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ABSTRACT 

In this thesis, four photovoltaic (PV) technologies were experimentally compared, aiming to 

quantify the impact of the external parameters on PV performance. Two of the technologies studied 

are quite common in the market: polycrystalline (p-Si) and monocrystalline (m-Si). The third 

technology, bifacial, allows the conversion of the solar radiation reaching the back face of the modules, 

providing a yield gain. Modules with multi-junction cells under concentration (HCPV) were also 

included in the analysis. They use a larger solar spectrum range and lenses to concentrate the beam 

radiation thanks to a 2-axis tracker constantly following the Sun.  

The PV modules were tested and had their ratings experimentally determined using modeling 

approaches developed in this thesis. All modules were assembled on the PV tracker to provide the 

same operating conditions, and the measurement campaign was carried out for 12 months. The 

experimental records, at one-minute timestep, were checked for synchronicity, interpolated, and 

aggregated. Several filtering approaches were discussed and applied to provide an adequate balance 

between noise removal and data retention.  

The PV arrays were then studied concerning their particularities, starting with the 

identification of the most influencing operating parameters, in order of relevance, and their impact on 

the output power. Then, the effect of the operating temperature was assessed, and the actual 

temperature coefficients for the DC power were determined. Finally, a sensitivity analysis targeting 

the DC power relative to the operating parameters was performed based on filters and mathematical 

models developed for each PV array. Special attention was given to the bifacial array since this 

technology is very promising due to its interesting cost-benefit relation; novel methods to determine 

the effective irradiance and the bifacial gain were also developed. 

 Two different methods were applied to characterize the PV modules. It was found that their 

actual performance is not as good as reported on the datasheets. The m-Si array was the least sensitive 

to the operating temperature, followed by the p-Si and bifacial modules. In turn, the HCPV devices 

were the most impaired by the temperature, air mass, and humidity. The wind speed influence was 

small for the HCPV modules; the arrays most benefited by the wind were the p-Si and m-Si. The bifacial 

array presented the greatest final yield (with a bifacial gain of 6.2 %), followed by m-Si and p-Si. In turn, 

the HCPV array presented the poorest yield, mainly due to their responsiveness only to the beam 

irradiance and the high temperature coefficient for the DC power.  

 

Keywords: Photovoltaic technologies; Performance comparison; Experimental study; 

Sensitivity analysis  
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RÉSUMÉ 

Dans cette thèse, quatre technologies photovoltaïques (PV) ont été comparées 

expérimentalement afin de quantifier l'impact des paramètres externes sur leurs performances. Deux 

des technologies étudiées sont courantes sur le marché : le polycristallin (p-Si) et le monocristallin (m-

Si). La troisième technologie, bifaciale, convertit également le rayonnement solaire atteignant la face 

arrière des modules, apportant ainsi un gain de rendement. Enfin, des modules à cellules multi-

jonctions sous concentration (HCPV), permettant d’utiliser un plus large spectre solaire, sont 

également étudiés ; ils utilisent des lentilles pour concentrer le rayonnement et ont besoin d’un tracker 

biaxial pour recevoir et convertir le rayonnement direct perpendiculaire au plan des modules. 

Les modules PV ont été testés et leurs caractéristiques déterminées expérimentalement à 

l'aide d'approches de modélisation développées dans cette thèse. Tous les modules ont été assemblés 

sur le même tracker pour offrir les mêmes conditions de fonctionnement, et la campagne de mesures 

a duré 12 mois. Les enregistrements expérimentaux – mesurés à un pas de temps d'une minute – ont 

été vérifiés pour leur synchronicité, interpolés et agrégés. Plusieurs approches de filtrage ont été 

appliquées et discutées pour atteindre un équilibre adéquat entre suppression du bruit et conservation 

des données. 

Les paramètres les plus influents, par ordre de pertinence, et leur impact sur la puissance des 

quatre générateurs PV ont été étudiés. L'effet de la température a été évalué et les coefficients de 

température réels ont été déterminés. Une analyse de sensibilité de la puissance par rapport aux 

paramètres de fonctionnement a été réalisée sur la base de filtres et de modèles mathématiques 

développés pour chaque générateur PV. Une attention particulière a été accordée aux modules 

bifaciaux car cette technologie est très prometteuse du fait de son bon rapport coût-bénéfice ; de 

nouvelles méthodes pour déterminer l’irradiance efficace et le gain bifacial ont été développées. 

  Deux méthodes ont été appliquées pour caractériser les modules PV. Il a été constaté que 

leurs performances réelles n’étaient pas aussi bonnes que celles indiquées sur les fiches techniques. 

La technologie m-Si était la moins sensible à la température, suivi des modules p-Si et bifaciaux. Les 

modules HCPV étaient les plus altérés par la température, la masse d’air et l’humidité. L’influence du 

vent est moins marquée pour les modules HCPV mais plus importante pour le p-Si et le m-Si. Les 

modules bifaciaux ont des performances plus élevées (gain bifacial de 6,2 %), suivi du m-Si et du p-Si. 

Le générateur HCPV présentait la production la plus faible, principalement en raison de l’utilisation de 

la seule composante directe du rayonnement et du coefficient de température élevé. 

 

Mots clés : Technologies photovoltaïques ; Comparaison des performances ; Etude 

expérimentale ; Analyse de sensitivité. 
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RESUMO 

Nesta tese, quatro tecnologias fotovoltaicas (FV) foram comparadas experimentalmente, 

visando quantificar o impacto dos parâmetros externos no desempenho FV. Duas das tecnologias 

estudadas são bastante comuns no mercado: policristalina (p-Si) e monocristalina (m-Si). A terceira 

tecnologia, bifacial, permite a conversão da radiação solar que atinge a face traseira dos módulos, 

proporcionando ganho de produtividade. Módulos com células multijunção sob concentração (HCPV) 

também foram incluídos na análise. Eles utilizam um espectro solar maior e as lentes concentram a 

radiação do feixe graças a um tracker de 2 eixos que segue constantemente o sol. 

Os módulos fotovoltaicos foram testados e tiveram suas classificações determinadas 

experimentalmente usando abordagens de modelagem desenvolvidas nesta tese. Todos os módulos 

foram montados no tracker fotovoltaico para proporcionar as mesmas condições de operação, e a 

campanha de medição foi realizada durante 12 meses. Os registros experimentais, em intervalos de 

um minuto, foram verificados quanto à sincronicidade, interpolados e agregados. Diversas abordagens 

de filtragem foram discutidas e aplicadas para fornecer um equilíbrio adequado entre remoção de 

ruído e retenção de dados. 

Os arranjos fotovoltaicos foram então estudados quanto às suas particularidades, começando 

pela identificação dos parâmetros operacionais mais influentes, por ordem de relevância, e seu 

impacto na potência de saída. Em seguida, o efeito da temperatura operacional foi avaliado e os 

coeficientes reais de temperatura para a alimentação CC foram determinados. Por fim, foi realizada 

uma análise de sensibilidade para a potência CC em relação aos parâmetros operacionais com base 

em filtros e modelos matemáticos desenvolvidos para cada arranjo fotovoltaico. Especial atenção foi 

dada ao arranjo bifacial, uma vez que esta tecnologia é muito promissora devido à sua interessante 

relação custo-benefício; novos métodos para determinar a irradiância efetiva e o ganho bifacial 

também foram desenvolvidos. 

  Dois métodos diferentes foram aplicados para caracterizar os módulos fotovoltaicos. 

Verificou-se que o seu desempenho real não é tão bom como o relatado nas fichas técnicas. O arranjo 

m-Si foi o menos sensível à temperatura de operação, seguido pelos módulos p-Si e bifaciais. Por sua 

vez, os dispositivos HCPV foram os mais prejudicados pela temperatura, massa de ar e umidade. A 

influência da velocidade do vento foi pequena para os módulos HCPV; as os arranjos mais beneficiados 

pelo vento foram os p-Si e m-Si. O arranjo bifacial apresentou a maior produtividade final (com ganho 

bifacial de 6,2%), seguida por m-Si e p-Si. Por sua vez, o arranjo HCPV apresentou o pior rendimento, 

principalmente devido à sua capacidade de resposta apenas à irradiância direta e ao elevado 

coeficiente de temperatura para a potência CC. 

 

Palavras-chave: Tecnologias fotovoltaicas; Comparação de desempenho; Estudo 

experimental; Análise de sensibilidade 
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Research is to see what everybody else has seen 

and to think what nobody has thought 

 - Dr. Albert Szent-Györgyi. 
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1 INTRODUCTION 

On the way to a sustainable future, the energy transition is among the most critical factors. 

Worldwide power generation – still – strongly relies on coal, oil, and gas, which are fossil fuels, 

therefore not sustainable. In this context, the expansion of solar photovoltaic (PV) is an essential 

element of sustainable power generation, showing great potential since solar energy is abundant and 

free. Photovoltaic solar energy has been promoted as a renewable option both for centralized and 

distributed electricity generation, being adopted by several consumers in low, medium, and high 

power contracts.  

As part of the University of Corsica Pascal Paoli renewable energy project, a great deal of work 

has been done on the intelligent management of energy flows within a photovoltaic micro-grid. To do 

this, it is necessary to control the electricity production and to precisely know the performance of the 

electricity sources. On the other hand, the Solar Photovoltaic Energy Laboratory at the Unisinos 

University has carried out, to date, numerous works with the Corsican team on the behavior of PV 

modules. 

A thesis was defended in 2020 regarding the “Development of an Operational Power Model 

for Concentrated Photovoltaic Systems (HCPV)” (Benhammane, 2019), which made it possible to 

analyze the behavior of multi-junction (MJ) modules under high concentration in partnership with 

INES-CEA. The results of this work have been used and applied within the framework of the present 

thesis. The high-precision Sun tracking system that supported the HCPV modules has been reused to 

install other technologies; thus, the two "sails" of the tracker were separated into 4 independent sub-

systems comprising different photovoltaic technologies: HCPV and bifacial monocrystalline on one sail, 

and monocrystalline and polycrystalline – both monofacial – on the other sail. Each subsystem is 

connected to an independent inverter input and integrated to the external electricity grid via the Paglia 

Orba micro-grid. The use of a solar tracker allows better control of the solar variables, since beam 

irradiance is always normal to the arrays. 

Many meteorological quantities were measured and acquired, at the time step of 1 minute: 

normal beam solar irradiance, as well as diffuse, horizontal global, normal global (front face and rear 

face), ambient air temperature and wind speed. In addition to this, the DC voltage and current of the 

photovoltaic sources for each subsystem were also measured and registered, as well as the AC voltage 

and current injected into the grid. Finally, data referring to the temperature of the PV modules and to 

the irradiance sensors installed on the tracker were also recorded. 

Calculated data were added to the dataset as well, such as the airmass and the clearness index; 

the first one can partially take into account the spectral distribution of the solar radiation, which is not 

measured because the measuring device is costly and not available at the experimental site. The 

second one characterizes the state of the sky. 

This thesis allows grouping and pooling of knowledge and skills developed in recent years 

within the two solar energy laboratories (UDCPP and UNISINOS), namely solar resource prediction, 

modeling of PV systems, management algorithms and setting up of experiments. Besides this, it also 

enables the improvement of the performance models for the various photovoltaic subsystems, as well 
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as better knowledge of the influence of the solar radiation components and other meteorological 

quantities on the behavior of PV modules. 

The theme presented is original due to the use of PV modules of different technologies – some 

of which are recent: HCPV and bifacial – mounted on a structure following the sun. All components 

were working in real operating conditions (generally they are tested in controlled conditions using an 

artificial solar device) on the micro-grid, in integration with the Paglia Orba R&D platform. The 

development of the subjects in this thesis is of interest to researchers, electricity producers and 

distribution system operators. 

1.1 PROBLEM  

Several PV module technologies are commercially available today. They are distinguished by 

their performance, by their cost and they react differently to variations in meteorological quantities 

and the state of the sky, according to the share of the different components of solar radiation and 

spectral distribution.  

 

Figure 1-1: The four types of PV modules studied in this thesis. 

It is desired to compare the following technologies, available on the Paglia Orba research and 

development platform: 

- Multi-junction modules under high concentration (HCPV) and high conversion efficiency 

(around 34 % in standard condition), with triple-junction cells (GaInP/GaInAs/GaInNAs); 

-   Bifacial monocrystalline silicon modules; 

- Conventional crystalline modules with single-sided production (mono and polycrystalline 

silicon technologies). 

Images referring to these four types of PV modules are shown in Fig. 1-1. 
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While the conventional modules use the incident global solar radiation, bifacial crystalline 

modules also convert the radiation arriving on their rear face, consisting of radiation reflected by the 

ground and diffused by the sky (in a given angle depending on time); however, there is no direct 

radiation reaching this face. In turn, multi-junction modules under concentration convert only beam 

(direct) radiation, which is the only component that can be concentrated. A graphical scheme showing 

these concepts is provided in Fig. 1-2.  

 

Figure 1-2: Different PV modules and usable radiation components 

It is therefore important to take the peculiarities referring to the PV technologies into account 

and develop an experimental sensitivity analysis regarding various uncontrolled and intermittent 

parameters. This would allow to assess the main differences between the four PV technologies, in real 

operating conditions. 

1.2 OBJECTIVE 

The objective of the thesis is to compare the performance of different photovoltaic module 

technologies subject to the same weather conditions and mounted on a same sun tracking system. 

This work brings together a theoretical analysis, modeling, and an experimental analysis. Particular 

attention is given to the characteristics of each PV array and the sensitivity of electricity production as 

a function of external parameters, as well as the consequence on the power and energy behavior of 

the photovoltaic systems.  

The specific objectives are:  

1. Ensure that all PV modules are working well, by performing tests before they are assembled on 

the tracker; 

2. Quantify the differences between datasheet ratings and actual outdoor performance, through the 

electrical characterization of the PV arrays; 

3. Obtain a set of experimental records using the experimental platform developed specifically for 

this thesis; 

4. Use the records to identify the influence of the external parameters on the PV performance; 

5. Apply or develop new modeling methods, as necessary, to support a sensitivity study.  
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2 LITERATURE REVIEW 

The following sections present an overview of the concepts regarding solar radiation and the 

photovoltaic technologies studied in this thesis. In the sequence, relevant PV system performance 

metrics are introduced. This section ends with a discussion regarding previous studies on the 

comparison of PV technologies’ performance. 

2.1 SOLAR RADIATION 

The radiation emitted by the Sun is distributed along a range of different wavelengths. Outside 

the Earth’s atmosphere, the solar irradiance – that is, the power per area – presents a practically 

constant level: this value depends on some geometrical quantities and the Sun activity, which are 

considered by solar energy researchers as constant. This is the so-called solar constant, and its value 

might be different according to the reference source and the year of publication; it is generally taken 

as 1367 W/m². This section presents what happens to the extraterrestrial radiation when it enters the 

Earth’s atmosphere. 

2.1.1 Solar radiation components 

Once the radiation enters the Earth’s atmosphere, it is either absorbed or scattered and then, 

different components of this Sun radiation arrive on the Earth. For instance, the radiation is reflected 

by clouds; and gases such as oxygen, ozone and carbon dioxide – as well as water vapor – absorb 

radiation in different wavelengths, mainly infrared (Wenham et al. 2013). As a result, the radiation is 

decomposed into different components.  

 

Figure 2-1: Beam (direct), diffuse and albedo radiation 

 Radiation that is not absorbed, reflected or scattered is defined as beam radiation (or direct 

radiation), and refers to light coming from the Sun in a straight path. The radiation which is scattered 

by the atmosphere and comes from the sky dome is named diffuse radiation, whereas the radiation 

which is reflected by the surroundings (ground, buildings or other objects) is termed albedo radiation. 

This last reflected radiation is a diffuse component, which depends on the albedo of the surrounding 
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(reflection coefficient), varying with the type of ground or surrounding buildings and season of the 

year. The extraterrestrial radiation is then considerably modified in terms of spectral distribution, as it 

passes through the atmosphere. In turn, the global radiation corresponds to the sum of these three 

components (beam, diffuse and albedo), and refers to the total radiation falling on a surface located 

on the Earth’s surface (Luque and Hegedus, 2011). The illustration in Fig. 2-1, extracted from Labouret 

and Villoz (2010), shows these radiation components. 

Even in clear-sky days – without any clouds – the irradiance reaching a surface depends on the 

turbidity of the sky: as the turbidity increases, the beam irradiance decreases, whereas the diffuse 

portion increases because of the scattering, according to Kalogirou (2017). In cases where the sky 

presents partial cloud coverage, the share of beam and diffuse radiation can be modified very rapidly, 

changing the predominant radiation component in a matter of seconds. Different sky conditions are 

shown in Figure 2-2.  

        

 

Figure 2-2: Different sky conditions: overcast, partially cloudy and clear. 

Finally, in days with overcast sky, the beam radiation is practically not present, thus impairing 

the use of trackers and concentrators used for solar energy harvesting (Labouret and Villoz, 2010). 

However, the fact that the sky is completely covered by clouds does not mean that the diffuse radiation 

is constant: its magnitude depends on the thickness and type of cloud. Thus, changes in the cloud 

coverage cause variation on the diffuse irradiance reaching a surface; however, the rate of change is 

usually significantly lower as in comparison with partially clouded sky cases (Kalogirou, 2017). 

2.1.2 Sun position 

It is important to briefly describe the main angles defining the position of the Sun in the sky. 

The knowledge of the Sun position is required to determine, as an example, the atmosphere length 

crossed by the solar radiation (optical path), which influences the solar spectrum distribution, 

impacting the efficiency of the photovoltaic modules. It is also necessary to estimate the 

extraterrestrial irradiance, which will be used to determine the clearness index. 
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The Earth describes an ellipse about circular (eccentricity = 1/60) with the Sun at the focus. 

The rotation axis of the Earth makes an angle of 23°27’ (called obliquity) towards the perpendicular 

with the plan of the ecliptic, as illustrated in Fig. 2-3. 

 

Figure 2-3: Representation of the Earth’s orbit around the Sun 

The orbital eccentricity E0 is a dimensionless parameter that determines the amount by which 

the orbit around another body deviates from a perfect circle (0 is a circular orbit, 1 is a parabolic escape 

orbit (or capture orbit), and greater than 1 is a hyperbola). The eccentricity can be calculated using 

different methods proposed in literature, and one of the most accurate is described in Eq. (2.1) (Iqbal, 

2012): 

𝐸0 = (
𝑟0

𝑟
)

2

= 1.000110 + 0.034221 cos + 0.001280 sin + 0.000719 cos 2

+ 0.000077 sin 2 
(2.1) 

where  is the day angle in radian defined by  = 2𝜋
(d−1)

365
  and d is the day number. For the northern 

and southern hemispheres, the eccentricity and the Sun-Earth distance behave as illustrated in Fig. 2-

4, considering one year. 

 

Figure 2-4: Eccentricity and the Sun-Earth distance plotted for one year. 

The solar declination  is the angle between the line joining the Earth to the Sun and the 

equatorial plane, as illustrated in Fig. 2-5. The declination is equal to zero for the equinoxes (the Sun 

crosses the equatorial plane) and it varies from + 23.45° (22 June) to – 23.45° (22 December). 
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Figure 2-5: Representation of the solar declination angle 

In 24 h, the maximal variation of declination (at equinoxes) is less than 0.5°, therefore it can 

be considered as constant over a day. The parameter  can be determined by Eq. (2.2) (Iqbal, 2012), 

whose behavior during one year is illustrated in Fig. 2-6. 

𝛿 = 0.006918 − 0.399912 cos + 0.070257 sin − 0.006758 cos 2

+ 0.000907 sin 2 − 0.002697 cos 3 + 0.00148 sin 3 (2.2) 

 

Figure 2-6: Behavior of the declination angle for one year 

In geometrical formulation, the time scale is the true solar time calculated from the legal time 

by equations considering the position of the site (latitude and longitude) and the time equation. This 

true solar time, in hour, is then transformed in an hour angle . The solar angle  is the arc of Sun 

trajectory between the Sun and the meridian plane of the location. This trajectory is 360° in 24h, or 

15°/hour. The value 0° is for midday (True Solar Time = TST). Therefore, the solar angle is calculated 

using Eq. (2.3). 
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𝜔 = 15° × (12 − TST) (2.3) 

Figure 2-7 shows the main angles for determining the Sun’s position for North (left) and South 

(right) hemispheres, for a horizontal surface. 

 

Figure 2-7: Angles describing the Sun’s position. 

 

To locate a point of the sky from a terrestrial observer, a coordinate system is chosen referring to 

the observer’s location. 

• The solar azimuth angle  is the angular distance between the zero azimuth (either due South 

or due North, depending on the hemisphere) and the projection of the line of sight to the Sun 

on the ground. (> 0 towards East) 

• The solar altitude angle h (also called sun height) is the angle between the Sun’s rays and a 

horizontal plane. 

• The zenith angle 𝜃𝑧 is the angle between the Sun’s rays and the vertical, complementary to 

the angle of h. 

𝜃𝑧 and h are calculated by Eq. (2.4) 

cos 𝜃𝑧 = sin 𝛿 sin + cos 𝛿 cos cos 𝜔 = sin ℎ (2.4) 

Relevant angles can be related by using Eq. (2.5), and they are illustrated in Fig. 2-8, where the 

solar azimuth is represented by .  

cos 𝜃 = cos 𝛽 cos 𝜃𝑧 + sin 𝛽 sin 𝜃𝑧 cos( − 𝛾) (2.5) 

 

Figure 2-8: Angles for solar position 
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2.1.3 Atmospheric radiation indexes 

Useful relations to describe the state of the sky can be derived by relating the various 

irradiance components. The horizontal clearness index expresses the relationship between the global 

horizontal irradiance (GHI) and the extraterrestrial irradiance converted to the horizontal plane (G0HI). 

Another useful metric is the horizontal diffuse fraction, which relates the horizontal diffuse irradiance 

(DHI) and GHI.   

Similarly, the normal global clearness index is a relation between the global normal irradiance 

(GNI) and the global normal extraterrestrial irradiance (G0NI), whereas the normal diffuse fraction 

relates the normal diffuse irradiance (DNI) and GNI. A normal beam clearness index can be calculated 

relating the beam normal irradiance (BNI) and G0NI. Table 2-1 summarizes the horizontal and normal 

atmospheric radiation indexes.  

Table 2-1: Summary of atmospheric radiation indexes 

Relation Name  

GHI

G0HI
 Horizontal clearness index 

DHI

GHI
 Horizontal diffuse fraction 

GNI

G0NI
 Normal global clearness index 

BNI

G0NI
 Normal beam clearness index 

DNI

GNI
=

GNI − BNI

GNI
 Normal diffuse fraction 

2.1.4 Spectral distribution of solar radiation 

The solar radiation finds the shortest pathlength through the Earth’s atmosphere when the 

Sun is directly overhead, that is, when the zenith angle (θz) is 0°. The thickness of the atmosphere can 

be expressed in terms of the air mass: when θz is zero, the air mass is 1 (AM1). In turn, air mass 2 (AM2) 

is found when θz is 60°, whereas AM1.5 – the standard air mass for photovoltaic work – is related to θz 

= 48.2° (Wenham et al. 2013). For zenith angles between 0° and 70°, Eq. (2.6) can be used to calculate 

AM:  

AM =
1

cos (𝜃z)
 (2.6) 

For θz with high values, the earth’s curvature has to be taken into account, as stated by Duffie 

and Beckman (2020). An empirical expression to compute AM for θz approaching 90° is shown in Eq. 

(2.7), provided by Kasten and Young (1989). In Eq. (2.7), hsite represents the altitude of the site, in 

meters. 

AM =
exp (−0.0001184 ℎsite)

cos(𝜃z) + 0.5057(96.08 − 𝜃z)−1.634
 (2.7) 
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Figure 2-9 shows a schematic drawing for the air mass; as the zenith angle increases, so 

increases the thickness of the atmospheric layer.  

 

Figure 2-9: Schematic representation of the air mass concept 

A plot showing the air mass and Sun’s elevation variation according to daytime and year season 

is shown in Figure 2-10. The dashed lines represent the air mass, whereas the solid lines represent the 

solar elevation.  

 

Figure 2-10: air mass and Sun elevation as functions of daytime 

As mentioned earlier, solar radiation is emitted in different wavelengths, and it suffers 

absorption and scattering as it travels through the Earth’s atmosphere. Such effects occur according 

to the wavelength and the air mass. To illustrate the relation between the spectral distribution and the 

air mass, Fig. 2-11 shows the spectral distribution of the solar radiation both for AM0 (extraterrestrial) 

and AM1.5 (Iqbal, 2012). 

In Fig. 2-11, the vertical axis represents the spectral irradiance in W/m² per micrometer of 

bandwidth. The blackbody radiation at 5777 K is plotted to show its similarity to the extraterrestrial 

radiation curve (AM0). The cluttered yellow curve represents the spectral distribution for AM1.5, 

whereas the gases which absorb specific wavelengths – H2O, CO2, O3 – are also related with the 

wavelength and irradiance amplitude. By integrating the AM1.5 curve with respect to the wavelength, 

1000 W/m² irradiance is obtained, whereas an irradiance level of 1367 W/m² is found by integrating 

the AM0 curve with respect to the wavelength. 
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Figure 2-11: Spectral distribution of the solar radiation 

  Other factors that influence the shape of the spectral distribution of solar radiation are the 

aerosol optical depth (AOD) and the precipitable water (PW). The AOD represents the quantity of small 

particles in the atmosphere: low levels of AOD are related to a clear atmosphere, whereas high AOD 

levels are related to a hazy atmosphere (Kalogirou 2017). In turn, the PW indicates the amount of 

water in the direction of the zenith. High PW levels are related to a wet atmosphere, whereas low 

levels are related to a dry atmosphere.  

It is worth mentioning that the AM1.5 spectrum does refer not only to a specific air mass, but 

to a set of specified parameters, which are described in the ASTM G173 international standard (ASTM 

2020): a) the surface which receives the radiation is tilted to 37° (the U.S.A average latitude) facing the 

Sun, which is at an elevation of 41.8° above the horizon (that is, 48.2° zenith angle); b) the test site at 

sea level and 101.325 kPa atmospheric pressure; c) CO2 concentration is 370 ppm in volume; and d) 

the aerosol optical depth is 0.084 for 500 nm wavelength. Given that such a condition is very specific, 

it would be desired to determine the spectral distribution when one or more of the environmental 

parameters change; this can be accomplished with an application named SMARTS (Simple Model for 

the Atmospheric Radiative Transfer of Sunshine), which was developed at the NREL – National 

Renewable Energy Laboratory, and published by Gueymard (1995) and Myers and Gueymard (2004).  

2.1.5 Solar radiation measurement instruments 

Quantifying the available solar resource is essential when deciding where to install a 

photovoltaic plant, what technology to choose and what the power rating should be. Moreover, such 

a quantification is paramount for monitoring the operation of an existing photovoltaic field and 

determine its efficiency, that is, the ratio between the converted and received solar power.  

The horizontal global irradiance – GHI – can be measured by an instrument called pyranometer. 

Measuring the GHI allows comparison of local irradiance data with other monitoring systems or 

weather stations (it is the most common irradiance measurement in the World). The GHI can also be 

employed as an input in simulation tools. Pyranometers can be used, also, to measure the POA (plane-

of-array) irradiance, that is, the global normal irradiance (GNI). In this case, the instrument is installed 
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with the same orientation and tilt angle as the photovoltaic array. Such a measurement is relevant 

because it quantifies the actual irradiance arriving on the plane of the PV modules. Two pyranometers 

are presented in Fig. 2-12: the one on the left side (a) is installed parallel to the ground, to measure 

GHI; and the one on the right side is installed with a tilt angle equal to that of the PV modules, to 

measure the GNI. The images shown in Figs. 2-12, 2-13 and 2-14 were adapted from a product catalog 

from Kipp & Zonen (Kipp&Zonen, 2021). 

 

Figure 2-12: Pyranometers for monitoring GHI (a) and GNI (b) 

Pyranometers can be also used to measure the diffuse irradiance. In this case, a moving 

shading element must be used to avoid the beam radiation component from reaching the 

pyranometer. An assembly to measure the diffuse horizontal irradiance (DHI) is presented in Fig. 2-13, 

where a Sun tracker (a) is used to move the beam irradiance blocking device (b). The pyranometer (c) 

is thus shaded for the beam irradiance, and measures only the diffuse component. The picture in Fig. 

2-13 also shows a non-shaded pyranometer (d), to measure the GHI. 

 

Figure 2-13: Assembly to measure GHI and DHI 

In turn, the beam normal irradiance (BNI) can be measured using instruments named 

pyrheliometers. It is essential that such an instrument is mounted on a solar tracking device, to follow 

the Sun along its path. An assembly consisting of a pyrheliometer (a), and a solar tracker (b) is 

illustrated in Fig. 2-14.  

 

Figure 2-14: Assembly to measure BNI. 
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2.2 PHOTOVOLTAIC MODULES AND THEIR PERFORMANCE 

Photovoltaic devices convert solar radiation directly into electricity, consisting of a particular 

case in a generation fleet, since virtually all common power generation methods – namely 

hydroelectric, thermoelectric (solar thermal, coal, gas, biomass, nuclear and oil), wind and geothermal 

– require rotating electric machines to convert mechanical motion into electricity. However, the 

voltage provided by a single photovoltaic cell is too low for practical applications. For this reason, PV 

cells are associated in series – thus summing the voltage of various cells – forming a single structure 

denominated photovoltaic module. PV modules are currently available in many different sizes and 

employ different manufacturing technologies. In this thesis, four types of PV modules are considered: 

single-face, manufactured using polycrystalline (p-Si) and monocrystalline (m-Si) technologies; bifacial 

modules – that is, devices consisting of PV cells which are able to absorb radiation both on the front 

and rear faces; and finally, multi-junction modules, consisting of PV cells manufactured in such a way 

as to optimize the energy harvesting through the use of different semiconductor materials, covering a 

wider spectral response in comparison to conventional PV cells. In the following, performance models 

of three categories of PV modules are presented. This section is aimed at describing the behavior of 

these devices according to their temperature and the solar irradiance reaching their surface. 

2.2.1 Single face crystalline PV modules 

Single face (or monofacial) crystalline modules are the most common PV devices in the market. 

Therefore, several studies have been devoted to describing their performance, considering different 

levels of complexity and precision. Given the relevance of crystalline single-face PV modules and their 

significant market share, three different approaches for modeling their performance are presented in 

this thesis, starting from a simple power model. Then, in Section 3.7.1, an approach using IEC-60891 

for voltage and current translations is presented, including a new coefficient adjustment procedure 

developed as part of the present thesis. Finally, in Section 3.7.2, an equivalent circuit for PV modules 

– the single-diode model (SDM) – is explored, combining different techniques available in literature for 

the outdoor characterization of crystalline PV modules.  

Figure 2-15 illustrates a monocrystalline module – manufactured by LDK (LDK, 2018) –  and a 

polycrystalline module, manufactured by Canadian Solar (Canadian Solar, 2020a).  

Both modules present their back surface covered with opaque white polymeric material. Being 

so, the rear side of the PV cells is not visible.  

    

                                        a)                                                   b) 

Figure 2-15: PV modules: monocrystalline (a); and polycrystalline (b) 
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A relatively simple method for describing the performance of a single-face crystalline PV 

module – as a function of irradiance and temperature – is by using a power model. An example of a 

power model is provided in Eq. (2.8), which is the model adopted in the PVform photovoltaic system 

simulation program introduced by Menicucci (1985). 

 𝑃mp = 𝑃mp,STC   
𝐺

𝐺STC
 [1 − 𝛾 (𝑇C − 𝑇C,STC)] (2.8) 

In Eq. (2.8), G is the global irradiance at the plane of the PV array, 𝐺STC is the reference 

irradiance, Tc is the cell temperature and Tc,STC is the reference cell temperature. Such reference values 

refer to the Standard Test Condition (STC), where G = 1000 W/m², Tc = 25 °C and AM = 1.5. 

Manufacturers usually specify their products’ ratings based on the STC. It is worth mentioning that the 

model presented in Eq. (2.8) does not consider the series resistance of the PV device under study.  

Single-junction silicon PV cells present bandgap energy around 1.12 eV; this means that 

photons with energy below 1.12 eV are not able to transfer their energy to excite electrons lying within 

the semiconductor structure. In other words, photons with energy levels below the bandgap produce 

no useful effect on a PV cell. In turn, photons with energy above 1.12 eV are able to liberate electrons 

from the nucleus and create an electric current. However, the excess energy is converted into heat. 

This concept is represented in Fig. 2-16 (Labouret and Villoz, 2010), on the right-hand side – "energy 

not absorbed"  and at the top – "energy dissipated in heat". From Fig. 2-16 it can be concluded that 

there are two inevitable losses related to the PV conversion: a) incident photons with energy levels 

below the bandgap level and b) the loss due to photons with energy levels that exceed the bandgap 

level. This makes it impossible for Si PV cells to convert more than 44 % of the total spectrum energy. 

To improve the efficiency, it would be necessary that all photons reaching the PV device to present a 

single energy level, thus avoiding the two categories of losses aforementioned – which unfortunately 

is not the case in practice.  

 

Figure 2-16: Use of the AM0 solar spectrum by crystalline PV  

2.2.2 Bifacial PV modules 

Bifacial PV modules are able to absorb solar irradiance in their front and rear sides, and this 

allows increased solar energy harvesting, with the same array area as monofacial modules (Kopecek 
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and Libal, 2018; Liang et al., 2019). The images in Fig. 2-17 show the difference between regular 

monofacial PV modules (a) and bifacial devices (b), where white ground cover was added to increase 

albedo (reflected radiation) incidence on the rear side of the array. 

 

          a)                                                          b) 

Figure 2-17: Back side of PV modules: a) monofacial; b) bifacial 

 The research on bifacial PV devices started in the 60s, and around 2010, several companies 

started producing and selling bifacial modules in large scale. To date (2023), the biggest plant with 

bifacial modules is located in Bulgaria, with 123 MW nominal capacity.  

 The characterization of bifacial PV modules is a relevant topic because it allows manufacturers 

to offer their products with global reach – that is, adopting performance specifications that are 

recognized in various countries – and it helps the designers to correctly size the systems and estimate 

the electrical production.  

 

Figure 2-18: Excerpt of model TSM-DEG6MC datasheet 

 In bifacial modules, both sides produce electricity simultaneously, however, the STC does not 

specify the irradiance condition for the rear side. In datasheets, most producers report the front-side 

parameters under STC plus the contribution of the rear side, in terms of a “x % rear-face contribution”, 

which is simply a scale up of the Pmp specification at the STC. Examples illustrating this practice can be 

found in product datasheets modules provided by high quality manufacturers in the PV industry such 
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as Trina Solar (2019) (TSM-DEG6MC, monocrystalline), Canadian Solar (2020a)(CS3W-390, 

polycrystalline) and Canadian Solar (2020b) (CS3W-435, monocrystalline). 

 An excerpt of model TSM-DEG6MC datasheet from Trina Solar, (2019) is presented in Fig. 2-

18, where one can observe that the backside power gain is simply the maximum power under the STC 

multiplied by a factor (1.1, 1.15 or 1.25), which is not satisfactory. The manufacturer does not include 

data which could allow comparing the performance of the rear and front sides. In this sense, relevant 

information would be a performance table referring to the rear side under STC – without any 

contribution from the front side – that is, the front side would have to be covered during the test. From 

these data, the rear face efficiency could be computed, allowing a designer to compare products from 

different manufacturers to determine the cost/benefit relation.  

 Since the datasheet information regarding the rear side does not relate to any operating 

condition, it is not possible to estimate the overall performance (front + rear side contributions), 

because the same condition which produces 10 % backside power gain for model TSM-DEG6MC could 

produce different gains when different bifacial PV module models are considered. The so-called 

backside power gain is actually a function of the conversion efficiency of the rear side, and such a 

parameter is not specified on the datasheets provided by Canadian Solar (2020b, 2020a) and Trina 

Solar (2019). For the determination of overall efficiency of a bifacial PV module – that is, quantifying 

the rear-side efficiency – experimental tests must be carried out, either indoors or outdoors. Datasheet 

specifications, as presented in Fig. 2-18 are not sufficient.  

 In search for standardization, the IEC (International Electrotechnical Commission) released the 

Technical Specification IEC TS 60904-1-2 - Measurement of current-voltage characteristics of bifacial 

photovoltaic (PV) devices (IEC 2021). The Technical Specification presents procedures for 

characterization tests, similar to what was proposed by (Deline et al., 2017). 

 Using a single light source, separated tests should be performed in STC (G = 1000 W/m², Tc = 

25 °C) for both sides of the module, one side at a time. This allows calculating the ratio 𝜑 via Eq. (2.9), 

which relates the short-circuit current of the rear (𝐼sc,rear) and front (𝐼sc,front) sides of a bifacial PV 

module, according to IEC (2021). To carry out flash-tests of the two sides of a bifacial module, one at a 

time, the undesired interference of the side which is not under consideration can be avoided by using 

coverage such as with cloth or black mask (Liang et al., 2019).  

𝜑 =
𝐼sc,rear

𝐼sc,front
 (2.9) 

 The effective irradiance (GE), which is the irradiance level that replicates the effect of radiation 

reaching the front and rear surfaces simultaneously, is computed from Eq. (2.10) 

𝐺E  =  𝐺STC  +  𝜑 𝐺rear (2.10) 

 The irradiance level GE takes into account GSTC (1000 W/m²) reaching the front surface of the 

bifacial module, as well as the 𝐺rear level. This way, since φ has been defined, it is possible to compare 

indoor tests with field measurements.  

 Concerning further mathematical derivations for the electric response of bifacial modules, 

Singh et al. (2014) defined the equivalent short-circuit current (Isc,bif) as Eq. (2.11). 
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𝐼sc,bif =
𝐺E

𝐺STC
𝐼sc,STC,front  (2.11) 

whereas the open-circuit voltage (Voc,bif) is computed from Eq. (2.12). 

𝑉oc,bif = 𝑉oc,STC,front +
(𝑉oc,STC,rear − 𝑉oc,STC,front) 𝑙𝑛 (

𝐺E
𝐺STC

)

𝑙𝑛 (
𝐼sc,STC,rear 

𝐼sc,STC,front 
)

𝐼sc,STC,front  (2.12) 

 In the study presented by Singh et al. (2014), the authors introduced the term pFF, referring 

to a pseudo fill factor for a bifacial module, given that the loss effect due to the series-resistance is 

neglected. The FFbif can be expressed as in Eq. (2.13) 

FFbif = pFF −
𝐺E

𝐺STC
(

𝑉oc,STC,front

𝑉oc,bif
) (pFF − FFSTC,front) (2.13) 

 Deline et al. (2017) provide an alternative procedure for computing pFF, which starts from the 

expression of the power loss (𝑃𝑅S,STC
) due to the series resistance, from Eq. (2.14). 

𝑃𝑅S,STC
= 𝐼2𝑅S (2.14) 

 As mentioned earlier, pFF is the fill factor disregarding the effect of Rs therefore, 𝑃𝑅S,STC
 can 

be written 

  𝑃𝑅S,STC
= (pFF − FFSTC,front) 𝑉oc,STC,front 𝐼sc,STC,front  (2.15) 

 Finally, an expression for pFF can be written by combining Eqs. (2.14) and (2.15), which 

provides Eq. (2.16), 

pFF =
𝑅S 𝐼sc,STC,front 

𝑉oc,STC,front
+  FFSTC,front  (2.16) 

whereas the total power of the bifacial module can be computed using Eq. (2.17) 

 𝑃mp,bif = 𝑉oc,bif 𝐼sc,bif FFbif . (2.17) 

 The series resistance 𝑅S can be estimated by the I-V curve slope at 𝑉oc,STC,front, as shown by 

Deline et al. (2017). 

 Considering a bifacial array operating outdoors, under real weather conditions, Eq. (2.10) can 

be adjusted to represent the effective irradiance for in-plane front-side irradiance levels different from 

𝐺STC, as proposed by Gostein et al. (2021). In this case, the effective irradiance is written as a function 

of 𝐺front, as in Eq. (2.18).  

𝐺E  =  𝐺front  +  𝜑 𝐺rear (2.18) 

It is known that the temperature distribution along the surface of a module is not likely to be 

uniform at outdoors. Also, the temperature measured by a temperature sensor attached to the back 
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of the PV module is not likely to equal the actual cell temperature, given the constant changing 

environmental conditions, as addressed in King (2008) and Krauter and Preiss (2009).  

In the particular case of bifacial PV modules, the major concern refers to unwanted shading on 

the back surface, therefore, the sensor should be as small as possible. At the same time, these 

measurements have to be representative. In this sense, the study carried out by Kenny et al. (2018) 

reports that with seven temperature sensors attached to the back of a bifacial module, temperature 

differences up to 5.5 °C were found, whereas when using only two sensors, the maximum difference 

measured was 2 °C. Thus, there is a trade-off between accuracy and the occurrence of shading at the 

rear face of the bifacial modules due to the attachment of more sensors. Since the photo-generated 

currents of the front and rear faces are summed up to compose the total cell current, differences in 

current capacity of the cells are unwanted, given the fact that the cells in a module are connected in 

series and share the same current level during normal operation.  

 The Technical Specification IEC-60904-1-2, Photovoltaic devices – Part 1-2 from IEC (2021a) is 

the first-line reference on the subject of characterizing bifacial modules. However, it does not make 

any reference regarding temperature measurement of these devices. Instead, it just makes reference 

to IEC-60904-1 from IEC (2003), which is a well-established set of standards regarding the 

characterization of PV devices. A more detailed description referring to the position of sensors is given 

by the IEC (2009), which is IEC-60891 international standard.  

2.2.3 Concentrate multi-junction PV modules 

Two main points differentiate concentrate (HCPV) multi-junction (MJ) PV modules from flat-

plate technologies. First, the MJ cells are composed of different semiconductor materials, covering 

different bandgap energy levels, allowing a larger use of the solar spectrum. Second, the modules 

employ optical elements to concentrate the beam radiation on the cells. Concentration is required due 

to the fact that MJ cells are much more expensive than regular PV cells, thus, they are manufactured 

in very small sizes. To illustrate this: the poly-Si modules considered in this work contain cells 

measuring 100 x 100 mm, whereas the HCPV modules are composed by cells measuring only 0.4 x 0.4 

mm. An image showing a CPV module is provided in Fig. 2-19, where the most striking difference in 

comparison to regular PV modules is the presence of lenses (called Fresnel lenses) on the front face, 

in addition to a noticeable greater thickness. 

 

Figure 2-19: A CPV module with lenses 
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The particular HCPV modules employed in this work are composed by three junctions, namely 

InGaP (top cells), InGaAs (middle cells) and Ge (bottom cells), presenting different bandgap energy 

levels, which are respectively 1.86 eV, 1.4 eV and 0.65 eV.  

 

Figure 2-20: Use of AM0 solar spectrum by multi junction PV cells 

The presence of different bandgap levels is precisely what allows a better use of the solar 

spectrum, in comparison with the adoption of a single bandgap level. On the one hand, the low 

bandgap junction allows the rightmost part of the spectrum to be used. On the other hand, the higher 

bandgap level presented by the top cell acts reducing thermalization, according to Pérez-Higueras and 

Fernández (2015). An illustration of the use of the AM0 spectrum by MJ cells is shown in Fig. 2-20 

(Yastrebova, 2007). 

This thesis is being developed using the same solar tracker (and some of the HCPV modules) 

employed in the doctoral thesis of Benhammane (2019), and in the publication of Benhammane et al. 

(2021). The objective of the Benhammane’s work was to develop and to validate an operational PV 

power model for HCPV power plants, avoiding the requirement for numerous data inputs. In these 

works, the authors presented a study concerning seven different modeling methods to estimate the 

output power of HCPV arrays. The model described in Eq. (2.19) was found as the best in terms of 

minimizing the root-mean-square error between measured and predicted power. 𝑃DC,0 refers to the 

HCPV array’s nominal power, whereas BNI0 is 1000 W/m² and Tair,0 is 25 °C. 

𝑃mp,c = 𝑃DC,0 . a 
BNI

BNI0
+ b (

BNI

BNI0
)

2

+ c 
BNI

BNI0
ln ( 

BNI

BNI0
) (1 + d. (𝑇air − 𝑇air,0)) (1 + e. (AM − AM0)) 

(2.19) 

In Eq. (2.19), the coefficients a, b, c, d and e were calculated using a least-squares regression 

technique. A relevant advantage shown by Eq. (2.19) is the use of ambient temperature instead of PV 

cell temperature. Multi-junction PV cells are usually much smaller than regular PV cells, therefore, 

measuring actual cell temperature is not a trivial task. 

2.2.4 Remarks regarding the temperature of PV modules 

Measuring the temperature of PV modules is a challenging task since the cells are not 

accessible. Therefore, a usual way of measuring the temperature of PV devices if by attaching sensors 
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at the back surface of the modules. However, this introduces a temperature error: a temperature 

difference between the cell and the back sheet of PV modules up to 3 °C has been reported in literature 

King (2008) and Rao Golive et al. (2022). For glass-glass encapsulation, Rao Golive et al. (2022) suggest 

adopting a 5.5 °C temperature difference between the cell and the rear glass cover. Considering 

concentration modules, a 13 °C temperature difference between the multi-junction cell and the heat-

sink was reported by researchers at the Sandia Laboratories (King et al., 2004). All mentioned 

temperature differences were reported for irradiance (GNI for flat-plate and BNI for HCPV modules) 

levels of 1000 W/m². In this thesis, suitable temperature corrections were applied to the measured 

datasets via the use of Eq. (2.20), (King, 2008) which scales the temperature differences according to 

the irradiance. In Eq. (2.20), G represents GNI for the flat-plate PV arrays, and BNI for the HCPV array. 

𝑇C,corrected = 𝑇C,measured +  
𝐺

𝐺𝑆𝑇𝐶
 . ∆𝑇 (2.20) 

 The PV cells’ temperature can be calculated using the open-circuit voltage (Voc), as proposed 

by the international standard IEC-60604-5 (IEC, 2011) and by Abe et al. (2019). However, in this thesis, 

the PV arrays are always in operation via the inverters, at the maximum power point, that is, the Pmp, 

with voltage Vmp and current Imp. Therefore, Voc measurements are not performed. 

2.3 ASSESSING THE PERFORMANCE OF PV SYSTEMS 

The conversion efficiency of PV devices is mainly influenced by the PV technology, the amount 

of solar irradiance and the operating cell temperature. The international standard IEC-61724 (IEC 

2021b) provides guidelines for the performance assessment of PV systems. It recommends the use of 

the Performance Ratio (PR) parameter as an indicator of system performance. The PR is a 

dimensionless quantity, which considers the output power of a PV system, as well as the incident solar 

radiation. PR can be interpreted as a ratio relating the actual efficiency (𝜂) of the system and the 

nominal efficiency (𝜂STC), as shown by Eq. (2.21).  

PR =
𝜂

𝜂STC
 (2.21) 

The terms in Eq. (2.21) are defined by Eqs. (2.22) and (2.23). 

𝜂 =
𝑃mp

𝐴PV 𝐺
 (2.22) 

In Eq. (2.22), 𝑃mp is the maximum power point of the PV system for a given operating condition, 

whereas APV is the area of the PV array and G is the global irradiance at the plane of the PV array (GNI), 

for the case of the p-Si and m-Si modules. For the case of bifacial modules, G is the effective irradiance 

GE, whereas for the case of HCPV modules, G is BNI. 

It is worth noting that the instantaneous (power) efficiency referring to the HCPV modules is 

high, in comparison to the efficiency presented by the other three technologies. However, this does 

not necessarily mean that the energy harvested by an HCPV array is higher than that harvested by a p-

Si, m-Si or bifacial array. The reason is that an HCPV array only converts the BNI radiation component, 
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which is usually not as available as the global irradiance component used by the other technologies. It 

should be highlighted that p-Si, m-Si and bifacial arrays also convert the diffuse component, whereas 

such a component is not useful for HCPV systems. 

𝜂STC =
𝑃mp,STC

𝐴PV 𝐺STC
 (2.23) 

In Eq. (2.23), 𝑃mp,STC and 𝐺STC are, respectively, the nominal maximum power of the PV array 

and the nominal irradiance, which is 1000 W/m² in STC condition. Important factors that contribute to 

reduce PR are the cell temperature (if different from 25 °C), soiling, losses in cables, connectors and in 

the inverter, spectral losses and ageing effects. In Eq. (2.23), 𝐺STC is 1000 W/m² for the p-Si, m-Si and 

bifacial technologies. The STC ratings for bifacial technologies consider only the front-side 

performance. In turn, for the HCPV, 𝐺STC represents BNI of 1000 W/m². 

By combining Eqs. (2.22) and (2.23), a new format for PR (Eq. 2.24) is obtained. 

PR =
𝑃mp

𝑃mp,STC 
 
𝐺STC

𝐺
  (2.24) 

2.4 THE DURISCH EFFICIENCY MODEL 

An efficiency model was introduced by Durisch et al. (2007) based on solar irradiance, cell 

temperature and air mass. The efficiency model is provided in Eq. (2.25), where coefficients p, q, m, r, 

s and u are usually identified based on experimental measurements, fitting techniques to minimize the 

squared error referring to the experimental and modeled efficiencies. The reference parameters (with 

subscript 0) are 𝐺0 (1000 W/m²), 𝑇𝑐,0 (25 °C) and AM0 (1.5). 

𝜂𝑐 = p [q
𝐺

𝐺0
+ (

𝐺

𝐺0
)

m

] [1 + r
𝑇𝑐

𝑇𝑐,0
+ s

AM

AM0
+ (

AM

AM0
)

u

] (2.25) 

Relevant parameters can be calculated based on Eq. (2.25): the STC efficiency (Eq. (2.26)), the 

temperature coefficient for the STC efficiency (Eq. (2.27)), and the STC power (Eq. (2.28)).  

𝜂STC = p[q + 1][2 + r + s] (2.26) 

 

𝛼STC =
p(q + 1)r

𝑇𝑐,STC
 (2.27) 

 

𝑃STC = 𝜂STC 𝐺STC 𝐴𝑃𝑉  (2.28) 

Durisch et al. (2007) provided, also, transformation equations, allowing to express the 

efficiency at constant irradiance and cell temperature; constant irradiance and air mass; or at constant 

cell temperature and air mass. The model can be adjusted to respond according to a single variable, 

while keeping the other two constant. This way, two-dimensional analysis can be carried out, for 
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example, by plotting the measured and modelled efficiency levels versus one of the three external 

variables, one at a time. The transformation equations are presented in detail by Durisch et al., (2000); 

Eqs. (2.29) to (2.31) refer to the model, whereas Eqs. (2.32) to (2.34) refer to the measurements. 

𝜂𝑐,1000,1.5 = p[q + 1] [2 + s + r
𝑇𝑐

𝑇𝑐,0
] (2.29) 

 

 𝜂𝑐,25,1.5 = p [q
𝐺

𝐺0
+ (

𝐺

𝐺0
)

m
] [2 + r + s] (2.30) 

 

 𝜂𝑐,1000,25 = p[q + 1] [1 + r + s
AM

AM0
+ (

AM

AM0
)

u
] (2.31) 

 

𝜂𝑚𝑒𝑎𝑠,25,1.5 = 𝜂𝑚𝑒𝑎𝑠(𝐺,  𝑇c, AM) − 𝜂𝑐(𝐺,  𝑇c, AM) + 𝜂𝑐,25,1.5 (2.32) 

 

𝜂𝑚𝑒𝑎𝑠,1000,1.5 = 𝜂𝑚𝑒𝑎𝑠(𝐺,  𝑇c, AM) − 𝜂𝑐(𝐺,  𝑇c, AM) + 𝜂𝑐,1000,1.5 (2.33) 

 

𝜂𝑚𝑒𝑎𝑠,1000,25 = 𝜂𝑚𝑒𝑎𝑠(𝐺,  𝑇c, AM) − 𝜂𝑐(𝐺,  𝑇c, AM) + 𝜂𝑐,1000,25 (2.34) 

 

  Works conducted by Hamou et al. (2014) and Bërdufi et al. (2016) are examples of application 

of the Durisch model and the transformation equations.  

2.5 STUDIES COMPARING DIFFERENT PV TECHNOLOGIES 

Different PV technologies present distinguished characteristics – for instance, spectral 

response and temperature factors – therefore they may perform differently even when operating side-

by-side at the same site and using identical installation methods. When considering conventional single 

junction monofacial modules, in contrast to multi-junction or bifacial technologies, the differences in 

performance are even more significant, given the particularities of these two types of PV modules.  

Manufacturers report the performance of PV modules under STC; however, this refers to a 

single condition (GNI = 1000 W/m², Tc = 25 °C and AM1.5) which is hardly found in real field operation. 

Therefore, studying the performance of different PV technologies under the same operating condition 

becomes relevant as it allows to identify which type of PV module is more sensitive to particular 

environmental parameters. 

When comparing the performance of different PV technologies, two important parameters to 

be evaluated are the energy yield over a certain period of time and the performance ratio, which take 

into account both the solar resource and the electricity production. These parameters have largely 

been employed in works concerning the performance of PV systems and are significant indicators for 

the long-term performance assessment. To study the sensitivity of PV devices to external parameters 

in detail, it is necessary to measure irradiance levels, module temperature and electrical parameters 
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such as voltage, current and power using a time step sized to allow short-term analysis of the 

parameter variations and the respective impact on system operation. 

Solar trackers have been used to actively position a PV array facing the Sun, allowing increased 

electricity production, in comparison to fixed-tilt mounting. Drury et al. (2013) report that dual-axis 

trackers can achieve 30 – 45% increase in generation when compared to a fixed-tilt system. The use of 

tracking is more significant in regions which do not suffer from persistent cloud coverage, as tracking 

takes advantage of maximizing the beam radiation component.  

2.5.1 Monocrystalline and polycrystalline PV systems 

Literature on the comparison of PV systems is extensive and concerns cases where different 

technologies operate in the same site, as well as cases considering a given PV technology operating in 

different sites. Many works are focused on the long-term performance assessment of PV technologies 

which are commonly found in rooftops and PV fields, such as polycrystalline and monocrystalline; for 

instance, Nour-eddine et al. (2020) employed a PV array containing monocrystalline (m-Si) and 

polycrystalline (p-Si) technologies in a semi-arid climate (Morocco). Measurements were made for 12 

months and different performance indicators were computed as per IEC-61724 (IEC 2021b). The 

authors found that the m-Si technology was the most suitable for that climate type, performing slightly 

better as in comparison to p-Si. However, given the higher cost associated with the m-Si technology, 

the technology of choice should be the p-Si, although the authors did not present a quantitative 

financial analysis. Although the m-Si array performed better than the p-Si, the first presents a thermal 

coefficient for Pmp which is higher (in modulus) than that of p-Si, whereas the STC efficiency is the same 

for the two technologies. This fact could indicate that p-Si would outperform m-Si; however, this point 

was not discussed by Nour-eddine et al. (2020). Another technology comparison is presented by Adar 

et al. (2020), where the authors carried out a 19-months measurement campaign in Morocco covering 

three PV technologies, among them, p-Si and m-Si. Similarly to Nour-eddine et al. (2020), the authors 

based their performance study on the indexes provided in IEC-61724; however, they employed the 

Principal Component Analysis (PCA) to study the experimental dataset. The work presented by Elibol 

et al. (2017) considered an experimental photovoltaic assembly located in Turkey, which is among the 

European countries with greatest solar potential. The authors found the p-Si technology to increase its 

efficiency as the temperature increases. This is a curious finding due to the fact that the temperature 

coefficient of power is negative for that technology. Other studies focusing on the comparison of 

different PV technologies were carried out in different countries: Balaska et al. (2017) considered an 

experimental assembly located in Algeria; the study presented by Tossa et al. (2016) concerns an 

experiment carried out in Burkina Faso for roughly one year, where four PV technologies, among them, 

one m-Si and two p-Si modules. Differently from the studies of Adar et al. (2020), Balaska et al. (2017), 

Elibol et al. (2017) and Nour-eddine et al. (2020), the modules were tested by means of an acquisition 

system capable of measuring I-V curves automatically according to predetermined time intervals. This 

means that the Pmp was determined regardless of any maximum power point tracking (MPPT) system. 

In turn, the study presented by Guenounou et al. (2016) also employed an experimental measurement 

system capable of performing continuous I-V curve measurements for four PV modules of different 

technologies. The authors employed an interesting approach for the performance calculations, using 

a) datasheet information; and b) outdoor measurements. By correcting the outdoor measurements to 
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STC, the authors were then able to calculate the performance ratio using both datasheet information 

and outdoor measurements. Both for m-Si and p-Si technologies, it was found that datasheet values 

for Pmp,STC were higher than the value provided by outdoor measurements translated to STC. This 

produced higher annual PR values, for both technologies, when the outdoor measured data were used 

for the calculations. Table 2-2 summarizes the performance data obtained by the authors mentioned 

in this section. 

Table 2-2: Summary of efficiency and performance ratio reported by other studies 

Reference Duration (months) m-Si efficiency (%) 
p-Si  

efficiency (%) 

m-Si PR 

(%) 

p-Si PR 

(%) 

Nour-eddine et al. (2020) 12 14.94 14.91 85.51 85.37 

Adar et al. (2020) 19 12.65 12.90 84.76 86.66 

Balaska et al. (2017) 12 13.26 11.36 91 81 

Elibol et al. (2017) 12 14.63 12.63 91.63 88.59 

Guenounou et al. (2016) 12 13.49 11.01 88/95 80/98 

 To illustrate a fixed PV system mounting, Fig. 2-21 shows the experimental assembly used by 

Elibol et al. (2017).  

 

Figure 2-21: Fixed PV system assembly 

All the experimental PV systems previously mentioned in this section are fixed PV systems, 

that is, the modules were mounted on a structure presenting constant inclination and orientation 

angles.  

In turn, the comparative study conducted by Visa et al. (2016) in Romania shows a remarkable 

difference in mounting: the authors implemented five types of flat-plate PV modules (among them, m-

Si and p-Si) on  a two-axis tracker, which is illustrated in Fig. 2-22. The authors used two platforms as 

the one presented in Fig. 2-22, allowing performance comparison when fixed tilt and orientation were 

employed.  The results due to the use of a tracker with different crystalline PV modules are of interest 

in the context of the present thesis. With the use of the tracker, Visa et al. (2016) collected measured 

data for 16 months, regarding global irradiance, cell temperature, wind speed and electric output of 

the PV modules. The authors set one of the trackers with constant tilt (47°), south-oriented, and 

another one in dual-axis tracking mode. They found that tracking indeed improves the PV performance, 

however, it is the combination of relevant factors (irradiance, cell temperature and wind profile) that 

governs the amount of gain in terms of energy. The average efficiency levels for the tracker system 

were 16.49 % (p-Si) and 16.37 % (m-Si), whereas the authors report average 10 % gain on output power 

for the tracking system, as in comparison with the fixed mounting. The authors state that the higher 
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temperature of the modules on the tracker – compared to those installed on the fixed system – is an 

important factor that limits the gain in power. Besides this, they mention that snow takes longer to 

melt during sunrise on the tracker system, impairing the production. Moreover, during days with 

preponderant diffuse irradiance – where the ratio between the diffuse and global components is 

greater than 0.9 – the performance of both systems (tracked and fixed) is almost the same, and the 

use of a tracker is not justified. 

 

Figure 2-22: Tracking PV system assembly 

 Also with PV trackers, the work conducted by Zarkov et al. (2016) considered five different PV 

technologies, which were compared in terms of measured and calculated performance. Two out of the 

five PV technologies coincide with the ones considered in this thesis: p-Si and m-Si. The PV modules 

were installed on 2-axis trackers, as shown in Fig. 2-23. 

 

Figure 2-23: Different PV technologies installed on two-axis trackers. 

The efficiency was adopted as the performance metric in the work of Zarkov et al. (2016). The 

measured efficiency was quantified using Eq. (2.22), whereas the theoretical efficiency was assessed 

using the Durisch efficiency model (Eq. 2.25). To determine the unknown parameters in the Durisch 

model, fitting procedures were consecutively executed aiming to minimize the squared error. The 

authors found the nRMSE between the measured and predicted efficiency to be within 3 %. 



55 

 

2.5.2 Bifacial PV systems 

Bifacial technologies are among the most promising solutions for photovoltaic installations 

given that they currently present the same price per watt as conventional monofacial devices (Gu et 

al., 2020; Kopecek and Libal, 2021). The application  of bifacial modules along with single-axis tracker 

systems provides the most cost-attractive solution for PV plants at present time, and bifacial PV devices 

are also a promising alternative for vertical and floating PV systems (Kopecek and Libal, 2021; Tina et 

al., 2021).  

Several works in the literature focused on the comparison between bifacial and monofacial PV 

systems in terms of the electricity produced in a given time period. The goal of such studies was to 

determine the energy increase due to bifaciality, the so-called bifacial gain. In most cases, the 

monofacial and bifacial modules chosen by the authors were very similar in respect to their front-side 

performance specifications, therefore allowing direct comparison. For cases where the module 

specifications were not the same, a scaling factor based on datasheet power ratings was adopted, to 

allow a fair comparison in terms of normalized power rating of each PV system, as proposed by Stein 

et al. (2018). 

A critical parameter for bifacial PV systems, which affects the bifacial gain, is the bifaciality 

index (𝜑), as defined in Eq. (2.9). It is a measure of how similar the module’s rear-side performance is 

as in comparison to the front-side. The bifaciality index is a module-specific parameter and depends 

on the technology employed for the bifacial module production.  

A study employing two dual-axis trackers with bifacial and monofacial modules is presented 

by Burnham et al. (2019). One of the systems contained bifacial modules with high bifaciality index (𝜑 

= 0.92), presenting bifacial gain of 14 %. In contrast, the other system studied by the authors used 

bifacial modules with lower bifaciality index (𝜑 = 0.62), presenting a 4 % bifacial gain.  

Regarding bifacial PV systems installed in snowy environments, Hayibo et al. (2022) compared 

monofacial and bifacial systems. In winter, bifacial modules take advantage of the increased amount 

of radiation reflected upwards due to snow ground coverage, which is an important contributor for 

increasing bifacial gain. The authors considered large fixed bifacial and monofacial PV arrays, consisting 

of over 4500 modules in total.  A bifacial gain of 19 % was found during winter operation, however, 

the value of 𝜑 for the bifacial modules was not provided by Hayibo et al. (2022).  

An annual bifacial gain of 14.8 % was reported by Gu et al. (2021), which compared fixed-tilt 

monofacial and bifacial modules (𝜑 = 0.8). The authors assessed the bifacial gain for sunny and cloudy 

days, which presented average values of 13.1 and 16.5 %, respectively.  

A comparison of monofacial and bifacial modules presenting different 𝜑 was carried out by 

Muehleisen et al. (2021). The module with 𝜑 = 0.7 presented bifacial gain ranging from 5 to 7 % 

(depending on the orientation), whereas the module with 𝜑 = 0.92 presented a 3 % higher yield than 

the module with lower 𝜑. All modules were installed at the same site. 

For experimental bifacial systems installed in desert environment, Baloch et al. (2020) reports 

bifacial gains of 8.6 and 16.3 %, respectively, for modules presenting 𝜑 = 0.65 and 𝜑 = 0.9. 

It is therefore observed a wide range for the bifaciality index, which depends on the technology 

employed for the module manufacture. In turn, the bifacial gain also shows great variation since is a 
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function of the bifaciality and the characteristics of the installation site, where the ground albedo and 

module height are of great relevance.  

A comprehensive techno-economic assessment carried out by Rodríguez-Gallegos et al. (2020) 

mentions a 40% gain in yield for bifacial systems using two-axis trackers, in comparison to fixed 

conventional systems. However, the authors state that two-axis tracker systems present significantly 

higher cost of energy produced: for latitudes within +/- 60°, the cost of the tracker should decrease by 

60% for the system to present the lowest cost of electricity, in comparison with fixed PV installations. 

Rodríguez-Gallegos et al. (2020) concluded that bifacial PV systems with two-axis tracking produce 7% 

more electricity compared to monofacial PV systems with two-axis tracking; 4% more than bifacial with 

one-axis tracking; 11% more than monofacial with one-axis tracking; 31% more than bifacial with fixed 

tilt; and 40% more than monofacial with fixed tilt.  

Burnham et al. (2019) conducted a two-year measurement campaign with two dual-axis 

bifacial systems in Vermont (USA). Monofacial modules were installed on the tracker as well, to provide 

a resource for comparison. Tracker 1 was fitted with 60-cell framed monofacial m-Si modules and 60-

cell frameless m-Si bifacial modules. Tracker 2 had 72-cell framed monofacial m-Si modules and 72-cell 

m-Si framed bifacial modules. A picture of Tracker 2 is shown in Fig. 2-24. 

The primary interest of Burnham et al. (2019) was on the performance of the bifacial modules 

in a site which receives snow from five to six months per year, thus providing a high-albedo surface to 

contribute to the bifacial gain. The authors concluded that dual-axis tracking systems with bifacial 

modules present 14 % energy gain in comparison with dual-axis tracking systems with monofacial 

modules during the winter. This tends to reduce the cost of energy in regions which present persistent 

snow cover. In comparison to a south-facing, 30° fixed-tilt bifacial system, the dual-axis tracking 

mounting with bifacial modules yielded 41 % more energy, in agreement with Rodríguez-Gallegos et 

al. (2020). 

 

Figure 2-24 – A tracker with 10 monofacial modules (right) and 10 bifacial modules (left). Source: 

Burnham et al. (2019) 

2.5.3 Concentration PV systems 

Concentration multi-junction PV devices present unique features which significantly differ 

from flat-plate PV technologies – including bifacial modules. Given that the beam irradiance is the only 

component of the solar radiation which can be concentrated, the use of a tracker is necessary for HCPV 

devices to operate adequately. Such a requirement inevitably introduces additional cost to HCPV 
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plants; these trackers must have a high tracking precision, higher than for trackers using flat-plate PV 

modules. If the precision is low, the concentrated beam irradiance does not reach the very small PV 

cell and the electricity production is null. Consequently, the price of such a tracker is significantly high. 

Some works have been done to address the performance of HCPV devices in comparison to other PV 

technologies, and in order to provide all the modules with the same solar resource, it becomes 

necessary to install all the modules on a tracker; however, literature usually presents comparisons 

between HCPV modules mounted on trackers and conventional flat-plate PV modules mounted on 

fixed-tilt stands. Although this approach is more representative of real installations, it does not allow 

providing the same solar resource for all the technologies under study. 

A study conducted by Bianchini et al. (2016) in Italy tackled both technical and economic 

aspects of different technologies of PV sources, including HCPV. Eight PV technologies were studied, 

among them monocrystalline and polycrystalline (both mounted on fixed-tilt stands) and a HCPV plant 

mounted on a dual-axis tracker. Since the PV arrays referring to each technology present different 

power specifications, the electricity produced by each PV plant over a specified period was divided by 

the respective nominal power. The resulting parameter, Ya (array yield) is given in kWh/(kWp.year). For 

the m-Si, p-Si and HCPV modules, the values of Ya were respectively 1075, 1046 and 699 

kWh/(kWp.year). Regarding the cost of electricity, the authors report 0.129, 0.135 and 0.336 euros per 

kWh, respectively for m-Si, p-Si and HCPV technologies. The HCPV technology, although presenting 

greater efficiency (26 %, triple-junction gallium arsenide cells – GaAs) as in comparison to m-Si 

(heterojunction) (19 %) and p-Si (14.7 %), only converts the beam radiation component. The authors 

report that regarding the HCPV, the smaller Ya is justified by the fact that the installation site receives 

a relatively low amount of beam radiation yearly. Moreover, the significantly greater cost of electricity 

produced by the HCPV plant refers not only for the higher initial installation cost, but also to the dual-

axis maintenance requirements.  

A side-by-side comparative study was carried out by Libby et al. (2015), in the USA. The authors 

compared the performance of different PV modules, being two polycrystalline, one monocrystalline 

and two HCPV, aiming to obtain typical operational profiles. As in other studies, the flat-plate modules 

were installed on fixed-tilt racks, whereas the HCPV modules were fitted on dual-axis trackers. Fig. 2-

25 depicts the experimental assembly.  

 

Figure 2-25: flat-plate and HCPV experimental plants. Source: Libby et al. (2015) 

For a clear-sky day, the power profile is quite different, considering the fixed and tracking 

systems. Normalized power profiles are presented in Fig. 2-26. It shows that the output of the HCPV 

systems remains almost flat for roughly eight hours, whereas the flat-plate plants slowly ramp-up and 

down, remaining only about 2 hours near the peak power. The HCPV power profile is steep at the 
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beginning of the day because of the tracker operational range: there is a minimum solar altitude angle 

for the tracker to operate. A similar behavior is observed near the sunset. As a result, the flat-plate 

technologies supply power to the grid for a greater number of hours, however, at a low intensity during 

sunrise and sunset.  

 

Figure 2-26: Power profile for fixed-tilt (flat-plate) and 2-axis tracker (HCPV). Libby et al. (2015) 

The experimental assembly proposed in this thesis presents significant and novel differences 

and features in comparison with other systems described in literature. All PV modules – HCPV, bifacial, 

monocrystalline and polycrystalline – were installed on a 2-axis tracker. To date, this seems to be the 

only experimental system joining these four technologies on such a mounting scheme. 

2.6 GRID-INTERACTIVE INVERTERS FOR PV SYSTEMS 

Grid-connected inverters are key elements in PV systems. They provide not only the DC/AC 

conversion, but also determine the optimal operating point of the PV array, by means of an MPPT 

(maximum power point tracking) strategy. Besides this, they are responsible for connecting the PV 

system to the utility grid, performing automatic synchronization and voltage/current control.  

The relationship between the nominal power ratings of the inverter and of the array is referred 

to as inverter sizing ratio (SR), computed using Eq. (2.35). The parameters 𝑃mp,STC and 𝑃inv,N are, 

respectively, the nominal peak power of the PV array and the nominal power rating of the inverter. 

SR =
𝑃inv,N

𝑃mp,STC 
    (2.35) 

The inverter sizing ratio dictates the typical inverter loading, which is a relevant aspect: 

strongly oversized or undersized inverters may operate with relatively low annual efficiency values. 

The reason for this is the efficiency x loading curve, shown in Fig. 2-27 (Wang et al., 2018). Macêdo and 

Zilles (2006) carried out an experimental campaign with eight PV systems, each with different SR 

configurations, ranging from 55 to 102 %, using inverters of the same model. For that entire SR range, 

the authors did not find a significant variation among the final yield of the PV systems studied. In fact, 

Rodrigues Neto et al. (2020) describe an experimental study in which the inverter was operated under 

50% load; despite that, the DC/AC conversion efficiency was around 95 %. Such an inverter efficiency 

level is quite high, considering that the equipment is underloaded.  
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Figure 2-27: Annual inverter efficiency as a function of inverter sizing ratio for 3 different PV 

inverters. Source: Wang et al. (2018) 

Wang et al. (2018) conducted a study to determine the optimal inverter sizing ratio for two PV 

systems, from the energetic and economic perspectives. The authors found that including the 

economic aspect causes the optimal sizing ratio interval to decrease. Moreover, the authors also 

considered a degradation rate for the PV array. This caused a 10% increase in the optimum sizing ratio. 

Toreti Scarabelot et al. (2021) made an assessment of how overirradiance affects the performance of 

PV systems when different inverter sizing ratios are considered. The authors studied two PV systems 

located in southern Brazil. System “A” and “B” were designed with different sizing ratio values, 

respectively, 0.76 and 0.92. Given that the two PV systems were installed in different locations (30 km 

apart), system “A” received 4.2 % more irradiation than system “B”. However, the average monthly 

final yield values, evaluated over one year, were 98.56 kWh/kWp and 111.82 kWh/kWp. This shows the 

relevance of the sizing ratio on PV systems’ performance. 

Notton et al. (2010) proposed a method to determine the optimal inverter rating, considering 

site characteristics, inverter type and the PV technology. It was found that regarding inverter sizing 

ratio, the inverter's efficiency curve is more important than the PV module technology being used in 

the PV array. Regarding the efficiency of PV inverters, Rampinelli et al. (2014) developed mathematical 

models to describe system operation. The authors considered experimental and theoretical 

approaches to calculate fitting coefficients to describe the efficiency behavior of 9 different inverters. 

For each case, the authors compared the actual efficiency curves and the performance described by 

the model (adjusted for each particular inverter), where excellent correlation was observed.   

The international standard IEC 61683 (IEC, 2019) provides guidelines for the in-factory 

efficiency tests of inverters. The tests must be carried out at 25 °C ambient temperature, with direct 

measurements of input and output power levels. Since IEC 61683 is aimed at assessing the intrinsic 

efficiency of the power conditioner, it does not consider the efficiency of the MPPT system. This way, 

the measurements are carried out with fixed DC voltage and current levels. On the other hand, the 

standard IEC 63156 (IEC, 2021b) is devoted to the efficiency assessment of PV inverters under dynamic 

conditions. The document specifies procedures for inverter performance calculation based on power 

efficiency, however, additional methods for energy efficiency calculation are also provided.  
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2.7 CONCLUSIONS FOR SECTION 2 

This section introduced the basic aspects regarding solar radiation, which is composed by three 

components: beam radiation, which comes straight from the Sun; diffuse radiation, consisting of 

radiation that is scattered in the atmosphere, and diffused by the sky dome; and reflected radiation. 

The sum of these components forms the global irradiance. Instruments for irradiance measurement 

include pyranometers and reference solar cells, for the global irradiance; pyrheliometers, for the beam 

irradiance; and shaded pyranometers for the diffuse irradiance. The state of the sky can be defined by 

indexes such as the clearness index and the diffuse fraction, computed from the irradiance quantities.  

The four PV technologies considered in this work are the polycrystalline (p-Si), monocrystalline 

(m-Si), bifacial and multi-junction cells under concentration (HCPV). p-Si and m-Si are the most 

common, consisting of regular flat-plate modules with glass-EVA encapsulation. The main differences 

between such two technologies are the efficiency and the behavior of the DC power with respect to 

the temperature. The efficiency of p-Si cells is typically lower than that of m-Si cells, meaning that for 

a same rated power, p-Si PV modules require more array area than m-Si. In turn, p-Si devices are 

usually more sensitive to the operating temperature, in comparison to m-Si cells. This means that, for 

the same temperature, p-Si modules present higher temperature-driven DC power reduction than m-

Si modules. The bifacial modules present the remarkable ability to convert, also, the radiation reaching 

their rear surface, thus providing a gain in power and, therefore, in energy yield. Such a yield increase 

is the so-called bifacial gain, which is a function of three main variables: a) bifaciality index of the PV 

cells, which is the ratio between the rear and front-side efficiencies; b) system design, where the PV 

array’s clearance from the ground is a relevant parameter; and c) the ground coverage, which 

influences the albedo. Bifacial modules usually present glass-glass encapsulation and are composed by 

modified m-Si cells. The HCPV technology presents two main characteristics. First, the cells are built 

using three different semiconductor materials, allowing a larger use of the solar spectrum. These cells 

present a much higher cost than regular PV cells; thus, they are built in small sizes since the cost is 

proportional to the cell’s area. Second, the radiation is concentrated by lenses fitted onto the modules, 

to compensate the relatively small area of multi-junction cells. Due to the concentration, HCPV 

modules respond only to the beam irradiance. Thus, HCPV arrays must be constantly facing the Sun, 

requiring a dual-axis solar tracking system which further increases the initial cost of a HCPV system.  

Photovoltaic systems can be compared using the performance ratio (PR), which is calculated 

from the ratio between the measured and rated PV efficiency. This allows the PR to be calculated as 

an instantaneous metric, that is, with a particular value in each time step. It is worth mentioning that 

the PR can also be calculated by integrating the output power and solar irradiance over a given time 

frame. This way, the PR is a function of the electrical energy and the solar irradiation for a given period. 

Studies in the literature show bifacial gains ranging from 4 to over 19 %, relatively to regular 

p-Si or m-Si arrays. However, reported BG levels greater than 10 should be critically assessed since the 

conditions for the experimental measurements might not be representative of real-world applications, 

as typical BGs are around 5 %. Previous studies with HCPV devices did not include regular PV 

technologies installed on the same solar tracker; therefore, the operating conditions are not the same 

for all PV systems under study, particularly regarding the solar resource and operating temperature.  
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3 EXPERIMENTAL RESOURCE AND ELECTRICAL CHARACTERIZATION OF PV MODULES 

This section introduces UDCPP’s Renewable Energy Laboratory, and the experimental resource 

for this thesis. The PV tracker, the modules and the measurement instruments are presented in detail, 

and the modeling methods developed for the outdoor characterization of PV modules are explained. 

3.1 THE RENEWABLE ENERGY LABORATORY IN AJACCIO 

The Georges Peri UDCPP campus at Vignola – Ajaccio (UMR SPE CNRS 6134) features the Paglia 

Orba micro-grid research platform, which encompasses various renewable energy systems and 

different energy storage means. The electricity production, the dispatch to/from the external grid, as 

well as the storage charge/discharge can be managed using different operating modes. The site – 

which contains electric cars, offices, laboratories and even an apartment building for researchers and 

students – enables research to be carried out on a wide range of subjects, from solar resource 

prediction, solar thermal and solar PV conversion, electric mobility, chemical energy storage systems 

(batteries and hydrogen), pumped hydro storage and intelligent control and management systems. 

The Vignola campus is illustrated in Fig. 3-1. 

 

Figure 3-1: General view of the UDCPP campus at Vignola 

The largest PV array belongs to the Myrte Platform, where the electricity is fed into 

electrolyzers, which produce hydrogen (H2) and oxygen (O2) from water. These gases and respective 

energy content are then stored in tanks (not seen in Fig. 3-1). When needed, the H2 and O2 are directed 

to fuel cells for electricity production. The 28 Myrte PV inverters, as well as the fuel cells are connected 

to the external utility grid. All other PV arrays have the respective inverter outputs sent to the 

powerhouse. The powerhouse contains different battery types (Fig. 3-2), whose charge is managed by 

special inverters, able to connect PV generators with batteries and with the grid at the same time.  

In the powerhouse, a very smart electric panel arrangement has been adopted: it is possible 

to organize three independent micro-grids (Fig. 3-3), allowing different configurations between 

sources and loads, adopting different control strategies, with or without storage, while feeding loads 

with different power profiles over the time, being the grids isolated or grid-connected. 
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Figure 3-2: View of one of the battery banks (Zebra batteries) inside the powerhouse 

In summary, the powerhouse offers flexible connections as it receives power from all sources 

and sends power to all loads, whereas allowing connection with the external grid and the battery 

storage systems.  

 

Figure 3-3: Panels and buses for the three flexible research micro-grids 

Besides providing power connections, it is in the powerhouse that all field signals are 

concentrated (Fig. 3-4), processed and sent to the supervisory system. The powerhouse holds, also, 

the control room (Fig. 3-5). All signals from the field reach the powerhouse using optic fiber.  

 

Figure 3-4: Field signals panel and external grid / metering panels 
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The use of optic fiber presents remarkable advantages: it is immune to magnetic interference; 

it avoids overvoltage caused by malfunctions or by lightning from reaching the signal receivers; and it 

does not suffer from voltage drop issues due to long transmission distances.  

 

Figure 3-5: The control room inside the powerhouse 

 In Fig. 3-1, on the far-right side, there is a structure highlighted by a red square. This is the PV 

tracker, which is the experimental resource for this thesis. This system is detailed in the following. 

3.2 THE SOLAR TRACKER AND THE PV MODULES 

The HL-39 2-axis HeliosLite PV tracker was originally installed in UDCPP campus Vignola for the 

study of HCPV modules. Given that HCPV modules are provided with lenses, and that the only solar 

radiation component which can be concentrated is the beam, tracking is mandatory to keep the HCPV 

modules always facing the Sun. The original tracker assembly, containing only HCPV modules installed, 

as shown in Fig. 3-6 a), was modified: monocrystalline, polycrystalline and bifacial modules were 

included for the present thesis. This way, each of the four quadrants of the tracker is fitted with a 

different PV technology, as illustrated in Fig. 3-6 b). 

 

 a)               b) 

Figure 3-6: The HL-39 tracker: a) Original modules; b) With four different PV technologies 

 In cases where the wind speed is above 30 km/h, or the solar irradiance is too low – for example 

in overcast days or after sunset – the tracker goes to the so-called rest position, as shown in Fig. 3-7.  
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Figure 3-7: The PV tracker in its “rest” position 

 The HL-39 tracker datasheet (HeliosLite, 2019) presents relevant information regarding the 

tracker operation, such as average daily energy consumption of 200 Wh and tracking accuracy of 0.1° 

and 0.2°, respectively for wind speeds of 0-4 and 4-8  m/s.  

 The HCPV arrays’ voltage and current are continuously monitored by the tracker control 

system. When the Sun rises, the PV array voltage increases, and the tracker is initially positioned 

according to calculated angles of azimuth and altitude to make the PV modules face the sun. Then, the 

tracker applies small changes in the positioning angles while monitoring the maximum power point of 

the HCPV array to determine the optimal position. This power monitoring and position correction is 

constant during operation; however, it occurs in a time frame wider than the one used on the inverter’s 

MPPT since it is not desired that the two control schemes overlap each other. 

In the specific assembly prepared for this thesis, the HCPV array is the one being monitored by 

the tracker, given the greater dependence of concentration PV on the radiation angle of incidence, as 

in comparison with the other technologies under study. The manufacturer states that the HL-39 tracker 

can increase energy yield of a PV plant by 30-50 %. Notton and Diaf (2016) carried out a study 

considering the solar irradiation observed for different mounting inclinations, as well as one and two-

axis tracking. The authors found that tracking indeed increases the solar irradiation on PV modules. 

Given that tracking systems represent additional costs, the authors propose changing the PV array’s 

tilt seasonally (four times a year), as a measure to increase the solar energy harvested whereas 

avoiding the costs associated to trackers. Fig. 3-8 depicts the comparison between the performance 

ratio for fixed and tracking PV systems, as a function of daytime, clearly showing the increase in PR 

obtained from sunrise to sunset.  

 

Figure 3-8: A plot from the HL-39 tracker datasheet: PR with and without tracking 



67 

 

3.3 PV MODULES INSTALLED ON THE TRACKER 

The four PV technologies installed on the tracker refer to modules with specifications that 

differ widely in terms of electric characteristics, efficiency and size. Table 3-1 summarizes the 

datasheet information regarding the four models of modules, under STC.  

Table 3-1: Datasheet specifications for the four PV modules installed on the tracker. 

Parameter 

Poly-Si 

Photowatt 

PW1650 

Mono-Si 

Sunpower 

SPR-327 

Bifacial 

Trina Solar 

TSM-335DEG6MC(II) 

HCPV 

Semprius 

SM-U01 

Maximum power, Pmp (W) 175 327 335 87.5 

Voltage at maximum power, Vmp (V) 35.0 54.7 34.1 86.6 

Current at maximum power, Imp (A) 5.0 5.98 9.83 1.01 

Open-circuit voltage, Voc (V) 43.4 64.9 40.8 101.6 

Short-circuit current, Isc (A) 5.3 6.46 10.35 1.06 

Module efficiency (%) 15.0 20.4 19.7 33.9 

Module area (m²) 1.17 1.60 1.70 0.26 

Temperature coefficient for Isc, α (%) 0.03 0.04 0.05 - 

Temperature coefficient for Voc, β (%) -0.36 -0.27 -0.29 -0.14 

Temperature coefficient for Pmp, ϒ (%) -0.42 -0.35 -0.37 -0.14 

Number of cells 72 96 120 (half-cells) 660 

Number of modules on the tracker 6 4 6 28 

 Besides its capability of absorbing radiation on both front and rear sides, the bifacial module 

installed on the tracker presents another differential: the half-cut cells. The major benefit of such a 

construction is the smaller loss from series-resistance, since a half cell produces half the current. This 

is the reason why Table 3-1 shows that the bifacial contains 120 cells, although the open-circuit voltage 

suggests that it actually has 60 cells. The 120 cells are divided in two groups of 60 series-connected 

half-cells, which are then internally connected in parallel.  

 

Figure 3-9: Schematic drawing of the tracker and the modules of each technology 
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A schematic illustration showing the position of the PV modules on the tracker is provided in 

Fig. 3-9. A particularity regarding the HCPV modules refer to the interconnections: in the HCPV array, 

there are four strings with seven modules each, and the strings are parallel connected. This means that 

the current at the inverter input is about 4 times greater than the current of a single module. The 

parallel connection was required because the HCPV modules’ Vmp is significantly higher than that of 

common PV modules (refer to Table 3-1). Therefore, to reach the desired DC power, it was required to 

increase the current. This was achieved by connecting 4 strings in parallel. In contrast, for the other 

three PV arrays (p-Si, m-Si and bifacial), all similar modules are connected in series, in a single string. 

3.4 IRRADIANCE (FRONT AND REAR) AND TEMPERATURE MEASUREMENT 

Although the Campus Vignola is provided with several irradiance metering devices, (described 

in Section 3.6), two unique irradiance measurements are only possible with sensors installed on the 

tracker: it is the case for the global irradiance at the plane of array for the front (GNI) and rear (GNIrear) 

sides of the PV panels. In Fig 3-10, the frontal irradiance sensor can be seen installed close to the m-Si 

modules.  

 

Figure 3-10: Frontal view or the tracker (left) and the front-side reference cell for irradiance 

measurement (detail, right) 

 

Figure 3-11: Rear view of the tracker (left) and the rear-side reference cell for irradiance 

measurement (detail, right) 
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In turn, Fig. 3-11 shows the irradiance sensor for the rear irradiance, installed just across the 

supporting axis behind the bifacial modules array. Its purpose is to measure the diffuse irradiance 

reaching the back surface of the bifacial modules. Both these sensors are calibrated m-Si cells, provided 

with built-in PT-100 temperature sensors. The temperature factor of each particular cell was 

determined by the manufacturer and is specified in a label attached to the sensor casing.  

3.5 INVERTERS 

Two 3000 W SMA Tri-Power inverters are used in the experiment. Each of the four PV arrays – 

HCPV, bifacial, mono-Si and poly-Si – is connected to an individual inverter input, that is, the maximum 

power point tracking (MPPT) is individual for each technology. This is actually a pre-requisite, given 

that the characteristics of the four PV module types vary widely. Each inverter provides two 

independent DC inputs, which are summed and result in a single AC output for grid connection. A 

picture showing the two inverters (in blue) and instrumentation panels is provided in Fig. 3-12. 

 

Figure 3-12: Inverters and instrumentation panels 

The modules and inverters are connected according to the illustration in Fig. 3-13, which shows 

that the HCPV array is supplied to input A of inverter 1, whereas the m-Si array is connected to the 

input B of inverter 1. In turn, the bifacial array feeds input A of inverter 2, while the p-Si array is linked 

to the input B of inverter 2. The sizing ratios for inverters 1 and 2 are, respectively, 0.798 and 0.980. 

The reason for keeping the inverter sizing ratio relatively high for inverter 2 is to accommodate the 

extra DC power provided by the bifacial array, since the STC ratings consider only the front-side.  

 

Figure 3-13: Modules on the tracker and their connection to the inverters 
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3.6  ON-SITE IRRADIANCE AND WEATHER MONITORING INSTRUMENTS 

Various irradiance instruments are installed at the top of the Offices and Laboratories building 

(see Fig. 3-1 for reference). These meters acquire relevant irradiance parameters, and a dedicated 

supervisory system is responsible for recording the measurements. Tilted global irradiance levels are 

measured with the four pyranometers depicted in Fig. 3-14.  

 

Figure 3-14: Pyranometers for tilted global irradiance measurement. 

Besides this, a weather station (Fig. 3-15) measures ambient temperature and humidity, in 

addition to wind speed and direction.  

 

Figure 3-15: A weather station installed for wind, humidity and temperature measurements. 

A tracking assembly for measuring global, direct and diffuse irradiance components is shown 

in Fig. 3-16. The equipment is similar to the one whose explanation is given in Section 2.1.5.  

 

Figure 3-16: Tracker assembly to measure GHI, BNI and DHI 
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Regarding the measurements made using these and other instruments, in this thesis, the main 

error metric is the normalized Root Mean Squared Error (nRMSE), calculated using Eq. (3.1).  

nRMSE = √
∑ (𝑥c − 𝑥r)2𝑛

𝑖=1

𝑛
 

1

𝑥r̅
 (3.1) 

 In cases where it is desired to check the direction of the error – for example, to determine if a 

model overestimates or underestimates a given variable – the nMBE (normalized Mean Biased Error) 

is used. The nMBE is computed via Eq. (3.2).   

nMBE =
∑ (𝑥c − 𝑥r)𝑛

𝑖=1

𝑛
 

1

𝑥r̅
 (3.2) 

In Eqs. (3.1) and (3.2), 𝑥c and 𝑥r are respectively the calculated and reference parameters, 

whereas 𝑥r̅ represents the average of the reference parameter within the whole dataset, and n is the 

number of observations contained in the dataset. 

In short, the nRMSE offers an absolute measurement of the average normalized error, 

providing more weight as the error increases (since it is squared). On the other hand, the nMBE 

provides a measure of the average normalized error. Since the error is not squared, the signal (+ or -) 

is preserved. 

3.7 ALTERNATIVE APPROACHES FOR OUTDOOR CHARACTERIZATION OF PV MODULES 

Two studies regarding outdoor characterization of PV modules were carried out during the 

development of this thesis. The first focuses on IEC-60891 international standard, and the second on 

the single-diode model (SDM) for PV sources.  

The interest in outdoor characterization methods in the context of this thesis arises from the 

fact that all PV modules were individually tested before being installed on the tracker, through the 

measurement of I-V curves. The aim was to carry out performance checks to allow detecting failures 

before the measurement campaign started. Therefore, it became necessary to convert the field I-V 

measurements into a normalized condition, common for all PV modules. Such a common condition 

was chosen as the STC, thus allowing to compare the converted field measurements with the datasheet 

ratings. Another reason for the outdoor characterization of the PV modules is that all HCPV modules 

were not new as of the beginning of this thesis; they had been in operation for over 4 years, during the 

development of the thesis of Benhammane (2019).  The exposition to sunlight – depending on the 

condition and duration – may introduce changes in the electric behavior of the PV device, which should 

be quantified so that the real specifications of the device are known. These specifications are essential 

for production performance assessment. 

On the other hand, for the new bifacial PV modules, it is desired to carry out outdoor tests to 

confirm that the modules are not damaged and to check the specifications provided by the 

manufacturer. Moreover, the specific case of bifacial modules brings an additional need for tests: the 

quantification of the bifaciality index, which relates the short-circuit currents owing to the front and 
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rear sides of the module. It is not common practice for manufactures to include such an index in their 

products’ documentation. 

The series of studies resulted in two scientific papers, both of them already published: the 

alternative procedure for IEC-60891 (Abe et al. 2021); and the study regarding the single-diode model 

(Abe et al. 2023). For both studies, the validation was carried out using extensive experimental data 

coming from a PV system outside the scope of this thesis. The modules used for the validation were 

not the same as those installed on the tracker. Moreover, the tested modules were installed on a fixed 

mounting stand, not on a tracker. Using an experimental dataset obtained externally to this thesis was 

needed since the studies on outdoor characterization presented in this section started at the same 

time as the assembly and configuration of the PV tracker experiment. Therefore, it was not yet possible 

to use the tracker assembly to produce records. Appendix A and Appendix B present the validation of 

the methods described in the present section. 

3.7.1 Simplified approach to adjust IEC-60891 equation coefficients from experimental 

measurements  

A standard approach for modeling PV sources is by using current and voltage translation 

equations, notably as proposed in IEC-60891 (IEC, 2009) – 2nd procedure. They allow calculating the 

corresponding corrections in voltage and current, according to the operating condition, specified in 

terms of G and Tc. As the calculation is straightforward, providing voltage and current levels under 

known levels of G and Tc allows computing their translated values. It is worth mentioning that this does 

not require calculating the complete I-V curve: the I-V pair is directly translated by calculating just two 

equations. A concern regarding IEC-60891 is the need of adjusting some parameters in the voltage 

translation equation. To determine them according to the standard, two sets of I-V curves under 

specific conditions are needed. Therefore, it becomes necessary to use modeling techniques or 

advanced measurement equipment such as solar simulators.  

This section presents a new procedure for adjusting the parameters of IEC-60891 (2nd 

procedure), based on simple experimental measurements. The method was designed in such a way to 

avoid the need for complex equipment and advanced modeling methods for PV devices. However, it 

is necessary to measure I-V curves of the module studied, under known levels of G and Tc. If a 

commercial instrument is not available, the I-V curve can be easily measured through the capacitive 

method, using simple current-voltage recording hardware. A review of methods to measure the I-V 

curve of PV modules is provided by Duran et al. (2008), whereas the capacitive method is discussed in 

detail by Spertino et al. (2015). Regarding the irradiance measurement, if a pyranometer or a calibrated 

PV cell are not available, measurements using a PV module as a sensor can be carried out. In this case, 

a module with known characteristics could be operated at the short-circuit point and positioned at the 

same inclination and orientation as that of the array under analysis. Measuring the current and the 

temperature of the sensor module allows computing the irradiance, as presented by Tan et al. (2013).  

3.7.1.1 International standard IEC-60891 

The IEC-60891 standard (IEC 2009) presents three different procedures for irradiance and 

temperature corrections regarding the current and voltage of PV devices. The second procedure 
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presented in the standard introduces Eqs. (3.3) and (3.4), and it is reported to provide better results 

when compared to the first procedure, considering large irradiance corrections. In turn, the third 

procedure is based on the interpolation of measured I-V characteristics and will not be covered in the 

present thesis. In Eqs. (3.3) and (3.4), α and β are the temperature coefficients for Isc and Voc, 

respectively. They are given in °C-1. In turn, RS is the series resistance of the module under test, in Ω, a 

is the irradiance dependence coefficient for the voltage (dimensionless), and k is the thermal 

correction factor of RS, in Ω/K, which can present negative or positive values, depending on the 

experimental data used to adjust the parameters of Eqs. (3.3) and (3.4). The variables with subscript 

“1” refer to the input data, whereas the variables with subscript “2” refer to the translated data. 

𝐼2 = 𝐼1 (1 + 𝛼(𝑇c,2 − 𝑇c,1)) (
𝐺2

𝐺1
) (3.3) 

 

𝑉2 = 𝑉1 + 𝑉oc,1 (𝛽(𝑇c,2 − 𝑇c,1) + 𝑎 ln (
𝐺2

𝐺1
)) − 𝑅S(𝐼2 − 𝐼1) − 𝑘𝐼2(𝑇c,2 − 𝑇c,1) (3.4) 

A procedure for adjusting the parameters a, RS and k is presented in the IEC-60891 standard 

(IEC 2009). Two I-V curve sets are required, with at least three I-V curves each: one set with the same 

Tc for all curves, varying G, for the adjustment of a and RS; and another set under the same G, but with 

variable Tc, for adjusting k. Starting with the curve set under the same Tc and adopting a = 0 and RS = 0, 

the current levels of the curves have to be scaled, so that all the curves coincide with the highest Isc 

measured. At this point, the Voc and the Pmp of the curves are not coincident. Then, assuming the 

highest irradiance as a reference in Eqs. (3.3) and (3.4), the parameter a has to be incremented in steps 

of 0.001 until the Voc of the curves coincide. Once the parameter a has been defined, RS is initially 

estimated by multiplying the number of cells connected in series by 0.01 Ω. The initial RS has to be 

changed in steps of 0.01 Ω (positive or negative) until all curves coincide. Finally, the curve set 

containing curves under different Tc has to be used to adjust parameter k, taking the lowest 

temperature as a reference in Eqs. (3.3) and (3.4). The parameter k (initially set to 0) has to be changed 

in steps of 0.001 Ω/K until the transposed curves coincide. 

The procedure presented in the standard requires at least six I-V curves, as well as computing 

resources to plot the translated curves at each step. A more straightforward method is presented in 

section in the following.  

3.7.1.2 Alternative method for adjusting IEC-60891 voltage translation equation  

An advantage of the novel method proposed in this thesis is the fact that fewer curves are 

required. In contrast to the original procedure, which requires one set of curves under the same G and 

another set under the same Tc, the proposed procedure requires only two I-V curves, which have to 

differ in terms of G and Tc. Datasheet information is needed only with regard to the temperature 

coefficients.  

For adjusting the parameters in Eq. (3.4), the I-V curve under higher irradiance level is referred 

to as curve A and is associated with the condition Ga and Tc,a. The curve taken under lower irradiance, 
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referred to as curve B, refers to the condition Gb and Tc,b. The task of adjusting the parameters of Eq. 

(3.4) is complete when curve A points – being translated to Gb and Tc,b – coincide with curve B. 

Initially, RS and k are set to zero. The first parameter to be adjusted is a, which is carried out 

based on the open-circuit voltage points of the curves. However, since a refers to the irradiance 

correction, the temperature must be constant for its adjustment. Aiming to avoid the case where I-V 

curves under different G and same Tc are required, the open-circuit point of curve B (Voc,b, under Tc,b) 

is translated to Tc,a. This is carried out using an adaptation of Eq. (3.4) for the case of open-circuit and 

constant irradiance, where I1 and I2 are equal to zero, therefore yielding Eq. (3.5), where Voc,c refers to 

Gb and Tc,a. Equation (3.5) has been also used in (Abe et al., 2019), where a study regarding the 

relationship between Voc and Tc was carried out. Once the Voc of curve B has been translated to Tc,a, 

the open-circuit voltage of the two curves will only differ in terms of irradiance, and that is precisely 

what is needed in order to adjust a using Eq. (3.4). 

𝑉oc,c = 𝑉oc,b (1 +  𝛽 (𝑇c,a − 𝑇c,b)) (3.5) 

The proposed approach for the determination of a concerns only two voltage points – Voc,c and 

Voc,a – where the optimal value of a allows translating Voc,a to Voc,c using Eq. (3.4). This way, the trial-

and-error procedure proposed in IEC-60891 for computing a is not necessary, since an explicit 

calculation is possible. This takes into account Eq. (3.4) written for open-circuit condition and constant 

temperature, and Eq. (3.5), yielding Eq. (3.6).  

𝑎 =
1

ln (
𝐺𝑏
𝐺a

)
(

𝑉oc,b (1 +  𝛽 (𝑇c,a − 𝑇c,b))

𝑉oc,a
− 1) (3.6) 

The second step is adjusting RS. This is carried out by writing Eqs. (3.3) and (3.4) for constant 

temperature, thus providing Eqs. (3.7) and (3.8), which are used to translate the curve A points to Gb.  

 
𝐼2 = 𝐼1 (

𝐺2

𝐺1
) (3.7) 

 

 𝑉2 = 𝑉1 + 𝑉oc,1 (𝑎 ln (
𝐺2

𝐺1
)) − 𝑅S(𝐼2 − 𝐼1) (3.8) 

The parameter RS has to be adjusted in such a way that the maximum power of the translated 

curve, that is, the product of Eqs. (3.7) and (3.8), coincides with Pmp,c, given by 

 𝑃mp,c = 𝑃mp,b  (1 +  𝛾 (𝑇c,a − 𝑇c,b)), (3.9) 

which is the maximum power model adopted in the PVFORM simulation program for PV systems 

published by (Menicucci, 1985), written for constant irradiance. In Eq. (3.9), 𝛾 is the temperature 

coefficient for Pmp. The procedure of translating curve A points to Gb and determining the maximum 

power value has to be repeated for each adjustment of RS, until its optimal value is determined. Given 

the discrete nature of measured I-V curves, a polynomial fit of the points could be performed, allowing 

a better estimation of the maximum power point. Such a procedure is explained in detail by Emery 

(2016), whereas an application case is described by Piliougine et al. (2021).  
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The last parameter in Eq. (3.4) to be adjusted is k. At this point, no intermediate conversion is 

needed, such as those provided by Eqs. (3.5) and (3.9); data referring to curves A and B are used directly 

in Eqs. (3.3) and (3.4). The curve A points are translated to Gb and Tc,b, whereas the parameter k is 

adjusted to make the power value resulting from the product of Eqs. (3.3) and (3.4) coincide with the 

measured Pmp,b. This completes the equation parameter adjustment procedure. It is worth mentioning 

that the task of translating curve A points to Gb and Tc,b, determining the maximum power value of the 

resulting curve, has to be repeated for each adjustment of k, until its optimal value is found. Besides 

that, as for the determination of RS, polynomial fit should be applied if the measured curves present 

low definition.  

The complete process of adjusting the parameters of Eq. (3.4) is presented in the flowchart 

illustrated in Fig. 3-17. 

 

Figure 3-17: Process flowchart for adjusting the parameters of Eq. (3.4). Source: (Abe et al. 2021) 

It is worth recalling that this procedure requires only two I-V curves, and plotting the translated 

curves is not required to complete the procedure. Two simple equations have been added to the 

original procedure. This way, the determination of a is explicit, and extensive outdoor measurements, 

tests using solar simulators, and further modeling methods are not needed. The validation of the 

proposed method is available on Appendix A. 

3.7.2 Using on-site measurements to identify and adjust PV single-diode model 

parameters for real operating conditions 

The single-diode model (SDM) is the most widely used approach to describe the behavior of 

PV modules, since it presents an adequate balance between complexity and precision, as described by 
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Femia et al. (2017) and Petrone et al. (2017). The electric circuit referring to the SDM is presented in 

Fig. 3-18, where the currents can be related by Eq. (3.10). 

𝐼pv = 𝐼ph − 𝐼d − 𝐼p , (3.10) 

where Ipv is the current at the output of the PV module and Iph is the photo-generated current. Using 

the Shockley junction equation to express the diode current (Id), and writing Ip as a function of Ipv and 

the PV cell voltage (Vpv) provides Eq. (3.11) 

 𝐼pv = 𝐼ph − 𝐼0 [𝑒
(

𝑞 (𝑉pv+𝐼pv 𝑅s)

𝑛c 𝐴 k 𝑇c
)

− 1] −
𝑉pv+𝐼pv 𝑅s

𝑅p
 , (3.11) 

where I0 is the diode reverse saturation current in A; Rs is the series resistance, in Ω; Rp is the parallel 

(or shunt) resistance, in Ω; q is the elementary charge (1.60217662 x10-19 C); A is the diode ideality 

factor; k is the Boltzmann constant (1.3806505 x10-23 J/K); and nc is the number of cells connected in 

series in the module. 

 

Figure 3-18: Single-diode model of a PV cell 

To accomplish the crucial task of identifying the five SDM parameters (Iph, I0, A, Rs and Rp), 

different approaches have been presented, for instance exact iterative numerical methods, usually 

based on the solution of a system of non-linear equations; approximate methods, which allow explicit 

calculation of the SDM parameters due to the assumption of simplifications in the model; and 

optimization methods. A comprehensive review of consolidated methods to identify the SDM 

parameters is provided by Femia et al. (2017), Petrone et al. (2017) and Piazza and Vitale (2017).  

Various identification methods presented in literature – for instance those proposed by 

Cannizzaro et al. (2014a), Lineykin et al. (2014), Di Piazza et al. (2015), Sera et al. (2007) and De Soto 

et al. (2006) – employ data referring to the Standard Test Condition (STC) as input, where the solar 

irradiance (G) on the plane of the PV module is 1000 W/m², whereas the module temperature (Tc) is 

25 °C. In most cases, under such a high G level, the temperature of a PV module outdoors would hardly 

be equal to 25 °C. Thus, tests under STC are usually performed indoors, using specific equipment to 

allow controllable G and Tc levels. This is usually accomplished using the so-called solar simulators, 

which enable controllable temperature within the chamber where the PV module is positioned and 

are provided with a controllable light source, presenting AM 1.5 spectrum, which is similar to that of 

sunlight. Such an equipment presents high cost, which tends to restrict their use to PV module 

manufacturers and PV module characterization laboratories. 

To avoid using datasheet information or solar simulators to obtain STC data, the SDM 

parameter identification of a particular PV module could be carried out based on outdoor 

measurements. In this sense, Hosseini et al. (2018) introduce a procedure to determine the five SDM 

parameters in real field conditions, using an iterative procedure and taking into account the effect of 
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spectral distribution on parameter Iph by introducing a term dependent on the air mass (AM). In turn, 

Lappalainen et al. (2020) present a fitting method for on-site estimation of the five SDM parameters, 

as well as the G and Tc levels. This way, only datasheet information (under STC) and a measured I-V 

curve are needed for the SDM parametric identification. Piliougine et al. (2021) applied different 

explicit (approximate) identification methods using outdoor measured I-V curves of a PV module. The 

goal of the study was to evaluate the performance of such explicit methods for cases when the PV 

module presents degradation, which was emulated by adding series resistances during the I-V curve 

measurements, and no translation methods were considered.  

In the works of Hosseini et al. (2018), Lappalainen et al. (2020) and Piliougine et al. (2021), 

once the SDM parameters were identified, the PV source terminal current and voltage can be predicted 

only for the condition under which the parameters were calculated. This means that if the operating 

condition changes, the SDM parameters have to be identified again. This can be overcome if translation 

methods for the SDM parameters are employed, allowing to reproduce the behavior of PV modules 

for any operating condition, according to Petrone et al. (2017). The study presented by Lineykin et al. 

(2014) introduces a method to adjust Iph and I0, which employs the semiconductor bandgap energy 

value. In contrast, the method presented by Piazza et al. (2017) does not require the bandgap energy 

value to calculate the corrected I0; instead, it requires a second I-V curve under known G and Tc levels. 

Lineykin et al. (2014) and Piazza et al. (2017) evaluated such translation methods using original SDM 

parameters identified under STC, relying on datasheet information. Moreover, the use of such 

translation methods along with SDM parameters obtained from outdoor measurements has not been 

sufficiently documented in the literature. 

3.7.2.1 SDM parameters identification methods 

In this section, three methods for identifying the SDM parameters are considered. They regard 

the iterative, approximate, and optimization methods.  

The first approach considered was presented by Sera et al. (2007), and relies on the iterative 

solution of a non-linear equations system and determines the five parameters of the SDM, using the 

Newton-Raphson method. Such a study has been employed as a reference in numerous studies over 

the last years;  for instance, Chatterjee et al. (2011) employed derivations presented by Sera et al. 

(2007), however, they used the Gauss-Seidel numeric method to solve the non-linear equations 

system. Since the research of Sera et al. (2007) is regarded as a “classic” parameter extraction method, 

it was used as a reference to compare the performance of new methods proposed in the literature, as 

carried out by Piazza et al. (2015) and Hejri and Mokhtari (2017). Boutana et al. (2017) present a 

performance assessment of implicit and explicit identification methods for the SDM parameters, 

where the approach of Sera et al. (2007) is compared with six other methods.  

According to Sera et al. (2007), the parameters Rs, Rp and A are computed iteratively by solving 

the system of non-linear equations formed by Eqs. (3.12) to (3.14).  

𝐼mp = 𝐼sc −
𝑉mp + 𝐼mp 𝑅s − 𝐼sc 𝑅s

𝑅p
− (𝐼sc −

𝑉oc − 𝐼sc 𝑅s

𝑅p
) 𝑒

𝑞 (𝑉mp+ 𝐼mp 𝑅s− 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c  (3.12) 
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𝑑𝑃

𝑑𝑉
|

𝑃mp

=  𝐼mp + 𝑉mp

−
𝑞 (𝐼sc 𝑅p + 𝐼sc 𝑅s − 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c 𝑅p
𝑒

𝑞 (𝑉mp+𝐼mp 𝑅s− 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c −
1

 𝑅p

1 +
𝑞 (𝐼sc 𝑅p + 𝐼sc 𝑅s − 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c 𝑅p
𝑒

𝑞 (𝑉mp+𝐼mp 𝑅s− 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c +
𝑅s
 𝑅p

 (3.13) 

   

−
1

𝑅p
|

𝐼sc

=

−
𝑞 (𝐼sc 𝑅p + 𝐼sc 𝑅s − 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c 𝑅p
𝑒

𝑞 (𝐼sc 𝑅s− 𝑉oc)
𝑛c 𝐴 𝐾 𝑇c −

1
 𝑅p

1 +
𝑞 (𝐼sc 𝑅p + 𝐼sc 𝑅s − 𝑉oc)

𝑛c 𝐴 𝐾 𝑇c 𝑅p
𝑒

𝑞 (𝐼sc 𝑅𝑠− 𝑉oc)
𝑛c 𝐴 𝐾 𝑇c +

𝑅s
 𝑅p

 (3.14) 

 

The parameter Iph is computed via 

𝐼ph = 𝐼0 𝑒
(

𝑞 𝑉oc
𝑛c 𝐴 𝐾 𝑇c

)
+

𝑉oc

𝑅p
 , 

(3.15) 

whereas I0 is calculated by 

𝐼0 =

𝐼sc −
𝑉oc − 𝐼sc 𝑅s

𝑅p

𝑒
(

𝑞 𝑉oc
𝑛c 𝐴 𝐾 𝑇c

)
 . (3.16) 

The procedure described by Cannizzaro et al. (2014a) and Di Piazza et al. (2015) – regarded as 

an approximate method – presents an explicit solution, and since it neglects the effect of one of the 

resistances of the SDM, it always provides four parameters. The approach presented by Cannizzaro et 

al. (2014a) and Di Piazza et al. (2015) was selected as the approximate identification method for this 

section since their authors have also authored the translation method presented by Piazza et al. (2017). 

Moreover, the method presented by Cannizzaro et al. (2014a) and Di Piazza et al. (2015) was employed 

by Cannizzaro et al. (2014b), which describes a MATLAB-based software that calculates the SDM 

parameters using either iterative or explicit methods, allowing to compare the reconstructed I-V 

curves. 

The simplification introduced by Cannizzaro et al. (2014a) and Di Piazza et al. (2015) consists 

in considering Rs equal to zero or Rp equal to infinite, and the criteria to neglect Rs or Rp is also described 

by Cannizzaro et al. (2014a) and Di Piazza et al. (2015). It refers to a new indicator called “series-parallel 

ratio” (SPR), calculated by 

SPR =
1 − 𝛾𝑖

𝑒−r
 , (3.17) 

with 

𝛾𝑖 =
𝐼mp

𝐼sc
, 𝛾𝑣 =

𝑉mp

𝑉oc
, r =

𝛾𝑖(1 − 𝛾𝑣)

𝛾𝑣(1 − 𝛾𝑖)
 . (3.18) 

In cases where SPR > 1, Rp can be set as infinite; therefore, a set of four parameters is to be 

determined, which is conducted by solving Eqs. (3.19) to (3.22). The cases with SPR < 1 are usually 

found for modules composed by non-crystalline cells, according to Petrone et al. (2017). Such cases 

are not covered in the present work, since usually SPR > 1.  
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𝐼ph = 𝐼sc (3.19) 

 

𝑅s =
𝑉oc

𝐼sc

𝛾𝑣
𝛾𝑖

(1 − 𝛾𝑖)𝑙𝑛(1 − 𝛾𝑖) + (1 − 𝛾𝑣)

(1 − 𝛾𝑖)𝑙𝑛(1 − 𝛾𝑖) + 𝛾𝑖
|

𝑅p=∞

 (3.20) 

 

𝐴 =
𝑞

𝑛c 𝐾 𝑇c
 

𝐼mp 𝑅s −  𝑉oc + 𝑉mp

𝑙𝑛
(𝐼sc − 𝐼mp)(𝑅s + 𝑅p) − 𝑉mp

𝐼sc(𝑅s + 𝑅p) − 𝑉oc

 
(3.21) 

 

𝐼0 = (𝐼ph −
𝑉oc

𝑅p
) 𝑒

−
𝑞 𝑉oc

𝑛c 𝐴 𝐾 𝑇c  (3.22) 

It is worth mentioning that, as suggested by Petrone et al. (2017), the present study employs 

the approximate method solution as an initial guess for the application of the implicit numerical 

approach of Sera et al. (2007), as this helps to achieve convergence.  

To simplify further references to the identification methods, the numerical approach proposed 

by Sera et al. (2007) will be referred to as “5-Par”, whereas the approximate method of Cannizzaro et 

al. (2014a) and Di Piazza et al. (2015) will be referred to as “4-Par”.  

Cannizzaro et al. (2014a), Di Piazza et al. (2015) and Sera et al. (2007) suggest using datasheet 

information – under STC – as input data for the calculations. In this work, however, the SDM 

parameters are identified under different outdoor conditions; therefore, all references to parameters 

under STC in the equations presented in sources Cannizzaro et al. (2014a), Di Piazza et al. (2015) and 

Sera et al. (2007) were disregarded.  

The third identification approach is based on the work of Ye et al. (2009), which proposes a 

parameter identification process based on Particle Swarm Optimization (PSO). For this optimization 

method, all the I-V curve points are used for the calculations, in contrast to the iterative and 

approximate methods which employ only the I-V curve notable points, that is, Voc, Isc, Vmp and Imp. A 

further development of the method proposed by Ye et al. (2009) is described by Faggianelli et al. 

(2015), where the authors wrote Eq. (3.11) for the Isc and Voc cases to further solve the resulting 

equations for A. This allows calculating only four parameters by means of the PSO (Iph, I0, Rs, and Rp) to 

further compute A using either Isc or Voc measurements. In the present work, the PSO was applied using 

the Voc approach described by Faggianelli et al. (2015). Thus, from Eq. (3.11) written for the Voc 

condition,  

0 = 𝐼𝑝ℎ − 𝐼0 𝑒
(

𝑞 𝑉𝑜𝑐
𝑛𝑐 𝐴 𝐾 𝑇𝑐

)
−

𝑉𝑜𝑐

𝑅𝑝
 . 

(3.23) 

Solving Eq. (3.23) for A provides 

𝐴 =
𝑞 𝑉𝑜𝑐

𝑛𝑐 𝐾 𝑇𝑐 𝑙𝑛 (−
𝑉𝑜𝑐

𝐼0 𝑅𝑝
+  

𝐼𝑝ℎ

𝐼0
+ 1)

 . 
(3.24) 
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3.7.2.2 Translation methods for SDM parameters  

Methods to translate the SDM parameters allow predicting the performance of a PV source for 

arbitrary operating conditions, that is, for multiple combinations of G and Tc. Such translations to 

various different conditions can be performed using the same originally identified SDM parameters; 

however, the error levels depend on a) the condition under which the SDM parameters were 

determined and b) the “target” condition, that is, the desired levels of G and Tc for the translation.  

The translation methods studied in this section adjust only parameters Iph and I0, according to 

the operating condition, which is defined in terms of G and Tc. Thus, the parameters A, Rs, and Rp are 

considered constant, although Rp is known to change with respect to G, as described by De Soto et al. 

(2006).  

The first translation method, which presents Eqs. (3.25) and (3.26), was proposed by Lineykin 

et al. (2014) and relies on the semiconductor bandgap energy Eg, which is 1.12 eV for crystalline silicon 

and 1.14 eV for polycrystalline silicon (Petrone et al. 2017). Also, in Eq. (3.26) 𝛼 is the temperature 

coefficient for the short-circuit current, in °C-1. The method introduced by Lineykin et al. (2014) is 

referred to as translation method A. In Eqs. (3.25) and (3.26) the subscripts were modified since the 

original procedure is based on STC data. This way, the subscript “1” refers to the condition under which 

the SDM parameters were identified (the base condition), whereas subscript “2” refers to the desired 

operating condition (the target condition). Translation method A was selected in the present work 

because of its simplicity – it presents only two equations – and also due to the fact that no advanced 

information regarding the PV device is required. Also, this translation method was adopted in the 

simulation tool PSIM (PSIM is an electronic circuit simulation software package), which offers the 

feature of simulating the SDM along with power electronics and control function blocks.  

𝐼0′ = 𝐼0 (
𝑇c,2

𝑇c,1
)

3

𝑒
(

𝑞 𝐸𝑔

𝐴 k
)(

1
𝑇c,1

 − 
1

𝑇c,2
)
 (3.25) 

and 

𝐼ph
′ = 𝐼ph (

𝐺2

𝐺1
) (1 + 𝛼 (𝑇c,2 − 𝑇c,1)). 

(3.26) 

The second translation procedure was introduced by Piazza et al. (2017) and originally employs 

datasheet information, considering measurements under STC and under the condition specified for 

the Nominal Operating Cell Temperature (NOCT). The method is referred to as translation method B, 

where the same equation performs the adjustment of Iph as in Lineykin et al. (2014), and 𝐼0 is adjusted 

using Eqs. (3.27) to (3.29).  

Since the present study considers only outdoor measurements, all “STC” subscripts in the 

publication of Piazza et al. (2017) now refer to the condition under which the SDM parameters were 

computed; therefore, they were changed to “1”, denoting “condition 1”. The subscripts “NOCT” in 

Piazza et al. (2017) denote a second reference condition; thus, in Eq. (3.29), this auxiliary condition is 

identified by the subscript “3”. This third auxiliary condition is needed so that the influence of the 

irradiance on Voc can be quantified, which is expressed in terms of the 𝛿(𝑇𝑐) parameter.  

The translation method proposed by Piazza et al. (2017) was selected to be included in the 

present thesis because it was proposed by the same authors of the non-iterative translation method 

(4-Par) (Cannizzaro et al. (2014a) and Di Piazza et al. (2015)). As mentioned earlier, the identification 
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method of Cannizzaro et al. (2014a) and Di Piazza et al. (2015) was employed – under STC – along with 

the translation method of Piazza et al. (2017) presenting relatively good translation results, as reported 

by the authors. Therefore, with the proposed combination of methods, the performance of the 4-Par 

method (Cannizzaro et al. (2014a) and Di Piazza et al. (2015)), in conjunction with the translation 

method of (Piazza et al., 2017), can be assessed for cases in which the parametric identification is based 

on outdoor measurements. The validation of the proposed approach is available on Appendix B of this 

thesis. 

𝐼0′ =
𝐼𝑝ℎ

𝑒 
(

𝑞 𝑉𝑜𝑐
𝑛𝑐 𝐴 k 𝑇𝑐 

)
− 1

 (3.27) 

 

𝑉𝑜𝑐 = 𝑉𝑜𝑐,1 (1 + 𝛽 (𝑇𝑐,2 − 𝑇𝑐,1)) (1 + 𝛿(𝑇𝑐) 𝑙𝑛
𝐺2

𝐺1
) 

(3.28) 

In Eq. (3.28), 𝑉𝑜𝑐,1is the Voc referring to the base curve, 𝛽 is the temperature coefficient of Voc,1 given 

in °C-1 and 𝛿(𝑇𝑐) is computed using 

𝛿(𝑇𝑐) =
1

𝑙𝑛 (
𝐺3
𝐺1

)
(

𝑉𝑜𝑐,3

𝑉𝑜𝑐,1 (1 + 𝛽(𝑇𝑐,3 − 𝑇𝑐,1))
− 1). 

(3.29) 

3.8 PV MODULES TESTING OUTDOORS: ACTUAL STC RATINGS 

The present section provides a connection between the alternative characterization methods 

described in Section 3.7 and the PV modules used in the experimental assembly with the PV tracker 

built for this thesis. Functionality checks were conducted before installing the modules on the tracker, 

as shown in Fig. 3-19.  

 

Figure 3-19: I-V tests with the PV modules before installation on the tracker 

Special care has been taken with respect to the bifacial modules: for each module, tests were 

carried out with one face at a time, covering the face not being used. This was an important test to 

determine the individual performances of each side of the bifacial modules, allowing the bifaciality 

index φ to be quantified. Figure 3-20 illustrates these tests, whereas section 5.7 presents specific 

details and in-depth analysis of the particularities presented by bifacial modules.  
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Figure 3-20: I-V tests with the bifacial modules, individually for each face 

Given the fact that the HCPV modules were not new, it became necessary to clean and inspect 

every module (Fig. 3-21) and perform I-V tests (Fig. 3-22) to further determine the modules’ actual STC 

ratings using the modeling methods described in Section 3.7.  

 

Figure 3-21: Cleaning and inspection of all HCPV modules 

 

 

Figure 3-22: I-V curve tracing with the HCPV modules 

The STC ratings are a relevant metric for each PV technology since the STC is regarded as the 

reference performance. Among the modeling methods presented in Section 3.7, the simplest approach 

is the 4-Par,A: it requires only one reference (field-measured) I-V curve and it does not require the 

SDM parameters to be identified by simultaneously solving a set of non-linear equations, as it is the 

case for method 5-Par. However, the 5-Par method combined with translation method A (5-Par,A) 
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provided the smallest translation error for the studies considered in Section 3.7, whose validation is 

presented in Appendix B. This way, the method 5-Par,A has been adopted for the determination of the 

actual STC ratings for the PV modules mounted on the tracker, except for the HCPV. Relevant data 

regarding the rated performance of the mono-Si, poly-Si and bifacial modules, as well as the measured 

and actual STC metrics, are organized in Tables 3-2, 3-3, and 3-4.  

Table 3-2: Metrics referring to the poly-Si PV modules.  

 Datasheet Measured Calculated STC (5-Par,A) 

Voc (V) 43.40 39.50 42.86 

Isc (A) 5.30 5.45 5.21 

Vmp (V) 35.00 30.40 33.86 

Imp (A) 5.00 4.94 4.82 

Pmp (W) 175.0 150.2 163.2 

G (W/m²) 1000 1038 1000 

Tc (°C) 25 60 25 

Efficiency (%) 15.0 10.8 14.0 

Table 3-3: Metrics referring to the mono-Si PV modules.  

 Datasheet Measured Calculated STC (5-Par,A) 

Voc (V) 64.90 63.50 67.02 

Isc (A) 6.46 5.39 6.34 

Vmp (V) 54.70 49.10 51.87 

Imp (A) 5.98 4.97 5.88 

Pmp (W) 327.1 244.0 305.0 

G (W/m²) 1000 845 1000 

Tc (°C) 25.0 43.5 25.0 

Efficiency (%) 20.4 17.7 19.0 

Table 3-4: Metrics referring to the bifacial PV modules.  

 Datasheet Measured Calculated STC (5-Par,A) 

Voc (V) 40.80 37.30 40.56 

Isc (A) 10.35 10.37 10.25 

Vmp (V) 34.10 28.30 33.0 

Imp (A) 9.83 9.78 9.83 

Pmp (W) 335.2 276.8 324.4 

G (W/m²) 1000 949 1000 

Tc (°C) 25.0 59.2 25.0 

Efficiency (%) 19.7 17.2 19.1 

The HCPV technology concerns the use of different semiconductor materials to achieve an 

enhanced use of solar radiation in terms of spectral distribution. Therefore, translation method A is 

not suitable for such a technology given the reliance on a single value for the bandgap energy Eg. 

Instead, for the HCPV, the 4-Par,B approach was used to determine the actual STC ratings. The 4-Par,B 
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combination shows the disadvantage of requiring two field-measured I-V curves, however, it was taken 

as the best cost/benefit option for the case of the HCPV modules. Table 3-5 presents the translated 

STC data referring to the HCPV modules. 

Table 3-5: Metrics referring to the HCPV modules.  

  Datasheet Measured 1 Measured 2 Calculated STC 4-Par,B 

Voc (V) 101.60 97.40 96.30 103.4 

Isc (A) 1.06 0.94 0.89 0.99 

Vmp (V) 86.6 82.30 82.50 88.83 

Imp (A) 1.01 0.88 0.83 0.94 

Pmp (W) 87.5 72.4 68.5 83.5 

G (W/m²) 1000 932 853 1000 

Tc (°C) 25.0 74.6 67.3 25.0 

Efficiency (%) 33.9 25.9 26.8 32.3 

3.9 UNCERTAINTY STUDY 

This section presents an uncertainty study covering all steps, from initial testing of the PV 

modules with the I-V curve tracer to the final relative efficiency calculations. In this sense, it becomes 

necessary to list all uncertainty levels referring to the sensors, methods and reference parameters 

employed in the experimental and analysis phases. 

3.9.1 Individual uncertainty levels 

The most relevant measured parameter for PV performance evaluation is the irradiance. GNI 

was measured using a reference PV sensor installed at the front-side of the tracker. The sensor 

manufacturer (Photovoltaik, 2020) reports a measurement uncertainty of +/- 4 %. For the BNI 

measurements, Kipp & Zonen documentation regarding the Solys2 meter reports +/- 2 % error on BNI 

measurements (Kipp & Zonen, 2018).  

In turn, for the temperature measurements, the uncertainty for flat PT- temperature sensors 

is reported as +/- 0.4 °C by Dubois et al. (2021). In addition to the sensor uncertainty, the authors 

added a second uncertainty factor (+/- 1%), referring to the uncertainty due to the temperature 

difference between the module’s back surface and the PV cell, considering a regular glass-EVA 

encapsulation. For the purpose of the present thesis, this second uncertainty factor has been scaled 

according to the temperature difference found for different PV module encapsulations. Considering a 

3 °C difference between the back surface of a PV module and the cell, as reported by King, (2008) and 

Rao Golive et al. (2022), and taking the +/- 1% level as a reference, the second uncertainty factor was 

extended for the glass-glass and HCPV encapsulations. For the glass-glass encapsulation, a 5.5 °C 

temperature gap (Rao Golive et al., 2022) relates to a 1.84 % uncertainty level; and for the HCPV 

module, a 13 °C temperature gap (King et al., 2004) relates to a 4.33 % uncertainty level.  

Regarding the air temperature measurement carried out by weather stations, both studies 

(Dubois et al., 2021 and Mavromatakis et al., 2014) reported 0.5 °C uncertainty.  
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For the temperature coefficients for current (α), voltage (β) and power (𝛾), the uncertainty is 

usually not displayed in PV modules’ datasheets. However, Salis et al. (2018) considered an inter-

comparison between laboratories for the determination of temperature coefficients of crystalline PV 

modules, and the uncertainties were reported as 0.0129 %/°C, 0.0765 %/°C, and 0.0776 %/°C, 

respectively, for α, β and 𝛾. Due to the scarcity of uncertainty data for different PV technologies, in 

this thesis the α, β and 𝛾 uncertainty levels are considered the same for all four technologies studied. 

Table 3-6: Individual uncertainty levels for devices and parameters 

Resource Uncertainty Unit 

Reference PV cell  +/- 4 % 

Pyranometer +/- 2 % 

Pyrheliometer +/- 2 % 

PT-100 temperature sensor +/- 0.4  °C 

Temperature gap between 

back surface and cell 

+/- 1 (Glass-EVA) 

+/- 1.66 (Glass-Glass) 

+/- 4.33 (HCPV) 

°C 

α +/- 0.0129 %/°C 

β +/- 0.0765 %/°C 

𝛾 +/- 0.0776 %/°C 

Voltage (inverter) +/- 3 % 

Current (inverter) +/- 3 % 

Voltage (I-V tracer) +/- 1 % 

Current (I-V tracer) +/- 1 % 

For the voltage and current measurements: in the present thesis, the voltage and current 

measurements referring to the PV arrays are conducted by the inverters. The inverter’s manufacturer 

(SMA) does not report the uncertainty referring to such measurements in the product documentation. 

However, the Photovoltaic Power Systems Programme (PVPS), held by the International Energy Agency 

(IEA), reports in its Task 13 (Reise et al., 2018) an uncertainty level of +/- 3% of the max readable 

current and voltage for a commercial inverter.  

Regarding the power under STC, outdoor tests using an EKO MP-11 I-V curve tracer have been 

carried out during this thesis, to further determine the PV modules’ maximum power corrected to STC. 

The I-V curve tracer’s documentation report +/- 1% for the voltage and current measurements. The 

uncertainty levels for the irradiance and temperature measured during the tests are respectively +/- 

4% (reference PV cell) and +/-0.5% (PT-100 sensor) plus the second uncertainty factor referring to the 

temperature difference between module’s back surface and the cell, according to the module 

encapsulation, as mentioned earlier in this section.  

With all pertinent explanations being laid out, Table 3-6 summarizes the individual uncertainty 

levels presented in this section.  

3.9.2 Combined uncertainty levels: Monte Carlo simulation 

To assess the influence of the individual uncertainty levels on the combined uncertainty of a 

particular parameter, Monte Carlo simulations were applied to randomly introduce errors on the input 
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parameters of the mathematical expressions of interest in each case. Such models describe the power, 

voltage and current of the four PV technologies under study in this thesis. Finally, the uncertainty on 

the performance ratio was also determined. For all cases studied, the uncertainty was determined with 

respect to a confidence interval of 1.96, covering 95 % of the population of 10000 simulation steps.  

The initial measurement campaign, conducted at the beginning of this thesis and described in 

Section 3.8, employed an I-V curve tracer to determine the I-V curves of all PV modules under certain 

irradiance and temperature conditions, which were measured using a reference cell and a temperature 

sensor built-in the curve tracer. By coupling the random errors introduced on voltage and current 

during the Monte Carlo simulation, the combined relative uncertainty on the measured power (P = V.I) 

was determined as +/- 1.6 %. Given that the same setup was used for all modules, this uncertainty 

level for the power measurements via the I-V tracer has been adopted for all next uncertainty 

assessment phases. 

The following step is the determination of the uncertainty referring to the power under the 

STC. The conversion of field measurements into the STC equivalents was conducted using the 

techniques developed in Section 3.7, whereas the results considering the PV modules used in this 

thesis are presented in Section 3.8. The model used in the Monte Carlo simulation was the 4-parameter 

single-diode model coupled with translation methods for the parameters Iph and I0: translation method 

A was used for the m-Si, p-Si and bifacial modules, whereas translation method B was used for the 

HCPV technology. The input parameters for the simulations were the I-V curves measured outdoors 

and the irradiance and temperature levels recorded during the I-V curve acquisitions. From the 

simulations where random errors were introduced in such parameters, according to the individual 

uncertainty levels shown in Table 3-6, it was possible to compute the uncertainty on the SDM 

parameters. The last step was to apply the SDM equation (Eq. 3.11) to calculate the current and voltage 

values for each simulation step, to further calculate the power and the uncertainties on all electrical 

parameters. The final uncertainty levels for the maximum power at STC (Pmp,STC) are +/- 5.1 % for p-Si; 

+/- 5.5 % for m-Si; +/- 5.1 % for bifacial; and +/- 3.9 % for the HCPV technology.  

It is worth noting that the uncertainty referring to the HCPV technology was found to be 

smaller in comparison to the other PV modules. This is related to the fact that the useful irradiance for 

the HCPV is the BNI, which was measured using a pyrheliometer, which presents +/- 2 % uncertainty, 

whereas the uncertainty on the GNI measurements (for m-Si, p-Si and bifacial) made via the reference 

PV cell is +/- 4 %. Therefore, the uncertainty referring to the irradiance measurements is reflected on 

the final uncertainty concerning the STC power calculation.  

Power predictions using the power model described in Section 2.2.1 (Eq. 2.8) were also 

assessed in terms of uncertainty. In this case, the input parameters are the irradiance and temperature, 

as well as the Pmp,STC and its temperature factor 𝛾. The Monte Carlo simulation was applied to produce 

random errors according to the data organized in Table 3-6, resulting in uncertainty levels on the 

calculated maximum power Pmp of +/- 7.8 % for m-Si and p-Si; and +/- 7.4 % for the bifacial technology.  

For the HCPV array, a different power model – accounting for the air mass – was applied. Such 

a model is described in Section 2.2.3 (Eq. 2.19). In this case, the input parameters are the BNI and air 

temperature, in addition to the power under the STC. The combined uncertainty on the calculated 

power is +/- 4.8 %. Relevant remarks on such an uncertainty level – which is lower than the power 
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uncertainties for the three other technologies – include the fact that the BNI presents half the 

uncertainty relative to the GNI and that the temperature input in the model is the air temperature. 

This means that the uncertainty referring to the temperature gap between the module’s back surface 

and the cell is not present. These two facts thus cause the power uncertainty for the HCPV modules to 

be lower than for the m-Si, p-Si and bifacial technologies.  

The international standard IEC-60891, explored in Section 3.7.1, was also evaluated in terms 

of the uncertainty on its predicted current and voltage levels. In such an assessment only the flat-plate 

PV modules were considered, as IEC-60891 does not cover multi-junction devices. As in the case of the 

single-diode model, the first step was the calculation of the uncertainty on the model internal 

parameters, using the reference I-V curves measured during the initial testing campaign. Then Eqs. 3.3 

and 3.4 were used to compute the voltage and current levels for the Monte Carlo simulation, allowing 

the uncertainty levels to be determined. For the current, the uncertainty levels are +/- 6.9 % for m-Si; 

+/- 6.6 % for p-Si and for bifacial. Concerning the voltage, the uncertainty values are +/- 6.9% for m-Si; 

+/- 6.1 % for p-Si; and +/- 4.8 % for the bifacial devices.  

Finally, at this point all parameters needed for the PR calculation as per Eq. 2.24 (Section 2.3) 

are specified in terms of uncertainty. Using Eq. 2.24 as the reference model for the Monte Carlo 

simulations produces the uncertainty levels as follows: +/- 11.9 % for m-Si; +/- 10.7 % for p-Si; +/- 11.1 

% for bifacial; and +/- 7.3 % for the HCPV technology.  

3.10 CONCLUSIONS FOR SECTION 3 

This section presented the UDCPP’s Renewable Energy Laboratory, as well as the experimental 

resources available for the present thesis. The PV modules installed on the tracker present the 

following nominal specifications for power and efficiency: 175 W, 15 % (p-Si); 327 W, 20.4 % (m-Si); 

335 W, 19.7 % (bifacial); 87.5 W, 33.9 % (HCPV).  

From I-V curves traced with the PV modules outdoors, applied to modeling methods, the 

following power and efficiency metrics were obtained: 163.2 W, 14 % (p-Si); 305.0 W, 19 % (m-Si); 

324.4 W, 19.1 % (bifacial); 83.5 W, 32.3 % (HCPV). The uncertainty levels for the calculated power levels 

are +/- 5.5 % for m-Si; +/- 5.1 % for p-Si; +/- 5.1 % for bifacial; and +/- 3.9 % for HCPV.  

It is therefore seen that, for all PV technologies, the experimental power values are smaller 

than the datasheet ratings. Measurement errors are important limitations referring to the 

experimental determination of the STC power, particularly regarding the solar irradiance and module 

temperatures. 
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4 DATA MEASUREMENT AND PROCESSING 

The present section concerns the data aggregation and the filtering of the datasets in respect 

to invalid data. First, basic filtering was applied, and a visual identification of the factors for outlier 

production is carried out. Then, different filtering approaches are considered, aiming to find a suitable 

strategy for outlier removal.  

The PV efficiency (Eq. 2.22) was taken as a reference parameter for the filters because it is a 

valuable indicator, which takes into account the output power and the available solar resource, 

expressed in terms of the in-plane irradiance. The efficiency is thus a useful metric to assess the quality 

of the data, since unusually high or low levels might be caused by inconsistent measurements or 

undesired conditions, such as strong transient conditions or shading on irradiance sensors or PV arrays.  

4.1 DATA AGGREGATION 

The measurements composing the experimental dataset produced during this thesis come 

from three different sources: the tracker measurement system, the Solys 2 irradiance measuring 

platform and a weather station (part of the Paglia Orba measuring system), as illustrated in Fig. 4-1. 

 

Figure 4-1: The three measurement sources for the experimental campaign 

As mentioned in Section 3, the tracker assembly measurements comprise PV modules’ 

temperature, rear and frontal normal global irradiance measurements (GNI and GNIrear) and DC and AC 

voltage, current and power. In turn, the records from the Solys 2 irradiance measuring system include 

global horizontal irradiance (GHI), diffuse horizontal irradiance (DHI) and beam normal irradiance 

(BNI). Finally, the weather station provides metrics for ambient temperature and humidity, wind speed 

and direction. 
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The first task when receiving the data from these sources was to correct the date and time 

parameters: the records coming from the tracker system do not include DST (daylight saving time) 

corrections, whereas the records from the weather station automatically take the DST into 

consideration. In turn, the data coming from the Solys 2 station are based on UTC (coordinated 

universal time). It was therefore necessary to make the corrections to have all datasets under the same 

date and time setting. Once the local time and DST corrections were applied, it was still necessary to 

check for the synchronicity between the three data recordings. For that, the three files were scanned 

considering cloudy days in which the irradiance changed abruptly. GNI (tracker system) and BNI (Solys 

2) were firstly checked for synchrony; then, GHI (Solys 2) and GHI (Paglia Orba weather station) were 

compared. There were no clock synchronicity issues detected, as the clocks were adjusted before the 

measurement campaign began and regular checks were carried out by the Laboratory’s technical staff.  

The second task was to aggregate the data coming from the three sources, to build a single 

dataset comprising all data within coincident timesteps. The data coming from the tracker assembly 

presents one-minute time steps. On the other hand, data coming from the Solys 2, and the weather 

station are recorded by the supervisory system, and new records are only stored when one of the 

parameters change (to save storage space). Consequently, the data coming from these two sources 

present a variable time step. To aggregate the data from the three sources, it was thus necessary to 

use the minute-stepped tracker data as the basis for interpolating the data acquired with the Solys 2 

and the weather station. Such a task was conducted using Matlab’s function interpl, whereas 

interpolating for the last recorded value in each dataset and parameter. As a result, a single dataset 

was obtained, with all measured parameters quantified at the minute-timestep.  

Regarding data quality, the aggregated dataset contained NaN (Not a Number) values, as well 

as empty cells. Besides this, two measurement interruptions were noticed, one of which (March) was 

caused by a scheduled maintenance on the laboratory’s general data recording system and the other 

(August) was caused by a crash affecting the main computer. In total, the aggregated dataset contains 

450482 records at the minute-timestep, corresponding to 313 days. The next section discusses the 

filtering criteria applied to the dataset, to exclude non-useful and inconsistent data.  

4.2 PRELIMINARY FILTERING OF THE MEASUREMENT RECORDS 

Filtering must be applied to a raw dataset in order to remove spurious and incoherent data, 

allowing to focus on the useful measurements. Recent literature, such as the works of Jordan et al. 

(2018), Luo et al. (2019), and Øgaard et al. (2020) – which concern long-term data acquisition – 

employed filtering based on irradiance and clearness index. A minimum irradiance threshold (for 

example, 200 W/m²) was defined so that non-uniform irradiance, as well as inverter start-up issues 

were filtered out. In addition to that, width-filtering (i.e., +/- 10 %, +/- 30 %) was applied to the 

clearness index to remove records related to periods with high cloud coverage. Another filtering 

criteria applied by Jordan et al. (2018) excludes records in which the AC power is greater than 99 % of 

the rated inverter capacity, to avoid records affected by inverter saturation (also referred to as 

clipping). Regarding abrupt changes in the values of the recorded parameters, (IEC, 2016) in its IEC-

61724 standard, part 3, recommends assessing the derivative of quantities such as temperature, 
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irradiance and power, filtering out records where the reference thresholds – adjusted according to the 

local conditions – were violated.  

In the present thesis, however, filtering to remove low irradiance levels is not desired as it 

implies removing records related to high AM levels – and it is desired to evaluate the influence of AM 

on the PV arrays’ performance. In turn, cloudy days usually present a shift in the spectral content, 

which influences the PV arrays’ behavior. This way, filters based on clearness index were not applied 

to clean the dataset. However, the filtering based on the inverters’ maximum power rating was applied 

since several records presented AC power exceeding the inverter’s nominal capacity. During inverter 

clipping, the arrays were not operating on the maximum power point, which was noticed by the 

inconsistent relationships between irradiance and DC current levels at the inverters’ inputs.  

4.2.1 Basic filters 

The basic filtering applied to the dataset studied in this thesis refers to parameters which are 

not PV technology-specific. Thus, the basic filters were applied equally to the datasets referring to the 

four PV technologies studied. The raw data, the filters and the remaining number of recorded 

observations are as follows. 

Raw data: 450482 1-minute records (including night periods) 

The useful data for this thesis refer to the daylight period; thus, the effects of the filtering are 

quantified in relation to the observations recorded for solar altitude angle > 0°. This way, the remaining 

data after the application of the sun altitude angle filter are regarded as 100 %, which is the basis for 

the calculation of the effects introduced by the filters applied afterwards. 

Filter 1 – Sun altitude angle greater than 0°: 218787 records remaining (100 %) 

Filter 2 – Removal of NaN records: 217544 records remaining (99.3 %) 

Filter 3 – GNI greater than 0 W/m²: 212629 records remaining (97.1 %) 

Filter 4 – Wind speed smaller than 6 m/s: 196711 records remaining (89.9 %) 

Filter 5 – Atmospheric indexes between 0 and 1: 172517 records remaining (78.8 %) 

The Sun’s altitude angle filter was applied to remove periods in which the Sun is not yet over 

the horizon. The Sun’s altitude angle – which is complementary to the zenith angle – was calculated 

according to the procedures presented in Section 2.1.2. In addition to that, Filter 3 was used to select 

only data records referring to situations in which the PV arrays are receiving solar radiation - that is, 

when the PV cells are active. 

The wind speed is a critical factor for the PV tracker’s operation, as the tracker is set to a rest 

(horizontal) position for cases where the wind speed is greater than 8 m/s. The reason for such a 

behavior is to avoid structural damages to the tracker structure. While the tracker is in the rest 

position, the PV arrays do not face the Sun, and the HCPV power output is greatly affected. In fact, 

during the initial checks of the measured data, it was found that wind speed greater than 6 m/s caused 

the HCPV power to be significantly low (sometimes close to zero) even for high BNI levels. Therefore, 

records referring to such a condition were removed by the application of Filter 4. Finally, the basic 

filtering considers the indexes introduced in Section 2.1.3. The dataset was filtered to remove records 

outside the 0 – 1 feasible limit for the indexes.  
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4.2.2 DC power filter 

In addition to Filters 1 and 3, a filter for minimum DC power was applied to ensure that the PV 

modules are active. The reason is that filters 1 and 3 concern external factors to the PV arrays. The use 

of these two filters does not guarantee that the PV arrays are in operation, that is, supplying electricity. 

This is especially relevant for the HCPV array: GNI greater than zero does not necessarily mean that 

the HCPV PV array will present DC power greater than zero, since the HCPV modules respond to the 

BNI only. Therefore, for all four PV arrays, only records showing DC power greater than 0 were 

considered. It should be noted, though, that such a criterion does not mean that the PV arrays are 

operating at the maximum power point, given the operating limits referring to the internal power 

electronics stages of the inverters or occurrence of strong transient conditions caused by fast-moving 

clouds. This is a particularity of the present work, which focused on the analysis of the PV arrays in real 

operating conditions. 

After applying the minimum DC power filter to the datasets referring to each technology, the 

number of records is as follows: 

p-Si dataset: 156839 records remaining (71.6 %) 

m-Si dataset: 148245 records remaining (67.7 %) 

Bifacial dataset: 156972 records remaining (71.6 %) 

HCPV dataset: 123262 records remaining (56.2 %) 

 It is observed that the remaining data points for the HCPV array is significantly lower than for 

the other technologies. This illustrates the HCPV array’s dependence on the BNI, which is not as 

available as the GNI. Therefore, as previously stated, the electricity produced by a high-efficiency HCPV 

plant might be smaller than the amount produced by a conventional PV array, considering the same 

rated power for both. 

4.2.3 AC power filter 

The so-called inverter clipping is a potential cause for PV arrays to operate far from the 

maximum power point. Clipping (or inverter saturation) is defined as the situation in which the 

inverter’s maximum AC power rating is reached. As a result, to keep the operating parameters within 

the specifications, the inverter shifts the operating point of the PV array connected to the DC side, 

reducing the PV array’s current to reduce the DC power. This means that, during clipping, the DC power 

is not consistent with the irradiance and temperature levels, since the PV array is not operating on its 

maximum power point. In the context of this thesis, taking inverter clipping occurrences into 

consideration is not desired, given that PV power and the external operating conditions are studied 

together to find correlations. In other words, when the inverter’s output is saturated, the PV power is 

no longer a function of the weather condition. This way, a filter based on maximum AC power was 

applied. Lindig et al. (2021) applied a clipping filter to their datasets, removing data in which the 

inverter power was greater than 99% of the rated inverter capacity. The same strategy was adopted 

by Jordan et al. (2018) and Øgaard et al. (2020). After applying the filter to remove records related to 

AC power equal or greater than 99% of the rated inverter capacity, the number of useful observations 

for the dataset is as follows: 

p-Si dataset:  154323 records remaining (70.5 %) 
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m-Si dataset:  140985 records remaining (64.4 %) 

Bifacial dataset: 154456 records remaining (70.6 %) 

HCPV dataset:  118944 records remaining (54.4 %) 

Up to this point, all filters were sequentially applied – that is, the filtering effects are 

cumulative. The cumulative filter setups applied up to the present section will be referred to as “basic 

and power filters”.  

The scatter plots for the efficiency versus irradiance, considering the basic and power filters, 

show sparse points both in the upper and lower directions. Despite this, the main efficiency curves are 

clearly visible in the plots. Figures 4-2 to 4-5 show the efficiency levels plotted versus the irradiance: 

GNI for the p-Si and m-Si arrays; GE (defined in Section 2.2.2) for the bifacial; and BNI for the HCPV. 

The dots are colored according to the measured module’s temperature, which allows observing the 

correlation between high temperature levels and low efficiency records, for a same irradiance range. 

 

Figure 4-2: p-Si efficiency with basic and power filters 

 

 

Figure 4-3: m-Si efficiency with basic and power filters 
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Figure 4-4: Bifacial efficiency with basic and power filters 

 

Figure 4-5: HCPV efficiency with basic and power filters 

4.3 FILTERING STRATEGIES TO REMOVE OUTLIERS 

After the basic and power filters described in Section 4.2, invalid data points were still present. 

This section considers further filtering schemes, aiming to better clean the datasets. The following 

filtering strategies were applied separately; thus, their effects are not cumulative, since the aim is to 

define what is the best filtering approach. All filters introduced in the following sections were applied 

in addition to the basic, DC and AC power filters shown in Section 4.2. 

4.3.1 IQR filter 

To filter the data for outlier removal, statistic filtering has been suggested in the literature. For 

instance, Lindig et al. (2021) applied the so-called inter quartile range (IQR) filter for outliers removal. 

The interquartile range holds 50% of the total data, whereas data outside the +/- 1.5 times que IQR 

limits are considered outliers. A filter with such a characteristic presents a behavior similar to a filter 
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based on a standard deviation of +/- 2.7. A visual representation of such a filtering technique, applied 

to a normal distribution, is presented in Fig. 4-6 (Galarnyk,  2023). 

 

Figure 4-6: Graphical representation of the IQR filter scheme (Galarnyk, 2023) 

Fig. 4-6 shows that using the +/- 1.5×IQR filter, 0.7% of the total data are considered outliers 

and therefore, removed.  

 In the work conducted by Livera et al. (2020), a comparison between three statistical outlier 

removal methods – namely the 1.5×IQR boxplot rule, the Hamper identifier and the 3-sigma were 

applied to a same dataset containing artificially added outliers, and the results were compared. Four 

cases were considered, namely 10, 20, 30 and 40% of outlier ratio in the dataset. In all cases, the 

1.5×IQR method presented higher outlier detection rates, as in comparison to the other two methods. 

These three statistical outlier removal methods were also considered by Zhao et al. (2013), and the 

boxplot rule performed better than the other two methods, both in terms of accuracy and robustness. 

Due to the great performance shown by the 1.5×IQR method, it has been considered in the present 

thesis as an option for outlier removal.  

After applying the IQR filtering, the dataset size for each PV technology is as follows: 

p-Si dataset:  141245 records remaining (64.6 %) 

m-Si dataset:  136950 records remaining (62.6 %) 

Bifacial dataset: 144499 records remaining (66.0 %) 

HCPV dataset:  118215 records remaining (54.0 %) 

The scatter plots in Figs. 4-7 to 4-10 show clear cut-off on the efficiency levels. This was already 

expected given the nature of the IQR filter, which respects the boxplot limits.  
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Figure 4-7: Efficiency plot after IQR filtering for the p-Si array. 

 

Figure 4-8: Efficiency plot after IQR filtering for the m-Si array. 

 

Figure 4-9: Efficiency plot after IQR filtering for the bifacial array. 
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Figure 4-10: Efficiency plot after IQR filtering for the HCPV array. 

It should be noted that for the HCPV, the low cut-off efficiency level is close to zero, which 

means that, in practice, few points were effectively filtered. In fact, the number of records referring to 

the HCPV presented only 0.4 % reduction, from the basic and power filters to the IQR filter. The reason 

for this is the high standard deviation found for the efficiency levels under a given BNI, for the whole 

range measured. 

4.3.2 Model-based filtering 

The IQR filtering scheme is not able to detect incoherences regarding the weather condition 

and the PV arrays’ output power, given its statistical nature. To assess if the PV output is compatible 

with the irradiance and temperature, it becomes necessary to adopt a filter scheme that considers the 

coupling between the weather and the PV electric parameters; such a task can be accomplished by 

applying suitable modeling methods. A simple approach to make this relation is via the ratio of short-

circuit current to irradiance, as carried out by Paudyal and Imenes (2021). However, in the present 

thesis, the experimental records are made on a PV system operating in real operating conditions, 

therefore short-circuit current measurements are not available. An alternative approach would be the 

use of the operating current instead of the short-circuit current, since the operating current and the 

irradiance are strongly related, as described by Abe et al. (2020b). A similar approach is described by 

Li et al. (2023), where the authors mention the relationship between the operating current Imp and the 

irradiance; and between the operating voltage Vmp and the temperature Tc. The authors adopted a 

regression procedure of Imp as a function of GNI and of Vmp as a function of Tc, whereas defining a 

threshold to determine the filter boundaries. In turn, Wang et al. (2018) employed mathematical 

expressions to calculate the PV array’s voltage and current levels – and calculate the array power – for 

the observations where the inverter was saturated. All such works employed models to relate the PV 

array’s output and the operating condition, which can be used for data filtering. 

In the present thesis, three models were used to detect and filter out conditions in which the 

weather condition and the PV output parameters are not coherent. This covers cases where the PV 

arrays are not operating at the maximum power point. Such models are 1) a power model for the p-Si, 



100 

 

m-Si and bifacial arrays; 2) a power model for the HCPV array; and 3) IEC-60891 for current and voltage 

predictions.   

The power model for the crystalline PV modules (Eq. 2.8) was introduced by Menicucci (1985), 

whereas the power model for the HCPV modules (Eq. 2.19) was proposed in a PhD thesis defended in 

2020 at the University of Corsica (Benhammane, 2019; Benhammane et al., 2021); in his thesis, the 

author used the same PV tracker and HCPV modules that are employed in the present work.  

In turn, IEC-60891 (IEC, 2009) as described in Section 3.7.1 presents Eqs. (3.3) and (3.4), and 

such a procedure has been applied using the simplified method proposed by Abe et al. (2021), 

developed within the context of the present thesis. The parametric identification referring to Eq. (3.4) 

concerns a, RS and k. For the p-Si array, these values are respectively 0.042, 0.527 Ω and -0.009 Ω/K. 

For the m-Si array, the values are respectively 0.061, 0.740 Ω and 0.001 Ω/K; and finally, for the bifacial 

array, they are 0.013, 0.430 Ω and 0.002 Ω/K. 

A relevant factor when using a power model and IEC-60891 as references to filter the data is 

to determine the admissible error, that is, the filter thresholds. For the Pmp model, irradiance and 

temperature measurements are used as inputs. Therefore, the uncertainty referring to such 

measurements has been used to estimate the combined uncertainty, as described in Section 3.9. In 

this thesis, the filter thresholds for the three model-based filters were set as two times the combined 

uncertainty for the measurements.  

After implementing the power model-based filtering (Eqs. 2.8 and 2.19), the dataset size 

changed as follows: 

p-Si dataset: 121473 records remaining (55.5 %) 

m-Si dataset: 133251 records remaining (60.9 %) 

Bifacial dataset: 136501 records remaining (62.4 %) 

HCPV dataset:  80544 records remaining (36.8 %) 

In the scatter plots (Figs. 4-11 to 4-14), great improvements in sparse points removal are 

observed, as in comparison to the scatter plots generated from the IQR filtering strategy.  

 

Figure 4-11: Efficiency plot after power model filtering for the m-Si array 
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Figure 4-12: Efficiency plot after power model filtering for the m-Si array 

 

Figure 4-13: Efficiency plot after power model filtering for the bifacial array 

 

Figure 4-14: Efficiency plot after power model filtering for the HCPV array 
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After the application of the IEC-60891 filtering scheme, the remaining data points are as 

follows: 

p-Si dataset: 121568 records remaining (55.6 %) 

m-Si dataset: 132262 records remaining (60.5 %) 

Bifacial dataset: 143373 records remaining (65.5 %) 

Using IEC-60891 as a filtering strategy for the p-Si, m-Si and bifacial arrays datasets produced 

slight differences in terms of number of data records, as in comparison to the power models, especially 

for the p-Si array (0.1 % difference) and the m-Si array (-0.4 % difference). Despite the similar number 

of records removed with such filters, the shape of the efficiency scatter plots presents significant 

differences, particularly for low irradiance levels. The plots in Figs. 4-15 to 4-17 show an efficiency drop 

for low irradiance levels, whereas such records were removed when using the power model-based 

filtering. Keeping the group of points showing low efficiency under low irradiance levels could be of 

interest to evaluate the effect of the air mass on the efficiency.  

 

Figure 4-15: Efficiency plot after IEC-60891 model filtering for the p-Si array 

 

Figure 4-16: Efficiency plot after IEC-60891 model filtering for the m-Si array 
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Figure 4-17: Efficiency plot after IEC-60891 model filtering for the bifacial array 

For the HCPV array’s dataset, the power model filtering retained a group of points presenting 

low efficiency at low irradiance, which allow further studying the influence of the air mass. Therefore, 

the filtering strategies selected to produce the datasets to be used in the upcoming sections of this 

thesis are the power model for the HCPV array; and the IEC-60891 model for the p-Si, m-Si and bifacial 

arrays. It should be noted that all models employed for filtering consider only voltage, current or 

power. Photovoltaic efficiency models were not used at this stage. 

4.4 SUMMARY OF THE FILTERING APPROACHES 

Section 4.2 considered the application of the basic filtering as the initial noise-removal 

strategy. A graphic summary is presented in Fig. 4-18, where the percent values refer to the remaining 

data amount after each filter stage. 

 

Figure 4-18: Graphical representation of the basic filters 

Section 4.2 considered, also, the DC and AC power-based filters, to remove records in which 

the DC power levels was zero (PV array not in operation) and when the AC power was equal or above 

3000 W (inverter saturation). Figure 4-19 illustrates the DC and AC filters. 

 

Figure 4-19: Graphical representation of the DC and AC power filters 
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Finally, Fig. 4-20 illustrates the application of the IQR, the Pmp and IEC-60891 filters, presented 

in Section 4.3. The selected filtering schemes, for each PV technology, are highlighted by the red 

squares. 

 

Figure 4-20: Graphical representation of the IQR, Pmp and IEC-60891 filters 

A detailed time-series analysis, showing the reasons behind the production of outliers within 

the measured data, is available on Appendix C. 

4.5 CONCLUSIONS FOR SECTION 4 

The data recorded for this study comprised of measurements coming from three different 

platforms: a) the PV tracker system, with measurements referring to in-plane global irradiance for the 

front and rear sides of the PV arrays, backside temperature of one module per array, DC and AC 

voltage, current and power; b) the weather station, with measurements for the air temperature, wind 

speed, relative humidity and global horizontal irradiance; c) the Solys 2 pyrheliometer for the normal 

beam irradiance and pyranometers for horizontal global irradiance and diffuse horizontal irradiance.  

The main platform refers to the tracker system, which was set to take measurements at the 

minute-timestep. The other two platforms presented variable timestep: therefore, it became 

necessary to interpolate the data so that the final dataset contained records referring to all variables, 

at the same timestep. The synchronicity between the platforms was periodically checked by the 

engineering staff, whereas the data synchronicity was confirmed by plotting the PV power and the 

irradiance measurements together, with special attention to situations with dynamic cloud cover. 

An initial filtering was applied to the data, aiming to remove invalid records, night periods and 

data in which the DC power was zero, as it was desired to address only the cases where the PV arrays 

were in operation.  
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The PV efficiency is a useful parameter to assess the quality of the data since such a metric is 

calculated using the PV power and the solar irradiance. That is, the efficiency considers the most 

important variables at the PV output and solar resource sides. As a result, unusually high or low 

efficiency levels usually denote measurement problems, especially in regard to partial shade on the PV 

arrays or shaded irradiance sensors, situations which are likely to occur around the times of sunrise 

and sunset, given the extreme positions that the PV tracker assumes.  

Using the efficiency as the main reference, different filtering strategies were then evaluated 

aiming to remove outliers, whereas closely assessing the balance between the removal of invalid 

records and the retention of data for the analysis. 

Voltage and current models for the p-Si, m-Si and bifacial arrays, and a power model for the 

HCPV array were employed for filtering. Since these models provide a link between the operating 

condition and the electrical performance of the arrays, it was possible to exclude records which 

presented too much deviation between the observed and predicted parameters – be it power, voltage 

or current. Besides the model selection, the most crucial aspect is the filtering threshold, that is, the 

admissible deviation to cause a record to be removed. Setting the threshold too tightly might cause 

the dataset to be shaped by the model; on the contrary, setting the tolerances too high might cause a 

high amount of invalid data to be preserved. Among several strategies tested, the threshold set to 2 

times the uncertainty referring to the parameter being modelled presented a good filtering balance.  
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5 INFLUENCE OF EXTERNAL PARAMETERS ON PV ARRAYS’ PERFORMANCE 

In this section, the output DC power referring to each of the four PV arrays is taken as the 

target parameter to assess the influence of the external meteorological parameters on the PV 

performance. As a starting point, a correlation matrix relating all measured parameters is constructed 

and presented, offering a general view of the correlation between the various parameters under 

consideration. Then, special attention was given to the influence of the air and cell temperature. In the 

sequence, multivariable models were created to rank the external parameters in order of relevance.  

The sensitivity analysis is carried out in the middle subsections (5.4 and 5.5). First, a purely 

experimental approach is developed, based on data filtering. Then, a model-based analysis is carried 

out, allowing the quantification of the external parameters’ influence on the DC power. 

This section presents, also, the development of models to specify the DC power using the cell 

temperature instead of the air temperature, offering a secondary means of determining the STC ratings 

for the PV modules. Besides this, the present section brings an assessment covering the particularities 

of the bifacial array, with the introduction of novel methods to easily determine the effective 

irradiance and the bifacial gain. Such a focus on the bifacial array was not listed in the original 

objectives of this thesis. In fact, these new methods were designed to address potential difficulties 

associated with the performance analysis of bifacial devices. This topic becomes relevant given the 

peculiar behavior of bifacial PV modules, their interesting cost-benefit, and their ever-increasing use 

in new PV projects. 

Finally, this section ends with a monthly summary of the performance metrics for the PV arrays 

and the average values for the relevant external parameters. 

5.1 CORRELATIONS FOR THE MEASURED PARAMETERS 

Two correlation metrics are usually employed in correlation studies: the Pearson correlation 

index, which measures the degree of linearity between two variables; and the Spearman correlation 

index, which offers a measure of the monotonicity in respect to the correlation between two variables. 

Even with the use of correlation indexes, plotting the data in scatter plots it is always a good practice, 

since it is possible that two variables are well correlated, however, not in a linear or monotonic fashion. 

Fig. 5-1 illustrates a correlation matrix considering the DC power, cell temperature, and all 

relevant external parameters. In all cases, the strongest positive correlations are found for the BNI and 

GNI, as well as for the irradiance-related indexes: normal beam clearness index and normal global 

clearness index. The strongest negative correlation was found for the diffuse fraction, for all four PV 

technologies, given its calculation based on GNI and BNI (Table 2-1). The air mass has also shown 

significant negative correlation with the DC power, for all technologies studied. In the correlation 

matrix shown in this section, each cell is colored according to the correlation between two variables, 

allowing to assess the degree of correlation in one glance.  
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Figure 5-1: Correlation matrix for the DC power and relevant parameters 

 Strong correlations are found for the parameters at the upper portion of Fig. 5-1, more 

precisely at the first eight rows. Such parameters are the global and beam irradiance metrics, and the 

DC power referring to all four PV arrays. It is therefore clear that the irradiance is the variable which is 

most well correlated with the PV power, in all cases. The AC power was found to be well correlated 

with the DC power and irradiance; however, it was decided not to include the AC power in the analysis 

given that each PV inverter has only one AC output, which results from the contribution of two DC 

inputs. This way, it is not possible to separate the AC metrics by PV technology. 

 The measurement campaign included relative humidity (RH) measurements; however, such a 

quantity expresses the humidity as a percent of the humidity amount that the air could possibly hold 

at the current temperature. Therefore, given the outdoor nature of the present work, the air 

temperature is an uncontrolled parameter; and it is thus desired to base the analysis on a humidity 

quantity regardless of the air temperature. This can be achieved by computing the absolute humidity 

(AH) expressed in kgH2O/kgda (da=dry air) from the air temperature and relative humidity. Such a 

calculation was carried out using the procedure presented on the ASHRAE Handbook –Fundamentals 

(ASHRAE, 2009). Both metrics – RH and AH are included in Fig. 5-1. 
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 A curious finding refers to the cell temperature: although it is known that increasing the cell 

temperature causes the PV power to decrease, the correlation matrix shows a weak, yet positive 

correlation between Tc and DC power, for all four PV arrays. It should be noted, though, that all Tc 

metrics are mildly correlated with GNI and BNI, and that the irradiance exerts a much stronger 

influence on the PV power than Tc. A focused assessment of the temperature influence on the DC 

power is provided in Section 5.2. The cell temperature is strongly correlated with the air temperature. 

 The air temperature correlates positively with the absolute humidity, since the hotter the air, 

the greater its capability of carrying water vapor. In turn, the air temperature correlates negatively 

with the relative humidity, given that it represents a percentage of the maximum amount of water 

vapor that the air could contain, as a function of its temperature. This way, increasing the air 

temperature increases its capability of holding water vapor, which causes the measured RH to 

decrease.  

 The air mass correlates negatively with all four PV arrays, since high AM levels are related with 

low global irradiance. High AM levels are associated with low solar altitude angles, which, for fixed PV 

systems, results in an increased angle of incidence and increased reflection of radiation. However, this 

is not the case for the present thesis since the PV arrays are mounted on the 2-axis tracker. Therefore, 

the AM influence refers, mainly, to a reduction of the global irradiance since the reflection losses are 

minimized by the tracking. It should be pointed that, for constant GNI and different AM, the spectral 

content is likely to be different; also, different PV technologies respond differently to spectral changes. 

 The normal diffuse fraction presents a negative correlation with the DC power of all PV arrays. 

However, such a correlation is more pronounced for the HCPV array. The reason is the use of lenses to 

concentrate the solar radiation, and the fact that such optic devices can only concentrate the BNI 

component.  

 Finally, the wind speed does not present a strong correlation with the DC power, although the 

wind increases the convective thermal exchanges and thus should reduce the cell temperature. 

5.2 CORRELATING THE DC POWER AND TEMPERATURE 

For all four PV technologies, the correlation matrix presented in Section 5.1 shows positive 

coefficients for the temperature correlation with the DC power.  

As stated earlier, at first sight this seems contradictory, given the known negative influence of 

the cell temperature on the voltage, and therefore, on the power. In fact, the full-range data were 

used to produce the referred matrix, thus providing a first, general view on the correlation between 

the various parameters within the dataset. Given that high cell temperatures are usually related to 

high irradiance levels, and given that the power dependence of irradiance is significantly stronger than 

that of temperature, the cell temperature correlation with power becomes positive, in a general view. 

However, the same is not true when the irradiance is constant. In this section, the correlation plots are 

studied for constant irradiance levels, allowing to assess the power correlation with temperature in a 

more suitable and focused approach.  

For the p-Si and m-Si technologies, the GNI levels were filtered in the range 990 – 1010 W/m², 

to allow direct comparison with the temperature coefficients for power provided on datasheets. In 
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turn, for the bifacial array, the effective irradiance (GE) was filtered from 990 to 1010 W/m², whereas 

for the HCPV array, the BNI was filtered from 690 to 710 W/m². 

5.2.1 Constant irradiance for p-Si 

From the scatter plot in Fig. 5-2, the temperature coefficient for power is -0.44 %/°C, 

considering the STC power of 979 W for the p-Si array. The datasheet presents -0.42 %/°C, that is, a 

very close value.  

 

Figure 5-2: Scatter plot with regression line; p-Si 

5.2.2 Constant irradiance for m-Si 

From the scatter plot in Fig. 5-3, the temperature coefficient for the power is -0.36 %/°C, 

considering the power at STC of 1220 W for the m-Si array. The datasheet reports -0.35 %/°C, which 

agrees with the experimental finding.  

 

Figure 5-3: Scatter plot with regression line; m-Si 
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5.2.3 Constant irradiance for Bifacial 

For the bifacial array, the temperature coefficient for power is -0.45 %/°C, considering the STC 

power of 1946 W for the bifacial array. It should be noted that the effective irradiance was used as the 

reference for coloring the points in the scatter plot. The datasheet value for γ is -0.37 %/°C. Possible 

reasons for such a difference are: 1) the temperature measurement method used in the context of this 

thesis, which consists of a flat temperature sensor attached to the rear-side glass (the PV module 

manufacturer does not specify the measurement method used for their test); and 2) the condition for 

the tests: the test carried out in this thesis consisted of a long-term experimental campaign, outdoors 

and therefore under uncontrolled conditions (the PV module manufacturer does not specify the 

condition for their test). All in all, it should be noted that the p-Si and m-Si present an EVA back-sheet 

encapsulant (0.35 mm thickness), which allows the temperature sensor to be closer to the PV cell. The 

same is not true for the bifacial modules, which present a total glass encapsulation (2 mm glass 

thickness on each side). 

 

Figure 5-4: Scatter plot with regression line; bifacial 

5.2.4 Constant irradiance for HCPV 

For the HCPV array, the temperature coefficient for power was calculated as -0.57 %/°C. It 

should be noted, though, that the datasheet reports the power temperature coefficient as -0.14 %/°C. 

Also, the HCPV array temperature was measured on the heatsink of one of the modules; therefore, 

the temperature might not be representative of the actual cell temperature. For this reason, a 

temperature correction was applied using Eq. (2.20), presented in Section 2.2.4.  

A more reliable way of determining the cell temperature is via open-circuit voltage 

measurements, as discussed by Rodrigo et al., (2014). However, measuring the Voc is not practical in 

the context of this thesis, given that the PV arrays operate on the maximum power point, in real 

operating condition, supplying the external grid. 

 



114 

 

 

Figure 5-5: Scatter plot with regression line; HCPV 

5.3 RELEVANCE OF THE EXTERNAL VARIABLES FOR DESCRIBING THE DC POWER 

The relevance of each meteorological variable with respect to the DC power is the focus of the 

present section. For that, a polynomial multivariable regression was used to predict the DC power 

values, and the equation coefficients were adjusted to minimize the squared error between measured 

and predicted power levels.  

The variables considered in the polynomial regression are: GNI, BNI, DNI, air temperature, AM, 

absolute humidity, wind speed, normal global clearness index (NGCI), normal beam clearness index 

(NBCI) and normal diffuse fraction (NDF). For the bifacial array, GNIrear and GE were also assessed.  

Polynomial models were tested until the fourth degree; the best results were found using 

polynomial degrees up to two. Exhaustive tests were carried out with polynomial terms consisting of 

single and combined input variables, using the data analysis application Visplore®, which provides an 

automated feature to test different combinations between the equation variables, computing the 

optimal polynomial coefficients to minimize the RMSE error for the DC power. The best models were 

found to be the ones allowing combinations between variables (multiplication) to compose the 

polynomial equation terms. The model improvement was carried out including new equation terms 

until the nRMSE improvement was smaller than 0.001%. As expected, this termination condition is 

closely related to the complexity of the model obtained. 

The allowed input variables for the models were sequentially introduced following two basic 

rules: 1) in each variable inclusion step, all variables were tested in the polynomial fit and the nRMSE 

were recorded. The variable associated with the greatest nRMSE reduction was effectively added to 

the model, and a new variable inclusion step was initiated; 2) new variables were added until the 

observed nRMSE error reduction was smaller than 0.01%; or until there were no variables left. This 

allowed ordering the variables by relevance, while building the optimal model in each trial. Such an 

approach consisted in classifying the external parameters in terms of their ability to describe the PV 

power. In this thesis, the external parameters – which define the operating condition – are also 
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referred to as descriptive variables, or input variables, or explanatory variables, when related to a 

model. In turn, the power – which is the observed variable – is referred to as output, or target, or 

outcome, when related to a model. 

Table 5-1 shows the order of relevance for the different parameters when modeling the DC 

power according to the multivariate polynomial regression. For the p-Si, 6 variables were used as 

inputs in the model, whereas the smallest nRMSE was 3.37 % (R² = 0.9878). For the m-Si, 5 variables 

were inserted into the model, with minimum nRMSE of 1.84 % (R² = 0.9971). In turn, the polynomial 

regression for the bifacial array employed 6 variables, producing minimum nRMSE of 2.53 % (R² = 

0.9951). Finally, 6 variables were used in the model for the HCPV array, which presented minimum 

nRMSE of 5.06 % (R² = 0.9621). The color-faded text was used to identify parameters whose inclusion 

to the model resulted in a nRMSE reduction of less than 0.1 %. 

Table 5-1: Order of variable relevance, for the four PV technologies (including Tair) 

Variable 
relevance 

p-Si m-Si Bifacial HCPV 

1 GNI GNI GNI BNI 

2 Tair Tair Tair Tair 

3 vwind BNI GNIrear NDF 

4 AM AM AM AM 

5 BNI vwind vwind GNI 

6 AH - BNI AH 

For comparison, the PV module’s measured temperatures were also added to the polynomial 

regressions. The variable relevance analysis was carried out again, from the start – not only replacing 

the air temperature by the module temperature. Following the guidelines presented at the beginning 

of this section, the variables relevance order is organized in Table 5-2. It should be noted, though, that 

the module temperature is not an environmental parameter, but in fact, it results from the 

contributions of solar irradiance, air temperature and wind speed.  

Table 5-2 Order of variable relevance, for the four PV technologies (including Tc) 

Variable 
relevance 

p-Si m-Si Bifacial HCPV 

1 GNI GNI GNI BNI 

2 Tc Tc Tc Tc 

3 AM BNI GNIrear AM 

4 BNI AM AM RH 

5 vwind AH AH AH 

6 - RH RH GNI 

7 - DNI vwind - 

 For the p-Si array, the nRMSE is 3.04 % (R² = 0.9901); for the m-Si, nRMSE = 1.62 % (R² = 0.9978); 

and for the bifacial array, nRMSE = 2.43 % (R² = 0.9956). It is therefore clear that including the module’s 

temperature in the polynomial fit reduced the nRMSE, for the p-Si, m-Si and bifacial arrays.  
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 For the HCPV array no nRMSE improvement was achieved when including the measured 

module temperature. The nRMSE was 5.12 % (R² = 0.9676). One possible reason for this outcome is 

the fact that the measurements were carried out with a sensor attached to the back of the board 

containing the cells, on the heatsink. Such a temperature level might not be representative of the 

actual cell temperature. Thus, for the HCPV, using the air temperature yielded the best modeling 

accuracy.  

 Such a modeling approach with several variables and terms is of questionable usefulness in 

practical applications: in some of the models, each term was composed by up to five parameters, 

whereas the total number of terms in a model was up to 30. Therefore, it should be highlighted that 

the models concerned in this section were chosen in such a way as to produce small errors while 

building models regardless of their complexity and size, aiming to determine the relevance of the 

operating parameters when describing the DC power. Details regarding the polynomial equation terms 

are provided in Appendix D.  

5.4 SENSITIVITY ANALYSIS BASED ON THE EXPERIMENTAL RECORDS 

Ideally, it would be possible to assess how strongly a given parameter affects the DC power by 

plotting both variables together, while keeping the remaining parameters constant. Repeating such a 

procedure for the four PV arrays, whereas considering only the data records which are common to all 

arrays, would allow to quantify the influence of the external parameters on each PV array. Thus, the 

PV technologies could be classified according to the dependency on specific environmental quantities.  

However, when performing a sensitivity analysis based on the experimental measurements, 

two significant issues were observed. First, even using over 100,000 records, it is definitely not usual 

finding records in which one operational parameter varies widely while the others are constant. 

Second, the experimental resource for this thesis was designed to operate in real-world conditions, 

that is: the operational parameters are uncontrolled, and the PV arrays are connected to the grid via 

inverters. In turn, the inverters define the operating point for the PV arrays using the MPPT systems, 

which means that power fluctuations occur even when the external parameters are constant. That is 

precisely the essence of the MPPT algorithm, which constantly introduces changes (perturbations) on 

the operating point while seeking the maximum power (observations).  

The first issue can be tackled by setting a tolerance for the parameters which are intended to 

be constant. On the one hand, this allows the number of points within a filter setting to be increased; 

on the other hand, this means increasing the variability allowed for all operating variables. All in all, 

there is a trade-off between the variability of parameters due to filtering tolerance, and the number 

of usable records. 

Regarding the second issue, such power fluctuations were already expected. In fact, voltage 

variations up to 8 V (out of 200 V) were observed in intervals within 2 seconds. Likewise, current ripple 

up to 0.3 A (out of 5 A) was also recorded within a similar time interval. The dependence on MPPT 

systems would be eliminated if the experimental resource used I-V curve tracers to determine the 

complete electrical behavior of the PV arrays. However, this is not the proposal of the current thesis, 

which focuses on real operating conditions: PV arrays installed outdoors, supplying energy to the grid.  
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5.4.1 Sensitivity analysis for the DC power via data filtering 

Plots regarding the sensitivity of the normalized DC power to several external parameters are 

shown in Figs. 5-6 to 5-13. They were built by applying filters to the dataset containing only the 

common points between the data records for the four PV arrays, to allow a fair comparison. The filter 

settings are as follows: 850-950 W/m² for GNI; 680-720 W/m² for BNI; 22-26 °C for Tair; 1.5-2.5 for AM; 

1.5-2.5 m/s for vwind; 0.009-0.012 kgH2O/kgda for AH; 100-125 W/m² for GNIrear; and 0.2-0.4 for NDF. 

To construct Figs. 5-6 to 5-13, the filters referring to the variable on the horizontal axis were disabled. 

This way, the number of displayed records was defined by the remaining variables and their filter 

settings. It is worth noting that the normalized DC power was calculated dividing the observed power 

(in watts) by the experimental STC ratings defined in Section 3.7. 

 

Figure 5-6: DC power sensitivity to GNI 

For the m-Si and p-Si, Fig. 5-6 depicts records and linear fits which are closely matching, given 

that the DC power levels are normalized and both PV arrays refer to flat-plate, conventional modules. 

The offset for the bifacial technology refers to the contribution of the rear-side; it should be recalled 

that the STC power for bifacial devices refers to the front-face only. Therefore, a power gain is usually 

observed in outdoor operation, that is, when the modules receive irradiance, also, on the rear surface. 

In turn, the power levels referring to the HCPV array present levels between 60 and 70% of the STC 

power because the reference BNI is 1000 W/m², which is quite a high level for real operating 

conditions.   

 

Figure 5-7: DC power sensitivity to BNI 
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In turn, Fig. 5-7 shows the normalized power response to BNI, where the rate of change is 

significantly greater for the HCPV than for the remaining PV technologies.  

 

Figure 5-8: DC power sensitivity to the air temperature 

For the influence of the air temperature, Fig. 5-8 shows a similar slope for the p-Si, m-Si and 

bifacial arrays. However, the slope is significantly more pronounced for the HCPV array. This is a curious 

finding, given that for the HCPV technology, the temperature factor the DC power is the smallest 

among all four arrays, as shown in Table 3-1. In fact, such a behavior was observed, also, when plotting 

the normalized power for filter settings other than the one considered in this section. The datasheet 

specification for the HCPV technology has already been questioned earlier: in Section 5.2.4, the 

temperature factor for the power was found as -0.57 %/°C, whereas the datasheet presents -0.14 %/°C 

(a 4x difference). In Fig. 5-8, the HCPV was found as the PV array presenting the greatest temperature 

effect on DC power, in agreement with the findings in Section 5.2. 

 

Figure 5-9: DC power sensitivity to AM 

According to Fig. 5-9, increasing the AM caused more impact on the HCPV array than on the 

others. Although high AM levels are associated with reduced global irradiance, the slope for the p-Si 

technology presents a positive slope in Fig. 5-9. When plotting the cell temperature versus AM, it was 

found that for the points considered, the cell temperature of the p-Si array dropped significantly more 

than for the other technologies, considering the same AM increase. Such a temperature reduction 

could explain the slight gain in power for the p-Si array when increasing AM, as shown in Fig. 5-9. It is 

worth noting that the cell temperature presents a more pronounced impact on the PV output power 

than the AM.  
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Figure 5-10: DC power sensitivity to wind speed 

Considering the wind speed, the influence on the normalized DC power was found to be below 

0.5 %/(m/s) for all four arrays, as shown in Fig. 5-10. 

 

Figure 5-11: DC power sensitivity to the absolute humidity 

The HCPV array is the most influenced by the absolute humidity variation, as illustrated in Fig. 

5-11. When correlating the absolute humidity with other variables, no conclusions could be made. The 

spectral effect of increasing humidity cannot be quantitatively assessed since a spectroradiometer was 

not available at the measurement site.  

 

Figure 5-12: DC power sensitivity to GNIrear 
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Concerning the bifacial array and GNIrear, the slope is roughly 0.1 %/(W/m²). Once again, it 

should be noted that such an analysis considers GNI varying within a given range, as per the filter 

setting; therefore, the plot in Fig. 5-12 is biased by GNI. 

 

Figure 5-13: DC power sensitivity to NDF 

Finally, the influence of the normal diffuse fraction was plotted for the HCPV only, since it was 

found as the only array for which the NDF was correlated to the DC power. In Fig. 5-13, the slope of 

the linear fit is -55.3 % per NDF unit.   

5.4.2 Sensitivity for the DC power in different scenarios 

Eight scenarios, in terms of operating condition, are considered for the sensitivity analysis in 

this section. Such scenarios were generated by filtering the dataset whereas keeping certain 

particularities according to the desired condition.  

The clear sky scenario establishes the base for the other scenarios, since it is desired to assess 

the impact on the PV array’s performance with respect to the individual weather parameters. 

Table 5-3: Average values for the parameters defining the scenarios 

Scenario 

GNI 

(W/m²) 

BNI 

(W/m²) 

Tair 

(°C) 
AM 

Vwind 

(m/s) 

AH 

kgH2O/kgda 
NGCI NDF 

Clear sky 992 752 22.2 1.56 2.10 0.010 0.73 0.24 

Cloudy sky 416 156 22.8 1.64 1.82 0.012 0.31 0.64 

High Ta 981 755 30.8 1.22 1.93 0.016 0.73 0.23 

Low Ta 985 770 17.4 1.68 1.52 0.009 0.73 0.22 

High AM 624 465 22.3 4.92 2.41 0.008 0.45 0.25 

High Vwind 1001 785 22.7 1.23 5.41 0.010 0.74 0.22 

Low AH 990 760 22.4 1.22 2.00 0.007 0.71 0.23 

High AH 991 751 23.9 1.12 1.88 0.014 0.72 0.24 

For each parameter – with values organized in each column of Table 5-3 – the items in bold 

text indicate values which make each scenario differ from the others: for instance, for the cloud sky 
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scenario, the GNI and BNI levels were filtered so as to produce a NGCI around 0.3, with the NDF around 

0.65. 

 For the high AM scenario, the AM was filtered to select records around 5, which caused the 

GNI to be around 60% of GNI referring to the clear-sky scenario, producing NGCI levels around 0.45. It 

is desired to exclude cases with high AM and cloudy sky; this was accomplished by filtering the BNI so 

as to obtain NDF around 0.25. 

The remaining scenarios – high/low Tair, high vwind, and low/high AH were defined by filtering 

for the parameter of interest, while keeping the remaining parameters close to the setting referring to 

the clear sky scenario. 

 

Figure 5-14: Relative DC power levels, per scenario and PV technology 

The relative DC power levels displayed in Fig. 5-14 show how the operating condition impacts 

on the PV performance. As for the plots shown in Section 5.4.1 – for the sensitivity analysis – the 

greatest relative power values are related to the bifacial array, whereas the lowest are related to the 

HCPV technology. Regarding this subject, is worth recalling that the bifacial relative power exceeds 

100% because the STC ratings for that technology are based on the front-side performance only. For 

the HCPV modules, the STC performance is based on BNI = 1000 W/m², that is, a condition rarely 

observed in real operating conditions; this explains the low relative DC power shown by the 

concentration PV array, in Fig. 5-14.  

Regarding the p-Si and m-Si arrays, Fig. 5-14 shows that, except for the cloudy sky and high AM 

scenarios, the relative power referring to the p-Si is lower than that of the m-Si. When checking the 

cell temperature levels for both PV arrays, it was seen that the difference is within 0.3 °C, which is 

quite a low gap. However, the temperature coefficient for the DC power is higher for the p-Si than for 

the m-Si technology. This explains the lower performance of the p-Si array, in comparison to the m-Si 

when under high irradiance. It is clear from Fig. 5-14 that the highest power variations are related to 

scenarios which involve irradiance reduction – that is, cloudy sky and high AM cases.  This should be 

no surprise since the irradiance is the most important external parameter for all PV technologies, as 

described in Section 5.3.  
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A better visualization of the cloudy sky and high AM data in Fig. 5-14 is provided in Fig. 5-15, 

where the relative power levels referring to the clear sky condition are taken as a reference, for a 

relative analysis. The bars in Fig. 5-15 are simply the variation of the levels in Fig. 5-14, relative to the 

clear sky scenario, expressed as percent values. For this reason, the power variation for the clear sky 

scenario is zero, whereas the levels for the cloudy sky and high AM scenarios are negative. Fig. 5-15 

shows that, for the cloudy sky condition, the HCPV array was more impacted by the irradiance 

reduction than the other technologies. The reason is that the BNI is reduced in a greater scale than the 

GNI: taking the clear sky irradiance levels as a reference, in the cloudy sky scenario the GNI was reduced 

to 42%, whereas the BNI was reduced to 21% of the original level. It is worth recalling that the HCPV 

modules only respond to the BNI – because of the concentration – whereas the p-Si, m-Si and bifacial 

technologies are able to convert both BNI and DNI. This way, a sharp reduction in BNI results in a 

proportionally strong reduction of the HCPV array’s output. 

 

Figure 5-15: Power variations relative to the clear-sky scenario, for the clear sky and high AM 

scenarios, per PV technology 

For the remaining parameters, Fig. 5-16 was built in a similar way as Fig. 5-15: the power 

variations, for each scenario and PV technology, are plotted with magnitudes relative to the clear sky 

case. Fig. 5-16 shows that the greatest variations in relative power refer to temperature changes. In 

both cases – high Tair and low Tair – the greatest power variations were shown by the HCPV array. Such 

a finding is consistent with the temperature coefficients for the DC power, which were experimentally 

determined and presented in Section 5.2. In that section, the HCPV modules were found to be the 

most sensitive for the temperature, among all four technologies. Also in Section 5.2, the p-Si and 

bifacial modules were found to be the second most sensitive for the temperature, which is coherent 

with the data in Fig. 5-16. Finally, the m-Si presents the lowest temperature coefficient for the DC 

power, among all four PV technologies considered in this thesis. This fact is corroborated by the data 

shown in Fig. 5-16. 

The HCPV modules present quite a different construction, as in comparison with the other PV 

technologies considered in this work. The board which houses the multi-junction cells is contained 

within a metal housing, which acts as a barrier to the wind effect on the cells. In contrast, the PV cells 
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on the p-Si, m-Si modules are separated from the environment just by a glass cover – on the front – 

and by a thin polymer sheet, on the rear side. This means that the wind-induced thermal effect is more 

pronounced on these PV technologies than on the HCPV. By observing Fig. 5-16, with respect to the 

high vwind scenario, it is seen that the HCPV array is significantly less influenced by the wind speed. 

Thus, the data in Fig. 5-16 agrees with the considerations previously presented, regarding the PV cells 

encapsulation. In fact, the wind speed was not identified as an important factor to describe the DC 

power for the HCPV array, as discussed in Section 5.3. The fact that the p-Si array presented the 

greatest power variation, in the high wind speed scenario, might be linked to the relatively high (in 

modulus) temperature factor for the DC power shown by this array. This, in turn, explains why the 

wind speed is more important for this PV technology than for the others, as discussed in Section 5.3.  

 

Figure 5-16: Power variations relative to the clear-sky scenario, per scenario and PV technology 

Among all scenarios, the ones showing the smallest power variations are the high and low 

absolute humidity. The HCPV array was found to be the most affected PV array in both cases. This 

agrees with the results shown in Section 5.4.1, where the change rate of power per absolute humidity 

unit was found to be significantly more pronounced for the HCPV than for the other technologies. In 

fact, water in the atmosphere affects the spectral distribution of irradiance, as shown in Fig. 2-11. 

However, further analysis is beyond the scope of this work since the spectral irradiance was not 

measured. It is worth noting that when defining the scenarios referring to high and low AH, care was 

taken to keep the average air temperature as stable as possible, while allowing a sufficient variation in 

AH. In fact, between the two scenarios, the difference in the average Tair is only 1.5 °C. 

5.4.3 Remarks regarding the experimental sensitivity analysis  

Given the experimental nature of this work, it is not possible to obtain a set of records with all 

but one parameter constant. Such a case would be the ideal condition to perform a sensitivity analysis, 

however, in practice, not only some parameters change at the same time, but they are linearly related, 

that is, they present collinearity. This is particularly important for the irradiance components and the 

related indexes.  
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Since the external parameters are uncontrollable and are thus constantly changing, filtering 

has been used to keep them within a constant range. This means that a variation tolerance has been 

assumed. The smaller the tolerance, the smaller the number of points remaining; likewise, the greater 

the tolerance, the greater the variability introduced on the parameters. This means that when the 

power sensitivity with respect to a given parameter is studied, the remaining external parameters are 

also influencing the power. The greater the importance of the parameter, the greater the influence on 

the power, and the greater the difficulty in studying parameters with a light influence on the power, 

as it is the case for the air mass, wind speed and humidity. 

The next section addresses these problems and presents a more refined sensitivity study. 

5.5 MODEL-BASED SENSITIVITY ANALYSIS FOR THE DC POWER 

Thus far in this thesis, the most important operating parameters for each PV array have been 

identified, and their effect on the PV power has been assessed based purely on assessments of the 

measured data. As a continuation, in the present section, the external parameters are used along with 

mathematical models to express the DC power, allowing to predict the PV arrays’ output for any 

combination of inputs. The adoption of models to express the power as a function of the external 

variables allows, also, to carry out a sensitivity analysis with reduced interference of one parameter on 

another.  

5.5.1 A first approach for multivariate models to describe the DC power. 

For each PV array, models for the DC power were built considering the relevant parameters 

shown in Table 5-5. Linear and exponential terms were included for each operating parameter, 

whereas a least square fitting procedure was employed to determine the linear and exponential 

coefficients in the models.  

The model proposed by Durisch et al. (2007), shown in Eq. (2.25), uses linear and exponential 

coefficients to express the influence of a given parameter for the PV array efficiency. A similar 

approach is followed in the present section. In fact, the general form of Eq. (2.25) was preserved, being 

the new parameters included along with the existing terms.  

For the p-Si array, the model built for the sensitivity analysis is presented in Eq. (5.1).  

𝑃mp,c = 𝐴 GNI 𝑎1 [𝑎2

GNI

GNI0
+ (
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(5.1) 

The model for the p-Si array in Eq. (5.1) presented nRMSE of 3.40 % and nMBE of 0.002 % (R² 

= 0.98605). Fig. 5-17 shows the correlation plot for the measured and predicted values for the p-Si DC 

power. 
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Figure 5-17: Correlation between measured and predicted DC power; p-Si model 

Regarding the m-Si array, the model for the sensitivity analysis is shown in Eq. (5.2) and 

presented nRMSE of 1.84 % and nMBE of -0.019 % (R² = 0.99674). Fig. 5-18 shows the correlation plot 

for the measured and predicted values for the m-Si DC power. 

 

Figure 5-18: Correlation between measured and predicted DC power; m-Si model 
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(5.2) 

In turn, the multivariate model built for the bifacial array is presented in Eq. (5.3). It presented 

nRMSE of 2.56 %, whereas the nMBE was -0.067 % (R² = 0.99378).  
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Figure 5-19: Correlation between measured and predicted DC power; bifacial model 

Fig. 5-19 shows the correlation plot for the measured and predicted values for the bifacial 

array’s DC power. 
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(5.3) 

Finally, the HCPV array model is shown in Eq. (5.4). A nRMSE level of 5.96 % was found using 

such a model, while the nMBE was -0.027 % (R² = 0.94922). Fig. 5-20 shows the correlation plot for the 

measured and predicted values for the HCPV array’s DC power. 

 

Figure 5-20: Correlation between measured and predicted DC power; HCPV model 
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𝑃mp,c = 𝐴 BNI 𝑎1 [𝑎2
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(5.4) 

The coefficients for Eqs. (5.1) to (5.4) are organized in Table 5-8. 

Table 5-4: Model coefficients for the four PV arrays 

 
p-Si 

Eq. (12.1) 

m-Si 

Eq. (12.2) 

Bifacial 

Eq. (12.3) 

HCPV 

Eq. (12.4) 

a1 1.65786 7.99127 2.24666 4.81050 

a2 -0.41245 -0.13110 -0.28344 -2.20248 

a3 0.27939 0.05812 0.14368 -0.31710 

a4 -0.03581 -0.98891 -1.11118 1.88213 

a5 0.00081 0.98610 0.25081 0.69816 

a6 -0.85068 -1.50741 0.00073 -1.66275 

a7 0.46277 1.24399 -0.00465 1.01973 

a8 0.08320 -0.02145 -0.46951 -0.88468 

a9 -0.06090 -0.02180 0.00063 -0.21310 

a10 0.03807 0.00824 0.02483 -0.54901 

a11 0.00005 -0.00087 0.00303 0.63630 

a12 0.00691 - 0.01685 -0.62372 

a13 -0.07281 - 0.00005 0.70732 

Section 5.3 was devoted to present the order of relevance of the external parameters with 

respect to their ability to describe the PV power, for each of the four arrays being studied. In fact, when 

new parameters are successively added to the models developed in the present section, the error 

between the measured and predicted power levels decreases. Consequently, there is a trade-off 

between the number of variables to be measured and the admissible model error: smaller error levels 

come at the cost of more input variables.   

The data in Table 5-5 show, for each PV array, the relevant external parameters (in order of 

relevance), along with the cumulative nRMSE according to the inclusion of new parameters as inputs. 

Table 5-5: cumulative nRMSE due to the inclusion of parameters as model inputs 

Order of 

relevance 

p-Si m-Si Bifacial HCPV 

Param. nRMSE Param. nRMSE Param. nRMSE Param. nRMSE 

1 GNI 4.52% GNI 3.19% GNI 4.28% BNI 9.05% 

2 Tair 3.66% Tair 1.97% Tair 2.75% Tair 6.56% 

3 Vwind 3.50% BNI 1.92% GNIrear 2.61% NDF 6.47% 

4 AM 3.43% AM 1.88% AM 2.58% AM 6.12% 

5 BNI 3.42% Vwind 1.84% Vwind 2.53% GNI 6.03% 

6 AH 3.40% - - BNI 2.52% AH 5.96% 
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For the p-Si array, including only the 4 most important external parameters (GNI, Tair, Vwind and 

AM) results in a modeling error of 3.43 %. After the inclusion of the 4th most relevant parameter, 

further including more parameters (BNI and AH) to the model does not provide a significant nRMSE 

reduction.  

In turn, for the m-Si, including the parameters up to the 4th most relevant (that is, GNI, Tair, BNI 

and AM) results in a modeling error of 1.88 %, whereas adding the 5th most important parameter 

(which is Vwind) reduces the nRMSE only by 0.04 %. For the bifacial array, the minimum error of 2.52 % 

was achieved when applying all 6 parameters to the model; however, it is noted that the inclusion of 

the 6th parameter (that is, BNI), contributed to the error reduction with only 0.01 %. Finally, for the 

HCPV array, it is observed that including only the BNI produces a modeling error of roughly 9 %. As in 

the previous cases, the nRMSE is progressively reduced as more variables are included, reaching a level 

slightly below 6 % only after the 6th variable (AH) was included in the model.  

Reasons for the relatively high nRMSE levels shown by the HCPV array’s model are related to: 

a) PV tracking errors: tracking error of 0.3° can potentially reduce the HCPV array’s power in 10 %, 

whereas 1° error makes the DC power virtually decrease to zero; b) differences between the 

orientation of the PV tracker and the pyrheliometer installed on the Solys 2 measurement system; c) 

divergences between the BNI levels measured at the roof of the Laboratory building and the BNI 

actually reaching the HCPV array, especially when under transient, partially cloudy condition.  

It is worth noting that the Solys 2 irradiance meter and the PV tracker holding the HCPV array 

are roughly 90 m apart, as illustrated in Fig. 5-21. All these factors – which are particular for the HCPV 

array – act producing differences between the measured and actual BNI levels, therefore introducing 

errors both on the data analysis and on the power modeling. In fact, such factors explain, also, the 

greater number of inconsistent records detected during the filtering phase, as described in Section 4. 

 

Figure 5-21: Distance between the BNI meter and the HCPV array 

The modeling approach developed up to this point does not address the dependences which 

exist between the irradiance components; between AM and the irradiance components; and between 

Tair and AH. As a result, the models are not able to adequately differ the influence of two well correlated 

input variables on the power, that is, the output variable (Katz, 2006). Therefore, despite the models 

perform well when describing the DC power, they are not suitable for the sensitivity analysis, since the 
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model’s coefficients attribution is not reliable at the individual variables level. It should be 

remembered that the models’ parameters a1 to a13 were defined based on the experimental dataset, 

in which many variables present collinearity. This poses a problem regarding the model specification. 

Despite this drawback, the models (Eqs. 5.1 to 5.4) are useful for straightforwardly describing 

the DC power, in contrast with the significantly more complex models used in Section 5.3. 

5.5.2 Principal Component Regression 

The Pearson’s coefficient correlation matrix in Fig. 5-1 shows that some of the explanatory 

variables are correlated. As previously mentioned, this is the case for the irradiance components – 

among each other and each of them with the AM. Also, the humidity and air temperature are 

correlated as well. It is said that such well correlated variables present collinearity. Katz (2006) states 

that one possible approach to avoid building models based on collinear explanatory variables is to 

eliminate one of them. However, such a solution is not suitable in the context of the present thesis, 

given that the study of the effects of the external variables on the PV performance is precisely what is 

addressed.  

The Principal Component Regression (PCR) is a viable alternative to the multivariate modeling 

in the presence of collinearity between the descriptive variables. The PCR allows expressing a set of 

correlated multivariate data in terms of a smaller set of uncorrelated variables, yet keeping most 

information regarding the original dataset (Ziegel, 2002). Mathematically, the principal components 

are calculated from the eigenvectors of the covariance matrix referring to the dataset containing the 

explanatory variables, and the explanatory variables their selves. Detailed descriptions of the PCR 

method are provided by Katz (2006) and  Ziegel (2002). 

The principal components data (PC1 to PC5), for the four PV arrays, are presented in Tables 5-

6 to 5-9. The columns show the coefficients for each explanatory variable, to compose each principal 

component. 

Table 5-6: Principal component factors: p-Si array 

  PC1 PC2 PC3 PC4 PC5 

GNI (W/m²) 0.684 0.730 -0.010 -0.003 0.007 

BNI (W/m²) 0.730 -0.684 0.007 0.001 -0.004 

Air temperature (°C) 0.002 0.012 0.997 -0.055 0.058 

AM -0.002 -0.009 -0.074 -0.376 0.924 

Wind speed (m/s) 0.000 0.000 0.029 0.925 0.379 

Abs. humidity (kgH2O/kgda) 0.000 0.000 0.000 0.000 0.000 

Table 5-7: Principal component factors: m-Si array 

  PC1 PC2 PC3 PC4 PC5 

GNI (W/m²) 0.697 0.717 -0.013 -0.003 0.006 

BNI (W/m²) 0.717 -0.697 0.008 0.001 -0.004 

Air temperature (°C) 0.003 0.014 0.995 -0.060 0.073 

AM -0.002 -0.009 -0.090 -0.388 0.917 

Wind speed (m/s) 0.000 0.001 0.026 0.920 0.392 

Abs. humidity (kgH2O/kgda) 0.000 0.000 0.000 0.000 0.000 
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Table 5-8: Principal component factors: bifacial array 

  PC1 PC2 PC3 PC4 PC5 

GNI (W/m²) 0.696 0.695 -0.182 0.012 0.004 

GNIrear (W/m²) 0.067 0.189 0.969 -0.144 0.000 

BNI (W/m²) 0.715 -0.694 0.085 -0.002 -0.002 

Air temperature (°C) 0.003 0.017 0.143 0.989 0.018 

AM -0.002 -0.009 -0.027 -0.031 0.528 

Wind speed (m/s) 0.000 0.001 0.015 -0.001 0.849 

Abs. humidity (kgH2O/kgda) 0.000 0.000 0.000 0.000 0.000 

Table 5-9: Principal component factors: HCPV array 

  PC1 PC2 PC3 PC4 PC5 

GNI (W/m²) 0.665 -0.747 -0.008 0.000 0.010 

BNI (W/m²) 0.747 0.665 0.005 0.000 -0.004 

Air temperature (°C) 0.002 -0.008 0.995 -0.033 0.094 

AM -0.004 0.010 -0.092 0.048 0.994 

Wind speed (m/s) 0.001 -0.001 0.037 0.998 -0.045 

Abs. humidity (kgH2O/kgda) 0.000 0.000 0.000 0.000 0.000 

Normal diffuse fraction 0.000 -0.001 0.000 0.001 -0.024 

After the principal components were obtained, a linear regression was carried out to obtain 

the DC power model coefficients by means of least squares fit, using Eq. 5.5, for each of the four PV 

arrays. 

𝑃mp,c,PCR = 𝑎0 + 𝑎1PC1 + ⋯ + 𝑎𝑛PC𝑛 (5.5) 

Finally, the resulting model, which is a function of the weighted principal components, is 

rewritten as a function of the original explanatory variables.  

The weight parameters for the models, obtained by means of the principal component, are 

presented in Table 5-10, considering the four PV arrays.  

Table 5-10: Linear regression coefficients for the PCR models, per PV array 

 p-Si m-Si Bifacial HCPV 

𝑎0 20.28323 84.28078 125.3873 242.8357 

𝑎1 0.601369 0.796309 1.317458 1.629572 

𝑎2 0.637233 0.831221 1.451464 1.228822 

𝑎3 -3.06754 -3.63619 -0.35972 -13.9475 

𝑎4 3.593338 3.535421 -7.63391 -2.14483 

𝑎5 8.939336 -1.15239 10.09917 -15.6766 

When running simulations using the obtained models, for the complete PV dataset, the 

following performance metrics were obtained: nRMSE = 3.57%, R² = 0.98464 (p-Si array); nRMSE = 

2.04%, R² = 0.99608 (m-Si array); nRMSE = 2.94 %, R² = 0.99182 (bifacial array); and nRMSE = 6.61%, 

R² = 0.93950 (HCPV array).  
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All nRMSE levels are greater than the ones presented in Section 5.5.1; however, it should be 

highlighted that the models developed using the PCR are expected to present a greater specificity in 

terms of the weights attributed to the various explanatory variables. This way, the models are suitable 

for the sensitivity analysis, which is explained in the next section. 

5.5.3 Sensitivity analysis using the PCR models. 

Even with models built upon linearly independent variables – as carried out in the previous 

section – proper sensitivity analysis cannot be carried out if some of the input variables keep a linear 

relationship between each other. This means that simply applying the original variables (GNI, BNI, Tair, 

AM, Vwind and AH) to the PCR models will not set the analysis free from the collinearity problem. In 

other words, it will not be possible to decouple the relationships between the variables, therefore 

impairing the study of the influence of the individual parameters on the observed variable – the DC 

power. 

This way, in this section, instead of the external variables within the dataset, artificial variables 

were applied to the models’ inputs, using a Monte Carlo simulation in 10,000 iterations. Each artificial 

variable was created from maximum and minimum limits (Xmax and Xmin), specified for each explanatory 

variable. The variables were computed using Eq. 5.6, where “rand” is a random real number between 

0 and 1.  

𝑋rand = rand(𝑋max – 𝑋min)  + 𝑋min (5.6) 

Maximum and minimum limits for the variables were set so as to represent conditions 

practically plausible, respecting the observations contained in the measured dataset. The limits are 

presented in Table 5-11, along with the average parameters for the 10,000 artificial values generated 

(last column, to the right).  

Table 5-11: Limits attributed to the random variables for the model inputs 

 
Min Max Average 𝑋rand 

GNI (W/m²) 100 1100 603.1 

BNI (W/m²) 1 750 446.6 

Air temperature (°C) 0 40 20.3 

AM 1 5 2.4 

Wind speed (m/s) 0 5 2.5 

Abs. humidity (kgH2O/kgda) 0.005 0.018 0.011 

To enable the introduction of variations on the variables – which is a requirement for the 

sensitivity analysis – a bias was introduced in Eq. 5.6, which turns into Eq. 5.7. 

𝑋rand,biased = (rand(𝑋max – 𝑋min)  + 𝑋min) ∗ bias (5.7) 

For the generation of the random variables, initially the bias in all equations is set to 1. This 

allows computing reference levels for all descriptive variables, as well as for the power. Then, the bias 
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is changed to 1.1 – to introduce a 10% gain – one equation at a time, whereas the new modelled DC 

power value is recorded. Other values for the bias were tested as well (15 %, 25 %), with similar results. 

Repeating this procedure until all random variables were covered enables the construction of 

tables showing the sensitivity coefficients, which were calculated as the ratio between the percent 

variation of the normalized DC power and the percent variation of one individual input parameter.  

The DC power levels were normalized using the reference (STC), in order to allow an easy and 

fair comparison between the four PV arrays. Also, to enable the use of comparable figures between 

the various external parameters, their variation was also set to a relative metric, using the average 

reference levels previously defined (Table 5-11). This way, the unit for the outcome of the sensitivity 

analysis is specified in % variation of relative power per % variation of the explanatory random variable, 

allowing comparison by means of a normalized score, covering all PV arrays. 

The results regarding the sensitivity analysis, carried out with the PCR and the Monte Carlo 

simulations, are summarized in Fig. 5-22.  

 

Figure 5-22: Scores for the sensitivity analysis, per parameter and PV array 

Overall, the results depicted in Fig. 5-22 agree with the outcomes of Section 5.4: the effect of 

GNI on the HCPV is relatively low; however, such a PV array is the most sensitive to the BNI. The 

behavior presented by the HCPV array, with respect to GNI and BNI, remarkably differs from the other 

three PV technologies. Also, the HCPV presented the greatest influence by the air temperature, among 

all PV technologies studied. For all technologies, the results agree with Section 5.4.2, in Fig. 5-16. For 

the AM, the most influenced arrays were the HCPV and the bifacial, thus partially agreeing with the 

results of Section 5.4. In turn, the wind speed assessments do agree with the results in Section 5.4, 

with the HCPV array showing the smallest sensitivity to such a parameter. Also, the p-Si and m-Si were 

the most influenced by the wind speed, in close agreement with Section 5.4.2 (Fig. 5-16). Again, as in 

Section 5.4, the most impacted technology, with respect to the absolute humidity, was the HCPV, 

showing a significantly greater power reduction as the AH increases. 
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5.6 DESCRIBING THE PV ARRAYS’ BEHAVIOR USING TC INSTEAD OF TAIR 

The use of the measured array temperature, instead of the air temperature, is considered in 

this section. The aim is to assess the performance of the consolidated model presented by Durisch et 

al. (2007), which uses the irradiance, cell temperature and AM to describe the PV efficiency and power, 

comparing the results with those provided by the models using the air temperature. Also, as previously 

mentioned in Section 2.4, the method introduced by Durisch et al. (2007) includes useful equations for 

the determination of the STC power (Eq. 2.28) and efficiency (Eq. 2.26). Therefore, the results shown 

in the present section consist of a cross-check for the STC power ratings obtained in Section 3.8. 

5.6.1 Adapting the Durisch efficiency model for bifacial and HCPV arrays 

The efficiency model introduced by Durisch et al., (2007) was applied to predict the efficiency, 

and therefore, the DC power using the array area and the irradiance level. The aim is to verify the 

performance when the model is used in its standard form, which calculates the efficiency and power 

as a function of the irradiance, cell temperature and air mass.  

The application of the Durisch model with p-Si and m-Si PV arrays has been well explored in 

the literature, for instance, in the works of Zarkov et al. (2016), Hamou et al. (2014) and Bërdufi et al. 

(2016). However, the model’s use along bifacial and HCPV devices has not yet been documented. 

Therefore, one of the contributions of the present section is to propose, test and compare approaches 

for adapting the original Durisch model to bifacial and HCPV devices.  

In this chapter, it is proposed to calculate the DC power from the Durisch model as shown in 

Eq. (5.8), where 𝑃mp,c refers to the calculated power and GNI0 is 1000 W/m².  

𝑃mp,c = 𝐴 GNI 𝑝 [𝑞
GNI

GNI0
+ (

GNI

GNI0
)

𝑚

] [1 + 𝑟
𝑇𝑐

𝑇𝑐,0
+ 𝑠

AM

AM0
+ (

AM

AM0
)

𝑢

] (5.8) 

5.6.1.1 Durisch model: p-Si array 

For the m-Si array, the coefficients in Eq. (5.8) were calculated to minimize the squared error 

on the PV efficiency, as defined in the original publications of Durisch et al. (2007), and the values are: 

p=15.891; q=-0.146; r=-0.092; s=-1.005; m=0.124; and u=1.007. The model adjusted with such 

parameters yielded nRMSE of 3.08 % (R² = 0.990083) on the DC power. In turn, relevant STC data 

referring to an individual p-Si module in the array, calculated using Eqs. (2.28) and (2.26), provided 

Pmp,STC=164.0 W, and ηSTC=14.0 %. The difference relatively to the STC metrics found in Section 3.8 is 

0.5 %.  

5.6.1.2 Durisch model: m-Si array 

For the m-Si array, the adjusted parameters in Eq. (5.8) are p=22.882; q=-0.055; r=-0.091; s=-

1.010; m=0.068; and u=1.000. With these coefficients, the nRMSE for the DC power is 1.73 %, whereas 
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Pmp,STC=316.3 W, and ηSTC=19.8 % (R² = 0.997259). Relatively to the data in Section 3.8, such STC metrics 

present a 3.7 % difference.  

5.6.1.3 Durisch model: bifacial array 

Applying the Durisch model to bifacial PV arrays is not as straightforward as in the case of p-Si 

and m-Si. The reason is that both sides of bifacial modules – front and rear – influence the amount of 

power conversion. Therefore, the GNI term in Eq. (5.8) must be adjusted accordingly to account for 

the irradiance falling on both sides.  

However, adding the front and rear irradiance levels reaching the bifacial PV module is not a 

consistent way of representing the total irradiance, given that the front and rear sides of a bifacial 

device do not present the same efficiency. Therefore, the total irradiance must be calculated taking 

this particularity into account, for instance, using the concept of effective irradiance (𝐺𝐸), as defined 

in Eq. (2.18). Therefore, GNI in Eq. (5.8) now refers to 𝐺𝐸  = GNI + φ GNIrear. This way, modifying Eq. (5.8) 

results in Eq. (5.9).  

It is worth noting that the reference irradiance in Eq. (5.9) is GNI0, as in Eq. (5.8) since the 

datasheets for bifacial modules present the performance considering only the front side. Therefore, 

the reference irradiance is 1000 W/m², as in the case of monofacial PV modules. This is consistent with 

the concept of effective irradiance since it is the irradiance that would produce the same output power 

if the module was monofacial (Gostein et al., 2021). 

𝑃mp,c = 𝐴 𝐺𝐸  𝑝 [𝑞
𝐺𝐸

GNI0
+ (

𝐺𝐸

GNI0
)

𝑚

] [1 + 𝑟
𝑇𝑐

𝑇𝑐,0
+ 𝑠

AM

AM0
+ (

AM

AM0
)

𝑢

] (5.9) 

Using a least square error fitting procedure, the parameters in Eq. (5.9) are defined as 

p=12.118; q=-0.126; r=-0.2055; s=-0.006; m=0.103; and u=0.016. In turn, the nRMSE for the DC power 

is 2.67 %. The Pmp,STC is 323.2 W, and ηSTC is 19 % (R² = 0.995867). Relatively to the STC data in Section 

3.8, such metrics present a -0.4 % difference.  

5.6.1.4 Durisch model: HCPV array 

This section tackles the problem of adapting the Durisch model to HCPV devices. The first task 

is to address the irradiance GNI in Eq. (5.8). Since HCPV devices respond only to the beam irradiance, 

GNI must be replaced by BNI. Besides the irradiance, the temperature is another factor that has to be 

considered: given that HCPV modules are more complex than flat-plate devices, measuring the cell 

temperature becomes a challenging task given that the cells are mounted on a circuit board, inside the 

PV module’s housing. Therefore, a common practice is to measure the heatsink temperature in HCPV 

modules. However, adopting such an approach leads to relatively high temperature deviations due to 

the thermal resistance presented by the several materials between the cells and the heatsink.  

In the present section, the Durisch model applied for HCPV modules is considered employing 

both the air and heatsink temperature measurements, and the results are compared in terms of the 

nRMSE, allowing the best-performing approach to be identified.  
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Using the heatsink temperature, Eq. (5.8) adapted for HCPV arrays becomes Eq. (5.10), where 

𝑇hs,0 is 25 °C. 

𝑃mp,c = 𝐴 BNI 𝑝 [𝑞
BNI

BNI0
+ (

BNI

BNI0
)

𝑚

] [1 + 𝑟
𝑇hs

𝑇hs,0
+ 𝑠

AM

AM0
+ (

AM

AM0
)

𝑢

] (5.10) 

In Eq. (5.10), the reference irradiance BNI0 is 1000 W/m², and 𝑇hs denotes the heatsink 

temperature. The parameters in Eq. (5.10) were identified as p=18.978; q=0.344; r=-0.206; s=-0.625; 

m=0.034; and u=0.735. The nRMSE on the DC power was found as 6.61 % (R² = 0.936606), while the 

Pmp,STC = 87.4 W and ηSTC = 33.4 %. Compared to the STC metrics found in Section 3.8, this represents a 

difference of 4.7 %. 

It is worth recalling that the STC data calculated in Section 3.8 comes from single I-V 

measurements and translation methods, whereas the STC data in the present section were calculated 

with the contribution of all measurements within each PV array’s dataset.  

When using the air temperature, the model equation takes the form of Eq. (5.11), where  𝑇air,0 

is 25 °C. 

𝑃mp,c = 𝐴 BNI 𝑝 [𝑞
BNI

BNI0
+ (

BNI

BNI0
)

𝑚

] [1 + 𝑟
𝑇air

𝑇air,0
+ 𝑠

AM

AM0
+ (

AM

AM0
)

𝑢

] (5.11) 

In this case, p=16.194; q=0.118; r=-0.361; s=-0.3000; m=0.046; and u=0.384, and the nRMSE 

on the DC power is 6.15 % (R² = 0.945996), which is below the nRMSE observed when using the 

heatsink temperature to model the power with Eq. (5.10). 

As a comparison resource, the model developed by Benhammane et al. (2021), when applied 

to the same dataset, produced an nRMSE of 6.38 %, standing between the results provided by Eqs. 

(5.10) and (5.11).  

5.6.2 Comparison of models using Tair and Tc 

Figure 5.23 summarizes the nRMSE levels found when using the models given in Section 3.8 

and the ones provided in the present section, to compute the power for the four PV arrays.  

 

Figure 5-23: nRMSE levels per technology and model method 
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In Fig. 5-23, the “Tair model” refers to the models given in Section 5.5.1 (Eqs. (5.1) to (5.4)), 

which use the relevant external parameters, for each PV array. In turn, the “Tc model” refers to the 

models given by Eqs. (5.8) to (5.10). For the p-Si and m-Si technologies, the models provided in this 

section – relying on GNI, Tc and AM – presented smaller error levels, despite the fact that fewer input 

parameters are used, in comparison with the models using Tair. The bifacial and HCPV arrays were 

better described by the models given in Section 5.5.1. The greatest modeling error difference was 

found for the HCPV array: in this case, the model given by Eq. (5.10) relies on the heatsink temperature. 

In contrast, the model provided in Section 5.5.1 (Eq. 5.4), besides using the air temperature instead of 

the heatsink temperature, also includes the normal diffuse fraction and the absolute humidity. It 

should be noted, though, that including more variables as inputs to a model does not necessarily lead 

to a better model performance. This is precisely the case of the models for the p-Si and m-Si arrays 

studied in this thesis. Such arrays were better modelled by the Durisch model, which uses only GNI, Tc 

and AM as inputs.  

5.6.3 STC power using the Durisch models 

As mentioned earlier, the model introduced by Durisch et al. (2007) offers the valuable 

capability of allowing the STC efficiency and power to be easily calculated, by means of Eqs. (2.26) and 

(2.28). Since the STC power levels determined in Section 3.8 were, for all PV modules, lower than the 

datasheet specifications, an extra confirmation is highly desired. The STC efficiency and power 

presented in this section were computed based on an approach that differs from the methods used in 

Section 3 in the following respects:  

- The measurements described in Section 3.8 consider only one I-V curve for each PV module. 

In contrast, the coefficients for the Durisch model were calculated based on all measurements 

within the datasets; 

- The techniques developed in Section 3.7 and applied in Section 3.8 rely on analytical models 

based on the electrical circuit for a PV cell. In contrast, the Durisch model relies on optimization 

of parameters, targeting the minimization of the total squared error; 

- The measurement hardware used to perform the calculations of Section 3.8 is totally different 

from the equipment used during the one-year measurement campaign. It is worth noting that 

the measurements described in Section 3.8 were carried out before the modules were 

assembled on the tracker. That is, not only the irradiance and temperature meters were not 

the same; but the PV data acquisition itself was different in concept: 200 ms I-V sweeps as 

described in Section 3.8, and a year-long campaign considered in this section, to adjust the 

model coefficients. 

Despite the differences, the STC efficiency and power levels, found via Eqs. (2.26) and (2.28), 

agree with the STC data found in Section 3.8, as shown in Table 5-12. This is a relevant finding, since 

Section 3.8 presents significant differences between the manufacturers’ datasheets STC specifications 

and the STC ratings calculated using the translation methods of Section 3.7, especially for the m-Si and 

bifacial devices. The power values in Table 5-12 are per module, to allow easier comparison with the 

datasheet ratings. The greatest deviation referring to the STC power in Table 5-12 regards the m-Si 

modules. The difference, however, is within the uncertainty level determined in Section 3.9. 
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Table 5-12: STC metrics for power, per module, for the four PV arrays 

Source 
STC power rating (W) 

p-Si m-Si Bifacial HCPV 

Section 3.8 

(single-diode model) 
163.2 305.0 324.4 83.5 

Section 5.6.3 

(Durisch model) 
164.0 316.3 322.5 85.7 

Datasheet 175.0 327 335 87.5 

5.7 BIFACIAL ARRAY: EQUIVALENT IRRADIANCE AND BIFACIAL GAIN 

This section is devoted to exploring particularities regarding the bifacial PV array, which 

remarkably differs from the p-Si, m-Si and HCPV in terms of operation. Given that bifacial devices are 

considered very promising in terms of cost-effectiveness, this thesis includes the present chapter as a 

means of contributing to the PV scientific community and the industry, with novel approaches to 

simplify the quantification of the effective irradiance being converted by the bifacial PV array and the 

bifacial gain (BG). The validation of the proposed methods was carried out using the data acquired 

during the development of the thesis. 

Due to the difficulty in assessing the rear-side irradiance (Grear) on bifacial modules (especially 

for large PV arrays), the present work concerns the determination of the bifacial gain without the need 

of measuring Grear, and without relying on monofacial PV modules for the calculation of the bifacial 

gain. For the validation, monitoring of a bifacial PV array in real operating conditions was carried out. 

This study differs from literature in the following: 

- All bifacial modules were individually tested before the array was assembled. Even though 

the modules were new, I-V testing was carried out (Section 3.8) to ensure that all modules were 

performing correctly, but most importantly, to allow accurate outdoor measurements with each side 

(covering the other side). This allowed quantifying the bifaciality factor φ for each module – necessary 

for the validation phase – as well as the actual STC ratings, obtained through modeling methods 

explained in Section 3.7. 

- A novel method to quantify the effective irradiance is introduced; such a method uses the 

operating current as an input, that is, front and rear-side irradiance, module mismatch and uneven 

irradiance distribution are automatically taken into account because such factors impact the electrical 

performance of the PV array. Testing of this method was carried out with the bifacial array operating 

in real field conditions, that is, using a non-ideal setup and under uncontrolled conditions;  

- I-V curves of the entire array (on the tracker) were measured before the measurement 

campaign started. They are representative of all modules operating in series, thus considering the 

effects of module mismatch, and serve to check that the series-connected modules are performing 

well and presenting a smooth I-V curve;  

- Another advantage of the proposed method is that the bifacial gain is calculated without the 

need of a reference monofacial PV system. While the studies of Baloch et al. (2020), Burnham et al. 

(2019), Gu et al. (2021), Hayibo et al. (2022), Muehleisen et al. (2021), and Stein et al. (2018) considered 
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monofacial modules as a comparison resource for the calculation of the bifacial gains, the present 

section presents a novel method for bifacial gain determination relying solely on monitoring of the 

bifacial array. The bifacial module’s front-side individual contribution is quantified, thus being 

representative of a monofacial module with the same ratings as the bifacial. 

5.7.1 Consolidated bifacial modules theory 

Basic concepts regarding bifacial modules were introduced in Section 2.2.2. The present 

section regards further particular aspects of bifacial modules, along with the relationship of the total 

current and power with the contributions of each side of the devices. 

The bifaciality 𝜑 was defined in Section 2.2.2 as 

𝜑 =
𝐼sc,rear

𝐼sc,front
 , (2.9) 

whereas the effective irradiance was introduced in Section 2.2.2 as 

𝐺E  =  𝐺front  +  𝜑 𝐺rear . (2.18) 

Such equations were rewritten in this section because they consist of the foundation for the 

method presented further in the following.   

The classical expression for the BG is expressed by Eq. (5.12). It has been employed in several 

works in the literature and relies on the performance of a monofacial PV system as a reference to 

calculate bifacial gain.  

BG =
∑ 𝑃mp,bifacial

∑ 𝑃mp,monofacial
 
𝑃mp,STC,monofacial

𝑃mp,STC,bifacial
− 1 (5.12) 

5.7.2 Novel method: calculating GE from the Imp 

It is known that, given the strong correlation between the Isc and GNI parameters, a short-

circuited PV module can be employed as an irradiance sensor. In fact, Razongles et al. (2016) studied 

the validity of such a concept for bifacial modules, and concluded that considering Isc, the behavior of 

a bifacial module is the same when the current is produced by the front or rear-side. However, for the 

case of a bifacial PV array in real operating condition, it is undesirable to shift the operating point (V, 

I) from (Vmp, Imp) to (0, Isc) to calculate the irradiance since this fatally results in a yield loss, given that 

the output power of a PV module at Isc is zero. 

The approach proposed in the following method for GE calculation is based on the dependence 

of Imp on the irradiance, as described by Abe et al. (2020b) and experimentally tested by Abe et al. 

(2020a). The method is based on the fact that the  temperature coefficient for Imp is small, as discussed 

by Abe et al. (2020b) and Seapan et al. (2020). This way, being Imp mostly a function of the irradiance, 

the Imp of a bifacial module can be used as a reference to calculate the equivalent irradiance GE by 

means of Eq. (5.13), which is newly introduced in this thesis.  
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The equivalent irradiance for a bifacial module, as calculated by Eq. (5.13), considers the 

irradiance effectively being converted by the PV device, thus, it intrinsically considers the effect of non-

uniform irradiance distribution on the rear-side.  

𝐺E = 1000
𝐼mp

𝐼mp,front,STC
  (5.13) 

Equation (5.13) is a linear relation of the instantaneous Imp value with Imp,STC, which refers to 

the front surface of the bifacial module for STC condition. For this reason, the current is written 

𝐼mp,front,STC in Eq. (5.13), to ensure clarity. In a similar way, the front irradiance Gfront is expressed by 

Eq. (5.14), where 𝐼mp,front is the portion of Imp referring to the front-side contribution. It should be 

mentioned that Gfront is the GNI; however, the subscripts “front” and “rear” have been adopted in the 

present section to ensure clarity and avoid confusion. Similarly, 𝐺rear is GNIrear. 

𝐺front = 1000
𝐼mp,front

𝐼mp,front,STC
  (5.14) 

Following the same idea, Grear is calculated using Eq. (5.15), where 𝐼mp,rear is the portion of Imp 

owing to the rear-side contribution, whereas 𝐼mp,rear,STC is the current of maximum power for STC 

referring to the rear-side. 

𝐺rear = 1000
𝐼mp,rear

𝐼mp,rear,STC
  (5.15) 

Considering the ratio Isc / Imp constant for both sides of the bifacial module, the expression for 

𝜑 is rewritten as Eq. (5.16). 

𝜑 =
𝐼mp,rear,STC

𝐼mp,front,STC
  (5.16) 

Then, from Eq. (5.16) in Eq. (5.15), Grear is expressed in Eq. (5.17) in terms of 𝐼mp,front,STC to 

keep the same denominator as for GE in Eq. (5.13) and Gfront in Eq. (5.14). 

𝐺rear = 1000
𝐼mp,rear

𝜑 𝐼mp,front,STC
   (5.17) 

From Eqs. (5.13), (5.14) and (5.17) substituted in Eq. (2.18) results Eq. (5.18). 

1000
𝐼mp

𝐼mp,front,STC
 = 1000

𝐼mp,front

𝐼mp,front,STC
+   𝜑 1000

𝐼mp,rear

𝜑 𝐼mp,front,STC
 (5.18) 

Equation (5.18) can be simplified to yield Eq. (5.19), which is the relation between the 

operating currents in a bifacial module. Equation (5.19) is precisely the relation which allows extending 

the proposal described in Abe et al. (2020b) for bifacial modules. 

𝐼mp  = 𝐼mp,front + 𝐼mp,rear  (5.19) 
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5.7.3 Separating the power contributions of each side of a bifacial module 

The previous sections presented the assumptions and calculations to relate the irradiance (GE, 

Grear, Gfront) and the current contributions (Imp, Imp,front, Imp,rear). The present section, in turn, presents 

expressions for computing the power contributions referring to the front and rear sides, respectively, 

Pmp,front and Pmp,rear. The operating current Imp can be easily measured during the operation of a PV array. 

This can be accomplished using built-in metering from the inverter (for example, via digital 

communication as in this study) or using dedicated measuring hardware. The inverter positions the 

operating point at the maximum power point (MPP), that is, voltage Vmp and current Imp. Once the Imp 

value is known, the equivalent irradiance (GE) can be computed using Eq. (5.13).  

The power contributions of the front and rear-sides are expressed by scaling Pmp and using a 

power balance, as shown in Eq. (5.20) and Eq. (5.21). It is worth noting that the relations in (5.20) and 

(5.21) already account for the temperature effect because the Pmp value comes from an on-site 

measurement. The Gfront, which is an input for Eq. (5.20), should be measured with a device presenting 

reasonable spectral match with the bifacial array. In this thesis, the Gfront sensor is a monocrystalline 

PV cell, therefore, spectrally matched with the bifacial array. 

𝑃mp,front  = 𝑃mp

𝐺front

𝐺E
  (5.20) 

 

𝑃mp,rear  = 𝑃mp − 𝑃mp,front  (5.21) 

5.7.4 Novel method: bifacial gain calculation without a reference PV system 

Differently from the classic approach of Eq. (5.12), the BG calculation proposed in this section, 

given in Eq. (5.22), relies on Gfront, Imp and Pmp measurements referring to the bifacial device, allowing 

the contributions of the front and rear-sides of the PV array to be quantified separately.  

BG =
∑ 𝑃mp

∑ 𝑃mp,front
− 1 (5.22) 

 In Eq. (5.22), 𝑃mp is a measurement coming from the inverter’s metering system, whereas 

𝑃mp,front is computed via Eq. (5.20), with 𝐺E given by Eq. (5.13). 

5.7.5 Validation of the proposed method for computing GE, Pmp,front and BG 

The validation phase for the method proposed in this study consists of three steps. First, the 

calculation of GE using Eq. (5.13) is compared to GE computed via Eq. (2.18), which considers Gfront and 

Grear measurements. Then, a reference Pmp,front is determined from Gfront and TC measurements applied 

to the international standard IEC-60891 (IEC, 2009), as developed in Section 3.7.1, and compared with 

Pmp,front obtained from Eq. (5.20). Finally, the bifacial gain (BG) is computed taking into account the m-

Si PV array installed on the same tracker as the bifacial array, using Eq. (5.12), and compared with the 

BG computed using Eq. (5.22). A schematic illustration of the validation process is provided in Fig. 5-

24. 
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Figure 5-24: Schematic representation for the validation of the proposed method 

5.7.6 Application: estimation of GE and decomposition into Gfront and Grear 

The present section concerns the estimation of the effective irradiance GE being converted by 

the bifacial PV array. Given that the array operating point is determined by the inverter’s maximum 

power point tracker (MPPT), some oscillations in current and voltage occur because the MPPT is 

constantly shifting the operating point, seeking for the maximum power. Since Imp presents noise due 

to this constant variation, the GE calculated using Eq. (5.13) inevitably presents noise as well, as 

illustrated in Fig. 5-25. 

An undesirable effect of the noise in GE is the fact that, in some cases, its value becomes lower than 

the front irradiance Gfront. Consequently, the rear irradiance calculated using Eq. (5.17) presents 

negative magnitude, which is inconsistent with the physical meaning of Grear.  

 

Figure 5-25: Unfiltered irradiance levels for GE, Gfront and Grear 

 To reduce the MPPT-induced noise on Imp, an averaging filter was applied. In this study, a 10-

period moving average was employed as a noise-reduction measure. The resulting curves are 

presented in Fig. 5-26, where a significant improvement in noise is observed.  
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Figure 5-26: Filtered irradiance levels for GE, Gfront and Grear 

Despite the filtering, there are still situations where the resulting Grear is a negative value, for 

instance, during steep variations in front-side irradiance, where the MPPT cannot quickly track the 

optimal Imp level. To avoid negative Grear values, the rear-side irradiance is only calculated for cases 

where GE > Gfront, otherwise, Grear is set as zero.  

Considering the irradiance curves depicted in Fig. 5-26, the magnitude balance follows Eq. 

(2.18), that is, if Grear is scaled by a factor 𝜑 and then added to Gfront, the result is GE. 

Correlating the temperature-corrected array Pmp with the GE calculated using Eq. (5.13) results 

in the plot shown in Fig. 5-27. A linear fit presents angular coefficient equal to 1.958 and linear 

coefficient of -2.688, that is, for an irradiance level of 1000 W/m², the power is roughly 1955 W. Such 

a power value is close to the array Pmp,STC found during the initial tests: 6 x 324.4 W = 1946.4 W, that is, 

a 0.45 % relative difference. This shows that the estimation of GE by means of Eq. (5.13) provides a 

suitable measure for the total irradiance reaching the bifacial module. 

 

Figure 5-27: Correlation between temperature corrected array Pmp and GE calculated via Eq. (5.13)   

5.7.7 Application: determination of Imp,front from Gfront and Imp,rear from Grear 

The decomposition of Imp into Imp,front and Imp,rear presented in this section is for verification 

purpose only, since this step is not necessary for the calculation of the power contribution of each face 

of the bifacial module.  
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Figure 5-28: Decomposition of Imp into Imp,front and Imp,rear 

The front-side irradiance is a measured quantity, therefore, the respective value of current 

produced by the front-side individually is computed using Eq. (5.14) solved for Imp,front. Similarly, Imp,rear 

is obtained from Eq. (5.17) using the Grear calculated in the previous steps, from Eq. (2.18).  

In Fig. 5-28 it is shown that Imp = Imp,front + Imp,rear, and such a relation is valid for every time step 

contained in the dataset. 

5.7.8 Application: decomposition of Pmp into Pmp,front and Pmp,rear 

The power fractions of Pmp owing to the front and rear-sides of the bifacial module were 

calculated using Eqs. (5.20) and (5.21). The resulting curves for a given day are illustrated in Fig. 5-29, 

where it can be observed that Pmp = Pmp,front + Pmp,rear.  

 

Figure 5-29: Decomposition of Pmp into Pmp,front and Pmp,rear 

5.7.9 Application: bifacial gain calculation 

From the novel method proposed in this study, the BG for the modules under study could be 

computed without a monofacial PV array and without measurements of the rear-side irradiance. The 

BG value found using Eq. (5.22) is 6.24 %.  

The study conducted by Burnham et al. (2019) also considered a dual-axis tracker and bifacial 

modules with 𝜑 = 0.62 (in the present study, 𝜑 = 0.64). Despite the similarities,  Burnham et al. (2019) 

found BG = 4 %, which is 35 % smaller than the BG found in the present work. This fact illustrates how 

similar bifacial systems can perform differently because of site-specific parameters. 
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5.7.10 Validation, step 1:  using a back-side irradiance sensor to calculate GE  

This section provides an assessment on how the method proposed in Section 5.7.2 compares 

with GE calculated using actual rear-side irradiance (Grear,meas) measurements. The values for Grear,meas 

were measured using a small calibrated PV irradiance sensor positioned at the center of the rear-side 

of the PV array, as mentioned in Section 3.4. The sensor model is identical to that used to measure the 

front-side global irradiance. It is worth emphasizing that the use of a rear-side irradiance sensor is 

considered in this section of the section only for checking purposes since the proposed method does 

not require Grear measurements for the calculation of GE, Pmp,front and BG using Eqs. (5.13), (5.20) and 

(5.22). 

The two vectors for GE – calculated using Eqs. (5.13) and (2.18) are presented in Fig. 5-30 as a 

function of time for four days, each with a different sky condition. Fig. 5-30 shows a good agreement 

between the GE calculated as a function of Imp (Eq. 5.13) and the GE computed using Gfront and Grear (Eq. 

2.18), even in transient and low-irradiance conditions. The plots in Fig. 5-30 illustrate the suitability of 

the calculation of GE using the Imp determined by the inverter’s MPPT. 

 

Figure 5-30: GE calculated using Eqs. (5.13) and (2.18) 

Plotting the levels of GE obtained from Eqs. (5.13) and (2.18) results in Fig. 5-31. 

 

Figure 5-31: Correlation for GE from Eq. (5.13) x GE from Eq. (2.18) 
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In Fig. 5-31, a correlation factor greater than 0.999 was found using the Matlab function 

corrcoef (Pearson correlation coefficient). The nRMSE level for the data is 2.88 %, whereas the 

correlation slope is 1.0062. Factors which contribute to the spread shown in Fig. 5-31 are the MPPT, 

which introduces fluctuations in the operating current, which is not compensated in Eq. (5.13). 

5.7.11 Validation, step 2: calculating the front-face power using IEC-60891 

This part of the validation process deals with the Pmp decomposition method proposed in 

Section 5.7.3. Given that Pmp and Gfront are measured quantities, the quantification of Pmp,front by means 

of another method allows indirect assessment of the correctness of the GE estimation via Eq. (5.13). 

The method introduced in Section 3.7.1, was employed for the determination of the reference Pmp,front. 

IEC-60891 was applied to model the electric behavior of the module’s front-side only, as if the bifacial 

module were a monofacial device. For that, two I-V curves referring to the bifacial module (with the 

rear-side covered) were used to identify the three unknown parameters for the IEC-60891 voltage 

correction equation (from Section 4.3.2: a = 0.013, Rs = 0.43 Ω and k = 0.002 Ω/K). This way, using Tc 

and Gfront as inputs, the voltage and current provided by IEC-60891 refer to a theoretical monofacial 

module, and the product between voltage and current results in the front-face power contribution. 

The comparison between the Pmp,front calculated using Eq. (5.20) and Pmp,F calculated using IEC-

60891 was carried out both as a function of time (Fig. 5-32, considering four days with different sky 

condition) and as a correlation plot (Fig. 5-33), considering all measurement points within the dataset. 

 

Figure 5-32: Comparison of the Pmp,front calculated from Eq. (5.20) and from IEC-60891 

The plots of Pmp,front illustrated in Fig. 5-32 show a good fit: the general form of the curves agree; 

however, some low-amplitude noise is observed in the curve of Pmp,front calculated using Eq. (5.20). The 

reason for the noise is the propagation of the residual noise on GE, which in turn is caused by the 

oscillations on Imp introduced by the MPPT, even after filtering was applied. 
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Figure 5-33: Correlation between Pmp,front from Eq. (5.20) and from IEC-60891 

Constructing a plot of Pmp,F from Eq. (5.20) and Pmp,F (IEC-60891) results in Fig. 5-33, where the 

correlation coefficient is greater than 0.999. This way, it is shown that the decomposition of Pmp into 

Pmp,F + Pmp,R is consistent with the front-side irradiance and module temperature registered in the 

dataset, which were used to specify the operating condition for the application of the IEC-60891 

correction method. Consequently, the calculation of GE via Eq. (5.13) is also consistent, given that GE is 

the only calculated input parameter in Eq. (5.20). Calculating the nRMSE for the data points of Fig. 5-

33 results in 2.68 %. 

5.7.12 Validation, step 3: using a monofacial PV array to calculate the bifacial gain 

The BG calculated using the method proposed in Section 5.7.4, using Eq. (5.22) resulted in 6.24 

%. In turn, calculating the BG based on the performance of a monofacial PV array added for 

comparison, as carried out in numerous studies in literature using Eq. (5.12), provides BG = 6.69 %, 

which corresponds to a relative difference of 7.2 %. Such a deviation results from the coupled errors 

associated to the calculations via Eqs. (5.13) and (5.20). 

It is worth noting that Eq. (5.12) takes the STC power ratings into account. When this 

experiment began, both bifacial and monofacial modules were new, and the STC ratings were 

identified outdoors during the initial I-V tests described in Section 3.7. Therefore, irradiance and 

temperature measurement errors are possible sources for deviations between the real and calculated 

STC ratings, which affects the calculation of the BG via Eq. (5.12).  

On the other hand, the BG calculated using Eq. (5.22) relies on the bifacial module’s operating 

current, which is not temperature-compensated and presents fluctuations due to the MPPT action. 

These factors are error sources for the calculation of BG via Eq. (5.22).  

5.7.13 Limitations of the proposed method  

Since the method to compute GE relies on the maximum power current, it is essential that the 

PV array operates at the maximum theoretical power point, according to the operating condition 

defined by GE and Tc. However, in practice there are a number of factors that can potentially shift or 

prevent the operating point to be at the maximum power point.  

The MPPT might force the PV array to operate far from the MPP during fast-changing 

irradiance levels, for example, in windy, cloudy days, where the irradiance profile shows steep 
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variations. Given that it is not possible for the MPPT action to be instantaneous, the array’s operating 

point is likely to be out of the MPP short after abrupt irradiance changes.  

Another reason for a PV array to operate far from the MPP is the so-called clipping. Such an 

effect occurs when the DC power is greater than the inverter’s rated power. Unusually high DC power 

levels can be found in cold, clear-sky days, in which the low temperature leads to relatively high voltage 

levels, whereas high irradiance leads to relatively high current levels. As a result, it is possible for the 

DC power to be significantly higher than usual, and if such a level is greater than the inverter’s rating, 

the operating point of the PV array will be intentionally shifted. This will reduce the PV array power 

output to a level within the inverter’s capacity, and as a result, the DC power will not be coherent with 

the operating condition defined by GE and Tc, and Eq. (5.13) will not produce reliable results.  

As for the clipping, a condition termed curtailment also might force the PV array to operate 

outside the MPP. Inverters can sense the grid operating condition, and in cases where the AC voltage 

is above the rated limit – for example due to a local excess of reactive power – the inverter would 

reduce the supply of electricity to the grid, forcing the PV array to operate outside the MPP. Another 

parameter monitored by the inverters is the grid AC frequency. Frequency levels above the nominal 

reference are an indication of an imbalance between instantaneous demand and supply. If a system 

presents more supply than demand, the grid frequency is likely to rise, and the PV inverters will 

respond reducing the power supplied to the grid. As a result, the operating power of the PV array will 

not be coherent with the current levels of GE and Tc; therefore, Eq. (5.13) will not provide valid results 

for GE. 

One way to overcome the method's dependency on the inverter’s MPPT is through the use of 

module-level I-V trace equipment, as proposed by Marquis et al., (2022) and Quiroz et al. (2015). This 

would allow Eq. (5.13) to be used in all operating conditions, regardless of the inverter's state. 

Finally, the proposed method considers that the bifacial PV array is not faulty, shaded or soiled.   

5.7.14 Remarks on the proposed method to calculate GE and BG 

Section 5.7 considered the problem of determining the effective irradiance for bifacial PV 

modules from the operating current, without requiring rear-side irradiance measurements. Measuring 

the rear-irradiance of PV arrays in real operating conditions is a challenging task given the non-

uniformity of radiation along the rear surface of the PV modules.  

The greatest advantage of the method proposed in this section is that the total irradiance 

effectively being converted by the PV array is quantified, since the operating current Imp is used as the 

source for GE calculation. The technique thus allows splitting Pmp into two fractions, Pmp,front and Pmp,rear, 

which are the power contributions of each side of the bifacial PV array, allowing the bifacial gain to be 

computed without the need of a reference monofacial PV system. 

The main limitation of the proposed method is the strong dependency on the inverter’s MPPT. 

Thus, the method will not provide reliable estimations of GE for cases where the PV array is not 

operating at the maximum power point. However, the method can still be implemented using I-V 

tracers, which are able to determine the MPP without relying on the inverter's MPPT. 
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The method was validated in the following respects:  

- The GE calculation using Imp via Eq. (5.13) was checked against the consolidated approach 

based on the bifaciality index and rear-side irradiance measurements using (2.18), presenting nRMSE 

of 2.88 %;  

- The Pmp,front calculated using Eq. (5.20) was compared with the results from IEC-60891, 

showing nRMSE of 2.68 %; 

- Finally, the bifacial gain calculated with Eq. (5.22) was compared to the BG provided by Eq. 

(5.12), resulting in 6.24 % and 6.69 %, respectively. 

The study presented in this section was published in 2023, in the IEEE Journal of Photovoltaics 

(Abe et al., 2023). It consists the third scientific article published within the context of this thesis. 

5.8 SUMMARY OF PV ARRAYS PERFORMANCE: MONTHLY AVERAGES 

The data in Fig. 5-34a,b show the monthly average values for the environmental parameters, 

whereas the PV arrays’ operational metrics are displayed in Fig. 5-34c,d. The aim of this section is to 

present a general view regarding the behavior of the arrays, and correlate them with the operating 

condition, monthly. 

The metrics displayed in Fig. 5-34a are the irradiance components (left-side axis) and the air 

temperature (right-side axis). The average GNI and BNI vary according to the number of days with 

cloudy sky, showing no regular pattern throughout the year. On the other hand, GNIrear presents a 

smooth variation, with its maximum value being reached during summer. Unsurprisingly, the average 

air temperature shows a correlation with the season of the year. For all PV arrays studied, the 

parameters shown in Fig. 5-34a are the most influencing. On the other hand, the data in Fig. 5-34b 

show the AM and vwind sharing the left-side axis; and the absolute humidity on the right-side axis. The 

AM is a calculated metric, and thus presents a smooth variation through the year. The absolute 

humidity shows a correlation with the ambient temperature, illustrating the fact that the hotter the 

air, the greater its capacity of holding water vapor. 

The plot in Fig. 5-34c shows the average PR, as calculated by Eq. (2.24). Although PR is 

calculated from Pmp and irradiance (GNI for p-Si and m-Si; GE for bifacial; and BNI for HCPV), it does not 

follow the irradiance behavior. The reason is the strong influence of the irradiance on Pmp, and the fact 

that the latter composes the numerator of Eq. (2.24), whereas the former composes the denominator. 

The variations are thus partially compensated in the calculation of PR. In turn, the air temperature, 

along with the irradiance, strongly influence the arrays’ temperature, which is not compensated in Eq. 

(2.24). This way, PR correlates well with the air temperature, for all PV arrays. In Fig. 5-34c, the HCPV 

array presented the smallest PR levels, since this is the most temperature-sensitive array. Similarly, the 

p-Si array presented the second smallest PR levels; the temperature coefficient for power (γ) for this 

array is located between the γ referring to the HCPV and m-Si and bifacial arrays – the two present 

similar γ. These conclusions show that Fig. 5-34c is a valuable resource to visualize the temperature 

influence on the PV arrays through the year. 
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Figure 5-34: Monthly average values for the external parameters and PV array metrics 

In turn, the plot in Fig. 5-34d shows the average normalized array power. Differently from the 

PR plots, which compensate the irradiance changes, the power plots clearly show the deficient power 

delivered by the HCPV array. As mentioned before, although this array presents the greatest efficiency, 

its irradiance source – BNI – is not as available as the GNI. Since the rated power is referenced to BNI 

= 1000 W/m², the normalized power is shown well below the power curves referring to the remaining 

technologies studied. Fig. 5-34d also shows that the normalized power referring to the p-Si and m-Si 

arrays are quite similar, with the p-Si array showing slightly smaller levels in comparison to the m-Si 

array. This is explained by the greater γ of the p-Si array, compared to the m-Si. The normalized power 

referring to the bifacial array is the greatest among all arrays. The reason for such high normalized 

power levels lies in the use of the STC ratings as the reference, which consider only the front-side 

contribution. Thus, given the contribution of the rear-side of the bifacial PV array operating outdoors, 

the normalized power presents a gain.  

5.9 SUMMARY OF PV ARRAYS PERFORMANCE: ANNUAL YIELD 

A reasonable way to summarize the performance of the PV arrays is by means of the annual 

normalized PV energy, of final yield. It is calculated by the ratio between the energy (in kWh) and STC 

power (in kW), resulting in an indicator with unit in hours. This results in 1536 h for p-Si; 1726 h for m-

Si; 1833 h for bifacial; and 995 h for HCPV.  
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Similarly, the solar resource is calculated by the ratio between the solar energy (in kWh/m²) 

and the reference irradiance (in kW/m²). This is the reference yield, measured in hours. The results are 

1987 h for GE; 1846 h for GNI; and 1312 h for BNI.  

The annual PR (PRa) is thus computed by the ratio between the final yield and the reference 

yield, resulting in 0.83 for p-Si; 0.94 for m-Si; 0.93 for bifacial; and 0.76 for HCPV.  

These results are debatable: the final yield represents the energy supplied by a PV array per 

unit of installed power. In this sense, the PV arrays considered in this work can be ordered from 

greatest to smallest productivity as follows: bifacial, m-Si, p-Si and HCPV. However, the PRa is not in 

agreement with such an ordering, since it presents PRa =0.93 for the bifacial array and PRa =0.94 for 

the m-Si. It is worth recalling that the calculation of PRa for the m-Si modules considers GNI, whereas 

for the bifacial array, it considers the effective irradiance GE. Thus, the PRa calculation is compensated 

for the irradiance; but it is not for the temperature. As stated in Section 5.6, the temperature referring 

to the bifacial array is 2 °C smaller than for the m-Si modules. However, the temperature coefficient 

for the DC power is -0.35 %/°C for the m-Si modules, and -0.45 %/°C for the bifacial (as per Section 

5.2). For the m-Si array operating at 38.5 °C and the bifacial at 36.5 °C (the average annual values), the 

power losses referring to the temperature are 9.5 % greater for the bifacial modules than for the m-Si. 

This means that, considering the average annual records, the higher temperature coefficient of the 

bifacial modules is more significant than the lower operating temperature; as a result, the final effect 

on the bifacial array’s power is a reduction. This consists of a plausible explanation for the bifacial 

array’s PRa being lower than the PRa for the m-Si. Despite the lower PRa, the normalized energy 

delivered by the bifacial modules is higher. Considering the current scenario, where bifacial and m-Si 

modules present virtually the same cost per watt, the bifacial technologies are undoubtedly the best 

option, especially for cases where: a) the bifaciality factor φ is high, thus increasing the bifacial gain; b) 

the system is installed with enough clearance from the ground, to enable uniform rear-side irradiance; 

and c) the ground is covered with paint or materials favorable to provide a high albedo. 

The final yield referring to the m-Si array was 12.5 % greater than that of the p-Si. The fact that 

the p-Si modules present smaller efficiency than that of m-Si is already accounted in the calculations, 

which consider the nominal power ratings whereas the array area is not concerned. When checking 

the temperature records, very close Tc levels (0.2 °C difference, on average) were found for the two 

arrays. The difference lies in the temperature coefficients for power: -0.42 %/°C for p-Si and -0.35 %/°C 

for m-Si, thus justifying the smaller PRa for the p-Si array. 

In turn, the HCPV modules presented the poorest performance in this study. Not only they 

present the highest cost per watt among the four technologies studied; they presented, also, the 

smallest final yield and PRa. In fact, these PV modules usually operate far from the STC ratings, since 

the reference BNI is 1000 W/m², which is quite a high level. Also, the HCPV array presented the highest 

power degradation with respect to the operating temperature. Moreover, due to the use of the Fresnel 

lenses for concentration, the HCPV array requires a high-precision dual-axis tracker, which further 

increases the initial investment and operating costs, both with maintenance and electricity 

consumption. Finally, the tracking is sensitive to the wind speed, and for certain wind speeds (30 km/h 

for the tracker used in this work), the HCPV array is set to the horizontal position to protect the tracker, 

at the expense of severely impairing the electricity production. 
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5.10 CONCLUSIONS FOR SECTION 5 

The studies regarding the effects of the external parameters on the PV arrays’ performance 

consist of the main tasks in this thesis, as they concern its main objectives. 

In this sense, the present section explored several different assessment approaches, enabling 

the identification of the most influencing variables for the DC power, for each technology.  

The analysis started with the correlations between the measured variables, with especial 

attention given to the relationship between the operating temperature and the power, under constant 

irradiance. Then, multivariable models were built and applied to classify the external parameters 

according to their ability to describe the arrays’ output power. Following, the sensitivity analysis was 

carried out based on filters and mathematical models. The influence of the back-side irradiance on the 

bifacial array’s performance was evaluated using traditional methods and novel approaches proposed 

in this work. Finally, a summary of the arrays’ performance used the energy metrics to present 

indicators such as the yield and annual performance ratios.  

The m-Si array was the least affected by the operating temperature, showing a coefficient of -

0.36 %/°C for the DC power. In turn, the p-Si and bifacial technologies presented similar thermal 

performance, showing temperature coefficients for power of -0.44 and -0.45 %/°C, respectively. The 

HCPV array presented the greatest dependence on the operating temperature, with a -0.57 %/°C factor 

for the output power.  

By using models for the DC power, the irradiance (GNI for m-Si and p-Si; GE for bifacial; BNI for 

HCPV) and temperature (Tair or Tc) were identified as the most important variables to describe the DC 

power, for all PV arrays; such a finding was already expected since PV literature largely presents models 

based on these two parameters. The models were built strictly in view to present low errors; their size 

and complexity were not regarded as relevant factors. The performance metric was the nRMSE, 

presenting 3.37 %, 1.84 %, 2.53 % and 5.06 %, respectively, for p-Si, m-Si, bifacial and HCPV. Due to the 

complexity and size, these models are not suitable for straightforward application. 

Operational models were built aiming to provide an adequate balance between simplicity and 

accuracy. Their complexity and size are significantly lower in comparison with the models previously 

mentioned; however, the performances are quite comparable: the nRMSE levels are 3.40 %, 1.84 %, 

2.56 % and 5.96 %, respectively, for p-Si, m-Si, bifacial and HCPV. This shows that using the external 

parameters in several terms and interactions, forming complex models, does not necessarily lead to a 

significantly better description of the DC power.  

Plots for the normalized power versus the external parameters showed that the HCPV array is 

the most sensitive for high levels of temperature, air mass and air humidity. When the records were 

filtered to consider cloudy days, the HCPV array was once again the most impaired, given its 

irresponsiveness to diffuse irradiance. Increasing wind speed presented a positive influence for all PV 

technologies; however, the HCPV array was the least benefited, given that the cells are enclosed within 

a metal housing. Since the external parameters present collinearity, a model-based multivariate 

sensitivity analysis was developed using the Principal Component Regression and artificial, 

independent variables, as inputs. The results provide quantitative scores for the sensitivity and 

corroborate the observations made via the filter-based analysis mentioned earlier.  
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The prospect of using measured array temperature to describe the DC power, instead for the 

air temperature, was evaluated as well. For that, a consolidated method described in the literature 

was employed, providing nRMSE levels of 3.08 %, 1,73 %, 2.67 % and 6.61 %, respectively, for the p-Si, 

m-Si, bifacial and HCPV arrays. These error metrics are smaller than those obtained with the use of Tair, 

except for the HCPV modules. Considering that only three parameters were used as inputs (irradiance, 

cell temperature and air mass), the error levels suggest a good modeling performance, particularly 

when considering that models with significantly higher size and complexity (using up to 6 input 

variables) presented nRMSE of 3.04 %, 1.62 %, 2.43 % and 5.12 %, respectively, for p-Si, m-Si, bifacial 

and HCPV. The error levels are quite similar, except for the HCPV array, showing, again, that the 

model’s performance is not necessarily enhanced with increasing complexity. All in all, it is shown that 

using measured array temperature instead of air temperature provided slightly better performance 

for p-Si and m-Si; however, the modeling quality was worse for the bifacial and HCPV technologies. 

The reason might be that the p-Si and m-Si modules are built in such a way that the temperature 

sensors, when attached to the rear of the modules, are closer to the PV cells, as in comparison with 

the bifacial and HCPV modules. It is worth recalling that the p-Si and m-Si modules present a thin EVA 

coating as the back cover, whereas the bifacial modules are glass-glass encapsulated; and the HCPV 

cells are contained within a metal box. 

The STC ratings were once again experimentally determined, using measurement instruments 

and methods totally different from those considered in the I-V curve measurement campaign carried 

out before the modules were mounted on the tracker. Once again, the STC power levels referring to 

all PV arrays were found as smaller than the datasheet specifications.  

As mentioned earlier, special attention was directed to the bifacial array, given the relevance 

of such a technology in the market. This way, assessments of a novel method to determine the 

effective irradiance GE produced a 2.88 % nRMSE, relatively to the traditional method using front and 

rear-side irradiance measurements. In turn, the bifacial gain is a valuable metric for the performance 

of a bifacial PV plant, relatively to a regular system with monofacial devices. In this thesis, it is proposed 

to calculate the bifacial gain by means of assessing the individual power contributions of each side of 

the bifacial array. This avoids the use of a reference monofacial PV array for the BG determination. The 

method to compute the power referring only to the front-side of a PV array presented nRMSE of 2.68 

%, relatively to assessments made using the international standard IEC-60891. The bifacial gain 

calculated using the novel method was 6.24 %, whereas the BG obtained using the traditional method 

– talking the m-Si system as the reference – produced BG = 6.69 %.  

Finally, a summary of the PV arrays’ performance showed normalized yields of 1536 h for p-Si; 

1726 h for m-Si; 1833 h for bifacial; and 995 h for HCPV. The annual performance ratios resulted in 

0.83 for p-Si; 0.94 for m-Si; 0.93 for bifacial; and 0.76 for HCPV. If the previous assessments highlighted 

the HCPV array’s undesired sensitivity to several operating parameters, always to a greater extent than 

for the other technologies, the performance summary shows the definitive metrics that make the 

HCPV the worst-performing among all four technologies evaluated in this work. 
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6 FINAL CONCLUSIONS 

The study described in this thesis covers several phases concerning the assessment of the 

influencing parameters on the behavior of four different PV arrays. The initial objective – the 

performance comparison between the four PV arrays and the development of a sensitivity analysis – 

has been accomplished; however, it is the total set of methods and assessments that actually 

constitute the actual contribution of this work.  

The thesis positively differs from other works in literature in the sense that extensive I-V curve 

measurement – with all PV modules involved – was carried out before the one-year measurement 

campaign started. Not only the modules integrity was checked; the I-V curves were used to determine 

the actual STC ratings of the modules, allowing the real reference performance to be quantified. 

As this work concerned several different metering equipment, an uncertainty analysis was 

performed, ranging from the individual meters’ uncertainty to the combined uncertainties for several 

parameters. The uncertainty levels were applied as references for setting data filters. 

A considerable amount of effort was directed to the initial data-related work: data collection, 

synchronization, interpolation, aggregation and filtering. Although such a task does not directly relate 

with the scientific focus of the thesis, it should be acknowledged that working with data is an 

unavoidable part of any experimental work. In particular, the amount of data recorded and produced 

required a dedicated software application for data exploration and visualization, given the dataset size: 

over 450,000 records and over 100 data attributes, consisting of measured and calculated quantities. 

The first step in the data analysis was the raking of the external parameters by relevance in 

describing the main output quantity of a PV array – the power. This was accomplished by means of a 

study based on the successive inclusion of different parameters to a multivariate model, which was 

optimized in each iteration, aiming to reduce the error between the predicted and measured power 

levels. For all PV arrays studied, as expected, the irradiance (GNI for p-Si, m-Si and bifacial; BNI for 

HCPV) was found as the most important variable, followed by the air temperature. In general, absolute 

humidity and wind speed were found as the least relevant parameters when describing the DC power, 

for all 4 PV arrays.  

The temperature coefficients were experimentally calculated: for the p-Si and m-Si, the 

experimental coefficients are very close to the datasheet specifications. For the bifacial and HCPV, the 

differences found suggest that more in-depth analysis should be carried out, be it by means of 

calculating the equivalent cell temperature from the open-circuit voltage; or by partially disassembling 

the PV modules to attach temperature sensors directly in contact with the PV cells. The former was 

not feasible in the context of this thesis, since the PV arrays operate at the Vmp, not the Voc; and the 

latter requires severely modifying the PV modules, which was outside the goals of this thesis.  

The PV array’s response to the external parameters (GNI, BNI, Tair, AM, Vwind, and AH, plus 

GNIrear and NDF) was studied using two different approaches. The first was purely experimental, in the 

sense that the data were classified, filtered and analyzed, whereas seeking for patterns of dependency 

between the output DC power and the external parameters. It was found that it is extremely unlikely 

to have all parameters but one unchanged – a condition which would be ideal for the sensitivity 

analysis. It happens that, in practice, some parameters such as the irradiance components, the 
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humidity and the temperature and the air mass and the irradiance are well correlated. This means that 

usually, changing one parameter implies changing another. The experimental sensitivity analysis was, 

therefore, carried out based on filtered ranges in which the parameters, which were intended to be 

static, were allowed to change. This resulted in a set of graphics in which it was concluded that the 

most distinguished array is the HCPV. Not only its response is dictated mainly by the BNI; its response 

to temperature is also the highest among the four PV technologies studied. Also, the HCPV was found 

as the most sensitive to the air mass and humidity changes. These results were corroborated by an 

analysis considering different operating scenarios, selected by filtering the data. 

The second data analysis approach was based on the experimental data; however, the data 

were used to build models. In fact, multivariable models were built for each PV array, and the error 

metrics were quantified. Such simple empirical models suffer from the collinearity between the input 

variables, resulting in an inaccurate coefficient attribution during the models’ optimization. To 

overcome this issue, a strategy based on vectorial transformation (PCR) allowed building new models, 

based on a set of parameters which are linearly independent. This allowed a more assertive coefficient 

attribution to the terms within the models. However, simply applying the original data records 

referring to the external variables, to perform a sensitivity analysis, is not suitable. It should be recalled 

that the external parameters are precisely the source of collinearity, which in turn required the 

adoption of the PCR modeling strategy. This way, the models obtained via the PCR were used along 

with artificial independent variables, which simulated the external parameters, however, without the 

collinearity. This resulted in a more refined sensitivity analysis. It was found that most of the results 

obtained at this phase were in agreement with the sensitivity analysis carried out based entirely on 

the experimental data. 

Another assessment concerned the use of the cell temperature, instead of the air temperature, 

as input for modeling. A consolidated empirical model was applied to the dataset, for the p-Si and m-

Si arrays, and a better modeling performance was obtained, whereas using less input parameters – 

only GNI, Tc and AM. In turn, for the bifacial and HCPV arrays, modifications regarding the irradiance 

input were required, given the particularities shown by such PV arrays. In both cases, the modeling 

performance when using Tc instead of Tair was slightly worse. The same Tc based model was employed 

to calculate the STC power ratings, which were within 5% in agreement with the results obtained via 

the initial tests, carried out before the modules were assembled on the tracker. Thus, this consists of 

a double indication that the datasheet ratings should always be critically assessed, given that 

datasheets do not necessarily reflect the actual performance of particular PV modules. This is caused 

by manufacturing tolerances and differences between production batches. Manufacturers provide a 

single datasheet for a given part number; not for every module produced.  

In addition, a novel method to calculate relevant metrics for bifacial modules was introduced 

in this thesis. Bifacial modules are among the most promising PV technologies, presenting the best 

cost-benefit to date. An important metric regarding bifacial systems is the equivalent irradiance. It 

represents the total amount of useful irradiance reaching the PV module, considering the difference 

in efficiency between the front and rear sides of the device. Usually, the effective irradiance requires 

the normal irradiance to be measured on the front and rear sides. This poses a problem, since the rear-

side irradiance on a bifacial array is likely to be non-uniform. Thus, several sensors would be necessary 



157 

 

to account for the uneven irradiance distribution, resulting in an increased cost. This thesis proposes 

a novel method to compute the effective irradiance, based on the operating current, thus not requiring 

any rear-side irradiance measurements.  

The metric which reflects the advantage of using a bifacial array is the bifacial gain. It expresses 

the extra energy obtained by the bifacial array, in comparison to a monofacial array of the same power. 

Traditionally, a side-measurement with a monofacial PV system is used to assess the bifacial gain. In 

this thesis, however, a novel method, based on the individual contributions of each side of the PV 

device, allows calculating the bifacial gain without the use of a monofacial reference system.  

Finally, a summary of the PV arrays’ performance allowed the visualization of the monthly 

average metrics, as well as the annual production-related features, for which final considerations were 

presented for all four PV arrays studied. 

This work considered actual PV systems operating outdoors, supplying electricity to the grid. 

Therefore, the external parameters are uncontrollable, and the inverters define the operating point 

for the PV arrays. This is a limitation of this study since it is not possible to confirm that the PV arrays 

were operating at the maximum power point. However, such a setup allowed the assessments to 

produce realistic metrics and conclusions considering the non-idealities present. 

All in all, it is expected that the results and methods presented in this thesis can somehow 

contribute to the PV scientific community and the PV industry.  
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APPENDIX A: VALIDATION FOR THE METHOD INTRODUCED IN SECTION 3.7.1 

A.1 Experimental resource: SPR-327 and TE-245 PV modules 

The dataset considered in this validation study was experimentally obtained from the DURASOL 

project, located at the SPE Laboratory UMR CNRS 6134, at University of Corsica, in France. The 

DURASOL was a multi-site project, aimed at supporting studies on PV module ageing, under different 

climates (Faggianelli et al. 2015). The dataset consists of electric measurements (I-V curves) of two 

different PV modules, along with solar irradiance and module temperature measurements. The 

measurements were carried out by tracing I-V curves of the modules, with 100 points each, obtained 

in about 1 second. The data collection covered almost 16 months, and the curves of each module were 

measured in 5-minutes interval. The irradiance measurements were carried out using a Kipp & Zonen 

CMP10 pyranometer, installed close to the modules and at the same inclination and orientation. At 

the back of each of the PV modules, PT100 sensors (RTD) were installed to measure their temperature. 

The experimental PV system is illustrated in Fig. A-1.  

 

     (a)                                              (b) 

Figure A-1: (a) Modules under test at the DURASOL site at Corsica University and (b) the I-V curve 

measurement hardware and operator interface 

Two monocrystalline modules were considered in this study. Their manufacturers and models 

are Tenesol TE-245 and Sunpower SPR-327. Relevant datasheet parameters are presented in Table A-

1. It is worth recalling that datasheet specifications referring to electrical parameters under STC are 

not required. This way, the modeling is based only on experimental information, providing a reliable 

way to predict the behavior of those particular modules, which present different characteristics. It is 

worth mentioning that on PV module datasheets, α and β are usually provided in %/°C, however, in 

Eqs. (3.3) and (3.4), they must be entered in °C-1. Thus, in Table A-1, the format has been converted to 

°C-1. The coefficients α and β for the two models of module are relatively different, thus it is a good 

opportunity to test the method on two different conditions. 

Table A-1: Datasheet information of the two modules under study 

Module Number of Cells α (°C-1) β (°C-1) γ (°C-1) 

TE-245 60 0.00056 -0.0035 -0.0043 

SPR-327 96 0.0004 -0.0027 -0.0036 
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A.2 Influence of the selected A and B curves on translation error 

The selection of the curves A and B is crucial for determining the performance of the 

translation method according to the target irradiance and temperature levels. In this section, four 

combinations of A and B curves are studied, aiming to compare the errors produced in each case and 

for each irradiance range, considering that curve A is translated to G levels from 200 to 1000 W/m² 

and different Tc. 

Case 1: curve A under 1000 W/m², curve B under 700 W/m²: the parameters referring to 

curves A and B of Case 1 are presented in Table A-2.  

Table A-2: Data referring to the reference curves of SPR-327: Case 1 

G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp (V) Imp (A) Pmp (W) 

1000 56.0 59.16 6.22 48.29 5.73 276.71 

701 45.0 60.15 4.38 49.98 4.07 203.41 

By applying the procedure introduced in section 3.7.1, the three parameters of Eq. (3.4) were 

computed and resulted in a = 0.0407, RS = 0.6991 Ω and k = 0.0092 Ω/K. Also, Voc,c = 58.31 V and Pmp,c 

= 197.96 W.  

Using Eqs. (3.3) and (3.4) with the calculated parameters, curve A was translated to different 

conditions, ranging from 200 to 1000 W/m² and 25 to 56 °C. It is worth mentioning that in the data 

selected as reference for this section, each irradiance level has a different Tc associated to it. The 

temperature for each irradiance level is presented along with the irradiance levels in Figs. A-2 to A-5, 

in the horizontal axes. Concerning Case 1, the errors on each computed parameter, taking the 

measurements contained within the dataset as reference, are illustrated in Fig. A-2. In this figure, it is 

shown that the translations present error equal to zero for the point under 1000 W/m² and 56 °C, 

except for the Pmp, since it is adjusted using curve B. Thus, the Pmp presents error equal to zero for case 

G = 700 W/m². In Fig. A-2, the errors on Voc and Vmp steadily increase as the irradiance decreases, since 

the adjustment has been made using curves under high levels of G. 

 

Figure A-2: Percent errors on translated parameters, Case 1 

Case 2: curve A under 900 W/m²; curve B under 600 W/m²: application of the data in Table A-

3 to the proposed parameter calculation procedure leads to a = 0.0460, RS = 0.5050 Ω and k = 0.0103 

Ω/K. Also, Voc,c = 58.50 V and Pmp,c = 171.82 W. 
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Table A-3: Data referring to the reference curves of SPR-327: Case 2 

G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp (V) Imp (A) Pmp (W) 

900 52.0 59.63 5.64 48.98 5.21 255.19 

600 42.1 60.18 3.76 50.31 3.49 175.58 

 The errors are presented in Fig. A-3, and show lower magnitudes compared to Case 1.  

 

Figure A-3: Percent errors on translated parameters, Case 2 

Case 3: curve A under 800 W/m²; curve B under 500 W/m²: in Case 3, the parameters of Eq. 

(3.4) were computed as a = 0.0414, RS = 0.4310 Ω and k = 0.0132 Ω/K, using the data in Table A-4 

whereas Voc,c = 58.66 V and Pmp,c = 145.29 W. 

Table A-4: Data referring to the reference curves of SPR-327: Case 3 

G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp  (V) Imp (A) Pmp (W) 

800 49.1 59.81 5.00 49.40 4.63 228.72 

501 37.0 60.7 3.15 51.04 2.91 148.53 

This case, with errors illustrated in Fig. A-4, presents essentially the same error magnitudes as 

in Case 2. Slightly higher error levels can be observed referring to the higher irradiance levels, and this 

is due to the selection of the reference curves, which refer to lower irradiance levels, as in comparison 

to the previous cases. 

 

Figure A-4: Percent errors on translated parameters, Case 3 
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Case 4: curve A under 700 W/m²; curve B under 400 W/m²: case 4 refers to data in Table A-5, 

with Voc,c = 58.71 V and Pmp,c = 115.67 W. The computed parameters of Eq. (3.4) are a = 0.0412, RS = 

0.5483 Ω and k = 0.0167 Ω/K. 

Table A-5: Data referring to the reference curves of SPR-327: Case 4 

G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp  (V) Imp (A) Pmp (W) 

701 45.0 60.15 4.38 49.98 4.07 203.41 

402 33.9 60.65 2.52 51.49 2.34 120.49 

The errors, per irradiance range, are illustrated in Fig. A-5. It shows error magnitudes similar 

to Case 1, however, in the opposite direction in terms of irradiance. It should be noted that in cases 1 

and 4, the vertical scale of the graphics has changed in a 2:1 ratio, in comparison with cases 2 and 3. 

Therefore, Figs. A-2 to A-5 indicate that selecting curves A and B positioned close to the center of the 

irradiance range produces smaller overall errors. This criterion should be followed when selecting 

curves A and B. However, it should be recalled that the errors on all parameters reach error equal to 

zero under Ga and Tc,a, whereas the Pmp and Vmp present error very close to zero under Gb and Tc,b. 

 

Figure A-5: Percent errors on translated parameters, Case 4 

A.3 Using experimental data to determine Voc,c and Pmp,c 

The prospect of using experimental data under Gb and Tc,a to determine Voc,c and Pmp,c, thus 

avoiding their calculation via Eqs. (3.5) and (3.9), is presented in this section. Although measuring a 

third curve, under specified levels of G and Tc might initially be considered a disadvantage, it could be 

a way to apply the method proposed in this work for cases where α and β or γ are not known. Revisiting 

the four cases considered in Section A-2, the calculated values of Voc,c and Pmp,c, under the respective 

levels of Gb and Tc,a were compared with actual measured data under the same irradiance and 

temperature condition, in each case. This leads to the construction of Table A-6, where the percent 

difference referring to the measured Voc,c and Pmp,c  is also presented, taking the calculated values of 

Voc,c and Pmp,c (via Eqs. (3.5) and (3.9)) as reference.  
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Table A-6: Measured values of Voc,c and Pmp,c and percent errors relative to the calculations by means 

of Eqs. (3.5) and (3.9) 

Gb (W/m²) Tc,a (°C) Voc,c (V) Pmp,c (W) Error on Voc,c (%) Error on Pmp,c (%) 

704 56 58.15 194.99 -0.28 -1.50 

597 52 58.45 168.84 -0.08 -1.73 

501 49 58.57 142.84 -0.16 -1.69 

400 45 58.72 114.70 0.00 -0.84 

The most significant errors reported in Table A-6 refer to the parameter Pmp,c, which is used to 

compute RS. Given the differences found, a study of the influence on the calculation of a, RS and k was 

carried out. Such parameters, referring to each of the four cases, were recalculated using the measured 

Voc,c and Pmp,c. They are organized in Table A-7, along with the respective percent error, taking the 

calculations made via Eqs. (3.5) and (3.9) as reference.  

Table A-7: Values of a, RS and k computed using measured values of Voc,c and Pmp,c 

Case 
Parameter values Error on parameters (%) 

a RS (Ω) k (Ω/K) a RS k 

1 0.0481 0.7380 0.0112 18.18 5.56 21.74 

2 0.0488 0.4666 0.0143 6.09 -7.60 38.83 

3 0.0443 0.6374 0.0052 7.00 47.89 -60.61 

4 0.0428 0.3415 0.0327 3.88 -37.72 95.81 

Although the errors in Table A-7 reach relatively high levels, especially for parameter k – with 

almost 2:1 ratio relative to Case 4 – the practical effect on the translation error, considering cases 1 to 

4, is quite smaller. In fact, the highest differences in translation error are within 1%, when compared 

to the results presented in Section A-2.  

A more general analysis regarding the influence of the selection of curves A and B, as well as 

the use of computed or measured values for Voc,c and Pmp,c is presented in the following section.  

A.4 Application of the adjusted equations for current and voltage translation: various G and Tc 

levels 

This part of the experimental application refers to the whole dataset of the two modules. The 

combinations of curves A and B come from the cases presented in Section A-2, since the parameters 

of Eq. (3.4) were already calculated. In addition to that, the parameters of Eq. (3.4), calculated using 

measured Voc,c and Pmp,c (Section A-3), were also considered in the present section, as a final 

comparison resource.  

For each of the combinations of A and B curves in Section A-2, the translation method with Eqs. 

(3.3) and (3.4) was applied to translate curve A to the recorded values of G and Tc within the datasets, 

therefore allowing to obtain computed values of Voc, Isc, Vmp, Imp and Pmp. These values were then 

compared with the measured values contained in the dataset, and the errors for each curve were 

calculated. These errors are expressed, for the whole dataset, as nRMSE, for each case and parameter. 

The errors, considering the SPR 327 module, are presented in Fig. A-6, and were calculated based on 

18634 I-V curves.  
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As mentioned in Section A-3, the prospect of using a third measured I-V curve for the 

adjustment of the coefficients of Eq. (3.4) has been considered in this work. Thus, advancing on this 

subject, the parameters from Table A-7 were used with Eqs. (3.3) and (3.4) to translate the A curves to 

the conditions recorded in the dataset. The results, specified in terms of nRMSE, are also presented in 

Fig. A-6, for the Voc, Vmp and Pmp parameters, since these are affected by Eq. (3.4). In turn, the nRMSE 

referring to Isc and Imp do not change, since they refer to Eq. (3.3), which is kept constant. For Isc, nRMSE 

= 2.42%; for Imp, nRMSE = 2.96%. 

 

Figure A-6: nRMSE (%) values referring to the translated parameters: SPR-327 module 

In Section A-3, it was stated that despite the difference between a, RS and k, in comparison 

with the results from Section A-2, the resulting translations per irradiance range did not show 

expressive difference. Similarly, the nRMSE values in Fig. A-6, do not show significant deviations 

between the right and left portions, despite the expressive difference between the parameters 

employed in Eq. (3.4), in each phase of the study. Therefore, one important conclusion is that 

regardless of the selected A and B curves, the use of computed or measured Voc,c and Pmp,c did not 

produce significant difference in the overall translation error, as illustrated in Fig. A-6. 

As for the Tenesol TE-245 module, the same analysis as that of SPR-327 was carried out. The 

data regarding curves A and B, in each of the four considered cases, are organized in Table A-8.  

Table A-8: Data for curves A and B of TE-245 module, for each of the four cases studied 

Case G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp (V) Imp (A) Pmp (W) 

1 
999 55 33.29 8.29 25.95 7.64 198.26 

800 47 33.85 6.63 26.98 6.16 166.20 

2 
899 51 33.59 7.48 26.47 6.93 183.44 

699 43 34.14 5.87 27.51 5.45 149.93 

3 
800 47 33.85 6.63 26.98 6.16 166.20 

599 40 34.16 4.89 27.79 4.64 128.95 

4 
699 43 34.14 5.87 27.51 5.45 149.93 

498 36 34.32 4.06 28.22 3.90 110.06 
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By applying the procedure presented in this section, the adjusted parameters of Eq. (3.4) were 

computed and are presented in Table A-9, which also shows the Voc,c and Pmp,c values.  

Table A-9: Parameters of Eq. (3.4), computed using the new procedure 

Case a Voc,c (V) RS (Ω) Pmp,c (W) k (Ω/K) 

1 0.0264 33.09 0.4111 161.30 0.0025 

2 0.0240 33.38 0.4956 145.65 0.0031 

3 0.0365 33.49 0.4055 125.68 0.0037 

4 0.0424 33.64 0.3228 107.27 0.0045 

The application of Eqs. (3.3) and (3.4), after the adjustment of a, RS and k, allows the translation 

of the A curves (in each case) to the condition of each of the 14559 curves within the Tenesol TE-245 

module dataset. The resulting errors, in terms of nRMSE are organized in Table A-10, for each case and 

for each parameter.  

Table A-10: nRMSE for each parameter and case, for TE-245 module 

Case 
nRMSE on parameters (%) 

Voc Isc Vmp Imp Pmp 

1 0.65 2.44 1.47 2.99 2.69 

2 0.67 2.44 2.17 2.99 2.48 

3 0.65 2.44 1.22 2.99 2.68 

4 0.71 2.44 0.76 2.99 2.91 

The error levels presented in Table A-10 show that the proposed method performed similarly to 

the cases regarding the SPR-327 module, with nRMSE levels within 3% for Pmp.  

The analysis carried out in this section allows assessing the performance of the proposed 

method concerning the use of different sources to adjust the parameters for the voltage equation of 

the 2nd procedure of IEC-60891, which is Eq. (3.4). Moreover, the application was directed to two large 

datasets. Thus, this analysis provides a view of how the method would perform in real applications, 

when multiple irradiance and cell temperature levels are combined. 

A.5 Remarks for Section 3.7.1 

A simplified approach for calculating the parameters of IEC-60891 (2nd procedure) has been 

presented in Section 3.7.1. The method does not require the reference curves to be obtained by means 

of a solar simulator, by advanced modeling methods, or from extensive experimental measurements, 

since only two I-V curves are required. These two curves have to differ both in terms of G and Tc, and 

they can be obtained experimentally under outdoor conditions. For the determination of the 

parameter a, the explicit solution of Eq. (3.6) has been proposed, which avoids the trial-and-error 

procedure originally proposed in the international standard. For the validation, the proposed method 

has been employed to predict the behavior of two PV modules, using large experimental datasets as 

reference, in three steps.  

First, a study of the influence of the reference curves A and B on the translation results was 

carried out in Section A-2. When selecting curve A with high G, it has been found that all translated 

parameters presented absolute error of less than 3%, even when translating to low G levels. However, 
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even better performance was observed when the selected reference curves covered points closer to 

the center of the irradiance range considered, for example, between 900 and 500 W/m². In these cases, 

the maximum absolute errors were within 1.5 %, considering all the translated parameters and an 

irradiance range from 200 to 1000 W/m², referring to temperatures in the range of 30 – 56 °C. 

Following, the prospect of employing measured data – instead of calculated from Eqs. (3.5) 

and (3.9) – to determine the parameters Voc,c and Pmp,c was considered in Section A-3. It was found that 

although the parameters of Eq. (3.4) present relatively high difference when compared to the results 

from Section A-2, the resulting translation errors do not present relevant deviation.  

Finally, in Section A-5, for two PV modules, thousands of translations were considered, 

presenting nRMSE levels below 3% for all the parameters referring to the two modules, making the 

proposed method suitable for a number of applications, due to its simplicity and straightforward 

application. 
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APPENDIX B: VALIDATION FOR THE METHOD INTRODUCED IN SECTION 3.7.2 

B.1 Experimental resource: TE-245 and AC-250 PV modules 

The experimental application was carried out using the experimental data recorded at the 

University of Corsica, during the DURASOL program (Faggianelli et al., 2015).  

The two PV modules used in the present section were manufactured by Tenesol (model TE-245) 

and by Axitec (model AC-250). Both modules have 60 monocrystalline cells. The temperature 

coefficients for Isc and Voc are respectively 0.0564 %/°C and -0.348 %/°C for TE-245; 0.04 %/°C and -

0.003 %/°C for AC-250.  

Curves were measured every 5 minutes, with 100 I-V pairs each. For that, a variable electronic 

load was employed to change the operating voltage of the PV module, from -0.5 V to 102 % of Voc. In 

turn, the current-voltage points were measured simultaneously since the measurement system has 

multiple data acquisition units (model Keysight 34411A), able to measure and record the I-V curves in 

less than 2 s. Each point of an I-V curve is associated with an irradiance level, measured using a 

calibrated PV cell at the same inclination and orientation as that of the PV modules. The dataset used 

in this section includes over 30,000 I-V curves, measured from 2017 to 2018. The data were filtered to 

exclude curves measured under partial shading conditions.  Also, curves with G below 200 W/m² were 

not considered, given the fact that the SDM presents increased errors under low irradiance levels, as 

stated by (Petrone et al., 2017).  

B.2 Parameter identification outdoors   

The present section considers the I-V data rereferring to three different operating conditions 

outdoors, under which the SDM parameters were identified for the TE-245 and AC-250 modules. The 

study of different curves obtained outdoors allows studying the effect of G and Tc on the resulting SDM 

parameters, as well as the influence on the accuracy of the translations. 

In Table B-1, the three reference curves for the TE-245 module are expressed in terms of G and 

Tc and the respective notable points. Data referring to the reference curves for the AC-250 module are 

organized in Table B-2. For both modules, the STC data obtained from the datasheets is also provided, 

however, it should be recalled that in this work, STC data was included only to provide a comparison 

resource in terms of operating condition. 

The data in Tables B-1 and B-2 are enough to identify the SDM parameters through the 5-Par 

and 4-Par methods; however, the PSO method requires all the 200 I-V pairs of each curve, since it is a 

curve fitting procedure.  

Table B-1: Reference curves for TE-245 

Case 
Condition I-V curve notable points 

G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp (V) Imp (A) Pmp (W) 

1 990 60 32.75 8.4 25.41 7.73 196.45 

2 798 51 33.25 6.74 26.58 6.2 164.69 

3 600 42 33.83 5.04 27.71 4.66 129.1 

STC 1000 25 37.4 8.7 29.8 8.3 245 
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Table B-2: Reference curves for AC-250 

Case 
Condition I-V curve notable points 

G (W/m²) Tc (°C) Voc (V) Isc (A) Vmp (V) Imp (A) Pmp (W) 

1 997 60 33.99 8.40 26.49 7.73 204.84 

2 795 50 34.55 6.82 27.41 6.32 173.29 

3 595 40 35.46 5.12 28.95 4.79 138.64 

STC 1000 25 37.98 8.8 29.68 8.47 250 

Tables B-3 and B-4 present the SDM parameters obtained, respectively, for the Tenesol and 

Axitec modules. The values of Rp referring to the 4-Par identification method are infinite because the 

SPR parameter is greater than one for the two PV modules. 

Table B-3: SDM parameters for TE-245, per case and method 

Method Case 
SDM parameters, TE-245 

a Rs (Ω) Rp (Ω) I0 (A) Iph (A) 

4-Par 

1 1.165 0.293 ∞ 6.815E-07 8.40 

2 1.327 0.171 ∞ 2.149E-06 6.74 

3 1.371 0.076 ∞ 1.307E-06 5.04 

STC 0.8201 0.438 ∞ 1.026E-12 8.70 

5-Par 

1 0.8821 0.451 3.947E+03 3.632E-09 8.40 

2 1.038 0.362 2.162E+03 3.308E-08 6.74 

3 1.121 0.290 2.306E+03 4.469E-08 5.04 

STC 0.6744 0.522 1.827E+06 2.071E-15 8.70 

PSO 

1 1.076 0.315 282.8 1.753E-07 8.41 

2 1.065 0.317 297.6 5.325E-08 6.75 

3 1.060 0.310 546.4 1.526E-08 5.04 

STC 0.816 0.449 7.057E+04 1.053E-12 8.70 

Table B-4: SDM parameters for AC-250, per case and method 

Method Case 
SDM parameters, AC-250 

a Rs (Ω) Rp (Ω) I0 (A) Iph (A) 

4-Par 

1 1.2250 0.2807 ∞ 8.354E-07 8.4 

2 1.2105 0.2939 ∞ 2.581E-07 6.82 

3 1.1766 0.2681 ∞ 4.261E-08 5.12 

STC 0.6179 0.6102 ∞ 4.244E-17 8.80 

5-Par 

1 0.9353 0.4417 3.54E+03 5.658E-09 8.40 

2 0.9881 0.4446 4.607E+03 5.509E-09 6.82 

3 1.0181 0.4119 8.966E+03 2.351E-09 5.12 

STC 0.5361 0.6601 7.155E+07 9.034E-20 8.80 

PSO 

1 1.1311 0.3137 391.5 2.220E-07 8.41 

2 1.1695 0.2941 458.8 1.447E-07 6.83 

3 1.0949 0.3076 539.9 1.071E-08 5.13 

STC 0.6198 0.6096 1.827E+08 4.790E-17 8.80 
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Some parameters present a wide variation according to the modeling approach employed: for 

example, Tables B-3 and B-4 show significantly higher Rp values for the 5-Par method, compared to the 

results for Rp provided by the PSO approach.  

 

Figure B-1: Curves measured and calculated using Eq. (3.11), for each case and each method; Tenesol 

TE-245 module 

To evaluate the suitability of the nine SDM parameter sets calculated for each module, the 

measured reference curves were copmpared with curves reproduced using Eq. (3.11) and the data 

from Tables B-3 and B-4. This way, Fig. A-1 shows the three measured curves for TE-245, and along 

with each of them, three calculated curves, referring to each of the identification methods. The same 

applies to Fig. B-2, which shows the curves for AC-250.  

In Figs. B-1 and B-2, a good agreement between the measured and calculated curves is 

observed for all cases and for all methods, despite the fact that for a given condition, each 

identification method provided significantly different values for parameters Rp and I0. 

 

Figure B-2: Curves measured and calculated using Eq. (3.11), for each case and each method; Axitec 

AC-250 module. 
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 The plots in Figs. B-1 and B-2 show the suitability for all three methods to reproduce the 

reference curves. Thus, it is possible to proceed to the next phase of the study, which is the 

introduction of the translation methods to correct the SDM parameters Iph and I0 according to the 

operating condition. 

B.3 Experimental data 

For this validation study, the datasets were obtained using the DURASOL platform, with I-V 

curves and the respective G and Tc levels recorded for 16 months. Therefore, the datasets contain 

information referring to all seasons of the year, which allowed considering a wide range of irradiance 

and cell temperature levels, as illustrated in B-3. 

In the dataset for the TE-245 module, the measurements present an average G of 677 W/m², 

whereas the average Tc is 44 °C. In turn, the dataset referring to the AC-250 module presents average 

G of 683 W/m², and the average Tc is 47 °C. Over 14,000 measured curves are considered in the nRMSE 

calculations for the TE-245 module, and over 10,000 for AC-250. 

 

Figure B-3: Irradiance and cell temperature levels referring to the data recorded for TE-245 module 

B-4 Performance assessment of the models: predicting the Pmp 

In this section, the six possible combinations between identification and adjustment methods 

(4-Par,A / 5-Par,A / PSO,A / 4-Par,B / 5-Par,B / PSO,B) for the SDM parameters were used with the 

three reference curves previously presented. For both PV modules, the reference curve is denoted by 

a Case number, following the nomenclature given in Tables B-1 and B-2.  

This assessment aims to provide a summarized error quantification when the adjustments are 

carried out to various arbitrary operating conditions. This was carried out by calculating the nRMSE 

levels for the predicted Pmp, for each combination of methods, and for each of the base curves (Cases). 

Results including IEC-60891 were also included for comparison. The resulting nRMSE levels are 

described in Fig B-4 for the TE-245 module and in Fig. B-5 for the AC-250 module. The plots in Figs. B-

4 and B-5 were produced by calculating 28 curves (7 methods x 4 cases) for each of the 33,434 

measurement points within the datasets of the two modules.  

The plots in Figs. B-4 and B-5 show that for Cases 1 and 2, some combinations of SDM methods, 

particularly 5-Par,A, and PSO,B presented better performance than IEC-60891.  



183 

 

Overall, identification method 5-Par presented better performance when used with 

adjustment method A.  

 

Figure B-4: nRMSE levels on Pmp: TE-245 

For both PV modules studied – considering only Cases 1 to 3 – smallest nRMSE levels were 

achieved for Case 1, whereas the worst overall performance was achieved when using the reference 

curve of Case 4. 

 

Figure B-5: nRMSE levels on Pmp: AC-251 

Identification method 4-Par presented similar performance when applied in conjunction with 

methods A and B, for both PV modules; however, the performance of such combinations was slightly 

worse than that of IEC 60891. It is worth recalling that 4-Par,A presents a very straightforward 

application and requires only one reference I-V curve. It is the simplest method combination studied 

in this work. The methods 5-Par,A, and PSO,A also require only one reference curve. However, the 

parametric identification is not as simple as that of 4-Par method. The remaining methods (4-Par,B / 

5-Par,B / PSO,B / IEC 609891) require two I-V curves; thus, they are subject to measurement error from 

two different sources.  
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In Case 1, despite its simplicity, 4-Par,A performed similarly to 5-Par,B – which presents more 

complex parametric identification and requires two I-V curves. This illustrates that method complexity 

and inclusion of more experimental data do not necessarily lead to better performance. Further 

examination of the nRMSE levels illustrated in Figs. B-4 and B-5 leads to the following considerations:  

- Using STC data from datasheets as a reference source for parametric identification resulted 

in far greater nRMSE levels for all 7 methods and both PV modules. The two PV modules have been 

exposed to sunlight for over five years, therefore their actual ratings under STC are expected to be 

different from the datasheet ratings. However, it is not possible to determine to what extent the high 

error levels are due to module aging since it is known that STC datasheet information are not specific 

for each particular module that is manufactured.  

- The calculations using the curve from Case 3 as the reference for parametric identification 

presented, in general, worse performance compared to Cases 1 and 2.  

- Overall, the error differences found among Cases 1 – 2 are not expressive, for the two PV 

modules. Therefore, the reference curve for the parameter identification could be selected in the 

range of 800 – 1000 W/m². Tables V and VI focus on the two best-performing Cases (1 and 2), providing 

numerical values for the nRMSE calculations.  

Table B-5 – nRMSE for Cases 1-2 and all methods (TE-245) 

Case 
TE-245: nRMSE per case and method (%) 

4-Par,A 5-Par,A PSO,A 4-Par,B 5-Par,B PSO,B IEC 60891 

1 2.96 2.50 3.43 3.46 3.06 2.68 2.92 

2 3.46 2.83 3.60 3.38 3.24 3.43 3.01 

Average 3.21 2.67 3.51 3.42 3.15 3.05 2.96 

Table B-6 – nRMSE for Cases 1-2 and all methods (AC-250) 

Case 
TE-245: nRMSE per case and method (%) 

4-Par,A 5-Par,A PSO,A 4-Par,B 5-Par,B PSO,B IEC 60891 

1 3.21 2.90 3.34 3.00 3.25 2.93 3.18 

2 3.06 2.97 3.09 3.51 3.31 2.95 3.49 

Average 3.13 2.93 3.22 3.26 3.28 2.94 3.34 

When analyzing the methods’ performance in Tables B-5 and B-6, for the two PV modules, no 

regular pattern is found. In other words, it is not possible to determine the best or worst method for 

the two modules simultaneously. The nRMSE values are not very discrepant when different methods 

are compared. However, the methods’ complexity is not similar, which is an advantage for the simple 

4-Par method. For module TE-245, 4-Par,A (the most straightforward approach, requiring one curve 

only) performed better than PSO,A (more complex parametric identification); and for the AC-250 

module, 4-Par,A provided better predictions than PSO,A, 4-Par,B (two curves required), 5-Par,B (the 

most complex identification method, two curves required), and IEC-60891 (two curves and the 

temperature coefficient for Pmp required). 
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B.5 The difference between datasheet specification and actual performance 

The STC data described in the datasheets was taken as a comparison resource for the reference 

curves in this work. For TE-245 and AC-250 modules, using datasheet information under STC to model 

the devices provided significantly higher nRMSE levels than cases using outdoor measured data, as 

shown by the error metrics in Figs. B-4 and B-5. This behavior was observed even when using IEC 60891. 

It should be recalled that the modules employed in this work are not new. 

To provide a quantitative view of the difference between the datasheet STC data and the actual 

module performance, IEC 60891 was used to adjust the three reference curves to STC. This allows 

evaluating the differences using the same operating condition for all cases. Concerning TE-245, the 

average adjusted Pmp is 231 W, whereas the datasheet informs 245 W – a 6 % higher Pmp. The average 

adjusted Pmp for AC-250 is 241 W, while the datasheet reports 250 W – a 3.7 % higher value. 

B.6 Remarks for Section 3.7.2 

Section 3.7.2 explored the extraction of the SDM parameters using outdoor measured data 

using three different identification methods. The main advantage of outdoor characterization of PV 

modules is that the actual performance of the PV device is considered without relying on STC data. To 

avoid the need for identifying the SDM parameters every time the operating condition changes, two 

parameter adjustment methods were considered. This way, once the SDM parameters were identified, 

the I-V characteristic could be adjusted to any operating condition specified in terms of G and Tc.  

The relevance of the present study lies in evaluating how well particular identification and 

adjustment methods work together when using outdoor measured data to calculate the SDM 

parameters. This was done by evaluating the nRMSE levels associated with each combination when 

predicting the Pmp for two PV modules. The approach presented in this work complements the 

publications of Cannizzaro et al. (2014a), Di Piazza et al. (2015) and Sera et al. (2007). Thus, methods 

5-Par and 4-Par, which originally employed datasheet information for the parametric identification, 

were now applied using outdoor measured data. The PSO method introduced by (Faggianelli et al., 

2015) employed outdoor measured data. However, the authors did not use any adjustment methods. 

The present work thus allowed to assess the performance of PSO,A and PSO,B. Moreover, the present 

study also complements the studies of Lineykin et al. (2014) and Piazza et al. (2017), due to the 

application of the two adjustment methods with SDM parameters identified outdoors – again, avoiding 

the use of datasheet information. 

The prospect of using datasheet information in STC was considered in this section for 

comparison. Using datasheet information to adjust the SDM parameters for modules which are not 

new provided significantly higher nRMSE levels than the cases using outdoor measurements. 
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APPENDIX C: INVESTIGATION ON THE PRODUCTION OF DATA OUTLIERS 

This section presents a visual assessment regarding scatter plots of the efficiency and 

irradiance, for the four PV arrays considered in this thesis, after the application of the basic and power 

filters presented in Section 4. The aim is to investigate the reasons for the occurrence of sparse points, 

allowing to confidently delete records taken under undesired conditions. Such conditions include 

shading on the PV arrays, strong transient conditions, uneven irradiance reaching the PV arrays and 

the irradiance sensor, measurement errors and open-circuit operation, particularly at the beginning 

and end of the daily sunny period. It should be emphasized that the assessments in this Appendix are 

qualitative. Data filtering based on quantitative metrics is considered in Section 4. 

C.1 Polycrystalline array 

The general shape of the data points referring to the p-Si array (Fig. 4-2) is quite similar to the 

bifacial array’s data (Fig. 4-4). These two PV arrays hold the similarity in that both are positioned well 

close to the ground at the sunrise, as shown in Fig. C-1, and thus, subject to partial shading caused by 

nearby objects. In cases where the PV arrays receive less irradiance than the irradiance sensor, 

abnormally low efficiency levels are likely to be found.  

 

Figure C-1: The PV tracker position during sunrise 

Also, the p-Si and bifacial arrays are held quite high on the PV tracker at the sunset – when the 

front-side PV sensor is positioned very close to the ground. In such a situation, surprisingly high 

efficiency levels are likely to be found, due to interferences on the radiation reaching the irradiance 

sensor. Both situations are undesirable in the context of this study, as it is desirable that uniform 

radiation levels reach the PV arrays and the irradiance sensors. 
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Figure C-2: The PV tracker position during sunset 

Some high efficiency records are visible in Fig. 4-2; they are highlighted in Fig. C-3. 

 

Figure C-3: High efficiency records highlighted. 

 

Figure C-4: Time series plot referring to Fig. C-3 
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In Figs. C-3 and C-4, the selected points are color-bright, whereas the non-selected points are 

color-faded. This allows easily finding the correspondence between the scatter and time series plots.  

From Fig. A-3, it is seen that the unusually high efficiency records selected in Fig. A-4 are 

produced during sunset. Such an observation is valid for multiple days. To better understand the 

behavior of the variables involved, a zoom-in is applied and shown in Fig. A-5.  

 

Figure C-5: A portion of Fig. A-4 shown in detail. 

Figure C-5 clearly shows that while the DC power decreases steadily as sunset approaches, the 

irradiance shows an abrupt decrease. As a result, the calculated efficiency presents a sharp increase. 

After the transient, the GNI eventually resumes the original steady decrease path. As illustrated in Fig. 

C-2, the front irradiance sensor is kept at a very low position, close to the ground, during the sunset. 

Given the presence of several other structures and equipment near the tracker area, uneven irradiance 

between the GNI sensor and the p-Si array is likely to occur, which introduces invalid values for the PV 

efficiency. 

On the other hand, very low efficiency levels for the p-Si array are found in Fig. 4-2, from low 

to high GNI values. Such records are highlighted in Fig. C-6, in a square-shaped selection. 

 

Figure C-6: Selection of low efficiency data records 

The corresponding time series plot in Fig. A-7 shows that the points selected in Fig. C-6 refer 

to the beginning of the day, when the irradiance is increasing sharply. In Fig. C-7, the array’s DC current 

is close to zero for the highlighted points, whereas the voltage is quite high, meaning that the PV array 
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is not yet operating on the maximum power. The array is actually near the open-circuit condition, 

where the power is close to zero. The mismatch between the irradiance and current levels is the cause 

for the low efficiency levels highlighted in Fig. C-6.   

 

Figure C-7: Time series plot referring to Fig. C-6 

Figure C-8 shows a portion of Fig. C-7 in detail. The efficiency increases once the current 

reaches a level in which the inverter’s MPPT starts searching the maximum power. This is precisely 

when the power starts to increase and, eventually, reaches the maximum power point. In Fig. C-8, 

periodic oscillations are visible on the voltage and current; this is the effect of the MPPT’s constant 

perturbations, seeking the maximum V-I product.  

 

Figure C-8: Zoom-in Fig. C-7 

In respect to other low efficiency data points under high GNI, when highlighting points on the 

region with irradiance above 500 W/m² and low efficiency values (Fig. C-9), the corresponding time 

series plot (Fig. C-10) shows that such points are related to the morning, that is, the sunrise.  
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Figure C-9: Selecting low efficiency, high GNI data points.  

 

Figure C-10: Time series plot referring to Fig. C-9 

When looking at Fig. C-10 in detail, in Fig. C-11, it is observed that although GNI is relatively 

high, the measured power is low, causing the efficiency to drop. This is similar to the behavior shown 

in Fig. C-8.  

 

Figure C-11: Curves shown in Fig. C-10, in detail. 
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The reason for such a behavior is shading affecting the polycrystalline array at the beginning 

of the day, due to the fact that the polycrystalline array is very close to the ground in the early morning, 

as illustrated in Fig. C-1. In this situation, the polycrystalline array is shaded by bushes and by cabling 

structures of the PV tracker. The reason for such a shading caused by cables belonging to the tracker 

is that the p-Si array presents an area which is slightly above the tracker’s rated holding capacity. 

However, shading caused by the structure cables occurs only in the early mornings.  

In fact, when studying the remaining sparse points recorded with relatively low efficiency 

levels in Fig 4-2, it was found that they also refer to situations where the daily recordings are starting 

– that is, near the sunrise.  

C.2 Monocrystalline array 

A few points, highlighted in Fig. C-12, present unusually high efficiency levels.   

 

Figure C-12: High efficiency sparse points selection 

Such points refer to cases in which the GNI varies widely and quickly, as shown in Fig. C-13. 

 

Figure C-13: Time series referring to the scatter plot in Fig. C-12 

In some cases, the voltage presented relatively high levels, due to a steady temperature 

reduction caused by a temporary reduction in the irradiance levels. Then, when the irradiance 

suddenly increased, the array power reached a relatively high level, due to the previous temperature 

drop and the fact that the temperature does not rise instantaneously. However, there are not enough 
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data to strongly support such a hypothesis, given that very few records (around 0.07 %) fall into this 

category. 

 

Figure C-14: Time series shown in Fig. C-13, in detail. 

Next, low efficiency levels under low irradiance values are considered: 

 

Figure C-15: Selecting low efficiency records under low GNI. 

 

Figure C-16: Time series related to the scatter plot in Fig. C-15 

Such points are related to the sunset, as illustrated in Fig. C-16. During this period, the 

monocrystalline array is at a very low position (Fig. C-2), close to the ground and thus, subject to 



196 

 

shading caused by nearby objects. In addition to that, the GNI sensor is also at a low position, also 

subject to shading.  

The next assessment considers the sparse points below the main efficiency curve. 

 

Figure C-17: Selection of sparse points below the main efficiency curve 

As in the previous case, such points are related with the sunset. In the time series analysis 

shown in Fig. C-18, it is evident that the steep decrease in the efficiency is caused by a different rate 

of decrease of GNI and DC power – with the power decreasing at a rate greater than GNI. The air mass 

cannot be considered a source for such an effect because the GNI sensor uses a monocrystalline PV 

cell as a sensor, therefore, the GNI meter and the PV array under study are spectrally matched. This 

means that spectral effects causing a reduction in power would cause a decrease of the measured GNI 

levels as well, in a very close proportion, given that the PV sensor and the PV array are always at the 

same inclination and orientation. Therefore, such a group of points refer to situations in which the PV 

tracker’s vertical position has acted as a source of interference, as in the previous case.  

 

Figure C-18: Time series related to the scatter plot in Fig. C-17 

C.3 Bifacial PV array 

The efficiency referring to the bifacial array was calculated taking the concept of effective 

irradiance (GE, Section 2.2.2) into account, since this way, the irradiance reaching the rear side of the 

array is considered. Conversely, if only the front-side irradiance was considered, unrealistically high 
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efficiency levels would be found. An in-depth study regarding the particularities of bifacial modules is 

presented in Section 5.7.  

In the upper portion of the efficiency plot in Fig. 4-4, high efficiency levels are found in the 

range up to 600 W/m². These points are highlighted in Fig. C-19.  

 

Figure C-19: Selecting high-efficiency sparse data records. 

Such records refer to situations at the end of the day, as seen in the time series plot in Fig. C-

20, where the points corresponding to the selection in Fig. C-19 are also highlighted.  

 

 

Figure C-20: Time series plot referring to Fig. C-19 

Taking a closer look at the time series, it is observed that the high efficiency levels were 

produced due to an incoherence between the recorded values of power referring to the bifacial array 

and the GE. Such a situation happens because the tracker reaches a position in which the front 

irradiance sensor is positioned well below the bifacial array (Fig. C-2), around 50 cm from the ground, 

thus the sensor is subject to shading from nearby objects.  

In turn, the data selection in Fig. C-21 shows data records close to zero highlighted. 
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Figure C-21: Selecting data records close to zero efficiency. 

Such records refer to a specific day in July, in which power levels were zero, as observed in Fig. 

C-22. This was likely to be caused by a failure in recording the data from the tracker.  

 

Figure C-22: Time series plot referring to Fig. C-21. 

Advancing on the analysis, the sparse low efficiency levels selected in Fig. C-23 refer to cases 

at the beginning of the day, where the PV array is not yet operating at the MPP, as noticed by the 

analysis of the respective time series in Fig. C-24. 

 

Figure C-23: Selection of low efficiency sparse data records  
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When analyzing the time series in Fig. C-24, it is found that the PV array voltage recording 

starts close to the Voc and then steadily decreases while the PV array current rises. This is a common 

behavior at the beginning of the sunny period, when the PV array is starting to operate along with the 

inverter’s MPPT.  

 

Figure C-24: Time series referring to Fig. C-23 

Figure C-25 shows the plots of Fig. C-24 in detail, focusing on the beginning of a day, when the 

PV array is starting its operation.  

 

 

Figure C-25: Zoom-in of Fig. C-24, focusing on the sunrise. 

Next, the efficiency of the bifacial array shows a ramp-shaped decrease at the far right-hand 

side of Fig. C-26.  
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Figure C-26: Selection of data records under high irradiance  

By analyzing the respective time series in Fig. C-27, it was found that the points referring to 

decreasing efficiency at high values of GE are related with cases where the bifacial array power is 

unusually high. Such cases are usually related to GNI above 1000 W/m² and GNIrear above 200 W/m². 

This leads to a situation in which the AC power rating of the inverter is reached. As a result, the 

inverter’s control unit shifts the operating point of both arrays (bifacial and p-Si, for inverter 2) to a 

region outside the MPP, to keep the output power within 3000 W. The time series plot shows two 

situations in which the AC power of inverter 2 reached 3000 W; these points refer to the low efficiency 

cases under high GE of the previous scatter plot. The data records referring to inverter saturation were 

removed by using the strategies presented in Section 4.2. 

 

 

Figure C-27: Time series plot referring to Fig. C-26, showing inverter saturation. 

C.4 HCPV array 

The HVPC array efficiency is plotted against the BNI, given that such a PV technology only 

converts the beam irradiance due to the use of Fresnel lenses for the radiation concentration.  

The first region to be noted is the group of points showing unusually high efficiency levels. It 

should be mentioned that, as opposed to the previous cases, the irradiance measurements (BNI) come 

from another source, the Solys 2 station.  
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Figure C-28: Selection of high efficiency data records 

The points highlighted in Fig. C-28 refer to transient situations, in which the beam irradiance is 

quickly changing as shown in Fig. C-29. Given that the power measurements are instantaneous (taken 

every one minute), a possible reason for such an anomality is the Solys 2-measured BNI values resulting 

from an internally calculated average, therefore causing a short-term difference when compared to 

the instantaneously measured power values. In fact, in most of the times the HCPV array’s power and 

the BNI agree. The cases originating the highlighted high-efficiency levels are actually produced by 

isolated – incoherent – records, taken under transient conditions, as seen in the time series plotted in 

Fig. C-29. It is also noted that, in a clear sky day – such as on 14 November – such points related to 

unusually high efficiency are not present.  

 

 

Figure C-29: Time series related to the scatter plot in Fig. C-28 

The next step considers the records showing efficiency close to zero, highlighted in Fig. C-30.  
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Figure C-30: Selecting data points with close-to-zero efficiency. 

The time series analysis in Fig. C-31 reveals that such points refer to the very bottom of the 

curves, covering cases where the BNI is greater than zero, whereas the HCPV array is not yet supplying 

power. It should be emphasized that the inverter’s MPPT is responsible for positioning the array’s 

operating point at the MPP; however, such a tracking system presents practical limitations to operate, 

mainly in terms of minimum voltage and current levels for the DC-DC converters to work properly and 

within an adequate range of conversion efficiency.  

 

Figure C-31: Time series referring to the scatter plot in Fig. C-30 

The attention now turns to the to the sparse distribution above the main curve, as illustrated 

in Fig. C-32. 
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Figure C-32: Selecting sparse high-efficiency data points above the main curve. 

These points are related to steep variations of BNI and consequently, DC power. For the 

reasons mentioned earlier, short-term deviations between the measured BNI and power might 

produce unrealistic efficiency levels. For instance, unusually high efficiency values might be produced 

when the tracker’s measuring system instantaneously records a relatively high DC power level, while 

the Solys 2 provides a relatively low BNI level, coming from an internal averaging calculation. 

 

Figure C-33: Time series plot referring to the scatter plot in Fig. C-32 

Finally, the sparse points below the main curve are selected, as shown in Fig. C-34. 

 

Figure C-34: Selection of low efficiency data points 
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The records highlighted in Fig. C-34 are related to the HCPV array’s start of operation, as seen 

in Fig. C-35. Once the current level increases, so does the power, and the inverter’s MPPT starts seeking 

the maximum power.  

 

 

Figure C-35: Time series plot related to the selected points in Fig. C-34 
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APPENDIX D: MULTIVARIATE REGRESSION USED IN SECTION 5.3 

Tables D-1 to D-4 present the terms and coefficients for the polynomial multivariate regression 

performed using the air temperature. In turn, Tables D-5 to D-8 present the models using the measured 

array temperature. Such models were created aiming to determine the order of relevance of the 

external parameters, for each PV array, regardless of model complexity and size. The composition of 

the polynomial terms and the values for the coefficients were automatically set by the Visplore® data 

visualization application, via RMSE minimization. 

Table D-1: Polynomial model for the p-Si array (Tair) 

Terms Coefficients 

GNI  0.906 

Temperature air ^2 -0.00913 

GNI  * AM 0.01726 

Wind speed  0.992 

GNI  * Abs. humidity  -1.295 

Temperature air ^2 * BNI  -7.2E-05 

Wind speed  * BNI  0.00221 

GNI  * AM * Wind speed  0.003282 

GNI  * AM * BNI  -1.9E-05 

BNI ^2 3.7E-05 

AM^2 0.03493 

AM^2 * Wind speed  -0.1391 

Temperature air ^2 * BNI  * AM 3.63E-06 

y-intercept -0.0504 

Table D-2: Polynomial model for the m-Si array (Tair) 

Terms Coefficients 

GNI  1.238 

Temperature air  -6.42 

Temperature air  * BNI  0.000785 

Wind speed  * BNI  -0.0017 

BNI  -0.02077 

Temperature air  * BNI  * AM 0.000906 

Temperature air  * BNI  * AM * Normal global clearness index -0.00189 

AM^2 * Temperature air  -0.0037 

AM^2 * Temperature air  * GNI  -3.1E-05 

AM^2 * Temperature air  * GNI  * Wind speed  -1.9E-05 

Wind speed  * BNI  * AM 0.001969 

Temperature air ^2 0.1554 

Temperature air ^2 * GNI  -0.00013 

Wind speed  * Normal global clearness index 5.63 

y-intercept 59.5 
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Table D-3: Polynomial model for the bifacial array (Tair) 

Terms Coefficients 

GNI  1.93 

Temperature air  -11.39 

Wind speed  1.666 

GNI,rear  0.0915 

GNI,rear  * AM 0.995 

Temperature air  * BNI  -0.005 

AM^2 1.788 

GNI,rear  * AM * Abs. humidity  -17.99 

AM^2 * GNI  0.004005 

BNI ^2 4.7E-05 

AM -52.7 

Wind speed  * BNI  -0.0081 

Temperature air  * AM 0.858 

Abs. humidity ^2 68244 

Temperature air ^2 0.1205 

GNI  * AM -0.0569 

Wind speed  * BNI  * AM 0.01307 

AM^2 * GNI  * Wind speed  -0.00024 

AM^2 * GNI  * BNI  * Wind speed  -1.7E-06 

y-intercept 223.4 
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Table D-4: Polynomial model for the HCPV array (Tair) 

Terms Coefficients 

BNI  2.067 

Temperature air ^2 0.2618 

AM^2 -18.35 

Temperature air ^2 * AM -0.1264 

Normal diffuse fraction^2 809 

BNI  * AM 0.0958 

Rel. humidity ^2 0.03604 

Abs. humidity ^2 631971 

AM^2 * Normal diffuse fraction -14.01 

BNI  * Normal diffuse fraction 7.96 

AM^2 * Abs. humidity  939 

AM^2 * Temperature air  0.4466 

BNI  * Normal diffuse fraction * Temperature air  -0.1482 

BNI  * AM * Abs. humidity  -74.8 

BNI  * AM * Abs. humidity  * GNI  0.0758 

BNI  * Normal diffuse fraction * Temperature air  * Rel. humidity  0.000391 

BNI  * Normal diffuse fraction * GNI  -0.00051 

BNI  * Normal diffuse fraction * Temperature air  * Rel. humidity  * GNI  -1.7E-06 

BNI  * Normal diffuse fraction * GNI  * AM -0.00157 

BNI  * Normal diffuse fraction * Temperature air  * Rel. humidity  * AM 0.000518 

BNI  * AM * Temperature air  0.004976 

Normal diffuse fraction^2 * GNI  * BNI  0.001281 

Normal diffuse fraction^2 * Abs. humidity  -29510 

Rel. humidity ^2 * Abs. humidity  -2.388 

BNI  * Normal diffuse fraction * GNI  * Wind speed  -8.7E-06 

AM 124.4 

AM * Temperature air  1.437 

Normal diffuse fraction^2 * GNI  * BNI  * Temperature air  4.34E-05 

Normal diffuse fraction^2 * BNI  -3.145 

y-intercept -826 
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Table D-5: Polynomial model for the p-Si array (Tc) 

Terms Coefficients 

GNI (W/m²) 0.971 

Tc,p-Si (°C)^2 -0.01317 

Tc,p-Si (°C)^2 * AM 0.003194 

Wind speed (m/s) 0.3601 

Tc,p-Si (°C)^2 * BNI (W/m²) -1.6E-05 

GNI (W/m²) * AM 0.001661 

Tc,p-Si (°C)^2 * AM * GNI (W/m²) -5.8E-06 

AM^2 -0.3454 

BNI (W/m²)^2 3.17E-05 

GNI (W/m²) * AM * Wind speed (m/s) 0.001694 

Tc,p-Si (°C)^2 * BNI (W/m²) * Wind speed (m/s) -1.2E-06 

AM^2 * GNI (W/m²) 0.001284 

Tc,p-Si (°C)^2 * GNI (W/m²) -1.6E-05 

Tc,p-Si (°C) 0.2198 

y-intercept -7.56 

 

 

Table D-6: Polynomial model for the m-Si array (Tc) 

Terms Coefficients 

GNI (W/m²) 1.219 

Abs. humidity (kgH2O/kgda) 883 

Rel. humidity (%) -0.0548 

DNI (W/m²) 0.02837 

Tc,m-Si (°C)^2 -0.02628 

AM^2 0.529 

Abs. humidity (kgH2O/kgda) * BNI (W/m²) -3.973 

Tc,m-Si (°C)^2 * AM 0.01039 

Tc,m-Si (°C)^2 * AM * Wind speed (m/s) -0.0004 

Rel. humidity (%) * BNI (W/m²) 0.000964 

Abs. humidity (kgH2O/kgda) * BNI (W/m²) * DNI (W/m²) -0.00554 

Rel. humidity (%) * BNI (W/m²) * Wind speed (m/s) 1.91E-05 

Tc,m-Si (°C)^2 * AM * GNI (W/m²) -1.3E-05 

GNI (W/m²) * AM 0.00841 

AM^2 * Tc,m-Si (°C) -0.0502 

GNI (W/m²) * AM * Abs. humidity (kgH2O/kgda) -0.4494 

Tc,m-Si (°C)^2 * AM * Wind speed (m/s) * DNI (W/m²) -1.3E-06 

Wind speed (m/s)^2 0.3063 

GNI (W/m²) * AM * Abs. humidity (kgH2O/kgda) * DNI (W/m²) -0.00021 

y-intercept -9.19 
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Table D-7: Polynomial model for the bifacial array (Tc) 

Terms Coefficients 

GNI (W/m²) 1.975 

Tc,Bif,Cell (°C)^2 -0.1874 

Rel. humidity (%)^2 -0.00199 

Rel. humidity (%)^2 * GNI,rear (W/m²) 0.000135 

GNI (W/m²) * Abs. humidity (kgH2O/kgda) -13.62 

GNI (W/m²) * Abs. humidity (kgH2O/kgda) * AM 1.075 

Wind speed (m/s) 2.048 

AM * GNI,rear (W/m²) 0.2282 

Abs. humidity (kgH2O/kgda)^2 -185213 

AM * GNI (W/m²) -0.01121 

GNI,rear (W/m²)^2 -0.00902 

GNI (W/m²) * Abs. humidity (kgH2O/kgda) * AM * Normal beam clearness index -4.545 

AM * GNI,rear (W/m²) * Normal beam clearness index 0.3575 

Tc,Bif,Cell (°C)^2 * Abs. humidity (kgH2O/kgda) 6.16 

Tc,Bif,Cell (°C) 4.912 

GNI,rear (W/m²) 2.174 

Rel. humidity (%)^2 * AM -0.00034 

Rel. humidity (%)^2 * AM * GNI (W/m²) -8E-07 

y-intercept -75.1 
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Table D-8: Polynomial model for the HCPV array (Tc) 

Terms Coefficients 

BNI (W/m²) 1.163 

Tc,HCPV (°C)^2 -0.3924 

AM^2 -9.87 

Rel. humidity (%) 17.02 

Abs. humidity (kgH2O/kgda)^2 6488628 

Tc,HCPV (°C)^2 * AM -0.02929 

GNI (W/m²)^2 -0.00025 

GNI (W/m²)^2 * AM -0.0002 

GNI (W/m²)^2 * AM * BNI (W/m²) 1.93E-07 

AM^2 * BNI (W/m²) 0.0125 

Tc,HCPV (°C)^2 * BNI (W/m²) 0.000156 

AM^2 * Abs. humidity (kgH2O/kgda) -476.5 

Abs. humidity (kgH2O/kgda)^2 * AM -2304772 

GNI (W/m²)^2 * Abs. humidity (kgH2O/kgda) -0.0565 

GNI (W/m²)^2 * AM * BNI (W/m²) * Abs. humidity (kgH2O/kgda) 2.77E-05 

AM^2 * BNI (W/m²) * Rel. humidity (%) -0.00043 

Tc,HCPV (°C)^2 * AM * Rel. humidity (%) -0.0004 

AM^2 * Abs. humidity (kgH2O/kgda) * Tc,HCPV (°C) 51 

Abs. humidity (kgH2O/kgda)^2 * AM * Rel. humidity (%) 18629 

GNI (W/m²)^2 * Abs. humidity (kgH2O/kgda) * Rel. humidity (%) 0.000675 

GNI (W/m²)^2 * BNI (W/m²) 2.73E-07 

GNI (W/m²) 1.059 

Rel. humidity (%) * Abs. humidity (kgH2O/kgda) -1925 

Tc,HCPV (°C) 30.93 

AM 79.4 

GNI (W/m²)^2 * BNI (W/m²) * Rel. humidity (%) -6.7E-09 

AM * Abs. humidity (kgH2O/kgda) 10957 

Rel. humidity (%) * Abs. humidity (kgH2O/kgda) * GNI (W/m²) 0.3691 

Abs. humidity (kgH2O/kgda)^2 * GNI (W/m²) -3042 

y-intercept -1323 

 


