, we
can remove all variables from the typing environment Γ that have the lifetime l. Hence,
the resulting typing environment Γ′ = drop(Γ, l) contains all the variables in dom(Γ)
except those with the lifetime l. Since Γ is well-formed with respect to l, Γ′ remains well-
formed. We need to demonstrate the equality of the domain in both directions: (1) for all
x ∈ dom(Γ′) such that Γ′(x) = ⟨τ̃⟩m, we have l ≺ m. Consequently, we can deduce that
x ∈ dom(Γ). The latter indicates that there exists ℓm∶∶x ∈ dom(S) (since by hypothesis we
have S ∼ Γ). As l ≺ m, then ℓm∶∶x ∈ dom(S ′). Hence, we have (dom(S ′)\L)⊇ Θ(dom(Γ′)).
(2) For all ℓm∶∶x ∈ dom(S ′), we have we have l ≺ m because we recursively removed all
locations owned in the lifetime l fromS. Consequently, we can deduce that ℓm∶∶x ∈ dom(S).
The latter indicates that x ∈ dom(Γ) (since by hypothesis we haveS ∼ Γ) such thatΓ(x) =
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⟨τ̃⟩m and since l ≺ m. Therefore, x ∈ dom(Γ′) as well. Hence, we have (dom(S ′)\L)
⊆ Θ(dom(Γ′)). Finally, we can deduce that (dom(S ′)\L) = Θ(dom(Γ′)).

Thirdly, we need to demonstrate that for all x ∈ dom(Γ′) such that Γ′(x) = ⟨τ̃⟩m, there
exists v⊥ such that S ′ ⊢ v

⊥
∼ τ̃ where S ′(ℓm∶∶x) = ⟨v⊥⟩m. The proof proceeds by induction

on S ′ ⊢ v
⊥
∼ τ̃ according to Figure 4.7 as follows:

• Base Case. [S ′ ⊢ v
⊥
∼ τ̃]. If v⊥ = ϵ or v⊥ = int or v⊥ = bool, then only V-Unit,

V-Int, and V-Bool apply respectively according to Figure 4.7. Now, if v⊥ = ⊥ then
only V-Undef rule applies.

• Base Case. [S ′ ⊢ ℓ
◦
∼ &[mut]ω]. Then, there exists x ∈ dom(Γ′) such that Γ′(x)

= ⟨&[mut]ω⟩m and there exists v⊥ such that S ′(ℓm∶∶x) = ⟨v⊥⟩m. Since x ∈ dom(Γ′)
then, we have x ∈ dom(Γ). By hypothesis, Γ is well-formed with respect to l. By
inspection of Definition 4.25, we have Γ ⊢ ω ∶ ⟨τ⟩n ∧ m ≼ n. As discussed above, we
have l ≺ m, so we can deduce that l ≺ n and ω ∈ dom(Γ′). Furthermore, since
ℓm∶∶x ∈ dom(S ′) then, we have ℓm∶∶x ∈ dom(S). By hypothesis we have S ∼ Γ and
by inspection of Definition 4.24 and Figure 4.7 (where only V-Borrow applies), there
exists i such that loc(S, ωi, l) = ℓ and S ⊢ ℓ

◦
∼ &[mut]ω such that v⊥ = ℓ

◦.
Since l ≺ n, then ℓ is a location not owned in the lifetime l and we can deduce that
ℓ ∈ dom(S ′). Hence, by V-Borrow, S ′ ⊢ ℓ

◦
∼ &[mut]ω.

• Base Case. [S ′ ⊢ ℓ
⋄
a ∼ ⋄ω]. Then, there exists x ∈ dom(Γ′) such that Γ′(x) = ⟨⋄ω⟩m

and there exists v⊥ such that S ′(ℓm∶∶x) = ⟨v⊥⟩m. Since x ∈ dom(Γ′) then, we have
x ∈ dom(Γ). By hypothesis, Γ is well-formed with respect to l. By inspection of
Definition 4.25, we have Γ ⊢ ω ∶ ⟨τ⟩n ∧ m ≼ n. As discussed above, we have l ≺ m,
so we can deduce that l ≺ n and ω ∈ dom(Γ′). Furthermore, since ℓm∶∶x ∈ dom(S ′),
we have ℓm∶∶x ∈ dom(S). By hypothesis, we have S ∼ Γ and by inspection of
Definition 4.24 and Figure 4.7 (where only V-Clone applies), there exists i such that
read(S, ωi, l) = ⟨ℓ⬩a⟩l and S ⊢ ℓ

⋄
a ∼ ⋄ω such that v⊥ = ℓ

⋄
a . Since l ≺ n, then ℓa is a

location not owned in the lifetime l and we can deduce that ℓ ∈ dom(S ′). Hence, by
V-Clone, S ′ ⊢ ℓ

⋄
a ∼ ⋄ω.

• Inductive Case. [S ′ ⊢ ℓ
▪
a ∼ ▪τ̃]. Then, there exists x ∈ dom(Γ′) such that Γ′(x) =

⟨▪τ̃⟩m and there exists v⊥ such thatS ′(ℓm∶∶x) = ⟨v⊥⟩m. Since x ∈ dom(Γ′) then, we have
x ∈ dom(Γ) and since ℓm∶∶x ∈ dom(S ′) then, we have ℓm∶∶x ∈ dom(S). By hypothesis
we have S ∼ Γ and by inspection of Definition 4.24, we have S ⊢ v

⊥
∼ ▪τ̃ such that

v
⊥
= ℓ

▪
a and S(ℓa) = ⟨v′⊥⟩∗ by V-Box (Figure 4.7). By induction hypothesis, we have

S
′(ℓa) = ⟨v′⊥⟩∗ and S ′ ⊢ ℓa ∼ τ̃ . Then by (V-Box) (Figure 4.7) we can deduce that

S
′
⊢ ℓ

▪
a ∼ ▪τ̃ .

• Inductive Case. [S ′ ⊢ ℓ
⬩
a ∼ ⬩τ̃]. Then, there exists x ∈ dom(Γ′) such that Γ′(x)

= ⟨⬩τ̃⟩m and there exists v⊥ such that S ′(ℓm∶∶x) = ⟨v⊥⟩m. Since x ∈ dom(Γ′) then,
we have x ∈ dom(Γ) and since ℓm∶∶x ∈ dom(S ′) then, we have ℓm∶∶x ∈ dom(S).
By hypothesis we have S ∼ Γ and by inspection of Definition 4.24, we have S ⊢

v
⊥
∼ ⬩τ̃ such that v⊥ = ℓ

⬩
a and S(ℓa) = ⟨v′⊥⟩i by V-Trc (Figure 4.7). By induction
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hypothesis, we have S ′(ℓa) = ⟨v′⊥⟩i and S ′ ⊢ ℓa ∼ τ̃ . Then by (V-Trc) (Figure 4.7)
we can deduce that S ′ ⊢ ℓ

⬩
a ∼ ⬩τ̃ .

Finally, having demonstrated the three aspects mentioned above, we can now infer that
drop(S, l) ∼ drop(Γ, l). □

The previous Lemma establishes that when a specific set of variables and their associ-
ated values are dropped from the typing environment Γ and the program store S respec-
tively, the notion of safe abstraction is maintained. In addition, the subsequent Lemma
guarantees that updating values in the program store S maintains the property of safe ab-
straction as follows:

Lemma 4.6 (Update Preservation) Let S be a program store. Let Γ be a well-formed typing

environment with respect to a lifetime l such that S ∼ Γ. Let τ̃ 1, τ̃ 2 be partial types and let

v
⊥
1 , v

⊥
2 be partial values such that S ⊢ v

⊥
1 ∼ τ̃ 1 and S ⊢ v

⊥
2 ∼ τ̃ 2. Let ω be an lval such that

Γ ⊢ ω ∶ ⟨τ̃ 1⟩m for some lifetime m. Then write(drop(S, {v⊥1 }), ω, v⊥2 , l) ∼ write
0(Γ, ω, τ̃ 2).

Proof. In order to establish the safe abstraction between write(drop(S, {v⊥1 }), ω, v⊥2 , l) ∼
write

0(Γ, ω, τ̃ 2), as per Definition 4.24, we need to validate the following three aspects:

1. Ensuring that S ′ = write(drop(S, {v⊥1 }), ω, v⊥2 , l) remains valid.

2. Let Γ′ = write
0(Γ, ω, τ̃ 2) then, showing that (dom(S ′)\L) = Θ(dom(Γ′)).

3. For all x ∈ dom(Γ′) such that Γ′(x) = ⟨τ̃⟩m, there exists v⊥ such that S ′ ⊢ v
⊥
∼ τ̃

where S ′(ℓm∶∶x) = ⟨v⊥⟩m.

By hypothesis, S ∼ Γ then, by inspection of Definition 4.24, we have:

1. S is valid for l.

2. (dom(S)\L) = Θ(dom(Γ)).

3. For all x ∈ dom(Γ) such that Γ(x) = ⟨τ̃⟩m, there exists v⊥ such that S ⊢ v
⊥

∼ τ̃
where S(ℓm∶∶x) = ⟨v⊥⟩m.

Firstly, according to Definition 4.19, S is valid for l, indicating that all the locations
in the values of S have a unique occurrence. Then, applying the drop(S, {v⊥1 }) function,
based on Definition 3.4, drops recursively the value v⊥1 from S. This implies that if v⊥1 =

ℓ
▪
a, the drop function recursively remove all the values accessible from ℓa. As S is valid
for l, by inspection of Definition 4.19, there exists only one occurrence of ℓa in S, and
removing ℓa does not invalidate S. Similarly, if v⊥1 = ℓ

⬩
a , the drop function verifies whether

the counter i is 1. If the counter i is 1, it indicates that ℓa can only be accessed by the
current thread, and thus the drop function recursively removes the values accessible from
ℓa. Again, since S is valid for l, there exists only one occurrence of ℓa in S, and removing
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ℓa does not invalidate S. Otherwise, the drop function decrements the counter by 1, and
therefore ℓa is no longer accessible by the current thread. However, ℓa is always accessible
via other threads. If v⊥1 = ℓ

⋄
a , the drop function decrements the counter by 1, as specified

in Definition 3.4. Consequently, the resulting program store S ′ = drop(S, l) contains all
locations in S except of v⊥1 , while maintaining the validity of S ′. Furthermore, by applying
the write(drop(S, {v⊥1 }), ω, v⊥2 , l), according to Definition 3.3, adds v⊥2 to S ′ as a new value
of ω after dropping v⊥1 . Consequently, S

′ contains all values in S except of v⊥1 which is
replaced by v⊥2 . By inspection of Definition 4.24, S is valid for l and since S ⊢ v

⊥
2 ∼ τ̃ 2,

we can deduce that S ′ is valid for l.

Secondly, we need to prove that (dom(S ′)\L) =Θ(dom(Γ′)) such thatΓ′ = write
0(Γ, ω, τ̃ 2).

Applying the write0(Γ, ω, τ̃ 2) function, according to Figure 4.3, updates the type of ω in Γ
by τ̃ 2. This function modifies Γ by replacing the type of ω with τ̃ 2. After the update, it is
stated that all values in S ′ remain identical except for v⊥1 , which is changed to v⊥2 , and all
variables in Γ

′ have the same type except for ω, which is replaced by τ̃ 2. Consequently we
can deduce by inspection of Definition 4.24 that (dom(S ′)\L) = Θ(dom(Γ′)) inferred by
(dom(S)\L) = Θ(dom(Γ)).

Thirdly, it should be demonstrated that for all x ∈ dom(Γ′) such that Γ′(x) = ⟨τ̃⟩m, there
exists v⊥ such that S ′ ⊢ v

⊥
∼ τ̃ where S ′(ℓm∶∶x) = ⟨v⊥⟩m. The proof proceeds by induction

on S ′ ⊢ v
⊥
∼ τ̃ according to Figure 4.7. By hypothesis, we have S ⊢ v

⊥
2 ∼ τ̃ 2 then we can

deduce that S ′ ⊢ v
⊥
2 ∼ τ̃ 2 and based on the proofs of Lemma 4.5 specifically for this case,

we achieve the required result.

Finally, we have write(drop(S, {v⊥1 }), ω, v⊥2 , l) ∼ write
0(Γ, ω, τ̃ 2). □

The following Lemma states that if an expression is considered a value, then the typing
environment Γ remains unchanged from the input to the output:

Lemma 4.7 (Value Typing) Let Γ1 be a well-formed typing environment with respect to a

lifetime l. Let σ be a store typing and let v be a value such that Γ1 ⊢ ⟨v ∶ τ⟩lσ ⊣ Γ2 for some

τ and Γ2. Then Γ1 = Γ2.

Proof. The proof proceeds by induction on the structure of the typing derivation. Since
we assume that the typed expression is a value v, we focus on the cases that can be used
to type a value. These cases, according to the typing rules presented in section 1.4, include
T-Const, T-MutBorrow, T-ImmBorrow and T-Clone. □

2.4.3 Borrow and Trc Invariance Lemma

The following lemma demonstrates that our typing rules (Section 1.4) guarantee the prop-
erties "Borrowing and Trc invariance" according to Definition 4.25. In other words, a well-
formed typing environment is guaranteed to remain well-formed as follows:

Lemma 4.8 (Borrow and Trc Invariance) LetS ⊳ e be a valid local state for some lifetime

l. Let σ be a store typing such that S ⊳ e⊢ σ and let Γ1 be a well-formed typing environment

109



Chapter 4

with respect to l such that S ∼ Γ1. Let Γ2 be a typing environment and Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

for some τ . Then Γ2[γ ↦ ⟨τ⟩l] is well-formed with respect to l for some γ ∈ fresh.

Proof. By structural induction on the form of e introduced by Figure 3.5:

• Base Case e ≜ [v]. By T-Const, σ ⊢ v ∶ τ such that Γ1 = Γ2. By hypothesis, we have
S ⊳ v ⊢ σ then, by inspection of Definition 4.23 we have S ⊢ v ∼ σ(v) where v is
safely abstracted by τ . Hence, the properties outlined in Definition 4.25 are preserved
and Γ1[γ ↦ ⟨τ⟩l] remains well-formed with respect to l.

• Base Case e ≜ [ω̂]. By hypothesis, Γ1 is well-formed with respect to l, so all condi-
tions specified by Definition 4.25 are maintained. By T-Copy, Γ1 ⊢ ω ∶ ⟨τ⟩m. Addi-
tionally, we have copy(τ) and ¬readProhibited(Γ1, ω) functions where Γ1 = Γ2. By
inspection of Definition 4.1, copy(τ) indicates that τ can be of the form int, bool, ϵ
or shared reference. According to Definition 4.3, ¬readProhibited(Γ1, ω) verifies that
ω is not borrowed as mutable in Γ1. This condition preserves point (3) in Defini-
tion 4.25 without invalidating points (1), (2), and (4). Then, if τ is int, bool or ϵ,
Γ2[γ ↦ ⟨τ⟩l] is well-formed with respect to l. Otherwise, if τ is of the form & u for
some u then, it is possible to havemultiple shared references to u. In this case, all con-
ditions specified by Definition 4.25 are satisfied andwe can deduce that Γ2[γ ↦ ⟨τ⟩l]
is well-formed with respect to l.

• Base Case e ≜ [ω]. By hypothesis, Γ1 is well-formed with respect to l, so all condi-
tions specified byDefinition 4.25 aremaintained. By T-Move, we haveΓ1 ⊢ ω ∶ ⟨τ⟩m
and from thewell-formedness ofΓ1, we have m ≽ l. Additionally, we havemove(Γ1, ω),
¬writeProhibited(Γ1, ω) and¬TrcMoveProhibited(Γ1, ω) functions. According toDef-
inition 4.4, ¬writeProhibited(Γ1, ω) ensures that ω is not borrowed in Γ1, which pro-
tects points (1) and (2) in Definition 4.25. Similarly, by inspection of Definition 4.10,
¬TrcMoveProhibited(Γ1, ω) ensures that ω is not cloned in Γ1, protecting point (4) in
Definition 4.25. By inspection of Definition 4.8,move(Γ1, ω) replaces τ with ⌊τ⌋ in Γ2

(if τ = &mut u, then τ is not in Γ2, which protects point (3)). Finally, all conditions
specified by Definition 4.25 are satisfied and we can deduce that Γ2[γ ↦ ⟨τ⟩l] is
well-formed with respect to lifetime l.

• Base Case e ≜ [&[mut]ω]. By hypothesis, Γ1 is well-formed with respect to l, so all
conditions specified by Definition 4.25 are maintained. By both T-ImmBorrow and T-

MutBorrow, we have Γ1 ⊢ ω ∶ ⟨τ⟩m such that Γ1 = Γ2 and from the well-formedness
of Γ1, we have m ≽ l. By T-ImmBorrow, we have ¬readProhibited(Γ1, ω). By inspec-
tion of Definition 4.3, this function ensures that ω is not borrowed as mutable in Γ1,
which protect point (3) in Definition 4.25 without invalidating points (1), (2), and (4).
Similarly, by T-MutBorrow, we have ¬writeProhibited(Γ1, ω). By inspection of Def-
inition 4.4, this function guarantees that ω is not borrowed, mutable or immutable,
protecting also point (3) in Definition 4.25 without invalidating points (1), (2), and (4).
Hence Γ2[γ ↦ ⟨&[mut]ω⟩l] is well-formed with respect to lifetime l.

• Base Case e ≜ [ω.clone]. By hypothesis, Γ1 is well-formed with respect to l, so
all conditions specified by Definition 4.25 are maintained. By T-Clone, Γ1 = Γ2 and
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Γ ⊢ ω ∶ ⟨⬩τ⟩m which requires that ω is a well typed and is an active Trc type.
From the well-formedness of Γ1, we have m ≽ l which protect point (4) in Definition
4.25 without invalidating points (1), (2), and (3). Finally, all conditions specified by
Definition 4.25 are satisfied and we can deduce that Γ2[γ ↦ ⟨⋄ω⟩l] is well-formed

with respect to lifetime l.

• Base Case e ≜ [cooperate]. By hypothesis, Γ1 is well-formed with respect to l,
so all conditions specified by Definition 4.25 are maintained. By T-Cooperate, we
have Γ1 = Γ2. In this case, the current thread gives control to another thread, im-
plying that when the thread resumes execution after cooperation, certain properties
described in Definition 4.25 need to be preserved, specifically points (1) and (2). The
T-Cooperate rule introduces the function safeTrc. By inspecting Definition 4.5, this
function verifies that there are no borrowed shared data in Γ1. In other words, if the
latter exists Γ1, then the path to that borrow is not under a Trc (i.e. via Definition
4.6). Hence, all conditions specified by Definition 4.25 are satisfied and we can deduce
that Γ2[γ ↦ ⟨ϵ⟩l] is well-formed with respect to l.

• Inductive Case e ≜ [box(e2)]. By T-Box, Γ1 ⊢ ⟨e2 ∶ τ2⟩lσ ⊣ Γ2 and by induction
hypothesis, Γ2[γ ↦ ⟨τ2⟩l] is well-formed. Hence, Γ2[γ ↦ ⟨▪τ2⟩l] is well-formed

with respect to l.

• Inductive Case e ≜ [trc(e2)]. By T-Trc, Γ1 ⊢ ⟨e2 ∶ τ2⟩lσ ⊣ Γ2 and by induction
hypothesis, Γ2[γ ↦ ⟨τ2⟩l] is well-formed with respect to l. Hence, Γ2[γ ↦ ⟨⬩τ2⟩l]
is well-formed with respect to l.

• Inductive Case e ≜ [e1 ⊕ e2]. By T-Arithm, Γ1 ⊢ ⟨e1 ∶ int⟩lσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶
int⟩lσ ⊣ Γ3. By induction hypothesis, we have Γ2[γ ↦ ⟨int⟩l] is well-formed with
respect to l and Γ3[γ ↦ ⟨int⟩l] is well-formed with respect to l.

• Inductive Case e ≜ [e1 ⊗ e2]. By T-Cond, Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶
τ2⟩lσ ⊣ Γ3. By induction hypothesis, we have Γ2[γ ↦ ⟨τ1⟩l] is well-formed with
respect to l and Γ3[γ ↦ ⟨τ2⟩l] is well-formed with respect to l. By T-Cond, we have
copy(τ1) and copy(τ2). Hence, the properties outlined in Definition 4.25 are preserved
and Γ3[γ ↦ ⟨bool⟩l] is well-formed with respect to l.

• Inductive Case e ≜ [spawn(f(e2)]. By T-Spawn, Γ1 ⊢ ⟨e2 ∶ τ2⟩lσ ⊣ Γ2. According to
the induction hypothesis, we assume that Γ2[γ ↦ ⟨τ2⟩l] is well-formed with respect
to l. By T-Spawn, we have Γ2 ⊢ (S) ⟸ (τ), by the requirements implemented by
the latter, references and active Trcs cannot be considered. In particular, by check-
ing the compatibility between signatures and types via Definition 4.15. As a result,
the properties outlined in Definition 4.25 are preserved in this case and therefore
Γ2[γ ↦ ⟨ϵ⟩l] is well-formed with respect to l.

• Inductive Case e ≜ [let mut x = e2]. By T-Declare, Γ1 ⊢ ⟨e2 ∶ τ2⟩lσ ⊣ Γ. By induc-
tion hypothesis, we have Γ[γ ↦ ⟨τ2⟩l] is well-formed with respect to l. This implies
that Γ[γ ↦ ⟨τ2⟩l] preserves the properties described in Definition 4.25. Therefore,
by replacing γ with x, we obtain Γ2 = Γ[x ↦ ⟨τ2⟩l] by T-Declare, which is well-
formed with respect to l. Finally, Γ2[γ ↦ ⟨ϵ⟩l] is well-formed with respect to l.
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• Inductive Case e ≜ [ω = e2]. By T-Assign, Γ1 ⊢ ⟨e2 ∶ τ2⟩lσ ⊣ Γ. By induction
hypothesis, we assume that Γ[γ ↦ ⟨τ2⟩l] is well-formed with respect to l. This
implies that Γ[γ ↦ ⟨τ2⟩l] preserves the properties described in Definition 4.25. By
T-Assign, we have Γ1 ⊢ ω ∶ ⟨τ1⟩m such that Γ ⊢ τ2 ≽ m and Γ2 = write

0(Γ, ω, τ2). By
inspection of Figure 4.5, if τ2 contains a reference or an inactive Trc, that reference
(resp. the inactive Trc) must live at least as long as the lifetime m. This ensures
points (1), (2) and (4) of Definition 4.25 without invalidate point (3). According to
Figure 4.3,write0(Γ, ω, τ2) updates the type of ω by τ2. Consequently, all the variables
in Γ2 are the same as in Γ1, with the exception of ω. Finally, by T-Assign we have
¬writeProhibited(Γ2, ω). By inspection of Definition 4.4, this ensures that ω is not
borrowed in Γ2 which protects point (3) in Definition 4.25. As a result, Γ2[γ ↦ ⟨ϵ⟩l]
remains well-formed with respect to l.

• Inductive Case e ≜ [{e}m]. By T-Block, we have Γ1 ⊢ ⟨e ∶ τ⟩mσ ⊣ Γ for fresh
l ≽ m and by induction hypothesis Γ[γ ↦ ⟨τ⟩m] is well-formed with respect to l.
By T-Block, we have Γ2 = drop(Γ, m). the drop function, as defined in Figure 4.3,
deallocates variables that have a lifetime m by dropping them from Γ. Furthermore,
the T-Block rule requires the premise Γ2 ⊢ τ ≽ l. According to Figure 4.5, this means
that if τ contains a reference (resp. an inactive Trc), that reference (resp. the inactive
Trc) must live at least as long as the lifetime l. This condition is necessary to prevent
the possibility of having a dropped location that is still needed (which protects points
(1), (2) and (4) without invalidate point (3)). Hence, Γ2[γ ↦ ⟨τ⟩l] is well-formed with
respect to l.

• Inductive Case e ≜ [e]. By T-Sequence we have Γ1 ⊢ ⟨e1 ∶ τ1⟩mσ ⊣ Γ2 . . .Γn ⊢

⟨en ∶ τn⟩mσ ⊣ Γn+1 and by induction hypothesis over the derivation of e1, we have
Γ2[γ ↦ ⟨τ1⟩l] is well-formed with respect to l and so on.

□

In the following proofs, we present progress and preservation lemmas at three different
depths.

2.4.4 Progress and Preservation Step

The Step Progress lemma establishes that for a given thread (t, {e}l) where e is a well-typed
expression then, one of the two cases must hold: either e is a value, or it can be reduced by
at least one step to another expression e′ as follows:

Lemma 4.9 (Step Progress) Let S1 ⊳ e1 be a valid local state for some lifetime l. Let σ be

a store typing such that S1 ⊳ e1 ⊢ σ and let Γ1 be a well-formed typing environment with

respect to l such that S1 ∼ Γ1 and Γ1 ⊢ ⟨e1 ∶ τ⟩lσ ⊣ Γ2 for some τ and Γ2. Then either e1 is

a value or there exists some T and some state S2 ⊳ e2 such that ⟨S1 ⊳ e1
T
−→i S2 ⊳ e2⟩l.

Proof. By structural induction on the form of e1 introduced by Figure 3.5:
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• Base Case e1 ≜ [v]. The result is immediate as e1 is already a value.

• Base Case e1 ≜ [ω̂]. By T-Copy, Γ1 ⊢ ω ∶ ⟨τ⟩m. Since S1 ∼ Γ1 then, by applying
Lemma 4.4, read(S1, ω, l) is defined. Hence, we can step with R-Copy.

• Base Case e1 ≜ [ω]. By T-Move we have Γ1 ⊢ ω ∶ ⟨τ⟩m. Since S1 ∼ Γ1 then, by
applying Lemma 4.3, we have loc(S1, ω, l) = ℓ for some ℓ such that S1(ℓ) = ⟨v⟩n for
some n ∈ {m, *}∪N and S1 ⊢ v ∼ τ . Then, the functions read(S1, ω, l) (deduced by
Lemma 4.4) and write(S1, ω,⊥, l) are defined. Thus, we can step with R-Move.

• Base Case e1 ≜ [&[mut]ω]. By either T-ImmBorrow or T-MutBorrow, Γ1 ⊢ ω ∶ ⟨τ⟩m.
Since S1 ∼ Γ1, by Lemma 4.3, loc(S1, ω, l) is defined. Thus, we can step with R-

Borrow.

• Base Case e1 ≜ [box(v)]. For a fresh location ℓa ∉ dom(S1)we can step with R-Box.

• Base Case e1 ≜ [trc(v)]. For a fresh location ℓa ∉ dom(S1) we can step with R-Trc.

• Base Case e1 ≜ [ω.clone]. By T-Clone, we have Γ1 ⊢ ω ∶ ⟨⬩τ⟩m. Since S1 ∼ Γ1, by
applying Lemma 4.4, read(S1, ω, l) is defined such that read(S1, ω, l) = ⟨ℓ⬩a⟩m and
S1 ⊢ ℓ

⬩
a ∼ ⬩τ . Then by V-Trc (according to Figure 4.7), S1(ℓa) = ⟨v′⟩i for some value

v
′. Hence, we can step with R-Clone.

• Base Case e1 ≜ [let mut x = v]. By T-Declare, x ∉ dom(Γ1). Since S1 ∼ Γ1, then
by inspection of Definition 4.24, we have (dom(S1) \L) = Θ(dom(Γ1)) where L
represents the set of all heap locations. Since (dom(S1) \L) returns the locations
of the variables existing in S1 (by removing the heap locations) and x ∉ dom(Γ1),
we can conclude from the previous equality that ℓl∶∶x ∉ dom(S1). Thus, we can step
with R-Declare.

• Base Case e1 ≜ [ω = v]. By hypothesis, S1 ∼ Γ1 and by T-Assign, Γ1 ⊢ ω ∶
⟨τ̃ 1⟩m then, applying Lemma 4.4, read(S1, ω, l) is defined such that read(S1, ω, l) =

⟨v⊥1 ⟩n for some v⊥1 and n. Since S1 ∼ Γ1, by inspection of Definition 4.24, v⊥1 is
a valid value where S1 ⊢ v

⊥
1 ∼ τ̃ 1. Hence, drop(S1, {v⊥1 }) is defined such that

S = drop(S1, {v⊥1 }). Now, to prove that write(S1, ω, v, l) is defined, we need to
demonstrate that there are no dropped locations between S1 and S that could pre-
vent the write operation (e.g. consider S1 = {ℓl∶∶x ↦ ⟨ℓ⬩a⟩l, ℓa ↦ ⟨v⟩1}, where we
have the expression: "x = x.clone"; same concept for borrowing). Since by T-Assign

we have¬writeProhibited(Γ3, ω) and¬TrcMoveProhibited(Γ3, ω), then by inspection
of Definitions 4.4 and 4.10, this prevents ω from being borrowed or cloned in the
resulting environment Γ3. Hence, write(S1, ω, v, l) is defined and we can step with
R-Assign.

• Base Case e1 ≜ [v1 ⊕ v2]. The result is immediate and we can step with R-Arithm.

• Base Case e1 ≜ [v1 ⊗ v2]. The result is immediate and we can step with R-Cond.

• Base Case e1 ≜ [{v}m]. By hypothesis we have S1 ∼ Γ1 and according to the Defini-
tion of lifetimes we have l ≽ m. By inspection of Definition 4.24, S1 ∼ Γ1 implies that
for all variables in Γ1, their location exists in S1 and their type corresponds to their
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run-time value. In addition, S1 is valid for l. As per Definition 4.19, this indicates that
all the locations in the values of S1 have a unique occurrence, thereby implying that
all values in S1 are valid. Hence, according to Definition 3.4, drop(S1, m) is defined.
Thus we can step with R-BlockB.

• Base Case e1 ≜ [v; e]. Since S1 ∼ Γ1 then, v is a valid value (by inspection of
Definition 4.24) and based on Definition 3.4, drop(S1, {v}) is defined and we can step
with R-Seq.

• Base Case e1 ≜ [cooperate]. The result is immediate and we can step with R-

Cooperate.

• Base Case e1 ≜ [spawn(f(v))]. The result is immediate and we can step with R-

Spawn.

However, we now proceed under the assumption that e2 is not a value v as follows:

• Inductive Case e1 ≜ [box(e2)]. In this case, we can decompose our expression e2
into the evaluation context box(E) and redex e2. Then, if e2 is a value, we apply the
base case. If it is not, by applying our induction hypothesis to the typing derivation
for e2, we know that e2 steps to some e3 and we can step with R-Sub.

• Inductive Case e1 ≜ [trc(e2)]. In this case, we can decompose our expression e2
into the evaluation context trc(E) and redex e2. Then, if e2 is a value, we apply the
base case. If it is not, by applying our induction hypothesis to the typing derivation
for e2, we know that e2 steps to some e3 and we can step with R-Sub.

• Inductive Case e1 ≜ [let mut x = e2]. In this case, we can decompose our expression
e2 into the evaluation context let mut x = E and redex e2. Then, if e2 is a value, we
apply the base case. If it is not, by applying our induction hypothesis to the typing
derivation for e2, we know that e2 steps to some e3 and we can step with R-Sub.

• e1 ≜ [ω = e2]. In this case, we can decompose our expression e2 into the evaluation
context ω = E and redex e2. Then, if e2 is a value, we apply the base case. If it is not,
by applying our induction hypothesis to the typing derivation for e2, we know that
e2 steps to some e3 and we can step with R-Sub.

• e1 ≜ [e2 ⊕ e3]. In this case, we can decompose our expression e2 into the evaluation
context E⊕ e3 and redex e2. Then, if e2 is a value, we apply the base case. If it is not,
by applying our induction hypothesis to the typing derivation for e2, we know that
e2 steps to some e′ and we can step with R-Sub.

• e1 ≜ [e2 ⊗ e3]. In this case, we can decompose our expression e2 into the evaluation
context E⊗ e3 and redex e2. Then, if e2 is a value, we apply the base case. If it is not,
by applying our induction hypothesis to the typing derivation for e2, we know that
e2 steps to some e′ and we can step with R-Sub.

• e1 ≜ [{e2}m]. In this case, we can decompose our expression e2 into the evaluation
context {E}m for some lifetime l ⪰ m and redex e2. Then, if e2 is a value, we apply the
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base case. If it is not, by applying our induction hypothesis to the typing derivation
for e2, we know that e2 steps to some e3 and we can step with R-BlockA.

• e1 ≜ [e]. In this case, we can decompose our expression e into the evaluation context
E; e (i.e. e; e) and redex e (i.e. E). Then, if e is a value, we apply the base case. If it
is not, by applying our induction hypothesis to the typing derivation for e, we know
that e steps to some e′ and we can step with R-Sub.

• Inductive Case e1 ≜ [spawn(f(e2))], e2 ≠ [v]. We will proceed based on whether
each expression ei ∈ e2 is a value or not. If it is, we apply the base case. Therefore, we
decompose our expression into the evaluation context e2 ≜ [spawn(f(v1, . . . , vn, ei, e1, . . . , en)]
(i.e. spawn(f(v1, . . . , vn, E, e1, . . . , en)) and redex ei. By applying our induction hy-
pothesis to ei, we know that ei steps to some e′i. This satisfies our requirement since
we can plug e′i back into our evaluation context. Thus, we can step with R-Sub.

□

As already discussed, the Step Progress Lemma implies that if a thread’s expression is
well-typed, it can execute a step. Therefore, we introduce the Step Preservation Lemma for
a well-typed expression e as follows:

Lemma 4.10 (Step Preservation) Let T1 = {ti, {ei}li ∣ 1 ⩽ i ⩽ N}, S1, σ such that

T1, S1 is a valid global state and for all i ∈ {1, ..., N} we have S1 ⊳ ei ⊢ σ, S1∣li ∼ Γ
i
1

and Γ
i
1 ⊢ ⟨ei ∶ τi⟩liσ ⊣ Γ

i
2 for some Γ

i
1,Γ

i
2 and τi. Let i ∈ {1, ..., N}, T and S2 ⊳ e

′
i such

that ⟨S1 ⊳ ei
T
−→i S2 ⊳ e

′
i⟩li then, there exists Γ′ and σ′ such that T1\t ∪ (t, {e′i}li) ∪ T, S2

remains valid and Γ
′
⊢ ⟨e′i ∶ τi⟩liσ′ ⊣ Γ

i
2 and S2 ⊳ e

′
i ⊢ σ

′
and S2∣li ∼ Γ

′
and for all

j ∈ {1, ..., i−1, i+1, .., N} we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′
and S2∣lj ∼ Γ

j
1

and for all (t, {e}l) ∈ T we have Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2 and S2 ⊳ e ⊢ σ
′
and S2∣l ∼ Γ1 for

some Γ1,Γ2 and τ .

The preservation Lemma states that for a given valid global state T1, S1, where all
(t, {e}l) ∈ T1 are well-typed under σ, if for a given thread (t, {ei}li) ∈ T1, we reduce ei
to e′i, resulting in a new state S2. Then, there exists an intermediate typing environment Γ′

and a store typing σ′ such that the program store S2 is safely abstracted with Γ
′. The new

global state T1\t∪ (t, {e′i}li)∪T, S2 remains valid, and the new expression e′i preserves the
type τi under σ

′. Furthermore, all existing threads in T1\t ∪ T remain well-typed under σ′.
Finally, to prove Lemma 4.10, we split it up into three sub-lemmas as follows:

Firstly, Lemma 4.11 guarantees that when a thread executes a single step, it preserves
the validity of the global state of the program store (Definition 4.21). This means that the
execution of a thread does not violate the valid local state of other threads. In other words,
it ensures that its execution does not create aliases in the memory of other threads:

Lemma 4.11 (Step Alias Preservation) LetT1, S1 be a valid global state. For a given (t, {e}l) ∈
T1, let σ be a store typing such that S1 ⊳ e ⊢ σ and let Γ1 be a well formed typing environ-
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ment with respect to l such that S1∣l ∼ Γ1 and Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 for some τ and Γ2. If

⟨S1 ⊳ e
T
−→i S2 ⊳ e

′⟩l for some T and S2 ⊳ e
′
, then T1\t ∪ (t, {e′}l) ∪ T, S2 remains valid.

Proof.By structural induction on the forms of e according to Figure 3.5. For each case
and by inspection of Definition 4.21, the following must be demonstrated: (1) S2 remains
valid for l. (2) e′ remains valid. (3) S2 ⊳ e

′ remains valid for l. (4) T1\t ∪ (t, {e′}l) ∪ T, S2

remains valid:

• Base Case e=[v]. The result is immediate as there is no reduction rule for this case.

• Base Case e=[ω̂]. By R-Copy we have read(S1, ω, l) = ⟨v⟩m. By hypothesis, S1 is valid
for l. This means that all locations in the values of S1∣l have a unique occurrence by
inspection of Definition 4.19, and since v is in S1∣l, v is valid. Moreover, S2 is valid
for l since S1 = S2 by R-Copy. By T-Copy, copy(τ) means that: neither v ≜ [ℓ▪a]
nor v ≜ [ℓ⬩b ] can hold, then S2 ⊳ v is valid for l, and also S2 ⊳ v cannot violate the
validity of the global state since v cannot be a box or a trc location value. Hence,
T1\t ∪ (t, {v}l) ∪ T, S2 remains valid.

• Base Case e=[ω]. By R-Move, we have read(S1, ω, l) = ⟨v⟩m. By hypothesis, S1 is
valid for l. Thismeans that all locations in the values ofS1∣l have a unique occurrence
by inspection of Definition 4.19, and since v is in S1∣l, v is valid. By R-Move we have
S2 = write(S1, ω,⊥, l), which implies that the values of S2∣l, except for v, are the
same values of S1∣l and therefore any location within the values of S2∣l has only one
occurrence, so S2 is valid for l. Next, we need to establish the validity of S2 ⊳ v. We
suppose that v = ℓ

▪
a and ℓ

▪
a in S2∣l. Then, ℓ

▪
a in S2∣l implies that ℓ▪a in S1Jℓ → ⟨⊥⟩mK

(i.e. ℓ = loc(S1, ω, l)) and thus ℓ▪a appears with two occurrences in S1, which is in
contradiction with our hypothesis. Consequently, S2 ⊳ v is valid. Finally, we need
to prove that T1\t ∪ (t, {v}l) ∪ T, S2 remains valid. In such a case, ω can take two
different forms: (1) If (ω = ϵ ∣ x), we suppose that v = ℓ

▪
a, by hypothesis we have

T1, S1 is valid and by inspection of Definition 4.21, we know that ℓ▪a appears only
once in S1 (i.e. since the path of ω is ϵ), so T1\t∪ (t, {v}l)∪T, S2 remains valid. (2) If
(ω = (π.∗) ∣ x) and v = ℓ

▪
a, then according to the T-Move rule and themove function

(Definition 4.8), the type of x cannot be an active Trc type since we cannot move out
of an active Trc. Therefore, in this case, ∄ ℓ⬩b such that S ⊢u ℓb ↝ ℓa where there
is only one occurence of ℓ▪a. For the other cases ( v = ℓ

⬩
a , v = ℓ

⋄
a or v = ℓ

◦), we have
S1 is valid for l and it follows that v is not in S2∣l. Hence, T1\t ∪ (t, {v}l) ∪ T, S2

remains valid.

• Base Case e=[&[mut]ω]. By R-Borrow, v = ℓ
◦ for some ℓ ∈ dom(S1). Since ℓ is a

valid location, v is valid. By hypothesis, S1 is valid for l. This means that all locations
in the values of S1∣l have a unique occurrence by inspection of Definition 4.19. Since
S1 = S2 by R-Borrow, S2 is valid for l. Moreover, as v = ℓ

◦ (i.e. v ≠ ℓ
⬩
a and v ≠ ℓ

▪
a),

S2 ⊳ ℓ
◦ is valid for l. Finally, we can deduce in this case that T1\t∪ (t, {ℓ◦}l)∪T, S2

remains valid.

• Base Case e=[box(v2)]. By hypothesis, S1 ⊳ box(v2) is valid for l and by inspection
of Definition 4.20 this indicates that all locations in the values of S1∣l are not within
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the values of box(v2). Then, we can deduce that S1 ⊳ v2 is valid for l. In addition,
based on Definition 4.20, S1 is valid for l and v2 is valid. By R-Box, S2 = S1[ℓa ↦

⟨v2⟩∗] for some ℓa ∉ dom(S1). Since both S1 and v2 are valid then S1[ℓa ↦ ⟨v2⟩∗]
remains valid for l, and thus S2 is valid for l. Furthermore, by R-Box, v = ℓ

▪
a and

since box(v2) is valid, v is valid. Next, we need to establish the validity of S2 ⊳ v.
We suppose that v = ℓ

▪
a and ℓ▪a ∈ S2, the latter implies that ℓ▪a ∈ S1[ℓa ↦ ⟨v2⟩∗],

which is not possible since with R-Box we create a new location ℓa and accordingly
ℓ
▪
a ∉ S2. Then, S2 ⊳ v is valid for l. Finally, ℓ▪a ∉ S2 and therefore there is only one
occurrence of ℓ▪a in T1\t, T2 ∪ (t, {v}l) ∪ T, S2, so the latter remains valid.

• Base Case e=[trc(v2)]. By hypothesis, S1 ⊳ trc(v2) is valid for l and by inspection
of Definition 4.20 this indicates that all locations in the values of S1∣l are not within
the values of trc(v2). Then, we can deduce that S1 ⊳ v2 is valid. Additionally, based
on Definition 4.20, S1 is valid for l and v2 is valid for l. By R-Trc, S2 = S1[ℓa ↦ ⟨v2⟩1]
for some ℓa ∉ dom(S1). Since both S1 and v2 are valid then S1[ℓa ↦ ⟨v2⟩1] remains
valid for l and thus S2 is valid for l. Furthermore, by R-Trc, v = ℓ

⬩
a and since trc(v2)

is valid, v is valid. Next, we need to establish the validity of S2 ⊳ v. We suppose that
v = ℓ

⬩
a and ℓ

⬩
a ∈ S2, the latter implies that ℓ⬩a ∈ S1[ℓa ↦ ⟨v2⟩1], which is not possible

since, with R-Trc, we create a new location ℓa and accordingly ℓ⬩a ∉ S2. Afterwards,
S2 ⊳ v is valid for l. Finally, we need to prove that T1\t ∪ (t, {v}l) ∪ T, S2 remains
valid. If v2 = [ℓ▪b], by hypothesis, T1, S1 is valid, meaning that if there are more than
one occurrence of ℓ▪b in T1, S1 then there is a unique ℓ⬩c such that S1 ⊢u ℓc ↝ ℓb. This
designates that ℓ▪b as a value is moved out of an Trc, which is not possible, since our
type system prevents moving out of an Trc. As a result, there is only one occurrence
of ℓ▪b , which is v2 such that S2 ⊢u ℓa ↝ ℓb. Moreover, v2 cannot be either ℓ⬩b or
ℓ
⋄
b , which is prohibited by the containsTrc function 4.9 and if v2 = ℓ

◦ this does not
invalidate the validity of the global state according to Definition 4.21. Therefore, T1\t,
T2 ∪ (t, {v}l) ∪ T, S2 remains valid.

• Base Case e=[ω.clone]. By R-Clone, we have read(S1, ω, l) = ⟨ℓ⬩a⟩m for some ℓa ∈

dom(S1) where v = ℓ
⋄
a . By hypothesis, S1 is valid for l this means that all locations

in the values of S1∣l have a unique occurrence by inspection of Definition 4.19 and
since ℓ⬩a ∈ S1 then ℓ

⬩
a is valid. Therefore ℓ⋄a is valid. By R-Clone, S1 = S2, so S2 is

valid for l. As v = ℓ
⋄
a (i.e. v ≠ ℓ

⬩
a and v ≠ ℓ

▪
a), S2 ⊳ ℓ

⋄
a is valid for l. Thus, we can

deduce that T1\t ∪ (t, {ℓ⋄a}l) ∪ T, S2 remains valid.

• Base Case e=[let mut x = v2]. By hypothesis, S1 ⊳ let mut x = v2 is valid for l.
By inspection of Definition 4.20, let mut x = v2 is valid ( hence v2 is valid) and S1 is
valid for l. According to Definition 4.20, v2 is not in S1∣l. Afterwards, adding v2 to S1

cannot invalidate S1. By R-Declare, S2 = S1[ℓl∶∶x ↦ ⟨v2⟩l] where ℓl∶∶x ∉ dom(S1),
so S2 is valid for l. By R-Declare, v = ϵ, thus S2 ⊳ ϵ is valid for l. Finally, we need to
prove that T1\t∪ (t, {v}l)∪T, S2 remains valid. If v2 = [ℓ▪b], by hypothesis, T1, S1 is
valid, meaning that if there are more than one occurrence of ℓ▪b in T1, S1 then there
is a unique ℓ⬩c such that S ⊢u ℓc ↝ ℓb. This designates that ℓ

▪
b as a value is moved

out of an Trc, which is not possible, since our type system prevents moving out of an
Trc. As a result, there is only one occurrence of ℓ▪b , which is v2. For the other cases
( v2 = ℓ

⬩
b , v2 = ℓ

⋄
b or v2 = ℓ

◦), we know that v2 is not in S1∣l and adding v2 to S1
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does not invalidate the validity of the global state. Therefore T1\t ∪ (t, {v}l)∪ T, S2

remains valid.

• Base Case e=[ω = v2]. By hypothesis, S1 ⊳ ω = v2 is valid for l and by inspection
of Definition 4.20, S1 is valid for l and ω = v2 is also valid. Moreover, S1 ⊳ ω = v2
indicates that all locations in the values of S1∣l are not within the values of ω = v2
and then we can deduce that S1 ⊳ v2 is valid for l. By R-Assign, we have S2 =

write(S1, ω, v2, l) then, all the values of S2∣l, except for v2, are the same values of S1∣l
and therefore any location in the values ofS2∣l has only one occurrence. SinceS1 ⊳ v2
is valid for l, adding v2 to S1 does not invalidate S1 and so S2 = S1Jℓ → ⟨v2⟩lK is
valid for l. Therefore, by R-Assign, v = ϵ thus S2 ⊳ ϵ is valid for l. Finally, we need
to prove that T1\t∪ (t, {v}l)∪T, S2 remains valid. If v2 = [ℓ▪b], by hypothesis, T1, S1

is valid, meaning that if there are more than one occurrence of ℓ▪b in T1, S1 then there
is a unique ℓ⬩c such that S ⊢u ℓc ↝ ℓb. This designates that ℓ

▪
b as a value is moved

out of an Trc, which is not possible, since our type system prevents moving out of an
Trc. As a result, there is only one occurrence of ℓ▪b , which is v2. For the other cases
( v2 = ℓ

⬩
b , v2 = ℓ

⋄
b or v2 = ℓ

◦), we know that v2 is not in S1∣l and adding v2 to S1

does not invalidate the validity of the global state. Therefore T1\t ∪ (t, {v}l)∪ T, S2

remains valid.

• Base Case e1 ≜ [v1 ⊕ v2]. By hypothesis, S1 ⊳ v1⊕v2 is valid for l and by inspection
of Definition 4.20, S1 is valid for l and v1⊕ v2 is also valid. By R-Arithm, v3 = v1⊕ v2
then we can deduce that v3 is valid. Additionally, by R-Arithm, S1 = S2 and since S1

is valid for l, S2 is valid for l. Moreover, S2 ⊳ v3 is valid for l since S1 ⊳ v3 is valid
for l ( by hypothesis). Finally, we need to prove that T1\t∪ (t, {v3}l)∪T, S2 remains
valid. by T-Arithm, we have Γ1 ⊢ ⟨e1 ∶ int⟩lσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶ int⟩lσ ⊣ Γ3.
This means that neither v3 = ℓ

▪
a nor v3 = ℓ

⬩
a can hold. Hence we can deduce that

T1\t ∪ (t, {v3}l) ∪ T, S2 is valid.

• Base Case e1 ≜ [v1 ⊗ v2]. By hypothesis, S1 ⊳ v1⊗v2 is valid for l and by inspection
of Definition 4.20, S1 is valid for l and v1 ⊗ v2 is also valid. By R-Cond, v3 = v1 ⊕ v2
then we can deduce that v3 is valid. Additionally, by R-Cond, S1 = S2 and since S1 is
valid for l, then, S2 is valid for l. Moreover, S2 ⊳ v3 is valid for l sinceS1 ⊳ v3 is valid
for l ( by hypothesis). Finally, we need to prove that T1\t∪ (t, {v3}l)∪T, S2 remains
valid. by T-Cond, we have Γ1 ⊢ ⟨v1 ⊗ v2 ∶ bool⟩lσ ⊣ Γ2. This means that neither
v3 = ℓ

▪
a nor v3 = ℓ

⬩
a can hold. Hence we can deduce that T1\t ∪ (t, {v3}l) ∪ T, S2 is

valid.

• Base Case e=[{v}m]. By hypothesis, S1 ⊳ {v}m is valid for l and by inspection of
Definition 4.20, S1 is valid for l and {v}m is valid then, we can deduce that v is valid.
By R-BlockB and for some l ⪰ m, S2 = drop(S1, m). According to Definition 3.4, S2

contains all the values in S1 except those owned in lifetime m. Since S1 is valid for l
then S2 remains valid for l. Next, we need to establish the validity of S2 ⊳ v. Since
we have S1 ⊳ v is valid for l and S2 = drop(S1, m) by R-Block thus, we can deduce
that S2 ⊳ v is valid for l. Finally, we need to prove that T1\t∪(t, {v}l)∪T, S2 remains
valid. If v = [ℓ▪b], by hypothesis, T1, S1 is valid, meaning that if there are more than
one occurrence of ℓ▪b in T1, S1 then there is a unique ℓ⬩c such that S ⊢u ℓc ↝ ℓb. This
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designates that ℓ▪b as a value is moved out of an Trc, which is not possible, since our
type system prevents moving out of an Trc. As a result, there is only one occurrence
of ℓ▪b , which is v. For the other cases ( v = ℓ

⬩
b , v = ℓ

⋄
b or v = ℓ

◦), we know that v is
not in S2∣l. Therefore T1\t ∪ (t, {v}l) ∪ T, S2 remains valid.

• Base Case e=[v; e]. By hypothesis, S1 ⊳ v; e is valid for l and by inspection of Defi-
nition 4.20, S1 is valid for l and v; e is valid. Intuitively, the validity of v; e infers that
v and e are valid. By R-Seq we have S2 = drop(S1, {v}) then if v = [ℓ▪a] or v = [ℓ⬩b ],
according to Definition 3.4, the drop function traverses that location, dropping its val-
ues recursively. Moreover, S2 = drop(S1, {v})means that all the values of S2, except
for v, are in S1 and since S1 is valid for l then S2 remains valid for l. Finally, given
that S1 ⊳ e is valid for l, S2 ⊳ e is valid for l. Therefore, T1\t ∪ (t, {e}l) ∪ T, S2

remains valid.

• Base Case e=[cooperate]. By R-Cooperate, S1 = S2 then, the result is immediate.
Hence, by R-Cooperate v ≜ [ϵ] and T1\t ∪ (t, {ϵ}l) ∪ T, S2 remains valid.

• Base Case e=[spawn(f(v))]. By hypothesis, S1 ⊳ spawn(f(v)) is valid for l and by
inspection of Definition 4.20, S1 is valid for l and spawn(f(v)) is valid and also im-
plies that all locations in the values of S1∣l are not within the values of spawn(f(v)).
By R-Spawn, we have for t1 ∈ fresh, let∗ ⪰ l1 (indicating a fresh lifetime included in
the global lifetime, *) such thatS2 = S

′∪[ℓl1∶∶x ↦ ⟨v′⟩l1]where (S ′, v′) = activate(S1, v).
Here, [ℓl1∶∶x ↦ ⟨v′⟩l1] represents a new stack for the new thread t1 restricted to the
lifetime l1 (i.e. (t1, {e}l1)). Consequently, by R-Spawn, S1∣l = S2∣l such that S2 is
valid for l since S1 is valid for l. Therefore, we can state that S2 ⊳ ϵ is valid for l.
Finally, we need to prove that T1\t ∪ (t, {ϵ}l)∪ T, S2 remains valid. To demonstrate
global validity, it is necessary first to prove that the local state of the new thread is
valid. By R-Spawn, we have (S ′, v′) = activate(S1, v), and according to Definition 3.6,
this function recursively switches the values in v from the form (ℓ⋄a ) to (ℓ

⬩
a ). Addition-

ally, by T-Spawn we have the following mechanism: Γ2 ⊢ (S) ⟸ (τ) that ensures:
(1) the locations in v carrying active Trc type cannot exist (based on Definition 4.15)
as well as (2) two locations having the same inactive Trc type should not exist, thus
avoiding the creation of aliases via Trc in the local state of the new thread. Adhering
to these constraints, we conclude that all locations in v′ have a unique occurrence and
therefore S2 is valid for l1. Hence, S2 ⊳ e is valid for l1, e as an expression does not
contain a location values. Finally, since all locations in v′ are in v and, specifically,
all ℓ▪a in v′ are present in v, adding v′ to S

′ does not violate the validity of the global
state. Therefore, we deduce that T1\t ∪ (t, {ϵ}l) ∪ T, S2 is valid.

However, we now proceed under the assumption that e1 is not a value v as follows:

• Inductive Case e1 ≜ [box(e)]. By T-Box, Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 and by applying our
induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩l
such that e′ is valid, S2 is valid for l, S2 ⊳ e

′ is valid for l, and T1\t ∪ (t, {e′}l) ∪
T, S2 is valid. Therefore, box(e′) is valid, S2 ⊳ box(e′) is valid for l and T1\t ∪
(t, {box(e′)}l) ∪ T, S2 is valid.
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• Inductive Case e1 ≜ [trc(e)]. By T-Trc, Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 and by applying our
induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩l
such that e′ is valid, S2 is valid for l, S2 ⊳ e

′ is valid for l, and T1\t ∪ (t, {e′}l) ∪
T, S2 is valid. Therefore, trc(e′) is valid, S2 ⊳ trc(e′) is valid for l and T1\t ∪
(t, {trc(e′)}l) ∪ T, S2 is valid.

• Inductive Case e1 ≜ [e1 ⊕ e2]. By T-Arithm, Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶
τ2⟩lσ ⊣ Γ3. By applying our induction hypothesis over the derivation of e1, we know
that ⟨S2 ⊳ e1

T
−→i S2 ⊳ e

′⟩l such that e′ is valid, S2 is valid for l, S2 ⊳ e
′ is valid for

l, and T1\t∪ (t, {e′}l)∪T, S2 is valid. Therefore, e
′⊕ e2 is valid, S2 ⊳ e

′⊕ e2 is valid
for l and T1\t ∪ (t, {e′ ⊕ e2}l) ∪ T, S2 is valid.

• Inductive Case e1 ≜ [e1 ⊗ e2]. By T-Cond, Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶
τ2⟩lσ ⊣ Γ3. By applying our induction hypothesis over the derivation of e1, we know
that ⟨S2 ⊳ e1

T
−→i S2 ⊳ e

′⟩l such that e′ is valid, S2 is valid for l, S2 ⊳ e
′ is valid for

l, and T1\t∪ (t, {e′}l)∪T, S2 is valid. Therefore, e
′⊗ e2 is valid, S2 ⊳ e

′⊗ e2 is valid
for l and T1\t ∪ (t, {e′ ⊗ e2}l) ∪ T, S2 is valid.

• Inductive Case e1 ≜ [let mut x = e]. By T-Declare, Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 and by
applying our induction hypothesis over the derivation of e, we know that ⟨S1 ⊳

e
T
−→i S2 ⊳ e

′⟩l such that e′ is valid, S2 is valid for l, S2 ⊳ e
′ is valid for l, and

T1\t∪(t, {e′}l)∪T, S2 is valid. Therefore, let mut x = e
′ is valid, S2 ⊳ let mut x = e

′

is valid for l and T1\t ∪ (t, {let mut x = e
′}l) ∪ T, S2 is valid.

• e1 ≜ [ω = e]. By T-Assign, Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 and by applying our induction
hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩l such that e′

is valid, S2 is valid for l, S2 ⊳ e
′ is valid for l, and T1\t ∪ (t, {e′}l) ∪ T, S2 is valid.

Therefore, ω = e
′ is valid, S2 ⊳ ω = e

′ is valid for l and T1\t ∪ (t, {ω = e
′}l) ∪ T, S2

is valid.

• e1 ≜ [{e}m]. In this case, by R-BlockA we have ⟨S1 ⊳ e
T
→i S2 ⊳ e

′⟩m for some l ⪰ m,
and by induction hypothesis over the derivation of e gives as e′ is valid, S2 is valid
for l and S2 ⊳ e

′ remains valid for l, and T1\t ∪ (t, {e′}l)∪ T, S2 is valid. Therefore,
{e′}m is valid, S2 ⊳ {e′}m is valid for l and T1\t ∪ (t, {{e′}m}l) ∪ T, S2 is valid.

• ei ≜ [e]. By T-Sequence, Γ1 ⊢ ⟨e1 ∶ τ⟩lσ ⊣ Γ11 . . .Γ1n ⊢ ⟨en ∶ τi⟩lσ ⊣ Γ2 and
by applying our induction hypothesis over the derivation of e1, we know that ⟨S1 ⊳

e1
T
−→i S2 ⊳ e

′
1⟩l such that e′1 is valid, S2 is valid for l and S2 ⊳ e

′
1 remains valid for

l, and T1\t ∪ (t, {e′1}l)∪ T, S2 is valid. Therefore, e
′
1; e is valid, S2 ⊳ e

′
1; e is valid for

l and T1\t ∪ (t, {e′1; e}l) ∪ T, S2 is valid.

• Inductive Case ei ≜ [spawn(f(e))]. As the previous case, by T-Spawn and by induc-
tion hypothesis the result is immediate.

□
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Lemma 4.12 ensures that when reducing a well-typed expression e with type τ , the
resulting expression e′ remains well-typed. Moreover, if e′ is a value v, then v is safely
abstracted by τ .

Lemma 4.12 (Step Expression Preservation) Let T1 = {ti, {ei}li ∣ 1 ⩽ i ⩽ N}, S1, σ

such that T1, S1 is a valid global state and for all i ∈ {1, ..., N} we have S1 ⊳ ei ⊢ σ,

S1∣li ∼ Γ
i
1 and Γ

i
1 ⊢ ⟨ei ∶ τi⟩liσ ⊣ Γ

i
2 for some Γ

i
1,Γ

i
2 and τi. Let i ∈ {1, ..., N}, T and

S2 ⊳ e
′
i such that ⟨S1 ⊳ ei

T
−→i S2 ⊳ e

′
i⟩li then, either e′i is a value v such that S2 ⊢ v ∼ τi

or there are Γ
′
and σ

′
such that Γ

′
⊢ ⟨e′i ∶ τi⟩liσ′ ⊣ Γ

i
2 and S2 ⊳ e

′
i ⊢ σ

′
and for all

j ∈ {1, ..., i − 1, i + 1, .., N} we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′
and for all

(t, {e}l) ∈ T we have Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2 and S2 ⊳ e ⊢ σ
′
for some Γ1,Γ2 and τ .

Proof. By structural induction on the forms of e according to Figure 3.5. In the case
where e′ is a value v, we can establish Γ

′
= Γ2:

• Base Case ei ≜ [v]. The result is immediate as there is no reduction rule for this case.

• Base Case ei ≜ [ω̂]. By R-Copy we have read(S1, ω, l) = ⟨v⟩n where S1 = S2, and by
T-Copy we have Γ1 ⊢ ω ∶ ⟨τ⟩m such that τi = τ and n ∈ {m, *}∪N. Since S1∣li ∼ Γ

i
1,

by applying Lemma 4.4 we have S2 ⊢ v ∼ τ .

• Base Case ei ≜ [ω]. By T-Move, Γ1 ⊢ ω ∶ ⟨τ⟩m such that τi = τ and by R-Move,
read(S1, ω, l) = ⟨v⟩n some n. Since S1∣li ∼ Γ

i
1, by applying Lemma 4.4 we have

S2 ⊢ v ∼ τ such that n ∈ {m, *} ∪N.

• Base Case ei ≜ [&[mut]ω]. By R-Borrow, loc(S1, ω, l) = ℓ such that S1 = S2 and
by T-Borrow, Γ1 ⊢ ω ∶ ⟨τ⟩m. Since S1∣li ∼ Γ

i
1, by applying Lemma 4.3 we have

S2(ℓ) = ⟨v⟩n and S2 ⊢ v ∼ τi such that n ∈ {m, *} ∪N.

• Base Case ei ≜ [box(v2)]. By R-Box, S2 = S1[ℓa ↦ ⟨v2⟩∗] for some ℓa ∉ dom(S1)
where v = [ℓ▪a]. By T-Box, Γ1 ⊢ ⟨v2 ∶ τ2⟩lσ ⊣ Γ2. Since S1∣li ∼ Γ

i
1, according to

Figure 4.7, by V-Box, we have S1(ℓa) = ⟨v2⟩∗ and S1 ⊢ v2 ∼ τ2. Hence we can
deduce by V-Box that S2 ⊢ ℓ

▪
a ∼ ▪τ2.

• Base Case ei ≜ [trc(v2)]. By R-Trc, S2 = S1[ℓa ↦ ⟨v2⟩1] for some ℓa ∉ dom(S1)
where v = [ℓ⬩a]. By T-Trc, Γ1 ⊢ ⟨v2 ∶ τ2⟩lσ ⊣ Γ2. Since S1∣li ∼ Γ

i
1, according to

Figure 4.7, by V-Trc, we have S1(ℓa) = ⟨v2⟩i and S1 ⊢ v2 ∼ τ2. Hence we can deduce
by V-Trc that S2 ⊢ ℓ

⬩
a ∼ ⬩τ2.

• Base Case ei ≜ [ω.clone]. By R-Clone, we have read(S1, ω, l)=⟨ℓ⬩a⟩n for some ℓa ∈

dom(S1) and by T-Clone we have Γ1 ⊢ ω ∶ ⟨⬩τ⟩m such that n ∈ {m, *} ∪ N. Since
S1∣li ∼ Γ

i
1, according to Figure 4.7, V-Clone, we have S2∣li ⊢ ℓ

⋄
a ∼ ⋄ω.

• Base Case e1 ≜ [v1 ⊕ v2]. By R-Arithm, v = v1 ⊕ v2 such that S1 = S2 and by T-

Arithm, Γ1 ⊢ ⟨v1 ⊕ v2 ∶ int⟩liσ ⊣ Γ2. Since S1∣li ∼ Γ
i
1, according to Figure 4.7, by

V-Int, we have S2 ⊢ int ∼ int.
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• Base Case e1 ≜ [v1 ⊗ v2]. By R-Cond, v = v1 ⊗ v2 such that S1 = S2 and by T-Cond,
Γ1 ⊢ ⟨v1 ⊗ v2 ∶ bool⟩liσ ⊣ Γ2. Since S1∣li ∼ Γ

i
1, according to Figure 4.7, by V-Bool,

we have S2 ⊢ bool ∼ bool.

• Base Case ei ≜ [let mut x = v2]. By R- Declare, S2 = S1[ℓli∶∶x ↦ ⟨v2⟩li] for some
ℓli∶∶x ∉ dom(S1) such that v = ϵ. By T-Declare, Γ1 ⊢ ⟨v2 ∶ τ2⟩liσ ⊣ Γ2 and Γ2 =

Γ1[x ↦ ⟨τ2⟩li] such that τi = ϵ. Since S1∣li ∼ Γ
i
1, according to Figure 4.7, we have

S2 ⊢ ϵ ∼ ϵ (V-Unit).

• Base Case ei ≜ [ω = v2]. Similar to the previous case, by R-Assign, we have v = ϵ
and by T-Assign, Γ1 ⊢ ⟨v2 ∶ τ2⟩liσ ⊣ Γ2 such that T-Const, σ ⊢ v2 ∶ τ2 and τi = ϵ.
Since S1∣li ∼ Γ

i
1, according to Figure 4.7, we have S2 ⊢ ϵ ∼ ϵ (V-Unit).

• Base Case ei ≜ [{v′}m]. By R-BlockB, v = v
′. By T-Block, Γ1 ⊢ ⟨v′ ∶ τ⟩liσ ⊣ Γ2 such

that T-Const σ ⊢ v
′ ∶ τ and τi = τ . Then, we can deduce that S2 ⊢ v

′
∼ τ

′.

• Base Case ei ≜ [v; e]. By T-Sequence and by Lemma 4.7, Γ1 ⊢ ⟨v ∶ τ⟩liσ ⊣ Γ1 Γ1 ⊢

⟨e ∶ τi⟩liσ ⊣ Γ2 such that by T-Sequence, τi is the type of the last expression in e. Then,
the result immediate since by R-Seq, we have S2 ⊳ e where Γ1 ⊢ ⟨e ∶ τi⟩liσ ⊣ Γ2.

• Base Case ei ≜ [cooperate]. By R-Cooperate, we have [v = ϵ]. Since S1∣li ∼ Γ
i
1,

then according to Figure 4.7, we have S2 ⊢ ϵ ∼ ϵ (V-Unit).

• Base Case ei ≜ [spawn(f(v2))]. By T-Spawn and By T-Const we have, σ ⊢ v2 ∶ τ2.
By R-Spawn, we create a new thread (t, {e}n) for some ∗ ≽ n such as S2 = S

′ ∪

[ℓn∶∶x ↦ ⟨v′2⟩n] where (S ′, v′2) = activate(S1∣li , v2). By inspection of Definition 3.6,
the activate function recursively activates an inactive Trc value. Additionally, based
on Figure 4.4, both the S-ATrcR and S-ATrcL rules indicate that an inactive Trc type
is compatible with an active Trc type. In other words, σ ⊢ v′2 ∶ τ

′
2 ≈ τ2 for some τ ′2

such that τ ′2 is compatible with τ 2. Therefore, by R-Spawn, v = ϵ and since S1∣li ∼ Γ
i
1,

then according to Figure 4.7, we have S2 ⊢ ϵ ∼ ϵ (V-Unit).
We will now prove the cases where ei ≠ [v]. Then the reduction of ei produces an
alternative expression e′i. In this case, an intermediate typing environment Γ′ exists
such that the typing of e′i in Γ

′ remains well-typed. Therefore, we can say that there
exists a valid store typing σ′ where for all v ∈ e

′
i we have S2 ⊢ v ∼ σ

′(v). Our proof
is based on the structural induction hypothesis as follows:

• Inductive Case ei ≜ [box(e)]. By T-Box, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our
induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li
then either e′ is a value v such that S2 ⊢ v ∼ τ or there are Γ

′ and σ′′ such that
Γ
′
⊢ ⟨e′ ∶ τ⟩li

σ′′
⊣ Γ

i
2 and S2 ⊳ e

′
⊢ σ

′′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}
we have Γ

j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′′ and for all (t, {e1}l) ∈ T ,
we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and τ1. In
the first case when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that all
the values of σ′ are in σ except v and, since σ is valid and v is safely abstracted by
τ (by inspection of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ box(e′) ⊢ σ

′

such that Γ′ ⊢ ⟨box(e′) ∶ ▪τ⟩li
σ′

⊣ Γ
i
2 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we
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have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨box(e′) ∶ ▪τ⟩li

σ′′
⊣ Γ

i
2 and the rest is immediate.

• Inductive Case ei ≜ [trc(e)]. By T-Trc, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our
induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li
then either e′ is a value v such that S2 ⊢ v ∼ τ or there are Γ

′ and σ′′ such that
Γ
′
⊢ ⟨e′ ∶ τ⟩li

σ′′
⊣ Γ

i
2 and S2 ⊳ e

′
⊢ σ

′′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}
we have Γ

j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′′ and for all (t, {e1}l) ∈ T , we
have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and τ1. In the
first case when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that all the
values of σ′ are in σ except v and, since σ is valid and v is safely abstracted by τ
(by inspection of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ trc(e′) ⊢ σ

′ such
that Γ′ ⊢ ⟨trc(e′) ∶ ⬩τ⟩li

σ′
⊣ Γ

i
2 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we

have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨trc(e′) ∶ ⬩τ⟩li

σ′′
⊣ Γ

i
2 and the rest is immediate.

• Inductive Case ei ≜ [let mut x = e]. By T-Declare, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by
applying our induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i

S2 ⊳ e
′⟩li , then either e′ is a value v such that S2 ⊢ v ∼ τ or there are Γ′ and σ′′ such

that Γ′ ⊢ ⟨e′ ∶ τ⟩li
σ′′

⊣ Γ
i
2 and S2 ⊳ e

′
⊢ σ

′′ and for all j ∈ {1, ..., i − 1, i + 1, .., N},
we have Γj

1 ⊢ ⟨ej ∶ τj⟩
lj

σ′′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and τ1. In the first case
when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that all the values of σ′

are in σ except v and, since σ is valid and v is safely abstracted by τ (by inspection
of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ let mut x = e

′
⊢ σ

′ such that
Γ
′
⊢ ⟨let mut x = e

′ ∶ ϵ⟩li
σ′

⊣ Γ
i
2 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we

have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨let mut x = e

′ ∶ ϵ⟩li
σ′′

⊣ Γ
i
2 and the rest is immediate.

• ei ≜ [ω = e]. By T-Assign, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our induction
hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li then either e′
is a value v such that S2 ⊢ v ∼ τ or there are Γ′ and σ′′ such that Γ′ ⊢ ⟨e′ ∶ τ⟩li

σ′′
⊣ Γ

i
2

and S2 ⊳ e
′
⊢ σ

′′ and for all j ∈ {1, ..., i−1, i+1, .., N}, we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′′
⊣

Γ
j
2 and S2 ⊳ ej ⊢ σ

′′ and for all (t, {e1}l) ∈ T , we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and
S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and τ1. In the first case when e′ is a value v, we have
σ
′
= σ[v ↦ τ], which implies that all the values of σ′ are in σ except v and, since σ

is valid and v is safely abstracted by τ (by inspection of Definition 4.22), σ′ remains
valid. Hence, S2 ⊳ ω = e

′
⊢ σ

′ such that Γ′ ⊢ ⟨ω = e
′ ∶ ϵ⟩li

σ′
⊣ Γ

i
2 and for all

j ∈ {1, ..., i−1, i+1, .., N}, we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for
all (t, {e1}l) ∈ T , we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2
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and τ1. In the second case, we can deduce that Γ′ ⊢ ⟨ω = e
′ ∶ ϵ⟩li

σ′′
⊣ Γ

i
2 and the rest

is immediate.

• ei ≜ [e1 ⊕ e2]. By T-Arithm, Γ1 ⊢ ⟨e1 ∶ int⟩liσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶ int⟩liσ ⊣

Γ3. By applying our induction hypothesis over the derivation of e1, we know that
⟨S1 ⊳ e1

T
−→i S2 ⊳ e

′⟩li then either e′ is a value v such that S2 ⊢ v ∼ τ or there
are Γ

′ and σ′′ such that Γ′ ⊢ ⟨e′ ∶ τ⟩li
σ′′

⊣ Γ
i
2 and S2 ⊳ e

′
⊢ σ

′′ and for all j ∈

{1, ..., i− 1, i+ 1, .., N}, we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′′ and for all
(t, {e1}l) ∈ T , we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and
τ1. In the first case when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that
all the values of σ′ are in σ except v and, since σ is valid and v is safely abstracted
by τ (by inspection of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ e

′ ⊕ e2 ⊢ σ
′

such that Γ′ ⊢ ⟨e′ ⊕ e2 ∶ int⟩liσ′ ⊣ Γ
i
2 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we

have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨e′ ⊕ e2 ∶ int⟩liσ′′ ⊣ Γ

i
2 and the rest is immediate.

• ei ≜ [e1 ⊗ e2]. By T-Cond, Γ1 ⊢ ⟨e1 ∶ τ⟩liσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶ τ ′⟩liσ ⊣ Γ3.
By applying our induction hypothesis over the derivation of e1, we know that ⟨S1 ⊳

e1
T
−→i S2 ⊳ e

′⟩li then either e′ is a value v such that S2 ⊢ v ∼ τ or there are Γ
′

and σ′′ such that Γ′ ⊢ ⟨e′ ∶ τ⟩li
σ′′

⊣ Γ
i
2 and S2 ⊳ e

′
⊢ σ

′′ and for all j ∈ {1, ..., i −
1, i + 1, .., N}, we have Γj

1 ⊢ ⟨ej ∶ τj⟩
lj

σ′′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′′ and for all (t, {e1}l)
∈ T , we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and τ1.
In the first case when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that
all the values of σ′ are in σ except v and, since σ is valid and v is safely abstracted
by τ (by inspection of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ e

′ ⊗ e2 ⊢ σ
′

such that Γ′ ⊢ ⟨e′ ⊗ e2 ∶ bool⟩liσ′ ⊣ Γ
i
2 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we

have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨e′ ⊗ e2 ∶ bool⟩liσ′′ ⊣ Γ

i
2 and the rest is immediate.

• ei ≜ [{e}m]. By T-Block, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our induction
hypothesis over the derivation of e, we know that by R-BlockA, ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li
then either e′ is a value v such that S2 ⊢ v ∼ τ or there are Γ

′ and σ′ such that
Γ
′
⊢ ⟨e′ ∶ τ⟩li

σ′
⊣ Γ

i
2 and S2 ⊳ e

′
⊢ σ

′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we
have Γ

j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e ⊢ σ

′ for some Γ1,Γ2 and τ1.

• ei ≜ [e]. By T-Sequence, Γ1 ⊢ ⟨e1 ∶ τ⟩liσ ⊣ Γ11 . . .Γ1n ⊢ ⟨en ∶ τi⟩liσ ⊣ Γ2

and by applying our induction hypothesis over the derivation of e1, we know that
⟨S1 ⊳ e1

T
−→i S2 ⊳ e

′⟩li then either e′ is a value v such that S2 ⊢ v ∼ τ or there
are Γ

′ and σ′′ such that Γ′ ⊢ ⟨e′ ∶ τ⟩li
σ′′

⊣ Γ
i
2 and S2 ⊳ e

′
⊢ σ

′′ and for all j ∈

{1, ..., i− 1, i+ 1, .., N}, we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′′ and for all
(t, {e1}l) ∈ T , we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′′ for some Γ1,Γ2 and
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τ1. In the first case when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that
all the values of σ′ are in σ except v and, since σ is valid and v is safely abstracted
by τ (by inspection of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ e

′
; e ⊢ σ

′

such that Γ′ ⊢ ⟨e′; e ∶ τi⟩liσ′ ⊣ Γ
i
2 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we

have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨e′; e ∶ τi⟩liσ′′ ⊣ Γ

i
2 and the rest is immediate.

• Inductive Case ei ≜ [spawn(f(e))]. By T-Spawn, we have Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2

and by applying our induction hypothesis over the derivation of e0, we know that
⟨S1 ⊳ e0

T
−→i S2 ⊳ e

′⟩li then either e′ is a value v such that S2 ⊢ v ∼ τ or there
are Γ

′ and σ′ such that Γ′ ⊢ ⟨e′ ∶ τ⟩li
σ′

⊣ Γ
i
2 and S2 ⊳ e

′
⊢ σ

′ and for all j ∈

{1, ..., i− 1, i+ 1, .., N}, we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all
(t, {e1}l) ∈ T , we have Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e ⊢ σ

′ for some Γ1,Γ2 and τ1.
In the first case when e′ is a value v, we have σ′ = σ[v ↦ τ], which implies that all the
values of σ′ are in σ except v and, since σ is valid and v is safely abstracted by τ (by
inspection of Definition 4.22), σ′ remains valid. Hence, S2 ⊳ spawn(f(e′; e)) ⊢ σ

′

such that Γ′ ⊢ ⟨spawn(f(e′; e)) ∶ ϵ⟩li
σ′
⊣ Γ

i
2 and for all j ∈ {1, ..., i− 1, i+ 1, .., N},

we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′ and for all (t, {e1}l) ∈ T , we have
Γ1 ⊢ ⟨e1 ∶ τ1⟩lσ′ ⊣ Γ2 and S2 ⊳ e1 ⊢ σ

′ for some Γ1,Γ2 and τ1. In the second case,
we can deduce that Γ′ ⊢ ⟨spawn(f(e′; e)) ∶ ϵ⟩li

σ′′
⊣ Γ

i
2 and the rest is immediate.

□

Lemma 4.13 ensures that after a local reduction for a given thread t, the resulting pro-
gram store remains safely abstracted by the resulting typing environment. Furthermore,
this preservation of safe abstraction extends to all existing threads within the program as
follows:

Lemma 4.13 (Step Store Preservation) Let T1 = {ti, {ei}li ∣ 1 ⩽ i ⩽ N}, S1, σ such

that T1, S1 be a valid global state and for all i ∈ {1, ..., N} we have S1 ⊳ ei ⊢ σ, S1∣li ∼ Γ
i
1

and Γ
i
1 ⊢ ⟨ei ∶ τi⟩liσ ⊣ Γ

i
2 for some Γ

i
1,Γ

i
2 and τi. Let i ∈ {1, ..., N}, T and S2 ⊳ e

′
i

such that ⟨S1 ⊳ ei
T
−→i S2 ⊳ e

′
i⟩li then, there exists Γ

′
such that S2∣li ∼ Γ

′
and for all

j ∈ {1, ..., i− 1, i+ 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶

τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′
and τ .

Proof. By structural induction on the forms of e according to Figure 3.5. For each case and
by inspection of Definition 4.24, the following must be demonstrated: (1) S2 remains valid,
(2) (dom(S2)\L) = Θ(dom(Γ′)), and (3) for all x ∈ dom(Γ′) such that Γ′(x) = ⟨τ̃⟩m, there
exists v⊥ such that S2 ⊢ v

⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. In the case where e′ is a value v,

we can establish Γ
′
= Γ2:

• Base Case e ≜ [v]. The result is immediate as there is no reduction rule for this case.
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• Base Case e ≜ [ω̂]. By R-Copy we have S1 = S2 then, S2 is valid for li since S1 is
valid for li. By T-Copy, Γi

1 = Γ
i
2. Consequently, we can deduce that (dom(S2∣li)\L)

= Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such

that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result, S2∣li ∼ Γ

i
2 since S1∣li ∼ Γ

i
1.

Moreover, since S1 = S2 then, for all j ∈ {1, ..., i−1, i+1, .., N}, we have S2∣lj ∼ Γ
j
1

and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some
Γ1,Γ2 and τ .

• Base Case e ≜ [ω]. By R-Move, read(S1, ω, l) = ⟨v⟩m and S2 = write(S1, ω,⊥, l),
which implies that the values of S2∣li , except for v, are the same values of S1∣li , with
v is replaced by ⊥. Since S1 is valid for li then S2 remains valid for li. By T-Move,
we have the following two premises: Γ1 ⊢ ω ∶ ⟨τ⟩m and Γ2 = move(Γ1, ω). By
applying the second premise, the new type of ω in Γ2 becomes ⌊τ⌋, which implies
that Γ2 is exactly the same as Γ1 with the exception of ω. Consequently, we can
deduce that (dom(S2∣li)\L) =Θ(dom(Γi

2)). By inspection of Figure 4.7we haveS2 ⊢

⊥ ∼ ⌊τ⌋. Furthermore, the T-Move rule guarantees that ¬writeProhibited(Γ1, ω) and
¬TrcMoveProhibited(Γ1, ω) hold, preventing violations of borrow and Trc invariance
(meaning that ω is neither borrowed nor cloned, as defined in Definitions 4.4 and
4.10). As a result, for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such

that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. Hence, we can deduce that S2∣li ∼ Γ

i
2.

Finally, as v in S1∣li , this does not violate the notion of safe abstraction between S
and Γ to other threads hence, for all j ∈ {1, ..., i− 1, i+ 1, .., N}, we have S2∣lj ∼ Γ

j
1

and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some
Γ1,Γ2 and τ .

• Base Case e ≜ [&[mut]ω]. By R-Borrow we have S1 = S2 then, S2 is valid for li since
S1 is valid for li. By both T-ImmBorrow and T-MutBorrow, Γi

1 = Γ
i
2. Consequently,

we can deduce that (dom(S2∣li)\L) = Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such
that Γi

2(x) = ⟨τ̃⟩m, there exists v⊥ such that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m.

As a result, S2∣li ∼ Γ
i
2 since S1∣li ∼ Γ

i
1. Moreover, since S1 = S2 then, for all

j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that

Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ .

• Base Case e ≜ [box(v2)]. By R-Box, v = ℓ
▪
a such that S2 = S1[ℓa ↦ ⟨v2⟩∗] for some

ℓa ∉ dom(S1). Since ℓa is a heap location (ℓa ∈ L such that L is the set of heap
locations) then, by inspection of Definition 4.24, we have (dom(S2) \L) = (dom(S1)
\L). Since S1 is valid for li then, S2 is valid for li. Therefore, by Lemma 4.7 and
by T-Box, we have Γi

1 ⊢ ⟨v2 ∶ τ2⟩liσ ⊣ Γ
i
2 such that Γi

1 = Γ
i
2. Consequently, we can

deduce that (dom(S2∣li)\L) =Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that Γi
2(x)

= ⟨τ̃⟩m, there exists v⊥ such that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result,

S2∣li ∼ Γ
i
2 since S1∣li ∼ Γ

i
1. Finally, as ℓa ∈ L then, for all j ∈ {1, ..., i−1, i+1, .., N},

we can deduce that (dom(S2∣lj) \L) = (dom(S1∣lj\L) and hence, S2∣lj ∼ Γ
j
1 and for all

(t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ
since (dom(S2∣l) \L) = (dom(S1∣l\L).

• Base Case e ≜ [trc(v2)]. By R-Trc, v = ℓ
⬩
a such that S2 = S1[ℓa ↦ ⟨v2⟩1] for
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some ℓa ∉ dom(S1). Since ℓa is a heap location (ℓa ∈ L such that L is the set
of heap locations) then, by inspection of Definition 4.24, we have (dom(S2∣li) \L) =
(dom(S1∣li) \L). Since S1 is valid for li then, S2 is valid for li. Therefore, by Lemma
4.7 and by T-Trc, we have Γi

1 ⊢ ⟨v2 ∶ τ2⟩liσ ⊣ Γ
i
2 such that Γ

i
1 = Γ

i
2. Consequently, we

can deduce that (dom(S2∣li)\L) = Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that
Γ
i
2(x) = ⟨τ̃⟩m, there exists v⊥ such that S2 ⊢ v

⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a

result, S2∣li ∼ Γ
i
2 since S1∣li ∼ Γ

i
1. Finally, as ℓa ∈ L then, for all j ∈ {1, ..., i− 1, i+

1, .., N}, we can deduce that (dom(S2∣lj) \L) = (dom(S1∣lj\L) and hence, S2∣lj ∼ Γ
j
1

and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some
Γ1,Γ2 and τ since (dom(S2∣l) \L) = (dom(S1∣l\L).

• Base Case e ≜ [ω.clone]. By R-Clone, v = ℓ
⋄
a such that S2 = S1Jℓa ↦ ⟨v⟩i+1K for

some ℓa ∈ dom(S1)where ℓa is a heap location. By inspection of Definition 4.24, ℓa ∈
L and we have (dom(S2∣li) \L) = (dom(S1∣li) \L). Since S1 is valid for li then, S2 is
valid for li. By T-Clone, Γi

1 = Γ
i
2. Consequently, we can deduce that (dom(S2∣li)\L)

= Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such

that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result, S2∣li ∼ Γ

i
2 since S1∣li ∼ Γ

i
1.

Finally, as ℓa ∈ L (ℓa is already in S1) then, for all j ∈ {1, ..., i − 1, i + 1, .., N}, we
can deduce that (dom(S2∣lj) \L) = (dom(S1∣lj\L) and hence, S2∣lj ∼ Γ

j
1 and for all

(t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ
since (dom(S2∣l) \L) = (dom(S1∣l\L).

• Base Case e ≜ [let mut x = v2]. By R-Declare, we have S2 = S1[ℓli∶∶x ↦ ⟨v2⟩li]
such that ℓli∶∶x ∉ dom(S1). This implies that all locations in S2∣li are in S1∣li ,
expanded by ℓli∶∶x. Since S1 is valid for li then, S2 is valid for li. By T-Declare

and by lemma 4.7, Γi
1 ⊢ ⟨v2 ∶ τ2⟩liσ ⊣ Γ

i
2 where Γ

i
1 = Γ

i
2. Thus, by T-Declare

we have and Γ
i
2 = Γ

i
1[x ↦ ⟨τ2⟩li] such that x ∉ dom(Γi

1). This implies that all
variables in Γ

i
2 are in Γ

i
1 , expanded by x. As (dom(S1∣li) \L) = Θ(dom(Γi

1)) and by
inspection of Definition 4.24 we can deduce that (dom(S2∣li) \L) = Θ(dom(Γi

2)) and
for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such that S2 ⊢ v

⊥
∼ τ̃

where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result, S2∣li ∼ Γ
i
2. Finally, since ℓli∶∶x ∈ dom(S2∣li),

this does not violate the notion of safe abstraction between S and Γ to other threads.
Hence, for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ

j
1 and for all (t, {e}l)

∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ .

• Base Case e ≜ [ω = v2]. By R-Assign, we have read(S1, ω, l) = ⟨v⊥1 ⟩m and S2 =

write(drop(S1, {v⊥1 }), ω, v2, l). By T-Assign, Γi
1 ⊢ ω ∶ ⟨τ̃1⟩m and by hypothesis,

S1∣li ∼ Γ
i
1. By inspection of Definition 4.24, we have (dom(S1∣li)\L) = Θ(dom(Γi

1))
and for all x ∈ dom(Γi

1) such that Γi
1(x) = ⟨τ̃⟩m, there exists v⊥ such that S ⊢ v

⊥
∼ τ̃

where S1∣li(ℓm∶∶x) = ⟨v⊥⟩m. Therefore, we can deduce that S1 ⊢ v
⊥
1 ∼ τ̃1 by applying

Lemma 4.4. Furthermore, by T-Assign, Γi
1 ⊢ ⟨v2 ∶ τ2⟩liσ ⊣ Γ

i
2, Γ

i
2 ⊢ τ̃1 ≈ τ2, and

write
0(Γi

2, ω, τ2). By the first premise, S1 ⊢ v2 ∼ τ2 and by applying Lemma 4.7, we
have Γi

1 = Γ
i
2. By the second premise, according to Figure 4.4, τ1 must be compati-

ble with τ2. Since we have S1∣li ∼ Γ
i
1, S1 ⊢ v

⊥
1 ∼ τ̃1, and S1 ⊢ v2 ∼ τ2 then, by

applying Lemma 4.6, we have write(drop(S1, {v⊥1 }), ω, v2, l) ∼ write
0(Γi

1, ω, τ2) and
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for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such

that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ .

• Base Case e ≜ [v1 ⊕ v2]. By R-Arithm, S1 = S2 then, S2 is valid for li since S1 is
valid for li. By T-Arithm and by Lemma 4.7, Γi

1 ⊢ ⟨v1 ∶ τ1⟩liσ ⊣ Γ
i
1 and Γ

i
1 ⊢ ⟨v2 ∶

τ2⟩liσ ⊣ Γ
i
1 such that Γi

1 = Γ
i
2. Consequently, we can deduce that (dom(S2)\L) =

Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such

that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result, S2∣li ∼ Γ

i
2 since S1∣li ∼ Γ

i
1.

Finally, for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l)

∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ .

• Base Case e ≜ [v1 ⊗ v2]. By R-Cond, S1 = S2 then, S2 is valid for li since S1 is
valid for li. By T-Cond and by Lemma 4.7, Γi

1 ⊢ ⟨v1 ∶ τ1⟩liσ ⊣ Γ
i
1 and Γ

i
1 ⊢ ⟨v2 ∶

τ2⟩liσ ⊣ Γ
i
1 such that Γi

1 = Γ
i
2. Consequently, we can deduce that (dom(S2)\L) =

Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such

that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result, S2∣li ∼ Γ

i
2 since S1∣li ∼ Γ

i
1.

Finally, for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l)

∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ .

• Base Case e ≜ [{v}m]. By R-BlockB, S2 = drop(S1, m). According to Definition 3.4,
S2 contains all the values in S1 except those owned with a lifetime m. By T-Block, we
have Γi

1 ⊢ ⟨v ∶ τ⟩mσ ⊣ Γ
i
2 and Γ

i
2 = drop(Γi

1, m). By applying Lemma 4.7, Γi
1 = Γ

i
2.

According to Figure 4.3, Γ2 contains all the variables in Γ1 except those with a life-
time m. Since S1∣li ∼ Γ

i
1 then by applying Lemma 4.5, drop(S1, m) ∼ drop(Γi

1, m).
Consequently, S2∣li ∼ Γ

i
2. Furthermore, if v represents a value located within a Trc

(otherwise, the reasoning is straightforward), the contents of v will not be destroyed
by the drop function 3.4 unless the counter of the Trc is equal to 1. When the counter
is 1, it indicates that v can only be accessed by the current thread. In this case, deal-
locating v does not break the notion of safe abstraction for other threads, thus for all
j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T such that

Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2 and τ . On the other hand,
if the counter is greater than 1, it will be safely decremented by 1 without affecting
other threads’ program store, and then the result is immediate.

• Base Case e ≜ [v; e]. By R-Seq, S2 = drop(S1, {v}). As per Definition 3.4, if v is
an owning reference, the drop function recursively traverses v, dropping its contents.
Therefore, we can conclude that S2 includes all the values from S1, except for v. By
T-Sequence and by Lemma 4.7, Γi

1 ⊢ ⟨v ∶ τ1⟩liσ ⊣ Γ1and Γ
i
1 ⊢ ⟨e ∶ τi⟩liσ ⊣ Γ

i
2.

By hypothesis, S1∣li ∼ Γ
i
1 then, based on Lemma 4.5 we can deduce that S2∣li ∼ Γ

i
2.

Additionally, if v represents a value located within a Trc (otherwise, the reasoning
is straightforward), the contents of v will not be destroyed by the drop function 3.4
unless the counter of the Trc is equal to 1. When the counter is 1, it indicates that v
can only be accessed by the current thread. In this case, deallocating v does not break
the notion of safe abstraction for other threads, thus for all j ∈ {1, ..., i−1, i+1, .., N},
we have S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have

S2∣l ∼ Γ1 for some Γ1,Γ2 and τ . On the other hand, if the counter is greater than 1, it
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will be safely decremented by 1 without affecting other threads’ program store, and
then the result is immediate.

• Base Case e ≜ [cooperate]. By R-Cooperate, S1 = S2 then, S2 is valid for li since
S1 is valid for li. By T-Cooperate we have Γi

1 = Γ
i
2 and safeTrc(Γi

1). By inspection
of Definition 4.5, we know that there is no borrowed shared data present in Γ1. Con-
sequently, we have (dom(S2)\L) = Θ(dom(Γi

2)) and for all x ∈ dom(Γi
2) such that

Γ
i
2(x) = ⟨τ̃⟩m, there exists v⊥ such that S2 ⊢ v

⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a

result, S2∣li ∼ Γ
i
2 since S1∣li ∼ Γ

i
1 and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have

S2∣lj ∼ Γ
j
1. For all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1 for

some Γ1,Γ2 and τ .

• Base Case e ≜ [spawn(f(v))]. By R-Spawn, we create a new thread (t′, {e}n) for some
∗ ≽ n such asT∪(t′, {e}n) andS2 = S

′∪[ℓn∶∶x ↦ ⟨v′2⟩n]where (S ′, v′) = activate(S1, v).
By inspection of Definition 3.6, the activate function recursively activates an inactive
Trc value. This implies that all locations in the values of v′ are in v, but the only differ-
ence is that the values of an inactive Trc are activated in v′, and by applying Lemma
4.12, we know that v′ remain safely abstractedwith their types. Moreover, by R-Spawn
we have (dom(S2∣li) \L) = (dom(S1∣li\L). Thus, we can deduce that S2∣li = S1∣li , and
S2 is valid for li since S1 is valid for li. By T-Spawn, Γi

1 ⊢ ⟨v ∶ τ⟩liσ ⊣ Γ
i
2 and by

applying Lemma 4.7, Γi
1 = Γ

i
2. Consequently, we can deduce that (dom(S2∣li)\L) =

Θ(dom(Γi
2)) and for all x ∈ dom(Γi

2) such that Γi
2(x) = ⟨τ̃⟩m, there exists v⊥ such

that S2 ⊢ v
⊥
∼ τ̃ where S2(ℓm∶∶x) = ⟨v⊥⟩m. As a result, S2∣li ∼ Γ

i
2. Since v′ are values

associated to the new thread, adding v′ to S2 cannot break the notion of safe abstrac-
tion for other existing threads, thus for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have
S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2, we have S2∣l ∼ Γ1

for some Γ1,Γ2 and τ . Finally, it remains to demonstrate that there exists a safe ab-
straction between S and Γ of the new thread. By T-Spawn, Γi

1 ⊢ ⟨v ∶ τ⟩liσ ⊣ Γ
i
1 and

Γ2 ⊢ S ⟸ τ . Based on Definition 4.16, we know that v are well-typed in Γ
i
1. Ad-

ditionally, as per the Definition of 4.15, Γ2 ⊢ S ⟸ τ ensures that S are compatible
with τ . Since by R-Spawn, S ′∣n[ℓn∶∶x ↦ ⟨v′2⟩n] and by T-Function , Γ1[x↦ ⟨τ⟩n] (x
represent the arguments of the function f ) such that S2 ⊢ v′2 ∼ τ ( Definition 4.15),
we can derive that S2∣n ∼ Γ1.

We will now prove the cases where ei ≠ [v]. Then the reduction of ei produces an
alternative expression e′i. In this case, an intermediate typing environment Γ′ exists
such that S2∣li ∼ Γ

′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1

and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some
Γ1,Γ2, σ

′ and τ . Then, our proof is based on the structural induction hypothesis as
follows:

• Inductive Case ei ≜ [box(e)]. By T-Box, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our
induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li
and there exists Γ′ such that S2∣li ∼ Γ

′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we
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have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have

S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is immediate.

• Inductive Case ei ≜ [trc(e)]. By T-Trc, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our
induction hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li
and there exists Γ′ such that S2∣li ∼ Γ

′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we
have S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have

S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is immediate.

• Inductive Case ei ≜ [let mut x = e]. By T-Declare, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by
applying our induction hypothesis over the derivation of e, we know that ⟨S1 ⊳

e
T
−→i S2 ⊳ e

′⟩li and there exists Γ′ such that S2∣li ∼ Γ
′ and for all j ∈ {1, ..., i−1, i+

1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2,

we have S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is immediate.

• e1 ≜ [ω = e]. By T-Assign, Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2 and by applying our induction
hypothesis over the derivation of e, we know that ⟨S1 ⊳ e

T
−→i S2 ⊳ e

′⟩li and there
existsΓ′ such thatS2∣li ∼ Γ

′ and for all j ∈ {1, ..., i−1, i+1, .., N}, we haveS2∣lj ∼ Γ
j
1

and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some
Γ1,Γ2, σ

′ and τ hence the result is immediate.

• e1 ≜ [e1 ⊕ e2]. By T-Arithm, Γ1 ⊢ ⟨e1 ∶ int⟩liσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶ int⟩liσ ⊣

Γ3. By applying our induction hypothesis over the derivation of e1, we know that
⟨S1 ⊳ e1

T
−→i S2 ⊳ e

′⟩li and there exists Γ′ such that S2∣li ∼ Γ
′ and for all j ∈

{1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that

Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is

immediate.

• e1 ≜ [e1 ⊗ e2]. By T-Cond, Γ1 ⊢ ⟨e1 ∶ int⟩liσ ⊣ Γ2 and Γ2 ⊢ ⟨e2 ∶ int⟩liσ ⊣

Γ3. By applying our induction hypothesis over the derivation of e1, we know that
⟨S1 ⊳ e1

T
−→i S2 ⊳ e

′⟩li and there exists Γ′ such that S2∣li ∼ Γ
′ and for all j ∈

{1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that

Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is

immediate.

• e1 ≜ [{e}m]. In this case, by R-BlockA we have ⟨S1 ⊳ e
T
→i S2 ⊳ e

′⟩m for some l ⪰ m,
and by induction hypothesis over the derivation of e that reduces to e′, we assume
that there exists Γ′ such that S2∣li ∼ Γ

′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we
have S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T such that Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have

S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ .

• ei ≜ [e]. By T-Sequence, Γ1 ⊢ ⟨e1 ∶ τ⟩liσ ⊣ Γ11 . . .Γ1n ⊢ ⟨en ∶ τi⟩liσ ⊣ Γ2

and by applying our induction hypothesis over the derivation of e1, we know that
⟨S1 ⊳ e1

T
−→i S2 ⊳ e

′
1⟩li and there exists Γ′ such that S2∣li ∼ Γ

′ and for all j ∈
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{1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that

Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is

immediate.

• Inductive Case ei ≜ [spawn(f(e))]. By T-Spawn, we have Γ1 ⊢ ⟨e ∶ τ⟩liσ ⊣ Γ2

and by applying our induction hypothesis over the derivation of e0, we know that
⟨S1 ⊳ e0

T
−→i S2 ⊳ e

′⟩li and there exists Γ′ such that S2∣li ∼ Γ
′ and for all j ∈

{1, ..., i − 1, i + 1, .., N}, we have S2∣lj ∼ Γ
j
1 and for all (t, {e}l) ∈ T such that

Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2, we have S2∣l ∼ Γ1 for some Γ1,Γ2, σ
′ and τ hence the result is

immediate.

□

Now, we can proceed to the proof of Lemma 4.10:

The preservation Lemma serves to uphold the following aspects during the reduction
of a specific thread (t, {ei}li): the validity of the global state, the well-typed expression of
all existing threads in T1 ∪ (t, {e′i}li) ∪ T , and the notion of safe abstraction. To achieve
this objective, the preservation proof relies on various families of Lemmas that follow a
consistent pattern, which can be outlined as follows:

Proof. Firstly, by applying Lemma 4.11, we know that executing a thread from a valid
global state preserves the validity of the resulting global state. This Lemma ensures that
after the execution of a step by a given thread, its local state remains valid and that it also
preserves the validity of the local states of the other threads. Essentially, it guarantees
that no aliases are created in the global state. Secondly, by applying Lemma 4.12, tells us
that when a thread takes a step, the type of its reduced expression remains unchanged
(i.e., it remains well-typed). This ensures that the well-typed expressions of other threads
in the program, including new threads, are not violated. It also guarantees the presence
of a valid store typing σ′. Lastly, by applying Lemma 4.13, we know that after a given
transition for a thread, its typing environment remains a safe abstraction with the runtime
program’s store. This property also extends to all other threads. The preservation proof
relies on these three Lemmas to fulfill its ultimate objective. Additionally, we can augment
the preservation by including a property that, during each step execution, the resulting
environment upholds the invariants of the borrows and Trcs (as defined in 4.25). This
aspect is ensured by applying Lemma 4.8. □

2.4.5 Progress and Preservation Slice

Lemma 4.9 proves that if a thread is well-typed, it can take a step. In this section, we in-
troduce the Slice Progress Lemma that says that if a thread is well-typed, it can take one or
more steps until it terminates or until it cooperates as follows:

Lemma 4.14 (Slice Progress) Let S1 ⊳ e1 be a valid local state for some lifetime l. Let σ

be a store typing such that S1 ⊳ e1 ⊢ σ and let Γ1 be a well-formed typing environment with
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respect to l such that S ∼ Γ1 and Γ1 ⊢ ⟨e1 ∶ τ⟩lσ ⊣ Γ2 for some τ and Γ2. Then, there are

some T and some state S2 ⊳ e2 such that ⟨S1 ⊳ e1
T

⟹ S2 ⊳ e2⟩l.

Proof. We suppose that each reduction by the relation (
T

⟹) has N reductions, where
N is a finite number of steps ( T

→i). Starting from a valid state S1 ⊳ e1 and a well-typed

expression e1, we proceed by induction on the maximum number of reductions (i.e. N). By
hypothesis and by Lemma 4.9, we establish that we can take one step with e1. According
to Lemma 4.9, if e1 is a value, this implies that N = 0, and thus, the R-ThreadTerm applies.
On the other hand, N⩾1, we have two cases, S1 ⊳ e1

T
−→1∣0 S

′
1 ⊳ e

′
1 denotes a reduction

by 1 or 0 for some S ′1 ⊳ e
′
1 and T . In the first case (→1) the R-ThreadCoop applies. In

the second case (→0), by applying Lemma 4.10, we can conclude that S ′1 ⊳ e
′
1 remains

valid, e′1 remains well-typed, and hence we are able to take a step with e′1. Consequently,
by applying the induction hypothesis on the maximum number of steps (reduction) from
S
′
1 ⊳ e

′
1 (i.e. N-1), we can proceed with the R-Thread rule. Finally, note that regardless

of the considered configuration, only one semantic rule will be applied at most. In other
words, the operational semantics of our language is deterministic. □

Lemma 4.10 guarantees that when a thread takes a step, it preserves the validity of the
global state, its expression remains well-typed and it satisfies the notion of safe abstrac-
tion. In addition, these properties are preserved for other threads. With Lemma 4.15, we
demonstrate the same results for maximal thread executions as follows:

Lemma 4.15 (Slice Preservation) Let T1 = {ti, {ei}li ∣ 1 ⩽ i ⩽ N}, S1, σ such that

T1, S1 is a valid global state and for all i ∈ {1, ..., N}, we have S1 ⊳ ei ⊢ σ, S1∣li ∼ Γ
i
1 and

Γ
i
1 ⊢ ⟨ei ∶ τi⟩liσ ⊣ Γ

i
2 for some Γ

i
1,Γ

i
2 and τi. Let i ∈ {1, ..., N}, T and S2 ⊳ e

′
i such that

⟨S1 ⊳ ei
T

⟹ S2 ⊳ e
′
i⟩li then, there are Γ′ and σ′ such that T1\t ∪ (t, {e′i}li)∪ T, S2 remains

valid, Γ
′
⊢ ⟨e′i ∶ τi⟩liσ′ ⊣ Γ

i
2, S2 ⊳ e

′
i ⊢ σ

′
, S2∣li ∼ Γ

′
and for all j ∈ {1, ..., i−1, i+1, .., N},

we have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S2 ⊳ ej ⊢ σ

′
and S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T , we

have Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2 and S2 ⊳ e ⊢ σ
′
and S2∣l ∼ Γ1 for some Γ1,Γ2 and τ .

Proof. We suppose that each reduction by the relation (
T

⟹) has N reductions, where
N is a finite number of steps ( T

→i). Starting from a valid state S1 ⊳ e1 and a well-typed

expression e1, we proceed by induction on the maximum number of reductions (i.e. N).
By hypothesis and by Lemma 4.10, which relies on the sub-lemmas 4.11, 4.12 and 4.13, we
can deduce that after one step of reduction from ei to e

′
i, there are Γ

′ and σ′ such that
T1\t ∪ (t, {e′i}li) ∪ T, S2 remains valid and Γ

′
⊢ ⟨e′i ∶ τi⟩liσ′ ⊣ Γ

i
2 and S2 ⊳ e

′
i ⊢ σ

′ and
S2∣li ∼ Γ

′ and for all j ∈ {1, ..., i − 1, i + 1, .., N}, we have Γ
j
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and

S2 ⊳ ej ⊢ σ
′ and S2∣lj ∼ Γ

j
1 and for all (t, {e}l) ∈ T , we have Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2 and

S2 ⊳ e ⊢ σ
′ and S2∣l ∼ Γ1 for some Γ1,Γ2 and τ . Thus, by induction hypothesis on the

maximum number of steps (reduction) from S2 ⊳ e
′
i (i.e. N-1), we can achieve the desired

result. □
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Figure 4.8: Instant Preservation

2.4.6 Progress and Preservation Instant

Based on Figure 4.6, we can derive Figure 4.8, which illustrates that when all threads in a
program are well-typed, they can be executed more than once (

T
⟹). In this context, the

execution of a thread preserves the properties of the other threads, ensuring that the execu-
tion of one thread does not freeze the execution of the others. As a result, the execution of
a FR

FT
program can progress over multiple instants. The following lemma states that when

each thread in the set T1 undergoes multiple executions, the program takes an instant:

Lemma 4.16 (Instant Progress) Let T1 = {ti, {ei}li∣1 ⩽ i ⩽ N}, S1, σ such that T1, S1

be a valid global state and for all i ∈ {1, ..., N}, we have S1 ⊳ ei ⊢ σ, S1∣li ∼ Γ
i
1 and

Γ
i
1 ⊢ ⟨ei ∶ τi⟩liσ ⊣ Γ

i
2 for some Γ

i
1,Γ

i
2 and τi. Then, either T1, S1 is a terminal state or there

exists some T
′
1, S

′
1 such that T1, S1 ⟹ T

′
1, S

′
1.

Proof. Let N be the cardinality of T1 (i.e. T1 is a finite set of threads). We proceed by
induction on the cardinality of T1 (i.e. N). Then, if T1 is an empty set, where N=0, then
the R-InstantEnd applies. In other hands, where N⩾1, for a given (t, {e}l) ∈ T1 such that
e is well-typed, we apply Lemma 4.14 where we have ⟨S1 ⊳ e

T
⟹ S

′
1 ⊳ e

′⟩l for some e′.
Furthermore, we apply Lemma 4.15 where we have T ′1, S

′
1 remains valid, e′ remains well-

typed, S ′1 ⊳ e
′
⊢ σ

′ and S ′1∣l ∼ Γ
′ for some Γ′ and σ′. Moreover, for all j ∈ {1, ..., i − 1, i +

1, .., N}, we have Γj
1 ⊢ ⟨ej ∶ τj⟩

lj

σ′
⊣ Γ

j
2 and S

′
1 ⊳ ej ⊢ σ

′ and S ′1∣lj ∼ Γ
j
1. Therefore, by

induction hypothesis on the cardinality of (T1\t) (i.e. N-1), we proceed with R-Instant. □

Lemma 4.16 ensures that when all threads in T1 execute more than once, the program
takes an instant. The following lemma guarantees that when a program takes an instant,
all the threads that exist in the resulting set T ′1 remain well-typed such that the global state
also remains valid.
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Lemma 4.17 (Instant Preservation) Let T1 = {ti, {ei}li ∣ 1 ⩽ i ⩽ N}, S1, σ such that

T1, S1 be a valid global state and for all i ∈ {1, ..., N}, we have S1 ⊳ ei ⊢ σ, S1∣li ∼ Γ
i
1 and

Γ
i
1 ⊢ ⟨ei ∶ τi⟩liσ ⊣ Γ

i
2 for some Γ

i
1,Γ

i
2 and τi. If T1, S1 ⟹ T

′
1, S

′
1 for some T

′
1, S

′
1, then T

′
1, S

′
1

remains valid and there exists σ
′
such that for all j ∈ {1, ...,M}, where M is the cardinality

of T
′
1, we have S

′
1 ⊳ e

′
j ⊢ σ

′
, S

′
1∣lj ∼ Γ

j
and Γ

j
⊢ ⟨e′j ∶ τj⟩

lj

σ′
⊣ Γ

j
2 for some Γ

j
, Γ

j
2, e

′
j and

τj .

Proof. Let N be the cardinality of T1 (i.e. T1 is a finite set of threads). We proceed by
induction on the cardinality of T1 (i.e. N). Then, by hypothesis and by applying lemma
4.15, we know that, for some i ∈ {1, ..., N}, the maximal execution for a given thread
(t, {ei}li) ∈ T1 produces e

′
i and preserves the following: T

′
1, S

′
1 remains valid, S ′1 ⊳ e

′
i ⊢ σ

′,
S
′
1∣li ∼ Γ

i and Γ
i
⊢ ⟨e′i ∶ τi⟩liσ′ ⊣ Γ

j
2 for some Γi

, Γ
i
2, e

′
i and τi and also for all (t, {e}l)

∈ T
′
1\t, we have Γ1 ⊢ ⟨e ∶ τ⟩lσ′ ⊣ Γ2 and S

′
1 ⊳ e ⊢ σ

′ and S ′1∣l ∼ Γ for some Γ1,Γ2 and τ .
Thus, by induction hypothesis on the cardinality of (T1\t) (i.e. N-1), we reach the required
result.
□

2.5 The Type, Borrow, and Concurrency Safety Theorem

Finally, we present the type, borrow and concurrency safety theorem, which establishes that
a well-typed synchronous reactive program is guaranteed to execute zero or more instants
or achieve a terminal state, which implies that for all (t, {e}l) ∈ T1, e is a value. Note that,
S∅ and σ∅ denote an empty program store and an empty store typing respectively.

Theorem 4.18 (Type, Borrow and Concurrency Safety) Let e be an expression and let Γ

be a well-formed typing environment with respect to a lifetime l such that∅ ⊢ ⟨e ∶ τ⟩lσ∅ ⊣ Γ

for some τ . If (t, {e}l), S∅ ⟹
∗
T, S for some T, S then, either T, S is a terminal state or

there exists some T
′
, S

′
such that T, S ⟹ T

′
, S

′
.

Proof. The proof of this theorem is given by Lemmas 4.17 and 4.16 as follows: by applying
Lemma 4.17 we have T, S remains valid and there exists σ′ such that for all j ∈ {1, ...,M},
where T = {tj, {ej}lj ∣ 1 ⩽ j ⩽ M}, we have S ⊳ ej ⊢ σ

′, S∣lj ∼ Γ
j and Γ

j
⊢ ⟨ej ∶

τj⟩
lj

σ′
⊣ Γ

j
2 for some Γj

, Γ
j
2 and τj . Afterwards, by applying Lemma 4.16 we have either

T, S is a terminal state or there exists some T ′, S ′ such that T, S ⟹ T
′
, S

′. □
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We’re here to put a dent in the universe.

Otherwise why else even be here?

– Steve Jobs

In this chapter, we enhance FR
FT
by incorporating new reactive and non-reactive exten-

sions. Specifically, these extensions encompass a control flow and function calls outside the
spawn expression, necessitating the inclusion of effects in our type system. Furthermore,
we introduce the pivotal concept of signals in MSSL. These signals are efficiently managed
in memory through a reference counting mechanism, enabling effective memory handling
and manipulation. Lastly, we provide comprehensive semantic and typing rules for each of
these extensions.

Dans ce chapitre, nous améliorons FR
FT

en incorporant de nouvelles extensions réactives

et non réactives. Plus précisément, ces extensions incluent les flots de contrôle et des appels

de fonctions en dehors de l’expression spawn, ce qui nécessite l’inclusion des effets dans notre

système de types. De plus, nous introduisons le concept essentiel de signaux dans MSSL. Ces

signaux sont gérés efficacement en mémoire grâce à un mécanisme de comptage de références,

permettant une manipulation et une gestion efficaces de la mémoire. Enfin, nous fournissons

des règles sémantiques et de typage détaillées pour chacune de ces extensions
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Values v ∶∶= ϵ0 ∣ ϵ1 ∣ n ∣ true ∣ false ∣ ℓ▪a ∣ ℓ⬩a ∣ ℓ⋄a ∣ ℓ◦a ∣ ℓ◦m∶∶x ∣ ℓsa
Partial Values v

⊥ ∶∶= v ∣ ⊥
Types τ ∶∶= ϵ ∣ int ∣ bool ∣ &mut ω ∣ & ω ∣ ⋄ω ∣ ⬩τ ∣ ▪τ
Partial Types τ̃ ∶∶= τ ∣ ▪τ̃ ∣ ⌊τ̃⌋
LVals ω ∶∶= x ∣ ∗ω
Expressions e ∶∶= v ∣ ω ∣ ω̂ ∣ e ∣ {e}l ∣ let mut x = e ∣ box(e) ∣ &[mut] ω ∣ ω = e

∣ trc(e) ∣ ω.clone ∣ e1 ⊕ e2 ∣ e1 ⊗ e2 ∣ if(e) {e1}n else {e2}m
∣ f(e; s) ∣ spawn(f(e; s)) ∣ cooperate ∣ Sig s
∣ emit(s) ∣ when(s) {e1}m ∣ watch(s) {e1}m

Functions f ∶∶= fn f(mut x ∶ S; s) →κ S{e}l
Signatures S ∶∶= ϵ ∣ int ∣ bool ∣ ▪S ∣ ⬩S ∣ ⋄S ∣ &′l mut S ∣ &′l S
Programs p ∶∶= f p ∣ {e}l

Figure 5.1: Full MSSL syntax

1 Extensions of MSSL

MSSL, as a language, focuses on the development of a robust type system and provides
borrowing safety, ensuring reliable data sharing between threads. Furthermore, MSSL in-
troduces reactivity to Rust by providing reactive constructs and enabling thread synchro-
nization. As mentioned earlier, FR

FT
serves as the cooperative kernel of MSSL, utilising

a type system based on Rust’s ownership and borrowing model, following FR’s semantic
approach [73]. However, FR

FT
lacks signal synchronization operations. This chapter in-

troduces MSSL as a full language, incorporating the following extensions to FR
FT
: (1) the

if/else extension, (2) the function calls outside the spawn expression, including the life-
time annotation for references (section 1.5.5) and (3) a complete cooperative extension that
includes signals and distinguishes between cycle and instant (section 1.6). Henceforth, we
will refer to the language as MSSL instead of FR

FT
in the rest of this chapter.

1.1 Full Syntax of MSSL

The addition of the new extensions entails making certain adjustments to the semantics
of the FR

FT
model and its type system. Initially, we outline the complete syntax of MSSL,

incorporating the new constructs. As depicted in Figure 5.1 and compared to Figure 3.5,
we introduce the necessary syntactic extensions to support the following: (1) the if/else
extension, (2) function calls, (3) signal creation and emission, (4) implicit cooperation (i.e.
waiting for a signal), and (5) theweak watching preemption primitive (i.e. the watch expres-
sion). The modifications are implemented as follows:

Values. We introduce two forms for the ϵ values: ϵ1 and ϵ0. To differentiate, a ϵ1 value
is produced by the cooperate expression. Otherwise, ϵ0 is produced by an expression that
finishes (e.g. {let mut x = 1}l ). Regardingmemory locations, Figure 5.1 now distinguishes
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six forms, with the previous five remaining unchanged, and a new one is added: the value
ℓ
s
a, representing an owning reference that denotes the location of a specific signal resulting
from the reduction of a Sig s expression. As far as types are concerned, no new ones are
added.

Expressions. We add six new expressions to MSSL, including reactive expressions such
as: (1) Sig s creates a new signal and binds it to the identifier s. Note that s represents
the signal name, distinct from variables in MSSL’s semantics. (2) emit(s) emits the signal
specified by the parameter s. (3) when(s) {e1}m, for a given signal s, if it is emitted, the
block {e1}m is executed; otherwise, the current thread will cooperate until the next cycle.
And (4) watch(s) {e1}m executes the block {e1}m without checking if the signal s (specified
as a parameter) is present. If the watch’s body did not terminate, it will wait until the end
of the current instant to verify if s has been emitted during the instant. If s is emitted, it
invokes function 5.7 (explained later), which terminates the non-terminating body imme-
diately, and the corresponding thread regains control in the next instant. In addition, we
introduce two non-reactive expressions: (5) if(e) {e1}n else {e2}m represents a control
flow expression and (6) the invoked function f(e; s) that takes two sequences as parame-
ters: v (the sequence of values denoted by e) and s (the sequence of signals, if any). When
the function is invoked, we increment the counter for each signal in s, and we decrement
it when the function finishes its execution. Similarly, the expression spawn now assumes
a sequence of signals. When spawn is executed, we increment the counter for each signal,
and when the function’s execution is complete, we decrement the counters.

Functions and Signatures. Allowing the function to be invoked outside the spawn
expression imposes more effort. In such cases, we can have a return type, and the func-
tion can have parameters of type reference or an inactive Trc. To ensure the validity of
references after the function is invoked, we introduce the lifetime annotation syntax for
references (similar to Rust). This annotation becomes a part of the signature of a reference
(e.g., &′a [mut]S). On top of that, in MSSL, we introduce forms of signatures that are dif-
ferent from types. For example, ⋄S and &

′
a [mut]S are signatures but not types according

to the syntax. In order to ensure memory safety when data sharing between threads is al-
lowed, we associate an effect κ with each function declaration. The effect κ is defined as
a Boolean: 0 indicates that this function does not contain cooperate or when expressions
and 1 indicates that the function body can have at least one reactive construct (cooperate
or when) (e.g. as Throw Exception for Java). Having a type system with effect κ is essen-
tial to avoid scenarios where one thread calls a function and cooperates before the function
terminates, while another thread takes control and creates unsuitable values in the mem-
ory of the former one. Therefore, the function signature provides information at typing
time about whether the function contains a reactive construct or not, allowing us to handle
references to shared data appropriately when the function is called.

1.2 Operational Semantics

To ensure the proper creation and transmission of signals, we need to include essential
information in our semantics. As a result, we introduce a new form of states, denoted as
ψ, S ⊳ e where ψ is a signal environment in MSSL. Note that in MSSL, there is a single
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heap represented in S; however, for the simplicity of semantics, we have specifically spec-
ified ψ to serve as an environment dedicated to signals. This signal environment maps
locations to signal values, and S is a program store that maps locations to partial values
⟨v⊥⟩l. Hence, we supplement the small-step semantics with a signal environment, ψ, such
that all reduction rules take the form: ⟨ψ, S ⊳ e

T
−→i ψ

′
, S

′
⊳ e

′⟩l. For instance, the rule
⟨ψ∅, S∅ ⊳ {Sig s}l →0 {ℓa ↦ ⟨0⟩1}, {ℓ l∶∶s ↦ ⟨ℓsa⟩l} ⊳ ϵ0⟩l illustrates simple reduction
rule to create a signal s. In this case, the signal s is associated with a location ℓl∶∶s in S, allo-
cated with the lifetime l, and its value is 0, as indicated in the signal environment ψ (which
is absent by default). The expression ϵ0 immediately terminates, indicating that the signal
creation is complete. According to the semantics, ℓa is a heap-allocated location stored in
ψ with the counter initialized to 1. Finally, we implicitly assume that all existing MSSL
reduction rules are extended to the said form in an obvious way or instance, the R-Copy

rule is updated as follows:

read(S, ω, l) = ⟨v⟩m
⟨ψ, S ⊳ ω̂ →0 ψ, S ⊳ v⟩l (R-Copy) (R-Copy)

Thread. Next, for the execution of a thread by the scheduler, we employ the updated
reduction rule: ⟨ψ, S ⊳ e

T0
⟹ ψ

′
, S

′
⊳ e

′⟩l. Moreover, we assume that at the beginning of
each instant, all threads are gathered in a set T . As a thread executes, it is removed from T .
When all threads from T have been executed, it marks the completion of the current cycle.
This concept can be expressed as follows: T, ψ, S ⇛ T

′
, ψ

′
, S

′.

Instant. Lastly, a complete instant is defined as a sequence of cycles in which all threads
execute at their maximum during the current instant. It can be represented as follows:
T, ψ, S ⤇ T

′
, ψ

′
, S

′.

1.3 Preliminaries

Before introducing the new extensions, we conduct a review of the functions defined in
chapter 3 to make the required modifications as follows:

In order to enable the invocation of a function outside of the spawn expression in MSSL,
we need to make adjustments to the loc function (defined in chapter 3). This modification
becomes essential to identify the locations associated with such functions, as elaborated in
detail in Section 1.5.5.

Definition 5.1 (Expanded Location) Let S be a program store, ω an lval and l a life-

time. The partial function loc(S, ω, l) returns the location related to ω in S. Then, we define

loc(S, ω, l) as follows:

loc(S, x, l) = ℓm∶∶x where S(ℓm∶∶x) = ⟨.⟩m and ¬∃n.(m ⪰ n ∧ S(ℓn∶∶x) = ⟨.⟩n) ∧ m ⪰ l

...
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According to this Definition, the condition ¬∃n.(m ⪰ n ∧ S(ℓn∶∶x) = ⟨.⟩n) ensures the cor-
rect retrieval of variable locations within S when a function is invoked. Specifically, the
last location associated with the variable requested as an argument is returned.

Furthermore, as depicted in Section 1.1, MSSL is specialized in handling signals as well.
In other words, signals are considered as a reference counting similar to Trc. Therefore, to
accommodate signal management, we extend the drop function in Definition 3.4 to include
the capability of dropping signals when required, as demonstrated below:

Definition 5.2 (Expanded Drop) Let S be a program store and let m be a lifetime. The

drop(S, m) function is used to deallocate values with the lifetime m. Then, drop(S, m) relies on
drop(£, ρ), where £ can refer to either S or ψ, and ρ represents a drop set as follows:

drop(S,∅) = S

drop(S, ρ ∪ {v⊥}) = drop(S, ρ) where (v⊥ ≠ ℓ
▪
a ∧ v

⊥
≠ ℓ

⬩
a ∧ v

⊥
≠ ℓ

⋄
a ∧v

⊥
≠ ℓ

s
a)

...

drop(ψ, ρ ∪ ℓsa) = { drop(ψ − {ℓa ↦ ⟨v⟩1}, ρ ∪ {v}) where ψ(ℓa) = ⟨v⟩1
drop(ψJℓa ↦ ⟨v⟩iK, ρ} where ψ(ℓa) = ⟨v⟩i+1

Similar to Trc, the dealloaction of slots allocated by a Sig expression depends on the
counter (i). As soon as the counter falls to 1, it is reliable to perform the deallocation.
Note that signals in MSSL adhere to the copy semantics, which will be explained in detail
later.

Finally, we will update our evaluation context to include the new extensions and ensure
that R-Sub is always applicable. The updated evaluation context is as follows:

Definition 5.3 (Evaluation Context) An evaluation context is an expression containing a

single occurrence of J.K (the hole) instead of a sub-expression. In other words, it is used to

describe where the next reduction step takes place in the program as follows:

E ∶∶= J.K ∣ ... ∣ if(E) {e1}n else {e2}m ∣ f(v, E, e; s) ∣ spawn(f(v, E, e; s))

We employ one single rule for E:

⟨ψ, S ⊳ e→i ψ
′
, S

′
⊳ e

′⟩l
⟨ψ, S ⊳ EJeK →i ψ

′, S ′ ⊳ EJe′K⟩l (R-Sub)

The purpose of this chapter is to provide three extensions to FR
FT
: (1) control flow, (2)

call functions outside the spawn expression, and (3) reactive constructs using the notion
of signals. These extensions are crucial for incorporating essential programming features
such as code reusability, modularity, and structured design through the use of functions.
Moreover, the inclusion of reactive constructs empowers MSSL with enhanced reactivity,
enabling threads to communicate through signals. In the subsequent Section, we detail the
semantics and typing of the if/else expression in MSSL.
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1.4 Control Flow Extension in MSSL

Control flow constitutes a fundamental aspect of programming languages, enabling devel-
opers to create sophisticated algorithms and intricate programs by regulating the sequence
of instructions. As a subset of Rust, MSSL facilitates the extension of control flow to enhance
program functionality. Generally, the operational semantics of this control flow extension
adhere to standard practices employed in various programming languages. However, the
primary challenge lies in the typing aspect, necessitating the merging of typing environ-
ments at the junction points of the control flow graph. To achieve this, we leverage the
Definitions of Type Join 4.11 and Environment Join 4.12 Definitions introduced in chapter
4.

1.4.1 Semantics of Control Flow in MSSL

The if expression consists of a block expression that is executed when the condition is
true. Additionally, it includes a second branch known as else, which is executed when the
condition evaluates to false, as depicted below:

⟨ψ, S ⊳ if (true) {e1}n else {e2}m →0 ψ, S ⊳ {e3}n⟩l
(R-IfTrue)

⟨ψ, S ⊳ if (false) {e1}n else {e2}m →0 ψ, S ⊳ {e3}m⟩l
(R-IfFalse)

Let’s consider the following example to illustrate the control flow in MSSL:

{let mutx = 0; let mut y = 1; {let mut a = &y; if (x == y) {a = &x}nelse{x = 1}r}m}l
(5.1)

This example written in MSSL using syntax 5.1 is satisfactory. However, after the execution
of the if/else expression, one can be curious about the type of a, which can be &x if
the if block is executed and &y otherwise. Nevertheless, during compile time, there is
no information available about the branch that will be executed at runtime. Hence, to
ensure all possibilities are covered, we need to consider the common case and combine
these two types, resulting in a new type &x, y. In the next Section, we will provide a
detailed explanation of the approach employed by MSSL to achieve this outcome. Once
again, let us take the same example and replace the immutable reference with a mutable
reference as follows:

{let mutx = 0; let mut y = 1; {let mut a = &mut y; if (x == y) {a = &mut x}nelse{}r}m}l
(5.2)

The following program is not valid in MSSL nor in Rust. As in Rust, MSSL successfully
protects the invariant ownership. In other words, in this example, y is borrowed as mutable
in the inner block. Therefore, when attempting to verify the equality in the if condition,
an error occurs because the contents of y cannot be read as long as a exists.
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1.4.2 Control Flow Typing in MSSL

As mentioned earlier, MSSL incorporates control flow extensions, including the if/else
expression. Due to the approximate nature of the type system in determining which branch
of the if/else expression will be executed, it becomes necessary to analyze both environ-
ments. To merge the environments of both the if branch and the else branch, we utilise
the Environment Join 4.12 Definition, specifically the union function. Finally, we introduce
the following T-IF rule to type the if/else expression:

Γ1 ⊢ ⟨e ∶ bool⟩lσ ⊣ Γ2 Γ2 ⊢ ⟨{e1}n ∶ τ1⟩lσ ⊣ Γ3 Γ2 ⊢ ⟨{e2}m ∶ τ2⟩lσ ⊣ Γ4

Γ1 ⊢ ⟨if(e) {e1}n else {e2}m ∶ union(τ1, τ2)⟩lσ ⊣ Γ3 ⊔ Γ4

(T-IF)

This rule mandates that the condition expression must have a type of bool beforehand.
Additionally, the type of the if/else expression is determined by the union of the types
of each branch. Similarly, the output typing environment is created by joining the typ-
ing environments of each branch, utilizing the notation Γ3 ⊔ Γ4 (refer back to Defini-
tion 4.12 for clarity). To illustrate this process, let us refer back to Example 5.1, when
we apply T-IF rule to type the if/else expression, we first type the if branch as follows:
Γ3 = [x ↦ ⟨int⟩l, y ↦ ⟨int⟩l, a ↦ ⟨& x⟩m]. Next, we type the else branch as fol-
lows: Γ4 = [x ↦ ⟨int⟩l, y ↦ ⟨int⟩l, a ↦ ⟨& y⟩m]. Then we join the type of these two
branches (i.e. blocks) using the union function. Finally, we join the environments of these
branches, which also results in Γ3 ⊔ Γ4 = [x ↦ ⟨int⟩l, y ↦ ⟨int⟩l, a ↦ ⟨& x, y⟩m].
Consequently, the resulting environment indicates that if we add other expressions after
the if/else expression, x and y are considered as immutable borrowed by a.

Let us consider Example 5.3, which is rejected by the MSSL type system:

{let mut x = trc(0); let mut y = x.clone; let mut z = trc(0);
if(cond){y = trc(1)}m else {y = z.clone}n}l (5.3)

Example 5.3 is rejected by the MSSL type system. According to the T-IF rule, when typing
the if/else expression, we merge the types of the two branches. However, the union

function (defined in 4.11 in Chapter 4), does not allow y to be both inactive and active at
the same time. Now, let us examine Example 5.4:

{let mut x = trc(0); let mut y = x.clone; let mut z = trc(1); let mut a = trc(2);
if(cond){y = z.clone}m else {y = a.clone}n}l

(5.4)
Example 5.4 is accepted by the MSSL type system. According to the T-IF rule, when typing
the if/else expression, we join the types of the two branches. In the first branch, the
type of y is ⋄z and in the second branch, it is ⋄a. Applying the union function, we have
union(⋄z,⋄a) = ⋄z, a.

1.5 Function Extension in MSSL

Within this Section, we will elaborate on the semantics of the function call both inside and
outside the spawn expression, providing a comprehensive explanation of its typing rules.
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1.5.1 Declaration of Functions in MSSL

In Section 2.6 (Chapter 3), we have gone through MSSL, namely on how it handles the
invocation function inside the spawn expression. The main idea is that the variables allo-
cated to each thread in the program store S are associated with their respective lifetime.
Furthermore, by considering the partial order of lifetimes, it is possible to determine the
location of the variables associated to each thread. In this Section, we expand on the in-
vocation function to include cases outside the spawn expression. Consequently, we need
to determine the locations of the variables allocated for each function call. The distinction
arises when invoking a function inside or outside the spawn expression. When a function
is invoked outside the spawn expression, there exists a partial order relationship between
the lifetime of the function’s block and the enclosing block where the function is called. On
the other hand, when a function is invoked inside the spawn expression, as previously ex-
plained, there is no relation between the lifetime of the function’s block and the enclosing
block where the spawn expression is called.

Moving forward, let us examine how MSSL handles the program store S in order to
add the invocation function outside the spawn expression. Like FR, FR

FT
does not support

variable shadowing, where a variable can only be instantiated once in a program. MSSL
achieves this extension by utilizing the concept of block lifetimes, allowing for the unique
identification of variables declared within each block, where each block represents a stack
frame. To provide further clarity, let us consider the following example:

ψ∅, S∅ ⊳ {let mut x = 0; {let mut x = 1; {let mut x = 2; let mut y = x}r}n}m (5.5)

After executing Example 5.5 and progressing through several additional steps, the re-
sulting state is as follows:

ψ∅, {ℓm∶∶x ↦ ⟨0⟩m, ℓn∶∶x ↦ ⟨1⟩n, ℓr∶∶x ↦ ⟨2⟩r} ⊳ {{{let mut y = x}r}n}m (5.6)
Within the program store S, three locations are assigned to the variable x, each with a dif-
ferent lifetime. Consequently, when encountering the last expression that requires reading
the content of x, the question arises: which x should be considered? To address this con-
cern, MSSL makes use of the nesting of lifetimes and adopts a strategy of examining the
shortest lifetime. The approach begins by searching for a variable x with the lifetime r. If
the location of x is not found within the block of lifetime r, it looks for the lifetime that
strictly encloses it (ℓn∶∶x) and so on. This approach is developed in Definition 5.1.

Thence, applying the aforementioned approach, the function body will be integrated in
a block in MSSL as long as {f(x; s1); }l is equivalent to {{e}m}l where {e}m is the body
of f and l is the lifetime of the enclosing block. However, this approach raises concerns
when we deal with recursive cases. For instance {{{...}m}m}l is inconsistent and contradicts
with the idea presented above. To mitigate the problem, the solution is simply to substitute
the lifetimes with lifetimes during integration. In other words, we substitute m by a new
lifetime n while respecting the partial order relation such as l ≽ n.

We revise the declaration context, D, introduced in Chapter 3 as follows: D[f ↦κ

λ(x; s){e}m].
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The function invocation reduction rule is depicted below using the R-Invoke rule:

D(f) = λ(x; s){e}m Θ(l ⇒ {e}m) = {e}n ⟨ℓsa⟩r = read(S1, s, l)
S2 = S1[ℓn∶∶x ↦ ⟨v⟩n, ℓn∶∶s ↦ ⟨ℓsa⟩n] ψ2 = ψ1[ℓa ↦ ⟨v⟩i+1]

⟨ψ1, S1 ⊳ f(v; s) →0 ψ2, S2 ⊳ {e}n⟩l (R-Invoke)

The R-Invoke rule retrieves the declaration of the function invoked fromD using its unique
name. At this point, we introduce the (Θ(l ⇒ e) = {e}n) function which is responsible
for instantiating the lifetime of an expression e. It simultaneously instantiates all lifetimes
of e to fresh lifetimes included in l (e.g. l ≽ n). The following is a simple example demon-
strating the declaration of the function in MSSL using the syntax 5.1:

fn foo(mut x ∶ &′a mut int, mut y ∶ ⬩int) →0 ⬩int{*x = 1; {let mut a = y.clone}m; y}n
{let mut x = 0; let mut y = trc(0); y = foo(&mut x, y)}l

(5.7)
Example 5.7 is accepted by the MSSL type system. The (→0) informs the type system
that the function foo does not contain reactive constructs such as cooperate or when
(see Section 1.5.2). Furthermore, when the function foo is invoked, it is represented by
{ {*y = *x; {let mut a = y.clone}k y}r }l where r is the lifetime instantiated using the
Θ function where l ≽ r. Additionally, for each block in the body of foo, a lifetime is
instantiated within r (i.e. r ≽ k).

1.5.2 Typing Functions in MSSL

In this Section, we explore how the type system types the function calls outside the spawn
expression. To achieve this, we rely on a type system with effects [87]. The significance of
introducing the notion of effect is to safeguard shared data between threads at cooperation
time. To elaborate, let us consider the same example depicted in Figure 4.1 with some mod-
ifications, as illustrated in Figure 5.2. We suppose that one thread executes the createVec
function, and another thread executes the modifyVec function. Obviously, the createVec
function calls a second function createTh. Within the body of createTh, we create a new
thread (which will execute the modifyVec function), and then the current thread explicitly
cooperates using the cooperate expression. A similar error, as seen in Figure 4.1, occurs.
However, in this example, the error arises implicitly through the createTh function due to
the κ effect.

We introduce a slight modification to our typing judgments before jumping into func-
tion typing in more detail. In MSSL, signals are distinct from standard variables; they are
special variables that cannot be treated as expressions. Additionally, their access is re-
stricted to their creation and emission. Furthermore, we extend the typing rules with a
declaration context of signals, denoted as L , such that all rules have the following form:
L1,Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ L2,Γ2. The set of signals L contains the signals declared during
execution. Moreover, we assume that all existing MSSL typing rules are extended to adhere
to this format in a straightforward manner. For example:

Γ ⊢ ω ∶ ⟨τ⟩m copy(τ) ¬readProhibited(Γ, ω)
L ,Γ ⊢ ⟨ω̂ ∶ τ⟩lσ ⊣ L ,Γ

(T-Copy)
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fn createVec()→κ ϵ{

let mut x=trc(vec![1,2]); Γ = [x ↦ ⟨⬩vec⟨int⟩⟩l]
let mut a=&*x[1]; Γ = [x ↦ ⟨⬩vec⟨int⟩⟩l, a ↦ ⟨&*x[1]⟩l]
createTh(x.clone);Γ = [x ↦ ⟨⬩vec⟨int⟩⟩l, a ↦ ⟨&*x[1]⟩l]
print!(*a); }l

fn createTh(mut x:trc<vec<int> >)→κ ϵ{

// Thread
spawn(modifyVec(x.clone)); Γ = [...]
cooperate; Γ = [...]

}
m

fn modifyVec(mut y:trc<vec<int> >)→κ ϵ{ *y=vec![0]; }
n

Figure 5.2: MSSL’s Type and Effect System.

1.5.3 Effects of Functions in MSSL

We associate eachwell-typed function signature with an effect κ, which is defined as a pred-
icate taking values 0 or 1. Specifically, when κ is 0, it indicates that the body of the function
does not contain cooperative expressions like cooperate or when expressions. Conversely,
when κ is 1, it denotes that the function is cooperative, allowing threads to cooperate when
necessary to safeguard memory safety. Thus, we can deduce that if a function includes
cooperate or when expressions at least once in its body, its effect κ is inevitably 1. To
accommodate this aspect, we extend the effect as a flow of information in the typing rules,
explicitly incorporating it into the judgment as follows: L1,Γ1 ⊢κ ⟨e ∶ τ⟩lσ ⊣ L2,Γ2. For
instance, the example 5.8 is rejected by the MSSL type system, as shown below:

fn f1(mut x ∶ ⬩int) →0 ϵ0{*x = 1; cooperate}m
fn f2(mut x ∶ ⬩int) →0 ϵ0{. . . }n

{let mut x = trc(0); spawn(f1(x.clone)); spawn(f2(x.clone))}l
(5.8)

The MSSL type system rejects the aforementioned example immediately at the typing of
the body of the function f1. Specifically, the rejection occurs when typing the cooperate
expression, where κ is expected to be 1. However, the effect κ defined in the signature of
this function is 0, indicating that the block of f1 does not contain cooperative constructs.
Moreover, in Example 5.2, we need an effect κ for both the createVec and createTh func-
tions to be 1. When the function is invoked in createVec, our type system is aware that
the invoked function contains at least one cooperative construct due to its effect κ. Conse-
quently, this example will be rejected since x (shared data) is borrowed by a.
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1.5.4 Suitable Types for Functions in MSSL

There exists a crucial link between signatures and types in MSSL. For instance, as depicted
in Figure 5.1, the signature ⋄int is not considered a type in MSSL. Therefore, we require
a mechanism to establish a correspondence between the signature and the type when a
function is declared or invoked [73]. To address this, we use the following mechanism:
Γ1 ⊢ (S → S) ⟹ (τ → τ). The underlying concept behind this mechanism is to map
the signature S of the declared function to the typing environment. For example, if the
signature is ⋄S, then according to the MSSL syntax, the corresponding type must have the
form ⋄ω. Hence, this matching is achieved through the above mechanism in the following
manner: Γ ⊢ (⋄int) ⟹ (⋄γ), where Γ = {γ ↦ ⟨⬩int⟩l}. Here, γ serves as an
anonymous or fresh variable introduced by the mechanism into the typing environment
Γ as a suitable parameter. Similarly, the same principle applies to reference signatures,
for example: Γ ⊢ (&′l int) ⟹ (&γ), where Γ = {γ ↦ ⟨int⟩l}. To formalize this
interaction between signatures and types in MSSL, we introduce the following Definition:

Definition 5.4 (Suitable Types) Given an environment Γ and a signature S, we denote Γ ⊢

S ⇒ τ , which signifies the process of reducing the signature S of declarations into a suitable

type τ , potentially leading to an updated typing environment, based on the following rules:

Γ ⊢ int ⇒ int
Su-Int

Γ ⊢ bool ⇒ bool
Su-Bool

Γ ⊢ S ⇒ τ

Γ ⊢ ▪S ⇒ ▪τ
Su-Box

Γ ⊢ S ⇒ τ

Γ ⊢ ⬩S ⇒ ⬩τ
Su-AcTrc

γ ∈ fresh Γ ⊢ S ⇒ τ

Γ ⊔ {γ ↦ ⬩τ} ⊢ ⋄S ⇒ ⋄γ
Su-IncTrc

γ ∈ fresh Γ ⊢ S ⇒ τ

Γ ⊔ {γ ↦ ⟨τ⟩a} ⊢ &
′a[mut]S ⇒ &[mut]γ Su-Borrow

The signatures of an inactive Trc and a reference require the establishment of anonymous
variables, denoted as γ, into the typing environment to obtain a suitable type. Upon consid-
ering this Definition, it becomes apparent that the typing environment, Γ, supports both
concrete and abstract lifetimes. Abstract lifetimes correspond to lifetime variables (’a,
’b, etc.), whereas concrete lifetimes carry concrete information into the typing environ-
ment, representing well-defined regions in the context of the new version of Rust (denoted
as a set of loans). For example, in the Su-Borrow rule, the resulting typing environment con-
tains a new fresh variable γ with an abstract lifetime (Γ(γ) = ⟨τ⟩a). Hence, a well-defined
relationship exists between lifetimes: (1) lifetimes, whether abstract or concrete, outlives
itself (i.e. reflexivity). Therefore, (2) one abstract lifetime outlives another if there is a cor-
responding lifetime relation (i.e. transitivity). Moreover, (3) the abstract lifetime always
outlives a concrete lifetime. Finally, (4) a concrete lifetime l survives m if the former occurs
before the latter (e.g. the lifetime of the outer block outlives all the lifetimes of the inner
blocks).
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When typing a MSSL program, the type system considers and enforces several condi-
tions, starting with the function declaration. The requirements for the function declaration
(fn f(mut x ∶ S; s) →κ S{e}m) are as follows:

• We start with an empty typing environment and according to Definition 5.4, we apply
the premiseΓ ⊢ S ⇒ τ . This premise is responsible for reducing signatures in typing
environments, resulting in Γ. Here, Γ may potentially contain type variables, e.g.
γ. Since MSSL prohibits aliasing, this condition is ensured via Γ ⊢ S ⇒ τ , where
each anonymous location included in a signature corresponds to a unique anonymous
location in the typing environment. This uniqueness is necessary to guarantee the
soundness of the MSSL type system.

• Before typing the function’s body, it is necessary to declare the list of arguments in
Γ (i.e. Γ1 = Γ[x↦ τ]) and the list of signals in L (i.e. L1 = L ⊔ {s}, note that L
is initially empty).

• To guarantee a well-typed function, the type system compares whether the type of
the body is compatible with the type obtained by Γ1 ⊢ (S → S) ⟹ (τ → τ). In
the case of references and based on the subtyping relation (Figure 4.5), we need to
compare not only the types of the references but also their assigned lifetime.

To illustrate the typing of an MSSL program, let us consider Example 5.9:

fn f1(mut x ∶ &′a mut&′b int, mut y ∶ ⋄int) →0 ϵ0{...}l
{let mut x = trc(0); let mut a = 1; {let mut b = &a; f1(&mut b, x.clone)}n}m

(5.9)
We start by typing the declaration function f1. To achieve this, we apply the T-Function

rule, which utilizes the mechanism: Γ ⊢ (S → S) ⟹ (τ → τ), to create an appropriate
type. Thence, after mapping signatures to types using Definition 5.4, the resulting typing
environment Γ of f1 is as follows: Γ = [γ1 ↦ ⟨int⟩b, γ2 ↦ ⟨&γ1⟩a,
γ3 ↦ ⟨⬩int⟩l] corresponds to the result of themechanism: Γ1 ⊢ (&′a mut&′b int,⋄int →

ϵ0) ⟹ (&mutγ2,⋄γ3 → ϵ). With this information, we can safely proceed to type the body
of the function and continue accordingly.

1.5.5 Invocation of Functions in MSSL

In MSSL, as depicted in Figure 5.1, function calls can occur in two distinct cases: outside the
spawn expression, which is the standard execution of a function as seen in other languages,
and inside the spawn expression. Each case has different typing requirements. In this Sec-
tion, we present how the MSSL type system handles the typing of function invocations
outside spawn while ensuring strong typing.

Based on the approach outlined in Chapter 4, we adopt a mechanism for passing types
from typing environments to function signatures. Since functions can now return values,
we have slightly modified this mechanism to accommodate this feature. Furthermore, given
the two different ways of reducing a function call in MSSL (inside and outside of spawn)
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with different typing requirements, the type system needs to differentiate between the two
cases. To achieve this, we introduce the following notation: Γ1 ⊢ (S → S) ⟸b (τ →

τ) ⊣ Γ2. Here, the index b is a boolean, which can be either tt to indicate that the
function call is inside the spawn expression or ff otherwise. Moreover, in this mechanism,
we can spot the difference between Γ1 and Γ2. Actually, this difference comes from the
possible effects that the invocation of the function can produce during the execution. In
essence, the typing of function invocations involves both the typing of the arguments and
the mechanism that applies constraint resolution to enable the flow of information, such as
the subtyping relationship. We will now elaborate on the necessary semantic and typing
rules for function calls outside the spawn expression and discuss the relevant modifications
that impact function calls inside spawn.

Function Invocation Outside the Spawn Expression in MSSL

We introduce the typing rule for function invocations outside the spawn expression, taking
into consideration the presence of lifetime parameters in signatures, particularly for refer-
ences, and the suitable signature for the inactive Trc type. This process is governed by five
constraints, as indicated by Γ1 ⊢ (S → S) ⟸ff (τ → τ) ⊣ Γ2, which ensure that the
function call is safely typed while preserving the properties of the involved types. Let us
examine these constraints in detail:

1. Moving arguments that contain an active Trc within their type is allowed, unlike
in the case of a function call inside the spawn expression. However, it is essential
to consider the behavior of the function body. For instance, Example 5.10 illustrates
a scenario where the properties of the Trc type are not preserved after executing
function f2. Hence, it is crucial to avoid having both an inactive and an active Trc in
arguments that point to the same memory location.

2. Similar reasoning applies to inactive Trc’s. In the same example 5.10, replacing
f2(x, y)with f2(x.clone, y) results in two inactive Trc’s becoming active in the new
typing environment. Thus, it is necessary to prevent the existence of two inactive
Trc’s pointing to the same memory location.

3. Function arguments can be references, so it is essential to ensure that there is at
least one suitable binding signature for the arguments. For instance, Example 5.11
is rejected because the variable x in f2 has two different lifetimes, while f1 requires
them to have the same lifetime (i.e. the lifetime may not be long enough).

4. Functions inside the spawn expression do not have a return type, but in the case
of a function call outside the spawn expression, there might be a return type. This
makes typing the function call more challenging, as it requires additional constraints
to allow bidirectional flow of information between signatures and types. For exam-
ple, consider Example 5.12 where the function f1 returns an inactive Trc type. Our
mechanism rejects this example because there must be at least one parameter in the
function with the same signature as the return type. However, Example 5.13 is ac-
cepted by the MSSL type system because the return type can be at least the type of y,
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meaning the return type is a subtype of y. Thus, we can safely assume that the type
of z is ⋄y, indicating that y is cloned into the typing environment after executing f1.
For reference types, Example 5.17 demonstrates a scenario where function f1 returns
a reference type with lifetime ’b. Looking at the parameter types, the return type is
a subtype of x. Similarly, in Example 5.16, the return type is the union of types x and
y, with the minimum lifetime between them, as the return type is a subtype of both x

and y. This concept of minimum lifetime applies to both references and inactive Trc
types. Example 5.15 illustrates this concept.

5. The presence of a mutable reference in function parameters may lead to side effects.
We ensure that all possible side effects that may occur in the environment due to
the invocation are taken into account in the difference between Γ1 and Γ2. Exam-
ple 5.18 illustrates how a function invocation can lead to side effects in the typing
environment.

1.5.6 Examples of Functions in MSSL

For better understanding of the constraints imposed by the following mechanism : Γ1 ⊢

(S → S) ⟸ff (τ → τ) ⊣ Γ2, we consider some examples written in MSSL according to
Figure 5.1. These examples outline the five aforementioned constraints:

The uniqueness of Trc. A notable observation about the mechanism is its ability to
reinforce the uniqueness of Trc by preventing aliasing when calling the function.

fn f1(mut x ∶ ⬩int) →0 ϵ0{let mut y = x.clone; f2(x, y)}
fn f2(mut x ∶ ⬩int, mut y ∶ ⋄int) →0 ϵ0{spawn(f3(x.clone, y))}

fn f3(mut x ∶ ⬩int, mut y ∶ ⬩int) →0 ϵ0{ //additional code that uses x and y }
(5.10)

In Example 5.10, the function f2 is invoked within the body of the function f1. When the
function is called, the MSSL type system cannot predict the effect of f2 after its execution,
and it is not allowed to have two Trc’s (inactive or active) pointing to the same location.
In this case, the result of our mechanism is as follows: Γ1 ⊢ (⬩int,⋄int → ϵ0) ⟸̸ff

(⬩int,⋄ x → ϵ) ⊣ Γ1. The reason for rejecting this example is: after typing the argu-
ments, x will be moved (i.e. it has a partial type) and consequently our mechanism detects
that ⋄ x is ill-typed.

Incompatible binding. Amajor challenge for the observer, concerning themechanism,
is to find a binding that is compatible with the lifetimes, as follows:

fn f1(mut x ∶ &′c mut &
′
c int) →0 ϵ0{...}l

fn f2(mut x ∶ &′a mut &
′
b int) →0 ϵ0{f1(x)}m

(5.11)

The MSSL type system rejects this example due to the call of f1 inside f2. The function f1
requires that the lifetime of x to be the same, but in f2 the lifetime of x is different. How-
ever, the challenge is that the type system does not know whether ’a is longer than ’b (i.e.
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it must be ’a: ’b). As a result, there is no appropriate lifetime to use. Hence, we obtain a
constraint of type as follows: Γ1 ⊢ (&′c mut &

′
c int → ϵ0) ⟸̸ff (& mutγ2 → ϵ) ⊣ Γ1

where γ2 is an anonymous variable created when the declaration function is typed.

Protective returns. Another important observation about the mechanism is its role in
determining a well-typed return. Consider the following example to illustrate its signifi-
cance:

fn f1(mut x ∶ ⬩int) →0 ⋄int{...}l
{let mut x = trc(0); let mut z = f1(x)}m

(5.12)

Example 5.12 is also rejected since, if the return type is an inactive Trc, we must have at
least one inactive Trc in the signature parameters, which is not the case. Thus, we obtain
the following constraints: Γ1 ⊢ (⬩int → ⋄int) ⟸̸ff (⬩int → ?) ⊣ Γ1.

Protective returns. Let us consider another observation regarding the mechanism for
finding a well-typed return. The following example illustrates this point:

fn f1(mut x ∶ ⬩int, mut y ∶ ⋄int) →0 ⋄int{...}l
{let mut x = trc(0); let mut y = trc(0); let mut z = f1(x, y.clone)}m

(5.13)

In contrast to Example 5.12, Example 5.13 is accepted by the MSSL type system. The result
of the mechanism is the following: Γ1 ⊢ (⬩int,⋄int → ⋄int) ⟸ff (⬩int,⋄y →

⋄y) ⊣ Γ1.

Protective returns. A significant challenge in typing function invocations is effectively
managing side effects, particularly to ensure a well-typed return type. The example high-
lights the following considerations:

fn f1(mut x ∶ &′c mut ⬩ int) →0 ⋄int{...}l
{let mut x = trc(0); let mut y = f1(&mut x)}m

(5.14)

Similar to Example 5.12, the MSSL type system rejects Example 5.14. The current challenge,
regardless of the actual body given for the function f1, is that we can assume that f1 returns
"*x.clone", which would provide a copy of the reference of x with an abstract lifetime ′c.
Despite the Definition 4.5, our type system identifies that the lifetime of x is not within the
return type’s lifetime. Consequently, this leads to the following unreasonable constraint:
Γ1 ⊢ (&′c mut ⬩ int → ⋄int) ⟸̸ff (&mut x→ ⋄x) ⊣ Γ1. Note that we have the same
case even if the parameter signature is an immutable reference.

Let us examine another example to illustrate the process of computing a well-typed

return type:

fn f1(mut x ∶ ⋄int, mut y ∶ ⋄int) →0 ⋄int{...}l
{let mut x = trc(0); {let mut y = trc(0); let mut z = f1(x.clone, y.clone)}n}m

(5.15)
In Example 5.15, the type of z is determined by taking the union of the types ⋄x and ⋄y
(i.e. ⋄x, y).
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Protective lifetimes. Another noteworthy observation about our mechanism pertains
to the selection of not only a well-typed return type but also an appropriate lifetime, as
follows:

fn f1(mut x ∶ &′a int, mut y ∶ &′a int) →0 &
′
a int{...}l

{let mut x = 0; {let mut y = 0; let mut a = f1(&x,&y)}n}m
(5.16)

In Example 5.16, the function f1 requires that the parameters x and y have the same life-
time (’a). However, during the typing of f1 in the inner block, x and y have a different
lifetime (i.e. concrete lifetime). As previously elaborated, the abstract lifetime outlives
the concrete lifetime and therefore we obtain a satisfying constraint as follows: Γ1 ⊢

(&′a int,&
′
a int → &

′
a int) ⟸ff (&x,&y → &x, y) ⊣ Γ1 where, lifetime ’a is

related to the minimum lifetime, which is ’n’ here.

Protective lifetimes. Another notable observation regarding our mechanism is the
selection of an appropriate lifetime. Here’s a detailed explanation:

fn f1(mut x ∶ &′b int, mut y ∶ &′a int) →0 &
′
b int{...}l

{let mut x = 0; {let mut y = 0; let mut a = f1(&x,&y)}n}m
(5.17)

In Example 5.17, we have changed the lifetimes and therefore the function f1 requires the
parameters to have different lifetimes. The chosen lifetime is explicitly ’b which is related
to the lifetime of x.

Side effects. The final observation regarding the mechanism revolves around identi-
fying the potential side effects that a function call can generate. Here is an example to
illustrate this:

fn f1(mut x ∶ &′c mut ⬩ int, mut y ∶ &′c mut ⋄ int) →0 ϵ0{*y = *x.clone; }l
{let mut x = trc(0); let mut y = trc(0); let mut z = y.clone; f1(&mut x,&mut z); }m

(5.18)
The challenge here is that the type of z must be carefully updated from ⋄y to ⋄x, y (before
and after the invocation respectively). This occurs independently of the actual body given
for f1, since we must creatively assume that *y = *x.clone may occur (even if it does
not). This side effect is captured by the typing environment where Γ before the invocation
has the form: Γ = [x ↦ ⟨⬩int⟩m, y ↦ ⟨⬩int⟩m, z ↦ ⟨⋄y⟩m] and after the invocation,
Γ becomes as follows: Γ = [x ↦ ⟨⬩int⟩m, y ↦ ⟨⬩int⟩m, z ↦ ⟨⋄x, y⟩m]. Finally, we
obtain a satisfactory constraint: Γ1 ⊢ (&′c mut ⬩ int,&

′
c mut ⋄ int → ϵ0) ⟸ff

(&mut x,&mut z → ϵ) ⊣ Γ1[z ↦ ⟨⋄x, y⟩m].
After elucidating the constraints that must be satisfied when typing a function, we now

present the following typing rules for handling the function call. To address the invoked
function, we introduce two specific typing rules, outlined below:

D(f) = (S; s) →0 (S) L1,Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ L2,Γ2

s ∈ L1 Γ2 ⊢ (S → S) ⟸ff (τ → τ) ⊣ Γ3

L1,Γ1 ⊢0 ⟨ f(e; s) ∶ τ⟩lσ ⊣ L2,Γ3

(T-InvokeA)

D(f) = (S; s) →1 (S) safeTrc(Γ1) s ∈ L1

L1,Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ L2,Γ2 Γ2 ⊢ (S → S) ⟸ff (τ → τ) ⊣ Γ3

L1,Γ1 ⊢1 ⟨ f(e; s) ∶ τ⟩lσ ⊣ L2,Γ3

(T-InvokeB)
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One notable distinction between these rules pertains to the effect κ. As previously men-
tioned, when κ is 0, the body of the function does not contain cooperative constructs. This is
evident in the T-InvokeA rule, where no constraints are imposed on the shared data between
threads, allowing the current thread to safely execute the function. Conversely, when κ is
1, the invoked function is considered cooperative, indicating that its body contains at least
one cooperative construct. In this case, it is not evident that the current thread immediately
executes the function body, which could potentially lead to memory corruption by another
thread. To address this, we handle this case as cooperative expressions by verifying if any
shared data is being borrowed through the safeTrc function (Definition 4.5). Additionally,
in this case, the effect κ of the current function (i.e. the enclosing block) must be 1.

Subsequently, in both rules, we verify the existence of all the required signals (s ∈

L1) and type the expressions e provided as arguments via the Argument Typing func-
tion 4.16. Afterward, we need to perform the following step in our mechanism: Γ2 ⊢

(S → S) ⟸ff (τ → τ) ⊣ Γ3. This step must satisfy the aforementioned constraints.
We represent the most crucial aspects in the following manner: (1) for all i, we have
Γ2 ⊢ Si ∼ τi (Expanded Signature and Type Compatibility Definition 5.6), (2) for all τ1, τ2 ∈
τ if containsType(Γ, τ1,⋄ω) and containsType(Γ, τ2,⋄u) then ¬∃i,j.(ωi ⋈ uj). Finally, (3)
for all τ ∈ τ if containsType(Γ, τ1,⋄ω) then Γ ⊢ ω ∶ ⟨τ⟩l (This requirement is enforced by
the Argument Typing function 4.16).

Based on the Definition of the contains function 4.2 defined in Chapter 4, we introduce
the following:

Definition 5.5 (ContainsType) Let Γ be an environment and let τ, τ
′
be types. Then, the

containsType(Γ, τ, τ ′) function is responsible for recursively verifying whether τ contains τ
′

and is defined as follows:

containsType(Γ, τ, τ ′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

true if τ = τ
′

containsType(Γ, τ1, τ ′) if τ = ▪τ1 or τ = ⬩τ1 or
(τ = ⋄ω or τ = &[mut]ω s.t.

∀i(Γ(ωi) = τ1))
false otherwise

To ensure that a given invocation function, whether it is under a spawn expression or
not, iswell-typed, it is necessary to verify if the types of its arguments are in accordancewith
the signatures of its parameters. Therefore, we have introduced new rules to the Definition
4.15 as follows:

Definition 5.6 (Expanded Signature and Type Compatibility) For an environment Γ,

a signature S and a type τ are said to be compatible, denoted as Γ ⊢ S ∼ τ according to the
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following rules:

Γ ⊢ int ∼ int
C-Int

Γ ⊢ bool ∼ bool
C-Bool

Γ ⊢ S ∼ τ

Γ ⊢ ▪S ∼ ▪τ
C-Box

Γ ⊢ S ∼ τ

Γ ⊢ ⬩S ∼ ⬩τ
C-Trc

∀i(Γ ⊢ S ∼ τ ∧ Γ(ωi) = ⬩τ)
Γ ⊢ ⬩S ∼ ⋄ω

C-Clone

∀i(Γ ⊢ S ∼ τ ∧ Γ(ωi) = τ)
Γ ⊢ &

′a[mut] S ∼ &[mut] ω C-Borrow

Expanded Function Invocation within the Spawn Expression

In the preceding Section, we covered the function call outside the spawn expression. Now,
let us go through into the modifications required for the semantics and typing of the spawn
expression, as outlined in chapter 4. The R-Spawn rule is updated with the following ad-
justments when a sequence of signals is included in the function call arguments:

t ∈ fresh D(f) = λ(x; s){e}m Θ(* ⇒ {e}m) = {e}n (S ′, v′) = activate(S1, v)
⟨ℓsa⟩r = read(S ′, s, l) S2 = S

′[ℓn∶∶x ↦ ⟨v⟩n, ℓn∶∶s ↦ ⟨ℓsa⟩n] ψ2 = ψ1[ℓa ↦ ⟨v⟩i+1]

⟨ψ1, S1 ⊳ spawn(f(v; s)) {(t,{e}n)}
−−−−−−→0 ψ2, S2 ⊳ ϵ⟩l

(R-Spawn)

The R-Spawn rule introduces several additional premises. Notably, since the invoked func-
tion now anticipates a sequence of signals s, the rule obtains the location of each signal
given as a parameter. Subsequently, it increments the respective counter in the signal en-
vironment ψ1.

In Section 1.5.5, we have made some modifications to the mechanism as follows: Γ1 ⊢

(S → S) ⟸b (τ → τ) ⊣ Γ2. These changes also impact the typing of the function inside
the spawn expression, as discussed in Chapter 4 (Section 1.5.2). Similar to the previous case,
the typing of the function call is limited to typing the arguments and verifying the restric-
tions imposed by our mechanism: Γ ⊢ (S → S) ⟸tt (τ → τ). In the case of a function
call within the spawn expression, there are no side effects, so we have removed Γ2 from the
mechanism. Additionally, the value of b is set to tt to inform our type system that we are
inside the spawn. When compared to the scenario where the function is called outside the
spawn expression, we encounter some distinct limitations (e.g. the prohibition of having
references in the arguments). However, these restrictions align with those mentioned in
Chapter 4 (Section 1.5.2). As a result, we present the T-Spawn typing rule below to handle
this new form of function call:

D(f) = (S; s) →κ′ (ϵ) L1,Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ L2,Γ2

s ∈ L1 Γ2 ⊢ (S→ ϵ) ⟸tt (τ→ ϵ)
L1,Γ1 ⊢κ ⟨spawn(f(e; s)) ∶ ϵ⟩lσ ⊣ L2,Γ2

(T-Spawn)

Since the current thread retains control during the execution of the spawn expression, there
is no need to check the effect κ. Furthermore, as mentioned earlier, the restrictions imposed
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by the following mechanism Γ2 ⊢ (S → ϵ) ⟸tt (τ → ϵ) to ensure the typing safety
of the spawn expression align with those in Chapter 4. However, considering the form of
signatures presented in Figure 5.1, a functionmay have arguments of reference or active Trc
types. Therefore, there is an additional requirement to enhance the mechanism to handle
both of these cases. Hereafter, we provide a new formal Definition of the mechanism as
follows:

1. for all τ1, τ2 ∈ τ if containsType(Γ, τ1,⋄ω) and containsType(Γ, τ2,⋄u) then,¬∃i,j.(ωi ⋈
uj).

2. for all τ ∈ τ , we have ¬containsType(Γ, τ,⬩τ ′) and ¬containsType(Γ, τ,&[mut]u)
for some τ ′.

3. After verifying the necessary constraints, the mechanism is capable of activating the
inactive Trc type in τ and ensuring compatibility between signatures and types as
follows: (1) τ ′ = activate(Γ, τ) (Definition 4.14 in Chapter 4) and (2) Γ2 ⊢ S ∼ τ ′

(Expanded Signature and Type Compatibility Definition 5.6).

In the following we present an example written in MSSL according to Figure 5.1, that
showcases the effectiveness of the mechanism:

fn f1(mut x ∶ ⬩int, mut y ∶ ▪ ⬩ int, mut z ∶ ⬩&′a int) →1 ϵ0{...}l
{let mut x = trc(0); let mut y = trc(0); let mut z = 1;

let mut a = box(y.clone); let mut b = trc(&z); spawn(f1(x.clone, a, b.clone))}m
(5.19)

Example 5.19 is rejected by the MSSL type system. When typing the function f1 inside
the spawn expression, the mechanism verifies the following constraints: constraint (1) is
valid otherwise constraint (2) is invalid since b.clone has the type (⋄ b), and b has the type
(⬩&z), which contains a reference to z. The presence of a reference in the parameters of f1
is unsafe because the type system is not aware of the lifetime of the newly created thread.
As a result, the mechanism detects an unsatisfied constraint, indicating that the example is
rejected.

1.6 Expanded Synchronous Cooperative ThreadingModel in MSSL

As previously mentioned, the third extension introduced to MSSL aims to enhance its reac-
tive capabilities, allowing threads to communicate through signals, namely, emit and await
signals. In this Section, we explore these new reactive constructs as outlined in Figure 5.1,
and provide a comprehensive explanation of their semantics and typing rules.

1.6.1 MSSL Cooperative Operational Semantics

Signals aremechanisms for synchronisation and communication between threads. In essence,
a thread utilises a signal when it needs to wait for a specific condition, which can avoid the
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risk of thread deadlock. In comparison to Pthreads in C, signals in MSSL are akin to con-
dition variables. As mentioned earlier, threads in MSSL are cooperatively executed by the
round-robin scheduler. When a thread emits a signal, it is broadcasted to all threads waiting
for that signal simultaneously with its emission. The following Sections elucidate how a
thread creates a signal, emits it, and awaits its occurrence. To begin, the creation of a signal
is illustrated by the R-Sig rule, as shown below:

ℓa ∉ dom(ψ1) ψ2 = ψ1[ℓa ↦ ⟨0⟩1] S2 = S1[ℓl∶∶s ↦ ⟨ℓsa⟩l]
⟨ψ1, S1 ⊳ Sig s→0 ψ2, S2 ⊳ ϵ0⟩l

(R-Sig)

The R-Sig rule is utilised to create a signal, denoted as s, which promptly terminates. Sub-
sequently, a fresh location ℓa is generated and stored in the ψ1 signal environment with
an initial value of 0. The handling of this signal depends on a counter (denoted as "i"),
initialised to 1 upon its creation. Each thread can obtain a copy of this signal by incre-
menting its counter by 1. In MSSL, memory management is performed without the need
for a garbage collector. Consequently, the deallocation of slots ℓa is carried out automati-
cally based on the counter (i). This deallocation is executed only when the counter is 1, as
prescribed by the drop function 5.2. When the counter is 1, it indicates that there is only
one reference to this location, ensuring safe deallocation. Finally, R-Sig updates the pro-
gram store S1 by creating a new signal named "s", associated with a value ℓsa and having a
lifetime of the enclosing block, l.

Every thread has the ability to obtain a copy of each signal. Signals, as a reference count-
ing type, implement copy semantics. However, unlike the explicit clone expression used
for the active Trc type, the signal copy is implicit. When a function is invoked, whether
within a spawn expression or not, the counter of each signal used as an argument in the
invoked function is automatically incremented by 1. In this context, we make use of the
R-Copy rule, which was introduced earlier in Chapter 3, to handle such situations:

read(S1, s, l) = ⟨ℓsa⟩m
⟨ψ1, S1 ⊳ s→0 ψ1, S1 ⊳ ℓsa⟩l

(R-Copy)

The R-Copy rule facilitates copying the value of the signal swithout causing any destructive
reading. To achieve this, we employ the function read 3.2 (Chapter 3), which allows us to
retrieve the value of the specified signal.

In MSSL, a cooperative thread can synchronize with other threads through the use of
signals. The following rule outlines how a thread in MSSL emits a signal:

read(S1, s, l) = ⟨ℓsa⟩m ψ2 = ψ1[ℓa ↦ ⟨1⟩i]
⟨ψ1, S1 ⊳ emit(s) →0 ψ2, S1 ⊳ ϵ0⟩l

(R-Emit)

The R-Emit rule facilitates the immediate emission of the specified signal, indicated by
the expression emit(s). This rule effectively changes the value of the signal from 0 to 1.
Subsequently, the scheduler takes charge of broadcasting the signal s to all threads that are
awaiting it. This broadcasting feature enhances modularity as there is no requirement to
keep track of which thread is waiting for a particular signal.
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Cooperation model

In accordance with chapter 3, MSSL supports two forms of cooperation points: (1) explicit
by using the cooperate expression and (2) implicit, threads wait for signals that are not
emitted at the same instant (where it can be emitted later). On top of that, a thread can
be suspended using the when and cooperate constructs. The purpose of introducing ϵ0
and ϵ1 values is to separate expressions that instantly terminate (e.g. assignment) from
expressions that do not instantaneously complete (i.e. cooperate). Specifically, to manage
the end of the instant in our semantics, it is imperative to identify the threads that have
cooperated to be unblocked in the subsequent instant. This information is captured using
ϵ1. A minor modification is made to the R-Cooperate reduction rule, as follows:

⟨ψ, S ⊳ cooperate →1 ψ, S ⊳ ϵ1⟩l
(R-Cooperate)

To facilitate waiting for a signal, a thread surrenders control to the scheduler. The execution
of the current thread is then put on hold until the specified signal is emitted in subsequent
cycles or instants. Once the signal is emitted by any other thread, the suspended thread
resumes its execution. To implement this functionality, we introduce three reduction rules
for awaiting signals, as follows:

- The R-WhenFalse rule denotes that for a given signal, it is absent if its value in the
signal environement ψ is "0":

read(S1, s, l) = ⟨ℓsa⟩m ψ1(ℓa) = ⟨0⟩i
⟨ψ1, S1 ⊳ when(s) {e1}m →1 ψ1, S1 ⊳ when(s) {e1}m⟩l

(R-WhenFalse)

The R-WhenFalse rule involves retrieving the value of the signal s from ψ1 by reading its
location from S1 using the read function. In this case, the value is "0". Subsequently, the
current thread cooperates at the next cooperation point, relinquishing control back to the
scheduler.

- On the other hand, the R-WhenTrue rule specifies that a given signal is present if it is
emitted by another thread during the current instant. In such a scenario, the current thread
continues its execution without any suspension:

read(S1, s, l) = ⟨ℓsa⟩m ψ1(ℓa) = ⟨1⟩i ⟨ψ1, S1 ⊳ {e1}m →i ψ2, S2 ⊳ {e2}m⟩l
⟨ψ1, S1 ⊳ when(s) {e1}m →i ψ2, S2 ⊳ when(s) {e2}m⟩l

(R-WhenTrue)

Similarly to the R-WhenFalse rule, the R-WhenTrue rule retrieves the value of the signal
s given as a parameter, which is "1" in this case. And contrary to the previous rule, the
current thread keeps executing the body of the when expression e1.

- Finally, the R-WhenTerm rule specifies that once the expression within the when con-
struct is completed, the execution of the when expression terminates immediately.

⟨ψ,S ⊳ when(s) {ϵi}m →i ψ,S ⊳ {ϵi}m⟩l
(R-WhenTerm)
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Since ϵ0 and ϵ1 are introduced in our semantics to distinguish the reduction of a cooperative
expression from other expressions. Thus, hereafter, we add a new sequence reduction rule
to the one defined in Chapter 3, as follows:

⟨ψ, S ⊳ ϵ1; e→1 ψ, S ⊳ ϵ1; e⟩l
(R-SeqCoop)

As the R-SeqCoop rule demonstrates, when a thread executes a cooperative expression, it
must remain blocked until the end of the instant.

Before diving into the semantics of the last reactive expression in MSSL, we first intro-
duce the function that is essential for modeling the principal of the weak watchdog state-
ment. The function is presented below:

Definition 5.7 (Inter-Instant) Let T = {ti, {ei}li∣1 ⩽ i ⩽ N} be a set of threads and let ψ
be a signal environment. The Kill function aims to reduce the watch expression and unblocks

cooperative threads between the end of the current instant and the beginning of the next instant.

Then, Kill(T, ψ) is defined as T ′ = {ti, {e′i}li∣1 ⩽ i ⩽ N} such that e
′
i = KillExp(ei, ψ):

KillExp(watch(ℓsa) e, ψ) = { ϵ0 if ψ(ℓsa) = ⟨1⟩i
watch(ℓsa) KillExp(e, ψ) if ψ(ℓsa) = ⟨0⟩i

KillExp(ϵ1; e, ψ) = ϵ0; e

(5.20)

Function 5.7 serves to terminate the body of the watch expression immediately if the speci-
fied signal is emitted, as it returns ϵ0. On the other hand, if the signal is not emitted, nothing
happens, and the thread continues to wait for the next instant. It is important to mention
that the second KillExp function is required to the threads that are waiting for the next
instant (those cooperating at the current instant). This allows these threads to resume their
execution for the subsequent instant.

In the following rule, R-Watch, it is indicated that during the current instant, the current
thread executes the watch body immediately. In other words, the execution of the watch
expression takes place in the inter-instant stage.

⟨ψ1, S1 ⊳ {e1}m →i ψ2, S2 ⊳ {e2}m⟩l
⟨ψ1, S1 ⊳ watch(s) {e1}m →i ψ2, S2 ⊳ watch(s) {e2}m⟩l

(R-Watch)

Consequently, as soon as the body of watch is completed, the execution of watch terminates
immediately as illustrated by the R-WatchTerm rule:

⟨ψ1, S1 ⊳ watch(s) {ϵi}m →i ψ1, S1 ⊳ {ϵi}m⟩l
(R-WatchTerm)

1.6.2 Expanded Thread Execution in MSSL

In Chapter 3 (Section 3.1), we have presented the reduction rules for the execution of a
thread in more than one step. In this Section, we focus on the modified general form of the
rule, while the context remains the same.
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- The following rule executes a thread more than once:

⟨ψ, S ⊳ e
T0
−→0 ψ

′′
, S

′′
⊳ e

′′⟩l ⟨ψ′′, S ′′ ⊳ e
′′ T1
⟹ ψ

′
, S

′
⊳ e

′⟩l

⟨ψ, S ⊳ e
T0∪T1
⟹ ψ′, S ′ ⊳ e′⟩l

(R-Thread)

- A thread can terminate its execution in three situations: (1) when it has completed
its entire execution, (2) when it has finished executing for the current instant (i.e., it is
explicitly cooperating), or (3) when it is waiting for a signal that is not emitted during the
current instant (i.e., it is implicitly cooperating). The following rule exemplifies the first
point:

⟨ψ, S ⊳ v
∅

⟹ ψ, S ⊳ v⟩l
(R-ThreadTerm)

- The following rule indicates that the current thread is suspended, meaning it is either
waiting for a signal that is not currently emitted or is cooperating:

⟨ψ, S ⊳ e
T0
−→1 ψ

′
, S

′
⊳ e

′⟩l

⟨ψ, S ⊳ e
T0
⟹ ψ′, S ′ ⊳ e′⟩l

(R-ThreadSuspend)

In Chapter 3, there was some confusion between the concepts of a round (cycle) and an
instant. However, with the introduction of signals, a clear distinction emerges between the
concepts of a cycle and an instant. In the following Section, we provide the semantic rules
for the execution of a cycle.

1.6.3 Cycles in MSSL

Using the concept of logical instants, the scheduler defines instants duringwhich all threads
execute until their next cooperation point. When a thread encounters a cooperate expres-
sion, it assumes control and waits until the next instant. Similarly, if a thread is waiting
for a signal that has not been emitted yet, it can be resumed when the signal is eventually
emitted by another thread. It is important to note that if a signal is emitted during an in-
stant, the current instant is not terminated, and the threads are re-executed in a new cycle
within the same instant.

As mentioned earlier, in MSSL, threads are executed cooperatively by a round-robin
scheduler. At the beginning of each round, all threads that are ready for execution belong
to the set T . During the round, each thread in T is executed for a maximum number of
steps and then removed from T (T ′ = T\t). The set T ′ represents the remaining threads
after the execution of the current round. In this Section, we will detail the rewrite rules
that define the semantics of a round in MSSL.

1) Given that the set T comprises threads ready to be executed in the current cycle
(round), the cycle is considered complete when all these threads have been executed. This
is defined by the following rule:

∅, ψ, S ⇛ ∅, ψ, S
(R-CycleEnd)
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2) To perform a cycle in MSSL, we present the following big-step rule:

(t, {e}l) ∈ T ⟨ψ, S ⊳ e
T0
⟹ ψ

′
, S

′
⊳ e

′⟩l
T\t, ψ

′
, S

′
⇛ T

′
, ψ

′′
, S

′′

T, ψ, S ⇛ T ′ ∪ (t, {e′}l) ∪ T0, ψ′′, S ′′
(R-Cycle)

The R-Cycle rule stipulates that each thread in T executes more than once (recall Section
1.6.2). In addition, the premise T\t, ψ

′
, S

′
⇛ T

′
, ψ

′′
, S

′′means that after a thread is executed,
it will be added to the new set T ′ to be executed again at the next instant. As mentioned
earlier, the threads in the set T0, created during the current instant, will not execute imme-
diately after their creation to avoid interference with the running threads. Instead, they are
included in the new state as follows: T ′ ∪ (t, {e′}l) ∪ T0.

1.6.4 Instants in MSSL

MSSL is a synchronous reactive programming language designed to provide deterministic
and predictable behavior based on the core concept of logical instants. Additionally, when
the scheduler schedules shared instants between threads, those threads can execute at the
same rate with automatic synchronization at the end of each instant.

After defining the cycle, we can deduce that an instant can consist of one or more cycles.
Now, the question arises: how is an instant managed? When a cycle is completed, there
are two possibilities for the instant: (1) if a signal is emitted during the current cycle, the
instant is not ended, and a new cycle starts. (2) If a signal is not emitted during a cycle,
the instant is considered ended. Next, we will introduce the rewrite rules that define the
semantics for executing an instant in MSSL.

1) The following rule indicates that the current instant is not yet terminated, and a new
cycle will start within the same instant.

T1, ψ, S ⇛ T2, ψ
′
, S

′
ψ ≠ ψ

′
T2, ψ

′
, S

′
⤇ T3, ψ

′′
, S

′′

T1, ψ, S ⤇ T3, ψ
′′, S ′′

(R-Instant)

In the R-Instant rule, the premise ψ ≠ ψ
′ indicates that one or more signals are emitted

during the cycle. This implies that there could be threads waiting for a signal emitted
during this cycle, and therefore, the current instant is not yet terminated. For this reason,
the scheduler restarts a new cycle within the same instant. It is important to note that
the signals are reset at the beginning of each instant. Hence, we present below a function
responsible for reinitialising all the signals emitted during an instant as follows:

Definition 5.8 (Reset) For a given signal environment ψ, we define the reset(ψ) function

as follows:

reset(ψ) = ∀ℓa ∈ ψ, ψ[ℓa ↦ ⟨0⟩i]

This function is responsible for resetting all the signals in ψ by changing their value from
1 to 0 (absent state).
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2) The following rule defines the end of the instant. In this case, the inter-instant stage
must be applied before the next instant begins, as shown below:

T1, ψ, S ⇛ T2, ψ
′
, S

′
ψ = ψ

′

T1, ψ, S ⤇ Kill(T2, ψ′), reset(ψ′), S ′
(R-InstantEnd)

Unlike the previous rule, the premise ψ = ψ
′ in the R-InstantEnd rule indicates that no

new signal was emitted during the current cycle. As a result, the scheduler determines the
end of the instant. Besides, as previously stated, when the end of the instant is determined,
an additional step called "inter-instant" 5.7 is performed. The purpose of this step is to
unblock a thread at the next instant. Additionally, the rule states that all signals emitted
during the current instant are reset to 0.

1.6.5 Chaining of Instants in MSSL

A program in MSSL is composed of several instants. Then, the main purpose of semantics
is to reveal that the execution of a program in MSSL can result in an infinite sequence of
instants, following the pattern:

T1, ψ, S ⤇ Kill(T2, ψ′), ψ′′, S ′ T2, ψ
′′
, S

′
⤇ Kill(T3, ψ′′′), ψ′′′′, S ′′ . . . .

Where ψ′′ = reset(ψ′) and ψ
′′′′
= reset(ψ′′′) ...

In this Section, we define a sequence of complete instants as a chain of instants. Further-
more, we introduce the operational semantics of chaining instants denoted by ⤇

∗. This
notation corresponds to the reflexive transitive closure of⤇.

1.6.6 MSSL Cooperative Typing Rules

In this Section, we focus on the typing rules for the fundamental reactive expressions in
MSSL. In addition to cooperate, threads can synchronize themselves using signals. As men-
tioned elsewhere, a thread waiting for a signal that is not emitted during the current instant
is considered implicit cooperation. However, this behavior should be treated as explicit co-
operation since the thread relinquishes control back to the scheduler. Consequently, an-
other thread executes and might create undesirable data in the memory of other threads.
Therefore, our type system is responsible for checking scenarios where a thread could po-
tentially compromise the safety of other threads’ memory.

Before delving into the specific typing rules for the new reactive expressions, let us
briefly review the T-Cooperate rule as follows:

safeTrc (Γ)
L ,Γ ⊢1 ⟨cooperate ∶ ϵ⟩lσ ⊣ L ,Γ

(T-Cooperate)

The T-Cooperate rule utilises the safeTrc function 4.5 to address the aforementioned issue.
Its purpose is to ensure that shared data between threads is not borrowed from the current
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thread’s typing environment. Additionally, the T-Cooperate rule mandates that the current
function has an effect κ of 1, which is crucial for conveying information during function
calls.

The following rule is necessary to type the expression for creating a signal:

s ∉ L1 L2 = L1 ⊔ {sl}
L1,Γ1 ⊢κ ⟨Sig s ∶ ϵ⟩lσ ⊣ L2,Γ1

( T-Sig)

In MSSL, variable shadowing is not allowed for consistency, and the same applies to sig-
nal shadowing. Hence, the premise s ∉ L1 ensures that signal s is not already declared.
Similarly to variables, we must ascertain the signals generated within each block to deallo-
cate them at the block’s end. Consequently, when adding the new signal s to L1, we link
it with the lifetime of the enclosing block, as evident from the premise L1 ⊔ {sl}. How-
ever, for copying a signal s, the T-CopySig rule requires that s already exists in the signal
environment L as follows:

s ∈ L

L,Γ ⊢κ ⟨s ∶ ϵ⟩lσ ⊣ L,Γ
( T-CopySig)

The T-Emit rule governs the emission of a signal in an MSSL program and is defined as
follows:

s ∈ L

L,Γ ⊢κ ⟨emit(s) ∶ ϵ⟩lσ ⊣ L,Γ
(T-Emit)

To emit a signal, the T-Emit rule mandates that the specified signal, provided as a param-
eter must already be declared, as indicated by the premise: s ∈ L . For typing the when
expression, we present the following rule:

s ∈ L1 safeTrc(Γ1) L1,Γ1 ⊢1 ⟨{e1}m ∶ τ⟩lσ ⊣ L2,Γ2

L1,Γ1 ⊢1 ⟨when(s) {e1}m ∶ τ⟩lσ ⊣ L2,Γ2

( T-When)

Similar to the previous cases, the T-When rule also necessitates that the specified signal
is already declared. Moreover, like the T-Cooperate rule, when a signal is not yet emitted,
the current thread cooperates until the next cooperation point, where another thread takes
control. To safeguard the shared data between threads, the safeTrc function is employed, as
demonstrated in the T-When rule. Additionally, this rule stipulates that the effect κ of the
current function is 1. Lastly, the typing rule for the watch expression is straightforward
and coherent with the earlier rules. The T-Watch rule is presented as follows:

s ∈ L1 L1,Γ1 ⊢1 ⟨{e1}m ∶ τ⟩lσ ⊣ L2,Γ2

L1,Γ1 ⊢κ ⟨watch(s) {e1}m ∶ τ⟩lσ ⊣ L2,Γ2

( T-Watch)

Indeed, the T-Watch rule simply requires the presence of a signal in the parameter of the
watch expression.

2 Example of MSSL

Let us explore a short example to gain a better understanding of MSSL’s synchronous co-
operative threading model. The main objective of this example is to emphasize the core
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features, especially the cooperative operations like threading, cycling, and instantaneous
execution in MSSL. Note that this example demonstrates all the reactive constructs sup-
ported by MSSL.

1 // Thread A:

2 fn tha(s1, s2, s3) ->1 unit{

3 emit(s1);

4 emit(s2);

5 cooperate;

6 emit(s3);

7 }

8

9 // Thread B:

10 fn thb(s1, s2, s3) ->1 unit{

11 when(s1){

12 watch(s2){

13 when(s3){

14 cooperate;

15 }

16 }

17 }

18 }

19

20 //main

21 {

22 Sig s1; Sig s2; Sig s3; //signal declaration

23 spawn(tha(s1,s2,s3));

24 spawn(thb(s1,s2,s3));

25 }

Listing 5.1: An Illustrative Instance Written in MSSL Showcasing Reactivity.

Listing 5.1 provides an example of two threads, A and B, that synchronize using signals s1,
s2 and s3. Note that the effect of the type system is represented by (->1) in the tha and
thb functions. On line 22, three signals, s1, s2 and s3, are created and assigned to them
respectively. Following this, on lines 23 and 24, two threads, tha and thb, are created using
the spawn expression. Now, let us delve into the scheduling of these threads and explain
when and how each thread executes, illustrated in the diagram for each logical instant in
Figure 5.3.

In the Figure 5.3, we provide an overview of the execution of the two threads as follows:

• During Instant 1 :

1. Thread A emits s1 and s2 and then cooperates on line 5, explicitly completing
its execution for the current instant.
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Figure 5.3: Functional Overview of Thread Execution During Instants.
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2. Thread B waits for s1, which has already been emitted by Thread A during
the instant. Therefore, Thread B does not cooperate and executes the body of
the when expression. On line 9, Thread B immediately runs the body of the
watch expression without verifying whether s2 is emitted or not. Afterwards,
it cooperates by waiting for s3

• When all threads are executed, the scheduler defines the end of the instant

• At this point, the inter-instant step occurs. Before the beginning of the next instant,
the expression of the watch is reduced using the Kill function 5.7.

1. Using the Kill function, we terminate the non-terminating block in the watch
expression of Thread B since the signal s2 is emitted during the instant.

• At the start of Instant 2, all signals are reset using the reset function 5.8 and all ϵ1
values are modified to ϵ0.

• During Instant 2 :

1. Thread A emits the signal s3 and immediately terminates
2. Thread B, after killing the body of the watch, also ends promptly.

3 Discussion

In this chapter, we have extendedMSSLwith several constructs. Specifically, handling func-
tion calls outside the spawn expression requires more attention than function calls inside
the spawn expression. However, MSSL already provides the necessary features to manage
this aspect effectively. Going back to what was said before, for function calls, a new typing
environment and execution environment are established to handle the function’s duration.
This enables us to extend the notion of safe abstraction (as defined in 4.24) with the support
of the notion "S∣l" to specify a portion of memory for the function call. Furthermore, with
regard to the extension of the control flow and as already discussed, its typing returns the
union of the environments of the two branches, for example:

{let mut x = 0; let mut y = 0; let mut z = 1; let mut a = &x; let mut b = &mut y;

if cond {a = & z}nelse{b = &mut z}m}l
(5.21)

After typing the if/else expression, the resulting typing environment is as follows: Γ =

[x ↦ ⟨int⟩l, y ↦ ⟨int⟩l, z ↦ ⟨int⟩l, a ↦ ⟨& z⟩l, b ↦ ⟨&mut z⟩l]. At this stage
and according to the Definition 4.25 this environment is ill-formed because z is borrowed
both mutable and immutable. However, in practice, this example is safe because at runtime,
only one branch will be executed, and z will be borrowed either as mutable or immutable.
Similarly, for Trc, it is possible to handle cases where one branchmoves an active Trcwhile
the other branch creates a clone. In summary, there is no need to be overly concerned about
the safety level; we can adapt Definition 4.25 to accommodate such cases or create a new
Definition. Furthermore, MSSL does not include loops or while in its syntax to avoid issues
of divergence. A reactive program that diverges would not make sense in this context (and
would require adding a co-induction proof).
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Implementation

Patience is a key element of success

– Bill Gates

This chapter provides a comprehensive explanation of the entire MSSL language set
implementation. It begins with an introduction to the cooperative set (FR

FT
), emphasiz-

ing the implementation of our Trc contribution and its translation into Fairthreads. Addi-
tionally, two examples of reactive multithreading employing the cooperative construct are
presented. The chapter then proceeds to the following section, which centers around the
implementation of the extensions introduced in Chapter 5.

Dans ce chapitre, nous abordons lamise en place complète du langageMSSL. Nous débutons

par la présentation de l’ensemble coopératif (FR
FT
), en mettant l’accent sur la mise en œuvre de

notre contribution Trc et la traduction de celle-ci en Fairthreads. Ensuite, nous concluons avec
deux exemples d’utilisation du multithreading réactif en utilisant la construction coopérative.

Par la suite, nous continuons ce chapitre avec une seconde section se concentrant sur la mise

en œuvre des extensions présentées dans le chapitre 5.

1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
1.1 Implementation of MSSL . . . . . . . . . . . . . . . . . . . 167
1.2 Implementation with Extensions . . . . . . . . . . . . . . 174
1.3 MSSL to Fairthreads . . . . . . . . . . . . . . . . . . . . . 182
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1 Overview

The significance of MSSL lies in its ability to enhance the Fairthreads programming model.
In earlier chapters, we delved into the core of the Rust type system and established a type
system for a kernel programming language called FR

FT
. The FR

FT
type system incorporates

two essential Rust features: ownership and borrowing, complemented by an innovative
smart pointer design known as Trc. A notable advantage of FR

FT
over Rust is its capability

to enable data sharing between cooperative threads without requiring Mutexes, thanks to
the encapsulation of shared data in Trc. Additionally, we introduced reactivity to Rust,
introducing reactive constructs and the ability to create cooperative threads.

Once we have defined the semantics and typing rules for FR
FT
, and have established the

soundness of our type system, the next step involves incorporating the practical elements
to evaluate our efforts. This chapter, therefore, presents an implementation of MSSL, which
is built upon the operational semantics discussed in Chapter 3 and the typing rules from
Chapter 4. To kickstart our implementation, we articulate the practical aspects of Rust (FR
[73]) by introducing a new form of smart pointer called Trc, along with two multithreaded
constructions to enforce our rules effectively.

The implementation of Trc is based on the reference counting approach, a memory
management technique that automatically tracks and manages the lifetime of objects in
MSSL. As we have previously discussed, a vital requirement for reactive systems is a pro-
gramming language capable of automaticmemorymanagementwithout relying on a garbage
collection system. Consequently, in our implementation, we have successfully integrated
the drop 3.4 function to deallocate memory when needed. In practice, given that MSSL
follows the lexical scope approach, the drop function is automatically inserted at the end
of each block, leading to recursive deallocation of data based on its type.

Our implementation is realized in Java and is freely accessible on GitHub . Specif-
ically, to generate the lexer and parser, we utilised ANTLR (ANother Tool for Language
Recognition) [11], which proves highly effective for automatically generating these com-
ponents based on the defined input language and grammar rules. ANTLR takes a formal
grammar specification as input and generates a parser capable of recognizing and process-
ing the input language according to the specified grammar rules.

As mentioned earlier, the primary goal of MSSL is to enhance the Fairthreads program-
ming model. Consequently, once we have performed a safe verification of references and
data shared between threads within an MSSL program, we provide an automatic transla-
tion into Reactive-C, especially targeting Fairthreads in C [26]. This translation offers both
memory safety and automated data management, without requiring user intervention.

This implementation ensures robust local memory safety for each thread, as well as
strong globalmemory safety between threads, leveraging the characteristics of Rust. Throu-
ghout the remainder of this chapter, we initially present the implementation of the type
system without the extensions, inspired by the reference implementation provided by FR
[73]. Subsequently, we go through the implementation of the extensions introduced in
Chapter 5. Moreover, we have sugar coated our implementation by incorporating "tuples"
into MSSL. The introduction of tuples allows us to test more meaningful and significant
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examples, enabling a deeper exploration of our insights.

1.1 Implementation of MSSL

The implementation is derived from the semantic and typing rules detailed in Chapters 3
and 4. It comprises three key components: (1) an abstract syntax tree constructed using
ANTLR, (2) a type system that incorporates a borrow checker, and (3) a translation mech-
anism to convert to C. To further illustrate, let’s examine the reduction rule applied to the
creation of a new Trc:

ℓa ∉ dom(S1) S2 = S1[ℓa ↦ ⟨v⟩1]
⟨S1 ⊳ trc(v) →0 S2 ⊳ ℓ⬩a⟩l

(R-Trc)

The R-Trc rule is responsible for generating a new location ℓa in the program store S1 and
initialising it to the value v. As Trc operates based on reference counting, its counter is
initialised to 1 in accordance with the R-Trc rule. Thus, the implementation of this rule in
MSSL is as follows:

1 // R-Trc.

2 protected Pair<State, Expression> reduceTrc(State state,

3 Lifetime lifetime, Value value) {

4 // get the global lifetime

5 Lifetime global = lifetime.getRoot();

6 // allocate a new location with the global lifetime

7 // Set the trc counter to 1

8 return state.allocate(global, value, 1);

9 }

Listing 6.1: Implementing the R-Trc Rule.

As illustrated in Listing 6.1, to create a new Trc, first we require the current program store,
S. The latter, in the semantic rule, is referred to: as State in Listing 6.1. Based on the
definition of S in Chapter 3, the State is implemented as a Map, which serves to map
variables to their respective locations (i.e., StackFrame) and also maps locations to their
corresponding values (i.e., Store). Subsequently, to proceed with the creation of a new Trc,
the value v needs to be retrieved and allocated within the State by calling the allocate
function. This function takes one argument which represents the Trc counter

Additionally, we consider the typing rule T-Trc introduced in Chapter 4:

Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2 ¬containsTrc(Γ2, τ)
Γ1 ⊢ ⟨trc(e) ∶ ⬩τ⟩lσ ⊣ Γ2

(T-Trc)

As previously detailed, the T-Trc rule checks whether the type of expression e contains a
Trc type. Consequently, the corresponding implementation of this rule in our system is as
follows:
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1 // T-Trc

2 protected Pair<Environment, Type> apply(Environment gam1,

3 Lifetime lifetime, Syntax.Expression.Trc expression) {

4 // first premise: typing the expression

5 Pair<Environment, Type> typing = apply(gam1, lifetime,

6 expression.getOperand());

7 Environment gam2 = typing.first();

8 Type type = typing.second();

9 // second premise: applying the containsTrc function

10 try {

11 check(containsTrc(gam2, type),

12 "This type contains a Trc type ");

13 } catch (ExceptionsMSG e) {

14 throw new RuntimeException(e);

15 }

16 return new Pair<>(gam2, new Type.Trc(type));

17 }

Listing 6.2: Implementation of the T-Trc Rule.

As shown in Listing 6.2, the process of typing the expression trc(e) begins with the re-
quirement of the typing environment Γ, which is defined in Chapter 4 and associates vari-
ables with their corresponding types and lifetimes. In our implementation, we represent Γ
as an Environment, where each variable name maps to a location that further maps to the
type and lifetime. on Line 5, we proceed to type the expression provided as a parameter
and subsequently apply the containsTrc function. This function examines the type of the
expression and throws an exception if a Trc type is detected. If the result is successful,
we return the resulting environment and a Trc type. Moreover, we have implemented the
Trc structure in C to incorporate reference counting. Hence, when the expression trc(e)
is verified by the function outlined in Listing 6.2, we automatically utilise our library to
translate this new type of smart pointer into a C reference counting mechanism.

Given that we can also create an inactive Trc , let us dive into the implementation of
this category in MSSL. As mentioned previously, we will now revisit the semantic rule that
outlines the reduction of an inactive Trc:

⟨ℓ⬩a⟩m = read(S1, ω, l) S1(ℓa) = ⟨v⟩i S2 = S1Jℓa ↦ ⟨v⟩i+1K
⟨S1 ⊳ ω.clone→0 S2 ⊳ ℓ⋄a⟩l

(R-Clone)

To clone an active Trc, we retrieve its value, unlike mutable and immutable references,
which access its location. Afterwards, we increment its counter to 1, in accordance with
the R-Clone rule. Now, let us detail the implementation of R-Clone in MSSL:

1 // R-Clone.

2 protected Pair<State, Expression> reduceClone(State state,

3 Lifetime l, Lval lval) {

4 // read the value of the lval
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5 Value lx = state.read(lval, l);

6 // increments the Trc counter by 1

7 Pair<State, Value.Reference> S2 =

8 state.increment_counter(lval, l);

9 return new Pair<>(S2.first(), S2.second().toCloned());

10 }

Listing 6.3: Implementation of the R-Clone Rule.

In Listing 6.3, we can observe the implementation of the R-Clone rule in MSSL. We ob-
tain the lval value from the program’s store state by utilizing the read function. The read
function’s implementation aligns with the definition provided in 3.2. Subsequently, on Line
7, we increment the counter of the retrieved value using the increment_counter function.
However, it is crucial to explore the implementation of the T-Clone rule in further detail:

Γ ⊢ ω ∶ ⟨⬩τ⟩m
Γ ⊢ ⟨ω.clone ∶ ⋄ω⟩lσ ⊣ Γ

(T-Clone)

The T-Clone rule primarily ensures that ω is of an active Trc type. However, at the imple-
mentation level, to ensure optimal performance, we incorporate several checks as outlined
below:

1 // T-Clone

2 protected Pair<Environment, Type> apply(Environment gam,

3 Lifetime lifetime, Syntax.Expression.Clone expression) {

4 Lval w = expression.getOperand();

5 // Determine type being read

6 Pair<Type,Lifetime> p = w.typeOf(gam);

7 // verify if w exists

8 if(p == null){

9 try {

10 check(true, w.name()+" is invalid");

11 } catch (ExceptionsMSG e) {

12 throw new RuntimeException(e);

13 }

14 }

15 // Extract w’s type

16 Type T = p.first();

17 // verify if w is well-typed

18 try {

19 check(!T.defined(), w.name()+" is moved");

20 } catch (ExceptionsMSG e) {

21 throw new RuntimeException(e);

22 }

23 // verify if w has an active Trc type
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24 try {

25 check(!(T instanceof Type.Trc), w.name()+

26 "does not have the Trc type");

27 } catch (ExceptionsMSG e) {

28 throw new RuntimeException(e);

29 }

30 //Done

31 return new Pair<>(gam, new Type.Clone(w));

32 }

Listing 6.4: Implementation of the T-Clone Rule.

As demonstrated in Listing 6.4, the first step involves obtaining ω, which is defined in the
form (path ∣ variable name). Subsequently, we conduct the following checks: (1) Verify
whether ω exists in Γ (the typing environment). (2) Check if ω has already been moved.
(3) Ensure that ω is of an active Trc type. In the event of failure for any of these require-
ments, we throw an exception. Upon successful verification of the typing for the ω.clone
expression, similar to an active Trc, we automatically invoke our library to increment the
Trc counter to 1.

Whenever a thread is created, several restrictions are enforced by the mechanism (Γ2 ⊢

(S) ⟸ (τ)) in the T-Spawn rule below:

D(f) = (S) Γ1 ⊢ ⟨e ∶ τ⟩lσ ⊣ Γ2

Γ2 ⊢ (S) ⟸ (τ)
Γ1 ⊢ ⟨spawn(f(e)) ∶ ϵ⟩lσ ⊣ Γ2

(T-Spawn)

As explained in Chapter 4, during spawn time, inactive Trc’s transform into active Trc’s.
However, the mentioned mechanism needs to verify beforehand whether there exist two
inactive Trc’s pointing to the same memory region. This constraint is crucial for preserv-
ing the uniqueness of Trc property enforced by our type system. Now, we present the
implementation of the T-Spawn rule in MSSL, ensuring compliance with the requirements
of our mechanism:

1 // T-Spawn

2 protected Pair<Environment, Type> apply(Environment gam,

3 Lifetime lifetime, InvokeFunction expression) {

4 // premise 1: identify the invoked function

5 Function declaration = functions.get(expression.getName());

6 ...

7 // premise (3): verify mechanism constraints

8 Environment gam2 = typedarguments.first();

9 Type[] args = typedarguments.second();

10 // (3.1): the compatibilities between types and signatures

11 try {

12 check(!compatibleSigType(parameters, args, gam2),
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13 "Incompatible Argument(s)!");

14 } catch (ExceptionsMSG e) {

15 throw new RuntimeException(e);}

16 // (3.2): verify if there exists two inactive Trc

17 // pointing to the same memory location

18 try {

19 check(!invariantTrcSpawn(args, gam2),

20 "Having two inactive Trcs pointing to the same memory location!");

21 } catch (ExceptionsMSG e) {

22 throw new RuntimeException(e);}

23 return new Pair<>(gam2, Type.Unit);

24 }

Listing 6.5: Implementation of the T-Spawn Rule.

Listing 6.5 outlines the constraints enforced by the T-Spawn rule. For instance, on Line 11,
our mechanism verifies the compatibility between signatures and types, following Figure
4.15. Then, it proceeds to check if two inactive Trc’s share the same active Trc by utilizing
the invariantTrcSpawn function.

A significant aspect of our type system is to guarantee that a thread’s execution does
not generate unintended data in other thread’s memory. This assurance is verified during
cooperation time through the T-Cooperate rule:

safeTrc (Γ)
Γ ⊢ ⟨cooperate ∶ ϵ⟩lσ ⊣ Γ

(T-Cooperate)

In accordance with Definition 4.5 of the safeTrc function, we thoroughly inspect the typing
environment of the current thread to ensure the absence of any reference to shared data
with other threads. The implementation of the T-Cooperate rule is presented in Listing 6.6.

1 // T-Cooperate

2 protected Pair<Environment, Type> apply(Environment gam,

3 Lifetime lifetime, Syntax.Expression.Cooperate expression) {

4 try {

5 check(!SafeTrc(gam),

6 "Borrowed shared data exists, it’s not safe to cooperate");

7 } catch (ExceptionsMSG e) {

8 throw new RuntimeException(e);}

9 return new Pair<>(gam, new Type.Unit());

10 }

Listing 6.6: Implementation of the T-Cooperate Rule.

Like the T-Cooperate rule, Listing 6.6 also utilises the safeTrc function to assess the presence
of any active Trc data being borrowed. Throughout the discussion, we have introduced
significant semantic and typing rules, elucidating their implementations. Consequently, we
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now showcase a practical example that demonstrates the application of our MSSL syntax
in a reactive context.

1 fn bar(mut x:trc<int>, mut y:trc<int>)->unit{

2 {

3 let mut a = &mut *x;

4 *a = 5;

5 // a is a reference, it is not responsible

6 //for dropping its content

7 }

8 cooperate;

9 print!(*x);

10 //The ‘drop‘ function is automatically called

11 //for dropping x and y

12 }

13

14 fn foo(mut x: trc<int>, mut y: box<trc<int>>)->unit{

15 *x = 1;

16 cooperate;

17 spawn(bar(x.clone, *y.clone));

18 cooperate;

19 print!(*x);

20 //The ‘drop‘ function is automatically called

21 //to drop x, y recursively

22 }

23

24 fn foofoo(mut x: trc<int>)->unit{

25 {

26 let mut y =&mut x;

27 **y = 2;

28 }

29 cooperate;

30 //The ‘drop‘ function is automatically called

31 // to drop x

32 }

33

34 //main

35 {

36 let mut x = trc(0);

37 let mut y = trc(1);

38 spawn(foo(x.clone,box(y.clone)));

39 spawn(foofoo(x.clone));

40 //The ‘drop‘ function is automatically called
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41 //to drop x and y

42 }

Listing 6.7: A Reactive Example accepted in MSSL.

Listing 6.7 presents a reactive program written in MSSL that is successfully accepted by
its type system. This program creates three cooperative threads that safely share the same
memory regions without the need for mutexes. Notably, the thread executing the foo
function creates a new thread on Line 17 and cooperates. Due to the round-robin scheduler,
the new thread will take control in the next instant and execute the bar function.

Within the body of the bar function, a mutable reference is created, pointing to the
contents of x (i.e., shared data), and its value is mutated. Then, the thread cooperates on
Line 8. Despite the existence of a reference to x (of type active Trc) on Line 3, its lifetime
ends on Line 7. As a result, the cooperate expression on Line 8 is executed safely.

Importantly, since no exceptions are relevant to the program in Listing 6.7, it under-
goes an automatic translation to Reactive-C. As in Rust, the primary objective of MSSL
is to manage memory automatically without burdening the user. Consequently, we au-
tomatically call the drop function for a type when the defined variables go out of scope.
To highlight this aspect, we have added comments at the end of each block in Listing 6.7,
indicating the drop call and the associated variable. As previously mentioned, our imple-
mentation is available on GitHub, where we provide a more detailed explanation of how
to execute an MSSL program.

Next, we showcase another reactive MSSL program, but this time, it is rejected by its
type system:

1 fn bar(mut x:trc<int>, mut y:box<trc<int>>)->unit{

2 let mut a = *y.clone;

3 cooperate;

4 let mut b = *y;

5 spawn(foofoo(b.clone));

6 }

7

8 fn foo(mut x:trc<int>)->unit{

9 let mut y = x.clone;

10 spawn(bar(x.clone,box(y)));

11 cooperate;

12 *x=7;

13 }

14

15 fn foofoo(mut x:trc<int>)->unit{

16 //add code

17 }

18

19 //main
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20 {

21 let mut x = trc(0);

22 spawn(foo(x.clone));

23 }

Listing 6.8: A Reactive Example rejected in MSSL.

In contrast to Listing 6.7, Listing 6.8 demonstrates a rejected program for the following
reasons:

1. In the body of the bar function, on Line 2, an inactive Trc (a clone of the active Trc in
the Box) is created and linked to ’a’. Subsequently, on Line 4, the content of variable
’y’ is moved into ’b’. However, this violates the T-Move rule, leading to the application
of the TrcMoveProhibited function. The violation occurs because ’y’ contains an active
Trc that is cloned in the current typing environment.

2. In the body of the foo function, on Line 9, an inactive Trc (a clone of ’x’) is created
and linked to ’y’. A new thread is then created to execute the bar function. on Line
10, bar takes two arguments, the first of type (⋄ x) and the second of type (▪ ⋄ x).
This triggers the mechanism of the T-Spawn rule, revealing an error since the two
arguments point to the same memory region. Consequently, we reject this program
to preserve the well-formedness of inactive Trc types and safeguard memory against
aliasing. As a result, the translation to Reactive-C is not performed.

Thus far, we have illustrated the behavior of MSSL type systems for two different reactive
programs. The information presented in this section is rich and valuable, and we encourage
readers to experiment with MSSL programs for testing purposes. In the following section,
we will briefly discuss the implementation of the extensions presented in Chapter 5.

1.2 Implementation with Extensions

In this section, we proceed with the implementation of the MSSL language set in its en-
tirety with a specific emphasis on the extensions introduced in Chapter 5. These extensions
encompass control flow, function calls outside the spawn expressions, and the reactive con-
structs.

For "control flow" extensions, there are two reduction rules, as follows:

⟨ψ, S ⊳ if (true) {e}n else {e}m →0 ψ, S ⊳ {e}n⟩l (R-IfTrue)

⟨ψ, S ⊳ if (false) {e}n else {e}m →0 ψ, S ⊳ {e}m⟩l (R-IfFalse)

Upon evaluating the condition specified in the "if" expression, two scenarios emerge: if the
condition is true, the code blockwithin the "if" branchwill be executed, and if the condition
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is false, the code block within the "else" branch will be executed. In a straightforward
manner, the implementation of the "if\else" extensions in MSSL is as follows, based on
the R-Cond rule introduced in Chapter 3:
1 // R-IfElse

2 protected Pair<State, Expression> apply(State S,

3 Lifetime lifetime, IfElse expression, int k) {

4 // R-Cond

5 Expression cond = expression.getConditions();

6 if(cond){

7 if(cond instanceof Value.Boolean){

8 // R-IfTrue

9 Boolean b = cond.value();

10 if(b){

11 return new Pair<>(S, expression.getIfblock());

12 }

13 // R-IfFalse

14 else {

15 return new Pair<>(S, expression.getElseblock());

16 }

17 }

18 else {

19 //exception

20 ...

21 }

22 }

23 else {

24 Pair<State, Expression> r1 = apply(S, lifetime,

25 expression.getConditions(), k);

26 return new Pair<>(r1.first(), new IfElse(r1.second(),

27 expression.getIfblock(),expression.getElseblock()));

28 }

29 return new Pair<>(S, expression);

30 }

Listing 6.9: Implementation of the R-IfTrue and R-IfFalse Rules.

As demonstrated in Listing 6.9, our initial step involves reducing the "cond" expression by
invoking the function that describes the R-cond rule. Subsequently, we return the corre-
sponding block expression based on the value obtained from the reduction. On the other
hand, the T-IF typing rule demands more effort and attention:

Γ1 ⊢κ ⟨e ∶ bool⟩lσ ⊣ Γ2 Γ2 ⊢κ ⟨{e1}n ∶ τ1⟩lσ ⊣ Γ3 Γ2 ⊢κ ⟨{e2}m ∶ τ2⟩lσ ⊣ Γ4

Γ1 ⊢κ ⟨if(e) {e1}n else {e2}m ∶ union(τ1, τ2)⟩lσ ⊣ Γ3 ⊔ Γ4

(T-IF)
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As elaborated in Chapter 5, our type system lacks the knowledge of which branch to execute
during runtime. Hence, we must account for all potential scenarios, meaning we consider
the side effects of both blocks. To accomplish this, the T-IF rule individually types the
two blocks of the "if" and "else" branches, and subsequently, it combines their respective
types using the "unions" function and their environments. The implementation of this rule
is provided below:

1 // T-IF

2 protected Pair<Environment, Type> apply(Environment gam,

3 Lifetime lifetime, Syntax.Expression.IfElse expression, int k) {

4 //type the condition

5 Pair<Environment, Type> r1 = apply(gam, lifetime,

6 expression.getConditions(), k);

7 Environment gam1 = r1.first();

8 Type _t = r1.second();

9 //type the "if" block

10 Pair<Environment, Type> r2 = apply(gam1, lifetime,

11 expression.getIfblock(), k);

12 Environment gam2 = r2.first();

13 Type _t1 = r2.second();

14 //type the "else" block

15 Pair<Environment, Type> r3 = apply(gam2, lifetime,

16 expression.getElseblock(), k);

17 Environment gam3 = r3.first();

18 Type _t2 = r3.second();

19

20 // ensure the compatibilities of _t1 and _t2

21 try {

22 check(!compatibleShape(gam2, _t1, _t2), "Incompatible Type");

23 } catch (ExceptionsMSG e) {

24 throw new RuntimeException(e);

25 }

26 //join the environment

27 Environment gam4 = join(gam2, gam3, expression, k);

28 //join the type

29 return new Pair<>(gam4, _t1.union(_t2));

30 }

Listing 6.10: Implementation of the T-IF Rule.

Listing 6.10 provides a detailed explanation of typing the "if\else" expression, as follows:

1. Line 5 types the condition passed as a parameter, which must have a "bool" type.

2. on Line 10, we type the block of the "if" branch, and then on Line 15, we type the
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block of the "else" branch.

3. Line 22 checks the types of the two blocks to combine their respective types.

4. on Line 27, the two environments are merged.

5. Line 29 combines the types of the two branches.

It is important to note that the integer "k" provided as a parameter represents the "κ" effect
required by our type system.

MSSL is distinguished by its signal management, wherein MSSL signals are treated as
reference counting. Consequently, upon signal creation, the counter is set to 1, and the
value is initialised to 0 (absent by default), as shown by the R-Sig rule:

ℓa ∉ dom(ψ1) ψ2 = ψ1[ℓa ↦ ⟨0⟩1] S2 = S1[ℓl∶∶s ↦ ⟨ℓsa⟩l]
⟨ψ1, S1 ⊳ Sig s→0 ψ2, S2 ⊳ ϵ0⟩l

(R-Sig)

This rule demonstrates that the value of a signal is stored in a signal environment ψ1. How-
ever, in the implementation, there is no need to separate ψ from S. The R-Sig rule is imple-
mented as follows:

1 // R-Sig

2 protected Pair<State, Expression> apply(State state,

3 Lifetime lifetime, Sig expression, int k) {

4 /** get the global lifetime */

5 Lifetime global = lifetime.getRoot();

6 /**
7 * initialise the counter of signal to 1 and its value to 0

8 */

9 Value.Integer v = new Value.Integer(0);

10 Pair<State, Value.Reference> pl = state.allocate(global,v,1);

11

12 State S2 = pl.first();

13 Value.Reference ls = pl.second();

14

15 /** Bind signal to location

16 * and bind signal to the lifetime

17 */

18 String s = expression.getVariable();

19 return reducedDeclare(S2,lifetime,s,ls);

20 }

Listing 6.11: Implementation of the R-Sig Rule.

Listing 6.11 illustrates the process of creating a signal. on Line 9, a value containing 0 is
created, and on Line 10, a new location for the new signal is established in the program
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store "S" by initialising the counter to 1. Alternatively, when encountering the expression
"Sig s", it only necessitates verifying whether the signal "s" already exists in the L signal
declaration context, as demonstrated by the T-Sig rule:

s ∉ L1 L2 = L1 ⊔ {sl}
L1,Γ1 ⊢κ ⟨Sig s ∶ ϵ⟩lσ ⊣ L2,Γ1

( T-Sig)

The implementation of the T-Sig rule is straightforward and can be summarized as follows:

1 // T-Sig

2 protected Pair<Environment, Type> apply(Environment gam1,

3 Lifetime lifetime, Syntax.Expression.Sig expression, int k) {

4 String s = expression.getVariable();

5 Location ls = gam1.get(s);

6 // an exception is raised if the signal already exists.

7 if(ls!=null){

8 try {

9 check(true, "Signal already declared ");

10 } catch (ExceptionsMSG e) {

11 throw new RuntimeException(e);

12 }

13 }

14 // update

15 Environment gam2 = gam1.put(s,Type.Sig,lifetime);

16 // done

17 return new Pair<>(gam2, Type.Unit);

18 }

Listing 6.12: Implementation of the T-Sig Rule.

In the typing rules, we have introduced a dedicated environment for managing the declared
signals. However, for simplification in the implementation, we directly store the signals in
the Environment. In Listing 6.12, we retrieve the signal name and verify its existence in
the Environment "gam1" on Line 9. If the signal does not exist, we create it in the "gam2"
Environment.

To wait for a signal, MSSL provides the "when" expression. For this expression, three
reduction rules are present, as explained in Chapter 5. Here, we focus on the rule where the
signal is emitted (the other cases are straightforward), which is denoted by the R-WhenTrue

rule:

read(S1, s, l) = ⟨ℓsa⟩m ψ1(ℓa) = ⟨1⟩i ⟨ψ1, S1 ⊳ {e1}m →i ψ2, S2 ⊳ {e2}m⟩l
⟨ψ1, S1 ⊳ when(s) {e1}m →i ψ2, S2 ⊳ when(s) {e2}m⟩l

(R-WhenTrue)

As mentioned earlier, the R-WhenTrue rule retrieves the signal value to verify if it has al-
ready been emitted. In such a scenario, we execute the block of the "when" expression. The
implementation of this rule in MSSL is as follows:

178



Implementation

1 // R-WhenTrue and R-WhenFalse

2 protected Pair<State, Expression> apply(State state,

3 Lifetime lifetime, When expression, int k) {

4 /** read the value of s **/

5 String s = expression.getVariable();

6 Path.Element[] es = new Path.Element[1];

7 es[0]=Path.DEREF_ELEMENT;

8 Lval w = new Lval(s, new Path(es));

9 /** determine if w exists **/

10 Value v = state.read(w, lifetime);

11 /** R-whenFalse **/

12 if(Integer.valueOf(v.toString()) == 0){

13 return new Pair<>(state, expression);

14 }

15 /** R-whenTrue **/

16 else{

17 Pair<State,Expression> S = apply(state,lifetime,

18 expression.getOperand(), k);

19 return new Pair<>(S.first(), S.second());

20 }

21

22 }

Listing 6.13: Implementation of the R-WhenFalse and the R-WhenTrue Rules.

As observed, once we retrieve the signal value, we examine whether the signal has already
been emitted. If the signal has not been sent, on Line 12, we simply return the "when"
expression itself. On the other hand, if the signal is already emitted, on Line 17, we execute
the block of the "when" expression using the "apply" function.

Concerning the typing of the "when" expression, three conditions must be fulfilled: (1)
The effect "κ" should be equal to 1, (2) the signal must have been previously declared, and
(3) there should be no shared data borrowed in the current thread environment, as outlined
below:

s ∈ L1 safeTrc(Γ1) L1,Γ1 ⊢1 ⟨{e1}m ∶ τ⟩lσ ⊣ L2,Γ2

L1,Γ1 ⊢1 ⟨when(s) {e1}m ∶ τ⟩lσ ⊣ L2,Γ2

( T-When)

Unlike the "when" expression, the "watch" expression defers the signal emission check
until the end of the current instant. As depicted in the below rule, we directly execute the
block of the "watch" expression:

⟨ψ1, S1 ⊳ {e1}m →i ψ2, S2 ⊳ {e2}m⟩l
⟨ψ1, S1 ⊳ watch(s) {e1}m →i ψ2, S2 ⊳ watch(s) {e2}m⟩l

(R-Watch)

The implementation of the R-Watch rule is straightforward and concise as follows:
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1 // R-Watch

2 protected Pair<State, Expression> apply(State state,

3 Lifetime lifetime, Watch expression, int k) {

4 /** determine whether the signal given as a parameter exists **/

5 Pair<State,Expression> S = apply(state,lifetime,

6 expression.getOperand(), k);

7 return new Pair<>(S.first(), S.second());

8 }

Listing 6.14: Implementation of the R-Watch Rule.

To type the "watch" expression, as illustrated by the T-Watch rule, it is necessary that
the signal "s" already exists in the context L1:

s ∈ L1 L1,Γ1 ⊢1 ⟨{e1}m ∶ τ⟩lσ ⊣ L2,Γ2

L1,Γ1 ⊢κ ⟨watch(s) {e1}m ∶ τ⟩lσ ⊣ L2,Γ2

( T-Watch)

The implementation of the T-Watch rule is as follows:

1 // T-Watch

2 protected Pair<Environment, Type> apply(Environment gam,

3 Lifetime lifetime, Syntax.Expression.Watch expression, int k) {

4 // retrieve the name of signal

5 String s = expression.getVariable();

6 Location ls = gam.get(s);

7 // check if the signal already exists.

8 ....

9 if(ls==null){

10 try {

11 check(true, "The signal "+ s+" does not exist ");

12 } catch (ExceptionsMSG e) {

13 throw new RuntimeException(e);

14 }

15 }

16 // done

17 return apply(gam, lifetime, expression.getOperand(), k);

18 }

Listing 6.15: Implementation of the T-Watch Rule.

In Listing 6.15, we simply check whether the signal exists and then proceed to type block
of the "watch" expression. Following a detailed explanation of several extensions intro-
duced in Chapter 5, this section concludes with a reactive example that incorporates these
extensions. For further insights, please refer to our implementation on GitHub.

1 // th1

2 fn f1(mut x : trc<int>; s1,s2)->1 unit{
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3 watch(s2){

4 when(s1){

5 *x=1;

6 }

7 cooperate;

8 let mut y = x.clone;

9 spawn(f3(box(y); s1,s2));

10 emit(s1);

11 }

12 }

13 // th2

14 fn f2(mut x : trc<int>; s1,s2)->1 unit{

15 let mut y = 1;

16 if(&*x==&y){

17 emit(s2);

18 }else{

19 emit(s1);

20 cooperate;

21 }

22 }

23 // th3

24 fn f3(mut x :box<trc<int>>; s1,s2)->1 unit{

25 watch(s1){

26 when(s2){

27 let mut a = &mut *x;

28 **a = 1;

29 cooperate;

30 }

31 }

32 }

33

34 // main

35 {

36 let mut x = trc(0);

37 Sig s1; Sig s2;

38 spawn(f1(x.clone; s1,s2));

39 spawn(f2(x.clone; s1,s2));

40 }

Listing 6.16: A Reactive Example illustrated in MSSL.

The example presented in Listing 6.16 is accepted by our type system. During the execution
of this example, we initiate two threads at the beginning, with the first thread executing
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"f1" and the second executing "f2". We suppose that the first thread assumes control and
executes the "watch" expression block on Line 3. Subsequently, this thread checks whether
signal "s1" is being emitted, which is not the case. Then it cooperates, and the second thread
takes over. The second thread examines whether the content of "x" is 1 (which it is not),
and executes the "else" branch, where it emits the "s1" signal and cooperates. According
to the reduction rules, the current instant is not over, and the scheduler initiates a new cycle
without resetting the signals. Consequently, the first thread resumes execution at line 4,
and since the signal is emitted, the thread continues its execution. As for the second thread,
in this new cycle, when it resumes execution at line 20, it completes its execution, and so
forth.

1.3 MSSL to Fairthreads

As previously discussed, once the MSSL type system accepts an MSSL program, it is trans-
lated into Fairthreads. This section provides an overview of the translation from MSSL to
Fairthreads.

Let us examine the example presented in Listing 6.16, which represents a program ac-
cepted by the MSSL system. Once this example has been accepted, the translation from
MSSL to C is automatically performed by invoking the Fairthreads library. According to
this example, the syntax of Fairthreads (see examples in Chapter 2) is as follows:

• watch(s2){...} will be converted to ft_thread_set_event_watch(s2) {...}

• when(s1) will be rendered as ft_thread_when_event(s1)

• cooperate will result in ft_thread_cooperate()

• spawn(...) will be transformed into ft_thread_create(...)

• emit(s1) will be translated as ft_thread_generate(s1)

Furthermore, at the end of each block, the free functionwill be added to facilitate automatic
memory deallocation corresponding to the data type.
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Conclusion

The best way to get a better answer is to

start asking a better question

– Anthony Robbins

Synchronous reactive programming is a programming paradigm grounded in logical
instants, enabling the synchronisation of program threads and signal emissions and recep-
tions at regular intervals. This greatly streamlines the development of programs engag-
ing extensively with external environments. Typically, synchronous reactive programs are
compiled into real-time programs scripted in lower-level abstraction languages, particu-
larly C. Consequently, they encounter analogous challenges, with a key concern revolving
around memory safety: how to guarantee that distinct lightweight processes refrain from
making concurrent accesses to the same shared data at the same logical instant?

Memory safety is a well-known problem in programming, for which numerous solu-
tions have been proposed in the literature. In a multi-process context, a classic solution
involves using a mutual exclusion mechanism (mutex), which must be used judiciously by
the programmer to avoid incorrect concurrent memory accesses or deadlocks. Another so-
lution is to employ a type system that statically guarantees that a program does not perform
illegal memory operations, such as accessing a deallocated memory block. The complex
type system of the Rust language contributes to its growing popularity by ensuring mem-
ory safety while enabling the writing of low-level programs compiled into highly efficient
code.

The original approach of this thesis involves proposing a new language called MSSL
(Memory Safe Synchronous Language), which adapts and extends Rust’s type system for
synchronous reactive programs. The chosen reactive model employs lightweight processes
executing in a round-robin fashion, in a collaborative manner. This means that each process
decides when to yield control to the scheduler using a specific language instruction. This
language ensures the validity of memory accesses performed by different processes without
the need for developers to use mutexes.
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To substantiate this assertion, we concentrated on extending FR [73] with new ex-
tensions tailored for cooperative concurrent programming. Consequently, we presented
MSSL, a memory-safe synchronous language that operates as a reactive programming lan-
guage based on cooperative threads and synchronous execution. MSSL enables data sharing
among multiple cooperative threads while ensuring memory integrity. This outcome is at-
tained by introducing a new abstraction called Trc, which combines the ownership safety
of Rust references with the reference counting mechanism of Rust smart pointers.

MSSL draws inspiration from the family of synchronous reactive languages (e.g., Es-
terel, Reactive-ML, Reactive-C, Fairthreads) and incorporates elements from the popular
Rust language. In MSSL, threads execute in a round-robin manner under the notion of log-
ical time, called "instants," ensuring synchronous progress with a consistent view of signal
states at each instant. Notably, MSSL’s type system ensures safe memory management be-
tween threads without the need for locking primitives or garbage collection mechanisms.
The core of MSSL is FR

FT
, a calculus language. Compared to the FR language, FR

FT
intro-

duces a new type of smart pointers called Trc, enabling threads to communicate without
requiring locking primitives. Since thread lifetimes cannot be statically inferred, our contri-
bution focuses on reference counting, allowing us to bypass lexical scope constraints and
to manage memory safely. Additionally, FR

FT
models key aspects of Rust’s type system,

such as ownership, borrowing, lifetimes, copy and move semantics, as well as dynamic
allocation via Box. To ensure memory safety for well-typed programs, we provided an op-
erational semantics and a type system for MSSL. Our type, borrowing, and concurrency
safety theorem guarantees that, from an initial state, the execution of an FR

FT
program can

be an infinite sequence of logical instances while preserving the well-typed state of each
thread, memory safety between threads, the borrowing invariants specified by Rust, and
the uniqueness of Trc. Building on FR

FT
, we introduced several reactive extensions like

cooperate for explicit cooperation, when for implicit cooperation, watch, and the con-
cept of signals. Furthermore, we proposed an implementation of the type system for the
complete MSSL syntax and a translation for well-typed programs into Fairthreads. In this
context, we modified the behavior of the cooperate expression and added the when and
watch expressions (representing weak preemption), which were not previously available in
Fairthreads [26].

Future Work

Our future work encompasses further experiments and proposed research directions aimed
at validating the results and gaining a more comprehensive understanding of the topic. The
thesis focuses on two main aspects: memory safety between threads and the reactive syn-
chronous model. For each aspect, we envision several directions to build upon the ground-
work laid by this thesis.

In the first aspect, our objective is to demonstrate the ability to statically preserve mem-
ory safety between cooperating threads. Having achieved this goal, an intriguing next step
would be to provide a Rust crate based on our results. This extension will require the use
of Rust’s unsafe feature. To deal with the Rust type system, cloning and sharing Trc, could
be achieved through pack and unpack primitives. We intend to ensure the preservation of
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safety by leveraging the techniques outlined in the RustBelt project [52]. Moreover, draw-
ing inspiration from the effort in [36], an ownership-based language analyzing information
flow in Rust, we could explore function invocation and further enrich our type system.
On the other hand, MSSL is considerably smaller than full Rust, leaving room for intro-
ducing missing features like data structures, traits, pattern matching, immutable variables,
etc. Another track for future work involves the implementation of NLL (Non-Lexical Life-
times). As we have previously discussed, MSSL closely aligns with Rust version 1.39.0,
where lifetimes are based on the LL (lexical lifetime) concept. To enhance our type system
and accommodate more programs, we envision expanding it based on the NLL concept. The
NLL approach treats a reference type such as (&′a ω) as a pair of values: a lifetime (denoted
by ’a) and a referent type ω. This type is interpreted as "ω which lives for at least ’a". In
other words, in the new version of Rust, a lifetime in NLL represents a set of lines of code
for which a value lives (as a loan). Conversely, Polonius [78] introduces a different view of
loans, reversing the relationship between lives and loans. According to this perspective, a
lifetime is now referred to as a "provenance" of the loan.

The implementation section discussed in Chapter 6 requires further refinement. Thus,
it’s necessary to establish metrics to evaluate the implementation effort, particularly in
terms of processing time. Additionally, incorporating real-world examples written in MSSL
is essential to assess the language’s capabilities and limitations. This process will enable a
comprehensive exploration of the primary design and implementation decisions.

Furthermore, MSSL incorporates a reactive aspect that enhances the Fairthreads pro-
gramming model. In addition to this, MSSL’s threads are designed to be cooperative, but
it also proves beneficial to introduce the concept of preemptive threads. The objective is
to combine cooperative and preemptive threads while ensuring memory safety between
them. The approach involves identifying in advance which threads share the same mem-
ory region and which do not. As a result, threads that share the same memory region will
be executed cooperatively, while those that operate on distinct memory regions will run in
parallel. This approach significantly boosts MSSL’s efficiency, usefulness, and applicability
across a wide range of applications.
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Résumé de la thèse

Les langages réactifs synchrones sont un excellent choix pour la programmation de l’internet
des objets (IoT), en raison de leur sémantique claire concernant l’interaction entre le sys-
tème et l’environnement. Cependant, dans le contexte de systèmes nécessitant une sécu-
rité rigoureuse ou opérant avec des ressources limitées, les nouvelles propositions telles que
Fairthreads ou ReactiveML font face à un défi bien reconnu. L’approche de gestionmanuelle
de la mémoire, comme celle adoptée par Fairthreads, peut conduire à des erreurs, tandis que
l’utilisation du ramasse-miettes (comme dans le cas de ReactiveML) garantit la sécurité de
la mémoire, mais au prix d’une surcharge de performance. Pour résoudre ces problèmes,
nous repensons l’approche de FairThreads en introduisant des éléments issus du système
de types de Rust. Cette adaptation assure ainsi la sécurité de la mémoire sans engendrer de
surcharge d’exécution. Notre proposition introduit un nouveau type de pointeur intelligent
pour le partage des données. Ces pointeurs permettent un accès sécurisé sans nécessiter
le recours à une gestion de verrouillage, les rendant ainsi parfaitement compatibles avec
l’ordonnancement coopératif propre à Fairthreads.

Dans les langages de programmation synchrones, un ensemble de comportements est
exécuté par cycles successifs appelés "instants". À chaque instant, ces comportements
réagissent à des signaux, pouvant contenir des valeurs, générées soit par l’environnement,
soit par les comportements eux-mêmes. Un instant se termine lorsque toutes les réac-
tions sont achevées, ce qui résulte en une sortie en réponse à l’environnement. Au début
de chaque instant, l’état des signaux est réinitialisé et ils reçoivent de nouvelles entrées
provenant de l’environnement. Dans les langages synchrones tels que Esterel, les réac-
tions à l’absence d’un signal peuvent se produire instantanément. Toutefois, ces réactions
peuvent engendrer des comportements non causaux, qui sont identifiés et écartés par des
vérifications statiques. Le compilateur veille également à ce que les programmes soient
réactifs ou productifs. Néanmoins, ces contrôles dépendent grandement de contraintes
strictes au sein du langage, telles que l’absence de manipulation de données dynamiques
et l’ordonnancement statique. Fairthreads, qui repose sur le langage SL, adopte une ap-
proche différente en différant les réactions à l’absence d’un signal jusqu’au prochain instant.
Cette méthode contourne les problèmes de causalité et permet l’utilisation de données dy-
namiques ainsi que la création de threads. Des solutions basées sur des méthodes formelles
ont été élaborées pour garantir la productivité. Toutefois, ces solutions supposent l’absence
d’erreurs de mémoire.

Dans cette thèse, nous revisitons Fairthreads en introduisant un système de type sim-
ilaire à celui du language Rust dans un langage expérimental appelé MSSL (Memory Safe
Synchronous Language). MSSL est un langage de programmation réactif qui se fonde sur
des threads coopératifs et une exécution synchrone. Dans ce modèle de programmation, les
threads s’exécutent de manière séquentielle, et le changement de contrôle entre eux est ef-
fectué sur demande à l’aide d’une commande "yield". L’introduction d’une notion de signal
permet aux threads de se synchroniser. Par l’intermédiaire d’une unité temporelle appelée
"instant", les threads progressent simultanément avec une vision uniforme de l’état des sig-
naux (présents ou absents) à chaque instant. Du fait de l’utilisation de l’ordonnancement
coopératif, MSSL ne nécessite pas l’utilisation de mécanismes de verrouillage. Cependant,
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bien que l’exécution des threads soit coopérative, l’incorporation du système de types de
Rust demande des ajustements pour permettre le partage de données entre les threads, car
cela introduit une nouvelle forme d’aliasing qui doit être contrôlée. Le concept de comptage
de références, comme le propose Rust tels que Rc et Arc, se présente comme une solution
prometteuse, car il permet de dépasser les limites de portée lexicale. Cela s’avère nécessaire
pour autoriser le partage de données entre différents threads. Néanmoins, cette approche
est limitée par le fait que ces références sont en "read-only". Supprimer cette restriction
remettrait en cause la sécurité de la mémoire au niveau des threads. Pour résoudre ce
problème, nous proposons une combinaison entre l’approche du comptage de références
et les contraintes d’aliasing des références standards de Rust. Cette contribution majeure
de notre travail se matérialise sous la forme d’un nouveau type de pointeur intelligent ap-
pelé Trc (Thread Reference Counting), spécifiquement conçu pour gérer le multithreading
coopératif. À l’instar des pointeurs Rc de Rust, les pointeurs Trc reposent sur unmécanisme
de comptage de références pour leur gestion. Demanière intuitive, les pointeurs Trc encap-
sulent des données partagées, rappelant en quelque sorte les Mutexes de Rust. Cependant,
contrairement aux Mutexes, les données à l’intérieur des pointeurs Trc ne nécessitent pas
d’être verrouillées à chaque accès. L’une des distinctions clés entre les pointeurs Trc et
les pointeurs Rc de Rust réside dans la mutabilité de leur contenu. Notre système de types
interdit: (1) L’aliasing d’un pointeur Trc par des threads uniques et (2) la détention d’une
référence au contenu d’un pointeur Trc aux moments de coopération.

Aperçu de Rust

Rust est un langage de programmation à typage statique axé sur la performance, la fiabilité
et la sécurité. Il utilise un système de types robuste basé sur les principes de propriété et
d’emprunt pour contrôler efficacement l’aliasing des données, en utilisant les concepts fon-
damentaux de la sémantique de "copy" et de "move", ainsi que de la mutation des données.

Rust gère également la gestion de la mémoire sans nécessiter de ramasse-miettes en
associant chaque variable à une durée de vie et en insérant automatiquement des points
de désallocation à la compilation. Le système de types protège contre les "dangling point-
ers" en suivant l’aliasing et en facilitant la désallocation automatique. En incorporant ces
fonctionnalités, Rust vise à fournir les performances et la flexibilité du langage C tout en
traitant les erreurs de gestion de mémoire. Cependant, une application stricte de ce sys-
tème de types est trop restrictive. C’est là que la pragmatisme de Rust intervient. Des
bibliothèques peuvent être développées dans lesquelles le système de types est désactivé
en utilisant le mot-clé "unsafe". De nombreuses fonctionnalités de Rust, notamment Rc,
Arc et Mutex, utilisent ce mécanisme. Rc et Arc sont des types de référence en lecture
seule spéciaux qui permettent de partager la propriété de valeurs allouées sur le tas en util-
isant le comptage de références. Cette approche est avantageuse en termes de partage de
données entre les threads, franchissant les limites de la portée lexicale. Étant donné que
ces références sont en lecture seule, leur contenu ne peut pas être modifié. Avec Rust, les
Mutex sont utilisés pour muter des données partagées entre les threads. Cependant, dans
les scénarios impliquant des threads coopératifs, la protection des données devient inutile,
rendant l’utilisation des Mutex non recommandée. Pour résoudre ce problème, nous pro-
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posons de combiner l’approche du comptage de références avec les contraintes d’aliasing
de référence standard de Rust. Notre contribution introduit Trc, un nouveau type de poin-
teur intelligent spécialement conçu pour faciliter le partage de données entre des threads
synchrones coopératifs.

En outre, cette thèse a apporté une contribution significative au développement deMSSL
en tant que langage réactif synchrone, en tirant profit des aspects de sécurité de Rust. Les
travaux exposés dans cette thèse sont organisés comme suit :

1. La première partie de la thèse se concentre sur la mise en évidence de FR
FT
, un noyau

coopératif de MSSL dépourvu d’opérations de synchronisation et qui étend FR [73].
Comparativement à FR, FR

FT
introduit de nouvelles constructions, notamment deux

instructions de multi-threading (création de threads et coopération explicite), ainsi
qu’un nouveau type de pointeurs intelligents nommé Trc (Thread Reference Count-
ing) conçu spécifiquement pour la communication entre les threads. Intuitivement,
toutes les données partagées doivent être encapsulées dans un Trc. Le système de
types garantira cette propriété et protégera de tels données contre toute corruption
concurrente. Concevoir ce nouveau type de pointeurs intelligents a représenté un
défi, car il devait permettre à la fois le partage et la mutabilité sans nécessiter une dis-
cipline de verrouillage. Plus précisément, Trc (1) autorise le partage entre les threads,
(2) garantit l’unicité par thread des Trc et (3) assure qu’au moment de la coopération,
les threads ne possèdent pas de références vers les données partagées. Les pointeurs
Trc sont divisés en deux catégories distinctes : les Trc actifs, qui servent de points
d’accès à la partie partagée du tas, et les Trc inactifs, qui sont des copies de Trc actifs
destinées à être communiquées à d’autres threads. Lorsqu’un Trc inactif est commu-
niqué à un autre thread, il devient actif. Seuls les Trc actifs peuvent être accédés.
Cette partie de la thèse comprend également une description détaillée de la séman-
tique opérationnelle du langage, expliquant comment il fonctionne en pratique.

2. La deuxième partie de la thèse aborde le système de types de FR
FT
, qui vise à garantir

la sécurité du typage et de l’emprunt entre les threads. Ce système de types vise à
assurer trois propriétés essentielles pour les programmes correctement typés :

• La validité des références à chaque utilisation.
• L’unicité des Trc.
• La prévention de la corruption des données dans la mémoire des threads lors du
partage de données entre eux.

Parallèlement à Rust, nous introduisons des sémantiques de "copy" et de "move", in-
cluant des références mutables et immutables, des "reborrowing", des durées de vie,
ainsi qu’une allocation dynamique via Box, qui permet des déplacements partiels.
Le système de types que nous avons développé est en mesure de prendre en compte
tous ces aspects. De plus, dans cette partie, nous démontrons la solidité du système
de types FR

FT
. Cette solidité garantit que les programmes correctement typés ne se

terminent pas par un plantage. En d’autres termes, ils atteignent soit un état final où
toutes les expressions de thread deviennent des valeurs, soit ils produisent un nom-
bre infini d’instants. Plus précisement, nous prouvons que les programmes FR

FT
bien
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typés, qui permettent le partage de données entre des threads, s’exécutent en toute
sécurité sans rencontrer de problèmes. De plus, nous revisitons le concept d’instant
logique, qui indique que l’exécution d’un programme sûr peut être vue comme une
séquence infinie d’instants tout en préservant la sécurité de la mémoire entre les
threads. Cette notion garantit qu’un thread, lors de son exécution, maintient son
type afin d’empêcher toute référence incorrecte. En outre, son exécution préserve le
type des autres threads sans générer de données indésirables dans leurs espaces mé-
moire. Tout cela est réalisé tout en respectant les règles définies pour Trc, les durées
de vie et les emprunts.

3. La troisième partie de la thèse présente la syntaxe complète deMSSL, tout en l’étendant
au-delà de FR

FT
en y ajoutant des extensions à la fois réactives et non réactives. Nous

enrichissons considérablement MSSL en introduisant la notion de signaux, qui se
révèlent être des éléments puissants, flexibles, et dotés de capacités de communica-
tion très pertinentes. À ce stade, les threads ont la possibilité de créer des signaux,
émettre des signaux et attendre des signaux. De plus, nous offrons une explication
détaillée de la manière dont l’invocation de méthode peut être implémentée dans ce
contexte.

4. La dernière partie de la thèse se concentre sur l’implémentation complète du langage
MSSL en Java. L’accent est mis sur la gestion de Trc et des emprunts, tout en intégrant
d’autres extensions de MSSL. Cette mise en oeuvre respecte les règles sémantiques
et de typage exposées dans la thèse, offrant ainsi une compréhension approfondie de
la manière dont la solidité de nos règles se vérifie dans une implémentation concrète.
Cette implémentation est réalisée en Java et est disponible gratuitement sur GitHub
.
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Darine RAMMAL
Sécurité de la mémoire pour la programmation réactive synchrone

Résumé:
Les langages réactifs synchrones constituent un excellent choix pour la programmation de l’IoT en raison de
leur sémantique claire pour l’interaction entre le système et l’environnement. Cependant, en ce qui concerne
les systèmes critiques en termes de sécurité ou contraints en ressources, des propositions récentes telles que
Fairthreads ou ReactiveML font face à un problème bien connu. La gestion manuelle de la mémoire de
Fairthreads peut entraîner des erreurs, tandis que la collecte des déchets de ReactiveML assure la sécurité de
la mémoire mais introduit une surcharge d’exécution.
Cette thèse vise à résoudre le problème de la sécurité de la mémoire en développant un langage de program-
mation réactif spécifiquement conçu pour les systèmes en temps réel, intégrant des threads coopératifs et
une exécution synchrone. En nous appuyant sur le solide système de types du langage de programmation
Rust, nous proposons un système de types similaire à Rust pour un langage de programmation réactif de
noyau appelé MSSL. MSSL offre un modèle de threads coopératifs et facilite le partage de données mutables
entre les threads tout en préservant la sécurité des types et des emprunts. Pour y parvenir, nous introduisons
une nouvelle abstraction appelée Trc (Thread Reference Counting), qui combine la sécurité de propriété des
références de Rust avec le mécanisme de comptage de références des pointeurs intelligents de Rust. Nous
présentons ensuite la sémantique et le système de types de MSSL pour démontrer ses capacités à maintenir
la sécurité des types, la sécurité des emprunts et la sécurité de la concurrence. De plus, nous étendons
MSSL en introduisant des extensions réactives, en intégrant le concept de signaux qui offrent des moyens
de communication puissants, flexibles et fiables. Enfin, nous fournissons une implémentation en Java de
l’ensemble complet de MSSL, en basant sur la sémantique et les règles de typage de son système de types.

Mots-clés : Ordonnancement coopératif, programmation réactive, langages synchrones, sécurité de la mé-
moire, Rust

Memory Safety for Synchronous Reactive Programming

Abstract:
Synchronous Reactive Languages are an excellent choice for IoT programming due to their clear system-
environment interaction semantics. However, when it comes to safety- critial or resource-constrained systems,
recent proposals like Fairthreads or ReactiveML face a well-known issue. Fairthreads’ manual memory manage-
ment can lead to errors, while ReactiveML’s garbage collection ensures memory safety but introduces execution
overhead.
This thesis aims to address the memory safety issue by developing a reactive programming language specifically
designed for real-time systems, incorporating cooperative threads and synchronous execution. Drawing from
the robust type system of the Rust programming language, we propose a Rust-like type system for a kernel
reactive programming language named MSSL. MSSL features a cooperative threading model and facilitates
mutable data sharing between threads while preserving type and borrowing safety. To achieve this, we intro-
duce a novel abstraction called Trc (Thread Reference Counting), which combines the ownership safety of Rust
references with the reference counting mechanism of Rust smart pointers. Then, we present the semantics
and type system of MSSL to demonstrate its capabilities in maintaining type safety, borrowing safety, and
concurrency safety.
Furthermore, we extend MSSL by introducing reactive extensions, incorporating the concept of signals that
offer powerful, flexible, and reliable means of communication. Finally, we provide a Java implementation of
the complete MSSL set, based on the semantic and typing rules of its type system.

keywords: Cooperative scheduling, reactive programming, synchronous languages, memory safety, Rust
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