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Résumé: Le développement d’outils de
diagnostic automatique est un sujet de
recherche très actif dans le domaine du
contrôle non destructif, car il s’inscrit
dans la stratégie de modernisation et
de gestion améliorée des lignes de pro-
duction au niveau européen. Ces outils
visent à fournir à une chaîne de con-
trôle de plus haut niveau une évalu-
ation qualitative ou quantitative de l’état
du matériau inspecté (état sain, en-
dommagé, dimensionnement, criticité de
l’anomalie). L’institut CEA LIST est re-
connu internationalement comme un ac-
teur majeur de recherche dans le do-
maine du contrôle. Il développe la plate-
forme CIVA, qui est reconnue comme
l’un des principaux logiciels de simulation
multiphysique du domaine. Une modél-
isation fiable et précise des phénomènes
physiques mis en jeu dans la mesure non
destructive est un atout important dans
une démarche de caractérisation des in-
dications contenues dans le signal ex-
périmental. Cependant, elle ne tient pas
compte des perturbations et de la vari-
abilité des entrées caractéristiques des
expériences de mesure, c’est pourquoi
on peut, par exemple, facilement dis-
tinguer un signal simulé « parfait » d’une

acquisition expérimentale. Cette thèse
porte sur le développement d’une solu-
tion permettant de réduire l’écart entre
signaux simulés et expérimentaux, en
augmentant les données de la simulation
avec une contribution supplémentaire.
Celle-ci peut être qualifiée comme «
bruit » et représente tout ce qui est
différent du signal physique déterministe
régi par le jeu d’équations physiques cor-
respondant à la mesure étudiée (ultra-
sons, électromagnétisme par example).
La stratégie pour prendre en compte
cette contribution consiste à appliquer
des méthodes d’apprentissage à un jeu
de données expérimental représentatif
ou à entraîner un réseau de neurones à
dissocier dans des acquisitions réelles le
contenu (comme les signatures des dé-
fauts) du style (ce qui n’est pas simulé).
Par la suite, cette simulation augmentée
est utilisée dans des processus d’analyse
de sensibilité, de gestion des incertitudes
et de diagnostic automatique dévelop-
pés au CEA LIST. Elle permettra d’obtenir
une meilleure adéquation entre la simu-
lation et l’expérience, ainsi que la prise
en compte de potentielles dérives cas-
dépendantes dues à un environnement
particulier.
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Abstract: Model-based solutions for
automatic diagnostics in the field of non-
destructive testing are currently a topic
of great interest in both academic and
industial communities. Their ultimate
objective is to provide a qualitative or
quantitative evaluation of the inspected
material state (sound, flawed, flawed
with anomaly dimensions or criticality)
in an industrial context like a produc-
tion line. Such tools, providing inputs
for real-time process control, contrib-
ute to the general trend in Europe that
aims at modernizing industry and ser-
vices. The CEA LIST Institute is an in-
ternationally recognized research institu-
tion in non-destructive testing and evalu-
ation (NDT&E). It develops the CIVA soft-
ware, which offers multi-physics models
and is considered a leading product for
simulation for NDT&E applications. Ac-
curate models able to reproduce exper-
imental signals prove very helpful in an
inversion process aiming at classifying or
characterizing flaws. However, as they
do not account for disturbances and para-
meter variability occurring during an ex-

perimental acquisition, simulated signals
inherently look "perfect" and are, for in-
stance, easily distinguishable from ex-
perimental data. This PhD subject aims
to improve the match between simula-
tion and experimental data by augment-
ing the simulation with another contribu-
tion generally referred to as "noise". The
strategy proposed to obtain such noise
contribution is to apply machine-learning
techniques to a set of representative ex-
perimental data. Alternatively, a deep
learning model can be trained to ana-
lyze "real" data and distinguish between
contents (flaw signals) and style (the
rest, which physical models do not simu-
late). Afterwards, the augmented simula-
tion tool will be able to reproduce closely
experimental data, account for specific
discrepancies due to a particular envir-
onment and reproduce the variability ob-
served experimentally. It will thus en-
hance the performance of model-based
tools developed at CEA LIST for sensitiv-
ity analysis, management of uncertainty
and diagnostic.
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0 - Introduction

Context

In Non-Destructive Testing and Evaluation (NDT&E) and Structural Health Monitoring (SHM), sim-
ulation tools based on numerical models have been historically used to design and assess the perfor-
mances of inspection methods and techniques. Some examples of simulation application are sensitivity
studies, probe designing, acquisition interpretation, training, etc. More recently, simulations have also
been exploited to produce the data needed to develop automatic diagnosis tools and algorithms. However,
simulated data may be far from in situ data due to uncertainties linked to acquisition, post-processing,
and operator factors. As a consequence, a systematic bias between simulation and experimental measure-
ments leads to a poor generalization capability (i.e., the model performance once tested on experimental
data) of the deployed models. On the other hand, using in situ data for several applications is often un-
practical due to the lack of a sufficiently large number of annotated samples due to high costs associated
to the annotation process. On top of that, the exploitation of NDT&E and SHM in situ data are often
restricted to the companies that have taken the experimental measurements due to confidentiality issues.

In this context, the development of automatic diagnostic tools, e.g., Machine Learning (ML) diagnos-
tic tools, Deep learning (DL) methods, or decision support systems, are developed either via simulated
data or to very specific and case-dependent experimental data sets with restricted access. However, in
both aforementioned cases, this introduces a bias that can lead to poor performance when these tools are
finally deployed in the real world.

To tackle such an issue would consist in accounting the informative content embedded in both sim-
ulations and experimental data as much as possible. The informative content can be expressed in terms
of fidelity levels. In this framework, fast and reliable simulation tools as applied to NDT&E and SHM
can be considered low-fidelity data, while in situ collected data are considered as the highest fidelity data
available. It is worth mentioning that other intermediate degrees of fidelity sources can be considered
for NDT&E and SHM accordingly to the simulation tools employed or the inspection accounted. That
is, output data from coarse and fine mesh Finite Element Models (FEM) models may be considered two
different fidelity levels. Coarse mesh FEM models are faster but less faithful to reality, while fine mesh
models are a more reliable approximation. Sources of fidelity levels are virtually infinite when consid-
ering different models, experimental data, data collection techniques (e.g., labeled or unlabeled data),
and more. This work focuses on improving automatic diagnostics by considering and possibly blending
different fidelity data available.

Deep learning (DL) methods have been successfully applied on NDT&E and SHM fields for simulation-
driven inversion problems, particularly in ultrasound test imaging applications [1, 2, 3, 4, 5, 6, 7, 8]. The
pursuit of efficient methods to enhance the automation of NDT&E and SHM inspections driven by arti-
ficial intelligence is a topic of increasing interest in the community [9, 10].

One of the challenges in DL is the need for a sufficiently large set of ‘reliable’ training data. On
one hand, a large data set helps to avoid the ‘curse of dimensionality’ issue or ill-posed inverse prob-
lems. Conversely, exploiting training data close to the in situ data may lead to better convergence and
generalization in the test phase on a given inversion task. Even if extensive simulated data set creation
is nowadays possible and highly reliable simulations for NDT&E and SHM inspection are accessible,
simulations barely reproduce the complexities of experimental or in situ data, which may embed spuri-
ous contributions due to the environmental and experimental conditions, human factors, etc.. To mitigate
such a problem, a possible helpful scenario is to employ a multi-fidelity data set, when accessible, and
combine simulations and experimental incertitude levels into an enhanced, and more extended in size,
data set.

17



18 CHAPTER 0. INTRODUCTION

The natural approach when multiple fidelity levels are available is to try to use the more reliable data
(highest fidelity level) as training data so the deployment of the automatic inspections reports a better
performance. Unfortunately, in NDT&E and SHM problems, the highest fidelity data are not accessible,
poorly labeled or very scarce (confidentiality, unknown data set production conditions, etc).

Recently, many methods have been developed to handle this problem in the field of NDT&E and
SHM to take advantage of the full knowledge of this type of data set. Transfer learning (TL) is a common
approach when a similar task (e.g., image feature extraction) has been performed previously on a different
domain. These methods benefit from previously trained neural networks to facilitate training a new DL
algorithm [11, 12, 13]. TL can be effective when some data from a fidelity level is present during the
training to achieve better performance, even when the data set is far from the in situ data in terms of
distribution and the data set is small compared to the complexity of the task. However, these approaches
do not aim to exploit different fidelity levels when they are available.

A succeeding approach from TL is the Domain Adaptation (DA), suitable when more than one do-
main (or fidelity level) is available. However, when examining NDT&E as well as SHM data, a common
observation is that the closer the data production is to in situ conditions, the less information is typically
available regarding the data production process, as discussed in [14, 15]. This lack of information trans-
lates to a poorly labeled high-fidelity data set. DA strategies [16] have been tested in those scenarios to
enhance DL algorithms for NDT&E and SHM inspections [17, 18, 19, 20]. To circumvent such an issue,
DA proposed solutions can vary from extensive access of labeled data to just one fidelity level correctly
labeled one. Many techniques applied in toy sets from the bibliography seem suitable for the massive
realistic generation of NDT&E data. However, more DA approaches count only in enlarged data sets
from the simulation without faithfully considering the realistic data.

Hence, this study involves developing a deep learning framework to exploit deep learning genera-
tive models as applied to NDT&E inspection problems targeting data generation and their exploitation
for computationally intensive tasks (e.g., inversion, statistical studies, etc.). The final objective is a ML
model (i.e., a surrogate model or metamodel) that learns to generate realistic data from simulation by
considering non-simulated uncertainties or characteristics present on higher fidelity data (e.g., sources
of noise). This framework is pretended to be used to generate new data from robust models. Later, the
data are applied in automatic diagnostic tools on NDT&E development to improve its performance for a
given task: material characterization, flaw detection, or characterization, among others.

This dissertation is structured as follow:

• In Chapter I, an overview of both NDT&E methods and techniques as well as an introduction to
the machine learning methods and techniques is provided.

• Chapter II objective is to develop a supervised deep learning framework in a simulated data set to
be used as a surrogate model for efficient statistical studies, knowing that the NDT&E simulation
can be expensive in terms of time calculation and some diagnostic studies require extensive data
to be assessed. This first approach is intended to asses whether DL methods are suitable for
developing a surrogate model for NDT&E data targeting inspection problems that can be described
with a high or very high number of parameters. The developed framework has permitted to be
tailored for establishing a supervised learning multi-fidelity procedure.

• Chapter III objective is to develop a supervised generative approach based on low-fidelity and
high-fidelity data set to generate new robust multi-fidelity data. The criteria respected during the
data set production is to have a direct link between the two different fidelity levels. The first
source is a simulation tool for an ultrasound testing application and the second is experimental
data obtained from an equivalent mock-up. A tailored DL architecture is trained in a supervised
way on the produced image data set. The labels are available in both simulation and experience,
and the exact image mapping fidelity level into another level. A new multi-fidelity image data set is
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generated as a result. The generated new data are evaluated and the limitations of the architecture
are studied and discussed, particularly the need for a highly informed and labeled multi-fidelity
data set.

• Chapter IV aims to develop a partially non-supervised DL approach for TFM multi-fidelity data
set generation without prior information on the data coupling or labels. A new approach that does
not rely on this prior information is preferred for the objectives of this thesis since many of the
NDT&E data set do not count with this characteristic (e.g., poorly labeled data). The same data
set in Chapter III is used to train a DL architecture, but this time by using a priori information on
the domain (source or target) of the data employed. The architecture learns to generate different
fidelity samples by a probabilistic approach. The generation capabilities of the architecture are
evaluated. An inverse problem is assessed with the realistic data obtained from the DL surrogate
model to prove its efficacy.

• Chapter V gives a summary of the presented work and some perspectives for the future.
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Synthèse en français

Dans le domaine du contrôle et de l’évaluation non destructifs (" Non-Destructive Testing and Eval-
uation ", NDT&E) et du contrôle de santé structurel (" Structural Health Monitoring ", SHM), les outils
de simulation basés sur des modèles numériques ont été historiquement utilisés pour concevoir et évaluer
les performances des méthodes et des techniques d’inspection. Les études de sensibilité, la conception
des sondes, l’interprétation des acquisitions, la formation, etc. sont autant d’exemples d’applications
de la simulation. Plus récemment, les simulations ont également été exploitées pour produire les don-
nées nécessaires au développement d’outils et d’algorithmes de diagnostic automatique. Cependant,
les données simulées peuvent être très éloignées des données in situ en raison des incertitudes liées à
l’acquisition, au post-traitement et aux facteurs liés à l’opérateur. Par conséquent, un biais systématique
entre la simulation et les mesures expérimentales entraîne une faible capacité de généralisation (c’est-
à-dire la performance du modèle une fois testé sur des données expérimentales) des modèles déployés.
D’autre part, l’utilisation de données in situ pour plusieurs applications est souvent peu pratique en raison
de l’absence d’un nombre suffisamment important d’échantillons annotés et des coûts élevés associés au
processus d’annotation. En outre, l’exploitation des données NDT&E et SHM in situ est souvent limitée
aux entreprises qui ont effectué les mesures expérimentales en raison de problèmes de confidentialité.

Dans ce contexte, le développement d’outils de diagnostic automatique, par exemple les outils de
diagnostic par apprentissage automatique (" Machine Learning ", ML), les méthodes d’apprentissage
profond (" Deep learning ", DL) ou les systèmes d’aide à la décision, se fait soit à l’aide de données
simulées, soit à l’aide d’ensembles de données expérimentales très spécifiques et dépendantes du cas,
dont l’accès est restreint. Cependant, dans les deux cas susmentionnés, cela introduit un biais qui peut
conduire à de mauvaises performances lorsque ces outils sont finalement déployés dans le monde réel.

Pour résoudre ce problème, il faudrait tenir compte autant que possible du contenu informatif des
simulations et des données expérimentales. Le contenu informatif peut être exprimé en termes de niveaux
de fidélité. Dans ce cadre, les outils de simulation rapides et fiables appliqués au NDT&E et au SHM
peuvent être considérés comme des données de faible fidélité, tandis que les données collectées in situ
sont considérées comme les données de plus haute fidélité disponibles. Il convient de mentionner que
d’autres degrés intermédiaires de sources de fidélité peuvent être envisagés pour la NDT&E et la SHM
en fonction des outils de simulation utilisés ou de l’inspection comptabilisée. Ainsi, les données de
sortie des modèles d’éléments finis ("Finite Element Models", FEM) à maillage grossier et fin peuvent
être considérées comme deux niveaux de fidélité différents. Les modèles FEM à maillage grossier sont
plus rapides mais moins fidèles à la réalité, tandis que les modèles à maillage fin constituent une ap-
proximation plus fiable. Les sources de niveaux de fidélité sont virtuellement infinies si l’on considère
les différents modèles, les données expérimentales, les techniques de collecte de données (par exemple,
les données étiquetées ou non étiquetées), etc. Ce travail se concentre sur l’amélioration des diagnostics
automatiques en prenant en compte et éventuellement en mélangeant les différentes données de fidélité
disponibles.

Les méthodes d’apprentissage profond ont été appliquées avec succès sur les champs NDT&E et
SHM pour les problèmes d’inversion pilotés par simulation, en particulier dans les applications d’imagerie
de test par ultrasons [1, 2, 3, 4, 5, 6, 7, 8]. La recherche de méthodes efficaces pour améliorer l’automatisation
des inspections NDT&E et SHM pilotées par l’intelligence artificielle est un sujet qui intéresse de plus
en plus la communauté [9, 10].

L’un des défis de l’intelligence artificielle est la nécessité de disposer d’un ensemble suffisamment
important de données d’apprentissage "fiables". D’une part, un grand ensemble de données permet
d’éviter la "malédiction de la dimensionnalité" ou les problèmes inverses mal posés. Inversement,
l’exploitation de données d’entraînement proches des données in situ peut conduire à une meilleure
convergence et à une meilleure généralisation dans la phase de test pour une tâche d’inversion donnée.
Même s’il est aujourd’hui possible de créer de vastes ensembles de données simulées et que des simu-
lations très fiables sont accessibles pour les inspections NDT&E et SHM, les simulations reproduisent
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à peine les complexités des données expérimentales ou in situ, qui peuvent intégrer des contributions
parasites dues aux conditions environnementales et expérimentales, aux facteurs humains, etc. Pour at-
ténuer ce problème, un scénario utile possible consiste à utiliser un ensemble de données multi-fidélité,
lorsqu’il est accessible, et à combiner les simulations et les niveaux d’incertitude expérimentaux dans un
ensemble de données amélioré et de taille plus importante.

L’approche naturelle lorsque plusieurs niveaux de fidélité sont disponibles est d’essayer d’utiliser
les données les plus fiables (niveau de fidélité le plus élevé) comme données d’entraînement afin que
le déploiement des inspections automatiques donne de meilleurs résultats. Malheureusement, dans les
problèmes de NDT&E et de SHM, les données les plus fidèles ne sont pas accessibles, sont mal étiquetées
ou sont très rares (confidentialité, conditions de production des ensembles de données inconnues, etc.)

Récemment, de nombreuses méthodes ont été développées pour traiter ce problème dans le domaine
du NDT&E et du SHM afin de tirer parti de l’ensemble des connaissances de ce type d’ensemble de don-
nées. L’apprentissage par transfert est une approche courante lorsqu’une tâche similaire (par exemple,
l’extraction de caractéristiques d’une image) a été effectuée précédemment dans un domaine différent.
Ces méthodes tirent parti des réseaux neuronaux précédemment formés pour faciliter la formation d’un
nouvel algorithme d’apprentissage par transfert [11, 12, 13]. La TL peut être efficace lorsque certaines
données d’un niveau de fidélité sont présentes pendant l’entraînement pour obtenir de meilleures per-
formances, même si l’ensemble de données est éloigné des données in situ en termes de distribution et
que l’ensemble de données est petit par rapport à la complexité de la tâche. Toutefois, ces approches ne
visent pas à exploiter les différents niveaux de fidélité lorsqu’ils sont disponibles.

Une approche succédant à la TL est l’adaptation de domaine ("Domain Adaptation", DA), qui con-
vient lorsque plusieurs domaines (ou niveaux de fidélité) sont disponibles. Cependant, lors de l’examen
des données NDT&E et SHM, une observation commune est que plus la production de données est
proche des conditions in situ, moins il y a d’informations disponibles concernant le processus de pro-
duction de données, comme indiqué dans [14, 15]. Ce manque d’information se traduit par un jeu de
données haute fidélité mal étiqueté. Les stratégies de DA [16] ont été testées dans ces scénarios pour
améliorer les algorithmes de DL pour les inspections NDT&E et SHM [17, 18, 19, 20]. Pour contourner
ce problème, les solutions proposées par la DA peuvent varier d’un accès étendu aux données étiquetées
à un seul niveau de fidélité correctement étiqueté. De nombreuses techniques appliquées à des ensem-
bles de jouets issus de la bibliographie semblent adaptées à la génération massive et réaliste de données
NDT&E. Toutefois, un plus grand nombre d’approches d’évaluation quantitative ne prennent en compte
que des ensembles de données élargis issus de la simulation sans tenir compte fidèlement des données
réalistes.

Par conséquent, cette étude implique le développement d’un cadre d’apprentissage profond pour ex-
ploiter les modèles génératifs d’apprentissage profond appliqués aux problèmes d’inspection NDT&E
ciblant la génération de données et leur exploitation pour des tâches à forte intensité de calcul (par exem-
ple, inversion, études statistiques, etc.). L’objectif final est un modèle ML (c’est-à-dire un métamodèle)
qui apprend à générer des données réalistes à partir de la simulation en tenant compte des incertitudes
non simulées ou des caractéristiques présentes dans les données de plus haute fidélité (par exemple, les
sources de bruit). Ce cadre est censé être utilisé pour générer de nouvelles données à partir de mod-
èles robustes. Par la suite, les données sont appliquées dans des outils de diagnostic automatique sur le
développement NDT&E afin d’améliorer ses performances pour une tâche donnée: caractérisation des
matériaux, détection des défauts, ou caractérisation, entre autres.

Cette thèse est structurée comme suit :

• Dans le chapitre I, une vue d’ensemble des deux méthodes et techniques de NDT&E ainsi qu’une
introduction aux méthodes et techniques d’apprentissage automatique sont fournies.

• L’objectif du chapitre II est de développer un cadre d’apprentissage profond supervisé dans un
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ensemble de données simulées à utiliser comme modèle de substitution pour des études statistiques
efficaces, sachant que la simulation NDT&E peut être coûteuse en termes de calcul de temps et que
certaines études de diagnostic nécessitent des données étendues pour être évaluées. Cette première
approche vise à évaluer si les méthodes DL sont adaptées au développement d’un modèle de
substitution pour les données NDT&E ciblant les problèmes d’inspection qui peuvent être décrits
avec un nombre élevé ou très élevé de paramètres. Le cadre développé a permis d’être adapté à
l’établissement d’une procédure d’apprentissage supervisé multi-fidélité.

• L’objectif du chapitre III est de développer une approche générative supervisée basée sur des en-
sembles de données de basse fidélité et de haute fidélité afin de générer de nouvelles données
multi-fidélité robustes. Le critère respecté lors de la production de l’ensemble des données est
d’avoir un lien direct entre les deux différents niveaux de fidélité. La première source est un outil
de simulation pour une application de test par ultrasons et la seconde est constituée de données
expérimentales obtenues à partir d’une maquette équivalente. Une architecture DL personnal-
isée est entraînée de manière supervisée sur l’ensemble des données d’images produites. Les
étiquettes sont disponibles à la fois dans la simulation et dans l’expérience, et le niveau de fidélité
exact de la cartographie d’image dans un autre niveau. Un nouvel ensemble de données d’images
multi-fidélité est ainsi généré. Les nouvelles données générées sont évaluées et les limites de
l’architecture sont étudiées et discutées, en particulier la nécessité d’un ensemble de données
multi-fidélité hautement informées et étiquetées.

• Le chapitre IV vise à développer une approche DL partiellement non-supervisée pour la génération
d’ensembles de données multifidélité TFM sans information préalable sur le couplage des don-
nées ou les étiquettes. Une nouvelle approche qui ne repose pas sur ces informations préalables
est préférable pour les objectifs de cette thèse car de nombreux ensembles de données NDT&E ne
présentent pas cette caractéristique (par exemple, des données mal étiquetées). Le même ensemble
de données du chapitre III est utilisé pour former une architecture DL, mais cette fois en utilisant
des informations a priori sur le domaine (source ou cible) des données employées. L’architecture
apprend à générer des échantillons de fidélité différente par une approche probabiliste. Les capac-
ités de génération de l’architecture sont évaluées. Un problème inverse est évalué avec les données
réalistes obtenues à partir du modèle de substitution DL pour prouver son efficacité.

• Le chapitre V présente un résumé des travaux présentés et quelques perspectives pour l’avenir.

La thèse présentée a été développée au sein de l’institut CEA LIST, qui appartient au Commissariat
à l’énergie atomique et aux énergies alternatives (CEA) et est responsable de la conduite de grands
projets sur la fabrication avancée, les systèmes embarqués, l’intelligence des données et le contrôle des
rayonnements pour la santé, une institution de recherche internationalement reconnue dans le domaine
des essais non destructifs, avec le Laboratoire de mécanique Paris-Saclay (LMPS) de Centrale-Supélec,
l’École normale supérieure (ENS) et le Centre national de la recherche scientifique (CNRS).

Le CEA développe le logiciel CIVA qui est une plateforme développée pour des applications in-
dustrielles et à des fins académiques basée sur des méthodes numériques semi-analytiques pour simuler
des essais non destructifs. Le logiciel CIVA offre des modèles multi-physiques et est parmi les produits
leaders pour la simulation sur les applications NDT&E. Le laboratoire LMPS a développé de nombreux
logiciels dans le domaine de l’étude des matériaux, comme OOFE (Object Oriented Finite Element) :
Plate-forme numérique orientée objet écrite en C++ pour le calcul par éléments finis des structures et
des matériaux, avec plus de 300 classes et 100 000 lignes. et développe des méthodes d’intelligence
artificielle avec l’aide de son centre de calcul, Fusion/Ruche.
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About this section
This chapter introduces the theoretical frame related to the aimed non-destructive test and evaluation methods.
Simulation approaches are discussed toward the strategy and methods definition. Some concepts and techniques
from the bibliography are presented as an introduction to machine learning. They are the candidates to be
applied in realistic simulations in non-destructive testing. The state of art on forward models on numerical
simulation and inversion techniques assisted by machine learning and some first approaches are introduced.

I.1 . Assessing material integrity and properties via non-destructive test and evaluation
and structural health monitoring

Non-Destructive Testing and Evaluation (NDT&E) and Structural Health Monitoring (SHM) meth-
ods are widely used in industry to assess the state of a material without damaging it. These methods
aim to study a critical component of a system by keeping its shape and internal structure as it is. This
is possible by observing the interaction of a specimen with a probing source such as sound, ultrasound
and electromagnetic wave propagation, radiation and absorption, responses. NDT&E and SHM intend
to infer the state of its structure on the studied specimen by interpreting the interaction results. Some
application areas are the nuclear, metallurgic, aeronautic, and aerospace industries. Furthermore, mores
specifically in the case of SHM-based methods, remaining useful life and properties degradation estima-
tion allows users to make decisions before a component fails. In contrast, the lifetime is increased thanks
to preventive or predictive maintenance.
Provided a given inspection method, different techniques can be specifically employed to infer properties
of the material (material characterization), such as the microstructure achieved in the additive fabrication
process, detection and sizing of cracks, corrosion, or material proprieties degradation.

To categorize the different NDT&E methods, one can classify by the energy source to probe the
object, the nature of the signals resulting from interaction, and means of detecting the resulting signal,
among others. Toward this end, among the most relevant NDT&E methods, one can cite:

• Visual testing, liquid penetrant testing, and magnetic particle testing methods are local inspections
that require qualified operators and are not often automated.

• Ultrasonic Testing (UT) uses high-frequency sound waves to detect defects in materials. UT works
by transmitting a pulse of sound waves into the material and then measuring the reflected echoes.
The time it takes for the echoes to return to the transducer can be used to determine the distance to
the defect, and the amplitude of the echoes can be used to determine the size of the defect. UT is a
versatile method that can be used to inspect a wide range of materials, including metals, plastics,
and composites. UT is commonly used in the aerospace, automotive, manufacturing, oil and gas,
power generation, and welding industries.

• Eddy Current Testing (ECT) uses an alternating magnetic field to detect defects in conductive
materials. ECT works by inducing eddy currents in the material and then measuring the changes
in the eddy currents caused by defects. ECT is a sensitive method that can be used to detect a
variety of defects, including cracks, corrosion, and heat damage. ECT is commonly used in the
aerospace, automotive, electronics, manufacturing, and power generation industries.

• Radiographic Testing (RT) uses X-rays or gamma rays to produce images of internal defects in
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materials. RT works by passing a beam of X-rays or gamma rays through the material and then
detecting the X-rays or gamma rays that pass through the material. A possible interpretation of
the resulting interaction of the matter with the X-rays, the areas of the material that are less dense
will allow more X-rays or gamma rays to pass through, resulting in a darker image on the film or
digital detector. RT is a versatile method that can be used to inspect a wide range of materials,
including metals, plastics, and composites. RT is commonly used in the aerospace, automotive,
manufacturing, oil and gas, power generation, and welding industries.

• Infrared Thermography (IT) uses infrared cameras to detect differences in temperature on the
surface of a material. IT works by measuring the amount of infrared radiation emitted by the
material. The areas of the material that are hotter will emit more infrared radiation, resulting in
a brighter image on the infrared camera. IT is a sensitive method that can be used to detect a
variety of defects, including hot spots, corrosion, and delamination. IT is commonly used in the
aerospace, automotive, construction, electrical, and manufacturing industries.

• Acoustic Emission Testing (EAT) uses transducers to detect elastic stress waves generated by
crack propagation. EAT works by attaching transducers to the surface of the material and then
registering the elastic stress waves. EAT is a sensitive method that can be used to detect cracks
and other defects in a variety of materials, including metals, plastics, and composites. EAT is
commonly used in the aerospace, automotive, manufacturing, oil and gas, and power generation
industries.

• Structural Health Monitoring (SHM) uses a variety of sensors to monitor the health of a structure.
SHM works by attaching sensors to the structure and then monitoring the data from the sensors for
changes. SHM often uses guided waves (GW) across a plate or pipe. Guided waves can be used
to inspect structures for defects by generating guided waves at one location and then measuring
the guided waves at another location. SHM can be used to detect a variety of defects, including
cracks, corrosion, and fatigue. SHM is commonly used in the aerospace, bridges, buildings, and
dams industries.

The following sections provide a gentle introduction to UT and ECT since these inspection data have
been employed for assessing the performance of the ML methodology developed in this thesis. It is
worth mentioning that the current accessibility to data justifies the choice of these techniques, but the
methodologies deployed on them are not restricted only to UT or ECT data and they may applied, up to
some extent, straightforwardly to other NDT&E and SHM methods and techniques (e.g., SHM guided
wave imaging, thermographic testing).

I.2 . Advanced simulation tools in NDT&E and SHM

The increasing computational power has led to a big leap forward in the simulations capabilities on
both desktop computers and grid/cloud computing. Therefore, the realism and the complexity of NDT&E
and SHM have sensibly increased in the last decade. That is, forward simulation on NDT&E and SHM
(Fig. I.1) proved to be an extensive tool to study different failure cases justified by the possibility of
varying parameters set-up like crack position, material properties, or sensors path on demand. This
capability is habitually exploited for:

1. Interpretation of acquisition: recorded data needs to be interpreted. Since it is an indirect measure-
ment of, e.g., a defect or material property, the time series and images obtained in the experience
are not directly informative about the final objective of the inspection. Forward simulations help
to understand how to post-process the raw data.

2. Design probes and acquisition setup: the more suitable setup and probe are searched. Once the
physics of the interaction between the transducer and the specimen is known, finding the best
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configuration to find flaws or defaults or even to characterize the material is possible by simulating
the experience in different configurations and evaluating its performance.

3. Evaluate the performance of an inspection setup: the capability of detection, sensibility to uncer-
tainties, and measurement errors can be evaluated by varying the parameters of a configuration on
the forward simulation. Different sources of error can be used to understand how a variation in an
inspection parameter can affect its performance.

4. Generate databases to perform statistical studies: The possibility of creating significant amounts
of data and examples by forward modeling proved useful for performing statistics studies on the
implied parameters of an inspection. Some examples are quantifying reliability, probability of
detection, and comparison between techniques.

5. Diagnostic tools and decision support systems tuning before its deployment on real-world data:
forward simulation can provide a means to produce the number of examples that are needed for
inverse problems (Fig. I.1). Since an inverse problem uses a large amount of data, the cost of pro-
duction of a numerical simulation presents a solution against the costly experimental acquisition.
New approaches like machine learning models solutions to inverse problems exploit this.

The numerical simulation approach requires a thorough physical understanding of the process to derive
analytical models that closely describe the interaction with the material. Modeling often relies on Finite
Element Methods (FEM), which describe the material in small discrete regions (mesh) by computing the
partial differential equations in space (2D or 3D). This method makes it possible to describe complex
geometries and material micro-structures considering local effects. Complex numerical models can add
reliability and improved simulation by adding, e.g., structural noise with some constraints [22][23], but
at the same time, they increment the calculation cost.

Conversely, semi-analytical modeling relies on an approximated microstructure representation, giv-
ing a faster solution. This approach approximates analytical theories using assumptions that work well in,
e.g., isotropic materials. However, these approximations may fail at predicting results in some complex
configurations, e.g., in a flawed region.

Therefore, hybrid models, Semi-analytical Finite Elements (SAFE), combine semi-analytical and
FEM methods. SAFE allows quickly describing most regions in a material with analytical approximation
and complex interaction in a particular region of interest. Together, they combine the advantages of both
methods while minimizing their inconveniences [24].

Figure I.1. Forward and inverse problem schema on NDT&E. Signals represent a generalized
case of a multiple signal [x1, ..., xk] on time or a 2D image [x1, x2] acquisition on UT.

In addition, inverse problems on NDT&E solved by closed-form methods also demand a wide knowl-
edge of physics and model parameters. Diagnostic tools conceived for NDT&E techniques and calibrated
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on simulation data present a lower performance on in situ data once they are deployed in situ. This per-
formance gap is mainly due to the difference (e.g., uncertainties) between the simulated and real-world
data.

Meanwhile, data-driven approaches to diagnostic tools based on heuristics compete for on-time ex-
ecution and accuracy with closed-form methods approaches on NDT&E applications [25][26][27]. The
main challenge of these approaches is accessing a large amount of data from where the algorithm can
learn.

Additional assumptions for the optimization problem are needed to avoid over-fitting or instability
issues. In the frame of this thesis, costly data like experimental records are poorly available, and labeled
data of this nature is even rarer. The inverse problem approach here deals with both realities: synthetic
data are not good enough for regression or classification problems, and realistic data are not enough.
Fast forward solvers available are a fair solution to produce many examples, but they are still inaccurate
compared to the actual inspection case. CIVA simulations, as an example, can provide data production
to evaluate diagnostic tools on non-destructive fields. Nevertheless, simulated signals inherently look
‘perfect’ and are, for instance, easily distinguishable from experimental data by any expert in the field
and classified as ‘synthetic’ based on their appearance.

Consequently, diagnostic tools based on ML have the problem of being trained with simulated data
that do not represent the experimental cases. A new simulation approach can be foreseen to produce
simulated data that can be considered close to reality to enhance the performance of the mentioned tools.

The next Sections describe simulation principles of some NDT&E methods to provide the basis for
experimental and synthetic (simulated) data set production.

I.3 . An overview of eddy current testing inspection techniques and simulations

ECT is a NDT&E method to explore a material property or internal structure using the electromag-
netic interaction between probing source and material properties changes. In detail, electromagnetic
induction is used to generate eddy currents in a conductive specimen (an example of an inspection of a
plate is shown in Fig. I.2). The resulting induced magnetic field is measured and interpreted to detect
and localize defects or thickness changes in the material or even to characterize it, among others.

ECT is a non-contact and non-ionizing method suitable for detecting discontinuities at the surface
or below the surface of the specimen. For this, a probe commonly constituted by one or many copper
wire coils generates an oscillating magnetic field when alternating current flows. The standard frequency
range goes from about a few hundred hertz to a maximum of 10 MHz.

There exist almost as many coil configurations as existing ECT applications (e.g., green ring on Fig
I.2). Some configurations are manual, while some are adapted to automatic inspection procedures. The
relatively simple manufacturing of ECT probes allows the design of case-adapted shapes and configura-
tions. For instance, surface and ring probes are suitable for crack detection in surfaces, while rotating
scanner probes are adapted to large-diameter hole inspection. Axial probes, for instance, may be used
for tube inspections. The aspects to consider in the design may encompass inductance and resistance
of the coil; distribution of the magnetic field; coil sensibility to changes in material properties; char-
acteristics related to the distance from the target (lift-off); response to notches, drilled holes, or other
irregularities. Furthermore, the design might be influenced by various constraints intrinsic to the testing
environment, such as weather conditions or access requirements for specific shapes or sizes. The design
process typically involves iterations and progresses through trial and error.

ECT techniques can also vary regarding how the probe measures the observed magnitude changes.
Probes typically operate in one of four fundamental modes: absolute, differential, reflection, or hybrid.
The absolute mode uses one coil to measure the magnetic field changes. The differential mode uses
two coils wound in opposition, where any difference in the magnetic field may indicate that one of the
coils is in the presence of a flaw. The differential mode uses driver/pickup probes where one coil excites
the eddy currents, and the other is used to sense changes in the test material. Hybrid coils implement a
combination of the other modes.
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The benefit of the ECT method is the inspection speed compared to other NDT&E methods, being

one of the quicker inspection procedures. The cost is also competitive with the rest of NDT&E methods,
together with the portability and versatility of the probes. Some known limitation of ECT is its suscep-
tibility to permeability changes on the material, the only application to conductive materials, the low
detention of parallel flaws, and its non-suitability for large inspection areas. A central issue is the limited
penetration depth, where UT techniques compete with ECT techniques.

ECT operation principles In ECT inspections, every coil is characterized by the impedance parameter
Z0, which is a complex number defined as in Eq. I.1, and it represents the voltage-current ratio (V0/I0)
for a single frequency sinusoidal excitation f . Impedance Z0 has a magnitude |Z| and a phase φ [28]:

Z0 =
V0

I0
= R0 + jX0 =

√
R2

0 +X2
0φ=arctan 2(X0/R0)

= |Z|φ (I.1)
When an alternating current energizes a coil, it creates a time-varying magnetic field. The magnetic

flux lines tend to be concentrated at the center of the coil. Eddy current inspection is based on Faraday’s
electromagnetic induction law as demonstrated in Eq. I.2. The electromotive force ε is proportional to
the time-rate change of the magnetic induction flux density ΦB

ε = −dΦB

dt
(I.2)

When an alternating energized coil of impedance Z0 approaches an electrically conductive non-
ferromagnetic material in a pristine specimen, a primary alternating magnetic field generated by the coil
penetrates the material and it generates continuous and circular eddy currents on the specimen. The
induced currents flowing within the test specimen generate a secondary magnetic field that tends to
oppose the primary magnetic field. This opposing magnetic field, coming from the conductive material,
weakens the primary magnetic field. In effect, the new imaginary part Xc of the coil impedance decreases
proportionally when the eddy current intensity in the test piece increases. Eddy currents also increase
the coil energy power dissipation that changes the real part Rc of coil impedance. Measuring this coil
impedance variation can be infered by

∆Z = Zc − Z0 = (Rc −R0) + j(Xc −X0) (I.3)
by monitoring either the voltage or the current signal can reveal specific information such as conduc-

tivity and chemical composition of the test piece.
In application where the material may present differences in thickness or a flaw in its surface, a

2D mapping image can be generate by monitoring, as instance, |∆V | at different positions coil at the
specimen surface. The resulting image can be used for discontinuities localization. Impedance amplitude
and phase angle changes can be used to identify discontinuities, as shown in Fig. I.2.

I.3.1 . ECT parametric simulation on CIVA for data production
ECT inspection simulation typically focuses on the probe signal associated with a specific specimen

discontinuity. When different conditions are considered for the inspection, parametric studies can be
helpful in coil designing and setup optimization. Identifying discontinuities signatures may also be
an objective when simulating ECT. Differential equations that govern the flaw interaction phenomena
are derived from Maxwell’s equation. For instance, the CIVA semi-analytical model with the Volume
Integral Method (VIM) is based on Green’s formalism [29, 30, 31] for canonical geometries. Other
solvers based on finite integration techniques or surface integration equations are also deployed for more
complex geometries.
The VIM formulation proposes the solution of an integral equation in different stages. The computation
of the pristine material field Ep is the first stage, known as the primary field and computed by the Method
of Moments, a full-wave numerical method that discretizes the integral equations of electromagnetic
fields [32]. Then, the flaws are modeled as a set of fictitious sources. So, the interaction between the
flaws and the primary electric field (Eq. I.4) can be expressed as,
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Figure I.2. Simpli�ed 3D schema of ECT inspection con�guration for defect characterization
on metallic specimen. Impedance changes for a coil displacement at the material surface (x, y)
are shown in the three plots. Changes in phase and amplitude are observed. |∆V | versus coil
position can produce a 2D surface mapping to observe the �aw regions, as shown in the 3D
schema. Source: http://www.extende.com

Ep(r) = Et(r) + iωµ0

∫
Ω
G(r, r′)[σ0 − σ(r′)]Et(r

′) dr′, (I.4)
where Ω is the volume of the flaw, ω is the angular frequency, µ0 = 4π.10−7, G is a dyadic Green’s

function, σ0 is the material conductivity, Et(r) is an exciting term due to the probe. σ(r′) is the flawed
region of conductivity.

The computation of the total field Et is then used to find the ECT signal (coil response) with the
reciprocity theorem,

∆V =
1

I

∫
Ω
[σ0 − σ(r)]Et(r) ·Ep(r)dr, (I.5)

where ∆V is the voltage change in the coil by the presence of a flaw, and I is the coil current. The
formulation in Eq. I.5 shows how to model the interaction of a flaw with the coil so the quantities in Fig.
II.3 can be computed. ∆V is affected by some parameters besides the flaw geometry as, for instance,
relative coil position, or specimen conductivity and thickness.

Given this general formulation, it is worth noting that a more suitable formulation exists for specific
inspection cases. For example, [33], [34] and [35] present a boundary element method formulation for a
planar-stratified conductive medium damaged by one or several narrow cracks.

I.4 . An overview of ultrasound testing inspection techniques and simulations

Ultrasound testing is a NDT&E method to explore a material property or internal structure by probing
the medium under testing via an ultrasonic wave source. The frequency of mechanical wave propagation
through solid, liquid, or gas, or a mix of them in some applications, is in the range of 20 kHz to 1 GHz.
Similarly to other methods, sound waves interact with the medium by reflection, refraction, attenuation,
and diffusion.

Two types of body waves are commonly considered on emission and recording during an UT inspec-
tion. Longitudinal waves (L) produce a matter displacement through compression through the propaga-
tion axis. On the other hand, traversal waves (T), also known as shear waves (denoted by S too), displace

http://www.extende.com
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the particles of the medium in the transverse direction of propagation (Fig. I.3). During interactions in
a material, multiple conversions from L-waves to T-waves or vice-versa happen. Surface waves (also
known as Rayleigh waves) affect UT inspections but are not described here. These waves mix L and
T particle motions and are recorded on guided wave applications for long-distance inspection, together
with the body waves.

Figure I.3. 2D view of Longitudinal (up) and Transverse (down) wave propagation and particle
displacement.

The sound waves are produced near the specimen (in contact with the surface or distant source) with
piezoelectric crystals on active techniques. In another sense, a material on service may emit ultrasonic
waves on its own (e.g., pressure vessels, pipelines, storage tanks, aircraft structures, or steel cables). The
techniques that used this acoustics emission are referred to as passive. The current section will describe
UT only on metallic materials applications.

Ultrasound testing techniques typically record the wave echos propagated on the material with the
piezoelectric transducer in contact with the surface. Different configurations for varied applications exist:
mono emitter/receptor, dual transducer (emitter and receptor in one probe), one or two Phase Array
(PA) with wedges (emitter/receiver together or separated), and other possible contact configurations.
A simplified UT technique configuration for defect characterization is shown in Fig.I.4 for complex
geometry in a welded joint.

Figure I.4. Simpli�ed schema of UT inspection con�guration for defect characterization on
a metallic specimen. The wavefront path emitted by one of the PA elements (red square) and
echoes from �aw interaction captured by other elements is represented by red lines. A region
of interest is de�ne, where the ultrasound wave interacts with a possible �aw. A 2D Region of
Interest (ROI) is selected around the area where a �aw may be present (red square).

Phase array transducers are particularly useful for imaging techniques on UT. Since those techniques
allow the recognition of patterns linked to geometry and default localization, these probes are widely
applied to material inspection. The device has many piezoelectric transducers that act as emitters and
receptors alternately. Different arranges of the piezoelectric disposition over the wedge give advantages
to specific material geometries: linear, annular, matrix, or circular. Post-processing of these data are
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usually required to interpret the acquisition. A particular mention has to be made for the most recent UT
inspection techniques like Laser Ultrasound (LUS) where the interaction with an impinging laser beam
and the medium are probed via laser excitation and interferometry, respectively.

Particular applications of UT can be found in internal discontinuity detection, cross-section evalua-
tion, bond characterization, or internal physical properties such as grain size, elastic constant, or struc-
ture. Compared to some hand-made NDT&E methods, UT offers an economical means for high-speed,
large, or small-scale testing of materials. This method provides highly sensitive and accurate estimation
of discontinuities by manual or automated experiences. Some techniques are limited by component ge-
ometry, internal structure characteristics, and coupling between the source and the material surface, and
their compatibility. Surface rugosity, specimen temperature and quality of the coupling between probe
and inspected medium can also be a limitation or source of uncertainty while testing a material.

UT operation principles In UT inspections, an ultrasonic transducer emits an ultrasonic wave that
propagates in the component being inspected and is scattered by heterogeneity such as defects and even-
tually gives rise to echoes detected by a transducer acting as a receiver (often the same transducer acts
as an emitter and receptor). Different approaches can be found to simulate UT inspections. Regarding
CIVA simulation, the method used is the computation of retro-propagated energy in each point of the
volume in the study, together with a high-order spectral finite elements approach in the defect area. This
semi-parametric approach is called a coupled model.

For the computation of the retro-propagated energy in each point of the volume, waves are described
by a full incident beam approach. Beams are considered as a set of rays with various times of flight and
directions. For each location considered at the volume, the beams of both the emitting and receiving
probes are considered to be sets of rays. The model is based on transposing the electromagnetic wave
theory to electrodynamic waves to predict how a narrow beam or ‘pencil’ (Fig.I.5) of rays propagates
from a source point to a computation point, this is called beam computation. A pencil is a mathematical
object associated with an axial ray that follows the geometric energy path for a given wave propagation
mode. A set of rays deviates infinitesimally from the axial ray. The term ‘paraxial ray’ is used for a ray
belonging to the pencil envelope.

Figure I.5. Schematic description of a pencil in terms of axial and paraxial rays

Beam computation usually takes place in two stages. In stage one, the different energy paths are
determined according to Snell-Descartes laws, generalized to anisotropic media. In stage two, the energy
associated with each path is quantified. The conservation of energy principle is applied, assuming that
energy flux (which follows the axial ray) is contained inside the pencil envelope. It can thus be deduced
that acoustic intensity decreases (or increases) with pencil cross-section.

Modeling involves taking into account the following points [21]:

1. Emission of the wave and its propagation from the transmitter to the area being inspected,

2. Interaction (scattering) with acoustic discontinuities within this area (defects or boundaries),

3. Propagation to the receiver and reception.

4. Attenuation and structural noise (simplified approach only for some materials)

The calculation of the field radiated by an arbitrary transducer into a specimen is based on an extended
form of Rayleigh integral, taking into account refractions and reflections at interfaces constituting the
component to be tested. The particle displacement at point P , uP (t) is written as [36]:



I.4. ULTRASOUND TESTING INSPECTION TECHNIQUES AND SIMULATIONS 31

uP (t) = V(t)⊗
∫ ∫

GSP (t) dS (I.6)
where GSP (t) is the transient Green function for a point source S and an observation point P, and

V(t) is the particle velocity perpendicular to the emitting surface. The⊗ is defined as the tensor product.
DyeThe elementary field GSP (t) for each couple of points of the volume is evaluated analytically by
means of the pencil method approximation. Each elementary field GSP (t) can be expressed by means
of a time and an amplitude, which are evaluated along the geometrical ray path between S and P .

The amplitude is evaluated using the divergence of a cone of rays (i.e. a pencil) surrounding the
geometrical path. Its evolution depends on the media and interfaces crossed by the pencil, and is math-
ematically described by a product of matrices. This method allows to take into account anisotropic and
heterogeneous components. Since the integration over the emitting surface is performed numerically (the
surface being discretized into point sources), the transducers considered can also be arbitrarily shaped,
including phased array transducers. The resulting field can be expressed in terms of impulse responses,
when V(t) is a Dirac δ-function.

I.4.1 . UT parametric simulation on CIVA for data production
In order to consider flaw in the specimen, the 3D UT CIVA simulation applies a variant of the SAFE

coupling models [37, 38] to approximate the response of a default in a studied 3D specimen. In this
case, rather than constituting a generic FEM solver based upon a geometrical mesh of the defect (or
of its surrounding), a lexicon of parametric defects is built. Each parametric defect is associated with
a composition of geometrical structures referred to as macro-elements. In essence, a macro-element
is defined as a potentially nonlinear deformation of a reference cube, and the complete set of macro-
elements are arranged altogether in order to fit the defect geometrical description (Fig. I.6). The reference
cube also bears a predefined hexahedral mesh, so that a macro-element inherits from this mesh through
its associated deformation.

Figure I.6. Illustration of the macro elements arranged around an embedded crack for 3D UT
simulation from [38].

The input data of the high-order spectral finite elements numerical model is obtained in the sur-
roundings of the defect using the ray based beam computation model in the healthy part (Eq. I.6). The
elastodynamic response in the presence of a flaw is then obtained by applying the Auld’s principle of reci-
procity. In harmonic regime, for a spectrum of the input signal Si, the elastodynamic response spectrum
Se of a defect with a surface Σ is expressed as

Se = Si

∫
Σ
(uE ·TR − uR ·TE) dΣ, (I.7)

where u and T denote the displacement vector and the normal stress tensor of the harmonic fields. E
index denotes the ultrasonic field radiated by the emitting probe in the healthy component, and R index
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Figure I.7. Di�erent data acquisition techniques from the UT method on the same specimen and
post-processed example (TFM). Examples of (a) A-Scan of wave emission and noise recording,
(b) B-Scan image phase array, and (c) C-Scan image (d) TFM of butt weld with a �aw in
the material interface, the image reconstruction is shown in the region of interest. Source:
http://www.extende.com

denotes the ultrasonic field radiated by the reception sensor (used as a fictitious emitter) in the presence
of the defect.

If Se is time-dependent, the Eq. I.7 can be rewritten as

Se(t) = Si(t)

∫ ∫
Σ
(uE(τ) ·TR(t− τ)− uR(t− τ) ·TE(τ)) dΣ dτ, (I.8)

Se(t) can be bent into a time-depend quantity to be measured by the receiver. As an example,
displacement or pressure amplitude A(t) in the specimen surface can be recorded by a single emitter-
receiver probe to generate a signal, as shown in Fig. I.7(a), called A-Scan.

UT techniques can be separated by acquired data strategy (Fig. I.7). Acquisition data strategy de-
pends too in the type of probe (single probe or phase array (PA). Some of them are:

1. A-scan technique registers the amplitude of the wave versus time (Fig. I.7(a)). When the probe
is static with one emitter and one receiver, the A-scan shows the emission moment and the echo
delay received. This information helps the operator infer the thickness in the position and find
defects echoes in a damaged section. This technique shows the function of amplitude A versus
time t, A(t). For PA probes, an A-scan is one couple emission-reception of each couple of the
probe. An acquisition for a PA produces multiple A-scan signals.

2. B-scan is more informative than A-scan. It uses the A-Scan obtained in different probe positions
or a PA emission-reception couples (eij) to produce images corresponding to the inspected area
(cross-section of the material), named by Region of Interest (ROI). The high amplitudes in the
graph are related to a defect in the area or echoes from the back wall. This technique shows the
2D function of the amplitude and time A(t) at each position x or emission-reception couples eij ,
A(x, t) or A(eij , t) in Fig. I.7(b).

3. The C-scan output is an image when A-scans are recorded in different emission-reception com-
binations using a fixed PA probe. The emission and reception sequences can varied by choosing
different combinations of transducers used for A-Scan. In case of one element emit, all receive, a
2D image with the maximum amplitude Amax(eij) is obtained for each sequence, as in Fig. I.7(c).
Similarly, a C-scan can be obtained by the displacement of a probe in a plane and by recording
the maximum reception signal to create a 2D image.

http://www.extende.com
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Figure I.8. Contact inspection con�guration with a Rexolite wedge for imaging a back-wall
breaking notch machined in a steel mock-up representative of a butt weld. Region of interest
schematic representation on (x, z) plane to compute Ip. Some parameters of the setup are shown,
such as specimen geometry (l1, l2, l3, l4, α), and �aw geometry de�nition (β, H), among others.

4. S-scan provides images of the ROI similarly to C-scan but is produced when a PA probe elec-
tronically sweeps an ultrasonic beam through a range of angles. In this case, the probe is fixed in
position, so it is useful when the piece shape prevents continuous displacements in the inspection
(e.g., a change of diametrical section in an axe). An image with axis A(x, z) and amplitude (A)
for each point is obtained.

The B-Scan, C-Scan, and S-Scan are imaging techniques in which echoes are computed and decomposed
as various contributions or modes (L-T) in a multi-array transducer (PA). Modes correspond to various
beam interactions with a scatterer (e.g., flaw or specimen surface) and to associated ultrasonic wave
paths, including or not a reflection on another scatterer and possible mode conversion of longitudinal
into transverse waves or vice-versa in the interaction.

A more advanced imaging technique called Total Focus Method (TFM) relies on Full Matrix Capture
(FMC) acquisition technique. FMC uses a set of time-domain data (A-scans) from all combinations of
transmitting and receiving elements on the transducer to generate 2D images of the ROI and its surround-
ings [39, 40]. The full matrix of array data used in the post-processing algorithm is called the Total Focus
Method (TFM). In this algorithm, the beam is focused on a target region. The region is discretized into
a grid represented in a (x, z) plane. The intensity of the image Ip on the discretized ROI is given by Eq.
I.9. An example of a TFM image in a ROI is shown in Fig I.7(d).

Total focus method image is produced from a “delay-and-sum” algorithm applied to the set of N2

inter-element signals obtained from the FMC acquisition schema with an array of N elements. If snm (t)
is the signal received by element m when element n is used as a transmitter, the image amplitude at
a given point located by r consists in a coherent sum of N2 analytic signals ŝnm (t) = snm (t) +
iH {snm (t)} at appropriate propagation times t = τpnm (r) where H denotes the Hilbert transform.
τpnm (r) is the theoretical time of flight between transmitter n and receiver m through the image point
at r for the pth reconstruction mode, i.e., for one of the many potential ultrasound paths that can be
exploited to form relevant images of a given crack-like defect. With these notations, the image amplitude
Ip (r) (example in Fig.I.7(d)) can be calculated as

Ip (r) =

∣∣∣∣∣
N∑

n=1

N∑
m=1

ŝnm (τpnm (r))

∣∣∣∣∣ . (I.9)

I.5 . Multi-fidelity data on NDT&E
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Regardless of the application field considered, numerical models can be categorized accordingly to
their accuracy in simulating a given problem. Such a kind of differentiation is often referred to as the
fidelity of the model. That is, when contrasting two models, they may be referred to as high- or low-
fidelity models: the most accurate model is the high-fidelity (HF) model, while the less accurate one is
the low-fidelity (LF) model. This means that fidelity is always defined by a comparison. Such a catego-
rization applies to NDT&E and SHM simulations, too.

Data are also categorized by fidelity levels. One can consider the highest possible fidelity data to
the measurements experimental setup that is completely mastered; thus, the impact of uncertainties is re-
duced to the minimum. Other source of high-fidelity may be in-situ recorded data. In the other hand, data
coming from simulation may considered LF data. Simulated data are a fair representation of experimen-
tal or in-situ data but with some discrepancies. The source of those discrepancies are often uncertainties
or non-considered phenomena in the LF model.

HF data has an intrinsic cost associated with its production. An HF model deployment or a real-
world data acquisition represents a time-demanding procedure. This makes HF data less accessible than
LF data in terms of quantity.

The multi-fidelity data term is intended to define, for a given problem, a setup (i.e., numeric simu-
lations and/or experimental measurement) for which different data are exploited jointly. In the case of
NDT&E and SHM inspection problems, relying on both experimental data and simulated data.

Apart from production costs, it’s worth emphasizing that HF data often surpasses LF data in terms
of quality, adding another dimension to the challenge beyond economic considerations.

Examples of different fidelity data are simulations from CIVA and experimental data (Fig. I.9). Even
though the salient and meaningful image contents can be obtained through simulations (e.g., the defects
echoes or reflections from ultrasonic waves), some signal perturbations may exist in experimental acqui-
sition. Those perturbations are due to electronic noise or inspection conditions such as coupling between
probe and specimen, among others. The perturbations generate patterns in experimental acquisitions that
cannot be reproduced accurately in simulations.

Figure I.9. UT-TFM image reconstruction of ROI in a welding joint inspection with a �aw
by UT. Right: simulation output from CIVA. Middle: experience with similar �aw parameters
and the same probe. Left: experience con�guration with de�ned ROI. The di�erences between
equivalent realizations on simulation and experimental acquisition can be appreciated, particu-
larly in the echo signature.

CIVA is an example of a parametrical simulation model, where a large amount of data can be pro-
duced in a short time. Even if some factors in the field are not modeled, these models are suitable to
represent a fairly set setup. However, some uncertainties are typically simplified or hard to model on
forward simulation:

1. The human factor: the technique configuration may be set before the examination. However,
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inspection can inject variability and noise into measures. Misplacing the probe or shifting the path
direction can add a measurement error in the resulting data.

2. Inspection characteristics: Medium temperature and coupling compatibility can vary in the same
specimen. Measurements in the identical specimens vary in each inspection campaign. These
effects may be attributed to surface temperature but also operational setting alterations. As an
example, imaging techniques reconstruction are affected by the incorrect parameter setting of
speed sound.

3. Equipment characteristics: adaptation to the environment of acquisition equipment and sensors
plays a role in experimental results not being considered in the modeling. Electronic noise derived
from components, aging in electronics, or probes may introduce a bias in the inspection results.

4. Structural noise and attenuation: an equivalent scattering approach for an-isotropic properties in
material simplifies the effect of grains and interface interaction (e.g., weld area properties repre-
sent uncertainty regarding added material properties). Experimental examples show notable dif-
ferences when obtaining an image as output. The wrong assumptions about the internal structure
of the specimen can lead to erroneous technique selection and unjust diagnostics.

5. Other sources of noise (environment).

Regarding machine learning, the HF data has less annotation or details of how it was produced compared
to LF data. This characteristic of HF data presents an issue for machine learning and any application
one wants to give to these data. However, HF is still significant since it contains valuable information
about the real world, and in some cases, these data can be fundamental to deploying some applications on
NDT&E, such as optimization, inference, uncertainty quantification, or statistical studies. As an answer
to this problem, there is the possibility to develop multi-fidelity methods to take advantage of HF and
LF data on NDT&E procedures. In [41], the authors categorize multi-fidelity methods according to three
classes of strategies: adaptation, fusion, and filtering.

More into detail, adaptation proposes enhancing the low-fidelity model with information from the
high-fidelity model while the computation proceeds. The fusion strategy is based on information fusion
by evaluating low and high-fidelity models and combining information from all outputs. The filtering
strategy invokes the high-fidelity model following the evaluation of a low-fidelity filter. Filtering strategy
might entail evaluating the high-fidelity model only if the low-fidelity model is deemed inaccurate, or
it might entail evaluating the high-fidelity model only if the candidate point meets some criterion based
on the low-fidelity evaluation. In the context of this work, adaptation and fusion methods are preferred
for the machine learning solution proposed later in the methodology. Filtering methods imply extensive
access to the HF model (or acquisition procedure), which is very rare for NDT&E HF data.

In the context of this work, any solver shall be considered a function F that maps parameters or
factors to a measurement space. For example, the mapping of F leads to the quantities A(x, y) (Eqs. in
Section I.4) for UT techniques or ∆Z for ECT techniques (Eqs. in Section I.3). F is the physic model
and the ground truth to know how the parameters of a NDT&E procedure are related to the measurements.
An image, a time signal, or even a vector of values can be considered in terms of measurement. If we
call p ∈ P the set of parameters that defines an inspection, and Y ∈ Y a measurement of this procedure,
in general terms, we can define F as a function that maps P → Y ,

Y = F(p), (I.10)
In the following sections, machine learning is introduced as a second pillar of this thesis work before

introducing the methodology. One of the key ideas is to develop a machine learning surrogate model or
metamodel (M) that considers LF and HF data. M is intended to replace or complement F in NDT&E
data production. M shall be a multi-fidelity model that provides a good representation of F while
producing higher fidelity data compared to the fidelity data provided by F .
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I.6 . An introduction to machine learning: definitions, schemes and approaches

Machine Learning (ML) is the group of methods used to train a computer to automate a task. As a
pioneer of artificial intelligence research, Tom Michell defined ML and the main parts of its deployment
in the following sentence [42]:

Machine learning definition A computer program is said to learn from experience E with respect to
some task T and some performance measure P, if its performance on T, as measured by P, improves with
experience E.

In the next sections, those elements (task, metric, and experience) will be recalled when describing
particular algorithms. Tasks like regression or classification can be interpreted as what the program needs
to learn. In the case of metrics, they are also named by ‘cost’ or ‘loss’ functions that quantify the error
to minimize by a ML algorithm. Regarding the experience, it is the data or examples from which the
algorithms learn. Other helpful definitions are shown in Table I.1.

Table I.1. Machine learning elements de�nition, based on [43] de�nitions.

Example,
sample,
or
instance

Feature Each example of an observed group can have several characteris-
tics called features. For example, an image taken during a visual
inspection presents its features by pixel values, while a recorded
signal presents a feature value for each sampling through time.

Label Besides the features, an instance can be associated with a sub-
group within the main observed group. The subgroup is com-
monly a set of parameters called labels. The label adds informa-
tion about a class or a representative value of an example.

Input Whenever the task is interpreted as classification or value estima-
tion, the ML algorithm becomes a model that uses an example as
its input to perform an estimation.

Data set or data Assembly of examples or instances used as inputs. It also con-
tains the labels (subgroups) assigned to the samples.

Output or inference value Whatever the task performed by a ML algorithm, the result of
evaluating the algorithm will be naturally a set of numerical val-
ues. These values estimate the computer program given to an
input example. When the network is trained, this output is com-
monly an inference value.

Referring to Fig. I.10, ML approaches can be separated into Supervised Learning (SL), Unsupervised
Learning (UL) and Semi-Supervised Learning (SSL) accordingly to the labels availability in the training
phase. A fourth approach, reinforcement learning, is only mentioned since it is beyond the scope of the
methods described here. That is, the supervised approach requires label data to train the model, while
unsupervised training infers those labels (groups, categories, clusters, or classes in data) by itself. A
third approach, semi-supervised, is practical when the data set labels are incomplete, or there is missing
information in the data set that needs to be inferred by the algorithm. These approaches are recalled later
during the methodology since all of them are explored to develop the presented framework. It is worth
noticing that, in this work, the word ML model is used to refer to a functional (for instance, fθ, with
θ ∈ Θ a set of parameters to be optimized or trained) that takes numerical input values and delivers an
output. ML model can have several forms but generically perform a task once trained. The next section
describes the classification by performed task and model type.

I.6.1 . Supervised learning
The choice to use a supervised approach over the others is related to the task and the data set char-

acteristics. The expected output from the ML model is known and used to train the algorithm. SL



I.6. AN INTRODUCTION TO MACHINE LEARNING 37

Figure I.10. Machine learning families and methods. Subcategories are described in the next
sections. Based on [43] classi�cation.

examples can be found in classification or regression tasks, which can infer a class or related labels for a
given input.

The data set used for these tasks has observed features or inputs x ∈ X being X ⊆ RD and targets
y ∈ Y being Y ⊆ RC for regression problems when predicting a set of scalars is required. If Y =
{1, ..., C}, then it is a classification problem where the class y is predicted for each sample.

The model learns to extract information from a training set D = {(xn,yn) : n ∈ {1, ..., N}}. For
example, an instance (xi,yi) can represent sensor values in time, voice recordings, coded words in a
sentence, etc. on xi, which has a related class or a set of parameters yi, like the type of noise in the
signal, the distance of the recorded source or style of writing, etc.

In a classification problem, the output vector ŷi is then the estimation of the classifier, expected to
be the same discrete label yi in the data set once the algorithm is optimized. The estimation error of
the model can be evaluated by a function L(θ) where θ is the model variables to be optimized. An
application might be to predict material failure from data acquired by NDT&E techniques as in [44].

In contrast to classifiers, regression models estimate continuous outputs. In this case, taking xi and
computing ŷi, the task is to infer a value, e.g., a material property from a grain structure image or the
size of a defect given a set of record values in a sensor by optimizing the function L, like in [4][45].

Data set partitioning: train, validation, and test Let us define θ∗ as the set of learn-able parameters
of fθ that gives the minimum of L for a data set D. fθ∗ can be tested on a new set T , with the same
structure as D but T ∩D=Ø. The output of the trained model is used to compute any suitable metric that
explains the performance of fθ∗ , given a task. The set T is the test set, a set of instances never seen
during the training.

An additional set S may be used during the training, and this set is the T so S∩T ∩D= Ø. This set
is called the validation set, used to compute the Lval. Lval or validation loss is mathematically defined as
L but computed with S. This loss is not minimized but used as a generalization metric: if Lval decreases
together with L, fθ generalizes well.

Epoch definition A step during training of an ML algorithm in which a portion of examples in the
training set D is used to infer output values. The outputs are used to calculate the error with the loss
function for the portion of examples. The mean of the errors given by Lθ per instance is used to update
weights, bias, and other trainable parameters in the NN. The back-propagation algorithm does the update
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Figure I.11. Example of over-�tting in loss evolution. Validation loss Lval (in yellow) increases
while training loss L (in black) decreases. fθ∗ is founded after 400 epochs (dashed vertical line).

of θ. The portion of examples used for an epoch is named batch.
Lval may be used to avoid over-fitting during the training (Fig. I.11). A ML algorithm over-fits when

it learns over D, but it can not perform similarly over S.
Similarly, fθ can under-fit if the trained was stopped before it learns all the possible from D. This is
generally corrected by changing fθ (e.g., increasing the number of parameters θ to fit or training for
more iterations). However, it is important to avoid fθ training too far or to have too many parameters
since the contrary effect appears; this is over-fitting.

Looking out for Lval during the training to stop the iterations is called early stopping. This technique
assures the best performance for a given fθ to generalize in the learned task when trained over D and
checked over S. fθ∗ is tested later over T to quantify the generalization power during the test phase.
The testing cannot be done over S or D since it shall introduce a bias during designing f .

I.6.2 . Unsupervised learning

Unsupervised learning (UL) can be separated by clustering, dimensionality reduction, and generative
models (Fig I.10).

Clustering and dimensionality reduction methods use the set X which has no label y. The main task
of these methods is to infer new knowledge from data by sorting the examples by groups or categories
that a priory is unknown. These methods are often named feature extraction. In this case, ŷ is unknown.
Different criteria can be used to evaluate is Y is a fair parameter space for X , commonly relying on
probabilistic approaches. Identifying natural clusters of acoustic emission signals on NDT&E without
previous knowledge about the data structure can be an example, as shown in [46].

UL methods vary from deterministic to stochastic models; data decomposition: Principal Component
Analysis (PCA) [47], Independent Component Analysis (ICA) [48], singular spectrum analysis [49];
clustering in inferred groups; feature extraction: AutoEncoder (AE) and Variational AutoEncoder (VAE)
and generative models. Some other methods are shared with SL, and in the same way, the methods above
present a supervised variant. Supervised ICA [50] is an example, where y is the class being accessible
to enhance the separability of features, and some hidden labels can be inferred better than in the case the
class is unavailable. The last category in UL, generative models, is expanded in Sec. I.7.5.2 since it is
extensively used for the aim of this work.

The rest of the UL methods commonly compare two or more different data sets in a reduced and
more readable representation (e.g., high dimensional data into a 2D representation). Feature extraction
methods help understand relations between a given sample and the complete data set: singularities or
similarities with other samples. Unlabeled data can be categorized using these methods by ‘clusters’ to
represent or understand these similarities.

I.6.3 . Semi-supervised learning
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Semi-Supervised learning (SSL) combines clustering methods from unsupervised categories with

supervised classification methods to fulfill a classification task when the data are not fully labeled in all
the examples. These unbalanced labeled data sets are commonly found on NDT&E and SHM where bad
labeling, and lack of knowledge about how data were produced, among others.

The possibility to cluster the data by unsupervised methods is adapted to any data set, even when it is
not labeled. For example, if incomplete information about the classes exists, some instances are labeled,
and the learned subgroups (clusters) can be associated with those classes. Therefore, the class can be
inferred for any unlabeled data, and new classes that do not exist in the original labels can be inferred.

No specific ML methods are reserved for SL, US, or SSL. They are commonly combined with dif-
ferent optimization problems depending on the goal of the task.

In future sections, special attention will be given to representation and generative learning as an UL
and SSL methods (see I.7.5 and I.7.5.2) due to their potential in achieving the objective in this thesis.

I.7 . Background on machine learning methods and techniques

ML takes part in a more prominent family named Artificial Intelligence (AI), described in the bibli-
ography as a machine with cognitive abilities similar to human intelligence. An AI shall not have all the
human capacities but can imitate some more accurately and efficiently [51]. From another perspective,
AI explores the mathematics behind our possibility to perceive, think, and act [52].

Figure I.12. Arti�cial intelligence subgroups. Some examples of methods are listed in each
level for illustration. Based on [53] de�nitions.

Either a ML or a DL method aims to create a model that performs a specific task. A good performance
may be achieved by training (or optimizing) the chosen algorithm in an iterative way. Different methods
to train the algorithms are introduced in section I.7. From here, ML will be used to generalize ML and
DL terms. A representation in Fig. I.12 shows the subgroups of AI, ML, and DL and the hierarchical
link between them.

Before going into the ML techniques definitions, schemes, and approaches, it is essential to mention
that ML methods1 often employ Neural Networks (NN). A NN is a sequence of interconnected artificial

1In this work, the words ‘approach’, ‘method’ and ‘technique’ are used as synonyms. Nevertheless,‘method’ or ‘approach’ are preferable since this introduction is intended to be a general overview of DL.Later, some so-called ‘method’ (or ‘approach’) here may be named as techniques since we are closer to



40 CHAPTER I. MACHINE LEARNING APPLIED TO NDT&E AND SHM PROBLEMS

neurons interpreted as a set of functions that can be represented by directed acyclic graphs [54]. The
nature of an artificial neuron can vary depending on the task, with the perceptron (described in Appendix
VI.2) or convolutive neuron being the most common in the bibliography (described later). A neuron is
then a sub-function in the NN that has parameters to be optimized.

This section is a non-extensive review of the methods in machine learning. Later, in Chapters II to
IV, they will be recalled on specific study cases.

I.7.1 . Regression and classification methods
Different methods to create a model to perform a regression in ML exist. In Fig.I.13, two main cate-

gories present linear and non-linear methods. In the first category, the models are typically a polynomial
function ŷ = fθ(x) with θ being linear coefficients or hyper surfaces in n-dimensional problems, e.g.,
when input x has N > 1 components. Building f varies on every method. Regularization to train a
model is described in the next sections but mentioned as a sub-method in regression (Ridge, LASSO,
or Elastic Net). Non-linear methods introduced two remarkable methods to build a model: NN and
kernel-based regression (Appendix VII).

Figure I.13. Diagram representing an overview of the main regression methods [55][43][56].

The same techniques are also found in classification with some differences. For instance, the main
difference is that either the polynomial model, the hyper-surface, or the non-linear method defines regions
in a space to categorize each input, in other words, to give a class label. To clarify this idea, it is possible
to imagine an n-degree polynomial model used as a regressor, where x and ŷ are uni-dimensional con-
tinuous values. By comparison with a classification case, the model represents a bounder for two classes
in a (x, y) plane (Fig I.14).

Feature extraction techniques (Section I.7.5) are frequently used as pre-processing before using a
regressor or classifier to improve its performance. Deep learning uses an unique and more complex
model that can perform feature extraction and classification (or regression) tasks. Compared with feature
extraction, in the last case, a large amount of data is required to ensure that the model learns all the
features in the data. It is also required that all classes or groups are sufficiently represented in the data
set. No algorithm will learn what is not present in the input data, but it can learn to generalize fairly well
to predict unseen samples when the seen data are representative enough. For instance, a neural network
will not learn to identify a cat between a group of animals if an example of a cat is not presented to the
network during the optimization.

Regarding NN, Fully Connected Neural Networks (FC-NN) and Convolutional Neural Networks
(CNN) are used in regression and classification. They are described in more detail in Sec. I.7.2 and
Sec. I.7.4 in general since they are used not exclusively in regression and classification but also in data
decomposition, data projection or deep generative models.

a specific implementation, so more details are given.
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Figure I.14. Regression and classi�cation: Similar polynomial models are used in a regression
problem (right) and a classi�cation problem (left). The �gure represents a 1D input (x) and
1D output (y) model. The blue line is fθ; at the right, fθ gives a value for every input; at left,
it represents a boundary in the (x, y) plane to separate classes, being x and y a 2D input and
Category 1 and Category 2 the output for fθ(x).

I.7.2 . Machine learning approaches based on deep artificial neural networks
This section introduces some concepts for deep artificial neural networks. Some definitions can be

found on Appendix VI.2.
Deep learning algorithms differentiate themselves compared to the other ML methods since they rely

on hierarchical architectures aiming at extracting suitable information from the input features based on
the use of non-linear affine transformations performed on the data. The generalization of NNs to architec-
tures having more than one layer is referred as Deep Neural Network (DNN). More data and computing
power are needed when applied due to the nature of the algorithms: a large amount of parameters to
optimize.

Many samples of deep models exist to infer information from a data set. Fig. I.15 presents a typical
dense layer architecture, an example base architecture to build Deep Neural Networks (DNN). This kind
of neural network is described in detail in Appendix VI.2. Complementary concepts that are recalled in
this section and later, such as the perceptron unit, loss functions, hyper-parameters in NNs, and back-
propagation algorithm, are explained in more detail in the Appendix VI.2.

Normalization on NN, convolutional neural networks, among others concepts are introduced here
because of the relevance for the methodology in the next Chapters.

Figure I.15. Fully connected network or multi-layer perceptron architecture with one hidden,
three neurons in the input layer, and one neuron in the output layer.
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I.7.3 . Normalization, regularization, and drop-out layers
Normalization, regularization, and dropout are essential techniques in machine learning, especially

for training DNNs. They help stabilize training, prevent over-fitting, and improve the model’s general-
ization ability to unseen data.

Before talking about normalization and drop-out layers in NN, the inner features concept (also called
extracted features or activation values) must be introduced. In a feed-forward NN, each neuron layer can
be seen as a functional Ll mapping the inputs into the outputs, so xfl+1

= σ ◦L l(xfl), where l is
the number of considered layers, xfl is the activation values from the precedent layer, and xfl+1

is the
resulting activation values after passing xfl through Ll and σ. Like an instance in a data set, xfl has a
defined dimension. The dimension of the features depends on the layer configuration (e.g., number of
neurons). In FC-NN, due to the application, vectorization (or flattering) and non-linear transformation
between layers, the extracted features lose the meaning associated to pixels or amplitude values one finds
in the data set used, i.e., an image or time signal sample x, turning them into an abstract representation
of an instance during the feed-forward operation of the NN.

Normalization is the pre-processing procedure aiming at scaling and shifting the input features before
training. However, normalization can also be performed on inner features. Such a specific normalization
is a ML technique with an additional normalization layer. An example of NN fθ (Eq. VI.3) modified so
every neuron layer implements a normalization layer Nl is

fθ(x) = (NL ◦LL ◦ σL ◦Nl−1 ◦Ll−1 ◦ σl−1 ◦ ...N1 ◦L1 ◦ σ1)(x), (I.11)

with


θ : set of weights and bias
l = 1 : L

L : number of layers on f

,

Nl can normalize xfl+1
in different ways. Batch Normalization (BN) [57], Instance Normalization

(IN) [58], and Layer Normalization (LN) [59] are examples of different normalization layers. Each of
them computes a shift β and scale γ to apply from the activation values as follows

Nl(xfl+1
) = γ ·

xfl+1
− E[xfl+1

]√
σ2[xfl+1

] + ϵn
+ β, (I.12)

where E [·] and σ2 [·] represent the empirical average and variance, respectively. ϵn is a small value for
numerical stability. The main difference between BN, IN, and LN is how E [·] and σ2 [·] are computed.
For example, BN computes E [·] by batches. It normalizes the activation of a layer by calculating the
mean and variance of the activation values across the entire batch for each feature. Conversely, IN
operates at the level of individual instances (i.e., samples) within a batch. It normalizes the activation of
each instance separately.

Consequently, with the E [·] and σ2 [·] computation, an optional scale γ and shift β can be added
to the normalization operation. β and γ are the learned parameters of fθ. The objective of this is to
introduce flexibility into the normalization. β allows for shifting the normalized values to a learned
offset, which can help handle situations where the mean-shifted values are not optimal at zero. The
γ parameter enables the normalized values scaling, allowing the network to control the magnitude of
feature representations.
In deep learning, with regularization, one intends a set of techniques used to prevent over-fitting. Over-
fitting occurs when a model learns to fit the training data too closely and fails to generalize to new,
unseen data. Regularization methods add a penalty term to the loss function, discouraging the model
from learning overly complex patterns. In the same way, drop-out is used as a regularization technique.
Drop-out is added to the architecture as a layer (like for normalization). This layer randomly sets a
fraction of the neuron outputs of a layer to zero with each forward pass.
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I.7.4 . Convolutional neural networks

An architecture that competes with FC-NN is introduced in this section. Convolutional Neural Net-
works (CNN) are extensively used in NDT&E classification and regression problems [60][61][62][44][45]
since they can find defects in NDT&E by 2D images. Unlike neural layers on FC-NN, CNN architecture
is based on convolutional layers. These layers can represent the hierarchy of the elements on images
by learning spatial or temporal correlated features. In this case, the layer mimics how the human visual
cortex works [63]. Mimicking is done by keeping the pixel relation through the network: convolutional
layers create feature maps (also known as activation values) that are spatially correlated. In contrast, in
FC-NNs, the spatial correlation is lost from the beginning of the forward propagation by flattening the
input.

The CNNs are built by the convolution, activation, and pooling layers, often referred as convolutional
blocks. The activation layer is like on FC-NNs, so it is not trainable. The pooling layer keeps no
parameter to train either, so the only layer that participates in the back-propagation algorithm is the
convolutional layer: it contains weights.

Convolutional layer This layer is defined by a weighted kernel represented on a matrix. The kernel
operates on the input to produce a feature map. A layer may contain many kernels in order to generate
many feature maps. The operation between the input and a kernel is a convolution operation. An example
is shown in Fig.I.16. The convolution has as hyper-parameters the padding and the stride: columns and
rows of values added to the limit of the image with specific values (typically zero) and number of pixels
to move the kernel over the image in each convolution step. The kernel values (also called weights) are
the learn-able parameters for this layer, meaning that they will be optimized similarly to a FC-NN by the
back-propagation algorithm.

Figure I.16. 2D convolution operation. The stride is set to 2 in both directions, with no
padding. The �rst operation (above) shows how the convolution starts with the �rst region in
blue to get the �rst element at position (0, 0) of the resulting feature map. The second operation
(below) applies the convolution to a second region (in yellow) of the input to get the second
element at position (0, 1) of the resulting feature map.

The example case shows a single-channel 2D kernel with a single-channel input. An input can
contain many stacked 2D maps; each 2D map is a channel. For instance, colorful images represented
by a numerical input have more than one channel (e.g., three-channel for RGB images). Consequently, a
kernel can also have more than a single-channel (3 channels for RGB images). Regarding the 2D feature
map channels, it depends on the number of multi-channel kernels included in the operation; for each
multi-channel kernel, a 2D activation map is obtained after the convolution.

A practical example is an RGB image represented by (4 pixels, 4 pixels, 3 channels) convoluted by
a kernel of size (2, 2, 3) with 12 weights. The resulting 2D convolution operation output is a (2 pixels, 2
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pixels, 1 channel) feature map. If an additional kernel of size (2, 2, 3) is added to the operation, 12 more
parameters are added, and the output turns to have a size of (2 pixels, 2 pixels, 2 channels).

Pooling layer The pooling layer acts after the convolution layer and activation function. This layer
reduces the spatial size of the feature maps by a dimensional reduction. It aims to extract dominant
features and mitigate the sensibility to feature location: the classifier or regressor needs only to compute
the value or class, not to keep its location.

Pooling layers may be Average-pool or Max-pool type, and the size determines how much the infor-
mation from the previous layer is condensed. The stride and pooling are also hyper-parameters in this
layer, like for the kernel in a convolutional layer.

Figure I.17. Max pooling operation. The stride is set to 2 in both directions, and there is no
padding.

This CNN architecture is faster on training convergence because it reduces parameters compared to
a FC-NN for the same task. An example of it is when the input size is D = (28, 28, 1), the first layer
on a conventional FC-NN with 10 neurons sums up more than 8 k connections and trainable weights.
In the simple CNN case, the convolutional layer keeps a fixed amount of connections even on a more
considerable input. The amount of trainable weights is linked to the kernel hyper-parameters: the same
input can be processed by 6 kernels of the size (2, 2) as in Fig.I.16, giving a total of 40 trainable weights.
The rest of the layers (pooling and activation) are non-trainable. The resulting convolution operation
produces a reduced feature map of size (7, 7, 6). A final 10-neuron dense layer after flattening the
reduced feature map adds to this CNN ∼ 3 k trainable weights to the architecture but competes in
performance and training time with the FC-NN of 8 k weights. A more in-depth analysis of performance
in real scenarios can be found in the bibliography [64, 65].

As mentioned, many architectures on CNNs implement a dense layer at the end of the convolutional
layers to extract information from the last feature maps and generate the output. This last layer needs
significantly fewer parameters than in the case of an architecture only with fully connected layers.

The CNNs can be represented by the Eq. VI.3. The main difference is the layer Eq. VI.4. The
equivalent for Eq. VI.4 for a convolutional layer in Fig.I.16 is,

ℓkij(X
k−1) =

m−1∑
a=0

m−1∑
b=0

(ωk
abx

k−1
(i+a)(j+b) + bk) with


ω : weights for layer k
b : bias for layer k
m : 2D kernel size

, (I.13)

where ℓkij represents the ij-activation of a neuron in layer k, being ℓk a 2D output matrix. The
kernel of size (m,m, 1) has weights denoted by ωk

ab. ℓ
k
ij is calculated for an 2D input matrix Xk−1 has

xk−1
(i+a)(j+b) elements.

The back-propagation algorithm is applied to the CNN layer like in the dense layer, so the equations
do not change for the optimization process in convolutional layers, even if different layers take part of the
architecture (e.g., CNN and FC-NN architecture). Normalization, drop-out, and regularization concepts
from Subsection I.7.2 are also applied in CNN architectures.
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I.7.5 . An overview of dimensionality reduction techniques: data decomposition, manifolds

and data projection
In this section, we shall introduce some notions on the most used algorithms as applied to fea-

ture extraction and data projection/visualization. A common ML practice is analyzing data in a lower-
dimensional representation. This representation is often known as a manifold. Regression and classifi-
cation problems can be affordable when a representative data set has enough samples of the classes or
parameter space. Even when these two characteristics are fulfilled, a too-big dimension D of X = RD

(e.g., high-definition images or large parameter vectors) may represent a problem due to sparse data
[66, 67].

For example, UT data can produce high dimensionality data for, e.g., a time signal with a small
sample time or when it represents an image with three color channels. A recorded pulse-echo amplitude
vs. time signal at 200MHz from UT inspection (A-Scan) during 5µs has 1024 sampling points (or
features). Another example of high dimensionality is an image of a ROI obtained by B-Scan in UT. The
case of a (200, 200) pixels image with three color channels reaches a total of 120 000 features.

Precedent cases represent a high-dimensional problem for the techniques presented in Sec. I.7.2
since the sample needs to be flattened (in the case of an image) before forwarding it into the input. High-
dimensional features drive the FC-NN to increase the number of parameters to train in the model and,
consequently, the training time. Techniques in Sec. I.7.4, where no flattening is required, may decrease
the training time for high dimensional spatial or temporal data (recurrent data type in NDT&E field).

Another issue with high dimensional data sets is the data sparsity, which can drive to missing classes
or a low representation of one or more particular classes on the data set. Compared to small-dimensional
data, high-dimensional data tends to need large instances for each class. Sparsity represents an issue even
for techniques in Sec. I.7.4: a high dimensional data set constitutes a risk of over fitting the model only
to classes that are represented enough, leaving the rest out of model generalization. This predicament is
titled on the bibliography as the ‘curse of dimensionality’.

This section presents the approaches to work around this common problem by reducing the data di-
mensionality. Data decomposition, manifolds, and data projection techniques applied in dimensionality
reduction are named and classified.

Given a mapping function F : RD → Rd, where D >> d, F shall be capable of representing the
original data set in a lower dimension without losing information. Principal techniques to find F are
listed in Fig.I.18 and Fig.I.19.

The techniques can be presented as convex or non-convex optimization problems [68]. In the first
group, all constraints of F are convex functions, and the solution is a global optimum. These techniques
can be separated by full spectral techniques that are an eigen-analysis of a matrix built from the data set
(e.g., Principal Component Analysis (PCA) or Independent Component Analysis (ICA)). In the case of
sparse data, some particular solutions like Locally Linear Embedding (LLE) and Laplacian Eigenmaps
are proposed in the bibliography as manifold techniques.

Sometimes, convex techniques are not sufficient to simplify its representation. Non-linear relations
between input features in data often lead to kernel-based techniques like kernel PCA. In these cases, the
input of the functions is a feature space constructed by employing a kernel function (See appendix VI.1
for kernel definition and appendix VI.4 for PCA definition). All convex techniques are enumerated in
Fig. I.18 under categories.

In the case of non-convex techniques, they have objective functions to be optimized with many lo-
cal optima, and its result varies in each execution, even in the same data set, due to the nature of the
optimization method. t-distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Ap-
proximation and Projection (UMAP) are widely used in the bibliography as dimensionality reduction
techniques to enhance various ML methods. However, they are more extensively used as data visualiza-
tion techniques [69].

Not all these data decomposition, manifolds, and data projection techniques are developed in this
introduction. Only the relevant details for the later described methodology are exposed from here.
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Figure I.18. Dimensionality reduction convex techniques grouped by full and sparse spectral
application.

Figure I.19. Dimensionality reduction non-convex principal techniques. RL stands for repre-
sentation learning, and DL stands for Deep Learning. AutoEncoders (AE), Varational AutoEn-
coders (VAE), and Generative Adversarial Networks (GAN) learn a representation of the data
set based in DL architectures.

I.7.5.1 . t-SNE and UMAP projections as visualization tools
Data projection techniques can be helpful to visualize hidden data set proprieties such as clusters or

sub-groups, to find relations between data such as similar samples in the data set, or to visualize better
a high-dimensional data set. For this, two techniques are often used in ML: t-SNE and UMAP. Both
projection techniques were conceived to generate a 2D or 3D visualization of a high-dimensional data
set where the number of features is more than three.

t-distributed Stochastic Neighbor Embedding (t-SNE) [70] is based on distances between samples in
the data set modeled by probability laws. It is possible to imagine that an instance xi can be represented
by a point on a high dimensional space, the data original space. The algorithm proposes to center a
Gaussian distribution in each point of the original space. The distribution is built by using the distances
in the original space. The conditional probability to an instance xj near xi is given by

pi|j =
e

−||xi−xj ||
2

2σ2
i∑

k ̸=l e
−||xk−xl||2

2σ2
i

, (I.14)

where || · || is an Euclidean distance in the original space, σi is the standard deviation that depends on
a hyper-parameter called perplexity, interpreted by the number of desired neighbors to be found around
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xi.pi|j can be interpreted by a way to measure similarity between neighbors, the closer regarding || · ||
they are in the original space, the higher is pi|j . When pi|j is close to one, xi and xj are considered to be
similar.

The term e

−||xi−xj ||
2

2σ2
i can be seen as a projection of xj on a ‘distance axis’ centered on xi, where

xj has an assigned probability given by this term. This term must be regularized by
∑

k ̸=l e
−||xk−xl||

2

2σ2
i ;

otherwise, two pi|j and pk|j distributions would assign largely different probabilities to the first of their
local neighbor. The Eq. I.14 is then normalized by the sum of the projection values for the rest of the
samples in the data set (k ̸= j). This provides pi|j a relative value regarding the the rest of distances and
allows the algorithm to model the distances globally instead of locally, particularly when some clusters
are found thanks to this projection.

The second part of t-SNE algorithm is to create a low-dimensional space to represent the points of
the data set. New probability distributions are built for this reduced space. Each xi has a coordinated
correspondent yi in this space. This time, a t-Student (ν = 1.0) distribution is chosen to model sim-
ilarities between points in this space since this distribution has a longer tail, the probability for short
distances are not too close to 1.0, and further distances are not too close to 0.0. Since t-Student models
the visualization space (2D or 3D), the distribution choice gives a less concentrated cluster of points.
The conditional probability to an instance yj near to yi in a reduced space is given by

qi|j =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

, (I.15)
qi|j acts as pi|j but in the reduced space. Now that there are two conditional probability functions in

each space, we can compare them. It is possible to use the Kullback-Leibler (KL) divergence between the
two conditional probabilities as a comparison metric. A gradient descent takes yi as a dependent variable.
The objective is to find the set of coordinates yi in the reduced space that minimizes KL-divergence. In
other words, the similarities given by pi|j match those given by qi|j .

An example of a t-SNE reduced representation on a 3D space of the MNIST data set [71] is shown
in Fig. I.20, together with a PCA representation of the same data. MNIST dataset is a 2D array of pixels,
where each element is a gray-scale value representing pixel intensity, and the image is 28 pixels in width
and 28 pixels in height. Therefore, the dimensionality of each image in the MNIST dataset is 28x28 =
784. Here, the 784 features are reduced to 3 to represent clusters of the hand-written number data set.

Other representations compete with t-SNE, like UMAP [72]. This visualization is less applied and
explored since it is a newer data projector. However, the nature of the algorithm gives a deterministic
result, which is an attractive characteristic for repeatability and comparison.

I.7.5.2 . Representation learning and generative learning
Representation learning (RL) implements NNs to extract meaningful patterns from data to create

representations for D through a function F . Unlike PCA or UMAP, F function relies on a set of NNs.
Both FC-NN and CNN play an important role in the state-of-art of RL techniques. In this approach,
F is an arrangement of FC-NN and CNN trained over the data set. F is often called filter or encoder.
They are commonly applied in a DL schema since they use several layers, or even several NNs. Here,
dimensionality reduction is not the only objective. The set of NNs may be deployed later as new data
generators.

Most of the architectures for RL are also generative networks. This means that besides F , there is
also a G function (called generator or decoder) that can generate never-seen data. In other words, it can
increase the known data set D with new instances. fθ is now separated into two NNs, and equivalent to
F ◦G. This type of RL architecture is focused here since it is implemented later in this work. Represen-
tation and generative learning are strongly dependent, so both concepts must be developed together.

F and G functions can take several forms depending on the architecture and the task. In any case,
F is intended to create a new reduced representation of the data, while G is intended to use the learned
reduced representation to create new data.
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Figure I.20. PCA (left) and t-SNE (right) representation in 3D of the MNIST data set. In
PCA representation, each point is represented by the coordinates given by the �rst 3 principal
components. In t-SNE, by a 3D yi vector. Each point is plotted in a di�erent colored square
with the corresponding hand-written number for both representations. The t-SNE presents a
better cluster separation than PCA.

Some of the most primitive RL architectures exposed in this subsection are AutoEncoders (AE) and
Variatonal AutoEncoders (VAE). A separate subsection is given to Generative Adversarial Networks
(GAN). They are differentiated from AE and VAE architectures because GANs implement adversarial
training, described later in Section I.7.6. Besides this main difference, GANs have also shown an impres-
sive capacity for data generation by learning a meaningful representation of the data set, so they deserve
special attention for the objectives of this work.

AutoEncoders It was mentioned before that some UL techniques relied on NNs architectures. AEs
[73] are an example where the task is to learn a reduced representation of the data set while following
a reconstruction objective. Each layer in a network F produced an output that can be interpreted as a
new representation of the original input instance x. If the last layer of the network F contains smaller
quantities of neurons than the original dimension (d << D), the outputs of F are interpreted as a reduced
representation. The representation is learned by the weights of G and the reconstruction objective: G
takes the outputs of F during the training to reconstruct the x.

In order to train both networks, the architecture is measured on performance by the ability of G to
reconstruct the data after passing through the F bottleneck (reduced dimension). Different metrics can
be proposed regarding the reconstruction task. L-2 norm in Eq. I.16 is an example of loss function L for
the reconstruction objective over the N instances in a data set D.

LAE =
N∑

n=0

∥xn −G ◦ F (xn)∥22 (I.16)
An example of a simplified AE architecture is shown in Fig. I.21. The output of the first part of the

AE (F ) is named latent space or coding. Like other dimensionality reduction techniques, an AE learns
to reduce xn into a representation z ∈ Z . F is a mapping function F :X → Z trained to create a latent
space Z from X . G is another mapping function responsible for reconstructing data during training. The
generator or decoder G :Z → X map the latent representation Z to data space X . Z is a learned reduced
representation of X where F (xn) = zn and Z ⊆ Rd, being d << D. To simplify the notation, we will
call the reconstructed sample from G asx̂n, obtained from x̂n = G ◦ F (xn) .

Unfortunately, once AE is trained, the latent space structure is unknown, hindering the use of AE as
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Figure I.21. Auto Encoder architecture using a FC-NN network with a coding representation
and reconstruction network. Latent space Z is a reduced one dimension representation of the
original data set.

a data generator. The more straightforward way would be to use the trained G to generate new instances
xgen = G(z′), where z′∈ Z but does not have its origin on F (xn) fromD. VAE techniques proved to be
more suitable for using G as a generator to create new never seen data by the NN in a proper way. This
is linked to the fact that we have more information about Z structure than in AEs.

Varational Autoencoders Variational AutoEncoders [74] represent and generate data relying on a sta-
tistical approach. The learned latent space is not a numerical representation (vector) but a learned normal
distribution for each zi. VAEs induce the latent space distribution, for instance, to a normal distribution
during training by using Kullback–Leibler (KL) divergence as a metric. The loss function in this case is
described in Eq. I.17. Compared to LAE from AE, LV AE KL-distance term acts as a regularizing term,
so Z distribution is known at the end of the training.

LV AE=
N∑

n=0

∥xn −G ◦ F (xn)∥22 +
N∑

n=0

DKL(N (µn, σ
2
n)||N (0, 1)) (I.17)

In practice, F outputs consist on two vectors, denoted as µn and σn, where component i represents
the parameters of a distribution of zi in Z , where i = 1, ..., d. Since G operates on a vector of values
similar to an AE, zi is obtained from the ‘reparametrization trick’. µi and σi values are utilized to sample
zi = N (µi, σ

2
i ·ϵ), where ϵ is a small value. The inclusion of ϵ is necessary to attribute the reconstruction

error to the parameters of F . This ensures that the back-propagation can be applied to F , as the sampling
of z is contained within a region defined by ϵ for a given xn.

Figure I.22. Variational Auto-Encoder architecture using a FC-NN with a normal distribution
at latent space.
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Figure I.23. GAN schema with inputs for G and D. The generator takes z vector to generate
fake data set samples. The discriminator takes the fake and real samples to classify them as fake
or real. G and D are DNNs with a combination of convolutional and dense layers.

Convolutional or dense layers can be indifferently used to code or decode data on AE or VAE. The
type of data (images, time series, vector of labels) shall define the more suitable layers. Additionally,
how the information of the data is intended to be structured on Z defines the types of layers. L in AE or
VAE can also be adapted with additional terms to enforce desired characteristics on Z .

The following sub-section talks about deep generative models. This method also applies representa-
tion learning concepts and introduces adversarial learning. A separate section is given to deep generative
models since it is primarily used later in the methodology.

I.7.6 . Deep generative models
Many application of ML and DL has been evoked. This section develops the DL methods enumerated

in Fig. I.19 as representation learning methods. However, a different application is focused on here: deep
generative learning. Many architectures in the bibliography can be used as what we call data generators
or simply generators.

Using DNNs as data generators started with the publication of [75]. The proposed Generative Ad-
versarial Networks (GAN) method trains a neural network in the task of generating new unseen data for
a data set x∈ X , where x follows a data distribution px. A DNN architecture denoted by G is trained to
take a noisy vector, denoted by z ∈ Z , as input to then generate an instance x̂ ∈ X , where x̂ follows a
data distribution pG. It is expected that x̂ ’looks like’ a real instance on X , but implementing a loss L to
measure this is not a simple challenge.

The author proposed to use a discriminator to help construct L. The discriminator D is also a DNN
that is expected to discriminate between real samples from (x∈ X ) and fake samples x̂ from G. When
the discriminator can not see any difference between real and fake samples, the generator succeeds in its
generative task.

The loss for GAN is in construct with the generator and discriminator outputs in two parts: LG and
LD. D is a trainable functional (or DNN) that produces an output for each x̂ or x, and it is expected
for D to return 0 for the fake samples and 1 for the real samples. For instance, the binary output (scalar
between 0 and 1) is used to compute the cross-entropy loss. D is the trained by LD (Eq. I.18). In terms
of statistics, it is called a two-sample test, and it is used to say if x and x̂ are drawn from the same
distribution.

LD = max
D
{logD(x) + log(1−D(x̂))} (I.18)

In contrast, G uses a noise input z ∈ Rd as a source of randomness. z is drawn, for instance, from
a normal distribution, so z ∼ N (0, I ) where 0 is the zero matrix of dimension (d × d), and I is the
identity matrix of dimension (d× d). G generates x̂ samples ( x̂ = G(z) ) while following the objective



I.7. BACKGROUND ON MACHINE LEARNING METHODS AND TECHNIQUES 51
to fool D, so it classifies x̂ as real. For this aim, the loss LG is used to train G by LG (Eq. I.19). Both
losses construct the global loss for the adversarial training of GANs.

LG = min
G
{log(1−D(x̂))} (I.19)

The adversarial game between D and G (also called min-max game) is summarized by Eq. I.20,
where E[·] is the average when several samples of z and x are drawn from they distributions by batches.

LGAN = min
G

max
D
{Ex∼px [logD(x)] + Ez∼N (0,I )[log(1−D(G(z)))]} (I.20)

LGAN is then used by a gradient descent optimization algorithm (Subsection I.20) to update G and
D parameters. The adversarial loss LGAN formulation presented is not unique, but it can take several
forms, like hinge loss [76] or Wasserstein distance [77], where the adversarial game is measured in
different terms compared to the cross-entropy loss.

Additionally, the loss functions can also be adapted to different generative tasks. Generating realistic
images, text, or voice is not the only ability for GANs. Some particular objectives can generate images
with a given style [78, 79, 80]. Exploring Z space after G is trained is also an active research branch in
generative networks. For instance, a possible objective is to use it as an interpolation space by finding
correlations of z and so some real-world characteristics, like in [81] where the Z of realistic face genera-
tor DNN StyleGAN from [82] is explored to generate different pose or physical characteristics in a face,
like age, gender, hair style, among others. Other examples of this approach can be found in [83, 84, 85].
GAN article is one of the pioneers of the generative model techniques, followed by the Deep Convolu-
tional GANs (DCGAN) architecture by [86] that presents substantial improvements in data generation.
Since its publication, several DNN schema have been developed as data generators. For instance, some
approaches use the representation learning DNN architectures (AEs or VAEs in Subsection I.7.5.2) as
generators. Even some architectures conceived for different proposes, such as the U-Net [87], have been
adapted to be used as data generators. For this reason, it is possible to think of a new AI research field
named generative models encompassing all these architectures.

Most recently, diffusion models [88] have been largely developed to enhance the generative capabil-
ities of generative models [89]. This colloquially called ‘new AI technology’ is accessible now to the
general public and shows amazing progress in realistic data generation. Large data sets such as CelebA,
ImageNet, Audioset, or even text on the Internet have fed these architectures to be trained to generate
high-quality images, text, or audio. Exploring this recent approach may be an interesting perspective for
this work.

This thesis uses generative models throughout the methodology to generate NDT&E data. The ar-
chitectures proposed are varied, ranging from AE, U-Net to a most complex Adversarial AutoEncoder
(AAE) schema that borrows the GAN adversarial concept and DCGAN improvements to train an ensem-
ble of DNNs. The objective in each of the following Chapters is not only to generate new NDT&E data
but also to try to understand how DNN works on this task, and how they can be used to generate new
significant data. The final objective is to use this to enhance automatic diagnostic, among other relevant
techniques, so generating unlabeled data are not enough. For instance, the Basic GAN approach only
cares about whether the generated samples look real. An example of this is the StyleGAN, which was
conceived initially only to generate random realistic faces. In the NDT&E field, this approach needs
to be pushed beyond to generate new labeled and informative data to be later deployed for enhanced
diagnostics.

Before developing the specific generative architectures, some complementary concepts from ML and
data generation are mentioned above since they are applied later in the Methodology.

I.7.7 . Transfer learning and domain adaptation on NDT&E
Transfer Learning Transfer Learning (TL) uses the concepts of source and target tasks and domains[90].
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In ML, the algorithms learn from data to perform an expected task (e.g., classification, regression, seg-
mentation). In some cases, it is possible to benefit from an algorithm already trained for a given task (a
source task) to perform a different task, called a target task. Several TL techniques can be applied in this
scenario to transfer the learned feature extractors (e.g., CNN) from a source task to a target task. For
instance, the first layers of a trained NN for image classification can be used to train a regressor.

In other cases, collected data are separated into domains (source and target). The source and target
domain present different characteristics, but share the same task. The target domain is often poorly
accessible in terms of labels or samples.

Some NDT&E problems apply TL to take advantage of previously trained NN to facilitate the train-
ing of a new NN architecture [11, 12, 13] by reusing some layers.

I.7.8 . Domain adaptation and multi-fidelity data
Transfer learning can be effective when just a fidelity level is present during the training to achieve

better performance, even when the data set is far from the in-situ data in terms of distribution and the
data set is small compared to the complexity of the task. A succeeding approach from TL is the Domain
Adaptation (DA) , suitable when more than one data fidelity is available. However, it commonly happens
for NDT&E data to find that the better the fidelity is (closer to in-situ data), the less information about
how these data were produced is available [14]. This is translated to a poorly labeled high-fidelity data
set. To circumvent such an issue, DA mixed with generative or domain-adversarial strategies [16] have
been tested to enhance DL algorithms for NDT&E inspections [17, 18, 19, 20]. DA applications can vary
from large access of labeled data in each fidelity level to just one fidelity level with labels available [91].

In our scenario, the source domain can have its origins in a simulated NDT&E procedure, while the
target domain is the experimental data where an inversion ML algorithm is intended to be deployed. In
other words, two or more degrees of high-fidelity data are accessible during training (e.g., higher reliable
simulation, experimental or in situ data).

I.8 . Main thesis contributions

The contributions of this thesis on the use of machine learning as an efficient tool for the generation
and the exploitation of more realistic signals are presented in the following Chapters. The outcomes
of this research have been structured accordingly into two differentiated parts. First, the challenges of
multi-fidelity simulation by a surrogate model have been studied. Secondly, the developed models have
been applied to perform ML-based diagnostics as applied to NDT&E.

More into detail, the first part of this analysis is dedicated to creating surrogate models that learn from
data coming from NDT&E techniques. The simplest scenario is when only a fidelity level is available.
The most accessible source of single-fidelity data is simulation: parametric simulations, FEM, among
others. A particular challenge is presented when more fidelity levels are available. Any data source close
to reality (e.g., from experience, in situ, or more reliable simulation) contains valuable information for
a given study case on NDT&E. The question is how this information contained in multiple fidelity data
sets can be exploited. The present work gives some insights and avenues to work in multi-fidelity data
sets on NDT&E to later produce more data, enlarging the data in an informative way while it gets the
closer possible to reality. Machine learning is the selected tool for surrogate model conception since it
is a promising approach for massive and fast data generation. However, machine learning still presents
some issues regarding generalization, explainability, and confidence that must be treated.

The second part objective is to use the newly generated data to enhance automatic diagnostics. The
exploitation of the generated data for the inverse problems (e.g., diagnostic tools) may improve the
performance on tasks such as regression (e.g., parameter estimation), classification (e.g., material micro-
structure inference), and statistical and performance analysis.

Fig. I.24 shows an overview of the thesis project and its principal parts. In the following chapters,
both parts are developed together for specific NDT&E study cases. From Chapters II to IV, a NDT&E
data set is introduced together with the ML methodology implemented. Some results to quantify the ac-
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Figure I.24. Overview of the thesis project. LF: low �delity. HF: high-�delity. ML: Machine-
learning algorithms. The forward problem focuses in the development of M, while the inverse
problem shows an application ofM in diagnostic.

curacy of the surrogate model are exposed, and when it is pertinent, an application of the newly generated
data are assessed for an inverse problem.

• In Chapter II, we implement the surrogate model via a conditional AutoEncoder architecture (for-
ward problem) for an ECT simulated data set, where a set of parameters p is used to condition the
DL architecture. The aim is to build a surrogate modelM to replace F . Later,M is deployed in
statistical analysis (inverse problem) for the ECT inspection. The results were published in [92].

• In Chapter III, we apply a conditional U-Net architecture as a surrogate model for a multi-fidelity
UT TFM imaging data set. The data set contains simulated and experimental acquisitions. The
direct problem used a similar conditioning to the previous Chapter, by the parameters p from
the simulated data. M is a deterministic mapping from simulation fidelity data to experimental
fidelity data. The results were published in [93].

• In Chapter IV, we use the approach in Chapter IV to develop a stochastic generator from a multi-
fidelity UT TFM imaging data set.M generates multiple experimental samples from a simulation
sample, by learning from the experimental examples in the data set. The inverse problem aimed
here is the inversion of p by a DL, an additional neural network with the generated data fromM.
The results were published in [94].

Some of the implemented ML learning techniques and architectures and some NDT&E techniques
are not described in this introduction, but they are described in the following Chapters to avoid an exten-
sive and too abstract introduction.
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II - Development of a deep learning framework in an eddy cur-
rent testing simulated data set as surrogate model for effi-
cient statistical studies
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About this section
In this chapter, we present a supervised deep learning framework in a simulated data set to be used as a surrogate
model for efficient statistical studies. NDT&E simulation can be expensive in terms of time calculation and
some diagnostic studies require large amount of data to be assessed. This first approach is intended to find a
deep learning method suitable for the development of a surrogate model on NDT&E in paricular contexts. The
development framework is exploited later for a multi-fidelity case.

II.1 . Introduction

In Nondestructive Testing an Evaluation (NDT&E) field, the vast improvement in numerical sim-
ulation tools in terms of efficiency is mainly due to the increases of computational power on standard
PCs and through the use of distributed and cloud computing resources. Nevertheless, this progress has
just partially mitigated the computational efficiency issues that one faces in performing very demand-
ing statistical studies such as Global Sensitivity Analysis (GSA) [95, 96], Model-Assisted Probability
of Detection (MAPOD) [97, 98, 99], stochastic optimization [100], inversion[101, 102], etc. In order to
decrease the computational burden without degrading the quality of the results, metamodels (also known
as surrogate models) are employed to replace the “true” physics-based model for a given set of parame-
ters (or factors). Loosely speaking, a metamodel can be defined as a mathematical function mapping the
parameter space versus the measures space, where measurements can be scalar or vector-valued quan-
tities. In the context of machine learning and statistical methods, the most employed metamodels rely
on shallow learning methods (i.e., kernel machines) [101, 103, 104], statistical methods (i.e., Gaussian
process, polynomial chaos expansion, etc.) [105, 106], ensemble methods (i.e., random forest, extreme
gradient boosting, etc.) or Deep Neural Network (DNN) architectures [107]. All these methods exploit
a supervised learning framework where the inputs correspond to a labeled target (or, equivalently, the
measurement output).

That is, the use of a pre-computed data set (or database), which contains a collection of input param-
eters and output signals, is generated during an off-line phase based on physics-based simulations, and
a specific ML model is fit on the data available. In the second phase, referred to as the online phase, a
metamodel is used to generate output signals on a set of unseen input parameters. The metamodel acts as
a black-box quasi-real-time replacement of the complete forward solver. In this way, it can be plugged
in a transparent way within any kind of algorithm involving the use of a physical model for speeding-up
considerably the computational efficiency.

In the NDT&E community, the use of metamodels applied to GSA [96, 108] and MAPOD [97] has
been extensively investigated in the past based on different configurations. Nevertheless, using meta-
models based on DNN remains marginal compared to kernel machines or statistical methods. One of
the main reasons for considering DNN architectures over the aforementioned approaches is the higher
scaling efficiency in large and complex data sets. Therefore, DNN-based methods are among the most
suitable regressor to be applied when the cardinality of the inputs is very large.

This chapter focuses on an Eddy Current Testing (ECT) inspection scenario driven by twelve param-
eters used to describe probe, specimen and defects positional or geometric characteristics. Simulations
have been performed into the CIVA-DS application (i.e., the database generation and ML-focused pack-
age of the CIVA commercial platform) [109], efficiently addressing the generation of data sets for a wide
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Figure II.1. Sketch of the supervised deep neural network schema employed divided as (a)
o�ine phase where a AE deep learning model is trained and (b) online phase where the deep
learning model is used as regressorM. The variables Yn,Xfix,pn of this schema are di�ned in
the next sections.

range of NDT&E problems regardless of the method considered. A DNN is trained over this data set to
later be used to efficiently compute the GSA and the Feature Importance (FI).

This chapter is structured as follows. In Section II.2, we present the supervised framework adopted in
our studies with a particular emphasis on the DNN architecture developed. In Section II.3, we introduce
the GSA methods employed in this work along with the Shapely additive explanation (SHAP) [110] used
to analyze the impact/importance of the parameters on the model outputs, named the FI method in this
work. Subsequently, the DNN performance is assessed in Section II.4, and the GSA and FI results are
discussed in Section II.4.2. The chapter ends with the conclusions and future perspectives.

II.2 . Supervised DNN regression schema applied to ECT signals

In the last decade, fast regression models (i.e., a metamodel or surrogate model) based on pre-
computed databases made of homogeneous collections of NDT&E inspection signals (e.g., A-scan, B-
scan, C-scan etc. signals) and/or engineered extracted features from inspection signals (e.g., peak values,
time of flight, etc.) and the associated inspection parameters have been increasingly employed to speed-
up the computational time of practical studies for assessing the performance of the inspection procedure
such as the MAPOD framework [96, 99, 111, 112, 106, 113]. More recently, the use of surrogate models
has been applied to enable the almost real-time application of global sensitivity analysis studied based on
statistical distributions. Nevertheless, the use of metamodels based on DNN architectures is not deeply
studied in the context of NDT&E based on ECT signals if applied to the efficient calculation of GSA
indexes or FI ranking based on SHAP values.

II.2.1 . Simulated ECT data-set
We define a database D containing a set of N couples (or samples) as D = [(p1,Y1) , (p2,Y2) , ..., (pN ,YN )],

where the vector associated with the i-th sample writes as pn = [p1, p2, ..., pD] with D input parameters
size such that pn ∈ RD and the corresponding target vector made by M element is,

Yn = [Y1,Y2, ...,YN ].
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AE(pn,Xfix) = (S3 ◦ S2 ◦ S1 ◦ D2 ◦ D1 ◦ LS ◦ E3 ◦ E2 ◦ E1)(pn,Xfix) (II.1)

Ei(pn,Yfi−1n
) = Lpool ◦ σ(Lp(pn)) ◦ σ(Lp(pn,Yfi−1n

)) + Lpool ◦ Lconv(Yfi−1n
)

Lp(pn,Yfi−1n
) = LpST (pn) ◦ LFiLM(pn) ◦ Lconv(Yfi−1n

)

LS(Yfi−1n
) = σ(Lp(pn)) ◦ σ(Lp(pn,Yfi−1n

)) + Lconv(Yfi−1n
)

Di(Yfi−1n
) = Lup ◦ σ(LIN ◦ Lconv)(Yfi−1n

) + Lup ◦ Lconv(Yfi−1n
)

Si(Yfi−1n
) = σTanH(LIN ◦ Lconv)(Yfin)

(II.2)

These target or output values are obtained by applying a deterministic forward operator F on the set
of input parameters pn, i.e., Yn = F(pn). More generally, we can define F : R1×D → CMx×My and
therefore Yn ∈ CMx×My where F(pn) is obtained via a CIVA solver simulation based on the integral
approach [34, 114], governed by the Equations I.1, I.2, I.3, I.4, I.5 from Chapter I. Different database-
building strategies have been developed in the literature; some of them rely on fixed sampling schema
of the parameter space, while others aim to increase the parsimony in terms of the number of calls to
the forward solver without degradation of the accuracy in metamodel results. In this work, we employ a
database sampling-based one-shot strategy where the parameter space has been sampled based on Latin
hyper-cube sampling.

The metamodel (M) employed in this work is based on a DNN architecture [107] tailored for
complex-valued ECT signals based on a C-scan inspection procedure. Based on the tight analogy of
ECT signals with images (indeed, up to some extent, ECT measurements can be seen as hyper-spectral
images with two channels), we developed a specific encoder-decoder (AutoEncoder-like (AE)) architec-
ture based on 2D-convolutional layers alternated to PReLU activation function [115] and average pooling
layers. Furthermore, to enable the regression capability based on the variation of input parameters only
(i.e., see (Eq. II.1)), we accounted for the Feature-wise Linear Modulation (FiLM) [116] and a modified
Spatial Transformer (ST) layers [117], name here as parametric ST (pST).

II.2.2 . Conditional auto-encoder-like architecture
The AE-like architectures in the bibliography may vary regarding the objective of the DNN and the

type of data used to train it. For AE-type neural networks, the layers before the middle latent space (LS)
are tailored to the expected task during the on-line phase (Fig. II.1 a)); e.g., variational AEs rely on fully
connected layers to infer distribution parameters, long short-term memory encoders are used to embed
the useful information to infer future states of an input. In our case, the feature extraction procedure
performed by the architecture is based on pi at every layer of the encoder. The encoder use a fixed
2-channel noisy input Xfix with the same dimension of Yi. This may lead to an LS structured by the
parameters used during the data production. The expected behavior during the on-line phase is a coherent
ECT generation piloted by pi. It is worth to be noticed that a structured LS based on the knowledge of
input parameters enhance a better insight into the inner working mechanisms of the NN architecture as
well as assures that the underlying physics is injected and preserved into the architecture in the different
layers. A sketch of the architecture developed in this work is represented in Fig. II.2. The encoder,
bottleneck and decoder blocks are highlighted in yellow (Ei), green (LS) and blue (Di), respectively.
Additional synthesis layers (Si), displayed in purple, are added to improve reconstruction accuracy. The
encoder and decoders count with Res-Net-like skip-connections to help the convergence for the training.
Spatial dropout layers are added at every block to promote the independence of per-channel features.
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We denote with the subscript n a sample that is forwarded in AE (Eq. II.1). Yf is the features
extracted by the layers in AE . i is the number of the layers in AE whose input is the Yf from the
precedent layer i−1, together with the pn corresponding to the sample Yn. The inner layers operators at
each layer (Eq. II.2) are identified as Lpthe parametric layer triplet (composed by the parametric spatial
transformerLpST , the feature-wise linear modulator LFiLM and a 2D convolution Lconv. σ denotes
the PReLU activation, while σTanH is a tangent hyperbolic activation. Lupand Lpool represent the up-
sampling and average pooling operators. The encoder normalizes its convolution output by an instance
normalization LIN [118].

A Mean Square Error (MSE) loss is used to train the architecture. The neural networks optimized
the reconstruction of Yn (2-channel input) while learning how the FiLM and pST transformations are
conditioned by pn. Those two layers are schematically represented in II.2(b) and II.2c, where Yfprecedn
are the extracted feature by any precedent layer (L).

For any n-th sample pn, the pST layer, placed after the i-th Res-Net block, uses a dense layer to
infer ϕ : R6×Ck from pn to built Tϕ : R3×3×Ck , where Ck are the channel number of the input feature
map Yfprecedn

∈ RWi×Hi×Ck . ϕ and Tϕ for each Ck are built as

ϕCk
(pn) = [ϕ1Ck

(pn), ϕ2Ck
(pn), ϕ3Ck

(pn),

ϕ4Ck
(pn), ϕ5Ck

(pn), ϕ6Ck
(pn)],

TϕCk
(ϕCk

) =

 ϕ1Ck
ϕ2Ck

ϕ3Ck

ϕ4Ck
ϕ5Ck

ϕ6Ck

0 0 1

 ,

(II.3)

to be applied as an affine transformation per channel Ci to the feature map coordinates of Yfprecedn
as

follows,

coord(Yf−stn) = Tϕ(ϕ(pn))⊙ coord(Yfprecedn
) . (II.4)

The resulting coordinates from Eq.II.4 are used to compute a transformed feature map Yfprecedn
. To

do that, the pixel intensities in Yfprecedn
are used together with the source coordinate grid coord(Yfprecedn

)
to get the pixel values for the new target grid coord(Yf−stn). A bi-linear interpolation is applied with
the four close neighbors from the source grid. As a result, Yf−stn is a representation of Yfprecedn

after
the learned an affine transformation is applied at each channel. The operation denoted by ⊙ performs
a matrix multiplication each set of (x, y) coordinates at Yfprecedn

for each channel. The whole pST
operation (Eq. II.3 and II.4) is represented by T from now-on, witch is applied toYfin as follows,

LpST(pn,Yfprecedn
) = T (pn) ◦Yfprecedn

(II.5)
Analogously to pST, the FiLM uses a dense layer to infer β(pn) : RCk and γ(pn) : RCk from pn to

apply, then

LFiLM (pn,Yfprecedn
) = γ(pn) ·

Yfprecedn
− E[Yfprecedn

]√
σ2[Yfprecedn

] + ϵ
+ β(pn), (II.6)

where E [·] and σ2 [·] represent the empirical average and variance, respectively. ϵ is a small value
used for numerical stability, normally set to 1× 10−3.

In order to use the AE-like architecture as a parametric regressor, we fix the input to Xfix ∼ N (0, I)
and I,0 ∈RMx×My×2 during the training and the test phases. In contrast, using Yn as input during
the training like in a pure AE architecture, may not result in a surrogate modelM(pn), since an input
is needed during the inference. In the Appendix VII we comment how the pST and FiLM layers acts
when a traditional AE is trained. The first observation is that the choice of the input during the inference
introduce a bias in the generation (see Appendix Fig. VII.1 for more details). Secondly, it is the fact that
the encoder do not use the particular image features of the input to create the latent space (see Appendix
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(a) AE blocks disposition

(b)LFiLM operator

(c)LpST operator

(d) Detail for the FiLM and pST conditional layers in the encoder
Figure II.2. In (a), the convolution AutoEncoder-like (AE) architecture was modi�ed to have
a parametric conditional input (yellow arrows). The architecture reconstructs the ECT image,
guided by the parameters. Yellow blocks contain parametric (b) Spatial Transformers layers
(pST) and (c) Fidelity Layer Modulator (FiLM) for conditioning. The green block in (a) is the
latent representation of the input image given by the encoder. The encoder and synthesis layers
generate a conditional image. The blue arrows represent residual connections. In (d), a detail
for how the conditional layers are set in the encoder. Figure created with [119].
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Fig. VII.2 for more details). Instead, the encoder takes any image at the input together with pn to
create the necessary encoding to get Yn, even when the input features is far from the desired Yn. This
observation takes us to the conclusion that fixing the input to a arbitrary input such as, as instance, a
noisy spatially correlated input may improve the generation during the test. The interest of this relies on
avoiding the bias traditional AE introduced by the choice of the input. This convolution feed-forward
encoder-decoder is allowed to create a small parameter metamodel that, at the same time, allows us
to reduced to a minimum the number of training samples, competing with, as example, the number of
parameters for a multi dense layer architecture to map pn to Yn.

Behind the choice of this architecture is the underlying assumption that a set of spatial transforma-
tions (Eq. II.5) exists to generate the ECT images from a fixed input, and these transformations depend
on the simulation parameters. Similarly, the distribution of each ECT image depends on the input param-
eters; this is learned by Eq. II.6. Both transformations are a function of the simulation parameters. For
the first assumption, the coil tilt is an example of a spatial transformation required to produce different
coherent outputs from a fixed image input but a changing parameter input pn. For instance, the main
feature in Fig. II.5(b)-left, in contrast to Fig. II.5(b)-right, presents a spatial scale learned by the pST,
among others. Similarly, the two images present different distributions learned by the FiLM.

II.2.3 . Metamodel validation metrics
To quantitatively evaluate the metamodel prediction accuracy of multivariate ECT signals, we shall

employ three different metrics. The first one is the normalized root mean squared error (NRMSE),
defined as

NRMSE =

√√√√ 1

N

N∑
n=1

(F(pn)−M(pn))
2

Ymax −Ymin
, (II.7)

where F(pn) = Yn and it stands for the n-th true value to be estimated andM(pn) is the associated
estimation. Ymax and Ymin correspond to the maximum and minimum ECT signals values among
Nvalues considered, respectively. To estimate the fit of the predicted ECT signals against the ground
truth (GT), we employ the correlation coefficient (R2) defined as

R2 = 1−
N∑

n=1

(F(pn)−M(pn))
2(

F(pn)− Ȳ
)2 , (II.8)

where Ȳ is the mean value of the ECT signals among the N samples considered. Lastly, the mean
normalized Frobenius norm (∥·∥2F ) error (MNFE) has been calculated as

MNFE =
1

N

N∑
n=1

∥F(pn)−M(pn)∥2F
∥F {pn}∥2F

. (II.9)

II.3 . Metamodel-based sensitivity analysis and feature importance studies applied to
ECT signals

In real-case scenarios, the agreement between experimental data and simulated results depends on the
capability to master the whole acquisition chain (i.e., probe position, dimensions, knowledge of specimen
characteristics, measurement noise, etc.). That is, in operative conditions, the measurement signals are
impacted by ‘hidden’ factors that cannot be directly measured. In order to have a better insight into the
impacts of these factors on measurement, one can consider them along with the driving factors that are
supposed to be ‘known’, i.e., flaw size, position, etc., in a sensitivity analysis or FI ranking framework.

The main goal of global sensitivity analysis [95] consists on identifying and ranking the set of pa-
rameters that impact the model output variability across the entire data set variability. In a nutshell, the
underlying concept is that the bigger the sensitivity of a parameter is, the higher its influence on the
output is. In this section, we introduce the GSA method variance decomposition based on Sobol’ indices
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[120] and the moment-independent GSA method based on δ-sensitivity measure (or indexes), which is
commonly employed for ranking and screening purposes [95]. In the ML research community, the rank-
ing of the most important feature is performed through FI methods. In this section, we focused on the use
of SHAP values[110] as a FI method to be applied to the analysis of the most important factors driving
the ECT signals measurements.

Sobol’ indices provide a quantitative measure of the contribution of individual input variables or
combinations of variables to the overall variability in the model output. There are two main types of
Sobol indices: first-order indices and total-order indices.

First-order indices represent the contribution of each individual input variable to the output variabil-
ity when considered in isolation, without accounting for interactions with other variables. Total-order
indices account for both the direct effect of a variable and its interactions with other variables. They
measure the total contribution of a variable to the output variability, including both independent and in-
teractive effects.

Regardless of the use of GSA or FI methods for ranking purposes, the computational burden as-
sociated with their calculation makes the use of metamodels mandatory for performing the sensitiv-
ity analysis in an acceptable amount of time. Referring to GSA, one can show that the first-order
Sobol’ and the total order indices of the i-th factor are given by [120, 121] Si = Vi

Var(M(p)) and

STi = 1 − Varp∼i (E(M(p)|p∼i))

Var(M(p)) , receptively. Si and STi represent the main effects of the i-th vari-
able alone and the effects of the i-th variable and its interactions with the other variables, respectively.
Where Var (·) represents the variance, E (·) the expectation with Vi = Varpi (Ep∼i (M(p)|pi)) with
the subscript ‘∼’ identifies the left out index factor in the calculations [121].

It is worth to be mentioned that Sobol’ indices capture the overall behavior of uncertainties when
the variance of the outputs represents sufficiently (i.e., it is a good proxy for its estimation). δ-sensitivity
measure is used to compute GSA indices based on the variation of conditional and unconditional prob-
ability density functions. This sensitivity analysis method is particularly suitable in the presence of
a correlation between parameter and when the distribution of the outputs are highly skewed or multi-
modal. δ-importance (or δ-sensitivity) measure for the i-th factor is defined as [122] δi = 1

2Epi [s (pi)]
with

Epi [s (pi)] =

∫
fpi

[∫ ∣∣fY (M(p))− fY |pi (M(p)|pi)
∣∣ dydpi] ,

called inner statistic or inner separation, represents the area enclosed between the conditional (fY |pi) and
unconditional (fY ) model output densities obtained for a particular value of pi. This means that in the
case of fY |pi is equal to fY , removing the uncertainty on pi does not affect the distribution of the output;
thus, the i-th input does not impact the output ofM(p).

Feature importance methods can be used in order to rank the most impacting inputs onto the model
outputs. Among the wide set of FI methods developed by the ML scientific community, in this work,
we adopt SHAP [110], which is a method to explain predictions based on the use of Shapley values in
the case of coalition game theory. Furthermore, SHAP values enable access to both global estimations
of FI as well as to a qualitative assessment of the impact of inputs onto the model output. Loosely
speaking, Shapley values express how the predictions are homogeneously distributed among the features
(i.e., the parameters) and in the framework of SHAP, Shapley values are calculated as an additive feature
attribution method as g (z′) = ϕ0 +

∑M
j=1 ϕjz

′
jwith g (·) being the explanation mode, z′ z′ is the so-

called coalition vector (i.e., the features/inputs considered), ϕj the Shapley value for the j-th feature and
ϕ0 = E [f (z)] with f(·) =M(p)|z.

II.4 . Results

In this section, we analyze the results obtained for the proposed DNN-based metamodel schema once
applied to ECT signals based on an inspection problem parameterized by coil, specimen and crack(s)
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Figure II.3. ECT inspection con�guration. Two isolated plates with a linear crack in each
plate. A coil follows a scanning path to produce imaginary and real pixel maps. The 3D view
and the associated three main orthogonal projections are shown.

parameters. The synthesis of ECT signals has been applied to the fast calculation of global sensitivity
analysis (GSA) indices and feature importance (FI) calculations.

II.4.1 . Generative DNN-based metamodel performance
Referring to the inspection case shown in Fig. II.3, a suitable database has been built accounting

for twelve parameters involving the cracks, probe and specimen parametrization. The forward solver
simulations, based on the integral equation method [34, 114], have been performed by CIVA software
[109]. More into detail, crack 1 length (lC1) was made varying [25.0; 35.0] mm, and its width (wC1)
takes values in the interval [0.05; 0.5] mm. Crack 2 length (lC2), width (wC2) and height (hC2) were
varied in the ranges of [25.0; 35.0] mm, [0.05; 0.5] mm and [0.25; 2.0] mm, respectively. The skew an-
gle between the two cracks (ϕ12) takes values between [0.0; 110.0] deg. The coil lift-off (lo), tilt in the
xz-plane (θxz), tilt in the yz-plane (θyz) assumed values in the range of [0.05; 0.8] mm, [0.0; 8.0] deg
and [0.0; 8.0] deg, respectively. Concerning the specimen, both plates conductivity (σ1 and σ2) var-
ied between [16.0; 22.0] MS/m along with the air gap thickness between the two plates (t) ranging as
[0.03; 0.3]mm.

The acquisition are done at the frequency of 1.5 kHz and the plates have 17MSiemens for electrical
conductivity.

For simulating the inspection procedure, a C-scan (i.e., a 2D map) made by Mx ×My = 72 × 72
points centered on the cracks zone has been considered for simulations. Therefore, each sample within
the database contains 5184 complex-valued measurement points corresponding to the coil impedance
variation signal (∆Z). The database has been sampled based on a Latin hyper-cube sampling schema
made of 5 k items and then split into training, validation and test sets by choosing 1.25k, 625 and 2.5k
samples, respectively. The generative DNN architecture introduced in Section II.2 has been trained with
a learning rate equal to 1e−3 based on ADAM optimizer [123] with a batch size equal to 128. The
training procedure ended after 5 k epochs in about 4 h on a GPU cluster equipped with one NVIDIA
HGX A100 graphic card.

The DNN metamodel performance has been assessed on the whole set of 2.5k test samples accord-
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ingly to the metrics provided in equations II.7, II.8 and II.9, obtaining error values as 0.007, 0.92 and
3.7e− 9, respectively. Qualitative comparisons of results based on the test set samples are given for the
real and imaginary parts of the signal in Fig. II.4 and Fig. II.5. Fig. II.6 shows an example of generation
by different input parameter changes. A good agreement has been observed between DNN prediction and
ground truth (GT) all over the whole set of test. Therefore, one can conclude that the errors introduced
by metamodel predictions of ECT signal are negligible for its exploitation for ranking purposes by GSA
indices and FI calculation. Furthermore, from the point of view of computational performance, the test
set predictions based on the whole test set take about 1.25 s on a PC equipped with an Intel Xeon CPU
@3.70 GHz and a QUADRO RTX GPU 6000, which is a non-negligible speed-up in computational time
efficiency if it is compared to the about 40 seg needed to compute one forward solver calculation.

II.4.2 . A deeper insight into the generative DNN metamodel procedure
Hereafter, we provide some insight into how the DNN learns to generate data. We explored the latent

space block output to have access to the analysis of the operation of the encoder. Toward this end, the
t-SNE manifold projection [70] was used to obtain a compact 2D visual representation of the latent space
across the entire data set (i.e., the whole 5k samples).

Fig.II.7 represents a scatter plot of the LS space. Every point is located on the 2D manifold by its
coordinates (LS1, LS2) based on the t-SNE with an initialization method relying on the principal com-
ponent analysis (PCA) [124]. As a result, each point can be connected to a parameter value and properly
visualized based on the ‘color bar dimension’. In the analysis of the manifold, one can clearly appreciate
that hierarchical arrangements appear as shown in Fig.II.7 a) − b), whereas a less pronounced order is
observed for the lift-off parameter. The observations demonstrated that inner features are structured by
parameters and that the generative model developed focused first (i.e., encoded or extracted features) on
the spatial information (i.e., the ECT flaw signature on the C-scan) associated with ϕ12 and lC1 and then
to lo. Such behavior is possible since the input vector can produce both previously unseen samples as
well as other samples found in the data collection. Furthermore, the projection demonstrates how the
encoder features are altered in a coherent direction during the generation by regression.

A well-structured latent space does not imply a good reconstruction, but if the hierarchy found in
the projection is coherent with the training data set structure, it may indicate that the DNN has captured
correctly the spatial features of the input images and so the empty space can be filled in a coherent man-
ner. In other words, the DNN who makes a regression over this structured space is expected to generate
correct new data. The interest in this architecture is that even if the distribution of the represented latent
space is unknown (arbitrary since it is not imposed), the regression is possible in a controlled way since
we have access parameters for the generation as a DNN input, a fact that is no always true in other AE
architectures.

II.5 . Sobol’ indices, δ-importance measure and SHAP results analysis as application
of DNN metamodel

Based on the DNN metamodel validated in Subsection II.4.1, we applied it to the calculation of GSA
indices and FI calculation for parameter ranking purposes, as introduced in Section II.3. We compute 25k
samples for the GSA calculation routine of the SALib Python-based sensitivity analysis library [125],
where the twelve driving parameters have been varied by Latin hyper-cube sampling. That is, both Sobol’
and δ-importance indexes were calculated efficiently in about 370 seconds, and the results are shown in
Figure II.8 and Fig. II.9, respectively. In Fig. II.10, the FI ranking relies on SHAP values analysis, where
the calculations were based on KernelExplainer within the Python-based library called SHAP [110].

From the cross-comparisons between the two GSA indices, one can notice that there is an overall
high correlation between Sobol’ and δ-importance indices regardless of the ECT components considered
(i.e., absolute, real or imaginary). On the other hand, the comparisons between GSA and SHAP show
overall good agreement in the order of indices with complete concordance in the real part. The biggest
discordance between the analysis is in the index of the lC2 in the absolute value, being the more important
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a)

b)

c)

d)

e)

Figure II.4. Qualitative assessment of the DNN metamodel regressor for the test set prediction
of the real part of ECT signals (Re {∆Z}). In a) the ground true versus predicted plot based
on the Frobenius norm of the ECT C-scan. In b), c), d), e) the is two columns, the one at the
left represent the one of the best prediction cases and the one at the right the worst prediction
case, both based in the norm plotted in a). In b) is shown the true values, in c) the predictions,
in b) the di�erences between the C-scans of GT and in e) predictions and the scan extractions
along the horizontal cut sketched on d) plots.
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a)

b)

c)

d)

e)

Figure II.5. Qualitative assessment of the DNN metamodel regressor for the test set prediction
of the imaginary part of ECT signals (Im {∆Z}). In a) the ground true versus predicted
plot based on the Frobenius norm of the ECT C-scan. In b), c), d), e) the is two columns, the
one at the left represent the one of the best prediction cases and the one at the right the worst
prediction case, both based in the norm plotted in a). In b) is shown the true values, in c) the
predictions, in b) the di�erences between the C-scans of GT and in e) predictions and the scan
extractions along the horizontal cut sketched on d) plots.
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Figure II.6. Example of generation by DNN metamodel. The input parameters are varied
by increasing or decreasing the skew angle and the upper crack length form an initial set of
parameter that represents.

Figure II.7. DNN bottleneck layer representation based on 2D-projection t-SNE projection.
From top to bottom, points are colored accordingly to ϕ12, lC1 and lo, respectively.
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feature for SHAP while its Sobol’ and δ-importance index is low. Such a particular behavior needs further
investigation since it seems to be associated with the real part of the ECT signal (which is embedded into
the absolute value, too). Unlike both the GSA methods, through SHAP values analysis, one may have
deeper information on how the input parameters impact the variability of ECT signals collected by the
coil. More specifically, thanks to the so-called “bee-swarm” plots, we can analyze the distribution of
SHAP values for each of the twelve considered parameters as shown in Fig. II.11. Looking at Fig. II.11,
one can notice that the coil position parameters (tilt and lift-off) and both the crack 1 parameters (namely
the length and the width) have a symmetric impact. hC2 has a more asymmetric impact for high and low
values. This behavior can be justified by considering the underlying physics. Indeed, the penetration of
eddy currents into the medium diminishes exponentially accordingly to the skin depth.As a consequence,
a very minor impact of crack 2 on the variation of coil impedance is expected for smaller crack heights
compared to the larger one. Furthermore, the relation between the variation of coil impedance and hC2 is
linear when crack 2 approaches the second plate upper surface, and it becomes non-linear when crack 2
breaks the second plate’s upper surface. Based on these results, it is believed that the richer information
provided by “bee-swarm” -like plots is a valuable tool to deeply analyze both GSA and FI results in many
realistic inspection cases (not only linked to ECT inspection signals).

II.6 . Chapter outlook and perspectives

The present work proposes a tailored generative deep learning framework for very efficient simula-
tion of ECT signals analysis. Our work shown how efficiently quantifying the sensitivity and establishing
a feature importance ranking in parametric simulations that are often limited by the intrinsic computa-
tional burden associated with numerical simulations. In particular, we studied a fairly high cardinality
problem (i.e., the size of input parameters). The present framework proposes a fast metamodel to over-
come this limitation to perform GSA and FI computation.

A DNN regressor applied to an ECT inspection problem, where two arbitrarily oriented cracks are
lying in a metallic multilayered planar structure, described by twelve parameters like specimen configura-
tion, coil position, and crack geometries, has been studied. The DNN regression model has shown good
prediction accuracy and high computational efficiency. Its application to global sensitivity and SHAP
analysis has permitted to carry out of the complete study in a negligible amount of time if compared
to the intensive use of the forward solver. Additionally, the analysis presented in this Chapter focuses
on a comparative study between Sobol’ indexes δ-importance measure and SHAP values. A satisfactory
correlation of parameters ranking has been obtained regardless of the method considered. Furthermore, a
deeper analysis of SHAP (i.e., bee-swarm plots) has permitted us to retrieve some physics-rooted behav-
ior on the way that SHAP ranks the parameters. Furthermore, the analysis of inner-working mechanisms
of the DNN architecture via the t-SNE manifold projection allowed to join the feature extraction proce-
dure performed by the DNN model with the underlying physics linked to the use of a model-driven data
set generation.

It is worth mentioning that the deep learning developed framework is not limited in terms of the
problem cardinality and the problem addressed, as shown in next Chapter where a more complex data
set is treated (indeed, the accuracy rather depends on the number of data available instead of the number
of parameters to be considered). That is, more parameters can be considered by paying more time to
train bigger DNNs with more data with a similar computational evaluation efficiency as a result. In the
perspective of this work, we expect to explore the power of our AE backbone architecture for inverse
problems, given that the structure of the latent space seems promising for this task.
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a)

b)

c)

Figure II.8. Results of global sensitivity analysis through Sobol' �rst-order indexes. In (a), the
results obtained from the extraction based on the L2-norm calculation performed on the absolute
value of C-scan ECT signals. In b) and c) the results display the same calculation performed in
a), based on real and imaginary part of ∆Z, respectively.
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a)

b)

c)

Figure II.9. Results of global sensitivity analysis through δ-importance index. In (a), the
results obtained from the extraction based on the L2-norm calculation performed on the absolute
value of C-scan ECT signals. In b) and c) the results display the same calculation performed in
a), based on real and imaginary part of ∆Z, respectively.
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a)

b)

c)

Figure II.10. Results feature importance ranking based on SHAP values. In (a), the results
obtained from the extraction based on the L2-norm calculation performed on the absolute value
of C-scan ECT signals. In b) and c) the results display the same calculation performed in a),
based on real and imaginary part of ∆Z, respectively.
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Figure II.11. Bees-warm SHAP plots values calculation applied to the DNN metamodel are
given for the absolute (up-left), real (up-right) and imaginary (above) parts of ECT signals.
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III - Development of a supervised generative approach in a
TFM multi-fidelity data set to generate new robust data
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About this section
In this chapter, we present the development of a supervised generative approach for a multi-fidelity data set,
to generate more robust data than in the previous chapter. A new multi-fidelity image data set is produced by
couples on two fidelity levels. The criteria respected during the production is to have a direct link between the
two different fidelity levels. The first source is a simulation tool for an UT NDT&E application and the second
is experimental data obtained from an equivalent mock-up. The differences between the fidelity level in the data
set are studied. An adapted architecture is trained in a supervised way on the image data set. The labels are
available in both fidelity levels, as well as the exact image mapping between the two fidelity levels. This a-priori
information is used to supervise the training. The new generative data are evaluated to prove the potential for
the application in an inverse problem. The limitations of the architecture are studied, particularly the need for a
highly informed and labelled multi-fidelity data set.

III.1 . Introduction

Ultrasonic array imaging is among the most employed inspection methods for NDT&E. This tech-
nology enables fast scanning of industrial components; thus, wider inspection areas can be covered in
a reasonable amount of time. In addition, ultrasonic arrays are rather flexible since they allow different
acquisition modalities (that could be done in parallel), such as acquisitions with focused or steered plane
waves or the so-called full matrix capture (FMC). The latter consists of recording inter-element signals
corresponding to all transmitter-receiver pairs in the array.

The most common FMC data post-processing algorithm is the Total Focusing Method (TFM) ima-
ging, which provides optimal focusing and spatial resolution throughout the region of interest if com-
pared to other delay-and-sum methods based on focused beams, such as in [39]. Therefore, ultrasound
array is widely adopted in complex inspection scenarios, such as in weld inspection, where mechanical
properties, flaw topology, and geometrical profile represent challenging issues to be taken into account
for analysing the acquisitions. Furthermore, the possibility to account for different reconstruction modes
for TFM images, referred here as M-TFM version [126, 127, 128], has been proven to be even more
powerful in detecting and characterising different types of defects appearing at different positions in
welds. Indeed, the possibility of considering multiple wave paths allows it to effectively reach different
locations within the weld where defects typically appear. M-TFM consists in exploiting different images
of a given defect from the same set of FMC data, each corresponding to a particular wave path before
and after interaction with the defect. In the context of crack-like defects imaging with quasi-vertical ori-
entations, the reconstruction modes can be classified into two categories: those exploiting the diffraction
echoes from the defect (e.g., direct, indirect modes) and those that exploit the specular echoes from the
quasi-vertical face of the crack (e.g., half-skip, indirect modes) with ultrasonic paths including at least
one reflection with the specimen interfaces, as well as the mode conversions (see Fig. III.1).

In practice, although the multi-modal approach can be useful to improve the inspection of welds, the
quality of M-TFM images is strongly influenced by the actual knowledge of the velocities of longitudinal
and transverse waves, the geometrical profile of the back-wall, as well as parameters of the experimental
set-up (e.g., the position of the probe relative to the region of interest, water column height in the case
of an immersion inspection). Uncertainties in such parameters can lead to errors in defect sizing and
location, as well as imaging artefacts that make images difficult to interpret [129]. Furthermore, random
noise sources coming from the acquisition and digital-to-analog conversion of signals (electronic noise)
and from the wave scattering by heterogeneities in the material (structure noise) may impact the imaging.
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The lack of knowledge about the aforementioned influential parameters can be partially mitigated by us-
ing adaptive TFM schema to deal with irregular geometries [130] or by employing optimisation strategies
for anisotropic materials with uncertain elastic proprieties [131] with payback in terms of reconstruction
efficiency. Due to the challenges mentioned above, the analysis of M-TFM images in complex inspection
problems is not straightforward and might require numerical solvers with a non-negligible computational
burden.

Very recently, simulation-driven inversion strategies have been applied with success in NDT&E,
mixing ML, and UT [9, 1]. Those strategies based on time-domain signals or imaging data have also been
studied in the context of structural health monitoring [2, 3, 5, 18, 8, 132, 6, 7], as well as in other domains
such as eddy current testing [133, 134, 135]. The possibility to handle both numerical and experimental
data and combine them in a tailored learning algorithm increases the efficiency of the deep learning (DL)
algorithms, conceived to detect and size defects [45, 4, 17, 20]. In [136], the authors proposed a DL
encoder-decoder architecture dealing with FMC data in order to suppress artefacts in reconstructed TFM
images automatically. Once FMC experimental data are provided as inputs to the encoder-decoder, the
DL architecture automatically performs denoising, reducing the presence of artefacts in TFM images.

DL has been adopted for data-augmentation strategies in [137]. It is worth noting that for the prob-
lems mentioned above, even the most accurate numerical solvers cannot fully reproduce some patterns
that appear in experimental M-TFM images in a suitable computational time (i.e., a too-large combina-
tion of factors should be considered). This is often due to uncertainties or the lack of knowledge of input
parameters.

The present study aims at developing a fully-controlled ML generative model targeting high-dimensional
UT inspection problems embedding uncertainties coming from the lack of knowledge on inspection para-
meters and noise sources coming from unknown factors (e.g., electronic or structural noise, etc.). To this
end, we propose a supervised learning schema based on physics-driven data issued from simulation tools
aiming at replacing forward solvers in the massive and controlled generation of data used in advanced
and time-consuming studies. In our analysis, we showed how a tailored conditional U-Net (cU-Net)
architecture enables high-quality multi-fidelity M-TFM reconstructions based on both numerical and
experimental data. Moreover, we provide an analysis of the architecture’s inner working structure by
showing how the regression procedure is performed.

This Chapter is structured as follows: Section III.2.1 exposes the principle of M-TFM used to pro-
duce the high- and low- fidelity data set. Section III.2 describes the architecture and the basis of the
inner layers. In the same section, the loss function and the performance evaluations are summarised.
The section III.3 shows the implementation of this framework on the M-TFM data. A description of data
production is given, along with the hyper-parameters chosen for the architecture in this section. Addi-
tionally, an exploration of the inner activation of the trained Deep Neural Network (DNN) is commented.
The conclusions are summarised in Section III.4. A discussion on the perspectives and possible applica-
tions are exposed in III.5. We have made the code publicly available, along with a pre-trained network1.
An accompanying video can be found under the same link.

III.2 . Supervised approach in a TFM multi-fidelity data set

In this Chapter, we propose to tackle the problem of the generation of high-quality M-TFM images
by employing a surrogate model that accounts for simulations and experimental measurements together.
To this end, a supervised learning strategy relying on the use of a DNN architecture has been developed.
More precisely, an end-to-end cU-Net such as those presented in [138, 139] has been conceived. The
DNN is designed to account for both numerical and experimental M-TFM images. The cU-Net ar-
chitecture is trained with both simulations as low-fidelity data source and experimental measurements

1https://github.com/geragranados/M_TFM_cUNet

https://github.com/geragranados/M%5C_TFM%5C_cUNet
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as high-fidelity data source, along with physical parameters associated with the numerical set-up con-
sidered (e.g., flaw(s) size and orientation, specimen geometry, phase velocities of elastic waves, M-TFM
reconstruction parameters, etc.) that plays the role of conditioning variables. Furthermore, to properly
address the complexity of the targeted problem, the proposed cU-Net exploits advanced deep learning
constitutive blocks such as the Feature-wise Linear Modulation (FiLM), proposed by [116, 140], and a
modified version of the spatial transformer block [117], named in this work as parametric Spatial Trans-
former (pST). Our cU-Net model can be considered as a multi-fidelity model [99] aiming at enhancing
the numerical simulation capabilities in terms of both accuracy and efficiency thanks to an almost real-
time M-TFM image generation.

It is worth pointing out that, in contrast to other DL and ML close-box models based on a purely
data-driven approach, the multi-fidelity model developed in this work can be considered to be closer to
an open-box since the physics-based knowledge is injected into the learning procedure via simulations.
The objective of this strategy is to teach the surrogate model to encode all the useful information from
the simulated M-TFM images while generating images close to the experience. At the same time, the
encoder is intended to learn how its latent features are influenced by the simulation parameters to be able
to rapidly reproduce several M-TFM images spanning the space of parameters.

III.2.1 . TFM multi-fidelity data set
This section first recalls the principle of M-TFM imaging and its application to the inspection of

welds where crack-like defects may appear and propagate along the chamfer. In addition, we describe
the reconstruction modes that will be exploited to evaluate the constraint generative model procedure,
and we provide some insight into the impact of reconstruction uncertainties on the M-TFM images.

The multi-modal imaging use-case considered in this chapter is shown in Fig. III.1. It is a common
NDT&E configuration for butt welds where an ultrasonic array is attached to a Rexolite wedge to perform
an oblique inspection with either incident longitudinal (L) or transverse (T) waves depending on the
wedge angle. The complex geometry of the steel mock-up is representative of a butt V-shaped weld with
tilted interfaces on both sides of the weld root. A potential critical defect that can occur in welded parts
is a crack that may propagate near or along the weld chamfer, and it is represented by a notch in the
mock-up. A Region of Interest (ROI) for the Eq. I.9 is defined in the surroundings of the defect. A major
challenge in NDE is the detection and characterisation of such defects as early as possible before their
growth threatens the structural integrity of the component. It is precisely for this purpose that TFM has
been extended to multi-modal imaging.

Multi-modal TFM is the formation of several images of the same defect from a single FMC data set
with appropriate modes, and these images can be combined to obtain a more realistic representation of
the defect [128, 141, 142, 143]. These views aim to utilise ray paths that maximise the viewing angle of
any particular defect, making visible defect responses across these views more likely.

When no reflection on the back-wall occurs along the path between the elements and the running
point P (Fig. III.1(a)), the mode is called direct mode, in contrast with the half-skip and indirect modes,
characterised by one or multiple reflections from the upper and lower surfaces. The combination of lon-
gitudinal (L) and transverse (T) waves leads to four direct reconstruction modes. L-L (or T-T) designates
the mode for which the return trip is with longitudinal wave (or transverse wave), while L-T and T-L
designate the modes with conversion when the incident wave-field interacts with the defect [126]. Addi-
tionally, half-skip modes denoted P1P2−P3 and indirect modes denoted P1P2−P3P4 can be considered,
where Pi = L o T (i.e., see III.1(a)).

The subset of M-TFM images under the selected modes (direct, half-skip, and indirect) used in this
work are shown in Fig. III.2. The inspection is done in a complex specimen such as the one shown in
Fig. III.1(b), where an artificial slot is considered a root-like crack.

In this work, the numerical simulation of the UT array inspection represents the low-fidelity data.
The simulation data are produced on a parametrical semi-analitical modelling on CIVA (Eq. I.6, I.7,
I.8). Meanwhile, the experimental mock-up acquisitions represent high-fidelity data. In both cases,
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(a)

(b)
Figure III.1. (a) Ray paths are associated with three families of reconstruction modes: direct
modes including two sub-paths; half-skip modes with three sub-paths; and indirect modes with
four sub-paths. Each ultrasonic sub-path corresponds to the propagation of L or T waves. (b)
Contact inspection con�guration with a Rexolite wedge for imaging a back-wall breaking notch
machined in a steel mock-up representative of a butt weld.

the M-TFM imaging technique is applied to the temporal data to produce the image data set (Eq. I.9).
As a result, a multi-fidelity data set of M-TFM images is then defined as D = {(Xn,pn,Yn) : n ∈
{1, ...,M}}, where M is the number of samples (Eq. III.1). An instance (Xi,pi,Yi) represents a low
fidelity image Xi with labels pi (simulation parameters) and its high fidelity couple Yi, respectively.
Couples of images are created by respecting the same parameters for both fidelity levels. The data set
described is then separated into training, validation, and test set. D contains:

X ∈ X ⊂ RW×H×C , p ∈ P ⊂ Rnp ;

Y ∈ Y ⊂ RW×H×C , (III.1)
where W,H,C are the weight, height and number of channels for the images in both fidelity levels, and
np size of the vector of parameters associated to each couple of images Xi and Yi.

It is worth noticing that X and Y have to be intended as two fidelity data sets. Indeed, X represents
a signal in the data set like Y, but it belongs to a different fidelity level. This setting differs from the
previous chapter where just one fidelity was explored. The next section aims to specifically introduce the
deep neural network details and choices made to this learning framework.

III.2.2 . Conditional U-Net architecture
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(a)

(b)
Figure III.2. Examples of experimental M-TFM images with set-up are shown in Fig. III.1.
M-TFM images of the back-wall breaking notch are given for direct-, half-skip, and indirect mode
reconstruction with (a) the actual specimen given a celerity and �aw geometry and (b) the same
specimen with uncertainties in celerity T (cT ) and α. Upper row: cT = 3230 m/s and α = 14◦.
Lower row: cT = 3380 m/s and α = 18◦. The images are show in a normalised linear scale.

The conditional U-Net (cU-Net) is a modified architecture from the original U-Net [144]. The clas-
sical U-Net is essentially an encoder-decoder structure with skip-connections across the encoding and
decoding trunks. Our cU-Net (Fig. III.3) has as input a simulated image and its labels. The architecture
is intended to be used as a parametric surrogate model and a realistic data generator, since the input is
expected to be an experimental image. The objective is to learn the link between the simulation paramet-
ers (labels) p and the latent features z ∈ Z ⊆ Rnz associated to the input image X, although learning a
disentangled latent manifold still represents a major scientific challenge [145]. In this sense, the trained
cU-Net will output new realistic samples Ŷ from the one simulated image X, based on the variation of
p (considered as input labels).

This architecture was conceived to learn from a multi-class data set, such as a database of M-TFM
images for different mode reconstruction or different types of flaw geometry. The cU-Net is fed with
batches of data (X,p) of size B. The model is expected to map (Xi,pi) to Yi. The first part of the
network F : X → Z (yellow blocks in Fig. III.3) encodes the images X into a conditioned latent space
representation z (features map of green block in Fig. III.3). This encoding is conditioned by p.

The decoder or generator G (blue blocks in Fig. III.3) takes the space Z and the skip-connections to
compute the images Y ∈ Y . Additional convolution layers (the so-called synthesis layers, depicted in
violet in Fig. III.3) are stacked on top of the generator G to improve the reconstruction. In this study, both
F and G are featured by a stack of convolutional layers, with parametric Rectified Linear Unit (pReLU)
activation functions [115], except for the synthesis block layer. pReLU set the LeakyReLU activation
coefficient as a learn-able parameter for the DNN.

In order to inform the latent manifold with the M-TFM parameters p, a FiLM-pST block is inserted
within each convolutional layer in the encoder F . The objective of these operators is to structure the
latent representation at the end of the encoder by learning the relation of parameters (labels) and features
in different levels of resolution. The encoder extracts a sequence of features at each layer from a given
input Xi. we denote the output of a layer k as Xk ∈ Rrk×rk×Ck . rk is the resolution at k after the
down-sampling from k − 1 and Ck is the number of filters (or channels) for k. At the FiLM and pST
layers, the Xk+1 has the same filter resolution and number of channels as the input Xk.
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Figure III.3. Schematic representation of cU-Net architecture, created with [146]. The input
is a M-TFM image and its labels (simulation parameters). The DNN's encoder is represented
in yellow, the latent space representation in green, and the decoder in blue. The violet layers
represent the synthesis block. U-net skip-connections are shown by blue lines, and labels forward
propagation on the encoder are represented by yellow arrows. An example of the number of �lters
and resolution at each block is given.

A FiLM layer learns new per-channel statistics by applying the scales γk and the bias βk to a nor-
malised representation of Xk (Fig. III.4(a)). The values for γk and βk are learn-able functions of p.
FiLM modifies the relative importance of features for the subsequent convolution operation k + 1. The
inference from the labels p is performed by a dense layer. Eq. (III.2) represents the operation done per-
channel (Ck) in the encoder, where p is the image label, γk(p) and βk(p) are two outputs of the dense
layer. FiLM(Xk,p) is the output of this layer, so the modified input features. In this layer, the mean and
variance are computed per batch to normalise Xk. ϵ is added for numerical stability and precision.

FiLM(Xk,p) = γk(p) ·
Xk − E[Xk]√
σ2[Xk] + ϵ

+ βk(p), (III.2)
where βk : RCk and γk : RCk . E [·] and σ2 [·] represent the empirical average and variance respect-

ively. ϵ is a small value used for numerical stability, normally set to 1× 10−3.
Most of CNNs apply a normalisation before each activation. The FiLM module replaces the norm-

alisation layer (e.g., IN layer) in the encoding stream (F ), giving the DNN a stable convergence and the
degree of freedom to use the input p to improve the reconstruction and to allow the regression on the
label space, as is shown in section III.3.

Upon each FiLM layer in the encoder F , the proposed architecture stacked a pST layer. The original
ST layer proposed by [117] was herein modified to make use of the parameter p. An pST layer applies a
spatial transformation capable of rotating, translating, and scaling a 2D input feature map Xk (Eq. (III.3)
and Eq. (III.4)), via the per-instance matrix T affine transformation

pST(p,Xk) = T (p) ◦Xk, (III.3)
T applies the transformation by computing Tϕ where ϕ : R6 and Tϕ : R3×3, that reads:

ϕ(p) = [ϕ1(p), ϕ2(p), ϕ3(p), ϕ4(p), ϕ5(p), ϕ6(p)],
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Tϕ(p) =

ϕ1(p) ϕ2(p) ϕ3(p)
ϕ4(p) ϕ5(p) ϕ6(p)
0 0 1

 . (III.4)
Analogously, as in the FiLM layer, pST layer makes use of an dense layer (called localisation net)

that infer ϕ = f θ(p) from p (Fig. III.4(a)). The pST layer takes the input vector of parameters p to infer
the spatial transformation for all channels. This transformation is applied to the output of the previous
layer.

(a)

(b)
Figure III.4. Schema of the parametric (a) FiLM and (b) pST layers. FiLM inner normalisation
is not represented here for clarity.

On the other hand, the generator G makes use of Instance Normalization (IN) [118] between each
convolutional layer. IN showed impressive performance for feed forward stylising [147]. The DNN
implements the pixel-wise L2-norm and the Focal Frequency Loss (FFL) [148] (Eq. (III.5)) as image
reconstruction loss. The reconstruction loss Lrec reads:

L(X,Y,p,θ) = 1/B
B∑
i=1

[||Y − uθ(X,p)||2 + FFL(Y − uθ(X,p))], (III.5)
where uθ is the cU-Net and θ its learn-able parameters and B the size of the batch.

The addition of the described modules is justified by the feature evolution observed on the images in
X when exploring P . For instance, a couple (Xi,pi) and a couple (Xj ,pj) in the same reconstruction
mode (e.g., T-T) are not far from each other in X if pi and pj are closed enough. Scaling, rotations,
and translations in some features, together with changes in the echo shape, can be observed in Xj with
respect to Xi.

The transformations needed to obtain Xj from Xi are learnt by the module FiLM-pST in F . There-
fore, the DNN is expected to set F (Xi) and F (Xj) near on the Z space. As a result, uθ serves as a
parametric surrogate model. The DNN is expected to map the P space into the image feature space X
and Y (injective mapping). For instance, if Xi and Xj are two samples from the training set and for the
test set, respectively; the couple (Xi,pj) must generate the instance Yj (with pi ̸= pj), without the need
to know Xj during the training. The model does not implement any additional loss for this task besides
Lrec, so the P to Y conditional mapping is learnt thanks to two intrinsic characteristics of the DNN. The
first characteristic is the FiLM-pST module introduced in the encoder F , which learns to condition the
features extracted from the input image with different labels. The second one is related to the supervised
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framework adopted. That is, Xi and Yj have the same label pi associated during the training since the
data set is presented by a couple of instances from both fidelity levels. As a consequence, the output
image Ŷj can be directly labelled by input parameters pj . The results of this application are shown later
in section III.3.

On the other hand, uθ maps the space X into Y by learning the differences between the images from
X and from Y . Those differences can be appreciated in the Signal-to-Noise Ratio (SNR) variation, the
flaw echo location and shape. The encoder-decoder couple acts here as a realistic data generator. guided
by the simulation input.

III.2.3 . Conditional surrogate model validation
Some metrics are implemented to measure the echo localisation error and the pixel intensity error for

the couples Y versus Ŷ. The metrics express the reconstruction quality for the DNN either for the task
of realistic generation data or the parametric model application. The maximum value of the L1-norm for
an instance expressed by Eq. (III.6) is used to quantify the error at the peak value, normally located in the
echo region of the M-TFM image. Another metric is the Mean Absolute Error (MAE) which quantifies
in average the reconstruction error for Ŷ. The position error of the maximum obtained by Eq. (III.6) is
also a metric for evaluating the performance on the test set.

Erec(Xj ,pj ,Yj) = |Yj − uθ(Xj ,pj)|1 (III.6)

III.3 . Numerical validation

The present section illustrates the outcome of the trained architecture on the test set, in other words,
images never seen by the DNN. Firstly, a realistic image generation is evaluated for the test set through
the adapted metrics. Secondly, a conditional generation through regression in the input p is evaluated and
compared to the realistic generation error. Lately, an exploration by a 2D projection of the output features
of the latent space block is used to show the data generation potential. The shown structure of those fea-
tures tends to explain how the DNN is capable of acting as a parametric surrogate model to generate new
M-TFM instances. With the same objective of explaining how the DNN works, the exploration of the
features extracted by the FiLM layer and the pST layer are shown to interpret their role in the architecture.

The presented architecture was tested in a M-TFM image data set with two fidelity levels: simulation
and experimental acquisitions. The data was obtained by a parametric simulation by sampling the P
space as shown in Table III.1. The mock-up in Fig. III.1 follows the configuration given by [142], with
a geometry described by l1 = 50mm ; l2 = 60.5mm ; l3 = 50mm; and l4 = 42mm, and a ROI of a
square of 30mm of length. Consequently, the data set D of M ∼ 6k single-channel images is produced.
Half of the images belong to simulated instances, while the second half is the experimental couples. The
data set is separated in the proportions of 85%, 12%, 3% for the training (T ), validation (V) and test
set (S), respectively. A random selection of the group (Xi,pi,Yi) is done to generate disjoint sets so
D = T ∪V ∪S with T ∩V ∩S = Ø. The image size is (W, H, C) = (128 pixels, 128 pixels, 1 channels).
The input label size is d = 5, containing the celerity of the transversal ultrasonic wave (cT ), the back-
wall angle (α), the reconstruction mode (M ), and the flaw geometry expressed by the height (L) and the
tilt (β). Those labels are re-scaled to be expressed in the range of [0, 1] (Fig. III.5). For those labels
that had semantic representation (e.g., reconstruction modes), a simple dictionary is created to map the
names to numerical values in the same range as other numerical labels.

The number of channels per block is augmented by a power of 2 in the encoder F , starting with 16
channels after the input to ending up with 128 channels before the latent space block. The resolution
of the learnt filters at the end of every block of F is decreased by the down-sampling operation. The
resulting resolutions by block at the encoder are 128, 64, 32, and 16. Each resolution block contains
two FiLM-pST blocks; the first is sandwiched between a convolutional layer and its pReLU activation.
The activation is followed by the second FiLM-pST block that is set between the second convolution
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Table III.1. Parameter space de�nition for M-TFM simulation and experimental data set.
Vertical: β − α = 90◦ ; Tilted: β − α = 74◦

Parameter space (labels) Range of values n-points in P
Flaw tilt (β) Vertical ; Tilted 2

Flaw size (L) 3mm; 10mm 2

T wave
celerity (cT ) [3080; 3380] 9

Geometry configu-
ration angle (α) [10; 18] 9

Modes used in T-T;TT-T;TT-L;TL-T
reconstruction (M ) TL-L;TT-TT;TL-LT; 9

TT-LT;ALL
Total of instances: 2916

(couples) (324 per mode)

operation of the block and its pReLU activation. This layer sequence ends up with a down-sampling
operation before passing to the next resolution block.

Regarding the latent space block, the structure is similar to an encoder block since it accounts for
the FiLM-pST layer. The difference is that there is no down-sampling. As a consequence, the block is
built as follows: FiLM-pST + pReLU + convolution layer + FiLM-pST+ pReLU. The resolution at this
level is 8x8 with 128 channels for all the layers. The objective of this arrangement is conditioning the
encoding of the DNN throughout all layers until the first up-sampling in the decoder so the labels build
a structured latent space for the generator’s input.

For the decoder G, we inverted the order in terms of resolution and number of channels, keeping the
same number of layers as the encoder. Instead of the down-sampling, the up-sampling operation at the
end of each resolution block is used to increase the resolution. The feature normalisation is done by the
IN layers before each activation layer on the decoder. Finally, the synthesis block has three convolutional
layers with the same resolution as the expected output but with more channels in the first two convolution
layers: 16 channels. This block also implements the IN, but it differs from the encoder’s blocks since a
hyperbolic tangent activation function is used on it. The activation is choice to avoid saturation around
the noise range that is near to zero on the normalized TFM images.

III.3.1 . Analysis of the training phase: the role of FiLM-pST
This section shows the convergence of the DNN driven by its architecture, particularly by the pres-

ence of feature operators such as the FiLM and pST layers. The evolution of loss versus the epochs is
shown in Fig. III.6 for the validation and test. The batch size (B) is chosen equal to 128, and an Adam
optimiser with a learning rate of 0.001 is chosen. The training time is ∼ 3h on an NVIDIA Quadro RTX
6000 GPU. The early stopping activated at around 417 epochs. The trained model is then applied to the
test examples in the following sections.

During the training, we observed that adding the parameter of reconstruction modes (M ) to the
label vector helped the reconstruction quality and the convergence speed, even if a regression over these
parameters does not have any physical sense (e.g., a hybrid T-T+TT-L mode). This parameter plays
a role in the structure of the latent space and helps to the DNN convergence. In the opposite sense,
the simple training of the DNN without any conditioning (no FiLM-pST blocks, no p in the input,
so an U-Net architecture) gets the best reconstruction for Ŷ. Consequently, the conditioning worsens
the reconstruction capability, but it introduces the surrogate modelling potential into the architecture:
generation of M-TFM conditioned by physical parameters.

During the test phase, the S set is used to evaluate the DNN performance in order to show the
capability of the cU-Net as a multi-fidelity generator. The couples (Xj ,pj) ∈ S are forwarded from
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a)

b)

Figure III.5. The M-TFM data set contains a set of images labelled by the simulation para-
meters and classes. (a) Sampling of parameters p ∈ P (simulation parameters for each coupled
of M-TFM images). The blocks represent the distribution of the sampling for each parameter
and the dots gives a quick view of, for instance, cT and alpha parameter intervals of sampling
and number of sampled values. β and L show, for example, that there are four defects in the
data set, since the points are four. (b) An example of M-TFM images, right: simulated (X ∈ X );
left: experimental acquisition (Y ∈ Y). The two images correspond to the same parameter's
vector p.

the input in the trained DNN uθ∗ to generate Ŷj ∈ S . Since Yj is our GT, we can compute the
error histogram over the test set for echo reconstruction metrics introduced at section III.2.2. Fig. III.7
represents the echo amplitude error frequency for the 100 samples of the test set. The echo position error
is also calculated by the Euclidean distance in the (x, z) plane of the ROI. In Fig. III.8, a single instance
reconstruction on the test set is shown in detail to illustrate the reconstruction error impact in a qualitative
view.

A second evaluation over the S set is done to test the generative capabilities of the DNN. This time,
a Xi ∈ T and a pj ∈ S are picked up. The couples (Xi,pj) are forwarded from the input in the
trained DNN uθ∗ to generate Ŷj ∈ S. Yj is our Ground Truth (GT) labelled by pj ̸= pi. Then, we
can compute the error histogram over the test set on echo reconstruction metrics (Fig. III.7). The results
show the capability of the cU-Net as a surrogate model for new instance generation.

This test is a quantitative evaluation of data generated over a regression p input vector. Since only
regular sampling was done over the parametric P to create the entire data set, the references of ex-
perimental M-TFM images for this evaluation are limited to the known p values. The selection of the
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Figure III.6. Reconstruction loss evolution versus epochs for cU-Net training on M-TFM data
set. The training loss is in black, and the validation loss is in yellow. The early stopping at 417 is
marked by a vertical line. The training is stable even after the beginning of the over �tting. The
reduced amount of epochs shows that few training samples can be used to train the architecture
conditioned by parameters and at the same time get good reconstruction results, shown later in
the test phase validation.

Figure III.7. Error frequency on the test set for realistic data set generation in blue. Generation
error frequency on reconstruction parameters regression are plotted in red (described in section
III.3.1). (a) shows the maximum of the pixel-wise di�erence between the output and the GT, (b)
is the mean of the norm-L1 between the output and the GT, and (c) is the Euclidean distance
in pixels between the maximum pixel of the output and the maximum pixel of the GT.

instances of xi (TFM input simulations) for this evaluation are chosen by the following criteria: the label
pi of Xi is the closest to pj , in the P space. The metric used in P is the Euclidean distance between pi

and pj . This metric promotes the generation by reconstruction parameters regression (cT and α). Thus,
a regression over the flaw geometry parameters (β and L) was only performed to evaluate the generation.
Both tests reported similar histograms (red bars in Fig. III.7). See the complementary video to illustrate
conditional generation2.

The described evaluation was designed to show the potential of the DNN for a surrogate model
application. The model learns the link between the labels and the features required at the output, guided
by the pST and FiLM layers. The following sections are focused on the internal features exploration of
the DNN for the test set with the intention of describing how the parametric regression can be done in all
directions of p to re-sample the P beyond the initial data set points.

III.3.2 . Analysis of the feature maps

2https://github.com/geragranados/M_TFM_cUNet

https://github.com/geragranados/M%5C_TFM%5C_cUNet
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Figure III.8. Experimental generation example. Qualitative comparison between the output
Ŷ and the GT, given a couple (x,p) at the input, where p is the correspondent set of parameters
used to create x from the simulation. (a) is the maximum pixel for the line or column between
the output and the GT. The maximum pixel amplitudes are plotted in purple for the output
and in orange for the GT. Both images are overlapped for the ROI representation. In (b), the
echo reconstruction shows the mis�tting in terms of echo position and amplitude for the example
given.

We observed how the conditional FiLM-pST layers act during the latent space generation when the
scalar input p changes, an example of forward propagation of one image is shown in Fig. III.9. The
output for each column (purple box image) can be contrasted with its GT (below the column) to evaluate
the coherence of the conditional generated image. This evaluation is done over a sample of the test-set.

We can observe that the conditional layers make the filter implant new features in the activation
maps; at the same time, they extract the main features of the input image. The intuition here is that the
encoder is capable of creating new conditional features on the activation maps from the input image;
these new features are conditioned by the input label values. Consequently, the image synthesis is also
conditioned by the input label values. We can infer that the variety of possible experience-like images
(outputs) that the decoder can create is linked to the range of the parameters observed during the training
(see Fig. III.5).

Fig. III.9 also shows the behaviour of the DNN without the pST layer. This is done to show the role
of each block: FiLM acts in the style content (e.g., SNR), and the pST acts in the context (echo shape).
The last column shows that the FiLM ignores the echo translation linked to the new cT input value. At
the same time, we can observe how a roto-translation is present between the first and second column due
to the pST module from the second convolutional operation.

III.3.3 . Latent space exploration
A view into the output of the latent space block gives some clues about how the encoder works.

When a M-TFM image is forwarded into the encoder, the features of the last layer of the latent space
block represent a plausible high-dimensional representation of the input. This representation is obtained
for each sample to generate the Z space. Since we are interested in the structure of this high dimensional
space (i.e., 8x8x256 dimensions), we choose a t-SNE manifold projection [70] to reduce this space to a
latent space (LS) representation in 2D. A principal component analysis initialisation is used for the t-
SNE: the initial 2D coordinates are given by the two principal component values of the LS space, t-SNE
is then initialized in a deterministic way.

Fig. III.10 represents a scatter plot of the Z space. A projection from X conditioned on P space
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Figure III.9. The �rst column shows the activation values for the �lters at di�erent resolutions
on F when the realistic generation is evaluated. At the end of the column, the GT image is
shown for a qualitative observation. To better appreciate the changes in style, the input and
output images are reported in logarithmic scale. The activation maps are normalised for better
visualisation. For the second column, a conditional generation by changing the cT input value
is evaluated. In this case, the same input as the �rst column is kept. For the third column,
the same parameter was varied (cT ), but this time by ablation of the pST blocks. The images
from the layer activation are normalized by instance so the di�erence in pixel intensities can be
observed. Each of the four activation map are transformed to a RGB format in the range of 0
to 255 (Min-Max).

to Z space is done by the encoder. Every z point is located on the 2D manifold by its coordinates
(LS1, LS2). Consequently, each point can be related to a parameter value and input image. The rep-
resentation in Fig.III.10 shows how the DNN builds Z in terms of clusters ordered accordingly to the
different parameters.

That is, the first hierarchy observed in the manifold is the reconstruction modes. This order in the
hierarchy is expected since the images in each reconstruction mode are significantly different. If we
observe the parameters of the flaw’s geometry, four main clusters are found in the manifold. When
looking closer at one of these manifolds, an arrangement with respect to the two last parameters in P can
be observed. Two mostly orthogonal directions are present for the celerity T and back-wall angle values.

The exposed structure of the Z space in this section, together with the exploration of the features,
shed some light on how the DNN learns to generate data. The observations proved that the DNN creates
a structured representation of the whole data set. The Z sampling in the right direction with respect to
the parameters of the simulation is possible through the conditional encoder. This is how the input vector
can generate other samples present in the data set, but also some samples not seen before. Those samples
generated by the label regression are obtained by a consistent position in Z . During the generation by
regression, the encoder features are modified in the coherent direction, as is shown in the Z projection.

Given a fixed simulation image and a new label value never seen, the encoded ‘point’ in the latent
space is then passed to the generator. The generators learnt to decode the known points of Z , as it
was shown in the section III.3.1. It is also expected for the generator to know ‘how’ to generate an
intermediate point with similar characteristics to the neighbours but modified to be consistent with the
new label value.
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Figure III.10. c-Unet latent space projection into a 2D t-SNE manifold. The point represents
the last layer activation of the green block in the c-UNet (Fig. III.3), just before the decoding.
(a) shows the clustering by modes. (b) shows the clustering by �aw geometries. (c) and (d) is
the a selected cluster (black rectangle in (a)) colored by two of the parameters: cT and α. t-
SNE hyper-parameters: early exaggeration= 12, perplexity= 50. References for �aw geometries
coloring: (3, v) is the 3mm tilted �aw geometry, (10, v) is the 10mm vertical �aw geometry, and
so on.

III.4 . Conclusions

In this work, we present a conditional UNet (cU-Net) for fast and realistic generation of multi-
modal total focusing method (M-TFM) images. Our DNN is trained on both numerical and experimental
data. As a result, our generative framework can learn realism from experiments along with a controlled
generation learnt from the physics encoded in the simulations. We show how the cU-Net model performs
the feature extraction to generate new realistic data. This is done by exploring the inner activation
layers for different inputs. We also demonstrate how the Spatial Transformer Layer and Fidelity Layer
Modulator provide the means to perform a regression in the M-TFM images by a cU-Net architecture.

The present framework allows the inclusion of simulation parameters directly as input in the surrog-
ate model architecture. Once the model is trained, data generation can be done in quasi-real-time and
guided by the input parameters regression. In doing so, the generated data are already labelled. However,
the prior information on data fidelity levels (simulation and experience labelled couples) can be costly to
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produce in some cases, and our approach turns out to be not highly efficient when this characteristic is
not available in the data set. Nonetheless, the present architecture provides a way to fully inform a data
generator DNN by the data labels.

Given this choice in the DNN architecture used for TFM image generation, we are not in the presence
of a physics-agnostic NN. Moreover, the DNN is constrained to learn the physics behind the mapping
between the simulated parameters and the TFM images. This is done by the pST and FiLM operators,
as showed in the Fig. III.9 by the ablation of the pST during the generation of new images with different
celerities. The reconstruction loss also plays a role for this task during the training, since the conditional
layers are optimized to generate a consistent experience image given a set of parameters. To summarize,
we embed the physics knowledge in the DNN architecture by means of the data simulated by the numer-
ical solver, and the conditional generation driven by the parameters used in the simulation. Our approach
is in contrast to more common data-driven approaches that are in the literature of ML as applied to image
or signal processing communities.

An extensive analysis of the results by changing simulation parameters has been embedded in Ap-
pendix VIII.

Scalar labels were used as input in this work, so the inner sub-neural networks for the FiLM and
pST Layer are dense layers. Those sub-neural networks are not limited to scalar inputs, but they can
any shape. For instance, a CNN or RNN can be deployed to take into account other formats of labels
(images, time series, etc.) that would guide later the generation.

III.5 . Chapter outlook and perspectives

Fast and reliable surrogate models have been used in NDT&E to speed-up the computational time
for very intensive statistical studies ranging from the stochastic inversion [100] to the sensitivity ana-
lysis [112] and model-assisted probability of detection. In these application fields in NDT&E, our
contribution aims to enhance the quality of surrogate model results making them more-close-to-reality.
Therefore, by the use of the ML schema developed, the aforementioned studies will better account the
impact of measure-like uncertainties in the studies outcomes.

This approach presents a first attempt at a physics-based and explainable surrogate model aiming
at providing a controllable data generation tool. The new data can be exploited as a training set for
deeper architectures (e.g., generative adversarial network) that demand big data sets, rarely available in
the NDT&E field. Inversion problems may also benefit from an enlarged training set generated by this
tool.

In our application case, we include the multi-fidelity data contribution present in the data set, but the
framework can be adopted even if a single fidelity level is available in an auto-encoder architecture (no
skip connections required). For instance, an experimental campaign may be enlarged by this DNN when
it is correctly labelled.

In the perspectives of this work, we expect to explore the power of our cU-Net backbone architecture
for inverse problems, given that the structure of the latent space seems promising for this task. Addition-
ally, one notable mention is the possibility of using the cU-Net architecture to enhance the performance
of simulation software widely used in modern NDT&E design problems. For instance, the low fidelity
source of data may come from coarse meshed finite elements simulations or semi-analytical simulations,
whereas the high fidelity from fine meshed finite elements simulations, among others.
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IV - Development of a semi-supervised generative domain-adapted
model in a TFM multi-fidelity dataset for enhanced auto-
mated inspections
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About this section
In this chapter, the objective is the development of a non-supervised DL approach for TFM multi-fidelity data
set generation without prior information on the data coupling or labels. A new approach that does not rely on
this prior information is preferred for the objectives of this thesis, since many of the NDT&E data sets do not
count with this characteristic (e.g., poorly labeled data). The same data set in chapter III is used to train a DL
architecture, but this time by using less a priori information. The architecture learns to couple the fidelity by
a probabilistic approach. The generation capabilities of the architecture are evaluated. An inverse problem is
assessed with the realistic data obtained from the surrogate model to prove its efficacy.

IV.1 . Introduction

The pursuit of efficient methods to enhance the automation of NDT&E inspections driven by artificial
intelligence is a topic of increasing interest in the community [9, 10].

To obtain a robust and accurate DL model for a NDT&E inspection, one needs a sufficiently large
set of ‘reliable’ training data. Even if large simulated data set creation is nowadays possible and highly
reliable simulations for NDT&E inspection are accessible, simulations barely reproduce the complexities
of experimental or in situ data which may embed spurious contributions due to the environmental and
experimental conditions.

To mitigate such a problem, a possible useful scenario is to employ a multi-fidelity data set when it
is accessible. In this work, we refer to “fidelity” as the realism compared to the in situ data. In other
words, how close data are to the real world data. Here, experimental data are the highest fidelity level
available in the NDT&E procedure analyzed.

The natural approach when multiple fidelity levels are available is to try to use the more reliable data
(highest fidelity level) as training data so the deployment of the automatic inspections reports a better
performance. Unfortunately, sometimes the highest fidelity production details are not accessible or very
scarce (confidentiality, poorly labeled, unknown data set production conditions).

Very recently, many methods have been developed to handle this problem in the field of NDT&E
to take advantage of the full knowledge of this type of data set. Transfer Learning (TL) is a common
approach when a similar task (e.g., image feature extraction) has previously been done in a completly
different domain. This method takes advantage of previously trained NN to facilitate the training of a
new NN [11, 12, 13] by reusing some layers. TL can be effective when data from a single fidelity level
is present during the training to outcome better performance even when the data set is far from the in
situ data in terms of distribution and the data set is small compared to the complexity of the task. A suc-
ceeding approach from TL is the Domain Adaptation (DA), suitable when more than one fidelity level
is available. Nonetheless, it is often observed in NDT&E data that the closer to in situ data, the less
information about how this data was produced is available, as discussed in [14, 15]. This lack of infor-
mation translates to a poorly labeled high-fidelity data set. To circumvent such an issue, DA mixed with
generative strategies or domain-adversarial strategies [16] have been tested in those cases to enhance DL
algorithms for NDT&E inspections [18, 19, 20, 17]. DA may be applied to different situation that can
vary from a large access of labeled data in many fidelity levels to just one fidelity level correctly labeled.

In our scenario, the source domain can have its origins in a simulated NDT&E procedure while the

89
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target domain is the experimental data where an inversion ML algorithm is intended to be deployed. In
other words, two or more degrees of high-fidelity data are accessible during training (e.g.: higher reliable
simulation, experimental or in situ data).

In this case, a feature-based deep transfer learning can be applied to tend to reduce the difference
between the two fidelity levels. In feature-based deep transfer learning, adversarial-based domain adapta-
tion leverages differences in data distribution to acquire knowledge for the DA task [91, 15]. Specifically,
this work is based in a generative adaptation model approach implemented with a Class-conditioned Gen-
erative Adversarial AutoEncoder (cGAAE) architecture.

In the present work, we propose a DL generative adversarial approach to learn the gap between two
different fidelity levels when poor access to the data in terms labeling or quantity. The proposed strategy
falls within the DA technique, relying on a realistic data generator based on a deep neural network
(DNN). The final objective is to generate an enlarged realistic data set when high-fidelity data labels
are not available and enhance the performance on a targeted task. Toward this end, we train a tailored
NN architecture aiming at maximizing both reconstruction and adversarial losses. More specifically, the
ensemble of DNNs constitute what we call a cGAAE, based on the architectures from [149, 150], among
others, where discriminators are included to guide the realistic generation and the cGAAE latent space
structure. In this scenario, the cGAAE takes a source sample and a latent vector, called z-vector, to
generate a new target domain instance. The vector z is a domain-adapted representation for the source
and target domains. This representation is learned by an encoder and assisted by a domain classifier.
The cGAAE also uses a reconstruction-based training loss to ensure consistency generation. This hybrid
feature-base method is intended to translate a source domain to a closer representation of the target
domain.

The generator uses as input the fidelity level (identified by a discrete category or class in this work)
as conditioning. Once trained, during the on-line stage, the choice of the condition input of cGAAE
is used to generate realistic data from a low-fidelity data (or vice-versa). Furthermore, we introduced
a class-conditioned Adaptive Instance Normalization (AdaIN) based on the instance norm layer in [82]
and a Class-conditioned Spatial Transformer (cST) as a variant of conditional ST from Chapter II and
Chapter III. Those modules are used in the architecture to ensure the class-conditioning of the cGAAE.
They also ensure the generation task in a frame of a small data set by allowing a smaller and simplest
architecture in terms of training parameters, comparable to the similar architectures in the bibliography.

For the proposes of this work, the framework is deployed with a two-fidelity data set containing
Multi-modal Total Focusing Method (M-TFM) images from the UT inspection of a complex geometry
welding joint. The generated data are validated in an inversion problem DL benchmark to asses its
performance when the training data are more realistic. In this work, we focus in a high definition image
generation such it can be observed in [151, 152, 82] to bridge the gap between the state-of-the-art in DL
generative networks and data production in the field of NDT&E. It is worth to be mentioned that the
proposed framework has been applied in the computer vision research community to ensure the quality
generation such in [151, 118, 82].

This Chapter is structured as follows: Section III.2.1 describes in detail the data production used for
the architecture training and testing. Section III.2 describes the methodology, the proposed architecture
and the algorithm to train the architecture. Section IV.4 presents some results in generation and a bench-
mark performance assessment when the generated data are used in an inverse problem. Section IV.5
discusses the architecture choices, stability issues and solutions found to successfully train the genera-
tive neural network framework proposed. Section IV.6 presents the conclusion and perspectives of this
work.

IV.2 . Semi-supervised generative adaptation model in a TFM multi-fidelity dataset

IV.2.1 . TFM multi-fidelity dataset and enlarged simulation
The data set is composed by Full Matrix Capture (FMC) simulated and experimental acquisition (a

detailed description of the data set used in Chapter III). The resulting acquired temporal signals are post-
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Figure IV.1. The M-TFM data set contains a set of images labeled by the simulation parameters
and classes. The �gure show an example of M-TFM images, simulated and from acquisition. The
two images correspond to the same parameter's vector p and di�erent class c (i.e., simulated vs.
experimental images on the left and the right, respectively). One can observe the impact of the
non-quanti�ed uncertainties between �delity levels.

processed by the M-TFM imaging algorithm [153] in a defined Region of Interest (ROI). The mentioned
acquisitions produce a set of images of high resolution with shape [M,W,H,Cmodes], where M is the
number of acquisitions, W, H, Cmodes are the pixel weight, pixel height and number of channels of the
images, respectively. Cmodes here represent different reconstruction modes as described in [153] for a
same FMC acquisition. It is worth noting that the multiple modes used can be seen as the equivalent of
a hyper-spectral images in computer vision and remote sensing communities.

The imaging data set contains two fidelity (interpreted as fictitious classes in this work), the physics-
based M-TFM simulation images as lower fidelity level and the experimental images as higher fidelity
level. In terms of DA, we account for two source domains of a different fidelity level each one, where
the lower fidelity is the source domain and the experience is the target domain.

Since the data set mixes both fidelity levels, a fidelity level class label cn (two classes) is added to
each sample together with previous labels to distinguish each N -samples fidelity level. That is, the final
data set can be expressed as [N,W,H,Cmodes, C] with N = M×Cmodes×2, when each of the modes is
considered separately with the two classes associated to each of the modes. The resulting single channel
and multi-class data setD as given in Eq.IV.1, is used to train the described generative architecture in the
next sections.

D = {(Xn, cn) : n ∈ {1, ..., N}},

Xn ∈ X ⊆ RW×H×C , cn ∈ C ⊆ ZC .
(IV.1)

It is worth noticing that X represents a TFM image of both fidelity levels. Contrary to the Chapter
III, here the multi-fidelity data are mixed into a single set X sorted by the class label c. c informs the
fidelity level in the data set. This nomenclature is more adapted for the generative model nomenclature.

During the FMC post-processing applied in both fidelity levels, some variation in the parameters
of M-TFM reconstructions where applied. The celerity of the transverse ultrasonic wave cT and the
specimen back-wall slope angle α (Fig. IV.2) are considered to lead to major impacts into the M-TFM
reconstruction. One can account such an impact on the experimental data by applying the M-TFM algo-
rithm repeatedly to FMC acquisitions with different reconstruction values of cT and α. It is noteworthy
that such a way of generating samples based on FMC acquisitions can be seen as a data-augmentation
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Figure IV.2. Sketch of the mock-up con�guration with the main parameters used to describe
it.

based on physics-rooted principles. The sampling values of these parameters are kept as labels for each
image instance for later proposes.

The other parameters take part in the labels of the images, the flaw geometry present in the mock-up
is also simulated and they are expressed by the height (L) and the tilt (β). Those parameters are named
as pn ∈ P ⊆ Rnp , where np is the number of parameters. They are not used in the training of the
generative framework, but used later for the analysis of the trained cGAAE and the aimed inversion task.
As already mentioned in the introduction, the experimental acquisitions are impacted by uncertainties
that cannot be observed directly while measurements are performed. Indeed, they can have origin in
the experimental conditions (e.g., environmental conditions), probe position, human factors, acquisition
noise (e.g., electronic noise), among others. This kind of uncertainties may have a non-negligible impact
in the M-TFM image produced in face of a simulated one (Fig. IV.1). The proposed DA procedure relying
on cGAAE has as its main purpose to fill the gap of discrepancy between simulated and experimental
data by generating images embedding realistic high-fidelity patterns.

IV.3 . Insight on the Class Generative Adversarial AutoEncoder Network Architecture

The present work proposes to train a cGAAE architecture with a high-dimensional multi-fidelity
source data set X . The filter (or encoder) F :X → Z encodes Xn into zn, so X is mapped into a
latent space Z ⊆ Rd by F , being d << W ·H · C . Z is reduced domain-adapted representation of X
where F (Xn) = zn. The generator (or decoder) G :Z × C × N → X maps the latent representation
Z to data space X using the class c as input (represented by a vector), a noisy input n ∼ N (0, ϵ) being
n, ϵ ∈ N ⊆ Rd, with ϵ << 1.0 , and 0 is the zero matrix of dimension (d × d). F and G generate
ẑ ∈ Z and X̂ ∈ X , respectively, where hat notation ·̂ identifies the generated sample either from F or G .
This approach is similar to the Generative Adversarial Network (GAN) architecture found in [154] and
the generator is an adapted architecture from [151].

While F and G are trained, a set of discriminators are optimized in an adversarial way to compute
the scores sx, sxz, sz ∈ R. As instance, the image discriminator Dx : X 7→ {sx|c} discriminates a real
image Xn from fake generated X̂ giving and score sx as output. Dx output is used in an adversarial way
so G leads generated images that look like the images on X for both classes in C. To do that, Dx uses cn
and Xn to learn the distribution of X while judging if X̂ for a given class belongs to X .

To get Z from X , F uses an adversarial schema together with a latent space discriminator Dz :
z 7→ {sz}. Since Z is expected to be a sampling space to get X through G , a distribution is imposed
to the latent space to obtain zn ∼ N (0, I), where I the identity matrix of dimension (d × d). The task
of Dz is to discriminate real zn from fake generated ẑ samples from F . An additional discriminator
Dxz : X 7→{sxz |z} is used to distinguish between the two couples (Xn, ẑ) and (X̂, zn). Dxz is inspired
from [150, 155, 151], where they assure a bidirectional mapping and a semantic meaningful latent rep-
resentation learned in an unsupervised way. The adversarial losses described the Section IV.3.3 use the
discriminators outputs as a score for the hinge loss [76] (defined later in Section IV.3.3) to classify the
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generators outputs and the data set samples by creating a separating hyper-plane, similarly as Support
Vector Machine (SVM) loss [156]. The discriminator are expected to converge to a Nash equilibrium
[157], where the generators outputs are indistinguishable from the data set samples; in others words, the
scores sx , sxz , and sz are on average the same when the data are sampled from F and G , or from D and
N .

For simplicity, ẑ and zn will be recalled in the next sections simply as z, unless a distinction between
generated and original samples is required. Same for Xn and X̂ who are notated as X.

IV.3.1 . Deterministic filter and stochastic conditional generator architecture
In our architecture, the filter F is a deterministic function of X. The objective of F is to learn an

invariant domain latent representation Z for X . The encoder output is a z latent vector for each X. The
latent space inner structure is guided by the adversarial game where Dxz and Dz impose a distribution
of Z . F a DNN with convolution ResNet-like skip-connections variant taken from [151] (Fig. IV.3)
with average pooling layers to decrease the resolution of the features. The last layer is a dense layer that
takes the flattened extracted features from the convolutions to produce a latent vector. The filter acts as a
bottleneck to go from a high-dimension feature representation of size D = W ·H ·C to a low-dimension
feature representation d . Since F has no additional stochastic input, it turns to be a deterministic function
that accommodates the extracted information from the existing samples in X in a Z reduced space in a
parsimonious embedding representation. In other words, all the information from the M-TFM images is
compressed in a domain-adapted representation from which the generator synthesizes a new image.

The generator G architecture also implements the ResNet connections as the filter, but with up-
sampling layers instead of average pooling (Fig. IV.4) to progressively increase the resolution. z-skip
connections (shown in green arrows in Fig. IV.4) are used when forwarding z through G, similar to
[151, 82]. As a result, z latent vector is split in s partitions zi , where s is the number of ResNet blocks
in G and i = 0, ..., s− 1 . z0 is forwarded through a dense layer before synthesizing the 2D features for
the first ResNet block input. z1 ,..,s−1 are propagated differently. They are the input of conditional layers
explained later. The generator uses convolution layers that output a tensor of activation maps or features.
Those features are passed through Weighted Noise (WN) layers [82]. Class-conditioned AdaIN layers
are placed before each convolution layer. All blocks have a ReLU activation function after each class-
conditioned AdaIN layer. Additionally, the proposed cST is sandwiched between two ResNet blocks
only once in G’s architecture. To end up, the generator used a set of convolution layers with no skip-
connections stacked with Instance Normalization (IN) layers and hyperbolic tangent activation functions
and a WN at the beginning of the sequence. This part of the generator (purple blocks at Fig. IV.4(a)) is
call the synthesis block adopting non-conditioned layers. This block provided a better reconstruction on
the details of X when it was added.

The generator has one Self-Attention (SA) layer between two ResNet blocks such as in [158] at
resolution (W/4,W/4, 32). The localization of this layer, as the cST layer, is strategically set in a low-
resolution stage in G, given that the number of trainable parameters and forward computation of these
layers explode when the activation maps resolution increases. The details of the particular layers such
WN, class-conditioned AdaIN and cST layer in G are commented later in this Section. The SA layer
was added to G after empirical testing in G, driving to a better reconstruction for X.

Here above, we have provided the details of the architecture on the different blocks constituting
G based on the use of z, n and c input vectors. In particular, z vector is intended to contain all the
necessary information to reconstruct X, while n is a noisy input whose stochastic behavior is kept during
the training and test phase. The vector c, is a static embedding vector for the present classes in X (e.g.,
an one-hot encoding). In our scenario, we only have two classes linked to two domains or data fidelity.
c is used during the training phase of the cGAAE in a semi-supervised way. The corresponding class for
X is forwarded into the generator when the reconstruction is intended. Moreover, c is switched to the
opposite class and the resulting output Xcs is discriminated by the class projection Dx, so G learns to
reproduce an opposite class for X. The specific losses used for this task are explained in Section IV.3.3.

In the case of n, this input is used as a source of noise applied to z during the synthesis of X and is
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(a)

(b)
Figure IV.3. (a) Filter bottle-neck architecture, the �rst three yellow boxes represent a ResNet
block at a di�erent resolution stage in the feed-forward network. The thin yellow box represents
the �atten operation to feed a dense layer. The output after the dense layer is a reduced latent
representation of size d. (b) Filter ResNet block detail of the �rst three yellow boxes in (a), this
is speci�cally the second ResNet block in the encoder at resolution of 64 pixels. The structure
of a ResNet block contains the following layers from left to right at the main branch: a zero
padding (pink), a convolution (yellow), an instance norm (orange), a ReLU activation (gray),
a zero padding, a convolution, and an average pooling (red). The skip res-net connection has a
convolution and an average pooling. The outputs of both branches are added at the end. Images
generated with [146].
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(a)

(b)
Figure IV.4. (a) Generator synthesis architecture, the 3 blue blocks (64,32,16) represent the
ResNet blocks at a di�erent resolution stage in the feed-forward network. In between the cST
layer in dark blue. The �rst thin blue box represents a dense layer output and reshape operation
to feed the �rst convolution layer. Synthesis layers in purple as the last layers for the generator
with the number of �lters equal to 4 and 1. (b) Generator ResNet block detail of the 3 blue
boxes with 64,32,16 �lters in (a), this is speci�cally the second ResNet block in the encoder at
the resolution of 64 pixels. The structure of a ResNet block contains the following layers from
left to right at the main branch: a Weighted Noise (black), a conditional AdaIN (dark blue),
a ReLU activation (gray), an up-sampling (red), and zero padding (pink), and a convolution
(blue). This arrangement is repeated once without the up-sampling for the main branch. The
skip res-net connection has an up-sampling and a convolution. The outputs of both branches
are added at the end. Images generated with [146]. s circle stands for the split operation and c
circles for concatenation operation.
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Figure IV.5. Adversarial auto-encoder scheme. Above, the chain of generation of reconstructed
images Xr starting from a real image X is represented. The generation has an intermediate
generation stage, getting ẑ from F (X) before generating Xr from G(ẑ). Below, the generation
of fakeX̂ coming from real z.

intended to produce stochastic reconstructions of X, such in [159]. The key idea of adding n as input
is to capture the variability in the data observed by the generator, particularly when a class change is
intended. The sampling on n gives G a stochastic aspect to map one z vector to many Xcs images like
in the implicit auto-encoders [160, 159].

Both generators, together with the discriminators, are used during training in an adversarial frame-
work as shown in Fig. IV.5. The discriminator details are exposed in Subsection IV.3.2. Fig. IV.5
shows how "real" and "fake" examples of the latent space and the feature space (images) are feed into
the discriminators. The flows of generation show how the different inputs of the losses (details in Sec-
tion IV.3.3) are obtained during training by feeding different conditioned inputs into the generators and
discriminators.

IV.3.1.1 . Class-conditioned spatial transformer and instance normalization
The concept of content and style in relation to generating or manipulating data, particularly in the

context of images, is attributed to [161]. Under this assumption, an image contains two different sources
of information: the content is the more important visual features (e.g. the eyes in a cat picture or a house
in a landscape); in the other hand, the style is often related to the background, the luminosity, the contrast,
the dominant colors and particularly, the high-frequency “noise” in the image. [161] demonstrate how the
two parts, style and content, can be separated for generative proposes. In the case of [82], they show how
the content and the style can be separated the latent representation depending on the stage (resolution) of
the image synthesized at the generator.

In this work, the M-TFM image generation is also focused on the separation of content and style.
By observing the Fig. IV.1, it is possible to observe differences in the content (e.g., echo in the image)
and in the style (e.g., the electronic noise in the background or the Signal-to Noise Ratio (SNR). Since
this approach focuses on a high-definition image generation on both fidelity levels, it is worthy that G is
capable of reproducing both content and style. This is relevant since a gap between fidelity levels in the
data set can be observed in terms of content and style. The class-conditioned generator must be able to
synthesize both characteristics in the image depending on the class.

One of the proposed solutions for this task, especially for the content translation, is the cST layer.
This layer acts as the content translator between classes during the training and the testing phase of the
cGAAE. Spatial transformers were introduced by [117] to enhance CNN classification task by learning
how to eliminate spatial shift, rotations, scaling or shearing in the input data. Here, the localization
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Figure IV.6. Class-conditioned spatial transformer with a dense localization network.

network is modified as shown in Fig. IV.6 to take as input a partition zi of z and the class embedding c
(i value depends on the position of the cST layer G). The objective of adding this layer is to facilitate the
task of content changing by the c and content synthesis by zi. Furthermore, this layer input is affected
by the latent noise n since it is added to zi before going trough the localization network in the cST. As
a result, n is expected to capture the variability of the images linked to the content. We denote z̃i is the
result of z̃i =zi + ni, in order to sample different instances from the same point at zi in the latent space
by sampling ni, promoting diversity in generated outputs. Additionally, adding ni encourage the model
to learn a more robust and smooth representation.

For any n-th sample in X , the cST layer, placed after the i-th ResNet block, uses a dense layer as
a localization network to infer ϕ : R6×Ci from yin so Tϕ : R3×3×Ci can be built, where Ci are the
channel number of the input feature map Xfin ∈ RWi×Hi×Ci and yin is the concatenation of z̃in and cn,
so yin = [z̃in ; cn]. ϕ and Tϕ for each Ck are built as

ϕCi
(yin) = [ϕ1Ci

(yin), ϕ2Ci
(yin), ϕ3Ci

(yin),

ϕ4Ci
(yin), ϕ5Ci

(yin), ϕ6Ci
(yin)],

TϕCk
(ϕCk

) =

 ϕ1Ci
ϕ2Ci

ϕ3Ci

ϕ4Ci
ϕ5CCi

ϕ6Ci

0 0 1

 ,

(IV.2)

to be applied as an affine transformation per channel Ci to the feature map coordinates of Xfi as follows,

coord(Xf−stin) = Tϕ(ϕ(Xn))⊙ coord(Xfin) . (IV.3)
The resulting coordinates from Eq. (IV.3) are used to compute a transformed feature map Xf−stin. To
do that, the pixel intensities in Xfn are used together with the source coordinate grid coord(Xfn) to get
the pixel values for the new target grid coord(Xf−stin). A bi-linear interpolation is applied with the four
closed neighbors from the source grid. The operation denoted by ⊙ performs a matrix multiplication
each set of (x, y) coordinates at Xfin for each channel. As a result, Xf−stin is a representation of Xfin

after the learned an affine transformation is applied at each channel. The resulting feature map from the
cST layer is the input of the (i + 1)-th ResNet block in G. The whole cST operation (Eq. (IV.2) and
IV.3) is represented by T from now-on, witch is applied to Xfin as follows,

cST(yin ,Xfin) = Tϕ(y) ◦ Xfin. (IV.4)
Regarding to the style, the class-conditioned AdaIN layer is proposed for the style translation task.

This layer implements an IN operation who has been successfully implemented in several works for fast
style transfer in GAN architectures [118, 162]. This layer is modified in our architecture to be informed
not only by zi like in [82], but also by the encoding of c. The background idea of this choice is similar
to the conditioning in the cST: the different classes have different styles. In other works, the noise and
content distribution are different when looking to each fidelity side of the data. This layer used also a
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Figure IV.7. Adaptive instance normalization layer with a dense network for class conditioning.

zi as input, so G takes into account the conditional F output z = F (X) either to reconstruct X or to
keep the relevant information of X to produce the class conditioned Xsc. Each class-conditioned AdaIN
placed at the i-th ResNet block uses a dense layer to infer β ∈ RCk and γ ∈ RCk from yin to apply, then

cAdaIN(yin ,Xfin) = γ(yin) ·
Xfin − E[Xfin]√
σ2[Xfin] + ϵIN

+ β(yin), (IV.5)
where E [·] and σ2 [·] represent the empirical average and variance, respectively. ϵIN is a small value

used for numerical stability.

Both class-conditioned layers presented in this section give the degree of freedom to G to separate
z-partitions by different hierarchical content and style. Similarly, c is fed to the layers independently, so
each ResNet block can be pilot separately, either from zi or c. This was done with the aim of studying
the behavior of the layers at each resolution level of G. The noise introduced by n gives G a stochastic
nature for the generation, acting directly to the conditioning of both layer an so, to the content and style
variation.

IV.3.1.2 . Weighted noise layer
A key part of the style synthesis for G is the Weight Noise (WN) layer that was originally presented

in [82]. The authors show how this layer boost the random texture generation for image synthesis. Here,
this layer was successfully implemented to allow G to reproduce the background noise in the images. The
layer adds 2D Gaussian noise map randomly sampled at each forward step, during the training and the
test phase. The noise is added to each feature map channel at each resolution level of G, after affecting
the noise by a weight per-channel. The weights B ∈ R1×1×Ci are learn-able giving G the freedom to
choose where the noise is added. This stochastic layer is intended to act only in the high-frequency noise
reproduction in an aleatoric way. In future sections, we show how this layer plays in the background
noise (or texture) generation.

It is worth mentioning that, in most of the cases, the texture in images from the NDT&E field can be
interpreted as a stochastic process. Nevertheless, a variation of this layer configuration can be obtained
by sampling just once the 2D Gaussian noise during the training so the synthesis of noise becomes
deterministic, but not implemented in this work. For an input feature Xfin, the WN layer adds a noise
map S , weighted by the B as follows,

WN(Xfin) = Xfin + S ∗B, (IV.6)
where S ∼ N (0WH , IWH) and IWH ,0WH ∈RCi . The operation ∗ is the element-wise multi-

plication (each element in B multiplies a channel on S). The addition + in this context represents
element-wise matrix addition, where each element in WN(Xfin) is obtained by adding the correspond-
ing elements in Xfin and S ∗B for each channel. The layer applies a weighted noise map to each 2D
feature map of shape Wi × Hi. Since B is a learn-able parameter in the layer, the importance of the
added noise at each channel is also learned during the training.
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Figure IV.8. Schema for joint discriminators. Dx is a class-projection and patch discriminator
for the images, Dz is a dense ResNet for the latent space discrimination and Dxz is the joint
classi�cation of latent space and images.

IV.3.2 . Class Projection Discriminator
The main discriminator Dx is a patch discriminator architecture [163] combined with the projection

discriminator inspired by [151, 164]. Dx starts with the patch discriminator structure to end up with a
2D activation map in the output of size (pd, pd, 1) (instead of scalar activation). The 2D activation map
classifies the different regions of X by modeling the input image as a Markov random field and assuming
independence between pixels separated by more than a patch diameter. Additionally, the mean of the 2D
activation map Px is used to feed the class projection layer as follows,

ClassProjection(c,Hx) = Hx ∗ Embedding(c) + Px , (IV.7)
where Hx is the second to last extracted feature of Dx . The class projection is supported by a Embedding
layer that tends to separate the important extracted features at Hx depending on the class. This term is
then added to the patch discriminator output. The class projection operation is intended to help the
discriminator to understand the important features for a given class. The embedding acts as a weight for
Hx to correctly classify X regarding to it class. At the end of the pipeline, Dx is not only able to say
if an image comes from X or not, but also to say if it belongs to the right class. This discriminator is
used to train G, who used a similar concept with its class-conditional layers: the generator learns how to
leverage the conditioning to created an image close to the seen in X and it also learns how to change an
input class to another so the discriminator does not recognize the original class anymore.

For the latent space discriminator Dz , a dense ResNet layer architecture was used. The second to last
activation vector Hz of this feed-forward network is used to feed Dzx. In the same way, the activation
map Hx is passed trough a convolution ResNet block similar to the blocks in F , then trough a dense
layer, to be concatenated to Hz . Both activation map and vector are the input for Dzx. A schematic
representation of this arrangement is shown in Fig. IV.8.

These discriminators are used to classify between ‘real’ and ‘fake’ samples. In other words, between
the samples coming from the generators and the samples coming from the data set D.

Dx is a sequence of nDx convolution layers with IN and LeakyReLU activation functions. The SA
layer is set after the fist convolution layer. The class embedding layer is plugged at the end to inject the
class information. Regarding to Dxz and Dz , they have a sequence of nDxzand nDz dense ResNet layers
followed by a simple dense layer at the end of each discriminator with ReLU activation functions and
dropout only in the second to last layer (last ResNet layer). The dense ResNet blocks follow the same
structure than in Fig. IV.3-b but have dense layers instead of convolution layers (no spatial correlation
represented in the latent vector). ReLU activation are also used in the dense ResNet block. Dropout
is added for all layers except the layers at the ResNet connections. No activation normalization (batch
normalization, instance normalization, etc.), no zero padding, nor down sampling are used in the dense
ResNet blocks.
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IV.3.3 . Training the adversarial auto-encoder
In this subsection, we analyze the losses and the algorithm implemented to train the adversarial

framework. The adversarial losses are based in the hinge loss (Eq. IV.9), usually implemented in kernel
machines and successfully applied in the GAN framework, as a score for samples from the original data
set (real samples) and the samples coming from the generators (fake samples). The way how F , G, Dx,
Dxz and Dz are updated by these losses is shown in the Algorithm IV.1. The details on how the generated
data are sampled from the F , G is exposed in Algorithm IV.2. The adversarial losses are computed from
the output scores from Dx, Dxz and Dz accordingly to (IV.8).

More into details, the loss function for the discriminator Dx (Eq. (IV.8)) takes generated samples X̂
from G that follows a posteriori distribution pG, when z is sampled from the impose a priori distribution
pz = N (0, I), this is X̂ = G(F (z), c). Since G requires a class input, c is randomly sampled from a
Bernoulli distribution with p = 0.5 to promote a good generation for both classes, like in [165]. The
discriminator Dz takes ẑ = F (X), where X represent a sample from the data set X , that follow the
px original data distribution. It learns the to discriminate z samples coming from pz and a posterior
samples ẑ. For Dxz discriminator, couples of (X, ẑ) and (X̂, z) are sampled and discriminated. This
discriminator should differentiate the joint distribution from both couples so when the X and ẑ happen,
is not probable to observer X̂ and z to happen.

The counterpart of the discriminator losses are shown in Eq. (IV.9), where the hinge loss is used in
the opposite way. The objective is that F and G learn from the discriminators losses. When this loss
is minimized, the generated samples X̂ and ẑ get the same score that X and z, so the generators have
learned to generate correctly the original data distributions.

LDx = 1
2EX̂∼pG

[max(1 +Dx(X̂, c), 0)] + 1
2EX∼px [max(1−Dx(X, c), 0)]

LDz = 1
2

{
Eẑ∼pF [max(1 +Dz(ẑ), 0)] + Ez∼pz [max(1−Dz(z), 0)]

}
LDxz = 1

2EX∼px;ẑ∼pF [max(1−Dxz(X, ẑ), 0)] + 1
2EX̂∼pG;z∼pz

[max(1 +Dxz(X̂, z), 0)]

(IV.8)

LG = EX̂∼pG
[max(1−Dx(X̂, c), 0)]

LF = Eẑ∼pF [max(1−Dz(ẑ), 0)]

LF,G = 1
2EX∼px;ẑ∼pF [max(1 +Dxz(X, ẑ), 0)] + 1

2EX̂∼pG;z∼pz
[max(1−Dxz(X̂, z), 0)]

(IV.9)

Additionally to the adversarial losses, the reconstruction losses in Eq. (IV.10) were added to enhance
the convergence rate of the network and to assure the reconstruction for zr = F (G(z, c)) and z; and
Xr = G(F (z)) and X. The Focal Frequency Loss (FFL) [148] was added to Lr to help the generator
to better synthesis the high-frequency details in the images. Lr is weighted by λ > 0 to help the
convergence of the adversarial framework and as a "healthy" initialization of the training. The objective
for the generators is also to have a good cycle reconstruction accuracy such as in [166]. Toward this end,
a cycle-consistency during the generation is assured by

Lr = EX∼px [L1(X−Xr)] + EX∼px [FFL(X−Xr)] + Ez∼pz [L1(z− zr)]. (IV.10)
Furthermore,a supplementary loss (Eq. (IV.11)) is added for Xr generation. The objective of this loss is
to use the power of the discriminator Dx to ensure a good quality in the reconstruction. This loss is
complementary to Lr and intended to observe the details in reconstruction quality that can not be
observed by L1 or FFL.

LDxr
= EX∼px [max(1−Dx(Xr, c), 0)]. (IV.11)

To force the G to properly generate each class, particularly when a "class switching" is produced by F
and G, an adversarial loss is proposed to train the set of networks (Eq. (IV.12)). Here, the projector
discriminators acts as a class-conditioned discriminator to say if the generation Xcs = G(F (X, cs))
belongs to px, where cs is the opposite of the original class for X in the one-hot embedding for c.
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LDxcs

is used to update the Dx weights while LGXcs
updates the generators weights, as shown in

Algorithm IV.1.

LDxcs
= EX∼px [max(1 +Dx(Xcs, cs), 0)],

LGxcs
= EX∼px [max(1−Dx(Xcs, cs), 0)],

(IV.12)
The losses in Eq. (IV.12) work similarly to the informative loss proposed by [165], since the mutual

information between c and z is maximized by the bias of the class-projection discriminator Dx.

Algorithm IV.1 Adversarial AutoEncoder training algorithm.
for number of iterations do

for number of batches do
▷ Sampling from dataset and distributions.

z ∼ N (I,0); n ∼ N (ϵ,0);X ∼ px.
c← class forX.Freeze F,G weights. Defreeze Dxz weights.Forward network call (see Algorithm 2)Compute Dxz losses (see Eqs. on Section 4.3)

▷ Compute gradients and update weights
θDxz ←∇θDxz

(LDx + LDxz + LDz + LDxcs
)Frozen Dxz weights. Defrozen F,G.Forward network call (see Algorithm 2)Compute F,G losses (see Eqs. on Section 4.3)

▷ Compute gradients and update weights
θG ←∇θG(LG + LF,G + λLr + LGxcs

+ LDxr
)

θF ←∇θF (LF + LF,G + λLr + LGxcs
+ LDxr

)
end for

end for

Algorithm IV.2 Forward network subsection called from Algorithm 1.
▷Marginal F and G sampling.
X̂← G(z,n, c).
ẑ← F (X).
▷ Cycle F and G generation.
Xr ← (G ◦ F )(X,n, c).
zr ← F (Xr).
▷ Class switching (cw).
Xcw ← (G ◦ F )(X,n, cs).

IV.3.4 . Remarks on the image reconstruction quality
The proposed generator was conceived to generate high-quality images to get as close as possible to

the data set images in probabilistic terms. For this end, G architecture was adapted to improve the image
reconstruction. This task is assured in terms of loss by the FFL and the L1 loss.

At the same time, the discriminators play an important role in the image quality. Dx must be able
to see the details between the generated samples (X̂, Xcsand Xr) and the original data X. This is
assured by the patch discriminator architecture adopted and the SA layer. Most of the added layers in
this sense were designed based on the cGAAE architecture on the observed final reconstruction quality.
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The combination of proposed losses and particular layer allowed to achieve a good reconstruction quality.
It is worth mentioning that part of the improvement in the high-frequency details comes from empirical
tests on the placement of the WN layers. The ResNet connections brought also an improvement during
the tests in terms of reconstruction. The z-skip connections and the class conditioning at different levels
of synthesis resolution on G improves not only the convergence but also in the reconstruction. The key
idea in the z-skip connection is to avoid passing all the important information for the image synthesis at
the very beginning of the generator (e.g., the first dense layer at G). Instead, the conditional layers decide
where the latent information (including the class label) is relevant to the generator to better reconstruct
the image and to satisfy the adversarial losses.

IV.3.5 . Remark on the training stability
Generative neural network stability has been a topic of interest since the first application of this

method. Several problems such vanishing gradient, mode collapse and under-fitting are common chal-
lenges for this type of NN. In this work, several stability techniques were implemented to ensure an
stable training. This techniques brought a faster training while reducing the impacts of the modifications
of architecture or hyper-parameters changes in its stability.

The hinge loss was the more stable tested loss for the adversarial game, particularly in terms of the
vanishing gradient issue. The Two Times-scale Update Rule (TTUR) [167] with Adam optimization
showed a great improvement in the convergence rate during the training when decoupling the discrim-
inators and generators learning rates. The hyper-parameters choice becomes simpler with this learning
rate choice rule. The generators and discriminators may be considered as players in a game where they
look for a Nash equilibrium. Thanks to TTUR, a stationary local Nash equilibrium is assured at most
of the training epochs. In this case, the potential of the players becomes a secondary problem for the
stability of the training. In other words, the discriminator capacity to classify X versus X̂ regarding the
generator potential to create good X̂ samples is not the more relevant aspect in the stability. Instead,
it is enough to ensure that both the discriminator and generator are sufficiently expressive to capture or
generate all the information from X. This means, that even if one of the players is not powerful enough,
the adversarial game will be stable and the losses will accuse who is the problematic player. This brings
substantial simpleness in terms of the architecture development, reducing the task of adding or changing
layers or modifying losses.

In [151], authors demonstrated in an empirical way that, the F and G can be decoupled in terms of
learning rate, similarly to TTUR, they make the F to converge to a local stable solution before making
G to try to synthesize X from z. To clarify, the idea is to increase by 10 times the learning rate of F
regarding to the learning rate of G so the space Z is a fair representation of X when G is training itself.

Together with the hinge loss and the TTUR technique, the Spectral Normalization (SN) also con-
tributes to the stability during the training. The largest singular value of the NN’s weights of each layer
is used as normalizing value after each weights updating. The SN is one of the less constraining tech-
nique to encourages Lipschitz continuity, which is a desired property for the discriminators to improve
the stability and reduce the possibility of mode collapse [151, 168, 169]. The Lipschitz constraint is
suitable when losses like Wasserstein or hinge one are used for the discriminator. These losses give a
score with values from −∞ to ∞ for the different inputs, so they can easily diverge if the discrimina-
tor weights are not regularized. Furthermore, the SN also shows to boost the generators performance
when it is applied to its weights [170]. That is, G is not ill-conditioned at the beginning and the SN
"re-initialization" of weighs at each epochs improves the stability of the training and avoids the mode
collapse.

IV.4 . Numerical results

The generative framework was trained over a data set with M = 324 simulated UT M-TFM images
representative of a complex geometry, where Cmodes = 9 modes have been reconstructed in a region of
interest of size W = H = 128 . The experimental acquisitions were also done on the same inspection



IV.4. NUMERICAL RESULTS 103
problem. Thus, the same amount of images than the simulated one were produced from a mock-up.
More information on the parameters for the simulation and the experience as well as the sampled em-
ployed can be found in Chapter III. All images were normalized by modes. The global max-min of each
reconstruction mode was used to set each image mode group in the range of [0.0, 1.0].

The multi-channel images are arranged in single-channel images for the training to be treated as
independent Xn samples, so C = 1 and N = 324 × 9 × 2 = 5832. This choice can be seen as a
data augmentation strategy for the class-switch task. Indeed, the generators do not need to learn the
correlation between modes but they focus on the gap between the classes. The new data set arrangement
allow to create a vector of parameter pn for each image Xn with nz = 5. This vector contains labels of
the flaw geometry and position (L and β), the transverse UT wave celerity (cT ), the back-wall angle (α)
and the M-TFM reconstruction mode (M ). The experimental measurements were done on 4 different
flaws represented at different cT and α values.

Regarding the hyper-parameters of the generative cGAAE, the latent code is fixed to d = 96 with a
number partition s = 4, resulting in dim(zi) = 24. The vector ϵ to sample n noise is set to 0.1. The
framework was trained following the TTUR with an Adam optimization, the learning rate is 0.68×10−3

for F and D, and 0.1 × 10−3 for G. Adam’s hyper-parameters β1 and β2 are fixed to 0.5 and 0.999,
respectively. The batch size per iteration is fixed to 64. The dimension of embedding for c is set to 2 for
G input, while for the Dx is set to 64. ϵIN is set to 1× 10−3.

.Dx counts with nDx = 4 blocks of the layer sequences described in IV.3.2. Regarding to Dxz and
Dz , the number of neurons at the dense layers is 32 and 64, respectively. The dropout is set to 0.2. The
number of ResNet blocks is nDxz = nDz = 6. The patch is set to pd = 14. Reconstruction loss weight
is set to λ = 2 · 104.

The model is trained over∼ 11k epochs onD partitioned as follows: one of the four flaw geometries
is kept out during the training (3mm, vertical). This flaw’s images constituted the test set. A validation
set is created with the rest of the data by splitting it into the 75% of the remaining images. The criteria
for the validation set creation is to take half of the fidelities couples from the image samples. This is, the
validation set contains couples never seen during the training. As a result, only∼ 2k samples are left for
training set. The optimization is performed on a 4 GPU units Nvidia V-100 with 25 GB of RAM each.
A stop criteria is set in the validation reconstruction loss to stop the training by an early stopping.

We analyze the obtained results accordingly to two parts, the first part is the realistic data generation
from the couples F and G is in focus, where the latent space is explored to show the generative poten-
tial. Secondly, an inverse problem is assessed by using the generated data set to show the performance
improvement when the present generative framework is applied.

IV.4.1 . Realistic data generation by sampling the generator input
Once trained, F can be forward-propagated by a sample Xn associated with a fidelity level (or class)

cn and a set of parameters to get a latent space vector zn. When all samples in X are forwarded, the
conditional Z space can be built as it is shown in Fig. IV.9. The shown representation is the result of
processing Z space from the dimension of d = 96 to two dimensions with t-SNE algorithm [70]. The
resulting plot show how each sample is coded by F and how some of the parameters impact its latent
representation.

The latent space structure in Fig. IV.9 exposes a hierarchy in Z . This hierarchy may be compared
to data set X intrinsic relations between the parameters p and images. For instance, the shape of the
echos and the background noise texture is different for each modes, so it is expected to find the principal
clusters in term of mode. This is illustrated by the scatter plot together with the zoomed flaw images
near to some clusters in Fig. IV.9(a). The classes present tow main clusters in Z with a similar structure,
since the two fidelity levels in X are affected in a similar way by p (Fig. IV.9(b)). Regarding the flaw
geometries, is natural to find secondary clusters since the signature (i.e., the echo) in a M-TFM image
can be considered as a total different class per each geometry. Each flaw geometry secondary cluster in
Z represents the variation of reconstruction parameters (cT and α) in X , as shown in Fig. IV.9(d) and
(c). Since each parameter modifies the image in a different way (mainly shift for cT and rotations for α)
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(a) Whole data set, colored by modes (left). Some images linked
to the enumerated points are shown at the right.

(b) Whole data set, colored by (c) Whole data set, colored by
fidelity levels (classes) flaw geometry parameters

(d) Zoom from rectangle in (a), (e) Zoom from rectangle in (a),
colored by wave velocity velocity colored by back-wall slope angle

Figure IV.9. Representation of latent space Z in a t-SNE 2D projection. The complete
data set X is presented, colored by the parameters and class from the simulation and mock-up
con�guration. LS: Latent Space coordinates for a 2D t-SNE embedding. References for �aw
geometries coloring: (3, t) is the 3 mm tilted �aw geometry, (10, v) is the 10 mm vertical �aw
geometry, and so on. (a) shows the clustering by modes. (b) shows the clustering by classes with
some TFM images samples plotted near the cluster where they belong (the images are zoomed
to show better the echos shape). (c) shows the clustering by �aw geometries. (d) and (e) is the
a selected cluster (black rectangle in (a)) colored by two of the parameters: cT and α.
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(a) (b)
Figure IV.10. Latent space distributions for the �rst 6 components (a) and correlation matrix
for all components (b). The dotted squares demarcate the 4 z partitions.

it is expected to find two principal directions that are weakly correlated. The figure shows the zoom on
one of the cluster, and each cluster presents a different local structure depending to the others parameters
in p.

Accordingly to the distribution of Z and the correlation matrix as is shown in Fig. IV.10, we ob-
serve that the latent space respect the imposed distribution during the training. We also observe that the
correlation matrix demonstrates that there is a hierarchy in Z . The z-partitions contain more relevant
information in the first two stages, while in the last two, z is not informative at all. It is important to
mention that Z structure depends on the data set a priori distribution, the imposed distribution learned by
Dz , and G architecture definition. For the last point, this is closely linked to how G forward z to retrieve
the reconstruction of X and the correct Xcs.

This correlation matrix hierarchy can be explained from how G uses z to synthesize an image. G
generates the most important features of X from z0 at the first layers (Fig. IV.4). That is why z0
must be the most informative of the 4 partitions. Subsequently, G drives the content generation and
the class switching after the ResNet block, more specifically in the cST. This layer is conditioned by
z1, so this partition is relevant too for the objectives of the losses, particularly for the class switching
objective. Finally, the last two ResNet blocks add the last details to X, mostly the background noise of
the image and the high-frequency features. Here the WN layers are the most relevant source of noise,
giving a stochastic input for the synthesis of the final details of X, so z becomes useless at this stage.
Consequently, the last z partitions are less informative.

To discuss the X and Xcs generation, we show in Fig. IV.11 some examples of the new “realistic”
data set. We use the test set to show the generalization of the framework to learn the gap between two
domains: low-fidelity versus high-fidelity level.

The Structural Similarity Index Measure (SSIM) [171] is used to compare each generated image with
the experience ground truth. These metrics assess the similarity in terms of structural and perceptual
features and its range is from -1.0 to 1.0, being 1.0 the highest similarity. We quantify the fairness of
generation for the non-seen flaw geometry (test set) by a mean of SSIM, given by

SSIMmean =
1

NT · S

NT∑
n=1

S∑
i=1

SSIM(Xexpn
,Xcsn,i), (IV.13)

where Xexpn is an experimental sample in the test set with NT = 729 realizations. Xcsn,i is the class
switched prediction from the cGAAE from simulation to experience. In this case, the simulation and
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(a)

(b)
Figure IV.11. Generator sampling strategy for the realistic data set. (a) A sample of realistic
generated data from a simulated input Xsim, with sampling on n and on WN layers indepen-
dently. The �gure shows how the style (background noise) is separated from the content (echo
geometry) by the two stochastic inputs on G. (b) express the sampling in a functional notation
while specifying the contribution of the features generated on Xcs by each input of (G ◦ F ).
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cou
nt

SSIM per modes
Figure IV.12. SSIM frequency by TFM reconstruction modes (closer to 1.0 is better), given
by the kernel density estimation. This metric shows the similarities between the experimental
ground truth and the realistic generation given by G ◦ F NNs.

experimental from the test set are both produced over the same parameters (flaw geometry, material T
celerity and back-wall slope). The sum over i represents the several sampling for Xcsn,i , where S = 20
following the Fig. IV.11 generation procedure and sampling n and WN layer at the same time. The
reported SSIMmean is 0.92, showing the generalization power of the generative neural network. A
density distribution per TFM reconstruction mode is shown in Fig. IV.12.

In Fig. IV.13 the evolution of loss curves is given in function of the epochs for the reconstruction
loss, and the discriminator and generator adversarial losses.

IV.4.2 . Exploitation of realistic generation outcomes applied to inversion tasks
Once the realistic generation was validated for the presented framework, a test on cGAAE data

generation is propose by using the generated data in an inversion problem. The objective is to train a
regressor (inverse) modelM−1 such that

M−1 : I → P (IV.14)
where P corresponds to the set of parameters to be retrieved based on the M-TFM image data set I

provided as input. To analyze the impact of synthetically generated images on the inversion performance,
we considered three different data set M-TFM settings referred hereafter as ISIM , IcGAAE and IEXP .
For the purpose of this section, the original simulated data set accounting 324 samples was enlarged f to
5935 samples by uniformly sampling of the P space accordingly to the procedure provided in Chapter
III, in the Fig. III.5. The parameters ranges studied were 2.0 ≤ L ≤ 12.0, −20.0 ≤ β ≤ 0.0,
10.0 ≤ α ≤ 18.0 and 3080.0 ≤ cT ≤ 3380.0.
ISIM identifies the set of simulated images with dimension is [5935, 128, 128, 9] labeled by ps. The

multi-channel M-TFM images have a dimension of 128× 128 pixelsand 9 channels, one per reconstruc-
tion mode. IEXP contains the images generated from the experimental acquisition and labeled by pe.
IEXP dimension is then [324, 128, 128, 9], coming from the data setD. It is worth to note that for testing
purposes a flaw was left out for the cGAAE training and validation the one considered for the inversion
task. D is rearranged from [M,W,H,C] to [M,W,H,Cmodes] format to create the multi-channel images
accordingly to ISIM . Finally, the IcGAAE data set was created by exploiting F and G generators.

The enhanced realistic images are generated by feeding the ISIM images in input to our architec-
ture. By sampling n and the WN layers simultaneously at a rate of S = 3 samples per simulation
input image (see Fig. IV.11), a multi-fidelity IcGAAE data set is generated with the dimensions of
[17805, 128, 128, 9]. That is, this data set contains 3 realistic representation of each simulated image
composed by what we have called Xcs images. To respect the original inter-modes correlation for a
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Figure IV.13. Loss evolution versus epochs for AAE training on M-TFM data set. The training
loss is in black, and the validation loss is in yellow. log(Lrec) is the reconstruction loss for X.
LDx and LGx are two of the adversarial loss. In this case, the hinge loss over X is shown. LGx

decreases over the epochs, while LDx increases, showing that G is generating images similar to
the training data set X and Dx is less capable of discriminating generated samples. For LDx and
LGx , smoothed curves are presented.

given multi-channel M-TFM image, the noise sampling for G is constant for each instance on IcGAAE ,
so the noise at the 9 channel images represents a single FMC acquisition. To clarify, G output has a sin-
gle channel image output, so to represent a 9-channel M-TFM image, G must be forwarded 9 times, one
per mode. To respect the fact that during an acquisition, the 9 modes are impacted by the same measure-
ment errors and noise, n must stay fixed when building an image of shape(128, 128, 9). Finally,IcGAAE

images are labeled by the enlarged p∗
s vector, which is a simple repetition of ps to label the new images,

by respecting the original ps coming from the simulation side, but repeated 3 times for the new realistic
samples. ps and p∗

s were normalized by parameter in the range of [0.0, 1.0]. Referring to Eq. (IV.14), he
described data sets were used for the inversion problem:

p =M−1(X), (IV.15)
where M−1 is the NN specifically tailored to be applied on M-TFM for regression tasks. M−1 is an
in-house inverse deep learning model developed for M-TFM.

The hyper-parameters for the inversion networkM−1 are presented in Tab. IV.1. The architecture
with Adam optimizer with a learning rate of 1 · 10− 4, and a batch size of 32. The patience for the early
stopping is 500 epochs. The loss is a Mean Square Error (MAE) applied in a supervised way to the set
of parameters.

The first and last layer is modified to match X and p dimensions, respectively with the last layer has
linear activation. It is worth to mention that the main purpose of the analysis performed in this section is
to assess the performance changes due to the use of synthetically generated data for the regression task
addressed. The choice of the most suitable NN architecture to fit of the data considered in this section
were not considered in the analysis proposed, certainly it would and interesting research axis. The
resulting NN (M−1) is trained for the inverse problem for three different cases, first the training data
set is ISIM to trainM−1 and later tested on IEXP . In the second case, the enlarged realistic data set
IcGAAE is the training data set and the resultingM−1

cGAAE is also tested on IEXP . Finally, a hybrid (or
enhanced) data set ISIM+cGAAE is used to trainM−1

SIM+cGAAE , where the simulated data and realistic
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Table IV.1. CNN Architecture used forM−1

Layer Type Output Size Kernel Size Activation

0 Input 128× 128× 9 - -
1 Conv2D

128× 128× 16
3× 3 ReLU

2 Conv2D 3× 3 ReLU
3 Conv2D 3× 3 ReLU
4 Conv2D 128× 128× 16 3× 3 ReLUMaxPooling2D 64× 64× 16 2× 2

5 Conv2D
64× 64× 32

3× 3 ReLU
6 Conv2D 3× 3 ReLU
7 Conv2D 3× 3 ReLU
8 Conv2D 64× 64× 32 3× 3 ReLUMaxPooling2D 32× 32× 32 2× 2

9 Conv2D
32× 32× 64

3× 3 ReLU
10 Conv2D 3× 3 ReLU
11 Conv2D 3× 3 ReLU
12 Conv2D 32× 32× 64 3× 3 ReLUMaxPooling2D 16× 16× 64 2× 2

13 Flatten 16384 - -
14 Dropout (0.33) 16384 - -
15 Dense 512 16384× 512 ReLU
16 Dense 256 512× 256 ReLU
17 Dense 4 256× 4 Linear
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Error (ε) distributions by parameters
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Figure IV.14. Results of inverse problem training. M−1

SIM , M−1
cGAAE and M−1

SIM+cGAAE

performances for IEXP data set (324 instances). Kernel density estimation is implemented
to show the probability density estimation for M−1 prediction error frequency over the IEXP

instances. The measured magnitude in x-axis is a metric applied to the di�erence between
ptrue and ppredicted =M−1(X), such as Absolute Error (AE), Squared Error (SE) and Absolute
Percentage Error (APE). The y-axis is the instance frequency for each error value.

data are put together in a single data set. The objective of this study is to show the differences in the
performance when realistic data are used in an inverse problem, instead of just using just ISIM .

The neural network is trained with the same criteria regardless of the data set fed to the network. A
validation set of 20% of samples at each I set is kept out to prevent over-fitting, an early-stopping is set
for each training with a patience of 500 epochs, a learning rate of 10−4 on an Adam optimizer. Each
model is fitted in different fidelity levels and the performances are compared here. The training is done
on 4 GPU units Nvidia V-100 with 25 GB of RAM each.

The Fig. IV.14 shows an improvement when the predictor has seen realistic data, and not only
simulated data. One can notice that the green curves present a smaller dispersion and a smaller error
mean. Additionally, it can be noticed that M−1

SIM+cGAAE distributions in green present the highest
value, particularly for the inversion of L. A numerical assessment for this representation for different
metrics is exposed in Tab. IV.2, were we observe thatM−1

cGAAE andM−1
SIM+cGAAE over-perform the

task compared toM−1
SIM .

Looking at the reported error in Tab. IV.2, one can notice that the inversion of L reports the best
performance in general whenM−1

SIM+GAN is used to predict experience data. In terms of improvements,
M−1

SIM+cGAAE reported an improvement of 26% in EV metric and 22, 7% in R2 metric for α, compared
to M−1

SIM . Furthermore, the model trained on the enhanced training set, is shown to be capable of
explaining only around half of the variation for α, while training the same model on simulated and
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Performance for parameter L. Test on IEXP .

M−1
SIM M−1

cGAAE M−1
SIM+cGAAEEV (↑) 0.811 0.813 0.938

MAE (↓) 0.131 0.138 0.069

RMSE (↓) 0.171 0.163 0.087

R2 (↑) 0.761 0.784 0.938

MAPE (↓) 1.394 1.298 0.744

Performance for parameter β. Test on IEXP .
M−1

SIM M−1
cGAAE M−1

SIM+cGAAEEV (↑) 0.602 0.697 0.791

MAE (↓) 0.233 0.201 0.152

RMSE (↓) 0.313 0.271 0.213

R2 (↑) 0.201 0.401 0.63

MAPE (↓) 0.512 0.399 0.393

Performance for parameter cT . Test on IEXP .
M−1

SIM M−1
cGAAE M−1

SIM+cGAAEEV (↑) 0.917 0.924 0.946

MAE (↓) 0.109 0.101 0.097

RMSE (↓) 0.123 0.112 0.105

R2 (↑) 0.854 0.879 0.893

MAPE (↓) 1.665 1.859 1.347

Performance for parameter α. Test on IEXP .
M−1

SIM M−1
cGAAE M−1

SIM+cGAAEEV (↑) 0.594 0.799 0.809

MAE (↓) 0.174 0.117 0.104

RMSE (↓) 0.21 0.149 0.143

R2 (↑) 0.577 0.786 0.804

MAPE (↓) 3.61 2.550 1.906

Table IV.2. Metrics forM−1
SIM ,M−1

cGAAE , andM
−1
SIM+cGAAE tested on IEXP data set. Each

table represents the prediction of a parameter for allM−1 inversion problems. The metrics are
computed over a normalized space P on the range of [0.0, 1.0]. (↑) and (↓) symbols inform when
the metric is better when is higher or is better to be lower, respectively. The best metrics are
in bold. EV: Explained variance. MAE: Mean Absolute Error. RMSE: Rooted Mean Squared
Error. R2: R-squared error. MAPE: Mean Absolute Percentage Error.

realistic data coming from the cGAAE results on around the 80% of the explained variation for the same
M−1 inversion model. These improvements underline the potentiality beyond the used of an enhanced
training set to fit a more robustM−1 than the one that can be obtained from simulated data only.

IV.5 . Discussion

To find a convenient generative architecture, many options were explored before the final cGAAE
architecture definition. One of the most difficult issues to address for the development of the architecture
was how to use c as an input for fidelity level switching meanwhile avoiding model instabilities in the
training phase. Toward this end, we tailored the design of the deep neural network accordingly to the
choices introduced in Section III.2 build G with an input c. We tailor the architecture based on the
assumption that c switching can be achieved by a set of transformations assured by the layers cST and
AdaIN. In other words, the differences between fidelity levels exist in content and style, so the cGAAE
must contain these transformations to perform the task of generating Xcs. Including c at each resolution
stage on G gave the cGAAE the possibility to use the class (or fidelity level) information better. Adding
LDxcs

and LGxcs
are also part of the propose solution for this problem.

Furthermore, the presented architecture has been obtained after an extensive evaluation of promising
state-of-the art architectures that tent to solve the problem of using c in G. Among the different tentative,
the InfoGAN [165] deserved some comments. Indeed, it was implemented by reducing the information
I(c;G(z, c)) when G takes only z and c as input vectors in the very first layer, but its proposition pre-
sented some issues since Xcs were too similar to X (any modification for G(z, cs) regarding to G(z, c)).
We observed that creating a bottleneck where z and c together make the NN to concentrate only in z,
turning c input completely uninformative to find X, and so to get Xcs.

Regarding the instabilities issues of training a generative network, many solutions were developed
and tested. Toward this end, we observed that WGAN [77] and ALICE [155] losses show an unstable



112 CHAPTER IV. SEMI-SUPERVISED GENERATIVE MODEL FOR ENHANCED INSPECTION

behavior on the training for the present data set. The small number of instances and the quality of the
image may block the training for these networks. The class switching task was not properly performed
for any of these architectures. The z-partitioning and the conditioned layers added solved the issue of
class switching. Additionally, the SN and hinge loss greatly improve the training and the smoothness
to fit the cGAAE in such an small data set. Furthermore, the WN layers borrowed from [82] provides
the needed architecture expressiveness to fairly reproduce the style of each class. Finally, changing the
content of a generated new image (echo shape and position) was mainly possible because of the cST, as
it was shown in Chapter III by an ablation of this layer on the generative model.

Regarding the regression model developed for crack sizing and specimen parameters estimation, the
aim of this study was to provide an application context to the deep neural network strategy proposed and
not to perform a wide analysis to establish the best possible inverse model applied to M-TFM images
thus we rely on in-house inverse deep learning model developed for M-TFM not yet published. Other
inversion NN were tested for this part of the work, like [20]. We found that, up to some extent, they
can profit from the enhanced data set while training. However, many existing inversion techniques may
not benefit from this approach since the can not longer improve, no matter how close training data are to
reality.

IV.6 . Chapter outlook and perspectives

We present a domain adaptation approach to generate realistic data from a multi-fidelity NDT&E
ultrasound imaging data set. We present a new tailored cGAAE architecture for NDT&E realistic data
generation proposes. The neural network is trained over a multi-label and multi-class data set for a
complex weld geometry ultrasound inspection.

We demonstrate in both qualitative and quantitative ways how new generated data can be exploited
for inversion tasks (i.e., regression) and enhance the prediction of neural network based inverse models.
Improvements were reported in terms of prediction accuracy. This shows a practical application for the
cGAAE generated data to perform a domain adaptation approach for industrial applications in NDT&E
application.

The possible perspectives and axes of research interests on the cGAAE architecture proposed, are
the optimization of computational burden associated to the training phase accounting for a faster spectral
normalization computation like in [172]. Given the stability of the training for the realistic data gener-
ation approach presented here, adding more data, coming from experimental or simulated sources, may
highly improve the accuracy of the generated images. That is, either more simulated data to treat an
unbalance class representation study case, or an intermediate fidelity level coming from a FEM model
may lead the cGAAE model to better convergence.
Some approaches to exploit the latent space structure are intended to be implemented in this generative
model [173, 174, 175, 176, 83]. The final objective is to detach the generator to profit from the known
latent space distribution to generate realistic label data. Some work in this sense seems promising [177],
where an additional constrain to the latent space is added to impose a direction (Fig. IV.9) to z regarding
a parameter pi. Later, this direction is followed at space to generate data by changing one parameter at
a time. The advantage of this approach is that only a fidelity level needs to be fully labeled during the
training (e.g., the simulation data) and G can be an independent generator during the test phase. For
instance, the simulated data in not need anymore, accelerating the realistic generation.

Other options may be to test architectures like in [178], where the link between the simulation pa-
rameters p and the Z space is learned by an additional NN during the adversarial training. Compared to
the previous approach, this approach provides an architecture with direct access to a mapping from p to
Z . However, as in the previous approach, the stability of the training is not assured for the whole set of
NN in the adversarial game when adding new objectives to optimize.



V - Conclusions and perspectives

V.1 . Overview

This thesis investigated the application of tailored deep learning (DL) algorithms as applied to non-
destructive testing and evaluation (NDT&E) for enhancing forward and inverse problem performances
with application to computationally expensive statistical studies. We proposed and tested adapted learn-
ing frameworks based on state-of-art deep learning architectures and we apply them to different NDT&E
data issues representative of eddy current testing and ultrasound testing based imaging. Once deployed,
the architectures are exploited as surrogate models to generate new data (i.e., generative model). These
synthetic data are then used in some common inverse problems and global sensitivity analysis to show
some possible applications of the proposed architectures.

More notably, the proposed approaches focus on the exploitation of data used to develop surrogate
models that may account for different sources. Different simulations, experimental acquisitions, and in
situ recording are examples of different possible sources. Each data source on a given NDT&E technique
represents a different degree of fidelity (or similarity to the reality). More generally, the present work
provides a framework to develop a surrogate model by considering the contribution of possibly many
sources. This major challenge is a key part of the contribution, and it enables a complete mining of
existing multi-fidelity data sets in the field of NDT&E.

Once a data set is produced for an inspection technique, the proposed methodology can be decom-
posed into two parts. Firstly, the development of a tailored DL architecture that learns from the initial
data set is designed. Then, the architecture becomes a data generator. Secondly, the architecture shall be
used to enlarge the initial dataset. Sometimes, the generation considers just one source of data (or fidelity
level), and sometimes, more sources are considered to develop the architecture and later data generation.

Chapter II presents an example of a single-fidelity data set. A DL architecture based on an Au-
toEncoder is proposed as a generator in an eddy current testing (ECT) inspection. The initial data set is
produced from a parametric simulation used as a forward solver. The data format is ECT images pro-
duced from an inspection of a specimen with two plates put together with an isolation layer. Each plate
has a linear crack. Coil position, specimen proprieties, and cracks geometry parameters parametrize the
simulation. A set of 12 parameters sampled from the forward solver serves as labels for a ∼ 5 k image
data set.

Once the generating architecture is trained over the data set, the architecture replaces the forward
solver to enlarge the initial data set. The initial set of parameters is the architecture input, and new la-
belled images can be generated from it. Thanks to the enlarged data set, the new data are used to perform
extensive statistical studies such as global sensitivity analysis and feature importance ranking with high
confidence levels.

Chapter III presents an example of a multi-fidelity data set. A DL architecture based on a conditional
U-Net is proposed as a generator in an ultrasound testing (UT) inspection. The initial data presents a
higher complexity regarding the ECT data set. The data format is also labeled images parametrized by
simulation parameters. The images come from the multi-mode total focus method (M-TFM) imaging
technique. The data set is a muti-fidelity set of around 5 k images. This time, two sources are used to
produce the data : a parametric simulation as a forward solver and an experimental acquisition performed
in a mock-up that reproduced the simulation parametrization. The added experimental data represent an
additional complexity to developing the surrogate model.

The developed architecture for this multi-fidelity case implements similar DL techniques from the
previous Chapter II to include the parameter labels as input for the data generator. Additionally, the
architecture learns to translate simulation data to experience data. As in Chapter II architecture, the sur-
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rogate model uses the parameters as input to generate new label data. Supplementary, the architecture
infers new experimental data from the simulation. The surrogate model allows the enlargement of the
initial experimental acquisitions.

Chapter IV uses the same data set from the previous Chapter. This time, a new DL architecture is
proposed to tackle the problem of the stochastic nature of the experimental data. In contrast with the
conditional U-Net architecture, which provides a deterministic mapping between fidelity levels on data,
the generative architecture uses a statistic approach to generate an one-to-many mapping from simula-
tion data to experimental data. This approach is better adapted to the real world since an experimental
campaign generates different images from the same set of parameters since many sources of uncertain-
ties not accounted for in simulation are present at the moment of the acquisition (e.g., probe position,
environmental conditions, variability of the specimen parameters).

The stochastic data generator is used to enrich simulation data coming from a parametric forward
solver. A new data set of over 15 k realistic images is obtained. The new data set is applied to an inverse
problem for the image data set. The set of simulation parameters is retrieved from the images. The
preliminary results obtained showed that the enhanced performance is shown when the newly enlarged
data set is used for this task in contrast with the same inversion optimized only with data from the
simulation.

V.2 . Summary of findings

V.2.1 . Tailored architectures for NDT&E small data in NDT&E
One of the challenges for NDT&E data and ML algorithms is the accessibility to data. Mainly,

accessing extensive data to train the existing deep architectures in the bibliography in the NDT&E is
often problematic. Generative architectures are demanding regarding samples, particularly those that use
statistical approaches to learn the data distribution (called cGAAE architecture).

It is natural to think that large datasets are needed when handling increasing data complexity: a
considerable number of classes, many labels, or several features in each sample. The aimed task is
also linked to the need for more data. Loosely speaking, the more complex the task, the more data are
required. For example, differentiating classes on a two-classes data set is relatively more straightforward
when the classes are easily separated (e.g., cats versus dogs classification). The amount of data that can
be representative enough for this task is less representative for a more complex aimed task (e.g., breed
identification over the two classes).

In NDT&E data, the same issue exists regarding data quantity and task complexity [179]. It is worth
noting that the initial data sets used through the methodology are relatively small compared to other
existing data sets in the bibliography. Similar generative tasks than the proposed in the methodology
exist in the bibliography. The bibliography uses large existing data sets such as MNIST, CIFAR-10,
CelebA, or ImageNet. The smaller data sets in the list are MNIST, which has around 10 k samples
for 9 classes with 28 × 28 features per sample; and CIFAR-10, which has 6 k coloured images of size
32× 32 for 10 classes. Others go up to 200 k images with multiple labels and classes, such CelebA and
ImageNet.

The used data sets in this thesis do not surpass the quantity of 6 k in any case. For instance, the
number of classes and parameters in the UT data has 4 labels per instance: transversal wave celerity,
specimen back-wall angle, and crack geometry parameters (2 labels). Moreover, as explained in Chapter
III and Chapter IV, the dataset was augmented by adding a fictitious class called reconstruction mode to
go from 324 samples to ∼ 5 k samples. The images are high-definition TFM with 128× 128 features.

This gap in the number of samples between our data sets and the data sets used for DL generative
approaches, in general, was one of the blocking issues to developing the proposed architectures.

V.2.2 . Tailored affine transformation for spatially correlated data on NDTE&E
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A proposed solution for the problem of data accessibility in terms of quantity was the tailored archi-

tectures. The conditioned spatial transformer and the conditioned instance normalization blocks prevent
the architectures from being too deep regarding the complex task : to act as a surrogate model to gener-
ate new instances. The initial tests showed that the unconditioned architectures did not get to reproduce
some effects in the data (Fig. III.9) without the spatial transformer block. A possible solution to this
would have been to increase the depth of the architectures, but more data was needed for this. Since the
production of more data was not a realistic scenario, the problem was unblocked thanks to the tailoring
of the architectures.

Adopting the Spatial Transformers (ST), FiLM and adaptative Instance Normalisation (IN) layers
from the bibliography brings a solution to the lack of large data sets in the DL surrogate modelling for
the NDT&E field.

The inner features representations in the Fig. II.7, III.10 and IV.9 show how those layers help the
architectures to handle style and content generation, guided by the simulation parameters and the classes
in the data set.

Figures III.10(c), III.10(d), IV.9(d) and IV.9(e) show how the ST in the architectures condition the
latent space representation to the specimen wave celerity parameter and the back-wall angle parameter.
When observing the initial data set of TFM images, one can notice that those two parameter changes
represent a roto-translation in the image. This partially justifies the reason why the sub-clusters in latent
representation are arranged as in the figures: two preferential directions that tend to be orthogonal per
sub-cluster.

The observations showed that the more information was included in this conditioning, the better the
generation quality and the faster the deep architecture training. This, together with the reached stability
after including this type of layer, gives the DL frameworks the accuracy needed despite the small data
available for the training.

It is important to mention that both conditional layers were conceived for the purpose of this work.
The conditional spatial transformer is introduced for the first time in the bibliography in the publica-
tions produced in this thesis, and it is an adaptation of the spatial transformer used before for enhanced
classification tasks in DL. Two different applications were shown: parametric conditioning and class
conditioning for spatially correlated data on NDT&E.

The conditional instance normalization (FiLM and AdaIN) inner structure as applied to the applic-
ation to guide a parametric conditioned generation in the Chapters II and III are also introduced, to the
best of our knowledge, for the first time in the publications produced in this thesis.

V.2.3 . Different architectures proposition adapted to different data sources
The three architectures presented in the methodology were conceived considering the data set charac-

teristic of each case. Even for frameworks with the same objective at the end (NDT&E data generation),
the architectures need, up to some extent, to be adapted regarding the type of data and the generative
task.

The AE backbone was the most suitable for the architecture applied to ECT single-fidelity data.
Before this final architecture, an U-Net backbone was tested without success. This failed because of the
skip connection in the U-Net architecture from the encoder to the decoder. This allows all the information
from the input to flow directly to the neural network output. As a result, the deepest layers are not trained,
and the input parameters do not condition the architecture. The same experience can be done for the
cGAAE architecture when adding skip connections between the encoder and decoder. The test showed
that the latent space was not informative, proving that skip connections of this nature are unsuitable
for generative architectures in some generative tasks. As an alternative, ResNet connections helped the
generation tasks without blocking the training of the deepest layer of the neural network.

However, the U-Net with the skip connections was successfully used for the multi-fidelity supervised
case in Chapter III. Contrary to the cGAAE and the cAE, the objective of the cU-Net training is not to
reconstruct the input of the neural network as in the cAE or the cGAAE, but to translate an input to a
different fidelity level. In this case, the task tolerated the skip connection since the input and the output
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were different.
To sum up, different architectures were adapted for different NDT&E applications and data, from a

single source simulated data set to a multi-fidelity dataset. The shown application for each data set is not
exclusive; for instance, the UT data set may be applied to the cAE network to accelerate the simulations,
or if an ECT data set with experimental acquisition were available, the cU-Net or the cGAAE may be
used to enrich the simulation data.

V.2.4 . Pseudo real-time data production for NDT&E inspections
One of the contributions derives from the fact of using ML architecture for the design of the surrogate

models. Once the architectures are trained, they can be loaded into a CPU with limited memory to
generate new data. This allowed the cheap generation of the realistic data set of 15 k images for the UT
inversion task in Chapter IV and the enlarge simulated data set of∼ 25 k images for the global sensitivity
analysis and feature importance ranking in Chapter II.

Both generations were done once the network was trained in a short time related to the initial data
set production time. For instance, an ECT forward solution takes over 40 s based on optimized semi-
analytical models, while a DL forward solution takes 0.014 s, when it is not parallelized. This made
possible the generation of massive data needed for studies such as feature importance ranking.

V.2.5 . Application to global sensitivity analysis and feature importance ranking as NDT&E
inspection study technique

SHapley Additive exPlanations (SHAP) values have gained prominence in the ML community as a
method for ranking the importance of features. However, their application within the field of NDT&E
is still in exploration. Surrogate model based on Deep Neural Network (DNN) architectures have not
been extensively explored in NDT&E when it comes to efficiently calculating Global Sensitivity Ana-
lysis (GSA) indexes or determining Feature Importance (FI) rankings using SHAP values. In traditional
machine learning research, FI methods play a crucial role in feature ranking. The emergence of SHAP
values has been a significant advancement in this regard. These values, along with the "bee-swarm" plots
(e.g., Fig. II.11), provide powerful tools for understanding feature importance. When applied to ECT sig-
nals, DNN regression models not only exhibit high prediction accuracy but also demonstrate exceptional
computational efficiency. This efficiency is particularly noteworthy compared to the intensive computa-
tional demands of traditional forward solvers. Furthermore, adopting SHAP analysis in ECT permits a
comprehensive study to be conducted in a remarkably short amount of time, allowing for deeper insights
into the ranking of parameters and revealing physics-rooted behaviours. SHAP presents an interesting
complementary analysis with, for instance, GSA.

V.2.6 . Relation between machine learning generative approaches and multi-fidelity data
on NDT&E

During the development of each architecture, some concepts commonly used in ML in the computer
vision research community were applied to the NDT&E data. Style and content concepts used in ML
as been translated to to the equivalent notions of noise (as intended as a quantity that cannot be directly
simulated via numerical solvers) and flaw signature (as intended as the quantity that impacts more the
outcomes of the numerical simulations) in ECT and TFM images. This link has been exploited to propose
a new approach towards high-quality data generation on NDT&E.

The observed differences features between different fidelity data on NDT&E (e.g., simulation and
experimental) were compared to the differences recalled in the ML when translating images from differ-
ent domains [79] and integrating them into our NDT&E data generation approach fully.

V.2.7 . Thesis work contributions accordingly to the research directions in the scientific ML
framework

Scientific machine learning [180] is a research topic dealing with the integration of numerical sim-
ulation, scientific knowledge and machine learning into a common framework aiming at enhancing the
outcomes of the results and the analysis of each of the mentioned research directions as taken separately.
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This thesis addresses some of the priority research directions in the scientific ML fields as applied

to NDT&E. In the technical report from [180], the authors mention that incorporating scientific domain
knowledge has the potential to reduce data requirements dramatically. An example of this is how we
tackle the lack of large data sets by proposing tailored architectures where the inner layers are adapted to
the NDT&E domain.

Robust and interpretable scientific machine learning is also a recurrent subject. In the methodology
proposed in this thesis, explainability has been boarded through the inner features exportation and inter-
posed with the domain knowledge to shed some light on how surrogate models work in a physic-rooted
data set. Together with this exploration, the validation of each surrogate model gives an idea of the
robustness of the methodology applied in this thesis.

The term “outer loop” is used increasingly to describe computational applications that form outer
loops around a forward simulation. Those applications often rely on machine learning-enhance model-
ling and intelligent automation. Examples of this have been treated in specific NDT&E techniques in this
thesis. The surrogate models have been applied in some diagnostic and evaluation techniques to prove
the applicability of machine learning-enhance modelling in the NDT&E domain. There is a possibility
to extrapolate this methodology to other fields where the same need exists.

V.3 . Future work

V.3.1 . Application to NDT&E and SHM techniques other than ECT or UT
The frameworks are not exclusive to the NDT&E methods presented in the methodology, and this

means that they can be extended to other NDT&E data more than ECT and UT techniques. For instance,
Infrared Thermography, Acoustic Emission Testing, and Structural Health Monitoring may be a source
of input data to be deployed in the proposed architectures. The objective may be the same: fast and
controlled realistic data generation. Imaging techniques from those may be more adapted for the archi-
tectures, essentially because the spatial transformer block focuses on convolution neural networks for
images.

V.3.2 . Application to NDT&E and SHM data other than images
The tailored architectures are conceived for image data. However, it is possible to find several similar

layers and blocks in the DL bibliography to conceive new tailored architectures more adapted to, for
instance, temporal signals (often found in NDT&E data). The key regarding the tailored architectures is
to provide the neural network a means to link the feature to a dedicated transformation. For instance, the
spatial transformer is a set of affine transformations from a set of rotation, translation, dilation, and shear
transformations that links the extracted features to the simulation parameter in the cAE or the cU-Net.
For a time-dependent signal, some layers as [181][182][183] based on frequency domain transformations
may be adapted in the same sense to link temporal signals and parameters.

V.3.3 . Physics informed spatial transformers and conditioned instance normalization
A promising intuition and contribution of this work is the possibility of adding the concept of physics-

informed learning to the architectures. The latent space representation in all architectures showed that
the ST and the conditioned instance normalization learned the physic relations of the parameters and the
image features. For instance, the spatial transformer allowed the cU-Net (See Appendix VIII) to shift in
a coherent way when a change in the celerity is set in the input. Similarly, the cAE performs the rotation
in the flaw signature in a coherent way when changing the angle between cracks (Fig. II.6). In [184],
they describe three ways to introduce physics in ML surrogate models as applied to imaging. In our
case, the ML architecture conception is guided by the physics (last column in Fig. V.1) combined with a
dedicated reconstruction loss (middle column in Fig. V.1).

However, a possibility to accelerate training time and to ensure the optimization stability is to intro-
duce physic-guided loss either as an output error metric or an inner layer metric. The conditioned ST
and the conditioned IN are the links between the input parameters (called measurement in the Fig. V.1),
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Figure V.1. Three ways of incorporating physics into the ML model. (a) Learning after physics
processing: a physic model is employed to initialize the input of ML models. (b) Learning with
physics loss: physics knowledge is incorporated into the loss functions. (c) Learning with physics
models: physics knowledge is used to guide the design of ML architecture. Image borrowed from
[184].

and the resulting generated image. It is possible to think to constrain the learning of the weights of the
inner dense layer in both ST and IN. The constrain should be set in terms of physics-rooted criteria.

For instance, the cU-Net showed poor performance when interpolating out of the learned range
of parameters. A suitable constraint to generate not only on the parameter range but also to extrapolate
would be to keep coherent energy (measured in the image) regarding the changes in the specimen celerity
T as a parameter. If a metric can be conceived for this, this would improve the extrapolation for the
surrogate model for TFM images.

Regarding the architecture optimization, a possibility to accelerate the training is to explore the
localization network of the ST layers once the architecture is trained. For instance, the activation values
of the dense networks may stay invariant for a parameter. This exploration may indicate two interesting
things: first, the number of ST layers is too much for the application; secondly, the parameter does
not need any affine transformation to represent its impact in the output image. The last point can be a
departing point to better contribute to the explainability of the tailored architectures and better understand
how a parameter plays a role in the inspection.

V.3.4 . cGAAE stochastic generator as a surrogate model by latent space exploration
During the test on the cGAAE, some tests to constrain the latent space (Fig. IV.9) structure were

undertaken. The objective was to find a way to decouple the encode and decoder to generate TFM
images only using the encoder. This approach would enable to dispense with the simulation image
input to generate realistic samples. The test was done over one of the parameters (celerity T) using
the approach proposed by [174, 175, 83]. The preliminary results show that it is possible to force one
direction over the latent space. This imposed direction is correlated to the parameter. In other words, the
decoder ‘knows’ how to generate images when the chosen parameter varies.

In Fig. V.2 an example of generation direction imposed in the latent space. The loss used a τ unitary
vector to fix a direction regarding the parameter cT . Only the labels from the simulation are used for this
purpose. xs and x′s are a couple of simulation images with the same labels except the cT label. For the
couples, cT and c′T values are as close as possible regarding the available data in the training set.

Instead of imposing a structure by the loss, the latent space in Fig. IV.9 can be explored after training
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Figure V.2. Z latent space exploration. Imposed direction pour parameter cT during the
training with the Self-supervised Longitudinal Loss proposed by [177]. τ is a direction in the Z
space imposed by the loss exposed in the �gure. The convergence of the loss is shown for the
adversarial training. Above, di�erent stages of Z structure during the training are shown. The
coloured circle marks correspond to di�erent epochs in the loss curve. The celerity values of the
latent space are normalized between 0 and 1.
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by techniques like Partial Least Squares (PLS) or supervised Principal Component Analysis (PCA) [185].
The idea is to find a correlation between Z and the parametric space P .

V.3.5 . Other possible applications
This implicit characteristic for DL algorithms mentioned on Subsection V.2.4 makes possible the

application of the trained models in, for instance, on NDT&E data real-time simulation. The exposed
latency for generation from the surrogate models promises a suitable solution for quasi real-time applic-
ations.

An example is where the user interacts with virtual simulators. Some platforms designed for educa-
tion and training on NDT&E can largely profit from these approaches. The common solution in these
platforms is to produce simulated data and to stock it in a data base. The data are later read to be displayed
to the user. This solution denotes two important limitations: data are static, and not all representative
samples that the user shall demand can be stocked in advance, so the user experience is limited to the
data base produced before. Secondly, a closely related issue is the portability of the data base regarding
to the storage space. The presented architecture represents a solution for the enumerated problem. The
DL neural networks can be run in a CPU with reduced storage and memory to generate NDT&E data in
real-time and on demand.

Similarly, a possible application may be the NDT&E simulated data base acceleration. The frame-
works can accelerate tools like CIVA or FEM solvers if they learn from an initial reduced data set pro-
duced by the solver to generate more data later. For this purpose, it may be interesting to study the
sampling of the parameter strategies space and quantification of instances required to converge in the DL
architecture for a broad set of inspection techniques.

V.3.6 . Many fidelity data sources for cGAAE
The cGAAE architecture was conceived to contain several sources of data. Relatively simple and

straightforward adaptation may be made to the architecture of the cGAAE to introduce more fidelity
levels: adding a class label may be enough by training over the same losses and network. This may be
useful if intermediate fidelity data are added to the multi-fidelity UT data set. In this case, the projection
discriminator embedding and the number of filters treated by the ST in the generator may increase to
make a place for new unseen features from multiple fidelity levels.

V.3.7 . Toward the diffusion models application on NDT&E and SHM
A less explored perspective for the developed architecture is the application of diffusion models

[186], particularly the stable diffusion model. The advantage of these models is that they outperform
the generation quality of GANs or similar architectures. As an example, DALL-E 2 [187] uses stable
diffusion models. Stable diffusion models are a type of diffusion model that is more stable and efficient
to train than other types of diffusion models.

Stable diffusion models work by gradually removing noise from a latent representation of the data.
This is done by iteratively applying a denoising function to the latent representation. The denoising
function is trained to remove noise from the latent representation while preserving the important features
of the data. The interesting characteristic of the stable diffusion model is the ability to generate realistic
images from a wide variety of text descriptions. In the case of NDT&E data, instead of text, a dictionary
of parameters can be the input to generate high-quality images for an inspection procedure.

A draft of how the application may look is in the Fig. V.3. Stable diffusion models used a set of
transformers for text input in an U-Net architecture. The architecture takes a noise latent representation
map and iterates it to generate a conditioned latent representation. The U-Net generates an informative
latent vector after iteration. The latent vector is then used as generator input that creates a high-quality
image. In the case of a NDT&E application, text can be replaced by a set of parameters or a class
embedding. The ST and FiLM then replace the advanced transformers for text-to-image ML algorithms
in our cU-Net architecture.
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Figure V.3. Draft for stable di�usion model c-Unet application. Figure modi�ed from [186].
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VI - Appendix - Complementary background for machine learn-
ing methods and techniques

VI.1 . Machine learning approaches based on kernel-based methods

Regression and classification problems can be affordable when a representative data set has enough
instances (large N ) for the class or label space Y . Even when these two characteristics are fulfilled,
sometimes the feature space X ⊆ RD can not be easily separated by a hyper-plane when using the linear
methods enumerated in Fig. I.13.

A non-linear alternative is the kernel-based method. Kernel-based method relies on the ‘kernel trick’
when manifolds represent data1. Earth’s surface is an example of a simple manifold: latitude and longi-
tude points pi = (latitude, longitude) can be positioned over its (approximately) spherical geometry.
To better visualize the countries, the a priori 3D cloud of points may reach a flat representation in a sheet.
The cloud on the sphere surface turns into a flat representation on a sheet of paper by a mapping function
(e.g., the Mercator projection). pi points are then mapped from a 3D to 2D representation.

Kernel techniques implement a mapping function for a data set that contains linear and nonlinear
relations between its features. In contrast to the given example, kernel techniques are implemented for
more complex point arrangements than just a regular grid in a sphere. For instance, a data set can be
represented as complex geometry (or manifold). A sample x can be seen as a point in the manifold with
non-linear relations between those features represented in the complex manifold. Instead of keeping a
complex non-linear manifold in the rough original representation space X , a kernel provides a mapping
function represents data in a more suitable manifold. The resulting space may have a higher or lower
dimension than the original space, the objective is to create an adequate representation so the points can
be, for instance, separated easily by its classes, as in Fig. VII.1.

Considering two samples at X , a and b, the kernel K(a,b) is a function capable of performing dot
product ϕ(a) · ϕ(b) based on the original space vectors a and b, being ϕ the mapping function from
original manifold dimension to new representation of the data set. It is not necessary to fully define ϕ but
only knows it exists. In this case, where K respect Mercer’s theorem, we can define a kernel function in
Eq.VI.1 where K is also a linear kernel implemented by Eq.VI.2.

K(a,b) = ϕ(a) · ϕ(b) (VI.1)

K(a,b) = aT · b (VI.2)
This is an example of the Kernel Trick, where ϕ do not need to be defined and it can be expressed as

a the inner product K in another space.
Other standard kernels with polynomial or Gaussian mapping functions apply the kernel trick. Re-

gressors and classifiers like Supported Vector Machine (SVM are good candidates to implement a Kernel
function [188]. The choice of the kernel depends on the original data manifold representation, sometime
unknown. A kernel is commonly applied to data in the ML algorithm loss function to help the conver-
gence and the learning of the task.

VI.2 . Machine learning based on DL

VI.2.1 . Perceptron Unit

1Manifolds describe a vast number of geometric surfaces in 3 or more dimensional spaces.
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Figure VI.1. In the left, an example of a �at feature manifold for a 2D data set, features
are represented by (x, y), and labeled by a class (colored in blue and red). In the right, the
features are mapped by ϕ(x, y, z) ≡ (x, y, e−(x2+y2)) into a more suitable manifold, so a hyper-
plane can separate the classes. In the original space of this example, a circular decision boundary
shall be more complex to de�ne the represented hyper-plane. Courtesy of hashpi.com [accessed
September 05, 2023]

Consider a function f with i-dependent variables contained on a xi array with xi ∈ RD and an
independent variable y = f(x), where f has parameters to find called weights ωn and a bias b. f is
represented in Fig.VI.2 as perceptron with its inputs and output.

A perceptron mimics the function of biological neurons in a simplified form. The weights represent
the connection from the inputs to the cell core. An activation value is obtained by summing up the
product of each input and its corresponding weight; this value is represented by the

∑
symbol. Note

that the input also considers a bias value multiplied by 1. The bias helps to the perceptron to adjust its
output by the approximation of the mean of the samples uses to find ωn. The activation value feeds an
activation function σ (e.g., a hyperbolic tangent as in Fig. VI.3). This function varies in each application,
generating different outputs. For example, the use of identity in σ is a linear function with values from
−∞ to∞.

Figure VI.2. Schema presenting the perceptron unit. In this example, the number of features
is 3, and the output is a single value ŷ.

VI.2.2 . Layers and neural network architecture

http://www.hashpi.com/the-intuition-behind-kernel-methods%20
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Figure VI.3. Example of an activation function: the hyperbolic tangent σ(hk). σ is placed at
the output of a neuron activation, so ŷ = σ(·).

Neurons are usually arranged in a set of layers, being L ∈ (2,∞) the number of layers. A layer is
a group of neurons that shares the same input. A sequence of layers constitutes the neural network ar-
chitecture. When the neural network is acyclic everywhere, they are often called feed-forward networks
since they take an input to be propagated through the graph to generate an output. In the following def-
initions, we focus on ML methods that implement NNs since they are recurrently used later. However,
ML methods do not only count in NN: polynomial regression, k-means clustering, among others, are
examples of this statement.

VI.3 . Multi-layer perceptron or dense layer

The DNN extension of single-layer NN is done by groups of neurons that create a dense layer by
connecting each input feature (xi) to each neuron input that can be represented via the perceptron unit.
Adding more layers and connecting each new layer input to each precedent layer output constitutes
the basic architecture of a fully connected network (FC-NN) of L-layers, also referred as Multi-Layer
Perceptron (MLP) in the bibliography. An example of this arrangement is shown in Fig. VI.4. Each
connection in the FC-NN represents a weight (denoted as instance by ωij for the first layer) that is a
learn-able parameter in the θ space, where fθ is represented by the FC-NN.

Figure VI.4. Fully connected network or multi-layer perceptron architecture with one hidden,
three neurons in the input layer, and one neuron in the output layer.

The main constitutive layers of a FC-NN are the input layer with the same dimension of input samples
vector x. In the given sample (Fig. VI.4), the output has only one neuron, but in practical cases, this
layer can have several output values.
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FC-NNs are used for regression and classification tasks as data-driven models. The training stage
commonly uses the back-propagation algorithm [189] explained in Annex VI.3.3. The objective of the
optimization technique is to find θ∗. As initialization of the back-propagation, the weights (and bias)
need to be set up for the first time in the network (weight initialization). There are many techniques to
initialize θ, but the more common is to choose a distribution law and get the first values by sampling the
distribution.

While performing the back-propagation, an output is estimated by the forward propagation on
Eq.VI.3 and Eq.VI.4. In a feed-forward NN, the forward propagation happens when fθ is evaluated
for a given x at a fixed θ. A loss function L(·) compares this output under a given criteria. L shall give
a value to judge how near is fθ to the optimal θ∗ for the defined task.

fθ(x) = (LL ◦ σL ◦Ll−1 ◦ σl−1 ◦ ... ◦L1 ◦ σ1)(x) with


θ : set of weights and bias
l = 1 : L

L : number of layers on f

, (VI.3)

where ◦ is the function composition operator. For instance, for two given functions h and g, the
operator produced a composed function (h◦g)(x) where the function g is applied to the result of applying
the function h to x. A single layer operation can be expressed as follows,

Ll(x
l−1) = ωlxl−1

f + bl with


ω : weights vector for layer ℓk
b : bias vector for ℓk
xl−1
f : output from presedent layer

(·)f : inner feature (layer output) for x

. (VI.4)

VI.3.1 . Loss functions
Before introducing the back-propagation algorithm, the loss function Lθ(·) needs to be defined.

In order to train a FC-NN (or any NN), a metric is defined to calculate the model error based on the
computed output. The loss function may be defined by one metric or by adding several metrics to be
optimized. This function is minimized for each epoch.

Different metrics exist to quantify the error of the NN output. Regression tasks used metrics like
Mean Square Error (MSE) or Mean Absolute Error (MAE) (Eq. VI.5), among others. Suppose the
estimator has suitable complexity regarding the number of layers and trainable parameters. In that case,
the task of the NN shall improve when the loss function value decreases (Fig. VI.5) when training on D.

Similarly, classification problems using functions such as logistic regression (Eq. VI.6), cross-
entropy (Eq. VI.7) or hinge function. This kind of loss function measures if the estimator can infer
the actual class of the input x. As instance, a logistic regression loss is a suitable metric for two classes
problem (C = 2); while the cross-entropy function is a general function for multi-classes tasks.

Lθ(y, ŷ) = E[(ŷ − y)2] with
{
ŷ : estimation vector of the batch. (VI.5)

Lθ(y, ŷ) = max(0, ŷ · y) (VI.6)

Lθ(y, ŷ) = −
C∑
i

ŷilog(yi) with
{
ŷ : binary class indicators for the example. (VI.7)

Several metrics for different tasks are present in the bibliography. They will be defined in future
sections when implemented for particular applications.
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Figure VI.5. Example of cross-entropy loss function decreasing on 180 epochs for a classi�cation
problem of two classes.

VI.3.2 . Hyper-parameters in NNs
Besides the trainable parameters in a FC-NN (weights and bias), it is necessary to define an architec-

ture to fix the number of layers (L), number of neurons per layer, or activation functions at each layer.
Extensible to any NN, the listed elements are called hyper-parameters of a NN. They must be fixed
before training, and take no part in the back-propagation optimization.

How to choose the best set of hyper-parameters in a given NN (e.g., FC-NN) is an active research
field in the ML community. A vast ensemble of techniques are proposed in the literature to try to give
a solution to this problem ranging from the trial-and-error to Bayesian optimization, among others [190,
191].

VI.3.3 . Back-propagation algorithm
Now that the loss function was introduced, the back-propagation as the optimization algorithm for

a NN can be described. Back-propagation is an iterative optimization algorithm that employs gradient
descent to adjust neural network weights in the direction opposite to the gradient of the performance
function. The aim is to find a set of weights that minimizes the loss function, thus solving the learning
problem.

The NN fθ is expected to improve on each epoch at the task. L is a suitable metric that tends to
0 when fθ is better for the given task. For this, the trainable parameters in the algorithm are fitted (or
optimized) with the back-propagation of the output error from L.

From here, we specify L and f to simplify the equations for a concise example. f is considered an
acyclic graph composed of dense layers. Defined MSE as a metric and an arbitrary derivable activation
function σ, the parameters θo = {θo,θh} for a FC-NN with one hidden layer and an unique output are
θh = wij |i = 0, 1, ...,mh − 1; j = 0, 1, ..., nh − 1 and θo = wjk|j = 0, 1, ..., no − 1; k = 0, 1, ...,mo − 1.
mh is the number of inputs for the first layer, nh − 1 = no − 1 is the number of hidden neurons, and
mo = 1 is the number of outputs. A simplified equation used to update θ is:

δwh
ij = ϵlr

δL
δwh

ij

where: h : hidden layer weights,

δwo
jk = ϵlr

δL
δwo

jk

where: o : output layer weights,
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w(t+ 1) = w(t) + δw, (VI.8)
where ϵlr < 1 is the learning rate, wij is the parameter to update the connection of the i-neuron to the

j-neuron between the input and hidden layer, and wjk is the connection of the j-neuron to the k-neuron
between the hidden and output layer. w(t+1) is the new value of any weight after the back-propagation
at the end of the epoch t⊂ Z+, when the correspondent δw is added to the initial value w(t).

The value of δw in the Eq.VI.8 is needed to derive the loss function and the activation function. The
resulting update equation takes ϵlr, the scalar input from the previous layer xi or xj , and a ∆ gradient
that represents the portion of the error due to the concerning weight, as follows:

wij(t+ 1) = wij + ϵlr∆
h
j xi,

wjk(t+ 1) = wjk + ϵlr∆
o
kxj . (VI.9)

The algorithm starts from the output error to calculate ∆k and ∆j in Eq. VI.9, the algorithm starts
from the output error. In this case, with one output, only a ∆k is computed with the following equation:

∆o
k = [y − σo(ho)]

∂σo(ho)

∂ho
(VI.10)

Note that the derivative is defined by ho, which is the activation value of the function σ previously
calculated as the sum of the weight and inputs for the concerning neuron (see Fig. VI.2). It is worth
noting that σo(ho) is the predicted output before denoted as ŷ.

Now, with ∆k calculated with the derivative of σ and the output error, the algorithm is capable of
computing ∆j by:

∆h
j =

∑
k

(∆o
kw

o
jk)

∂σh(hhj )

∂hhj
(VI.11)

This last equation reveals the reason for the name given to the algorithm. The error from the output is
propagated backward to the previous layers by a ∆o

k weighted by the wo
jk connections. The derivative of

the activation function in VI.10 and VI.11 gives the algorithm the direction (positive or negative) and the
proportion of change for each weight. The learning rate regulates the general speed of change through all
updates. When implementing more hidden layers and outputs, the general case can be inferred similarly.

VI.4 . Principal component analysis for dimensionality reduction

Principal component analysis [47] uses the concept of explained variance to measure the loss of
information during the dimensional reduction. The technique performs an eigenvalue extraction of a
correlation matrix V built for each feature and through all samples in the data set. Diagonal matrix D is
expressed in terms of the correlation matrix as:

V vi = σ2
iDvi (VI.12)
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where σ2

i is the eigenvalues of the correlation matrix and vi the eigenvectors associated. The princi-
pal direction ci of data are obtained from the eigenvectors. Relation between the vector and its principal
direction is expressed in Eq. VI.13.

ci = Xvi (VI.13)
Xn×m is a matrix containing the m original representation vectors (number of samples) with n

features for each vector; ci is the data set’s principal direction.
The vector ci associated with the larger eigenvalue represents a principal direction of the set in its

original representation (before reducing its dimension), where the maximum possible data variance is
included. The second principal direction is orthogonal to the first and next vectors, which have the
same characteristic. Posterior projection of the data set in those directions creates a reduced and finite
representation space. An instance’s principal component (PC) is the value of the vector xi projected in
the principal direction.

This technique allows selecting only the first nz-eigenvectors to represent an instance in the associ-
ated directions. The more variance required to be included in the new representation, the more principal
directions must be included in the reduced space.
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VII - Appendix - Parametric spatial transformer and feature-
wise linear modulation layers on conditional AutoEncoder
architecture

This section aims to illustrate the functioning of the parametric Spatial Transformer (pST) and
Feature-wise Linear Modulation (FiLM) layers in the context of a classic AutoEncoder (AE) architecture.
The objective is to comprehend how the AE utilizes input for generation and why it can be arbitrarily
altered during the prediction (test) phase.

Fig. VII.1 illustrates the generation of Eddy Current Testing (ECT) signals for different inputs.
It is crucial to emphasize that in this appendix, the AE was trained with identical input and output,
allowing the generation of diverse images by simply changing the input image while maintaining the
same parameter vector for all presented generations. This follows conventional conditional AE training.

This initial demonstration indicates that a bias is introduced by the input during prediction. Moreover,
the most suitable input is the image corresponding to the intended output. This is useful if we intend to
use the AE as a meta model, as we are not supposed to know the output before generating it on a meta
model.

Chapter II showcases an AE-like architecture trained differently: the input is fixed at an arbitrary
value, and the neural network is then trained. The choice of fixing the input is based on the observation
in Fig. VII.1, complemented by Fig. VII.2. The latter demonstrates that pST and FiLM act to change
the extracted features based on the input vector. However, especially for the pST affine transformation,
it is evident that the actions of the conditional layer in the encoder do not retain useful image features
to generate the outputs. One can imagine that the primary features are used in encoding and decoding
to create a new ECT image; however, the experiments conducted here show that the encoder does not
require input features but only the parameter vector.

In conclusion, coding is primarily influenced by the parameter vector rather than the input image.
Additionally, a bias effect is introduced by changing the input. Subsequent training with fixed noise,
as shown in Chapter II, confirms this. Improvement was observed when the input is fixed from the
training. For instance, R-squared reported an improvement from 0.887 to 0.920, resulting in better image
generation.

These AE-like architectures can be viewed as key components of recently developed diffusion mod-
els (refer to Chapter V, section V.3.7 for more details). In other words, the architecture can generate new
images from noise guided by the simulation parameter. Additionally, the architecture provides a reduced
number of training parameters that competes with other deeper architecture (e.g., an dense layer based
architecture).
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Figure VII.1. Each row depicts the same generation conditioned by p3 after training the
architecture as a conventional AE. The �rst row takes the Ground Truth (GT) for p3as input,
showcasing a straightforward reconstruction with high quality. In the second row, the input
images are not labeled by p3 and di�er slightly in terms of features from the p3 image. In this
scenario, we observe the bias introduced by the input.
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Figure VII.2. We present the conditioned features extracted for ECT image generation using
an architecture trained as a conventional AE. In (a), the red arrow indicates the considered layer
for extraction: the �rst pST and FiLM layer. The generation is computed by using an image
labeled by p1 (b) as input and a conditioned parameter vector p2. The expected generation
is showed in (c), representing the Ground Truth (GT) for p2. In (d), we illustrate how FiLM
extracts features during generation for two cases. The four images labeled p1 depict the resulting
activation when a simple reconstruction is intended. The four images labeled p2 represent the
resulting activation when the input is still the image labeled by p1, but the input vector is p2.
It can be observed that the �aw signature changes in amplitude driven by β(p2) and γ(p2) from
equation II.6. Similarity, (e) demonstrates the e�ect of the pST layer for both reconstruction
and generation. Both (d) and (e) show that the encoder does not retain useful features for either
the reconstruction of p1nor the generation of p2. Instead, the encoder utilizes the input image
to map it to coding, considering only p2. This experiment, along with the AE-like training in
Chapter II, indicates that the input features are not genuinely useful for generating a new ECT
image guided by p. The images from the layer activation are normalized per instance, allowing
the observation of di�erences in pixel intensities. Each of the four activation maps is transformed
into an RGB format in the range of 0 to 255 (Min-Max).
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VIII - Appendix Realistic data generation by trained tailored
cU-Net

Figures above demonstrate the Deep Neural Network (DNN) meta-model potential on generating
realistic Multi modal Total Focus Method (M-TFM) images. Comparison to ground truth is made where
possible. Parameter variations p are employed for predictions. Consistency with physics is observed in
terms of wave celerity and back-wall angle. However, accuracy decreases when altering flaw height and
angle due to the limited diversity of the four-flaw experimental data set. Consequently, extrapolation per-
formance cannot be deemed sufficiently accurate. Two reconstruction modes highlight distinct impacts
of flaw geometry and reconstruction parameters.
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