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Short Abstract

The problem of churn prediction has been traditionally a field of study for marketing. However, in
the wake of the technological advancements, more and more data can be collected to analyze the cus-
tomers behaviors. This manuscript has been built in this frame, with a particular focus on machine
learning. Thus, we first looked at the supervised learning problem. We have demonstrated that logistic
regression, random forest and XGBoost taken as an ensemble offer the best results in terms of Area
Under the Curve (AUC) among a wide range of traditional machine learning approaches. We also have
showcased that the re-sampling approaches are solely efficient in a local setting and not a global one.
Subsequently, we aimed at fine-tuning our prediction by relying on customer segmentation. Indeed,
some customers can leave a service because of a cost that they deem to high, and other customers
due to a problem with the customer’s service. Our approach was enriched with a novel deep neural
network architecture, which operates with both the auto-encoders and the k-means approach. Going
further, we focused on self-supervised learning in the tabular domain. More precisely, the proposed
architecture was inspired by the work on the SimCLR approach, where we altered the architecture with
the Mean-Teacher model from semi-supervised learning. We showcased through the win matrix the
superiority of our approach with respect to the state of the art. Ultimately, we have proposed to apply
what we have built in this manuscript in an industrial setting, the one of Brigad. We have alleviated
the company churn problem with a random forest that we optimized through grid-search and thresh-
old optimization. We also proposed to interpret the results with SHAP (SHapley Additive exPlanations).

Keywords: Supervised Learning, Self-supervised learning, Deep learning, Autoencoder, Clustering
and Churn.

Résumé court
Le problème de la prédiction de l’attrition est généralement réservé aux équipes de marketing. Ce-
pendant, grâce aux avancées technologiques, de plus en plus de données peuvent être collectés afin
d’analyser le comportement des clients. C’est dans ce cadre que cette thèse s’inscrit, plus particuliè-
rement par l’exploitation des méthodes d’apprentissages automatiques. Ainsi, nous avons commencés
par étudier ce problème dans le cadre de l’apprentissage supervisé. Nous avons montré que la combi-
naison en ensemble de la régression logistique, des forêt aléatoire et de XGBoost offraient les meilleurs
résultats en terme d’Aire sous la courbe (Are Under the Curve, AUC). Nous avons également mon-
tré que les méthodes du type ré-échantillonage jouent uniquement un rôle local et non pas global.
Ensuite, nous avons enrichi nos prédictions en prenant en compte la segmentation des clients. En
effet, certains clients peuvent quitter le service à cause d’un coût qu’ils jugent trop élevés ou suite
à des difficultés rencontrés avec le service client. Notre approche a été réalisée avec une nouvelle ar-
chitecture de réseaux de neurones profonds qui exploite à la fois les autoencodeur et l’approche des
k-means. De plus, nous nous sommes intéressés à l’apprentissage auto-supervisé dans le cadre tabulaire.
Plus précisément, notre architecture s’inspire des travaux autour de l’approche SimCLR en modificant
l’architecture mean-teacher du domaine du semi-supervisé. Nous avons montré via la win matrix la
supériorité de notre approche par rapport à l’état de l’art. Enfin, nous avons proposé d’appliquer les
connaissances acquises au cours de ce travail de thèse dans un cadre industriel, celui de Brigad. Nous
avons atténué le problème de l’attrition à l’aide des prédictions issues de l’approche de forêt aléatoire
que nous avons optimisés via un grid search et l’optimisation des seuils. Nous avons également proposé
une interprétation des résultats avec les méthodes SHAP (SHapley Additive exPlanations).

Mots-Clefs : Apprentissage supervisé, Apprentissage auto-supervisé, Deep learning, Autoencodeur,
Clustering et Attrition.
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Résumé substantiel
Le problème de la prédiction de l’attrition est généralement réservé aux équipes de marketing. Ce-
pendant, grâce aux avancées technologiques, de plus en plus de données peuvent être collectées afin
d’analyser le comportement des clients. C’est dans ce cadre que cette thèse s’inscrit, plus particuliè-
rement par l’exploitation des méthodes d’apprentissages automatiques.

La première étape de cette thèse a été la réalisation dun état de lart sur lensemble des méthodes de
lapprentissage supervisé pour résoudre le problème du churn. La motivation initiale était que létat de
lart est majoritairement basé sur des jeux de données privées ce qui rend la reproductibilité des expé-
riences irréalisables. En contraste, nous proposons des jeux de données libres ainsi quune pipeline to-
talement reproductible. Cette pipeline est constituée de trois étapes successives : le ré-échantillonnage
optionnel qui se base sur le sur-échantillonnage, sous-échantillonnage ou les méthodes hybrides. Puis
une phase dapprentissage des modèles avec trois grandes familles dalgorithmes, ceux dit classique, les
réseaux de neurones et les approches semi-supervisés. Enfin, nous poursuivons sur le calcul des scores
qui est basé sur une validation croisée stratifié k-fold. Nous avons fait le choix du ROC-AUC pour
le score, ce choix peut être débattu en effet, le ROC-AUC noffre pas un score significatif lorsque les
données sont déséquilibrées. Malgré cette contrainte, nous avons fait le choix du ROC-AUC comme
une solution générique. Une fois la pipeline mise en place, nous proposons plusieurs visualisations,
comme celle avec test de nemenyi qui permet de comparer les rangs des classificateurs pour savoir si
ils sont statistiquement similaires. On conclut que sans ré-échantillonnage, LR, RF, XGB et GEV-NN
sont similaires en termes de rang calculé via lAUC. Et finalement nous visualisons sur un plan par
analyse des correspondance les relations entre classificateurs et jeux de données.

Dans le second chapitre, nous poursuivons nos analyses en montrant sur une boîte à moustache
que les méthodes ensembles constituées de trois ou quatre classificateurs avec LR, XGB, RF et NN
donnent les meilleurs résultats. Cette première intuition est appuyée sur notre table dAUC qui com-
pare lensemble des combinaisons ensemble ainsi que les combinaisons de ré-échantillonneurs. Dans
lensemble le trio LR, XGBoost et RF obtiennent le score de 0.8577 qui est le meilleur. Enfin, nous
comparons notre proposition densemble sur chaque jeux de données et on note que notre approche est
la plus générique. Autrement lutilisateur devrait pour chaque jeux de données trouver la combinaison
la plus efficace ce qui peut consommer beaucoup de temps.

Dans le second sous-chapitre nous avons enrichi nos prédictions en prenant en compte la segmenta-
tion des clients. En effet, certains clients peuvent quitter le service à cause d’un coût qu’ils jugent trop
élevés ou suite à des difficultés rencontrés avec le service client. Pour ce faire nous avons construit une
architecture de réseaux de neurones à base d’auto encodeur et de k-means ce qui permet doptimiser
à la fois la qualité de la réduction de la dimension et du clustering. Une fois que cette approche a été
réalisée nous avons exploité lapproche ensemble générique du précédent sous-chapitre pour apprendre
nos modèles sur chacun des sous-clusters. Cette combinaison de classificateurs est réalisée à partir
dune moyenne pondérée par la corrélation des classificateurs. Cette étape préliminaire nous permet
de construire un benchmark et montre la supériorité de notre approche en termes dAUC par rapport
à nos deux baselines LLM et Rf-based. Nous avons également profité du fait davoir des clusters pour
construire une importance des features par forêts aléatoires. Ceci nous permet par exemple dans le
cas du jeux de données banque, de voir que dans un cluster les churner sont surtout allemand avec un
score de crédit significatif et il soppose à un groupe despagnol.

Ensuite dans le chapitre 3, nous nous sommes attaqué aux approches auto supervisées dans le cadre
tabulaire. Plus précisément, notre approche sappuie sur lapprentissage contrastif et larchitecture Sim-
CLR. Nous nommons notre solution Mean teacher Architecture using Contrastive learning (MAC).
Nous commençons par la phrase de pré-entrainement qui va séparer les données en catégorielles et
continu. Les données catégorielles passeront par une matrice dembedding et celle continue par un MLP
classique afin de faire correspondre les dimensions des deux features. Ensuite les données sont divisées
en deux branches : celle du haut ne sera pas perturbé et celle du bas le sera soit par un processus
de diffusion soit par MixUp. Ensuite les données sont envoyées dans un réseau de neurones SAINT
puis divisé en deux branches le Student et le Teacher. La fonction de coût est basée sur InfoNCE.
La rétropropagation se fait normalement pour la branche du Student mais par contre pour celle du
Teacher elle se réalise via une moyenne mobile exponentielle. Une fois le pré-entraînement réalisé, il
reste la phase de fine-tuning qui va exploiter la mise à jour des poids du réseau pour effectuer une nou-
velle tâche. Cette nouvelle tâche est lapprentissage semi-supervisé. Nos expériences ont été calculées
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par le ROC-AUC en utilisant la matrice de Win. Nous montrons que lorsque 20% des données sont
labellisés, lapproche ema+mixup donne le meilleur résultat. Lorsque les données sont à 70% labellisées
on obtient le même retour.

Enfin, nous avons proposé d’appliquer les connaissances acquises au cours de ce travail de thèse
dans un cadre industriel, celui de Brigad. La première étape a été de créer le vecteur de churn qui est
calculé par analyse de cohorte. C’est-à-dire que nous suivons pendant trois mois un groupe de clients
actifs, puis nous regardons si les trois prochains mois ils seront toujours actifs (non churner) ou si ils
seront inactifs (churner). Nous avons ensuite créé la matrice X de 2481 entreprises, avec huit variables
numériques et une variable catégorielle. Dans les variables numériques certaines ont une importance
significative comme le no-show qui va compter le nombre de fois où le business a subi le fait quun talent
na pas effectué sa mission et quil na pas prévenu lentreprise. On a également le nombre dannulation
de moins de 4h qui suit le même processus mais lentreprise a été prévenue. Cette introduction nous
a permis de créer une pipeline complète pour la résolution du problème du churn. On a entre autres,
une partie importante constituée dextraction de données par requête SQL puis du feature engineering
qui revient à transformer les features en utilisant des connaissances dentreprises. Puis nous traitons
nos données en les dummifiant pour les catégorielles et en les fixant entre 0 et 1 pour les features
continues. Ceci nous permet de filtrer nos entreprises, par exemple nous ne prendrons pas en compte
celles qui sont très récentes. On va ensuite apprendre sur nos données avec les approches LR, RF, XGB
et ensemble. Nos expériences ont montré la supériorité de lapproche RF en termes dAUC médian sur
une validation croisée stratifiée avec 5 folds. Enfin le problème des faux positifs et assez critique dans le
cadre du churn lobjectif était de le réduire. En effet, un taux de faux positifs élevés implique de contac-
ter des clients qui ne vont pas churners pour leurs donner potentiellement des coupons, chose que nous
voulons éviter. La phase de réduction des faux positifs passe par un grid search, puis une optimisa-
tion du seuil. Enfin, nous avons réalisé des graphes SHAP afin de vérifier la significativité des résultats.

Pour conclure, cette thèse a eu pour but de trouver de nouvelles solutions pour la résolution du
problème de la prédiction du churn. Nous avons commencé par un état de lart qui nous a permis
d’envisager une approche ensemble constitué de LR, RF et XGBoost qui a été efficace. Ensuite, nous
avons rajouté une segmentation clients par un auto encodeur et du clustering appris conjointement.
Puis nous avons abordé lapprentissage auto supervisé dans le cadre tabulaire nous avons proposé
lapproche MAC. Enfin, nous avons présenté nos méthodes dans un cadre industriel pour la prédiction
du churn entreprise chez Brigad.
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1
Introduction

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Retaining customers is at a fundamental importance for the stability of a company which must define
an efficient retention strategy to secure its longevity. The cost in terms of time and money of seeking
new customers is customarily higher than retaining them (Reinartz and Kumar, 2003 ; Reichheld and
Sasser, 1990). In this sense, gauging the risk related to the churn associated with each customers is
crucial to prevent the loss of profitable clients.

Attrition or churn detection is a process enabling the prediction of the customers that will most
probably quit or leave a service. At Brigad∗, we are generally interested in predicting the probability
for a customer – which can be either a freelancer or a business – to stop using the Brigad recruit-
ment platform in a near future. Such information can enable the customer service to plan efficient
preventive actions, e.g. offering a discount, to retain the customers. Several supervised learning ap-
proaches can be used to predict the risk of customer loss (customer churn models) based solely on
the data (Larivière and Van den Poel, 2005) and initiate retention marketing campaign (Mozer et al.,
2000). However, as the heterogeneity of clients’ profiles and the diversity of services grow, offering
robust predictions remains a challenge, even though the amount of data increases. An interesting
strategy to improve classification results is to combine the advantages of several efficient algorithms
that are diverse enough within an ensemble approach. In particular, our experiments revealed that
combining Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), Random Forest (RF) and
MultiLayer Perceptron (MLP) by averaging their predicted probabilities induced a much more perfor-
mant approach on a wide range of real-world benchmark datasets than each of these approach taken
independently (Chapter 2). We first demonstrated the strength of our ensemble proposal as com-
pared to baselines models (Geiler et al., 2022) (Chapter 3) and then extended our framework to the
realm of tabular deep learning which has been experiencing recently novel promising ideas (Chapter 4).

One way to better handle a churn analysis is to address the inherent customer’s segmentation issue.
Common solutions draws their strategies from clustering (Athanassopoulos, 2000 ; Kuo et al., 2006 ;
Chan, 2008). The aim of customer’s segmentation is to target several customers for a specific mar-
keting campaign and hence concentrate the marketing efforts to one or a few key segments. Another
churn prediction hurdle is the amount of unlabeled data. Labeling manually a very large dataset is
usually unfeasible and error prone (Northcutt et al., 2021). Recent research combining self-supervised
learning SimCLR (Chen et al., 2020) and semi-supervised learning demonstrate great potential when
tackling tabular data (Bahri et al., 2021 ; Somepalli et al., 2021).

∗This thesis project was conducted in parallel within the Prof. Nadif’s team at the Université Paris Cité and at the
Brigad company. Brigad creates the connection for hospitality and healthcare businesses to propose temporary missions
to professional freelance workers.
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For a company such as Brigad, the demand for churn prediction is twofold. Indeed, the online
platform Brigad connect freelancers (also called Talents) and companies, within the scope of short
term contract. Hence, both freelancers and companies may exhibit a substantial risk of choosing
another mission’s/freelancers’ provider (Keaveney and Parthasarathy, 2001). It is thus critical to
continuously ensure a sufficient number of stable Talents with a wide range of qualifications to meet
the companies demand. Undoubtedly, an accurate and reliable churn prediction model would be a
strong asset for Brigad to simultaneously monitor the loyalty of businesses and freelancers.

1.2 Table of content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• Chapter 1 : Preliminaries and Baselines reviews traditional machine learning techniques
and algorithms for the churn prediction issue. It also provides baseline scores by summarizing
various area-under the curve (AUC) results for these most common models.

• Chapter 2 : Ensemble for churn prediction is an extension of the previous chapter to the
framework of ensemble classification methods. Based on our experimental results, we propose
to combine LR, XGBoost, RF and MLP to benefits from their respective strengths regarding imba-
lanced datasets. Furthermore, customers profile being naturally diverse, we enrich our proposal
with a segmentation step prior to classification. Our final extension hinges on a deep-clustering
architecture based on autoencoder.

• Chapter 3 : Deep learning for Tabular data Dealing with a vast quantity of unlabeled
data remains a challenge. As such we propose a novel deep-learning framework that is built on
the student-teacher connection from semi-supervised learning in a SimCLR like architecture.

• Chapter 4 : An industrial application is the opportunity of building a complete customer
churn model in an industrial setting. As such the ensemble classification approach have been
evaluated in our Brigad private dataset. Additionally, our model has been fine-tuned to lower
the number of false positives. Indeed, a high false positive rate would imply for the company to
spend time and money on contacting a great number of non-churners.

• Conclusion and perspective reviews the main contributions from this thesis in terms of churn
and deep-learning in the tabular context, and lays the foundation for future works.
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1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Publications of this thesis that have been published

(a) Louis Geiler et al. 2022 A Technical Survey and Comparative Machine Learning Study for Churn
Prediction, Louis Geiler, Séverine Affeldt et Mohamed Nadif. International Journal of Data
Science and Analytics (JDSA)

(b) Louis Geiler et al. 2022 Apprentissage machine pour la prédiction de l’attrition : une étude com-
parative, Louis Geiler, Séverine Affeldt et Mohamed Nadif. Extraction & Gestion des Connais-
sances (EGC)

(c) Louis Geiler et al. 2022 Machine Learning for churn prediction and customer profiling. Louis
Geiler, Séverine Affeldt et Mohamed Nadif. Data & Knowledge Engineering (DKE)

Publications that are currently under review

(a) Louis Geiler et al. 2022 Mean-teacher using Contrastive learning (MAC). Louis Geiler, Séverine
Affeldt et Mohamed Nadif. European Conference on Information Retrieval (ECIR2023)

1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Throughout our papers, we use bold uppercase characters to denote vectors, uppercase characters to
denote random variable and lowercase characters to denote variable values. Let X = (xij) be a data
matrix of n × d dimension. We assume that Y is the random variable indicating the class yi of an
observation xi = [xi1, . . . , xid]

> which denotes the ith instance of X. The total number of observations
is noted n, and G is the number of classes C1, . . . , CG. The churn prediction problem can be modeled
as a standard binary classification task. Formally, it is an assignment task that amounts to estimate
the conditional probability of Y = yi given xi, P (Y = yi|xi), so-called class posterior. Note that in
a binary or churn prediction context, G = 2 and we consider the two classes +,− that correspond to
the churn and non churn classes respectively.
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The churn prediction is at the source of a wide area of research. In this chapter, we address the churn
prediction issue in a supervised machine learning context. Our investigations and experimental results
gave rise to a survey on machine learning for churn prediction (Geiler et al., 2022). In a nutshell, we
have considered sixteen public churn-like datasets to perform experiments along with eight classical
machine learning techniques from the supervised learning framework. In addition, we applied the
data pre-processing strategies usually proposed in imbalanced data contexts, namely oversampling,
undersampling and hybrid approach. This chapter is thus investigating the following question : which
algorithm is the most suitable for the churn task at hand ? All in all, using default hyperparamters, our
experiments demonstrate the superiority of GEV-NN (Munkhdalai et al., 2020), an anomaly detection
algorithm, as the most advisable churn prediction technique.

2.1 Context and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.1 Introduction
Building a strong Customer Relationship Management (CRM) has become a crucial topic for many
companies in recent years. In particular, management and marketing services are focusing their atten-
tion on the customer retention, as it clearly appeared that the acquisition costs of a new customer can
be much more higher than the retention costs of an existing one (Reinartz and Kumar, 2003 ; Siber,
1997 ; Yang and Peterson, 2004). Besides, retained customers can be of great help for the company by
spreading positive word of mouth (Reichheld and Sasser, 1990), which would subsequently lower the
marketing costs of new customers acquisition (Bolton and Bronkhorst, 1995). The ever-rising compe-
tition in industry has therefore pushed forward companies to carefully control the switch of customers
or subscribers to another company, also known as customer churn, customer attrition or customer
defection. The customer churn can be particularly damaging for subscription-based service firms, such
as insurance (Günther et al., 2014), banking (Kumar et al., 2008), online gambling (Coussement and
De Bock, 2013), online video games (Kawale et al., 2009), music streaming (Chen et al., 2018), online
services Tan et al. (2018) or telecommunication (Effendy et al., 2014 ; Abdillah et al., 2016 ; Hudaib
et al., 2015 ; Hosein et al., 2021). As such companies are expecting fixed and regular membership fees,
customer switching behavior should be tempered to ensure sustainable profits. Therefore, accurately
predicting the customers who are prone to churn has become a priority in industry.

In addition to the systematic prediction of customers with switching intentions, firms also seek
to determine the causes of churn behavior. Knowing the reasons for customers defection would both
provide support for the profiling of defection-prone customers and help fostering efficient pro-active
campaigns for customers retention (Leung et al., 2021). The customer data generally contains service
usage (e.g. frequency, duration), billing information (e.g. regularity of payments, contract term) and
support service usage and satisfaction. Among the most probable antecedents of customer churn, seve-
ral prior studies have reported the satisfaction and the service quality (Anderson and Sullivan, 1993 ;
Zeithaml et al., 1996). Finding the most significant churn behavior causes (or features) also bring a
valuable technical advantage for the prediction model formulation. Indeed, the number of features in
churn datasets is usually large and dimentionality reduction helps reducing overfitting and improving
the generalization of the prediction models.

Marketing and financial industry services preferentially focused on statistic modeling methods to
tackle the churn analysis and prediction task. A well-known approach is the survival analysis that
proposes to model the occurrence and timing of events (Van den Poel and Lariviere, 2004 ; Bhatta-
charya, 1998 ; Bolton, 1998). In the context of customer attrition, the time to failure corresponds to
the churn behavior. The potential churner behavior has also been analyzed using structural equation
modeling (Varki and Colgate, 2001 ; Nguyen and LeBlanc, 1998 ; Ganesan, 1994). Such approach can
be of great interest for managerial decisions, as it evaluates the effect of suspected influential features
on a specific customer decision, such as churn. The analysis of variance was also widely used in mar-
keting and business areas to uncover customer behavior (Maxham III, 2001 ; Mittal and Kamakura,
2001 ; Zeithaml et al., 1996). Financial and retail services also rely on T-test and Chi square statistics
to forecast customer behavior and perceptions (Hitt and Frei, 2002 ; Paulin et al., 1998 ; Mittal and
Lassar, 1998).

The primary objective of our investigations is not to explore these traditional approaches and rather
focuses on machine learning techniques that are being increasingly encountered in the customer churn
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context. These techniques include supervised and semi-supervised approaches. K-nearest neighbors,
Naive Bayes classifiers, Linear Regression, Logistic Regression, Linear Discriminant Analysis (Xie and
Li, 2008), Decision Tree learning (Hadden et al., 2006 ; Mozer et al., 2000) and Support Vector Ma-
chine are among the widely used supervised algorithms in the context of churn prediction. Algorithmic
modifications (Zadrozny and Elkan, 2001) and cost-sensitive learning variants (Domingos, 1999 ; Za-
drozny et al., 2003) of the aforementioned learning methods have also been proposed in the context
of imbalanced classes, as encountered in churn datasets. Finally, several studies proposed to rely on
ensemble approaches such as Random Forest, AdaBoost (Xie and Li, 2008), Gradient Boosting (Mozer
et al., 2000 ; Lemmens and Croux, 2006) or XGBoost (Gregory, 2018) to tackle the churn prediction
task. Successful semi-supervised methods have been proposed (Li et al., 2016), as well as deep learning
approaches that offer promising results (Tan et al., 2018 ; Gregory, 2018 ; Hadden et al., 2006 ; Mozer
et al., 2000).

The churn prediction problem relates to the broader issue of class imbalance from which the anomaly
or outlier detection is an extreme case (Kong et al., 2020). Efficient anomaly detection systems provide
valuable information in a wide range of diverse domains, such as medical diagnostic systems (Cabral
and Oliveira, 2014), fraud detection (Kamaruddin and Ravi, 2016) or industrial fault detectors (Xiao
et al., 2016). Many approaches have been proposed to tackle the outlier detection task (Chandola et al.,
2009 ; Alam et al., 2020 ; Pang et al., 2017 ; Taha and Hadi, 2019). In particular, semi-supervised
approaches regularly provide state-of-the-art results (Alam et al., 2020 ; Villa-Pérez et al., 2021).
Among the well-known semi-supervised techniques for anomaly detection, one could cite Local Outlier
Factor (LOF) (Breunig et al., 2000), One-Class SVM (ocSVM) (Schölkopf et al., 1999), Isolation
Forest (iForest) (Liu et al., 2012) and Support Vector Data Description (SVDD) (Tax and Duin,
1999) methods. The deep learning research field enabled also the emergence of a large number of
deep anomaly detection methods (Pang et al., 2021). In particular, GEV-NN (Generalized Extreme
Value Neural Network) which proposes to use Gumbel distribution as an activation function, reaches
state-of-the-art results in the context of imbalanced data (Munkhdalai et al., 2020). DevNet (Deviation
Network) also demonstrates efficiency and competing results for anomaly detection (Pang et al., 2019).

2.1.2 Related works
In recent years, churn prediction triggered novel strategies for which machine learning approaches were
used and adapted. The strong interest in churn prediction led to various surveys related to machine
learning in the fields of telecommunication industry, human resources, bank subscription or financial
services. Saradhi and Palshikar (2011) reviewed three machine learning techniques in the employee
churn context, a problem similar to customer churn prediction. They provide comparative results on
a private dataset using a cross-validation procedure. Similarly, Śniegula et al. (2019) compare three
machine learning techniques on a single churn dataset in the context of telecommunication industry.
Keramati et al. (2014) proposed a literature and comparative experimental study with four models
on a private dataset. Other comparative studies based on ensemble machine learning approaches were
also proposed by Risselada et al. (2010), Lemmens and Croux (2006) and Wang et al. (2017).
Umayaparvathi and Iyakutti (2016) literature survey, which focuses on customer churn prediction in
telecommunication, provides a list of regularly encountered models in churn analysis. The authors
indicate four publicly available churn datasets and briefly discuss the possible metrics. A more tho-
rough literature review was proposed by García et al. (2017). Several steps of the churn prediction
analysis are discussed by the authors, among which the data gathering, the features selection, the
model implementation and the possible evaluation procedures and metrics. Their survey concludes
with recommendations based on literature. Several deep learning approaches have been investigated
for churn prediction. In Seymen et al. (2020), the authors proposed a novel deep learning model which
is compared to logistic regression and artificial neural network models. Their study encloses a detailed
literature review of deep learning methods in churn prediction. Beyond this domain, several reviews
dedicated to anomaly detection, which can be seen as an extreme case of churn prediction, have been
proposed. In Ruff et al. (2021), the authors highlight connections between classic shallow and novel
deep approaches applied to anomaly detection. A thorough deep anomaly detection review, recently
proposed by Pang et al. (2021), provides a comprehensive taxonomy of deep learning techniques for
anomaly detection and discusses the associated challenges and perspectives.
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Although interesting, these surveys compare very few machine learning techniques in the churn context
and hardly include any experimental study. Furthermore, comparative results usually involve pri-
vate datasets, making the experiments not reproducible and extrapolation to novel datasets difficult.
Beyond discussion on the models themselves, these reviews typically omit the techniques for classes
rebalancing, which is an important issue for churn prediction. Finally, churn prediction surveys rarely
raised the topic of evaluation procedures that impact the validity and robustness of the evaluations.
Part of this thesis work tries to remedy partially this lack by proposing a large comparative machine
learning study on public churn-like datasets exclusively.

2.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Our goal is to compare multiple alternatives within a machine learning churn analysis pipeline that in-
volves (i) a sampling stage, (ii) a model fitting phase and (iii) a robust evaluation procedure (Fig. 2.1).
An exhaustive analysis of all existing algorithmic variants and cost-sensitive approaches within this
pipeline would not be reasonably feasible. Hence, we rather focus on base learning algorithms in com-
bination with widespread sampling approaches to finally propose a pipeline that is successful on a wide
range of churn-like datasets. In the churn context, several data issues have been pointed out in relation
with classes imbalance (López et al., 2013 ; Błaszczyński and Stefanowski, 2018 ; Stefanowski, 2016),
among which the existence of small disjuncts (Weiss, 2010 ; Weiss and Hirsh, 2000 ; Holte et al., 1989),
the overlap between classes (Denil and Trappenberg, 2010 ; García et al., 2008), the noisy data (Seif-
fert et al., 2014) or the borderline instances (Napierała et al., 2010). For this study, we do not try to
correct for these specific issues and rather focus on the balancing of the classes distribution as it was
shown to play a significant role in the performance of standard classifiers (García et al., 2012). Several
deep learning approaches were proposed to tackle the churn prediction problem (Umayaparvathi and
Iyakutti, 2017 ; Dingli et al., 2017 ; Yang et al., 2018 ; Castanedo et al., 2014). We propose to compare
traditional machine learning approaches to a simple feed-forward neural network and also to more
recent and sophisticated deep learning methods which have been shown to be particularly efficient
for imbalanced data or in the context of outliers detection (Pang et al., 2019 ; Munkhdalai et al., 2020).

In this Chapter, we first provide an overview of publicly available churn datasets (Section 2.2.2).
Then, we introduce the imbalance class distribution issue and describe seven widespread balancing
techniques (Section 2.3). The description of supervised, ensemble supervised, semi-supervised and deep
learning techniques are given in Section 2.4. We also discuss three evaluation procedures (Section 2.5)
and four metrics (Section 2.5.2) before providing the exhaustive experimental results of our pipeline
variants (Section 2.6). Our experiments are performed on sixteen publicly available churn-like datasets
that range from human resources, to telecommunication, internet subscription and music streaming
industry. Our results reveal interesting complementary behaviors between machine learning techniques
(Section 2.6.2) and ultimately indicate an advisable churn analysis pipeline which can be successfully
applied to various churn-like datasets (Chapter 3). We summarized our experimental findings with
Nemenyi tests and Correspondence Analysis visualizations (Section 2.6.3). The overall conclusion is
given in Section 3.4.

All our experiments are performed with freely accessible Python packages (Appendix A.1.2) and
publicly available datasets exclusively (Table 2.1 & Appendix A.1.1). Thus, our results are fully
reproducible and the proposed procedure can be easily applied to novel datasets.

2.2.1 Churn prediction pipeline
This section introduces the machine learning churn prediction pipeline used for our experiments and
the associated variants that we evaluated (Figure 2.1). This pipeline unfolds in three parts, namely
(i) Sampling, (ii) Model fitting and (iii) Evaluation, through which we sequentially combine several
techniques. For the sampling, we explore seven different approaches that either correspond to over-
sampling, undersampling or hybrid (Section 2.3). The sampling objective is to transform the original
churn dataset into a similar dataset with a better class balance, either by reducing the majority class,
expanding the minority class or both. For the model fitting, we consider eleven supervised and semi-
supervised techniques, some of which are ensemble approaches. Finally, we discuss in the evaluation
step three different procedures and four evaluation metrics.
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Figure 2.1 : Machine learning pipeline for churn prediction and analysis

Customer defection is an infrequent event that is inevitably associated with a class imbalance hassle
that impedes the quality of customer churn prediction. This is particularly true when the classes are
highly overlapping and when the minority class is divided into sub-clusters. The class rarity issue is
widespread throughout a broad range of contexts beyond churn prediction such as fraudulent credit
card usage, telecommunication equipment failure or patient survival prediction. In such contexts,
instances of the minority or positive class induce a great cost when they are not well classified.

2.2.2 Public datasets
Several studies have evaluated machine learning approaches for churn modeling on various datasets.
However, these studies typically include private datasets that prevent from reproducibility and extra-
polation to novel datasets. In this thesis, we performed a comparative evaluation of multiple churn
analysis techniques on publicly available datasets only. A churn dataset usually comprises features of
different types that reflect customers behavior. It also generally exhibits a strong class imbalance, as
the proportion of churners is typically lower than the proportion of customers that remain with the
company. Our benchmark datasets are also enriched with three datasets that are usually found in
anomaly detection contexts, namely Fraud, Thyroid and Campaign.

Table 2.1 : Publicly available churn and churn-like (*) datasets with online access link

Link to Data #Instances #Features #Dum.Feat. #churn #non− churn %churn #churn
#non−churn

Fraud* � 284, 807 29 29 492 284, 315 0.0017 0.0017
K2009 � 50, 000 230 1, 039 3, 672 46, 327 0.07 0.08
Thyroid* � 7, 200 21 21 534 6, 666 0.07 0.08
KKbox � 970, 960 49 56 87, 330 883, 630 0.09 0.10
UCI � 5, 000 20 21 707 4, 293 0.14 0.16
Campaign* � 41, 188 17 63 4, 640 36, 548 0.12 0.13
HR � 1, 470 34 86 37 1, 233 0.16 0.19
TelE � 190, 776 19 26 29, 884 160, 892 0.16 0.19
News � 15, 855 18 307 3, 037 12, 818 0.19 0.23
Bank � 10, 000 12 16 2, 037 7, 963 0.20 0.25
Mobile � 66, 469 65 65 13, 907 52, 562 0.21 0.27
TelC � 7, 043 20 34 1, 869 5, 174 0.27 0.37
C2C � 71, 047 71 75 20, 609 50, 438 0.29 0.41
Member � 10, 362 14 26 3, 143 7, 219 0.30 0.43
SATO � 2, 000 13 29 1, 000 1, 000 0.50 1
DSN � 1, 401 15 32 700 700 0.50 1

Table 2.1 lists the public churn datasets that are considered in this work and provides their online
access (see also Appendix A.1.1). These datasets have diverse number of instances, number of features
and dummified features ∗, and percentage of churners. The Figure 2.2 gives the distribution of these

∗Before fitting a model, categorical variables are converted to their numerical representation through a dummification
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Figure 2.2 : Datasets distribution on the two first PCA components of Table 2.1

datasets in the 2D space obtained with the two first PCA (Principal Component Analysis) components
based on the Table 2.1. Although the Figure 2.2 suggests similarities between several datasets, it
is important to remind that multiple intrinsic data properties might impact the prediction in the
churn context, such as the existence of small disjuncts, the overlap between classes, the noisy data or
the borderline instances (see Section 2.2). Hence, directly drawing conclusions on the most suitable
machine learning based on the general characteristics given in Table 2.1 remains challenging.

Churn datasets call for the use of various sampling methods (Batista et al., 2004 ; Batuwita and
Palade, 2010) to change the class distribution. These methods consist in either introducing data
points within the minority class (oversampling), removing datapoints from the majority class (un-
dersampling) or applying both sampling strategies (hybrid). Basic and advanced sampling methods
have been proposed (Chawla et al., 2002 ; Deville and Tillé, 2004), and several studies showed that
undersampling tends to overtake oversampling (Chen et al., 2004 ; Drummond et al., 2003).

2.3 Data sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3.1 Oversampling
The oversampling methods generally consist in duplicating instances in the minority class or syn-
thesizing new examples from the available instances. A straightforward oversampling approach is the
random oversampling that randomly selects the instances to be replicated (Ling and Li, 1998). Ho-
wever, random replication can impede the decision boundary performance by for instance repeating
outliers. We describe in the following two more sophisticated and widely used oversampling approaches,
namely the Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al., 2002 ; Fernández
et al., 2018) and the Adaptative Synthetic Sampling (ADASYN) (He, H., Bai, Y., Garcia, E., & Li,
2008).

(i) Synthetic Minority Oversampling Technique The SMOTE technique consists in over-
sampling the minority class by generating synthetic instances along the line segments created by a
k-nearest neighbors approach. Specifically, a sample x is taken at random from the minority class.
Then, its k-nearest neighbors {xi}i∈{1...n} are considered and used to generate a new synthetic instance
following the formula,

xnewi = x + U([0, 1])× (xi − x).
While the simple duplication of random instances won’t bring any information, new SMOTE ins-
tances are plausible observations, similar to original instances from the minority class. However, while
SMOTE helps avoiding the overfitting problem, its synthetic instances might be ambiguous in case of
strongly overlapping classes.
process where each category becomes a binary variable.
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Figure 2.3 : SMOTE Algorithm

To address this issue, three extensions have been proposed, namely Borderline SMOTE (Han et al.,
2005), Borderline Oversampling SVM (Nguyen et al., 2011) and ADASYN (He, H., Bai, Y., Garcia,
E., & Li, 2008). The Borderline SMOTE focuses on generating instances based on observations that
are difficult to classify, according to a k-nearest neighbors classifier while Borderline Oversampling
SVM uses a SVM classifier to generate new instances. In the following, we focus on the third SMOTE
extension, ADASYN.

(ii) Adaptive Synthetic method ADASYN, which is based on SMOTE, adaptively generates
minority data instances according to their distributions. Specifically, more synthetic instances are
generated in the features space regions where the observations density is low, and conversely, fewer
synthetic instances are generated from the high density regions. Hence, ADASYN focuses on the class
separation boundary region. As for Borderline SMOTE and Borderline Oversampling SVM, it would
be advisable to remove outliers before applying ADASYN.

2.3.2 Undersampling
Undersampling techniques delete instances from the majority class or select a subset of examples. A
straighforward approach is to randomly delete instances. However, this can be hazardous and make
the classification task more complex as it could lead to the removal of important observations. Tomek
Links (Tomek, 1976) and Neighborhood Cleaning rule (NCR) (Laurikkala, 2001) are more advanced
undersampling strategies.

(i) Neighborhood Cleaning rule The NCR technique combines two methods that remove from
the majority class the instances that are (i) redundant and (ii) noisy or ambiguous. The first technique
is the Condensed Nearest Neighbor (CNN) Rule (Hart, 1968), that selects a minimal consistent set
which is a subset of observations from the majority class that cannot be correctly classified. These
samples are considered more relevant for learning. The second approach is the Edited Nearest Neighbors
(ENN) Rule (Wilson, 1972). It finds and removes noisy and ambiguous instances using a k-nearest
neighbors approach. With ENN, if a majority class instance is misclassified by its neighbors, it is
removed from the dataset. Besides, if a minority class instance is misclassified by its majority class
neighbors, the majority class neighbors are also deleted. As shown in Laurikkala (2001), NCR is useful
to learn a model upon difficult small classes.

(ii) Tomek links This technique builds on the Condensed Nearest Neighbor (CNN) Rule (Hart,
1968) and proposes to identify all cross-class pairs of datapoints, i.e. pairs that have a sample from
the majority and the minority class that are closest neighbors. Hence, majority samples that belong
to Tomek links are either boundary instances or noisy instances and should be removed. It is also
common to combine CNN and Tomek links, as the former will remove redundant samples, while the
later deletes noisy/borderline instances.

2.3.3 Hybrid
Over problems beyond the class distribution skewness are usually encountered with churn-like da-
tasets, such as classes overlapping where majority class examples invade the minority class space
and conversely. To create a better class separation while balancing the data, various combinations
of upsampling and undersampling methods have been proposed. A straightforward hybrid method is
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Figure 2.4 : Tomek Algorithm

to combine SMOTE and Random Undersampling approaches. Chawla et al. (2002) shown that this
combination performs better than plain undersampling. A more sophisticated combination, proposed
by Batista et al. (2003), combines SMOTE with Tomek Links. It has been successfully applied on an
imbalanced genomics dataset.

(i) SMOTE and Random Undersampling As detailed in Section 2.3.1, SMOTE selects instances
that are similar in the features space and synthesizes new instances in between. This technique in-
creases the size of the minority class. A random deletion of instances from the majority class, in
combination with this approach, helps to improve the data balancing and the class clusters separa-
tion. However, an obvious limitation with the random undersampling stage is that information-rich
samples might be deleted from the majority class.

(ii) SMOTE and Tomek Links This combination has been proposed in Batista et al. (2003). It
first uses SMOTE to oversample the minority class by creating synthetic samples. However, as class
clusters are generally not well defined, synthetic minority class examples can invade the majority class
leading to overfitting. Applying Tomek links undersampling procedure on the over-sampled dataset
by removing the cross-class pairs finally produces a balanced dataset with well defined class clusters.

(iii) SMOTE and NCR For this technical survey, we also propose to combine SMOTE with NCR.
Our experimental results (Section 2.6) show that these two sampling approaches tend to improve
some machine learning techniques. NCR has a positive effect on non ensemble approaches. SMOTE
preferentially improves LR. By combining SMOTE and NCR, we expect an improvement of several
machine learning techniques compared in this survey.

Our experiments demonstrate that churn prediction performance is only slightly impacted by sampling
strategies. More precisely, when considering a particular machine learning approach for a given dataset,
a significant improvement can be locally observed. However, a global improvement of all the machine
learning approaches cannot be observed. Rebalancing performance strongly depends on the couple ML
& sampling approaches, as well as on the dataset (see results in Section 2.6.2).

2.4 Machine learning techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We detail in this section the most widespread data mining techniques that have been proposed to
tackle the customer churn prediction task. In the following, we mainly focus on base machine learning
approaches that do not embed any weight correction for the imbalance nature of churn datasets. For
our experiments, we rather choose to alleviate the class imbalance using sampling approaches. We
invite the reader to refer to the literature which is abundant on the variants of machine learning
methods in the context of imbalanced data (López et al., 2012 ; Haixiang et al., 2017 ; Zadrozny and
Elkan, 2001 ; Domingos, 1999 ; Zadrozny et al., 2003). We also introduce several machine learning
techniques which are suitable for strongly imbalanced data and usually applied in anomaly detection.
Hence, Section 2.4 reports several supervised and semi-supervised learning algorithms and supervised
ensemble methods. It also briefly covers some aspects of semi-supervised techniques.
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2.4.1 Supervised learning
(i) k-nearest neighbors The k-nearest neighbors (k-NN) is a non parametric memory-based
algorithm. It assigns to an instance xi the label that corresponds to the majority label among its k
closest training samples Ωk. Formally,

p(Ci = g | xi) =
1

K

∑
j∈Ωk

1{xj}

where the indicator function 1 is defined as being equal to one when xi ∈ +, zero otherwise. k-NN
depends on two main parameters, namely (i) the number of neighbors k and (ii) a pairwise metric
distance function. For continuous data, the following distance is commonly used dist(xi, xj) = ||xi−xj ||
with xi, xj ∈ Rd ( ||.|| denotes the Frobenius norm). The simplicity and efficiency of k-NN have made
this algorithm very attractive in the field of machine learning. Yet, it has several significant drawbacks
when used on churn-like data, as shown in (Dubey and Pudi, 2013 ; Tan, 2005).

(ii) Naive Bayes Classifier The Gaussian Naive Bayes (Gnb) classifier (John and Langley,
1995 ; Hand and Yu, 2001) is appropriate in a high feature space context, when the density estima-
tion is difficult. The term naive results from a simplifying assumption that posits the conditional
independence of the d features xj given the class value k. This leads to

fk(xi) =
d∏
j=1

fkj(xij |k). (2.1)

Note that from Eq. 2.1, we can formally write the Gnb classifier function as a generalized additive model.
The Gnb classifier is simple, scalable and often outperforms more complex approaches. Although, it
appears to be sensitive to the class imbalance issue (Chowdhury and Alspector, 2003 ; Rennie, 2001 ;
Bermejo et al., 2011) - in particular due to the strong bias in the prior estimation -, good results can
also be achieved for the churn prediction problem (Huang et al., 2012).

(iii) Logistic Regression The logistic regression (LR) models the posterior probability of the
classes via a linear function in x. In a binary context, such as churn prediction, the posterior probability
of the positive class simply amounts to,

P (C = +|x) = exp(β+0 + β+x)
1 + exp(β+0 + β+x)

and sum to 1 with P (C = −|x). This model is usually fitted by the maximization of the likelihood
L(θ). The maximization can be made with the Newton-Raphson algorithm, which requires the second
derivative of L(θ). Hence, fitting the LR model amounts to solve,

∂L(β)

∂β
= X>(Y − p) and ∂2L(β)

∂β∂β> = −X>WX

where p is the vector of fitted probabilities, pi = P (Ci = +|xi), and W is a n×n diagonal matrix with
wii = pi(1− pi). These equations can get solved repeatedly, following the IRLS algorithm (iteratively
reweighted least squares) Burrus et al. (1994). In the context of unbalanced datasets, it has been shown
that the bias of the regression vector intercept tends to be stronger with the unbalanced ratio (Owen,
2007 ; Salas-Eljatib et al., 2018). This issue can be overcome with a prior correction that takes into
account the minority class or with a penalized likelihood where the maximum likelihood formula is
weighted by the fraction of ones in the target variable (King and Zeng, 2001). The good performance
of LR was previously pointed out in Burez and Van den Poel (2009).

(iv) Support Vector Machine The Support Vector Machine (SVM) was introduced by Vapnik
(1998) as a kernel based machine learning model for classification and regression task. A recent survey
is available in Cervantes et al. (2020). The SVM classifier aims to construct an optimal separating
hyperplane between two linearly separable classes, and can be extended to the non-separable case.
The hyperplane can be defined as,

{xi|
d∑
j=1

xijβj + β0 = x>
i β + β0 = 0}
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where the coefficients βj are defined up to a multiplicative factor. Thereby the SVM classification
problem can be formally written as,

minβ,β0 ||β||2 subject to yi(x>
i β + β0) ≥ 1, i ∈ {1 . . . n}.

In the case of overlapping classes, the SVM classifier can be optimized by allowing for some points to
be on the wrong side of the margin, with a cost of ξ = (ξ1, . . . , ξn). Hence, bounding the

∑
i ξi by a

constant C leads to bounding the total number of misclassifications, and the standard SVM classifier
problem can finally be expressed as,

minβ,β0
||β||2 subject to

{
yi(x>

i β + β0) ≥ 1− ξi ∀i
ξi ≥ 0,

∑
i ξi ≤ C. (2.2)

The SVM as described above, uncovers linear boundaries in the input feature space. Based on a quadratic
programming solution using Lagrange multipliers, we can re-express the SVM classifier problem of
Eq. 2.2 as the following Lagrangian dual objective function,

LD =

n∑
i=1

αi −
1

2

n∑
i,i′=1

αiαi′yiyi′x>
i xi′ . (2.3)

We then maximize LD subject to 0 ≤ αi ≤ C,
∑n
i=1 αiyi = 0 and the Karush-Kuhn-Tucker conditions

to find the solution for β.

Note that we can easily enlarge the feature space by using basis expansions h to identify nonlinear
boundaries in the original space. This only requires the use of a kernel function, K(x, x′) = 〈h(x), h(x′)〉
at the inner product position of Eq. 2.3. Three widespread kernel functions are regularly encountered
in the SVM literature, namely Radial basis, Neural network and dth-Degree polynomial functions.
Since SVM only takes into account the support vectors, i.e. the points that are closed to the boundary,
it is an interesting candidate for moderately imbalanced datasets (Akbani et al., 2004 ; Coussement
and Van den Poel, 2008), although it performs poorly when the class distribution is too skewed (Tian
et al., 2011).

(v) Decision Tree The Decision Tree (DT) method iteratively partitions the feature space into a
set of rectangles, for which split-points achieve the best fit, until a stopping rule is reached. Within each
partition, or region Rm, the target variable Y can be modeled as a constant cm (Breiman et al., 1984 ;
Friedman et al., 2001). A major advantage of tree-based methods is that the recursive binary partition
is highly interpretable, and somehow mimics a logical human thinking. For classification purpose, the
best split point s is obtained with an impurity measure Qm that is based on the proportion p̂mk of
class k in the region Rm with Nm observations,

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (2.4)

where I is an indicator function. Hence, at node m, observations are classified at the class k(m) that
maximizes the proportion in Eq. 2.4. Three impurity measures are usually encountered in DT classi-
fication, namely Misclassification error, Gini index and Cross-entropy, the two last measures being
generally preferred as they are differentiable and more sensitive to changes in the node probabilities.
In a binary classification problem, such as churn, the Gini index and the Cross-entropy measures
simple amount to 2p(1− p) and −p log(p)− (1− p) log(1− p) respectively, weighted by the number of
observations in the obtained regions at split. In the context of imbalance datasets authors argue that
decision trees are not viable (Weiss, 2004 ; Branco et al., 2016), while others propose an insensitive
splitting strategies based, for instance, on the Hellinger distance (Yin et al., 2013 ; Branco et al., 2016).

(vi) Deep neural networks Deep neural techniques have led to state-of-the-art results in various
application domains. While generally efficient on datasets with balanced class distribution, deep
neural networks performance can be severely impede by imbalanced classes (Wang et al., 2016b ;
Zhou et al., 2020). To overcome this issue, some authors focused on specific loss function (Wang et al.,
2016b) or cost-sensitive learning (Zhou and Liu, 2005) on neural networks.
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Recently, Munkhdalai et al. (2020) proposed an end-to-end deep neural network architecture using
the Gumbel distribution as an activation function to tackle the class imbalance issue. Their propo-
sal, so-called GEV-NN (Generalized Extreme Value distribution), outperforms the state-of-the-art
baselines while giving a beneficial advantage to interpret variable importance. GEV-NN framework
decomposes in three components : (i) a feed-forward weighting neural network which provides variable
scores to adaptively control input variables (Munkhdalai et al., 2019), (ii) an auto-encoder to generate
encoded representation and extract efficient features for the minority class (Zong et al., 2018) and (iii)
a prediction network that receives a concatenation of scored input variables, encoded representation
and features.

A key element of the GEV-NN approach is the Gumbel distribution which is used as an activation
function (Cooray, 2010). Also known as Generalized Extreme Value distribution, it is widely used
to model the distribution of extreme samples and has been extensively applied to characterize, for
instance, age at death or risk assessment in financial context. Its cumulative distribution function is gi-
ven by F (x) = e−e

−x . The Gumbel function asymmetry naturally provides a different misclassification
penalization on both classes.

Among the above mentioned approach, our experiments revealed that GEV-NN was on average, over
all considered churn-like datasets, the best performing machine learning technique (without sampling
pre-processing, GEV-NN being by design intended for imbalanced data). Interestingly, this sophisti-
cated deep approach, usually dedicated to anomaly detection, is closely followed by the well-known
logistic regression (see results in Section 2.6.2).

2.4.2 Ensemble Supervised Learning
Ensemble methods are meta-algorithms that combine several models into one predictive model in
order to decrease variance (bagging) or bias (boosting).

(vii) Bagging and Random Forest Bagging, which stands for bootstrap aggregation, is an
ensemble method for improving unstable estimation or classification schemes. In Breiman (1996)
the author motivated bagging as a variance reduction technique for a given base classifier, such as
decision tree. This approach stands out from basic ensemble algorithms by fitting a new model to a
bootstrap resample of size less than n. As M models are trained, the final decision f̂bag averages the
M decision rules f̂m(X) obtained from the boostrapped training sets. The Random Forest approach
applies bagging to decision trees while sampling the variables (Breiman, 2001 ; Friedman et al., 2001).
Specifically, the DT algorithm creates subpartitions by choosing a variable among the available features
and splitting following an impurity criterion such as Gini. With RF, the choice of the variable is done
within a random subset of features. This ensemble strategy produces more accurate predictions than
DT. The easily interpretable decision rules are not available anymore, by contrast with DT, however RF
can provide a measure of feature importance for the model accuracy. Previous studies highlighted the
good performance of RF on imbalanced datasets (see for instance Chen et al. (2004)).

(viii) eXtreme Gradient Boosting The boosting method is similar to bagging in that it com-
bines the results of several classifiers, which are commonly decision trees. Yet, in the boosting strategy,
each model tries to minimize the errors of the previous model, by contrast with bagging. The well-
known variants of boosting are Adaboost, gradient boosting and stochastic gradient boosting which
is the most general and widely used boosting technique. The key ingredient of Adaboost is the observa-
tion weights wi, that are larger for misclassified instances. Hence, the approach forces the model f̂m to
train harder on the data for which it performs poorly and iteratively updates the weights. Each model
seeks to minimize the weighted error em, which corresponds to the sum of the weights for the misclas-

sified observations. Finally, the boosted estimate is given by F̂ =
M∑
m=1

αif̂i where the αi = log(1−em)
em

ensure that the models with less errors have a larger weight in the final decision. Instead of adjusting
weights, the gradient boosting variant optimize a cost function, while the stochastic gradient boosting
strategy adds observations and variables sampling at each iteration. The most widely used imple-
mentation for boosting is XGBoost, a computationally efficient implementation of stochastic gradient
boosting (Chen and Guestrin, 2016). It is interesting to note that with certain parameters setting, the
boosting algorithm can emulate RF. When dealing with imbalanced dataset, XGBoost has been shown
to outperform other types of methods Zhao et al. (2018). Yet, some studies are less optimistic and
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suggest that XGBoost should be combined with other ensemble methods to achieve state-of-the-art
performance (Ruisen et al., 2018).

When considered the ensemble machine learning techniques in our benchmark algorithms, our expe-
riments revealed that random forest and XGBoost were on average, over all considered churn like
datasets, the third and fourth best performing machine learning technique. When combined with a
sampling pre-processing step, we found that a straightforward neural network performed better than
these ensemble techniques (see results in Section 2.6.2).

2.4.3 Semi-supervised learning
Although very few churn prediction and analysis studies focus on semi-supervised techniques, we briefly
address this type of approaches as they could be of great interest for future innovative developments
in the field.

Semi-supervised techniques have been widely studied in the context of anomaly detection, an ex-
treme case of churn prediction. These approaches combine unsupervised learning - which does not
require labeled data - and supervised learning - which learns from labeled data. Semi-supervised tech-
niques can be either generative, discriminative or a combination of both. Generative models attempt to
model the joint probabilities of examples and their labels. Once this joint probability is modeled, one
can generate new examples for a particular class, as well as determine the most likely class for a given
example. Discriminative models restrict themselves to determining the most likely class for a given
example by estimating the probability of each class given the data example. Discriminative models do
not model the classes, so generation of new class examples is difficult. An example of semi-supervised
learning in the context of churn for telecommunication area can be found in Benczúr et al. (2007).
More recently, Xiao et al. (2018) propose to combine a semi-supervised approach with Metacost, a
cost-sensitive model, in an ensemble strategy.

In the context of anomaly detection, One-Class Support Vector Machine (ocSVM) (Schölkopf et al.,
1999) and Isolation Forest (iForest) (Liu et al., 2012) are among the most widely used semi-supervised
anomaly detection algorithms. ocSVM identifies the smallest hypersphere containing the majority class
datapoints (Tax and Duin, 1999). As for SVM (Section 2.4.1), ocSVM supports the introduction of a
kernel function to allow for more flexibility. Although interesting, this approach does not perform well
on large databases (Villa-Pérez et al., 2021). Indeed, ocSVM introduces significant memory requirements
and is computationally expensive when the number of instances increases. By contrast, iForest (Liu
et al., 2012) has a low linear time complexity and a small memory requirement. This approach posits
that outlier datapoints can be isolated more easily than normal datapoints. iForest is based on
a recursive 2D partitioning that can be represented by a tree structure (Section 2.4.1), so-called
Isolation Tree. Anomalies or outliers correspond to leaf node with the smaller path length in the tree.
This approach has been shown to perform well on imbalanced datasets in several studies (Villa-Pérez
et al., 2021 ; Pang et al., 2019).

Recently, Pang et al. (2019) proposed a semi-supervised deep anomaly detection framework, so-
called DevNet, which outperforms state-of-the-art methods. DevNet relies on neural deviation lear-
ning, requires few labeled anomalies and uses a prior probability that enforces statistically significant
deviations of the anomaly scores. Specifically, DevNet decomposes as follows : (i) assigning an ano-
maly score to each training data object, (ii) providing a reference score based on the mean of the
anomaly scores of normal data objects based on a prior probability and (iii) defining a loss function
(deviation loss) to enforce statistically significant deviations of the anomaly scores as compared to
normal data objects. A strength of DevNet framework is that it can naturally accommodate anomalies
with different anomalous behaviors.

2.5 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5.1 Validation strategies
Model validation aims at estimating how effective is the model for the predictions of unseen instances.
A straightforward validation principle is the holdout set, where some data subset that was not used
for the training is used for evaluating the predictions of the trained model. We describe and discuss in
the following subsections two validation approaches that build on and improve the holdout set idea.
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Cross-validation A clear disadvantage of the holdout set strategy is that a portion of the data
is lost for the model training. This especially becomes an issue when the dataset is small. The cross-
validation addresses this issue by defining a training set and a validation set, and then switching the
sets before combining the two validation scores.

K-fold validation The aforementioned cross-validation idea can be expanded to more subsets or
folds, which is of great interest when data are scarce. The dataset is split in K subsets of equivalent
sizes and the model is fitted on K−1 folds. The prediction error of the fitted model is then calculated
on the kth unseen subset. This strategy is repeated K times while taking another subset as validation
set. Finally, the K estimates are combined. This is known as K-fold cross-validation. A typical value
for K is 5 or 10 (Kohavi et al., 1995 ; Breiman and Spector, 1992 ; Burman, 1989). The K-fold cross
validation is not appropriate as is for evaluating models on churn-like datasets which are typically
imbalanced (He and Ma, 2013). Indeed, as the data is split into K-fold with a uniform probability
distribution, it is likely that one or more folds will have few or no examples from the minority class,
which in turn severely impedes the model training.

Stratified K-fold validation The dataset imbalance issue can be addressed with a stratified
sampling, where the target variable y is used to control the sampling process. Hence, for a K-fold
cross validation procedure, each fold will roughly contain the same distribution of class labels as the
whole dataset.

The stratified K-fold validation is the validation strategy retained for our experiments, as it is the
validation procedure that would be applicable in both balance and imbalance class contexts.

2.5.2 Evaluation metrics
The assessment procedure of a predictive model can rely on different metrics. Several metrics have
been proposed in marketing and machine learning areas. We present in the following the most common
metrics and emphasize their strengths and drawbacks when tackling churn-like data.

Metrics based on probability The Top decile-lift is one of the oldest evaluation metric among
marketers to evaluate and compare predictive models. It is also a widespread measure in the churn
literature (Burez and Van den Poel, 2009 ; Lemmens and Croux, 2006). The lift measure considers the
observations/customers in order of their predicted probability of being churners. Specifically, when
focusing on the 10% riskiest customers, the top decile-lift gives the ratio between the proportion of
churners in the risky segment, π10%, and the whole proportion of churners in the validation set, π,
lift10% = ˆπ10%/π̂. Hence, this measure evaluates if churners predicted as risky are actually at risk.
The top decile-lift is directly related to the profitability or gain (Neslin et al., 2006) which is formally
defined as,

GAIN = nαπ̂(∆lift10%) [γLVC − δ(γ − ψ)]

where n is the number of customers, α is the number of customers under study (here, 10%), ∆lift10%
is the top decile-lift increase, γ is the success rate of the incentive among the churners, LVC is the
lifetime value of a customer Gupta et al. (2004), δ is the incentive cost among customers and ψ is the
success rate of the incentive among the non-churners.

Gini coefficient While the top decile-lift measure focuses on the 10% riskiest customer, the Gini
coefficient takes also into account the less risky customers. This coefficient is formally defined as
follows,

Gini = 2

M

M∑
`=1

(πc` − π`)

where M is the size of the validation set, πc` is the fraction of actual churners above the threshold
f̂(xi), π` the fraction of customers above the same threshold f̂(xi) and f̂(xi) corresponds to a predicted
churn probability. In the same way as for the top decile-lift, the Gini coefficient takes advantage of the
predicted churn probabilities. It is also a complementary measure as it considers the ability to predict
less risky customers.
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Metrics from confusion matrix Let TP be the True Positive, the number of customers predic-
ted as churners who actually churned, and FP, False Positive, the number of customers predicted as
churners who did not churn. Similarly, we can define TN, True Negative, the number of customers pre-
dicted as non churners who did not resign, and FN, False Negative, the number of customers predicted
as non churner who actually churned. Hence, the number of correct predictions would be (TP+TN).
By dividing with the total number of predictions (TP+TN+FP+FN), we obtain the accuracy that
can summarize the classification performance of a model. However, using accuracy for churn predic-
tive model evaluation is not appropriate as the data is strongly imbalanced (Weiss, 2004). We present
below two metrics that are advisable in the churn context.

F1 score This score summarizes the Precision and Recall metrics. The Precision estimates the
ability of the model to obtain TP among its positive predictions, i.e. Precision = TP

TP+FP . It
is a complementary measure to the Recall, that evaluates the ability of the model to recover
TP, i.e. Recall = TP

TP+FN . The F1 score proposes an harmonic mean of these two metrics, F1 =

2× Precision·Recall
Precision+Recall .

Area Under the Curve (AUC) The AUC measure first requires to express the performance
of the model with a Receiver Operating Characteristic (ROC) curve. This curve gives the True
Positive Rate (TPR = TP

TP+FN ) as a function of the False Positive Rate (FPR = FP
FP+TN ) for

a series of decision thresholds. The AUC corresponds to the Area Under the Curve. Hence, it
provides an aggregated performance measure for all possible ranking thresholds. This measure
can be interpreted as the probability that the model correctly classifies an instance as positive as
compared to a negative instance.

The Area Under the Curve (AUC) metric is the metric strategy retained for our experiments evalua-
tions, as it is the metric that is the most advisable in imbalance class contexts.

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This section presents the churn prediction evaluations for several variants of our pipeline (Fig. 2.1).
The retained datasets cover a range of domains where churn is regarded as a core issue (Table 2.1).
We first summarize the experiments settings and necessary preprocessing steps. We then detail the
machine learning performance on these datasets when associated to a sampling approach or not.

2.6.1 Experimental settings
We consider nine popular supervised algorithms - namely K-Nearest Neighbors (k-NN), Gaussian
Naive Bayes (Gnb), Logistic Regression (LR), Support Vector Machine with Radial Basis Function
kernel (SVM-rbf) and without kernel (SVM)†, Decision Tree (DT), Random Forest (RF), XGBoost, a
feed-forward neural network (NN) and GEV-NN - in association with different undersampling, oversam-
pling and hybrid sampling strategies. Two semi-supervised techniques are also considered, namely
iForest and DevNet‡. All the implementations are freely available from python packages. We mainly
kept default parameters (Appendix A.1.2).

In this comparative study, we focus on the association between several machine learning techniques,
sampling strategies and datasets in a churn prediction context. Hence, we do not resort to hyperpa-
rameters tuning. We adjusted the sampling so as to obtain a balance distribution as suggested by the
AUC results presented in Weiss and Provost (2003), where the authors show that the best class distri-
bution for learning tends to be near the balanced class distribution. Our evaluations follow a stratified
K-fold cross validation procedure where K = 5 (K ∈ [5, 10] is typically advised in the literature ; see
for instance Kohavi et al. (1995) ; Breiman and Spector (1992) ; Burman (1989)).

Several preprocessing steps where performed on all datasets. First, we exclude features that take a
unique value for each observation (e.g. customer ID, phone number, address). Besides, only observa-
tions with less than 20% missing feature values are retained. All numeric variables are standardized.

†In our experiments, we consider both the linear SVM and the SVM-rbf, which is a kernel SVM using the Radial basis
function, following Amnueypornsakul et al. (2015)

‡GEV-NN, iForest and DevNet being specifically designed for imbalance binary classification or anomaly detection,
these approaches are only evaluated without sampling.
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The missing values are replaced by the feature mean for numeric variables and the majority category
for a categorical variable (see Appendix A.1.1 for details).

2.6.2 Experimental results
We evaluate the churn prediction for all the pipeline alternative as given in Figure 2.1. The evaluation
procedure follows a stratified 5-fold cross-validation. Results are given in AUC without sampling
(Table 2.2), and with various oversampling (Table 2.3), undersampling (Table 2.4) and hybrid sampling
approaches (Tables 2.5 & 2.6). The mean rank and the median AUC (ÃUC) for each algorithm are
given in the last two rows of each table.

Table 2.2 : AUC Classification results (No Sampling approach).

Dataset k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN GEV-NN iForest DevNet

Fraud 0.8990 0.9217 0.9766 0.9465 0.9441 0.8660 0.9466 0.9456 0.9573 0.9707 0.9459 0.9621
K2009 0.5004 0.5002 0.5135 0.5052 0.4989 0.4993 0.5114 0.5112 0.4999 0.5058 0.4975 0.4997
Thyroid 0.7598 0.5876 0.8645 0.9821 0.9786 0.9834 0.9996 0.9994 0.6223 0.9941 0.7551 0.7924
KKBox 0.5835 0.6468 0.6763 0.5022 0.4983 0.5302 0.6442 0.6800 0.6994 0.7054 0.5757 0.6184
UCI 0.7731 0.8477 0.8244 0.5963 0.7528 0.8447 0.9182 0.9174 0.8033 0.9137 0.6711 0.8139
Campaign 0.7596 0.8271 0.9331 0.5971 0.6451 0.7290 0.9395 0.9322 0.9134 0.9362 0.7338 0.7687
HR 0.6575 0.7442 0.8596 0.8091 0.4984 0.6053 0.7867 0.7993 0.6310 0.8558 0.6243 0.7677
TelE 0.8226 0.7505 0.7584 0.5335 0.6098 0.8514 0.9380 0.9411 0.8924 0.9320 0.5883 0.6769
News 0.7484 0.5655 0.8369 0.5958 0.6227 0.6754 0.8615 0.8323 0.8266 0.8525 0.5364 0.7003
Bank 0.7768 0.7166 0.8322 0.6645 0.7248 0.6908 0.8506 0.8216 0.8295 0.8583 0.6969 0.7686
Mobile 0.7567 0.7201 0.9030 0.4605 0.5463 0.6660 0.8095 0.7816 0.9118 0.8916 0.7963 0.8576
TelC 0.7822 0.8245 0.8458 0.6498 0.6548 0.6555 0.8210 0.7983 0.8357 0.8404 0.4542 0.7897
C2C 0.4387 0.5181 0.5222 0.4578 0.4656 0.4440 0.3518 0.3862 0.4541 0.3698 0.4985 0.4878
Member 0.5827 0.5914 0.6146 0.4874 0.5088 0.5462 0.6130 0.5987 0.6084 0.6243 0.5606 0.6283
SATO 0.6900 0.7272 0.7594 0.7116 0.7153 0.6365 0.7882 0.7396 0.7367 0.7600 0.6321 0.7030
DSN 0.6576 0.6671 0.7319 0.6868 0.6293 0.7350 0.8590 0.8516 0.6537 0.7493 0.6282 0.6941

ÃUC 0.7526 0.7184 0.8283 0.5967 0.6260 0.6707 0.8358 0.8104 0.7700 0.8542 0.6262 0.7353
Rank 8.06 7.19 3.19 9.00 9.56 8.62 3.38 4.44 5.69 2.88 9.69 6.31

The median AUC (ÃUC) given in Tables 2.2 to 2.6 indicates only small ÃUC variations over sam-
pling strategies. We can notice that the sampling methods generally degrade ÃUC for RF as compared
to results obtained without sampling (from ÃUC = 0.8358 to ÃUC = 0.8020). Only SMOTE com-
bined with NCR strongly increases RF ÃUC (0.8404). On average, XGBoost performance is slightly
improved when using NCR and SMOTE combined with NCR (+0.0188 and +0.0186).

The approach that benefits the most from the sampling strategies is NN, with a maximum ÃUC
increase of 0.0728 with SMOTE + Tomek Links. The top approaches over all datasets and sampling
strategies are LR, RF, XGBoost and NN, with a mean rank of 2.61, 3.21, 3.33 and 3.66 respectively. When
considering particular methods and datasets, greater improvement can be observed. For instance,
combining SVM with NCR increases AUC of 0.1081 on C2C. The performance of XGBoost is also
increased when using the hybrid sampling SMOTE & Tomek Links (from 0.8516 to 0.8694) on DSN.
We notice an AUC increase of 0.0124 when using SMOTE in combination with NCR on Member with
LR. While a global improvement of all the machine learning approaches cannot be observed, local
improvements can be observed for given methods and samplings, depending on the datasets.

It is important to highlight the almost systematic complementary behaviors of LR, RF, XGBoost and
NN overall datasets. As can be seen from Table 2.3 to Table 2.6, whenever LR is not the best approach,
XGBoost, RF or NN outperforms the other machine learning techniques, and conversely (see for instance
bold values of Table 2.4, Tomek Links or Tables 2.5, SMOTE & Random Undersampling). This finding
suggests the use of an ensemble method based on the top four approaches, LR, XGBoost, RF and NN
(see Chapter 3).
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Table 2.3 : Oversampling methods : AUC Classification results (top, SMOTE ; bottom, ADASYN).

SMOTE k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min
Fraud 0.9054 0.9238 0.9751 0.7062 0.3136 0.8408 0.9693 0.9462 0.9648 0.6615
K2009 0.5001 0.4991 0.5135 0.4965 0.4993 0.5022 0.5023 0.4991 0.5054 0.0170
Thyroid 0.8006 0.5644 0.9039 0.8394 0.7128 0.9846 0.9995 0.9992 0.8624 0.4351
KKBox 0.5918 0.6430 0.6763 0.5590 0.4370 0.5272 0.6129 0.6414 0.6851 0.2481
UCI 0.7871 0.8273 0.8278 0.5327 0.7729 0.8490 0.9130 0.9154 0.8701 0.3827
Campaign 0.7657 0.7712 0.9311 0.6063 0.5761 0.7521 0.9406 0.9318 0.9258 0.3645
HR 0.6631 0.7168 0.8501 0.7066 0.5040 0.6309 0.7304 0.7905 0.7412 0.3461
TelE 0.8277 0.7497 0.7626 0.5470 0.5692 0.8482 0.9373 0.9421 0.9094 0.3951
News 0.7452 0.5664 0.8336 0.5651 0.6337 0.6881 0.8136 0.8333 0.8428 0.2777
Bank 0.7744 0.7861 0.8325 0.5830 0.7204 0.6940 0.8255 0.8234 0.8422 0.2592
Mobile 0.6479 0.6993 0.8942 0.6185 0.4404 0.6570 0.8138 0.7835 0.9124 0.4720
TelC 0.7650 0.8224 0.8451 0.5098 0.6881 0.6656 0.8007 0.7941 0.8439 0.3353
C2C 0.4375 0.5033 0.5160 0.4965 0.4751 0.4415 0.3944 0.3878 0.4348 0.1282
Member 0.5865 0.5936 0.6213 0.5176 0.5187 0.5489 0.6122 0.5959 0.6203 0.1037
SATO 0.6900 0.7272 0.7594 0.7116 0.7152 0.6385 0.7601 0.7396 0.7393 0.1216
DSN 0.6576 0.6671 0.7319 0.6868 0.6298 0.7314 0.8166 0.8516 0.6584 0.2218
ÃUC 0.7176 0.7081 0.8302 0.5740 0.5726 0.6768 0.8137 0.8088 0.8425
Rank 6.31 5.38 2.31 7.56 7.69 6.12 3.00 3.56 3.06
ADASYN k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min
Fraud 0.8990 0.9217 0.9766 0.9466 0.9428 0.8621 0.9514 0.9456 0.9635 0.1145
K2009 0.5007 0.4987 0.5137 0.5032 0.5053 0.4985 0.4945 0.5013 0.5013 0.0192
Thyroid 0.7598 0.5876 0.8645 0.9821 0.9786 0.9806 0.9995 0.9994 0.6381 0.4119
KKBox 0.5899 0.6421 0.6777 0.5491 0.5239 0.5268 0.6107 0.6468 0.6923 0.1684
UCI 0.7791 0.8293 0.8276 0.5512 0.7601 0.8483 0.9112 0.9156 0.8712 0.3644
Campaign 0.7596 0.8271 0.9331 0.5971 0.6505 0.7269 0.9398 0.9322 0.9156 0.3427
HR 0.6612 0.7241 0.8476 0.6768 0.5026 0.5814 0.7597 0.7978 0.7566 0.3450
TelE 0.8248 0.7551 0.7634 0.4678 0.5559 0.8382 0.9364 0.9418 0.9097 0.4740
News 0.7377 0.5661 0.8309 0.5467 0.6419 0.6876 0.8107 0.8328 0.8384 0.2917
Bank 0.7647 0.7865 0.8315 0.6403 0.7123 0.6865 0.8197 0.8225 0.8408 0.2005
Mobile 0.6203 0.6814 0.8848 0.1398 0.4864 0.6644 0.7970 0.7937 0.9100 0.7702
TelC 0.7515 0.8311 0.8444 0.4093 0.6822 0.6546 0.8003 0.7968 0.8429 0.4351
C2C 0.4408 0.5031 0.5171 0.5271 0.4734 0.4401 0.3971 0.3905 0.4606 0.1366
Member 0.5791 0.5958 0.6266 0.5015 0.5304 0.5479 0.6092 0.5973 0.6153 0.1251
SATO 0.6900 0.7272 0.7594 0.7116 0.7153 0.6375 0.7494 0.7396 0.7613 0.1238
DSN 0.6576 0.6671 0.7319 0.6869 0.6297 0.7336 0.8038 0.8516 0.6602 0.2219
ÃUC 0.7138 0.7028 0.8292 0.5502 0.6358 0.6754 0.8020 0.8101 0.7998
Rank 6.50 5.56 2.62 6.75 6.94 6.62 3.56 3.31 3.12

We propose to visualize the machine learning performance similarities and ranking with Critical
Difference (CD) diagrams (Demšar, 2006) based on statistical pairwise comparisons computed from
the AUC results (Table 2.2 to Table 2.6). For these comparisons, we consider the post-hoc Nemenyi
test (α = 0.05) for which Figures 2.5, 2.6 and 2.7 provide the CD diagrams (Demšar, 2006) for each
sampling strategy. Horizontal lines connect the approaches for which we cannot exclude the hypothesis
that the average AUC rank is equal. As can be seen, the sampling strategies have a weak effect on the
machine learning approaches ranking.

(a) No sampling (with AD methods) (b) SMOTE (c) ADASYN

Figure 2.5 : Approaches similarities based on Critical Difference diagrams (Oversampling)
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Table 2.4 : Undersampling methods : AUC Classification results (top, NCR ; bottom, Tomek).

NCR k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.9000 0.9226 0.9762 0.9472 0.9423 0.8803 0.9496 0.9405 0.9664 0.0959
K2009 0.5061 0.5004 0.5146 0.5017 0.5033 0.5027 0.5105 0.5149 0.5065 0.0145
Thyroid 0.7650 0.5887 0.8574 0.9726 0.9548 0.9824 0.9993 0.9992 0.6557 0.4106
KKBox 0.6099 0.6483 0.6762 0.5353 0.4797 0.5488 0.6397 0.6824 0.7002 0.2205
UCI 0.8052 0.8512 0.8234 0.6309 0.6288 0.8500 0.9145 0.9200 0.8118 0.2912
Campaign 0.7789 0.8150 0.9287 0.6751 0.6828 0.7934 0.9374 0.9353 0.9017 0.2623
HR 0.6761 0.7350 0.8580 0.8332 0.4984 0.6194 0.7430 0.7918 0.6803 0.3596
TelE 0.8295 0.7468 0.7615 0.4438 0.6260 0.8583 0.9394 0.9417 0.8922 0.4979
News 0.7804 0.5672 0.8371 0.6727 0.6745 0.7306 0.8298 0.8399 0.8189 0.2727
Bank 0.7994 0.7460 0.8313 0.6647 0.7938 0.7327 0.8361 0.8369 0.8335 0.1722
Mobile 0.7274 0.7255 0.8867 0.4912 0.6077 0.6710 0.7862 0.7745 0.8883 0.3971

TelC 0.8028 0.8205 0.8438 0.8007 0.7920 0.7136 0.8201 0.8216 0.8380 0.1302
C2C 0.4069 0.4890 0.4985 0.5659 0.4533 0.4146 0.3527 0.3668 0.4360 0.2132
Member 0.5915 0.5886 0.6209 0.4915 0.5512 0.5693 0.6129 0.6104 0.6218 0.1303
SATO 0.7028 0.7348 0.7645 0.7741 0.7089 0.6615 0.7631 0.7685 0.7198 0.1126
DSN 0.6634 0.6328 0.7311 0.7186 0.6308 0.7214 0.8173 0.8672 0.6952 0.2364
ÃUC 0.7462 0.7302 0.8274 0.6687 0.6298 0.7175 0.8187 0.8292 0.7658
Rank 6.25 6.06 2.88 6.31 7.25 6.50 3.25 2.62 3.88
Tomek k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min

Fraud 0.8990 0.9217 0.9766 0.9457 0.9445 0.8793 0.9477 0.9446 0.9629 0.0973
K2009 0.4999 0.5002 0.5138 0.5007 0.4961 0.5044 0.5106 0.5017 0.4944 0.0194
Thyroid 0.7607 0.5879 0.8638 0.9825 0.9769 0.9825 0.9996 0.9994 0.6779 0.4117
KKBox 0.5873 0.6470 0.6761 0.5335 0.4762 0.5337 0.6189 0.6805 0.6994 0.2232
UCI 0.7773 0.8487 0.8252 0.6336 0.7540 0.8431 0.9134 0.9150 0.8241 0.2814
Campaign 0.7628 0.8252 0.9324 0.5985 0.6502 0.7449 0.9391 0.9341 0.9141 0.3406
HR 0.6671 0.7426 0.8585 0.8260 0.4990 0.6152 0.7481 0.7997 0.6281 0.3595
TelE 0.8236 0.7501 0.7589 0.5695 0.6031 0.8543 0.9379 0.9412 0.8906 0.3717
News 0.7533 0.5653 0.8376 0.6010 0.6395 0.6909 0.8132 0.8365 0.8263 0.2723
Bank 0.7797 0.7196 0.8321 0.5793 0.7500 0.6963 0.8243 0.8253 0.8314 0.2528
Mobile 0.7514 0.7182 0.8991 0.3813 0.5211 0.6619 0.7880 0.7868 0.9061 0.5248
TelC 0.7882 0.8240 0.8459 0.7019 0.7055 0.6683 0.8001 0.8017 0.8375 0.1776
C2C 0.4359 0.5164 0.5208 0.4803 0.4567 0.4427 0.3863 0.3855 0.4488 0.1353
Member 0.5890 0.5924 0.6170 0.4801 0.5162 0.5474 0.6036 0.6033 0.5960 0.1369
SATO 0.6891 0.7247 0.7573 0.7253 0.7029 0.6415 0.7483 0.7514 0.7034 0.1158
DSN 0.6535 0.6632 0.7286 0.7000 0.6241 0.7293 0.8294 0.8655 0.6518 0.2414
ÃUC 0.7524 0.7189 0.8286 0.5998 0.6318 0.6796 0.8067 0.8135 0.7638
Rank 6.31 5.56 2.38 6.50 7.31 6.31 3.19 3.00 4.44

(a) No sampling (b) Neighborhood Cleaning rule (c) Tomek

Figure 2.6 : Approaches similarities based on Critical Difference diagrams (Undersampling)
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Table 2.5 : Hybrid methods : AUC Classification results

k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min
Dataset SMOTE + Random undersampling
Fraud 0.9054 0.9238 0.9751 0.7758 0.3237 0.8357 0.9694 0.9462 0.9746 0.6514
K2009 0.5001 0.4991 0.5135 0.4967 0.5012 0.5023 0.5055 0.4991 0.5038 0.0168
Thyroid 0.8006 0.5644 0.9039 0.8394 0.7224 0.9835 0.9995 0.9992 0.8548 0.4351
KKBox 0.5918 0.6430 0.6763 0.5654 0.4628 0.5277 0.6199 0.6480 0.6997 0.2369
UCI 0.7871 0.8273 0.8278 0.5326 0.7727 0.8499 0.9168 0.9154 0.8715 0.3842
Campaign 0.7657 0.7712 0.9311 0.6063 0.5761 0.7500 0.9403 0.9318 0.9279 0.3642
HR 0.6631 0.7168 0.8501 0.7065 0.5031 0.6295 0.7560 0.7905 0.7601 0.3470
TelE 0.8275 0.7497 0.7626 0.5756 0.5677 0.8486 0.9373 0.9421 0.9084 0.3744
News 0.7454 0.5664 0.8337 0.5652 0.6337 0.6871 0.8117 0.8333 0.8415 0.2763
Bank 0.7744 0.7861 0.8325 0.5830 0.7204 0.6936 0.8240 0.8234 0.8430 0.2600
Mobile 0.6586 0.6993 0.8942 0.5304 0.5588 0.6586 0.7953 0.7835 0.9080 0.3776
TelC 0.7650 0.8224 0.8451 0.5785 0.6881 0.6675 0.7947 0.7941 0.8419 0.2666
C2C 0.4375 0.5033 0.5160 0.5097 0.4783 0.4429 0.3964 0.3878 0.4557 0.1282
Member 0.5866 0.5936 0.6213 0.5179 0.5169 0.5426 0.5985 0.5959 0.6235 0.1066
SATO 0.6900 0.7272 0.7594 0.7117 0.7152 0.6375 0.7491 0.7396 0.7405 0.1219
DSN 0.6576 0.6671 0.7319 0.6868 0.6293 0.7343 0.8156 0.8516 0.6677 0.2223
ÃUC 0.7177 0.7081 0.8302 0.5771 0.5719 0.6773 0.8035 0.8088 0.8417
Rank 6.38 5.56 2.38 7.44 7.69 6.19 3.00 3.62 2.75

(a) SMOTE + Random undersampling (b) SMOTE + NCR (c) SMOTE + Tomek

Figure 2.7 : Approaches similarities based on Critical Difference diagrams (Hybrid sampling)
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Table 2.6 : Hybrid methods : AUC Classification results (top, SMOTE-Tomek ; bottom, SMOTE-NCR)

ST-T.L. k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min
Fraud 0.9054 0.9238 0.9751 0.7893 0.3207 0.8377 0.9679 0.9462 0.9698 0.6544
K2009 0.5001 0.4991 0.5135 0.4999 0.4985 0.5050 0.5088 0.5084 0.5047 0.0150
Thyroid 0.8006 0.5656 0.9035 0.8683 0.7173 0.9826 0.9995 0.9993 0.8685 0.4339
KKBox 0.5926 0.6432 0.6764 0.5098 0.4378 0.5291 0.6142 0.6494 0.7017 0.2639
UCI 0.7871 0.8273 0.8278 0.5685 0.7700 0.8457 0.9189 0.9150 0.8750 0.3504
Campaign 0.7633 0.7708 0.9304 0.5914 0.5887 0.7491 0.9399 0.9335 0.9294 0.3512
HR 0.6631 0.7168 0.8501 0.7065 0.5018 0.6298 0.7533 0.7905 0.7378 0.3483
TelE 0.8270 0.7496 0.7628 0.5042 0.5492 0.8482 0.9359 0.9402 0.9098 0.4360
News 0.7450 0.5690 0.8335 0.5414 0.6363 0.6882 0.8124 0.8273 0.8435 0.3021
Bank 0.7746 0.7860 0.8325 0.5952 0.7295 0.6958 0.8232 0.8273 0.8420 0.2468
Mobile 0.6351 0.6995 0.8941 0.2132 0.5761 0.6639 0.7951 0.7939 0.9073 0.6941
TelC 0.7708 0.8223 0.8449 0.5011 0.7051 0.6717 0.7980 0.7960 0.8447 0.3438
C2C 0.4370 0.5034 0.5158 0.4691 0.4705 0.4419 0.3894 0.3846 0.4574 0.1312
Member 0.5852 0.5925 0.6201 0.4627 0.5118 0.5470 0.6007 0.6029 0.6206 0.1579
SATO 0.6986 0.7219 0.7581 0.7438 0.7122 0.6375 0.7565 0.7602 0.7388 0.1227
DSN 0.6531 0.6644 0.7304 0.7125 0.6257 0.7314 0.8066 0.8694 0.6691 0.2437
ÃUC 0.7218 0.7082 0.8302 0.5550 0.5824 0.6800 0.8023 0.8116 0.8428
Rank 6.44 5.62 2.44 7.44 7.81 6.06 3.12 3.00 3.06
ST-NCR k-NN Gnb LR SVM SVM-rbf DT RF XGBoost NN Max-Min
Fraud 0.9054 0.9238 0.9751 0.8562 0.3237 0.8358 0.9681 0.9452 0.9642 0.6514
K2009 0.5003 0.4995 0.5153 0.4972 0.5044 0.4984 0.4944 0.4974 0.5063 0.0209
Thyroid 0.8004 0.5672 0.9032 0.8399 0.7201 0.9865 0.9994 0.9991 0.8587 0.4322
KKBox 0.6054 0.6485 0.6801 0.5243 0.4790 0.5479 0.6665 0.6705 0.7004 0.2214
UCI 0.7856 0.8341 0.8274 0.5683 0.7524 0.8537 0.9144 0.9187 0.8726 0.3504
Campaign 0.7536 0.7706 0.9284 0.6180 0.5952 0.7495 0.9402 0.9311 0.9223 0.3450
HR 0.6569 0.7080 0.8274 0.7500 0.4992 0.6620 0.7911 0.8031 0.7334 0.3282
TelE 0.8178 0.7465 0.7633 0.5954 0.5967 0.8524 0.9364 0.9413 0.9095 0.3459
News 0.7495 0.5936 0.8388 0.6342 0.7010 0.7323 0.8537 0.8477 0.8404 0.2601
Bank 0.7781 0.7827 0.8320 0.6542 0.7773 0.7232 0.8495 0.8423 0.8414 0.1953
Mobile 0.6260 0.6984 0.8799 0.6541 0.5329 0.5825 0.6210 0.6689 0.8747 0.3470
TelC 0.7754 0.8176 0.8435 0.6038 0.7778 0.7139 0.8312 0.8156 0.8425 0.2397
C2C 0.4225 0.4963 0.5022 0.4692 0.4468 0.4101 0.3153 0.3638 0.4563 0.1869
Member 0.5860 0.5791 0.6270 0.4485 0.5654 0.5590 0.6218 0.6125 0.6354 0.1869
SATO 0.7053 0.7387 0.7575 0.7556 0.7138 0.6850 0.7811 0.7671 0.7371 0.0961
DSN 0.6513 0.6515 0.7392 0.7334 0.6393 0.6986 0.8556 0.8661 0.6909 0.2268
ÃUC 0.7274 0.7032 0.8274 0.6261 0.5960 0.7062 0.8404 0.8290 0.8409
Rank 6.25 5.50 2.69 6.88 7.50 6.56 3.19 3.12 3.31

2.6.3 Models and datasets CA
To go beyond the analyses in Section 2.6.2, we propose to visualize the relationships between the
machine learning techniques and the churn-like datasets in a two-dimensional plot based on the AUC
results. To this end, we perform a Correspondence Analysis (CA) - a geometric approach that extends
principal component analysis - on an AUC results table (Table 2.2). The Figure 2.8 provides a CA
result overview that is useful for interpretation.

As can be seen from correlation plots in Figures 2.8(b) and 2.8(d), SVM, and NN are well represented
by the first dimension, RF and XGBoost by the second dimension and LR by the third dimension.
Similarly, not all datasets are well represented by the two first components and some of them are
found on the third and the fourth dimensions. Hence, we provide in Figures 2.8(a) and 2.8(c) two CA
biplots based either on the two first components, or on the first or third dimensions.
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(a) CA biplot, dimensions 1 and 2, no sampling (b) Representation Quality

(c) CA biplot, dimensions 1 and 3, no sampling (d) Representation Quality

Figure 2.8 : (a & c) Visualization of associations between machine learning approaches and churn-like datasets without
sampling using Correspondance Analysis. (b & d) Quality of representations on the factor map.

The Figure 2.8(a) suggests a similar behavior between RF and XGBoost. It also highlights the
difference with these approaches and SVM and SVM-rbf. News appears associated with RF, XGBoost
and GEV-NN, in agreement with the AUC Table 2.2. We also visualize the Mobile dataset in the
vicinity of NN which is the most suitable technique without sampling. Similarly, TelE is found near
XGBoost. The Figure 2.8(b) uses the third dimension instead of the second dimension, bringing a
better representation of LR. We notice the positioning of News between RF and GEV-NN, as expected
from the AUC table. Interestingly, SATO has shifted towards RF, GEV-NN and LR. This is in agreement
with Table 2.2, as these machine learning techniques provide the best top three AUC results. Similarly,
KKBox stands towards LR and GEV-NN.
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In this Chapter, we included a background of the churn analysis research, an introduction to wi-
despread data sampling and classifier approaches and a presentation of advisable evaluation metrics
and strategies. First, we described publicly available churn-like datasets and provide links for an easy
access. Then, we introduced data sampling approaches, which unfold in three categories, namely over-
sampling, undersampling and hybrid. We also detailed several machine learning classifiers encountered
in the churn research field and discussed their reported success in the literature. The validation strate-
gies and metrics are then discussed. Finally, machine learning approaches are combined and evaluated
on sixteen publicly available churn-like datasets. We summarized our results in terms of AUC score.

The experimental investigations given in this Chapter also offer original analyses and visualizations.
Ultimately, this part of my thesis project provides a general recommendation on a churn prediction
pipeline based on an ensemble approach, as detailed in Chapter 3. It is interesting to highlight that
the proposed visualizations easily emphasize behavioral relationships between classifiers, sampling me-
thods and their association with churn-like benchmark datasets. In this comparative study, we only
consider the default parameters for each approach. However, the supervised context would also allow
for boosting versions of some of these techniques. This could significantly improve their classification
results, in particular for SVM (Vafeiadis et al., 2015). The boosting strategy has been successfully
applied to the prediction of customer churn in retail (Clemente et al., 2010) and telecom compa-
nies (Lemmens and Croux, 2006).

If the advantage of supervised learning is that all input labels are typically meaningful and serve
as basis for an explainable discriminative classifier, the need for labels collection is however by itself
a strong limitation. First of all, when the volume of the data is too large, it becomes prohibitively
expensive to collect all labels. Furthermore, when distinctive labels are hard to find, it implies noise or
uncertainties in the supervision which can lead to inaccurate results (Cabral and Oliveira, 2014 ; Taha
and Hadi, 2019). In addition, in an imbalanced or strongly imbalanced classes distribution context,
accessing high quality labels for the minority class is generally challenging. Indeed, the existence of
different instance profiles within the positive class strongly impedes the training phase (Taha and
Hadi, 2019).

Unsupervised or semi-supervised learning can be used to overcome these issues. While unsupervised
learning requires no class label, semi-supervised learning only requires a small number of labeled
samples. A key idea is to learn a model for the class associated with the normal behavior and then
use this model to identify abnormal behaviors (Chandola et al., 2009). Hence, semi-supervised or
unsupervised approaches can handle, during the test phase, abnormal behaviors that did not appear
in the training dataset. This is a clear advantage as compared to supervised learning strategy.

25





3
Ensemble for churn prediction

3.1 Controlling churn behaviors with an ensemble strategy . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 Motivation and Methods 28
3.1.2 Ensemble comparative experiments 29
3.1.3 Discussion 30

3.2 Augmenting churn prediction with customer profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Introduction 31
3.2.2 Public datasets 33
3.2.3 Machine learning for churn profiling 34
3.2.4 Our contribution 35

3.2.4.a Unsupervised machine learning techniques 35
3.2.4.b An effective soft voting approach 37

3.3 Experiments on public datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Ensemble method for prediction and profiling 37
3.3.2 Quantitative evaluation of churn prediction 37
3.3.3 Qualitative evaluation of churn profiling 38

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

27



In Chapter 2, we provided a large comparative study of customer churn prediction models. The
strengths and drawbacks of each model appear to be strongly dependent on the latent dataset cha-
racteristics. To alleviate this issue, we propose in this Chapter an ensemble strategy that relies on the
machine learning techniques identified as the most efficient in Chapter 2. Then, we enriched this en-
semble approach with a deep-clustering that aims to uncover the underlying customer’s segmentation.

Our ensemble approach embeds LR, RF, XGBoost and NN (Neural Network), as suggested from our
experimental results. We jointly use their predictions for composing an average churn probability.
Our empirical results, on several public datasets, provide a strong support for the benefits of our
approach and illustrates the improvement of the supervised learning approach for binary classification
(Section 3.1.2).

Churn behaviors are usually driven by multiple motivations, giving rise to a customers population
with an heterogeneous set of profiles. Clients having a disappointing experience with the product or
a service of a company, are usually prone to churn. Yet, the reasons underlying their disappointment
might be diverse. Similarly, their can be multiple reasons behind customers loyalty. Furthermore,
some customers might exhibit a churner prone behavior but still remain with the company. Hence, we
might benefit from a customer segmentation in order to identify these heterogeneous profiles. To do
so, we propose a deep-churn model that relies on Deep AutoEncoders (DAEs). Based on the obtained
clusters, we propose to build one model for each subgroup of clients and combine them to make new
predictions on unseen observations. Our results show that this proposal achieves good AUC score with
respect to our vanilla ensemble while providing valuable information on the customers profile.

3.1 Controlling churn behaviors with an ensemble strategy . . . . . . . . . . . . . . . . . . . .

3.1.1 Motivation and Methods
Several traditional machine learning approaches evaluated in Chapter 2 have shown good results
with their default settings on the churn prediction issue. Thorough evaluations could have been done
through hyperparameters tuning. However, such tuning is not fully safe from the risk of overfitting.
As we are motivating by finding an approach that could manage a wide range of churn-like datasets,
we resort to rather investigate an ensemble strategy. Ensemble learning is an ML paradigm where
multiple learners are trained to solve the same problem. This technique is not restricted to binary
classification, researchers have extended its framework to regression and clustering (Zhou, 2012).

Ensemble learning experienced its golden age in the ninety’s when some of the most popular pa-
pers of machine learning were released such as bagging, boosting and stacking methods. They usually
rely on weak learners which are slightly better than random guess. Their predictions are averaged to
improve the standalone prediction. Straightforward aggregation have been proposed such as majority
voting or weighted majority voting (Sagi and Rokach, 2018). Ensemble strategies are nowadays regu-
larly encountered in machine learning competitions, such as the Netflix prize (Bennett et al., 2007) or
competitions on Kaggle (Martínez-Usó et al., 2015 ; Oza and Tumer, 2008).

One key component of the multiple classifier systems is the diversity. The individual classifiers must
be different from one another to trigger performance improvement. However, the individual learners
are usually trained for the same task, on the same training data, and are thus highly correlated. Be-
sides, correctly quantifying the diversity is still under investigation. Previous studies relied on pairwise
measures such as correlation coefficient (Sneath and Sokal, 1973), along with non-pairwise measures
using for instance entropy (Cunningham and Carney, 2000). This proposal has been questioned by
Shipp and Kuncheva (2002), who showcased the lack of correlation between those metrics and the
classifiers. A more recent approach is based on information theoretic measures, and more precisely
on the interaction information (Brown, 2009 ; Meynet and Thiran, 2010 ; Gupta and Bhavsar, 2021).
These approaches have been recently extended to deep learning with the Ensembling Loss (EL) tech-
nique (Zaid et al., 2021).

Our contribution operates on what we have previously built : our benchmark of models. Providing
the most performant models with respect to AUC, we propose to jointly learn them to perform a mean
prediction in order to improve the outcomes of the churn forecast. We have selected LR, RF, XGBoost
and NN as our top models.
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3.1.2 Ensemble comparative experiments
In this Section, we combine LR, XGBoost, RF and NN for the churn prediction. Specifically, we average
predicted probabilities for each instance, over two, three or four methods among LR, XGBoost RF and
NN. The Figure 3.1 shows, for each sampling strategy, and over all datasets, the AUC for LR, XGBoost,
RF and NN (light gray), their pairwise ensembles (light orange), the combination of three methods
(dark orange) and the combination of all four methods (dark blue).

Figure 3.1 : AUC ensemble results on the three top machine learning approaches and all datasets

As can be seen from Figure 3.1, LR|XGBoost|RF|NN ensemble mostly outperforms the other methods,
closely followed by LR|XGBoost|RF (Table 3.1). The best ensemble approach is obtained when combining
the three approaches (LR|XGBoost|RF) and without sampling strategy (Table 3.1, ÃUC = 0.8577).
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Table 3.1 : ÃUC for ensemble and non ensemble approaches and all datasets.

Sampling no SMOTE ADASYN NCR Tomek
Links

SMOTE
& R.U.

SMOTE
& T.L.

SMOTE
& NCR ÃUC

LR 0.8283 0.8301 0.8293 0.8274 0.8287 0.8301 0.8302 0.8274 0.8294
XGBoost 0.8104 0.8087 0.8102 0.8292 0.8135 0.8087 0.8117 0.8290 0.8167
RF 0.8358 0.8137 0.8021 0.8187 0.8066 0.8035 0.8023 0.8403 0.8162
NN 0.7700 0.8425 0.7998 0.7658 0.7617 0.8417 0.8428 0.8409 0.8159
LR|XGBoost 0.8479 0.8464 0.8465 0.8457 0.8485 0.8464 0.8466 0.8395 0.8464
LR|RF 0.8516 0.8439 0.8460 0.8457 0.8476 0.8467 0.8466 0.8470 0.8472
LR|NN 0.8383 0.8442 0.8408 0.8378 0.8403 0.8446 0.8449 0.8424 0.8418
XGBoost|RF 0.8325 0.8256 0.8251 0.8374 0.8267 0.8240 0.8255 0.8405 0.8313
XGBoost|NN 0.8388 0.8461 0.8450 0.8412 0.8388 0.8484 0.8448 0.8352 0.8431
RF|NN 0.8533 0.8409 0.8365 0.8411 0.8358 0.8375 0.8395 0.8449 0.8423
LR|XGBoost|RF 0.8577 0.8526 0.8489 0.8500 0.8529 0.8521 0.8489 0.8466 0.8517
LR|XGBoost|NN 0.8498 0.8457 0.8477 0.8459 0.8452 0.8478 0.8465 0.8462 0.8473
LR|RF|NN 0.8523 0.8462 0.8484 0.8472 0.8491 0.8485 0.8470 0.8479 0.8483
XGBoost|NN|RF 0.8566 0.8512 0.8463 0.8486 0.8533 0.8510 0.8464 0.8464 0.8501
LR|XGBoost|RF|NN 0.8562 0.8533 0.8506 0.8491 0.8546 0.8537 0.8492 0.8513 0.8526

The Table 3.2 provides for each dataset, the pipeline that produces the highest AUC (Best non
ensemble pipeline AUC & Best non ensemble pipeline columns). Our recommended ensemble pipeline
(LR|XGBoost|RF and no sampling) provides an AUC that nearly reaches the best AUC result, for almost
all datasets. The only exception is for C2C.

Table 3.2 : Our ensemble proposal vs. best non ensemble approach for each dataset.

LR|XGBoost|RF
& no sampling AUC

Best non ensemble
pipeline AUC Best non ensemble pipeline

Fraud 0.9794 0.9766 no sampling & LR
K2009 0.5197 0.5153 SMOTE-NCR & LR
Thyroid 0.9989 0.9996 no sampling & RF
KKBox 0.6890 0.7054 no sampling & GEV-NN
UCI 0.9215 0.9200 NCR & XGBoost
Campaign 0.9440 0.9402 SMOTE-NCR & RF
HR 0.8443 0.8596 no sampling & LR
TelE 0.9435 0.9421 SMOTE & XGBoost
News 0.8636 0.8615 no sampling & RF
Bank 0.8531 0.8583 no sampling & GEV-NN
Mobile 0.8761 0.9124 ADASYN & NN
TelC 0.8340 0.8459 Tomek Links & LR
C2C 0.3852 0.5659 NCR & SVM
Member 0.6201 0.6354 SMOTE-NCR & NN
SATO 0.7765 0.7882 no sampling & RF
DSN 0.8623 0.8694 SMOTE-T.Links & XGBoost

ÃUC 0.8069 0.8240

All in all, in practice, we recommend the use of the ensemble LR|XGBoost|RF with no sampling for
analyzing novel churn-like datasets.

3.1.3 Discussion
Ensemble approach should be considered for the classification task in a churn-like context, as they re-
peatedly performed better than individual classifiers in the field of data mining. Ahmed et al. (2018b)
even proposed nested ensemble learners models that outperform traditional ensemble when applied to
churn prediction in telecom industry. The finance industry has gradually adapted various machine lear-
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ning techniques. In particular, detecting economic crimes (eg., accounting fraud, money laundering)
triggered successful applications of machine learning. LR, Gnb and SVM are among the most classic me-
thods exploited in this area. The emergence of new kinds of fraud with the growth of electronic market
has also popularized deep learning methods in finance. Ensemble strategies and boosting also remain
a valuable option in this area. An enhanced hybrid ensemble approach, named RS-MultiBoosting Zhu
et al. (2019) has been proposed ; it incorporates random subspace and MultiBoosting to improve the
accuracy of forecasting credit risk.

As already mentioned, the existence of small disjuncts within the minority class – corresponding
in the churn context to the customer profile heterogeneity – can significantly impede the classifier
performance. Hence, it would be advisable to segment the minority class upstream of, or during,
the model training phase. The Logit Leaf Model proposed by De Caigny et al. (2018) (LLM) is a
successful example of this strategy ; it is an hybrid classification algorithm that combines DT and RF
over a dataset whose partitioning is in agreement with the heterogeneity between customers. Hence,
LLM is an ensemble approach that takes into account specific group characteristics that remained
disregarded when a single classifier is trained over the whole dataset. In the following Section 3.2, we
conduct investigations along this direction.

3.2 Augmenting churn prediction with customer profiling . . . . . . . . . . . . . . . . . . . . . . .

3.2.1 Introduction
Management and marketing services are trying to cope with the ever-rising competition in industry by
focusing their efforts on a strong Customer Relationship Management (CRM). In particular, customer
retention has attracted interest as it clearly appeared that retained customers can be of great help
for the company by spreading positive word of mouth (Reichheld and Sasser, 1990). Such behavior
can subsequently lower the marketing costs of new customers acquisition (Bolton and Bronkhorst,
1995). Besides, it has become clearer that the acquisition costs of a new customer can be much more
higher than the retention costs of an existing one (Reinartz and Kumar, 2003 ; Siber, 1997 ; Yang
and Peterson, 2004). Hence, preventing customer churn or attrition can be vital for subscription-
based service firms, that rely on fixed and regular membership fees, in numerous areas among which
insurance (Günther et al., 2014), banking (Kumar et al., 2008), online gambling (Coussement and
De Bock, 2013), online video games (Kawale et al., 2009), music streaming (Chen et al., 2018), online
services (Tan et al., 2018) or telecommunication (Effendy et al., 2014 ; Abdillah et al., 2016 ; Hudaib
et al., 2015 ; Hosein et al., 2021). Therefore, accurately predicting the customers who are prone to
churn has become a priority in many industries.

Beyond the churn prediction, the study of the dynamic relationship between the customer satisfac-
tion, the service quality and the customer behavior – loyalty or switching – is today a lively field of
research. Indeed, a better understanding of customers experience offers valuable information for mar-
keters. As an example, satisfied customers will be more tolerant to price increases which will in turn
bring greater profits (Garvin, 1988). However, certain customer groups may have different perceptions
of service providers (Gilmour et al., 1994). For instance, many studies propose to describe the custo-
mer satisfaction as a composite of factors such as the corporate image, the internal organization, the
physical environment, the staff service and the customer-personal interaction (LeBlanc and Nguyen,
1988). In the Banking industry, Laroche et al. (1986) decompose the customer satisfaction into the
speed service, the convenience of the location, the staff competence and the bank friendliness (Laroche
et al., 1986). The amalgamation of the multiplicity and divergence of customer expectations and per-
ceptions naturally calls for customer base segmentation to optimize churn behavior management.

While the negative effects of customer churn can be easily observed – lack of revenues or supplemen-
tary costs of attracting new customers –, the churn causes are under continuous study, as these causes
generally vary across economical fields and customer groups. For service industries, Cronin Jr and
Taylor (1992) relied on the effects of time, money constrains, lack of credible alternatives, switching
costs, habit, price, convenience and availability to explain customers switching. Similarly, Keave-
ney (1995) identified eight main causal variables for churn, namely price, inconvenience, core service
failures, service encounter failures, competitive issues, ethical problems and involuntary factors. Fol-
lowing on these proposals, Athanassopoulos (2000) proposed, based on Confirmatory Factor Analysis,
five dimensions to describe different customer satisfaction profiles in retail banking services. These
dimensions are staff service, business profile, innovativeness, convenience and price. The author also

31



validated the interest in dividing customers into segments market that correspond to their preferences
regarding particular aspects of service. The motivation behind customers segmentation – which is one
of the most significant methods used in marketing studies – is to select appropriate customers for
a campaign. This typically increase customer profitability through adapted customer targeting (Tsai
and Chiu, 2004 ; Vellido et al., 1999). In fact, a large amount of segmentation methods are developed
each year (Kuo et al., 2006 ; Chan, 2008), making hard any exhaustive comparison between them.

In this project, one of our main motivations was to evaluate several machine learning techniques
on the churn prediction task (Chapter 2. In order to take into account the multifactorial aspect
of attrition, we also studied the performance of ensemble learning approaches to improve the attri-
tion prediction (Section3.1. In this Section, we aim at taking explicitly into account the underlying
customer segmentation. To this end, we rely on a deep unsupervised clustering method before exploi-
ting an ensemble machine learning approach. Hence, our global objective shifted now (as compared
to Figure 2.1), to evaluate the variants of the processing chain for churn analysis as given in Figure 3.2.

This chain includes (Figure 3.2),
(i) a class rebalancing step or a clustering step,
(ii) a supervised or a meta ensemble learning phase,
(iii) a robust evaluation procedure.

Figure 3.2 : Machine learning pipeline for churn prediction and analysis.

As all the variants of the algorithms in the proposed pipeline can not be exhaustively studied, we
only consider the algorithms in their original version. Furthermore, the benchmark datasets for our
experiments have a relatively important class imbalance between the minority class – unsubscribed
individuals – and the majority class (Table 3.3). This decreases the performance of standard classi-
fiers (García et al., 2012) which can be aggravated by an overlap of the classes or a fragmentation
of the minority class into subsets corresponding to different customer profiles. As detailed in Sec-
tion 3.1, this motivated the idea to combine the model fitting step with class rebalancing approaches.
In this section, beyond the good performance obtained with our ensemble proposal, we also make the
customer segmentation explicit via a deep autoencoder-based clustering. This clustering reveals the
features associated to each underlying customer group.

In the following, we provide a brief overview of unsupervised machine learning techniques (Sec-
tions 3.2.4.a). We also enrich our ensemble proposal with a data segmentation that respect the under-
lying customer behavior patterns. The corresponding prediction results are given in Section 3.3.1 and
are compared with the recent LLM (De Caigny et al., 2018) and RF-based (Ullah et al., 2019) models.
We discuss the benefits of our approach in terms of churn prediction in 3.3.2 and customer profiling
in Section 3.3.3.
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3.2.2 Public datasets
This work relies on publicly available datasets only. A churn dataset usually comprises features of
different types – numerical and categorical variables – that reflect customers behavior. It also generally
exhibits a strong class imbalance, as the proportion of churners is typically lower than the proportion
of customers that remain with the company.

Table 3.3 : Publicly available churn datasets with online access link

Dataset #Instances #Features #Cont.Feat. #Cat.Feat.∗ mix.Score churn
nonchurn

K2009 50, 000 230 37 1, 001 7.28× 10−4 0.08
KKbox 970, 960 49 12 43 1.48× 10−2 0.10
UCI 5, 000 20 0 20 2.66× 10−1 0.16
HR 1, 470 34 14 71 1.03× 10−1 0.19
TelE 190, 776 19 15 10 3.75× 10−2 0.19
News 15, 855 18 2 304 1.56× 10−1 0.23
Bank 10, 000 12 5 10 2.30× 10−1 0.25
Mobile 66, 469 62 57 5 1.07× 10−1 0.27
TelC 7, 043 20 3 30 3.69× 10−1 0.37
C2C 71, 047 71 32 42 1.89× 10−2 0.41
Member 10, 362 14 4 21 6.26× 10−2 0.43
SATO 2, 000 13 9 19 1.72× 10−1 1
DSN 1, 401 15 10 21 2.68× 10−2 1

(1) Categorical variables with more than two levels are converted to their numerical representation by dummification where
each category becomes a binary variable.

The Table 3.3 gives the public churn datasets that are considered in this work dedicated to customer
profiling and provides their online access (see also Appendix A.1.1 for details). These datasets have
diverse number of instances, number of features, and percentage of churners and dummified features.
Specifically, before fitting a model, categorical variables are converted to their numerical representa-
tion through a dummification process where each category becomes a binary variable. We also provide
the number of continuous and categorical variables after dummification.

Although the general data characteristics given in Table 3.3 suggest similarities between several
datasets, it is important to remind that multiple intrinsic data properties can impact the prediction
in the churn context. This includes in particular the existence of small disjuncts, the overlap between
classes, the noisy data or the borderline instances (see Section 3.2.4). To establish the extent to which
the classes may be intertwined, we propose a mixture score, which is defined as follows,

mix.Score = (µ+ − µ−)
>
(
Σ+ +Σ−

2

)−1

(µ+ − µ−), (3.1)

where µi is the mean vector and Σi the covariance matrix of the cluster i respectively. Note that
as we deal with mixed data (continuous and categorical variables) we perform the Factor Analysis for
Mixed Data (Bécue-Bertaut and Pagès, 2008) on the original dataset, and derive µi and Σi. Thereby,
the higher the mixture score, the more separable the classes.

To get a better overview of the multiple datasets facets, we provide in Figure 3.3, PCA (Principal
Component Analysis) biplot representations of the datasets distribution over the characteristics iden-
tified in Table 3.3. As different dimensions can provide different information, we give biplots for the 4
first PCA components explaining 94.5% of the total variance. However, what is important is above all
to observe the diversity of these data by the characteristics that describe them. To this end, we rely
on the quality of representations of datasets depicted in Fig. 3.3 (e) and the correlation between the
variables and the components depicted in Fig. 3.3 (f). Thus in Fig. 3.3 (a,e,f), we note the opposition
between very balanced and mixed datasets, with many categorical variables (about 27 times of catego-
rical variables than continuous) such as K2009 and more balanced and less mixed datasets, with fewer
variables and only about twice categorical variables than continuous such as SATO, UCI and TeIC.
In Fig. 3.3 (b,e,f), we observe that dimension 2 is mainly characterized by the KKbox dataset with
a very high number of instances followed by TeIE the closest dataset. The 3rd component in Fig. 3.3
(c,e,f) characterized mainly by the ratio-churn contrasts highly balanced and less well separated data
such as DSN, SATO and less balanced and better separated datasets such as UCI and TeIC. Finally,
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(a) PCA biplot, dimensions 1 and 2 (b) PCA biplot, dimensions 1 and 3

(c) PCA biplot, dimensions 1 and 4 (d) PCA biplot, dimensions 2 and 4

(e) Individuals representation quality (f) Variables representation quality

Figure 3.3 : (a, b, c & d) Biplots visualization for publicly available churn-like datasets (individuals) and their
characteristics (variables) for different PCA components. (e & f) Quality of representations on the factor map.

the 4th component makes it possible to show the opposition between datasets with a very high ratio of
continuous variables, compared to the number of categorical variables, such as the Mobile dataset and
the rest of the datasets with opposite characteristics. The other datasets not mentioned before share
the same interpretations, according to their proximity with the other datasets cited, while taking into
account their quality of representation.

3.2.3 Machine learning for churn profiling
Recently, several studies focused on churn prediction models that can reach a good trade-off bet-
ween the prediction performance and the results interpretability in terms of customers profile. As an
example, De Caigny et al. (2018) designed the Logit Leaf Model (LLM), which consists in two phases,
namely a segmentation phase followed by a prediction step. For LLM, the segmentation is based on
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the partitioning obtained at the leaves of a decision tree that exploits the churn label from the input
data. Then, for each data subset a logistic regression model is fitted which offers prediction and in-
terpretability capabilities. LLM also include a random undersampling and a features selection phase.
The authors provide experimental results on fourteen datasets ranging from the Financial Service to
Telecommunication industry.

Following on LLM proposal, Ullah et al. (2019) designed a churn prediction model using Random
Forest which aims at providing both interpretability and prediction efficiency. The authors performed
customers profiling using k-means and partition the data into three groups labeled as Low, Medium
and Risky churners. As LLM, Ullah et al.’s RF-based model includes features selection. Customer churn
data have usually a complex structure which reflects a strong class imbalance and also an intrin-
sic data segmentation due to the multiplicity of customer behavior patterns. Let us remember that
the standard k-means algorithm considers the uniform spherical Gaussian mixture model with equal
proportions. Hence, when the clusters are not easily separable, one should depart from the standard
k-means assumptions by using novel representations that takes into account the non linearity of the
underlying data structure.

Successful clustering strategies have proposed to rely on Deep AutoEncoders (DAE) (Hinton and
Salakhutdinov, 2006 ; Bengio et al., 2013) to handle data that require weak assumptions regarding the
clusters shapes and filter out irrelevant features (Song et al., 2013 ; Alkhayrat et al., 2020). DAEs can
generate a more cluster-friendly representation of the data (or encoding) in an unsupervised manner
while automatically learning important features. This type of self-supervised neural network is trained
to replicate its input at output while optimizing a cost function. Several works have proposed to
combine deep embeddings and clustering in a sequential way or within a joint optimization. Stacked
DAEs were successfully used to learn the representation of an affinity graph before running k-means
on the learned representations in order to identify clusters Tian et al. (2014). In Guo et al. (2017), the
authors incorporate a DAE into the Deep Embedded Clustering (DEC) framework (Xie et al., 2016)
to jointly learn features and clustering. A novel ensemble method was introduced in Affeldt et al.
(2020) that uses landmarks and DAE to perform an efficient deep spectral clustering.

Customer data typically involved continuous and categorical features which should both be taken into
account by the embeddings. In this work, we propose the use of a DAE loss function that jointly opti-
mizes the novel representations based on categorical and continuous variables, which avoids the usual
dummification pre-processing that can be damaging for the underlying data structure (Section 3.2.4.a).

3.2.4 Our contribution
In this Section, we first evaluate multiple alternatives within a machine learning churn prediction
pipeline composed of a sampling stage, a model fitting phase and a robust evaluation procedure (Fi-
gure 3.2 ; green and gray parts). We choose to focus on traditional machine learning techniques as
reviewing in depth of the existing algorithmic variants and cost-sensitive approaches would not be
feasible in the scope of this article.To tackle the imbalance issue (López et al., 2013 ; Błaszczyński
and Stefanowski, 2018 ; Stefanowski, 2016), we associate each learning method with widespread sam-
pling approaches to balance the classes distribution as it was shown to play a significant role in the
performance of standard classifiers (García et al., 2012). Based on theses experiments results, we can
identify the most effective machine learning techniques and propose an ensemble method that can be
successfully applied to a wide range of churn-like datasets. Finally, following on recent developments
in machine learning customer profiling (De Caigny et al., 2018 ; Ullah et al., 2019) and the promising
results obtained with deep clustering approaches (Section 3.2.3), we demonstrate the effectiveness of
our ensemble proposal on a segmented version of several churn benchmark datasets which makes it
possible to directly draw conclusions on customer profile (Figure 3.2 ; green and blue parts).

3.2.4.a Unsupervised machine learning techniques
An autoencoder is a neural network that is trained in an unsupervised or self-supervised manner.
Its parameters are learned in such a way that the output values tend to replicate the input training
samples. The internal hidden layer can be used as a low dimensional representation of the input which
captures the more salient features. We can decompose an autoencoder in two parts, namely an encoder
fθ, followed by a decoder gψ. The first part provides the encoding of the input dataset by computing
a feature vector yi = fθ(xi) for each input training sample. Then, the encoding is transformed back
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to its original representation by the decoder part, following x̂i = gψ(yi). The sets of parameters for
the encoder fθ and the decoder gψ are learned simultaneously during the reconstruction task while
minimizing the loss, referred to as J and given by,

JAE(θ, ψ) =
n∑
i=1

L(xi, gψ(fθ(xi))), (3.2)

where L is a cost function for measuring the divergence between the input training sample and the
reconstructed data. The encoder and decoder parts can have several shallow layers, yielding a deep
autoencoder (DAE) that enables to learn higher order features. The network architecture of these two
parts usually mirrors each other.

Churn data typically contain numerical and categorical data. A straightforward manner for a neu-
ral network to process categorical input is by using the one-hot encoding strategy. However, as shown
in Guo and Berkhahn (2016), embeddings should be preferred to one-hot encoding vectors, as they
reduce memory usage and speed up the neural network learning. Besides, embeddings can capture
intrinsic properties of the categorical variables and reveal relationship between them.

Inspired by Guo et al. (Guo and Berkhahn, 2016) proposal, we adapt the entity embedding in a unsu-
pervised context to automatically learn the representation of categorical features in multi-dimensional
spaces which puts the feature’s values with similar effect close to each other.

Such an approach reveals the inherent continuity of the categorical data. Practically, it consists in
transforming categorical columns (vectors of size n) into an embedding matrix (of size ninstances ×
embeddingdim) taken from a neural network trained with those categories (Fig. 3.4). In this study,
we set embeddingdim to be 2 when the categorical variables have only two unique values, and to be
ceil(nunique×compression), where compression = 1

2 . We provide in Table 3.4 a toy example of entity
embeddings obtained for two categorical variables cata (nunique = 2) and catb (nunique = 4), as done
in our experiments.

Table 3.4 : Toy example of an entity embeddings for 2 categorical variables

instance cata catb
xcat (entity embeddings)

cata0 cata1 catb0 catb1

i = 0 1 2 0.002598 −0.012928 0.036055 −0.003408
i = 1 1 1 −0.015642 0.016857 0.036055 −0.019931
. . . . . . . . . . . . . . . . . . . . .
i = n 2 4 −0.015642 0.016857 0.013035 −0.019931

Thus, to optimize the customer segmentation while learning a combination of numerical and cate-
gorical features within a unique embedding, we train the parameters of a DAE as given in Fig. 3.4†.
Inspired by Guo et al. (2017) we propose to combine embedding and clustering simultaneously as de-
picted in Fig. 3.4. This respects the idea of improving embedding taking into account local structure
preservation. Thereby the loss function to be minimized amounts to the sum of a reconstruction loss
noted JDAE and a clustering loss noted Jclust given by

JAE(θ, ψ) =
n∑
i=1

||yi − gψ(fθ(xnumi ))||22 −
n∑
i=1

yi log(gψ(fθ(xcati ))), (3.3)

and

Jclust(θ, ψ) =
n∑
i=1

G∑
k=1

rik||gψ(xi)− µk||22, (3.4)

with n the number of samples, G the number of clusters, rik = 1 if sample i belongs to cluster k,
and the concatenation of the vectors xnumi and xcati gives xi. Ultimately, for our experiments, each
customers’ segments is then split in train and test embeddings subsets, before the machine learning
models are fit on the train part (see Section 3.3.1).

†Dropout refers to cutting the connection to a set of random neurons in order to reduce overfitting ; LinBnDrop
is a sequence of linear layer and batch normalization that aims at standardizing the input to improve training and
dropout (Loffe and Normalization, 2014).
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Additionally the neural network architecture rely on several components : - Dropout (Srivastava
et al., 2014) : refers to cutting the connection to a set of random neurons in order to reduce overfitting
- LinBnDrop (Ioffe and Szegedy, 2015) : Which is a sequence of Linear layer, Batch normalization
aims at standardizing the input to a layer to improve training and Dropout. Finally we have chosen
a sigmoid for the continuous variables providing that they are standardized between zero and one.

Figure 3.4 : Deep network pipeline for the joint learning of instances embeddings and customer segmentation. Adapted from
the online course walkwithfastai.com.

3.2.4.b An effective soft voting approach
Our ensemble strategy involves a set of {Mi} models for which we propose to apply a soft voting,
as describe in Mohandes et al. (2018), before computing the metrics. One advantage of this type of
vote is related to the increase weight given to the most different pairs of models. Specifically, if we
consider an ensemble of three models, using the soft voting, the expected score ŷens is then expressed
as a weighted sum of the individual scores as given by Eq.3.5,

ŷens = ω1ŷM1
+ ω2ŷM2

+ ω3ŷM3
, (3.5)

where
ω1, ω2, ω3 = softmax(ω̃1, ω̃2, ω̃3), (3.6)

with
ω̃i =

1

ρ(ŶMi
, ŶMj

) + ρ(ŶMi
, ŶMk

)
. (3.7)

where ρ denotes the Pearson correlation.

3.3 Experiments on public datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.1 Ensemble method for prediction and profiling
In this section, we propose to associate our churn prediction ensemble method (LR|XGBoost|RF ; Chap-
ter 3.1) to a deep customer data profiling. Data are segmented based on the approach described in
Section 3.2.4.a (see also Fig. 3.4) that jointly learns a k-means partitioning (G clusters) with DAE en-
codings and entity embeddings. Each cluster Ci is split into a Ctraini train set and a Ctesti test set, in a
stratified manner (80%/20%). The aggregated score of the models {M j}j=1..m is then used to predict
churn behavior on each segment Ci, and the average of all the test sets AUCi provides the overall
AUC prediction result (Fig. 3.5). In a supervised churn prediction context, labels are already known
for our benchmark datasets and can be used for the model evaluation. In practice, novel observations
for which the company requires a label would correspond to our test subsets.

3.3.2 Quantitative evaluation of churn prediction
We compare our approach to state-of-the-art methods in the context of churn, namely LLM and Ullah’s
RF model. For LLM, we used the implementation provided by the LLM R package (V1.1.0) ‡. Ullah’s
RF-based model was implemented following the author’s description and based on scikit-learn Python
package. We performs 50 runs on all benchmark datasets § for the compared approaches. The Table 3.5
summarizes AUC results for different number of clusters (from k = 2 to k = 6).

‡https://cran.r-project.org/web/packages/LLM/LLM.pdf
§for the largest datasets (K2009, KKBox and C2C), 20 runs were done
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Figure 3.5 : Evaluation of the ensemble profiling and prediction approach. Two customers subgroups are identified in an
unsupervised manner (G = 2 ; see Section 3.2.4.a). In practice, test subsets would correspond to novel observations for

which the company expects a label

As can be seen, our ensemble proposal combined with the DAE data segmentation outperforms the
competitive profiling approaches, with ÃUC between 0.8516 and 0.8546, while LLM and the RF-based
model reach 0.8450 and 0.8317 respectively. It should be highlighted that LLM encounters difficulty
to handle several datasets, for which its execution could exceed 3 hours (vs. less than half an hour
on average for our proposal) and our experiments should be stopped before the convergence of these
approaches (Table 3.5, overtime labels).

The AUC value embeds two metrics which are the Precision and the Recall. While the Precision
estimates the ability of the model to obtain actual churners among its predicted churners, the Recall
estimates the ability of the model to recover actual churners. Usually, the cost of a false positive in
the churn context is considered as less damaging than the non identification of an actual churner. In-
deed, contacting loyal customers to propose them with several advantages such as discounts generally
reinforce their loyalty at a fixed cost.

By contrast, missing an actual churner could induce a significant loss of profit. Hence, Recall is,
along with AUC, an important metric to be considered when building a churn prediction model. The
Table 3.6 summarizes the Recall of our ensemble approach combined with data segmentation (best
value is given in bold, second best value is underlined). Our proposal outperforms the Recall of LLM
and Ullah’s RF-based model.

Table 3.5 : AUC results for our ensemble proposal vs. LLM (De Caigny et al., 2018) and RF-based (Ullah et al., 2019).

LR|XGBoost|RF & DAE-based Segmentation LLM RF-based
k=2 k=4 k=6 (De Caigny et al. (2018)) (Ullah et al. (2019))

Bank 0.8620 ± 0.0088 0.8612± 0.0096 0.8605± 0.0086 0.8501± 0.0089 0.8422± 0.0119
C2C 0.6719 ± 0.0062 0.6671± 0.0048 0.6708± 0.0051 overtime 0.6558± 0.0046
DSN 0.8923 ± 0.0157 0.8867± 0.0185 0.8852± 0.0193 0.8589± 0.0278 0.8885± 0.0171
HR 0.8402± 0.0267 0.8449 ± 0.0294 0.8335± 0.0367 overtime 0.7491± 0.0355
K2009 0.5063± 0.0083 0.5059± 0.0113 0.5091 ± 0.0105 overtime 0.5091 ± 0.0112
KKBox 0.8764± 0.0009 0.8765 ± 0.0012 0.8756± 0.0014 overtime 0.8749± 0.0013
Member 0.7048 ± 0.0094 0.7028± 0.0122 0.6985± 0.0106 0.6708± 0.0118 0.6858± 0.0121
Mobile 0.9071± 0.0026 0.9074± 0.0028 0.9069± 0.0036 overtime 0.8985± 0.0039
SATO 0.8175 ± 0.0213 0.8142± 0.0199 0.8133± 0.0189 0.7835± 0.0188 0.8171± 0.0182
TelC 0.8465± 0.0097 0.8480± 0.0098 0.8490 ± 0.0096 0.8399± 0.0114 0.8212± 0.0107
TelE 0.9360± 0.0023 0.9341± 0.0022 0.9319± 0.0024 overtime 0.9409 ± 0.0016
UCI 0.9120± 0.0215 0.9152 ± 0.0209 0.9084± 0.0197 0.8732± 0.0323 0.9095± 0.0213
News 0.8639 ± 0.0076 0.8620± 0.0076 0.8541± 0.0071 overtime 0.8554± 0.0084

ÃUC 0.8620 0.8612 0.8541 0.8450 0.8219
AUC 0.8182 0.8174 0.8151 0.8127 0.7978

3.3.3 Qualitative evaluation of churn profiling
Beyond the performance in churn prediction performance for our ensemble approach, it is important
to highlight the benefit of the data segmentation in terms of customers profiling. Indeed, the parti-

38



Table 3.6 : Recall results for our ensemble proposal vs. LLM (De Caigny et al., 2018) and RF-based (Ullah et al., 2019).

LR|XGBoost|RF & DAE-based Segmentation LLM RF-based
k=2 k=4 k=6 (De Caigny et al. (2018)) (Ullah et al. (2019))

Bank 0.7551 ± 0.0329 0.7548± 0.0346 0.7490± 0.0410 0.7398± 0.0376 0.7162± 0.0396
C2C 0.6663± 0.0490 0.6578± 0.0658 0.6750 ± 0.0466 overtime 0.6006± 0.0400
DSN 0.8356± 0.0459 0.8065± 0.0489 0.8027± 0.0408 0.8118± 0.0608 0.8376 ± 0.0507
HR 0.7488 ± 0.0591 0.7297± 0.0590 0.7311± 0.0789 overtime 0.6629± 0.0887
K2009 0.5376 ± 0.2220 0.4416± 0.2668 0.4669± 0.2608 overtime 0.4403± 0.1780
KKBox 0.7466± 0.0147 0.7507± 0.0195 0.7569 ± 0.0162 overtime 0.7440± 0.0144
Member 0.7482 ± 0.0635 0.7426± 0.0751 0.7276± 0.0867 0.7140± 0.0921 0.6996± 0.0776
Mobile 0.8365± 0.0152 0.8415 ± 0.0116 0.8388± 0.0111 overtime 0.8219± 0.0140
SATO 0.7371± 0.0797 0.7283± 0.0797 0.7106± 0.0712 0.7079± 0.0733 0.7631 ± 0.0417
TelC 0.7985 ± 0.0528 0.8026± 0.0443 0.7940± 0.0452 0.8060± 0.0450 0.7671± 0.0416
TelE 0.9313± 0.0092 0.9320± 0.0076 0.9322± 0.0091 overtime 0.9361 ± 0.0067
UCI 0.8155± 0.0289 0.8227± 0.0335 0.8208± 0.0424 0.7727± 0.0470 0.8257 ± 0.0385
News 0.7729± 0.0408 mathbf0.7772± 0.0362 0.7675± 0.0389 overtime 0.6715± 0.0681

ÃUC 0.7551 0.7548 0.7569 0.7563 0.7440
AUC 0.7638 0.7529 0.7518 0.7587 0.7297

tioning of the customer data puts forward the most important features on which the Mi models are
fitted. These features can be further assigned to subgroups of churners and non churners within each
cluster. Hence, proactive marketing campaigns could be designed to target a group of both churners
and non churners – reinforcing the loyalty for the former while potentially retaining the latter – or
focus only on several churners subgroups.

The Tables 3.7 to 3.9 provide the 3 most important features for three datasets ; Bank, Member and
TelC. The features are ranked based on their importance score which is computed from the mean im-
purity decrease of each split during class prediction (Section 3.3.1). This score is further multiplied by
the average standardized mean value of each segment in each class. The top most important features
are obtained on these final importance values.

Bank dataset (Table 3.7) As an example, the tenure¶ feature helps to discriminate churners and
non churners in clusters C2 to C4 for Bank, while geographical aspects and credit type information are
more important in cluster C1. The creditscore variable also plays a discriminative role in clusters C1

and C3. This is understandable given that a customer with higher credit score would tend to remain
with the same bank. A plausible interpretation would be that a customer with higher credit score
would tend to remain with the same bank. Hence, it would be interesting for the company to conduct
investigations along this line in order to build efficient proactive marketing campaigns.

Table 3.7 : Top 3 features for our ensemble proposal with DAE-based segmentation (k = 4 ; Bank data).

Bank
churner non churner

C1

creditscore geography_spain
numproducts_2 numproducts_2
geography_germany hascrcard

C2

estimatedsalary age
gender gender
tenure numproducts_2

C3

age creditscore
balance balance
hascrcard tenure

C4

estimatedsalary estimatedsalary
age balance
tenure gender

Member dataset (Table3.8) Another example is given by Member, where only the cluster C3 is
not concerned by the annual_fees‖ variable. It is rather impacted by the member_gender information.
This is indicative of a particular customer subgroup. We also notice for this cluster the impact of the

¶tenure refers to the number of years that the customer has been a client of the bank
‖annual_fees are paid in return for using the exclusive facilities offered by this club
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membership_package on the non churner subgroup. This variable indicates whether fees are customized
for members personal package, suggesting straightforward manner to improve member loyalty.

Table 3.8 : Top 3 features for our ensemble proposal with DAE-based segmentation (k = 4, Member data).

Member
churner non churner

C1

annual_fees membership_term_years
additional_member_3 member_annual_income
member_occupation_cd_2 annual_fees

C2

annual_fees member_age_at_issue
member_age_at_issue payment_mode_semi-annual
payment_mode_annual member_occupation_cd_2

C3

member_annual_income membership_package
membership_term_years member_occupation_cd_1
member_gender payment_mode_annual

C4

member_age_at_issue member_age_at_issue
membership_term_years additional_member_0
annual_fees member_occupation_cd_2

TelC dataset (Table 3.9) With TelC, we can notice that clusters C1 to C3 decomposes into
churners subgroups that are concerned by different payment method (C1, bank transfer ; C2, credit
card ; C3, electronic check). The C4 TelC cluster stands out from the rest of the clusters in terms of
most important features, both for churners and non churners. Interestingly, the C3 cluster seems to
indicate a non churner subgroup that is satisfied with the technical support.

Table 3.9 : Top 3 features for our ensemble proposal with DAE-based segmentation (k = 4, TelC data).

TelC
churner non churner

C1

monthlycharges totalcharges
totalcharges techsupport_no
paymentmethod_bank transfer onlinebackup_no

C2

paymentmethod_credit card gender
partner monthlycharges
gender paymentmethod_elec. check

C3

monthlycharges monthlycharges
tenure_group_tenure_24-48 totalcharges
paymentmethod_elec. check techsupport_yes

C4

totalcharges seniorcitizen
seniorcitizen dependents
paperlessbilling streamingmovies_yes

All in all, these qualitative evaluations put forward the intrinsic multidimensionality and multiplicity
of the customer behavior patterns.

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In this Chapter, we propose to review, evaluate, and compare several widespread machine learning
approaches in the context of churn prediction and profiling. We also provide insightful general re-
commendations for the choice of a processing pipeline for churn prediction and profiling based on an
ensemble approach.

Note that we only consider the default parameters for each approach while the supervised context
would also allow for boosting versions of some of these techniques (Clemente et al., 2010 ; Lemmens
and Croux, 2006). This could significantly improve classification results, in particular for SVM (Va-
feiadis et al., 2015). Furthermore, churn prediction issue pertains to the broader class of imbalance
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data problem. It is therefore related to the extreme case of anomaly or outlier detection (Kong et al.,
2020) for which many approaches have been proposed (Chandola et al., 2009 ; Alam et al., 2020 ; Pang
et al., 2017 ; Taha and Hadi, 2019). In particular, semi-supervised approaches regularly provide state-
of-the-art results (Alam et al., 2020 ; Villa-Pérez et al., 2021). Among the well-known semi-supervised
techniques for anomaly detection, one could cite Local Outlier Factor (LOF) (Breunig et al., 2000),
One-Class SVM (ocSVM) (Schölkopf et al., 1999), Isolation Forest (iForest) (Liu et al., 2012) and
Support Vector Data Description (SVDD) (Tax and Duin, 1999) methods. These type of techniques
should be the object of our future works.

Another type of approaches for which a particular interest should be taken in the context of attri-
tion are the deep learning methods. We can observe that the finance industry is gradually adapting
various machine learning techniques. In particular, detecting economic crimes (eg., accounting fraud,
money laundering) triggered successful applications of machine learning to this area, where LR, Gnb
and SVM are among the most classic methods exploited. However, the occurence of new kinds of fraud,
with the growth of electronic market, has popularized deep learning methods which enable the emer-
gence of numerous and innovative deep anomaly detection methods (Pang et al., 2021). In particular,
GEV-NN (Generalized Extreme Value Neural Network) which proposes to use Gumbel distribution as
an activation function, reaches state-of-the-art results in the context of imbalanced data (Munkhdalai
et al., 2020).

It is also important to notice that most of the churn-like prediction frameworks typically consi-
der only structured data. However, as a large proportion of big data consists of diverse unstructured
data (Gandomi and Haider, 2015), it is important to find strategies that enable the incorporation of
the information that they contain. Indeed, online communication means between customers and com-
panies or banks are expanding rapidly. Previous studies demonstrate that textual data can improve
the churn prediction performance. Examples can be found with the use of highly unstructured data
coming from social networks (Tang et al., 2014 ; Benoit and Van den Poel, 2012 ; Coussement and
Van den Poel, 2008). Recently De Caigny et al. (2020) proposed the incorporation of textual informa-
tion based on Convolutional Neural Network. This last consideration should be part of an interesting
short-term study.

Finally, while our study does not analyze the customers’ churn decision through time, it is important
to mention that multivariate times series data have triggered innovative techniques last years in the
context of churn. Indeed, it is reasonable to hypothesis that the modifications of customers’ behavior
can be detected during the time leading to a churn decision. To deal with multivariate times series,
several techniques were proposed that are based either on the featurization of the time series data
to construct a tabular dataset or on dimension reduction combined with a binary classifier (Orsenigo
and Vercellis, 2010 ; He et al., 2014). More recently, Wang et al. (Wang et al., 2016a) propose to use
recurrent neural networks to tackle the time series data classification task. Finally, Óskarsdóttir et
al. (Óskarsdóttir et al., 2018) designed extensions of the similarity forest method and successfully
applied them for classifying multivariate time series data for churn prediction.
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In this Chapter we propose to enrich our churn prediction model with recent deep learning ap-
proaches. More specifically, we propose a novel semi-supervised deep learning architecture, which is
built on top of the recent contrastive learning framework (Chen et al., 2020).

4.1 Context and background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 Introduction
Labeling humongous amount of data is a bottleneck for building generalist models that acts on com-
plex tasks. Indeed, labeling a large amount of data is costly and typically error prone when the task is
performed by a human annotator (Northcutt et al., 2021). Self-supervised learning (SSL) has recently
emerged has a novel paradigm to deal with this issue. Broadly speaking, SSL aims at framing the
unsupervised problem as a supervised one in order to build a good representation. It can then be used
in turn for downstream tasks such as classification or semi-supervised learning. Two strategies are
generally encountered, namely pretext task(s) and contrastive learning. Pretext tasks learn representa-
tions of the data using pseudo labels. These pseudo-labels are generated automatically based on the
characteristics found in the data. An example of a pseudo-supervised task could be to predict whether
an image is rotated by a certain amount of degree (Gidaris et al., 2018). Contrastive learning is built
on positive pairs which is formed from two perturbed views of the same image that are kept close. By
contrast, negative pairs comprise the rest of the dataset along with their respective perturbed image.
They are pushed away as being two different images. In terms of manual task, it would be equivalent
to ask if two images are similar or dissimilar (Chen et al., 2020).

Self-supervised learning is regularly encountered in several areas of machine learning. Natural Lan-
guage Processing (NLP) was one of the first field to leverage the power of self-supervised learning
with the Word2Vec technique which aims at predicting a target word from the surrounding context
words (Goldberg and Levy, 2014). It has been extended with the family of Transformers, one ins-
tance of it being BERT (Bidirectional Encoder Representations from Transformers) which relies on
the Mask Language Modeling task. Specifically, it randomly mask 15% of the tokens from each se-
quence while the encoder is trained to predict those missing tokens, given all the other words of the
sequence (Devlin et al., 2018). Other models have been proposed (Lewis et al., 2019 ; Alrowili and
Vijay-Shanker, 2021). In vision, several pre-text tasks were incorporated into the framework such as
context prediction (Doersch et al., 2015), image clustering where the clusters are used as class (Caron
et al., 2018) and several others variations (Misra et al., 2016 ; Doersch et al., 2015 ; Zhang et al., 2017)].

In this work, we propose MAC (Mean-teacher Architecture using Contrastive learning), a contrastive
pre-training procedure along with a novel noise generator based on a diffusion process (Song et al.,
2020). We test MAC on several datasets extracted from the OpenML-CC18a benchmark data (Bischl
et al., 2017), which is a collection of 72 real-world classification datasets. We focus on 20 datasets with
a binary target, in line with the attrition issue. We show that MAC pre-training improve classification
win ratio in the semi-supervised setting.

ahttps://www.openml.org

4.1.2 Related Works
Self-supervised learning for tabular dataset has naturally arose in the aftermath of its success in
vision and NLP. Even though, in the tabular paradigm, there is still a contest between traditional
methods like XGBoost, Random Forest and Neural networks. Some author argues that deep learning
approches are not all you need (Shwartz-Ziv and Armon, 2022) in the tabular domain.

4.1.2.a SimCLR approach for Contrastive Learning
In the tabular setting, we will concentrate around the contrastive learning paradigm. In particu-
larly, we focus on SimCLR (a Simple framework for Contrastive Learning of visual Representations),
a contrastive self-supervised learning approach which was designed to deal with images (Chen et al.,
2020). Regarding its structure, an image is taken randomly. Then, two transformations are applied to
get two different views of the image. Each image is passed through an encoder to build representations.
Subsequently, a non-linear fully connected layer is applied to get two representations, zi and zi’. The
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pre-training task is to maximize the similarity between those two representations and push away the
negative elements.

First, such approaches incorporated an autoencoder in the tabular framework, such has encounte-
red with VIME (Yoon et al., 2020) which builds on the denoising autoencoder architecture. The authors
propose to perform two novel pre-text tasks, rather than injecting a gaussian noise : (i) estimating
mask vectors from corrupted tabular data and (ii) a reconstruction pretext task of the input. The
TabNet approach (Arık and Pfister, 2021) uses the sequential attention mechanism to select the top
most important features for each decision node. For this approach, the P pretraining involves feeding
to the TabNet encoder a corrupted data frame, where cells are randomly deleted, and then recons-
tructing it through the decoder. In SubTAB (Ucar et al., 2021) the authors proposed to turn the task
of learning from tabular data into a multi-view representation learning problem by dividing the in-
put features to multiple subsets. The architecture is an autoencoder-like with two outputs : (i) one
reconstruction loss and (ii) one contrastive and divergence loss.

The SAINT method (Somepalli et al., 2021) is the first model to leverage SimCLR in the tabular
domain. They proposed two pre-training task : (i) reconstructing the input and (ii) maximizing the
similarity between two views of the data, zi and zi’. Yet, it should be noted that, by contrast with the
image paradigm, only one view of the data can be corrupted in the tabular setting. The authors have
shown that the results become unstable otherwise. In the appraoch contrastive Mixup (Darabi et al.,
2021), the authors proposed to alter the data with a MixUp augmentation. It is then mapped to a low
dimension latent space where samples with the same label class are pushed closer. With the SCARF
approach (Bahri et al., 2021), the data are divided into two views ; one of which being perturbed by
drawing from the feature’s marginal. This is then sends out to the encoder to obtain the zi and zi’
representations, before being optimized through an InfoNCE (Noise-Contrastive Estimation) loss. The
benchmark built for SCARF represent a significant amount of work as the authors propose a benchmark
built on 69 tabular dataset along with 7 baselines and a range from 25% to 100% of labeled training
data.

4.1.2.b The semi-supervised mean-teacher approach
In our extended model, we propose to incorporate a semi-supervised mean-teacher architecture (Tar-
vainen and Valpola, 2017) to connect the two projections heads of the contrastive learning architecture.
This implies that only the student head will experience the backpropagation ; the teacher head will be
updated by Exponential Moving Average (EMA) every p iterations of the student. More formally, the
student has weights θt and the teacher has weights θ′t which are updated in an EMA fashion weighted
by an hyperparameter α, as given by Equation 4.1,

θ′t = αθ′t−1 + (1− α)θt (4.1)

As detailed in Section 4.2, we enrich the mean-teacher architecture with a novel perturbation
which is inspired from a score-based generative model as proposed by Song et al. (2020). Specifically,
the authors inject noise from several possible diffusion processes during the forward phase to map
the distribution to a Gaussian distribution. Providing the static nature of data, they performed an
antithetic sampling, which consists in perturbing the observations at different levels of the stochastic
process. The perturbation is based on the Diffusion Processes which originated from statistical physics
as a way of modeling the trajectory of a particle in a flowing fluid while being subjected to collisions
with other particles. In a more abstract setting, it is a subset of a Markov process (Pavliotis, 2015)
where the state space is S = R, where jumps are not allowed, and which is framed as an Itô Stochastic
Differential Equation, as described in Equation 4.2,

dx = f(x, t)dt+G(x, t)dw (4.2)

where f(·, t) is the drift coefficient, G(x, t) is called the diffusion coefficient and w is the standard
Brownian motion.

4.2 Mean-Teacher Architecture using Contrastive learning (MAC) . . . . .

In this Section, we provide the different elements that compose our MAC architecture and their rela-
tionships. The Figure 4.1 provides an overview of the proposed approach.
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4.2.1 MAC architecture overview
The pre-training is performed in two views, with one branch being perturbed by injecting a diffusion
type noise (Fig. 4.1, top). The teacher path does not incorporate any backpropagation of the loss. Only
the EMA (Exponential Moving Average) of the student branch is concerned by the backpropagation.
As opposed to the teacher branch, the student branch does not experience any noise ; it just performs
a sequence of operations to build a better representation.

Figure 4.1 : The MAC architecture, The pre-training stage is divided into two branches the top branch backpropagate the
weights of the InfoNCE loss ; the bottom branch is corrupted and is backpropagated not directly but through the

Exponential Moving Average (EMA) of the student head ; Fine-Tuning is accomplished after the representation has been
learned in order to perform a fine-tuning task.

The MixUp strategy is one of the possible way to augment the input data. The approach is similar
to what has been proposed with the SAINT architecture (Somepalli et al., 2021). The diffusion noise
is derived from one of the four perturbations kernel from discrete markov chains propose by Song
et al. (2020) (see Section 4.2.2). Given that they all have an affine drift coefficient, their perturbations
kernel are all Gaussian’s. The Loss function is the InfoNCE loss (Oord et al., 2018) which pushes
positive pairs from the two different representations zi and z′i of the same dataset to be as close as
possible while negative pairs are pushed apart whenever i 6= j such as given in Equation 4.3,

Lpre−train = −
n∑
i=1

log
exp(zi · z′i/τ)∑m
k=1 exp(zi · z′k/τ)

(4.3)

The fine-tuning follows the pre-training stage, which proposed a proper representation of the data
(Fig. 4.1). This final step aims at learning the weights of an MLP in order to perform a semi-supervised
classification problem. This task requires a novel loss which is the cross-entropy between the predicted
labels and the true class. In particular, the data is passed either through the Embedding layer for the
categorical data, or either through an MLP for the numerical data. Then both of them are fed to the
SAINT layer fφ(·) and finally to the MLP (·) to be learnt along with the cross entropy loss.
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4.2.2 Perturbation kernel descriptions
The transition kernels aim at perturbing the data distribution p0 to a prior distribution pT which is
in our case a Gaussian distribution.

- Variance Explosion SDE (VESDE) yields a process with exploding variance when t→ ∞.

Its kernel is derived as being :

p0t(x(t) | x(0)) = N

(
x(t); x(0), σ2

min

(
σmax

σmin

)2t

I
)
, t ∈ (0, 1]

To pick the hyperparameters we follow the instructions of the paper Song and Ermon (2020). More
particularly the technique 1 ; it states that we should choose σmax to be as large as the maximum
Euclidean distance between all pairs of training data points.

- Variance Preserving SDE (VPSDE) yields a process with bounded variance

p0t(x(t) | x(0)) = N
(

x(t); e− 1
4 t

2
(
β̄max−β̄min

)
− 1

2 tβ̄minx(0), I − Ie− 1
2 t

2
(
β̄max−β̄min

)
−tβ̄min

)
, t ∈ [0, 1]

In their paper the authors specifies that β̄min = 0.1 and β̄max = 20 to match the paper of Ho et al.
(2020).

- The sub-Variance Preserving SDE (sub-VP SDE) is a modification of VPSDE which
achieves better performance on images.

p0t(x(t) | x(0)) = N
(

x(t); e− 1
4 t

2
(
β̄max−β̄min

)
− 1

2 tβ̄minx(0),
[
1− e−

1
2 t

2
(
β̄max−β̄min

)
−tβ̄min

]2
I
)
, t ∈ [0, 1]

We follow the same criteria to set the β̄min and β̄max as the VPSDE transition kernel.

- Gaussian perturbations SDE (vanilla SDE) Lastly we harness the following SDE that comes
from the blog of Yang Song and more specifically to his notebook Tutorial of score-based generative
modeling with SDEs in PyTorch

dx = σtdw, t ∈ [0, 1]

In this case the transition kernel becomes

p0t(x(t) | x(0)) = N
(

x(t); x(0), 1

2 logσ
(
σ2t − 1

)
I
)
, t ∈ [0, 1]

This approach offers a simple type of noise that increase depending on the time variable t.

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We evaluate our novel method MAC pre-training on test AUC after semi-supervised fine-tuning in two
distinct settings : on the full dataset but where only 70% of samples have labels and the remaining
30% do not, and on the full dataset where 20% of the samples have labels.

4.3.1 Experimental settings
4.3.1.a Datasets and data preprocessing
The table 4.1 lists the twenty binary dataset from the OpenML-CC18 datasets. The table yields infor-
mation’s about the number of instances, of features, continuous features, categorical features and we
also calculated a ratio of the class 1 over the class 0. We form a 70%/10%/20% of train/validation/test
splits, where a different split is generated for every trial and all methods use the same splits.
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Table 4.1 : Twenty OpenML-CC18 datasets with online access link

Dataset #Instances #Features #Cont.Feat. #Cat.Feat. class1
class0

sick 3772 30 7 23 0.065
pc1 1109 22 21 1 0.07
pc3 1563 38 37 1 0.11
pc4 1458 38 37 1 0.14
online-shoppers-intention 12, 330 18 14 4 0.18
kc1 2109 22 21 1 0.18
jm1 10, 885 22 21 1 0.24
kc2 522 22 21 1 0.26
Churn-for-Bank-Customers 10, 000 14 11 3 0.26
blood-transfusion-service-center 748 5 4 1 0.31
telco-customer-churn 7043 20 3 17 0.36
ilpd 583 11 9 2 0.40
spambase 4601 58 57 1 0.65
breastTumor 286 10 1 9 0.72
electricity 45, 312 9 7 2 0.74
madelon 2600 501 500 1 1
balance-scale 625 5 4 1 1
kr-vs-kp 3196 37 0 37 1.09
PhishingWebsites 11, 055 31 0 31 1.26
credit-g 1000 21 7 14 2.33

Regarding the data pre-processing, the data were split into categorical and continuous types. The
categorical variables are passed through an embedding layer of dimension m. The continuous variables
are mapped through an MLP (·) from a one dimension to an m dimension given that they have been
previously standardized in range of zero to one by max normalization.

4.3.1.b Model architecture and training
After the data preprocessing, the observations are mapped either to the MAC top branch or to the MAC
low branch, where a noise is injected (Fig. 4.1). We evaluate five types of noise, namely MixUp (Berthe-
lot et al., 2019), Variance Explosion (VP), Sub-variance preserving (Sub-VP), the variance preserving
(VP) and Stochastic Differential Equation (SDE). The data is then fed to a neural network – SAINT in
our case –, which is followed by two heads : the student with the backpropagation and the teacher, wi-
thout the backpropagation. The teacher learns thanks to the Exponential Average block (EMA). Finally
we consider the loss function InfoNCE, as recommended by previous studies∗. For the fine-tuning, the
observations pass through the top branch (Fig. 4.1) and after the first encoder fθ(·), it is fed to an
MLP (·) and optimized through a classification loss (i.e. cross entropy) based on the target value. The
architecture MAC is pre-trained with 10 iterations and 5 iterations for the fine-tuning task. Increasing
the number of iterations, led to two issues : (i) either we do not observe any significant improvement,
(ii) the AUC decreases.

4.3.1.c Evaluation metric
We use the Win matrix on the AUC matrix of our models (including SAINT). To construct the Win
matrix W, given M methods, we compute the coefficients (i, j) following Equation 4.4,

Wi,j =

∑5
d=1 1[ method i beats j on dataset d]∑5

d=1 1[method i beats j on dataset d] + 1[method i loses to j on dataset d]
. (4.4)

where ’beat’ means being greater or equal. Hence, if two noises have the same AUC score they will
be considered as being beaten by one another.

∗Alternatives losses. We have investigated one alternative loss the so-called Barlow Twins (Zbontar et al., 2021).
However we did not observe any improvement even sometimes a decrease in the scores whereas InfoNCE still remains a
good asset.
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4.3.2 Results
This Section provide our experimental results using the win matrices computed from the AUC scores.
Each coefficient ranges from zero to one, where zero stands for the model being unable to beat its
opponent. We compare six models, a baseline SAINT (Somepalli et al., 2021), our model with EMA
and MixUp (ema+mixup) ; and four varinats with diffusion noises (ema+sde, ema+VE, ema+VP and
ema+subVP). By contrast with Bahri et al. (2021) proposal, our win matrices are not symmetric.
Indeed a great deal of competitors yields the same score and with our definition of "beat" as being
greater or equal we obtain this asymmetry.

4.3.2.a Results with unbalanced labeled data
Our first evaluation scenario is constrained by a small sample size of labeled data, 20%. As shown in
Figure 4.2, the baseline SAINT does not beat ema+mixup on the twenty datasets with a win score of
0.45 (Fig. 4.2, first row). It outperforms three of our diffusion noises, however ema+VE appears as a
strong challenger for SAINT. It could be explained by the stochastic behavior of the model ema+VE.
Furthermore, ema+mixup is overall the best model as it beats all of its competitors by a large margin
above the threshold of 0.5 (Fig. 4.2, second row). Finally regarding the diffusion noises no model really
stands out regarding the baseline and our proposed models.

Figure 4.2 : Win matrix comparing pre-training methods against each other, and their improvement to existing solutions in
a semi-supervised learning setup with only 20% of labeled data.

4.3.2.b Results with quasi-balanced of labeled data
In the second scenario we consider datasets with 70% of labeled data. By contrast with the results
in Section 4.3.2.a, SAINT and ema+mixup exhibit similar win scores. It suggests that both models
converge whenever the data is fully supervised. Additionally contrary to the previous case the diffusion
group of diffusion noises ema+** is way below average which makes them ineffective in the quasi
balanced case.
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Figure 4.3 : Win matrix comparing pre-training methods with 70% of labeled data

Our experiments in the quasi-balance and unbalanced case have showcased the strength of our MAC
architecture. Unfortunately the diffusion noise do not perform well even in the unbalanced case in
regards to the win ratio. Ultimately the architecture armed with ema+mixup is the architecture that
should be favored. Indeed we have experimentally demonstrated its superiority in comparison with
our baseline and the diffusion noises.

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Building on the self-supervised learning framework, we proposed MAC (Mean-teacher Architecture using
Contrastive learning), a novel architecture that greatly improve classification accuracy under the win
matrix primarily, when labeled data is scarce. Whenever the data is almost balanced we have observed
that the baseline (SAINT) and our proposal model tends to coincide. All in all the mean-teacher
architecture from semi-supervised learning along with MixUp corruption enable an improvement over
the SAINT neural network.
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During my work as a PhD candidate, I was continuously willing to bring research into the industry,
which is naturally expected in a CIFRE∗ context. In particular, my main objective was to comprehend
machine learning approaches around the attrition issue and develop novel churn prediction and analysis
methods. Providing that churn is a key issue for my hist company, Brigad, I was collaborating with
the Marketing, Finance and the IT departments to elaborate the first draft of the project.

5.1 Brigad a staffing and recruiting company . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Brigad was created in November 2015 at the initiative of Jean Lebrument, Florent Malbranche and
Alexandre Rovetto. Brigad is specialized in the development of a novel solution to connect freelan-
cers and businesses which ranges from Hospitality to Healthcare. More precisely, Brigad is specialized
on short term contract between both actors. On the long run, Brigad aims at being present on all
the just-in-time jobs, which requires a large number of employees to be efficient. Nowadays, many in-
dustry and service areas are concerned, such as construction, healthcare, sales, education or hospitality.

The Brigad’s online platform relies on algorithms that enable professionals to immediately match
their request with the available Talent which is the most adequate employee for the mission. The
service is available in France and in the top ten largest french cities along with the UK (London and
Manchester). The service is accessible through the mobile application Brigad and from the web site
Brigad.co.

Whenever a professional propose a mission, the platform, automatically build a set of features – the
skills of the Talent, his localization with respect to the mission, if the Talent and the Establishment
have already worked together or the grade they have given to each other – to return the most relevant
candidates. The candidates are immediately informed of their mission. The connection between the
professionals and the candidates is always setup solely through the mobile app ; Brigad’s aim at finding
someone available in less than thirty minutes.

In an effort to always make the platform more effective and in tune with its users it was important
to pinpoint the Business on which we should listened to. Indeed by analyzing their behavior across
time we were expecting to better know the companies that could stop using our services. So that we
could intervene and stop or at least dampen the process by understanding how we could improve our
product and solution to retain those customers.

5.2 Business Churn Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2.1 Introduction
I would like to present in this chapter how my PhD work answered Brigad’s needs. At Brigad the
churn prediction is an important issue, as well as in many service company. The cost of retaining a
customer is way lower than chasing a new one. For this project I was tasked to predict the potential
Brigad churners in the near-future. So that the business expert can ponder and propose an offer to a
customer that we wish to retain. I organized my work as follow :

1. Several meetings with the business experts were set to define the most suitable data.
2. I define with Brigad the churn variable, which is industry-dependent.
3. I explore the data, as detailed in Section 5.3.1
4. I preprocessed Brigad’s data and fitted the Ensemble of Logistic regression, Random Forest and

XGBoost. Rather than measuring the score with AUC, I relied on the LIFT (Section 5.3.2).
5. I performed feature importance with SHAP to pinpoint critical features for churn (Section 5.3.3).

5.2.2 Methods & Feature Engineering
5.2.2.a Introduction
At first, it is important to define the churn or attrition rate in the Brigad business context. The
straightforward definition of attrition comes up in the subscription based companies e.g. the telecom-
munications, the banking, insurance, online music or online game industry. Indeed clients are allowed

∗Conventions industrielles de formation par la recherche
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to quit at the end of their contract. At Brigad, defining churn is somewhat more challenging. The
customers are free to stop using the platform whenever they wish. Additionally, the offered missions
on our platform depends on seasonality, localization or areas. And the depth of each individual history
is relatively low given the young age of the Brigad company. As such, how to calculate the probability
of churn, given a small volume of data that depends on seasonality, the mission localization’s and the
area ? How to foresee the non-use of a business in order to setup preventive actions and motivate them
to carry on ordering staff on Brigad’s platform ?

5.2.2.b Defining churn
Brigad being in a non-contractual setting, we analyze the behavior of groups of customers. Such
an analysis is called a cohort analysis, where the cohorts are a group of clients that we track for a
contiguous period of time. We decided to go for a monthly period of time. We consider the interval
[t − 3, .., t] as our training set. To build the target, we look [t + 1, t + 2, t + 3] three months in the
future to know if the clients has churned or not (i.e. the client hasn’t used the platform).

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3.1 Description of the dataset
5.3.1.a Brigad’s data
To begin with, I introduce the dataset that was extracted from the database. For this study, the
following information were available :

• n = 2841 Businesses

• A churn variable y ∈ {0, 1} with an imbalance rate of 33.19%

• 3 numerical variables

– seniority. The distance between the first and last order of the Business on the platform.
– total_minutes. The accumulated number of minutes of missions ordered
– count_missions. The total number of missions ordered

• 5 categorical variables

– count_unique_jobs. The unique number of jobs ordered (a Business who would order
only cooks would have its value set to one).

– distance_today_last. The distance in days between the begin date and the last mission
– account_type. Is the Business a Key account or a non-key account user ?
– nb_of_cancellations_less_than_4h_before_start.
– nb_of_cancellations_more_than_4h_before_start. nb_of_no_shows.

5.3.1.b Descriptive analysis
Given that the dataset is setup, the next step is to better understand the data. To do so, I first
obtained the distribution of Businesses by their category, as shown in Figure 5.1. We observe that
the Traditional Restaurants and Brasseries are the main customer’s of Brigad. This Business type is
followed by an almost uniform set of other categories, among which Care home, Event, Catering or
Hospitality.
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Figure 5.1 : Distribution of businesses types at Brigad
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Brigad has two types of users, namely the Key account which is generally a large company, and the
regular user, which is for instance a Brasserie. We note that the vast majority of users are regular, as
shown in Figure 5.2.

Figure 5.2 : Business category

Brigad also considers the Seniority, which is defined as the distance between the first order and the
last order made by a Business. Its distribution is highly skewed to the left (Fig. 5.3, (a)). It shows that
most customers are very young. This is an important issue, as young customers are usually expected to
churn more easily. Then, the count unique jobs gives us the the unique type of jobs ordered (Fig. 5.3,
(a)). For example, a value of one state could be a user that only order cooks. And one is the highest
value on the histogram followed closely by two and three.

(a) Seniority (b) Count unique jobs

Figure 5.3 : The seniority and count_unique_jobs features

The total minutes ordered plot is highly intriguing. It is the cumulative sum of minutes ordered on
the platform by the user. Graphically, we have an outlier close to zero. It signifies that most customers
try the platform and grinds to a halt or churn (Fig. 5.4).

Figure 5.4 : Total minutes ordered
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5.3.2 Preventing churn through the use of an Ensemble algorithm
In this chapter I focus on churn prediction. To start off, I motivate the need of an Ensemble approach
to improve the churn prediction. Then, I plot the LIFT curve, which is typically used by business
experts. And finally, I optimize the model and evaluate different thresholds to minimize the false
positive rate.

5.3.2.a Dataset preprocessing
I represent the categorical features by a one-hot encoding vector, and the continuous variables are
scaled in the range [0, 1] by performing a min-max normalization. This is done in order to match
the discrete variables, which falls into the range {0, 1}. No missing values have been observed. I split
the data by a stratified k-fold with k set to 5. Stratified k-fold is the go-to method when the data is
imbalanced.

5.3.2.b Methodology
I build on the churn pipeline from Figure 5.5, which correspond as our global strategy. After querying
the data from our database, I perform feature engineering to build the the seniority, total_minutes
and count_unique_jobs features. This generates a novel table, so-called Churn Table. Next the data
is pre-processed following what I previously described in the first Chapters. The last pre-processing
state is the filtering which is two-folds :

• On one side, I filter on seniority. At Brigad, some businesses churn after a couple of days. This
subset is by definition not predictable by Machine Learning. Hence, I remove them from the
dataset.

• On the other side, the Businesses behavior in Hospitality and in Healthcare are dramatically
different. Hence, I filter on Hospitality.

Regarding the fitting of the model I used an Ensemble of Logistic regression, Random Forest and
XGBoost, as I have demonstrated its strength in the first Chapters.

Figure 5.5 : The Churn pipeline is composed of two stages : - In orange we preprocess the data - In pink we fit, predict and
evaluates the model.
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5.3.2.c Model selection
Regarding the evaluation, I first benchmark the three models individually and the Ensemble of the
three, in order to understand which one performs the best. The Accuracy is not directly applicable in
the churn context. Indeed the dataset being imbalanced, the Accuracy could be high even though the
minority class is not well identified. In Figure 5.6, we note a median ÃUCLR = 0.656, ÃUCXGB =

0.662, ÃUCRF = 0.69 and ÃUCEns = 0.67.

Random Forest seems to be the go-to model in this specific Brigad data context.

Figure 5.6 : Benchmark of our models for stratified 5-fold

Now let us consider a more Business expert metric, namely the Lift. A measure like the AUC is
not directly applicable in the context of marketing because a company may not need to contact all
prospects. Marketers usually contact only 10% to 20% of the prospects. That is why the lift is typically
appropriate.

In Figure 5.7 and 5.8 we have on the x-axis the sample size in percentage which ranges from zero
to 2, 841. Similarly on the y-axis we have either the percentage of churners, given that 942 businesses
are churners, in orange, and the percentage of non-churners in blue. For example, on the plot we can
see that for 20%× 2, 841 ≈ 568 cases the orange curve predicts 0.4× 942 ≈ 376 churners. To calculate
the lift, the baseline is required which is 20% × 942 = 188. As such the lift at 20% is

Lift@20% =
376

188
= 2 (5.1)

In other words, the approach performs 2 times better than a random guess with the Random Forest
technique.
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(a) LIFT for RF (b) LIFT for LR

Figure 5.7 : Lift of RF and LR

(a) LIFT for XGB (b) LIFT for Ensemble

Figure 5.8 : Lift of XGB and Ensemble

5.3.2.d Churn prediction
I proceed with the Random Forest model, we obtain the confusion matrix given in Table 5.1. One
important metric of this table is the number of False Positives, that is the people that Brigad will
contact to prevent them from churning, even though there were not planing to churn. This is the
group that we want to keep low, as contacting someone for no reason is not suitable and might in
certain cases trigger a churn.

Predicted

Churner Non-churner

Actual
Churner 476 466

Non-churner 261 1637

Table 5.1 : Confusion matrix
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Using a grid search strategy, I fine-tuned the model. The Table 5.2 provides the updated confusion
matrix. It can be noted that the number of False Positive has decreased, from 261 to 228 individuals.
However, the False Negative rate increases, from 466 to 489 customers.

The best parameters found with the fine-tuning strategy are,

• max_depth = 90

• max_features = 3

• min_samples_leaf = 5

• min_samples_split = 2

• n_estimators = 200

Predicted

Churner Non-churner

Actual
Churner 453 489

Non-churner 228 1670

Table 5.2 : Confusion matrix with optimal parameters

A last important step is to obtain the optimal threshold for the churner detection. If we are
interested in maintaining low the number of False Positive, while keeping a reasonable Precision,
the threshold should be preferentially set to 0, 80, as can be seen from the Recall and Precision curves
in Figure 5.9.

Figure 5.9 : Decision threshold
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If we set the threshold at 0.80, we observe a significant decrease in False Positive. We went from
228 churners to 34, which is more suitable for business experts

Predicted

Churner Non-churner

Actual
Churner 842 100

Non-churner 34 1864

Table 5.3 : Confusion matrix with a threshold of 0.80

Setting the threshold at 0.70 helps to improve the number of False Negative (from 100 to 71).
However, the number of False Positives increases. As such, I prefer a threshold of 0.80.

Predicted

Churner Non-churner

Actual
Churner 710 71

Non-churner 71 1827

Table 5.4 : Confusion matrix with a threshold of 0.70

Providing the constraints from the business expert, we decided with Brigad to choose a threshold of
roughly 0.80. The main reason is that Brigad’s focus is to not contact customers which are not willing
to churn. It could have an opposite effect, and trigger a churn reaction.

5.3.3 Interpretation with SHAP
After focusing on churn prediction, I will now try to interpret the model with the techniques available
in the python package SHAP (SHapley Additive exPlanations)† SHAP is a cooperative game theoretic
approach to explain the output of any machine learning model (Ribeiro et al., 2016 ; Štrumbelj and
Kononenko, 2014). SHAP aims at explaining the outcome of an ML model f(·) by looking at coalitions.
For a specific feature we look at all the possible combinations that can be built with the other features
in a set S. We then proceed to calculate the contribution of the specific feature a within p features :

φa =
1

p

∑
S

(
p− 1
|S − 1|

)−1

δ(S)a

Where the δ(S)a measure the contribution of the i-th variable to the set S with S−i = S {xi}

δ
(S)
i = fS(S)− fS−i

(S−i)

Unfortunately this model suffers from a combinatorial explosion as the number of feature increases.
Several extensions have been proposed e.g. Kernel SHAP Lundberg and Lee (2017). We will proceed
with Kernel SHAP

5.3.3.a The importance plot
An importance plot displays the average SHAP value for every single features. Features with high
large absolute Shapley values are important.

†SHAP package access : https://shap.readthedocs.io/en/latest/index.html
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Ij =
1

n

n∑
i=1

∣∣∣φ(i)j ∣∣∣
From the Figure 5.10, we first note that dist_today_last is the most important feature. This

intuitively makes sense as a large value means that the Business haven’t ordered a mission for quite
some times. We observe next seniority which is how old the customer is with our service. This feature
has also a strong effect on churn behavior. Subsequently, the more often a Talent would cancel its
mission in last minutes the larger the impact on churn. Also the total number of minutes ordered by
the business have an impact along with the total unique number of missions. Overall, to have a deeper
understanding on how positive or negative on churn are those features, we must proceed to analyze
the summary plot.

Figure 5.10 : Importance plot

5.3.3.b The summary plot
The summary plot offers somewhat more information.A high feature value signifies that this is re-
lated to the "churn" class and a low-value to a "non-churn". We observe a meaningful information
on dist_today_last, it states that the more delay there is between two missions the more likely the
business will churn. In contrast, a high number of count_mission has a negative impact on churn, that
is if a Business order plenty of missions it will be less likely to churn.

Yet, we observe that the number of cancellations of more than 4h have an undesired effect, if
the Talents that the business ordered cancel often, it has a negative impact on churn which is quite
surprising. We observe the same unusual effect on seniority, a business is more likely to churn if he is
a long-term user of the app which contradicts what the data analyst team have observed. We could
also discuss about the variable count_unique_jobs which states that a business is more likely to churn
if it orders a diverse set of jobs. For example it would mean that a Business that orders only waiters
is less likely to churn.
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Figure 5.11 : Summary plot for our model

This sub-chapter highlights the value of the importance and summary plots proposed by SHAP. They
are of a great interest to share our results with the business experts.

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This project was the opportunity of concluding my CIFRE PhD with a real business case in the
platform industry. We have proposed a complete pipeline to solve the churn prediction problem. We
first had to define churn from a business standpoint, which is defined as the consecutive three months
of a business not using the platform. Equipped with the target variable we built our feature set with
the business team which ranges from seniority to the number of cancellation that the business has to
endure. Subsequently we carried on with performing stratified k-fold on four ML algorithms Logistic
Regression (LR), XGBoost (XGB), Random Forest (RF) and Ensemble (Ens).

Our experiments have demonstrated that RF obtained the greatest median AUC as a consequence
it should be the go-to algorithm. Finally we fine-tuned our model by consecutively using grid search
and threshold optimization. Above all threshold optimization is critic in the platform industry. Indeed
contacting someone that wasn’t willing to churn might trigger an opposite effect. Lastly we proposed
to better understand RF output through SHAP with an importance plot and a summary plot.
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6
Conclusion and perspectives

In this thesis we have addressed the problem of tabular prediction in the churn paradigm. We have
resorted to multiple tools and reached several conclusions on the attrition issue.

First, we looked at the state of the art of the domain which could sequentially be described as the
sampling, the model fitting and the evaluation stages. We have observed that the sampling step ge-
nerally correspond to one of the three tasks among oversampling, undersampling or hybrid sampling.
The model fitting revolve around supervised learning along with an evaluation step where we have
emphasized the inefficiency of the Accuracy as a metric in the imbalance scenario and in contrast the
superiority of the AUC metric. Providing the state of the art, we have proceeded to compare various
machine learning techniques on sixteen public churn datasets. At first we compared our models wi-
thout any resampling methods. It appeared that LR, RF, XGBoost and GEV-NN techniques were the
best performers for this task on the considered churn benchmark datasets. Secondly, we performed
similar experiments with a re-sampling stage, which confirmed the prominent AUC for LR, RF and
XGBoost. Additionally, we observed that the resampling methods do not have a global effect – i.e., an
improvement on any data for any ML technique – but rather a local effect. In other words, they help
to improve the prediction AUC but only in some specific cases and combination of techniques/data.
Ultimately, we proposed to visualize the datasets and algorithms on a plane by projection with Cor-
respondence Analysis. (Chapter 1)

Secondly, we have demonstrated in the first chapter the strength of the triplet LR, RF and XGBoost
without any re-sampling to solve the customer churn problem. Building on those models, we propose
to construct an ensemble that will harness the best of each of them. In our experiments, we com-
pared the best non-ensemble pipeline in AUC with respect to our triplet and we demonstrated its
superiority in median AUC. Subsequently, we proposed to extend even further our pipeline by adding
one additional preprocessing step which is based on a deep unsupervised neural network. Indeed, our
assumption is that the customers churn for various reasons and we would like to capture them by using
clustering. Hence, we fit our triplet on every single clusters and merge their predictions by a novel
soft-voting technique that we proposed in this paper. Additionally, we offer a qualitative evaluation
of churn profiling by leveraging the feature importance of the Random Forest. The customer’s being
divided into clusters, we can fit one Random Forest by cluster and analyze their outcomes. (Chapter 2)

Thirdly, we looked at the tabular prediction problem from a different perspective : the self-
supervised learning paradigm. This approach have been well explored in the image and Natural
Language Processing paradigm. Yet, it remains nascent in the tabular domain. As a consequence we
proposed a novel architecture : Mean-teacher Architecture using Contrastive learning (MAC) which
leverage techniques from SimCLR along with deep semi-supervised learning and diffusion processes.
Overall the architecture is built on top of the SAINT neural network with a mean-teacher on the heads
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of the two branches with five types of noises, either a MixUp or one of the four studied diffusion
processes. We performed our experiments on 20 datasets from the OpenML-CC18 benchmark that
we constrained to be solely within the binary classification setting. Building on the works on SCARF,
we chose the win matrix to compare our strategies based on the AUC results. Our experiments have
showcased the superiority of our architecture with the MixUp noise, with respect to our baseline (SAINT
architecture). (Chapter 3)

Fourth, this thesis was conducted in parallel within Université Paris Cité and at the Brigad com-
pany. As such the Chapter 4 is dedicated to one internal project within Brigad. In particular, Brigad
aims at matching Talents and Businesses for short term missions within the hospitality or healthcare
industry. In this setting, predicting the churn is a main concern for the company and this thesis was
the opportunity of connecting academic research and the industry. We decided to build a customer
churn prediction model on the business side. The first stage of any ML problem is to define the list of
features that our business team think could be coherent to our problem. Subsequently the data was
retrieved using SQL from the Databricks platform and it was analyzed through basic descriptive sta-
tistics plots. Next the data was split by stratified k-fold to enable the comparison of several supervised
ML models. In the end, the Random Forest was identified as the best fit to our Brigad data in median
AUC. It follows that we fine-tuned our model by grid search and threshold optimization in order to get
the lowest number of false positives. Finally, we proposed some interpretations using the importance
plot and summary plot proposed by the SHAP techniques (SHapley Additive exPlanations). (Chapter 4)

The studies presented in this thesis motivate further investigations. One domain that has a key
importance is the causal inference applied to churn which is termed the uplift model. The uplift model
enables the user to measure the impact of a treatment (e.g. offering a coupon) against churn which
is of great importance in the industry. Indeed, detecting churn is not sufficient for a company, and
proactive actions must be performed in order to reduce it. Additionally, we could focus solely on
the extreme imbalance case which could be solved by using deep learning for anomaly detection. We
have briefly talked about this topic in the first chapter. One last domain would be to incorporate
time into our problem. Churn is not a static phenomena, as customer behavior varies across time. As
an example, the survival analysis aims at calculating the probability of churn in a predefined time
horizon. We could propose novel models in this area of research in combination with recent deep
learning architectures.
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A.1 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A.1.1 Datasets complementary information
K2009 (KDD-Cup 2009 small) This dataset was proposed in the context of the KDD Cup 2009 :
Churn relationship prediction and originates from the French telecommunication company Orange in
order to predict the switch of provider (Guyon et al., 2009). #Dummified Features : 1039.

KKBox’s (WSDM CUP 2018) This churn dataset was proposed for the 11th ACM International
Conference on Web Search and Data Mining (WSDM 2018) and originates from the KKbox Taiwa-
nese music streaming company. The proposed challenge is to predict if a subscriber will churn as soon
as the subscription expires (Chen et al., 2018). #Dummified Features : 56.

UCI (MLC Churn) This dataset is similar to the Telecom SingTel, CrowdAnalytix and UCI datasets.
MLC Churn is proposed in the R package modeldata (Vafeiadis et al., 2015). #Dummified Features :
21.

HR (IBM Employee Attrition) This dataset originates from IBM HR and includes 1, 470 records of
individuals who left the company or not. It is an artificial dataset created by IBM data scientists
from Watson analytics, and has been proposed to uncover the factors that lead to employee attri-
tion (McKinley Stacker, 2015). #Dummified Features : 86.

TelE (Telco-Europa) This dataset corresponds to the real data of a small telecommunications com-
pany in Oceania that has only 14 months of historical data. It is found in online churn prediction
tutorials. #Dummified Features : 26.

News (Newspaper) This datasets contains information on Californian newspaper subscribers and an
attrition variable. It is found in online churn prediction tutorials. Other newspaper private datasets
were analyzed in previous studies ; see (Burez and Van den Poel, 2009 ; Coussement and Van den Poel,
2008 ; Coussement et al., 2010). #Dummified Features : 307.

Bank This data set contains details of a bank’s customers and their departure. It is found in online
churn prediction tutorials. #Dummified Features : 16.

TelC (IBM Telco Churn) This dataset is proposed by IBM and is used in an online tutorial to train
a model that predicts if a customer is likely to leave the telecom provider. #Dummified Features : 34.

C2C (Cell2Cell) The data sets is provided by the Teradata Center for CRM (Customer Relationship
Management). Data were provided by the Cell2Cell company, which is one of the largest wireless
company in the USA (Kim, 2006). #Dummified Features : 75.

Member (Membership Woes) This dataset is cited in online tutorials. #Dummified Features : 26.

SATO (South-asian) This dataset is provided by a South Asian Telecom Operator, also called SATO.
Data were collected between August 2015 and September 2015 (Ahmed et al., 2018a). #Dummified
Features : 29.

DSN (DSN-telecom ‘Nigerian Telecom’) This dataset has been proposed in the context of the DSN
Telecoms Churn Prediction 2018 challenge, which is one of the pre-qualification to the 2018 Data
Science Nigeria hackathon. #Dummified Features : 32.

Fraud (Credit Card Fraud Detection) The dataset contains transactions made by credit cards in Sep-
tember 2013 by European cardholders. This dataset presents transactions that occurred in two days,
where we have 492 frauds out of 284,807 transactions. The dataset is highly unbalanced, the positive
class (frauds) account for 0.172% of all transactions. It is an anomaly detection dataset.

Thyroid (Thyroid Disease) This data are from the Garavan Institute. The problem is to determine
whether a patient referred to the clinic is hypothyroid. 92 percent of the patients are not hyperthyroid
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in this dataset which contains 7,200 instances. It is an anomaly detection dataset.

Campaign (Bank Marketing) The data is related with direct marketing campaigns of a Portuguese
banking institution. The marketing campaigns were based on phone calls. Often, more than one contact
to the same client was required, in order to access if the product (bank term deposit) would be (’yes’)
or not (’no’) subscribed. It is an anomaly detection dataset.

A.1.2 Python package and functions
All experiments in this survey were performed on public datasets using freely available Python pa-
ckages. Hence, results are entirely reproducible. Table A.1 summarizes information on packages, func-
tions and parameters used for our experiments. It also provides links to the online description of each
function.
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Table A.1 : Packages, functions and parameters summary for the churn pipeline

Approach Function parameters version online details
Sampling

over. SMOTE SMOTE default 0.7.0 imblearn.over_sampling.SMOTE
ADASYN ADASYN ’not minority’ 0.7.0 imblearn.over_sampling.ADASYN

under. Tomek links TomekLinks default 0.7.0 imblearn.under_sampling.TomekLinks.html

NCR NeighbourhoodCleaningRule default 0.7.0 imblearn.under_sampling.
NeighbourhoodCleaningRule

hybrid
SMOTE+Random SMOTE

RandomUnderSampler default 0.7.0
imblearn.over_sampling.SMOTE
imblearn.under_sampling.
RandomUnderSampler

SMOTE+Tomek links SMOTETomek default 0.7.0 imblearn.combine.SMOTETomek

SMOTE+NCR SMOTE
NeighbourhoodCleaningRule

SMOTE : default
NCR : ’minority’ 0.7.0

imblearn.over_sampling.SMOTE
imblearn.under_sampling.
NeighbourhoodCleaningRule

Model Fitting

Supervised

k-nearest neighbors KNeighborsClassifiere default 0.23.2 neighbors.KNeighborsClassifier
Naïves Bayes GaussianNB default 0.23.2 sklearn.naive_bayes.GaussianNB

Logistic Regression LogisticRegression default 0.23.2 sklearn.linear_model.LogisticRegression
Support Vector Machine SVC default 0.23.2 svm.SVC

Decision Tree DecisionTreeClassifier default 0.23.2 sklearn.tree.DecisionTreeClassifier
Feed Forward Neural Network NN default – Neural-Network-Churn-Prediction
Generalize Extreme Value-NN GEV-NN default – GEV-NN

Semi-supervised Isolation Forest IsolationForest default 0.23.2 sklearn.ensemble.IsolationForest
Deep AD with Deviation Networks DevNet default – deviation-network

Ensemble
Supervised

Random Forest RandomForestClassifier default 0.23.2 sklearn.ensemble.RandomForestClassifier
XGBoost XGBClassifier default 1.0.2 xgboost.readthedocs.io

Evaluation

Strategy
Cross Validation train_test_split default 0.23.2 sklearn.model_selection.train_test_split
K-fold validation KFold K=5 0.23.2 sklearn.model_selection.KFold

Stratified k-fold validation StratifiedKFold K=5 0.23.2 sklearn.model_selection.StratifiedKFold

Metric
Top-lift plot_lift_curve default 0.3.7 rasbt.github.io – lift_score

F1-score f1_score default 0.23.2 sklearn.metrics.f1_score
AUC roc_auc_score default 0.23.2 sklearn.metrics.roc_auc_score
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