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Résumé

Les digues en remblai jouent un rôle crucial dans la protection des communautés
côtières contre les inondations. En général, elles sont construites à partir de matériaux
granulaires compactés et se trouvent souvent dans des conditions de saturation partielle,
ce qui confère à leurs matériaux une certaine cohésion bénéfique pour leur résistance mé-
canique. Cependant, lorsque ces matériaux granulaires, situés à la surface de la digue, sont
exposés à des cycles de séchage et de mouillage, typiquement provoqués par la variation
de pression entre l’amont et l’aval de la digue, elles peuvent devenir vulnérables. Ces fluc-
tuations sont généralement causées par plusieurs facteurs, notamment des précipitations
intenses et des canicules, les cycles de marées hautes et marées basses ou les tempêtes. Ces
phénomènes deviennent, malheureusement, de plus en plus fréquents dans un contexte de
changement climatique.

La présente thèse s’inscrit dans le cadre du projet StabDigue, financé pour une durée
de cinq ans par la région Nouvelle-Aquitaine, pour l’étude de la stabilité des digues en
remblai partiellement saturées.

Plus précisément, ce travail de thèse est consacré à l’étude microstructurale des maté-
riaux non-saturés pour des degrés de saturation variables. Pour ce faire, nous proposons
un couplage entre la méthode aux éléments discrets dite DEM pour simuler le squelette
solide en forme de particules sphériques et la méthode de Boltzmann sur réseau dite LBM
afin de modéliser les ponts capillaires eau-air entre les particules solides. Grâce à cette
modélisation à pointe de l’état de l’art, nous avons pu mettre en évidence les mécaniques
complexes à l’oeuvre dans les matériaux granulaires partiellement saturés.

Avant de s’attaquer à l’étude du matériau en considérant un volume élémentaire re-
présentatif (VER), plusieurs benchmarks et validations ont été nécessaires pour le modèle
LBM, notamment en ce qui concerne la prédiction précise de la forme des ponts capillaires
ainsi que les forces associées. A l’équilibre mécanique de la simulation LBM, les formes
des ponts capillaires entre deux grains solides sphériques coïncident parfaitement avec la
solution théorique de l’équation de Young-Laplace. De plus, les résultats trouvés par la
LBM montrent qu’elle est capable de retrouver l’inversion de signe de la courbure moyenne
H quand la distance de séparation entre les deux particules augmente. En outre, une nou-
velle expression numérique pour le calcul des forces capillaires entre des grains sphériques
a été proposée. Cette nouvelle formulation a montré ses capacités à calculer de façon as-
sez précise les forces capillaires résultant des ponts capillaires isolés et coalescents entre
deux et trois particules sphériques, en les comparant avec des résultats expérimentaux et
numériques dans la littérature. L’avantage de l’approche LBM est sa capacité à modéliser
la fusion des ponts capillaires de façon intrinsèques sans avoir besoin de passer par des
critères de fusion géométrique. Ainsi, ces résultats montrent que la LBM est capable de
modéliser le passage du régime pendulaire au régime funiculaire.

Ensuite, le couplage DEM-LBM est mis en place pour explorer les caractéristiques des
assemblages granulaires partiellement saturés pour tous les régimes capillaires. Nous avons
pu retrouver la forme classique de la courbe de rétention qui est définie par l’évolution de la
succion en fonction du degré de saturation. De plus, l’évolution de la contrainte capillaire
moyenne, qui pourrait être considérée comme étant la cohésion apparente, a été tracée
en fonction du degré de saturation. Nous observons une augmentation de la contrainte
capillaire moyenne avec l’augmentation du degré de saturation jusqu’à un certain seuil
au-delà duquel la contrainte capillaire moyenne diminue pour atteindre zéro lorsque le
système devient complètement saturé. Par ailleurs, nous avons également démontré que le
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paramètre de Bishop pour les contraintes effectives n’est jamais égal au degré de satura-
tion. Ces derniers résultats ont été comparé avec des données numériques déjà existantes
dans la littérature.

Nous avons enfin exploité la pleine capacité du couplage DEM-LBM pour simuler des
cycles de séchage (évaporation) et de mouillage (condensation) dans les sols non-saturés.
Cela a été réalisé à la fois sur de petits assemblages granulaires composés de trois et quatre
particules sphériques, ainsi que sur des VER constitués de quelques milliers de grains.
Nous avons réussi à reproduire les sauts (chutes) des forces capillaires au moment de la
coalescence (rupture) des ponts capillaires dans le cas des petits assemblages granulaires. A
l’échelle du VER, nous avons mis en évidence que la succion et la contrainte moyenne sont
plus élevées lors de l’évaporation que celles qui ont été observées lors la condensation. Nous
avons également montré que la contrainte capillaire moyenne (cohésion apparente) devient
nulle quand le système devient complétement sec ou saturé, comme observé précédemment.

Pour conclure, le couplage DEM-LBM a prouvé ses capacités à retrouver les phéno-
mènes physiques complexes des assemblages granulaires non-saturés. Les résultats obser-
vés sont prometteurs pour des études plus avancées, notamment les études de stabilité à
l’échelle des digues.

Mots clés : DEM, LBM, micromécanique, cycles séchage/mouillage, mouillabilité, courbe
de rétention, contrainte capillaire.





Abstract

Earthen dikes play a vital role in safeguarding coastal communities from flooding
events. Typically constructed by compacting granular soils under unsaturated conditions,
capillarity confers them with additional strength to resist potential failure against these
events that generally involve large hydraulic gradients. On the other hand, shallow un-
saturated regions in both upstream and downstream of the dike are also being continually
subjected to drying and wetting cycles due to fluctuating conditions such as heatwaves,
low tides, intense rainfall, and high tides, all tied to the phenomenon of Climatic Change.
The drying and wetting cycles lead to changes in moisture content that will adversely im-
pact the mechanical strength and deformation behaviors of the dikes to eventually cause
their collapse. One of the characteristics of this type of failure originates in the changes
in both the pore and fluid structures within the unsaturated soil.

This Ph.D. work is a part of the StabDigue project, funded for a five-year duration by
the Nouvelle-Aquitaine region, for investigating earthen dike mechanical stabilities. As
alluded to above, the physics of the problem resides at the pore and grain scales. Thus,
this Ph.D. work is dedicated to studying the microstructure of unsaturated soils across
the entire range of saturation levels. By combining two mesoscale models, namely the
Discrete Element Method (DEM) for modeling solid particle interactions with the phase-
field-based Lattice Boltzmann Method (LBM) for capturing the formation of air-water
capillary bridges within a Representative Elementary Volume (REV), we can gain a deep
understanding of the intricate mechanics governing unsaturated soils.

Before delving into the behavior of REVs, multiple validations are conducted. For
instance, in the LBM framework, the formation of capillary bridges between two-particle
(doublet) configurations and the comparison of their geometries with the Young-Laplace
solution within the pendular regime are examined. Not only the capillary bridge shapes
are replicated, but also the inversion of the mean curvature H sign is well captured
when increasing the separation distance between the two particles. Furthermore, the
capillary force arising from the water interaction with a curved solid surface is formulated
along with a numerical integration scheme. This scheme goes further to compute the
capillary forces resulting from isolated and coalesced capillary bridges in two- and three-
spherical particle configurations (doublets and triplets, respectively), thus illustrating the
pendular regime and its transition to the funicular regime. The numerical results in this
thesis align well with available experimental and numerical data in doublet and triplet
configurations of particles, respectively. These results indicate that the proposed phase-
field-base LBM model and the integration scheme for the capillary force calculations are
viable for pendular and funicular regimes, making them suitable for larger systems via
the REV scale for a large range of saturation levels.

Then, a DEM-LBM algorithm is developed to explore the characteristics of partially
saturated granular assemblies over a large range of degrees of saturation. Multiple results
are found, including the capture of the Soil-Water Characteristics Curve (SWCC) which
is defined as the evolution of the suction in terms of degrees of saturation or volumetric
water content. Moreover, the evolution of the mean capillary stress, which can be referred
to as the apparent cohesion, is also plotted in terms of degrees of saturation. It has
been shown that the mean capillary stress increases with the degree of saturation up to
a certain threshold beyond which the mean capillary stress drops and approaches zero
as the system reaches full saturation conditions. Moreover, it is proven that Bishop’s
effective stress parameter is never equal to the degree of saturation. These findings have
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been compared to other existing numerical data in the literature to ensure their validity.
Finally, a novel method was formulated to simulate drying (evaporation) and wetting

(condensation) cycles within unsaturated soils on small granular assemblies composed of
three and four particles, and within an REV composed of thousands of spherical grains.
With this new technique, jumps (drops) in capillary forces during the coalescence (rupture)
of capillary bridges were successfully reproduced for the small granular assemblies. At the
REV scale, it is highlighted that the suction and the mean capillary stress are higher
during evaporation compared to condensation. It is also shown that the system loses its
apparent cohesion when it is dry or fully saturated as shown before.

In conclusion, the proposed DEM-LBM model has proven its capabilities in capturing
multiple physical phenomena of unsaturated soils. It is believed that the devised model
holds significant potential for the thorough study of instabilities at the REV scale, paving
the way for its broader application in more complicated systems, including earthen dikes.

Keywords: DEM, LBM, micromechanics, wetting-drying cycles, wettability, SWCC,
capillary stress.
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Introduction

General context
The planet Earth has been experiencing climate change ever since the industrial rev-

olution in the 18th century with an ongoing rise of the sea water level (Chu et al., 2012)
which will certainly pose risks to coastal communities and coastlines. In order to avoid
potential catastrophic failures, human beings have come up with the idea of building
protective structures known as maritime dikes or levees to withstand any flooding event.
Dikes are one of the solutions used to protect populations against these risks. For in-
stance, to illustrate the magnitude of the challenges at stake, consider the possibility of
severe flooding in the Netherlands resulting from major dike failures, which could lead
to the disappearance of two-thirds of the country. As such, to understand the reasons
behind these failures, it is vital to understand the construction process of dikes as well as
the mechanical strength of materials and their interaction with water.

Earthen dikes are constructed by adding and compacting soil layers in lifts. For optimal
compaction, the soil should remain wet within an optimum water saturation level of
around 80% (Budhu, 2015). Consequently, during and after dike construction, the soil is
under unsaturated conditions where air, water, and solid phases coexist simultaneously
as illustrated in Figure (1).

Figure 1: Typical dike or levee construction in successive compacted lifts.

Once the dike construction is completed and water impounded, seepage within the
dike will occur due to the pressure differences between the upstream and downstream
sides of the geostructure (Budhu, 2015). Figure (2) provides a visual example of a typical
levee with impounding water.

Over time, civil, geotechnical, and even mining engineers invested themselves in im-
proving the design of dikes. Despite cautions taken by engineers, and due to severe climatic
conditions, there are instances where disasters are unavoidable, and these supposedly pro-
tective structures fail occasionally. It comes therefore as no surprise that this issue must
be addressed carefully. According to Bonelli (2012), France holds a vast network of pro-
tective structures of 9,000 km against flooding, a significant network of dikes spanning
over 8,000 km for navigation canals, and about 1,000 km of hydro-power canals. Several
dam/dike failures have been reported in the past, such as the river erosion in Arroux in
2001, the Ouches dam in 2002, and the coastal line failures due to Xynthia storm in 2010.
Likewise, in Canada, the residents of British Columbia have not forgotten the disaster
that resulted from the Mount Polley tailings dam failure where 17 million cubic meters of
polluted water and 8 million cubic meters of tailings and materials essentially went down

1
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Figure 2: Typical maritime dike section showing different degrees of water-saturated zones.

into the Polley Lake. While, fortunately, no casualties were reported in the latter exam-
ple, the environmental impact caused by the incident was profoundly catastrophic. The
consequences induced by dam, dike, or tailings dike failures are substantial, especially the
loss of lives, not to mention the cost of damages that can often reach billions of dollars. It
is, therefore, necessary to anticipate these collapses and provide the best maintenance for
preventing potential disasters from happening, or in the worst-case scenario to evacuate
the residents living around these hydraulic structures to avoid casualties.

As illustrated in Figure (2), earthen dikes exhibit a zone where the material is under
unsaturated conditions. It is well-known that in such unsaturated zones, capillary effects
increase soil strength with respect to the dry or fully saturated soils (Likos and Lu,
2004b; Fredlund and Rahardjo, 1993). A simple yet illustrative example can be shown in
Figure (3) whereby an initially wet cylindrical sand sample is being dried over time in an
oven at a temperature of T = 80 ◦C. As can be seen, Figure (3a) shows that the sample
does not collapse even without having any lateral support because it is wet. As time
passes by, the sample crumbles gradually to become ultimately a pile of sand as shown in
Figure (3e).

Climate change may alter the saturation degree of dikes with potential impacts on
mechanical stability. For instance, heatwaves, low tides, intense rainfall, and high tides
may change the water content inside the dikes and make them vulnerable. Figure (4)
shows an illustrative example of how climatic fluctuations can affect dike stability. In the
figure, the red squares indicate potential failures that may occur during the wetting or
drying processes as shown in (a) and (b), respectively. These failures represent points of
vulnerability in the system, where changes in moisture conditions could affect the stability
of the structure.

Within the context of the StabDigue project, funded for a duration of five years by the
Nouvelle-Aquitaine region to investigate dike stabilities, this Ph.D. study is motivated by
several key questions that will be addressed:

• Can we model and predict the consequences of a change in water saturation on the
mechanical stability of granular soils?

• How will the wetting/drying cycles, resulting from climatic changes, affect the hydro-
mechanical properties of a given soil?
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Figure 3: An initially wet cylindrical sand sample is being dried over time in an oven at a
temperature of T = 80 ◦C. (a) t = 0 h, (b) t ≈ 5 h, (c) t ≈ 9 h, (d) t ≈ 13 h, and (e) t ≈ 16 h.
These photos are taken from (Maranha et al., 2022).

• Can we interpret these changes in terms of the underlying microstructure and its
evolution?

Available approaches for predicting instabilities

Analytical methods
Over the years, researchers and engineers have developed analytical methods made

simple using various assumptions for analyzing slope stability. These lead to the Bishop’s
and Janbu’s methods (Janbu et al., 1956; Bishop, 1955; Khan and Wang, 2020) convention-
ally used by geotechnical engineers in practice. Alternatively, so-called stability charts for
dry, saturated and unsaturated soils (Bishop and Morgenstern, 1960; Michalowski, 2002;
Michalowski and Nadukuru, 2013; Steward et al., 2011; Yang and VANAPALLI, 2019)
have been used. Despite the simplicity of these approaches, they are usually limited to a
few engineering applications since they are based on many simplifying assumptions that
vitiate the solution to the problem.

Numerical methods

Macro-scale models

To circumvent these assumptions and through the advances in computer technolo-
gies, researchers and engineers have developed numerical modeling approaches to tackle
complex problems. Two strategies can be employed to describe the behavior of dikes:
macro-scale and micro-scale approaches. In the former case, several methods can be put
under the same umbrella, amongst others: Finite Element Method (FEM), Finite Differ-
ence Method (FDM), and so forth (Liu et al., 2020a; Yang et al., 2017; Shivamanth et al.,
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Figure 4: Potential failures within a dike when it is experiencing (a) severe rainfall events and
(b) long drought periods due to Climate Change.

2015; Sorgatz and Nuber, 2017). These methods are also known as phenomenological
approaches1. Although these techniques are tremendously reliable and practical for en-
gineering applications, they still, unfortunately, fall short in many aspects, including but
not limited to the calibration of parameters: in some cases, they do not possess any phys-
ical meaning. Furthermore, these purely numerical parameters are determined based on
limited experimental tests which can limit the model’s applicability to conditions outside
of the observed data, especially for unsaturated soils. Moreover, phenomenological meth-
ods are not capable of taking into account the underlying behavior of the micro-structure
of the soil being addressed. Furthermore, unsaturated conditions are not yet well modeled
at this scale. Thus, capturing extreme conditions may seem grueling for these approaches.

Micro-scale models

To overcome these problems, researchers have come up with the idea of modeling
soils at the micro-scale whereby deep insights into the fundamental mechanical behavior
of soils can be acquired, namely grain-to-grain interactions and the motion of the fluid
through pores. Also at that scale, the various micro-physica are additive. Micro-scale
modeling is, therefore, certainly a great candidate to gain a deep understanding of the
micro-structure features responsible for the instability of protective structures for varying
saturation levels.

As mentioned earlier, unsaturated soils are composed of three components, solid, air,
and liquid phases. Consequently, any micro-scale model should account for solid particles
as well as their interactions with a two-phase flow model. Therefore, the chosen models
for this work are given following the phase in question:

1. Solid: it can be modeled using the Discrete Element Method (DEM) which can be
credited to Dr. Peter Cundall and Professor Otto Strack in their pioneering work
(Cundall and Strack, 1979);

2. Air and water (fluid): the Lattice Boltzmann Method (LBM) is definitely one the
best candidates to simulate fluids at the pore scale which is attributed to the famous
physicist Ludwig Boltzmann.

1Phenomenological approaches are referred to the methods that are based on experimental observa-
tions.
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The two aforementioned methods will be coupled together in order to simulate unsaturated
soils for various saturation levels.

Outline and structure of the current work
The manuscript represents three years of extensive research conducted at three dif-

ferent locations: La Rochelle University (France), INRAE Aix-en-Provence (France), and
the University of Calgary (Canada) under the Joint-Ph.D. Program between both La
Rochelle University and the University of Calgary.

This research effort has led to the publication of three papers in international journals
and numerous presentations at both international and national conferences as well as
international workshops. The thesis is structured as follows.

• Chapter 1:
The first chapter covers the fundamental aspects of unsaturated soils. It delves
into concepts such as suction s, effective stress σ′, and capillary stress σcap. The
literature review involves a thorough investigation of experimental, numerical, and
analytical models to gain a deeper understanding of the main features of unsatu-
rated soils. Additionally, this chapter recalls the extensive previous research work
devoted to the description of the shapes of capillary bridges and the resulting forces
affecting small granular assemblies—doublets, triplets, and quadruplets of particles.
Numerical, experimental, and analytical methods and models are provided. The
literature review in this chapter concludes by highlighting significant gaps in exist-
ing studies which have often focused solely on pendular regimes. This Ph.D. work
contributes to addressing this point by providing a numerical tool encompassing all
regimes, e.g., pendular, funicular, and capillary regimes.

• Chapter 2:
Simulating unsaturated soils requires modeling the various fluid components. Out of
numerous models available in the literature, the Lattice Boltzmann Method (LBM)
has been recognized as an exceptionally promising and versatile approach to simulat-
ing water-air interfaces in partially saturated granular assemblies. While multi-phase
models are essential for this study, it is crucial and informative to comprehend the
historical context of the LBM that solves the Boltzmann equation, derived by the
physicist Ludwig Boltzmann for single-phase flows. Therefore, this chapter offers an
introduction to the single-phase LBM to understand the underlying mathematical
principles behind this approach.

• Chapter 3:
A quick literature review of the available multi-phase LBM models is introduced in
this chapter. The phase-field-based LBM model has been selected for this Ph.D.
work along with a wetting condition, thus allowing the modeling of capillary bridges
(Liang et al., 2018, 2019).

• Chapter 4:
In this chapter, numerical validations and benchmarks of the LBM are presented,
such as the Rayleigh-Taylor instability, capillary rise (Jurin’s law), liquid drops on
spherical and flat surfaces, the shapes of capillary bridges, and capillary forces of
doublets and triplets of particles. Results about capillary forces within doublets
and triplets of spherical particles as well as Jurin’s law benchmark were published
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in 2022 in Phase-field Lattice Boltzmann model for liquid bridges and coalescence
in wet granular media (Younes et al., 2022). The findings regarding the shapes of
capillary bridges will be forthcoming in the paper entitled A relevant phase-field-
based Lattice-Boltzmann method for water-air capillary interfaces (Younes et al.,
2023a).

• Chapter 5:
In this chapter, the Discrete Element Method (DEM), describing the particle dynam-
ics and interactions, is first reviewed. Afterward, the coupling algorithm between
the devised DEM-LBM coupling is explained and thoroughly detailed, presenting
original results that bridge the gap in the literature, such as a qualitative valida-
tion of the DEM-LBM coupling, calculating the suction and capillary stress from
a micro-structural perspective, and demonstrating that Bishop’s effective stress pa-
rameter χ is never equal to the degree of saturation Sr of the specimen. This chapter
also explores the fluid dynamics within the specimen for different saturation levels
using the Flood-Fill algorithm. A part of these results has been published in 2023
in: DEM-LBM coupling for partially saturated granular materials (Younes et al.,
2023d).

• Chapter 6:
In this chapter, a primary motivation of the Ph.D. project is tackled by examining
the wetting (condensation) and drying (evaporation) processes of granular assem-
blies. In this chapter, a novel method for condensation and evaporation is introduced
and thoroughly validated based on small granular assemblies by capturing the so-
called capillary force jumps when capillary bridges merge within a triplet of particles.
This phenomenon is also known as Haines jumps. These results will be submitted
soon in the paper entitled: Hysteresis phenomenon within unsaturated granular as-
semblies: capillary forces and matric suction (Younes et al., 2023c). Then, the
new condensation and evaporation technique along with DEM-LBM are applied al-
together in order to investigate the hysteresis phenomenon of suction as well the
capillary stress as a specimen undergoes wetting and drying processes. These afore-
mentioned results will also be submitted soon in a paper entitled: On the hysteresis
phenomenon of unsaturated granular assemblies using DEM-LBM coupling (Younes
et al., 2023b).
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1.1 Introduction

The aim of this chapter is to provide readers with a foundational understanding of key
concepts and a literature review about unsaturated soils, which are essential for compre-
hending this Ph.D. work. We start with a brief definition of basic geotechnical parameters
and variables. We will next explore theoretical, numerical, and experimental aspects of
small granular assemblies at the pore scale, namely: the evolution of capillary bridge
shapes and forces in terms of water levels and separation distances. Once these defini-
tions are covered, we have the basis to dive into the aspects of unsaturated soils at both
macro and micro scales such as the matric suction, Terzaghi’s and Bishop’s effective stress,
capillary stress, contact stress, and the mechanical behavior of unsaturated soils.

1.2 Definition of geotechnical parameters and variables

1.2.1 Basic geotechnical parameters

Unsaturated soils are defined when there are three phases that exist at the same time,
namely: solid, liquid, and gas as illustrated in Figure (1.1)

Figure 1.1: Illustration of a typical soil with a water table (depicted as a blue dashed line), along
with a zoomed-in view of unsaturated soils at the micro-scale.

In Figure (1.2), referring to the idealized phase diagram from an actual soil cross-
section, we define the following canonical volumes, Va, Vw, and Vs which correspond to
air, water, and solid volumes, respectively. The total volume V is determined by the sum
of all three volumes such that V = Va + Vw + Vs. The void volume Vv is defined as the
sum of air and water volumes, i.e., Vv = Va + Vw.
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Figure 1.2: Typical phase diagram of soil in which air, water, and solid phases are shown.

One can derive numerous basic parameters via the aforementioned volumes that will
be frequently used later in the thesis, such as:

• porosity: ϕp =
Vv

V

• void ratio: e =
Vv

Vs
=

ϕp

1− ϕp
;

• degree of (water) saturation: Sr =
Vw
Vv

;

• volumetric water content: θw = ϕpSr.

Depending on the degree of saturation, three principal capillary regimes can be dis-
tinguished:

• Pendular regime: capillary bridges are all isolated between each pair of particles. In
this case, the gaseous phase is continuous within the sample in the form of large air
clusters as illustrated in Figure (1.3a);

• Funicular regime: capillary bridges start to merge and connect more than two par-
ticles. The air phase remains mostly continuous, as shown in Figure (1.3b), (it
percolates through the sample);

• Capillary regime: the water phase becomes continuous, and the air phase can be
only found as air-trapped bubbles as seen in Figure (1.3c).

Figure 1.3: (a) Pendular regime, (b) Funicular regime, and (c) Capillary regime.
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1.2.2 Wettability
Wettability, in its broadest definition, refers to the ability of a liquid to spread or

adhere to a solid surface or so-called substrate. The origin of wettability finds its roots in
microscopic effects due to interaction forces at this scale. It is characterized by a surface
tension γ and a contact angle θ.

1.2.2.1 Surface tension γ

Generally speaking, fluids are composed of molecules that interact with each other.
Fluids become condensed due to the weak forces of attraction known as van der Waals
forces. When two immiscible fluids are in contact, e.g., air and water, an unbalanced force
is created due to different molecular forces of different fluids resulting in creating a sort
of an elastic membrane or a stretched elastic sheet at the interface separating water from
air, that can be characterized by the introduction of a surface tension γ.

An illustrative example is shown in Figure (1.4a) in which the ‘black’ molecule is
surrounded by other similar molecules, and hence subjected to van der Waals forces in all
directions. This results in the molecule being in equilibrium. On the contrary, the ‘red’
molecule (that lies on the interface) is subject to van der Waals forces only directed towards
the water phase, giving rise to an unbalanced force that puts the water-air interface in
tension. The surface tension counteracts this unbalance of van der Waals forces. Another
widely known example is the rectangular film formed in a wire frame with a moving rod,
as illustrated in Figure (1.4b). The force needed to keep it in equilibrium is related to the
surface tension of the liquid. In passing, it is the surface tension that makes pond skaters
walk and float on water without sinking.

Figure 1.4: (a) surface tension as a result of membrane forces acting on a molecule at the air-
water interface, (b) rectangular film formed by a moving rod in equilibrium with surface tension
force.

From the above, surface tension originates from intermolecular interactions resulting
from the interactions. An increase of the interface by ∆A requires an energy ∆Wint. The
interfacial energy is the surface tension γ defined as:

γ =
∆Wint

∆A
(1.1)

The surface tension is considered as a force per unit length [N.m−1]. The surface tension
of water and air is about γwa = 0.072 N.m−1 at a temperature of T = 20 ◦C. For water and
air, the surface tension is usually estimated in terms of temperature using the following
formula (Molenkamp and Nazemi, 2003; Edlefsen et al., 1943)

γwa(T ) = 0.1171− 0.0001516T (1.2)

where T is the temperature expressed in Kelvin K.
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1.2.2.2 Contact angle θ

If one were to place a drop of liquid on a flat surface, an equilibrium would be held
between air, water, and solid phases to give a spherical cap-like as shown in Figure (1.5).
The contact angle θ is related to the existence of different surface tensions for the three
types of interfaces: liquid/gas, solid/liquid, and solid/gas.

Figure 1.5: Liquid droplet on a flat surface. γsg, γℓg, γsℓ are the surface tensions of solid-gas,
liquid-gas, and solid-liquid, respectively.

The established mechanical equilibrium at the solid-liquid-gas interface is attributed
to the English scientist Thomas Young, who first formulated back in 1805 the following
equation known as Young’s equation (Young, 1805):

cos θ =
γsg − γsℓ

γℓg
. (1.3)

Generally speaking, depending on the value of θ, we distinguish two cases: hydrophilic
θ < 90◦, e.g., water, and hydrophobic θ > 90◦, e.g., mercury, as shown in Figure (1.6).

Figure 1.6: Different wettabilities of liquid droplets on a flat solid surface.

For the sake of brevity, γ refers to the surface tension γℓg in the following.

1.2.2.3 Capillary action

The existence of the surface tension γ and the contact angle θ explains why water can
rise in a small tube as illustrated in Figure (1.7). This phenomenon is known as Jurin’s
law, named in honor of the late English physicist James Jurin. The height h is expressed
as follows

h =
2γ cos θ

∆ρgr
(1.4)

where ∆ρ = ρℓ−ρg, r is the tube radius, γ is the surface tension, and g is the acceleration
due to gravity.
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Laplace pressure:
An interesting aspect that can be observed from the air-water capillary rise example

is the curving phenomenon that occurs on the top of the tube—red curve—known as a
meniscus as shown in the zoomed illustration of Figure (1.7). This curve results in a
pressure difference ∆P = Pw − Pa, known as the Laplace pressure (Gennes et al., 2004).

Figure 1.7: A visualization of air-water capillary rise with a magnified view of the meniscus.

According to Laplace, the relation between the curvature and the pressure difference is

∆P = γκ (1.5)

where κ is defined as the curvature.
As we will see in the next section, the curvature κ can be positive or negative depending
on the orientation of the normal vector of the liquid-gas interface. The curvature κ is
related to the principal radii of curvature R1 and R2 as follows:

κ =
1

R1

+
1

R2

. (1.6)

In this particular case of the capillary tube, the principal radii of curvature happened to
be equal, i.e., R1 = R2, hence Eq. (1.5) becomes:

∆P =
2γ

R
. (1.7)

1.2.2.4 Hysteresis phenomenon

Historically, the term hysteresis was first introduced by Sir James Alfred Ewing in
the late 19th century while he was studying magnetic fields (Encyclopedia Britannica,
2023). Etymologically speaking, hysteresis originates from the Greek word hyster ẽsis
which means lagging in English. In simple terms, if a material responds in a specific way
when subjected to an external action, it will exhibit a different response if the action is
reversed.

Practically, hysteresis can be observed in various systems and materials, such as mag-
netic materials, mechanical systems, and unsaturated soils. The phenomenon of hysteresis
is characterized by a delay or lag between the changing input and the corresponding out-
put, forming a loop-like pattern when the input is reversed.

Listed below are the two main origins of hysteresis in unsaturated soils:
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• Non-homogeneous pore size distribution: this mechanism is usually referred to as
the Ink-Bottle effect, which was first introduced by Haines (1929); and

• Wetting angle θ hysteresis.

Ink-Bottle effect:
To better understand this mechanism, one can use an analogy and imagine different pore
sizes as non-uniform capillary tubes as depicted in Figure (1.8) with R and r representing
the larger and the smaller tube radii, respectively.

Figure 1.8: Schematic depicting the Ink-Bottle effect: (a) represents the wetting process while
(b) shows the drying process. Inspired by (Likos and Lu, 2004b).

In Figure (1.8a) where the wetting is taking place, the maximum suction is controlled

by the smaller tube, that is, r which gives ∆Pw =
2γ

r
. However, if the tube is initially

filled with liquid (water) and it is experiencing a drying process, as shown in Figure (1.8b),

the maximum suction would also be ∆Pd =
2γ

r
as the water is stuck at the tube having

a radius r.
The main idea is that even though the pressure difference or suction during both wet-

ting and drying processes remains the same, the actual heights reached in the capillary
tube system differ, with hd being greater than hw, as illustrated in Figure (1.8). The
difference in heights corresponds to two different moisture contents or degrees of water
saturation in the system. In simpler words, even with the same pressure driving the move-
ment, the amount of moisture retained by the capillary tubes differs during the wetting
and drying processes (Likos and Lu, 2004a,b).

Wetting angle θ hysteresis:
If one were to place a water droplet on a tilted surface, due to gravity, the droplet would
slide down, as shown in Figure (1.9). In this case, the advancing wetting angle θw at
the front (right side) is observed to be larger than the receding contact angle θd at the
rear (left side). The reason behind the phenomenon is that the droplet advances on a
dry surface while simultaneously wetting the surface behind it. Consequently, the rear
side of the droplet slides on a wet surface, resulting in θw > θd. In unsaturated soils,
the behavior during wetting and drying processes shares similarities with the mechanism
previously described (Likos and Lu, 2004b,a).
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Figure 1.9: Schematic depicting the wetting angle hysteresis. Inspired by (Likos and Lu, 2004b).

1.3 Capillary bridges and forces

Capillary bridges between different solids result in the creation of forces acting on
them. Consequently, capillary forces play a crucial role in modifying the behavior of
partially saturated granular assemblies (Richefeu et al., 2009; Mielniczuk et al., 2015;
Dörmann and Schmid, 2017; Wang et al., 2017; Louati et al., 2017; Grof et al., 2008).
At the macro-scale, these capillary forces give to the material an apparent cohesion. As
the liquid content increases until saturation, the capillary cohesion may be lost and the
sample may collapse, for instance, the sandcastle (Lu et al., 2007; Hornbaker et al., 1997;
Pakpour et al., 2012). For stability analysis, it is vital to quantify accurately the capillary
forces acting within partially saturated granular materials.

Numerous studies have been carried out to explore the characteristics of capillary
bridges and forces in various regimes, including pendular and funicular. This section
provides a comprehensive overview of capillary bridges and their associated capillary forces
for doublets and triplets of particles.

1.3.1 Doublet of particles

If one were to place a small amount of liquid between two objects—spherical particles,
flat surfaces, or even between a spherical particle and a flat surface—a capillary bridge
would be established, as shown in Figure (1.10a), (b), and (c), respectively.

A capillary bridge is defined as the free surface separating immiscible fluids due to
the interactions of molecules between them along with the solid interface. The capillary
bridge will adopt a shape that minimizes its gas-liquid under the constraint of an imposed
liquid volume.
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Figure 1.10: Capillary bridges between (a) two spherical particles, (b) two flat surfaces, and (c)
a flat surface and a spherical particle.

1.3.1.1 Geometrical shapes

The equation that describes the shape of an axisymmetrical capillary bridge between
two spherical grains has been defined by the scientists Thomas Young and Pierre-Simon
Laplace in the 19th century. This equation is known as the Young-Laplace Equation (YLE)
which reads (in the absence of gravity)

y′′(x)

(1 + y′2(x))3/2
− 1

y(x)
√
1 + y′2(x)

= −∆P

γ
= H (1.8)

where H = −∆P

γ
is the mean curvature, and y(x) is the meridian profile shown in

Figure (1.11).
For axisymmetrical capillary bridges, the mean curvature H can be calculated as

follows:
H =

1

R1

+
1

R2

(1.9)

where R1 and R2 are the algebraic curvatures.
To understand the signs of curvatures, an example of a classical air-water capillary

bridge is shown in Figure (1.12). From the latter figure, n⃗1 and n⃗2 are the normal unit
vectors pointing outward of the air-water interface. If the normal unit vector points to
the center of the circle, the curvature is then considered positive and vice-versa (with the
convention that R1 > 0 and R2 < 0).

We also recall that the integration of the YLE leads to the non-linear first-order dif-
ferential equation

1 + y′2 =
4y2

H2

(
y2 − 2λ

H

)2 (1.10)

where λ is the first integral of the Young-Laplace equation given by Gagneux and Millet
(2014):

λ =
y√

1 + y′2
+
Hy2

2
. (1.11)
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According to the signs of H and λ, Eq. (1.10) describes a Delaunay roulette (Delaunay,
1841)

1 + y′2 =
4a2y2

(y2 + εb2)2
(1.12)

where ε = 1 corresponds to a portion of unduloid, whereas ε = −1 corresponds to a
portion of nodoid. Readers are invited to consult Gagneux and Millet (2014) for more
details.

𝛿
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Figure 1.11: Capillary bridge profile between two particles. Parameters are: R is the particle
radius, δ is the filling angle, y∗ the neck radius, ψ(x) angle between tangent and the x-axis, θ
the contact angle, and D is the separation distance between grains.

1.3.1.2 Capillary force F cap

The constant λ (the first integral of the YLE) takes the unit of a length. Thus, 2πγλ
will have a force unit. At static equilibrium, we can evaluate this quantity at the neck of
the capillary bridge (y = y∗ and y′ = 0), which gives the classical gorge expression of the
capillary force (Gras et al., 2013; Gagneux and Millet, 2014):

F cap = −∆pπy∗2︸ ︷︷ ︸
Fp

+2πγy∗︸ ︷︷ ︸
Fad

. (1.13)

Note that, in the above expression, the capillary forces splits into two parts: a pressure
force Fp and a surface tension force Fad. As it is a first integral of Young–Laplace equation,
the capillary force is constant at any point of the profile y(x) and can also be calculated
at the contact line1 by Gagneux and Millet (2014)

F cap = −∆pπR2 sin2 δ︸ ︷︷ ︸
Fp

+2πγR sin δ sin (δ + θ)︸ ︷︷ ︸
Fad

(1.14)

where δ is the filling angle, and R is the radius of the particle.
Moreover, the capillary force can also be evaluated at any position along the capillary

bridge and it expresses

F cap = −∆pπy(x)2︸ ︷︷ ︸
Fp

+2πγy(x) cosψ︸ ︷︷ ︸
Fad

(1.15)

1At the contact line of abscissa xc, y(xc) = r sin δ and y′(xc) = cot(δ + θ).
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where ψ(x) denotes the angle between the tangent of the profile at point (x, y(x)) and the
horizontal axis as illustrated in Figure (1.11).

It must be pointed out that Eqs. (1.13), (1.14), and (1.15) can only be applied for an
isolated capillary bridge between two grains.

Figure 1.12: Illustration of the signs of curvatures within a typical capillary bridge between two
spherical particles.

1.3.1.3 Topological approximations

Multiple experimental, analytical, and numerical studies have been conducted to in-
vestigate capillary bridge shapes between poly-dispersed and mono-dispersed spherical
particles, two flat surfaces, and between a flat surface and a spherical particle.

Haines (Haines, 1925) is probably among the first who have approximated capillary
forces using a circular arc. Capillary forces were calculated for low liquid volumes and
very small contact angles θ. In this study, the aim of Haines was to try to understand
and evaluate the order of magnitude of certain physical capillary forces named cohesion
forces after Haines. The effect of the tension force was consciously omitted by Haines
since it appeared to be small for low values of θ and particles in contact. One year later,
Fisher extended Haines’s work by using the same method, but incorporating the tension
force term into the capillary force formulation (Fisher, 1926). Results reported by Fisher
demonstrated that the tension force is indispensable in order to capture the cohesion
forces.

Hotta et al. (1974) have improved the circular approximation to calculate the capillary
forces of mono-dispersed spherical particles while taking into account gravity. The results
reported in their study showed that the enhanced approximation is capable of capturing
capillary forces for large volumes.

Melrose (1966) derived an exact analytical solution using a self-consistent thermody-
namic theory for the meridian of the bridge between mono-dispersed spherical particles
in contact. It must be pointed out that Melrose was among the firsts—maybe even the
first—who have used the nodoid profile to describe capillary interfaces.

A semi-analytical method was proposed by Harireche et al. (2013) in which the capil-
lary interface is approximated with a toroidal arc to calculate capillary forces for perfectly
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wet poly-dispersed assemblies. The results reported by Harireche are in line with exper-
imental data for a broad range of liquid volumes. This method can also be applied to
a plane-sphere case. A closed-form equation was proposed by Willett et al. (2000) and
calculated capillary forces between perfectly wet (θ = 0◦) mono-dispersed as well as poly-
dispersed spherical particles in terms of separation distance.

A comparison of this method was conducted against the numerical resolution of the
YLE. Good results were reported in their study, only for reasonable separation distances
away from rupture. The same year, Pitois et al. (2000) proposed a simple closed-form
expression of the total capillary force in terms of the separation distance, liquid bridge
volume, particle radii, and contact angle, only for mono-dispersed spherical particles and
in a quasi-static regime. This closed-form expression reads:

F cap ≈ 2πRγ cos θ

1− 1√
1 +

2V

πRD2

 . (1.16)

In addition to the proposed closed-form capillary bridge expression, the authors have
also approximated the critical separation distance at which capillary bridges rupture and
break into two parts. The proposed critical distance reads

Dcrit ≈
[
1 +

θ

2

]
V 1/3 (1.17)

where θ is expressed in radians and V is the liquid bridge volume.
Also, Soulie et al. (2006) have proposed an exponential expression of capillary forces

for poly-dispersed particles that yield

F cap = πγ
√
R1R2

[
c+ exp

(
a
D

R
+ b

)]
(1.18)

where R = max (R1; R2) and the dimensionless coefficients a, b, and c are expressed as
follows:

a = −1.1

(
V

R3

)
;

b =

[
−0.148 ln

(
V

R3
− 0.96

)]
θ2 − 0.0082 ln

(
V

R3

)
+ 0.48; (1.19)

c = 0.0018 ln

(
V

R3

)
+ 0.078.

These closed-form expressions provided great results with respect to the experimental
data. Richefeu et al. (2006b) proposed an expression for the attractive capillary force
between poly-dispersed particles with radii Ri and Rj as follows

F cap = 2πRγ cos θ e−D/η (1.20)

where R =
√
RiRj is the geometrical mean of particle radii, and η is a length scale defined

as follows

η = h(r)c

(
V

R′

)1/2

. (1.21)
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where r is the ratio between radii defined as r =
[
max

(
Ri

Rj

)
; max

(
Rj

Ri

)]
, c is a fitting

coefficient, R′ =
2RiRj

Ri +Rj

is the harmonic radius, and h(r) is a function. After some

fitting with the YLE, they concluded that c ≈ 0.9 and h(r) = r−1/2 are the best choices
to capture the correct capillary forces.

An elliptic approximation was theoretically derived by Kruyt and Millet (2017) for
mono-dispersed, perfectly wettable rigid spheres instead of the toroidal or circular arc
approximations, to calculate forces and to determine the rupture distance of the capillary
bridge. This approach showed to be accurate compared to the YLE. This method has
been extended to poly-dispersed and to non-perfect wettable particles by Zhao et al. (2018,
2019).

Machine Learning approaches, especially Artificial Neural Networks (ANNs), have
gained significant recognition in multiple fields. A recent study using ANN by (Argilaga
and Zhao, 2023) has been carried out to predict capillary forces as well as the critical
rupture distances of capillary bridges.

1.3.1.4 Experimental exploration of liquid bridge and capillary force mea-
surement

Experimental investigations have also been carried out. Recently, Nguyen et al. (2020b,
2019b,d, 2020a) have devised a novel method to determine the exact shape of the capillary
bridge and the associated capillary pressure ∆P involved in the YLE on the Right Hand
Side (R.H.S.) of Eq. (4.11).

Figure (1.13) shows the experimental apparatus used in creating capillary bridges
between two spherical rigid particles. The bottom particle is kept fixed, whereas the
upper particle can only move in the vertical direction.

Figure 1.13: Experimental apparatus showing poly-dispersed particles used to create capillary
bridges (Nguyen et al., 2019b).

Using a Basler ACE camera along with a telecentric lens, images of capillary bridges
are taken and then analyzed using an in-house image processing code written in Matlab,
as shown in Figure (1.14). This image-processing code is capable of determining multiple
variables, such as the contact angles θ, filling angles δ, and the neck radius y∗. These
latter are used to solve the YLE as an inverse problem, thus determining the shape of the
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profile (a portion of nodoid, undoloid, catenoid, etc.) and the associated value of capillary
pressure ∆P (Gagneux and Millet, 2014).

Figure 1.14: Experimental images of capillary bridges and their solutions. Red and purple
curves are the Young-Laplace solution using the image-processing code for nodoid and undoloid,
respectively. Green curves are the detected points on the air-water interface. (a) Poly-dispersed
spherical particles (Nguyen et al., 2019b), (b) Mono-dispersed spherical particles (Nguyen et al.,
2020b) and (c) Two parallel flat surfaces (Nguyen et al., 2020a).

1.3.1.5 Numerical resolutions

Numerical results have been well appreciated in the context of capillary bridges/inter-
faces. For instance, Duriez and Wan (2017) have solved the YLE numerically to calculate
capillary forces between two spherical grains under suction-controlled conditions. Their
findings were compared against experimental results and have found great similarities.

Another method to model capillary bridges between two grains has been pursued by
Miot et al. (2021) in which an energy minimization technique was used. This minimization
along with the virtual work principle has been employed to determine the shape of capillary
bridges and calculate capillary forces. In this study, the open-source code Surface Evolver
(Brakke, 1992) was used.

Furthermore, Sun and Sakai (2016) have combined the Volume Of Fluid (VOF) method
with Immersed Boundary (IB), and Direct Numerical Simulation (DNS) to devise the
VOF-IB-DNS method to solve the Navier-Stokes equations in order to determine the
shape of gas-liquid interfaces. The Shan-Chen multi-phase Lattice Boltzmann Method
(LBM) coupled with Carnahan-Starling Equation Of State (EOS) for the temperature
have been employed in Benseghier et al. (2022) to investigate the capillary interfaces
and their associated capillary forces. They have found that the Shan-Chen-based LBM
model is capable of capturing the shapes of capillary bridges by comparing them with
the image-processing technique using the same code used by Mielniczuk et al. (2018);
Nguyen et al. (2019b) and Nguyen et al. (2019c,d, 2020b,a, 2021)—see Figure (1.15).
They also succeeded in capturing the sign inversion of the dimensionless mean curvature
H∗ = H×R from nodoid (H∗ > 0) to undoloid (H∗ < 0) as seen in Figure (1.16). Lastly,
they computed capillary forces and plotted them in terms of dimensionless liquid volumes
V ∗ against other data, as depicted in Figure (1.17).

However, although the results seem to be accurate, multiple drawbacks can be re-
ported. For instance, the Carnahan-Starling EOS is thermodynamically consistent only
for high temperatures T > 0.7TC where TC is defined as the critical temperature2 which
is equal to TC = 282.9◦C, which is non-physical (Huang et al., 2011, 2015). To prevent
numerical noise, it is necessary to calculate capillary forces at a certain distance away
from the spherical particle rather than in its immediate vicinity.

2The critical temperature is a temperature below which a liquid and its vapor coexist.
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Figure 1.15: Numerical and theoretical shapes of capillary bridge profiles for different volumes
on top and bottom, respectively. (a) V ∗ = 0.016, (b) V ∗ = 0.041, (c) V ∗ = 0.085, and (d)
V ∗ = 0.15 (Benseghier et al., 2022).

Figure 1.16: Evolution of the dimensionless mean curvature H∗ = H ×R of the capillary bridge
between two spherical particles for various dimensionless liquid bridge volumes V ∗. H∗ > 0 refers
to a portion of nodoid and H∗ < 0 corresponds to a portion of undoloid shape (Benseghier et al.,
2022).
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Figure 1.17: Evolution of the dimensionless capillary force for different dimensionless liquid bridge
volumes V ∗. Other analytical results and experimental data have been added for comparison
(Benseghier et al., 2022).

1.3.2 Small granular assemblies: triplets or more

The funicular regime wherein capillary bridges start to merge is probably more preva-
lent than the pendular regime in practice. For this reason, an overview of the available
studies of three particles or more will be provided.

1.3.2.1 Variation of capillary force with water volume from experiments

The experimental study conducted by (Gras, 2011) investigated the behavior of a
coalesced capillary bridge between three spherical glass particles during an evaporation
process. The findings are depicted in Figure (1.18). Over time, the capillary bridge
undergoes significant changes. From stages (a) to (e), the bridge progressively shrinks.
Eventually, in stage (f), the capillary bridge reaches a critical point and breaks down,
leading to the formation of three separate and isolated capillary bridges connecting each
pair of particles. As the process continues, these capillary bridges gradually disappear
over time.

Figure (1.19) depicts the time evolution of capillary force acting on the top particle as
the coalesced capillary bridge experiences an evaporation process. An intriguing observa-
tion is that when the coalesced capillary bridge ruptures in stage (f), the capillary force
experiences a significant reduction, decreasing to approximately 30% of its value prior
to coalescence. For several years, this particular observation regarding the reduction in
capillary force after the rupture of the coalesced capillary bridge remained unexplained.
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Figure 1.18: Photos of a coalesced capillary bridge between three spherical particles being evap-
orated (Gras, 2011).

Figure 1.19: Time evolution of capillary force acting on the top particle in a triplet configuration
(Gras, 2011).

Many years later, Gagneux et al. (2016) formulated a thorough analytical and geo-
metrical explanation, providing a physical explanation for capillary forces drop after the
rupture of a coalesced capillary bridge. In their work, they have proved that the dominant
contribution of the change of capillary forces is due to the change in the Laplace pressure
force denoted as Fp in Eq. (1.13) for a contact angle of θ = 50◦ which corresponds to the
one deduced from Gras (2011). This significant alteration in capillary forces is attributed
to the transition from pendular to funicular states and vice-versa, which is accompanied
by a change in curvature.

An interesting investigation has been conducted by El Korchi (2017) wherein the au-
thor has investigated the variation of capillary forces in the context of water imbibition
for a system of three and four glass spherical particles. Figure (1.20) describes the exper-
imental setup in 2D used by El Korchi (2017).
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Figure 1.20: A sketch of the experimental setup used for triplets and quadruplets of spherical
particles (El Korchi, 2017). Legends have been translated from French to English.

The author injected water between pairs of particles to form two equally isolated cap-
illary bridges as shown in Figure (1.21a). As the water content increases, when capillary
interfaces touch each other, a merging of capillary bridges takes place. Consequently, the
isolated capillary bridges become one large cluster as shown in Figure (1.21b).

Figure 1.21: (a) Before coalescence and (b) after coalescence.

The author has reported that when capillary bridges merge, a jump in capillary forces
is observed as shown in Figure (1.22). The same study has also been conducted, but for
quadruplets of particles as shown in Figure (1.23).
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Figure 1.22: Capillary forces Fcap evolution in terms of water volumes Vw in triplet configurations
for two different setups, D1 = 8.7 mm for both (a) D2 = 8.3 mm and (b) D2 = 8 mm (El Korchi,
2017).

Figure 1.23: Different photos of the quadruplets used in the experiment with capillary bridges
(El Korchi, 2017).

The reported findings indicate that the conclusion regarding capillary force jumps
at coalescence remains consistent between the triplet and quadruplet cases, as shown in
Figure (1.24).
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Figure 1.24: Capillary forces Fcap evolution in terms of water volumes Vw in quadruplet config-
urations for two different setups, for both (a) D1 = D2 = 8.7 mm and (b) D1 = 8.4 mm and
D2 = 8.3 mm (El Korchi, 2017).

Using roughly the same experimental setup of Gras (2011), the study conducted by
Hueckel et al. (2020) expands upon the research by investigating the evaporation of cap-
illary bridges formed between three, four, and five particles. Remarkably, their findings
align with those of the previous study, demonstrating consistent observations across dif-
ferent particle configurations as shown in Figures (1.25) and (1.26).

Figure 1.25: Capillary forces Fcap evolution in terms of cluster saturation in three- and four-
particle configurations for different separation distances (Hueckel et al., 2020).
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Figure 1.26: Capillary forces Fcap evolution in terms of cluster saturation in five-particle config-
urations for different separation distances (Hueckel et al., 2020).

1.3.2.2 Numerical investigation of capillary force with volumetric water con-
tent

In the numerical framework, Miot et al. (2021) used the surface energy minimization
approach to address three-particle problems and compared them to the findings reported
in El Korchi (2017). In the study conducted by Miot et al. (2021), notable results were re-
ported. However, one limitation of their approach is the inability to simulate coalescence
naturally. To overcome this limitation, they resorted to analytical criteria for merging
capillary bridges and later had to reinitialize a coalesced capillary bridge between the
three spherical particles. Similarly, the same method has also been employed by Di Renzo
et al. (2020) to study the influence of the separation distances and water volumes on the
capillary forces of three and four spherical particles.

Despite the valuable contributions made by various researchers in studying capillary
forces and their dependence on factors such as particle configuration, separation distances,
and water volumes, there is still a noticeable gap in the literature when it comes to
considering coalescence as an intrinsic aspect of the phenomenon. The existing methods
often resort to analytical criteria to simulate coalescence, which may limit the accuracy and
realism of the results. Therefore, further research is warranted to develop comprehensive
approaches that can naturally incorporate coalescence and capture its effects on capillary
forces in unsaturated granular assemblies. This will contribute to a deeper understanding
of the complex dynamics involved and provide more realistic models for studying capillary
phenomena in the context of unsaturated soils.

1.4 Soil-Water Characteristic Curve and Suction s

One of the most important characteristics of unsaturated soil is its suction s which is
defined as the negative pressure present in the pore spaces due to the triphasic interaction
at the liquid-gas-solid interface. The suction s originates from two different components:
matric and osmotic(Fredlund and Rahardjo, 1993). The matric suction, denoted by sm, is
a concept that arises solely in unsaturated soils, and it represents the difference between
the air pressure ua and water pressure uw due to capillarity. The matric suction is also
defined as the energy required to extract water from a given soil (Eyo et al., 2022).
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Mathematically speaking, it can be expressed as (Leong and Abuel-Naga, 2018):

sm = ua − uw. (1.22)

The term matric is used to emphasize its connection to the interaction between fluids and
the soil matrix. It must be pointed out that the s = −∆P , where ∆P is the pressure
difference we have already in the YLE (4.11). The voids of a partially saturated granular
material can be seen as a group of narrow tubes in which water can readily suspend as
shown in Figure (1.27).
When solutes, such as salts, are dissolved in water, a chemical potential difference is
created between the free water (water without solutes) and the water with dissolved
solutes. This chemical potential difference is called osmotic suction and is denoted by so.
The total suction s, on the other hand, is simply the algebraic sum of matric and osmotic
suction (Fatahi et al., 2015):

s = so + sm. (1.23)

Figure 1.27: (a) Illustrative picture of capillary rise within granular materials. (b) An analogy of
a group of tubes with different radii representing the size of pores within the granular materials.

It is interesting to note that in this work, only the matric suction is to be considered,
simply referred to as s.
The Soil-Water Characteristic Curve (SWCC) represents the relationship between the
suction s in terms of degrees of saturation Sr, the volumetric water content θω or even
water content ω (Zhai and Rahardjo, 2012). Figure (1.28) illustrates a typical SWCC
for the entire saturation range. In this figure, and for the drying curve (decreasing Sr,
continuous line), three zones are presented (Eyo et al., 2022; Vanapalli, 1996; Vanapalli
et al., 1999):

• Boundary-effect zone: At the beginning of this zone, the water phase is continuous
and fills all the voids. Towards the end of this zone, the air phase becomes entrapped
in the form of air bubbles. This zone corresponds to the capillary regime;

• Transition zone: As the water dries out, the air starts invading the larger pores,
known as the Air-Entry Value suction (AEV), denoted as se. In this zone, the water
phase gradually loses its continuity. This zone represents the funicular regime;
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• Residual zone: In this zone, the water phase becomes discontinuous, and the air
phase becomes continuous. The water phase exists in the form of isolated capillary
bridges and will eventually vanish as the drying process continues. This zone is
equivalent to the pendular regime.

Figure 1.28: Typical SWCC for the entire saturation level (Eyo et al., 2022).

Numerous studies, whether experimental, numerical, or analytical, have been con-
ducted to measure or calculate the suction.

1.4.1 Experimental measurement of SWCC
From an experimental perspective, numerous techniques are available in the literature

such as contact filter paper, electrical or thermal conductivity sensors, and pressure cells.
However, attention will be given to a specific method called the axis-translation technique.
Figure (1.29) shows the apparatus used to measure the suction s. This apparatus is made
of a box containing a soil specimen placed on top of a porous disk. This latter is known
chosen with a High-Air-Entry material, similar to porous ceramic. Below the disk, there
is a pressurized reservoir of water with a pressure of Pℓ = uw, while above the disk there is
air with pressure Pa = ua. If one were to zoom in on the porous disk, the tubes would be
saturated with formed menisci on the top allowing only for a finite suction s = ua − uw.
If the pores are assumed to be tube-shaped with a minimum radius rmin and using the
YLE, one can calculate the maximum pressure s allowed in this test, which is given by
the following formula:

smax =
2γ

rmin
(1.24)

The advantage of this technique lies in the ability to separately control the apparent air
and water pressures without allowing the air to enter the water reservoir as long as the
following condition ua − uw < smax is satisfied. Initially, the saturated soil specimen is
placed on the top of the HAE disk as seen in (b). Then, the water is gradually drained
until equilibrium is reached for an imposed suction s. This equilibrium state is achieved
when the water pressure within the specimen matches that in the reservoir, as long as
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the water coming from the reservoir is in contact with the water within the specimen, as
depicted in (c).

Figure 1.29: HAE Material (Mitarai and Nori, 2006).

1.4.2 Equations for fitting SWCC
Over the span of a century, numerous analytical models have been proposed by re-

searchers to describe soil-water retention characteristics. For instance, Brooks (1965)
introduced an equation that relates suction, air-entry-value suction, and the pore-size
distribution parameter λ as follows:

Sr =
(se
s

)λ
(1.25)

Here, se is the air-entry-value suction. However, this equation is only applicable when
s > se.
Logarithmic models have also been proposed for certain Australian soils. Williams et al.
(1983) presented one such model:

ln (s) = a+ b ln (Sr) (1.26)

The scientific community has recognized logarithmic relationships extensively, as reported
in McQueen and Miller’s work (McQueen and Miller, 1974).
Furthermore, the power model has been widely utilized and takes the form:

s = aSb
r (1.27)

This formulation has been acknowledged by Williams et al. (1983); Visser; Clapp and
Hornberger (1978).
Exponential relationships have been proposed by McKee and Bumb (1984), also known
as the Boltzmann distribution (Fredlund and Xing, 1994). Their model is given by:

Sr = exp

(
a− s

b

)
(1.28)

However, Eq. (1.28) is not valid for extreme cases, such as nearly fully saturated or dry
soils. To overcome this limitation, McKee and Bumb (1987) introduced an alternative
model based on the Fermi-Dirac distribution:

Sr =
1

1 + exp
(
s−a
b

) (1.29)
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Among the various models, the most widely used one is the van Genuchten model (Van Genuchten,
1980), which relies on three fitting parameters α, n, and m:

Sr =

[
1

1 + (αs)n

]m
(1.30)

Recently, Wan et al. (2019); Pouragha et al. (2021) have addressed this issue by using a
probabilistic approach to recover pore size distribution from grain size distribution and
the physics of pore filling or drainage.

Indeed, many other models exist, but the ones mentioned above are some of the most
notable in the field of SWCC.

1.5 Effective stress σ′

While the definition of effective stress is well understood and accepted by geotechnical
engineers and researchers for dry and fully saturated materials, its formulation for partially
saturated soils has been a subject of ongoing debate for centuries now. The concept of
effective stress corresponds to the possibility of describing the response of the wet material
using the same constitutive law as in the dry case but with effective stress instead of total
stress. The change in effective stress governs both the failure and deformation of the soil.
Khalili et al. (2005) have proposed a unified expression for the effective stress averaged
over the total volume as

σ′ = σ −
n∑

i=1

αiuiI (1.31)

where σ is the total stress, ui is the pore fluid i pressure, n is the number of fluids within
a sample, I is the identity matrix, and αi are the coefficients that should be chosen in
a way that takes into account how each individual fluid pressure ui affects the overall
behavior of the soil.

Eq. (1.31) represents a generalized form of effective stress applicable to porous media,
geomaterials, and different fluid phases such as water and air. While the formulation is
likely to be unique, the effective stress variable itself is not unique due to the possibility
of coefficients αi not being constants. Strictly speaking, a fully saturated soil is defined
when Sr = 1, thus only water and solid phases exist at the same time. Whereas, soil is
considered dry when the saturation level is nil, indicating the exclusive presence of air
and solid phases—Sr = 0. In dry soils, and under the condition of compressible air and
quasi-static loading regime, the effective stress is expected to be equal to the total stress,
that is

σ′ = σ (1.32)
with αa (air) is nil.

Indeed, several decades prior to Khalili et al. (2005), Karl von Terzaghi introduced a
straightforward yet impressive expression for effective stress in his renowned book Soil Me-
chanics in Engineering Practice widely regarded as the bible of Soil Mechanics (Terzaghi,
1925). The formulation applies specifically to fully saturated soils—αw = 1 and reads:

σ′ = σ − uwI. (1.33)

Undoubtedly, Eq. (1.33) finds application in nearly all practical geotechnical engineering
problems. Nevertheless, this formula is subject to certain conditions and assumptions
that must be taken into account in order to ensure its proper and accurate application
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• The grain-to-grain contacts must be point-wise so that the resultant force applied
by the water on each grain is zero.

• Both water and grains must be considered incompressible, meaning that changes in
water pressure do not lead to volumetric strain.

• Only quasi-static loading should be considered to prevent the transmission of shear
stress in the water phase.

In extreme cases such as a very high confining pressure, the compressibility of grains
cannot be neglected anymore. In this case, Skempton (1984); Nur and Byerlee (1971)
have formulated an expression taking into account the compressibility of grains Cs and
the drained compressibility of the skeleton C and reads:

σ′ = σ −
(
1− Cs

C

)
uwI. (1.34)

For fully saturated conditions, the existence of effective stress is well established. For
unsaturated soils, Eq. (1.33) is no longer valid as it does not take into account the air-water
capillary interface. The concept of the effective stress for unsaturated soils was originally
introduced by the Road Research Laboratory in Washington DC in their publication
(Croney et al., 1958). The empirical formulation is expressed as follows:

σ′ = σ − β′uwI. (1.35)

In this equation, the parameter β′ represents the bonding factor, acting as a measure of
the water’s ability to contribute to the shear strength of the soil through tension-induced
bonding. Indeed, this parameter can be determined experimentally. Similar empirical
formulae were proposed by (Jennings, 1961; Aitchison, 1961) during the Pore Pressure
and Suction in Soils conference organized in London in 1961 (Pressure, 1960).

Several years later, Alan W. Bishop and Geoffrey E. Blight made notable extensions to
Terzaghi’s effective stress principle, introducing a novel formulation specifically designed
for unsaturated soils (Bishop, 1959; Bishop and Blight, 1963). Their contributions have
been widely recognized and well-received within the soil mechanics community. This
formulation, known as Bishop’s effective stress, is expressed as follows

σ′ = (σ − uaI) + χ (ua − uw)︸ ︷︷ ︸
s

I (1.36)

where ua is the air pressure, uw the water pressure in capillary bridges, the difference
between them is the suction s = ua − uw, χ is some weighting parameter that controls
the degree of saturation: χ=0 for dry soils, and χ = 1 for saturated soils, to recover the
Terzaghi’s effective stress as seen in Eq. (1.33).

Bishop’s effective stress in Eq. (1.36) is based on the idea of replacing uw with uw =
(1− χ)ua + uwχ in Eq. (1.33) to take into account the air phase.
Many years later, Richards (1966) proposed an expression for the effective stress based
on osmotic suction:

σ′ = (σ − uaI) + χ
s(s+ ua)I + χ

o(so + ua)I (1.37)

where χs and χo are the effective stress parameters for matric and osmotic suction, respec-
tively. Likewise, Aitchison and Peter (1973) suggested a modified version of Eq. (1.37)
that reads:

σ′ = σ + χ
ssI + χ

osoI. (1.38)
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The two equations mentioned earlier will not be taken into account since osmotic suction
is not within the scope of this thesis.

The value of χ not only depends on the degree of saturation but also on other parame-
ters, such as the Particle Size Distribution (PSD) of a given soil, as shown in Figure (1.30).
Several attempts have been made to estimate the value of χ. For instance, Aitchison (1961)
proposed a fitted expression which expresses

χ =


1 if Sr = 1

(α
s

)
se if Sr < 1

(1.39)

where α is a coefficient that ranges between 0.3 and 0.35 and se represents the air entry
suction. Also, Khalili and Khabbaz (1998) have proposed an expression similar to that in
Eq. (1.39) that reads:

χ =


1 if s ≤ se

(
s

se

)−0.55

if s > se

. (1.40)

Many years later, Russell and Khalili (2006) have modified Eq. (1.40) and proposed a new
equation for

s

se
> 25—usually for sandy soils. This new equation reads:

χ =



(
s

se

)
if
s

se
≤ 25

250.45
(se
s

)
if
s

se
> 25

. (1.41)

Moreover, fitting expressions based on several soil characteristics can also be used

χ =

(
θw
θs

)k

(1.42)

where θw is the volumetric water content, θs is the saturated volumetric water content,
and k is a fitting parameter. Similarly, χ can also be expressed as follows

χ =
θw − θr
θs − θr

(1.43)

where θr is the residual volumetric water content.
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Figure 1.30: Evolution of Bishop’s effective stress parameter χ in terms of water saturation Sr for
various number of soils (Nuth and Laloui, 2008). This figure was originally plotted by Jennings
and Burland (1962) which was updated by Zerhouni (1994)

Several studies within the numerical framework have made efforts to estimate the
values of χ. Among these, Yuan et al. (2018) employed the 2PFV-DEM method for
this purpose, but their findings indicated that χ = Sr, revealing that the approach was
not highly accurate. Following that, the DEM-Fabonnacci-Lattice points discretization
has been utilized by Liu et al. (2020b), and it revealed great results when compared to
experimental data as shown in Figure (1.31).

Figure 1.31: Evolution of numerical and experimental Bishop’s effective stress parameter χ in
terms of water saturation Sr (Liu et al., 2020b).
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In addition, artificial neural networks have been successfully trained to predict the
value of χ (Lee et al., 2003; Ajdari et al., 2012).

1.6 Capillary stress σcap

In the framework of micro-mechanics, the total stress σtot can be formally decomposed
as the sum of the skeleton contact stress σcont and the capillary stress σcap generated by
capillary bridges:

σtot = σcont + σcap. (1.44)

The contact stress σcont is defined as the transmission of forces at the particle contacts
within the solid skeleton. The contact stress tensor can then be calculated via the Love-
Weber formula expressed as follows (Love, 2013; Weber, 1966)

σcont =
1

V

∑
c

f c
ij ⊗ ℓcij (1.45)

where f c
ij is the contact force between pair of grains (i and j) and ℓcij is the branch vector

from the center of i to that of j, ⊗ refers to dyadic product, and V is the total domain
volume.

The capillary stress σcap is the stress responsible for providing unsaturated soils with
the apparent cohesion. It is tempting to associate it with the second term of the R.H.S
of Eq. (1.36) under the assumption that ua is negligible compared to the total stress σ.
This equation can be re-written as follows:

σ′ = σ +

σcap?︷ ︸︸ ︷
χ(ua − uw)I .

(1.46)

When the capillary stress is not zero, the effective stress σ′ will be larger than the total
stress σ giving rise to the so-called apparent cohesion (ua−uw > 0). As mentioned earlier,
the challenging task is to determine the values of χ in order to capture well the behavior
of unsaturated soils. But the question that arises is: can we find another form of σcap

without using χ?
Limited studies have been conducted to explore a novel form of capillary stress to

avoid using the perplex parameter χ. For instance, Scholtès et al. (2009) introduced an
innovative approach for modeling unsaturated soils within the context of micro-mechanics
using DEM. The core idea of this method lies in treating capillary forces as localized forces
at the points of contact between each pair of grains. Consequently, it is possible to see
capillary effects as additional contact forces and generalize the Love-Weber equation, as
defined in (5.11), except that it involves replacing contact forces with capillary forces.
The total stress then becomes:

σ =

σcont︷ ︸︸ ︷
1

V

∑
c

f c
ij ⊗ ℓcij +

σcap︷ ︸︸ ︷
1

V

∑
c

f cap,c
ij ⊗ ℓcij . (1.47)

The calculation of capillary forces in Eq.(1.47) is performed, under suction-imposed con-
ditions and for perfectly wet particles θ = 0◦, using the so-called gorge method as outlined
in Eq.(1.13).
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Several years later, Duriez and Wan (2016, 2017, 2018) modeled unsaturated granular
assemblies using DEM for non-zero contact angles by solving numerically the YLE—the
same technique as in Eq. (1.47). Furthermore, the same authors proposed an analytical
capillary stress tensor derived through stress homogenization of the medium. Its mathe-
matical form for spherical particles is composed of four micro-structure tensors and can
be expressed as follows

σcap =
1

V

[
s
(
µV w

+ µSsw

)
+ γ

(
µSnw

+ µΓ

)]
(1.48)

Where:
µVw

= VlI (1.49a)

µSsw
=
∑
p

Rp

∫
Sp,sl

n⊗ ndS (1.49b)

µSnw
=

∫
Slg

(I − n⊗ n) dS (1.49c)

µΓ =
∑
p

Rp

∫
Γp

ν ⊗ ndl (1.49d)

In Eqs. (1.49), Vl is the liquid volume, Rp is the spherical particle radius, n is the unit
normal vector to the interface, I is the identity tensor in R3, and ν is the unit tangent
vector to the interface as depicted in Figure (1.32).

Figure 1.32: (a) Illustration of several phases within an unsaturated soil. (b) Interface separating
two phases α and β which represent air and liquid phases.

Eqs. (1.49a) and (1.49b) represent the effect of suction s along the wetted surfaces
Ssl, whereas Eq. (1.49c) describes the surface tension contribution to the total liquid-gas
interfaces. Furthermore, Eq. (1.49d) represents the contribution of the contour contact
lines.

In their study, they proved that the analytical capillary stress matches the one com-
puted using DEM—capillary force technique, thus demonstrating the accuracy of the ho-
mogenization technique and its effectiveness in delivering correct results. Unfortunately,
computing the capillary stress tensor via capillary forces is restricted only to the pendular
regime making it impossible to verify the validity of the analytical capillary stress beyond
the pendular regime using DEM. Therefore, the validity of the analytical capillary stress
remains elusive to this day for the funicular and capillary regimes.
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1.7 Mechanical behavior of unsaturated media
Before delving into unsaturated soil conditions, it is essential to briefly recall the

failure of saturated/dry soils. When a soil sample is subjected to a certain combination
of external loads, it can fail if the internal shearing forces developed exceed the shearing
resistance developed by virtue of its strength.

In the early 1900s, Professor Christian Otto Mohr proposed a theory of material/soil
rupture that involves a combination of normal and shear stresses. Mathematically speak-
ing, the shear strength τf of dry/fully saturated soils can be approximated as a linear
relationship to the effective normal stress σ′:

τf = σ′ tanϕ′ + c′. (1.50)

Here, the shear strength has two contributions: (1) shear strength due to friction
resulting from the friction angle ϕ′ and (2) a cohesion shear strength originating from the
cohesion c′. The former is the slope of the envelope, whereas the latter is the intersection
with the y-axis. Under dry conditions of sandy soils, the cohesion is negligible. Note
that the shear stress is equal to the effective shear stress as the fluid stress is spherical in
quasi-static conditions.

For clarity, Figure (1.33) provides a graphical representation of the Mohr-Coulomb
failure criterion. Here, the τ −σ′ envelope is shown, but in soil mechanics, the q−p′ plane
is usually used instead. q and p′ represent the deviatoric and the mean effective stress (or
the hydrostatic pressure), respectively. These aforementioned variables are known as the
invariants of the stress tensor σ′ and are defined as follows:

p′ =
1

3
Tr (σ′) , q =

{√
3
2
σ′

dev : σ′
dev

σ′
dev = σ′ − p′I

(1.51)

where the “ :” refers to the double dot contraction product. We also define the volumetric
strain εv which is defined as the change of the sample’s volume and is expressed as:

εv = Tr(ε) (1.52)

where ε is the strain tensor.

1.7.1 Notion of apparent cohesion
Let us now rewrite Eq. (1.50) in terms of total stress using Tezaghi’s effective stress

Eq. (1.33) for fully saturated conditions:

τf = σ tanϕ′ + c′ −uw tanϕ′︸ ︷︷ ︸
apparent cohesion

. (1.53)

From the previous equation, the failure envelope is still the same as in Eq. (1.50). However,
for fully saturated soils, the pore-water pressure is positive, resulting in a reduction in the
apparent cohesion’s value (−uw tanϕ′ < 0) which will reduce the value of τf for a given
normal stress σ′.

If we extend Eq. (1.50) to unsaturated conditions, we find that the pore-water pressure
is negative leading to an increase in shear strength. For both dry and fully saturated soils,
cohesion is nill (c′ = 0). However, the presence of capillary bridges introduced a negative
pore-water pressure (−uw tanϕ′ > 0) in sandy soils, giving rise to what is commonly
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referred to as apparent cohesion. This is the reason why sandcastles remain standing
without supports (σ = 0).

Many studies have been conducted to investigate the behavior of unsaturated soils,
but only a few will be presented.

Figure 1.33: (a) Conceptual sketch of failure plane within a soil and (b) conceptual sketch of a
typical failure envelope of cohesive and frictional soils.

1.7.2 Experimental studies

In the experimental framework, for instance, Wang et al. (2002) have conducted a
series of triaxial tests for unsaturated soils under suction-controlled conditions. They
carried out the responses of deviatoric stresses q in terms of axial strain εa for multiple
suctions and confining pressures as shown in Figure (1.34).



Mechanical behavior of unsaturated media 39

Figure 1.34: Evolution of the deviatoric stress q [kPa] in terms of the axial strain εa [%] for a
series triaxial tests conducted on silty soils. (a) Saturated conditions with confining pressures of
100, 200, and 400 kPa. (b) and (c) Unsaturated conditions with a suction of 100 and 200 kPa,
respectively, for confining pressures of 100, 200, and 300 kPa (Wang et al., 2002).
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Figure 1.35: Evolution of the volumetric strain εv [%] in terms of the axial strain εa [%] for a
series triaxial tests conducted on silty soils. (a) Saturated conditions with confining pressures of
100, 200, and 400 kPa. (b) and (c) Unsaturated conditions with a suction of 100 and 200 kPa,
respectively, for confining pressures of 100, 200, and 300 kPa (Wang et al., 2002).

Not only do capillary bridges provide the soil with a certain cohesion as seen in Fig-
ure (1.34), but even the behavior changes in terms of the volumetric strain εv. Fig-
ure (1.35) shows that the unsaturated soils (b) and (c) deform less than saturated soils
(a).

While it is clear in Figure (1.34) that unsaturated soils have more strength than
saturated ones, Figure (1.36) shows the Critical State Lines (CSLs) in q − p′ plane3 for
both saturated and unsaturated soils. As the suction increases, the CSLs shift up while
keeping the same slope, resulting in an increase in the soil’s strength.

A compression test was conducted by Soulié (2005) on an unsaturated sample of glass
beads for two different particle size distributions. Figure (1.37b) and (c) show the evolu-
tion of the breaking force [N] in terms of water contents ω [%]. It can be seen from both
figures that the force increases as the amount of water increases because of the bonds
created thanks to capillary bridges between the pores. Unfortunately, the study was only
carried out for low water content ω < 13%.

3In Figure (1.36) the x-axis is labeled as p′′ which is the same as p′.
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Figure 1.36: Critical State Lines (CSLs) of both saturated and unsaturated soils (Wang et al.,
2002).

Figure 1.37: (a) A photo of the moist sample for ω = 3% of glass beads with diameters ranging
between [0.8; 1.3] mm. (b) and (c) Evolution of breaking force [N] in terms of water content ω [%]
for two different ranges of diameters [0.8; 1.3] mm and [0.5; 1] mm, respectively (Soulié, 2005).
Force à la rupture and Teneur en eau mean breaking force and water content, respectively.

In the same year, Richefeu (2005) carried out a simple shear test on several sandy and
glass beads unsaturated samples and then plotted the Mohr-Coulomb failure in τ−σ plane
for different types of samples and different water contents as shown in Figure (1.38). As
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seen in the figure, the Mohr-Coulomb failure line shifts up as the water content increases,
proving, once again, the importance of capillary bridges and forces within unsaturated
soils. The only drawback of this study is the low amount of water ω < 5%.

Figure 1.38: Mohr-Coulomb failure lines for different types of soils and different water contents.
(a) Sandy soil. (b) and (c) poly-dispersed glass beads with diameters ranging between [0.4; 5]
mm, [0.4; 8] mm. (d) Mono-dispersed glass beads of D = 1 mm (Richefeu, 2005).

1.7.3 Numerical studies
In the numerical framework, as seen earlier in Scholtès et al. (2009), Scholtès (2008)

used DEM and incorporated capillary forces based on Eq.(1.13). Triaxial tests were
conducted for a confining pressure of σconf = 10 kPa for different degrees of saturation as
shown in Figure (1.39) where the deviatoric stress q [kPa]. As can be seen from the figure,
the deviatoric stress q increases as the degree of saturation increases up to some point
where the influence of the degree of saturation becomes nearly negligible Sr = 10%. Once
again, the drawback of this method is that it can only be applied to pendular regimes.
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Figure 1.39: Evolution of the (a) deviatoric stress q [kPa] and (b) the volumetric strain εv [%] in
terms of the axial strain ε1 = εa for different degrees of saturation and for a confining pressure
of σconf = 10 kPa (Scholtès, 2008).

Many other numerical models were proposed in the literature. For instance, Mel-
nikov et al. (2016) have simulated triaxial tests for mono-dispersed unsaturated media for
high values of degrees of saturation using the Contact Dynamics (CD) method to model
the contacts between spherical grains, coupled with a Numerical Energy Minimization
(NEM) software for accounting air-water interfaces and the associated capillary forces.
They highlighted the impact of air-water capillary interfaces on the mechanical behavior
of unsaturated media subjected to different water contents. However, using the NEM
technique, one should select the shape of clusters (trimer, tetrahedral, heptamer, pen-
tamer, and large) based on defined criteria (Melnikov et al., 2015). Therefore, re-meshing
of clusters must be done once when they change shape. Also, Delenne et al. (2013, 2015)
have used a 2D Single Component Shan-Chen LBM model along with Molecular Dynam-
ics to investigate the ensuing apparent cohesive strength for a wide range of degrees of
saturation. However, in the latter work, grain particles were fixed, supposing that capil-
lary forces arising from the interstitial fluids are balanced by contact forces between the
solid particles. In addition, Duriez and Wan (2016) have modeled unsaturated granular
assemblies using DEM. Capillary bridges were incorporated in DEM calculations by nu-
merically solving the Young-Laplace Equation (YLE) via Finite Differences to compute
resulting capillary forces between pairs of grains. The authors highlighted the impact of
small degrees of saturation on the mechanical response of soil subjected to triaxial tests.
Finally, Liu et al. (2020b) have used a model that consists of using DEM coupled with
Fabonnacci-Point Element discretization of the capillary bridge cap4 to compute capillary
forces. They were able to model capillary bridges for a wide range of degrees of saturation.
Nevertheless, it is important to note that in the latter work, even though high values of
degrees of saturation were reported, the coalescence of capillary bridges was not possible.

1.8 Literature Gaps and Research Motivations
The heart of the problem is that the physics of unsaturated soils lies at the pore and

grain scales, which necessitates a microstructural investigation to evaluate the significance
of the phases and their interactions in influencing unsaturated soil behavior. Thus, a
series of analytical, numerical, and experimental studies that involved capillary actions

4Liquid-solid interface.
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between pairs of grains and then extended to triplets were presented. One of the tenets of
capillary action is the so-called capillary force, but there are challenges in its evaluation
as the topology of liquid bridges evolves with the capillary regimes as volumetric water
content changes in the soil. This leads to the question of how capillary action affects the
strength and deformation of the unsaturated assembly and the stress partitioning in the
different phases?

There are many gaps that have been identified in this literature review, but the main
ones can be summarized in the following.

• The issue of the controlling stress variable that governs both the failure and defor-
mation of unsaturated soils remains unresolved, even micromechanical studies exist
in the literature where the tensorial form of the capillary stress is well-recognized.

• Current analytical and numerical macroscopic methods are efficient, but they may
not be able to take into account finer aspects at the micro-scale such as the dynamics
of fluid phase topology.

• Within the micromechanics framework, proposed methods are restricted to the pen-
dular regime, which corresponds to very few case studies within unsaturated soils
(Scholtès et al., 2009; Scholtes et al., 2009; Scholtès, 2008; Duriez and Wan, 2016,
2017; Duriez et al., 2017; Duriez and Wan, 2018).

• While several numerical studies have explored the funicular regime, they often rely
on geometric criteria to model the merging and rupture of liquid bridges, along with
the corresponding jumps and drops in capillary forces. The challenge arises from the
fact that geometric criteria are typically defined for a maximum of three particles.
Consequently, simulating large partially saturated media using these approaches
becomes exceedingly sophisticated (Miot et al., 2021; Di Renzo et al., 2020).

• Distinctive capillary regimes can be modeled, but there are difficulties in continu-
ously modeling the entire range of saturation levels and as such unreasonable as-
sumptions have to be made, for instance, capillary bridges cannot merge together
as is the case in Liu et al. (2020b).

• Although the kinematics of solid particles can be described numerically using a
discrete element approach, on the contrary, the modeling of fluid phases and interface
dynamics are not as well developed.

Based on the above, the purpose of this Ph.D. work is to develop a multi-scale nu-
merical approach within which an unsaturated granular assembly can be modeled taking
explicitly into account details of the physics of all the phases involved, including their
interactions. More precisely, the micro-kinematics of the particles with the granular as-
sembly will be coupled with the dynamics of the fluids (air and water) driven by interfacial
physics as a function of external loads. The latter loads can be a combination of mechan-
ical and hydraulic origin.

The numerical framework hinges on the Discrete Element and Lattice Boltzmann
Method frameworks and their coupling. Indeed, the numerical effort touches on two major
aspects. First, the traversing of the various water saturation regimes—pendular-funicular,
and capillary—can be naturally modeled. Second, such modeling of the influences of the
interactions of the various phases at play will naturally address the thorny issue of how
unsaturated conditions affect the strength and deformation of wet granular materials or
soils.
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2.1 Introduction
The most complicated physical problems, especially with complex geometries, are usu-

ally described by four-dimensional space-time Partially Differential Equations (PDEs),
such as the Navier-Stokes Equations (NSEs). However, finding closed-form solutions to
these equations is not always straightforward. Consequently, researchers have devoted
a significant amount of time to numerically solving these PDEs by approximating real
solutions as closely as possible. The most well-known methods for solving the NSE in-
clude, amongst others, the Finite Element Method (FEM), Finite Volume Method (FVM),
and Finite Difference Method (FDM) (Zienkiewicz et al., 2013; Chung, 2002; Moukalled
et al., 2016). This family of methods is known as Computational Fluid Dynamics, usually
denoted as CFD, and they involve discretizing the NSE to find numerical solutions. Al-
though these methods have shown to be effective, they have limitations, namely difficulty
with irregular geometries and higher computational cost.
In contrast, the Lattice Boltzmann Method (LBM) is a computational technique em-
ployed to simulate fluid dynamics and solve complex fluid flow problems (Sukop, 2006;
Timm et al., 2016). As will be shown later in this chapter, the LBM offers an alternative
approach to solving the NSEs directly by solving the Boltzmann Equation that converges
naturally to the NSEs. The LBM offers an important benefit by being highly parallelizable
on Graphical Processing Units (GPUs). Readers may refer to Appendix B for more details
about GPUs. Moreover, the LBM is known for its ease of handling complex boundary
conditions.

In this chapter, a brief introduction to the Lattice Boltzmann Method (LBM) as well
as the kinetic theory is presented. It will be demonstrated how the Boltzmann Equation
(BE) can be solved in just two steps: (1) collision and (2) streaming. Furthermore, the
convergence of the BE to the Navier-Stokes Equations (NSEs) is detailed, along with the
classical boundary conditions that are employed in LBM.

2.2 Macroscale governing partial differential equations
Euler’s equation must be amongst the first PDEs in the world established in 1757. It

is ascribed to the Swiss mathematician and physicist Leonhard Euler :

ρ

(
∂u

∂t
+∇u ·u

)
= −∇p+G

∇ ·u = 0.

(2.1)

Eq. (2.1) describes the motion of non-viscous fluids—perfect incompressible fluid. Several
years later, the Navier-Stokes Equations (NSE), originally established by Claude-Louis-
Navier and George-Gabriel-Stokes, was formulated. It is the extension of Euler’s equation
for a viscous fluid which reads

ρ

(
∂u

∂t
+∇u ·u

)
= −∇p+∇ ·

[
ρν
(
∇u+∇uT

)]
+G

∇ ·u = 0

(2.2)

where ρ, u, p, ν, and G, are density, velocity vector, pressure, kinematic viscosity, and
body forces, respectively. ∇ · denotes the divergence operator, also known as nabla.
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2.3 Microscale modeling of fluids
In order to simulate a fluid at the microscale, the most popular method is the so-

called Molecular Dynamics (MD). This latter studies the motion of molecules, as shown
in Figure (2.1) at the microscale by solving Newton’s Second Law

mi
dvi

dt
= −∇(U) (2.3)

where mi, vi, and U are the mass molecule, the microscopic velocity vector of ith, and the
interaction potential between molecules, respectively. The interactions between molecules
are modeled through the potential U (Nijmeijer et al., 1992; Nie et al., 2004).

Figure 2.1: Molecular Dynamics representation. Blue particles are water molecules and the grey
ones are air molecules.

Contrary to the macroscopic approaches, the MD is capable of capturing the physics
occurring at the microscale. The only drawback of this approach, however, is the large
amount of computational time. The following example reveals the complexity of this
method. A water droplet generally weighs 0.05 grams, this is equivalent1 to 3.1022 atoms
in interaction. Working with a 2D simulation, every single molecule will have 2 degrees of
freedom. Thus, the simulation of one single water droplet needs to consider 2× 3.1022 =
6.1022 degrees of freedom. This enormous number of degrees of freedom involved in these
simulations would result in years of computation. Therefore, the MD method is definitely
not a suitable candidate in the context of capillary bridges between solid particles.

To overcome this issue of computational time, and to take into account the microscopic
scale effects, a solution is to use the so-called Lattice Boltzmann Method (LBM).

2.4 Mesoscale: resolution with LBM for Single-flow
Strictly speaking, the mesoscale is not a real scale as the two previously mentioned.

It corresponds to the scale of the statistical models that (i) take into consideration the
interactions between molecules and (ii) fill the gap between macro and micro scales in a
reasonable computational time.
Before going through the LBM, several notions must be presented, such as the kinetic
theory which is the fundamental idea of LBM, and the mathematical formulation of the
Boltzmann Equation. But first, a brief historical perspective is given.

1Here, we used Avogrado’s Number which is the number of atoms in 1 gram of a given material.
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2.4.1 The Genesis of the Lattice Boltzmann Method

The origin of the Lattice Boltzmann Method (LBM) can be traced back to the con-
cept of Lattice Gas Automata (LGA), which involves describing the discrete evolution of
individual particles on a lattice in a boolean state (Timm et al., 2016; Frisch et al., 2019;
Hardy et al., 1973; Wolf-Gladrow, 2004): particles, at a given position and time, can exist
or not. The evolution of each particle is controlled by two main steps: streaming from
one lattice site to another and collision with neighboring particles. However, LGA had
limitations, such as an inability to accurately simulate high velocities and the presence of
spurious velocities.
Several years later, McNamara and Zanetti (McNamara and Zanetti, 2019) abandoned
the boolean approach and introduced the use of an average population ranging between
0 and 1 to overcome noisy results. However, this new formulation presented challenges
in modeling particle collisions. To address this issue, Qian, D’Humières, and Lallemand
(Qian et al., 1992) were the first to employ the single-relaxation time Bhatnagar-Gross-
Krook (BGK) model to simulate collisions among the averaged particles. This innovation
allowed them to recover the Navier-Stokes fluid behavior (Bhatnagar et al., 1954), giving
rise to the Lattice Boltzmann Method as we know it today.
Additionally, it has been demonstrated that the Boltzmann Equation (BE) can be linked
to the Navier-Stokes equation through the well-known Chapman-Enskog expansion theory
(Timm et al., 2016; Chapman and Cowling, 1990).

2.4.2 Kinetic theory and statistical mechanics

The kinetic theory is a mathematical model of the fluid that postulates that molecules
are always in a continuous agitation and in a ceaseless motion. Furthermore, kinetic
theory, unlike MD, assumes that molecules are completely neutral2. Hence the molecular
interactions between particles are not taken into account and only collisions between
particles are considered. For an ideal fluid, the following assumptions are considered:

• a fluid is a set of elastic, identical, and rigid spheres;

• the molecules composing the fluid do not have any privileged directions when trav-
eling;

• collisions, both between two molecules or between molecules and walls are perfectly
elastic. Thus, the kinetic momentum is conserved.

Contrary to kinetic theory, statistical mechanics do not take into account every single piece
of information of the particles but the averages3 of the associated macroscopic properties
through Probability Density Functions (PDFs). This latter can be seen as a representation
of a particle distribution function f(r, ξ, t) in the phase space4, where r ∈ {x, y, z},
ξ ∈ {ξx, ξy, ξz}, and t are position, microscopic velocity, and time, respectively. The
PDF f(r, ξ, t) is the probability of finding a group of particles at the r position having a
velocity ξ at time t (Timm et al., 2016).

2The potential U in MD models the inter-molecular interaction forces between molecules.
3As the number of molecules is tremendously large, the idea of averaging might be accepted.
4The phase space is defined as the phase containing the position and momentum coordinates.



Mesoscale: resolution with LBM for Single-flow 49

Microscale Mesoscale Macroscale

Figure 2.2: Representation of the micro, meso, and macro scales in a fluid.

By definition, the macroscopic mass density ρ(r, t) reads

ρ(r, t) =

∫
f(r, ξ, t)d3ξ (2.4)

where d3ξ denotes the 3D integration in the microscopic velocity space. Eq. (2.4) indicates
that the density ρ(r, t) is defined as the density for all possible microscopic velocities ξ,
at position r and at time t. Similarly, the momentum which depends on the macroscopic
velocity u(r, t) reads:

ρ(r, t)u(r, t) =

∫
ξf(r, ξ, t)d3ξ. (2.5)

2.4.3 Mathematical description of Boltzmann Equation
As previously described, the PDF f(r, ξ, t) represents a certain probability of finding

particles sharing, on average, the same microscopic velocities and the same position at
time t. The Boltzmann Equation (BE) describes the time evolution of the aforementioned
PDF. Ideally, in the absence of collisions between particles as shown in Figure 2.3(a), the
evolution of f(r, ξ, t) which is the total derivative with respect to time, reads:

df

dt
= 0. (2.6)

Whereas, when collisions take place, the total derivative will not be nil anymore. The red
particles shown in Figure 2.3(b) are the ones that have been dispersed due to collisions.

Figure 2.3: The evolution of f(r, ξ, t) over time. (a) Without collisions and (b) with collisions
between particles.
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As a consequence, the change of f(r, ξ, t) over time yields:

df

dt
=

∇f︷ ︸︸ ︷(
∂f

∂r

)
dr

dt︸︷︷︸
ξ

+

(
∂f

∂ξ

) F /m︷︸︸︷
dξ

dt
+

(
∂f

∂t

)
dt

dt︸︷︷︸
=1

. (2.7)

It is worth noting that F , which is the external vector forces applied to the system
(Newton’s second law), will be neglected for the sake of simplicity in the presentation
of the method (this avoids sophisticated computations). Eq. (2.7) can be seen as a net
difference of a collection of particles as seen in Figure (2.3) between two different time
steps. Thus, this difference can be modeled with Collision Operator denoted as Ω(f)
that depends on f . Therefore, Eq. (2.7) yields to the continuum free force Boltzmann
Equation:

∂f

∂t
+ ξ ·∇f︸ ︷︷ ︸

Streaming

= Ω(f)︸︷︷︸
Collision

. (2.8)

Eq. (2.8) can be divided into 2 two steps. On the one hand, the L.H.S. term of the
equation describes the streaming (propagation) of the particles inside the domain. On
the other hand, the R.H.S. term denotes collision operator accounting for the impact
between particles.

Multiple collision operator models have been proposed and used in the literature,
amongst others, Multiple-Relaxation-Times (MRT) ((Timm et al., 2016; Huang et al.,
2015; Fakhari and Lee, 2013; Suga et al., 2015; Yasuda et al., 2017)) or Two-Relaxation-
Times TRT (Timm et al., 2016; Yan et al., 2017). But the most popular one is based
on using a single relaxation time ascribed to Bhatnagar-Gross-Krook (BGK) (Zu and He,
2013; Liang et al., 2018, 2019). The mathematical description is defined as follows:

Ω(f) =
1

τ
(f eq − f). (2.9)

This collision operator postulates that the distribution functions f(r, ξ, t) evolve until they
reach a certain equilibrium state f eq. The speed of this evolution is controlled through the
relaxation time τ when the fluid is in motion. The aforementioned equilibrium Maxwell-
Boltzmann function for ideal fluids is defined as:

f eq(ρ,u, ξ) = ρ

[√
1

2πRT

]3
e−||u−ξ||2/2RT . (2.10)

The equilibrium function represents the distribution of the microscopic velocity ξ of par-
ticles within a tank of fluid at a given temperature T moving at a macroscopic velocity
u, and R is the constant of ideal gases. Regardless of the chosen model, it has to obey
the following conservation constraints:

Mass Conservation:
∫

Ω(f)dξ3 = 0 (2.11a)

Momentum Conservation:
∫

ξΩ(f)dξ3 = 0 (2.11b)

Energy conservation:
∫

||ξ||2Ω(f)dξ3 = 0 (2.11c)
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2.4.4 Discretization
The Boltzmann Equation possesses different variables: position vector r, microscopic

velocity vector ξ, and time t. In this section, we show how the space velocity ξ is dis-
cretized into a finite number of discrete velocities (ξ → ci). Thus, to compute the mo-
ments in Eqs. (2.4) and (2.5), the integrals are transformed to sums over the microscopic
velocity space ci. To do so, Harold Grad, an American mathematician, was the first to
use the Hermite polynomials to approximate the equilibrium distribution function (Grad,
1949a,b; Shan et al., 2006). The coefficients of the Hermite polynomials match perfectly
the moments of the Maxwellian distribution function. For more theoretical details about
the Hermite polynomials, readers are invited to consult Appendix C.

2.4.4.1 Discretization of the Maxwellian function

The equilibrium function can be rewritten as follows

f eq(ρ,u, ξ) = ρ

[√
1

2πRT

]3
exp

[
−(u− ξ)2

2RT

]
=

1

(2πRT )3/2
exp

(
− ξ2

2RT

)
︸ ︷︷ ︸

ω(ξ)

ρ exp

(
2ξu− u2

2RT

)
︸ ︷︷ ︸

fT (ρ,u,ξ)

(2.12)

where ω(ξ) is the Gaussian weight function. fT (ρ,u, ξ) can be decomposed into an infinite
series of Hermite polynomials as follows

fT (ρ,u, ξ) =
+∞∑
k=0

beq,(k)

k!(RT )k
· H (k)(ξ) (2.13)

where the " · " is the generalization of scalar product5 for kth-order tensors, beq,(k) are the
kth-order tensor of coefficients, and H (k)(ξ) are the kth-order tensor of Hermite polyno-
mials which are defined as follows:

H (k)(ξ) = (−RT )k 1

ω(ξ)
∇kω(ξ) (2.14)

Furthermore, the coefficients beq,(k) are determined based on Hermite polynomial kth ten-
sor:

beq,(k) =

∫
f eq(ξ)H (k)(ξ)dξ. (2.15)

Some tensors of beq,(k) and H (k)(ξ) are shown below

H (k)(ξ) =



H (0) = 1,

Hα
(1) = ξα,

H (2)
αβ = ξαξβ −RTδαβ

H (3)
αβγ = ξαξβξγ −RT [ξαδβγ]cyc

...

b(k),eq =



beq,(0) = ρ,

b
eq,(1)
α = ρuα,

b
eq,(2)
αβ = ρuαuβ

b
eq,(3)
αβγ = ρuαuβuγ

...

(2.16)

5For tensors of order two, the " · " is equivalent to the double dot product " : ".
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where the [ξαδβγ]cyc = ξαδβγ + ξβδαγ + ξγδαβ.
As there is no need to compute an infinite series of polynomials to recover the equilibrium
function, the Maxwellian distribution function will be truncated to the Nth order as follows:

f eq(ρ,u, ξ) ≈ ω(ξ)
N∑
k=0

beq,(k)

k!(RT )k
· H (k)(ξ)

= ρω(ξ)

[
1 +

ξ ·u
RT

+
(ξ ·u)2

2(RT )2
− u ·u

2RT

]
+O(u2) (2.17)

where N = 2. Therefore the truncation stops at the 2nd order with respect to the macro-
scopic velocities u.

The main objective is to compute the moments of the distribution functions, as shown
in Eqs. (2.4) and (2.5), or even the nth order moments using the approximated equilibrium
function formulated in Eq.(2.17). Therefore, the moments are approximated to∫

L(ξ)f eq(ρ,u, ξ)dξ ≈

∫
ω(ξ)

QM (ρ,ξ,u)︷ ︸︸ ︷
L(ξ)ρ

[
1 +

ξ ·u
RT

+
(ξ ·u)2

2(RT )2
− u ·u

2RT

]
dξ (2.18)

where L(ξ) is a tensor that corresponds to one of the following functions {1, ξ, ξ⊗ ξ, ...},
and QM(ρ, ξ,u) is a Mth order polynomial function. Eq.(2.18) will be computed in the
next section by discretizing the continuum velocity space into discrete velocity vectors.

2.4.4.2 Velocity discretization

Contrary to the conventional methods, where only the space and the time are dis-
cretized, the Lattice Boltzmann Method (LBM) also introduced a discretization of the
microscopic velocity space ξ into ci as shown in Figure (2.5). In addition, all of the mo-
ments, summarized in Eq.(2.18), are integrals in the microscopic velocity space ξ. It is
therefore practical to transform these integrals into discretized sums for machine compu-
tation. By using the Gauss-Hermite Quadrature will be used6 summarized in Eq. (2.18),
they discretized as ∫

ω(ξ)QM(ρ, ξ,u)dξ =

q−1∑
i=0

ωiQ
M(ρ, ξi,u) (2.19)

where QM(ρ, ξ,u) is once again an Mth order polynomial function, q − 1 is the number
of discrete microscopic velocities7 ξi needed to recover the moments accurately, and ωi

are the corresponding weights which are calculated, for the kth of the Hermite polynomial
function, as follows:

ωi =
k!(RT )k[

H (k−1)(ξi)H
′(k)(ξi)

] . (2.20)

Depending on the dimensions d of the problem (1D, 2D, or 3D), the LBM discretization
6This method is quite practical in the context of the LBM because the Maxwellian distribution is

already a Gaussian function.
7The ξi are the solutions of the Hermite polynomials H n(ξi) = 0.
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is given by a scheme of DdQq and q is the number of discretized vectors used ci. In order
to understand the basic idea of this scheme, a D1Q3 is considered8. For this 1D case, a
particle has 3 choices over a one-time increment. To determine the discretized velocities
ξi, H (3) = 0 is solved using Eq.(2.16):

H (3) = 0 → ξ3 − 3RTξ = 0 → ξi =


ξ0 = 0

ξ1 =
√
3RT

ξ2 = −
√
3RT

. (2.21)

These discretized velocities are used to determine the corresponding weights using Eq.(2.20):

ω0 =
2(RT )2

(−3RT )(−RT )
=

2

3

ω1 =
2(RT )2

(2RT )(6RT )
=

1

6

ω2 =
2(RT )2

(2RT )(6RT )
=

1

6

(2.22)

The vectors ξi point to the neighbor nodes, it is therefore practical to consider that
the mesh size in the lattice units (lu) is equal to unity (∆x = 1 lu). Once the space
discretization re-scaling is completed, the discretized velocity vectors must also undergo
re-scaling as follows:

ξi =


ξ0 = 0

ξ1 =
√
3RT

ξ2 = −
√
3RT

======⇒ ci = ξ|RT= 1
3


c0 = 0

c1 = 1

c2 = −1

(2.23)

Moreover, since the term
√
3RT consistently appears in Eq. (2.21), supposing RT = 1/3

allows us to non-dimensionalize9 the microscopic velocities ξi to become ci as depicted in
Figure (2.4).

Figure 2.4: Illustration of the D1Q3 scheme.

The same procedure can be employed in 2D and 3D problems, such as in D2Q9,
D3Q15, and D3Q19 discretization. The velocity discretization means that the artificial
molecules10 live in meshing nodes and are allowed to move only in certain directions. For
instance, in the D2Q9 scheme, the molecules are free to move only in 9 directions instead
of a continuum range of directions. Same for the D3Q19 scheme in which the particles
can only move in the indicated 19 directions in 3D conditions as shown in Figure (2.6).

8The same procedure for higher discretization schemes is valid as well, e.g., D2Q9 and D3Q19.
9In the D1Q3 scheme example, the

√
3RT is a common term. It must be pointed out that this is not

always the case in all schemes, amongst others, D1Q5, D1Q7, and D3Q39 (Krueger et al., 2016).
10This term was used here to indicate that molecules are described using the distribution functions.
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Figure 2.5: Illustration of the D2Q9 scheme.

Figure 2.6: Illustration of the D3Q19 scheme for one voxel (cubical mesh in 3D).

A quick recall of thermodynamics reminds us that the isothermal speed of sound, denoted
as cs, is defined as:

cs =

√
∂P

∂ρ

∣∣∣∣
T

=
√
RT. (2.24)

In Eq. (2.24) P is the pressure and ρ is the density. Therefore, we deduce that the speed

of sound in the lattice units for D2Q9 and D3Q19 is defined cs =
1√
3
. It must be pointed

out that discrete velocities are now expressed in lattice units (lu) which is one of the speci-
ficities of the LB method. Particular attention will be given to the conversation between
lattice and physical units in Chapter 3, Section 3.6.

The discrete velocities associated with D2Q9 and D3Q19 that will be used in this
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Ph.D. work are defined as follows:

D2Q9: ci


(0, 0) i ∈ {0}
(±1, 0), (0,±1) i ∈ {1, . . . , 4}
(±1, 1), (1,±1) i ∈ {5, . . . , 8}

(2.25)

D3Q19: ci


(0, 0, 0) i ∈ {0}
(±1, 0, 0), (0,±1, 0), (0, 0,±1) i ∈ {1, . . . , 6}
(±1,±1, 0), (±1, 0,±1)(0,±1,±1) i ∈ {7, . . . , 18}

(2.26)

The corresponding weights are w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36 in 2D and
w0 = 4/9, w1−4 = 1/9 and w5−8 = 1/36 in 3D. The discretized velocities along with the
weights have to obey the rotational isotropy condition of the lattice which leads to (Timm
et al., 2016) ∑

i

ωi = 1; (2.27a)∑
i

ωiciα = 0; (2.27b)∑
i

ωiciαciβ = c2sδαβ; (2.27c)∑
i

ωiciαciβciγ = 0; (2.27d)∑
i

ωiciαciβciγciθ = c4s (δαβδγθ + δαγδβθ + δαθδβγ) ; (2.27e)∑
i

ωiciαciβciγciθciλ = 0 (2.27f)

where α, β, γ, θ, λ are indices indicating the components of vectors ci and δαβ is the
identity Kronecker delta. Finally, the continuous Maxwellian distribution in Eq. (2.17) is
discretized in D2Q9 and D3Q19 to become

f eq
i = ωiρ

[
1 +

ci.u

c2s
+

1

2

(ci.u)
2

c4s
− 1

2

u ·u
c2s

]
= ωiρ

[
1 + 3ci.u+

9

2
(ci ·u)2 −

3

2
(u.u)

]
(2.28)

The equilibrium function f eq
i must be such that its moments are the same as those of fi.

Finally, after discretizing the velocity space, and according to Eqs. (2.27), (2.11a), and
(2.11b), Eqs. (2.4) and (2.5) can be approximated as follows (see Appendix D.1 for more
details):

ρ ≈
q−1∑
i=0

fi =

q−1∑
i=0

f eq
i (2.29a)

ρu ≈
q−1∑
i=0

fici =

q−1∑
i=0

f eq
i ci. (2.29b)
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2.4.4.3 Discretization of the Boltzmann Equation

As previously seen, two steps are required, collision and streaming. The continuum
Boltzmann Equation will be divided into two main steps:

Collision: f̃i(r, t) = fi(r, t)−
∆t

τ
[fi(r, t)− f eq

i (r, t)] (2.30)

Streaming: fi(r + ci∆t, t+∆t) = f̃i(r, t) (2.31)

In a nutshell, the LBM algorithm consists of:

• computing the f̃i(r, t) using Eq. (2.30) on each single node of the grid to represent
the shocks and collisions between molecules as presented in Figure 2.9(a)

• spreading the post-collide distribution functions f̃i(r, t) to the neighboring nodes as
can be seen in Figure 2.9(b).

The advantage of the collision step is its locality which makes the LBM amenable to par-
allelization, especially on Graphical Processing Units (GPUs) which is briefly introduced
in Appendix B.

2.4.5 Boundary conditions
Like any other PDE, the Boltzmann Equation should have boundary conditions in

order to respect the uniqueness of the solution. LBM possesses its own boundary condi-
tions to handle the edges of the domain. Contrary to macroscopic approaches, the LBM
merely works with PDFs f(r, ξ, t) at the mesoscale. There exist various mesoscale BCs
in the literature, amongst them, only two will be elaborated—Periodic and Bounce-Back
boundary conditions.

2.4.5.1 Periodic boundary conditions

Technically speaking, it is absolutely impossible to simulate an infinite domain using
computers due to their capacity. Thus, an ad hoc solution is the Periodic Boundary
Condition. This latter consists in supposing that any flow leaving a side, will re-enter the
other parallel side. The LBM formulation as shown in Figure (2.7) yields to:

fi(r + ℓ, t) = fi(r, t). (2.32)

Figure 2.7: Periodic condition applied on the left and the right edges in the x-axis direction.
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2.4.5.2 Bounce-Back Boundary Condition

When the fluid is in contact with an obstacle, e.g. walls or sphere solids, the distribu-
tion functions f(rb, ξ, t) of boundary nodes pointing to these obstacles rs will be reflected
back to the node where they came from as shown in Figure (2.8). This is the so-called

Streaming
𝒙𝒃

𝒓𝒔𝒓𝒔𝒓𝒔

𝒓𝒃

𝒓𝒇

𝒓𝒇
Bounce-Back

𝒓𝒔

𝒓𝒔

𝒓𝒃

Figure 2.8: Bounce Back boundary condition

non-slip boundary condition applied at all boundary nodes rb. This method guarantees
that the macroscopic velocity u at the obstacle is nil. There exist numerous methods for
applying the non-slip boundary condition, amongst them, Half-way Bounce-Back scheme,
used in this thesis, which has a second-order accuracy according to (Zou and He, 1997).
The LBM formulation of this approach is:

fī(rb, t+∆t) = f̃i(rb, t) (2.33)

where ī stands for the opposite direction of i, f̃i are the post-collision distribution func-
tions. An illustration of the Bounce-Back scheme can be found in Figure (2.8). Readers
may refer to (Timm et al. (2016); Mohamad (2011); Guo and Shu (2013); Sukop (2006))
for more details about LBM boundary conditions.

2.5 Chapman-Enskog expansion
Up to this point, we have provided a brief introduction to kinetic theory and statistical

mechanics, presenting how Probability Density Functions (PDFs) are related to the macro-
variables, density, and velocity for instance. The Boltzmann equation was next presented
as the governing equation that studies the evolution of these PDFs. Additionally, we
have offered a concise overview of the discretization of the Boltzmann equation and the
velocity space. However, a fundamental question arises: How can we establish a connection
between the Boltzmann equation and the governing equations at the macroscopic scale?
The solution to this question lies in the application of the Chapman-Enskog expansion.
This method, based on a multiscale approach, allows us to systematically derive the
macroscale equations that we aim to solve, Navier-Stokes equations for instance.
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Figure 2.9: (a) Collision and (b) streaming steps to solve the BE in 2D.

2.5.1 From Boltzmann Equation to Euler Equation
If we suppose that the fluid is at equilibrium at some point, it implies that the PDFs

f(r, ξ, t) are equal to f eq. Within the BGK collision model, if we replace f(r, ξ, t) by f eq

(Ω(f) = 0) in the BE, cf. Eq. (2.8), it leads to:

∂f eq

∂t
+ ξ ·∇f eq = 0. (2.34)

By integrating Eq. (2.34) in the microscopic velocity space, the equation becomes:

∂

∂t

∫
f eqdξ3 +∇ ·

∫
ξf eqdξ3 = 0. (2.35)

According to Eqs. (2.4) and (2.5), one finds:

∂ρ

∂t
+∇ · (ρu) = 0. (2.36)

The mass conservation principle is retrieved via BE.
Next, multiplying Eq. (2.34) by ξ, the equation becomes:

∂

∂t

∫
ξf eqdξ3 +∇ ·

∫
(ξ ⊗ ξ) f eqdξ3 = 0. (2.37)

Likewise, Eq. (2.37) becomes
∂

∂t
(ρu) +∇ ·Π = 0 (2.38)

where Π is a second-order tensor. By identification, if one considers that Π = pI+ρu⊗u,
where I is the identity matrix in IR3, Eq. (2.38) eventually becomes

∂

∂t
(ρu) +∇ · (ρu⊗ u) = −∇p. (2.39)

that corresponds to the Euler equation for non-viscous fluids while supposing that no
collisions are considered between molecules Ω(f) = 0.

In order to retrieve the NSE, one must employ the Chapman-Enskog expansion while
supposing a non-equilibrium state Ω(f) ̸= 0, which will be explained in the next section.
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2.5.2 From BE to Navier-Stokes Equations
After discretizing the LBE equation to the velocity space, a detailed analysis of retriev-

ing the Navier-Stokes will be explained. We have previously proved that the Maxwellian
distribution fi = f eq

i is capable of retrieving the Euler equation. Knowing a particu-
lar solution of the LBE, a more general solution can be deduced using the perturbation
method11. In the expansions that will come after, the vector ci is replaced by ciα and r by
xα where α corresponds to the components of vectors, for the sake of simplicity. Indeed,
the probability density function f(r, c, t) can be expanded as follows12 (Timm et al., 2016;
Huang et al., 2015)

fi = f eq
i︸︷︷︸

equilibrium term

+

non-equilibrium term︷ ︸︸ ︷
εf

(1)
i + ε2f

(2)
i + ... = f eq

i + fneq (2.40)

where ε is a small parameter relation to the Knudsen number Kn. The sum of Eq. (2.40)
gives ∑

i

fi =
∑
i

f eq
i + ε

∑
i

f
(1)
i + ε2

∑
i

f
(2)
i + ... (2.41)

Since
∑
i

fi =
∑
i

f eq
i = ρ, Eq. (2.41) becomes:

ε
∑
i

f
(1)
i + ε2

∑
i

f
(2)
i + · · · = 0 (2.42)

Similarly, Eq. (2.40) is multiplied by ciα and then summed, yields:∑
i

ficiα =
∑
i

f eq
i ciα + ε

∑
i

f
(1)
i ciα + ε2

∑
i

f
(2)
i ciα + ... (2.43)

with α ∈ {x, y, z}. Furthermore, since
∑
i

ficiα =
∑
i

f eq
i ciα = ρuα, Eq. (2.43) yields to:

ε
∑
i

f
(1)
i ciα + ε2

∑
i

f
(2)
i ciα + · · · = 0 (2.44)

Therefore, after an identification with respect to ε for both Eqs. (2.42) and (2.44), it can
be deduced that: ∑

i

f
(k)
i = 0 &

∑
n

cif
(k)
i = 0 for k ≥ 1 (2.45)

The two relations in Eq. (2.45) are tremendously important for the rest of the Chapman-
Enskog analysis.

It is worth mentioning that the Navier-Stokes equation possesses advection as well as
diffusion terms which evolve on different time scales. It is, therefore, useful to decompose

11This technique is based on finding a solution Eλ of an equation E if a particular solution E0 is known
(when λ = 0).

12We could have used f (0)i instead of f eq
i . And, by identification we would find f (0)i = feqi .
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the derivative with respect to time into two-time scales in order to retrieve the Navier-
Stokes equation. Basically, the diffusion process is slower than the advection, thus one
can consider that:

∂

∂t
= ε

∂

∂t1︸︷︷︸
Advection

+

Diffusion︷ ︸︸ ︷
ε2

∂

∂t2
. (2.46)

Regarding the gradient, only one space scale is sufficient to retrieve NSE:

∂

∂xα
= ε

∂

∂xα1

. (2.47)

The Navier-Stokes equations will be recovered by identification of the terms of the ex-
pansion used in Eq. (2.40). The first step consists in using the discretized LBE derived
from Eq. (2.30):

fi(r + ci∆t, t+∆t)− fi(r, t) = −∆t

τ
[fi(r, t)− f eq

i (r, t)] . (2.48)

Next, a Taylor expansion of the previous equation to the second order O(∆t2) is carried
out:

∆t

(
∂

∂t
+ ciα

∂

∂xα

)
fi +

∆t2

2

(
∂

∂t
+ ciα

∂

∂xα

)2

fi

+O(∆t3) = −∆t

τ
fneq
i .

(2.49)

Then, multiplying Eq. (2.49) by
∆t

2

(
∂

∂t
+ ciα

∂

∂xα

)
we find:

∆t2

2

(
∂

∂t
+ ciα

∂

∂xα

)2

fi +

Neglected to O(∆t2)︷ ︸︸ ︷
∆t3

4

(
∂

∂t
+ ciα

∂

∂xα

)3

fi

= −∆t

2τ
fneq
i

(
∂

∂t
+ ciα

∂

∂xα

) (2.50)

The second term of the R.H.S of Eq. (2.50) can be neglected since we are only interested
in terms of the second order O(∆t2). Then, by subtracting Eq. (2.50) from Eq. (2.49),
one obtains:

∆t

(
∂

∂t
+ ciα

∂

∂xα

)
fi = −∆t

τ
fneq
i +

∆t2

2τ

(
∂

∂t
+ ciα

∂

∂xα

)
fneq
i . (2.51)

Replacing Eqs. (2.46) and (2.47) into (2.51), and using Eq. (2.40) yields to:

∆t

(
ε
∂

∂t1
+ ε2

∂

∂t2
+ εciα

∂

∂xα1

)
(f eq

i + εf
(1)
i + ε2f

(2)
i + ...)

= −∆t

τ
(εf

(1)
i + ε2f

(2)
i + ...)+

∆t2

2τ

(
ε
∂

∂t1
+ ε2

∂

∂t2
+ εciα

∂

∂xα1

)
(εf

(1)
i + ε2f

(2)
i + ...).

(2.52)
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An identification of the terms in ε and ε2 in Eq.(2.52)

O(ε1) :

(
∂

∂t1
+ ciα

∂

∂xα1

)
f eq
i = −1

τ
f
(1)
i (2.53a)

O(ε2) :
∂f eq

i

∂t2
+

(
∂

∂t1
+ ciα

∂

∂xα1

)(
1− ∆t

2τ

)
f
(1)
i = −1

τ
f
(2)
i (2.53b)

In order to retrieve the NSE, the sum of Eq. (2.53b) and the sum of Eq. (2.53b) multiplied
by ciβ are calculated

∂ρ

∂t2
= −1

τ

∑
f
(2)
i = 0 (2.54a)

∂ρuα
∂t2

+
∂

∂xβ1

(
1− ∆t

2τ

)
Π

(1)
αβ = −1

τ

∑
ciβf

(2)
i = 0 (2.54b)

according to Eq. (2.45). In Eq. (2.54b) the term Π
(1)
αβ is an unknown for now. In the same

way, the sum of Eq. (2.53a) gives:

∂ρ

∂t1
+
∂(ρuα)

∂xα1
= −1

τ

∑
f
(1)
i = 0. (2.55)

according to Eq. (2.45) as well. To determine the term Π
(1)
αβ , Eq. (2.53a) is multiplied by

ciβciγ, and summed over i to get

∂(Πeq
αβ)

∂t1
+
∂(Πeq

αβγ)

∂xγ1
= −1

τ
Π

(1)
αβ (2.56)

Then, Πeq
αβ and Πeq

αβγ are determined via both Eqs. (2.27) and (2.28):

Πeq
αβ =

∑
i

ciαciβf
eq
i = ρuαuβ + ρc2sδαβ (2.57a)

Πeq
αβγ =

∑
i

ciαciβciγf
eq
i = ρc2s(uαδβγ + uβδαγ + uγδαβ) (2.57b)

Using Eqs. (2.57a) and (2.57b) and conducting some mathematical manipulations, the
expression for Π

(1)
αβ eventually becomes:

Π
(1)
αβ =

∑
i

ciαciβf
(1)
i = −ρc2sτ

(
∂uα
∂xβ1

+
∂uβ
∂xα1

)
︸ ︷︷ ︸

viscous stress tensor

+ τ
∂

∂xγ1
(ρuαuβuγ)︸ ︷︷ ︸

Error term

. (2.58)

The last step is to assemble the different time and space scales in such a way that we
recover Navier-Stokes Equations. To do so, the following steps must be considered:

• Eq. (2.55) is multiplied by ε and summed with Eq. (2.54a) multiplied by ε2 gives
Eq. (2.59a) and

• Eq. (2.55) is multiplied by ε and summed with Eq. (2.54b) multiplied by ε2 gives
Eq. (2.59b)
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(
ε
∂

∂t1
+ ε2

∂

∂t2

)
︸ ︷︷ ︸

∂
∂t

ρ+

∂
∂xα︷ ︸︸ ︷

ε
∂

∂xα1

(ρuα) = 0 (2.59a)

(
ε
∂

∂t1
+ ε2

∂

∂t2

)
︸ ︷︷ ︸

∂
∂t

(ρuα) + ε
∂

∂xβ1

Πeq
αβ = −ε2 ∂

∂xβ1

(
1− ∆t

2τ

)
Π

(1)
αβ (2.59b)

After substituting each term with its appropriate expression, Eqs. (2.59a) and (2.59b)
ultimately become

∂(ρuα)

∂t
+

∂
∂xβ︷ ︸︸ ︷

ε
∂

∂xβ1

(ρuαuβ) +

∂
∂xβ︷ ︸︸ ︷

ε
∂

∂xβ1

(ρc2sδαβ) = −

∂
∂xβ︷ ︸︸ ︷

ε
∂

∂xβ1

(
1− ∆t

2τ

)
−ρc2sτ ε

∂

∂xβ1︸ ︷︷ ︸
∂

∂xβ

(uα) + τ ε
∂

∂xγ1︸ ︷︷ ︸
∂

∂xγ

(ρuαuβuγ)


(2.60)

To retrieve the Navier-Stokes equations by identification:

Pressure: p = ρc2s (2.61a)

Kinematic viscosity: ν = c2s

(
τ− ∆t

2

)
(2.61b)

∂ρ

∂t
+
∂ρuα
∂xα

= 0 (2.62a)

∂(ρuα)

∂t
+
∂(ρuαuβ)

∂xβ
= − ∂p

∂xα

+
∂

∂xβ

µ
∂uβ∂xα

+
∂uα
∂xβ

+ τε
∂

∂xγ1
(ρuαuβuγ)︸ ︷︷ ︸
Error


 (2.62b)

The main key of this section is that through the identification of pressure p and the dy-
namic viscosity µ, the Boltzmann Equation converges towards the Navier-Stokes equations
using the Chapman-Enskog expansion. It is important to highlight that this convergence
holds true under the conditions that (1) the relaxation time τ is greater than ∆t/2 which
is equivalent to 1/2 due to the non-dimensionalization of both space and time (2) the
negligible error term, which holds when ε is low. This implies that the Knudsen number
is low meaning that the macroscopic fluid velocity is not high which is related to the Mach
number Ma. In the numerical framework, in most cases, the LBM does not diverge if the
Ma < 0.3 (Timm et al., 2016). For higher velocities, other precautions must be taken
into consideration, such as the truncation of the equilibrium function to a higher order of
macroscopic velocity than 2 O(u2).
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As will be seen later in Chapter 4, in the context of capillary bridges at a quasi-static
state, not only the error term will be negligible, but even the viscous term itself will tend
to zero.

2.6 Conclusion
In this chapter, a concise introduction to the Lattice Boltzmann Method (LBM) for

single-phase flow was provided. It is a multiscale numerical method that fills the gap be-
tween micro and macro scales through statistical mechanics and using probability density
functions. The evolution of these latter is described using the Boltzmann Equation and
its velocity discretization. Using the Chapman-Enskog expansion, which is based on the
perturbation theory, the Navier-Stokes equations can be retrieved from the Boltzmann
Equation. Some classical boundary conditions were briefly presented namely the periodic
condition and the non-slip boundary condition also known as the bounce-back condition.
In the context of capillary bridges, an air-water system has to be considered. Therefore,
the concepts presented in this chapter will be extended to multi-phase flow modeling.
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3.1 Introduction
In Chapter 2, the single-phase LBM model to solve the NSE has been covered. It

has been demonstrated that the BE converges to the NSE using the Chapman-Enskog
expansion based on the perturbation theory through the identification of pressure p and
dynamic viscosity µ. However, in the context of water-air capillary interfaces, the need
for a multi-phase model is indispensable. Therefore, the multi-phase LBM model will be
covered hereafter.

One of the most widely used and most popular models in LBM for multi-phase flows
is the Single Component Multi-Phase (SCMP) Shan-Chen (SC) family due to its sim-
plicity and its efficiency compared to other models (Shan and Chen, 1993, 1994; Shan
and Doolen, 1995). The fundamental idea of this model is based upon using pseudo-
potentials accounting for interactions between molecules at the mesoscopic level. These
interactions are characterized by a force F SC that separates a single component fluid into
two phases. The LB model of SCMP solves the Navier-Stokes equations and also requires
an Equation Of State (EOS) to simulate two fluids. One of the most important points
about multi-phase modeling is the density ratio. As previously mentioned, this approach
was widely used in the literature for treating unsaturated media (Richefeu et al., 2006a;
Delenne et al., 2015; Benseghier et al., 2021). It is worth mentioning that in the SCMP
model, multiple drawbacks were reported in the literature, such as:

• the density ratio is directly connected to the EOS, and the maximum one reached so
far is O(100) (Huang et al., 2015) which is not sufficiently large to model air-water
interface;

• spurious velocities and densities are observed in the neighborhood of obstacles
(Benseghier et al., 2021); and

• large values of pressure and temperature states in order to guarantee numerical
stability which do not correspond to reasonable experimental conditions (Benseghier
et al., 2021).

Having presented these disadvantages, obviously, the SCMP is not a suitable candidate
to comprehensively tackle partially saturated media because of its inaccuracy in this
precise domain.

Diffuse interface approaches become widely used in sophisticated physical applications
thanks to the fact that they are capable of modeling large density ratios O(1000) (Sun and
Beckermann, 2007; Chiu and Lin, 2011a) and dealing with complex geometries. Contrary
to sharp interfaces, diffuse ones possess a width W as seen in Figure (3.1a) in which the
density, viscosity, and pressure are characterized in a regularized evolution. Furthermore,
diffuse interface models are linked to thermodynamic equilibrium which requires a mini-
mization of the free-energy mixing functional F (ϕ,∇ϕ) (Penrose and Fife, 1990) defined
as

F (ϕ,∇ϕ) =

∫
Ω

[
ψ(ϕ) +

k

2
|∇ϕ|2

]
dV +

∫
∂Ω

ψs(ϕ)ds (3.1)

where ψ(ϕ) is the free-energy density defined as follows

ψ(ϕ) = βϕ2(ϕ− 1)2 (3.2)

The physical domain occupied by the matter is Ω, whereas ∂Ω is the contour of the do-
main, and ψs(ϕ) represents the free-energy density on the solid-fluid boundary (Jacqmin,
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1999; Lee and Kim, 2012; Liang et al., 2019). The parameters k and β are connected to
the surface tension γ and the interface thickness W through the following relationships,
which will be demonstrated later in Sections (3.2) and (3.3):

k =
3

2
γW

β =
12γ

W
.

(3.3)

Among the diffuse interface techniques, we find the phase-field-based model which is
used for solving Cahn-Hilliard (CHE) or Allen-Cahn (ACE) to track the interface, along
with the NSE to calculate velocity fields and pressure fields within the domain (Fakhari
and Rahimian, 2010; Fakhari and Lee, 2013; Fakhari et al., 2017a,b; Wang et al., 2016;
Timm et al., 2016; Zheng et al., 2015; He et al., 2019; Wang et al., 2019). The CHE and
ACE describe the evolution of the phase field ϕ(r, t) defined in all the domains which
is equal to ϕ1 and ϕ2 in the bulk fluids, and ϕ ∈]ϕ1; ϕ2[ in the interface. From now on,
the values of the phase field bulk fluids are ϕ1 = 0 and ϕ2 = 1. The most advantageous
asset of this method is that we do not need to manually track the interface, instead, it
will be naturally tracked by solving the aforementioned equations. These methods are
tremendously suitable for problems in which the interface motion depends on external
conditions, among others, the wetting condition.

Although the Cahn-Hilliard equation conserves the mass, it contains a fourth-order
term, making it difficult to solve and even more time-consuming Chiu and Lin (2011b).
However, the ACE is both a mass-conserved and an easy-to-solve equation as already
reported in Liang et al. (2018, 2019). Therefore, in this chapter, and to capture the
air-water interface, the Allen-Cahn equation is coupled with the two-phase Navier-Stokes
equation through a surface tension term.

3.2 Allen-Cahn Equation
As previously mentioned, the motion of the interface separating water from air is

captured using ACE due to its good mass conservation (Chiu and Lin, 2011a; Sun and
Beckermann, 2007)

∂ϕ

∂t
+∇ · (ϕu) = ∇ · [M(∇ϕ− λn)] (3.4)

where ϕ(r, t) is the phase-field parameter used to identify the regions occupied by the
two fluids. This parameter takes the value 1 in the liquid phase, 0 in the gas phase, and
between 0 and 1 in the interface as indicated in Figure (3.1b). Once ϕ(r, t) is determined,
the fluid density ρ is computed as follows

ρ = ϕ(ρl − ρg) + ρg (3.5)

where ρl and ρg are liquid and gas densities far from the interface, assumed to be constant.
In Eq. (3.4), M represents the mobility and n is the unit normal vector to the interface
as illustrated in Figure (3.1a). Its mathematical expression can be written as follows:

n =
∇ϕ

||∇ϕ||
. (3.6)
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(b) Evolution of ϕ through the interface.

Figure 3.1: Presentation of concepts and phenomena related to the interface.

In the bulk fluid, only the first term of the R.H.S of Eq. (3.1) is considered. Further-
more, the chemical potential µϕ is defined as the minimum of the mixing energy F (ϕ,∇ϕ)
and satisfies:

µϕ =
δF

δϕ
=
∂F

∂ϕ
−∇ ·

(
∂F

∂∇ϕ

)
=
∂ψ

∂ϕ
− k∇2ϕ

= 4βϕ(ϕ− 1)

(
ϕ− 1

2

)
− k∇2ϕ. (3.7)

The regularized interface evolution ϕeq is defined at thermodynamic equilibrium when
the µϕ is nil. If we express ϕeq in terms of the interface normal local system ξ as indicated
in Figure (3.1a), ∇2ϕ becomes then1 ϕ′′(ξ). Consequently, after substitutions, and at the
thermodynamic equilibrium, Eq. (3.7) yields:

µϕ = 4βϕeq(ξ) [ϕeq(ξ)− 1]

[
ϕeq(ξ)−

1

2

]
− kϕ′′

eq(ξ) = 0. (3.8)

After solving the above differential equation, ϕeq can be expressed as:

ϕeq(ξ) =
1

2
+

1

2
tanh

(√
β

2k
ξ

)
. (3.9)

It is now the time to introduce the interface thickness W in Eq. (3.9) as follows:

ϕeq(ξ) =
1

2
+

1

2
tanh

(
2ξ

W

)
(3.10a)

W =

√
8k

β
(3.10b)

Therefore, the regularized interface is simply defined as a hyperbolic tangent function
as depicted in Figure (3.1b). Moreover, the parameter λ, from the R.H.S of Allen-Cahn

1ϕ(x, y, z) becomes a local single-component variable ξ, which makes the Laplacien a second-order
derivative.
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equation (3.4), is the norm of gradient vector of ϕeq at equilibrium which can be expressed
as:

λ = ||∇ϕeq|| = 4ϕ(1− ϕ)

W
. (3.11)

3.3 Modified Navier-Stokes Equation
For incompressible two-phase flows, the modified Navier-Stokes equations may be writ-

ten as

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇ ·

[
ρν
(
∇u+∇uT

)]
+ F s +B (3.12a)

∇ ·u = 0 (3.12b)

which corresponds to Eq. (2.2) where F s is the surface tension force accounting for the
interface separating the two phases, e.g. air and water. In Eq. (3.12), the coupling with
Allen-Cahn equation is included in the definition of the surface tension term F s as in
Liang et al. (2018); Li et al. (2019); Fakhari and Bolster (2017); Younes et al. (2023a,
2022):

F s = µϕ∇ϕ

µϕ = 4ϕ(ϕ− 1)

(
ϕ− 1

2

)
− k∇2ϕ.

(3.13)

It is worth mentioning that the coupling is also done via the fluid density ρ which
depends on ϕ as already seen in Eq. (3.5).

To begin, let us prove that Eq. (3.13) of F s takes the following equivalent form at
equilibrium

F s = −γκnδs (3.14)

where γ designates the liquid-gas surface tension, κ denotes the trace2 of the curvature

operator, n =
∇ϕ

||∇ϕ||
is the unit normal vector to the interface, and δs is a smooth Dirac

function defined, on the interface, as δs = α||∇ϕeq||2 which satisfies:∫ +∞

−∞
δsdξ = 1. (3.15)

The value of i may be determined using Eq. (3.10a) of ϕeq. At equilibrium, and along
the thickness of the diffuse interface, ||∇ϕeq|| is given by Eq. (3.11). Therefore, condition
(3.15) reduces to

α

∫ +∞

−∞

2β

k
(ϕ− 1)2ϕ2dξ = 1 (3.16)

leading to

α = 6

√
k

2β
(3.17)

and so that

δs = 6

√
k

2β
||∇ϕ||2 (3.18)

2Tr(A) =
∑

iAii for a matrix (Aij).
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On the other hand, the interface curvature κ is given as κ = ∇ ·n. Using the definition
(3.6) of n, we have:

κ =
1

||∇ϕ||

[
∇2ϕ− ∇ϕ ·∇(||∇ϕ||)

||∇ϕ||

]
. (3.19)

Using (3.6) and (3.10a), the latter term can be developed at equilibrium as follows:

∇ϕ ·∇(||∇ϕ||)
||∇ϕ||

=
d2ϕeq

dξ2
=

4β

k
ϕ(ϕ− 1)

(
ϕ− 1

2

)
. (3.20)

Substitution of Eq. (3.20) into Eq. (3.19) yields:

κ =
1

||∇ϕ||

[
∇2ϕ− ϕ

4β

k
(ϕ− 1)

(
ϕ− 1

2

)]
. (3.21)

Using Eqs. (3.18), (3.21) and (3.6), we get:

−γκnδs = −6γ

√
k

2β

[
∇2ϕ− 4β

k
(ϕ− 1)ϕ

(
ϕ− 1

2

)](
∇ϕ

||∇ϕ||

)
||∇ϕ||. (3.22)

Obviously, for Eq. (3.22) to be consistent, γ must be expressed as

γ =
1

6

√
2kβ (3.23)

and therefore we get:

−γκnδs =
[
−k∇2ϕ+ 4β(ϕ− 1)ϕ(ϕ− 1

2
)

]
∇ϕ = µϕ.∇ϕ (3.24)

This proves that, at equilibrium, F s can be directly expressed as in Eq. (3.14). It is
also worth noting that Eq. (3.14) was also added to NSE in Scardovelli and Zaleski (1999)
in order to take into account the discontinuity at the interface separating two fluids.

It is extremely important to know that the combination of Eqs. (3.23) and (3.10b) will
retrieve the relations between k, β, and γ as introduced in Eq. (3.3).

3.4 LBM models for Multi-phase simulations
The LB models for solving the conservative ACE (3.4) and NSE (3.12) rely on two

families of particle distribution functions. For ACE, gi(r, t) are used, whereas, fi(r, t) are
related for NSE.

3.4.1 Discretization of Allen-Cahn Equation with Liang model

3.4.1.1 Numerical scheme

The spatio-temporal evolution of gi(r, t) described using the Bhatnagar-Gross-Krook
(BGK) collision operator based on the discretization method proposed in Liang et al.
(2018, 2019); Younes et al. (2023a, 2022) is defined as

gi(r + ci∆t, t+∆t) = gi(r, t)−
∆t

τg
[gi(r, t)− geq

i (r, t)] + ∆tGi(r, t) (3.25)
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in which τg is the non-dimensional relaxation time for g(r, t) probability density function,
Gi(r, t) is the source term, and geq

i (r, t) is the equilibrium distribution function given by

geq
i (r, t) = ωiϕ

(
1 +

ci ·u
c2s

)
(3.26)

where u = u(r, t) is the fluid velocity which will be calculated from NSE as elaborated
later on in Section 3.4.2 and ϕ ∈ [0; 1] is the phase-field variable.

The parameter ϕ is computed from the distribution function gi as:

ϕ =
∑
i

gi. (3.27)

In Eq. (3.26), cs = c/
√
3 is the lattice speed of sound for D2Q9, D3Q15, and D3Q19

for discretization schemes. For D3Q7, we have cs = c/
√
4. The characteristic velocity c

is defined classically as c = ∆x/∆t, where ∆x and ∆t denote the lattice size and time
step (which are equal to one in lattice units). Furthermore, ci are the discrete velocities,
which depend on the discretization scheme. In lattice units, the discrete velocities for the
D3Q19 scheme are

ci =


(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1), i = 1, 2, ..., 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7, 8, ..., 18

(3.28)

with the corresponding weights w0 = 1/3, w1−6 = 1/18 and w7−18 = 1/36. Indeed, the
rotational isotropy conditions, introduced in Eqs. (2.27), are also valid here.

The source term Gi in Eq. (3.25) is defined as in Liang et al. (2018) by

Gi =

(
1− ∆t

2τg

)
ωici · [∂t(ϕu) + c2sλn]

c2s
(3.29)

where ∂t =
∂

∂t
. The mobility M in the ACE is related to the relaxation time τg as it will

be proven in Section 3.4.1.2 deduced from Chapman-Enskog expansion:

M = c2s

(
τg −

∆t

2

)
. (3.30)

Finally, an explicit Euler scheme is used to compute the temporal derivative in Eq. (3.38):

∂t(ϕu) =
ϕ(t)u(t)− ϕ(t−∆t)u(t−∆t)

∆t
(3.31)

The second-order isotropic central schemes are applied for the evaluation of gradient
and Laplacian operators involved in the calculation of n, λ, and µϕ (Liang et al., 2018;
Younes et al., 2022, 2023d):

∇ϕ(r) =
∑
i ̸=0

ωiciϕ(r + ci∆t)

c2s∆t
(3.32a)

∇2ϕ(r) =
∑
i ̸=0

2ωi [ϕ(r + ci∆t)− ϕ(r)]

c2s∆t
2

. (3.32b)
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3.4.1.2 Chapman-Enskog expansion for Liang model

As previously done in Section 2.5.2, a perturbation of the distribution functions is
applied

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + ... (3.33)

where ε is a small parameter related to the Knudsen number Kn. Then, the time and the
space derivatives can be written as follows in the same way3 as in Chapter 2:

∂t = ε∂t1 + ε2∂t2 (3.34)

∇ = ε∇1 (3.35)

Having all of these tools, we will proceed to the recovery of the Allen-Cahn Equa-
tion. As Gi contains a derivative with respect to time and a gradient, it is convenient to
decompose it as follows:

Gi =

(
1− ∆t

2τg

){
ε
ωici
c2s

·
[
∂t1(ϕu) + c2sλ

∇1ϕ

||∇1ϕ||

]
(3.36)

+ ε2
ωici
c2s

· ∂t2 (ϕu)
}

=

(
1− ∆t

2τg

)[
εH

(1)
i + ε2H

(2)
i

]
(3.37)

where H(1)
i and H(2)

i are defined as follows:

H
(1)
i =

ωici
c2s

·
[
∂t1(ϕu) + c2sλ

∇1ϕ

||∇1ϕ||

]
(3.38a)

H
(2)
i =

ωici
c2s

· ∂t2 (ϕu) . (3.38b)

The first step consists of using the Taylor development of Eq. (3.25) in the second
order:

∆t (∂t + ci ·∇) gi +
∆t2

2
(∂t + ci ·∇)2 gi +O

(
∆t3
)

= −∆t

τg
[gi − geq

i ] + ∆tGi.
(3.39)

We then simplify by ∆t in Eq. (3.39), and we expand gi, ∂t, Gi, and ∇1 using
Eqs.(3.33)-(3.35), and (3.38)

(
ε∂t1 + ε2∂t2 + εci ·∇1

) [
g
(0)
i + εg

(1)
i + ε2g

(2)
i

]
+
(
ε∂t1 + ε2∂t2 + εci ·∇1

)2 [
g
(0)
i + εg

(1)
i + ε2g

(2)
i

] ∆t
2

= −∆t

τg

[
g
(0)
i + εg

(1)
i + ε2g

(2)
i − geq

i

]
+

(
1− ∆t

2τg

)[
εH

(1)
i + ε2H

(2)
i

] (3.40)

3Although the notations here have been changed a little bit, the reasoning is the same as in Chapter
2, Section 2.5.2.
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By identification of order of εp with p ∈ N, we have:

O(ε0) :g
(0)
i = geq

i (3.41a)

O(ε1) : (∂t1 + ci ·∇1) g
(0)
i = − 1

τg
g
(1)
i +

(
1− ∆t

2τg

)
H

(1)
i (3.41b)

O(ε2) :∂t2g
(0)
i + (∂t1 + ci ·∇1) g

(1)
i + (∂t1 + ci ·∇1)

2 g
(0)
i

∆t

2

= − 1

τg
g
(2)
i +

(
1− ∆t

2τg

)
H

(2)
i (3.41c)

Based on Eq. (3.41a), g(0)i = geq
i . Therefore, from now on, g(0)i will be replaced by geq

i .
The conservation of mass must be respected, therefore, the zeroth moment of the PDFs
Ω(g), from Eq. (2.11a), is conserved which means:∑

i

geq
i =

∑
i

gi = ϕ. (3.42)

As for the first moment (momentum), it should not be conserved. This is the dis-
tinguishing characteristic between the Chapman-Enskog expansion of ACE and the NSE
for single-phase flow seen in Chapter 2. In fact, using Eq. (3.26) and based on the same
approach used in Appendix D.1, we know that:∑

i

geq
i ci = ϕu. (3.43)

However, it must be noted that the velocity u is determined through the Navier-Stokes
equation using the PDFs fi, which will be detailed later in this chapter. Therefore, to
avoid incompatibility between fi and gi, the imposition of the conservation of the first
moment of Ω(gi) is no longer required. In other words:∑

i

geq
i ci = ϕu ̸=

∑
i

gici. (3.44)

Now, based on Eq. (3.33), the zeroth and the first moments of gi are determined as follows:

∑
i

gi =
∑
i

geq
i + ε

∑
i

g
(1)
i + ε2

∑
i

g
(2)
i (3.45a)∑

i

gici =
∑
i

geq
i ci + ε

∑
i

g
(1)
i ci + ε2

∑
i

g
(2)
i ci. (3.45b)

Therefore, from Eqs. (3.44), (3.45a), and (3.42), the solvability functions satisfy:∑
i

g
(n)
i = 0 &

∑
i

cig
(n)
i ̸= 0 for n ≥ 1. (3.46)

The sum of Eq. (3.41b) over i, using Eqs. (3.42) and (3.44) yields

∂t1ϕ+∇1 · (ϕu) = 0. (3.47)
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Then Eq. (3.41b) is multiplied by (∂t1 + ci ·∇1) yields to:

(∂t1 + ci ·∇1)
2 geq

i = − 1

τg
(∂t1 + ci ·∇1) g

(1)
i

+

(
1− ∆t

2τg

)
(∂t1 + ci ·∇1)H

(1)
i

(3.48)

Next, Eq. (3.48) is substituted in Eq. (3.41c) to give:

∂t2g
eq
i + (∂t1 + ci ·∇1) g

(1)
i − ∆t

2τg
(∂t1 + ci ·∇1) g

(1)
i

+

(
1− ∆t

2τg

)
(∂t1 + ci ·∇1)H

(1)
i

∆t

2
= − 1

τg
g
(2)
i +

(
1− ∆t

2τg

)
H

(2)
i

(3.49)

Eq. (3.49) readily leads to:

∂t2g
eq
i +

(
1− ∆t

2τg

)
(∂t1 + ci ·∇1)

[
g
(1)
i +

∆t

2
H

(1)
i

]
= − 1

τg
g
(2)
i +

(
1− ∆t

2τg

)
H

(2)
i

(3.50)

Then, Eq. (3.50) is summed4 over i:

∂t2ϕ+

(
1− ∆t

2τg

)[
∇1 ·

∑
i

cig
(1)
i +

∆t

2
∇1 ·

∑
i

ciH
(1)
i

]
= 0

∂t2ϕ+

(
1− ∆t

2τg

)
∇1 ·

[∑
i

cig
(1)
i +

∆t

2

∑
i

ciH
(1)
i

]
= 0

(3.51)

Note that the terms
∑
i

H
(1)
i = 0 and

∑
i

H
(2)
i = 0 because of Eq. (2.27b). Indeed, we

have: ∑
i

H
(2)
i =

∑
i

1

c2s
ωici · ∂t2(ϕu) =

1

c2s
∂t2(ϕu) ·

∑
i

ωici︸ ︷︷ ︸
=0

.
(3.52)

The same reasoning is applied for
∑
i

H
(1)
i . However, the computation of

∑
i

ciH
(1)
i is

not straightforward. We have∑
i

ciH
(1)
i =

∑
i

ci

{
ωici
c2s

·
[
∂t1(ϕu) + c2sλ

∇1ϕ

||∇1ϕ||

]}
(3.53)

=
∑
i

ωi
ci ⊗ ci
c2s

·
[
∂t1(ϕu) + c2sλ

∇1ϕ

||∇1ϕ||

]
(3.54)

where the dot · denotes the contraction of the tensor of order two ci⊗ ci with a vector u
such as (ci⊗ci) ·u = ci(ci ·u). Using Eq. (2.27c),

∑
i

ωici ⊗ ci
c2s

= I which is the identity

4Based on Eq. (3.46),
∑
i

g
(k)
i = 0 with k ≥ 1.



LBM models for Multi-phase simulations 75

matrix in R3, and therefore,
∑
i

ciH
(1)
i becomes eventually:

∑
i

ciH
(1)
i = ∂t1(ϕu) + λc2s

∇1ϕ

||∇1ϕ||
. (3.55)

The term
∑
i

cig
(1)
i in Eq. (3.51) is an unknown. To determine it, we multiply Eq. (3.41b)

by ci and sum it over i, we obtain, using Eq. (3.42), (3.43), and Eq. (3.55, after some
basic calculations: ∑

i

cig
(1)
i = τg

(
1− ∆t

2τg

)[
∂t1(ϕu) + c2sλ

∇1ϕ

||∇1ϕ||

]
−τg

[
∂t1(ϕu)− c2s∇1ϕ

]
.

(3.56)

See Appendix D.1.2 for the calculation of
∑
i

(ci ·∇1g
eq
i )ci. After performing some ma-

nipulations, we get:∑
i

cig
(1)
i =

(
τg −

∆t

2

)
c2sλ

∇1ϕ

||∇1ϕ||
− ∆t

2
∂t1(ϕu)− τgc

2
s∇1ϕ (3.57)

By substituting Eq. (3.57) in Eq. (3.51), we get:

∂t2ϕ+

(
1− ∆t

2τg

)
∇1 ·

[
−∆t

2
∂t1(ϕu)− τgc

2
s∇1ϕ

+τgc
2
sλ

∇1ϕ

||∇1ϕ||
− ∆t

2
c2sλ

∇1ϕ

||∇1ϕ||
+

∆t

2
∂t1(ϕu) +

∆t

2
c2sλ

∇1ϕ

||∇1ϕ||

]
= 0.

(3.58)

By simplification, Eq. (3.58) reduces to

∂t2ϕ+

(
1− ∆t

2τg

)
∇1 ·

(
−τgc

2
s∇1ϕ+ τgc

2
sλ

∇1ϕ

||∇1ϕ||

)
= 0 (3.59)

or equivalently:

∂t2ϕ− c2s

(
τg −

∆t

2

)
∇1 ·

(
∇1ϕ− λ

∇1ϕ

||∇1ϕ||

)
= 0. (3.60)

Finally, in order to retrieve the Allen-Cahn equation, we multiply Eq. (3.47) by ε and
sum it with ε2 multiplied by Eq. (3.60) to get:

∂t︷ ︸︸ ︷
(ε∂t1 + ε2∂t2)ϕ+ ε∇1︸︷︷︸

∇

· (ϕu) =

∇︷︸︸︷
ε∇1 ·

c2s
(
τg −

∆t

2

)
︸ ︷︷ ︸

M

ε∇1︸︷︷︸
∇

ϕ− λ

∇︷︸︸︷
ε∇1 ϕ

||∇1ϕ||


 (3.61)
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It is possible to recover the Allen-Cahn equation (3.4) through the definition of the
interface unit vector n, seen in Eq. (3.6), and the following identification:

M = c2s

(
τg −

∆t

2

)
. (3.62)

With the reverse change of variable using Eqs. (3.34) and (3.35), we eventually obtain:

∂ϕ

∂t
+∇ϕ · (ϕu) = ∇ ·

[
M

(
∇− λ

∇ϕ

||∇ϕ||

)]
(3.63)

which proves that the discretization used in Eqs. (3.25), (3.26), and (3.38) converges to
the Allen-Cahn equation.

3.4.2 Discretization of Navier-Stokes Equations for two-phase flow
We present hereafter the discretization of NSE for the two-phase flow that will be used

in this work. The procedure used here is the same as in Section 2.5.2 with a different ex-
pression of f eq

i and with supplementary terms to take into account the air-water interface.
We will eventually prove that through identification, the discretized Boltzmann Equation
converges to the two-phase flow Navier-Stokes equations.

3.4.2.1 LBM model for two-phase flow

The spatio-temporal evolution of fi(r, t) described using the Bhatnagar-Gross-Krook
(BGK) collision operator based on the discretization method proposed in Liang et al.
(2018, 2019); Younes et al. (2023a, 2022) is defined as

fi(r + ci∆t, t+∆t) = fi(r, t)−
∆t

τf
[fi(r, t)− f eq

i (r, t)] + ∆tFi(r, t) (3.64)

where τf is the non-dimensional relaxation time for f(r, t) probability density function
and Fi(r, t) is the source term. The equilibrium distribution function f eq

i (r, t) is given
by:

f eq
i =


p

c2s
(ωi − 1) + ρsi(u) i = 0

p

c2s
ωi + ρsi(u) i ̸= 0

(3.65)

with

si(u) = ωi

[
ci ·u
c2s

+
(ci ·u)

2

2c4s
− u ·u

2c2s

]
(3.66)

where u = u(r, t) is the fluid velocity, ρ is the density, and p is the macroscopic pressure.
The macroscopic quantities u and p can be calculated as follows (Liang et al., 2018,

2019, 2014; Younes et al., 2022)

ρu =
∑
i

fici +
∆t

2
F (3.67)

p =
c2s

(1− ω0)

[∑
i ̸=0

fi +
∆t

2
(ρl − ρg)u ·∇ϕ+ ρs0(u)

]
. (3.68)
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where ρl is the liquid density, ρg gas density, and F is defined as the total force, including
body forces B:

F = F s +B

F = µϕ∇ϕ+B.
(3.69)

according to the definition of F s (3.13).
The source term Fi in Eq. (3.64) is defined as in Liang et al. (2018) by5:

Fi =

(
1− ∆t

2τf

)
ωi

(
ci ·F
c2s

+
u⊗∇ρ : ci ⊗ ci

c2s

)
(3.70)

The kinematic viscosity ν is linked to the relaxation time τf as

ν = c2s

(
τf −

∆t

2

)
(3.71)

in the same manner as for the single-flow model.

3.4.2.2 Chapman-Enskog expansion

As previously done, a perturbation of the distribution functions is applied

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + ... (3.72)

Using Eq. (3.35), we can rewrite Eq. (3.70) in the following manner:

Fi =

(
1− ∆t

2τf

)
ωi

(
ci ·µϕ∇ϕ

c2s
+

u⊗∇ρ : ci ⊗ ci
c2s

)
= ε

(
1− ∆t

2τf

)
ωi

(
ci ·µϕ∇1ϕ

c2s
+

u⊗∇1ρ : ci ⊗ ci
c2s

)
= ε

(
1− ∆t

2τf

)
L
(1)
i (3.73)

where have set:
L
(1)
i = ωi

(
ci ·µϕ∇1ϕ

c2s
+

u⊗∇1ρ : ci ⊗ ci
c2s

)
. (3.74)

Let us now perform a Taylor’s expansion of Eq. (3.64) up to the second order:

∆t (∂t + ci ·∇) fi +
∆t2

2
(∂t + ci ·∇)2 fi +O

(
∆t3
)

= −∆t

τg
[fi − f eq

i ] + ∆tFi.
(3.75)

Using Eqs. (3.35), (3.34), (3.72), and (3.73), we obtain:(
ε∂t1 + ε2∂t2 + εci ·∇1

) [
f
(0)
i + εf

(1)
i + ε2f

(2)
i

]
+
(
ε∂t1 + ε2∂t2 + εci ·∇1

)2 [
f
(0)
i + εf

(1)
i + ε2f

(2)
i

] ∆t
2

+O(∆t3)

= −∆t

τf

[
f
(0)
i + εf

(1)
i + ε2f

(2)
i − f eq

i

]
+

(
1− ∆t

2τf

)
εL

(1)
i .

(3.76)

5We recall that " : " denotes the double dot product of two tensors of order two.
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By identification of order of εp with p ∈ N, we have:

O(ε0) :f
(0)
i = f eq

i (3.77a)

O(ε1) : (∂t1 + ci ·∇1) f
(0)
i = − 1

τf
f
(1)
i +

(
1− ∆t

2τf

)
L
(1)
i (3.77b)

O(ε2) :∂t2f
(0) + (∂t1 + ci ·∇1) f

(1)
i +

∆t

2
(∂t1 + ci ·∇1)

2 f
(0)
i

= − 1

τf
f
(2)
i (3.77c)

Based on Eq. (3.77a), f (0)
i = f eq

i . Therefore, from now on, f (0)
i will be replaced by f eq

i .
Note that since ci is a constant vector, we have ci ·∇1f

eq
i = ∇1 · cif eq

i . Therefore, the
sum over i of Eq. (3.77b) leads to

∂t1

(∑
i

f eq
i

)
+∇1 ·

(∑
ci · f eq

i

)
= − 1

τf

∑
i

f
(1)
i +

(
1− ∆t

2τf

)∑
i

L
(1)
i (3.78)

Following the same procedure as in Appendix D.1.1, we can readily calculate the
following terms in Eq. (3.80): ∑

i

f eq
i = 0∑

i

f eq
i ci = ρu

(3.79)

The calculation of the term
∑
i

L
(1)
i is detailed in Appendix D.1.3 in Eq. (D.7). We have∑

i

L
(1)
i = u ·∇1ρ. Therefore, Eq. (3.78) becomes:

∇1 · (ρu) = − 1

τf

∑
i

f
(1)
i +

(
1− ∆t

2τf

)
(u ·∇1ρ) (3.80)

To guarantee the incompressibility condition of the fluid flow, the term
∑
i

f
(1)
i in

Eq. (3.80) must satisfy the following equality6:∑
i

f
(1)
i = −∆t

2
u ·∇1ρ. (3.81)

Substituting Eq. (3.81) into Eq. (3.80) eventually leads to

∇1 · (ρu)− u ·∇1ρ = 0 (3.82)

or equivalently
∇1 ·u = 0 (3.83)

as ρ ̸= 0. Therefore, using the reverse change of variables (3.35), we obtain the following
equation

∇ ·u = divu = 0. (3.84)
6We will see that this is a necessary condition for satisfying ∇.u = 0 in the NSE.
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which represents the incompressibility condition of the fluid.
Returning to Eq. (3.72), the zeroth-order moment of fi(r, t) writes:∑

i

fi =
∑
i

f eq
i + ε

∑
i

f
(1)
i + ε2

∑
i

f
(2)
i . (3.85)

According to Eq. (3.79),
∑
i

f eq
i = 0, and thus Eq.(3.85) leads to:

∑
i

fi = ε
∑
i

f
(1)
i + ε2

∑
i

f
(2)
i (3.86)

Due to the incompressibility condition (3.81), returning to the change of variables
(3.35), we deduce the compatibility condition on the solvability functions f (k)

i :∑
i

fi = −∆t

2
u ·∇ρ (3.87)

∑
i

f
(1)
i = −∆t

2
u ·∇1ρ &

∑
i

f
(k)
i = 0 for k ≥ 2 (3.88)

Using Eq. (3.67), the momentum of fi(r, t) is defined7 as:∑
i

fici = ρu− ∆t

2
F s = ρu− ∆t

2
µϕε∇1. (3.89)

From Eq. (3.72), the first-order moments of fi write:∑
i

fici =
∑
i

f eq
i ci + ε

∑
i

f
(1)
i ci + ε2

∑
i

f
(2)
i ci. (3.90)

Furthermore, based on Eq. (3.79) and Eq. (3.89), Eq. (3.90) then becomes:

−ε∆t
2
µϕ∇1ϕ = ε

∑
i

f
(1)
i ci + ε2

∑
i

cif
(2)
i (3.91)

Consequently, the first-order moments of the solvability functions must satisfy the follow-
ing compatibility conditions:∑

i

f
(1)
i ci = −∆t

2
µϕ∇1ϕ &

∑
i

f
(k)
i ci = 0 for k ≥ 2. (3.92)

Let us now continue the recovery of the modified NSE. The sum of Eq. (3.77b) over i
multiplied by ci leads to:∑

i

(∂t1 + ci ·∇1) f
eq
i ci = − 1

τf

∑
i

f
(1)
i ci +

(
1− ∆t

2τ

)∑
i

L
(1)
i ci (3.93)

Firstly, the second term can be calculated as follows:∑
i

ci ·∇1f
eq
i ci = ∇1 ·

∑
i

f eq
i ci ⊗ ci

= ∇1 · [ρ(u⊗ u) + pI] (3.94)

7We suppose that there is no body force B = 0.
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(see Appendix D.1.3 for more details).
Secondly, the term

∑
i

L
(1)
i ci is given by (D.11) in Appendix (D.1.3):

∑
i

L
(1)
i ci = F (1)

s = µϕ∇1ϕ. (3.95)

Additionally, we know that:
∑
i

f
(1)
i ci = −∆t

2
µϕ∇1ϕ = −∆t

2
F (1)
s given (3.92).

Therefore, using again (3.79), Eq. (3.93) leads to

∂t1(ρu) +∇1 · [ρ (u⊗ u) + pI] = F (1)
s (3.96)

or equivalently:
∂t1(ρu) +∇1 · ρ (u⊗ u) = −∇1p+ F (1)

s (3.97)

On the other hand, Eq. (3.77b) is multiplied by (∂t1 + ci ·∇1) to give:

(∂t1 + ci ·∇1)
2 f eq

i = − 1

τf
(∂t1 + ci ·∇1) f

(1)
i

+

(
1− ∆t

2τf

)
(∂t1 + ci ·∇1)L

(1)
i

(3.98)

Substituting Eq. (3.98) into Eq. (3.77c) yields to:

∂t2f
eq
i + (∂t1 + ci ·∇1) f

(1)
i − ∆t

2τf
(∂t1 + ci ·∇1) f

(1)
i

+
∆t

2

(
1− ∆t

2τf

)
(∂t1 + ci ·∇1)L

(1)
i = − 1

τf
f
(2)
i

(3.99)

After regrouping some terms of Eq. (3.99), it becomes:

∂t2f
eq
i +

(
1− ∆t

2τf

)
(∂t1 + ci ·∇1)

[
f
(1)
i +

∆t

2
L
(1)
i

]
= − 1

τf
f
(2)
i (3.100)

After multiplying Eq. (3.100) with ci and summing it over i, and after performing some
manipulations, using in particular (3.92) and (D.12), it becomes8:

∂t2(ρu) +

(
1− ∆t

2τf

)
∇1 ·

[∑
i

f
(1)
i ci ⊗ ci +

∆t

2

∑
i

L
(1)
i ci ⊗ ci

]
= 0 (3.101)

After replacing each term by its expression, Eq. (3.101) gives (see Appendix D.1.3 for the
detailed calculations):

∂t2(ρu) +

(
1− ∆t

2τf

)
∇1 ·

[
ρc2s
(
∇1u+∇1u

T
)
− ρc2s∇1 ·uI

−∂t1(ρu⊗ u+ pI)] = 0

(3.102)

8The terms multiplied by ∂t1 in Eq. (3.100) cancel each other because
∑
i

cif
(1)
i = −∆t

2
µϕ∇1ϕ

according to Eq. (3.92) and
∆t

2

∑
i

ciL
(1)
i =

∆t

2
µϕ∇1ϕ according to (D.12)
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Now, Eq. (3.97) is multiplied by ε and summed with Eq. (3.102) multiplied by ε2 gives:

∂t︷ ︸︸ ︷(
ε∂t1 + ε2∂t2

)
(ρu) +

∇︷︸︸︷
ε∇1 · [ρ(u⊗ u)] = −

∇︷︸︸︷
ε∇1 p+

Fs︷ ︸︸ ︷
εF (1)

s +

ε∇1︸︷︷︸
∇

·

ρc2s (τf − ∆t

2

)ε∇1︸︷︷︸
∇

u+ ε∇1︸︷︷︸
∇

uT


+ρc2s ε∇1︸︷︷︸

∇

·uI + ε∂t1(ρu⊗ u+ pI)︸ ︷︷ ︸
Error

 .
(3.103)

In addition, it can be seen that the error term contains ε which has been defined as
being related to the Knudsen number Kn (ε ∼ Kn). As previously highlighted in Chapter
2, in this Ph.D. work the Knudsen number is low ε ≪ 1, hence the error term can be
neglected.

While the incompressibility condition was already recovered in (3.84), it is now possible
to recover the modified Navier-Stokes equations (3.12a) through the following identifica-
tion:

ν = c2s

(
τf −

∆t

2

)
. (3.104)

Applying the reverse change of variables (3.34) and (3.35) on Eq. (3.103) ultimately leads
to the modified Navier-Stokes equations:

ρ

(
∂u

∂t
+ u ·∇u

)
= −∇p+∇ ·

[
ρν
(
∇u+∇uT

)]
+ F s

∇ ·u = 0.

(3.105)

3.5 Wetting condition
We recall that wettability is defined as the ability of a liquid to keep in contact with

a solid surface. When a liquid droplet comes into contact with a solid surface, a thermo-
dynamic equilibrium is established between the three phases (liquid, gas, and solid).

3.5.1 Theoretical description
We recall the free-energy mixing functional F (ϕ,∇ϕ) used to model the wetting is:

F (ϕ,∇ϕ) =

∫
Ω

[
ψ(ϕ) +

k

2
|∇ϕ|2

]
dV +

∫
∂Ω

ψs(ϕ)ds. (3.106)

The second term of the R.H.S of Eq. (3.106) will not be nil if one is interested in the
boundary separating the solid from the fluid. The variation of this free energy can be
written as:

δF (ϕ,∇ϕ) =

∫
Ω

[
∂ψ(ϕ)

∂ϕ
δϕ+ k∇ϕ · δ(∇ϕ)

]
dV +

∫
∂Ω

∂ψs(ϕ)

∂ϕ
δϕds (3.107)

We recall from vector calculus the following relation∫
Ω

∇ · (v∇u) dV =

∫
Ω

v∇2u dV +

∫
Ω

∇v ·∇u dV (3.108)
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where v and u are scalar fields, and ∇ is the gradient defined in IR3. We also recall the
Stokes theorem ∫

Ω

∇ ·ω dV = −
∫
∂Ω

ω ·nw ds (3.109)

where w is a vector field, ∂Ω the boundary of Ω, and nw is the unit inward-normal vector
to ∂Ω.

Using Eq. (3.108) with v = δϕ and u = ϕ, we have:∫
Ω

∇(δϕ) ·∇ϕ dV =

∫
Ω

∇ · (δϕ∇ϕ) dV −
∫
Ω

δϕ∇2ϕ dV. (3.110)

By applying the Stokes theorem on the first term of the R.H.S of Eq. (3.110), we
obtain: ∫

Ω

∇(δϕ) ·∇ϕ dV = −
∫
∂Ω

δϕ∇ϕ ·nwdS −
∫
Ω

δϕ∇2ϕ dV. (3.111)

Considering Eq. (3.111) with Eq. (3.107) and using the fact that δ(∇ϕ) = ∇(δϕ), we
obtain:

δF (ϕ,∇ϕ) =

∫
Ω

(
∂ψ(ϕ)

∂ϕ
− k∇2ϕ

)
δϕdV

+

∫
∂Ω

(
−knw ·∇ϕ+

∂ψs(ϕ)

∂ϕ

)
δϕds. (3.112)

At equilibrium, the mixing free energy is minimized which corresponds to δF (ϕ,∇ϕ) =
0. From Eq.(3.112) which must be verified ∀δϕ, one obtains the general conditions:

∂ψ(ϕ)

∂ϕ
= k∇2ϕ in Ω (3.113)

∂ψs(ϕ)

∂ϕ
= knw ·∇ϕ on ∂Ω (3.114)

In this Ph.D. work, we will use the cubic9 wetting condition proposed by Liang et al.
(2019) which is defined as

ψs(ϕ) =
a1
2
ϕ2 − a1

3
ϕ3 (3.115)

where a1 is a parameter containing the wetting angle θ. Moreover, we consider that the
surface tensions γsg and γsl are given by the values of ψs for ϕ = 0 and ϕ = 1, respectively.
Therefore, we have:

γsg = ψs(ϕ = 0) = 0 (3.116a)

γsl = ψs(ϕ = 1) =
a1
6
. (3.116b)

Thomas Young has linked the three surface tensions (liquid-gas, solid-gas, solid-liquid)
with the wetting contact angle θ by this formula:

cos θ =
γsg − γsl
γlg

. (3.117)

9A linear wall potential was commonly used in the literature, particularly by Briant (2002); Lee and
Liu (2008). However, it has been found that a linear form leads to numerical problems, and high-order
potentials can help resolve the spurious film problem.
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Based on Eqs. (3.116a), (3.116b), and (3.23), one finds that:

cos θ = − a1√
2kβ

. (3.118)

Finally, by replacing a1 deduced from Eq. (3.118) in Eq.(3.114), the wetting condition
can be ultimately written as follows:

nw ·∇ϕ|xw
= −

√
2β

k
cos θ

(
ϕw − ϕ2

w

)
(3.119)

3.5.2 Numerical discretization
In this section, Eq. (3.119) will be discretized for spherical particles in order to be used

in capillary bridge applications. It is first worth mentioning that nw ·∇ϕ|xw
corresponds

to the derivative of ϕ along direction nw. Consequently, Eq. (3.119) is discretized using
a central difference scheme. For a boundary solid node (i, j, k) we have

nw ·∇ϕ|xw
=
ϕp − ϕ(i,j,k)

2h
(3.120)

where h is the distance from the solid node (i, j, k) to the solid surface and ϕp is the
interpolated value of ϕ at the fluid node located at a distance h from the solid surface (see
Figure 3.2). ϕp is determined using a trilinear interpolation between the adjacent nodes
in a cubic lattice 3D conditions. See Appendix D.2.1 for more details about the trilinear
interpolation. The value of ϕw on the solid interface is then approximated as:

ϕw =
ϕ(i,j,k) + ϕp

2
. (3.121)

Combining Eqs. (3.119), (3.120) and (3.121) lead to (see Appendix D.2.2)
ϕ(i,j,k) =

1

a

(
1 + a±

√
(1 + a)2 − 4aϕp

)
− ϕp,

(
θ ̸= π

2

)
ϕ(i,j,k) = ϕp

(
θ =

π

2

) (3.122)

with a = −h
√

2β

k
cos θ. In practice, h is usually approximated to half h =

1

2
in lattice

units. Note that for θ ̸= π

2
, there are two solutions, but only the one that ranges between

0 and 1 is selected.

3.6 Units conversion
In LBM simulations, the mesh size and the time step are supposed to be equal to 1,

i.e. ∆xLBM = 1 lattice unit (lu) and ∆tLBM = 1 lattice unit (lu) which are absolutely
different from ∆xPhy and ∆tPhy. Therefore, a rescaling between physical and lattice units
must be performed in order to make the simulations consistent with the physics at hand,
because all the LBM parameters are given in lu.

For sake of simplicity, the following convention will be used: the subscripts ’LBM’ and
’Phy’ will be replaced by □̃ and nothing □ for lattice and physical units, respectively. For
instance, ∆xLBM = ∆̃x and ∆xPhy = ∆x.
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Figure 3.2: Scheme depicting the geometric parameters for applying the wetting condition. nw

is the normal unit vector pointing away from the solid wall to the fluid. A tri-linear interpolation
is used to obtain the unknown phase value ϕp between the 8 adjacent nodes in a cubic lattice.

The re-scaling of lengths10, time, and densities are defined as follows

∆x = CL ∆̃x︸︷︷︸
=1

∆t = Ct ∆̃t︸︷︷︸
=1

ρ = Cρ ρ̃ (3.123)

where the units involved are respectively meters (m), seconds (s), and kg/m3. Eq. (3.123)
gives the so-called canonical conversion factors. As will be seen below, the choice of Ct in
the context of capillary bridges is slightly tricky. Let us start with the two easiest ones
CL and Cρ:

• CL: physical and lattice characteristic lengths must be chosen LC and L̃C, respec-
tively. For instance, if the physical characteristic length of the domain is LC = 1 cm
and the lattice characteristic length domain11 L̃C = 200, thus CL = ∆x = LC/L̃C

[cm];

• Cρ: it is purely and solely a choice of the user. In this study, the canonical density
conversion factor is chosen to be Cρ = 1 [kg.m-3]. In other words, ρwater = ρ̃water =
1000 and ρair = ρ̃air = 1;

The first step to determine the conversion coefficient of any given physical parameter
is to link its unit to the canonical aforementioned ones. For instance, the unit of surface

10It is supposed that the meshes are equal in all directions, i.e. ∆x = ∆y = ∆z.
11The lattice characteristic length domain is simply the number of meshes in the domain in a given

direction.
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tension γ becomes:

[γ] = N.m−1 =

N︷ ︸︸ ︷
kg.m.s−2 .m−1 =

kg
m3

.m3.s−2 = Cρ.
C3

L

C2
t

. (3.124)

Thus, the conversion between surface tension γ in lattice and physical units yields:

γ = Cρ
C3

L

C2
t︸ ︷︷ ︸

Cγ

γ̃ [N.m−1]. (3.125)

When the fluid is in motion, obviously, the time step is controlled by the viscosity. In our
study, however, we are solely interested in the equilibrium state of the capillary bridge,
whereas the transition phase between initialization and equilibrium is not investigated.
Therefore, the time step Ct is chosen via γ from Eq. (3.125) as follows:

∆t = Ct =

√
γ̃

γ
Cρ C3

L [sec]. (3.126)

Since we are interested in capillary forces, suctions (pressures), and stresses, the conversion
coefficients between lattice and physical units are here listed, following the same way as
Eq. (3.125):

CF = Cρ
C4

L

C2
t

=⇒ F = CFF̃ (3.127a)

CP = Cρ
C2

L

C2
t

=⇒ P = CPP̃ . (3.127b)

3.7 Choice of LBM parameters

In order to accurately model real multiphase fluids, one should choose wisely the
simulation parameters, especially in LBM models.
First, the interface width is selected, generally W̃ = 5−10 lu to make the interface smooth
enough—as shown in Figure (3.3)—to preclude numerical instabilities.
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Figure 3.3: Smooth Dirac functions for W̃ ∈ {5; 10} lu as well as the unit impulse Dirac function.

Next, densities ρ̃l and ρ̃g are calculated using Eq. (3.123). As previously mentioned,
Cρ is usually taken as 1 which is the case in all the simulations in this work. Then, CL

is calculated based on the physical and LBM characteristic lengths Lc and L̃c as follows:

CL =
Lc

L̃c

. Following that, γ̃ is chosen whereby Ct is calculated using Eq. (3.126). Once

the Ct is determined, the relaxation times τ̃hℓ and τ̃h
g are computed based on the scaling

of the liquid and gas viscosities:

νℓ,g = c̃2s

(
τ̃ℓ,gh − ∆̃t

2

)
︸ ︷︷ ︸

ν̃ℓ,g

Cν︷︸︸︷
C2

L

Ct

⇐⇒ τ̃ℓ,gh =
Ctν

ℓ,g

c̃2sC
2
L

+
∆̃t

2
. (3.128)

According to Timm et al. (2016), numerical instabilities are observed if the values of

τ̃ℓ,gh are too close of
1

2
. Moreover, γ̃ determines Ct whereby relaxation times are calculated.

3.8 Conclusion
In this chapter, the multi-phase LBM model was presented. A phase-field-based

model—Allen-Cahn equation—coupled with the Navier-Stokes equation through a sur-
face tension force was elaborated. Next, an improved wetting condition was provided
explaining the numerical scheme implementation. Lastly, a unit conversion was given to
connect real physical units to lattice ones.

In the next chapter, this model will be validated on several benchmarks, amongst oth-
ers, Rayleigh-Taylor instability, and water droplets on curved surfaces. Then applications
on capillary forces for doublet and triplet will be carried out.
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4.1 Introduction
After presenting the method in Chapter 3, it is time to proceed with the validation

of the phase-field-based LBM model along with the wetting condition. This validation
process is structured as follows:

• LBM Model Validation: We start by conducting the Rayleigh-Taylor instability,
which serves as a fundamental benchmark for fluid flow simulations.

• Wetting Angle Evaluation: Following the LBM model validation, we proceed to
evaluate the wetting angle across various examples. This includes scenarios such as
liquid droplets on spherical grains and planes, allowing us to verify the accuracy of
wetting angle predictions.

• Capillary bridge geometry and mean curvature H: We then push the boundaries
of the proposed model to assess its ability to accurately represent the geometries of
capillary bridges formed between two spherical particles. Furthermore, we investi-
gate the evolution of the mean curvature (H) as we vary the separation distance
between these two particles. The results obtained through the LBM simulations are
compared with analytical solutions based on the Young-Laplace Equation (YLE).

• A new expression for capillary forces: In the next stage, a new formulation is de-
rived to calculate capillary forces applied to spherical particles. First, its validity
is examined in the context of two spherical grains in the pendular regime. After-
ward, we extend its application to the funicular regime, considering a three-particle
configuration.

This rigorous validation process ensures that the phase-field-based LBM model, along
with the wetting condition, is a reliable and accurate tool for subsequent practical appli-
cations and research investigations at the REV scale.

4.2 Rayleigh-Taylor Instability
Rayleigh-Taylor instability belongs to the family of hydrodynamics fingering instabil-

ities. This instability is induced by the density stratification and the interface’s pertur-
bation, where the heavy fluid ρh rests on a lighter one ρℓ in a gravitational field (Sharp,
1983). During this phenomenon, the fluids will keep pushing each other until the inversion
takes place. This instability will lead to the creation of spikes, bubbles, and saddles as
shown in Figure 4.1).

4.2.1 Choice of the LBM parameters
The simulation will be conducted in the following domain: Nx × Ny × Nz = [0;L] ×

[0; 4L]× [0;L] with L = 128. In order to validate the Allen-Cahn-based model, a compar-
ison between the present model and other models in the literature will be provided; see
He et al. (1999); Zu and He (2013). To do so, the choice of the parameters will be done
based on the dimensionless numbers used for the other models, such as, Reynold’s number
(Re), Capillary number (Ca), and Atwood number (At) which are defined as follows:

Re =
L× U

ν
= 128 (4.1a)



Rayleigh-Taylor Instability 89

Figure 4.1: Spike, bubble, and saddle in 3D and 2D (section) views. The heavier fluid of density
ρh is resting on the lighter one of density ρl

Ca =
µ× U

γ
= 85.71 (4.1b)

At =
ρh − ρℓ
ρh + ρℓ

= 0.5. (4.1c)

Accordingly, the LB parameters in lattice units are chosen in the following way:

• The lattice velocity is chosen to be U = 0.02 in such a way that the Mach number
Ma is acceptable in order to respect the incompressibility effect;

• Based on Eq. (4.1a), the kinematic viscosity is computed and has the value of
ν = 0.02;

• Based on Eq. (2.61b), we consider τ = 0.56;

• The densities ρh = 0.12 and ρℓ = 0.04 chosen are the same as in He et al. (1999);
Zu and He (2013);

• Based on Eq. (4.1b), the value of the surface tension is γ = 1.12× 10−6; and

• The gravity in the -y direction1 g = −3.125×10−6, is deduced from the characteristic
velocity U =

√
L× g, the same as in He et al. (1999); Zu and He (2013).

In order to induce the Rayleigh-Taylor instability using LBM simulation, a perturba-
tion at the interface2 must be made. In this example, a perturbation of 5% is chosen, in
other words, the position of the interface at the initialization phase will be as follows:

yinterface(x, z) = 2L+ 0.05L

[
cos

(
2πx

L

)
+ cos

(
2πz

L

)]
(4.2)

1The gravity points downward, hence the negative sign.
2The white curved line in the 2D as shown in Figure 4.1
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Then, the initialization of the order parameter will be:

ϕ(x, y, z) = 0.5 + 0.5 tanh

[
2× y − yinterface(x, z)

W

]
(4.3)

In this simulation, both the hydrodynamic as well as the interface-tracking equations
are solved within the D3Q19 scheme. It has been found that both the D3Q7 and D3Q19
produce exactly the same results. Contrarily, the D3Q15 scheme was not numerically
stable for this benchmark.

Results in Figure (4.2) show the evolution of the interface for a value of ϕ = 0.5 for
different dimensionless times t∗ = t/

√
L/g.

Figure 4.2: Evolution of the interface ϕ = 0.5 as a function of the dimensionless time t∗ =
1; 2; 3; 4; 4.5, respectively.

Figure (4.3) depicts the dimensionless position (y∗ = y/L) of the spike, bubble, and
saddle for the present model and others used in the literature. Obviously, the results
shown in the figure, prove that the Allen-Cahn-based model is in complete agreement
with the other models.

0 1 2 3 4 5
- 2

- 1
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1

2
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 P r e s e n t  m o d e l  -  S a d d l e

Figure 4.3: Comparison between present LB, He et al. (1999), and Zu and He (2013) models of
y∗ = y/L in function of t∗ = t/

√
L/g

4.3 Wetting condition Benchmark
As already indicated, one of the most important parameters in capillary bridges is

the contact angle θ. Before getting into the details of capillary bridges, the wetting
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Figure 4.4: Sketch showing different directions.

condition—previously explained in Section 3.5—must be validated in two benchmarks:
water droplets on flat and curved surfaces.

4.3.1 Water droplet on flat surfaces
In order to validate the wetting condition, a 3D drop on a plane is simulated with a

density ratio ρwater/ρair = 1000. The initial radius of the drop is R0 = 20 lu, and the
domain size is Nx×Ny×Nz = [0; 2L]× [0;L]× [0; 2L] with L = 128. The parameters used
for this simulation are γ = 0.2, W = 5, and M = 0.1. The initialization of the parameter
order ϕ is

ϕ(x, y, z) =
1

2
+

1

2
tanh

[
2×

R0 −
√

(x− x0)2 + (y − y0)2 + (z − z0)2

W

]
(4.4)

with x0 = Nx/2, y0 = 1, and z0 = Nz/2.
Periodic Boundary Conditions (PBCs) are applied on the left, right, front, and back

of the domain as shown in Figure (4.4). Regarding the top and the bottom, the wetting
and the bounce-back conditions are applied.

In the absence of gravity, the shape of the drop must take a spherical shape at equilib-
rium. For that reason, in order to verify if the contact angle is respected at the equilibrium,
it must be geometrically computed. Two cases will be found, which are:

θ =


2 tan−1

(
2
h

b

)
For θ ≤ π

2

arcsin

[
h− r

r

]
+
π

2
For θ > π

2

(4.5)

where h, r, and b are geometric parameters described in Figure (4.5).
Figure (4.6) depicts the shapes of the water droplets at equilibrium on a plane for

different contact angles, θ ∈ {30; 60; 90; 120}◦. All the angles are calculated and summa-
rized in Table 4.1. Given that the absolute errors are small enough, the wetting condition
on plane surfaces is quite reliable.
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Figure 4.5: Geometrical methods to determine the contact angle θ at of a droplet on a plane at
equilibrium. (a) θ ≤ π

2
and (b) θ >

π

2
.

Figure 4.6: The shape of water droplets at equilibrium on a plane. (a) θ = 30◦, (b) θ = 60◦, (c)
θ = 90◦, and (d) θ = 120◦.
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Imposed contact angle (°) Measured contact angle (°) Absolute error (°)
30 30.33 0.33
60 61.11 1.11
90 91.38 1.38
120 117.20 2.8

Table 4.1: Comparison between measured and imposed contact angles of water drops on a plane.

4.3.2 Water droplet on curved surfaces (spherical particle)
Given that we will be treating capillary bridges between spherical particles, it is wise

to study the reliability of the wetting condition of water droplets on spherical grains. A
water droplet with a radius r0 = 20 lu is placed at the top of the particle with a radius
R = 60 lu. The mesh size is (256 × 256 × 256). The simulation parameters are γ = 0.2
lu, W = 5 lu, ρl = 1000 lu, and ρg = 1 lu. Periodic BCs are applied in all directions. For
the solid boundary nodes, we apply the wetting boundary condition Eq. (3.122).

Figure (4.7) shows the shapes of the droplet at equilibrium for different imposed con-
tact angles. To measure the effective contact angle, the generalized Pythagorean theorem
is used, i.e.

φ = arccos

(
R2 + r2 − d2

2rR

)
(4.6)

where r is the drop radius at equilibrium3, R is the particle radius, and d is the distance
between the center of the drop and the particle as shown in Figure (4.8).

Figure 4.7: Shapes of water droplets on spherical grains at equilibrium. (a) θ = 30◦, (b) θ = 60◦,
(c) θ = 90◦, and (d) θ = 120◦.

3The water droplet at equilibrium is considered to be a spherical cap.
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Figure 4.8: Illustration of the effective contact angle φ. CS and CD are the centers of the solid
particle sphere and water droplet, respectively.

The geometrical parameters d and r are determined using an in-house image processing
Matlab code (Younes et al., 2023a; Nguyen et al., 2019b,c, 2020a).

Figure (4.9) compares the measured φ and imposed contact θ angles and shows that
φ and θ coincide, which validates the wetting condition in Eq. (3.119).
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Figure 4.9: Measured (φ) versus imposed contact angles (θ) for a water droplet on a spherical
particle. The solid line represents φ = f(θ) = θ.

Imposed θ (°) R r d Measured φ (°) Absolute error (°)
30 318.58 180.89 188.0589 30.33 0.33
60 466.57 184.13 407.0714 60.01 0.01
90 462.21 144.97 486.7614 90.98 0.98
120 571.47 158.34 670.72 122.86 2.86

Table 4.2: Comparison between measured and imposed contact angles of water drops on spherical
grains (cf. Figure 4.8 for a complete description of the geometrical parameters R, r, and d).
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Figure 4.10: Procedure adopted to determine the geometrical parameters d and r to measure the
wetting angle from Eq. (4.6).

Results in Table 4.2 show that the wetting condition is highly reliable when dealing with
spherical grains.

4.4 Capillary rise - Jurin’s Law
The capillary rise benchmark is performed to validate the model. This benchmark

consists of a tube with a radius r, which is placed vertically in a reservoir filled with a
liquid subjected to gravity. Due to capillary effect in the tube, the liquid will rise to a
certain height h as seen in Figure (4.11). In the numerical setup, periodic BCs are applied

ℎ

𝑟

𝜌ℓ

𝜌𝑔
𝐿

𝑦min

𝜃

𝜃

Figure 4.11: Side view schematic describing the capillary rise benchmark.

on the left, right, front, and back boundaries. In both cases, bounce-back and wetting
conditions are applied on the tube wall as well as on the top and bottom of the domain.
The domain size is Nx ×Ny ×Nz = 192× 224× 192. The domain is initialized with the
liquid film below y = 80 lu, both inside and outside of the tube. This latter has a thickness
of 3 lu, and a radius r = 12 lu. The minimum position of the tube is at ymin = 15 lu with
a length L = 185 lu as shown in Figure (4.11).

Jurin’s law can be applied to find the height h of capillary rise at hydrostatic equilib-
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rium

h =
2γ cos θ

∆ρgr
(4.7)

where ∆ρ = ρℓ − ρg, r is the tube radius, γ is the surface tension, g is the gravity, and θ
is the contact angle.

For a contact angle θ = 0◦, h yields:

h =
2γ

∆ρgr
. (4.8)

The parameters for the real system and the simulation are shown in Table 4.3. Ac-
cording to Eq. (4.8), the expected capillary rise is h = 9.8× 10−3 m with r = 1.5 mm.

To simulate the capillary rise, conversion of units must be carried out to link physical
to lattice units. In the presence of gravity, the conversion between gravity in lattice and
physical units is given as:

g = g̃
Cℓ

C2
t

. (4.9)

After calculating Ct from (3.125), the gravity in lattice units can be deduced from (4.9)
as:

g̃ = g
C2

t

Cℓ

. (4.10)

The measured equilibrium height (as defined in Figure 4.12) is hlu = 10.06 mm (80 lu)
which is in good agreement with the expected value of 9.8 mm (78 lu) with error of 2.65
%.

Figure 4.12: Capillary rise at equilibrium.
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Quantities Physical
parameters

Value in
SI units

Lattice
parameters

Values in
lattice units

Liquid density (water) ρℓ 1000 kg/m3 ρluℓ 1000
Gas density (air) ρg 1 kg/m3 ρlug 1
Characteristic length r 1.5 mm rlu 12
Surface tension γ 0.07213 N/m γlu 0.2
Contact angle θ 0◦ θ 0◦
Gravity g 9.81 m/s2 glu 4.25× 10−7

Expected capillary rise h 9.82 mm hlu 78.56
Measured capillary rise h 10.06 mm hlu 80.5

Table 4.3: Capillary rise parameters in physical and lattice units.

4.5 Capillary bridge profiles

The most important equation that describes precisely capillary bridge profiles is the
Young-Laplace Equation (YLE). It is here emphasized that all the simulations of capillary
bridges are performed at zero-gravity conditions, which corresponds to the experiments
of Mielniczuk et al. (2018) for small volumes of water and small separation distances,
when the Bond number is small and when the effect of gravity can be neglected. Thus,
horizontal or vertical capillary bridges are exactly the same, as shown in Figures. (1.11)
and (4.13), respectively.

4.5.1 Young-Laplace Equation

We recall the expression of Young-Laplace Equation (YLE) that describes the capillary
bridge’s profile between two solid particles. In the absence of gravity, YLE in the particular
case of axisymmetric capillary bridges of revolution around x-axis is classically written as
(Gagneux and Millet, 2014)

y′′(x)

(1 + y′2(x))3/2
− 1

y(x)
√
1 + y′2(x)

= −∆p

γ
= H (4.11)

where H = −∆p
γ

is the mean curvature, ∆p = pin− pout is the pressure difference between
inside and outside of the capillary bridge, γ is the surface tension of the fluid-gas system,
and y(x) is the meridian profile shown in Figure (1.11).

Moreover, only capillary bridges with nodoid and unduloid shapes are investigated as
they are the most stable cases observed experimentally. The present study is limited to a
concave capillary bridge with a convex upper meridian, where the condition y∗ ≤ r sin δ
is satisfied.

The main objective of the section is to provide a demonstration that—by solving
ACE as well as NSE coupled with the wetting condition—a spherical liquid drop between
two solid grains will take the shape of a capillary bridge at equilibrium as shown in
Figure (4.13).
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Figure 4.13: From: (a) the initialization of a water droplet at mid-distance to the convergence,
and (b) of the capillary bridge for water volume of V = 10µL, for θ = 20◦.

4.5.2 Numerical simulations and comparison with the solution of
Young-Laplace equation

We now simulate the formation of a capillary bridge between two spherical particles of
the same size with the LBM code for multi-phase flow developed and validated on several
benchmarks and examples. Then, we use an in-house image processing code developed
in Matlab to solve the Young-Laplace equation as an inverse problem when the R.H.S
involving the capillary pressure is unknown, but when we can access the half-filling angle
δ, the wetting angle θ and the neck radius y∗, as depicted in Figure 1.11 (Gagneux et al.,
2016; Nguyen et al., 2019a; Mielniczuk et al., 2018; Nguyen et al., 2019c,d). The values
of y∗, δ, and θ will be deduced from image processing performed on the results of LBM
simulations.

Once the geometrical parameters y∗, δ, and θ are determined, the criterion for deter-
mining the shape of capillary bridges, given in Appendix D.3, is checked and then the
Young-Laplace equation is numerically solved as an inverse problem based on integration
of the parametric equations (D.45)-(D.46) or (D.53)-(D.54).

Concerning the LBM simulations, they were performed by considering a domain size
of Nx×Ny×Nz = 160×250×160. The domain length in the x-direction in the physical
unit is Lx = 0.015 m; thus, the lattice length is ∆x ≈ 7.5 × 10−5 m. The particle radii
are fixed at R = 4 mm, the water volume of 10 µL, and different separation distances
D ∈ {0.5, 1, 1.5, 2, 2.25} mm.

After the convergence of the LBM simulation4, the main steps are the following (they
are summarized in Figure 4.14):

1. A section is made in the middle of the bridge at (Nz/2), then

2. an isoline of the value of ϕ = 0.5 is drawn5 using Paraview, then

3. the image is binarized using the open-source image processing software ImageJ, and

4The simulation converges when the evolution of water volume is stabilized in time.
5Since the interface has a thickness W , a value of ϕ = 0.5 corresponds to the middle of the interface.



Capillary bridge profiles 99

4. the binarized image is analyzed using a Matlab code which calculates the geometrical
parameters y∗, δ, and θ and solves the Young-Laplace equation as an inverse problem
using the theory presented in Appendix D.3. Finally, the capillary bridge profile is
plotted on the image resulting from the LBM simulation.

Figure 4.14: Flow chart summarizing the above steps.

More precisely, once the image is binarized, the edges of the capillary bridge and the
two particles are detected using the image treatment tool ImageJ, and the image is saved
in Tiff format (table of 1 for black contours and 0 otherwise) to be treated using the
Matlab code.

The Matlab code will detect the center of the upper and lower spheres and both
spheres radii, using the method proposed by Taubin (1991), and the coordinates of the
triple points. The half filing angle δj for each triple point (j = 1 to 4) is calculated, then
the resulting half-filling angle δ is averaged of all δj.

The contact angle θj is calculated using the tangent vectors to the particle and to the
profile of the capillary bridge approximated by a sixth-degree polynomial at the triple
point. Then, the resulting contact angle θ is averaged for all θj. More details of the image
treatment procedure can be found in (Gagneux et al., 2016).

Once the geometrical parameters (y∗, δ, θ) are determined, the criterion for determin-
ing the shape of capillary bridges (nodoid and unduloid) is checked. After that, the
corresponding parameters a and b2 are calculated. Then, the resulting curves (a portion
of nodoid or unduloid) are plotted on the same image of the capillary bridge profile as
shown in Figure (4.15).

4.5.3 Comparison between theoretical, experimental, and numer-
ical results

In this section, we present a comparison between experimental, theoretical, and numer-
ical results of the mean curvature H for different separation distances between particles.
For the present study, H is deduced in two ways: using the image processing tool based
on the theory of Section D.3, using Eqs. (D.52) or (D.60), or directly from the LBM
simulation using the definition of H = −∆P/γ.

In Figure (4.16), we plot the non-dimensional H∗ = H × R value, where R is given
in lattice units. The values obtained are compared with the experimental data of (Miel-
niczuk et al., 2018). We observe that for small separation distance, e.g., D ∈ {0.5; 0.1}
mm, the shape of the capillary bridge is a portion of nodoid (H > 0). For larger separa-
tion distances, however, for instance, D ∈ {1.5; 2; 2.25} mm, the capillary bridge profile
switches to a portion of unduloid (H < 0). The inversion of the sign of H, from positive
(nodoid) to negative (unduloid), can be easily observed with the increasing of separation
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distance between spherical grains. Therefore, we recover—via LBM simulations, with a
rather accurate precision— the experimental data of Mielniczuk et al. (2018).

4.5.4 Discussion of results
Based on the aforementioned results of Figures (4.15) and (4.16), the shapes of the

capillary bridges correspond exactly to the ones found by YLE. It is therefore obvious that
the two-phase NSE converges somehow to YLE at equilibrium when the fluid velocity u
tends toward zero. Indeed, in the absence of gravity and at equilibrium, NSE (3.12)
reduces to

−∇p+ F s = 0 (4.12)

with:
F s = −γκnδs. (4.13)

From (4.12), we obtain in the normal direction to the interface

−n ·∇p = γκδs (4.14)

where the dot denotes the scalar product of R3. Note that δs is equal to zero outside
the diffuse interface and so that the surface tension force F s vanishes and the pressure is
constant. By integrating (4.14) along ξ across the diffuse interface, as seen in Figure (3.1a),
we get6

−
∫ +∞

−∞
n ·∇pdξ = γκ

∫ +∞

−∞
δsdξ = γκ (4.15)

as κ is constant with respect to ξ and the surface tension γ is assumed to be constant
also.

Moreover, we have −
∫ +∞

−∞
n ·∇pdξ = pin−pout, as p is constant outside the interface.

Therefore, we recover the classical Young-Laplace equation:

∆p = γκ. (4.16)

For axisymmetric capillary bridges of revolution, Eq. (4.16) is equivalent to (4.11). This
result proves that the modified Navier-Stokes equation (3.12) for two-phase flow converges
at equilibrium to the Young-Laplace equation. It explains why the LBM simulations
performed enable us to recover very accurately the capillary bridge profiles, and solutions
of the Young-Laplace equation.

4.6 Computation of capillary forces
After validating the model as well as the wetting condition through benchmarks, the

problem of evaluating the capillary forces can be next tackled. In this section, we will
see that classical stress expression in a Newtonian fluid is not sufficient for computing
capillary forces. It is then necessary to include a supplementary adhesion term—due to
Fisher (1926)—in order to retrieve the experimental data. In this section, a numerical
method is presented to compute this supplementary term.

6By definition of the Dirac interface δs, we have
∫ +∞

−∞
δsdξ.
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(a) Portion of nodoid, D =0.5mm, y∗=1.577mm,
δ1=27.84°, δ2=28.8°, θ1=19.06°, θ2=21.15°.

(b) Portion of nodoid, D = 1mm, y∗=1.265mm,
δ1=26.75°, δ2=23.32°, θ1=18.52°, θ2=18.6°.

(c) Portion of unduloid, D = 1.5mm, y∗=1.062mm,
δ1=21.91°, δ2=22.13°, θ1=22.13°, θ2=22.88°.

(d) Portion of unduloid, D = 2mm, y∗=0.8713mm,
δ1=24.25°, δ2=25.3°, θ1=16.06°, θ2=16.23°.

(e) Portion of unduloid, D = 2.25mm, y∗=0.767mm, δ1=23.7°, δ2=24.77°, θ1=16.29°, θ2=16.35°.

Figure 4.15: Superposition between theoretical and numerical shapes of capillary bridge profiles.
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Figure 4.16: Mean curvature H [mm−1] of capillary bridge versus separation distances D [mm].
H > 0 and H < 0 correspond to nodoid and unduloid shapes, respectively.

4.6.1 Forces exerted by the fluid on a solid
4.6.1.1 Classical case without interface

In a classical way, the force exerted by a fluid on a solid can be calculated based on
the integration of the fluid stress tensor σf on a given surface Ω close to the particle as
shown in Figure (4.17). Thus,

F f =

∫
Ω

σf ·nΩdS (4.17)

where nΩ is the outer unit normal vector to the surface Ω and dS is an elementary area
element. The stress tensor σf for a Newtonian fluid is classically given by

σf = −pI + τ (4.18)

where p is the fluid pressure, I is the identity matrix in IR3.
The viscous stress tensor τ is defined as

τ = 2µ(∇u+∇uT ) (4.19)

where µ is the dynamic fluid viscosity (µ = ρν) and u the fluid velocity. Eq. (4.17) is valid
when no discontinuity surfaces are intercepted by Ω. Let us calculate the contribution
(4.17) over the domain Ω surrounding the solid S—Figure (4.17). The domain Ω can be
split into Ωg and Ωl (Ω = Ωg ∪ Ωl), where Ωg and Ωℓ are the gas and liquid domains7,
respectively. From Eq. (4.17), we have

F f =

∫
Ωg

σf ·nΩdS +

∫
Ωl

σf ·nΩdS (4.20)

and considering only the pressure term at equilibrium8 we get:

F f =

∫
Ωg

−pgnΩdS +

∫
Ωl

−plnΩdS. (4.21)

7The interface is defined at the isosurface ϕ = 0.5. Above that value, we enter in the liquid domain
Ωℓ. And below ϕ = 0.5, we enter in the gas domain Ωg as shown in Figure (3.1b).

8Because the macroscopic velocity u will tend to 0 at equilibrium u → 0, as shown in Figure (4.20).
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Figure 4.17: Capillary bridge and integration domain within a sharp interface.

If we assume that pg is constant, we can then write

F f = −
∫
Ωl

(pl − pg)nΩdS −
∫
Ω

pgnΩdS = −
∫
Ωl

∆p nΩdS (4.22)

where ∆p is the pressure difference between air and water9. For negative values of ∆p
or positive value of the mean curvature H, that is the general case of stable nodoid
configurations (Gagneux and Millet, 2014), we have an attractive capillary force. However,
Eq. (4.22) involves only the Laplace pressure contribution leading to the first term Fp in
Eqs. (1.13), (1.14) or (1.15) for the capillary force. A supplementary term must therefore
be added to account for the adhesion term.

4.6.1.2 Capillary interface surface stress-like tensor

In the case of a sharp interface, the stress is not continuous in the fluid phase across
the capillary interface and a supplementary term must be added to Eq. (4.18) of the fluid
stress to account for the adhesion term involved in Eq. (1.13). Therefore, we have to
consider that

σ̂f =

{
γITw on the interface
σf otherwise

(4.23)

where ITw denotes the identity of the tangent plane of the capillary interface (see Fig-
ure 4.18). It is worth noting that σ̂f is a 2D object on the interface and a 3D object in
the bulk fluids. A similar stress-like tensor term has been added for describing the con-
tribution of capillary interfaces in stress calculation in partially saturated media (Duriez

9We have used the property that
∫
Ω

pgnΩdS = 0 for constant pg and where Ω is a closed surface.
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and Wan, 2017; Popinet, 2018; Scardovelli and Zaleski, 1999).

n

Txw
x

Figure 4.18: Sketch of an identity of the tangent plane.

The capillary force is therefore now expressed as

F̂ f =

∫
Ω

σfnΩdS +

∫
Γ

γITw ·nΩdl (4.24)

where Γ is the intersection of Ω with the capillary interface as shown in Figure 4.17. Using
the fact that ITw ·nΩ is independent of ξ, and denoting m = (n × nΩ) × n, Eq. (4.24)
yields to:

F̂ f =

∫
Ω

σfnΩdS + γ

∫
Γ

mdl. (4.25)

We have used the classical formula ITw ·nΩ = nΩ−(nΩ ·n) ·n = (n×nΩ)×n, where
n denotes the normal to the interface as shown in Figure 4.17. It is worth noting that
the second term of F̂ f in Eq. (4.25) corresponds to that mentioned in Connington et al.
(2015); Zhang et al. (2020). It is general and valid for a sharp interface. It is also worth
mentioning that m represents the unit tangent vector to the interface as illustrated in
Figure (4.21).

In the phase-field LBM model, however, the interface is defined with a thickness W as
already seen in Figure (3.1a). In that particular case, the interface becomes a surface10

case as depicted in Figure (4.19), instead of a contour in Ω ∩ Γ as seen in Figure (4.17).
Therefore Eq. (4.25) must be rewritten as follows

F̂ f =

∫
Ω

σfnΩdS + γ

∫
Ω

mδs(ξ)dS (4.26)

where δs(ξ) is the regularized Dirac function of the capillary interface defined along the
thickness direction ξ as seen in Figure (3.3):

δs(ξ) =
24

W
ϕ(ξ)2 [ϕ(ξ)− 1)]2 . (4.27)

Eq. (4.27) satisfies the following condition:∫ +∞

−∞
δs(ξ)dξ = 1. (4.28)

It is worth noting that the second term of the R.H.S of Eq.(4.26) would exactly be
the same as the second term of Eq.(4.25) if one supposed that the interface was sharp
(zero thickness). In the case of a sharp interface, the Dirac function would be the unit

10The surface becomes a set of multiple contours Γi. In other words, the interface becomes =
⋃
i

Γi
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Figure 4.19: Capillary bridge and integration domain within a thick interface.

impulse Dirac as depicted in Figure (3.3). In fact, the unit impulse Dirac function δs will
transform the domain Ω into a contour Γ.

Obviously, the larger the width W is, the smoother δs is, as illustrated in Figure (3.3).
For all of the simulations in this chapter, the value of the width W = 5 lu is chosen, which
is suitable to make the Dirac function smooth enough to avoid numerical instabilities. As
a consequence, the contribution of the second term of the R.H.S of (4.26) leads to:

F γ = γ

[∑
i

∫
Γi

[∫ +∞

−∞
δs(ξ)dξ

]
midl

]
. (4.29)

Using Eq. (4.27), as m does not depend on ξ, the adhesion force F γ acting on Γi can be
written as:

F γ =
24γ

W

∑
i

[∫
Γi

∫ +∞

−∞
ϕ2(ξ) [ϕ(ξ)− 1]2midξ

]
. (4.30)

The integral can be appropriately expressed with respect to the phase function ϕ. For
this purpose, we take advantage of the inverse of Eq. (3.10a) to express ξ as a function of
ϕ:

ξ =
W

4
ln

(
ϕ

1− ϕ

)
, ϕ ∈ [0; 1]. (4.31)

Next, dξ can be explicitly transformed into dϕ as:

dξ =
W

4ϕ(1− ϕ)
dϕ. (4.32)

Then, by substituting Eq. (4.32) into (4.30), the expression of the adhesion force for diffuse
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interface can be derived:

F γ = −6γ
∑
i

[∫
Γi

∫ 1

0

ϕ(ϕ− 1)midϕdl

]
. (4.33)

4.6.2 Numerical LBM-based implementation

To evaluate numerically the force given in Eq. (4.26), a discrete form in terms of
pressure contribution is required, i.e.:

F p =
∑
xS

σf ·nΩ∆S. (4.34)

Note that the sum runs over all lattice points xS located on the voxelated surface Ω, and
the area element ∆S is equal 1 in lattice units. We define Fτ as the viscous force, resulting
from the viscous stress tensor τ , as follows:

F τ =

∫
Ω

τ ·nΩdS (4.35)

Once the capillary bridge is established, the macroscopic velocity u will tend to zero.
Consequently, according to Eq. (4.35), viscous forces F τ will also be nil. The x-component
of viscous force F τ

x is depicted in Figure 4.20. It shows that the x-component will tend to
zero at the equilibrium of the simulation11. Accordingly, viscous forces are therefore not
taken into consideration in the computation of capillary forces.

Technically speaking, in order to compute the viscous stress tensor τ , each node of
LBM simulations in 3D conditions should contain 6 components12 {ταβ}, where α, β ∈
{x; y; z}.

In fact, when using 16 GBs—which is the total amount of memory in the graphics
card Quadro RTX 5000 used in this study—the declaration of these 6 variables for each
node would cost roughly 2 GBs. Thus, from a technical point of view, it is advantageous
to neglect the viscous force for memory optimization to provide maximum performance.

11Since the capillary bridge is oriented along x-axis, as illustrated in Figure 4.13, the y and z components
of the viscous force F y

τ and F z
τ will automatically be zero from the beginning to the end of the simulation

due to symmetry.
12Thanks to the symmetry of the tensor.
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Figure 4.20: The x-component viscous force F τ
x tends gradually to 0 when reaching equilibrium.
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Figure 4.21: Schematic view of the contact line Γi on a spherical particle. dl is a line element
on the contact line and m represents the unit vector directed along the local capillary force. In
the zoom, the live nodes (grey circles numbered from 1 to 7) used to calculate the capillary force
along the width direction of a diffuse interface around a curved solid boundary. The white and
black circles represent the fluid and solid nodes, respectively.

The expression (4.33) leads to the discrete form of the elementary adhesion force f γ

along an element dl of Γi (with dl = 1 lu)

f γ ≈ −6γ
∑
j

ϕj(ϕj − 1)mj |∆ϕj| (4.36)

with

|∆ϕj| =

∣∣∣∣∣ ∂ϕ∂x
∣∣∣∣
j

∣∣∣∣∣∆xj +
∣∣∣∣∣ ∂ϕ∂y

∣∣∣∣
j

∣∣∣∣∣∆yj +
∣∣∣∣∣ ∂ϕ∂z

∣∣∣∣
j

∣∣∣∣∣∆zj (4.37)
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We have noted
∂ϕ

∂x

∣∣∣∣
j

,
∂ϕ

∂y

∣∣∣∣
j

and
∂ϕ

∂z

∣∣∣∣
j

the local partial derivatives at the live node j,

and ∆xj, ∆yj, and ∆zj the local coordinate increments in the x, y, and z directions,
respectively. They can be computed as

∆xj =
2∑

k=1

0.5Ψ(xj + εxk)

∆yj =
2∑

k=1

0.5Ψ(xj + εyk)

∆zj =
2∑

k=1

0.5Ψ(xj + εzk)

(4.38)

with the notations

εx = [εx1 , ε
x
2 ] =

 1 −1
0 0
0 0

 , εy = [εy1, ε
y
2] =

 0 0
1 −1
0 0

 ,
εz = [εz1, ε

z
2] =

 0 0
0 0
1 −1

 (4.39)

and

Ψ(x) =

{
0, if x is not a live node
1, if x is a live node 13 (4.40)

Note that Eqs. (4.38)-(4.40) are compact notations that simplify the numerical imple-
mentation. Finally, the total surface tension force exerted on a particle can be obtained
by

F γ =
∑
i

f γ ≈ −6γ
∑
i

∑
j

ϕj(ϕj − 1)mj |∆ϕj|∆li (4.41)

where the first sum runs over all the discrete line elements ∆li = 1 lu, while the second
one runs over all live nodes in the ith line element. Finally, the complete capillary force
F̂ f = F p + F γ may be calculated as follows using (4.34) and (4.41):

F̂ f ≈
∑
xS

σf ·nΩ∆S − 6γ
∑
i

∑
j

ϕj(ϕj − 1)mj |∆ϕj|∆li. (4.42)

4.7 Numerical examples
In this section, capillary forces will be computed for two and three spherical particle

grains and compared to experimental and numerical data from Mielniczuk et al. (2018) and
Miot et al. (2021), respectively. It is worth mentioning that all the simulations of capillary
bridges—whether for doublets or triplets—are carried out in zero-gravity condition.

13Gray or the numbered nodes in Figure (4.21) are the so-called live nodes.



Numerical examples 109

4.7.1 Capillary bridge between two spherical particles

A capillary bridge between two spherical particles is simulated to validate the calcula-
tion of the associated capillary forces presented in the previous section. The simulations
are carried out with a domain size of Nx ×Ny ×Nz = 160× 250× 160, with the particles
having a radius of R = 4 mm. The characteristic length is Lc = 12 mm in x-direction,
therefore the mesh size is ∆x = 0.012/(Nx − 1) ≈ 7.5 × 10−5 m. A drop of water with
a spherical shape is created at mid-distance between the two particles as illustrated in
Figure (4.13a); two different initialization setups are used with water volumes of 4 and 10
µL. Also, different separation distances D ∈ {0.5, 1, 1.5, 2, 2.25} mm are considered. The
contact angle θ = 20◦ is imposed through the wetting condition (3.120).

Figure (4.22) shows the simulation results of the capillary forces F cap for different sep-
aration distances D and for two distinct volumes: 4 and 10 µL. At the convergence of the
LBM simulation14 as shown in Figure (4.13b), the capillary forces are calculated at the
contact line (CL) using Eq. (4.42). The experimental and numerical data of Mielniczuk
et al. (2018) and Miot et al. (2021), respectively, are added for comparison. It can be
seen that the simulation results are in a very good agreement with experimental as well
as numerical data of Mielniczuk et al. (2018) and Miot et al. (2021), which validates the
proposed approach, while also proving that Eq. (4.33) coincides with the adhesion term
at contact line given by Eq. (1.14).
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Figure 4.22: Capillary forces F cap [mN] versus separation distances D [mm] for water volumes
of 10 and 4 µL.

14The selected capillary force value compared to experimental data is taken at the end of the
simulation—around 0.22 sec in Figure (4.20)—when F x

f reaches a plateau, which corresponds to the
equilibrium of the capillary bridge.



110 Benchmarks

4.7.2 Capillary bridges between three spherical particles (coales-
cence)

Given that the numerical approach was validated with the case of a capillary doublet
between two spherical particles, the challenge is to next explore the capillary forces of
three solid grains and, in particular, at coalescence (merging) of the two menisci. The
configuration used in Miot et al. (2021) is used to provide a comparison between LBM
and energy minimization results altogether.

The triplet configuration is defined as follows: the centers of the two bottom particles
are separated by a distance D2 = 8.3 mm. The upper particle is placed at a distance
D1 = 8.7 mm from the centers of the bottom particles as presented in Figure (4.23a).
Note that the particles are in the same plane in z-direction. The particles are of the same
radius R = 4 mm.
All the simulations are performed with the domain size of Nx×Ny×Nz = 320×320×320
nodes. The characteristic length considered is Lc = 24 mm in x-direction. Therefore, the
mesh size chosen is ∆x = 0.024/(Nx − 1) ≈ 7.5 × 10−5 m. Two spherical water drops
are initialized in the mid-segment between the top and the right bottom particle, and be-
tween the top and the left bottom particle as seen in Figure (4.23a). In this latter, where
there is no contact between capillary bridges at any moment of the simulation, each cap-
illary bridge will converge separately to its own equilibrium as shown in Figure (4.23b).
However, when the water volume is sufficiently large as illustrated in Figure (4.24a), a
contact between capillary bridges may probably take place at some point in the simu-
lation15 producing a merging (coalescence) between both capillary bridges as shown in
Figure (4.24b). Once capillary bridges coalesce, they will be treated as a single merged
capillary bridge and will not converge until the imposed contact angle θ is respected, as
seen in Figure (4.24c).

A parametric study is performed by varying the initial water volume V and contact
angle θ. The vertical capillary force exerted onto the upper particle is also computed from
Eq. (4.42). Figure (4.25) depicts the capillary force for different liquid volumes (from 1

𝑥

𝑦𝑧

𝑅

𝐷1

𝐷2

(a) Initialization of water droplets

𝑥

𝑦𝑧

(b) Equilibrium of separate bridges

Figure 4.23: From initialization of two water droplets to the equilibrium of capillary bridges for
a total water volume of V = 3.5µL for θ = 20◦.

15When every single capillary bridge is converging to its own equilibrium until satisfying the imposed
contact angle θ, contact lines of the both capillary bridges may touch.
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to 33 µL) and different contact angles θ ∈ {20◦, 40◦, 50◦}. The LBM simulations are
performed without gravity so as to compare with those of Miot et al. (2021) carried out
under the same conditions.

𝑥
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(a) Initialization of water drops

𝑥
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(b) Merging capillary bridges phase

𝑥

𝑦𝑧

(c) Equilibrium coalesced bridges

Figure 4.24: From initialization of two water drops to the equilibrium of coalesced capillary
bridges for a total water volume of V = 31.5µL for θ = 20◦.
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Figure 4.25: Comparison of the capillary forces F cap, computed on the upper particle, between
the present model (LBM simulations) and Surface Evolver used in Miot et al. (2021) for different
volumes V [µL] and contact angles θ.
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A rather good agreement can be noted between the results. Most importantly, the ad-
vantage of the present method is that the forces (adhesion, pressure, and viscous forces)
are accessible at any time step, while in Miot et al. (2021) the total forces are calculated
only at equilibrium using the Virtual Work Principle. Moreover, the most precious asset
of the present model is that it can easily handle the dynamics of capillary bridges without
needing to choose whether the bridges are coalesced or not in the first place (funicular or
pendular regimes), which makes this model extremely powerful and promising for treating
partially saturated granular assemblies. In addition to these features, the new geomet-
ric algorithm for computing capillary forces using Eq. (4.42) is proved to be applied to
all types of capillary bridges regardless of their regime (coalesced or isolated capillary
bridges).

4.8 Conclusion
In this chapter, the phase-field LBM-based model as well as the wetting condition

have been validated on several benchmarks. Next, the formation of capillary bridges be-
tween two spherical grains was simulated, analyzed, and then compared to experimental
as well as theoretical data reported in the literature. Excellent results were found using
the present model when comparing the mean curvature H with its experimental and the-
oretical counterparts, especially in capturing the inversion of the sign of H from a portion
of nodoid (H > 0) to a portion of an undoloid (H < 0) when increasing the separation
distance between particles. Moreover, associated capillary forces are in very good agree-
ment with published experimental and numerical results. The study was next extended to
three particles. The present model has proved once again of its capability to handle the
transition of capillary bridges when they merge—transition from pendular to funicular
regimes. Capillary forces match the numerical data well in the same configuration.
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5.1 Introduction
In Chapter 4, the shapes of capillary bridges and their associated forces have been well

validated using the Lattice Boltzmann phase-field-based model. These benchmarks were
carried out with fixed particles in both pendular and funicular regimes. It is important,
however, to consider the dynamics and motion of particles especially if one desires to
investigate the mechanical behavior of unsaturated soils at the scale of the Representative
Elementary Volume (REV). The Discrete Element Method (DEM) is widely recognized as
one of the most valuable approaches for considering particle motion and contact forces at
this small scale. Therefore, this chapter introduces a coupling between DEM and LBM,
referred to as DEM-LBM for simplicity. We extensively reviewed the state-of-the-art as-
pects of the LBM method for unsaturated conditions in Chapter 3. In this chapter, we
provide a quick review of the DEM.
The aim of this chapter is to validate this devised coupling model by focusing on the anal-
ysis of the Soil-Water Characteristic Curve (SWCC) and the estimation of the capillary
stress for a large range of saturation levels. It must be pointed out that all simulations
are conducted under zero gravity conditions.

5.2 Discrete Element Method (DEM)
Dr. Peter Cundall and Professor Otto Strack are commonly recognized as the pioneer-

ing developers of the Discrete Element Method (DEM), also referred to as the Distinct
Element Method (Cundall and Strack, 1979). In DEM, solid grains are represented as
rigid, spherical, polydispersed particles that can overlap and interact through contact
laws1. The significant advantage of DEM, in the simulation of the mechanical behavior
of granular materials, lies in its ability to work at a scale where continuum descriptions
of granular materials do not apply. However, when enough grains are simulated, both
discrete and continuum descriptions can be applied simultaneously. This merging scale is
known as the Representative Elementary Volume (REV), introduced by Hill in 1963 (Hill,
1963). When describing the grains in the DEM, it is important to note that some hypo-
thetical assumptions are made, which include neglecting surface asperities and assuming
that the contact area between particles is relatively small compared to the dimensions of
the grains. Two different DEM families exist:

• Non-smooth contact dynamics model which relies on an implicit integration scheme
(Moreau, 1988; Jean, 1999; Radjai and Richefeu, 2009; Perales et al., 2010; Radjai
et al., 1996, 1998; Nouguier-Lehon et al., 2003; Renouf et al., 2004; Fortin et al.,
2003, 2005; de Saxcé et al., 2004);

• Smooth contact dynamics model which relies on an explicit integration scheme
(Younes et al., 2023d; Wautier et al., 2019; Duriez and Wan, 2016; Duriez et al.,
2017; Scholtes et al., 2009).

Like all methods, they both have advantages and disadvantages. For instance, the smooth
contact model must respect the CFL (Courant-Friedrichs-Lewy) time step condition,
whereas the non-smooth does not. However, the latter is slower than the smooth contact
model. A comprehensive review comparison was conducted in Dubois et al. (2018) for
more details about non-smooth and smooth contact dynamics models.

1Although DEM can model very complicated grain shapes, it is completely out of the scope of this
study.
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In this Ph.D. work the open-source software YADE (Yet Another Dynamic Engine)
has been used, which was originally developed by 3SR laboratory in Grenoble, France, and
uses the smooth contact dynamics model (Šmilauer et al., 2021). YADE is implemented
in C++ and offers a user-friendly interface written in Python. This software has gained
popularity among researchers due to its ease of use and user-friendly interface, making
it straightforward to operate. It employs the smooth contact dynamic code, allowing
particles to inter-penetrate during simulations.
DEM is based on the time-discretization of Newton’s second law of motion for rigid bodies,
following the Lagrangian approach. Its mathematical representation is defined as follows

mp
d2xp

dt2
=
∑
c

f c (5.1)

where mp corresponds to the particle mass, xp mass center position of the particle, and
f c is the external contact forces2.
Contact forces are computed when particles overlap. In addition to geometrical character-
istics, e.g. grain radius, each grain possesses multiple material parameters that are used
to define contact laws, for instance, stiffness E, stiffness ratio ν, and inter-particle friction
angle φ. There exist many contact laws between particles in the literature, but the most
common one is the elasto-frictional contact law which is briefly presented hereafter. Two
types of contact forces are generated upon overlapping: normal f (i)

n and tangential f (i)
t

contact forces applied on the ith particle, as illustrated in Figure (5.1). The former one,

Figure 5.1: (a) Overlapping of two spherical particles and (b) tangential displacement between
particles.

which is repulsive and whose direction is parallel to the direction joining the centers of
two overlapped grains, is defined as follows

||f (i)
n || = knδn (5.2)

2Later in this chapter, it will be shown that f c will be replaced by the contact forces as well as the
capillary forces due to the presence of capillary bridges.
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where δn is the normal overlapping distance, kn is the normal stiffness defined as the
harmonic average of the two particles’ radii R(i)

p and R(j)
p and proportional to the stiffness

E:

kn = 2E
R

(i)
p R

(j)
p

R
(i)
p +R

(j)
p
. (5.3)

It should be noted that the normal contact force f i
n is pointed outward in the direction

of the vector joining the centers of the grains in contact, i.e., vector n(i) as shown in
Figure (5.1a).
Regarding the tangential contact force f

(i)
t applied on the ith particle, it is defined as

follows:

||f (i)
t || =

{
ktδt , if ||f (i)

t || < ||f (i)
n || tan(φ)

||f (i)
n || tan(φ) otherwise

(5.4)

f
(i)
t is pointed in the direction of the tangential unit vector t(i), whose direction is opposed

to the relative motion between the grains, as seen in Figure (5.1b), and kt is the tangential
stiffness simply proportional to the normal stiffness kt:

kt = νkn. (5.5)

The computation of f (i)
t is not as straightforward as the normal component, because it

depends on the history of the shear displacement. As indicated in Eq. (5.4), the tangential
component is bounded by a ||f (i)

n || tan(φ), a limit defined by the Coulomb friction model
criteria that takes into account the internal friction angle φ as shown in both Eq. (5.4)
and Figure (5.2). The polydispersed grain parameters of the REV are summarized in

Figure 5.2: (a) Overlapping of two spherical particles and (b) tangential displacement between
particles.

Table 5.1.

5.3 Numerical Procedures
The DEM-LBM computations rely on an explicit coupling algorithm whereby the fluid

and solid mechanics simulation modules run sequentially at a frequency that is expressed
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Parameters Values Units
Density ρs 2,600 kg.m−3

Stiffness E 110 MPa
Stiffness ratio (α) 0.3 –
Inter-particle friction angle 30 ◦

{Dmin;Dmax} {80; 108} µm
Number of particles 3,750 –

Table 5.1: YADE mechanical parameters for the grains used in Section 5.4. The same mechanical
parameters are used later in Chapter 6, Sections 6.4.2 and 6.4.3.

as a function of the time scales of the DEM and LBM simulations. Details of the algorithm
will be discussed in a later sub-section.

We use the in-house LBM master code developed in CUDA C/C++ language for GPU
computations presented in Chapter 3, whereas the DEM code, YADE, is launched using
a C++ command. The GPU-based code is found to largely alleviate the computational
efforts. A 16GB GPU memory has been used and has been found to be just adequate for
the size of the model herein presented.

5.3.1 Initialization of the grain packing - YADE
The initialization of the spherical grains is done in YADE. First, the creation of a

cloud of grains as well as the walls on the six sides of a cubical sample is completed as
shown in Figure (5.3a). Then, an isotropic confining pressure step is carried out with σconf

= 100 kPa by moving the bounding walls to compress isotropically the granular assembly.
Then, the walls move backward until σconf reaches 0 kPa as illustrated in Figure (5.3b).

Figure 5.3: The sequence of steps for generating a polydispersed sample.

5.3.2 Initialization of capillary bridges in LBM
Capillary bridges are initialized in the form of equally-sized water droplets between

each pair of grains (i, j) for which their separation distance Dij is less than a user-defined
specific value ε as depicted in Figure (5.4a). Next, after running several LBM iterations
with fixed grains, the spherical drops evolve to form capillary bridges of realistic geometries
involving more than a pair of grains; see as seen in Figure (5.4b). It is worth mentioning
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Figure 5.4: (a) Initialization spherical drops at mid-distance between pair of grains. (b) Con-
verged capillary bridges after several LBM iterations. In (a) the separation distance between
particles A and B was larger than the allowed distance ε, therefore, no capillary bridge was
initialized between these two grains.

that the number of LBM iterations to converge to a final liquid geometry depends on
several parameters, e.g. the droplet volume created at mid-distance between two spherical
grains and the value of the surface tension γ̃ in lattice units. Based on the selected
parameters, 500 LBM iterations are enough to reach the initial equilibrium of capillary
bridges. Readers are invited to consult Appendix E for more details.

5.3.3 DEM-LBM coupling scheme
There are two points to be considered in this multi-physics coupling: first, the time

scales involved in the processes are different, and second, the discretization scheme to
solve each piece of physics leads to different time steps. To achieve both accurate physics
and numerical stability, the latter requires frequent synchronization. However, this syn-
chronization should be carefully balanced to avoid excessive computational costs.
For numerical stability, the time step ∆tDEM in DEM simulations should be smaller than
the critical time step:

∆tcrit = min
i

(
R(i)

√
ρs

E

)
. (5.6)

Regarding the LBM time step, it is usually taken as 1 in lattice units. Using conversion
coefficients as elaborated in Section 3.6, it can be expressed as:

∆tLBM =

√
Cρ
γ̃

γ
C3

L. (5.7)

From Eq. (5.7), it can be seen that once CL and Cρ are selected, the only parameter
that controls the ∆tLBM is the LBM surface tension γ̃ in lattice units. Ideally, it is more
convenient to maximize ∆tLBM for numerical efficiency while also guaranteeing numerical
stability. The pros and cons of large values γ̃ are discussed in the following.

On one hand, the advantages are:

• Faster simulations:
Based on Eq. (3.67), when γ̃ increases, the interface velocity rises.

• Reasonable relaxation times:
Based on Eq. (3.128), when γ̃ increases, Ct increases, which makes the relaxation
times τ̃ ℓ,gh larger than ∆̃t/2 = 0.5 which is crucial for numerical stability (Timm
et al., 2016).
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On the other hand, the disadvantages of large values of γ̃ are:

• Reasonable LBM velocities:
According to Timm et al. (2016), the lattice Mach number should be low (Ma ≪ 1).
Moreover, LBM fluid velocities are related to γ̃. Consequently, the larger the LBM
surface tension γ̃, the larger the velocities, making the Ma larger which is repugnant
when using LBM.

One has to consider the above-mentioned points when setting up the value of γ̃ to achieve
the best computational performance of the coupling while respecting the numerical sta-
bility of both LBM and DEM time step restrictions.

Next, to ease the synchronization between these two time steps, the ratio between
them must be such that:

m

n
=

∆tLBM

∆tDEM
⇒ n∆tLBM = m∆tDEM (5.8)

where n and m are integers. Figure (5.5) highlights at which iteration the exchange of
data between LBM and DEM takes place. Note that the DEM and LBM algorithms run
sequentially, hence, during the LBM cycle, the grains are fixed. However, another issue
can arise regarding the coupling for two main reasons:

• Convergence of spherical droplets to capillary bridges:
The capillary bridge is initialized as a spherical drop, and since we focus on the
steady state, only the converged capillary bridges are considered3. Thus, 1 single
LBM iteration will not be sufficient for the convergence of capillary bridges.

• Computational time performance:
Data exchange between LBM and YADE is a time-consuming procedure. Therefore,
making information exchange for every single LBM iteration will drastically reduce
the efficiency of the coupling.

To overcome this issue, it is convenient to multiply both iteration numbers (n and
m) by a coefficient nratio, in order: (1) to make the capillary bridge converge to its
equilibrium state between two synchronization points, and (2) to avoid huge computation
time in exchanging data between LBM and YADE. Therefore, DEM and LBM numbers
of iterations needed for the simulations are:

NLBM = nratio × n

NDEM = nratio ×m.
(5.9)

3The viscous effect is not taken into account in this study. Readers are invited to consult Younes et al.
(2022) for more details.
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Figure 5.5: Timelines of both LBM and DEM simulations and information exchange procedure
between LBM code and YADE

Figure 5.6: Flowchart showing the coupling between LB and DE methods

Figure (5.6) presents the flowchart of the coupling between LBM and DEM. The first
steps correspond to the initialization of a cloud of particles in YADE to be then passed to
LBM in order to initialize spherical drops at the mid-distance of the grains. Next, multiple
LBM iterations will be run until the convergence of all capillary bridges. Capillary forces
are then computed and used in YADE to couple the DEM-LBM calculations.

The main steps of the DEM are herein summarized: (a) contact forces are determined,
(b) Newton’s Second Law is applied for each grain to update the velocities of the grains,
and (c) particle positions are updated. Then, if the DEM iteration is less than NDEM, the
DEM algorithm will return back to step (a). Otherwise, the new positions of particles are
saved.

Finally, the updated grain positions are used to start the LBM algorithm. The main
steps in the LBM algorithm include: (1) wetting condition, (2) collision, (3) streaming, (4)
Bounce-Back boundary condition, and (5) determination of macroscopic variables. Then,
the synchronization condition is verified. If the number of iterations is less than NLBM,
the cycle will return to step (1). Otherwise, capillary forces F cap are computed for each
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grain. Next, capillary forces are read in YADE and applied to grains and back and forth
iteratively.

In what follows in the chapter, we will be conducting an ‘indirect’ validation of the
coupling aspect by investigating the capillary stress versus water saturation relationship
in an assembly of wetted particles. The numerical results show a departure from Bishop’s
relationship, which is validated by available data in the literature.

5.4 Application to capillary water in a granular assem-
bly

In this section, we apply the DEM-LBM coupling model to simulate the mechanical
behavior of a granular assembly composed of 3,750 spherical grains following a uniform
grain size distribution such that Dmax/Dmin = 1.35 with Dmax = 108µm, and Dmin =
80µm. The DEM parameters were summarized in Table 5.1.

One may ask whether the number of grains (3,750) is sufficient to justify the require-
ments of a Representative Elementary Volume (REV). It turns out that for such a narrow
grain size distribution where the grain diameters are limited, the chosen number of grains
is deemed large enough for an REV at least in the dry/saturated and low saturation con-
ditions. When the water cluster dimensions approach the sample dimension the concept of
REV becomes more questionable, but this question is far beyond the scope of this study.

The LBM domain size is Nx × Ny × Nz = 350 × 350 × 350, with a mesh size of
∆x = 5 × 10−6 m, and an imposed contact angle of θ = 25◦. The capillary interfaces
are modeled with the air-water surface tension γ = 0.072 N.m−1. The critical time step
based on Eq. (5.6) is ∆tcrit = 1.944× 10−7 s. The selected value of LBM surface tension
is γ̃ = 10. Using Eq. (5.7), the LBM time step is ∆tLBM = 1.3176 × 10−7 s. Therefore,
the DEM time step ∆tDEM is chosen equal to LBM time step (n = m = 1 from Section
5.3.3) along with nratio = 50, and the ratio between DEM time step and the critical one is
∆tDEM/∆tcrit = 0.6774 which is reasonably high for not slowing down DEM simulations
significantly. Accordingly, the relaxation times of water and air are τ̃ ℓh = 0.5158 and
τ̃ gh = 0.7846, respectively4 (in lattice units). Both relaxation times are larger than 0.5,
which ensures numerical stability (Timm et al., 2016).

From a mechanical point of view, and according to Scholtès et al. (2009); Scholtes et al.
(2009); Duriez and Wan (2016, 2017); Duriez et al. (2017), the total stress tensor σtot can
be decomposed into the sum of the so-called contact stress tensor σcont that accounts for
grain-to-grain interactions and the capillary stress tensor σcap to take into account the
effect of capillary bridges:

σtot = σcap + σcont (5.10)

In the framework of micro-mechanics, the contact stress tensor is calculated via the Love-
Weber stress tensor formula σLW expressed as follows (Love, 2013; Weber, 1966; Nicot
et al., 2013; Duriez and Wan, 2016, 2017; Duriez et al., 2017)

σcont = σLW =
1

V

∑
c

f c
ij ⊗ ℓcij (5.11)

where f c
ij is the contact force between pair of grains (i and j) and ℓcij is the branch vector

from the center of i to that of j, and ⊗ refers to dyadic product.
4Water and air viscosities are νwater = 10−6 m2.s−1 and νair = 1.8 × 10−5 m2.s−1, respectively, at a

temperature of T = 20◦C.
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Previously, in Scholtès et al. (2009); Scholtes et al. (2009); Duriez and Wan (2016,
2017); Duriez et al. (2017) the capillary stress σcap has been computed directly based
on capillary forces using a Love-Weber-like expression. However, this relation between
capillary forces and capillary stresses applies exclusively to the pendular regime where
isolated capillary bridges only exist between pairs of particles.

In this work, the involved degree of saturation range extends the pendular regime into
the funicular and the capillary ones as the isolated liquid bridges coalesce, making it
complicated to calculate the capillary stress using the virial of force theorem5. Instead,
we herein compute capillary stresses σcap indirectly using Eq. (5.10), i.e.

σcap = σtot − σcont (5.12)

As a matter of fact, it is possible to compute the capillary stress tensor as reconstructed
from the topology of the liquid phase in the pores, including the distribution of wetted
grain surfaces and air-water, air, solid-water interfaces as derived in Duriez et al. (2017);
but this is outside the scope of this work.

5.4.1 Dry sample
Firstly, the sample is initialized as shown in Figure (5.7a), and the lateral walls are

then removed. As there is no capillary water within the sample, the latter readily collapses
to form a pile of grains after a few seconds as illustrated in Figure (5.7b). The angle of
repose of the pile approaches the macroscopic friction angle of the sample (Al-Hashemi
and Al-Amoudi, 2018).

Figure 5.7: (a) Initial configuration of the dry sample confined within a box of 6 walls. (b)
Collapse of the dry sample when lateral walls are removed.

As the sample is dry, the capillary stress is necessarily zero. Moreover, the computed
mean contact stress6 also gives an extremely low value of approximately −0.46 Pa (here
negative means compression), corresponding to self-weight of the pile. Therefore, based
on Eq. (5.10), the total stress tensor is also approximately zero.

5.4.2 Wet sample
Next, the same sample as in Figure (5.7a) is considered, but under unsaturated con-

ditions. Contrary to Figure (5.7b), Figure (5.8b) shows that despite removing the lateral
5This theorem consists in replacing contact forces in Eq. (5.11) by capillary forces.
6Mean contact stress is defined as

1

3
Tr(σcont).
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walls, the partially saturated specimen (Sr ≈ 54%) does not collapse, thanks to capillary
forces just like in the case of a self-standing wet sandcastle at the beach. Figure (5.8b)

Figure 5.8: (a) Initial configuration of a wet cubical sample confined within six walls. (b) Stable
wet sample even after removing the lateral walls. The degree of saturation in this example is
Sr ≈ 54%.

readily demonstrates the capillary effects at hand.

5.4.2.1 Initial degree of saturation setup

It is certainly of interest to numerically investigate the effects of capillarity at different
degrees of saturation. In our numerical experiment, we initialize the granular assembly
starting with a known volume of water as per the procedure outlined in Section 5.3.2, and
let the system reach equilibrium both hydraulically and mechanically under zero external
stress through many cycles of coupled DEM-LBM computations.

A total number of 10,877 spherical droplets are initialized between particles at a cutoff
distance of ε = 5µm which corresponds to approximately 10% of the maximum particle
radius in the assembly. It is worth noting that several simulations were carried out for
different values of ε, and it has been found that the results are not influenced by ε. Also, by
growing or reducing the size of the initialized spherical droplet radius we thereby control
the increase or decrease of the degree of saturation in our numerical exercise.

Finally, a variety of interesting results will next be explored to establish how both
matric suction s and the capillary stress tensor evolve as a function of the degree of
saturation.

5.4.2.2 Matric suction and Soil Water Characteristic Curve

For a given initial volume of water in the granular sample, we can readily calculate the
degree of saturation as well as the volumetric water content, knowing the porosity. On the
other hand, determining the suction operating at the sample level is more complicated,
but can be estimated as the average of all local suctions si at capillary menisci weighted
by their respective volumes as in Delenne et al. (2015), i.e.

s =
1

Vw

Ncap∑
i=1

si︷ ︸︸ ︷
(ua − uiw)V

i
w (5.13)
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Figure 5.9: Degree of saturation and volumetric water content evolution in terms of the matric
suction s of the present model. Van Genuchten (1980) model has been plotted for comparison.

where Vw is the total water volume, Ncap is the number of capillary bridges, uiw is the pore
water pressure within the ith capillary bridge, and V i

w is the volume of the ith capillary
bridge. Here, the air pressure ua is negligible when compared to the negative water
pressure uw within the capillary bridges so that suction takes on a positive value.

Figure (5.9) shows the evolution of suction s as computed from Eq. (5.13) when the
sample is wetted at various degrees of saturation (Sr on the left y-axis) or volumetric
water contents (θω on the right y-axis).

For low degrees of saturation which correspond to the pendular regime, the suction s
is high, roughly equal to 13 kPa. As the degree of saturation increases, the suction drops
drastically to reach a limiting value of s ≈ 4 kPa for Sr ∈ [15; 70] %. Thereafter, Sr reaches
nearly Sr ≈ 70 % when a change in slope is observed at which point suction will tend to 0
as the level of saturation is being further increased. It is worth mentioning that the suction
values (s) obtained from these simulations are lower than typical experimental data. This
difference arises due to the difference in conditions used in the laboratory experiments,
where suction is imposed. However, these simulations are conducted under saturation-
imposed conditions. To illustrate this further, during the experiments, air is blown from
the sample initially fully saturated. This results in increased air pressure that causes
water to drain into the reservoir beneath the sample (Mitarai and Nori, 2006; Mancuso
et al., 2012). This air blowing causes a curvature in water that leads to a high suction
value controlled by the smallest contribution sizes (bottle-neck paths for air entry). In
contrast, in DEM-LBM simulations, water is more evenly distributed everywhere within
the sample. Consequently, the difference in boundary conditions leads to variations in the
calculated/measured suctions s.

For comparison purposes, the numerical simulation data has been fitted with the well-
known Van Genuchten model given by

Sr =

[
1

1 + (αs)n

]m
(5.14)

where n [-] is the parameter responsible for the soil size distribution, m [-] is related to
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the symmetry of the retention curve, and α [kPa−1] is the inverse of the suction at the
Air Entry Value (AEV) (Matlan et al., 2014b; Oh and Lu, 2014; Matlan et al., 2014a;
Fredlund and Xing, 1994).

The van Genuchten fitting parameters are found to be n = 7, m = 1.23, and α = 0.27
with the corresponding best-fitted curve shown in Figure (5.9). Based on the statistical
study reported in Matlan et al. (2014a) the values of α range between -0.445 and 1.5020
kPa−1 and those of n between 1.472 and 9.731 [-] for sandy soils. Interestingly, the van
Genuchten parameters that fit our numerical SWCC fall within the range of sandy soils
as a check for its consistency.

Recently, Hosseini et al. (2021) have studied the effect of porosity on the SWCC.
According to their findings, as the porosity increases, m increases as well. For porosities
within the range of 0.4 and 0.5, the corresponding m values fall between 0.75 and 1.66.
Therefore, the value ofm = 1.23 obtained in our numerical simulations is also in agreement
with the numerical sample porosity being equal to 0.44. It must be noted that for a
saturation degree larger than 70%, our numerical findings deviate from the van Genuchten
model. This non-smoothness behavior is probably related to the way the air invades the
water phase in the pores, thus creating large changes in the water menisci topology. As a
consequence, significant changes occur in the topology of water menisci. This observation
aligns with the experimental results of Matlan et al. (2014b) regarding sandy soils which
is indeed our case here with Dmin = 80µm> 50µm (Das, 2019).

The findings of this numerical experiment indicate that the proposed DEM-LBM model
is capable of capturing one of the main features in unsaturated soils, i.e., the development
of matric suction s and its variation with water saturation. In order to further evaluate
the DEM-LBM model, the distinctive properties of the capillary stress tensor σcap will be
next investigated.

5.4.2.3 Capillary stress tensor σcap

In the absence of the lateral walls, the total stress tensor σtot is negligible. The
capillary stress still subsists following Eq. (5.10), as

σcap = −σcont. (5.15)

For contact angles below 90◦, capillary forces are attractive in nature, they will tend to
bring the particles closer to interpenetrate further, which will induce repulsive contact
forces. The particles then move such that an equilibrium state is finally reached when
repulsive forces and attractive capillary forces are equal. Thus, the liquid bridge being in
tension by virtue of surface tension forces, the effect of capillarity is tensile. Therefore,
the contact stress σcont is in compression, whereas the capillary stress σcap is tensile.
The following analyses will be based on the mean capillary stress σcap defined as:

pcap =
1

3
Tr(σcap). (5.16)

The computations in the DEM code YADE follow the continuum mechanics convention
where compression is negative and tension is positive. Accordingly, a positive pcap corre-
sponds to the traction that confers the sample with an apparent cohesion under unconfined
conditions. The choice of a mean capillary stress can be justified based on Figure (5.10).
In the latter figure, each component of the computed capillary stress tensor σcap is plotted
for a degree of saturation Sr = 11.41%. Although not necessarily true in the most gen-
eral cases (Duriez and Wan, 2016; Farahnak et al., 2021), the computed capillary stress
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tensor σcap turned out to be nearly spherical (with σxx ≈ σyy ≈ σzz ≈ 1.12 kPa and
σxy ≈ σyz ≈ σxz ≈ 7.21 × 10−4 kPa) due to the initial arrangement of the solid particles
and liquid bridges.
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Figure 5.10: Capillary stress tensor components (σxx, σyy, σzz, σxy, σyz, σxz) evolution in time for
Sr = 11.41%.

Figure (5.11a) shows the evolution of the mean capillary stress with time until equi-
librium is reached for different degrees of saturation. The search for an equilibrium
state, both mechanically and hydraulically, eventually leads to the plateau shown in Fig-
ure (5.11a). The coupling between DEM-LBM calculations was described in detail in
Section 5.3.3.
Generally speaking, the higher the degree of saturation with more liquid bridges pulling
the grains together, the higher pcap as well as the plateau. Figure (5.11a) depicts the
temporal evolution of pcap, demonstrating a gradual increase in mean capillary stress over
time for a given degree of saturation Sr. This increase is attributed to the evolving micro-
structural particle topology until an equilibrium state is attained. Remarkably, the same
figure highlights an intriguing observation: the mean capillary stress at the equilibrium
state increases with the degree of saturation, leading to a peak at Sr = 67.47%, before
experiencing a drop at Sr = 72.77%. This indicates the existence of a maximum value of
pcap within the range of Sr between 11.41% and 72.77%.
As a comparative note, the phenomenon of increased capillary stress can also be observed
within a small granular assembly composed of three grains (Gagneux and Millet, 2016).
Under such conditions, it was found that the capillary force will increase significantly
(about 30%) when capillary bridges merge to become one cluster, whereas there were
three isolated capillary bridges before. These results are shown in the next chapter after
introducing the wetting and drying processes.

We next explore the evolution of pcap as well as that of s in terms of the degree of
saturation and volumetric water content θω as plotted on the same Figure (5.12). To
explain the evolution of pcap and s, a topology analysis of capillary bridges and air bubbles
is necessary. To avoid ambiguities, the displayed numbering of labeled7 air bubbles and

7The Flood-Fill algorithm is used to detect capillary bridges as well as air bubbles. Every air bubble
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Figure 5.11: (a) The evolution of mean capillary stress pcap [kPa] over time in DEM-LBM coupled
simulations for selected values of degrees of saturation are shown, (b) Snapshots of the partially
saturated samples at equilibrium for different values of Sr ∈ {11.41; 67.47; 72.77; 83.35} %.

capillary bridges, as shown in Figures (5.13) and (5.14), respectively, is explained next.
For example, for a degree of saturation Sr = 11.41%, the total number of capillary bridges
is 2,088 and it would be impossible to display them all labeled with distinct colors. We,
therefore, show only the first 6 labeled IDs as cut-off values so that capillary bridge IDs
higher up to 2,088 are represented by the same color (orange). The same labeling and
coloring scheme is applied to air bubbles in Figure (5.13).

Turning to point (1) which corresponds to Sr = 11.41 %, it can be seen that the
wet granular assembly contains an extensive network of air clusters together with a large
number of capillary bridges as illustrated in Figures (5.13) and (5.14), respectively.

As the degree of saturation increases and reaches point (2) which corresponds to the
peak of pcap (Sr ≈ 68 %), the isolated capillary bridges develop into one big cluster,
with plenty of trapped air bubbles within the capillary bridge cluster. This particular
point corresponds to the maximum curvature in the SWCC where the suction s starts to
decrease, as seen in Figure (5.12).

and capillary bridge is labeled and given an ID as indicated in Figures (5.13) and (5.14 )for air bubbles
and capillary bridges, respectively.
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Figure 5.12: Mean capillary stress pcap [kPa] based on Eq. (5.15) and suction s [kPa] in terms of
degrees of saturation Sr [%] and volumetric water content θω [%] at the bottom and top x-axis,
respectively.

It is important to note that the granular system has only one large cluster of capillary
bridges from step (2) onward. For higher degrees of saturation at (3) and (4), the contin-
uous air phase dwindles with ubiquitous trapped air bubbles, thus resulting in concurrent
drops in suction and mean capillary stress.
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Figure 5.13: Snapshots of the distribution of air bubbles within the domain as the system is
wetted for 4 different degrees of saturation Sr ∈ {11.41; 67.47; 72.77; 83.35} %.

Figure 5.14: Snapshots of capillary bridges within the granular media for 2 different degrees of
saturation Sr ∈ {11.41; 67.47} %.

These two aforementioned steps (3 & 4), in fact, correspond to the stage of AEV
in SWCC for a path starting from a high saturation. The AEV stage occurs when the
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air starts filling the voids of the granular system. In order to provide a clearer picture,
Figure (5.15) shows snapshots of a section taken in the middle of the specimen at various
levels of saturation similar to those shown in Figure (5.14).

Figure 5.15: Snapshots of a section made in the middle of the sample at various degrees of satu-
ration. Blue, gray, and dark gray colors correspond to water, air, and solid grains, respectively.

As can be seen, for high degrees of saturation, the sample contains one extensively
large interconnected water cluster engulfing isolated trapped air bubbles which correspond
to the capillary8 regime, as shown in (4) at Sr = 83.35%. As the degree of saturation
decreases, the air starts to infiltrate through the specimen to become partially connected
to the external air, as seen in (3) and (2). These two latter configurations represent the
funicular regime. Lastly, for low degrees of saturation below (1): isolated and coalesced
capillary bridges can be found, and the air becomes one big interconnected cluster which
corresponds to the end of the pendular regime or the beginning of the funicular regime.

5.4.2.4 Capillary stress tensor and Bishop’s equation

In light of the DEM-LBM simulations, it is tempting to revisit the long-standing
debate in unsaturated soil mechanics such as how the stresses are partitioned to reflect
the contribution of each phase. The existence of single effective stress that controls both
skeleton deformation and failure of unsaturated soils is herein not addressed as it has been
thoroughly discussed in Duriez et al. (2018); Nuth and Laloui (2008); Laloui and Nuth

8The degree of saturation marking the onset of the capillary regime depends on the water spatial
distribution in the sample. In laboratory experiments, air invades the pores from the sample boundaries.
In this case, the capillary regime is likely to be observed for a wider range of saturation.



Application to capillary water in a granular assembly 131

(2009); Scholtes et al. (2009); Vlahinić et al. (2011). However, the capillary stress tensor
will be analyzed to elucidate and provide a micro-scale perspective to Bishop’s stress
equation. As previously seen in Figure (5.10), the capillary stress tensor is spherical,
hence, the relation between the capillary stress tensor σcap and the suction s as a scalar
can be simplified as (Duriez et al., 2017):

σcap = sSrI. (5.17)

In fact, Eq. (5.17) represents a simplified version of Bishop’s equation previously seen in
Eq. (1.36) with the assumption that χ = Sr, which is debatable and subjected to con-
troversy in the literature. In our DEM-LBM computations, the capillary stress tensor is
directly deduced by subtracting the contact stress tensor from the total stress one follow-
ing Eq. (5.15).
Figure (5.16) gives the plot of pcap as calculated from simplified Bishop’s equation (Eq. 5.17)
and our DEM-LBM simulations (Eq. (5.15)) in terms of degrees of saturation Sr and vol-
umetric water content θω on the bottom and top x-axis of the figure, respectively.

As the granular assembly is being wetted, both mean capillary stresses will increase
until a certain threshold (Sr ≈ 68 %, θω ≈ 30 %) beyond which the specimen starts to lose
the effects of capillarity. We can observe that pcap based on Bishop’s simplified equation
is always less than our computed values.
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Figure 5.16: Mean capillary stresses pcap [kPa] based on Eqs. (5.15) and (5.17) evolution in terms
of degrees of saturation Sr [%] and volumetric water contents θω [%].

Despite the same tendency displayed in both curves, they do not perfectly match, espe-
cially before the threshold is reached. The reason for this lies in the assumption: χ = Sr

noted earlier in Bishop’s equation.
To investigate whether Sr and χ coincide or not, χ is back-calculated from our DEM-

LBM computations for various degrees of saturation and suction values. In the present
study, since the specimen is unconfined (σtot = 0), the capillary stress coincides with the
negative of the contact stress tensor, and thus:
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χ =
1

3

Tr(σcont)

s
. (5.18)

Several points should be noted:

• The effective stress parameter χ can be generally defined as a tensor, but since in the
present simulations, all the stress tensors are diagonal and isotropic, mean values

are considered, i.e.,
1

3
Tr(σ);

• Eq. (5.18) is deduced from Eq. (1.36) which is formulated in the Soil Mechanics
convention (compression > 0 and tension < 0). The mean contact stress is therefore

positive,
1

3
Tr(σcont) > 0;

• The air pressure ua is negligible with respect to the mean capillary stress.

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0
0 , 0

0 , 2

0 , 4

0 , 6

0 , 8

1 , 0

                           
 

Figure 5.17: The evolution of χ in terms of Sr. Linear relation (χ = Sr) and Liu et al. (2020b)
results are plotted for comparison.

The back-calcualted χ is then plotted against Sr as shown in Figure (5.17) where χ and
Sr almost never coincide proving why both σcap are not exactly similar in Figure (5.16).
To ensure that our findings are right on course, another numerical data set for χ in terms
of Sr (Liu et al., 2020b) has been added to Figure (5.17).

Our findings and the ones determined by Liu et al. (2020b) are generally in good
agreement. Clearly, the two numerical results do not line up perfectly, especially for low
levels of degrees of saturation Sr < 10 %. For this particular range, and contrary to our
findings, Liu et al. (2020b) have found that χ < Sr.

The above discrepancy can be attributed to the difference between particle size dis-
tributions used in this work and theirs. In fact, the grain size used in Liu et al. (2020b)
is roughly four times smaller than the one we have used in this study, which results in
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changes not only in porosity but also the attendant capillary effects—the smaller the parti-
cles, the greater the capillary effect. Moreover, and according to Bishop and Blight (1963),
for clayey soils the effective stress parameter χ is smaller than the Sr not only for low
saturation but even up to approximately 50 % (Talybont Clay). In contrast, silty-sandy
soils lead to χ < Sr only for low degrees of saturation Sr < 20 %—see Vaich moraine soil
in Bishop and Blight (1963). Hence, χ tends to remain greater than Sr as particle size
increases, which renders our results reasonable since our particle size is greater than the
one used in Liu et al. (2020b).
It is also interesting to fit the findings using a fourth-order polynomial function χ =

f(Sr) =
4∑

i=0

aiS
i
r as shown in Figure (5.18). The fitting was determined using Matlab.

In order to determine the goodness of the fitting model, the R-squared (R2), also known
as the determination coefficient, residual norm, and the Mean Square Error (MSE), are
respectively determined as follows

R2 = 1−
∑

i(yi − ŷi)
2∑

i(yi − ȳ)2
= 0.997;

Residual =
∑
i

(yi − ŷi)
2 = 3.77× 10−3;

MSE =
∑
i

(yi − ŷi) = 2.1× 10−2

(5.19)
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Figure 5.18: The evolution of χ in terms of Sr of DEM-LBM simulations and their fitting function.

where yi is the numerical data (observed), ŷi the estimated data, and ȳ is the mean value
of the numerical data. The aim of this polynomial function is to be used in macroscopic
methods, such as FEM or FDM, as a replacement for Bishop’s effective stress with the
assumption of χ = Sr.
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5.5 Conclusion
In this chapter, the DEM-LBM coupling algorithm is developed to investigate the

characteristics of partially saturated granular assemblies for different degrees of satura-
tion. The air-water interfaces were handled by the phase-field-based Lattice Boltzmann
model (LBM). As such, the proposed LBM approach successfully handled the dynamics
of isolated as well as coalesced capillary bridges, and most importantly calculates cap-
illary forces throughout pendular, funicular and capillary regimes. As for the particle
dynamics and contacts between them, they were handled by employing the non-smooth
Discrete Element Method (DEM) using the open-source software YADE. The predictive
capabilities of the DEM-LBM algorithm are investigated in the modeling of unsaturated
granular assemblies. First, the variation of suction in terms of the degree of saturation
or volumetric water content has been qualitatively recovered and compared to the van
Genuchten model.

Furthermore, when the sample is wetted at various degrees of saturation, we recover the
classic result of a self-standing sandcastle under no confinement, whereas an unconfined
cubical dry sample readily collapses. Another finding is the elucidation of the mean
capillary stress for several degrees of saturation. The obtained results demonstrate that
the mean capillary stress only increases with the degree of saturation up to a certain level
≈ 68% after which there is a drop, explainable by the dynamics of water clusters filling
the void space. Next, we also have convincingly demonstrated that the so-called Bishop’s
parameter χ does not coincide with the degree of saturation Sr, but takes a form that can
be readily calculated numerically and that coincides with experimental results.

In conclusion, it appears that the DEM-LBM coupling is indeed a valuable numerical
tool for investigating partially saturated granular assemblies across various regimes—pendular,
funicular, and capillary. This approach allows for an elucidation of the dynamics of the
different phases at the pore scale. Further research endeavors should dig deep into the
micro-mechanical behavior of partially saturated granular assemblies subjected to wetting
(condensation) and drying (evaporation) cycles, with the objective of understanding thor-
oughly the interaction between capillary bridges and the hysteresis phenomenon. This
investigation will also assess their impact on suction and mean capillary stress, which will
be the focus of the next chapter.
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6.1 Introduction

In this chapter, an investigation of the hysteresis phenomenon in the dynamics of
air-water capillary bridges within a small system comprised of three (triplet) and four
(quadruplet) particles is carried out. A mathematical transformation has been developed
to address the processes of both evaporation and condensation. The proposed approach
is validated using two benchmark examples: mono-dispersed triplet and quadruplet of
particles in contact and for a wetting angle of θ = 50◦ for which capillary forces are
examined. The condensation and evaporation processes are next applied to triplets and
quadruplets of particles in numerous configurations, e.g., different separation distances
with different wetting angles θ.

Next, the condensation and evaporation processes are applied to a larger granular as-
sembly with fixed particles (only LBM) at the REV scale to investigate the hysteresis of
suction s between condensation and evaporation for the same wetting angle θ. Moreover,
another example at the REV scale subjected to condensation and evaporation is carried
out for the same wetting angle, but this time using the DEM-LBM model to study the im-
pact of particle rearrangements within the REV. In this case, both suction s and capillary
stress σcap can be calculated.

Then, the wetting angle hysteresis is enforced within the simulations: during the
evaporation process, the wetting angle θe is chosen to be lower than θc which stands for
the wetting angles during the evaporation and condensation processes, respectively.

6.2 Evaporation and condensation processes

Evaporation and condensation processes occur at the interface separating water from
air, leading to a change in the interface’s position. Hence, in a phase-field model, where
the interface corresponds to a threshold value for ϕ, eliminating or adding matter may
be achieved by increasing or decreasing the value of ϕ around the equilibrium position of
the interface. Formally, this is done by applying a mathematical transformation of the
ϕeq(ξ) to become ϕe(ξ) or ϕc(ξ) to simulate evaporation or condensation, respectively; see
Figure (6.1).

At the thermodynamic equilibrium, the evolution of the phase-field parameter ϕ
through the interface has to fulfill the equilibrium condition: ϕ(ξ) = ϕeq(ξ). Based on
Eq. (3.10a), the differentiation of ϕeq(ξ) yields:

dϕ =
4

W
ϕ(1− ϕ)dξ (6.1)

where dϕ is the infinitesimal variation of ϕ and dξ is the infinitesimal variation of ξ within
the capillary bridge interface. Numerically speaking, Eq. (6.1) can be re-written as follows:

∆ϕ =
4

W
ϕ(1− ϕ)∆ξ (6.2)
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Figure 6.1: Profiles of condensed and evaporated liquid-gas capillary interfaces ϕc(ξ) ϕe(ξ),
respectively for ∆ξ = 1.

where dϕ is replaced by ∆ϕ and dξ by ∆ξ. As such, Eq. (6.2) provides the relationship
between the change in ϕ and the change in the position of the interface in lattice units.

The proposed numerical technique is such that evaporation or the condensation of
fluid can be imposed as follows:

ϕe(ξ) = ϕeq(ξ)−∆ϕ (∆ξ) (6.3a)

ϕc(ξ) = ϕeq(ξ) + ∆ϕ (∆ξ) (6.3b)

where ϕe(ξ) and ϕe(ξ) are the profiles of the phase-field parameters after applying evapo-
ration and condensation processes, respectively.

Figure (6.1) shows the equilibrium ϕeq(ξ) profile (black curve) and the new curves after
condensation (red) and evaporation (blue) for an imposed displacement of the interface
by 1 lattice unit ∆ξ = ±1. As can be seen from Figure (6.1), the variations of ϕ are
significant only in the liquid-gas interface, whereas, in the bulk fluids the variation is
quasi nil and respect ϕ ∈ {0; 1}.

6.3 Jumps in capillary forces and hysteresis effects on
small grain assemblies

In this section, the condensation/evaporation technique is implemented to capture the
hysteresis effects in small clusters composed of three and four spherical grains. For all the
triplets and quadruplets applications, only mono-dispersed particles are considered with
a radius of R = 4 mm, with a size mesh ∆x = 7.5× 10−5 m.

6.3.1 Equidistant triplet of grains
The first case study deals with a triplet of particles forming an equilateral triangle

with a separation distance D = 0.1 mm, as illustrated in Figure (6.2). This separation
distance is the minimum distance we can simulate, which corresponds to 1 voxel, to
prevent numerical instabilities. The 1 voxel distance (equivalent to ∆x = 7.5×10−5 m) is
relatively small compared to the size of the particles and hence they can be assumed to be
almost in contact. We also show in the same figure how capillary bridges are initialized
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at the mid-distance of each pair of spherical grains. This configuration approximately
matches the one used in Gagneux and Millet (2016) and Gras (2011), in which case the
particles were all touching.

Figure 6.2: Three capillary bridges located at the mid-distance of each pair of particles.

After initializing capillary bridges, the proposed condensation/evaporation process is
numerically enforced and the resulting capillary force acting on the top particle is calcu-
lated via Eq. (4.26).

Figure 6.3: Capillary force evolution in terms of the water volume as the system undergoes a
cycle of condensation and evaporation with a contact angle of θ = 50◦ and for a separation
distance of D = 0.1 mm. The capillary force is calculated on the top grain in the y-direction,
see Figure (6.2).

Figure (6.3) depicts the capillary forces evolution when the granular system is sub-
jected to condensation followed by evaporation. As the volume of water increases, when
the triple (three-phase contact) lines of the isolated capillary bridges touch each other,
coalescence takes place, resulting in the transition of the system from the pendular to the
funicular regime. The merging occurs for a volume of V ≈ 10µL as seen in Figure (6.3)
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from state (a) to (b). It is important to note that at the coalescence, a discontinuity in
capillary forces is observed with a relatively sharp increase of 29.9% in capillary forces,
which is completely in agreement with the theoretical calculation of 30% reported by
Gagneux and Millet (2016) for the same contact angle θ = 50◦.

To better understand the physics behind the sharp increase in capillary forces at
coalescence, the evolution of Laplace Fp and surface tension Fγ forces are plotted in
Figure (6.4).

Figure 6.4: The evolution of pressure force Fp and surface tension force Fγ of Eq. (4.26) in terms
of water volumes while subjected to condensation and evaporation processes.

In the pendular regime and as the water volume increases, it can be observed that Fp

decreases continuously. By contrast, the surface tension force Fγ term increases because
the wetting surface (solid-water interface) expands gradually around the particle. At
coalescence, it is observed that the Laplace force suffers a significant jump whereby it
increases, whereas the surface tension force shows a slight decrease also through a jump.
It is the two forces when combined that give an overall increase of ≈ 29.9% in capillary
force, which coincides with the value reported by Gagneux and Millet (2016).

It is worth noting that the discontinuities in Fp and Fγ have two origins. First, based
on Eq. (4.26), the surface tension force Fγ will increase in direct proportion with the
size of the wet contour Γ. Figure (6.5) depicts how the contours evolve before and after
coalescence. It can be observed that the contour before coalescence (blue contour) slides
into the middle to fill the air between capillary bridges at coalescence, causing a slight
decrease in the wet contour Γ (red contour), hence a decrease in the surface tension force.
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Figure 6.5: Air-water interface contour before and after coalescence for θ = 50◦ and D = 0.1
mm.

Second, Fp increases drastically despite the volume V changes slightly at coalescence.
This drastic increase in Fp is due to the change in the suction s = ua − uw when the
isolated capillary bridges become one big cluster, which is illustrated in Figure (6.6). It
is highlighted here that the change in the suction s is caused by the change in curvatures
upon the air-water interface after and before coalescence—according to the Young-Laplace
equation (Mielniczuk et al., 2018; Hueckel et al., 2020; Younes et al., 2023a).

When the water volume exceeds V = 30µL, we choose to begin the evaporation process
by using Eq. (6.3a). The merged capillary bridge shrinks as evaporation proceeds until the
water volume reaches V ≈ 5.2µL at step (c) in Figure (6.3). At this point, the capillary
bridge spontaneously splits up into three smaller capillary bridges of equal size as seen
in Figure (6.3) at step (d). This rupture event causes a sharp decrease of 30.88% in the
capillary force as also obtained by Gras (2011).

It is important to note that in Figure (6.4), the force acting on the top grain with
one single bridge or three distinct bridges is the same during either the condensation or
evaporation path, which is in agreement with the fact that the wetting angle remains
constant during the simulation. Only the volume at which bridges merge or split is
different. The same observation is true for the variation of suction as shown in Figure (6.6).
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Figure 6.6: Evolution of suction s [Pa] evolution in terms of water volumes V [µL] during
condensation and evaporation processes.

To understand the underlying physics of this hysteresis, we show the snapshots of the
merged capillary bridge as it is being evaporated until the rupture phase—from (a) to (c)
of Figure (6.7). As the merged capillary bridge is being evaporated, the thickness z∗ of the
capillary bridge in the yz plane is being narrowed, as illustrated in Figures (6.7c.1), (c.2),
and (6.8). Once z∗ reaches zero, the single bridge splits ultimately into 3 separate bridges
as precisely illustrated in Figure (6.8). As previously mentioned, coalescence takes place
when the triple lines of distinct capillary bridges touch each other. Therefore, during
condensation and evaporation processes, the geometrical conditions for the switch from 1
to 3 bridges and vice-versa are forcibly different, which explains the hysteresis. In short,
the rupture of a capillary bridge involves a thinning mechanism, whereas the merging of
capillary bridges involves the meeting of triple lines.
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Figure 6.7: Evaporation process steps from 1 to 3 for a contact angle θ = 50◦. (a) 3D view, (b)
2D section view in xy−plane, (c) 2D section view in yz−plane. The bottom particles in (c) are
in transparent mode to better visualize the merged capillary bridge.
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Figure 6.8: Evolution of the capillary bridge thickness in yz-plane (z∗) in terms of total water
volume V during the evaporation phase. Figure (6.7c) shows the illustration of z∗.

6.3.2 Influence of separation distances and wetting angle

After recovering experimental results in the previous subsection, the next step is to
explore the influence of separation distances and wetting angle on the sharp jump and
drop of capillary forces at coalescence and rupture, respectively. This study is essential
because capillary forces vary with the contact angle as well as the separation distance
Younes et al. (2022); Benseghier et al. (2022); Mielniczuk et al. (2018); Miot et al. (2021).
The new configurations are set in such a way that the centers of the spherical particles still
form an equilateral triangle, but the separation distance D is varied as in D ∈ {0.2; 0.3}
mm with θ = 50◦.

Figure (6.9) shows the sharp relative capillary force |∆F | [%] in terms of the separation
distances during the condensation and evaporation processes, respectively. It can be
observed that the farther apart the particles are, the lower the capillary force jumps/drops.
These findings are consistent with the fact that when the separation distance increases
the suction s decreases as already seen in Figure (4.16). Nevertheless, the hysteresis
phenomenon is still observed even when increasing D, for the same reasons explained
previously.
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Figure 6.9: The evolution of the relative difference in capillary forces |∆F | [%] in terms of
separation distance D for both condensation and evaporation processes for θ = 50◦.

The effect of the wetting angle θ is next investigated. Multiple simulations are carried
out with θ ∈ [10; 70]◦ and for D ∈ {0.1; 0.2; 0.3} mm. Figures (6.10a) and (b) show
the absolute difference |∆F | [mN] at coalescence and rupture, respectively, for different
separation distances D and wetting angles θ. These findings show that increasing the
wetting angle decreases the absolute jump/drop of capillary forces either at coalescence
or rupture. It is interesting to note that during evaporation for D = 0.3 mm and θ = 70◦,
the merged capillary bridge splits up into two capillary bridges instead of three. Therefore,
no discontinuity in capillary force, applied on the top particle, has been observed for this
particular point. The reason behind this revolves around the fact that just before the
rupture, the bottom triple line interface is above the line joining the centers of the bottom
particles as shown in Figure(6.11). This may be due to one of these two reasons: (1) the
configuration is theoretically symmetrical. However, the horizontal meshing is different
than the oblique one, and (2) the configuration (shape of the merged capillary bridge)
in Figure (6.11b) might not be stable1 but (c) is stable while (z∗) did not reach 0 yet.
Therefore, the merged capillary bridge is forced to become two stable capillary bridges.
We note that another hysteresis effect has been reported for θ = 70◦ between evaporation
and condensation processes.

1This a hypothetical assumption because there is no criterion indicating whether this configuration is
stable or not.
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Figure 6.10: The evolution of the absolute difference in capillary forces |∆F | [mN] in terms of the
wetting angle θ for different separation distances D ∈ {0.1; 0.2; 0.3} mm, during (a) condensation
and (b) evaporation processes.

Figure 6.11: Profiles of capillary bridges. (a) Merged capillary bridge. (b) Merged capillary
bridge just before the rupture. (c) After the rupture of the capillary bridge. In (b) the bottom
air-water interface is at the same level as the horizontal line joining the particles’ centers.

6.3.3 Quadruplet of particles - Regular tetrahedron
From the planar configuration of the previous subsections, we now move on to 3D

structures of grains. The question is whether the sharp jump and drop in capillary forces
remain ≈ 30% even for 4 particles (non-planar systems) for θ = 50◦? To answer this
question, in this section, we examine a quadruplet of particles forming a regular tetrahe-
dron with different separation distances, e.g., D ∈ {0.1; 0.2; 0.3} mm, along with θ = 50◦.
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Figure (6.12) illustrates the initialization phase of the capillary bridges created at the mid-
distance between particles. Capillary forces are hereafter calculated on the top particle
along the z-direction as shown in Figure (6.12).

Figure 6.12: Initialization of capillary bridges at the mid-distance of spherical particles for a
quadruplet of particles.

Figure 6.13: Capillary force evolution in terms of water volumes for condensation and evaporation
processes for a wetting angle of θ = 50◦ and for a separation distance of D = 0.1 mm. The
capillary force is computed on the top grain in the z-direction

The first considered configuration is similar to Section 6.3.1. The first configuration
to be considered is the same as before, i.e., D = 0.1 mm and θ = 50◦. In the same way as
before, the condensation and evaporation processes are imposed successively. Figure (6.13)
depicts the capillary force F̂f evolution in terms of water volumes. It can be observed
that the capillary force, in this case, follows roughly the same tendency as the case of
a triplet shown earlier in Figure (6.3). Although they have roughly the same tendency,
here, capillary force is larger than the triplet case. This is due to the fact that in the
four-particle case, 3 capillary bridges are connected to the top spherical particle, with 1
capillary bridge more than the top grain of the three-particle case.
The jump and drop in capillary forces are found to be 58% and 52% for condensation
and evaporation, respectively (compared with 30% in Section 6.3.1). The reason why the
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jump and drop of capillary forces are considerably higher than in the triplet case is that,
in this case, three capillary bridges are attached to the bottom grain instead of one as
was the case of the triplet. This forms a larger volume of water that contributes to the
capillary force applied on the top grain after coalescence. Once again, as expected, the
hysteresis phenomenon is observed—coalescence and rupture do not occur for the same
volume.

Figure (6.14) depicts the evolution of the relative difference in capillary forces as a
function of separation distances during condensation and evaporation processes. These
findings are in line with the triplet case in which the relative difference in capillary forces
|∆F | [%] decreases when the separation distance increases. However, contrary to the
triplet case, |∆F | [%] is larger than 30% (≥ 40%) for all three separation distances
D ∈ {0.1; 0.2; 0.3}. This is probably due to two effects: (1) more “dead water” not con-
tributing to the capillary force on the top grain before coalescence, i.e., the horizontal
capillary bridges in the triplet case, (2) rupture later because of "3D" effects (the planar
bridge gets thinner quicker).
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Figure 6.14: Relative difference in capillary forces |∆F | [%] in terms of separation distances D
[mm] for both coalescence and rupture for a wetting angle of θ = 50◦ for the quadruplet case.

6.4 Hysteresis effects at REV scale
Previously, we have examined how the hysteresis phenomenon affects the capillary

force jumps and drops within small granular assemblies during condensation and evap-
oration, respectively. In order to come back to the material point scale, we propose to
consider much larger systems of grains.

Two cases are considered. The first one, in which 1,000 particles are kept fixed, allows
us to separate the hysteresis effect arising from capillary bridge topology from the particle
rearrangement. The second one, in which the Particle Size Distribution (PSD) is the same
as Chapter 5 with 3,750 particles, is used, but here with a confining pressure of σconf = 2
kPa.
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6.4.1 Fixed microstructure: impact of the void space topology

For this example, the PSD is shown in Figure (6.15). Granular assembly characteristics
are summarized in Table 6.1.

Figure 6.15: (a) An illustration of the granular assembly composed of 1,000 spherical grains. (b)
The Particle Size Distribution (PSD) of (a). The largest and the smallest grain diameters are
64.48µm and 30.45µm, respectively.

Table 6.1: Granular system statistical characteristics: Ngrains is the number of grains, Dmax/Dmin
is the packing polydispersity, D50 is the grain diameter at which 50% of cumulative percent is
reached, Cu = D60/D10 is the uniformity coefficient, and ϕp is the granular media porosity.

Ngrains [-] Dmax/Dmin [-] D50 [µm] Cu [-] ϕp [-]
1,000 2.11 50.35 1.22 0.4624

The first step consists of initializing equal-sized isolated capillary bridges at the mid-
distance of each pair of grains. Only those that are separated by 1.5 µm or 1 voxel in
the LBM discretization, capillary bridges are initialized as shown in Figure 6.16. Con-
sequently, 1,458 isolated capillary bridges are created for this case resulting in an initial
degree of saturation of Sr = 4.14% which is defined as the ratio of the water volume
to the void volume. From this point, the condensation process begins, leading to the
growth of capillary bridges that enable the water to transit from the pendular regime to
the funicular, and eventually to the capillary regime.

Figure (6.18) shows the suction evolution during condensation and evaporation pro-
cesses in terms of degrees of saturation Sr. A sharp decrease is observed from Sr ∈
[4; 17]%. Afterward, a change of slope is then observed until Sr ≈ 60%. Finally, the
suction tends to zero as the system enters the capillary regime. The SWCC found in this
example is quite similar to the one obtained in Figure (5.9). It must be noted that the
values of suctions between this example and one done in Chapter 5 are not the same since
the PSD is different.
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Figure 6.16: (a) Initialization of the capillary bridges at the mid-distance of spherical grains. (b)
A zoomed snapshot of (a). It is important to note that due to the large distance between its
neighboring spheres, there is no capillary bridge initialized around the red-dotted-circle particle
in (b).

The evaporation process begins once the granular system is saturated—blue curve
of Figure 6.18. Approximately the same trend is observed between both curves, but the
evaporation curve is shifted upward with respect to the condensation one in both capillary
and funicular regimes. In other words, the hysteresis phenomenon is also observed within
the suction ∆P of the large granular assembly. A thorough analysis of the air bubbles’
topology can be carried out using the Flood-Fill algorithm to reveal the physics behind the
difference in suctions. Figure 6.17 represents screenshots of the air bubbles distribution
within the sample for Sr ≈ 40%. It is very important to note that in Figure 6.17 the large
air cluster has been omitted for better visualization, and only the trapped air bubbles
are displayed. It can be easily seen that in situation (a) air bubbles trapped between
capillary bridges (encircled in red) are fewer than in situation (b) which results in a larger
curvature for (b) than for (a). This observation is consistent with the Young-Laplace
equation stating that the higher the curvature, the higher the suction s.

Figure 6.17: Air bubbles trapped within the granular system are colored in blue with Sr ≈ 40%
during (a) condensation and (b) evaporation.

When the first evaporation process is completed, the granular system is condensed
and evaporated again, the green and black curves of Figure (6.19), respectively. It is
remarkable that the red and green curves do not match, even though they both represent
the condensation phase. This is due to the fact that the initial distribution of capillary
bridges is not the same, as shown in Figure (6.17). On the contrary, the evaporation curves
(blue and black curves) are quite similar because they were in the same condition (capillary
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regime) when the evaporation process began—only one geometrical configuration for full
saturation Sr = 1.
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Figure 6.18: Evolution of ∆P in terms of degrees of saturation for condensation and evaporation
processes
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Figure 6.19: Evolution of ∆P in terms of degrees of saturation for condensation and evaporation
processes for multiple cycles
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6.4.2 Fully coupled problem: adding grain rearrangement effects
for a constant wetting angle

In this section, the DEM-LBM approach together with the evaporation condensation
techniques introduced earlier are applied to investigate the behavior of granular assemblies
under unsaturated conditions. Contrary to the previous case where particles are fixed,
here, they move under the action of capillary forces. Consequently, in addition to capillary
bridge and air bubble topology hysteresis effects, the rearrangement of grains is taken into
account as well. As mentioned earlier, the sample used in Chapter 5 is used here again,
but this time with a confining pressure of σconf = 2 kPa.

As seen earlier in Section 6.4.1, the hysteresis of the suction s within unsaturated
granular assemblies when subjected to evaporation or condensation depends on the initial
configuration of capillary bridges. Therefore, to bypass this dependency on an arbitrary
non-physical initial configuration, the initial state of this problem is set in the capillary
regime2 Sr ≈ 95% and the sample is first subjected to evaporation followed by a conden-
sation process. Figure (6.20) depicts the evolution of the suction s in terms of degrees of
saturation for a wetting angle θ = 25◦ for both cycles. From Figure (6.20), the hysteresis
caused by evaporation and condensation processes is well captured. Just as before, al-
though the contact angle is the same for both cycles, the suction is different due to the
difference between the capillary bridge and air bubble topology.

Figure 6.20: The evolution of suction s [kPa] in terms of degrees of saturation Sr during evapo-
ration and condensation processes for a wetting angle of θ = 25◦.

Similarly to Chapter 5, capillary stress can be computed indirectly using both Love-
Weber and total stress formulae, as depicted in Figure (6.21). While the sample is sub-
jected to evaporation, the mean capillary stress increases up to a threshold Sr ≈ 68%
below which it decreases. Also, when the condensation is applied from Sr ≈ 7%, the

2The choice of Sr ≈ 95%, instead of Sr ≈ 100% is taken to ensure that there are some air bubbles
present within the sample so that the evaporation does not only occur on the boundaries of the sample
but rather to be roughly evenly propagated from the inside.
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mean capillary stress increases until it reaches its peak value at Sr ≈ 50% and then de-
creases toward zero as the system is getting close to full saturation. The peak values
of the mean capillary stress pcap are different; with pcap = 3.05 kPa during the evapora-
tion step and pcap = 2.37 kPa during the condensation step. This difference arises from
the suction difference between evaporation and condensation processes as seen earlier in
Figure (6.20). Moreover, an intriguing result can be also observed in the rate at which
the mean capillary stress increases or decreases. Although the maximum value of pcap is
indeed reached earlier during condensation, its decrease is smoother than that observed
during evaporation. This phenomenon could be attributed to the topological differences
in capillary bridges and air bubbles within the sample, which will be explored further
herein.
To understand the physics behind this result, the number of capillary bridges and air
bubbles are investigated and depicted in Figure (6.22). It can be seen from (a) that the
starting point for the evaporation process is in the capillary regime with only one large
water cluster. As the evaporation continues, a unique capillary bridge is found until it
reaches Sr ≈ 68%. Then, the number of capillary bridges starts to increase. At this exact
stage, the mean capillary stress reaches its maximum value and decreases afterward.

During the evaporation step, the number of air bubbles reaches its maximum value at
Sr ≈ 68%, which corresponds to the stage when pcap is at its peak. A large number of air
bubbles leads to increased curvature, resulting in higher capillary forces. Consequently,
the mean capillary stress reaches its highest values. Another interesting result is that the
number of air bubbles follows the evolution of the mean capillary stress.

As for the condensation process, the number of capillary bridges increases slightly
at low degrees of saturation before decreasing towards 1 at full saturation. The mean
capillary stress pcap reaches its maximum value at Sr ≈ 51%, but for this degree of
saturation, the number of capillary bridges is 138 capillary bridges and not one as is
the case of the evaporation process at the maximum value. However, the majority of
the water volume, approximately 98%, is contained within a single large cluster capillary
bridge. In other words, this suggests that the system can be approximated as having
just one dominant cluster capillary bridge. The other capillary bridges may contribute to
smoothing the decrease of the mean capillary at larger degrees of saturation. As for the
number of air bubbles, it increases slightly as the system is being wetted, but it remains
much lower than during the evaporation process. When the saturation level reaches
Sr ≈ 80%, air bubbles start to completely disappear and the mean capillary stress drops
at the same rate as the mean capillary stress for the evaporation process. The larger
number of air bubbles may explain why the mean capillary pressure for evaporation is
larger than the one for the condensation process.
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Figure 6.21: The evolution of mean capillary stress pcap [kPa] in terms of degrees of saturation
Sr during evaporation and condensation processes for a wetting angle of θ = 25◦.

Figure 6.22: The evolution of the number of (a) capillary bridges and (b) air bubbles in terms
of degrees of saturation Sr during evaporation and condensation processes for a wetting angle of
θ = 25◦.

To assess microstructural changes resulting from the evaporation as well as the con-
densation processes, we can track the change in the porosity of the sample, as shown in
Figure (6.23). Based on this figure, the sample displays a contraction behavior throughout
the evaporation and condensation cycles. It may be due to the fact that the sample being
investigated is loose which is reminescent of the contraction behavior of a loose sample in
triaxial tests.



154 Condensation-Evaporation

Figure 6.23: The evolution of porosity ϕp [-] in terms of degrees of saturation Sr during evapo-
ration and condensation processes for a wetting angle of θ = 25◦.

6.4.3 Fully coupled problem: adding grain rearrangement effects
for different wetting angles

So far, it has been demonstrated that even when the wetting angle is the same, θ = 25◦,
unsaturated soils exhibit hysteresis during both condensation and evaporation processes
due to the change in the topology of capillary bridges and air bubbles (microstructure
rearrangement remains limited in the present case). Another hysteresis phenomenon has
been highlighted in Chapter 1, Section 1.2.2.4 called wetting angle hysteresis. Indeed,
the wetting angle experiences variation between evaporation and condensation. This
difference arises from the behavior of water: during evaporation, water evaporates from
wet surfaces, whereas during condensation, it condenses on dry surfaces. This phenomenon
results in θe < θc. Consequently, a wetting angle hysteresis is examined hereafter.

For the evaporation process, the wetting angle remains the same as before. i.e., θe =
25◦. Conversely, for the condensation process, larger wetting angles are considered: θc ∈
{25, 40, 50, 60}◦. Figure (6.24) illustrates the evolution of suctions in terms of saturation
levels during both evaporation and condensation processes. This figure highlights that
larger values of wetting angles cause the suction to reduce due to the decrease in the
curvature, to the point that suctions can even become negative for high contact angles,
e.g., θ ∈ {50; 60}. A negative suction reminds us of the undoloid shapes where the water
pressure is positive and the mean curvature H is negative as shown in Figures (4.16) and
(4.15). It must be noted that while this analogy serves to understand the main idea of
the concept, it is not entirely accurate. The so-called undoloid and nodoid shapes are
exclusively defined within the pendular regime, see Appendix D, Section D.3 for more
details.
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Figure 6.24: The evolution of suction s [kPa] in terms of degrees of saturation Sr during evapo-
ration and condensation processes for wetting angles of θe = 25◦ and θc ∈ {25; 40; 50; 60}◦. For
a clear visualization, arrows indicating the path directions—evaporation or condensation—are
added.

Furthermore, the mean capillary stress pcap has been plotted in terms of degrees of
saturation during evaporation and condensation processes for wetting angles of θe = 25◦

and θc ∈ {25; 40; 50; 60}◦ in Figure (6.25). Likewise, the mean capillary stress for higher
wetting angles is lower than the one for θc = θe = 25◦.
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Figure 6.25: The evolution of the mean capillary stress pcap [kPa] in terms of degrees of saturation
Sr during evaporation and condensation processes for wetting angles of θe = 25◦ and θc ∈
{25; 40; 50; 60}◦. For a clear visualization, arrows indicating the path directions—evaporation
or condensation—are added.

As before, the porosity variation is plotted in Figure (6.26) in terms of the saturation
degree. Unsurprisingly, the same contraction behavior is observed for the same reason as
before: the initial sample is prepared in a loose state.
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Figure 6.26: The evolution of porosity ϕp [-] in terms of degrees of saturation Sr during evapo-
ration and condensation processes for wetting angles of θe = 25◦ and θc ∈ {25; 40; 50; 60}◦. For
a clear visualization, arrows indicating the path directions—evaporation or condensation—are
added.

As mentioned earlier in Chapter 1, Duriez and Wan (2016, 2017, 2018) have derived a
theoretical form of the capillary stress, see Eq. (1.48). They only could verify its validity
in the pendular regime. Using DEM-LBM, however, all the regimes can be investigated,
especially funicular and capillary regimes. Figure (6.27) depicts the comparison between
the theoretical and numerical mean capillary stress, based on Eq. (1.48) and Eq. (5.12),
respectively, in terms of degrees of saturation. A rather good agreement can be observed
between the theoretical and DEM-LBM numerical capillary stress.
The theoretical capillary stress possesses 4 terms: the first two are the suction terms and
the other half are the surface tension terms. It must be emphasized that the suction terms
represent approximately between 80 to 90% of the capillary stress.
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Figure 6.27: The evolution of both theoretical Eq. (1.48) and numerical Eq. (5.12) mean capil-
lary stress pcap [kPa] in terms of degrees of saturation Sr during evaporation and condensation
processes for wetting angles of θe = 25◦ and θc ∈ {25; 40; 50; 60}◦.

6.5 Conclusion

In this chapter, a new mathematical transformation for simulating condensation and
evaporation processes is proposed with the purpose of investigating the hysteresis phe-



Conclusion 159

nomenon within partially saturated granular assemblies in terms of capillary forces, suc-
tion, and mean capillary stress. Multiple crucial conclusions are drawn as follows:

• We have recovered the compelling theoretical and experimental result of the sud-
den jump of 30% in capillary forces when isolated capillary bridges coalesce during
condensation for equilateral triplets of particles for θ = 50◦.

• When the same granular assembly is subjected to evaporation, we observe that
the steep fall in capillary forces does not occur at the same volume for which the
coalescence took place. These jumps in capillary forces upon coalescence and rupture
are known as the Haines jumps.

• Regarding the regular quadruplets of particles, we have found that the steep jump
and fall range between 35 and 55%. This range depends on the separation distances
and whether the system is experiencing a condensation or evaporation process. The
same trend as the triplet case has been reported meaning that the relative difference
in capillary forces decreases when the separation distance increases.

• The new approach has been extended to a large granular assembly composed of
1000 fixed spherical particles to investigate the hysteresis phenomenon regarding
matric suction. The proposed model has proved that the hysteresis phenomenon is
reported even with the same wetting angle due to topology variation of the trapped
air bubbles between the condensation and evaporation processes.

• The new evaporation and condensation technique has been added to the DEM-
LBM coupling accounting for the rearrangement of grains. Despite imposing the
same angle during both condensation and evaporation, it has been demonstrated
that the suction and mean capillary stress exhibit path-dependent behavior. For
both variables, they were higher during evaporation compared to condensation.

• Moreover, the wetting angle for evaporation, denoted as θe, has been intentionally
set to be different from the wetting angles for condensation, represented as θc, with
the aim of generating wetting angle hysteresis, where θc > θe.

• The same trend has been observed as previously, but this time, it was noted that
capillary stresses and suctions decrease as the wetting angle is increased.

• Finally, we have also calculated the capillary stress based on a theoretical formula-
tion and compared it with the one deduced from DEM-LBM for all regimes. Rather
good results were reported.

In conclusion, the DEM-LBM model, combined with the novel evaporation and con-
densation technique, is well-suited for practical applications, including scenarios like dikes
exposed to cyclic hydraulic loadings.





Chapter 7

General conclusions and perspectives

The StabDigue project is concerned with the stability of maritime dikes under fluctu-
ating hydraulic loads arising from the action of waves and tides, including seasonal pre-
cipitation. Potential changes induced by these loading conditions may have far reaching
impact on the underlying microstructure of the soil so as to ultimately lead to instabil-
ities, degradations and failure (Wan et al., 2017). In this regard, this Ph.D. work has
highlighted the micromechanical behavior of unsaturated soils subjected to wetting and
drying cycles with a particular focus on hysteretic behaviors during the cyclic wetting
and drying actions in granular materials and their impact on mechanical strength in all
possible regimes, e.g., pendular, funicular, and capillary regimes. This will ultimately
allow us to evaluate the resilience of civil engineering infrastructure such as dikes under
operative and fluctuating climatic scenarios.

To achieve this, one of the main deliverables of this Ph.D. is a numerical code cou-
pling the Discrete Element Method (DEM) and the Lattice Boltzmann Method (LBM).
Extensive work has been devoted to the optimization of computational procedures during
the coupling of the two methods. Undoubtedly, the developed numerical tool will help
improve further the general understanding of the physics of partially saturated materials
in the future.

7.1 Main contributions
After three years of dedicated work, this thesis has finally come to fruition, produc-

ing important results in partially saturated granular assemblies at both small and large
assemblies. These are summarized in the following.

7.1.1 Small granular assemblies: capillary bridge shapes
7.1.1.1 Geometrical aspects of capillary bridges in the pendular regime

The first step is to investigate capillary bridge shapes within a small granular assembly
composed of two particles known as a doublet. It has been proven that using the developed
phase field LBM model, capillary bridges converge to the solution of the Young-Laplace
equation, which is the theoretical description of an axisymmetric capillary bridge between
two spherical particles. The developed numerical model has proven its capabilities to
capture the change of sign of the mean curvature H, transitioning from a portion of
nodoid to a portion of undoloid shape, when increasing the separation distance between
these spherical particles (Younes et al., 2023a).

7.1.1.2 Capillary forces of doublets and triplets of spherical particles

The capillary force acting on spherical particles is well-understood in the pendular
regime as extensively discussed and investigated in previous works (Gagneux and Millet,
2014; Miot et al., 2021; Pitois et al., 2000). However, the determination of capillary force
for three or more particles has remained a longstanding challenge within the context of
the funicular regime. One of the most remarkable advantages of the proposed phase-field
LBM model lies in its inherent capability to capture the merging of multiple capillary
bridges. A novel formulation has been proposed in this work for the accurate calculation
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of capillary forces exerted on spherical particles over all the possible regimes (Younes
et al., 2022). This groundbreaking result paves the way for the possibility of simulating
large partially saturated granular assemblies across a wide range of saturation levels.

7.1.2 Large unsaturated granular assemblies: DEM-LBM cou-
pling

While large granular assemblies have been widely investigated in the past, most of
the studies were restricted to the pendular regime (Scholtès, 2008; Scholtès et al., 2009;
Scholtes et al., 2009; Duriez and Wan, 2016, 2017; Duriez et al., 2017). However, in prac-
tice, the funicular regime is probably more dominant than the pendular regime. Therefore,
a special algorithm for coupling the DEM with the LBM has been devised to investigate
several aspects of partially saturated granular assemblies (Younes et al., 2023d). The key
point of the coupling between the two methods lies in the judicious integration of capillary
forces computed via LBM into the DEM calculation cycles. Listed below are the main
results found this study:

• A qualitative investigation has been conducted to simulate the capillary effect in wet
sand whereby a cubical sample can stand up when wet, whereas it would readily
collapse when dry.

• The variation of the suction in terms of the degree of water saturation or volumetric
water content has been recovered and compared to the well-known van Genuchten
equation.

• The mean capillary capillary stress for the entire range of saturation levels and how
it evolves depending on the regime at hand has been elucidated. It has been shown
that the mean capillary stress pcap increases with the degree of saturation Sr up to
a certain threshold beyond which capillary stress drops until complete saturation.

• The Bishop’s assumption that χ = Sr has been disproved through a rigorous analysis
using the DEM-LBM model.

7.1.3 Hysteretic aspect of unsaturated granular assemblies
Here, a novel method has been formulated to simulate the condensation and evap-

oration of capillary bridges within partially saturated granular assemblies. This study
is broken down into two cases: small and large granular assemblies which are presented
hereafter.

7.1.3.1 Fixed particles

Small granular assemblies: doublets and triplets

The first result of this study is the merging of three isolated capillary bridges within
monodispersed triplets of particles whose centers form an equilateral triangle. As capil-
lary bridges are being subjected to a condensation process, their coalescence takes place
and the capillary force increases suddenly about 30% for a wetting angle of θ = 50◦ (Gag-
neux and Millet, 2016). However, when a large capillary bridge between three particles
ruptures and becomes three samller isolated capillary bridges, the capillary force drops
roughly about 30% for the same angle (Gras, 2011). These results were both reproduced
using the proposed method of condensation and evaporation for the same wetting angle
θ = 50◦. Furthermore, it has been proven that the coalescence and the rupture of capillary
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bridges do not take place the same way for the same volume. Moreover, four particles
forming a regular tetrahedron have also been investigated to show the same behavior as
the triplet (Younes et al., 2023c).

Hysteresis effects at REV scale

The evaporation and condensation processes were next applied to a large fixed granular
assembly to study hysteresis phenomena within the system. It has been shown that,
although the wetting angle is the same for both processes, the granular assembly exhibits
a hysteretic effect in terms of suctions due to different capillary bridge and air bubble
topologies during evaporation and condensation. In addition, it has been found that the
suction during evaporation is higher than the suction during condensation which is in
accordance with the literature (Younes et al., 2023c).

7.1.3.2 Fully coupled problem

The newly developed evaporation and condensation technique is next incorporated into
the DEM-LBM coupling to account for the rearrangement of particles while the system
is being evaporated or condensed. Not only the suction has exhibited a hysteretic effect,
but the mean capillary stress has been different even for the same wetting angle. It has
been shown that the capillary stress during evaporation is larger than the one during
condensation. The same result has been found for suction. Furthermore, the wetting
angle of evaporation θe has been chosen to be different from the ones in condensation θc
to force the wetting angle hysteresis with θc > θe. The same tendency has been found
as before, only this time, the capillary stresses and suctions decrease when increasing
the wetting angle. Finally, the theoretical capillary stress, which was previously validated
solely in the pendular regime according to the literature, has been extended to all possible
regimes. It was compared with the one derived from the DEM-LBM coupling, and the
results indicated reasonably good agreement (Younes et al., 2023b).

7.2 Future research avenues: A strategic outlook
7.2.1 The existence of an effective stress

The existence of effective stress in unsaturated soils has been a longstanding problem
for decades at both the numerical and experimental fronts. In experiments, determining
the effective stress is quite challenging, which is why the results are consistently expressed
in terms of total stress. However, the calculation of each stress partition is feasible in a
numerical framework. Unfortunately, up to this day, the majority of studies have been
performed in the pendular regime, where the existence of effective stress has been con-
firmed (Duriez et al., 2018) at least at the plastic limit condition, i.e., at failure. However,
the question remains unanswered in the funicular and capillary regimes. This is when the
usefulness of the developed DEM-LBM model comes into play, facilitating the simulation
of partially saturated granular assemblies across all possible regimes.

During my Ph.D., some triaxial tests have been conducted but not presented in this
manuscript as they fall outside the scope of this work. Figure (7.1) depicts very re-
cent triaxial test results under unsaturated conditions, illustrating different water con-
tents at a confining pressure of σconf = 10 kPa. It can be observed that for w ∈
{7.24; 12.62; 21.33}%, larger deviatoric stress than the dry case can be afforded, thus
an increase in strength. In contrast, when the water content increases to w = 27.32%,



164 General conclusions and perspectives

the deviatoric stress instead drops and approaches the dry case level. These results are
in accordance with our findings on the apparent cohesion due to capillarity seen in Chap-
ters 5 and 6. Pursuing these investigations further within the context of the DEM-LBM
coupling under different capillary, stress and strain loading conditions will certainly help
toward unravelling the important question of whether an effective stress in unsaturated
soils exists or not.
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Figure 7.1: The evolution of the deviatoric stress q [kPa] in terms of the axial strain for different
water contents w ∈ {0; 7.24; 12.62; 21.33; 27.32}% at a confining pressure of σconf = 10 kPa.

7.2.2 Instabilities at REV scale
In the framework of the StabDigue project, a primary focus lies in the quantitative

investigation of the instability of unsaturated granular soils when subjected to wetting and
drying cycles. Hence, this constitutive aspect can be investigated through the so-called
second-order work criterion (Wan et al., 2017) which describes very well the signature
of collapse failure in dry soils. Essentially, the work rate input to the soil cannot be
sustained internally anymore under certain conditions with the surplus of energy being
dissipated into an outburst of kinetic energy. The extension to wet granular materials
can be pursued in the future by using the recently developed analytical expressions of the
second-order work criterion in the wet condition (Eghbalian et al., 2023). These will be
validated by conducting directional analyses, i.e. probings with controlled stress or strain
combined with suction or degree of saturation. The issue of how to account for varying
water content in the computation of the second-order work criterion (additional degree of
freedom compared with dry or fully saturated materials) should be addressed as a first
task.

7.2.3 Coupling with macroscale approaches
Simulating large dikes, which are composed of millions of particles, using the devel-

oped DEM-LBM model is practically unfeasible due to large computational time require-
ments. To overcome this problem, it is possible to integrate the DEM-LBM model with
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macro-scale methods such as the Finite Element Method (FEM), Finite Difference Method
(FDM), or Material Point Method (MPM). Currently, Raphaël Bouchard’s ongoing Ph.D.
thesis at La Rochelle University (also part of the StabDigue project) revolves around ex-
ploring the utilization of the DEM-LBM coupling as a surrogate to an actual constitutive
model for simulating large-scale dikes.

To conclude, the DEM-LBM coupling has shown its capabilities in analyzing at the
finest levels, the physics of unsaturated granular materials at the microscale, and more
importantly the seamless transitions between water saturation regimes. This powerful
numerical framework enables us to understand aspects that may otherwise remain unfea-
sible in laboratory experiments. Indeed, there are numerous untapped avenues for further
exploration, offering the potential to uncover insights in the behavior of these complex
materials. As we continue to push the boundaries of our understanding of unsaturated
soils through the DEM-LBM coupling, we may ultimately propose solutions to current
longstanding challenges and contribute to the development of geomechanics at large.





Appendix A

Résumé étendu en français

A.1 Contexte général
Depuis la révolution industrielle, la Terre subit des changements climatiques majeurs,

se traduisant par une montée du niveau de la mer, ce qui engendre un risque crucial pour
les communautés côtières. Afin d’éviter les catastrophes d’inondation, les êtres humains
ont eu une idée de génie de construire ce que l’on appelle aujourd’hui : les digues.

Les digues en remblai sont généralement construites à partir de matériaux granulaires
compactés et se trouvent souvent dans des conditions de saturation partielle, ce qui confère
à leurs matériaux une certaine cohésion bénéfique pour leur résistance mécanique dite
cohésion capillaire. Cependant, lorsque ces matériaux granulaires, situés à la surface de la
digue, sont exposés à des cycles de séchage et de mouillage, typiquement provoqués par la
variation de pression entre l’amont et l’aval de la digue, ils peuvent devenir vulnérables et
risquent de s’effondrer. On peut ainsi considérer l’eau comme une arme à double tranchant
: en quantité modérée dans le sol, elle favorise sa cohésion, mais en cas d’absence ou
d’excès, la cohésion capillaire disparaît. Ces fluctuations sont généralement engendrées par
plusieurs facteurs, tels que des précipitations intenses, des vagues de chaleur, les marées
ou encore les tempêtes, des phénomènes malheureusement de plus en plus fréquents dans
un contexte de changement climatique. Aujourd’hui, il est admis que les instabilités des
digues au niveau macroscopique sont dues à des instabilités microscopiques (Wan et al.,
2017). Avant d’étudier ces instabilités microscopiques, il est indispensable de comprendre,
dans un premier temps, la physique et la mécanique des milieux partiellement saturés,
ainsi que l’impact crucial des fluctuations de la teneur en eau sur la cohésion capillaire de
ces sols.

La présente thèse s’inscrit dans le cadre du projet StabDigue, financé pour une durée
de cinq ans par la région Nouvelle-Aquitaine, pour l’étude de la stabilité des digues en
remblai partiellement saturées. Cette thèse de doctorat est motivée par plusieurs questions
clés qui seront abordées :

• Peut-on modéliser et prédire les conséquences sur la stabilité mécanique des sols
granulaires dues au changement la teneur en eau ?

• Comment les cycles de mouillage/séchage vont-ils affecter les propriétés hydromé-
caniques des sols granulaires ?

• Est-il possible d’interpréter ces changements hydromécaniques en terme de mi-
crostructure sous-jacente ?

A.2 Les lacunes dans la littérature, motivations de cette
étude et objectifs

La problématique centrale réside dans le fait que la physique des sols partiellement
saturés se situe à l’échelle des pores et des grains solides, ce qui requiert une étude mi-
crostructurale pour analyser les interactions entre les phases solide-liquide-gaz et leur
impact sur le comportement global d’un sol partiellement saturé. La grande majorité des
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études, qu’elles soient expérimentales, analytiques ou numériques, dans la littérature, se
sont focalisées sur les configurations se trouvant dans le régime pendulaire (Scholtès, 2008;
Scholtès et al., 2009; Scholtes et al., 2009; Duriez and Wan, 2016, 2017; Duriez et al., 2017;
Duriez and Wan, 2018; Mielniczuk et al., 2018). Aujourd’hui, le régime pendulaire est
bien compris par les géomécaniciens et les chercheurs. Cependant, ce régime ne représente
qu’une petite portion des sols non-saturés. Ces derniers se trouvent généralement dans les
régimes funiculaire et capillaire. Hélas, la plupart des études dans la littérature ont été
consacrées uniquement au régime pendulaire. Lorsque le régime funiculaire est étudié pour
les triplets, les chercheurs se sont contentés d’utiliser des critères géométriques, souvent
analytiques, afin de modéliser la coalescence ou la rupture des ponts capillaires (Miot et al.,
2021; El Korchi, 2017). Ces critères géométriques, aussi pratiques soient-ils, rendent la
modélisation des milliers de particules en régime funiculaire et capillaire quasi-impossible.

Pour s’affranchir de ces approximations et pour modéliser des milieux granulaires par-
tiellement saturés pour tous les régimes possibles, nous proposons un couplage entre la
méthode aux éléments discrets dite DEM pour simuler le squelette solide en forme de
particules sphériques et la méthode de Boltzmann sur réseau dite LBM afin de modéliser
les ponts capillaires eau-air entre les particules solides.

Concernant la LBM, un code maison a été développé sur des cartes GPU (Graphical
Processing Units) qui est basé sur la résolution des équations Navier-Stokes et Allen-Cahn
afin de prendre en compte l’interface eau-air des ponts capillaires. En ce qui concerne la
DEM, le logiciel à accès libre YADE a été utilisé (Šmilauer et al., 2021).

A.3 Validation numérique et résultats
Avant de s’attaquer à l’étude du matériau en considérant un volume élémentaire

représentatif (VER), plusieurs benchmarks et validations ont été nécessaires pour le mod-
èle LBM, notamment en ce qui concerne la prédiction précise de la forme des ponts
capillaires ainsi que les forces associées. A l’équilibre mécanique de la simulation LBM,
les formes des ponts capillaires entre deux grains solides sphériques coïncident parfaite-
ment avec la solution théorique de l’équation de Young-Laplace. De plus, les résultats
trouvés par la LBM montrent qu’elle est capable de retrouver l’inversion de signe de la
courbure moyenne H quand la distance de séparation entre les deux particules augmente.
En outre, une nouvelle expression numérique pour le calcul des forces capillaires entre
des grains sphériques a été proposée. Cette nouvelle formulation a montré ses capacités à
calculer de façon assez précise les forces capillaires résultant des ponts capillaires isolés et
coalescents entre deux et trois particules sphériques, en les comparant avec des résultats
expérimentaux et numériques dans la littérature. L’avantage de l’approche LBM est sa
capacité à modéliser la fusion des ponts capillaires de façon intrinsèques sans avoir besoin
de passer par des critères de fusion géométrique. Ainsi, ces résultats montrent que la LBM
est capable de modéliser le passage du régime pendulaire au régime funiculaire.

Ensuite, le couplage DEM-LBM est mis en place pour explorer les caractéristiques des
assemblages granulaires partiellement saturés pour tous les régimes capillaires. Nous avons
pu retrouver la forme classique de la courbe de rétention qui est définie par l’évolution
de la succion en fonction du degré de saturation. De plus, l’évolution de la contrainte
capillaire moyenne, qui pourrait être considérée comme étant la cohésion apparente, a été
tracée en fonction du degré de saturation. Nous observons une augmentation de la con-
trainte capillaire moyenne avec l’augmentation du degré de saturation jusqu’à un certain
seuil au-delà duquel la contrainte capillaire moyenne diminue pour atteindre zéro lorsque
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le système devient complètement saturé. Par ailleurs, nous avons également démontré
que le paramètre de Bishop pour les contraintes effectives n’est jamais égal au degré de
saturation. Ces derniers résultats ont été comparés avec des données numériques déjà
existantes dans la littérature.

Nous avons enfin exploité la pleine capacité du couplage DEM-LBM pour simuler des
cycles de séchage (évaporation) et de mouillage (condensation) dans les sols non-saturés.
Cela a été réalisé à la fois sur de petits assemblages granulaires composés de trois et quatre
particules sphériques, ainsi que sur des VER constitués de quelques milliers de grains.
Tout d’abord, pour les trois particules sphériques, nous avons réussi à reproduire avec
succès les sauts (chutes) des forces capillaires, estimées à 30 % au moment de la coales-
cence (rupture) des ponts capillaires. Ceci est démontré dans le cas des trois particules
sphériques, tel qu’illustré sur la Figure (A.1), et nous avons ensuite comparé ces résultats
avec des études expérimentales et théoriques (Gras, 2011; Gagneux and Millet, 2016).
Un autre résultat assez remarquable est que nous avons constaté que, pour une même
configuration et un même angle de mouillage, le volume auquel les ponts se fusionnent est
différent de celui auquel les ponts se rompent, phénomène appelé l’hystérésis. En effet,
nous avons observé que lors de la coalescence, la fusion n’aura lieu que si les interfaces
capillaires se touchent. En revanche, la rupture des ponts capillaires se produit quand
l’épaisseur du pont, dans le plan passant par les centres des particules sphériques, devient
nulle.

Figure A.1: L’évolution de la force capillaire F̂f [mN] en fonction du volume d’eau [µL].

A l’échelle du VER, nous avons mis en évidence que la succion et la contrainte moyenne
sont plus élevées lors de l’évaporation que celles qui ont été observées lors la condensation
pour le même angle de mouillage comme le montre la Figure (A.2). Nous avons également
montré que la contrainte capillaire moyenne (cohésion apparente) devient nulle quand le
système devient complètement sec ou saturé, comme observé précédemment.



170 Résumé étendu en français

Figure A.2: Les évolutions (a) de la contrainte capillaire moyenne pcap [kPa] et (b) de la succion
s [kPa] en fonction du degré de saturation Sr [%].

A.4 Conclusion et perspectives
Pour rappel, l’étude bibliographique effectuée dans ce mémoire a mis en évidence

d’importantes lacunes dans la compréhension des milieux granulaires partiellement sat-
urés, notamment le fait que la plupart des études se sont concentrées uniquement sur le
régime pendulaire. Par conséquent, l’objectif principal de cette thèse était de développer
un modèle numérique capable de simuler les matériaux granulaires partiellement saturés
pour tous les régimes possibles : pendulaire, funiculaire et capillaire. Cela a justifié le
choix d’utiliser le modèle DEM-LBM, capable de modéliser facilement cette transition
entre les régimes, pour étudier et exploiter les milieux granulaires partiellement saturés.

Les perspectives de ces travaux sont nombreuses et peuvent-être résumés en quelques
points :

A.4.1 Existence d’une contrainte effective

L’existence de la contrainte effective est depuis longtemps un problème ouvert et ma-
jeur pour les géomécaniciens à la fois sur le niveau numérique et expérimental. L’existence
de la contrainte effective n’a été justifiée que dans le régime pendulaire lors de la rupture
de l’échantillon, c-à-d à la limite plastique. Cependant, la réponse reste malheureusement
en suspens pour les régimes funiculaire et capillaire. C’est là où le couplage DEM-LBM
entre en jeu afin d’étudier plus en détail cette question dans tous les régimes possibles.

A.4.2 Instabilités à l’échelle du VER

Dans le cadre du projet StabDigue, l’étude la plus cruciale concerne la détermination
quantitative des instabilités des sols granulaires partiellement saturés soumis à des cycles
de mouillage/séchage. Cet aspect peut être abordé en utilisant le soit-disant critère du
travail du second ordre W 2 (Wan et al., 2017), capable de décrire de manière précise
l’effondrement des sols granulaires secs. En utilisant le couplage DEM-LBM ainsi que
les expressions analytiques récemment dérivées par Eghbalian et al. (2023), nous avons
l’opportunité de calculer de façon précise le W 2 pour tous les régimes possibles.
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A.4.3 Couplage avec des approches macroscopiques
La modélisation des digues en utilisant le couplage DEM-LBM avec des millions de

particules, semble impossible et irréalisable en raison du calcul très intensif. Pour sur-
monter ce problème, il est envisageable d’intégrer le modèle DEM-LBM avec une méthode
macroscopique telle que la méthode des éléments finis (FEM), la méthode des différences
finies (FDM) ou la méthode du point matériel (MPM). Actuellement, en parallèle de ma
thèse, des chercheurs à l’Université de La Rochelle explorent la possibilité d’utiliser le
DEM-LBM comme une loi de comportement pour modéliser, à l’échelle réelle, les digues
en remblai.

Pour conclure, le couplage DEM-LBM a montré ses capacités à analyser finement, la
physique des matériaux granulaires partiellement saturés à l’échelle macroscopique, et plus
particulièrement les transitions fluides entre les régimes capillaires. Ce modèle numérique
nous permis de comprendre des aspects qui pourraient sinon rester inaccessibles dans des
expériences de laboratoire. Nous pourrons avec ce fameux modèle de repousser les limites
de notre compréhension des sols partiellement saturés. Nous pourrons également proposer
des solutions aux paradoxes actuelles et contribuer au développement de la géomécanique
dans son entièreté.





Appendix B

Graphical Processing Unit - GPU

A brief introduction to GPU computations will be given in this section. Readers can
refer to Cheng et al. (2014); Tuomanen (2018) for more technical details.

B.1 Introduction
Unlike the sequential computations of Central Processing Units (CPUs), GPUs per-

form thousands of parallel computations. Originally developed for computer graphics over
two decades ago, GPUs have since been recognized as powerful tools for scientific compu-
tation by computer scientists. Nevertheless, applications of GPUs are not only restricted
to Graphics rendering or scientific computations but even to:

• Machine Learning and AI: GPUs have become indispensable tools in training
and deploying deep neural networks. The parallel processing capabilities of GPUs
expedite the training process, enabling the development of sophisticated AI models
for image recognition, natural language processing, and more.

• High-Performance Computing: In the realm of high-performance computing
(HPC), GPUs contribute to solving complex problems efficiently. Their parallel
architecture allows for substantial speed-ups in tasks such as cryptography, financial
modeling, and optimization.

To avoid a very common confusion, it is essential to note that while a CPU is an absolute
necessity hardware for a computer’s functionality, a GPU is not indispensable. So far,
only two companies manufacture GPUs: Nvidia and AMD. However, this brief presenta-
tion will exclusively focus on Nvidia.

B.2 Basic GPU coding
There exist several languages to make the graphical cards work, such as CUDA,

OpenCL, and others. Our main focus is going to be on CUDA. CUDA, which stands
for Compute Unified Device Architecture, is a parallel computing platform and program-
ming model that launches codes in NVIDIA GPUs. CUDA has several programming
interfaces, namely C, C++, Python, and more. In this Ph.D. work, CUDA-C was used.
As mentioned earlier, the presence of a CPU is indispensable for GPU computations be-
cause it handles all the features a computer needs, even the GPU. In fact, in the computer
science realm, the CPU is called the host and the GPU is known as the device as though
the CPU is hosting a new hardware.
To better understand the main differences as well as similarities between C/C++ and
CUDA-C programs, a quick and simple example of summing arrays composed of 1024
elements will be given. A name of a project must be given, for instance: SumArrays.cu.
In CUDA, the extension of the source code is " .cu ", whereas in C++ the extension is "
.cpp ". This example was taken from and slightly modified from Cheng et al. (2014).
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#include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>

// Declaring function and kernel names //

// =================== Kernels =================== //
__global__ void sumArrayOnDevice(float *a, float *b, float *c);
// =========================================================== //

// =================== Functions =================== //
void sumArrayOnHost(float *a, float *b, float *c, const int N);

void initialData(float *ip, int size);
// =========================================================== //

int main(int argc, char* argv[])
{

int nElement = 1024;
size_t nBytes = nElement * sizeof(float);
bool test = true;

// Declaration of variables and memory
// allocation of CPU variables in host
float *h_a = (float *) malloc(nBytes);
float *h_b = (float *) malloc(nBytes);
float *h_c = (float *) malloc(nBytes);
float *ref_c = (float *) malloc(nBytes);

// Initialization of an array of nElement in the host
initialData(h_a, nElement);
initialData(h_b, nElement);

// Declaration of GPU variables in the device
float *d_a, *d_b, *d_c;

// Memory allocation in the device
cudaMalloc((float **) &d_a, nBytes);
cudaMalloc((float **) &d_b, nBytes);
cudaMalloc((float **) &d_c, nBytes);

// Copying data from the host to the
// device variables. Keyword: cudaMemcpyHostToDevice
cudaMemcpy(d_a, h_a, nBytes, cudaMemcpyHostToDevice);
cudaMemcpy(d_b, h_b, nBytes, cudaMemcpyHostToDevice);

// Executing the kernel to add the elements
// of the d_a array to d_b and storing the result in d_c.
sumArrayOnDevice <<<1, nElement>>>(d_a, d_b, d_c);
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// Transferring the results of the device computation
// to the host variable for comparison, using
// the keyword cudaMemcpyDeviceToHost.
cudaMemcpy(ref_c, d_c, nBytes, cudaMemcpyDeviceToHost);

// Executing the function to add the elements
// of the h_a array to h_b and storing
// the result in h_c.
sumArrayOnHost(h_a, h_b, h_c, nElement);

// Comparing results between device
// and host results ref_c and h_c
for(int i = 0; i < nElement; i++)

if(ref_c[i] != h_c[i])
{

test = false;
break;

}

if (test)
std::cout << "GPU AND CPU PROVIDED THE SAME RESULTS" << std::endl;

else
std::cout << "GPU AND CPU DID NOT PROVIDE THE SAME RESULTS" << std::endl

;

// Free host variables
free(h_a);
free(h_b);
free(h_c);
free(ref_c);

// Free device variables
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);

// Reset the current device resources
cudaDeviceReset();
return 0;

}

// Defining functions and Kernels

void sumArrayOnHost(float *a, float *b, float *c, const int N)
{

for(int i=0; i < N; i++)
c[i] = a[i] + b[i];

}

// Generating random numbers
void initialData(float *ip, int size)
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{
time_t t;
srand((unsigned int) time(&t));

for(int i=0; i < size; i++)
{

ip[i] = (float) ( rand() & 0xFF ) / 10.0f;
}

}

__global__ void sumArrayOnDevice(float *a, float *b, float *c)
{

int idx = threadIdx.x;
c[idx] = a[idx] + b[idx];

}

The project must be saved, built using nvcc command, and compiled as follows:

nvcc SumArrays.cu -o SumArrays
./SumArrays

and the outcome will be:

GPU AND CPU PROVIDED THE SAME RESULTS

When writing a CUDA-C program, it is common and recommended to differentiate host
from device variables by adding as prefix: "h_" for host variables and "d_" for device
variables. Let us summarize the previous example:

• Declaration and allocation of host variables using malloc() function;

• Initialization of host variables using initialData() function;

• Declaration of device variables, and then allocate memory in the device;

• Transfering or copying host variables to the device variables;

• Execution of the kernel of summing using the device: sumArrayOnDevice;

• Copying back the results provided by the device;

• Execution of the function of summing using the host: sumArrayOnHost();

• Comparison between host and device results;

• Free the device and host memories.

Coding with CUDA-C has another paradigm compared to the CPU languages because, in
the GPU, the user has to code as if there is only one element The first difference between
GPU and CPU codes is the keyword1 __global__. That is how the Host (CPU) knows
that this is a GPU kernel and not a CPU function. The third difference is that when the
kernel is called, it must be called in the following way:

1There are also other keywords, such as __device__ and __host__.
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Kernel_name <<< the number of blocks, the number of threads per block >>>

The configuration must be provided in a way that informs the device about the number
of threads for which parallel computations are to be executed.
The second difference is, in the host, the computation is synchronized, the integer variable
“ i ” in sumArrayOnHost() function will not become 5 before it goes through 1 to 4.
However, the integer variable “ idx ” in the sumArrayOnDevice() kernel can be 5 and 1
at the same time in different threads.

Certainly, this example is straightforward for a 1D array application, yet it offers the
reader a comprehensive overview of the distinctions between CPU and GPU computations
and their respective operational methods.

B.3 GPU Architecture
Modern GPUs are organized into units known as Streaming Multiprocessors (SMs)

or compute units. Each SM contains a cluster of CUDA cores, the fundamental process-
ing units responsible for executing instructions. These cores work in harmony, tackling
diverse tasks in parallel, and can handle tasks such as arithmetic operations, memory
management, and control flow (Cheng et al., 2014).
An efficient memory hierarchy is essential for managing the data processed by GPU cores.
Three types of memory exist in GPUs: global, shared, and local memories. The global
memory is the larger but the slowest one. It can be accessed by any thread at any time
from kernels. The shared memory is faster than the global, but it’s smaller and it is only
accessed by the threads of the same block. Finally, the local memory is the faster but
the smallest one, and it is solely accessed by the thread itself. The user should possess
a strong knowledge of memory hierarchy management to ensure optimal efficiency of the
code. Several models can be found on the market, including Fermi, Pascal, and Tesla,
amongst others.
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Hermite Polynomials

C.1 One-dimensional space Hermite polynomials
The Hermite differential equation f(y′′, y′, y, x) = 0 is defined as follows:

y′′ − 2xy′ + 2yk = 0 (C.1)

The solutions of Eq. (C.1) for k ≥ 0 are defined as follows

H(k)(x) =
(−1)k

ω(x)

dkω(x)

dxk
(C.2)

where k denotes the highest order of the polynomial, and ω(x) is defined as:

ω(x) =
1√
2π

exp

(
−x

2

2

)
. (C.3)

Here is some first polynomials deduced from Eq. (C.2).

H0(x) = 1

H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

...

(C.4)

The polynomials in Eq.(C.4) are depicted in Fig. (C.1)

C.2 d-dimensional space Hermite polynomials
One of the most important point in discretizing the velocity space ξ is the Hermite

decomposition. Therefore, we define the Hermite polynomials H (k)(r) as

H (k)(r) =
(−1)k

ω(r)
∇kω(r) (C.5)

where ω(r) is the weight function

ω(r) =

[
1√
2π

]d
exp (−r2

2
) (C.6)

If a given function g(r) is written as follows

g(r) = ω(r)gT (r) (C.7)

then, g(r) can be decomposed into the Hermite polynomials as follows

g(r) = ω(r)
∞∑
k=0

1

k!
bk : H (n)(r) (C.8)
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Figure C.1: Curves of Hermite polynomials for k ∈ {0; 1; 2; 3; 4; 5; 6}

where ":" is the double dot product, and bk are kth-order tensor of coefficients which are
defined as follows:

bk =

∫
R3

g(r)H (k)(r)dr. (C.9)

The Hermite polynomial series will be used in order to approximate the Maxwellian dis-
tribution function.
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Theoretical proofs

D.1 Chapman-Enskog - Theoretical proofs:
D.1.1 Chapman-Enskog: single-phase LBM model

Based on Eqs. (2.27), the term
∑
i

f eq
i is calculated as follows:

∑
i

f eq
i = ωiρ

[
1 +

u · ci
c2s

+
(u.ci)
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However, we have

∑
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(D.2)

according to (2.27c) where we recall hat I is the identity tensor in R3. We inject Eq.(D.2)
in (D.1) to finally obtain: ∑

i

f eq
i = ρ. (D.3)

Following the same procedure as above, using Eqs. (2.27), we calculate the term
∑
i

cif
eq
i :
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D.1.2 Chapman-Enskog: Allen-Cahn multiphase LBM model
Let us calculate the following term:∑

i

(ci ·∇1g
eq
i )ci =

∑
i

(ci ⊗ ci) ·∇1g
eq
i

= ∇1 ·
∑
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i ) (D.5)

According to the definition of geq
i in Eq. (3.26), we have

∑
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with div(αI) = grad(α).

D.1.3 Chapman-Enskog: Navier-Stokes multiphase LBM model

It is possible to calculate the expression
∑
i

L
(1)
i introduced in Eq. (3.74) using prop-

erties given in (2.27). We have:
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Let us now calculate Based
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For the sake of simplicity, we consider A = u ⊗∇1ρ, B = ci ⊗ ci, and X = (A : B) ci.
We have:

X = (A : B) ci

= (B ⊗ ci) : A. (D.9)

Therefore, we have
X = (ci ⊗ ci ⊗ ci) : (u⊗∇1ρ) (D.10)

where we have noted " : " the double contraction between a tensor of order three and a
tensor of order two. Using Eqs. (D.9) and (2.27d), Eq. (D.8) eventually becomes:∑

i

L
(1)
i ci = µϕ∇1ϕ+

1

c2s

∑
i

ωi (ci ⊗ ci ⊗ ci)︸ ︷︷ ︸
=0

: u⊗∇1ρ

= µϕ∇1ϕ. (D.11)

To summarize: ∑
i

L
(1)
i = u ·∇1ρ∑

i

L
(1)
i ci = µϕ∇1ϕ.

(D.12)

Following the same procedure as before and using properties (2.27), we calculate the
expression

∑
i

f eq
i ci ⊗ ci. We first recall f eq

i :

f eq
i =


p

c2s
(ωi − 1) + ρsi(u) i = 0

p

c2s
ωi + ρsi(u) i ̸= 0

(D.13)

with

si(u) = ωi

[
ci ·u
c2s

+
(ci ·u)

2

2c4s
− u ·u

2c2s

]
(D.14)

Let us start first with
∑
i

si(u)cici:

∑
i

si(u)(ci ⊗ ci) =
∑
i

ωi
ci ⊗ ci
c2s

(ci ·u) +
∑
i

ωici ⊗ ci
(ci ·u)2

2c4s
−

I︷ ︸︸ ︷∑
i

ωi
ci ⊗ ci
c2s

u ·u
2

=

=0︷ ︸︸ ︷(∑
i

ωici ⊗ ci ⊗ ci

)
·u

+
1

2

Aαβγµuγuµ︷ ︸︸ ︷∑
i

ωi
(ci ⊗ ci ⊗ ci ⊗ ci)

c4s︸ ︷︷ ︸
Aαβγµ

: (u⊗ u)−||u||2

2
I. (D.15)



184 Theoretical proofs

where Aαβγµuγuµ =

[∑
i

ωi
(ci ⊗ ci ⊗ ci ⊗ ci)

c4s
: (u⊗ u)

]
αβ

for the sake of simplicity. We

then use Eq. (2.27e):

(Aαβγµuγuµ)αβ = (δαβδγµ + δαγδβµ + δαµδβγ)uγuµ

= δαβδγµuγuµ + δαγδβµuγuµ + δαµδβγuγuµ

=δαβuνuν + uαuβ + uαuβ (D.16)

hence,
A : (u⊗ u) = ||u||2 + 2u⊗ u. (D.17)

Injecting (D.17) in (D.15), we finally obtain:∑
i

si(u)(ci ⊗ ci) = u⊗ u. (D.18)

The remaining term of
∑
i

f eq
i ci ⊗ ci is the pressure. Indeed, we have:

∑
i

f eq
i ci ⊗ ci = p

I︷ ︸︸ ︷
q−1∑
i=1

ci ⊗ ci
c2s

+ρ
∑
i

si(u)ci ⊗ ci (D.19)

as c0 = 0,
q−1∑
i=1

ci ⊗ ci
c2s

=

q−1∑
i=0

ci ⊗ ci
c2s

. Therefore, we obtain:

∑
i

f eq
i ci ⊗ ci = pI + ρu⊗ u. (D.20)

Let us recall Eq. (3.101)

∂t2(ρu) +

(
1− ∆t

2τf

)
∇1 ·

∑
i

f
(1)
i ci ⊗ ci︸ ︷︷ ︸
A

+
∆t

2

∑
i

L
(1)
i ci ⊗ ci︸ ︷︷ ︸
B

 = 0 (D.21)

Eq. (3.77b) can be rewritten as follows:

f
(1)
i +

∆t

2
L
(1)
i = τf

[
L
(1)
i − (∂t1 + ci ·∇1)f

eq
i

]
. (D.22)

Then, we multiply Eq. (D.22) with ci ⊗ ci and sum it over i to obtain:∑
i

f
(1)
i (ci ⊗ ci) +

∆t

2

∑
i

L
(1)
i (ci ⊗ ci) =

τf

[∑
i

L
(1)
i (ci ⊗ ci)−

∑
i

(∂t1 + ci ·∇1)f
eq
i (ci ⊗ ci)

] (D.23)
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Thus, injecting (D.23) in (D.21), Eq. (D.21) becomes:

∂t2(ρu) + τf

(
1− ∆t

2τf

)
∇1 ·

[∑
i

L
(1)
i (ci ⊗ ci)

−
∑
i

(∂t1 + ci ·∇1)f
eq
i (ci ⊗ ci)

]
= 0

(D.24)

Therefore, the terms
∑
i

(∂t1+ci ·∇1)f
eq
i (ci⊗ci) and

∑
i

L
(1)
i (ci⊗ci) need te be calculated.

Let us start with the latter:

∑
i

L
(1)
i (ci ⊗ ci) =


C︷ ︸︸ ︷∑

i

ωi
ci ·µϕ∇1ϕ

c2s
(ci ⊗ ci)+

D︷ ︸︸ ︷∑
i

u⊗∇1ρ : ci ⊗ ci
c2s

(ci ⊗ ci)

 .
(D.25)

We now calculate C and D:

C =

=0︷ ︸︸ ︷∑
i

ωici ⊗ ci ⊗ ci
c2s

·µϕ∇1ϕ

C = 0. (D.26)

D =
∑
i

ωi

c2s
(u⊗∇1ρ : ci ⊗ ci)(ci ⊗ ci)

=
1

c2s

c4sNαβγµ︷ ︸︸ ︷∑
i

ωi(ci ⊗ ci ⊗ ci ⊗ ci) : u⊗
v︷︸︸︷

∇1ρ

= c2sNαβγµuγvµ

= c2s(δαβδγµuγvµ + δαγδβµuγvµ + δαµδβγuγvµ)

D = c2s (u ·∇1ρI + u⊗∇1ρ+∇1ρ⊗ u) . (D.27)

Therefore, expression (D.25)
∑
i

L
(1)
i (ci ⊗ ci) becomes:

∑
i

L
(1)
i (ci ⊗ ci) = c2s (u ·∇1ρI + u⊗∇1ρ+∇1ρ⊗ u) (D.28)

Using (D.20), the term ∂t1
∑
i

f eq
i (ci ⊗ ci) expresses:

∂t1
∑
i

f eq
i (ci ⊗ ci) = ∂t1 [pI + ρ(u⊗ u)] . (D.29)
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In addition, since the vectors ci are constant,
∑
i

f eq
i (ci ·∇1)(ci ⊗ ci) is equivalent to

∇1 ·
∑
i

f eq
i (ci⊗ci⊗ci). To calculate the latter term, we start with

∑
i

si(u)(ci⊗ci⊗ci):

∑
i

si(u)(ci ⊗ ci ⊗ ci) =
∑
i

ωi
ci ·u
c2s

(ci ⊗ ci ⊗ ci) +
∑
i

ωi
(ci ·u)2

2c4s
(ci ⊗ ci ⊗ ci)

−

0︷ ︸︸ ︷∑
i

ωi
ci ⊗ ci ⊗ ci

c2s

u ·u
2

=

c2sMαβγµuµ︷ ︸︸ ︷∑
i

ωi
ci ⊗ ci ⊗ ci ⊗ ci

c2s
·u+

0︷ ︸︸ ︷∑
i

ω
ci ⊗ ci ⊗ ci ⊗ ci ⊗ ci

2c4s
: (u⊗ u)

= c2sMαβγµuµ. (D.30)

Now, we calculate Mαβγµuµ using (2.27e):

Mαβγµuµ = (δαβδγµ + δαγδβµ + δαµδβγ)uµ

= δαβδγµuµ + δαγδβµuµ + δαµδβγuµ

= δαβuγ + δαγuβ + δβγuα. (D.31)

Therefore, injecting (D.31) in (D.30) leads to:

[∑
i

si(u)(ci ⊗ ci ⊗ ci)

]
αβγ

= c2s (δαβuγ + δαγuβ + δβγuα) . (D.32)
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We can now calculate ∇1 ·
∑
i

f eq
i (ci ⊗ ci ⊗ ci):

[
∇1 ·

∑
i

f eq
i (ci ⊗ ci ⊗ ci)

]
αβ

=∇1 ·

p
0︷ ︸︸ ︷

q−1∑
i=1

ci ⊗ ci ⊗ ci
c2s


+∇1 ·

(
p

c2s
(ω0 − 1)

0︷︸︸︷
c0 ⊗

0︷︸︸︷
c0 ⊗

0︷︸︸︷
c0

)

+

∂γ︷︸︸︷
∇1 ·

ρ
Nαβγ︷ ︸︸ ︷∑

i

si(u)(ci ⊗ ci ⊗ ci)


=∂γ(ρNαβγ)

=ρ∂γNαβγ +Nαβγ∂γρ

=c2sρ∂γ (δαβuγ + δαγuβ + δβγuα)

+ c2s (δαβuγ + δαγuβ + δβγuα) ∂γρ

=c2sρ (δαβ∂γuγ + δαγuβ∂γ + δβγuα∂γ)

+ c2s (δαβuγ∂γρ+ δαγuβ∂γρ+ δβγuα∂γρ)

=c2sρ (δαβ∂γuγ + uβ∂α1ρ+ uα∂β1ρ)

+ c2s (δαβuγ∂γρ+ uβ∂α1ρ+ uα∂β1ρ)

=c2sρ
(
∇1 ·uI +∇1u+T ∇1u

)
+ c2s (u ·∇1ρI + u⊗∇1ρ

+∇1ρ⊗ u)

=c2sρ
(
∇1u+T ∇1u

)
+ c2s (u ·∇1ρI + u⊗∇1ρ

+∇1ρ⊗ u) (D.33)

with ∇1 ·uI = 0, because of the incompressibility condition (3.83).
Finally, ∇1 ·

∑
i

f eq
i (ci ⊗ ci ⊗ ci) expresses:

∇1 ·
∑
i

f eq
i (ci ⊗ ci ⊗ ci) = c2sρ

(
∇1 ·uI +∇1u+T ∇1u

)
+c2s (u ·∇1ρI + u⊗∇1ρ+∇1ρ⊗ u)

(D.34)

Injecting (D.28), (D.29), and (D.34) in (D.24), leads to:

∂t2(ρu) +

(
1− ∆t

2τf

)
∇1 ·

[
ρc2s
(
∇1u+T ∇1u

)
− ρc2s∇1 ·uI

−∂t1(ρu⊗ u+ pI)] = 0

(D.35)
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D.2 Wetting angle

D.2.1 Trilinear interpolation
The equation for trilinear interpolation is given as

ϕp = ϕ(x, y, z) ≈ a0 + a1x+ a2y + a3z + a4xy + a5xz + a6yz + a7xyz (D.36)

where the coefficients are to be found by solving the linear system

1 xi yi zi xiyi xizi yizi xiyizi
1 xi+1 yi zi xi+1yi xi+1zi yizi xi+1yizi
1 xi yj+1 zi xiyj+1 xizi yj+1zi xiyj+1zi
1 xi+1 yj+1 zi xi+1yj+1 xi+1zi yj+1zi xi+1yj+1zi
1 xi yi zk+1 xiyi xizk+1 yizk+1 xiyizk+1

1 xi+1 yi zk+1 xi+1yi xi+1zk+1 yizk+1 xi+1yizk+1

1 xi yj+1 zk+1 xiyj+1 xizk+1 yj+1zk+1 xiyj+1zk+1

1 xi+1 yj+1 zk+1 xi+1yj+1 xi+1zk+1 yj+1zk+1 xi+1yj+1zk+1





a0
a1
a2
a3
a4
a5
a6
a7


=



ϕ(i,j,k)

ϕ(i+1,j,k)

ϕ(i,j+1,k)

ϕ(i+1,j+1,k)

ϕ(i,j,k+1)

ϕ(i+1,j,k+1)

ϕ(i,j+1,k+1)

ϕ(i+1,j+1,k+1)


D.2.2 Determination of solution of the wetting angle

The equations we are interested in are listed hereafter:

nw ·∇ϕ|xw
= −

√
2β

k
cos θ

(
ϕw − ϕ2

w

)
(D.37a)

nw ·∇ϕ|xw
=
ϕp − ϕ(i,j,k)

2h
(D.37b)

ϕw =
ϕ(i,j,k) + ϕp

2
. (D.37c)

Let us suppose at first that:
a = hq

q = −
√

2β

k
cos θ

(D.38)

Combining Eqs. (D.37a), (D.37b) and (D.37c) we get:

2a
(
ϕw − ϕ2

w

)
= ϕp − ϕ(i,j,k). (D.39)

Obviously, if θ =
π

2
, the LHS of Eq. (D.39) is nil, which gives us:

ϕ(i,j,k) = ϕp. (D.40)

Whereas, for θ ̸= π

2
, we replace Eq. (D.37c) in Eq. (D.39), and after regrouping the terms

we get:

ϕ2
(i,j,k) + 2ϕ(i,j,k)

(
ϕp − 1− 1

a

)
+ ϕ2

p − 2ϕp + 2
ϕp

a
= 0. (D.41)
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Eq. (D.41) is a classical quadratic equation
2∑

i=0

bix
i = 0 of ϕ(i,j,k) as unknown, with the

discriminant of ∆′ =

(
b1
2

)2

− b0b2 = 1 +
1

a2
− 4ϕp

a
+

2

a
. The solutions of Eq. (D.41):

ϕ(i,j,k) =
−(b1/2)±

√
∆′

b2

ϕ(i,j,k) =
1

a
+ 1− ϕp ±

√
1 +

1

a2
− 4ϕp

a
+

2

a
.

(D.42)

After performing some mathematical manipulations, we recover Eq. (3.122):

ϕ(i,j,k) =
1

a

(
1 + a±

√
a2 + 1 + 2a− 4ϕpa

)
− ϕp (D.43)

ϕ(i,j,k) =
1

a

(
1 + a±

√
(a+ 1)2 − 4ϕpa

)
− ϕp. (D.44)

D.3 Determination of nodoid and unduloid shape
We recall here the main results reported in Gagneux and Millet (2014), used for the

resolution of the Young-Laplace (4.11) as an inverse problem when the capillary pressure
at the RHS is unknown.

D.3.1 Nodoid shape
If the geometric parameters verify the condition r sin δ sin (δ + θ) < y∗ < r sin δ with

H > 0 and λ > 0, the capillary bridge shape corresponds to a portion of nodoid, whose
parametric equations are given by:

x(t) =
b2

a

∫ t

0

cosudu

(e+ cosu)
√
e2 − cos2 u

(D.45)

y(t) = b

√
e− cos t

e+ cos t
, t ∈ [−τ, τ ] (D.46)

where

τ = arccos

(
e
b2 − r2 sin2 δ

b2 + r2 sin2 δ

)
(D.47)

e =

√
a2 + b2

a
(D.48)

τ is the unique solution in [0, π/2] of the equation y(τ) = r sin δ. The associated geomet-
rical parameters are given by:

a =
1

2

r2 sin2 δ − y∗
2

y∗ − r sin δ sin (δ + θ)
(D.49)

b2 = y∗r sin δ
r sin δ − y∗ sin (δ + θ)

y∗ − r sin δ sin (δ + θ)
(D.50)
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The capillary pressure ∆p and the mean curvature H can be calculated as follows:

∆p = −2γ
y∗ − r sin δ sin (δ + θ)

r2 sin2 δ − y∗2
(D.51)

H = −∆p

γ
=

1

a
(D.52)

D.3.2 Unduloid shape
If the geometric parameters verify the condition 0 < y∗ < r sin δ sin (δ + θ) with H <

0 and λ > 0, the capillary bridge shape corresponds to a portion of unduloid, whose
geometrical parameters are given by

x(t) =
b2

a

∫ t

0

du

(1 + e cosu)
√
1− e2 cos2 u

(D.53)

y(t) = b

√
1− e cos t

1 + e cos t
, t ∈

[
−τ ′

, τ
′
]

(D.54)

where

τ
′
= arccos

(
1

e

b2 − r2 sin2 δ

b2 + r2 sin2 δ

)
(D.55)

e =

√
a2 + b2

a
(D.56)

τ
′ is the unique solution in [0, π/2] of the equation y(τ

′
) = r sin δ. The associated

geometrical parameters are given by:

a =
1

2

r2 sin2 δ − y∗
2

r sin δ sin (δ + θ)− y∗
(D.57)

b2 = y∗r sin δ
r sin δ − y∗ sin (δ + θ)

r sin δ sin (δ + θ)− y∗
(D.58)

The capillary pressure ∆p and the mean curvature H can be calculated as follows:

∆p = −2γ
y∗ − r sin δ sin (δ + θ)

r2 sin2 δ − y∗2
(D.59)

H = −∆p

γ
= −1

a
(D.60)



Appendix E

Sensitivity Analysis

In this section, a sensitivity analysis of the liquid volume V and the LBM surface
tension γ̃ is provided. A single capillary bridge between 2 spherical particles is considered.
It has already been proven in Chapter 4 that in LBM simulations, initialization of a droplet
at the mid-distance between particles will ultimately converge to a capillary bridge as
shown in Figure (E.1). The silicone oil is chosen whose surface tension is γ = 0.0219
N.m−1, and viscosity is νoil = 10−6 m2.s−1 at a temperature of T = 20◦C. The domain
size is Nx ×Ny ×Nz = 160× 294× 160, with the particles having a radius of R = 5 mm.
The physical characteristic length is Lc = 12 mm in x-direction, therefore the mesh size
∆x = Lc/(Nx − 1) ≈ 7.5 × 10−5 m, where Nx − 1 is indeed the characteristic length in
lattice units L̃c. A drop of silicone oil with a spherical shape is created at mid-distance
between the two particles as illustrated in Figure (E.1a). The initialized spherical shape
will converge at equilibrium to a capillary bridge as shown in Figure (E.1b). A contact
angle θ = 20◦ at the solid-liquid-gas interphase is imposed using Eq. (3.120).

(a) Initialization of silicone oil droplet. (b) Convergence of the capillary bridge.

Figure E.1: From initialization of oil silicone droplet at mid-distance to the convergence of the
capillary bridge.

E.1 Influence of LBM surface tension γ̃ on simulations
convergence speed

As previously mentioned, the LBM time step is computed via the LBM surface tension
γ̃ as seen in Eq. (5.7). It is therefore important to investigate its influence on the results.
Multiple LBM surface tension values are considered γ̃ ∈ {1; 5; 10; 20; 30} for the same
silicone oil volume V = 4µL and same separation distance D = 0.7 mm. Following the

191
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procedure presented in 3.7, the corresponding air and water relaxation times are:

γ̃ =



1

5

10

20

30

Eq. (3.128)
======⇒ (τ̃ ℓh; τ̃

g
h) =



(0.502; 0.542)

(0.505; 0.594)

(0.507; 0.633)

(0.510; 0.688)

(0.512; 0.731)

. (E.1)

Figure (E.2) depicts capillary forces for different values of LBM tension surface γ̃ ∈
{5; 10; 20; 30} in terms of number of iterations.
It is important to mention that results of γ̃ = 1 are not presented because of the numeri-
cal instability induced by the correspondent relaxation times as previously calculated in

Eq. (E.1). When the values of (τ̃ ℓh, τ̃
g
h) are very close to

∆̃t

2
, numerical instabilities may

be observed (Krüger et al., 2017; Succi and Succi, 2018).

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

0 , 1 0
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0 , 2 0
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0 , 3 0

           
          
          
 

Figure E.2: Capillary forces F cap for different LBM surface tension values γ̃ ∈ {5; 10; 20; 30}.
From spherical drop initialization to converged capillary bridge.

It can be seen that γ̃ has no effect on capillary force values because the same plateau
is reached for all the simulations—F cap ≈ 0.2 mN. However, the main difference between
these curves is the number of iterations at which the plateau is reached. The larger γ̃,
the faster the convergence. This can be explained by the fact that ∆tLBM depends on
Cγ in Eq. (3.126). This also can be observed in Figure (E.5) where the relative error
|F cap

i+1 − F cap
i |

F cap
i

× 100 with i is the ith iteration, is depicted in terms of the number of

iterations. In fact, the relative error of γ̃ tends to 0 faster than the other relative errors.
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0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

0
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6 0
           
          
          

Figure E.3: Relative error between two consecutive capillary forces
|F cap

i+1 − F cap
i |

F cap
i

× 100, where

i is the ith iteration, in terms of number of iterations.

E.2 Influence of liquid volume V on simulations conver-
gence speed

In this section, the separation distance is D = 0.5 mm, and several volumes are con-
sidered, V ∈ {1.79; 3.91; 10.68; 21.04}µL. The LBM surface tension used is γ̃ = 10 lu.
Figure (E.4) depicts the capillary forces F cap of the four different oil volumes in terms of
the number of iterations.
The present study confirms that the convergence of the aforementioned simulations does
not happen at the same iteration. It is further validated with Figure (E.5), where the rela-
tive error between two consecutive iterations is plotted with respect to iteration numbers.
A better visualization can be seen in Figure (E.5) in which the capillary bridge whose
volume is the smallest V = 1.79µL, has the fastest convergence—at n ≈ 600 iteration.
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Figure E.4: Convergence of capillary forces F cap for different volumes from spherical drop ini-
tialization to physically relevant capillary bridge shape
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Figure E.5: Error between of capillary forces between two consecutive F cap. The error is the

so-called relative error between two consecutive iterations:
|F cap

i+1 − F cap
i |

F cap
i

× 100, where i is the

ith iteration.

In the case of Chapter 5, the largest water volume can be found in the capillary
regime, where the water phase is continuous which is around V = 1.27µL. As we have
seen just before, for V = 1.79µL, we needed 600 iterations. Therefore, for V = 1.27µL,
500 iterations are enough to ensure the initial convergence.
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