
HAL Id: tel-04547265
https://theses.hal.science/tel-04547265

Submitted on 15 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous Evaluation Framework for Information
Retrieval Systems
Gabriela Gonzalez Saez

To cite this version:
Gabriela Gonzalez Saez. Continuous Evaluation Framework for Information Retrieval Systems. Web.
Université Grenoble Alpes [2020-..], 2023. English. �NNT : 2023GRALM055�. �tel-04547265�

https://theses.hal.science/tel-04547265
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Cadre d'évaluation continue pour les systèmes de recherche
d'information

Continuous Evaluation Framework for Information Retrieval Systems

Présentée par :

Gabriela GONZALEZ SAEZ
Direction de thèse :

Philippe MULHEM
CHARGE DE RECHERCHE HDR, CNRS DELEGATION ALPES

Directeur de thèse

Lorraine GOEURIOT
MCF, UGA

Co-encadrante de
thèse

Rapporteurs :
ERIC SAN JUAN
MAITRE DE CONFERENCES HDR, AVIGNON UNIVERSITE
JIAN-YUN NIE
FULL PROFESSOR, UNIVERSITE DE MONTREAL

Thèse soutenue publiquement le 3 octobre 2023, devant le jury composé de :
PHILIPPE MULHEM
CHARGE DE RECHERCHE HDR, CNRS DELEGATION ALPES

Directeur de thèse

ERIC SAN JUAN
MAITRE DE CONFERENCES HDR, AVIGNON UNIVERSITE

Rapporteur

JIAN-YUN NIE
FULL PROFESSOR, UNIVERSITE DE MONTREAL

Rapporteur

SIHEM AMER-YAHIA
DIRECTRICE DE RECHERCHE, CNRS DELEGATION ALPES

Présidente

FLORINA PIROI
SENIOR SCIENTIST, TECHNISCHE UNIVERSITÄT WIEN

Examinatrice

DIDIER SCHWAB
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE
ALPES

Examinateur

Invités :
LORRAINE GOEURIOT
MAITRE DE CONFERENCES, UNIVERSITE GRENOBLE ALPES
ROMAIN DEVEAUD
DOCTEUR EN SCIENCES, QWANT

Abstract

Classical evaluation of information retrieval (IR) systems uses a static test collection com-
posed of a corpus of documents, a set of queries, and relevance judgments that indicate
which documents are relevant to each query. In the case of Web search, the environment
(e.g., the Web pages or the submitted queries) is continuously changing, and the hypothe-
sis of using a static test collection is not representative of this changing reality. Moreover,
new features are regularly added to the search engine creating a new IRS version. Fi-
nally, the changes in the search engine and the evolution of the test collection used to
evaluate the system have an impact on the performance evaluation. To the best of our
knowledge, there is no way to evaluate different IR systems using evolving test collections
as a continuous evaluation of IR systems.

A continuous evaluation based on the classical evaluation paradigm should allow us
to quantify the differences between evaluations. We call the differences between test
collections a Knowledge delta (KD), and the performance differences between systems
evaluated on these different test collections are called Result deltas (RD). Finally, the
continuous evaluation is based on both Knowledge deltas and Result deltas. The related
changes in both “deltas” will allow us to interpret the system’s performances. We propose
to create evolving test collections for a continuous result delta evaluation framework. An
evolving test collection is a set of test collections that change across different epochs. It
can be simulated using a static test collection, or it can be acquired using an evolving
strategy. The evolving test collection is consequently used to evaluate systems in the
continuous evaluation framework.

This work focuses on the computation of RD. With this goal, we propose a framework
defined in three steps. First, we validate that two epochs are comparable using a set
of reference systems that evaluate the comparability of test collection pairs. Second, we
define the strategy to compare the performance of different systems across epochs. Here,
we propose a comparison of systems using a reference system called pivot to create a
continuous ranking of systems; a performance comparison in a specific epoch or interest
relying on a set of reference systems to compute standardization and projection functions;
and to define comparable grains across epochs. In the third and final step, the comparison
strategy is applied to the tested systems, and longitudinal analysis is performed based on
the computation of the RD according to each comparison strategy.

We test our evaluation framework using two simulated evolving test collections based
on TREC-Robust and TREC-COVID, and we apply our framework using our acquired
test collection LongEval. The results suggest that an evolving test collection provides
more varied results than creating random shards from a test collection to evaluate per-
formance variability. Using evolving test collections also show that there is a relation
between the evolution of the test collections and the performance change of the systems.
Finally, the continuous result delta evaluation framework relates the differences between
the test collections and the differences in the performance of the systems to provide a

2

meaningful continuous evaluation, creating a correct ranking of systems, and a perfor-
mance comparison across epochs. This work is the base of an evaluation framework that
relates knowledge deltas with result deltas in an explainable continuous evaluation frame-
work.

Keywords: Information Retrieval; Continuous Evaluation; Evolving Test Collection

Résumé

L’évaluation classique des systèmes de recherche d’informations (SRI) se fait à l’aide d’une
collection de test statique composée d’un corpus de documents, d’un ensemble de requêtes
et de jugements qui indiquent quels documents sont pertinents pour chaque requête. Dans
le cas de la recherche d’information sur le Web, l’environnement (les pages Web, les re-
quêtes soumises) change continuellement, et utiliser une collection de test statique ne
tient pas compte de cette réalité changeante. De plus, de nouvelles fonctionnalités sont
régulièrement ajoutées au moteur de recherche, créant de nouvelles versions du SRI. Ces
modifications apportées au moteur de recherche, ainsi que l’évolution de la collection de
tests utilisée pour évaluer le système, ont un impact sur l’évaluation des performances.
À notre connaissance, la littérature ne propose aucun moyen d’évaluer différents SRI en
utilisant des collections de tests évolutives comme support de l’évaluation continue de ces
SRI. Une évaluation continue basée sur le paradigme d’évaluation classique devrait nous
permettre de quantifier les différences entre les évaluations. Nous appelons les différences
entre les collections de tests un "delta de connaissances" (KD), et les différences de per-
formances entre les systèmes évalués sur ces différentes collections de tests sont appelées
"delta de résultats" (RD). L’évaluation continue est basée à la fois sur les KD et les RD,
qui nous permettent d’interpréter les performances du système. Nous proposons de créer
des collections de test évolutives pour un cadre d’évaluation continue. Une collection de
test évolutive est un ensemble de collections de test qui changent au fil des différentes
époques. Elle peut être simulée à partir d’une collection de tests statique, ou acquise en
utilisant une stratégie évolutive. Une telle collection de test évolutive est ensuite utilisée
pour évaluer les systèmes dans le cadre de l’évaluation continue. Ce travail se concentre
sur le calcul des RD. Dans cette optique, nous proposons un cadre défini en trois étapes.
Tout d’abord, nous validons que deux époques sont comparables en utilisant un ensem-
ble de systèmes de référence qui évaluent la comparabilité des paires de collections de
tests. Ensuite, nous définissons la stratégie pour comparer les performances des différents
systèmes à travers les époques. Nous proposons ici une comparaison des systèmes en
utilisant : soit un système de référence appelé pivot pour créer un classement continu
des systèmes, soit un ensemble de systèmes de référence pour calculer des fonctions de
standardisation et de projection afin de définir des grains comparables à travers les épo-
ques. Dans la troisième et dernière étape, la stratégie de comparaison est appliquée aux

3

systèmes testés, et une analyse longitudinale est réalisée en fonction du calcul du RD
selon chaque stratégie de comparaison. Nous avons testé notre cadre d’évaluation sur
deux collections de test évolutives simulées basées sur TREC-Robust et TREC-COVID,
et nous avons appliqué notre cadre en utilisant une collection de tests acquise à partir
du Web, LongEval. Les résultats suggèrent qu’une collection de tests évolutive offre des
résultats plus variés que la création aléatoire de fragments à partir d’une collection de test
pour évaluer la variabilité des performances. L’utilisation de collections de test évolutives
montre également qu’il existe une relation entre l’évolution des collections de test et le
changement de performance des systèmes. Enfin, le cadre d’évaluation continue des RDs
connecte les différences entre les collections de tests et les différences de performance des
systèmes pour i) fournir une évaluation continue ayant du sens, et ii) créer un classement
correct des systèmes et une comparaison des performances à travers les époques. Ce tra-
vail constitue la base d’un cadre d’évaluation qui relie les KDs aux RDs dans un cadre
d’évaluation continue explicatif.

Mots clés: Recherche d’Information; Evaluation Continue; Test de Données Evolutif.

4

Acknowledgments

I want to express my gratitude to my supervisors Lorraine Goeuriot and Philippe Mulhem
for the trust they placed in me throughout the course of this thesis. I appreciate their
commitment and constant dedication to this research. I am grateful for their teachings and
wise advice, both regarding the development of the thesis and my growth as a researcher.
I finish this work feeling proud of the team we formed and everything I learned from you.

I would like to thank the School and Institute of Ingeniería Civil en Informática at
the Universidad Austral de Chile. Thank you for making the school feel like home and
for supporting me in all the projects I proposed. Undoubtedly, my decision to pursue an
academic path has been influenced by all of you.

Thanks to my mom and my siblings Maca and Carlos for teaching me from a young age
that I had to forge an independent path and that I am a strong woman capable of setting
goals beyond what is established. Thank you for always motivating and supporting me.

Lastly, I want to express my gratitude to my husband Daniel and my son Sebastián.
Daniel, thank you for motivating me to embark on this path and for accompanying me on
it. Sebastián, I appreciate and admire your greatness in overcoming all the challenges that
moving to a new country presented for you. Family, thank you for turning this experience
into an enriching and love-filled family adventure.

Agradecimientos

Quisiera expresar mi agradecimiento a mis supervisores Philippe Mulhem y Lorraine
Goeuriot por la confianza que depositaron en mí durante el transcurso de la tesis. Agradezco
su compromiso y su constante dedicación con esta investigación. También agradezco sus
enseñanzas y sabios consejos, tanto en relación al desarrollo de la tesis como a mi desar-
rollo como investigadora. Termino este trabajo sintiéndome muy orgullosa del equipo que
formamos y de todo lo que aprendí de ustedes.

Quisiera agradecer a la Escuela e Instituto de Ingeniería Civil en Informática de la
Universidad Austral de Chile. Gracias por hacer de la escuela mi casa y por apoyarme
siempre en todos los proyectos que les propuse. Sin duda, mi decisión de continuar por
un camino académico está influenciada por todos ustedes.

Gracias a mi mamá y mis hermanos Carlos y Maca por enseñarme desde pequeña que
debía construir un camino independiente y que soy una mujer fuerte capaz de establecer
metas más allá de lo establecido. Gracias por motivarme y apoyarme siempre.

Finalmente, quiero agradecer a mi marido Daniel y a mi hijo Sebastián. Gracias,
Daniel, por motivarme a tomar este camino y por acompañarme en él. A Sebastián,
agradezco y admiro su grandeza al enfrentar todos los desafíos que cambiarse de país
implicó para él. Familia, gracias por hacer de esta experiencia una aventura familiar
enriquecedora y llena de amor.

5

Acknowledgments of funding
This work was supported by the ANR Kodicare bi-lateral project, grant ANR-19-CE23-
0029 of the French Agence Nationale de la Recherche, and by the Austrian Science Fund
FWF, grant I4471-N.

6

Contents

1 Introduction 11
1.1 Kodicare Context . 13
1.2 Problem description . 14
1.3 Contributions . 14
1.4 Report Structure . 15

2 Information Retrieval and Evaluation 17
2.1 Information Retrieval . 17
2.2 Information Retrieval Evaluation . 19

2.2.1 Classical Offline Evaluation . 19
2.2.2 Performance Evaluation . 24

2.2.2.1 Per Query-based Metrics 25
2.2.2.2 Global System’s Performance 29

2.2.3 Comparing Systems using the same Test Collection 30
2.3 Limits: Changes in the Test Collections . 32

2.3.1 Document Collection Stability . 33
2.3.2 Topic Difficulty . 34
2.3.3 Effect of Corpus, Query and System on the Performances 36

2.4 IR Evaluation involving changing test collections 36
2.4.1 Test Collection Maintenance . 37
2.4.2 Topics Standardization . 37
2.4.3 Multiple Experiments interpretation 38

2.5 Test Collections with changes . 40
2.5.1 TREC-COVID . 40
2.5.2 TREC-ROBUST . 41

2.6 Conclusion . 42

3 Evolving Test Collections 45
3.1 Introduction . 45
3.2 Formalization . 47
3.3 Simulation from existing TC . 49

7

Contents

3.3.1 Simulation procedure . 49
3.3.2 Strategy: Features and Constraints 51
3.3.3 Instanciation . 52

3.3.3.1 Random ETC . 52
3.3.3.2 Overlapping (Ov.) ETC 54

3.3.4 Simulation Cases . 55
3.4 ETC Acquisition: CLEF LongEval . 57

3.4.1 Data Acquisition Overview . 58
3.4.1.1 Data description . 58
3.4.1.2 Acquisition description . 59

3.4.2 From Topics to Queries . 61
3.4.2.1 Topics Selection . 61
3.4.2.2 Queries Selection . 65

3.4.3 Relevance Judgements . 67
3.4.4 Document Corpus . 69
3.4.5 English Translations . 70
3.4.6 CLEF LongEval 2023 shared task 70
3.4.7 LongEval ETC Limits . 72

3.5 Experiments . 72
3.5.1 Simulated ETC Validation . 72

3.5.1.1 Stability Evaluation . 73
3.5.1.2 Simulated Evolving Test Collections 74
3.5.1.3 Results . 75
3.5.1.4 Conclusion . 80

3.5.2 LongEval Evolving Test Collection 81
3.5.2.1 LongEval Evolution . 81
3.5.2.2 LongEval Evaluation . 82
3.5.2.3 Summary . 83

3.6 Conclusion . 83

4 Evaluating Systems on Evolving Test Collections 85
4.1 Introduction . 85
4.2 Definitions . 86
4.3 Continuous Result Delta Evaluation Framework 89

4.3.1 Research Questions and Hypotheses 90
4.3.2 Overview . 90
4.3.3 Comparability Validation . 92
4.3.4 Comparison Strategy . 93

4.3.4.1 Pivot Strategy . 93
4.3.4.2 Projection Comparison . 96
4.3.4.3 The Grain Comparison . 98

8

Contents

4.3.5 Longitudinal Analysis . 100
4.4 Experiments . 102

4.4.1 Data . 102
4.4.2 Comparability Validation Step . 102
4.4.3 Comparison Strategy . 103

4.4.3.1 Pivot Strategy . 104
4.4.3.2 Projection Comparison . 105
4.4.3.3 Grain Comparison . 107

4.4.4 Longitudinal Analysis . 108
4.4.4.1 Continuous Ranking of Systems 109
4.4.4.2 Expected Performance Analysis 111
4.4.4.3 Grain Analysis . 114

4.4.5 LongEval Use Case . 116
4.5 Discussion . 122
4.6 Conclusion . 124

5 Conclusion and Future Work 125

A Continuous Evaluation Tool 131
A.1 Introduction . 131
A.2 Related Work . 132
A.3 Architecture . 133
A.4 Functionalities . 133
A.5 TREC-COVID evaluation Example . 135

A.5.1 General View . 135
A.5.2 Overview . 135
A.5.3 Delta Evaluation . 137
A.5.4 Meta-Analysis . 138

A.6 Conclusion . 138

B Résumé en Français 141
B.1 Collection de Tests Évolutive . 143

B.1.1 Simulation . 143
B.1.2 Acquisition . 145

B.2 Évaluation continue . 147
B.3 Conclusion . 151

Publications 151

Bibliography 155

9

Contents

10

Chapter 1

Introduction

Information Retrieval (IR) [118] aims at accessing relevant documents answering user’s
needs. The quality of an IR system is mainly related to its capacity to retrieve relevant
documents. Since 1992, several classical evaluation campaigns have proposed reusable
test collection to evaluate information retrieval systems involving a large number of sci-
entists. The main ones are: the Text REtrieval Conference (TREC)1, the Conference and
Labs of the Evaluation Forum (CLEF)2, and the Test Collection for IR Systems Project
(NTCIR)3, the Initiative for the Evaluation of XML Retrieval (INEX)4, and the Forum
for Information Retrieval Evaluation (FIRE)5.

Classical evaluation of information retrieval systems evaluates a system in a static test
collection, composed of a set of documents, a set of queries, and relevance judgments.
The evaluation is conducted to test and measure the performance of a specific number
of systems using a specific test collection. Any change in the evaluation, such as the
document set, the queries set, the relevance judgments, or the evaluated systems, has an
impact on the performance measurement [45, 133].

Thirty years of evaluation campaigns have led to the creation of many test collections.
Overall, these evaluation campaigns share the same objective: comparing IR systems
according to the exact same environment. Such evaluations are of great interest for the
improvement of IR systems, but they are somewhat artificial: in real life (in any of
industrial settings), elements (documents, queries, users, systems, ...) evolve.

In the case of Web search, the environment is continuously changing. The Web doc-
uments6, as well as the users needs7 are constantly evolving. Therefore the hypothesis

1https://trec.nist.gov/
2http://www.clef-initiative.eu/
3http://research.nii.ac.jp/ntcir/index-en.html
4https://inex.mmci.uni-saarland.de/
5http://fire.irsi.res.in/fire/2020/home
6https://www.worldwidewebsize.com/
7https://trends.google.com

11

https://trec.nist.gov/
http://www.clef-initiative.eu/
http://research.nii.ac.jp/ntcir/index-en.html
https://inex.mmci.uni-saarland.de/
http://fire.irsi.res.in/fire/2020/home
https://www.worldwidewebsize.com/
https://trends.google.com

Chapter 1. Introduction

of using a static test collection is not representative of this evolving reality, and it is an
illusion to believe that a static collection is intended to work an industrial IR system.
Therefore, offline evaluation of Information retrieval systems cannot be directly applied
to live search systems in use in the industry: running one campaign a year is not enough;
constantly tuning a system to a benchmark leads to overfitting the benchmark rather
than improving the system’s performance that is valid for different test collections.

We are aware that other ways exist to evaluate Web search engines, including, for
instance, A/B testing [67]. We believe grounding our proposal on offline evaluation helps
us compare to classical TREC evaluations. The goal and the resources needed to evaluate
using online and offline evaluation paradigms differ: while the online evaluation seeks to
measure the user feeling (satisfaction, preference, etc) from interaction behaviors (number
of clicks, dwell time, etc), the offline paradigm focuses solely on the relevance retrieved
rate comparing the system results against expert relevance judgments using a defined test
collection. User-based evaluation schemes can give more realistic insights into the real
system quality [34], but their results may not be as reusable as the offline measurements
[106]. This reusability advantage makes the offline evaluation paradigm more suitable
for comparing different systems that were evaluated in different evaluation environments.
Additionally, it is important to be able to characterize the differences between the evalu-
ation environments. This characterization is more suitable in the offline paradigm, as the
collection of documents, queries, and judgments is known and modifiable.

There is a need for a framework to properly and continuously evaluate search systems.
Compared to classical IR evaluation on static test collections, the continuous evaluation of
IR systems integrates “time” into the evaluation process. Along with others, a longitudinal
evaluation of an IR system is dedicated to checking if the quality of one (or several) system
(s) works is higher, as good or worse, as time goes by. More precisely, the longitudinal
evaluation is able to pinpoint some of the reasons for a system’s behavior change.

In concrete, we exemplify our motivation in the following use case (Figure 1.1). Sup-
pose that the search engine Qwant is constantly implementing modifications in its in-
formation retrieval model (exemplified in the logo changes that had been implemented
over the years). At each modification, Qwant evaluates the system with a representative
sample of its environment, which evolves constantly (represented by the changing Web
pages set at the right of the figure). With the goal of decide if the search engine has
improved, we aim at comparing to versions of the search engine, which were evaluated
using different test collections. In such cases, the need for continuous evaluation emerges
and has to be tackled.

We address the following research question: How to compare the performance of dif-
ferent information retrieval systems evaluated when the test collections change?

12

1.1. Kodicare Context

Figure 1.1: Qwant evaluation case with the IR system and Web pages changing across
time.

1.1 Kodicare Context

This work was carried out within the Kodicare project (ANR-19-CE23-0029). Kodicare
is a collaborative research project in an international context (PRCI) from the French
Agence National de Recherche (ANR). Our partners are: from the academic perspective
the Research Studios Austria (RSA), and from the industrial perspective the QWANT
french company that proposes a Web search engine.

The general aim of Kodicare is to provide a novel, sound, theoretical basis for un-
biased continuous evaluation of IR methods, based on a quantification of the significant
differences between benchmarks, on which future search systems in the real world can rely
upon.

Kodicare aims at adapting the classical information retrieval evaluation paradigm to a
continuous evaluation one. The classical evaluation provides controlled test collection (i.e.,
set of topics, corpus of documents and relevant assessments) as a stable and meaningful
environment that guarantees the reproducibility and explainability of system results. A
continuous test collection needs to quantify the differences between the test collection
elements (called Knowledge delta) and to study how such Knowledge deltas are related to
the changes in IR systems performances, called Result delta. Kodicare is also concerned
with bringing the academic results to scale though the collaboration with Qwant.

Within Kodicare, the objective of this thesis is to build a continuous evaluation frame-
work for Information Retrieval Systems, focusing on the Result delta point of view.

13

Chapter 1. Introduction

1.2 Problem description

We address the evaluation of IR systems in the context of Web search. As stated before,
the documents, queries, and users are constantly evolving. And also, the search engine is
constantly implementing modifications in the IR model. To evaluate an IR system in this
Web context, it is required to have a test collection that is modified across time as a real
Web search environment. Here the first problem arises:

• There is no test collection with controlled evolutions of the set of documents, queries,
or relevance judgments available in the literature which we can apply and test a
continuous evaluation of information retrieval systems.

The second problem targets the fact that, at each evaluation attempt, different systems
can be evaluated, needing to compare different systems evaluated on different test collec-
tions:

• We cannot compare the performance of a system evaluated in one test collection with
a system evaluated in a second test collection because the performance variations
are dependent on those changes. There is no evaluation framework that allows the
comparison of systems evaluated in evolving test collections that also explains how
the changes in the evaluation environment affect the performance results.

In the next section, we describe how this research work proposes to solve these prob-
lems.

1.3 Contributions

This thesis aims at developing a continuous evaluation framework of a real search engine
of Web content, making possible the computation of result deltas between systems over
different evaluation attempts. The contributions of this thesis are the following:

• A simulation method to create evolving test collections from existing static
test collections. We propose a method to mimic the web environment by creating
several sub-collections from an existing one. The simulation is defined by a set of
features that controls the evolution across the sub-collections.

• The creation of LongEval evolving test collections from QWANT search engine.
We propose an acquisition framework to gather documents, queries, and assessments
periodically using an industrial search engine. LongEval was shared with the IR
community as a CLEF evaluation lab.

14

1.4. Report Structure

• A continuous evaluation framework that is based on three steps: a compara-
bility validation step, a comparison strategy step, and a longitudinal analysis. The
framework allows the computation of the result deltas as the performance difference
of systems evaluated in different epochs in an evolving test collection.

1.4 Report Structure
This thesis is organized into five chapters. They are organized as follows:

Chapter 2. Presents the evaluation of information retrieval systems. We start by pre-
senting the information retrieval task and the Cranfield paradigm used to evaluate
IR systems based on test collections. Then, we present different performance metrics
from a query or system perspective. We focus on the limits of the current evalua-
tion methodologies and explore the impact of changes in the test collection on the
performance evaluation. We finish with a description of several test collections that
could be used for a continuous evaluation of systems.

Chapter 3. Defines evolving test collections and proposes two methods to create them.
The first method simulates an evolving test collection by using a static test collec-
tion, and the second method proposes a periodical acquisition of documents, queries,
and assessments from search engine data. We compare and evaluate the stability
of several simulated evolving test collections based on time features versus other
state-of-the-art configurations. Finally, we present a real evolving test collection
acquired in the context of CLEF LongEval shared task with the QWANT search
engine.

Chapter 4. Describes our proposed Continuous Evaluation Framework. It describes
the procedure to compute the performance difference between systems evaluated
in different epochs of an evolving test collection. The framework is composed of
three steps (i) a comparability validation step, (ii) a comparison strategy step, and
(iii) a longitudinal analysis step. We test our framework using simulated ETCs and
present its application using LongEval.

Chapter 5. Summarizes the contributions of this thesis, presents the main conclusions,
and discusses possible future lines of study from this research work in the context
of continuous evaluation of IR systems.

Appendix A. Presents our visualization tool that allows an exploratory analysis in the
context of a continuous evaluation.

Appendix B. Presents a summary of this work in French.

15

Chapter 1. Introduction

16

Chapter 2

Information Retrieval and Evaluation

This chapter introduces an overview of evaluation methodologies in the information re-
trieval field. We present a general description of the information retrieval task in sec-
tion 2.1; the offline evaluation method to measure the performance of a system and
compare several systems using a common test collection is detailed in section 2.2; in sec-
tion 2.3, we analyse the limits of the offline evaluation by showing the influence of the
changes in the test collections on the performance measurement of information retrieval
systems. Finally, we present the current effort to evaluate systems involving changing test
collections in section 2.4 and some examples of dynamic test collections in section 2.5.

2.1 Information Retrieval
We take inspiration of Manning [68] to define Information Retrieval as:

Definition 1 Information Retrieval (IR) is about finding relevant documents for
a specific user’s information need from a corpus of documents.

An Information Retrieval System (IRS) is a computational system that a user
can access to solve an information need. Baeza-Yates et al., [12] define that The primary
goal of an IRS is to retrieve all the documents which are relevant to a user query while
retrieving as few non-relevant documents as possible.

A key element in the definition of IR is the concept of Information need, which we
define as:

Definition 2 Information need is a request of a user to the IR system, usually
expressed as a query.

The Query expressed by the user is submitted to the IRS. It can be a list of words,
an image, or an audio string, among others. Then, the IRS aims at returning a list of

17

Chapter 2. Information Retrieval and Evaluation

documents that contain relevant information to the user’s query. A document is the
unit of information that the system retrieves. It can be a text, a video, an image, an
audio, etc. In the case of a Web search engine, a document is a Web page. We call the
Corpus of documents the set of documents that the IRS has access to.

The concept of relevance defines whether a document is related to the informa-
tion need. The measure of relevance is subjective and widely discussed in the litera-
ture [16, 38, 74, 110]. Considering that the concept of relevance could be defined in
several dimensions [75], we simply define it according to the relation between the user’s
information need and the retrieved document:

Definition 3 relevance is the measure by which a document solves an information
need.

Figure 2.1 presents the Information Retrieval task as the process of retrieving relevant
documents for a query. The IR task starts with a user that submits a query into an
IRS. First, the IRS processes the query. Then, it computes a retrieval score to estimate
the document’s relevance to the query from the corpus of documents. Finally, the IRS
returns a ranked list of documents according to the scores. These retrieved documents
are ranked by decreasing retrieval scores. Ultimately, the user interacts with the ranked
list to find relevant documents that solve her information need.

Figure 2.1: General description of the information retrieval task performed by a system.

The evaluation of Information retrieval systems is a challenging topic. One core goal of
IR is providing documents that solve a user’s information need. The query submitted
by the user is usually incomplete or underspecified information [106]. The relevance of
each document depends on the user’s understanding of the document and her specific
information need. This relevance measure is not explicitly informed to the IRS.

18

2.2. Information Retrieval Evaluation

2.2 Information Retrieval Evaluation

The evaluation of information retrieval systems is dedicated to measuring the quality of a
specific IRS. To do so, it is necessary to evaluate if the documents in the retrieved list are
relevant to the user’s information needs. In this section, we present the so called offline
evaluation paradigm and the strategies to reproduce human relevance assessments of the
IRS retrieved documents. First, we present the test collection in section 2.2.1. Then, a
list of performance metrics which measures the performance of a system at the query or
at a global level, in section 2.2.2. Finally, In section 2.2.3, we present methods to compare
different systems evaluated in the same test collection.

2.2.1 Classical Offline Evaluation

The classical approach to measuring the quality of IR systems involves an offline evalua-
tion, assessing IR systems in a controlled environment independent of real-time interac-
tions. This evaluation method involves the utilization of pre-collected test collections to
measure the performance of IR systems.

The offline evaluation of IR systems follows the well-established Cranfield paradigm [68],
which entails a standardized methodology for evaluating IR system performance. This
paradigm relies on reusable test collections and performance metrics to facilitate accu-
rate and consistent evaluations. As described by Robertson et al. [91], a test collection,
according to the Cranfield Paradigm, can be defined as:

• A set of Topics and Queries. A topic describes the information need using one or
several descriptors as the user’s context. The query is the expression of the topic,
as it would be submitted to an IRS;

• A Corpus, the set of documents, as information units, from where the IRS finds
results to the information need;

• A set of Relevance Judgements as an assessment that defines the relevance of a
document to a specific topic, it simulates the user’s judgement. This set is called
Qrels.

As the topics and queries, documents in the corpus, and relevance judgments are not
meant to change, we define this test collection as a static test collection:

19

Chapter 2. Information Retrieval and Evaluation

A Test Collection (TC) is the tuple of three components (sets): documents (D),
queries (Q) and relevance judgments (Qrel), defined by a set of assessment values (AV).

TC = (D,Q,Qrel)

where,
D = {dj}1≤j≤nd, |D| = nd;

Q = {qk}1≤k≤nq, |Q| = nq;

Qrel = {(dj, qk, f(dj, qk)}, |Qrel| = nd× nq;

with :

f : D ×Q→ AV

AV = {av}
nd, nq ∈ N; av ∈ N+,∀av ∈ AV

(2.1)

with AV , the domain that lists the set of assessment values. For instance, AV = {0, 1} for
binary assessments, where 1 represents relevant, and 0 represents documents non-relevant.

To evaluate an IRS using a test collection, the IR system retrieves, from the corpus, a
ranked list of documents for each query of the test collection as the system result, called
a run [106]. Then, the system’s quality is evaluated using a performance metric that
compares a run and Qrel. This evaluation process is exemplified in figure 2.2: first, a set
of queries is submitted to the IRS; then, the IRS retrieves a ranked list of documents for
each query (i.e., run). Finally, the relevance judgments (i.e., Qrel) of the test collection
are compared against the run. In section 2.2.2, we describe how the performance metrics
are computed by comparing the qrels versus a run.

Figure 2.2: Information Retrieval Evaluation task using a Test Collection (components in
grey).

When comparing the IR task (in figure 2.1) and the IR evaluation task (shown in

20

2.2. Information Retrieval Evaluation

figure 2.2), we see that the evaluation query takes the place of the user’s query. Similarly,
the relevance judgment is a substitute for the user’s interaction with the ranked list
of documents by providing a relevance assessment value for each query-document pair.
Notice that, in such a test collection, it is usual to find the topic that describes the
context of the user when submitting the query as a narrative of the user’s information
need. However, the evaluation is performed with the query and without using the topic.

The construction of a test collection is usually related to a specific retrieval domain
and use case [92] that guides the gathering of topics, queries, and documents. For ex-
ample, the test collection may be focused on evaluating systems in a specific domain,
as TRECVID [11] test collection that is oriented to the information video retrieval task,
CLEFeHealth2020 [52] is oriented to the health search of a layperson; TREC-Robust [130]
looks for poor performing queries on news documents; TREC-WEB2009 [35] test collec-
tion is oriented to the Web search. Other evaluation tasks focus on a use case and intend to
study specific aspects of a search task. For example, in 1999, the TREC-Query track [21]
created a test collection to analyze the difference in the retrieved documents using differ-
ent queries for the same information need. Another test collection, UQV100 [13], focuses
on the creation of multiple queries that different users would use to express the same
information need.

Clough and Sanderson [37, 42] discuss the construction and use of test collections for
evaluating the IRS and provide an overview of how queries, documents and relevant judge-
ments can be gathered. Even when the specific details will depend on the requirements
of the evaluation [107], the following steps provide a general framework for creating test
collections:

• Select topics and queries: a set of topics is defined to reflect real information
needs. It is possible that an expert creates a topic and one or several queries to
describe a specific search case (as in CLEFeHealth2020 [52]). Another strategy is to
extract real queries from a search engine log (as in TREC-WEB2009 [35]) to infer
the context later in order to describe a narrative for the topic. Finally, another
example is to define topics from social network posts (as in CLEF-MCM [51]). This
process results in a list of queries in Q of the TC.

• Gather documents: The goal is to gather documents that are likely relevant to the
queries. It should be large enough to ensure that relevant documents are included.
The documents could be sampled from a specific system, as in MS-MARCO, where
the documents are extracted from real Web documents in the Bing Index [80]; the
corpus can be extracted using Web crawl, as CLEFeHealth2020 [52] that extract a
defined set of URLs from the Common Crawl1; or using a defined dataset as CORD-
19 dataset [134], the TREC-COVID [127] corpus, that selected documents based on

1http://commoncrawl.org

21

http://commoncrawl.org

Chapter 2. Information Retrieval and Evaluation

the presence of COVID-19 related terms the title or abstract of published scientific
papers. This is the document corpus D in TC.

• Obtaining relevance judgements: The goal is to define which documents of the
corpus D are actually relevant for each query in Q of the test collection. Since a topic
may have multiple queries, the evaluation is performed for each individual query.
The assessment could be performed in all pairs of document-query (as the initial
Cranfield test collection [36]) or using a strategy to select which documents to assess
for each query. TREC test collections (e.g., TRECVID [11]) propose to ask experts
to judge the relevance of each document-query pair. Some studies propose to use
click-logs from user behavior to extract the relevance of the documents implicitly [58,
64]. Another way to define the relevance of a document without human judgments
(i.e., pseudo-relevance judgments) is to estimate the relevance from the structure
of the documents [48] or from the relation between documents [7]. The final result
of the assessment process is a tuple (d, q, av) that defines the relevance with an
assessment value (av ∈ AV) for a query (q ∈ Q) and document (d ∈ D). The set of
assessment values are finally the Qrel set of the TC.

Text REtrieval Conference (TREC), Cross-Language Evaluation Forum (CLEF), NII
Test Collection for IR Systems (NTCIR) and the Forum for Information Retrieval Eval-
uation (FIRE) are evaluation campaigns that propose a set of open challenges running
every year with the goal of creating new test collections. In TREC evaluation campaigns,
a group of organizers defines a specific information task to solve and then invites teams to
submit the results of an IR system using a specific set of documents and queries following
defined instructions [100]. To evaluate the system’s results, the relevance judgment fol-
lows a pooling strategy [140], where the results of the systems are used to create a pool
of documents that will be used to assess the relevance of the document-query pair. This
selection strategy assumes that if any system retrieves a document, then it is probably
not relevant to the query. Therefore, the assessment value for that document-query pair
is the same value as the pairs judged as non-relevant.

Illustration with a use case: CLEF eHealth 2021 TC. We illustrate the creation
of such test collection through the CLEF eHealth2021 test collection [119] created on
the CLEF 2021 evaluation campaign. CLEF eHealth2021 has the general purpose of
assisting laypeople in finding and understanding health information to make enlightened
decisions. The test collection defines 100 topics created by medical experts and 50 topics
extracted from social networks. An example of a topic of CLEF eHealth2021 is presented
in listing 2.1. The < id > tag is the topic identifier, the query is contained in the
< query > tag, and < narrative > presents the context of the topic as a description of
the user’s information need.

22

2.2. Information Retrieval Evaluation

Listing 2.1: Example topic from CLEF eHealth2021 test collection.
1 <topic >
2 <id>8 </id >
3 <query >
4 best apps daily activity exercise diabetes
5 </query >
6 <narrative > I’m a 15-year -old with diabetes. I’m planning

to join the school hiking club. hat are the best apps
to track my daily activity and exercises?

7 </narrative >
8 </topic >

The corpus consists of 5 million medical Web pages from selected domains acquired
from the Common Crawl. Figure 2.3 presents an example of a document of CLEF
eHealth2021. The URLs were selected using Bing results for CLEF ehealth2018 and
CLEF ehealth2020 queries.

Figure 2.3: Example of document in CLEFeHealth2021 corpus.

The relevance judgments were assessed by experts in the medical domain, considering
three dimensions of relevance, topicality, credibility and readability. For example, following
a TREC format2, listing 2.2 presents the topicality relevance judgement for topic 1 (first
column) with respect to four documents (third column), using a relevance value (in the
fourth column) between 0 to 2:

Listing 2.2: Extract of qrels file from CLEFeHealth2021 test collection.
1 TOPIC ITERATION DOCUMENT RELEVANCE
2 1 0 a6195d99-f7d7-43ec-907c-435cb7a62ee7 2
3 1 0 80fd9af1-c9b6-4d82-b62a-fe16d5b9d76f 1
4 1 0 4a8c5d85-b2d0-43bc-83f4-c1acfe0b3481 2
5 1 0 22990a4b-6a9f-4e00-9e72-aef0fbee202b 0

2https://trec.nist.gov/data/qrels_eng/

23

https://trec.nist.gov/data/qrels_eng/

Chapter 2. Information Retrieval and Evaluation

Figure 2.4: General description of IR evaluation task to compare the performance of
several IRS using the same test collection.

Two other assessment files were generated, as the challenge also assessed the documents
in terms of credibility (qcredibility) and readability (qreadability)3.

In conclusion, the purpose of test collections is to evaluate an IRS by comparing its
performance with other IR systems. Figure 2.4 presents an example of several systems
using the same test collection to estimate their performance. All the systems evaluated
using the same test collection can be compared. In the following section, we detail how the
ranked list is compared to the set of assessments to compute the system’s performance.

2.2.2 Performance Evaluation

Evaluating and comparing systems’ performances is complex. Information Retrieval is an
empirical task based on inferences made from the data: model specification, parameter
estimation, and model evaluation [6]. To quantify the performance of an IR system, a test
collection and evaluation metrics are needed [68]. It requires measuring the effectiveness of
the system per query by comparing the ranked list of documents retrieved by the system
against a set of pre-determined relevant documents (i.e., relevance judgments) using a
defined set of metrics. Many evaluation metrics exist, measuring different facets of the
performances of a system [109]. Classically, metrics are computed on the result list for
one query and then averaged over a number of queries.

To compare the performance of two systems and determine whether system A out-
performs system B, metric measures can be compared directly on a query-by-query basis,
or as a global performance value for each system (such as the mean performance across
queries), or as a distribution of performance values. In this way, it is possible to determine
whether the difference between the compared systems is statistically significant or not,

3Accessible at https://github.com/CLEFeHealth/CHS-2021/tree/main/assessments

24

https://github.com/CLEFeHealth/CHS-2021/tree/main/assessments

2.2. Information Retrieval Evaluation

Figure 2.5: Results of system S1 (run S1) and S2 (run S2) using the relevance judgments
(qrels) of query q1. Documents are in red for non-relevant ones, in green for relevant ones,
and without color for unjudged documents.

according to a specific hypothesis test.

2.2.2.1 Per Query-based Metrics

The metrics measure a capacity of a system to retrieve relevant documents. In this section,
we review the computation of performance metrics considering one query. Figure 2.5
illustrates how the Qrel is compared to a run considering only one query (e.g., q1). The
first box shows which documents of the test collection are relevant (i.e., relevance value =
1); the second and third boxes show the result of systems S1 and S2 for query q1, in color
are illustrated which retrieved documents are relevant (in green, doc03 and doc01), which
are irrelevant (in red, doc05 and doc06), and which documents are not judged (without
color, doc09, doc10, doc11).

The two main evaluation measures are the Recall and the Precision :

Recall =
| { relevant documents retrieved } |
| {relevant documents in qrels} |

Precision =
| {relevant retrieved documents} |
| {retrieved documents} |

The Recall metric measures the capacity of the system to retrieve all the relevant
document, and the Precision metric evaluates the capacity of the system to retrieve
only relevant documents. In our example (Figure 2.5):

25

Chapter 2. Information Retrieval and Evaluation

Recall(q1, S1) = 2/4

Precision(q1, S1) = 2/5

Recall(q1, S2) = 1/4

Precision(q1, S2) = 1/5

the performance of S1 is higher than S2 for Recall and Precision.

Recall and Precision are complementary metrics (an ideal system should retrieve
all and only relevant documents), then it is meaningful to mix them classically in the
F -measure (harmonic mean of Precision and Recall values):

F -measure = 2× Precision×Recall

Precision+Recall

Recall and Precision are computed based on the full set of retrieved documents. Some
metrics assume that a user does not review all the documents but until a specific point in
the results. Recall at rank (R@k) and Precision at rank (P@k) metrics assume the user
interacts with the first k documents in the ranked list.

R@k =
|{relevant documents retrieved in first k positions }|

|{relevant documents in qrels}|

P@k =
|{ relevant documents retrieved in first k positions }|

k

R-precision is the precision at rank R, where R is the total number of documents
relevant to the query [8]. This metric allows examining a different number of documents
per query, depending on the number of relevant judgements.

R-precision =
|{ relevant documents retrieved in first R positions }|

R

R : |{relevant documents in qrels}|

By definition, R-precision is the precision value at rank R (P@R), which is also the
definition of recall at rank R (R@R) [10]:

R-precision = P@R = R@R

Reciprocal rank (RR) assumes the user stops when the first relevant document is
found. It is used in Question-Answering search cases [87]:

RR =
1

k

k : ranking position of first relevant document

If we apply the metrics to our illustrated example (Figure 2.5), if the user review only
2 documents, the system’s performance is:

26

2.2. Information Retrieval Evaluation

R@2(q1, S1) = 1/2

P@2(q1, S1) = 1/2

R@2(q1, S2) = 1/2

P@2(q1, S2) = 1/2

as we have 4 relevant documents, R = 4, one relevant document in the first four positions,
and the first relevant document is in rank position two:

R-precision(q1, S1) = 2/4

RR(q1, S1) = 1/2

R-precision(q1, S2) = 1/4

RR(q1, S2) = 1/1

Therefore, S1 has the same performance as S2 according to R@2 and P@2, S1 has better
performance than S2 according to R-precision, and the opposite occurs if the performance
is measured with RR with S2 better than S1.

An extension of these metrics is Average Precision (AP), which takes the average of
the precision at every document retrieved:

AP =
1

r

∑
k∈r

P@k

r : {position of all the relevant documents in the run}

Robertson [90] proposes a simple interpretation for this metric as the expected pre-
cision with the user’s stopping point being uniformly distributed over all the relevant
documents of the topic.

Widely used metrics, like AP and R-precision, require assessing all the documents of
the retrieved set to obtain accurate values. However, in several cases, it is not possible
(because of prohibitive time and cost) to have the complete set of documents judged for
each query. The preference-based measure (bpref) [20] is inversely related to the fraction
of judged non-relevant documents retrieved before relevant documents, making it robust
against incomplete relevance information.

bpref =
1

R

∑
k∈r

1− |{non-relevant documents ranked higher than k}|
min(R, |N |)

N : {documents judged as non-relevant}

The idea behind bpref is that for a user, any relevant document is preferred over any
non-relevant document [12].

Another example of a metric robust to incomplete relevance assessments is inferred
AP (infAP) [9], which infers a full set of assessments from a small fraction of judged
documents: it uses estimates of average precision of multiple systems, together with an
estimation of the total number of relevant documents in a query, computed using a small

27

Chapter 2. Information Retrieval and Evaluation

number of relevance judgments.

The position of the documents in the run has not the same importance for the user.
Ranked-based metrics are measures that consider the position of the documents in a
result list. Some evaluation measures consider that the ranking quality is higher if the
relevant documents are ranked first rather than at the bottom positions. The Discounted
Cumulative Gain (DCG) [62] takes the ranking into account by penalizing with a discount
value every next position in the ranking list.

DCG =

|{run}|∑
k=1

rel(d@k)

log(k + 1)

rel(d@k) : relevance value of document in position k

As DCG values could vary strongly between queries, it is normalized against the ideal
DCG value of the list (IDCG), leading to the normalized discounted cumulative gain
(nDCG).

nDCG =
DCG

IDCG
,

IDCG is DCG defined on an ideal run that considers all relevant documents ordered
by relevance value (the same number of documents as run).

DCG (and nDCG) are able to handle graded assessments (n-levels of relevance).
Previous metrics, like AP , R-precision, and RR have to be adapted because they rely on
binary values only (relevant with value 1 and non-relevant as value 0).

The Rank Biased Precision (RBP) [78] describes the users’ persistence in stepping
through each search ranking.

RBP = (1− p)×
n∑

i=1

rel(d@i) ∗ pi−1

p : probability of view the next item i in the ranked list

The Expected Reciprocal Rank (ERR) [29] can be seen as an extension of the classical
reciprocal rank to the graded relevance case. This metric is defined as the expected
reciprocal time that the user will take to find a relevant document.

ERR =
K∑
k=1

1

k
rel(d@k)

k−1∏
i=1

(1− rel(d@i))

K : number of retrieved documents

28

2.2. Information Retrieval Evaluation

ERR assumes a user examines documents by a cascade browsing model (in sequence).
ERR quantifies the usefulness of a document at rank i conditioned on the degree of rele-
vance of the items at ranks lower than i (i.e. appearing before i in the result list).

Many metrics could be (and are) used to define the performance of the systems: they
all help addressing different aspects of the information retrieval evaluation. Computing
the performance of S1 and S2 (figure 2.5), using some metrics, showed how considering
different metrics we can conclude differently. S1 is better than S2 according to Recall,
Precision and RPrecision, but S2 is better than S1 in terms of RR. In summary, table 2.1
presents the characteristics of the metrics described in this section. Most of the presented
metrics need to fully examine the result list of documents to compute an evaluation taking
into consideration the ranking of the documents. Only a few metrics penalize the position
in the ranking and are defined to work with graded assessments.

Characteristics

Full Set
Examination

Ranked
based

Penalization
Score

Graded
Assesment

M
et

ri
cs

Precision X
Recall X
AP X X

P@k R@k X(@k) X
RR R-precision X(@R) X

DCG
nDCG

X X X X

bpref X
infAP X
RBP X X X X
ERR X X (Cascade) X

Table 2.1: Characteristics of the metrics described in section 2.2.2.1.

2.2.2.2 Global System’s Performance

The metrics above are computed for one query only. However, to estimate the quality of
a system, several queries have to be considered, as one system may be very effective for
one query and not for others. Increasing the number of queries considered is a way to
increase the confidence in the results of a system evaluated using the test collection [129].

The most common evaluation metric considering several queries is the mean Average
Precision (mAP), computed by the arithmetic mean of the average precision (AP) values
for each individual query. More generally, it is also common to calculate the mean of a

29

Chapter 2. Information Retrieval and Evaluation

Figure 2.6: Performance result of an IRS (S1) using a Test Collection. (a) Illustrates
the implementation of the IRS S1 using the test collection; (b) represents the per-query
performance result and the overall metric; and (c) represents the histogram of the perfor-
mance of IRS S1.

metric across the entire query set. However, some metrics are ordinal-scale only (e.g., RR
and ERR), and the mean is not recommended to be computed [49, 101]. In this case, it
is possible to compute the Median of the values as the overall performance of the system.
The geometric mean of per-query metric measures is also used in the literature [130].
For example, GMAP is used to highlight improvements for low-performing queries. To
describe the performance of a system, other classical order statistics like variance or
standard deviation can be computed.

Another description of the systems’ performance is to compute its score performance
distribution using the performance of each query in the test collection. This approach
considers that each query result is a unit of measurement, assuming that the queries were
sampled from some population queries [93].

Figure 2.6 presents an example of the evaluation results for an IRS (S1) using a Test
Collection. First, the performance is computed query by query. Then, an overall perfor-
mance value might be computed considering all the queries (e.g., the mean performance
value measured with M metric). Finally, the histogram of the per-query scores is used
to describe the system’s performance. The per-query performance scores can be further
used to model a score distribution of the system [124] or to run statistical tests [98] with
the goal of comparing systems, which is explained in section 2.2.3.

2.2.3 Comparing Systems using the same Test Collection

We have seen that testing a system involves using several metrics that measure different
dimensions of the retrieval task. The question is: “How to assess if system S1 performs
better than system S2?”, in other words, if system S1 outperforms system S2?

The literature compares systems in a uni-dimensional manner, trying to find correla-

30

2.2. Information Retrieval Evaluation

(a) Distribution of scores across topics for each
team at Clinical Trials TREC 2022 [89]. Com-
parison of the best system for each of the 11
participating teams-

(b) Per-topic difference from median for Aver-
age Precision for Passage Ranking runs. UGA
submission (unicoil_reranked4) at DeepLearn-
ing TREC 2022.

Figure 2.7: (a) Box-plot example. (b) Precision-histogram example.

tions and significant differences between systems. Visually, the most common tools are
the box-plot [5, 69, 117] and average precision histograms [79]. These tools allow for com-
paring the retrieval performance of two or more systems through visual inspection. While
a box-plot helps to compare the general distribution of the data and outliers, average
precision histograms show the difference, per query, between a system and a set of other
systems that are evaluated on the same queries. The performance difference between the
system and the median average precision of other runs on that query is computed for each
query. This histogram identifies the queries that are most challenging for an IRS [14].

Figure 2.7 presents an example of a box-plot and the average precision histogram for
systems participating in a TREC evaluation campaign. We can compare the score distri-
bution for any pair of systems using the box-plot in figure 2.7a. The comparison between
systems is based on the performance of each system across the full set of queries (defined
as topic at TREC DeepLearning Track). We can observe that the maximum quartiles
are common for several systems, even if we can not interpret from the graphic which
is the best-performing query. The best P@10 mean value in this example is 0.5 (froc-
chio_monit5_e system). In figure 2.7b, the median performance per topic (considering
100 systems) is compared to the performance of unicoil_reranked system on each topic.
This system is then better than the median in 52 topics, and worse than the median in
18 topics, with the biggest negative difference in topic 2009871.

4reported in https://trec.nist.gov/pubs/trec31/appendices/deep/unicoil_reranked.pdf

31

https://trec.nist.gov/pubs/trec31/appendices/deep/unicoil_reranked.pdf

Chapter 2. Information Retrieval and Evaluation

In addition to comparing the performance measures, statistical tests may be computed.
The goal of such a test is to detect significant improvements in the performance of IR
systems. A significance test is based on the computation of a test statistic given a null
hypothesis, a distribution of the statistic, and the computation of a significance level to
determine the likelihood that the null hypothesis occurred in an experiment [17]. A low
significance level allows rejection of the null hypothesis, but if it cannot be rejected, the
observed difference may be due to evaluation noise [114].

The most widely used statistical tests in IR are Student’s t-test, Wilcoxon signed-rank
and bootstrap [24]. The null hypothesis of these tests is: systems S1 and S2 are random
samples from the same normal distribution in Student’s paired t-test; systems S1 and S2
are random samples from the same distribution in the bootstrap test; and that systems
S1 and S2 have the same distribution for Wilcoxon rank test (the same hypothesis that
Sign and Fisher’s randomization tests) [72].

Smucker et al., [113, 114] analyse several statistical significance tests applied to IR and
argue that Student’s paired t, bootstrap and randomization tests agree with each other
and arrive at the same conclusion regarding the statistical significance of their results,
while Wilcoxon signed rank test, disagrees with the other test results and therefore is not
recommended to be used by IR researchers.

Classical information retrieval evaluation defines how to compute the performance of
IR systems and allows the comparison of two or more systems evaluated in the same test
collection. Using the performance scores of the evaluated systems across several queries, it
is possible to estimate its distribution. When evaluating statistical tests on the results of
two systems, it is possible to compare if the difference between the systems is statistically
significant (e.g., rejecting the null hypothesis that two systems are random samples from
the same distribution in the bootstrap test). Finally, a ranking of systems (RoS) can be
built using a decreasing order of the systems’ scores. The RoS, along with the significance
level between systems, is the final result of the Classical evaluation task.

2.3 Limits: Changes in the Test Collections

One limit of the Cranfield paradigm (see section 2.2.1) is that it does not support the
analysis of the performance of systems in dynamic contexts, such as the Web. Assessing
the quality of Web retrieval needs a repeated or continuous evaluation with incremen-
tal document collections [63]. However, one of the most important constraints of the
Cranfield evaluation is that it uses a common test collection for all the systems in com-
parison. The documents, queries, and relevance judgments remain constant for all the
systems evaluated. Any document or query modification may invalidate the assessment
performed for the query-document pair, probably changing the judgment; removing or
adding documents might change the system’s performance in a specific query. Moreover,

32

2.3. Limits: Changes in the Test Collections

modifying the set of queries can change the global performance of the system.
For example, adding or removing documents from a test collection has an impact on a

system’s Recall and Precision. Table 2.2 illustrates the impact in Recall and Precision
considering three factors: (i) if the document is added or removed from the test collection,
(ii) if the document is (or was) retrieved by the evaluated IRS; and (iii) if the document is
relevant or irrelevant to the query. Combining these three factors, we notice that when a
new relevant document is added to the test collection and the IRS retrieves it, the Recall
and Precision might increase. However, if the added document is not relevant, the recall
will be maintained because the set of relevant documents is not changed, but the precision
will decrease if the IRS retrieves this document.

adding a document,
that the IRS

removing a document,
that the IRS

retrieves do not retrieve retrieves do not retrieve

do
cu

m
en

t
is

:

relevant Recall ↑
Precision ↑ Recall ↓ Recall ↓

Precision ↓ Recall ↑

irrelevant Precision ↓ Precision ↑

Table 2.2: Recall and Precision performance change when a document is added or re-
moved from a test collection. The document could be relevant or not relevant for a specific
query, and it could be retrieved or not retrieved by the IRS. The ↑ represents that per-
formance increase, and the ↓ symbol represents a decrease.

We present now three lines of work in analyzing performance change, first focused
on the documents and judgments changes, then on changes in the set of topics, including
query variations, and finally, on all these components together using Analysis of Variance.

2.3.1 Document Collection Stability

In this section, we present the works related to the analysis of the impact on the perfor-
mance of a system if the set of documents is different.

Sanderson et. al. [108] simulate variations of a static test collection to analyse the
relative performance of a retrieval system. They create sub-collections by splitting a
test collection, doing so, they found substantial and statistically significant differences
in the relative performance of retrieval systems evaluated in different sub-collections.
In the same line, posterior works [43, 44, 133] continue using random splits of the test
collection as sub-corpora or replicates of the test collection to evaluate the system in

33

Chapter 2. Information Retrieval and Evaluation

variable collections with the aim of explaining the effect of each component of the test
collection in the performance of a system. As shown in [108], evaluations conducted
on different sub-collections (splits of the document corpus with the respective relevance
assessments) lead to substantial and statistically significant differences in the relative
performance of retrieval systems, independently from the number of relevant documents
that are available in the sub-collections.

Sakai [97] proposed to use bootstrapping to evaluate IR metrics. While Sakai’s ex-
periments were based on queries, Zobel and Rashidi [141] have shown the experimental
variability using bootstrapping techniques on the corpus of documents across different per-
formance metrics. This work considers only random corpus splits, and they do not focus
specifically, as we do here, on detecting when the same ranking of systems is achieved.

Recent work of Rashidi et al. [88] proposes a method to split the corpus of documents
using Bootstrap and different splitting features to analyse the impact of such features
in the experiments’ predictivity. They control the test collection splits by a “meld fac-
tor” of one characteristic: document length, document source, and high/low rank of the
document. The “meld factor” measures the level of difference between the splits. They
show that a bigger difference between the collection (i.e, bigger meld factor) is related to
a bigger performance difference in the performance of the systems. Still, this difference
is particular to each characteristic and metric, impacting the performance of the systems
differently. Therefore, they show that the predictivity of experiments may be limited,
and some measures are less predictive than others. However, this work does not define
thresholds upon which we can rely to define similar collections.

Sub Test Collection Creation: One important element of these analyses is the cre-
ation of sub-collections to study the stability of the systems. Creating document sub-
collections is called sharding in Ferro’s and Sanderson’s works [108]. The process to
create shards from a static test collection is described as follows: (a) define the size Nsub

of the sub-collection, (b) select a sample of size Nsub from the full set of documents. In
the case of Zobel’s work [141], it is proposed to create shards with duplicate documents.
In this manner, the size of each sub-collection is the same as the original test collection,
with elements repeated inside each sub-collection. The process follows a bootstrapping
method for selecting each sample. In both works, to compute the performance of a system
in a shard (i.e., sample sub-collection), a system is implemented in the full test collection,
and the list of documents in the result of the systems (i.e., run) is filtered out to leave only
the documents sampled for the current shard. Table 2.3 summarizes the main features of
the previous works and the methodology used to create the collections.

2.3.2 Topic Difficulty

Another limit of the Cranfield paradigm is that it does not support changes in the queries,
even when a user would perform the retrieval task using several queries for the same

34

2.3. Limits: Changes in the Test Collections

name papers Size Duplicates Feature-based

sharding
Ferro et al., [46]
Sanderson et al., [108]
Voorhees et al., [133]

Half Collection no no

bootstrap Zobel et al., [141] Full Collection yes no

Bootstrap
predictivity Rashidi et al., [88] Half Collection yes yes

Table 2.3: Sub-collections summary.

information need. Penha et al. [84] shows that the IRS are not robust to query variations,
with an effectiveness drop of 20% compared to an original query. In the same line, Alaofi
et al. [3] question where do queries come from?, demonstrating that query variations lead
to different search results depending on how users define their queries and presenting the
existing gaps in the analysis of the source of query variations in IR.

Changing, removing, or adding a query will change the results of the system and,
therefore, its performance because the difficulty of the sets of queries is different. Topic
difficulty can be defined as the average effectiveness of a set of systems for a query [138].
It is calculated using the Average Average Precision (AAP) measure: the average AP of
all the submitted runs for a given query: the higher the AAP, the easier the query [126].
IR Systems retrieve a different number of relevant documents for different queries. The
topic difficulty focuses on analyze how is the performance of the systems when evaluating
easy queries versus difficult queries.

Mizzaro et al. [77] first found that the system effectiveness in TREC is affected more
by easy queries than by difficult queries. Considering a metric that summarizes the
performance of a system from several queries, the general performance of the systems
is higher in easy queries than for difficult queries, then a bad performance on an easy
query will affect more the final performance of the system than a bad performance on
a difficult query. Then, Mizzaro [76] proposes the metric NMAP, which normalizes the
AP (NAP) value with respect to the difficulty of the topic using two principles: the easy
and difficult (to describe the queries) and the good and bad (to describe the performance
of the systems). The metric considers that if the system has a good effectiveness on a
difficult query, the evaluation should increase a lot; good effectiveness on an easy topic
should increase the evaluation of the system by a small amount. The metric rewards the
system for returning good results on difficult queries. In the cases of bad performances,
if the system has a bad effectiveness on an easy query, the system’s effectiveness should
decrease a lot, and a bad effectiveness on a difficult query decreases system evaluation by
a small amount. In conclusion, the metric penalizes systems performing poorly with easy
queries.

35

Chapter 2. Information Retrieval and Evaluation

The work of Zampieri et al. [138] addresses the effects of topic difficulty on the IR
Evaluation, finding that the topic difficulty is affected by the document corpora (there
was a significant corpus-effect on query difficulty in all of the collections tested).

2.3.3 Effect of Corpus, Query and System on the Performances

As a global framework, Ferro et al. [47] performed an Analysis of Variance to understand
the effect of the systems, topics and sub-corpus in the performance of a system.

Using the ANalysis Of Variance (ANOVA) model, [44] showed that changing the test
collection (splits of the documents corpus) leads to varying system performances (incon-
sistently across metrics). In the same line, [45, 133] model the system effect and the test
collection effect on the performance metrics as separated factors, they define ANOVA
models and General Linear Mixed Models (GLMMs) to analyse systems performances
over several test collections with the goal of improving the measurement accuracy of re-
trieval system performance by better modeling the noise present in test collection scores.

Such studies are not aimed at system comparison but rather at measuring the effect of
the test collection on a given system performance. They provide a better understanding
of the measurement of performances but do not allow to compare two systems that are
evaluated using different test collections.

An IR evaluation is composed of several elements and their changes impact the per-
formance of the IR system, specifically on the result of the evaluated metrics. In a
real scenario, the elements that compose the test collection might be updated, creating
evolving test collections and IRS systems with different performance results in each test
collection version.

2.4 IR Evaluation involving changing test collections

To cope with the evaluation of IR systems in the case of changing test collections, the
literature addresses three dimensions. First, it is proposed to add new elements into the
test collection, with the goal of analyzing the performance variability of the systems in a
more realistic set-up as a test collection maintenance, which is described in section 2.4.1.
Section 2.4.2 focus on the analysis of different queries, first trying to find a generaliz-
able set of queries and then considering each query’s difficulty to compute the systems’
performance (query section). And third, the interpretation of the results across test col-
lections is also tackled from the reproducibility perspective and through meta-analysis, in
section 2.4.3.

36

2.4. IR Evaluation involving changing test collections

2.4.1 Test Collection Maintenance

Few studies abandoned the static requisite of the test collection and proposed methods
to maintain the test collection to represent a test collection that allows modification in
the set of documents or judgments. Maintaining a test collection is defined as the task
of updating its components by injecting or removing documents, queries or judgments to
extend the usable lifetime of the test collection [115].

Soboroff [115] addresses the need to create a realistic Web search setting to evaluate
IRS. Their experiments use a changing and growing document collection with a fixed
set of topics and relevant judgments. Soboroff shows that it is possible to compare the
performance of systems from different versions of the test collection despite the decay in
relevance data due to the changing document collection. According to the bpref evaluation
measure (described in section 2.2.2.1), the rankings of the systems (RoS) in different
versions of the test collection (as each set of the growing document collection) are similar
to the RoS of the initial version of the test collection, leading to assess that systems are
comparable across these versions.

Tonon et al. [121] proposed to increase the judged documents according to new systems
evaluated in the same test collection. They tackle the problem of the bias introduced by
a system being contributing or not to the pool of judged documents, considering that the
document corpus and set of topics do not change over time. They show that this process
is necessary as the test collection construction penalizes systems that did not participate
in the pooling that might be more effective by retrieving diverse results than systems that
took part in the pool [137].

Hashemi et al. [59] merge both previous works and propose a method to update an ex-
isting test collection by injecting new judged documents to make a test collection reusable
in dynamic contexts. In this case, they add judged documents from a second test collec-
tion to the first collection to create an extended collection. The experiments show that
the extended collection is more reusable than the first version. A test collection is reusable
if it fairly evaluates retrieved runs that did not contribute to the pools used to construct
the test collection [19].

These works present the need of creating alternative methods to incorporate incre-
mental test collections on the evaluation of IR systems, as the classical offline evaluation
method is not properly describing the Web search environment. They are used to analyse
the performance difference of the same system in the dynamic setup but do not compare
systems across changing collections.

2.4.2 Topics Standardization

The heterogeneity of the topic set in a test collection could affect the evaluation of the
systems: different levels of difficulty of the topics or different sub-topics sets. In this
section we explain how topic standardization tackles this problem.

37

Chapter 2. Information Retrieval and Evaluation

Score standardization is an evaluation method that reduces the impact of the topic’s
difficulty on the IR system’s performance [99, 123, 136]. It consists in normalizing the
performance score for a topic by its observed mean and standard deviation over a set of
runs/systems [135]. Urbano et al. [123] showed that even when the RoS between raw and
standardized scores is the same, the RoS using mean scores may differ considerably.

Using standardized scores, systems can be compared across different test collections
without worrying about topic hardness or normalization [99].

Webber et al. [136] first proposed standardization through a non-linear transformation
with the standard normal distribution, to enable inter-collection score comparisons. Under
standardization, the difficulty of a query is directly estimated from the scores achieved
by a sample of experimental systems, and parameters derived from these estimates are
then used to normalize the scores both of the experimental systems and of future systems.
Their standardization score is given by x−µ

σ
, where µ is the mean and σ is the standard

deviation of the topic results. Then the score is mapped onto the unit interval using the
cumulative distribution function (cdf).

Sakai [99] proposed a simple linear transformation of the standardized scores, given by
A× x−µ

σ
+B, where µ is the mean and σ is the standard deviation of the topic results, and

A and B are constant parameters. The goal of the work is to use standardized scores to
compare systems across different test collections without worrying about topic hardness
or normalization.

Urbano et al. [123] proposed that a transformation based on the empirical distribution
is the most appropriate choice for this kind of standardization. They also show that the
proposal of Webber and Sakai are special cases of a general class of standardization, based
on the assumption of a specific distribution for the per-topic score.

2.4.3 Multiple Experiments interpretation

The Cranfield paradigm considers the evaluation of systems in the same test collection.
Nevertheless, to validate the improvement of a new IR system it shall be compared against
one or several baselines in different test collections to prove the reproducibility of the
system results. To do that, the system and the baselines have to be actually applied on
each collection; otherwise, they cannot be compared.

We evaluate a system in several test collections to analyse the extent to which the
results of an evaluation can be regenerated under similar, or the same, conditions. To
reproduce the performance of an IR system, it is necessary to evaluate it over similar, but
different, test collections. By example, [105] analyzes the reproducibility capability of a
system when using two sub-corpora from the OpenWeb collection (The TREC Contextual
Suggestion (CS) track). Considering the potential impact that different collections may
have on the retrieval effectiveness, the paper focuses on studying the gap in effectiveness
between the two test collections, and it shows that the systems using the first one, Open

38

2.4. IR Evaluation involving changing test collections

Web, performed better (retrieve more relevant documents) that systems using the second,
ClueWeb12 [111].

When reproducing a system, is therefore necessary to comapare the performance of
the system in the evaluated test collections. Breuer [18] proposes a methodology and the
use of specific metrics to measure the difference between two information retrieval experi-
ments using the same systems, over several test collections (With the goal of reproducing
the results of the original retrieval system). Considering a system ’a’ and a baseline sys-
tem ’b’, the Effect Ratio (ER) [103] is the ratio between the mean improvement in the
replicated experiment and the mean improvement in the original experiment of the perfor-
mance of systems ’a’ and ’b’. The Delta Relative Improvement (DeltaRI) computes
the difference between the original and reproduced runs, measuring the improvement of
the system ’a’ versus ’b’ in terms of relative scores. This work evaluates the statistical
significance of the results with paired and unpaired Student t-test. In the same context,
Sakai [102] proposes to use a two-sample test to compare the statistical significance dif-
ference for an IR system evaluated two test collections. In summary, Effect Ratio and
DeltaRI metrics quantify how close the effects of an original versus a reproduced system
are in two test collections comparing the performance of a system ’a’ versus a baseline
’b’.

To extend the interpretation of the results of a system evaluated in several collections
Soboroff propose the use of meta-analysis [116]. In this case, the goal is not to just
compare the reproducibility of the system in different collections, but to extract an over-
all conclusion of the reproducibility of the performance of the system in several scenarios.
Meta-analysis also rely on comparing the performance of system "a" versus a baseline "b"
over multiple test collections, which includes different topics and corpora settings. Sobo-
roff proposed the use of meta-analysis to create an interpretable evaluation of systems
that were tested over multiple collections, where one baseline is compared to a treated
system resulting in a Delta Measure over multiple collections, generating a final mean
difference with a confidence interval from the treat and the baseline systems. This tech-
nique is strongly related to measuring the improvement across multiple test collections of
a system with a specific modification that differentiates it from the baseline system.

Figure 2.8 compares the presented methodologies: while Effect Ratio and DeltaRI
measure the reproducibility of the performance of a system in two experiments, a meta-
analysis allows us to compare the performance of a system in more test collections and
to extract an overall conclusion of the reproducibility of the system in several scenarios
using the final “overall effect” metric.

These methodologies require evaluating all the systems using the same test collections.
They are the first step in interpreting the performance of systems evaluated in chang-
ing test collections, but they are not applicable when different systems are evaluated in
different collections.

39

Chapter 2. Information Retrieval and Evaluation

Figure 2.8: Comparison between Effect Ratio, DeltaRI and Meta-analysis.

2.5 Test Collections with changes

In this thesis, we focus on evaluating Web Information Retrieval Systems. Assessing the
quality of Web search systems needs a repeated or continuous evaluation given incremen-
tal document collections [63]. We present the current test Collections that incorporate
changes in their components, for example, test collections composed of different sets of
documents, queries, or judgments. These datasets are essential to develop and test a con-
tinuous evaluation of IR systems. The main characteristic that we are looking into in
these test collections is any information with respect to the acquisition of the documents,
queries, and assessments, as the time factor should be included in a continuous evaluation
process. We exclude Twitter-based collections due to the short length of the documents
and temporal collections, as their use case is to detect events [23] outlying the general
Web use case. We present below two test collections. TREC-COVID in section 2.5.1 and
TREC-Robust in section 2.5.2.

2.5.1 TREC-COVID

TREC-COVID [127] is an example of test collection incorporating dynamic components,
using a residual test collection strategy [104]. TREC-COVID has five rounds of evaluation
with different corpus of documents and queries released at each round. The test collection
of the current round is related to the previous one, sharing a set of overlapped documents
and queries. At each round, all the relevant documents are removed, and five queries
are added. TREC-COVID presents a dynamic test collection with emerging documents,
topics, and relevance assessments at each round. However, as it is built as a residual
collection, then the performance of the system could be degraded by the removal of
relevant documents if we consider each round as a separate test collection.

40

2.5. Test Collections with changes

Apart from the periodical acquisition of the rounds, each document in the test collec-
tion has a publication date that suits our time-based requirement. Therefore, the final
version of TREC-COVID could be divided into several test collections to evaluate a system
in the evolution of the Web during the COVID-19 pandemic.

Table 2.4 details each TREC-COVID round. All the resources are available on the web
site5, including the runs of the participants. The task is an approximation of continuous
evaluation using offline test collections.

Round CORD-19
release date #Documents #Topics #Qrels #Runs

1 April 10, 2020 51,078 30 30 143
2 May 1, 2020 59,887 35 35 136
3 May 19, 2020 128,492 40 40 79
4 June 19, 2020 158,274 45 45 72
5 July 16, 2020 192,509 50 50 126

Table 2.4: TREC-COVID rounds.

2.5.2 TREC-ROBUST

Robust Track 2004 looks to improve the consistency of retrieval technology by focusing
on poorly performing topics [132]. The corpus of documents is the TREC Disks 4 and 5,
excluding the Congressional Record subcollection. It is the same corpus as T07 and T08
because the Robust track uses their topics, plus the T06 topics give a total of 200 old
topics. The task proposes 50 topics identified as Hard and, additionally, 49 new topics.
The relevance assessment is made only on the 49 new topics and the evaluation is made
separately for the old topics (200), the new topics (49), the hard topics (50), and all the
sets combined.

Track link Corpus Topics Qrels Runs

Robust
2004 trec.nist.gov/data/robust.html

† 528155 docs
TREC Disks 4 and 5
(Congressional Record excluded)

250 250 † 110

Table 2.5: TREC-Robust test collections. † indicates resource under request or not
available.

The TREC-Robust advantage is the creation date availability on each test collection
document. Nevertheless, the queries and relevance judgments are gathered at one time.

5https://ir.nist.gov/covidSubmit/data.html

41

https://ir.nist.gov/covidSubmit/data.html

Chapter 2. Information Retrieval and Evaluation

As in TREC-COVID, using this time feature, it is possible to create temporal splits of
TREC-Robust to analyze how the performance of systems may change.

One of the most important constraints of the Cranfield evaluation is the use of a common
test collection for all the systems in comparison. As the evaluation is affected by the
changes in the test collection, we need an adequate changing test collection and evalu-
ation methodology to interpret these results. In this project, we propose a method to
create Evolving Test Collections and a Continuous Evaluation Framework to analyze the
performance difference of systems evaluated in different test collections.

2.6 Conclusion
In this Chapter, we have presented the state of the art in the Evaluation of IR Systems.
The performance evaluation relies on different metrics, and different methods were pro-
posed to define if a system S1 outperforms a system S2. Classical evaluation limits a
continuous evaluation because it requires evaluating all the compared systems using the
same test collection, as the performance of the systems is affected by changes in the test
collection 2.3. As presented in the Chapter 1, this research address this problem:

We can not compare the performance of a system evaluated in one test collec-
tion to a system evaluated in a second test collection because the performance
variations are dependent on the changes in such collection. There is no eval-
uation framework to compare systems evaluated in evolving test collections
that also explains how the changes in the evaluation environment affect the
performance results

To our knowledge, there is no evaluation framework that continuously interprets the per-
formance of a system evaluated in different collections. Standardization 2.4.2 tackles the
problem of comparing queries of different difficulty, but it does not show how to interpret
the effect of different test collections in the evaluation of different systems. Meta-analysis
and Reproducibility metrics 2.4.3 are focused on extracting an overall effect of the test
collections, but they require evaluating all the compared systems at each test collection.
This setup is different from our continuous evaluation, which is tackling the problem of a
Web continuous evaluation where the systems and the test environments change.

According to this chapter revision, the literature does not provide suitable test collections
to perform a continuous evaluation of systems (in section 2.5). Which is related to another
problem defined in Chapter 1:

There is no test collection with controlled evolutions of the set of documents,
queries, or relevance judgments available in the literature in which we can
apply and test a continuous evaluation of information retrieval systems.

42

2.6. Conclusion

We realize that there are static test collections that could be adapted to simulate the
dynamic Web environment. Test collection maintenance, in section 2.4.1, proposes a
method to update a current collection incorporating dynamicity to the test collection.
We build upon these works to create controlled evolving test collections that can be used
to evaluate and compare the performance of systems continuously.

43

Chapter 2. Information Retrieval and Evaluation

44

Chapter 3

Evolving Test Collections

This thesis aims to study the evaluation of IR systems on collections that evolve over time.
In order to continuously evaluate a system, we will rely on an Evolving Test Collection
(ETC), in a way to analyze and to compare the system’s performance in evolving contexts.
This chapter focuses on defining and building such ETC. We present the use case that
sustains the construction of these test collections in section 3.1. We formally present
the elements that define an ETC in section 3.2. Section 3.3 describes how to proceed
to simulate ETCs from existing static test collections. Using the formalization defined,
section 3.4 depicts the building of an actual ETC using an industrial seach engine (Qwant)
data, the CLEF LongEval ETC1, in which documents, queries, and judgments change
according to the real changes.

3.1 Introduction

The continuous evaluation of a Web search engine is a challenging task because of the
constant evolution of the submitted queries, documents, and relevance judgments: in 2017
Google published that 15 percent of the submitted queries in its system every day are
new2; sets of documents are continuously added to the corpus of indexed Web documents.
Moreover, documents are continuously being removed from the index, while others are
modified [53, 81]. For instance, experiments by Ntoulas et al. [81] show that over one
year, 20% of the Web pages from 154 popular Web sites are removed, and overall 50% of
the content of the pages get modified.

As described in Chapter 2, to evaluate an IRS, the Cranfield paradigm is followed
most of the time: such classical offline evaluation method is based on test collections
composed of a corpora of documents, a set of queries and a set of relevant judgments that
define which documents are relevant for the tested queries. This framework corresponds

1https://clef-longeval.github.io/
2https://blog.google/products/search/our-latest-quality-improvements-search/

45

https://clef-longeval.github.io/
https://blog.google/products/search/our-latest-quality-improvements-search/

Chapter 3. Evolving Test Collections

to a static evaluation effort that provides stable and reproducible results. A static test
collection represents an independent evaluation attempt in which all the evaluated systems
are compared.

The first problem described in a continuous evaluation (Chapter 1) is related to the
evolution of a real Web search scenario. As described in section 1.2, such environment
is dynamic and the hypothesis of using a static test collection is not valid, as changing
environments impact the performances [45, 133] (section 2.3). In such a case, repeating
the evaluation is needed to update the performance of the search engine according to
the changes in the environment. Then, the system’s performance is described as a list
of values in time that changes according to snapshots of the test collections. The work
reported here explores offline evaluations on evolving test collections in a similar way to
classical Cranfield evaluations in order to see how the evolution of the parameters impacts
the performances of the evaluations of systems.

Web search engines could be continuously evaluated using the offline paradigm using
snapshots of the evolving collection: it is then like building different and independent
evaluation environments. In terms of the stability of the performance of a system, it is
usually evaluated using shards (described in section 2.4). The shards creation do not
control the differences between the created test collections, and then, the evolution of
their components is not exploited. Rashidi [88] showed that feature-based test collections
present more different results than random sub-collection, but still, they propose to split
one collection. In this chapter, we aim to build a test collection to answer a fundamental
question on the robustness and stability of Web IR systems against the evolution of the
data.

RQ How does performance of an IRS behave as the collection evolves? Such a question
is especially important for commercial systems, as users’ satisfaction is the core of
such systems.

We propose a way to take into account the evolution between test collections, according
to a few parameters, and to study their impact on the stability of systems performance.
As we know that the differences among the test collections change the performance of
the system, we propose to fix these differences between test collections with an evolving
criterion in order to analyze if we are able to get more information about the performance
of the system when evaluating a system in an ETC. As no such previous work exists, to
the best of our knowledge, we need to study the evolution in a controlled way to assess
its interest. To do so, we focus on the simulation of ETCs to build our experiments in a
controlled and reproducible way. Later on, we also describe the creation of a real ETC
with the Qwant Search Engine to evaluate the evaluation framework in a real environment.

46

3.2. Formalization

3.2 Formalization

In this section we formally define the concept of Dynamic test collection (DTC) and
Evolving Test Collection (ETC).

Dynamic test collection: The concept of Dynamic Test Collection (DTC) was first
defined by Carterette et al. [25]: a test collection is called dynamic if it simulates user
interactions in response to the evaluated system. A different definition of dynamic is
presented in the maintained test collections described in section 2.4.1. In such a case, a
test collection is called dynamic if it has changing components across time. Maintaining
a test collection does not rely on simulations by on updating the corpus of documents
or relevance assessments with respect to real changes in the Web, after the creation of
the Test Collection. In contrast with Carterette et al. [25], we aim to simulate changes
in any component of the test collection by relying on all the components of existing test
collections. Compared to maintaining a test collection, as the work of Soboroff [115],
Hashemi [59] and Tonon [121], our point is not to update the test collection post its
creation, but to extract dynamic features from the components that are already defined
in the test collections.

We define a dynamic test collection as a list of several test collections that have
variations between each other with the objective of evaluating a system in a changing
environment. Therefore, a DTC extends the static test collection by defining a sequence
of epochs representing each TC, varying the components in previous and following ones
in the DTC. Following the definition of TC in section 2.2.1:

A Dynamic Test Collection (DTC) is a list of test collections (TC), where each test
collection TCi has three components (sets): documents (Di), queries (Qi) and relevance
judgments (Qreli).

DTC = (TC1, ..., TCi, ..., TCn)1≤i≤n

where,
TCi = (Di, Qi, Qreli),

Di = {di,j}1≤j≤ndi ,

Qi = {qi,k}1≤k≤nqi ,

Qreli = {(di,j, qi,k, fi(di,j, qi,k))}

(3.1)

where,
fi : Di ×Qi → AVi

n ∈ N; ndi, nqi ∈ N,∀i ∈ [1, n]

with AVi, the domain that lists the set of assessment values in TCi.

47

Chapter 3. Evolving Test Collections

Evolving test collection: We are interested in defining a specific dynamic test collec-
tion: an Evolving Test Collection which aims at supporting the evaluation of IR when
the evaluation, and therefore, the test collection evolves. At each epoch, the documents,
queries and relevance judgements change in an evolving and consistent way. In an evolving
test collection, we expect features that can be computed in the components to measure
the evolution of the test collection, for example, a set of overlapping elements from one
epoch to the next one might define the change. Another important consistency factor is
the existence of a unique set of assessment values (AV) across the epochs, formally:

An Evolving Test Collection (ETC) is a DTC with evolving documents, queries,
and relevance judgments using a common set of assessment values AV .

Therefore, the AV values are shared for all the test collections in the ETC:

AVi = AV, ∀i ∈ [1, n] (3.2)

It is worth mentioning that, using the proposed definition, a classical Cranfield static
test collection with binary assessments corresponds to an ETC with one epoch, leading
to:

ETCstatic = (TC), AV = {0, 1}

ETC Components: In the following, to keep the generality of our proposal, we will
use the meta-notation Ci to denote any component Di, Qi or Qreli. As we are focusing
on the evolution of test collections, we may describe TCi, with i ∈ [2, n], relative to its
preceding epoch, namely TCi−1. With TC1 composed of initial sets of elements for each
component C1. Then, any component Ci of TCi, is possibly described using the elements
of Ci−1 that:

• do not appear anymore in Ci, noted Ci−1,del ;

• do appear in Ci but not in Ci−1, noted Ci,add ;

• have their content modified between Ci−1 and Ci, noted Ci,mod. An updated docu-
ment or a modified assessment falls into such modifications.

More formally, Ci is defined as:

Ci = Ci−1 \ Ci−1,del ∪ Ci,add (3.3)

Notice that we do not consider Ci,mod in the definition of Ci, as the elements belong
to Ci and Ci+1, but they are a different version of the element. Finally, we group the
component list from consecutive epochs to define dynamic components (DC) for the
documents, queries, and relevance judgments as:

48

3.3. Simulation from existing TC

DC = (C1, ..., Ci, ...Cn),with Ci ∈ TCi

The DC notation is used in the next section 3.3 to define how to simulate an ETC using
a static test collection.

3.3 Simulation from existing TC
This section proposes a method to build an ETC from an existing static test collection.
The purpose of creating an ETC is to study the changes in the systems’ performance
using our evaluation framework (defined in the next chapter 4). In section 3.3.1, we de-
fine the simulation procedure; in section 3.3.2, we depict the features of different types
of simulation. Considering the general definition and the features, we propose two imple-
mentation methods in section 3.3.3 and three use cases that connect the simulation with
the state-of-the-art in section 3.3.4. Finally, in section 3.5.1, we present some experiments
using different ETC configurations to analyze the performance behavior of an IRS as the
test collection evolves according to the ETC parameters.

3.3.1 Simulation procedure

In this section, we simulate an ETC in a controlled manner. In our case, a simulation
builds an ETC according to a source static test collection TCs and a given set of param-
eters that controls the ETC components’ evolution across a number of n epochs. This
controlled evolution allows us to study precisely the behavior of the evaluated systems.

Following the ETC definition, we create an ordered list of TCi from TCs on n evolving
epochs. As defined in the state-of-the-art (section 2.2.1), a TCs is composed of a set of
documents (Ds), a set of queries (Qs), and a set of relevance judgments (Qrels), we denote
them with an “s” to indicate that they are part of the static test collection used as the
source of the simulation. For example, Figure 3.1 presents a simulated ETC with three
epochs (n = 3) from a TCs.

At each epoch i ∈ [1, n], a simulated TCi is defined, which comprises a subset of
elements for each source component (Cs). The components of the simulated TC can
change from one epoch (TCi) to the next one (TCi+1). We control the evolution of the
ETC with the vector Nc :< nci > that defines the number of elements in a specific
component at epoch i. Consequently, we simulate the evolution of each Ci as a list of
subsets from Cs to create a dynamic component DC with the same length n. In practice,
we simulate DD, DQ and DQrel, as dynamic components for documents, queries and
relevance judgements, respectively:

1. ∀Di ∈ DD,Di ⊆ Ds with |Di| = ndi

49

Chapter 3. Evolving Test Collections

Figure 3.1: Creation of Evolving Test Collections by simulation.

2. ∀Qi ∈ DQ,Qi ⊆ Qs with |Qi| = nqi

3. ∀Qreli ∈ DQrel,Qreli ⊆ Ds with |Di ×Qi| = ndi × nqi

Creating an ETC by the variation of only one component is possible. In such a case,
the other components remain constant across the DC to respect the creation of the same
number of epochs (e.g., if only the documents change across epochs with a constant query
set, then Qi = Qs, 1 ≤ i ≤ n).

A DC is built epoch by epoch, assigning a set of elements of the Cs into the component
Ci. This construction is then dependent on the deleted elements from a past epoch
(Ci−1,del) and the number of added elements in the current epoch (Ci,add). A specific
strategy should define how to select which documents are added or deleted from the
components to control the simulated ETC.

As defined above, any element of Ci belongs to its respective Cs. As a consequence,
there is no modified document or query (Ci,mod = ∅,∀i ∈ [1, n]). This is due to the fact
that we rely on a stable TC, where the relevance is assessed for the specific (qi,j, di,k)
pair. This stable TCs also provides a unique AV s. Therefore we take the same set to
define the assessment values of the simulated ETC. This construction is consistent with
the definition of ETC as a DTC with a unique AV set, which is defined in equation 3.2.

Overall, we define the simulation S to create a simulated ETC, with the following
parameters: a TCs, a number of epochs (n), the size of each Ci (NC), and a simulation
strategy (described in section 3.3.2). Therefore, S is defined as:

S : (TCs, n,NC , strategy)→ ETC

then a simulated ETC is described as:

ETCsimulated = S(TCs, n,NC , strategy),with AV = AV s

50

3.3. Simulation from existing TC

3.3.2 Strategy: Features and Constraints

We define the simulation strategy according to a set of constraints that defines the TCs
that compose the ETCsimulated. These constraints may be used to analyze which changing
component affects the system’s performance. A strategy depends on constraints related
to the cardinality, overlap and ordering function:

• Forcing the cardinality of some components to be equal, as in:

∀nci ∈ NC ,∀i ∈ [2, n], nci−1 = nci ⇒ |Ci−1| = |Ci| (3.4)

In such case, we have that |Ci,del| = |Ci,add|. This is typically what may be defined if
we want to study TCs that contain the same number of elements to avoid potential
biases due to differences in the components’ size.

• Considering one component, a constraint may fix a global overlap value o between
successive components using:

∀i ∈ [2, n− 1],
|Ci−1 ∩ Ci|
|Ci|

=
|Ci ∩ Ci+1|
|Ci+1|

= o (3.5)

This may be useful when comparing the results of successive TCs, as we know that
they differ by the same number of elements. The overlap value o defines a controlled
change between Ci and Ci+1. The number of overlapped elements between Ci and
Cj decreases while j − i increases.

• Depending on the collection, a source component Cs of TCs may be described by
additional features. For instance, an ordering function FC may exist on one Cs:

FC : Cs → Rm

with, m = |Cs|
(3.6)

The function FC gives to any element of the component Cs a (real) value that allows
ordering these elements. The ordering is strict when FC maps each element to a
unique value in R. Otherwise, if the ordering is partial, several elements are mapped
to the same value. A typical example is a timestamp on the document’s creation
date. The ordering is strict if each timestamp is unique, and partial if a timestamp
is repeated.

Using such a function, we are able to know, for any subset of Cs, that forms a Ci

in TCi, the minimal and maximal FC of its elements. Then, we may constraint any

51

Chapter 3. Evolving Test Collections

component C of the ETC, stating for instance that all the elements of one set Ci−1

have a lower FC value that any of the elements of Ci:

∀i ∈ [2, n],max(FC(Ci−1)) < min(FC(Ci)) (3.7)

To ensure such condition, no element from Ci,add belongs to any TCi, previous to
TCj with i < j, and the removed elements Ci−1,rem are those with lowest FC value
in Ci−1. For instance, the condition (3.7) may be used to guarantee that TCs are
containing successive timestamped documents.

All these constraints define the strategy that controls the simulation process S when
creating an ETCsimulated. For instance, if we want to simulate the evolution of a Web
corpus with documents that are created at one time, we may define that the strategy
uses an ordering function FC that gives the creation timestamp of each of the document’s
in Ds component, and we control the amount of overlap between successive TCs.

An ETCsimulated may then be used to continuously assess the impact of the component’s
changes on the performance of the evaluated system. The interest of such a study is a)
we may find out that the defined parameters of the ETC impacts the quality of systems
and, more importantly for us, the variability of the evaluations, and b) the classical usage
of generating sub-test collections may not be adequate to mimic the reality.

3.3.3 Instanciation

We propose to instanciate the simulation S to create an ETCsimulated, which is described
with the following parameters:

S(TCs, n,NC , strategy)

It is implemented in two ways, depending if the strategy constrains the overlap of
elements or not. In the simplest case, the strategy only constrains the number of elements
in each test collection of the ETC; we call it Random ETC (in section 3.3.3.1). The
strategy that controls the number of overlapped elements uses the FC function to order
the elements of Cs; such ETC is called Overlapped ETC (in section 3.3.3.2).

3.3.3.1 Random ETC

A Random ETC mimics a changing environment, for example a set of documents that
could be removed and re-incorporated into the test collection later, or queries that are
season-related. This evolution is simulated by randomly extracting several samples from
the TCs test collection.

52

3.3. Simulation from existing TC

To create an Random ETC, we implement Algorithm 1 following the simulation
strategy as:

strategy = (cardinality)

this strategy is only based on the cardinality that constraints the number of elements at
each C defined in NC . The algorithm 1 receives Cs as the source components, the number
of epochs n as the number of subsets to create from Cs, the size of the component at
each epoch as NC , and finally, we incorporate the sampling method as a variable, which
defines how to sample the elements from the respective component. The algorithm returns
a dynamic component DC as a list of subsets from Cs.

Algorithm 1: Random ETC Simulation process for a component C from a
source component Cs.
Data: Cs, n, NC , sampling
Result: DC = [C1, ..., Cn]
C1 ← a sampling sample of size nc1 from Cs;
add C1 to DC;
for i ∈ 2..n do

Ndel ← sampling(nci−1);
Ci−1,del ← a sampling sample of size Ndel from Ci−1;
Nadd ← nci − |Ci−1,del|;
Ci,add ← a sampling sample of size Nadd from Cs;
Ci ← Ci−1 \ Ci−1,del ∪ Ci,add;
add Ci to DC;

end

A generated Random ETC simulated by S creates a first C1 by selecting a sample of
size nc1 from Cs. For the component Ci of the next epoch, we select a sample Ci−1,del

of size Ndel from the component Ci−1 at the previous epoch, and a sample Ci,add of Nadd

elements from Cs; then Ci is composed of the previous component set (Ci−1) minus the
elements to remove (Ci−1,del) and adding the elements to add (Ci,add). This process is
repeated a defined n number of epochs.

In this case, the strategy constrains the number of elements at each component and
the sampling method is used to select the elements that belong to each component epoch.
A special case occurs if having a constant component size, the sampling method defines
that the number of elements to remove is equal to the component size (Ndel = Nadd = nci)
then, the Random ETC is build as a random sampling.

A Random ETC does not control the actual number of overlapping elements because
they can be sampled several times for different subsets of the component.

53

Chapter 3. Evolving Test Collections

3.3.3.2 Overlapping (Ov.) ETC

When evaluating systems using a Random ETC, as we do not control the amount of
overlap between consecutive TCs, it is difficult to assess the behavior of a system without
knowing how similar the test collections are. Therefore, the random ETC simulates
changing contexts but not evolution. An Overlapping (Ov.) ETCs simulates the evolution
of the test collection by controlling the similarity between the component epochs as the
overlap in the ETC: any two consecutive TCs pairs in the ETC are equally similar with
respect to a similarity feature that needs to be defined.

To create an overlapping (Ov.) ETC, we implement Algorithm 2 following the simu-
lation strategy as:

strategy = (cardinality, overlap,FC)

the strategy for creating an Ov. ETC relies on a full ordering of the component’s ele-
ments FC , assigning a specific value to each element. It does not allow the reinsertion of
elements from previous versions and defines a fixed number of overlapped elements across
components epochs (overlap). As in random ETC, the cardinality is also constrained,
NC is a constant value.

Algorithm 2: Overlapping ETC Simulation process for a component C from a
source component Cs

Data: Cs, n, NC , overlap, FC

Result: DC = [C1, ..., Cn]
Cs ← order Cs with FC(C

s);
init← 0;
end← nc1;
C1 ← {ei|ei ∈ Cs, init > i > end}, elements init to end from Cs;
add C1 to DC;
for i ∈ 2..n do

Nadd ← nci ∗ (1− overlap)/100;
Ndel ← nci−1 − nci−1 +Nadd;
Ci−1,del ← {ei|ei ∈ Ci−1, init > i > Ndel}, first Ndel elements from Ci−1;
Ci,add ← {ei|ei ∈ Cs, end > i > Nadd}, next Nadd elements from Cs;
Ci ← Ci−1 \ Ci−1,del ∪ Ci,add;
add Ci to DC;
init← init+Ndel;
end← end+Nadd;

end

First, the elements of Cs are ordered by a specific feature defined by FC , then a first
C1 is created by selecting the first nc1 elements from Cs. For the next component i (Ci),

54

3.3. Simulation from existing TC

we compute the number of elements to add (Nadd) and to remove (Ndel) to respect the
constrained overlap between Ci and Ci−1. Nadd and Ndel are computed using the overlap
and the size of the current (nci) and the previous component (nci−1). We select the
first Ndel elements from the previous component set (Ci−1) as Ci−1,del, and the next Nadd

elements from Cs as Ci,add; then Ci is composed of the previous component set (Ci−1)
minus the elements to remove (Ci−1,del) and adding the elements to add (Ci,add). This
process is repeated for each of the n epochs.

In the proposed implementation of an Ov. ETC simulation, we constrain the ordering
of the component, the cardinality, and the number of overlapped elements from succes-
sive components. A special case occurs when the overlap is 100%. In this case, if the
cardinality grows, then the simulation exemplifies a growing evolution of the component
without removing elements (Ndel = 0).

The proposed implementations depends on the strategy used on the simulation S. Other
implementations can be proposed considering other strategies, such as the use of repeated
elements in the components. We only consider stratifying the source test collection.

3.3.4 Simulation Cases

The implementations above create different ETCsimulated by the definition of specific pa-
rameters in the simulation. As a way to exemplify different strategies, we present four
examples of simulated ETCs. The first two examples are based on state-of-the-art sub-
collections: sharding and bootstrapping (described in section 2.3.1). As a third example,
we present a sharding Ov. ETC, this Ov. ETC is created to control the amount of change
in the successive epochs that are defined by an overlap value. And as the forth and final
example, we present a Ov. time-based ETC defined to control the changes between epochs
with a temporal base as a mimic of Web dynamic environment.

Table 3.1 presents the four simulation examples: sharding Random ETC, bootstrap
Random ETC, Ov. sharding ETC, and finally, Ov. time-based ETC, with their respec-
tive parameters. The table shows, for each example, the ETC implementation followed:
Random or Ov. ETC; the parameters: overlap, and the nature of FC . The parameters n,
and cardinality are not included in the table. n can take any natural number, which does
not change the definition of the ETC. The cardinality constrain defines the NC values
as constant for all the simulation cases, therefore ∀i ∈ [2, n], nci−1 = nci. We add the
column nci, as the number of elements in each component with relation to the number of
elements in Cs, and the column duplicates in the case that the ETC selects in one epoch
any elements more than once for any component.

Sharding and Bootstrap are state-of-the-art strategies to create sub-collections.
They are used to analyse the stability of the system’s performance in the context of
changes in the document or query sets of the collection. Using our simulation process, we
can simulate these sub-collections as Random ETC. As described in Table 3.1 rows 1 and

55

Chapter 3. Evolving Test Collections

name ETC overlap FC nci duplicates

1 sharding random - - |Cs|/2 no
2 bootstrap random - - |Cs| yes
3 overlap sharding overlapping constant random |Cs|/a no
4 time-based overlapping constant time |Cs|/a no

Table 3.1: Random ETC and Ov. ETC simulation examples and their parameters, with
a < |Cs|, a ∈ N.

2, these Random ETCs do not control the overlap of the components, the size of the test
collection components is the same across the epochs, and there is no order to select the
documents at each epoch. The only difference between sharding and bootstrapping is that
in the first one, there is no repetition of elements (duplicates), while in bootstrapping,
it is allowed to duplicate elements (as it is defined in the bootstrapping process). This
duplication of elements makes possible to create several samples from Cs with the same
size (|Cs|).

In the third row of table 3.1, we present the parameters of an sharding Ov. ETC.
This Ov. ETC is created to control the amount of change in the successive epochs that
are defined by an overlap value. We take inspiration from sharding and bootstrapping
to define more meaningful ETCs by controlling small changes from one to the next test
collection. Still, we do not know the relation between the elements in each component,
because the creation of the ETC follows a random creation. The motivation to create
this specific sharding Ov. ETC is related to the need to control the overlap between test
collection epochs and evaluate how a controlled addition or removal of elements in one
component affects the performance of systems. This control is not possible with sharding
and bootstrapping. This is an Ov. random ETC that works as a baseline to evaluate the
Ov. time-based ETC.

In the final row of table 3.1, we present a Ov. time-based ETC defined with an order-
ing function for the components elements by a time-based feature to mimic the real Web
dynamic environment. We focus on simulating an ETC that approximates the evolution
of the Web in a controlled manner. The simulation of the Ov. time-based ETC defines the
same parameters of a sharding Ov. ETC, but at least one component uses a function FC

to map each element with a timeline. Ov. time-based ETC controls the overlap between
successive component epochs and maps a date for each element to allow the ordering of
the component (e.g., the creation date of a document defined in the source test collection).
We are then able to study an ETC that is closer to the real case of the Web.

To conclude, a Random ETC simulation helps us to create state-of-the-art ETCs that are
used to analyse the stability of the test collection, but without control of the changes.

56

3.4. ETC Acquisition: CLEF LongEval

To explore different cases, we propose an Ov. ETC based on an ordering feature and
an overlap value that controls the amount of changing elements. Sharding Ov. ETC
is presented as a general ETC that controls the number of overlapped elements across
the ETC. Finally, we present Ov. time-based ETC as a closer simulation of the Web
environment.

3.4 ETC Acquisition: CLEF LongEval

In this section, we present LongEval [50], a new Evolving Test Collection with data
acquired from Qwant Search engine. The LongEval ETC is proposed to support the
evaluation of commercial and open-source state-of-the-art Web IR systems. This ETC
is dedicated to provide a large-scale evaluation and is able to cope with the temporal
evolution of real Web data. Several organizations contributed on the construction of
LongEval. The main contribution of this thesis is the design of the acquisition process
and the definition of the topics that lead the gathering of documents, queries and relevance
judgements across time.

LongEval follows the definition presented in section 3.2. It is built as a succession of
three test collections, each of them composed of a set of documents from Qwant’s actual
index, a set of topics acquired from actual user’s queries, and two sources of relevance
judgements. It is composed of a large amount of collected, filtered and cleaned Web
pages (several millions) in two languages (original French documents and their automatic
English translations). The high-quality translations of queries and documents might be
helpful for researchers working on cross-language retrieval. The ETC is designed to reflect
the changes of the Web across time, by providing evolving documents, query and relevance
judgement sets.

Such a large ETC collection (millions of documents, thousands of queries, large rele-
vance judgement sets) is usable as a good training source for deep learning IR methods.
Though our main focus is Web search, performance evaluation using LongEval ETC can
help to study in detail the robustness of IR models against novelty (documents, queries).
Such data is necessary for the community as this question is still largely open for IR.

As discussed in section 2.5, and to our best knowledge, the only collection with similar
temporal settings is the recent TREC-COVID dataset [127]. Compared to the LongEval
collection, the number of documents and queries in TREC-COVID is rather small (few
tens of thousands of documents and 50 topics) and focused on studying a very specific
topic, the COVID outbreak. In our case, the queries are much broader and based on a
commercial search engine query logs. Thus, LongEval ETC is the only large collection
with up-to-date data (acquired in 2022) that exists to evaluate modern IR retrieval on
evolving data.

57

Chapter 3. Evolving Test Collections

3.4.1 Data Acquisition Overview

In this section, we describe the general acquisition process of the data from the Qwant Web
search engine and the creation of different collection components. The overall acquisition
is periodic and is recurrent over time to build each test collection that composes the ETC.
The queries, documents and relevance judgments change across the test collections, but
they are acquired with respect to their relation to a defined set of topics (which are a
keyword that describes a broad and general concept).

3.4.1.1 Data description

The data overview is presented in Figure 3.2. It consists of:

Figure 3.2: Data acquisition general strategy. Qwant private resources are in blue. White
boxes represent the test collection elements.

1. The acquisition of a set of topics, selected from the Web and social media. This ac-
quisition is based on trending – yet stable in the long-term – topics and is performed
only once for the entire LongEval collection. The selection of the set of topics is
further described in Section 3.4.2.1;

2. The selection of search queries, related to the topics, coming from the actual queries
issued by Qwant users. We detail the query selection method in Section 3.4.2.2;

3. The creation of relevance judgements. We rely here on two approaches: implic-
itly using Click Models [33] computed from Qwant query-logs, and explicitly using
manual judgements, which are conducted after the submission of this manuscript.
Since each test collection contains several thousands of queries, explicit assessments

58

3.4. ETC Acquisition: CLEF LongEval

will be performed on a limited subset of manually selected queries. We present our
methodology for generating relevance estimates in Section 3.4.3;

4. The acquisition of the document corpus (Section 3.4.4). This corpus is a union
of: i) all the Web documents that have been displayed for each query of a test
collection, and ii) a sizable random sample of the Qwant index. This protocol leads
to a corpus that contains a mixture of relevant and non-relevant documents. The
presented process handles the evolution of the Web pages, as the corpus is not only
composed of URLs but also of the Web page contents acquired at a specific time.

As described, LongEval is built to evaluate systems along time. To do that, the acqui-
sition presented is achieved periodically, typically each month. In each time period t, we
create a collection composed of the queries, relevance judgments and documents collected
during this month. The full LongEval ETC, composed of a sequence of collections, is thus
dynamically evolving. This allows us to create and provide test collections for different
time periods. The temporal acquisition is presented in Figure 3.3, LongEval is acquired in
three periods, a time t, a second time t’ as a short term acquisition and a third acquisition
period as t” as an acquisition in a long term, further details are presented in section 3.4.6.

future temporal gaps

Temporal Gap

New evolving testing sets

Within time (t) Short term (t’) Long term (t’’)

No gap

Figure 3.3: Global temporal acquisition framework for LongEval [4].

3.4.1.2 Acquisition description

Three teams participated in the creation and distribution of LongEval DTC: UGA (Uni-
versité Grenoble Alpes), Qwant and LINDAT/CLARIAH-CZ3. This thesis is part of the
UGA team, Qwant is the search engine to acquire the data, and LINDAT/CLARIAH-CZ
is the Digital Research Infrastructure for Language Technologies, Arts and Humanities
from Charles University. My main contribution to this task is the design of the acquisition
framework and the definition of Topics.

The acquisition framework, including the main responsibilities of each team, is de-
scribed in figure 3.4. In detail, the process is:

3https://lindat.mff.cuni.cz/

59

https://lindat.mff.cuni.cz/

Chapter 3. Evolving Test Collections

Figure 3.4: Acquisition framework and interaction between UGA, Qwant and
LINDAT/CLARIAH-CZ.

1. The process starts with the acquisition of trending topics from social media by
the UGA team, who is responsible for proposing a list of popular, general and stable
topics for continuous evaluation;

2. Qwant searches in its query-logs for queries related to the trending topics. The
selected queries are stored in a shared server.

3. The extracted query-logs are used to compute a set of relevance judgements
using cascade click models. The result of the click model is shared in the storage
server.

4. The extracted query-logs are used to sample the document collection, plus the
negative sample from the index. All documents are in the shared server.

5. Finally, LINDAT/CLARIAH-CZ performs the translation of French documents and
queries into an English version using CUBBIT system4.

The LongEval ETC is finally stored in LINDAT server5. The ETC is freely accessible,
4https://lindat.mff.cuni.cz/services/translation/
5https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-5010

60

https://lindat.mff.cuni.cz/services/translation/
https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-5010

3.4. ETC Acquisition: CLEF LongEval

with data gathered in June, July and September 2022. We provide French and English
versions. In the following sections, we describe the acquisition of each part of LongEval.

3.4.2 From Topics to Queries

As described above, the first step of the data acquisition is defining a set of topics, which
act as a proxy for controlling the themes expressed in the queries. Those topics are later
used for filtering and selecting the Qwant actual user’s queries. The Qwant search engine
processes approximately 200,000 queries per day. These queries follow the conventional
long-tail distribution. Therefore, we need to define a way to sample interesting and
challenging queries for which we would likely observe multiple user interactions. We
decide to select the (query) topics corresponding to trending topics (i.e., topics that are
popular among the queries asked to Web search engines) in English and French. This
choice supports our use case of studying Web search engines, while it is also a good choice
for examining temporal changes.

Definition 4 In the context of the LongEval ETC, a topic is a short multi-word term
– composed of either one or a few tokens – with a broad and potentially ambiguous
meaning.

The topics then serve as an entry point for selecting a different set of queries for each
test collection. We allow the ETC to have a shifting query set from one collection to
another to follow the potential drifts in the query distribution.

Definition 5 In the context of the LongEval ETC, a query is a multi-word chain of
characters that is related to one or more topics.

We detail how we selected the topics of LongEval in Section 3.4.2.1, before presenting
in Section 3.4.2.2 the method we used to define a set of queries for each topic.

3.4.2.1 Topics Selection

The Topics are selected based on the balance between three elements: popularity, stability,
and generality, which are computed using Qwant query-log and Web tools. The process
is described, in general terms, as:

1. Selection of popular source for topic extraction in social media.

2. Extraction of popular keywords as trending topics.

3. Compute stability and generality for each topic.

4. and finally, validation by Qwant, through the existence of queries related to the
topics in Qwant query-logs.

61

Chapter 3. Evolving Test Collections

The selection is based on gathering popular topics:

Definition 6 Topics should be popular: this criterion should ensure that there
will be enough potential queries covering this topic in Qwant’s query-log.

To select popular topics, we use external tools that show trendy topics according to
several Web platforms, like Google Trends6, a real-time daily and weekly index of the
volume of queries that users enter into Google [32]. We targeted long-term trends of
diverse domains to avoid selecting topics related to sudden interest shifts so as not to bias
our collection towards events. The side effect of choosing such topics is that we will have
a high probability of finding several Qwant users searching queries related to the topics
on various timestamps in Qwant search logs.

The set of topics is selected from English and French languages to ensure a multilingual
validation of our findings, although a large majority of Qwant users are French. To ensure
some degree of consistency in the entire ETC, we defined a single set of topics that is
common to all epochs. The list of topics was generated once for the entire LongEval
collection in May, 2022.

To access trending topics, Reddit is a natural choice to access trending topics and
to explore the initial phase of any event [86]. Reddit is also commonly used to get
current trending topics in the medical field [22, 28, 71], extracting keywords from specific
subReddit forums.

To access Reddit we use Python language and specific open libraries created to access
the API of the service:

• Reddit: Reddit API7 is directly accessible with Python requests. Using this API,
we access posts and comments from a specific subreddit forum. We extract keywords
from the latest posts of the most popular subreddits, in terms of active users.

There is no definition of trending topics in Reddit, only popular posts and forums.
Then, we define which of the extracted keywords represent a trend given their recurrence
across time. We follow a similar setup to [22, 28, 71], and use the Reddit API to extract
keywords from the latest posts of the most popular subreddit forums in terms of active
users. We select 15 popular subreddit forums with a general focus as News, science and
open questions (listed in Table 3.2).

Trending topics are generated from popular keywords in subreddit posts. From each
subreddit forum, a list of the 1000 top posts is accessed using the top endpoint8; top lists
all post of the subreddit published in last t=year time-space based on the total number
of negative and positive votes per post in descending order (listing 3.1 presents a post
of worldnews subreddit). The title and description (named selftext) is stored to extract

6https://trends.google.com
7https://www.reddit.com/dev/api
8https://oauth.reddit.com/r/subreddit/top?t=year

62

https://trends.google.com
https://www.reddit.com/dev/api

3.4. ETC Acquisition: CLEF LongEval

Subreddit name # of subscribers

1 AskReddit, 36,553,897
2 worldnews 29,249,149
3 askscience 28,838,351
4 news 24,977,658
5 explainlikeimfive 20,945,436
6 technology 12,473,250
7 interestingasfuck 10,017,195
8 politics 8,136,655
9 Damnthatsinteresting 5,461,952
10 AskMen 3,998,306
11 AskWomen 3,821,687
12 europe 3,333,579
13 NoStupidQuestions 2,812,409
14 unpopularopinion 2,715,498
15 france 969,916

Table 3.2: Subreddits used for the topic selection.

keywords from. We only consider NOUN and PROPN as keywords9. For each post we
store a maximum number of keywords (N=10), they are sort by pageRank value which
ranks the importance of each node in a graph [83]. To do so, we use the content extraction
algorithm TextRank, where each word of the post is a node in a graph, then PageRank
algorithm is applied to rank each keyword [73], and the most important keywords are
selected as the trending topics.

Listing 3.1: /r/worldnews post example.
1 {’subreddit ’: ’worldnews ’,
2 ’title ’: ’Macron wins French presidential election ’,
3 ’selftext ’: ’’,
4 ’upvote_ratio ’: 0.83,
5 ’ups ’: 139584,
6 ’downs ’: 0,
7 ’score ’: 139584,
8 ’is_video ’: False,
9 ’name ’: ’t3_ub0f7j’,

10 ’created ’: ’24-4-2022’
11 }

9We use spaCy library for Part-of-speech tagging, in https://spacy.io/

63

https://spacy.io/

Chapter 3. Evolving Test Collections

Definition 7 Topics should be stable in time: it is important to consider topics
with a consistent number of generated queries over time, so that we can really assess
longitudinally the behavior of systems.

To consider stable topics, we measure the persistence and recurrence in time on his-
torical trending topics using Google Trends10. Google Trends provides a time series index
of the volume of queries users enter into Google in a given geographic area [32]. Google
Trends gives the likelihood of a random user to search for a particular search term from
a certain location at a certain time11.

To access Google Trends, we use Python language and a specific open libraries created
to access the API of the service:

• Google: Pytrends12 is a Python library used to access the Google API. This tool
allows us to export 20 Daily trending Google searches for a specific country. Addi-
tionally, 10 trending topics per year are available.

Using Google Trends, we ask for the interest over time (IOT) of keywords. Google
Trends returns historical, indexes data indicating when the keyword was searched most in
a scale from 0, as no interest and 100 as the moment of highest interest. IOT represents
the search interest on a keyword relative to the highest interest in a timeframe, but does
not convey absolute search volume. We fixed a timeframe interest of one year, translated
into 54 weeks (W) of interest. Then, we compute the difference between a perfect interest
value versus the real one as:

IOT (kw) = |W | ∗ 100−
∑
w∈W

iot(kw,w)

kw: keyword

Definition 8 Topics should be general enough to cover numerous queries.

We sampled queries from a 1-month Qwant’s query log, and kept the queries that over-
lapped with our candidate topics. We considered topics for which a large number of
queries matched (≥ 1,000 queries) as general enough.

The code for the extraction and selection of topics is available in UGA GitLab13.
Table 3.3 presents the set of topics that we used to further select the queries of the
sub-collections.

10https://trends.google.com
11https://support.google.com/trends/
12https://pypi.org/project/pytrends/
13https://gricad-gitlab.univ-grenoble-alpes.fr/gonzagab/kodicare-topics

64

https://trends.google.com
https://support.google.com/trends/
https://pypi.org/project/pytrends/
https://gricad-gitlab.univ-grenoble-alpes.fr/gonzagab/kodicare-topics

3.4. ETC Acquisition: CLEF LongEval

Topic English Description subreddit

1 eau water r/explainlikeimfive
2 nourriture food r/explainlikeimfive
3 espace space r/explainlikeimfive
4 voiture car r/explainlikeimfive
5 argent money r/explainlikeimfive
6 manifestation protest r/europe
7 virus virus r/askscience
8 terre earth r/askscience
9 énergie energy r/askscience
10 police police r/news

Table 3.3: Example of 10 French topics of the LongEval-Retrieval collection that were the
basis for selecting the queries. The English description is informative and has not been
further used to build the collection.

3.4.2.2 Queries Selection

The topics previously extracted following the methods described in the previous section
are a first step towards the identification of real user queries that are issued on Qwant.
Qwant answers a portion of user queries with their own technology while the rest is
forwarded to a third-party search engine. In order to ensure that all displayed documents
are contained in Qwant’s index, we restricted the query distribution that we consider to
the queries that Qwant actually answers.

We use a simple text processing technique to map general topics to queries that are
answered by Qwant. Let Q be the set of all queries that are answered by Qwant, and T
be the set of topics we defined in Section 3.4.2.1. For each topic t ∈ T , we select all the
queries Qt from Q that contain t as a sub-string (denoted by ⊆str):

Qt = {q|q ∈ Q, t ⊆str q}

Then, for the full set of topics, we have:

QT = ∪t∈TQt

As this filtering can lead to several tens of thousands of queries per topic when consid-
ering several days/months of query logs, we applied a top-k selection for each Qt, noted
Qtopk

t , using which we only keep the k most frequently asked queries on Qwant for each
topic. Finally, Qtopk

T denotes union of Qtopk
t over the topics.

65

Chapter 3. Evolving Test Collections

The selected queries came from Qwant clicklog. Qwant does not track information such
as multiple clicks, dwell times, or query reformulations. The clicklog contains information
about the search engine and the user clicks on the result of a Search Engine Results
Page (SERP), such as the query, the displayed documents, the user location, the time of
the day (timestamp), the position of the click, and the user’s device. There is no user
identification or session related to each click. A click is identified by a timestamp, a device
(which can be either a smartphone or a desktop computer), and a position corresponding
to the rank of the clicked document.

For a given period of time, Qwant filtered the clicklog files to retain all the entries cor-
responding to our previously selected queries, and dumped the appropriate information.
Listing 3.2 provides an example of such data.

Listing 3.2: Excerpt of Qwant User Clicks for LongEval.
1 {
2 ’query ’: ’arrete grippe aviaire ’,
3 ’displayed_urls ’: [
4 ’https://www.ladepeche.fr/2021/12/31/grippe -aviaire -600-000-

volailles -ont -ete -abattues -en-un-mois -en -france -10021018.php ’,
5 ’http://www.ladepeche.fr/2021/11/16/lot -mesures -contre -la-grippe -

aviaire -ces -eleveurs -refusent -de-confiner -leurs -volailles -9931
083.php ’,

6 ’https://fr.m.wikipedia.org/wiki/
Diagnostics_et_prophylaxie_de_la_grippe_aviaire ’,

7 ’https://www.francetvinfo.fr/sante/maladie/grippe -aviaire/grippe -
aviaire -six -nouveaux -elevages -touches -dans -les -landes_4895595.
html ’,

8 ’https://www.humanite.fr/mot -cle/grippe -aviaire ’,
9 ’https://actu.fr/societe/yvelines -grippe -aviaire -eleveurs -et -

autorites -sanitaires -en -alerte_47569193.html ’,
10 ’https://www.lafranceagricole.fr/actualites/elevage/grippe -

aviaire -le-conseil -detat -rejette -les -recours -contre -la-
claustration -des -volailles -1,1,3353476678.html ’,

11 ’https://www.20minutes.fr/societe/3208307-20211231-grippe -aviaire
-600000-volailles -abattues -mois ’,

12 ’https://m.youtube.com/watch?v=IiegYNWtTg4’
13],
14 ’locale ’: ’fr_fr ’,
15 ’clicks ’: [
16 {
17 ’timestamp ’: ’2022-02-14T09:34:46.357Z’,
18 ’device ’: ’smartphone ’,
19 ’position ’: 9,
20 },
21 ...
22]
23 },

66

3.4. ETC Acquisition: CLEF LongEval

Following the initial query selection process from Qwant clicklog, the queries undergo
automatic filtering to select those with at least 10 relevance assessments (as detailed in the
following section)14. Subsequently, a manual check is performed by a human annotator to
ensure query quality. During this process, queries with similar objectives, such as ‘achat
voiture’ and ‘acheter voiture’, ‘anti virus’ and ‘antivirus’, or ‘bareme impots’ and ‘barême
impots’, are merged. Queries referring to adult content are removed from the collection.

3.4.3 Relevance Judgements

The LongEval ETC relies on user clicks as implicit feedback to automatically infer the
relevance of different documents. Nevertheless, Raw clicks cannot be used as a signal
of relevance due to their tendency to be noisy and heavily biased [61?] towards the
top-ranked results. Noise comes from the fact that a click does not necessarily indicate
relevance, while a lack of click does not indicate irrelevance. Aggregating larger samples
of query logs can remove noise, but statistical biases remain. Such biases can result from
various factors, such as position bias towards top-ranked results, presentation bias towards
visually appealing results, or trust bias towards results from familiar domains [82].

To tackle this problem, Qwant provides implicit relevance judgements estimated from
the clicklog (as exemplified in Listing 3.2). The click data is debias estimating Click
Models. A Click Model [34, 139] is the base to infer the user relevance of a document
from search log data. It computes the estimates of a document attractiveness given a
query and thus it well tackles the problem of being able to use the users’ interaction while
avoiding sharing private data and reducing noise and bias. Many click models have been
developed over the years with the goal of better modelling the clicking behaviour of users,
mostly by investigating sessions of multiple clicks for a given query. Since Qwant does not
track any search session, we cannot rely on the more advanced Click Models that consider
multi-query and multi-click sessions.

Qwant thus implemented the simplified version of the Dynamic Bayesian Networks
(DBN) [30] with a session length of 1, which comes down to the original Cascade Model [40].
The Cascade Model assumes the following user model: users scan a Search Engine Re-
sults Page (SERP) from top to bottom, skipping non-attractive documents and clicking
on what they believe will be relevant based on attractiveness.

Using the click model, Qwant provides two relevance estimations: probability-based
and discrete, for all query-document pairs. We specifically used 2 degrees of relevance,
which correspond to:

• 0 = not relevant,

• 1 = relevant,
14It should be noted that some queries may have fewer than 10 assessments in the final collection due

to further corpus filtering applied after this step.

67

Chapter 3. Evolving Test Collections

• 2 = highly relevant.

The Listing 3.3 details raw relevance judgements computed by Qwant. The relevance
attribute corresponds to the α parameter of the Cascade Model while the relevance_dcg
corresponds to its discrete version using our method. The n_seen attribute derives from
the Cascade Model and quantifies how many times a document has been seen by a user
whether it has been clicked or not. This allows us to further quantity our confidence in
the relevance estimates computed from the clicklog.

Listing 3.3: Excerpt of Relevance Judgments.
1 {
2 "query": "abri voiture",
3 "locale": "fr_fr",
4 "serp": [
5 {
6 "finalUrl": "https://www.abri -arcis.com/",
7 "relevance": 0.3333333333333333,
8 "relevance_dcg": 1,
9 "n_seen": 3

10 },
11 {
12 "finalUrl": "https://www.homify.fr/livres_idees/24280/quel -abri -

choisir -pour -sa-voiture",
13 "relevance": 0.3333333333333333,
14 "relevance_dcg": 1,
15 "n_seen": 9
16 },
17 {
18 "finalUrl": "https://www.abridejardin.pro/Garages -et -Abris -

voitures/Voir -tous -les -produits.html",
19 "relevance": 0.3076923076923077,
20 "relevance_dcg": 1,
21 "n_seen": 13
22 },
23 {
24 "finalUrl": "https://fr.wikipedia.org/wiki/Abri_de_jardin",
25 "relevance": 0,
26 "relevance_dcg": 0,
27 "n_seen": 6
28 },
29 ...
30 }

The last step of building the relevance estimates is their post-processing according to
the filtering done on the queries. As described above, the queries were manually checked,
and some were removed. In such cases, all the relevance estimates corresponding to such
queries were also removed. Similarly, some of the queries were merged, and in such cases,

68

3.4. ETC Acquisition: CLEF LongEval

the corresponding estimates were also merged. If, during the merge, the assessments of
the queries were having contradictory values (e.g. the document was relevant according
to one query and not relevant according to the second query), these relevance estimates
were excluded from the collection.

3.4.4 Document Corpus

The final part of the test collection is related to the corpus of documents, on which the
relevant documents are selected to be retrieved for a specific query.

The first step for creating the document collection is to extract from the index the
content of all the documents that have been displayed in SERPs for the queries that we
selected (see Section 3.4.2.2). In addition to these documents, potentially non-relevant
documents are randomly sampled from Qwant index in order to better represent the nature
of a Web test collection. To do so, for each topic t ∈ T , a maximum of n = 100, 000
documents were randomly selected among those that matched the word tokens of t15.
Such selection avoids oversimplifying the corpus and the search task, as these documents
are not completely randomly picked from Qwant index.

The collection does not only provide the URL of each document in the corpus but also
cleaned versions of these documents. To do so, we first extract the text content from the
websites, for which we use the internal Qwant implementations. Thus, we are able to use
exactly the same representations of documents as Qwant uses for ranking the documents.
Listing 3.4 presents an example of the content of a document in the LongEval corpus.

Listing 3.4: Example of the content of a document.
1 {
2 "url": "https://www.myamericanshop.be/collections/chips/

products/pringles -loud -fiery -chili -lime",
3 "content": "PRINGLES LOUD FIERY CHILI LIME My American Shop

Epuise 3,29e Contactez moi lorsque ce produit est
disponible: \"Ce n’est jamais une bonne idee de jouer
avec le feu !\",voila son slogan. Si vous aimez le
piquant et les piments ces chips sont faites pour vous!
Produits similaires S’INSCRIRE A LA NEWSLETTER",

4 "created_at": 1585889589,
5 "last_updated_at": 1586272033
6 }

The document collection construction process applies filters to remove adult and spam
content. Even though this filtering is quite strict, adult and spam content is still very

15Qwant uses a very basic AND matching, hence selected documents had to contain all the word tokens
of the topic.

69

Chapter 3. Evolving Test Collections

frequent in the collection.

3.4.5 English Translations

Given that the vast majority of Qwant users are French speakers, the search engine’s
primary focus is on searching for and analyzing French queries and data. However, to
make the collection more accessible to non-French speakers, the LongEval DTC provides
English translations for both queries and documents. We create an English counterpart of
LongEval using a machine translation system to translate French queries and documents
into English. The translation is performed by the French-English CUBBITT (Charles Uni-
versity Block-Backtranslation-Improved Transformer Translation) system [85], available
at the LINDAT/CLARIAH-CZ infrastructure16. Naturally, the quality of the translations
of the queries, which are often very short, is much lower than the quality of the document
translation. This is due to the mismatch of domain of training data which are not suit-
able for query translation. In the case of the documents, the translation is better due to
the contextual information of the documents. Experiments conducted in LongEval [50]
demonstrate that this approach has little impact on the evaluation measures.

3.4.6 CLEF LongEval 2023 shared task

LongEvalCLEF [4] is a shared task organized in September 2023 at CLEF. The task
is dedicated to evaluating the temporal persistence of Information Retrieval (IR) sys-
tems and Text Classifiers. LongEvalCLEF is an opportunity to evaluate the creation of
our Evolving Test Collection. Here, several participating systems did send runs using
LongEval test collections created over sequential time periods, which allows doing ob-
servations at different time stamps t, and most importantly, comparing the performance
across different time stamps t and t′. Submitted systems are evaluated in two scenarios:
short-term persistence and long-term persistence. The short-term persistence task aims
to assess the performance difference between t and t′ when t′ occurs right after or shortly
after t. In the long-term persistence task, we aim to examine the performance difference
between two t and t′′, when t′′ occurs several months after t (and thus |t′′ − t| > |t′ − t|).

As described in the overview (section 3.4.1), the acquisition is performed at each
timestamp t, with t as a single month. We repeat this data collection process over several
months and create the train collection t (t = June) and two test collections t′ (t′ = July)
and t′′ (t′′ = September). Figure 3.5 shows LongEval ETC, including the three test
collections:

16https://lindat.cz/services/translation

70

https://lindat.cz/services/translation

3.4. ETC Acquisition: CLEF LongEval

Figure 3.5: LongEval Evolving Test Collection.

June Collection (t). June collection is used as the train collection in CLEF LongEval.
It was collected during June 2022 and released on the Lindat infrastructure17. The doc-
ument corpus consists of 1,570,734 Web pages, 770 queries and 11,076 implicit relevance
judgements. The queries are shared to the participants in two sets: 672 train queries
and 98 heldout queries used to compare the performance of systems between t and t′

or t′′. 9,656 assessments correspond to the train and 1,420 assessments to the heldout
queries. There are, on average, 14 assessments per query. About 73% of the assessments
are non-relevant (8,050 assessments), 21% are relevant (2,354 assessments), and 6% are
highly relevant (672 assessments).

July Collection (t′). July collection is used as to compute a short-term persistance in
CLEF LongEval. It was collected over July 2022 and released on the Lindat infrastruc-
ture18 as part of the LongEval test collections. The document corpus consists of 1,593,376
Web pages, 882 queries and 12,217 implicit relevance judgements. The relevance assess-
ments are distributed in a similar way as June collection composed of 8,847 non-relevant,
2,608 relevant and 762 highly relevant assessments, with 14 average assessments per query.

September Collection (t′′). September collection is used as to compute long-term
persistence in CLEF LongEval. It was collected over September 2022 and released as part
of the LongEval test collections on Lindat2. It is composed of 1,081,334 documents, 923
queries and 13,467 implicit relevance assessments (9,632 non-relevat, 2,899 relevant and
936 highly relevant).

17http://hdl.handle.net/11234/1-5010
18http://hdl.handle.net/11234/1-5139

71

http://hdl.handle.net/11234/1-5010
http://hdl.handle.net/11234/1-5139

Chapter 3. Evolving Test Collections

Finally, we show the final structure of the LongEval ETC, built in the context of the
CLEF LongEval shared task:

LongEval = (TCjune, TCjuly, TCsept), AV = {0, 1, 2}

3.4.7 LongEval ETC Limits

LongEval is an evolving test collection acquired based on trending topics and a commercial
search engine (Qwant). We identify inherent limits related to the acquisition steps.

The trending topics are a set of keywords acquired from Redddit user posts. After a
validation process, such topics are related to queries submitted into Qwant search engine
by real users. Any change in the meaning of a keyword is a sensitive issue in our acquisition
framework. We assume the interest over time is constant if a keyword does not change its
meaning, at the same time that evaluating that a set of queries are still existing in Qwant
click-log, even if the queries are different. In the case of change in the interest over time
of a topic keyword, we need to delete the topic for the next test collections, and removing
the documents, queries and assessments associated to it.

LongEval query sets are composed of real users of Qwant search engine. Even when
the Qwant user are anonymised, some queries could contain sensitive information. In this
case, we will remove the associated query and provide an update to the collection. In the
same line, the lack of user sessions lead to the creation of implicit relevance judgments
based on a simple click model. The method cluster clicks from different users, leading to
possible noise and assessment errors.

Documents, queries and assessments are strongly related to Qwant resources. We
expect to have reduced this bias by (i) extracting the trending topics using a first social
network and validating the stability of a topic over a second web source defined as a
broad general keywords, (ii) extracting thousand of related documents for each topics
directly from the index and not from Qwant SERPs, and (iii) providing explicit relevance
judgments as a counterpoint of the implicit relevance judgments.

3.5 Experiments

In this section, we present experiments to validate the ETC simulation process 3.5.1 and
we present the evaluation results in LongEval ETC 3.5.2.

3.5.1 Simulated ETC Validation

In this section, we show the potential interest in considering ETCs for the continuous
evaluation of the IRS. Our interest is focused on the evaluation of the stability of a system
depending on the ETC configuration, comparing the state-of-the-art ETCs versus our

72

3.5. Experiments

proposed temporal-based ETC simulation. It is of our interest to assess the relationship
between the changes in the test collections and the performance of the system. Therefore,
we explore the following research questions (RQ) using our simulation process:

RQ1. Are the temporal-based simulated ETC showing more different behavior of the eval-
uation of the systems than state-of-the-art test collections?

RQ2. Are the evolutions in a temporal-based simulated ETC related to a difference in the
performance of the evaluated systems in the ETC?

For RQ1, we measure the stability evaluation as a way to understand the number of
different performance values related to a system when it is evaluated in different collec-
tions. For RQ2, we measure the stability of the evaluation results contrasted to identifiable
characteristics of the test collection epochs to understand the relationship between such
features and the performance difference. The goal is to find a characterization for two
different test collections that can imply significant changes across the evaluated systems
(different performance values of ranking of systems). We find experimentally that the
behavior between simulated evolving and independent epochs differs from several points
of view. This study shows that we need to more precisely characterize the evolving test
collections to address real Web search continuous evaluation.

3.5.1.1 Stability Evaluation

To study the contrast between several simulated ETCs, We compute the variation in the
performances of a system evaluated in the ETC throughout a pointwise stability, and a
lag-based pairwise stability. For one system S evaluated in the ETC of n epochs and M
a performance metric, let xS,M = (x1, ..xi, ..., xn) represents the performance of system S
evaluated in each TCi using M , where xi is the mean value of all the queries at Qi.

Pointwise performance stability Pointwise stability measures the variation in the
performance of the system evaluated in the ETC. The performance of a system changes
according to the differences among the TCs that compose an ETC. We measure pointwise
stability based on the standard deviation the perforamance of a system (S), as σ(xS,M).
σ(xS,M) quatifies the variability of the performance evaluation scores of a system using an
ETC. Using this descriptor of the performance variation, a large σ(xS,M) value represents
very different performance results across the ETC. In a stability evaluation, we try to
find the ETC configuration that provides the larger number of different performances
associated with an IRS.

We evaluate several ETC configurations and find that the Ov. time-based ETC pro-
vides more results than random ETCs. With Ov. ETC, we can control the difference
between test collections in terms of the number of common elements. Then we measure

73

Chapter 3. Evolving Test Collections

the "lag-overlap" effect. This is a "baseline" effect of overlapping elements. We hypoth-
esize that any evolving change will be higher than the random at any moment of the
collection.

Pairwise performance stability First, we check how the stability change when the
test collections are more different for one system. We propose two pairwise metrics to
evaluate the difference between the performance of a system evaluated in two TCs with
relation to the distance of between the collections: a lag-based differential stability and a
lag-based α-stability.

The previous metric describes the set of performance evaluations in general without
considering the ETC as a list of n TCs. We propose to characterize how the performance
is changing in the sequence of TCs, measuring the differences in performance across pairs
of TCs. We evaluate if the performance change is related to the ETC by comparing perfor-
mance in TC pairs of different distances. We hypothesize that more different TCs should
provide an unstable change in the performance of systems. Proving that an evolution of
the test collection is related to the evolution of the performance of the systems.

We measure the differential performance of a system as the relative difference in the
performance of a system evaluated in TCi versus TCi+lag, with i ∈ [1, i− lag]:

diffM(S, TCi, lag) = (xi − xi+lag)/xi+lag (3.8)

We consider pairs with different temporal distances, represented by lag. The lag defines
the distance between two TCs, then we can measure how the differential value changes
when the compared TCs are more separated from each other.

Finally, the standard deviation of diff(S, TCi, lag) quantifies the variation of the dif-
ferential performances results for an evaluated system.

Sdiffm(S, lag) = σ({diff(S, TCi, lag)∀i ∈ [1, n− lag]}) (3.9)

Sdiffm(S, lag) provides specific information on the differential variation in the perfor-
mance of a system evaluated in two TCs of lag distance. Thanks to this metric, we can
compare and understand the possible effect of the distance of the TCs on the performance
of the system. A large Sdiffm(S, lag) value represents large changes in the performance of
the system evaluated in the TC pairs of lag distance.

3.5.1.2 Simulated Evolving Test Collections

We experiment using the simulated ETC defined in section 3.3.4. We use the test col-
lections defined in section 2.5. TREC-Robust (described in section 2.5.2) is composed
of 528,155 documents and 250 queries. The documents come from four corpora of news
where all the documents are timestamped by the publication day of the news. TREC-
COVID (described in section 2.5.1) is composed of 191,160 different documents and 50

74

3.5. Experiments

queries. The documents are scientific papers related to Covid-19 from CORD-19 dataset
[134], where each document is stored with its publication date. As the documents have a
timestamp, we will control the evolution of the document set while we consider the full
set of queries and the existing relevance assessments Qreli for Di ×Qi.

From a source test collection, we simulate an ETC with a set of parameters according
to each configuration (Table 3.4). For the Ov. time-based ETC and Ov. Random ETC,
simulations using Robust and TREC-COVID with the defined parameters, we generate
41 epochs. For the Random ETC, we generate the same number of epochs to be able to
compare the characteristics of the ETC having the same number of TCs.

Di Size Overlap o FD

Evolving Robust 84504 90% Date
TREC-COVID 29576 90% publish time

Random Robust 84504 - -
TREC-COVID 29576 - -

Ov. random Robust 84504 90% random
TREC-COVID 29576 90% random

Table 3.4: Simulation parameters to create DTC based on Robust and TREC-COVID.

For each epoch of the ETC, we evaluate 12 classical information retrieval systems:
BM25, PL2, Dirichlet language model and TD_IDF in three versions: with Bo1, KL rele-
vance feedback or without it. All the systems were implemented with default parameters
in Terrier v5.2 using the pyterrier library in Python. We evaluate the ETCs using seven
performance metrics: precision at 10 first documents (P_10), RPrecision (RPrec), binary
preference (bpref), mean average precision (map), normalized discount gain (NDCG)
normalized discount gain at 10 first documents (ndcg_cut_10), and reciprocal rank (re-
cip_rank). In a similar way, we use for all metrics the pyterrier implementation.

3.5.1.3 Results

In this section, we present the results of our experiments. We limit our descriptions on the
BM25 runs, as we obtain similar behavior for each of the 11 other systems considered. We
compare each ETC using the pointwise and pairwise stability. The results describe the
differences in terms of stability between our proposed time-based ETC versus Ov. Random
and Random ETCs. The latter represents the current state-of-the-art methodology used
to analyze the performance of systems in changing environments.

Pointwise stability We evaluate the performance variation of a system evaluated in
Evolving, Ov. Random and Random ETCs with pointwise stability metric (σ(xS,M)).

75

Chapter 3. Evolving Test Collections

The performance of the system is averaged across all evaluated queries.
Figure 3.6 presents the histograms of the MAP performance distribution for BM25

evaluated in Robust ETC. The performance in the time-based ETC range between 0.2 to
0.28, while the performance in the Ov random and random ETCs ranges between 0.25
and 0.28.

Figure 3.6: BM25 Performance histogram - Robust.

The experiment presents the same tendency for the TREC-COVID BM25 system
(Figure 3.7), here the MAP performance of BM25 ranges between 0.1 to 0.30 in the case
of an evaluation using the time-based ETC, while the evaluation using Ov. random and
random ETCs, the performance is concentrated between 0.15 and 0.25.

Figure 3.7: BM25 Performance histogram - TREC-COVID.

Table 3.5 extends the results to all the evaluated metrics for Robust ETC. In all the
metrics, the std values are larger in a time-based ETC than in a random-based ETC. In
terms of performance, all the metrics have the same tendency as MAP metric of figure
3.6. The performance of a system evaluated in Ov. Random and Random ETCs is the
same, but if the system is evaluated in an time-based ETC the performance is 10% to

76

3.5. Experiments

20% smaller. In terms of stability, all metrics used to evaluate the system in the time-
based ETC present larger Stm values than Ov. Random and Random ETCs. In the set
of metrics, the variation of the performance results in Stm(BM25) is between 2.2 to 4.2
times larger than Ov. Random DTC and Random DTC. In specific, recip_rank presents
the most unstable results, with the larger Stm(BM25) for the three ETCs. In this case,
the pointwise stability Stm(BM25) is more variable, with time-based ETC 3 times larger
than using a Random or Ov. Random ETC.

BM25 Ov. time-based Ov. random random

map 0.236 ± 0.027 0.271 ± 0.006 0.271 ± 0.008
bpref 0.214 ± 0.025 0.245 ± 0.006 0.246 ± 0.010
ndcg 0.428 ± 0.040 0.500 ± 0.008 0.500 ± 0.008
ndcg_cut_10 0.316 ± 0.032 0.366 ± 0.008 0.365 ± 0.011
P_10 0.216 ± 0.030 0.244 ± 0.004 0.243 ± 0.007
Rprec 0.228 ± 0.026 0.269 ± 0.006 0.271 ± 0.010
recip_rank 0.460 ± 0.057 0.556 ± 0.018 0.562 ± 0.018

Table 3.5: Pointwise Stability (mean±std) - Robust.

The same tendencies as Robust ETCs are presented in TREC-COVID ETCs (Ta-
ble 3.6). In TREC-COVID ETCs, the performance mean of BM25 is again between 10%
to 20% smaller in a time-based ETC than ov. Random and random ETC. In terms of
stability, the Stm values are between 5 to 10 times larger than Ov. Random and Random
ETCs. In TREC-COVID, the most unstable metric is P_10, followed by recip_rank.

Ov. time-based Ov. random random

map 0.191 ± 0.052 0.209 ± 0.009 0.211 ± 0.005
bpref 0.314 ± 0.084 0.381 ± 0.010 0.383 ± 0.005
ndcg 0.405 ± 0.076 0.457 ± 0.009 0.458 ± 0.005
ndcg_cut_10 0.378 ± 0.154 0.450 ± 0.020 0.453 ± 0.016
P_10 0.416 ± 0.189 0.505 ± 0.024 0.507 ± 0.016
Rprec 0.226 ± 0.062 0.251 ± 0.009 0.254 ± 0.005
recip_rank 0.591 ± 0.168 0.703 ± 0.019 0.723 ± 0.031

Table 3.6: Pointwise Stability (mean±std) - TREC-COVID.

Pairwise stability The differential performance diffm(S, TCi, lag), measures the per-
formance change of a system evaluated in TCs pairs of an ETC considering a specific lag
distance between the epochs.

77

Chapter 3. Evolving Test Collections

Figure 3.8 presents the diffMAP(BM25, TCi, lag) boxplots of BM25 system evaluated
in two epochs of the time-based ETC simulated from Robust, with TCi ∈ ETC and
lag ∈ [1, 10]. Each boxplot presents the distribution of the performance difference of the
system evaluated in TCi and TCi+lag, with lag as the number of TC between TCi and
TCi+lag. As time-based ETC and Ov. Random ETC are built by adding and removing
documents with a defined overlap proportion at each epoch, a larger lag value means
a smaller overlap ratio between the documents. The lag distance is limited to 10; in
lag = 10, the TCs do not have any overlapped document. For time-based ETC, the
mean diffMAP decreases at each lag value, showing a relation between the lag distance and
the performance difference of a system. at the same time, the performance difference is
more unstable when the lag distance increases. The results are different for Ov. Random
ETC, the mean diffMAP is stable across the lag distances, with more unstable performance
difference values when the lag distance increases.

Figure 3.8: diffMAP(BM25, TCi, lag): MAP Performance difference Boxplot of BM25
evaluated on time-based ETC (left) and Ov. Random ETC (right) simulated from Robust.

Figure 3.9 presents diffMAP(BM25, TCi, lag) results for time-based ETC and Ov. ran-
dom ETC simulated from TREC-COVID. The results follow the same tendencies as Ro-
bust ETCs. For time-based ETC, the mean performance difference is related to the lag
distance between the epochs (the mean performance difference value increases as the lag
is larger), in the line, the performance difference is more unstable when the lag distance
is larger. For Ov. Random ETC, the mean diffMAP is stable across the lag distances, with
more unstable performance difference values when the lag distance increases.

Table 3.7 extends the results to the seven evaluated metrics for time-based ETC sim-
ulated from Robust. In all the metrics, the standard deviation of the differential perfor-

78

3.5. Experiments

Figure 3.9: diffMAP(BM25, TCi, lag): MAP Performance difference Boxplot of BM25
evaluated on time-based ETC (left) and Ov. Random ETC (right) simulated from TREC-
COVID.

mance values increases as the lag distance is larger. The metrics with the most variable
differential performance are Rprec, bpref, and MAP, and the metric with the smaller
Sdiffm(S, lag) in all lag distances is ndcg_10.

lag map bpref ndcg ndcg_cut_10 P_10 Rprec recip_rank

1 -0.00±.03 -0.00±.03 -0.00±.02 -0.00±.02 -0.00±.02 -0.00±.03 -0.00±.02
2 -0.00±.04 -0.00±.05 -0.00±.03 -0.00±.03 -0.01±.03 -0.00±.05 -0.00±.04
3 -0.00±.06 -0.00±.07 -0.00±.04 -0.01±.04 -0.02±.04 -0.00±.06 -0.00±.06
4 -0.01±.07 -0.01±.08 -0.01±.05 -0.01±.05 -0.03±.05 -0.01±.07 -0.01±.07
5 -0.01±.08 -0.01±.08 -0.01±.05 -0.02±.05 -0.04±.06 -0.01±.08 -0.01±.08
6 -0.02±.08 -0.02±.09 -0.02±.06 -0.03±.06 -0.05±.07 -0.02±.08 -0.02±.09
7 -0.03±.08 -0.03±.09 -0.03±.06 -0.03±.05 -0.06±.07 -0.03±.08 -0.03±.09
8 -0.04±.09 -0.04±.09 -0.04±.06 -0.04±.06 -0.07±.07 -0.04±.08 -0.04±.10
9 -0.05±.10 -0.05±.10 -0.05±.06 -0.05±.06 -0.09±.07 -0.05±.09 -0.05±.10
10 -0.06±.11 -0.06±.11 -0.06±.06 -0.06±.06 -0.10±.07 -0.06±.10 -0.06±.10

Table 3.7: Pairwise stability (mean diff ± std diff) - Robust.

With TREC-COVID, results presented in Table 3.8, the relation between the lag dis-
tance and the differential performance persists for all metrics. With a larger lag distance,
the mean and standard deviation of the performance difference increase. In specific for
TREC-COVID time-based ETC, the results show larger variability values than for Ro-
bust in all metrics. In this experiment, the metrics with the most variable differential

79

Chapter 3. Evolving Test Collections

performance are ndcg_10, P_10, and recip_rank, and the most stable metrics are ndcg
and map.

map bpref ndcg ndcg_cut_10 P_10 Rprec recip_rank

1 0.01±.06 0.01±.05 0.01±.03 0.02±.10 0.03±.12 0.01±.06 0.01±.07
2 0.03±.08 0.03±.08 0.02±.05 0.06±.18 0.07±.23 0.03±.08 0.03±.13
3 0.05±.11 0.05±.13 0.03±.08 0.10±.27 0.12±.34 0.05±.12 0.05±.18
4 0.07±.13 0.07±.17 0.04±.10 0.14±.36 0.18±.48 0.07±.16 0.08±.24
5 0.09±.16 0.09±.20 0.06±.13 0.20±.45 0.25±.60 0.10±.20 0.11±.30
6 0.12±.19 0.12±.24 0.07±.15 0.25±.55 0.32±.72 0.12±.23 0.14±.36
7 0.14±.21 0.15±.27 0.09±.17 0.31±.64 0.41±.84 0.15±.27 0.17±.41
8 0.18±.24 0.18±.30 0.11±.18 0.39±.72 0.50±.93 0.19±.29 0.22±.45
9 0.21±.25 0.22±.32 0.14±.19 0.46±.78 0.59±.01 0.22±.32 0.26±.47
10 0.25±.27 0.25±.33 0.16±.19 0.54±.83 0.69±.08 0.26±.34 0.31±.50

Table 3.8: Pairwise stability (mean diff ± std diff) - TREC-COVID.

3.5.1.4 Conclusion

We have evaluated the pointwise and pairwise stability of a system evaluated in Random
ETC, Ov. Random ETC and Ov. time-based ETC. Looking for the configuration that
is able to extract more different performances values for a IRS across the epochs of an
ETC. The pointwise stability results show that the time-based simulated ETC is able to
extract the most different performance values of the IRS in comparison to the Random
and Ov. Random ETCs. The pairwise stability, that considers a lag distance between
compared epochs, shows that the time-based ETC performance difference is related to
the lag difference, being more unstable as the distance between the epochs is larger.

80

3.5. Experiments

3.5.2 LongEval Evolving Test Collection

As presented in section 3.4, LongEval is composed of three epochs, therefore, three test
collections. In this section, we describe the evolution of LongEval, measuring the overlap
of elements across the epochs. Then, we compute the pointwise stability and the pairwise
stability of a baseline system evaluated in such collections.

3.5.2.1 LongEval Evolution

We present the evolution of LongEval in terms of the number of overlapping documents
and queries. Table 3.9 presents the evolution of the number of documents overlapping
in epochs of different month distances (lag), June versus July as a lag of one month,
July versus September as a lag of two months, and June versus September with a lag
of three months. We present the overlap in terms of the number of documents and the
ratio between the overlap documents and TC2 as |D1∩D2|

D2
. As the lag distance between

test collections increases, the overlap between the documents decreases at a rate of 2%.
Overall the overlap of documents is high (more than 90%) across the epochs.

overlap
TC1 TC2 months-lag number ratio

June July 1 1.551.617 0.9737
July September 2 1.033.236 0.9555
June September 3 1.013.312 0.9370

Table 3.9: Proportion of overlapped documents.

The evolution of the number of queries is presented in Table 3.10. Similar to the
overlap of documents, we present the number of common queries in test collections of
LongEval and the ratio of overlapped queries in TC1 and TC2 as |Q1∩Q2|

Q2
. The ratio of

overlapped queries decreases as the lag between the epochs is larger, starting with 27%
until 21% of overlapped queries.

overlap
TC1 TC2 months-lag number ratio

June July 1 240 0.27
July September 2 214 0.23
June September 3 190 0.21

Table 3.10: Proportion of overlapped queries.

81

Chapter 3. Evolving Test Collections

3.5.2.2 LongEval Evaluation

We evaluate a baseline IRS at each epoch of LongEval and evaluate the pointwise per-
formance stability and the pairwise differential performance in three lag distances. Here
BM25 implementation is tested in the June, July, and September English test collections
of LongEval19.

Table 3.11 presents the evaluation of BM25 system using seven performance metrics.
First, we report the mean and standard deviation (std) performance of BM25 considering
the three epochs. The std describes the pointwise stability of the systems in LongEval.
BM25 performance is very stable, with an std ranging between 0.002 to 0.008 for the
different metrics with bpref as the most stable, and Rprec with ndcg as the less stable
metrics. Afterward, we present a pairwise differential performance of the system. In this
case, we consider the three lag distances again: June versus July (lag=1), July versus
September (lag=2), and June versus September (lag=3). As we have one measurement
for each lag we can not compute the pairwise stability, instead we report the pairwise
differential performance, that measures the relative difference between the performance
of the IRS evaluated in TC1 with respect to TC2. The performance difference increases
with more lag distance in the case of Rprec, ndcg_cut_10, P_10. The performance
difference is larger considering June and September (lag=3) than June and July (lag =
1), for all the metrics excepting bpref.

Stability Differential Performance
June - July July - Sept June - Sept

Metric mean±std lag=1 lag=2 lag=3

map 0.16±0.005 0.043 0.031 0.076
Rprec 0.12±0.008 0.009 0.108 0.118
bpref 0.32±0.002 -0.013 0.009 -0.004
recip_rank 0.26±0.005 -0.014 0.042 0.027
P_10 0.10±0.006 0.012 0.104 0.117
ndcg 0.29±0.008 -0.002 0.050 0.048
ndcg_cut_10 0.18±0.005 0.019 0.033 0.053

Table 3.11: Systems Performance stability (mean±std) and Performance Difference BM25
system.

19French and English baseline performance values are reported in LongEval resource paper [50], proving
that English results are correlated to the original datasets in French

82

3.6. Conclusion

3.5.2.3 Summary

In this section, we presented first experiments on LongEval test collection. We evaluate a
baseline system in the different test collections that composes LongEval ETC. First, we
observed the evolution of the ETC in terms of documents and queries, with high overlaps
in the case of documents and smaller overlaps in the case of queries. Second, we computed
the pointwise stability and the differential performance of the baseline in LongEval. The
performance is stable across the test collections with less than 0.01 of standard deviation.
In the same line, the performance difference of IRS considering two epochs, is close or less
than 10% in all metrics.

3.6 Conclusion
In summary, in this chapter we present and formalize Evolving test collections. We pro-
pose a methodology to simulate a ETC from a Static Test Collection and the construction
of a real Evolving test collection by data acquisition using a commercial search engine
(Qwant). Using the simulation methodology we propose three different ETC based on
random and temporal features, that are supposed to mimic real cases of evolution of the
different components of a test collection as the queries and documents.

In the experiments section, we proved that an time-based ETC is more useful for evalu-
ating the system to extract different performance values. With respect to the performance
change of an IRS across the epochs of an ETC, we did obtain different behaviour for time-
based versus Ov. Random and Random simulated ETCs in the stability dimensions. The
time-based ETC presented more variable results using any metrics, such as variability
increase if we compare the performance of a system in more lag-distances epochs of the
ETC.

We proposed a framework to continuously acquire data to create an evolving test
collection. We applied the framework to create LongEval, an evolving test collection with
documents, queries and relevance judgments that change across epochs. Results show
that LongEval is evolving in terms of components and performance evaluation.

Using time-based ETC and LongEval ETC we are able to explore the evolution of an
IRS system performance across changing test collections. In this chapter, we evaluate the
performance stability of a system across the epochs of the ETCs. Nevertheless, there is
no framework to compare the performance of the systems across the epochs.

83

Chapter 3. Evolving Test Collections

84

Chapter 4

Evaluating Systems on Evolving Test
Collections

In this chapter, we aim to compare the performance of one or several systems evaluated
on evolving test collections. To achieve this goal, we propose a continuous evaluation
framework that quantifies differences in system performances across the ETC. We intro-
duce the continuous evaluation and our continuous result delta evaluation framework in
section 4.1. In section 4.2, we formalize the performance difference quantification in the
form of result deltas. In section 4.3 we detail the continuous evaluation framework for
systems evaluated in evolving test collections. Section 4.4 presents the experiments that
validate our proposal, and section 4.5 discusses the results of the experiments. Finally, in
section 4.6 we present the conclusions of our proposal.

4.1 Introduction

The goal of a continuous evaluation of IR systems is to provide information about the
quality of systems in a repeated evaluation using evolving test collections. This infor-
mation shows the variability of the performance of one or several systems and how their
quality change in different contexts. We propose here a continuous evaluation framework
to evaluate accurately one or several systems by taking into account such evolutions. Our
goal is to support a longitudinal evaluation of systems across the data changes.

Our continuous evaluation framework is built upon the specific features of an evolving
test collection (ETC). As defined in Chapter 3, an ETC is composed of a sequence of
test collection at different epochs, which components (documents, queries, and relevant
assessments) gradually changes over time. As the changes are supposed to be gradual, we
do not expect radical changes of the collection components along the evolution. We take
benefit from this hypothesis when defining our evaluation framework on such ETCs.

The performance of a system changes when it is evaluated in different collections [45].

85

Chapter 4. Evaluating Systems on Evolving Test Collections

In a continuous evaluation, one system may be evaluated in an ETC. To measure the
effect of evaluating such a system in different test collections of an ETC, a meta-analysis
is performed (see section 2.2.3). It provides an overall evaluation of one system versus a
baseline across several evaluations.

The main challenge of a continuous evaluation arises when the task is related to com-
paring the performance of different systems evaluated in different collections of an ETC.
Standardization (described in section 2.3) presents a method to transform the performance
of a system considering the topic difficulty. We make use of such standardization to mea-
sure the performance difference across test collections. We consider not only the difficulty
of the topics but the difficulty of the test collection when computing the performance
difference of systems evaluated in an ETC.

Overall, we propose in this chapter a continuous evaluation framework that relies on
evolving test collections to measure the performance differences among evaluated systems.
Our framework introduces Result Deltas (R∆M) as a formal definition of the performance
difference measured with a metric M .

Our evaluation framework consists of three key steps, each contributing to a compre-
hensive assessment of system performance:

1. Comparability Validation: We establish criteria to determine when it is meaningful
to compare systems across two epochs. This allows for valid comparisons between
systems.

2. Performance Comparison Strategy: In the second step, we define a strategy for
comparing the performance of the evaluated systems. This strategy relies on a set
of baseline systems. In this step, we establish a robust framework for systematically
assessing and comparing the performance of different systems.

3. Longitudinal Evaluation: In the final step, we conduct the evaluation of the test
systems. This involves analyzing their performance on the compatible test collec-
tions, taking into account the transformed values from the previous step to compare
the systems by R∆M values.

By following this three-step continuous evaluation framework, we ensure the compa-
rability of test collections epochs, establish a meaningful performance transformation for
comparison, and conduct a comprehensive evaluation of system performance as a longi-
tudinal analysis.

4.2 Definitions
The evaluation of IR systems uses a test collection, as presented in chapter 2. In a Web
Search Engine, modifications of the IRS are constantly incorporated into the Web search

86

4.2. Definitions

engine, leading to the evaluation of different systems on different test collections (i.e.,
each new IRS version is evaluated in the last version of the ETC). We define continuous
evaluation as:

Definition 9 A Continuous Evaluation is a task of comparing the performance of
one or several systems in an evolving test collection.

In a Continuous evaluation framework, it is essential to address the changes occurring
across the epochs of the ETC and the modifications made to the IR system itself, as these
factors can significantly impact the evaluation of a system measured by a performance
metric M . The question of being able to measure accurately the impact of the modifi-
cations of the test collection, as well as the systems, on the evaluation results must be
tackled.

To compare the performance of systems evaluated continuously, using a performance
metric M , we propose Result Deltas (R∆M), defined as:

Definition 10 A Result Delta, R∆M , is the measurable difference performance, given
a performance metric M , between two systems evaluated on two successive epochs of
an ETC, where the systems and the test collection components could evolve.

Considering that an ETC consists of several epochs (TCi ∈ ETC), we propose a pair-
wise comparison of systems’ performance. Figure 4.1 illustrates this continuous evaluation,
showing three different systems (S = {S1, S2, S3}) evaluated on an ETC composed of
three epochs (ETC = [TC1, TC2,,TC3]). Here M(TCi, sj), with TCi ∈ ETC and sj ∈ S,
represents the global performance (described in section 2.2.2) of a system sj evaluated in
TCi using the metric M .

As the systems are evaluated within different epochs, the comparison takes into ac-
count the performance of systems assessed on different test collections, and relying solely
on absolute metric values, as described in section 2.2.2.1, is not feasible. Therefore, we
propose to build an evaluation framework to compute evaluation differences as R∆M ,
comparing S1 evaluated in TC1.

We formalize R∆M (Equation 4.2): considering two systems (S1 and S2), two ETC
epochs (TC1, TC2) and one metric M that is used to measure the performance of S1

evaluated using TC1 and S2 evaluated using TC2, R∆M returns a real value estimating
a performance difference:

R∆M : ((TC1, S1), (TC2, S2))→ R (4.1)

As defined, in a continuous evaluation, the systems and TCs could evolve along the
epochs. We define three kinds of R∆M that can be measured according to the element
that may change (the system or the TC):

87

Chapter 4. Evaluating Systems on Evolving Test Collections

Figure 4.1: Continuous Evaluation based on Result Deltas, with M as the performance
measure of an IRS evaluated in a TC epoch of the ETC.

• Rs∆M : When we have two different IR systems evaluated in the same epoch, as a
classical IR evaluation.

• Re∆M : When the same IR system is evaluated in two epochs.

• Rse∆M : When both epochs and systems are different.

In figure 4.2, we present the different kinds of R∆M . To illustrate Re∆M , Rs∆M and
Rse∆M , we address the case where system S1 (black dots) is evaluated in TC1 and TC2

and S2 (gray dots) is evaluated in TC2 and TC3. The simplest case of Rs∆M applies
when the systems are different and they are evaluated in the same epoch (TC1 = TC2).
In such case, Rs∆M measures the performance change of one system against another
one in the same conditions. This case is similar to a classical Evaluation of IR systems,
i.e., comparing a system to a baseline. The second case of Re∆M considers the same IR
system (S1 = S2) evaluated in two epochs. For example, Re∆M can be implemented as
a reproducibility metric presented in section 2.4.3, as their goal is to measure the perfor-
mance difference of the same IRS in different test collections. The last type of Rse∆M is
measured between different systems in different epochs. In such a case, Rse∆M depends
on the evolution of the systems and also on the evolution of the test collection.

Our goal is to compute Rse∆M , but it can hardly be measured, as the two systems are
not directly comparable: both the ETC epochs and the systems are different. To get an
estimation of this measure, we propose:

88

4.3. Continuous Result Delta Evaluation Framework

Figure 4.2: R∆M of systems S1 and S2 evaluated in TC1, TC2 and TC3, three ETC
epochs.

Definition 11 A continuous result delta evaluation framework that defines how to
compute Rse∆M from a longitudinal analysis of transformed performance values of
systems evaluated in different epochs of an ETC.

The Continuous evaluation framework should define when comparing systems evalu-
ated in different epochs makes sense. Then how to transform the performance values of
all the systems evaluated in different epochs to be able to compare them into a longi-
tudinal analysis. Using our illustrated example in Figure 4.1, we need to compare the
performance of S1 and S2 considering TC2 and TC3. As S1 is not evaluated in TC3, the
task of the framework is to make both performance values comparable. Using this com-
parable performance value, it is possible to compute Rse∆M and conclude which system
outperforms the other.

4.3 Continuous Result Delta Evaluation Framework

We present now our framework: Continuous Result Delta Evaluation. First, we present
the research questions and hypothesis that define the characteristics of the framework in
section 4.3.1. In section 4.3.2, we describe an overview of the three steps that compose
the framework: (i) the comparability validation in section 4.3.3, (ii) the performance
comparison strategy in section 4.3.4, and (iii) the longitudinal evaluation in section 4.3.5.

89

Chapter 4. Evaluating Systems on Evolving Test Collections

4.3.1 Research Questions and Hypotheses

In a Continuous Evaluation we are interested in comparing systems evaluated in different
test collections, then we focus on two main research questions:

RQ1 How to correctly conclude which system is better considering all the evaluation
epochs?

RQ2 How to compare the performance of systems with respect to a specific evaluation
epoch?

To answer these questions, our Continuous Result Delta Evaluation Framework is
based on the characteristics of an Evolving Test Collection. Here we assume that the
gradual changes in the evolving test collection can be measured using simple features
(overlapping documents, overlapping topics, etc.). In Chapter 3, we presented a simulation
method to build evolving test collections using such simple features. Then, we define what
are the expected impacts of a gradual evolution of a collection on the behavior of systems
so that we may bind our study to meaningful cases. As the evolving test collection
considered is gradually changing, we suppose that:

H1 If we run the same set of information retrieval systems at successive epochs, a
meaningful evaluation of systems supposes that the Ranking of these Systems (RoS),
according to the same evaluation metric, stays the same. Such an assumption is
similar to the work of Soboroff [115] when no change occurs between successive
epochs.

H2 As the epochs change gradually, we assume that there exist some features of the
epochs which may be used as grains, using which we can study the (un-)expected
changes in the evaluation of the systems. In this framework, we will study grains
defined as clusters of topics in each successive epoch considered.

4.3.2 Overview

With the hypotheses listed above and the definition of the continuous result delta evalua-
tion, we are able to propose an evaluation framework using evolving test collections. Our
proposed framework relies on three steps processed in sequence (in Figure 4.3):

Step 1. The Comparability Validation (CV) is a decision step that detects if succes-
sive epochs are comparable, i.e., if the differences between them are not too large
according to our continuous evaluation hypothesis H1 (defined in section 4.3.1).

Step 2. A Comparison Strategy (CS) step, in which we define the strategy to trans-
form the system’s performance into a common scale. It can be implemented by
(2.a) a Pivot Comparison, by (2.b) a Projection comparison; and by (2.c) Grains
comparisons:

90

4.3. Continuous Result Delta Evaluation Framework

Figure 4.3: Steps of the Continuous Result Delta Evaluation Framework.

2.a a Pivot Strategy (PIV) defines a system as a pivot to create a ranking of sys-
tems by incorporating the evaluation of the pivot across the compared epochs,
supported on hypothesis H1 (defined in section 4.3.1);

2.b a Projection (PRO) step defines projection functions to transform the perfor-
mance of a system from one epoch to another one. The functions are computed
using a set of baselines and a set of queries that are common across the epochs,
using hypothesis H2 (defined in section 4.3.1); or,

2.c a Grain Definition (GRA) step defines grains of queries across the epochs
based on a grouping feature, to compute a standardized performance in such
grains, using hypothesis H2 (defined in section 4.3.1).

Step 3. A Longitudinal Analysis (LA) step that allows the continuous evaluation of
systems along several successive epochs. Depending on the method used, a specific
analysis is performed, from which Rse∆M can be computed:

a. Continuous-Ranking Analysis compares the pivot versus the tested systems
to create a ranking of systems at each pair of epochs.

b. Expected Performance Analysis step calculates an expected performance
using the projection of a system in a previous epoch, and it is contrasted to
the last evaluated epoch.

91

Chapter 4. Evaluating Systems on Evolving Test Collections

c. a Grains Analysis compares the performance of systems by meaningful grains
of different queries of two epochs.

Therefore, the Continuous Result Delta Evaluation is formed of three steps, resulting
in a list of performance values for each evaluated system across ETC. Therefore, n − 1
Rse∆M values can be computed, one list for each pair of tested systems.

ContR∆MEval : (CV,CS, LA,ETC)→ Rn (4.2)

where each step CV , CS and LA has a set of respective parameters according to the
specific method described, which are detailed in the following sections.

Our framework is expected to exhibit precise indications of the behavior of one or
several systems over an evolving test collection under strict conditions that lead to mean-
ingful results: we assess that epochs can be compared, we evaluate the corrected of the
pivot strategy, and we assess that the granularity used on which we evaluate the systems
is also valid.

4.3.3 Comparability Validation

The Comparability Validation (CV) seeks to assess if it is meaningful to compare
systems across two epochs: if the epochs are too different, we cannot draw any useful
conclusions about the evolution of the evaluation metrics.

We follow the same principle as the validation of test collection reusability, that defines
a test collection to be reusable if and only if it can be used for precise measurements of
the performance of systems that did not contribute to its judgments [26]. The validation
procedure tests if new runs are ranked in the same order as a collection that considers its
contributions to the set of judgments [39]. This supports the claim that the collection is
reusable.

The CV step assumes that there exists a set S = {si} of IR Systems si that are tested
over each successive epoch considered. It is then possible to rank these systems over each
epoch.

Comparability is defined as [122]:

Definition 12 Two epochs TC1 and TC2 of an ETC are comparable according to an
evaluation measure M , if for a given set S of IR systems, the ranking of the systems
in S according to M is the same in TC1 and TC2.

This step uses, as in [26, 39], Kendall τ coefficients over the ranking of systems at
successive epochs. The parameters of the CV step are: the evaluation metric considered
(e.g., MAP), a threshold τCV that supports the decision of two rankings of systems are
similar enough, and the set of systems S: in such case, we decide that the epochs are
comparable:

CV = (S,M, τCV)

92

4.3. Continuous Result Delta Evaluation Framework

As a reference, a threshold τCV greater than 0.9 implies two rankings of systems that
can be considered equivalent, and a threshold τCV less than 0.8 denotes rankings with
noticeable differences [20, 128].

4.3.4 Comparison Strategy

We present now three strategies to compare systems evaluated in an evolving test collec-
tion. First, we are interested in answering RQ1 by computing a continuous ranking of
systems, that considers the evaluation of different systems in several epochs. To achieve
this goal, we propose a Pivot strategy (in section 4.3.4.1) that uses a reference system to
rank systems evaluated using different test collections. Second, we propose a Projection
comparison (in section 4.3.4.2) focused on answering RQ2, with the goal of comparing
the performance of systems in a specific epoch of interest. The Projection comparison
uses a set of reference systems as baselines to compute standardization functions and
then project the system’s performances that are evaluated using the same set of queries.
Third, we propose a Grain Comparison (in section 4.3.4.3) with the goal of comparing
the standardized performance of systems at a specific grain, which is defined by different
sets of queries.

4.3.4.1 Pivot Strategy

A Pivot (PIV) Strategy [57] aims to compare systems measuring their improvement versus
a baseline system, called Pivot. It is used to create a continuous ranking of systems eval-
uated on different test collections. We take inspiration from reproducibility metrics and
the meta-analysis technique (see section 2.4.3) to extend them to be applied to compare
several systems in an evolving test collection.

The key point of this strategy lies in the choice of the pivot. First, we define how to
apply the Pivot strategy with a known Pivot, and then we define how to select a pivot
from a set of reference systems.

Ranking of systems using a Pivot: To rank the systems, we compute a Rse∆M

value for two evaluated systems. We propose to estimate Rse∆M using a reference system
called Pivot system (Spivot), which would be evaluated within the two epochs considered.
First, Rs∆M is computed between each system and the pivot within each TC considered.
Then, both Rs∆M are used to compute Rse∆M and compare the two systems over the
two epochs of the ETC. Figure 4.4 illustrates the Pivot Strategy considering two epochs
of an ETC, TC1 and TC2. Here the pivot system Spivot is evaluated in both epochs.

The epochs TC1 and TC2 are comparable, as defined in the previous section 4.3.3.
This means that the performance of the systems could change, but their order (sorted
by decreasing performance) persists. We take advantage of this situation to create an
RoS from Rse∆M . In this case, the pivot system will help us to relate the systems across

93

Chapter 4. Evaluating Systems on Evolving Test Collections

Figure 4.4: Pivot Strategy to compute Rse∆M .

the epochs comparing by comparing the performance of S1 (M(TC1, S1)) with the perfor-
mance of the Spivot (M(TC1, Spivot)) as Rs∆M((TC1, Spivot), (TC1, S1)) and M(TC2, S2)
with M(TC2, Spivot) as Rs∆M((TC2, Spivot), (TC2, S2)).

First, Rs∆M is measured using the relative distance between the pivot system and
the evaluated system S1:

Rs∆M((TC1, S1), (TC1, Spivot)) =
M(TC1, S1)−M(TC1, Spivot)

M(TC1, Spivot)

in the same way, the relative distance between the pivot and the S2 is computed, both
systems evaluated in TC2, using Rs∆M((TC2, S2), (TC2, Spivot)).

Based on this, Rse∆M relates two systems evaluated in two different epochs as:

Rse∆M((TC1, S1), (TC2, S2)) =Rs∆M((TC2, S2), (TC2, Spivot))

−Rs∆M((TC1, S1), (TC1, Spivot))

With Rse∆M computed from Rs∆M we can rank S1 and S2. As an illustration, if
Rs∆M((TC1, S1), (TC1, Spivot)) is greater than Rs∆M((TC2, S2), (TC2, Spivot)), i.e.,
Rse∆M((TC1, S1), (TC2, S2)) < 0 , then S1 is greater than S2 in both epochs:

Rs∆M((TC1, S1), (TC1, Spivot)) > Rs∆M((TC2, S2), (TC2, Spivot))

=⇒ Rse∆M((TC1, S1), (TC2, S2)) < 0

=⇒ M(TC1, S1) > M(TC1, S2) ∧M(TC2, S1) > M(TC2, S2)

(4.3)

94

4.3. Continuous Result Delta Evaluation Framework

Pivot Selection strategy: To select a pivot from a list of possible candidates, we
assess the quality of each of them. We select the Spivot that computes the most correct
Ranking of Systems (RoS), with respect to a reference RoS. To evaluate the quality of a
pivot we compare the following (In figure 4.5):

• RoSref a reference RoS according to a specific epoch of reference (TC1) as the
ground truth. All the systems in the set of reference systems are evaluated in this
epoch.

• RoSpivot is built using the Spivot from a split of the reference epoch (TC1 is split in
TC1,1 and TC1,2). RoSpivot uses the result deltas of the pivot under consideration.
In each split half of the systems are evaluated.

Figure 4.5: Pivot selection with TC1, TC1,1 and TC1,2.

If the two rankings are the same, this means that the pivot is able to support the
indirect comparison of systems correctly. To evaluate the correctness of a pivot, we
measure the similarity between RoSpivot and RoSref (e.g. using Kendall’s Tau similarity
metric). The correctness of a pivot must be compared to a baseline. To do that, we define
a RoSbaseline that is constructed under the same TC epochs created for the RoSpivot. The
RoSbaseline orders the absolute performance values of the two system sets evaluated on
each TC epoch. Then, we measure the similarity between the RoSbaseline and RoSref . We
expect higher similarity values using the pivot strategy than with the absolute performance
values.

This step needs a set of systems from which to select a pivot system as S = si taking
one system as the candidate Pivot and the others as the ranked systems, according to an
evaluation metric M . Therefore the parameters of the PIV step are:

PIV = (S,M)

As a summary, the Pivot Strategy is useful for comparing systems evaluated in two dif-
ferent epochs. As a result, the pivot strategy is able to indicate which system is assumed

95

Chapter 4. Evaluating Systems on Evolving Test Collections

to outperform the other across the epochs of the ETC. The pivot strategy relies on one
reference system, which may be a limitation in the evaluation of different systems across
time.

4.3.4.2 Projection Comparison

In this strategy, we consider several reference systems to compare the performance of
systems evaluated in different epochs of the ETC.

In a projected (PRO) comparison strategy, we calculate Rse∆M by projecting values
to compare systems evaluated at different epochs using the same queries. This process
involves comparing the performance of the current system with a projected performance
of a system evaluated in a previous epoch, considering the most recent epoch as the
reference point. The projection results in the expected performance of a system, which is
determined using a set of reference systems.

By applying such projection, we can estimate the Rse∆M measure of two systems (S1

evaluated in TC1 and S2 evaluated in TC2) with respect to a specific epoch of interest
(TC2). This estimation is computed by comparing the performance of S2 (M(TC2, S2))
with the projected performance of system S1 as Mproj(TC2, TC1, S1)). Here, Mproj is the
projection of the performance of S1 evaluated in TC1 into the current one (TC2). Using
these elements, Rse∆M is computed as:

Rse∆M(TC1, S1, TC2, S2) = M(TC2, S2)−Mproj(TC2, TC1, S1)

The projection comparison consists of two main steps. First, we compute a standard-
ization function for each query, which transforms the performance values for each query
according to the difficulty of the query for the set of reference systems. This step ensures
that all systems’ performance values are represented on a standardized scale. Secondly,
we perform a projection step, where the performance of the system is transformed from
the standardized scale to the current epoch scale. This step allows for a meaningful com-
parison of the systems evaluated in different epochs using performance values in terms of
an epoch of interest.

The standardization step transforms the systems performance values to a scale of 0
to 1 . As we know from step CV that the epochs are comparable, it makes sense at this step
to standardize the evaluation metrics (e.g., we note std(MAP) as the standardized value of
the MAP evaluation metric). As seen in section 2.4, standardization could be parametric
when a distribution of the data is assumed [99, 136], or non-parametric as in the case of the
empirical standardization proposed by Urbano [123]. One-step standardization uses a cdf
to transform the raw performance score x into a standardized score y = F (x) = P (X ≤ x).
The function F (x) is estimated using the performance scores of a set of sample systems
based on a normal, linear, or empirical distribution.

We compute standardization functions F̂ (x) for each query q at each TC epoch, using

96

4.3. Continuous Result Delta Evaluation Framework

the performance metric M with respect to a set of reference systems S, as stdq,TC,M,S().
This function normalizes the performance of a system with respect to the set of reference
systems standardized by query difficulty.

In the projection step, we use the standardization functions defined in the previous
step (stdq,TC,M,S) to use the inverse of the standardization function (std−1

q,TC,M,S) which
projects the performance value from the standard scale (0,1) to the scale of TC epoch.

More precisely, for a system evaluated on epoch TC1 that has a M performance x in
q1, we use functions stdq1,TC1,M,S and stdq1,TC2,M,S, to define projq1,TC1,TC2,M,S as:

projq1,TC1,TC2,M,S(x) = stdq1,TC2,M,S(stdq1,TC1,M,S(x))
−1

Notice that the projection function receives performance values in the scale of the perfor-
mance metric M and returns as an image in the same scale of metric M1:

projq,TC1,TC2,M,S : M →M

Figure 4.6 exemplifies the projection of the performance. Suppose that

• the evaluation measure M for the query q1 is equal to 0.7 in epoch TC1 ;

• the standardization function for q1 in TC1 gives stdq1,TC1,M,S(0.7) = 0.9 ;

• the standardization function for q1 in TC2 gives stdq1,TC2,M,S(0.6) = 0.9 .

The projection of the evaluation measure value 0.7 of q1 in TC1 to TC2 is equal to
projq,e1,e2,M,S(0.7) = 0.6. We can then compare the actual value of the system for the
query q1 in TC2 with its projection from TC1.

Figure 4.6: Diagram of projection of values (in blue (resp. in red) the standardization
function in TC1 (resp. TC2).

1We consider global performance values and metrics in a cardinal scale of real values.

97

Chapter 4. Evaluating Systems on Evolving Test Collections

To compute Mproj(TC2, TC1, S1) we consider the projection all the common queries
in TC1 and TC2:

Mproj(TC2, TC1, S1) =
1

|Q1 ∩Q2|
∑

qi∈Q1∩Q2

projqi,TC1,TC2,M,S(xi)

with xi = M(qi, S1)

As noticed, in an ideal case, these functions are both bijections; otherwise, the pro-
jection can not be computed. To deal with this issue, we propose an empirical inverse
function:
(1) if stdq,TC1,M,S(x) ≥ stdq,TC2,M,S(1) then:

stdq,TC2,M,S(x)
−1 = 1

(2) If stdq,TC1,M,S is not injective, we compute two inverse functions:

(2.1) stdq,TC2,M,S(y)
−1 = min({x|stdq,TC1,M,S(x) = y})

(2.2) stdq,TC2,M,S(y)
−1 = max({x|stdq,TC1,M,S(x) = y})

Finally, we define a range of minimum and maximum projected scores using two projec-
tions. In this case, two Mproj values are computed, the first as the minimum projection
mean and the second as the maximum projection mean.

Overall, the PRO step has two parameters: the set of reference systems S, the evalu-
ation metric considered M , and the standardization method to be considered.

PRO = (S,M,methodstd)

As the corpus relies on the non-common query sets, we propose a method that supports
the comparison using different query sets and different reference systems.

4.3.4.3 The Grain Comparison

The grain (GRA) comparison step is used to compare the performance of systems eval-
uated on possibly different query sets. A granularity defines excerpts from the full data
of one epoch. The goal of a grain definition is to compare the performance of systems
evaluated in different epochs by clustering the behavior on similar queries, even if the
queries are not the same. We analyze the (un-)expected changes in the evaluation of the
systems in these clusters.

A grain comparison consists of two steps. Firstly, a standardization method is applied
to ensure that the performance of systems evaluated in different epochs is represented on
the same scale. This step follows the same definition described in the PRO step. In this

98

4.3. Continuous Result Delta Evaluation Framework

case, standardization helps in aligning the performance values for meaningful compari-
son. Secondly, a grain definition where a set of grains G = {gi} is defined to evaluate the
systems across the epochs. These grains capture specific subsets of queries that exhibit
similar characteristics or behavior. By comparing the standardized performance of sys-
tems within these grains and a metric M , we can compare their performance and observe
any patterns or trends across the different epochs.

A grain comparison proposes to compute the Rse∆M relying on each standardized
grain performance measurement (Mgi), as follows:

Rse∆M((TC1, S1), (TC2, S2)) = Mgi(TC2, S2)−Mgi(TC1, S1)

The definition of a set of grains relies on a subset of queries that can be used to
exhibit the performance of a system [27, 60]. To create a set of grains we may group
the queries by similar performance according to a set of reference systems. With these
similar-performing grains, we can analyze specific behaviors on similar queries on evolving
collections.

We propose to validate the defined granularity so that it provides added value com-
pared to the full epochs comparisons. The validation of granularity is similar to what is
done in the comparability validation, as it relies on the systems in S, but is computed
independently on the respective grains over successive epochs. Such validation also as-
sumes a threshold τGRA, which checks if the granularity is valid. Then, explanations of
the changes in evaluation metrics of the IR system considered can be described according
to the granularity.

This GRA step has five parameters: the set of reference systems S, the evaluation
metric considered (M), the definition of the grains (G = gi), the standardization procedure
(methodstd), the decision threshold τGRA above which the granularity is comparable across
the successive epochs. Therefore the GRA step is defined as:

GRA = (S,M,methodstd, τGRA)

We propose three comparison strategies, each of them with a specific number of constraints
(summarized in Table 4.1). The PIV comparison has the condition of constantly using the
same reference system as Pivot. If we apply another reference system, we cannot create
an RoS using previous epochs. The PRO strategy does not have this constraint because
the standardization functions can be computed using different sets of systems. However,
the PRO strategy needs a common set of queries to compute the projection functions.
Therefore, if a query is removed from the test collection, then it is excluded from the
projection function computation. Finally, we propose the GRA strategy that does not
have any of these constraints, as it relies on standardized values, it can use different sets

99

Chapter 4. Evaluating Systems on Evolving Test Collections

of reference systems across epochs, and as the grains are defined in terms of a grouping
feature, the queries that compose each grain may change across epochs.

Strategy Systems # Systems Topics

PIV constant 1 different
PRO different several same
GRA different several different

Table 4.1: Comparison Strategy constraints.

4.3.5 Longitudinal Analysis

The Longitudinal analysis step (LA) describes the behavior of tested system St, and
compares the performance of two systems st1, st2 ∈ St across all the epochs considered in
ETC to perform a Continuous Evaluation. We remind you that our framework is dedicated
to assessing the behavior of systems St on the considered evolving test collection, which
is composed of several epochs. LA, in general terms, does the following:

1. runs st on the epochs that are comparable according to CV ,

2. presents the longitudinal behavior of st that depicts its behavior over comparable
epochs, where the performance is compared using the definition in the CS step to
compute a general ranking of systems or performance changes across common or
different queries; and

3. detects unexpected behaviour of st at given epochs.

Mainly, the Longitudinal Analysis step has two parameters: the systems St on which
we focus and the CS method.

LA = (St, CSmethod)

Depending on the method selected for the CS step, the longitudinal Analysis can be
implemented as follows (Figure 4.7):

a) A Continuous-Ranking Analysis, if CSmethod = PIV . In this analysis, the ranking
is calculated at each epoch, validating the pivot selection using previous epochs.

b) An Expected Performance analysis, if CSmethod = PRO. In this case, an expected
performance is measured using the projection functions for each system evaluated
in the previous epochs. Then the Rse∆M is computed to compare the performance
difference between systems between the performance of the current system versus
the expected performance of past systems.

100

4.3. Continuous Result Delta Evaluation Framework

c) A Grain Analysis, if CSmethod = GRA. Using grains we compare the performance
of the systems, considering standardized values in a subset of queries. We analyze
how the performance of a system change across epochs at each grain and compare
the performance of two or several systems at each grain level.

Figure 4.7 illustrates how each method computes Rse∆M for two systems evaluated in
different epochs of an ETC (fig. 4.7a). The pivot strategy (fig. 4.7b) propose to evaluate
the Spivot at each epoch, then the Rse∆M is computed in terms of Rs∆M for each system
(represented as triangles). Using the projection comparison (fig. 4.7c) we compute an
expected performance (S1,proj) composed by a maximum and minimum score, then S1,proj

is compared to S2 performance. Finally, using the grain comparison (fig. 4.7d) we compute
Rse∆M at each standardized performance grain (grains represented as diamonds).

(a) M Performance. (b) Continuous ranking with Pivot Strategy.

(c) Expected Performance analysis with Projec-
tion Comparison.

(d) Grain Analysis using standardized perfor-
mance scores at each grain.

Figure 4.7: Performance score transformation for the computation of Rse∆M .

101

Chapter 4. Evaluating Systems on Evolving Test Collections

4.4 Experiments

Our proposal is dedicated to handling evolving test collections. We present and evaluate
our continuous evaluation framework using simulated evolving test collections described
in Chapter 3. This allows us to evaluate our proposal on epochs for which we control the
building process. As a real use case, we present our proposal using the LongEval evolving
test collection.

4.4.1 Data

To evaluate our proposal, we use two simulated test collections, Robuste, from TREC-
Robust [131] and TREC-COVIDe, from TREC-COVID [127]. The simulation follows the
same procedure described in section 3.5.1. As described previously, Robuste and TREC-
COVIDe are time-based ETCs composed of 41 epochs with 90% overlapped documents
between successive epochs. We define 12 systems as the reference systems set S, which
is composed of: BM25, PL2, Dirichlet language model (DLM) and TFIDF, in three ver-
sions: with Bo1 or KL pseudo-relevance feedback and without it. We define three test
systems St as BM25, PL2 and TFIDF with RM3 pseudo-relevance feedback model. All
systems are implemented with pyterrier using default parameters in the IR model and
in the pseudo-relevance feedback when applied. The continuous evaluation framework is
implemented using seven evaluation metrics (M): Average Precision (AP), normalized dis-
count cumulative gain (ndcg), ndcg@10, reciprocal rank (recip_rank), binary preference
(bpref), Precision@10 (P_10) and R-precision (Rprec).

4.4.2 Comparability Validation Step

The Continuous Evaluation Framework starts checking if successive epochs are similar
enough to have a meaningful comparison of systems evaluated in different epochs of the
evolving test collection (as described in section 4.3.3).

The parameters of the CV steps are S as the list of reference systems, M as the list
of evaluation metrics and we define τCS = 0.8, as in [94]:

CV = (S,Mi, 0.8),∀Mi ∈ {MAP, bpref}

We report our results using MAP and bpref metrics as an example of evaluated metrics.
Figure 4.8 presents Kendall’s τ values, representing the similarity between the rankings

of 12 reference systems across successive epochs in the Robuste experiment, using the
MAP (fig. 4.8a) and bpref (fig. 4.8b) metrics. With τCS = 0.8, we find that all epochs are
comparable (indicated by black dots) when evaluated using the MAP metric, and more
than 90% of the epochs are comparable in the case of bpref. Similarly, TREC-COVIDe

epochs are comparable in a big percentage (in Figure 4.9). Using also τCS = 0.8 for the

102

4.4. Experiments

Robuste experiment, we observe that 80% of the epochs are comparable for both the MAP
(fig. 4.9a) and bpref (fig. 4.9b) metrics. Non-comparable epochs (represented by red dots)
are mainly concentrated in the initial epochs of the ETC. In contrast, the last epochs
demonstrate a high degree of comparability, with a τ value of 1 observed in 11 epochs
when evaluated using the MAP metric.

(a) MAP (b) bpref

Figure 4.8: Comparability Validation - Robuste.

(a) MAP. (b) bpref.

Figure 4.9: Comparability Validation - TREC-COVIDe.

According to these results, in the next section, we define the comparison strategy for
the comparable epochs in Robuste and TREC-COVIDe.

4.4.3 Comparison Strategy

In this section, we define the parameters for the three comparison strategies (see sec-
tion 4.3.4). With the Pivot strategy, we select and validate the pivot system using the
correctness evaluation. Using the Projection strategy, we compute the standardization
and projection functions. Finally, we define and validate the comparison Grains for suc-
cessive epochs of the ETCs.

103

Chapter 4. Evaluating Systems on Evolving Test Collections

4.4.3.1 Pivot Strategy

The Pivot Strategy (section 4.3.4.1) needs a baseline system as a Pivot to create an RoS
evaluated in different epochs. The parameters of this step are the set of reference systems
S used to select a Pivot and the evaluation metrics in M :

PIV = (S,Mi),∀Mi ∈ {MAP, bpref}

In the following, we define a Pivot using the reference systems as candidates and select
the one that generates the most correct RoS at each compared epoch. The selection
process involves computing the correctness of the RoS (RoSpivot) built using the Pivot.
The correctness is measured by Kendall’s τ similarity between the RoSpivot and the ground
truth RoSreference. To validate the selection, we compare the correctness of the RoSpivot

with that of a baseline RoSbaseline, as described in Section 4.3.4.1.
Figure 4.10 presents the correctness evaluation of the candidate systems in Robuste

for MAP (fig. 4.10a) and bpref (fig. 4.10b). The correctness of each pivot system is
represented as dots, while the baseline correctness is shown as a red cross. We highlight
one candidate system (dirLM in MAP and bm25 with Bo1 in bpref) in black, which has
been selected as the Pivot due to higher correctness in all the epochs. Although no pivot
consistently exhibits the highest correctness across all epochs, the correctness of all pivots
is larger than the correctness of the baseline for all epochs. With the MAP metric, all
pivots’ correctness values exceed 0.8, while with bpref, the correctness ranges from 0.6 to
0.9.

The TREC-COVIDe results (Figure 4.11) align with those of Robuste. The correctness
of all pivots surpasses the baseline correctness. In this case, PL2-KL presented the best
results for MAP (fig. 4.11a) and bpref (fig. 4.11b). The correctness results are similar for
both metrics, with values close to or exceeding 0.8 for most of the comparable epochs.
Consistent with the comparability results, the best correctness values are observed in the
final epochs of the ETC.

(a) MAP. (b) bpref.

Figure 4.10: Pivot Selection - Robuste.

These results demonstrate that the Pivot strategy generates a more correct ranking
of systems compared to the baseline approach in an ETC. By evaluating the correctness

104

4.4. Experiments

(a) MAP. (b) bpref.

Figure 4.11: Pivot Selection - TREC-COVIDe.

of the Pivot, we ensure the selection of a reliable system to build an RoS that compares
systems across different epochs.

4.4.3.2 Projection Comparison

To compare the performance of systems across test collections, we now experiment with
a projection comparison using the standardization and projection functions. These func-
tions are computed using the set of reference systems S for all the evaluation metrics in
M . In this section, we present the score standardization methods applied to Robuste and
TREC-COVIDe.

The standardization functions transform the raw values through a cumulative distri-
bution function (cdf). The parameters of the distribution are computed from the per-
formance values of the reference systems. We decided to use the Uniform distribution
(U-cdf) as it has been shown to work well with a small number of systems and is more
consistent than the normal distribution for comparing pairs of systems across different test
collections [99]. Additionally, due to the limited number of reference systems (12 in our
case versus the 110 systems used in the work proposal [123]), empirical standardization
functions were not feasible.

The Projection parameters are defined as follows:

PRO = (S,Mi,U-cdf),∀Mi ∈ {MAP, bpref}

To illustrate the transformation from raw values to standardized and projected scores,
we present these functions computed in two epochs (TC2 and TC3) for a specific query
in Robuste and TREC-COVIDe. For Robuste w present the transformations of Q302
(Figure 4.12). From left to right in Figure 4.12, the first graphic shows the U-cdf(MAP)
standardization function for TC2, which is computed according to our reference systems
(denoted in red in the graphic). The second graphic shows the same for TC3. Using
previous standardization functions, we compute the projection function (in the third
graphic) that transforms the performance score from TC2 to TC3. It is important to

105

Chapter 4. Evaluating Systems on Evolving Test Collections

notice that the standardization functions are not bijective: a performance of 0 to 0.35 is
transformed to the same value (U − cdf(MAP)(0) = U − cdf(MAP)(0.35) = 0) in both
epochs. As described in section 4.3.4.2, we approximate the projection function with a
minimum and maximum score, which is why the third graph displays two functions for
the projection (ranging from 0 to 0.3). A similar situation occurs with the bpref metric
and with the TREC-COVIDe example (in Figure 4.13).

Another result from this step is the variability of the standardization functions when
computed across different epochs. This can be observed in TREC-COVIDe (in Fig-
ure 4.13) for MAP metric. We can see that the difficulty changes, as a MAP score of
0.6 in TC2 is transformed to a MAP performance of 0.5 in TC3, indicating that query Q10

is harder in TC3 compared to TC2, according to the set of reference systems. This diffi-
culty difference across the epochs supports the need for projection functions to compare
the system’s performance in an epoch of interest.

Figure 4.12: Standardization Functions - Q302 Robuste.

Figure 4.13: Standardization Functions - Q10 TREC-COVIDe.

106

4.4. Experiments

From the Robuste and TREC-COVIDe standardization and projection examples, we
observe that no function is bijective, leading to the computation of the projection as
two functions representing the minimum and maximum projected scores, as described in
section 4.3.4.2. Therefore, the projection is defined as a range of minimum and maximum
projected scores.

4.4.3.3 Grain Comparison

The grain comparison proposes to compare the performance of systems using comparable,
yet different, query sets across the epochs. This step is defined by the set of reference
systems S, and evaluation metrics M , using utilizing the U-cdf standardization functions,
as in the PRO step, and we define a comparison threshold τGRA set to 0.7 as we still need
to ensure a high level of similarity between RoS using the grains, but considering that the
epochs were already tested as comparable in the CV step:

GRA = (S,Mi,U-cdf, 0.7),∀Mi ∈ {MAP, bpref}

To show interest in using grains, we explore two granularities based on query groups.
The first, denoted as G1, considers all queries belong to a single category with a perfor-
mance value greater than 0. The second, G2, builds three categories of queries. More
precisely, G2 is built using the following process:

1. we define three performance intervals

• Ihigh = [0.65, 1],

• Imedium =]0.35, 0.65[,

• Ilow = [0, 0.35];

2. a query is assigned to a category if at least 40% of the system’s standardized per-
formance values for that query fall within the corresponding interval.

To decide which epochs are comparable using each grain, we validate the comparability
of the epochs in the ETC by considering only the queries that belong to the grain. In
other words, we assess the RoS similarity between epochs based on the performance of
the queries within the grain category.

Figure 4.14 presents the comparability between epochs in Robuste using the grains
defined in G2 with U-cdf(MAP) and U-cdf(bpref). Each grain category is represented by
different symbols: square for high, triangle for medium, and circle for low. In general,
the comparability of the high and medium categories remains consistently high across
all epochs (τ > 0.7 in almost all epochs). Only two epochs are not comparable when
using high grains, and only one epoch is not comparable when using medium grains, both
with U-cdf(bpref). However, there is a lower level of comparability observed for the low

107

Chapter 4. Evaluating Systems on Evolving Test Collections

category in some epochs. Six epochs are not comparable when using low grains with U-
cdf(MAP), and seven epochs are not comparable when using low grains with U-cdf(bpref).
This lower comparability may be related to the number of queries considered in each grain
category, with a mean of 63, 117, and 40 queries in the high, medium, and low categories,
respectively.

In TREC-COVIDe (Figure 4.15), the comparability of epochs using U-cdf(MAP)
(fig. 4.15a) shows that ten epochs are not comparable in the high category, all epochs
are comparable in the medium category, and seven epochs are not comparable in the
low category. When using U-cdf(bpref) grains (fig. 4.15b), the comparability of epochs
is similar for the medium and low categories, with all epochs being comparable. How-
ever, the high category is not comparable in 15 epochs, indicating a larger discrepancy in
performance among systems for those epochs.

This indicates a lower level of comparability in TREC-COVIDe compared to Robuste.
This may be attributed to the smaller number of queries in the dataset, only 50 queries.
The high and low categories have a mean of only six queries, while the medium category
has a mean of 27 queries. This limited number of queries in the high and low categories
may contribute to the decreased comparability observed.

In both Robuste and TREC-COVIDe, the comparability of G1, where all queries are
in one category, is larger than the threshold τGRA in all epochs. This is consistent with
Figure 4.8 and Figure 4.9, as, in fact, the main difference is that we are looking at
standardized values instead of non-standardized ones.

(a) U-cdf(MAP). (b) U-cdf(bpref).

Figure 4.14: Grain epochs Comparison - ROBUSTe.

This shows that by using adequate categories, we are able to locate specific sets of
queries while remaining comparable. This result supports a detailed analysis of perfor-
mance variations of the tested systems in an ETC.

4.4.4 Longitudinal Analysis

In this section, we present the results of our continuous evaluation framework. We show
how to compute the Rse∆M between systems evaluated in different epochs of the ETC,

108

4.4. Experiments

(a) U-cdf(MAP). (b) U-cdf(bpref).

Figure 4.15: Grain epochs Comparison - TREC-COVIDe.

according to each Comparison Strategy. First, we analyze the ranking of systems across
the ETC (LA1); second, we compare the performance using projections (LA2); and finally,
we compare standardized performance at comparable grains (LA1). The Longitudinal
Analysis parameters are:

LA1 = (St, P IV);LA2 = (St, PRO);LA3 = (St, GRA)

4.4.4.1 Continuous Ranking of Systems

The first Longitudinal Analysis (referred to as LA1) is a continuous ranking of systems
built using the selected pivot in the PIV step. The goal of a Pivot Ranking is to create
an overall ranking considering two comparable epochs, where different systems are eval-
uated in each epoch. To illustrate this evaluation scenario, we consider a first system st1
(tf_idf_RM3) evaluated only in the first epoch and a second system st2 (bm25_RM3)
evaluated only in the second epoch. This means that we only have information about
the performance of st1 evaluated in TC1 as M(TC1, st1) and st2 evaluated in TC2 as
M(TC2, st2).

Figure 4.16 displays the continuous ranking for systems st1 and st2 across eight pairs
of compared epochs of Robuste using MAP and bpref. Comparing the performance of
these systems using a Pivot, we observe that their rankings vary across the compared
epochs. The improvement of st2 to the Pivot defines that st2 outperforms st1 in three
epochs when evaluated with MAP (fig. 4.16a) and four times in bpref (fig. 4.16b). In
TREC-COVIDe (Figure 4.17), we observe a similar trend where the rankings of systems
st1 and st2 change across ten pairs of epochs. Comparing the Rs∆M values, system st1
outperforms st2 from epochs 16-17 to 21-22, then st2 has higherRs∆M values from epochs
22-23 until epochs 22-26 for MAP (fig. 4.17a) and bpref (fig. 4.17b).

The Pivot Comparison Strategy is able to rank systems from different epochs while
keeping the Pivot system constant. The pivot becomes particularly useful when the
performance of a system is unknown in certain epochs, and we want to compare the

109

Chapter 4. Evaluating Systems on Evolving Test Collections

(a) MAP. (b) bpref.

Figure 4.16: Continuous Ranking of systems. Robuste.

(a) MAP. (b) bpref.

Figure 4.17: Continuous Ranking of systems in TREC-COVIDe.

systems. To demonstrate the value of continuous ranking using a Pivot system, we assess
the ranking agreement between pairs of test systems at each compared epoch against a
ground truth.

To establish ranking agreement, we compare the order of systems st1 and st2 using the
pivot strategy with the ground truth. By employing simulated ETCs, we can compute
the true ranking between two systems in a reference epoch, denoted as TCref(i,i+1), which
is built as the union of TCi and TCi+1. We then calculate the proportion of agreement
between the Pivot ranking of st1 and st2 in the compared epochs TCi and TCi+1 and the
real ranking of st1 and st2 in TCref(i,i+1).

Table 4.2 shows the number of times that the order between systems st1 and st2 agrees
with the ground truth at long of Robuste and TREC-COVIDe epoch pairs. We compare
the results to a baseline that orders the systems according to their performance values at
each epoch. In Robuste, the pivot orders the test systems agreeing with the ground truth
in 86% of the cases with MAP, whereas the baseline ranking achieves agreement in 83%
of cases. For the bpref metric, the pivot ranking agreement is 89%, while the baseline
ranking achieves 82% agreement. Moving to the TREC-COVIDe dataset, we observe
higher agreement values for the pivot rankings compared to Robuste. The pivot ranking
achieves 95% agreement with the ground truth for the MAP metric, surpassing the 88%

110

4.4. Experiments

agreement achieved by the baseline ranking. Similarly, for the bpref metric, the pivot
ranking achieves 94% agreement, while the baseline ranking achieves 79% agreement. In
conclusion, the Pivot ranking consistently outperforms the baseline ranking in terms of
agreement with the ground truth.

Robuste

Metric Pivot System Pivot Baseline
MAP dirLM 0.86 ± 0.19 0.83 ± 0.19
bpref bm25 Bo1 0.89 ± 0.17 0.82 ± 0.19

TREC-COVIDe

Metric Pivot System Pivot Baseline
MAP pl2 KL 0.95 ± 0.05 0.88 ± 0.06
bpref pl2 KL 0.94 ± 0.05 0.79 ± 0.10

Table 4.2: Pivot and baseline agreement with the ground truth (mean ± standard devia-
tion).

The Pivot is able to define which system outperforms the other when they are compared
in two different test collections agreeing with the real results more than ranking them
according to their absolute values (baseline). TheRse∆M computed with the Pivot system
is defined in terms of the improvement of the tested system versus the Pivot and not in
the scale of the performance metric.

4.4.4.2 Expected Performance Analysis

The second Longitudinal Analysis (defined as LA2) is an expected performance analysis
using standardization functions to project the performance of one test system st1 evaluated
in one epoch (TC1) to another epoch (TC2). The purpose of this analysis is to compare
systems based on a specific epoch of interest. By projecting the expected performance
of st1 in TC2, we can compare it to any other system evaluated in TC2 This approach
enables us to understand how changes across epochs impact the performance of the tested
systems.

Figure 4.18 presents the results for Robuste, comparing the real performance of the
tested system st1 (represented by black dots) with its expected performance in the pre-
vious epoch (i.e., the expected performance in epoch TC2 corresponds to the projection
of st1’s performance in epoch TC1). In terms of MAP (fig. 4.18a), the performance of
st1 aligns with the expected performance in the majority of epochs, as the real perfor-
mance falls within the expected performance range 75% of the time. For the remaining

111

Chapter 4. Evaluating Systems on Evolving Test Collections

25% of cases, the expected performance is very close to the real performance. As for
bpref (fig. 4.18b), the real performance consistently falls within the expected performance
range 95% of the time. The same trend can be observed in TREC-COVIDe, where the
MAP (fig. 4.19a) real performance is outside the expected performance range only twice.
For bpref metric (fig. 4.19b), the real performance always falls within the expected range.
However, compared to Robuste, the expected performance ranges in TREC-COVIDe are
larger.

(a) MAP. (b) bpref.

Figure 4.18: Expected performance analysis - Robuste.

(a) MAP. (b) bpref.

Figure 4.19: Expected performance analysis - TREC-COVIDe.

Rse∆M of two systems (st1 evaluated in TC1 and st2 in TC2) is computed as the
difference between st2’s real performance. M(TC2, st2), and st1’s expected performance,
Mproj(TC2, TC1, st1) (see section 4.3.5). As the expected performance is a range of values,
we evaluate which value in the range is a good predictor of performance change.

112

4.4. Experiments

Considering ER as the expected range of performance, we evaluate four scenarios to
calculate the performance change in two consecutive epochs (epochi, epochj):

• Comparing real performance value at epochi versus the mean value of ER, denoted
as mean(ER), at epochj,

• Comparing real performance value at epochi versus the minimum value of the ER,
denoted as min(ER), at epochj,

• Comparing real performance value at epochi versus the maximum value of the ER,
denoted as max(ER), at epochj,

• Comparing the mean value of ER at epochi versus the mean value of the ER at
epochj.

By assessing these scenarios, we determine the number of times that the expected
performance correctly indicates an improvement when the real performance actually im-
proves, and the number of times that the expected performance indicates a decrease when
the real performance does decrease. This analysis helps us identify which projected value
in the range is a reliable predictor of performance change, which is then used to compute
Rse∆M for the systems.

Table 4.3 compares the four scenarios in Robuste and TREC-COVIDe. We report the
mean proportion of agreement between the expected change and the real change across
all test systems and all the successive epochs. In the case of Robuste, both MAP and
bpref metrics show that the best indicator of a performance change is when comparing the
real performance and the mean of the expected performance range. In TREC-COVIDe,
MAP results in a better prediction of an improvement when comparing both expected
performance means. In the case of bpref, the results are like Robuste with the mean
expected performance with the best results. Although the overall agreement proportions
are slightly lower in TREC-COVIDe compared to Robuste, the trend remains consistent.

Robuste TREC-COVIDe

epochi epochj MAP bpref MAP bpref

real mean(ER) 0.85 0.75 0.68 0.75
real min(ER) 0.66 0.56 0.34 0.29
real max(ER) 0.72 0.65 0.67 0.75

mean(ER) mean(ER) 0.72 0.70 0.75 0.69

Table 4.3: Agreement of expected performance change.

By considering the appropriate projected value, we can compute Rse∆M and better
understand the performance changes of the evaluated systems across different epochs.

113

Chapter 4. Evaluating Systems on Evolving Test Collections

Given the results of Table 4.3, we propose to use the mean of the expected range in the
Rse∆M computation.

The expected performance analysis is useful to compare one system and the next
version of itself from the perspective of the current test collection. To understand how
the changes in the test collection could affect the performance of the system. As it is
limited by the common queries in consecutive epochs, we propose a Grain analysis that
compares performances in meaningful splits of the test collections.

4.4.4.3 Grain Analysis

In the third Longitudinal Analysis (LA3), we employ a Grain analysis using the prede-
fined granularities from the GRA step. This analysis allows us to compare the perfor-
mance of test systems using standardized performance values at each grain. We compare
tf_idf_RM3 (later represented in black) and bm25_RM3 (in red).

For Robuste, the results of the Grain analysis are presented in Figure 4.20, which
compares TF_IDF_RM3 (in black) and BM25_RM3 (in red). In the top row, we observe
that the G1 granularity does not exhibit any specific behavior for either test system. The
performance values remain relatively stable within the range of 0.5 < U − cdfM < 0.58
for both metrics and systems. For the G2 granularity (bottom row of Figure 4.20), we
see that the systems perform as expected in the low, medium, and high-performance
queries, demonstrating consistency and alignment with the performance categories across
the granularities.

In the case of TREC-COVIDe, the performance at G1 is very stable (Figure 4.21, first
row). However, a notable difference compared to Robuste is observed when considering
the G2 granularities. In this case, the performance of the test systems becomes highly
unstable for high and low-performance queries.

By utilizing the Grain analysis, we can further analyze the specific performance charac-
teristics of the test systems. For example, in TREC-COVIDe, the high-performing queries
in epoch 20 (comparable) have a U-cdf(MAP) performance lower than expected. We can
conclude that the test system changes its capacity to process high-performance queries
dropping to 0.5 its U-cdf(MAP) performance. Additionally, in the comparable epochs
17, 18, and 19, the medium-performing queries have a better performance than expected,
with U-cdf(bpref) > 0.75, surpassing the medium range. Through the Grain analysis,
we can pinpoint specific performance trends and deviations within different granularities,
providing valuable insights into how the test system’s performance varies across query
grains and epochs.

We have presented and validated our continuous evaluation framework using the two
simulated evolving test collections (presented in section 3.3). At each comparison analysis,
we have validated our findings and the application of each strategy, which allows the

114

4.4. Experiments

(a) MAP. (b) bpref.

Figure 4.20: Grain Comparison - Robuste.

(a) MAP. (b) bpref.

Figure 4.21: Grain Comparison - TREC-COVIDe.

computation of Rse∆M across systems evaluated in different test collections of an ETC.

115

Chapter 4. Evaluating Systems on Evolving Test Collections

4.4.5 LongEval Use Case

We apply our Evaluation Framework to LongEval ETC. As a reminder, LongEval is
composed of three test collections at different epochs: epoch one corresponds to June, the
second to July, and the third epoch corresponds to September. The lag between epochs
is measured in months. Between June and July, there is a lag of one. Between July and
September, the lag is two. For completeness, we also report the comparison with a lag
distance of three, comparing June and September.

As reference systems, we use 12 IR implementations evaluated using LongEval epochs
with seven performance metrics (IR systems and metrics described in experiments, sec-
tion 4.4).

Step 1. Comparability Validation Step: Table 4.4 presents the comparability be-
tween epochs with a lag of one, two, and three. The comparability is measured as Kendall’s
τ similarity between the ranking of the reference systems. MAP, nDCG, and P@10 are
highly comparable in all three lag distances with τ > 0.7 (marked in gray in table 4.4).
For the rest of the metrics, we only consider a valid evaluation when the comparability
is larger than 0.65 (marked in light gray in Table 4.4), limiting the comparison of bpref
to June-July and June-September. for the case of R-Precision, we only consider June-
September; for reciprocal rank (RR) we compare the June-July and June-September; and
finally, nDCG@10 is used on June-July and June-September.

These results align with our findings from the analysis of simulated evolving test
collections. In both cases, we observed highly comparable epochs as well as epochs that
were not comparable based on the chosen metrics. Therefore, it is crucial to consider
the comparability between epochs when conducting a continuous evaluation and selecting
appropriate metrics for comparison.

Since nDCG and P@10 demonstrate high comparability across all three lag distances,
these metrics are suitable for demonstrating the continuous evaluation framework using
LongEval.

Step 2. Pivot Strategy Comparison: As a comparison strategy, we first implement
the Pivot strategy. We assess the ability of the reference systems to create a correct RoS
for the purpose of pivot selection.

Figure 4.22 presents the correctness of the RoSpivot versus a RoSbaseline for nDCG and
P@10 metrics at each epoch of LongEval. Similar to our findings with simulated ETCs,
it is not possible to find one best Pivot across all the compared epochs. However, all
candidate pivots demonstrate the ability to construct more correct RoS compared to the
baseline.

Considering the results with the simulated ETCs, the mean correctness achieved with
the baseline across epochs is 0.65 in Robuste and 0.6 in TREC-COVIDe (with all metrics),
while the mean correctness of a pivot is 0.7 and 0.8, respectively. A similar trend is found

116

4.4. Experiments

Kendall’s τ(S,TCi,lag)
June - July July - Sept June - Sept

Metric lag=1 lag=2 lag=3

MAP 0.746 0.806 0.777
bpref 0.674 0.441 0.723
nDCG 0.959 0.845 0.88
R-Precision 0.296 0.426 0.664
RR 0.851 0.430 0.670
ndcg@10 0.769 0.531 0.645
P@10 0.889 0.860 0.850

Table 4.4: RoS Kendall’s τ similarities between epochs.

with LongEval. In this case, the mean correctness of the baseline is 0.7, and the mean
correctness of the pivot is 0.8. Therefore, incorporating a pivot in the ranking process is
a valid strategy, whether in a simulated ETC or in real scenarios like LongEval.

Finally, we choose BM25 with KL relevance feedback as the Pivot.

(a) nDCG. (b) P@10.

Figure 4.22: Pivot Candidates versus Baseline in LongEval.

Step 2. Projection Comparison: In this step, we compute the standardization func-
tion for each query at each epoch with the reference systems. As the number of reference
systems is only 12, we use U-cdf to standardize and project the performance values from
one TC epoch to another one.

In Figure 4.23, we present an example of the standardization function for one query
that is common to the July and September epochs. The first two graphs in the figure
depict the standardization functions employed to compute the projection function for
this particular query. As both standardization functions are not bijections, the projection
considers a minimum and maximum range in both metrics. For example, any nDCG value
from 0 to 0.6 in TCjuly is transformed to the performance range 0-0.48 in TCsept.

117

Chapter 4. Evaluating Systems on Evolving Test Collections

Figure 4.23: LongEval Query “Veal blanquette" with qid q07223839 in July, and qid
q092210537 in September.

The projection functions are based on the standardization ones and are computed on
the common queries in June, July, and September.

Step 2. Grain Definition: The grain definition compares the performance of systems
at defined grains using standardized performance. We use the same granularities defined
in section 4.4.3.3:

• Ihigh = [0.65, 1],

• Imedium =]0.35, 0.65[,

• Ilow = [0, 0.35];

we define that a query belongs to the range if the performance of 40% of the reference
systems is in the range.

In Figure 4.24, the comparability of each grain is assessed using Kendall’s τ across
epochs. The results show that the high, medium, and low grains are comparable for nDCG,
indicating consistent performance patterns across epochs within each grain. However, for
the P@10 metric, the comparability is limited to the low and medium grains between the
June and September epochs.

Step 3. Continuous Ranking of Systems: We compare the Pivot comparison and
the real performance of the systems. According to the pivot selection, we use BM25 KL
as the pivot system.

Figure 4.25 shows nDCG comparison of two systems in three moments. Figure 4.25a
presents the real performance of both systems at each epoch. Figure 4.25b presents the
continuous ranking, taking one system from the first epoch and comparing it to a second
system evaluated in the next epoch. The continuous ranking defines that TF_IDF_RM3

118

4.4. Experiments

(a) nDCG. (b) P@10.

Figure 4.24: Grain Comparability.

outperforms BM25_RM3 in all three compared epochs. P@10 results show the same
results (Figure 4.26), TF_IDF_RM3 outperforms BM25_RM3 in all epochs.

(a) nDCG performance. (b) Pivot Continuous Ranking.

Figure 4.25: Performance by epoch and Continuous Ranking - nDCG.

According to the pivot, the difference between the systems in June-September is the
largest difference measured with nDCG, and June-July when measured with P@10.

Step 3. Expected Performance Analysis: We compare the performance of the test
systems using a subset of common queries that are shared across the epochs. This subset
consists of 178 queries, with an average of 16 assessments per query. It is important to
note that when evaluating performance on a smaller set of queries, the results may differ
from the overall performance reported in Figure 4.25a and Figure 4.26a.

Figure 4.27 presents the real performance of the test systems (shown in black) along
with the expected performance range for each test system, projected from the previous
epoch. The results are presented for both nDCG and P@10 metrics.

In the case of nDCG (fig. 4.27a), the real performance of both systems in July falls
within the expected performance range, indicating that the expected range is a good
indicator of the performance change. However, in September, the real performance of
both systems is lower than expected, suggesting a decline in performance compared to

119

Chapter 4. Evaluating Systems on Evolving Test Collections

(a) P@10 Performance. (b) Pivot Continuous Ranking.

Figure 4.26: Performance by epoch and Continuous Ranking - P@10.

the projected values. It is worth noting that the difference between the real performance
and the expected range is proportional to the difference between the two systems, with
TF_IDF_RM3 consistently outperforming BM25_RM3. Similar patterns can be ob-
served for the P@10 metric (fig. 4.27b), where the real performance in July aligns with
the expected range, but in September, the performance is lower than expected for both
systems. In conclusion, the performance increase in July and September was expected for
both systems. It was also expected that TF_IDF_RM3 would have a better performance
than BM25_RM3.

Compared to the results in the simulated ETCs, LongEval experiments also support
the comparison of systems performance by the mean expected values to compute accurate
Rse∆M between systems.

(a) nDCG. (b) P@10.

Figure 4.27: Expected Performance.

Step 3. Grain Analysis: In Figure 4.28, we present the grain comparison of test sys-
tems TF_IDF_RM3 (in black) and BM25_RM3 (in red). Figure 4.28a shows the results
for U-cdf(nDCG). In the top graphic, we observe the G1 grain, which considers all the

120

4.4. Experiments

queries of each epoch. U-cdf(nDCG) remains stable across epochs, with TF_IDF_RM3
consistently outperforming BM25_RM3 in all three epochs.

In the bottom part of Figure 4.28, we present the comparison of systems at each gran-
ularity of G2. Here, we analyze the performance of the systems at different performance
levels: low, medium, and high. In this case, we detect that: for the low-performance
queries, TF_IDF_RM3 demonstrates similar performance across epochs; For the mid-
performance queries, TF_IDF_RM3 performs better in June compared to the other
epochs; and for the high-performance queries, the performance of TF_IDF_RM3 im-
proves with each epoch. This analysis highlights the importance of considering grains,
as the standardized scores indicate a performance decrease that is opposite to the reality
(shown in fig. 4.25a), where the real performance of the system is improving across the
epochs. The findings are noticeable when using G2 but not when considering the aggre-
gated view of G1, which can lead to incorrect conclusions in the continuous evaluation of
systems.

Furthermore, Figure 4.28b presents the results for P@10, showing a similar trend
to nDCG. TF_IDF_RM3 consistently outperforms BM25_RM3, and the comparable
grains of G2 (medium and low for the June-September comparison) also demonstrate
an improvement in system performance. In contrast, the G1 grain suggests a drop in
standardized scores.

(a) nDCG. (b) P@10.

Figure 4.28: Grain Comparison.

121

Chapter 4. Evaluating Systems on Evolving Test Collections

We have presented the application of the continuous evaluation framework using LongEval,
a real evolving test collection. With each comparison analysis, we provide a method to
compare systems evaluated using different epochs of an ETC. While the Pivot Comparison
is dedicated to creating RoS, the projection strategy proposes the expected performance
of a system in the next epoch, and the grains comparison proposes to compare the stan-
dardized performance of systems across different epochs.

4.5 Discussion

The Continuous Evaluation Framework is built in three stages: (i) a comparability vali-
dation step, (ii) a comparison strategy step, and (iii) a longitudinal analysis step.

The experiments with Robuste and TREC-COVIDe show that the epochs of an ETC
are comparable in a high proportion, enabling a meaningful comparison of systems evalu-
ated in such epochs. This result also validates the creation of the time-based ETC, built
with 90% of overlapped documents in successive epochs. Previous experiments present
that with 90% of document overlap between different test collections, the probability of
having the same RoS between the compared test collections is larger than 90% for MAP,
Rprec, bpref and ndcg metrics [122]. It makes sense to have a lower percentage of com-
parable epochs (80%) with TREC-COVIDe, as this is a time-based ETC and it presents
more variable performance values than a non-time-based ETCs (as experimented in [122]).

The second step proposes three strategies to validate the comparison of systems across
the ETC epochs, we discuss each strategy:

• The results show that any Pivot system is able to create a more correct ranking
of systems than a baseline at each evaluation epoch. This result follows the same
findings of the Pivot Strategy in non-evolving test collections [57, 96]. In these works,
the pivot was validated not only by splitting the topics but also by splitting the
document sets, showing that using a pivot, it is possible to improve the correctness
of RoS evaluated in different test collections, compared to the RoS created with
absolute values (baseline approach).

• In terms of a projection comparison. The standardization examples represented the
main problem of creating projection functions. When the standardization functions
are not bijective, then the inverse function is not computable. In this case, the
projection function is defined as the minimum and maximum values in the stan-
dardization range. This decision led to an expected performance in a large range of
values making the longitudinal analysis step less precise.

• The final comparison strategy is a grain definition. We propose to create grain
based on the performance of the reference systems at each epoch. At each grain,
we find a big proportion of comparable epochs for Robuste and TREC-COVIDe.

122

4.5. Discussion

This result is in line with the state of the art. Cattelan and Mizzaro [27] have
shown that it is possible to compare systems evaluated over test collections that
use no common queries by using an appropriate query selection strategy and metric
normalization. They showed that query selection impacts the correlation of the
rankings of systems. In our proposal, we have relied on similar ideas to exhibit
specific behaviors of an evaluated system at each ETC, finding comparable grains
across epochs using reference systems. In this sense, Berto et al. [15] obtained results
that support the hypothesis that, by taking special care, the few queries selected
on the basis of a given system population are also adequate to evaluate a different
system population as well.

The third and last step of the proposed framework is a Longitudinal Analysis, which
application depends on the comparison strategy. We discuss the advantages and limits of
each analysis:

• We propose a Continuous Ranking using a Pivot system. The focus of this ranking
is approximate to the real ranking of systems considering two evaluated epochs. The
Pivot is able to define which system outperforms the other when they are compared
in two epochs agreeing with the real results more than ranking them according to
their absolute values (baseline). One limit of the pivot is the use of one system
across all the compared epochs. A second limit of the pivot is that the score of the
tested systems is not expressed on the same scale as the performance metric. When
computing Rse∆M computed using the pivot performance values of each system,
the difference scores are in relation to the improvement of the test system versus
the pivot at each epoch. Therefore, the pivot is useful to rank systems but not to
interpret the performance of systems across different epochs.

• The expected performance is useful to understand the change of one system in
time, computing a Rse∆M of one system across different epochs, as a real effect of
the environment on the system’s performance. The expected performance is able
to predict if the performance of the system will improve or decrease in the next
epoch. However, there is still room to create more precise expected performance
ranges when the standardization functions are not bijective. In some cases, the im-
provement is predicted, and the difference between the two systems is also correctly
projected, but it fails to predict precisely the next performance value (larger ranges
or translated). We noticed in our experiments that the expected performance may
be sensitive to the number of queries. While Robust has 249 queries and short
expected ranges, TREC-COVID only has 50 topics, resulting in large ranges of ex-
pected performance. Another limitation is the number of common queries required
to compute the global performance of a system using the projection functions. To
tackle this issue, we could explore standardization and projection of different query
sets, for example, using comparable grains proposed in the grain definition step.

123

Chapter 4. Evaluating Systems on Evolving Test Collections

• Using grains, the evaluation shows the performance of systems in specific yet com-
parable categories. This analysis makes it possible to pinpoint the epochs in which
a system has different performances according to the respective grain. While stan-
dardization proposes very stable performance values across epochs, which makes it
difficult to understand the performance differences when comparing systems, we use
standardized metrics in specific grains to compare systems on a common perfor-
mance range.

Overall, the Continuous Result Delta Evaluation Framework proposes a set of strate-
gies to compute meaningful Rse∆M for systems evaluated in different epochs of an ETC.

4.6 Conclusion
In this Chapter, we have presented our Continuous Result Delta Evaluation Framework,
which proposes a three steps framework to analyze the performance of systems evaluated
in an ETC and to compute meaningful Rse∆M of systems evaluated in different epochs
of the ETC. We validate each step of the framework using two simulated ETCs, Robuste
and TREC-COVIDe. Finally, we show its application in a real ETC, LongEval.

Our framework is able to rank systems evaluated in different epochs of an ETC. The
Pivot comparison strategy proposes a correct continuous ranking of systems, even if such
systems are not evaluated in the same epochs. The framework also proposes a perfor-
mance comparison with a focus on one specific epoch. The expected performance analysis
projects the performance of a system evaluated in a different test collection to the epoch
of interest, meaning that all the compared systems are on the same performance scale.
With the same goal, the grain strategy proposes to compare the system’s performance on
a standardized scale using meaningful granularities.

There is still room to improve the continuous evaluation framework, with further
experiments focused on some choices that need further investigation. Although they
are justified, the validity of the hypotheses, the definition of the granularities, and the
projection estimation remain to be explored. Nevertheless, we show that, when using
adequate parameters and choices, our framework is able to describe precise behaviors of
IR systems on simulated and acquired evolving collections.

124

Chapter 5

Conclusion and Future Work

In this work, we tackle the problem of continuously evaluating the performance of Infor-
mation Retrieval Systems when the systems and test collections evolve. This is translated
to the task of comparing different systems evaluated in different test collections. In chap-
ter 2, we draw an overview of the elements and the limits of the current evaluation in
Information Retrieval. One critical requirement is the use of one common test collec-
tion to compare the systems’ performances, making it impossible to apply the classical
evaluation paradigm to a continuous evaluation.

To build a continuous evaluation of information retrieval systems, we summarize our
contribution in two main points:

• First, we define evolving test collections, including a formalization, simulation, and
acquisition framework.

• Second, we propose a continuous result delta evaluation framework allowing to com-
pare systems evaluated in evolving test collection relying on R∆M .

To create a continuous evaluation, first, we need a suitable test collection to understand
the changes in IR systems across evolving collections. Consequently, the first contribution
undertakes the fact that there is no suitable test collection to evaluate the systems in a
continuous way. To tackle this problem, we propose two methods to create Evolving Test
Collections:

• By simulation: To use the available resources in the literature, we propose to adapt
existing test collections to simulate Evolving Test Collections. Our simulation strat-
egy relies on the creation of epochs with a set of features and constraints that con-
trols the evolution of the test collections across the epochs. After evaluating several
ETC built from different strategies, we conclude that a time-based ETC is the most
suitable one to evaluate a continuous evaluation framework. The time-based ETC
presented more variable results with any metrics than the other ETCs.

125

Chapter 5. Conclusion and Future Work

• By acquisition: We proposed an acquisition framework to create test collections
from a Web Search Engine periodically. The acquisition resulted in LongEval, an
ETC composed of three epochs with more than a million documents and almost one
thousand queries per test collection.

Using these ETCs, we are able to evaluate systems and compute different performance
values that vary according to the evolution of such test collections. Our next contribution
was dedicated to proposing a methodology that provides a meaningful comparison of such
changing performance values.

To compare the performance of systems evaluated in different epochs of an ETC, we
propose to measure result deltas R∆M . We began by defining three types of R∆M . These
types define respectively:

• Rs∆M when we compare two systems in the same test collection;

• Re∆M when we compare one system in two test collections; and

• Rse∆M when both the systems and the test collections vary.

The most difficult problems arise for theRse∆M : in such case, we propose a continuous
result delta evaluation framework based on three steps: (i) comparability validation, (ii)
comparison strategy, and (iii) longitudinal analysis to handle the fact that systems and
test collections evolve. The framework relies on an evaluation over ETC epochs.

The first step proposes a quantification of the similarity of two epochs by a compa-
rability validation according to a set of reference systems. This step represents the first
step in the characterization of test collection differences, or K∆. This step filters which
epochs are meaningful to compare across the epochs and represent a limit in the pro-
posed framework when the epochs are not comparable. Therefore, more meaningful K∆
measurements can inform in a better way the comparability between epochs.

The second step proposes different methods to define how the performance of the
system can be compared through the transformation of the performance values using one
Pivot system or a set of reference systems to compute standardization and projection
function or determine comparison grains. This step defines how the Rse∆M values can
be computed in the third step of the framework. It is important to notice that, even if
the three strategies led to similar results, the transformation of the performance values
into a common and comparable scale, we decide to propose different solutions to cope
with each alternative’s specific problems. First, the pivot strategy relies on one system,
which has to be replaced if its ability to create a correct RoS decreases, but this approach
is very simple to apply and presents good results to create an RoS considering epochs
with different queries and document sets. Second, the projection functions rely on a
set of common queries across epochs, which is a strong limitation in an evolving setup.

126

As presented in LongEval ETC, the overlap of queries is smaller than the overlap of
documents. Nevertheless, the projection functions rely on a set of systems that can
change across epochs. Third and last, the quality of the grain comparison relies on the
defined categories and the number of queries that exist in each of them. However, the
grains are easy to define and adapt to the evaluation requirements of the framework user.

The third step proposes to perform a longitudinal analysis of the transformed per-
formance values. Different analyses are implemented according to the strategy defined
in the second step. Our experiments showed that all the analyses are able to present
the evolution of the performance values considering the differences between the test col-
lections at each epoch. Specifically, the continuous ranking compares the change in the
position of the systems; the expected performance proposes a projected performance of
a system into a specific epoch of interest, understanding how the performance of such a
system may be impacted by the changes in the collection; and third, the grains present a
standardized performance comparison at specific grains. Using the longitudinal Analysis,
we can compute Rse∆Mwith the transformed performance of the systems.

As an additional contribution, presented in Appendix A, we created and shared a Web
visualization tool to perform an exploratory analysis of IR systems evaluated in different
epochs (or evaluation rounds). This tool is necessary to communicate and understand
the results of a continuous evaluation as the analysis starts to become more complex and
hard to interpret. The tool is designed as an open-source web tool that can be modified
and adapted to specific requirements.

The described contributions provide the resources and methodologies to implement a
continuous evaluation of IR systems and define how to compute Rse∆M between systems
evaluated across epochs of an evolving test collection.

Short-term Future works

Regarding the simulation of ETC, our proposal can be extended by considering several
elements of the test collections jointly so that we may detect dependencies between ele-
ments, as in [44]. The definition of the mapping feature can integrate other aspects of
documents and queries, for example, some change in the semantics or use of words, in
order to compute other kinds of evolution in test collections.

LongEval provides an important resource to the IR community to analyze different
aspects of IR systems and evaluation methodologies beyond continuous evaluation. For
example, LongEval can be used to evaluate the temporal persistence of IR systems per-
formance using reproducibility metrics as proposed in the CLEF LongEval-Retrieval task
by the IRC team [66]. Other investigations can exploit the temporal characteristics of
LongEval. From a different perspective, LongEval ETC needs to be evaluated in terms
of its application and scalability in a Web search engine. LongEval was released in one
and two months (as short-term and long-term test collections), and the resources from

127

Chapter 5. Conclusion and Future Work

part of Qwant were acquired monthly. The UGA team validated each release of the test
collection in terms of the quality of the extracted queries and the number of relevant
assessments. Including the acquisition and validation process in the development process
of an industrial search engine needs to be studied in detail in the future to understand
the limits of the proposed acquisition method.

From a short term-perspective, we identify that the continuous evaluation framework
can continue to be improved at each comparison step. As a future general work, we pro-
pose to study the robustness of our framework in terms of the number of reference systems
that are required at several steps of the framework. In terms of the Pivot comparison,
further investigation can define the relationship between the evaluated systems and the
Pivot used to compare them to decide if there exists a good Pivot and according to which
features. In terms of the projected comparison, there is space to propose new ways to
define the projection functions and the computation of expected performance, especially
when the standardization functions are not bijective. In terms of the grains comparison,
we acknowledge that further investigation can be generated in terms of defining automatic
grains using more complex features than the performance of queries.

Finally, we propose to include new visualizations of the developed evaluation tool, with
the goal of communicating and complementing the results of the continuous result delta
evaluation. The availability of the tool can also be extended as a software-as-a-service
tool to facilitate access to an on-running system.

Long-term Future works

Our long-term research perspectives focus towards building an explainable and interactive
IR continuous evaluation framework and to integrate it into future adaptable IR systems.

The Rse∆M measurements, using our Continuous Evaluation Framework, describe
when the performance of a system is improving given different test collection epochs. We
propose to include K∆ to the explainability schema for the system’s performance into
the continuous evaluation framework. We are especially interested in explaining what
is making the system fail with an analysis focused on the test collection characteristics.
The first efforts are presented in two works, where the K∆ tries to predict Rse∆M in the
context of ETCs. The objective is to compute the impact of test collection changes on
the performance change of a system. As a first approximation, we rely on state-of-the-art
Query Performance Prediction features as K∆ [55]. Later, several K∆s are quantified by
means of TF-IDF and Language Models (LM) representations. An SVM classification
model predicts Rse∆M for various IR systems to explain the relation impact of each K∆
into the Rse∆M prediction [41]. These experiments have shown that K∆ can predict
the Rse∆M values (with F1-score higher than 0.8 with MAP metric when using K∆ as
LM representations). This represents a first step of an explainable continuous evaluation,
where we can describe which differences in the test collections impact the performance
of systems. The second step is to bring the framework to scale by using it within an

128

industrial search engine.
More globally, we can explore in the future strong integration of explainable contin-

uous evaluation frameworks into an IR system that can adapt its model and implement
modifications according to the changes in the environment. This could pave the way to
a new generation of IR systems, able to support automatic adaptation by measuring how
the changes of the documents, queries and assessments (measured by K∆) impact their
performance (measured by R∆M).

Funding Acknowledgments
This work was supported by the ANR Kodicare bi-lateral project, grant ANR-19-CE23-
0029 of the French Agence Nationale de la Recherche, and by the Austrian Science Fund
FWF, grant I4471-N.

129

Chapter 5. Conclusion and Future Work

130

Appendix A

Continuous Evaluation Tool

We present here a visualization platform designed to implement exploratory data analysis
in the context of a continuous evaluation of IR systems.

A.1 Introduction

We introduce Cont-Eval [56], an open-source software tool that targets researchers and
search engine practitioners who repeatedly evaluate their information retrieval systems.
Cont-Eval is designed to facilitate the continuous evaluation of information retrieval sys-
tems, enabling users to gain insights into the performance of their systems and identify
areas for improvement. Our tool addresses this issue by proposing a set of visualizations
that considers the performance changes across evaluations.

We recognize that evaluation is a repeated task. As the results consider multifactorial
elements, such as the number of queries, documents, systems, and corpus, plain visualiza-
tion becomes more challenging to program, visualize, and interpret. Our system addresses
this challenge by providing an accessible and modifiable tool to visualize the evaluation
of information retrieval systems continuously. By providing an interactive and dynamic
dashboard that allows users to monitor their systems and track progress over rounds, we
hope to help researchers and practitioners identify trends and insights that can inform
the development and improvement of their information retrieval systems.

A continuous evaluation is based on repeated evaluation rounds that use different
test collections. We propose using an exploratory visualization approach that considers
how the performance of information retrieval (IR) systems changes across test collections,
using two evaluation methods: standardization and meta-analysis.

Standardized scores can compare systems across different test collections without wor-
rying about topic hardness or normalization [99]. Webber et al. [136] used a non-linear
transformation that assumes standard normal distributions per topic on evaluation mea-
sures. Later, Sakai [99] proposed a linear transformation of the standardized scores as-

131

Appendix A. Continuous Evaluation Tool

suming a uniform distribution. We present all of our graphics using either raw scores
or standardized scores. We transform the raw performance values through a cumula-
tive distribution function (CDF) that assumes a normal or uniform distribution, with
the distribution parameters computed from the performance values of a set of baseline
systems.

The work of Soboroff [116] proposes to use meta-analysis to evaluate a single system
over multiple test collections, including different topics and corpus settings. Meta-Analysis
helps to interpret the evaluation of systems tested over multiple collections, where one
baseline is compared to a treated system resulting in a delta measure over multiple collec-
tions, generating a final mean difference with a confidence interval from the treated and
baseline system. We follow his approach to compare the evaluation of a system across
several evaluation rounds.

Understanding why the performance of an information retrieval system changes across
different collections is essential to improve the system’s quality [54]. Our visualization
tool proposes to carefully analyse the performance of a system in the context of state-of-
the-art research on evaluation, to explore in detail how and why the system’s performance
changed. The code and demonstration of our system are available at https://github.
com/gabrielanicole/ExCEIR.

A.2 Related Work

Visualization of the results and of systems comparison have been studied in IR for a long
time. In 1999, [95] proposed some ways to look at the dispersion of evaluation results on
several query sets. In some way, this work considered several test collections at one time,
but the process on these data was very limited.

Vis-Trec [120] proposed to display graphics from trec_eval generated results. It pro-
poses query help-hurt and per-query difficulty displays. It also allows to compare one
system against others but does not support per-query manipulations, and does not con-
sider multiple rounds. [2] proposed to display the results of several systems using trec_eval
results, by providing a display of evaluation measures at several top-k cutoffs. Unlike our
tool, it does not integrate any filtering of systems and queries, there is no explicit com-
parison view for one specific system and does not consider multiple rounds.

RecDelta [31] presents an interactive tool for cross-model evaluation of top-k recom-
mendations. The user can visually compare the performance of various recommendation
algorithms and their recommended items. The main functionality is the visualization of
distribution δ scores between results. This tool helps to explain the results of a system
using two visualizations: Venn diagrams and HeatMap. In the same line, DiffIR [65]
presents a visualization tool to show the difference between retrieved elements from dif-
ferent ranking systems. The focus of DiffIR and RecDelta is the specific retrieved items
of each system, while for us, the comparison is performed in terms of differences in the

132

https://github.com/gabrielanicole/ExCEIR
https://github.com/gabrielanicole/ExCEIR

A.3. Architecture

performance metrics across evaluation rounds.
In contrast to these existing visualization tools, our tool provides a visualization for

exploratory analysis of several evaluation rounds. It implements standardization score
visualization and meta-analysis to deal with changes in the systems’ performance. It uses
trec_eval evaluation outputs. This makes it easy to integrate with evaluation results.
Finally, the tool provides a comprehensive view of the changes in the system’s performance
over time.

A.3 Architecture

Our open-source software facilitates continuous evaluation of information retrieval sys-
tems. The software is built on free and open-source technologies and uses Django1 version
4.1.6 as the main web framework.

The front-end includes Jquery and D3.js2, a JavaScript library for creating dynamic
and interactive data visualizations in web browsers. This enables the system to be easily
accessible and modifiable. D3.js creates scalable vector graphics (SVG) in the visualization
tool. The extensive library makes it easy to develop new graphics that can be integrated
into the system. In the back-end, Python3.10 is used as the programming language. The
system is based on four data science libraries: Pandas [70] and NumPy [125] for data
manipulation, and SciPy [1] and StatsModels [112] for computation of evaluation metrics,
including standardization and meta-analysis.

To organize the data, and following the Django framework, we store the evaluation
scores of the system considered, computed by trec-eval, on the static directory of our
application. The results of each round are grouped in the same subfolder.

A.4 Functionalities

Continuous evaluation of information retrieval systems is a complex task that requires
comparing the performance of multiple systems across multiple rounds. To facilitate this
process, our tool allows users to select a set of baselines to compare a tested system’s
performance across rounds. This enables users to track the improvement of their system
over time and identify areas for further development and improvement. The philosophy
behind selecting a test system and a set of baselines is based on real IR systems. In a search
engine that is constantly changing, the final version of the search engine is compared to
older versions of the same system, these older versions become baselines, and it is expected
that the applied modifications to the system will improve its performance.

1https://www.djangoproject.com/
2https://jquery.com/ & https://d3js.org

133

https://www.djangoproject.com/
https://jquery.com/
https://d3js.org

Appendix A. Continuous Evaluation Tool

To compare the performance of the test system and the baseline, our tool features
three main views of the data: Rounds, Queries, and Systems. In the three views, users
can choose to run the visualization on the full set or a subset of queries, systems, or
rounds.

The main view is the Round view, where an exhaustive analysis of the systems’
performance is developed, starting from an Overview of the systems’ performance across
rounds in different standardized scales; followed by the comparative analysis of the test
systems vs the baselines called Delta Evaluation; and finally, a Meta-Analysis to conclude
if, according to the performance of the systems in multiple rounds, the test system (i.e.,
the last version) is better to the baselines (i.e., the older versions of the search engine). In
this case, the performance of the system is represented as the mean value of the selected
metric. As the goal of a meta-analysis is to compare the performance of a system in
different rounds, this graphic is not supported in the Queries and Systems views.

Queries and Systems views are specific cases of the Round view. In the Query
view, Overview presents the results of the evaluated systems in one selected round or the
results of one system in different rounds. Therefore, it is possible to select only a single
round or only a single system. Using the same selection, Delta Evaluation shows the
performance difference of the selected systems per query (if several systems are selected)
and the performance difference of each query versus the final round (if several rounds are
selected).

In the Systems, Overview presents the performance of the test system and the base-
lines in different rounds, using the mean value across queries. In Delta Evaluation, we
present the performance difference of each system in the selected rounds versus the last
one. With this visualization, it is possible to identify pair of rounds that provides the
most different results for a specific system.

As detailed above, the three views work with the dimensions of the evaluation: round,
system and query; for clarity, each view presents only two of these dimensions, while the
third is aggregated. In summary:

• In the Rounds view, users can compare for each round the metric mean over the
selected set of queries, for a selected set of systems. The x-axis in the graphics of
this view always represents the round number.

• In the Queries view, users can compare the performance of a set of systems for
each individual query within a specific round. The x-axis of this view represents the
query id.

• The Systems view presents the performance of different systems across various
rounds for a selected set of queries. This view is used to visualize the performance
change of the system across the rounds. The x-axis of this view represents each
system.

134

A.5. TREC-COVID evaluation Example

A.5 TREC-COVID evaluation Example
We present an example of the functionalities of our visualization tool using the TREC-
COVID test collection [127]. TREC-COVID is a test collection organized in five rounds,
where each round is composed of a specific release of CORD-19 document collection [134],
a set of incremental topics, and relevant judgments. In the example below, we compare
the performance of six classical IR systems across the five rounds.

A.5.1 General View

Figure A.1 presents the organization of the three views. In general, a view is composed of
a summary section, a set of filters and a set of visualizations that considers the selected
parameters of the filters.

The summary section presents the total number of rounds, systems and queries in the
application (extracted from the static/evaluation folder). In the TREC-COVID case, we
have 5 rounds of evaluation, we did evaluate six systems in each round and there is a total
of 50 queries evaluated.

In the filter section, users can filter and select the evaluation rounds, systems, and
queries that they want to analyze. Within the tool, the selected system is referred to as
the test system, while all other systems are considered baselines.

In the example, we select TF_IDF as the test system, leaving 5 systems as baselines.
To run the evaluation, it is required to select one metric from the list of metrics available
in the files computed with trec_eval: in the example case we select "map". If the value
of any of the filters changes, it is necessary to press the "run evaluation" to update the
visualizations.

In this example (Figure A.1), we present the Rounds view. Here, the visualizations
section presents:

• an Overview to display the performance of the test system along with the baselines;

• a Delta Evaluation that compares the improvement of the test system versus the
baselines;

• and finally, the results of the Meta-Analysis that compares the results of a selected
baseline versus the test system. In this example, we will see how the graphics are
related and have a specific purpose that leads to a decision that is implemented for
the next graphic.

A.5.2 Overview

Figure A.2 shows an overview of the systems’ performance across rounds. Each bar rep-
resents the mean value of the selected queries on the selected rounds, we have selected all

135

Appendix A. Continuous Evaluation Tool

Figure A.1: Initial Page: Users start by selecting which systems they want to evaluate,
and the evaluation settings: rounds, queries, metric, etc.

136

A.5. TREC-COVID evaluation Example

Figure A.2: Overview in the Rounds view. It shows the performance of the test system
versus 5 baselines at each round of TREC-COVID.

the queries and rounds for this example. The performance of the test system is presented
in orange and the baselines are in green. The performance values could be presented
as Raw values, or we can compute standardized scores according to the baselines. We
implement score standardization assuming Normal or Uniform distributions.

Figure A.3 presents the same graphic in the Queries view. In this case, it is possible to
see how the performance of the test system (TF_IDF) and one baseline system (BM25)
changes query by query in the first round of TREC-COVID. In this example, we present
the scores using Uniform standardization.

A.5.3 Delta Evaluation

From the performance evaluation of the Overview Performance Evaluation shown in Fig-
ure A.2, users can go deeper and observe the relative performances of the systems. The
Delta Evaluation view allows us to visualize compared performances of systems for a spe-
cific score standardization method. It shows the relative performances of the test system
with baselines for each round.

Delta Evaluation graphic focuses on comparing the test_system versus each baseline.
In this case, we compute the performance difference between systems. Figure A.4 presents

137

Appendix A. Continuous Evaluation Tool

Figure A.3: Overview in Queries view for a selection of queries for Round 1 of TREC-
COVID. It shows the performance of the test system vs one baseline for each query.

the comparison of TF_IDF in each round of data. Each bar represents a specific base-
line, which is red if the mean performance of the test system is worse than the mean
performance of the baseline and blue otherwise.

A.5.4 Meta-Analysis

The final visualization section is dedicated to presenting the results of a Meta-Analysis
across the rounds. The goal is to extract an overall conclusion of the improvement of a
test_system versus a specific baseline across the evaluated rounds. In this example, and
considering the results of the Delta Evaluation graphic, we select BM25 as the baseline.

Figure A.5 shows a forest plot, traditionally used to present the results of Meta-
Analysis [116]. Each line represents the effect of test_system versus the baseline at a
specific round. The last line shows the random effects, which is the final estimation of the
effect size of the test system versus the baseline in all the rounds. In our TREC-COVID
example, the test system TF_IDF has a positive effect versus BM25.

A.6 Conclusion

In this work, we present Cont_Eval, a tool that facilitates continuous evaluation of infor-
mation retrieval systems by visualising performance metrics across rounds. We propose
a set of visualizations from three perspectives: rounds, systems and queries. We also

138

A.6. Conclusion

Figure A.4: Delta Evaluation for test system vs baselines for each round.

Figure A.5: Meta-Analysis of TF_IDF System versus a BM25 baseline.

139

Appendix A. Continuous Evaluation Tool

include state-of-the-art evaluation methods such as standardization and meta-analysis to
help the interpretation of the performance changes across evaluation rounds.

In the future, we plan to enhance the visualization tool by incorporating metrics that
take into account the changes of the test collections across evaluation rounds, as in [57].
Additionally, we will include metrics to guide the selection of standardization methods
and baselines, and we will include the empirical standardization method proposed by
Urbano et al. [123]. Furthermore, we aim to expand the capabilities of the Queries and
System views by introducing new visualizations that describe changes in the queries and
system results.

140

Appendix B

Résumé en Français

L’évaluation classique des systèmes de recherche d’information repose sur une collection
de tests statique, composée d’un ensemble de documents, d’un ensemble de requêtes
et de jugements de pertinence. L’évaluation permet de mesurer les performances d’un
ou plusieurs systèmes. Toute modification de l’un des éléments de l’évaluation, comme
l’ensemble de documents, les requêtes, les jugements de pertinence ou les systèmes évalués,
a un impact sur la mesure des performances [45, 133].

Dans le cas de la recherche sur le Web, l’environnement (documents, requêtes) est en
constante évolution. Utiliser une collection de tests statique n’est pas adapté à cette réalité
changeante, et une collection statique serait insuffisante pour évaluer sur le long terme un
système industriel de recherche d’information. Par conséquent, l’évaluation hors ligne des
systèmes de recherche d’information ne peut pas être directement appliquée aux systèmes
de recherche en direct utilisés dans l’industrie : par exemple, mener une campagne une
fois par an n’est pas suffisant ; ajuster constamment un système à un référentiel peut
conduire à sur-adapter le référentiel plutôt qu’à améliorer les performances du système,
qui doivent être valides pour différentes collections de tests.

On a donc besoin de mettre en place un cadre pour évaluer de manière adéquate et
continue les systèmes de recherche. Par rapport à l’évaluation classique de la RI sur des
collections de tests statiques, l’évaluation continue des systèmes de RI intègre la notion
de “temps” dans le processus d’évaluation. En plus d’autres aspects, une évaluation lon-
gitudinale d’un système de RI vise à vérifier si la qualité d’un (ou plusieurs) système(s)
est meilleure, aussi bonne, ou pire, au fil du temps. Plus précisément, l’évaluation longi-
tudinale est capable d’identifier certaines raisons du changement de comportement d’un
système. Dans ce travail de recherche, nous cherchons à répondre à la question suivante :

• Comment comparer les performances de différents systèmes de recherche d’information
lorsque les collections de tests évoluent ?

La littérature ne fournit pas de collection de tests appropriée pour effectuer une éval-
uation continue des systèmes. Nous définissons le problème suivant :

141

Appendix B. Résumé en Français

• Il n’existe aucune collection de tests avec des évolutions contrôlées de l’ensemble
de documents, de requêtes, ou de jugements de pertinence disponibles dans la lit-
térature, dans laquelle nous pouvons appliquer et tester une évaluation continue des
systèmes de recherche d’information.

Il existe cependant des collections de tests statiques qui pourraient être adaptées pour
simuler l’environnement Web dynamique. La maintenance des collections de tests [115]
propose une méthode pour mettre à jour une collection existante en incorporant de la
dynamique à la collection de tests. Nous nous appuyons sur ces travaux pour créer des
collections de tests évolutives et contrôlées qui peuvent être utilisées pour évaluer et
comparer en continu les performances des systèmes.

L’évaluation des performances repose sur différentes métriques, et différentes méth-
odes ont été proposées pour déterminer si un système S1 surpasse un système S2. Le
cadre de l’évaluation classique est très limitant pour mener une évaluation continue car
il nécessite d’évaluer tous les systèmes comparés en utilisant la même collection de tests.
Cela est problématique étant donné que les performances des systèmes sont affectées par
les changements dans la collection de tests. Cette recherche aborde ce problème :

• Nous ne pouvons pas comparer les performances d’un système évalué dans une collec-
tion de tests à celles d’un système évalué dans une deuxième collection de tests, car
les variations de performances dépendent des changements dans ces collections. Il
n’existe pas de cadre d’évaluation permettant de comparer les systèmes évalués dans
des collections de tests évolutives et qui explique également comment les change-
ments dans l’environnement d’évaluation affectent les résultats de performances.

À notre connaissance, il n’existe pas de cadre d’évaluation qui interprète de manière
continue les performances d’un système évalué dans différentes collections. La normal-
isation [99, 123, 136] aborde le problème de la comparaison de requêtes de difficultés
variables, mais elle ne montre pas comment interpréter l’effet des différentes collections
de tests dans l’évaluation de différents systèmes. Les méta-analyses [116] et les mesures
de reproductibilité [18] se concentrent sur l’extraction d’un effet global des collections de
tests, mais elles nécessitent d’évaluer tous les systèmes comparés pour chaque collection
de tests. Cette configuration est différente de notre évaluation continue, qui aborde le
problème d’une évaluation continue du Web où les systèmes et les environnements de test
changent.

Pour répondre à notre question de recherche, nous proposons une Collection de Tests
Évolutive pour évaluer les systèmes de manière continue, ainsi qu’un cadre d’évaluation
continue qui définit comment comparer les performances des systèmes évalués dans de
telles collections de tests évolutives.

Dans ce qui suit, nous présentons la Collection de Tests Évolutive dans la section B.1,
l’évaluation continue dans la section B.2, et notre conclusion dans la section B.3.

142

B.1. Collection de Tests Évolutive

B.1 Collection de Tests Évolutive

Nous définissons une collection de tests dynamique (DTC) comme une liste de plusieurs
collections de tests qui présentent des variations entre elles dans le but d’évaluer un sys-
tème dans un environnement changeant. Par conséquent, une DTC étend la collection
de tests statique en définissant une séquence d’époques représentant chaque collection de
tests, en faisant varier les composants dans les époques précédentes et suivantes dans la
DTC :

Une Collection de Tests Dynamique (DTC) est une liste de collections de tests
(TC), où chaque collection de tests TCi comporte trois composants (ensembles) : les
documents (Di), les requêtes (Qi) et les jugements de pertinence (Qreli).

Nous nous intéressons à définir une collection de tests dynamique spécifique : une Col-
lection de Tests Évolutive, qui vise à soutenir l’évaluation de la RI lorsque l’évaluation,
et donc la collection de tests, évolue : à chaque époque, les documents, les requêtes et les
jugements de pertinence changent de manière évolutive et cohérente. Dans une collection
de tests évolutive, nous nous attendons à ce que des caractéristiques pouvant être cal-
culées dans les composants mesurent l’évolution de la collection de tests, par exemple, un
ensemble d’éléments communs d’une époque à la suivante. Un autre facteur de cohérence
important est l’existence d’un ensemble unique de valeurs d’évaluation (AV) à travers les
époques, de manière formelle :

Une Collection de Tests Évolutive (ETC) est une DTC avec des documents, des
requêtes et des jugements de pertinence évolutifs utilisant un ensemble commun de
valeurs d’évaluation AV .

B.1.1 Simulation

Nous simulons une ETC de manière contrôlée. Pour pouvoir construire une (ou plusieurs)
ETC, nous utilisons une simulation basée sur une collection source de tests statique TCs

et un ensemble de paramètres qui contrôlent l’évolution des composants de l’ETC sur n
époques. Cette évolution contrôlée nous permet d’étudier précisément le comportement
des systèmes évalués.

Nous définissons la simulation S pour créer une ETC simulée, avec les paramètres
suivants : un TCs, un nombre d’époques (n), la taille de chaque Ci (NC), et une stratgie
de simulation. Par conséquent, S est définie comme suit :

S : (TCs, n,NC , stratgie)→ ETC

143

Appendix B. Résumé en Français

ensuite, une ETC simulée est décrite comme suit :

ETCsimulée = S(TCs, n,NC , stratgie), avec AV = AV s

La stratégie est définie comme suit :

• Fixer la cardinalité de certains composants pour qu’ils soient égaux.

• Fixer une valeur d’overlap globale o entre les composants successifs.

• Par exemple, une fonction d’ordonnancement FC peut exister sur un composant
Cs.

Nous proposons deux instantiations de cette stratégie générale :

Random ETC : Une Random ETC imite un environnement changeant, par exemple,
un ensemble de documents qui peuvent être supprimés et réintégrés ultérieurement dans
la collection de tests, ou des requêtes liées à une saison spécifique. Cette évolution est
simulée en extrayant aléatoirement plusieurs échantillons de la collection de tests TCs.
Pour créer un Random ETC, nous mettons en œuvre la stratégie de simulation comme
suit :

stratégie = (cardinalité)

cette stratégie est uniquement basée sur la cardinalité, qui contraint le nombre d’éléments
dans chaque C défini dans NC .

Overlapping ETC : Lors de l’évaluation des systèmes à l’aide d’un Random ETC,
comme nous ne contrôlons pas le degré de chevauchement entre les TC consécutifs, il est
difficile d’évaluer le comportement d’un système sans savoir à quel point les collections de
tests sont similaires. Par conséquent, le Random ETC simule des contextes changeants,
mais pas une évolution. Une Ov. ETC simule l’évolution de la collection de tests en con-
trôlant la similarité entre les époques des composants, représentée par le chevauchement
dans l’ETC : toutes les paires de TC consécutives de l’ETC sont également similaires par
rapport à une caractéristique de similarité qui doit être définie. Pour créer un Overlapped
(Ov.) ETC, la stratégie de simulation est la suivante :

stratégie = (cardinalité, overlap,FC)

La stratégie repose sur un ordonnancement complet des éléments des composants FC ,
en attribuant une valeur spécifique à chaque élément. Elle n’autorise pas la réinsertion
d’éléments des versions précédentes et définit un nombre fixe d’éléments chevauchants
entre les époques des composants (overlap). Tout comme dans le Random ETC, la
cardinalité est également contrainte, NC étant une valeur constante.

144

B.1. Collection de Tests Évolutive

À l’aide des ETC simulées, nous pouvons créer plusieurs types d’ETC, par exemple
en utilisant les sous-collections de pointe : le partitionnement et le bootstrap avec des
ETC aléatoires. Il est également possible de créer un CTE à chevauchement basé sur le
partitionnement (Ov. ETC), qui permet de contrôler la quantité de changement entre les
époques successives définies par une valeur de chevauchement. Plus spécifiquement, nous
nous intéressons à un ETC à chevauchement basé sur le temps, qui permet de contrôler les
changements entre les époques avec une base temporelle afin de simuler un environnement
Web dynamique.

B.1.2 Acquisition

Dans cette section, nous présentons LongEval [50], une nouvelle collection de tests en
évolution avec des données acquises à partir du moteur de recherche Qwant. L’ETC
LongEval est proposée pour soutenir l’évaluation des systèmes de RI Web commerciaux
et open-source de pointe. Ce ETC est dédié à fournir une évaluation à grande échelle
et est capable de faire face à l’évolution temporelle des données Web réelles. Plusieurs
organisations ont contribué à la construction de LongEval. La principale contribution
de cette thèse est la conception du processus d’acquisition et la définition des sujets qui
guident la collecte de documents, de requêtes et de jugements de pertinence au fil du
temps.

L’acquisition est périodique et se répète au fil du temps pour construire chaque col-
lection de tests qui compose le ETC. Les requêtes, les documents et les jugements de
pertinence changent d’une collection de tests à l’autre, mais ils sont acquis en fonction
de leur relation avec un ensemble défini de sujets (qui sont des mots-clés décrivant un
concept large et général). Cela est illustré dans la Figure B.1 :

1. L’acquisition d’un ensemble de thèmes, sélectionnés à partir du Web et des médias
sociaux. Cette acquisition est basée sur des sujets tendance, mais stables à long
terme, et n’est réalisée qu’une seule fois pour l’ensemble de la collection LongEval.

2. La sélection de requêtes de recherche, liées aux thèmes, provenant des requêtes
réelles des utilisateurs de Qwant.

3. La création de jugements de pertinence. Nous nous appuyons ici sur deux ap-
proches : une approche implicite utilisant des modèles de clics [33] calculés à partir
des logs de Qwant, et une approche explicite utilisant des jugements manuels, qui
ont été réalisés après la soumission de ce manuscrit. Étant donné que chaque collec-
tion de tests contient plusieurs milliers de requêtes, des évaluations explicites seront
effectuées sur un sous-ensemble limité de requêtes sélectionnées manuellement.

4. L’acquisition du corpus de documents. Ce corpus est composé de : i) tous les
documents Web qui ont été affichés pour chaque requête d’une collection de tests,

145

Appendix B. Résumé en Français

Figure B.1: Stratégie générale d’acquisition de données. Les ressources privées de Qwant
sont en bleu. Les boîtes blanches représentent les éléments de la collection de tests.

et ii) un échantillon aléatoire important de l’index de Qwant. Ce protocole conduit
à un corpus contenant un mélange de documents pertinents et non pertinents. Le
processus présenté gère l’évolution des pages Web, car le corpus est composé non
seulement des URL, mais aussi du contenu des pages Web acquis à un moment
spécifique.

Comme décrit précédemment, LongEval est conçu pour évaluer les systèmes dans le
temps. Pour ce faire, l’acquisition présentée est réalisée périodiquement, généralement
chaque mois. À chaque période de temps t, nous créons une collection composée des
requêtes, des jugements de pertinence et des documents collectés au cours de ce mois.
L’ensemble complet de LongEval, composé d’une séquence de collections, évolue donc de
manière dynamique. Cela nous permet de créer et de fournir des collections de tests pour
différentes périodes de temps.

L’acquisition temporelle est présentée dans la figure B.2. L’acquisition est réalisée en
trois périodes : un temps t, un second temps t′ en tant qu’acquisition à court terme, et
une troisième période d’acquisition t′′ en tant qu’acquisition à long terme.

Enfin, nous présentons la structure finale de LongEval ETC :

LongEval = (TCjune, TCjuly, TCsept), AV = {0, 1, 2}

Nous répétons ce processus de collecte de données sur plusieurs mois et créons la
collection d’entraînement t (t = Juin) ainsi que deux collections de tests t′ (t′ = Juillet)
et t′′ (t′′ = Septembre). La figure B.3 montre LongEval ETC, comprenant les trois
collections de tests :

La collection de juin est utilisée comme collection d’entraînement dans CLEF LongEval.

146

B.2. Évaluation continue

future temporal gaps

Temporal Gap

New evolving testing sets

Within time (t) Short term (t’) Long term (t’’)

No gap

Figure B.2: Cadre acquisition global pour la collection de test LongEval [4].

Figure B.3: LongEval ETC.

Elle a été collectée en juin 2022 et mise à disposition sur l’infrastructure Lindat1. Les
collections de juillet et septembre, collectées en 2022, sont disponibles sur l’infrastructure
Lindat2 en tant que collection de tests LongEval.

B.2 Évaluation continue
Nous définissons l’évaluation continue comme suit :

Definition 13 L’évaluation continue est une tâche consistant à comparer les perfor-
mances d’un ou plusieurs systèmes dans une collection de tests en évolution.

Dans un cadre d’évaluation continue, il est essentiel de prendre en compte les change-
ments qui se produisent au fil des époques de la collection de tests en évolution ainsi
que les modifications apportées au système de recherche d’information lui-même, car ces
facteurs peuvent avoir un impact significatif sur l’évaluation d’un système mesurée par
une métrique de performance M . Il est donc essentiel de pouvoir mesurer avec précision

1http://hdl.handle.net/11234/1-5010
2http://hdl.handle.net/11234/1-5139

147

http://hdl.handle.net/11234/1-5010
http://hdl.handle.net/11234/1-5139

Appendix B. Résumé en Français

l’impact des modifications apportées à la collection de tests, ainsi qu’aux systèmes, sur
les résultats de l’évaluation.

Pour comparer les performances des systèmes évalués de manière continue à l’aide
d’une métrique de performance M , nous proposons les différences de résultats (R∆M),
définies comme suit :

Definition 14 Une différence de résultats R∆Mest la différence mesurable de per-
formance, selon une métrique de performance M , entre deux systèmes évalués sur
deux époques successives d’une collection de tests en évolution, où les systèmes et les
composants de la collection de tests peuvent évoluer.

Étant donné qu’une collection de tests en évolution est composée de plusieurs époques
(TCi ∈ ETC), nous proposons une comparaison par paire des performances des systèmes.

Comme les systèmes sont évalués à des époques différentes, la comparaison tient
compte de la performance des systèmes évalués sur des collections de tests différentes,
et se fier uniquement aux valeurs absolues des métriques, comme décrit dans la sec-
tion 2.2.2.1, n’est pas réalisable. Par conséquent, nous proposons de mettre en place
un cadre d’évaluation pour calculer les différences d’évaluation sous forme de R∆M , en
comparant S1 évalué dans TC1.

Notre objectif est de calculer Rse∆M , mais il est difficile de le mesurer directement,
car les deux systèmes ne sont pas directement comparables : à la fois les époques de la
collection de tests en évolution et les systèmes sont différents. Pour obtenir une estimation
de cette mesure, nous proposons :

Definition 15 Un cadre d’évaluation continue des différences de résultats (Rse∆M)
qui définit comment calculer Rse∆M à partir d’une analyse longitudinale des valeurs
de performance transformées des systèmes évalués dans différentes époques d’une col-
lection de tests en évolution.

Le cadre d’évaluation continue doit définir quand il est possible de comparer des sys-
tèmes évalués à différentes époques, puis comment transformer les valeurs de performance
de tous les systèmes évalués à différentes époques afin de les comparer dans une analyse
longitudinale.

Grâce à la définition de l’évaluation continue des différences de résultats, nous sommes
en mesure de proposer un cadre d’évaluation utilisant des collections de tests évolutives.
Notre cadre d’évaluation repose sur trois étapes réalisées en séquence (voir Figure B.4) :

Étape 1. La Validation de Comparabilité (CV) est une étape décisionnelle qui détermine
si les époques successives sont comparables, c’est-à-dire si les différences entre elles
ne sont pas trop grandes.

Étape 2. Une étape de Stratégie de Comparaison (CS), dans laquelle nous définissons
la stratégie pour transformer la performance du système en une échelle commune.

148

B.2. Évaluation continue

Figure B.4: Cadre de l’Évaluation Continue des Deltas de Résultats.

Elle peut être mise en œuvre par (2.a) une Comparaison Pivot, par (2.b) une Com-
paraison Projection; et par (2.c) des Comparaisons par Grains :

2.a Une Stratégie Pivot (PIV) définit un système en tant que pivot pour créer un
classement des systèmes en incorporant l’évaluation du pivot sur les époques
comparées ;

2.b Une étape de Projection (PRO) définit des fonctions de projection pour trans-
former la performance d’un système d’une époque à une autre. Les fonctions
sont calculées à l’aide d’un ensemble de références et d’un ensemble de requêtes
communes aux époques ; ou,

2.c Une étape de Définition de Grains (GRA) définit des groupes de requêtes sur
les époques en fonction d’une caractéristique de regroupement, afin de calculer
une performance normalisée dans ces groupes.

Étape 3. Une étape d’Analyse Longitudinale (LA) qui permet l’évaluation continue des
systèmes sur plusieurs époques successives. Selon la méthode utilisée, une analyse
spécifique est réalisée, à partir de laquelle Rse∆M peut être calculé :

a. L’analyse du Classement Continu compare le pivot aux systèmes testés pour
créer un classement des systèmes à chaque paire d’époques.

149

Appendix B. Résumé en Français

b. L’analyse des Performances Attendues calcule une performance attendue en
utilisant la projection d’un système dans une époque précédente, et la compare
à la dernière époque évaluée.

c. L’analyse des Grains compare la performance des systèmes par grains signifi-
catifs de différentes requêtes de deux époques.

Par conséquent, l’Évaluation Continue des Deltas de Résultats se compose de trois
étapes, ce qui donne une liste de valeurs de performance pour chaque système évalué sur
l’ensemble des époques de l’ETC. Ainsi, n− 1 valeurs Rse∆M peuvent être calculées, une
liste pour chaque paire de systèmes testés.

ContR∆MEval : (CV,CS, LA,ETC)→ Rn (B.1)

où chaque étape CV , CS et LA a un ensemble de paramètres respectifs selon la méthode
spécifique décrite, qui sont détaillés dans les sections suivantes.

Notre cadre de travail est censé fournir des indications précises sur le comportement
d’un ou plusieurs systèmes sur une collection de tests évolutive dans des conditions strictes
qui conduisent à des résultats significatifs : nous évaluons la comparabilité des époques,
nous évaluons la correction de la stratégie pivot, et nous évaluons la validité de la granu-
larité utilisée pour évaluer les systèmes.

Notre cadre de travail est capable de classer les systèmes évalués dans différentes épo-
ques d’une ETC. La stratégie de comparaison par pivot propose un classement continu
correct des systèmes, même si ces systèmes ne sont pas évalués aux mêmes époques. Le
cadre propose également une comparaison des performances axée sur une époque spé-
cifique. L’analyse des performances attendues projette les performances d’un système
évalué dans une collection de tests différente vers l’époque d’intérêt, ce qui signifie que
tous les systèmes comparés sont sur la même échelle de performances. Dans le même
objectif, la stratégie des granularités propose de comparer les performances du système
sur une échelle normalisée en utilisant des granularités significatives.

Il y a encore des possibilités d’amélioration du cadre d’évaluation continue, avec des
expériences supplémentaires axées sur certains choix qui nécessitent des investigations ap-
profondies. Bien qu’elles soient justifiées, la validité des hypothèses, la définition des gran-
ularités et l’estimation des projections restent à explorer. Néanmoins, nous démontrons
que, lorsque des paramètres et des choix adéquats sont utilisés, notre cadre est capable
de décrire avec précision les comportements des systèmes de recherche d’information sur
des collections évolutives simulées et acquises.

150

B.3. Conclusion

B.3 Conclusion
Dans ce travail, nous abordons le problème de l’évaluation continue des performances
des systèmes de recherche d’information lorsque les systèmes et les collections de tests
évoluent. Cela se traduit par la comparaison de différents systèmes évalués dans dif-
férentes collections de tests. Nous dressons un aperçu des éléments et des limites de
l’évaluation actuelle en recherche d’information. Une exigence essentielle est l’utilisation
d’une collection de tests commune pour comparer les performances des systèmes, ce qui
rend impossible l’application du paradigme d’évaluation classique à une évaluation con-
tinue.

Pour construire une évaluation continue des systèmes d’information, nous résumons
notre contribution en deux points principaux :

• Premièrement, nous définissons une collection de tests évolutive, comprenant une
formalisation, une simulation et un cadre d’acquisition.

• Deuxièmement, nous proposons un cadre d’évaluation continue des deltas de résul-
tats capable de comparer des systèmes évalués dans une collection de tests évolutive
en utilisant les R∆M .

Les contributions décrites fournissent les ressources et les méthodologies nécessaires
pour mettre en œuvre une évaluation continue des systèmes de recherche d’information
en utilisant des comparaisons de Rse∆M entre les systèmes sur différentes époques.

Nos perspectives de recherche se concentrent sur la création de cadres d’évaluation
continue des systèmes de recherche d’information explicables et interactifs, et leur inté-
gration dans les futurs systèmes de recherche d’information adaptables. Les mesures de
Rse∆M , utilisant notre cadre d’évaluation continue, décrivent quand les performances d’un
système s’améliorent en fonction des différentes époques de la collection de tests. Nous
proposons d’inclure la diversité de connaissances (K∆) dans le schéma d’explicabilité pour
la performance du système dans le cadre de l’évaluation continue. Nous nous intéressons
notamment à expliquer les raisons de l’échec du système avec une analyse axée sur les car-
actéristiques de la collection de tests. Le cadre d’évaluation continue explicatif soutient
une évaluation interactive, où le système de recherche d’information peut adapter son
modèle et apporter des modifications en fonction des changements dans l’environnement.
Cela permet une nouvelle génération de systèmes de recherche d’information capables
d’apprendre comment les changements du Web (mesurés par la diversité de connaissances)
impactent leurs performances (mesurées par les deltas de résultats), en intégrant un pro-
cessus d’adaptabilité de la recherche d’information dans le cycle de production.

151

Appendix B. Résumé en Français

152

Publications

[Pub1] Gabriela Gonzalez-Saez, Petra Galuščáková, Romain Deveaud, Lorraine Goeuriot,
and Philippe Mulhem. Exploratory visualization tool for the continuous evaluation
of information retrieval systems. In Proceedings of the 46th International ACM
SIGIR Conference on Research and Development in Information Retrieval, 2023.

[Pub2] Petra Galuščáková, Romain Deveaud, Gabriela Gonzalez-Saez, Philippe Mulhem,
Lorraine Goeuriot, Florina Piroi, and Martin Popel. Longeval-retrieval: French-
english dynamic test collection for continuous web search evaluation. 2023.

[Pub3] Gabriela Gonzalez-Saez, Alaa El-Ebshihy, Tobias Fink, Petra Galuščáková, Flo-
rina Piroi, David Iommi, Lorraine Goeuriot, and Philippe Mulhem. Towards
result delta prediction based on knowledge deltas for continuous ir evaluation. In
Proceedings of the workshop QPP++ 2023: Query Performance Prediction and
Its Evaluation in New Tasks, co-located with The 45th European Conference on
Information Retrieval (ECIR), pages 20–24, 2023.

[Pub4] Rabab Alkhalifa, Iman Bilal, Hsuvas Borkakoty, Jose Camacho-Collados, Romain
Deveaud, Alaa El-Ebshihy, Luis Espinosa-Anke, Gabriela Gonzalez-Saez, Petra
Galuščáková, Lorraine Goeuriot, et al. Longeval: Longitudinal evaluation of model
performance at clef 2023. In Advances in Information Retrieval: 45th European
Conference on Information Retrieval, ECIR 2023, Dublin, Ireland, April 2–6,
2023, Proceedings, Part III, pages 499–505. Springer, 2023.

[Pub5] Alaa El-Ebshihy, Tobias Fink, Gabriela Gonzalez-Saez, Florina Piroi, Petra
Galuščáková, David Iommi, Lorraine Goeuriot, and Philippe Mulhem. Predicting
retrieval performance changes in evolving evaluation environments. In Interna-
tional Conference of the Cross-Language Evaluation Forum for European Lan-
guages. Springer, 2023.

[Pub6] Gabriela Gonzalez-Saez. Continuous Result Delta Evaluation of IR Systems. In
Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval - Doctoral Consortium (SIGIR ’22), July
11–15, 2022, Madrid, Spain.

153

Publications

[Pub7] Gabriela Gonzalez-Saez, Philippe Mulhem, and Lorraine Goeuriot. Multi-element
protocol for IR experiments stability: Application to the TREC-COVID test col-
lection. In CIRCLE 2022, July 4-7, 2022 Samatan, Gers, France.

[Pub8] Gabriela Gonzalez-Saez, Philippe Mulhem, and Lorraine Goeuriot. Towards the
evaluation of information retrieval systems on evolving datasets with pivot sys-
tems. In International Conference of the Cross-Language Evaluation Forum for
European Languages. Springer, 2021.

[Pub9] Sáez, Gabriela González, Lorraine Goeuriot, and Philippe Mulhem. Addressing
different evaluation environments for information retrieval through pivot systems.
2021.

[Pub10] Hanna Suominen, Lorraine Goeuriot, Liadh Kelly, Laura Alonso Alemany, Elias
Bassani, Nicola Brew-Sam, Viviana Cotik, Darío Filippo, Gabriela González-Sáez,
Franco Luque, Philippe Mulhem, Gabriella Pasi, Roland Roller, Sandaru Senevi-
ratne, Rishabh Upadhyay, Jorge Vivaldi, Marco Viviani, and Chenchen Xu.
Overview of the clef ehealth evaluation lab 2021. In International Conference of
the Cross-Language Evaluation Forum for European Languages. Springer, 2021.

[Pub11] L. Goeuriot, H. Suominen, Liadh Kelly, L. Alemany, Nicola Brew-Sam, Viviana
Cotik, D. Filippo, Gabriela González Sáez, Franco Luque, P. Mulhem, G. Pasi,
Roland Roller, Sandaru Seneviratne, J. Vivaldi, Marco Viviani, and Chenchen
Xu. Clef ehealth evaluation lab 2021. In ECIR, 2021.

[Pub12] Lorraine Goeuriot, Gabriella Pasi, Hanna Suominen, Elias Bassani, Nicola
Brew-Sam, Gabriela Gonzalez-Saez, Rishabh Gyanendra Upadhyay, Liadh Kelly,
Philippe Mulhem, Sandaru Seneviratne, Marco Viviani, and Chenchen Xu. Con-
sumer health search at clef ehealth 2021. In CLEF 2021 Evaluation Labs and
Workshop: Online Working Notes, CEUR-WS, 2021.

[Pub13] Lorraine Goeuriot, Hanna Suominen, Liadh Kelly, Antonio Miranda-Escalada,
Martin Krallinger, Zhengyang Liu, Gabriella Pasi, Saez, Gabriela Gonzalez,
Marco Viviani, and Chenchen Xu. Overview of the clef ehealth evaluation lab
2020. In International Conference of the Cross-Language Evaluation Forum for
European Languages, pages 255–271. Springer, 2020.

[Pub14] L. Goeuriot, H. Suominen, Liadh Kelly, Zhengyang Liu, G. Pasi,
Gabriela González Sáez, Marco Viviani, and Chenchen Xu. Overview of the clef
ehealth 2020 task 2: Consumer health search with ad hoc and spoken queries. In
CLEF, 2020.

154

Publications

[Pub15] P. Mulhem, Gabriela González Sáez, Aidan Mannion, D. Schwab, and Jibril Frej.
Lig-health at adhoc and spoken ir consumer health search: expanding queries using
umls and fasttext. In CLEF, 2020.

155

Publications

156

Bibliography

[1] Scipy 1.0: fundamental algorithms for scientific computing in python.

[2] T. Abdulghani, M. A. Najar, R. Belaroussi, J. Mothe, M. Ryzhov, and S. Samoskaite.
Browsing information retrieval system results. In J. Mothe, P. Cellier, and A. Ligozat,
editors, COnférence en Recherche d’Informations et Applications - CORIA 2018,
15th French Information Retrieval Conference, Rennes, France, May 16-18, 2018.
Proceedings. ARIA, 2018.

[3] M. Alaofi, L. Gallagher, D. McKay, L. L. Saling, M. Sanderson, F. Scholer, D. Spina,
and R. W. White. Where do queries come from? In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 2850–2862, 2022.

[4] R. Alkhalifa, I. Bilal, H. Borkakoty, J. Camacho-Collados, R. Deveaud, A. El-
Ebshihy, L. Espinosa-Anke, G. Gonzalez-Saez, P. Galuščáková, L. Goeuriot, et al.
Longeval: Longitudinal evaluation of model performance at clef 2023. In Ad-
vances in Information Retrieval: 45th European Conference on Information Re-
trieval, ECIR 2023, Dublin, Ireland, April 2–6, 2023, Proceedings, Part III, pages
499–505. Springer, 2023.

[5] J. Allan, D. Harman, E. Kanoulas, D. Li, C. Van Gysel, and E. M. Voorhees. Trec
2017 common core track overview. In TREC, 2017.

[6] G. Amati. Information Retrieval, pages 1970–1975. Springer New York, New York,
NY, 2018.

[7] N. Asadi, D. Metzler, T. Elsayed, and J. Lin. Pseudo test collections for learning
web search ranking functions. In Proceedings of the 34th international ACM SIGIR
conference on Research and development in Information Retrieval, pages 1073–1082,
2011.

[8] J. A. Aslam and E. Yilmaz. A geometric interpretation and analysis of r-precision. In
Proceedings of the 14th ACM international conference on Information and knowledge
management, pages 664–671, 2005.

157

Bibliography

[9] J. A. Aslam and E. Yilmaz. Inferring document relevance from incomplete informa-
tion. In Proceedings of the sixteenth ACM conference on Conference on information
and knowledge management, pages 633–642, 2007.

[10] J. A. Aslam, E. Yilmaz, and V. Pavlu. A geometric interpretation of r-precision and
its correlation with average precision. In Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
573–574, 2005.

[11] G. Awad, K. Curtis, A. A. Butt, J. Fiscus, A. Godil, Y. Lee, A. Delgado, J. Zhang,
E. Godard, B. Chocot, L. Diduch, J. Liu, Y. Graham, , and G. Quénot. An overview
on the evaluated video retrieval tasks at trecvid 2022. In Proceedings of TRECVID
2022. NIST, USA, 2022.

[12] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume 463.
ACM press New York, 1999.

[13] P. Bailey, A. Moffat, F. Scholer, and P. Thomas. Uqv100: A test collection with
query variability. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, pages 725–728, 2016.

[14] S. M. Beitzel, E. C. Jensen, and O. Frieder. Average precision histogram., 2009.

[15] A. Berto, S. Mizzaro, and S. Robertson. On using fewer topics in information retrieval
evaluations. In Proceedings of the 2013 Conference on the Theory of Information
Retrieval, pages 30–37, 2013.

[16] P. Borlund. The concept of relevance in IR. Journal of the American Society for
information Science and Technology, 54(10):913–925, 2003.

[17] G. E. Box, W. H. Hunter, S. Hunter, et al. Statistics for experimenters, volume 664.
John Wiley and sons New York, 1978.

[18] T. Breuer, N. Ferro, N. Fuhr, M. Maistro, T. Sakai, P. Schaer, and I. Soboroff. How
to measure the reproducibility of system-oriented ir experiments. In Proceedings
of the 43rd International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 349–358, 2020.

[19] C. Buckley, D. Dimmick, I. Soboroff, and E. Voorhees. Bias and the limits of pooling
for large collections. Information retrieval, 10:491–508, 2007.

[20] C. Buckley and E. Voorhees. Retrieval evaluation with incomplete information, acm
sigir 2004 proceedings, pp. 25–32, 2004. Google Scholar Google Scholar Digital Library
Digital Library.

158

Bibliography

[21] C. Buckley and J. A. Walz. The trec-8 query track. In TREC, 1999.

[22] T. Buntinx-Krieg, J. Caravaglio, R. Domozych, and R. P. Dellavalle. Dermatology on
reddit: elucidating trends in dermatologic communications on the world wide web.
Dermatology online journal, 23(7), 2017.

[23] R. Campos, G. Dias, A. M. Jorge, and A. Jatowt. Survey of temporal information
retrieval and related applications. ACM Computing Surveys (CSUR), 47(2):1–41,
2014.

[24] B. Carterette. But is it statistically significant? statistical significance in ir research,
1995-2014. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1125–1128, 2017.

[25] B. Carterette, A. Bah, and M. Zengin. Dynamic test collections for retrieval evalua-
tion. In Proceedings of the 2015 international conference on the theory of information
retrieval, pages 91–100, 2015.

[26] B. Carterette, E. Kanoulas, V. Pavlu, and H. Fang. Reusable test collections through
experimental design. In Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, pages 547–554, 2010.

[27] M. Cattelan and S. Mizzaro. Ir evaluation without a common set of topics. In
Conference on the Theory of Information Retrieval, pages 342–345. Springer, 2009.

[28] D. Chakravorti, K. Law, J. Gemmell, and D. Raicu. Detecting and characterizing
trends in online mental health discussions. In 2018 IEEE International Conference
on Data Mining Workshops (ICDMW), pages 697–706. IEEE, 2018.

[29] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan. Expected reciprocal rank for
graded relevance. In Proceedings of the 18th ACM conference on Information and
knowledge management, pages 621–630, 2009.

[30] O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search
ranking. In Proceedings of the 18th international conference on World wide web,
WWW ’09, pages 1–10, New York, NY, USA, Apr. 2009. Association for Computing
Machinery.

[31] Y.-S. Chiang, Y.-Z. Liu, C.-F. Tsai, J.-K. Lou, M.-F. Tsai, and C.-J. Wang. Recdelta:
An interactive dashboard on top-k recommendation for cross-model evaluation. In
Proceedings of the 45th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pages 3224–3228, 2022.

[32] H. Choi and H. Varian. Predicting the present with google trends. Economic record,
88:2–9, 2012.

159

Bibliography

[33] A. Chuklin, I. Markov, and M. d. Rijke. Click models for web search. Synthesis
Lectures on Information Concepts, Retrieval, and Services, 7(3):1–115, July 2015.

[34] A. Chuklin, P. Serdyukov, and M. De Rijke. Click model-based information retrieval
metrics. In Proceedings of the 36th international ACM SIGIR conference on Research
and development in information retrieval, pages 493–502, 2013.

[35] C. L. Clarke, N. Craswell, and I. Soboroff. Overview of the trec 2009 web track.
Technical report, WATERLOO UNIV (ONTARIO), 2009.

[36] C. Cleverdon. The cranfield tests on index language devices. In Aslib proceedings,
volume 19, pages 173–194. MCB UP Ltd, 1967.

[37] P. Clough and M. Sanderson. Evaluating the performance of information retrieval
systems using test collections. 2013.

[38] E. Cosijn and P. Ingwersen. Dimensions of relevance. Information Processing &
Management, 36(4):533–550, 2000.

[39] N. Craswell, B. Mitra, E. Yilmaz, D. Campos, E. M. Voorhees, and I. Soboroff. Trec
deep learning track: Reusable test collections in the large data regime. In Proceedings
of the 44th international ACM SIGIR conference on research and development in
information retrieval, pages 2369–2375, 2021.

[40] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. An experimental comparison of
click position-bias models. In Proceedings of the 2008 International Conference on
Web Search and Data Mining, WSDM ’08, pages 87–94, New York, NY, USA, Feb.
2008. Association for Computing Machinery.

[41] A. El-Ebshihy, T. Fink, G. González-Sáez, F. Piroi, P. Galuščáková, D. Iommi,
L. Goeuriot, and P. Mulhem. Predicting retrieval performance changes in evolv-
ing evaluation environments. In International Conference of the Cross-Language
Evaluation Forum for European Languages. Springer, 2023.

[42] K. M. Elbedweihy, S. N. Wrigley, P. Clough, and F. Ciravegna. An overview of
semantic search evaluation initiatives. Journal of Web Semantics, 30:82–105, 2015.

[43] N. Ferro, Y. Kim, and M. Sanderson. Using collection shards to study retrieval perfor-
mance effect sizes. ACM Transactions on Information Systems (TOIS), 37(3):1–40,
2019.

[44] N. Ferro and M. Sanderson. Sub-corpora impact on system effectiveness. In Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 901–904, 2017.

160

Bibliography

[45] N. Ferro and M. Sanderson. Improving the accuracy of system performance es-
timation by using shards. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 805–814,
2019.

[46] N. Ferro and G. Silvello. A general linear mixed models approach to study system
component effects. In Proceedings of the 39th International ACM SIGIR conference
on Research and Development in Information Retrieval, pages 25–34, 2016.

[47] N. Ferro and G. Silvello. Toward an anatomy of ir system component performances.
Journal of the Association for Information Science and Technology, 69(2):187–200,
2018.

[48] J. Frej, D. Schwab, and J.-P. Chevallet. WIKIR: A python toolkit for building a
large-scale Wikipedia-based English information retrieval dataset. In Proceedings of
the 12th Language Resources and Evaluation Conference, pages 1926–1933, Marseille,
France, May 2020. European Language Resources Association.

[49] N. Fuhr. Some common mistakes in ir evaluation, and how they can be avoided. In
Acm sigir forum, volume 51, pages 32–41. ACM New York, NY, USA, 2018.

[50] P. Galuščáková, R. Deveaud, G. Gonzalez-Saez, P. Mulhem, L. Goeuriot, F. Piroi,
and M. Popel. Longeval-retrieval: French-english dynamic test collection for contin-
uous web search evaluation. arXiv preprint arXiv:2303.03229, 2023.

[51] L. Goeuriot, J. Mothe, P. Mulhem, F. Murtagh, and E. SanJuan. Overview of the
clef 2016 cultural micro-blog contextualization workshop. In Experimental IR Meets
Multilinguality, Multimodality, and Interaction: 7th International Conference of the
CLEF Association, CLEF 2016, Évora, Portugal, September 5-8, 2016, Proceedings
7, pages 371–378. Springer, 2016.

[52] L. Goeuriot, H. Suominen, L. Kelly, A. Miranda-Escalada, M. Krallinger, Z. Liu,
G. Pasi, G. G. Saez, M. Viviani, and C. Xu. Overview of the clef ehealth evaluation
lab 2020. In International Conference of the Cross-Language Evaluation Forum for
European Languages, pages 255–271. Springer, 2020.

[53] D. Gomes and M. J. Silva. Modelling information persistence on the web. In Proceed-
ings of the 6th international conference on Web engineering, pages 193–200, 2006.

[54] G. González-Sáez. Continuous result delta evaluation of ir systems. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 3493–3493, 2022.

161

Bibliography

[55] G. Gonzalez-Saez, A. El-Ebshihy, T. Fink, P. Galuščáková, F. Piroi, D. Iommi,
L. Goeuriot, and P. Mulhem. Towards result delta prediction based on knowledge
deltas for continuous ir evaluation. In Proceedings of the workshop QPP++ 2023:
Query Performance Prediction and Its Evaluation in New Tasks, co-located with The
45th European Conference on Information Retrieval (ECIR), pages 20–24, 2023.

[56] G. Gonzalez-Saez, P. Galuščáková, R. Deveaud, L. Goeuriot, and P. Mulhem. Ex-
ploratory visualization tool for the continuous evaluation of information retrieval
systems. In Proceedings of the 46th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, 2023.

[57] G. Gonzalez-Saez, P. Mulhem, and L. Goeuriot. Towards the evaluation of informa-
tion retrieval systems on evolving datasets with pivot systems. In International Con-
ference of the Cross-Language Evaluation Forum for European Languages. Springer,
2021.

[58] Q. Guo and E. Agichtein. Beyond dwell time: estimating document relevance from
cursor movements and other post-click searcher behavior. In Proceedings of the 21st
international conference on World Wide Web, pages 569–578, 2012.

[59] S. H. Hashemi, C. L. Clarke, A. Dean-Hall, J. Kamps, J. Kiseleva, et al. An easter
egg hunting approach to test collection building in dynamic domains. In EVIA@
NTCIR, 2016.

[60] C. Hauff, D. Hiemstra, F. De Jong, and L. Azzopardi. Relying on topic subsets for
system ranking estimation. In Proceedings of the 18th ACM conference on Informa-
tion and knowledge management, pages 1859–1862, 2009.

[61] K. Hofmann, L. Li, and F. Radlinski. Online evaluation for information retrieval.
Foundations and Trends in Information Retrieval, 10(1):1–117, 2016.

[62] K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS), 20(4):422–446, 2002.

[63] E. C. Jensen, S. M. Beitzel, A. Chowdhury, and O. Frieder. Repeatable evaluation of
search services in dynamic environments. ACM Transactions on Information Systems
(TOIS), 26(1):1–es, 2007.

[64] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting
clickthrough data as implicit feedback. In Acm Sigir Forum, volume 51, pages 4–11.
Acm New York, NY, USA, 2017.

[65] K. M. Jose, T. Nguyen, S. MacAvaney, J. Dalton, and A. Yates. Diffir: Exploring
differences in ranking models’ behavior. In Proceedings of the 44th International

162

Bibliography

ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2595–2599, 2021.

[66] J. Keller, T. Breuer, and P. Schaer. Evaluating temporal persistence using replica-
bility measures. In Conference and Labs of the Evaluation (CLEF) Working Notes,
CEUR Workshop Proceedings (CEUR-WS.org), 2023.

[67] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experi-
ments on the web: survey and practical guide. Data mining and knowledge discovery,
18:140–181, 2009.

[68] C. D. Manning. An introduction to information retrieval. Cambridge university press,
2009.

[69] R. McGill, J. W. Tukey, and W. A. Larsen. Variations of box plots. The American
Statistician, 32(1):12–16, 1978.

[70] W. McKinney et al. pandas: a foundational python library for data analysis and
statistics. Python for high performance and scientific computing, 14(9):1–9, 2011.

[71] M. Men, S. S. Fung, and E. Tsui. What’s trending: a review of social media in
ophthalmology. Current Opinion in Ophthalmology, 32(4):324–330, 2021.

[72] W. Mendenhall, D. Wackerly, and R. Scheaffer. Hypothesis testing. Mathematical
Statistics with Applications, pages 427–491, 1990.

[73] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the
2004 conference on empirical methods in natural language processing, pages 404–411,
2004.

[74] S. Mizzaro. Relevance: The whole history. Journal of the American society for
information science, 48(9):810–832, 1997.

[75] S. Mizzaro. How many relevances in information retrieval? Interacting with comput-
ers, 10(3):303–320, 1998.

[76] S. Mizzaro. The good, the bad, the difficult, and the easy: something wrong with
information retrieval evaluation? In European Conference on Information Retrieval,
pages 642–646. Springer, 2008.

[77] S. Mizzaro and S. Robertson. Hits hits trec: exploring ir evaluation results with
network analysis. In Proceedings of the 30th annual international ACM SIGIR con-
ference on Research and development in information retrieval, pages 479–486, 2007.

163

Bibliography

[78] A. Moffat and J. Zobel. Rank-biased precision for measurement of retrieval effective-
ness. ACM Transactions on Information Systems (TOIS), 27(1):1–27, 2008.

[79] P. Mulhem, G. G. Saez, A. Mannion, D. Schwab, and J. Frej. Lig-health at adhoc
and spoken ir consumer health search: expanding queries using umls and fasttext.
In CLEF 2020, 2020.

[80] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng.
Ms marco: A human generated machine reading comprehension dataset. choice,
2640:660, 2016.

[81] A. Ntoulas, J. Cho, and C. Olston. What’s new on the web? the evolution of the web
from a search engine perspective. In Proceedings of the 13th international conference
on World Wide Web, pages 1–12, 2004.

[82] H. Oosterhuis. Learning from user interactions with rankings: A unification of the
field. SIGIR Forum, 54(2), aug 2021.

[83] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[84] G. Penha, A. Câmara, and C. Hauff. Evaluating the robustness of retrieval pipelines
with query variation generators. In Advances in Information Retrieval: 44th Eu-
ropean Conference on IR Research, ECIR 2022, Stavanger, Norway, April 10–14,
2022, Proceedings, Part I, pages 397–412. Springer, 2022.

[85] M. Popel, M. Tomkova, J. Tomek, Łukasz Kaiser, J. Uszkoreit, O. Bojar, and
Z. Žabokrtský. Transforming machine translation: a deep learning system reaches
news translation quality comparable to human professionals. Nature Communica-
tions, 11(4381):1–15, 2020.

[86] S. Priya, R. Sequeira, J. Chandra, and S. K. Dandapat. Where should one get news
updates: Twitter or reddit. Online Social Networks and Media, 9:17–29, 2019.

[87] D. R. Radev, H. Qi, H. Wu, and W. Fan. Evaluating web-based question answering
systems. In LREC. Citeseer, 2002.

[88] L. Rashidi, J. Zobel, and A. Moffat. Evaluating the Predictivity of IR Experiments.
SIGIR 2021 - Proceedings of the 44th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pages 1667–1671, 2021.

[89] K. Roberts, D. Demner-Fushman, E. M. Voorhees, S. Bedrick, and W. R. Hersh.
Overview of the trec 2022 clinical trials track. In Proceedings of the Thirty-First Text
REtrieval Conference (TREC 2022), 2022.

164

Bibliography

[90] S. Robertson. A new interpretation of average precision. In Proceedings of the
31st annual international ACM SIGIR conference on Research and development in
information retrieval, pages 689–690, 2008.

[91] S. Robertson. On the history of evaluation in ir. Journal of Information Science,
34(4):439–456, 2008.

[92] S. E. Robertson. The methodology of information retrieval experiment. Information
retrieval experiment, 1:9–31, 1981.

[93] S. E. Robertson and E. Kanoulas. On per-topic variance in ir evaluation. In Proceed-
ings of the 35th international ACM SIGIR conference on Research and development
in information retrieval, pages 891–900, 2012.

[94] K. Roitero, J. S. Culpepper, M. Sanderson, F. Scholer, and S. Mizzaro. Fewer topics?
a million topics? both?! on topics subsets in test collections. Information Retrieval
Journal, 23(1):49–85, 2020.

[95] M. E. Rorvig. Retrieval performance and visual dispersion of query sets. In E. M.
Voorhees and D. K. Harman, editors, Proceedings of The Eighth Text REtrieval Con-
ference, TREC 1999, Gaithersburg, Maryland, USA, November 17-19, 1999, volume
500-246 of NIST Special Publication. National Institute of Standards and Technology
(NIST), 1999.

[96] G. G. Sáez, L. Goeuriot, and P. Mulhem. Addressing different evaluation environ-
ments for information retrieval through pivot systems. 2021.

[97] T. Sakai. Evaluating evaluation metrics based on the bootstrap. In Proceedings of
the 29th annual international ACM SIGIR conference on Research and development
in information retrieval, pages 525–532, 2006.

[98] T. Sakai. Statistical reform in information retrieval? In ACM SIGIR Forum, vol-
ume 48, pages 3–12. ACM New York, NY, USA, 2014.

[99] T. Sakai. A simple and effective approach to score standardisation. In Proceedings
of the 2016 ACM International Conference on the Theory of Information Retrieval,
pages 95–104, 2016.

[100] T. Sakai. How to run an evaluation task: With a primary focus on ad hoc infor-
mation retrieval. Information Retrieval Evaluation in a Changing World: Lessons
Learned from 20 Years of CLEF, pages 71–102, 2019.

[101] T. Sakai. On fuhr’s guideline for ir evaluation. In ACM SIGIR Forum, volume 54,
pages 1–8. ACM New York, NY, USA, 2021.

165

Bibliography

[102] T. Sakai. On the two-sample randomisation test for IR evaluation. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1980–1984, 2021.

[103] T. Sakai, N. Ferro, I. Soboroff, Z. Zeng, P. Xiao, and M. Maistro. Overview of the
ntcir-14 centre task. In Proceedings of the 14th NTCIR Conference on Evaluation of
Information Access Technologies. Tokyo, Japan, 2019.

[104] G. Salton and C. Buckley. Improving retrieval performance by relevance feedback.
Journal of the American society for information science, 41(4):288–297, 1990.

[105] T. Samar, A. Bellogín, and A. P. de Vries. The strange case of reproducibility versus
representativeness in contextual suggestion test collections. Information Retrieval
Journal, 19(3):230–255, 2016.

[106] M. Sanderson. Test collection based evaluation of information retrieval systems.
Now Publishers Inc, 2010.

[107] M. Sanderson and M. Braschler. Best practices for test collection creation and
information retrieval system evaluation. TrebleCLEF Project: http://www. trebleclef.
eu, 2009.

[108] M. Sanderson, A. Turpin, Y. Zhang, and F. Scholer. Differences in effectiveness
across sub-collections. In Proceedings of CIKM’2012, pages 1965–1969, 2012.

[109] M. Sanderson and J. Zobel. Information retrieval system evaluation: effort, sensi-
tivity, and reliability. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 162–169,
2005.

[110] L. Schamber. Relevance and information behavior. Annual review of information
science and technology (ARIST), 29:3–48, 1994.

[111] F. Scholer, D. Kelly, and B. Carterette. Information retrieval evaluation using test
collections. Information Retrieval Journal, 19(3):225–229, 2016.

[112] S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with
python. In 9th Python in Science Conference, 2010.

[113] M. D. Smucker, J. Allan, and B. Carterette. A comparison of statistical significance
tests for information retrieval evaluation. In Proceedings of the sixteenth ACM con-
ference on Conference on information and knowledge management, pages 623–632,
2007.

166

Bibliography

[114] M. D. Smucker, J. Allan, and B. Carterette. Agreement among statistical signifi-
cance tests for information retrieval evaluation at varying sample sizes. In Proceedings
of the 32nd international ACM SIGIR conference on Research and development in
information retrieval, pages 630–631, 2009.

[115] I. Soboroff. Dynamic test collections: measuring search effectiveness on the live
web. In Proceedings of SIGIR’2006, pages 276–283, 2006.

[116] I. Soboroff. Meta-analysis for retrieval experiments involving multiple test collec-
tions. In Proceedings of the 27th ACM International Conference on Information and
Knowledge Management, pages 713–722, 2018.

[117] I. Soboroff, S. Huang, and D. Harman. Trec 2020 news track overview. In TREC,
2020.

[118] M. E. Stevens. Problems of evaluation. In Automatic Indexing: a State-of-the-art
Report, chapter 7, pages 143–164. U.S. National Bureau of Standards, Washington
D. C., 1965.

[119] H. Suominen, L. Goeuriot, L. Kelly, L. A. Alemany, E. Bassani, N. Brew-Sam,
V. Cotik, D. Filippo, G. González-Sáez, F. Luque, et al. Overview of the clef ehealth
evaluation lab 2021. In Experimental IR Meets Multilinguality, Multimodality, and In-
teraction: 12th International Conference of the CLEF Association, CLEF 2021, Vir-
tual Event, September 21–24, 2021, Proceedings 12, pages 308–323. Springer, 2021.

[120] M. Tamannaee, N. Arabzadeh, and E. Bagheri. Vis-trec: A system for the in-depth
analysis of trec_eval results. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR ’20, page
2181–2184, New York, NY, USA, 2020. Association for Computing Machinery.

[121] A. Tonon, G. Demartini, and P. Cudré-Mauroux. Pooling-based continuous evalua-
tion of information retrieval systems. Information Retrieval Journal, 18(5):445–472,
2015.

[122] Gabriela Gonzalez-Saez, P. Mulhem, and L. Goeuriot. Multi-element protocol for IR
experiments stability: Application to the TREC-COVID test collection. In CIRCLE
2022, July 4-7, 2022 Samatan, Gers, France.

[123] J. Urbano, H. Lima, and A. Hanjalic. A new perspective on score standardization.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 1061–1064, 2019.

[124] J. Urbano and T. Nagler. Stochastic simulation of test collections: Evaluation
scores. In The 41st international ACM SIGIR conference on research & development
in information retrieval, pages 695–704, 2018.

167

Bibliography

[125] S. Van Der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure
for efficient numerical computation. Computing in science & engineering, 13(2):22–
30, 2011.

[126] A.-M. Vercoustre, J. Pehcevski, and V. Naumovski. Topic difficulty prediction in
entity ranking. In International Workshop of the Initiative for the Evaluation of XML
Retrieval, pages 280–291. Springer, 2008.

[127] E. Voorhees, T. Alam, S. Bedrick, D. Demner-Fushman, W. R. Hersh, K. Lo,
K. Roberts, I. Soboroff, and L. L. Wang. Trec-covid: constructing a pandemic infor-
mation retrieval test collection. In ACM SIGIR Forum, volume 54(1), pages 1–12.
ACM New York, NY, USA, 2021.

[128] E. M. Voorhees. Evaluation by highly relevant documents. In Proceedings of the
24th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 74–82, 2001.

[129] E. M. Voorhees. The philosophy of information retrieval evaluation. In Evaluation
of Cross-Language Information Retrieval Systems: Second Workshop of the Cross-
Language Evaluation Forum, CLEF 2001 Darmstadt, Germany, September 3–4, 2001
Revised Papers 2, pages 355–370. Springer, 2002.

[130] E. M. Voorhees. The trec robust retrieval track. In ACM SIGIR Forum, volume 39,
pages 11–20. ACM New York, NY, USA, 2005.

[131] E. M. Voorhees. The trec 2005 robust track. In ACM SIGIR Forum, volume 40,
pages 41–48. ACM New York, NY, USA, 2006.

[132] E. M. Voorhees et al. Overview of the trec 2005 robust retrieval track. In Trec,
2005.

[133] E. M. Voorhees, D. Samarov, and I. Soboroff. Using replicates in information re-
trieval evaluation. ACM Transactions on Information Systems (TOIS), 36(2):1–21,
2017.

[134] L. L. Wang, K. Lo, Y. Chandrasekhar, R. Reas, J. Yang, D. Eide, K. Funk, R. Kin-
ney, Z. Liu, W. Merrill, et al. Cord-19: The covid-19 open research dataset. ArXiv,
2020.

[135] W. Webber, A. Moffat, and J. Zobel. Score standardization for robust comparison
of retrieval systems. In Proc. 12th Australasian Document Computing Symposium,
pages 1–8, 2007.

168

Bibliography

[136] W. Webber, A. Moffat, and J. Zobel. Score standardization for inter-collection
comparison of retrieval systems. In Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information retrieval, pages
51–58, 2008.

[137] W. Webber and L. A. Park. Score adjustment for correction of pooling bias. In
Proceedings of SIGIR’2009, pages 444–451, 2009.

[138] F. Zampieri, K. Roitero, J. S. Culpepper, O. Kurland, and S. Mizzaro. On topic
difficulty in ir evaluation: The effect of systems, corpora, and system components.
In Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 909–912, 2019.

[139] Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click modeling for understanding
and predicting search-behavior. In Proceedings of the 17th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 1388–1396, 2011.

[140] J. Zobel. How reliable are the results of large-scale information retrieval experi-
ments? In Proceedings of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, pages 307–314, 1998.

[141] J. Zobel and L. Rashidi. Corpus Bootstrapping for Assessment of the Properties
of Effectiveness Measures. International Conference on Information and Knowledge
Management, Proceedings, pages 1933–1952, 2020.

169

	Introduction
	Kodicare Context
	Problem description
	Contributions
	Report Structure

	Information Retrieval and Evaluation
	Information Retrieval
	Information Retrieval Evaluation
	Classical Offline Evaluation
	Performance Evaluation
	Per Query-based Metrics
	Global System's Performance

	Comparing Systems using the same Test Collection

	Limits: Changes in the Test Collections
	Document Collection Stability
	Topic Difficulty
	Effect of Corpus, Query and System on the Performances

	 IR Evaluation involving changing test collections
	Test Collection Maintenance
	Topics Standardization
	Multiple Experiments interpretation

	Test Collections with changes
	TREC-COVID
	TREC-ROBUST

	Conclusion

	Evolving Test Collections
	Introduction
	Formalization
	Simulation from existing TC
	Simulation procedure
	Strategy: Features and Constraints
	Instanciation
	Random ETC
	Overlapping (Ov.) ETC

	Simulation Cases

	ETC Acquisition: CLEF LongEval
	Data Acquisition Overview
	Data description
	Acquisition description

	From Topics to Queries
	Topics Selection
	Queries Selection

	Relevance Judgements
	Document Corpus
	English Translations
	CLEF LongEval 2023 shared task
	LongEval ETC Limits

	Experiments
	Simulated ETC Validation
	Stability Evaluation
	Simulated Evolving Test Collections
	Results
	Conclusion

	LongEval Evolving Test Collection
	LongEval Evolution
	LongEval Evaluation
	Summary

	Conclusion

	Evaluating Systems on Evolving Test Collections
	Introduction
	Definitions
	Continuous Result Delta Evaluation Framework
	Research Questions and Hypotheses
	Overview
	Comparability Validation
	Comparison Strategy
	Pivot Strategy
	Projection Comparison
	The Grain Comparison

	Longitudinal Analysis

	Experiments
	Data
	Comparability Validation Step
	Comparison Strategy
	Pivot Strategy
	Projection Comparison
	Grain Comparison

	Longitudinal Analysis
	Continuous Ranking of Systems
	Expected Performance Analysis
	Grain Analysis

	LongEval Use Case

	Discussion
	Conclusion

	Conclusion and Future Work
	Continuous Evaluation Tool
	Introduction
	Related Work
	Architecture
	Functionalities
	TREC-COVID evaluation Example
	General View
	Overview
	Delta Evaluation
	Meta-Analysis

	Conclusion

	Résumé en Français
	Collection de Tests Évolutive
	Simulation
	Acquisition

	Évaluation continue
	Conclusion

	Publications
	Bibliography

