N
N

N

HAL

open science

A dynamical analysis of infinitely wide neural networks

Karl Hajjar

» To cite this version:

Karl Hajjar. A dynamical analysis of infinitely wide neural networks. Machine Learning [stat.ML].
Université Paris-Saclay, 2024. English. NNT: 2024UPASMO001 . tel-04548479

HAL Id: tel-04548479
https://theses.hal.science/tel-04548479

Submitted on 16 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-04548479
https://hal.archives-ouvertes.fr

—
<
o
@
—
@)
@)
)
Ll
)
LLl
W
Ll
T
—

l._.
Z
Z

2024UPASMO001

[]
universite
PARIS-SACLAY

A dynamical analysis of infinitely wide

neural networks
Analyse dynamique des réseaux de neurones de largeur
infinie

Theése de doctorat de I'université Paris-Saclay

Ecole doctorale de Mathématiques Hadamard n° 574 (EDMH)
Spécialité de doctorat: Mathématiques appliquées

Graduate School : Mathématiques, Référent : Faculté des sciences
d’Orsay

Thése préparée au Laboratoire de mathématiques d’Orsay (Université
Paris-Saclay, CNRS), sous la direction de Christophe GIRAUD, Professeur, et
le co-encadrement de Lénaic CHIZAT, Professeur.

Thése soutenue a Paris-Saclay, le 12 janvier 2024, par

Karl HAJJAR

Composition du jury
Membres du jury avec voix délibérative

Gilles BLANCHARD Président

Professeur, Laboratoire de Mathé-

matiques d’Orsay, Université Paris-

Saclay

Qin LI Rapportrice & Examinatrice
Professeure Associée (équivalent-

HDR), University of Wiscon-

sin-Madison

Claire BOYER Rapportrice & Examinatrice
Maitre de Conférences (HDR), Sor-

bonne Université

Aymeric DIEULEVEUT Examinateur
Professeur, CMAP, Ecole Polytech-
nique

e . ECOLE DOCTORALE

un|vers|té de mathématiques

PARIS-SACLAY

Hadamard (EDMH)

Titre: Analyse dynamique des réseaux de neurones de largeur infinie
Mots clés: Apprentissage, réseaux de neurones, descente de gradient, largeur infinie

Résumé: Durant la derniére décénnie, les réseaux (pouvant aller jusqu'a la centaine de milliards en

de neurones ont eu un succés retentissant dans
de nombreuses taches en pratique, cependendant
les arguments théoriques derriére ce succés restent
insuffisants et une théorie mathématique appro-
priée pour étudier rigoureusement ces objets fait
toujours défaut. Les limites des réseaux de neu-
rones a largeur infinie sont récemment apparues
comme une fagon d'éclaircir certains aspects du
probléme. Dans cette thése, nous étudions la
limite des réseaux de neurones de largeur in-
finie avec une renormalisation particuliére souvent
dénomée “champ moyen’ dans la littérature. La
difficulté d'analyser les réseaux de neurones d'un
point de vue théorique réside en partie dans la
nature hautement non-linéaire de ces objets et
dans I'énorme quantité de paramétres, ou “poids”

pratique) qui interagissent lorsqu'ils sont mis a
jour durant la descente de gradient. Nous ex-
aminons les trajectoires durant |'optimisation des
réseaux de neurones de largeur infinie pendant
la phase d'entrainement afin d'exhiber des pro-
priétés de ces modéles dans certains cadres sim-
ples tels que les réseaux de neurones entiérement
connectés avec une ou plusieurs couches cachées.
Cette thése traite de différents aspects de la dy-
namique d'optimisation des réseaux de neurones
de largeur infinie: des méthodes pour rendre pos-
sible I'entrainement de ces modéles aux symétries
qui peuvent émerger dans cette limite en passant
par de nouveaux algorithmes d'optimisation qui
adaptent le nombre de neurones a la volée durant
la phase d'entrainement.

Title: A dynamical analysis of infinitely wide neural networks
Keywords: Machine learning, neural networks, gradient descent, infinite-width limit

Abstract: Neural networks have had tremen-
dous success in many practical tasks over the last
decade, yet the theoretical reasons behind their
performance are poorly understood and we lack
a proper mathematical theory to rigorously study
the properties of those objects. Infinite-width lim-
its of neural networks have recently emerged as a
way to shed light on some of the aspects of the
problem. In this thesis, we study the infinite-width
limit of networks of different depths under a partic-
ular scaling often referred to as the “mean-field"
scaling in the literature. Part of the reason why
neural networks are difficult to analyze from a the-
oretical standpoint is because they are highly non-
linear and involve a huge amount of parameters,

or weights, (up to hundreds of billions in practice)
which interact as they are updated during gradi-
ent descent. We investigate the optimization tra-
jectories of the infinite-width limit of neural net-
works during training in order to exhibit properties
of those models in simple settings such as fully-
connected networks with one or more hidden lay-
ers. This thesis focuses on different aspects of the
optimization dynamics of networks in the infinite-
width limit: from methods to enable training those
models at arbitrary depths to the symmetry prop-
erties that can emerge in that limit as well as novel
optimization algorithms which adapt the number
of neurons in an on-line fashion during training.

Contents

Remerciements 7
1 Introduction 9
1.1 General background 10
1.1.1 The risk minimization problem 11

1.1.2 Neural networks 12

1.1.3 Learning with neural networks 13

1.1.4 Open questions and research directions 15

1.2 Infinite-width limits, a promising path to study the problem rigorously 16
1.2.1 General context and motivation 16

1.2.2 The NTK parameterization 20

1.2.3 Integrable parameterization 23

1.2.4 Evolution equations in the space of measures 27

1.2.5 Tensor programs and infinite-width limits of any parameterization. 36

1.3 Contributions 41
1.3.1 Infinite-width dynamics of integrable parameterizations 41

1.3.2 Symmetries in the dynamics of infinitely wide two-layer networks 43

1.3.3 Optimization over the space of measures: dynamically adding and pruning neurons 46

Introduction (Francais) 51
Notation 95
2 Infinite-width limit of integrable parameterizations of deep neural networks 97
2.1 Introduction 97
2.1.1 Motivation e 98

2.1.2 Contributions 99

2.1.3 Related Work e 100

2.1.4 Organisation of the Chapter and Notations 102

2.2 General Setting 103
221 Network and Data 103

2.2.2 Parameterizations of Neural Networks 104

2.3 Deep Networks with Naive Integrable Parameterization are Trivial 108
2.3.1 No learning in Deep Networks with Naive Integrable Parameterization 108

2.3.2 No stable learning with learning rates constant over time 110

2.3.3 Recovering results without homogeneity: linearization of the first step 113

2.4 Large Initial Learning Rates Induce Learning 114
2.4.1 Non-trivial and Stable Learning for Integrable Parameterizations 115

242 IP-LLRis a Modified uP 117

2.5 Alternative Methods for Escaping the Initial Stationary Point 120

2.5.1 Using Non-Centered i.i.d. Initialization 120
2.5.2 Not Scaling the Bias Terms 122
2.6 Numerical Experiments 122
2.6.1 Experimental Setup 124
2.6.2 IP-LLR vs. uP . . . 124
2.6.3 Learning is Degenerate for IP-bias and IP-non-centered 125
2.7 Conclusion 126
Symmetries in the dynamics of infinitely wide two-layer neural networks 127
3.1 Introduction 127
3.1.1 Problemsetting 127
3.1.2 Summary of contributions 129
3.1.3 Relatedwork 130
3.1.4 Notations 132
3.2 Invariance under orthogonal symmetries 132
3.3 Exponential convergence for odd target functions 133
3.4 Learning the low-dimensional structure of the problem 136
3.4.1 Symmetries and invariance 136
3.4.2 Onedimensional reduction 138
35 Conclusion 141
Coordinate descent over measures and dynamic optimization of two-layer networks 143
4.1 Introduction 143
42 Setting L 144
4.2.1 Organisation of the chapter 145
4.3 A review of gradient descent, coordinate descent and proximal methods 145
4.3.1 Polyak-tojasiewicz and generalized tojasiewicz conditions 147
4.3.2 Gradient descent without tojasiewicz-type assumptions 148
433 Coordinatedescent 149
434 Proximal methods 151
4.4 Coordinate descent in the space of measures 156
4.4.1 Convergence of the coordinate descent method 160
4.42 A proximal algorithm for L'-penalized coordinate descent 162
4.4.3 Sampling from existing atoms: a modified proximal algorithm 164
45 Kernel penalties L 167
451 An example of attraction/repulsion with two particles 168
45.2 A coordinate descent algorithmo 170
4.6 Numerical experiments 171
4.6.1 Proximal algorithm for the total variation penalty 171
4.6.2 Kernel penalization 174
47 Discussion 175

Conclusion 177

Appendix 179
A Appendix for Chapter 2 181
A.1 Notations for the appendix 181
A.2 An overview of the Tensor Program technique 182
A.2.1 Intuition behind the technique L. 183
A.2.2 Mathematical formalism 186
A.2.3 The maximal update parameterization uP L. 190
A.3 Useful preliminary results 192
A.3.1 Positive finite moments of pseudo-Lipschitz functions of Gaussians 192
A.3.2 The Z dots are 0 in the first forward-backward pass 192
A.3.3 Gaussian output in the infinite-width limit 195
A.3.4 Convergence of the coordinates to the limiting distribution Z 195
A.4 Proof of the triviality of IPs: Proposition 2.3.1 196
A4l Proofatt=0 196
A4.2 Inductionstep, 199
A.5 Preliminaries on positively homogeneous functions 204
A.6 Simplification of the first update for IPs with Assumption 4 204
A6.1 Tildevariables 204
A.6.2 First forward pass 205
A.6.3 First backward pass 206
A6.4 First gradientscales 207
A.6.5 Final comments on Assumption 4 207
A.7 Preliminaries for Theorem 2.3.2 and Theorem 2.4.1 208
A7.1 Tildevariables 208
A.7.2 Expression of the forward and backward passes of ac-parameterizations in function
of the tilde variables with homogeneity 210
A.8 Dynamics of the infinite-width limit of IP-LLR 220
A.8.1 Second forward pass of IP-LLR (¢t =1) 228
A.9 Proof that no constant learning rate is possible: Theorem2.3.2 233
A.9.1 Proof of the first implication for the learning ratesat¢t=0 233
A.9.2 Preliminaries on the second backward pass (t=1) 235
A.9.3 Preliminaries on the third forward pass (t=2) 237
A.9.4 Proof of the second implication 242
A.10 Proof of the non-triviality of IP-LLR: Theorem 2.4.1 244
A.11 Proof of the equivalence between IP-LLR and uP: Proposition 2.4.1 and Theorem 2.4.2 . . 245
A.11.1 Finite-width equivalence: Proposition 2.4.1 245
A.11.2 Infinite-width equivalence: Theorem 2.4.2 247
A.12 Formal versions of the results for the alternative methods of Section 25 256
A.12.1 Formalization of the degeneracy of Section 252 256
A.12.2 Formal version of Theorem 2.5.1 257

A.13 The variables associated with the initial weights vanish in IP-LLR 262

A13.1 Mainresult. 286
A.14 Expectations with ReLU 286
A.14.1 First moment 286
A14.2 Second moment L. 287
A.14.3 First forward pass moments 287
A.14.4 First derivative moments 287
A.14.5 First backward pass moments 287
Appendix for Chapter 3 289
B.1 Additional notations and preliminary results L 289
B.1.1 Notations for the appendix 289
B.1.2 General results on invariance for measures and functions 290
B.1.3 A disintegration result on the unit sphere S*=1 291
B.2 Gradient flows on the space of probability measures 293
B.2.1 First variation of a functional over measures 293
B.2.2 Wasserstein gradient flows in the space Po(RTFY) 293
B.3 Proofs of the symmetry results of Section 3.2, 294
B.3.1 Preliminaries 294
B.3.2 Proof of Proposition 3.2.1 296
B.3.3 Proof of Proposition 3.2.2. 296
B.4 Proof of the exponential convergence for linear networks: Theorem 3.3.2 297
B.5 Proofs of Section 3.4: f* depends only on the projection on a sub-space H 300
B.5.1 Thegeneralcase. 300
B.5.2 Case when f* is the euclidean norm: Theorem 3.43 306
B.6 Numerical simulations in one dimension L. 311
Appendix for Chapter 4 315
C.1 Proximal step for the L' penalty 315
C.2 A proof of inequality (4.17) 315
C.3 Proof of Equation (4.19) 317

Remerciements

[l est impossible d'énumérer toutes les personnes a qui je dois d'avoir pu réaliser
ce projet de thése dans de si bonnes conditions durant les trois derniéres années,
mais je tiens quand méme a en remercier les figures les plus importantes.

En premier lieu, je souhaiterais remercier chaleureusement mes deux directeurs
de thése Lénaic et Christophe. Merci de m'avoir accordé votre confiance pour
m'encadrer sur un sujet difficile alors que je ne suivais pas le parcours “classique’
du doctorant. Lénaic, j'étais ton premier thésard et tu as su me guider dans les
méandres du monde de la recherche, toujours avec bienveillance et sagacité. Merci
aussi pour ta patience, je garderai avec moi par-deld cette thése ton approche
intuitive des problémes que tu as su me transmettre, ainsi que ta passion com-
municative pour les sciences. Christophe, merci pour ta bonne humeur que rien
ne semble ébranler, ainsi que pour ta curiosité qui t'a poussé a t'aventurer bien
au-dela de ton jardin fleuri de stateux pour explorer les contrées encore sombres
de I'optimisation des réseaux de neurones.

| would also like to thank Qin Li and Claire Boyer for agreeing to review this
PhD thesis and for taking the time to read it, as well as the members of jury for
attending my PhD defense.

Ensuite, je voudrais remercier mon amie, mon amour, Louise, sans qui rien
de tout ca n'aurait été possible. Toi qui m'as poussé pendant plus d'un an a
m'engager dans une thése malgré mes réserves, toi qui as eu une foi inébranlable
en moi, et qui a méme partiellement financé cette thése, je te dois plus que tu ne
le sauras jamais. Merci de m’avoir soutenu dans les moments difficiles, et merci
de partager ma vie, a tes cotés tout devient plus doux. Cette thése t'es en partie
dediée.

Je tiens également a remercier mes parents et mes fréres, le support sur lequel
je peux toujours m'appuyer, qui sont ravis d'accueillir le premier doctorant de la
famille bien que cela soit venu interrompre (au grand dam de certains) une assise
financiére et une carriére solidement établies...

A ceux qui m'ont encouragé a faire de la recherche et a quitter mon confort
financier, cette thése vous est aussi dédiée. Jérémy, ton avidité pour les sciences et
ta curiosité intellectuelle ont été et resteront une grande source d'inspiration pour
moi. Léonard, toi qui as vécu ta thése en paralléle de la mienne, merci pour toutes
nos discussions, merci de m'avoir aiguillé par moments et de m'avoir remis les pieds
sur terres quand il le fallait. Martin (méme si tu ne t'en souviens sans doute pas),
merci de m'avoir incité a démarrer une thése au détour d'une conversation avant
un foot, et merci d'avoir contribué & ma stabilité financiére en quelques occasions.

A tous mes amis qui partagent ma passion du ballon rond, ma famille d'élection,
Hippolyte, Matthieu?, Ruben, Thibaut, Joseph, Goga, Omar, Léonard, Martin,
Jérémy, merci de m'avoir apporté un équilibre indispensable en me soustrayant

7

réguliérement a mes activités scientifiques, et merci pour tous les moments que
I'on partage, la vie n'aurait pas la méme saveur sans vous.

A Steven et Laurent, mes amis de toujours, vous qui suivez mes pérégrinations
(intellectuelles et autres) depuis quasiment 20 ans, merci de me rappeler aux plaisirs
simples de la vie, cette thése est un jalon de plus que I'on franchit ensemble, et je
souhaite qu'il y en ait encore de nombreux autres !

A Romain, Mehdi, Emile, Hadrien (et Jean), merci d'accepter mon caractére
parfois difficile et de faire dégonfler mon ego quand cela est nécessaire. Vous
comptez énormément pour moi, et nos interactions, mémes rares, me sont ex-
trémement précieuses. Je promets de continuer a aller vous rendre visite dans vos
provinces reculées (dans le 15éme ou méme plus loin).

Antoine, Patrick et Ferdinand, nul besoin de vous dire ce que vous représentez
pour moi, nos années de prépa ont tissé un lien indéfectible que méme un océan
ne saurait amenuiser. Merci pour votre soutien, pour votre amitié inconditionnelle
et merci de toujours tirer le meilleur de moi-méme.

A Carole et Pascal, merci de m'avoir montré que I'on peut rester de bonne
humeur méme quand ¢a va mal, et merci de vous vous étre intéressés & ma recheche
quand bien méme le sujet vous était grandement étranger.

A Nathalie et Olivier, avec qui Louise et moi avons cohabité pendant ma
premiére année de thése, merci de nous avoir accueillis les bras ouverts et d'avoir
rendu cette premiére année aussi facile a vivre.

1 - Introduction

“I think, therefore | am”, wrote 17t century French philosopher and mathe-
matician Descartes, hinting at the fact that knowledge of one's own consciousness
is a key element of intelligent beings. Will machines ever be able to produce a
similar reasoning ? The quest to develop machines able to think, reason, compute
and solve problems has occupied scientists of different eras, at least dating back
to the efforts of Pascal and Leibniz to produce an arithmetic machine capable of
doing various algebraic operations.

Since then, technology has evolved to the point that software installed on one's
computer can help solve math problems, translate text into different languages or
play the game of chess at a super-human level. A surge of interest in the topic of
artificial intelligence (Al) has occurred after the second world war with the work
of Turing on computing machinery and intelligence (Turing, 1950). Numerous
endeavours (such as the Logic Theorist, the Dartmouth Research Project, or Cy-
bernetics) started to appear with the goal of developing expert systems capable
of mimicking the problem-solving and reasoning skills of humans. At that time,
research was mainly theoretical focusing on the ideas on how to build an Al and
how to test for intelligence in machines.

Based on the observation that brain activity simply amounts to electrical im-
pulses that might be reproduced in a computer, research around artificial neural
networks and mathematical models of neurons rapidly emerged. One such example
is Rosenblatt’s perceptron (Rosenblatt, 1958), where a set of potentiometers im-
plementing adaptive weights are able to recognize letters provided as input to the
system through an array of 400 photocells. However, the interest in such models
quickly faded away as a number of reservations began to surface around artificial
neural networks. For instance, the perceptron was criticized for its incapacity to
correctly classify data which are not linearly separable (even in simple settings such
as the XOR problem), thereby implying a need for deeper networks which came
with many practical and theoretical difficulties. Furthermore, practical advances
were limited by the compute resources and the expensiveness of computers.

Neural networks thus went out of fashion roughly until the end of 1980s, and
research in artificial intelligence focused mainly on expert systems doing symbolic
reasoning: that is following a set of handcrafted rules to solve a specific task.
Nevertheless, some groups still studied artificial neural networks and new empirical
as well as theoretical results revived the interest in such models. Rumelhart et al.
(1985) derive the rules of backpropagation to compute algorithmically the partial
derivatives of the cost function w.r.t. the weights of a network using the chain
rule. LeCun et al. (1989, 1998) show that neural networks can successfully be ap-
plied to handwritten digit, zip code and document recognition, and Barron (1993)
and Pinkus (1999) show the universal approximation property of neural networks

9

with two-layers.

Yet, progress is slow because compute resources are still limited, and a lot of
practical experience is needed to design neural networks. Theory and practice of
machine learning systems of different kinds are developed in the late 1990s and
competitions are even organized to designate the best algorithms on tasks such
as image recognition or Natural Language Processing (NLP). These systems often
focus their efforts on the crucial problem of feature extraction: transformations of
the input data are hand-designed by human experts before being fed to a linear layer
whose parameters are algorithmically learned. A seminal moment in the history of
artificial neural networks is when the neural network AlexNet (Krizhevsky et al.,
2012) won the first place in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) contest in 2012 with an error of only 15.3% on the test set. In this
system, all the features are learned automatically by the network along with the
last layer.

Since then, neural networks have had many successes in practice, learning to
play Atari games (Mnih et al., 2013), achieving less than 5% error on the ImageNet
dataset (He et al., 2016), understanding and translating text as well as answering
questions on a document (Vaswani et al., 2017), playing go, chess and shogi at
a super-human level (Silver et al., 2017), and generating text and images without
supervision (Goodfellow et al., 2014; Devlin et al., 2018; Rombach et al., 2022).

Fast progress has been enabled by an ever-growing computational power, allow-
ing networks to grow deeper and wider with a huge amount of parameters (up to
hundreds of billions for systems like ChatGPT), as well as practical recipes to train
modern neural networks such as residual connections (He et al., 2016), batch or
layer normalization (loffe and Szegedy, 2015; Ba et al., 2016), adaptive gradient-
based algorithms that use momentum and learning rate schedules, or attention
layers in transformer architectures (Vaswani et al., 2017). Despite the numerous
achievements of modern neural networks, theoretical advances are lagging behind
and our understanding of the reasons behind such prowesses remains limited.

1.1 . General background

The goal of this thesis is to further our theoretical understanding of the dy-
namics of the training algorithm of neural networks in the limit where the number
of neurons in a layer grows unbounded. Infinite-width asymptotics have recently
emerged as a way of providing insights into the training dynamics of neural net-
works from a mathematical standpoint (see Section 1.2), and the research we
present here is part of this line of work.

Many variants of neural network architectures (fully-connected, convolutional,
recurrent, transformers, etc) and training algorithms (momentum, learning rate
scheduling, batch or full gradient) exist. In this thesis, since we seek to study these
objects rigorously, we focus on arguably the simplest form to reduce the complex-

10

ity: fully-connected neural networks (sometimes with only two layers, sometimes
more) trained with plain (stochastic) gradient descent ((S)GD). While our work is
theoretical in nature, this thesis does not develop a new mathematical theory of
artificial neural networks, rather it uses the available mathematical tools in order to
shed light on the behaviour of neural networks used in practice by studying ideal-
ized versions of the training dynamics of real-world finite-width networks. We thus
make a number of simplifying assumptions (on top of studying the limit where the
network becomes infinitely wide) whose nature depends on the setting we consider,
varying from the knowledge of the full data distribution (population risk objective),
using infinitesimally small step-size (gradient flow dynamics), to studying smooth
or positively homogeneous activation functions.

1.1.1 . The risk minimization problem

In machine learning, different types of paradigms exist such as unsupervised
learning, reinforcement learning, probabilistic graphical models, and perhaps most
ubiquitous the problem of supervised learning. In supervised learning, one is given a
data distribution D of pairs (z,y) € R? x RX, and a loss function £ : RE x RX —
R, and the goal is to minimize

Ex,yND [E(ya f(l‘))]

over some class f € F of functions, called predictors, from R to R¥ . Usually, y,
called the target, is modeled by y = f*(x) or y = f*(2)+¢ where f*: R? — R is
the target function and ¢ is some random variable representing potential noise in the
data. K is the number of categories or classes, y can either be a continuous variable
as in the regression problem or an integer in {1,..., K} as in the classification
problem.

In this thesis, to simplify, we focus on the regression problem with a single real-
valued target y (i.e., K = 1), although extensions to multi-dimensional regression
should be straightforward. We also consider targets y = f*(z), f* : R? — R
without noise as we are mostly concerned with the optimization trajectory rather
than the statistical properties of the models we consider. In this setting, we thus
consider a distribution p on the input data and try to solve:

min { F(0) i= Epn [((f*(2), £(6:2))] }
where F' is called the risk and the minimization is over a class of parametric
functions f(6;-) with a parameter domain given by some set ©. The distribution p
can either be the empirical distribution p,, := %Z?:l 0z,, leading to the Empirical
Risk Minimization (ERM) problem

min {F(@) = % if(f*(%)a f(0; xz))}7

0cO

1M1

or p can be the full theoretical data distribution (e.g., Gaussian, or uniform on
some manifold), leading to the population risk minimization problem. The task of
finding a good value 6* for the parameter (one that minimizes the objective F', or
is close to minimizing it) is called learning.

When doing ERM, the end goal is not to be able to learn a good value 6* for
the empirical risk, but for the population risk, often evaluated through a dataset,
called the test set (since the true data distribution is unknown), different from
the one used to learn 6*, which is called the training set. A measure of the
soundness of the learned value 6* is the generalization error, that is the difference
between the empirical risk and the population risk of the optimal parameter 0*
learned on the empirical risk. Sometimes, a penalization term is added to the data-
fitting term in order to induce good generalization properties and the objective F’
becomes F(0) = 231 | 4(f*(x;), f(0;2:)) + AH(0) for some penalty H which
is often convex (e.g., L' or L? penalty). When trying to learn 6*, one turns to the
optimization landscape of F', while the value of the generalization error is more
related the statistical properties of 8*. This thesis focuses on the first aspect of the
problem related to optimization and we mainly consider the risk without penalty.

Linear models

The most studied example of parametric functions is probably that of linear models
f(0;2) = 0T ®(x) where § € RP is the parameter and ® : R? — RP is a feature
extractor. Here, the objective F' of the risk minimization problem is convex as soon
as the loss £ is convex in its second argument, and thus global minimizers exist is
most cases, or at least (S)GD is guaranteed to approach a global minimum under
mild assumptions. For a long time, this has been the standard way of proceeding:
the feature extractor ® is manually designed depending on the task at hand and
the parameter 6 of the linear model is learned using (S)GD.

In this setting, the value of the optimal 6* can often be computed explicitly,
or at least with theoretical guarantees leading to a precise analysis of the gener-
alization error and enabling to quantify rigorously the statistical soundness of the
learning method.

1.1.2 . Neural networks

Neural networks are parametric functions defined by a succession of linear
(or affine) operations followed by a non-linearity, defined through the following
expression: f(0;z) = Who(WEo(...o(Wtz 4 b)) 4+ bE~1) 4 b, which can
also be written recursively as

fO;z) = Whal=1 4 pF,

ot =o(n), A=wl!"t+v, 1e[1,L-1]

¥ =z,

12

where o : R — R is a real-valued function called the activation function, and is
applied element-wise to vectors, and the integer L is called the depth of the network
(that is, the total number of layers). For [€ [1, L], the matrices W € R™>mi-1
are called the weights and their rows are referred to as neurons, and the vectors
b' € R™ are called the intercepts or bias terms. The integer m; is called the width
of the [-th layer (that is, the number of neurons in layer [), with mj = 1 in our
setting, and my = d the dimension of the inputs z. The vectors h! € R are
referred to as the pre-activations of layer [, and z! the activations, or intermediate

L=1 are generically referred to as

features, while the penultimate layer activations x
the “features”. Here the parameter 6 is the concatenation of all the weight matrices
and intercepts of all layers.

For simplicity of presentation, in this thesis we often omit the intercepts !, but
this should not have a huge impact on the generality of our work (the extension to
networks with intercepts is rather straightforward, and the transformation : z —
w2 +b can always be re-written : 2 — W' Z where @ := (w,b) and 7 := (z,1)).
Figure 1.1 depicts a typical fully-connected neural network architecture with 6
layers in total. In a neural network, the first layer, also called the input layer

Q [0
| S e S I
[S e S
Q / eiimiiiel i le
o/ eliwilie ligile
o elliel e iiele
T & oilieil o lielh e oy
Q| eltail e iiaiie
o\ eiimiiieliinie
vgre
o]
Y ¥ 't }

W, W, Wy Wy W5 Ws

layers = depth

Figure 1.1

(I = 1) and the last layer, also called the output or prediction layer, often behave
somewhat differently from the intermediate layers, and for practical reasons, we
always consider networks with L + 1 layers, with [= 1 corresponding to the input
layer, I = L + 1 to the output layer and [€ [2, L] to the intermediate layers. We
also consider networks where all layers except the last one (which is of width 1 in
our setting) to have a common width m € N for simplicity, and we are interested
in describing the limit m — oo. In this thesis, we always consider L > 1, so that
there are at least 2 layers.

1.1.3 . Learning with neural networks

One of the main modeling differences between neural networks and more tra-
ditional machine learning models (such as linear models or kernel methods) is that
the features are not manually designed but actually learned automatically by the
network itself. For instance one can still write the prediction function, also called
the network function, f(6;x) = (0XT1)T®(0;) but now the feature extractor ®

13

has parameters of its own (67 is the concatenation first L layer weights) which can
be learned simultaneously with the prediction layer's parameters 6211 = JWL+1,

While this sounds appealing, it brings on many complications. First and fore-
most, even when the loss £ is convex, the objective function F' corresponding to
the risk minimization problem is not convex as soon as L > 1, i.e., when there
are two layers or more. Therefore, no guarantees in terms of optimization can be
expected a priori, and worse than that, as the number of layers and parameters
grow larger, the problem becomes highly non-convex and one can expect many
plateaux and/or saddle points where gradient descent can get stuck. There is
no knowledge of the value 6* the learning algorithm will converge to (if it does),
which makes studying its statistical properties difficult, and with the sheer number
of parameters involved being much larger than the number of training data points,
deep networks can be expected to overfit and perform poorly on the test data
(generalization error). Hence the need to study the whole training trajectory along
the optimization path, but the non-linear nature of the dynamics and the large
number of parameters to track make it a difficult task.

Gradient descent for neural networks

While neural networks are complex parametric functions, the algorithm to train
them is surprisingly simple. One initializes the parameters at random: weights of
different layer are initialized independently, and in a given layer, all the entries WZZJ
of W' are initialized i.i.d. following a given law, e.g., Gaussian or uniform. In this
thesis, we typically consider the case of a Gaussian initialization Wl-lj(O) ~ N(0,07)
i.i.d. over 4,7, with a variance alz which depends on the width m. From this
initialization, one follows the negative gradient of the objective function: for any
t>0

Wt +1) = W(t) — mVyF(0),

where 7; > 0 is the learning rate associated with layer I, which might vary from
layer to layer and often depends on m as well. Many different variants of plain
(S)GD exist where the learning rate can also depend on the time step ¢, differ-
ent coordinates of the gradients are allowed to scaled differently depending on the
directions of faster growth. While no guarantee exists a priori for gradient-based al-
gorithms in a non-convex setting, this relatively simply recipe has had huge success
in practice, but it is difficult to analyze mathematically due to the highly non-linear
and compositional structure of neural networks. It is common in theoretical studies
to find the version of gradient descent where 17, — 0T, which is known as gradient
flow (GF). It is the continuous-time equivalent of discrete gradient descent, and is
described by the ordinary differential equation (ODE) %Wl(t) ==V F(0(1)).

Stochastic gradient descent algorithm. When the number n of train-
ing samples is large, it is common to compute the gradient on a subset, called

14

a batch or mini-batch, rather than on the whole training set. Calling F;(0) :=
O(f* (), f(0;2;)) fori € [1,n], the full gradient is Vy F(0) = L 37 | Wy Fi(6),
whereas for B C [1,n], the batch-gradient (approximate gradient) is Vyy: F(6) =
ﬁzieg VwiFi(0). We call gradient descent (GD) optimizing F' directly by
computing the full gradients at each time steps, and we call stochastic gradient
descent (SGD) optimizing F' by sub-sampling batches among the training set at
each time step, to the limit where there might be a single sample z; € {z1,...,2,}
at every time step.

Forward, backward passes and backpropagation. The computations
of the gradients involved in the weight updates is called the backward pass,
and they are computed recursively using the equations of backpropagation. The
gradient w.r.t. any variable z can always be decomposed in the following way:

V.Fi(0) = 020(f* (i), f(0;2:))V . f(0;), and the recursive equations read as:

Vo f(0;x;) = WL+1, Vi f(0;2) = W @ o/ (hD),
VWLHf(Z) =
f(0;2) = (Wl“)Tva(e x), le[l,L—1]
vhl (1):(xlf(@ xz))QU(hl)v lE[l,L—l]
Vi f(0;2:) = Vi f0;2) (YT, 1ell, L]

In contrast, the computation of the (pre-)activations h!, z! and the output f(6;z)
is called the forward pass.

Initial variance and learning rates. The choice of the initial variance and
learning rates can have a huge impact on the behaviour of the network during and
after training, especially at infinite-width (see Section 1.2 and Chapter 2). At
finite width, a way to scale the variances and learning rates at initialization is
discussed in (Glorot and Bengio, 2010; He et al., 2015) but an analysis beyond the
first forward and backward pass is still lacking as the recursive equations and the
presence of imbricated non-linearities quickly hinder any theoretical analysis. Yet,
at infinite-width, the Tensor Program (Yang and Hu, 2021), which we introduce
briefly in Section 1.2.5, allows to precisely analyze the magnitudes of the forward
and backward passes at any time step for neural networks with i.i.d. initialization,
and this type of analysis plays an important role in this thesis.

1.1.4 . Open questions and research directions

Modern neural networks require many ingredients to achieve a high level of
performance on difficult tasks, such as large width and depth, normalization lay-
ers, residual connections, or adaptive gradient methods. Those ingredients are
instrumental to the practical success of neural networks but are difficult to analyze
mathematically, and it is unclear what the exact benefit of each of them is from a

15

theoretical standpoint. Moreover, many questions around neural networks remain
unsolved: how is gradient-based learning able to find good values for the weights
and converge given the sheer number of parameters 7 How are they able to achieve
(close to) zero loss when the objective is non-convex? Why do those models gen-
eralize so well when they could easily be over-fitting, with many paremeter values
leading to zero loss and no control over the learned parameter 6* at the end of
training 7 What do these models actually learn and what do the values of the
learned weights mean ?

Organisation of the thesis

The rest of the thesis is organized as follows: Section 1.2 is dedicated to present-
ing the literature and mathematical tools around infinite-width limits, Section 1.3
highlights the main contributions of this thesis, Chapter 2 studies the infinite-width
limit of deep networks in the integrable parameterization (see Section 1.2.3 for a
definition) and Chapter 3 is devoted to studying the symmetries which emerge in
the dynamics of infinitely wide two-layer networks. Finally, Chapter 4 studies the
properties of optimization algorithms over the space of measures where neurons
can dynamically be added or removed within the iterations of the algorithms.

1.2 . Infinite-width limits, a promising path to study the prob-
lem rigorously

1.2.1 . General context and motivation
A long line of research around infinitely wide neural networks

Infinite-width limits of neural networks have a long history tracing back to Barron
(1993) and Neal (1995). The former shows that any function with sufficient regu-
larity can be approximated uniformly on closed balls by two-layer neural networks
with sigmoid-like activation functions (i.e., bounded measurable functions satisfy-
ing lim_o, 0 = 0 and lim;, 0 = 1) and the level of approximation achieved can
be arbitrarily small provided the number of neurons in the first layer is allowed to
grow unbounded. Pinkus (1999) goes even further and shows that uniform ap-
proximation on any compact set holds if and only if the activation function is not
polynomial provided it is continuous. The caveat here is that although functions
can be approximated with arbitrary precision on compact sets by neural networks,
actually finding good parameter values that realize that approximation from finite
data is difficult a priori. In a separate line of work, Neal (1995) adopts a Bayesian
point of view and proves that the neural network function converges to a Gaussian
process as the number of parameters tends to infinity when their distribution is
Gaussian.

More recently, Bengio et al. (2006) demonstrate that the training objective of
two-layer neural networks can be convexified (in a potentially infinite-dimensional

16

space) as soon as the loss function is convex if one considers an infinite number
of neurons, which leads to algorithms potentially achieving the global minimum.
Following this idea, Bach (2017) shows that infinitely wide two-layer networks with
positively homogeneous activations form a class of functions which has favorable
statistical properties: namely that in the presence of a lower-dimensional structure,
the generalization error depends only on the dimension of the sub-space and not
that of the ambient space. However, it is highlighted that minimizing the empirical
risk in this setting (or its expected version) is a hard problem computationally.

Why study infinitely wide networks ?

Deep neural networks (even in their simplest form) are highly non-linear objects
and their training dynamics correspond to the optimization of a complex, non-
convex functions which makes them difficult to analyze theoretically. However, as
presented above, important theoretical results have been obtained by considering
limits where the number of neurons in a layer can go unbounded. As we discuss
throughout the rest of this section, there has been a recent surge of interest in large
width asymptotics due to a number of results which shed light on the behaviour
of neural networks and help grasp why they work so well in practice. Among those
results are global convergence of gradient descent (e.g., Mei et al., 2018; Chizat
and Bach, 2018; Wojtowytsch, 2020; Jacot et al., 2018), insights into their training
dynamics by revealing a form of implicit bias (Chizat and Bach, 2020), as well
as statistical results on the generalization properties of such models (Bach, 2017;
Chizat and Bach, 2020).

In addition, with the acceleration made possible by advances in modern hard-
ware, state-of-the-art neural networks have a huge number of parameters (up to
several hundreds of billions) which makes studying the limit where the number
of parameters tends to infinity not unreasonable. More than that, it is shown
in (Nguyen and Pham, 2020) that the dynamics of infinitely wide networks track
closely that of networks with sufficiently many neurons, and Yang and Hu (2021);
Yang et al. (2022) demonstrate that theoretical results on infinitely wide networks
can translate into practical insights on real-world finite-width networks whose be-
haviour is sometimes well described by the theory on their infinite-width counter-
part.

In summary, infinite-width limits of neural networks appear as a neat way to
adopt a theoretical standpoint while still leading to practical insights: they lend
themselves nicely to theoretical analysis and represent a mathematically grounded
approach that has borne fruit in furthering our understanding of certain questions
around optimization and generalization.

17

Intuitive approach to the infinite-width limit

We present here informal ideas and calculations which allow to understand what
the infinite-width limit of two-layer neural networks (sometime also called one-
hidden-layer networks) consists in and how one might think of the limiting object.
Rigorously taking this limit is often subtle and requires a lot of technical work,
which is why many papers in the literature (which we review below) are concerned
with dealing with these issues. Our work, in contrast, is not so much focused on
the mathematical soundness of the limit but rather on exploiting the tools available
to produce new results and ideas on infinitely wide networks.

Recall that a width-m two-layer neural network with real-valued output is a
parametric function f(6;-) : R? — R defined as:

m

F(O;2) = wio(z"w)),
j=1
where 0 = (w3, w}))jeq1,m) € (R x R%)™ is the list parameters consisting of the
input weight matrix w! = (wi,...,w},) and output weights (w?,...,w2,), and

o : R — R is the activation function. We stress that the wjl- represents the j-th
neuron of the first layer (I = 1) and w]2- represents the j-th entry of the only neuron
of the second layer (I = 2), so that the superscripts do not indicate exponents.

Taking the infinite-width limit is understood as taking the limit m — oo, which
entails an infinite sum and with it issues related to convergence. A natural way to
ensure that the sum remains finite as m — oo is to add a scale factor in front of the
sum that is a fixed negative power of m, i.e., considering the new parameterization
f(0;x) = m™ 37 wio(x w)) of the neural network with a > 0. Note that
this does not change the class of functions we consider since the factor m~2 can be
incorporated in the output weights w]2-. Not all values of a guarantee convergence
of the sum but large enough values ensure there are no issues.

One must think of the parameters (w

J
the case at initialization and remains true during the course of training. As such,

5 1) .
LW)je[l,m] as random variables, this is

there are different modes of convergence for the sum. Typically, with i.i.d. param-
eters ((w?,w}))je(1,m) (3s is the case at initialization), one has a convergence in
law for a = 1/2 (by the central limit theorem) and an almost-sure convergence
for a = 1 (by the law of large numbers) as m — oo. It turns out that the scales
a =1/2 and a = 1 are widely studied in the infinite-width literature, the former is
referred to as the Neural Tangent Kernel (NTK) parameterization and the latter is
often referred to as the mean-field parameterization although we find that this de-
nomination is somewhat ambiguous for networks with more than two-layers as the
proper generalization to deeper layers comes with some difficulties in the “mean-
field" setting (further discussed in Section 1.2.3), and we thus prefer the term
Integrable Parameterization (IP) in reference to the fact that the re-normalized
sum is absolutely convergent. As we will see shortly (see Sections 1.2.2, 1.2.3

18

and 1.2.5), these different scales lead to very different types of behaviour for the
limiting model, and this thesis focuses on the integrable parameterization.

Parameterizations of networks of any depth

Generalizing to deeper networks the intuition presented above for the infinite-
width limit of two-layer networks is not always straightforward. Indeed, one can
still introduce factors m ™ for each layer [(or at least layers [> 2) with a; > 0,
leading to the parameterization of an L-hidden-layer network as

f(0 SU) m—AL+1 (wL+1)T.TL
o =ohh), A =m w27t 1e2, 1],

st =o(ht), h=wlz

where witl € R™, @l € Rm*™ for | 2, L], w! € R™*4 and h! denotes the
pre-activations at layer [, and z! the activations at layer [, and by default z° simply
denotes the input x fed to the first layer of the network. We do not need to rescale
the first layer since the sums in the inner products occurring there are always finite
comprising as many terms as the input dimension d.

Taking the limit m — oo when L > 2 makes things more difficult (even with
o = id) as one has to handle imbricated infinite sums. As reviewed in the following
sections, there are diverse mathematical frameworks and tools to take this limit
depending on the parameterization under consideration, but the Tensor Program
(described in Section 1.2.5) provides a comprehensive point of view for rigorously
deriving the limit of any parameterization with techniques and ideas which emerged
in the statistical physics literature in order to deal with random matrices whose
size tends to infinity.

It turns out that to understand the training dynamics of such models in the
limit m — oo, a more complete description of a parameterization of the network
is given by adding scale factors m~% (b; > 0) to the standard deviation of the
initial distribution of weights in layer [and scale factors m~< for the learning rate
of layer I applied to the weight updates. That is, the matrices w' are initialized
i.i.d. with a law such that VNVll](O) = mb’wij() has variance one (or at least
independent of m), and the update rule for the weights of layer [is given by
wh(t+1) = wh(t) —mym =V 1 F(6(t)). This is called the abc-parameterization of
a neural network in (Yang and Hu, 2021). There is a redundancy between the three
scales a;, b; and ¢; as only two of them suffice to provide a complete picture: one
can for example always choose to initialize the matrices with unit variance (that
is, by = 0) or alternatively use a unit learning rate (¢; = 0) without restricting
the class of parameterizations considered. Indeed, considering the effective weight

matrices W!(t) = m~%w!(t) that are actually used in the computation, one has

19

that V. F'(6(t)) = m~“V, . F(0(t)) and thus

t—1
W(t) = m~ @ FIWH0) — nm~Cute) N " v F(6(s)). (1.1)
s=0

It is then clear that starting from the same initialization TW'(0), any parameteriza-
tions for which a;+b; and 2a;+¢; have the same value will lead to the same effective
weights and thus the same function. Therefore, any parameterization can be ex-
pressed with b = 0 or ¢; = 0 (but not both at the same time). While Yang and
Hu (2021) decide to drop the learning rate values (they consider mostly ¢; = 0),
we choose to consider ac-parameterizations where the initial weight matrices are
always initialized with unit variance (b; = 0). The name of a parameterization
mostly refers to the choice of scale for the weights (a;), e.g., NTK (a; = 1/2) or
IP (a; = 1) although the choice of learning rate (¢;) does have its importance.

1.2.2 . The NTK parameterization

When using i.i.d. Gaussian initialization for the weights of a neural network,
scaling the initial standard deviations as m /2 has appeared as a natural way to
preserve the signal in first forward and backward passes (Glorot and Bengio, 2010;
He et al., 2015). As detailed above this scaling of the initial standard deviation
can equivalently be understood as a scale pre-factor of m~1/2 in front of the
weights which characterizes the NTK parameterization. With this scale factor, it
is already understood since Neal (1995) that this results in a Gaussian process for
the output of shallow networks at initialization as the width m — oo. Jacot et al.
(2018), who first coined the term “Neural Tangent Kernel”, go even further and
prove that the training dynamics of fully-connected networks of any depth in this
parameterization can be described as a kernel method with a specific kernel which
we detail below. Yang (2020a) derives rigorously the generalization of this kernel
description to any architecture.

The kernel description of the dynamics of the NTK parameterization in the
infinite-width limit amounts to saying that the prediction function evolves as

FO+1)i2) = FO):2) = 27 x0iK (@,)
=1

for some kernel K : R? x R? — R, where (x;);c1,, are the n samples in the
training data set and x;; := OF (6(t))/0f(0(t); xi) = O26(f*(xs), f(O(t); ;) is
the derivative of the loss on sample z; at time ¢. As demonstrated in (Chizat
et al., 2019), this kernel descent property in the NTK parameterization is the
natural consequence of the fact that the scale (or magnitude) of weight updates is
much smaller than that of the initial weights. First we explain how this intuitively
leads to the kernel behaviour described above, and then we detail why this property
holds in the infinite-width limit.

20

Linearization around the initialization for the NTK

Assume that at initialization, the gradients of the weights in the NTK param-
eterization are such that the updates are of much smaller magnitude then the
initial weight values W'(0) for large m. The first parameter update on a batch
of n samples reads as A§ = —1 37" | VyFi(6(0)), and the gradient w.r.t. the
parameters can be decomposed as VyF;(0(0)) = x0,;Vof(0(0);x;). Assuming
that ||A#]| is mall compared to ||6(0)||, one can linearize the predictor around its
initial parameters:

FO(1);2) = £(6(0) + Ab;)
~ f(0(0);2) + AT Vo f(6(0); 2)

= f(0(0);) — %ZXo,ivef(e(O);) Vo f(0(0);)
=1

which is exactly kernel descent with a kernel called the neural tangent kernel (Ja-
cot et al., 2018), defined by K,,(z,y) := Vof(0(0);2)"Vaf(6(0);y) at width
m. This is an inner product kernel, albeit in a space whose dimension goes to
infinity as m becomes large. Two facts are noteworthy about this kernel: (7)
it converges (almost surely) to a deterministic limiting kernel Ko, as m — oo;
and (i7) it actually stays constant in time in the infinite-width limit, that is
limy e Vo f (00);2) VoS (00);y) = limp o0 Vo f(8(0);) Vo f(6(0);) for
any t > 0. The second point is also a consequence of the fact that the weight
updates in the NTK parameterization are much smaller in magnitude than the
initial weights. This phenomenon, coined ‘lazy training” in (Chizat et al., 2019),
cannot explain the feature learning as well as the transfer learning abilities of neu-

ral networks used in practice (in computer vision systems or in Large Language
Models).

Features move infinitesimally in the NTK

Let us now explain why the weight updates have much smaller magnitude than the
initial weights. To fix ideas, let us consider that the gradients are computed using
a single sample and that the initialization is Gaussian, so that the initial (effective)
weights read as W' (0) = m~2W(0) for I € [2,L + 1] and W'(0) = W(0)
where TW!(0) has i.i.d. entries following AV(0, 1) for any I. Recall that the updates
of the weights for any parameterization are given in Equation (1.1). The gradient
w.r.t. the weights W' are given by the backpropagation equations: V1 F(6(t)) =
XtV f(0(t); z) (xl™1) T, where x; = OF (6(t))/0f(0(t), z¢) is the loss derivative
on the training sample x; at time ¢. For the NTK parameterization, the first weight

21

updates are given by

Wh(1) = WH0) — nxo Vi £(0(0); zo)zg
W) = m Y2W0) — g~ xo Vi F(8(0); z0) (5T, 1€ (2, L]
WEL (1) = m~Y2WEL(0) — i ol

For layers [> 2, the factor m ™ in the weight update compared to the factor m /2

present in the initial weight already hints towards the difference in magnitudes be-
tween those two contributions to the weight W!(1) for large m. The only thing left
to analyze is the actual magnitude of the entries of the term V1 f(8(0); zo) (x5 1) T
as m grows large. The magnitude of the activations z}, for the NTK parameter-
ization are well understood since Neal (1995): the factors m~'/? along with the
i.i.d. Gaussian initialization guarantee that the initial forward pass is of order 1
(see Section 1.2.5) for more details. The scale of the gradients V,; f(6(0); o)
however is not as straightforward and has to be derived recursively. Essentially, it
follows from the equations of backpropagation that the coordinates of those gradi-
ents are of order m~1/2. One thus deduces the relative magnitude of the updates
AW = W(1) — W!(0) compared to the initialization: ||[AW!||/||[W(0)]| is of
order m~1/2 for the first and last layers I € {1, L + 1} and of order m~! for the
intermediate layers [€ [2, L].

The weights thus move away from their initialization only by an infinitesimal
amount in the NTK parameterization in the large width limit. But how come
then that the output function still evolves during training and does not stay at its
initial value 7 That is because although all the entries are all individually small
compared to the initialization, they collectively induce a non-zero result in the
inner products involved in the matrix multiplications of the forward pass. The
Tensor Program precisely enables to derive the scales of the updates and the inner
products rigorously as m — oo and justifies the informal calculations presented
above.

In the NTK parameterization, it thus appears that the evolution is only de-
scribed in function space: the parameters of the network do not appear to move
away significantly from their initialization. Crucially, it is even proved in (Yang
and Hu, 2021) that as m — oo, the features x} of any layer [at time ¢ do not
move significantly away from their initialization either, in the sense that for the
same input © € R?, ||z} — 2 ||?/m converges towards 0 as m — co where the 1/m
is simply here to re-normalize a sum that becomes infinite and which might explode
otherwise. This is not surprising since the NTK dynamics are akin to learning with
a kernel method which amounts to learning a linear predictor on top of fixed (albeit
infinite-dimensional) features. Therefore, although the NTK parameterization and
its infinite-width limit are appealing for their theoretical properties, they are not
enough to capture the richness of the dynamics of real-world deep neural networks.

22

Global convergence of the NTK

Despite its drawbacks in terms of feature learning, the infinite-width limit of the
NTK parameterization still yields interesting theoretical results such as the con-
vergence of the objective to a global minimum. Indeed, it is shown in (Jacot
et al.,, 2018) that if the loss is convex, the NTK dynamics lead to a conver-
gence towards the global minimum. For example, for the squared loss objec-
tive F(0) = 5= > " (f(6;2;) — y;)% the NTK dynamics lead to an exponen-
tially fast convergence of f(6(t);z;) towards y; in the infinite-width limit. This
results from the fact that when considering the gradient flow of the objective
(the limit of gradient descent when the step-size n — 07), the prediction vector
e = (F(O(); 20))icp.n) Satisfies & (G—y*) = —Koo(Je—y"*) where y* = (y:)ic(1.n)
is the vector of targets and K, is the NTK matrix defined by K ;j = Koo (i, x5).
This leads to 4j; = y*—i—e‘tkw (Yo—y*) which guarantees convergence of g; towards
y* as t — oo provided that K, is positive definite.

1.2.3 . Integrable parameterization

Integrable parameterizations are characterized by the scale factor m ™" in front
of the weights and have properties that are quite different from the NTK param-
eterization. This thesis focuses on IPs, therefore the literature and results around
these types of models—which we review in this section—are of particular relevance
to our work.

Infinite-width limit

With two-layers, the integrable parameterization has the form

m

f(6;z) = % Z w?a(x—rw]l), (1.2)

j=1

and is often referred to as a "mean-field” model as averages of this type are frequent
in statistical physics where the study of systems with a growing number of particles
interacting is common. The intuition is that when m (here the number of neurons,
but it can be thought of as the number of particles of a system) is large, because
of the 1/m term in front of the sum, the function will behave as a mean over some
measure. Indeed, as m — oo, it is natural to replace the sum with an integral
(one can think of the law of large numbers) against some probability measure
1 € P(R? x R), leading to the parameterization

Flp) = / wo(a wh)dp(w!, w?) (1.3)

(w!,w2)eRI+1
in the infinite-width limit. To prevent the integral from diverging, we can restrict
the class to functions parameterized by probability measures 1 € Po(R? x R)

which have finite second moment if o has at most linear growth. In this setting,

23

any width-m two-layer network as in Equation (1.2) can be recovered with an

atomic measure fi,, = - 271 O(maw2 w1y, Where &y, is the Dirac measure at w.
3

Dynamics over measures

The objective to minimize is now a functional F' over the space of measures. In
all generality, we seek to minimize the risk of a new class of functions:

omin A F() = B [@), f(2))] . (1.4)
At finite width, one uses (stochastic) gradient descent to decrease the value of the
objective, but how does one proceed in the space of probability measures 7 Tools
originating from optimal transport theory have been developed to this end, and the
answer is Wasserstein Gradient Flows (WGF), which are the equivalent of gradient
descent on the space of measures with infinitesimal step-size. The corresponding
dynamics are described by the partial differential equation (PDE) known as the
continuity equation (see Ambrosio et al., 2005):

Orpy = —div(vpe),

1.5
UV = —VF‘L/“ ()

which is to be understood in the distributional sense. In Equation (1.5), the initial
measure g € Po(R¥H1) evolves according to a vector field v; = —~VF, given
by the gradient of the first variation, or Fréchet derivative, F[Lt (a function from
R to R) of the functional F at y;. More details and mathematical background
on Wasserstein gradient flows, the first variation of functionals over probability
measures and the continuity equation are provided in Section 1.2.4.

The natural interpretation of that equation is that at any given time ¢, mass
is displaced (or advected) according to some vector field v, thereby changing the
distribution of mass yi; at time ¢. In fact, an alternative description of the continuity
equation can be provided using the point of view of a system of infinitely many
interacting particles: consider an initial distribution s of particles w € R**!, and
consider the flow X;(w) defined for any w € R4+! by

Xo(w) = w,

d (1.6)
—Xt(w) = vt(Xt(w)).

dt

Xi(w) € R represents the position at time ¢ of a particle initially located
at w € R and which interacts with all the other particles (at other locations)
through the velocity field v¢. Then, given the flow X, the solution to the continuity
equation (1.5) starting from g is given by the push-forward ji; = Xypo of the
measure jo by the map X(-). Said differently, the measure p; is simply the
distribution of particles at time ¢, initially distributed according to 1, and which

24

have evolved according to the system (1.6). Note that from this point of view,
the distribution of particles at time ¢ determines the measure p; and thus also the
velocity field v;, which in turn will determine in which direction particles evolve, so
that particles actually interact since the velocity of a particle at any given time is
determined by the position of all the other particles.

Importantly, the WGF (1.5) recovers gradient flow on the objective of finite-
width networks. Indeed, for an atomic initial measure g = % > 721 0w (0),w2(0))
the WGF (1.5) is exactly continuous-time gradient descent on the parameters
of a finite-width network. In other words, the WGF (f,¢)i>0 starting from
an initial atomic measure fi,,0 = %Z;ﬂzl S(w! (0),w2(0)) s of the form i, =
1 >y 6(w]1(t)’wjz(t)), and the parameters §(t) = ((w]1 (1), w]?(t)))je[Lm] are in fact
given by the gradient flow ¢'(t) = —mV F,,,(6(t)) on the finite-width objective de-
fined by F;,(0) = Eqnp [0(f*(2), frm(0;2))] with fi,(6;2) = L >t wjz-a(x—rwjl).
The factor m in the gradient flow is to compensate for the 1/m in the definition of
fm which downscales the gradients. Conversely, if 6(t) is the gradient flow of the
finite-width objective F},, that is §'(t) = —mV F,,,(6(t)), then the atomic measure
[imt = = Py 5(%1_(,5)7%2_(75)) is the WGF of the functional F starting from i, o.
Furthermore, if fi,, 0 converges (in Wasserstein distance) to py as m toco, then
[m,t converges, as m — 0o, to the WGF of the functional F starting from 19 on
any bounded time interval. For more details on the equivalence between the WGF
for atomic measures and the finite-width gradient flow, see Section 1.2.4.

Literature review

Mean-field models are ubiquitous in mathematical physics but IPs have only re-
cently been studied as models for infinitely wide neural networks. They have rapidly
caught on as an interesting approach to studying first two-layer networks and then
deeper ones. The questions that arise when studying the infinite-width limit of net-
works in the integrable parameterization are of diverse nature: is there existence
and/or uniqueness of the solution to the continuity equation (1.5) in the typical
setting of neural networks 7 How far are the dynamics of finite-width networks
w.r.t. the infinite-width description ? Can one give quantitative bounds depending
on m 7 lIs there convergence of the dynamics as t — oo ? How do these models
behave numerically ?

The case of two-layer networks. A flurry of works study those questions
from a mathematical perspective for two-layer networks (Mei et al., 2018; Rot-
skoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Aradjo et al., 2019; Woj-
towytsch, 2020; Sirignano and Spiliopoulos, 2020), and establish the well-posedness
of Equation (1.5) in the context of two-layer neural networks under mild assump-
tions on the loss function and the activation function, as well as the convergence,
as the number of neurons m goes to infinity, of the finite-width gradient flow dy-

25

namics to the dynamics in the space of measures given by Equation (1.5). What
is more, the convergence of y; towards a global minimizer of the objective F' as
t — oo is also proved in (Mei et al., 2018; Chizat and Bach, 2018; Wojtowytsch,
2020) when the loss ¢ is convex under mild assumptions on the initialization .

The global convergence result requires technical proofs, but it is noteworthy
that although the finite-width objective is non-convex for two-layer networks, if
the loss £ is convex, since the parameterization of an infinite-width network by a
probability measure as in Equation (1.3) is linear in the measure u, the objective
F'is now convex in u. This is a good property for optimization but is not enough
to guarantee global convergence of the WGF in general, the good property is
that of displacement convexity (convexity along geodesics) but it does not always
hold in the context of neural networks. It is important to observe that the global
convergence results for two-layer networks in the integrable parameterizations are
of a different nature than those discussed for the NTK parameterization. Indeed, in
the integrable parameterization, the dynamics given by the WGF (1.7) are truly non-
linear and imply that the weights evolve non-trivially away from their initialization:
features are actually learned by the network as training progresses.

Statistical results. For two-layer networks, the class of functions represented
by the infinite-width limit of the integrable parameterization also has interesting
statistical properties. Bach (2017) studies their statistical and approximation prop-
erties and shows that when the target function only depends on the projection on
a (unknown) low-dimensional sub-space, these networks circumvent the curse of
dimensionality with approximation and generalization bounds which depend expo-
nentially on the dimension of the sub-space only.

In the context of binary classification, Chizat and Bach (2020) show that for
exponentially tailed losses, the WGF (1.5) leads to a predictor which is a max-
margin classifier as t — oo. This is a form of implicit bias of the gradient descent
dynamics: the WGF does not converge to any global minimizer, but to one that
realizes the maximum margin, and thus has favorable generalization properties.
Indeed, when there is a low-dimensional sub-space for which the projection of the
data has sufficiently large inter-class distance, the margin is independent of the am-
bient dimension, leading to an upper bound on the probability of misclassification
which only depends on the dimension of the sub-space.

The strong results discussed above for two-layer networks along with the fact
that weights do actually move away from their initialization demonstrate that the
infinite-width limit of integrable parameterizations is a promising research avenue
to further our understanding of neural networks and justify the growing body of
work around those models.

Multi-layer networks. Generalizing the result obtained for two-layer net-
works to deeper networks is not easy (see Nguyen and Pham, 2020). Indeed, the

26

particularity of two-layer networks is that their is an exchangeability of neurons due
to the invariance by permutation in the sum in Equation (1.2). For three layers or
more, some weights will appear in all the terms of the sum, leading to complica-
tions (we are not summing over independent parts of the parameter set) and the
basic exchangeability is lost. However, there is still a number of works which study
deeper networks in the integrable parameterization (Nguyen and Pham, 2020; Fang
et al., 2020; Sirignano and Spiliopoulos, 2021; Aradjo et al., 2019). Yet, they all
point out the difficulty of describing properly the dynamics of the infinite-width
limit when the network has more than three layers, and they all present different
descriptions of the dynamics of the infinite-width limit, either requiring specific
assumptions or inducing undesirable properties. Among the difficulties that arise
in deeper versions of the integrable parameterization, of particular interest are the
questions of how to take the limit (sequentially or all layers at once), how to scale
properly the layers and their learning rates to obtain non-degenerate dynamics,
and how to describe the resulting dynamics. We shall see in Section 1.2.5 that
the Tensor Program (Yang, 2019, 2020a,b; Yang and Hu, 2021) allows to answer
these questions rigorously.

Despite the difficulties that arise for deep networks, Nguyen and Pham (2020)
and Sirignano and Spiliopoulos (2021) are still able to prove global convergence
results for networks with three layers or more under specific sets of assumptions.
In addition, aside from the convergence results of the finite-width dynamic to
an idealized limit dynamic as the width m goes to infinity, Fang et al. (2020),
Nguyen and Pham (2020) and Aradjo et al. (2019) provide quantitative bounds
on the distance between the finite-width dynamic and its idealized counterpart at
infinite-width w.r.t. the number of neurons m roughly scaling as m~—1/2.

It is however clear from the literature that the behaviour of integrable parame-
terizations with more than four layers and i.i.d. initialization is degenerate and that
gradients of different layers are of different magnitudes w.r.t. the width m. For
example, it is stated in (Aradjo et al., 2019) and (Nguyen and Pham, 2020) that un-
der i.i.d. initialization with more than four layers, weights of different layers evolve
independently of other layers in the infinite-width limit, and furthermore all the
weights in the same layer evolve by the same deterministic quantity which depends
only on time. Although these pitfalls are clearly identified, the setting and/or the
assumptions are tweaked (e.g., non-i.i.d. initialization, only training certain layers,
restricted number of layers) in order to circumvent them and establish a theory of
the infinite-width limit for deep networks. It is the object of Chapter 2 of this thesis
to tackle these issues in the standard setting used in practice taking an alternative
approach using the Tensor Program.

1.2.4 . Evolution equations in the space of measures

In this section, we review the mathematical tools around functionals on spaces
of measures and Wasserstein gradient flows, as this is a core part of the work
presented in this thesis, especially in Chapter 3. The notions we discuss here are

27

presented in great detail in (Ambrosio et al., 2005) and (Santambrogio, 2017,
2015).

Spaces of probability measures and Wasserstein distances

Let ¢ > 1 be a scalar, and consider the space P,(IR”) of probability measures on
R satisfying [||z]|9dp(z) < co. One can define a distance on P,(IR?), called the
g-Wasserstein distance, by

1/q

W) = (_min [lle = slpas(a,n)
YET (1,v)

where for any p,v € Py(RP), I'(u,v) is the set of transport plans from p to v,

i.e., the set of probability measures over RP x RP whose marginals are equal to

and v. Formally

L(p,v) ={y € PR? x RP) : yymy = p, vpmy = v}

where 7, : (z,y) € RP xRP +— x and 7, : (z,y) € RP x RP — y are the canonical
projections onto the first and second component respectively. The Wasserstein
distance (also know as the Monge-Kantorovich or Kantorovich-Rubinstein distance)
comes from optimal transport theory whose objective is to understand how to move
mass from one distribution to another optimally according to some cost.

The space P, (RP) endowed with the distance 1V, forms a complete and convex
metric space (P4(RP),W,) for which convergence according to the distance W,
is roughly equivalent to the weak convergence of measures (sometimes also called
narrow convergence) as the following holds: for any sequence (y)nen and p in
P,(RP), one has that

Wy(gins) = 01F and only i = and [la]dan(z) > [lls]duo)

where p,, — u denotes the weak convergence of measures, that is

/ odpn — / edp

for every ¢ in the space C,(IRP) of continuous and bounded functions over R?. If
one replaces the whole domain R? by a compact subset 2 C RP, the equivalence
statement above holds true without the condition on the convergence of the integral
of the norm.

Note that for any ¢o > ¢ > 1, Jensen's inequality ensures that for any
v € PR x B?), (fllz — yl[ndy(z,)" < (fllz - yl1#)"/* dy(x,y), which
implies that W, (i, v) < Wy, (, V). In this thesis, we will focus only on the space
(P2(RP), Wy).

28

Functionals of probability measures and first variation

A functional F' over P(RP) is a function F' : P2(RP) — R. One would like to
define a notion of derivative over P2(IRP) similarly to the notion of derivative or
gradient in finite dimension, but the issue is that P2(RP) is an infinite-dimensional
convex space and not a euclidean space, so that care has to be taken when defining
that notion which is a bit more subtle in this context. Given p € P2(RP), the first
variation or Fréchet derivative of F' at p, if it exists, is a measurable function from
RP? to R, denoted by %(“) or simply F, , satisfying, for any suitable perturbation
v,
OF

d
%F(M + tV)’t:() = E(N)dy

Admissible perturbations v have to satisfy p+tv € Po(RP) for sufficiently small ¢,
and are therefore chosen of the form v = o — u where 7 is a probability measure
with bounded density and compact support. Note that v is not a probability
measure but rather lies in the set M(RRP) of signed measures, and as the difference
of two probability measures (of total mass 1), satisfies [dv = 0, so that the first
variation is defined up to additive constants, but is unique modulo that invariance.

Note that the definition of the first variation is akin to the equality satisfied by
the gradient in finite dimension: %f(x + ty)‘ o (Vf(x),y), and as such the

integral f p)dv can be interpreted as some kind of inner product (or rather a

duality bracket) (5 E(11),v) which represents the “action” of the measure v on the

measurable function 2—5 ().

Classical examples of functionals and their first variations. Given
V:RP R W:RPXRP - Rand f: R — R, one can define the following
functionals,

Vi) = [Vi)du(a),
W) = /W($,y)du(x)du(y),

i< {17 @)t

+00 otherwise

where X\ denotes the Lebesgue measure over RP, and it is easily checked that their
respective first variations are

5 W@ =V

/Wﬂ:ydu /W%)du(y

O)y = f (d’j@c)) for 11 € L'(\).

29

First variation for infinitely wide two-layer networks. In the case of
the objective functional F' defined in Equation (1.4), it is straightforward to derive
that for any w = (w', w?) € R,

Fl(w) = ‘Z:m)(w) = [0t @) sttt dp(o)

First variation of the 2-Wasserstein distance. The definition of the
2-Wasserstein distance can be seen as a constrained minimization problem over
an infinite-dimensional space, where the constraint is that the probability measure
v € P(RP x RP) must have marginals equal to 1z and v. As Lagrange duality allows
to handle constrained optimization problems in finite dimension, Kantorovich de-
veloped a theory, called Kantorovich duality, which allows to deal with constrained
optimization problems in the space of measures, and in particular optimal trans-
port problems. The dual problem for the optimal transport problem associated
with Wasserstein distances reads as:

max /gpdu+/1/)dv—/(cp(m)-H/J(y))dV(%?/)a

RIS

Ai={pv eG®) : pla)+v) <l -yl

Alternative descriptions of the dual problem which allow to study it in more depth
are quite involved and would require introducing new notations and concepts. This
is not the object of this thesis and we refer to (Santambrogio, 2017)[Section 4.1]
for a detailed presentation. However, we note that this duality allows to derive
the form of the solution to the optimal transport problem defining the Wasserstein
distances. In particular, it can be shown (see Santambrogio, 2017[Theorem 4.2])
that if u is absolutely continuous, there exists a map T : R? — RP called an
optimal transport map, and a function ¢ : RP — R, called a Kantorovich potential
(coming from Kantorovich duality), satisfying the three following conditions:

(i) S2(v) =,

(i) the push-forward measure v* := (id, T") 4 realizes the minimum in the defi-

nition of Ws,

(i) Vo =id—T.

Wasserstein gradient flows and optimality conditions

We now turn our attention to Wasserstein gradient flows which are the main
theoretical tool to optimize functionals over Pa(RP). Let us consider a functional
F : Py(RP) — R which admits a first variation at every p € Po(RP) that is
differentiable almost everywhere. Starting from an initial measure pg € P2(RP),

30

the Wasserstein gradient flow of the functional F' is a path (y¢)¢>0 in the space
P2 (RP) satisfying, in the sense of distributions, the continuity equation

. oF
ﬁt,ut = —C|IV (—V (5(,&15)) ,ut> . (1 7)

1
A pair (pt,ve)e>0 consisting of a path in P2(RP) and a time-dependent vector
field vy : RP — RP satisfies the continuity equation iy = —div(vp) in the

sense of distributions if for any test function ¢ in the space C! (R?) of continuously
differentiable and compactly supported functions, it holds:

d
o / pduy = / Vo vdp.

In particular, setting ¢ to be the constant function equal to 1 shows that the total
mass is preserved in the Wasserstein gradient flow: mass is neither injected nor
lost along the flow, but simply displaced.

Minimizing movement scheme. Where does this equation come from ?
In metric spaces such as the space of probability measures, it is difficult to define a
notion of derivative due to the lack of a linear structure, and one typically resorts
to minimizing movement schemes. In RP (or any Hilbert space), let 7 > 0 be a
parameter and consider a differentiable function f : RP — R, as well as a sequence
(k)k>0 in RP satisfying for any £,

. 1
s € argmin [() + 5 |ly = wil .
y T

This is called a minimizing movement scheme: indeed, one tries to minimize f
while staying close to the current estimate x;. The sequence of estimates satisfies
Vf(zz41) = === and considering a function Z : Ry — R interpolating the
zy (i.e., Z(kT) = 1), one has M =-Vf(@((k+1)7) and as 7 — 0
one gets a curve satisfying Z'(t) = —V f(Z(t)), which is exactly the gradient flow
of the function f (the minimizing movement scheme is in fact the implicit Euler
scheme for discretizing the gradient flow). The convergence of the interpolating
function to a gradient flow as 7 — 0" can be made rigorous if f is continuously
differentiable or if it is convex (see Santambrogio, 2017[Proposition 2.3]).

Going back to the space of measures, one can try to derive a similar minimizing
movement scheme as

. 1
pa € argmin F(u) + o Wa(p,). (1.8)
o
To understand the conditions that puxy1 should satisfy, we first need to explain

what the optimality conditions are for functionals on P(IRP). Similarly to the
finite dimensional case, if one wishes to minimize G(u) for some functional G

31

admitting a first variation at every p, then the optimality of a certain minimizer

w* is related to the value of the first variation %(,u*) of G at p*. It is stated

in (Santambrogio, 2015)[Proposition 7.20] that under the appropriate regularity
assumptions, for a minimizer u* of G, the first variation f;%(#*) must be constant
on the support of u*. For the minimizing movement scheme (1.8) above, the first
variation of the squared 2-Wasserstein distance is related to the optimal transport
from pgy1 to pg, and the optimality condition translates to

oF 1
m(ﬂk—l—l) + ;907' =C

for some constant C, where . is the Kantorovich potential associated with the
transport from g1 to pg. Optimal transport theory tells us that Vi, = z—T,(x)
for the optimal transport map T from px.1 to ug, so that, by taking the gradient
of the equation above, the following holds:

v (5 tma)) () = -0

T

Therefore, if we wish to transport mass from i, to minimize the quantity in (1.8),

the displacement of mass w at any point x must be equal to the vector
field vyi1(z) := —V (%(Mk“)) (z). As T — 0%, it follows that the change in

mass induced by the minimizing movement scheme must satisfy the Wasserstein
gradient flow equation (1.7): at any time ¢, mass located at z is displaced with
velocity v (x) = =V (%(“t)) (z). The proof for the convergence of the iterated
minimization scheme above is technical in general metric spaces and described

in (Santambrogio, 2015, 2017).

Properties of the Wasserstein gradient flow. The existence of a solu-
tion to the gradient flow problem (or the continuity equation) is guaranteed when
enough regularity is assumed on the functional F' (and the gradient of its first
variation V%—Z which is the negative velocity in the continuity equation). As for
the uniqueness, it often requires some notion of convexity (e.g., geodesic semi-
convexity) on F' or some assumptions on the initial measure (e.g., that it has a
density w.r.t. the Lebesgue measure) to be guaranteed in general. For infinitely
wide two-layer networks, (Chizat and Bach, 2018; Mei et al., 2018; Wojtowytsch,
2020) show the existence and uniqueness of the the WGF (1.7) under mild assump-
tions. However, the the regularity assumptions are not met by RelLU which must
be dealt with separately. We discuss this in the next paragraph.

As for gradient flows in finite dimension, it can be shown that the Wasserstein
gradient flow always decreases the functional one is trying to minimize, as the

following holds:
P == [v (5ow)

32

2
dps <0.

Equivalence between WGF for atomic measures and finite-width
GF

We detail here the derivation of the relationship between the WGF (1.7) of the
infinite-dimensional objective F' over the space Po(R%*!) and the gradient flow of
the objective F},, on the weights of a width-m two-layer network. First we derive
the flow description of the continuity equation and then we proceed to show the
equivalence between the WGF for atomic measures and the finite-width gradient
flow.

Flow description of the continuity equation. Let (u,v;);>0 be a pair
formed by a path in the space P»(R?) and a time-dependent vector field v; : RP —
RP, satisfying, in the sense of distributions, the continuity equation

at,ut = —diV(Uth),
and consider the flow defined, for any w € R?, by the ODE

Xo(w) = w,
iX,g(w) = v (Xy(w)) .
dt
Then, it holds that for any ¢ > 0, py = (X¢)gp0. Indeed, defining vy := (Xy)4po,
since X is the identity map of R?, it holds 1y = pg, and the uniqueness of the
solution to the continuity equation will suffice to conclude to equality. Let ¢ > 0,
and ¢ € CL(RP). We have

d

d
& [o = dt/soo X,dpo

:/<(W)0Xt,tht> dyao

:/<(V<p) o Xy, v 0 Xy) dug

= /V@Tvtht,

which means v satisfies the continuity equation in the sense of distributions with
initial condition vy = pg. The uniqueness of such a solution allows to conclude
that v4 = uy for any ¢ > 0.

WGF - GF equivalence. Call ¢ : R x R? — R defined, for any w =
(w', w?) € R x R by ¢(w; x) = w?o(x"w'). For any m € N, let f,, denote the
integrable parameterization of a width-m two-layer network, defined by f,,,(6;z) =
= 3T d(05;x) where 05 = (w}, w}) € R, In addition, let F,, be the finite-
width objective defined, for any 8 € (R“1)™, by F,,(0) = E, [£(f*(z), fm(0;2))],

33

and let F' be the infinite-width objective over measures, defined for any u €
Po(RIY), by F(u) = E, [((f*(x), f(u;2))] where f(u;x) = [¢(w; z)dp(w).

First, observe that defining the atomic measure pu,, = %23:1 dg,, it holds
that f(um;-) = fm(0;-), and consequently F'(u,,) = F,,(0). Next, notice that
because the first variation of F at y is given, for any w € R%1 by F(w) =
S 92L(f* x), f(p m))gb(w;x)dp(:p), it then follows that its gradient is given by
VE,(w) = [, &b(f*(x), f(1; 7)) Ve (w; x)dp(x). Hence the following equality:
TnVQJF (0) VF,m(Hj).

Consider the initial weights ((wi(0), w?(0)), ..., (w},(0),w2,(0))), and the ini-
tial atomic measure i, 0 = %Zyll d;(0) Where 0;(0) = (w}(O),wJZ(O)). Let
(ttm,t)t>0 be the WGF of the objective F' starting from i, 0, and let X; be
the flow associated to the continuity equation with vector field v; = —VF/L .
as in the previous paragraph. It holds that fi, ¢ = (X¢)4pm,o and as a push—
forward of the atomic measure /iy, 0, ftm, ¢ is also an atomic measure and its masses
are located at the images of the masses of i, by the push-forward map, i.e.,
T o 2iey Og,(ry With 0;(t) := X¢(0;(0)). Showing that 6(t) = (6;(t)) e[1,m)

is a gradlent flow for F, easily follows from the ODE satisfied by the flow X;:

d d

%Qj(t) = &Xt(ej(o))
= vE, (X(6;0)
= —mVeij(ej(t))'

Conversely, define (6(t)):>0 as the gradient flow of F,, starting from 6(0) =
(0;(0))je[1,m), that is %0(1&) = —mVFE,(0(t)), and define ji,,,4 := L > i1 06, (1)-
Then, showing that yu,, + is a WGF for F easily follows from the ODE satisfied by
0(t). Indeed, let ¢ € CL(R¥*1). It holds:

d 1 —
d i, — | —
dt YAdm,t = (mz)

—Zv <th (t)>

/V‘P VF//Lm,t> At

which shows that i, ; satisfies the continuity equation in the sense of distributions
with the vector field vy = —VF;W L le (ttmt)t>0 is the WGF of F starting from

Hm,0-

34

Homogeneity and reduction to measures on the sphere

Positively homogeneous activations are very common in the literature around neural
networks and especially for theoretical studies as they often lead to some simplifi-
cations. The ReLU (rectified linear unit) activation o(z) = max(0, z) is one such
example which is ubiquitous both in theory and in practice. However, it can also
lead to technical difficulties due to its non-differentiability and the non-continuity
of its derivative 1,-¢ at 0. In particular, the existence of the WGF (1.5) cannot be
guaranteed in general when using ReLU as the activation function. Nevertheless,
it is possible to circumvent that technical issue thanks to the positive homogeneity
of ReLU and to specific assumptions on the initial distribution jg. It is shown
in (Wojtowytsch, 2020) and (Chizat and Bach, 2020) that when the initial mea-
sure f1g € Po(R¥H1) is supported on the cone {(w!,w?) € R : ||w!||= |w?|},
the WGF (1.5) is well-defined with a ReLU activation. In addition, it is shown that
with this initialization, the measure p; stays supported on the cone at any time .

Reduction to signed measures on the sphere. The positive homogene-
ity property of ReLU also enables taking an alternative point of view for the
WGF (1.5). Indeed, for any measure u € Pg(Rd“), one can define a pair of
non-negative measures supported on the sphere v, ,v_ € M, (S%!) via the fol-
lowing characterization, which is particularly suited to the homogeneity of two-layer
networks with a ReLU activation: for any continuous test function ¢ : S¥~1 — R,
it must hold that

1
dv* = 2w o (e) dpa(w).
[v /iwzzo,wl‘w”‘w”‘o(uw1|| u(w)

Essentially, this can be understood as a form of projection which factors out the
redundancy—induced by the homogeneity property—between the norm of the first
layer weights and the magnitude of the output layer weights . With this definition,
the network function can be expressed as

flusa) = / who (e Tw?)du(w) = / o(z " u)dv(u),

with v = v — v~ € M(S%!) a signed measure on the sphere. From this
perspective, neurons of the first layer are seen as directions on the sphere, while the
weights of the second layer are seen as (signed) mass weighing those directions. The
mass in this parameterization takes into account both the second layer weights and
the norm of the first layer weights in the original parameterization of Equation (1.3).
In this point of view, the problem of learning an infinitely-wide two-layer network
is viewed as learning the positions and masses of neurons of the first layer. The
total mass of v measured by the total variation norm is given by |v|(ST1) =

J A +v7) = [llw![] [w?|dp(w).

35

Consider the WGF (1.5) with a ReLU activation, with pg supported on the
cone. Then, defining uti from p; as above, the fact that pu; is supported on the
cone at any time allows to derive evolution equations for the measures v:=. We
stress that this is not possible in general (even if we assume homogeneity only).
The pair (v;",v;) satisfies the following equations, known as advection-reaction
equations (or Wasserstein-Fisher-Rao gradient flow Gallouét et al., 2019), in the

sense of distributions:
owE = —div(0w5) & 2917, (1.9)

with g:(u) = F}, (u,1) and 3(u) = —projg,y1 (Vgi(u)) for u € S?=1. That is,
for any test function ¢ € C}(R?), it holds

% dvi = :I:/TJ;—VgpdV{t + 2/<pgtduti.
The derivation of this equation follows from the continuity equation satisfied by 1,
the definition of ;£ from i using homogeneity, and the the fact that [w?|= ||w|
on the support of ;. See Appendix B.5.1 for more details on the derivation of the
Wasserstein-Fisher-Rao equation. Put differently, the signed measure v, = v;” —v;
satisfies the equation

vy = —div(Be (1" + 1)) + 2001 + 1)

where v;” and v, represent the positive and negative part of v; respectively. This
point of view is used extensively in Chapter 3. From this standpoint, mass is not
preserved and the change in mass is governed by the reaction term g; while the
advection (displacement) of the mass is governed by the vector field ¢, which is
tangential to the sphere. In particular, the total mass |14|(S?!) evolves according
to %]Vt\(Sd_l) = [geduy.

1.2.5 . Tensor programs and infinite-width limits of any parameter-
ization

The Tensor Program is a framework developed in a series of works (Yang, 2019,
2020a,b; Yang and Hu, 2021; Yang et al., 2022) in order to better understand
and describe rigorously the infinite-width limit of various parameterizations (as
introduced in Section 1.2.1) of neural networks. The goal is to understand precisely
the magnitude of the quantities involved in the forward and backward passes of a
neural network as m — o0o. In doing so, one particular obstacle is to understand
how the different quantities correlate to each other.

The ideas and techniques developed in the Tensor Program series originate in
the statistical physics literature (Bayati and Montanari, 2011; Bolthausen, 2014)
where they have emerged in order to describe the behavior of algorithms (such
as message passing) involving large random matrices and non-linearities using the
Gaussian conditioning technique. The added benefit of the Tensor Program is to

36

provide a formalism to systemically apply those techniques in the context of neural
networks. We use the Tensor Program extensively in the proofs of most of the
results presented in Chapter 2.

The first work in the Tensor Program series (Yang, 2019) is devoted to under-
standing what kind of function is computed by deep neural networks at initialization
with i.i.d. Gaussian matrices with a standard deviation scaling as m~'/2. While
the answer is known for shallow fully-connected networks since Neal (1995), sev-
eral recent works (Lee et al., 2017; Matthews et al., 2018; Novak et al., 2018;
Garriga-Alonso et al., 2018) have generalized that result to deeper networks or
convolutional architecture. The first version of the Tensor Program in (Yang,
2019) provides mathematical tools to systematically prove that neural networks of
any architecture behave as Gaussian processes at initialization in the infinite-width
limit.

The second version of the Tensor Program (Yang, 2020a) extends the analysis
to the first backward pass (the gradients at initialization) and proves that the neural
tangent kernel V£(0;)TV f(0;y) (see Section 1.2.2) converges almost surely, as
m — oo, to a deterministic limit at initialization for any architecture in the NTK
parameterization.

The third version of the Tensor Program (Yang, 2020b) is focused on extending
the mathematical tools previously developed to cover the forward and backward
passes at any time step. One crucial step is the ability to describe the limit of
quantities where both a weight matrix W' and its transpose (W!)T are involved,
and to handle the potential correlations that might result from this.

Finally, Yang and Hu (2021) use the framework of the Tensor Program to
categorize different types of parameterization in the infinite-width limit. This cat-
egorization specifies whether an abc-parameterization (see Section 1.2.1 and Yang
and Hu, 2021) is in the kernel regime or in the feature learning regime based on the
values of the exponents a;, b; and ¢;. Moreover, a new parameterization called uP
is proposed, corresponding to the following values for the exponents: a; = —1/2,
a;=0forl € [2,L] and ap+1 =1/2, by =1/2, forl € [1,L + 1], and ¢; = 0 for
l € [1,L + 1]. Equivalently, the exponents for that parameterization can also be
given by: a1 =0, g =1/2forl € [2,L] and ar41 =1, by =0 for l € [1,L + 1],
¢ = —1forl € [1,L +1]. It is the proper extension of “mean-field” models for
more than two layers (they are identical for two-layer networks), and it “maximizes”
learning in all layers (in a sense made precise in Yang and Hu, 2021). However,
the analysis of Yang and Hu (2021) leaves out any parameterization for which the
(pre-)activations might vanish at initialization as m — oo, which is the case of
IPs with three layers or more. Hence the need for a special treatment which we
present in Chapter 2.

37

Intuition behind the technique

We present briefly here the intuition behind the Tensor Program as well as its
formalism and the main results associated with it. We start by describing the
situation in the forward pass at initialization, where things are easier to understand,
then move to describe the calculations involved in the first backward pass, and
finally explain how to handle general computations in subsequent forward and
backward passes.

First forward pass. The main point to study here is the behaviour of sums
of the type m~1/2 ZT:I w;x; for large m when w € R™ is a Gaussian vector
with i.i.d. entries following A(0,1) and € R™ is a random vector independent
from w. When z has i.i.d. entries, the central limit theorem ensures that the latter
quantity converges in law to a Gaussian variable as m — oo. In fact, this result
also holds as soon as ||x||?/m converges almost surely to some limit o2, (see Yang,
2019[Proposition G.4]). The situation is more difficult when x and w are correlated
and we discuss that case later on (it is handled in the third version of the Tensor
Program Yang, 2020b). It easily follows that the entries of the pre-activations
ht = m~12wlxt=1 of a network in the NTK parameterization become Gaussian
as m — 0o. The convergence of ||z!=1||?/m is due to the fact that entries tend
to be roughly independent in the limit because different rows (which are i.i.d.)
of the Gaussian matrix w!~! are used to compute the different entries. It thus
appears clear that independently of the activation function o and of the topology
of the network architecture, the output of the network tends to be Gaussian in the
large-m limit as soon as the Gaussian initialization is scaled appropriately.

In the setting of (Yang and Hu, 2021), any other choice of scaling factors for
the weights (the @ in abc-parameterizations) will lead to the forward pass either
vanishing or exploding.

First backward pass. When studying the backward pass at initialization, the
key quantity is the gradients of the ou'%put of the network w.r.t. the activations
a!, that is Vi f(0;2) = (m~Y2w!*) V1 f(0;2). Essentially, the situation
is the same as in the first forward pass: since Vi1 f(0;2) is computed using
matrices w® for k > [+ 2, it is independent from w!*!. The difference is simply
that we use the transpose of the initial matrices in the multiplications, but since
those have entries initialized i.i.d. the same logic as in the forward pass applies.
Since V. f(0;2) = m~ 2wt its entries are of order m~1/2 and this factor
propagates to the gradients of all layers by the equations of backpropagation. This
results in Vi f(6;) being of order m™!, which is significantly smaller than the
initial magnitude, leading to a linearization, as discussed in Section 1.2.2, if the
learning rates are not scaled appropriately. The magnitude of the gradients in the
first backward pass is thus well understood.

38

General computation in subsequent steps. Correcting the gradient
scales by using a learning rate of m!/2 for the intermediate layers I € [2, L], solves
the issue described above for the gradients at initialization. With that correction,
the entries of the weight updates AW! = W'(1) — W*(0) are of order m™", while
that of W*(0) are of order m~1/2. This is essentially what ;P does, except it also
corrects the scale of the output layer so that the weights are of order m=! in order
to prevent the output of the network from diverging after initialization.

This begs the question of how that is any different from the NTK behaviour
since the magnitude of the updates are still much smaller than that of the initial-
ization. The answer is subtle, and one has study the following forward pass at time
step t = 1 to understand why this is the correct magnitudes. In short, the reason
is that although W*!(0) and AW have different magnitudes w.r.t. m, W(0)z}™*
and AW'z!~! are both of the same order (namely of order 1) w.r.t. m because of
the non-linearities and correlations involved in the second term. Thus, there is no
linearization effect here.

Indeed, with the scale correction induced by the learning rates described above,
the contribution of the weight update to the pre-activations h} at layer [and time

I—1\T,.1-1
t = 1 reads as WWJ(Q(O);%). Although the scale is not in m~1/2
here as it is at initialization, it is clear that the computations involved are of a
different nature: the two vectors multiplied in the inner product have no reason
to have Gaussian coordinates, and furthermore they are not independent since
the Gaussian matrix w'~! is used to compute both terms. It is one of the most
important result of the Tensor Program series, summarized in a Master theorem
(see Yang, 2020b[Theorem 2.10], Yang and Hu, 2021[Theorem 7.4]), to prove
that inner products of that type, rescaled by m~!, converge to an almost sure
limit as m — oo, justifying the scale in m~! compared to the scale in m~1/2 at
initialization.

The intuitive idea for the convergence of the inner-products rescaled by m=! is
that the coordinates of (pre-)activations remain roughly i.i.d. throughout training
for large m. Understanding how inner products and multiplications with i.i.d. Gaus-
sian matrices scale with m and taking into account the potential correlation be-
tween different quantities is precisely what enables to understand how one should
scale the initialization and the learning rates in the infinite-width limit to get weight

updates which contribute maximally without leading to an explosion.

Tracking the scales and correlations as training progresses quickly becomes
cumbersome for time steps t > 1, and the Tensor Program offers a way to make the
computations systematic in the infinite-width limit. There are three types of objects
in the tensor program framework: (i) i.i.d. Gaussian matrices W of size m x m, with
standard deviation m~1/2, (ii) vectors z € R™ with roughly i.i.d. coordinates, and
(7i1) scalars w € R. While the Gaussian matrices essentially represent the matrices
of a neural network at initialization (or rescaled versions thereof), the vectors can
be obtained in two ways: either as a matrix vector computation z = Wz with

39

some other vector z, or through a non-linearity z = (2!, ..., 2P;w1,...,wy),
where ¢ : RPT™ — R is a parametric function applied element-wise, that is for
any j € [1,m], z; = 1/1(2]1, . ,zf;wl, ...,wg). Those vectors represent the (pre-
)activations or the gradients w.r.t. to the (pre-)activations, and scalars are obtained
through rescaled inner products = "y /m for some vectors 2 and .

The rules of the Tensor Program, detailed in (Yang, 2020b; Yang and Hu,
2021), describe a system of computations that allow to derive the infinite-width
limit of any series of computations (called a Tensor Program) using the three op-
erations presented above. These rules state that any scalar w = 2Ty /m converges
almost surely to some finite value as m — oo (that is the result from the Mas-
ter theorem). In addition, in the infinite-width limit, the coordinates of a vector
z all have the same distribution described by the law of a single random vari-
able Z € R. In fact, the entries of the vector z converge in law to the random
variable Z. If z = Wz, the law of Z is given by Z = Z + Z where Z is Gaus-
sian, centered and independent of z, and Z is a random variable accounting for
the potential correlation between z and W, with the most crucial example being
r=WTy. If z = Y. 2P wr, .. wy), as m — oo, the law of Z is given by
Z = (2% ,..., 27 @1, ..., @,) where Z*' is the limiting law of the entries of
the vector 2" and @; is the almost sure limit of ws. Finally, the almost sure limit
of w=x"y/m is equal to @ = E[Z*ZY]. The precise description of the rules of
a Tensor Program are provided in (Yang, 2020b; Yang and Hu, 2021), along with
the proofs that any finite-width system of computations using the three operations
described above (such as a neural network with practically any architecture) can
be described in the infinite-width limit m — oo by a corresponding system of
computations on the limiting random variables Z.

Limitations of the tensor program. We discuss briefly here some of the
limitations of the Tensor Program framework, which we elaborate further on in
Chapter 2.

One obvious limitation is that the definition of the limiting Z variables are
recursive, with formulas that quickly become intractable for deep neural networks
trained for more than one step of (S)GD, so that although the description of the
limit is clear, using the Tensor Program to study the properties of the training
dynamics beyond the first couple of steps of training can be impractical, except in
some specific cases (such as integrable parameterizations, and the reason for that
is discussed in Chapter 2). Another drawback of the Tensor Program is that only
non-linearities v with a certain regularity are allowed for the results to hold, which
prevents from studying neural networks with a ReLU activation directly, although
the framework could possibly be extended to handle non-smooth activations, but
at the cost of tedious technical proofs.

In addition, the Tensor Program in its initial form (Yang and Hu, 2021) only
allows Gaussian initialization for the weight matrices. However the universality of

40

the Tensor Program computations and its master theorem has recently been proved
in (Golikov and Yang, 2022), allowing for general i.i.d. initializations.

1.3 . Contributions

In this section, we highlight the goals pursued in this thesis as well as the main
contributions. IPs, at least with two layers, shift away from the kernel behaviour
observed in the NTK parameterization and actually produce dynamics where fea-
tures evolve with time, a fact that seems crucial for the empirical success of neural
networks. The purpose of this thesis is to study the dynamics of infinitely-wide neu-
ral networks in the integrable parameterization, sometimes deep, and sometimes
shallow. We seek to study different scenarios where we can uncover interesting
properties of the training dynamics of integrable parameterizations in the infinite-
width limit.

The first part of this thesis (Chapter 2) is devoted to better understanding
the degeneracies which arise for deep networks in the integrable parameterization,
and how one can train them in the infinite-width limit in a setting as close as
possible to what is done in practice. The second part (Chapter 3) focuses on
how the dynamics of infinitely-wide two-layer networks adapt to the symmetries
and structure of a given task, and in particular studies the problem of learning
low-dimensional sub-spaces. Finally, the third part (Chapter 4) studies different
optimization algorithms over the space of measures which provide either theoretical
results of global convergence with an explicit rate, or practically relevant methods
where neurons can dynamically be added or removed during training.

1.3.1 . Infinite-width dynamics of integrable parameterizations

Integrable parameterizations with two-layers seem to have favorable properties
compared to the NTK parameterization, but it appears that they have a degenerate
behaviour with more than four layers in the standard setting where the weights of
a given layer are initialized i.i.d. Our goal in Chapter 2 is to connect different lines
of work around infinitely wide neural networks such as “mean-fiedl” limits and the
Tensor Program. In particular, we wish to better understand the nature of this
degeneracy, propose a solution to the issue while staying in a setting as close as
possible to practically relevant methods, and study the properties of the resulting
model in the infinite-width limit.

Degeneracy of integrable parameterizations

Aradjo et al. (2019); Nguyen and Pham (2020) study the idealized gradient flow
dynamics of IPs with i.i.d. initializations and more than four layers, and observe
that in the infinite-width limit, the weights in a given intermediate layer all translate
by the same deterministic quantity depending only on time. We go a step further
and prove that this quantity is zero even with SGD, so that the weights do not

41

move at all as m — oo, causing the prediction function to be the same as at
initialization at any time step. The following result appears in Proposition 2.3.1 of
Chapter 2: for any ¢t > 0 and any «z,

lim f(0(t);z) = lim £(0(0);z) =0,

m— 00 m— 00

where the convergence is almost sure.

Dynamics with large initial Large learning rates

The natural question that ensues is whether there is a fix to that issue in the
case of i.i.d. initializations. We answer positively to that question. By studying
precisely the magnitude of the gradients at initialization for deep IPs thanks to the
Tensor Program and to the positive homogeneity assumption we consider on the
activation o, we notice that large learning rates allow the prediction function to
evolve non-trivially after the first training step. However, it is important to note
that the issue is much more subtle than “speeding up” the dynamics (using larger
learning rates as m grows larger) to enable learning in the infinite-width limit (as
is done for two-layers where (S)GD for IPs needs learning rates of order m, see
Section 1.2.3). The subtlety lies in the fact that for deep IPs, the learning rates at
initialization and at subsequent time steps cannot have the same value to enable
stable training in the limit m — oo: if the learning rates’ growth with m is too
fast, the (pre-)activations will diverge after the first step, and if it is too small,
they stay bounded but the weights do not move.

The correct point of view is that random fluctuations need to be amplified
at initialization via large initial learning rates (LLR) before reverting to the
“standard” learning rates found in the literature on IPs. We show that the correct
magnitudes for the learning rates are, at t = 0 (initialization), 1 = np+1 =
mEAD/2 and g = mEA2/2 for | € [2,L], and for t > 1, 71 = np41 = m and
m = m? for | € [2, L]. Under mild assumptions on the initial loss value and on the
input data, we prove in Theorem 2.4.1 that when using those learning rates, the
following holds:

FO);2) —— 1, 0 <[fi*|< o0 a.s.,
—00
f(0(2);x) 22, 5, |f5°]< o0 a.s.
m—ro0
The homogeneity assumption is crucial here, although the magnitudes of the first

forward and backward passes can also be well understood when ¢/(0) # 0, but the
full study would require a separate analysis.

42

Connection with ;P

We now wish to understand the properties of a network trained with the learning
rate schedule proposed above, which we call IP-LLR. We establish a connection
between IP-LLR and the recently proposed pP (Yang and Hu, 2021): we show
that, in the infinite-width limit, IP-LLR is in fact a modified version of uP where
the weight matrices at ¢ = 0 are initialized with the first weight updates of uP
instead of the usual random Gaussian initialization. That is, we “forget” the random
initialization of uP after the first gradient step.

Numerical results and other alternatives

We also explore in Chapter 2 other alternatives which enable training for deep
i.i.d. IPs and show (theoretically as well as empirically) that the two other natural
options we consider lead to degenerate behaviours. We complement our theoret-
ical results with thorough numerical experiments to corroborate our findings and
demonstrate that our mathematical statements seem to hold with much more gen-
eral assumptions (non-homogeneous or non-smooth activation functions). Future
directions include extending our theoretical results to non-homogeneous or non-
smooth functions as well as analyzing more precisely the qualitative differences in
the training dynamics of IP-LLR and uP.

1.3.2 . Symmetries in the dynamics of infinitely wide two-layer net-
works

In the theoretical quest to better understand how neural networks learn repre-
sentations of the input data to solve the task they are presented with, it is natural
to consider the problem of how networks adapt to the symmetries of the function
they are trying to learn. Symmetries can be of various nature but we focus in
Chapter 3 on orthogonal symmetries, and in particular on the setting where the
target function f* depends only on the orthogonal projection to a low-dimensional
sub-space of R?. We study the symmetries induced by that of f* on the gradient
flow dynamics of infinitely wide two-layer ReLU networks. In this context, infinitely
wide networks have the benefit that they allow the emergence of symmetries in the
training dynamics which are only approximate at finite-width.

As mentioned in Section 1.2.3, the setting where f* depends only on the
projection to a lower-dimensional sub-space has already been studied from the
statistical point of view in (Bach, 2017; Chizat and Bach, 2020), focusing on the
favorable properties in terms of generalization of infinitely wide two-layer networks
with positively homogeneous activations. Yet, the question of whether or not
(S)GD is actually able to learn this sub-space is not addressed. Similarly, Cloninger
and Klock (2021) and Damian et al. (2022) study how a single step of SGD on the
input layer weights is already able to induce favorable statistical properties with
bounds depending only on the dimension of the sub-space and not that of the

43

ambient space. Closer to our approach, Mousavi-Hosseini et al. (2022) show that
doing (S)GD on the first layer only aligns the weights with the low-dimensional
sub-space when sufficient L? regularization is used. Abbe et al. (2022) are able
to prove that the gradient flow dynamics are able to learn the low-dimensional
structure in a setting similar to ours due to their strong assumption that the data
are Rademacher variables (i.e., their entries belong to {—1,1}).

In studying symmetries, another objective is to assess whether quantitative
convergence results can be obtained with the added symmetry assumptions. While
many global convergence results exist in the literature for two-layer networks (Chizat
and Bach, 2018; Nguyen and Pham, 2020; Sirignano and Spiliopoulos, 2020; Woj-
towytsch, 2020), no convergence rate is available in general. We demonstrate that
for particular instances, exponential convergence can be proved.

In Chapter 3, we study the training dynamics of infinitely wide two-layer net-
works where both layers are trained and we focus on the WGF dynamics rather than
statistical properties. We work under the added assumption that the input data
distribution has spherical symmetry, and we optimize the population risk objective
to allow the emergence of exact symmetries.

General results for orthogonal symmetries

We first show that in our setting, if f* is invariant by some orthogonal transfor-
mation, then the measure y; and the predictor f(j;-) inherit this invariance (see
more details in Proposition 3.2.1). We then apply this result to specific instances
in which f* is invariant by some sub-group of orthogonal transformations.

Exponential convergence for odd target functions

A consequence of the result discussed above is that if f* is an odd function,
then f(u¢;-) is also odd. It then follows from the identity o(z) — o(—2) = 2
satisfied by ReLU that the predictor is actually linear: f(us;x) = w(t)"
w(t) = 3 [w!w?dp(w', w?). This linearization is different from the behaviour

of NTK: both layer weights evolve non-trivially but the symmetries of the problem

z with

imply a degeneracy to linear predictors. In fact, this degeneracy is not surprising as
the risk minimizer must be linear in this context. We show in Theorem 3.3.2 that
the WGF dynamics converge exponentially fast towards this global minimizer of
the training objective: given the global minimum F*, we show that there exists a
positive constant ¢ > 0 and a time tg > 0, such that for any ¢ > g, it holds

Fpu) = F* < e U0 (Fuyg) = F) .

Note that in this setting, although the predictor is linear, the WGF dynamics

are still non-linear as the optimization path is different from optimizing the linear
parameterization f(w;z) = w'z: defining w(t) = 3 [w! w?dp(w', w?) or w(t)
as the gradient flow of the objective F': w € R% — 1E,., [(w'z — f*(x))?] does

44

not lead to the same optimization path, even though in this case, both converge
to the best linear predictor.

The assumption on f* is obviously restrictive, but it shows that in this particular
setting, it is possible to obtain a convergence rate for the WGF, although no rates
are known in general. Other settings have also been studied in the literature in order
to provide convergence rates: E et al. (2020) are able to prove local convergence in
O(1/t) for one-dimensional inputs, and Daneshmand and Bach (2022) also prove
global convergence at the rate O(1/t) for inputs in two dimension and target
functions with a finite number of atoms and a well-designed activation function.

Lower dimensional gradient flow dynamics

Finally, we turn our attention to the case where f*(z) = fz(x') where H is a
low-dimensional sub-space of R¢, fr : H — R, and 2 is the orthogonal projec-
tion of x onto H. Such an f* is invariant by all the orthogonal transformations
which preserve H, and it easily follows from the results on orthogonal symmetries
discussed above that this is also the case for the predictor f(u;-). In particular,
this implies that there is only a dependency on the orthogonal of H through the
norm: f(u;x) = fe(xf,||zt||) where 2+ = 2 — 2 is the orthogonal projection
onto the orthogonal of H.

The challenge now is to show that as ¢ — oo, the dependence on ||z || fades
out, leaving only the dependence on the orthogonal projection onto H. This would
mean that the features learned by the network have adapted to the low-dimensional
structure of the problem. This is a difficult problem to solve theoretically. VYet,
numerically, one can indeed observe that the dependence on ||z|| vanishes with
time. Although it is difficult to prove that the measure yu; tends to be supported
on the sub-space H for large ¢, it is possible to show that the training dynamics
themselves can be reduced to a lower-dimensional gradient flow. In the setting
where f* depends only on the orthogonal projection onto H, we show that the
WGF can be reduced to a Wasserstein-Fisher-Rao gradient flow over a smaller
number of dimensions. Amongst those dimensions, one component corresponds to
the direction of input neurons in the unit sphere of H and the other to the angle
between input neurons and H.

We go even further when the function fy is positively 1-homogeneous and
prove in Theorem 3.4.3 that the WGF can be reduced to a Wasserstein-Fisher-
Rao gradient flow on a single parameter corresponding to the angle between the
input neurons and H. We show that there exists a pair of non-negative measures
77 € My ([0,7/2]), satisfying the advection-reaction equation

Oy = —div (£Viri") £ 2Gyri

where the reaction term G is the first variation of some objective functional over
M([0,7/2]) incorporating the invariances of the problem, and the advection term

45

Vi = G is the derivative of the reaction term. This one dimensional reduction
allows to easily simulate the PDEs, and we demonstrate numerically that the WGF
dynamics lead to a measure which appears to be supported on H as t — oo,
confirming that in this setting, infinitely wide networks are able to learn the low-
dimensional sub-space which matters for prediction.

Discussion

Although we show rigorously that the WGF dynamics reduce to lower-dimensional
dynamics, it is still an open question whether it can be proved that as ¢ — oo
the measure p; converges to some measure ji, that is supported on H. Other
works (such as Mousavi-Hosseini et al., 2022; Abbe et al., 2022) have studied this
convergence with modified dynamics, but in general, the problem of proving the
convergence to the sub-space H in the long run has not yet been solved. One other
future direction would be to try to extend the proof technique of Mousavi-Hosseini
et al. (2022) to the setting of infinitely wide two-layer networks where both layers
are trained.

1.3.3 . Optimization over the space of measures: dynamically adding
and pruning neurons

In Chapter 4, we consider generic convex objectives ' : M(S?%!) — R over
the space of measures on the sphere and propose algorithms for their minimization.
This setting covers (but is not restricted to) the optimization of two-layer networks
with an unconstrained number of neurons. Our goal is two-fold: (i) provide an
algorithm with global convergence guarantees at an explicit rate when the objective
is smooth, (ii) propose methods which behave well in practice both in terms of
performance and computation-wise.

While Wasserstein GF provably converges to a global minimum for infinitely
wide two-layer networks (Nguyen and Pham, 2020; Chizat and Bach, 2018; Woj-
towytsch, 2020), no convergence rate is known in general. We propose an algorithm
to minimize smooth and convex F' with a rate of k=4 where £ is the iteration num-
ber. This algorithm is inspired by coordinate descent methods for optimization in
finite dimension (see, e.g., Wright, 2015) and involves sampling a new neuron at
each step which makes it prohibitively expensive to use in practice.

To mitigate that issue, we consider penalizing the smooth objective to en-
courage sparsity and limit the number of neurons and thus the computation cost
incurred by the algorithm. We thus consider objectives of the form F' = J + AH
where J is a smooth term (such as the empirical loss for two-layer networks pa-
rameterized by measures) and H is a sparsity-inducing penalty. We study two
different types of penalties: first a total variation penalty which is the analog of
an L'-penalty in finite dimension, leading to proximal algorithms in the space of
measures to deal with the non-smoothness of the total variation. Secondly, we con-
sider kernel penalties with either attractive or repulsive kernels. While the latter do

46

not explicitly remove neurons, the corresponding dynamics induce some neurons to
grow closer to each other and they can eventually be merged in an ad-hoc fashion
beyond some threshold.

We stress that the work presented in Chapter 4 is still under progress at the
time of writing this thesis and some parts may thus feel incomplete.

Global convergence of coordinate descent in the space of mea-
sures

In finite dimension, many different techniques exist for convex optimization depend-
ing on the context: is the objective smooth or not, do tojasiewicz-type conditions
hold, do we use the full-gradient or a single coordinate at each step 7 We review
such techniques in Section 4.3 as a lot of the ideas are useful in our setting. Tak-
ing inspiration from these methods, we consider a smooth and convex objective
F : M(S%') — R and propose a coordinate descent algorithm in the space of
signed measures which allows to minimize it at a rate of k.

In this setting, a coordinate is viewed as a neuron u € S*~! and the objective
of coordinate descent is to minimize, given a measure p € M(Sd_l), an upper
bound on F'(pu+1t6,) over t € R where §,, is the Dirac measure at p. Starting from
a single atom pp = cdy,, this gives rise to an algorithm where at every iteration
k the current iterate has the form pu; = Zf:o ¢i6y, and we sample a new neuron
up+1 € ST uniformly over the sphere and set its weight ¢4 by minimizing
over t € R an upper bound on F(uy + tdy, ,). We prove in Lemma 4.4.2 that
a tojasiewicz-type inequality holds for the iterates and then deduce with similar
arguments as in finite dimension the convergence of this algorithm to a global
minimizer in expectation with an explicit rate. Precisely, we show in Theorem 4.4.3
that there is a constant C' > 0 such that for any £ > 1 it holds:

0 < EIF(ue) — F] < 257,
where F* is the minimum of the objective F'. This coordinate descent in M (S%1)
is to be understood in the L? geometry as each step is equivalent, in expectation,
to the minimization, over v € L?(w,) (where wy is the uniform distribution on
S?1), of an upper bound on F(u; + v) involving the squared norm HVHQLQ(W)'
In practice, such an algorithm can be mixed with descent steps in the Wasserstein
geometry which often have good empirical behaviour although they do not provide
convergence rates in this setting.

The inconvenient of the coordinate descent algorithm presented above is that
the number of neurons grows linearly with the iteration number k& which makes
it prohibitively expensive to use in practice. Thus, we discuss below the addition
of penalties to the smooth objective with encourage sparsity and offer a balance
between global convergence and computational cost.

47

Proximal algorithms for total variation penalties

We now consider a composite objective F'(1) = J(1) + A|pt|7v where J is smooth
and |u|7v is the total variation norm of p € M(S%1). This is akin to an L'
penalty in finite dimension which is known to induce sparsity. The total variation
penalty is not smooth and taking again inspiration from convex methods in finite
dimension, we propose a proximal coordinate descent algorithm for the minimiza-
tion of the penalized objective. While in finite dimension convergence rates can
still be obtained for proximal methods, in our setting global convergence is lost
and we have no explicit control over the number of neurons. Indeed, the proximal
coordinate descent step is given by a soft-thresholding operator: at each iteration
the number of neurons can either increase by one or stay constant but it stays
constant only if there is no change in objective value from one iteration to the
next. In this context, sparsity and global convergence are incompatible: decrease
in the objective can only be obtained by adding a new neuron.

To alleviate this issue, we consider a modification to the proximal algorithm
where we alternate between sampling a new neuron on the sphere and sampling
from the existing neurons of the current iterate pux. When sampling from existing
neurons, the proximal step is also given by a soft-thresholding operator but this time
the number of neurons can either stay fixed or decrease by one from one iteration
to the next, and we can have both a decrease of the number of neurons and a
decrease in the objective. Unfortunately, we still have no theoretical guarantees
of convergence and nor do we have a control over the number of neurons but it
appears that this method behaves well in practice and manages to both decrease
the objective as well limit the growth of the number of neurons.

Smooth kernel penalties

Another approach we take is to study smooth kernel penalties which either attract
or repulse neighboring neurons. In this setting we also consider a composite ob-
jective F'(u) = J(u) + AH (u) where H(u) = [K (u,v)d|p|(u)d|p|(v) is a kernel
penalty, and K : R? x R? — R, is a symmetric, smooth, and non-negative ker-
nel. The kernels we consider are dot-product kernels K (u,v) = x({(u,v)) with
kiR —R,.

We say that the kernel is attractive if k is a decreasing function, and that it is
repulsive if k is a increasing function. Typically, we consider x4 ,(s) = 1—els—D/o?
for attractive kernels and &, ,(s) = e(s=1/7% for repulsive kernels. o > 0 is a
parameter controlling the range of interaction of different atoms on the sphere.
While such kernels do not explicitly remove neurons within the iterations of the
algorithm, the Wasserstein-Fisher-Rao dynamics (see Sections 1.2.4 and 4.5 for
more details) induce some particles to get closer (even in the repulsive case as
repulsive forces from many different particles might push some of them towards
each other) to the point that we can effectively merge them if their distance is

48

smaller than some threshold. We show an example of this on the case of two
particles interacting in Section 4.5.1.

These methods therefore implicitly induce some control over the number of
neurons. We alternate between coordinate descent steps which should decrease
the objective but at the cost of adding neurons, and Wasserstein-Fisher-Rao steps
which should enable the merging of neurons while still behaving well empirically in
terms of decrease of the objective.

While such kernel penalties are theoretically motivated, there is unfortunately
no guarantee of convergence or control of the growth of the number of particles.

Discussion

The proximal algorithm we present for minimizing the non-smooth objective with
the total variation penalty has good empirical behaviour but it is still an open
question whether a proof of convergence can be obtained in this setting. Designing
algorithms which provide both a theoretical guarantee of convergence and at the
same time are computationally feasible (at least empirically) is difficult, and we
leave the exploration of alternative approaches than the ones we present for future
work.

49

Introduction (Francais)

“Je pense, donc je suis”, écrivait le philosophe et mathématicien francais du
XVlle siécle Descartes, suggérant que la connaissance de sa propre conscience est
un élément clé des étres intelligents. Les machines seront-elles un jour capables
de produire un raisonnement similaire ? La quéte pour développer des machines
capables de penser, de raisonner, de calculer et de résoudre des problémes a occupé
des scientifiques de différentes époques, remontant au moins aux efforts de Pascal
et Leibniz pour produire une machine arithmétique capable d’effectuer diverses
opérations algébriques.

Depuis lors, la technologie a évolué au point ot un logiciel installé sur un
ordinateur peut aider a résoudre des problémes mathématiques, a traduire du texte
dans différentes langues ou a jouer au jeu d'échecs a un niveau surhumain. Un
regain d'intérét pour le sujet de I'intelligence artificielle (IA) a eu lieu aprés la
Seconde Guerre mondiale avec les travaux de Turing sur les machines de calcul
et l'intelligence (Turing, 1950). De nombreuses initiatives (telles que le Logic
Theorist, le Dartmouth Research Project ou la Cybernétique) ont commencé a
apparaitre dans le but de développer des systémes experts capables de reproduire
les compétences de résolution de problémes et de raisonnement des humains. A
I'époque, la recherche était principalement théorique, se concentrant sur les idées
pour construire une IA et sur la maniére de tester |'intelligence des machines.

Sur la base de |'observation selon laquelle I'activité cérébrale se réduit simple-
ment A des impulsions électriques qui pourraient étre reproduites dans un ordina-
teur, la recherche autour des réseaux neuronaux artificiels et des modéles math-
ématiques de neurones a rapidement émergé. Un exemple est le perceptron de
Rosenblatt (Rosenblatt, 1958), ou un ensemble de potentiométres mettant en ceu-
vre des poids adaptatifs est capable de reconnaitre des lettres fournies en entrée au
systéme par le biais d'un ensemble de 400 cellules photoélectriques. Cependant,
I'intérét pour de tels modéles s’est rapidement estompé, car un certain nombre de
réserves ont commencé a émerger autour des réseaux neuronaux artificiels. Par
exemple, le perceptron a été critiqué pour son incapacité a classer correctement
les données qui ne sont pas linéairement séparables (méme dans des contextes
simples tels que le probléme XOR), ce qui implique la nécessité de réseaux plus
profonds accompagnés de nombreuses difficultés pratiques et théoriques. De plus,
les avancées pratiques étaient limitées par les ressources de calcul et le coiit élevé
des ordinateurs.

Les réseaux neuronaux sont donc sortis de la mode jusqu'a la fin des années
1980, et la recherche en intelligence artificielle s'est principalement concentrée sur
des systémes experts effectuant un raisonnement symbolique, c’est-a-dire suivant
un ensemble de régles artisanales pour résoudre une tache spécifique. Néanmoins,

certains groupes ont continué a étudier les réseaux neuronaux artificiels, et de

51

nouveaux résultats empiriques et théoriques ont ravivé l'intérét pour de tels mod-
éles. Rumelhart et al. (1985) ont dérivé les régles de la rétropropagation pour
calculer de maniére algorithmique les dérivées partielles de la fonction de codt par
rapport aux poids d'un réseau en utilisant la régle de la chaine. LeCun et al. (1989,
1998) ont montré que les réseaux neuronaux peuvent &tre appliqués avec succés a
la reconnaissance de chiffres manuscrits, de codes postaux et de documents, et Bar-
ron (1993) et Pinkus (1999) ont démontré la propriété d'approximation universelle
des réseaux neuronaux a deux couches.

Cependant, les progrés sont lents car les ressources de calcul sont toujours lim-
itées, et beaucoup d'expérience pratique est nécessaire pour concevoir des réseaux
neuronaux. La théorie et la pratique des systémes d'apprentissage automatique
de différents types sont développées a la fin des années 1990, et des compétitions
sont méme organisées pour désigner les meilleurs algorithmes sur des taches telles
que la reconnaissance d'images ou le traitement automatique du langage naturel
(NLP). Ces systémes concentrent souvent leurs efforts sur le probléme crucial de
I'extraction de caractéristiques : les transformations des données d’entrée sont
concues manuellement par des experts humains avant d'étre fournies a une couche
linéaire dont les paramétres sont appris de maniére algorithmique. Un moment
clé de I'histoire des réseaux neuronaux artificiels est lorsque le réseau neuronal
AlexNet (Krizhevsky et al., 2012) a remporté la premiére place lors du concours
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) en 2012 avec une
erreur de seulement 15,3% sur I'ensemble de test. Dans ce systéme, toutes les
caractéristiques sont apprises automatiquement par le réseau, ainsi que la derniére
couche.

Depuis lors, les réseaux neuronaux ont connu de nombreux succés en pratique,
apprenant a jouer a des jeux Atari (Mnih et al., 2013), atteignant une erreur de
moins de 5% sur I'ensemble de données ImageNet (He et al., 2016), comprenant et
traduisant du texte ainsi que répondant a des questions sur un document (Vaswani
et al., 2017), jouant au go, aux échecs et au shogi a un niveau surhumain (Silver
et al., 2017), et générant du texte et des images sans supervision (Goodfellow
et al., 2014; Devlin et al., 2018; Rombach et al., 2022).

Les progrés rapides ont été rendus possibles par une puissance de calcul en
constante augmentation, permettant aux réseaux de devenir plus profonds et plus
larges avec un grand nombre de paramétres (jusqu'a des centaines de milliards pour
des systémes comme ChatGPT), ainsi que par des recettes pratiques pour former les
réseaux neuronaux modernes, telles que les connexions résiduelles (He et al., 2016),
la batch normalization ou la layer normalization (loffe and Szegedy, 2015; Ba et al.,
2016), des algorithmes basés sur le gradient adaptatif utilisant du momentum, ou
des couches d'attention dans les architectures de type transformers (Vaswani et al.,
2017). Malgré les nombreux succés des réseaux neuronaux modernes, les avancées
théoriques sont en retard et notre compréhension des raisons de ces prouesses reste
limitée.

52

Contexte général

Le but de cette thése est d'approfondir notre compréhension théorique de la
dynamique de I'algorithme d'entrainement des réseaux neuronaux dans la limite
ol le nombre de neurones dans une couche devient infini. L’asymptote de largeur
infinie est récemment apparue comme un moyen de fournir des éclairages sur la
dynamique d’'entrainement des réseaux neuronaux d’'un point de vue mathématique
(voir la Section 1.2), et la recherche que nous présentons ici s'inscrit dans cette
lignée.

De nombreuses variantes d'architectures de réseaux neuronaux (entiérement
connectées, convolutionnelles, récurrentes, transformateurs, etc.) et d'algorithmes
d'entrainement (momentum, ajustement du taux d'apprentissage, gradient batch
ou complet) existent. Dans cette thése, puisque nous cherchons & étudier ces ob-
jets de maniére rigoureuse, nous nous concentrons sur ce qui est probablement la
forme la plus simple pour réduire la complexité : les réseaux neuronaux entiérement
connectés (parfois avec seulement deux couches, parfois plus) entrainés avec la de-
scente de gradient classique (stochastique) ((S)GD). Bien que notre travail soit de
nature théorique, cette thése ne développe pas une nouvelle théorie mathématique
des réseaux neuronaux artificiels, mais utilise les outils mathématiques disponibles
pour éclairer le comportement des réseaux neuronaux utilisés en pratique en étu-
diant des versions idéalisées des dynamiques d'entrainement de réseaux de largeur
finie du monde réel. Nous faisons donc un certain nombre de simplifications (en
plus de I'étude de la limite o le réseau devient infiniment large) dont la nature
dépend du contexte que nous considérons, allant de la connaissance de la distri-
bution compléte des données (objectif de risque population), a I'utilisation d'une
taille de pas infinitésimale (dynamique du flot de gradient), en passant par |'étude
de fonctions d'activation lisses ou positivement homogénes.

Le probléme de minimisation du risque
En apprentissage automatique, différents types de paradigmes existent tels
que |'apprentissage non supervisé, |'apprentissage par renforcement, les modéles
graphiques probabilistes, et peut-&tre le plus omniprésent, celui de I'apprentissage
supervisé. En apprentissage supervisé, on dispose d'une distribution de données D
de paires (x,7) € R x RX, ainsi qu'une fonction de perte £ : R x RF — R, et
I'objectif est de minimiser

Ew,yND [E(ya f(l‘))]

sur une classe f € F de fonctions, appelées prédicteurs, de R% a RX. Générale-
ment, y, appelé la cible, est modélisé par y = f*(z) ou y = f*(z) + € ou
f*: R4 — RE est la fonction cible et € est une variable aléatoire représentant un
éventuel bruit dans les données. K est le nombre de catégories ou de classes, y
peut étre soit une variable continue, comme dans le probléme de régression, soit
un entier dans {1,..., K}, comme dans le probléme de classification.

53

Dans cette thése, pour simplifier, nous nous concentrons sur le probléme de
régression avec une seule cible réelle (K = 1), bien que les extensions a la régression
multidimensionnelle soient envisageables. Nous considérons également des cibles
y = f*(x), f*: RY — R sans bruit, car nous nous intéressons principalement a la
trajectoire d’optimisation plutét qu'aux propriétés statistiques des modéles que
nous examinons. Dans ce cadre, nous considérons donc une distribution p sur les
données d'entrée et essayons de résoudre :

min {F(@) = Eonp [U(f*(2), f(0;2))] }

0cO

ol I est appelé le risque, et la minimisation porte sur une classe de fonctions
paramétriques f(6;-) avec un domaine de paramétres donné par un ensemble ©. La
distribution p peut &tre soit la distribution empirique p,, := %Z?:l 0z,, conduisant
au probléeme de minimisation du risque empirique (MRE) suivant

n
i {F(0) = D200 (). S0
ou p peut étre la distribution théorique compléte des données (e.g., gaussienne
ou uniforme sur une certaine variété), conduisant au probléme de minimisation du
risque de population. La tiche consistant a trouver une bonne valeur 68* pour le
paramétre (une valeur qui minimise I'objectif F', ou qui s’en approche) est appelée
apprentissage.

Lorsque I'on fait de I'MRE, I'objectif final n'est pas d'étre capable d'apprendre
une bonne valeur 8* pour le risque empirique, mais pour le risque de population,
souvent évalué a l'aide d'un ensemble de données, appelé ensemble de test (car
la véritable distribution des données est inconnue), différent de celui utilisé pour
apprendre 6*, appelé ensemble d'entrainement. Une mesure de la pertinence de
la valeur apprise 6* est |'erreur de généralisation, c'est-a-dire la différence entre
le risque empirique et le risque de population du paramétre optimal 6* appris
sur le risque empirique. Parfois, un terme de pénalisation est ajouté au terme
d'ajustement des données afin d'induire de bonnes propriétés de généralisation, et
I'objectif F devient F/(6) = 2 S | ¢(f*(x;), f(0;2:)) + AH(6) pour une certaine
pénalité H qui est souvent convexe (e.g., pénalité L' ou L?). Lorsque I'on essaie
d'apprendre 6*, on se tourne vers le paysage d’optimisation de F', tandis que la
valeur de I'erreur de généralisation est plus liée aux propriétés statistiques de 6*.
Cette thése se concentre sur le premier aspect du probléme lié a I'optimisation, et
nous considérons principalement le risque sans pénalité.

Modeéles linéaires

L'exemple le plus étudié de fonctions paramétriques est probablement celui des
modéles linéaires f(0;x) = 0T ®(z) ot § € RP est le paramétre et & : R? — RP
est un extracteur de caractéristiques. Ici, |'objectif F' du probléme de minimisation

54

du risque est convexe dés que la perte £ est convexe dans son deuxiéme argument, et
donc des minimiseurs globaux existent dans la plupart des cas, ou du moins (S)GD
est garanti d'approcher un minimum global sous des hypothéses légéres. Pendant
longtemps, c'était la maniére standard de procéder : |'extracteur de caractéristiques
® est concu manuellement en fonction de la tache & accomplir, et le paramétre 6
du modéle linéaire est appris a I'aide de (S)GD.

Dans ce cadre, la valeur de 8* optimal peut souvent &tre calculée explicitement,
ou du moins avec des garanties théoriques conduisant a une analyse précise de
I'erreur de généralisation et permettant de quantifier rigoureusement la justesse
statistique de la méthode d'apprentissage.

Réseaux neuronaux
Les réseaux neuronaux sont des fonctions paramétriques définies par une suc-
cession d'opérations linéaires (ou affines) suivies d'une non-linéarité, définie par
I'expression suivante : f(0;2) = WEa(WElo(...a(W'z + b)) + bL~1) 4 bE,
qui peut également &tre écrite de maniére récursive comme suit :

f0;2) = whal=t ol
ot =o(n), Bl=wilTt b, e, L 1]
A X,

ot o : R — R est une fonction réelle appelée fonction d’activation, et est appliquée
élément par élément aux vecteurs, et I'entier L est appelé la profondeur du réseau
(c'est-a-dire le nombre total de couches). Pour I € [1,L], les matrices W' €
R™*™Mi-1 sont appelées les poids et leurs rangées sont appelées les neurones, et les
vecteurs b' € R™ sont appelés les intercepteurs ou les termes de biais. L'entier m
est appelé la largeur de la l-ieme couche (c'est-a-dire le nombre de neurones dans
la couche 1), avec my, = 1 dans notre cadre, et my = d la dimension des entrées
x. Les vecteurs h! € R™ sont appelés les pré-activations de la couche [, et 2! les
activations, ou caractéristiques intermédiaires, tandis que les activations de |'avant-

L=1 sont génériquement appelées les “features” “caractéristiques’.

derniére couche x
Dans ce cadre, le paramétre 6 est la concaténation de toutes les matrices de poids
et des intercepteurs de toutes les couches.

Pour simplifier la présentation, dans cette thése, nous omettons souvent les
intercepts b!, mais cela ne devrait pas avoir un impact énorme sur la généralité
de notre travail (I'extension aux réseaux avec intercepts est assez simple, et la
transformation : = — w 'z 4 b peut toujours étre réécrite : x — W' & ol W =
(w,b) et T := (x,1)). De plus, nous considérons toujours L > 1, de sorte qu'il y
ait au moins 2 couches.

La Figure 1.1 illustre une architecture de réseau neuronal entiérement connecté
typique avec un total de 6 couches.

Dans un réseau neuronal, la premiére couche, également appelée couche d’entrée
(I = 1) et la derniére couche, également appelée couche de sortie ou de prédiction,

55

se comportent souvent un peu differemment des couches intermédiaires, et pour
des raisons pratiques, nous considérons toujours des réseaux avec L+1 couches, ot
[=1 correspond a la couche d'entrée, | = L+ 1 a la couche de sortie et [€ [2, L]
aux couches intermédiaires. Nous considérons également des réseaux ou toutes
les couches, sauf la derniére (qui a une largeur de 1 dans notre configuration),
ont une largeur commune m € N pour simplifier, et nous sommes intéressés par
la description de la limite m — oo. Dans cette thése, nous considérons toujours
L > 1, de sorte qu'il y ait au moins 2 couches.

Apprentissage avec des réseaux neuronaux

Une des principales différences de modélisation entre les réseaux neuronaux
et les modéles d'apprentissage automatique plus traditionnels (comme les mod-
éles linéaires ou les méthodes a noyau) est que les caractéristiques ne sont pas
concues manuellement, mais sont en réalité apprises automatiquement par le réseau
lui-méme. Par exemple, on peut toujours écrire la fonction de prédiction, égale-
ment appelée fonction du réseau, f(6;2) = (61T ®(6L;x), mais maintenant
I'extracteur de caractéristiques ® a ses propres paramétres (0 est la concaténa-
tion des poids des L premiéres couches), qui peuvent é&tre appris simultanément
avec les paramétres de la couche de prédiction #L+1 = WL+,

Bien que cela semble attrayant, cela entraine de nombreuses complications.
Tout d'abord, méme lorsque la perte ¢ est convexe, la fonction objective F' cor-
respondant au probléme de minimisation du risque n'est pas convexe dés que
L > 1, c'est-a-dire lorsqu'il y a au moins deux couches ou plus. Par conséquent,
aucune garantie en termes d'optimisation ne peut étre attendue a priori, et pire en-
core, & mesure que le nombre de couches et de paramétres augmente, le probléme
devient trés non convexe, et I'on peut s'attendre a de nombreux plateaux et/ou
points de selle ot la descente de gradient peut rester bloquée. Il n'existe aucune
connaissance de la valeur 0* a laquelle I'algorithme d'apprentissage convergera (s'il
le fait), ce qui rend difficile I'étude de ses propriétés statistiques, et avec le nom-
bre de paramétres étant beaucoup plus élevé que le nombre de points de données
d'entrainement, il est a prévoir que les réseaux profonds auront tendance a sura-
juster et @ mal se comporter sur les données de test (erreur de généralisation).
D'oll la nécessité d'étudier I'ensemble de la trajectoire d'entrainement le long du
chemin d'optimisation, mais la nature non linéaire de la dynamique et le grand
nombre de paramétres a suivre en font une tache difficile.

Descente de gradient pour les réseaux neuronaux

Bien que les réseaux neuronaux soient des fonctions paramétriques complexes,
I'algorithme pour les entrainer est é.onnamment simple. On initialise les paramétres
de maniére aléatoire : les poids de différentes couches sont initialisés indépendam-
ment, et dans une couche donnée, toutes les entrées Wilj de W' sont initial-
isées i.i.d. suivant une loi donnée, par exemple, gaussienne ou uniforme. Dans

56

cette thése, nous considérons généralement le cas d'une initialisation gaussienne
Wzl](O) ~ N(0,0})i.i.d. pour i, j, avec une variance o7 qui dépend de la largeur m.

A partir de cette initialisation, on suit le gradient négatif de la fonction objective
: pour tout ¢ > 0

Wt +1) = W(t) — mVyF (),

ol 1; > 0 est le taux d’apprentissage associé a la couche [, qui peut varier
d'une couche a |'autre et dépend souvent de m également. De nombreuses vari-
antes différentes de la descente de gradient (stochastique) existent, ot le taux
d'apprentissage peut également dépendre de |'instant ¢, et les différentes coor-
données des gradients peuvent étre mises a I'échelle differemment en fonction des
directions de croissance plus rapide.

Bien qu'aucune garantie n'existe a priori pour les algorithmes basés sur le gra-
dient dans un contexte non convexe, cette recette relativement simple a connu un
énorme succes en pratique. Cependant, il est difficile de I'analyser mathématique-
ment en raison

de la structure hautement non linéaire et compositionnelle des réseaux neu-
ronaux. Il est courant dans les études théoriques de trouver la version de la de-
scente de gradient ot 7, — 0, qui est appelée flot de gradient (GF). Il s'agit de
I'équivalent en temps continu de la descente de gradient discréte, et il est décrit
par I'équation différentielle ordinaire (EDO) LW (t) = —V 1 F(6(t)).

Algorithme de descente de gradient stochastique. Lorsque le nom-
bre n d'échantillons d'entrainement est élevé, il est courant de calculer le gradient
sur un sous-ensemble, appelé un /ot ou un mini-lot, plutét que sur I'ensemble com-
plet d'entrainement. En appelant F;(6) := ¢(f*(x;), f(0;x;)) pour i € [1,n], le
gradient complet est Vy, F(0) = 237 | V. F;(6), tandis que pour B C [1,n],
le gradient par lot (gradient approximatif) est Vi1 F(6) = ﬁZieB Vi Fi(0).
Nous appelons descente de gradient (GD) |'optimisation de F' en calculant di-
rectement les gradients complets a chaque étape, et nous appelons descente de
gradient stochastique (SGD) I'optimisation de F' en sous-échantillonnant des lots
parmi I'ensemble d’entrainement a chaque étape, jusqu'a la limite ou il pourrait y
avoir un seul échantillon z; € {z1,...,2,} a chaque étape.

Passages avant, arriére et rétropropagation. Les calculs des gradients
impliqués dans les mises a jour des poids sont appelés le passage en arriére, et ils
sont calculés de maniére récursive a I'aide des équations de rétropropagation. Le
gradient par rapport a n'importe quelle variable z peut toujours étre décomposé de
la maniére suivante : V,F;(0) = 02l(f*(xi), f(0;2:)) V. f(0;x;), et les équations

57

récursives se lisent comme suit :

WL+1, thf(G, xz) — WL—I—I 0 O'/(h,L),
L

(WY, f(0;2), 1e[l,L—1]
(Vaf(0;z)0d (b, 1ell,L—-1]
Vi f0;z) (YT, el L]

Voo f(0;2:)
vWL+1f(Z)
zlf(z)

i)
)

Z

Vi f(6;

le (s Ly
En revanche, le calcul des (pré-) activations h!, 2! et la sortie f(6;z) est appelé
le passage avant.

Variance initiale et taux d’apprentissage. Le choix de la variance ini-
tiale et des taux d’apprentissage peut avoir un impact considérable sur le comporte-
ment du réseau pendant et aprés |'entrainement, en particulier a large largeur (voir
la Section 1.2 et le Chapitre 2). A largeur finie, une maniére de mettre a I'échelle
les variances et les taux d'apprentissage a l'initialisation est discutée dans (Glorot
and Bengio, 2010; He et al., 2015), mais une analyse au-dela du premier pas-
sage avant et arriére fait encore défaut car les équations récursives et la présence
de non-linéarités imbriquées entravent rapidement toute analyse théorique. Cepen-
dant, a large largeur, le Tensor Program (Yang and Hu, 2021), que nous présentons
brievement dans la Section 1.2.5, permet d'analyser précisément les magnitudes
des passages avant et arriére & chaque étape pour les réseaux de neurones avec une
initialisation i.i.d., et ce type d’analyse joue un réle important dans cette thése.

Questions ouvertes et orientations de recherche

Les réseaux neuronaux modernes nécessitent de nombreux ingrédients pour at-
teindre un haut niveau de performance sur des taches difficiles, tels qu'une grande
largeur et profondeur, des couches de normalisation, des connexions résiduelles
ou des méthodes de gradient adaptatives. Ces ingrédients sont essentiels pour le
succés pratique des réseaux neuronaux, mais ils sont difficiles a analyser mathé-
matiquement, et il n'est pas clair quel est le bénéfice exact de chacun d'eux d'un
point de vue théorique. De plus, de nombreuses questions sur les réseaux neuronaux
restent non résolues : comment |'apprentissage basé sur le gradient parvient-il a
trouver de bonnes valeurs pour les poids et & converger compte tenu du grand
nombre de paramétres ? Comment parviennent-ils a atteindre (presque) une perte
nulle lorsque I'objectif n'est pas convexe ? Pourquoi ces modéles généralisent-ils
si bien alors qu'ils pourraient facilement surajuster, avec de nombreuses valeurs de
paramétres conduisant a une perte nulle et aucun contrdle sur le paramétre appris
0* a la fin de I'entrainement ? Que ces modéles apprennent-ils réellement et que
signifient les valeurs des poids appris 7

Dans cette thése, nous nous concentrons sur les aspects théoriques liés a la
compréhension des propriét

58

és de la dynamique d’entrainement (c'est-a-dire le chemin d’optimisation) des
réseaux a largeur infinie dans différents contextes.

Organisation de la thése

Le reste de la thése est organisé comme suit : la Section 1.2 est consacrée a
la présentation de la littérature et des outils mathématiques autour des limites
de largeur infinie, la Section 1.3 met en avant les principales contributions de
cette thése, le Chapitre 2 étudie la limite de largeur infinie des réseaux profonds
dans la paramétrisation intégrable (voir la Section 1.2.3 pour une définition) et le
Chapitre 3 est consacré a I'étude des symétries qui émergent dans la dynamique
des réseaux a deux couches de largeur infinie. Enfin, le Chapitre 4 étudie les
propriétés des algorithmes d'optimisation sur I'espace des mesures ou les neurones
peuvent étre ajoutés ou supprimés de maniére dynamique au sein des itérations
des algorithmes.

Limites de largeur infinie, un chemin prometteur pour étudier
le probléeme de maniére rigoureuse

Contexte général et motivation

Une longue lignée de recherches autour des réseaux de neurones
a largeur infinie

Les limites de largeur infinie des réseaux de neurones ont une longue histoire, re-
montant & Barron (1993) et Neal (1995). Le premier montre que toute fonction
suffisamment réguliére peut étre approximée de maniére uniforme sur des boules
fermées par des réseaux de neurones a deux couches avec des fonctions d'activation
de type sigmoide (i.e., des fonctions mesurables bornées satisfaisant lim_, 0 =0
et lim o, 0 = 1) et le niveau d'approximation obtenu peut étre arbitrairement petit
a condition que le nombre de neurones de la premiére couche soit autorisé a croitre
indéfiniment. Pinkus (1999) va méme plus loin en montrant que |'approximation
uniforme sur n'importe quel ensemble compact est garantie si et seulement si la
fonction d'activation n'est pas polynomiale, a condition qu’elle soit continue. La
réserve ici est que bien que les fonctions puissent &tre approximées avec une pré-
cision arbitraire sur des ensembles compacts par des réseaux de neurones, trouver
effectivement de bonnes valeurs de paramétres qui réalisent cette approximation a
partir de données finies est difficile a priori. Dans une ligne de travail distincte, Neal
(1995) adopte un point de vue bayésien et prouve que la fonction du réseau de
neurones converge vers un processus gaussien lorsque le nombre de paramétres
tend vers l'infini et que leur distribution est gaussienne.

Plus récemment, Bengio et al. (2006) démontrent que |'objectif d'entrainement
des réseaux de neurones a deux couches peut étre convexe (dans un espace po-
tentiellement de dimension infinie) dés lors que la fonction de perte est convexe,

59

si I'on considére un nombre infini de neurones, ce qui conduit a des algorithmes
pouvant potentiellement atteindre le minimum global. Suivant cette idée, Bach
(2017) montre que les réseaux & deux couches de largeur infinie avec des activa-
tions positivement homogénes forment une classe de fonctions ayant des propriétés
statistiques favorables : notamment que, en présence d'une structure de dimen-
sion inférieure, |'erreur de généralisation dépend uniquement de la dimension du
sous-espace et non de celle de |'espace ambiant. Cependant, il est souligné que la
minimisation du risque empirique dans ce contexte (ou sa version attendue) est un
probléme difficile du point de vue computationnel.

Pourquoi étudier les réseaux de largeur infinie ?

Les réseaux neuronaux profonds (méme dans leur forme la plus simple) sont des ob-
jets trés non linéaires et leur dynamique d'entrainement correspond a |'optimisation
de fonctions complexes et non convexes, ce qui les rend difficiles & analyser sur
le plan théorique. Cependant, comme présenté ci-dessus, d'importants résultats
théoriques ont été obtenus en considérant des limites ot le nombre de neurones
dans une couche peut devenir indéfiniment grand. Comme nous le discutons tout
au long de cette section, il y a eu un regain d'intérét récent pour les asymptotiques
de grande largeur en raison de plusieurs résultats qui éclairent le comportement des
réseaux de neurones et aident & comprendre pourquoi ils fonctionnent si bien en
pratique. Parmi ces résultats, on trouve la convergence globale de |a descente de
gradient (e.g., Mei et al., 2018; Chizat and Bach, 2018; Wojtowytsch, 2020; Jacot
et al., 2018), des informations sur leur dynamique d'entrainement en révélant une
forme de biais implicite (Chizat and Bach, 2020), ainsi que des résultats statis-
tiques sur les propriétés de généralisation de ces modéles (Bach, 2017; Chizat and
Bach, 2020).

De plus, avec |'accélération rendue possible par les avancées dans le matériel
moderne, les réseaux neuronaux de pointe ont un grand nombre de paramétres
(jusqu'a plusieurs centaines de milliards), ce qui rend |'étude de la limite ou le
nombre de paramétres tend vers l'infini non déraisonnable. De plus, il est montré
dans (Nguyen and Pham, 2020) que la dynamique des réseaux de largeur infinie
suit de prés celle des réseaux avec suffisamment de neurones, et Yang and Hu
(2021); Yang et al. (2022) démontrent que les résultats théoriques sur les réseaux
de largeur infinie peuvent se traduire en connaissances pratiques sur les réseaux
de largeur finie du monde réel dont le comportement est parfois bien décrit par la
théorie de leur homologue de largeur infinie.

En résumé, les limites de largeur infinie des réseaux de neurones semblent étre
un moyen élégant d'adopter un point de vue théorique tout en conduisant a des
intuitions pratiques : elles se prétent bien a I'analyse théorique et représentent une
approche mathématiquement fondée qui a porté ses fruits pour approfondir notre
compréhension de certaines questions liées a |'optimisation et la généralisation.

60

Approche intuitive de la limite de largeur infinie

Nous présentons ici des idées informelles et des calculs qui permettent de com-
prendre en quoi consiste la limite de largeur infinie des réseaux neuronaux a deux
couches (parfois aussi appelés réseaux a une couche cachée) et comment on pour-
rait envisager |'objet limite. Prendre rigoureusement cette limite est souvent subtil
et nécessite beaucoup de travail technique, c'est pourquoi de nombreux articles
de la littérature (que nous examinerons ci-dessous) se penchent sur ces questions.
Notre travail, en revanche, ne se concentre pas tant sur la rigueur mathématique
de la limite que sur I'exploitation des outils disponibles pour produire de nouvelles
idées et de nouveaux résultats sur les réseaux de largeur infinie.

Rappelons qu'un réseau neuronal & deux couches de largeur m avec une sortie
réelle est une fonction paramétrique f(6;-) : R* — R définie comme suit :

m

fO;2) =) wio(z w)),

j=1

ol = ((w?,w}))je[lm] € (R x RY)™ est |a liste des paramétres composée de la
matrice de poids d'entrée w! = (wi,..., w}) et des poids de sortie (w?, ..., w2,),
et 0 : R — R est la fonction d'activation. Nous soulignons que wjl- représente le
j-éme neurone de la premiére couche (I = 1) et wjz représente la j-éme entrée du
seul neurone de la deuxiéme couche (I = 2), de sorte que les indices supérieures
ne représentent pas des puissances.

Prendre la limite de largeur infinie revient a prendre la limite m — oo, ce qui im-
plique une somme infinie et donc des problémes liés a la convergence. Une maniére
naturelle de s'assurer que la somme reste finie lorsque m — oo est d'ajouter un
facteur d'échelle devant la somme qui est une puissance négative fixe de m, c'est-
a-dire de considérer la nouvelle paramétrisation f(0;x) =m™=*> 1", w?a(:cTw]l)
du réseau neuronal avec a > 0. Remarquez que cela ne change pas la classe de
fonctions que nous considérons, car le facteur m~® peut étre incorporé dans les
poids de sortie w]z. Toutes les valeurs de a ne garantissent pas la convergence de
la somme, mais des valeurs suffisamment grandes évitent les problémes.

Il faut considérer les parameétres (w?, w;) je[1,m] cOmme des variables aléatoires,
c'est le cas a l'initialisation et cela reste vrai tout au long de |'entrainement. En
tant que tels, il existe difféerents modes de convergence pour la somme. En général,
avec des paramétres i.i.d. ((wjz-,w}))je[lm] (comme c'est le cas a l'initialisation),
on a une convergence en loi pour a = 1/2 (par le théoréme central limite) et
une convergence presque siire pour a = 1 (par la loi des grands nombres) lorsque
m — oo. |l s'avére que les échelles a = 1/2 et a = 1 sont largement étudiées
dans la littérature sur les réseaux de largeur infinie, la premiére étant appelée
la paramétrisation du neural tangent kernel (NTK) et la seconde étant souvent
appelée la paramétrisation mean-field, bien que nous trouvions que cette dénomi-

nation soit quelque peu ambigué pour les réseaux avec plus de deux couches, car

61

la généralisation correcte aux couches plus profondes pose des difficultés dans le
cadre “mean-field” (discuté plus en détail dans la Section 1.2.3), et nous préférons
donc le terme Paramétrisation Intégrable (Pl) en référence au fait que la somme
rénormalisée est absolument convergente. Comme nous le verrons bient6t (voir
Sections 1.2.2, 1.2.3 et 1.2.5), ces différentes échelles conduisent & des comporte-
ments trés différents pour le modéle limite, et cette thése se concentre sur la
paramétrisation intégrable.

Paramétrisations de réseaux de n‘importe quelle profondeur

Généraliser aux réseaux plus profonds I'intuition présentée ci-dessus pour la limite
de largeur infinie des réseaux a deux couches n'est pas toujours simple. En effet,
on peut toujours introduire des facteurs m~% pour chaque couche [(ou du moins
pour les couches [> 2) avec a; > 0, ce qui conduit a la paramétrisation d'un
réseau a L couches cachées comme suit :

m AL+ (wL+1)TxL

f(6;z)
2 = O'(hl), Bl =m~ %l e (2, L],

zt=o(hY), W =w'z

ot whtl € R™, w! € R™*™ pour | € [2,L], w' € R™*9, et h! désigne les
pré-activations a la couche [, et z! les activations a la couche [, et par défaut z°
désigne simplement I'entrée x alimentée a la premiére couche du réseau. Nous
n'avons pas besoin de réduire I'échelle de la premiére couche car les sommes dans
les produits scalaires qui y apparaissent sont toujours finies, comprenant autant de
termes que la dimension d'entrée d.

Prendre la limite m — oo lorsque L > 2 rend les choses plus difficiles (méme
avec 0 = id), car il faut gérer des sommes infinies imbriquées. Comme cela
est examiné dans les sections suivantes, il existe divers cadres mathématiques et
outils pour prendre cette limite en fonction de la paramétrisation envisagée, mais
le Tensor Programiel (décrit a la Section 1.2.5) fournit un point de vue complet
pour dériver rigoureusement la limite de n'importe quelle paramétrisation avec des
techniques et des idées issues de la littérature de physique statistique pour traiter
des matrices aléatoires de taille tendant vers I'infini.

Il s’avére que pour comprendre la dynamique d'entrainement de tels modéles
dans la limite m — oo, une description plus compléte d’'une paramétrisation
du réseau est donnée en ajoutant des facteurs d'échelle m=% (b; > 0) a I'écart-
type de la distribution initiale des poids dans la couche [et des facteurs d'échelle
m~ ¢ pour le taux d’apprentissage de la couche [appliqué aux mises a jour des

l

poids. Autrement dit, les matrices w" sont initialisées i.i.d. avec une loi telle que

Wilj(O) = mblwfj(O) ait une variance égale a un (ou du moins indépendante

de m), et la régle de mise a jour des poids de la couche [est donnée par w'(t +
1) = w(t) —m~aV 1 F(0(t)). Cela s'appelle la abc-paramétrisation d'un réseau

62

neuronal dans (Yang and Hu, 2021). Il y a une redondance entre les trois échelles
a;, by et ¢, car deux d'entre elles suffisent pour fournir une image compléte :
on peut par exemple toujours choisir d'initialiser les matrices avec une variance
unitaire (c'est-a-dire b; = 0) ou utiliser alternativement un taux d'apprentissage
unitaire (¢; = 0) sans restreindre la classe des paramétrisations considérées. En
effet, en considérant les matrices de poids effectives W(t) = m~%w!(t) qui sont
réellement utilisées dans le calcul, on a Vi F(8(t)) = m~ %V, F(0(t)) et donc
t—1
W) = m~@HIWH0) — pm~Cute) N " F(6(s)). (1.10)
s=0

Il est alors clair que, en partant de la méme initialisation W*(0), n'importe quelle
paramétrisation pour laquelle a; + b; et 2a; + ¢; ont la méme valeur conduira aux
mémes poids effectifs et donc a la méme fonction. Par conséquent, n'importe
quelle paramétrisation peut étre exprimée avec b; = 0 ou ¢; = 0 (mais pas les deux
en méme temps). Alors que Yang and Hu (2021) décident d'ignorer les valeurs du
taux d'apprentissage (ils considérent principalement ¢; = 0), nous choisissons de
considérer des paramétrisations ac ol les matrices de poids initiales sont toujours
initialisées avec une variance unitaire (b = 0). Le nom d'une paramétrisation
fait principalement référence au choix de |'échelle pour les poids (a;), par exemple
NTK (a; = 1/2) ou Pl (a; = 1), bien que le choix du taux d'apprentissage (¢;) ait
également son importance.

La paramétrisation NTK

Lorsqu'on utilise une initialisation gaussienne i.i.d. pour les poids d'un réseau
neuronal, I'échelonnement des écarts types initiaux en tant que m~'/2 est apparu
comme une maniére naturelle de préserver le signal dans les premiéres passes avant
et arriére (Glorot and Bengio, 2010; He et al., 2015). Comme détaillé ci-dessus,
cet échelonnement de |'écart type initial peut étre également compris comme un
préfacteur d'échelle de m—1/2 devant les poids, ce qui caractérise la paramétrisa-
tion NTK. Avec ce facteur d'échelle, il est déja compris depuis Neal (1995) que
cela aboutit & un processus gaussien pour la sortie des réseaux peu profonds a
I'initialisation lorsque la largeur m — oco. Jacot et al. (2018), qui ont inventé le
terme "Noyau Tangent Neuronal" (NTK), vont méme plus loin en prouvant que la
dynamique d'entrainement des réseaux entiérement connectés de n'importe quelle
profondeur dans cette paramétrisation peut &tre décrite comme une méthode du
noyau avec un noyau spécifique que nous détaillons ci-dessous. Yang (2020a) dérive
rigoureusement la généralisation de cette description du noyau a n'importe quelle
architecture.

La description du noyau de la dynamique de la paramétrisation NTK dans la
limite de largeur infinie revient A dire que la fonction de prédiction évolue comme

FOE+ 1)) = fO):2) = 1D X0 (2, x7)
=1

63

pour un certain noyau K : R x R? — R, ou (Zi)ie[1,n) Sont les n échantillons
dans |'ensemble de données d'entrainement et x;; := OF(0(t))/0f(0(t);z;) =
l(f*(x;), f(O(t); i) est la dérivée de la perte sur I'échantillon z; au temps t.
Comme démontré dans (Chizat et al., 2019), cette propriété de descente de noyau
dans la paramétrisation NTK est la conséquence naturelle du fait que I'échelle (ou
la magnitude) des mises & jour des poids est beaucoup plus petite que celle des
poids initiaux. Tout d'abord, nous expliquons comment cela conduit intuitivement
au comportement de noyau décrit ci-dessus, puis nous détaillons pourquoi cette
propriété est vraie dans la limite de largeur infinie.

Linéarisation autour de l'initialisation pour le NTK

Supposons qu'a l'initialisation, les gradients des poids dans la paramétrisation NTK
sont tels que les mises a jour ont une magnitude bien plus petite que les valeurs
initiales des poids T(0) pour de grandes valeurs de m. La premiére mise a jour des
paramétres sur un lot de n échantillons s'écrit comme Af = —1 %" | VyF;(6(0)),
et le gradient par rapport aux paramétres peut étre décomposé en VyF;(0(0)) =
x0,iVof(8(0); ;). En supposant que ||Af]|| est bien plus petit que [|#(0)|], on
peut linéariser la prédiction autour de ses paramétres initiaux :

f(0(1);2) = f(0(0) + Ab; x)
~ f(0(0);x) + AT Vo f(0(0); z)

= JO(0);2) = 3 %04V (0(0); 2:) Vo f(6(0);)
i=1

ce qui correspond exactement a une descente de noyau avec un noyau appelé le
noyau tangent neuronal (Jacot et al., 2018), défini par la formule K, (z,y) =
Vof(0(0);2) "V f(6(0);y) pour une largeur m. Il s'agit d'un noyau produit
scalaire, bien que dans un espace dont la dimension tend vers I'infini & mesure que m
devient grand. Deux faits sont remarquables a propos de ce noyau : () il converge
(presque certainement) vers un noyau limite déterministe K., lorsque m — oc;
et (i) il reste en réalité constant dans le temps dans la limite de largeur infinie,
ie., limp, o0 Vo f(0(t);) Vo f(0(1);y) = limp oo Vo f(8(0);2) TV f(6(0);y)
pour tout ¢t > 0. Le deuxiéme point découle également du fait que les mises a jour
des poids dans la paramétrisation NTK sont beaucoup plus petites en magnitude
que les poids initiaux. Ce phénoméne, appelé ‘lazy training” dans (Chizat et al.,
2019), ne peut pas expliquer aussi bien |'apprentissage de caractéristiques que les
capacités de transfert des réseaux neuronaux utilisés en pratique (dans les systémes
de vision par ordinateur ou dans les grands modéles de langage).

Déplacement infinitésimal des caractéristiques dans le NTK

Expliquons maintenant pourquoi les mises a jour des poids ont une magnitude bien
plus petite que les poids initiaux. Pour fixer les idées, considérons que les gradients

64

sont calculés a I'aide d'un seul échantillon et que I'initialisation est gaussienne, de
sorte que les poids initiaux (effectifs) s'écrivent comme W*(0) = m~1/2W*(0) pour
1 €[2,L+1] et W0) = W'(0) ou W'0) a des entrées i.i.d. suivant A/(0,1)
pour tout I. Rappelons que les mises a jour des poids pour n'importe quelle
paramétrisation sont données dans I'Equation (1.1). Les gradients par rapport aux
poids ! sont donnés par les équations de rétropropagation : V. F(0(t)) =
XeVi f(O(t); z) (2T, ou x¢ = OF(0(t))/Df (A(t), ;) est la dérivée de la perte
sur |'échantillon d'entrainement z; au temps ¢. Pour la paramétrisation NTK, les
premiéres mises & jour des poids sont données par

W(1) = WH(0) — nxo Vi f(6(0); o)z
WH1L) = m™PWH0) — nm ™ X0V F(0(0); z0) (2)T, 1€ [2,L]
WEL (1) = m™Y2WERL(0) — nm Lyl

Pour les couches [> 2, le facteur m ™! dans la mise a jour des poids par rapport au
—1/2 présent dans le poids initial suggére déja la différence de magnitude
entre ces deux contributions au poids (1) pour de grandes valeurs de m. Il reste
a analyser la magnitude réelle des entrées du terme V. £(6(0); zo) (x5)T lorsque
m devient grand. La magnitude des activations xf) pour la paramétrisation NTK
est bien comprise depuis Neal (1995) : les facteurs m /2 associés a I'initialisation
gaussienne i.i.d. garantissent que la premiére passe initiale est de |'ordre de 1 (voir
la Section 1.2.5 pour plus de détails). L'échelle des gradients V,:f(0(0);x),
en revanche, n'est pas aussi directe et doit étre dérivée de maniére récursive.

facteur m

Essentiellement, il découle des équations de rétropropagation que les coordonnées
de ces gradients sont de I'ordre de m~'/2. On en déduit donc la magnitude
relative des mises a jour AW! = W!(1) — W(0) par rapport a l'initialisation :
[|AW|/||W(0)]| est de I'ordre de m /2 pour les premiéres et derniéres couches
1 €{1,L+1} et de I'ordre de m~! pour les couches intermédiaires [€ [2, L].

Les poids se déplacent donc loin de leur initialisation uniquement d'une quantité
infinitésimale dans la paramétrisation NTK en limite de grande largeur. Mais com-
ment se fait-il alors que la fonction de sortie évolue encore pendant I'entrainement
et ne reste pas a sa valeur initiale 7 C'est parce que bien que toutes les en-
trées soient individuellement petites par rapport a l'initialisation, elles induisent
collectivement un résultat non nul dans les produits scalaires impliqués dans les
multiplications matricielles de la passe avant. Le programme tensoriel permet pré-
cisement de dériver rigoureusement les échelles des mises a jour et les produits
scalaires lorsque m — oo et justifie les calculs informels présentés ci-dessus.

Dans la paramétrisation NTK, il semble donc que I'évolution soit uniquement
décrite dans I'espace des fonctions : les paramétres du réseau ne semblent pas
s'éloigner significativement de leur initialisation. Cruciallement, il est méme
prouvé dans (Yang and Hu, 2021) que lorsque m — oo, les caractéristiques z!
de n'importe quelle couche | au temps t ne s'éloignent pas significativement de
leur initialisation non plus, au sens que pour la méme entrée 2 € R?, ||zt —z}|12/m

65

converge vers 0 lorsque m — oo, ou le terme 1/m est simplement ici pour renor-
maliser une somme qui devient infinie et qui pourrait autrement exploser. Ce n’est
pas surprenant puisque les dynamiques NTK ressemblent a |'apprentissage avec
une méthode de noyau, ce qui revient a apprendre un prédicteur linéaire sur des
caractéristiques fixes (bien que de dimension infinie). Par conséquent, bien que
la paramétrisation NTK et sa limite a largeur infinie soient attrayantes pour leurs
propriétés théoriques, elles ne suffisent pas a saisir la richesse des dynamiques des
réseaux neuronaux profonds du monde réel.

Convergence globale du NTK

Malgré ses inconvénients en termes d'apprentissage de caractéristiques, la limite a
largeur infinie de la paramétrisation NTK produit toujours des résultats théoriques
intéressants tels que la convergence de I'objectif vers un minimum global. En effet,
il est démontré dans (Jacot et al., 2018) que si la perte est convexe, les dynamiques
NTK conduisent a une convergence vers le minimum global. Par exemple, pour
I'objectif de perte quadratique F/(6) = 5= > | (f(0;2;) — y;)?, les dynamiques
NTK conduisent a une convergence exponentiellement rapide de f(0(t); z;) vers y;
en limite de largeur infinie. Cela découle du fait que lorsque I'on considére le flot de
gradient de I'objectif (la limite de la descente de gradient lorsque le pas 7 — 07), le
vecteur de prédiction 7 = (f(0(); %))ic(1,n) satisfait %(gjt—y*) = —Koo(Ft —y*)
ol y* = (¥i)ic[1,n] st le vecteur des cibles et Ko, est la matrice NTK définie par
l_(w7ij = Koo(24, ;). Cela conduit a g, = y* + e‘tkoo(
convergence de 7; vers y* lorsque t — 00, a condition que K soit défini positif.

Jo — y*) ce qui garantit la

Paramétrisation intégrable

Les paramétrisations intégrables se caractérisent par le facteur d’échelle m~—!

devant les poids et présentent des propriétés assez différentes de la paramétrisation
NTK. Cette thése se concentre sur les Pls, c'est pourquoi la littérature et les
résultats autour de ces types de modéles, que nous examinons dans cette section,
sont particuliérement pertinents pour notre travail.

Limite a largeur infinie

Avec deux couches, la paramétrisation intégrable a la forme suivante :
1 m
2 T 1
f(G;x):Eija(:c wy), (1.11)
j=1

et est souvent appelée un modéle “mean-field”, car les moyennes de ce type sont
fréquentes en physique statistique, ot I'étude de systémes avec un nombre croissant
de particules en interaction est courante. L'intuition est que lorsque m (ici le
nombre de neurones, mais on peut le considérer comme le nombre de particules
d'un systéme) est grand, en raison du terme 1/m devant la somme, la fonction

66

se comportera comme une moyenne sur une certaine mesure. En effet, lorsque
m — o0, il est naturel de remplacer la somme par une intégrale (on peut penser &
la loi des grands nombres) par rapport a une mesure de probabilité 1 € P(R? x R),
ce qui conduit a la paramétrisation suivante :

flu) = [wo(e T w!)du(w!, w?) (1.12)
(w1 ,w2)€Rd+1

dans la limite a largeur infinie. Pour éviter que I'intégrale ne diverge, nous pou-
vons restreindre la classe de fonctions paramétrisées aux mesures de probabilité
1 € P2(R? x R), qui ont un moment d'ordre deux fini si o a au plus une crois-
sance linéaire. Dans ce cadre, n'importe quel réseau a deux couches de largeur
m tel que dans |'équation (1.2) peut étre obtenu avec une mesure atomique
P = 5 ey (maw?,w!)» OU bu est la mesure de Dirac en w.

Dynamiques sur les mesures

L'objectif a minimiser est désormais une fonctionnelle F' dans |'espace des mesures.
En général, nous cherchons a minimiser le risque d'une nouvelle classe de fonctions:

min {F () : = By [0/ (@), f(52))] - (1.13)

HEPa (RAFT)

A largeur finie, nous utilisons la descente de gradient (stochastique) pour réduire
la valeur de I'objectif, mais comment procéde-t-on dans |'espace des mesures de
probabilité ? Des outils issus de la théorie du transport optimal ont été développés
a cet effet, et la réponse est les flots de gradient de Wasserstein (WGF), qui sont
I'équivalent de la descente de gradient dans I'espace des mesures avec une étape
infinitésimale. Les dynamiques correspondantes sont décrites par |'équation aux
dérivées partielles (EDP) connue sous le nom d'équation de continuité (voir Am-
brosio et al., 2005):
Oy = —div(vepn),
Ve = —VF/

Mt

(1.14)

a comprendre dans au sens des distributions. Dans I'équation (1.5), la mesure
initiale 119 € Pa(RTY) évolue en fonction d'un champ vectoriel v, = ~VFE,
donné par le gradient de la premiére variation, ou dérivée de Fréchet, Fl’” (une
fonction de R a R) de la fonctionnelle ' a ;. Plus de détails et d'explications
mathématiques sur les flots de gradient de Wasserstein, la premiére variation des
fonctionnelles sur les mesures de probabilité et I'équation de continuité sont fournis
dans la Section 1.2.4.

L'interprétation naturelle de cette équation est qu'a tout moment ¢ donné,
la masse est déplacée (ou advectée) selon un champ vectoriel v¢, modifiant ainsi
la distribution de la masse p; a l'instant ¢. En fait, une description alternative
de I'équation de continuité peut étre fournie en utilisant le point de vue d'un

67

systéme de particules infiniment nombreuses interagissant les unes avec les autres:
considérez une distribution initiale po de particules w € R4, et considérez le flot
X (w) défini pour tout w € R4 par

Xo(w) = w,

d (1.15)
2 Xt(w) = v (X (w)).

Xi(w) € R4 représente la position a I'instant ¢ d’une particule initialement située
a w € R™! et qui interagit avec toutes les autres particules (a d'autres endroits)
a travers le champ de vitesse v;. Ensuite, étant donné le flot X;, la solution
de I'équation de continuité (1.5) a partir de o est donnée par le push-forward
pt = Xiypo de la mesure pg par la fonction Xi(-). Autrement dit, la mesure
1y est simplement la distribution des particules a I'instant ¢, initialement réparties
selon fi, et qui ont évolué selon le systéme (1.6). Notez que de ce point de vue,
la distribution des particules a l'instant ¢ détermine la mesure yu; et donc aussi le
champ de vitesse v¢, qui & son tour déterminera dans quelle direction les particules
évoluent, de sorte que les particules interagissent effectivement puisque la vitesse
d'une particule a un instant donné est déterminée par la position de toutes les
autres particules.

[l est important de noter que le WGF (1.5) retrouve la descente de gradi-
ent sur |'objectif des réseaux de largeur finie. En effet, pour une mesure initiale
atomique f9 = = Z;”Zl (w1 (0),w2(0)), & WGF (1.5) correspond exactement a la
descente de gradient en temps continu sur les paramétres d'un réseau de largeur
finie. En d'autres termes, le WGF (py.+)1>0 a partir d’'une mesure initiale atom-
ique im0 = 7= Y7 O(wi(0)w2(0)) @ 1a forme pig = = >7M O} (t) w2 (1)) €
les paramétres 0(t) = ((w}(t),w?(t)))je[l,m] sont en réalité donnés par la de-
scente de gradient §'(t) = —mV F,,(6(t)) sur I'objectif de largeur finie défini par
Fpn(0) = Epp [U(f*(2), fm(0;2))] avec fr(0;2) = L > ity wjz-a(xijl-). Le fac-
teur m dans la descente de gradient compense le terme 1/m dans la définition
de fy, qui réduit I'échelle des gradients. Inversement, si 6(t¢) est la descente de
gradient de |'objectif de largeur finie F,,,, c'est-a-dire 0'(t) = —mV EF,,(0(t)), alors
la mesure atomique fip,; = + >t 6(w}(t)7wjg(t)) est le WGF de la fonctionnelle
F' a partir de pi,, 0. De plus, si i, 0 converge (en distance de Wasserstein) vers
o lorsque m — oo, alors i, converges, lorsque m — oo, vers le WGF de la
fonctionnelle F' a partir de o sur n'importe quel intervalle de temps borné. Pour
plus de détails sur I'équivalence entre le WGF pour les mesures atomiques et la
descente de gradient de largeur finie, voir la Section 1.2.4.

Revue de la littérature

Les modéles de champ moyen sont omniprésents en physique mathématique, mais
les Pl ont été étudiées récemment en tant que modéles pour les réseaux neuronaux

68

de largeur infinie. lls ont rapidement suscité un intérét en tant qu'approche in-
téressante pour I'étude des réseaux a deux couches, puis des réseaux plus profonds.
Les questions qui se posent lors de I'étude de la limite de largeur infinie des réseaux
dans |la paramétrisation intégrable sont de nature diverse : existe-t-il une solution a
I'équation de continuité (1.5) dans le cadre typique des réseaux neuronaux ? Dans
quelle mesure les dynamiques des réseaux de largeur finie différent-elles de la de-
scription de largeur infinie 7 Peut-on donner des bornes quantitatives en fonction
de m 7 Y a-t-il convergence des dynamiques lorsque ¢ — oo 7 Comment ces
modéles se comportent-ils numériquement ?

Le cas des réseaux a deux couches. Une série de travaux étudient ces
questions d'un point de vue mathématique pour les réseaux a deux couches (Mei
et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat and Bach, 2018; Araujo
et al., 2019; Wojtowytsch, 2020; Sirignano and Spiliopoulos, 2020), et établis-
sent la bien-posée de I'Equation (1.5) dans le contexte des réseaux neuronaux a
deux couches sous des hypothéses légéres sur la fonction de perte et la fonction
d'activation, ainsi que la convergence, lorsque le nombre de neurones m tend vers
I'infini, des dynamiques de descente de gradient de largeur finie vers les dynamiques
dans I'espace des mesures données par I'Equation (1.5). De plus, la convergence de
uz vers un minimum global de |'objectif F' lorsque ¢ — oo est également démon-
trée dans (Mei et al., 2018; Chizat and Bach, 2018; Wojtowytsch, 2020) lorsque
la perte £ est convexe sous des hypothéses légéres sur l'initialisation .

Le résultat de convergence globale nécessite des preuves techniques, mais il est
a noter que bien que |'objectif de largeur finie soit non convexe pour les réseaux
a deux couches, si la perte £ est convexe, puisque la paramétrisation d’un réseau
de largeur infinie par une mesure de probabilité comme dans I'Equation (1.3) est
linéaire par rapport a la mesure p, I'objectif F' est maintenant convexe par rapport
a p. 1l s’agit d'une bonne propriété pour I'optimisation, mais cela ne garantit pas
toujours la convergence globale du WGF en général, la bonne propriété est celle
de convexité par déplacement (convexité le long des géodésiques), mais elle ne
s’applique pas toujours dans le contexte des réseaux neuronaux. Il est important
de noter que les résultats de convergence globale pour les réseaux a deux couches
dans les paramétrisations intégrables ont une nature différente de ceux discutés
pour la paramétrisation NTK. En effet, dans la paramétrisation intégrable, les
dynamiques données par le WGF (1.7) sont vraiment non linéaires et impliquent
que les poids évoluent de maniére non triviale par rapport a leur initialisation : les
caractéristiques sont effectivement apprises par le réseau au fur et & mesure de
I'entrainement.

Résultats statistiques. Pour les réseaux a deux couches, la classe de fonc-
tions représentée par la limite de largeur infinie de la paramétrisation intégrable
présente également des propriétés statistiques intéressantes. Bach (2017) étudie

69

leurs propriétés statistiques et d'approximation et montre que lorsque la fonction
cible ne dépend que de la projection sur un sous-espace de dimension réduite
(inconnu), ces réseaux évitent la malédiction de la dimension avec des bornes
d'approximation et de généralisation qui dépendent uniquement de maniére expo-
nentielle de la dimension du sous-espace.

Dans le contexte de la classification binaire, Chizat and Bach (2020) montrent
que pour des pertes 3 queues exponentielles, le WGF (1.5) conduit & un prédicteur
qui est un classifieur 3 marge maximale lorsque t — oo. Il s’agit d'une forme de
biais implicite des dynamiques de descente de gradient : le WGF ne converge pas
vers un minimiseur global, mais vers un minimiseur qui réalise la marge maximale,
et posséde donc des propriétés de généralisation favorables. En effet, lorsque qu'il
existe un sous-espace de dimension réduite pour lequel la projection des données
présente une distance inter-classe suffisamment grande, la marge est indépendante
de la dimension ambiante, ce qui conduit a une borne supérieure sur la probabilité
de classification incorrecte qui dépend uniquement de la dimension du sous-espace.

Les résultats solides discutés ci-dessus pour les réseaux a deux couches, ainsi
que le fait que les poids s'éloignent effectivement de leur initialisation, démontrent
que la limite de largeur infinie des paramétrisations intégrables est une avenue
de recherche prometteuse pour approfondir notre compréhension des réseaux neu-
ronaux et justifient la croissance du nombre de travaux sur ces modéles.

Réseaux a couches multiples. Généraliser le résultat obtenu pour les réseaux
a deux couches a des réseaux plus profonds n'est pas facile (voir Nguyen and
Pham, 2020). En effet, la particularité des réseaux a deux couches est qu'il
y a une échangeabilité des neurones due a l'invariance par permutation dans la
somme de I'Equation (1.2). Pour trois couches ou plus, certains poids apparaitront
dans tous les termes de la somme, ce qui entraine des complications (nous ne
faisons pas la somme sur des parties indépendantes de |'ensemble de paramétres)
et la notion d'échangeabilité de base est perdue. Cependant, il existe encore de
nombreux travaux qui étudient des réseaux plus profonds dans la paramétrisation
intégrable (Nguyen and Pham, 2020; Fang et al., 2020; Sirignano and Spiliopou-
los, 2021; Aradjo et al., 2019). Cependant, ils soulignent tous la difficulté de
décrire correctement les dynamiques de la limite de largeur infinie lorsque le réseau
comporte plus de trois couches, et ils présentent tous différentes descriptions des
dynamiques de la limite de largeur infinie, nécessitant soit des hypothéses spé-
cifiques, soit entrainant des propriétés indésirables. Parmi les difficultés qui se
posent dans les versions plus profondes de la paramétrisation intégrable, les ques-
tions de la maniére de prendre la limite (séquentiellement ou toutes les couches a
la fois), de la maniére de mettre a I'échelle correctement les couches et leurs taux
d'apprentissage pour obtenir des dynamiques non dégénérées, et de la maniére de
décrire les dynamiques résultantes sont d'un intérét particulier. Nous verrons dans
la Section 1.2.5 que le Tensor Program (Yang, 2019, 2020a,b; Yang and Hu, 2021)

70

permet de répondre de maniére rigoureuse a ces questions.

Malgré les difficultés rencontrées pour les réseaux profonds, Nguyen and Pham
(2020) et Sirignano and Spiliopoulos (2021) parviennent toujours a prouver des
résultats de convergence globale pour les réseaux avec trois couches ou plus sous
des ensembles spécifiques d'hypothéses. De plus, en plus des résultats de con-
vergence de la dynamique de largeur finie vers une dynamique idéalisée A largeur
infinie lorsque la largeur m tend vers l'infini, Fang et al. (2020), Nguyen and Pham
(2020) et Aradjo et al. (2019) fournissent des bornes quantitatives sur la distance
entre la dynamique de largeur finie et sa contrepartie idéalisée a largeur infinie par
rapport au nombre de neurones m, qui varie approximativement en m /2,

Il est cependant clair d'aprés la littérature que le comportement des paramétri-
sations intégrables avec plus de quatre couches et une initialisation i.i.d. est dégénéré
et que les gradients des différentes couches ont des magnitudes différentes par rap-
port a la largeur m. Par exemple, il est mentionné dans (Aradjo et al., 2019)
et (Nguyen and Pham, 2020) que sous une initialisation i.i.d. avec plus de qua-
tre couches, les poids de différentes couches évoluent indépendamment des autres
couches dans la limite de largeur infinie, et en outre, tous les poids de la méme
couche évoluent de la méme quantité déterministe qui ne dépend que du temps.
Bien que ces piéges soient clairement identifiés, le cadre et/ou les hypothéses
sont ajustés (e.g., initialisation non-i.i.d. , entrailnement uniquement de certaines
couches, nombre restreint de couches) afin de les contourner et d'établir une théorie
de la limite de largeur infinie pour les réseaux profonds. L'objectif du Chapitre 2 de
cette thése est de traiter ces problémes dans le cadre standard utilisé en pratique
en adoptant une approche alternative a I'aide du Tensor Program.

Equations d’évolution dans I'espace des mesures
Dans cette section, nous passons en revue les outils mathématiques concernant
les fonctionnelles sur les espaces de mesures et les flot de gradient de Wasserstein,
car cela constitue une partie essentielle du travail présenté dans cette thése, en
particulier dans le Chapitre 3. Les notions que nous discutons ici sont présentées
en détail dans (Ambrosio et al., 2005) et (Santambrogio, 2017, 2015).

Espaces des mesures de probabilité et distances de Wasserstein

Soit ¢ > 1 un scalaire, et considérons |'espace P,(RP) des mesures de probabilité
sur R? satisfaisant [||z||9du(z) < co. On peut définir une distance sur P,(R?),
appelée la distance de Wasserstein-g, par

1/q
Wotu) = (_anin [l = ylar (o)

yel(k,

ou, pour tout p,v € Py(RP), I'(u,v) est I'ensemble des plans de transport de
i a v, c'est-a-dire I'ensemble des mesures de probabilité sur R? x RP dont les

71

marginales sont égales & u et v. Formellement,
I(p,v) ={7 € P(R” x R?) : ypmy = p, 7y = v}

ou g : (z,y) € RP X RP — x et m, : (z,y) € RP X RP = y sont les projections
canoniques sur la premiére et la deuxiéme composante respectivement. La distance
de Wasserstein (également connue sous le nom de distance de Monge-Kantorovich
ou distance de Kantorovich-Rubinstein) provient de la théorie du transport optimal,
dont I'objectif est de comprendre comment déplacer de maniére optimale une masse
d'une distribution a une autre selon un certain codt.

L'espace P,(RP) muni de la distance W, forme un espace métrique complet
et convexe (P,(RP),W,) pour lequel la convergence selon la distance W, est
approximativement équivalente a la convergence faible des mesures (parfois aussi
appelée convergence étroite), comme le montre le résultat suivant : pour toute
séquence (fin)nen et 1 dans Py (RP), on a

W, (1t 1) — O si et seulement si i — 1 et /|:U||qdun(:n) o /H:ﬁ||qd,u(w),

ol ., — u désigne la convergence faible des mesures, c'est-a-dire

/ odpn — / edp

pour toute ¢ dans I'espace Cy(IRP) des fonctions continues et bornées sur RP.
Si I'on remplace I'ensemble entier R?P par un sous-ensemble compact 2 C RP,
I'énoncé d'équivalence ci-dessus reste vrai sans la condition sur la convergence de
I'intégrale de la norme.

Remarquez que pour tout g3 > ¢1 > 1, l'inégalité de Jensen garantit que pour
toute v € P(R? x R?), ([llz — yl|1dy(z,)" < (flle - yl1©) "™ dy(z.y),
ce qui implique que Wy, (i, v) < Wy, (u, v). Dans cette thése, nous nous concen-
trerons uniquement sur |'espace (P2(RP), W5).

Fonctionnelles des mesures de probabilité et premiére variation

Une fonctionnelle F' sur P2(IRP) est une fonction F' : Py(RP) — R. On aimerait
définir une notion de dérivée sur Po(IRP) de maniére similaire a la notion de dérivée
ou de gradient en dimension finie, mais le probléme est que P2 (RP) est un espace
convexe de dimension infinie et non un espace euclidien. Par conséquent, il faut
étre prudent lors de la définition de cette notion, qui est un peu plus subtile dans ce
contexte. Etant donné u € P2(RP), la premiére variation ou le dérivé de Fréchet
de F en pu, s'il existe, est une fonction mesurable de R? a R, notée g—i(u) ou
simplement F/, satisfaisant, pour toute perturbation appropriée v,
oF

d
°F = [= :
T F(p+tv) L: . 5 (n)dv

72

Les perturbations admissibles v doivent satisfaire p + tv € Pa(RP) pour t suff-
isamment petit, et sont donc choisies de la forme v = U — u, ol U est une mesure
de probabilité avec une densité bornée et un support compact.

Notez que v n'est pas une mesure de probabilité mais plutét un élément de
I'ensemble M (RP) des mesures signées, et en tant que différence de deux mesures
de probabilité (de masse totale 1), elle satisfait [dv = 0, de sorte que la premiére
variation est définie & une constante additive prés, mais est unique modulo cette
invariance.

Notez que la définition de la premiére variation est similaire a |'égalité satisfaite

par le gradient en dimension finie : %f(x + ty)‘ = (Vf(z),y), et en tant
t=0

que telle, I'intégrale [‘;—E(u)dy peut étre interprétée comme une sorte de produit

intérieur (ou plutdt une notation de dualité) (%—Z(u), v) qui représente |'action de

la mesure v sur la fonction mesurable ‘;—Z(u).

Exemples classiques de fonctionnelles et de leurs premiéres vari-

ations. Etantdonné V:RP - R, W : RP x R? — R et f:R = R, on peut
définir les fonctionnelles suivantes,

V) = [Ve)duta),
W(n) = /W(x,y)du(w)du(y),

) = {f 7 (%) dA@) si e L'

+00 sinon

9

oll \ désigne la mesure de Lebesgue sur RP, et il est facile de vérifier que leurs
premiéres variations respectives sont

W (0)(z) =

~V(2),
(@) = [Wien)duty) + [Wpa)du().

(1)) = ' (j‘;m) pour 1 € LI(A).

o
oW
o

OF
I

Premiére variation de l'objectif pour les réseaux a deux couches
de largeur infinie. Dans le cas de la fonctionnelle objectif F' définie dans

I'équation (1.4), il est facile de déduire que pour n'importe quel w = (w!,w?) €
Rd'H,

F(w) = ?;(u)(w) = /32€(f*(x)7f(u; z))wo(z"w!)dp(z).

73

Premiére variation de la distance de Wasserstein-2. La définition de
la distance de Wasserstein-2 peut étre vue comme un probléme de minimisation
contraint dans un espace de dimension infinie, ol la contrainte est que la mesure
de probabilité v € P(RP x RP) doit avoir des marginales égales a i et v. Comme
la dualité de Lagrange permet de traiter les problémes d'optimisation contraints
en dimension finie, Kantorovich a développé une théorie, appelée dualité de Kan-
torovich, qui permet de traiter les problémes d'optimisation contraints dans |'espace
des mesures, et en particulier les problémes de transport optimal. Le probléme dual
associé au probléme de transport optimal avec les distances de Wasserstein se lit
comme suit :

IMX/WM+/¢@—/K%@+¢@DM@W%

PR VISHIN

A= {p v eG®) : pla)+v) <l -yl

Des descriptions alternatives du probléme dual, qui permettent de I'étudier en
profondeur, sont assez complexes et nécessiteraient l'introduction de nouvelles no-
tations et concepts. Ce n'est pas I'objet de cette thése, et nous renvoyons a (San-
tambrogio, 2017)[Section 4.1] pour une présentation détaillée. Cependant, nous
notons que cette dualité permet de déduire la forme de la solution du probléme de
transport optimal définissant les distances de Wasserstein. En particulier, il peut
étre démontré (voir Santambrogio, 2017[Théoréme 4.2]) que si p est absolument
continue, il existe une application T': RP — RP appelée une application de trans-
port optimal, et une fonction ¢ : RP — R, appelée un potentiel de Kantorovich
(provenant de la dualité de Kantorovich), satisfaisant les trois conditions suivantes:

5 OW.
() S w,v) =,
(i) la mesure image v* := (id,T")4p réalise le minimum dans la définition de
Wa,

(i) Vo =id—T.

Flux de gradient de Wasserstein et conditions d’optimalité

Nous nous tournons maintenant vers les flot de gradient de Wasserstein, qui sont
I'outil théorique principal pour optimiser les fonctionnelles sur P2 (RP). Considérons
une fonctionnelle F' : Py(RP) — R qui admet une premiére variation en chaque
1 € Po(RP) et qui est différentiable presque partout. A partir d’une mesure initiale
o € Po(RP), le flot de gradient de Wasserstein de la fonctionnelle F' est un chemin
(i¢)¢>0 dans 'espace P (RP) satisfaisant, au sens des distributions, |'équation de

continuité suivante :
) oF
Orpe = —div <—V <5M(Mt)> Mt) : (1.16)

74

Une paire (pu,v¢)¢>0 constituée d'un chemin dans P2(RP) et d'un champ de
vecteurs dépendant du temps v; : RP — RP satisfait |'équation de continuité
Ot = —div(vepe) au sens des distributions si, pour toute fonction de test ¢ dans
I'espace C!(IRP) des fonctions contintiment différentiables & support compact, on
a:

d
a dpt :/VSOTUtht.

En particulier, en choisissant o comme la fonction constante égale a 1, cela montre
que la masse totale est conservée dans le flot de gradient de Wasserstein : la masse
n'est ni injectée ni perdue le long du flot, mais simplement déplacée.

Schéma de minimisation du mouvement. D’ou vient cette équation ?
Dans des espaces métriques tels que |'espace des mesures de probabilité, il est
difficile de définir une notion de dérivée en raison de I'absence de structure linéaire,
et on a généralement recours aux schémas de minimisation du mouvement. Dans
RP (ou tout espace de Hilbert), soit 7 > 0 un paramétre et considérons une fonction
différentiable f : RP — R, ainsi qu'une séquence (z1);>0 dans RP satisfaisant,
pour tout k,

. 1
Tp41 € argmin f(y) + 2*”9 — a2
y T

Ceci est appelé un schéma de minimisation du mouvement : en effet, on tente
de minimiser f tout en restant proche de |'estimation actuelle x;. La séquence

d’estimations satisfait V f(x, 1) = —2el-"k

—, et en considérant une fonction

Z : Ry — RP interpolant les z (c'est-a-dire, Z(k7) = xx), on a M =
—Vf(@((k+1)7) et lorsque 7 — 0T, on obtient une courbe satisfaisant &’(t) =
—Vf(2(t)), qui est exactement le flux de gradient de la fonction f (le schéma de
minimisation du mouvement est en fait le schéma d'Euler implicite pour discrétiser
le flux de gradient). La convergence de la fonction d'interpolation vers un flux
de gradient lorsque 7 — 0T peut &tre rendue rigoureuse si f est continliment
différentiable ou si elle est convexe (voir Santambrogio, 2017[Proposition 2.3]).

Revenant & I'espace des mesures, on peut essayer de dériver un schéma de
minimisation du mouvement similaire comme suit :

_ 1
e € argmin F(p) + ZWQ(M,M)Q. (1.17)
"

Pour comprendre les conditions que pj.1 doit satisfaire, nous devons d'abord
expliquer quelles sont les conditions d'optimalité pour les fonctionnelles sur Po(RP).
De maniére similaire au cas de dimension finie, si |'on souhaite minimiser G(u) pour
une certaine fonctionnelle G admettant une premiére variation en chaque p, alors
I'optimalité d'un certain minimiseur p* est liée a la valeur de la premiére variation
%(u*) de G en p*. Il est affirmé dans (Santambrogio, 2015)[Proposition 7.20]

75

que, sous les hypothéses de régularité appropriées, pour un minimiseur p* de G,
la premiére variation %(,u*) doit étre constante sur le support de p*. Pour le
schéma de minimisation du mouvement (1.8) ci-dessus, la premiére variation de la
distance quadratique de Wasserstein 2 est liée au transport optimal de px11 @ .
et la condition d'optimalité se traduit par

oF 1
E(Nlﬁrl) + ;SDT =C

pour une certaine constante C, ol . est le potentiel de Kantorovich associé au
transport de pgy1 @ pg. La théorie du transport optimal nous dit que Vi, =
x — Tr(z) pour I'application de transport optimal 7> de g1 & pg, de sorte que,
en prenant le gradient de I'équation ci-dessus, on obtient ce qui suit :

v (5) (0 = -

T

Par conséquent, si nous souhaitons transporter de la masse de uj pour min-

imiser la quantité dans (1.8), le déplacement de masse Tr@)=2 o tout point
x doit étre égal au champ de vecteurs vjy1(x) == =V (%(Mk—&-l)) (x). Lorsque

7 — 07, il s'ensuit que le changement de masse induit par le schéma de min-
imisation itéré ci-dessus doit satisfaire |'équation de flux de gradient de Wasser-
stein (1.7) : a tout moment ¢, la masse située en x est déplacée avec une vitesse
v(x) = =V (%(uﬂ) (). La preuve de la convergence du schéma de minimi-
sation itéré ci-dessus est technique dans des espaces métriques généraux et est

décrite dans (Santambrogio, 2015, 2017).

Propriétés du flot de gradient de Wasserstein. L'existence d'une so-
lution au probléme de flot de gradient (ou de I'équation de continuité) est garantie
lorsque suffisamment de régularité est supposée sur la fonctionnelle F' (et sur le
gradient de sa premiére variation V%, qui est la vitesse négative dans |'équation de
continuité). En ce qui concerne I'unicité, elle nécessite souvent une certaine notion
de convexité (e.g., semi-convexité géodésique) sur F' ou certaines hypothéses sur
la mesure initiale (e.g., qu'elle ait une densité par rapport a la mesure de Lebesgue)
pour &tre garantie en général. Pour les réseaux a deux couches de largeur infinie,
(Chizat and Bach, 2018; Mei et al., 2018; Wojtowytsch, 2020) montrent |'existence
et l'unicité du WGF (1.7) sous des hypothéses faibles. Cependant, les hypothéses
de régularité ne sont pas satisfaites par ReLU, ce qui doit étre traité séparément.
Nous discutons de cela dans le paragraphe suivant.

En ce qui concerne les flots de gradient en dimension finie, il peut &tre démontré
que le flot de gradient de Wasserstein diminue toujours la fonctionnelle que I'on
cherche 3 minimiser, comme le montre la relation suivante :

P == [v (5ow)

76

2
dps <0.

Equivalence entre le WGF pour les mesures atomiques et le GF de
largeur finie

Nous détaillons ici la dérivation de la relation entre le WGF (1.7) de I'objectif en
dimension infinie F sur I'espace Po(R¥*1) et le flot de gradient de I'objectif F}, sur
les poids d'un réseau a deux couches de largeur m. Tout d'abord, nous dérivons
la description du flot de I'équation de continuité, puis nous procédons a montrer
I'équivalence entre le WGF pour les mesures atomiques et le flot de gradient de
largeur finie.

Description du flot de I'équation de continuité. Soit (u,v;);>0 un
couple formé d'une trajectoire dans |'espace P2(RP) et d'un champ de vecteurs
dépendant du temps v; : R? — RP, satisfaisant, au sens des distributions, I'équation
de continuité

at,ut = _diV(UtMt)a
et considérons le flot défini, pour tout w € R?, par 'ODE

Xo(w) = w,
d
—Xi(w) = v (Xe(w)) -
dt
Alors, il est vrai que pour tout ¢ > 0, s = (X¢)gpo. En effet, en définissant
vg := (X¢)#po, puisque Xo est I'application identité de R?, on a vy = po, et
I'unicité de la solution de I'équation de continuité suffira pour conclure a I'égalité.
Soitt >0, et ¢ € Ccl (RP). Nous avons

d

d
i SOthZdt/SOOXthO

:/<(V‘P>0Xt7tht> dpio

:/<(V<P)0thvtOXt>dM0
:/VgoTvtht,

ce qui signifie que v satisfait |'équation de continuité au sens des distributions avec
la condition initiale vy = pg. L'unicité d'une telle solution permet de conclure que
vy = g pour tout ¢t > 0.

Equivalence entre le WGF et le GF. Appelons ¢ : R4 x R — R défini,
pour tout w = (w!, w?) € R? x R par ¢(w; z) = w?o(z w). Pour tout m € N,
notons f,,, la paramétrisation intégrable d'un réseau a deux couches de largeur

m, définie par f,,(0;2) = - Y70, ¢(05;2) ov 05 = (wj,w}) € R De plus,

77

définissons F,,, comme |'objectif de largeur finie défini, pour tout § € (R¥+1)™,
par Fy,(0) = E, [¢(f*(z), fm(0;x))], et soit F' I'objectif en dimension infinie sur
les mesures, défini, pour tout i € Po(RITY), par F(u) = E, [¢(f*(2), f(u;x))]
ou f(uix) = [¢(w;x)du(w).

Tout d'abord, remarquons qu'en définissant la mesure atomique suivante: ji,, =
%27:1 dg;, il est vrai que f(um;-) = fm(0;-), et par conséquent F'(um) =
F,,(0). Ensuite, remarquons que parce que la premiére variation de F' en p est
donnée, pour tout w € R, par Fl(w) = [92l(f*(x), f(1; z))p(w; z)dp(x),
il en découle que son gradient est donné par la formule suivante: VF)(w) =
I, 02L(f* (), f(1; 7)) Vwd(w; z)dp(z). D'ou I'égalite mVy, () = VF,, (6;).

Considérons les poids initiaux ((w3(0),w?(0)),..., (w},(0),w?2,(0))), ainsi que
la mesure atomique initiale fm0 = 5 370 0,0y 0 05(0) = (w}(0),w?(0)).
Soit (ftm,t)e>0 le WGF de I'objectif F' a partir de fi,0, et soit Xy le flot associé a
I'équation de continuité avec le champ de vecteurs vy = —VF}, comme dans le
paragraphe précédent. Il est vrai que ji,,+ = (X¢)4/tm,0 et comme une image de la
mesure atomique L, 0, fim,¢ €St également une mesure atomique et ses masses sont
situées aux images des masses de i, o par la map de poussée en avant, c'est-a-dire
fimgt = = S 8o, avec 0;(t) := X4(6;(0)). Montrer que 0(t) = (6(t)) je(1,m)
est un flot de gradient pour F;,, découle facilement de I'ODE satisfaite par le flot
Xt .

d d

S0,(t) = S X0(0;(0))

=V, (Xu6;0))

— ¥y, Fn(0(1)).
Inversement, définissons (6(t))¢>0 comme le flot de gradient de F,, a partir de
0(0) = (0(0))je[1,m) c'est-a-dire %9(7&) = —mVF,,(0(t)), et définissons (i, ; :=

% Z;”Zl 09, (+)- Ensuite, montrer que fi, ¢ est un WGF pour F' découle facilement
de I'ODE satisfaite par 0(t). En effet, soit ¢ € C}(R**1). On a :

ce qui montre que i, ¢+ satisfait I'équation de continuité au sens des distributions
avec le champ de vecteurs v; = —VFlimt, c'est-a-dire que (fim,t)r>0 est le WGF

de F' a partir de fiy, 0.

Homogénéité et réduction aux mesures sur la sphére

Les activations positivement homogénes sont trés courantes dans la littérature sur
les réseaux neuronaux, en particulier dans le cadre des études théoriques, car elles
conduisent souvent a des simplifications. L'activation RelLU (rectified linear unit),
définie par o(z) = max(0, z), est un exemple courant qui est omniprésent tant
en théorie qu'en pratique. Cependant, elle peut également entrainer des difficultés
techniques en raison de sa non-différentiabilité et de la non-continuité de sa dérivée
1.-0 en 0. En particulier, I'existence du WGF (1.5) ne peut pas étre garantie en
général lorsque I'on utilise ReLU comme fonction d'activation. Néanmoins, il est
possible de contourner ce probléme technique grice a I'homogénéité positive de
ReLU et a des hypothéses spécifiques sur la distribution initiale ug. Il est démontré
dans (Wojtowytsch, 2020) et (Chizat and Bach, 2020) que lorsque la mesure initiale
po € Po(RUTD) est supportée sur le cone {(w',w?) € R . |jwl||= |w?|},
le WGF (1.5) est bien défini avec une activation ReLU. De plus, il est démontré
qu’avec cette initialisation, la mesure y; reste supportée sur le céne a tout moment
t.

Réduction aux mesures signées sur la sphére. L'homogénéité positive
de RelLU permet également d'adopter un point de vue alternatif pour le WGF (1.5).
Pour toute mesure p € Po(R%*1), on peut définir une paire de mesures non
négatives supportées sur la sphére v, v_ € M (S% 1) grace a la caractérisation
suivante, particuliérement adaptée a I'homogénéité des réseaux a deux couches
avec une activation ReLU : pour toute fonction de test continue ¢ : S“ 1 — R, il
doit étre vérifié que

1
dvt = 2wl (g) dpaw).
[v /iwgzo,wl‘w”'w”“”(uwlu u(w)

Essentiellement, cela peut &tre compris comme une forme de projection qui élimine
la redondance induite par la propriété d’homogénéité entre la norme des poids de
la premiére couche et la magnitude des poids de la couche de sortie. Avec cette
définition, la fonction du réseau peut étre exprimée comme

f) = [wlo"u?)autw) = [o wdvta),

avec v = vt — v~ € M(S?!) une mesure signée sur la sphére. De ce point de
vue, les neurones de la premiére couche sont considérés comme des directions sur
la sphére, tandis que les poids de la deuxiéme couche sont considérés comme des
masses (signées) pesant sur ces directions. La masse dans cette paramétrisation

79

prend en compte 3 la fois les poids de la deuxiéme couche et la norme des poids
de la premiére couche dans la paramétrisation d’origine de I'Equation (1.3). De ce
point de vue, le probléme consiste a apprendre un réseau a deux couches de largeur
infinie en vue d'apprendre les positions et les masses des neurones de la premiére
couche. La masse totale de v mesurée par la norme de variation totale est donnée
par [V](ST1) = [d(v* + 1) = [][wb| [u2ldp(w).

Considérez le WGF (1.5) avec une activation RelL U, avec g supportée sur le
cdne. Ensuite, en définissant Vt:t a partir de p; comme indiqué ci-dessus, le fait que
fi¢ Soit supportée sur le cone a n'importe quel instant permet de dériver des équa-
tions d'évolution pour les mesures yti. Nous soulignons que ceci n'est pas possible
en général (méme si I'on suppose seulement I'homogénéité). La paire (v;",v;)
satisfait les équations suivantes, connues sous le nom d'équations d'advection-
réaction (ou de gradient de Wasserstein-Fisher-Rao Gallouét et al., 2019), au sens
des distributions :

ot = —div(£tw) £ 2917, (1.18)

avec g¢(u) = F), (u,1) et 9(u) = —projy,y1 (Vgi(u)) pour u € S9-1. Autrement
dit, pour toute fonction de test ¢ € C}(R?), on a

% godl/gE = :I:/T);Vgadz/ti + 2/(,0gtd1/ti.
La dérivation de cette équation découle de I'équation de continuité satisfaite par
e, de la définition de uti a partir de p; en utilisant I'homogénéité, et du fait que
|w?|= ||w!|| sur le support de u;. Voir I'’Annexe B.5.1 pour plus de détails sur la
dérivation de |'équation de Wasserstein-Fisher-Rao. En d'autres termes, la mesure
signée 14 = ;7 — v, satisfait |'équation

Bur = —div(@u(y + 7)) + 2000 +)

ol u;r et v, représentent respectivement la partie positive et la partie négative de
v¢. Ce point de vue est largement utilisé dans le chapitre 3. Dans cette perspective,
la masse n'est pas préservée et le changement de masse est gouverné par le terme
de réaction g¢;, tandis que |'advection (déplacement) de la masse est gouvernée
par le champ de vecteurs ¥, qui est tangent a la sphére. En particulier, la masse
totale [14](S?71) évolue selon 4|1 |(S471) = [gedu.

Tensor Program et limites a largeur infinie de n'importe quelle
paramétrisation

Le Tensor Program est un cadre développé dans une série de travaux (Yang,

2019, 2020a,b; Yang and Hu, 2021; Yang et al., 2022) dans le but de mieux

comprendre et de décrire rigoureusement la limite a largeur infinie de diverses

paramétrisations (comme introduit dans la Section 1.2.1) de réseaux neuronaux.

L'objectif est de comprendre précisément I'ampleur des quantités impliquées dans

80

les passes avant et arriére d'un réseau neuronal lorsque m — oo. Ce faisant, I'un
des obstacles particuliers est de comprendre comment les différentes quantités sont
corrélées entre elles.

Les idées et techniques développées dans la série du Tensor Program trou-
vent leur origine dans la littérature sur la physique statistique (Bayati and Monta-
nari, 2011; Bolthausen, 2014), ou elles ont émergé pour décrire le comportement
d’algorithmes (comme la propagation de messages) impliquant de grandes matri-
ces aléatoires et des non-linéarités en utilisant la technique de conditionnement
gaussien. Le bénéfice supplémentaire du Tensor Program est de fournir un formal-
isme pour appliquer systématiquement ces techniques dans le contexte des réseaux
neuronaux. Nous utilisons abondamment le Tensor Program dans les démonstra-
tions de la plupart des résultats présentés dans le chapitre 2.

Le premier travail de la série du Tensor Program (Yang, 2019) est consacré
a la compréhension du type de fonction calculé par les réseaux neuronaux pro-
fonds a l'initialisation avec des matrices gaussiennes i.i.d. dont I'écart-type évolue
—1/2 Alors que la réponse est connue pour les réseaux peu profonds
entiérement connectés depuis Neal (1995), plusieurs travaux récents (Lee et al.,
2017; Matthews et al., 2018; Novak et al., 2018; Garriga-Alonso et al., 2018) ont
généralisé ce résultat a des réseaux plus profonds ou a une architecture convolu-
tionnelle. La premiére version du Tensor Program dans (Yang, 2019) fournit des

comme m

outils mathématiques pour démontrer systématiquement que les réseaux neuronaux
de n'importe quelle architecture se comportent comme des processus gaussiens 3
I'initialisation dans la limite de largeur infinie.

La deuxiéme version du Tensor Program (Yang, 2020a) étend l'analyse a la
premiére passe en arriére (les gradients a l'initialisation) et prouve que le noyau de
la tangente neurale Vf(0;2) "V f(6;y) (voir la Section 1.2.2) converge presque
sirement, lorsque m — oo, vers une limite déterministe a |'initialisation pour
n'importe quelle architecture dans la paramétrisation NTK.

La troisiéme version du Tensor Program (Yang, 2020b) se concentre sur |'extension
des outils mathématiques précédemment développés pour couvrir les passes avant
et arriére a n'importe quel pas de temps. Une étape cruciale est la capacité a
décrire la limite des quantités ot a la fois une matrice de poids W' et sa trans-
posée (W) T sont impliquées, et a gérer les corrélations potentielles qui pourraient
en résulter.

Enfin, Yang and Hu (2021) utilisent le cadre du Tensor Program pour caté-
goriser différents types de paramétrisations dans la limite & largeur infinie. Cette
catégorisation spécifie si une paramétrisation abc (voir Section 1.2.1 et Yang and
Hu, 2021) se trouve dans le régime du noyau ou dans le régime d’apprentissage
des caractéristiques en fonction des valeurs des exposants a;, b; et ¢;. De plus,
une nouvelle paramétrisation appelée uP est proposée, correspondant aux valeurs
suivantes pour les exposants : a; = —1/2, a; =0 pourl € [2,L] et ar+1 = 1/2,
by =1/2, pourl € [1,L+ 1], et ¢, = 0 pour I € [1,L + 1]. De maniére équiva-

81

lente, les exposants pour cette paramétrisation peuvent également &tre donnés par
Lar = 0,

a; =1/2 pourl € [2,L] et ap+1 =1, by =0pourl € [I,L+1], ¢ = —1
pour I € [1,L + 1]. |l s’agit de I'extension appropriée des modéles "mean-field"
pour plus de deux couches (ils sont identiques pour les réseaux a deux couches),
et elle "maximise" I'apprentissage dans toutes les couches (d'une maniére précisée
dans Yang and Hu, 2021). Cependant, I'analyse de Yang and Hu (2021) exclut
toute paramétrisation pour laquelle les (pré-)activations pourraient disparaitre a
I'initialisation lorsque m — o0, ce qui est le cas des IP avec trois couches ou plus.
D’ou la nécessité d'un traitement spécial que nous présentons dans le chapitre 2.

Intuition derriére la technique

Nous présentons briévement ici I'intuition derriére le Tensor Program ainsi que
son formalisme et les principaux résultats qui y sont associés. Nous commencons
par décrire la situation lors de la passe avant a l'initialisation, ol les choses sont
plus faciles @ comprendre, puis nous passons a la description des calculs impliqués
dans la premiére passe en arriére, pour enfin expliquer comment traiter les calculs
généraux dans les passes avant et en arriére ultérieures.

Premiére passe avant. L'élément clé a étudier ici est le comportement de
sommes de type m~1/2 >_iL wjz; pour de grandes valeurs de m, ot w € R™ est
un vecteur gaussien avec des entrées i.i.d. suivant une loi A/(0,1) et x € R™ est un
vecteur aléatoire indépendant de w. Lorsque les entrées de = sont i.i.d., le théoréme
central limite garantit que cette quantité converge en loi vers une variable gaussi-
enne lorsque m — oco. En fait, ce résultat est également valable dés que ||z||2/m
converge presque siirement vers une limite o2, (voir Yang, 2019[Proposition G.4]).
La situation est plus complexe lorsque x et w sont corrélés, et nous abordons ce cas
plus tard (il est traité dans la troisiéme version du Tensor Program Yang, 2020b).
Il en découle facilement que les entrées des pré-activations h! = m~/2wlzt=1 d'un
réseau dans la paramétrisation NTK deviennent gaussiennes lorsque m — co. La
convergence de ||z=1||2/m est due au fait que les entrées tendent & étre approxi-

mativement indépendantes dans la limite, car les différentes lignes (qui sont i.i.d.)
-1

de la matrice gaussienne w'~" sont utilisées pour calculer les différentes entrées. I
est donc clair qu'indépendamment de la fonction d'activation o et de la topologie
de I'architecture du réseau, la sortie du réseau tend a étre gaussienne dans la limite

de grande valeur de m dés que l'initialisation gaussienne est adaptée.

Dans le cadre de (Yang and Hu, 2021), tout autre choix de facteurs d'échelle
pour les poids (le a dans les paramétrisations abc) conduira soit & la disparition,
soit a I'explosion de la passe avant.

82

Premiére passe en arriére. Lorsdel'étude de la passe en arriére a l'initialisation,
la quantité clé est le gradient de la sortie du réseau par rapport aux activations
z!, c'est-a-dire V. f(0;2) = (m_1/2w1+1)Tth+1f(9;:z:). Essentiellement, la
situation est la méme que lors de la premiére passe avant : étant donné que
Vi1 f(0; x) est calculé a I'aide de matrices w* pour k > 1 +2, il est indépendant
de w!t!. La différence réside simplement dans I'utilisation de la transposée des
matrices initiales dans les multiplications, mais comme celles-ci ont des entrées
initialisées i.i.d., la méme logique que dans la passe avant s'applique. Comme
Vo f(0;x) = m~ 2wt ses entrées sont de I'ordre de m~1/2 et ce facteur se
propage aux gradients de toutes les couches grace aux équations de rétropropaga-
tion. Cela se traduit par le fait que Vi f(0;2) est de I'ordre de m™!, ce qui est
nettement plus petit que la magnitude initiale, entrainant une linéarisation, comme
discuté dans la Section 1.2.2, si les taux d’apprentissage ne sont pas adaptés. La
magnitude des gradients lors de la premiére passe en arriére est donc bien comprise.

Calculs généraux dans les étapes suivantes. La correction des échelles

1/2 hour les couches in-

de gradient en utilisant un taux d'apprentissage de m
termédiaires [€ [2, L] résout le probléme décrit ci-dessus pour les gradients
a l'initialisation. Avec cette correction, les entrées des mises a jour des poids
AW = Wl(1) — W(0) sont de I'ordre de m ™!, tandis que celles de W(0) sont

de I'ordre de m—1/2

. C'est essentiellement ce que fait P, sauf qu'il corrige égale-
ment |'échelle de la couche de sortie de maniére a ce que les poids soient de |'ordre
de m~! afin d’empécher la sortie du réseau de diverger aprés I'initialisation.

Cela souléve la question de savoir en quoi cela différe du comportement du NTK
puisque la magnitude des mises a jour est toujours beaucoup plus petite que celle
de l'initialisation. La réponse est subtile, et il faut étudier la passe avant suivante
a |'étape t = 1 pour comprendre pourquoi ces magnitudes sont correctes. En bref,
la raison en est que bien que TW/(0) et AW aient des magnitudes différentes par
rapport a m, W' (0)z} ™! et AW'z!™! sont tous deux de méme ordre (c'est-a-dire
de 'ordre de 1) par rapport & m en raison des non-linéarités et des corrélations
impliquées dans le second terme. Ainsi, il n'y a pas d'effet de linéarisation ici.

En effet, avec la correction d'échelle induite par les taux d'apprentissage décrits
ci-dessus, la contribution de la mise a jour des poids aux pré-activations h! a la
couche [et a I'étape t = 1 s'exprime comme suit : Mvhzf(ﬁ(());mo).

m
—1/2 ici comme a l'initialisation, il est clair que

Bien que I'échelle ne soit pas en m
les calculs impliqués sont d'une nature différente : les deux vecteurs multipliés dans
le produit scalaire n'ont aucune raison d'avoir des coordonnées gaussiennes, et en

=1 est utilisée

outre, ils ne sont pas indépendants, car la matrice gaussienne w
pour calculer les deux termes. |l s'agit de I'un des résultats les plus importants
de la série du Tensor Program, résumé dans un théoréme principal (voir Yang,
2020b[Théoreme 2.10], Yang and Hu, 2021[Théoréme 7.4]), qui prouve que les
produits scalaires de ce type, mis a I'échelle par m ™!, convergent presque siirement

83

vers une limite lorsque m — oo, justifiant ainsi I'échelle en m~! par rapport a
I'échelle en m~1/2 3 I'initialisation.

L'idée intuitive de la convergence des produits scalaires mis a I'échelle par m=!

est que les coordonnées des (pré-)activations restent approximativement i.i.d. pen-
dant toute la phase d'entrainement pour de grandes valeurs de m. Comprendre
comment les produits scalaires et les multiplications avec des matrices gaussi-
ennes i.i.d. évoluent avec m et prendre en compte la corrélation potentielle entre
différentes quantités est précisément ce qui permet de comprendre comment il
convient de mettre a |'échelle I'initialisation et les taux d'apprentissage dans la
limite de largeur infinie pour obtenir des mises a jour des poids qui contribuent de
maniére maximale sans entrainer d'explosion.

Suivre les échelles et les corrélations a mesure que |'entrainement progresse
devient rapidement fastidieux pour les étapes de temps ¢ > 1, et le Tensor Program
offre un moyen de rendre les calculs systématiques dans la limite de largeur infinie.
Il existe trois types d'objets dans le cadre du Tensor Program : (i) des matrices
gaussiennes i.i.d. T de taille m x m avec un écart-type de m~'/2, (ii) des vecteurs
z € R™ avec des coordonnées approximativement i.i.d. , et (iii) des scalaires
w € R. Alors que les matrices gaussiennes représentent essentiellement les matrices
d'un réseau neuronal a l'initialisation (ou des versions redimensionnées de celles-
ci), les vecteurs peuvent &tre obtenus de deux maniéres : soit par un calcul de
multiplication matricielle z = Wz avec un autre vecteur z, soit par le biais d'une
non-linéarité z = ¢(z1,...,2P;wy,...,wy), ot ¥ : RPTY — R est une fonction
paramétrique appliquée élément par élément, c'est-a-dire que pour tout j € [1,m],
zj = 1/)(231-, . ,Z;O;wl, ...,wq). Ces vecteurs représentent les (pré-)activations ou
les gradients par rapport aux (pré-)activations, et les scalaires sont obtenus grace
a des produits scalaires mis a I'échelle 27y /m pour certains vecteurs z et .

Les régles du Tensor Program, détaillées dans (Yang, 2020b; Yang and Hu,
2021), décrivent un systéme de calculs qui permet de dériver la limite de largeur in-
finie de toute série de calculs (appelée Tensor Program) en utilisant les trois opéra-
tions présentées ci-dessus. Ces régles établissent que tout scalaire w = x"y/m
converge presque siirement vers une valeur finie lorsque m — oo (c'est le résultat
du Théoréme principal). De plus, dans la limite de largeur infinie, les coordonnées
d'un vecteur z ont toutes la méme distribution décrite par la loi d’une seule variable
aléatoire Z € R. En fait, les entrées du vecteur z convergent en loi vers la variable
aléatoire Z. Si z = W, la loi de Z est donnée par Z = Z + Z o Z est gaussi-
enne, centrée et indépendante de z, et Z est une variable aléatoire tenant compte
de la corrélation potentielle entre = et W, le cas le plus crucial étant z = W Ty.
Si z = 9(z,...,2P5w1,...,wy), lorsque m — oo, la loi de Z est donnée par
Z = 1/)(221, ey 2701, .. @g) ol Z7" est la loi limite des entrées du vecteur 2"
et @, est la limite presque siire de w,. Enfin, la limite presque siire de w = 2 "y/m
est égale 3 w = E[Z7ZY]. La description précise des régles d'un Tensor Program
est fournie dans (Yang, 2020b; Yang and Hu, 2021), ainsi que les démonstrations

84

que tout systéme de calculs de largeur finie utilisant les trois opérations décrites
ci-dessus (tel qu'un réseau neuronal avec pratiquement n'importe quelle architec-
ture) peut étre décrit dans la limite de largeur infinie m — oo par un systéme
correspondant de calculs sur les variables aléatoires limites Z.

Limitations du programme tensor. Nous discutons briévement ici cer-
taines des limitations du cadre du Tensor Program, que nous développons davan-
tage dans le chapitre 2.

Une limitation évidente est que la définition des variables Z limites est récur-
sive, avec des formules qui deviennent rapidement inextricables pour les réseaux
de neurones profonds entrainés pendant plus d'une étape de |'optimisation par
descente de gradient (SGD), de sorte que bien que la description de la limite
soit claire, I'utilisation du Tensor Program pour étudier les propriétés de la dy-
namique d'entrainement au-dela des premiéres étapes de |'entrainement peut étre
peu pratique, sauf dans certains cas spécifiques (comme les paramétrisations in-
tégrables, et la raison en est discutée dans le chapitre 2). Un autre inconvénient
du Tensor Program est que seules les non-linéarités ¢ ayant une certaine régular-
ité sont autorisées pour que les résultats soient valables, ce qui empéche I'étude
des réseaux de neurones avec une activation ReLU directement, bien que le cadre
puisse éventuellement é&tre étendu pour traiter des activations non lisses, mais au
prix de preuves techniques fastidieuses.

De plus, le Tensor Program sous sa forme initiale (Yang and Hu, 2021) n'autorise
qu'une initialisation gaussienne pour les matrices de poids. Cependant, I'universalité
des calculs du Tensor Program et de son théoréme principal a récemment été
démontrée dans (Golikov and Yang, 2022), permettant des initialisations i.i.d.
générales.

Contributions

Dans cette section, nous mettons en avant les objectifs poursuivis dans cette
thése ainsi que les principales contributions. Les réseaux IP, avec au moins deux
couches, s'éloignent du comportement du noyau observé dans la paramétrisation
NTK et produisent en réalité des dynamiques ol les caractéristiques évoluent avec
le temps, un fait qui semble crucial pour le succés empirique des réseaux neuronaux.
L'objectif de cette thése est d'étudier la dynamique des réseaux neuronaux a largeur
infinie dans la paramétrisation intégrable, parfois profonde, parfois peu profonde.
La premiére partie de cette thése (Chapitre 2) est consacrée a une meilleure com-
préhension des dégénérescences qui surviennent pour les réseaux profonds dans
la paramétrisation intégrable, et comment on peut les entrainer dans la limite de
largeur infinie dans un cadre aussi proche que possible de ce qui se fait en pratique.
La deuxiéme partie (Chapitre 3) se concentre sur la maniére dont la dynamique
des réseaux a deux couches & largeur infinie s'adapte aux symétries et a la struc-

85

ture d'une tache donnée, et étudie en particulier le probléme de I'apprentissage
de sous-espaces de basse dimension. Enfin, la troisiéme partie (Chapitre 4) étudie
différents algorithmes d’optimisation dans I'espace des mesures, qui fournissent
soit des résultats théoriques de convergence globale avec un taux explicite, soit des
méthodes pratiques ol les neurones peuvent étre ajoutés ou supprimés dynamique-
ment pendant I'entrainement.

Dynamique a largeur infinie des paramétrisations intégrables

Les paramétrisations intégrables & deux couches semblent avoir des propriétés
favorables par rapport a la paramétrisation NTK, mais il semble qu'elles aient un
comportement dégénéré avec plus de quatre couches dans le cadre standard ot
les poids d'une couche donnée sont initialisés indépendamment et identiquement.
Notre objectif dans le Chapitre 2 est de relier différentes lignes de travail autour
des réseaux neuronaux a largeur infinie, telles que les limites “mean-field” et le
Tensor Program. En particulier, nous souhaitons mieux comprendre la nature de
cette dégénérescence, proposer une solution au probléme tout en restant dans un
cadre aussi proche que possible des méthodes pratiques, et étudier les propriétés
du modéle résultant dans la limite de largeur infinie.

Dégénérescence des paramétrisations intégrables

Aradjo et al. (2019); Nguyen and Pham (2020) étudient la dynamique idéalisée
de I'écoulement de gradient des IP avec des initialisations i.i.d. et plus de quatre
couches, et observent que dans la limite de largeur infinie, les poids dans une
couche intermédiaire donnée se déplacent tous de la méme quantité déterministe
dépendant uniquement du temps. Nous allons plus loin et prouvons que cette
quantité est nulle méme avec SGD, de sorte que les poids ne bougent pas du
tout lorsque m — oo, ce qui fait que la fonction de prédiction est la méme qu’'a
I'initialisation a n'importe quelle étape de temps. Le résultat suivant apparait dans
la Proposition 2.3.1 du Chapitre 2 : pour tout ¢ > 0 et tout z,
lim f(6(t);2) = lim f(6(0);2) =0,

m— 00 m— 00

ol la convergence est presque sire.

Dynamique avec de grands taux d’apprentissage initiaux

La question qui se pose naturellement est de savoir s'il existe une solution a ce
probléme dans le cas des initialisations i.i.d.. Nous répondons positivement a cette
question. En étudiant précisément la magnitude des gradients a l'initialisation
pour les IP profondes grace au Tensor Program et a I'hypothése d’homogénéité
positive que nous considérons sur |'activation o, nous remarquons que de grands
taux d'apprentissage permettent a la fonction de prédiction d'évoluer de maniére
non triviale aprés la premiére étape d'entrainement. Cependant, il est important

86

de noter que le probléme est beaucoup plus subtil que d'accélérer la dynamique
(en utilisant des taux d'apprentissage plus élevés a mesure que m augmente) pour
permettre |'apprentissage dans la limite de largeur infinie (comme c’est le cas pour
deux couches ot (S)GD pour les IP nécessite des taux d'apprentissage de |'ordre de
m, voir Section 1.2.3). La subtilité réside dans le fait que, pour les IP profondes, les
taux d'apprentissage a l'initialisation et aux étapes ultérieures ne peuvent pas avoir
la méme valeur pour permettre un entrainement stable dans la limite m — oo : si
la croissance des taux d'apprentissage avec m est trop rapide, les (pré-)activations
divergent aprés la premiére étape, et s'ils sont trop petits, elles restent bornées
mais les poids ne bougent pas.

Le point de vue correct est que les fluctuations aléatoires doivent étre amplifiées
a l'initialisation via des grands taux d’apprentissage initiaux (LLR) avant de
revenir aux taux d'apprentissage “standard” que I'on trouve dans la littérature sur
les IP. Nous montrons que les magnitudes correctes pour les taux d'apprentissage
sont, a t = 0 (initialisation), 1, = 711 = mETY/2 et 5 = mEH2/2 pour
l€[2,L], et pourt>1,m =npy1 = m ety =m? pour | € [2,L]. Sous des
hypothéses légéres sur la valeur initiale de la perte et sur les données d’entrée, nous
prouvons dans le Théoréme 2.4.1 que lorsque I'on utilise ces taux d'apprentissage,
les résultats suivants sont vérifiés :

FO);0) =2 7%, 0 <|f°]< 00 aus.,
f(0(2);z) 2, 5, 1f5°]< o0 a.s.

L'hypothése d’homogénéité est cruciale ici, bien que les magnitudes des premiéres
passes avant et arriére puissent également étre bien comprises lorsque o/(0) # 0,
mais |'étude compléte nécessiterait une analyse séparée.

Connexion avec ;P

Nous souhaitons maintenant comprendre les propriétés d'un réseau formé avec le
programme d'apprentissage que nous venons de proposer, que nous appelons IP-
LLR. Nous établissons un lien entre IP-LLR et uP récemment proposé (Yang and
Hu, 2021) : nous montrons que, dans la limite de largeur infinie, IP-LLR est en
fait une version modifiée de P ol les matrices de poids a t = 0 sont initialisées
avec les premiéres mises a jour de poids de uP au lieu de l'initialisation gaussienne
aléatoire habituelle. Autrement dit, nous "oublions" I'initialisation aléatoire de uP
aprés la premiére étape de gradient.

Résultats numériques et autres alternatives

Nous explorons également dans le Chapitre 2 d'autres alternatives qui permet-
tent I'entrainement pour les IP profondes i.i.d. et montrons (théoriquement ainsi

87

qu’empiriquement) que les deux autres options naturelles que nous considérons meé-
nent & des comportements dégénérés. Nous complétons nos résultats théoriques
par des expériences numériques approfondies pour corroborer nos résultats et dé-
montrer que nos énoncés mathématiques semblent valables avec des hypothéses
beaucoup plus générales (fonctions d'activation non homogénes ou non lisses).
Les directions futures incluent |'extension de nos résultats théoriques a des fonc-
tions non homogénes ou non lisses ainsi que |'analyse plus précise des différences
qualitatives dans la dynamique d'entrainement d'IP-LLR et de uP.

Symétries dans la dynamique des réseaux a deux couches de largeur
infinie

Dans la quéte théorique visant & mieux comprendre comment les réseaux neu-
ronaux apprennent des représentations des données d'entrée pour résoudre la tache
qui leur est présentée, il est naturel de se pencher sur le probléme de savoir com-
ment les réseaux s'adaptent aux symétries de la fonction qu'ils essaient d"apprendre.
Les symétries peuvent revétir diverses natures, mais nous nous concentrons dans
le Chapitre 3 sur les symétries orthogonales, et en particulier sur le cas ou la
fonction cible f* ne dépend que de la projection orthogonale dans un sous-espace
de basse dimension de R%. Nous étudions les symétries induites par celles de f*
sur la dynamique de I'écoulement de gradient des réseaux ReLU a deux couches
de largeur infinie. Dans ce contexte, les réseaux de largeur infinie ont |'avantage
de permettre |'émergence de symétries dans la dynamique d'apprentissage qui ne
sont qu’ approximatives a largeur finie.

Comme mentionné dans la Section 1.2.3, le cas ol f* ne dépend que de la pro-
vue statistique dans (Bach, 2017; Chizat and Bach, 2020), en mettant |'accent sur
les propriétés favorables en termes de généralisation des réseaux a deux couches de
largeur infinie avec des activations positivement homogeénes. Cependant, la ques-
tion de savoir si (S)GD est effectivement capable d"apprendre ce sous-espace ou non
n'est pas abordée. De maniére similaire, Cloninger and Klock (2021) et Damian
et al. (2022) étudient comment une seule étape de SGD sur les poids de la couche
d'entrée est déja capable d'induire des propriétés statistiques favorables avec des
bornes ne dépendant que de la dimension du sous-espace et non de celle de |'espace
ambiant. Plus proche de notre approche, Mousavi-Hosseini et al. (2022) montrent
que faire (S)GD uniquement sur la premiére couche aligne déja les poids avec
le sous-espace de basse dimension lorsque I'on utilise une régularisation L? suff-
isamment forte. Abbe et al. (2022) parviennent & prouver que la dynamique de
I'écoulement de gradient est capable d’apprendre la structure de basse dimension
dans un cadre similaire au nétre grace a leur hypothése forte selon laquelle les don-
nées sont des variables de Rademacher (c'est-a-dire que leurs entrées appartiennent
a{-1,1}).

En étudiant les symétries, un autre objectif est d'évaluer si des résultats de
convergence quantitative peuvent &tre obtenus avec les hypothéses de symétrie

88

ajoutées. Bien que de nombreux résultats de convergence globale existent dans
la littérature pour les réseaux a deux couches (Chizat and Bach, 2018; Nguyen
and Pham, 2020; Sirignano and Spiliopoulos, 2020; Wojtowytsch, 2020), aucune
vitesse de convergence n'est généralement disponible. Nous démontrons que pour
des instances particuliéres, une convergence exponentielle peut étre prouvée.

Dans le Chapitre 3, nous étudions la dynamique d'entrainement de réseaux a
deux couches de largeur infinie ol les deux couches sont entrainées, et nous nous
concentrons sur la dynamique WGF plutét que sur les propriétés statistiques. Nous
travaillons en supposant que la distribution des données d'entrée est sphériquement
symétrique, et nous optimisons |'objectif de risque de population pour permettre
I'émergence de symétries exactes.

Résultats généraux pour les symétries orthogonales

Nous montrons d'abord que dans notre cadre, si f* est invariant sous une transfor-
mation orthogonale quelconque, alors la mesure i, et le prédicteur f(p;-) héritent
de cette invariance (voir plus de détails dans la Proposition 3.2.1). Nous appliquons
ensuite ce résultat a des cas spécifiques ot f* est invariant sous un sous-groupe
quelconque de transformations orthogonales.

Convergence exponentielle pour les fonctions cibles impaires

Une conséquence du résultat discuté précédemment est que si f* est une fonc-
tion impaire, alors f(u¢;-) est également impaire. |l découle ensuite de I'identité
0(z) — o(—z) = z satisfaite par la ReLU que le prédicteur est en réalité linéaire :
fu;) = w(t) "z avec w(t) = 3 [w! wdp(w', w?). Cette linéarisation est dif-
férente du comportement du NTK : les poids des deux couches évoluent de maniére
non triviale, mais les symétries du probléme impliquent une dégénérescence vers
des prédicteurs linéaires. En fait, cette dégénérescence n'est pas surprenante, car
le minimiseur du risque doit é&tre linéaire dans ce contexte. Nous montrons dans le
Théoréme 3.3.2 que la dynamique WGF converge de maniére exponentielle vers
ce minimiseur global de I'objectif d’entrainement : étant donné le minimum global
F™*, nous montrons qu'il existe une constante positive ¢ > 0 et un instant ¢ty > 0,
tels que pour tout ¢t > tg, on a

F(p) = F* < e U0 (F(py,) — F).

Il convient de noter que dans ce cadre, bien que le prédicteur soit linéaire,
la dynamique WGF reste non linéaire, car le chemin d’'optimisation est différent
de I'optimisation de la paramétrisation linéaire f(w;z) = w'z : définir w(t) =
3w w?dp(w', w?) ou w(t) comme le gradient du critere F : w € R? —
tE,, [(w'z — f*(x))?] n'entraine pas le méme chemin d’optimisation, méme si
dans ce cas, les deux convergent vers le meilleur prédicteur linéaire.

89

L'hypothése sur f* est évidemment restrictive, mais elle montre que dans ce
cas particulier, il est possible d'obtenir une vitesse de convergence pour la WGF,
bien que aucune vitesse ne soit connue en général. D'autres paramétrages ont
également été étudiés dans la littérature afin de fournir des taux de convergence :
E et al. (2020) parviennent a prouver une convergence locale en O(1/t) pour les
entrées unidimensionnelles, et Daneshmand and Bach (2022) prouvent également
une convergence globale au taux de O(1/t) pour les entrées bidimensionnelles et
les fonctions cibles avec un nombre fini d'atomes et une fonction d'activation bien
concue.

Dynamique de flot de gradient de dimension inférieure

Enfin, nous nous intéressons au cas o f*(x) = fy(x) ot H est un sous-espace
de basse dimension de R?, fr : H — R, et 2! est la projection orthogonale de
x sur H. Une telle fonction f* est invariante sous toutes les transformations or-
thogonales qui préservent H, et il découle facilement des résultats sur les symétries
orthogonales discutés précédemment que c'est également le cas pour le prédicteur
f(ue;). En particulier, cela implique qu'il n'y a de dépendance que par rapport a
I'orthogonal de H a travers la norme : f(p;;2) = fi(z®, ||zt ov 2t =z — 2F
est la projection orthogonale sur |'orthogonal de H.

Le défi maintenant est de montrer que lorsque t — oo, la dépendance par
rapport a ||z || s'estompe, ne laissant que la dépendance par rapport a la projec-
tion orthogonale sur H. Cela signifierait que les caractéristiques apprises par le
réseau se sont adaptées a la structure de basse dimension du probléme. Il s'agit
d'un probléme difficile A résoudre théoriquement. Cependant, numériquement, on
peut effectivement observer que la dépendance a ||z|| disparait avec le temps.
Bien qu'il soit difficile de prouver que la mesure p; tend a étre supportée sur le
sous-espace H pour de grandes valeurs de ¢, il est possible de montrer que les
dynamiques d’entrainement elles-mé&mes peuvent étre réduites a un gradient flow
de dimension inférieure. Dans le cas ot f* dépend uniquement de la projection
orthogonale sur H, nous montrons que la WGF peut étre réduite a un gradient
flow Wasserstein-Fisher-Rao sur un nombre plus restreint de dimensions. Parmi ces
dimensions, une composante correspond a la direction des neurones d'entrée sur
la sphére unitaire de H, et |'autre correspond a I'angle entre les neurones d'entrée
et H.

Nous allons encore plus loin lorsque la fonction fp est positivement 1-homogéne
et nous prouvons dans le Théoréme 3.4.3 que la WGF peut étre réduite a un gradi-
ent flow Wasserstein-Fisher-Rao sur un seul paramétre correspondant a |'angle en-
tre les neurones d'entrée et H. Nous montrons qu'il existe une paire de mesures non
négatives 7,7, 7, € M, ([0,7/2]), satisfaisant & I'équation d'advection-réaction
suivante

oy = —div (:H/}Tti) + 267

90

ol le terme de réaction G; est la premiére variation d'une fonction objective
sur M([0,7/2]) incorporant les invariances du probléme, et le terme d'advection
Vi = G} est la dérivée du terme de réaction. Cette réduction unidimensionnelle
permet de simuler facilement les EDP, et nous démontrons numériquement que
les dynamiques de la WGF conduisent & une mesure qui semble &tre supportée sur
H lorsque t — oo, confirmant que dans ce cadre, les réseaux de largeur infinie
sont capables d'apprendre le sous-espace de basse dimension qui importe pour la
prédiction.

Discussion

Bien que nous montrions rigoureusement que les dynamiques WGF se réduisent a
des dynamiques de dimension inférieure, il reste une question ouverte de savoir s'il
peut &tre prouvé que lorsque ¢ — oo, la mesure p; converge vers une mesure i
qui est supportée sur H. D'autres travaux (comme Mousavi-Hosseini et al., 2022;
Abbe et al., 2022) ont étudié cette convergence avec des dynamiques modifiées,
mais en général, le probléme de prouver la convergence vers le sous-espace H a long
terme n’'a pas encore été résolu. Une autre direction future consisterait a essayer
d'étendre la technique de preuve de Mousavi-Hosseini et al. (2022) au cadre des
réseaux a deux couches de largeur infinie ol les deux couches sont entrainées.

Optimisation sur I’espace des mesures : ajout et élagage dynamiques
des neurones

Dans le chapitre 4, nous considérons des objectifs convexes génériques F' :
M(S41) — R sur I'espace des mesures sur la sphére et proposons des algorithmes
pour les minimiser. Ce cadre couvre en particulier |'optimisation de réseaux a deux
couches avec un nombre de neurones non contraint. Notre objectif est double : (i)
fournir un algorithme avec des garanties de convergence globale a un taux explicite
lorsque |'objectif est régulier, (i7) proposer des méthodes qui se comportent bien
en pratique a la fois en termes de performance et de calcul.

Bien que le Wasserstein GF converge de maniére prouvée vers un minimum
global pour les réseaux a deux couches de largeur infinie (Nguyen and Pham,
2020; Chizat and Bach, 2018; Wojtowytsch, 2020), aucune vitesse de convergence
n'est connue en général. Nous proposons un algorithme pour minimiser F' régulier
et convexe avec un taux de k@ ol k est le numéro d'itération. Cet algorithme
s'inspire des méthodes de coordonnées pour |'optimisation en dimension finie (voir,
par exemple, Wright, 2015) et implique I'échantillonnage d'un nouveau neurone a
chaque étape, ce qui le rend prohibitif en termes de colit computationnel pour une
utilisation en pratique.

Pour atténuer ce probléme, nous envisageons de pénaliser |'objectif régulier
pour encourager la parcimonie et limiter le nombre de neurones, et ainsi réduire
les colits de calcul encourus par I'algorithme. Nous considérons donc des objectifs
de la forme F' = J + AH, ou J est un terme régulier (tel que la perte empirique

91

pour les réseaux a deux couches paramétrés par des mesures) et H est une pé-
nalité induisant la parcimonie. Nous étudions deux types différents de pénalités :
tout d’abord une pénalité de variation totale, qui est I'analogue d'une pénalité L*
en dimension finie, ce qui conduit a des algorithmes proximaux dans I'espace des
mesures pour traiter la non-régularité de la variation totale. Ensuite, nous consid-
érons des pénalités de noyau régulier avec des noyaux attractifs ou répulsifs. Alors
que ces derniers ne suppriment pas explicitement les neurones, les dynamiques
correspondantes aménent certains neurones a se rapprocher les uns des autres, et
ils peuvent éventuellement étre fusionnés de maniére ad hoc au-dela d’un certain
seuil.

Nous tenons a souligner que le travail présenté dans le chapitre 4 est toujours
en cours au moment de la rédaction de cette thése, et que certaines parties peuvent
donc sembler incomplétes.

Convergence globale de la descente de coordonnées dans I'espace
des mesures

En dimension finie, de nombreuses techniques différentes existent pour I'optimisation
convexe en fonction du contexte : |'objectif est-il régulier ou non, les conditions
de type tojasiewiczsont-elles satisfaites, utilisons-nous le gradient complet ou une
seule coordonnée a chaque étape 7 Nous passons en revue de telles techniques
dans la Section 4.3, car bon nombre des idées sont utiles dans notre cadre, et en
nous inspirant de ces méthodes, nous considérons un objectif régulier et convexe
F : M(S%1) — R et proposons un algorithme de descente de coordonnées dans
I'espace des mesures signées qui permet de le minimiser & un taux de k.

Dans ce cadre, une coordonnée est considérée comme un neurone u € S 1
et |'objectif de la descente de coordonnées est de minimiser, étant donnée une
mesure ;1 € M(S9"1), une borne supérieure sur F(u+t8,) sur t € R ot ,, est la
mesure de Dirac en . A partir d'un seul atome pg = cody,, cela donne naissance
a un algorithme ou a chaque itération k, I'itéré actuel a la forme py = Zf:o ¢ibu,
et nous échantillonnons un nouveau neurone wuy; € S ! uniformément sur la
sphére et définissons son poids cx1 en minimisant sur t € R une borne supérieure
sur F'(pug + 1y, ,). Nous montrons dans le Lemme 4.4.2 qu'une inégalité de type
tojasiewicz est vérifiée pour les itérés, puis déduisons avec des arguments similaires
a ceux de la dimension finie la convergence de cet algorithme vers un minimiseur
global en espérance avec un taux explicite. Nous montrons dans le Theorem 4.4.3
qu'il existe une constante C > 0 telle que pour tout k& > 1, il tient :

.
OSE[F(Mk)—F]ﬁm'

Cette descente de coordonnées dans M (S9! doit &tre comprise dans la
géométrie L2, car chaque étape est équivalente, en espérance, a la minimisa-
.) L. . . . 2
tion d'une borne supérieure sur F'(uy, + v) impliquant la norme au carré HuHLg(wd)

92

sur v € L?(wg), oll wy est la distribution uniforme sur S%=!. En pratique, un tel
algorithme peut étre combiné avec des étapes de descente dans la géométrie de

Wasserstein, qui ont souvent un bon comportement empirique bien qu'elles ne
fournissent pas de taux de convergence.

L'inconvénient de |'algorithme de descente de coordonnées présenté ci-dessus
est que le nombre de neurones augmente linéairement avec le numéro d'itération
k, ce qui le rend prohibitif en termes de colit computationnel pour une utilisation
en pratique. Ainsi, nous discutons ci-dessous de |'ajout de pénalités a |'objectif
régulier qui encouragent la parcimonie et offrent un équilibre entre la convergence
globale et le colit computationnel.

Algorithmes proximaux pour les pénalités de variation totale

Nous examinons maintenant un objectif composite du type F'(u) = J(u) + Al p|7v
oir J est régulier et |u|7y est la norme de variation totale de ;1 € M(S?1). Cela
ressemble 3 une pénalité L' en dimension finie, qui est connue pour induire de la
parcimonie. La pénalité de variation totale n'est pas réguliére, et en nous inspirant
a nouveau des méthodes convexes en dimension finie, nous proposons un algorithme
proximal pour la minimisation de |'objectif pénalisé. Alors qu'en dimension finie,
des taux de convergence peuvent encore étre obtenus pour les méthodes proximales,
dans notre cadre, la convergence globale est perdue et nous n'avons aucun contréle
explicite sur le nombre de neurones. En effet, |'étape de descente de coordonnées
proximale est donnée par un opérateur de soft-thresholding : a chaque itération, le
nombre de neurones peut augmenter d'un ou rester constant, mais il reste constant
uniquement s'il n'y a pas de changement dans la valeur de I'objectif d'une itération
a I'autre. Dans ce contexte, parcimonie et convergence globale sont incompatibles :
la diminution de I'objectif ne peut étre obtenue qu'en ajoutant un nouveau neurone.

Pour atténuer ce probléme, nous envisageons une modification de |'algorithme
proximal ot nous alternons entre |'échantillonnage d'un nouveau neurone sur la
sphére et I'échantillonnage parmi les neurones existants de I'itéré courant pu. Lors
de I'échantillonnage parmi les neurones existants, I'étape proximale est également
donnée par un opérateur de soft-thresholding, mais cette fois, le nombre de neu-
rones peut rester constant ou diminuer d'un d'une itération a l'autre, et nous
pouvons obtenir a la fois une diminution du nombre de neurones et une diminution
de I'objectif. Malheureusement, nous n’avons toujours pas de garanties théoriques
de convergence ni de contrdle sur le nombre de neurones, mais il semble que cette
méthode se comporte bien en pratique et parvient a a la fois diminuer I'objectif et
limiter la croissance du nombre de neurones.

Pénalités de noyau lisse

Une autre approche que nous adoptons est |'étude de pénalités de noyau lisse
qui attirent ou repoussent les neurones voisins. Dans ce cadre, nous considérons

93

également un objectif composite du type F(u) = J(u) + AH(p) ou H(u) =
[K (u,v)d|u|(u)d|p|(v) est une pénalité de noyau, et K : R? x R? — R, est un
noyau symétrique, lisse et non négatif. Les noyaux que nous considérons sont des
noyaux de produit scalaire K (u,v) = k({u,v)) avec k : R — R.

Nous disons que le noyau est attractif si k est une fonction décroissante, et
qu'il est répulsif si k est une fonction croissante. En général, nous considérons
Kao(s) =1— es/o” pour les noyaux attractifs et k,,(s) = es/o? pour les noyaux
répulsifs, ot o > 0 est un paramétre contrélant la portée de l'interaction entre dif-
férents atomes sur la sphére. Bien que de tels noyaux n'éliminent pas explicitement
les neurones dans les itérations de I'algorithme, les dynamiques correspondantes
induisent certains neurones & se rapprocher (méme dans le cas répulsif car les forces
répulsives de nombreux neurones différents peuvent en pousser certains les uns vers
les autres) au point que nous pouvons effectivement les fusionner si leur distance
est inférieure a un certain seuil. Par conséquent, ces méthodes induisent implicite-
ment un certain contréle sur le nombre de neurones. Nous alternons entre des
étapes de descente de coordonnées qui devraient diminuer |'objectif mais au prix
de I'ajout de neurones, et des étapes de Wasserstein-Fisher-Rao qui devraient per-
mettre la fusion des particules tout en se comportant bien en termes de diminution
de I'objectif sur le plan empirique.

Bien que de telles pénalités de noyau soient théoriquement motivées, il n'y a
aucune garantie directe de convergence ni de contréle de la croissance du nombre
de particules, mais nous montrons qu'elles ont un comportement intéressant d'un
point de vue empirique.

Discussion

L’algorithme proximal que nous présentons pour minimiser |'objectif non lisse avec
la pénalité de variation totale présente un bon comportement empirique, mais il
reste encore une question ouverte de savoir si une preuve de convergence peut
étre obtenue dans ce cadre. Concevoir des algorithmes qui fournissent a la fois
une garantie théorique de convergence et qui sont en méme temps réalisables
sur le plan computationnel (du moins empiriquement) est difficile, et nous lais-
sons |'exploration d'approches alternatives que celles que nous présentons pour des
travaux futurs.

94

Notation

Integers

* d: the input dimension.

* m: the width of a network.

* n: the number of samples in the training dataset.

* [a,b]: the set of integers {a,...,b} for a,b € N and a < b. There should
be no confusion with the segment of real numbers between a and b given
the context.

Spaces of measures

* Py(£2): the space of probability measures on a domain @ C R? with finite
g-th moment, i.e., [o]|z]|9du(z) < oo.

+ M4 (92): the set of non-negative measures on a domain 2 C R? with finite
mass, i.e., u(Q) < .

« M(): the set of signed measures on a domain € C R? with finite total
variation, i.e., |u|(Q) < oo where |u|= put + u= € M4 (Q) is the sum of
the positive and negative parts of p.

Spaces of functions
* C(f2): the space of continuous functions on a domain 2 C R?.
* Cp(9): the space of continuous and bounded functions on a domain 2 C R?.

+ CL(Q): the space of continuous and compactly supported functions on a
domain Q C RP.

Symbols
+ V: the gradient of a differentiable function.

* div: the divergence operator, defined for differentiable functions f : Q C
RP — RP by div(f) = >-7_; 35

* id: the identity map id : z — =x.

* (-,-): canonical euclidean inner product in RP.

||z||: the euclidean norm of a vector z, ie., ||z]|= /> b, 22.

95

+ (-)": the transposition operator.
+ SP~L: the unit sphere of R?, i.e., the set {x € R? : ||z||=1}.

* Ry: the set of non negative real numbers, i.e., [0, 00).

N (11, %): the Gaussian distribution with mean vector i € RP and covariance
matrix X € RP*P.

X the push-forward of the measure 11 by the map X, characterized by
the equality [¢d(Xgn) = | ¢ o Xdp which holds for any measurable ¢.

Abbreviations

* (S)GD: (Stochastic) Gradient Descent

(W)GF: (Wasserstein) Gradient Flow

NTK: Neural Tangent Kernel

IP(s): Integrable parameterization(s)

ReLU: the Rectified Linear Unit, i.e., : 2 € R — max(0, z).

96

2 - Infinite-width limit of integrable parame-
terizations of deep neural networks

2.1 . Introduction

While artificial neural networks routinely achieve state-of-the art performance
in various real-world machine learning tasks, it is still a theoretical challenge to
understand why and under which conditions they perform so well. The training
algorithm—typically a variant of stochastic gradient descent (SGD) with random
initialization—plays a central role in this performance but is difficult to analyze
for general neural network architectures, because of their highly non-linear and
compositional structure. Large-width asymptotics, which have previously been
considered for other purposes (Neal, 1995; Bengio et al., 2006), have recently
been proposed to overcome some of these difficulties and have brought numerous
insights on the training behavior of neural networks (Nitanda and Suzuki, 2017;
Mei et al., 2018; Jacot et al., 2018; Rotskoff and Vanden-Eijnden, 2018; Chizat
and Bach, 2018; Sirignano and Spiliopoulos, 2020).

One of these insights is that the magnitude of the random weights at initial-
ization has a dramatic impact on the learning behavior of neural networks (Chizat
et al., 2019). For two-layer networks and with suitable learning rates, initializ-
ing the output layer weights with a standard deviation of 1/m, where m is the
width of the network, leads to feature learning when m is large, while the same
network initialized with a standard deviation of 1/y/m leads to the Neural Tan-
gent Kernel (NTK) regime, a.k.a. lazy regime, where the network simply learns a
linear predictor on top of fixed features. This observation suggests that param-
eterizations—that is, the choice of the scaling factors, with the width m, of the
initial magnitude and of the learning rates of each layer of a neural network—are
of fundamental importance in the theory of neural networks. While standard deep
learning packages offer various choices of scale at initialization (Glorot and Bengio,
2010; He et al., 2015), those have been designed with the sole criterion in mind to
have a non-vanishing first forward and backward passes for arbitrary depths. The-
ory now offers the tools to explore a larger space of parameterizations and study
their dynamics beyond the first forward and backward passes in the infinite-width
limit.

With more than two layers, the categorization of parameterizations is more
subtle and there are disparate lines of work. On the one hand, some parameteriza-
tions still lead to the kernel regime, which is subject to an intense research activity
(e.g., Jacot et al., 2018, 2019; Allen-Zhu et al., 2019; Du et al., 2019; Arora et al.,
2019; Geiger et al., 2020a,c; Yang, 2020a). Since this regime reduces to learning a
linear predictor on top of fixed features in the large width limit, this parameteriza-

97

tion is of limited relevance to understand representation learning in networks used
in practice (although it should be noted that non-asymptotic analyses reveal inter-
esting effects, e.g., Hanin and Nica, 2019). On the other hand, there is a growing
literature around parameterizations where weights are initialized with a standard
deviation of 1/m (except for the first layer). These are often called “mean-field”
models but we prefer to call them integrable parameterizations (IPs) in this work?,
in reference to the fact that sums of m terms with standard deviation of order of
1/m are absolutely convergent. There already exists mathematical tools to de-
scribe the evolution of the parameters of IPs in the infinite-width limit but they
are not fully satisfactory to understand the properties of the learned function in
the standard setting used in practice (see review in Section 2.1.3).

Going beyond the dichotomy between the scales 1/m and 1/y/m, Yang and
Hu (2021) have exhibited, using a technique called the Tensor Program (Yang,
2019, 2020a,b), a general categorization of parameterizations, in particular between
those which allow feature learning and those which do not. As a result from
their analysis, they singled out a maximal update parameterization uP where,
as for the NTK parameterization, the intermediate layers’ weights are initialized
with a standard deviation of 1/4/m, but the last layer weights are initialized with
a standard deviation of 1/m: they show that with appropriate learning rates,
this leads to maximal feature learning (in a certain sense). This parameterization
had been previously considered in (Geiger et al., 2020b) where the authors study
empirically the effect of the scale (Chizat et al., 2019) on learning.

In (Yang and Hu, 2021), IPs have been excluded from the analysis on the basis
that they are trivial: if one follows the usual training procedure—which we refer
to as Naive-IP—the network starts on a stationary point in the infinite-width limit
and the learned function remains at its initial value.

2.1.1 . Motivation

We study IPs as they have been studied extensively in the mean-field litera-
ture and global convergence results can be obtained under specific assumptions.
Additionally, shallow IPs have been shown to perform feature learning and thus
appear to have a favourable behaviour compared to their NTK counterpart. We
focus on homogeneous activation functions as they appear as a natural way to
understand the magnitudes of the forward and backward passes but we also show
that those magnitudes can be rigorously analyzed at initialization for commonly
used activation functions such as ELU, GeLU or tanh. We also focus on i.i.d. ini-
tializations since this is what is used in practice. While global convergence results
exist for IPs with i.i.d. initialization at depth 2 or 3 (Nguyen and Pham, 2020;
Chizat and Bach, 2018), IPs have been shown to have degenerate behaviour for

"For deep neural networks, it is somewhat arbitrary to associate the term mean-
field with a specific choice of scaling so we believe that this term lacks precision when
it comes to discussing various parameterizations.

98

larger depths in this setting (Nguyen and Pham, 2020; Fang et al., 2020). With
different assumptions, it is possible to remove those degeneracies and recover con-
vergence results (Nguyen and Pham, 2020; Fang et al., 2020), however, our aim is
to understand and characterize precisely the nature of the degeneracy with i.i.d. ini-
tializations and to propose a fix while staying as close as possible to what is done
in practice. We stress that our goal is not to propose a new competitive method,
but rather to clarify the literature by exhibiting the hidden link between different
approaches.

2.1.2 . Contributions

Our goal is to draw connections between the various lines of research discussed
above, in particular between “mean-field” limits and p©P—which emerged through
separate lines of work—and to improve our understanding of integrable parameter-
izations: when and why are they trivial? How can we avoid triviality and actually
learn features? What are the salient properties of the resulting networks in the
infinite-width limit? To answer these questions rigorously, we leverage the Ten-
sor Program technique developed in (Yang, 2019, 2020a,b; Yang and Hu, 2021).
Specifically, our contributions are the following:

« We first show in Theorem 2.3.1 that with learning rates constant in time,
the functions learned using SGD for integrable parameterizations of neural
networks with four layers or more either remain at their value at initialization
or explode in the infinite-width limit when the weights are initialized using
the standard zero-mean i.i.d. schemes used in practice.

* We show in Theorem 2.4.1 that using large learning rates, which grow as
a power of m, for the first gradient step—and that step only—allows SGD
to escape the initial stationary point for integrable parameterizations and
to initiate a non-trivial learning phase. In fact, we prove in Theorem 2.4.2
that the resulting dynamic is equivalent to a modification of the dynamic
of 1P where the initial weights of intermediate layers are replaced with the
first update obtained with the large learning rates. This highlights a non-
obvious link between IPs as previously studied in the mean-field literature
and uP through the Tensor Program when the initialization is i.i.d. While
Theorem 2.4.1 uses the Tensor Program extensively, actually proving that
the learned function moves away from its initialization is subtle and the proof
technique is different from what can be found in (Yang and Hu, 2021).

+ Other alternatives to using large learning rates exist to escape the initial
stationary point and we study two of them which seem like natural choices:
(1) using a non-centered law at initialization and (2) removing the scale
factor in 1/m on the bias terms. While this is not an exhaustive list, both
methods seem like natural candidates and we show that they lead to de-
generate dynamics (see Section 2.5) compared to using large initial learning

99

rates and we confirm those findings numerically.

Advantages and drawbacks of the Tensor Program. The drawback
of relying on the Tensor Program is that it restricts the class of activation functions
one can consider (e.g., ReLU and other variants such as LeakyRelLU have to be
excluded because of their non-smoothness). Two possible workarounds would be
either to reprove a version of the Tensor Program allowing for a non-smooth acti-
vation functions, or to express non-smooth activations as limits of smooth function
(e.g., ReLU can be expressed as the limit of a parameterized GeLU) and take this
limit inside the Tensor Program, both of which would require considerable tech-
nical work. Our numerical experiments confirm that our results appear to hold
empirically with much less restrictive assumptions on the activation function.

On the other hand, we emphasize that although we present our results with
i.i.d. Gaussian initializations for simplicity, the universality of the Tensor Program
has been proved in (Golikov and Yang, 2022), showing that the Tensor Program
framework and its Master Theorem are valid for much more general i.i.d. initial-
izations.

Furthermore, the Tensor Program allows us to study SGD with mini-batches
and discrete step-size to stay as close as possible to what is done in practice while
it is standard in the mean-field literature to study continuous-time (infinitely small
step-size) and full-batch GD (on the whole training set). However, because of the
recursive nature of the state evolution equations of the Tensor Program, analyzing
quantitatively long-term dynamics is challenging compared to the classical mean-
field setting where such analyses are available and global convergence guarantees
can be obtained under the proper assumptions.

Finally, we highlight that, in comparison to (Yang and Hu, 2021), because we
restrict ourselves to certain classes of activation functions, our results hold for any
choice of the scalar (width-independent) learning rate > 0 while most of their
results hold for some small value of 1 but for a more general class of activation
functions.

The code to reproduce the results of the numerical experiments can be found
at:
https://github.com/karl-hajjar/wide-networks.

2.1.3 . Related Work

While the study of infinitely wide neural networks has a long history (Barron,
1993; Neal, 1995, 1996; Kurkova and Sanguineti, 2001; Mhaskar, 2004; Bengio
et al., 2006; Bach, 2017), it is only recently that their training dynamics have
been investigated. Two-layer neural networks with the IP enjoy some global con-
vergence properties (Chizat and Bach, 2018) and favorable guarantees in terms
of generalization (Bach, 2017; Chizat and Bach, 2020). Going beyond two layers,
Nguyen and Pham (2020) and Pham and Nguyen (2020) study the infinite-width

100

https://github.com/karl-hajjar/wide-networks

limit of IPs and also prove global convergence results for networks with three lay-
ers or more. However, those results hold for standard zero-mean i.i.d. initialization
schemes only for networks with two or three layers (which is consistent with the
results of Section 2.3.1): for deeper networks they require non-standard (corre-
lated) initializations. Nguyen and Pham (2020) show for deep networks that with
i.i.d. initializations, the weights of any given intermediate layer all translate by the
the same quantity in the limit when the initial bias is zero. We in fact show in
Proposition 2.3.1 that when the initialization is centered around zero the degen-
eracy is even stronger as the learned function does not move away from its initial
value in the limit.

Several other works describe the infinite-width limit of multi-layer IPs: Aradjo
et al. (2019) characterize the infinite-width dynamics via a model of McKean-
Vlasov type, for which they prove existence and uniqueness of solutions, and
Sirignano and Spiliopoulos (2021) prove a global convergence result for three-
layer networks. They take the number of units in each layer to infinity sequentially
and describe the dynamics of the limit as a system of differential equations over
the weights/parameters. On the other hand, Fang et al. (2020) take the infinite-
width limit for all layers at once (as in Aradjo et al., 2019; Nguyen and Pham,
2020; Pham and Nguyen, 2020) and describe the resulting dynamics as an ODE
over functions of the features (pre-activations) of the network. It is interesting
to note that Aratjo et al. (2019); Sirignano and Spiliopoulos (2021); Pham and
Nguyen (2020) all discuss the difficulties associated with describing the dynam-
ics of the infinite-width of IPs with more than three layers. As noted in (Aradjo
et al., 2019), and appropriately addressed by Nguyen and Pham (2020); Fang et al.
(2020); Sirignano and Spiliopoulos (2021), there is a separation of time scales as
soon as there are two hidden layers or more, where the gradients of the intermedi-
ate layers appear to scale as m ™2 whereas the gradients of the input and output
layers appear to scale as m ™!, requiring separate learning rate values which can
make the analysis of the infinite-width limit more difficult.

In a separate line of work, Yang and Hu (2021) provide with the Tensor Program
a theoretical tool to describe the infinite-width limit of different parameterizations
of neural networks and categorize them between feature learning and kernel-like
behavior. However, IPs with three layers or more are left out of this categorization.
Using the same tools, we show that IPs with more than four layers are indeed trivial
at any time step if the initial learning rates are not appropriately scaled with m
under standard zero-mean i.i.d. initializations. This closes the gap with (Nguyen
and Pham, 2020) which proves global convergence results for IPs with two or
three layers initialized using those standard schemes. We also demonstrate in Sec-
tion 2.4 how scaling the initial learning rates appropriately allows to properly train
an IP—inducing a feature learning regime as defined in (Yang and Hu, 2021)—and
connect the resulting model with a version of the maximal update parameterization
uP (Yang and Hu, 2021) where the initial weights of the intermediate layers are

101

replaced by zero in the first update. We stress that our aim in the numerical exper-
iments of Section 2.6 is not demonstrate that IP-LLR performs empirically better
than pP but rather to show that on top of the theoretical connection between
those two models, IP-LLR seems to be a valid way of training IPs with comparable
performance to uP.

The setting where non-centered i.i.d. initialization laws are used is covered
in (Nguyen and Pham, 2020), where it is shown that a certain collapse phenomenon
occurs, namely that the updates of the entries of the weight matrix in a given layer
are all equal to the same deterministic quantity in the large-width limit. We recover
this result in Section 2.5.1 using different theoretical tools.

Tensor Program vs. other formalisms. In contrast to prior literature on
IPs, we do not use the description of the infinite-width limit as a composition of
integral transforms. With the standard (centered i.i.d.) initializations considered in
this chapter, that description does not offer much insight about the limit beyond
the fact that it starts on a stationary point. In order to escape this initial station-
ary point, we propose in this chapter to amplify the random fluctuations around
the limit using large initial learning rates. The strength of the Tensor Program
formalism (Yang, 2019, 2020a,b; Yang and Hu, 2021) is precisely that it is able to
describe rigorously the magnitudes of these fluctuations and allows us to analyze
the functions learned with various choices of learning rates. This formalism relies
on techniques initiated in the statistical physics literature (Bayati and Montanari,
2011; Bolthausen, 2014) that use the Gaussian conditioning technique to describe
the behavior of algorithms (such as message passing) involving random matrices
and non-linearities.

2.1.4 . Organisation of the Chapter and Notations

We define and analyze integrable parameterizations in Section 2.3 and show
that they are trivial for common choices of learning rates. In Section 2.4, we
describe how a specific scaling of the learning rates allows to escape the initial sta-
tionary point, and further investigate the connection between IPs with large initial
learning rates and pP. In Section 2.5, we present two alternative modifications of
IPs to escape the initial stationary point and discuss the impact of each on the
learning dynamics. Finally in Section 2.6 we present our numerical results.

We defer all the rigorous proofs of our theoretical results to the Appendix, so
as to make the core message of our work stand out more clearly, and keep the flow
of the results structured and easy to follow. Among other things, this prevents us
from diving too deep into the Tensor Program formalism and calculations (which
can be somewhat tedious and abstruse) in the main part of our work. Most proofs
require heavy inductions on the time step ¢, and proving the induction step itself
often involves inductions on [in the forward pass (from [=1 to [= L) and in the
backward pass (from [= L to [= 1). Breaking down all these steps makes for

102

a lengthy Appendix, but the ideas of the proof are relatively straightforward, only
their proper formal writing is tedious.

Throughout the chapter, for two integers p, ¢, we denote by [p] theset {1,...,p}
and by [p, ¢] the set {p,...,q}. We write u ® v for the Hadamard (i.e., element-
wise) product of two vectors u and v. We use Landau notations for comparing
two real sequences (un,) and (v,,): we write u,, = O(v,,) when there exists a
constant C' > 0 such that |u,,|< Clvy,| for large enough m, and u,, = O(vy,)
when we both have u,, = O(vy,) and u,, = O(vy,). We similarly use the O
(respectively ©) notation for two sequences of real-valued random variables (u,,)
and (vy,) when, almost surely, u,, = O(v,,) (respectively u,, = O(v.,)).

2.2 . General Setting

In this section, we introduce the general setting we consider for this work,
as well as the corresponding notations. We also define precisely the notion of
parameterization of a neural network and discuss examples of parameterizations
commonly found in the literature.

2.2.1 . Network and Data
Training data. We consider a training dataset {(¢(, y(i))}ie[n
(input, output) pairs with £ € R? and y(® € R. We will use £® or y(?) when
we refer to the i-th sample in the training dataset, but use & and y; to denote the

sample(s) fed to train the network at time step ¢, that is for the (¢ 4 1)-th step of
optimization.

| containing n

Width and depth. Throughout this work, we consider a feed-forward fully
connected neural network, with L hidden layers and a common width m. The
total number of layers, i.e., weight matrices and bias vectors will thus be L + 1,
and most of our results are concerned with four or more layers, that is L > 3, and
in the limit m — co. The integer [€ [L + 1] will always be used to index the
layers of a network, and we call the intermediate layers of a network the layers
indexed by [€ [2, L] (i.e., excluding input and output layers).

Activation function. We assume that all the neurons in the network share
the same activation function o : R — R. The activation is always taken entry-wise
and for any vector h € R™, we denote by o(h) the vector (o (hy))peim) € R™.

Weights and forward pass. We denote by W(t) and B'(t) respectively the
weight matrix and bias vector of layer [at time step ¢ (i.e., after ¢ steps of SGD),
and thus have W(t) € R™*4 Wi(t) € R™*™ for | € [2, L] and WEHL(t) € R™,
At any time step ¢ we denote by hl(&) and z!(£) the pre-activations and activations

103

respectively coming out of the [-th layer when feeding input & to the network (with
the convention that z9(¢) = ¢). That is

hy(€) = W(t)ay () + B'(1), and (€)= o(i(€)), for L€ [L,L].
(2.1)

Output. We denote the output of the network by

(&) = F(O();€) := (WEH (1)) 2k (€) + BMH (1), (2.2)

where 6(t) denotes the set of all network parameters at time ¢. We often drop the
dependency of the forward pass on the input ¢ for brevity and simply use hl, z!
instead of h}(&),x}(€) as it should always be clear from the context which input
is being fed to the network. Note that the weights and biases as well as all the
(pre-)activations depend on the width m of the network (through their dimensions)
but we omit this dependency for clarity.

Loss. We denote by ¢ the loss function used to train the network, which is a
function from R? to R. The fit of a prediction 7 is thus measured by £(y, %) where
y is the desired output. In all this work, we make the following assumption on the
loss function ¢, which is met by most common loss functions:

Assumption 1 (Smooth loss w.r.t. second argument). The loss ¢ is differen-
tiable with respect to its second argument and 02¢(y, -) is a continuous func-
tion forany y € R.

Assumption 1 is essentially here to guarantee that if the sequence (™), en-
converges almost surely to some 7(°), then 9x¢(y,7™) also converges almost
surely to 92¢(y, 7).

2.2.2 . Parameterizations of Neural Networks

The fact that the magnitude of the initialization of the weights and of the scale
pre-factor for the weights are key quantities that determine the learning regime
achieved by neural networks—and more generally by differentiable models—was
pointed out in (Chizat et al.,, 2019). In this chapter, we are interested in the
behavior of neural networks when their width m goes to infinity, and we refer to
as a parameterization of a neural network the choice of how (a) the pre-factor of
the weights, (b) the standard deviation at initialization and (c) the learning rates,
evolve as a function of m. This concept was called an abc-parameterization by

a

Yang and Hu (2021), because these dependencies are given by m=?, m™" and

m=°.
As explained by these authors, one of those three choices is actually redundant,
and one can do with only the choice of two among those three scales. We take the

point view considering a parameterization as a choice of scale for the pre-factor

104

of the weights (a) and a choice of scale for the learning rates (c) while the ran-
dom weights are always initialized (b) with standard i.i.d. Gaussians A/(0,1). We
make this (arbitrary) choice as typically in the literature, different models of the
infinite-width limit correspond to different choices of scales for the weights' pre-
factors, e.g., NTK corresponds to a pre-factor in 1/+/m while “mean-field’ models
correspond to a choice of pre-factor in 1/m for the weights. We thus define be-
low ac-parameterizations which are a slight variation of the abc-parameterizations
introduced in (Yang and Hu, 2021).

Definition 2.2.1. (ac-parameterization). An ac-parameterization of an L-hidden
layer fully-connected neural network is a choice of scalar exponents (ay, ...,a54+1),
and (ci,...,cr+1) such that for any layer [€ [L + 1],

(i) the learnable weights (i.e., those over which we optimize) are initialized
with independent standard Gaussian random variables wéq(o) ~N(0,1),
i.i.d. over (1, 4,q), i.e, w'(0) = U' with (U"),+1) independent random
matrices with i.i.d. standard Gaussian entries,

(ii) the learnable biases are initialized independently of the weights, with
bL(0) ~ N(0,1), i.id. over (1,5), i.e., b'(0) = v with (v'),cz41] indepen-
dent standard Gaussian random vectors, independent of U,

(iii) the effective weights 7W(¢) used to compute the pre-activations at time
t are W'(t) = m~%w!(t), and the effective biases are B'(t) = m~“b! (1),
so that the pre-activations are

L= Wi ()2l + Bl(t) = m™@ (wl(t)a(hfl) + bl(t)> , le(l, L],
and the output is

FO);€) = m™r+1 (wH () o (hf(£) + b1 (1),

(iv) the (¢ + 1)-th update of learnable weights and biases is given by the up-
date rules

Awl(t +1):= wl(t +1)— wl(t) = —nm= IV il (g, f(O(1); &),
AV (t+1) = bt + 1) = b (8) = —=nm ="Vl (ys, f(0(£):),
where 0(t) = {(w'(t),b(t)),..., (wETL(t),bET1(t))} is the full set of all
network parameters, (&, y:) represent the input(s) and target(s) to the
network at step t and € R’ is the scalar part of the learning rate which

does not depend on m and which we call the base learning rate. We
denote by n; := nm ™ the full learning rate for layer [.

Remark.

105

1. Compared to the definition of (Yang and Hu, 2021), we allow for differ-
ent values of ¢; at different layers and remove the redundant initialization
scale (that is the b in abc-parameterizations). Any abc-parameterization
with constant ¢ for all layers (as presented in Yang and Hu, 2021) can be
recovered (same effective weights and biases at any time step) with an
ac-parameterization with individual learning rates at each layer via the re-
parameterization a; <— a; + by, by < 0, ¢; := ¢ — 2b;.

2. As we study the infinite-width limit m — oo, we need to consider an infi-
nite number of random weights at initialization. To this end, we consider
forany ! € [2, L], two infinite lists of i.i.d. standard Gaussian variables, in-
dependent of each other: (Ujl‘q)j,qu* and (Ué)pEN*r and often simply call, by
an abuse of notations, U! = (U}q)1§j7q§m for the corresponding matrix at
width mm and o' = (v})1<j< the corresponding bias vector at width m. We
proceed similarly at initialization for the input weights U' and the output

vector UL+,

3. The (¢ + 1)-th update of the effective weights is given by AW (t + 1) :=
Wt + 1) — W(t) = —gm~Cutedw il (y,, £(0(t); &)), and the update of
the effective biases by the following equation AB!(t + 1) := B(t + 1) —
BY(t) = —nm~Cureds gy, £(0(t); &)

Examples of ac-parameterizations:

NTK parameterization. For the NTK parametrization (Jacot et al., 2018)
the scaling is a; = 0 for the input layer, and a; = 1/2 for all the other layers
l € [2,L + 1]. The scaling of the learning rates is ¢; = 0 for all layers. Neural
networks in the NTK parametrization have been shown to behave as kernel methods
in the infinite-width limit (Jacot et al., 2018; Yang, 2020a) and there is no feature
learning in that limit.

1P. To avoid the lazy training phenomenon arising in the NTK parameterization,
Yang and Hu (2021) propose to adjust the scale of the output layer by setting
ar+1 = 1, while keeping a1 = 0 and a; = 1/2 for the intermediate layers | €
[2,L]. The learning rates are appropriately adjusted: ¢; = —1 for any layer [.
With this parameterization, Yang and Hu (2021) show that feature learning (see
Definition A.2.1 in Appendix A.2.3 for a precise statement) occurs at every layer.

Integrable Parameterizations (IPs). The limits investigated in Aradjo
et al. (2019); Sirignano and Spiliopoulos (2021); Pham and Nguyen (2020); Weinan
and Wojtowytsch (2020) are associated to a scale multiplier in 1/m for all layers
except the first one. This corresponds to the choice a; = 0 and a; = 1 for

106

l € [2,L + 1]. We choose the adjective “integrable” in reference to the abso-
lute convergence of sums of the form (1/m)>_ z, for i.i.d. random variables
with finite expectation. Integrable parameterizations really refer to a class of ac-
parameterizations, because various choices for the learning rate exponents ¢; are
admissible.

Naive-IP. In the mean-field literature, integrable parameterizations often come
with the standard learning rates corresponding to ¢; = cp41 = —1 for the in-
put/output layers and ¢; = —2 for the intermediate layers [€ [2, L], see e.g.,
(Aratjo et al., 2019, Remark 3.4), (Fang et al., 2020, Algorithm 1), (Weinan and
Wojtowytsch, 2020, Lemma 5.1), and (Sirignano and Spiliopoulos, 2021, Equa-
tion 4.3). Mean-field models with these learning rates are the natural counterparts
of the infinite-width limits where sums are replaced by integrals, and we call the
integrable parameterization with this specific choice of learning rates the Naive
Integrable Parameterization.

When L = 1, uP and the Naive-IP coincide. For deeper networks, in the
setting of abc-parameterizations described in (Yang and Hu, 2021), uP and Naive-
IP correspond to the same parameterization (same values for a and c) except that
the weights of the intermediate layers are initialized with a standard deviation of
1/m for Naive-IP instead of 1//m for uP, that is they are downscaled by 1//m
compared to pP. In Section 2.4.2, we show that there is also a close relationship
between P and IP with large initial learning rates.

We give below an intuitive explanation for the choice ¢y = ¢ 11 = —1and ¢ =
—2 for [€ [2, L] for the scaling of the learning rates in Naive-IP. For [€ [2, L], we
have At = m~(w!(t)zl ™ + b'(t)), so that V. fi(&) = m‘l(thf,g(&))(azi_l)T
In addition Vr41fi(&) = zF/m and V1 (&) = (Vi fe(€))(&) . So for one
step of SGD:

AWt + 1)1 = —00ol(yr, [1(&)) (& Er)m™ T (mV 1 (&)
() al
——————(mVfi(&)),

m
INT L
t)$t+1
m

AW! (4 1)xlT} = —ndol(ys, fr(&))m™)

T r (:L'

(AWETHE+ 1)) afyy = =002y, fi(&))m ™~ Ter)
(2.3)
In addition, from the equations of backpropagation, we get

(w' () Ve fi(&)

Vhtht(ﬁt) = %wLH(t) ® Ul(h{“) and Vi fi(&) =

for 1 € [1, L—1], so that, by a simple induction, V,: fi(§&) = O(1/m) for I € [1, L].
In addition, the averaged inner products (mifl)Txiﬁ/m in Equation (2.3) converge
as ' m — oo. This point is somewhat technical and is handled within the framework
of the Tensor Program. The choice of ¢; in Naive-IP thus ensures that the updates

107

for 1 € [2, L]

® o' (hy),

are O(1) when m goes to infinity. This is a desirable behaviour as it implies there
is no explosion of the (pre-)activations as m — oo. However, as shown in the
following Section 2.3, those updates are not in ©(1) and actually converge to 0
as m — 0o. As discussed below, this is essentially due to the scales of Vi f;(&)
becoming increasingly smaller as we go deeper in the network (from [= L to
l=1)

We conclude this section by giving the definition of a training routine which
consists in the combination of the base learning rate, the sequence of training
samples and a loss function:

Definition 2.2.2 (Training routine). A training routine is the list consisting of
the base learning rate n > 0, (a;, ¢;) e[z +1] in the ac-parameterization, the loss
¢ and the sequence of training samples (£, v0), - - -, (§7—1, y7—1) used to train
a network for T steps.

2.3 . Deep Networks with Naive Integrable Parameterization
are Trivial

In this section, we point out that, in the wide limit, neural networks in the
Naive-IP remain at their initial value. We then prove that no choice for the learning
rates exponents (c;)e(r+1) Which is constant in time can induce non-degenerate
learning.

2.3.1 . No learning in Deep Networks with Naive Integrable Param-
eterization
To start with, we show that the functions learned by networks with more
than four layers in the naive integrable parameterization, as described in prior
work (Aradjo et al., 2019; Rotskoff and Vanden-Eijnden, 2019; Fang et al., 2020;
Nguyen and Pham, 2020; Weinan and Wojtowytsch, 2020; Sirignano and Spiliopou-
los, 2021), remain at their value at initialization in the infinite-width limit: they
are identically equal to zero at any time step. Our proof of this result is based on
the Tensor Program framework (Yang, 2020b; Yang and Hu, 2021), which requires
some regularity assumptions on the activation function.

Definition 2.3.1. (Pseudo-Lipschitz functions). A function v : RF — Ris
pseudo-Lipschitz of degree p > 0 if there exists a constant K > 0, such that,
for any z,y € RF,

k k
(@) — ¢(y)|< K|z -yl (1 + > |z P+ Z\%\”) -
r=1 r=1

A function is pseudo-Lipschitz, if it is pseudo-Lipschitz of degree p for some
p > 0.

108

In particular, functions with polynomially bounded weak derivatives are pseudo-
Lipschitz. In the next proposition, we require the activation function o and its
derivative to be pseudo-Lipschitz.

Assumption 2 (Smooth activation). The activation function ¢ is differentiable
and both ¢ and its derivative ¢’ are pseudo-Lipschitz and not identically zero.

Remark. Note that all common activation functions which are smooth (e.g.,
ELU, GeLU, tanh, sigmoid) satisfy Assumption 2.

Proposition 2.3.1 (Naive-IP is trivial). Let L > 3 and consider the naive inte-
grable parameterization of a network with L-hidden layers, and an activation
function satisfying Assumption 2 and ¢(0) = 0. Then, for any training rou-
tine which has a loss satisfying Assumption 1, the function learned by SGD
remains at its value at initialization in the infinite-width limit:

Vt>0, VY&eRY, lim fi(¢) = lim fy(§) =0 almost surely.

Remark.

1. In the above statement, “almost surely” is relative to the randomness of
the initialization.

2. The smoothness Assumption 2 on ¢ is met by common activation functions
such as GeLU (Hendrycks and Gimpel, 2016), ELU (Clevert et al., 2016), tanh
and the sigmoid activations, but it excludes ReLU and all the other variants
of Leaky ReLU. This assumption is required to apply (Yang and Hu, 2021,
Theorem 7.4) (which we recall in Appendix A.2.2) which is the main theoret-
ical result of the Tensor Program series (Yang, 2019, 2020a,b; Yang and Hu,
2021), but the result is likely to hold with weaker assumptions, as observed
numerically in Section 2.6, and we leave this for future work.

3. The assumption ¢(0) = 0 is met by the activation functions mentioned
above (except the sigmoid) and is necessary to prove that the network does
not move at any layer. Without this assumption, learning is degenerate but
not trivial at all layers. It is trivial at step t = 1 at all layers except the last
two: the coordinates of h¥ and f; (¢) converge, with m, to quantities which
are not 0 but which are independent of the input £ to the network, similarly
to the effect described in Section 2.5.2.

The proof of Proposition 2.3.1, presented in Appendix A.4, proceeds by induction
over t to show that the forward and backward passes vanish at any time step. For
any time ¢, we proceed again by induction over [(from [=1to [l = L+ 1 for the
forward pass and from [= L + 1 to [= 1 for the backward pass) to prove this
vanishing occurs given the magnitudes of the previous forward and backward passes.

109

The informal idea of the proof is the following: essentially, the multiplications of
the activation vectors by m~1/2U! yield vectors whose coordinates are distributed
as a Gaussian with finite variance as m — oo for [> 2 (see Appendix A.2.1
for more details). At initialization, since w!(0) = m~'U! for I > 2 for IPs, the
coordinates of A}, converge towards 0 as fast as m~'/2 and that of x}, towards ¢ (0)
for o continuous at 0. For the same reasons, fy(&y) converges to 0. In the first
backward pass, multiplications by (Wl(()))T also yield vectors whose coordinates
are in O(mfl/z). In contrast to the forward pass, these scales propagate from
Il =L tol =1 and thus compound with depth, and since the last layer's gradient
zd /m is in O(m™1), all the gradients’ coordinates vanish as m — oo and there
is no learning. This reasoning can be repeated at later time steps as there are
no correlations between the initial weight matrices and the vectors they multiply
because of the degeneracy of the (pre)-activations (their coordinates become equal
to the constant ¢(0) as m — o0). Those informal calculations are made rigorous
by the Tensor Program.

Proposition 2.3.1 shows that the parameters of neural networks in the integrable
parameterization are stuck in a stationary point of the objective function in the
infinite-width limit, and no learning occurs. It might appear obvious that using
larger learning rates to correct the scale with m of the weight updates can avoid
this pitfall, but as discussed in the following Section 2.3.2—where we study which
choices of learning rates can lead to stable learning with homogeneous activation
functions—the issue is more subtle.

2.3.2 . No stable learning with learning rates constant over time

As m grows, to compensate the vanishing gradients in the first SGD step,
one can use larger learning rates than in the Naive-IP. Yet, as explained below,
exponents (c;)c[z+1) for the learning rates which allow to escape the stationary
point at initialization will induce an explosion of the pre-activations, if the same
values of the exponents are used in the subsequent gradient steps. Indeed, the
next informal statement of Theorem 2.3.2 shows that, with IPs, one cannot have
non-trivial and stable learning with learning rate scales ¢; constant in time.

Theorem 2.3.1 (Informal). Consider an L-hidden layer fully-connected neural
network with L > 3 in the integrable parameterization. Assume that the contri-
butions of the first and second updates AW'(1)z}™* and AW (2)2,~! are non-
vanishing and non-exploding with m at every layer I. Then, the learning rates
scales c¢; cannot have the same value att = 0 and t = 1.

In a nutshell, one needs large learning rates to escape the initial stationary point,
but keeping those initial values at later time steps would make the pre-activations
blow-up as m — oo. The formal version of the previous Theorem 2.3.1 is given
in Theorem 2.3.2 below. For this formal statement, we introduce some definitions
and assumptions.

110

Assumption 3 (Smooth non-negative homogeneous activation). The activa-
tion function o is non-negative, notidentically zero and it is positively p- homo-
geneous withp > 2, i.e., o0(Az) = APo(z) forany A > 0 and z € R. Additionally,
o has faster growth on the positive part of the real line: 3z > 0 s.t. o(z) >
o(—z).

Remark.

1. While the homogeneity assumption is core to the calculation of scales
with integrable parameterization, the fact that p > 2, and that ¢ is non-
negative and has faster growth on the positive part of the real line are
simply here to avoid cumbersome technical difficulties in the proofs. It
is clear that ReLUP? satisfies Assumption 3 for any p > 2.

2. With the assumption that p > 2, o also satisfies Assumption 2, so that
the rules of the Tensor Program can be applied.

3. While leveraging homogeneity is natural to understand the magnitudes
of the forward and backward passes using the Tensor Program it might
still seem unpractical as most commonly used activation functions are
not positively homogeneous (except for ReLU which is positively 1- ho-
mogeneous). Yet, we explain in the following Section 2.3.3 how—under
certain assumptions met by common choices of activation functions
such as GeLU, ELU or tanh—IPs induce a similar behaviour for the first
update as with homogeneity due to the vanishing of the first forward
pass as presented in Section 2.3.1. Therefore, the magnitudes described
below with homogeneity turn out to be also valid with those assump-
tions for non-homogeneous activation functions, albeit with p = 1.

Definition 2.3.2 (Scales of first updates with homogeneity). Letp > 0. We
define the following exponents:

L-1
1 k
71(p) = vL41(p) = 5 (1 + ZP) ;
k=0
=
and y(p)=-1-— 3 Zpk, forl € [2, L]
k=0
Theorem 2.3.2 (Formal version). Consider an L-hidden layer fully-connected
neural network with L > 3 in the integrable parameterization, and with no bias
terms, except for the first layer. Assume that the activation function o satisfies
Assumption 3, the loss ¢ satisfies Assumption 1 and that lim,,, oo 02€(yo, fo(&o)) #
0, and lim,,, o 924(y1, f1(&1)) # 0 almost surely. Assume further that &y, &1, &2 €
R< are all distinct vectors such that &] & # 0 and & & # 0. Finally assume that:

{nilmwl(l)xﬁ-wz o(1), lelLI]

(AWEH (1) 2k = 0(1) 24

111

and

1 l I-1)12_
{mIIAW ()25 |P=0(1), 1€[LI] 25

(AWET(2)) 2t = ©(1).
Then, one necessarily has that:
(i) att =0, c; =(p)foranyl € [1, L + 1] (see Definition 2.3.2),
(i) att =1,¢1 =cpy1 =—1,and ¢g = —2forl € 2, L].

Let us comment briefly on the hypotheses of Theorem 2.3.2. The proof of
Theorem 2.3.2 relies on an analysis of the SGD steps involving both (Yang and
Hu, 2021, Theorem 7.4) and the homogeneity property of the activation function.
The requirement that p > 2 allows to satisfy the smoothness assumption of (Yang
and Hu, 2021, Theorem 7.4) and the removal of the bias terms allows to fully
exploit homogeneity. In Section 2.6, we numerically check that the result still
holds with o = ReLU, which is p = 1 homogeneous. The corresponding scales for
the learning rates in the RelLU case are v1(1) = —(L +1)/2, (1) = —(L +2)/2
and 101 (1) = —(L+1)/2.

We give below an informal explanation for the values of the learning rates
appearing in Theorem 2.3.2 in the case of a positively 1-homogeneous activa-
tion function. As previously mentioned in Section 2.3.1, each multiplication by
WH0) = m~'U" or its transpose yields a factor in m~1/2 for [> 2. Because of
the homogeneity property, this scale propagates from layer to layer starting from
layer 2, and the coordinates of R}, and 2} are thus in ©(m~(=1/2) for [€ [1, L].
For the backward pass, the first gradient V. fo(£0) = ULt /m has coordinates
in ©(m™!), and, as already discussed in Section 2.3.1, from [= L to [= 2, each
multiplication by (Wl(()))T yields an additional factor in m~'/2 and those com-
pound with depth so that the coordinates of Vi fo(£) are in ©(m~tm~(L=0/2),
Therefore, calling 576 = m(lfl)/Qmé, and dilé = mH(L*l)/Qthfo(fo), we have
after the first weight update

AWL(1)Er = —ndal(yo, fi(€0)) (&0 " &)m ™ m~EAD/2 R},
(jlfl)—rxlfl 5
AW 1)2l™Y = —18st(yo, fo(&o))m™m™2m~(E-D/2-=2/2220 2 T1_gpl - e [2, 1),
m
~INT L
(AW (1) b = by, fo(Eo)m im0

Since dhl, and &} have coordinates in ©(1) by design, and since averaged inner

products of the type (:Z“é*l)Txlfl/m converge to finite expectations (by the rules of
the Tensor Program, see Yang and Hu, 2021, Theorem 7.4), we see that the choice
caa=—(L+1)/2,¢g=—(L+2)/2forl€[2,L], and cp41 = —(L+1)/2 is the
only way to ensure that the updates induce contributions which have coordinates

112

in ©(1) at t = 1. Given this choice for the learning rate scales ¢i,...,cr 41 at
t = 0, we readily get that the coordinates of h} and x! are in ©(1) because the
contributions W*!(0)z}™" have coordinates in O(m~'/2) for intermediate layers,
and in O(1) for the input and output layers. From the Equations (2.3) with ¢ = 1,
we see that for the second gradient step, mV,, f1(£1) has coordinates in ©(1)
because the multiplications by (I/Vl(l))T do not yield a factor in m~'/2 due to the
scale correction introduced in the first update. At ¢ = 1, this leads to the choice
c1 =cr+1 = —1,and ¢ = =2 for | € [2, L], in order to have update contributions
with coordinates in ©(1) at t = 2. These informal calculations are made rigorous
in the proof of Theorem 2.3.2 using the Tensor Program (Yang, 2020b).

2.3.3 . Recovering results without homogeneity: linearization of the
first step

As we have described above, the crux of the matter for IPs is understanding
the magnitudes of the first forward and backward passes in order to escape the
initial stationary point and induce stable learning. With IPs, it is in fact possible
to analyze rigourously those as with homogeneity: indeed, under a set of less
restrictive assumptions, the fact that the initial forward pass converges to 0 as
m grows large allows to effectively linearize o around 0 in the first gradient step,
thereby recovering a similar effect as a 1-homogeneous activation function. We

consider the following assumption on o:

Assumption 4 (Linearization of o). The activation function ¢ is continuously
differentiable with ¢(0) = 0, ¢/(0) # 0 and there is an M > 0 such that for
any z € R, [o(z) — o/(0)2] < Y22,

Remark.

1. Note that the last inequality is satisfied as soon as ¢” is bounded—which
is the case for 0 € {GeLU, tanh}—and that ELU also satisfies Assumption 4
so that the latter is satisfied by commonly used activation functions, and
we recall that those activation functions also satisfy Assumption 2.

2. Understanding the magnitudes of the first gradients with ¢ = GeLU theo-
retically would allow extending this analysis to ReLU (which is non-smooth)
as explained in (Yang and Hu, 2021) since ReLU(z) = lim,_,o0 GeLU(az)/a.
However, taking this limit within the Tensor Program adds cumbersome
technical work and we leave this for future work.

Intuitive idea for the linearization. Let us explain briefly why this lin-
earization occurs and how it allows to obtain the scales of the first forward and
backward passes as with a 1-homogeneous function. Consider the second layer pre-
activation at initialization h2 = m~'/2W 2z} which has coordinates in ©(m~1/?)
which thus converge to 0 as m — oo. With o satisfying Assumption 4 for the ac-
tivation 23 = o(h2) we get 22 ~ ¢/ (0)h3 which also has coordinates in ©(m~1/2)

113

and the upper bound in Assumption 4 allows to make this rigorous in the limit
m — oo. By induction it is clear that hl,z} have coordinates in ©(m~(=1/2),
Note that the calculations above suggest setting the standard deviation of the
Gaussians to |o/(0)|~! at initialization to avoid issues with depth (see more details
in Remark A.7.2) which is what we do in the numerical experiments of Section 2.6.
For the backward pass, Vi fo(&) = m ULt and Vir fol€) = Ve fo(§) ©
o' (k) ~ m~1o’(0)U*+! which have coordinates in ©(m™!), and Vi) fo(§) =
m~ 'z} has coordinates in ©(m~(L+1)/2) The successive multiplications by (VVZ(O))—r =
_1/2(Wl) in the backward pass each contribute to an additional factor m~1/2
and the fact that the forward pass vanishes yields V fo(f) Vit fo(&) = ©(m~tm~E=D/2)

and thus, since V) fo(§) = m 1th fo(&)(xh 1) the first weight gradients

1(0)fo(€) have coordinates which scale in © (m=tm=(F=0/2m =L ~(1=2)/2) —
O(m~L+2A/2) for [€ (2, L]. FlnaIIy, for I = 1, one has V,,1(0) fo(£) = V() fo()ET
whose coordinates are in ©(m~tm~(L=1/2) = @(m~E+1/2) This suggests cor-
recting the initial gradients by the scales m(Z+1/2 for the first and last layers
and mL1+2)/2 for intermediate layers in order to obtain gradients which are non-
vanishing and non-exploding.

Formalization and differences with homogeneity. We formalize the
intuitive ideas presented above in Appendix A.6 where we rigorously derive the
linearization and the scale of the first update under Assumption 4. It is noteworthy
that this linearization of the first step induces a behaviour which is similar to but
different from homogeneity. Indeed, the linearization, along with the fact that
o'(hl) converges to the constant o’/(0) removes the correlation usually introduced
by the first update in some of the intermediate layers which results in a different
behaviour. This technicality, along with the fact that we have no homogeneity or
linearization after ¢ = 0 under Assumption 4, make it difficult to adapt the proofs of
homogeneity to this setting beyond the analysis of the first forward and backward
passes. In particular, the equivalence between IP-LLR and pP—as described in
Section 2.4.2—is not exact this setting. Because of the reasons mentioned above,
the setting where linearization occurs would require a separate study and we leave
this for future work.

2.4 . Large Initial Learning Rates Induce Learning

In this section, we show that with positively homogeneous activation functions,
using large initial learning rates (polynomial in m) allows the network to escape
from the initial stationary point and to initiate a non-trivial training phase in the
infinite-width limit. Because we use the homogeneity property extensively for our
results, in all this section, as in Section 2.3.2, we consider a version of integrable
parameterizations where the bias terms are removed except for the first layer.

114

As observed in Section 2.3.2, beyond the fact that IPs require large learning
rates (for the first gradient step) to be trained, one crucial characteristic of the
degeneracy in IPs is that no choice of learning rate scales (¢;) which are constant
in time can induce a favorable learning behavior: one has to first use large learning
rates to escape the stationary point at initialization (¢ = 0) and then revert to the
Naive-IP learning rates for t > 1 to induce stable learning.

Definition 2.4.1 (IP with large initial learning rates). Let o be a positively p-
homogeneous activation function with p > 0. We define the integrable param-
eterization with large initial learning rates (IP-LLR) as the integrable parameter-
ization of an L-hidden layer fully connected-network with activation o such
that:

(i) Att =0: ¢ =y(p), forl e [1,L +1];

(i) Att > 1:¢c; =cp41=—-land ¢ = —2,forl € [2,L],
where the values of the v;(p) are given in Definition 2.3.2.
Remark.

1. The definition means that Aw!(1) = —ym =PIV 1 4(yo, fo(&)) for the
first weight update after the forward-backward pass at time ¢t = 0, and
fort > 1, the (t+1)-th weight update is Aw! (t+1) = —gm =2V i (v, [(&)
forl € [2,L],and Aw'(t +1) = —gm IV 1 l(ys, f1(&)), Awr Tt +1) =
—nm IV L1 l(yy, f1(&)) after the forward-backward pass at time .

2. We give the definition with an arbitrary degree of homogeneity p (the
values of the ~;(p) are given in Definition 2.3.2) as for some theorems
where we use the Tensor Program for the proof, we need sufficient
smoothness of the activation function, which is achieved only when
p > 2, but we always use ¢ = ReLU (which corresponds to p = 1) in our
informal derivations and numerical experiments. Note that since the

values of ¢y,...,cr41 att = 0 depend on p, the definition of an IP-LLR
parameterization also implicitly depends on the degree of homogeneity
p.

3. Since a; = 0 for IPs, we leverage the homogeneity property only for
layers [€ [2, L] (see Appendix A.7.2 for more details), so that we might
as well assume L > 2 whenever we study IP-LLR.

2.4.1 . Non-trivial and Stable Learning for Integrable Parameteri-
zations

Theorem 2.4.1 (Non-trivial and non-exploding learning with IP-LLR). Consider
the IP-LLR parameterization of an L-hidden layer neural network with no bias

115

terms, except for the first layer, and with an activation function o satisfying As-
sumption 3 and a loss function ¢ satisfying Assumption 1. Let ¢ € R? be an input
to the network, and assume 02£(yo,0) # 0. Then, one has:

(i) fo(€) ;220

m—r0o0

(i1) F1(6) —25 f1(€), 0 < |fu()]< 00 as.

m—o0

(i) f2(6) =2 Fol€), |fa(€)]< 00 aus.

m—00

Theorem 2.4.1 essentially shows that IP-LLR is able to induce both a non-
trivial dynamic since lim,;, o0 (f1(£) — fo(&)) # 0 as well as a stable one since the
prediction function remains bounded even after two gradient steps in the infinite-
width limit.

Remark.

1. We show in our numerical experiments (see Section 2.6) that with 0 =
ReLU (i.e., p = 1), the choice of learning rates for IP-LLR is indeed able
to induce learning for networks deeper than four layers without creating
instabilities.

2. For positively p-homogeneous activations with p > 2, we have ¢/(0) = 0
and the behavior of the network is inherently different from that of a net-
work where the first forward pass can effectively be linearized (the setting
described in Section 2.3.3). This difference appears in the numerical ex-
periments presented in Section 2.6 where we also discuss the reasons for
such a qualitatively different behavior.

3. InIP-LLR, the initial gradient direction will be determined by the first sam-
ple (£0,y0) fed to the network. To avoid giving too much importance to
a single sample, one can in practice average the gradients over a batch
of many training samples instead, which is what we do in our numerical
experiments in Section 2.6.

4. The most subtle and technical part of the theorem is the fact that | f1(£)|> 0
in the second point. That the movement in the prediction function is of
order 1is guaranteed by the choice of learning rates in IP-LLR, and there is
no reason for f1(&) to be zero a priori but actually proving that the resulting
function indeed produces an output different from 0 is challenging.

The idea of the proof essentially lies in the informal calculations of Section 2.3.2
which are made rigorous using the framework of the Tensor Program. Point (i)
stems from the fact that at ¢ = 1, the output is the difference between two
expectations in the limit m — oo, which can both be shown to be different from
0 and of opposite signs.

116

We highlight that the proof technique is much different from (Yang and Hu,
2021) as the result holds for any value of the scalar learning rate n > 0 as soon
as the initial loss is different from 0 (in the limit m — o) while most results on
feature learning in (Yang and Hu, 2021) are valid only for some small value of 7
(e.g., Definition 3.5, Theorem 3.6, Definition 5.2, Theorem 5.6). The difference
mainly resides in the precise analysis we make of the first gradient step which is
made possible by the non-negativity assumption on the activation function and the
fact that the contributions of the initial weights vanish in IP-LLR for intermediate
layers, both of which allow to analyze the expectations resulting from the Tensor
Program in an inductive manner.

2.4.2 . IP-LLR is a Modified pP

In this section, we analyze the behavior of IP-LLR more in detail and show that
this model is actually equivalent to a modification of uP where the initial weights
are removed from the first weight update for all of the intermediate layers. Said
differently, IP-LLR is the same as using uP but initializing the intermediate layers
with the first update with large initial learning rates instead of the Gaussian initial-
ization of puP. We first show an equivalence at finite-width in Section 2.4.2 with
mild assumptions, and then extend those results to the infinite-width limit in Sec-
tion 2.4.2 with slightly more restrictive assumptions on the activation function o.
Since we study the IP-LLR parameterization, we consider positively p-homogeneous
activation functions, and only the degree of homogeneity allowed will vary between
Sections 2.4.2 and 2.4.2. In short, the main idea behind this equivalence is that
since IP-LLR and pP are both designed to have maximal update contributions at
t = 0, they will induce the same update at initialization, and the only difference
at later time steps is that the initial weights of IP-LLR contribute vanishingly to
the pre-activations whereas those of P contribute in ©(1). In this regard, it is
not a surprise that the learning dynamics of IP-LLR and uP are closely related.
Nevertheless, we believe this novel connection is worth exploring and we devote
this section to highlighting in detail the precise link between IP-LLR and uP.

Finite-Width Equivalence

As explained in Section 2.2.2 in the examples of ac-parameterizations, from the
point of view of abc-parameterizations (see Yang and Hu, 2021), both pP and
Naive-IP follow the same training procedure for the effective weights TV, the only
difference being the standard deviation at initialization which is downscaled by
1/4/m for Naive-IP compared to pP. We detail this connection in this section.
Recall that for P one has WJP(O) =Ul, WZLP(O) =m~ Y20 for I € 2, L],
and W;FTI(O) = m~ UL+ whereas for any integrable parameterization, one has
Wh(0) = UL, Wh(0) = m™U! for | € [2,L + 1]. Consider the following
hybrid parameterization (HP) which consists in training with the maximal update
parameterization uP all along, but simply replacing, for all intermediate layers [€

117

2, L], the first update W' (1) = W'(0) + AW (1) by Wi (1) = m~ U '+ AW (1).
In other words, this simply consists in using the weight pre-factors of uP for the
intermediate layers in the initial forward and backward passes, and then using
the pre-factors from IP for the initial weights of the intermediate layers in any
subsequent update.

Proposition 2.4.1 (Finite width equivalence between IP-LLR and HP). Con-
sider the IP-LLR and HP parameterizations with a p-homogeneous activation
function o with p > 1 and without any bias term except at the first layer.
Let us sub/super-script the variables of each model with IP and HP respec-
tively. Assume the full sequence of training samples (o, v0), - - -, (§s,Ys), - - -
and the loss ¢ are the same for both parameterizations. Assume further that
D2l (yo, fHT (&)) # 0, and denote by 7 the base learning rate of the IP-LLR pa-
rameterization. Finally consider the following schedule for the base learning
rate of HP:

_ %lyo, " (%)) .
AL (yo, 317 (0))
e (s) =, 5> 1.

e (0)

Then one has:
ve>1, YEeRT, £ = (9.

The proof, presented in Appendix A.11.1, simply shows inductively that the
effective weight matrices for both models are equal for all ¢ > 1. Since the Tensor
Program is not needed here as we consider only finite-width networks, we can work
with any positively homogeneous activation function (not necessarily smooth, so
that p = 1 is not precluded).

Infinite-Width Equivalence

Similarly to HP, we now consider another hybrid parameterization where the initial
weights W(0) are simply replaced by 0 in the first update of the intermediate layers.
We thus consider the following hybrid parameterization with zero re-initialization
(HPZ): we train with pP all along, but simply replace, for all intermediate layers
I € [2,L], the first update W'(1) = W' (0) + AW (1) by Wi(1) = AW!(1).
In other words, this is the same as initializing the intermediate layers of uP with
AW'(1) (where the update is computed with either IP-LLR or yPas they are
the same for positively homogeneous activations). This can also be seen as using
W(0) the weight pre-factors of 1P for the intermediate layers in the initial forward
and backward passes, and then forgetting the contribution of the initial weights
of the intermediate layers in any subsequent update. As already discussed in
Section 2.3.1, the contribution of the initial weights of the intermediate layers
m~'U' vanishes as m — oo for IP, so that HPZ is simply the infinite-width
equivalent of HP.

118

Theorem 2.4.2 (HPZ and IP-LLR are equivalent). Consider the IP-LLR and HPZ
parameterizations with a p-homogeneous activation function o with p > 2, and
with no bias terms except at the first layer. Let us sub/super-script the variables
of each models with IP and HPZ respectively. Assume that the training routine is
the same for both parameterizations, and assume further that the loss ¢ satisfies
Assumption 1. Then, one has:

Vt >0, VEeRY lim fHPZ(e) = lim fIP(€) almost surely.

The proof, presented in Appendix A.11.2, proceeds by induction to show that the
quantities appearing in the forward and backward passes at every layer are the
same for both models at every time step in the infinite-width limit. We use the
Tensor Program framework for this proof so we need smoothness of o (p > 2) for
this result.

In essence, Theorem 2.4.2 shows that the IP-LLR parameterization is equivalent to
P where we simply forget the initialization after the first forward and backward
passes. Said differently, IP-LLR is the same as uP, except that IP-LLR initializes
the weights of the intermediate layers [€ [2, L] at ¢ = 1 with W!(1) = AW(1),
i.e., with the first update computed after the first forward-backward pass. It is
not entirely clear whether forgetting the initial weights in one step is beneficial
or detrimental to learning. On the one hand, it would seem like forgetting the
random initialization could make the network learn faster and be more robust to
perturbations (but this is only speculative at this point, and we leave this open
for future work), on the other hand the large rank of the initial weight matrices
with i.i.d. Gaussian entries might increase the stability of the training dynamics.
In other words, while the randomness from initialization propagates to every layer
at every times step for uP, it is forgotten in one step of SGD for IP-LLR in the
infinite-width limit. In Section 2.6 we explore the performance of both models
numerically and show that IP-LLR appears to be a valid way of training IPs as it
seems to perform on par with uP which we know has maximal update properties.

Another distinguishing factor between IP-LLR and pP is that for any intermedi-
ate layer [€ [2, L], while (W], () = W (0))/W],(0) = ©(m~'/2) for uP, so that
the effective weights only move infinitesimally (in the infinite-width limit) relatively
to their initial values, we have (le»q(t) — W}q(O))/W;q(O) = O(1) for IP-LLR so
that the effective weights actually move in the infinite-width limit (see more details
in Remark A.7.2). The latter behaviour is the one observed empirically for neural
networks used in practice (even for wide models) with normalization layers (such
as BatchNorm loffe and Szegedy, 2015 or LayerNorm Ba et al., 2016) but we leave
the connection between IP-LLR and the effect of normalization layers for future
work.

119

2.5 . Alternative Methods for Escaping the Initial Stationary
Point

As discussed in Section 2.4, using large initial learning rates in combination with
a positively homogeneous activation function allows escaping the initial stationary
point and induces stable learning. In this section, we present two alternatives
to escape this initial stationary point and discuss the properties of the resulting
models. This is not by any means an exhaustive list of alternatives to escape the
initial stationary point, but they are two natural examples (one of which appears
in (Nguyen and Pham, 2020) and we recover their result in a slightly different
setting) and we show that they result in degenerate behaviours, so that it appears
that using large initial learning rates is the only valid way to get non-degenerate
behaviour for i.i.d. IPs. In contrast to the setting of Section 2.4, in all this section,
we consider IPs with bias terms at every layer.

A first alternative to escape the initial stationary point, which we discuss in
Section 2.5.1, is to simply initialize the weight matrices with i.i.d. Gaussian dis-
tributions which are not centered around 0, as suggested by Nguyen and Pham
(2020). This method is able to escape the stationary point without large initial
learning rates and without any homogeneity assumption on the activation func-
tion. It turns out that the computations in that setting are well described within
the Tensor Program framework and we show that, as highlighted in (Nguyen and
Pham, 2020, Corollary 37), a collapse phenomenon occurs, where all the individual
entries in the weight matrix of an intermediate layer evolve by the same determin-
istic quantity in the infinite-width limit. Using the Tensor Program, we recover
this result in the context of SGD on with a loss computed on mini-batches instead
of gradient flow on the empirical loss.

Another natural alternative is to remove the pre-factor m ™! in front of the
bias terms of layers [> 2. Indeed, as observed in Section 2.3.1, the vanishing of
the forward pass and the weight updates in integrable parameterizations is mostly
due to the multiplications by the weight matrices m~'U! which results in pre-
activations whose coordinates are ©(m~/2) for | € [2, L]. Since the bias terms
are decoupled from the input to the layer, re-scaling them appropriately avoids
vanishing of the forward pass for IPs. Escaping the initial stationary point can
then be achieved without any homogeneity assumption on the activation function
o. However, one issue which arises then is that the bias terms have the dominant
contribution to the pre-activations, and since the input signal propagates through
the network via the weight multiplications, the output of the trained network is
only “weakly” dependent on its input and the training data. We now study these
two alternatives in more detail.

2.5.1 . Using Non-Centered i.i.d. Initialization

In this section, we consider the following modified version of IPs which we
call IP-non-centered : the forward pass is computed exactly as in IPs but the

120

weight matrices of layers [> 2 are initialized with wéq(()) = Ujl-q + up ~ N(u, 1)
i.i.d. over (j,q) with u; # 0. This simply consists in setting w!(0) = U’ + w;J
for I € [2, L] and w®*1(0) = UL*! 4 up 11 where J is the square matrix full of
ones (whose variable size is the same as U? and thus equal to m) and 1 is the
vector (of variable size equal to m) full of ones. As we will see shortly, the effect
of this type of initialization is similar to removing the pre-factor in m~! on the
bias terms in that the vanishing of the matrix multiplications m Uz~ is offset
by the appearance of an additional term in the expression of h! whose coordinates
are all equal and depend on the input data.

General intuition. In short, the idea is that if W € R™*™ is a Gaussian
matrix with entries following A/(0,1) i.i.d.(be it in a forward or backward pass),
and u a scalar different from zero, the effect of multiplying a vector z € R™ by
a non-centered Gaussian matrix with standard deviation 1/m corresponds to the
result of m~Y(W + uJ)z = m~*Wax + m~luJz. We have already seen that the
first term converges to 0 as . — oo while all the coordinates the second term
are equal to u% Z;nzl xj, which converges by the rules of the Tensor Program to
some finite expectation. Thus provides the main contribution in the multiplication
m~ (W 4wuJ)z is a vector whose coordinates all converge to the same deterministic
constant in the infinite-width limit. Essentially, this phenomena holds true in the
forward and backward passes at any time step for IP-non-centered and causes
the forward and backward passes, as well as the weight updates to collapse to
deterministic constants for layers [€ [2, L — 1]. In particular, the first forward and
backward passes do not vanish in this context and the “usual” mean-field learning
rates as in Naive-IP: ¢; = ¢p41 = —1, and ¢, = —2 for [€ [2, L] induce learning
at any time step.
We summarize this result in the following informal theorem:

Theorem 2.5.1 (Informal). Consider IP-non-centered with the Naive-IP learning
rates at every time step, and lett > 0 and ¢ € R? be an input to the network.
Then, one has that:

(i) foranyl € [2, L —1], the coordinates of h! (resp. =) all converge to the same
deterministic constant,

(i) foranyl € [2,L — 1], the coordinates of mV fe(&) (resp. mVy fe (&) all
converge to the same deterministic constant,

(iii) forany! c [3, L — 1], the entries of (W'(t) — W'(0)) all converge to the same
deterministic constant.

The rigorous version of this theorem, and its proof, formalized within the
framework of the Tensor Program, are presented in Appendix A.12.2.

121

2.5.2 . Not Scaling the Bias Terms

In this section, we consider a version of IPs where we remove the pre-factor 1/m
for the bias terms of layers | > 2. We thus consider the following computations in
the forward pass:

Bt = w! (D€ + b (1),
hi = (mflwl(t)mé_l) + bl(t), lel2,L] (2.6)
1) = (m~ @)) + b e),

which in other terms simply means that B'(t) = b'(t) for [€ [1, L + 1]. We use
the same initialization for the bias terms as in IPs: b'(0) = o! for I € [1, L + 1],
where the entries of v! are i.i.d. following AV'(0,1). We call IP-bias the modified
version of the integrable parameterization described by Equations (2.6).

General intuition. Asin IP-non-centered, the idea is now that the non-scaled
bias terms will provide the main (non-vanishing) contribution compared to the mul-
tiplication with i.i.d. Gaussian matrices scaled by 1/m, and induce non-vanishing
forward passes. However, in comparison to IP-non-centered, the backward pass still
vanishes and needs to be corrected but with learning rates that are not as large as
in IP-LLR in the first update because the first forward pass is of order 1. Once this
is accounted for in the first weight update, the following weight updates use the
same learning rate exponents as for Naive-IP: ¢; = ¢+ = —1 and ¢ = =2 for
l € [2,L]. The degeneracy comes from the fact that the main contribution in the
pre-activations h. comes from the initial Gaussian bias term b/(0) = v': indeed,
although the weight updates have non-vanishing contribution, they are multiplied
by the scalar learning rate n which tends to be less than one, and the dominant
contribution is that of the initial bias term which does not depend on the data, and
thus makes the output of the network only weakly data-dependent which is detri-
mental to the practical performance of those models as observed in the numerical
experiments of Section 2.6.
Those ideas are formalized in Appendix A.12.1.

2.6 . Numerical Experiments

In this section we investigate numerically the behavior of the models previously
introduced in this work, namely Naive-IP, IP-LLR, IP-bias, IP-non-centered and uP.
In contrast to the theoretical analysis carried out in Sections 2.3, 2.4, and 2.5, we
examine the performance of the models on a multi-class classification task (instead
of a single output prediction) and we train them using mini-batch SGD (instead of
single-sample SGD). In addition to these two points, we adopt the following slight
modifications compared to our theoretical setting.

122

Standard deviation of initial weights. In our numerical experiments, we
allow the initial Gaussian weight matrices U and vectors v to have entries drawn
from N(0,67) where §; can be different from 1 for [€ [1, L], but is independent
of m. As hinted in Section 2.3.3 and explained more in detail in Remarks A.7.1
and A.7.2, this is to avoid issues (vanishing or explosion of the forward/backward
pass) with the depth L. The value of the standard deviation for ReLU comes
from the analysis in Appendix A.14. The choices of the standard deviation of the
Gaussian depend on the activation function and are summarized in Table 2.1.

activation | ReLU | GelLU | ELU | tanh
init. std V2 2 1 1

Table 2.1: Standard deviation §; of the initial Gaussian entries of layers
[€ [1, L] for different choices of activation functions.

Re-scaling the standard deviation of the first layer. All the models
we consider have a; = 0 so that, as mentioned in Section 2.5.2, the coordinates of
h{ follow A/(0, ||€]|241) and the variance is equal to S°%_, €2+4+1. To avoid having
too large a variance when the (fixed) dimension d is large, we re-scale the standard
deviation of the first layer's weights and bias term at initialization by dividing it by
Vd + 1, that is we use the Gaussian law A(0,67/(d + 1)) to initialize the entries
of w!(0) and b'(0).

Calibrating the initial base learning rates for IP-LLR. As discussed
in Section 2.4.2, IP-LLR basically amounts to training with uP but forgetting
the initialization in the intermediate layers for the first update. We thus roughly
have Wi(1) ~ AW!(1) for any [€ [2, L], and the base learning rate 7 directly
influences the magnitude of AW?!(1) and thus that of h}. Typical values for the
learning rates, the initial loss derivative 92£(yo, 0), and the averaged inner products
involved in the second forward pass are rather small (e.g., < 107!), and this will
cause the pre-activations of the second forward pass to be of small magnitude, and
this effect compounds quickly with depth as the pre-activations of layer (I — 1)
are then multiplied by AW!(1). This will in turn lead to very small values for
the second weight updates AW!(2) and can considerably slow down learning in
practice. To overcome this issue, we simply calibrate the initial values of the base
learning rates 7; of layers | € [2,L] at t = 0, so that the magnitude of the pre-
activation of the intermediate layers in the second forward pass is equal to 1 on
average over the second training batch.

Note that this calibration results in base learning rates 7; which do not depend
on m (they do depend on L however) in the large-width limit as the coordinates
of h} have non-zero and finite values for large m. In contrast, this is not possible
with the Naive-IP as the coordinates of h! converge to zero as fast as some power

123

of m, which would result in the base learning rate 7; depending on m which is
prohibited (by definition of the base learning rate).

All the points above can be handled within the framework of the Tensor Pro-
gram, but they would unnecessarily over-complicate the analysis and the formulas,
which is why we used a simpler setting in our theoretical analysis.

2.6.1 . Experimental Setup

We evaluate the performance of the different models on two datasets: MNIST?,
containing 50,000 training samples, 10,000 validation samples and 10,000 test
samples, and CIFAR-103, 40,000 training samples, 10,000 validation samples and
10,000 test samples. Both datasets consist in a 10-class image classification task.
Since we consider only fully-connected networks, we use gray-scale images which
we also flatten for both datasets, which means the input dimension is d = 28 x28 =
784 for MNIST and d = 32 x 32 = 1024 for CIFAR-10.

We train for 5000 SGD steps on MNIST and 6000 steps on CIFAR-10 using
a wide range of values for the base learning rate of n € R := {pl0~ 7 : p,q €
[1,9] x [2,4]} U {0.1}, a batch-size B = 512, and the cross-entropy loss, which
satisfies Assumption 1. We selected the number of steps for each dataset so
as to ensure that training has converged for all models, that is the validation
accuracy starts to decrease. We used with a wide range of base learning rates
because different models might favor different values. For each experiment, we
run Niials = 5 trials with different random initializations. The hyperparameters
are summarized in Table 2.2.

L| m dmnist | deirar ¢ n B | Nirials
5 11024 | 784 | 1024 | cross-ent. | range R | 512 5

Table 2.2: Hyperparameters for training models.

2.6.2 . IP-LLR vs. uP

We compare the numerical performance of IP-LLR and P on both MNIST
and CIFAR-10 and summarize them in Tables 2.3 and 2.4. The performance, as
measured by the accuracy on the test set, is consistent for both uP and IP-LLR.
The best test accuracy for uP and IP-LLR are comparable: the former achieves
0.979 test accuracy on MNIST and 0.413 test accuracy on CIFAR-10 while the
latter achieves 0.980 test accuracy on MNIST and 0.434 test accuracy on CIFAR-
10.

2.6.3 . Learning is Degenerate for IP-bias and IP-non-centered

Zhttp://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/ kriz/cifar.html

124

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

activation | pelu | GeLU | ELU | tanh
model / Ir

IP-LLR 0.970 | 0.977 | 0.976 | 0.980

optimal 77 0.1 | 0.009 | 0.002 | 0.03

1P 0.978 | 0.979 | 0.977 | 0.970

optimal n 0.08 | 0.03 0.1 0.1

Table 2.3: Test accuracies and optimal learning rates on MNIST for var-
ious activation functions.

activation | palu | GeLU | ELU | tanh
model / Ir

IP-LLR 0.365 | 0434 | 0.427 | 0.357

optimal 7 0.09 | 0.000 | 0.005 | 0.003

P 0.395 | 0.413 | 0.398 | 0.300

optimal 7 01 | 0.003 | 0.04 | 0.08

Table 2.4: Test accuracies and optimal learning rates on CIFAR-10 for
various activation functions.

In this section we show numerically that IP-non-centered and IP-bias (see Sec-
tions 2.5.1 and 2.5.2 respectively) are able to escape the initial stationary point
but that the resulting dynamics do not seem effective as observed through the final
test performance.

As summarized in Table 2.5, IP-non-centered and IP-bias appear to have poor
test accuracy even after extensively long training comparatively with IP-LLR and
1P, even with the best choice of activation function and with the optimal learning
rate. Similarly, it appears that Naive-IP is not able to escape the initial stationary
point even with a relative large base learning rate and with extensively long training
as its test performance is barely better than random chance.

model IP-LLR | wuP | IP-bias | IP-non-centered | Naive-IP
acc/ hparams
CIFAR-10 accuracy 0.434 | 0.413 | 0.320 0.173 0.118
optimal n 0.009 | 0.003 0.1 0.1 0.1
optimal o GeLU | GeLU | GelLU ELU ELU

Table 2.5: Test accuracies (averaged over 5 random runs) at the end of
training on CIFAR-10. For each model, we show the maximum (aver-
aged) accuracy over all activation functions and learning rates.

2.7 . Conclusion

125

Recent research has shown that the parameterization of a neural network has a
dramatic impact on its training dynamics, and therefore, on the type of functions
that it is able to learn. Until now, the parameterizations used by practitioners
have been restricted to standard schemes which rely on the analysis of the the first
forward and backward passes. In the present work, pushing the analysis beyond the
first gradient step (which is made possible by the Tensor Program framework), we
have studied how to train neural networks with parameterizations that enjoy radi-
cally different behaviors, such as forgetting the contribution of the initial weights
after the first weight update.

The parameterizations we have analyzed, which we refer to as integrable pa-
rameterizations, have been previously described with tools from the mean-field
literature, and we have deepened our understanding of these models with a dif-
ferent perspective. Indeed, we have shown that these parameterizations are trivial
for deep networks with centered i.i.d. initialization and a constant learning rate:
they are stuck at initialization. This observation led us to explore various ways to
escape this initial stationary point and initiate learning. Among those methods,
we found that the only one that does not lead to a degenerate behaviour is to use
large learning rates for the first gradient step. We proved that in the infinite-width
limit the resulting dynamic is equivalent to a modification of P where the initial
weights are removed after the first gradient step. Importantly, the random fluctu-
ations around the limit—which are ignored in the mean-field description—turn out
to actually be essential for our analysis, since it is by amplifying them that we are
able to escape the stationary point.

Extending our theoretical results to a more general class of activation functions
requires more thorough technical work and is left as an open problem. Also,
analyzing rigorously the impact of the presence or absence of the initial weight
matrices on the learning behavior appears to be an interesting avenue for future
research. Finally, understanding the generalization properties of IP-LLR and uP
remains an important open question but is beyond the scope of this chapter.

126

3 - Symmetries in the dynamics of infinitely
wide two-layer neural networks

3.1 . Introduction

The ability of neural networks to learn rich representations—or features—of
their input data is commonly observed in state-of-the art models (Zeiler and Fer-
gus, 2014; Cammarata et al., 2020) and often thought to be the reason behind their
good practical performance (Goodfellow et al., 2016, Chap. 1). Yet, our theoretical
understanding of how feature learning arises from simple gradient-based training
algorithms remains limited. Much progress (discussed in Section 3.1.3) has been
made recently to understand the power and limitations of gradient-based learn-
ing with neural networks, showing in particular their superiority over fixed-feature
methods on some difficult tasks. However, positive results are often obtained for
algorithms that differ in substantial ways from plain (stochastic) gradient descent
(e.g. the layers trained separately, or the algorithm makes just one truly non-linear
step, etc).

In this work, we take the algorithm as a given and instead adopt a descriptive
approach. Our goal is to improve our understanding of how neural networks be-
have in the presence of symmetries in the data with plain gradient descent (GD)
on two-layer fully-connected ReLU neural networks. To this end, we investigate
situations with strong symmetries on the data, the target function and on the ini-
tial parameters, and study the properties of the training dynamics and the learned
predictor in this context.

3.1.1 . Problem setting

We denote by d the input dimension, p the input data distribution which we
assume to be uniform over the unit sphere S¥~! of R?, and by P»(Q) the space of
probability measures with finite second moments over a measurable space Q2. We
call o the activation function, which we take to be ReLU, that is o(2) = max(0, z),
¢ : R xR — R the loss function, which we assume to be continuous in both
arguments and continuously differentiable w.r.t. its second argument and we denote
by 05/ this derivative.

Mean-field limit of two-layer networks. In this work, we consider the
infinite-width limit in the mean-field regime of the training dynamics of two-layer
networks without intercept with a RelLU activation function. Given a measure
1 € Po(R x R?), we consider the infinitely wide two-layer network parameterized

127

by 11, defined, for any input € R%, by
fsn) = [oeopuo), 1)
ceRl+d

where, for any ¢ = (a,b) € R x R, ¢(c;z) = ao (b'z). Note that width-m
two-layer networks with input weights (b;);c(1,m) € (RH)™ and output weights
(aj)jef1,m) € R™ can be recovered by a measure pim, = (1/m) 377" 1 d(ma; b;) With
m atoms.

Objective and Wasserstein gradient flow. We consider the problem of
minimizing the population loss objective for a given target function f* : R — R,
which we assume to be bounded on the unit sphere, that is

min F(p) :=Epo, [0 (f"(x), T) 3.2
min (F) = Ban [£(F (@), S5 2))] 32)
The Fréchet derivative of the objective function F' at pu is given by the function
F(c) = Egnp [02€ (f*(), f(11; 7)) ¢(c;)] for any ¢ = (a,b) € R x R¢ (for more
details, see Appendix B.2.1). Starting from a given measure pig € P2(R x R?),
we study the Wasserstein gradient flow (GF) of the objective (3.2) which is a path
(11¢)>0 in the space of probability measures satisfying, in the sense of distributions,
the partial differential equation (PDE) known as the continuity equation:

Oy = —div (vg p1g) (3.3)
vi(c) 1 = =VE,(c).

Initialization. We make the following assumption on the initial measure 1o €
Po(RxRY): 119 decomposes as 19 = g @ud where pid, p2 € Po(R) x Po(R?). This
follows the standard initialization procedure at finite width. Because no direction
should a priori be favored, we assume u2 to have spherical symmetry, ie., it is
invariant under any orthogonal transformation, and we additionally assume that
la|=]|b|| almost surely at initialization. It is shown in (Chizat and Bach, 2020,
Lemma 26), and (Wojtowytsch, 2020, Section 2.5), that with this assumption, s
stays supported on the set {|a|= [|b||} for any ¢t > 0.

Comment on the assumptions. The assumption that p decomposes as
a product of two measures is to stay as close as possible to what is done in
practice (independent initialization for different layers). The assumption that |a|=
||b]| is of a technical nature, and, along with the regularity conditions on the
loss ¢ and the input data distribution p, ensures that the Wasserstein GF (3.3)
is well-defined (Wojtowytsch, 2020, Lemma 3.1, Lemma 3.9) when using RelLU
as an activation function (which bears technical difficulties because of its non-
smoothness). The results of Section 3.2 hold for other activation functions which

128

potentially require less restrictive assumptions on g and p but still require pg
to decompose as a product of measures. In contrast, the results of Sections 3.3
and 3.4 are specific to 0 = RelLU and thus require the assumptions above on pyg
and p. Since our work focuses mostly on ReLU, we choose to state the results of
all sections with the (more restrictive) assumptions stated above on 1 and p.

Relationship with finite-width GD. If o = (1/m) > 7, d(a;(0)5,(0)) is
discrete, the Wasserstein GF (3.3) is exactly continuous-time GD on the parame-
ters of a standard finite-width neural network, and discretization errors (w.r.t. the
number of neurons) can be provided (Mei et al., 2018; Nguyen and Pham, 2020).

3.1.2 . Summary of contributions

Our main object of study is the gradient flow of the population risk of infinitely
wide two-layer ReLU neural networks without intercept. Our motivation to consider
this idealistic setting—infinite data and infinite width—is that it allows, under
suitable choices for p and 1, the emergence of exact symmetries which are only
approximate in the non-asymptotic setting!.

Symmetries, structure, and convergence. In this work, we are inter-
ested in the structures learned by the predictor f(ju;-) under GF as t grows large.
Specifically, we make the following contributions:

* In Section 3.2, we prove that if f* is invariant under some orthogonal linear
map 7', then f(u;-) inherits this invariance under GF (Proposition 3.2.1).

* In Section 3.3, we study the case when f* is an odd function and show
that the network converges to the best linear approximator of f* at an
exponential rate (Theorem 3.3.2). Linear predictors are optimal over the
hypothesis class in that case, in particular because there is no intercept in
our model.

* In Section 3.4, we consider the multi-index model where f* depends only on
the orthogonal projection of its input onto some sub-space H of dimension
dpr. We prove that the dynamics can be reduced to a PDE in dimension dy.
If in addition, f* is the Euclidean norm of the projection of the input, we
show that the dynamics reduce to a one-dimensional PDE (Theorem 3.4.3).
In the latter case, we were not able to prove theoretically the convergence of
the neurons of the first layer towards H, and leave this as an open problem
but we provide numerical evidence in favor of this result.

The code to reproduce the results of the numerical experiments can be found at:
https://github.com/karl-hajjar/learning-structure.

'In contrast, our focus on GF is only for theoretical convenience and most of our
results could be adapted to the case of GD.

129

https://github.com/karl-hajjar/learning-structure

3.1.3 . Related work

Infinite-width dynamics. It has been shown rigourously that for infinitely
wide networks there is a clear distinction between a feature-learning regime and
a kernel regime (Chizat et al., 2019; Yang and Hu, 2021). For shallow networks,
this difference stems from a different scale (w.r.t. width) of the initialization where
a large initialization leads to the Neural Tangent Kernel (NTK) (a.k.a. the “lazy
regime”) which is equivalent to a kernel method with random features (Jacot et al.,
2018) whereas a small initialization leads to the so-called mean-field (MF) limit
where features are learned from the first layer (Chizat et al., 2019; Yang and Hu,
2021). However, it is unclear in this setting exactly what those features are and
what underlying structures are learned by the network. The aim of the present
work is to study this phenomenon from a theoretical perspective for infinitely wide
networks and to understand the relationship between the ability of networks to
learn specific structures and the symmetries of a given task.

A flurry of works study the dynamics of infinitely wide two-layer neural net-
works. Chizat and Bach (2018); Mei et al. (2018); Rotskoff and Vanden-Eijnden
(2018); Wojtowytsch (2020); Sirignano and Spiliopoulos (2020) study the gradi-
ent flow dynamics of the MF limit and show that they are well-defined in general
settings and lead to convergence results (local or global depending on the assump-
tions). On the other hand, Jacot et al. (2018) study the dynamic of the NTK
parameterization in the infinite-width limit and show that it amounts to learning a
linear predictor on top of random features (fixed kernel), so that there is no feature
learning.

Convergence rates. Inthe MF limit, convergence rates are in general difficult
to obtain in a standard setting. For instance, Chizat and Bach (2018); Wojtowytsch
(2020) show the convergence of the GF to a global optimum in a general setting but
this does not allow convergence rates to be provided. To illustrate the convergence
of the parameterizing measure to a global optimum in the MF limit, E et al.
(2020) prove local convergence (see Section 7) for one-dimensional inputs and a
specific choice of target function in O(t~!) where t is the time step. At finite-
width, Daneshmand and Bach (2022) also prove convergence of the parameters to
a global optimum in O(t~1) using an algebraic idea which is specific to the ad-hoc
structure they consider (inputs in two dimensions and target functions with finite
number of atoms).

In Section 3.3, we show convergence of the MF limit at an exponential rate
when the target function is odd. In the setting of this section, the training dynamics
are degenerate and although input neurons move, the symmetries of the problem
imply that the predictor is linear.

Low-dimensional structure. Studying how neural networks can adapt to
hidden low-dimensional structures is a way of approaching theoretically the feature-

130

learning abilities of neural networks. Bach (2017) studies the statistical properties
of infinitely wide two-layer networks, and shows that when the target function only
depends on the projection on a low-dimensional sub-space, these networks circum-
vent the curse of dimensionality with generalization bounds which only depend on
the dimension of the sub-space. In a slightly different context, Chizat and Bach
(2020) show that for a binary classification task, when there is a low-dimensional
sub-space for which the projection of the data has sufficiently large inter-class dis-
tance, only the dimension of the sub-space (and not that of the ambient space)
appears in the upper bound on the probability of misclassification. Whether or
not such a low-dimensional sub-space is actually learned by GD is not addressed
in these works.

Similarly, Cloninger and Klock (2021); Damian et al. (2022) focus on learning
functions which have a hidden low-dimensional structure with neural networks.
They consider a single step of GD on the input layer weights and show that the
approximation / generalization error adapts to the structure of the problem: they
provide bounds on the number of data points / parameters needed to achieve
negligible error, which depend on the reduced dimension and not the dimension of
the ambient space. In a similar context, Mousavi-Hosseini et al. (2022) consider
(S)GD on the first layer only of a finite-width two-layer network and show that
with sufficient Lo-regularization and with a standard normal distribution on the
input data the first layer weights align with the lower-dimensional sub-space when
trained for long enough. They then use this property to provide statistical results
on networks trained with SGD.

In a setting close to ours but on a classification task with finite-data and at
finite-width, Paccolat et al. (2021) compare the feature learning regime with the
NTK regime in the presence of hidden low-dimensional structure and quantify for
each regime the scaling law of the test error w.r.t. the number of training samples,
mostly focusing on the case dy = 1.

In a similar setting to that of (Bach, 2017), Abbe et al. (2022) study how
GF for infinitely wide two-layer networks can learn specific classes of functions
which have a hidden low-dimensional structure when the inputs are Rademacher
variables. This strong symmetry assumption ensures that the learned predictor
shares the same low-dimensional structure at any time step (from the ¢ = 0) and
this allows them to characterize precisely what classes of target functions can or
cannot be learned by GF in this setting. In contrast, we are interested in how
infinitely wide networks learn those low-dimensional structures during training, and
in the role of symmetries in enabling such a behaviour after initialization.

Learning representations. An existing line of work (Yehudai and Shamir,
2019; Allen-Zhu et al., 2019; Abbe et al., 2021; Damian et al., 2022; Ba et al.,
2022) studies in depth the representations learned by neural networks trained with
(S)GD at finite-width from a different perspective focusing on the advantages of

131

feature-learning in terms of performance comparatively to using random features.
In contrast, our aim is to describe the representations themselves in relationship
with the symmetries of the problem.

Symmetries. We stress that the line of work around symmetries of neural
networks dealing with finding network architectures for which the output is invariant
(w.r.t. to its input or parameters) by some group of transformations (see Bloem-
Reddy and Teh, 2020; Ganev and Walters, 2021; Gtuch and Urbanke, 2021, and
references therein) is entirely different from what we are concerned with in the
present work. In contrast, the setting of (Mei et al., 2018) is much closer to
ours as they study how the invariances of the target function / input data can
lead to simplifications in the dynamics of infinitely wide two-layer networks in the
mean-field regime which allows them to prove global convergence results.

3.1.4 . Notations

We denote by M (©2) the space of non-negative measures over a measurable
space €. For any measure 1 and measurable map 7', T4 1« denotes the pushforward
measure of u by T'. We denote by O(p) and idrr respectively the orthogonal group
and the identity map of R? for any p € N. Finally, (-, -) is the Euclidean inner
product and || - || the corresponding norm.

3.2 . Invariance under orthogonal symmetries

In this section, we demonstrate that if the target function f* is invariant under
some orthogonal transformation T', since the input data distribution is also invariant
under T, then f(uy;-) is invariant under T as well for any ¢ > 0. This invariance
property of the dynamics w.r.t. orthogonal symmetries is possible with an infinite
number of neurons but is only approximate at finite-width. It is noteworthy that the
results of this section hold for any activation function o and input data distribution
p which has the same symmetries as f*, provided that the Wasserstein GF (3.3) is
unique. We start with a couple of definitions:

Definition 3.2.1 (Function invariance). Let 7' be a map from R¢ to R¢, and
f: R% — R. Then, f is said to be invariant (resp. anti-invariant) under T if for

any z € RY, f(T(x)) = f(x) (resp. f(T(2)) = —f(x)).

Definition 3.2.2 (Measure invariance). Let Q ¢ RY, T be a measurable map
from Q to €, and p be a measure on . Then, y is said to be invariant under
T if Tup = p, or equivalently, if for any continuous and compactly supported

: Q= R, [or)du(z) = [o(T(x))du(z).

We are now ready to state the two main results of this section.

132

Proposition 3.2.1 (Learning invariance). Let T' € O(d), and assume that f* is
invariantunder 7T'. Then, for any ¢t > 0, the Wasserstein GF p; of Equation (3.3)
is invariant under T : (a,b) € R x R + (a,T(b)), and the corresponding
predictor f(uy;-) isinvariantunder T..

Proposition 3.2.2 (Learning anti-invariance). Under the same assumptions
as in Proposition 3.2.1 except now we assume f* is anti-invariant under T,
and assuming further that 024(—y, —y) = —024(y,y) forany y,y € R, and that
,u(l) is symmetric around 0 (i.e., invariant under : a € R — —a), we then have
that for any ¢t > 0, the Wasserstein GF p, in Equation (3.3) is invariant under
T : (a,b) € R x R — (—a,T(b)), and the corresponding predictor f(u;-) is
anti-invariant under T'.

Remark. The results above also hold for networks with intercepts at both
layers. The conditions of Proposition 3.2.2 are satisfied by both the squared
loss and the logistic loss (a.k.a. the cross-entropy loss).

Essentially, those results show that training with GF preserves the orthogonal
symmetries of the problem: the invariance of the target function under an orthog-
onal transformation leads to the same invariance for u; and f(u;-). The proof,
presented in Appendix B.3, relies crucially on the fact that T is an orthogonal map
which combines well with the structure of ¢(c; x) involving an inner product. The
idea is essentially that the orthogonality of T' allows us to relate the gradient of ¢
(and consequently of £) w.r.t. c at (T(c);) to the same gradient at (c; T=Y(z))
and then to use the invariance of f* and p to conclude.

In the following sections we discuss the particular cases where functions are
(anti-)invariant under —idga (i.e., even or odd functions) or some sub-group of
O(ad).

3.3 . Exponential convergence for odd target functions
We consider here an odd target, function, i.e., for any z € R% ff(—z) =

—f*(@).

Linearity of odd predictors. Proposition 3.2.2 ensures that the predictor
f(pe;+) associated with the Wasserstein GF of Equation (3.3) is also odd at any
time ¢ > 0, and we can thus write, for any z, f(u;z) = 5 (f (s) — f(pe; —2)),
which yields

flpe;z) = % </a’ba [a(bTm‘) - a(—bTx)} du(a, b)) = ;/mba (bTZ’> dut(a,b),

where the last equality stems from the fact that for ReLU, o(z) — o(—x) = =.
Put differently, the predictor is linear: it is the same as replacing o by %ide, and

133

fpesx) = w(t)T:):, where

w(t) : = ;/babdut(a,b) e R%. (3.4)

)

This degeneracy is not surprising as in fact, a linear predictor is the best one can
hope for in this setting. Indeed, consider the following assumption and the next
lemma:

Assumption 5 (Squared loss function). The loss function Zis the squared loss,
i.e. {(y,9) = 3(y — §)% and thus satisfies the condition of Proposition 3.2.2.

We make this assumption in order to provide an explicit convergence rate in
Theorem 3.3.2 below.

Lemma 3.3.1 (Optimality of odd predictors). Let f be a predictor in the hypoth-
esis class F = {: x> [ac(b"z)du(a,b);pu € Po(R x R?))}. Then, denoting

Fodd(x) = L(f(x) = f(—)) (resp. foven = L(f(x) + f(—2))) the odd (resp. even)
part of f, one has:

(1) Jodd € F,
(1) L(f) = Bamp |(F(2) = F(2))*] 2 Banp |(F(2) = foaa(®))’] = L(Josa),
(7i1) equality holds if and only if f is odd p-almost surely.

Proof. The result readily follows from the decomposition f = foqd + feven
which leads to

L(f) - L(fodd) + EINp [(feven(@)z} - 2Em~p [(f*(x) - fodd(x» feven(w)] .

=0 0 by symmetry

Wethengetthat L(f) > L(foqq) With equality ifand only if E,., [(feven(x))z} =
0, i.e., feven(z) = 0 for p-almost every z. Finally, if u € Po(R¥H1), then v :=
T(u+ Spp) € Po(RHY), where S @ (a,b) € R4 s (—a,—b), and f(v;-)
fodd(#;), which shows fogq(p;-) € F.

Ol

Since, as shown above, any odd predictor turns out to be linear because of the
symmetries of ReLU, in this context, the best one can expect is thus to learn the
best linear predictor.

Exponential convergence for linear networks. We are thus reduced
to studying the dynamics of linear networks (which in our case are infinitely wide),
which is an interesting object of study in its own right (Ji and Telgarsky 2018 show
a result similar to our result below in the finite-width case with the logistic loss
on a binary classification task). In this case, the Wasserstein GF (3.3) (with ReLU

134

replaced by 1idga) is defined for more general input distributions P € P»(R?) (e.g.,
empirical measures) and target functions f*. The objective in this context is thus
to learn:

w* € argmin (Q(w) = }EwNp [(f*(x) —(w, x))ﬂ) (3.5)

weR 2

with the dynamics of linear infinitely wide two-layer networks described by the
Wasserstein GF (3.3) where the activation function o is replaced by %ide. Theo-
rem 3.3.2 below shows exponential convergence to a global minimum of @ as soon
as the problem is strongly convex. Note that although in this case both ¢(-;) (see
Equation (3.1)) and the predictor in the objective () are linear w.r.t. the input, only
the predictor in @ is linear in the parameters (ordinary least squares).

Theorem 3.3.2. Assume that the smallest eigenvalue Apmjn of E,p [xa:T] is posi-
tive. Let (u1)¢>0 be the Wasserstein GF associated to (3.3) with activation function
1 idga instead of o = RelU, and call w(t) = % [abdu(a,b) € RL Then, there
exits n > 0 and to > 0 such that, for any t > t,

(Quu®) - Q")) < e=2ml=0) (Qu(ty)) - Q"))

Remark. Note that as soon as P has spherical symmetry, the problem be-
comes strongly convex by Lemma B.1.3. Note that although F'(1:) = Q(w(t)),
(w(t))e>0 is not a gradient flow for the (strongly) convex objective @ (which
would immediately guarantee exponential convergence to the global mini-
mum).

The proof, provided in Appendix B.4, proceeds
in two steps: first it is shown that w'(t) =
—H(t)VQ(w(t)) for some positive definite matrix
H(t) whose smallest eigenvalue is always lower-

030 &
025

0.20

bounded by a positive quantity, then we prove that
010 jinear

this leads to exponential convergence. Figure 3.1 in

illustrates that the dynamics of GF on F' remain °® e

non-linear in that they do not reduce to GF on oo~ Meieyerinear
(although the paths are close). To simulate GF on o T e e e o

Figure 3.1: GD path for
two coordinates: two-
layer linear network vs
pure linear model.

F we use a large (but finite) number of neurons
m = 1,024 and a small (but positive) step-size
102 and simply proceed to do GD on the corre-
sponding finite-dimensional objective (see comment
in Section 3.1.1 on relationship between the Wasser-
stein GF and finite-width GD).

3.4 . Learning the low-dimensional structure of the problem

135

Consider a linear sub-space H of dimension diy < d (potentially much smaller
than the ambient dimension), and assume f* has the following structure: f*(x) =
fru(pr(z)) where py is the orthogonal projection onto H (which we also write
o for simplicity, and we reserve sub-scripts for denoting entries of vectors) and
fu : H— R is a given function.

In this context it is natural to study whether the learned function shares the
same structure as f*. As observed in Figure 3.2 this is not the case in finite time,
but it is reasonable however to think that the learned predictor f(i;-) shares the
same structure as f* as t — oo, and we give numerical evidence in this direction.
On the other hand, we prove rigorously that the structure of the problem allows
to reduce the dynamics to a lower-dimensional PDE. In this section, we consider
for simplicity that s is the uniform distribution over {—1,+1} and that 3 is the
uniform distribution over S?~1.

Comment on the assumptions for this section. The assumptions that
|a|=1]|b|| on the support of pg is crucial here. This ensures that the Wasserstein
GF (3.3) is well-defined and that j; stays supported on the set {|a|= ||b||} for any
t > 0, a fact which is used in the proofs. The assumption that p is the uniform
distribution over the unit sphere bears some importance but could likely be replaced
by other measures with spherical symmetry provided that the dynamics would still
be well-defined and at the cost of more technical proofs.

3.4.1 . Symmetries and invariance

The structure of f* implies that it is invariant by any 7' € O(d) which preserves
H, i.e., such that its restrictions to H and H+ are Ty = idy and Tigr € O(dL),
where O(d) is the orthogonal group of H+ whose dimension is d; = d—dp. By
Proposition 3.2.1, such transformations also leave the predictor f(uy;-) invariant
for any ¢ > 0 since p is spherically symmetric. Lemma 3.4.1 below then ensures
that f(u;) depends on the projection - onto H only through its norm, that
is f(ue;x) = fi(x™,]|zt]|) for some f; : H x Ry — R.

Lemma 3.4.1 (Invariance by a sub-group of O(d)). Let f : R* — R be invariant
under any T' € O(d) such that Tj; = idy and T € O(dL). Then, there exists

some f : H x R, — R such that for any = € RY, f(x) = f(z™,||z*]]).

Proof. Consider f : (" ,r) € H x Ry — f(z¥ 4 rei) where ef- is the first
vector of an orthonormal basis of H+, and let z € R%. If z- = 0, the result is
obvious. Otherwise, consider an orthogonal linear map T, such that T,y =
idgr and T, sends 2 /||z|| on e1-. The invariance of f under T}, implies f(x) =
F(To(@) = F + et lef) = Fa',|[z]). O

Figure 3.2 shows that the dependence in ||z*|| cannot be removed in finite
time: f(us;ug + re;) does depend on the distance r € R, to H, but this
dependence tends to vanish as ¢t — oco. The plots of Figure 3.2 are obtained

136

by discretizing the initial measure pg,, = % D721 0(a;(0),5,(0)) With m = 1,024
atoms, and sampling a;(0) ~ U({—1,+1}) and b;(0) ~ U(S?"). We perform
GD with a finite step-size 7 = and a finite number n = 256 of fresh i.i.d. samples
from the data distribution per step with f*(z) = ||zf||, d = 20 and dy = 5.

e Uy + ref)
B

0.00

0 1 2 3 4 5 0 200 400 600 800 1000
r t

@) f(pe;up +ref)vsr (b) f(ue;up +ref) vst

Figure 3.2: f(us;ug + rei) vs v and t for a random uy € St with
d=20,dy =5.

Dynamics over the sphere S¢~!. Using the positive 1-homogeneity of ReLU,
and with the assumptions on g, the dynamics on p; € Po(R4H1) can be re-
duced to dynamics on the space M (S%!) of non-negative measures over S9!
only the direction of neurons matter and their norm only affects the total mass.
From this point of view, neurons with positive and negative output weights be-
have differently and have separate dynamics. Indeed, consider the pair of measures
(v, v;7) € M4 (ST 12 characterized by the property that for any continuous test
function ¢ : S - R,

[eai= [bl () anten. @o

where we have used the superscript * to denote either ;" or v, and the right-hand
side is changed accordingly (the integration domain) depending on the sign + or —
Because RelLU is positively 1-homogeneous, we have f(us;z) = [o(u'z)d (v —
v;)(z). It is shown in Appendix B.5.1 that v satisfies, in the sense of distribu-
tions, the equation

6t1/t = —div (:I:vtut) + 2gtut , (3.7)

where, for any u € Sé-1

=~ [24(rw). 1)o@ n)aot),
(3.8)
/626 F s))0'(uTy) [y — (uTy)U] dp(y).
Equation (3.7) can be interpreted as a Wasserstein-Fisher-Rao GF Gallouét et al.
(2019) on the sphere since ¥(u) = projg,y 1 (Vge(u)).

137

Closed dynamics over [0, /2] xS% 1. The dynamics on the pair (v;", ;")
can be further reduced to dynamics over [0,7/2] x S¥ 1. Indeed, by positive 1-
homogeneity of f(j;-) we may restrict ourselves to inputs u € S¥1, and f(j; u)
depends only on u and ||ul||. However, because ||u'T||?+||u'||>= 1, this depen-
dence translates into a dependence on the direction u'? /||ul|| of the projection
onto H and the norm |[ul||. The former is an element of S ! while the latter
is given by the angle 6 between u and H, that is 6 := arccos(u'uf /|jufl||) =
arccos(||uf|]). This simplification leads to the following lemma:

Lemma 3.4.2. Define the measures 7,7, 7, by 7% = Pyvi® € M, ([0,7/2] x
St vig P :u € STN\HY s (arccos(||ug]]), ur /||ug]]) € [0,7/2] x S,
Then, the measures 7,7, 7, satisfy the equation

ot = —div (£Vi7i7) £ 2G7, (3.9

where Gy : [0,7/2] x S¥~1 — R, and V; : [0,7/2] x S¥~1 — RIu+l gre
functions depending only on (7,7, 7,”), and furthermore, f(j;-) can be expressed
solely using T;*, 7, (exact formulas are provided in Appendix B.5.1).

Abbe et al. (2022) show a similar result with a lower-dimensional dynamics
in the context of infinitely wide two-layer networks when the input data have
i.i.d coordinates distributed uniformly over {—1,+1} (i.e., Rademacher variables),
except that they do not have the added dimension due to the angle 6, as we do,
thanks to their choice of input data distribution.

Lemma 3.4.2 above illustrates how the GF dynamics of infinitely wide two-layer
networks adapts to the lower-dimensional structure of the problem: the learned
predictor and the dynamics can be described only in terms of the angle 6 between
the input neurons and H and their projection on the unit sphere of H. In essence,
this means that the knowledge of the dynamics of the angle of the particles with H
is enough to provide a complete picture of the system. This simplification matches
the structure of the problem at hand and shows that the training dynamics of
infinitely wide two-layer networks adapt to geometry of the problem in this case.

3.4.2 . One dimensional reduction

Since the predictors we consider are positively homogeneous, one cannot hope
to do better than learn a positively homogeneous function. A natural choice of
such a target function to learn is the Euclidean norm. With the additional structure
that the target only depends on the projection onto H, this leads to considering
f*(z) = ||z|| which has additional symmetries compared to the general case
presented above: it is invariant by any linear map 7' such that Tjy € O(dy)
and Tj;1 € O(dy). By Proposition 3.2.1 those symmetries are shared by y; and
f(pe;+), and we show that in this case the dynamic reduces to a one-dimensional
dynamic over the angle 6 between input neurons and H.

138

We prove a general disintegration result for the uniform measure on the sphere
in the Appendix (see Lemma B.1.4) which allows, along with some spherical har-
monics analysis, to describe the reduced dynamics and characterize the objective
that they optimize. This leads to the following result:

Theorem 3.4.3 (1d dynamics over the angle). Assume that f*(x) = |||,
and define the measures (1;",7,) € M, ([0,7/2]) from (v}, v)via P : u €
St s arccos(||ugl|) € [0,7/2]: 75 = PyuiE. Then, the pair (r;5,7,) fol-
lows the Wasserstein-Fisher-Rao GF for the objective defined by A(t+,77) :=
E[(f(rt,77;2), f*(x))] over the space M ([0,7/2]) x M([0,7/2]), where
f(rF,77;x) is the expression (with a slight overloading of notations) of f(u;x) in
function of (77, 77) (see Appendix B.5.2 for more details):

1
drif(0) = ————— cos(0)4" 1 sin(h)+~1d,

dg d
B(%%)

Oprim = —div (£Vir) £ 2G5, (3.10)

where B is the Beta function, and

Gu(0) =~ [ot i) (con@f! +sin(@hut) o).
Vi(0) = G1(0)

Additionally, f(u;-), Gy, and V; only depend on the pair (7,",7,), and for any
t > 0, it holds that F(u;) = A(r,", 7).

Remark. The result should still hold for general p which are spherically sym-
metric as long as the Wasserstein GF (3.3) is well-defined but the proofis more
technical. In addition, this result shows that even with more structure than in
Lemma 3.4.2, the dynamics of infinitely wide two-layer networks are still able
to adapt to this setting: these dynamics, as well as the learned predictor, can
be fully characterized solely by the one-dimensional dynamics over the angle
0 between input neurons and H. This is noteworthy since this angle deter-
mines the alignment of the neurons with H, and thus measures how much
the representations learned by the network have adapted to the structure
of the problem. Furthermore, as discussed below, this reduction with exact
formulas enables efficient numerical simulation in one dimension.

Daneshmand and Bach (2022) prove the global convergence of a reduced one-
dimensional dynamics in a context similar to ours but their original problem is
two-dimensional and with a choice of activation function that leads to specific
algebraic properties.

139

Expression of f(/y;-). Because of the symmetries of f(ju;-), which result
from that of f*, f(us;) depends only on ||zf|| and ||z*|. What is more,
since f(iuy;-) is positively 1-homogeneous (because RelLU is) it actually holds that
flugx) = Hl‘”ft((px) where gox = arccos(Ha:HH/HxH) is the angle between x
and H, and f(p = [, &(-7)(0), ¢ depending only on o and fixed
probability measures (see Appendlx B.5.2 for an exact formula).

Learning the low-dimensional structure as ¢t — oco. Although, as
shown in Figure 3.2, f(u;-) does not learn the low-dimensional structure in finite-
time, it is reasonable to expect that as ¢ — oo, the measures 7't:t put mass only on
f = 0, indicating that the only part of the space that the predictor is concerned
with for large t is the sub-space H. Since we assume here that the target function
f* is non-negative, the most natural limits for 7,” and 7, are 7," — ady with
a >0, and 7, — 0 (in the sense that 7, ([0, 7/2]) — 0) as t — oo, because then
the “negative” output weights do not participate in the prediction in the large ¢
limit.

The global convergence result of Chizat and Bach (2018); Wojtowytsch (2020)
still holds but is not quantitative and moreover does not guarantee that the limit
is the one described above. We leave the proof of this result as an open prob-
lem, but we provide numerical evidence supporting this conjecture. Indeed, we
take advantage of the one-dimensional reduction from Theorem 3.4.3, and nu-
merically simulate the resulting dynamics by parameterizing Tt:t via weight and
position (Chizat, 2022) as pms = (1/m) > 7, Cf(t)‘sef(t)' and simulating the
corresponding dynamics for cji(t) and Gj.[(t). The corresponding results are de-
picted in Figure 3.3 which are again obtained by discretizing the initial measures
7o+ 7o and performing GD with finite step-size (see more details in Appendix B.6).
Figures 3.3a and 3.3b show that the mass of 7;" tends to concentrate around 0
while that of 7,” tends to concentrate around 7/2, indicating that 7,7 adapts to
the part of the space relevant to learning f* while 7,7 puts mass close to the
orthogonal to that space.

Total mass of particles at convergence. If 7 = 0and 7% = ad as de-

scribed above, we have f(fioo;) = a|z||P(0; ¢z) = a%“xﬂcos(@m) =

m—gﬁ)/ZHxHH To recover exactly f*, it must hold that o« = 7 ([0, 7/2]) =
W. Defining the normalized measure 7= = 75 /7.5 ([0, 7/2]), we ex-

pect Tt to grow close to §p and 7, to /5. In terms of total mass, we expect
that 7,7 ([0, 7/2]) gets closer to a while 7,7 ([0, 7/2]) gets closer to 0.

The numerical behaviour depicted in Figure 3.3c seems to follow our intuitive
description, at least until a critical time t* in the numerical simulation which
corresponds to the first time ¢ where 7,7 ([0, 7/2]) > .. While the total mass of 7.
(dashed lines) seems to approach its limit rapidly before ¢* it slowly moves further

140

away from it for ¢ > t*. On the other hand, while the angles only slowly change
before t*, they start converging fast towards the corresponding Dirac measures
after t*. It is unclear whether this slight difference in behaviour (around the critical
time t*) between what we intuitively expected and the numerical simulation is an
artefact of the finite width and finite step size or if it actually corresponds to
some phenomenon present in the limiting model. For more details concerning the
numerical experiments, see Appendix B.6. Note that there is a priori not a unique

1

175 timestep timestep 10

=0 =0

1.50 =100 =100
1,000 015 =1 000

125 10,000 10,000
120,000 20000

. (£ .60
" 075 o
0.50 | | 0.05 :]Z'
025 I ‘ L. =
000 o & ln78-'-— ——m=lls. 0.00 ol alilis Al 1

n/4 3n/8 n2 0 g n/4 3n/8 2 10 10 10° 10 10
2})

T
o
5

Position / Mass distances
3

(a) 7, distributions (b) 7, distributions (c) Position / mass dis-
tances

Figure 3.3: Angle distributions 7," /7, and position / mass distances
with m = 1024, d = 30 and dy = 5. (a) (resp. (b)) 7, (resp. 7,7) as a
histogram for different ¢. (¢) distances (in log-log scales) of the mass
and positions of positive (blue) / negative (orange) particles to the intu-
itively expected limits: the distance in position is the Wasserstein-2 dis-
tance of the normalized (probability) measures 7 to the correspond-
ing Dirac measures while the distance in mass is the absolute error to
the expected mass as t — oc.

global optimum: 7 and 7 (if they exist) can compensate on parts of the space
[0,7/2] and lead to the same optimal predictor for different choices of measures.
Our numerical experiments suggest that the GF dynamics select a “simple” solution
where 7t is concentrated on {# = 0} and 75 vanishes (puts 0 mass everywhere),
which is a form of implicit bias.

3.5 . Conclusion

We have explored the symmetries of infinitely wide two-layer ReLU networks
and we have seen that: (i) they adapt to the orthogonal symmetries of the problem,
(3) they reduce to the dynamics of a linear network in the case of an odd target
function and lead to exponential convergence, and (iii) when the target function
depends only on the orthogonal projection onto a lower-dimensional sub-space H,
the dynamics can be reduced to a lower-dimensional PDE. In particular, when f*
is the Euclidean norm, this PDE is over a one-dimensional space corresponding to
the angle 6 between the particles and H. We have presented numerical experiment
indicating that the positive particles converge to the subspace H in this case and

141

leave the proof of this result as an open problem. We also leave as an open question
whether the results of Section 3.2 extend to deeper networks.

142

4 - Coordinate descent over measures and
dynamic optimization of two-layer networks

This chapter is devoted to studying the optimization properties of two-layer
networks where the number of neurons is not fixed but can evolve dynamically
during the course of training. The objective is two-fold: (i) derive methods which
provide quantitative convergence bounds, and (ii) explore methods for training
neural networks where the number of neurons is adjusted within the optimization
procedure while still yielding a good value for the objective being optimized.

We stress that the work presented in this chapter is still under progress at the
time of writing this thesis and some parts may thus appear incomplete.

4.1 . Introduction

Global convergence results exist for infinitely-wide two-layer networks (Nguyen
and Pham, 2020; Chizat and Bach, 2018; Wojtowytsch, 2020) but no convergence
rates are known in general. From a practical standpoint, while finite-width dy-
namics can be shown to closely track their infinite-width counterpart on bounded
time intervals, the number of neurons needs to grow unbounded to guarantee con-
vergence to a global minimum. We present here a method, similar to random
coordinate descent in finite dimension, which adds a new neuron at each time
step and is guaranteed to converge to a global minimum with a rate of O(k:_Tl)
w.r.t. the iteration k. We show that the objective satisfies a condition akin to
a tojasiewicz-type inequality in the space of measures, and adapt the classical
analysis from convex optimization to our setting to obtain a convergence rate.

While this method provides an explicit convergence rate, it is impractical com-
putationally since the number of neurons needs to grow unbounded to approach
optimality. We explore two alternatives in order to restrict the number of neurons
within the optimization procedure by adding a penalization term to the objective.
The first setting we study is a penalization by the total variation norm, which is
akin to an L!'-penalty. Smoothness of the objective is lost in this setting and we
extend the analysis of proximal optimization methods to the space of measures
do deal with the non-smoothness. The second penalty we consider is a smooth
kernel which is either attractive (drawing neighbouring neurons closer towards each
other) or repulsive (pushing neighboring neurons away from each other).

Unfortunately, we could not obtain theoretical guarantees for these methods
with a penalized objective: global convergence guarantees is lost a priori and
there is no explicit bound on the number of neurons during the course of training.
However, we show numerically that these sparsity-inducing penalties have good
empirical performance and that the number of neurons grows sub-linearly with the

143

time step k.

4.2 . Setting

We consider a convex optimization problem over the set M(S?1) of signed

measures on the sphere:

B T

with F' : M(ST1) — R convex. While Wasserstein gradient descent (or gradi-
ent flow) does not always enjoy global convergence guarantees, it often exhibits
good practical behaviour and guarantees good local behaviour in certain settings
(see, e.g., Wojtowytsch, 2020; Chizat, 2022). Although the domain over which
we optimize is infinite-dimensional, we take inspiration from convex methods in
finite-dimension to propose an algorithm to minimize F'. In particular, random co-
ordinate descent allows to obtain convergence guarantees when F' is smooth, and
we also study its proximal variant when F' has a non-smooth part. We describe
algorithms for generic objectives F' which can correspond to different contexts.
This covers (but is not reduced to) the optimization of the (penalized) empirical
risk for infinitely wide two-layer networks.

We consider an atomic measure puy at iteration k, initialized with a single
neuron sampled on the sphere. At each iteration, a new neuron is sampled and
its weight is set carefully. This is akin to random coordinate descent where a
coordinate i is replaced by a neuron u € S%~!. Since the dimension is infinite we
never circle back to the same coordinate (here a neuron u € S?~1). The resulting
algorithm produces a sequence of measures y, = Z?Zl cjbu; where c; € R is the
(signed) weight assigned to neuron u; € S¥1. In practical implementations, we
alternate between coordinate descent steps and Wasserstein gradient steps as the
latter often enhances the performance empirically while remaining a true descent
step (the objective is guaranteed not to increase) which does not affect global
convergence guarantees for descent methods.

While the coordinate descent algorithm provides a global convergence guar-
antee with an explicit rate, the number of neurons grows linearly with the num-
ber of iterations. Therefore we explore adding sparsity-inducing penalties to bal-
ance between optimizing the initial objective and limiting the computation cost
incurred by the algorithm. We thus consider composite objectives of the form
F(p) = J(p) + AH (). We assume J to be smooth, i.e., that it admits a contin-
uous first variation (or Fréchet derivative, see Section 1.2.4) V[u] : S4~! — R at
every 1 and V is L-Lipschitz for some L > 0, i.e.,

WVIu] = VIullle < Llp = vizv.

We first study the case where H = 0 (no penalty) and provide an explicit conver-
gence rate for the coordinate descent algorithm. Then, we explore two different

144

options for the penalty H: the first is the total variation norm which is akin to an
L'-penalty, and gives rise to proximal coordinate descent algorithms in the space
of measures to deal with the non-smoothness of the total variation norm. The
other option we consider consists of smooth kernels which either attract or repulse
neighbouring particles. The intuition in the latter case is that sparsity will not be
enforced explicitly as with the total variation penalty, but rather induced implicitly
by the resulting dynamics which will tend to aggregate particles and thus effectively
merge them if they are close enough.

4.2.1 . Organisation of the chapter

We first review in Section 4.3 techniques involved in gradient descent, coordi-
nate descent and proximal methods as a lot of the ideas are relevant to our setting.
Then, in Section 4.4 we study the case of a smooth F' (no penalty) as well as the
addition of a (non-smooth) total variation penalty, and we try to adapt some of
the proof techniques to the infinite-dimensional setting of optimization over the
space of measures. Finally, in Section 4.5 we study smooth kernel penalties and
explore empirically the sparsity induced by such methods.

4.3 . A review of gradient descent, coordinate descent and prox-
imal methods

In this section we review classical techniques and results in convex optimization.
We start by the convergence of gradient descent for functions satisfying the Polyak-
tojasiewicz or general tojasiewicz inequalities (which includes strongly convex
functions), and then present a convergence proof for smooth convex functions.
There is a variety of proof techniques when it comes to smooth convex optimization
(see, e.g., Richtarik and Takag, 2014; Wright, 2015; Karimi et al., 2016 and the
references therein), and our focus on tojasiewicz-type inequalities is because they
simplify some of the arguments and avoid relying too much on the Euclidean
structure of the space, which will be relevant when we try to adapt these methods
to the space of measures. Next we review the coordinate descent variants of
gradient descent for both convex and strongly convex functions, and finally present
proximal algorithms for taking into account convex but non-smooth penalties such
as the L'-penalty. We take the time to present the techniques and proofs in
the finite-dimensional setting as they will come in handy when we deal with the
infinite-dimensional setting of optimizing over the space of measures where similar
arguments can be used (sometimes requiring additional assumptions).

In all this section we consider a generic convex function f : R™ — R which
we assume to be smooth, that is differentiable with an L-Lipschitz gradient, i.e.,
for any z,y € R™ it holds

IVF(z) = VW)ll< Lz —yl],

where ||—|| denotes the L? norm. We assume that the minimum M* of f is

145

realized at least for one x* € R™, and we consider the gradient descent algorithm
(or its coordinate descent variant) where x is a fixed initial point and for all k € N,
Tp+1 = T — NV f(xr) where n > 0 is a step-size parameter.

Descent property implied by smoothness. The smoothness property
already allows to derive a descent property for the gradient descent iterates. First,
let us a give a useful property following from the smoothness assumption. For any
x,y € R™ it holds that

flo+u) < f(a:)+Vf(x)Tu+§]|u|\2. 1)

Proof. This comes from noticing that f(z + u) f f (x + tu)dt and
bounding the integral using the smoothness property.

Ld
flx4+u) — f(x) :/0 ﬁf(:c—ktu)dt
:/1 V(x4 tu) udt
’ 1
= Vf(x)Tu—i—/ (Vf(z+tu) — Vf(z),u)dt
O1
§Vf(:c)Tu+/ L |u||*tdt
0
< V(@) Tut gl
O

This inequality readily provides a descent property: for any step-size > 0,
it holds for any x € R™

flz -V (@) - fz) < - (1 -) IV (@)1 4.2)

so that f(z — nVf(z)) < f(z) for any n € (0,%), and what is more there
is a strict descent as soon as x is not optimal since Vf(xz) # 0 in this case.
Thus, for smooth functions, the gradient descent iterates with appropriate step-
size are always decreasing: f(zx+1) < f(zx). The upper bound on the decrease in
objective value on the right-hand-side of Inequality (4.2) is minimized for n = 1/L
and yields f(z —nV f(2)) — f(z) < —57 ||V f(z)|[% so that we often consider the
step-size n = 1/L in what follows. We note that although in practice the value of
the constant L is not known, since the strict decrease property holds for a small
enough step-size > 0, all the convergence proofs we present still hold with small
enough 7, but we choose to use n = 1/L for simplicity.

146

4.3.1 . Polyak-tojasiewicz and generalized tojasiewicz conditions

From the descent property (4.2) it follows that if the norm of the gradient at x
can be lower-bounded by the sub-optimality gap f(xz) — M™*, then a convergence
rate is directly accessible. The Polyak-tojasiewicz (PL) condition precisely states
that there exists a constant 7 > 0 such that for all x € R™

LIV @)P2 7(f (@)). @3

Note that this inequality implies that all critical points are global minimizers since
Vf(z:) = 0 for any critical point z.. The proof of convergence along with the
appropriate rate easily follows even if the function f is not convex: from the descent
property (4.2) with a step-size 1/L, it holds

flar) = M < fla) = M* — 9@l
< (1-7) (Flan) = A1)

and thus 0 < f(zp)—M* < (1 - %)k (f(zo) —M*). Note that 7 cannot be larger
than L (which ensures 1—7/L € [0, 1)), otherwise this would imply f(xg41) < M*
which is impossible.

Polyak-tojasiewicz condition for strongly convex functions. Strongly
convex functions satisfy the following inequality: for any x,y € R™, it holds

@) = f(2) 2 (Vf(@),y —2) + 2l =yl

for some 7 > 0. Note that because Inequality (4.1) provides a similar upper bound
on f(y) — f(z) it must hold that 7 < L for a smooth f. The strong convexity
inequality above implies the Polyak-tojasiewicz inequality. Indeed, for a fixed =z,
minimizing both sides of the inequality w.r.t. y yields M* — f(x) on the left-hand-
side and the quadratic right-hand-side is minimized for y = z — %Vf(x), yielding
a minimal value of —5- ||V f(z)||?, which shows that M* — f(z) > —L ||V f(z)|?
which is the desired Polyak-tojasiewicz inequality.

Therefore, convergence of gradient descent with step-size 1/L is guaranteed
for strongly convex functions at a rate of (1—7/L)*. For strongly convex functions
the minimizer is unique, and applying the strong convexity inequality with y = z;,
and z = ¥, since Vf(z*) = 0 it holds that Z||z) — o*||*< f(ax) — M* <
(1 —7/L)*(f(z0) — M*), which shows convergence in (squared) distance at the
same rate.

Generalized Ltojasiewicz condition. The Polyak-tojasiewicz condition can
be generalized into the following form: there exists constants 7,+ > 0 such that
for all z € R™ it holds

VS @)IP 7(f ()~ MY 4.4

147

This is known as a tojasiewicz inequality. While it is not ubiquitous in the convex
optimization literature, it is of particular relevance to the work we present in Sec-
tion 4.4. For smooth functions, this inequality also ensures convergence of gradient
descent. Indeed, calling Ay := f(xr) — M™ the sub-optimality gap at iteration
k, using the descent property (4.2) with n = 1/L and the tojasiewicz inequality,
it holds that Ay — Agyq > %AZ Since the sequence (Ag)r>0 is non-negative
and decreasing, it must converge to some limit Ao, > 0. By taking the limit in
the previous inequality, it holds 0 < 7(Ax)" < 0 which implies that this limit is
Ao = 0 which entails f(zy) — M*.

For the convergence rate two cases appear: v € (0,1] and v € (1,00). The
case v € (0, 1] can be dealt with as for v = 1 since for large enough k, Ay € [0, 1],
and thus Ay — Apyq > TARY > TA, which leads to Ay < (1 — 7/L)" A,
for k > k().

The following lemma allows to provide a convergence rate in the case v > 1.

Lemma 4.3.1. Let (¢1)r>0 be a sequence of positive numbers satisfying the in-
equality: ¢, — ¢r41 > c¢) for some constants ¢ > 0, v > 1. Then, there is a
constant C' > 0 such that for any k > 1 it holds that

0< ¢ < (%_7 + ke(y — 1))_ﬁ < <i> .

Proof. By convexity, u — u!~7 is above its tangent curves on (0, co) and there-
fore v!=7 —u!=7 > (v — Du=(u — v) for any u,v > 0. It thus holds that

7> (v = 1)¢, (dr — Prt1),
Z() k C(Z)Zv
>c

(v =1).

Prr1 —

From this we get

and thus

0<dn< (0 T Hke(r—1) < (he(y 1) T

4.3.2 . Gradient descent without tojasiewicz-type assumptions
In finite dimension, the strict descent property is enough to guarantee conver-
gence to a minimum for convex functions. Indeed, in this case it can be shown
that a tojasiewicz condition holds with a power v = 2 for the iterates generated
by gradient descent, meaning that there is a constant 7 > 0 such that for any £,

148

T(f(zg) — M*)? < 1|V f(x)||®. We give the proof of the Lojasiewicz inequality
for the iterates with v = 2 below. First, let us start with the inequality

f@) — f) < (Vf@)ha—y) — 5 IV @) - VI@IE, @9
which holds for any z,y € R™.
Proof. Using the convexity of f and Inequality (4.1) we get
f@) = fly) = f(x) = F(2) + f(2) = f(v),
< (V@) —2) + (V)2 —) + Zllz =il

Minimizing the right-hand-side over z gives z = y — +(V f(y) — Vf(z)), and
substituting back in the inequality above yields the desired result. O

Now that we have the Inequality (4.5), since Vf(z*) = 0, it follows by tak-
ing y = a* that f(z) — f(z*) < (Vf(z),z — z*) — 5-||[Vf(2)]|* and thus
|V f(@)|P=(Vf(z),z — 2*) < f(z*) — f(z) < 0. Considering the gradient
descent iterates x, with step-size 1/L, we have

ks =212 = ok — & P+ 5 19 (o) |2 (V £ () o — 2,

= ok — a4 | SV F @R PV or)an —) |

<0

S [E

This shows that the distance of the iterates to any of the minimizers of f decreases
during gradient descent. Finally, by convexity, it holds

flap) = f(27) < (Vf(ag), xp — 2%) <[V f (@)l [Jer — 27,
< [IVf ()l [lzo — =],

which is equivalent to a tojasiewicz inequality with v = 2 and 7 = 1/(2||zo —
x*[|?). This ensures the convergence of gradient descent towards the global mini-
mum at a rate of O(1/k) by Lemma 4.3.1.

4.3.3 . Coordinate descent

Coordinate descent is a popular variant of the gradient descent algorithm and
involves sampling a coordinate (or a sub-group of coordinates) and descending
along the projected gradient onto those coordinates. Many different flavours of
coordinate descent exist as well as various proof techniques and convergence prop-
erties. We refer to (Wright, 2015) for a comprehensive review. In this chapter, we
consider the following algorithm:

Try1 = Tk — NV, f(x1)e;,

149

where iy, is the selected coordinate at iteration, sampled uniformly in [1,m] V;, f =
0f/0x;,, and e; is the i-th basis vector of the canonical basis of R™ for any
i € [1,m] where [1,m] := {1,2,...,m}. As we review below, coordinate de-
scent methods essentially have the same convergence rates, in expectation, as for
full-gradient methods but with constants which have a bad dependency in the
dimension m: they increase (often linearly) with m.

We first derive the descent inequality for coordinate descent: applying Inequal-
ity (4.1) with u = te; yields for smooth functions:

flx+te;) < f(x) +tVif(x) + th

and minimizing the right-hand-side over ¢ yields t = —%Vz-f(x) and the descent
property

fla — T (Vif@)er) < @)~ 5= (Vif (@) @6

2L

Therefore, it holds for the coordinate descent algorithm with step-size n = 1/L
that

— (v Fa)?.

f(wreg1) < flag) 5T

Taking the expectation conditionally on xj, yields
E[f (k1) |ze] < f(zx) — *Ezk[(vzkf()%,

1 m
< flaw) = 5= Z; Vif(zr))?,
pm

< flwg) — m”vf(fckﬂP-

Now, finally taking the expectation over x; yields

Elf(a1)] < Blfn)] - 5o ElIVF @Il @

which is essentially the same as the descent property (4.1) in expectation with the
constant L replaced by mL. This is due to the sampling of a single coordinate at
each time step: it takes m-times more iterations to compute the whole gradient
compared to gradient descent. However, each iteration is less compute-intensive
as it requires the computation of a single gradient coordinate.

Polyak-tojasiewicz condition. If f satisfies the Polyak-tojasiewicz Inequal-
ity (4.3), if follows from the descent property in expectation (4.7) that

E[f (ex1)] < Elf(en)] — 5, —ELf () — M)

150

and thus, calling Ay, := E[f(z) — M*], it holds Apy1 < (1 — -77) Ay which
entails A, < (1 — ﬁ)kAo. This is essentially the same convergence rate as
for gradient descent, but we observe that the constant now depends on m in an
unfavorable way: 1 — 7/(mL) increases with m towards 1 which implies a slower

decrease of the optimality gap.

Generalized tojasiewicz condition. |If f satisfies the tojasiewicz Inequal-
ity (4.4), it holds

E[f (ze41)] < E[f (21)] E[(f(zr) — M*)].

-
~2mL
If v > 1, : u — u? is convex and Jensen's inequality ensures that E[(f(xx) —
M*7] > E[(f(zk) —M*)]7. Thus, calling Ay := E[f(zx) —M?*], it holds Akng

A — A}, and Lemma 4.3.1 guarantees that Ay < (Aé*7 + %_Ll)k:)7ﬁ
This is similar to gradient descent but now with a dependency in m which is again
unfavourable (slower decrease as m grows larger).

Plain convexity without tojasiewicz-type assumptions. With a sim-
ilar argument to the one leading to the descent property in expectation (4.7), and
using Inequality (4.5), it holds

E [||lzk+1 — 27|?] <E [[leg —a*|*] < E[||lzo —*|7] .
Then, with the same reasoning as in Section 4.3.2, the convexity of f and Cauchy-
Schwarz's inequality ensure that
E[f(zx) — M) <E[||Vf(zp)ll ||z — 2],
< E[|IVf(@)l*] E [[lxo — 2*]]?] -

Defining 7 = 1/(2E [||zo — *||?]), and plugging the inequality above into In-
equality (4.7), it holds:

-
App1 < Ap — — A2
k+1 > k mL)
: L
which by Lemma 4.3.1 ensures convergence at a rate of O(7).

4.3.4 . Proximal methods

We now review the techniques associated to proximal methods. In this section,
we consider instead of the objective f, the composite objective g = f + h where
f is convex and smooth (as before) and h is convex but not smooth and “easy” to
optimize. This includes penalized objectives such as f(x) + A||z||1 where ||z||1=
S |zi| is the L' norm of z.. In this setting, one cannot rely solely on the gradient
of f to minimize the objective. However, a variant of Inequality (4.1) still holds:

9(0) ~ o(e) < (VF@)y — o)+ Sl — ol +hiy) ~ (@) @)

151

Let us define D(z,y) := —2L((Vf(z),y — x) + Llly — z||*+h(y) — h(z)) and
D(x) = —2Lminy—ﬁf)(x,y), which is the minimal value, if it exists, of the
upper bound on the right-hand-side. Depending on the form h has, minimizers
might not exist, might not be unique or their value or that of the minimum might
be difficult to write explicitly. But in certain cases, a unique minimum can be
guaranteed to exist with a tractable expression.

We first review the methods when we assume minimizers are well-defined and
then give the example of the L!-penalty which is particularly relevant to our setting.
First we observe that since D(z,z) = 0, D(z) must be non-negative. Next

observe that the Inequality (4.8) can be written, for any z,y € R™, as

9(9) < g(2) ~ 57 Dr.)

and thus that for any minimizer T'(x) of —iﬁ(:p,y) w.r.t. y, it holds

1

9(T(2)) < g(z) — 57 D(2), (4.9)

so that there is a descent property. We thus consider proximal algorithms of the
form

Zpp1 € argmin D(zy, y).
y

When a unique minimizer exists, this is often written in the form
1
Tpy1 = Proxyp, | Tk — ZVf(:J:k) ,

prox, (z) : = argmin {;Hy - z|2+77h(z)} .
yeR™

While, many different convergence proofs exist for proximal methods depending

on the context and the assumptions, it is highlighted in (Karimi et al., 2016) that

Polyak-t.ojasiewicz-type assumptions provide a simple setting to cover a wide range

of different assumptions as well as simpler arguments and streamlined proofs. We

review the main arguments involved under Polyak-tojasiewicz-type assumptions.

Proximal Polyak-tojasiewicz condition. There s a variant of the Polyak-
tojasiewicz condition in the case of proximal algorithms which can be expressed
as follows: there exists a constant 7 > 0 such that, for any x € R™, it holds

SD() > 7lgla) ~ M), (4.10)

where M* = min, g(x) is assumed to be attained in at least one z*. Similarly to
the case of the gradient descent algorithm, this inequality is enough to guarantee

152

convergence of the proximal algorithm. Indeed, it follows from Inequality (4.10)
that

glars1) < glar) = 7 (9lar) = M),

which yields g(zy) — M* < (1 — 7/L)¥(g(z0) — M*) as with gradient descent.

Proximal tojasiewicz condition. The equivalent of the generalized to-
jasiewicz condition for proximal algorithms has the following form: there exists
7 >0 and v > 0 such that, for any € R™, it holds

SD() > r(g(a) — MY

As for gradient descent, calling Ay := g(xr) — M*, it holds that Ap11 < Ay —
ZA]. The same reasoning as in the case of gradient descent guarantees the
convergence towards a global minimum at a rate of O ((1 — F)*) if v € (0,1] and

0 (k*ﬁ) if v > 1.

Convergence with simple convexity. We review here the ideas presented
in (Richtarik and Takac, 2014) for the proof of convergence when f is simply convex
with the additional assumption that the iterates x; generated by the proximal
gradient algorithm are bounded, which ensures that ||z, —2*||< R for some R > 0
(which might depend on z*) for any minimizer z* of g.

Remark. The boundedness assumption on ||z|| is not unreasonable. In the
typical setting where f is lower-bounded by some M; and h(xz) = AN (x) is
proportional to some norm N on R™, any descent algorithm would ensure
that

My + AN (zx) < f(zr) + AN (z) = g(21) < g(20) = f(20) + AN (20),

so that by equivalence of the norms in finite dimension, there is a constant
C > 0 such that ||zx||< CN(zx) < $(f(z0) + AN (z0) — M) for any k.

The main idea of the proof is to show that a proximal tojasiewicz-type in-
equality holds with v = 2 and = 1/L for the iterates of the proximal gradient
algorithm, that is for any k,

5 D) 2 7lg(an) — 9°)?

for some 7 > 0. This ensures convergence at a rate of O(k~!) by the previous
paragraph. This is similar to the setting of smooth and convex functions, except
the proof technique is much different. We first introduce the following lemma
which shows a tojasiewicz-type inequality but with a constant 7 which depends
on x:

153

Lemma 4.3.2 (Lower bound on the proximal descent). For any = which is not
a minimizer of g, it holds:

1 T £min 1 1 z) — M*)?
7Pl > g min (st gy) o) - 00

Proof.

~ 5 Dl) = min{Vf(2),y — 2) + 2 Iy 2l*+hy) ~ h(z)

= min f(2) + (V(2),y — 2) + 5 lly — 2l +h(y) — hia) ~ £(2)
< min f(4) + 5 |ly — 2l*+h(y) - 9(a)
— ming(y) + 5 lly — oI - 9(v)

L
< min g(az* + (1 —a)z) + =a?||lz — z*||> — g(=)
a€l0,1] 2

L
< min ag(z*) + (1 - a)g(z) + 5 a?|lz — 2*|* — g(x)
a€glo,1] 2

L
= min —a(g(z) — M*) + =a?||z — z*||?
min —alg(e) = M) + Sz — |
The minimum of the final expression on the right-hand-side is obtained for
o = min (1, %) The corresponding minimal value is thus equal to:

{—(g(x) — M*) + Lz — 2| ifar =1

7(g(x)—M*)2 if o* = g(z)—M* -
2L[Jz—=2*[|? T Lljz—az*|]?

Note that in the first case, if o* = 1, then % > 1, which means L||z —
r*||?< g(x) — M*, so that the minimum in that case is < —9(’3)%]‘4*. In any
case, it holds that —ﬁD(m) is less than the largest of the two possible values:

glx) —M* (g(z) - M*)2>
2 "O2L|jx — 2|2)

1
[— < —
2LD(a:) < max <

The result stated in the lemma readily follows. O

The proximal tojasiewicz inequality then follows from the lemma above and
the boundedness assumption on ||z — x*||. Indeed, defining the constant 7 :=

%min (m, ﬁ) it holds that for any k

— min

1 1
) > T
2 (g(a:k)—M* LHwk—x*H2>

154

This inequality stems from the fact that ||z — 2*||*< R? and that (g(xx))k>0 is
a decreasing sequence so that g(xy) — M* < g(z9) — M*. Therefore, it follows
from Lemma 4.3.2 and the descent property (4.9) that

T

9(Tp1) = M* < glay) — M* — E(g(xk) — M*)*.

Lemma 4.3.1 then ensures that g(zp) — M™* converges towards 0 at a rate of
O(1/k).

Proximal coordinate descent. As in the case of smooth functions, coor-
dinate descent variants of the proximal algorithm lead to the same rate of conver-
gence for the expected optimality gap as the standard proximal gradient method
but with constants which have unfavourable dependence on the dimension m.
The proof technique is the same as for smooth functions but requires an addi-
tional assumption on h, namely that it is separable, i.e., h(z) = >, hi(x;) with
h; : R — R. First, it follows from Inequality (4.8) with y = x + te; that:

1 -
g(x +te;) < g(x) — —=D(z,x + te;).

2L
Defining, if they exist, D;(x) = —2Lmint€R—ﬁf)(a€,x + te;) and Ti(z) =
argming p —ﬁD(x, x + te;), it holds that
m
> Di(z) = D(x)
i=1

Indeed, the separability of i ensures that h(x +te;) — h(z) = hi(z; +t) — hi(x;),
so that

1 . L
—ED(.T, xr + tei) = tVZf(:z) + §t2 + hz(xl + t) — hz(l‘z)

This leads to 37, D(x, x + uie;) = D(z, +u) from which it easily follows that
Yot Di(xz) = D(x). We define the proximal coordinate descent algorithm via

) 1 .
Tpy1 = o + T, (xr)e;, = argmin _ﬁp(;%y),
y=xp+te;,

where iy, is sampled uniformly over [1,m] at each iteration. It thus holds that

1

9(zr+1) < 9(2x) = 57 Diy (25)-

Independently of the coordinate sampled, this provides a descent step since for
t =0, —5:D(z,z + te;) = 5-D(z,2) = 0. Taking the expectation over the

sampling of i, conditionally on x, we have

Elg(wy1)|or] < g(wr) — Im Zpi(ﬂﬁk) = g(wx) — 7mD($’k)-

If the proximal Polyak-+.ojasiewicz condition or the generalized proximal Lojasiewicz
condition holds, using the inequality above, the same proof technique as for stan-
dard coordinate descent (see Section 4.3.3) yields convergence to the global min-

imum in expectation at a rate of (1 — -7)¥ in the first case, and O((T—,f)vlj)
in the second case. Finally, in the case where we only assume that the iterates
x, generated by the proximal coordinate descent algorithm are bounded, the same
arguments as for the full proximal gradient method (||x; — z*|| is bounded, and
(9(xk))k>0 is decreasing) ensure that a tojasiewicz-type inequality holds for the
iterates generated by proximal coordinate descent, in that case with v = 2, guar-
anteeing a convergence at a rate of O(T—,f)

Example of an L!-penalty. The penalty h(x) = \||z|[1= 1", |z fits the
criteria for the proximal algorithm: it is non-smooth, separable and easily optimized.
Minimizing the upper bound —i@(:v,x + te;) over t € R is equivalent to finding

L
Ti(z) = argmintV, f(x) + =% 4+ At + z4].
teR 2

In this case, it is known that the minimizer is unique and given by

1 A
The term T;(z) + x; is akin to the result of a soft thresholding (see e.g., Bredies
and Lorenz, 2008) of z; — %Vif(x). See Appendix C.1 for the proof.

4.4 . Coordinate descent in the space of measures

We now present an algorithm to minimize a smooth and convex objective
F : M(S%1) — R on the space of signed measures over the sphere as introduced
in Section 4.2. The Franck-Wolfe algorithm (see Bach, 2017) is one approach
to solve the problem, providing a convergence guarantee at a rate of 1/k but
where each iteration has exponential computational complexity. In this section,
we present a coordinate descent algorithm where the computational cost of an
iteration is polynomial but the “curse of dimensionality” occurs in the convergence
rate we obtain in k= 1/7,

We assume that there is at least one minimizer p* realizing the minimum
F* = min, ¢ \yga-1) F(1). We first derive the analog of Inequality (4.1) through
the following lemma:

Lemma 4.4.1 (Smoothness inequality). For a smooth F' : M(S* ') — R, it
holds for any p,v € M(S?1):

FO) < F)+ [ViAo - + 5l = ubhv- 4.12)

156

Proof. The proof is similar to the finite-dimensional case: by definition of the
first variation V of F, it holds $F(u+t(v — p)) = [Vip+tv — p)]d(v — p),

and thus:
1
_ /0 / Vip+t(r — w]d(v — p)dt,

1
/ V(v -) + / / (Vi + t(v —)] - V) d(w — wt,

< [Vidae /|rw+w—) = Vil lv — plrvt,
S/V /0 Lt|v — plfydt,
S/V §|V_M|%V‘

O

As such, the infimum over v € M(S%1) of the upper bound [V[u]d(v—pu)+
§|y — |3y on F(v) — F(u) provided by Inequality (4.12) is not always tractable,
in particular because |p — v|%,, does not always have a simple expression (it is
analogous to a squared L' norm in finite dimension). We discuss below cases of
upper bounds where the infimum is computable explicitly.

Square-integrable functions. Let w be a reference probability measure on
S?1 such as the uniform measure on the sphere. If u,v € L'(w), denoting by
fu and f, their densities w.r.t. w, it holds |v — plry= []f, — fuldw = ||f, —
Pl I v € L2w) € LA w), then |Ify = fullpo < 11Fs — ful lz2ew) by
Jensen’s inequality, and thus we obtain an upper bound which is more amenable
to optimization for square-integrable functions:

. L 2 _ 1 2 _ 1 2
min [VIR~)+ 5 v = ilBa= —5p [VIPdo = =S IVIEs,

veL?(w)

The minimum is obtained when v has density —+V'[1] w.r.t. w, which is reminiscent
of the case of smooth functions in finite-dimension. Indeed, w:hen p,v € L?(w),
denoting f, and f, the (square-integrable) densities of 1 and v w.r.t. to w, it
holds:

Va1l =l = [VI~ fdw+ 5 [(- e,

= [(Ve =)+ 5 - 52 o

The minimization of the left-hand-side over v € L?(w) follows from the point-
wise minimization of the integrand on the right-hand-side. Indeed, as derived in

157

Section 4.3, the minimum of : y € R — a(y — yo) + %(y —y0)? is obtained for
y = yo — ta and is equal to —5-a®. Note that the density f = f, — $V[u] is
indeed in L?*(w) since f, € L%*(w) and V[u] is continuous over the compact set
S?1 and thus in L>®(w).

When g is not in L'(w), there is no explicit expression for |v — u|7y, even
when v € L?(w), which makes it difficult to minimize the upper bound explicitly.

Coordinate descent variant. The space M(S%!) is infinite-dimensional
and there is no clear notion of what a “coordinate” is in that setting. Intuitively, for
a measure v, the mass it puts on a given vector u € S could be a candidate for
the coordinate along the direction &, € M(S?"!), where 4, is the Dirac measure
at u. However, there is a lack of a good “basis” in M(S?!), in the sense that
there is no reference measure w € M(S?~1) such that for any u € M(S?1), and
for any p-measurable ¢, there exists a ¢,, (depending on p) such that [odu =
[¢u(u)dw(u), unless we consider the subset L!(w) C M(S?1). As observed
from the finite-dimensional case in Section 4.3.3, the coordinate descent method
relies crucially on the fact that the expectation of certain quantities projected along
a given coordinate (e.g., norms or gradients) gives back the whole quantity (e.g.,
z||?= Y, 22, (Vf(x),y) = >, Vif(z)y;). This property is lost in general in the
space M(S?1) as the “projection” of a measure along , does not make sense.
However, if v € L?(w), this is possible: denoting by f, the density, it holds

Jvinar= [([viasas,) asw,
vl = [(/ fud6u>2dw(U)

since G(u) = [Gdé, for any G. This suggests doing coordinate descent by
sampling a vector u € S%~! and searching for a minimizer of an upper bound on
F(u+tdy,) over t € R. Plugging v = u + td, in Inequality (4.12), we get

F(u+t6,) — F(p) < tVp)(u) + gﬁ, (4.13)

and minimizing the upper bound on the right-hand-side gives:

Flp+ Tu(n)u) < F(u) — 52 VIw)? (4.14)
Tu(u) : = —%V[M](u). (4.15)

This is the analog of Inequality (4.6) for finite-dimensional coordinate descent
where here the direction u € S~ plays the role of the coordinate i € [1,m], the
Dirac measure ¢, plays the role of the basis vector e;, V[u] plays the role of the
gradient V f(x), and T3, (1) plays the role of the minimizer T;(x) w.r.t. the selected
coordinate.

158

As presented in Section 1.2.4, when doing gradient flow, VV plays the role of
the gradient in finite dimension (see Equation (1.7)). So why not here 7 This is
due to the L2-geometry which is implicitly at play in this formulation of coordinate
descent over M(S?!). Indeed, taking the expectation of the coordinate descent
step over the sampling of u € S w.r.t. w, that is, the minimization of the upper
bound on F'(u + td,) over t, it holds

Bl P+ Tulu))] = [Flt Tt
- 51 [Vit

1
< Fup) - ﬁHV[MW%z(w)-

< F(u)

This is reminiscent of the inequality obtained in expectation for coordinate de-
scent in finite dimension, but note that the difference here is that summing (or in
this case, integrating) V'[i](u)? over the “coordinate” u does not give the norm
|V [u]|%, (where V[u] is seen as a density w.r.t. w) which appears in the initial
bound (4.12), but rather the squared L? norm HV[M]HZQ(@ which is larger than
VI 2.

V[u] belongs to an infinite-dimensional space, namely C(S%!), and multiple
choices of norms are possible to upper bound F'(v) — F'(u) which are no equivalent
as they would be in finite-dimension. The choice of norm is therefore of importance
in our setting. This makes sense since the definition of the gradient depends on
the choice of norm in infinite dimension (as it is a limit, which inherently depends
on the norm), so it is not surprising that different norms lead to different methods
in infinite-dimension.

It turns out that minimizing the upper bound of Inequality (4.13) when sampling
a random w is the same, in expectation, as minimizing an upper bound with an L?
norm on F(u+v) for v € L?(w). Indeed, calling £, the density of v w.r.t. w, since
|3, < HVH%Q(W) as discussed in the paragraph on square-integrable functions, it
holds for any v € L?(w):

Flut)~ F < [Vidfdo+ 5 [f2do,

and we have already shown above that the upper bound is minimized by minimizing
point-wise the integrand giving the minimizer T'(u) = —%V[u] and a minimal value
of —iHV[u]HQLQ(w), which is the same as the expectation of the minimum of the
upper bound derived for coordinate descent.

To make the analogy with Section 1.2.4, if we were to change the norm and
minimize the quantity [V/[p]d(v —p)+ o= Wa (v, p)? over v € Po(RP), as 7 — 07,
we would obtain for any p € P2(RP) the minimizer v* as the pushforward of p
by the map —VV[u], which corresponds to the gradient w.r.t. the Wasserstein-2
metric, and not the L? metric.

159

4.4.1 . Convergence of the coordinate descent method

In this section, we extend the techniques reviewed in Section 4.3 in finite-
dimension to provide a convergence proof for coordinate descent in M (S?1). We
assume here that the reference measure w from which we sample is the uniform
measure on the sphere S?~!, denoted by w,. This leads to the following algorithm:
starting from a single atom pp = cpdy,, at each iteration k& we sample a new
up41 € ST uniformly and set

) L
k1 = [tk + Chg10y,,, = argmin /V[Mk:]d(’/ —) + 5 v = 1k |7y
v=pp+tdu; |

where ¢ 1 = Ty, (ux) is set using Equation (4.15). By the descent prop-
erty (4.14), it holds:

1
Fpg1) < Fpg) — EV[Mk](UkH)z- (4.16)

We make the following assumptions:
Assumption 6 (Uniform Lipschitzness of the first variation). There exists a

constant K > 0 such that for any u € M(S%1), V[u] is K-Lipschitz, i.e., for
any up, up € %1,

Vipl(ur) = Vip](u2)|< Kl|ur — usl].

Assumption 7 (Boundedness of the norms). The iterates u; generated by
coordinate descent have bounded total variation: there exists a constant R >
0 such that for any k, |ur — p*|rv< R.

tojasiewicz inequality for the iterates of coordinate descent. We
show that the iterates u; generated by coordinate descent satisfy a tojasiewicz
inequality with v = d + 1. This is summarized in the following lemma:

Lemma 4.4.2 (Lojasiewicz inequality for u). There exists a constant T > 0 such
that for any k, it holds

1 *
IV Ielllz2 (> 7(F i) = F R

Proof. By convexity of F' and Assumption 7, we have

Fug) — F* < /V[Mk]d(uk — ") < |V pelloo | — 17 |7v < RV]| | oo -

Call M := ||V[uz]]|oo and let vy € S?1 such that |V] (vi)|= ||V [1#]]]oo- BY
Inequality (4.16), we have V[uy)(ug)® < 2L(F(ux) — F(pg11)) < 2L(F (o) —
F*), and using Assumption 6, it holds for any u € S?~! that |V [uz](u)|< 2K +
V2L(F (o) — F*). Since the right-hand-side K’ := 2K + /2L(F(uo) — F*) is

160

larger than K, have both |V u =V 1] (v)|co < K'|Ju—v|| and ||V [ug]||oo < K’
for any k.

Defining g(u) = max(0, M — K'||u — vg||), since |V [ug](uw) — V] (v)| <
K'|u— v, it holds [V [ju])(u)| > g() > 0, and thus ||V [u]|32(,,,, > [lol3 (.-
We now compute the latter term and lower bound it by a constant times
M+

ol = [meax(0,01 = K = ()
K’ 2
= M? /max (0, 1-— 7 2(1 - <u,vk>)> dwg(u).

Since wy is the uniform measure on the sphere, we can use some spherical
harmonic analysis to simplify the integral. By (Atkinson and Han, 2012)[Theo-
rem 2.22] with n = 0, there is a constant C' > 0 such that

/

1 K 2
2 _ 2 o _ _ 12\(d—3)/2
l9ll72(0,) = CM /1 max (0,1 V2 t)) (1—1t2) dt

2 rN 2 2\ (d-3)/2
= CMQ/ max <0, 1-— Zr) rd=1 <1 — 2) dr
0
d—1 M/K' 7N 2 2\ (d—3)/2
= CM? M 1—51" N dr
(K/)d—l 0 M 4
2

d+1 1 2
:C([]\g)d—l/ (1—s)%s%! <1— M= s
0

d+1 1
> C(%W(l/z)w?’)/? / (1—s)2s91ds.
0

We have used in the second line the change of variable /2(1 —¢) = r, in

the third that 1 — (K'/M)r > 0 <= r < M/K’' and that M/K' < 1,

in the penultimate line the change of variable (K'/M)r = s, and in the last

line that (1 — M?2s%/(2(K")?)) > (1 — M?/(2(K")?)) > (1 —1/2) = 1/2 for
. CRYTL [2(1—5)2s%1ds

s € [0,1]. Calling 7 := 2<d_:§))/2(K/)d_1 yields the desired inequality since

HV[/%]HQH(W)Z HgH%z(wd)r and RM > F(uy) — F*. O

Remark. With similar arguments, an equivalent result can be obtained in
finite-dimension if one considers the analog of Assumption 6. Indeed, in the
setting of Section 4.3.3, if we assume that for any z € R™, and for any i,j €
[1,m], [Vif(z) — V;f(z)|< K|i — j|, then it holds that

1
SIVI@IP= 7(f(2) = M) (4.17)
on bounded sets ||z — z*||< R. See Appendix C.2 for a complete proof.

161

Taking the expectation of Inequality (4.16) over the sampling of u; € S%!
w.r.t. the uniform measure wy (that is, conditionally on), it holds:

ELF (k)] < Fus) — 57 / V [(1) 2y ()
< Flp) = 7 (F(u) = F)™

and taking now the expectation over py, finally gives
* * T *
E[F (1) = F*] < EIF (i) = F] = LE[(F () = F)™),
* T *
< E[F(u) = F"] = FE[F(u) = F [

d+1

where we have used the convexity of : z — 2%"" and Jensen's inequality in the last

line. Lemma 4.3.1 allows to conclude to the following result:

Theorem 4.4.3 (Global convergence of coordinate descent in M(Sdfl)). If As-
sumptions 6 and 7 hold, then the iterates u; generated by coordinate descent
satisfy, forany k > 1,

0 <E[F(m) - F'] < 775

for some constant C' > 0.

4.4.2 . A proximal algorithm for L'-penalized coordinate descent

Although coordinate descent provides a global convergence guarantee with an
explicit rate, the number of atoms of py grows linearly with k& which is an issue
in practice. In the context of a two-layer neural network, this would mean having
a network where a new neuron is added at each iteration, making it prohibitively
expensive computationally to use. In finite dimension, it is known that the L!-
penalty has a sparsifying effect. Here we consider an analogous penalty in infinite
dimension given by the total variation norm: that is F'(u) = J(u) + A |7y where
J is smooth. The total variation norm penalty has a similar sparsifying effect as
the L' penalty in finite dimension and the aim is that adding such a penalty should
reduce the number of atoms and therefore the computational cost incurred.

Since the total variation norm is not smooth, we resort to a proximal descent
method similarly to what we presented in Section 4.3.4 in finite dimension. As in
finite dimension, one can extend Inequality (4.12) with the added penalty, and it
holds

L
F) < P+ [VIad =)+ 51w = -+ \sloy~Malrv.
Applying this inequality to v = p + td,, yields

L
Fp+t0,) = F(p) tV[p)(w) + St* + Ap+ toulrv=Alplry. (4.18)

162

This provides a descent property as the upper bound on the right-hand-side is 0
when ¢ = 0 and the minimum over t € R must therefore be < 0.

If w L 4y, thatis if 4 and §,, are mutually singular (this amounts to pu({u}) =
0 since 0, is the Dirac measure at u) then |p + tdu|rv=|p|rv+|t| and the
upper bound on the right-hand-side of (4.18) becomes tV/u + 52 + Alt|. In
particular, this is the case (with probability 1) if u = > 7" | ¢;6., where u; and u
are sampled independently and uniformly on the sphere. One difference with the
finite-dimensional case is that the total variation norm is not “separable”’, meaning
that unless ;1 € L!(wg), there is no f,, such that |u|rv= [fu(u)dwa(u) in general.

The proximal coordinate descent algorithm in this setting is given by: pg =
cody, and for each iteration k, we sample u; ;1 € S*! uniformly (i.e., w.r.t. wy)
and set

Bi+1 = Mk + Tuk+1 (Mk)(;uk-u

. D, t L
T, (1) : = arguin {—2(5) = V() + 1 4 M+ t5u|TV—A\mTV} .
teR

Note that because u; = Z?:o ci0y, is atomic with u; sampled uniformly in S,
with probability 1 over the sampling of uz,; € S*!, p and Ouy,, are mutually
singular, which means ﬁuk+l(uk, t) =tV) (urs1) + 52 + AJt| with probability
1. The minimization of the latter quantity w.r.t. t is akin to the minimization
involved in a proximal algorithm with an L' penalty and Equation (4.11) gives

Tavy) = (=P Y (01 = i)

Sparsifying effect of the total variation penalty. We already observe
the sparsifying effect of the total variation penalty: as soon as |V [ug](ug+1)|< A,
it holds T, ., (1x) = 0, which entails y11 = p1, and the number of atoms stays
constant from iteration k to iteration k + 1. This opens the door for a sub-linear
growth of the number of atoms with the iteration k which is an improvement on
pure coordinate descent on the smooth part J only.

Global convergence guarantee is lost. In contrast to what occurs in the
finite-dimensional case, the addition of the L! penalty comes with the drawback
that we cannot provide a global convergence guarantee as we did for pure co-
ordinate descent on J. However, the proximal coordinate descent algorithm still
provides a true descent step: it is easily checked that

N

1 1 2
57 Dus (1 Ty (1)) = =57 mae (0, [Vpue] ()| =A) . (419)

See Appendix C.3 for more details. It thus holds:

1 2
Flps1) = Flp) < =5 max (0, Vgl () =2)

163

but the upper bound on the right-hand-side can be 0 if |V]ug](ug+1)[< A In
expectation, conditionally on py, this gives:

2
BIF (o] < Fm) — 57 [max (0.1) (0)]-3) da)
u
Remark. We observe that there is a trade-off between descent and sparsity:
a large A will encourage sparsity as it is more likely that p;+1 = ux but then
there is no change in objective function. Conversely, a small A will ensure that
F(ur+1) < F(upg) (or at least in expectation), but this will require adding a
new atom. In this setting, we gain sparsity at a given iteration only if there is
no change in the measure u, which shows that we cannot have global con-
vergence and a sparse measure at the same time: the number of atoms has
to grow indefinitely if we wish to decrease the objective, albeit at a sub-linear

rate.

4.4.3 . Sampling from existing atoms: a modified proximal algo-
rithm
An alternative to enforce a higher level of sparsity is to sample from existing
atoms half of the time. This leads to the following proximal algorithm: g = cpdy,,
and for each k

H2k+1 = P2k + Tu2k+1 (MQk)6u2k+l’ U2k+1 ™~ U(Sd_l)a

p2k+2 = Hak+1 + Ty 2r41) (H2k41) 0w, (2k41) i~U{L2, ... mogsa}),

where U denotes the uniform distribution and my is the size of the support of
[k, I.e., the number of atoms at iteration k. Since the number of neurons does
not grow linearly and the weight assigned to a give neuron can change during later
iterations, we now denote the iterates yuy by px = > ¢;(k)dy, k). The algorithm
amounts to sampling a new atom uop 1 € S! for odd iterations 2k + 1 and an
existing neuron from {u1(2k+1),..., Umn,,,, (2k+41)} for even iterations 2(k+1).

Remark. This modified algorithm is equivalent to sampling at each iteration,
an atom from the distribution Jwy + 3 i Where fip = U({u1(k), ..., tm, (k)})
(at least in expectation).

Descent property. By the definition of 7),(1) and the descent property (4.16)
both steps (sampling uniformly over the sphere or over existing atoms) are true
descent steps which guarantees F'(ug11) < F(ug) < F(uo).

Boundedness of the total variation of the iterates. Consider u =
Yot c¢idy, and assume that F(p) < F(uo). Denoting by J* the minimum
of the smooth part J, it holds J* + Mu|ry< F(u) < F(uo) and thus ||c[|<
llelli= |ulrv< (F(po) — J*)/A, which proves that the euclidean norm of ¢ =

164

(¢1,...,¢cm) € R™ is bounded by a fixed constant as soon as F'(} ;" cidy,)
F(p0). This in particular applies to the iterates puj so that ||c(k)||< B
(F(po) — J*)/ X for any k, where c(k) = (ci(k), ..., cm, (k) € R™.

IA

Correspondence with a finite-dimensional objective. Consider fixed
atoms ui,...,u, € R™ and the objective F,,, : ¢ € R — F(3_ %, cidy,) =
Im(c) + Al|c||i with Jp(c) = J(O27 €idy,). It is easily checked that V;J,,(c) =
V()] (ui) where pu(c) = 31", ¢idy,. It then follows from the smoothness of
J that the gradient is Lipschitz: ||VJy,(c1) — Vdn(c2)||< vmLllcr — e2][1<
mL||c; — c2||. Doing one step of the proximal coordinate descent algorithm on
Jm from a given iterate ¢ € R™ thus amounts to sampling an atom wu; from
{ui,...,um} and setting the ¢ = ¢ + T;(c)e;. By the results of Section 4.3.4 it

holds in expectation conditionally on ¢:

1

E[F(u(c))le] < F(p()) = 5=

-1 - m?L
——D(¢) = mi ; D+ ——||? — .
57 D) Wrgﬂgln;:lv‘/[u(C)](U)Jr 5 [V IPHAllY +el[1=Allellx

D(e),

Note that the above minimum is also the minimum over v — ¢ when v € R™.

Sampling among existing atoms. For odd iterations 2k+1, the step is the
same as for the proximal coordinate descent algorithm presented in Section 4.4.2.
On the other hand, for even iterations 2k + 2, Ty, (1) (11241) is obtained as:

L
Ty (k) (H2k+1) = argmin tV [pop 1] (us (2k 4 1) + §t2 + Alei(2k + 1) + 1.
1eR

Calling V; o1 := V]par+1](ui(2k + 1)), the exact formula for T,) (p2r41) is
given by Equation (4.11):

Vi2k+1 A
Ty, =—c(2k+1)+ (c(2k+1) — —— | m o1 .
wi (k) (H2k+1) ci(2k+1) (C (2k+1) i > ax <0 Viorsr — Lei(2h + 1)‘)

In this case, the total mass for the selected atom i € [1,mog41] is ¢;(2k + 2) =
ci(2k+1)+Ty, (2k41) (H2k+1) and is thus zero if and only if |V; o541 — Lei(2k+1)|<
A. As described in the previous paragraph, this step is basically equivalent to a step
of the proximal algorithm in dimension mg,1 as presented in Section 4.3.4 with
a smoothness constant equal to myL. We thus have in expectation conditionally
on [ok41,

1

———D(c(2k + 1))
2Lm%k+1

E[F (port2) | tor+1] < F(por41) —

165

where ¢(2k 4 1) = (c1(2k + 1), ..., €y, (2k 4+ 1)) and

D(c(2k +1)) . & mog+1L
T omail é%n(> ciVilpr] (wi(2k + 1)) + == |el[* +
2k-+1 ce izl

AHHc(zH1>\|1—Auc<2k+1>ul)-

Calling F3;, = mincgmarir F(3 2" €iby,2k41)), and ¢*(2k + 1) a minimizer

of the latter objective, since F/(3, " ¢ (2k+1)0y, (ax41)) < F(p2r+1) < F(po),
by the paragraph on the boundedness of the iterates above, it holds ||c(2k+1)||< B
and ||c*(2k+1)||< B which ensures ||c(2k+1)—c*(2k+1)||< R := 2B. Therefore,
from the analysis in Lemma 4.3.2 it holds:

Lmoy.1 1
N2k+1) - F2*k+17 Hc(2k + 1) - C*(Qk + 1)H2

(Fluzker) — Fipa)”

We now lower-bound the right-hand-side: we have moi. 1 > 1, and since F* <
FQ*kJrl < F(M2k+1) < F(,U,()) it holds 0 < F(HQk—i—l) F2*k+1 < F(Mo) — F*, which

Lm2k+1 > L
,U'2k:+1) 2k+1 - F(/J'O)fF* ’

l[c(2k + 1) — ¢*(2k + 1)||>< R? and thus

L.
=D(c(2k + 1)) 25 min (F(

For the second term in the minimum, it holds

1 1
[[c(2k+1)—c* (2k+1)]2 > Rz Therefore,

calling 7 := %min (W, #) which is a constant (not depending on & or

entails T

Mak+1), we have

“D(c(2k+1)) > 7 (Fpors1) — Fiin)” (4.20)
from which it follows that:

E[F (por+2) — Foppqlpors1] <(F(porg1) — Fopoq) —

T 2
T2 (F(M2k+1) - F2*k+1) :
Lm%kﬂ

Global convergence is lost. Unfortunately, this is not enough to guarantee
convergence to the global minimum F*. One option would be to try proving a
similar bound as in Inequality (4.20) with F™* instead of F3, |, but there is no
reason for such an inequality to hold in general and the proof technique used in
Lemma 4.3.2 does not apply here because p* has no reason to be of the form
ST 6y, .2k+1)- A more favourable case is if we assume ;* is sparse (an
atomic measure with a finite number of atoms), in which case we could hope
to prove global convergence if we can prove that my > m* for k > kg where
m* is the number of atoms of p*. However, it is not obvious that the latter
property holds. Also note that the constant which guarantees sufficient decrease
7/(Lm3,, ;) becomes smaller with the number of atoms which is an unfavourable
behaviour.

166

Lack of control of the number of atoms m;,. One issue with the coor-
dinate descent algorithm we have presented in this section is that it is difficult to
control the growth of the number of atoms my. For odd iterations 2k + 1 we can
have either mog11 = Mok or mapr1 = Mok + 1, and for even iterations we can
have either moj1 9 = Mogt1 OF Mogro = Mok — 1, and we have no control over
the probability of each event.

We present the results of the numerical experiments on this proximal algo-
rithm with a total variation penalty in Section 4.6 to validate empirically that this
method is indeed able to limit the growth of the number of neurons my, (and thus
the computational cost) while still maintaining a good performance on the initial
objective J.

4.5 . Kernel penalties

An alternative to the total variation penalty (which has an explicit sparsifying
effect) is to penalize with smooth kernels which implicitly encourages sparsity by
drawing atoms towards each other or pushing them away. This will not explicitly
remove atoms but we can merge atoms together (that is, sum their masses up) if
they are sufficiently close. This method shares some similarities with the expend-
and-cluster strategy used by Martinelli et al. (2023): they consider training multiple
deep networks with bounded width and then cluster the neurons together in order
to remove inefficient neurons and reduce the size of the network.

We consider symmetric, non-negative dot-product kernels on the sphere of the
form K : (u,v) € R¥xR? — K (u,v) = x({u,v)) forsome x : R — R,.. Since the
atoms are on the sphere, this is equivalent to assuming that K (u,v) = ¢(||u—v||?)
because ||u — v||>= 2(1 — (u,v)). We say that the kernel is attractive if x is an
decreasing function, and that it is repulsive if x is a increasing function. Typically,
we consider fiq . (s) =1 — e(5=1/7* for attractive kernels and Kro(8) = els—1)/o?
for repulsive kernel where o > 0 is a parameter controlling the range of interaction
of different atoms on the sphere.

Penalized objective. In this setting, the objective we consider has the form:
F(u) = 70+ A [Klw o)dlulw)dlal)

where J is a smooth term, typically a data-fitting term such as the empirical
risk. For an atomic measure ji,, = Y " ¢;dy,, the kernel penalty is equal to
[Kd|pm|d|pm|= >oi—1leillej| K (ui, uj), and can thus be interpreted as an inter-
action kernel between the particles (or atoms, or neurons) (uy, .. ., uy,) € (S¥1)™
which depends only on the absolute values of their weights |¢;|. The alternative
version where we remove the absolute values and consider instead the penalty
J Kdudu is also possible but we focus here on a penalty involving |u|.

167

Evolution equation. From an initial g € M(S?™1), we consider the evolu-
tion given by the Wasserstein-Fisher-Rao (WFR) gradient flow as in Equation (1.9)
with a minor adjustment to account for the absolute values:

Ot = —div(£oF 1) + 2955 1" (4.21)

which is to be understood in the sense of distributions, where uf € M (S41)
(resp. i € M (S971)) is the positive part (resp. negative part) of 11, € M(S41).

The advection term 17ti and the reaction term gti are given by:

g) = - (iku) o f K(u,mdmtuv)) ,
¥ (u) = projp,ye (Vi (u)) .

where V' is the first variation of .J. Note that when K (u, v) has the form x((u,v)),
its gradient simplifies to V, K (u, v) = &’({u, v))v and thus proj,y 1 (VoK (u,v)) =
K'((u,v)) (v — (u,v)u). Note in particular that projr, 1 (VuK(u,u)) = 0 for
u € S As discussed in Section 1.2.4, in the context of infinitely-wide two-
layer networks with a positively-homogeneous activation function and initialized
on the cone {(a,b) € R x R? : |a|=||b||}, (4.21) is an equivalent formulation to
the Wasserstein gradient flow in the space Po(R%*!) of probability measures with
finite second moment, for the objective
- b1 by

F(p) = J(w) +>\/!a1\ laa| [|b1]] [|b2]| K <|b1” \|b2|> du(at,br)dp(az, b2)

for p € Po(RIH).

Evolution for atomic measures. I y,,0 = > 1% ¢;(0)dy,(g), as discussed
in Section 1.2.4, the WFR gradient flow (4.21) iy, starting from i, is also
atomic with m atoms: fim, s = D i" ¢i(t)dy,4), and the dynamics translate into
evolution equations on the (signed) masses (or weights) ¢;(t) and on the position
u;(t) € S, given by:

Seilt) = 207 (u()es),
S ui(t) = o (wi(?)),
with €; :=sign(¢;(0)) € {—1,+1}.

4.5.1 . An example of attraction/repulsion with two particles
Here, we consider the most simple setting where there are only two particles
u1(t), u2(t) interacting. We show that for attractive kernels, i.e., k decreasing,
the particles end up merging and for repulsive kernels, i.e., k increasing, the two
particles end up at opposite ends of the sphere.

168

We consider only the interaction term in the objective corresponding to the
kernel penalty, that is we assume J = 0, and set)\ = 1 for simplicity. In this
context the reaction and advectlon terms simplify to g% (u) = — [K (u,v)d|u|(v)
and ¥ (u) = — [K'((u,v — (u,v)u) d|p|(v), and the dynamics of the two
particles are given by:

Ah(t) = =2(Jex (O)15(1) + lea(lr((1))) ()
h(t) = =2(Jea(t) K1) + e (DIr(() ()
uh (£) = =lea(OIR (1)) (u2t) = (B (1))
wh(t) = ~les (B)| (p(1)) (w1 (1) = p(t)ua(2)))

where ¢(t) := (u1(t),ua(t)). The weights c1(t) and ca(t) keep the same sign all
along the dynamics. Indeed, if ¢;(ty) = 0 for some ¢y then ¢;(t) = 0 for all ¢
since : t — 0 and ¢; would then solve the same ODE and both take the value 0 at
to, which is absurd since we initialize with |¢;(0)|# 0. Calling €; = sign(¢;(0)), it
holds:

ci(t) = —Gi(t)eilei(t)]
€ici(t) = —Gi(t)|ci(t)]
(eici) (t) = =Gi(t)|es(t)]
il (t) = —Gi(t)]es(t)] <0

with G;(t) > 0 since k > 0, which shows that |¢;| is decreasing. This makes sense
considering that because K is non-negative, the kernel penalty term is minimized
when there is no mass, i.e., u = 0. However, to understand the effect of the kernel
penalization on the dynamics of the positions of the particles we can assume the
masses fixed for simplicity or at least that they are lower-bounded in absolute value:
lci(t)]> C > 0. In any case, the ODE satisfied by the inner product ¢ is easily
derived as:

@(t) = ~(ler ()| Hea(ODR (1) (1 = 9(8)?).

We make one additional assumption on the kernel: 0 < A < || on [—1,1]. This
is satisfied by the kernels k45 (s) =1 — /7% and Kro(s) = s/

Attractive case. In the case of an attractive kernel, " < 0 which implies
that ¢/(t) > 0: ¢ is an increasing function. With the assumptions on |x’| and
lei(t)], this leads to ¢'(t) > 2CA(1 — o(t))(1 + ¢(t)) > Co(1 — @(t)) with
Co :=2CA(1+ ¢(0)), so that

& (L= (1) < ~Co (1 - (1)

169

which implies 1 — ¢(t) < (1 — ¢(0)) exp (—Cot) by Gronwall's lemma, and thus

@(t) > 1—(1—9(0))exp (—Cot).

Since Cy > 0, this proves that ¢(t) — 1 as ¢ — oo, from which it follows that

[Jur () — ua ()|~ 0

Repulsive case. For a repulsive kernel, k' > 0 which means that ¢ is decreas-
ing. Similar arguments to the attractive case lead to ¢'(t) < —2CA(1—¢(0))(1+
©(t)), and with the same reasoning as in the previous paragraph we get

@(t) < =1+ (1 + ¢(0)) exp (—=Cot))

with Cy > 0, which implies that (u; (), u2(t)) — —1 as t — oo showing that for
large ¢ the particles u(t) and u2(t) end up at opposite sides of the sphere.

4.5.2 . A coordinate descent algorithm

A practical algorithm to minimize J while keeping a reasonable number of
particles is alternate between coordinate descent steps on the smooth part J
and Wasserstein-Fisher-Rao steps on the penalized objective F(u) = J(u) +
A [Kd|p|d|g|. With X small enough, the coordinate descent step should decrease
the value of J, while the Wasserstein-Fisher-Rao steps should encourage the merg-
ing of particles if A is large enough (even if particles are globally pushed away from
one another, some particles might be pushed towards the same direction). The
Wasserstein-Fisher-Rao step corresponds to the discretization of the WFR gradient
flow (4.21) as follows: given an atomic measure i, = > % ci(k)dy, (k) at iteration
k, the WFR step computes the measure pig1 = D" ¢i(k 4 1)0y, (k1) With

ci(k+1) =ci(k) | 1 —2ne;V [pg](u —2772\0] MK (ui(k), ui(k)) |

ik + 1) =projss <uz-<k> eV) (s (k) —

nDcJ lpro iy (VA (s (8),0540))

where 17 > 0 is a small step-size. Unfortunately, we cannot provide any theoretical
guarantees with this method, either on the global convergence or on the control
of the number of atoms. Although this approach is theoretically motivated, the
numerical experiments were inconclusive at this stage on the effective ability of
such methods to limit the growth of the number of neurons: it does not appear
clearly that the kernel penalties allow to induce more sparsity than doing coordinate
descent mixed with “conic” steps in the Wasserstein geometry.

170

4.6 . Numerical experiments

We present in this section results for the numerical experiments with the prox-
imal algorithm for the total variation penalty. The code for the numerical experi-
ments is available at https://github.com/karl-hajjar/pop-conic.

4.6.1 . Proximal algorithm for the total variation penalty

We consider in this section different practical variants of the proximal algo-
rithms presented in Section 4.4.2 as well as the reference coordinate descent algo-
rithm on the smooth objective without penalization in the L?(w;) geometry. We
detail the name and description of each method below:

. L2 (wq) (purple): pure coordinate descent on the smooth objective only (no
penalty). This is the algorithm introduced in Section 4.4.1

. Lz(wd)—prox (blue): proximal coordinate descent on the objective penal-
ized with a total variation penalty. This is the algorithm introduced in
Section 4.4.2.

. L2 (ptm)-prox (orange): proximal coordinate descent on a measure with a
finite number m of atoms. This is akin to the coordinate proximal algorithm
in finite dimension: we sample m atoms at initialization and at each itera-
tion we sample one of the atoms and set its weight by using the proximal
update rule for the penalized objective. This corresponds to repeating, in
the algorithm described in Section 4.4.3, the even step (2k + 2) where we
sample from existing neurons.

* mix (green): proximal coordinate descent on the penalized objective where
we alternate between sampling a new atom on the sphere and one of the
existing atoms. This is the algorithm introduced in Section 4.4.3.

* mix-conic (red): proximal coordinate descent on the penalized objective
where we alternate between three different kinds of steps for each iteration:
(i) sampling a new atom on the sphere and doing a proximal step, (i)
sampling one of the existing atoms and doing a proximal step, and (i)
doing a “conic” descent step in the Wasserstein geometry as one would in
the discretization of the Wasserstein GF (that is, regular gradient descent on
all the neurons). This is similar to the algorithm introduced in Section 4.4.3
with an added Wasserstein “conic” descent step every three iterations.

* GD-conic (brown): pure conic descent in Wasserstein geometry on a mea-
sure initialized with m atoms. This is equivalent to doing gradient descent
on a two-layer neural network with m neurons initialized on the cone (see
Section 1.2.4 for more details) and a ReLU activation.

171

https://github.com/karl-hajjar/pop-conic

We train all algorithms for a total of 3,000 optimization steps. The smooth
objective J is the empirical risk on some toy data generated by a teacher two-
layer network with m* = 50 neurons and input data are sampled uniformly on
the sphere. The input dimension is d = 10 and we use m = 500 neurons for the
algorithms L2 (ttm)-prox and conic-GD.

We show in Figure 4.1 the performance of the different variants of the proximal
algorithm on the penalized objective. They all seem to perform relatively compa-
rably except the L2 (wq)-prox variant which appears to stagnate somewhat while
the other algorithms continuously decrease the objective, albeit quite slowly for
large iterations.

0.00055

> —— L*(wg)-prox
T 0.00050 L2(pm)-prox
% — mix

o 0.00045 —— mix-conic
<
£ 0.00040

Wi

2 0.00035
2 0.00030
2

O 0.00025

00 05 10 15 20 25 30
Iteration k -

Figure 4.1: Penalized objective F'(yuy) vs. iteration k

Next we compare the performance of all the algorithms mentioned above on the
objective without penalization (which only L2 (wq) and conic-GD optimize) to see
how the penalized versions fare on the original objective compared to algorithms
without any penalization. Figure 4.2 shows that the penalized variants perform
slightly worse than the ones without penalization, which is no surprise. However,
the gap in performance does not appear too large. It is also interesting to note
that the conic-GD algorithm, while a little slower than pure coordinate descent
L2 (wq), manages to reach the same final performance.

0.0007
= — L}(wa)
g 0.0006 —— L%(w)-prox
8 0.0005 L2(y1)-prox
5 —— conic-GD
_8 0.0004 — m?x)
= —— mix-conic
= 0.0003
o
2 0.0002
3
g0.000'I
0.0000
0.0 0.5 1.0 1.5 2.0 2.5 3.0
Iteration k “

Figure 4.2: Original objective J(uy) vs. iteration k

Finally, we compare the computational cost incurred by the different algorithms.
We analyze two quantities: first the evolution of the number of neurons (or atoms)

172

my, during the optimization procedure in Figure 4.3, and second the computational
complexity as measured by the number of operations needed for the forward pass
on a single sample, which is O(my(d+1)), in Figure 4.4. For both the number of
neurons and the computational complexity of the forward pass, we first present the
results for all algorithms (a), and then for all algorithms except the pure coordinate
descent Lz(wd) (b) as the number of neurons grows linearly for the latter.

3000

2500

€ 2000
°

— Lwg)-prox
L2 rox

2

S 1500 — mixconic

5

2 1000
=

500 i — i 100 / =
o ,,_::;:;li:-——— o /
0.0 05 1.0 15 20 25 3.0 0.0 0.5 1.0 1.5 20 25 3.0
iteration k iteration k "
(a) All algorithms (b) Removing pure coordi-

nate descent algorithm

Figure 4.3: Computational complexity of the forward pass accumulated
over iterations

Cumulative computation
o 4 N w & o

10 15 20 25 30 00 05 10 15 20 25 30
iteration k iteration k

o
°
o
@

(a) All algorithms (b) Removing pure coordi-
nate descent algorithm

Figure 4.4: Computational complexity of the forward pass accumulated
over iterations

As expected, all the proximal variants are able to limit the number of neurons
and thus the computational complexity of the method. While the number of
neurons seems to keep increasing for L2 (wgq)-prox (but at a sub-linear rate), using
algorithms which sample from existing neurons (mix and mix-conic) allows to
reduce much more strongly the number of neurons. The latter appears to stagnate
after some time for mix and mix-conic. Additionally, the reduced number of
neurons does not seem to hurt the performance too much as shown in Figure 4.1.
This shows that even though those methods do not offer any explicit control over
my, or any global convergence guarantee, they are effectively able to prevent a
huge computational complexity while still performing well on the initial objective
J. However, it is noteworthy that all methods, even the ones adapt dynamically
the number of neurons have many more neurons then the target network which
has m* = 50 neurons.

173

4.6.2 . Kernel penalization

In this section, we present the results from our first numerical experiments
with kernel penalties. We stress that the experiments are by no means exhaustive
and only more thorough experimentation—which we leave for future work—would
allow to determine the practical value of such methods.

In the practical implementation of the algorithm described in Section 4.5.2
we alternate between two kinds of steps: (i) coordinate descent steps where we
sample a new neuron on the sphere and set its weight using the coordinate descent
minimization, and (i7) “conic” descent steps in the Wasserstein geometry which is
akin to doing gradient descent on the positions and weights of the atoms of the
current iterate ug. To effectively obtain sparsity, we merge together neurons which
are closer than a certain threshold € after the conic descent step. This parameter
is key to controlling the number of neurons during the iterations of the algorithm.

We compare the algorithm with both an attractive kernel k,4(s) = 1—els—1)/0?
(kernel-pen-att) and a repulsive kernel k4 (s) = e(s~1/7” (kernel-pen-rep) to a
pure coordinate descent method (L2(wd), sampling a new neuron at each step
as described in Section 4.4.1) as well as a variant where every other step we do
conic descent in Wasserstein geometry as described above (L2 (wg)-conic). The
number of neurons grows linearly for the latter two algorithms a priori. To make
the comparison fair with the kernel penalization methods we also use the ad-hoc
rule for merging neurons in the practical implementation of these algorithms.

The objective is the (penalized) empirical risk on data generated by a teacher
network with m* = 50 neurons and input data sampled uniformly on the unit
sphere in dimension d = 5. We use 0 = 0.2, a learning rate of n = 0.01 for
the conic steps, and A = 0.005 for attractive kernels and A = 2.0 for repulsive
kernels. We also use three different values for e: {0.1,0.15,0.25}. Those values
induce different levels of sparsity but do not seem to affect performance too much
as depicted in Figure 4.5.

0.0012 \ kemel-pen-att 00012 g 0.0012 \ Kemel-pen-att

kemel-pen-op

— Ctea Zoooo |\ — — L
3 ?(wy)-conic. 3 —— L%(wg)-conic
0.0008 \ = G Z 00008 R
0.0006 Eoooos |\

\ s \

0.0004 \ 200004 \\
~ & 00002 e

itting term /(i

F
o
=
8
S
5

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration Iteration k Iteration k

(@ e=0.1 (b) e =0.15 ()e=0.25

Figure 4.5: Initial objective J(uy) vs. k.

Figure 4.6 depicts the evolution of the number of neurons my, versus the itera-
tion number k. Unsurprisingly, the algorithms become more sparse as € increases.
We have also shown for reference the theoretical growth of an algorithm which
would add a new neuron every two steps (which is the case of kernel-pen-att,
kernel-pen-rep and L2 (w,)-conic if € is too small). The results do not seem to

174

indicate that the kernel penalty is able to induce more sparsity than simply doing
conic steps in the Wasserstein geometry with the ad-hoc rule we adopt. They do
indicate however that conic descent seems to push particles closer to one another
compared to sampling them uniformly on the sphere (which is what happens in
pure coordinate descent). With ¢ = 0.1, none of the methods appear to reduce
the number of neurons. With € = 0.15 the kernel penalization methods as well
as L2 (wy)-conic seem to induce some sparsity but the number of neurons my,
still seems to grow linearly with & albeit at a rate ak with o < 1/2. Finally, with
e = 0.25 the kernel penalization methods as well as Lz(wd)—conic seem to in-
duce a sub-linear growth of m,, at approximately the same rate, without damaging
performance too much. We have repeated the experiments with multiple values

2 2000

1500

1000

\
Number of neurons m,

500

0 - 0~ o #
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Iteration k Iteration k Iteration k

(a)e=0.1 (b) e =0.15 (©)e=0.25

Figure 4.6: Number of neurons my, vs. k.

of the penalty coefficient A and of the standard deviation o but the results seem
to be similar. However we have not carried out an extensive parameter search and
there could very well be some appropriate choice of 7, A, o and € which induce
more sparsity for the kernel penalties than for the other methods—and we do not
rule out this eventuality—but the experiments we have carried out do no allow to
conclude to such a fact.

4.7 . Discussion

Taking inspiration from convex analysis in finite dimension, we have explored
a range of algorithms to minimize convex objectives over the space of signed
measures. We have first shown that a coordinate descent algorithm in the L2
geometry provides a global convergence rate of k~/¢, but with the drawback that
the number of atoms grows linearly with the number of iterations. To circumvent
this issue we have studied penalized version of the objective which encourage
sparsity. The first is a total variation penalty for which we present different variants
of a proximal algorithm. While we could not obtain theoretical guarantees for these
methods in terms of the control of the number of atoms or of the objective value,
we show empirically that they have the desired behaviour. We leave as an open
problem the theoretical proof that this algorithm has the appropriate behaviour.
We have also studied kernel penalties which encourage sparsity implicitly by pushing

175

atoms closer or further away from each other, and we leave for future work the
experimental validation of such methods which remains inconclusive at this stage.

176

Conclusion

Studying the limit of neural networks where the width tends to infinity has
brought many insights on their behaviour, in particular on the dynamics induced
by gradient descent from a random initialization. For i.i.d. initializations, this limit
allows to understand precisely how one should scale the variance at initialization
as well as the learning rates during training in order to induce favorable learning
properties. Different parameterizations (corresponding to different choices of vari-
ance and learning rate) lead to different types of behaviour in the large-width limit.
The neural tangent kernel has global optimality properties, but is akin to a linear
kernel method in an infinite-dimensional space. On the other hand, "mean-field”
limits of two-layer networks enjoy favorable statistical properties while still pro-
viding global optimality guarantees. However, such “mean-field” limits with three
layers or more—which we call integrable parameterizations—have a degenerate be-
haviour with i.i.d. initializations. Recently, a parameterization called P has been
proposed so as to “maximize” learning in the infinite-width limit, but it is unclear
how it relates to other parameterizations.

In the first part of this thesis, we have shown that the nature of the degeneracy
of integrable parameterizations can be precisely understood using the tools of
the Tensor Program, and that there is a solution to train deep networks in that
parameterization in the infinite-width limit. By using large learning rates for the
first weight updates, one can correct the scales of the gradients in order to amplify
the random fluctuations at initialization and initiate a non-trivial learning phase.
Furthermore, this results in a dynamic which is close to that of uP: the only
difference is that the contribution of the initial random weights disappears after
the first weight update.

In the second part, we have demonstrated that the dynamics of infinitely wide
two-layer networks adapt to the orthogonal symmetries of the target function when
the input data has spherical symmetry. When the target function is odd, we
have proved that the dynamics lead to an exponential convergence to the global
minimum of the training objective. When the target function depends only on
the orthogonal projection onto an unknown lower-dimensional sub-space, we have
showed that the Wasserstein gradient flow dynamics reduce to lower dimensional
PDEs. Although rigorously proving the convergence of the features to the low-
dimensional sub-space is still an open problem, we gave informal and numerical
arguments which indicate that this convergence occurs.

In the third part, we have explored different optimization algorithms on the
space of measures inspired by techniques in convex optimization in finite dimen-
sion. For smooth objectives over the space of measures, we have designed a
coordinate descent method which convergences to the global minimum at a rate
of k=1/4 where k is the iteration number and d the dimension. The latter algo-

177

rithm is impractical because it implies adding a new neuron at every step, making
it computationally costly to run the algorithm until convergence. We have thus,
in a second step, proposed penalized versions of the objective which encourage
sparsity and strike a balance between global convergence and computational cost.
The first penalty we considered is the non-smooth total variation penalty, akin
to an L'-penalization in finite dimension, for which we proposed various proximal
algorithms to minimize the corresponding penalized objective. The second type of
penalties we considered consists in kernel penalties which induce sparsity implicitly
by pushing neurons towards or away from each other. Although we could not obtain
theoretical guarantees for these penalized methods, we show experimentally that
they have a good behaviour: decreasing the objective while limiting the number of
neurons and thus the computational cost of the method.

178

APPENDIX

179

A - Appendix for Chapter 2

A.1 . Notations for the appendix

We introduce here some additional notations that will come in handy in the
text and equations presented in the Appendix.

Hat matrices. We define the following matrices and output weight vector (see
Definition 2.2.1 for the definitions of the matrices U*):

{Wl =U'

_ A1
Wh=m=12U!, le[2,L+1]. (A1)

The pre-factor in m~1/2

is the natural re-scaling of the i.i.d. Gaussian matrices
when their input dimension grows to infinity due to the central limit theorem

(CLT).

Omegas. For any ac-parameterization, we define w; := m~%, and for any
l € [2,L+1], w :=m?> % To avoid blow-up or vanishing in the first layer,
all the parameterizations we study have w; = 1. This is the case for integrable
parameterizations, the NTK parameterization and for uP. For integrable param-
eterizations we also have w; = m=1/2 for | € [2,L + 1], but for uP, w; = 1 if
1 €2, L] and w41 = m~/? (see Section A.2.3 for a detailed description of xP).

Those w; naturally appear in the calculations as the magnitudes of the first
forward pass of an ac-parameterization of a neural network. The term m~% comes
from the scaling pre-factor of the effective weights, and the added m!/2 appears
wh/e\n expressing the computation in function of the naturally scaled wi: W) =
wW.

Scalar limits. For any scalar w which depends on m, we denote by w the
almost sure limit (when it exists) of this scalar as m — oc.

Gradients. We define for any ¢ and [,

Al =V, f1(&)

d =V 1 fr(&)
dw'(t) = V) [t (&)
A (1) = Vi f1(61)
Xt := 02l (ye, f1(&)).

181

The equations of backpropagation give:
dzl = whti)
de(t) = m*“L“:ctL
dhl = dat @ o' ()
daj ' = (W'(t)) ' dh|
dw'(t) = m~dhl (i)
db'(t) = m~dhl.

As noted in Definition 2.2.1 Remark 2.2.2, one has for [€ [1, L],

—c —(a;+-c -1\ T
Awl(t) = —pm ™ ypdw! (t) = —pm~ @Dy dhl (1) (A.2)
—a —(2a;+c¢ —1\ T
AW () = m~Aw!(t) = —pm~Caredy dpl (21-1) (A.3)
ABL(t) = m™ @AW (t) = —gm~Cute) y dhl, (A.4)
and for [=L+ 1
AW (t) = —npm~ %y dw™ T (t) = —pm T ernteri) y gk (A.5)
AWEFL () = m™ s AwP Y (1) = —pm~Carsteria)y oL (A.6)
ABM (1) = m™ ot AbEFL(4) = —pm~ Gorriterin)y (A.7)

Z variables. As described in Section A.2.2, the variables Z with a superscript
will be used to denote the random variable whose law describes the evolution of
all coordinates of a given vector of the forward or backward pass at a given layer
in the limit m — oo.

Tilde variables. For » € {hl,zl,dhl, dzl}, we will use Z to denote a variable
“without scale”, i.e., such that Z% has positive and finite variance (see Defini-
tion A.7.1). When we do so, we always have z = AZ for some scalar A (which
might depend on m). The tilde variables of the backward pass for ¢ > 1 might
have different expressions in different contexts or in different proofs, but we still
use the same notation every time as the exact definition should always be clear
from the context.

A.2 . An overview of the Tensor Program technique

The Tensor Program technique, first introduced by in Yang (2019), was initially
developed to better understand the behavior at initialization of networks whose
weights are initialized i.i.d. with standard Gaussians as the number of units in each
layer grows to infinity. Since the output of a hidden unit in layer [> 2 is given by
> ge1 Wéq(O)méfql, the magnitude of the weights need to be downscaled by some

182

negative power of m to avoid blow-up as m — oo. Scalings which have naturally
appeared in the literature are m=/2 and m~!, and lead to different types of limits.

Using a first version of the Tensor Program (referred to as NETSOR), it is
shown in (Yang, 2019) that the output at initialization of a neural network of
any architecture (fully-connected, recurrent, convolutional, with normalization,
attention, ...) whose weights are initialized with W!(0) = m~Y2U" for 1 > 2 (i.e.,
a; =0 and b; = 1/2 for | > 2 in the ac-parameterization) is a Gaussian process in
the infinite-width limit.

Going further, and in the light of the recent literature on the neural tangent
kernel, Yang (2020a) studies the first backward pass of networks initialized as
above in the limit where m — oo and has shown that the neural tangent kernel at
initialization, defined as K (¢,€) := (Vg f0(6(0); €), Vo fo(6(0);)) converges to a
deterministic limit for any architecture.

Finally, and most importantly for our work, the Tensor Program is extended
in (Yang, 2020b) to cover the forward and backward passes of networks of any
architecture at any time step and not just at initialization. The crucial step taken
in (Yang, 2020b) is to be able to describe the evolution of quantities where both
a weight matrix W' and its transpose (Wl)T are involved. (Yang and Hu, 2021)
then applies the results and theorems of (Yang, 2020b) in the particular context
of ac-parameterizations (or rather abc-parameterizations as defined by Yang and
Hu, 2021) to describe the infinite-width limits of neural networks with different
parameterizations.

A.2.1 . Intuition behind the technique
To explain the intuition behind the Tensor Program technique and how it
comes into play for neural networks, let us first look at the forward pass of a
fully-connected network with L hidden layers after ¢ steps of SGD. Assume single
samples (£0,90), .- (§t—1,yt—1) are used at each step for simplicity. Consider a
neural network in any ac-parameterization and an input £ to the network. Using

Equation (A.3) for the updates, the forward pass of the network at time ¢ is given
by:

t—1
B = WHO)§ —m~Cae) S, (e]€) dh)
s=0

t—1
hh = WH0)zl~t — pm~CGate) sz ((a:lsfl)Txiq) dhl 1e|2,1]
s=0

t—1

T — a C
fi(&) = (WETH0) af — g Cornters) N "y (ol Tl
s=0

To understand what happens in the forward pass, one thus needs to understand
the behavior of the multiplication by i.i.d. Gaussian matrices, that of vectors dh/, of
the backward pass as well as that of the inner products (24~ 1) Tzl As m — oo,

183

the sums defining the matrix multiplications and inner products involve an infinity
of terms and one must therefore understand how those quantities scale in the limit.

Before we dive into the matrix multiplications, let us look more precisely at what
the vectors dhl look like. We have:

dhl = dz'. © o' (h))

del = (W) dn — = Cote) 37, ((di) Tan) ol Le 2,2
u=0

We observe that inner products appear again, and that in contrast with the forward
pass, it is now the multiplication by the transpose of i.i.d. Gaussian matrices which
appears.

We already see that two main quantities appear in the calculations: The initial
i.i.d. Gaussian matrices, and vectors which are generated either (i) through the
multiplication of another vector with a Gaussian matrix or its transpose, or (i)
through some form of non-linearity involving other vectors as well as the activa-
tion function o and/or its derivative o’. Before trying to understand how the inner
products behave, let us first dive into the multiplication by i.i.d. Gaussian matrices.

Multiplication by i.i.d. Gaussian matrices

The multiplication of a random vector by an i.i.d. Gaussian matrix can happen
in two different scenarios: (i) the input vector is independent of the Gaussian
weights, and (i7) the input vector is correlated with the Gaussian weights, which,
in the case of neural networks, will translate into saying that the transpose of the
weight matrix is used somewhere to compute the input vector.

Independent input vector. Consider a list (24)gen= of i.i.d. random variables
with finite first and second moments, independent of U, and consider multiplying
this vector by the i.i.d. Gaussian matrix U!. At any finite-width m the p-th entry
of Ulz is given by

m
Z Ull)ql‘q e m'2N (0, E[23])
q=1

The terms (UL x4)g>1 are i.i.d. with mean 0 and finite variance E[27] because z,
is independent of U;,q. Therefore, by a central limit argument, the sum will behave
like m'/2N(0, E[x?]) for large m. It is thus natural to scale the sum by m~1/2, or
equivalently to consider W' = m~1/2U! (as defined in Equation A.1) for matrix
multiplications.

184

With the above result in mind, we take a look at the first forward pass at initializa-
tion of a network where all the weight matrices are initialized as W*(0) = Wt (ie.
a1 =0, a; = 1/2,1 € [2,L + 1]). We consider an input £ € R? to the network
and compute the pre-activations of each layer recursively. For the first layer, we
get that for any p € [m],

—

hop =W = (U'€)

I
M=~

qu;}q ~ N(0> ||£||2)

I
—

q

Since the (U},) are i.i.d. standard Gaussians, the linear combination above is also
a Gaussian with mean 0 and variance) &2 = [[¢]|*. Note that since the lists
(Upy)q are independent for different p, the vector hj has i.i.d. coordinates all dis-
tributed as AV(0, ||£||?). We also note that adding a bias term initialized as A"(0, 1)

would simply change the variance to ||¢]|2+1.

Then for the second layer we get that for any p € [m]:
Z o(hg,) mN(OaE[U(hé,OQD

The terms (qua(hévq))q are i.i.d. with mean zero, and by a central limit argument,
we have that the coordinates of h§ converge in law towards AV'(0, E[o (h{ ;)?]) where
Elo(hg,1)?]) is simply E[o(Z)?]) with Z ~ N(0, [|£][*). Those coordinates are also
independent (and Gaussian at any finite width m) conditionally on h} because the
lists (U2,)q are independent (Gaussians) for different p. The different coordinates
of hZ are identically distributed at any finite width m and remain so in the limit.
They are not strictly speaking independent at finite width but the intuition is that
they become so in the limit m — oo as they also become Gaussian, and that is

how they should be thought of in the context of the Tensor Program.

Repeating the calculations above at every layer, we can intuitively describe the
forward pass in the infinite-width limit by describing the law of a single random
variable Z; for each layer (whose law is the common law of all the coordinates
of the pre-activations 1)), and by the hand-wavy calculations above, we get the
following recursion for the variables Z:

Zy ~ N(0, [€]1%)
Zii1 ~ N(0,El0(Z)?), lel,1]

Having discussed the case where the input vectors are not correlated with the
weight matrix, we now move on to the case where there is some correlation be-
tween the two.

185

Correlated input vector. As the simplest form of correlation, we consider a

— T
vector z = (W) z where (2,)qen- is a list of i.i.d. random variables independent
of W' with finite first and second moments, and we consider the result of the
multiplication h = W'z. For any p € [m], we have

m m
B —~ =
hp = Z Z WpgWirg2r
q=1r=1

LY (08) [e | v
=|— 2o+ — Y 2z | —
Pq P T pg-rq
m m m
g=1 r#p q=1
By the law of large numbers, the first term will converge almost surely to z, as
m — oo. For the second term, the intuition is that for any r # p the terms
(1/v/m) 32, UpaUry become distributed as independent Gaussians as m becomes
large by a central limit argument. Then, by another central limit argument, intu-

itively, the sum over 7 # p should also becomes distributed as A(0, E[22]). In the

limit m — oo, we thus expect the coordinates of h = /Wl(/Wl)Tz to be the sum of
two terms: a first term distributed as 21 where the correlation between the entries
of W! and (Wl)T comes into play, and a second term distributed as N'(0, E[2?])
which is purely Gaussian and where the correlation between the entries of W and

(I//I\/Z)T has no effect.

The aim of the Tensor Program series (Yang, 2019, 2020a,b) is to formalize those
intuitions into theorems and rigorous calculations. Of course, the calculations be-
come more complex when we introduce non-linearities and consider later steps in
training than the initialization, but what the Tensor Program shows is that the
intuitions above still hold.

To summarize, the intuition is that in the large-width limit, the coordinates of
pre-activation vectors become i.i.d. and we thus only need to track the law of a
single real-valued random variable. Therefore, any average of some function of the
coordinates should converge to an expectation in the limit m — oo by a law of
large number argument. Finally, any multiplication by W yields two terms where
one is purely Gaussian and the other depends on the expression of the vector that

— T
is multiplied by W' in function of (W) .

A.2.2 . Mathematical formalism
The mathematical formalism of the Tensor Program goes beyond neural net-
work computations and describes the evolution of any computational systems (with
some restrictions) in the limit m — oco. The computational system is comprised
of different vectors whose dimensions are equal to m which can be generated from
a set of initial vectors in various ways. The Tensor Program is defined by the

186

sequence of mathematical operations which produce the vectors from previously
generated vectors. The operations are the same at any given width m, only the
size of the vectors and matrices involved change with m, and the aim of the Tensor
Program is to provide the tools (formalism and theorems) to be able to described
the behavior of the system in the limit m — oco. As described in the intuitions of
the previous section A.2.1, the coordinates of vectors in the program are roughly
i.i.d. as m — oo and variables Z are introduced to described the common law of
the coordinates in the limit m — oco.

Initial vectors. Consider a set V := {v',..., o™} € (R™)V of initial vectors
such that:

(i) the coordinates (vp)pcjm) are i.i.d. for any v € V and any m. We call
ZY a real-valued random variable whose law is the same as that of all the
coordinates.

(i) The joint law of ZY := (Z”l, e Z”N) is a Gaussian NV (pinit, Zinit) for any
m (the variables Z¥ do not actually depend on m, but this is simply to say
that at any width m and for any p € [m], the law of (fu}), ...,vN) is the same

»Up
N-dimensional Gaussian).

Initial scalars. Similarly, we define a list of initial scalars 61,...,603; which
can depend on m and for which the only requirement is that each 6, converges

almost surely to some finite limit 6, as m — oo.

Initial Gaussian matrices. Consideraset W := {Wl, e ,/WP} € (Rm>xm)P,

such that W;q ~ N(0,1/m) i.i.d. over p,q for any 7, and the (W’")Te[p} are in-
dependent of each other and independent of the vectors in V. Since we consider
a more general setting than neural networks, we do not index those matrices by
[and can have P # L but for neural networks, those initial matrices will always
be the initialization of the weight matrices of the intermediate layers [€ [2, L],
appropriately scaled.

Generation of new vectors/scalars. Given previously generated vectors
vl ..., v*, previously generated scalars f1,...,0,, and a non-linearity +(-; -) :

RF x R™ — R, we can, in the following ways, generate:

MatMul a vector z = W for any v € {vt,...,v*} and Wew.

NonLin a vector z = w(v!,...,v%; 61,...,0,) where v is taken element-wise,
i, zp=1(vh,... .08 01,....6,) for any p € [m] and for any m.
Moment a scalar w = - >0 ¥(vp, ..., v ; 01,...,0,) €R.

187

The non-linearity used does not have to actually depend on all the previous vectors
and/or scalars, but we present the operations this way for simplicity.

Given those operations, the Tensor Program framework allows to seamlessly de-
scribe the infinite-width limit of the computational system defining a given Tensor
Program by tracking recursively the laws of the variables Z whose law represents
the common law of the coordinates of a given vector. Indeed, every vector z in the
program (initial or generated using previous vectors in the program) will roughly
have i.i.d. coordinates in the limit m — oo, and the Tensor Program associates a
real-valued random variable Z* to the vector z. Then, associated with the opera-
tions on vectors and scalars above are the following operations on the corresponding
variables Z which come as their natural counterparts in the infinite-width limit to
track the evolution of the laws of the variables Z:

ZInit For initial vectors v € V, define Z¥ = 0 and Z° = Z°. The purpose of
those notations will become clear in the ZMatMul section.

ZMoment Given a scalar w = (1/m) 30" | ¥(zp, .. ., 285 601,...,0,), define

O=E|v(Z7,..., 27 61,...,01) (A.8)

ZNonLin Given z = 9(z',...,2"; 61,...,6,), define:

1

75— (77, 77 61,6, (A.9)

ZMatMul Given z = W for a previous vector v and WeW, 2=2+7%is
the sum of two terms:

ZHat Z7 ~ N <O,IE [(Z”)ﬂ) is a purely Gaussian term. Additionally, if we

let Wi;; be the set of all vectors in the program of the form Wu for
some u in the program, the vector ZWVw = (Zh)heww is defined to
be jointly Gaussian with covariance matrix given by:

cov(ZWe, ZWY) = K[Z%ZY]

Moreover, the vector Z"W is defined to be mutually independent of
the list of Z" for uw in {Z" : v € V U ewow ™ w4 Wi

W' = {WT cW e W}, and Wy is the set of vectors in the
program of the form Wu for some vector u in the program.

where

ZDot 7 comes from the potential interactions (correlations) between W
and W7 in the computation of z. One can always unwind the ex-
pression of ZY and express it in function of the ZWY for some Y in

188

the program, that is we can always write Z" by expanding the vari-

ables as 7V = qﬁ(ZWj\yl, LW 7 770y, .., 0,) with
x', ..., 2" such that W is never used in the computation of those

vectors. Then, define:

k
. 0z"
z __ Yj
Z% = E E [8 ATyj] Z (A.10)

where 6Z”/GZVAVT?U is simply defined as the j-th partial derivative of
¢ above when expressing ZV as required for 7. As noted in (Yang
and Hu, 2021), if ¢ is not everywhere differentiable, one can leverage
Stein's lemma to replace the formula in Equation (A.10) by a linear
algebra formula.

Now that we have introduced the necessary concepts and described the content of a
Tensor Program, we can move on to present the main theorem derived in (Yang and
Hu, 2021) which connects the mathematical operations used at finite-width with
the infinite-width limit of the computational system defining a Tensor Program.
The “master theorem” formulated in (Yang and Hu, 2021) is surprisingly simple
(although the proof is much more intricate) yet very powerful, and goes as follows
(see Yang and Hu, 2021, Theorem 7.4):

Theorem A.2.1 (Master Theorem). Given a Tensor Program, for any vectors

x', ..., 2% and scalars 6,...,0, in the program, and for any pseudo-Lipschitz

non-linearity v (see Definition 2.3.1, page 108), one has that:

]- a.s. ° °
=S "), 2k 00, ,0) " E [¢ <Zx1,...,zzk;91,...,er>}
m - m—00
p_
Remark.

1. The theorem essentially states that even though the coordinates of vec-
tors in the program are not rigorously i.i.d, they appear so from the per-
spective of the average by a suitable non-linearity so that a law of large
number type of result holds. Note that for neural networks, even though
the coordinates of the (pre-)activations follow the same law when using
i.i.d. initialization for the weights, it is not a priori clear that we can con-
sider them as independent copies, and thus that we can summarize the
computations using a single real-valued variable, but the master theorem
shows that from the perspective of averaging, this is in fact the case in the
infinite-width limit.

2. In (Yang and Hu, 2021), different versions of the Tensor Program are pre-
sented in the sense that different classes of non-linearities are allowed.

189

These differences induce minor subtleties in the master theorem and in
the proofs. However, most of the results in the main text of the paper
require that the non-linearities be pseudo-Lipschitz (which is the stronger
assumption), both in NonLin and in the master theorem. The Assumption 2
on the activation function o and its derivative ¢’ ensures that any quantity
appearing in the forward or backward computation of a neural network
can be expressed as pseudo-Lipschitz non-linearity.

3. What the Tensor Program and its master theorem show is that to under-
stand the behavior of the computational system in the infinite-width limit,
one simply needs to track the operations on the variables Z which mimic
the recursive operations in the computational system. Then, quantities
which involve sum over coordinates such as inner products between the
vectors in the program (which occur in the forward and backward passes of
a neural network, as well as in the computation of the neural tangent ker-

nel), or norm computations are easily described, when properly re-normalized,

through expectations involving the corresponding variables Z. The main
difficulty is that it is actually hard (computationally and in the mathemati-
cal formulation) to track the correlations between different Z because, as
explainedin (Yang and Hu, 2021), of the necessary unwinding in the defini-
tion of Z, so that the computational graph associated with the operations
on the variables Z is hard to implement in practice.

A.2.3 . The maximal update parameterization yP

We close this section by presenting briefly the maximal update parameterization
considered in (Yang and Hu, 2021). To quantify the learning abilities of a given
parameterization, Yang and Hu (2021) introduce the notions of feature learning
and feature kernel evolution at a given layer [€ [1, L], which we recall below. Both
these definitions concern the large-width limit of the networks:

Definition A.2.1 (Feature Learning). An ac-parameterization is said to admit
feature learning at the I-th layer if the quantity Azl(¢) = x}(¢) — z}(¢) is
such that there exists a training routine for which, almost surely, there exists
a constant C' > 0 such that ||AzL(¢€)[|?/m > C for large enough m.

Definition A.2.2 (Kernel Evolution). An ac-parameterization is said to evolve

the feature kernel at the I-th layer if the following quantity AF}(¢,€) :=

[xi(g)Txl (€) — xg(g)%g(g)} /m is such that there exists a training routine for

which, almost surely, there exists a constant C' > 0 such that for large enough
m, AF}(¢,€) > C.

(Yang and Hu, 2021) goes about categorizing whether different ac-parameterizations
admit feature learning or not. One of the striking result presented is that there is
essentially a dichotomy (depending on the values of (aj,c;)ig[r+1]) among ac-
parameterizations: an ac-parameterization either admits feature learning (and

190

evolves the feature kernel) or is in the kernel regime, meaning that the quanti-
ties in definitions A.2.1 and A.2.2 converge to 0 almost surely so that in the
infinite width limit, the evolution of the prediction function f; is deterministic
and depends only on the previous prediction function f; 1 and the loss at time
(t — 1) through a (deterministic) kernel K (&,€) = limy, o0 (mé(f))Txé(g)/m (or
a rescaled version thereof).

The categorization result proved in (Yang and Hu, 2021) holds for a certain class of
ac-parameterizations which are deemed stable and non-trivial. Stable refers to the
fact that the pre-activations and output (k) and fo(&) respectively) at initialization
do not blow-up as m — oo at any layer. As already hinted in Section A.2.1, this
corresponds to having a; = 0 and a; > 1/2 for | € [2, L + 1]. Non-trivial refers
to the fact that the pre-activations of all layers do not converge to 0 almost surely
as m — oo at initialization. This corresponds to having a; < 0 and a; < 1/2 for
[€ [2,L]. It is mentioned in (Yang and Hu, 2021) that those parameterizations
for which the pre-activations of the intermediate layers converge to 0 almost surely
should stay at their initialization throughout the course of training, and we actually
prove in Section 2.3, using the Tensor Program technique, that this is the case
when L > 3 in the setting where a; = 0 and a; = 1 forl € [2, L+1] (i.e., integrable
parameterizations) unless one uses large (polynomial in m) initial learning rates, a
scenario which is not covered in (Yang and Hu, 2021). We show that in this case,
integrable parameterizations are only trivial at initialization (the pre-activations
of all layers except the first one converge to 0 in the infinite-width limit) and are
actually in a feature learning regime at all layers after the first gradient step (¢ > 1).

The maximal update parameterization uP introduced in (Yang and Hu, 2021)
is the result of the analysis of the values of a;, and ¢; for which the parameteriza-
tion admits feature learning at every layer, and maximally so in the sense that if we
were to reduce the value of a; then the Azl introduced in Definition A.2.1 or the
pre-activations AL would blow-up as m — co. In essence, ;P corresponds to the
values of a;, and ¢; for which Azl is as large as possible (with regards to its de-
pendency on m) at every layer without creating any instabilities (pre-activations or
updates blowing-up) in the limit m — co. A quick analysis of the updates at t = 0
shows that the choice a1 = 0, a; = 1/2 for | € [2, L], and ar41 = 1 associated
with ¢; = —1 for all [€ [L + 1] achieves this, and it is rigorously shown in (Yang
and Hu, 2021) that this choice of ac-parameterization induces an update such that,
| AW ()2l |2 /m = ©(1). We thus adopt the following definition for 1P which
is the same as in (Yang and Hu, 2021, Definition 5.1) but re-parameterized to
remove the redundant b in the abc-parameterization:

Definition A.2.3 (1P). The maximal update parameterization pP is defined by

191

the following choice of parameterization:

al = 0, C1 = —1,
a = 1/2, a=-1, le2,1],
ar+1 =1, cry1 = —1L

A.3 . Useful preliminary results

We show in this section a couple of useful results which will prove helpful in
the proofs.

A.3.1 . Positive finite moments of pseudo-Lipschitz functions of
Gaussians
Lemma A.3.1 (Positive finite moments with polynomially bounded non-lin-
earities). Let ¢ be a polynomially bounded non-linearity which is not almost ev-
erywhere 0, and let Z ~ N(0,v?) with v? < oc. Then, for any p € R

(1) 0 <E[|p(2)[P] < o,
(i) if in addition v* > 0, 0 < E[|¢p(Z)[F] < oo.

Proof. If v = 0, and then ¢(Z) = ¢(0) almost surely, so that E[|¢(Z)[P] =
3(0)P< oc.
Now, assume v? > 0. Since ¢ is bounded by a polynomial of some degree
r >0, |p(2)|< C(1+ |z|") for some C' > 0. Then, |¢(2)[P= exp(pln(|p(2)])) <
CP(1 + |z|")P. Since v? > 0, we have

]. 2 2
Ell¢(2)|P] = / 2)[Pe* /2" 4z
o (Z) "] Nomm R!qﬁ()|
1 2 /0,2
< CP(1+ |2]")Pe % /2" dz < .
= [el

Finally, since ¢ is not almost everywhere 0, neither is |¢|P? which shows the
integral in the first equality above is not 0, and gives E[|¢(Z)[P] > 0. O

A.3.2 . The Z dots are 0 in the first forward-backward pass

Lemma A.3.2 (Z = 0 in the first forward-backward pass). Consider an ac-
parameterization of an L-hidden layer fully-connected neural network with a; > 0
and a; > 1/2 for 1 € [2, L + 1], and with a non-linearity satisfying Assumption 2.

S . T
Then for any 1 > 2, ZW'ss ' =0, and for any 1 € [1,L], ZW") dhh =,

Remark. This lemma applies to the NTK, uP, and integrable parameteriza-
tions (in particular IP-LLR) as well as HP and HPZ.

192

Proof. Consider any ac-parameterization of a fully-connected neural network
which hasa; > 0and a; > 1/2forl € [2, L + 1], and with a non-linearity satis-
fying Assumption 2. Define w; = m~ and w; = m~(@~1/2) for | > 2, and the
initial scalar a1 := m™%+1, The conditions on the a; guarantee that the w;
converge almost surely to either 0 or 1 and and a1, converges almost surely
to 0, which allows applying the rules of the Tensor Program.

For any [€ [2, L], since the computation of xé‘l, and thus of Z% ' do not
involve (W’)T, ZWa = 0 as per the ZDot rule of the Tensor Program.
In addition, Z" = w,(ZW'¢€ + Z*') and by definition, ZW'¢ ~ A(0,||¢]]?)
and 7' ~ N(0,1) are independent Gaussians, which shows that Zh ~
N(O,&f(HfHQJrl))Whosevarianceisfinite because[&f € {0,1}. ByLemmaA.3.1,
this also shows that E[(Z%6)2] < oc. Let! € [2, L] and assume that E[(Z50 ')2] <
o and E[(Z%0 ')2] < oo. We have h) = w,Wlah ! + m~u!, Since m=2at con-
verges to 0 almost surely, we can consider it as an initial scalar in the program,
which gives by ZNonLin Z" = & ZW's6" 4+ 0 x Z". Z% ~ N(0,1) by defi-
nition since v! is an initial vector in the program, so that Zho = &lfwl%ﬁl ~
N(O,&?E[Z“‘B_I)Q]) whose variance is finite by the induction hypothesis and
because &; € {0,1}. Then by Lemma A.3.1, we also get that E[(Z%0)?] < oo,
which concludes the induction.

Let us now deal with the first backward pass for any ac-parameterization. The
result will essentially boil down to having the expectation of the derivatives
defining the Z being 0 because the weight matrices are initialized with 0 mean
and because of an independence argument. We have dzf = W +1(0) =
m~oLn ULt and dhl = dat © o/ (Z"). By ZNonLin we thus have

L o L+1
Zdaro — OZL+1ZU

)

Zdhé = &L+1ZUL+IO',(Z}Z€).
—~, T
Now let! € [1, L]. deb ' = (W) dhl gives

Z W dnly _ Z(Wh Tanh Z(/V[W)Tdhf)’

and to understand what Z (W) " dn is, we need to expand the expression of
Zdhs in function of variables which were generated with . So far, the only
variable where W' was used is k) = w,W'z"! (with the convention that z0 =
&o). We thus need to expand the expression of 74 in function of ZW'% '
We have, forl =L

L o L+1 o 57 %4
Zdho — OZL+1ZU O'/(OJLZW))

o SUL+l 4,0 A/WZCE
:aL+1Z O'(wLZ 0),

193

where the last equality stems from the fact that ZWheg™ = ZW 5T in the
first forward pass, and the fact that UX*1 is an initial vector in the program
which gives by definition ZUE = ZUM e can formally write this as

dhL A/W\L L—-1 AUL+1 fe) o
Z%M0 =w(Z" 7 S QL4+, W),

where W(zy, 29; 01, 602) := 61290'(0221) is a pseudo-Lipschitz function because
o' is, and we have

ov

8721(21, 29;01,02) = 0102290" (0221).

We get that by definition

ZWh anh _ g B
82WLxO

oz] z% "

[e]
, sap41,wr) | Z%0

82:1
= QO E[ZV T 6 (G ZW e 20

17,0 A/WLxg—l mé_l
JElo" (Wi 2 NZo_

0 <00 <00 a.s.

- E [8\1/ (Z\WLI(I;A Z\ULH o

o o SyL+1
=arpwr E[Z

where the last equality stems from the fact that by ZHat, ZW" 57" s inde-
pendent of ZU""" because UL is an initial vector in the program. The fact
that the second expectation finite is because wy, € {0,1}, 0" is polynomially
bounded, and 2’1&%5*1 is a Gaussian with mean 0 and finite variance since
E[(Z% ")?] < cc. This gives Z (W anf _ g,

Lo~ T — T
Now supposel € [1, L—1] and assume Z (V'™ dhs™" — g which gives z(W'*") dhg™" =
Z0WVH) i e have

Zdhly _ gdzp ot (Zhlo)

—~ T o~
o 1+1 I+1 o 1..1—1
_ leZ(W) dhg U/(wlZW z;)

o S~y | gl o ATl -1
:WZ—HZ(W) dhg O'/(wlZW x;)

where we have used that previous Z are 0 to replace the Z with Z. We can
once more formally write this as

l ATl =1 il | gl o o
2% = w(Z" 0 ZWTD AT Gy)

194

with exactly the same ¥ as for [= L. We get that by definition

S arh _ g [0270 |
YA
=k |:g\11(w é) ! A(WH'l) thl ‘f)l—l-hwl) Zxé)*l
z1

—~ T —
° ~TTI41 I+1 o AT -1 -1
_ (/.)l+1(/.)l]E[Z(W) dhg O'//(OJ ZW z)]ZIO

° ° ~ Ty | gp L l 1 -1
= oo E[ZWT) T Bl (& Z o)] Z%
0 <00 <ooa.s.

=0

Where the first expectation is 0 because by definition Z(VAVM)TdthH is a Gaus-
sian with 0 mean and an easy induction (from [= L to [= 1) shows that, as
for the forward pass, E[(Z9%0)2] < oo and E[(Z%0)2] < oo, which implies that
E(WHI)Tdhéﬂ has finite variance. The second expectation is finite because
W € {0,1}, 7ZW'=5"" is a Gaussian with 0 mean by definition and finite variance,
and because ¢” is polynomially bounded since ¢’ is pseudo-Lipschitz. O

A.3.3 . Gaussian output in the infinite-width limit

Lemma A.3.3 (Gaussian output). For every m € N¥, let " and w™ be indepen-
dent random vectors in R™ such that

Lllam|-s o,
— 00
wi* ~ N(0,1/m) iid. overj=1,....,m

Then

(w™) Ta™ 22y A(0,02,)
m—0oQ

Proof. Consider two sequences of independent vectors of growing dimen-
sion (w™),, and (2™),, as in Lemma A.3.3. Conditionally on 2™, the ran-
dom variable (w™) " z™ follows a Gaussian AV(0, ||z™||2/m) distribution. Since
||z™||2 /m converges to o2 almost surely, the conditional distribution of (w™) " z™
given 2™ converges to a Gaussian N(0,¢2,) distribution. The lemma follows.

O

A.3.4 . Convergence of the coordinates to the limiting distribution
Z

Lemma A.3.4 (Convergence to the limit distribution). For any vector h in the
Tensor Program we have for any . € N*,

!
h@&zh

m—ro0

195

Remark.

1. Let h',... h* be k vectors in the program, let 61, ..., 6, be p scalars in the
program, and let ¢ : R¥*? — R be a pseudo-Lipschitz function. Then ap-
plying the previous Lemma A.3.4to h := ¢(h', ..., h*;0y,. .. ,8p) (which is
in the program by NonLin), shows that for any «, ¢(hl,..., hE;61,...,6,)

) (0’3
converges in law to Z" = ¢(Z"', ..., 2" 01,...,0)).

2. A stronger form of convergence can occur depending on the parameteri-
zation we look at and the context. Indeed, if for example Z" turns out to
be a constant, then we already get convergence in probability instead of
in law. If in addition the convergence is “fast enough”, it can occur almost
surely.

Proof. Let h be avector in the program, and consider the corresponding ran-
dom variable Z". Allwe need is to prove that for any o € N* and any bounded
1-Lipschitz function ¢, we have E[p(hq)] — E[¢(Z")], as m goes to infinity. We
first observe that the Master Theorem A.2.1 ensures the convergence

m—ro0

S plhg) ~22 Elg(2")]
B=1

Secondly, for any m, the distribution of h4, ..., h,, is exchangeable by sym-
metry, so that we get

m—ro0

Elo(ha)] =E | -3 6(hs)| —— E[6(2")],
B=1

where the convergence is obtained by dominated convergence, which con-
cludes the proof. O

A.4 . Proof of the triviality of IPs: Proposition 2.3.1

Proof. Fixatimet > 0and aninput¢ € RY for the whole proof. We first show
that the coordinates of the (pre-)activations of any layer [> 2 converge to 0
almost surely at initialization. To that end, we prove that the corresponding
Z's are equal to 0. Then we show a similar result for the backward pass, and
finally conclude the proof by an induction.

A.4.1. Proofatt =0
First forward pass

Tensor program setup: We consider a Tensor Program as defined in
Wil — L+l
U1€07 vy U1£t7 U1‘£7

196

and the initial scalars

X055 Xt
w = m*1/2, V.= mfl,T = m’z,
mfleH;

and with initial weight matrices
w2, Wk,

Recall that the T are defined in Equation (A.1) of Appendix A.1. Note that for
any m € N* and j € [m], we have

1 0 0
(UJLH,(Ulgo)j,...,(Ulgt)j,(Ulg)j,v;,...,UJ.L>NN o,[o0 M o]],
0 0 I,

where M := Gram(&p, ...,&, &) = (§;§s)0§r15§t+1 and Iy, is the identity matrix
of size L x L. where we have set ;1 :=¢&.

Convergence of the initial scalars: w, v, 7 as well as m~!v™*! all converge
almost surely towards 0. For the x5 we will show below in the proof that they
all converge to constants almost surely, thereby meeting the requirements of
the Tensor Program. It is important to note that there is no circular logic to
prove the y, converge almost surely. Indeed, each time we apply the mas-
ter theorem to prove the convergence of f4(¢;s) to a constant almost surely
and thus that of x;, we apply it to a restricted Tensor Program where only
the scalars (x»)o<r<s appear (and there is no such scalar needed to prove the
convergence of yg as shown below) which will already have been proved to
converge almost surely.

1st forward pass: We drop the dependency of the forward and backward
passes on ¢ for brevity. hl = U'¢ + v! is the sum of two initial vectors
in the program and has iid Gaussian coordinates N (0, |[¢]|>+1). By defini-
tion, Z" = ZU'C 4 Z°' ~ N(0,||¢]|>+1) since the two Gaussians appear-
ing in the sum are independent. By NonLin, we have that since z{ = o(h}),
Z% = g(Z"). Note that E[o(2")2] < oo since Z" is Gaussian with finite
variance and o is pseudo-Lipschitz and thus polynomially bounded.

Since L > 2, we can write h3 = m‘l/QWQwé + m~1v? (otherwise there is no
h2 and we simply have fo(&) = m~1(U?)" z}), which implies by NonLin that
Zh = HzW* 1 72" with o = » = 0 and

szm(l) _ Z\WQI(I) + ZW2£E(1)

197

ZW?h — 0by LemmaA.3.2,and Z"V’# ~ A/(0), E[(Z%0)2]) and 0 < E[(Z70)?] <
c0. We thus have Z" = ZW*(©z = . Similarly, we also get that nuZ"” = 0.
We then have by ZNonLin Z% = o(Z") = o(0) = 0.

Let{ € [2,L — 1] and assume Z"0 = 0. Then, Z% = ¢(Zh) = 0, and since
hé'H = leH:cé + voltt by ZNonLin, ZhlUJrl — HzW! g + 7" where by
ZMatMul,

Tl+1..0 ST+, C AL
ZW+I022W+Z‘O+ZW+$O’

and ZW'"'s = 0 by Lemma A3.2. By zHat, Z"V'"'%b ~ A(0,E[(Z70)?)),
and since @ = 0, Z"W'"'%0 = 0. Similarly, 72" = 0. Then, by ZNonLin

z7 " = a(thJH) = 0(0) = 0, which concludes the induction.

We thus have only to deal with the last layer L + 1 to finish the first forward
pass. We have fy(¢) = mfl((U”l(O))Tmé +olthy = (1/m) S, Ul +
m~1ol*L, Since UL and o are vectors inthe program, (1/m) > U af
is a scalar in the program by the Moment rule, and it therefore converges al-
most surely to E[ZU""" Z%0] by the Master Theorem. Now because UL*! is
an initial vector in the program, by definition, ZU""" = ZU™"" ~ AN(0,1) is
independent of Z%0'. We thus get E[zV""" z20] = E[zV"""|E[Z*0] = 0. On
the other hand, m~'v! is an initial scalar in the program which converges to
0 almost surely, so that fy(£) converges almost surely to 0.

First backward pass

1st backward pass: We can apply the previous reasoning of the forward pass
with &y instead of £ and we get that fy(&) — 0 almost surely. Therefore,
since xo = 92€(yo, fo(&o)) and 92€(yo, -) is continuous by assumption, xo —
d2l(10,0) =: X, almost surely. We have dzf = m~'U"*! which makes it a
vector in the program by NonLin, and Z4%6 = pZU""" Since ZU"™" ~ N(0,1)
has finite variance and = 0, we have Z%6 = 0. dh} = dzk © o/(h{) implies
by ZNonLin Z@he = 7426 o' (Z"7) = 0 x ¢’(0) = 0.

One has:

gmda ™ _ &(E(WL)T(mdhg) " Z(/V[?L)T(mdhoL))’

e o~ T
where mdh} = U © ¢/(hf). By Lemma A3.2, Z(W") (mdhg) — 0 (essen-

—~ o~ T
tially, W' never appears in the computation of dhk), and by zHat, Z(W") (mdhg)

N(0,E[(Zz™dh5)2]), and by independence of ZU™"" and z"7,

E[(Zz™")%) = B[(zV"))E[o'(20)?]) = o'(0)?

198

which is finite. Since & = 0 we get 2% = 0. dhl~! = dat~" @ o/(hE ™)
implies by ZNonLin Zmdhg ™! Zmd””g*la’(Zhgfl) =0 x g’(Z’lé*l) —0.

Let I € [2, L] (which is non-empty since L > 2) and assume Z™md% — zmdhy —
T
0. mdas™t = w(W') (mdhl) implies by ZMatMul

mdalt :)(’Z\(/W’)T(mdhé) n Z(W\Z)T(mdhg)).

By LemmaA.3.2, 7 (W) (mdhb) — 0, and by zHat, ZW) ' (mdhb) Ar(0, E[(Zmhb)2)).
By the assumption above, E[(Z™@%)2]) = 0, and since & = 0 we get Zm426 ' =

0. dh™t = dab ™t © o’ (h 1) implies by ZNonLin Zmang ' = Zmdxé_la’(Zhé_l) =
0xo'(Zh0). Zho " isnot0ifl = 2, but since it is Gaussian with finite variance,

and ¢’ is pseudo-Lipschitz by assumption, o’(th)_l) is finite almost surely, and
Zmdhg™" — () almost surely, which concludes the induction.

A.4.2. Induction step

Induction: Since we proved the result of the theorem for ¢ = 0 in the first
forward pass, we might as well assumet > 1. Let s € [0,¢—1] be an integer. In

all that follows, for any r € [0, s], for z € {hL, 2L, dh., dzl}, we use z to denote

T T

z(&,). We make the following induction hypothesis: for any r € [0, s]

(20 = 2V &+ V(0,6 |12+1)
Zh =0 almost surely, I € [2, L]
fr(&), f+(€) — 0 almost surely

Xr = Xp 1= 02l(y,, 0) almost surely

Zmdz, — zmdh. — () almost surely, [€ [1, L — 1],
Zmd;tf = L+1,

The aim is then to prove the same claims for r = s + 1. Let us first start with
the expressions of AW'(s+1) and AB!(s+1). We will use Equation (A.3) and
thefactthate, +2 > 0ifl € [2,L],and ¢ +1>0forl=1,andl =L+ 1. We
have by Equations (A.3) and (A.6)

AW (s +1) = —pm =Y xrdh) &,
r=0

AW! (s +1) = —nm=C+) 3" xpant @), e 2,1,

r=0

AW (s + 1) = —pm~Hees) Ny ol m,
r=0

199

and by Equations (A.4) and (A.7)
AB'(s+1) = —pm™@ Z xrdhl,
ABl(s41) = —ym~ 2+ Zerhl (2, L],

ABL'H(S +1) = —nm_(1+cL+1) Z Xr/m.
r=0

In the following, we use for z € {n. ;2! ,,dh! |, dz!, }, we use z to denote
z(€) (and not z(&s41) for now). Using that in the Naive-IP, ¢; = ¢ 11 = —1, and
¢ = —2forl € [2,L], we have

AW (s + 1)+ AB' (s + 1) = —nZ£s§+)xr(mdhy),

T 1
) s+11)+1

AW!(s + 1)zt + AB'(s + 1) —”Zxr (mdhl), 1€ 2, L],

+1
(AWE (s + 1)) 2l + ABY (s + 1) :_”ZXT 1) T

To prove the claims above for r = s+ 1, we will firstinduct froml =1tol =L
for the forward pass and then induct from [= L to ! = 1 for the backward
pass.

Forward pass at step s + 1

Forward pass at step (s + 1): hl,; = U'¢ + vl + AW (s + 1) 4+ Abl (s + 1)
and by ZNonLin

r= 0 0 a.s.

= 7V = 7h(©) almost surely.

Note that the scalars (x;,)o<r<s are now valid scalars in the program by the
induction hypothesis which allows applying the Tensor Program rules with
those scalars as well as the master theorem. This gives Z++1 ~ N(0, ||€|>+1),
and we then have Z%+1 = o(Zh©)) = 7z for which we have already
proven E[(Z%0()2] < co.

s T 1

—~ (.CC) +1

he = wWlay g + 70> =) N Lot T
r=0

(mdh2).

200

Because x§+1 is a vector in the program, by ZMatMul
ZWQI;+1 _ Z\WQJ:;JFI + Z W2:r:;+17

and because Z%+1 = o(ZU'¢v") is only a function of the initial vectors U¢
and v, and not of any vector computed used (/I/I?Q)T, ZWala — g by ZDot,
and 2V ~ N(O,E[(inﬂ)Q]) is a Gaussian with finite variance by ZHat.
($})T:U§+1/m is a valid scalar in the program by the moment rule, and by the
Master theorem,

((xi)T$;+1 +1)/m ﬁ IE[Z%I“ZgC;H] = E[U(ZU1£T+UI)U(ZU1£+U1)]7

and because U¢,, v! and U'¢ are initial vectors in the program, (ZU'értv! zU e+t
is jointly Gaussian by definition with finite covariance matrix

<|I€rll2+1 &«T€+1>
16 +1 [|glP+1)”

which ensures the expectation above is finite because o is polynomially bounded
since it is pseudo-Lipschitz. We thus habe

S
h§+1 = AW%;H v _ N Ty UC;H mdh3
Z 0xZ +0x Z% =0 X, B2 Z%n]Z

<00 =0 <% <00 0

zhi = 0.

We then get Z%1 = o(0) = 0 and thus E[(ngﬂ)z] = 0.

Let! € [2, L — 1] and assume Z"-+1 = 0.

s INT g

—~ zn) b, +1

hij‘_ll =W prtt gl g E Xr—(r) 772“ (mdhtHh).
r=0

Now, since z!, is a vector in the program, ((mﬁ,)TgclsJrl +1)/m is a scalar in
the program by the Moment operation, which converges almost surely, by the

Master Theorem, to

E[Z% Z%+] = Elo(Z"™)a(Z"+1)] = 0(0)% = 0.

By ZNonLin,
I+1 W 5 I+1
o 1411 o +1 [¢] l l
Zh5+1 :O.)ZW Top1 4 77V _772 X,]E{ZZTZIBS""l]Zmth
)
= <oo 0

On the other hand,

Witigl . SWitlgl s Wil
7 s+l = s+1 4+ 7 s+1,

201

and since Z%+1 = a(Zhs+1) = ¢(0) = 0is a constant almost surely, the deriva-
tives defining Z are equal to O (its expression as a function of the previous Z
is a constant because any Z gets multiplied by 0) so that ZWHHaly, 0, and
ZWH i o (0, E[(Z741)2])) = 0. With &y = 0 and 7 = 0, this yields
741 = 0, and therefore E[(Z%+1)2] = E[o(Z2"+1)?] = ¢(0)% = 0.

We now deal with the last layer [= L + 1 in the forward pass.

’r’ s +]‘
Fer1(&) = m™ YO Tl n}:% i

Since ULzl | 2l are vectors in the program, by the Master Theorem, we
have:

L+1 L+1
Uk ek m B[z 270 = o(0) B2V] =0,
0
and
(HJL)T Lo+1 L.
r) Totl &2, B2 Z%5+1] = 0(0)% = 0.
m m—o0
We thus get
s (IL‘)Tﬂj +1 s
Xyt N X x0=0
m m—oo
r=0 r=0

This shows that

a.s.

fer1(§) ——= 0.

m— 00

Doing the exact same reasoning as above with £, instead of { forr = s+ 1
gives us the first 3 claims of the induction hypothesis for r = s + 1.

Backward pass at step s + 1

Backward pass at step (s + 1): the fourth claim ys41 — Xoy1 = 92£(ys11,0)
is a consequence of the fact that fs4+1(£s4+1) — 0almost surely, combined with
the facts that xs+1 = 020(ys+1, fs+1(&s+1)) and that 924(ys41, -) is continuous
by assumption. In all the rest of this proof, for z € {h!, ., z! 1, dh! 1, dz! 1}
we now use z to denote z(&s41) and not z(£) anymore.

mdzl, ;= wtt (s + 1) = UL — 38 X2l yields by ZNonLin

S

S

L L+1 o L
Zmdzs+1 — ZU - Z X, VAL
r=0 0

Z4 = 72U

202

We thus have Z%1 = 7zmdin = 0, and 2% = Z%ag/(Zh0) =
0 x ¢’(0) = 0 almost surely.

One has:

> (mdhi)deh§+1 L—1

o~ T _
mdxs—&—l = w(WL) (mdh§+1) - Z Xr m Ty)
r=0

so that

s
gmdatl _ & 79 manky) S R B[zt gmdtt) 7ot
r=0

Now, we have E[zZmdh: zmdho] = E[(ZUV"™)2]0’(0)2 = o/(0)2 which is fi-
nite. On the other hand, because Z™d:+1 = ZUL+1 does not depend on
27" we get that Z W5 (mdhk) — o and 2079 (marky) o A7(0,1) so that
A (mdhsﬂ) = 0. It follows that Z™d:s1 = 0, and since Z™m =
Zmdri ol (76 we also get Zmdhin = 0,

Let [€ [2, L] and assume Z™ %11 = Zzmdhiin = 0, Then

(mdhl) mdhs
mdxs—&—l - W(Wl) mdhs+1 -7 Z Xr +1 fﬂ 1

Since (mdhl) " and mdhl,, are vectors in the program, (mdhL)" mdhl_,/mis
a scalar in the program which converges almost surely, by the Master Theo-
L
rem, to E[Zmdh: zmdhsi1] = 0. On the other hand Z W) (mdhii1) — (because
Z™h 11 s a constant (its expression in function of the previous Z is constant
~, 5T
equal to 0), and Z(W") (mdhy) AF(0, E[(Z™0)2]) is almost surely 0 because
E[(Z™dh0)2]) = 0. By ZNonLin we have

-1 Tl 1 l l -1
des+1 — w Z (W) dh Zdhr Zdhs+1 Zr
. 1 E xr 1z

T 0
-1
Z%s1 = 0.
. dhl—1 det=1 it . dnl—1 pl-1 .
Finally, Z%s+1 = Z%s+15'(Z"s+1) yields Z*"s+1 = (because Z"s+1 = 0. This

proves the last claim of the induction hypothesis for » = s + 1 and thus con-
cludes the induction and therefore the proof. O

A.5 . Preliminaries on positively homogeneous functions

203

In this section we give a description of activation functions o satisfying As-
sumption 3. The fact that o is positively p-homogeneous translates as

azP ifz>0
o(z) = .
BlzlP if z < 0.

Additionally, one has

, apzP~t if 2>0
o'(z) = .
—BplzlP~t i 2 <0,

so that ¢’ is positively (p — 1)-homogeneous with ¢’(0) = 0. Since p > 2, both &
and ¢’ are continuous and ¢ is differentiable everywhere except at 0 if p = 2. It
is immediate to check that both o and ¢’ are pseudo-Lipschitz and that o, ¢’ and
o are also polynomially bounded functions. The non-negativity assumption on o
gives o > 0,8 > 0, the fact that o is not identically 0 leads to o > 0 or 5 > 0,
and finally the fact that o has faster growth on the positive part of the real line
yields o > B > 0. One notices that the faster growth assumption is stronger than
the assumption that o is not identically zero, and the latter could thus be gotten
rid of. The conditions on « and /3 can thus simply be summarized as

a>B>0 (A.11)

With these conditions, we have that o(z) > 0 for z > 0, and ¢/(2)z > 0 for z # 0,
that is sign(o’(z)) = sign(z).

A.6 . Simplification of the first update for IPs with Assump-
tion 4

Before we present the dynamics of IPs with smooth and positively homogeneous
activation functions in the next Appendix A.7, we first show how under Assump-
tion 4 the first forward and backward passes is effectively linearized in intermediate
layers for IPs which thus behave as an IP with a “smooth” and 1-homogeneous
activation function.

In all this section we consider and activation function satisfying Assumptions 2
and 4, and we consider parameterizations with no bias terms except at the first
layer. We denote p := ¢’(0) for simplicity which is # 0 by assumption.

A.6.1 . Tilde variables

Definition A.6.1 (Scaleless variables at initialization). Let ¢ € R¢ be an input
vector. We consider the following variables “without scale” at initialization:

vl € (2,1, {]?f)(g) - Ylv%il(@
Ty(8) = hg(§)

204

and define fo(¢) := (/WL+1)Tj‘6’, as well as

diy(§) := U
dhf (&) = U

dzh (€)== Wit TdﬁHlé
vielL-1], {dﬁzgf; = El:i‘é(g)) oe

where the W' are defined in Equation (A.1).

Remark. Notice that there is a slight difference in the tilde variables with pos-
itively homogeneous activation functions as in Definition A.7.1: in the forward
pass, the term Z is simply equal to % because of the linearization which oc-
curs, yielding a similar effect to o being identity, and in the backward pass, in
dhl, the term o’(h}) is replaced with o’(h}) in the presence of homogeneity.
This is because with homogeneity, the “scale” of bl can effectively be taken
out of ¢’. This is a small difference which does not matter for the core of the
arguments: the proofs we present in Appendix A.7 below still work in the case
of Assumption 4 with minor adjustments which we will discuss further.

In light of the remark above, Lemma A.7.1 also holds here with the slight difference
that in the forward pass Z% = zho for | € 2, L], and in the backward pass, as
we already saw in Appendix A.4, Zho =0 forl € [2, L], so that Zdhy = pZdi’é for
l € [2, L] which even simplifies the arguments in the proof of Lemma A.7.1.

A.6.2 . First forward pass

We start with a preliminary lemma before stating the results for the first forward
pass.

Lemma A.6.1 (Linearization property around 0). Let z be a variable in a Tensor
Program such that |Z#|< oo almost surely and let o satisfy Assumption 4. Then
forany a > 0, it holds

Zm“o(m_“z) _ pZZ

Proof. Let a and o be as in the lemma. For any m, by taking the first order
expansion with remainder of o around 0, and since ¢(0) = 0 and ¢/(0) =
p, it holds o(m™%z) = pm™%z + R(m~z) where the first order remainder
is R(u) = o(u) — pu, and thus m?c(m=%z) = pz + m*R(m~%z). The as-
sumption on o ensures that the second term converges to 0: |m*R(m~%z)|<
ma¥m=22 = M=, Because Z* is finite almost surely and a > 0, it fol-
lows that WZQ converges to 0 almost surely and thus so does m*R(m™%z),
from which it follows that Z™*f(m~2) — . By the rules of the tensor program,

it then comes Z™"0(m™%2) — pzz 4 Zzm*Rm™="2) — 72, O

Lemma A.6.2 (First forward pass linearization). Consider an integrable param-
eterization of an L-layer neural network with o satisfying Assumptions 2 and 4

205

and a loss satisfying Assumption 1. Then, it holds:

Zh = zh, g7 = Z%
1—1)/251 o il 1—1)/2.,.1 —1 -kt
m(=D/2p), _ 20 m=D/2) Pz 1e2, L

This shows that the first forward pass is effectively linearized, and if |p|# 1, one
should scale the standard deviation of the initial Gaussians by |p|~1=|o/(0)|7! to
avoid explosion or vanishing when the (fixed) depth L is large.

Proof. Because a; = 0, there is no multiplying factor in front of Wy(0) = Wt
and thus Z" = Z" and Z% = Z%,)

h = m~Y2W 2l = m~Y/2h2, which shows Zm"/*h = Zhi, In addition,
one has m'/222 = m'/2¢(m~1/2h2) and by Lemma A.6.1, it holds Z™"/*+ =
707",

Assume that m(—1/2zh6 = pl=27k and zm"“" V26 = pl=17h% for some
I €[2,L —1]. Then m!/2pt = Wit (m(=1/2zL), and by the rules of the Ten-
sor Program, we have Zm"/*ho = ZWH m=D20)) | ar(0, B[(Zzm"%0)2]) =
PN (0, E[(Z%0)2]), which is the same law as pl*IZWHlZ% = p=1zh"" and
thus we get A pl‘lZ%Jrl where the equality is understood in law,
which is the only thing that matters in the Tensor Program. Then, ml/%é =
ml2g(m~Y/2 (m!/2h})), and thus by Lemma A.6.1, we get Z™"/*® = pzm'/*hy —
pl/QZ%H, which concludes the induction and with it the proof. O

A.6.3 . First backward pass

Lemma A.6.3 (First backward pass linearization). Consider an integrable pa-
rameterization of an L-layer neural network with o satisfying Assumptions 2 and 4
and a loss satisfying Assumption 1. Then, it holds:

gmdel _ def _ ZUMT pmdhf _ chZhg _ pZUL+1

)

1 L—-1)/2 4.1 1 1 L—-1)/2pl 7l
Zm m(E=D/2dzl _ pL_ldeO’ Zm m(E=0/2dnl _ pL—l—l—lzdho, = [1,L _ 1]

Similarly to the first forward pass, if [p|# 1, one should scale the standard deviation
of the initial Gaussians by |p|~'= |0/(0)|~! to avoid explosion or vanishing in the
first backward pass when the (fixed) depth L is large.

Proof. By definition, dzl = WL+1(0) = m~1UL*!, and dhly = daf © o' (R),
and by the ZNonLin rule of the tensor program, given that Zht =0 by Ap-
pendix A.4, we have 774 = ZU"" = 745§ and zmdky = 7V 6/ (0) =
p7dhg

Then, m'm!/2del= = (WL)T(mdh}), and thus by ZHat it follows that
Zmim!2day ™t o A(0, E[(Z9R6)2)) which is the same law as pZ9%0 ', and thus
Zmlml/le‘é’l _ pZdiz(f;*l. m1m1/2dh0L—1 _ m1m1/2dx0L—1 @U/(héﬁl), and thus
by ZNonLin Zm'm'/dhg ™" — 2 zdhy ™"

206

Assume that zm'm"~"/2dzy — ,L-1 7d% and Zmlm(L:l)/thf) — Lt zdhy
for some [€ [2,L — 1]. Then, m'm(E=HD/2q2=1 — (WHT (mm(E=D/2qn))
and thus by ZHat we get that Zzm'm“"V/2dag" — ZWHT (m!'mE=0/2anp)
pL=HLN (0, E[(Z2976)2]) which is the same law as pL~+1Z7% " which shows

— -1 ~l—1
Zm!mETD eyt pL=l+17d% " Finally, as above, the following equal-
ity holds: m!'mE=H0/2gpl"t = mimE=H0/242l" © o' (h5~1), and thus by
ZNonLin we get Zzm' m"~ D/ 2dhg — jL-1+2 7dhg ™' \which concludes the in-
duction and with it the proof. O

A.6.4 . First gradient scales

Lemma A.6.4 (First weight updates’ scales). Consider an integrable parameter-
ization of an L-layer neural network with o satisfying Assumptions 2 and 4 and
a loss satisfying Assumption 1. Call x, := 92£(0,0), and finally, let ¢ € R* and
29, ..., 2, bevectors in the program such that E[(Z*)?] < oo, it holds:

(L+1)/2 1 o _ Rl
zm AWV = —pxopt (e &) 2
Zm(L+2)/2AWl(1)zl_1 _ _nS’(OpL—lE[ZZl—l Z%il]zd%

m(L+1)/2(AWL+1)TzL a.s. _niopL—lE[ZzLZi{;}
m—roo

Note that as soon as 825(0,3/0),5551 # 0 and the expectations are not equal to
zero (we know they are finite by Lemma A.7.1), all the first weight updates gen-
erate variables which have positive and finite second moment. Also note that the
scale correction needed to have updates of the appropriate magnitude corresponds
exactly the using negative powers of m which are equal to ~;(p) for p = 1 which
would correspond to 1-homogeneity.

Proof. This results from the scale analysis of the forward and backward passes
above and from the formulas for the updates AW (1) = —nxodhi&, , AW (1)
—m~Iyxodhh (x5)T, AWEFY(1) = —nxom~'azf ™t Noticing that one has
pl=1 = pL=H) p(=1-1) 35 well as m~(EHD/2 = =1, =(L=1/2 and finally
m~E+2)/2 = =1y = (=1/2 = (L=1+1)/2 3llows to conclude. O

A.6.5 . Final comments on Assumption 4

With the lemmas presented above, it is clear that Assumption 4 induce a
behaviour in the first update step that is similar to homogeneity with p = 1 which
bears a couple of differences with Assumption 3. First , ¢/(0) # 0 which means
we cannot amplify the signal of the forward pass in o’(h) and the latter simply
converges to o’ (0). Because o/(hl) appears in the first weight updates, and that
for uP it does not converge to 0, one cannot obtain exact equivalence between
IP-LLR and pP without a higher degree of homogeneity. However, after the first
weight update, IP-LLR with o satisfying Assumption 4 has the same updates as
1P, but with a different initialization.

207

A.7 . Preliminaries for Theorem 2.3.2 and Theorem 2.4.1

In all this section since we assume positive homogeneity of the activation func-
tion, we also consider parameterizations with no bias terms except at the first
layer.

A.7.1 . Tilde variables

Definition A.7.1 (Scaleless variables at initialization). Let ¢ € R? be an in-
put vector. Independently of any parameterization, we consider the following
variables “without scale” at initialization :

h(€) = U'E + vt el {hg €)= Wiak-(¢)
{@%(5) = o (hg()) <B4 () == a(hb(¢)
and define fy(¢) := (/WL“)T:%(%, as well as
{d?OL(’S) =u ~ Vi€ [L—1] {d%(é) = (W) dRL (€)
dhy(§) := dzg (§) © o' (hg'(€)) L dhb(©) = dip(€) © o' (R ()

where the W are defined in Equation (A.1).

Remark. The tilde variables are independent of the choice of parameteri-
zation because, independently of the parameterization, Wlﬂq = mfl/QU]ﬁq ~
N(0,1/m) forl € [2,L + 1] and ﬁ/\;q = Uy, ~ N(0,1). Those variables es-
sentially reproduce the computations that take place in the forward (with-
out any bias terms except at the first layer) and backward passes of any ac-
parameterization but the magnitudes (the multiplying scalars w;) have been
setto 1, essentially removing the additional scales which lead to explosion or
vanishing as m — oo. The tilde variables of the forward pass at initialization
correspond to the NTK parameterization. However this is not the case for the
backward pass as the backward pass of NTK vanishes at initialization whereas
the corresponding tilde variables have positive (> 0) variance as shown in
Lemma A.7.1 below.

Lemma A.7.1 (Scaleless variables have positive and finite second moment).
Let ¢ € R? be an input vector, and consider a non-linearity o satisfying Assump-
tion 2. Then, dropping the dependency of the tilde variables on &, one has that for
anyl € [1, L], and for any z € {hb, &}, dh}, dzh}, the second moment is positive

208

and finite: 0 < E[(Z*)?] < co. More precisely, one has:

2% ~ N (O, [[EP+1), 0 < E[(Z%)?] < oo

7"~ N(0,V2), 0 < V2 = E[(Z%)] < o0, l€2,L],
0 < E[(Z%)?] < oo, €21,
Jo(€) = N(0, V), 0 < VP :=E[(2%)] < o,

795~ N(0,1)

79 S N(0,VE,), 0< Vi, =E[(Z%] <o, 1e[l,L-1],
0 < E[(29")?] < oo, lel,L]

Remark. As shownin Appendix A.14, those expectations, as well as the means
(first and second moment) are tractable with 0 = ReLU and have simple ex-
pressions (for the first forward and backward passes). As shown in Appen-
dices A.14.3 and A.14.5, the recursive formulas for the variances of the for-
ward and backward passes can be unrolled, and to avoid explosion or van-
ishing with the depth L, one must initialize the i.i.d. Gaussian entries with a
standard deviation of v/2 to preserve the norm of the input signal.

Proof. Let ¢ € RY be an input vector. We omit the dependency of the forward
and backward passes on ¢ for simplicity. We first induct from! =1tol =L
for the forward pass and then from [= L to ! = 1 for the backward pass.
BO = U'¢ + o' is the sum of two initial vectors in the program, which follows
two independent Gaussian laws by definition: ZU'¢ ~ A(0, ||¢]|2), and Z°" ~
N(0,1) independently of ZU'€. We thus have Z"% ~ A/(0, ||£||2+1) which
shows its variance is finite and > 0, and by Lemma A.3.1, 0 < E[(Z%) | < o0
since Z% = g (ZM).

Now let [€ [1,L — 1] and assume Z ~ N(0,Vi2;) with 0 < V;; < o0, and
0 < E[(Z%)2] < cc. By ZMatMul, 7t = ZW' '3 which is equal to ZWa by
Lemma A.3.2. now by definition, AT ~ N(0, E[(Z%)]), and the variance
is > 0 and finite by the induction hypothe5|s so that 0 < E[(Zh) | < 0.
Now by Lemma A.3.1 again, since Zi' = a(Zh+), we also get that 0 <
E[(Zxo)2] < oo which concludes the induction for the first L layers of the
forward pass.

fo(€) = (I//(\/l“)TNL and WL“ ~ N(0,1/m) for every m, and by the Mas-
ter Theorem, since ||Z5||? /m is a scalar in the program defined by the mo-
ment operation, it converges almost surely to E[(Z%)2]. Finally, since Tk
is computed using only the W' for I < L, &% is independent of W', By
Lemma A.3.3, fo(&) converges in law towards A (0, E[(Z%5)2]), and it holds
that 0 < E[(Z%)2] < oo by the previous induction.

209

7% = zU"" and since U1 is an initial vector in the program whose coordi-
nates are iid following A/(0, 1), we have by definition ZU""" ~ A/(0,1). Z%s =
7435 o/ (Zht) = ZU' o/(ZWFE). Now by definition in zHat, ZW "% is in-
dependent of ZU'™" since UL+ is an initial vector in the program. This yields
E[(Z™)) =B (27" E[0'(2%)?]
—1xE [a’(zﬁé)ﬂ .
By assumption, ¢’ is pseudo-Lipschitz and thus polynomially bounded, and is

~L—1

not almost everywhere 0. By the induction above, Z0 ~ N(0,E[(Z%)?))
with 0 < E[(Z%)2] < co. By Lemma A.3.1 we thus have 0 < E[o’(Z%6)2] <
o0, which shows 0 < E[(Z29)?] < .

Now let I € [2,L] and assume Z% ~ AN(0,VZ) with 0 < V2, < oo,
- o — T o~ — T o~

and assume 0 < E[(Z%0)?] < oo, Z6 ' = zW' dhy and z(W) dhg —

~ T T o~ T -

ZWh dhy by Lemma A.3.2. By definition, ZW) dho ~ A7(0,E[(Z%0)2]), so

that E[(Z%%0 ')2] = E[(Z9)2] and thus 0 < E[(Z%0 ')2] < oo by the induc-
tion hypothesis. We have

dezé_l _ Zdilo_lo_l(zl%_l) _ /Z\(/Wl)Tdﬁéo_/(Z\/V(?l_lié_2)
if] >3, and
Z4h — 747 o1 (703 — 2(%2)%%30/(2@1&%1)
if | = 2. In any case, the random variable inside ¢’ is independent of the other

variable in the product. We thus get
E[(Zdﬁ(l)_l)2] -F [(Zdié_l)Q} E |:0_/(Zi~zé_l)2}

>0, <oo >0, <oco

where the bounds on the second expectation are obtained using LemmaA.3.1.
This concludes the induction for the backward pass and thus the proof. O

A.7.2 . Expression of the forward and backward passes of ac-parameterizations
in function of the tilde variables with homogeneity
Lemma A.7.2 (Forward pass with homogeneity at t = 0). Consider any ac-
parameterization of an L-hidden layer neural network with a p-homogeneous ac-
tivation function, and p > 1. Let ¢ € R? be an input to the network. Then, omitting
the dependency of the forward pass and the tilde variables on &, one has:

hh =pahb, 1€ [1,L], (A.12)
xh = (yp)Pzh, 1€ (1, L], (A.13)
fo(&) = v7,0+1f0(8), (A.14)

210

where, foranyl € [1, L + 1]

Remark.

2. When p =1, v¢; and (vy4,)? simply reduce to wy . . . wy.

3. Forintegrable parameterizations, forany! € [1, L+1], y7; = m~ Zi—o?"/2,

The latter term is 1 when [= 1, and otherwise m~(¢~1/2if » = 1 and
m~ T =D/2(=1) if p > 1. For uP, v¢, = 1forany ! € [1, L] because
w; = 1foruPifl e [1,L).

4. Instead of homogeneity, assume ¢ is differentiable, has non-zero deriva-
tive in 0 and o(0) = 0. Also assume that w; = 1 (i.e.,, a; = 0) and
w; — 0 (e, a > 1/2) forl € [2,L], which is the case in integrable
parameterizations. Then, we have h} = h}, and hZ = w.h2, so that
2% = o(wyhd) and as m — oo, 2 ~ wyo’(0)hZ. Then similarly, we have
for hd ~ wswyo’ (0)W3h2 and 3 ~ wsw,a’(0)2W3hZ. An easy induction
then gives hl) = 6/ (0)'2(w . .. w2)W'. .. W2h2. This thus resembles the
case of a p = 1 positively homogeneous function, except that the first
forward pass is effectively linearized after layer 1, but the magnitude
of the forward pass at different layers is also well understood in this
case so that the learning rates for the first update can be chosen appro-
priately (e.g., for integrable parameterizations). In particular, the initial
learning rates of IP-LLR for p = 1 will also produce non-trivial weight up-
dates at ¢t = 0 in this setting, which will in turn induce learning. Finally,
setting the initial standard deviations of the weight matrices equal to
|o’(0)| 7! instead of 1 for the intermediate layers avoids problems with
the depth L.

Proof. h{ = m~® implies that h} = w1 (U'¢ + v') = w;h}, which entails z} =
wi 7} because o is positively p-homogeneous and w; > 0. Now let] € [1, L —1]
and assume R}, = ([]._, ng”“)iig, and z}, = ([T._, w’,zlfkﬂ)f:g. Then

RS = wp WHL(0) 2

l
I— k41 | —~
I+1 ~1
k=1

A I+1-k
— P pl+1
= [Tk ho

k=1

211

Since o is positively homogeneous, we have

A o)

l+1 l+1 k

7l+1
H wi Valhy
l+1 l+2 k

l+1
H w)

This concludes the induction and gives the result for any I € [1, L]. To con-
clude the proof we compute the expression of fy(&):

L
Jo(€) = wr i (WE0) "2k = wrpa ([T) WE(0)) 2k

O

Lemma A.7.3 (Backward pass with homogeneity at ¢t = 0). Consider any ac-
parameterization of an L-hidden layer neural network with a positively p- homo-
geneous activation function, and p > 1. Let & € RY be the first training input.
Then, omitting the dependency of the forward and backward passes, as well as
that of the tilde variables on &, one has for any [€ [1, L]:

p—1
daf = m ™ Ty, (H ')’fk) dzl), (A.15)

k=l+1
L p—1
dhly = m™ 41y, (H yf,k> dhb, (A.16)
k=l
where, foranyl € [1, L],
L
Mol = H Wk -
k=l+1
Remark.
1. By swapping the products, one has that
7 max(k l+1)p
H ik = H “k
k=141

L p—1
2. Whenp =1, (Hk:l 'yf’k) =1foranyl e [1,L+1].

212

3. For integrable parameterizations, y;,; = m~(*~0/2 for any I € [1, L]. For
pP, v, =1foranyl e [1, L].

L L
4. Forl=1L,wr =11l p1 76 =L ITkzivre = V1L
Proof. dzt = WE(0) = m~unUEH = m~er+iqzl,

dhl = dzf © o' (hE)
=m~Hdig © o (v4,hg)
= m~ U+ (yy,)P dES © o' (hg)
where the second equality stems from Lemma A.7.2 and the last equality
stems from wy,...w; > 0 and the positive (p — 1)-homogeneity of ¢’. Let

| € [2, L] and assume that dx}, satisfies Equation (A.15) and dh}, satisfies Equa-
tion (A.16). Then

—;. T
deht = w, (W) dhl

L p—1
_ T -
=m~“FHlwp, (H ’Yf,k-) (W' dhg
k=
L -1
=m= iy H Vi ok dzg ",
k=(1—1)+1

and

dhlt = dahy © o' (h)

=m "ty (

=m "ty (

- = T3=

p—1
=m Uty (1T 'Yf,k) dhit,

where we have used Lemma A.7.2 in the second equality, the positive (p — 1)-
homogeneity of o/ combined with w;...w; > 0 in the third equality and the
definition of d%‘l in the last. This thus concludes the proof by induction. O

Lemma A.7.4 (Weight updates with homogeneity at t = 0). Consider any ac-

parameterization of an L-hidden layer neural network with a positively p- homo-
geneous activation function, and p > 1. Let & € RY be the first training input.

213

Then, omitting the dependency of the forward and backward passes, as well as
that of the tilde variables on &g, one has:

L
AW!(1) = —ygm ™ (ersrt2m et <H ”ZHH) dhgg
k=2

L
ABl(l) = *nxom_(aL+l+2al+cl)WfL71 (H sz—k+1) dﬁ(l)’
k=2

_ diLl ~l—1
ZSPVJ(I) ::__nXDTn‘(aL+1+QGl+Cr7D (;[I(UiL k+l> u6_1 0() , l El27147
k=1

L
AWEH (1) = —yygm™Battera=y <H
k=1

Remark. For p = 1, we have

L
wa_l (H wZL k+1> =wi...wy
k=2
L
pL—k+1 1
<Hwk)wl =W1... . W—1Wi41 ... WL
k=1

L
pL7k+1
H wy, =wi...wy,
k=1

Proof. Before we begin with the proof, we start with a first basic result which
will be used repeatedly in the proof. Let N € N*. By Equation (A.3), we have

N N+1 N
p-DY P => - p=p""-1
r=0 r=0

r=1
Now that this is established, let us look at the update for the first layer. We

have

AW (1) = —pm~ Gt xodhgéd

L

p—1
— _nm7(2a1+61+aL+1)fyb71 (H 7f7k> X()dil(l)f(—)r7
k=1

where we have used Lemmas A.7.2 and A.7.3 in the second equality. Now, we
have

L
M,1 = H Wk
k=2

214

and by the first point in Remark A.7.2, we have (with [= 1)

L p—1 L . .
DL e
(H%ﬂk) = [Lwi">=r
k=1

k=1
L

- Wi
k=1

L—k:+1_1

1
=
K‘E'U

=
Il
—

It follows that

L pil L L—k+1

I I pE—1 I I DT
Vb,1 Vf.k = w; Wy

k=1 k=2

The formula for AB'(1) follows from the expression of dh{, in function of dh}
and from Equation (A.4).

Letl € [2,L]

AW(1) = —ym~@arted yoapd (z5-1) T

TR G T
:—Um*(z‘”“”“”l 1)X07bl (v£1-1) (H’Yfk) —0 -

3 &

Now, we have

L
Vo, = H W

k=Il+1

In addition, by the first point of Remark A.7.2, we have

-1
l—k
(V1) = (H wp),
k=1

and by the first point in Remark A.7.2

L p—1 -1 . L
(va’k> _ (H w}(fpfl)z,«:zp) (H (P—1) 3y p)
k=l -
(i)« (fre)
_(H ”“Zrop> (Hw(pl Top>.

215

Let us now look, for each k € [1, L], at the power of w;, which appears in the

p—1
product v, ;(vf,1-1)P (Hﬁ:z '7f7k-> . If k e [1,1 — 1], the exponent for wy, is
equal to

L—1
P -1y pr=pF ((p —1D)Y A+ 1)
r=0

—plk <pL—l+1 14 1)

— plk+1,
If & =, the exponent for w; is equal to
Ll
(p—-1)) p=p"" -1
r=0

If k € [l + 1, L], the exponent for wy, is equal to

L—k
1+ <p_ 1) Zpr -1 +pok+1 -1 :pokJrl.
r=0

Thus, for every k # [, the exponent for wy, is equal to p»~**1, and for k = I,
the exponent for w; is equal to p»~!*+1 — 1. It follows that

p—1 L

L—k+1 -

Yo, (Vfi-1) (HW,) = (H wp)wl '
k=1

Finally,

AWLJrl(l) — _nm*(2aL+1+CL+1)XOxOL
= —nm~Geretera =y (v VPEE /m,
where we have used Lemma A.7.2 in the second equality. From the first point

of Remark A.7.2, we get that

k+1
’YfL

th

which concludes the proof.
O

Corollary A.7.4.1 (Weight updates of IP with homogeneity at ¢t = 0). Consider
an integrable parameterization of an L-hidden layer neural network with no bias
terms except at the first layer, and a positively p-homogeneous activation function,
and p > 1. Let & € R? be the first training input. Then, omitting the dependency

216

of the forward and backward passes, as well as that of the tilde variables on &,
one has:

AWl(l) — _nXOm—(Cl—%(p))diLégJ’
ABY(1) = —pxom~ = n®)gp},

Loal—1\T
AW (1) = —nxom~ (@~ o) . leI),
m
AWL+1(1) _ _nxom_(cL+1—’YL+l(P) wé/m’

where the ~;(p) are given in Definition 2.3.2.

Proof. Forintegrable parameterizations,w; =1, w; = m~Y2forl e [2, L], and
ar+1 = 1. For the first layer, we have ar 11 + 2a; 4+ ¢; = 1. On the other hand,

L L L—k+1 L
1 - o L—k+1
| | wh = | | m~P /2
k=2

k=2
L _
= m_ > k=2 pt k+1/2

— m_zk 1pk/2

= m_1/2(zﬁz_01 pk_l)’

so that

L

L H L—k L—

m_(aL+1+2“1+61)Wf B (WIIZ +1> — 250 PR

k=2
— V2K PP

by Definition 2.3.2, which gives the result for the first layer's update (AW1(1)
and AB(1)). Letl € [2,L]. ar+1 +2a;—1 =1+2—1 = 2. On the other hand,

(ﬁ wiLHl) wl_l — mfl/Q(Zf;)1 pF=1),,1/2
k=1
— /2R P
so that
L
m_(aL+1+2al+Cz (H pt k“) =m clTn_l/2 ZL 1pk+1

k
=m Clm 1/22k op -1

_ m*Clm’n(p)’

217

by Definition 2.3.2, which proves the result for the updates of the intermediate
layers. Finally, we have 2a;+1 —1 = 2—1 = 1, and on the other hand, because
w1 = 1, as in the first update, we find

L
L—k+1 _ L—1_k_
H U')Z =m 1/2(Ek:0 p 1)’
k=1

so that

L
m—(2aLy1terL—1) H wi’L*kH — m*CLHm*l/?(Eﬁ:_ol PF=1),,~1
k=1
L—
— m—CLHm—l/?(Zk:ol pr+1)

_ m*CLJ,-lm’YL-&-l(p)’

by Definition 2.3.2, which gives the result for the last layer’'s update and there-
fore concludes the proof. O

Corollary A.7.4.2 (Weight updates of IP-LLR at t = 0). Consider an IP-LLR pa-
rameterization of an L-hidden layer neural network with a p-homogeneous acti-
vation function, and p > 1. Let & € R be the first training input. Then, omitting
the dependency of the forward and backward passes of IP-LLR, as well as that of
the tilde variables on &y, one has:

AW (1) = —nxodhdéy
AB'(1) = —nxodhg,

dRk (71 T
AWI(]') = _77X00(i2)7 l € [27‘[’])

AWPH(1) = —nxog /m.
Proof. This is a simple consequence of Corollary A.7.4.1 and the fact that for

IP-LLR ¢; = 7;(p) at t = 0 by definition (see Definition 2.4.1) forany ! € [1, L +
1]. O

Lemma A.7.5 (Weight updates of uP at ¢t = 0). Consider the uP parameteriza-
tion given in Definition A.2.3 with a differentiable activation function o. Let &, € R?
be the first training input. Then, omitting the dependency of the forward and back-
ward passes of uP, as well as that of the tilde variables on &, one has:

AW (1) = —nxodhi&y
ABY(1) = —nxodh}

diLl i'l_l T
AW (1) = o P07
AW (1) = —nxozd /m

, 1e2,1]

218

Remark.

1. Although the formulas are identical with those for IP-LLR when the ac-
tivation function is positively p-homogeneous, this does not mean that
the weight updates are exactly equal. Indeed, although the tilde vari-
ables do not depend on the choice of parameterization and will thus be
the same in uP asin IP-LLR, the variable xo which appears in the formu-
las is parameterization-dependent as it depends on fy(£) which itself
depends on the choice of parameterization.

2. There is no strong assumption on the activation function here (e.g., ho-
mogeneity) as uP is designed to have such updates which induce fea-
ture learning at all layers.

3. Note that the coordinates of AW!(1) are in ©(m~!) whereas that of
W(0) are in ©(m~1/2) for | € [2, L], so that paradoxically, even though
1P is designed to produce “maximal updates” (in a certain sense), we
have that AW} (1)/W] (0) = ©(m~'/%) — 0 asm — oo: the relative
displacement of the weights is zero in the infinite-width limit. More gen-
erally, we have that for uP (W] (t) — W/ (0))/W] (0) = 0 asm — oo if
t > 1, which means that weights of the intermediate layers do not move
away from their initialization in the infinite-width limit for P, even if the
(pre-)activations of every layer are maximally updated. This is in stark
contrast with IP-LLR for which both W!(0) and AW!(1) are in ©(m™!)
for the intermediate layers [€ [2, L]: the weights do move relatively to
their initialization in the infinite-width limit.

Proof. 1P is designed so that its forward pass has hl, = Bf) forany ! € [1,L].
Indeed, the choice of pre-factors for the weights with P lead to the same
recursive equations for the forward pass as the tilde variables, except for fy(£)
which is equal to m~1/2f,(¢). For the backward pass, one has that for xP,
dzl = WEH(0) = m~1UL*! = m~1dz}. We then have

dhl = dzl © o' (hE)
=m~ il o o' (hE)
= m_ldﬁg.

Let! € [1, L — 1], and assume that dzf™ = m~dzht" and dhi™ = m~tdnkt.
Then, we have

T
dzfy = (WH0)) dhiH!
1Tl | g5l

= m l(W +1) dhOJrl

= m~ldil.

219

Similarly, we have
dhly = dzh © o’ (hb)
= m~Ydzh ® o’ (b))
= mfld%,

which proves by induction that for any I € [1, L], dz}, = m~'d%} and dh}, =
m~'dh}, for uP. Recall that for uP, a; = 0,a; = 1/2forl € [2,L] and ay 1 = 1,
and ¢g = —1forany! € [1, L + 1]. Now by Equations (A.3) and (A.4), the first
weight updates give:

AW (1) = —nxom ™ m ™~ dhg&g
= —nxodhiy
and
ABY(1) = —nxom ™ “'m~dh}
= _nXOdﬁ(l)a

Forl € [2, L], we have

AWH(1) = —myom~F0m1dRl (1)

= -1\ T
b
Finally,
AW (1) = —nxom~ Crers) g
= _nxojg/mv
which concludes the proof. O

A.8 . Dynamics of the infinite-width limit of IP-LLR

Lemma A.8.1 (IP-LLR is zero at initialization). Consider the IP-LLR parameteriza-
tion with a positively p-homogeneous activation function, and p > 2. Then, for any
input vector ¢ € RY, one has that hi\(¢), z}(€), dzl, dhl, are vectors in the Tensor
Program program for any | € [2, L], and additionally:

fol€) ===0

m—o0

X0 S >o<0 := 02((y0,0)
m—r00

Remark. The result on the almost sure convergence of xy ensures that the
latter is a valid initial scalar in the Tensor Program defining the computations
associated with the IP-LLR parameterization.

220

Proof. Because o and ¢’ are pseudo-Lipschitz (since p > 2, see Appendix A.5),
the tilde variables of the first forward and backward passes (h, 7}, dz), dz!)
are vectors in the program given Definition A.7.1 by the ZNonLin and ZMatMul
rules. Additionally, by Lemma A.7.2,

fo(fo) =m" Silo pk/2m—1/2(UL+1)T%
— mY/2m— Yilo p’“/Qm—l(ULH)T;Cg
=~ TR P 2L (B T E

Now, m~L(UE+1) "L — E[ZV""" Z35] almost surely by the master theorem,
and 7% = a(ZWLié*l). By the Lemma A.3.2, ZWERGT — EW%&*I, and
by the ZHat rule, the latter variable is independent of ZU" since ZU" s
an initial vector in the program. This gives E[ZU""" z%6] = E[zV" " |E[Z2%0] =
0x E[Z%]. By LemmaA.7.1, and Lemma A.3.1, E[Z%] < oo because o is poly-
nomially bounded. We thus get E[ZU""" Z3] = 0, and since m~ k=1 /2 ¢
(0,1], fo(é0) — 0 almost surely. Recall that by definition (see Appendix A.1)
X0 = 02€(yo, fo(&o)). Since fu(&) — 0 almost surely, and since 92¢(yo, -) is con-
tinuous by assumption, we have that yo — 92£(yo,0) =: X, which concludes
the proof. O

Definition A.8.1 (Tilde variables in the backward pass after initialization). For
any ac-parameterization with ay 1 = 1, define for any t > 1,

dzt = mdal, dhl = dzl © o' (D),

dzt = (W) TdRlt, 1e[1,L - 1],

dht =dit o o' (hh), 1e[1,L—1].
Remark.

1. One could in general define diz! to be equal to m®+1dz} but since all
the ac-parameterizations we study in this paper, i.e., integrable param-
eterizations, uP, or hybrid versions thereof have ar; = 1, we limit the
formulas to this case. The tilde variables are the right quantity to look
at because of the term m~%:+1 which appears in the gradient w.r.t.to o}
and then propagate to all the other variables of the backward pass by
the equations of backpropagation.

2. Recall that in the definition above, it is implicitly assumed that the com-
putations of the forward and backward passes at any time step s are
done with the input £ = &,.

Lemma A.8.2 (Relationship between tilde and non-tilde variables). For any
ac-parameterization with a1 = 1, for any t > 1, and for any &, dropping the
dependency of the forward and backward passes on & at time t, one has:

Vie[1,L+1], dit = mtdil, dhl = m~tdhl.

221

Proof. del = m~'dil. dh} = dat © o' (W) = m~'diF © o’ (hF) = m~'dhF.
Now let I € [2, L] and assume dz} = m~'dz!, dh} = m~'dhl. Then da!™! =
(Wit) dht = m=Y(Wi(t)) dht = m~tdil"!, and dhl! = dat (ki) =
m~'dil o (hi1) = m~1dh!~! which concludes the proof by induction. [

Lemma A.8.3 (Weight updates for IP-LLR at any time step). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 1,
and lett > 1. Then, dropping the dependency of the forward and backward passes
on & attime t, one has:

AWt 1) = gt m,
= 1\ T
()

AW!(t+1) = —nx . le2 1),

AW (t + 1) = —nxadhi &/
ABY(t + 1) = —nxdh}.

Proof. Using Equation (A.3), we have AWLH1(t) = —pyum~Carnterigl —
—nxxl /m because 2ar,1 + cpyp = 2 —1 = 1in IP-LLR since ¢t > 1. For
le(2,1]

AWL(t) = —yem~Cated gpl (21T

_ T
m
by Lemma A.8.2 and because 2a;+¢; = 2—2 = 0fort > 1in IP-LLR. AW(¢) =
—nxem~Garte)dple, = —ny,dhl€e] by Lemma A.8.2 and because 2a; + ¢; =
0—1= —1fort > 1inIP-LLR. Finally, by Equation (A.4), we have AB'(t) =
—nxem~2arte)dpl — —py,dhl by Lemma A.8.2 and because 2a; + ¢; = —1.
O

Theorem A.8.4 (Weights in IP-LLR at time ¢). Consider the IP-LLR parameteri-
zation with a positively p-homogeneous activation function, and p > 1. Then, for
anyt > 1, one has:

() W(t) = U = xodhd] —n (S0 xdhle]),

(i) B'(t) =" — nxodhd — 1 (S0 vedhl),

- T

— ~l—1 = —1\ T
(iii) W(t) = w W — pyoPolo), (Zi;ll xdhl(“ﬂil)> L€ [2,L),

(iv) WEFL(t) = UM /m — nxo@l /m —n (Zi;ll XsTl/ m)

Proof. We have already seen the formulas are correct for ¢t = 1 by Corol-
lary A.7.4.2. Then, by Lemma A.8.3, an easy induction immediately yields the
result. O

222

Lemma A.8.5 (Backward pass of IP-LLR at time t). Consider the IP-LLR param-
eterization with a positively p-homogeneous activation function, and p > 1. Then,
forany t > 1, dropping the dependency of the forward pass at time t on &, and
of the previous forward and backward passes on the corresponding £, one has:

(i) dit = whi(t) = UL+ —nxoil — n 302 xsal,

] =, T - dil) " dhl dhl) T dhl g
(i) dz}" = w (W) dhf—mxo P! —n I Pl e
2, L.

Proof. By definition, we have

dil = mdzl
— mWL—H (t)
t—1

—X0E — N Y XsTY
s=1

— UL+1

where the last equality stems from Theorem A.8.4.

Let! € [2, L], we have:

dzit = (W) dh
t—1

dhl) " dhl dhl) " dhl
_u}l(Wl) dhl 77X0(O) t l 1_772XS() t l 1
m 1 m
where the second equality stems from Theorem A.8.4. O

Lemma A.8.6 (Z for the forward pass of IP-LLR at time ¢t = 1). Consider the

IP-LLR parameterization with a positively p-homogeneous activation function, and

p > 2. Let¢ € R beaninputto the network. Then, foranyl € [1, L), bk (€), x4 (€), i}, dht
are vectors in the program, f1(€) is a scalar in the program, and x1 is a valid initial

scalar in the program. Additionally, dropping the dependency of the forward pass
attimet = 1 on &, and of the first forward and backward passes on &, one has:

() zM = ZW B0 = U4 70" (€] € + 1) 27,
(i) ZM = ZW' e = G ZWhe _ % Bz ze zdk, e (2, 1),

(i) f1(6) = (WEH (1) 2b bt B[V 2o) - B2 271

Proof By Theorem A.8.4, with ¢ = 1, one has that Al = U'¢ + v —nyxo(é4 € +
1)dh§. By Lemma A.8.1, dh} is a vector in the Tensor Program and xj is a valid

initial scalar in the program which has an almost sure limit y, := 92£(y0,0) as

m — oo. In addition, U'¢ and v! are initial vectors in the program, which thus

shows that h} is a vector in the program by the NonLin operation. This also

223

gives that 2} = o(h}) is a vector in the program since o is pseudo-Lipschitz
(see Appendix A.5). Moreover, by ZNonLin, we have ZM = ZU'¢ 4 zv —
nXo(Eg € +1)Z%0, Let | € [2, L] and assume that A.~!, 2/~! are vectors in the
program. Then, by Theorem A.8.4 witht = 1, we get

ST 11
h = wl/Wlazlfl - 77X07(x0) dhb.
m
(;ch)‘l)Txll‘l/m is a scalar in the program by the Moment operation, and thus by
the MatMul and NonLin operations, A} is a vector in the program and thus so
is z} = o(h!), which proves by induction that this is the case for any [€ [2, L].
By ZNonLin we thus have

ZM = 5 zV' T gy Rz ze 7k,

We then have by Theorem A.8.4 witht =1,

£1(6) = m U Tk — T 1T

UL+l — nxoif is a vector in the program by the NonLin operation, and the
quantitym ' (UF+! — nXOjOL)TazlL is thus a scalar in the program by the Moment
operation, and by the master theorem, we get f, (¢) — E[ZV""" Z2T|—nx E[Z% Z71]
almost surely, since both expectations are finite by Lemma A.13.1. Since we
did the previous reasoning with an arbitrary &, we also get that h} (&), 2} (&)
are vectors in the program for any [€ [1, L] and that the formulas in (4), (i),
and (i7i) hold when the input is &;. In particular, fi(£1) converges to a finite

almost sure limit f1(&;), and thus the continuity of 024(y1, -) ensures the al-

most sure convergence of y; towards x; := 92l(y1,]?1(51)), which means y;
is avalid initial scalar in the Tensor Program. Then, dropping the dependency
of the second forward pass (att = 1) on &, we get by Lemma A.8.5witht = 1:

dit = UM —nxoig

which is a vector in the program by NonLin. Then dhf = dit © o/(h¥) is
also a vector in the program since ¢’ is pseudo-Lipschitz. Let ! € [2, L — 1] and
assume that djll“ and dﬁll“ arevectorsinthe program. Then by LemmaA.8.5
with t = 1, we have

~ T ~
(dhg™) dhy™

T -~
) dhaﬂ - nxOTwo

dfll = wl+1(Wl+1

ST o7 , , ,
(dhé“) dht™ /m is a scalar in the program by the Moment operation and by
MatMul and NonLin we thus get that di} is a vector in the program. Then
dh} = di} ©o’'(h}) is also a vector in the program since ¢’ is pseudo-Lipschitz,
which concludes the induction and with it the proof. O

224

Theorem A.8.7 (Z for the forward pass of IP-LLR at time t). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Let¢ € R be an input to the network. Then, foranyl € [1, L], hL(€), 2L(€), dzt, dht
are vectors in the program, fs(&) is a scalar in the program, and x is a valid ini-
tial scalar in the program. Additionally, dropping the dependency of the forward
pass at time t on & and of the previous forward and backward passes on the
corresponding &, one has:

() 2 = 2V OB = g0 70— (] e41) 20—y (LU0 Ra(eT €+ 1) 290,

(i) foranyl € [2, L],

(o]

Zhi _ ZWl(t)xi71 — &lzwl:r171 _ H%OE[Ziéilzxt ZdhO —n (Z XSE ZIS ZI]Zdills> ,

(i) fi(€) = (WHH () "ot~ B[ZU"" 20| —nx B[2% 27] —n (S} X.ElZ7F 27)),
Proof. We prove that the vectors and scalars in the claim of the theorem are

part of the program by induction. Then the formulas of (), (ii), and (iii) are

a simple consequence of the ZNonLin operation. The case ¢ = 1 has been

treated in Lemma A.8.6. Let ¢ > 1 and assume that the vectors and scalars

in the claim of the theorem are part of the program for any s € [1,t]. By

Theorem A.8.4, one has that

hiyy =WhHt+ 1)+ BY(t+1)

s=1

t
= U +0" —nxo(& €+ 1)dhg —n (Z Xs(E7€ + 1>d;;;>

By the induction hypothesis and NonLin, we thus get that htJrl is a vector in
the program and thus so is xt+1 = a(htﬂ) since ¢ is polynomially bounded.
Let ! € [2, L] and assume that hiﬁ, a:iﬁ are vectors in the program. Then, by
Theorem A.8.4, we get

(xz1)T11 llTll
0 Li41 551 s Li4l 551
iy = wiW'aiy] — o= ——rdh (sz dh)

Forany s € [1,4], (z5-)) 24" /m and (z51) "2\~ /m are scalars in the pro-
gram by the induction hypothesis and the Moment operation. Thus by the
MatMul and NonLin operations, Al t4+1 1S @ vector in the program and thus so
is 2t,; = o(hl,), which proves by induction that this is the case for any
l € [2, L]. We then have by Theorem A.8.4,

. T
fryr (&) =m™! (ULH — nXo&f — 1 Z Xsl‘sL> Tl

s=1

225

UL —nxozl —n Y2 _ xsal is a vector in the program by the induction hy-
pothesis and the NonLin operation. Then, by the Moment operation, f;11(£) is
a scalar in the program since thH is also a vector in the program, and by the
master theorem, we have

t
ferr(§) =22 B2V 278n] — nx E[276 276n]) —n Yy X E[27F 278
m—0o0 P
The limit is finite by Lemma A.13.1 since by an easy induction any Z which
appears is a polynomially bounded function of a Gaussian vector with finite
covariance matrix. Since we did the previous reasoning with an arbitrary &,
we also get that bl (&41), zl 1 (&+1) are vectors in the program for any [€

[1,L]. In particular, fi+1(&+1) converges to an almost sure limit f; ;(§41),
and thus the continuity of 924(y.+1, -) ensures the almost sure convergence of

Xt+1 towards >°<t+1 := 02l(Yt1, [141(&4+1)), which means x4 is a valid initial
scalar in the Tensor Program. Then, dropping the dependency of the forward
passatt+ 1 on &1, we get by Lemma A.8.5:

t

~L L ~L L
difey = UM —nxodf —n) xs7s
s=1

which is a vector in the program by NonLin. Then dhf, = dif, © o' (hE)
is also a vector in the program since ¢’ is pseudo-Lipschitz. Letl € [2,L —
1] and assume that diiﬁ and dhiﬁ are vectors in the program. Then by
Lemma A.8.5, we have

) g T Ry Rkt L (dRLtY) dRkt
ity = () @it — P i 7)71 B e

s
s=1

(dﬁlsﬂ)Tdﬁl’;ﬁ/m is a scalar in the program for any s € [0,] by the Moment
operation and by MatMul and NonLin we thus get that di! , is a vector in the
program. Then dhl., = d#} , ® o’(hL,,) is also a vector in the program since
o’ is pseudo-Lipschitz, which concludes the induction. Then we get the claims
of (), (¢¢) and (éi7) simply by applying the ZNonLin rule to the formulas derived
above for the pre-activations k!l . O

Corollary A.8.7.1 (Z for the forward pass of IP-LLR at time t). Consider the IP-
LLR parameterization with a positively p-homogeneous activation function, and
p > 2. Then, for any t > 1, and for any input ¢ € R? dropping the dependency of
the forward pass at time t on &, and of the previous forward and backward passes
on the corresponding &, one has:

() 24 = 2" OB = 7064 20 i (6] 6+1) 29— (I (€] €+ 1) 29

226

(i) foranyl € [2, 1],)
Zhl — ZWl(t)$i_1 _ —n)%OE[Zjé_l Zzt Zdhl (Z)o(s]E Zmé 1Zx£—l]ZdhlS> 7

(i) fi(€) = (W (@) "ot~ B[2V"" 77| -n¥ B (2% 27— (1) XElZF 2711))

m—0o0
Proof. The formulas are readily obtained by Theorem A.8.7 coupled with the
fact that we have &, Z"'si" = 0 for anyl € [2,L], and ¢t > 1, which stems
from Theorem A.13.9. O

Remark. Note that there is no circular logic here since only Theorem A.8.7 is
used to prove the results of Appendix A.13.1 (and in particular Theorem A.13.9),
so that using Theorem A.13.9 for Corollary A.8.7.1 does not lead to any issue.

Theorem A.8.8 (Zs of backward pass of IP-LLR at time t). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Then, for any t > 1, dropping the dependency of the forward pass at time t on &,
and of the previous forward and backward passes on the corresponding &, one
has:

() 29 = 2010 = 2V o 276 — ST X2,

(ii) Zdjiil — (j.)lZ(VV\l)Tdﬁi—n)%OE[Zd% Zdﬁi]Zfé 1 nzt 1 ° [Zdhl Zdhl]Z

lel2,L]

Proof. We have already proved in Theorem A.8.7 thatforany s € [1, t] the vec-
tors of the forward (L, 2! for I € [1, L]) and the backward pass (di’, dh., for | €
[1, L]) attime s are part of the program and similarly at ¢ = 0 by Lemma A.8.1.
Then, claims (i) and (ii) readily follow from applying the ZNonLin rule to the
formulas of Lemma A.8.5. O

Corollary A.8.8.1 (Zs of backward pass of IP-LLR at time t). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Then, for any t > 1, dropping the dependency of the forward pass at time t on &,
and of the previous forward and backward passes on the corresponding &, one
has:

() 29 = 20770 = 2V o 27 — 30 X 2
(i) 795" = —py B[z zdh) z7 " — L Rz 7 zo T,] e
(2, L].
Proof. The formulas are readily obtained by Theorem A.8.8 and the fact that

—~ T -
ZWh dhy — 0 forany | € [2,L] and ¢ > 1, which stems from Theorem A.13.9.
O

Remark. Note that a similar statement can be made as in Remark A.8 re-
garding circular logic since only Theorem A.8.8 is used to prove the results of
Appendix A.13.1.

227

A.8.1 . Second forward pass of IP-LLR (¢t = 1)

In this section, we prove that for IP-LLR, we have 0 < E[Z%0Z%1] < oo for
any [€ [1, L] under the assumption that X, := lim,, s X0 # 0. To obtain those
results, we use the formulas from Corollary A.8.7.1 for ¢ = 1, which are obtained
using the main result from Appendix A.13, namely Theorem A.13.9. We choose
to put Appendix A.13 towards the end of the Appendix section as its main result

L result

is quite intuitive: any multiplication by matrices with pre-factors in m™
in a vector whose coordinates (the corresponding Z) converge to 0 almost surely
at any time step. The proof however requires a long and cumbersome induction
and we thus leave it for the later stages of the Appendix so as not to break the

narrative of the Appendix.

The finiteness of the expectations E[Z% Z“ll] is a simple consequence of Lemma A.13.1,
but the fact that they are > 0 requires more work as we will see below. Since we
work with IP-LLR, recall that we consider a bias term at the first layer only.

Lemma A.8.9 (1st layer of forward pass of IP-LLR at ¢t = 1). Consider the IP-LLR
parameterization with an activation function o satisfying Assumption 3. Let & be
an input to the network, and assume x, # 0. Then, dropping the dependency of
the first forward-backward pass on &y, and that of the second forward pass on &,
one has:

(i) 2" = 275 —nxo(&5 €+ 1) 2 = 25 —nxo (& € +1) 270’ (27),

o] 1ol +1 & &+1 0
(i) (2", 2h©, z4%) ~ N[0, | €76+ 1 [I€]PP+1 0 ,
0 0 E[(z%)?

(iii) 0 < E[Z%Z%1] < .
Proof. We have by Corollary A.8.7.1 attimet =1
7ol — & (Zhi(s))
=0 (27O — k(e € +1)2M).

Moreover, since dh} = diy ®o’(h}), since all the vectors are part of the Tensor

Program, by ZNonLin we have Zdho = Zdiéa’(Z%), so that
77t = o (270 — (el € + 1)2%0' (1))
Finally, we have

7% = g(ZM).

228

From the rules of ZInit and ZHat, we have that

7171 -1 S 0
hg 7ho(&) 7dZgy -
(Z A A) N(O, <0 E[(Zdhg)ﬂ)) ,

with

G (HéToPH fJ§+1>_
e g

By Lemma A.7.1, E[(Zdﬁg)Q] < o0, so that the covariance matrix is finite and
thus Z% 271 is a polynomially bounded function of a Gaussian vector which
shows that the expectation is finite by Lemma A.13.1. It is also non-negative
since o is non-negative. To prove that it is positive, one needs only prove that
the integrand is not almost everywhere 0. By Lemma A.7.1, E[(Z%%)2] > 0 so
that the covariance matrix is invertible if and only if S is invertible. We have

det(S) = (lléol 1€l 2~ (&5 €)?) + ligo — €I,

which is the sum of two non-negative terms by Cauchy-Schwarz's inequality,
and is thus 0 if and only if both terms are zero. The first term is zero only
when ¢ and &, are proportional, and if in addition the second term is zero
than & = £,. The distribution of the Gaussian vector appearing in Z% 771 thus
depends on whether or not ¢, and £ are equal.

Case when ¢ = &. Then, calling \ := —nx, (&4 € + 1), we have
E[Z% Z%1] = /a(z)a (z — Auo’(2)) pz(2)pu(u)dzdu,

where p, and p, are the densities of the two Gaussians A(0, |[£][*+1) and
N(0,E[(Z9%)2]) respectively, which are not degenerate, so that p.(z) > 0 for
any z and similarly for p,(u). Since Z%6 and —Z% have the same distribu-
tion and since it is independent of thlJ, we canassume A > OW.L.O.G(if A <0
we can always do the change of variable u + —u in the integral above since
pu(—u) = py(u)). Consider the point (z*,u*) := (1,—1), at which the inte-
grand in the integral above is > 0, because ¢ and ¢’ are > 0 on the positive
part of the real line (see Appendix A.5) and A > 0. The integral is then positive,
because the integrand is a continuous function, since o and ¢’ are continuous
(see again Appendix A.5).

Case when ¢ # &,. Then, we have

IE[Z%Z””%] = /U(U)U (v = Az0'(w)) pu,v(u, v)p.(z)dudvdz,

229

where p,, and and p, are the densities of non-degenerate Gaussians and
are thus well-defined and positive everywhere. Again, we can assume A > 0
W.L.O.G. We consider the point (u*,v*, z*) = (1,1, —1) at which the integrand
is > 0 since o and ¢’ are positive on the positive part of the real line. Hence,
the integral is > 0 because the integrand is a continuous function, since o and
o’ are continuous, which concludes the proof. 0O

Lemma A.8.10 (Intermediate layer of forward pass of IP-LLR at ¢t = 1). Con-
sider the IP-LLR parameterization with an activation function o satisfying Assump-
tion 3. Let ¢ be an input to the network, let | € [2, L], and assume x, # 0. Then,
dropping the dependency of the first forward-backward pass on &, and that of
the second forward pass on &, one has:

~l—1

(i) Z" = —nxoE[Z% 270 |29 = —nxoE[Z% ' Z71 | 245! (Zh),
(i) Z" and Z% qgre independent,
(iii) 0 < E[Z%0Z"1] < .

Proof. We prove the result by induction on [, the case of [= 1 has already
been dealtwithinLemmaA.8.9. Let! € [1, L—1],and assume 0 < IE[Z%Z”*’Q] <
oco. Calling A := —nioE[Z%lel], we have A # 0 by assumption and by the
induction hypothesis. Then, by Corollary A.8.7.1 with t = 1, we have

I+1 141
zh = _\zdho"

Moreover, dhit = dzi™ @ o' (h51), and since all the vectors are part of the
Tensor Program, we have by ZNonLin Z4" = 7% 5/(Zzh""). On the other
Tl+1 =~ 7l+1 7l+1 ~7l+1

hand, by Lemma A.3.2, we have Z%o" = Zdh'" and zho"" = Zh", and finally
by the zHat rule, since h™ = W1zt and dzi™ = U+l ifl = L — 1 and
~ T - - -

(W'+2) dhl+? otherwise, we get that Zk' and Z4"" are independent. In
addition, we have

E[Z% 2" = Elo(ZM)o(-Az2%" o/ (2))].
The expectation is non-negative because o is and it is finite by Lemma A.13.1
because the integrand is a polynomially bounded function of the Gaussian
vector (Z%+1 , Zdif)ﬂ) (and thus of Z, see Definition A.13.1). Using the positive
p-homogeneity of o and the fact that sign(o”(z)) = sign(z) (see Appendix A.5),
and calling e = sign(\) € {—1,1}, we have

2]

Tl+1
hO

+1

E[z%" 7| =B [E |25z

I+1

= APE [o(27) o/ (2767 PE [o(~csign(27) 245

]

230

Now since esign(Z™'') € {~1,1}, Z%'" and esign(Z"')Z4%"" have the
7l+1
same distribution conditionally on Zh"™', so that

E |o(—esign(zh)z4%")

216" =B [o(z")

Zh" |
—E [a(zdfé“)} .

We thus get

I+1

)P Elo (20)],

E[Z% 7% = |APE[o(2")]0’ (27"
and both expectations are positive because they are non-negative and their
integrands are > 0 on the positive part of the real line and the Gaussians
involved have non-zero density on this subset of R as they are not degenerate
by Lemma A.7.1. This proves E[Z%HlelH] > 0 and concludes the proof by
induction. O

Lemma A.8.11 (Last layer of forward pass of IP-LLR at ¢ = 1). Consider the
IP-LLR parameterization with an activation function o satisfying Assumption 3. Let
¢ be an input to the network, and assume x, # 0. Then, dropping the dependency
of the first forward-backward pass on &y, and that of the second forward pass on
&, one has:

UL+t

() fi(©) = WE) ab —2 fi(6) == B[ZU" Y 274] — 3Bl 27 271,

(ii) zU""" and Z"% are independent,

(ii) 0 < |f1(6)|< .

Proof. Claim (i) comes from Lemma A.8.6, in which we have already proved

that the limit fl(f) is finite as a result of Lemma A.13.1 and the fact that
the integrands are polynomially bounded functions of the Gaussian vector
(Zhé, ZUL“) which has finite (and diagonal as we will see shortly) covariance
matrix. In addition, by Lemma A.3.2, we have Z"t = Zht and by definition
in ZInit ZU°"" = ZU""". Finally, by the ZHat rule, the latter two random
variables are independent since hk = WLEL~1. Let ¢ := sign(y,) and A, :=
E[Z% Z7] for | € {L —1,L}. We have A,_1, A, > 0 by Lemma A.8.10, and
using again the fact that sign(¢’(z)) = sign(z) and the positive p-homogeneity
of o, we have

UL+1 UL+1

E[Z ZmlL}:E{IE[Z zet

&)
I

= [P\ 1%l B |10/ (Z)E [20" o(—esign(2"6) 20| 2] |

231

Since ZU"" and —ZULJil have the same distribution, and it is independent of
7", and since esign(Z"0) € {—1,1}, we have

E [—esign(z’%)2V o (—esign(Z2M6)zV

Ziﬂ —E [ZUL“U(ZUL“) Zﬁé]

K [ZUL“U(ZUL“)] ,

so that
E [|a'(zﬁ€)PE {ZULHU(—esign(Zﬁg)ZUHl)

) -
—¢E [sign(zﬁé o' (2")yp} E [ZULHU(ZULH)} .
We thus get
E[Z7"" 2] = —elnA i1 X E [sign(27) |0’ (276)p| [27" o (27"

We now prove that both expectations are positive. This is where the assump-
tion that a > 3 (see Appendix A.5) appears to be crucial. We start with the
first one. Since Z"0 has a zero-mean Gaussian distribution with positive vari-
ance (by Lemma A.7.1), its density p, is positive everywhere and symmetric,
and we have

0

B [sign(2)10/(27)P] = [(apper Up)z [~ (-ap (s

2=0 Z=—00

+oo

+o00 +o00
= (ap)p/ zp(p_l)pz(z)dz — (5p)p/ P(r=1) 4,
z=0 z=0

“+oo
= (@ - [P Ip(2)de.
2=0

The second equality stems from the change of variable z < —z in the second
integral and from the symmetry of p, with respectto z = 0. The last integral is
> (0 becauseitsintegrandis > 0 on the corresponding domain, and o’ —/? > 0
since a > [by assumption and p > 0. For the second expectation, we get with
a similar reasoning that

E[27" 027" = /

= (a—p) /i:o up+1pu(u)du,

which shows the expectation is > 0.

0
uauPpy (u)du —|—/ uf(—u)Ppy(u)du

=0 U=—00

“+o00

We now look at the second term in f,(¢): —nvoE[Z% 271 = —en|Xo|Ar. Sum-
ming this up with the first term, we get

° o . 7L 7L L+1 L+1 o
f1() = = | A1 X" E [sign(2"6) |’ (2"6) | E | 27" 027" +nlkolre

>0

232

which concludes the proof. O

Theorem A.8.12 (Non-trivial learning of IP-LLR at ¢ = 1). Consider an IP-LLR
parameterization of an L-hidden layer neural network with an activation function
o satisfying Assumption 3. Let ¢ € R? be an input to the network, and assume
€0,€,Xo # 0. Then, one has:

(i) fo(§) =0

m—ro0

(i) f1(€) =2 f1(€) £0

m—00

Proof. Claim (i) has already been proved in Lemma A.8.1, and claim (ii) has
been proved in Lemma A.8.11 above. O

Remark. Note that since only quantities of the first (¢t = 0) forward and back-

ward passes and second (¢ = 1) forward pass appearin Lemmas A.8.9,A.8.10,A.8.11,
and Theorem A.8.12 we only need to assume we have an integrable parame-
terization with ¢; = v (p) foranyl € [1,L + 1] att = 0.

A.9 . Proof that no constant learning rate is possible: Theo-
rem 2.3.2

In this section we prove the result of Theorem 2.3.2 by splitting the proof in
two steps. First we show in Lemma A.9.1 that to have stable and non-vanishing
updates for integrable parameterizations at ¢ = 1, one must use the learning rate
exponents ¢; = y;(p) forany ! € [1, L+1] att = 0. Then we show some preliminary
results on the second backward pass (at ¢ = 1) for integrable parameterizations
when ¢; = y;(p) for any [€ [1, L + 1] at t = 0, and some other preliminary results
on the third forward pass (at ¢t = 2) when additionally one uses ¢; = —1, ¢; = —2
forl € [2,L] and ¢+1 = —1 att = 1. Then we show in Lemma A.9.4, using those
preliminary results, that assuming we have ¢; = 7;(p) forany ! € [1,L+1]att =0,
to have stable and non-vanishing updates at ¢t = 2 for integrable parameterizations,
one must use the learning rate exponents ¢; = —1, ¢ = —2 for [€ [2,L] and
cr+1 =—latt=1.

A.9.1 . Proof of the first implication for the learning rates at t =0

Lemma A.9.1 (Learning rates for stable learning with IP at ¢ = 0). Consider an
L-hidden layer fully-connected neural network with L > 3 in the integrable param-
eterization, and with no bias terms, except for the first layer. Assume that the ac-
tivation function o satisfies Assumption 3, and that lim,,, o, 92(yo, fo(&0)) # O.
Assume further that £] &1 # 0. Finally assume that Equation (2.4) holds:

LAW (D P=e(1), 1€ (1,1
(AW (1) 2k = (1)

233

Then, one necessarily has that att = 0, ¢; = ~(p) forany | € [1,L + 1] (see
Definition 2.3.2).

Proof. With the notations introduced in Appendix A.1, the assumptions on the
limit of the loss terms at t = 0 imply x, # 0. Let us consider the updates at
t = 0. By Corollary A.7.4.1, we have

AW(1)Ey = —m~ Py (&) €)dhy,

so that

1 2_ = 2e1-m () 215

—[| AW (D& P=m [meo(ed &) mq_zl(dhoq) -
From the master theorem, we getthat > " | (dﬁé’q)Q/m converges almost surely
towards E[(Z%0)2] which is > 0 and finite by Lemma A.7.1. On the other

2
hand, [nXO(goT&)]Z converges almost surely to [nio(ggﬁ)} , which is > 0 by
assumption, and finite.

If c1 > v1(p), then ¢; — v (p) > 0, and ||JAW(1)&]|?/m — 0 almost surely,
which is impossible since by assumption, almost surely, there exits A > 0
such that for large enough m, A < ||[AWL(1)&]2/m.

If c; < y1(p), then e; — y1(p) < 0, and ||AWL(1)&1]|?/m — oo almost surely,
which is impossible since by assumption, almost surely, there exits B > 0
such that for large enough m, ||[AW1(1)&]]?/m < B.

We thus have that ¢; = v;(p). Letl € [1,L — 1] and assume that ¢, = vx(p)
for k € [1,1]. Then by Lemmas A.8.9 and A.8.10, we have 0 < E[Zi"ocZ“flf] < 00
forany k € [1,1]. We have

1 G 1T 1IN e
EHAWZH(l)xllHQZ m 2 =741 (p) [nXOOm 1] EZ (dhlo’:) .
q=1
From the master theorem, we get that Z;":l(d%ﬁ)Q/m converges almost
surely towards E[(Z%"")2] which is > 0 and finite by Lemma A.7.1. On the
2 . _ 2
other hand, [nXO(%)Tajll/m] converges almost surely to [non[Z"”f)lel]} ,
which is > 0 and finite.

If cip1 > yi1(p), then cipr — yipa(p) > 0, and [[AWH (1)) |]?/m — 0 al-

most surely, which is impossible since by assumption, almost surely, there
exits A > 0 such that for large enough m, A < [|[AWH (1) [|2/m.

234

If ci1 < Yig1(p), then ¢ 1 — 71(p) < 0, and [|[AWH ()2 [|2/m — oo al-
most surely, which is impossible since by assumption, almost surely, there
exits B > 0 such that for large enough m, |[AW*(1)24]2/m < B.

Therefore, we have ¢;11 = 7,41(p). By induction, we thus get that ¢; = ~,(p)
for any I € [1, L], which means in particular that 0 < E[Z% Z*I] < oo by
Lemma A.8.10. Finally, we have

T (@) ot

1;1L = _m—(CL+1—7L+1(p))77X "

(AWET(1) 0
Theterm nxo(5) Tz /m converges almost surely towards nx,E[Z% Z*1], whose
absolute value is > 0 and finite. Therefore, if cz+1 > vr+1(p) then c¢p4q —
vr41(p) > 0 s0 that (AWE1(1)) zf — 0 almost surely, which is impossi-
ble since by assumption, almost surely, there exits A > 0 such that for large
enoughm, A < [(AWLT(1)) 2| If ep1 < v141(p) then cpi1 —v41(p) < O
so that (AWL+1(1))"zF — oo almost surely, which is impossible since by
assumption, almost surely, there exits B > 0 such that for large enough m,
((AWE+1(1)) " wE|< B. Thus, we must have cz41 = 141 (p), which concludes
the proof for the first part. O

A.9.2 . Preliminaries on the second backward pass (¢t = 1)

Before we move on to the proof of the second part of the claim of Theo-
rem 2.3.2, we stop and prove some preliminary results on the second backward
pass (at ¢ = 1) which will come in handy later on. Similarly to what we did for
E[Z%Zmll], we wish to prove that the quantity 0 < E[ZdhéZdhll] < oo for any
lel2,L].

Lemma A.9.2 (Backward pass of IP-LLR at t = 1). Consider the IP-LLR parame-
terization of an L hidden-layer network, and assume that the activation function
o satisfies Assumption 3, and that lim,, .., 92¢(yo, fo(&)) # 0. Then, one has
that foranyl € [2, L],

0 < E[z%0 zM] < o

Remark. Note that since only quantities of the first (¢ = 0) and second (t = 1)
forward and backward passes appear, we only need to assume we have an
integrable parameterization with ¢; = 7;(p) foranyl € [1,L 4+ 1] att = 0.

Proof. We start with [= L, and then induct over [from [= Ltol = 2, and
we recall that lim,, o 924(yo, fo(&o)) =: 5’(0 by definition (see Appendix A.1),
which is thus # 0 by assumption.

The case | = L. By Corollary A.8.8.1, we have Z%¢ = zZU""'/(zht) and

235

74t = (ZU 30 (Z286))e (ZMT). We thus have
B[z 74M] = B[(2V")26' (270! (2M)] 40| X0 |E[—e 2V o' (276)o (270)o! (2],
=A ZZB

with ¢ := sign(x,) and we deal with both terms separately. First, by Corol-
lary A.8.7.1 we re-write Z"" as

7" = —n|xelexzV o' (21),

where A := E[Z% Z%1 '] > 0by LemmaA.8.10. Using the fact that sign(o’(z)) =
sign(z) and the positive (p — 1)-homogeneity of ¢/, we have

o (2" = (77’5)(0\)\)1’71\a'(Z’%)\Pfla’(—esign(zﬁﬁ)ZULH).
The first term in E[2 Zdhl] is thus equal to

[
= (XoN?'E [E (277720 (276)[0' (276) 7o' (—esign(276) 27"

]
]

= (XN TE [0 (Z7)]o (276 UE (2772 (—esign(27) 27"

= (XN [0 (2|0 (27 B [(272 (2]

The third equality stems from the fact that —esign(Z%6)ZU"*" and ZU""" have
the same distribution conditionally on 7%, and from the fact that (ZULH) =
(— eSlgn(Zh)ZUL+)2. We now show that both expectations are > 0. Calling
p. the density of the Gaussian Zh6 which is symmetric and positive every-
where since Z"4' is not degenerate, the first term is equal to

- - 400 0
(72N o (7P| = (ap)P 21y (Nds — P — P01y (dz
B[o/(Z%)10/ (200 = (o [0 Vg)z =y [(2 V(e

+00
= (aP — BP)pP zp(pfl)pz(z)dz,
z=0
where we have used the change of variable z +— —z in the second equality,
and the last quantity is > 0 since a > g. With similar calculations, we get
+00
E (ZUL+1)20_/(ZUL+1)] _ (Oé _B)p/ up+1pu(u)du > 0’

u=0
where p, is the density of the standard Gaussian ZU™*" This thus shows that
A>0.

We now turn to the second term B. We have:
B = (nX|\P'x E|o/(Z")a(2")|0’ (2P~ sign(270) x

E [(—esign(zﬁé)2V 6! (—esign(Zh8) 2V

2]

= (RN % E [o!(26)0(28) 1o (276) Lsign(26) | B [2V ol (2077

— % E[o(Z7)0! (2) E[20 ol (2]

236

We now prove again that both expectations are > 0. The firstintegrand is non-
negative everywhere and positive on the positive part of the real line where
the Gaussian Zh6 has non-zero density, which shows the first expectation is
> 0. The same argument holds for the second expectation since ZU"" and
o—’(ZUL“) are of the same sign, which also leads to a positive expectation,
which finally gives B > 0, thereby concluding the proof.

Thecasel € [2,L —1].

Tl+1 Tl+1
Let! € [2,L — 1] and assume 0 < v := E[Zd Z29M"'] < co. Calling € :=
sign(xo), on the one hand, we have by Corollary A.8.8.1

79 = | Rolvea(2M),

and on the other hand, with \ := E[Zi’flexlfl], whichis > 0 by Lemmas A.8.10
and A.8.9 (if | = 2)

o' (ZM) = (nXoNP o' (Z) P 1o’ (—esign(Z270) Z4%).
Recalling that Zdht = 744/ (Zk0) and Z4h = 7431 5/(Zh1), this leads to

E[Z% Z291] = 5|Xo|v(n|Xo| A E[(—esign(Z") 2970) o' (—esign(2"%) 2%%)
sign(Z2)o’ (ZM)|o" (Z70) [P~ a(270)],

which, by conditioning on Z" and since —esign(Zh0)Z% and Z9% have the
same distribution conditionally on Z", and since sign(o”(z)) = sign(z), gives

E[2% 2] = nlXolv (nlXo N E [200 (2%) | E[|o" (270) Po(2™)]

The term in front of the expectations is positive by assumption, and both ex-
pectations are positive because their integrands are both non-negative and
positive on the positive part of the real line where the Gaussians Z4% and Zho
have non-zero density. The expectations are also finite by Lemma A.13.1 be-
cause their integrands are polynomially bounded functions of some Gaussian
vector with finite covariance variance matrix. By induction, we thus get that
0 < E[Z%0 Z24M] < oo for any I € [2, L], which concludes the proof. O

A.9.3 . Preliminaries on the third forward pass (¢ = 2)

In this section we wish to prove that similarly to the second forward pass, the
quantities the quantities E[ZzllZIé] and E[Z%Zl’é] (which appear in the third
forward pass at ¢t = 2) are > 0 for any | € [1, L] when using the IP-LLR learning
rates at t = 0 and ¢t = 1. We assume here that the training samples &g, &1, &> are
all distinct, which is probably not necessary for the result to hold but simplifies
somewhat some parts of the proof and is in any case a very natural assumption.

237

Lemma A.9.3 (Forward pass of IP-LLR at ¢t = 2). Consider the IP-LLR parame-
terization of an L hidden-layer network, and assume that the activation function o

satisfies Assumption 3, and that lim,,,_,c 2€(yo, fo(&o)) 7# 0 and lim,, o0 O2l(y1, f1(£1)) #
0. Assume further that the first three training samples &y, &1, &2 are all distinct.

Then, one has that for any | € [1, L],

0 <E[Z"1Z72] < o0
0 <E[Z%02"2] < 00
Proof. We start with the case l =1 and then inductover/fromil=1tol =L

for both expectations simultaneously as the derivations are very similar.

The case !/ = 1.
Let us first unwind the expressions of Z" and Z"z. We have

ZM = 7M@) _ (el 6 +1) 2% (27,
and

2" = 7M@) — (€] & +1)2%0 (2M) — xy (] & + 1) 210/ (2M).

The case of E[Z1 Z72].) o
Recalling that Z9%1 = —nyovo(Z") where v := E[Z%5Z%1]. With the as-
sumption that &, &1, & are all distinct, the vector (2", Zm(€)| zho(&2) | 7d3o)
has a non-degenerate Gaussian distribution, and we thus get

E[Z‘”}Zxé] = /a (u1 - uozal(uo)) o (u2 — p120” (ug) + poo(ug)o’ (ul - ,uoza/(uo))) X

q(uo, w1, u2)p.(2)d(ug, u1, uz)dz,

where 1o := nXo (&5 &1+ 1), 1 := nxo(§o S2+1) and pg := ?xox v(&] &2+ 1),
and ¢ and p, are the densities of non-degenerate Gaussians and are thus pos-
itive everywhere. Now the integrand is non-negative everywhere and we wish
to show that it is positive at some given point of R*, and it is also a polyno-
mially bounded function of (Z%0, zho(1) | zho(&2) zd%) which shows that the
expectation is finite. Since A and — Z9% have the same distribution and it
is independent of (250, Z"o(€1)| zho(62)), we can assume that 9 > 0 W.L.O.G.
Consider the point (ug, u}, u3, 2*) defined as uf; = uj = 1, 2* = —1 and

uy = |pulo’ (1) + |p2|o(1)o’ (14 poo’ (1)) + 1.

We show below that the integrand is > 0 at (ug, uj, u3, z*). Since it is also a
continuous function of (ug, u1, ug, z), we get that the expectation is positive.

238

Let us now show that the integrand is > 0 at (ug, uj, u3, z*). We have
ui — poz*o’ (uf) =1+ poo’(1) > 1 >0,
and
—mz"o’(ug) = mo'(1) = —|mlo’ (1),
and finally
p20 (ug)o’ (ui — poz"o’'(uf)) = pao (1)’ (1+ poo’ (1)) > —|ualo(1)o’ (1 + poo’(1)) -

With the choice for u3, one has that uj—p; zo’ (uf)+p2o (ul)o’ (uf — poz*o’ (uf)) >
1 > 0, which concludes the proof because ¢ is positive on the positive part of
the real line.

The case of E[Z%0 Z%2].,
We have

E[thl)Z”"%} = /a (ug) o (u2 — 120" (ug) + poo(ug)o’ (u1 — ,uoza'(uo))) X
Q(UO, Uy, u2)p2(z)d(u07 Uy, UQ)dZ,

As for the case of E[Zm%Zmi], we show that the integrand is > 0 at the same

point (ug, uj,u3, 2*) as above, and since it is also a continuous function of
(uo,u1,u2, 2), we get that the expectation is positive. Itis also finite by LemmaA.13.1
because its integrand is a polynomially bounded function of (Zho, Zho(€1) | zha(&2) 743,

Thecasel € [2,L —1].

Letl € [2,L—1] and assume 7 1= E[Z%1 ' Z%5 '] > 0and p := E[Z% 2% '] >

0. Calling \ := E[Z% ' Z*i 'Jwhichis > 0 by LemmaA.8.10, and v := E[Z0 " zdhi™]
which is also > 0 by Lemma A.9.2, we have

21 = —nxoAZ%00 (270),
and
Zth — *77)0(0,02‘1/%0'/(2%) o T])ocl'TZdjllo',(Zhll).

Finally recall that Z4%1 = —nyvo(Zh0), and let us call go == nYo\ K1 = NX0p
and i := 11°XoX17V- fo is # 0 because of the assumption on ;. Since Z%%o
and —Z4% have the same distribution and it is independent of Zho, we can
assume pg > 0 W.L.O.G. Note then that since u; is of the same sign as g
(A\p > 0), this also implies x; > 0, and po has the sign of x;. By assumption,
X1 # 0, and by the induction hypothesis and Lemma A.9.2 we have u # 0.

239

The case of E[Z%1 Z72].
We have

E[lel Zxé] = /a (—pozo' () o (—p1z0’ (v) + poo(w)o’ (—pozo’ (w))) pulu)p.(2)dudz,

where p, and p, are the densities of non-degenerate Gaussians (Z% and
Z4% respectively) and are thus positive everywhere. Now the integrand is
non-negative everywhere and we wish to show that it is positive at some
given point of R%. The integrand is also a polynomially bounded function of
(Z"o, %) which shows that the expectation is finite by Lemma A.13.1. Let
z*=—1andu > 0. Then, —ppz*o’(u) = poo’(u) > 0 so that o(—ugz*o’(u)) >
0. On the other hand, —p12*0’(u) = prapuP~t, and

pa0 (u)o’ (—poz"o’ (u)) = “20‘Up04p(uoozp)1’—1u(p—1)2
> —(ap)|us|a(poap)?~ tuP Ly D,
This leads to
p—1,,(p—1)?+1|

"0’ (w) + oo ()’ (— 020" () = apu? ™ |1~ |alapoop)

The quantity in the bracket is > 0 as soon as

u <

1
1 (p—1)2+41
p] e

{uzla(uoap)p‘l

Calling u* := €/2, we thus get that the integrand is > 0 at (u*, z*), and since it
is a continuous function of (u,), the integral is positive.

The case of E[Z%0 272,
We have

E[Z% 7%] = / o (u) o (=20’ (u) + pao(u)o’ (—po20’ (u)) pu(u)p-(2)dudz,

The integrand is non-negative everywhere and with z* = —1 and u* = ¢/2
as above, one shows that the integrand is > 0 at (u*, z*) which in turn im-
plies that the expectation is positive. It is also finite for the same reasons as
E[Z*1 Z"2]. This now concludes the induction over I € [1, L — 1] which thus
shows that E[ZfllZzlz] and IE[Z%ZIQ] are > 0 and finite forany [€ [1,L —
1]. Those expectations are also finite as their integrands are polynomially
bounded functions of Gaussian vectors which have finite covariance matrices.

The case ! = L.

240

Let 7 := E[Z®1 2% '| > 0and p := E[Z% 2% '| > 0 by the previous
induction. Calling A := E[Z% ' Z= '] which is > 0 by Lemma A.8.10, we have

Z" = —xoazV" o' (21,
and
7" = —nxopzV"" o/ (2M0) — nxy T2 o/ (2),

Finally recall that Z431 = zU™"" — 3, 0(Zh6), and let us call gy = nxoA,
11 = Xops p2 = X7, and finally s == 7°Xo X, 7. Since Z4% and —Z% have
the same distribution and it is independent of Z”é, we can assume pg > 0
W.L.O.G. Note then that since p4 is of the same sign as py, this also implies
p1 > 0, and jp has the sign of x;. In addition, with the assumptions and pre-
vious results, we have us # 0 and us # 0.

The case of E[Z*1 Z72].
We have

E[Z””lLZmé] = /O‘ (—pozo'(w)) o (—p1zo’ (u) + (—p2z + pzo(uw))o’ (—pozo' (u))) x
pu(uw)p;(z)dudz,

where p, and p. are the densities of non-degenerate Gaussians (Zﬁg and
A respectively) and are thus positive everywhere. Now the integrand is
non-negative everywhere and we wish to show that it is positive at some point
of R2. The integrand is also a polynomially bounded function of (Zhé, ZULH)
and the expectation is thus finite by Lemma A.13.1. We first take a closer look
at the second terminside o. Let z < 0,u > 0. We have

20’ (u) = pu|zlapu? ™,

as well as
—p2z + pzo(u) = —pgz + pgau?,
and
o' (—pozo’ (1)) = ap(poap)?~ 2P~ Lu®=D?,
We thus get that

— 120" (u) + (—p2z + pzo(u))o’ (—poza’ (u)) =

aplz|uP™ | 1 + (—paz + psalul?) (poap)? P2 |u| @)@

-~

F(u,z)

241

Because p—2 > 0, the function F'is continuous over R?, and we have F(0,0) =
w1 > 0. Therefore, there exists v* > 0 and z* < 0 such that F(u*, z*) > 0.
With such a pair (u*, z*) we get that the integrand is > 0 at (u*, 2*), and since
it is a continuous function of (u, 2), it follows that the expectation is positive.

The case of E[Z%0 Z77].
A similar argument to the case of E[Z*1 Z7Z] applies and we get that the ex-
pectation is positive, which concludes the proof. O

A.9.4 . Proof of the second implication

Lemma A.9.4 (Learning rates for stable learning with IP at t = 1). Consider
an L-hidden layer fully-connected neural network with L > 3 in the integrable
parameterization, and with no bias terms, except at the first layer. Assume that the
activation function o satisfies Assumption 3, and that lim,,,_, ~c 92¢(yo, fo(&0)) # 0
and lim,, 00 Ol(y1, fo(€1)) # 0. Assume further that £ & # 0, that the first
three training samples &y, €1, &2 are all distinct, and that att = 0 (i.e., to compute
AWY(1)) ¢; = v(p) (see Definition 2.3.2) for any | € [1, L + 1. Finally assume
that Equation (2.5) holds:

Ljawl2)zb Y P=e(1), le(1,I]
(AWEH(2)) 2k = (1)

Then, one necessarily has that att = 1, ¢y = ¢o1 = —1 and ¢ = —2 for any
lel2,L]

Proof. We first treat the case [= 1 and then induct over [fromi=2tol =L
and conclude by the case | = L + 1. Note that because of the assumptions,
Lemma A.9.2 holds and the claim of Lemma A.9.3 will hold at layer [as soon
asweshowc; = —1land ¢, = —2fork € [2, L].

The case [= 1.
We have

AW (2)&a = —nm~ 1V (67 &)dF © o' (h),
so that
| i 1
EHAWl(?)szQ: m 20 1)(77X1(§1T§2))25Hd$% ©d'(h)[*.
Recall that dz! = —nxo((dh2) ' dh?)/mo(hY), so that by the Master Theorem,
m—0o0

1 ~ a.s. [¢] 71 1
—ldzy © o' (h)|I* = (nxov)*Elo(2™0)?0" (2",

where v := E[ZdﬁgZd;‘%] > 0 by Lemma A.9.2. The term in front of the expec-
tation is > 0 with the assumptions. On the other hand, the term (1 (&1 &2))?

242

converges almost surely towards (ny; (1 ' &))? which is also > 0 with the as-
sumptions. We show below that the expectation is > 0, which proves that c¢;
must be equal to 1 since by assumption L |[[AW?!(2)&,]|2= ©(1). Recall that

ZM = 7M@) _ (e & + 1) 29! (219).

The integrand in the expectation is non-negative, and it simply remains to
show that is not almost surely zero. Because Z%% and —Z%5 have the same
distribution, and since itis independent of (20, Z"(&1)), we can assume W.L.O.G.
that u := 1Yo (€7 €1+1) > 0. As usual, the vector (2%, Z"(€1)) has a Gaussian
distribution which is degenerate only if &, = £, which is precluded by the as-
sumptions. Note that in any case, the expectation is finite by Lemma A.13.1
since its integrand is a polynomially bounded function of a Gaussian vector
with finite covariance matrix. Since £ # £y by assumption, we have

E[U(Zﬁé)za/(Zh%)ﬂ = /a(u)2a' (v— ,uza’(u))2pu,v(u, v)pz(z)dudvdz,

where p, ,, and and p, are the densities of non-degenerate Gaussians ((ZﬁtlJ, Zﬁé(&))
and Z%% respectively) and are thus well-defined and positive everywhere.
Again, one sees that at point (u*,v*, 2*) = (1,1, —1) the integrand is > 0, and
since it is a continuous function, this proves that the expectation is positive. It

is also finite by Lemma A.13.1 since the integrand is a polynomially bounded
function of a Gaussian vector with finite covariance matrix.

Thecasel € [1,L — 1]

Let I € [2,L — 1]. We have already shown that ¢; = —1. Assume now that
¢ = —2for k € [2,1 — 1] (note that if | = 2 this means no additional assump-
tion). Then we have

-1\ T _1-1
_ (24e T o
AW!(2)2h ! = —pm~ 3T Dy, @) T2 dit @ o' (h}),

so that

l I)T —

2
1 _ —9(94c e B Y N
AW @)z =) <?7><11mZ> —Jldh © o ()P

In addition, we have dz}, = —nxo((dhL™) " ditY) /ma(Rb), so that by the Mas-
ter Theorem,

1 ~ a.s. o Bl l
— [l © of ()] P2 (ko) Bl (27)%0"(2%)?),

—00

where v == E[Z%0"" 24| is such that 0 < v < oo by Lemma A.9.2. Recall
that

21 = —nxoAZ%00 (270),

243

with A := E[Z% ' Z%1 '] such that 0 < A < oo by Lemmas A.8.9 and A.8.10,
which leads to

E[U(Z%)ZU/(Zhll)Q] = /a(u)2a/(—uz0/(u))2pu(u)pz(2)dudz,

where p := nx,A which is # 0 with the assumptions, and p, and p, are the
densities of two non-degenerate Gaussians (Z" and Z7% respectively) and
are thus positive everywhere. Since Z%o and —Z% have the same distri-
bution and it is independent of Z" we can assume > 0 W.L.O.G. Then,
we see that at point (u*,z*) = (1,—1) the integrand is > 0, and since it is
a continuous function, this proves that the expectation is positive. It is also
finite by Lemma A.13.1 since the integrand is a polynomially bounded func-
tion of a Gaussian vector with finite covariance matrix. The term (nx,v)? in
front of the expectation is > 0 and finite with the assumptions. Finally the
term (nx1 (1) " 241) /m)? converges almost surely towards (17x,7)? by the
Master Theorem, where := E[Z%1 ' Z% '|is > 0 and finite by Lemma A.9.3,
which shows that (ny;7)? is > 0 and finite with the assumptions. Since ||dZ] ®
o'(h})||?/m = ©(1) by assumption, then ¢; must be equal to —2 otherwise
||[dz1 ® o’ (h})]|?/m would either converge towards 0 or diverge towards oo
almost surely.

The case [= L. We have already proved thatatt =1,¢; = —1and ¢ = —2
forl € [2, L]. We have

T

L L
‘(AWL—H (2))T$§": nm—(l-i—cmq)’xl’ (xl) L

By the Master Theorem,

T
f) .Z'% a.s. E[erZxQL]

m—o0

m

which is > 0 and finite by Lemma A.9.3. On the other hand, n|x:| converges
almost surely towards 7|x; | which is also > 0 and finite. This shows that since

(AWE+L(2)) " zk|= ©(1) then we must have ¢, = —1 to avoid vanishing
towards 0 or explosion towards +oco as m — oo, which concludes the proof.
O

A.10 . Proof of the non-triviality of IP-LLR: Theorem 2.4.1

Proof. Claims (i) and (ii) of Theorem 2.4.1 have already been shown in Theo-
rem A.8.12. Claim (i¢) simply stems from Corollary A.8.7.1 with ¢t = 2 and the
fact that all the variables Z which appear are polynomially bounded functions
of the vector Z; (see Definition A.13.1) by a simple induction. O

244

A.11 . Proof of the equivalence between IP-LLR and xP: Propo-
sition 2.4.1 and Theorem 2.4.2

In this section, we present the proofs of the equivalence between IP-LLR and
hybrid versions of P both at finite-width and in the large-width limit. Because
we need to use the homogeneity property, we consider a positively p-homogeneous
activation function o and no bias terms except at the first layer for all the pa-
rameterizations we consider. We assume p > 1 for the finite-width case, which
includes ReLU, and p > 2 in the infinite-width case as we use the Tensor Program
framework for the proof and thus require some smoothness.

A.11.1 . Finite-width equivalence: Proposition 2.4.1

We start with a preliminary Lemma showing the equivalence at ¢ = 1 and then
do the proof of Proposition 2.4.1 by induction.

Equivalence at{ =1

Lemma A.11.1 (First weight updates of HP). Consider the IP-LLR and HP pa-
rameterizations with a positively p-homogeneous activation function, and p > 1,
and no bias terms except at the first layer, and let us sub/super-script the vari-
ables of each models with IP and HP respectively. Assume the first training sample
(€0, y0) and the loss ¢ are the same for both parameterizations. Assume further
that xHP + 0, and simply denote by 7 the base learning rate of the IP-LLR param-
eterization. Finally consider for HP the initial learning rate: nup(0) = (x& /x5)n,
and let ¢ € R be an input to both networks. Then, dropping the dependency of
the weights att = 1 on n and nyp, one has:

vie L L+1], Wip(l)=Wp(1)
Bip(1) = Bh(1)
7€) = 1)
Proof. By definition (see Section 2.4.2), we have

= WhH(0) + AW (1)

= VVIZP(O) + AWZLP(l)7 Le[2,1]

Using Corollaries A.7.4.2, and Lemma A.7.5, and the fact that nup(0) " = nxI
we have:
AW,ip(1) = —nup(0)x6” dhog
= —nxo dhoé
= AI/VllP(l)v

245

ABJp(1) = —nrp(0) x4 dhg
= —nxg dhg

= ABllp(l)v

and, foril € [2, L]

dhl jl*l
_)

= AVVIZP(l)v
and finally
AW (1) = —npexh" 2 /m

= —nxg &g /m
= AWgT(1),

where the AW (1) and AB!(1) are computed with the base learning rate 7.
We then get Ws(1) = WL(1) for all [, and it follows that for any input &,

7 (&) = [T (€). 0

Proof of Proposition 2.4.1

Proof. We first show by induction that the effective weight matrices and the
effective biases of the first layer are the same for both parameterizations at
any time step > 1, which will then immediately yield the result. We have al-
ready shown in Lemma A.11.1 that with the choice of initial learning rate for
HP, Wlp(1) = Wh(1) for all i € [1,L + 1], and Blx(1) = Bl (1) as well as
HP ¢\ _ fIP
(&) = £ (§).

Now let s > 1, and assume that for all I € [1,L + 1], W}, (s) = Wh(s), and
Bl;p(s) = B};p(s). We want to show that this also holds true for the next time
step s + 1. An easy induction shows that since the effective weights of all lay-
ers are equal, and since by assumption the s-th training sample (&, ys) is the
same for both parameterization, we get thatforany! € [1, L+1], xls,HP = xlst,
hlyp = hL e, as well as fIP(¢,) = fF(&), and therefore X = x¥ since
by assumption both parameterization use the same loss. This in turn will
give by another easy induction that for any I € [1,L + 1], dal, jp = dzl p,
dhls,Hp = dhl&lp. Now, by Equation (A.3) we have, on the one hand (recall that
s+1 > 2 so that the base learning for both models for the (s+ 1)-th SGD step
is 7)

AWip(s + 1) = —Umf(%?wcﬁp)dh;ﬁpfg

246

and forl € [2, L]

l _ — (2P 4P 511 -1
AW{p(s) = —nm~ e+)dhs,HPws,HP
and finally
L+1; .\ _ —(2a¥" 4P)L
AW (s) = —nm (L L“)xs,HP

On the other hand, we have
AWpp(s) = —Umf(Qallucllp)dhi,lez
and forl € [2, L]

_ P, .IP _
AWip(s) = —nm~ P+ dn! pal L

and finally

AWt (s) = —nm_(2a5+1+c|£+1)$sL,lp
To see that the quantities are equal, we only need to observe that since s+1 >
1

P P
20" + " = -1 =24 +cF

2afp + cfp =0 = QCLEP + c}P
P p
2af + i =1=2af, +cf
(recall that for s > 1, " = ¢f,; = —1, and ¢f = —2for [€ [2, L]). We thus
find AW]p(s) = AW (s) for all 7, and since W], (s) = W(s) by assumption,
we get Wl (s + 1) = Wh(s + 1) for all I which concludes the induction.

The effective weights being equal in both parameterizations for all time steps
> 1, we get that at time step ¢t > 1, for any input ¢ € R?, the outputs f*(¢)
and fi"(¢) are the same, which concludes the proof. O

A.11.2 . Infinite-width equivalence: Theorem 2.4.2

In this section we prove Theorem 2.4.2 which states the equivalence between
IP-LLR (see Definition 2.4.1) and HPZ (see Section 2.4.2). We start by a couple
of preliminary results on the dynamics of HPZ, then proceed to prove the main
induction step over ¢, and finally conclude by putting the results together to prove
the theorem.

Preliminary results

Lemma A.11.2 (uP is zero at initialization). Consider the P parameterization
with an activation function satisfying Assumption 2 and a loss function ¢ satisfying

247

Assumption 1, and no bias terms except at the first layer. Let ¢ € R be an input
to the network. One has:

fo(§) =20

m—o0

X0 e >O<0 := 02((y0,0)
m—0o0

Remark. The result on the almost sure convergence of xo ensures that the
latter is a valid initial scalar in the Tensor Program defining the computations
associated with pP (and thus and HPZ). Also note that the limit of x¢ is the
same as for IP-LLR (see Lemma A.8.1).

Proof. 1P is designed so that b}, = hl and z}, = &} for any I € [2, L], and as
already proved in Lemma A.8.1, the tilde variables are vectors in the Tensor
Program. Since fy(§) = mfl(UL“)T:%OL we get by the master theorem that
fo(§) converges almost surely towards E[ZULHZ"%&]. By LemmaA.13.2, Zht =
Zht and zU™" = ZU™"" by definition, and by the ZHat rule, Z¢ and ZV"""
areindependent, and since E[ZV"""] = 0 and E[(Z%0)?] < oo we get that fo(¢)
converges almost surely towards 0. The result on the limit of x¢ is then simply

a consequence of the fact that 924(yo, -) is continuous by assumption. O

Lemma A.11.3 (Weight updates for uP at any time step). Consider the uP pa-
rameterization with a differentiable activation function o and no bias terms except
at the first layer, and let t > 1. Then, dropping the dependency of the forward and
backward passes on & at time t, one has:

AWETL (¢ + 1) = —nxuzf /m,
diLl I—1y\ T
AW (14 1) = -y, P
AW (t +1) = —nxudhi€/

ABYt +1) = —nxsdh; .

, lel2,L],

Remark. Because HPZ and uP have the same parameterization for ¢t > 1 (see
Section 2.4.2), the formulas above for the updates are the same for HPZ, the
only difference is that, at finite width, the 2. and dh! differ from HPZ to uP
because Wy, (t) = W/p(t) — W/ (0). Note that the formulas are also exactly

the same as for IP-LLR (see Lemma A.8.3) but again the quantities 2} and dh!
differ for uP and IP-LLR because of the initial weight contribution in W(t)
which is different for the intermediate layers of both parameterizations.

Proof. By Equation (A.6), we have
AW (4 1) = —pm~ Carsrters) y o

= —nxext /m,

248

because 2a;4+1 + cr41 = 2 —1 = 1 for uP. For ! € [2, L], we have by Equa-
tion (A.3)

AWt +1) = —ipm~Carreddpl (11"

~ T
dhi(ai)
= —UXtTa

because dh} = m~'dhl and 2a; + ¢, = 1 — 1 = 0 for uP. Finally, for I = 1 we
have again by Equation (A.3)

AWl(t +1)= _nXtm_(2a1+C1)dh1§1§t—r

because 2a; + ¢; = —1 for uP and dh} = dh}. A similar argument holds for
AB!(t + 1), which concludes the proof. O

Theorem A.11.4 (Weights in HPZ at time t). Consider the HPZ parameterization
with a differentiable activation function o and no bias terms except at the first
layer. Then, for any t > 1, one has:

(i) Wi(t) = U — nxodhé] —n (Zi;ll xsdhle)])

(i) BY(t) = v — nxodhy —n (S} xedhl),

T

Tl al—1 = —1\ T
(iii) W(t) = —pyp @l) (Zi;ﬁ th<m>> €21,

() WEEL(E) = UBH m = ipxoah fm — n (S0} et /m).

Proof. Theformulas are correctatt = 1 by definition of HPZ and by LemmaA.7.5
which gives the first weight updates for uP. Then, an easy induction using
Lemma A.11.3 yields the result. O

Lemma A.11.5 (Backward pass of HPZ at time t). Consider the HPZ parameter-
ization with a differentiable activation function o and no bias terms except at the
first layer. Then, for any t > 1, dropping the dependency of the forward pass at
time t on &, and of the previous forward and backward passes on the correspond-
ing &, one has:

(i) dif =wlti(t) = UL —nyoil —n > 12) xsh,

I diby TRl - _ dil) dhl
(i) Az} = =m0 TUET - Y Pl e 2,1

249

Proof. By definition, we have

dil = mdxk
— mWL—H (t)

t—1
L ~L L
= UM —nxozf —n Y xexl

s=1
where the last equality stems from Theorem A.11.4.
Let! € [2, L], we have:
Azt = (W(t)) " dR
S T = t—1 ST =
) S

s=1

= —7NXo

where the second equality stems from Theorem A.11.4. 0O

Lemma A.11.6 (Z for the forward pass of HPZ at time ¢ = 1). Consider the HPZ
parameterization with an activation function o satisfying Assumption 2 and no
bias terms except at the first layer. Let ¢ € R? be an input to the network. Then,
forany 1 € [1,L], h,(€),24(¢),di,, dht are vectors in the program, fi(€) is a
scalar in the program, and x1 is a valid initial scalar in the program. Additionally,
dropping the dependency of the forward pass at time t = 1 on &, and of the first
forward and backward passes on &, one has:

() ZM = ZW B = gU 4 zvt o (eT¢ 4 1) 74k,
(i) Z" = ZW' R = —pyE[Z% z0 |z, e (2,1

(i) f1(€) = (WEHL (1) o} 2 B[2V"" 201] — 3B [276 271),

Proof. By Theorem A.11.4, with t = 1, one has that hl = UL¢ +v! —nxo(&] €+
1)dh§. By Lemma A.8.1, dh}, is a vector in the Tensor Program (recall that the
tilde variables at initialization do not depend on the choice of parameteriza-
tion) and by Lemma A.11.2 x¢ is a valid initial scalar in the program which has
an almost sure limit x, := 92£(yo,0) as m — oo (see Remark A.11.2). In ad-
dition, U'¢ and v! are initial vectors in the program, which thus shows that
h} is a vector in the program by the NonLin operation. This also gives that
x1 = o(hi) is a vector in the program since ¢ is pseudo-Lipschitz by assump-
tion. Moreover, by ZNonLin, we have ZM = ZU'¢ 4 70" — ny (&0 € + 1) 2%,
Let € [2, L] and assume that {71, z{~* are vectors in the program. Then, by
Theorem A.11.4 with ¢t = 1, we get

+

('%l—l) xl—l ~
hll = —UXO%C”L%)-

250

1T - . , .
(a;lo h xll ! /mis a scalar in the program by the Moment operation, and thus by

the MatMul and NonLin operations, A} is a vector in the program and thus so
is i = o(h!), which proves by induction that this is the case for any [€ [2, L].

By ZNonLin we thus have
ZM = _pxoE[Z% z7 |z,

We then have by Theorem A.11.4 witht =1,

(&) = m UM ot o 0

UL — nxok is a vector in the program by the NonLin operation, and the
quantity m~Y (UL — nxo#k) "2k is thus a scalar in the program by the Moment
operation, and by the master theorem, we get the following convergence:
f1(&) = B[ZV"" Z1] — B[Z% Z7T] almost surely, since both expectations
are finite by Lemma A.13.1. Since we did the previous reasoning with an ar-
bitrary &, we also get that h!(¢1), 2% (&) are vectors in the program for any
[€ [1,L] and that the formulas in (3), (i7), and (i7i) hold when the input is
&1. In particular, f1(£1) converges to a finite almost sure limit f1(&;), and thus
the continuity of 924(y1, -) ensures the almost sure convergence of x; towards

X1 = 02€(y1, f1(£1)), which means x is a valid initial scalar in the Tensor Pro-
gram. Then, dropping the dependency of the second forward pass (at¢t = 1)
on &1, we get by Theorem A.11.5 witht = 1:

dit = UM —nxoig

which is a vector in the program by NonLin. Then dhf = dilf © o/(h¥) is
also a vector in the program by NonLin since ¢’ is pseudo-Lipschitz. Let ! €
2, L — 1] and assume that di}™! and dh!** are vectors in the program. Then
by Theorem A.11.5 with ¢ = 1, we have

i dilH Td;LZH)
diUl1 = —UXO—(0 1)n ! xé

ST 7 , , ,

(dhé“) dht™ /m is a scalar in the program by the Moment operation and by
MatMul and NonLin we thus get that di} is a vector in the program. Then
dhl = dz’ ®o’(h}) is also a vector in the program since ¢’ is pseudo-Lipschitz,
which concludes the induction and with it the proof. O

Lemma A.11.7 (Zs of HPZ and IP-LLR are equal at t = 1). Consider the HPZ and
IP-LLR parameterization with an activation function o satisfying Assumption 3, and
no bias terms except at the first layer, and let us sub/super-script the variables of
each models with HPZ and IP respectively. Let ¢ € R? be an input to the networks,
and assume that HPZ and IP-LLR share the same training samples (&o,yo) and

251

(&1,y1) att = 0 and t = 1, the same loss function ¢ satisfying Assumption 1, and
the same base learning rate n. Then dropping the dependency of the first forward
and backward passes on &y and that of the second forward passes on &, we have:

(/') Zhll,HPZ — Zhlupl lel,HPZ — lel’”’, l e [1’ L],

... oHPZ oIP
(i) x1 = X1,
(iV) Zdjll,HPZ — Zdill,/P, Zdﬁll,HPz — Zdilé,lpl l e [17 L].

olP ouP o HPZ
Proof. By Lemmas A.8.1 and A.8.1 we have y, = Xg =xo = 020(y0,0),

which we simply call y, in the remainder of this proof for simplicity. By Corol-
lary A.8.6 and Lemma A.11.6 we have

ZMe = 27 1 2% — 36T €+ 1) 29,
and
ZMee = UM 4 2" %60 € + 1) 2%,

and since the tilde variables are computed independently of any parame-
terization, we have ZMwz = zMr. Because IP and HPZ share the same
activation function we also get Z%mwz = Z"Lr. Now let | € [2,L] and as-
sume Z"wz — 7" as well as Z%iwz = Z7Le, By Corollary A.8.6 and
Lemma A.11.6 we have

ZMe = R E[Z%6 " Ze)z,
and
ZMwer = —n%OE[Z%ﬂlel,_Hlpz]Zd%,

which shows Z"p = Z".wz since the tilde variables are independent of any

choice of parameterization. Since the activation function o is the same for

both models we also get Z.p = Z.wz which concludes the induction. For

the output of the networks, we have by Corollary A.8.6 and Lemma A.11.6
P(6) =2 B2V 27r] — nxoE[270 271r),

m—00

and

UL+1

HPZ(e) L2, Rz Zﬂ:@pz] — TIS’COE[Z% foHPzL

m—0o0

and since Z"1® = Z%Twe by the previous induction and the tilde variables
are independent of the parameterization, it follows that lim,, . fJP%(¢) =

252

lim, o0 f17(€) = J?l(ﬁ)- Since X¥ = da(y1, fF(€)) an(jl XTP2 = Oy (yn, fIP2(6)),

by continuity of 92¢(y1, -) we get that >°<1HPZ = 02l(y1, f1(&)) = X3 -

For the backward pass, we have by Lemma A.11.5 that dz{p, = UMt —
nXo.HpzEL Which gives by NonLin 2%z = ZUL+L — v, Z7 which is also
equal to Z% e by Lemma A.8.5 since the tilde variables are independent of
the choice of parameterization. Then, we also get 7wz = Zd"’z”lL,HPZa’(thHPZ)
and z%Mie = ZdlevHPZo’(th'P) which shows Z%twz = z9e et e [1,L—1]
di‘H—l diH—l dilH—l dill+1
and assume Z* 1z = Z7%°1P gs well as Z7"1Hez = Z%"4P . By Lemma A.11.5,
we have
~ T ~
dhl+1 dhl+1
di“lLHPz = —77X0(.)m I’HPZ%

which gives by the master theorem and the ZNonLin

I+1

Zdi“ﬁ,sz = _U)(DCOE[ZC[%H Zd;lLHPz]Z%

which is the same expression as Z%1p by Lemma A.8.5. It then follows that
7 ez — Zdhllﬁ'P, which concludes the induction and with it the proof. O

Theorem A.11.8 (Z for the forward pass of HPZ at time t). Consider the HPZ
parameterization with an activation function o satisfying Assumption 2 and no
bias terms except at the first layer. Let ¢ € R be an input to the network. Then,
forany | € [1,L), hL(€),z.(€),dE., dRk are vectors in the program, f(€) is a
scalar in the program, and x is a valid initial scalar in the program. Additionally,
dropping the dependency of the forward pass at time t on £, and of the previous
forward and backward passes on the corresponding £, one has:

() 2 = 2V OB = U 70— (6] e41) 20—y (LT Ra(€T €+ 1) 290,

(i) Zt = 2V O = _p3 B[z 2 |z (DU GE(Z 224 re
2.1),
(i) fi(&) = (WHH () "ab —2 B[2U"" 70| —nx B (2% 27] —n (S} X B2 274)),

m—r0o0
Proof. The proof is exactly the same as for Theorem A.8.7 except that when-
ever a multiplication by W(0) appears with I € [2, L], it is now replaced by
0, but the reasoning and all the arguments are the same, which in summary
uses an induction over t as well as the master theorem and the ZNonLin rule
from the Tensor Program. O

Theorem A.11.9 (Zs of backward pass of HPZ at time t). Consider the HPZ
parameterization with an activation function o satisfying Assumption 2 and no

253

bias terms except at the first layer. Then, for any t > 1, dropping the dependency
of the forward pass at time t on &, and of the previous forward and backward
passes on the corresponding &, one has:

L

(l) ZditL _ ZwL-H() ZUL-H —T]X ZCEO _nzi 11)0(8
(i) 295" = —py E[Z2b Zdht) 736 —p ST § B zdk zah) 70 e (2, L.

Proof. As for Theorem A.11.8, the proof follows exactly the same pattern as
for Theorem A.11.9 except that whenever a multiplication by W!(0) appears
with [€ [2, L], it is now replaced by 0. O

Inductionon ¢

Lemma A.11.10 (Induction step on the Zs of the forward pass). Consider the
IP-LLR and HPZ parameterizations with an activation function o satisfying Assump-
tion 3 and no bias terms except at the first layer, and let us sub/super-script the
variables of each models with IP and HP respectively. Let s > 1, £ € R% be an
input to the networks, and assume that the training routine (see Definition 2.2.2)
is the same for both models with a loss satisfying Assumption 1. Assume further
that, dropping the dependency of the forward and backward passes at time t = r
on¢&,, forall r € [1, s|, we have:

(i) Fhpz,r — Zh/lp,r, TPz, — Zﬂﬁfp,r7 le[1,L)

(if) Vi o0 fHFZ(£) = limp—oe fF(E),

o HPZ oIP
(i) Xy =X,

. Pl 3/ =l ~l
(iv) ZthPz,r — Zdh/P,r’ deHPZ,r — delP,r’ l e [LL]'

Then, dropping the dependency of the forward pass at timet = s + 1 on &, one
has:

1 l 1 I
(v) ZhHPZ,s+1 — Zh’/P,s+17 Z%Hpz,54+1 = Z$/P,3+1’ l e [LL],

(Vi) limiso0 fEEF(€) = limusoo f71(€),

oHPZ oIP
(Vi) Xs+1 = Xsi1s

il Pl 5l 5l
(Viii) 7Mhpz, ZdhlP,s+l7 79Thpz 1 delP,s+1’ = [1’[/]'

Proof. Since by assumption, for any r € [1, s|, the Zs of the forward and back-
ward passes are equal for both parameterizations, we drop the dependency

254

of those quantities on the model, and for z € {hl, z!, dhl, dz}, we simply call

T T
oHPZ oIP
ZAPe = 2P = 7% Similarly we simply call x,, = x, = x,. We have A.8.7

S
1 1 o Rl o hl
ZMrzsi1 = ZU &1 _ TIXD(SOT&-H + 1)Zdh0 —-n E Xr(frTfS-H + 1)Zth
r=1

1
— ZhIP,s+1

where the first equality stems from Theorem A.11.8 and the second one from
Theorem A.8.7. Since both parameterizations use the same linearity o, we get
Zmi{iPZ,erl — J(Zh&wz,su) — O-(ZhllP,s+1) — ZmllP,erl_

-1 -1 -1 -1
Let [€ [2,L] and assume Z"wzst1 = ZMesi1, Z%ezse1 = Z%Pst1, By Theo-
rem A.11.8, we have

S
[e]

Zhieze41 — _nme[foflZzﬁq?zl,s+1]zd’36 0 Z XTE[leTAme‘rPZlle]ZdBZT
r=1
S

AR VLIS S A R A AL
r=1

l
— ZhHPZ,s+1

where the last equality stems from Theorem A.8.7. Since both parameteriza-
I+1 I+1
tions used the same non-linearity o, we get Z*Hrz.s+1 = Z¥P.s+1,

By induction, we thus get that for any [€ [1, L], ZMezas = Zh'lpﬁsﬂ, and
Z"za41 = Z%.at1, which proves (v). We can thus drop the dependency of
hl.,and 2!, onthe model HPZ or IP. Now, we thus have by Theorem A.11.8

S
lim fHPZ(e) = B[ZV"" 275] — nyoE[Z2%0 Z75) —) (Z ;%TIE[ZI52$§+1]>

m—00
r=1

= lim_f¢,(¢)
where the last equality stems from Theorem A.8.7, which proves (vi). Then

(vi) combined with the continuity of 92¢(ys+1,) proves (vii), and we can thus
oIP o HPZ o
imply denote x,,; = Xs11 = Xs+1- BY Theorems A.11.9 and A.8.8 we get

7% = 7%e | from which it follows that 2z — g by (v)
and since both models share the same activation function. Finally, given the
previous result, with (), (ii7), (iv), (v) and (vii), an easy induction gives (viii)
with the formulas of Theorems A.11.9 and A.8.8, which concludes the proof.

O

255

Proof of Theorem 2.4.2

Proof. The claim has already been proved att = 0 by LemmasA.8.1andA.11.2,
and att = 1 by Lemma A.11.7. Then, by Lemma A.11.10, we get the result at
any time step ¢t > 1 by induction. O

A.12 . Formal versions of the results for the alternative methods
of Section 2.5

A.12.1 . Formalization of the degeneracy of Section 2.5.2
Theorem A.12.1 (Formal). Consider the IP-bias parameterization as in Equa-
tions (2.6), with the initial learning rates c; = —(L +1)/2, ¢ = —(L —1+4)/2
forl € [2,L], and c.4+1 = —1 for the weights, and ¢; = ¢; = —(L + 1)/2,
e = —(L—1+2)/2forl € [2,L)], and e;+1 = 0. for the bias terms. Assume
the activation function o satisfies Assumption 2 and the loss ¢ satisfies Assump-
tion 1. Then, for any input ¢ € RY to the network, ZM"©) z=0© for | > 2,
and lim,,_,~ fo(§) do not depend on &. In addition, for any vector x in the pro-
gram such that Z* does not depend on on the first training input &, Z AW! (e for
1 € [3, L], and im0 (AWETL(1)) " 2 do not depend on .

Proof. We have h} = U'¢ + v so that Zh = ZU'¢ 4 Zv' ~ N(0, ||€]|2+1),
and Z% = ¢(Z"). At the second layer I = 2, we have h2 = m~/2W 2z} + v?
so that by ZNonLin Z" = 0 x ZWsh 4 7v° and ZW*e ~ N (0, E[(Z70)2)).
Because ¢ is pseudo-Lipschitz, it is also polynomially bounded, and the vari-
ance of the Gaussian is finite by Lemma A.3.1, so that 2 = Z** ~ AN(0,1)
which does not depend on ¢. Therefore, Z% = a(thz)) also does not depend
on €. Letl € [3,L] and assume that Z" = = z*"" and Z% ' = o(2"').
Then, we have 2" = 0 x ZW's " + 7¢', and ZW'=5 " ~ A7(0, E[(Z%0 ')?]), and
the variance is again finite by the same arguments as for [= 2. We thus get
Zho = 7" and Z% = o(Z") = ¢(Z"") which concludes the induction and
shows that Z% and Z%0 do not depend on ¢ for all intermediate layers I.

For the output of the network, it directly follows from the master theorem that
m~ (UL T 2k converges almost surely to E[ZV""' ¢(Z%")] = 0 since ZU""
has mean 0 and is independent of Z*". Since fo(¢) = m~Y({UL) ok + pL+1
where v+ ~ A(0,1), we have that fy(¢) converges almost surely to the
Gaussian variable v**! which does not depend on &. For the backward pass,
recall the following definitions: dil := m~'m~=0/2v _, fo(&) and dh} :=
m~tm~E=D/2v,, fo(&). Then, we have dif = UMY, dhly = U © o' (R),
and a simple induction shows that for any I € [1, L — 1], d&}, = (W) dhbH,
dhl, = dzl ® o’ (hl)). We thus have Z4%6 = zU"*" and zdht = zU""' 5/ (Zv")
which does not depend on the first training input &,. With the recursive for-
mulas above, and since Zh = zv' for I € [2, L), it is clear that Z9% and Z@ht

256

do not depend on &, for [€ [2, L].

Finally, let = be a vector in the program for which Z* does not depend on ¢,
and let! € [3, L]. Then, by design, with the initial learning rates as described
above for the weights with IP-bias, we have

T Tr ~
AW (1) = —nxo 20T gk,
m
so that by ZNonLin
ZAWl(l):p — —n)%OE[Zmll_IZx]Zdﬁé,

where X, = 920(yo, vE*1). Since v+, Z%0 ', 7% and Z6 do not depend on &
(I—1andlarebothin[2, L]), ZAW!' ()7 3150 does not depend on the first train-
inginput &. To conclude, we have by the master theorem that (AW +1(1)) 'z
converges almost surely towards —nfgoE[Z"fé Z*| which is does not depend on
&o since this is the case for v+1, 7% and Z*, which concludes the proof.

O

A.12.2 . Formal version of Theorem 2.5.1

Theorem A.12.2 (Formal). Consider IP-non-centered with the Naive-IP learning
rates at every time step. Assume the activation function o satisfies Assumption 2
and the loss { satisfies Assumption 1, and let t > 0 and ¢ € R? be an input to the
network. Then, calling d’, := mV i fs(&,) and dhl, == mV . fs(,), one has that:

(i) foranyle 2,L—1), Z M and Z=t are deterministic constants,
(ii) foranyl € [2,L — 1), 2% and Z dhi. deterministic constants,

(iii) forany!l € [3, L — 1], and for any vector x in the program, we have that
ZWED- WO = (3t %, 20 7) B)

Remark. Point (ii7) highlights the fact that in the infinite-width limit the (ran-
dom) matrix operator (w!(t) — w'(0)) acts on a vector z as if all the entries of
the matrix operator were equal to a single deterministic constant which reads

as (—77 ZZ;}] QszdﬁiZfEZS*l), because then the averages over the coordinates

of z involved in (W(t) — W'(0))x would simply yield E[Z*] by the master the-
orem of the Tensor Program.

The proof Theorem A.12.2 can be found in Appendix A.12.2. The proof is

done by inducting over ¢, and we present the case ¢ = 0 and the induction step
first in Appendix A.12.2.

257

Preliminaries

Lemma A.12.3 (First forward-backward pass and weight updates). Claims (1),
(73) and (iii) of Theorem A.12.2 hold at t = 0.

Proof. h}andz} = o(h})arevectorsin the program by the MatMul and NonLin
rules since ¢ is pseudo-Lipschitz by assumption, and Zh = zU'% 4 7" ~
N(0,]|€]|2+1), and finally Z% = o(Z"). Now, we have (recall that as defined
in Section 2.5.1 J is the matrix full of ones)

hg = m_l/QWQxé +m ? +ugm LIz},

m~Y2W2z} + m~1v? is a valid vector in the program by MatMul and NonLin
because the initial scalars m~'/2 and m~! converge to 0 almost surely, and
Zm AW rabtm Tt 5 ZWeb ()% 2V, By the ZHat rule we get that ZW* o
N (0, E[(Z*0)2]), with finite variance by Lemma A.3.1 since o is pseudo-Lipschitz
and thus polynomially bounded, and 7V ~ N(0,1). It thus follows that get
zm~*(W25+v*) — . On the other hand, 6 := (1/m) Sty h, is avalid scalar
in the program by the Moment rule and it converges almost surely tof — IE[Z“%]
by the master theorem. The coordinates of ugm™1.Jxz} are thus all equal to
u20, and the vector ugm =1 Jz} is thus equal to ¥(z}; 0) coordinate-wise where
the function ¥ (+;-) : R x R — R is pseudo-Lipschitz and depends only on the
second variable with ¥ (z; @) = usa. By the NonLin rule ugm™!Jz{ is thus a
vector in the program and by ZNonLin we thus get Zuam ™ Jzg — w(fol); 5) =
upB[Z%0]. We thus finally get

7" = uyR[Z%0],

which is a (finite) deterministic constant. Then the same statement holds for
7% = o (ugE[Z%)). Let | € [3, L] and assume that k5! and 2! are vectors in
the program and that 7" " and Z7 ' are deterministic constants. Then, we
have

hé = m_l/ZWlxé_l +m ol fum T gzl

As for the case | = 2, we get that m~ /22! 4 m~1v! is a vector in the pro-
gram with zm Wi 4m = — o and um Izt = ¢(2b10) is a vector
in the program with v (z; «) = w;« (recall that ¢ is taken coordinate-wise) de-
pending only on the second variable and 6 := (1/m) > /", xf)qu is avalid scalar
in the program by the Moment rule, which, by the master theorem, converges

almost surely towards 6 = E[Z“"ffl] = Z% ' since the latter is a deterministic
constant by the induction hypothesis. By NonLin k) is a vector in the pro-

gram and by ZNonLin Z"0 = w(Z"”é_l;é) — wZ% which is a deterministic

258

constant. The same claim holds for Z7 = a(ulwafl), which concludes the in-
duction for the forward pass. For the backward pass we get dz} = w!1(0) =
UL 4wy 41 so that by ZNonLin 290 = ZU"™" 4y 4 ~ N (up41,1) since
ur41 is a valid initial scalar in the program as it converges almost surely to
ur 1. We then have Z% = 79 o/(Z"). Note that both Z9% and Z%4 are
not deterministic constants because UX*! is Gaussian with variance 1. We
then have:

—_— T ~ ~
Azl = m Y2(WE) dhf + upmt T dhE

S
As usual the first term m='/2(W%) dh} is a vector in the program by MatMul

and NonLin and Z™ "*(W") dh§ _ o For the second term, since JT = J,
m~1JTdh¥ is also a vector in the program and zm '/ dh§ = 4 B[Zdht]. We
thus get that dzb~ ! is a vector in the program with Z4% ' = v E[Z%"] which
is a deterministic constant. Then, dh}! is also a vector in the program and
by ZNonLin Z% ' = 743 ¢/(Z"t) is a deterministic constant. Repeating
the reasoning above at any layer [€ [2, L — 1], an easy induction (as in the
forward pass) shows that d} and dhl, are vectorsin the program and that Z%o
and Z%% are deterministic constants. Note that 23 = yyR[Z9M0) = uyzh8
is also a deterministic constant but that Z%o = Zd%g’(Z") is not because
ZM ~ N(0,]|¢][241). Let I € [3,L — 1], and let = be a vector in the program.
With the Naive-IP learning rates, we have
-1y T

7l
AW(1) = o 20l)

Sincel € [3,L—1], 74h is a deterministic constant, and since [— 1 € (2, L—2],
-1, T
Z% is also a deterministic constant. By ZNonLin and ZMomentwe get

ZAWl(l)I — _n;OE[foflzr]ZdiLé
= —nxo 2™ 2% "E[27)

which concludes the proof. Note that x(is a valid initial scalar in the pro-
gram because fo(&0) = m~ (UL 2k 4wy ym~ 11T 2k converges almost
surely, by the master theorem, to E[ZU""" 220 + u; 1 E[Z%0] = up4q2%0
since Z% is a deterministic constant and ZU""" ~ N(0,1) has mean zero.
Since d24(yo, -) is continuous by assumption, xo converges almost surely to-
wards Yo := 92l(yo, ur412%9). O

Lemma A.12.4 (Induction step at time ¢ > 1). Lett > 1 and assume claims (1),
(73) and (iii) of Theorem A.12.2 hold at all time steps s € [0,t — 1]. Then claims
(1), (#4) and (ii7) also hold at time step t.

259

Proof. With the Naive-IP learning rate exponents, we get that forany ¢ > 1,

t—1
Wty =U" =0 xsdhi&],
s=0

BY(t) =v' =) x.dhi,

t—1 dhl
W) = m Y (U +wJ) — UZXS , le€[2,L],
Bl(t) =m ! —pm™! szdﬁi, lel2L],

L
— xr
WL+1(t) =m I(UL+1 +ur41) — ”ZXSESv

t—1

BL-‘rl(t) — Lt nm—l Z Ys.
s=0

By a simple induction, all the A%, z!, and dz!, dh, are part of and the scalars

are valid scalars in the program which have a constant almost sure limit, and
by ZNonLin we get:

t—1
M =27 2" YR e)2
s=0
and Z% = ¢(Z") is not a deterministic constant because ZU'¢ + Zv' ~
N0, [|€][>41). Let I € [2, L — 1]. We have

t—1

ZM =0 2V 4 0% 2% F w27 |~ 0> XE[Z5 2|20
s=0
-1 i1 -1 -1 71
=wR[Z™ |—n)_ xE[Z% z% |z,
s=0

which is a deterministic constant with the assumption on the 7M. since | €

[2, L—1]. Note thatifl € [3, L—1], we even have that the expectations simplify
o 7 -1

and we get Z" = (u; — n 2121 X, 2% Z4h) Zo ' In any case, Z7 = o(Z")

is also a deterministic constant. For the output of the network, we have

T L T L t—1 t—1 INT L

(UL+1) Ly 1"z —1¢, L+1 (z5) @y

R R R e
s= s=

so that even if the 2 are not deterministic, ft(g) still converges almost surely,
by the master theorem, to IE‘,[(ZUL+1 + uLH)Zl“t |-z })5’(5 [Zxﬁzwf], and

260

since 024(yy, +) is continuous by assumption, x; converges almost surely to-

L+1 L _ o L L
wards the constant 920 (y,, E[(ZV" " +upy1) 2% | —n S XGE[Z% Z7)). For
the backward pass, we get:

t—1
745 = gwtTH) = ZUMT Ur+1 — UZE)CsZmSL
s=0
and zdht = zd#t /(7MY Letl € [2, L — 1], we have
dit = (W (1)) i
t—1 Sn T o7
3 P T . 3 5 th—l dhl+1
=m 1/2(1/1/1"’1) dhf‘/Jrl +m 1ul+1thi+1 —nZXS—(= 2}1 t xls,
s=0
so that by ZNonLin we get
~1 7l+1 =1 741 7i+1 1
Zd; ul+1E[Zdht] N nZ)O(sE[Zth 7 dhy]sz,
s=0

and since I € [2,L — 1], Z7s is a deterministic constant and thus so is Z4,
Then, zdhi = z4%4'(ZM) and since | € [2,L — 1], Z" is a deterministic con-
stant. Finally, let! € [3, L — 1], and let x be a vector in the program. We have

i (:L'I*I)T:B ~
(Wt +1) = W O)e = —n' S xe B L ait,

m
s=0

and by ZNonLin

t
Z(WH(t+1) =W (0)r _ _n Z)(J(SE[ZIl;IZx]ZdBl'S
s=0

t
B (‘nziszdhézxél> E[27],

s=0

where the last equality stems from the fact that sincel € [3,L — 1], —1 €
-1

[2,L — 2] and Z*s is a deterministic constant for any s € [0,¢]. Sincel €

b > = -1

[2, L — 1], 29 is also a deterministic constant, so that —n Y _ x, 2% Z7

is a deterministic constant, which concludes the proof. O

Proof of Theorem A.12.2

Proof. The result comes by induction over ¢ using Lemmas A.12.3 and A.12.4.
O

261

A.13 . The variables associated with the initial weights vanish
in IP-LLR

In this section we wish to study more precisely the evolution and the expression
of the variables Z in the dynamics of IP-LLR at any time step ¢. To this end, we will
show that the Zs of all the forward and backward variables in IP-LLR are functions
only of the 7' and E(Wl)Td%, as well as the initial vectors U'&, ..., U,
vl, UEHL We will thus write

AT AL — ~ Tk | 97
o eu((z), (2)

to generically denote that the variable Z# is a function only of the variables which
appear in the arguments: Ewl%_l, E(Wk)Tdﬁg, U, vt and U, (where mul-
tiple values of [, k& and s might actually appear in the argument). This function v
(we will sometimes also use ¢) will of course depend on the z under consideration,
and we might denote it by ¢* (or ¢%,) but most of the time we will omit this

(U, 0, U)
k

dependency and simply use the symbol 1) for different variables to express that the
variable Z# is a function of the arguments of 1 only.

We will see that the function 1) appearing will always be polynomially bounded
by some form of composition or product of polynomially bounded functions, which
will allow us to prove that the corresponding Z# is finite almost surely since its
arguments, considered as a vector, follow a Gaussian distribution with finite vari-
ance (and thus finite moments of any order). Note that in the proofs, we will use
extensively (without explicitly saying so) that if ¢ and 1 are polynomially bounded
then ¢ x 1) is also polynomially bounded, and if ¢ is a polynomially bounded func-
tion of a single variable then ¢ o ¢ is also polynomially bounded. We introduce
the following definition and lemma which we will use extensively in the proof by
induction:

Definition A.13.1 (Vector of initial vectors and first forward-backward). Let
t > 1. Then, dropping the dependency on t, we define the random vector:

ZO = ZOt = <2U1§0, .. .72U1§t,ZU172UL+1,

ST7241 StLsL—1
A AL

)

yee ey

) dig 2(WL>TdB€>

Remark.

1. Note that any function of Zj ; will also be a function of Z, for ¢t > s,
which is also why we suppress the dependency on t as we can always
take the largest possible ¢t when we make a specific claim which involves
Zo.

262

2. Also note that by the ZDot rule of the Tensor Program, for any vector
z in the Tensor Program such that Z# is a function only of Z, then for
anyle[2,L]:

S 0 0
(i) Zo~N 0,10 Dy 0 with
0 0 Dy
0 0
Si=10 1 0| eREFIE 5 =¢lg,
0O 0 1
E[(Z%)?]
Dy = e RE-Dx(L-1)
E[(Z%)2
E[(Z)?]
Dy = e REL-1)x(L-1)
E[(Z%%)?]

(i) |E[v(Zo)]|< oo, and |1p(Zy)|< oo almost surely for any polynomially bounded
function « : Rt+2L 5 R,

Remark. Note that the lemma stays valid even if) does not depend on the
whole list of variables inside Z; but only on a couple of them, which will be
the case in the Tensor Program. Point (i7) will be used repeatedly in different
proofs to show that the expectations appearing in the forward and backward
passes are finite.

Proof. Claim (i) simply comes from the definition of the initial vectors U*&,
..., U, UFH and from the ZHat rule in a Tensor Program. Claim (ii) then
follows because all entries in the covariance matrix are finite by Lemma A.7.1,
and since 1 is polynomially bounded and the moments of a Gaussian with
finite variance are finite, |E[¢(Zy)]|< E[|¥(Z0)|] < oo and thus |¢(Zy)|< oo
almost surely. O

Note that by Lemmas A.7.2 and A.7.3, the first forward and backward passes of
IP-LLR easily express in function of the entries of Zy. Let us now take care of
the forward and backward passes at t = 1. As the dynamics evolve with time,
the expression of the forward and backward passes of IP-LLR in function of Zj

263

(or rather of some of the entries of Zj) get more intricate. They are still easy
to develop explicitly for ¢ = 1 but we choose to simply express what variables
appear in the expression of the forward and backward passes instead of giving the
expression explicitly.

Lemma A.13.2 (Multiplications by initial weight matrices vanish with polyno-
mially bounded variables). Consider the IP-LLR parameterization and let z be a
vector in the program such that Z* = (Zy) with) polynomially bounded. Then,
one has that for any 1 € [2, L]:

() if —2Z5% = $(Z,) with ¢ polynomially bounded, then ZW'(©)z = q,
0

Z(Wl>TdiLlO
(i) if =2 = ¢(Z) with ¢ polynomially bounded, then AU)N
8z" %o

Proof. Letl € [2, L]. We simply write

l o Sl o il
ZW(O)Z:WZZWZ+WZZWZ

where ZW'(©= ~ A7(0,E[(Z)?]) and the variance is finite by Lemma A.13.1 be-
cause (Z%)? is a polynomially bounded function of Zy since Z# is. This shows
that | Z"' (07| < oo almost surely and thus that &, Z"'? = 0 since &; = 0in IPs.
On the other hand,

07~

dh!
— =T |4
o7z W) dhy

AR

and the expectation is finite by Lemma A.13.1 since 8ZZ/82(WZ)T = ¢(Zy)
with ¢ polynomially bounded, and

~, T T = AT~ —

ikl _ ZWHY dhit1o 5 ZW'ag Y if | e 2,1 — 1]
ZU e (ZW'E T if 1= I

In any case, Z4h s a polynomially bounded function of Zy and is thus finite

almost surely, which entails ©;Z"'* = 0, and therefore ZW'©2 = (which
gives (7).

The same reasoning with WZ(O)T gives (i) if 8ZZ/82‘7V\%71 = ¢(Zy) with
¢ polynomially bounded.
0

The caset =1

Lemma A.13.3 (7, in the forward pass of IP-LLR at t = 1). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Then, dropping the dependency of the forward pass on &;, one has:

264

() 2% =y (2%, 20, 7070
(ii)) ZM = (Zur ZW%S*)
and

() 2% (), e [2,1)

(1) 22 _ (Zo) 1 € 2, L]

zwlié—l
and all the different ¢y that appear are polynomially bounded.
Remark.

1. Recall that we simply use 1 or ¢ to mean that the variable is a function
of the arguments of v (or ¢) only, and that the different 1) and ¢ which
appear in the different claims (i) to (v) are not actually the same.

2. For the partial derivatives we chose not to make a precise statement on
which variables exactly appear in the expression as this will not matter
and would only over-complicate things for close to none added-value.

3. Note that with the claims above, one can prove that &ZZWlmll_l =0
because both of the terms Z and Z defining 2V are polynomially
bounded functions of Gaussians which has finite covariance matrices,
and w; = 0in IPs.

Proof. Using Theorem A.8.7 with ¢ = & and t = 1 we have claim (i) be-
cause, first Z%% = E(Wz)Tdﬁg, and second ¢’ is polynomially bounded (see
Appendix A.5). Claim (i) also stems from Theorem A.8.7 since it holds that
Zdwh — ZWHYdhG Zhy _ ZWET and of s polynomially bounded. Fi-
nally, claim (iii) also stems from Theorem A.8.7 since Z%6 = zU™*' Zht —
ZW's™" and o’ is polynomially bounded.

From Theorem A.8.7, we get:

ozM o ~
m = —77X0(§()Tfl)UI(ZU go)
0

For ! € [3, L], from Theorem A.8.7, we get

YA

)" dh)

= Bz 2 e (V)
AUS

265

which immediately gives claim (iv) since ¢’ is polynomially bounded and with
Jl—-2 _~1-2

claim (i) and Lemma A.13.1, we also have |E[Z%0 ~Z%1 "]|< co. Similarly, for

l € [2, L], from Theorem A.8.7, we get

At —
8{ ! _ _TD%OE[Za?f;1Z:illil]Zdiéa_//(Z\Wl:iéil)
YA
and z48 ' — ZOVED A e ¢ (2,1 — 1], and 2% ' = ZUMTU i) = L
Since the expectation is finite by claim (i:) and Lemma A.13.1, and since ¢” is
polynomially bounded, we get claim (v). O

Lemma A.13.4(Z; in the backward pass of IP-LLR at ¢t = 1). Considerthe IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Then, dropping the dependency of the forward and backward passes on &, one

has:
() 25 = (2077, 2V,
Zd;lL _ (

UL+l SwLzl-1
ZW Ty)

(i) 7475

(ZWL 1gzl— 2)

Zdhl 1

A~
AN
§
N
S

=9
= AI)TC”L%), le[3,L]
(iii) Zdazl (U1€0)
dh} _ (ZUlgo ZUY% Z(W2)Tdh2)
and

(iv) oz U(Zo), 1 €1, L]

AWlll_

029 _ _
W) — DA e = v(Z0) L€ (1L 1)

and all the different) that appear are polynomially bounded.

Proof. For the backward pass, we have by definition of the tilde variables for
t > 1,dzt = wlti(1) = UX*! — nxoit by Lemma A.7.4.2, and thus

25 = B (BT
Then,
Zd;bf’ — Zdi'fo_/(th)

which gives claim (i) since o and ¢’ are polynomially bounded, and Z"' =
W(Zv, Al ") and ¢ is polynomially bounded by Lemma A.13.3.

266

Fori =L — 1, we have

dztt = (WE(1)) ' dht
~ T ~
dhL) dhE
)T (dhy) L ~L-1

= UJL(/WZ dillL - UXOT 0

which gives
o ~L—1

Zd:ilL71 — sz(Wl)TdB{’ _ n;(OE[ZdiLg Zdﬁf]zxo

Now, by the previous expression of zdht and by Lemma A.13.3, we get

8Zdﬁf o AT ~L— - azhf
e = e (270 e (2 + 2 e (21
ow'z; Wizt

and by claim (i) and Lemma A.13.3 we get

azdﬁf
——— =¥(%)
OWlxg 1

with) polynomially bounded since ¢’ and ¢” are polynomially bounded. There-

o TP
fore, by Lemma A.13.2, we get &, ZW") dhi — g

We thus simply get

~L—1

Zdi‘lL_l — _nQOE[Zd;Zé’ Zdﬁf]zxo

74kt and Z are polynomially bounded functions of Z, and thus this is also
true for 24§ Z4ht | and by Lemma A.13.1, [E[Z% Z%)|< o. Since 7431 =
(Z% ") with ¢ polynomially bounded, we thus get Zdifil = y(?wlﬂi’gﬁ)
and v is polynomially bounded (indeed: 1(z) = —nx E[Z%0 2915 (2)).

We have
zdhy ™t _ Zdaszlgl(zhffl)
— ATTI—1~L—2 /50 5
and since by LemmaA.13.3, 2 = (ZW' 71307, ZW" dhty with + polyno-
~L—1
mially bounded, by the previous result for Z%¥1" and since ¢’ is polynomially

bounded we get

~7 TS 1 ~[— o~ T ~
ZdhlL 1 :w(zwl 17k 2,Z(Wl) dhg)

267

with ¢ polynomially bounded.

We have

azdﬁf* 8Zd:7:f*1

_ r(bt dt
ogvw ggwa e 0)

— _ pS Rlgdhk mdht o ZWH@Q” o th*1
XoE[Jo'()o'() +
L—1
gt 02 e
oZW' ey

By Lemma A.13.3 and since ¢’ and ¢” are polynomially bounded, and we have
~L—

already proven that Zda ™ = ¥(Zp) with ¢ polynomially bounded, as well as

IE[Z%h0 29| < oo, we get

YAGEE
= V(Zo)
with ¢ polynomially bounded.
Similarly, we have
9z _ 9z 1(7hi™! dzf 07" " zhi ™t
SOV dhE ALT~LU(ZI)+ 2 =T =7 r)
97Wh) dhly g7 (WL) dhf 97WL) dhf
L—-1
:ZdicL*1 ozM //(hffl)
97 WE) dhk

Now, we have shown above that Z41 ' = y(Z,) with ¥ polynomially bounded,

Z —~ T - _
and by Lemma A.13.3 we have that both 92 /9Z(W*") dh§ and Zh™" are
polynomially bounded functions of Zy, which gives

8Zdi1571

. = 7

with ¢ polynomially bounded.

Let I € [2,L — 1] and assume claims (i7), (iv) and (v) are true for layer I.
We have

Azt _ o (W) ikt o il il b
Z%% =wZ 1 —nxoE[Z2%0 Z%"] Z%0

Since by the induction hypothesis 6Zd’311/82ﬁ7%71 = 1 (Zy) with ¢ polynomi-

ally bounded, and Z?"1 is a polynomially bounded function of Z,, by Lemma
— T -

A.13.2 we get 0, Z(W") ki — 0. Then, we simply get

ZdSNCl171 _ _T];CO]E[ZdEé Zdilé]z:fsf;l

268

Again here, since both Zdht and Z are polynomially bounded functions of
Zo, then so is Z4 Z4M: which shows by Lemma A.13.1 that [E[Z% Z4M]|< .
If1 > 3, since Z% ' = ¢(Z"'"'% *) and ¢ is polynomially bounded, we get
that

Zda:nl;l _ w(gﬁlflgzg*?)
If I = 2, since Z% = ¢(ZV"%) and o is polynomially bounded we get:
poly y
Zdazll_1 _ ¢(ZU1£O)

with ¢ polynomially bounded.
We then have

ZdhTh _ di ! o' Zhll_l)
and thus

oz 9z e g
ASTl—12—2 A ST 120 () +
VAL VAL —1(0)z,

= — XeE[ZT 2o (Z7 I) (2157 +

hl -1
Zda~f)1171 8Z !

]’1}71
077 Z")

1
ogm

hlfl
SpTaT o"(ZM)

By Lemma A.13.3 as well as the previous result on 247" and since it holds
that |E[Z9"0 Z4h)|< o0, and ¢’ and o” are polynomially bounded, we get that

azdﬁll_l
oZW' i

= (Z)

with ¢ polynomially bounded.

Similarly
Fl-1 ~—1 -1
8{dh1T = afdle - O_I(Zhl_l) _|_Zdacll 1 8/Z\h1 " hll_l)
o7 WE) dhl g7 (WiHL) dhj 97 (WE) dh
-1
:Zda”:l‘l 0ZM //(Zhlfl)
97(WL) dh

and the three quantities in the product are polynomially bounded functions
of Zy (shown above for the first term and by Lemma A.13.3 for the two other

269

terms). We thus get

azdﬁll_l

9 _y(Z
o7 WLy dit V(%)

with ¢ polynomially bounded. This concludes the induction and thus proves
claims (ii), (iii), (iv) and (v) by induction.
O

Corollary A.13.4.1 (Multiplications by the initial weight matrices vanishin IP-LLR
att = 1). Consider the IP-LLR parameterization with a positively p-homogeneous
activation function, and p > 2. Then for any | € [2, L], one has:

ZWHo)TdRL _ & (WY dRy _

Proof. Those results are actually hidden in the proof of Lemma A.13.4 and
come from Lemma A.13.2. O

The caset =2

Lemma A.13.5 (7 in the forward pass of IP-LLR at t = 2). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Then, dropping the dependency of the forward pass on &, one has:

() 2 = (0%, 26, 2V, Z07)Tdi)

(i) 7% = (2757, 2V, e o, L)
(i) 2% =y (20", 2V
and

(y) 2% _ W (Zo) 1€ [2, 1]

E(Wl)Tdeé

W) i = (Zo) 1€ 2.0)
and
i) ZW' O — 0 12, 1)
and all the different i) that appear are polynomially bounded.

270

Proof. We have
hy = U — nxo(&g &2)dhg — nxa (& &)dh]
which gives
1 1 o 71 o Bl
ZM = 778 —nxo (60 &) 20 — nx, (& &) 2

By LemmaA.13.4 24k = y(ZU%, ZU'6 | Z(W)Tdh) and we also have 2% =
W(ZU 6, ZWH) T dhg) where the different ¢ are polynomially bounded, which
gives claim (7).

We have
RYAL: o RYAL o VAL

T s *nXo(f(j)—fz)ﬁ - 7]X1(§;—§2)AA7T~2

0ZW?) dhg 9Z(W?) dhj o7W2) " dh3
with

VAL '
o
0

which is a polynomially bounded function of Z, and so is 927 /82(W2)Td53
by Lemma A.13.4. We thus get claim (iv) for [= 2.

We have

2% = 527" — n EZR 22 — Bl 2 2
Now Z%2 = ¢(Z"2) is a polynomially bounded function of Z, because 2" is
and o is polynomially bounded. Secondly, we have

0773 YA

_ '(Zh
§7(W2)" dh3 82(W2)Tdﬁga()

which is a polynomially bounded function of Z, by the previous results. By
Lemma A.13.2 we get that w,Z"’72 = 0 which gives claim (vi) for I = 2. In
addition, this yields

2" = —nxoE (2% 23] 2" — iy, B[zt 27 27

which gives claim (ii) for | = 2 by the results for the backward passes at time
t = 0and t = 1 and because the expectations are finite since the integrands
are polynomially bounded functions of Zj, as they are products of such vari-
ables by the induction hypothesis. Additionally, we have

8Zd}~l%
97 (W3(0)) " dh3

azdﬁg
§7(W3(0)) ' dh3

YA

e — ny E[Z%1 7%

= —nxoE[270 2]

271

and we have

9 Zdﬁg

SW2l
=T, ZW 7o)
97 (W5(0)) " dhi

= 0'/(
- e~ T -

and 92 /9 Z(W*()) dhi s a polynomially bounded function of Z, by Lemma

A.13.4. Once again, since the expectations are finite, we thus get that

YA
97 (W3(0) " dh3

= (Zo)

with) polynomially bounded. A similar reasoning would prove that

oz
T Sosime2 ¥(Zo)
VAL (0)z;
with 1) polynomially bounded because
7l
82" _ 2(W3(0))Tdﬁ80//(2W%é)

07w (0)3
and 924 /9 ZW* (0 — y(Zy) with ¢ polynomially bounded by LemmaA.13.4.

Let! € [2, L — 1] and assume claims (i), (iv), (v), and (vi) for layer [. Then,
we have:
I+1 l o

th — (f)l—‘,—lZWH—lmQ o nXOE[Zié ZIZQ}ZdiLf)_H o n)czlE[lel Zle]ZdiLll+1

Now Z% = a(Zhlz) is a polynomially bounded function of Z, because Zhais by
the induction hypothesis and ¢ is polynomially bounded. Secondly, we have

l 1
oz 07 oy
82(Wz+1fd%+1 82(/VI71+1)TdFLg+1

which is a polynomially bounded function of Z, by the induction hypothesis.
By Lemma A.13.2 we get that wf;lZWleé = 0 which gives claim (vi) for layer
[+ 1. In addition, this yields

7" = B[22 2 — py Bz 27 2

which gives claim (iz) for layer [+ 1 by the results for the backward passes
attime ¢t = 0and ¢t = 1 and because the expectations are finite since the in-
tegrands are polynomially bounded functions of 7y, as they are products of
suchvariables. The only thing that one has to be careful withisthatifi+1 = L,
then zho"" = y(zV"", ZW'5 ") and ZM™ = 2V, ZW'3) with both
1 polynomially bounded, which gives claim (ziz). Otherwise, if [+1 < L —1,

272

Z%ﬂ _ q/;(Z\/WHl%’ Z(WHQ(O))TdﬁHz) and Z;Lllﬂ _ 77/}(2{4714.1%’ Z(WHQ(U))TdﬁHQ)

with both ¢ polynomially bounded, which gives claim (ii) for layer [+ 1.

Now, ifl +1 <L —1,

YA VAL VAL

ALY ALY — . E[Z271 Z7]

97 (WH+2(0)) " dhs+? 57 (Wt+2(0)) " dhl+ o7 (WH+2(0)) " dhlt?

and we have

07
a’Z\(ﬁ/\l+2 (0))Tdi~zé+2

_ U/(Z\Wl“jé)

T -

and 9z 19Z(W20) dhg™ s 3 polynomially bounded function of Zy by

Lemma A.13.4. Once again, since the expectations are finite, we thus get that
ozh"

82(Wl+2(0))Tdﬁ6+2

= (Z)

with ¢ polynomially bounded, which proves claim (iv) for layer I+ 1. A similar
reasoning would prove that

+1
h2

Y4
AR

= (Zo)
with 1) polynomially bounded because

~ o~ T ~ P ~
agdhéﬂ _ ZW+2(0) Ci;ié+20_//(ZWl+1xf)) iflr1<L-1
pzW O, | ZUM e (ZWIE T if 141 =L

and 9z J9Z W' #, = y(Zy) with ¢ polynomially bounded by Lemma A.13.4.
This proves claim (v) and thus concludes the induction and with it the proof.
O

Lemma A.13.6 (Z; in the backward pass of IP-LLR att = 2). Considerthe IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Then, dropping the dependency of the forward and backward passes on £,, one
has:

() 2% = (7070, 27T,
gdhk _ " <2UL+1’ EW%(%*)
(”) Zd:fc2 _ 1!) <2wllil2’ /Z\(Wl)TdiLé)),

273

(i) 2% = (206, 206, ZOV)TdR),
Zdh} :¢(2U1§0’ UG pUe, 2(W2)Tdﬁg)
and

(iv) 882‘””12 W(Zy), 1 € [2, L]

~tlal—1 =
ZW Zg

v) 8;(;; = (%) L € 2. L]
and
(vi) ZW' O iy — ¢ | ¢ [2, L]
and all the different i that appear are polynomially bounded.
Proof. We have:
2% = 2V —nxo 2% — nx, 27

1 l

where Z% = ¢(ZW'% "y and z*1 = (ZV", Z7'%%5 ") with ¢ polynomially
bounded by Lemma A.13.3. Combining all this gives

795 = p(z0" " ZVET
with) polynomially bounded since ¢ is also polynomially bounded. Then
gdhl _ pdil o' ZhQL)

and since Z"z = (ZV"", EW%#_I) with 1 polynomially bounded by Lemma
A.13.5, we get

de~7,2L — ¢</Z\UL+1 , Z\Wliéil)

with v polynomially bounded since ¢’ is also polynomially bounded. This thus
proves claim (i). Now, we have

VAL 07% VA
82W193L—1 :82W15L_1 U,(ZhQL) + 7% 82/WZ’ZL_1 U”(ZhQL)
0 0 0

where z", 92 1aZW'#% ", and Z9% are polynomially bounded functions
of Zy by the previous result and by Lemma A.13.5. We have

o7k PO YA
oZWlab T =- ﬁioal(zwlxé 1) — X g7WiEk ! UI(ZhIL)
0 0

which is a polynomially bounded function of Z; since ¢’ is polynomially bounded
and by Lemma A.13.3. We thus get

azdﬁé
with v polynomially bounded since ¢’ and ¢” are polynomially bounded. This
proves (iv) forl =L

= (Z)

L—-1

gdiy ™t _ 5L§(W1>Tdﬁg _ nioE[dezéZdﬁé]Zig ! -y E[Zdhl ik 5171

From the previous step we have that both Z%% and 924 /9Z"'% ™" are poly-
nomially bounded functions of Z;. By Lemma A.13.2, this first shows that
o STl g7 . .

&L ZWH dhi — 0, and thus gives (vi) for | = L, leading to:

Zdié/il — _n%OE[ZdiLé’ Zdﬁ%]zi‘é'71 _ n%lE[Zdilf Zdﬁé‘]zx571
Now Z% " = o(ZW''% ") and by Lemma A.13.3, we also have that Z%1 ' =
~TT5]_1~L— ~TSINT T

W(ZW' 1 Z(WE) dhEy with 4 polynomially bounded. As always the expec-
tations are finite by Lemma A.13.1 because the integrands are polynomially

bounded functions of Z; as products of such variables. Since ¢ is also poly-
nomially bounded, this gives

ikt w@ﬁlwg% Z‘(W\L)Tdﬁg)
Then, we have
gdhy ™t _ ngzg*lal(zhgfl)

—_— T ~
andsince 25" = y(ZW' 135" Z(WH) i) with o polynomially bounded by
Lemma A.13.5, we get

205 (W Z(WL)Tdﬁg)
with) polynomially bounded since ¢’ is also polynomially bounded. This thus
ATTF—1~L—1 /LN a5
proves claim (ii) forl = L—1. Now, let Z € {ZW''@~" Z(W") dh§) e have

oz~ gz - 197" -
e e A R A VL

where z"2~", 9227 /02, and Z%2 " are polynomially bounded functions of
Zy by the previous result and by Lemma A.13.5. We have

~L—1 7
((9Zd$2 . Zdh ZdhL]azhO . BLfl _

275

which is a polynomially bounded function of Z; since ¢’ is polynomially bounded
and by Lemma A.13.3.

For both possible values of Z, the expression of 827‘5_1/82 is easy to ob-
tain and is a polynomially bounded function of Z; (this has actually already
been shown for the proofs attime ¢t = 1), and th’l/az = (Zy) with ¢ poly-
nomially bounded by Lemma A.13.3. Since the expectations are finite and o’
is polynomially bounded, we get

VA

with) polynomially bounded and thus
8zdi~l2L*1
37 = 7/1(20)

with ¢ polynomially bounded. This proves (iv) and (v) for{ = L — 1.

Let ! € [2,L — 1], and assume claims (i), (iv), (v), are true at layer [and
claim (vi) is true at layer [+ 1. We have:

Zdle_l — &IZ\(WZ)Td;LZQ _ n)%oE[ZdElDZd;LZQ]Zjé_l _ n;lE[ZdiLll ZdBIQ]Zwll—l
From the induction hypothesis we have that both Z4% and 8Zd’312/32ﬁ7’ié‘1

are polynomially bounded functions of Z,. By Lemma A.13.2, this first shows
o Sy g . . .
that &, ZW") dhz — 0, and thus gives (vi) for layer I, leading to:

79" = _py B[z zdh) 730" _ 3 B z4M ZdRh) 7ot

Now, if | —1 > 2, Z%0 ' = a(?ﬁl*liéﬁz) and by Lemma A.13.3, we also have

that z%1 ' = p(ZW'" 507, Z(WL)Td%) with ¢ polynomially bounded. On the
other hand, if | — 1 = 1, we have Z% = ¢(ZV'%) and we also have that
77 = y(ZV %, 2V E(WQ)T"E%) by Lemma A.13.3. As always the expec-
tations are finite by Lemma A.13.1 because the integrands are polynomially
bounded functions of Z; as products of such variables. Since ¢ is also poly-
nomially bounded, this gives

AT ~l— A~ TSN T T
Tt Y(ZW' TR 2 vy if 1 > 9
pr— ~ ~ e~ T -
Y(ZV' 6 ZU Z(W?) dhgyif | 1 =1
Since %> ' = z4#7 /(72 1), by Lemma A.13.3 we get
~TS l— ~TSTA T T
it _ Je(ZV T 0 By if) -1 >0
@BV, 20 ZUNe ZOV) Ry if g 1 = 1

276

This gives claim (i7) for layer [— 1 and claim (7i7) for the case when ! —1 = 1.
PN T TSP, Jg
Now, let Z € {ZW'"'3,° Z(W5) dhty we have
8Zdﬁl2_1 azdié_l ,

97 — 8z U(Zhé71)+Zdi2 70"(2}11271)

where 22 " and Z4% ' are polynomially bounded functions of Z by the pre-
vious result and by Lemma A.13.5. Also by Lemma A.13.5, we have

ozh" [0 if I—1=1and Z = ZW'%
0z ¥ (Zp) otherwise

with ¢ polynomially bounded. In any case, 8Zh§_1/8Z is a polynomially bounded
function of Z,. On the other hand, we have

YA
YA

oz
BYA

-1
YA o hll—l)
o0z

= — XOE[Z70 22 =o' (270) — B2 2]
For both possible values of Z, 8Z%_1/8Z has an easy expression and is a
polynomially bounded function of Z; (essentially because ¢ and its derivatives
are polynomially bounded). On the other hand, 82'7171/82 is @ polynomially
bounded function of Z; by Lemma A.13.4. ¢’ is polynomially bounded, and
the expectations are finite by Lemma A.13.1 since the integrands are poly-
nomially bounded functions of Z; as they are products of such functions by
Lemma A.13.4 and by the induction hypothesis. We thus get that

074"
07

with 1 polynomially bounded. We thus have that:

=¥ (Zo)

azdﬁé_l
with) polynomially bounded, which proves claims (iv) and (v) at layer I — 1.
This thus concludes the induction, and with it the proof. O

The caset > 2

We have now treated the base case ¢t = 2 and are thus equipped to do the induction
for t > 2. To make things easier we first introduce some equations. Let t > 2, we
define the following assertions, where the different ¢) appearing are assumed to be
polynomially bounded:

Forward pass at time t:

—
~

(i) 2" = (2U1€0, L7V Z<W2>Td’33) (A17)

277

Forl e [2,1],

o~

(i) thf — ¢ (2{471%71’ Z(WHI)Td%ﬂ)

(ZZZ) th‘ — 7,[} (EUL-FI’ Z\/WLfé—l)

Forl e [2,1],
oz
N
(ZU) E(Wl)Tdi‘Lé w(0)
VAL
(v) ST Y (Zo)

(vi) ZW' O — g

Backward pass at time ¢:
(i1) gdif _ " (ZUL+1 Z\WL;;@ﬂ)

(i2) zt =4 (ZUbH 2WL;:§—I>

For I € [3, 1),
(Z'Ll) Zdi%*l _ 17/) <Z\Wl11.12’ /Z\(Wl)Tdilé>
(”2) Zdizi—l . (Z\Wllil27 /Z\(Wl)Tdfzf))
(i) 2% = (20, ., 776, 207 0)
(i) 20 = (77, . 7V, 2T
For l € [2,L],
oz
(iv) g (%)
azdﬁfﬁ’1
(v) PPy W(Zo)
o7 (WE) dhy

278

(A.18)

(A.19)

(A.20)

(A.217)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(vi) ZW'O)dRt _ (A31)

Note that we have proved in Appendix A.13 that all the assertions above hold for
t = 2. Our goal is now to show by induction that they hold for any ¢ > 2. For this
we prove the following two lemmas. The proofs will essentially follow exactly the
same pattern as for t = 2, the only difference is that the formulas will involve more
terms, but since any finite sum of polynomially bounded functions is polynomially
bounded, we will get the same results. Before proving the lemmas, we introduce
the following quantities for 0 < s < t:

For | € [2, L]
~1—1 -1
E[z% Z"] if s=0
;o g) (A.32)
Vs t,1 {E[Z“ls ' 1] otherwise
Forl e [1,L —1]
7l+1 7l+1
Ve =Kz Zz4 (A.33)

,Y;”’“ (resp. yé”t’l) will appear when expressing the variables of the I-th layer at
time ¢ in the forward (resp. backward) pass. We will show in the proofs that as
for t = 1 and t = 2, those expectations are finite by Lemma A.13.1 because the
integrands are polynomially bounded functions of Zj as they are products of such
variables.

Lemma A.13.7 (Induction step in IP-LLR, forward pass). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p >
2. Lett > 2, and assume that all of the assertions of Equation (A.17) up until
Equation (A.31) hold for every time step s € [2,t]. Then, the assertions of the
forward pass, i.e., from Equation (A.17) up until Equation (A.22), hold at time t+ 1.

Proof. We follow the proof of Lemma A.13.5. By Theorem A.8.7, we have

t
Zhie = 278 TN) 2
s=0
By Lemma A.13.4 24 = (ZU"%, ZU'¢ Z(W*)TdhE) and and by assumption
we also have Zdhs = (ZU"% .. zU'6 Z(W")Tdhi) \where the different ¢ are
polynomially bounded, which gives claim (i) at time ¢ + 1.

We have

athlJrl

i 71
y o7z s
—_— = = — T
82(W2)Tdi~zg n Sz::() Xs(&s &i+1) 5

=T
Z(W2) " dhg

279

with

8Zdl~1(l)

=2V

which is a polynomially bounded function of Zy and so is 6Zdﬁ%/82(w2f‘”33 by

~ o e~a T~
Lemma A.13.4. In addition, by assumption, for s € [2,t], 2% j9ZW?*) dhi —
¥(Zy) with ¢ polynomially bounded. We thus get claim (iv) for I = 2 at time
t+ 1.

We have by Theorem A.8.7

t
h2,. O W2l o f dﬁz
Zhevr = w2 e — 0> Xl 07
s=0

Now Z%i+1 = a(Zh%H) is a polynomially bounded function of Z; because Zhi
is and o is polynomially bounded. Secondly, we have

07T+ YA
oz iz 97 W?) dh3

1
o' (2"

which is a polynomially bounded function of Z by the previous results and be-

cause ¢’ is polynomially bounded. By Lemma A.13.2 we get that (A(}JQZ/W\thl+1 =
0 which gives claim (vi) for [= 2 at time ¢ + 1. In addition, this yields

t
2 o h2 ° h2
Zhin = _nXOPY({t—f—lQZdhO -n Z XsVit—H,QZth
s=0

The expectations defining the 4/ are finite by Lemma A.13.1 since the inte-
grands are polynomially bounded functions of 7, as they are products of
such variables by the previous result on Z%+1 and by the assumption. This
gives claim (ii) for | = 2 by the results for the backward passes attimet = 0
and t = 1 and by the assumptions. Let Z € {Z/V‘?%é, E(ngdﬁg}. We have

YA o 9z
a7z _WZ%XSWS,HMQZ
S=

8Zd’1c2>/8Z has a simple expression and is a polynomially bounded function
of Zy. Additionally, by the results of the backward pass for ¢ = 1, and by
assumption, for s € [1,t], 82 /07 = (Zy) with 1 polynomially bounded.
Since the 4/ are finite, we thus get

8Zh%+1
0z

= ¥(Zo)

280

with ¢ polynomially bounded. This gives claims (iv) and (v) at time ¢ + 1.

Let! € [2, L — 1] and assume claims (i3), (iv), (v), and (vi) for layer [at time
t + 1. Then, by Theorem A.8.7 we have:

t

ML oty S %! d

ZM = Wl+1Z = X5757t+1,l+1Z
5=0

i+

Now Z%+1 = a(ZhiH) is a polynomially bounded function of Z; because
Zh s by the induction hypothesis and ¢ is polynomially bounded. Secondly,
we have

l Rl
O 7% t+1 _ 0Z"+1 U’(Zhi+1)

o~ o~

aZ(WzH)Td%H 8Z(Wz+1fd%+1

which is a polynomially bounded function of Z;, by the induction hypothesis.
By Lemma A.13.2 we get that w;y 1 Z" “#t+1 = 0 which gives claim (vi) for layer
[+ 1 attime ¢t + 1. In addition, this yields

hH—l iLlj—l

t
_ ° f dh;
Zh0 = =0 Xl a2
s=0

The expectations defining the v/ are finite by Lemma A.13.1 since the inte-
grands are polynomially bounded functions of Z;, as they are products of
such variables by the assumption and by the induction hypothesis. Ifi+1 = L,
we have, for any s € [0,], 4™ = (ZU"", ZW'3 ") with + polynomially
bounded, which shows

2 (U G

with ¢ polynomially bounded, which gives claim (ii). If { +1 < L — 1, for any

~ o~ B T ~
s €[0,s], Zs" = g(ZW' a6, Z(WT0 dhe™) with 4 polynomially bounded,
which shows

I+1 AT+ (T T 42
thil _ w(ZWl+lz6’Z(Wl+2) dho+)

1 polynomially bounded, which shows claim (i) at layer [+ 1 for time ¢ + 1.

et o espaon T
Let Z € {ZW"'@6, (W) dhi™*} Note that the second value is only valid if
I +1<L —1.Whenever Z is well-defined, we have

o7 Lo oz
YA :—”sz%,tﬂ,lﬂaT

s=0

For both possible values of Z, 8Zd’~lé+1/8Z has a simple expression and is a
7l+1
polynomially bounded function of Zy. Z%1" /97 is a polynomially bounded

281

function of Z by the results of the backward pass attime ¢ = 1 (LemmaA.13.4),
7l
and finally for s € [2,4], Z9M"" /07 = (Z,) with ¢ polynomially bounded by
assumption. Since the +7 are finite, this gives
BYADS
07z

= (Zo)

with) polynomially bounded. This proves claim (iv) and (v) for layer [+ 1 at
time ¢ + 1, and thus concludes the induction on [and with it the proof. 0O

Lemma A.13.8 (Induction step in IP-LLR, backward pass). Consider the IP-LLR
parameterization with a positively p-homogeneous activation function, and p > 2.
Lett > 2, and assume that all of the assertions of Equation (A.17) up until Equa-
tion (A.31) for every time step s € [2,t]. Additionally assume that the assertions of
the forward pass, i.e., from Equation (A.17) up until Equation (A.22), hold at time
t+ 1. Then, the assertions of the backward pass, i.e., from Equation (A.23) up until
Equation (A.31), hold at time t + 1.

Proof. We follow the proof of Lemma A.13.6. We have:

t
s=1
where Z# = J(Zwlfgfl), 7o = z/J(ZULH,ZVV\%A) with ¢ polynomially
bounded by Lemma A.13.3 and for s € [2,4, 2% = ¢(ZV"", ZW'&% ") with
1 polynomially bounded by assumption. Combining all this gives

20 _ (U, T
with ¢ polynomially bounded since ¢ is also polynomially bounded. Then
ZdﬁtLﬂ = ZditLHO-’(thLH)

and since Z"+1 = (ZU", ZW'357 ") with v polynomially bounded by as-
sumption, we get

Zd;LtL+1 _ IZJ(Z\ULH Z\/Wlffé_l)

)

with v polynomially bounded since ¢’ is also polynomially bounded. This thus
proves claim (z). Now, we have

aht, 4t ~ Wy
0Z _ 4 A 703, 07 " ghia
==, 1 —— 10 + =~=,1-170
YA YA YA

282

where Z"+1, 92+ /9ZW'% " and 2% are polynomially bounded func-
tions of Z, by assumption and by the previous result on 79, Additionally,
we have
0Z% o, STiaL 8ZhL L
. G RE) W A
s=1

o’ is polynomially bounded and by the results of the forward pass at¢ = 1
(Lemma A.13.3) 92" /0ZW'E " = +(Z,) with 1 polynomially bounded. In
addition, by assumption, for any s € [2,#, 82 JoZW'E " = (Z,) with
polynomially bounded. This thus gives

Y
P ¥(Zo)
with) polynomially bounded, and thus
BYALS
W = ¢(ZO)

with ¢ polynomially bounded since ¢’ and ¢” are polynomially bounded. This
proves (iv) for l = L attime ¢ + 1.

We have:

dil-1 o NUSYS FL-1 -1
7%+ = wy, Z(W) t+1 —T]Xo’70t+1L 1270 _HZXS’YstHL 1Z
s=1

From the previous step we have that both 7941 and 8Zdﬁf+1/82/”7150571 are
polynomially bounded functions of Z;. By Lemma A.13.2, this first shows that
~mn T g
o, ZWY dhits — 0, and thus gives (vi) for I = L, leading to:

dzl=t ° b 7L zb1
Z5H = =nx0Y0,441,L2 0 —UZXS’YS +1,0.2"
s=1

Now, Z# " = g(ZW' 73 ") and Z=1 " = (ZW''E 2, Z0VH) dhy with o)
polynomially bounded by Lemma A.13.3. In addition, we have or any s € [2,],
we get 775 = (ZW' a7 Z(WL)T‘#L&) with « polynomially bounded by
assumption since it is the case for 7" and o is polynomially bounded. As
always the expectations defining the +* are finite by Lemma A.13.1 because
the integrands are polynomially bounded functions of Zj as products of such
variables by the results for the backward pass attimes¢ = 0and ¢t = 1, by the

assumptions and by the previous result on Z9his1 Since o is also polynomially
bounded, this gives

~L—1 ATTFl—1~L—1 ~TTLN | g7
7% :w(ZWl tgg 7Z(WL) dhg)

283

Then, we have
ZdiLtLJr_ll _ ZdifJ:ll O-/(thgll)
_ o~ 1Tl = T~
andsince 2" = y(ZW' 1% Z(WH) dh§) with ¢ polynomially bounded by
assumption

-~ _ S ~ _ o~ T ~
Zdh§ o w(Zszg 1’Z(WL) dhg)

with v polynomially bounded since ¢’ is also polynomially bounded. This thus
AT 1 ~L— ~ ST T
proves claim (ii) forl = L—1. Now, let Z € {ZW''& " Z(W") dhf} We have

aZd;ltLﬁl 8Zd53tL+_11 pL—1 L1 3thL+_11 pL—1
— U,(Z t+1) Zdrt+1 070//(Z t+1)

0Z 0Z

where Z"1, 97"+ /97, and Z%+1 are polynomially bounded functions of
Zy by assumption and by the previous result. We have

t L—1
o 6Zhs L-1
) —n Z Xﬂg,t+1,L—187ZU/(Zhs)

s=1

§7% i o 3 8ZB€71, pL—1
o7 MXoVou1L-1T 5 o'(Z"

For both possible values of Z, 8ZE0L_1/8Z has a simple expression and is
a polynomially bounded function of Z, as is h~'. In addition, Z"1" and
6Zh1L_1/8Z are polynomially bounded functions of Z;, by the results of the
forward pass at t = 1, and finally, for s € [2,¢], 2" and 92M ' /07 are
polynomially bounded functions of Z, by assumption. Since the ~? are finite
and ¢’ is polynomially bounded, we get

gz

87 = ?/)(Zo)
with 1 polynomially bounded and thus

§z0hi

7 = w(ZO)

with ¢ polynomially bounded since ¢’ and ¢” are polynomially bounded. This
proves (iv) and (v) forl = L — 1.

Let ! € [2,L — 1], and assume claims (i), (iv), (v), are true at layer [and
claim (vi) is true at layer [+ 1. We have:

t
d#=1 o savh T dil o =1 °o b zl”
Z0p1 — wlZ() dhiy NX0Y0,4+1,1-12° — UZXSrst-l-l,l—lZ °

s=1

1

284

From the induction hypothesis we have that both Z%+1 and 924+ /9 ZW'#"
are polynomially bounded functions of Z,. By Lemma A.13.2, this first shows

ST
that &, ZW") dhis1 = 0, and thus gives (vi) for layer I, leading to:

t
Zdiéﬂ = —775)(078,t+1,l—12%71 -7 Z ing,t+1,l—1le;1
s=1

Now, ifI—1 > 2, Z% ' = ¢(Z"' "% ") and by Lemma A.13.3, we also have that
70 = p(ZW E(WL)T‘”%) with 1 polynomially bounded because it is
the case for 2" ' and o is polynomially bounded. In addition, by assumption,
we have for any s € [2,4], Z% ' = p(ZW' '3 7, Z(WL)TC%) with) polynomi-
ally bounded since it is the case for 7" and o is polynomially bounded. As
always the expectations defining the 4 are finite by Lemma A.13.1 because
the integrands are polynomially bounded functions of Z; as products of such
variables by the results of the backward passes at times¢ = 0 and ¢ = 1 and
by the induction hypothesis. We thus get

~1-1 ATTI-121—-2 ~TTLY | 7
Z% — qp(ZWl L&, ,Z(WL) dhf))

with ¢ polynomially bounded. On the other hand, ifl — 1 = 1, we have Z% =
o(ZV'%) and by Lemma A.13.3, we have Z%1 = w(ZUlfo,ZUlﬁl,Z(WQ)Tdﬁg)
with ¢ polynomially bounded. In addition, by assumption we have for s €
2,t], 7% = w(EUlfO,...,EUlfs,E(Wz)Tdﬁg) with v polynomially bounded.
Since o is also polynomially bounded, this gives

24 = p(ZU 0, GUe GOV dig)

olynomially bounded. Since Z%:1 = z4:ii14/(Z51), and by assump-

poly y y p
_ NS] — o~ T ~

tion ZMi1 = W(ZW tag t Z (W) dht) if | — 1 > 2, and otherwise Z"+1 =

Wz ZUI&H,Z(WQ)TC’E%), we get

~TT = ~ TSI T
it _ @V 2O i 1>
T g2V, Z0 L ZU G Z0V) gy if = 1
This gives claim (iz) for layer [— 1 and claim (7i7) for the case when ! —1 = 1.
AT <=2 A~ T
Now, let Z € {ZW' '3 * Z(W") dhty e have

hl71
-1 0Z""t+1 //

azdhg{ azddﬁ -1 x -1
- R R A

07z 0z
where Z"+1 and Z4%1+1 are polynomially bounded functions of Z by assump-
tion and by the previous result on 7951, Also by assumption, we have

azhixr (0 if I—1=1and Z = ZW*%
07z Y (Zp) otherwise

285

with ¢ polynomially bounded. In any case, 8Zhiﬁ/8Z is a polynomially bounded

function of Z,. On the other hand, we have
8Zdil{1 o 82}1671 7l-1 ¢ o [
oz 77X078,t+1,l—1 670,(2%) — 772 Xt7§7t+1,l—1870,(zhs)

s=1

For both possible values of Z, 8Z%_1/8Z has an easy expression and is a
polynomially bounded function of Z; (essentially because ¢ and its derivatives
are polynomially bounded). On the other hand, 82’51;1/82 is @ polynomially
bounded function of Zy by assumption. ¢’ is polynomially bounded, and the
4 are finite. We thus get that

07951
57 ¥(Zo)
with ¢ polynomially bounded, and thus:
07t
57 = ¥(Zo)

with ¢) polynomially bounded, which proves claims (iv) and (v) at layer i — 1
for time ¢+ 1. This thus concludes the induction on [, and with it the proof. O

A.13.1 . Main result

Theorem A.13.9 (Multiplications by the initial weight matrices vanish in IP-LLR
fort > 1). Consider the IP-LLR parameterization with a positively p-homogeneous
activation function, and p > 2. Then, for any t > 1, and for any l € [2, L], one
has:

ZWN O = G W —
Z W) dhy _ & (W Tkt _

Proof. The result for ¢t = 1 has essentially been proved already early on in
Corollary A.13.4.1 (which stems from Lemmas A.13.3 and A.13.4). For ¢t = 2,
the result has been proved in Lemmas A.13.5 and A.13.6. Then we can prove
the result for any ¢ > 2 by induction using Lemmas A.13.7 and A.13.8. O

A.14 . Expectations with RelLU

In all this section, we consider Z ~ N(0,02), so that Z = oU where U ~
N(0,1).

A.14.1 . First moment
For ¢(z) = max(0, 2) and Z ~ N(0,0?), we have

Blo(2)] = Blo(oU)] = = [e 2du = .

286

A.14.2 . Second moment
For ¢(z) = max(0,2) and Z ~ N(0,0?), we have

Elo(2)") = 3E(2%) = T

A.14.3 . First forward pass moments

We have, for any [€ [1, L], with o := /|[&]|2+1,

Spl Spl 0'2
E[Z"6] =0, E[(Z%) = %
2
E[Z%] = 2=, E[(2%)% =2}
ol 2!

A.14.4 . First derivative moments

For ¢(z) = max(0, z), we have ¢/(z) = 1,>¢ almost everywhere, so for Z ~
N(0,0?), we have

E[¢/(2)] = B(Z > 0) = 1/2.

Note that since ¢'(2)P = ¢/(z) for any p > 0, all the moments of ¢'(Z) are equal
to the first moment.

A.14.5 . First backward pass moments
We have, for any [€ [1, L], with,

E[Z%0) =0, E[(Z")) = o

E[z™") =0, E[(z2™)] =

287

B - Appendix for Chapter 3

B.1 . Additional notations and preliminary results

B.1.1 . Notations for the appendix

We introduce in this section additional notation that we use throughout the
Appendix.

Residual: we call Ri(y) := —3:4(f*(y), f(ut;y)), the “residual”, which is equal
to the difference f*(y) — f(ut;y) when £ is the squared loss.

Identity matrix: we denote by I, the identity matrix in RP*? for any p € N.

Indicator functions: we denote by 1,4 the indicator of a set A, that is
14(2) =1 <= z € A, and 14(2) = 0 otherwise.

Total variation: for any measure v, we denote by |v| its total variation, which
should cause no confusion with the absolute value given the context.

Beta / Gamma function and distribution: for o, 3 > 0, we denote by
B(a, B) the Beta function equal to I'(a)I'(5) /T'(ac +) where I" is the Gamma
function, and by Beta(c, 3) the beta law with density equal to u®~'u”~1/B(a,)
on [0,1].

Gaussian / spherical measures: we call p, the standard Gaussian measure
in RP (corresponding to N(0, I,,)) for any p € N.

Whenever 7 € M () has finite and non-zero total variation, we denote by
7 € Pa(f) its normalized counterpart (which is a probability measure), that is
T=71/7(Q) =71/|T|.

For any p € N, we call w, the Lebesgue (spherical) measure over the unit
sphere SP~1 of RP, that is the measure such that @, is the uniform measure on
SP=L. We then denote by |[SP~!| the surface area of SP~1, that is [SP7L|:= |w,|=
wp(S71) = 27712 T (p/2).

Smooth functions: we denote by C(Q2) (resp. C1(€2)) the set of continuous
(resp. continuously differentiable and compactly supported) functions from a set
Q to R.

289

B.1.2 . General results on invariance for measures and functions

In this section, we list a number of lemmas related to symmetries of measures
and functions which will prove helpful in the proofs presented in the Appendix.

Lemma B.1.1 (Invariance under invertible maps). Let i be a measure invari-
ant under some measurable and invertible map T. Then, assuming T~ is also
measurable, one has that . is also invariant under T

Remark. A similar result holds for a function f invariant under an invertible
map.

Proof. Because p is invariant under 7', we have for any measurable set A4,
w(A) = p(T~1(A)). Since T~! is assumed to be measurable, for any measur-
able set A4, T(A) is also measurable (T(A) = (T~1)~'(A))and thus u(T(A)) =
w(T~H(T(A)) = u(A) which shows y is invariant under 71, O

Lemma B.1.2 (Invariance of the density). Let v be a measure with density p
w.r.t. some measure i1, and assume both v and ., are o-finite and invariant under
some measurable and invertible map T, whose inverse T-1 is also measurable.
Then p is also invariant under T p-almost everywhere, ie., p(T(x)) = p(x) for
pu-almost every x.

Proof. For any measurable o (w.r.t. u, and thus w.r.t. v as well), o o T~ ! is also
measurable, and we have, on the one hand

/gpoTldl/:/(gpoT1)pdu:/<p(poT)d,u,

and on the other hand

/gpoT‘ldu:/godu:/gppd,u,

which shows that [¢ (poT)dp = [¢pdy, and thus that p o T' = p p-almost
everywhere. O

Lemma B.1.3 (Projected variance with spherical symmetry). Let ¢ be a spher-
ically symmetric measure on RP (i.e., such that for any orthogonal linear map
T € O(p), TyC = (), with finite second moment. Then we have the following
matrix identity:

1
[T a@ =t = [@Pdce) = [lalPace).
Proof. The (i, j)-th entry of the matrix on the left-hand-side is [zz;d((z),
and it is readily seen that the terms outside the diagonal are 0. Indeed, let
(i,7) € [1,p]* with i # j, and consider the orthogonal map 7} : z € RP
(21,4 Zj—1, —2j, Zj+1, - - -, 2p) | . The spherical symmetry of p implies that it

290

is invariantunder T}, whichyields [z;z;dp(z) = — [ziz;dp(z), thereby show-
ing that the latter is 0. To see that the dlagonal terms are all equal, it suffices
to consider the orthogonal map S; which swaps the 1st and i-th coordinates
of a vector z. The invariance of p under S; yields [(21)?dp(z) = [, (zi)%dp(2),
which concludes the proof. O

B.1.3 . A disintegration result on the unit sphere S?!
Consider a u € S, w is determined by: (i) its angle 6 := arccos(||[u’]|) €
[0,7/2] with H (i.e., its angle with its projection u* onto H), (ii) the direction
M =y /||t ||e S? =1 of its projection u® onto H, and finally (iii) the direction
2t = wut/||ut||e S% 1 of its projection ut onto H+. Since ||uf? ||?+]||ut||?= 1,
the angle 0 gives both the norms of the projections onto H and H+: ||ufl||= cos(0)
and ||ut||= sin().

When z ranges over the unit sphere S, the angle 6 and the directions
2H | 2t range over [0, 7/2], S? 1, and S?- ! respectively. We wish to understand
what measures we obtain on these three sets when z is distributed on the sphere
according to the Lebesgue measure wy. We show below below that after the
change of coordinates described above (from u € S~ to (0, 2, 21) € [0, 7/2] x
Sdu—1 » Sdi_l), the corresponding measures over S¢r—1 gnd SdL L are uniform
measures and the measure over 0 is given by a push-forward of a Beta distribution
as defined below:

Definition B.1.1 (Distribution ~ of the angle). We define the measure v on
[0, /2] with the following density w.r.t. the Lebesgue measure on [0, 7/2]:

dv(0) := cos(#)? L sin()4+~1d.

Remark. ~ is in fact simply given by (arccos o\[)#Beta(dH/Q d; /2). Note
that the total variation of gamma is |y|= ~([0,7/2]) = 1B(%, 4-), and the
corresponding normalized (probability) measure is

45(6) = dv(6)/ 11 |= g cos(6) ! sin(6) - 1as.
(7? 7)

We now state the disintegration theorem and give its proof:

Theorem B.1.4 (Disintegration of the Lebesgue measure on the sphere). Let
wq denote the Lebesgue measure on the sphere measure on the sphere of R%, and
let v be the measure of Definition B.1.1. Then, one has

wqg = Py (wa, @wq, @)
where
@ :[0,7/2] x Sty gty gd-d

(0, ZH, z1) — cos(f)zg + sin(f)z] .

291

Proof. Denoting @&y the uniform measure on the sphere, [S9~!|:= g&d//;) the

surface are of the sphere in dimension d, and p, the standard Gaussian dis-
tribution in R? for any p. Using the well-known fact that Wy = Ilxpq with
I: x € RA{0} — z/||z||€ S, we have, for any measurable test function

<,0:Sd_1 — R,

/Sded = |Sd_1|/90d¢7)d
_ T
=15+ [o (W) dpal)

_ T+ L
= |S47Y P () dpay (xr)dpa, (x1)
TH,T L HxH +‘TLH 8 .

_ Cd/(p (THZH + 7121 > T?{H—lefr%/&ril—lefri/QdTHerdwdH(ZH)dde(zL)
\lraz + 7z ||

—Cd/ / ’I“HZH‘F?”LZL T?{H 1 dLL 1 (T%I+T2l)/2derm_dwdH(ZH)dde(ZJ_),
ZH,Z1 H,M r +r
with
gd-1 gd-1 2 d/2 1
S O - R

(2m)dm/2(27)dc/2 — (2m)d/2 ~ 24/27d/20(d/2) 20@-2)/2T(d/2)’

Doing the polar change of variables (ry,7.) € RZ — (R,0) € Ry x [0,7/2],
we get:

/ odwy = C&/ /gp (cos(0)zpg + sin(0)z,) cos(@)dH_1 sin(@)dl_ldﬁdwdH (zr)dwq, (21)
H>%1

where
o0 5
=0y / R¥2e~®/2R4R
0
+oo
=Cq / R 24R
0
=Cy x 2U9=2/2p(4/2)
=1.
which concludes the proof. O

Remark. A similar disintegration result holds for the uniform measure @, on
the sphere. The corresponding measures which are then pushed-forward by
the same @ are the normalized counterparts of the measures in the theorem
above: g = P4 (Wq, ®wq, ®7). This readily comes from noting that a simple
calculation yields |wq|= |way, | lwa, | |7]-

292

B.2 . Gradient flows on the space of probability measures

B.2.1 . First variation of a functional over measures
Given a functional F' : Po(RP) — R, its first variation or Fréchet derivative at
p € Po(RP) is defined as a measurable function, denoted %—Z(M) : RP — R, such
that, for any v € Pa(RP) for which p + tv € Py(RP) in a neighborhood (in ¢) of
t=0,

Lprw)|_ = [DR,

dt t=0 2 E
See Santambrogio (Santambrogio, 2015, Definition 7.12), or (Santambrogio, 2017,
p.29) for more details on the first variation.
In the case of the functional defined in Equation (3.2) corresponding to the
population loss objective, using the differentiability of the loss £ w.r.t. its second
argument, one readily has that

Fi(c) = ?;(u) = [00 (@), £)0l 0)dp(o)

since

d

G @ f0) + 11 ws) = 20t (£ @), S 0) + 11 ws0) [esa)dv(o)

B.2.2 . Wasserstein gradient flows in the space Py(R9*!)
A Wasserstein gradient flow for the objective F' defined in Equation (3.2) is
a path (u)i>0 in the space of probability measures Po(R%*!) which satisfies the
continuity equation with a vector field v; which is equal to the opposite of the
gradient of the first variation of the functional F'. This means that we have, in the

sense of distributions,
8t,ut = —diV <—V (M;‘> Ht> .
op

That a pair ((ut)e>0,vt) consisting of a path in Py(RP) and a (time-dependent)
vector field in R? satisfies the continuity equation Oy = —div(vyue) in the sense
of the distributions simply means that for any test function ¢ € CL(RP),

o [e = [o T

where 0, stands for the time derivative %. Similarly, when we say that the
advection-reaction equation Oy = —div (vepir) + gepe is satisfied for some function

g: : RP — R, we mean that it is in the sense of distributions: for any test function
p € C(RP),

8t/<pdut = /(vtTch—l-gt)d,ut.

293

An alternative description of the Wasserstein gradient flow of the objective F' is to
consider a flow X,(-) in R x R such that, for any ¢ € R4,

Xo(c) =c¢

%Xt(c) _ vy <‘;1;> (Xe(c))

and to define iy = (X3)xp0.

For more details on Wasserstein gradient flows in the space of probability mea-
sures see Santambrogio (Santambrogio, 2015, Section 5.3), and (Santambrogio,
2017, Section 4), and for more details on the equivalence between the continuity
equation and the flow-based representation of the solution see Santambrogio (San-
tambrogio, 2015, Theorem 4.4).

B.3 . Proofs of the symmetry results of Section 3.2

There are two main ideas behind the proof. Call T : (a,b) € R x R%
(+a,T(b)) (depending on whether f* is invariant or anti-invariant under T') and
consider the following two facts:

Structure of ¢((a,b);). Since T is orthogonal, so is T, and the structure of
o((a,b);z) = ac(b'z) is such that ¢(T(a,b);xz) = +p((a,b); T~ (x)) because
T is orthogonal (its adjoint is thus its inverse).

Conjugate gradients. Computing the gradient of a function whose input has
been transformed by 7! is the same as the conjugate action of 7" on the gradient:
V(poT 1) =To(Vp)oT! (thisis due to the fact that the adjoint of - is T
because T is orthogonal). Note that we similarly get V(o oT) =T 1o (Vyp)oT.

B.3.1 . Preliminaries

We present here arguments that are present in both the proofs of Proposi-
tion 3.2.1 and 3.2.2. Let T be a linear orthogonal map such that f*(7'(z)) =
+f*(x), where the £ is because we deal with both cases at the same time since
the logic is the same. Let ¢ > 0, and define v; := T;;lut. We aim to show that
(¢)¢>0 is also a Wasserstein gradient flow for the same objective as (pt)>0.

294

Prediction function. Let z € R% We have, using the fact that T is orthog-
onal (and thus that (T'(z), y) = (z, T"'(y))),

flygx) = /baa(bTac)dut(a, b)

)

_ / a0 (T (0) T 2)dju(a D)

= i/ ac(b' T(x))dpq(a,b)
a,b
= = (p; T()).
Time derivative. Let ¢ € C}(R?). Because y; satisfies the continuity Equa-

tion (3.3) in the sense of distributions, and using the remark above on conjugate
gradients as well as the orthogonality of T, we have:

at/gOth == 8t/$00T1dNt

:/<V(gpof_1), ’Ut> dpg

/<Toon vt>d,ut
/<v] 1ovt>dut
- [{zer

Conjugate velocity field. The equality above actually shows that v, satisfies
the continuity equation with the conjugate velocity field 7! o v; o T instead of
vi. We show below that the former is closely related to the latter (and is in fact
equal to —VF} with sufficient assumptions on 02/, which is the step proven in
Appendices B.3.2 and B.3.3). Indeed, because v, is a gradient: v, = —VF;Lt, we
have using again the remark above on conjugate gradients:

Loy, oT> dv,.

Tl ovoT =V (F,oT).

Computing the function on the right-hand-side, for any (a,b) € R x R?, we get,
using the remark above on the structure of ¢,

[(a,b)) /825 flusy))¢(T(a, b);y)dp(y)
=+ | (1) 1) o (0,077)t

p is invariant under T since it spherically symmetric by assumption (and thus
invariant under any orthogonal map) and we can therefore replace y by T'(y) in

295

the integral above, which yields
BP0, 0) = = [a0t (50D, 10700 (0. :0) ot
=+ [ot 1702 1wi)o (0.0):9) 000,
and thus we get
v (Fp, o) (a,b) = i/yaﬂ(if*(y),if(yt;y))v(a,b)gb((a, b);y)do(y).

One can already notice that if f* is invariant under T (as opposed to anti-invariant),
that is if we keep the “+" in +, we get Tl ov, 0T = —VF],.

B.3.2 . Proof of Proposition 3.2.1
Proof. We first prove vy = po and then prove that both (u:):>0 and (¢):>0
are Wasserstein gradient flows of the objective F' defined in Equation (3.2),
starting from the initial condition po at t = 0. The unicity of such a gradient
flow then guarantees that u; = v, and thus f(u; T(x)) = f(u;x) by the
preliminaries above on the prediction function (see Appendix B.3.1).

Initialization: 1y = . By definition, T(a,b) = (a, T(b)). Since up = uf @
3 by assumption, and 2 is invariant under T since it has spherical symmetry,
it is clear that yq is invariant under T, and thus under 7! by Lemma B.1.1,
which gives vy = o because v, = T;ut for any t by definition. O

Time derivative. From the preliminary results above (see Appendix B.3.1) we
have

Btut = —div (—VF;t l/t) s

which shows that (14):>¢ is also a Wasserstein gradient flow of the objective F.
By unicity of the latter (starting from the initial condition 1), it must hold that
e = vy for any t > 0 which concludes the proof. é

B.3.3 . Proof of Proposition 3.2.2

The proof follows the exact same pattern as that of Proposition 3.2.1 (see
Appendix B.3.2). We now have by definition, T'(a,b) = (—a, T'(b)) and the added
symmetry assumption on ju ensures that vy = o still holds in this case. As for
the time derivative, the preliminaries above (see Appendix B.3.1) ensure that

v (F,o7) / 020 = 1*(5). ~ 3 9)) Va6 (0, D)) do(y)
/ 2201 759)) V ay 6 ((0,0):) dol)

296

where we have used the extra assumption that 0x0(—y, —9) = —02€(y,). This
yields

8151/15 = —C“V (_VF;t Z/t)

and the conclusion follows from the same logic as for Proposition 3.2.1.

B.4 . Proof of the exponential convergence for linear networks:
Theorem 3.3.2

Proof. The proof is divided in three steps: (i) we derive the dynamics in time
of the vector w(t) = % [abdu(a,b), (ii) we show that the positive definite
matrix H(t) appearing in these dynamics has its smallest eigenvalue lower-
bounded by some positive constant after some ty > 0, and (iii) we show that

this implies the exponential convergence to the global minimum.

Generalities on the objective (). Expandingthe square in the definition
of @ (3.5), we have

Q(w) = % [EIN]}D[.]C*(.%')Z] —28Tw+ wTCw},

C:=E,plzz'] € R,

B:=E,p[f*(x)z] € RY
If C' # 0, Q(w) — oo as ||w||— oo and since @ is lower-bounded by 0, it thus
admits at least one global minimum. This minimizer w* is unique as soon
as @ is strongly convex, i.e., C is definite positive, which holds in this case

as we have assumed the smallest eigenvalue A, of C to be > 0. Note that
VQ(w) =Cw—B= [((z"w)— f*(z)) zdP(z) € R

First step: dynamics of w(t). Letk € {1,...,d}, the k-th coordinate
wy,(t) of w(t) is given by wy (t) = [aby dp(a,b), and its time derivative is given
by

w(t) = ;/(V(a,b)(abk))Tvt(avb)dut(av b)

where v; is given by Equation (3.3) except we replace o by %ide and p by Pin

F,,, thatis

v(a,b) = % /y Ri(y) (b;yy) dP(y) € R4,

On the other hand, V,) (aby) = (;:) € R4 where ey, is the k-th element
k

of the canonical orthonormal basis of R%. Note that here, R;(y) = f*(y) —

297

(w(t),y). We thus get

wktt) = 5 ([bt [() = (7)) P) +

Y

i</mba2€kdmm’ b),/ (f*(y) - (w(t)Ty)) ydP(y)>-

Y

Note that the term on the rightin the inner productsisin factequal to —VQ(w(t)),
which yields the following dynamics for the vector w(t):

w'(t) = —H(H)VQ(w(t)),
H(t):= i </ bb" dpig(a,b) + /a2d,ut(a, b)Id> e R¥4,
Second step: lower bound on the smallest eigenvalue of H(¢). At

initialization, by symmetry one has w(0) = 0, and using Lemma B.1.3, one has
that H(0) = 1 (4 + 1) I, so that

%Q(w(t))‘ = <w’(0),VQ(w(O))>
~2 1 90.0))2

4d
1812

_d+1
Ad

If 5 =0, then VQ(0) = 0 and since w(0) = 0, w(t) starts at the global op-
timum and thus stays constant equal to 0. Otherwise, if ||5||> 0, one has
%Q(w(t))’ < 0, which ensures that there is a tp > 0 such that Q(w(t)) <

Q(w(0)) = Q(0) for any t € (0,%p). Call e := [Q(0) — Q(w(tp))] /2 > 0. The
continuity of Q at 0 guarantees that there is a 6 > 0 such that for any w € R¢,
if ||w||< d, then |Q(w) — Q(0)|< .

Now assume that there exists ¢; > tg such that fanutl(a,b) < 4. Then,
one has

2

1
<5 [1ol plidpn (o.)

1

< 2/a2d:ut1(a7b)

el = |5 [e 0.0)

1)
< —
2<5,

where we have used in the penultimate inequality that p, is supported on
the set {|a|= ||b]|} because of the assumptions on the initialization pg (see
Section 3.1.1). This ensures that |Q(w(t1)) — @Q(0)|< e. Since : t — Q(w(t)) is

298

decreasing (Q(w(t)) = F(u) and itis classical that the objective is decreasing
along the gradient flow path, see third step below) and ¢; > t, this means
that

0 <Q(0) = Qw(to)) < Q(0) = Qw(tr)) < e =[Q0) — Qw(to))] /2

which is a contradiction. Therefore, for any ¢t > to, fa2dut(a,b) > §. Call-
ing n := d/4 > 0, we thus have that for any ¢ > ¢, the smallest eigenvalue of
H(t)islarger than n because H(t) is the sum of the positive semi-definite ma-
trix £ [bb" dsu(a, b) and of the positive definite matrix 1 [a?dju(a, b)I; whose
smallest eigenvalue is at least n) for t > t.

Third step: exponential convergence. We have:
4 Q) = (w'(1), V(1)
= —VQ(w(t)"Ht)VQ(w(t)) <0,

which shows that because H(t) is positive definite, the objective () is decreas-
ing along the path (w(t))t>0. Since after t; > 0, the smallest eigenvalue of
H(t) is lower bounded by a constant > 0, we have that, for any ¢ > ¢:

2 QM) < VR 1)

Because @ is Ani,-strongly convex (as the smallest eigenvalue of C'is Ay, > 0),
one has the classical inequality

1
SIVQM)IPZ A (Q(w) = Qu")).
Plugging this into Equation (B.1) gives

d

= (QUw(t) = Q")) < ~2nAmn (Q(w () ~ Q™).

which by Gronwall's lemma in turn yields for any t > ¢ty
0 < Q(u(t) — Qu*) < e 2Pmnlt=10) (Qu(ty)) — Q(w")),
thereby proving exponential convergence.
Exponential convergence in distance. Given that VQ(w*) = 0 be-

cause w* is and optimum, it holds Cw* = g. Using this fact, it easily follows
that

and the right-hand-side is lower bounded by ~3 Amin

conclude that

||[w — w*||?, from which we

> (QUu(®) - Q).

t * 2
o) —w*|P< 3=

and the exponential decrease of the right-hand-side allows to conclude.
O

B.5 . Proofs of Section 3.4: f* depends only on the projection
on a sub-space H

B.5.1 . The general case
Closed dynamics on the sphere S¢-!

We wish to show here that the pair of measures (1,7, v;") defined through Equa-
tion (3.6) satisfy Equation (3.7) and that the corresponding dynamic is closed is the
sense that it can be expressed solely using (v;", v,) (without requiring to express
quantities in function of 1;). Below, we use x(z) = max(0,z). We do this do
differentiate it from the activation function o (which is also equal to RelLU) so as
avoid confusion because the s which appears below has nothing to do with the
activation function of the network and simply comes from the integration domain
in the calculations.

Equations of the dynamics on the sphere. Let ¢ € C}(S?!). One has

o foast = [el (i) e
=0 [wt it () oot
= [S (sezatolie (7)) wtebiautan

Let us compute the components of the gradient above. We have

v, (sczalblle ()) = £ Gl (1) = e lble ()

The Jacobian of the map : b € R% — b/||b]| is equal to IIbII(—bb ' /||b]|?) which
is a symmetric (or self-adjoint) matrix, so that the gradient w.r.t. b is

s (s (7)) = sl [“0 () o * (Id - THi (quy) Ve <|zr|>]

300

On the other hand, the first component of v;(a,b) (corresponding to the gradient
w.r.t. a) is

]
dat) = [R0 n) = 0] [Rl ((ngu) y> aply),

and the last d components (corresponding to the gradient w.r.t. b) are

N
vi(a,b) = /Rt(y)a%’(bTy)ydp(y) = a/Rt(y)H' ((H;!) y) ydp(y).

When computing the inner product Vg (m(:l:a)HbHcp (ﬁ))Tvt(a, b), we can
re-arrange the terms to keep one term where ¢ appears and the other where Vi
appears. Using the facts that the Jacobian computed above is symmetric, that
K(2) = K'(2)z for any z € R, and that 14,5010 = £1144>03]al= £r(Fa), we
get,

V<“"’><(i“)”b"”(|z||>)T 0.0 = s bl Pl () o () +
& 1gsazalel e () o () +

b\ . (b
+ 1ia>03lal a| Ve (HbH) o <Hb|‘> ’

where, for u € S%-1

/y Ru()o(uTy)dp(y).
wi= [R @) [y~ Ty)u] doty).
Y

Finally, because s stays on the cone {(a,b) € R¥*1;|a| = ||b]|} for any t (see
Chizat and Bach (Chizat and Bach, 2020, Lemma 26), Wojtowytsch (Wojtowytsch,
2020, Section 2.5)), when integrating against x;, we can replace ||b|| by |a| and
vice-versa. We thus get that the time derivative we initially computed is the sum

of two terms:

o[t =2 [(g) o (g) o) +
T
[aenwe () () e

= Q/uegd—l © (u) g¢ (u) dvE(u) +
[Ve),

which shows that I/t:t satisfies Equation (3.7) in the sense of distributions.

301

Closed dynamics. We want to show that g; and ©; can be expressed using
only 1" and v;. Both these quantities depend on t only through the residual
Ry, which itself only depends on ¢ through f(u¢;-). We thus show that the latter
can be expressed using only v;~ and v;, which easily follows from writing, for any
y € RY,

f(ui) = [ao (474) dpa.b)

= [atbllo ({7 v)) et
= [, jaliblle (o)) dmstactr - | il (o)) duatann
-~ /u i ® (u7y) avf(w) - /u s © (uTy) dvr (w

Closed dynamics in dy + 1 dimensions

Proof. We first prove that the Equation (3.9) for Tt:t holds in the sense of distri-
butions, and then show that the corresponding dynamics are closed because
the V; and g; appearing in Equation (3.9) can be expressed with (7,7, 7,7) (and
not only with (1,7, ;") for instance). We show this by expressing f(j; -) only
in function of the pair (7,7, 7,).

The pair (7,5, 7,7) satisfy Equation (3.9). First, we show that g; and @
defined in Equation (3.8) admit modified expressions that match the struc-
ture of the pushforward transforming v into 7;-. Indeed, since p is assumed
to be spherically symmetric, it is invariant by any orthogonal transformation.
In particular, for a fixed u € S*! such that u* # 0, we consider the orthog-
onal map 7" : RY — R< such that T\ = idy and T}},, sends the canoni-

cal orthonormal basis (eq,..., ez) of H* on (u'/|ju*||, ug, ..., ug,) where
(ug,...,uq,) € (HY)¥~1is an orthonormal family, orthogonal to u*, so
that for any y* € H* with coordinates y5-, . .. ,yd in the basis (e, ..., ez,),

T (yh) = yiut /Nt [+ha(yL) with hu(y.) Lout.

Note that since f*(y) = fu(y™) and f(us;y) = fi(y™, |ly*|]), the residual
R(y) = f*(y) — f(me; y) is invariant by any orthogonal transformation which
preserves H (and in particular by T%). We thus have

a(w) = [Rifw)o (<uH, vy + ot 1)) do = du(u™,),

:/th H’ yH>+y1 HUHD [yH_'_ ﬁ#(yi)_ (< H H>+y1 ||ULH> u} dp.

<

302

Now consider, for any (8, z1) € [0,7/2] x S%#~1,

G(0, 27 - = g COS(H)ZH sin(0))

yi- cos() — sin(6) (27, yH>> a

/Rt cos)<ZH, yH>+y1LSin(0)> (L (1) JH

cos(0) cos(0)

We show below that (7;F, 7;") satisfy Equation (3.9) with the G; and V; defined
above. Let ¢ € CL([0,7/2] x S 1), Since 7/ is defined as a push-forward
measure obtained from v we have:

uH
3t/<ﬁ(972H)thi(972H) :3t/<P <arCCOS(HUH||)aWHH> thi(u)
H ul? ~H 1 +
:i2/<ﬂ<arCCOS(HU [)gtm) dvi () +

[lut]]

£ [0, (i (avccosa, WZZH))T@(uw(u»

By definition of the pushforward, and since uff = cos(arccos(|[u||))uf /|[uf ||
and ||ut||= sin(arccos(|[u'?||)) for u € S}, the first integral is equal to the
following integral: [¢(6,)Gy (6, 2™)dr (u). For the second integral, let us
first compute the gradient. One has

u | ¢ [arccos(]|u H),HUH” =0y | arccos(||u H),HUHH 1—HuH||2HUHH+

uf ()" ult
1 [L # (V,u0) <arccos(‘|uHH), HUHH> .

[|uf]] a2

We observe that the gradient above belongs to H which implies that when
computing its inner product with o;(u) we can consider only the component of
the latter along H. Additionally, we note that I, —uf (uf1)T /||u*]|? is actually
the orthogonal projection onto {uf}+, so that it yields 0 when applied to w.

Using that ||u™||= /1 — |[ufl||2 for u € S9!, we then get:
H ult ! H uf \' H ull
v, <s0 (arccos<||u ”)’||uH||>> Bu(w) = Vg (arccos<||u |r>,||uH||> v;<<arccos<||u |r>,||u,,”>.

where V(0,21 = (8990((12,)) This shows that

) / (0, M) drt (6, 2M) = + 2 / o0, 21)Gi(0, 2)drE (9, M) +
+ / Vo6,) TVi(0, 27)drit (9, =),

which proves that Tt:t indeed satisfies Equation (3.8) in the sense of distribu-
tions.

303

The dynamics are closed in the pair (7,",7,7). The only thing left to
prove to show that the dynamics are closed for the pair (1,7, 7,) is that G,
and V; can be expressed using only the pair (;7, 7). The only dependence
of these quantities on t is through the residual R, which itself depends on ¢
only through f(u;-). Let y € R% We have already shown at the end of the
previous Section B.5.1 that by definition of v;~ and v;, we have

Flusy) = o(u'y)d ¥ —v) (u).
uesd—1

On the other hand, we show below that the integral of any measurable func-
tion ¢ : S~ — R against ,,ti can be expressed as an integral against Tti inthe
case where v admits a density w.r.t. the uniform measure on S?~! (which is
the case for), the case of a general measure v;* being a simple extension
via a weak convergence argument. Thus call pf the density of v;" w.r.t. &g.
Since v;" is invariant by any linear map T such that Tig =idg Tigr € O(dy)
(because of the symmetries on u; given by Proposition 3.2.1), and since this is
also the case for wy because @y has spherical symmetry and T is orthogonal,
we have by Lemma B.1.2 that pi is invariant by any such T, which then leads
to p; having the form p;(u) = p7 (u*, [|u*||) by Lemma 3.4.1.

First step. We show that 7= has the following density
qti(G,zH) = \SdL_llﬁf(cos(H)zH,sin(&))

w.r.t. ¥ ® wq,, Where the measure 7 is the normalized counterpart of the mea-
sure in Definition B.1.1. Indeed, let ¢ : [0, 7/2] x S¥~! — R be any measurable
function w.r.t. Tt:t. Using the disintegration Lemma B.1.4 on &y, one has that

H

H + Hy _ arccos UH L V:t u
[et0.2ar 0,24 = [o (arecos(la®).) i)
H
= arccos(||uf) 5 u [t wglu
— [(anccostlut . 5))zt
_ / 0 (6, 217) 5t (cos(6) =", sin(6))d7(6) d@a,, (=7)d@g, (=5)

- / @ (6,2 pF(cos(8) =" sin(6))d(6)disay (=),

which proves the desired density for 7=

304

Second step. Consider a measurable ¢ : S*~! — Rw.r.t. ;. One has with
similar calculations as above

/ ()it (u) = / () (u! | [u] [} dGa()

:/cp(cos(é?)zH + sin(0)2)p (cos(0) 27, sin(0))d(0)d@g,, (27)d@g, (27)
:/0 . (/L go(cos(@)zH + sin(@)zL)chdL(zL)> qf':(ﬁ, ZH)d:y(H)ch;dH (zH)

_ /9 . (/ pleos(0)2" + Sin(e)zj_)da)dj_(zj_)> dr;"(6,2).

Applying this to f(u;y) shows that the latter quantity can be expressed solely
using (7,7, 7;), which proves that the dynamics is indeed closed and therefore
concludes the proof when I/t:t has a density.

Third step: extending to any measure. It is known that for any mea-
sure v over S9!, there exists a sequence of measure (v,),en such that: (i)
v, has a density p,, w.r.t. the uniform measure &g over S%1, and (ii) the se-
quence (vy,)nen cOnverges weakly to v, that is, for any continuous (and thus
automatically bounded because the unit sphere is compact) ¢, [¢dv, —

[pdv. Letthus v € M (S?71), and consider a sequence (vy,),en With density
converging weakly towards v. Let 7 (resp. 7,,) be defined from v (resp. v,,) as
7 is defined from v;%, that is for any measurable ¢ : [0, 7/2] x S%#—1 = R,

H

[t0.2ar(0,:1) = [o (arecos(ut). g) v

[|uf]]
H

/ o(0, =1)dr (0,) = / o <arCCOS(HuHH), HZHH> v ().

Let thus ¢ be a continuous map from S¢~! — R (having in mind the example
of : u + o(u'y) for a fixed y). By the result of Step 2, since v,, has a density
for every n, we have that

/go(u)dun(u) :/ (/ o(cos(0)z +sin(9)zL)dd)dL(zL)> dr, (6, 21,
0,21 zt
(B.2)
and taking the limit n — oo, the left-hand-side of Equation (B.2) converges
to [¢dv by assumption. Now let us look at the right-hand-side of (B.2). Call-

ing (0, 27) = [1 ¢(cos(0)z" + sin(f)zT)d@q, (2+) and ®(u) = [, p(u? +
[ut||z1t)d@g, (21), the right-hand-side is in fact [dr, and, for any n € N, is

305

equal to:

[wan = [v (arccosmuHH), HZEH) dvn ()

| e+) s, (v ()
-/ /. (])
= [[(1) o,)

= /deun,

and a similar result holds for 7 and v. Now, the continuity of ® is readily
obtained from that of ¢, and thus the right-hand-side in the last equality above
converges to [®dv which is also equal to [¢dr by the same calculations as
above. The right-hand-side in (B.2) therefore converges to [¢dr, and since
the limits of both sides are equal, we get [odv = [4dr, which is the claim
of Step 2 for a general measure v which does not necessarily admit a density,
thereby concluding the proof. O

B.5.2 . Case when f* is the euclidean norm: Theorem 3.4.3

Here, we give the proof of Theorem 3.4.3 which shows that when f*(z) =
||z || the dynamics can be reduced to a single variable: the angle 6 € [0,7/2]
between particles and the subs-space H.

We decompose the proof in three steps: first we show that the pair of mea-
sures (1;7,7,) € M4([0,7/2]) as defined in Section 3.4.2 indeed follows Equa-
tion (3.10); then we show that the dynamics are indeed closed by proving that the
terms V; and G, appearing in the GF depend only on (7;7,7,7); and finally, we
show that Equation (3.10) indeed corresponds to a Wasserstein-Fisher-Rao GF on
a given objective functional over M ([0, w/2])?.

Proof of the GF equation
Proof. We first use the added symmetry to simplify the terms g; and ¢, which
appear in the GF with (v;", ;") (see Section 3.4.1) and express them only with
[[uf?|| and ||ut||. Then we use the equations satisfied by (v;",v;") to obtain
equations for (7,5, 7).
Equations for (7,7, 7,7). Lety € CL([0,7/2]). We have
Oy / edriE =0, / ® (arccos(||uHH)) dvi (u)
T
=+ /Vu (¢ (arccos(HuHH))) ¢ (u)dvit (u)

+ 2/(,0 (arccos(HuHH)) gt (uw)dvE (u).

306

One has that

—1 ut
1— [[u |12 l[ufT]]’

which belongs to H. We recall here the expressions of ¢, and g,: for any u €
S9-1, we have

Vau (<p (arccos(HuHH))) = (arccos(HuHH)) X

gu(u) = / Ri(y)o(u"y)dp(y).
Bu() = / Ru(y)o' (T p)ly — (u y)uldp(y).

Since, f*(z) = ||zf||, f* is now invariant under any orthogonal map T pre-
serving H and H*, that is such that the restrictions Tig € O(dy) and Tjy 1 €
O(d,). Proposition 3.2.1 then ensures that so is f (1, -), which in turn implies
that the residual R.(-) = 020(f(us;-), f*(+)) also shares that invariance prop-
erty. Using a similar change of variable as in Appendix B.5.1, and because p is
spherically symmetric, one gets that g, can be re-written

aw) = [Buw)or (o 1+t 0) doto).
Yy

Calling
Gi(6) = [Rulw)or (st cos(t) + v sin(®)) do(v),

one has g;(u) = Gy(arccos(||uf|])) because u € S¥1, so that ||u’||= /1 — [[ufl|2.
Then, by definition of 7%, the second integral in the time derivative above is
equal to [()G, (#)dr;=. For the first integral appearing in that time deriva-
tive, we get

¢ (arccos(HuHH))

V., (4,0 (arccos(HuHH)))T By (u) = Tl T[] /Rt<y)0/(u—ry)[(u—ry)u - y]Tqup-

Expanding the inner product inside the integral, we have
[(u"y)u —y] T = (W y™) 4 (o) | Py
= [l [P (ut yt) — (@ = [l]?) ™)

= [l [P (ut, yt) — a2,y).

)

Calling
Vi(6) = [Rilw)o’ (41" cosl0) + ot sin(0)) [y cos(9) — i sin(®)}dp(y) = G'(6),
Yy

307

and using again the spherical symmetry of p, with the same change of variable
in the integral as for g;, we get that

Vau (ap (arccos(HuHH)))T O (u) = ¢ (arccos(HuHH)) Vt(arccos(HuHH)).

Finally, this combined with the previous result on the integral with g, yields

0 [parit == [G O)O)TEO) £2 [(0)Cu0)7 (),
which leads to the desired equation

oriE = —div (:I:V}Tti) + 2G, 7.

Proof that the dynamics on the angle ¢ are closed

The proof follow closely that of Appendix B.5.1 (where we prove closed dynamics),
except here we take advantage of the added symmetry of the dynamics. As in
Appendix B.5.1, we have

fun = [o (uTw)ar —) .

and the only thing to prove is that this quantity can be expressed using only
(Tt+,7't_). As in Appendix B.5.1, we first prove this when yti has a density, which
is the case for Vg: and should thus remain so during the dynamics.

Similarly to what occurs in Appendix B.5.1, l/ti is invariant by any orthogonal
map T which preserves H and H because p; has those symmetries given by
Proposition 3.2.1, and if yti has a density pyx wert. @gq, then pf is also invariant

by any such map T, and thus depends only on the norms ||u’’|| and ||ut|| of its
input u € S*~!. But since its input is on the sphere, those norms are determined
by the angle # = arccos(||u”||) between the input u and H. Calling ¢ such that
p(u) = g (arccos(|[u®|])), this will lead 77 to have the density ¢ w.r.t. 7.
Then, we show below that similarly to Appendix B.5.1, the integral of any measur-
able ¢ : S%~1 — R against I/ti can be expressed as an integral against Tti. Indeed,
using the disintegration Lemma B.1.4,

[t = [otugi(arccos(|ju”))daa(a)
0€l0,7/2]
_ / o (cos(0)2" + sin(0)2+) G (0)da, (=)Ao, (4)d5(0)

_ / 3(0)q;(0)d7(9)
0€[0,7/2]

— / 5(0)dri(6)
0€[0,m/2]

308

where
o(0) = / © (cos(&)zH + sin(@)zj‘) A, (27)dig, (27),
zH zL1

which concludes the proof if vti has a density w.r.t. the uniform measure &y on
the sphere S¥~!. The general case is obtained by a weak convergence argument
(of measures with density) as in the third step of Section B.5.1.

Proof of the Wasserstein-Fisher-Rao GF

Proof. Recall that «y is the measure in Definition B.1.1, and consider the fol-
lowing objective functional over M([0, 7 /2])?:

At yi= [i(eosto), f 0506,
L I G O}
0€0,m/2]
GO0 = [o(reoste)eos) + ssinio) sin®)), ()i, ()

where, for any p € N, dv,(r) = (1 — 72)®=3/2dr, and 7, = ,/|7,| with
the normalizing factor |v,|= B(1/2,(p—1)/2) = /7I'((p — 1)/2)/T(p/2) =
|SP=1|/|SP~2|. Note that 74, can be simply expressed as the law of ¢ x VX
where e ~U({—1,+1}) and X ~ Beta(1/2,(p —1)/2).

Computing the first variation or Fréchet derivative of the functional Aw.r.t.
its first and second argument yields, for any 6 € [0, 7/2],

) =+ L 0ut((cos(p), F(r,77:9)) (6;)3 ().

To conclude one needs only observe that the quantity above is simply equal
to G¢(#), up to a fixed multiplicative constant. Since we have assumed p to be
the uniform measure over S~1 to ensure that the Wasserstein GF (3.3) is well-
defined, the constant is one here but in the case of a general p with spherical
symmetry, the result should also hold (as long as the Wasserstein GF (3.3) is
well-defined) but the proof is more technical and different constants might
appear.

Simplifying f(u;-). Using the results from Appendix B.5.2, we have for
any ¢, 2, 21 € [0,7/2] x S4 1 x 4~ (so that u = cos(p)z + sin(p)zt €
Sd_l)

F (s cos(0) 2 +sin(ip)2™) =

/w /£ v (cos() cos(p) (™, 2) + sin() sin(p) {6+, 24)) Ay, (67)dda, (€1)d(r" = 77) ()

309

Now, because of the integration against uniform measures on the unit spheres,
and the inner products involved, we can use some spherical harmonics theory
to simplify those calculations. Using The Funk-Hecke formula (see Atkinson
and Han (Atkinson and Han, 2012, Theorem 2.22), n =0, d = dg ord = d),
we get

L)_

S (s cos(p) 2™ + sin(p)z
|SdH72‘ |Sdl_72|

St S| /Qp / o {roos() cos(ip) + ssin(e) sin(ie)) dyay (P}, ()" =) (8)

= 1 dulla, | o(vs p)d(r" — 7)(¥)
Vet | L bel0,r/2]
= f(Tt+7 T)
Simplifying f*(cos(p)z+sin(p)zt). Because f*(y) = ||y||, f*(cos(¢)z +
sin(p)z1) is simply ||cos(p)2!||= cos(p) because 2 € ST,
With the previous expressions for f(u;;-) and f* we have that for any func-
tion ® : R? — R,
@ (f* (cos()2 + sin(i) "), f(juscos(ip) 2 + sin(p) =)) = @ (cos(), (77 7750))

Note that this applies both to ®(y,) = ¢(y,y) and ®(y,§) = —024(y, 3).

Proof that F'(1;) = A(;",7,7). Using the disintegration Lemma B.1.4 for
the uniform measure on the unit sphere S, we have

P = | e(f*<) f(ut;y))dp(y)
/ Lo (f*(), S) (cos()2 + sin() 2") Ay, (7). (+)45(¢)
-/ f(cos(). Fi7i739)) A (), (=) ()
= [e(coste). Fir om0 (o),
where we have used in the last equality the fact that the integrand does not

depend on 2 or 2+ and that @4, and &4, are probability measures (and thus
their total mass is 1).

Simplifying G;. Using the disintegration Lemma B.1.4, we have:

Gi(6) = [Ruw)o (uf! cos(6) + it sin(6)) dp(o)

Y

= /Rt(cos(cp)zH +sin(p)zt)o (sz cos(¢) cos(8) + zi sin(p) sin(9)> Qay (27 d@g, (27)dA ().

310

Similarly to what we did for simplifying f(u;-), we can simplify the integrals
against wg,, and wy, using spherical harmonics theory to get:

Guo) =~ [out{eoste). Fiai' 7)) e 040

This shows that

R Tle] = Gu(o)
L)6 = Gul6),

which proves that Equation (3.10) indeed describes the evolution of the Wasserstein-
Fisher-Rao for the objective functional A over M([0,7/2])?, given by the pair
(rF, 7). O

B.6 . Numerical simulations in one dimension

Measure discretization. Discretizing p; via pim; = %Z}L O(ay (1),b; (1))
we get that 7, == Tn—’;t — Tt = L > 71 ¢j(t)dp() where

¢j(t) = ejla; (&) 1[b;)1l
e; = sign(a;(0)),

00) = wxcos (i)

Initializing through a;(0) ~ U{—1,+1} and b;(0) ~ @y = U(S?71), yields ¢;(0) ~
U{—-1,+1} and 6;(0) ~ 7, i.i.d. over j. The gradient flows of Equation (3.10)
translates into the following ODEs on (c¢;)jc(1,m) and (0;) je(1,m):

d

2 6i(t) = 2e5Ge(0;(1))¢5 (1),

d

L65(0) = Va6 (1)
where €; = a;(0) € {—1,+1} denotes whether the corresponding quantity appears
in T;rm (e=+1)orm,, (e=-1).

Time discretization. Simulating these ODEs via the discrete Euler scheme
with step n > 0, leads, for any iteration k € N, to:

¢+ 1) = (1+20,Gr(0;(R))) 5 (k)
0;(k+1) = 0;(k + 1) +ne;Vi(0;(k)).

311

Approximating integrals numerically. The only thing that needs to be
dealt with numerically is estimating the values of G; and V; which are defined by
integrals. With the discretization of the measures, we have:

Gu#) = [(costio) it 7539)) 6003 (0),

Frbmsie) = ci(k)o(0;(k); o),
j=1
b (0;) = o (r cos(p) cos(8) + ssin(yp) sin(@)) dYa,, (r)d7a, ().
r,s€[—1,1]

We thus get:

Gu(0) = [PEERED S (cos() — ey R0/ 05(0)))03 9) (a2 1) i, V),

Jj=1

with
W(r,s;0,0) = a(r cos(¢p) cos(f) + ssin(yp) sin(ﬂ)).

Similarly, we have:

(0) = [XEZREL S (o) — 0000 /0500,)) 43 0) @y 2) (5, V5.,

m =
with
X(T‘, s;0, 90) L= %w(rv 530, (10)
=0 (cos(0) cos(p)r + sin(0) sin(@)s) [— sin(@) cos(p)r + cos(0) sin(y)s| .

We use Monte-Carlo estimation through sampling to approximate the integrals
against the five variables (¢, r, 7', s,s") by drawing N samples from the corre-
sponding distributions. We get:

and similarly

where we have drawn the samples i.i.d. over i € [1, N]:

i ~ 7,
}%a}% N’ﬁdHa
Si7S7€ ~ ’~Ydl‘

Iterations in the numerical simulation. Defining the vectors c¢(k) =
(cj(k))jenmp 0(k) = (05)je11,m), and € = (€;) je[1,m], the update Equations (B.3)
can then be written in terms of update rules using the matrices W (k) = (V;;(k)); ic[1,m]x[1,N]:

W(k) = (Wji(k))jicqmixv and finally x = (xi(k));icp mix 1,5, and the
vectors (@, R, R/, S, 5") = (®;, R;, R}, Si, S})icp1,n), which are re-sampled at each
iteration k € [0, K], where K € N:

c(k+1) = (1+2ne ® Gy) ® c(k),
0(k +1) = 0(k) +ne @ Vi,

where

and © denotes the Hadamard (element-wise) product of two vectors. One can
compute the loss through sampling in a similar way.

Experimental value for « and parameters of the numerical simula-
tion. For the numerical simulations, we fix the number of atoms of the measure
(or equivalently the width of the network) to m = 1,024, the learning rate to
n= 5.1073, the number of samples for the Monte-Carlo scheme to N = 1,000,
and the total number of iterations to K = 20,000. The experimental value for «
(see Section 3.4.2) is computed through aeyx, = T;;K([O, 7/2]), that is

1
o = = 3 (K,

jeJt
Jto={jel,m]; e =1}

As mentioned in the main text, the behaviour of the numerical simulation depends
a lot on the step-size . Some of the differences between our observations and our
intuitive description of the limiting model (infinite-width and continuous time) can
come from too big a step-size. We have thus run the numerical simulation with
n = 2.107° as well, for K = 230,000 steps but the same differences still appear
(e.g., T;,k([o,ﬂ'/Q]) still grows larger than the theoretically expected limit a after
some time, albeit by a smaller margin) and after the critical t*, some negative

313

particles seem to go slightly beyond 7/2, even with a very small step-size, a fact
which cannot happen for the limiting model. Consequently, in Figure 3.3, the first
histogram bin right after 7/2 has been merged with the one before.

314

C - Appendix for Chapter 4

C.1 . Proximal step for the L' penalty

The function ¢ : t € R — tV,; f(z) + Lt + A\|x; +t| is convex and thus a given
t is a minimizer if and only if 0 € 9¢(t) where d¢(t) is the sub-gradient of ¢ at
t, and is given by 9¢(t) = V,f(x) + Lt + X0y (t) where ¢ : t — |x; + t| and
oY(t) = sign(x; +t) if t # —x; and 0Y(t) = [—1, 1] otherwise. If ¢ is a minimizer,
it must thus hold that V; f(x) + Lt + Asign(x; +t) =0 if t # x;, and if t = —x;,
it must hold that V,;f(z) — Lz; € [\, A].

Case where t # —x;. Then we have L(z; +t) + Asign(z; +t) = —V,; f(z) + La;
which implies that x; +t and —V; f(z) + Lx; have the same sign, and thus that
L|zj+t|4+X = |=V,f(z)+Lx;|, which ensures that in this case |V, f () — Lx;|> .
Using that z; + ¢ and —V; f(z) + Lx; have the same sign, we thus have:

Llz; +t| = |-V, f(z) + Lx;|—A

1 A 1
T; + t= _Evzf<x) +x; — ZS'gn(_zvzf(x) + xz)

t=—mz;+ <—ivif(x) + xl) <1 - !sz—/\sz(x)\> '

In any case, ¢ has a unique minimum: if =V, f(z) + Lz; € [\,] then t = —z;
is the only value for which 0 € 0¢(t), and is thus the unique minimizer. If
value for which 0 € 9¢(t), and is thus the unique minimizer. The two cases can
be summarized in a unique formula as below:

. 1 A
artgerlréln QZ)(t) = —x; + <_vaf($) + ﬂfl) max (0, 1— WW) .

C.2 . A proof of inequality (4.17)
We first start with a useful lemma:
Lemma C.2.1. Let ¢,(s) = (1 — as)?, and let 3 > 2. Then, if a < 1, it holds:

1 1B] 1/2 1
-) > > —.
52 %ali/B)z | dazg
7=0
Proof. Define s; := j/p for j € {0,...,[B]}. ¢q is non-negative, and since
a < 1, ¢4 is decreasing on [0, 1]. Thus, by comparing the sum to the integral,

315

it holds

18] 1B)-1
=Y ¢ali/B) > (sj41 = 8j)Pals;)
j=0 3=0
LBIZL s
> Z dal(s)ds
i=0 75
181/8
> [

Now by definition of the floor function it holds |3|/5 > (8 —1)/6=1-1/83
which is > 1/2 because 8 > 2. Therefore, using that 1/2 < 1 — as < 1 for
s € [0,1/2], and that the squared function is increasing on [0, 1], we have

1 18] 1/2
BZ%(]’/ﬁ) > ; Pa > (1/2) x (1/4) =1/8

7=0
O

We now give the proof of inequality (4.17) which is adapted from the “Mémoire
de TER" of Adrien Prevost, assuming m > 4.

Proof. Let S := {z € R™ : ||z — 2¥|[1< R}. Forany x € S, it holds by
convexity:

flz) =M < (Vf(z),x —2") <[|[Vf(@)lloollx — 2"[[1< RI[V f(2)]]oo-

Fix z € S, and leti* € [1,m] such that M := ||V f(2)||cc= |V f(x)]. Call g; :=
max (0, M — K|i—*|), itholds |V fi(z)|> M — K|i—i*|, and thus |g;|< |V, f(x)].
Case when 4 < 2. Then, it holds ||V f(z)|*> ||V f(z)||%= ||V f(2)|[2./M >
IV f(@)[1%/(2K).

Case when % > 2. Then, we have
m
IV f(2)]]* > 293
=1

m K 2
> M max (0,1 - 37l i*\)

22m1 K - 2
P <O’I‘MJ> card {i € [1,m] : |i —i"|= j}
2Lm/QJ O\2
>M jz(:)max<0,1—Mj> ’

316

where the last line comes from the fact that for j € {0, ..., |m/2]}, it holds
card{i € [1,m] : |i —i*|=j} > 1. Indeed, if i* € {0,...,|m/2]}, then we
have [0, |m/2]] = {|i —i*|: i € [i*,i" + [m/2]]. If i* € [[m/2] + 1,m], then
[0, [m/2]] = {]i —i*|: i € [i* — |[m/2],i*]. We thus get

5 min(|m/2],[M/K])

K K \?
iRzt Y (1)
If M/K <m/2, then

K K \?
2> —(1-=j) .
VI@IP> 5% Y 5 < Mg)
we apply Lemma C.2.1 witha = 1and g = M/K > 2 to obtain that

M3 1
2

> — X —.
IVF@I2 S x 5
If M/K > m/2, then since K/M > 2/m, we have

5 min(([m/2])

K K \?
Ivr@lE= e > g (1-)

§=0
LR 2 () Km 2y
- K = m oM m)

We apply Lemma C.2.1 with @ = £ < 1 and 8 = m/2 which is > 2 by the
assumption that m > 4. We obtain that

M3 1
2
> — x —.
IVF@)?> == x 2
We have thus shown thatin any case it holds ||V f(z)||?> ?—;,which entails
that
1 *
SIVI@IP= 7(f(2) = M)
Wlth T = ﬁ. O

C.3 . Proof of Equation (4.19)

Proof. Let V € R\{0} and call ¢(t) = tV + L2 + A|¢|. Calling M := max(0,1 —
2),and T := — ¥ M, it holds

Vi
2 2
o) = -5 (= - 27

317

and the term between parenthesisis equal to 0if 1 — |—‘*/| < 0andto %(1 — ﬁ)z
otherwise, which means thatin any case it is equal to % max(0,1— ﬁ)Q, which
gives

V2

(1) = ﬁMQ

1 2
=37 max(0, |[V|=\)%

318

Bibliography

Emmanuel Abbe, Enric Boix-Adsera, Matthew S. Brennan, Guy Bresler, and
Dheeraj Nagaraj. The staircase property: How hierarchical structure can guide
deep learning. Advances in Neural Information Processing Systems, 34:26989—
27002, 2021.

Emmanuel Abbe, Enric Boix-Adsera, and Theodor Misiakiewicz. The merged-
staircase property: a necessary and nearly sufficient condition for sgd learning of
sparse functions on two-layer neural networks. arXiv preprint arXiv:2202.08658,
2022,

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in
overparameterized neural networks, going beyond two layers. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems,
pages 6158-6169, 2019.

Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows: in metric spaces
and in the space of probability measures. Springer Science & Business Media,
2005.

Dyego Araljo, Roberto I. Oliveira, and Daniel Yukimura. A mean-field limit for
certain deep neural networks, 2019.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained
analysis of optimization and generalization for overparameterized two-layer neu-
ral networks. In International Conference on Machine Learning, pages 322-332.
PMLR, 2019.

Kendall Atkinson and Weimin Han. Spherical Harmonics and Approximations on
the Unit Sphere: An Introduction, volume 2044. Springer, 01 2012. ISBN
078-3-642-25982-1. doi: 10.1007/978-3-642-25983-8.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg
Yang. High-dimensional asymptotics of feature learning: How one gradient step
improves the representation. arXiv preprint arXiv:2205.01445, 2022.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Francis Bach. Breaking the curse of dimensionality with convex neural networks.
The Journal of Machine Learning Research, 18(1):629-681, 2017.

319

Andrew Barron. Barron, a.e.: Universal approximation bounds for superpositions of
a sigmoidal function. ieee trans. on information theory 39, 930-945. Information
Theory, IEEE Transactions on, 39:930 — 945, 06 1993. doi: 10.1109/18.256500.

Mohsen Bayati and Andrea Montanari. The dynamics of message passing on
dense graphs, with applications to compressed sensing. |[EEE Transactions on
Information Theory, 57(2):764-785, 2011.

Yoshua Bengio, Nicolas Roux, Pascal Vincent, Olivier Delalleau, and Patrice Mar-
cotte. Convex neural networks. In Y. Weiss, B. Schélkopf, and J. Platt, editors,
Advances in Neural Information Processing Systems, volume 18. MIT Press,
2006. URL https://proceedings.neurips.cc/paper/2005/file/0fc17
Oecbb8fflafb2c6de48eab343e7-Paper.pdf.

Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetries and invariant
neural networks. J. Mach. Learn. Res., 21:90-1, 2020.

Erwin Bolthausen. An iterative construction of solutions of the TAP equations for
the Sherrington—Kirkpatrick model. Communications in Mathematical Physics,
325(1):333-366, 2014.

Kristian Bredies and Dirk A Lorenz. Linear convergence of iterative soft-
thresholding. Journal of Fourier Analysis and Applications, 14:813-837, 2008.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig
Schubert, Chelsea Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. Distill,
2020. doi: 10.23915/distill.00024. https://distill.pub/2020/circuits.

Lenaic Chizat. Sparse optimization on measures with over-parameterized gradient
descent. Mathematical Programming, 194(1):487-532, 2022.

Lénaic Chizat and Francis Bach. On the global convergence of gradient descent
for over-parameterized models using optimal transport. In Proceedings of the
32nd International Conference on Neural Information Processing Systems, pages
3040-3050, 2018.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-
layer neural networks trained with the logistic loss. In Conference on Learning
Theory, pages 1305-1338. PMLR, 2020.

Lénaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable
programming. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedi
ngs.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c5722545
9-Paper.pdf.

320

https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf
https://proceedings.neurips.cc/paper/2005/file/0fc170ecbb8ff1afb2c6de48ea5343e7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/ae614c557843b1df326cb29c57225459-Paper.pdf

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accu-
rate deep network learning by exponential linear units (elus). In Yoshua Bengio
and Yann LeCun, editors, 4th International Conference on Learning Represen-
tations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/1511.07289.

Alexander Cloninger and Timo Klock. A deep network construction that adapts
to intrinsic dimensionality beyond the domain. Neural Networks, 141:404-419,
2021.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can
learn representations with gradient descent. In Conference on Learning Theory,
pages 5413-5452. PMLR, 2022.

Hadi Daneshmand and Francis Bach. Polynomial-time sparse measure recovery.
arXiv preprint arXiv:2204.07879, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent
finds global minima of deep neural networks. In International Conference on
Machine Learning, pages 1675-1685. PMLR, 2019.

Weinan E, Chao Ma, and Lei Wu. Machine learning from a continuous viewpoint,
i. Science China Mathematics, 63(11):2233-2266, sep 2020. doi: 10.1007/s1
1425-020-1773-8. URL https://doi.org/10.1007%2Fs11425-020-1773-8.

Cong Fang, Jason D. Lee, Pengkun Yang, and Tong Zhang. Modeling from fea-
tures: a mean-field framework for over-parameterized deep neural networks,
2020.

Thomas Gallouét, Maxime Laborde, and Leonard Monsaingeon. An unbalanced
optimal transport splitting scheme for general advection-reaction-diffusion prob-
lems. ESAIM: Control, Optimisation and Calculus of Variations, 25:8, 2019.

lordan Ganev and Robin Walters. The gqr decomposition for radial neural networks.
arXiv preprint arXiv:2107.02550, 2021.

Adria Garriga-Alonso, Carl Edward Rasmussen, and Laurence Aitchison. Deep
convolutional networks as shallow gaussian processes. arXiv preprint
arXiv:1808.05587, 2018.

Mario Geiger, Arthur Jacot, Stefano Spigler, Franck Gabriel, Levent Sagun,
Stephane d'Ascoli, Giulio Biroli, Clement Hongler, and Matthieu Wyart. Scaling

321

http://arxiv.org/abs/1511.07289
https://doi.org/10.1007%2Fs11425-020-1773-8

description of generalization with number of parameters in deep learning. Jour-
nal Of Statistical Mechanics-Theory And Experiment, 2020(ARTICLE):023401,
2020a.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling
feature and lazy training in deep neural networks. Journal of Statistical Mechan-
ics: Theory and Experiment, 2020(11):113301, 2020b.

Mario Geiger, Stefano Spigler, Arthur Jacot, and Matthieu Wyart. Disentangling
feature and lazy training in deep neural networks. Journal of Statistical Mechan-
ics: Theory and Experiment, 2020(11):113301, 2020c.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Yee Whye Teh and Mike Titterington, editors,
Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, volume 9 of Proceedings of Machine Learning Research, pages
249-256, Chia Laguna Resort, Sardinia, Italy, 13-15 May 2010. PMLR. URL
http://proceedings.mlr.press/v9/glorot10a.html.

Grzegorz Gtuch and Riidiger Urbanke. Noether: The more things change, the more
stay the same. arXiv preprint arXiv:2104.05508, 2021.

Eugene Golikov and Greg Yang. Non-gaussian tensor programs. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in
Neural Information Processing Systems, volume 35, pages 21521-21533. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_£fil
es/paper/2022/£ile/8707924df5e207fa496£729f49069446-Paper-Confe
rence.pdf.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
networks, 2014.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural
tangent kernel. In International Conference on Learning Representations, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026-1034, 2015.

322

http://proceedings.mlr.press/v9/glorot10a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/8707924df5e207fa496f729f49069446-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8707924df5e207fa496f729f49069446-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8707924df5e207fa496f729f49069446-Paper-Conference.pdf
http://www.deeplearningbook.org

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regu-
larizers with gaussian error linear units. CoRR, abs/1606.08415, 2016. URL
http://arxiv.org/abs/1606.08415.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In International conference on
machine learning, pages 448—-456. pmlr, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Con-
vergence and generalization in neural networks. CoRR, abs/1806.07572, 2018.
URL http://arxiv.org/abs/1806.07572.

Arthur Jacot, Franck Gabriel, Francois Ged, and Clément Hongler. Order and
chaos: Ntk views on dnn normalization, checkerboard and boundary artifacts.
arXiv preprint arXiv:1907.05715, 2019.

Ziwei Ji and Matus Telgarsky. Gradient descent aligns the layers of deep linear
networks. arXiv preprint arXiv:1810.02032, 2018.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and
proximal-gradient methods under the polyak-tojasiewicz condition. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part |
16, pages 795-811. Springer, 2016.

Alex Krizhevsky, llya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and
K.Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neur
ips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a6
8c45bb-Paper.pdf.

Vera Kurkova and Marcello Sanguineti. Bounds on rates of variable-basis and
neural-network approximation. Information Theory, IEEE Transactions on, 47:
2659 — 2665, 10 2001. doi: 10.1109/18.945285.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural computation, 1(4):541-551, 1989.

323

http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1806.07572
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278-2324, 1998.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pen-
nington, and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes.
arXiv preprint arXiv:1711.00165, 2017.

Flavio Martinelli, Berfin Simsek, Johanni Brea, and Wulfram Gerstner. Expand-
and-cluster: Exact parameter recovery of neural networks. arXiv preprint
arXiv:2304.12794, 2023.

Alexander G de G Matthews, Mark Rowland, Jiri Hron, Richard E Turner, and
Zoubin Ghahramani. Gaussian process behaviour in wide deep neural networks.
arXiv preprint arXiv:1804.11271, 2018.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the
landscape of two-layer neural networks. Proceedings of the National Academy
of Sciences, 115(33):E7665-E7671, 2018.

Hrushikesh Mhaskar. On the tractability of multivariate integration and ap-
proximation by neural networks. J. Complexity, 20:561-590, 08 2004. doi:
10.1016/j.jco.2003.11.004.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, loannis Mitliagkas, and
Murat A Erdogdu. Neural networks efficiently learn low-dimensional representa-
tions with sgd. arXiv preprint arXiv:2209.14863, 2022.

Radford M Neal. BAYESIAN LEARNING FOR NEURAL NETWORKS. PhD thesis,
University of Toronto, 1995.

Radford M Neal. Priors for infinite networks. In Bayesian Learning for Neural
Networks, pages 29-53. Springer, 1996.

Phan-Minh Nguyen and Huy Tuan Pham. A rigorous framework for the mean
field limit of multilayer neural networks. CoRR, abs/2001.11443, 2020. URL
https://arxiv.org/abs/2001.11443.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite
ensembles. arXiv preprint arXiv:1712.05438, 2017.

324

https://arxiv.org/abs/2001.11443

Roman Novak, Lechao Xiao, Jaehoon Lee, Yasaman Bahri, Greg Yang, Jiri Hron,
Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Bayesian
deep convolutional networks with many channels are gaussian processes. arXiv
preprint arXiv:1810.05148, 2018.

Jonas Paccolat, Leonardo Petrini, Mario Geiger, Kevin Tyloo, and Matthieu Wyart.
Geometric compression of invariant manifolds in neural networks. Journal of
Statistical Mechanics: Theory and Experiment, 2021(4):044001, apr 2021. doi:
10.1088/1742-5468 /abf1f3. URL https://dx.doi.org/10.1088/1742-546
8/abf1f3.

Huy Tuan Pham and Phan-Minh Nguyen. A note on the global convergence of
multilayer neural networks in the mean field regime. CoRR, abs/2006.09355,
2020. URL https://arxiv.org/abs/2006.09355.

Allan Pinkus. Approximation theory of the mlp model in neural networks. Acta
Numerica, 8:143-195, 1999. doi: 10.1017/S0962492900002919.

Peter Richtarik and Martin Takac. Iteration complexity of randomized block-
coordinate descent methods for minimizing a composite function. Mathematical
Programming, 144(1-2):1-38, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn
Ommer. High-resolution image synthesis with latent diffusion models. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pages 10684-10695, 2022.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386, 1958.

Grant Rotskoff and Eric Vanden-Eijnden. Parameters as interacting particles: long
time convergence and asymptotic error scaling of neural networks. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31, 2018.

Grant M. Rotskoff and Eric Vanden-Eijnden. Trainability and accuracy of neural
networks: An interacting particle system approach, 2019.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal
representations by error propagation, 1985.

Filippo Santambrogio. Optimal transport for applied mathematicians. Birkauser,
NY, 55(58-63):94, 2015.

Filippo Santambrogio. {Euclidean, metric, and Wasserstein} gradient flows: an
overview. Bulletin of Mathematical Sciences, 7(1):87-154, 2017.

325

https://dx.doi.org/10.1088/1742-5468/abf1f3
https://dx.doi.org/10.1088/1742-5468/abf1f3
https://arxiv.org/abs/2006.09355

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Grae-
pel, et al. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815, 2017.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural net-
works: A law of large numbers. SIAM Journal on Applied Mathematics, 80(2):
725-752, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of deep neural
networks. Mathematics of Operations Research, 2021.

A. M. Turing. . —COMPUTING MACHINERY AND INTELLIGENCE. Mind, LIX
(236):433-460, 10 1950. ISSN 0026-4423. doi: 10.1093/mind/LIX.236.433.
URL https://doi.org/10.1093/mind/LIX.236.433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, tukasz Kaiser, and lllia Polosukhin. Attention is all you need.
Advances in neural information processing systems, 30, 2017.

E. Weinan and Stephan Wojtowytsch. On the banach spaces associated with multi-
layer relu networks: Function representation, approximation theory and gradient
descent dynamics. ArXiv, abs/2007.15623, 2020.

Stephan Wojtowytsch. On the convergence of gradient descent training for two-
layer relu-networks in the mean field regime. arXiv preprint arXiv:2005.13530,
2020.

Stephen J Wright. Coordinate descent algorithms. Mathematical programming,
151(1):3-34, 2015.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are
gaussian processes. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alcheé-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedi
ngs.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa
5-Paper.pdf.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. ArXiv,
abs/2006.14548, 2020a.

Greg Yang. Tensor programs Ill: neural matrix laws. CoRR, abs/2009.10685,
2020b. URL https://arxiv.org/abs/2009.10685.

Greg Yang and Edward J. Hu. Tensor programs iv: Feature learning in infinite-width
neural networks. In Marina Meila and Tong Zhang, editors, Proceedings of the

326

https://doi.org/10.1093/mind/LIX.236.433
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5e69fda38cda2060819766569fd93aa5-Paper.pdf
https://arxiv.org/abs/2009.10685

38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 11727-11737. PMLR, 18-24 Jul 2021.
URL https://proceedings.mlr.press/v139/yang21c.html.

Greg Yang, Edward J. Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David
Farhi, Nick Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor
programs v: Tuning large neural networks via zero-shot hyperparameter transfer,

2022.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features
for understanding neural networks. Advances in Neural Information Processing

Systems, 32, 2019.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European conference on computer vision, pages 818-833. Springer,
2014.

327

https://proceedings.mlr.press/v139/yang21c.html

	Remerciements
	Introduction
	General background
	The risk minimization problem
	Neural networks
	Learning with neural networks
	Open questions and research directions

	Infinite-width limits, a promising path to study the problem rigorously
	General context and motivation
	The NTK parameterization
	Integrable parameterization
	Evolution equations in the space of measures
	Tensor programs and infinite-width limits of any parameterization

	Contributions
	Infinite-width dynamics of integrable parameterizations
	Symmetries in the dynamics of infinitely wide two-layer networks
	Optimization over the space of measures: dynamically adding and pruning neurons

	Introduction (Français)
	Notation
	Infinite-width limit of integrable parameterizations of deep neural networks
	Introduction
	Motivation
	Contributions
	Related Work
	Organisation of the Chapter and Notations

	General Setting
	Network and Data
	Parameterizations of Neural Networks

	Deep Networks with Naive Integrable Parameterization are Trivial
	No learning in Deep Networks with Naive Integrable Parameterization
	No stable learning with learning rates constant over time
	Recovering results without homogeneity: linearization of the first step

	Large Initial Learning Rates Induce Learning
	Non-trivial and Stable Learning for Integrable Parameterizations
	IP-LLR is a Modified P

	Alternative Methods for Escaping the Initial Stationary Point
	Using Non-Centered i.i.d. Initialization
	Not Scaling the Bias Terms

	Numerical Experiments
	Experimental Setup
	IP-LLR vs. P
	Learning is Degenerate for IP-bias and IP-non-centered

	Conclusion

	Symmetries in the dynamics of infinitely wide two-layer neural networks
	Introduction
	Problem setting
	Summary of contributions
	Related work
	Notations

	Invariance under orthogonal symmetries
	Exponential convergence for odd target functions
	Learning the low-dimensional structure of the problem
	Symmetries and invariance
	One dimensional reduction

	Conclusion

	Coordinate descent over measures and dynamic optimization of two-layer networks
	Introduction
	Setting
	Organisation of the chapter

	A review of gradient descent, coordinate descent and proximal methods
	Polyak-Łojasiewicz and generalized Łojasiewicz conditions
	Gradient descent without Łojasiewicz-type assumptions
	Coordinate descent
	Proximal methods

	Coordinate descent in the space of measures
	Convergence of the coordinate descent method
	A proximal algorithm for L^1-penalized coordinate descent
	Sampling from existing atoms: a modified proximal algorithm

	Kernel penalties
	An example of attraction/repulsion with two particles
	A coordinate descent algorithm

	Numerical experiments
	Proximal algorithm for the total variation penalty
	Kernel penalization

	Discussion

	Conclusion
	Appendix
	Appendix for Chapter 2
	Notations for the appendix
	An overview of the Tensor Program technique
	Intuition behind the technique
	Mathematical formalism
	The maximal update parameterization P

	Useful preliminary results
	Positive finite moments of pseudo-Lipschitz functions of Gaussians
	The Z dots are 0 in the first forward-backward pass
	Gaussian output in the infinite-width limit
	Convergence of the coordinates to the limiting distribution Z

	Proof of the triviality of IPs: Proposition 2.3.1
	Proof at t=0
	Induction step

	Preliminaries on positively homogeneous functions
	Simplification of the first update for IPs with Assumption 4
	Tilde variables
	First forward pass
	First backward pass
	First gradient scales
	Final comments on Assumption 4

	Preliminaries for Theorem 2.3.2 and Theorem 2.4.1
	Tilde variables
	Expression of the forward and backward passes of ac-parameterizations in function of the tilde variables with homogeneity

	Dynamics of the infinite-width limit of IP-LLR
	Second forward pass of IP-LLR (t=1)

	Proof that no constant learning rate is possible: Theorem 2.3.2
	Proof of the first implication for the learning rates at t=0
	Preliminaries on the second backward pass (t=1)
	Preliminaries on the third forward pass (t=2)
	Proof of the second implication

	Proof of the non-triviality of IP-LLR: Theorem 2.4.1
	Proof of the equivalence between IP-LLR and P: Proposition 2.4.1 and Theorem 2.4.2
	Finite-width equivalence: Proposition 2.4.1
	Infinite-width equivalence: Theorem 2.4.2

	Formal versions of the results for the alternative methods of Section 2.5
	Formalization of the degeneracy of Section 2.5.2
	Formal version of Theorem 2.5.1

	The variables associated with the initial weights vanish in IP-LLR
	Main result

	Expectations with ReLU
	First moment
	Second moment
	First forward pass moments
	First derivative moments
	First backward pass moments

	Appendix for Chapter 3
	Additional notations and preliminary results
	Notations for the appendix
	General results on invariance for measures and functions
	A disintegration result on the unit sphere S^d-1

	Gradient flows on the space of probability measures
	First variation of a functional over measures
	Wasserstein gradient flows in the space P_2(R^d+1)

	Proofs of the symmetry results of Section 3.2
	Preliminaries
	Proof of Proposition 3.2.1
	Proof of Proposition 3.2.2

	Proof of the exponential convergence for linear networks: Theorem 3.3.2
	Proofs of Section 3.4: f^* depends only on the projection on a sub-space H
	The general case
	Case when f^* is the euclidean norm: Theorem 3.4.3

	Numerical simulations in one dimension

	Appendix for Chapter 4
	Proximal step for the L^1 penalty
	A proof of inequality (4.17)
	Proof of Equation (4.19)

