
HAL Id: tel-04546959
https://theses.hal.science/tel-04546959

Submitted on 15 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unusual proof systems for modal logics with
applications to decision problems

Marianela Morales Elena

To cite this version:
Marianela Morales Elena. Unusual proof systems for modal logics with applications to decision prob-
lems. Logic in Computer Science [cs.LO]. Institut Polytechnique de Paris, 2023. English. �NNT :
2023IPPAX129�. �tel-04546959�

https://theses.hal.science/tel-04546959
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
3I

P
PA

X
12

9

Unusual proof systems for modal logics
with applications to decision problems
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Résumé

Cette thèse explore rigoureusement les logiques modales, les analysant du point de vue
de la théorie de la preuve. Plus précisément, notre principal objectif se concentre sur
l’étude approfondie du cadre intuitionniste des logiques modales en utilisant la théorie de
la preuve. En particulier, nous travaillons avec des systèmes de séquents étiquetés pour
examiner différentes variantes des logiques modales intuitionnistes et pour développer des
procédures de décision afin d’établir la décidabilité de logiques spécifiques.

Ce travail débute par l’introduction des concepts fondamentaux pour le développement
de notre contribution. Dans les Chapitres 2 et 3, nous présentons la syntaxe et la sémantique
des logiques modales classiques et intuitionnistes, y compris les axiomatisations de Hilbert et
de Gentzen. Dans les deux contextes, nous avons concentré notre attention sur la déduction
étiquetée, plus précisément sur les systèmes de séquents étiquetés en raison de nos intérêts
de recherche dans l’étude de l’approche intuitionniste à l’aide de ce formalisme. Dans ces
chapitres introductifs, nous avons également présenté les systèmes de preuves étiquetés
de Negri [49] et de Simpson [59] pour les logiques modales classiques et intuitionnistes,
respectivement.

À partir du Chapitre 4, nous introduisons nos contributions aux logiques modales in-
tuitionnistes. Les systèmes mentionnés précédemment ont constitué notre première com-
préhension pour la conception et le développement de notre première contribution : notre
système de séquentiel entièrement étiqueté pour les logiques modales intuitionnistes. Ce tra-
vail conjoint avec Marin et Straßburger [43] présente un système de séquents étiquetés pour
capturer les logiques modales intuitionnistes. Ce système étiqueté présente non pas un
(comme celui présenté par Simpson), mais deux symboles de relation apparaissant dans les
séquents : l’un pour la relation d’accessibilité R associée à la sémantique de Kripke pour les
logiques modales normales et l’autre pour la relation de préordre ≤ associée à la sémantique
de Kripke pour la logique intuitionniste. Cela place notre système en correspondance étroite
avec la sémantique de Kripke birelationnelle standard pour les logiques modales intuition-
nistes. Nous montrons que ce système est sonore et complet, et nous présentons une preuve
de son élimination des coupes. Ce système est d’abord présenté pour la logique modale
intuitionniste IK, mais ensuite, en conséquence de l’explicitation des deux relations dans le
système, il peut englober une gamme plus large de logiques modales intuitionnistes : en par-
ticulier, nous présentons des extensions du système de séquents entièrement étiqueté avec
des axiomes intuitionnistes unilatéraux de Scott-Lemmon et avec des axiomes de Scott-
Lemmon de chemin, ce qui nous permet d’avoir un cadre étiqueté complètement général
pour capturer toutes les logiques modales intuitionnistes du cube S5. Cette contribution est
présentée dans le Chapitre 4.

Le système de séquents entièrement étiqueté devient l’un des ingrédients clés pour abor-
der le problème de décidabilité de diverses logiques modales intuitionnistes dans le cube S5.



Dans le Chapitre 5, nous commençons à travailler sur les problèmes de décision pour des
logiques "plus simples", au sens où leur décidabilité était déjà connue. En particulier, nous
travaillons d’abord avec des logiques où la transitivité ne fait pas partie des conditions re-
streignant la classe de cadres avec lesquels nous travaillions, comme c’est le cas des logiques
modales intuitionnistes IK, IT, IKB, ITB et IK5. Nous fournissons pour elles une procédure
de décision constructive qui, étant donnée une formule, produit soit une preuve montrant
que la formule est valide, c’est-à-dire qu’elle est un théorème de la logique, soit un contre-
modèle fini falsifiant la formule, et montrant donc que la formule n’est pas démontrable
dans la logique. Cette procédure est basée sur notre système de séquents entièrement éti-
queté. Ce résultat sert également d’introduction solide pour approfondir notre travail dans
des logiques dont la décidabilité était inconnue jusqu’à cette année, comme c’est le cas
de la logique intuitionniste IS4 [21]. En particulier, toutes les notions présentées dans le
Chapitre 5 sont développées dans le but d’être applicables à toutes les logiques modales
intuitionnistes du cube S5. De plus, l’algorithme de recherche est développé avec la flex-
ibilité d’être personnalisé pour chaque logique modale intuitionniste spécifique que nous
souhaitons utiliser, incorporant les contraintes nécessaires pour démontrer sa terminaison
dans chaque cas. Nous étendons ce résultat pour étudier la décidabilité de la logique IS4,
présentant ainsi une autre contribution significative de cette thèse dans le Chapitre 6.

Le problème de décision de la logique modale intuitionniste IS4 est un problème ouvert
depuis près de trente ans depuis qu’il a été posé dans la thèse de doctorat de Simpson en
1994. Avec Girlando, Kuznets, Marin et Straßburger [21], nous prouvons que la logique
intuitionniste IS4 est décidable. Nous sommes capables d’obtenir ce résultat grâce à deux
ingrédients clés. Le premier est l’utilisation du système de séquents entièrement étiqueté
(comme nous le faisons pour les autres logiques mentionnées dans le Chapitre 5), car ce
système hérite des avantages des systèmes étiquetés pour la logique propositionnelle intu-
itionniste et les logiques modales classiques : en particulier, toutes les règles d’inférence
sont inversibles (c’est-à-dire que nous ne supprimons jamais d’informations de bas en haut
dans la recherche de preuves) et il existe une correspondance directe entre les séquents et
les modèles qui nous permet de construire un contre-modèle en interprétant (et en éten-
dant) le séquent étiqueté auquel la recherche de preuves se termine. Et deuxièmement, en
introduisant un mécanisme que nous avons appelé le unfolding, qui fournit une véritable
preuve lorsque l’algorithme de recherche se termine dans des séquents axiomatiques. En
d’autres termes, nous montrons que nous pouvons préserver la cohérence si nous organisons
la recherche de preuves de manière systématique.

Toutes ces contributions se situent dans le cadre intuitionniste des logiques modales.
Dans le Chapitre 7, nous présentons notre travail dans un fragment de l’approche classique.
Ce chapitre est un travail en cours dans le formalisme de l’inférence profonde en utilisant la
méthodologie de la théorie de la preuve subatomique. Cette méthode traite les atomes comme
des connecteurs binaires, conduisant à une forme uniforme de toutes les règles d’inférence.
Cela réduit énormément le nombre de cas dans l’analyse des coupes pour l’élimination. Cela
soulève la question : comment cette méthodologie peut-elle traiter les modalités alors qu’elles
sont des connecteurs unaires?. Nous commençons à explorer ce nouveau formalisme et nous
obtenons un système de preuve subatomique pour le fragment linéaire de la logique modale
classique. Nous prouvons son élimination des coupes par scindement et, en résultat de cette
preuve, nous prouvons l’admissibilité des règles ascendantes qui sont les coupes.
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Chapter 1

Introduction

In this thesis our primary focus centers on the comprehensive study of intuitionistic modal
logics using proof theory. In particular, we work with labelled sequent systems to investi-
gate different variants of intuitionistic modal logics and to develop decision procedures for
establishing the decidability of specific logics.

In the upcoming sections, we are going to outline the path we have taken to explore our
main research interests. In particular, we start in Section 1.1 presenting the field of our
studies, which is computer science from a mathematical perspective or as it is called Com-
putational Logic. We precise our focus on studying the family of modal logics through the
lens of proof theory in Section 1.2. We continue with Section 1.3 providing a comprehensive
overview of related work on decision problems for modal logics. Finally, in Section 1.4 we
outline the structure of this thesis.

1.1 Logic to reason about computation
Computer Science is a field which lies at the intersection of engineering and mathematics,
making it difficult to classify as solely one or the other. From one side, it involves designing,
constructing, and evaluating computer systems from a software development point of view,
which aligns with the principles of engineering. However, from a theoretical perspective, the
fundamental concepts of computer science are explained mathematically. As a result, the
discipline of computer science cannot be one from the two points of view since from a prac-
tical perspective, the goal is to solve problems with computer programs; but understanding
the feasibility of solving a problem and its level of difficulty requires studying computer
science from a mathematical perspective.

In this thesis, we focus on computer science from a mathematical point of view. Since
there are many connections between mathematics and computation, we have to clarify that
our thesis is focus on Computational Logic [55]. Computational logic is the use of logic to
reason about computation. By using logic, we can describe the behavior of a computing
system in a precise and rigorous way, and we can reason about its correctness, efficiency,
and other properties. In [27], there are examples of applications of computational logic in
different areas and the impact which is generated. Let us discuss some of those examples to
understand the important role of computational logic and why we are interested in studying
this field.

Complexity Theory [31] is one of the applications of logic in theoretical computer science.

1



It investigates the question "How much time and how much memory space is needed to solve a
particular problem?". This measure is done by classifying a problem into complexity classes
(for example: polynomial time (P), non-deterministic polynomial time (NP), polynomial
space (PSPACE), exponential time (EXPTIME), etc). Natural complexity classes, as the ones
mentioned before, have natural descriptive characterizations. Descriptive complexity is the
field in charge of studying them. One example is Fagin’s theorem [14] which characterizes
the class NP purely by logic, with no mention of machines or time. It characterizes the class
with the existential fragment of Second-Order Logic. Therefore, logic has proven to be a
valuable tool for addressing some of the basic questions in complexity theory.

Another application of computational logic is Databases. Logic and databases have been
intimately connected since the birth of database systems in the early 1970’s. In particular,
First-Order Logic (FOL) lies at the core of modern database systems, and the standard
query languages such as Structured Query Language (SQL) and Query-By-Example (QBE)
are syntactic variants of FOL. More powerful query languages are based on extensions of FOL
with recursion. The impact of logic on databases is one of the most remarkable examples
of the effectiveness of logic in computer science.

Logic plays a crucial role in establishing the fundamental properties of programming lan-
guages, making it a key tool in the software product development process. Type theory [54]
emerged as a unifying conceptual framework for the design, analysis, and implementation
of programming languages. It provides a foundation for developing logics of program be-
havior that are essential for reasoning about programs and it suggests new techniques for
implementing compilers that improve the efficiency and integrity of generated code.

Reasoning about knowledge has been shown to play a key role in such diverse fields
as distributed computing, game theory, and artificial intelligence. The main concern is the
connection between knowledge and action. This initiates the study of epistemic logics [64], in
which knowledge and interaction are represented in models of possible worlds (we are going
to talk about possible worlds in Chapter 2), providing a formal framework to represent the
kind of computational systems that we mentioned before.

We can also name Software Verification as another area where computation and logic
are intrinsic parts of the problem: computer programs and their behaviour are formalized
in some logical language, and properties are verified on this representation.

We have presented various instances of computational problems addressed through a
logical methodology. These serve as illustrative examples where adopting a logical approach
has directly contributed to advances in the field of computer science. In this thesis, we will
investigate a family of logics that can be used to talk about relational structures, i.e. graphs,
which allows their use in various domains: linguistics, game theory, software verification,
etc. This logic is well-known as Modal Logic [5, 6]. What is called modal logic describes the
behaviour of the abstract modalities � and ♦, but covers a wide range of ’real’ modalities
in linguistic expressions or "modes of truth" like: necessity, possibility, belief, knowledge,
obligation, and permission. It is for this reason that modal logics are particularly useful in
a wide range of fields. In particular, they are such a recurring choice in computer science:
in general, modal logics have a good balance between expressiveness and computational
behavior.

There are many modal logics, each of them with its particular properties. In particular,
the language of classical modal logic can be seen as an extension of propositional logic but it
has already been shown that it is a fragment of first-order logic. To be more precise, it is a
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fragment of first-order logic with two variables, which has been shown to be decidable [57].
Our question now is: what about the extensions of this logic? Have they good computational
behaviour? What about the intuitionistic version of modal logics? And the extensions of the
intuitionistic version? In this thesis, we are going to explore these logics through the eye of
proof systems and study some of those questions. We introduce formally the modal logics
we are going to work with in Chapters 2 and 3.

1.2 Proof theory for modal logics
As it was mentioned in the previous section, we focus our research in modal logics and we are
interested in study them using proof theory. This discipline appears from the need to have
a purely mathematical language to formalize the proofs and understand their properties.
Frege pioneered this discipline suggesting that proofs can be considered themselves as objects
of mathematical study in 1879 in his Begriffschrift [17]. Hilbert followed Frege’s ideas and
proposed the definition of a deductive system to formalize reasoning [29].

Another of the important figures in proof theory was Gentzen, who introduced funda-
mental proof-theoretic methods to prove results in mathematical logic in 1934 [19, 20]. In
particular, Gentzen was the one who developed the sequent calculus, an alternative repre-
sentation of the proofs that promote the inference rules over axioms and which provides an
intuitive way of searching for a proof. The cut-elimination theorem or also known as Haupt-
satz introduced by Gentzen, states that any purely logical proof in the sequent calculus can
be transformed into a normal analytic form. This means that in sequent calculus, any proof
can be performed without lemmas. In order to prove the Hauptsatz, one needs to show that
a rule called cut is redundant in the system. In other words, it states that any proof that
has a proof in the sequent calculus using cut also has a proof without this rule.

Another of Gentzen’s main contributions was the parallel study of classical and intu-
itionist logic. Intuitionistic logics arise with Brouwer [7] as a formalization of constructive
reasoning (i.e. the existence of an object is equivalent to the possibility of its construction),
rejecting the Principle of the Excluded Middle which establishes that a proposition must be
true or false. Whereas in intuitionistic logic there can be uncertainty as to whether or not a
proposition holds, in classical logic the principle of the excluded middle is accepted. In this
work, it is worth noting that by intuitionistic logic we mean basic propositional intuition-
istic logic. Gentzen observed that, in the sequent calculus, when we define proof systems
for an intuitionistic calculus, it is possible to obtain such systems simply by a syntactical
restriction of the classical one.

The intuitionist approach was used on different logics, in particular, and in which we are
interested in this thesis, it was used in modal logics. The foundation of modal logics started
with Aristotle and with an important development in the Middle Ages. Its consolidation
occurred in the late 1950’s and early 1960’s with the development of a semantics based
on possible worlds introduced by Kripke [34] (hence the name of Kripke semantics) which
allows us to understand modal logic as a language for graphs or as a language for describing
processes, that is, to see the elements of the graph as a set of computational states and to
see the relations as actions that transform one state into another.

Proof theory has been used to study various proof systems for modal logics, includ-
ing sequent calculi and natural deduction systems. These proof systems provide a formal
representation of the rules for manipulating modal formulas and for deriving conclusions
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from them. By studying the properties of these proof systems, we can gain insight into the
complexity of the corresponding modal logics and develop proof search algorithms that can
efficiently find proofs in these logics, which it is one of the fields we are interested in.

For many years the study of modal logics was based on classical reasoning but the inter-
est in intuitionistic versions come much later for two different reasons: from one perspective,
logicians were motivated by a theoretical interest in obtaining intuitionistically relevant ver-
sions of modal logics, and simultaneously, specific applications in computer science naturally
led to the emergence of some modal logics with a constructive flavour. In this thesis, we are
interested in study both classical and intuitionistic approaches for modal logics, but we are
going to focus mainly in the intuitionistic setting. In particular, we study different proof
systems formalisms for classical and intuitionistic logic such as sequent calculus and deep
inference. Inside the formalism of deep inference, we use a methodology called subatomic
proof theory [1] to obtain a subatomic proof system for a fragment of classical modal logic
(presented in Chapter 7). Then, we focus mainly on the intuitionistic approach: with Marin
and Straßburger [43], we work on the design and development of a labelled sequent system
which is sound and complete, and we also prove its cut-elimination (presented in Chapter 4).
This labelled system allows us to study the decision problem for some intuitionistic modal
logics which decidability was already known but we present here a new approach: this is for
the logics IK, IT, IKB, ITB and IK5 (presented in Chapter 5). However, this system allows us
to study decision problems for extensions of the intuitionistic setting such as intuitionistic
modal logic IS4 and IK4 which decidability until now was unknown [21]. Let us discuss a
bit more in detail about the decision problems for modal logics in the next section.

1.3 Decision problems for modal logics
We have already mentioned decidability of a logic in Section 1.1. More intuitively speaking,
a decision problem for a logic is a computational problem that takes as input a formula or
statement in the logic and returns either "yes" or "no", depending on whether the formula is
valid or invalid in the logic. The goal is to design an algorithm or procedure that can solve
the decision problem efficiently, meaning that it can determine the answer in a reasonable
amount of time. To be more formal, for a logic to be decidable, there must be a recursive
procedure which determines, for each formula, whether or not it is a theorem of the logic,
concluding with either a proof in a deductive system or a suitable countermodel.

Gentzen was the first to show decidability of intuitionistic propositional logic in 1935,
using the sequent calculus he had designed [19]. His approach was to bound the number of
consequences inferred from some given initial sequents. It was later observed (independently
by Ono [51], Ketonen [32] and Kleene [33]) that if structural rules were built in into the
notation, it allowed for a root-first proof search approach. Namely, search for a sequent
calculus proof until either it terminates with a proof or it reaches a sequent which already
occurred along the branch leading to it, at which point it is possible to stop proof search
and reconstruct a Kripke countermodel from that branch.

In the case of modal logics (on a classical propositional base), decidability has been
investigated later on. Ladner defines decision procedures for some common modal logics
such as S4 based purely on Kripke semantics, without reference to sequent calculi [36].
Otherwise, the procedure described above can similarly be applied to modal logic S4, as
it also characterizes the logic of reflexive transitive Kripke frames. Generally the approach
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via proof search in the sequent calculus is available for those modal logics that have a
cut-free sequent system [56] (or, in certain cases, a nested sequent system using a similar
strategy [8]).

Labelled sequents appear as a good choice since they internalize certain elements from
Kripke semantics into the syntax of sequents, which turn out to have several interesting
consequences to build decision procedures for intuitionistic propositional logic [12] as well
as modal logics. First, in the setting of intuitionistic propositional logic, it is not necessary
to restrict any rule to a single-conclusion. This means that all the rules can be made
invertible (i.e. never deleting information in bottom-up proof search) and that the proof
search procedure becomes deterministic: no need for backtracking. Then, in both settings,
the loop-check for ensuring termination is not done along a branch of the proof search tree,
but within a topmost sequent itself, between two labels which carry the same formulas.
Finally, in the case that a loop is found, the countermodel can be build directly from
the topmost sequent. Indeed, the syntax of labelled sequents makes it easy to read off
a countermodel from a sequent by simply substituting labels or adding back edges, both
construction being available directly in the labelled syntax.

As we mentioned in the previous section, we are interested in the study of the decision
problems for logics which decidability is unknown, as it is the case of the intuitionistic
S4. Intuitionistic modal logic IS4 is a way to combine intuitionistic propositional logic and
modal logic S4. It is obtained as an extension of intuitionistic modal logic IK. This variant
of IK and its extensions were first studied in [58, 52] and investigated in detail in [59], where
decidability was shown for most logics in the intuitionistic modal S5-cube (we are going to
present the S5-cube in Chapter 2 in Figure 2.2). The decidability of the logic IS5 had been
shown earlier by Mints [47], but the decidability for IK4 and IS4 remained open. Indeed, the
question of IS4’s decidability hides a lot more complexity than either of its parents. As it can
be interpreted on Kripke frames that incorporate the order relation of intuitionistic Kripke
frames and the accessibility relation of modal Kripke frames, it combines the well-known
problem of looping in decision procedures based on sequent calculi for both intuitionistic and
classical modal logics, which is actually exacerbated by the interactions between modalities
and intuitionistic implication. With Girlando, Kuznets, Marin and Straßburger, we show
that IS4 is decidable, and we conjecture that the same method can also be applied to
show the decidability of IK4 [21]. We provide a constructive decision procedure, that is,
given a formula it either produces a derivation which shows that the formula is valid or a
finite countermodel in which the formula is false. It is built from the labelled proof system
mentioned at the end of Section 1.1 [43] which inherits the advantages of labelled systems
for intuitionistic propositional logic and for classical modal logic: all inference rules are
invertible and there is a direct correspondence between sequents and models. The algorithm
we are using to prove decidability of IS4 is presented in Chapter 6. But in Chapter 5 we use
the same search algorithm and proof arguments (with the necessary changes) to prove the
decision problem for other intuitionistic modal logics where transitivity is not restricting
the class of frames we are working with, such as are the logics IK, IT, IKB, ITB and IK5 .
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1.4 Structure of the thesis
This thesis is outlined in the following way:

InChapter 2 we present the syntax and semantics of classical modal logic. We introduce
Hilbert and Gentzen axiomatizations, focusing on labelled sequents systems in Gentzen’s.

In Chapter 3 we follow the same structure as in Chapter 2 but for intuitionistic modal
logics. We present its syntax and semantics, and we focus mainly on labelled deduction for
intuitionistic modal logics.

In Chapter 4 we provide a labelled sequent system for intuitionistic modal logics
equipped with two relation symbols: the relation for intuitionistic propositional logic and
the one for modal logic. We show soundness and completeness, together with an internal
cut elimination proof, encompassing a wider array of intuitionistic modal logics than any
existing labelled system.

In Chapter 5 we give a decision procedure to prove decidability of the intuitionistic
modal logics IK, IT, IKB, ITB and IK5 and we ensure its termination. We obtain this result
by peforming proof search in the labelled deductive system presented in Chapter 4.

In Chapter 6 we demonstrate, for the first time, decidability for the intuitionistic modal
logic IS4. We use the same argument as in Chapter 5, but in many definitions and proof
arguments, there would be subtle differences due to the presence of transitivity.

In Chapter 7 we present a work in progress in the formalism of deep inference using the
methodology of subatomic proof theory for a fragment of classical modal logic. In particular,
we present a subatomic proof system for the linear fragment of classical modal logic and we
prove its cut-elimination via splitting. As a result of this proof, we prove the admissibility
of the up-rules which are the cuts.

In Chapter 8 we conclude this thesis by providing a summary of our presentations,
highlighting the main contributions, and outlining potential areas for future research.
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Chapter 2

Classical modal logic

In this chapter we introduce the concepts and notations that will be used in this thesis
for classical modal logic. For a more detailed presentation we refer to the surveys by Fit-
ting [16], Negri [50], Wansing [65] and Marin [41], on which this chapter is partly based.
We start introducing the syntax and semantics of classical modal logic in Section 2.1; then
we follow with Hilbert’s and Gentzen’s axiomatizations in Sections 2.2 and 2.3 respectively.
In Gentzen’s axiomatizations, we focus on labelled sequent calculus, and in particular we
present the labelled sequent system introduced by Negri [49].

2.1 Syntax and semantics
The language of classical modal logic, as the so-called modal logic K, is obtained from the
one of classical propositional logic by adding the modal connectives � and ♦. Starting with
a set of atomic propositions denoted a and their duals a, modal formulas are constructed
from the following grammar:

A ::= a | a | > | ⊥ | A ∧ A | A ∨ A | �A | ♦A

where a stands for a propositional variable and a is its dual, and > and ⊥ are the usual units
denoting true and false respectively. In a classical setting, we always assume that formulas
are in negation normal form. If we write A, then it is the result of computing the De Morgan
dual of connectives and atomic propositions within A, i.e. A = A, (A ∧B) = A ∨ B and
�A = ♦A. Implication can be defined from this set of connectives by A⊃ B ::= A ∨ B. >
and ⊥ are the usual units denoting true and false respectively.

Modal logic formulas are interpreted on relational structures. For historical reasons,
such structures are known as Kripke models [34]. The semantics in terms of these models
are known as Kripke semantics or, by the original interpretation of the modal operators, as
possible-worlds semantics. Intuitively, a model is a directed graph with labels at the nodes,
and modal formulas allow us to express properties of these graphs. We start with a graph,
without considering the labels in the nodes, which it is called frame and then we add a
mechanism to evaluate formulas which it is called a model:

Definition 2.1.1. A frame F is a pair 〈W,R〉 of non-empty set of worlds W and a binary
accessibility relation R ⊆ W ×W .
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Definition 2.1.2. A model M is a triple 〈W,R, V 〉 with 〈W,R〉 a frame and V : W → 2A a
valuation function, that is, a function mapping each world w to the subset of propositional
atoms that are true at w.

Figure 2.1 shows an example of a Kripke model. We can observe a modelM with three
elements {w, v, u}. The world w is labelled with p, the worlds u is labelled with p and q,
and the world v does not have a label. Formally, we have a model M=〈W,R, V 〉 where
W = {w, v, u}, R = {(w, v), (w, u), (v, v), (v, u), (u, v)}, and V (w)={p}, V (u) = {p, q}.

w

{p}

v

u
{p, q}

M

Figure 2.1: Example of a Kripke model.

The proposition expressed by a formula which involves only the usual logical connec-
tives is determined locally in a particular world and it is independent from the state of
other worlds. On the other hand, a proposition expressed by a formula which involves the
modalities, depends on the state of other worlds. For instance, in a world w, the formula
♦A expresses that the formula A is true in some world v such that v is considered possible
from the viewpoint of w. Technically, the definition that v is possible according to w, it is
modelled by the accessibility relation of the model. Dually, the formula �A expresses the
proposition that A is true in all the worlds v such that all of them are considered possible
from w. In this way, the meaning of the modalities � and ♦ is based on the primitive
notion of relative truth, i.e., the truth in a world. The operators from classical modal logic
describe local properties from the models, this means the formulas are evaluated in some
specific point. In other words, the truth of a modal formula in a model M at a world w
in a relational structure is defined as the possible-worlds semantics or Kripke semantics as
follows:

M, w 
 a iff a ∈ V (w)
M, w 
 a iff a 6∈ V (w)
M, w 
 A ∧B iff M, w 
 A andM, w 
 B

M, w 
 A ∨B iff M, w 
 A orM, w 
 B

M, w 
 �A iff for all v such that wRv, we haveM, v 
 A

M, w 
 ♦A iff there exists a v such that wRv andM, v 
 A

Notice the correspondence between � and universal quantification ∀, as well as ♦ and
existential quantification ∃. This allows us to identify classical modal logic as a fragment of
first-order classical logic. We define the notions of satisfability and validity of a formula as
follows:
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Definition 2.1.3. A formula A is satisfied in a modelM = 〈W,R, V 〉, if for every w ∈ W
we haveM, w 
 A. A formula A is valid in a frame F = 〈W,R〉, if for very valuation V ,
the formula A is satisfied in 〈W,R, V 〉.

In this thesis we are interested in studying modal logics using proof theory. There
are different types of proof systems for a logical language, each with certain particular
properties. For example, Hilbert systems in general consist of a set of axioms, and a few
rules that allow theorems to be inferred from axioms. On the other hand, in Gentzen
systems, inference rules predominate over axioms. In the next following sections, we will
present both types of systems for classical modal logic.

2.2 Axiomatizations à la Hilbert
The basic idea behind a Hilbert-style axiomatization is to provide a set of axioms and
inference rules that can be used to derive all valid formulas of a given logic. In a Hilbert-style
axiomatization for modal logic, the axioms are typically designed to capture the behavior
of the modal operators, such as necessity and possibility. The inference rules, on the other
hand, are used to derive new formulas from existing ones using logical principles.

The language of classical modal logic is obtained from an arbitrary axiomatization of
classical propositional logic by adding the following components:

• the necessitation rule: if A is a theorem of K then �A is also a theorem of K;

• the axiom of distributivity, commonly written k ::= �(A⊃B)⊃ (�A⊃�B).

Note that what we called an "axiom" in Hilbert-style axiomatizations refers to an axiom
schema, which is a general rule rather than a specific statement. This is done to avoid
having to explicitly mention the substitution rule, which is a fundamental aspect of Hilbert-
style axiomatizations. Furthermore, in Hilbert’s, an axiomatic proof starts from instances of
the axiom schemes of classical propositional logic or of the specific modal logic in question
and proceeds by application of the rules of modus ponens and necessitation. In particular,
modus ponens is a fundamental inference rule used to derive new statements from existing
ones. In other words, if we have a conditional statement of the form "if A, then B", and we
know that A is valid, we can logically conclude that B must also be valid.

A derivation in Hilbert systems, is formed by compiling a list of formulas that either
correspond to specific instances of given axiom schemes or are deduced from preceding
formulas through the application of inference rules. Moreover, by incorporating the k axiom
scheme in our base system, all the logics under consideration belong to the family of normal
modal logics.

Whereas the presentation of a logic in axiomatic terms and the recognition of what
qualifies as a proof in such systems are relatively straightforward, the process of actively
discovering or constructing proofs is arduous and requires meticulous effort. Typically one
has to start from complex instances of the axioms even to get to obvious conclusions such
as A ⊃ A. For this reason, in presentations that limit themselves to axiomatic systems, as
a preliminary to the actual use of such systems, a number of rules are shown admissible:
If there is derivation of A and there is a derivation of B, then there exists a derivation of
A ∧B; if there is a derivation of A, then there is a derivation of A ∨B, and so on.
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Figure 2.2: The S5-cube

On the other hand, the syntax and the semantics presented in the previous section are
linked by the fact that the logic K is sound and complete with respect to the class of all
frames and it is presented in the following Theorem:

Theorem 2.2.1 ([35]). A formula A is a theorem of K if and only if A is valid in every
frame.

Furthermore, the power of this construction is that this link is not restricted to K: some
classes of modal formulas correspond to specific properties of frames. An alternative way,
then, to obtain modal logics stronger than K is by restricting the class of frames we want
to consider, by imposing some constraints on the accessibility relation.

In this way, as modal logic developed, logicians began to explore more complex modalities
and to refine their axiomatic systems to better capture the behaviors of these modalities.
This led to the development of a wide range of specialized modal logics, each designed to
capture specific modal phenomena in different domains. Well-known extensions of classical
modal logic are obtained through the addition of one or more axioms to the system K. The
table below displays the modal axioms along with the frame property they imply, as well as
their corresponding first-order equivalent:

Axiom Frame property First-order correspondence
t : A⊃ ♦A Reflexivity ∀x.xRx

b : A⊃�♦A Symmetry ∀x, y.xRy ⊃ yRx
d : �A⊃ ♦A Seriality ∀x∃y.xRy
4 : ♦♦A⊃ ♦A Transitivity ∀x, y, z.(xRy ∧ yRz)⊃ xRz
5 : ♦A⊃�♦A Euclideaness ∀x, y, z.(xRy ∧ xRz)⊃ yRz

2 : ♦�A⊃�♦A Diamond-property ∀x, y, z.(xRy ∧ xRz)⊃ ∃u.(yRu ∧ zRu)

We will often consider the most common five axioms: t, b, d, 4 and 5. Picking subsets of
these axioms lets us define thirty-two modal logics. For example, the sets of axioms {b, 4}
and {t, 5} both yield the modal logic known as S5. On the other hand, the modal logic
K4 is obtained by adding to K the axiom 4 and the logic S4 by adding the axioms t and 4.
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The result of picking subsets of these common five axioms is fifteen distinct modal logics
that extend each other from the modal logic K to S5 and can be represented on the S5-cube
presented in Figure 2.2.

Each of the modal logics obtained from the table above has the finite model property:
if A is not a theorem then there exists a finite model 〈W,R, V 〉 such that M 6
 A. This
property enables the non-theorems of the logic to be recursively enumerated. Hence, if the
theorems can also be recursively enumerated (which is always the case when we possess an
effective axiomatization), the ability to establish their provability becomes decidable. As a
result, all the modal logics derived from the aforementioned table are decidable. For proofs
of the finite model property for these logics see Chellas [11].

The axioms in question appear as specific occurrences of the axiom proposed by Lemmon
and Scott in [62], well-known as Scott-Lemmon axioms, defined as a 4-uple of natural number
〈h, i, j, k〉 as follows:

gklmn ::= ♦k�la⊃�m♦na
where ♦k denotes k occurrences of ♦ and �l denotes l occurrences of �. In the classical
setting, the axioms gklmn and gmnkl are dual to each other.

The Scott-Lemmon axiom scheme has particular instances that align with the axioms
previously displayed in the table in the following way:

g0001 corresponds to t ::= a⊃ ♦a
g0011 corresponds to b ::= a⊃�♦a
g0101 corresponds to d ::= �a⊃ ♦a
g1002 corresponds to 4 ::= ♦a⊃ ♦♦a
g1011 corresponds to 5 ::= ♦a⊃�♦a
g1111 corresponds to 2 ::= ♦�a⊃�♦a

From Theorem 2.2.1 one can obtain the logic that is axiomatized by the Scott-Lemmon
axiom gklmn by examining the formulas that are valid in all frames satisfying the following
confluence condition:

for all w, u, v ∈ W with wRku and wRmv there is a z ∈ W s.t. uRlz and vRnz : (2.1)

y
Rl

��
x

Rk
??

Rm
  

u

z
Rn

>>

whereRi with i = {k, l,m, n} denotes i occurrences ofR and the composition of two relations
R, S on a set of worlds W is defined as usual: R ◦ S = {(w, v) | ∃u.(w, u) ∈ R and (u, v) ∈
S}. Then, Lemmon and Scott conclude the following theorem:

Theorem 2.2.2. [39] Let G ⊆ N and let G be the corresponding set of Scott-Lemmon
axioms. A formula is provable in K + G if and only if it is valid in all frames satisfying the
condition 2.1 for each 〈k, l,m, n〉 ∈ G.
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We will also want to consider a particular subclass of these Scott-Lemmon axioms known
as path Scott-Lemmon axioms [24], which corresponds to the case where l+n is exactly equal
to 1 (see more in Chapter 4). This property leads to the following axiom:

φkm ::= ♦k�a⊃�ma (2.2)

Observe that, from the axioms listed before, t, b, 4 and 5 are path Scott-Lemmon axioms,
but d and 2 are not.

2.3 Axiomatizations à la Gentzen
In Gentzen’s approach, proofs are constructed by manipulating sequents. If the logic has De
Morgan duality, we only need to consider formulas in negation normal form, i.e., negation
is pushed to the atoms via the De Morgan laws as defined in Section 2.1. Then, in the
classical setting, we define a sequent Γ = A1, · · · , An as a multiset of formulas, with the
comma denoting the multiset union. This sequent is nowadays called one-sided sequent.

As it was mentioned, while Hilbert systems have many axioms and few rules, sequent
systems have few axioms and many rules. A derivation, denoted D, is constructed according
to these rules; it will have the structure of a tree, where each edge is a sequent and each
internal node is a rule. A derivation is a proof of the sequent at the root, if each leaf is a
rule with no premises. The height of a derivation D, denoted by ht(D), is the height of D
when seen as a tree, i.e., the length of the longest path in the tree from its root to one of
its leaves.

One of the crucial aspects of Gentzen’s axiomatizations is their soundness and complete-
ness in order to ensure that all valid modal statements can be formally proven. Creating
a sequent system that is both sound and complete for a specific logic, involves establishing
the appropriate set of sequent rules. This ensures that each theorem of the given logic can
be proven within the sequent system (this is called completeness) and that any proof that
is constructed within the sequent system yields a valid theorem of the logic (this is called
soundness).

We say that a rule r is admissible for a system S if, whenever its premises are provable in
S there is a proof of its conclusion in S. We say it is derivable if there exist a derivation in S
from its premises to its conclusion, possibly using premises multiple times. One important
rule to be shown admissible in a deductive system is the cut rule, which can be of this form:

Γ, A A,Γ
cut

Γ

for some formula A and its De Morgan dual A. It says that if we have both Γ, A and
A,Γ, then we can derive Γ. As it was mentioned in the introduction, the cut-elimination
theorem states that any theorem that has a proof in the sequent calculus using cut also
has a proof without this rule. The standard proof proceeds by a double-induction on the
cut-rank and on the height of a derivation. The rank of an instance of cut is the depth of
the formula introduced by the cut reading bottom-up. The cut-rank of a derivation D is the
maximal rank of a cut in D. Demonstrating the admissibility of this rule within a specific
proof system offers a degree of confidence in its suitability for backward proof-search.
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idlab

R =⇒ ∆, x:a, x:a
>lab

R =⇒ ∆, x:>

R =⇒ ∆, x:A R =⇒ ∆, x:B
∧lab

R =⇒ ∆, x:A ∧B
R =⇒ ∆, x:A, x:B

∨lab

R =⇒ ∆, x:A ∨B

R, xRy =⇒ ∆, x:�A, y:A
�lab y fresh

R =⇒ ∆, x:�A
R, xRy =⇒ ∆, x:♦A, y:A

♦lab

R, xRy =⇒ ∆, x:♦A

Figure 2.3: System labK

Since traditional Gentzen sequent systems for modal logic typically fail to be modular
and do not satisfy most of the properties usually demanded on sequent calculus [65], alter-
native proof systems have been proposed in recent years for modal logic and a variety of
non-classical logics. Systems that internalize the semantics of the logical constants, either
implicitly through a more structured language, or explicitly through the use of labels, have
been an intense object of study.

Structural proof theoretic accounts of modal logic can adopt the paradigm of labelled
deduction in the form of labelled natural deduction and labelled sequent systems as used,
for example, by Simpson [59], Vigano [63], and Negri [49]; or the one of unlabelled deduction
in the form of sequent [4] or nested sequent systems [60] (for a survey see [41, Chapter 3]).
These generalizations of the sequent framework, inspired by relational semantics, are needed
to treat modalities uniformly. By extending the ordinary sequent structure with one extra
element, either relational atoms between labels (referencing the accessibility relation in a
Kripke model) or nested bracketing, they encode respectively graphs or trees in the sequents,
giving them enough power to represent modalities. We are in particular interested in the
study of modal logics using the formalism of labelled sequents.

2.3.1 Labelled sequents
Labelled deduction has been more generally proposed by Gabbay in the 80’s as a unifying
framework throughout proof theory in order to provide proof systems for a wide range of
logics [18]. In particular, we are mostly interested in the study of the sequent presentation of
these proof systems to capture classical and intuitionistic modal logics. The idea underlying
what are nowadays commonly designated as labelled systems is to internalize in the calculus
the explanation of modalities in terms of relational semantics.

Labelled sequents are formed by labelled formulas of the form x:A and relational or
equality atoms of the form xRy or x = y respectively, where x, y range over a set of
variables (called labels) and A is a modal formula. A (one-sided) labelled sequent is then of
the form R =⇒ ∆ where R denotes a set of relational or equality atoms, and ∆ a multiset of
labelled formulas. Following this formalism, we present in Figure 2.3.1 the labelled sequent
calculus introduced by Negri [49] for classical modal logic K with the next result obtained:
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Theorem 2.3.1. [49] A formula A is a theorem of the labelled sequent system labK if and
only if A is valid in every frame.

As it can be observed, all the inference rules use labels in order to express explicitly the
semantics of a formula in a particular state. In this way, it is reflected how the use of labels
provides us with an almost direct correspondence between syntactic expressions and their
semantics, making the proof theory much more intuitive. Let us see the example for �.
From:

M, x 
 �A iff for all y such that xRy andM, y 
 A

one obtains

If y:A can be derived for an arbitrary y accessible from x, then x:�A can be derived

and
If x:�A and y is accessible from x, then y:A

that, since we are working on a classical setting, it is formalized by the rule

R, xRy =⇒ ∆, x:�A, y:A
�lab y fresh

R =⇒ ∆, x:�A
The principal formula x:�A is repeated in the premiss of the rule in order to make the

rule invertible. Since we are in the classical setting, the ♦lab-rule is the dual of the �lab-rule.
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Chapter 3

Intuitionistic modal logic

In this chapter we introduce the concepts and notations that will be used in this thesis for
intuitionistic modal logic. As it was presented in the classical case, we are going to introduce
the syntax and semantics for intuitionistic modal logic in Section 3.1. We follow with
Hilbert’s and Gentzen’s axiomatizations in Section 3.2 and 3.3 respectively. In Gentzen’s
approach, we focus on labelled sequents showing the system introduced by Simpson [59]. For
a more in-depth presentation of these topics, we point to Simpson’s PhD thesis [59] which
continues to be the most comprehensive survey encompassing all aspects of intuitionistic
modal logic.

3.1 Syntax and semantics
The language of intuitionisitic modal logic, as the so-called intuitionistic modal logic IK, is
obtained from the language of intuitionistic propositional logic with the modal operators
� and ♦. Starting with a set of atomic propositions, denoted, as in the classical case, by
lower case letters a, b, c,. . . and modal formulas, denoted by capital letters A, B, C, . . . ,
intuitionistic modal formulas are constructed from the following grammar:

A ::= a | A ∧ A | A ∨ A | ⊥ | A⊃ A | �A | ♦A

The negation ¬A is, in the intuitionistic setting, A ⊃ ⊥. The implication is now a
primitive connective.

The Kripke semantics for IK was first defined by Fischer-Servi [58]. It combines the
Kripke semantics for intuitionistic propositional logic and the one for classical modal logic,
using two distinct relations on the set of worlds: the accessibility relation R and the preorder
or future relation ≤. As we have done for the classical case, we define the Kripke semantics
for the intuitionistic variant which now it is using a birelational structure as follows:

Definition 3.1.1. A birelational frame F is a triple 〈W,R,≤〉 of a set of worldsW equipped
with an accessibility relation R and a preorder relation ≤ (i.e. a reflexive and transitive
relation) satisfying the following two conditions:

(F1) For all u, v, v′ ∈ W , if uRv and v ≤ v′, there exists u′ s.t. u ≤ u′ and u′Rv′.

15



u′
R // v′

u

≤

OO

R // v

≤

OO

(F2) For all u′, u, v ∈ W , if u ≤ v, there exists v′ s.t. u′Rv′ and v ≤ v′.

u′
R // v′

u

≤

OO

R // v

≤

OO

Definition 3.1.2. A birelational model M is a quadruple 〈W,R,≤, V 〉 with 〈W,R,≤〉 a
birelational frame and V : W → 2A a monotone valuation function, that is, a function
mapping each world w to the subset of propositional atoms true at w, additionally subject
to: if w ≤ w′ then V (w) ⊆ V (w′).

Let X be an intuitionistic modal logic of the S5-cube (see Figure 2.2)1. We will speak
about X-birelational model when we want to be precise about the logic we are working with,
and therefore, about the conditions that the model has. For example, for intuitionistic S4
(i.e. IS4) the conditions of transitivity and reflexivity are applied to the accessibility relation
R, i.e. a IS4-birelational model is a transitive and reflexive model.

We writeM, w 
 a if a ∈ V (w), and inductively extend the 
 relation to all formulas,
following the rules for both intuitionistic and modal Kripke models:

M, w 6
 ⊥
M, w 
 A ∧B iff M, w 
 A andM, w 
 B
M, w 
 A ∨B iff M, w 
 A orM, w 
 B
M, w 
 A⊃B iff for all w′ with w ≤ w′, ifM, w′ 
 A thenM, w′ 
 B
M, w 
 �A iff for all w′ and u with w ≤ w′ and w′Ru, we haveM, u 
 A
M, w 
 ♦A iff there exists a u such that wRu andM, u 
 A.

(3.1)

Observe that we never have thatM, w 
 ⊥. We writeM, w 6
 A if it is not the case that
M, w 
 A, but contrarily to the classical case, we do not have M, w 
 ¬A iff M, w 6
 A
(since ¬A is defined as A⊃⊥).

From the monotonicity of the valuation function V , we get a monotonicity property for
the relation 
:

Proposition 3.1.3. (Monotonicity) For any formula A and for w,w′ ∈ W , if w ≤ w′ and
M, w 
 A, thenM, w′ 
 A.

Definition 3.1.4. A formula A is satisfied in a modelM = 〈W,R,≤, V 〉, if for all w ∈ W
we haveM, w 
 A. A formula A is valid in a frame F = 〈W,R,≤〉, if for all valuations V ,
the formula A is satisfied in 〈W,R,≤, V 〉.

1Note that the same S5-cube is used for classical and intuitionistic approaches, this means that there are
also fifteen distinct intuitionistic modal logics.
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3.2 Axiomatizations à la Hilbert
As it was done for the classical case, the interest of having axiomatic systems that could
capture the behavior of modal operators in the intuitionistic setting emerged. The axioma-
tization that is now generally accepted as intuitionistic modal logic IK was given by Plotkin
and Stirling [52] and is equivalent to the one proposed by Fischer-Servi [58]. It is obtained
from intuitionistic propositional logic IPL which is composed by the following axioms:

THEN-1 : A⊃ (B ⊃ A) THEN-2 : (A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃ C)
AND-1 : A ∧B ⊃ A AND-2 : A ∧B ⊃B
AND-3 : A⊃ (B ⊃ (A ∧B)) OR-1 : A⊃ A ∨B

OR-2 : B ⊃ A ∨B OR-3 : (A⊃ C)⊃ ((B ⊃ C)⊃ (A ∨B ⊃ C))
FALSE : ⊥⊃ A

by adding the necessitation rule and five variants of the distributivity axiom k. The
different consequences of the distributivity axiom are classically but not intuitionistically
equivalent and they are a result of lacking De Morgan duality in the intuitionist setting:

• the necessitation rule: if A is a theorem then �A is also a theorem; and

• the following five variants of k:

k1 : �(A⊃B)⊃ (�A⊃�B) k3 : ♦(A ∨B)⊃ (♦A ∨ ♦B) k5 : ♦⊥⊃⊥
k2 : �(A⊃B)⊃ (♦A⊃ ♦B) k4 : (♦A⊃�B)⊃�(A⊃B)

The idea is that intuitionistic propositional logic does not allow the principle of Excluded
Middle, so the modalities � and ♦ no longer exhibit De Morgan duality; however, it is
possible to structure the axiomatization in order to establish diverse connections between
them. The most basic intuitionistic modal system one can think of would involve the
exclusive consideration of the � modality as regulated by the k axiom (or as called here
k1), which gives the system IPL + nec + k1. However, this approach would provide no
substantive insights into the behaviour of the ♦ modality. It seems that Fitch [15] was
the pioneer in suggesting an approach to handle the ♦ modality in an intuitionistic system
by considering the system IPL + nec + k1 + k2, which is now sometimes called CK for
constructive modal logic. Wijekesera [66] also considered the axiom k5, which states that
♦ distributes over 0-ary disjunctions, but did not assume that it would always distribute
over binary disjunctions; the system he proposed was therefore IPL + nec + k1 + k2 + k5.
In these systems, however, the addition of the Excluded Middle principle does not result in
classical modal logic K, this means, it is not feasible to reestablish the De Morgan duality
of � and ♦ in this scenario.

The axiomatization that is commonly recognized as intuitionistic modal logic denoted
by IK was formulated by Plotkin and Stirling [52] and it is equivalent to the one proposed
by Fischer-Servi [58] and by Ewald [13] in the case of intuitionistic tense logic. It is defined
as IPL + nec + k1 + k2 + k3 + k4 + k5.

Similarly to the classical case, the correspondence between syntax and semantics for IK
can be stated as follows:

Theorem 3.2.1 ([58, 52]). A formula A is a theorem of IK if and only if A is valid in every
birelational frame.
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Figure 3.1: The intuitionistic klmn-incestuality condition

We now want to consider, as we have done for the classical setting, special restrictions
on the birelational frames and get extensions of those basic intuitionistic modal logics, for
example with the class of Scott-Lemmon axioms. Different intuitionistic modal logics are
obtained through the addition of one or more variants of Scott Lemmon axioms to the
system IK. However, on an intuitionistic setting, due to the lack of De Morgan duality, the
axiom ♦k�la ⊃ �m♦na is no longer equivalent to ♦m�na ⊃ �k♦la. So one can consider
extensions with one of these two axioms, or with both in conjunction in order to capture
the intuitionistic version of the corresponding classical Scott-Lemmon logic reaching to the
general form of the intuitionistic Scott-Lemmon axiom:

gklmn ::= (♦k�la⊃�m♦na) ∧ (♦m�na⊃�k♦la)
In particular, and in the same way as in the classical case, we study the intuitionistic

variants of the logics in the S5-cube (Figure 2.2), for which we need the conjunction of the
two versions of each axioms and we get the following correspondence:

g0001 corresponds to t ::= (a⊃ ♦a) ∧ (�a⊃ a)
g0011 corresponds to b ::= (a⊃�♦a) ∧ (♦�a⊃ a)
g0101 corresponds to d ::= �a⊃ ♦a
g1002 corresponds to 4 ::= (♦a⊃ ♦♦a) ∧ (��a⊃�a)
g1011 corresponds to 5 ::= (♦a⊃�♦a) ∧ (♦�a⊃�a)
g1111 corresponds to 2 ::= ♦�a⊃�♦a

We can then obtain stronger logics from IK extending with one or more axioms. For
example, we can obtain the intuitionistic modal logic IS4 by adding the axioms t and 4 to
the logic IK, or we can get the logic IK4 by adding only the axiom 4.

These axioms are known to obey a strong correspondence with the class of frames satis-
fying the condition illustrated on Figure 3.1, which we call by analogy to the classical case,
intuitionistic klmn-incestuality condition. Plotkin and Stirling give proper correspondence
results with respect to the intuitionistic setting, but they must distinguish the two dual
parts of each axiom and appeal to both relations of the frames, R and ≤, leading to the
following completeness theorem:
Theorem 3.2.2 ([52]). An intuitionistic modal frame 〈W,R,≤〉 validates ♦k�lA⊃�m♦nA
if and only if the frame satisfies:

if xRky and xRmz then there exists y′ such that y≤y′ and there exists u such that y′Rlu
and zRnu.
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Note that the relation Rh for h ≥ 1 is defined in the usual way: R1 = R and Rh+1 =
R ◦Rh = {(v, w)|∃u ∈ W. vRu ∧ uRhw}.

Fischer-Servi [58] and Simpson [59] consider the restricted family of intuitionistic Scott-
Lemmon path axioms, where l+n is exactly equal to 1. Unlike Plotkin and Stirling, they
did not have to distinguish between the two relations of the frames reaching a completeness
result:

Theorem 3.2.3 ([58, 59]). Let G be a set of axiom schemes of the form:

(♦k�a⊃�ma) ∧ (♦ma⊃�k♦a)

for any natural number k,m appearing in G. A formula A is a theorem of IK+G if and only
if A is satisfied in every birelational model 〈W,R,≤, V 〉 that satisfies:

for all w, u, v ∈ W if wRku and wRmv then uRv (3.2)

We call the condition 3.2 satisfied in Theorem 3.2.3 intuitionistic SL-path condition.
We will continue discussing about these extensions of the intuitionistic modal logic IK in
Chapter 4.

3.3 Labelled sequents
In this thesis we will work mainly with what is nowadays called two-sided sequent systems.
We can obtain these type of systems for classical modal logic but they are a more natural fit
for handling intuitionistic modal logic. Two-sided systems offer the necessary flexibility to
manage the intricate interactions between modal operators and the intuitionistic negation.
In particular, they can explicitly represent both the antecedent (premises) and succedent
(conclusions), allowing to accurately capture the intuitionistic nature of modal logic where
certain classical principles might not hold as the Excluded Middle principle.

A two-sided sequent G is of the form Γ =⇒ ∆ where Γ and ∆ are finite (possibly empty)
sets of formulas. It can also be written as A1, · · · , An =⇒ B1, · · · , Bn where the comma
can still be seen as a structure connective between the formulas A1, · · · , An and B1, · · · , Bn.
The sequent arrow =⇒ denotes a consequence relation between finite sequences of formulas
separated by the comma. The sets Γ and ∆ are called the antecedent and the succedent of
G, respectively.

Echoing to the definition of birelational structures, the straightforward extension of
labelled deduction to the intuitionistic setting would be to use two sorts of relational atoms,
one for the modal relation R and another one for the intuitionistic relation ≤. However,
another approach was taken by Simpson [59] who followed the lines of Gentzen in a labelled
context. He developed a labelled natural deduction framework for modal logics and then
converted it into sequent systems with the consequent restriction to one formula on the right-
hand side of each sequent. This worked as well in the labelled setting as in the ordinary
sequent case. Simpson’s proposed labelled sequent system for intuitionistic modal logic is
representing explicitly only the accessibility relation R in the syntax and not the future
relation.

In Simpson’s approach, intuitionistic labelled sequents are written as R,Γ =⇒ z:C for
some multiset of labelled formulas Γ, some formula C, some label z and a set of relational
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atoms R. The rules of his labelled sequent system called labIK (presented in Figure 3.2) are
very similar to the classical labelled system labK of Negri (Figure 2.3) with the standard
restrictions for intuitionistic version of the right-rules ∨lab

R1 and ∨lab
R2 and the left-rule ⊃lab

L .
Simpson obtained soundness and completeness results for the system labIK which are in
Theorem 3.3.1.

idlab

R,Γ, x:A =⇒ x:a
⊥lab

L R,Γ, x:⊥ =⇒ z:A
>lab

R R,Γ =⇒ x:>

R,Γ, x:A ∧B, x:A, x:B =⇒ z:C
∧lab

L R,Γ, x:A ∧B =⇒ z:C
R,Γ =⇒ x:A R,Γ =⇒ x:B

∧lab
R R,Γ =⇒ x:A ∧B

R,Γ, x:A =⇒ z:C R,Γ, x:B =⇒ z:C
∨lab

L R,Γ, x:A ∨B =⇒ z:C

R,Γ =⇒ x:A
∨lab

R1 R,Γ =⇒ x:A ∨B
R,Γ =⇒ x:B

∨lab
R2 R,Γ =⇒ x:A ∨B

R,Γ, x:A⊃B =⇒ x:A R,Γ, x:A⊃B, x:B =⇒ z:C
⊃lab

L R,Γ, x:A⊃B =⇒ z:C
R,Γ, x:A =⇒ x:B

⊃lab
R R,Γ =⇒ x:A⊃B

R, xRy,Γ, x:�A, y:A =⇒ z:B
�lab

L R, xRy,Γ, x:�A =⇒ z:B
R, xRy,Γ =⇒ y:A

�lab
R y fresh
R,Γ =⇒ x : �A

R, xRy,Γ, y:A =⇒ z:B
♦lab

L y fresh
R,Γ, x:♦A =⇒ z:B

R, xRy,Γ =⇒ y:A
♦lab

R R, xRy,Γ =⇒ x:♦A

Figure 3.2: System labIK

Theorem 3.3.1 (Simpson [59]). A formula A is provable in the calculus labIK if and only
if A is valid in every birelational frame.

In [59], Simpson extends his basic sequent system for IK to the geometric axiom fam-
ily [48]. The goal of this family of axioms is to consider the logic as defined by a given class
of frames. In particular, they generalize Scott-Lemmon frame properties, which were inves-
tigated by Simpson for intuitionistic modal logics. For example, you can extend Simpson’s
sequent system with the following rule:

R, wRv, vRu,wRu,Γ =⇒ ∆
⊠4 u′ fresh

R, wRv, vRu,Γ =⇒ ∆

and obtain a sound and complete system wrt. IK plus the axiom 4 : (♦♦A ⊃ ♦A) ∧ (�A ⊃
��A), that is, wrt. to all frames in which the accessibility relation R is transitive.
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In [52], Plotkin and Stirling give a more general correspondence result than Theo-
rem 3.2.1, that is, for intuitionistic modal logic extended with a family of axioms wrt. some
classes of birelational frames. For example, the frames that validate the axiom 4♦ : ♦♦A⊃♦A
are exactly the ones satisfying the condition:

(|4) if wRv and vRu, there exists a u′ ∈ W s.t. u ≤ u′ and wRu′.

In the next chapter, we show that incorporating the preorder symbol into the syntax of
our sequents allows us to also obtain a sound and complete proof system for the intuitionistic
modal logic extended with axiom 4♦, by designing the following rule:

R, wRv, vRu, u≤u′, wRu′,Γ =⇒ ∆
|4 u′ fresh

R, wRv, vRu,Γ =⇒ ∆

Therefore, we decompose further the formalism of labelled sequents and extend the reach
of labelled deduction to the logics studied in [52]. Let us continue with the details of this
new proposal to labelled sequents in the next chapter.
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Chapter 4

Fully labelled proof system

In this chapter, we develop a fully labelled proof system for intuitionistic modal logics such
that there is not only one, but two relation symbols appearing in sequents: one for the
accessibility relation associated with the Kripke semantics for normal modal logics and one
for the preorder relation associated with the Kripke semantics for intuitionistic logic. This
puts our system in close correspondence with the standard birelational Kripke semantics for
intuitionistic modal logics introduced in Chapter 3, Section 3.1.

We show in Section 4.1 our motivation and interest to study this extension of labelled
deduction to the intuitionistic setting. Then we present the system in Section 4.2 and
completeness and soundness results in Sections 4.3 and 4.4 respectively. We also show
an internal cut elimination proof for our system in Section 4.5. As a result of explicitly
incorporating both relations into the system, it can encompass a wider range of intuitionistic
modal logics than other existing labelled systems [59]. We offer a detailed exploration of
these extensions in Section 4.6.

4.1 Motivation
Echoing the definition of birelational structures, we consider an extension of labelled de-
duction to the intuitionistic setting. Since their introduction in the 1980s by Gabbay [18],
labelled proof calculi have been widely used by proof theorists to give sound, complete and
cut-free deductive systems to a broad range of logics. Unlike hypersequents [3], nested se-
quents [30, 8, 53], 2-sequents [46], or linear nested sequents [38], labelled calculi have the
advantage of being more uniform and being able to accommode a larger class of logics. This
is one of the reasons why we are interested in studying this formalism in the intuitionistic
setting to be able to study extensions of IK like intuitionistic modal logic IS4 and IK4. We
will come back to this in Chapter 6.

As it was mentioned in Chapter 2, standard labelled sequent calculi attach to every
formla A a label x, witten as x:A, and additionally use relational atoms of the form xRy
where R is a binary relation symbol. These calculi work best for logics with standard
Kripke semantics, as in this case the relation R is used to encode the accessibility relation
in the Kripke models, and the frame conditions corresponding to the desired logic can be
directly encoded as inference rules. Prominent examples are classical modal logics and
intuitionistic propositional logic, where, for example, the frame condition of transitivity
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(∀xyz. xRy ∧ yRz ⊃ xRz), can be straightforwardly translated into the inference rule

R, xRy, yRz, xRz,Γ =⇒ ∆
Rtr

R, xRy, yRz,Γ =⇒ ∆
(4.1)

where R stands for a set of relational atoms, and Γ and ∆ for multi-sets of labelled formulas.
However, in this chapter we are concerned with intuitionistic modal logics, whose Kripke

semantics is based on birelational frames, i.e., they have two binary relations instead of
one: one relation R that corresponds to the accessibility relation in Kripke frames for modal
logics, and a relation ≤ that corresponds to the preorder relation in Kripke frames for
intuitionistic logic. Consequently, standard labelled systems for these logics have certain
shortcomings:

1. The transitivity rule in (4.1) can be axiomatized by the conjunction of the two versions
of the 4-axiom as it was presented in Chapter 3. However, in intuitionistic modal logic
they are not equivalent, and even though some logics (like IK4 and IS4) contain both
axioms, they can also be added independently to the logic IK. The proof theory of
these new logics has not been studied before; no existing labelled (or label-free) proof
system can handle them, even though the corresponding frame conditions

∀xyz.xRy∧yRz⊃ (∃x′. x ≤ x′∧x′Rz) and ∀xyz.xRy∧yRz⊃ (∃z′. z ≤ z′∧xRz′) ,
(4.2)

x′

R

''
x

≤

OO

R
// y

R
// z

z′′

x

R

77

R
// y

R
// z

≤

OO

respectively, have already been studied in [52].

2. The correspondence between the syntax and the semantics is not as clean as one would
expect. As only the R-relation (and not the ≤-relation) of the frame is visible in an
ordinary labelled sequent, we only have that a sequent Γ is provable if and only if is
satisfied in all graph-consistent1 models, as already observed by Simpson in his PhD
thesis [59] and considered as an inelegant solution (see also [45]).

In order to address these two concerns we propose here to enrich usual labelled sequents by
allowing both, relational atoms of the form x≤y and of the form xRy. Consequently, we
can easily translate the frame conditions in (4.2) into inference rules as the following two:

R, xRy, yRz, x′Rz, x≤x′,Γ =⇒ ∆
4� x′ fresh

R, xRy, yRz,Γ =⇒ ∆
and

R, xRy, yRz, xRz′, z≤z′,Γ =⇒ ∆
4♦ z′ fresh

R, xRy, yRz,Γ =⇒ ∆

This allows us to define cut-free deductive systems for a wide range of logics that could
not be treated before. Furthermore, the relation between syntax and semantics is as one
would expect: A sequent is provable in our system if and only if it is valid in all models.

Besides that, there is another pleasant observation to make about our system. Ordinary
labelled sequent systems for intuitionistic modal logic are single-conclusion [59] as Simpson’s

1This means that every layer in the model can be lifted to any future of any world in that layer. See [59]
and [45] for a formal definition and discussion.
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system presented in Chapter 3, Section 3.3. The same is true for the corresponding nested
sequent systems [60, 44]. It is possible to express Maehara style multiple-conclusion systems
in nested sequents [61], and therefore also in ordinary labelled sequents. However, also in
these systems there are rules (⊃◦ and �◦) that force a single-conclusion premise.Maffezioli,
Naibo and Negri have considered in [40] a labelled system for intuitionistic bimodal epistemic
logic which is multi-conclusion. Our system uses the same principle, both labelled and multi-
conclusion sequents, but we use it in a more general setting and extend it to a framework for
many intuitionistic modal logics. This eliminates the undesired discrepancy as, consequently,
every rule in our system is invertible, which means that we never delete information in a
bottom-up proof search. As a result, we present our fully labelled proof system to capture
intuitionistic modal logics which was also useful to continue our research on the decision
problems for logics of our interest as IS4 and IK4 (see Chapter 6).

4.2 The proof system
Given a two-sided labelled sequent R,Γ =⇒ ∆, where R is a set of relational atoms and Γ
and ∆ are multi-sets of labelled formulas, we obtain the inferece rules for system labIK≤ for
the intuitionistic modal logic IK as it is presented in Figure 4.1.

As it can be observed, the inference rules are in close correspondence with the stan-
dard birelational Kripke semantics for intuitionistic modal logics presented in the previous
chapter in (3.1). As it was mentioned, we enrich usual labelled sequents by allowing both,
relational atoms of the form xRy (capturing the accessibility relation R) and of the form
x≤y (capturing the preorder relation ≤). In the Kripke semantics, the two connectives ⊃
and � are the ones that make use of the preorder relation ≤. This relation is reflexive and
transitive and in order to capture that in the proof system, we need to add the inference
rules ≤rf and ≤tr. These can be obtained by applying the axioms-as-rules methodology as
in [40] and we get the following rules which are part of our system:

R, x ≤ x,Γ =⇒ ∆
≤rf

R,Γ =⇒ ∆
R, x ≤ y, y ≤ z, x ≤ z,Γ =⇒ ∆

≤tr
R, x ≤ y, y ≤ z,Γ =⇒ ∆

On the other hand, in the semantics, the two relations R and ≤ are strongly connected
through the two conditions F1 and F2. These need to be reflected at the level of the proof
system, which is done by the two rules F1 and F2:

R, xRy, y≤z, x≤u, uRz,Γ =⇒ ∆
F1 u fresh

R, xRy, y≤z,Γ =⇒ ∆
R, xRy, x≤z, y≤u, zRu,Γ =⇒ ∆

F2 u fresh
R, xRy, x≤z,Γ =⇒ ∆

Another indication of the fact that labIK≤ is well-designed, is that the general identity
axiom is admissible. We show this in the following Proposition:

Proposition 4.2.1. The following general identity axiom idg
R, x≤y,Γ, x:A =⇒ ∆, y:A

is

admissible for labIK≤.

Proof. As standard, we proceed by structural induction on A. The two base cases A = a
and A = ⊥ and the inductive cases are shown below:
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id
R, x ≤ y,Γ, x:a =⇒ ∆, y:a

⊥•
R,Γ, x:⊥ =⇒ ∆

R,Γ, x:A, x:B =⇒ ∆
∧•
R,Γ, x:A ∧B =⇒ ∆

R,Γ =⇒ ∆, x:A R,Γ =⇒ ∆, x:B
∧◦

R,Γ =⇒ ∆, x:A ∧B

R,Γ, x:A =⇒ ∆ R,Γ, x:B =⇒ ∆
∨•

R,Γ, x:A ∨B =⇒ ∆
R,Γ =⇒ ∆, x:A, x:B

∨◦
R,Γ =⇒ ∆, x:A ∨B

R, x ≤ y,Γ, y:A =⇒ ∆, y:B
⊃◦ y fresh

R,Γ =⇒ ∆, x:A⊃B

R, x ≤ y, x:A⊃B,Γ =⇒ ∆, y:A R, x ≤ y,Γ, y:B =⇒ ∆
⊃•

R, x ≤ y,Γ, x:A⊃B =⇒ ∆

R, x ≤ y, yRz,Γ, x:�A, z:A =⇒ ∆
�•

R, x ≤ y, yRz,Γ, x:�A =⇒ ∆
R, x ≤ y, yRz,Γ =⇒ ∆, z:A

�◦ y, z fresh
R,Γ =⇒ ∆, x:�A

R, xRy,Γ, y:A =⇒ ∆
♦• y fresh
R,Γ, x:♦A =⇒ ∆

R, xRy,Γ =⇒ ∆, x:♦A, y:A
♦◦

R, xRy,Γ =⇒ ∆, x:♦A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R, x ≤ x,Γ =⇒ ∆
≤rf

R,Γ =⇒ ∆
R, x ≤ y, y ≤ z, x ≤ z,Γ =⇒ ∆

≤tr
R, x ≤ y, y ≤ z,Γ =⇒ ∆

R, xRy, y ≤ z, x ≤ u, uRz,Γ =⇒ ∆
F1 u fresh

R, xRy, y ≤ z,Γ =⇒ ∆

R, xRy, x ≤ z, y ≤ u, zRu,Γ =⇒ ∆
F2 u fresh

R, xRy, x ≤ z,Γ =⇒ ∆

Figure 4.1: System labIK≤

• Base cases:

idg
R, x≤y, Γ, x:a =⇒ ∆, y:a

 id
R, x≤y, Γ, x:a =⇒ ∆, y:a

idg
R, x≤y, Γ, x:⊥ =⇒ ∆, y:⊥

 ⊥•
R, x≤y, Γ, x:⊥ =⇒ ∆, y:⊥

• A ∧B:

idg
R, x≤y; Γ, x:A ∧B =⇒ ∆, y:A ∧B
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idg
R, x≤y, Γ, x:A, x:B =⇒ ∆, y:A

idg
R, x≤y, Γ, x:A, x:B =⇒ ∆, y:B

∧◦
R, x≤y, Γ, x:A, x:B =⇒ ∆, y:A ∧B

∧•
R, x≤y, Γ, x:A ∧B =⇒ ∆, y:A ∧B

• A ∨B:

idg
R, x≤y; Γ, x:A ∨B =⇒ ∆, y:A ∨B

 

idg
R, x≤y, Γ, x:A =⇒ ∆, y:A

∨◦
R, x≤y, Γ, x:A =⇒ ∆, y:A ∨B

idg
R, x≤y, Γ, x:B =⇒ ∆, y:B

∨◦
R, x≤y, Γ, x:B =⇒ ∆, y:A ∨B

∨•
R, x≤y, Γ, x:A ∨B =⇒ ∆, y:A ∨B

• A⊃B:

idg
R, x≤y, Γ, x:A⊃B =⇒ ∆, y:A⊃B

 

idg
R, x≤y, y≤z, x≤z, z≤z,Γ, x:A⊃B, z:A =⇒ ∆, z:B, z:A

≤rf
R, x≤y, y≤z, x≤z,Γ, x:A⊃B, z:A =⇒ ∆, z:B, z:A

idg
R, x≤y, y≤z, x≤z, z≤z,Γ, z:B, z:A =⇒ ∆, z:B

≤rf
R, x≤y, y≤z, x≤z,Γ, z:B, z:A =⇒ ∆, z:B

⊃•
R, x≤y, y≤z, x≤z,Γ, x:A⊃B, z:A =⇒ ∆, z:B

≤tr
R, x≤y, y≤z,Γ, x:A⊃B, z:A =⇒ ∆, z:B

⊃◦ z fresh
R, x≤y,Γ, x:A⊃B =⇒ ∆, y:A⊃B

• �A:

idg
R, x≤y, Γ, x:�A =⇒ ∆, y:�A

 

idg
R, x≤y, y≤z, x≤z, zRw, w≤w, Γ, z:�A, w:A =⇒ ∆, w:A

≤rf
R, x≤y, y≤z, x≤z, zRw, Γ, z:�A, w:A =⇒ ∆, w:A

�•

R, x≤y, y≤z, x≤z, zRw, Γ, x:�A =⇒ ∆, w:A
≤tr

R, x≤y, y≤z, zRw, Γ, x:�A =⇒ ∆, w:A
�◦ z, w fresh

R, x≤y, Γ, x:�A =⇒ ∆, y:�A

• ♦A:

idg
R, x≤y; Γ, x:♦A =⇒ ∆, y:♦A

 

idg
R, x≤y, xRz, z≤u, yRu, Γ, z:A =⇒ ∆, y:♦A, u:A

♦◦

R, x≤y, xRz, z≤u, yRu, Γ, z:A =⇒ ∆, y:♦A
F2 u fresh

R, x≤y, xRz, Γ, z:A =⇒ ∆, y:♦A
♦• z fresh
R, x≤y, Γ, x:♦A =⇒ ∆, y:♦A
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We can see in this proof the need of the rules ≤rf and ≤tr in the cases A⊃ B and �A.
Furthermore, the need of the rule F2 is shown in the case of ♦A. In the next section we will
show the need of the rule F1 and we will see that the rules ≤rf and ≤tr are also needed in
other situations.

In the following sections, we will show that the system labIK≤ is sound and complete.
For the completeness proof we proceed via cut elimination. The cut rule has the following
shape:

R,Γ =⇒ ∆, z:C R,Γ, z:C =⇒ ∆
cut

R,Γ =⇒ ∆
(4.3)

Then we can summarize soundness, completeness, and cut admissibility of labIK≤ in the
following Theorem:

Theorem 4.2.2. For any formula A, the following are equivalent.

1. A is a theorem of IK.

2. A is provable in labIK≤ + cut.

3. A is provable in labIK≤.

4. A is valid in every bi-relational frame.

The proof of this theorem is the topic of the following sections. The equivalence of
1 and 4 has already been stated in Theorem 3.2.1 [58, 52]. The implication 1 =⇒ 2 (i.e.
completeness) is shown in Section 4.3, the implication 2 =⇒ 3 (i.e. cut elimination) is shown
in Section 4.5, and finally, the implication 3 =⇒ 4 (i.e. soundness) is shown in Section 4.4.

Once we have shown cut elimination (the implication 2 =⇒ 3 of Theorem 4.2.2), we can
show that the following rules for monotonicity are admissible in our system:

R, x ≤ y,Γ, x:A, y:A =⇒ ∆
mon•

R, x ≤ yΓ, x:A =⇒ ∆
R, x ≤ y,Γ =⇒ ∆, x:A, y:A

mon◦
R, x ≤ y,Γ =⇒ ∆, y:A

(4.4)

Since these rules are a form of contraction, it would cause the same problems as con-
traction in a cut elimination proof. Hence, it is preferable to have a system in which these
rules are admissible. This is the reason why we have monotonicity incorporated in the rules
id, ⊃• and �• in Figure 4.1. Then, we can show admissibility of the rules mon• and mon◦
in the following Proposition:

Proposition 4.2.3. The rules mon• and mon◦ are admissible for labIK≤.

Proof. The rule mon• can be derived using the general identity idg and the cut rule:

idg
R, x≤y, Γ, x:A =⇒ ∆, y:A R, x≤y, Γ, x:A, y:A =⇒ ∆

cut
R, x≤y, Γ, x:A =⇒ ∆
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and both these rules are admissible by Proposition 4.2.1 and Theorem 4.2.2. The case for
mon◦ is similar:

R, x≤y, Γ =⇒ ∆, x:A, y:A
idg
R, x≤y, Γ, x:A =⇒ ∆, y:A

cut
R, x≤y, Γ =⇒ ∆, y:A

Remark 4.2.4. As mentioned above, the monotonicity rules mon• and mon◦ are a form of
contraction. So, it is not a surprise that the contraction rules

R,Γ, x:A, x:A =⇒ ∆
cont•

R,Γ, x:A =⇒ ∆
R,Γ =⇒ ∆, x:A, x:A

cont◦
R,Γ =⇒ ∆, x:A

are admissible in our system, as they are derivable as follows:

R, x≤x,Γ, x:A, x:A =⇒ ∆
mon•

R, x≤x,Γ, x:A =⇒ ∆
≤rf

R,Γ, x:A =⇒ ∆

R, x≤x,Γ =⇒ ∆, x:A, x:A
mon◦

R, x≤x,Γ =⇒ ∆, x:A
≤rf

R,Γ =⇒ ∆, x:A

4.3 Completeness
In this section we show our system at work, as most of the section consists of derivations
of axioms of the intuitionistic modal logic IK in the fully labelled system labIK≤. More
precisely, we prove completeness of labIK≤ + cut. Intuitively, this property indicates that
our system has everything that is necessary to show the truths of the characterizing logic.
We have seen already in the proof of Proposition 4.2.1 the need of the rules F2, ≤rf and
≤tr. In the following proof of completeness of labIK≤ + cut, we also see the need of the rule
F1, as well as the need again of the rules ≤rf and ≤tr. This is the proof for the implication
1 =⇒ 2 of Theorem 4.2.2, which is stated again below:

Theorem 4.3.1. For any formula A, if A is a theorem of the intuitionistic modal logic IK
then A is provable in labIK≤ + cut.

Proof. We prove completeness of our system labIK≤ with respect to the Hilbert system
presented in Chapter 3, Section 3.2. In order to get this proof, we need to prove the
following:

? prove that the five variants of the axiom of distributivity k1, ..., k5 are proved in system
labIK≤.

? prove that all the axioms of intuitionistic propositional logic presented in Section 3.2
are proved in system labIK≤.

? simulate modus ponens and necessitation rules.

We begin by showing how the axioms k1–k5 are proved in system labIK≤.
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• k1:

idg
R, y:�(A⊃B), z:�A, u:A, u:A⊃B =⇒ u:B, u:A

idg
R, y:�(A⊃B), z:�A, u:A, u:A⊃B, u:B =⇒ u:B

⊃•
x≤y, y≤z, z≤w, y≤w, u≤u,wRu, y:�(A⊃B), z:�A, u:A, u:A⊃B =⇒ u:B

≤rf
x≤y, y≤z, z≤w, y≤w,wRu, y:�(A⊃B), z:�A, u:A, u:A⊃B =⇒ u:B

�•

x≤y, y≤z, z≤w, y≤w,wRu, y:�(A⊃B), z:�A, u:A =⇒ u:B
≤tr

x≤y, y≤z, z≤w,wRu, y:�(A⊃B), z:�A, u:A =⇒ u:B
�•

x≤y, y≤z, z≤w,wRu, y:�(A⊃B), z:�A =⇒ u:B
�◦ w, u fresh

x≤y, y≤z, y:�(A⊃B), z:�A =⇒ z:�B
⊃◦ z fresh

x≤y, y:�(A⊃B) =⇒ y:�A⊃�B
⊃◦ y fresh

=⇒ x:�(A⊃B)⊃ (�A⊃�B)

where R is equal to: x≤y, y≤z, z≤w, y≤w, u≤u,wRu.

• k2:

idg
R, y:�(A⊃B), u:A, u:A⊃B =⇒ z:♦B, u:B, u:A

idg
R, y:�(A⊃B), u:A, u:A⊃B, u:B =⇒ z:♦B, u:B

⊃•
x≤y, y≤z, zRu, u≤u, y:�(A⊃B), u:A, u:A⊃B =⇒ z:♦B, u:B

≤rf
x≤y, y≤z, zRu, y:�(A⊃B), u:A, u:A⊃B =⇒ z:♦B, u:B

�•

x≤y, y≤z, zRu, y:�(A⊃B), u:A =⇒ z:♦B, u:B
♦◦

x≤y, y≤z, zRu, y:�(A⊃B), u:A =⇒ z:♦B
♦• u fresh

x≤y, y≤z, y:�(A⊃B), z:♦A =⇒ z:♦B
⊃◦ z fresh

x≤y, y:�(A⊃B) =⇒ y:(♦A⊃ ♦B)
⊃◦ y fresh

=⇒ x:�(A⊃B)⊃ (♦A⊃ ♦B)

where R is equal to x≤y, y≤z, zRu, u≤u.

• k3:

idg
x≤y, z≤z, yRz, z:A =⇒ y:♦A, z:A, y:♦B

≤rf
x≤y, yRz, z:A =⇒ y:♦A, z:A, y:♦B

♦◦

x≤y, yRz, z:A =⇒ y:♦A, y:♦B
∨◦

x≤y, yRz, z:A =⇒ y:♦A ∨ ♦B

idg
x≤y, z≤z, yRz, z:B =⇒ y:♦A, y:♦B, z:B

≤rf
x≤y, yRz, z:B =⇒ y:♦A, y:♦B, z:B

♦◦

x≤y, yRz, z:B =⇒ y:♦A, y:♦B
∨◦

x≤y, yRz, z:B =⇒ y:♦A ∨ ♦B
∨•

x≤y, yRz, z:A ∨B =⇒ y:♦A ∨ ♦B
♦• z fresh

x≤y, y:♦(A ∨B) =⇒ y:♦A ∨ ♦B
⊃◦ y fresh

=⇒ x:♦(A ∨B)⊃ (♦A ∨ ♦B)
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• k4:

idg
R, u≤u, y:♦A⊃�B, u:A =⇒ u:B, t:♦A, u:A

≤rf
R, y:♦A⊃�B, u:A =⇒ u:B, t:♦A, u:A

♦◦

R, y:♦A⊃�B, u:A =⇒ u:B, t:♦A

idg
R, t≤t, u≤u, y:♦A⊃�B, u:A, t:�B, u:B =⇒ u:B

≤rf
R, t≤t, y:♦A⊃�B, u:A, t:�B, u:B =⇒ u:B

�•

R, t≤t, y:♦A⊃�B, u:A, t:�B =⇒ u:B
≤rf

R, y:♦A⊃�B, u:A, t:�B =⇒ u:B
⊃•

x≤y, y≤z, w≤u, z≤t, y≤t, zRw, tRu, y:♦A⊃�B, u:A =⇒ u:B
≤tr

x≤y, y≤z, w≤u, z≤t, zRw, tRu, y:♦A⊃�B, u:A =⇒ u:B
F1 t fresh

x≤y, y≤z, w≤u, zRw, y:♦A⊃�B, u:A =⇒ u:B
⊃◦ u fresh

x≤y, y≤z, zRw, y:♦A⊃�B =⇒ w:A⊃B
�◦ z, w fresh

x≤y, y:♦A⊃�B =⇒ y:�(A⊃B)
⊃◦ y fresh

=⇒ x:(♦A⊃�B)⊃�(A⊃B)

where R is equal to x≤y, y≤z, w≤u, z≤t, y≤t, zRw, tRu.

• k5:

⊥•
x≤y, yRz, z:⊥ =⇒ y:⊥

♦• z fresh
x≤y, y:♦⊥ =⇒ y:⊥

⊃◦ y fresh
=⇒ x:♦⊥⊃⊥

Next, we have to prove all axioms of intuitionistic propositional logic can be shown in
labIK≤ as follows:

• A ∧B ⊃B to the left and A ∧B ⊃ A to the right:

idg
x≤y, y≤y, y:A, y:B =⇒ y:B

≤rf
x≤y, y:A, y:B =⇒ y:B

∧•
x≤y, y:A ∧B =⇒ y:B

⊃◦ y fresh
=⇒ x:A ∧B ⊃B

idg
x≤y, y≤y, y:A, y:B =⇒ y:A

≤rf
x≤y, y:A, y:B =⇒ y:A

∧•
x≤y, y:A ∧B =⇒ y:A

⊃◦ y fresh
=⇒ x:A ∧B ⊃A

• A⊃ A ∨B to the left and B ⊃ A ∨B to the right:

id
x≤y, y≤y, y:A =⇒ y:A, y:B

≤rf
x≤y, y:A =⇒ y:A, y:B

∨◦
x≤y, y:A =⇒ y:A ∨B

⊃◦ y fresh
=⇒ x:A⊃A ∨B

id
x≤y, y≤y, y:B =⇒ y:A, y:B

≤rf
x≤y, y:B =⇒ y:A, y:B

∨◦
x≤y, y:B =⇒ y:A ∨B

⊃◦ y fresh
=⇒ x:B ⊃A ∨B
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• A⊃ (B ⊃ (A ∧B)):

id
x≤y, y≤z, y:A, z:B =⇒ z:A

id
x≤y, y≤z, z≤z, y:A, z:B =⇒ z:B

≤rf
x≤y, y≤z, y:A, z:B =⇒ z:B

∧◦
x≤y, y≤z, y:A, z:B =⇒ z:A ∧B

⊃◦ z fresh
x≤y, y:A =⇒ y:B ⊃ (A ∧B)

⊃◦ y fresh
=⇒ x:A⊃ (B ⊃ (A ∧B))

• A⊃ (B ⊃ A):

id
x≤y, y≤z, y:A, z:B =⇒ z:A

⊃◦ z fresh
x≤y, y:A =⇒ y:B ⊃A

⊃◦ y fresh
=⇒ x:A⊃ (B ⊃A)

• (A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃ C)):

id
R, w≤w, y:A⊃ (B ⊃ C), z:A⊃B,w:A =⇒ w:C,w:A

≤rf
R, y:A⊃ (B ⊃ C), z:A⊃B,w:A =⇒ w:C,w:A

D1

R, w≤w, z:A⊃B,w:A,w:B ⊃ C =⇒ w:C
≤rf

R, z:A⊃B,w:A,w:B ⊃ C =⇒ w:C
⊃•

x≤y, y≤z, z≤w, y≤w, y:A⊃ (B ⊃ C), z:A⊃B,w:A =⇒ w:C
≤tr

x≤y, y≤z, z≤w, y:A⊃ (B ⊃ C), z:A⊃B,w:A =⇒ w:C
⊃◦ w fresh

x≤y, y≤z, y:A⊃ (B ⊃ C), z:A⊃B =⇒ z:A⊃ C
⊃◦ z fresh

x≤y, y:A⊃ (B ⊃ C) =⇒ y:(A⊃B)⊃ (A⊃ C)
⊃◦ y fresh

=⇒ x:(A⊃ (B ⊃ C))⊃ ((A⊃B)⊃ (A⊃ C))

with D1 =
id
J , z:A⊃B,w:A =⇒ w:C,w:B,w:A

id
J , w:A,w:B =⇒ w:C,w:B

⊃•
R, w≤w, z:A⊃B,w:A,w:B ⊃ C =⇒ w:C,w:B

id
R, w≤w, z:A⊃B,w:A,w:C =⇒ w:C

⊃•
R, w≤w, z:A⊃B,w:A,w:B ⊃ C =⇒ w:C

where R = x≤y, y≤z, z≤w, y≤w and J = R, w≤w,w:B ⊃ C

• (A⊃ C)⊃ ((B ⊃ C)⊃ (A ∨B ⊃ C)):

D1

R, y:A⊃ C, z:B ⊃ C,w:A =⇒ w:C
D2

R, y:A⊃ C, z:B ⊃ C,w:B =⇒ w:C
∨•

x≤y, y≤z, z≤w, y:A⊃ C, z:B ⊃ C,w:A ∨B =⇒ w:C
⊃◦ w fresh

x≤y, y≤z, y:A⊃ C, z:B ⊃ C =⇒ z:A ∨B ⊃ C
⊃◦ z fresh

x≤y, y:A⊃ C =⇒ y:(B ⊃ C)⊃ (A ∨B ⊃ C)
⊃◦ y fresh

=⇒ x:(A⊃ C)⊃ ((B ⊃ C)⊃ (A ∨B ⊃ C))

with D1 =
id
R, y≤w, y:A⊃ C, z:B ⊃ C,w:A =⇒ w:C,w:A

id
R, z:B ⊃ C,w:A,w:C =⇒ w:C

⊃•+≤tr
R, y:A⊃ C, z:B ⊃ C,w:A =⇒ w:C
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with D2 =
id
R, y:A⊃ C, z:B ⊃ C,w:B =⇒ w:C,w:B

id
R, y:A⊃ C,w:B,w:C =⇒ w:C

⊃•
R, y:A⊃ C, z:B ⊃ C,w:B =⇒ w:C

where R = x≤y, y≤z, z≤w

• ⊥ ⊃ A:

⊥•
x≤y, y:⊥ =⇒ y:A

⊃◦ y fresh
=⇒ x:⊥⊃A

Finally, we have to show how the rules of modus ponens and necessitation can be simu-

lated in our system. For the modus ponens rule
A A⊃B

B
, this is standard using the cut

rule as follows:

=⇒ x:A
weak

=⇒ x:A, x:B

=⇒ x:A⊃B
weak

x:A =⇒ x:B, x:A⊃B

id
x≤x, x:A, x:A⊃B =⇒ x:B, x:A

id
x≤x, x:A, x:B =⇒ x:B

⊃•
x≤x, x:A, x:A⊃B =⇒ x:B

≤rf
x:A, x:A⊃B =⇒ x:B

cut
x:A =⇒ x:B

cut
=⇒ x:B

We will show in the following section that the rule weak is admissible in the system
labIK≤.

For necessitation, we can transform a proof of A into a proof of �A as follows. A proof
of A is in fact a proof D of the sequent =⇒ z:A for some label z. If x and y are fresh labels,
we can transform D into a proof D′ of the sequent x≤y, yRz =⇒ z:A by adding x≤y, yRz
to every line. We can now apply the �◦-rule to obtain a proof of =⇒ x:�A.

4.4 Soundness
In order to prove the implication 3 =⇒ 4 from Theorem 4.2.2 we need to show that each
sequent rule of our system labIK≤ is sound. In other words, we want to prove that for all
models M, if M satisfies the premise then M satisfies the conclusion. To make precise
what that actually means, we have to extend the relation 
 defined in 3.1 from formulas to
sequents. This is the purpose of the following two definitions:

Definition 4.4.1. LetM = 〈W,RM,≤M, V 〉 be a model, and let G be the sequent of the
form R,Γ =⇒ ∆. A G-interpretation inM is a mapping J·K from the labels in G to the set
W of worlds in M, such that whenever xRy in R, then JxKRMJyK, and whenever x≤y in
R, then JxK ≤M JyK. Now we can define

M, J·K 
 G iff if for all x:A ∈ Γ, we have M, JxK 
 A, then
there exists z:B ∈ ∆ such thatM, JzK 
 B. (4.5)

Definition 4.4.2. A sequent G is satisfied inM = 〈W,R,≤, V 〉 iff for all G-interpretations
J·K we haveM, J·K 
 G. A sequent G is valid in a frame F = 〈W,R,≤〉, if for all valuations
V , the sequent G is satisfied in 〈W,R,≤, V 〉.
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We are now ready to state the main theorem of this section, of which the implication
3 =⇒ 4 in Theorem 4.2.2 is an immediate consequence.

Theorem 4.4.3. If a sequent G is provable in labIK≤, then it is valid in every birelational
frame.

Proof. We proceed by induction on the height of the derivation of G, and we show for all
rules r in labIK≤

G1 · · · Gn
r

G

for n ∈ {0, 1, 2}, that whenever G1, . . . ,Gn are valid in all birelational frame, then so is G.
It follows a case analysis on r:

• ⊥•: This is trivial because ⊥ is never forced.

• id: This follows immediately from Proposition 4.2.3.

• ∧•: By way of contradiction, assume that R,Γ, x:A, x:B =⇒ ∆ is valid in all bi-
relational frames, butR,Γ, x:A∧B =⇒ ∆ is not. This means that we have a modelM
and an interpretation J·K, such thatM, J·K 6
 R,Γ, x:A∧B =⇒ ∆, i.e.,M, x 
 A∧B.
From definition of forcing, we get M, x 
 A and M, x 
 B. This means we have
M, J·K 6
 R,Γ, x:A, x:B =⇒ ∆ and this gets a contradiction from the assumption.

• ∨◦: By way of contradiction, assume R,Γ =⇒ ∆, x:A, x:B is valid in all bi-relational
frames, but R,Γ =⇒ ∆, x:A ∨ B. This means that we have a model and an in-
terpretation J·K, such that M, J·K 6
 R,Γ =⇒ ∆, x:A ∨ B, i.e., M, x 6
 A ∨ B.
From definition of forcing, we get M, x 6
 A and M, x 6
 B. This means we have
M, J·K 6
 R,Γ =⇒ ∆, x:A, x:B and this get a contradiction from the assumption.

• �•: By way of contradiction, assume that R, x≤y, yRz,Γ, x:�A, z:A =⇒ ∆ is valid
in all bi-relational frames, butR, x≤y, yRz,Γ, x:�A =⇒ ∆ is not. This means that we
have a modelM and an interpretation J·K, such thatM, J·K 6
 R, x≤y, yRz,Γ, x:�A =⇒
∆, i.e., JxK ≤M JyK and JyKRMJzK andM, x 
 �A andM, w 6
 B for all w:B ∈ ∆.
However, by the definition of forcing in (3.1) we also haveM, z 
 A, and consequently
M, J·K 6
 R, x≤y, yRz,Γ, x:�A, z:A =⇒ ∆. Then we get a contradiction.

• �◦: By way of contradiction, assume that R, x≤y, yRz,Γ =⇒ ∆, z:A is valid in all
bi-relational frames, but R,Γ =⇒ ∆, x:�A is not, where y and z do not occur in
R or Γ or ∆. This means that we have a model M and an interpretation J·K, such
that M, J·K 6
 R,Γ =⇒ ∆, x:�A. So in particular, there are worlds y′ and z′ in M
such that JxK ≤M y′ and y′RMz

′ and M, z′ 6
 A. Now we let J·K′ be the extension
of J·K such that JyK′ = y′ and JzK′ = z′ and J·K′ = J·K on all other labels. Then
M, J·K′ 6
 R, x≤y, yRz,Γ =⇒ ∆, z:A. Then we get a contradiction.

• ⊃◦: By way of contradiction, assume that R, x≤y,Γ, y:A =⇒ ∆, y:B is valid in all
bi-relational frames, but R,Γ =⇒ ∆, x:A⊃ B is not, where y does not occur in R or
Γ or ∆. This means that we have a model M and an interpretation J·K, such that
M, J·K 6
 R,Γ =⇒ ∆, x:A⊃ B. So there exists a world y′ inM such that JxK ≤M y′
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and M, y′ 
 A but M, y′ 6
 B. Now we let J·K′ be the extension of J·K such that
JyK′ = y′ and J·K′ = J·K on all other labels. ThenM, J·K′ 6
 R, x≤y,Γ, y:A =⇒ ∆, y:B.
Then we get a contradiction.

• ♦•: By way of contradiction, assume that R, xRy,Γ, y:A =⇒ ∆ is valid in all bi-
relational frames, but R,Γ, x:♦A =⇒ ∆ is not, where y does not occur in R or Γ
or ∆. This means that we have a model M and an interpretation J·K, such that
M, J·K 6
 R,Γ, x:♦A =⇒ ∆, i.e. M, x 
 ♦A. This means that there exists world y′
inM such that JxKRMy′ andM, y′ 
 A. Now we let J·K′ be the extension of J·K such
that JyK′ = y′ and J·K′ = J·K on all other labels. ThenM, J·K′ 6
 R, xRy,Γ, y:A =⇒ ∆.
Then we get a contradiction.

• ♦◦: By way of contradiction, assume that R, xRy,Γ =⇒ ∆, x:♦A, y:A is valid in all
bi-relational frames, but R, xRy,Γ =⇒ ∆, x:♦A is not. This means that we have a
model M and an interpretation J·K, such that M, J·K 6
 R, xRy,Γ =⇒ ∆, x:♦A, i.e.,
JxKRMJyK and M, x 6
 ♦A. This means that for all world y′ such that JxKRMy′ we
have M, y′ 6
 A. Now we let J·K′ be the extension of J·K such that JyK′ = y′. Then
M, J·K 6
 R, xRy,Γ =⇒ ∆, x:♦A, y:A adn we get a contradiction.

The other cases are similar (and simpler), and we leave them to the reader. In particular,
note that the cases for the rules ≤rf, ≤tr, F1 and F2 are trivial, as all bi-relational frames
have to obey the corresponding conditions.

4.5 Cut Admissibility
Following with the proof of Theorem 4.2.2, in this section we are going to prove the admis-
sibility of the cut rule for our system labIK≤.

Theorem 4.5.1. The cut rule is admissible for labIK≤.

This theorem directly entails the implication 2 =⇒ 3 of Theorem 4.2.2. But before we
can prove it, we need a series of auxiliary lemmas.

The height of a derivation D, denoted by |D|, is the height of D when seen as a tree,
i.e., the length of the longest path in the tree from its root to one of its leaves. We say that
a rule is height-preserving admissible if for every derivation D of its premise(s) there is a
derivation D′ of its conclusion such that |D′| ≤ |D|. A rule is height-preserving invertible if
for every derivation of the conclusion of the rule there are derivations for each of its premises
with at most the same height.

The first lemma is the height-preserving admissibility of weakening on both relational
atoms and labelled formulas.

Lemma 4.5.2. The weakening rule
R,Γ =⇒ ∆

weak
R,R′,Γ,Γ′ =⇒ ∆,∆′

is height-preserving admis-

sible for labIK≤.

Proof. By a straightforward induction on the height of the derivation, we can transform any
derivation

D

R,Γ =⇒ ∆
into Dw

R,R′,Γ,Γ′ =⇒ ∆,∆′
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of the same (or smaller) height.

The next lemma looks like a special case of Proposition 4.2.3, but it is not. First, we
need to preserve the height, and second, we cannot prove it using cut rule as we are trying
to eliminate it from derivations.

Lemma 4.5.3. The atomic version of mon• and mon◦

R, x≤y,Γ, x:a, y:a =⇒ ∆
mona•

R, x≤y,Γ, x:a =⇒ ∆
R, x≤y,Γ =⇒ ∆, x:a, y:a

mona◦

R, x≤y,Γ =⇒ ∆, y:a

are height-preserving admissible for labIK≤.

Proof. By induction on the height ofD, we prove that for any proof ofR, x≤x′,Γ, x:a, x′:a =⇒
∆, there exists a proof of R, x≤x′,Γ, x:a =⇒ ∆ of the same (or smaller) height. The in-
ductive step is straightforward by permutation of rules. The base cases are obtained as
follows:

id
R, x≤x′, x′≤x′′, Γ, x:a, x′:a =⇒ ∆, x′′:a

mona•

R, x≤x′, x′≤x′′, Γ, x:a =⇒ ∆, x′′:a
 

id
R, x≤x′, x′≤x′′, x≤x′′, Γ, x:a =⇒ ∆, x′′:a

≤tr
R, x≤x′, x′≤x′′, Γ, x:a =⇒ ∆, x′′:a

id
R, x≤x′, x:a, x′:a =⇒ ∆, x:a

mona•

R, x≤x′, Γ, x:a =⇒ ∆, x:a
 

id
R, x≤x′, x≤x, x:a =⇒ ∆, x:a

≤rf
R, x≤x′, Γ, x:a =⇒ ∆, x:a

id
R, x≤x′, x:a, x′:a =⇒ ∆, x′:a

mona•

R, x≤x′, Γ, x:a =⇒ ∆, x′:a
 id

R, x≤x′, Γ, x:a =⇒ ∆, x′:a

The next lemma shows that all the rules in our system are invertible, as already men-
tioned in the motivation in Section 4.1.

Lemma 4.5.4. All single-premise rules of labIK≤ are height-preserving invertible. Further-
more, the rules ∨•, ∧◦ and ⊃• are height-preserving invertible on both premises.

Proof. For each rule r, we need to show that if there exists a proof D of the conclusion,
there exists a proof Dri of the i-th premise, of the same (or smaller) height. For ∧◦, ∧•, ∨◦,
∨• and ⊃• we use a standard induction on the height of D. For ⊃◦, �◦, ♦• as well, but
we need to make sure that the obtained derivation uses a fresh label by using substitution
inside Dr when necessary. The other rules can be shown invertible using Lemma 4.5.2.

The next lemma is the central ingredient of our cut elimination proof.

Lemma 4.5.5. Given a derivation of shape

D1

R,Γ =⇒ ∆, z:C
D2

R,Γ, z:C =⇒ ∆
cut

R,Γ =⇒ ∆

where D1 and D2 are both cut-free, there is a cut-free derivation of R,Γ =⇒ ∆
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Proof. The proof is by a lexicographic induction on the complexity of the cut-formula C
and the sum of the heights |D1|+ |D2|. We perform a case analysis on the last rule used in
D1 above the cut and whether it applies to the cut-formula or not. In case it does not, we
are in a commutative case; in case it does, we have to perform a similar analysis on D2 to
end up in a key case.

Base cases: When the last rule in D1 is an axiom, we can produce directly a cut-free
derivation of the conclusion. In the first case, we appeal to Lemma 4.5.3, to use the
atomic monotonicity rule freely and to Lemma 4.5.2 to obtain Dw

2 through weakening
admissibility.

•

id
R, x≤y, Γ, x:a =⇒ ∆, y:a

D2

R, x≤y, Γ, x:a, y:a =⇒ ∆
cut

R, x≤y, Γ, x:a =⇒ ∆

 

Dw
2

R, x≤y, Γ, x:a, y:a =⇒ ∆
mona•

R, x≤y, Γ, x:a =⇒ ∆

•

id
R, x≤y, Γ, x:a =⇒ ∆, y:a, z:C

D2

R, x≤y, Γ, x:a, z:C =⇒ ∆, y:a
cut

R, x≤y, Γ, x:a =⇒ ∆, y:a

 id
R, x≤y, Γ, x:a =⇒ ∆, y:a

•

⊥•
R, Γ, x:⊥ =⇒ ∆, z:C

D2

R, Γ, x:⊥, z:C =⇒ ∆
cut

R, Γ, x:⊥ =⇒ ∆
 ⊥•

R, Γ, x:⊥ =⇒ ∆

Commutative cases: In such a case, the complexity of the cut-formula stays constant,
but the height of the derivation above the cut decreases.

• ⊃•:
D1

R, x≤y,Γ, x:A⊃B =⇒ ∆, z:C, y:A
D2

R, x≤y,Γ, y:B =⇒ ∆, z:C
⊃•

R, x≤y,Γ, x:A⊃B =⇒ ∆, z:C
D3

R, x≤y,Γ, x:A⊃B, z:C =⇒ ∆
cut

R, x≤y,Γ, x:A⊃B =⇒ ∆

 

D′1

R, x≤y,Γ, x:A⊃B =⇒ ∆, y:A

D2

R, x≤y,Γ, y:B =⇒ ∆, z:C
D⊃
•′

3

R, x≤y,Γ, y:B, z:C =⇒ ∆
cut

R, x≤y,Γ, y:B =⇒ ∆
⊃•

R, x≤y,Γ, x:A⊃B =⇒ ∆
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with D′1 =

D1

R, x≤y,Γ, x:A⊃B =⇒ ∆, z:C, y:A
D⊃
•′′

3

R, x≤y,Γ, x:A⊃B, z:C =⇒ ∆, y:A
cut

R, x≤y,Γ, x:A⊃B =⇒ ∆, y:A

where D⊃•′3 and D⊃•′′3 are obtained using Lemma 4.5.4 for the rule ⊃• which is
invertible in the right premise and the left premise, respectively.
• ⊃◦:

D1

R, x≤x′, Γ, x′:A =⇒ ∆, x′:B, z:C
⊃◦ x′ fresh

R, Γ =⇒ ∆, x:A⊃B, z:C
D2

R, Γ, z:C =⇒ ∆, x:A⊃B
cut

R, Γ =⇒ ∆, x:A⊃B

 

D1[x′′/x′]

R, x≤x′′, Γ, x′′:A =⇒ ∆, x′′:B, z:C
D⊃
◦

2

R, x≤x′′, Γ, z:C, x′′:A =⇒ ∆, x′′:B
cut

R, x≤x′′, Γ, x′′:A =⇒ ∆, x′′:B
⊃◦ x′′ fresh (also in D2)R, Γ =⇒ ∆, x:A⊃B

where D⊃◦2 is obtained using Lemma 4.5.4. We use the same naming scheme in
the following cases.
• �•:

D1

R, x≤u, uRv, Γ, x:�A, v:A =⇒ ∆, z:C
�•

R, x≤u, uRv, Γ, x:� =⇒ ∆, z:C
D2

R, x≤u, uRv, Γ, x:�A, z:C =⇒ ∆
cut

R, x≤u, uRv, Γ, x:�A =⇒ ∆

 

D1

R, x≤u, uRv, Γ, x:�A, v:A =⇒ ∆, z:C
Dw

2

R, x≤u, uRv, Γ, x:�A, v:A, z:C =⇒ ∆
cut

R, x≤u, uRv, Γ, x:�A, v:A =⇒ ∆
�•

R, x≤u, uRv, Γ, x:�A =⇒ ∆

where Dw
2 is obtained using Lemma 4.5.2. We use the same naming scheme in

the following cases.
• �◦:

D1

R, x≤x′, x′Ry′, Γ =⇒ ∆, y′:A, z:C
�◦ x′, y′ fresh

R, Γ =⇒ ∆, x:�A, z:C
D2

R, Γ, z:C =⇒ ∆, x:�A
cut

R, Γ =⇒ ∆, x:�A

 

D1[u/x′][v/y′]

R, x≤u, uRv, Γ =⇒ ∆, v:A, z:C
D�◦

2

R, x≤u, uRv, Γ, z:C =⇒ ∆, v:A
cut

R, x≤u, uRv, Γ =⇒ ∆, v:A
�◦ u, v fresh (also in D2)R, Γ =⇒ ∆, x:�A
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• ♦•:

D1

R, xRy′, Γ, y′:A =⇒ ∆, z:C
♦• y′ fresh

R, Γ, x:♦A =⇒ ∆, z:C
D2

R, Γ, x:♦A, z:C =⇒ ∆
cut

R, Γ, x:♦A =⇒ ∆

 

D1[y′′/y′]

R, xRy′′, Γ, y′′:A =⇒ ∆, z:C
D♦•

2

R, xRy′′, Γ, y′′:A, z:C =⇒ ∆
cut

R, xRy′′, Γ, y′′:A =⇒ ∆
♦• y′′ fresh (also in D2)R, Γ, x:♦A =⇒ ∆

• ♦◦:

D1

R, xRy, Γ =⇒ ∆, x:♦A, y:A, z:C
♦◦

R, xRy, Γ =⇒ ∆, x:♦A, z:C
D2

R, Γ, z:C =⇒ ∆, x:♦A
cut

R, xRy, Γ =⇒ ∆, x:♦A

 

D1

R, xRy, Γ =⇒ ∆, x:♦A, y:A, z:C
Dw

2

R, Γ, z:C =⇒ ∆, x:♦A, y:A
cut

R, xRy, Γ =⇒ ∆, x:♦A, y:A
♦◦

R, xRy, Γ =⇒ ∆, x:♦A

• ≤rf:

D1

R, x≤x, Γ =⇒ ∆, z:C
≤rf

R, Γ =⇒ ∆, z:C
D2

R, Γ, z:C =⇒ ∆
cut

R, Γ =⇒ ∆

 

D1

R, x≤x, Γ =⇒ ∆, z:C
Dw

2

R, x≤x, Γ, z:C =⇒ ∆
cut

R, x≤x, Γ =⇒ ∆
≤rf

R, Γ =⇒ ∆

• ≤tr:

D1

R, x≤y, y≤z, x≤z, Γ =⇒ ∆, z:C
≤tr

R, x≤y, y≤z, Γ =⇒ ∆, z:C
D2

R, x≤y, y≤z, Γ, z:C =⇒ ∆
cut

R, x≤y, y≤z, Γ =⇒ ∆

 

D1

R, x≤y, y≤z, x≤z, Γ =⇒ ∆, z:C
Dw

2

R, x≤y, y≤z, x≤z, Γ, z:C =⇒ ∆
cut

R, x≤y, y≤z, x≤z, Γ =⇒ ∆
≤tr

R, x≤y, y≤z, Γ =⇒ ∆
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• F1:

D1

R, xRy, y≤z, x≤u, uRz, Γ =⇒ ∆, z:C
F1 u fresh

R, xRy, y≤z, Γ =⇒ ∆, z:C
D2

R, xRy, y≤z, Γ, z:C =⇒ ∆
cut

R, xRy, y≤z, Γ =⇒ ∆

 

D1[v/u]

R, xRy, y≤z, x≤v, vRz, Γ =⇒ ∆, z:C
Dw

2

R, xRy, y≤z, x≤v, vRz, Γ, z:C =⇒ ∆
cut

R, xRy, y≤z, x≤v, vRz, Γ =⇒ ∆
F1 v fresh (also in D2)R, xRy, y≤z, Γ =⇒ ∆

• F2:

D1

R, xRy, x≤z, y≤u, zRu, Γ =⇒ ∆, z:C
F2 u fresh

R, xRy, x≤z, Γ =⇒ ∆, z:C
D2

R, xRy, x≤z, Γ, z:C =⇒ ∆
cut

R, xRy, x≤z, Γ =⇒ ∆

 

D1[v/u]

R, xRy, x≤z, y≤v, zRv, Γ =⇒ ∆, z:C
Dw

2

R, xRy, x≤z, y≤v, zRv, Γ, z:C =⇒ ∆
cut

R, xRy, x≤z, y≤v, zRv, Γ =⇒ ∆
F2 v fresh (also in D2)R, xRy, x≤z, Γ =⇒ ∆

Key cases: If the last rule in D1 and the last rule in D2 both apply to the cut-formulas,
then it is the complexity of the cut-formula that is the decreasing inductive measure,
save for the modal cases, where it is important to note the combination of induction
on both height and formula size.

• C = A ∧B:
D1

R, Γ =⇒ ∆, x:A
D2

R, Γ =⇒ ∆, x:B
∧◦

R, Γ =⇒ ∆, x:A ∧B

D3

R, Γ, x:A, x:B =⇒ ∆
∧•
R, Γ, x:A ∧B =⇒ ∆

cut
R, Γ =⇒ ∆

 

D1

R, Γ =⇒ ∆, x:A

Dw
2

R, Γ, x:A =⇒ ∆, x:B
D3

R, Γ, x:A, x:B =⇒ ∆
cut

R, Γ, x:A =⇒ ∆
cut

R, Γ =⇒ ∆

• C = A ∨B:
D1

R, Γ =⇒ ∆, x:A, x:B
∨◦
R, Γ =⇒ ∆, x:A ∨B

D2

R, Γ, x:A =⇒ ∆
D3

R, Γ, x:B =⇒ ∆
∨•

R, Γ, x:A ∨B =⇒ ∆
cut

R, Γ =⇒ ∆
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D1

R, Γ =⇒ ∆, x:A, x:B
Dw

3

R, Γ, x:B =⇒ ∆, x:A
cut

R, Γ =⇒ ∆, x:A
D2

R, Γ, x:A =⇒ ∆
cut

R, Γ =⇒ ∆

• C = A⊃B:

D1

R, x≤y, x≤x′,Γ, x′:A =⇒ ∆, x′:B
⊃◦

R, x≤y,Γ =⇒ ∆, x:A⊃B

D2

R, x≤y,Γ, x:A⊃B =⇒ ∆, y:A
D3

R, x≤y,Γ, y:B =⇒ ∆
⊃•

R, x≤y,Γ, x:A⊃B =⇒ ∆
cut

R, x≤y,Γ =⇒ ∆

 

D′1

R, x≤y,Γ =⇒ ∆, y:A

D1[y/x′]

R, x≤y,Γ, y:A =⇒ ∆, y:B
D3

R, x≤y,Γ, y:B =⇒ ∆
cut

R, x≤y,Γ, y:A =⇒ ∆
cut

R, x≤y,Γ =⇒ ∆

with D′1 =

Dw
1

R, x≤y, x≤x′,Γ, x′:A =⇒ ∆, x′:B, y:A
⊃◦

R, x≤y,Γ =⇒ ∆, x:A⊃B, y:A
D2

R, x≤y,Γ, x:A⊃B =⇒ ∆, y:A
cut

R, x≤y,Γ =⇒ ∆, y:A

• C = �A:
D1

R, x≤u, uRv, x≤x′, x′Ry′, Γ =⇒ ∆, y′:A
�◦

R, x≤u, uRv, Γ =⇒ ∆, x:�A

D2

R, x≤u, uRv, Γ, x:�A, v:A =⇒ ∆
�•

R, x≤u, uRv, Γ, x:�A =⇒ ∆
cut

R, x≤u, uRv, Γ =⇒ ∆

 

D1[u/x′,v/y′]

R, x≤u, uRv, Γ =⇒ ∆, v:A
D′2

R, x≤u, uRv, Γ, v:A =⇒ ∆
cut

R, x≤u, uRv, Γ =⇒ ∆

with D′2 =

Dw
1

R, x≤u, uRv, x≤x′, x′Ry′, Γ, v:A =⇒ ∆, x:�A, y′:A
�◦

R, x≤u, uRv, Γ, v:A =⇒ ∆, x:�A

D2

R, x≤u, uRv, Γ, x:�A, v:A =⇒ ∆
cut

R, x≤u, uRv, Γ, v:A =⇒ ∆

The top cut is admissible by induction on the height, as the size of the cut-formula
is constant. This however may increase the height above the right premise of the
bottom cut arbitrarily. The bottom cut is still admissible as the size of the cut-
formula decreases.
• C = ♦A:

D1

R, xRy, Γ =⇒ ∆, x:♦A, y:A
♦◦

R, xRy, Γ =⇒ ∆, x:♦A

D2

R, xRy, xRy′, Γ, y′:A =⇒ ∆
♦• y′ is fresh

R, xRy, Γ, x:♦A =⇒ ∆
cut

R, xRy, Γ =⇒ ∆
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D1

R, xRy,Γ =⇒ ∆, y:A, x:♦A

Dw
2

R, xRy, xRy′,Γ, y′:A =⇒ ∆, y:A
♦• y′ is fresh

R, xRy,Γ, x:♦A =⇒ ∆, y:A
cut

R, xRy,Γ =⇒ ∆, y:A
D2[y/y′]

R, xRy,Γ, y:A =⇒ ∆
cut

R, xRy,Γ =⇒ ∆

The induction hypothesis is applied here again twice as above, on the height for
the top cut and on formula size for the bottom one.

We can now complete the proof of Theorem 4.5.1.

Proof of Theorem 4.5.1. By induction on the number of cut rules in D, always applying
Lemma 4.5.5 to the leftmost topmost cut.

4.6 Extensions
The main goal of this section is to generate stronger logics adding new axioms to our system.
We say stronger logic to refer to the fact that we are restricting the class of frames we
want to consider, imposing some restrictions on the accessibility relation R. We will present
extensions for the fully labelled sequent system labIK≤ with one-sided Scott-Lemmon axioms
and with path Scott-Lemmon axioms.

4.6.1 One-sided Scott-Lemmon axioms
In the fully labelled framework, we are also able to consider the logics defined by one-sided
intuitionistic Scott-Lemmon axioms introduced also in Section 3.2 as follows:

♦k�lA⊃�m♦nA (4.6)
for any natural numbers k, l,m, n. These axioms satisfy the intuitionistic klmn-incestuality
condition presented in Chapter 3 in Figure 3.1.

Following again the axiom-as-rule idea, to have a sound and complete system for IK ex-
tended by one-sided intuitionistic Scott-Lemmon axioms, we introduce to the system labIK≤
the gklmn rule, for any natural numbers k, l,m, n:

R, xRky, xRmz, y≤y′, y′Rlu, zRnu,Γ =⇒ ∆
gklmn y′, u fresh

R, xRky, xRmz,Γ =⇒ ∆
(4.7)

where xRky is an abbreviation for xRx1, x1Rx2, . . . , xk−1Ry, and the labels x, x1, . . . ,
xk−1, y do not have to be distinct, and if k = 0 then x = y; and similarly for xRmz, if
m = 0, then x = z. In case some of them coincide, they are not repeated since R is a set of
relational atoms. However, in the premise, the expression y′Rlu stands for y′Ru1, . . . , ul−1Ru
where all u1, . . . , ul−1, u are fresh, and therefore pairwise distinct, except if l = 0, in which
case u = y′; similarly for zRnu, but note that if n = 0 then u = z.

For example, the derivation in (4.8) below requires the (valid) application of the rule

R, xRy, xRz, y≤y′, y′Rz,Γ =⇒ ∆
g1110 y′ fresh

R, xRy, xRz,Γ =⇒ ∆
as

R, xRz, z≤y′, y′Rz,Γ =⇒ ∆
g1110 y′ fresh

R, xRz,Γ =⇒ ∆
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i.e., the case where y = z, in order to derive �(�A⊃ A).

id
x≤y, yRz, z≤v, y≤u, uRv, v≤w,wRv, v:�A, v:A =⇒ v:A

�•

x≤y, yRz, z≤v, y≤u, uRv, v≤w,wRv, v:�A =⇒ v:A
g1110 w fresh

x≤y, yRz, z≤v, y≤u, uRv, v:�A =⇒ v:A
F1 u fresh

x≤y, yRz, z≤v, v:�A =⇒ v:A
⊃◦ v fresh

x≤y, yRz =⇒ z:�A⊃ A
�◦

=⇒ x:�(�A⊃ A)

(4.8)

We can then show that Theorem 4.2.2 generalizes to labIK≤ with any gklmn rule (it can
be one or more) to provide a sound and cut-free complete system for this family of logics.

Theorem 4.6.1. Let Agklmn a set of one-sided Scott-Lemmon axioms and let Rgklmn be the
set of their corresponding gklmn rules. For any formula B, the following are equivalent.

1. B is a theorem of IK +Agklmn.

2. B is provable in labIK≤ +Rgklmn + cut.

3. B is provable in labIK≤ +Rgklmn.

4. B is valid in every bi-relational frame satisfying the klmn-incestuality properties.

Proof. The proof is similar to the one of Theorem 4.2.2.

• 1 =⇒ 2: Same as Theorem 4.3.1 with the additional derivation of ♦k�lA⊃�m♦nA

id
yk:�lA, w:A =⇒ xm:♦nA, w:A

�•

yk≤y′′k , . . . , w≤w, yk:�lA =⇒ xm:♦nA, w:A
≤tr+≤rf

yk:�lA =⇒ xm:♦nA, w:A
♦◦

y′k≤y′′k , y′′kRlw, xmRnw, yk:�lA =⇒ xm:♦nA
gklmn

x′′0Ry′1, {y′jRy′j+1}1≤j≤k−1, yk:�lA =⇒ xm:♦nA
F2

x0Ry1, {yjRyj+1}1≤j≤k−1, yk:�lA =⇒ xm:♦nA
♦•

x′m−2≤x′′m−2, x′′m−2Rx′m−1, {x′i≤x′′i , x′′i Rx′′i+1}0≤i≤m−2, x0:♦k�lA =⇒ xm:♦nA
F1

{xi≤x′i, x′iRxi+1}0≤i≤m−1, x0:♦k�lA =⇒ xm:♦nA
�◦

x≤x0, x0:♦k�lA =⇒ x0:�m♦nA
⊃◦

=⇒ x:♦k�lA⊃�m♦nA

where we omit the accumulated relational context for space reason.

• 2 =⇒ 3: To prove that the rule cut is admissible for labIK≤ + gklmn, it is enough to
insert a case for the rule gklmn in the proof of Theorem 4.2.2, which is straightforward
as the gklmn rule only manipulates the relational context as it shows below:
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D1

R, xRky, xRmz, y≤y′, y′Rlu, zRnu,Γ =⇒ ∆, z:C
gklmn y′, u fresh

R, xRky, xRmz,Γ =⇒ ∆, z:C
D2

R, xRky, xRmz,Γ, z:C =⇒ ∆
cut

R, xRky, xRmz,Γ =⇒ ∆

 

D1

R, xRky, xRmz, y≤y′, y′Rlu, zRnu,Γ =⇒ ∆, z:C
Dw

2

R, xRky, xRmz, y≤y′, y′Rlu, zRnu,Γ, z:C =⇒ ∆
cut

R, xRky, xRmz, y≤y′, y′Rlu, zRnu,Γ =⇒ ∆
gklmn y′, u fresh

R, xRky, xRmz,Γ =⇒ ∆

• 3 =⇒ 4: As we already proved the rules of labIK≤ sound in Theorem 4.4.3,
we only need to prove that gklmn is sound. By way of contradiction, assume that
R, y≤y′, xRky, xRmz, y′Rlu, zRnu,Γ =⇒ ∆ is valid in any klmn-incestuous frame,
but that there is such a model M and an interpretation J·K, such that M, J·K 6

R, xRky, xRmz,Γ =⇒ ∆. That means, JxKRk

MJyK, JxKRm
MJzK, for all x:A ∈ Γ,

M, x 
 A, and for all w:B ∈ ∆, M, w 6
 B. Since M is klmn-incestuous, there
exists v, w ∈ WM, such that JyK ≤M v, vRl

Mw, and JzKRn
Mw. Now let J·K∗ be the

extension of J·K such that Jy′K∗ = v, JuK∗ = w, and J·K∗ = J·K otherwise. Then,
M, J·K∗ 6
 R, y≤y′, xRky, xRmz, y′Rlu, zRnu,Γ =⇒ ∆. Contradiction.

The proof is completed by appealing to Theorem 3.2.2 used as 4 =⇒ 1 to close the
equivalence.

As we realize this theorem might look rather abstract, we reconsider an example that
was problematic in previous approaches to the logic IK+♦�A⊃�♦A, corresponding to the
1111-condition (see details of these approaches in Section 6.3 of Simpson’s PhD thesis [59]).
Indeed, the formula

♦(�(a ∨ b) ∧ ♦a) ∧ ♦(�(a ∨ b) ∧ ♦b))⊃ ♦(♦a ∧ ♦b)

is not a theorem of this logic, but would become provable if we directly add to our system
the rule

R, wRv, vRu, vRx, uRx,Γ =⇒ ∆
R, wRv, vRu,Γ =⇒ ∆

corresponding to the directedness condition ∀xyz.((xRy ∧ xRz) ⊃ ∃u.(yRu ∧ zRu)). By
representing bi-relational semantics precisely with both R and ≤ relations and by adding
the rule g1111 defined above, we can no longer derive this formula, as illustrated by the
representation of the failed proof search below:
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..........................................................................................................................................................................................
R1,R2, y

′:�(a ∨ b), u′′:b, y′:♦a, z′:�(a ∨ b), v′′:a, z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, v′′:b, z′:♦a, u′′:a
∨•,id
R1,R2, y

′:�(a ∨ b), u′′:b, y′:♦a, z′:�(a ∨ b), v′′:a ∨ b, z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, v′′:b, z′:♦a, u′′:a
�•,♦◦

R1,R2, y
′:�(a ∨ b), u′′:b, y′:♦a, z′:�(a ∨ b), z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, z′:♦a, u′′:a

g1111 z′′, v′′ fresh
R1, y

′:�(a ∨ b), u′′:b, y′:♦a, z′:�(a ∨ b), z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, z′:♦a, u′′:a
∨•,id
R1, y

′:�(a ∨ b), u′′:a ∨ b, y′:♦a, z′:�(a ∨ b), z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, z′:♦a, u′′:a
�•,♦◦

R1, y
′:�(a ∨ b), y′:♦a, z′:�(a ∨ b), z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, z′:♦a

g1111 y′′, u′′ fresh
x≤x′, x′Ry′, x′Rz′, y′:�(a ∨ b), y′:♦a, z′:�(a ∨ b), z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, z′:♦a

∧◦,id
x≤x′, x′Ry′, x′Rz′, y′:�(a ∨ b), y′:♦a, z′:�(a ∨ b), z′:♦b =⇒ x′:♦(♦a ∧ ♦b), y′:♦b, z′:♦a ∧ ♦b

♦•,∧•,♦◦ z′ fresh
x≤x′, x′Ry′, y′:�(a ∨ b), y′:♦a, x′:♦(�(a ∨ b) ∧ ♦b) =⇒ x′:♦(♦a ∧ ♦b), y′:♦b

∧◦,id
x≤x′, x′Ry′, y′:�(a ∨ b), y′:♦a, x′:♦(�(a ∨ b) ∧ ♦b) =⇒ x′:♦(♦a ∧ ♦b), y′:♦a ∧ ♦b

♦•,∧•,♦◦ y′ fresh
x≤x′, x′:♦(�(a ∨ b) ∧ ♦a), x′:♦(�(a ∨ b) ∧ ♦b) =⇒ x′:♦(♦a ∧ ♦b)

⊃◦,∧•
=⇒ x:(♦(�(a ∨ b) ∧ ♦a) ∧ ♦(�(a ∨ b) ∧ ♦b))⊃ ♦(♦a ∧ ♦b)

where R1 = x≤x′, y′≤y′′, x′Ry′, x′Rz′, y′′Ru′′, z′Ru′′ and R2 = z′≤z′′, z′′Rv′′, y′Rv′′.

As another illustration of our system, let us go back to the example of the transitivity
frame condition as it was done in the previous section. The frames that validate the axiom
4♦ : ♦♦A ⊃ ♦A are exactly the ones satisfying the 2001-condition: if wRv and vRu, there
exists u′ such that u≤u′ and wRu′. The frames that validate the axiom 4� : �A ⊃ ��A
are exactly the ones satisfying the 0120-condition: if wRv and vRu, there exists w′ such
that w≤w′ and w′Ru. We can therefore obtain a sound and complete proof system for the
intuitionistic modal logic IK extended with axiom 4♦ or 4�, respectively, by specialising the
rule scheme above as
R, wRv, vRu, u≤u′, wRu′,Γ =⇒ ∆

g2001 u′ fresh
R, wRv, vRu,Γ =⇒ ∆

or
R, wRv, vRu,w≤w′, w′Ru,Γ =⇒ ∆

g0120 w′ fresh
R, wRv, vRu,Γ =⇒ ∆

Indeed, they allow us to derive the corresponding axioms 4♦ and 4� as required above in
the completeness proof

id
x≤w,wRv, vRu, u≤u′, wRu′, u:A =⇒ w:♦A, u′:A

♦◦

x≤w,wRv, vRu, u≤u′, wRu′, u:A =⇒ w:♦A
g2001

x≤w,wRv, vRu, u:A =⇒ w:♦A
♦•

x≤w,w:♦♦A =⇒ w:♦A
⊃◦

x:♦♦A⊃ ♦A
as well as,

id
x≤w,w≤w′, w′Rv, v≤v′, v′Ru,w′≤t, tRv′, w≤t, tRu,w:�A, u:A =⇒ u:A

�•

x≤w,w≤w′, w′Rv, v≤v′, v′Ru,w′≤t, tRv′, t≤t′, t′Ru,w≤t, w:�A =⇒ u:A
≤tr

x≤w,w≤w′, w′Rv, v≤v′, v′Ru,w′≤t, tRv′, t≤t′, t′Ru,w:�A =⇒ u:A
g0120

x≤w,w≤w′, w′Rv, vRv′, v′Ru,w′≤t, tRv′, w:�A =⇒ u:A
F1

x≤w,w≤w′, w′Rv, v≤v′, v′Ru,w:�A =⇒ u:A
�◦

x≤w,w:�A =⇒ w:��A
⊃◦

x:�A⊃��A

44



4.6.2 Path Scott-Lemmon axioms
We then also consider the logics defined by a particular subclass of the Scott-Lemmon
axioms in which we can find simpler and more elegant extensions for our fully labelled
sequent system labIK≤. In particular, we show that we can extend labIK≤ with only one rule
for each corresponding axiom and avoiding the preorder relation in such rules. This subclass
of axioms includes the axiom d : �A⊃♦A and the path Scott-Lemmon axioms presented in
Chapter 3, Section 3.2 which are of the form:

(♦k�A⊃�mA) ∧ (♦mA⊃�k♦A)

where k,m are natural numbers. The path Scott-Lemmon axioms satisfy the intuitionistic
SL-path condition presented in 3.2.

Let A be the set of axioms including the path Scott-Lemmon axioms and the axiom d,
i.e. A ⊆ {t, b, 4, 5, d}. In order to capture the axiom of seriality d, we extend the system
labIK≤ by adding the following rule called Rser:

R, xRy,Γ =⇒ ∆
Rser y fresh

R,Γ =⇒ ∆

where x is a label presented in R.
In the case of path Scott-Lemmon axioms, we follow again the axiom-as-rule idea, to

have a sound a complete system for IK extended by any such axiom and we introduce to
the system labIK≤ the following rule called φkm for any natural numbers k,m:

R, xRky, xRmz, yRz,Γ =⇒ ∆
φkm

R, xRky, xRmz,Γ =⇒ ∆

Observe, that in the rule φkm above, xRky and xRmz are similar to the ones used in the
one-sided Scott-Lemmon axioms. For example, in the case we want to restrict the class of
frames with the transitivity condition introduced in the beginning of the Chapter, we will
have that k = 0 and m = 2 and we will reach to the rule called Rtr which will be added to
the fully labelled system labIK≤:

R, xRy, yRz, xRz,Γ =⇒ ∆
Rtr

R, xRy, yRz,Γ =⇒ ∆

We can then show that the axioms for transitivity 4♦ : ♦♦A⊃ ♦A and 4� : �A⊃��A
can be derived using the rules of labIK≤ +Rtr as follows:

idg
x≤y, yRz, zRu, yRu, u:A⇒ y:♦A, u:A

♦◦

x≤y, yRz, zRu, yRu, u:A⇒ y:♦A
Rtr

x≤y, yRz, zRu, u:A⇒ y:♦A
♦• u fresh

x≤y, yRz, z:♦A⇒ y:♦A
♦• z fresh

x≤y, y:♦♦A⇒ y:♦A
⊃◦ y fresh

⇒ x:♦♦A⊃ ♦A
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R, xRx,Γ =⇒ ∆
Rrf

R,Γ =⇒ ∆
R, xRy, yRz, xRz,Γ =⇒ ∆

Rtr
R, xRy, yRz,Γ =⇒ ∆

R, xRy, xRz, yRz,Γ =⇒ ∆
Reuc

R,Γ, xRy, xRz,=⇒ ∆
R, yRx,Γ =⇒ ∆

Rsim
R, xRy,Γ =⇒ ∆

R, xRy,Γ =⇒ ∆
Rser y fresh

R,Γ =⇒ ∆

Figure 4.2: R-rules

idg
v≤v, x≤y, y≤z, u≤w, z≤u′, y≤u′, u′Rw, zRu,wRv, u′Rv, y:�A, v:A⇒ v:A

�•+≤rf
x≤y, y≤z, u≤w, z≤u′, y≤u′, u′Rw, zRu,wRv, u′Rv, y:�A⇒ v:A

≤tr+Rtr
x≤y, y≤z, u≤w, z≤u′, u′Rw, zRu,wRv, y:�A⇒ v:A

F1 u′ fresh
x≤y, y≤z, u≤w, zRu,wRv, y:�A⇒ v:A

�◦ w, v fresh
x≤y, y≤z, zRu, y:�A⇒ u:�A

�◦ z, u fresh
x≤y, y:�A⇒ y:��A

⊃◦ y fresh
⇒ x:�A⊃��A

As we have just seen, we are now able to capture stronger logics by only adding one rule
for each corresponding axiom in A ⊆ {t, b, 4, 5, d} to our fully labelled system. Figure 4.2
presents the four rules for each path Scott-Lemmon axiom (obtained from φkm) and the
rule Rser corresponding to the axiom d. The following table shows each axiom, the frame
condition each satisfies and its corresponding rule from Figure 4.2:

Axiom Frame condition Corresponding R-rule
t : A⊃ ♦A ∀x.xRx Rrf

b : A⊃�♦A ∀x, y.xRy ⊃ yRx Rsim
d : �A⊃ ♦A ∀x∃y.xRy Rser
4 : ♦♦A⊃ ♦A ∀x, y, z.(xRy ∧ yRz)⊃ xRz Rtr
5 : ♦A⊃�♦A ∀x, y, z.(xRy ∧ xRz)⊃ yRz Reuc

Let Rφkm
be the set of rules containing the rules from Figure 4.2. We can now show

that Theorem 4.2.2 generalizes to labIK≤ with any rule(s) of Rφkm
to provide a sound and

cut-free complete system for this family of logics capturing the path Scott-Lemmon axioms
and the axiom d.

Theorem 4.6.2. Let A be the set of axioms A ⊆ {t, b, 4, 5, d} and let Rφkm
be the set of

their corresponding rules. For any formula B, the following are equivalent:

1. B is a theorem of IK +A.
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2. B is provable in labIK≤ +Rφkm
+ cut.

3. B is provable in labIK≤ +Rφkm
.

4. B is valid in every birelational frame satisfying the corresponding conditions for A.

Proof. The proof is similar to the one of Theorem 4.2.2.

• 1 =⇒ 2: Same as Theorem. 4.3.1 with the additional derivation of the path Scott-
Lemmon axiom (♦k�A ⊃ �mA) ∧ (♦mA ⊃ �k♦A) which is capturing the axioms
{t, b, 4, 5}. We can derive each of these conjuncts as follows (where we omit the
accumulated relational context for space reason):

idg
yk≤y′k, y′kRxm, yk:�A, xm:A⇒ xm:A

�•

yk≤y′k, y′kRxm, yk:�A⇒ xm:A
≤tr+φkm

{yj≤y′j}1≤j≤k−1, x
′′
0Ry

′
1, {y′jRy′j+1}1≤j≤k−1, yk:�A⇒ xm:A

F2
x0Ry1, {yjRyj+1}1≤j≤k−1, yk:�A =⇒ xm:A

♦•

x′m−2≤x′′m−2, x
′′
m−2Rx

′
m−1, {x′i≤x′′i , x′′iRx′′i+1}0≤i≤m−2, x0:♦k�A =⇒ xm:A

F1
x≤x0, {xi≤x′i, x′iRxi+1}0≤i≤m−1, x0:♦k�A =⇒ xm:A

�◦

x≤x0, x0:♦k�A⇒ x0:�mA
⊃◦

⇒ x:♦k�A⊃�mA

Observe that the rule φkm is applied to x′′0Rky′k (which is the abbreviation of x′′0Ry′1,
y′2Ry

′
3, ..., y

′
k−1Ry

′
k) and x′′0Rmxm (which is the abbreviation of x′′0Rx′′1, ..., x′′m−1Rxm).

idg
ym ≤ y′m, xkRy

′
m, ym:A⇒ xk:♦A, y′m:A

♦◦

ym ≤ y′m, xkRy
′
m, ym:A⇒ xk:♦A

≤tr+φkm

{yj≤y′j}1≤j≤m−1, x
′′
0Ry

′
1, {y′jRy′j+1}1≤j≤m−1, ym:A⇒ xk:♦A

F2
x0Ry1, {yjRyj+1}1≤j≤m−1, ym:A =⇒ xk:♦A

♦•

x′k−2≤x′′k−2, x
′′
k−2Rx

′
k−1, {x′i≤x′′i , x′′iRx′′i+1}0≤i≤k−2, x0:♦mA =⇒ xk:♦A

F1
{xi≤x′i, x′iRxi+1}0≤i≤k−1, x0:♦mA⇒ xk:♦A

�◦

x≤x0, x0:♦mA⇒ x0:�k♦A
⊃◦

⇒ x:♦mA⊃�k♦A

Observe that in this case the rule φkm is applied to x′′0Rmy′m (which is the abbreviation
of x′′0Ry′1, y′2Ry′3, ..., y′m−1Ry

′
m) and x′′0Rkxk (which is the abbreviation of x′′0Rx′′1, ..., x′′0Rxk).

And we also add the derivation of the axiom d : �A⊃ ♦A:
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idg
x≤y, z≤z, xRy, y:�A, z:A =⇒ z:A

≤rf
x≤y, xRy, y:�A, z:A =⇒ z:A

♦◦

x≤y, xRy, y:�A, z:A =⇒ y:♦A
�•

x≤y, xRy, y:�A =⇒ y:♦A
Rser z fresh

x≤y, y:�A =⇒ y:♦A
⊃◦ y fresh

=⇒ x:�A⊃ ♦A

• 2 =⇒ 3: To prove that the cut rule is admissible for labIK≤ + Rφkm
, it is enough

to insert a case for the rule φkm (which is capturing the axioms t, b, 4, 5) and a case
for Rser in the proof of Theorem 4.2.2, which is straightforward as these rules only
manipulate the relational context as it shows below:

D1

R, xRky, xRmz, yRz,Γ =⇒ ∆, z:C
φkm

R, xRky, xRmz,Γ =⇒ ∆, z:C
D2

R, xRky, xRmz,Γ, z:C =⇒ ∆
cut

R, xRky, xRmz,Γ =⇒ ∆

 

D1

R, xRky, xRmz, yRz,Γ =⇒ ∆, z:C
Dw

2

R, xRky, xRmz, yRz,Γ, z:C =⇒ ∆
cut

R, xRky, xRmz, yRz,Γ =⇒ ∆
φkm

R, xRky, xRmz,Γ =⇒ ∆

for the case of Rser:

D1

R, xRy,Γ =⇒ ∆z:C
Rser y fresh

R,Γ =⇒ ∆, z:C
D2

R,Γ, z:C =⇒ ∆
cut

R,Γ =⇒ ∆

 

D1

R, xRy,Γ =⇒ ∆, z:C
Dw

2

R, xRy,Γ, z:C =⇒ ∆
R, xRy,Γ =⇒ ∆

Rser y fresh
R,Γ =⇒ ∆

• 3 =⇒ 4: As we already proved the rules of labIK≤ are sound in Theorem 4.2.2,
we only need to prove that φkm is sound. By way of contradiction assume that
R, xRky, xRmz, yRz,Γ =⇒ ∆ is valid in any frame restricted with the intuitionis-
tic SL-path condition, but that there is such a model M and an interpretation J·K,
such that M, J·K 6
 R, xRky, xRmz,Γ =⇒ ∆. That means, JxKRk

MJyK, JxKRm
MJzK,
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for all x:A ∈ Γ, M, x 
 A, and for all y:B ∈ ∆, M, y 6
 B. Since M follows
path Scott-Lemmon axioms property, then we have that JyKRMJzK. This means that
M, J·K 6
 R, xRky, xRmz, yRz,Γ =⇒ ∆ and we reach contradiction from the assump-
tion.

The proof is completed by appealing to Theorem 3.2.3 which is used as 4 =⇒ 1 to close the
equivalence.

As a result of this theorem we can then obtain stronger logics by extending the system
labIK≤ with one (or more) of the rules presented in Figure 4.2 and which represent the
Scott-Lemmon axioms of reflexivity (Rrf), transitivity (Rtr), symmetry (Rsim), euclideaness
(Reuc) and seriality (Rser).

We can now generalize our fully labelled proof system labIK≤ to a system called labX≤
where X represents every intuitionistic version of the logics in the S5-cube (Figure 2.2).
Depending on the logic we want to capture, we add the corresponding inference rule(s). For
example, if we want to capture the logic X = IS4 (which is reflexive and transitive), we
then obtain the system labIS4≤ by adding Rtr and Rrf to the system labIK≤, i.e. labIS4≤ =
labIK≤ +Rtr +Rrf.

From Theorem 4.6.2 we get the following Corollary:

Corollary 4.6.3. A formula A is a theorem of the logic X where X ∈ {every intuitionistic
modal logic in the S5-cube} if and only if for every label x, the sequent =⇒ x:A is derivable
in labX≤.

4.7 Conclusion
In this chapter we embrace the fully labelled approach to intuitionistic modal logic with two
relation symbols appearing in sequents [43]: one for the accessibility relation associated with
the Kripke semantics for normal modal logics and one for the preorder relation associated
with the Kripke semantics for intuitionistic logic. This puts our system in close corre-
spondence with the standard birelational Kripke semantics for intuitionistic modal logics.
As a consequence it can be extended with arbitrary intuitionistic Scott-Lemmon axioms.
Specifically, we expanded it with one-sided Scott-Lemmon axioms and path Scott-Lemmon
axioms. This extension allows us to obtain a comprehensive framework that encompasses
all fifteen distinct intuitionistic modal logics within the S5-cube. We have established the
soundness and completeness of this framework, along with an internal cut elimination proof,
encompassing a wider array of intuitionistic modal logics than any existing labelled system.
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Chapter 5

Decision procedure for intuitionistic
modal logics

As it was mentioned in the introduction, labelled sequents internalize certain elements from
Kripke semantics into the syntax of sequents, which turns out to have several interesting
consequences to build decision procedures for intuitionistic propositional logic as well as clas-
sical modal logic. Our fully labelled proof system labX≤, presented in the previous chapter,
inherits the advantages of labelled systems for both, intuitionistic propositional logic and
for classical modal logics: in particular, all inference rules are invertible (i.e. we never delete
information bottom-up in proof search) and there is a direct correspondence between se-
quents and models which lets us build a countermodel by interpreting (and extending) the
labelled sequent at which proof search terminates.

In this chapter we use this fully labelled sequent system to give a decision procedure
for some intuitionistic modal logics in the S5-cube (Figure 2.2). In particular, we present a
search algorithm to prove decidability of the logic X where X ∈ {IK, IT, IKB, ITB, IK5} and
we ensure termination for them. This chapter also serves as a strong introduction to later
delve into logics whose decidability was previously unknown, as it is the case with IS4 (see
details in Chapter 6). The idea is to apply the same argument presented in this chapter for
other logics by adding new loop-checks specially when transitivity is restricting the class of
frames.

We develop this chapter by introducing notions that can be used for all the intuitionistic
modal logics X in the S5-cube, however, we make distinctions of these logics every time is
needed. In Section 5.1, we describe how to read off a model from a sequent and we introduce
useful properties of sequents occurring during a proof search in labX≤. In Section 5.2 we
develop concepts necessary to present formally our search algorithm. In Section 5.3 we
demonstrate how to retrieve a countermodel from a failed proof search. In Section 5.4, we
show how the algorithm produces a proof in labX≤. We finish our chapter with Section 5.5
showing that the algorithm always terminates for the logics X ∈ {IK, IT, IKB, ITB, IK5}. In
Section 5.6 we present our conclusions. We will continue working on the details to reach
termination for the logic IS4 in the next chapter.
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⊥•

G
≤rf+⊃•

1≤2, 2R2, 2R3, 2:Γ, 3:A =⇒ 2:⊥
♦•

1≤2, 2R2, 2:�(♦A ∧ ♦b), 2:♦A, 2:♦b =⇒ 2:⊥
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1≤2, 2:�(♦A ∧ ♦b) =⇒ 2:⊥
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=⇒ 1:�(♦A ∧ ♦b)⊃⊥ 1
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�(♦A ∧ ♦b)•,
♦•b,⊥◦
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♦A•, A•
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b•
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c•,♦b◦
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b•, b◦

Figure 5.1: On the left: Proof in labIS4≤ of �(♦A ∧ ♦b)⊃⊥ with A = (c ⊃ ♦b) ⊃ ⊥,
Γ = {�(♦A ∧ ♦b),♦b} and G = 1≤2, 2R2, 2R3, 3≤3, 2:Γ, 3:⊥ =⇒ 2:⊥. On the right: Dia-
grammatic representation of the top left sequent in the derivation.

5.1 Building our search algorithm
Lets us start by introducing the notion of a model corresponding to a sequent, as it allows
us to refer to a sequent or of its corresponding model at the same time.

Notation 5.1.1. Let G be a sequent R,Γ =⇒ ∆. We use the following notation:

• x≤Gy iff x≤y occurs in R;

• xRGy iff xRy occurs in R;

• G,x:A• iff x:A occurs in Γ
(in this case we also say that A• occurs at x in G);

• G,x:A◦ iff x:A occurs in ∆
(in this case we also say that A◦ occurs at x in G).

The use of • and ◦ in this way goes back to Lamarche [37]. This notation also allows
us to represent sequents graphically, as shown on the right of Figure 5.1 which depicts the
top-left sequent of the proof showcased on the left of the Figure (proof of a formula using
the fully labelled sequent system labX≤ where X = IS4). The sequent is represented by
means of a directed graph, whose nodes are the labels of the sequent (for convenience we
shall use natural numbers), dashed edges are the ≤-relations and solid blue edges are the
R-relations. Reflexive and transitive links are omitted in this Figure. We can now simply
write a formula A• (respectively A◦) next to a label w, to indicated that the labelled formula
w:A occurs on the left-hand side (respectively right-hand side) of the sequent arrow =⇒.

The following definitions are needed to present our search algorithm to prove decidability
of the logic X where X is an intuitionistic modal logic in the S5-cube.

Definition 5.1.2 (X-happy labelled formula). A formula A• (respectively A◦) of an intu-
itionistic modal logic X is X-happy at a label x in a sequent G, short G,x:A• (respectively
G,x:A◦), if and only if the following conditions hold:

• for X ∈ {IK, IT, IKB, ID, IK5, ID5, IDB, ITB}:
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– G,x:a• is always X-happy;
– G,x:a◦ is X-happy iff we do not have G,x:a•;
– G,x:⊥• is never X-happy;
– G,x:⊥◦ is always X-happy;
– G,x:A ∧B• is X-happy iff G,x:A• and G,x:B•;
– G,x:A ∧B◦ is X-happy iff G,x:A◦ or G,x:B◦;
– G,x:A ∨B• is X-happy iff G,x:A• or G,x:B•;
– G,x:A ∨B◦ is X-happy iff G,x:A◦ and G,x:B◦;
– G,x:A⊃B• is X-happy iff G,x:A◦ or G,x:B•;
– G,x:A⊃B◦ is X-happy iff G,y:A• and G,y:B◦ for some y such that x≤Gy;
– G,x:�A• is X-happy iff G,z:A• for all z such that xRGz;
– G,x:�A◦ is X-happy iff G,z:A◦ for some y, z such that x≤Gy and yRGz;
– G,x:♦A• is X-happy iff G,y:A• for some y such that xRGy;
– G,x:♦A◦ is X-happy iff G,y:A◦ for all y such that xRGy.

• X ∈ {IS4, IK4, ID4, ID45, IK45, IKB5, IS5}:

– G,x:�A• is X-happy iff G,z:A• and G,z:�A• for all z such that xRGz;
– G,x:♦A◦ is X-happy iff G,y:A◦ and G,y:♦A◦ for all y such that xRGy;
– all the other cases are the same as for the other intuitionistic modal logics.

Otherwise, we say that the formula is X-unhappy.

Observe that the distinction in Definition 5.1.2 is done for the logics containing the 4
axiom. This axiom preserves the �• and ♦◦ into the children.

Definition 5.1.3 (X-happy label). A label x occurring in a sequent G is X-happy if and
only if all formulas occurring at x in G are X-happy. A label x is X-almost happy if and
only if all formulas occurring at x are X-happy except, possibly, those of the shapes ⊥•, a◦,
A⊃B◦, and �A◦. A label x is X-naively happy if and only if all formulas occurring at x
are X-happy except, possibly, those of the shapes ⊥•, ♦A•, a◦, A⊃B◦, and �A◦.

The following definition is different for every intuitionistic modal logic X in the S5-cube,
since it demands that the structure described by the relational atoms of the sequent has
the property that it is demanded from the frame of the model. We define the notion of
X-structurally saturated sequent for every logic X as follows:

Definition 5.1.4 (X-structurally saturated sequent). Let X be an intuitionistic modal logic
in the S5-cube. A sequent G is X-structurally saturated iff for all labels x, y, z and a
formula C in G, the following conditions are satisfied:

• for all logic X:

(mon•) if x≤Gy and G,x:C•, then G,y:C•;
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(F1) if xRGy and y≤Gz, then there is u such that x≤Gu and uRGz;
(F2) if xRGy and x≤Gz, then there is u such that y≤Gu and zRGu;

(≤tr) if x≤Gy and y≤Gz, then x≤Gz;
(≤rf) x≤Gx for all x occurring in G.

• for X ∈ {IS4, IK4, ID4, ID45, IK45, IS5, IKB5}:

(Rtr) if xRGy and yRGz, then xRGz.

• for X ∈ {IT, IS4, ITB, IS5}:

(Rrf) xRGx for all x occurring in G.

• for X ∈ {IKB, ITB, IDB, IKB5, IS5}:

(Rsim) if xRGy, then yRGx.

• for X ∈ {ID, ID5, ID4, ID45, IDB, IT, ITB, IS4, IS5}:

(Rser) for all x occurring in G, there is a y such that xRGy.

• for X ∈ {IK5, ID5, IS5, IK45, ID45, IKB5}:

(Reuc) if xRGy and xRGz, then yRGz.

Observe that X is defined in each case according to the axioms that the logic X contains,
i.e. if the logic contains the axiom 4, t, b, d or 5 respectively. From this definition, for instance,
for the logic IK, we say that a sequent G is IK-structurally saturated if and only if it satisfies
the conditions mon•, F1, F2, ≤tr, ≤rf. While in the case of the intuitionistic modal logic IS4
in which the frame conditions are restricted with the axioms t and 4 (i.e. the birelational
models are transitive and reflexive), a sequent G is IS4-structurally saturated if and only if
it satisfies the conditions for IK and the transitive condition Rtr and the reflexivity condition
Rrf.

Definition 5.1.5 (X-happy sequent). A sequent G is X-happy if and only if it is X-
structurally saturated and all labels in the sequent are X-happy.

Definition 5.1.6 (Model of a sequent). Let G be a sequent. We define the model MG

of G to be the quadrupleMG = 〈W,≤G, RG, V 〉 where

• W is the set of labels occurring in G,

• ≤G and RG are binary relations between labels of G (as defined in Notation 5.1.1),
and

• V is a valuation function V : W → 2A such that for all atoms a ∈ A we have a ∈ V (w)
iff G,w:a•.

In the following Theorem, we are going to talk about X-birelational models, in which
depending on the logic X we are using, the class of frames will be restricted differently.
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Theorem 5.1.7 (Completeness). For an X-happy sequent G, its modelMG = 〈W,≤G, RG, V 〉
is a X-birelational model with the following two properties:

• if G,x:A•, thenMG, x 
 A;

• if G,x:A◦, thenMG, x 6
 A.

Proof. The worlds W of MG are the labels of the sequent. Conditions F1 and F2, the
transitivity and reflexivity of ≤G, and the monotonicity of V all follow by construction
due to structural saturation. Furthermore, since the sequent G is X-structurally saturated,
the frame conditions for every logic X are also satisfied. It only remains to show that for
every world x ∈ W and every formula A, if G,x:A• then MG, x 
 A and if G,x:A◦ then
MG, x 6
 A. We show this claim by induction on the size of A. We proceed by case analysis
on the main connective of A:

• G,x:⊥•: it is not possible for a X-happy sequent.

• G,x:⊥◦: we haveMG, x 6
 ⊥ by definition.

• G,x:a•: by Definition 5.1.6,MG, x 
 a.

• G,x:a◦: it is not the case that G,x:a• by happiness of x, hence,MG, x 6
 a by Defini-
tion 5.1.6.

• G,x:B ∧ C•: by happiness of x, we have both G,x:B• and G,x:C•. Then, by IH
we have MG, x 
 B and MG, x 
 C. Therefore, by definition of forcing we have
MG, x 
 B ∧ C.

• G,x:B ∧ C◦: by happiness of x, we then either have G,x:B◦ or G,x:C◦. Then either
MG, x 6
 B orMG, x 6
 C by IH. Therefore,MG, x 6
 B ∧ C.

• G,x:B ∨ C•: by happiness of x, we then either have G,x:B• or G,x:C•. Then, by
IH we either have MG, x 
 B or MG, x 
 C. By definition of forcing, we have
MG, x 
 B ∨ C.

• G,x:B∨C◦: by happiness of x, we have G,x:B◦ and G,x:C◦. By IH, we haveMG, x 6

B andMG, x 6
 C. Therefore, we haveMG, x 6
 B ∨ C.

• G,x:B ⊃ C•: consider any y with x≤Gy. By (mon•)-structural saturation, we have
G,y:B ⊃ C•. By happiness of y, either we have G,y:B◦ or G,y:C•. By IH, we then
either haveMG, y 6
 B orMG, y 
 C. Thus,MG, y 
 B impliesMG, y 
 C for all y
with x≤Gy. Therefore,MG, x 
 B ⊃ C.

• G,x:B⊃C◦: by happiness of x, there is a world y such that x≤Gy, G,y:B•, and G,y:C◦.
By IH, we haveMG, y 
 B andMG, y 6
 C. This means there is no world y such that
x≤Gy andMG, y 
 B impliesMG, y 
 C. Therefore,MG, x 6
 B ⊃ C.

• G,x:♦B•: by happiness of x, there is a world y such that xRGy and G,y:B•. By IH,
we haveMG, y 
 B and, therefore, we haveMG, x 
 ♦B.

• G,x:♦B◦: by happiness of x, we have G,y:B◦ for all worlds y such that xRGy. Thus,
by IH,MG, y 6
 B whenever xRGy. Therefore,MG, x 6
 ♦B.
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• G,x:�B•: consider arbitrary y and z with x≤Gy and yRGz. By (mon•)-structural
saturation, G,y:�B•. By happiness of y, we have G,z:B•. Thus, by IH, we have
MG, z 
 B whenever x≤Gy and yRGz. Therefore,MG, x 
 �B.

• G,x:�B◦: by happiness of x, there exist y and z such that x≤Gy, yRGz, and G,z:B◦.
By IH, we haveMG, z 6
 B. Therefore,MG, x 6
 �B.

Remark 5.1.8. Observe that in the proof of Theorem 5.1.7 we do not need the special
conditions of happiness for ♦◦ and �• introduced in Definition 5.1.2 when the axiom 4 is
part of the logic. But we will use this notion of happiness in Chapter 6.
Definition 5.1.9 (Axiomatic sequent). A sequent G is axiomatic if and only if there is
a label x such that either G,x:a• and G,x:a◦ for some a, or G,x:⊥•. Otherwise, G is called
non-axiomatic.
Remark 5.1.10. An axiomatic sequent G is never X-happy, because either:
• it is a G,x:⊥• and by definition of happiness it cannot be X-happy, or

• it has G,x:a◦ and G,x:a•, and by definition of happiness G,x:a◦ is only X-happy if we
do not have G,x:a•.

All derivations of =⇒ x:A obtained by a proof search in system labX≤ have a particular
structure: their labels are partitioned into layers, with each layer having a tree structure.
This plays an important role in our proof search algorithm so we introduce the following
definitions:
Definition 5.1.11 (Layer). For a sequent G, we define the relation R↔G to be the transitive
and reflexive closure of RG ∪ R−1

G . Since this is an equivalence relation, we can define a
layer L in G to be an equivalence class of R↔G .
Definition 5.1.12 (Layered sequent). We say that a sequent G is layered if and only if
for any labels x, x′, y, and y′ occurring in G:

1. if xR↔G y for x 6= y, then x 6≤Gy and y 6≤Gx; and

2. if xR↔G y, x′R↔G y′, and x≤Gx
′ for x 6= x′, then y′ 6≤Gy.

For layers L1 and L2, we define L1 ≤ L2 whenever there are labels x ∈ L1 and y ∈ L2 such
that x≤Gy. We write L1 < L2 iff L1 ≤ L2 and L1 6= L2.
Proposition 5.1.13. For a layered X-structurally saturated sequent G, the relation ≤ is
an order relation on its layers.
Proof. For reflexivity, consider any layer L. For any label x ∈ L, by (≤rf)-structural satu-
ration, x≤Gx. Hence, L ≤ L by Definition 5.1.12.

For transitivity, let L1 ≤ L2 and L2 ≤ L3 for layers L1, L2, and L3. By Definition 5.1.12,
x≤Gy

′ and y≤Gz for some labels x ∈ L1, y′, y ∈ L2, and z ∈ L3. Since y′R↔G y, by (F)-
structural saturation (Proposition 5.1.19), there is a label z′ such that y′≤Gz

′ and z′R↔G z.
The latter means that z′ ∈ L3. By (≤tr)-structural saturation, x≤Gz

′. Hence, L1 ≤ L3 by
Definition 5.1.12.

For antisymmetry, assume L1 ≤ L2 and L1 6= L2. By Definition 5.1.12, there are labels
x ∈ L1 and x′ ∈ L2 such that x≤Gx

′. For arbitrary labels y ∈ L1 and y′ ∈ L2, we have
xR↔G y and x′R↔G y′. Since L1 6= L2, we have x 6= x′. Hence, y′ 6≤Gy by 2) of Definition 5.1.12.
Since y′ 6≤Gy for any y′ ∈ L2 and y ∈ L1, it is not the case that L2 ≤ L1.
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Note that the second condition in Definition 5.1.12 is only needed to establish anti-
symmetry in Proposition 5.1.13. If ≤G on labels is already antisymmetric then the second
condition follows from the first.

In all sequents that we discuss here, the order relation ≤ on layers defines a tree structure
so we introduce the following definitions:

Definition 5.1.14 (Tree-layered sequent). A layered sequent is tree-layered if and only if
(i) there is a layer L0 such that L0 ≤ L for all layers L, and (ii) for all layers L, L′, and L′′,
whenever L′ ≤ L and L′′ ≤ L, then either L′ ≤ L′′ or L′′ ≤ L′.

Remark 5.1.15. Note that we do not need to ask for the root of a layer in Definition 5.1.14.

Definition 5.1.16 (X-happy layer). A layer L is X-happy/X-almost happy/X-naively
happy iff all labels of L are X-happy/X-almost happy/X-naively happy respectively.

Remark 5.1.17. Observe that the definitions of X-happy labelled formulas for A ⊃ B•

and �A• in Definition 5.1.2 are different from the forcing conditions of the corresponding
connectives. This mismatch is intentional with the missing conditions on ≤ outsourced
to (mon•)-structural saturation (Definition 5.1.4) instead. As a result, happiness becomes
almost a local property for layers: if a sequent is modified (by adding labelled formulas or
relational atoms) outside of a given X-happy layer, the only formulas whose happiness needs
to be reinspected are A⊃B◦ and �A◦.

We now introduce the definitions of X-saturated and X-semi-saturated sequent as our
search algorithm works on them.

Definition 5.1.18 (X-saturated and X-semi-saturated sequent). A sequent G of a logic X
is called X-saturated if and only if it is tree-layered and X-structurally saturated and all
its formulas are X-almost happy. A sequent G is X-semi-saturated if and only if it is
tree-layered and X-structurally saturated and all its formulas are X-naively happy. A set SSS
of sequents is called X-saturated/X-semi-saturated if only if it is finite and all elements
of SSS are X-saturated/X-semi-saturated, respectively.

Proposition 5.1.19. If a sequent G is X-structurally saturated, then:

(F) if xR↔G y and x≤Gz, then there is u such that y≤Gu and zR↔G u.

Proof. There must be a sequence x0, . . . , xn of labels with n ≥ 0 such that x0 = x, xn = y,
and for each 0 ≤ i ≤ n − 1, either xiRGxi+1 or xi+1RGxi. We use induction on n. If
n = 0, i.e., x = y, then u := z suffices. Otherwise, by IH, there is v such that xn−1≤Gv and
zR↔G v. If xnRGxn−1, there is u by (F1)-structural saturation such that xn≤Gu and uRGv. If
xn−1RGxn, there is u by (F2)-structural saturation such that xn≤Gu and vRGu. Either way,
y≤Gu and zR↔G u.

5.2 Search Algorithm
The algorithm that we present here is performing proof search in our fully labelled sequent
system labX≤ for every intuitionistic modal logic X in the S5-cube 1. Roughly speaking, we

1This algorithm does terminate for X ∈ {IK, IT, IKB, ITB, IK5}. In Chapter 6, we will present how to
reach termination when the axiom 4 is part of the logic.
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work on layers until these layers are saturated. This is achieved by semi-saturating the layer,
which essentially means that we exhaustively apply all inference rules that do not add new
labels to the sequent; and we then pick an X-unhappy x:♦A• and we make it X-happy by
applying the ♦•-rule. Then we semi-saturate again, and we continue until all x:♦A• in that
layer are X-happy, and therefore the layer is saturated.

Then the only X-unhappy formulas in a X-saturated sequent are of the shape x:⊥•, x:a◦,
x:A⊃B◦ or x:�A◦. In the first two cases, the sequent is axiomatic, and we can stop working
on it. In the case that all X-unhappy formulas are of the shape x:A ⊃ B◦ or x:�A◦, we
proceed by making them X-happy. We take the first x:�A◦ or x:A⊃B◦ and make it X-happy
by creating a new layer to be saturated. We work on all the remaining X-unhappy x:�A◦
and x:A ⊃ B◦ until they all become X-happy. This process is repeated in the other layers,
until we see a repetition of layers. In order to achieve termination of this process, we have
to implement a loop check looking for a repetition of the sequent in the future branch.

In this section, we formally introduce the concepts needed to understand the details of
this search algorithm. As previously indicated, this algorithm has been adapted to work
with all the intuitionistic modal logics in the S5-cube. However, to ensure termination in
certain logics, additional efforts will need to be presented. In Chapter 6, we show how to
deal with the logic IS4 whose decidability was unknown.

5.2.1 Semi-saturation
We begin our search algorithm by making all formulas X-happy that are not of the form
x:⊥•, x:a◦, x:♦A•, x:A⊃B◦ or x:�A◦. In other words, we apply all the inference rules that
do not create new labels. We called this process semi-saturation and it is defined formally
as follows:

Definition 5.2.1 (Semi-saturation). Let SSS and SSS′ be sets of sequents and let G be a
sequent of SSS. Let X be an intuitionistic modal logic in the S5-cube. We define a binary
relation   s such that SSS   s SSS

′ iff there is a sequent G ∈ SSS such that some labelled
formula C of one of the below shapes occurs at x in G and is X-unhappy, and SSS′ is obtained
by replacing sequent G in set SSS, either with sequent G′ according to cases 1)–5) below, or
with sequents G′ and G′′ according to cases 6)–8) below, as follows:

1. for C = A ∧B•, obtain G′ by adding to G all of x:A• and x:B• that are missing;

2. for C = A ∨B◦, obtain G′ by adding to G all of x:A◦ and x:B◦ that are missing;

3. for C = �A•, obtain G′ by adding to G all z:A• that are missing whenever xRGz, and
adding z:�A• in the cases that is needed2;

4. for C = ♦A◦, obtain G′ by adding to G all y:A◦ that are missing whenever xRGy, and
adding y:♦A◦ in the cases that is needed2;

5. for C = A ∨ B•, obtain G′ (resp. G′′) by adding to G the labelled formula x:A•
(resp. x:B•);

6. for C = A ∧ B◦, obtain G′ (resp. G′′) by adding to G the labelled formula x:A◦
(resp. x:B◦);

2See Definition 5.1.2
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7. for C = A ⊃ B•, obtain G′ (resp. G′′) by adding to G the labelled formula x:A◦
(resp. x:B•).

We write  ∗s for the transitive and reflexive closure of  s.If SSS  sSSS
′ and SSS′ is in normal

form with respect to   s, i.e., if all labels occurring in all sequents from SSS′ are X-naively
happy, then SSS′ is called the semi-saturation of SSS.

Lemma 5.2.2. The following statements hold:

a) If a set SSS of sequents is X-structurally saturated and tree-layered and SSS  s SSS
′, then SSS′

is X-structurally saturated and tree-layered.

b) On finite sets SSS, the rewrite relation   s is terminating.

Proof. To prove a), assume that the setSSS is finite and all sequents G ∈ SSS are X-structurally
saturated and tree-layered. The size of SSS′ is larger than that of SSS by at most one sequent,
hence, SSS′ is also finite. Given that G is layered, the labels of all new labelled formulas have
no non-reflexive futures, making (mon•) trivial for them. Since rewrites neither introduce
new labels nor add relational atoms, all other conditions of structural saturation, as well as
being tree-layered remain true. Therefore, all sequents in SSS′ are X-structurally saturated
and tree-layered.

To prove b), observe that each rewrite  s adds a labelled formula to a sequent G ∈ SSS if
the formula is not already in G. Moreover, the added formulas are subformulas of formulas
in the sequent, and no new labels are introduced. Since each G contains finitely many
formulas and finitely many labels, only finitely many formulas can be added to the sequent.
Thus, if there are finitely many sequents in SSS, the relation   s is terminating.

5.2.2 Saturation
From this step, we work on the intuitionistic modal logics X ∈ {IK, IT, IKB, ITB, IK5} and we
show how to deal with X-unhappy x:♦A•. This is the first inference rule which is introducing
a new fresh label to the sequent, in this case, in the R-branch. The process of applying the
♦•-rule is called saturation.

Definition 5.2.3 (Saturation). Let G and G′ be sequents. Let X ∈ {IK, IT, IKB, ITB, IK5}.
We define a binary relation  ♦ on sequents as follows: we have G ♦ G′ if and only if:

1. there is a label y and a formula A, such that G,y:♦A• is X-unhappy, and

2. all labels u 6= y such that uRGy but not yRGu are X-almost happy,

3. then we obtain G′ from G by adding z≤Gz, yRGz, z:A• for some fresh label z, and
then closing the resulting RG under X-structural saturation.

For sets SSS and SSS′ of sequents, we write SSS  ♦ SSS′ iff SSS is X-semi-saturated, G ♦ G′
for some G ∈ SSS and SSS′ is a semi-saturation of

(
SSS \ {G}

)
∪ {G′}. We write   ∗♦ for the

transitive and reflexive closure of   ♦. If SSS  ∗♦ SSS′ and SSS′ is in normal form with respect
to   ♦, then SSS′ is called a saturation of SSS.
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The rewrite relation   ♦ does terminate for the mentioned logics IK, IT, IKB, ITB and
IK5 but it does not terminate for the other intuitionistic modal logics. We are going to show
how to ensure termination for the logic IS4 in Chapter 6.
Lemma 5.2.4. Let G be a X-semi-saturated sequent, let G ♦ G′, and let SSS∗ be a semi-
saturation of {G′}. Then all X-happy ♦•-formulas are preserved by the transition from G
to SSS∗, i.e., for all sequents G∗ ∈ SSS∗ and for all labels u occurring in G∗, if G,u:♦C• is
X-happy, then so is G∗,u:♦C•.
Proof. Note that semi-saturation does not remove formulas or labels, nor does it add R-
relational atoms. Hence, semi-saturation cannot spoil happiness of any ♦•-formula and it is
sufficient to show that no X-happy ♦•-formula of G becomes X-unhappy in G′. The rewrite
relation  ♦ makes at least one ♦•-formula X-happy in G′ and since nothing is removed in
the semi-saturation SSS∗, then all X-happy ♦•-formulas are preserved.
Lemma 5.2.5. Let X ∈ {IK, IT, IKB, ITB, IK5}, the following statements hold:

a) If a set SSS of sequents is X-semi-saturated and SSS  ♦ SSS′, then SSS′ is X-semi-saturated.

b) A set SSS of sequents is X-saturated iff it is X-semi-saturated and in normal form w.r.t.  ♦.

Proof. To prove a, assume that setSSS is finite and all sequents inSSS are X-semi-saturated. Set
SSS′ =

(
SSS\{G}

)
∪SSSG ♦G′ for some G ♦G′ where G ∈ SSS is X-semi-saturated. The binary

relation  ♦ makes an X-unhappy ♦•-formula of G becomes X-happy in G′. This procedure
is not changing the happiness of the previous formulas, they remain X-semi-saturated, but
it is possible that in the new label introduced by ♦• there exists an X-unhappy formula. For
this reason, after each  ♦, we apply semi-saturation again. Then SSS′ is X-semi-saturated.

To prove b, observe that SSS is X-saturated and by definition it is X-semi-saturated and all
the formulas of the form ♦A• occurring on it are X-happy. Saturation  ♦ can be applied to
a X-semi-saturated set if and only if it has a X-unhappy ♦•-formula. Hence, SSS is X-saturated
if and only if it is X-semi-saturated and in normal form with respect to   ♦.
Lemma 5.2.6. Let X ∈ {IK, IT, IKB, ITB, IK5}. The rewrite relation   ♦ is terminating.

Proof. Given a layer L ocurring in a sequentG and suppose that L contains some X-unhappy
♦•-formulas. Observe that each rewrite   ♦ makes one ♦•-formula X-unhappy to become
X-happy (i.e. it creates a new label in the R-branch and it adds to this label a formula which
is a subformula of the formula in the sequent) and it applies semi-saturation immediately
after. Observe that the application of the ♦• + semi-saturation does not make any X-happy
♦•-formulas X-unhappy (happiness is preserved by Lemma 5.2.4).

Observe that each application of ♦• might only introduce X-unhappy ♦•-formulas having
smaller modal degree than the ♦•-formula to which the rule was applied: suppose that you
have a formula F at a specific label x in a sequent G of modal degree n. Assume this
formula F has X-unhappy ♦•-formulas. To make them X-happy, we introduce a new label
in the R-branch with a formula whose modal depth is strictly smaller, i.e. the modal depth
is n− 1 (since ♦• is not preserved in the application of ♦•-rule).

Thus, every application of a ♦•-rule to some labelled formula of modal degree n in L
is such that the total number of X-unhappy ♦•-formulas of degree n decreases, and only
X-unhappy formulas of degree n− 1 are introduced. In a number of steps which is bounded
by the number and modal degree of the ♦•-formulas, the rewrite relation   ♦ terminates.
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5.2.3 Lifting saturation
After having discussed how to saturate sets of sequents for the logics X ∈ {IK, IT, IKB, ITB, IK5},
we are now going to show how to deal with X-unhappy A⊃B◦ and �A◦. For this, we have
to create new layers and we can just apply the naive strategy: copy the R-structure of the
layer that contains the X-unhappy labelled formulas of the shape x:A⊃B◦ or x:�A◦.

Definition 5.2.7 (Sequent sum). Let G and G′ be sequents R,Γ =⇒ ∆ and R′,Γ′ =⇒ ∆′
respectively. We define their sum G + G′ to be the sequent R,R′,Γ,Γ′ =⇒ ∆,∆′.

Construction 5.2.8 (Layer Lifting I). Let G be a X-saturated sequent, L be a layer in G,
and let x be a label in L. Let L = {x, y1, . . . , yl} where l ≥ 0. Let L̂ be the set of fresh
labels {x̂, ŷ1, . . . , ŷl}. We define G↑x to consist of:

1. relational atoms v≤v for all v ∈ L̂;

2. for each i = 1 . . . l, and every label w occurring in G:

(a) relational atom w≤ŷi whenever w≤Gyi,
(b) relational atom w≤x̂ whenever w≤Gx;

3. for all i, i′ = 1..l,

(a) relational atom ŷiRŷi′ whenever yiRGyi′ ,
(b) relational atom ŷiRx̂ whenever yiRGx,
(c) relational atom x̂Rŷi whenever xRGyi,

4. For every i = 1..l and for every formula C, add:

(a) labelled formulas ŷi:C• whenever G,yi:C•,
(b) labelled formulas x̂:C• whenever G,x:C•.

This construction lifts a layer L of G with respect to a label x in L. In Construction 5.2.8,
Points 1)–2) ensure that in sequent G + G↑x, the new layer is indeed above L as intended
and (≤tr), (≤rf) are satisfied; Point 3) ensures (F1), and (F2); Point 4) ensures (mon•). In
particular, all the other conditions for X-structural saturation are preserved and G + G↑x
is tree-layered.

Construction 5.2.9 (Layer Lifting II). Let G be a X-saturated sequent with G,x:F ◦ being
X-unhappy for some label x and some formula F of shape A⊃B or �B. Let L be the layer
of x. We define G↑x:F as follows:

• If F = A ⊃ B, then we define G↑x:A⊃B to be the sequent G↑x to which we add
labelled formulas x̂:A• and x̂:B◦ and we call x̂ a suricata label of x (where x̂ is as
in Construction 5.2.8);

• If A = �B, then we define G↑x:�B to be the sequent G↑x to which we add z≤z and
z:B◦ for a fresh label z, and additionally we add relational atoms vRz whenever v ∈ L̂
and vRx̂ is in G↑x. We then close under X-structural saturation. Here z is called a
suricata label of x (where z is as in Construction 5.2.8).
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Informally speaking, the sequent G + G↑x:F contains precisely the relational atoms and
labelled formulas that need to be added to G + G↑x, such that (i) the X-unhappy G,x:F ◦
becomes X-happy (the suricata label contains the white formula responsible for this happi-
ness), and (ii) the result is still X-structurally saturated and tree-layered. We will add one
such layer for every X-unhappy A⊃B◦ and �A◦ in the sequent, making all of them at some
point X-happy. For each layer that it is added, we calculate the saturation in order to make
all the lifted layers X-almost happy.

If we do this addition of layers naively, we will not terminate. Therefore we need a loop-
check. In the logics where transitivity does not appear, we are going to look for a repetition
of the sequent in the future branch. To define formally this loop-check, we now define the
notion of simulation between layers.
Definition 5.2.10 (Equivalent labels). Let x and y be labels occurring in sequents G and H
respectively. We say that x and y are equivalent, in symbols x ∼ y, iff for all formulas A,
we have G,x:A• iff H,y:A• and also G,x:A◦ iff H,y:A◦.
Definition 5.2.11 (Simulation of layer). Let L′ and L be layers in a layered sequent G. A
layer simulation between L′ and L is a non-empty binary relation S ⊆ (L′×L) ∩ ∼ such
that for all x′ ∈ L′, x, y ∈ L,
(S1) whenever x′Sx and xRGy then there exists y′ ∈ L′ such that x′RGy

′ and y′Sy, and

(S2) whenever x′Sx and yRGx then there exists y′ ∈ L′ such that y′RGx
′ and y′Sy.

We say L′ simulates L iff there is a layer simulation between L′ and L.
Definition 5.2.12. Let L be a layer in a layered sequent G. We say L is simulated if
and only if there is a layer L′ in G, such that L′ < L and L′ simulates L.
Definition 5.2.13 (Allowed formula). Let G be a X-saturated sequent with G,x:F ◦. Let
L be the layer of x. We say that the formula x:F ◦ is allowed iff:
• F is of the shape A⊃B or �B; and,

• x:F ◦ is X-unhappy; and,

• L is not simulated; and,

• for all layers L′ if L′ < L, then L′ is X-happy.

5.2.4 Proof search algorithm
We have now all the ingredients for our proof/countermodel search algorithm, which is
presented in Figure 5.23. This algorithm, as it was mentioned before, terminates for the
logics X ∈ {IK, IT, IKB, ITB, IK5} and we use the logic X from here to the end of the chapter
as one of those logics.

The algorithm produces a sequence SSS0,SSS1,SSS2, . . . of sets of X-saturated sequents using
the transformations discussed in this section. We terminate at Step 2 if all sequents in
SSSi are axiomatic, and in that case we can produce a proof in labX′≤ (see Section 5.4); or
we can terminate if there are no more allowed formulas, in that case we can construct a
countermodel (see Section 5.3).

3We will explain the things marked in red in Chapter 6
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0. Given a formula F , define G0(F ) to be the sequent r≤r =⇒ r:F and let
SSS′0 := {G0(F )}.

1. For the set SSS′i, calculate a saturation SSSi.

2. If all sequents in SSSi are axiomatic, then terminate.
The formula F is provable and we can give a proof of =⇒ r:F in labX′≤.

3. Otherwise, pick a non-axiomatic sequent Gi ∈ SSSi.

(a) Pick an allowed formula x:F ◦, compute Gi↑x:F ◦ and set SSS′i+1 = (SSS′i \{Gi})∪
{Gi + Gi↑x:F ◦} and go to Step 1.

(b) If we do not have any more allowed formulas, then terminate.
The formula F is not provable, and the sequent Gi defines a countermodel
(see Section 5.3).

Figure 5.2: Proof search algorithm

L0

L1

L2

L3

1 k1

2 �(a⊃ b)•,�a⊃�b◦

3 �(a⊃ b)•,�a•,�b◦

4 5 b◦, a•, a⊃ b•, a◦

L0

L1

L2

L3

1 k1

2 �(a⊃ b)•,�a⊃�b◦

3 �(a⊃ b)•,�a•,�b◦

4 5 b◦, a•, b•

Figure 5.3: Axiom k1 : �(a⊃ b)⊃ (�a⊃�b)

Example 5.2.1 (Valid formula in IK). Let us consider the axiom k1 : �(a⊃ b)⊃ (�a⊃�b)
which is a valid formula in IK. Figure 5.3 represents the sequents generated by the algorithm
in Figure 5.2. Let Γ• be the set {�(a⊃ b)•,�a•}. To each label in the figure (except 1) we
associate Γ•, plus the formulas explicitly displayed next to the node in the figure.

The algorithm starts in Step 0 and the next first step executed is Step 3, since the
formula is non-axiomatic and there is an allowed formula: 1:�(a ⊃ b) ⊃ (�a ⊃ �b)◦. This
means we apply its lifting saturation (Definition 5.2.9) creating layer L1 and label 2 where
we add �(a⊃ b)• and �a⊃�b◦ and we go to Step 1. We calculate saturation, which in this
case means to apply ≤rf-structural saturation since the other formulas are already IK-happy.
We go to Step 3 and we apply lifting saturation to the allowed formula 2:�a⊃�b◦ creating
layer L2 and label 3 where we add �a• and �b◦. We saturate L2, in particular (≤rf)-,
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(≤tr)-, (mon•)-structural saturation (the �•-formulas are IK-happy). We go to Step 3 and
we find the allowed formula �b◦, we then apply the lifting saturation creating layer L3 and
the labels 4 and 5 and we add in label 5 the formula b◦. We go to Step 1 and calculate the
saturation of L3: we make IK-happy the �•-formulas, we structurally saturate the layer and
we also make the formula a ⊃ b• IK-happy in label 5. In order to make the ⊃• IK-happy,
we have to create two different branches. This is the reason why there are two figures. In
label 5 on the left figure we add a◦ and on the right we add b•. After saturating the layer,
we go to Step 2 where we find that both sequents are axiomatic and the algorithm stops
and according to Theorem 5.5.3, the formula at the root is a theorem of IK. Indeed, its
derivation can be found in Example 5.4.1.

5.3 Countermodel construction
Let X ∈ {IK, IT, IKB, ITB, IK5}. Assume we initiate the algorithm with a formula F . If we
terminate at Step 3.b) in Figure 5.2, we have found a X-saturated sequent Gi such that
Gi,r:F ◦ and there is no more allowed formulas. This means that each layer L of Gi either
is already X-happy or is simulated. In other words, if we terminate at Step 3.b), there are
two possible cases: i) the non-axiomatic sequent Gi does not have any X-unhappy formulas
Gi,x:F ◦, and therefore we terminate; ii) there are X-unhappy Gi,x:�A◦ or Gi,x:A⊃B◦, and
we construct a X-happy sequent G∗i . For each X-unhappy layer L there is some X-happy
layer L′ such that L′ < L and L′ simulates L via simulation SL (see Definition 5.2.11). We
define G∗i to be obtained from Gi by adding a relational atom x≤x′ whenever xSLx′ for
some X-unhappy layer L, and by closing the result under transitivity of ≤.

Then all the X-unhappy Gi,x:�A◦ and Gi,x:A ⊃ B◦ become X-happy since we create
a new future x′ for x where the conditions for happiness of Gi,x:�A◦ and G,x:A ⊃ B◦ are
satisfied. Therefore, we have that the X-unhappy formulas in x are now X-happy. Hence, G∗i
is a X-happy sequent, which allow us to apply Theorem 4.3.1 to obtain a finite countermodel
for F .

Theorem 5.3.1. If the algorithm shown in Figure 5.2 terminates in Step 3.b), then the
formula F is not a theorem of X.

Proof. If the algorithm terminates in Step 3.b), then there are no more allowed formulas in
some non-axiomatic sequent Gi ∈ SSSi. It is easy to see that label r, the only label in SSS0
is never removed by the algorithm, since saturation and lifting saturation do not remove
labels. Hence, Gi,r:F ◦.

For any such X-unhappy Gi,x:A◦ from a layer L of Gi, there is a layer L′ such that
L′ < L and L′ simulating L (see Definition 5.2.11) via a simulation SL. Let G be obtained
by first adding to Gi all relational atoms x≤Gx

′ such that x′SLx and then closing the
result under transitivity of ≤. At the same time x ∼ x′ so Gi,x

′:A◦ is X-happy in L′. If
A◦ = B ⊃ C◦, we must have Gi,z:B•, Gi,z:C◦ and x′≤Gz for some label z. Then we get
x≤Gz by (≤tr)-structural saturation of G, which makes G,x:A◦ to be X-happy. Finally, if
A◦ = �B◦, we must have Gi,z:B◦, x′≤Gu and uRGz for some labels u, z. Then we get x≤Gu
by (≤tr)-structural saturation of G and uRz by construction, which makes G,x:A◦ X-happy.

We need to show that G is X-structurally saturated and all its formulas are X-happy.
Since no new labels were added, (≤rf)-structural saturation is preserved. (≤tr)-structural
saturation is explicitly enforced. To show that (mon•)-, (F1)-, and (F2)-structural saturation
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L0

L1

L2

L3

L4

L5

L6

0 ((a⊃�b)⊃⊥)⊃⊥◦

1 ⊥◦

2 a•,�b◦

4 b◦3

65
a•,�b◦

8 b◦

97

1110
a•,�b◦

12

Figure 5.4: Non-valid formula in IK: ((a⊃�b)⊃⊥)⊃⊥

are preserved, it is sufficient to demonstrate them for each of the ≤-links added before
the transitive closure. For the (F1)-, and (F2)-structural saturation these are exactly the
simulation conditions S1 and S2 from Definition 5.2.11. For the (mon•)-simulation this
follows from the fact that SL ⊆∼ for all L, which means that whenever G,x:A• and x≤Gx

′

because x′SLx for some L, we have x ∼ x′ and, hence, G,x′:A•. Other conditions of X-
structural saturation depending on the logic X are preserved because no new R-links were
added. This completes the proof that G is X-structurally saturated. Since no formulas or
links were removed, all formulas X-happy in Gi remain X-happy in G. This completes the
proof that G is a X-happy sequent. Then we can apply 5.1.7 and we get MG, r 6
 F and,
by Theorem 3.2.1, F is not a theorem in IS4.

Example 5.3.1 (Non-valid formula in IK). Figure 5.4 represents a ≤-branch of a sequent,
generated by the algorithm when run on formula ((a⊃�b)⊃⊥)⊃⊥. Let Γ• = {⊥ ⊃ (a⊃
�b)•, a ⊃ �b◦}. To each label in the figure (except 0), we associate Γ•, plus the formulas
explicitly displayed next to the node.

The search on the depicted≤-branch stops because the layer L6 can be simulated by layer
L4. By adding relational atoms 10≤5, 11≤6 and 12≤6 to the sequent (by Theorem 5.3.1),
which are the dashed red arrows pointing downwards in the figure, we obtain (a part of) the
countermodel for our formula. To complete the countermodel, we need to take into account
the layers generated from other IK-unhappy �◦ and ⊃◦ formulas present in the sequent.

Remark 5.3.2. Observe that the first attempt would be to try to look for equality between
an upper layer and a lower layer of the sequent. However, this is not possible due to the
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R, x≤y,Γ, x:A, y:A =⇒ ∆
mon•

R, x≤y,Γ, x:A =⇒ ∆
R,Γ, x:A, x:A =⇒ ∆

cont•
R,Γ, x:A =⇒ ∆

R,Γ =⇒ ∆
weak
R,R′,Γ,Γ′ =⇒ ∆,∆′

R,Γ =⇒ ∆, x:A, x:A
cont◦

R,Γ =⇒ ∆, x:A

Figure 5.5: Admissible rules in labX≤

interaction between �◦ and F1 and F2. The rule �◦ is repeatedly creating new branches as
it is shown in Figure 5.4.

5.4 Proof construction
Let us now turn to the case when the algorithm terminates in Step 2. Then all sequents
in SSSi are axiomatic, and we want to construct a proof of =⇒ r:F in labX≤ for X ∈
{IK, IT, IKB, ITB, IK5}. For this we are going to simulate the steps of the algorithm by apply-
ing the inference rules of labX′≤ which is define as labX′≤ = labX≤∪{mon•,weak, cont•, cont◦},
where the rules mon•,weak, cont•, cont◦ are admissible (see Proposition 4.2.3, Lemma 4.5.2
and Remark 4.2.4 in Chapter 4) and they are also presented in Figure 5.5.

We start with the rule ≤rf to obtain the sequent r≤r =⇒ r:F that is the input of the
algorithm in Step 0. Now each step of the algorithm can be executed by applying the rules
of labX′≤. Step 1 corresponds to the application of all the inference rules that do not add
new labels in the future branch. In other words, we start the derivation by applying all the
rules of labX′≤ except for the rules �◦ and ⊃◦. In the case we can only apply �◦ or ⊃◦; or if
we do not obtain a proof by only applying the other inference rules, we then continue with
the application of the rules �◦ or ⊃◦, and rules mon•,F1,F2,≤tr,≤rf (this is happening in
the Step 3 of the algorithm in the lifting saturation, which involves the lifting of the whole
layer as Construction 5.2.8 and the lifting coming from �◦ and ⊃◦ as Construction 5.2.9).
We repeat this procedure until we can apply the rule id and get a proof for our formula F .
Then F is a theorem of the logic X.

Example 5.4.1. We consider the valid formula for the logic IK presented in Example 5.2.1
and we obtain its proof tree in labIK′≤ below. Observe that the first rule we can apply is
⊃◦ which corresponds to the execution of Step 3 in Example 5.2.1 where L1 is created.
Our algorithm then saturates the layer which corresponds to the application of all the
rules which are not creating new labels (Step 1): this means in our proof construction, we
apply ≤rf (there is nothing else to apply at this step and, in particular, we cannot apply
2:�(A ⊃ B)• since it needs an accessibility relation, i.e. according to the algorithm, it is
already IK-happy). We then continue applying the next ⊃◦-rule (as before, this is Step 3 in
the algorithm and 2:�A⊃�B is an allowed formula). This rule introduces the fresh label
3 and it adds the rules 3:�A• and 3:�B◦. We now apply again the saturation rules: in
this case we apply ≤tr, ≤rf and mon• (there is nothing else to do in the saturation Step 2
in the algorithm). We continue applying �◦ which is adding labels 4 and 5 (creating layer
L3 in Example 5.2.1) and adding the formula 5:B◦ (in Step 3 of the algorithm, 3:�B◦ is
an allowed formula and we apply its lifting as Construction 5.2.9). We apply again the
saturation rules: ≤rf,≤tr,mon•,�•(two times) and ⊃• which is creating new branches. In
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each branch we can apply the rule idg and finish our proof. In the algorithm, this last step
is Step 2 in which all the sequents are axiomatic and we terminate. The two figures of
Figure 5.3 represent the leaves of this proof tree, left and right respectively.

idg
R, 3:�(A⊃B), 3:�A, 4:�A, 4:�(A⊃B), 5:A, 5:A⊃B =⇒ 5:B, 5:A

idg
R, 3:�(A⊃B), 3:�A, 4:�A, 4:�(A⊃B), 5:A, 5:B =⇒ 5:B

⊃•
R, 3:�(A⊃B), 3:�A, 4:�A, 4:�(A⊃B), 5:A, 5:A⊃B =⇒ 5:B

�•

R, 3:�(A⊃B), 3:�A, 4:�A, 4:�(A⊃B), 5:A =⇒ 5:B
�•

R, 3:�(A⊃B), 3:�A, 4:�A, 4:�(A⊃B) =⇒ 5:B
≤rf+≤tr+mon•

1≤1, 1≤2, 2≤2, 2≤3, 3≤3, 1≤3, 3≤4, 4R5, 2:�(A⊃B), 3:�(A⊃B), 3:�A =⇒ 5:B
�◦ 4, 5 fresh

1≤1, 1≤2, 2≤2, 2≤3, 3≤3, 1≤3, 2:�(A⊃B), 3:�(A⊃B), 3:�A =⇒ 3:�B
≤rf+≤tr+mon•

1≤1, 1≤2, 2≤2, 2≤3, 2:�(A⊃B), 3:�A =⇒ 3:�B
≤rf+⊃◦ 3 fresh

1≤1, 1≤2, 2≤2, 2:�(A⊃B) =⇒ 2:�A⊃�B
⊃◦ 2 fresh

1≤1 =⇒ 1:�(A⊃B)⊃ (�A⊃�B)

where R is equal to: 1≤1, 1≤2, 2≤2, 2≤3, 3≤3, 1≤3, 3≤4, 1≤4, 4≤4, 2≤4, 5≤5, 4R5, 2:�(A⊃B).

5.5 Termination
We have already established in Section 5.2 that every step in our algorithm (shown in
Figure 5.2) terminates for the logic X ∈ {IK, IT, IKB, ITB, IK5}. It remains to show that
we cannot run through the main loop forever, i.e., we do not produce an infinite sequence
SSS0,SSS1, . . . ,SSSi, . . . of sets of sequents but eventually terminate either in Step 2 (we find a
proof) or in Step 3.b) (we find a countermodel). The basic idea is to restrict the size of a
layer in the sequents of a set SSSi. This then means that the number of distinct branches in
a layer is finite, hence, we will eventually find a simulation (Definitions 5.2.11 and 5.2.12).

For the remainder of this section, we assume we have started the algorithm with a
formula F in Step 0, and that n is the number of subformula occurrences in F .

We define the size of a label x in a sequent G, denoted as |x|, to be the number of
distinct formula occurrences x:A• or x:A◦ in G.

Lemma 5.5.1. The size of a label occurring in a sequent of some SSSi is at most n. And
there are 2n many equivalence classes of labels with respect to ∼.

Proof. Only subformulas of F can occur in a sequent. Furthermore, the position of each
subformula occurrence in F determines if such a subformula can occur on the left or on the
right of the =⇒. Moreover, the algorithm introduces in a sequent only labelled formulas
which do not already occur in the sequent (Definition 5.2.1). Hence, we can have at most
n formula occurrences at a given label. Also note that x ∼ y if and only if x and y contain
the same set of subformulas of F . Hence, there are 2n different equivalence classes for ∼ on
labels which can occur in SSSi.

Lemma 5.5.2. The length of a branch in a layer in a sequent in a set SSSi is bounded, and
the bound is determined by F .

Proof. A branch in a layer is getting longer by making the ♦•-formulas X-happy, since
this rule is creating new labels in the same R-branch of a layer. We have already shown in
Lemma 5.2.6 that we will not keep adding new labels forever. Observe that all the structural
rules of every logic X ∈ {IK, IT, IKB, ITB, IK5} are not moving ♦• to other labels, i.e. they
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are not propagating ♦• and, therefore, the modal degree can only decreased. Therefore, the
length of a branch in a layer is bounded, and it is bound by the number of � and ♦ in the
formula F .

Theorem 5.5.3. The proof search algorithm given in Figure 5.2 is terminating.

Proof. By the previous lemma, the size of a branch in a layer is bounded by the formula F in
the end sequent. Eventually there will be a simulation by a previous layer in the algorithm,
and therefore, the number of possible layers that can occur in a sequent in a set SSSi that
is visited by the algorithm is also bounded. This puts a limit to the height of the tree of
layers in the sequents.

5.6 Conclusion
In this chapter we have presented a proof search algorithm for intuitionistic modal logics in
the S5-cube. We show that this algorithm does terminate for some logics where transitivity is
not one of the conditions restricting the class of frames. In particular, it is indeed terminating
for the logics X ∈ {IK, IT, IKB, ITB, IK5}.

Our solution uses our fully labelled sequent system labX≤ with relational atoms for both
binary relations (accesibility relation R and preorder relation ≤) which enabled us to give a
proof system that has only invertible rules and also gives a closer correspondence between
sequents and models. This is a key ingredient for the decision problem for intuitionistic
modal logic IS4 which decidability was an open problem until now [21]. In fact, we will
apply the same argument presented in this chapter, but in many definitions and proof
arguments, there would be subtle differences due to the presence of transitivity.
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Chapter 6

Decision problem for IS4

We have presented a decision procedure for intuitionistic modal logics of the S5-cube which
it is terminating only for a few logics (none of them including transitivity). In this chapter
we show how to ensure termination for the intuitionistic modal logic IS4. In particular,
this solves a problem that has been open for almost thirty years since it had been posted
in Simpson’s PhD thesis in 1994 [59]. This is a joint work with Girlando, Kuznets, Marin
and Straßburger [21]. Our search algorithm outputs either a proof or a finite countermodel,
thus, additionally establishing the finite model property for IS4, which has been another
long-standing open problem in the area. We obtained these results by using the general
argument of the algorithm presented in Chapter 5 and by adding the corresponding new
notions and loop-checks that are needed.

We start this chapter with Section 6.1 where we highlight the main difficulties that
we encountered in tackling the decidability problem for IS4. We then follow with the same
structure as Chapter 5. In Section 6.2, we present the search algorithm to prove decidability
of IS4 and the necessary new notions in order to ensure its termination. In Section 6.3 we
show how to obtain a countermodel from a failed proof search. In Section 6.4 we show how
to reconstruct a real proof when the algorithm succeeds. In Section 6.5 we prove that the
algorithm always terminates. We end the chapter with Section 6.6 where we present our
conclusions.

6.1 Why is it a hard problem?
As it was mentioned before, one way to prove decidability for a logic is to perform proof
search in a sound and complete deductive system with the intention of either finding a proof
or constructing a countermodel from a failed proof search. For IS4 (it is obtained from IK by
adding the t and 4 axioms) several such deductive systems exist, the first being Simpson’s
labelled systems presented in his PhD thesis [59] and already introduced in Chapter 3.
Moreover, there are various kinds of nested sequents systems: single-conclusion [60], multiple
conclusion [61], and also focused variants [10]. A natural question to ask is why none of
these systems has been used to prove decidability of IS4. The aforementioned systems rely
on what we could call a mixed approach: they internalize the modal accessibility relation
R within the sequents syntax, either using nesting, or labels and relational atoms, but they
rely on a traditional structural approach for the intuitionistic aspect of the logic such as
single-conclusion sequents at least in certain rules.
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One might think that combining the traditional loop-check for the intuitionistic part
with the label-based loop-check for the modal part would be a way to a decision procedure.
But the situation is more complicated because

1. all sequent systems mentioned above internalized only the R-relation of the birelational
models. If the system is also single-conclusion (as most intuitionistic systems are), then
the classical S4-loop test, which is looking for a repetition along the R-relation, cannot
be applied to the right-hand-side of a sequent, as the conclusion formula sometimes
can be replaced by a new one;

2. the structural approach to the intuitionistic system also means the rules are not all
invertible and the procedure requires backtracking, so the modality loop check also
needs to be combined with the necessary backtracking.

These two problems can be overcome by using our fully labelled proof system that
incorporates both relations R and ≤ [43]. This has the same advantages as moving from a
structural to a labelled approach for intuitionistic propositional logic as it was mentioned in
the previous Chapter. Not only does this system re-establish the close relationship between
a sequent and a model, as we know it for classical modal logic, it also enables us to make all
rules in the system invertible. Moreover, by having access to explicit relational atoms in the
sequent syntax, it makes it easy to implement the loop checks and to represent the backedges
explicitly when constructing a countermodel as it was done in the previous chapter.

Naive proof search is not terminating, with two possible sources of non-termination: the
first inherited from the classical modal logic S4, since sequents can grow arbitrarily because
the rules ♦• and �◦ create new sequent nodes and the rules 4• and 4◦ can move formulas
into a child node without reducing their complexity. In classical S4 this is prevented by a
loop check: before a new child node is created by ♦• or �◦, it is checked whether an ancestor
sequent node is identical to the current one. If this is the case, the child node is not created.
The second source of infinity comes from intuitionistic propositional logic. The rule ⊃◦
removes the output formula from the sequent and introduces a new one. This can cause the
algorithm to visit the same sequent again and again. To prevent this from happening the
same loop check that we specifically used in the previous chapter can be attempted for use
once more: check whether the same sequent has been visited before on the same branch of
the proof search tree, and only if this is not the case, we continue the search. However, it is
not straightforward to combine the two proof search methods for classical modal logic and
propositional intuitionistic logic, as the following example shows:

Example 6.1.1. Consider the following formula, which is not provable in IS4:

�
(

(�a⊃⊥) ∧
(
(a⊃⊥)⊃⊥

))
⊃⊥. (6.1)

Let A = �a⊃⊥ and B = (a⊃⊥)⊃⊥. In order to construct a countermodelM, we need
a world w1 that forces �(A ∧ B) and, therefore, also forces A and forces B. Consequently,
every world w′ such that w1≤w and wRw′ for some w should force these formulas. Then
all these worlds must force neither �a nor a ⊃ ⊥. The latter means that for each such
world w′, there must be a world v with w′≤v andM, v 
 a. Of course, in turn, v must not
force �a, so there must be worlds u and u′ with v≤u′, u′Ru, andM, u 6
 a. But this u must
not force a ⊃ ⊥ so there must be a world v1 with u≤v1 and M, v1 
 a, and so on. Thus,
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w1

 �(A ∧B),
 A,
 B
6
 �a, 6
 a⊃⊥

w2 w3 6
 a

w4 
 aw5

w6 w7 6
 aw8

w9 
 aw10w11

w1

w2 w3 6
 a

w4 
 aw5

w6w8

w10w11

Figure 6.1: Left: Illustration of the potential non-termination issue. Right: Illustration of
a break of condition F1 when identifying nodes unrestrictedly.

a naive implementation of a countermodel construction via proof search will keep adding
worlds ad infinitum because neither of the two loop-checks will detect the repetition (see
Figure 6.1, Left). In other words,

3. to account for the interaction of modalities and intuitionistic implications, the two
loop checks must get along well with each other.

For solving this third problem, we have to implement a more sophisticated loop check
involving both relations. This directly leads us to a fourth problem.

Example 6.1.2. Assume, for the sake of example, that we designed a suitable loop check
such that we could stop proof search at the stage of the structure presented on Figure 6.1
(Left) and that we identified w7 to w3 and w9 to w4. This would create "backlinks" between
w10 and w4 as well as between w6 and w3. However this would lead to an incorrect F1
situation as now w10Rw4 ≤ w6 but there is no w′ such that w10 ≤ w′Rw6. (see Figure 6.1,
Right). This means that

4. the standard method of constructing a (finite) countermodel from a failed proof search,
via identifying labels/worlds that create a loop, fails in the setting of birelational
models. We break the F1/F2 conditions, which in turn would force us to add new
worlds, which would mean we have to continue proof search.

We solve this problem by identifying (substituting) labels not only after we finished the
proof search, but while still performing it. This preserves unprovability, but could, a priori,
be unsound. This means that when terminating a branch on a non-axiomatic sequent, it
is still possible to extract a countermodel from it. However, when reaching only axiomatic
leaves, it remains to be shown that a sound proof can be obtained from the proof attempt
(potentially containing identification of labels). So, instead of doing naive proof search and
then constructing a countermodel from a failed proof search by “folding” the failed sequent,
we perform the folding already during the proof search, which is now a countermodel search,
and then construct a proper proof from a failed countermodel search by “unfolding” the
search tree. The loop check ensuring termination has to be subtly calibrated for this final
step of unfolding the proof attempt into a real proof.
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6.2 Search algorithm for IS4
As it was mentioned in previous chapters, the intuitionistic modal logic IS4 is obtained
by adding the axiom t for reflexivity and the axiom 4 for transitivity to the logic IK. In
order to prove decidability of IS4, we use our fully labelled proof system labX≤, presented
in Chapter 4 as it was used for decidability of other logics in Chapter 5. In particular for
IS4 we perform proof search in labIS4≤ = labIK≤ ∪ {Rtr, Rrf} (this two rules are presented
in Figure 4.2) which is sound and complete by Theorem 4.6.2.

We will use most of the definitions presented in Chapter 5 for the logic X where now
X = IS4. We work on IS4-structurally saturated sequents (see Definition 5.1.4 ) and making
the formulas IS4-happy (see Definition 5.1.2). We are also using the same search algorithm
presented in Section 5.2, with the necessary changes and adding the needed loop-checks in
order to ensure termination.

In the same way as in Chapter 5, in all sequents the order relation ≤ on layers defines
a tree structure. However, in sequents constructed by the proof system labIS4≤, each layer
also has a tree structure with respect to RG. But, in order to search for a proof and a
countermodel at the same time, we need to weaken this tree structure on the layers. For
this, we introduce the notion of clusters.

Definition 6.2.1 (Cluster). If G is a IS4-structurally saturated sequent, then RG ∩R−1
G is

an equivalence relation, and we can define a cluster C in G to be an equivalence class
C = {x1, ..., xn} of RG ∩ R−1

G . A cluster C = {x1} containing only one label is called
singleton. On clusters, we define the following binary relations:

• C1≤GC2 iff for all y ∈ C2 there is x ∈ C1 with x≤Gy.

• C1RGC2 iff there are x ∈ C1 and y ∈ C2 with xRGy.

For these two relations on clusters, we sometimes abuse the notation and replace one of the
clusters by a label x even when {x} is not a cluster. Nevertheless, the definitions are then
applied verbatim to {x}.

Definition 6.2.2 (Equivalent clusters). For IS4-structurally saturated sequents G and H,
we can generalize Definition 5.2.10 to clusters: C1 ∼ C2 iff there is a bijection f : C1 → C2,
such that fx ∼ x for all x ∈ C1.

Proposition 6.2.3. For a IS4-structurally saturated sequent G, RG is an order and ≤G is
a preorder on its clusters. If G is layered, ≤G is also an order.

Proof. RG is an order on its clusters:

• For reflexivity of RG, consider any cluster C. For any label x ∈ C, by (Rrf)-structural
saturation, we have xRGx. Hence, CRGC by Definition 6.2.1.

• For transitivity of RG, let C1RGC2 and C2RGC3 for clusters C1, C2, and C3. By
Definition 6.2.1, xRGy and uRGz for some labels x ∈ C1, y, u ∈ C2, and z ∈ C3. Since
yRGu, by (Rtr)-structural saturation xRGz. Thus, C1RGC3 by Definition 6.2.1.
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• For antisymmetry of RG, let C1RGC2 and C2RGC1. By Definition 6.2.1, there are
labels x, y ∈ C1 and x′, y′ ∈ C2 such that xRGx

′ and y′RGy. For arbitrary labels
u ∈ C1 and v ∈ C2, we have uRGx, and x′RGv, hence, by (Rtr)-structural saturation,
uRGv. Similarly, vRGu because vRGy

′ and yRGu. Since both uRGv and vRGu for
all u ∈ C1 and v ∈ C2, all labels in these two clusters form one equivalence class
w.r.t. RG ∩R−1

G , i.e., C1 = C2.

≤G is a preorder on its clusters:

• For reflexivity of≤G, consider any cluster C. For every label y ∈ C, by (≤rf)-structural
saturation, y≤Gy. Hence, C≤GC by Definition 6.2.1.

• For transitivity of ≤G, let C1≤GC2 and C2≤GC3 for clusters C1, C2, and C3. By
Definition 6.2.1, for every z ∈ C3, there is y ∈ C2 such that y≤Gz. In its turn, for
this y, there is x ∈ C1 such that x≤Gy. By (≤tr)-structural saturation x≤Gz for this x.
Thus, C1≤GC3 by Definition 6.2.1. Hence, ≤G is a preorder.

Assume now additionally that G is layered. Then to show that ≤G is also an order, it
remains to show that ≤G is antisymmetric:

• For antisymmetry of ≤G, let C1≤GC2 and C1 6= C2, i.e., C1 ∩ C2 = ∅. To show
that C2 6≤GC1, we consider any label x ∈ C1 and show that y 6≤Gx for all y ∈ C2. By
Definition 6.2.1, for each y ∈ C2, there is some label x′ ∈ C1 such that x′≤Gy. We
have x′R↔G x because they belong to the same cluster, yRGy, and hence yR↔G y, by
(Rrf)-structural saturation, and x′ 6= y because they are from disjoint clusters. Hence,
y 6≤Gx by Definition 5.1.12. Since y was chosen arbitrarily, it follows that C2 6≤GC1 and
≤G is an order.

Definition 6.2.4 (Tree-clustered sequent). A IS4-structurally saturated sequent G is called
tree-clustered if and only if for all clusters C, C ′, and C ′′, whenever C ′RGC and C ′′RGC,
then either C ′RGC

′′ or C ′′RGC
′.

Remark 6.2.5. Note that we do not need to ask for the root in Definition 6.2.4.

We now redefine the notions for saturated and semi-saturated sequents presented in
Definition 5.1.18 in order to include the fact that the sequents are now tree-clustered.

Definition 6.2.6 (IS4-saturated and IS4-semi-saturated sequent). A sequent G of IS4 is
called IS4-saturated if and only if it is tree-layered and tree-clustered and IS4-structurally
saturated and all its formulas are IS4-almost happy. A sequent G is IS4-semi-saturated
if and only if it is tree-layered and tree-clustered and IS4-structurally saturated and all its
formulas are IS4-naively happy. A set SSS of sequents is called IS4-saturated/IS4-semi-
saturated if and only if it is finite and all elements of SSS are IS4-saturated/IS4-semi-
saturated, respectively.

We are now ready to present the changes needed in the steps of the search algorithm of
Figure 5.2 to ensure termination of IS4. As it was done for the other logics X, we work on
layers until these layers are saturated. This is achieved (as before) by semi-saturating the
layer, i.e. applying all the inference rules that do not introduce new labels and then pick
an IS4-unhappy x:♦A• and make it IS4-happy (either by applying the ♦• rule or, in case of
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loop detection, by creating a cluster). Then we semi-saturate again and we continue until
all ♦• in the layer are IS4-happy and, therefore, the layer is IS4-almost happy.

Now the only IS4-unhappy formulas remaining in the resulting IS4-saturated sequent are
of the shape x:⊥•, x:a◦, x:A⊃B◦, x:�A◦. For the first two shapes, the sequent is axiomatic,
and we can stop working on it as we have done in Chapter 5. And we continue looking for
allowed formulas (which are of the shape x:A ⊃ B◦ or x:�A◦). We make them IS4-happy,
until there are no more allowed formulas and we see a repetition of layers. In order to achieve
termination of this process, we implement two other loop detection mechanisms (different
from the one used for x:♦A• formulas).

In the remainder of this section, we formally introduce the changes for the algorithm
including the mentioned loop checks.

6.2.1 Semi-saturation
We start with the semi-saturation procedure by making all formulas IS4-happy, that are
not of the form x:⊥•, x:a◦, x:♦A•, x:A⊃B◦ or x:�A◦. The process is the same as the one
presented in Definition 5.2.1. However, since happiness for the logic IS4 is different for the
formulas x:�A• and x:♦A◦ (see Definition 5.1.2), then the semi-saturation procedure needs
to add the formulas z:�A• in the case 3) and y:♦A◦ in the case 4) of Definition 5.2.1.

We prove in Lemma 5.2.2, b) that the rewrite relation   s terminates for all the intu-
itionistic modal logics X in the S5-cube. In particular, it also terminates for IS4.

6.2.2 Saturation
In the next step we show how to deal with IS4-unhappy x:♦A• as we have done in the
previous chapter. Nevertheless, in the logic IS4, ♦• is the first source of non-termination,
and for this we employ the same method that is commonly used for classical S4. However,
whereas in the case of classical S4, the loop detection completes the proof search in the
current branch, here we have to continue proof search. For this reason we realize the loop
by creating a cluster.

In Chapter 5, we proved that the rewrite relation   ♦ terminates for some logics that
do not include transitivity. In order to ensure termination for IS4 we need to add to Defi-
nition 5.2.3 the mentioned loop detection.
Definition 6.2.7 (Having no past). A label x in a sequent G has no past if and only if
y≤Gx implies y = x for all y.

Definition 6.2.8 (4-Saturation). We define a binary relation 4 ♦ on sequents as follows:
G

4 ♦ G′ if and only if there is a label y and a formula A, such that G,y:♦A• is IS4-unhappy,
and all labels u 6= y such that uRGy but not yRGu are IS4-almost happy, and
1) Option 1: there is a label x 6= y such that x ∼ y, but G,x:♦A• is IS4-happy, xRGy, and

every label u with xRGu has no pasts in G. Then G′ is obtained from G by first sub-
stituting x for each occurrence of y and then closing the resulting RG under transitivity.
Or

2) Option 2: There is no such label x. Then G′ is obtained from G by first adding z≤z,
yRz, z:A• for some fresh label z, and then closing the resulting RG under transitivity
and reflexivity.
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For sets SSS and SSS′ of sequents, we write SSS
4
  ♦ SSS′ iff SSS is IS4-semi-saturated, G 4 ♦ G′

for some G ∈ SSS and SSS′ is a semi-saturation of
(
SSS \ {G}

)
∪ {G′}.1 We write

4
  ∗♦ for the

transitive and reflexive closure of 4
  ♦. If SSS

4
  ∗♦ SSS′ and SSS′ is in normal form with respect

to 4
  ♦, then SSS′ is called a 4-saturation of SSS.

Lemma 6.2.9. The following statements hold:

a) If a sequent G is IS4-structurally saturated, tree-layered and tree-clustered and G
4 ♦ G′,

then the sequent G′ is IS4-structurally saturated, tree-layered and tree-clustered.

b) If a sequent G is IS4-semi-saturated and G
4 ♦ G′ according to Option 1, then the

sequent G′ is IS4-semi-saturated.

Proof. To prove a), assume that a sequent G is IS4-structurally saturated, tree-layered, and
tree-clustered. Let G

4 ♦ G′. From Definition 6.2.8, in Option 1, there are no new labels
and y has no past in G, hence, the only change in ≤-relational atoms is that y≤y turns into
x≤x; for Option 2, the only new label is z with z≤z being the only new ≤-relational atom.
Either way, the (≤rf)- and (≤tr)-structural saturation is ensured and the set of irreflexive
≤-relational atoms remains unchanged. The latter implies that the (mon•)-, (F1)-, and
(F2)-structural saturation of G′ follows from the same properties of G. The (Rtr)-structural
saturation is explicitly enforced. So is (Rrf)-structural saturation for Option 2, where it
is necessary for the added label z. This completes the proof that G′ is IS4-structurally
saturated.

As the rewrite does not affect the layer structure of the sequent, G′ being tree-layered
immediately follows from the same property of G.

To show that G′ is tree-clustered we consider the two options separately. In Option 1 of
Definition 6.2.8, the rewrite performs a substitution of label x for label y and applies the
transitive closure. By considering the shortest chains justifying new RG′-links, and using
the structural saturation of both G and G′ along with xRGy, it follows that:

uRG′x =⇒ uRGy; (6.2)
xRG′v =⇒ xRGv; (6.3)

uRG′v but not uRGv =⇒ uRGy&xRGv. (6.4)

Let C ′x be the cluster in G′ that contains x. For any cluster C in G, either y ∈ C and
C \ {y} ⊆ C ′x or y /∈ C and either C ⊆ C ′x or C remains a cluster in G′. The case of
y ∈ C is easy. Suppose y /∈ C, which is not a cluster in G′. Since all RG-links unrelated
to y are preserved in G′, cluster C can only grow. So there must be some labels u ∈ C and
v /∈ C such that uRG′v, vRG′u, but either not uRGv or not vRGu. By (6.4), in the former
case, uRGy and xRGv, hence, uRG′x and xRG′v, while in the latter case, vRGy and xRGu,
hence, vRG′x and xRG′u. Either way, by structural saturation of G′, u ∈ C ′x, and C ⊆ C ′x.
To show that G′ is tree-clustered (in Option 1 of Def. 5.2.3), we consider three clusters
C1, C2, and C ′ from G′ such that C1RG′C

′ and C2RG′C
′ and show that C1 and C2 are

RG′-comparable. If any two of them are equal, this is trivial, so assume they are pairwise
1Strictly speaking, forming the semi-saturation is only necessary in the second case, but to simplify the

presentation, we do it in both cases.
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distinct. If none of them is C ′x, then they are also clusters in G and it is sufficient to show
that there is some cluster C∗ in G such that C1RGC

∗ and C2RGC
∗. Then C1 and C2 are

RG-comparable because G is tree-clustered and the connection remains in G′, meaning that
they are also RG′-comparable. If both C1RGC

′ and C2RGC
′, then C∗ = C ′. If neither

C1RGC
′ nor C2RGC

′, then it follows from (6.4) that C1RGCy and C2RGCy where Cy is the
cluster in G that contains y. So C∗ = Cy. Finally, if, w.l.o.g. C1RGC

′ but not C2RGC
′,

then C2RGCy and CxRGC
′ by (6.4) where Cx is the cluster in G that contains x. Since G is

tree-clustered, either CxRGC1 or C1RGCx. In the latter case, C1RGCy, so C∗ = Cy. In the
former case, we derive the RG′-connection C2RG′C1 directly from C2RGCy and CxRGC1. It
remains to consider the case when exactly one of the three clusters is C ′x and the other two
are clusters of G. If C ′ = C ′x, then C1RGCy and C2RGCy by (6.2), so the above argument
with C∗ = Cy suffices. Finally, if w.l.o.g. C1 = C ′x, then CxRGC

′ by (6.3). If C2RGC
′, then

Cx is RG-comparable to C2 because G is tree-clustered, and C ′x is RG′-comparable to C2. If
C2RG′C

′ but not C2RGC
′, then C2RGCy by (6.4), and C2RG′C

′
x. The situation in Option 2

of Definition 5.2.3 is much simpler: there a single new cluster {z} is added to the clusters
of G and CRG′{z} iff C = {z} or CRGCy. The only non-trivial new case to consider is
when C ′ = {z}, C1 6= {z}, and C2 6= {z}, in which case C1RGCy and C2RGCy, and C1 and
C2 are RG′-comparable because they are RG-comparable. This completes the proof that G′
is tree-clustered.

To prove b), since most of the conditions were just shown in a), it is sufficient to ad-
ditionally show that all formulas in G′ are IS4-naively happy. Since Option 1 adds neither
new formulas nor new labels, for most types of formulas their (naive) happiness is inher-
ited from G. The only exceptions are �•- and ♦◦-formulas. The argument is the same for
both. We show it for �•-formulas. Suppose uRG′v and G′,u:�C•. Since no formulas are
added in Option 1, also G,u:�C•. There are two possibilities: either uRGv already in G
or it was added to ensure the structural saturation of G′. In the former case, G′,v:C• and
G′,v:�C• by the naive happiness of this layer in G. In the latter case, we have uRG′v but
not uRGv, hence, by (6.4), both uRGy and xRGv. Therefore, G,y:�C• naive happiness of
the layer in G, so G,x:�C• because x ∼ y in G, and G,v:C• and G,v:�C•, again due to
naive happiness. Both C• and �C• remain at v in G′.

Lemma 6.2.10. Let G be a IS4-semi-saturated sequent, let G 4 ♦ G′, and let SSS∗ be a semi-
saturation of {G′}. Then all IS4-happy ♦•-formulas are preserved by the transition from G
to SSS∗, i.e., for all sequents G∗ ∈ SSS∗ and for all labels u occurring in G∗, if G,u:♦C• is
IS4-happy, then so is G∗,u:♦C•.

Proof. Note that semi-saturation does not remove formulas or labels, nor does it add R-
relational atoms. Hence, semi-saturation in Option 2 cannot spoil happiness of any ♦•-
formula, and it is sufficient to show that no IS4-happy ♦•-formula of G becomes IS4-unhappy
in G′. For Option 2, this is trivial as, again, nothing is removed. For Option 1, the only
problems relate to the removal of y and could potentially occur if G,u:♦C• was IS4-happy
because of uRGy and G,y:C•. However, in this case, uRG′x and G′,x:C• because x ∼ y in
G, thus, happiness persists.

Lemma 6.2.11. All the following statements hold:

a) If a set SSS of sequents is IS4-semi-saturated and SSS
4
  ♦ SSS′, then SSS′ is IS4-semi-saturated.
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b) A set SSS of sequents is IS4-saturated iff it is IS4-semi-saturated and in normal form
w.r.t. 4

  ♦.
Proof. To prove a) assume that the set SSS is finite and all sequents in SSS are IS4-semi-
saturated. Observe that SSS′ =

(
SSS \ {G}

)
∪ SSS∗ for some G

4 ♦ G′ where SSS∗ is as in
Lemma 6.2.10. In Option 1 of Definition 6.2.8, we replace one semi-saturated sequent G
with another one sequent G′, which is IS4-semi-saturated by Lemma 6.2.9.b). Hence, the
resulting set SSS′ is IS4-semi-saturated. On the other hand, observe that by definition of 4

  ♦,
after each transition 4 ♦, we calculate semi-saturation for both options of Definition 6.2.8.
Then SSS′ is IS4-semi-saturated.

To prove b), observe that SSS being IS4-saturated by definition means that it is IS4-semi-
saturated and all its formulas are IS4-almost happy. A layer is IS4-almost happy if and only
if it is IS4-naively happy and all ♦A•-formulas occurring in it are IS4-happy. Saturation 4

  ♦
can be applied to a IS4-semi-saturated set iff it has an IS4-unhappy ♦A•-formula. Hence,
SSS is IS4-saturated iff it is IS4-semi-saturated and in normal form with respect to 4

  ♦.

We can now prove that indeed the rewrite relation 4
  ♦ is terminating for the logic IS4:

Lemma 6.2.12. The rewrite relation 4
  ♦ is terminating.

Proof. Let us consider a sequent G ∈ SSS and an arbitrary layer L of G, having a RG-path
π with some unhappy ♦•-formulas. Let us define a sequence (πi)i<ω where π0 = L and πi+1

is generated from πi by one step of the rewrite 4
  ♦ applied to some label in πi. Assume

that, starting from some label w in πn, for some n > 0, all labels in ⋃ωj=n πj are generated
by Option 2 of the rewrite (Definition 6.2.8). It holds that for each j, the set of labels in
πj is included in the set of labels in πj+1. Moreover, for all i, all labels in πi are IS4-naively
happy. We shall prove that, after a finite number of steps, we reach a set πk, for j ≤ k,
whose labels are all IS4-almost happy. Since there are only finitely many labels and finitely
many ♦•-formulas in π0, the labels which can be introduced in ⋃ωj=n πj belong to finitely
many ∼-equivalence classes of labels.

As soon as a cluster in πj contains at least one label for each ∼-equivalence class, then
all the ♦•-formulas occurring in it are IS4-happy. Thus, it is enough to show we find such
a cluster in a finite number of steps. Whenever Option 1 of the rewrite is applied to some
label in a cluster Cj in πj, the corresponding cluster Cj+1 in πj+1 might either have one
element less than Cj (in case x and y belong to the same cluster) or be such that Cj ( Cj+1
(otherwise). However, the first case can occur only finitely many times, and cannot occur
if all labels in Cj belong to pairwise disjoint ∼-equivalence classes. Moreover, it holds that
whenever Cj ( Cj+1, Cj+1 contains a label which does not belong to any ∼-equivalence
class of labels in Cj. This is because whenever a label in a cluster contains an IS4-unhappy
♦•-formula, then the label k that would make that formula IS4-happy does not belong to
the cluster, and needs to be created by Option 2 of the rewrite. Once created, children of
k will be identified by Option 1 of the rewrite, and thus k will be added to the cluster.
Thus, we generate clusters including an increasing number of labels belonging to different
∼-equivalence classes, until we obtain a cluster where all are represented, and whose labels
are all IS4-almost happy. Since there are only finitely many paths in L, and since only
finitely many new labels can be introduced at each label by the rewrite, we conclude that
the rewrite relation 4

  ♦ terminates.
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6.2.3 Lifting saturation
After having discussed how to saturate sets of sequents, we are now going to show how to
deal with IS4-unhappy A⊃B◦ and �A◦. For this, we have to create new layers. The naive
way would be to just copy the R-structure of the layer that contains the IS4-unhappy A⊃B◦
or �A◦ as it was done in the previous chapter. However, due to the presence of clusters, we
sometimes need to create two copies of the cluster that contains the IS4-unhappy formula.

Construction 6.2.13 (4 Layer Lifting I). Let G be a IS4-saturated sequent, L be a layer in
G, and let x be a label in L. Then x belongs to a cluster Cx = {x1, . . . , xh} with h ≥ 1 and
x = xm for some 1 ≤ m ≤ h, which we often abbreviate as m = 1..h. In particular, xiRGxi′
for any i, i′ = 1..h. Let {y1, . . . , yl} = L \Cx where l ≥ 0. Then, if h = 1, let L̂ be the set of
fresh labels {ŷ1, . . . , ŷl, x̂}. Otherwise, if h > 1, let L̂ := {ŷ1, . . . , ŷl, x̂, x̂

′
1, . . . , x̂

′
h, x̂

′′
1, . . . , x̂

′′
h}

where again all labels are fresh. We define G↑x4 to consist of:

1. relational atoms v≤v and vRv for all v ∈ L̂;

2. for every i = 1..l, every j = 1..h, and every label w occurring in G:

(a) relational atom w≤ŷi whenever w≤Gyi,
(b) relational atom w≤x̂ whenever w≤Gx,
(c) only for h > 1: relational atoms w≤x̂′j and w≤x̂′′j whenever w≤Gxj;

3. for all i, i′ = 1..l and j, j′ = 1..h,

(a) relational atom ŷiRŷi′ whenever yiRGyi′ ,
(b) only for h > 1: relational atoms ŷiRx̂′j and ŷiRx̂′′j whenever yiRGxj,
(c) relational atom ŷiRx̂ whenever yiRGx,
(d) only for h > 1: relational atoms x̂′jRŷi and x̂′′jRŷi whenever xjRGyi,
(e) relational atom x̂Rŷi whenever xRGyi,
(f) only for h > 1: relational atoms x̂′jRx̂′j′ , x̂′jRx̂, x̂Rx̂′′j , and x̂′′jRx̂′′j′ .

4. For every i = 1..l and every j = 1..h, and for every formula C, add:

(a) labelled formulas ŷi:C• whenever G,yi:C•,
(b) only for h > 1: labelled formulas x̂′j:C• and x̂′′j :C• whenever G,xj:C•,
(c) labelled formulas x̂:C• whenever G,x:C•.

Remark 6.2.14. Observe that Construction 6.2.13 is defined as Construction 5.2.8 plus
the conditions required due to the presence of clusters.

This construction lifts a layer L of a sequent G with respect to a label x ∈ L. If x is
a singleton cluster, this is a simple lifting as the one implemented in Construction 5.2.8.
Otherwise, if x is a non-singleton cluster, this cluster is duplicated and the lifting of x is put
in between the two copies, as indicated in Figure 6.2 (ignore the label z for the moment).

In Construction 6.2.13, Points 1)–2) ensure that in sequent G + G↑x4 , the new layer is
indeed above L as intended and (≤tr), (≤rf), and (Rrf) are satisfied; Point 3) ensures (Rtr),
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ŷ4

ŷ5
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Figure 6.2: 4 Layer lifting as defined in Constructions 6.2.13 and 6.2.15

(F1), and (F2); Point 4) ensures (mon•). Thus, G + G↑x4 is tree-clustered, tree-layered, and
IS4-structurally saturated. It must be IS4-almost happy due to the saturation of G but
may contain IS4-unhappy A⊃B◦ and �B◦ formulas. To deal with them we need to adjust
Construction 5.2.9 using the new layer lifting of Construction 6.2.13 which is introducing
clusters. For a better understanding we redefine Construction 5.2.9 as follows:

Construction 6.2.15 (4 Layer Lifting II). Let G be a IS4-saturated sequent with G,x:F ◦
being IS4-unhappy for some label x and some formula F of shape A⊃ B or �B. Let L be
the layer of x. We define G↑x:F

4 as follows:

• If F = A ⊃ B, then we define G↑x:A⊃B
4 to be the sequent G↑x4 to which we add

labelled formulas x̂:A• and x̂:B◦ and call x̂ a suricata label of x (where x̂ is as
Construction 6.2.13);

• If A = �B, then we define G↑x:�B
4 to be the sequent G↑x4 to which we add formulas

zRz, z≤z, and z:B◦ for a fresh label z, and additionally add relational atoms vRz
whenever v ∈ L̂ and vRx̂ is in G↑x4 . Here z is called a suricata label of x. (where
x̂, L̂ are as in Construction 6.2.13).

Remark 6.2.16. Observe that Construction 6.2.15 is the same as Construction 5.2.9 with
the differences that we are working on IS4-saturated sequent which are not only IS4-structurally
saturated and tree-layered but also they are tree-clustered; and we replace G↑x (Construc-
tion 5.2.8) by G↑x4 (Construction 6.2.15) which is including clusters.

As in Construction 5.2.9, the suricata label contains the white formula responsible for
the happiness of the formulas x:A ⊃ B◦ and x:�A◦, and the result is still IS4-structurally
saturated and tree-layered and tree-clustered. Observe that Figure 6.2 shows the case of
x:�B◦ with the additional fresh label z (that has no past).

6.2.4 Loop-saturation
We have now presented all the steps that make the sequent larger by adding labelled formulas
or relational atoms. As a result, IS4-unhappy formulas become IS4-happy, or the sequent
becomes IS4-structurally saturated.
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Figure 6.3: Left: Structure of an unhappy R-triangle loop defined in Definition 6.2.17.
Middle and Right: Structure of an unhappy U-triangle loop defined in Definition 6.2.18

However, observe that, in general, new layers are larger than previous ones and there are
two sources for the growth. First, in the case of an IS4-unhappy x:�B◦, a fresh label z is
added, and second, if the label x is in a non-singleton cluster, then this cluster is duplicated.
Both effects can be seen in Figure 6.2.

For this reason, we need to find a way to shrink a layer. This will be done by creating
clusters similar to how Definition 6.2.8 does for ♦•. The difference is that this time the
potential repetition will involve several layers rather than being local to a single layer. The
difficulty is that some part of a layer L1 will be repeated in a layer L2 occurring above it,
but in order to keep the sequent tree-layered, we cannot create clusters across several layers.
The solution we implement here is to create a cluster inside layer L2 for a part that would be
repeated in a future layer, provided that we can repeat in layer L2 what happened in layer
L1. We call such loops triangle loops. There are two kinds of such loops which distinguish
the two ways a layer can grow discussed above. The first kind occurs if the cluster to be
created in L2 is in a part of L2 that has no past in L1. This could be caused for example by
repetitions of �◦. We call these loops R-triangle loops. The second kind occurs when the
repetition is caused by a repeated duplication of clusters in the layer lifting (see Figure 6.2).
We call these loops U-triangle loops.

Before we give the formal definitions, observe that all new layers that are created in
our algorithm for IS4 are of the shape G↑x:F

4 , as defined in Construction 6.2.15, and each
such layer contains exactly one suricata label. This can therefore be called the suricata label
of the layer, and it is (immediately after the lifting) the only label that contains a white
formula.2

Definition 6.2.17 (R-Triangle Loop). Let G be a IS4-saturated sequent with two layers
L1, L2 such that L1 < L2. We say that clusters C1 ⊆ L1 and C2 ⊆ L2 form an R-triangle
loop if and only if the following conditions hold:

1. C1 ∼ C2;

2. there is a label p1 ∈ C1 such that there is a layer L′ with L1 < L′ ≤ L2 that contains
a suricata label of p1;

3. there is a cluster Cr such that C1≤GCr, and CrRGC2, and no label v ∈ L2 \ Cr with
Cr RG v RG C2 has a past in L1, i.e., u 6≤Gv for any u ∈ L1.

The R-triangle loop is unhappy iff additionally:
2On the other hand, label x can have several suricata labels in other layers if there are more than one

⊃◦ or �◦ formulas in x.
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4. whenever L2 ≤ L′′ for some layer L′′, then L2 = L′′;

5. there are labels s, t ∈ L2 \ C2 such that s ∼ t, and s 6= t, and Cr RG s RG t RG C2;

6. there is no suricata label u with Cr RG u RG t;

(Note that s and t may be in a common cluster.)

The Left of the Figure 6.3 illustrates this definition.

Definition 6.2.18 (U-Triangle Loop). Let G be a saturated sequent with two layers L1, L2
such that L1 < L2. We say that clusters C1 ⊆ L1 and C2 ⊆ L2 form a U-triangle loop iff
the following conditions hold:

1. C1 ∼ C2;

2. there is a label p1 ∈ C1 such that there is a layer L′ with L1 < L′ ≤ L2 that contains
a suricata label of p1;

3. C1≤GC2.

The U-triangle loop is unhappy iff additionally:

4. whenever L2 ≤ L′′ for some layer L′′, then L2 = L′′;

5. there are labels s, t ∈ L2 \C2 such that C1≤Gs, and C1≤Gt, and s ∼ t, and s 6= t, and
either C2 RG s RG t or s RG t RG C2;

6. there is no suricata label u with s RG u RG t;

(Again, s and t may be in the same cluster.)

The two possibilities envisioned by this definition, depending on whether C2 RG s RG t
or s RG t RG C2, are illustrated in Figure 6.3 (Middle and Right).

Informally, we speak of a triangle loop when we can reproduce the steps that started
with the creation of L′ and led to L2. The loop is unhappy if we can observe some repetition
in the new part of L2 (with respect to L1). If this is the case, we can collapse this repetition
by creating a cluster, or shrinking an existing cluster, as follows:

Definition 6.2.19 (Loop-saturation). Let G and G′ be IS4-saturated sequents. We write
G �G′ if and only if there is an unhappy R-triangle or U-triangle loop in G where the labels
s and t are as in Definition 6.2.17 or Definition 6.2.18 respectively and G′ is obtained from
G by substituting s for all occurrences of t and closing the resulting RG under transitivity.
For sets SSS and SSS′ of sequents, we write SSS  �SSS′ if and only if SSS is IS4-saturated, we have
G � G′ for some G ∈ SSS, and SSS′ =

(
SSS \ {G}

)
∪ {G′}. We write   ∗� for the transitive

and reflexive closure of   �. If SSS  ∗�SSS′ and SSS′ is in normal form with respect to   �, then
SSS′ is called a loop saturation of SSS.

As before, this term is justified because, a loop saturation of a IS4-saturated set of
sequents is saturated. We need to prove now that the rewrite relation   � is terminating.
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Lemma 6.2.20. It holds that:
a) If a set SSS of sequents is IS4-saturated and SSS  � SSS′, then SSS′ is IS4-saturated.

b) The rewrite relation   � is terminating.
Proof. To prove a) assume that SSS is saturated. Let us consider a sequent G ∈ SSS such that
G � G′. Then, G contains either an unhappy R-triangle loop or an unhappy U-triangle
loop. Sequent G′ is obtained from G by substituting label s for all occurrences of label t and
then closing R under transitivity (Definition 6.2.19). By assumption, G it is IS4-structurally
saturated, tree-layered and tree-clustered and all its formulas are IS4-almost happy.

Tree-layered: Since the rewrite does not affect the layer structure of the sequent, we
immediately conclude that SSS′ is tree-layered.

Tree-clustered: The proof that G′ is tree-clustered proceeds in the same way as the proof
of case a) of Lemma 6.2.11, in the case of Option 1 of Definition 6.2.8. There, label x is
substituted for label y and the proof relies on the fact that x ∼ y and xRGy. These same
conditions hold for s and t, and therefore the same proof strategy applies.

IS4-structurally-saturated: To prove that G′ is IS4-structurally saturated, observe that
the rewrite does not introduce new labels, and the only changes in ≤-relational atoms are
that t≤t turns into s≤s and, for any k 6= t, if k≤Gt, then k≤G′s. The (Rtr)-structural
saturation of G′ is explicitly enforced, while the (≤rf)- and (Rrf)-structural saturation are
not affected by the removal of label t. The only non-trivial case for (≤tr)-structural satu-
ration is when for some label w, w≤G′k and k≤G′s because k≤Gt where k 6= s. Then k and
w belong to unaffected layers, hence, w≤Gk. Thus, w≤Gt by (≤tr)-structural saturation
of G, and w≤G′s by construction. The (mon•)-structural saturation follows from s ∼ t.
Finally, for (F1)-, and (F2)-structural saturation of G′, the most non-trivial case is when,
for one of the two, kRG′w and k≤G′s because k≤Gt where k 6= s. Again k and w belong
to unaffected layers, hence, kRGw. By the same structural saturation property of G, there
exists a label z such that w≤Gz and tRGz. If t 6= z, then sRG′z and w≤G′z, so the same
label z fulfils the conditions. If t = z, then w≤G′s, which together with sRG′s means that s
fulfills the conditions. The remaining case is symmetric. This concludes the proof that G′
is IS4-structurally saturated.

Formulas are IS4-almost happy: By assumption, G is IS4-saturated. This means that all
its formulas are IS4-almost happy, that is, all formulas that are not of the shape A⊃B◦ or
�A◦ are IS4-happy. It remains to show that all formulas in G′ are IS4-almost happy. But
almost happiness of labelled propositional formulas of G′ is local and, hence, is not affected
by the new R- and ≤-links. Happiness of �•- and ♦◦-formulas is shown as in the proof of
case a) of Lemma 6.2.11.

This concludes the proof that SSS′ is IS4-saturated.
To prove b), observe that, unlike in the case of 4

  ♦ (Definition 6.2.8),   � never intro-
duces new labels in the sequents on which it operates. Whenever � is applied to a sequent
G, the number of labels occurring in one of the layers of G is reduced by one because s 6= t.
Therefore, for any layer L in G containing n ≥ 1 labels, transformation   � can be applied
at most n− 1 times to the labels occurring in L. Since saturated set SSS is finite, the rewrite
  � is terminating.
Definition 6.2.21 (Full Saturation). Let SSS be a set of sequents. Let SSS′ be a semi-
saturation of SSS, and SSS′′ be a 4-saturation of SSS′, and SSS′′′ be a loop-saturation of SSS′′. Then
SSS′′′ is a full saturation of SSS.
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0. Given a formula F , define G0(F ) to be the sequent r≤r =⇒ r:F and let
SSS′0 := {G0(F )}.

1. For the set SSS′i, calculate a full saturation SSSi.

2. If all sequents in SSSi are axiomatic, then terminate.
The formula F is provable and we can give a proof of =⇒ r:F in labX′≤.

3. Otherwise, pick a non-axiomatic sequent Gi ∈ SSSi.

(a) Pick an allowed formula x:F ◦, compute Gi↑x:F ◦
4 and set SSS′i+1 = (SSS′i \{Gi})∪

{Gi + Gi↑x:F ◦
4 } and go to Step 1.

(b) If we do not have any more allowed formulas, then terminate.
The formula F is not provable, and the sequent Gi defines a countermodel
(see Section 5.3).

Figure 6.4: Proof search algorithm for IS4

Lemma 6.2.22. If a set SSS of sequents is IS4-saturated and SSS′′′ its full saturation, then
SSS′′′ is IS4-saturated.

Proof. By definition of full saturation, we have that SSS′ is a semi-saturation of SSS and by
Lemma 6.2.11, b), SSS′ is IS4-saturated. We have that SSS′′ is a 4-saturation of SSS′. SSS′′′ is
a loop-saturation of the IS4-saturated set of sequents SSS′′ and by Lemma 6.2.20, a), SSS′′′ is
IS4-saturated.

6.2.5 Proof search algorithm
Figure 6.4 shows the search algorithm for IS4. Observe that there are only two different
changes with respect to the algorithm in Figure 5.2: (i) in Step 1 we use the full saturation,
since to ensure termination in IS4 we need two add other loop detections (one for the ♦•-
formulas and the loop saturation for every unhappy triangle loop); (ii) in Step 3.a) the
construction Gi↑x:F ◦

4 of the lifting of the formula F which now it involves clusters. The
allowed formulas we are looking for in the search algorithm of Figure 6.4, are the same
allowed formulas as in the algorithm in Figure 5.2 which are defined in Definition 5.2.13.
This means we are using the same definitions for simulation of layers in this chapter (see
Definitions 5.2.11 and 5.2.12).

Example 6.2.1 (Valid formula in IS4). Let us consider the next valid formula in IS4:
�(♦((c⊃ ♦b)⊃⊥) ∧ ♦b)⊃⊥, and let A = (c⊃ ♦b)⊃⊥. Figure 6.5 represents one sequent
generated by the algorithm. Let Γ• be the set {�(♦A∧♦b)•,♦A∧♦b•,♦A•,♦b•}. To each
label in the Figure (except 1) we associate Γ•, plus the formulas explicitly displayed next to
the node in the Figure. The following ≤-relations are not displayed but are present in the
sequent: 3≤10, 4≤11, 6≤12, 6≤15, 7≤13 and 7≤16.

At layer L1 the search on both R-branches stops in virtue of Option 1 of Definition 5.2.3
(saturation): there, 5 is replaced with 3, and 8 is replaced with 6. This generates two non-
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2⊥◦ 3
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4
b•
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6
b•

7
A•, c⊃ ♦b◦
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9 10
A•, c⊃ ♦b◦

11
b•

12
b•

13
A•, c⊃ ♦b◦

14

A•, c⊃ ♦b◦
c•,♦b◦, b◦

15
b•,♦b◦, b◦

16

A•, c⊃ ♦b◦
♦b◦, b◦

C1

C2

Figure 6.5: Formula �(♦A ∧ ♦b)⊃⊥, with A = (c⊃ ♦b)⊃⊥.

singleton clusters: C1 = {3, 4} and C2 = {6, 7}. Then, since all labels in L1 are IS4-almost
happy, lifting saturation is applied: the rewrite “lifts” one copy of the layer for each ⊃◦-
formula present in the sequent. We only represent one of such layers, L2, generated from
formula 7:c⊃♦b◦. Since 7 belongs to the cluster C2, the cluster is duplicated in L2, following
Constructions 6.2.13 and 6.2.15 and generating clusters {12, 13} and {15, 16}. The label 14
is a suricata label.

Then, after a semi-saturation step, we have that both 15:b• and 15:b◦. Thus we stop the
search along this branch. All the sequents manipulated by the algorithm eventually result in
axiomatic sequents, and the algorithm stops in Step 2. Then, according to Theorem 6.4.19,
the formula at the root is a theorem of IS4. Indeed, its derivation in labIS4≤ can be found
in Figure 5.1 (Left).

6.3 Countermodel construction
The countermodel construction is exactly the same as the one presented in Chapter 5,
Section 5.3. In other words, the proof of the following Theorem 6.3.1 is the same proof of
Theorem 5.3.1:

Theorem 6.3.1. If the algorithm shown in Figure 6.4 terminates in Step 3.b), then the
formula F is not a theorem of IS4.

Subsequently, we provide examples of non-provable formulas in IS4 where we construct
a countermodel for them and the different triangle loops can be clearly observed.

Example 6.3.1 (Non-valid formula, R-triangle loop). Figure 6.6 contains a (partial) di-
agrammatic representation of one sequent generated by the algorithm, when run on the
valid IS4 formula from Example 5.1, that is, �(A ∧B)⊃⊥ with A = �a⊃⊥ and B =
(a⊃⊥)⊃⊥.
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Figure 6.6: Formula �(A ∧ B) ⊃ ⊥ with A = �a⊃⊥ and B = (a ⊃ ⊥) ⊃ ⊥. A loop
saturation step is applied to the leftmost sequent, and the result of the saturation is the
lowest sequent.

Let Γ• = {�(A ∧ B)•, A ∧ B•, A•, B•,�a◦, a⊃⊥◦}. To each label in the figure (except
0), we associate Γ•, plus the formulas explicitly displayed next to the node. To be precise,
the figure displays only one ≤-branch of the sequent: formulas �a◦ and a ⊃ ⊥◦ are in all
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the labels, and every time they are IS4-unhappy they are also lifted, generating a new layer
(which is not displayed). On the top left of Figure 6.6, at layer L6 an unhappy R-triangle
loop is detected: employing the terminology from Definition 6.2.17, we take C1 = {3},
C2 = {13}, s = 14, Cr = {s} and t = 12.

Then, as it is represented on the top right of the Figure 6.6, the label 12 is replaced with
label 14 creating the corresponding links: 14R13 and 9 ≤ 14.

On the lowermost sequent of Figure 6.6, 12 disappeared due to the loop saturation and
the cluster {14} remains unchanged. Proof search along the ≤-branch depicted stops: this
is because layer L6′ can be simulated by layer L4 (see Definitions 5.2.11 and 5.2.12). By
adding relational atoms 15≤8, 14≤6 and 13≤7 to the sequent (Theorem 6.3.1), which are
the dashed red arrows pointing downwards in the lowermost sequent of the Figure, we obtain
(a part of) the countermodel for our formula. To complete the countermodel, we need to
take into account the layers generated from IS4-unhappy �◦ and ⊃◦ formulas present in the
sequent. Specifically, 8:a⊃⊥◦ is IS4-unhappy. This formula gives rise to more ≤-branches
in the sequent (but all branches are finite, and there is only a finite number of them).

Example 6.3.2 (Non-valid formula, U-triangle loop). Let us consider the following formula:
�(♦((a ⊃ b) ⊃ ⊥) ∧ ♦c) ⊃ ⊥, and let D = (a⊃ b)⊃⊥. Figure 6.7 illustrates one sequent
generated by the search algorithm. Let Γ• = {�(♦D ∧ ♦c)•,♦D ∧ ♦c•,♦D•,♦c•}. To each
label we associate the following sets, which have the same colors in the Figure:

1 Γ• ∪ {�(♦D ∧ ♦c)⊃⊥◦}
2 Γ• ∪ {⊥◦}
10 ∼ 19 ∼ 29 Γ•
3 ∼ 8 ∼ 6 ∼

Γ• ∪ {D•, a⊃ b◦}18 ∼ 15 ∼ 12 ∼
28 ∼ 23 ∼ 21
4 ∼ 9 ∼ 7 ∼

Γ• ∪ {c•}17 ∼ 14 ∼ 13 ∼
27 ∼ 24 ∼ 22 ∼
16 ∼ 26 ∼ 25 Γ• ∪ {D•, a•, a⊃ b◦}
5 ∼ 11 ∼ 20 Γ• ∪ {D•, a•, b◦, a⊃ b◦}

As in the previous example, only one ≤-branch is represented. Moreover, we have not
pictured a second R-branch originating from 2 by saturation, to make formula 2:♦c• IS4-
happy. The labels originated by lifting this branch are present in all layers.

As in Example 6.2.1, in layer L1, after saturation, a non-singleton loop is created: {3, 4}.
Then, layer L2 is generated by lifting saturation, which duplicates the cluster. The process is
repeated to generate L3. At L3, an unhappy U-triangle loop is found. Using the terminology
from Definition 6.2.18, we take C1 = {3, 4}, C2 = {12, 13}, s = 18 and t = 15. Thus, we
substitute 15 with 18. Moreover, a second unhappy U-triangle loop is found, by taking s′ =
17 and t′ = 14 (refer to the topmost sequent of Figure 6.7). Layer L3′ is the result of the loop
saturation: it contains a cluster {18, 17, 16}. The algorithm produces a sequent consisting
of layers L0 - L2, L3′ , and continues (this refers to the middle sequent in Figure 6.7).

Then, after a lifting saturation, layer L4 is generated. Here, three unhappy U-triangle
loops are present: take C1 = {3, 4}, C2 = {21, 22}, and then s = 28 and t = 23, s′ = 27
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Figure 6.7: Formula �(♦D ∧ ♦c) ⊃ ⊥, with D = (a ⊃ b) ⊃ ⊥. A loop saturation step is
applied to the topmost sequent, and the result of the saturation is represented in the middle
sequent. Then, a loop saturation is also applied to the middle sequent, and the result is the
lowermost sequent.
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R, xRy, x:�A, y:�A,Γ =⇒ ∆
4•

R, xRy, x:�A,Γ =⇒ ∆
R, xRy,Γ =⇒ ∆, x:♦A, y:♦A

4◦
R, xRy,Γ =⇒ ∆, x:♦A

Figure 6.8: Admissible rules

and t′ = 24 and s′′ = 26 and t′′ = 25. After the loop saturation, we obtain layer L4′ ,
which can be simulated by layer L3′ (this refers to the lowermost sequent in Figure 6.7). By
adding relational atoms 29≤19, 28≤18, 27≤17, 26≤16, 20≤11, 21≤12 and 22≤13 we have a
(partial) countermodel for the formula at the root. To complete the countermodel, we need
to include the layers generated by lifting the layers of the sequent in correspondence to each
remaining IS4-unhappy formula (a⊃ b)◦.

6.4 Proof construction: Unfolding
Let us now turn to the case when the algorithm terminates in Step 2. Then all sequents
in SSSi are axiomatic, and we want to construct a proof of =⇒ r:F in labIS4≤. For this
we are going to simulate the steps of the algorithm by applying the inference rules of
labIS4′≤, which is defined as labIS4′≤ = labIS4≤ ∪ {mon•,weak, 4•, 4◦, cont•, cont◦}, where
the rules mon•,weak, 4•, 4◦, cont•, cont◦ are admissible (see Proposition 4.2.3, Lemma 4.5.2,
Theorem 4.6.1 and Remark 4.2.4 in Chapter 4) and they are also presented in Figures 5.5
and 6.8:

Corollary 6.4.1. The rules mon•,weak, 4•, 4◦, cont• and cont◦ are admissible for labIS4≤.
Therefore a formula A is derivable in labIS4′≤ if and only if it is derivable in labIS4≤.

Our search algorithm was designed as organized proof search in labIS4′≤, and most steps
can indeed be executed by applying the rules of labIS4′≤ as it was the case for the other
logics in Chapter 5, Section 5.4. However, for IS4 is different since we incorporated clusters.
In particular, the difficulties come from the fact that the sequents produced by labIS4′≤ do
not have non-singleton clusters. We call those sequents proper.

Definition 6.4.2 (Vertical sequent). A layered sequent G is vertical if and only if for all
labels u, u′, v, and v′ in G, (a) if u≤Gv, and u≤Gv

′, and vR↔G v
′, then v = v′, and (b) if

u≤Gv, and u′≤v, and uR↔G u
′, then u = u′, i.e., for each label there is at most one future

per layer and at most one past per layer.

Definition 6.4.3 (Proper layer/sequent). A layer L in a tree-clustered sequent G is called
proper if and only if all clusters C ⊆ L are singletons. A tree-clustered sequent G is proper
if and only if it is tree-layered and vertical and all its layers are proper.

The basic idea of constructing our proof is to mimic the algorithm with a derivation
that works “layer by layer”. The key observation is that whenever we create a cluster in
the algorithm, we can unfold it, this means that we repeat this cluster arbitrarily often in
an actual proof with only proper sequents. And this property is preserved when we lift the
cluster to the next layer.

Notation 6.4.4. We use `(G) to denote the set of labels occurring in a sequent G.
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Definition 6.4.5 (Unfolding). For n ∈ N, a proper sequent Ĝ is called an n-unfolding of
a sequent G if and only if there is a binary n-unfolding relation U ⊆ `(G) × `(Ĝ) that
has the following properties, where we assume xUx̂ and yUŷ and write Lu to denote the
layer of u:

(U1) formula invariance: x ∼ x̂;

(U2) R-invariance: if x and y are not in the same cluster in G, then xRGy iff x̂RĜŷ;

(U3) layer invariance:Lx ≤G Ly iff Lx̂ ≤Ĝ Lŷ;

(U4) “no-past” invariance: x has no past in G iff x̂ has no past in Ĝ;

(U5) singleton-cluster invariance: if C = {z} is a singleton cluster in G, then there is a
unique ẑ ∈ `(Ĝ) with zUẑ;

(U6) non-singleton-cluster unfolding: if C is a cluster in G with |C| = k ≥ 2, then for all
i = 1..k and j = 1..n there are zi ∈ `(G) and ẑi,j ∈ `(Ĝ) such that we have ziUẑi,j and
C = {z1, . . . , zk} and additionally ẑ1,1R · · ·Rẑk,1Rẑ1,2R · · ·Rẑk,2R · · ·Rẑ1,nR · · ·Rẑk,n
in Ĝ;

(U7) injectivity: if x̂ = ŷ, then x = y.

Note that every (n + 1)-unfolding is also an n-unfolding and that any proper sequent
is an n-unfolding of itself for any n, via the diagonal relation {(x, x) | x ∈ `(G)}. We will
make use of these facts throughout this section without mentioning them explicitly.

Definition 6.4.6 (Unfoldable). A derivation Dn is called an n-unfolding of a set of
sequents SSS iff each premise of Dn is an n-unfolding of some sequent from SSS. For a
formula F , a set SSS of sequents is F -unfoldable if for every n ∈ N there is a derivation Dn
in the system labIS4′≤ such that the conclusion of Dn is G0(F ) (as defined in Step 0 of the
algorithm) and each premise of Dn is an n-unfolding of some sequent from SSS.

Clearly, SSS0 = {G0(F )} is F -unfoldable. It now has to be shown that all operations
performed in the algorithm, in particular, the rewrite relations   s,

4
  ♦ and   �, preserve

this property. For   s, this is straightforward, as we simply apply the inference rules of
labIS4′≤ to match the semi-saturation steps. For 4

  ♦ and   �, we need to unfold the newly
created clusters. The basic idea is to repeat all proof steps that lead to the first occurrence
of the cluster n-times. In particular for 4

  ♦, we repeat the proof search steps that led
from the first occurrence of the ♦A• to the second one that causes the use of Option 1 in
Definition 6.2.8. Finally, for the loop-saturation, we can, similarly to 4

  ♦, repeat all proof
steps that lead to the triangle loop. Additionally, we need to lift copies of the branch s− t
to the new layer.

Definition 6.4.7 (Soundness). A rewrite relation   on sets of sequents is sound if and
only if for every formula F , whenever SSS   SSS′ and SSS is F -unfoldable, then SSS′ is also
F -unfoldable.

Lemma 6.4.8. The rewrite relation   s is sound.
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Proof. Let SSS  s SSS
′ for sets SSS and SSS′ of sequents and let SSS be F -unfoldable for some

formula F , i.e., for every n, there is a derivation Dn of G0(F ) where each premise of Dn is
an n-unfolding of some sequent from SSS. We need to show that SSS′ is F -unfoldable, i.e., for
every n there is a derivation D′n of G0(F ) where each premise of D′n is an n-unfolding of
some sequent from SSS′.

It is sufficient to consider each way that SSS′ can be obtained from SSS by one step listed in
Definition 5.2.1. Depending on the step, we start with D′N for some N ≥ n so that we have
extra copies of each non-singleton cluster of G and can form n copies of the new clusters
from G′ (or G′′), with the remaining copies discarded from U. The only sequent from SSS
that is not present in SSS′ is G, which is replaced in SSS′ by sequent G′ or by two sequents G′
and G′′, depending on the step. Hence, the only premises of DN that require to be extended
are those that were n-unfoldings of G. All the other premises are N -unfoldings and, hence,
n-unfoldings of respective unchanged sequents from SSS′.

For each premise Ĝ of DN that is an N -unfolding of G, there is an N -unfolding relation
U ⊆ `(G)× `(Ĝ) such that xUx̂. We will break up the steps of Definition 5.2.1 into substeps
that only add one or two formulas to one particular label y with xRGy.

The only unfolding condition from Definition 6.4.5 that prevents U from making Ĝ an
N -unfolding of G′ (and of G′′) is U1, and only with regard to labels ŷ such that yUŷ because
y is the only label of G with formulas added. We proceed depending on which step of
Definition 5.2.1 was applied:

1) Suppose G,x:A ∧ B• and the missing x:A• and x:B• were added to obtain G′. We use
N = n and we extend the premise Ĝ of Dn by the cont• and ∧• rules for each label x̂
such that xUx̂ as follows:

R,Γ, x̂:A ∧B, x̂:A, x̂:B =⇒ ∆
∧•
R,Γ, x̂:A ∧B, x̂:A ∧B =⇒ ∆

cont•
R,Γ, x̂:A ∧B =⇒ ∆

It is easy to see that U makes Ĝ′ a n-unfolding of G′ because Ĝ′ x̂ ∼ G′x whenever xUx̂.

2) The case when G,x:A ∨ B◦ and x:A◦ and x:B◦ were added to obtain G′ is similar, with
∨◦ used instead of ∧•.

3) Suppose G,x:�A• and G′ is obtained by adding y:A• and y:�A• for only one label y with
xRGy. Note that uRĜu for each label u ∈ `(Ĝ) due to Ĝ being proper. The sequence of
rules depends on the position of x relative to y:

(a) For each y that is not in the same cluster with x. We use N = n and there exists
x̂ such that xUx̂. For each ŷ such that yUŷ, we know that x̂RĜŷ by definition of
unfolding. Hence, ito obtain Ĝ′, we extend premise Ĝ of Dn by rules

R, x̂≤x̂, x̂Rŷ,Γ, x̂:�A, ŷ:�A, ŷ:A =⇒ ∆
�•,4•

R, x̂≤x̂, x̂Rŷ,Γ, x̂:�A =⇒ ∆

for each label ŷ such that yUŷ. This ensures that Ĝ′ ŷ ∼ G′y whenever yUŷ.
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(b) For x = y, we use N = n and we have each x̂ such that xUx̂. To obtain G′, we
extend premise Ĝ of Dn by rules

R, x̂Rx̂, x̂≤x̂,Γ, x̂:�A, x̂:A =⇒ ∆
�•

R, x̂Rx̂, x̂≤x̂,Γ, x̂:�A =⇒ ∆

(c) For x 6= y that are in the same cluster C = {x1, . . . , xk} with k > 1, x = xi, and
y = xj for some i, j = 1..k. We use N = n + 1. To construct D′n, we apply the
�• and 4• rules to x̂i1, i.e., the first unfolded copy of x, which we can call x̂1, and
each of x̂j2, . . . , x̂j,n+1, i.e., the 2nd, . . . , (n + 1)th unfolded copies of y, which we
can call ŷ2, . . . , ŷn+1, using the fact that x̂1Rŷ2, . . . , x̂1Rŷn+1 and doing the addition
whenever A• or �A• has been added to y in G.

4) The case when G,x:♦A◦, and G′ is obtained by adding y:A◦ and y:♦A◦ for all labels y
with xRGy where these formulas are not yet present is similar to the previous case, with
♦◦ and 4◦ instead of �• and 4•.

5) We have G,x:A ∨ B• and G,x:A• is added to obtain G′ and G,x:B• is added to obtain
G′′. Here there are two subcases:

(a) If {x} is a singleton, we use N = n. To construct D′n from an n-unfolding Ĝ of G
in Dn, for the unique x̂ such that xUx̂ we will have the form R,Γ, x̂:A ∨ B =⇒ ∆.
Then we apply the cont•-rule and ∨•-rule:

R,Γ, x̂:A ∨B, x̂:A =⇒ ∆ R,Γ, x̂:A ∨B, x̂:B =⇒ ∆
∨•

R,Γ, x̂:A ∨B, x̂:A ∨B =⇒ ∆
cont•

R,Γ, x̂:A ∨B =⇒ ∆

for the unique label x̂, such that the two premises are n-unfoldings of G′ and G′′

respectively.
(b) If {x} is in a non-singleton cluster, we use N = 2n − 1. Then in the (2n − 1)-

unfolding Ĝ of G we have x̂1, . . . , x̂2n−1 such that Ĝ,x̂j:A ∨B• for j = 1, ..., 2n−1.
We can build a derivation using the ∨•-rule obtaining 22n−1 premises of the form:

R,Γ,x̂1:A ∨B, x̂1:C1,...
x̂2n−1:A ∨B, x̂2n−1:C2n−1 =⇒ ∆

where Cj is either A or B, and each of these premises has either at least n times
the formula A or at least n times the formula B in the places of C1, . . . , C2n−1. For
the other n − 1 unfolding copies of x, we simply remove the U relations to them.
This transforms each premise either into an n-unfolding of G′ or into an n-unfolding
of G′′. The derivations can be plugged into D2n−1 and we have thus constructed
the derivation D′n.

6) We have G,x:A ∧ B◦ and G,x:A◦ is added to obtain G′ and G,x:B◦ is added to obtain
G′′. This is similar to the previous case, with ∧◦ used instead of ∨•.
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7) We have G,x:A ⊃ B• and G,x:A◦ is added to obtain G′ and G,x:B• is added to obtain
G′′. This is similar to the previous two cases, with ⊃• used instead of ∨• or ∧◦.

The next step is to show that 4
  ♦ preserves the property of being unfoldable. For this,

we need to repeat parts of the proof. In order to simplify the process of repeating, we use
the notion of embedding.

Definition 6.4.9 (Embedding). Let G and H be proper sequents. An embedding e : G→
H is an injective function e : `(G)→ `(H) obeying the following conditions for all x, y ∈ `(G):

(e1) x ∼ e(x);

(e2) xRGy iff e(x)RHe(y);

(e3) Lx ≤G Ly iff Le(x) ≤H Le(y).

(e4) x has no past in G iff e(x) has no past in H;

Proposition 6.4.10. Embeddings are closed under composition and preserve unfoldings.

Proof. First, we prove that a composition of two embeddings is an embedding. Let G, H,
and J be proper sequents. Let e : G → H and e′ : H → J be embeddings from G to H
and from H to J, respectively. We need to show that e′e is an embedding from G to J,
where (e′e)(x) := e′

(
e(x)

)
for any x ∈ `(G). Since e : `(G)→ `(H) and e′ : `(H)→ `(J) are

injective functions, it is immediate that e′e : `(G)→ `(J) is an injective function. We have
for all x, y ∈ `(G):

(e1) Gx ∼ He(x) ∼ Je′
(
e(x)

)
.

(e2) xRGy iff e(x)RHe(y) iff e′
(
e(x)

)
RJe′

(
e(y)

)
.

(e3) Lx ≤G Ly iff Le(x) ≤H Le(y) iff Le′(e(x)) ≤J Le′(e(y)).

(e4) x has no past in G iff e(x) has no past in H iff e′
(
e(x)

)
has no past in J.

Secondly, let e : Ĝ → Ĥ be an embedding and let U ⊆ `(G) × `(Ĝ) be an n-unfolding
relation witnessing that Ĝ is an n-unfolding of G. We show that binary relation eU ⊆
`(G)× `(Ĥ) witnesses that Ĥ is an n-unfolding of G, where

x(eU)ŷ ⇐⇒ (∃x̂)
(
xUx̂ and ŷ = e(x̂)

)
.

Let x (eU) e(x̂) because xUx̂ and x′ (eU) e(x̂′) because x′Ux̂′.

(U1) Gx ∼ Ĝx̂ by (U1) for U and Ĝx̂ ∼ Ĥe(x̂) by (e1) for e.

(U2) Let x and x′ be from different clusters. Then xRGx
′ iff x̂RĜx̂

′ by (U2) for U and the
latter iff e(x̂)RĤe(x̂′) by (e2) for e.

(U3) Lx ≤G Lx′ iff Lx̂ ≤Ĝ Lx̂′ by (U3) for U, and the latter iff Le(x̂) ≤Ĥ Le(x̂′) by (e3) for e.
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(U4) x has no past in G iff x̂ has no past in Ĝ by (U4) for U, and the latter iff e(x̂) has no
past in Ĥ by (e4) for e.

(U5) If x forms a singleton cluster in G, then x̂ is the only label in Ĝ such that xUx̂ by
(U5) for U. Hence, e(x̂) is the only label in Ĥ such that x (eU) e(x̂).

(U6) If C is a non-singleton cluster in G with |C| = k ≥ 2, then by (U6) for U there are
xi ∈ `(G) and x̂i,j ∈ `(Ĝ) for i ∈ {1, . . . , k} and j ∈ {1, . . . , n} i = 1..k and j = 1..n
such that C = {x1, . . . , xk}, and xiUx̂i,j for i = 1..k, j = 1..n, and in Ĝ

x̂1,1R · · ·Rx̂k,1Rx̂1,2R · · ·Rx̂k,2R · · ·Rx̂1,nR · · ·Rx̂k,n.

In this case, xi (eU) e(x̂i,j) for i = 1..k, j = 1..n and in Ĥ by (e2) for e

e(x̂1,1)R · · ·R e(x̂k,1)R e(x̂1,2)R · · ·R e(x̂k,2)R · · ·R e(x̂1,n)R · · ·R e(x̂k,n).

Thus, e(x̂i,j) ∈ `(Ĥ) for i = 1..k, j = 1..n provide the requisite n-unfoldings for the
labels of C in Ĥ.

(U7) If e(x̂) = e(x̂′), then x̂ = x̂′ by the injectivity of e, and x = x′ by (U7) for U.

Lemma 6.4.11 (Embedding Lemma). Assume we have a derivation D with a proper end-
sequent G and premises G1, . . . ,Gn. If there is an embedding e : G → H into a proper
sequent H, then there is a derivation D′ with conclusion H and premises H1, . . . ,Hn such
that there are embeddings ei : Gi → Hi for i = 1..n.

Proof. Let us first consider the case where D consists of only one inference rule instance r.
Let Gi be a premise of r. If r does not add new labels, then `(Gi) = `(G), and we have
`(Hi) = `(H) and ei = e. Otherwise, if r adds new labels, then r is one of ♦•, ⊃◦, or �◦,
there is only one premise, and the new labels only occur in G′1.

• r is ♦•: The rule applies to x:♦A• in G, creating a new label y, and we can apply the
same rule to e(x):♦A• in H, creating a new label y′. We can define e1(y) = y′, and for
all other u ∈ `(G1) we define e1(u) = e(u).

• r is ⊃◦ or �◦: The rule applies to x:F ◦ in G, creating a new layer L′ whose labels all
occur only in G′1 = G↑x:F

4 . We can apply the same rule to e(x):F ◦ in H, creating a
new layer L′′ and adding H′1 = H↑e(x):F

4 to H. In general, L′′ can contain more labels
than L′. But e defines an embedding of Lx into Le(x), which canonically defines a
mapping e′ : L′ → L′′ as follows: for y′ ∈ L′, we define e′(y′) = y′′ ∈ L′′ iff either there
is a v ∈ Lx with v≤G1y

′ and e(v)≤H1y
′′, or y′ has no past in G1 and y′′ has no past

in H1. We can then define our embedding e1 : G1 → H1 as e1(u) = e′(u) if u ∈ L′ and
e1(u) = e(u) otherwise.

• r is F1 or F2: The rule creates a new label y in G. We can apply the same rule in H
creating a new label y′. We define e1(y) = y′, and for all other u ∈ `(G1) we define
e1(u) = e(u).

We can now prove the lemma for arbitrary D with a straightforward induction on the height
of D.
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Lemma 6.4.12. Whenever for a semi-saturated sequent G, the algorithm in step 1) ap-
plies Option 1) of Definition 6.2.8 by substituting label x for label y in G and applying the
transitive closure of R to obtain G′ such that G 4 ♦ G′, label y forms a singleton cluster
in G.

Proof. Since the application of Option 1 means that y has no past in G, it follows that the
algorithm created y as a singleton cluster (unless y = r, in which case it was present from
the very beginning, but was a singleton cluster at first). It is not hard to check that every
time the algorithm creates a new non-singleton cluster, either z have a past for all label z
in the cluster or all labelled formulas z:♦B• become IS4-happy for all label z in the cluster.
Since y:♦A• has to be IS4-unhappy and have no past to apply Option 1, label y is not part
of a non-trivial cluster.

Definition 6.4.13. For a label x of a sequent G we define

−→x := {z | xRGz}.

Lemma 6.4.14. If SSS is F -unfoldable and G ∈ SSS and G
4 ♦ G′ and SSS′ = SSS \ {G}∪ {G′},

then SSS′ is F -unfoldable.

Proof. Assume we have a set of sequents SSS which is F -unfoldable and a sequent G ∈ SSS

and G
4 ♦ G′ and SSS′ = SSS \ {G} ∪ {G′}. For every N ≥ n, we have an N -unfolding DN of

SSS, and we need to construct an n-unfolding D′n of SSS′. According to Definition 6.2.8 there
are two different cases:

1) In Option 1, we have that G,y:♦A• is IS4-unhappy, where y forms a singleton cluster
by Lemma 6.4.12, and we have some label x with x ∼ y, xRGy and x 6= y, such that
all u ∈ −→x have no past. Then G′ is obtained by substituting x for y and closing under
transitivity and reflexivity. Consider any premise Ĝ of DN that is an N -unfolding of G
via U1. By U5, there is a unique ŷ such that yUŷ. The choice of N and the extension
of DN depend on the size of the cluster that x belongs to in G:

a) If {x} is a singleton cluster, we set N = n. There is a unique x̂ such that xUx̂.
We also have x̂Rŷ and since x̂ has no past by assumption, neither has x̂. It follows
from tree-layeredness of Ĝ that all labels in −→x̂ , including ŷ, have no past. Hence,
all labels in −→x̂ , with the possible exception of x̂ itself, are created by rule ♦•. Let
K1 be the premise of the first (i.e., lowermost) instance of the rule ♦• on the branch
of Dn leading to Ĝ that creates a non-trivial child of x̂, let us call this child u1. Let
x̂:♦C• be the principal formula of this instance of ♦•. Then K1,u1:C• is the only
labelled formula in u1. Since K1,x̂:♦C•, also Ĝ,x̂:♦C• higher up the branch, hence,
G,x:♦C• by U1. Therefore, G,y:♦C• because x ∼ y and Ĝ,ŷ:♦C•. We now apply
the rule ♦• to Ĝ with ŷ:♦C• as its principal formula. We also apply Rrf and Rtr
exhaustively we closed under reflexivity and transitivity of R. Let the premise of
this rule be K2 and u2 be the new label created by this rule. Consider the following
function e1 : `(K1)→ `(K2):

e1 := {(x̂, ŷ), (u1, u2)} ∪ {(w,w) | w ∈ `(K1) \ {x̂, u1}}.
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It is easy to see that e1 is an embedding. The derivation subtree rooted at K1 can be
applied to K2 via this embedding resulting in an other derivation by Lemma 6.4.11
with all the premises of the extension being n-unfoldings of the same sequents from SSS
as the respective premises of Dn by Proposition 6.4.10. In particular, for premise Ĝ
of the subtree, embedding e1 will be extended to an embedding into some premise Ĝ2
of the extended derivation with e1(ŷ) = ŷ2 such that Ĝ2

ŷ2 ∼ Ĝ ŷ (note that K2 ŷ ∼ Ĝ ŷ).
By Proposition 6.4.10, we can construct an n-unfolding U2 of G into Ĝ2 such that
wU1ŵ iff wU2ŵ for all labels ŵ ∈ `(K1) \ {x̂, u1} = `(Ĝ) \ {x̂}, including for all
non-trivial parents of x̂. Furthermore, xU2ŷ and, whenever xRGv and vU2v̂ we have
ŷRĜ2

v̂. In particular, yU2ŷ2 for some ŷ2 such that ŷRĜ2
ŷ2 and Ĝ2,ŷ2:♦C•.

We can apply ♦• to obtain K3 with a new label u3, take an embedding

e2 := {(ŷ, ŷ2), (u2, u3)} ∪ {(w,w) | w ∈ `(K2) \ {ŷ, u2}}.

from K2 into K3 and repeat the process.
After n− 1 such repetitions, we will get a premise Ĝn+1 and an n-unfolding Un+1 of
G into Ĝn+1 such that wU1ŵ iff wUn+1ŵ for all labels ŵ ∈ `(Ĝ) \ {x̂}, including for
all non-trivial parents of x̂. Furthermore, xUn+1ŷn and, whenever xRGv and vUn+1v̂
we have ŷnRĜn+1

v̂. In particular, yUn+1ŷn+1 for some yn+1 such that ŷnRĜn+1
ŷn+1.

Once again, all other premises of this derivation expanded n times are n-unfoldings
of sequents from SSS. It remains to turn Ĝn+1 into an n-unfolding of G′. We do this
by modifying Un+1 for the newly created cluster Cx = {u 6= y | xRGuRGy} in G′ and
keeping unfoldings of all other labels of G as in Un+1. For each label u ∈ Cx and
each j = 1..n there is at least one label ûj such that uUjûj and ŷj−1RĜn+1

ûjRĜn+1
ŷj.

These labels û1, . . . , ûn for each u ∈ Cx can, thus, be taken as the requisite n-unfolding
copies of Cx. Indeed, whenever wRGx and wUn+1ŵ for some w 6= x, as discussed,
we have ŵRĜn+1

x̂RĜn+1
ûj. On the other hand, whenever xRGv and vUn+1v̂ for some

v /∈ Cx∪{y}, as discussed, we have ûjRĜn+1
ŷnRĜn+1

v̂. Note that children of x that are
not in Cx in G′ must be unfolded into labels that are children of all ûj, which is why we
needed to create n+ 1 successful unfoldings rather than n: the first n-unfoldings are
used to create n unfolded copies of Cx whereas the last (n+1)th provides unfoldings
for children of x that are not in its cluster.

b) If {x} belongs to a non-singleton cluster Cx, we use a similar expansion to the case of
singleton clusters just discussed. Hence, we will only outline the differences. Firstly,
instead of Dn we start with DN for N = n + 2. The fact that N ≥ n guarantees
n-unfoldings for all premises other than G and for all clusters of G other than the
newly created C ′x that contains Cx and all labels in between Cx and y, excluding y.
Among the N ≥ 2 unfolding copies of x in Ĝ, use the penultimate, (N−1)th unfolding
copy as x̂ and the unique unfolding of y as ŷ. For these x̂ and ŷ perform the expansion
as in the case for a singleton cluster. The only difference to that case is how the final
unfolding Un+1 is to be modified to account for the newly created cluster C ′x. For
all labels outside of Cx, the construction remains the same. For each label u ∈ Cx,
its last, Nth unfolding copy from U1 is among labels repeated in the segment (note
that the same need not be true about the (N−1)th unfolding copy, which is why we
had to start one unfolding copy earlier). Hence, this Nth copy is now repeated n+1
times, and the first n of these are taken as new unfoldings of u.
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2) In Option 2, we have G,y:♦A• IS4-unhappy, and G′ is obtained from G by adding yRz,
z≤z, and z:A• for some fresh z, and closing R under reflexivity and transitivity. Note
that z is a singleton cluster. We provide an abbreviated description how to expand Ĝ
that is an N -unfolding of G into an n-unfolding of G′. The procedure depends on the
size of the cluster that y belongs to in G:

a) If {y} is a singleton cluster, it has a unique unfolding ŷ, such that yUŷ. We use
N = n and obtain D′n from Dn by applying to ŷ:♦A• the cont•-rule, then creating a
fresh label ẑ by the application of ♦•-rule, applying reflexivity and transitivity rules
as needed, and adding zUẑ to the unfolding:

R, ŷRŷ, ẑRẑ, ŷRẑ, ẑ≤ẑ,Γ, ŷ:♦A, ẑ:A =⇒ ∆
Rrf+≤rf

R, ŷRẑ,Γ, ŷ:♦A, ẑ:A =⇒ ∆
♦• ẑ fresh
R,Γ, ŷ:♦A, ŷ:♦A =⇒ ∆

cont•
R,Γ, ŷ:♦A =⇒ ∆

b) If {y} is in a non-singleton cluster Cy, we use N = n+ 1 so that there must be n+ 1
unfolded copies ŷ1, . . . , ŷn+1 in Ĝ. We apply ♦•-rule to ŷn+1:♦A• creating label ẑ (is
made the unique unfolding of z), applying Rrf and Rtr as needed, adding zUẑ to the
unfolding and removing all U relations to the (n+ 1)th copy of Cy in Ĝ. The removal
of the extra unfoldings in the last item is necessary to make sure that ẑ is R-accessible
from each of the unfoldings of Cy. This is also the reason why cont• is not necessary
to apply to ŷn+1 to preserve the ♦• as ŷn+1 need not remain equivalent to y.

Lemma 6.4.15. The rewrite relation 4
  ♦ is sound.

Proof. This follows immediately from Lemmas 6.4.14 and 6.4.8.
Lemma 6.4.16. If x:A is an allowed formula in G and G ∈ SSS and SSS is F -unfoldable,
then SSS′ = SSS \ {G} ∪ {G↑x:A

4 } is F -unfoldable.
Proof. Let G ∈ SSS and G↑x:A

4 be the sequent obtained from Construction 6.2.15 for x:A an
allowed formula. By hypothesis (in order to preserve (U5) and (U6)), we have a derivation
D2n+1 of G0(F ) where each premise is an (2n + 1)-unfolding of a sequent in SSS. Let H be
an (2n + 1)-unfolding of G. We construct a derivation with conclusion H, where we apply
the following steps for the IS4-unhappy G,x:A◦:

1. If x is a singleton-cluster in G, then apply the rule corresponding to A◦ (⊃◦ or �◦)
in the corresponding label in H. Otherwise, if x is in a cluster C with |C| > 1, then
apply that rule in the (n + 1)th repetition of the cluster C in H. In each case we get
a unique label x̂ with x ≤ x̂.

2. Apply F1 and F2 to create a copy L̂ of the whole layer L of x in H.

3. Exhaustively apply mon•, Rrf, Rtr, ≤rf, ≤tr, 4•, 4◦.

4. For every lifted cluster that does not contain x the additional n + 1 copies in the
unfolding are discarded. But when x is in a cluster, then L̂ contains 2 copies of that
cluster (see Figure 6.2), whose n repetitions are given to us by the copies 1 · · ·n and
(n + 1) · · · 2(n + 1) of our lifting. In the nth copy, only the lifting of x is part of the
unfolding relation.
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Then the resulting sequent H′ is an n-unfolding of G↑x:A
4 , and the derivation with premise

H′ and conclusion H can be plugged into D2n+1 wherever H occurs as a leaf. This yields the
desired n-unfolding of SSS′.

In the following Lemma, we prove that the rewrite relation  � is sound on IS4-saturated
set of sequents:

Lemma 6.4.17. If SSS   � Ŝ̂ŜS and SSS is IS4-saturated and F -unfoldable, then Ŝ̂ŜS is F -
unfoldable.

Proof. Assume we have G � G′ and G ∈ SSS saturated and SSS is F -unfoldable, and SSS′ =
SSS \ {G} ∪ {G′}. We want to construct an n-unfolding for SSS′. G′ is obtained from G
by closing an unhappy triangle loop. Let L1, L2, L

′, C1, C2, p1, s, t as in Definitions 6.2.17
and 6.2.18. We also have p2 ∈ C2 and p2 ∼ p1, that we will use in the proof.

If s and t are in the same cluster, then every n-unfolding of SSS is also an n-unfolding
of SSS′. Now, assume that s and t are not in the same cluster.

We start from an (n + 2)-unfolding Dn+2 of SSS, and let Ĝ be a premise of Dn+2 that is
an unfolding of G. Let L̂1, L̂2, L̂

′ be the unfoldings of L1, L2, L
′, respectively.

We now let T be the subtree of Dn+2 rooted at the sequent where L̂′ first occurs. Let
Ĝ0 be that sequent, let r be the instance of the inference rule (an �◦ or ⊃◦) that introduced
L̂′, let H be the conclusion of that rule instance, and let p̂1 be the label in H containing the
formula to which that rule was applied. Then, we have p1Up̂1. Let p̂2 be a label in Ĝ with
p2Up̂2. If p2 is a singleton, then p̂2 is uniquely defined. Otherwise, we pick for p̂2 the kth
repetition of the cluster C2, where k is the repetion of C1 in which p̂1 occurred. We can
apply the same rule r to p̂2 to obtain the layer L̂′′. Let the new sequent be Ĝ1.

We also let p̂′1 be the future of p̂1 in L̂′, and let p̂′2 be the future of p̂2 in L̂′′. This allows us
to define an embedding e : Ĝ0 → Ĝ1 acting like the identity on all layers, except L̂′ which is
embedded into L̂′′ mapping each label to its unique future, except for −→p̂1 which is embedded
into −→p̂2 . We are now going to apply the Embedding Lemma 6.4.11 to repeat the proof tree
T . More precisely, let H1, . . . ,Hm be the leaves of T and let H1, . . . ,Hl for some l ≤ m be
the leaves of T that are N -unfoldings of G (and Ĝ is among them). Each of Hi has a layer
L̂2,i that is an N -unfolding of L2, and that has the labels ŝi, t̂i, and p̂2,i, corresponding to
s, t, and p2 in the unfolding (if s is in a cluster, we pick for ŝi the first repetition; if t is in
a cluster, we pick for t̂i the last repetition).

We proceed now similarly to the proof of Lemma 6.4.14 by plugging in a copy of the
subtree T at each leaf H1, . . . ,Hl. Note that whenever a new layer is created and the previous
one is lifted using the ⊃◦ or �◦-rules, also the gap between the old and the new triangle is
lifted (see Figure 6.9). We call L̂3,i the new created layer (which is a copy of L̂2,i with an
additional part L̂∗3,i that is a copy of labels in L̂2,i but that have no counterpart in L̂1. If a
rule instance in T is adding a formula to one of the labels u with s Rhi uRhi t then we need
do the same to the corresponding label in L̂∗3,i. Formally, this can be achieved via a second
embedding for each i, applying again Lemma 6.4.11. As in the previous Lemma 6.4.14, we
now repeat this construction n times, so that we obtain our desired n-unfolding of SSS′.

Lemma 6.4.18 (Unfolding Lemma). All sets SSSi of sequents generated by the algorithm
from Figure 6.4 are F -unfoldable.
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Figure 6.9: Left: Unfolding of an unhappy R-triangle loop. Right: Unfolding of an unhappy
U-triangle loop

Proof. The set SSS′0 = {G0(F )} is trivially F -unfoldable. By the previous lemmas, this
property is preserved by all the steps that are used to construct the sequenceSSS0,SSS1, · · ·

Theorem 6.4.19. If the algorithm shown in Figure 6.4 terminates in Step 2, then the
formula F is a theorem of IS4.

Proof. The algorithm produces a sequence SSS0,SSS1, . . . of sets of sequents which are F -
unfoldable by Lemma 6.4.18. Hence, also the set SSSk that caused the algorithm to terminate
because it is axiomatic is F -unfoldable. In particular, we have a derivation with conclusion
G0(F ) where all premises are 1-unfoldings of elements of SSSk, which are all axiomatic.
Therefore we can use instances of the id and ⊥• rules to give a complete proof of G0(F )
in labIS4′≤ and append it with rules Rrf and ≤rf at the bottom to get the proof of =⇒ r:F .
By Corollary 6.4.1 and 4.6.3, we have that F is a theorem of IS4.

6.5 Termination
We have already established that every step in our algorithm terminates: semi-saturation
was proved in Chapter 5 in Lemma 5.2.2, b), 4-saturation in Lemma 6.2.12 and loop satu-
ration in Lemma 6.2.20,b). It remains to show that we cannot run through the main loop
forever as we have done in Chapter 5, Section 5.5 showing that the number of distinct pos-
sible layers is finite and we will eventually terminate either in Step 2 (finding a proof) or in
Step 3.b) (finding a countermodel).

We also have seen by Lemma 5.5.1 that the size of a label occuring in a sequent of some
SSSi is at most n, and that there are 2n many equivalence classes of labels with respect to ∼.
We now need to check that the size of clusters are also finite. The size |C| of a cluster C
is the number of labels in C and we get the following result:

Lemma 6.5.1. The size of a cluster occurring in a sequent of some SSSi is at most 2n. And
there are 22n − 1 many equivalence classes of (non-empty) clusters with respect to ∼.

Proof. We shall show that, by construction, all labels in a cluster are different with respect
to ∼. There are two ways of introducing non-singleton clusters:
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Figure 6.10: A branch and its pasts

(i) via IS4-unhappy ♦•-formulas (Option 1 of Definition 6.2.8): if there are equivalent
labels in such a cluster, the cluster would have been created at an earlier step of the
algorithm.

(ii) via unhappy R-triangle or U-triangle loops (Definitions 6.2.17, 6.2.18 and 6.2.19): if at
creation the chain from s to t contains duplicates, then they are collapsed immediately
afterwards, as they are also valid choices of s and t, fulfilling the same unhappy triangle
conditions.

Hence, when  � terminates, in all new clusters all labels are different with respect to ∼.
This limits the size of clusters to 2n, and we have at most 22n−1 different equivalence classes
of non-empty clusters which can occur in SSSi.

The algorithm visits IS4-saturated sequents. A layer L in such a sequent is a tree of
clusters. Let M be a branch in L, i.e., a sequence C1, C2, . . . , Cl of clusters from the root to
a leaf. The length |M | of M is the sum |C1|+ |C2|+ · · ·+ |Cl|.

Lemma 6.5.2. The length of a branch in a layer in a sequent in a set SSSi is bounded, and
the bound is determined by F .

Proof. A branch M ′ is a past of a branch M in a sequent G, if for all x′ ∈ M ′ there is a
x ∈ M with x′≤Gx. In this case we write M ′ ≤G M . For a branch M we write M̌ for the
labels inM that have a past, and M̄ for the ones that do not have a past. ThenM = M̌∪M̄
and M̌ ∩ M̄ = ∅. We now consider a branch M in a layer L such that whenever L ≤ L′ for
some layer L′, then L = L′; and we consider all its pasts, i.e., branches M ′ with M ′ ≤G M .
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Let M0,M1, . . . ,Mk be all the pasts of M for which M̄i 6= ∅, and such that Mi ≤G Mj

whenever 0 ≤ i ≤ j ≤ k (see Figure 6.10). We have
∣∣∣M̄i

∣∣∣ ≤ 2n + 1 for all i because
every label in M̄i is created by Option 2 of Definition 6.2.8, in correspondence to an IS4-
unhappy ♦•-formula (except for the first label in M̄i, which could be created by layer lifting
in correspondence to an unhappy �◦ formula (Construction 6.2.15), or could be the initial
label created in Step 0 of the algorithm). But in any case, after at most 2n such steps, we
encounter a label which is equivalent to a previous one (see also the proof of Lemma 6.2.12).

Now let M i
j = {y ∈ Mi | ∃x ∈ M̄j. x≤Gy} be the set of futures of M̄j in Mi for

some j < i (see Figure 6.10). Because of the duplication of clusters in the layer lifting
(Construction 6.2.13), we can have

∣∣∣M i
j

∣∣∣ > ∣∣∣M̄j

∣∣∣. We can restrict the size of M i
j because

there is only a limited amount of times a cluster can be duplicated before a U-triangle loops
is encountered. Then, the length of the branch from s and t before and after the repetition
of the cluster is again bound by 2 · (2n + 1), because otherwise the U-triangle loop would be
unhappy. (We have to take 2n + 1 twice because the suricata label is not allowed to occur
between s and t). Since the size of a cluster is bound by 2n, and the number of clusters in
M̄j is bound by 2n, the size of M i

j is bound by 2 · 2 · 2n · 2n · 2n = 23n+2.
Let us now put a bound to k. Very naively, we see an R-triangle loop after kmax = 2n ·22n

(as we need to repeat the cluster C1, see Definition 6.2.17 and Lemma 6.5.1). Let Mj be
the branch that sees a repetition of Mi. Define M̄i/j (for j < i) to be the set of labels in
Mi that do not have a past in Mj (see Figure 6.10). Then the R-triangle loop is unhappy
if
∣∣∣M̄i/j

∣∣∣ ≥ 2 · 2n = 2n+1 (same argument as above). Since 23n+2 > 2n+1, we have that
|M | ≤ kmax ·

∣∣∣M i
j

∣∣∣ = 2n · 22n · 23n+2 = 22n+4n+2.
Observe that as soon we observe an unhappy triangle loop, the size of the newly created

cluster is |C| ≤ 2n.

Theorem 6.5.3. The proof search algorithm given in Figure 6.4 is terminating for IS4.

Proof. As we have done in Theorem 5.5.3, but using Lemma 6.5.2.

6.6 Conclusion
In this chapter we have solved a problem which has been opened for almost 30 years [21]:
we present a search algorithm (based on the one from Chapter 5) to prove decidability of
IS4. Our solution has two key ingredients:

First, the use of the fully labelled sequent system with relational atoms for both binary
relations enabled us to give a proof system that has only invertible rules and also gives a
closer correspondence between sequents and models.

Second, although the identification of labels during proof search to realize loops is a
priori unsound, however, under the right circumstances, we can preserve soundness if we
organize the proof search in a certain systematic way.

We conjecture that the same method can also be applied to IK4, which is IS4 without
the t-axiom and which is the other logic in the intuitionistic version of the S5-cube for which
decidability is an open problem. In fact, the overall argument is the same, but in many
definitions and proof arguments, there would be subtle differences due to the absence of
reflexivity. For this reason, a treatement of the logic IK4 is part of our future work.
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Chapter 7

Subatomic logic for modalities

In this chapter we present a work in progress in the formalism of deep inference using the
methodology of subatomic proof theory for the linear fragment of classical modal logic K.
The subatomic methodology treats atoms like binary connectives, and thus allows a more
uniform cut-elimination procedure in deep inference. In this chapter we extend this idea to
modal logics. This means that also the unary modalities are treated as binary connectives.
We present a subatomic proof system to capture the linear fragment of classical modal logic
and we prove cut-elimination via splitting for this fragment.

In Section 7.1 we start with an introduction to the formalism of deep inference and the
properties that deep inference systems provide. In Section 7.2 we present the preliminaries
of subatomic logic, making emphasize in classical propositional logic [1]. In Section 7.3
we introduce subatomic formulae for the linear fragment of classical modal logic and a
subatomic proof system capturing the modalities. In the same section we proceed showing
cut-elimination via splitting and, as a result of this proof, we prove the admissibility of the
up-rules which are the cuts. For a more detailed presentation of subatomic logic we refer to
the PhD thesis of Aler Tubella [1].

7.1 From deep inference to subatomic logic
We have been studying in the previous chapters formalisms for modal logics in which the
proofs progress by manipulating the outermost connectives of the formula trees. We are
now interested in the study of the formalism of deep inference [25, 9] which abandons the
importance of the main connective. In the last twenty years, the development of this new
paradigm has increased. It allows the rewriting of formulas deep inside an arbitrary context
and not just along their main connective as it is done, for example, in sequent calculus. The
first such formalism is the calculus of structures introduced by Guglielmi [26, 25]. It derives
its name from the fact that there is no distinction between sequents and formulas, but
there is a unique syntactic structure which can be seen as an equivalence class of formulas
modulo associativity and commutativity and unit equations that are sometimes imposed
on sequents (in the previous chapters the comma is associative and concatenation with the
empty sequent does not change a sequent).

Figure 7.1 shows the deep inference system SKKS for the modal logic K (whose syntax
and semantics were defined in Chapter 2). It is a variation of the system presented in [28].
The rule k↓ resembles the axiom of distributivity k and k↑ is its dual (if we remove the rules
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>
ai↓
a ∨ a

a ∧ a
ai↑
⊥

A ∧ (B ∨ C)
s
(A ∧B) ∨ C

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

⊥
aw↓

a

a ∨ a
ac↓

a

a
ac↑
a ∧ a

a
aw↑
>

⊥
�w↓
�A

�(A ∨B)
k↓
�A ∨ ♦B

♦A ∧�B
k↑
♦(A ∧B)

♦A
♦w↑
>

�A ∨�B
�↓
�(A ∨B)

♦(A ∨B)
♦↓
♦A ∨ ♦B

♦A ∨ ♦B
♦↑
♦(A ∨B)

�A ∧�B
�↑
�(A ∧B)

Figure 7.1: System SKKS

for the modalities we obtain the system SKS for classical propositional logic introduced by
Brünnler and Tiu [9]). The rules in SKKS are applied modulo the following equations:

A ∧ (B ∧ C) = (A ∧B) ∧ C A ∧B = B ∧ A A ∧ > = A �> = > > ∨> = >
A ∨ (B ∨ C) = (A ∨B) ∨ C A ∨B = B ∨ A A ∨ ⊥ = A ♦⊥ = ⊥ ⊥ ∧⊥ = ⊥

That system (and all the deep inference systems) has another property: all rules are
local. This is one important feature of the formalism of deep inference, in the sense that
determining whether an application of the rule is correct we do not need to inspect arbitrarily
big formulae. This is achieved by turning all structural rules such as contraction and cut
rules into their atomic versions. This provides a surprising regularity in the inference rule
schemes: it can be observed that in most deep inference systems all inference rules besides
the atomic ones can be expressed as

(AαB)β(Cα′D)
(AβC)α(Bβ′D)

,

where A,B,C,D are formulae and α, β, α′, β′ are connectives.
Atomicity is only possible in systems where we can apply rules deep. In the deep inference

system SKKS, the identity axiom can be reduced to an atomic form as it is possible in sequent
calculus. However, by duality, we can do the same for the cut rule, which is not possible
in the sequent calculus. Furthermore, we can also transform contraction and weakening in
an atomic form, which is also impossible in the sequent calculus and we obtain the rules
ac↓, ac↑, aw↓, aw↑ from Figure 7.1.

Lemma 7.1.1. The general weakening
⊥

w↓
A

and co-weakeaning
A

w↑
>

are admissible in SKKS.
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Proof. We proceed by induction on the size of the principal formula of the rule:

• If A = B ∧ C, then we can do the following replacement:

⊥
w↓
B ∧ C

 

⊥
=
⊥ ∧⊥

w↓
⊥ ∧ C

w↓
B ∧ C

B ∧ C
w↑
>

 

B ∧ C
w↑
B ∧ >

=
B

w↑
>

• If A = B ∨ C, then the proof is similar as the previous one.

• If A = �B, then it follows from the inference rule �w↓ and from the equation �> = >.

• If A = ♦B, then it follows from the equation ♦⊥ = ⊥ and from the inference rule ♦w↑.

• If A = a it follows from the inference rules aw↓ and aw↑.

Furthermore, in deep inference systems every rule has its dual. We indicate the dual of
a rule ρ↓ by ρ↑. The concept of dual rule very intuitively corresponds to the idea of the
contrapositive of an implication. Since the premise and conclusion of a deep inference rule
are single formulas, dual rules can be very easily defined through the negation of formulas.
We can define the negation (or dual) of a formula inductively, using De Morgan equivalences.
Two rules are dual to each other if one can be obtained from the other by exchanging premise
and conclusion and negating them: for example the identity rule ai↓ and the cut rule ai↑
of Figure 7.1. Some rules are said to be self-dual, i.e., the rule and its dual are identical.
For example, the medial and the switch rules are self-dual (rules m and s in Figure 7.1
respectively).

Deep inference gives more flexibility in the design of inference rules. However, cut-
elimination for deep inference systems is more involved than for traditional sequent style
systems. In particular, for modal logics, no cut-elimination proof that is internal to deep
inference has been given so far. There are many different cut-elimination techniques in the
deep inference literature (but none of them for modal logics), exploiting different aspects
of the proof systems they work on. A particular methodology does however stand out for
its generality and its the one we are interested to study in this thesis: cut-elimination via
splitting [26]. Even though this proof has to be redone for every proof system anew, there
is a certain repeating pattern. In order to formalize this pattern and to obtain a general
cut-elimination method that works for many proof systems at the same time, the method
of subatomic proof theory [1] has been developed. The basic idea is to treat atoms as binary
connectives, leading to a uniform shape of all inference rules (including the atomic rules).
This enormously reduces the number of cases in the case analysis for cut-elimination.

A proof of cut-elimination via splitting usually consists of two parts. Only the second
one is the actual splitting and needs a “linear” system, i.e., one without weakening and
contraction. To remove weakening and contraction, the first part of the cut-elimination
performs a decomposition [26] or cycle elimination [2].
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7.2 Subatomic logic for classical propositional logic
In this section we present some preliminaries for subatomic logic, making emphasis on
classical propositional logic. This work can be found in Aler Tubella’s PhD thesis [1].

Subatomic formulae are built by freely composing constants by connectives and atoms.
For example, these are two subatomic formulae for classical propositional logic:

A ≡ ((⊥a>) ∨ >) ∧ (>b⊥) B ≡ ((>b⊥) ∧ >) ∨ ⊥

The main idea is to interpret ⊥a> as a positive occurrence of the atom a, and >a⊥ as
a negative occurrence of the same atom, denoted by a. Intuitively, we can view subatomic
formulae as a superposition of truth values. For example, ⊥a> is the superposition of
the two possible assignments for the atom a, and >a⊥ is the superposition of the possible
assignments for a: if we read the value on the left of the atom we assign ⊥ to a and > to
a, and if we read the one on the right we assign > to a and ⊥ to a. In order to understand
the interpretation we are using and to translate the subatomic formula into the standard
formula in the given logic, we define an interpretation map function.

Definition 7.2.1 (Subatomic formulae). Let U be a denumerable set of constants whose
elements are denoted by u, v, w, .... Let R be a denumerable partially ordered set of con-
nectives whose elements are denoted by α, β, γ, .... The set F of subatomic formulae (or SA
formulae) contains terms defined by the grammar

F ::= U | F R F

A (formula) context K{}...{} is a formula where some subformulae are substituted by
holes; K{A1}...{An} denotes a formula where the n holes in K{}...{} have been filled with
A1, ..., An.

The expression A ≡ B means that the formulae A and B are syntactically equal. We
omit parentheses when there is no ambiguity. In K{AαB} we say that the subformulae of
A and B are in the scope of α.

Example 7.2.1 (Subatomic formulae for classical logic). The set Fcl of subatomic formulae
for classical logic is given by the set of constants U = {⊥,>} and the set of relations R =
{∧,∨}∪A where A is a denumerable set of atoms, denoted by a, b, ... with A∩{∧,∨} = ∅.

Definition 7.2.2 (Interpretation map function). Let G be the set of formulae of a logic L,
and let F be the set of subatomic formulae with constants U and connectivesR. A surjective
partial function I : F → G is called an interpretation map. The domain of definition of I is
the set of interpretable formulae and is denoted by F i.

For A ∈ F , we say that R is the interpretation of A and A is a representation of R if
R ≡ I(A).

The extension of the notion of interpretability to contexts arises from the following
definition:

Definition 7.2.3 (Interpretation of contexts). We say that a context S{} is interpretable
if S{A} is interpretable for every interpretable A.
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An interpretation for the set of subatomic formulae for classical logic defined in Exam-
ple 7.2.1 is given by considering the assignments:

I(>) = > I(⊥) = ⊥
∀a ∈ A. I(⊥a⊥) = ⊥ ∀a ∈ A. I(>a>) = >
∀a ∈ A. I(⊥a>) = a ∀a ∈ A. I(>a⊥) = a

I(A ∨B) = I(A) ∨ I(B) I(A ∧B) = I(A) ∧ I(B)

where A,B ∈ F i, and extending it in such a way that AaB is interpretable if and only
if A = u,B = v with u, v ∈ {⊥,>} and then I(AaB) ≡ I(u a v).

For example, we can now interpret the subatomic formula A ≡ ((⊥a>) ∨ >) ∧ (>b⊥)
as I(A) = (a ∨ >) ∧ b. Note that the set F i of interpretable formulae is composed by all
formulae equal to a formula where an atom does not occur in the scope of another atom.
Every other formula is not interpretable, such as B ≡ ((>b⊥) ∧ >)a⊥.

Definition 7.2.4 (Negation and Equational theory). We define negation as a pair of invo-
lutive maps ·̄ : R → R and ·̄ : U → U . We define the negation map on formulae as the map
inductively defined by setting AαB := AαB.

We define an equational theory = on F as the minimal equivalence relation closed under
negation (if A = B, then A = B) and under context (if A = B, then K{A} = K{B} for
any context K{}) defined by a set of axioms of the form:

1. (Associativity of α) ∀A,B,C ∈ F . (A α B) α C = A α (B α C)

2. (Commutativity of α) ∀A,B ∈ F . A α B = B α A

3. (Unit of α) ∀A ∈ F . A α uα = A = uα α A, for a fixed uα ∈ U

If there is an axiom of the form (1) for α, we say that α is associative. If there is an axiom
of the form (2) for α, we say that α is commutative. If there is an axiom of the form (3) for
α we say that α is unitary, and we call uα the unit of α.

Example 7.2.2 (Equational theory for classical logic). For the set of subatomic formulae
for classical logic Fcl defined in example 7.2.1, the negation is defined as follows:

∧ := ∨;
a := a for all a ∈ A;

⊥ := >

We define the equational theory = on Fcl as the minimal equivalence relation closed under
negation defined by:

For all A,B,C ∈ F :

(A ∧B) ∧ C = A ∧ (B ∧ C) (A ∨B) ∨ C = A ∨ (B ∨ C)
A ∧B = B ∧ A A ∨B = B ∨ A
A ∧ > = A A ∨ ⊥ = A
⊥ ∧⊥ = ⊥ > ∨> = >

∀a ∈ A.⊥a⊥ = ⊥ ∀a ∈ A.>a> = >
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(A ∨B) a (C ∨D)
sai↓

(A a C) ∨ (B a D)
(A a B) ∧ (C a D)

sai↑
(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)
(A ∨B) ∧ (C ∧D)

∨↑
(A ∧ C) ∨ (B ∧D)

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) a (B ∨D)

(A a B) ∨ (C a D)
sac↓

(A ∨ C) a (B ∨D)
(A ∧B) a (C ∧D)

sac↑
(A a C) ∧ (B a D)

Figure 7.2: System SAKS

We can now introduce the subatomic proof system for classical propositional logic
SAKS [1] presented in Figure 7.2. As it was mentioned in the previous section, in deep
inference systems all the inference rules besides the atomic ones can be expressed with the
same shape. However, the useful properties of subatomic formulae become apparent when
we extend the principle to atomic inference rules. Let us consider, for example, the usual
contraction and identity rule for an atom (rules ac↓ and ai↓ in Figure 7.1). We could obtain
these rules subatomically by reading ⊥a> as a and >a⊥ as a, as follows:

a ∨ a
ac↓

a
→

(⊥a>) ∨ (⊥a>)
sac↓

(⊥ ∨⊥)a(> ∨>)
>

ai↓
a ∨ a

→
(⊥ ∨>)a(⊥ ∨>)

sai↓
(⊥a>) ∨ (>a⊥)

where sac↓ and sai↓ are subatomic inference rules in system SAKS.

7.3 Subatomic modal logic
As it was mentioned before, the subatomic methodology treats atoms as binary connectives.
The question now arises: how can we capture the modalities in this new methodology given
that they are unary connectives?. To address this and to capture � and ♦, we introduce a
new operator . Then, we define the subatomic formulae for a specific fragment of classical
modal logic, which is its linear fragment. We refer to it as LinK and we define its subatomic
formulae as follows:

Definition 7.3.1 (Subatomic formulae for LinK). The set Flml of subatomic formulae for
classical modal logic is given by the set of constants U = {⊥,>} and the set of relations R =
{ ,∧,∨}∪A where A is a countable set of atoms, denoted by a, b, ... with A∩{ ,∧,∨} = ∅.

In order to interpret this subatomic formulae we need to define the interpretation map
as we have seen for classical propositional logic in the previous section.
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Definition 7.3.2 (Interpretation map for LinK). Let G be the set of formulae of classical
modal logic, and let F be the set of subatomic formulae with constants U and connectives
R. We define an interpretation function I : F → G for the set of subatomic formulae
for LinK as follows:

I(>) = > I(⊥) = ⊥
∀a ∈ A. I(⊥a⊥) = ⊥ ∀a ∈ A. I(>a>) = >
∀a ∈ A. I(⊥a>) = a ∀a ∈ A. I(>a⊥) = a

I(A ∨B) = I(A) ∨ I(B) I(A ∧B) = I(A) ∧ I(B)
I(> A) = �I(A) I(⊥ A) = ♦I(A)

where A,B are interpretable formulae, and extending it in such a way that AaB is inter-
pretable if and only if A = u,B = v with u, v ∈ {⊥,>} and then I(AaB) ≡ I(u a v). The
formula A B is only intepretable if and only if A = u with u ∈ {>,⊥}.

Remark 7.3.3. Since we are working on the linear fragment of classical modal logic, observe
that the formulae that are not interpretable are not only those equal to a formula where an
atom occurs in the scope of another atom, but also those where a formula made up of units
not equal to > or ⊥ occurs in the scope of an atom or in the scope of , such as (>∨>)a⊥
or (> ∨>) A.

Remark 7.3.4. Observe that the interpretation defined for LinK is the interpretation de-
fined for classical propositional logic by adding the two conditions for the new operator .

The interpretation of ⊥a> and >a⊥ are as in the classical case. The first one is a
positive occurrence of the atom a, and the second one, a negative occurrence a of the same
atom. An example of a subatomic formula for LinK is

A ≡ ((⊥ (⊥a>)) ∨ (>b⊥)) ∧ (> (⊥a>))

and it is interpreted as I(A) = (♦a ∨ b) ∧�a which is a standard classical modal formula.

7.3.1 The subatomic system
In Figure 7.3, we present a subatomic proof system to capture the linear fragment of classical
modal logic which it is called SAKKS. In particular, it is an extension of the system for
classical logic SAKS [1] of Figure 7.2 with the inference rules to capture � and ♦, and
without the contraction rules since we are working with the linear part.

The rules in SAKKS are applied modulo associativity and commutativity of ∧ and ∨,
and the following equations:1

A ∧ > = A ∀a ∈ A.⊥a⊥ = ⊥ > > = >
A ∨ ⊥ = A ∀a ∈ A.>a> = > ⊥ ⊥ = ⊥

In the same way as it was done for the other rules in the subatomic system for classical
propositional logic, we can now obtain the subatomic version of the rules for the modalities
k↓ and k↑ from the deep inference system for K of Figure 7.1 as follows:

1Observe that we lack both > ∨> = > and ⊥ ∧⊥ = ⊥.
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(A ∨B) a (C ∨D)
sai↓

(A a C) ∨ (B a D)
(A a B) ∧ (C a D)

sai↑
(A ∧ C) a (B ∧D)

(A ∨B) ∧ (C ∨D)
∧↓

(A ∧ C) ∨ (B ∨D)
(A ∨B) ∧ (C ∧D)

∧↑
(A ∧ C) ∨ (B ∧D)

(A ∧B) ∨ (C ∧D)
m

(A ∨ C) ∧ (B ∨D)

(A ∨ C) (B ∨D)
sak↓

(A B) ∨ (C D)
(A C) ∧ (B D)

sak↑
(A ∧B) (C ∧D)

(A B) ∨ (C D)
m ↓

(A ∨ C) (B ∨D)
(A ∧B) (C ∧D)

m ↑
(A C) ∧ (B D)

Figure 7.3: System SAKKS

�(A ∨B)
k↓
�A ∨ ♦B

 
(> ∨⊥) (A ∨B)

sak↓
(> A) ∨ (⊥ B)

♦A ∧�B
k↑
♦(A ∧B)

 
(⊥ A) ∧ (> B)

sak↑
(⊥ ∧>) (A ∧B)

We can now prove that the subatomic system SAKKS is a conservative extension for the
linear fragment of the deep inference system SKKS. In other words, we have the following
statement:

Theorem 7.3.5. For every interpretable SAKKS derivation with premise P and conclu-
sion C, there is a derivation in the linear fragment of SKKS with premise I(P ) and conclu-
sion I(C).

Proof. We have to prove that every interpretable assignment in the inference rules of the
subatomic system SAKKS has a corresponding derivation in the linear fragment of the deep
inference system SKKS. We follow the interpretation defined in Definition 7.3.2 and Re-
mark 7.3.3.

For the rule sai↓ we have the following interpretable assignments:

(⊥ ∨⊥) a (⊥ ∨⊥)
sai↓

(⊥a⊥) ∨ (⊥a⊥)
I→
⊥
⊥∨⊥

(⊥ ∨>) a (> ∨⊥)
sai↓

(⊥a>) ∨ (>a⊥)
I→
>

a ∨ a
(> ∨⊥) a (⊥ ∨>)

sai↓
(>a⊥) ∨ (⊥a>)

I→
>

a ∨ a

(⊥ ∨>) a (⊥ ∨>)
sai↓

(⊥a⊥) ∨ (>a>)
I→
>
⊥∨>

(> ∨⊥) a (> ∨⊥)
sai↓

(>a>) ∨ (⊥a⊥)
I→
>
>∨⊥

(⊥ ∨>) a (⊥ ∨⊥)
sai↓

(⊥a⊥) ∨ (>a⊥)
I→

a

⊥ ∨ a
(⊥ ∨⊥) a (⊥ ∨>)

sai↓
(⊥a⊥) ∨ (⊥a>)

I→
a

⊥ ∨ a
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(> ∨⊥) a (⊥ ∨⊥)
sai↓

(>a⊥) ∨ (⊥a⊥)
I→

a

a ∨ ⊥
(⊥ ∨⊥) a (> ∨⊥)

sai↓
(⊥a>) ∨ (⊥a⊥)

I→
a

a ∨ ⊥

It is straightforward that there is a SKKS derivation with the same premise and conclusion
as the interpretation. The rule sai↑ is dual.

For rule sak↓ we have the following interpretable assignments following Definition 7.3.2
and Remark 7.3.3:

(> ∨⊥) (A ∨B)
sak↓

(> A) ∨ (⊥ B)
I→
�(A ∨B)
�A ∨ ♦B

which corresponds to the rule k↓ in SKKS

(⊥ ∨>) (A ∨B)
sak↓

(⊥ A) ∨ (> B)
I→
�(A ∨B)
♦A ∨�B

which corresponds to the rule k↓ in SKKS

(⊥ ∨⊥) (A ∨B)
sak↓

(⊥ A) ∨ (⊥ B)
I→
♦(A ∨B)
♦A ∨ ♦B

which corresponds to the rule ♦ ↓ in SKKS.

The rule sak↑ is dual and we get the interpretable assignments as follows:

(> A) ∧ (⊥ B)
sak↑

(> ∧⊥) (A ∧B)
I→
�A ∧ ♦B
♦(A ∧B)

which corresponds to the rule k↑ in SKKS

(⊥ A) ∧ (> B)
sak↑

(⊥ ∧>) (A ∧B)
I→
♦A ∧�B
♦(A ∧B)

which corresponds to the rule k↑ in SKKS

(> A) ∧ (> B)
sak↑

(> ∧>) (A ∧B)
I→
�A ∧�B
�(A ∧B)

which corresponds to the rule � ↑ in SKKS.

For the rest of the rules in SAKKS the proof is similar. Furthermore, we can check every
interpretable instance of a rule inside the scope of an atom which is necessarily an instance
where the premise and conclusion are interpreted as constants. The only such instances

corresponds to a rule
u

u
with u ∈ {⊥,>}, and therefore every interpretable instance of a

rule inside the scope of an atom trivially corresponds to a derivation in SKKS.

7.3.2 Splitting
The standard syntactic method for proving cut-elimination in the sequent calculus is to
permute the cut rule upwards in the proof, while decomposing the cut formula along its
main connective, and so inductively reduce the cut rank. However, in systems formulated
using deep inference this method cannot be applied, as derivations can be constructed in a
more flexible way than in the sequent calculus. For this reason, the splitting technique has
been developed in the literature of deep inference.

The cut-elimination proof via splitting [1] is with respect to splittable systems. These are
the systems where the scope of connectives only increases reading from bottom to top. We
then prove cut-elimination via splitting for the splittable system obtained from SAKKS. We
called this system SAKKSsp which is composed by the rules sai↓, ∧↓ and sak↓ of Figure 7.3.
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Definition 7.3.6. We define =∨ as the equivalence relation on formulae defined by the
axioms for the associativity, commutativity and unit of ∨.

Definition 7.3.7 (Tame). We say that an interpretable derivation φ in a subatomic proof
system SA is tame if the only instances of rules in the scope of an atom are equality rules.

Definition 7.3.8 (Length of a proof). Given a proof φ in SAKKSsp, we define the length of
φ as the number of instances of inference rules in φ different from the equality rules for the
associativity, commutativity and unit of ∨. We denote it by |φ|∨.

Theorem 7.3.9 (Splitting). For all formulae A,B,C and α ∈ {∧, , a}, if there is a proof
φ of (AαB) ∨ C in SAKKSsp, then there exist Q1, Q2 and derivations

Q1 α Q2

ψ

C

, φ1

A ∨ Q1
and φ2

B ∨ Q2

such that |φ1|∨+|φ2|∨ ≤ |φ|∨. Furthermore, if φ is tame, then φ1, φ2 and ψ are tame.

Proof. 1. Given a proof φ of (A B) ∨ C in SAKKSsp, we proceed by induction on |φ|∨.

(a) If |φ|∨ =∨ 0, then (A B) ∨ C =∨ >. Then, either:
• A =∨ B =∨ >, C =∨ ⊥ and we take

ψ ≡
⊥ ⊥

=
⊥

=∨
C

, φ1 ≡

>
=∨

>
=∨

A
∨ ⊥

, φ2 ≡

>
=∨

>
=∨

B
∨ ⊥

with |φ1|∨ = |φ2|∨ = 0; or,
• A =∨ B =∨ C =∨ > and we take

ψ ≡
> >

=
>

=∨
C

, φ1 ≡

>
=∨

>
=∨

A
∨ >

, φ2 ≡

>
=∨

>
=∨

B
∨ >

(b) If |φ|∨ = n > 0, inspection of the rules provides us the following possible cases:

• φ =∨
φ′

(A′ B) ∨ C
r

(A B) ∨ C

Since |φ′|∨ =∨ n − 1, we apply induction hypothesis to φ′. There exist Q1
and Q2 and

Q1 Q2

ψ

C

, φ1 ≡
φ′1

A′
r
A
∨Q1

, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ = |φ′1|∨ + |φ2|∨ + 1 = |φ|∨.
If φ is tame, then ψ, φ′1 and φ2 are tame. Furthermore, since φ is tame, r is
tame and therefore φ1 is tame.
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• φ =∨
φ′

(A B′) ∨ C
r

(A B) ∨ C

We apply induction hypothesis to φ′. There exist Q1 and Q2 and
Q1 Q2

ψ

C

, φ1

A ∨Q1
, φ2 ≡

φ′2

B′
r
B
∨Q2

such that |φ1|∨ + |φ2|∨ = |φ1|∨ + |φ′2|∨ + 1 ≤ |φ′|∨ + 1 = |φ|∨.
If φ is tame, then ψ, φ1 and φ′2 are tame. Furthermore, since φ is tame, r is
tame and therefore φ2 is tame.

• φ =∨
φ′

(A B) ∨ C ′
r

(A B) ∨ C

We apply induction hypothesis to φ′. There exist Q1, Q2 and

ψ ≡

Q1 Q2

ψ′

C ′
r
C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′|∨ < |φ|∨.
If φ is tame, then ψ′, φ1 and φ2 are tame. Furthermore, since φ is tame, r is
tame and therefore ψ is tame.

• φ =∨
φ′

(((A B) ∨ C1) ∧ (C2 ∨ C3)) ∨ C4
∧↓

(A B) ∨ C2 ∨ (C1 ∧ C3) ∨ C4

with C = C2 ∨ (C1 ∧ C3) ∨ C4.

We apply induction hypothesis to φ′ since |φ′|∨ < |φ|∨. There exist Q′1, Q′2
and

Q′1 ∨ Q′2
ψ′

C4

, φ′1

(A B) ∨ C1 ∨Q′1
, φ′2

C2 ∨ C3 ∨Q′2

such that |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
We apply induction hypothesis to φ′1. There exist Q1, Q2 and
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ψ ≡

Q1 Q2

ψ′′

C1 ∨Q′1
∧ φ′2

C3 ∨ C2 ∨Q′2
∧↓

(C1 ∧ C3) ∨ C2 ∨
Q′1 ∨Q′2
ψ′

C4
=∨

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ′1 and φ′2 are tame. Therefore, ψ′′, φ1 and φ2 are tame
and thus ψ is tame.

• φ =∨
φ′

((A ∨ C1) (B ∨ C2)) ∨ C3
sak↓

(A B) ∨ (C1 C2) ∨ C3

with C = (C1 C2) ∨ C3

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 Q′2

ψ′

C3

, φ′1

A ∨ C1 ∨Q′1
, φ′2

(A B) ∨ C2 ∨Q′2

such that |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ|∨.
We take Q1 = C1 ∨Q′1 and Q2 = C2 ∨Q′2, then we have

ψ ≡

Q1 Q2

(C1 ∨Q′1) (C2 ∨Q′2)
sak↓

(C1 C2) ∨
Q′1 Q′2
ψ′

C3
=∨

C

, φ1

A ∨Q1
, φ2

B ∨Q2

If φ is tame, then ψ is tame and φ1 and φ2 are equalities.

• φ =∨
φ′

(> ∧ ((A B) ∨ C1)) ∨ C2
=∨

(A B) ∨ C1 ∨ C2

with C = C1 ∨ C2

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C2

, φ′1

1 ∨Q′1
, φ′2

(A B) ∨ C1 ∨Q′2

Then we apply induction hypothesis to φ′2. There exist Q1, Q2 and
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ψ ≡

φ′1

(1 ∨Q′1)
∧

Q1 Q2

ψ′′

(C1 ∨Q′2)
∧↓

(1 ∧ C1) ∨
Q′1 ∨Q′2
ψ′

C2

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′2|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ′1, φ′2 and ψ′′ are tame. Therefore, ψ is tame. Further-
more, by induction hypothesis, φ1 and φ2 are equalities.

• φ =∨
φ′

(((A B) ∨ C1) ∧ >) ∨ C2
=∨

(A B) ∨ C1 ∨ C2

with C = C1 ∨ C2

We apply induction hypothesis to φ′ as |φ′|∨ ≤ |φ′|∨. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C2

, φ′1

(A B) ∨ C1 ∨Q′1
, φ′2

1 ∨Q′2

with |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
Then we apply induction hypothesis to φ′1. We have Q1, Q2 and

ψ ≡

Q1 Q2

ψ′′

(C1 ∨Q′1)
∧ φ′2

(1 ∨Q′2)
∧↓

(C1 ∧ 1) ∨
Q′1 ∨Q′2
ψ′

C2

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ′1, φ′2 and ψ′′ are tame. Therefore, ψ is tame. Further-
more, by induction hypothesis, φ1 and φ2 are equalities.

• φ =∨
φ′

> ∨ C
=∨

(> >) ∨ C
with A =∨ B =∨ >

We take:

φ1 ≡

>
=∨

>
=∨

A
∨ ⊥

, φ2 ≡

>
=∨

>
=∨

B
∨ ⊥

and
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ψ ≡

⊥ ⊥
=
⊥

∨⊥ ∧ φ′

(> ∨ C)
∧↓

⊥ ∧>
=
⊥

∨⊥ ∨ C

with |φ1|∨ = |φ2|∨ = 0.
If φ is tame, ψ is tame. Furthermore, φ1 and φ2 are equalities.

• φ =∨
φ′

⊥ ∨ C
=∨

(⊥ ⊥) ∨ C
with A =∨ B =∨ ⊥

We take:

φ1 ≡

>
=∨

⊥
=∨

A
∨ >

, φ2 ≡

>
=∨

⊥
=∨

B
∨ >

and

ψ ≡

> >
=
>

∨⊥ ∧ φ′

(> ∨ C)
∧↓

> ∧⊥
=
⊥

∨⊥ ∨ C

with |φ1|∨ = |φ2|∨ = 0.
If φ is tame, ψ is tame. Furthermore, φ1 and φ2 are equalities.

2. Given a proof φ of (A ∧B) ∨ C in SAKKSsp. We proceed by induction on |φ|∨.

(a) If |φ|∨ =∨ 0, then (A ∧B) ∨ C =∨ >. Then, either:
• A =∨ B =∨ >, C =∨ ⊥ and we take

ψ ≡
⊥ ∨⊥

=
⊥

=∨
C

, φ1 ≡

>
=∨

>
=∨

A
∨ ⊥

, φ2 ≡

>
=∨

>
=∨

B
∨ ⊥

• A =∨ ⊥, B =∨ C =∨ > and we take Q1 = > and Q2 = ⊥:

ψ ≡
> ∨⊥

=
>

=∨
C

, φ1 ≡

>
=∨

⊥
=∨

A
∨ >

, φ2 ≡

>
=∨

>
=∨

B
∨ ⊥

• B =∨ ⊥, A =∨ C =∨ > and we take Q1 = ⊥ and Q2 = >:

ψ ≡
⊥ ∨>

=
>

=∨
C

, φ1 ≡

>
=∨

>
=∨

A
∨ ⊥

, φ2 ≡

>
=∨

⊥
=∨

B
∨ >

(b) If |φ|∨ = n > 0, inspection of the rules provides us the following possible cases:
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• φ =∨
φ′

(A′ ∧B) ∨ C
r

(A ∧B) ∨ C

Since |φ′|∨ =∨ n − 1, we apply induction hypothesis to φ′. There exist Q1
and Q2 and

Q1 ∨ Q2

ψ

C

, φ1 ≡
φ′1

A′
r
A
∨Q1

, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ = |φ′1|∨ + |φ2|∨ + 1 = |φ|∨.
If φ is tame, then ψ, φ′1 and φ2 are tame. Furthermore, since φ is tame, then
r is tame, and therefore φ1 is tame.

• φ =∨
φ′

(A ∧B′) ∨ C
r

(A ∧B) ∨ C

Since |φ′|∨ =∨ n − 1, we apply induction hypothesis to φ′. There exist Q1
and Q2 and

Q1 ∨ Q2

ψ

C

, φ1

A ∨Q1
, φ2 ≡

φ′2

B′
r
B
∨Q2

such that |φ1|∨ + |φ2|∨ = |φ1|∨ + |φ′2|∨ + 1 ≤ |φ′|∨ + 1 = |φ|∨.
If φ is tame, then ψ, φ1 and φ′2 are tame. Furthermore, since φ is tame, then
r is tame, and therefore φ2 is tame.

• φ =∨
φ′

(A ∧B) ∨ C ′
r

(A ∧B) ∨ C

We apply induction hypothesis to φ′. There exist Q1, Q2 and

ψ ≡

Q1 ∨ Q2

ψ′

C ′
r
C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ1 and φ2 are tame. Furthermore, since φ is tame, then
r is tame. Therefore ψ is tame.
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• φ =∨
φ′

((A ∨ C1) ∧ (B ∨ C2)) ∨ C3
∧↓

(A ∧B) ∨ C1 ∨ C2 ∨ C3

with C = C1 ∨ C2 ∨ C3

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C3

, φ1

A ∨ C1 ∨Q′1
, φ2

B ∨ C2 ∨Q′2

such that |φ1|∨ + |φ2|∨ ≤ |φ′|∨ ≤ |φ|∨.
We take Q1 = C1 ∨Q′1 and Q2 = C2 ∨Q′2 and we have

ψ ≡

Q1 ∨Q2

C1 ∨Q′1 ∨ C2 ∨Q′2=∨

C1 ∨ C2 ∨
Q′1 ∨Q′2
ψ′

C3
=∨

C

If φ is tame, then φ′ is tame and by induction hypothesis φ1, φ2 and ψ′ are
tame.
Since φ and ψ′ are tame and C1, Q

′
1, C2, Q

′
2 are interpretable, then ψ is tame.

• φ =∨
φ′

(((A ∧B) ∨ C1) ∧ (C2 ∨ C3)) ∨ C4
∧↓

(A ∧B) ∨ C2 ∨ (C1 ∧ C3) ∨ C4

with C = C2 ∨ (C1 ∧ C3) ∨ C4.

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C4

, φ′1

(A ∧B) ∨ C1 ∨Q′1
, φ′2

C2 ∨ C3 ∨Q′2

such that |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
We apply induction hypothesis to φ′1. There exist Q1, Q2 and

ψ ≡

Q1 ∨Q2

ψ′′

C1 ∨Q′1
∧ φ′2

C3 ∨ C2 ∨Q′2
∧↓

(C1 ∧ C3) ∨ C2 ∨
Q′1 ∨Q′2
ψ′

C4
=∨

C

, φ1

A ∨Q1
, φ2

B ∨Q2
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such that |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ|∨.
If φ is tame, then φ′1 is tame and φ1, φ2 and ψ′′ are tame. ψ′ and φ′2 are
tame as well, and since the interpretation is preservable, C1, C2, C3 are
interpretable. Therefore ψ is tame.

• φ =∨
φ′

(A1 ∧ (A2 ∧B)) ∨ C
=∨

((A1 ∧ A2) ∧B) ∨ C

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C

, φ′1

A1 ∨Q′1
, φ′2

(A2 ∧B) ∨Q′2

with |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
We apply induction hypothesis to φ′2, then there exist Q′′1, Q2 and

Q′′1 ∨ Q2

ψ′′

Q′2

, φ′′1

A2 ∨Q′′1
, φ′2

B ∨Q2

such that |φ′′1|∨ + |φ2|∨ ≤ |φ′2|∨.
We take Q1 ≡ Q′1 ∨Q′′1 and

ψ ≡

Q1 ∨Q2
=∨

Q′1 ∨
Q′′1 ∨Q2

ψ′′

Q′2

ψ′

C

, φ1 ≡
φ′1

(A1 ∨Q′1)
∧ φ′′1

(A2 ∨Q′′1)
∧↓

(A1 ∧ A2) ∨Q′1 ∨Q′′1

and we have |φ1|∨ + |φ2|∨ ≡ |φ′1|∨ + |φ′′1|∨ + 1 + |φ2|∨ ≤ |φ′1|∨ + |φ′2|∨ + 1 ≤
|φ′|∨ + 1 = |φ|∨.
If φ is tame, then φ′1, φ′′1, ψ′ and ψ′′ are tame and so Q2, Q′1, Q′′1 are inter-
pretable. Therefore φ1, φ2 and ψ are tame.

• φ =∨
φ′

((A ∧B1) ∧B2) ∨ C
=∨

(A ∧ (B1 ∧B2)) ∨ C
with B = B1 ∧B2

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C

, φ′1

(A ∧B1) ∨Q′1
, φ′2

B2 ∨Q′2

with |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
Then we apply induction hypothesis to φ′1. There exist Q1, Q

′′
2 and we have
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Q1 ∨ Q′′2
ψ′′

Q′1

, φ1

A ∨Q1
, φ′′2

B1 ∨Q′′2

We take Q2 ≡ Q′′2 ∨Q′2 and we get

ψ ≡

Q1 ∨Q2
=∨

Q1 ∨Q′′2
ψ′′

Q′1

∨Q′2

ψ′

C

, φ2 ≡
φ′′2

(B1 ∨Q′′2)
∧ φ′2

(B2 ∨Q′2)
∧↓

(B1 ∧B2) ∨Q′′2 ∨Q′2

and we have |φ1|∨ + |φ2|∨ ≡ |φ1|∨ + |φ′2|∨ + |φ′′2|∨ + 1 ≤ |φ′1|∨ + |φ′2|∨ + 1 ≤
|φ′|∨ + 1 = |φ|∨.
If φ is tame, then φ′2, φ′′2, ψ′ and ψ′′ are tame and so Q1, Q′2, Q′′2 are inter-
pretable. Therefore φ1, φ2 and ψ are tame.

• φ =∨
φ′

(A ∧B) ∨ C
=∨

(B ∧ A) ∨ C

Since |φ′|∨ =∨ n − 1, we apply induction hypothesis to φ′. There exist Q1
and Q2 and

Q2 ∨ Q1

ψ′

C

, φ1

A ∨Q2
, φ2

B ∨Q1

Then we have ψ ≡

Q1 ∨Q2
=∨
Q2 ∨Q1

ψ′

C

.

If φ is tame, then φ′ is tame and by induction hypothesis φ1, φ2 and ψ′ are
tame. Then Q1 and Q2 are interpretable and hence ψ is tame as well.

• φ =∨
φ′

(((A ∧B) ∨ C1) ∧ >) ∨ C2
=∨

(A ∧B) ∨ C1 ∨ C2

with C = C1 ∨ C2

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C2

, φ′1

(A ∧B) ∨ C1 ∨Q′1
, φ′2

1 ∨Q′2
Then we apply induction hypothesis to φ′1. We have Q1, Q2 and
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ψ ≡

Q1 ∨Q2

ψ′′

(C1 ∨Q′1)
∧ φ′2

(1 ∨Q′2)
∧↓

(C1 ∧ 1) ∨
Q′1 ∨Q′2
ψ′

C2

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then so are ψ′, φ′1 and φ′2. Therefore, ψ′′, φ1 and φ2 are tame,
and so is ψ.

• φ =∨
φ′

(> ∧ ((A ∧B) ∨ C1)) ∨ C2
=∨

(A ∧B) ∨ C1 ∨ C2

with C = C1 ∨ C2

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C2

, φ′1

1 ∨Q′1
, φ′2

(A ∧B) ∨ C1 ∨Q′2

Then we apply induction hypothesis to φ′2. There exist Q1, Q2 and

ψ ≡

φ′1

(1 ∨Q′1)
∧
Q1 ∨Q2

ψ′′

(C1 ∨Q′2)
∧↓

(1 ∧ C1) ∨
Q′1 ∨Q′2
ψ′

C2

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′2|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then so are ψ′, φ′1 and φ′2. Therefore, ψ′′, φ1 and φ2 are tame,
and so is ψ.

• φ =∨
φ′

A ∨ C
=∨

(A ∧ 1) ∨ C
with B =∨ 1

We apply induction hypothesis in φ′ and we have the following derivations:

ψ ≡
C ∨ ⊥

=∨
C

, φ1 ≡
φ′1

A ∨ C
, φ2 ≡

1
=∨

1
=∨

B
∨ ⊥

such that |φ1|∨ + |φ2|∨ ≤ |φ|∨.
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If φ is tame, then C is interpretable and φ′ is tame and thus ψ φ1 and φ2 are
tame.

• φ =∨
φ′

B ∨ C
=∨

(1 ∧B) ∨ C
with A =∨ 1

Then we take:

ψ ≡
⊥ ∨ C

=∨
C

, φ1 ≡

1
=∨

1
=∨

A
∨ ⊥

, φ2 ≡
φ′2

B ∨ C

and we have |φ1|∨ + |φ2|∨ ≤ |φ|∨.
If φ is tame, then C is interpretable and φ′ is tame and thus ψ φ1 and φ2 are
tame.

3. Given a proof φ of (AaB) ∨ C in SAKKSsp. We proceed by induction on |φ|∨.

(a) If |φ|∨ =∨ 0, then either:
i) A =∨ B =∨ >, C =∨ ⊥ and we take

ψ ≡
⊥a⊥

=
⊥

=∨
C

, φ1 ≡

>
=∨

>
=∨

A
∨ ⊥

, φ2 ≡

>
=∨

>
=∨

B
∨ ⊥

with |φ1|∨ = |φ2|∨ = 0.
ii) A =∨ B =∨ ⊥, C =∨ > and we take

ψ ≡
>a>

=
>

=∨
C

, φ1 ≡

>
=∨

⊥
=∨

A
∨ >

, φ2 ≡

>
=∨

⊥
=∨

B
∨ >

with |φ1|∨ = |φ2|∨ = 0.
(b) If |φ|∨ = n > 0, inspection of the rules provides us the following possible cases:

• φ =∨
φ′

(A′aB) ∨ C
r

(AaB) ∨ C

Since |φ′|∨ =∨ n − 1, we apply induction hypothesis to φ′. There exist Q1,
Q2 and

Q1 a Q2

ψ

C

, φ1 ≡
φ′1

A′
r
A
∨Q1

, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ = |φ′1|∨ + |φ2|∨ + 1 = |φ|∨.
If φ is tame, ψ is tame and φ′1 and φ2 are equalities. r is also an equality and
therefore φ1 is an equality.
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• φ =∨
φ′

(AaB′) ∨ C
r

(AaB) ∨ C

We apply induction hypothesis to φ′. There exist Q1, Q2 and
Q1 a Q2

ψ

C

, φ1

A ∨Q1
, φ2 ≡

φ′2

B′
r
B
∨Q2

such that |φ1|∨ + |φ2|∨ = |φ1|∨ + |φ′2|∨ + 1 ≤ |φ′|∨ + 1 = |φ|∨.
If φ is tame, ψ is tame and φ1 and φ′2 are equalities. r is also an equality and
therefore φ2 is an equality.

• φ =∨
φ′

(AaB) ∨ C ′
r

(AaB) ∨ C

We apply induction hypothesis to φ′. There exist Q1, Q2 and
Q1 a Q2

ψ

C ′
r
C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′|∨ < |φ|∨.
If φ is tame so are ψ′ and r, and therefor is ψ. φ1 and φ2 are equalities.

• φ =∨
φ′

((A ∨ C1)a(B ∨ C2)) ∨ C3
sai↓

(AaB) ∨ (C1aC2) ∨ C3

with C =∨ (C1aC2) ∨ C3

We apply induction hypothesis to φ′ as |φ′|∨ < |φ|∨. There are derivations
Q′1 and Q′2 such that

Q′1 a Q
′
2

ψ

C3

, φ1

A ∨ C1 ∨Q′1
, φ2

B ∨ C2 ∨Q′2

with |φ1|∨ + |φ2|∨ ≤ |φ′|∨ < |φ|∨.
We take Q1 = C1 ∨Q′1, Q2 = C2 ∨Q′2 and

ψ ≡

Q1aQ2

(C1 ∨Q′1)a(C2 ∨Q′2)
sai↓

(C1aC2) ∨
Q′1aQ

′
2

ψ′

C3
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If φ is tame, then ψ′ is tame and φ1 and φ2 are equalities. Then C1∨Q′1 = > or
C1∨Q′1 = ⊥ and C2∨Q′2 = > or C2∨Q′2 = ⊥. Therefore, (C1∨Q′1)a(C2∨Q′2)
and C1aC2 are interpretable and ψ is tame.

• φ =∨
φ′

(((AaB) ∨ C1) ∧ (C2 ∨ C3)) ∨ C4
∧↓

(AaB) ∨ C2 ∨ (C1 ∧ C3) ∨ C4

with C = C2 ∨ (C1 ∧C3)∨C4.

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C4

, φ′1

(AaB) ∨ C1 ∨Q′1
, φ′2

C2 ∨ C3 ∨Q′2

such that |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
We apply induction hypothesis to φ′1 as |φ′1|∨ ≤ |φ′|∨ < |φ|∨. There exist
Q1, Q2 and

ψ ≡

Q1aQ2

ψ′′

C1 ∨Q′1
∧ φ′2

C3 ∨ C2 ∨Q′2
∧↓

(C1 ∧ C3) ∨ C2 ∨
Q′1 ∨Q′2
ψ′

C4
=∨

C

, φ1

A ∨Q1
, φ2

B ∨Q2

with |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ′1, φ′2 and ψ′′ are tame. Therefore, ψ is tame. Fur-
thermore, by induction hypothesis, φ1 and φ2 are equalities.

• φ =∨
φ′

(((AaB) ∨ C1) ∧ >) ∨ C2
=∨

(AaB) ∨ C1 ∨ C2

with C = C1 ∨ C2

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C2

, φ′1

(AaB) ∨ C1 ∨Q′1
, φ′2

1 ∨Q′2

such that |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
We apply induction hypothesis to φ′1. Then there exist Q1, Q2 and
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ψ ≡

Q1aQ2

ψ′′

(C1 ∨Q′1)
∧ φ′2

(1 ∨Q′2)
∧↓

(C1 ∧ 1) ∨
Q′1 ∨Q′2
ψ′

C2

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′1|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ′1, φ′2 and ψ′′ are tame. Therefore, ψ is tame. Fur-
thermore, by induction hypothesis, φ1 and φ2 are equalities.

• φ =∨
φ′

(> ∧ ((AaB) ∨ C1)) ∨ C2
=∨

(AaB) ∨ C1 ∨ C2

with C = C1 ∨ C2

We apply induction hypothesis to φ′. There exist Q′1, Q′2 and
Q′1 ∨ Q′2

ψ′

C2

, φ′1

1 ∨Q′1
, φ′2

(AaB) ∨ C1 ∨Q′2

such that |φ′1|∨ + |φ′2|∨ ≤ |φ′|∨.
Then we apply induction hypothesis to φ′2. There exist Q1, Q2 and

ψ ≡

φ′1

(1 ∨Q′1)
∧

Q1aQ2

ψ′′

(C1 ∨Q′2)
∧↓

(1 ∧ C1) ∨
Q′1 ∨Q′2
ψ′

C2

C

, φ1

A ∨Q1
, φ2

B ∨Q2

such that |φ1|∨ + |φ2|∨ ≤ |φ′2|∨ ≤ |φ′|∨ ≤ |φ|∨.
If φ is tame, then ψ′, φ′1, φ′2 and ψ′′ are tame. Therefore, ψ is tame. Fur-
thermore, by induction hypothesis, φ1 and φ2 are equalities.

• φ =∨
φ′

> ∨ C
=∨

(>a>) ∨ C
with A =∨ B =∨ >

We take:

ψ ≡

⊥a⊥
=
⊥

∨ ⊥ ∧ φ′

1 ∨ C
∧↓

⊥ ∧>
=∨

⊥
∨ ⊥ ∨ C

, φ1 ≡

>
=∨

>
=∨

A
∨ ⊥

, φ2 ≡

>
=∨

>
=∨

B
∨ ⊥
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with |φ1|∨ = |φ2|∨ = 0.
If φ is tame, ψ is tame. Furthermore, φ1 and φ2 are equalities.

• φ =∨
φ′

⊥ ∨ C
=∨

(⊥a⊥) ∨ C
with A =∨ B =∨ ⊥

We take

ψ ≡

>a>
=
>

∨ ⊥ ∧ φ′

⊥ ∨ C
∧↓

> ∧⊥
=∨

⊥
∨ ⊥ ∨ C

, φ1 ≡

>
=∨

⊥
=∨

A
∨ >

, φ2 ≡

>
=∨

⊥
=∨

B
∨ >

with |φ1|∨ = |φ2|∨ = 0.
If φ is tame, ψ is tame. Furthermore, φ1 and φ2 are equalities.

Splitting tells us that from contexts where the main connective is ∨ we can follow oc-
currences of ∧, and of the atoms up in the proof and obtain independent subproofs. We
can now apply splitting starting from the outermost occurrences of ∧, or the atoms, and
apply this process recursively on every subproof to obtain a series of nested subproofs that
in a way make-up the original proof. This recursive process is formalize in Aler Tubella’s
PhD thesis [1].

Definition 7.3.10 (Provable context). We say that a context H{} is provable if H{>} = >.

Definition 7.3.11 (Height of a context). Given a context S{} we define the height of a
context as the number of instances of ∧, and a that appear in the scope of {}. We denote
it by |S|∨.

Theorem 7.3.12 (Context Reduction). For any formula A and for any context S{}, given

a proof φ SAKKSsp

S{A}
, there exist a formula K, a provable context H{} and derivations

δ SAKKSsp

A ∨K
and

H{{} ∨K}
χ

S{}

such that if φ is tame, then δ is tame. Furthermore, if {} is not in the scope of an atom in
S{} and φ is tame, then χ′ is tame.

Proof. We proceed by induction on the number of connectives α 6= ∨ that {} is in the scope
of. We denote it by |S|∨.

• If |S|∨ = 0, then S{A} =∨ A ∨K and we take χ =∨ φ and H{} = {}.

• If S{A} =∨ (S ′{A} ∧ B) ∨ C, then we apply Theorem 7.3.9 to φ. Therefore, there
exist derivations
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Q1 ∨ Q2

ψ

C

, φ1

S ′{A} ∨Q1
, φ2

B ∨Q2

such that φ1, φ2 and ψ are tame if φ is tame. We apply induction hypothesis to φ1
since |S ′|∨ < |S|∨. Then, there are derivations

δ SAKKSsp

A ∨K
and

H ′{{} ∨K}
χ′

S ′{} ∨Q1

withH ′ a provable context, such that δ is tame if φ1 is tame. We takeH{} = H ′{}∧>.
We have H{>} = H ′{>} ∧ > = > ∧> = >, and we can build in SAKKSsp:

χ ≡

H ′{{} ∨K}
χ′

S ′{} ∨Q1

∧ φ2

B ∨Q2

∧↓

(S ′{} ∧B) ∨
Q1 ∨Q2

ψ

C

since the connective ∧ is not an atom, {} is not in the scope of an atom in H{} and
χ is tame.

• If S{A} =∨ (B ∧ S ′{A}) ∨ C, then we apply Theorem 7.3.9 to φ. Therefore, there
exist derivations:

Q1 ∨ Q2

ψ

C

, φ1

B ∨Q1
, φ2

S ′{A} ∨Q2

such that φ1, φ2 and ψ are tame if φ is tame.
We apply induction hypothesis to φ2 since |S ′|∨ < |S|∨. Then, there are derivations

δ SAKKSsp

A ∨K
and

H ′{{} ∨K}
χ′

S ′{} ∨Q2

with H ′ a provable context, such that δ is tame if φ2 is tame.
We take H{} = H ′{} ∧ >. We have H{>} = H ′{>} ∧ > = > ∧ > = >, and we can
build in SAKKSsp:
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χ ≡

φ1

B ∨Q1
∧
H ′{{} ∨K}

χ′

S ′{} ∨Q2
∧↓

(B ∧ S ′{}) ∨
Q1 ∨Q2

ψ

C

since the connective ∧ is not an atom, {} is not in the scope of an atom in H{} and
χ is tame.

• If S{A} =∨ (S ′{A} B) ∨C, we apply Theorem 7.3.9 to φ. Then, there exist Q1 and
Q2 such that

Q1 Q2

ψ

C

, φ1

S ′{A} ∨Q1
, φ2

B ∨Q2

such that φ1, φ2 and ψ are tame if φ is tame. We apply induction hypothesis to φ1
since |S ′|∨ < |S|∨. Then, there are derivations

δ SAKKSsp

A ∨K
and

H ′{{} ∨K}
χ′

S ′{} ∨Q1

with H ′ a provable context and K a formula. We take H{} = H ′{} >. We have
H{>} = H ′{>} > = > > = >, and we can build in SAKKSsp:

χ ≡

H ′{{} ∨K}
χ′

S ′{} ∨Q1

φ2

B ∨Q2

sak↓

(S ′{} B) ∨
Q1 Q2

ψ

C

• If S{A} =∨ (S ′{A}aB) ∨ C, we apply Theorem 7.3.9 to φ. Then, there exist Q1 and
Q2 such that

Q1 a Q2

ψ

C

, φ1

S ′{A} ∨Q1
, φ2

B ∨Q2

We apply induction hypothesis to φ1 since |S ′|∨ < |S|∨. Then, there are derivations
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δ SAKKSsp

A ∨K
and

H ′{{} ∨K}
χ′

S ′{} ∨Q1

with H ′ a provable context and K a formula. We take H{} = H ′{} a >. We
haveH{>} = H ′{>} a > = > a > = >. Then we can get:

χ ≡

H ′{{} ∨K}
χ′

S ′{} ∨Q1

a
φ2

B ∨Q2

sai↓

(S ′{} a B) ∨
Q1 a Q2

ψ

C

As a corollary of splitting and context reduction we can show the admissibility of a
class of up-rules [1]. The main idea is that through splitting we can separate a proof into
subproofs that are independently provable. We can then combine these subproofs differently
to obtain a new proof with the same conclusion.

Corollary 7.3.13 (Admissibility of cuts). For any formula A,B,C and D, any context S,
a rule r of SAKKS and any proof with α 6= ∨,

φ ≡
φ′ SAKKSsp

S

{ (AαB) ∧ (CαD)
r↑

(A ∧ C)α(B ∧D)

} ,

there is a proof

π SAKKSsp

S{(A ∧ C)α(B ∧D)}

Furthermore, if φ is tame, then π is tame.

Proof. Let us take the case with α = . For any formula A,B,C,D, any context S and any
proof:

φ ≡
SAKKSsp

S

{ (A B) ∧ (C D)
sai↑

(A ∧ C) (B ∧D)

} ,

We apply Theorem 7.3.12 to φ, then there are derivations

δ SAKKSsp

((A B) ∧ (C D)) ∨K
and

H{{} ∨K}
χ

S{}
Then, we apply Theorem 7.3.9 to δ and we get:
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Q1 ∨Q2

ψ

K

, φ1

(A B) ∨Q1
, φ2

(C D) ∨Q2

Again we apply Theorem 7.3.9 to φ1 and φ2. Then, we have:
Q′1 Q′2
ψ1

Q1

, φ′1

A ∨Q′1
, φ′2

B ∨Q′2

Q′′1 Q′′2
ψ2

Q2

, φ′′1

C ∨Q′′1
, φ′′2

D ∨Q′′2

We can then build the following proof in SAKKSsp:

π ≡ H



φ′1

A ∨Q′1
∧ φ′′1

C ∨Q′′1
∧↓

(A ∧ C) ∨ (Q′1 ∨Q′′1)

φ′2

B ∨Q′2
∧ φ′′2

D ∨Q′′2
∧↓

(B ∧D) ∨ (Q′2 ∨Q′′2)
sak↓

(A ∧ C) (B ∧D) ∨

(Q′1 ∨Q′′1) (Q′2 ∨Q′′2)
sak↓

Q′1 Q′2
ψ1

Q1

∨
Q′′1 Q′′2
ψ2

Q2

ψ

K

χ

S{(A ∧ C) (B ∧D)}


If φ is tame, then {} is not in the scope of an atom in S{} and φ′1, φ′2, φ′′1, φ′′2, ψ1, ψ2 and

χ are tame. Therefore, π is tame.
The proof for α = a is similar.

Remark 7.3.14. The rule
(A ∨B) ∧ (C ∧D)

∨↑
(A ∧ C) ∨ (B ∧D)

is admissible for systems with the rule ∧↓
where ∧ is associative. We obtain this result as follows:

((A ∨B) ∧ (C ∧D)
=

((A ∨B) ∧ C) ∧D
=

((A ∨B) ∧ (C ∨ ⊥)) ∧D
∧↓

((A ∧ C) ∨ (B ∨ ⊥)) ∧D
=

((A ∧ C) ∨B) ∧ (⊥ ∨D)
∧↓

(A ∧ C) ∨ ⊥ ∨ (B ∧D)
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Chapter 8

Conclusion

In this thesis, we have made a rigorous study of modal logics from the perspective of proof
theory and we have presented various contributions to this field. This chapter starts with
Section 8.1 where we provide a comprehensive overview of each chapter within this thesis,
highlighting the principal contributions we have advanced throughout our research. Then,
in Section 8.2 we outline potential next steps and areas for further study, extending the
scope of our research beyond the contents of this thesis.

8.1 A tour of our thesis
We have started this thesis introducing the fundamental concepts for the develop of our
contribution. In Chapter 2 and 3 we have presented the syntax and semantics of classical
and intuitionistic modal logics, including Hilbert and Gentzen’s axiomatizations. In both
settings we have focused our attention in labelled deduction, more precisely, to labelled
sequent systems due to our research interests in studying the intuitionistic approach using
this formalism. In this introductory chapters, we have also presented Negri’s [49] and Simp-
son’s [59] labelled proof systems for classical and intuitionistic modal logics, respectively.

From Chapter 4, we have presented our contributions for intuitionistic modal logics.
The aforementioned systems were our first understanding for the desing and development of
our first contribution: our fully labelled sequent system for intuitionistic modal logics. This
joint work with Marin and Straßburger [43] introduces a labelled sequent system to capture
intuitionistic modal logics. This labelled system has not only one (as the one presented
by Simpson), but two relation symbols appearing in sequents: one for the accessibility
relation R associated with the Kripke semantics for normal modal logics and one for the
preorder relation ≤ associated with the Kripke semantics for intuitionistic logic. This puts
our system in close correspondence with the standard birelational Kripke semantics for
intuitionistic modal logics. We have shown that this system is sound and complete, and
we have presented a proof for its cut-elimination. This system was first presented for the
intuitionistic modal logic IK but then, as a consequence of having the two relations explicit
in the system, it can encompass a wider range of intuitionistic modal logics: in particular,
we have shown extensions of the fully labelled sequent system with one-sided intuitionistic
Scott-Lemmon axioms and with path Scott-Lemmon axioms, which allows us to have a
completely general labelled framework to capture all the intuitionistic modal logics of the
S5-cube. This contribution is presented in Chapter 4.
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The fully labelled sequent system became one of the key ingredients in addressing the
decidability problem of various intuitionistic modal logics in the S5-cube. In Chapter 5,
we began working on the decision problems for "simpler" logics, in the sense that their
decidability was already known. In particular, we have worked first with logics where
transitivity is not part of the conditions restricting the class of frames we were dealing with,
as it is the case of the intuitionistic modal logics IK, IT, IKB, ITB and IK5. We have provided
for them a constructive decision procedure, that, given a formula, produces either a proof
showing that the formula is valid, i.e. it is a theorem of the logic, or a finite countermodel
falsifying the formula, and therefore, showing that the formula is not provable in the logic.
This procedure is based on our fully labelled sequent system. This result also served as
a strong introduction to later delve our work into logics whose decidability were unknown
until this year, as it is the case of the intuitionistic logic IS4 [21]. In particular, all the
notions presented in Chapter 5 were developed with the aim of being applicable to all the
intuitionistic modal logics of the S5-cube. Moreover, the search algorithm was developed
with the flexibility to be customized for each specific intuitionistic modal logic we wish to
employ, incorporating the necessary constraints to demonstrate its termination in each case.
We have expanded this result to investigate the decidability of the logic IS4, presenting, as
a result, another significant contribution of this thesis in Chapter 6.

The decision problem of the intuitionistic modal logic IS4 has been an open problem for
almost thirty years since it had been posed in Simpson’s PhD thesis in 1994. With Girlando,
Kuznets, Marin and Straßburger [21], we have proved that the intuitionistic logic IS4 is de-
cidable. We were able to obtained this result thanks to two key ingredients. The first one
was the use of the fully labelled sequent system (as we have done for the other mentioned
logics in Chapter 5), since this system inherits the advantages of labelled systems for both
intuitionistic propositional logic and classical modal logics: in particular, all inference rules
are invertible (i.e. we never delete information bottom-up in proof search) and there is a
direct correspondence between sequents and models which lets us build a countermodel by
interpreting (and extending) the labelled sequent at which proof search terminates. And
second, by introducing a mechanism which gives a real proof when the search algorithm
terminates in axiomatic sequents. This had to be introduced because we have solved the
decision problem for IS4 by identifying (substituting) labels not only after the completion
but also during proof search, and a priori this could be unsound. This means that, when
terminating a branch on a non-axiomatic sequent, it is still possible to extract a counter-
model from it. However, when reaching only axiomatic leaves, it remains to be shown that
a sound proof can be obtained from the proof attempt (potentially containing identification
of labels). For that, we have introduced the notion of unfolding the proof attempt into a
real proof. In other words, we have shown that we can preserve soundness if we organize
the proof search in a certain systematic way.

All these contributions were in the intuitionistic setting of modal logics. In Chapter 7,
we have presented our work in a fragment of the classical approach. This chapter is a work
in progress in the formalism of deep inference using the methodology of subatomic proof
theory. This method treats the atoms as binary connectives, leading to a uniform shape of
all inference rules. This enormously reduces the number of cases in the case analysis for
cut-elimination. This arises to the question: how this methodology can treat the modalities
since they are unary connectives?. We started exploring this new formalism and we have
obtained a subatomic proof system for the linear fragment of classical modal logic. We
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have proved its cut-elimination via splitting, and, as a result of this proof, we proved the
admissibility of the up-rules which are the cuts. There are numerous areas for ongoing work
within this system and in this field of subatomic proof theory. We are going to mention
some of them in the next section.

8.2 Exploring next steps
The work we have done during this thesis leaves open several research directions that we
are going to address briefly in this section.

Decision problem for IK4: as a consequence of our investigation into how the axiom
of transitivity impacts the design and development of a search algorithm for establishing
the decidability of a logic, we have shifted our focus towards exploring the decision problem
of another intuitionistic modal logic within the S5-cube. This logic is the intuitionistic
K4, known as IK4, which is analogous to IS4 but without the axiom of reflexivity. The
decidability of IK4 remains as an open problem in the field (also since it had been presented
by Simpson [59]).

We conjecture that the same method we applied to IS4 can also be adapted to IK4, since
both require a certain treatment of the transitivity axiom as part of the logic. While we
consider that the overall argument that we have implemented for IS4 will remain consistent
for IK4, we anticipate encountering subtle differences in some definitions and proof argu-
ments due to the absence of reflexivity. Consequently, a comprehensive examination of the
logic IK4 has become an integral aspect of our ongoing research interests.

Implementation of the search algorithm: we are also interested in the implemen-
tation of the search algorithm presented in Chapters 5 and 6 in order to study its efficiency
and to be able to produce more interesting examples. Our interest in this line of research
began some time ago. With Girlando [22], we developed a prototype Prolog theorem prover
implementing the fully labelled sequent calculus for IK. This prototype was called MOILab,
for MOdal and Intuitionistic Labelled sequents1 which was built upon MOIN [23], a theorem
prover implementing nested sequent calculi (both single-conclusion and multi-conclusion)
for all the logics in the modal intuitionistic cube. MOILab consists of a set of Prolog clauses,
each implementing a rule of the labelled sequent calculus. The clauses are recursively applied
to a given formula, constructing a proof-search tree. MOILab yields a derivation in case of
proof search success, and a countermodel in case of proof search failure. The countermodel
is a birelational model, and it is extracted from the upper sequent occurring a failed branch.
MOILab is a prototype, meaning that, as to now, proof search does not terminate on all
IK formulas. This prototype started before coming up with all the notions and details of
Chapters 5 and 6, and termination was an issue back then. Now that termination is settled,
we would like to continue exploring this search algorithm for the mentioned logics in this
thesis but also for all the intuitionistic modal logics of the S5-cube. We would also like to
investigate the complexity of provability in the logic IS4.

Deep inference and subatomic proof theory for modal logics: building upon
our studies in deep inference formalism and subatomic logic methodology, there are several
intriguing research directions we would like to delve into. On one hand, just as we have
examined other proof systems, we aspire to develop a deep inference system for intuition-

1MOILab is available here: http://mariannagirlando.com/MOILab.html

130

http://mariannagirlando.com/MOILab.html


istic modal logic. On the other hand, we want to continue our studies in the subatomic
methodology with the goal of achieving an internal cut-elimination proof for modal logic.
Cut-elimination for deep inference systems is more involved than for traditional sequent style
systems. In particular, for modal logics, no cut-elimination proof that is internal to deep
inference has been given so far. We aim to expand our subatomic proof system, originally
devised for the linear fragment of classical modal logic, to encompass classical modal logic
in its entirety and obtain a cut-elimination result. A proof of cut-elimination via splitting
usually consists of two parts. Only the second one is the actual splitting and needs a “linear”
system, i.e., one without weakening and contraction. To remove weakening and contraction,
the first part of the cut-elimination performs a decomposition [26] or cycle elimination [2].
We need to work on these results to achieve the subatomic proof system for classical modal
logic that we aim for.

Bi-Nested sequent for modal logic: after introducing a labelled sequent system in
Chapter 4 to encompass intuitionistic modal logics using both accessibility and preorder
relations, we subsequently initiated an investigation into the same concept within nested
sequent systems. In nested and labelled sequents, extending the sequent structure with the
same one extra element is enough to obtain sound and complete systems. As we have seen,
this no longer matches the relational semantics of these logics, which requires to combine
both relations. More importantly, it leads to deductive systems that are not entirely satis-
factory; they cannot as modularly capture axiomatic extensions (or equivalently, restricted
semantical conditions) and, in particular, can only provide decision procedures for some of
them [59]. In an attempt to make the fully labelled sequent system (presented in Chapter 4)
amenable for proof-search and decision procedures, with Marin we have started investigated
a fully nested framework [42]. Despite having already established the decidability of IS4
through the labelled approach, there is merit in continuing our exploration of the nested
variant. Our aim is to develop a nested sequent system that closely aligns with birelational
Kripke semantics, and potentially, to investigate additional results regarding the decision
problems of intuitionistic modal logics using the nested system.
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Résumé : Cette thèse explore rigoureusement les lo-
giques modales, les analysant du point de vue de la
théorie de la preuve. Dans le contexte intuitionniste
des logiques modales, nous présentons un système
de séquents entièrement étiqueté, dans lequel non
pas un, mais deux symboles de relation apparaissent
dans les séquents : l’un pour la relation d’accessi-
bilité associée à la sémantique de Kripke des lo-
giques modales normales, et l’autre pour la relation
de préordre associée à la sémantique de Kripke de
la logique intuitionniste. Nous étendons ce système
pour englober les quinze logiques modales intuition-
nistes distinctes du cube S5. Les avantages de ce
système, tels que toutes ses règles d’inférence sont
inversibles et qu’il existe une correspondance directe
entre les séquents et les modèles, nous permettent
d’explorer les problèmes de décision pour différentes
variantes des logiques modales intuitionnistes, telles
que IK, IT, IB, ITB, IK5. En particulier, nous effectuons
une recherche de preuves dans notre système de
séquents entièrement étiqueté et nous proposons une

procédure de décision pour prouver la décidabilité des
logiques mentionnées. Nous étendons ensuite cet al-
gorithme de recherche pour résoudre un problème
ouvert depuis près de trente ans depuis qu’il a été
posé dans la thèse de doctorat de Simpson en 1994 :
nous démontrons la décidabilité de la logique mo-
dale intuitionniste S4. Notre algorithme de recherche
produit soit une preuve, soit un contre-modèle fini,
établissant ainsi la propriété de modèle fini pour l’in-
tuitionniste S4, qui était un autre problème ouvert de
longue date dans ce domaine. Dans le cadre clas-
sique des logiques modales, nous présentons un tra-
vail en cours dans le formalisme de l’inférence pro-
fonde en utilisant la méthodologie de la théorie de
la preuve subatomique. Nous présentons un système
de preuve subatomique pour le fragment linéaire
des logiques modales classiques, montrant son cut-
elimination via splitting. Suite à cette preuve, nous
démontrons l’admissibilité des règles ascendantes,
qui sont les cuts.

Title : Unusual proof systems for modal logics with applications to decision problems
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Abstract : This thesis rigorously explores modal lo-
gics, analyzing them from a proof theory perspective.
In the intuitionistic setting of modal logics, we present
a fully labelled sequent system such that there is
not only one, but two relation symbols appearing in
sequents : one for the accessibility relation associa-
ted with the Kripke semantics for normal modal lo-
gics and one for the preorder relation associated with
the Kripke semantics for intuitionistic logic. We extend
this system to capture the fifteen distinct intuitionistic
modal logics of the S5-cube. The advantages of this
system, such as all its inference rules are invertible
and that there is a direct correspondence between se-
quents and models, allow us to explore decision pro-
blems for different variants of intuitionistic modal lo-
gics, such as IK, IT, IB, ITB, IK5. In particular, we per-
form proof search in our fully labelled sequent system

and we give a decision procedure to prove decidability
of the mentioned logics. We then extend this search
algorithm to solve a problem that has been open for
almost thirty years since it had been posed in Simp-
son’s PhD thesis in 1994 : we demonstrate decida-
bility of the intuitionistic modal logic S4. Our search
algorithm outputs either a proof or a finite counter-
model, thus, additionally establishing the finite model
property for intuitionistic S4, which has been another
long-standing open problem in the area. In the clas-
sical setting of modal logics, we present a work in
progress in the formalism of deep inference using the
methodology of subatomic proof theory. We present
a subatomic proof system for the linear fragment of
classical modal logics, showing its cut-elimination via
splitting. As a result of this proof, we show the admis-
sibility of the up-rules which are the cuts.
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