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Résumé

Cette thèse s’intéresse à la gestion du risque financier, étudié à travers le prisme de deux
environnements que sont le crédit et l’investissement.
La première thématique abordée concerne la gestion du risque lié aux migrations des no-
tations de crédit. Un rating ou une notation de crédit évalue la capacité d’une entité à
respecter ses engagements envers ses créanciers. Ces notations sont constamment rééval-
uées et peuvent évoluer au cours du temps, notamment en fonction du cycle économique.
Dans un premier temps, nous nous intéressons au rôle des notations de crédit dans la ré-
glementation et aux risques que leurs migrations génèrent pour les finances des banques.
À travers un état de l’art des méthodes existantes d’estimation Point-In-Time (PIT) des
migrations de ratings et l’introduction d’une nouvelle méthode, cette partie cherche dans
un second temps, à apporter un éclairage sur le lien qui existe entre la dynamique des
migrations de rating et le risque systématique, étroitement lié à la santé de l’économie. En
particulier, l’approche proposée considère que la dynamique des migrations de rating est
régie par une chaîne de Markov latente non observée, représentant les états de l’économie.
Cette approche permet de modéliser l’effet du cycle économique sans utiliser de variables
macro-économiques et donc d’éviter toutes confusions ou ambiguïtés dans le choix de ces
variables. S’appuyant sur la théorie de filtrage de processus ponctuels, nous expliquons
comment l’état actuel du facteur caché peut être efficacement déduit à partir des observa-
tions historiques de notation. Nous adaptons l’algorithme classique de Baum-Welch à notre
contexte afin d’estimer les paramètres du facteur latent. Une fois calibrée, notre méthode
permet de détecter en temps réel, les changements économiques affectant la dynamique des
migrations de notation. Deux versions sont proposées : une version discrète et une version
continue. Nous démontrons et comparons l’efficacité des deux approches sur des données
fictives et sur une base de données de notation de crédit d’entreprises.
La deuxième partie de cette thèse s’intéresse à la gestion du compromis entre rendement
attendu et risque estimé dans le processus d’investissement. En particulier, nous étu-
dions les moyens d’allouer la richesse au sein d’un portefeuille composé d’un panier d’actifs
risqués. Nous décrivons les méthodes statiques et dynamiques et tentons de comprendre
les motivations qui poussent les investisseurs à choisir une approche plutôt qu’une autre.
L’approche mean-variance de Markowitz est le classique paradigme en allocation de porte-
feuille. Elle offre une stratégie de répartition de richesse pour laquelle le rendement attendu
est maximal pour un niveau de risque donné. Lorsque l’objectif de l’investisseur est à un
horizon de temps lointain, la stratégie classique mean-variance uni-période, ne peut pas se
projeter au-delà de la prochaine période et ne peut pas rivaliser avec la stratégie optimale
dynamique obtenue à partir de la version multi-période du problème. Les méthodes ex-
istantes, basées sur la programmation dynamique, ne sont pas totalement adaptées pour
résoudre le problème multi-périodes mean-variance en présence de coûts de transactions.
Elles reposent sur des approximations importantes ou s’avèrent avoir une trop grande com-
plexité pour être applicable. En réponse à cette problématique, cette thèse propose une
nouvelle approche qui consiste à représenter la valeur du portefeuille par sa décomposition
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en chaos de Wiener. Cette méthode est numériquement raisonnable et peut prendre en
compte les coûts de transactions. Nous comparons cette approche avec l’approche statique
mean-variance et tentons de raviver le débat autour du consensus idéal à trouver entre
simplicité et performance.
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Abstract

This thesis aims to examine financial risk management within the contexts of credit and
investment domains.
The first part of this thesis explores the risk associated with credit rating migrations. A
credit rating evaluates the confidence in the ability of the borrower to comply with the
credit’s terms. We are interested in the role that credit ratings play in regulation and the
risks they generate to banks’ finances. In particular, the risk of credit rating migration
can largely be explained by the evolution of the economic cycle. As a result of increasing
pressure from regulators, analyzing the effect of the business cycle on rating transitions
has become a subject of great interest for financial institutions. They seek to understand,
estimate, and even forecast this risk in order to manage their credit portfolio efficiently.
Through an overview of existing Point-in-time (PIT) rating transitions modeling methods
and the introduction of a novel one, the first part aims to explore the link between rating
migration dynamics and economic health. In the proposed approach, we consider that the
dynamics of rating migrations in a pool of credit references, are governed by a common un-
observed latent Markov chain, which describes the economic cycle. Under a point process
filtering framework, we derive general discrete-time and continuous-time filtering formulas.
We then apply the filtering frameworks to credit migrations and show how to infer the
current state of the hidden factor from past rating transitions. We adapt an EM algorithm
to estimate the parameters involved and assess both approaches on fictive data and on a
corporate credit rating database. Our approach may be considered as a new Point-in-time
(PIT) rating transitions modeling which does not use any macro-economic factors.
The second part of this thesis focuses on managing the trade-off between expected return
and estimated risk in the decision investment process. The investment becomes increas-
ingly attractive as the level of investment risk decreases. However, the general rule is that
higher risk investments offer better returns. In this part, we study the way to allocate
wealth within an investment portfolio composed of a basket of risky assets. We review
static and dynamic methods and explore the motivations of investors for choosing one ap-
proach over another. Mean-variance framework offer to build a portfolio of assets such that
the expected return is maximized for a given level of risk. When the time horizon increases,
this single-period strategy which cannot see ahead of the next time period, cannot chal-
lenge the dynamic optimal portfolio obtained from the multi-period version of the problem.
However, the existing dynamic methods, mostly based on dynamic programming, are not
fully suitable for solving the multi-period mean-variance problem in the presence of trans-
action costs. They rely on significant approximations or are not computationally tractable.
To bridge this gap, we propose a new approach that represents the portfolio value with its
finite-dimensional Wiener chaos expansion. This method is computationally tractable and
can handle transaction costs. This new approach is compared to a competitive benchmark
based on the sequential single-period Markowitz allocation method. Through this com-
parison, we endeavor to revive the debate surrounding the ideal consensus to be reached
between simplicity and performance.
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This thesis was conducted under the supervision of Pr. Jérôme Lelong and Areski Cousin
and within Nexialog Consulting, as part of the CIFRE program.

Financial risk refers to the possibility of adverse financial effects on individuals, groups, or
companies due to internal or external changes. Managing financial risk involves evaluating
potential losses and taking actions to reduce or eliminate these threats. It’s an ever-present
and complex challenge that individuals, organizations, and societies face in navigating the
uncertainty of modern economic systems. The core concepts of risk management include
avoidance, loss prevention, loss reduction, and diversification. Financial risks can be clas-
sified into four categories: credit risk, market risk, liquidity risk, and operational risk.
Furthermore, two types of risks are distinguished: systematic risk and idiosyncratic risk.
Generally, systematic risk, also known as non-diversifiable risk, cannot be eliminated as
its source is primarily external, such as a pandemic or political climate. On the other
hand, idiosyncratic risk, inherent to the individual, can be mitigated, for instance, within
a portfolio through diversification. This thesis focuses on these two types of risks and aims
to enhance our understanding of how their management can impact the decision-making
process. Specifically, these risks are examined within the contexts of credit and investment
domains.

The first part of this thesis explores credit risk management and the risks associated
with credit rating migrations. Credit risk management aims to mitigate losses primarily
associated with nonpayment of loans. We are interested in the role that credit ratings
play in regulation and the risks they generate to banks’ finances. In particular, the risk
of credit rating migration can largely be explained by the evolution of the economic cycle.

15



As a result of increasing pressure from regulators, analyzing the effect of the business cy-
cle on rating transitions has become a subject of great interest for financial institutions.
They seek to understand, estimate, and even forecast this risk in order to manage their
credit portfolio efficiently. Through an overview of existing methods and the introduction
of a novel one, the first part aims to explore the link between rating migration dynamics
and economic health. In the proposed approach, we consider that the dynamics of rating
migrations in a pool of credit references, are governed by a common unobserved latent
Markov chain, which describes the economic cycle. Note that this approach is described
in Chapter 3 that is based on the article Cousin et al. (2023a).

The second part shifts focus to the field of investments and examines the intricacies of
risk management within this domain. Asset or investment risk can be defined as the like-
lihood of incurring losses relative to the realized return on a particular investment. Most
investors consider lower risk as more favorable when making an investment. The invest-
ment becomes increasingly attractive as the level of investment risk decreases. However,
the general rule is that higher risk investments offer better returns. The second part of this
thesis focuses on managing the trade-off between expected return and estimated risk in the
decision investment process. In particular, we study the way to allocate wealth within an
investment portfolio composed of a basket of risky assets. We review static and dynamic
methods and explore the motivations of investors for choosing one approach over another.
We highlight the challenges for dynamic approaches to integrate realistic constraints and
transaction costs. To bridge this gap, we propose a new approach that represents the
portfolio value with its finite-dimensional Wiener chaos expansion. This method is com-
putationally tractable and can handle transaction costs. We compare this new approach
with a competitive benchmark based on the sequential single-period Markowitz method.
Note that this approach is described in Chapter 5 that is based on the article Cousin et al.
(2023b), submitted to a peer-reviewed journal.

Through the exploration of existing and novel approaches, this study aims to contribute
to the understanding of effective management of financial risk in a constantly evolving
financial environment.

1 Introduction: Point-in-time estimation of credit rat-
ing migrations

Credit risk research has been on the rise over the last 20 years. In particular, the chal-
lenges that arose from the previous financial crisis prompted researchers to develop credit
risk valuation models that take into account the evolution of the business cycle. Used by fi-
nancial institutions, some risk indicators focus on the current situation and others attempt
to look at likely developments over several years. The regulation refers to these contrasting
approaches as Point-in-Time (PIT) and Through-The-Cycle (TTC). The Basel committee
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provides a formal distinction between PIT and TTC approaches. A PIT measure covers a
short horizon of a year or less, while a TTC measure covers a longer horizon that is suf-
ficient for business-cycle effects to mostly dissipate. The evolution of banking supervisory
regulations and accounting rules follow the trend underlying the first approach, of taking
into account the economic cycle. Official guidelines of IFRS 9 as Regulation (2016) recom-
mend the use of Point-In-Time estimation of credit risk, i.e., the use of macro-economic
factors in the credit risk assessment process. Moreover, the EBA guidelines Authority.
(2017) on LGD downturn, require to identify economic downturn periods to adjust the
initial LGD estimations. In addition, the EBA stress testing methodology described in
Authority (2018), strongly relies on past economical scenarios.

A credit rating system evaluates the confidence in the ability of the borrower to com-
ply with the credit’s terms. A default probability is associated with each rating, which
under the capital rule, Basel regulations (see Settlements (2017)), impacts the amount of
capital required for a credit. Ratings can be generated by internal rating systems (IRB) or
issued when it is available, by external rating agencies (like Moody’s, Standard and Poor’s,
Fitch Ratings, . . . ). After the assignment of an initial credit rating, reviews are performed
either periodically or based on market events. In that way, a rating may evolve over time,
according to the health of the rated entity and the economic cycle. Therefore, predicting
the evolution of rating migrations is of primary importance for every financial institution.
The rating migrations of a group of credit entities can be described by transition matrices,
which determine the probabilities of moving from one rating category to another within
a given time period. Given recent evolution in banking supervisory and accounting rules,
financial institutions are facing a new challenge: explaining changes in transition probabil-
ities due to the dynamic of the business cycle.

A popular and simple approach to estimate rating transitions consists in assuming that
they follow homogeneous Markov chains. In the basic reduced intensity form model, a
credit event corresponds to the first jump time of a Poisson process with a constant hazard
rate. The reduced form approach has been widely studied in the credit risk literature, see,
e.g., Duffie et al. (2007), Jarrow et al. (1997). We can point out a limit of this naive mod-
eling: many studies show that rating migrations’ dynamics first exhibit non-homogeneous
property. Others studies even reject the Markovian behavior (migration data exhibit cor-
relation among rating change dates, known as “rating drift”, time-dependent default and
transition probabilities, contagion effect, . . . ). Altman and Kao (1992), Hamilton (2004)
and Fledelius et al. (2004) highlight that migration intensities vary over time. In their re-
search Lando and Skødeberg (2002) and Hamilton (2004) come to the conclusion that the
rating transition probabilities depend on whether the bond entered its current rating by an
upgrade or a downgrade. Lando and Skødeberg (2002) also notice that the probability to
leave a rating category tends to decrease with the time spent at that rating. Bangia et al.
(2002) and Carty and Fons (1994) highlight Rating Momentums. In particular, a firm
which has experienced a downgrade in the past has more chance to experience another
than a firm which has never experienced one. Above all, Bangia et al. (2002), Frydman
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and Schuermann (2008), Nickell et al. (2000) give strong evidence that credit risk expo-
sure is considerably affected by the macroeconomic conditions and differ across different
economic regimes. The first paper highlight quantified rating migrations’ dependency on
the industry, domicile of the obligor and on the stage of the business cycle. The second, by
considering two economic states provided by The National Bureau of Economic Research
(NBER), for conditioning migration matrices (one of expansion and one of contraction),
show that the loss distribution of credit portfolios can differ greatly. Figlewski et al. (2012)
observe and confirm those behaviours in their studies by incorporating and comparing a
wide range of measures of the macroeconomic environment and of firm’s rating histories
into an intensity reduced Cox model.

Factor-based migration models provide a nice framework for capturing migration sensi-
tivities to macro-economic changes. Factor migration models allow transition probabilities
to depend on dynamic factors. Two main families of models are usually considered in the
credit risk literature : the “ordered Probit” (or structural approach) introduced by Tobin
(1958), popularized by Merton (1974) and studied for credit ratings , e.g., in Bangia et al.
(2002), Feng et al. (2008), Gagliardini and Gouriéroux (2005), Nickell et al. (2000) and the
“multi-state latent factor intensity model” (or intensity approach) studied, e.g., in Cousin
and Kheliouen (2015), Figlewski et al. (2012), Kavvathas (2001), Koopman et al. (2008).
Structural models describe how a company’s value process evolves over time. These mod-
els are based on sector-specific or macroeconomic indicators and assume that the company
will default when its value process drops below a certain threshold. This threshold can
be further divided into multiple levels, which represent changes in the company’s rating
category. In the factor intensity approach, the migration dynamics of each credit entity is
described by a stochastic intensity matrix (or generator matrix) whose components depend
on a pool of common factors. In both models, the factors may be considered observable or
not.

The second approach has emerged in response to criticisms made against the first. As
Gagliardini and Gouriéroux (2005) point out, the risk in selecting covariates lies in exclud-
ing others which could be more relevant. A natural alternative consists in directly filtering
the hidden factor given rating transitions’ past history. For a bond portfolio, the dynamics
of rating migrations can mathematically be represented as a multivariate counting process,
each component representing the cumulative number of transitions from one rating cat-
egory to another. A realistic and standard setting assumes that the unobserved driving
factor is given as a finite state Markov chain and that the rating transition process follows a
Hidden Markov model (HMM). Hidden Markov Chain modeling (HMM) remains a popular
approach in credit risk analysis (see e.g., Ching et al. (2009), Elliott et al. (2008), Elliott
et al. (2014), Thomas et al. (2002)). The hidden process can have different interpretations
according to the assumptions made and the way to filter. In the context of this thesis, the
hidden factor is interpreted as a systematic and common factor, governing transitions of
all firms.
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Under a point process filtering framework, we first derive general discrete-time and continuous-
time filtering formulas. We then apply the filtering frameworks to credit migrations, and
show how to infer the current state of the hidden factor from past rating transitions. We
adapt an EM algorithm to estimate the parameters involved. Contrary to Damian et al.
(2018), Korolkiewicz and Elliott (2008), Oh et al. (2019), we assume that the dynamics
of rating migrations in a pool of credit references, is governed by a common unobserved
latent Markov chain, which aims to represent the economic cycle. Therefore the realiza-
tion of the unobservable factor is assumed to be common to every firm whereas one hidden
factor per bond is considered in Damian et al. (2018), Korolkiewicz and Elliott (2008), Oh
et al. (2019). We believe that our approach which rather keeps the dependencies within
the observations sample, is reliable and realistic. Indeed, rating entities should be affected
by the same realization of the economic factor. This different consideration changes the
way to calibrate and to filter: our filtering framework uses the whole history of aggregated
number of jumps. Once calibrated, we may reveal and detect economic changes affecting
the dynamics of rating migration, in real-time. By updating the filtered factor, we are able
to forecast rating transitions according to these economic changes. Our approach may be
considered as a new Point-in-time (PIT) rating transitions modeling which does not use
any macro-economic factors.
Behind every model mentioned, choosing a continuous or discrete approach is crucial and is
a matter of debate. This study aims at participating to this debate by presenting different
results: we adapt filtering formulas, derived under special HMM assumptions in Brémaud
(1981) and Elliott et al. (2008), to migration ratings context, both in a continuous-time and
discrete-time setting. In particular, we show how to adapt the continuous-time filtering
framework to handle discrete-time data and simultaneous jumps. We assess and compare
both approaches on a fictive data set and on a Moody’s ratings history [01/2000-05/2021]
of a diversified portfolio of 5030 corporate entities.

In this part, we introduce the context of Point-in-time rating migration models both under
a practical and a regulatory point of view. We present commonly used factor-based mi-
gration models from both structural and intensity model categories. The purpose of this
review is to introduce our original contribution to the literature on credit rating dynamics,
which is a new Point-In-Time approach based on counting process filtering. This model
is both developed under a discrete and continuous-time setting. We assess and compare
the efficiency of both versions in providing point-in-time estimations and forecasting of
rating transition probabilities. We aim to show that this new model represents a viable
alternative to existing approaches.

2 Introduction: portfolio allocation

Effective asset management goes beyond simply identifying a good investment universe; it
also entails continually optimizing the portfolio structure over time. Building an effective
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portfolio consists in enhancing its expected return while reducing the risk it generates.
Diversification represents a natural means of reducing this risk. Portfolio allocation theory
endeavors to offer effective solutions for diversification management. It proposes invest-
ment strategies that achieve a suitable balance between risk and reward. These strategies
rely on modifying the allocation of each asset in the investment portfolio, based on the
investor’s investment time horizon, goals, and risk tolerance. Risk tolerance reflects the
willingness and ability of an investor to accept the possibility of losing some or all of
initial investment in exchange for potentially higher returns. Aggressive investors, with
a high-risk tolerance, are more likely to risk losing money in order to get better results.
In contrast, conservative investors, with a low-risk tolerance, prefer strategies that will
preserve their original investment. The time horizon of investors refers to the expected
number of months, years, or decades they will be investing to achieve a particular financial
goal. Investors with a longer time horizon may feel more comfortable taking on riskier,
or more volatile assets, as they can wait out economic cycles and the inevitable ups and
downs of the markets. By contrast, investors with a shorter time horizon are likely to opt
for lower-risk investments.
The degree of diversification in a portfolio relies on the allocation of wealth among vari-
ous investment types within the portfolio. An adequately diversified portfolio should have
diversification at two levels: between asset categories and within asset categories. Stocks,
bonds, and cash are the most common asset categories. But investors may include in their
portfolio other asset categories including real estate, commodities, and private equity. In-
vesting in various asset categories can decrease a portfolio’s exposure to category-specific
risks. This approach constitutes the first level of diversification. Stocks have traditionally
offered the highest returns but also carry the highest risk. Bonds are typically less volatile
than stocks but provide more modest returns. Cash and cash equivalents — such as savings
deposits, certificates of deposit, treasury bills, money market deposit accounts, and money
market funds — are the safest investments, but offer the lowest return of the three major
asset categories. The principal concern for investors investing in cash equivalents is infla-
tion risk. The second level of diversification consists in spreading out investments within
each asset category. Investors typically reconsider the entire investment basket when their
risk aversion or financial goals change. However, if there are only changes in the relative
performance of assets, they usually merely reallocate their portfolios. The principle of
reallocation involves adjusting the allocation of wealth within the investment portfolio to
stay aligned with the financial goal in response to changes in the market environment.
Nonetheless, the rebalancing process can be challenging and restrictive, as it can trigger
transaction costs or tax implications that must be carefully considered.

Markowtiz mean-variance approach (MV), introduced in Markowits (1952), is the clas-
sic paradigme of modern portfolio selection for efficiently allocating capital among risky
assets. Given estimates of expected return, standard deviations and correlations of all
assets in the investment universe, (MV) approach offers to build a portfolio composed with
these assets such that the expected return is maximized for a given level of risk. Mean-
variance optimization is recognized as superior to many ad hoc techniques in terms of
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integration of portfolio objectives with client constraints and efficient use of information.
However, Markowitz optimization was strongly criticized after the 2008 financial crisis, ex-
tremes declaring the death of Markowitz model. These extreme reactions can be explained
by the fact that the strategy of diversification, traditionally associated with Markowitz
optimization, has not been sufficient to protect portfolios against contagion effect. How-
ever, the poor performance of the mean-var efficient portfolio during crisis cannot be solely
attributed to the methodology itself. In reality, a significant portion of the failure stems
from inaccuracies in the input parameters, which were calibrated based on historical data
and failed to account for the observed increase in risk levels and correlations during periods
of stress. Despite being aware that errors in parameter estimation can lead to significant
inaccuracies, investors persist in using Harry Markowitz’s mean-variance model. The main
reason is that this approach remains straightforward to use and interpret but above all,
there is currently no alternative model capable of outperforming the mean-var optimal
portfolio.
Over the past few years, several alternative approaches have been proposed to address
the shortcomings of the mean-variance approach. The purpose of these methodologies is
not to enhance the mean-variance model, but rather to provide alternative optimization
techniques for constructing portfolios that exhibit distinct optimal traits, based on a var-
ied range of input parameters or no parameters at all. Three such approaches are worth
mentioning. The global minimum variance approach (GMVP), studied by Clarke et al.
(2011), does not require any information about expected returns as it only aims to find the
portfolio with the minimum of risk. In the same vein, the equal risk contribution portfolio
(ERC), studied by Roncalli (2013), is designed such that each asset contributes equally to
the overall risk of the portfolio. Lastly, the equal weight portfolio (EWP), as presented
in Maillard et al. (2010), shares wealth in the same proportion among assets. Although
this last method is quite naive, it does not need any input parameters. The selection of
a particular method is closely linked to the information that is available and the level of
confidence that the investor has in it. In addition, constructing an efficient portfolio that
meets the investor’s objectives can be challenging due to various factors that impact the
allocation process. Portfolio allocation entails careful consideration of two crucial factors
— realistic constraints and transaction costs. Realistic constraints refer to the practical
limitations that investors face when constructing a portfolio. These constraints can include
regulatory restrictions, liquidity requirements, tax considerations, and investment policies.
For example, institutional investors such as pension funds may be subject to regulatory
constraints that limit the types of assets they can invest in. Similarly, individual investors
may have tax considerations that impact their portfolio construction decisions. Transac-
tion costs, on the other hand, are the expenses incurred when buying or selling assets to
adjust the portfolio’s allocation. These costs can include brokerage fees, bid-ask spreads,
and taxes. Transaction costs can significantly impact portfolio performance and reduce
the efficiency of portfolio construction. Given the importance of realistic constraints and
transaction costs in portfolio allocation, it is essential to incorporate these factors into the
investment decision-making process.
Overall, effective portfolio allocation requires a thorough understanding of the investor’s
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objectives, constraints, and preferences. Moreover, the investor must also be able to identify
and manage transaction costs to ensure that the portfolio’s performance is not adversely
affected. In this context, the development of innovative portfolio optimization techniques
that account for realistic constraints and transaction costs has become an area of active
research in the field of investment management.

All the approaches mentioned are also challenged by another family of models: dynamic
asset allocations. These models aim to provide performing portfolios for a long-term invest-
ment horizon that can be adjusted over time based on changes in the investment environ-
ment. A dynamic portfolio is rebalanced periodically to ensure that it remains aligned with
the investor’s objectives and the prevailing market conditions. When considering a value
or outcome that is significantly far into the future, myopic strategies that only focus on the
immediate next time period are unable to compete with dynamic strategies that take into
account the long-term value of interest. By not accounting for the potential consequences
of future decisions, myopic strategies limit their ability to effectively address complex and
dynamic problems. In contrast, dynamic strategies that consider the potential impacts of
decisions on future outcomes are better positioned to adapt and thrive in changing envi-
ronments over time. Merton (1969) is one of the first paper studying multi-period portfolio
investment in a dynamic programming framework. In this seminal paper, the authors con-
sider a problem with one risky asset and one risk-free asset. At each date, the investor can
re-balance its wealth between the two assets, seeking to maximize an utility of the final
time horizon wealth. They derive a simple closed-form expression for the optimal policy
when there are no constraint or transaction cost. In a companion paper, Samuelson (1975)
derives the discrete-time analog approach. The results presented in those studies and the
innovative and promising aspect of the multi-period portfolio selection have stimulated
the interest of the related scientific community. In the years that followed, the literature
in multi-period portfolio selection has considerably grown, dominated by maximizing ex-
pected utility of terminal wealth of elementary forms as logarithm, exponential or CRRA
functions. Dynamic programming techniques turn out to be the most suitable approaches
to solve this kind of problems. Among the most noteworthy, Brandt et al. (2005) com-
pare and highlight the conditions of equivalence between dynamic approaches and myopic
strategies with CRRA utility functions.
However, important difficulties due the non separability of the problem in the sense of
dynamic programming, have been reported in finding the optimal portfolio issued from the
multi-period mean-variance approach. Nevertheless Li and Ng (2000) and Zhou and Li
(2000) successfully provide the unconstrained multi-period mean–variance optimal portfo-
lio explicit formulation in a discrete and continuous time setting, respectively. Suggested
by Professor Markowtiz him self, Li et al. (2002) derive the optimal portfolio policy for the
continuous-time mean–variance model with no-shorting constraint. Cui et al. (2014) extend
this work to provide a discrete framework. Even if these last studies become increasingly
realistic, the ignorance of transaction costs, hinders its efficient extension for real-life appli-
cation. Transaction costs impact a lot the optimal choice of policies and cannot be ignored.
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The integration of transaction costs has been widely studied in the uni-period mean-var
case (see Best and Hlouskova (2007), Lobo et al. (2007), Pogue (1970), Xue et al. (2006),
Yoshimoto (1996)). In a multi-period context, the literature is also large on the subject.
In a continuous setting, the problem is not recent, especially when the time horizon is con-
sidered infinite (see Dai and Zhong (2008), Davis and Norman (1990), Dumas and Luciano
(1991), Morton and Pliska (1995), Muthuraman and Kumar (2006), Topcu et al. (2008)).
Discrete time allocation strategies submitted to transaction costs have also been widely
pursued (see Bertsimas and Pachamanova (2008), Boyd et al. (2013), Calafiore (2008),
Constantinides (1979), Holden and Holden (2013), Li et al. (2022) and Peng et al. (2011)).
But many difficulties have been reported by the literature to have an efficient and accurate
method to compute optimal solutions. Furthermore, when solutions are proposed, they
remain computationally heavy and hardly applicable. Some of them tractably solve the
problem in several special cases. Others made various approximations. The most preva-
lent methods to tackle this kind of problem are based on stochastic control techniques.
However, they also suffer from the same drawbacks (see Al-Nator et al. (2020), Boyd et al.
(2013), Cai et al. (2013), Cong and Oosterlee (2016), Gennotte and Jung (1994), Pun and
Ye (2022), Steinbach (2001) and Wang and Liu (2013)).

It remains difficult to find a reliable and accurate approach that is also computation-
ally tractable. Thus, there is no clear-cut selection of techniques. Instead, investors have
to find a consensus between simplicity, tractability and performance. Due to the afore-
mentioned challenges, multi-period models do not have the support of asset managers. In
fact, the prevalent approach to date continues to be the use of single-period models.
The purpose of this part is to gain insight into the decision-making process behind selecting
a particular approach for portfolio allocation. To achieve this, we will review the existing
methods for portfolio allocation, focusing on the two main categories: myopic strategies,
which focus on a single time period, and dynamic strategies, which adopt a long-term
investment view. On one hand, single-time period models are simple to use and can eas-
ily handle realistic constraints and transaction costs. On the other hand, multi-period
models should be theoretically more performing but may suffer from a higher computa-
tional complexity and are hardly tractable to handle constraints and costs. This study
aims to contribute to this debate by proposing a new computational scheme that can solve
multi-period portfolio allocation problems subject to transaction costs. We address this
problem by proposing a new approach that relies on representing the set of admissible
portfolios by their finite dimensional Wiener chaos expansion. The method is computa-
tionally tractable and can be extended to handle realistic constraints. This new approach
is compared to a competitive benchmark based on the sequential single-period Markowitz
allocation method. We aim to show that this new model represents a viable alternative to
existing approaches.
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3 Structure and content of the thesis

This thesis is organised in two mains parts. The first part, Part I, explores credit risk
management and the risks associated with credit rating migrations. The part is divided
into two chapters.

• The first chapter, Chapter 2, reviews the existing regulation and methodologies sur-
rounding credit rating migrations. This chapter is composed of two sections. Section
1, begins by introducing fundamental concepts in credit risk, such as the character-
istics of credit ratings and recent regulatory definition of default. We then provide a
brief overview of the present regulatory directives pertaining to the computation of
default probability and the role of credit ratings in estimating banks’ regulatory cap-
ital. A second section, Section 2, aims to introduce the two families of factor-based
migration models, the structural and intensity approaches. We concisely present
both categories and the related literature. We highlight the limits of considering
observable factors but also the difficulties to integrate unobservable ones.

• The second chapter, Chapter 3, presents a novel approach for modeling Point-in-time
rating migrations, based on filtering of point processes. This chapter is based on the
article Cousin et al. (2023a). This chapter is structured into several sections. Firstly,
in Section 2, a general filtering framework in a discrete-time setting is presented.
Then, Section 3 describes the discrete-time filtering framework adapted to credit
rating migrations. Correspondingly, Section 4 is dedicated to describe the filtering
framework in a continuous-time setting while Section 5 presents its adaptation to
the same context. Section 6 illustrates and validates the two filtering approaches on
fictive data. Then, in Section 7, we compare the two filters on real data sets.

The second part of this thesis, Part II, explores portfolio allocation management and the
risks associated. The part is divided in three chapters.

• The first chapter, Chapter 4 is an introductory chapter. It it composed of two
sections. The first section, Section 1, provides an overview of existing and widely used
approaches for portfolio allocation in a single-period time horizon. We discuss the
fundamental Markowitz mean-variance approach and also review the various realistic
constraints and cost models that are present in portfolio management. The second
section, Section 2, focuses on dynamic multi-period strategies. We provide a brief
overview of various methods, including those based on dynamic programming, and
examine specific cases that can be solved efficiently. Additionally, we draw attention
to potential challenges that these models may encounter. Among these difficulties,
we highlight the absence of reliable method to find optimal mean-variance portfolios
submitted to transactions costs.

• Chapter 5 is based on the article Cousin et al. (2023b). This chapter is organized as
follows. Section 2 is dedicated to describe the mean-variance problem for multi-period
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portfolio allocation submitted to transaction costs. Our methodology which aims at
finding optimal portfolios in this context, is presented in Section 3. In section 4, we
describe a numerical framework to investigate optimal solutions. We also study the
link between risk aversion and those solutions and discuss the use of a finer time grid
for the Wiener chaos expansion. Finally, in Section 6, we show the efficiency of our
solution and investigate the impact of transaction cost by comparing performances
of the presented models with benchmark models such as the sequential uni-period
Markowitz approach, described in Section 5.

• In Chapter 6, we discuss extensions of our approach. In Section 1, we present a sub-
optimal solution in the absence of transaction costs. Then, we show in Section 2.1
how to address the dynamic allocation problem with constraints, such as no shorting.
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Part I

POINT-IN-TIME ESTIMATION OF
CREDIT RATING MIGRATIONS

1





Chapter 2
Credit ratings: a review of regulation and
models

This chapter provides an overview of the regulation related to credit ratings and
the commonly employed methods to estimate their dynamics.

Abstract

Contents
1 Credit risk and ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Rating migration models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Credit risk and ratings

In this section, we provide a general overview of credit risk, as well as a brief history
of significant regulatory requirements pertaining to the estimation of banks’ regulatory
capital. While we cannot cover all regulatory aspects comprehensively, our main objective
is to integrate our research into practical applications by emphasizing the role that credit
ratings play in regulatory compliance. It should be noted that this introductory section
is inspired by Gouriéroux and Tiomo (2007) which offers an overview of classic notions in
credit risk. We also refer to the related regulation (see, e.g., Authority (2016), Authority
(2018), Regulation (2016), Settlements (2017), Settlements (2023) and Settlements (2006)).
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1.1 Credit Risk

Credit risk refers to the potential for financial loss resulting from a borrower’s failure to
fulfill their credit obligations, due to various factors such as economic downturns, changes
in interest rates, or a decline in the borrower’s financial health. It includes the risk of
default, when a delay or failure of payment on the principal or the interests is observed,
the risk on the rate of recovery in case of default and on the risk of a potential degradation
of the quality of the credit portfolio. The credit risk may concerns different instruments.
We can mention

• Instruments whose credit terms are fixed in the contract. For instance, the risk may
relate to partial repayment, non-payment at maturity, or delayed payment. The risk
may also imply the counterparty when it is not able to respect its obligations.

• Instruments whose the date or amount of repayment are not settled in the contract.
The risk mainly concerns credit contracts with variable rate, which focus only on
interests or instruments that can be re-purchased.

• Products whose payment is dependant of other conditions. We can mention the
options, credits swaps or lease purchase contracts. The risk may arise from the
counterpart and not from the instrument it self.

• The devaluation of the currency in which the debts are supposed to be repaid may
generate a loss.

• When an instrument is listed on the stock exchange, a decrease in its value can have
a negative impact by increasing the probability of default in the future. Although
this risk can be covered by an increase in the value of another instrument or reduced
by diversifying the portfolio, it cannot be eliminated. In addition, a high risk of
contagion can increase the risk significantly. On financial markets, default risk is
generally measured by spreads. The evolution of these spreads impacts the value of
assets and highlights the presence of credit risk in the market.

• The risk associated with a credit line authorized to a client, may increase its expo-
sition to default. In a bad financial situation, the client can increase its debts and
therefore decrease its ability to repaid it.

1.2 Definition of default

The solvency of a firm is its capacity to repay all its debts. It mainly depends on the quality
of its assets (in particular their liquidity), the amounts of its debts and its collaterals. The
solvency can me measured with the ratio between the total debts and the total assets value.
The default of a firm traduces its state of insolvency, noticed for a given time period. An
economic, legal, even judicial process may be the next step of the procedure and may leads
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to a total liquidation of the firm.
The Basel Committee laid the foundation for a common definition of default. This was an
important step in promoting consistency and transparency in the assessment of credit risk
across different financial institutions and markets (Article 178 of the Capital Requirement
Regulation (CRR), June 2013). This definition has been updated by the EBA guidelines
in Authority (2016) which aim to continue to harmonize the definition of default among
the European financial intuitions. This report defines the common criteria to identify and
account the default, and insists on the need for the banks to show a clear, transparent,
coherent and effective governance. The principal trigger to downgrade a client to default
is a delay of payment of more than 90 days. The due amounts considered encompass not
only the capital, but also any interests or taxes owed. The thresholds of unpaid capital
can be absolute or relative of the total amount of debts (1%). Others alarming signals
can justify a reclassification to default. For instance an entity flagged UTP (Unlikeness To
Pay) may be declared in default without necessarily exceeding the limit of 90 days. UTP
may concern

• Distressed restructuring, that should be considered to occur when concessions have
been extended towards a debtor facing or about to face difficulties in meeting its
financial commitments.

• SCRA (Specific Credit Adjustment), which covers situations, not covered by the
EBA-guidelines, and judged doubtful according to internal statements.

• When the situation is sufficiently critic to engage the collateral.

• When the credit is sold with a loss of more than 5%.

• When cases of bankruptcy, fraud and pulling effect have been proven.

1.3 Credit Ratings

A credit rating is an assessment of the creditworthiness of an individual, corporation, or
government. It is an evaluation of the borrower’s ability to fulfill its financial obligations,
such as repaying a loan or bond. Formally, it mainly evaluates the probabilities that the
borrower does not pay his debt, the totality of the principal and the interest, at the settled
time. Credit ratings are determined internally by financial institutions or provided by credit
rating agencies according to qualitative and quantitative information on the prospective
debtor. Concretely, a rating is associated to a default probability in a fixed time horizon.
A rating can be deduced from a score (quantitative valuation), or can be directly repre-
sented by a qualitative notation. The most three famous rating agencies, Moody’s S&P
and Fitch have different rating scales. The matching between the notations is presented
in Table 2.1. Financial institutions associate a default probability to each rating. This
probability can be estimated historically, or directly provided by the agencies. Banks may
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have their own rating system, based on human judgments or on models that use specific
information on the borrower, such as its sector, its financial information and the presence
of a collateral. Ratings are frequently reevaluated according to the the evolution of these
specific information but also according to the economic cycle.
They represent powerful internal tools to decide whether to grant a credit, to define the
terms of a contract, such as the amount, the rate of interest and the maturity. Require-
ments in international regulation Settlements (2017) and Settlements (2023), state that
all borrowers and guarantors, corporate, sovereign or bank exposures included, must be
assigned to a rating as part of the loan approval process. They are also mandatory when
a bond is issued on the market. They aim to help the investors to measure the level of
risk. Furthermore, they may be used to control and to constrain investments. For instance,
pension funds cannot invest in speculative debt.

These ratings also play an important role in the computation of regulatory capital. They
are used to group credit references with the same level of risk in order to analyze the risk on
a credit portfolio with a high number of borrowers. Banks can use rating systems provided
by external rating agencies or adopt an internal ratings-based approach (IRB). Reforms
to the internal ratings-based approach to credit risk had to be introduced under Basel III,
which aims to finalise post-crisis reforms standards. This point is further discussed later in
this chapter, in Section 1.5. The process by which a rating is assigned and the rating itself
must be reviewed periodically by an independent party. Ratings must be reviewed at least
once a year. Banks are also required to regularly stress test their rating systems by consid-
ering economic downturn scenarios, market risk based events or liquidity conditions that
may increase the level of capital held by the bank. In general, a time horizon of one year
or under is considered short term, and anything above that is considered long term. In the
past, institutional investors preferred to consider long-term ratings. Nowadays, short-term
ratings are also commonly used. It is important to note that credit rating agencies may
use different rating scales for short-term and long-term ratings.
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Table 2.1: Long-term ratings table for 3 rating agencies

Rating description Moody’s S&P Fitch
Prime Aaa AAA AAA

High grade
Aa1 AA+ AA+
Aa2 AA AA
Aa3 AA- AA-

Upper medium grade
A1 A+ A+
A2 A A
A3 A- A-

Lower medium grade
Baa1 BBB+ BBB+
Baa2 BBB BBB
Baa3 BBB- BBB-

Non-investment grade speculative
Ba1 BB+ BB+
Ba2 BB BB
Ba3 BB- BB-

Highly speculative
B1 B+ B+
B2 B B
B3 B- B-

Substancial risks Caa1 CCC+ C
Extremely speculative Caa2 CCC C

Default imminent with little prospect for recovery
Caa3 CCC- C
Ca CC C
Ca C C

In default
C D DDD
/ D DD
/ D D

1.4 From Basel I to III: a new capital requirement

The regulation defines the rules and best practices for financial institutions in the manage-
ment of their activities. The Basel Accords refer to the banking supervision accords issued
by the Basel Committee on Banking Supervision. They aim to enhance financial stability
by improving the quality of banking supervision worldwide, and to serve as a forum for
regular cooperation between its member countries on banking supervisory matters. They
also intend to improve the control and the harmonisation of banks’ practices. Historically,
three main agreements have been published by the Basel committee: Basel I in 1988, Basel
II in 2004 and Basel III in 2010. This section presents major requirements and evolution
of the regulation but does not aim to provide an exhaustive summary. We invite readers
to refer to Settlements (2017), Settlements (2023), Settlements (2006) and Verboomen and
De Bel (2011) for further details on the regulation.
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The first Basel Accord mainly focus on the amount of regulatory capital that a bank
has to save in regard of the risk of its credit contracts. The 1988 Accord call for a min-
imum ratio of capital to risk-weighted assets of 8% (Cook ratio). Many criticisms arose
from these recommendations. In particular, the weighting in credit risk valuation did not
sufficiently take into account the quality of the borrower. Furthermore, new exposition off
banks’ balance sheets as market risk, were not considered in the Cook ratio. The Com-
mittee refined the framework to address risks other than credit risk. In January 1996, the
Committee issued an Amendment to the Capital Accord to incorporate market risks, which
was intended to establish a capital requirement for risks arising from banks’ exposures to
foreign exchange, traded debt securities, equities, commodities, and options.
Published in 2004, Basel II recommend a new capital framework to supersede the Basel I
framework. It is based on “three pillars”:

• Minimum capital requirements, which seek to develop and expand the standardised
rules set out in Basel I. Notably, the threshold of 8% is retained incorporating the
market and operational risk. Moreover, the risk is calibrated in regard of the quality
of the debtors.

• Supervisory review of an institution’s capital adequacy and internal assessment pro-
cess. Banks have to establish procedures of back testing and stress testing to prove
the validity and the reliability of their methods.

• Effective use of disclosure as a lever to strengthen market discipline and encourage
sound banking practices.

In particular, the first pillar introduce a new solvency ratio, the Mcdonough ratio as

Regulatory capital

Credit risk +Market risk +Operational risk
≥ 8%. (2.1)

The valuation of the credit risk is called RWA (Risk Weighted Asset). The estimation of
RWA is based on the estimation of four risk parameters, PD, LGD, M, EAD. RWA can
be estimated as

RWA = RW× EAD, (2.2)

where RW = f(PD,LGD,M) is a weighting function. The exposure at default (EAD) is
an estimate of the outstanding amount (drawn amounts plus likely future drawdowns of
yet undrawn lines) in the event of borrower default. The loss given default (LGD), com-
plementary of the recovery rate, is the estimated rate of loss in case of default. It highly
depends on the guarantees of the debtor. The probability of default of the debtor (PD)
represents the probability that the debtor does not respect its contract in the course of one
year (see definition of Default in Section 1.2). The maturity (M) of the contract is the last
involved parameter.
In order to evaluate the RWA, and the capital requirement, financial institutions have the
choice between two approaches. The first approach, called Standard Approach (SA), is
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based on using external ratings and using risk weighting provided by the regulation (see
Section 1.5.1). In the other alternative, banks are allowed to use their own estimated risk
parameters for computing their regulatory capital. This approach is known as the internal
ratings-based (IRB) approach (see 1.5.2).
Even before Lehman Brothers collapsed in September 2008, the need for a fundamental
strengthening of the Basel II framework became apparent. The banking sector entered the
financial crisis with too much leverage and inadequate liquidity buffers. Two main weak-
nesses of Basel II are highlighted: its negligence of liquidity risk and its procyclical effect
on economy. The new standards or Basel III, issued by the Committee in mid-December
2010 and revised between 2013 and 2019, strengthens the three pillars established by Basel
II, while also extending it in several areas. In particular, stricter requirements for the qual-
ity and quantity of regulatory capital are proposed. Basel III also enforces the liquidity
requirements by the introduction of two ratios: a short-term ratio, the Liquidity Coverage
Ratio (LCR), intended to provide enough cash to cover funding needs over a 30-day period
of stress and a longer-term ratio, the Net Stable Funding Ratio (NSFR), designed to pro-
mote the resilience of banks by ensuring that they have sufficient stable funding to support
their activities over a one-year time horizon. Moreover, the committee aims to limit the
leverage effect by introducing a leverage ratio, as a minimum amount of loss-absorbing
capital relative to all of a bank’s assets and off-balance sheet exposures regardless of risk
weighting. Basel III also encourages the banks to establish a countercyclical capital buffer
during periods of economic prosperity.

1.5 Role of credit ratings in banking regulation

To determine the Basel capital requirement that covers the credit risk they support, fi-
nancial institutions can choose between two regulatory approaches. The first approach is
the Standard approach (SA) involves using an external rating system, provided by rating
agencies. Alternatively, the Internal Ratings Based (IRB), allows banks to use their own
rating system. For more details on these two regulatory approaches, we refer the reader to
Verboomen and De Bel (2011).

1.5.1 Standard approach

The standard approach provides a credit risk weightings based on external ratings provided
by peer rating agencies. Specifically, the regulator provides estimations of risk weightings
according to the category of the debtor, their credit rating, and other relevant informa-
tion. For a simple credit contract, the provided regulatory risk weighting (RW) , and
the Mcdonough ratio (see 2.1) provides the regulatory capital required to cover the credit
line. Debtors are classified into four categories: sovereign, banks, corporate and retail. We
present the matching table between credit rating and RW, as provided by the regulator
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in Table 2.2. Note that specific information, such as the currency, geographical area, or
presence of a real estate mortgage to cover the credit, is omitted.

Table 2.2: Matching table between RW and Moody’s ratings

Category

Aaa A1 Baa1 Ba1 B1 Caa1 NR
Aa2 A2 Baa2 Ba2 B2 or <
Aa2 A3 Baa3 Ba3 B3
Aa3

Sovereign 0% 20% 50% 100% 100% 150% 100%
Bank 20% 50% 50% 100% 100% 150% 50%
Corporate 20% 50% 100% 100% 150% 150% 100%
Retail x x x x x x 75%

Since external agencies does not provide ratings for retail population and small firms, the
regulation applies a uniform weighting of 75%. The provided risk weighting increases with
default probabilities. The lower the entity’s rating and the less likely it is to pay, the greater
the capital charge for the bank. Note that risk weightings for the riskiest categories may
even exceed 100%. These high considerations may intend to cover underlying risks such as
the risk of contagion. This approach must be conservative for all entities therefore the risk
and the capital to save tend to be overestimated. Although easy to apply, the standard
approach is most of the time not the most advantageous approach for banks. Note that
these weightings are available when the debtor is not in default. If the debtor is considered
to be in default, then the capital requirement is not based on the credit rating but on the
level of provisions.

1.5.2 IRB approach

The Basel II agreements allow banks to choose between two broad methodologies for cal-
culating their capital requirements related to their credit risk. This section outlines the
second alternative, based on internal rating system. Under certain conditions, banks amay
use their own estimated risk parameters for to calculate regulatory capital. This approach
is known as the internal ratings-based (IRB) approach. However, this approach is only
available to banks that meet certain minimum conditions, such as disclosure requirements
and approval from their national supervisor. With this alternative approach, the risk
weight is not only dependent on the quality of the debtor but also on the quality of the
bank Four risk parameters are involved in the computation of the loss attributed to a
credit line. The exposition at the default date (EAD), the loss given default (LGD), the
probability of default (PD) and the maturity (M) of the contract. We distinguish two
approaches, the foundation and the advanced approach. In the first approach, financial
institutions estimate their own PD parameter while the other risk parameters are provided
by the bank’s national supervisor. In the second approach, they calculate their own risk
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parameters subject to meeting certain guidelines. It is important to note that the founda-
tion approach is not available for retail exposures. In the IRB approach, the computation
of the risk weighted assets (see function f in (2.2)), is realized through the estimation of
the expected and unexpected loss.

1.5.3 Expected and unexpected loss

Before banks grant a credit, they always evaluate the expected amount of loss, the credit
contract is expected to generate. This amount, called Expected loss (EL), is theoretically
covered by the provisions. Nevertheless, these provision are not sufficient to cover all the
risk. Indeed, the effective loss can be greater than the expected one. This difference is
called unexpected loss (UL), and must also be estimated and covered by the banks. This
distinction is crucial since the regulatory capital K, appearing in Mcdonough ratio (2.1),
aims to only cover the unexpected loss. We briefly describe here how financial intuitions
can estimate these two kinds of loss according to the current requirements, imposed by the
financial European authorities. We highlight the role of credit ratings in the computation
of the regulatory capital.
Granting credits may generate losses. It is impossible to predict the exact amount of
loss, but financial institutions can estimate the mean level of this loss. This amount is
inherent. It is integrated in the interest rate as risk premium and is recorded in provisions.
Indeed, in the IRB approach, the expected loss does not generate any capital requirement.
Nevertheless banks must show that their provisions effectively cover the loss. The way to
compute the expected loss fall within the scope of official guidelines of IFRS 9 (Regulation
(2016)). Formally, the Expected loss can be estimated as

EL = PD× LGD. (2.3)

IFRS 9 guidelines require an estimation of parameters which integrates a forward looking
vision. In addition, default probabilities are also recommended to be estimated per rating
grade. A rating migration matrix is rather estimated whose last column provides default
probabilities. Sections 1.5.3.1 and 2.3.1.2 aim to further describe the recommended way
by the regulator to compute this default probability.

1.5.3.1 The expected loss in IFRS9: a forward looking approach

The final version of IFRS 9, published in July 2014, marked the completion of replacing IAS
39. IFRS 9 aims to streamline and strengthen risk measurement and reporting of financial
instruments in an efficient, forward-looking manner. In particular, the revised impairment
model aims to provide more transparent and useful information regarding expected credit
losses.
The process of estimation recommended by the regulation involves three stages.

• The classification; Financial instruments are classified into three main categories
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based on their intended purpose, which determines how they will appear on the
balance sheet. The classification of an instrument primarily depends on whether it
is held to collect contractual cash flows, held for sale, or both.

• The impairment; this step aims to classify among three stages, instruments whose the
amortized cost basis is used to determine profit and loss. If the credit is considered
with low credit risk, the expected loss is projected for a time horizon of 12 months.
If there is a significant increase in credit risk, the amount of provision is estimated
as the discounted value of credit losses generated by the instrument, projected over
its full lifetime. Criteria for monitoring the evolution of the credit quality is not
clearly specified by the guidelines, but one can presume a significant increase in credit
risk when the borrower is 30 days past-due, or if its rating experiences a significant
downgrade. If the credit risk recovers, the provisions can once again be limited to
the projected credit losses over the following 12 months. The last stage gathers the
non-performing loans, whose default is detected. The expected loss is also projected
over the full lifetime of the instrument, with a default probability equal to 1. The
impairment process is summarized in Table 2.3.

Table 2.3: IFRS9 staging

Name Form EL main indicator interest revenue treatment

Bucket 1 performing one-year x on gross carrying amount
Bucket 2 under-performing lifetime 30 days past due on gross carrying amount
Bucket 3 Non-performing lifetime 90 days past due on net carrying amount

• The expected credit loss measurement; every entity has to base its measurement of
expected credit loss on reasonable effective data, that includes historical, current and
forecast information. Moreover the measure of expected loss should be a probability-
weighted that can be determined by a range of scenarios. Consequently the risk
parameters PD and LGD, involved in the estimation of the expected loss must take
into account the current and future states of the economic cycle. This framework is
referred as forward-looking estimation of the risk parameters. Economical scenarios
must be projected for 1-year for the first bucket, and for lifetime for the buckets 2 and
3. In order to project the default probability according to the forecasted dynamics of
the economic cycle, the PD must be estimated in a point-in-time manner. In practice
default probabilities are not estimated directly. Financial institutions are rather
used to estimate point-in time rating transition matrices, whose last column provides
a point-in-time default probability to each rating. e further detail the estimation
process in Section 2.3.1.2. In addition, the model presented in Chapter 3 represents
an alternative method to estimate point-in-time default probabilities. It may be
considered as a response to a regulatory requirement.
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1.5.3.2 The unexpected loss in IRB approach

Bank capital serves the important purpose of providing a buffer to protect against unex-
pected losses that exceed expected levels, commonly referred to as Unexpected Losses (UL).
While such peak losses do not occur every year, when they do occur, they can potentially
be significant. Therefore, capital is necessary to cover the risks of such unpredictable peak
losses. There are various approaches to determine the amount of capital a bank should
hold. The IRB approach focuses on the frequency of bank insolvencies arising from credit
losses that supervisors are willing to accept. In order to determine the maximum amount
of loss, the Basel committee fixes this frequency by recommending a confident interval at
99, 9%. The maximum loss is then estimated by calculating the 99, 9% Value at risk of
loss, which means that there is less than 0, 01% of chance that a bank looses more than
this estimated maximum value. Since the expected loss is presumed to already covered by
provisions, the regulatory capital should only covers

UL = Var99,9%[PD×LGD]− EL (2.4)

Figure 2.1: Expected and unexpected loss

According to the normality assumptions made, the regulatory form of the capital re-
quirement is

UL = K =

(
LGDd Φ

(√
1− ρΦ−1(PD) +

√
ρ

√
1− ρ

Φ−1(0, 999)

)
− PD×LGD

)
Ma (2.5)

In this formula LGDd represents an estimation of the LGD downturn, which reflects the ex-
pected rate of loss in a period of economical recession. Φ

(√
1− ρΦ−1(PD) +

√
ρ√

1−ρ
Φ−1(0, 999)

)
is the computation of the conditional default probability at a level 99, 9% issued from the
so-called Asymptotic Single Risk Factor (ASRF). In this model, ρ represents the asset value
correlation with the economic cycle. Ma is an adjustment factor due to the maturity of
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the contract. This factor aims to anticipate a degradation of credit quality of the borrower
over time. The ASRF model and the derivation of the conditional default probability is
detailed later, in Section 2.3.1.2.
Since 2006, the capital requirement has also been adjusted with a scaling factor equal to
1, 06 such that

K
′
= K × 1, 06. (2.6)

The RW can be estimated as

RW =
K

′

0, 08
. (2.7)

Finally, the Risk Weighted assets writes

RWA =
K̃

0, 08
, (2.8)

where K̃ = K
′×EAD is the real amount in cash of regulatory capital the bank has to save.

This estimation is usually achieved per rating class. For retail population, the financial
institution is required to justify its segmentation in homogeneous risk classes.

1.5.4 Regulatory stress-testing

A stress test is a simulation of extreme but plausible economic and financial conditions in
order to observe the consequences on banks’ models and to measure their ability to resist to
such situations. Banking stress tests have been implemented by central banks and banking
supervisors in the late 1990s but became an essential tool after 2008 in response to the
financial crisis. Banks must conduct frequent stress tests and publish the results under the
guidance of international financial authorities. These frameworks are applied by central
banks (and supervisors) or by the banks themselves. These stress tests can be regulatory
or internal, and they fall into various categories, but we will focus on macroeconomic stress
tests, which aim to measure the impact of macroeconomic shocks on credit risk, asset value,
and solvency ratios. If the results are unfavorable, banks must react either by increasing
their capital, either by carrying out restructuring. Stress tests are specific to each entity
and are based on four common steps, namely the choice of scenarios, the choice of models,
the impact measurement and the analysis stage. The first step consists in defining several
scenarios with different time horizons (generally from 1-year to 10-years). These scenarios
may be historical or hypothetical. Historical scenarios are economic scenarios that have
already occurred, such as old crises. The challenge in building historical scenarios is to
clearly determine crisis periods. Hypothetical scenarios are imagined by economists and
experts. Basel II requires that these scenarios must be plausible (their probabilities of
occurrence must not be extremely weak) and their construction should obey to a rigorous
economic logic.
Rating migration matrices represent a good indicator of the economic cycle. According to
the regulation, they ensure the link between economic health and the amount of provision
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and capital requirements making them relevant parameters for stress testing banks’ capital
capacity. They can be stressed with economic scenarios through PIT models presented in
Section 2. The approach presented in Chapter 3 may provide hypothetical scenarios based
on historical data. The plausibility of scenarios and the economic logical dynamics are
well respected. Therefore, our approach can represent a new and interesting way to stress
capital requirement models.
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2 Rating migration models

This section aims to present models commonly used to estimate Point-In-Time rating
transition matrices. It should be noted that this section is inspired of Gouriéroux and
Tiomo (2007) which offers a review of the classic credit risk modeling approaches. We
present several notations and assumptions before introducing the models.

2.1 Setting and environment

we describe here two environments, a discrete-time and a continuous-time setting.

2.1.1 Discrete-time setting

Let T ∈ R be a finite time horizon and let Γ ∈ N and 0 = t0 < t1 <, . . . , < tΓ = T a
discrete-time grid. We define the filtered probability space (Ω,A,F = (Fn)n∈{0,...,Γ},P).
For every F -adapted process O, we denote On = Otn .
We consider the list of rating categories Ῡ = {1, . . . , p}. This space represents different
credit risk scores or ratings in descending order, p being the default state. Let Q ∈ N be the
number of considered entities and let Zq

n ∈ Ῡ, be the random variable, describing the state
of entity q, q ∈ {1, . . . , Q}, at time tn, n ∈ {0, . . . ,Γ} and let Zq = (Zq

n)n∈{0,...,Γ} be the
migration process that describes its evolution. The migration counting process associated
to Zq, which counts the jump of the entity q from rating i to r, (i, r) ∈ Ῡ2, on the discrete
grid, is denoted by N q,ir and is such that, ∀n ∈ {1, . . . ,Γ},

∆N q,ir
n = 1[Zq

n−1=i, Zq
n=r].

In addition, let us denote by the process Y i,q, the indicator function

∀ i ∈ Ῡ, Y q,i
n = 1[Zq

n−1=i].

The counting process, which counts the total number of jumps of the entities, from rating
i to r, (i, r) ∈ Υ2, is denoted by N ir and is such that, ∀n ∈ {1, . . . ,Γ},

∆N ir
n =

∑
q≤Q

∆N q,ir
n .

In addition, let us denote by the process Y i, the number of observed and active entities
that belong to rating i and such that

∀ i ∈ Ῡ, Y i
n =

Q∑
q=1

Y q,i
n .
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2.1.2 Continuous-time setting

Let T ∈ R be a finite time horizon and let (Ω,A,F = (Ft)t∈[0,T ],P) , be a filtered probabil-
ity space satisfying the “usual conditions” of right-continuity and completeness needed to
justify all operations to be made. All stochastic processes encountered are assumed to be
adapted to the filtration F and integrable on [0, T ]. We consider the list of rating categories
Ῡ = {1, . . . , p}. This space represents different credit risk scores or ratings in descending
order, p being the default state. Let Q ∈ N be the number of considered entities and let
Zq

t ∈ Ῡ, be the random variable, describing the state of entity q, q ∈ {1, . . . , Q}, at time
t ∈ [0, T ] and let Zq = (Zq

t )t∈[0,T ] be the migration process that describes its evolution. We
assume that, for any obligor q = 1, . . . , Q, the observed number of ratings visited during
the period [0, T ], is denoted by Γq and 0 = tq0 < tq1 < · · · < tqΓq

= T be the instants such
that {

∀ 1 ≤ n ≤ Γq − 1, Zq
tqn
̸= Zq

tqn−1
and ∀t ∈ [tqn−1, t

q
n), Zq

t = Zq
tqn−1

∀t ∈ [tqΓq−1, t
q
Γq
], Zq

t = Zq
tqΓq−1

For any q = 1, . . . , Q, for every process Oq associated to entity q, we denote for all n =
1, . . . ,Γq, Oq

n = Oq
tqn

. Formally, the time interval [tqn−1, t
q
n) corresponds to the visiting of the

rating zqn−1, where tq0 = 0 and tqΓq = T .
The migration counting process associated to Zq, which counts the jump of the entity q
from rating i to r, (i, r) ∈ Ῡ2, is denoted by N q,ir and is such that, ∀t ∈ [0, T ],

∆N q,ir
t = 1[Zq

t−=i,Zq
t =r].

In addition, let us denote by the process Y i,q, the indicator function

∀ i ∈ Ῡ, Y q,i
t = 1[Zq

t−=i].

The counting process, which counts the total number of jumps of the entities, from rating
i to r, (i, r) ∈ Υ2, is denoted by N ir and is such that, ∀t ∈ [0, T ],

∆N ir
t =

∑
q≤Q

∆N q,ir
t .

In addition, let us denote by the process Y i, the number of observed and active entities
that belong to rating i and such that ,

∀ i ∈ Ῡ, Y i
t =

Q∑
q=1

Y q,i
t .
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2.2 Trough the cycle estimation

A Through-The-Cycle (TTC) measure covers a horizon long enough for business-cycle
effects mostly to go away. It takes into account the full economic cycle. TTC estimation
involves analyzing historical data over multiple economic cycles. We distinguish here two
approaches, a discrete and continuous time approaches.

2.2.1 Homogeneous discrete time approach

We consider in this approach the discrete-time setting described in Section 2.1.1. In this
approach, we assume that the rating processes {Z l, q ≤ Q} are F -adapted, indepen-
dent and homogeneous Markov chains. According to this setting, we define the transition
probabilities of (Zq)q as

For (i, r) ∈ Ῡ2, ∀n ∈ {1, . . . ,Γ}, Lir = P(Zq
n = r|Zq

n−1 = i).

Estimations of P = (Lir)i,r∈Υ, are obtained by maximizing the likelihood of the model as

P̂ =argmax
P

Γ∏
n=1

∏
i,r∈Ῡ

(Lir)∆N ir
n

subject to ∀i ∈ Ῡ,
∑
j∈Ῡ

Lij = 1

(2.9)

The maximum of (2.9), is given by

L̂ij =

∑Γ
n=1∆N ij

n∑Γ
n=1 Y

i
n

. (2.10)

When Q is large, we can consider that this estimator provide a good estimation of the
migration probabilities. This approach can be considered as Trough-The-Cycle (TTC)
because the estimation covers the whole time-period.

Remark 1. Applying this estimation framework on a small time interval provides a Point-In-
Time estimation of rating transition probabilities. For instance the migration probabilities
on the time interval [tn−1, tn] can be estimated by

L̂ij
n =

∆N ij
n

Y i
n

. (2.11)

Although it is one the most popular model for financial institutions, it suffers of many
criticisms. It can not capture rare events and ignores intermediates transitions.
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2.2.2 Homogeneous continuous time approach

This approach is the alternative version of the homogeneous discrete-time approach, where
we consider processes evolving in the continuous-time setting described in Section 2.1.2.
In this approach, the rating processes {Zq, q ≤ Q} are assumed to be continuous-time
Markov chains which are independent and homogeneous. For (i, r) ∈ Ῡ2, i ̸= r, we denote
as lir the G-intensity of transition from rating i to r, such that

For i, r ∈ Ῡ i ̸= r, P(Zq
t+dt = r|Zq

t = i) = lirdt+ o(dt) and For i ∈ Ῡ, li =

p∑
j ̸=i

lij.

We associate the intensity matrix as

l =


−l1 · · · l1p

l21 −l2 ...
...

... . . . ...
lp1 lp2 · · · −lp

 .

For 0 ≤ s < t ≤ T , the transition rating probabilities on the period [s, t], is given by

L(s, t) = exp ((t− s)l).

We denote the intensities parameters as I = {lir, i, r ∈ Ῡ, i ̸= r}. Given the observed
path of rating migration histories (zqu)0≤u≤T , the likelihood writes

L(I) =
Q∏

q=1

Γq∏
n=1

lz
q
n−1,z

q
ne(t

q
n−tqn−1)l

z
q
n−1

, (2.12)

with the convention l
zqΓq−1,z

q
Γq = 1. The maximum likelihood estimator can be expressed as

∀ i ̸= r ∈ Ῡ2, l̂ir =

∑Q
l=1

∑Γl

n=1∆N q,ir
n∑Q

q=1

∑Γl

n=1 Y
q,i
n (tqn − tqn−1)

. (2.13)

Under this specification, if the time interval [0, T ] is long enough, we can consider that the
dynamics of rating migrations does not depend on the business cycle. We can estimate
TTC rating transition probabilities as

∀ i ̸= r ∈ Ῡ2, L̂ir = [L̂(0, T )]ir = [exp (T l̂)]ir. (2.14)

Remark 2. The intensities in (2.13) could be estimated on a time intervals [tn−1, tn] in order
to provide a past time series of Point-In-Time transition probabilities.
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2.3 Structural models

Structural models provide dynamic estimation of a credit risk parameter, generally ac-
cording to the position of specific indicators in regard of pre-specified thresholds. They are
initially called structural because they provided, in their first use, a relationship between
the default migrations and the asset (capital) structure of the firm. Introduced by Tobin
(1958), and popularised by Black and Scholes (1973) and Merton (1974), the first idea be-
hind structural models consists in declaring the default of a firm if its asset value becomes
inferior than its liabilities. Merton (1969) imagine the company’s equity as a call option on
its assets. The probability of default (PD) is estimated as the probability of the asset value
falling below the liability threshold at the end of the time horizon. Instead of admitting
only the possibility of default at maturity time, Black and Cox (1976) extend this model
by postulating that default occurs at the first time that the firm’s asset value drops below
the liability barrier. This approach have been widely investigated in the literature (see,
e.g., Briys and De Varenne (1997), Fischer et al. (1989), Kim et al. (1993), Leland and Toft
(1996)). Naturally, structural approaches have then been extended to rating migrations.
Nevertheless, Figlewski et al. (2012) highlight that many problems arise including the dif-
ficulty to value the firm’s complex capital structure especially when the information are
private. In response to that criticism, the specification of the latent process evolves differ-
ently in the last twenty years (see, e.g., Bangia et al. (2002), Feng et al. (2008), Gagliardini
and Gouriéroux (2005), Nickell et al. (2000)). In particular, the ordered Probit model and
the Asymptotic Single Risk Factor Model, assume that the latent factor is a function of a
systematic and an idiosyncratic factor. The systematic factor may be observable and be
represented by a set of macro-economic variables or may be unobservable. In this section,
we detail these two approaches.

We describe structural models under the discrete-time setting described in Section 2.1.1.

2.3.1 Observable factor

We decide here to focus on two quite similar and popular structural approaches respectively
presented in Vasicek (2002) and Gagliardini and Gouriéroux (2005). In both approaches a
latent process Sq, governing the rating transition of a firm q, is expressed as a function of
a common factor Θ and an idiosyncratic factor ϵq. We assume here that Θ is observable.
A natural way to model the systematic and observable factor Θ is to lie it with observable
factors.

2.3.1.1 Ordered Probit model

A firm q may jump to a new rating category when a quantitative latent process Sq cross
some pre-specified barriers. The rating at time tn, n ∈ {0, . . .Γ}, described by Zq

n, is
given by the position of the latent random variable Sq

n inside a partition of its space value,
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−∞ = Cp+1 < Cp < · · · < C1 = +∞. Formally,

Zq
n =

p∑
i=1

i1{Ci+1≤Sq
n<Ci}. (2.15)

The latent process is expressed here as a deterministic affine transformation of Θ and an
independent idiosyncratic factor ϵq such that

Sq
n =

p∑
i=1

(αi + ⟨βi,Θn−1⟩+ σiϵ
q
n)1{Zq

n−1=i}, (2.16)

where αi is the level of Sq at rating i, βi represents the sensitivity of rating i of the latent
factor to the common factor Θ. σi is the volatility of the idiosyncratic risk in rating i
and {ϵqn, q = 1, . . . , Q} are independent standard Gaussian variables. The conditional
transition probabilities can be computed as, ∀ (i, r) ∈ Ῡ2, n ∈ {1, . . . ,Γ},

Lir(Θn−1) = P
[
Zq

n = r|Zq
n−1 = i,Θn−1

]
= P

[
Cr+1 ≤ Sq

n < Cr|Zq
n−1 = i,Θn−1

]
= P

[
Cr+1 − αi − ⟨βi,Θn−1⟩

σi

≤ ϵqn <
Cr − αi − ⟨βi,Θn−1⟩

σi

|Θn−1

]
.

Then we can deduce the PIT probabilities from rating i ∈ Ῡ, as ∀ n ∈ {1, . . . ,Γ},
Lir(Θn−1) = Φ

(
Cr−αi−⟨βi,Θn−1⟩

σi

)
− Φ

(
Cr+1−αi−⟨βi,Θn−1⟩

σi

)
, for 2 ≤ r ≤ p− 1,

Li1(Θn−1) = 1− Φ
(

C2−αi−⟨βi,Θn−1⟩
σi

)
,

Lip(Θn−1) = Φ
(

Cp−αi−⟨βi,Θn−1⟩
σi

)
.

(2.17)

The calibration of the parameters W = (Ci, αi, βi, σi)i=1,...,p is achieved by maximizing the
conditional likelihood function of the model. We deduce that

W⋆ =argmax
W

{
Q∑

q=1

Γ∑
n=1

∑
i ̸=j

∆N q,ij
n logLij(Θn−1)

}
subject to σi > 0

−∞ < Cp+1 < Cp < · · · < C1 = +∞

(2.18)

2.3.1.2 Regulatory structural models

This section aims to present the Point-In-Time approach recommended by the regulation
Basel II and IFRS9 and widely used by financial institutions. We present two versions.
The first one, called Asymptotic Single Risk Factor Model (ASFR), only focuses on the
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transition to default. In particular this approach is used for the estimation of unexpected
loss in the framework of Basel II (see Section 1.5.3.2). The second one is a multivariate ex-
tension, which considers every rating transitions. This approach is used for the estimation
of expected loss in the framework of IFRS9 (see Section 1.5.3.1).

Asymptotic Single Risk Factor Model

This model is intensively used by financial institutions. Firstly introduced by Vasicek
(2002), it is recommended by Basel II to compute the conditional default probability in
the estimation of the unexpected loss. A firm q may jump to default when a quantitative
latent process Sq cross a threshold. We define the threshold b, such that an entity q, is
considered to be in default if and only if the latent factor Sq

n < b. The latent factor can be
expressed as

∀ n ∈ {1, . . . ,Γ}, Sq
n =

√
1− ρqϵ

q
n +
√
ρqΘn−1. (2.19)

where Θn−1 and ϵqn are independent and follow standard normal law, ρq is the correlation
with the systematic risk. We deduce that Sq

n has a standard normal distribution.

Remark 3. This framework is usually applied separately for each homogeneous risk classes.
Most of the time, ρq = ρ is constant for every entity belonging to the same class. We
present this approach under this hypothesis.

We compute the conditional default probability, as

for 1 ≤ n < Γ, PD(Θn−1) = Φ

(
b−√ρΘn−1√

1− ρ

)
,

where Φ is the cumulative distribution function of the standard normal distribution. The
Through-the-cycle (TTC) default probability, denoted PD, is the unconditional default
probability. It represents the mean of the default probability over the economic cycle.

PD =EΘn−1

[
P(Sq

n−1 ≤ b|Θn−1)
]
= Φ(b).

The conditional default probability, or PIT default probability is obtained by deforming
the TTC default probability such that

PD(Θn−1) = E[1{Sq
n≤b}|Θn−1] = Φ

(
Φ−1(PD)−√ρΘn−1√

1− ρ

)
.

We can deduce the (1 − α) conditional default probability. This estimation is computed
as the 1− α value at risk of the Point-in-time default probability.

Var1−α(PD) = Var1−α(E[1{Sq
n<b}|Θn−1]) = Φ

(
Φ(PD)−1 −√ρΦ−1(1− α)

√
1− ρ

)
. (2.20)
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This risk value can be interpreted. There is less that α chance than the economic cycle
put the default probability higher than this 1 − α conditional default probability. This
estimation intervenes in the computation of the unexpected loss (see Section 1.5.3.2).

Multivariate version of AFSR

This section presents the multivariate version of the AFSR model, extended by Yang and
Du (2015) and Miu and Ozdemir (2008) for the context of rating migrations. This model
is conventionally used to project default probabilities in a forward looking manner for the
estimation of the expected loss (EL) according to the regulation IFRS9 (see Regulation
(2016)). A firm q, with rating i, may jump to a new rating category when a quantitative
latent process Sq crosses some pre-specified barriers. We define the threshold of migrations
−∞ = bi,p+1 < · · · < bi,1 = +∞. An entity q, with rating i, goes to a higher rating than r
if and only if the latent factor Sq

n < bi,r+1. The latent factor associated to firm q, rated i,
can be expressed at time tn as

Sq
n =

√
1− ρiϵ

q
n +
√
ρiΘn−1, (2.21)

where Θn−1 and ϵqn are independent and follow standard normal law, ρi is the correlation
of the class i with the systematic risk. We deduce that Sq

n follows a standard normal
distribution. We compute the PIT probability of transition from rating i ∈ Ῡ as Lir(Θn−1) = Φ

(
bi,r−

√
ρiΘn−1√

1−ρi

)
− Φ

(
bi,r+1−

√
ρiΘn−1√

1−ρi

)
, 1 ≤ r ≤ p− 1,

Lip(Θn−1) = Φ
(

bi,p−
√
ρiΘn−1√

1−ρi

) (2.22)

The unconditional transition probabilities are given by{
Lir = EΘn−1 [P(bi,r ≤ Sq

n ≤ bi,r+1|Θn−1)] = Φ(bi,r)− Φ(bi,r+1), 1 ≤ r ≤ p− 1,
Lip = Φ(bi,p)

(2.23)

The TTC transition probabilities {L̂ir, i, r ∈ Ῡ} can be estimated with one of the two
estimators (2.10) and (2.14). The threshold are then calibrated as

∀(i, r) ∈ Ῡ, b̂i,r = Φ−1

(∑
s≥r

L̂is

)
.

Then the approach suggests to calibrate the trajectory of the factor Θ and the correlations
(ρi)i∈Ῡ by maximizing the likelihood of the model. Note that ∀n ∈ {1, . . . ,Γ}, ϵqn is
independent with Θn−1. Therefore knowing the realisation of Θn−1, the ratings transitions
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are independent. We call W = {Θn, ρi, 1 ≤ n ≤ Γ, i ∈ Ῡ}. We try to find

W⋆ =argmax
W

{
Q∑

q=1

Γ∑
n=1

∑
i ̸=r

∆N q,ir
n logLir(Θn−1)

}
subject to V ar[Θn−1] = 1, for n = 1, . . . ,Γ

(2.24)

Then let us consider Z = (Zt)t be a multivariate vector of observable macroeconomic
variables. The estimate trajectory of the systematic factor Θ can be inferred with the
macro-economic variables through a simple linear regression such that

β⋆ =argmax
β

Γ−1∑
n=0

(Θn − ⟨Zn, β⟩)2. (2.25)

Finally, the estimation of β⋆ and equations (2.22) provide rating transition probabilities as
functions of the economic cycle.

Remark 4. In practice, the systemic factor and the coefficients β are sometimes directly
estimated with the historic of 1-year default rates (TDn)n such that

∀n ∈ {0, . . . ,Γ− 1}, Θn = ln(
TDn+1

1− TDn+1

) = β0 +
n∑

i=0

aiΘn−i + ⟨Zn, β⟩. (2.26)

In that case, the maximisation of (2.24) is reduce to the estimation of the rating correlations
(ρi)i∈Ῡ.

This framework can be used to determine rating transitions in various states of the economy.
Several economical scenarios may be used to project the value of Z and then the value
of Θ (according to (2.25) or (2.26)). Rating transitions matrices are forecasted. The last
column of these matrices are retained to be the forecasted default probabilities associated
to each rating, for the projection of the expected loss in the context of IFRS9 (see (2.3)).

Remark 5. This approach may be used to realize regulatory stress-testing.

Remark 6. Chapter 3 proposes an alternative of this model. We propose a new way to esti-
mate and to project PIT rating migration matrices without using any external covariates.

2.3.2 Unobservable factor

In this section, we present the ordered probit model where the underlying process Θ, is
assumed to be unobservable. We refer to Feng et al. (2008) and Gagliardini and Gouriéroux
(2005) for a detailed description of this approach. We consider the same environment as

24



in Section 2.3.1.1. The dynamic of Θ is assumed to follow auto-regressive dynamics such
that

∀n ∈ {1, . . . ,Γ} ,Θn = AΘn−1 + νn, (2.27)

where the matrix A characterizes the covariates dynamics and νn are iid standard Gaussian
variables. The estimation of parameters W = (A,Ci+1, αi, βi, σi)i∈Ῡ involves the computa-
tion of the unconditional likelihood such that

W⋆ =argmax
W

EΘ

[{
Q∑

q=1

Γ∑
n=1

∑
i ̸=r

∆N q,ir
n logLir(Θn−1)

}]
subject to σi > 0

−∞ < Cp+1 < Cp < · · · < C1 = +∞

(2.28)

Estimating W⋆ raises the issue of potentially high number of integrals to compute with
respect to the variables (Θ0, . . .ΘΓ−1). We briefly describe the method presented in Gagliar-
dini and Gouriéroux (2005), which consists on transforming the probability of migrating
towards a rating J or above during the time interval [tn−1, tn), as a linear function of latent
covariates. A linear Gaussian model is then obtained. We denote qiJ,n such a probability.
Assuming an ordered Probit model, we have

∀(i, J) ∈ Ῡ2, n ∈ {1, . . . ,Γ}, Φ−1(qiJ,n) =
CJ − αi

σi

− ⟨βi,Θn−1⟩
σi

.

We can obtain an estimation of qiJ,n, denoted q̂iJ,n by using the estimators derived in
(2.10) of (2.14) on the interval [tn−1, tn]. The asymptotic normality of the estimator q̂iJ,n
writes

√
Q(q̂iJ,n− qiJ,n) −→

Q→+∞
N (0,Ω2

iJ,n) as the number of entities Q (and observations of

transitions) goes to infinity. Using the Delta method, we deduce that√
Q (Φ−1(q̂iJ,n)− Φ−1(qiJ,n)) −→

Q→+∞
N (0,O2

iJ,n), where O2
iJ,n ≈ (Φ−1)

′
(q̂iJ,n)(q̂iJ,n(1− q̂iJ,n)).

Indeed Ω2
iJ,n can be approximated by q̂iJ,n(1 − q̂iJ,n) since the number of entities which

experience a transition from rating i to rating J or above can be consider as a binomial
variable. For a panel of observations sufficiently large, we obtain the following linear
Gaussian representation, ∀n ∈ {1, . . . ,Γ},{

Φ−1(qiJ,n) =
CJ−αi

σi
− ⟨βi,Θn−1⟩

σi
+

OiJ,n√
Q
µiJ,n, for i, J ∈ Ῡ2

Θn = AΘn−1 + νn
(2.29)

where µiJ,n and νn are iid standard Gaussian variables. The first equation is the mea-
surement equation and the second equation is the transition equation. We denote as
Ψn = (Φ−1(qiJ,n))i,j∈Υ the vector of information. Let Θ̂n = E[Θn|Ψn] be the filtered
image of Θ. The Kalman filtering framework provides an estimation of the parameters
Ŵ = (Â, Ĉi+1, α̂i, β̂i, σ̂i)i∈Ῡ. Finally, the estimated Point-in-time probability of migration
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from a rating i toward a rating J or above can be estimated by

∀n ∈ {1, . . . ,Γ}, q̂i,J,n = Φ

(
ĈJ − α̂i

σ̂i

− ⟨β̂i, Θ̂n−1⟩
σ̂i

)
. (2.30)

2.4 Intensity models

Intensity models have been first introduced by Jarrow and Turnbull (1995) in order to
price credit derivatives. In the basic reduced intensity form model, a credit event corre-
sponds to the first jump time of cox process with a constant intensity or time-dependant
intensity. The reduced form approach has been widely studied in the credit risk literature,
see, e.g., Duffie et al. (2007), Jarrow et al. (1997). This approach has firstly been adapted
to the context of rating migration by Lando (1998). In most of existing approaches, the
migration dynamics of each credit entity is described by a stochastic intensity matrix (or
generator matrix) whose components depends on a pool of macro-economic variables. The
literature on the subject is now very extensive (see, e.g., Damian et al. (2018), Figlewski
et al. (2012), Kavvathas (2001), Koopman et al. (2008), Lando and Skødeberg (2002),
Leijdekker and Spreij (2011)). Lando and Skødeberg (2002) underline many advantages of
using such models such as the ease to formulate, to test, and to integrate dependencies on
external covariates. The intensity models are also well suited to manage censoring. Lastly,
Koopman et al. (2008) extend the multi-factor intensity approach to integrate simultane-
ously obligor-specific information as well as common observable factors (macro-economic
variables) or common unobserved latent factors.

In this section, we describe the multi-state factor intensity models. We refer to Cousin
and Kheliouen (2015) and Koopman et al. (2008) for details and proofs on the presented
results. We describe intensity models under the continuous-time setting described in Sec-
tion 2.1.2.
Given the history of a process Θ, the rating migration process {Zq, q ≤ Q} are assumed
to be conditionally independent continuous-time Markov chains. We define the generator
matrix

∀t ∈ [0, T ], lΘ(t) =


−l1(Θt) · · · l1p(Θt)

l21(Θt) −l2(Θt)
...

...
... . . . ...

lp1(Θt) lp2(Θt) · · · −lp(Θt)


, where for (i, r) ∈ Υ2, i ̸= r, the product lirdt corresponds to the conditional probability
of going from rating i to rating r in the small interval [t, t+ dt]. Formally

∀(i, r) ∈ Υ2, i ̸= r, P[Zq

t+dt
= r|Zq

t = i,Θt] ≈ lir(Θt)dt.

We distinguish the cases where Θ is observable and unobservable.
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2.4.1 Observable factor

We assume here that the common factor Θ is a multivariate observable factor and that
migration intensities are an exponential-affine transformation of Θ such as

∀ (i, r) ∈ Ῡ2, i ̸= r, lir(Θt) = exp(αir + ⟨βir,Θt⟩), (2.31)

where αir is a constant parameter and βir accounts for the sensitivity of migration intensity
to the common factor Θ. This setting has been investigated by among others Cousin and
Kheliouen (2015), Kavvathas (2001), Koopman et al. (2008), Lando and Skødeberg (2002).
We callW = {αir, βir, (i, r) ∈ Ῡ2, i ̸= r}. The parametersW are estimated by maximizing
the conditional likelihood of the model

LΘ(W) =

Q∏
q=1

Γq∏
n=1

lZ
q
n−1,Z

q
n(Θtqn−1

)e
−

∫ t
q
n

t
q
n−1

l
Z
q
n−1 (Xu)du

, (2.32)

with the convention l
Zq
Γq−1,Z

q
Γq = 1. Similar criticisms to those made against structural

models with observable factors can be made against this approach. Choosing macro-
economic variables presents a risk of excluding relevant others and losing information.
Furthermore the importance of variables is not static but dynamic. Therefore, the set of
relevant variables must be frequently updated.

2.4.2 Unobservable factor

We consider here that the migration intensities follow similar specifications than in Section
2.4.1 but the driving process Θ is now assumed unobservable. The estimation of model
parameters in (2.31) may be obtained by maximizing the likelihood of the model

L(W) = EΘ

[
Q∏

q=1

Γq∏
n=1

lZ
q
n−1,Z

q
n(Θtqn−1

)e
−

∫ t
q
n

t
q
n−1

l
Z
q
n−1 (Xu)du

]
. (2.33)

As for the structural approach, this expectation must be taken over the joint distribution
of Θ which can be very intensive and not computationally tractable. Only numerical and
approximated approaches have emerged to tackle this issue. For instance, Koopman et al.
(2008) propose to use a sampling framework with Monte Carlo techniques to estimate such
a likelihood. Cousin and Kheliouen (2015) try to apply the same framework applied in
Section 2.3.2 for structural models, to intensity models. We briefly describe here such an
extension. This recursive method needs a discrete grid. We then consider the discrete-time
setting described in Section 2.1.1. We assume that Θ only changes at time 0 = t0 < t1 <
, . . . , < tΓ = T . The dynamic of Θ is assumed to follow auto-regressive dynamics

∀n ∈ {1, . . . ,Γ}, Θn = AΘn−1 + νn, (2.34)
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where the matrix A characterizes the covariates dynamics and νn are iid standard Gaus-
sian variables. The estimation of parameters W = (A,αir, βir)i,r∈Ῡ can be obtained by
transforming the log-intensities of jumps as a linear function of latent covariates and thus
construct a linear Gaussian model. Let’s remark that

For 1 ≤ n ≤ Γ, (i, r) ∈ Ῡ2, i ̸= r, log(lirn ) = αir + ⟨βir,Θn−1⟩.

We can obtain estimation of log(lirn ), denoted log(l̂irn ) by using the estimators derived in
(2.14) on the interval [tn−1, tn]. A time series of log-intensities log(l̂irn ) can be built. The
asymptotic normality of the maximum likelihood l̂irn writes

√
Q(l̂irn − lirn ) −→

Q→+∞
N (0,Ω2

ir,n).

Using the Delta method, we deduce that
√
Q
(
log(l̂irn )− log(lirn )

)
−→

Q→+∞
N (0,O2

ir,n), where

O2
ir,n ≈

Ω̂2
ir,n

(l̂irn )2
. Indeed Ω2

ir,n can be approximated by Ω̂2
ir,n = ∆N ir

n

(Y i
n)

2 according to Hougaard
(2000). For a panel of observations sufficiently large, we obtain the following linear Gaus-
sian representation{

log(lirn ) ≈ αir + ⟨βirΘn−1⟩+Oir,nµir,n, ∀(i, r) ∈ Ῡ2, i ̸= r,
Xn = AXn−1 + νn

(2.35)

where µir,n and νn are iid standard Gaussian variables. The first equation is the measure-
ment equation and the second equation is the transition equation. Using Kalman filtering,
the hidden process Θ can be recursively filtered. We denote as Ψn = {log(l̂irn ), i, r ∈ Ῡ, i ̸=
r} the vector of information. Let Θ̂n = E[Θn|Ψn] be the filtered image of Θ. The Kalman
filtering framework provides an estimation of the parameters Ŵ = (Â, α̂ir, β̂ir)i,r∈Ῡ. Finally
we define the estimated Point-in-time migration intensities as

For i, r ∈ Ῡ, i ̸= r, l̂ir(Θ̂n−1) = exp(α̂ir + ⟨β̂ir, Θ̂n−1⟩), (2.36)

2.5 Comparison analysis

In conclusion, both structural models and intensity models have their advantages and dis-
advantages in predicting rating migrations. When it comes to the use of observable versus
unobservable factors, there is a trade-off to consider. Models that incorporate observable
factors, such as market prices or financial ratios, are more transparent and easier to inter-
pret. However, they may not capture all of the relevant information about a borrower’s
creditworthiness.
According to Cousin and Kheliouen (2015), intensity models with observable factors fit very
well the empirical transition probabilities especially during periods of stress. In contrast,
structural models with observable factors tend to over-estimate transition probabilities
during flat periods. They also observe that the intensity model with unobservable fac-
tors shows better adjustment and responsiveness to the business cycle than the structural
model with unobservable factors. However, it still struggles to accurately replicate the
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empirical dynamic transitions during periods of decline. The size of the sample may be
too small to assume normality behaviour. In general, models that incorporate observable
factors tend to outperform those based on unobservable factors, since the assumptions un-
derlying the latter can be overly restrictive and limit their applicability. However, choosing
macro-economic variables presents a risk of excluding relevant others and losing informa-
tion. Additionally, the significance of variables is not static but dynamic, and the set of
relevant variables must be updated frequently.

In this debate, we aim to propose an alternative approach in Chapter 3, where the governing
factor is unobservable, and the hidden process is assumed to be a Markov Chain.
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Chapter 3
Rating transitions forecasting: a filtering
approach

Analyzing the effect of business cycle on rating transitions has been a subject of
great interest these last fifteen years, particularly due to the increasing pressure
coming from regulators for stress testing. In this chapter, we consider that the
dynamics of rating migrations, in a pool of credit references, is governed by a
common unobserved latent Markov chain. We explain how the current state
of the hidden factor, can be efficiently inferred from observations of rating
histories. We then adapt the classical Baum-Welch algorithm to our setting and
show how to estimate the latent factor parameters. Once calibrated, we may
reveal and detect economic changes affecting the dynamics of rating migration,
in real-time. The filtering formula is then used to predict future transition
probabilities according to the economic cycle without using any external
covariates. We propose two filtering frameworks: a discrete and a continuous
version. We demonstrate and compare the efficiency of both approaches on
fictive data and on a corporate credit rating database. The methods could also
be applied to retail credit loans.

Note that this Chapter 3 that is based on the article Cousin et al. (2023a).
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1 Introduction

Accurate credit ratings stand out as central to Basel II and to most aspects of managing
credit risk. In recent years, analysts have introduced the concepts of PIT and TTC ratings,
concepts that purportedly distinguish between some of the existing ratings systems and
models. PIT models can be classified in two categories, the structural and the intensity
models. In both structural and intensity models, the factors may be considered observable
or unobservable. The second approach has emerged in response to criticisms made against
the first. As Gagliardini and Gouriéroux (2005) point out, the risk in selecting covariates
lies in excluding others which could be more relevant. Cousin and Kheliouen (2015) provide
an overview of usual modelling and estimation approaches and compare the estimation and
the predictive performance of each approach on real data. When the underlying factors
are unobservable, they adapt a method given in Gagliardini and Gouriéroux (2005) to
represent the considered factor migration model as a linear Gaussian model, and apply
a Kalman filter to predict the state of the underlying latent factor. This approximation
lies on the hypothesis that the data set is large enough to apply asymptotic normality.
This assumption may be too restrictive and may explain the poor quality of predictions
obtained by Cousin and Kheliouen (2015).

A natural alternative consists in directly filtering the hidden factor given rating transi-
tions’ past history. For a bond portfolio, the dynamics of rating migrations can mathe-
matically be represented as a multivariate counting process, each component representing
the cumulative number of transitions from one rating category to another. Estimating
the hidden factor dynamics by only using observations of the counting process has already
been considered in the credit risk literature. For instance, Fontana and Runggaldier (2010)
and Frey and Schmidt (2012) follow this approach for pricing derivatives under incomplete
information.

A realistic and standard setting assumes that the unobserved driving factor is given as
a finite state Markov chain and that the rating transition process follows a Hidden Markov
model (HMM). Brémaud (1981) and Elliott et al. (2008) respectively present a detailed
analysis of continuous-time and discrete-time filtering under special HMM assumptions.
Hidden Markov Chain modeling (HMM) remains a popular approach in credit risk analy-
sis (see e.g., Ching et al. (2009), Elliott et al. (2008), Elliott et al. (2014), Thomas et al.
(2002)). The hidden process can have different interpretations according to the assump-
tions made and the way to filter. In the credit rating literature, Korolkiewicz and Elliott
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(2008) assume that the observed rating of a firm is a noisy observation of its true credit
rating, represented by a hidden Markov chain. They apply an Expectation Maximisation
(EM) algorithm for hidden Markov models under a discrete-time setting. They calibrate
the filtering formula applied to Markov chains, derived in Elliott et al. (2008), to infer
from its rating evolution, the true credit quality of a firm. Damian et al. (2018) extend the
parameter estimation via the EM algorithm to continuous-time hidden Markov models.
Similarly, they infer the true credit quality from rating observations but also with credit
spreads. In these studies, each firm has its own true rating process, therefore its rating
dynamic is governed by its own hidden process. Then the dynamic of rating transition
of entities are governed by independent and identically distributed hidden Markov chains.
Therefore, rating observations are assumed to be independent and an aggregated calibra-
tion procedure can be made. In the context of this study, the hidden factor is interpreted
as a systematic and common factor, governing transitions of all firms. Among the studies
which share the same interpretation, Giampieri et al. (2005), also use the classical Baum-
Welch algorithm (introduced in Baum et al. (1970)), for estimation of a two-state hidden
factor driving occurrence of defaults. They obtain estimates for the model parameters and
are able to reconstruct the most likely past sequence of the hidden factor. Their approach
only holds for an unique transition and is not suitable for providing online estimations
of the hidden factor state. In the same vein Deroose et al. (2008) and Oh et al. (2019)
identify two states, one of expansion and the other of contraction. In particular, Oh et al.
(2019) use an extension of the Baum-Welch algorithm adapted to “regime switching hidden
Markov model” (RSMC) to forecast sovereign credit rating transitions. In a different scope,
they also assume that every rating processes are governed by independent and identically
distributed Markov chains.

In this section, under a point process filtering framework, we first derive general discrete-
time and continuous-time filtering formulas. We then apply the filtering frameworks to
credit migrations, and show how to infer the current state of the hidden factor from past
rating transitions. An EM algorithm is adapted to estimate the parameters involved.
Contrary to Damian et al. (2018), Korolkiewicz and Elliott (2008), Oh et al. (2019), we
assume that the dynamics of rating migrations in a pool of credit references, is governed by
a common unobserved latent Markov chain, which aims to represent the economic cycle.
Therefore the realization of the unobservable factor is assumed to be common to every firm
whereas one hidden factor per bond is considered in Damian et al. (2018), Korolkiewicz
and Elliott (2008), Oh et al. (2019). We believe that our approach which rather keeps
the dependencies within the observations sample, is reliable and realistic. Indeed, rating
entities should be affected by the same realization of the economic factor. This different
consideration changes the way to calibrate and to filter: our filtering framework uses the
whole history of aggregated number of jumps. Once calibrated, we may reveal and detect
economic changes affecting the dynamics of rating migration, in real-time. By updating
the filtered factor, we are able to forecast rating transitions according to these economic
changes. Our approach may be considered as a new Point-in-time (PIT) rating transitions
modeling which does not use any macro-economic factors.
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Behind every model mentioned, choosing a continuous or discrete approach is crucial and is
a matter of debate. This study aims at participating to this debate by presenting different
results: we adapt filtering formulas, derived under special HMM assumptions in Brémaud
(1981) andElliott et al. (2008), to migration ratings context, both in a continuous-time and
discrete-time setting. In particular, we show how to adapt the continuous-time filtering
framework to handle discrete-time data and simultaneous jumps. We assess and compare
both approaches on a fictive data set and on a Moody’s ratings history [01/2000-05/2021]
of a diversified portfolio of 5030 corporate entities.

This chapter is structured into several sections. Firstly, in Section 2, a general filtering
framework in a discrete-time setting is presented. Then, Section 3 describes the discrete-
time filtering framework adapted to credit rating migrations. Correspondingly, Section 4
is dedicated to describe the filtering framework in a continuous-time setting while Section
5 presents its adaptation to the same context. Section 6 illustrates and validates the two
filtering approaches on fictive data. Then, in Section 7, we compare the two filters on real
data sets.

2 General discrete-time version of the filter

In this section, we present a discrete-time filtering framework both in a univariate and
multivariate setting.

2.1 Univariate Form

Let Γ ∈ N be the discrete time horizon. We work with the filtered probability space
(Ω,A,F = (Fn)n∈{0,...,Γ},P). Let N be a discrete-time F -adapted counting process starting
from 0. Let FN be the natural filtration of N , augmented with P−null sets. We write

∀ n ∈ {1, . . . ,Γ}, ∆Nn = Nn −Nn−1.

We denote by J, the support of the jumps of N (J = N for a Poisson process). The support
could vary over time but as this would not impact our results, it is assumed constant for
the sake of clearness. To account for the times when N does not jump, we assume that
0 ∈ J and we define J̄ = J\{0} as the support of the true jumps. Let Θ be a square
integrable F -adapted process such that conditionally on the σ-field Fn−1, Θn and ∆Nn are
independent. Let FΘ be the natural filtration of Θ, augmented with P−null sets. Θ has a
natural decomposition of the form

Θn = An +Mn ,
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where A is a F –predictable square integrable process and M is a square integrable F –
martingale.
We define the filtration G = (Gn)n∈{0,...,Γ} by Gn = F θ

n ∨ FN
n−1. For n ∈ {1, . . . ,Γ}, we

introduce
Ôn = E[On|FN

n ], Õn−1 = E[On|Fn−1].

For n ∈ {1, . . . ,Γ} and j ∈ J, we define

ϵjn = 1[∆Nn=j], λj
n−1 = E[ϵjn|Fn−1], λ̂j

n−1 = E[λj
n−1|FN

n−1] = E
[
E[ϵjn|Fn−1]|FN

n−1

]
.

Note that, for all n, we have
∑

j∈J ϵ
j
n =

∑
j∈J λ

j
n =

∑
j∈J λ̂

j
n = 1. Under this setting, we

present a discrete time adaptation of the univariate filtering equation presented in Brémaud
(1981).

Proposition 7. The filtered process Θ̂ satisfies the following equation

Θ̂n =
∑
j∈J

(̂Θ̃λj)n−1

λ̂j
n−1

1[∆Nn=j], ∀n = 1, . . . ,Γ. (3.1)

The proof of Proposition 7 heavily relies on the following lemma.

Lemma 8. Let K be a square integrable and G-adapted process such that K̂ is a FN -
martingale. Then, K is solution of the following recursive equation

K̂n = K0 +
n∑

k=1

∑
j∈J

(̂K̃λj)k−1

λ̂j
k−1

(ϵjk − λ̂j
k−1), ∀n = 1, . . . ,Γ. (3.2)

Remark 9. If K is also a F -martingale then the previous equation also holds true with
K̃ = K.

Proof (of Lemma 8). Let P be a square integrable FN–martingale. Then, there exists
a measurable function g such that Pn = g(n,N0, ..Nn). It can equivalently be written
Pn = h(n,∆N1, ..,∆Nn).
We can write

Pn =
∑
j∈J

h(n,∆N1, ..,∆Nn−1, j)ϵ
j
n.

Since P is a FN–martingale,

Pn − Pn−1 = Pn − E[Pn|FN
n−1] =

∑
j∈J

h(n,∆N1, ..,∆Nn−1, j)(ϵ
j
n − λ̂j

n−1).

Then, P has the following martingale representation

Pn = P0 +
n∑

k=1

∑
j∈J

Hj
k−1(ϵ

j
k − λ̂j

k−1),
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with Hj
k−1 being FN

k−1-measurable. Conversely, it is easy to check that a process written
like that is a FN–martingale.

Since ϵ0k = 1 −
∑

j∈J̄ ϵ
j
k and λ̂0

k = 1 −
∑

j∈J̄ λ̂
j
k, we can rewrite P with the following

martingale representation

Pn = P0 +
n∑

k=1

∑
j∈J̄

W j
k−1(ϵ

j
k − λ̂j

k−1), (3.3)

with W j
k−1 = Hj

k−1 −H0
k−1.

Let K be a square integrable G-adapted process such that K̂ is a FN–martingale. Ac-
cording to (3.3), we can write K̂n = ζ +

∑n
k=1

∑
j∈J̄ W

j
k−1(ϵ

j
k − λ̂j

k−1), where the se-
quence (Wk)k is FN -adapted. For any square integrable FN–adapted process X, we
have E[(Kn − K̂n)Xn] = 0. Choosing X to be a FN–martingale with the decomposition
g +

∑n
k=1

∑
j∈J̄ G

j
k−1(ϵ

j
k − λ̂j

k−1) with (Gk)k FN -adapted, we obtain

E

Kn − ζ −
n∑

k=1

∑
j∈J̄

W j
k−1(ϵ

j
k − λ̂j

k−1)

g +
n∑

k=1

∑
j∈J̄

Gj
k−1(ϵ

j
k − λ̂j

k−1)

 = 0.

Choosing Gj
k−1 = 0 for all j ∈ J̄ leads to ζ = E[K̂n] = E[Kn] = K0.

With no loss of generality, we can consider that K0 = 0. By choosing g = 0 we obtain:

E

Kn

n∑
k=1

∑
j∈J̄

Gj
k−1(ϵ

j
k − λ̂j

k−1)

− E

 ∑
j1,j2∈J̄

n∑
k1,k2≥1

W j1
k1−1(ϵ

j1
k1
− λ̂j1

k1−1)G
j2
k2−1(ϵ

j2
k2
− λ̂j2

k2−1)

 = 0.

(3.4)

For k1 < k2,

E
[
E
[
W j1

k1−1(ϵ
j1
k1
− λ̂j1

k1−1)G
j2
k2−1(ϵ

j2
k2
− λ̂j2

k2−1)|F
N
k2−1

]]
= 0

Noticing that E
[
Kn|FN

k

]
= E

[
E
[
Kn|FN

n

]
|FN

k

]
= K̂k, we compute the term

Sn,k =E
[
KnG

j
k−1(ϵ

j
k − λ̂j

k−1)
]
= E

[
E
[
Kn|FN

k

]
Gj

k−1(ϵ
j
k − λ̂j

k−1)
]

=E
[
K̂kG

j
k−1(ϵ

j
k − λ̂j

k−1)
]
= E

[
KkG

j
k−1(ϵ

j
k − λ̂j

k−1)
]
.

36



Now, let us compute

E[Kk(ϵ
j
k − λ̂j

k−1)|F
N
k−1] =E[Kkϵ

j
k|F

N
k−1]− E[Kkλ̂

j
k−1|F

N
k−1]

=E
[
E[Kkϵ

j
k|Fk−1]|FN

k−1

]
− K̂k−1λ̂

j
k−1.

Remember that K is G-measurable and that Gk = F θ
k∨FN

k−1. The conditional independence
of Θk and ∆Nk knowing Fk−1 yields the conditional independence of Kk and ϵk. Hence,
we obtain

E
[
E[Kkϵ

j
k|Fk−1]|FN

k−1

]
− K̂k−1λ̂

j
k−1 =E

[
E[Kk|Fk−1]E[ϵ

j
k|Fk−1]|FN

k−1

]
− K̂k−1λ̂

j
k−1

=(̂K̃λj)k−1 − K̂k−1λ̂
j
k−1.

From 3.4, we obtain

E

 n∑
k=1

∑
j∈J̄

Gj
k−1

(
(̂K̃λj)k−1 − K̂k−1λ̂

j
k−1 − E

[∑
i∈J̄

W i
k−1(ϵ

i
k − λ̂i

k−1)(ϵ
j
k − λ̂j

k−1)|F
N
k−1

]) = 0

As this holds true for any FN -adapted process (Gk)k, we can choose

Gj
k−1 = (̂K̃λj)k−1 − K̂k−1λ̂

j
k−1 − E

[∑
i∈J̄

W i
k−1(ϵ

i
k − λ̂i

k−1)(ϵ
j
k − λ̂j

k−1)|F
N
k−1

]
.

Then, we deduce the following system of linear equations, ∀ j ∈ J̄, k ∈ {1, . . . , n},∑
i∈J̄

W i
k−1E

[
(ϵik − λ̂i

k−1)(ϵ
j
k − λ̂j

k−1)|F
N
k−1

]
= (̂K̃λj)k−1 − K̂k−1λ̂

j
k−1 a.s. (3.5)

Let c
(k−1)
j = (̂K̃λj)k−1 − K̂k−1λ̂

j
k−1. Note that

E
[
(ϵik − λ̂i

k−1)(ϵ
j
k − λ̂j

k−1)|F
N
k−1

]
=

{
−λ̂i

k−1λ̂
j
k−1 for i ̸= j

λ̂j
k−1(1− λ̂j

k−1) for i = j

The equations in (3.5) can be written for all j ∈ J

λ̂j
k−1(1− λ̂j

k−1)W
j
k−1 −

∑
i∈J̄
i ̸=j

λ̂i
k−1λ̂

j
k−1W

i
k−1 = c

(k−1)
j .

Then, we obtain for all j ∈ J

λ̂j
k−1W

j
k−1 − λ̂j

k−1

∑
i∈J̄

λ̂i
k−1W

i
k−1 = c

(k−1)
j . (3.6)
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By summing for j ∈ J̄, we deduce from (3.6),∑
j∈J̄

λ̂j
k−1W

j
k−1 −

∑
j∈J̄

λ̂j
k−1

∑
i∈J̄

λ̂i
k−1W

i
k−1 =

∑
j∈J̄

c
(k−1)
j .

Then

λ̂0
k−1

∑
j∈J̄

λ̂j
k−1W

j
k−1 =

∑
j∈J̄

c
(k−1)
j .

Inserting the expression of
∑

i∈J̄ λ̂
i
k−1W

i
k−1 in (3.6) gives

W j
k−1 =

c
(k−1)
j

λ̂j
k−1

+

∑
i∈J̄ c

(k−1)
i

λ̂0
k−1

.

Then, we obtain

W j
k−1 =

1

λ̂j
k−1

((̂K̃λj)k−1 − K̂k−1λ̂
j
k−1) +

1

λ̂0
k−1

∑
i∈J̄

((̂K̃λi)k−1 − K̂k−1λ̂
i
k−1).

Finally, by replacing
∑

j∈J̄ ϵ
j
k,
∑

j∈J̄ λ̂
j
k−1 by 1 − ϵ0k and 1 − λ̂0

k−1, we derive the general
filtering formula

K̂n =K0 +
n∑

k=1

∑
j∈J̄

 (̂K̃λj)k−1

λ̂j
k−1

−
(̂K̃λ0)k−1

λ̂0
k−1

 (ϵjk − λ̂j
k−1)

=K0 +
n∑

k=1

∑
j∈J

(̂K̃λj)k−1

λ̂j
k−1

(ϵjk − λ̂j
k−1),

This finishes the proof.

Proof (of Proposition 7). We define

an = An − An−1 = E[Θn|Fn−1]−Θn−1, (3.7)

Bn =
n∑

k=1

E[ak|FN
k−1]

Ln =
n∑

k=1

ak − E[ak|FN
k−1].
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Note that
Θn −Bn = Mn + Ln.

We know that M̂ is a FN–martingale and L̂ is clearly a FN–martingale too. Then, we
can apply Lemma 8 to Θ − B. Note that B is FN predictable, then B̃k−1 = Bk and sỗBλj

k−1 = Bkλ̂
j
k−1. Then,

Θ̂n − B̂n =Θ̂0 − B̂0 +
n∑

k=1

∑
j∈J

(
((Θ̃− B̃)λj)
∧

k−1

λ̂j
k−1

)(ϵjk − λ̂j
k−1)

=Θ̂0 − B̂0 +
n∑

k=1

∑
j∈J

(̂Θ̃λj)k−1

λ̂j
k−1

(ϵjk − λ̂j
k−1).

We compute Θ̂n− Θ̂n−1 = B̂n− B̂n−1+ f(λn−1, ϵn, Θ̃n−1) = E[an|FN
n−1] + f(λn−1, ϵn, Θ̃n−1).

From (3.7), E[an|FN
n−1] = E[Θn|FN

n−1]− Θ̂n−1 and using that

f(λn−1, ϵn, Θ̃n−1) =
∑
j∈J

(̂Θ̃λj)n−1

λ̂j
n−1

(ϵjn − λ̂j
n−1) =

∑
j∈J

(̂Θ̃λj)n−1

λ̂j
n−1

1[∆Nn=j] − E[Θn|FN
n−1],

we deduce the final form of the filtering formula

Θ̂n =
∑
j∈J

(̂Θ̃λj)n−1

λ̂j
n−1

1[∆Nn=j].

Note that, from (3.7), the previous formula can also be stated as

Θ̂n =
∑
j∈J

(
(̂aλj)n−1

λ̂j
n−1

+
(̂Θλj)n−1

λ̂j
n−1

)
1[∆Nn=j].

where (̂aλj)n−1 = E[anλ
j
n−1|FN

n−1].

This formula can be extended to a multivariate setting.

2.2 Multivariate form

Let Γ ∈ N be the discrete time horizon. We work with the filtered probability space
(Ω,A,F = (Fn)n∈{0,...,Γ},P) ,. Let N = (N1, . . . , Nρ) be a discrete-time multivariate count-
ing process where for i = 1, . . . , ρ, N i = (N i

n)n∈{0,...,Γ}, is a be a simple F -adapted counting
processes starting from 0. Let FN be the natural filtration of N , augmented with P−null
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sets. We write

∀ i ∈ {1, . . . , ρ}, ∀ n ∈ {1, . . . ,Γ}, ∆N i
n = N i

n −N i
n−1.

We denote by Ji the support of the jumps of N i, for i = 1, . . . , ρ. The support may vary
over time but as this would not impact our results, it is assumed constant for the sake of
clearness. To account for the times when N i does not jump, we assume that 0 ∈ Ji and
we define J̄i = Ji\{0} as the support of the true jumps. Let us define the product spaces
J⊗ =

∏ρ
i=1 Ji and J̄⊗ =

∏ρ
i=1 J̄i.

Let Θ be a square integrable F -adapted process such that conditionally on the σ-field Fn−1,
Θn and (∆N i

n)i=1,...,ρ are independent. Let FΘ be the natural filtration of Θ, augmented
with P−null sets. We define the filtration G = (Gn)n∈{0,...,Γ} by Gn = F θ

n ∨ FN
n−1.

We extend the previous setting to multivariate case,

∀δ ∈ J⊗, ϵδn = 1[∆Nn=δ] = 1[
⋂ρ

i=1 ∆N i
n=δi], λδ

n−1 = E[ϵδn|Fn−1].

Proposition 10. The filtered process Θ̂ satisfies for all n = 1, . . . ,Γ,

Θ̂n =
∑
δ∈J⊗

(̂Θ̃λδ)n−1

λ̂δ
n−1

1[∆Nn=δ]. (3.8)

Proof. We leave the proof to the reader as it goes along the same lines as the proof of
Prop. 7.

Remark 11. With adequate assumptions, this filtering formula could cover non Markovian
case. These considerations are left for future research.

3 Discrete-time filtering for rating migrations

We aim to adapt the discrete-time filtering framework of Section 2, to the context of rating
migrations. We consider that a common Markov chain governs the dynamics of all transi-
tions. This hidden process may carry the systematic risk shared by rating transitions and
might be interpreted as the economic factor. We first present the formula in the context
of a single pair of rating categories (a single transition from one given rating, to another).
Then we extend the approach to multiple rating transitions.

Let Γ ∈ N be a discrete time horizon. We work with the filtered probability space
(Ω,A,F = (Fn)n∈{0,...,Γ},P). Let Θ be a Markov chain with finite number of states in
T = {1, . . . ,m}. Let FΘ be the natural filtration of Θ, augmented with P−null sets. Let’s
define, for h ∈ T, n ∈ {0, . . . ,Γ}, Ihn = 1[Θn=h], the indicator function of Θ on state h, at
time n.
We consider the list of rating categories Ῡ = {1, . . . , p}. This space represents different
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credit risk scores or ratings in descending order, p being the default state. For example,
Standard and Poor’s long-term investment ratings can be translated to AAA = 1, AA
= 2, A = 3, BBB =4, . . . , D (Default) = 10. In practice the number of credit entities
monitored over time may vary, either because some names are censored or simply because
of missing data. This consideration is deeply discussed in Section 7.1. We attribute the
rating 0 to an entity in this case. Then, it is clear that a transition involving the rating of
censure 0, is assumed to be independent with the states of the hidden factor. Then we call
Υ = {0, . . . , p}, the completed list of ratings. Note that, with this setting, the number of
entities observed on Υ is constant over time and equal to Q. Let Zq

n ∈ Υ, be the random
variable, describing the state of bond q, q ∈ {1, . . . , Q}, at time n ∈ {0, . . . ,Γ} and let
Zq = (Zq

n)n∈{0,...,Γ} be the migration process that describes its evolution. The counting pro-
cess, which counts the total number of jumps of the entities, from rating i to r, (i, r) ∈ Υ2,
is denoted by N ir and is such that, ∀n ∈ {1, . . . ,Γ},

∆N ir
n =

∑
q≤Q

1[Zq
n−1=i,Zq

n=r].

Let FN be the natural filtration of N , augmented with P−null sets. For n ∈ {1, . . . ,Γ},
we introduce for every process O, the notation

Ôn = E[On|FN
n ].

In addition, let us denote by the process Y i representing the number of observed and
active entities that belong to rating i, which may jump to another one. It may evolve over
time, according to censorship, arrivals of new entities on the market with initial rating
i, rating transitions or bankruptcies. This process is assumed to be FN–predictable. In
this framework, Θ aims to represent the systematic risk factor. It is unique and governs
dynamics of all rating transitions. Furthermore, for the sake of tractability, it is assumed
that Θ impacts entities with the same rating in the same way. Consequently, we consider
that entities with the same rating, are perfectly indistinguishable. Under this exchangeable
setting, to infer information on the underlying hidden factor Θ, it is sufficient to observe
the aggregated counting processes (∆N ir)i,r∈Υ and the processes (Yi)i∈Υ. The number of
jumps from i to r can not exceed the number of active entities. Then, the support of ∆N ir

n

is Ji
n = {0, . . . , Y i

n}. Let us define the support of ∆Nn, the product spaces J⊗
n =

∏p
i=1 Ji

n.
We define the transition probabilities of Θ as

∀(s, h) ∈ T2, ∀n ∈ {1, . . . ,Γ}, Ksh = P(Θn = h|Θn−1 = s), Πh = P(Θ0 = h).

3.1 Unique rating transition

In a first framework, we present a specific case of the general setting presented above. we
consider a unique transition from a rating called r0 ∈ Ῡ to another, called r1 ∈ Ῡ. N is
reduced to N = N r0,r1 , the associated univariate counting process which counts the total
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number of jumps of the entities, from rating r0 to r1, such that, ∀n ∈ {1, . . . ,Γ},

∆Nn =
∑
q≤Q

1[Zq
n−1=r0,Z

q
n=r1].

Let FN be the natural filtration of N , augmented with P−null sets. For n ∈ {1, . . . ,Γ},
Yn represents the number of active and observed entities with rating r0 at time n − 1,
that may jump to rating r1 at time n. We present here the recursive equation satisfied
by Îhn = E[1[Θn=h]|FN

n ]. We define, for any n ∈ {1, . . . ,Γ} and s ∈ T, the conditional
transition probabilities as

Ls = P(Zq
n = r1|Zq

n−1 = r0,Θn−1 = s).

According to the previous notations, the number of jumps from r0 to r1 cannot exceed the
number of active entities. Then, the support of ∆Nn is Jn = {0, . . . , Yn}. Knowing that
{Θn−1 = h, Yn = yn}, we assume that the conditional distribution of the random variable
∆Nn is binomial with parameters (yn, L

h). Similar settings can be found in Caja et al.
(2015) and Giampieri et al. (2005).
Proposition 12. With these assumptions, the filtered process Îhn solves the following recursive
equation. For n = 1, . . . ,Γ,

Îhn =
∑
j∈Jn

∑m
s=1K

sh(Ls)j(1− Ls)Yn−j Îsn−1∑m
s=1(L

s)j(1− Ls)Yn−j Îsn−1

1[∆Nn=j]. (3.9)

Proof. This formula can be derived from the general discrete-time filtering formula, in
Section 2. This formula can also be derived from the filtering formula (Elliott et al.,
2008, Chapter 2-Theorem 4.3). However, the filtering formula must be applied to the
context described above. We apply the formula to the counting process ∆N , considered
as an observable Markov chain with finite number of states, Jn at time n ∈ {1, ..Γ}, and
governed by the common hidden Markov chain Θn. We describe here the first approach.
According to the setting described above, we have

E(1[∆Nn=j]|Fn−1) = E(1[∆Nn=j]|Nn−1,Θn−1, Yn),

and
P(∆Nn = j|Θn−1 = h, Yn = yn) =

(
yn
j

)
(Lh)j(1− Lh)yn−j.

Then we compute the following expressions

λ̂j
n−1 = E

[
1[∆Nn=j]|FN

n−1

]
=

m∑
h=1

(
Yn

j

)
(Lh)j(1− Lh)Yn−j Îhn−1,

(̂Ihλj)n−1 =

(
Yn

j

)
(Lh)j(1− Lh)Yn−j Îhn−1
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and

(̂Ĩhλj)n−1 = E
[
E[Ihn |Fn−1]E[1[∆Nn=j]|Fn−1]|FN

n−1

]
= E

[
(

m∑
µ=1

KµhIµn−1)(
m∑
s=1

(
Yn

j

)
(Ls)j(1− Ls)Yn−jIsn−1)|FN

n−1

]

=
m∑
s=1

Ksh

(
Yn

j

)
(Ls)j(1− Ls)Yn−j Îsn−1.

Finally using (3.1) we obtain the desired equation.

Remark 13. For the sake of interpretability, our setting assumes that the entities should be
affected by the same realisation of the economic factor. Therefore, our filtering framework
uses the whole history of aggregated number of jumps, keeping the dependencies within the
observations sample.

In this framework, the hidden factor governs a unique transition. It might be more realistic
to assume that it affects all transitions. Then, we naturally extend the previous equation
to a multivariate setting.

3.2 Multiple Rating transitions

In this application, we extend the previous result by considering multiple rating tran-
sitions. We present now the recursive equation satisfied by Îhn = E[1[Θn=h]|FN

n ], where
N = (N ir)ir∈Υ. According to this setting, we define the conditional transition probabilities
of (Zq)q as

For (i, r) ∈ Υ2, s ∈ T and ∀n ∈ {1, . . . ,Γ}, Ls,ir = P(Zq
n = r|Zq

n−1 = i,Θn−1 = s).

Note that if i = 0 or r = 0 then ∀s ∈ T, Ls,ir = P(Zq
n = r|Zq

n−1 = i). Indeed, the
transitions from or to the rating 0 are assumed to be independent of the hidden factor
because censorship is non-informative.
Since only one realisation of trajectory of Θ governs observed rating processes, the random
variables {Zq

n, q ≤ Q}, for n ∈ {1, . . . ,Γ}, are still not independent. Nevertheless, knowing
the sate of Θn, they are independent. Then, the conditional distribution of the multivariate
random variable ∆N ir

n , knowing that {Θn−1 = s, Y i
n = yin}, is multinomial with parameters

(yin, (L
s,ir)r).

Proposition 14. With such assumptions, the filtered process Îhn is solution of the following
recursive equation

Îhn =
∑
δ∈J⊗

n

∑
s K

sh
∏p

i,r=1(L
s,ir)δir Îsn−1∑

s

∏p
i,r=1(L

s,ir)δir Îsn−1

1[∆Nn=δ]. (3.10)
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Proof. We leave the proof to the reader as it goes along the same lines as the proof of
Proposition 12.

Once the hidden factor filtered state is obtained, it is then possible to predict the future
migration probabilities.

3.3 Transition probability prediction

We define for (i, r) ∈ Ῡ2, the process νir, which forecasts the transition probability from
rating i to rating r, for the next time step.

∀ (i, r) ∈ Ῡ2,∀n ∈ {1, . . . ,Γ} : νir
n−1 = E

[
1[Zq

n=r]|Zq
n−1 = i,Fn−1

]
=
∑
h∈T

Lh,irIhn−1.

With the filtered current hidden factor, we can forecast the future transition probabilities

∀ (i, r) ∈ Ῡ2,∀n ∈ {1, . . . ,Γ} : ν̂ir
n−1 = E

[
1[Zq

n=r]|Zq
n−1 = i,FN

n−1

]
=
∑
h∈T

Lh,irÎhn−1. (3.11)

3.4 Calibration

In this section, we explain how to estimate model parameters involved in the filtering equa-
tion (3.10). We apply the so-called Baum-Welch algorithm to our discrete-time framework.

3.4.0.1 A Baum-Welch algorithm adapted for the discrete framework

The proposed method is a maximisation expectation (EM) algorithm for hidden Markov
chains (HMM), adapted to the model. We can find studies on the classical model in
Bishop and Nasrabadi (2006), Özkan et al. (2014), Rabiner (1989) and Tenyakov (2014).
However the classical algorithm is not totally suitable for calibration of the discrete filtering
equation (3.10). We highlight one inconsistency between the classical algorithm and our
model. Rating process trajectories of each entity must be independent whereas in our
framework, they are dependent through the common factor Θ.
The first step of the algorithm assigns initial values to the parameters we want to estimate.
Then the algorithm replaces the missing data (states of Θ) with Bayesian estimators using
the observations and the current parameters estimated values.
The second one consists in improving a conditional likelihood. Better parameters are
estimated. Then these new estimates are used to repeat the first step. We iterate this
process to converge to a local maximum.
Let Z = (Zq)q≤Q be the multivariate rating process and we call for (n1, n2) ∈ {0, . . . ,Γ}2,
(Z)n∈{n1,...,n2} = Zn1|n2 , the rating trajectories between time n1 and n2. As the new rating
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does not only depend on the economic cycle (state of Θ) but also on the previous rating,
we apply the Baum-Welch algorithm by considering that

∀n ∈ {1, . . . ,Γ}, P(Zn|Z0, . . . , Zn−1,Θ0, . . . ,Θn−1) = P(Zn|Zn−1,Θn−1).

Furthermore, as rating history of all entities are dependent on a same realization of Θ,
we must adapt our algorithm differently from Oh et al. (2019) who considered that each
rating process is governed by its own and independent trajectory of Θ.

3.4.1 Initialization

The calibration algorithm presented is based on iterative improvement of a likelihood. This
expectation maximization algorithm (EM) (see Dempster et al. (1977)), as most of iterative
maximisation algorithms, might be trapped in a local maximum. Obtained parameters may
not be relevant when the global maximum is not found. This success is deeply dependant
on the initialization. Several empirical and analytical methods have been proposed to
deal with this matter. In Liu et al. (2014), transition probabilities are initiated using
empirical frequencies. They succeed to considerably reduce the number of iterations to
find their local maximum. By noticing that the transition matrices have strong diagonals,
Oh et al. (2019) initialized their model by adding small perturbations to identity matrix
or to uniform distributions. In our study we choose a third option which seems to be more
reliable: we test a high number of initial values (picked at random) in order to find the
global maximum. In order to guarantee almost surely convergence to the global maximum,
initial values are chosen according to a uniform distribution on the parameters space.

3.4.2 Bayesian estimators

We respectively define the forward and the backward probabilities as,

∀s ∈ T, ∀n ∈ {1, . . . ,Γ} : αn(s) = P(Z0|n = z0|n,Θn−1 = s)

∀s ∈ T,∀n ∈ {1, . . . ,Γ− 1} : βn(s) = P(Zn+1|Γ = zn+1|Γ|Zn = zn,Θn−1 = s).

Let u and v be two processes describing Θ such that

un(h) = 1[Θn=h], vn(s, h) = 1[Θn=h,Θn−1=s].

Then we can derive the following recursive formulas
αn(s) =

∑m
l=1 αn−1(l)K

ls
∏

i,r∈Υ(L
s,ir)∆N ir

n ,

βn(s) =
∑m

l=1 βn+1(l)K
sl
∏

i,r∈Υ(L
l,ir)∆N ir

n+1 ,

ǔn(h) = P(Θn = h|Z0|Γ = z0|Γ) =
βn+1(h)αn+1(h)∑m

j=1 αΓ(j)
,

v̌n(s, h) = P(Θn = h,Θn−1 = s|Z0|Γ = z0|Γ) =
βn+1(h)Kshαn(s)

∏
i,r∈Υ(Lh,ir)∆Nir

n∑m
j=1 αΓ(j)

.
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Proof (Recursive formulas). We derive ∀n ∈ {2, . . . ,Γ− 1} and ∀s ∈ {1, . . . ,m},

αn(s) = P(Z0|n = z0|n,Θn−1 = s) =
m∑
l=1

P(Z0|n = z0|n,Θn−1 = s,Θn−2 = l)

=
m∑
l=1

Q∏
d=1

P(Zd
n = zdn|Z0|n−1 = z0|n−1,Θn−1 = s,Θn−2 = l)P(Z0|n−1 = z0|n−1,Θn−1 = s,Θn−2 = l)

=
m∑
l=1

Q∏
d=1

P(Zd
n = zdn|Zn−1 = zn−1,Θn−1 = s)P(Θn−1 = s|Θn−2 = l, Z0|n−1 = z0|n−1)αn−1(l)

=
m∑
l=1

Q∏
d=1

P(Zd
n = zdn|Zd

n−1 = zdn−1,Θn−1 = s)P(Θn−1 = s|Θn−2 = l)αn−1(l)

=
m∑
l=1

αn−1(l)K
ls

Q∏
d=1

Ls,zdn−1z
d
n =

m∑
l=1

αn−1(l)K
ls
∏
i,r∈Υ

(Ls,ir)∆N ir
n .

For n=1, we do not know the state of the individuals before the simulation. To tackle this
issue, we use the initial proportion of the ratings. We have

α1(s) = P(Z1 = z1,Θ0 = s) =

Q∏
d=1

P(Zd
1 = zd1 |Θ0 = s)Π(s)

=

Q∏
d=1

∑
j∈Υ

P(Zd
1 = zd1 |Zd

0 = j,Θ0 = s)P(Zd
0 = j|Θ0 = s)Π(s)

=

Q∏
d=1

∑
jΥ

P(Zd
1 = zd1 |Zd

0 = j,Θ0 = s)P(Zd
0 = j)Π(s) =

Q∏
d=1

∑
j∈Υ

Ls,jzd1P(Zd
0 = j)Π(s).

Similarly, we recursively derive the backward probability for all n ∈ {1, . . . ,Γ − 2} and
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s ∈ {1, . . . ,m},

βn(s) = P(Zn+1|Γ = zn+1|Γ|Θn−1 = s, Zn = zn)

=
m∑
l=1

P(Zn+1|Γ = zn+1|Γ,Θn = l|Θn−1 = s, Zn = zn)

=
m∑
l=1

P(Zn+2|Γ = zn+2|Γ|Θn = l, Zn+1 = zn+1, Zn = zn,Θn−1 = s)

× P(Zn+1 = zn+1,Θn = l|Θn−1 = s, Zn = zn)

=
m∑
l=1

P(Zn+2|Γ = zn+2|Γ|Θn = l, Zn+1 = zn+1)

×
Q∏

d=1

(P(Zd
n+1 = zdn+1|Θn = l, Zd

n = zdn))P(Θn = l|Θn−1 = s)

=
m∑
l=1

βn+1(l)K
sl

Q∏
d=1

Ll,zdnz
d
n+1 =

m∑
l=1

βn+1(l)K
sl
∏
i,r∈Υ

(Ll,ir)∆N ir
n+1 .

For n = Γ − 1, we take ∀s ∈ {1, . . . ,m}, βΓ−1(s) = 1. We derive expression of these
Bayesian estimators with the forward and the backward probabilities.
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For all h ∈ {1, . . . ,m} and all n ∈ {1, . . . ,Γ− 2},

ǔn(h) = P(Θn = h|Z0|Γ = z0|Γ)

=
P(Zn+2|Γ = zn+2|Γ|Θn = h, Z0|n+1 = z0|n+1)αn+1(h)

P(Z0|Γ = z0|Γ)

=
P(Zn+2|Γ = zn+2|Γ|Θn = h, Zn+1 = zn+1)αn+1(h)

LΓ

=
βn+1(h)αn+1(h)

LΓ

.

v̌n(s, h) = P(Θn = h,Θn−1 = s|Z0|Γ = z0|Γ)

=
P(Θn = h, Zn+1|Γ = zn+1|Γ|Z0|n = z0|n,Θn−1 = s)αn(s)

LΓ

=
P(Zn+2|Γ = zn+2|Γ|Z0|n+1 = z0|n+1,Θn−1 = s,Θn = h)

LΓ

× P(Θn = h, Zn+1 = zn+1|Z0|n = z0|n,Θn−1 = s)αn(s)

=
P(Zn+2|Γ = zn+2|Γ|Zn+1 = zn+1,Θn = h)

LΓ

×
Q∏

d=1

(P(Zd
n+1 = zdn+1|Θn = h, Zd

n = zdn))P(Θn = h|Θn−1 = s)αn(s)

=
βn+1(h)K

shαn(s)
∏Q

d=1 L
h,zdnz

d
n+1

LΓ

=
βn+1(h)K

shαn(s)
∏

i,r∈Υ(L
h,ir)∆N ir

n

LΓ

,

with LΓ being the likelihood on the whole sample, LΓ = P(Z0|Γ = z0|Γ) =
∑

j αΓ(j).

3.4.3 Parameters estimation

The maximum likelihood estimators of the EM algorithm described above can be computed
as

Πh = ǔ0(h); Ls,ir =

∑Γ
n=1 ǔn−1(s)∆N ir

n∑Γ
n=1 ǔn−1(s)Y i

n

; Ksh =

∑Γ
n=1 v̌n(s, h)∑Γ
n=1 ǔn−1(s)

. (3.12)

Proof (Derivation of the estimators). Using the concavity of the log function, let’s first
notice that for two strictly positive sequences w and w′,

log

(∑
i w

′
i∑

k wk

)
= log

(∑
i

wiw
′
i∑

k wkwi

)
≥ 1∑

k wk

(∑
i

(wi log(w
′
i)− wi log(wi))

)
.

The maximization step consists in finding better parameters than those of the previous
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iteration. We call M (γ) = (Π(γ), L(γ), K(γ)), the parameters of the current iteration (γ).
We are seeking new parameters M (γ+1) = (Π(γ+1), L(γ+1), K(γ+1)). Let’s consider the finite
spaces Ξk = {1, . . . ,m}k, k ∈ {1, . . . ,Γ}. We call a possible trajectory of Θ, θ, belonging
to the finite space ΞΓ. Using wθ = P(Z = z,Θ = θ|M (γ)) and w′

θ = P(Z = z,Θ =
θ|M (γ+1)) in the previous inequality and defining Q(M (γ),M (γ+1)) =

∑
θ∈ΞΓ

wθ log(w
′
θ)

and Q(M (γ),M (γ)) =
∑

θ∈ΞΓ
wθ log(wθ), we obtain

log

(∑
θ∈ΞΓ

w′
θ∑

θ∈ΞΓ
wθ

)
= log

(
P(Z = z|M (γ+1))

P(Z = z|M (γ))

)
≥ 1

P(Z = z|M (γ))
(Q(M (γ),M (γ+1))−Q(M (γ),M (γ))).

This last inequality shows that we obtain P(Z = z|M (γ+1)) ≥ P(Z = z|M (γ)) by maximiz-
ing

Q(M (γ),M (γ+1)) =
∑
θ∈ΞΓ

P(Θ = θ, Z = z|M (γ)) logP(Θ = θ, Z = z|M (γ+1)).

We cut log(P(Z = z,Θ = θ|M (γ+1))) = log(P(Z = z|Θ = θ,M (γ+1))) + log(P(Θ =
θ|M (γ+1))). Since the processes (Zd)d are independent knowing the unobserved factor,
we have

log(P(Z = z,Θ = θ|M (γ+1))) = log(P(θ0)) +
Γ∑

n=1

log(P(θn|θn−1)) +

Q∑
d=1

log(P(zd0|Γ|θ))

= log(P(θ0)) +
Γ∑

n=1

log(P(θn|θn−1)) +

Q∑
d=1

Γ∑
n=1

logP(zdn|zdn−1, θn−1).
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So,

Q(M (γ),M (γ+1)) =
∑
θ∈ΞΓ

log(P(θ0))P(θ, z|M (γ)) +
∑
θ∈ΞΓ

Γ∑
n=1

log(P(θn|θn−1))P(θ, z|M (γ))

+
∑
θ∈ΞΓ

Q∑
d=1

Γ∑
n=1

logP(zdn|zdn−1, θn−1)P(θ, z|M (γ))

=
∑
θ\θ0

∈ΞΓ−1

m∑
h=1

log(P(Θ0 = h))P(Θ0 = h, θ \ θ0, z|M (γ))

+
Γ∑

n=1

∑
θ\(θn,θn−1)

∈ΞΓ−2

m∑
h,s=1

log(P(Θn = h|Θn−1 = s))P(θ \ (θn, θn−1),Θn = h,Θn−1 = s, z|M (γ))

+
Γ∑

n=1

∑
θ\θn−1
∈ΞΓ−1

m∑
s=1

Q∑
d=1

log(P(zdn|zdn−1,Θn−1 = s))P(θ \ θn−1,Θn−1 = s, z|M (γ))

=
m∑

h=1

log(P(Θ0 = h, z|M (γ)))Πh +
Γ∑

n=1

m∑
h,s=1

log(Ksh)P(Θn = h,Θn−1 = s, z|M (γ))

+

Q∑
d=1

Γ∑
n=1

m∑
s=1

∑
i,r∈Υ

log(Lh,ir)P(Θn−1 = s, z|M (γ))1[Zd
n=r,Zd

n−1=i].

Then, we can maximize by considering the three terms independently. We obtain

Πh =
P(Θ0 = h, Z|M (γ))∑m
j=1 P(Θ0 = j, Z|M (γ))

= P(Θ1 = h|Z,M (γ)) = ǔ0(h),

Ls,ir =

∑Q
d=1

∑Γ
n=1 P(Θn−1 = s, Z|M (γ))1[Zd

n=r,Zd
n−1=i]∑Q

d=1

∑Γ
n=1

∑
j∈Υ P(Θn−1 = s, Z|M (γ))1[Zd

n=j,Zd
n−1=i]

=

∑Γ
n=1 ǔn−1(s)∆N ir

n∑Γ
n=1 ǔn−1(s)Y i

n

,

Ksh =

∑Γ
n=1 P(Θn−1 = s,Θn = h, Z|M (γ))∑Γ

n=1

∑Q
j=1 P(Θn−1 = s,Θn = j, Z|M (γ))

=

∑Γ
n=1 v̌n(s, h)∑Γ
n=1 ǔn−1(s)

.
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4 Continuous-time version of the filter

In this section, we present the filtering framework in a continuous-time setting.

4.1 Framework and statements

Let (Ω,A,F = (Ft)t∈[0,T ],P) , be a filtered probability space satisfying the “usual condi-
tions” of right-continuity and completeness needed to justify all operations to be made.
All stochastic processes encountered are assumed to be adapted to the filtration F and
integrable on [0, T ]. In particular, we have A = FT . The time horizon T is supposed to
be finite.

The problem is to estimate the states of an unobserved process Θ using only the informa-
tion FN , resulting from the observation of a counting process N . We also define FΘ, the
natural filtration of Θ. By definition of the conditional expectation,

Θ̂t = E[Θt|FN
t ] .

is the L2 approximation of Θ knowing N. With the same notation, all the processes O
filtered by FN

t are written
Ôt = E[Ot|FN

t ].

Unfortunately, the explicit computation of Θ̂ (by the Bayes formula) is only possible in very
simple cases, for example, when N is a mixture of Poisson processes. Moreover, numerical
approaches are extremely heavy to implement as soon as non-trivial models are considered.
The filtering approach is different. It consists in writing Θ̂ as the solution of a stochastic
differential equation (SDE). The main result on univariate point process filtering can be
stated in the following way (see Brémaud (1981), Karr (2017), Leijdekker and Spreij (2011),
Van Schuppen (1977)). In order to study the dynamics of ratings in a credit portfolio or the
dynamics of rating migrations, this filtering equation must be extended to a multivariate
case.

4.2 Filtering multivariate point process

In this section, we show that the previous filtering equation admits a natural multivari-
ate extension. Let N = (N1, . . . , Nρ) be a multivariate counting process where N j =
(N j

t )t∈[0,T ], j = 1, . . . , ρ, is a set of simple counting processes, such that, N j
t =

∑
0<s≤t∆N j

s <
∞ and ∆N j

s ∈ {0, 1}, for any j = 1, . . . , ρ. It is assumed that these processes admit a pre-
dictable F−intensity νj = (νj

t )t∈[0,T ], and that they do not have any common jumps, i.e.,
∆N j

t ∆Nk
t = δjk∆N j

t ie [N j, Nk]t = 0 (the continuous martingale part of a counting pro-
cess being null). We introduce FN = (FN

t )t∈[0,T ] the natural filtration of the multivariate
counting process N = (N1, . . . , Nρ).
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Proposition 15. Let Θ be a square integrable process of the form

Θt =

∫ t

0

as ds+Mt , (3.13)

where a is a F -adapted process and M is a F -square integrable martingale with no jumps
in common with N . Therefore, the process Θ̂ is solution of the SDE

dΘ̂t = ât dt+
∑
j

ηjt (dN
j
t − ν̂j

t− dt) , (3.14)

with

ηjt =
(̂Θ νj)t−

ν̂j
t−

− Θ̂t− , (3.15)

and initial condition
Θ̂0 = E[Θ0] . (3.16)

Proof. This equation can be derived from the univariate filtering framework presented in
(Brémaud, 1981, Sec.IV.1). For a sake of completeness and consistence with the discrete-
time derivation, we propose here a second approach to derive this filtering equation.
Let g and h be two F predictable processes such that E

[∫ T

0
(g2s + h2

s) ν
j
s ds

]
≤ ∞. We

introduce the processes X and Y defined by Xt =
∫ t

0
gr(dN j

r −νj
r dr) and Yt =

∫ t

0
hs(dNk

s −
νk
s ds) for all t ≤ T . X and Y are two F –martingales. The Itô formula applied to XY

yields

d(XtYt) =Xt−dYt + Yt−dXt +∆Xt∆Yt.

Since N j and Nk have no common jumps, ∆Xt∆Yt = gtht∆N j
t δjk. Then, we obtain

E[XTYT −XtYt|Ft] = δjkE

[∫ T

t

gshsdN j
s |Ft

]
. (3.17)

Note that XTYT −XtYt = (XT −Xt)(YT − Yt)− 2XtYt +XtYT +XTYt. Then,

E[XtYT −XtYt|Ft] = E[(XT −Xt)(YT − Yt)|Ft]. (3.18)

Note that the process Z =
(∫ t

0
gshs(dN j

s − νj
sds)

)
0≤t≤T

is a F –martingale.

So, E [ZT − Zt|Ft] = 0. Combining this remark with Equations (3.17) and (3.18), we finally
obtain

E

[∫ T

t

gr(dN j
r − νj

r dr)
∫ T

t

hs(dNk
s − νk

s ds)
∣∣∣∣Ft

]
= δjk E

[∫ T

t

gshs ν
j
s ds

∣∣∣∣Ft

]
. (3.19)

The innovation theorem says that the FN -intensities of the counting processes N j exist
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and are
ν̂j
t− = E

[
νj
t− | FN

t−
]
= E

[
νj
t | FN

t−
]
. (3.20)

For any FN predictable process h satisfying E
[∫ T

0
|hsνs|ds

]
<∞, we have

E

[∫ ∞

0

htdNt

]
=E

[∫ ∞

0

htνtdt
]
= E

[∫ ∞

0

htE
[
νt|FN

t−
]
dt
]
= E

[∫ ∞

0

htν̂t−dt
]
.

Now, rewrite (3.13) as

Θt =

∫ t

0

âs ds+ Lt +Mt , (3.21)

with

Lt =

∫ t

0

(as − âs) ds . (3.22)

Taking conditional expectation, w.r.t. FN
t , in (3.21) yields

Θ̂t =

∫ t

0

âs ds+ L̂t + M̂t . (3.23)

While L need not be a F –martingale, it is clear that L̂ is an FN–martingale. For r < t,

E[L̂t − L̂r | FN
r ] = E

[∫ t

r

(
as − E[as|FN

s ]
)

ds
∣∣∣∣FN

r

]
= 0.

From the tower property, we deduce that M̂ is also a FN–martingale. Introduce

Kt = Lt +Mt = Θt −
∫ t

0

âs ds . (3.24)

Since Θ and N have no common jumps, we can deduce that K and N have any either.
It has been shown that K̂ = L̂ + M̂ is a FN–martingale. Therefore it has a predictable
representation,

K̂t = γ +
∑
j

∫ t

0

ηjs (dN
j
s − ν̂j

s− ds), (3.25)

where γ = K̂0 is FN
0 -measurable and the ηj are FN -predictable processes (see Brémaud

(1981)). Note that K̂0 = E[Θ0]. Now, any integrable FN -measurable random variable has a
representation g+

∑
j

∫ t

0
hj
s (dN j

s − ν̂j
s ds), with g constant and the hj are FN -predictable.

Therefore, since K̂t is the L2 projection of Kt onto the space of square integrable FN
t -

measurable random variables, the coefficients in the representation (3.25) are uniquely
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determined by the normal equations

E

[(
Kt − γ −

∑
j

∫ t

0

ηjs(dN
j
s − ν̂j

s− ds)
)(

g +
∑
j

∫ t

0

hj
s(dN

j
s − ν̂j

s− ds)
)]

= 0,

for all constants g and all FN -predictable processes hj. Setting g = 0 and using (3.19) give

E

[
Kt

∑
j

∫ t

0

hj
s (dN

j
s − ν̂j

s− ds)−
∑
j

hj
s η

j
s ν̂

j
s− ds

]
= 0 . (3.26)

For j ∈ {1, . . . , ρ}, we compute E
[
Kt

∫ t

0
hj
sdN j

s

]
. Using that K̂ is a FN–martingale and

that K and N j have no common jumps, we have

E

[
Kt

∫ t

0

hj
sdN

j
s

]
=E

[
Kt

∑
s≤t

hj
s∆N j

s

]
=
∑
s≤t

E
[
E
[
Kt|FN

s

]
hj
s∆N j

s

]
=
∑
s≤t

E
[
K̂sh

j
s∆N j

s

]
= E

[∫ t

0

Ks−h
j
sdN

j
s

]
=E

[∫ t

0

Ks−h
j
sν

j
sds
]
=

∫ t

0

E
[
hj
sE
[
Ks−ν

j
s |FN

s−
]]

ds

=E

[∫ t

0

hj
sΘ̂νj

s−ds
]
− E

[∫ t

0

hj
sν̂

j
s−

∫ s

0

âudu ds
]
.

Using similar arguments, we compute the second term

E

[
Kt

∫ t

0

hj
sν̂

j
s−ds

]
=

∫ t

0

E
[
hj
sE
[
Kt|FN

s−
]
ν̂j
s−
]
ds =

∫ t

0

E
[
hj
sK̂s−ν̂

j
s−

]
ds

=E

[∫ t

0

hj
sΘ̂s−ν̂

j
s−ds

]
− E

[∫ t

0

hj
sν̂

j
s−

∫ s

0

âudu ds
]
.

Inserting these expressions into (3.26), gives

∑
j

E

[∫ t

0

hj
s

(
Θ̂ νj

s− − Θ̂s− ν̂j
s− − ηjs ν̂

j
s−

)
ds
]
= 0.

Choosing hj
s equal to the expression in the parentheses, gives

∑
j E
[∫ t

0
(hj

s)
2 ds
]
= 0 hence

all hj vanish and ∀ j = 1, . . . , ρ:

ηjs =
Θ̂s− νj

s−

ν̂j
s−

− Θ̂s−. (3.27)
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From (3.25), (3.23), and the equality K̂ = L̂+ M̂ , it follows that

Θ̂t = E[Θ0] +

∫ t

0

âs ds+
∑
j

∫ t

0

ηjs (dN
j
s − ν̂j

s− ds).

with the ηj are given by (3.27). This finishes the proof of the proposition.

5 Continuous-time filtering for rating migrations

In this section, we present the application of the filtering framework in continuous-time,
presented in Section 4, to the context of credit migrations. In particular, we describe how
to adapt the continuous-time setting with the discrete-time format of the rating data.

5.1 Statements and filtering framework

In order to remain realistic and to fix the terminology, a bond market containing a finite
number of individual bonds is considered. All bonds are affected by variable and random
market conditions represented by the same latent process Θ. The hidden factor driving
process Θ is assumed to be a Markov chain with finite number of states in T and with
constant transition intensities krh, r ̸= h and such that krr = −

∑
l;l ̸=r k

rl, so that, for
small enough dt,

∀ r ̸= h ∈ T2 : P(Θt+dt = h |Θt = r) ≈ krh dt. (3.28)

The initial distribution of Θ is defined as

∀h ∈ T : Πh = P(Θ0 = h).

Let us introduce the state indicator processes Ih, h ∈ T = {1, . . . ,m}, defined by

Iht = 1[Θt=h], h ∈ T.

A bond q of the sample is observed between the dates sq and uq, 0 ≤ sq ≤ uq ≤ T .
We consider that the bond q may evolve in the same credit rating categories space, Ῡ =
{1, . . . , p}, than for the discrete-time framework.
Let Y = {(i, j) ∈ Ῡ2, i ̸= j}, be the space of possible migrations. Let Zq

t ∈ Ῡ be the
rating state of bond q at time t and Zq = (Zq

t )t∈[sq ,uq ] be the rating process describing its
evolution. The migration counting process associated with Zq, which counts the number of
jumps of the entity q from rating i to j, is denoted by N q,ij and is such that, ∀t ∈ [sq, uq],

∆N q,ij
t = 1[Zq

t−=i,Zq
t =j].
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We introduce FN = (FN
t )t∈[0,T ] the natural filtration of the multivariate counting process

N = (N ij)i,j∈Ῡ. We assume that two entities cannot jump at the same time, i.e, they do
not have any common jumps, i.e., ∀i, j, r, k ∈ Ῡ,∆N ij

t ∆N rk
t = δirδjk∆N ij

t . We also
assume that there is no common jump with Θ.

In this study, we assume that (Zq
t , t ∈ [0, T ])q are described within a factor migration

model. More specifically, knowing FΘ
T , the rating processes (Zq)q are assumed to be condi-

tionally independent Markov chains with the same generator matrix. In reality the change
of rating of a bond may also induce the change of state of other bonds but this conta-
gion effect is not considered in this study. Moreover, the censorship mechanism governing
(sq, uq) is assumed to be non-informative and can therefore be considered deterministic
and belonging to FN

0 . Under this exchangeable setting, to infer information on the un-
derlying hidden factor Θ, it is sufficient to observe the aggregated counting processes N ij,
(i, j) ∈ Y, defined by

N ij
t =

∑
q; sq≤t<uq

N q,ij
t .

and the exposure processes Y i, i ∈ Ῡ defined by

Y i
t =

∑
q; sq≤t<uq

1[Zq
t−=i] .

Y i
t represents the number of observed entities with rating i at time t, which may jump.

Note that the exposure process Y i is left continuous. It increases by 1 when N ji jumps for
any j ̸= i, or when a new bond enters the pool with rating i. It decreases by 1 when a
bound jumps outside rating i, i.e., whenever N ij jumps for j ̸= i or when a bond expires
with rating i.

This framework aims to determine the recursive equation satisfied by Îhn = E[1[Θn=h]|FN
n ].

We denote by (νij
t )(i,j)∈Y the F intensity of N . We assume that the intensities (νij)(i,j)∈Y

are governed by the finite state hidden Markov chain Θ. With these assumptions, the
processes (Zq)q are governed by their common intensity matrices (lh)h∈T, such as for small
enough dt

P[Zq
t+dt = j |Zq

t = i,Θt = h] ≈ ℓh,ij dt. (3.29)

Then the counting processes N ij are governed by the F intensities

νij
t = Y i

t

∑
r∈T

ℓr,ij Irt− .

As Y i is FN–predictable, the FN–intensity of N ij, may be written as

ν̂ij
t− = Y i

t

∑
r∈T

ℓr,ij Îrt− . (3.30)
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We present the multivariate filtering formula satisfied by the process (Iht )t∈[0,T ] in the
following proposition.

Proposition 16. With the previous assumptions, the unobserved indicator process filtered
with rating jumps satisfies the following recursive equation

dÎht =
m∑
r=1

krhÎrt−dt+
∑
i ̸=j

(
lh,ij Îht−∑
r l

r,ij Îrt−
− Îht−

)(
dN ij

t − Y i
t

m∑
r=1

lr,ij Îrt−dt

)
(3.31)

Proof. This result stems from the general continuous-time filtering theory developed in
(Brémaud, 1981, Sec.IV.1). Compared to the setting of Brémaud (1981), two adaptations
are necessary. First, we deal here with an aggregated multivariate process over the entire
portfolio and secondly, we take censorship into account though the processes of risk expo-
sure Y i. For the sake of completeness, we provide a self-consistent proof yielding a general
explicit filtering formula with no simultaneous jumps.
In order to apply Prop. 15, one needs to find the representation (3.13) for Iht . Let Ψhr,
h ̸= r, h, r ∈ T, be the counting processes defined by Ψhr

t = ♯{s ∈ (0, t]; Θs− = h, Θs = r} .
The starting point is the expression

Iht = Ih0 +
∑
r;r ̸=h

(Ψrh
t −Ψhr

t ) ,

which comes from the obvious dynamics

dIht =
∑
r;r ̸=h

(dΨrh
t − dΨhr

t ).

The counting processes Ψhr have intensities of the form Iht− κhr. Reshaping the last expres-
sion as

Iht = Ih0 +

∫ t

0

∑
r;r ̸=h

(Irs− κrh − Ihs− κhr) ds

+

∫ t

0

∑
r;r ̸=h

[
(dΨrh

s − Irs− κrh ds)− (dΨhr
s − Ihs− κhr ds)

]
,

shows that Ih is of the form Iht =
∫ t

0
ahs ds+Mh

t , with

aht =
∑
r;r ̸=h

(Irt− κrh − Iht− κhr) =
∑
r

κrh Irt−, (3.32)

and Mh is a martingale commencing at Mh
0 = Ih0 . This martingale has no jumps in

common with N . Now, let Ih take the role of Θ in Prop. 15. Then the role of at is taken
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by aht in (3.32), the role of (Θ νi)t− is taken by

(−Ihνij)t− = Iht− Y i
t

∑
r

ℓr,ij Irt− = Y i
t ℓ

h,ij Iht− ,

and the FN -intensities of N are given in (3.30). Inserting these expressions into (3.14),
gives the desired equation.

Remark 17. Despite being non-linear, the filtering equations (3.31) can be decomposed into
a prediction term and an innovation term, as for the classical Kalman filter.

E[Iht |FN
t−] = Îht− +

m∑
r=1

krhÎrt−dt (3.33a)

E[Iht |FN
t ] = E[Iht |FN

t−]︸ ︷︷ ︸
prediction

+Îht−
∑
i ̸=j

(
lh,ij∑
r l

r,ij Îrt−
− 1

)(
dN ij

t − Y i
t

m∑
r=1

lr,ij Îrt−dt

)
︸ ︷︷ ︸

new Information

(3.33b)

We can identify (3.33a) as the prediction equation and (3.33b) as the correction equation.

Usually, information on rating migrations are only available to public on a daily basis. For
large credit portfolios, it is then frequent to observe multiple transitions (of several entities)
occurring at the same day. In addition, clustering of rating migrations may also happen
following the disclosure of a major economic events. Then, the presented continuous-time
filtering approach is not fully compliant with migration data since it precludes simultaneous
jumps between counting processes. This has lead us to preprocess the data and adapt the
calibration algorithm.

5.2 Adaptation of the continuous-time setting to discrete migra-
tion data

This part aims to explain how to adapt continuous filtering to discrete rating migration
framework. We propose an adaptation of the calibration algorithm in order to be compliant
with the continuous filtering formula (3.31). Previous adaptations done for the discrete
framework are still required but are not sufficient: Baum-Welch algorithm is an estimation
in discrete time which is not compliant with the continuous version of the filter. Further-
more the continuous-time filtering framework assumes the absence of simultaneous jumps.
For the first deviation, we propose to calibrate discrete-time parameters. Then it is nec-
essary to switch to continuous time dimension for filtering. The transition between prob-
abilities to intensities turns out to be easy when the time interval chosen is small enough
according to (3.28) and (3.29).
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The second deviation is also essential. There is no common jumps among the rating
processes. However, ratings are not natural processes. Human decisions and algorithm
appreciations are reported at the same moment in a day. Therefore we have to deal with
simultaneous daily observations. Our solution consists in considering a different time grid.
Each day is cut into small intervals and jumps are randomly spread on these time intervals.
We insure to cut enough finely to have a maximum of one jump per interval. This ma-
nipulation has two drawbacks. First, the conditional independence between rating entities
might be lost if the non-simultaneity of jumps is enforced. Then, distributing simultaneous
jumps on a finer time grid may ultimately modify the original information. The second
effect is studied in a testing benchmark at Section 6.2.

Once the data have been modified, we adapt our calibration algorithm to respect con-
tinuous structure. To this end, we use a prior law of jumps which respects the constraint
of no simultaneity (that the number of observed jumps is only 0 or 1). The main idea
consists on assuming that one entity is randomly chosen to be allowed to jump. Then,
the entity may jump according the common migration matrices {(Lh,ij)h, (i, j) ∈ Ῡ}. In
practice the number of entities monitored over time may vary: either because some names
appear or disappear or simply because of missing data. This happens when the data is
missing, censored or when it is not appeared yet. We attribute the rating 0 to an entity
in this case. Then it is clear that a transition involving the rating of censure 0, is assumed
to be independent with the states of the hidden factor. Let consider the list of ratings
Ῡ = {1, . . . , p} and Υ = {0, . . . , p}, the completed list of ratings. Note that the total
number of entities observed on Υ is constant equal to Q. Let Qt, be the number of entities
which have their rating in Ῡ (have a real rating) at time t.
We propose a calibration algorithm which assumes that no more than one entity may jump
at a given time step. In order to make the model identifiable while considering the impact
of the size of the sample (which may evolve), we define an independent process I, with
values in {0, . . . , Q}, which uniformly picks the entity that may jump. If I picks an entity
which is rated 0, (because not already rated or censored), we do not observe jumps. Oth-
erwise the entity jumps according to the transition matrices (Lh)h.

We have ∀t ∈ {0, . . . ,Γ}, (i, j) ∈ Ῡ2, h ∈ T, q ∈ {0, . . . , Q}, P(Zq
t = j|Zq

t−1 = i, It−1 =
q,Θt−1 = h) = Lh,ij. For zt, zt−1 ∈ ΥQ, we define W h

t−1 = P(Zt = zt|Zt−1 = zt−1,Θt−1 = h),
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where Zt = (Zq
t )q≤Qt . We compute

W h
t−1 =

Q∑
d=1

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)P(It−1 = d)

=

Qt−1∑
d=1

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)P(It−1 = d)

+

Q∑
d=Qt−1+1

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)P(It−1 = d).

Let focus on the first sum, describing the situation when the chosen entity has a rating at
current time.

P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)

= P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)1[zdt =zdt−1,∀l ̸=d:zlt=zlt−1]

+ P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h)1[zdt ̸=zdt−1,∀l ̸=d:zlt=zlt−1]

= Lh,zdt−1z
d
t 1[zt=zt−1] + Lh,zdt−1z

d
t 1[zdt ̸=zdt−1,∀l ̸=d:zlt=zlt−1]

.

For the second sum, we have: P(Zt = zt|Zt−1 = zt−1, It−1 = d,Θt−1 = h) = 1[zt=zt−1].

So finally, W h
t−1 = (1− Qt−1

Q
)1[zt=zt−1] +

Qt−1∑
d=1

1

Q
1[|zt−zt−1|0≤1]1[∀l ̸=d zlt=zlt−1]

Lh,zdt−1,z
d
t ,

where |x|0 = #{xi ̸= 0}.
Then, it is easy to check that the previous algorithm can be adapted to the new framework

αt(h) =
m∑
s=1

αt−1(s)K
shW h

t−1, βt(h) =
m∑
l=1

βt+1(l)K
hlW h

t ,

ǔt(h) = P(Θt = h|Z0|Γ = z0|Γ) =
βt+1(h)αt+1(h)

LΓ

,

v̌t(s, h) = P(Θt = h,Θt−1 = s|Z0|Γ = z0|Γ) =
βt+1(h)K

shαt(s)W
h
t

LΓ

.

The forms of the transitions matrices (Lh)h, are a lot impacted by this adaptation. The
maximisation does not run as simply as it does for the discrete setting. Explicit forms
are heavy to derive. Then, these parameters are directly estimated with optimization
algorithms.
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6 Filtering on simulated data

The purpose of this section is to test and validate the continuous-time and discrete-time
versions of the filter using simulated data: we build two rating migration databases from the
two underlying credit migration models: the discrete-time model (as described in Section
3) and the continuous-time factor migration model (as described in Section 5). Since
the structure of the two models are different, different data sample are used for testing
the two approaches. The inputs of the filtering models are the evolution of the number of
transitions, described by {∆N ir

n , n ∈ {1, . . . ,Γ}, i, r ∈ Υ}. Our testing framework aims to
compare the filtered trajectory of the hidden factor, (Θ̂n)n∈{1,...,Γ} and the real simulated
one (Θn)n∈{1,...,Γ}. Then it compares estimated point-in-time transition probabilities to
real observed transition rates. The real observed rate of a transition is the ratio between
the number of observed jumps during a time interval and the number of entities at the
beginning of this time interval, susceptible to jump. Estimations of transition probabilities
are respectively given by {ν̂ir

n , n ∈ {1, . . . ,Γ}, i, r ∈ Υ}, in (3.11) for the discrete-time
setting and {ν̂ir

n dt, t ∈ [0, T ], (i, r) ∈ Y}, in (3.30) for the continuous-time setting. The
value of dt is chosen equal to 1

1000
, 1000 being the number of small intervals in which we

have cut each day (see Section 5.2). To calibrate the models, the EM algorithm of Section
3.4 is run 1000 times by sampling random initial values (see Section 3.4.1). We keep the
solution, which provides the highest likelihood estimation.

6.1 Discrete time filtering approach

To build the discrete-time database, we assume that the hidden factor is described by a
finite state space Markov chain with 7 states. We consider a given set of model parameters.
Each state of the hidden factor is associated with a specific rating migration matrix. We
try to choose matrices compliant with filtering: we must have sufficient variability among
conditional transition probabilities (Lh,ij)h, (i, j) ∈ {1, .., p}. We work with 3 ratings
categories {A,B,C} and initialize our sample with 1000 entities per rating. Then the
hidden Markov chain is simulated on 300 time steps. According to the hidden factor’s
sample path, we simulate transitions using conditional transition matrices. We use the
first 200 time-steps to calibrate the model and the remainder to test is. We perform the
calibration as described in Section 3.4. Parameters chosen for sampling the model and
estimated parameters are presented in the following section.

6.1.0.1 Calibration

We present the parameters chosen for the simulation in the testing framework described
in Section 6, with the estimated parameters issued from the EM algorithm.
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Table 3.1: Initial and estimated rating transition matrix for Θ = 0

A B C
A 0.98 0.01 0.01
B 0.29 0.7 0.01
C 0.1 0.3 0.6

A B C
A 0.9799 0.0099 0.0102
B 0.2923 0.6977 0.0100
C 0.1023 0.2962 0.6016

Table 3.2: Initial and estimated rating transition matrix for Θ = 1

A B C
A 0.98 0.01 0.01
B 0.39 0.6 0.01
C 0.2 0.3 0.5

A B C
A 0.9803 0.0100 0.0097
B 0.3887 0.6018 0.0095
C 0.2002 0.3003 0.4995

Table 3.3: Initial and estimated rating transition matrix for Θ = 2

A B C
A 0.5 0.3 0.2
B 0.01 0.6 0.39
C 0.01 0.01 0.98

A B C
A 0.5072 0.3002 0.1926
B 0.0095 0.6004 0.3901
C 0.0099 0.0103 0.9798

Table 3.4: Initial and estimated rating transition matrix for Θ = 3

A B C
A 0.98 0.01 0.01
B 0.39 0.6 0.01
C 0.2 0.3 0.5

A B C
A 0.9803 0.0100 0.0097
B 0.3887 0.6018 0.0095
C 0.2002 0.3003 0.4995

Table 3.5: Initial and estimated rating transition matrix for Θ = 4

A B C
A 0.6 0.3 0.1
B 0.01 0.7 0.29
C 0.01 0.01 0.98

A B C
A 0.5993 0.2992 0.1015
B 0.0104 0.6983 0.2913
C 0.0099 0.0095 0.9806

Table 3.6: Initial and estimated rating transition matrix for Θ = 5

A B C
A 0.8 0.15 0.05
B 0.01 0.9 0.09
C 0.01 0.01 0.98

A B C
A 0.8001 0.1493 0.0506
B 0.0099 0.8996 0.0904
C 0.0101 0.0098 0.9801
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Table 3.7: Initial and estimated rating transition matrix for Θ = 6

A B C
A 0.98 0.01 0.01
B 0.09 0.9 0.01
C 0.05 0.15 0.8

A B C
A 0.9799 0.0102 0.0099
B 0.0908 0.8991 0.0101
C 0.0500 0.1517 0.7984

Table 3.8: Θ’s transition matrix

Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4 Θ = 5 Θ = 6
Θ = 0 0.6 0.3 0.1 0 0 0 0
Θ = 1 0.25 0.4 0.25 0.1 0 0 0
Θ = 2 0.05 0.15 0.6 0.15 0.05 0 0
Θ = 3 0 0.03 0.12 0.7 0.12 0.03 0
Θ = 4 0 0 0.05 0.15 0.6 0.15 0.05
Θ = 5 0 0 0 0.1 0.25 0.4 0.25
Θ = 6 0 0 0 0 0.1 0.3 0.6

Table 3.9: Estimated Θ’s transition matrix

Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4 Θ = 5 Θ = 6
Θ = 0 0.6029 0.3426 0.0544 0 0 0 0
Θ = 1 0.2827 0.4015 0.2526 0.0632 0 0 0
Θ = 2 0.0825 0.1546 0.5773 0.1443 0.0412 0 0
Θ = 3 0 0.0583 0.1083 0.7000 0.0750 0.0583 0
Θ = 4 0 0 0.0716 0.1592 0.5188 0.2124 0.0381
Θ = 5 0 0 0 0.1765 0.2475 0.3053 0.2708
Θ = 6 0 0 0 0 0.1237 0.2851 0.5912

The average difference is equal to 0,0014 (9,8% of average relative error on superior and
inferior diagonals) for the rating transitions {(Lh,ij)h, (i, j) ∈ {1, .., p}} and equal to
0,0159 (5,5% of average of relative error) for the hidden factor’s transition probabilities
{Krh, r, h ∈ T}. Despite the high dimensionality of the problem, these indicators demon-
strate that the estimation algorithm is able to recover the parameters.

6.1.1 Filtering

Figure 3.1 shows the real trajectory and the filtered trajectory of the hidden factor com-
puted on the testing sample (of 100 time-steps).
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Figure 3.1: Simulated and filtered trajectories of the hidden factor on the last 100 testing
dates

We can notice that the filter is able to detect the changes of states. It faithfully follows the
real trajectory and respects the different phases and trends. However it does not exactly
mimic the true value, since the filtering formula is a weighted average of the state values.
We can also observe a small delay in the estimation. The explanation is theoretical: it
is caused by the effect of delay in the filtering model: the impact of the hidden factor at
time t − 1 is observable on ratings at time t. Therefore, when the hidden factor at time
t is filtered, the freshest observations available at this time, is the rating jumps at time t
which have been governed by the hidden factor at time t − 1. Consequently we infer the
current hidden factor state with information generated by its previous value.
We can easily understand that the calibration plays a crucial role to make the filtering
efficient. In order to forecast in time, states need to be strongly linked at least to another
state. Let’s imagine a rare and very unstable state. Since it is hardly visited from other
states, it will never influence the direction of the filter and will be difficult to predict. Once
the filter realizes that the hidden factor jumps to this state, it is too late, the hidden factor
has already returned to another state. Finally, the filter is unable to capture rare events
to unstable states. This remains acceptable since our main purpose is to detect transitions
to stable regimes. Visiting a state for a brief period of time does not represent useful
information for long term forecasting.
The following Figures 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, represent real ratios of observed transi-
tions with the predicted transitions dynamics, obtained from (3.10) and (3.11), between
the three considered rating categories {A,B,C}.
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Figure 3.2: Real and predicted ratios from
A to B

Figure 3.3: Real and predicted ratios from
A to C

Figure 3.4: Real and predicted ratios from
B to A

Figure 3.5: Real and predicted ratios from
B to C

Figure 3.6: Real and predicted ratios from
C to A

Figure 3.7: Real and predicted ratios from
C to B

The results are very encouraging. The filter provides good predictions of future jumps.
The predictions vary as a function of the regime cycle. Even when the real ratios sharply
increase or decrease, the prediction are immediately corrected.
Although, one of our previous intuitions is confirmed, the filtering approach can not cap-
ture extreme variations since our approach forecasts an average of the rating transition
probabilities.
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6.2 Continuous time filtering approach

In order to validate the continuous-time filtering approach, we generate a data set using
the migration model described in Section 5. The simulated rating processes exhibit no si-
multaneous jumps. We consider 3 rating categories and 1000 entities per class. We build a
continuous Markov chain with 5 states. Note that we reduce the number of states compared
to the discrete-time framework as the continuous framework is much more computationally
demanding. Since the data is fictive and specific to the continuous-time model, this choice
has no impact on our validation experiment. We directly applied the continuous-time fil-
tering approach on the simulated data set, which does not contain simultaneous jumps.
Then, in order to challenge the relevance of the use of the continuous model on discrete
data, we transform the data set. Jumps are aggregated and randomly spread before fil-
tering as described in Section 5.2. We apply the continuous-time filtering approach and
compare the two predicted ratios dynamics. This comparison highlights the effect of the
random re-distribution of jumps.
Figures 3.8 and 3.9 show the dynamics of the proportion of transitions predicted against the
real observed ratios from rating A to rating B, respectively without and with redistribution.

The predicted ratios dynamics in Figure 3.8, validate the use of the continuous-time filter-
ing approach: the predicted ratios follow the real trajectory of ratios.
By comparing with Figure 3.9, we deduce that spreading information (to avoid the simul-
taneity of jumps) does not alter the predictions. Thanks to this comparison exercise, we
can apply continuous framework to real data without concern that the results are altered
by this action.
Even if the data samples used are different, we can notice that the changes in both pre-
dicted ratios dynamics are less brutal than in the discrete-time filtering framework applied
in Section 6.1. The continuous filter is updated with progressive information (due to the
absence of simultaneous jumps) and is more flexible than the discrete filter to anticipate
regime changes. Assimilating jumps one by one, seems to improve the quality of predic-
tions. Nevertheless, the effect of delay is still observable.

Figure 3.8: Real and predicted ratios from
A to B without redistribution of common
jumps

Figure 3.9: Real and predicted ratios from
A to B with redistribution of common
jumps
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7 Application on real data

This section compares the results of our different models on a real rating database. We
consider two discrete-time versions of the filter (one univariate and one multivariate) and
a continuous-time multivariate alternative approach.

7.1 Data Description

Credit ratings are forward-looking opinions about the creditworthiness of an obligor with
respect to a specific financial obligation. We build a transitions rating database from
Moody’s credit rating disclosure. We only use aggregated data (number of transitions).
The considered sample contains 7791 days from January 2000 to May 2021. We study the
evolution of Long Term ratings of 5030 corporate entities during this period without sector
consideration. For specific experiments (analyses, validation, comparison), we consider the
whole sample to calibrate the models. For others, such as testing the predictive power
of model, we proceed to a cross validation. We choose a 5 states hidden factor for each
experiment.

Moody’s rating system relates 21 ratings categories. Keeping this granularity means esti-
mating more than 420 transitions. Therefore, many studies (Elliott et al. (2014), Koopman
et al. (2008)) reduce the number of rating categories. In the same way, we decide to aggre-
gate the 22 ratings to 6 : A, Baa, Ba, B, C and W. An obligation is rated W when it has
no rating. We will also rate W the entity whose rating is not observed. This happens when
the data is missing, censored or when it is not appeared yet. There exists many ways to
manage not rated status (W). It can be considered as bad information, good information,
no information for the credit or not considering them at all. According to Carty (1997),
only few (roughly 13 percent) of the migration to the not rated category are related to
changes in credit quality. This argument motivated Nickell et al. (2000) to use the last
method, consisting in removing from the sample all the entities that experiences a not
rated status. But this approach is dubious in regard of the loss of information. In this
study, we will consider no rated status as censorship. This is achieved by progressively
eliminating companies whose rating is not known or withdrawn and adding them when a
new rating is provided.
A reference time-step is chosen for each experiment. The daily data are aggregated in
order to observe and to predict rating transitions on a larger time window.
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7.2 Discrete time filtering in sample

In order to observe and interpret the effect of the discrete-time framework on a real credit
rating database, we present in this section, the main results of a univariate and a multi-
variate filters, calibrated on the whole period.

7.2.1 Univariate discrete time filtering

In this part, we assume that each transition is governed by its own hidden factor. Under
this assumption, each transition evolves according to the evolution of its own latent factor,
independently from the others. This modeling is meaningful to integrate rating specificities
in the predictions.
On the data set described above, we focus on a single transition: from rating B to C. We
choose this transition because it could be identified as “transition to default” and witness
of crisis. This will entail the use and calibration of the univariate form of the discrete-time
filter (3.9).
A first step consists in calibrating the models with the past history of the involved tran-
sition. The reference time step, at stake in every transition, is 30 days. We highlight the
efficiency of our approach without cross validation: all past transition history available
(from January 2000 to May 2021) is used to calibrate the model.
We obtain in Table 3.10, the calibrated 30 days transition matrix of the hidden factor
Θ. Table 3.11 presents the conditional transition probabilities from rating B to C in each
state.

Table 3.10: Θ’s transition matrix

Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4
Θ = 0 0.90598 0.074109 0.018316 0 0.001595
Θ = 1 0.230415 0.715919 0.040626 0 0.013040
Θ = 2 0.000304 0.381375 0.540412 0.077909 0
Θ = 3 0 0 0.740452 0.259548 0
Θ = 4 0.491597 0 0 0.508403 0

Table 3.11: 30 days transition probabilities from B to C

Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4
B → C 0.001814 0.0050001 0.0158818 0.0451715 0.085771

Table 3.10 highlights two stable states, 0 and 1 and an unstable and rare state, state 4.
By analysing Table 3.11, we notice a hierarchy of risk between the states of Θ. State 4 is
clearly identified as the riskiest state with a downgrade probability fifty time greater than
in state 0, the most favourable state. State 3 is also a state of crisis which is more stable.
State 2 can be interpreted as an intermediate state between favourable and unfavourable
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situation. Consequently we can expect that the economy often remains in a calm and
favourable situation and experiences sometimes brief transitions to stressed states when
downgrade probability B to C increases a lot.
Figure 3.10 presents the filtered indicator function trajectories of the own hidden factor of
the transition B to C, {Îhn , n ∈ {0, . . . ,Γ}, h ∈ T}, without cross validation. Figure 3.11
shows the dynamics of 30 days forecasted ratios from rating B to C, {ν̂BC

n−1, n ∈ {1, . . . ,Γ}},
given in (3.11).

Figure 3.10: Filtered trajectories of the
hidden factor indicator functions

Figure 3.11: Real and predicted ratios for
transition B to C

Figure 3.10 shows that the dominant state changes across time and highlights regime
switching. Our intuitions are confirmed, the filter is often “closed” to favourable states
0 and 1. The dominant state is sometimes, for a brief moment, state 2, an intermediate
state, where the downgrade probability from B to C increases. After periods when state
2 is dominant, the filter sometimes indicates that a state of true crisis, state 3, becomes
dominant. Transitions from periods where state 0 or 1 are dominant to periods where state
4 is dominant may be sudden but remain rare. Fortunately this state of extreme “crisis” is
only dominant for very brief periods. By analysing Figure 3.11, it can be noted that the
predicted ratios from B to C reflect the general trend of real ratios with the same “lag”
effect observed than on fictive data. The filter is able to detect regimes and transition
phases but cannot capture brutal and short transitions. Finally the filter infers that the
economic cycle experiences long periods of favourable situations and brief transitions to
stress states.
Note that the hidden factor is specific to the involved transition. It may cover systematic
risk but also the risk which might be specific to the ratings at stake.
We now consider the multivariate case where the hidden factor is shared by several tran-
sitions.

7.2.2 Multivariate discrete time filtering

Using multiple transitions to infer the hidden factor assumes that the later is shared by
those transitions. This approach should bring more information to forecast the dynam-
ics of these transitions but presents several difficulties. The calibration algorithm finds
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centroids in the parameters space which might be far from each other due to the high
dimension of the parameters space. Consequently the predicted number of transitions may
be very different from the realized one. Furthermore rating transition events may not be
sufficiently correlated. Indeed certain transitions are weakly correlated and might bring
noise. We must only consider the most correlated transitions to extract the global fac-
tor dynamics. Therefore we decide to only focus on adjacent downgrade transitions (the
upper diagonal). Indeed empirical results from Cousin and Kheliouen (2015) show that
the upgrades are more subject to idiosyncratic shocks than downgrades. To remove the
impact of the remaining transitions on the model, we assign them the same probability
for each state of the hidden factor: we use the time-homogeneous intensity estimators to
compute these probabilities (see, e.g., Cousin and Kheliouen (2015), Duffie et al. (2007),
Jarrow et al. (1997), Koopman et al. (2008), Lando and Skødeberg (2002)). Consequently
we reduce the number of transitions to calibrate to four.
We achieve two experiments. First we consider a time step reference of 30 days. We cali-
brate on whole period of the data set to observe the behaviour of the multivariate model.
Then, along a second experiment, we will proceed to a cross validation to faithfully assess
the predictive power of the model. For this experiment which is computationally more
expensive, we will choose a larger time window, with a time step of 50 days.

For the first experiment, as in Section 7.2.1, we again consider 5 states for the hidden
factor, a time step of 30 days and we do not proceed to cross validation.
Table 3.12 gives the calibrated transition matrix of the hidden factor. Table 3.13 presents
the conditional downgrade probabilities for a time step of 30 days.

Table 3.12: Θ’s transition matrix

Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4
Θ = 0 0.9499 0.0418 0.0010 0 0.0073
Θ = 1 0.1075 0.7661 0.1264 0 0
Θ = 2 0.0004 0.2685 0.6340 0.0503 0.0469
Θ = 3 0 0 0.5133 0.4867 0
Θ = 4 0 0 1 0 0

Table 3.13: Adjacent 30 days downgrade probabilities

Θ = 0 Θ = 1 Θ = 2 Θ = 3 Θ = 4
A→ Baa 0.00297589 0.00224944 0.00838262 0.00801885 0.0194804
Baa→ Ba 0.00125687 0.00146192 0.00492593 0.00985172 0.031583
Ba→ B 0.00326413 0.00633207 0.0150595 0.0282736 0.0228716
B → C 0.00189228 0.00492691 0.0128149 0.0641203 0.0114155

By analysing the tables, it is noteworthy that states 0 and 1 are stable states which induce
a “favourable” situation, where downgrade probabilities are quite low. States 3 and 4 can
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be interpreted as a stressed economy, where downgrade probabilities are higher. Note that
state 4 is totally unstable and transitory. The transition between favourable periods (state
0 and 1) and stable stressed periods (state 3) is exclusively achieved through state 2.
Figure 3.12 shows the filtered trajectories of state probabilities according to (3.10). Figure
3.13 presents the dynamics of the predicted ratio from rating B to C, within a multivariate
framework, without cross validation. We focus on transition B to C to compare with
Section 7.2.1.

Figure 3.12: Filtered trajectories of hid-
den factor indicator functions

Figure 3.13: Real and predicted ratios for
30 days transition from B to C

Figure 3.12 brings us new information on the evolution of the predicted hidden state.
Periods of crisis when state 3 and 4 dominant, are pretty rare and brief. By analyzing
Figure 3.13, we can first notice that the multivariate framework is also a good predictor.
The forecasted transition ratios follow the trend of observed ratios and fit with different
regimes. Comparing with the univariate case (see Figure 3.10), the multivariate model
seems to be more sensitive to events: the multivariate model better captures the crisis of
sep-2000 compared to the univariate model. The forecasted rating transition B to C is not
only based on its own past evolution but also stem from the history of others.

7.3 Comparison of the filters out of sample: annual recalibration

We use a cross-validation approach to assess the predictive power of the multivariate models
both in the continuous-time and discrete-time frameworks. To this end, we use data from
2000 to 2008 to perform a first calibration and to initialize our parameters. Then, from
January 2008 to may 2021, we predict the dynamics of the 50 days transition rates. The
model is re-calibrated every year, integrating the new observations of the last year. Note
that we changed the reference time step to 50 days for a sake of computational speed.
Note also that since we re-calibrate the model yearly, parameters and states structure vary
over time.
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7.3.1 Multivariate continuous time filtering

In this section, we apply the continuous filtering framework, presented in Section 5 and its
adaptations, described in Section 5.2, to real data. We choose a reference time step equal
to 50 days. The real and predicted 50 days rating transition ratios are presented in Figures
3.14, 3.15, 3.16 and 3.17.

Figure 3.14: Real and predicted ratios 50
days transition from A to Baa

Figure 3.15: Real and predicted ratios 50
days transition from Baa to Ba

Figure 3.16: Real and predicted ratios 50
days transition from Ba to B

Figure 3.17: Real and predicted ratios 50
days transition from B to C

7.3.2 Multivariate discrete time filtering

Here, we apply the discrete-time filtering framework, presented in Section 3 to real data.
The model is applied on the same sample used for the continuous-time filtering approach,
with annual recalibration as in Section 7.3.1. We keep a reference time step equal to 50
days. Figures 3.18, 3.19, 3.20, 3.21 compare the dynamics of predicted transition ratios to
observed one.
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Figure 3.18: Real and predicted 50 days-
transition ratios from A to Baa

Figure 3.19: Real and predicted 50 days-
transition ratios from Baa to Ba

Figure 3.20: Real and predicted 50 days-
transition ratios from Ba to B

Figure 3.21: Real and predicted 50 days-
transition ratios from B to C

7.3.3 Comparisons and analyses

The results looks almost similar in both approaches. The dynamics of predicted ratios
follow the trend of realized ratios. The forecasts also evolve when noteworthy crisis occurs.
We notice that transitions are more correlated during specific periods like crisis. Four crisis
periods can be identified: a first small one around 2002, a moderated one in 2016 and two
significant in 2008 and 2020. These latter are clearly identified as the subprime crisis and
the health crisis caused by the Covid 19. The two others, moderated, would be respectively
the consequences of the dot-com bubble in 2000 and the China stock market crash in June,
2015. During these periods the downgrades probabilities increase.

Both models are able to detect the evolution of the economic cycle from observations of
rating migrations. The forecasts are adapted to the inferred economic state. During crisis
periods, the models are able to predict adapted and higher downgrade probabilities.

We can underline three advantages of the continuous-time version compared to the discrete-
time one.

• The effect of delay (or lag effect) is less significant than in the discrete-time frame-
work. By spreading simultaneous jumps in small time intervals, we make last infor-
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mation used for filtering fresher than it actually is. This fictive operation, however,
improves the predictions.

• We note that the discrete-time model struggles to capture brief and brutal variations.
As we observed in Section 6.2, continuous-time filtering approach has the advantage
of assimilating jumps one by one and of being more flexible and suitable to anticipate
sudden transitions. Since information is spread and distributed in fictive intervals,
the filter progressively assimilates information and is therefore quicker to adapt its
predictions.

Nevertheless we can see that this framework is not fully adapted to rating migrations. The
discrete version is easier and faster to compute: manipulations described in Section 5.2
increases considerably the number of time intervals to consider, the complexity and remains
laborious. Above all, the discrete model is more consistent with the data and finally,
provides predictions of a better quality. The continuous approach deals with continuous-
time Markov chains. Therefore it could be improved by using an EM algorithm which
estimates intensities directly. The effectiveness of this method would rather be highlighted
by filtering a continuous phenomenon, where observations cannot occur simultaneously and
exact occurrence dates are known. This intuition is confirmed by the following experiment.
We compute the R2 coefficient in the sample, to compare the forecasting power of the
considered predictive models. We keep a reference time step of 50 days. We respectively
compare the R2 of the constant generator intensity model, the univariate models, and the
multivariate discrete models and the continuous model in Table 3.14.

Table 3.14: R2 in the sample

A→ Baa Baa→ Ba Ba→ B B → C
Constant 0.463012 0.250668 0.483855 0.250514

Univ.Discrete 0.431184 0.346886 0.608684 0.22263515
Mult.Discrete 0.494395 0.479324 0.644975 0.367094

Mult.Continuous 0.2022 0.331062 0.49396 0.279736

We can directly notice that the multivariate discrete-time filter is the most accurate what-
ever the transition. The R2 of the continuous filter is closed to discrete filter for transitions
Baa to Ba and B to C but is lower for the transitions A to Ba, even lower than the R2

from the constant generator model. This phenomenons can be explained by the poorer
calibration achieved for the continuous-time filtering (for a sake of rapidity) and the incon-
sistency with the format of the data. The adapted continuous-time version can be applied
to rating transitions framework and provides satisfactory predictions but can not reach the
performance of the discrete-time version. Note that, in the univariate case, each transition
has its specific model.
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8 Conclusion of the Chapter

In this chapter, we present two filtering frameworks, respectively in a discrete-time and in
a continuous-time setting. We adapt the filtering frameworks applied to Markov chains, to
the context of rating migrations. For both approaches, we assume that rating transitions
in a pool of obligors are driven by the same systematic hidden factor. The two alternatives
are studied and compared. We discussed calibration issues and compared the predicted
future rating transition probabilities on fictive and real data.
As illustrated in Sections 6 and 7, our methodology provides predictors adapted to the
evolution of the economical cycle. We believe that our approaches can be used for PIT-
estimations of transitions and detection of regimes. During crisis periods, our models are
able to predict higher downgrade probabilities. Compared to other PIT-estimation mod-
els, our approaches base their predictions on the business cycle without concern of macro
economic factors. From a practical point of view, our approaches also have the advantage
to be interpretable. Observing the risk profile of each state and their filtered trajectories
allows us to better understand the dynamics of the economic cycle as well as its systematic
effect on rating migrations.
However, both approaches cannot capture idiosyncratic information: indeed Schwaab et al.
(2017) found that only 18% to 26% of global default risk variation is systematic while the
reminder is idiosyncratic. The share of systematic default risk is higher (39% to 51%) if
industry-specific variation is counted as systematic.
In addition, applying the continuous framework to discrete time data is tedious and presents
a risk of altering information and the quality of predictions. Since its complexity is much
more important, the execution results of the continuous-time algorithm is very slow. There-
fore, it suffers from poorer calibration than the discrete-time version. Thanks to the adap-
tations presented in Section 7.3, the continuous-time version is able to provide satisfactory
predictions but can not reach the performances of the discrete-time model. For these rea-
sons, the discrete-time approach turns out to be more adapted and efficient for the context
of rating migrations.

Several improvements could be made to our framework. Both models could consider
additional idiosyncratic observable factors as in Koopman et al. (2008). Moreover, the
continuous-time framework could be improved by using an EM algorithm which estimates
continuous time parameters directly (as, e.g., in Damian et al. (2018), Liu et al. (2017) and
Nodelman et al. (2012)). This algorithm will still have to deal with simultaneous jumps
and be computationally tractable. Furthermore, many studies show that rating migra-
tions’ dynamics first exhibit a non-Markovian behavior (migration data exhibit correlation
among rating change dates, known as “rating drift”, contagion effect, . . . ) that cannot
be captured by our models. The integration of these effects may represent a subject of
reflection. Finally, the general derived filtering formulas could be applied to the context of
rating migrations, possibly driven by non-Markovian hidden process. These considerations
are left for future researches.
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Conclusion of the part

In this part, we have introduced fundamental concepts in credit risk and provided a sum-
mary of the regulatory developments over the past 20 years regarding the role of credit
ratings in estimating banks’ regulatory capital. Specifically, we have emphasized the PIT
property requirements for modeling rating migrations. The two main families of Point-in-
time rating models have been described, distinguishing between whether the factors are
observable or not and highlighting the limitations of each approach. This review of the
existing literature and regulation has introduced our contribution to this field. We have
developed an intensity-based factor migration model where transitions are driven by a
common unobservable Markov chain. This approach has been developed for both discrete
and continuous-time settings. We have demonstrated how to adapt the Baum-Welsh algo-
rithm to calibrate model parameters based on past rating transition history and we have
shown that the common factor can be estimated recursively using a filtering formula. Both
approaches have been demonstrated to fit empirical transition probability dynamics very
well, on both fictive and real datasets. This comparison reopens the debate about whether
to use a continuous or discrete-time setting in modeling. While continuous-time modeling
may better respect the underlying information, it is important for the user to prioritize
compatibility with the format of the input data. In both settings, this model is a promis-
ing alternative to the popular approaches described earlier in this chapter, as it provides
estimation of point-in-time migration rating probabilities without using any covariates. It
is also tractable and does not require strong assumptions. Moreover, the model is inter-
pretable and can be a useful tool for experts, as well as for detecting downturn periods and
building stress test scenarios. However, the model is unable to account for idiosyncratic
risk, which represents a significant loss of information. Overall, the choice of modeling
approach depends on the specific needs and objectives of the investor or institution. It
may be appropriate to use a combination of both structural and intensity models, as well
as observable and unobservable factors, to achieve the best possible predictions of rating
migration.
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Part II

PORTFOLIO ALLOCATION
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Chapter 4
Portfolio allocation: a review of methods

In this chapter, we provide an overview of the portfolio allocation environment
and the approaches commonly employed. We distinguish static and dynamic
strategies and delve into the reason why investors may choose one method over
another.

Abstract

Contents
1 Static portfolio allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
2 Multi-period portfolio allocation . . . . . . . . . . . . . . . . . . . . . . . . . 94

1 Static portfolio allocation

We define the probability space (Ω,A,F = (Fn)n∈[0,1],P) . We study the problem of
portfolio allocation for a single time period. An investor with initial wealth V0, aims to
find a strategy of allocation at date t = 0 between d risky assets S = (S1, . . . , Sd) and a
risk free asset S0 which maximizes the expected utility of wealth at a terminal date t = 1.
Let R = (R1, . . . , Rd), denotes the vector of rate of returns of risky assets. Let µ = E[R]
and Σ = E

[
(R− µ)(R− µ)T

]
= [ρi,jσ̂iσ̂j]1≤i,j≤d be the the vector of expected returns and

the covariance matrix of risky asset returns. Let R0 = µ0, denotes the rate of return of the
risk free asset and R̄ = {R0, . . . , Rd}, µ̄ = E[R̄], denote the augmented vectors R and µ
with the risk free asset. Let V be the portfolio value at the final date t = 1. We define (α,
α0) ∈ Rd × R, the respective risky and risk free asset quantities hold by the investor, and
equivalently (x, x0) ∈ Rd×R, the proportion of the portfolio value invested respectively in
the risky and risk free assets.
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1.1 An Overview of Methods

In the endeavor to identify an investment strategy, an investor must navigate through an
environment that is inherently characterized by uncertainty. In addition, the chosen strat-
egy should fit with its profile and its financial goal.
There exist various approaches to pursue strategies that align with the investor’s pref-
erences. Among the commonly employed methods is the maximization of the investor’s
utility. Utility functions measure the level of satisfaction of an investor for different levels
of its wealth. They are twice differentiable and monotone increasing. The second deriva-
tive determines the profile of the agent. If the utility function is convex, the agent exhibits
risk-seeking behavior. Conversely, a concave utility function indicates risk aversion in the
agent. Absolute and relative risk aversions are important concepts in the field of finance
and economics. They are measures of an individual’s willingness to take risks when making
investment decisions. Given a utility function U , the absolute risk aversion (Ab) and the
relative risk aversion (Re) are defined as follows

Ab(V ) =
U

′′
(V )

U ′(V )
and Re(V ) = V

U
′′
(V )

U ′(V )
.

If the investor experiences an increase in wealth, he or she will choose to increase (or keep
unchanged, or decrease) the money in the risky assets held in the portfolio if absolute risk
aversion is decreasing (or constant, or increasing). Similarly, if the investor experiences an
increase in wealth, he or she will choose to increase (or keep unchanged, or decrease) the
proportion of the portfolio held in the risky assets if relative risk aversion is decreasing (or
constant, or increasing).
The investor selects a financial portfolio that maximizes its utility function, or alternatively,
minimizes its risk measure. Formally, the investor with utility U aims to solve

sup
α,α0∈Rd×R

E[U(V )]. (4.1)

This section provides an overview of the existing portfolio allocation methods.

1.1.1 HARA utility

We say that a utility function U exhibits hyperbolic absolute risk aversion (HARA) if it
can be expressed in the form

U [V ] =
1− γ

γ

(
aV

1− γ
+ b

)
, a > 0,

aV

1− γ
+ b > 0. (4.2)

The HARA utility function exhibits decreasing absolute risk aversion. Noteworthy HARA
utility functions include the quadratic utility functions, CRRA utility functions, the expo-
nential and log utility functions.
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1.1.1.1 CRRA Utility

The Constant Relative risk Aversion (CRRA), also known as Power utility function, has
the same level of relative risk aversion for every level of wealth. It takes the following form

U [V ] =

{
V 1−γ

1−γ
, γ > 0, γ ̸= 1

lnV, γ = 1
(4.3)

The CRRA utility function has several important properties that make it a useful tool for
modeling economic behavior. The CRRA utility function is a concave function and is a
normalized function, which means that it is scaled in such a way that the utility of a person
with zero consumption is zero.

Remark 18. CRRA utility functions illustrate the difference between the dynamic and my-
opic (single-period) portfolio choice. If asset returns are independent, solving the multi-
period allocation problem is equivalent to sequentially solve the uni-period one (see Brandt
et al. (2005)).

1.1.1.2 Exponential utility

An investor with an exponential utility U of parameter γ, aims to maximize

U [V ] = −γe−γV . (4.4)

The exponential utility function exhibits constant absolute risk aversion, indicating that
individuals are equally risk-averse across all levels of wealth.

1.1.2 Markowitz mean-var portfolio

In the famous Markowitz mean-var approach, investors are assumed to be risk averse,
meaning that given two portfolios that offer the same expected return, investors will prefer
the less risky one. An investor will take on increased risk only if compensated by higher
expected returns. Conversely, an investor who wants higher expected returns must accept
more risk. The risk-reward trade-off is not the same for all investors, depending on their
own individual risk aversion characteristics. In contrast with previous models, the objective
function for obtaining the Markowitz mean-variance portfolio does not write an expected
utility of wealth, E[U(V )]. Indeed, the objective function aims to capture the balance
between risk and reward. As a result, the satisfaction of the investor is not solely based on
the final wealth, but also on the distribution of wealth. There are various ways to express
an individual’s risk aversion. One common method is to use a parameter, denoted by γ,
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such that an agent with risk aversion γ aims to maximize

sup
x

µ̄Tx− γxTΣx

s.t.
d∑

i=0

xi = 1
(P1(γ))

The risk aversion can also be translated into a return constraint (P2(ρ)) or a variance
constraint (P3(η)).

inf
x

xTΣx

s.t.
d∑

i=0

xi = 1

µ̄Tx = ρ

(P2(ρ))

sup
x

µ̄Tx

s.t.
d∑

i=0

xi = 1

xTΣx = η

(P3(η))

We refer to Roncalli (2013) and Steinbach (2001) for details on this approach.

Let’s first solve the mean-var allocation problem when the agent cannot invest in the
risk free asset. The problem becomes

sup
x

µTx− γxTΣx

s.t.
d∑

i=1

xi = 1
(P0(γ))

We deduce the Lagrange function L(x, λ) = xTµ − γxTΣx − λ(1Tx − 1). The first order
conditions are {

dxL(x, x0, λ) = µ− 2γΣx− λ1 = 0
dλL(x, x0, λ) = −1Tx+ 1 = 0

The solution is given by{
x⋆ = Σ−11

1TΣ−11
+ (1TΣ−11)Σ−1µ−(1TΣ−1µ)Σ−11

2γ1TΣ−11

λ⋆ = 1TΣ−1µ−2γ
1TΣ−11
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By calling A = (1TΣ−11)(µTΣ−1µ)− (1TΣ−1µ)2 and
B = (µTΣ−1µ)(1TΣ−11)2−(1TΣ−1µ)2(1TΣ−11), we obtain the form of the efficient frontier

Var[V ⋆] =
B

A2

(
E[V ⋆]− µTΣ−1µ

1TΣ−11

)2

+
1

1TΣ−11
.

The feature of this efficient frontier is represented by the blue curve in Figure 4.1.

Now let’s return to the general case, where the agent can invest in the risk-free asset.
We propose to solve (P1(γ)). We note that the problem can be written as

sup
x

xTµ+ x0µ0 − γxTΣx

s.t. 1Tx+ x0 = 1

We deduce the Lagrange function L(x, x0, λ) = xTµ + x0µ0 − γxTΣx − λ(1Tx + x0 − 1).
The first order conditions are

dxL(x, x0, λ) = µ− 2γΣx− λ1 = 0
dx0L(x, x0, λ) = µ0 − λ = 0
dλL(x, x0, λ) = −1Tx− x0 + 1 = 0

The solution is then 
x⋆ = 1

2γ
Σ−1(µ− µ01)

x⋆,0 = 1− 1
2γ
1TΣ−1(µ− µ01)

λ⋆ = µ0

Let’s consider the portfolio xT = Σ−1(µ−µ01)
1TΣ−1(µ−µ01)

. The solution can be rewritten as
x⋆ = αxT

x⋆,0 = 1− α
α = 1

2γ
1TΣ−1(µ− µ01)

The optimal portfolio is the composition of a risky portfolio xT and the risk free asset.
Note that the risky portfolio is independent of the risk aversion. We deduce that the risk
aversion only fixes the proportions between the risk free asset and a risky portfolio. The
expectation and standard deviation of the optimal portfolio can be expressed as

E[V ⋆] = µTx⋆V0 + x⋆,0µ0V0 = α(µTαxTV0) + (1− α)µ0V0,

Var[V ⋆]
1
2 =

√
(x⋆)TΣx⋆V0 = αV0

√
xT
TΣxT .
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Then the Sharpe ratio of the optimal portfolio is

Sharpe[V ⋆] =
E[V ⋆]− µ0V0

Var[V ⋆]
1
2

=
µTxT − µ0√

xT
TΣxT

=
√
(µ− µ01)TΣ−1(µ− µ01).

We notice that the Sharpe ratio of the optimal portfolio is equal to the Sharpe ratio of
the portfolio xT . In addition, it is independent of the risk aversion. The risky portfolio xT

is the optimal portfolio for a risk aversion γ = 1
2
1TΣ−1(µ − µ01), where there is no cash

invested in the risk free asset. This portfolio is called the Tangency portfolio. It belongs
to the efficient frontier of the mean-var problem in absence of risky free asset. It has
the highest Sharpe ratio on that efficient frontier. Figure 4.1 illustrates the relationship
between optimal portfolios and risk aversion, by presenting the features of the efficient
frontiers. Three portfolios stand out as particularly noteworthy: the Maximum Return
Portfolio, the Minimum Variance Portfolio, and the Tangency Portfolio. The two first
portfolios are efficient only when a risk-free asset is not available, while the Tangency
Portfolio is efficient in both cases. It is also noteworthy that the efficient frontier with a
risk-free asset is represented by a straight line with a slope equal to the Sharpe ratio.

Figure 4.1: Efficient frontier and Tangency portfolio

Remark 19. When the market is at equilibrium, the Tangency portfolio is equal to the Mar-
ket portfolio. The Market portfolio is a diversified portfolio that contains all assets in
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the market, weighted according to their market value. The Capital Asset Pricing Model
(CAPM) uses the Market portfolio as a key component to estimate expected returns on
individual assets and the overall market.

By similar techniques, we can solve (P2(ρ)) and (P3(η)). The optimal solution being unique,
we can equalize the solutions, to express an equivalence between the risk aversion and the
minimum expected return ρ in (P2(ρ)) and the maximum level of risk η in (P3(η)).

Proposition 20. Problems (P1(γ)) and (P2(ρ)) are equivalent if and only if
ρ = µ0 + (µ−µ01)TΣ−1(µ−µ01)

2γ
.

Proposition 21. Problems (P1(γ)) and (P3(η)) are equivalent if and only if
η = (µ−µ01)TΣ−1(µ−µ01)

4γ2 .

1.1.3 Popular objective functions and portfolios

In this section, we present other strategies of allocation commonly used by professionals.
Table 4.1 summarizes the objective functions related to these strategies. Besides the mean-
variance optimized portfolio (MVO) and (HARA) utility functions, we find basic allocation
methods as, the equal weight portfolio (EWP), the inverse volatility portfolio (IVOP) and
the inverse variance portfolio (IVAP). We also find more sophisticated approaches as the
global minimum variance portfolio (GMVP), the maximum decorrelation portfolio (MDP),
the maximum diversified portfolio (MDPC), the equal risk contribution portfolio (ERC),
the risk budgeting portfolio (RB). We refer to Roncalli (2013) for the proper definition
of R, a convex and coherent risk measure and RB, the vector of risk budgets. We also
include the (KL) portfolio, based on the Kullback-Leibler (KL) information criteria.

Table 4.1: Summary of popular objective functions

Name Form Reference

MVO µ̄Tx− γxTΣx Markowits (1952)
EWP 1

d

∑d
i=1 lnx

i Maillard et al. (2010)
IVOP

∑d
i=1 σ̂i lnx

i Shimizu and Shiohama (2020)
IVAP

∑d
i=1 σ̂

2
i lnx

i Arévalo et al. (2019)
GMVP 1

2x
TΣx Clarke et al. (2011)

MDP 1
2x

T ρx Errunza et al. (2010)
MDPC ln (

√
xTΣx)− ln (xT σ̂) Choueifaty and Coignard (2008)

ERC 1
2x

TΣx− λ
∑d

i=1 lnx
i Maillard et al. (2010)

RB R(x)− λ
∑d

i=1RBi lnx
i Roncalli (2013)

KL
∑d

i=1 xi ln (
xi

xi
0
) Bera and Park (2008)
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The Equal Weight Portfolio (EWP) strategy involves distributing wealth equally among
assets in the portfolio, assigning the same weight to each asset and ensuring that every asset
has the same level of importance. Formally, the weights are given by ∀i ∈ {1, . . . , d}, xi =
1
d
. This approach expresses the view that market returns are totally random, with no

avaible information. The Equal-Weighted Portfolio (EWP) is only considered optimal
when there is no relationship between expected return and risk. In an extreme scenario
where assets have the same expected return, volatility, and homogeneous correlations, this
approach can be effective. This naive methods offers the advantage of totally ignoring of
estimation errors and market information.

Inverse volatility (IVOP) and respectively inverse variance (IVAP) provides an optimal
portfolio weighted in proportion to the inverse of the assets’ volatilities, respectively to the
inverse of the assets’ variances. The weights of the inverse volatility and inverse variance
portfolio are given by

∀i ∈ {1, . . . , d}, xi(IV O) =
1
σ̂i∑d
j=1

1
σ̂j

, xi(IV A) =

1
σ̂2
i∑d

j=1
1
σ̂2
j

.

This approach makes the volatility, respectively the variance, of each weighted assets equal
to 1

d
. These methods ignore the assets correlations.

The global minimum variance portfolio (GMVP) seeks the allocation which provides the
risk-less portfolio. In a scenario where assets have identical expected return , the (GMVP)
would be completely efficient. Nevertheless, a global low variance implies low chances of
profit. The strategy of this portfolio is defensive and aims to be resilient in the wake of
financial crisis rather than making profit.

The most diversified portfolio (MDP) aims to maximise the diversification ratio (DR)
defined by

DR =
xT σ̂√
xTΣx

.

This approach tends to invest in assets that are individually risky but less sensible to con-
tagion effect in the portfolio. This approach may be relevant if the market is assumed to be
risk-efficient, meaning that investments will generate returns in proportion to their total
risk as measured by volatility. In this scenario, (MDP) approach maximizes the Sharpe
ratio.

The maximum decorrelation portfolio (MDCP) is closely related to (GMVP) and (MDP),
but applies to the case where the investor believes that all assets have similar returns
and volatility, but heterogeneous correlations. This approach involves applying a Mini-
mum Variance optimization to the correlation matrix rather than the covariance matrix.
The diversification ratio (DR) is maximized when all assets have the same volatility. The
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Sharpe ratio (SR)is maximized when all the assets have the same volatility and the same
expected return.

The equal risk portfolio (ERC) is satisfied when each asset contributes equally to the port-
folio’s overall volatility. We define the marginal risk contribution of asset i ∈ {1, . . . , d}
as ∂σ̂(x)

∂xi . Then the risk contribution in the portfolio of asset i is RCi = xi ∂σ̂(x)
∂xi = xi [Σx]i√

xTΣx

(see Roncalli (2013)). This approach aims to equalize the values (RCi)i∈{1,...,d}, ie ∀i, j ∈
{1, . . . , d}, xi[Σx]i = xj[Σx]j. As a result, the solution can be found by numerically
minimizing

∑d
i,j=1 (xi[Σx]i − xj[Σx]j)

2 (see Maillard et al. (2010), Mausser and Romanko
(2014)). An equivalent alternative approach, proposed by Maillard et al. (2010), consists
in minimizing the objective function presented in Table 4.1. The (ERC) portfolio does not
require the investor to express a view on future expected returns. Note that the equal risk
portfolio is a compelling balance between the equal portfolio and the minimum variance
portfolios. It is also noteworthy that this approach can be extended to other risk measures.

The risk budgeting allocation (RB) is an extension of the (ERC). It consists in finding
the portfolio such that risk contributions match with fixed risk budgets, (RBi)i∈{1,...,d}, ie
∀i ∈ {1, . . . , d}, RCi = RBi. The main objective of this allocation method is not to maxi-
mize performance, but rather to ensure that the portfolio is diversified enough to cover the
risk according to pre-determined budget constraints.

We present in the following figure, an example of decision tree, extracted from asset man-
agement (2015). This tree aims to illustrate the procedure that can be followed by investors
to choose their approach, according to the information and views they have on the market.
This tree illustrates the decision-making process that an agent may undergo when selecting
an approach. The governing principle is investors’ perspectives on the market. If investors
have insights on both returns and volatilities, the mean-variance approach is the natural
preference. When investors’ views are limited to volatilities alone, the chosen approach
will be determined by the kind of risk the investors believe will be rewarded by the mar-
ket. In absence of views on volatilities but with insights on correlation, the investors seek
decorrelating their portfolio. When investors have no view on the market, choosing the less
sensitive portfolio, the equally-weighted portfolio is the recommended choice. Opting for a
sophisticated approach that is highly sensitive to input parameters can lead to poor out-
comes if there are significant errors in the estimation of these parameters. Investors should
assess their confidence in the input parameters and choose their approach accordingly.
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Figure 4.2: Decision tree for portfolio allocation method

1.1.4 Black-Litterman model

In this section we briefly present the concept the formalisation of Black-Litterman alloca-
tion approach. More details can be found in Satchell and Scowcroft (2000).
It was developed by Fischer Black and Robert Litterman in the early 1990s (see Black and
Litterman (1992)).
Black-Litterman allocation is a powerful asset allocation technique that can help investors
to incorporate their views and beliefs into the investment process. It is a valuable tool for
investors seeking to build portfolios that are aligned with their investment objectives and
risk tolerance. Indeed, while modern portfolio theory is an important theoretical advance,
its application has universally encountered a problem: although the covariances of a few
assets can be adequately estimated, it is difficult to come up with reasonable estimates of
expected returns. Black–Litterman’s model overcomes this problem by not requiring the
user to input estimates of expected return. The investor begins by specifying their views
on the expected returns of certain assets. These views are often based on fundamental
analysis, macroeconomic factors, or technical analysis.
The contribution of Black-Litterman model was to place this problem into a tractable
form with a prior distribution that was both sensible and communicable to investors. In
the Black-Litterman model, the CAPM equilibrium distribution is the prior, the investor’s
views are the additional information.
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Remark 22. In the CAPM, the expected excess return of asset i is given by

∀i ∈ {1, . . . , d}, Πi = µi − r = βi (E[Rm]− r) ,

where Rm is the return return on the global market, or the return of the market portfolio,
βi =

Cov[Ri,Rm]
Var[Rm]

, the sensitivity of the expected excess asset returns to the expected excess
market returns. The Market portfolio is a portfolio consisting of a weighted sum of every
asset in the market, with weights in the proportions that they exist in the market. We
denote as xm the weights of assets on the global market, determined by they market values.
Algebraically, assuming the validity of the CAPM,

Π = δΣxm,

where δ = (E[Rm]−r)
Var[Rm]

is a positive constant. δ can be interpreted as the risk aversion param-
eter representing the world average risk tolerance.

In an equilibrium state, the market portfolio is held collectively by all investors. The
equilibrium expected excess return Π, is such that if all investors hold the same view and
invest in a CAPM-type world, the demand for these assets exactly equals to the outstanding
supply and Π represents the equilibrium returns conditional upon the individuals’ common
beliefs. We then assume that the equilibrium excess return conditional upon individual
views equals the individual views on average. (Π|µ) ∼ N(µ, tΣ), where t is a scalar
indicating the uncertainty of the CAPM prior.
The investor has a set of K beliefs represented as linear relationships. Let P = (P1, . . . , PK)
representing these relationships. We denote as Q = (Q1, . . . , QK) the views on returns of
P . We assume that Pµ ∼ N(Q,J). For 1 ≤ i ̸= j ≤ K, Jij is the covariance between the
view i and the view j. Jii traduces the degree of confidence of the investor in the view i.
CAPM equilibrium and views can be combined in

f(µ|Π) ∝ f(Π|µ)f(µ),

where f(.) means probability density function. f(µ|Π) is the combined return or posterior
forecast given the equilibrium information, f(µ) is the prior probability function of prior
views of the investor, f(Π|µ) is the conditional excess return equilibrium given the views
of investors. We can deduce that (µ|Π) ∼ N(µ̂, Σ̂), where{

µ̂ = [(tΣ)−1 + P TJ−1P ]−1[(tΣ)−1Π+ P TJ−1Q]

Σ̂ = [(tΣ)−1 + P TJ−1P ]−1

We can then solve the mean-var allocation problem (P3(η)) with parameters (µ̂, Σ̂).
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1.2 Allocation Constraints

This section provides a brief overview of the prominent constraints encountered in portfolio
allocation management. We refer the reader to Perrin and Roncalli (2020).

Table 4.2: Constraints in portfolio allocation

Name Form

No cash and leverage
∑d

i=1 x
i = 1

No short selling xi ≥ 0
Weight bounds xi

− ≤ xi ≤ xi
+

Asset class limits τ j− ≤
∑

i∈Cj
xi ≤ τ j+

Turnover
∑d

i=1 |xi − xi
0| ≤ τ

Transaction cost
∑d

i=1 c
+(xi − xi

0)+ + c−(xi − xi
0)− ≤ τ

Leverage limit
∑d

i=1 |xi| ≤ τ

Long short exposure τ− ≤
∑d

i=1 x
i ≤ τ+

Number of active bets (xTx)−1 ≥ τ

Benchmark
√

(x− y)TΣ(x− y) ≤ τ

Tracking error floor
√
(x− y)TΣ(x− y) ≥ τ

Active share floor 1
2

∑d
i=1 |xi − yi| ≥ τ

Portfolio management involves numerous constraints that are often applied to ensure that
portfolios remain within acceptable risk and investment parameters. One well-known con-
straint in portfolio management is the no-short selling which forbids short positions. Weight
bounds and asset class limits are also extensively used by professionals. Turnover man-
agement is another common constraint, which limits an investor’s ability to reverse his
positions. Managing long/short portfolios often involves imposing leverage or long/short
exposure limits. Diversification is also an important aspect of portfolio management, with
the number of active bets or the inverse of the Herfindahl index commonly used to monitor
it. For benchmarked strategies, a tracking error limit with respect to the benchmark y
can be imposed. A minimum tracking error or active share can also be required for active
management.

1.3 Transaction and position costs

This section provides a brief overview of the prominent costs encountered in portfolio
allocation management. For further details, the reader may consult Perrin and Roncalli
(2020).
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1.3.1 Broker commission

When trades are executed through a broker, the agent can be charged a commission for
carrying out the trade on its behalf. We found fixed cost and proportional costs, propor-
tional to the total trade volume. The agent pays the costs every time he rebalances its
portfolio.

C =
d∑

i=1

νi
buy(x

i − xi
0)

+V0 + νi
sell(x

i − xi
0)

−V0 + νf1{x ̸=x0}. (4.5)

We can also find the simplified form when νi
buy = νi

sell,

C =
d∑

i=1

νi|xi − xi
0|V0 + νf1{x ̸=x0}. (4.6)

Integrating transaction costs into models can often be challenging due to the form of the
terms involved.

1.3.2 Bid-ask spread

The price at which one buys and sells assets are different. If the mid-price is used as
reference for determining the allocation strategy, it can result into an error that may be
offset by incorporating extra transaction costs as

C =
d∑

i=1

κi|xi − xi
0|V0.

where κi is one half the bid-ask spread for asset i.

1.3.3 Price impact

When a large order is filled, the price moves against the trader as orders in the book are
filled. This is known as price impact. A widespread way for modeling this impact uses
a general convex piecewise linear transaction costs, which models the depth of the order
book at each price level. For instance, the following transaction costs can be used

C =
d∑

i=1

(αiS
i)2Si.
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2 Multi-period portfolio allocation

The aim of this section is to introduce the dynamic allocation problem. A general problem
formulation is presented, followed by a detailed discussion of specific cases and commonly
used techniques.

2.1 General formulation

Rather than simply buying and holding a fixed set of investments, dynamic portfolio allo-
cation relies on investment strategies which adjust the portfolio composition over time in
response to changes in economic conditions, market trends, or other relevant factors. The
frequency of the adjustments depends on the specific strategy and the investment horizon.
Some strategies may involve more frequent adjustments, such as monthly or quarterly,
while others may be adjusted annually or even less frequently. The goal is to capture
market opportunities and adjust the portfolio’s risk exposure to achieve the desired risk
and return objectives while respecting investors’ preferences and realistic constraints.

We consider a time interval [0, T ] and for N ∈ N, N > 0, we introduce the discrete-
time grid 0 = t0 < t1 < · · · < tN = T . We define the filtered probability space
(Ω,A,F = (Fn)n∈[0,N ],P) . Let (Θn)n be a discrete time process adapted to the filtra-
tion F . For k, n ∈ N, k < n, we write Θk:n = (Θk,Θk+1, . . . ,Θn−1,Θn). Let ∆ be the
operator which associates to Θn, ∆Θn = Θn − Θn−1. Let Diag be the operator which

associates to the vector (Θ1
n, . . . ,Θ

i
n), the matrix

Θ
1
n

. . .
Θi

n

.

We consider a portfolio V of initial wealth V0, composed of d risky assets S = (S1, . . . , Sd)
and a risk free asset S0. An investor, with utility U , can re-allocate its portfolio V at dis-
crete times (t1, . . . , tN). We define (αn, α0

n)n∈{1,N}, the respective risky and risk free asset
quantities. (αn, α0

n)n∈{1,N} are assumed to be F -predictable. We associate (xn, x0
n)n∈{1,N},

the proportion of wealth invested respectively to the risky and risk free assets in the port-
folio. At time 0, we assume that the owner has all its wealth in cash, ie α0

0S
0
0 = V0 and

∀i ≥ 1, αi
0 = 0. We denote R = (R1, . . . , Rd) as the vector of risky asset returns and R0

the risk free asset return such that ∀i ∈ {0, . . . , d}, n ∈ {1, . . . , N}, Ri
n = Si

n

Si
n−1

. In this
section, we assume that {Rn, n ≤ N} are independent random (vector) variables, with
known distributions

µn = E[Rn] and Σn = E
[
(Rn − µn)(Rn − µn)

T
]
= [ρijn σ̂

i
nσ̂

j
n]1≤i,j≤d.

We denote as R̄ = {R0, . . . , Rd} and S̄ = {S0, . . . , Sd}, the completed vectors R and
S with the risk free asset with associated parameters (µ̄n)n and (Σ̄n)n. Let’s consider
{Ln, 1 ≤ n ≤ N}, a set of investment constraints. These constraints may take the form
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of those presented in Section 1.2. We denote Cn, the set of Fn−1-adapted random variables
which verifies the constraints Ln.
An investor is seeking the best investment strategy (αn, α0

n)n∈{1,N}, such that the expected
value of its utility wealth, E[U(VN)], is maximal. Let T , be a deterministic function
describing the evolution of the portfolio value such that

Vn+1 = T (Vn, V0:n−1, αn+1, α0:n, Sn+1, S0:n). (4.7)

The dynamic allocation problem can be formulated as

sup
α1,...,αN

E[U(VN)]

s.t. V0 = V0, (α0
n, αn)n F − Pred

∀1 ≤ n ≤ N − 1, Vn+1 = T (Vn, V0:n−1, αn+1, α0:n, Sn+1, S0:n),

αn+1 ∈ Cn

(EU)

2.2 General dynamic programming equation

Dynamic programming is a powerful mathematical technique used in economics and finance
to optimize decision-making in situations where decisions made today will have an impact
on future outcomes. Dynamic programming comes into play by breaking down the multi-
period problem into a series of smaller, simpler sub-problems. The key idea is to solve
the problem backwards, starting with the final period and working backwards to the first
period. This approach, known as backward induction, allows in our case, the investor to
determine the optimal portfolio allocation for each period, given their expectations about
future returns and risks, and then use that information to make decisions in the preceding
periods. One important aspect of dynamic programming is the concept of the state variable.
In multi-period portfolio allocation, the state variable represents the information that
investors have at each date, such as the current portfolio composition and the realized
returns of the assets. The state variable is used to define the sub-problems that must be
solved at each period, and it enables investors to take into account the impact of their
decisions on future outcomes. Another key element of dynamic programming is value
functions. Value functions represent the expected maximum objective value that can be
achieved starting from a given state variable. By solving the backward sub-problems,
investors can derive a value function for each period and use it to determine the optimal
portfolio allocation for that period.
We can rewrite the problem (EU) with backward equations and value functions. We recall
that (Rn+1) is independent of Fn. The state variable at time n ∈ {0, . . . , N} is composed
of the history of wealth, positions and assets returns: {Vk, αk, Sk, k ≤ n}. The problem

95



can be expressed with value functions (bn)1≤n≤N such that ∀n {1, . . . , N},

bn(Vn, V0:n−1, α
′
, α

′

0:n−1, Sn, S0:n−1)

=

{
U(VN), if n = N,

sup
αn+1=α ∈Cn

E
[
bn+1

(
T (Vn, V0:n−1, α, α

′
0:n, Sn, S0:n), α, α

′
0:n,Diag(Rn+1)Sn, S0:n

)]
.

The above formulation does not necessarily imply that the problem can be solved efficiently
in a backward fashion. The transition function may be complex, and the large number of
state variables can create issues of complexity. Estimating the value functions for all state
variables can become computationally infeasible, resulting in an unmanageable number of
maximizations to be performed.

2.3 Finding optimal solutions

Finding optimal solutions to (EU) either by explicit derivation or numerical computation
is only feasible in a few limited cases. The goal of this section is to present some of these
cases.

2.3.1 Quadratic case

The quadratic case is a special case where (EU) can be solved explicitly. We assume that
the utility function U is concave quadratic in VN and the position are submitted to linear
constraints. We assume that the portfolio is self financing such that

∀ 0 ≤ n ≤ N − 1, Vn = αn+1 · Sn + α0
n+1S

0
n.

For n ≤ N − 1, we denote as un+1 = ((αi
n+1 − αi

n)S
i
n)i∈{0,...,d} and vn = (αi

nS
i
n)i∈{0,...,d}, the

respectively amount of money invested and the amount of money hold by the investor per
asset at time n. With these notations, we have ∀n ≤ N − 1, vn+1 = Diag(R̄n+1)(un+1+ vn)
and ∀n ≤ N , 1 · vn = Vn. For n ≤ N − 1, let’s call the space Ĉn, such that un+1 ∈ Ĉn ⇐⇒
αn+1 ∈ Cn. The dynamic equations of the problem writes

bn(vn) =

{
U(1 · vN), if n = N

sup
un+1=u ∈Ĉn

EP

[
bn+1

(
Diag(R̄n+1)(u+ vn)

)]
.

By induction, we show that bn is concave quadratic. The function bN is concave quadratic
in vN by assumption. We assume that bn+1 is concave quadratic. The function u →
Diag(R̄n+1)(u + vn) is monotone increasing so bn+1

(
Diag(R̄n+1)(u+ vn)

)
is concave in u.

Expectation and partial maximisation on u under linear constraints, conserve concavity
and quadratic form so bn is concave quadratic. Solving the dynamic problem is equivalent
to maximize for n ∈ {0, . . . , N − 1}, over u ∈ Ĉn, EP

[
bn+1

(
Diag(R̄n+1)(u+ vn)

)]
, which

96



is a maximisation of a concave quadratic function under linear constraints. According to
Boyd et al. (2013), ∃ Jn ∈ Rd+1×Rd+1, jn ∈ Rd+1 such that u⋆

n+1(vn) = Jnvn + jn. We can
then deduce the optimal solution

∀n ≤ N − 1, α⋆
n+1 = α⋆

n +Diag(S̄n)
−1u⋆

n+1.

Although we have an explicit solution, adopting a quadratic form for the utility is overly
limiting.

2.3.2 CRRA utility without cost without constraint

We consider here the case where the utility function is CRRA and the portfolio allocation
is unconstrained and not subject to transaction costs. We refer to Brandt et al. (2005) for
further details on this approach. The portfolio is self-financing, then ∀ n ≤ N − 1, Vn =
αT
n+1Sn + α0

n+1S
0
n. The transition function writes

Vn+1 = T (Vn, V0:n−1, αn+1, α0:n, Sn+1, S0:n) = Vn + αn+1 ·∆Sn+1 + α0
n+1∆S0

n+1. (4.8)

We can rewrite this equation in terms of rate of return.

Vn
Vn+1

Vn

= Vn

(
1 +

αn+1 · Sn+1

Vn

− αn+1 · Sn

Vn

+
α0
n+1S

0
n+1

Vn

−
α0
n+1S

0
n

Vn

)
= Vn(xn+1 ·Rn+1 + (1− xn+1)R

0
n+1).

By an immediate recurrence, we obtain

VN = V0

N−1∏
i=0

(
xi+1 ·Ri+1 + (1− xi+1)R

0
i+1

)
. (4.9)

With this form and using the independence of the rates of return we can compute the
value function under the following form. Please note that the inversion of the sup and
expectation operations performed in the subsequent derivation is highly technical to prove
and has little relevance to our main point. Hence, for the sake of clearness, we present here
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the formal derivation of the dynamic principle. ∀ n ≤ N − 1,

bn(Vn) = sup
xN ,...,xn+1

E

[
V 1−γ
N

1− γ
|Fn

]
= sup

xn+1

E

[
sup

xN ,...,xn+2

E

[
V 1−γ
N

1− γ
|Fn+1

]
|Fn

]

= sup
xn+1

E

 sup
xN ,...,xn+2

E


(
Vn

∏N−1
i=n

(
xi+1 ·Ri+1 + (1− xi+1)R

0
i+1

))1−γ

1− γ
|Fn+1

 |Fn


= sup

xn+1

En

[(
Vn

(
xn+1 ·Rn+1 + (1− xn+1)R

0
n+1

))1−γ

1− γ

]

× En

 sup
xN ,...,xn+2

(
N−1∏
i=n+1

(
xT
i+1Ri+1 + (1− xi+1)R

0
i+1

))1−γ


The second expectation of the product being independent with xn+1, we deduce that finding
the optimal multi-period strategy is equivalent to sequentially solve an uni-period allocation
problem. According to the dynamic of the rate of return R, it may be possible to compute
the optimal strategy explicitly or to use convex optimization algorithms to numerically
determine it.

2.3.3 Approximate Dynamic Programming

Using exact dynamic programming algorithm to solve (EU) is often computationally infea-
sible when the transition function is complex or in presence of constraints and transaction
costs, as it requires estimating value functions and controls for each state variable. Ap-
proximated dynamic programming (ADP) is an approach category that aims to streamline
the process. Formally, ADP techniques suggest to solve the problem by replacing the value
functions (bn)n or controls (αn)n with surrogate or approximate functions. The policy
should be easily evaluated and attain near optimal performance. For instance, the ap-
proach of ADP involves approximating the value or policy functions through the use of a
parametric function, such as a neural network or decision tree. A variety of methods can be
used to choose approximate value functions (see e.g., Bertsekas and Tsitsiklis (1996), Boyd
et al. (2013), De Farias and Van Roy (2003), Lincoln and Rantzer (2006), Powell (2007)).
A straightforward approach involves using the value function of the problem, which relaxes
constraints or ignores transaction costs. It is also common to use value functions issued
from sub-optimal strategies to run approximate dynamic programming. As described in
Section 2.3.1, a problem with quadratic value functions can be explicitly solved. That
explicit resolution motivates Boyd et al. (2013) to seek for a set of concave quadratic value
functions which closely underestimate the real value functions.

We decide here to focus on two examples of Approximate Dynamic Programming (ADP)
algorithms for solving multi-period allocation problems subject to transaction costs. The
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general form of these stochastic control algorithms is presented and described in Bachouch
et al. (2021) and Huré et al. (2021). In the first approach, control variables are represented
with neural networks. In the second approach, both control variables and value functions
are represented using neural networks.
We assume that the portfolio is self financing and submitted to transaction costs, then

Vn+1 = T (Vn, V0:n−1, αn+1, α0:n, Sn+1, S0:n)

= Vn + αn+1 ·∆Sn+1 + α0
n+1∆S0

n+1 −
d∑

i=1

ν|αi
n+1 − αi

n|Si
n.

In this framework, it is easier to work with the discounted processes.

Ṽn+1 = T̃ (Ṽn, Ṽ0:n−1, αn+1, α0:n, S̃n+1, S̃0:n) = Ṽn + αn+1 ·∆S̃n+1 −
d∑

i=1

ν|αi
n+1 − αi

n|S̃i
n.

We identify {Ṽn, S̃n, αn}, the state variable at time n. The control is αn+1. The follow-
ing proposed algorithm needs to explore the state variables at each iteration. Let M be
the number of trajectories for the exploration. We denote the set of trajectories for the
exploration as {V̄ (m)

n , S̄
(m)
n , ᾱ

(m)
n , m ≤M,n ≤ N}.

2.3.3.1 A stochastic control algorithm to solve portfolio allocation submitted
to transactions costs

In this framework, we choose to represent the controls with neural networks such that

α⋆
n+1(Ṽn, S̃n, αn) : (Ṽn, S̃n, αn)→ Φ(Ṽn, S̃n, αn, θ

⋆
n). (4.10)

Where θ⋆n is the neural network vector parameters. We solve the dynamic problem in a
backward fashion.
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Algorithm 1

Input: {V̄ (m)
n , S̄

(m)
n , ᾱ

(m)
n , m ≤M, n ≤ N}

Output: {α⋆
n, n ≤ N}

1: n← N − 1
2: while n ≥ 0 do
3: find θ⋆n solution of supθn

1
M

∑M
m=1 U(V̂

(m)
N S0

N)
4: with k=n
5: V̂

(m)
k+1 = V̄

(m)
k + ∆S̄

(m)
k+1 · Φ(V̄

(m)
k , S̄

(m)
k , ᾱ

(m)
k , θk) −∑d

i=1 ν|Φi(V̄
(m)
k , S̄

(m)
k , ᾱ

(m)
k , θk)− ᾱ

i,(m)
k |S̄i,(m)

k

6: with k ≥ n+ 1
7: V̂

(m)
k+1 = V̂

(m)
k +∆S̄

(m)
k+1 · (α⋆

k+1(V̂
(m)
k , S̄

(m)
k , α

⋆,(m)
k ))−

∑d
i=1 ν|α

i,⋆,(m)
k+1 − α

i,⋆,(m)
k |S̄i,(m)

k

8: set α⋆
n+1(Ṽn, S̃n, αn) = (Ṽn, S̃n, αn)→ Φ(Ṽn, S̃n, αn, θ

⋆
n).

9: n← n− 1
10: end while

2.3.3.2 Another stochastic control algorithm to solve portfolio allocation sub-
mitted to transactions costs

In this version, we do not project all the trajectories until the final date. We rather
approximate value functions with neural networks.

α⋆
n+1(Ṽn, S̃n, αn) : (Ṽn, S̃n, αn)→ Φ(Ṽn, S̃n, αn, θ

⋆
n). (4.11)

b⋆n(Ṽn, S̃n, αn) : (Ṽn, S̃n, αn)→ Ψ(Ṽn, S̃n, αn, ϵ
⋆
n). (4.12)
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Algorithm 2

Input: {V̄ (m)
n , S̄

(m)
n , ᾱ

(m)
n , m ≤M, n ≤ N} of {Ṽn, S̃n, αn}

Output:{α⋆
n, n ≤ N}

1: set b⋆N(ṼN) = U(ṼNS
0
N)

2: n← N − 1
3: while n ≥ 0 do
4: find θ⋆n solution to
5: supθn

1
M

∑M
m=1 b

⋆
n+1(V̂

(m)
n+1 , S̄

(m)
n+1, α

(m)
n+1) =

∑M
m=1 Ψ(V̂

(m)
n+1 , S̄

(m)
n+1,Φ(V̄

(m)
n , S̄

(m)
n , ᾱ

(m)
n , θn), ϵ

⋆
n+1)

6: with
7: V̂

(m)
n+1 = V̄

(m)
n + ∆S̄

(m)
n+1 · Φ(V̄

(m)
n , S̄

(m)
n , ᾱ

(m)
n , θn) −∑d

i=1 ν|Φi(V̄
(m)
n , S̄

(m)
n , ᾱ

(m)
n , θn)− ᾱ

i,(m)
n |S̄i,(m)

n

8: set α⋆
n+1(Ṽn, S̃n, αn) = (Ṽn, S̃n, αn)→ Φ(Ṽn, S̃n, αn, θ

⋆
n).

9: find ϵ⋆n solution to supϵn
1
M

∑M
m=1(b

⋆
n+1(V̂

(m)
n+1 , S̄

(m)
n+1, α

⋆,(m)
n+1 )−Ψ(V̄

(m)
n , S̄

(m)
n , ᾱ

(m)
n , ϵ⋆n))

2

10: set b⋆n(Ṽn, S̃n, αn) = (Ṽn, S̃n, αn)→ Ψ(Ṽn, S̃n, αn, ϵ
⋆
n).

11: end while

Both algorithms are designed to approximate an optimal strategy, but they can still be
computationally demanding. Additionally, these algorithms require an exploration of the
state space, which can be a challenging task. Indeed, the exploration phase should smartly
sample the state space or should have an idea of the form of the solution to avoid increasing
complexity or introducing a bias. In the next section, we described, another alternative
category of approach which seeks sub-optimal solutions.

2.4 Finding sub-optimal solutions

In multi-period portfolio allocation, sub-optimal strategies refer to approaches that do
not fully optimize portfolio allocation over the entire investment horizon. Instead, they
rely on simpler, more straightforward methods that may not account for all the relevant
information or market factors. While sub-optimal strategies may be less sophisticated than
optimal ones, they can still be effective in certain situations. Indeed sub-optimal strategies
may be favored over optimal strategies due to the complexity of the latter. For instance,
methods like stochastic control (as discussed in Section 2.3.3) can be time-consuming and
expensive to implement. Sub-optimal strategies may also be useful for investors who do
not have access to advanced analytical tools or who are not comfortable with more complex
investment strategies. We briefly present here, two popular sub-optimal strategies.
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2.4.1 Use of scenario trees

Scenario trees are a useful tool for finding sub-optimal solutions in multi-period portfolio
allocation. They involve creating a tree-like structure that represents the different possible
scenarios and outcomes that could occur over the investment horizon. To construct a
scenario tree, key factors that are likely to influence the investment outcomes, such as
economic indicators, market trends, or geopolitical events, are identified. Then, a set
of scenarios that capture the different ways these factors could play out over time, are
defined. For example, a scenario tree might include scenarios for a recession, a market
boom, or a geopolitical crisis. Next, probabilities are assigned to each scenario based on
their assessment of the likelihood of each outcome. These probabilities are used to weight
the potential returns and risks associated to each scenario. Finally, the scenario tree are
used to simulate different portfolio allocation strategies over the investment horizon. By
considering the potential outcomes for each scenario, investors can identify sub-optimal
strategies that are less complex and easier to implement than optimal solutions. Studies
using this approach can be found in Gennotte and Jung (1994), Steinbach (2001), and
Wang and Liu (2013). Building scenarios trees may also represent an useful tool for the
exploration phase of stochastic control approaches described in Section 2.3.3.

2.4.2 Model predictive control

Model predictive control (MPC) is a method which transforms the stochastic problem
to be deterministic. Model predictive control can easily handle constraints on portfolio
allocation, such as transaction costs or holding limits, and can provide a flexible and
computationally efficient solution to the multi-period allocation problem. To determine
the policy at time n, all future random values {Sn, n = k, . . . , N} are replaced by their
expected values {E[Vn|Fk], n = k, . . . , N}. The stochastic control problem turns into a
standard optimization problem. For further details on the approach, please refer to Boyd
et al. (2013).
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Algorithm 3
Input:
Output: {α⋆

n, n ≤ N}
1: n← 0
2: while n ≤ N − 1 do
3: find (αn+1, . . . , αN) solution of

sup
αn+1,...,αN

U(VN)

s.t. Vn = V ⋆
n , αn = α⋆

n

∀ n ≤ k ≤ N − 1,

Vk+1 = T (Vk, (V
⋆
0:n, Vn+1:k), αn+1, (α

⋆
0:n, αn+1,k),E [Sk+1| Fn],E [S0:k|Fn]),

αk+1 ∈ Ck

4: set α⋆
n+1 = αn+1

5: set V ⋆
n+1 = T (V ⋆

n , V
⋆
0:n−1, α

⋆
n+1, α

⋆
0:n, Sn+1, S0:n)

6: n← n+ 1
7: end while

Formally, the first trade in the planned sequence of trades is executed. At the next step,
the process starting from the new portfolio V ⋆, is repeated. This category of approach
is highly valued, despite its tendency to only yield sub-optimal solutions. The literature
contains numerous sophisticated extensions of this approach. For example, Li et al. (2022)
use a hidden Markov model to enhance predictions of undetermined values.

2.5 Multi-period mean-var portfolio allocation

This section is dedicated to describe the Markowitz mean-var multi-period allocation prob-
lem.

2.5.1 General formulation

The objective function of this problem aims to represent the trade-off between risk and
reward. As a result, it is not formulated with a utility function as outlined for the single-
period case in Section 1.1.2. We assume that transactions are submitted to transaction
costs. At time n ∈ {1, . . . , N−1}, the portfolio is re-balanced from (αn, α

0
n) to (αn+1, α

0
n+1),

and pays the cost
∑d

i=1 ν|αi
n+1 − αi

n|Si
n. The self-financing condition is

Ṽn = αnS̃n + α0
n = αn+1 · S̃n + α0

n+1 +
d∑

i=1

ν
|αi

n+1 − αi
n|Si

n

S0
n

.
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So we have

∆Ṽn+1 = αn+1 ·∆S̃n+1 −
d∑

i=1

ν
|αi

n+1 − αi
n|Si

n

S0
n

. (4.13)

In addition we assume that the controls are subject to a set of constraints Cn. The system
to solve is

sup
α1,...,αN

E[ṼNS
0
N ]− γVar[ṼNS

0
N ]

s.t. V0 = V0, (α0
n, αn)n F − Pred

∀ 1 ≤ n ≤ N − 1, Ṽn+1 = Ṽn +
d∑

i=1

ν
|αi

n+1 − αi
n|Si

n

S0
n

,

αn+1 ∈ Cn

(E(γ))

Note that the problem (E(γ)) is equivalent to the following problems

inf
α1,...,αN

Var[VNS
0
N ]

s.t. V0 = V0, (α0
n, αn)n F − Pred

∀ 1 ≤ n ≤ N − 1, Ṽn+1 = Ṽn +
d∑

i=1

ν
|αi

n+1 − αi
n|Si

n

S0
n

,

αn+1 ∈ Cn
E[VN ] ≥ ρ

(E(ρ))

sup
α1,...,αN

E[VNS
0
N ]

s.t. V0 = V0, (α0
n, αn)n F − Pred

∀ 1 ≤ n ≤ N − 1, Ṽn+1 = Ṽn +
d∑

i=1

ν
|αi

n+1 − αi
n|Si

n

S0
n

,

αn+1 ∈ Cn
Var[VN ] ≤ η

(E(η))

Problems (E(γ)), (E(ρ)) and (E(η)) cannot be directly solved with dynamic program-
ming. The problem cannot be expressed with value functions in Section 2.2. Indeed, by
denoting It an information set available at time t and It−1 ⊂ It, we notice that while the
expectation operator satisfies the smoothing property, E [ E[ . |Ij] |Ik] = E[ . |Ij], ∀j < k,
the variance operator does not, Var [ Var [ . |Ij] |Ik] ̸= Var [ . |Ij]. The next section de-
scribes an embedding technique that enables the resolution of this problem without cost
or constraint.
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2.5.2 Mean-variance multi-period portfolio selection without transaction cost
or constraint

Here, we assume that there is no transaction cost or constraint on the portfolio compo-
sition. We detail the derivation presented in Li and Ng (2000), which provides an ex-
plicit formulation of the optimal policy. Let us introduce the following useful notations,
∀n ∈ {1, . . . , N},

Pn = (R1
n −R0

n, . . . , R
d
n −R0

n), An = E−1[P T
n Pn], Cn = E[Pn],

Bn = CT
nAnCn, Sn = Diag(Sn).

The unconstrained and cost-free version of (E(γ)) writes

sup
α1,...,αN

E[VN ]− γVar[VN ]

s.t. V0 = V0, (α0
n, αn)n F − Pred

∀ 1 ≤ n ≤ N − 1, ∆Vn+1 = αn+1 ·∆Sn+1 + α0
n+1∆S0

n+1.

(E0(γ))

Even without constraint and transaction cost, Problem (E0(γ)) is still not separable in the
sense of dynamic programming and can not be solved directly but can be embedded into
a tractable auxiliary problem, which is separable. An analytical optimal portfolio policy is
derived for the multiperiod mean-variance formulation along with the analytical expression
of the mean-variance efficient frontier. Let us consider the auxiliary problem for λ ∈ R,

sup
α1,...,αN

E
[
λVN − γV 2

N

]
s.t. V0 = V0, (α0

n, αn)n F − Pred

∀ 1 ≤ n ≤ N − 1, Vn+1 = Vn + αn+1 ·∆Sn+1 + α0
n+1∆S0

n+1.

(A(γ, λ))

We define ΠE(γ) = {α|α solution to (E0(γ))}, ΠA(γ, λ) = {α|α solution to (A(γ, λ))}.
Proposition 23. ΠE(γ) ⊆

⋃
λΠA(γ, λ).

Proof. We define Û(E[V 2
N ],E[VN ]) = E[VN ]− γVar[VN ] = −γE[V 2

N ] + (γE2[VN ] + E[VN ]). U
is obviously convex and

d(α, γ) =
∂Û(E[V 2

N ],E[VN ])

∂E[VN ]
= 1 + 2γEα[VN ], (4.14)

where Eα[VN ] is the expected final value of the portfolio built with the strategy α. We
prove that for α⋆ ∈ ΠE(γ), then α⋆ ∈ ΠA(γ, d(α

⋆, γ)).
We assume that α⋆ /∈ ΠA(γ, d(α

⋆, γ)). Then ∃ α
′ such that

−γEα′ [V 2
N ] + d(α⋆, γ)Eα′ [VN ] > −γEα⋆ [V 2

N ] + d(α⋆, γ)Eα⋆ [VN ].
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Û is convex so we also have

Û
(
Eα′ [V 2

N ],Eα′ [VN ]
)
≥ Û

(
Eα⋆ [V 2

N ],Eα⋆ [VN ]
)
+
[
−γ, d(α⋆, γ)

]([Eα′ [V 2
N ]

Eα′ [VN ]

]
−
[
Eα⋆ [V 2

N ]
Eα⋆ [VN ]

])
.

Then Û(Eα′ [V 2
N ],Eα′ [VN ]) > Û(Eα⋆ [V 2

N ],Eα⋆ [VN ]), that contradicts the assumption.

According to Proposition 23, all solutions of (E0(γ)) are in
⋃

λ ΠA(γ, λ), whose elements
can be parameterized by (γ, λ). The portfolio values can also be parameterized with (γ, λ).
Then (E0(γ)) can be reduced to the following equivalent form

sup
λ∈R

Û
(
E[V 2

N(γ, λ)],E[VN(γ, λ)]
)

s.t. ∀1 ≤ n ≤ N − 1, ∆Vn+1(γ, λ) = αn+1 · (γ, λ)∆Sn+1 + α0
n+1(γ, λ)∆S0

n+1.

α(γ, λ) ∈ ΠA(γ, λ)

(A(λ, γ)) is a linear quadratic problem. According to Section 2.3.1 and Li et al. (1998),
the optimal solution can be derived analytically using dynamic programming. The optimal
policy is given by

αn+1(αn, S0|n, γ, λ) = S−1
n

[
−Kn+1(α

T
nSn + α0

nS
0
n) + fn+1(γ, λ)

]
. (4.15)

where

Kn = AnCnR
0
n, fn(γ, λ) =

λ

2γ

(
N∏

i=n+1

R0
i (1−Bi)

(R0
i )

2(1−Bi)
AnCn

)
, fN(γ, λ) =

λ

2γ
ANCN .

Then the optimal portfolio value can be derived as

Vn+1(α, γ) = αT
n+1Sn+1 + α0

n+1S
0
n+1

= αT
n+1SnRn+1 + (Vn − αT

n+1Sn)R
0
n+1

= (Snαn+1)P
T
n+1 + VnR

0
n+1

= (−Kn+1(α
T
nSn + α0

nS
0
n) + fn+1(γ, λ))P

T
n+1 + VnR

0
n+1.

Since Rn+1 is independent from αn and Sn, we can compute

E[Vn+1(γ, λ)] = E[Vn(γ, λ)](−Kn+1C
T
n+1 +R0

n+1) + fn+1(γ, λ)C
T
n+1.

We finally obtain

E[Vn+1(γ, λ)] = R0
n+1(1−Bn+1)E[Vn(γ, λ)] +

λ

2γ

(
N∏

i=n+2

1

R0
i

)
Bn+1.
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With the same argument we can compute

E[V 2
n+1(γ, λ)] = (R0

n+1)
2(1−Bn+1)E[V

2
n (γ, λ)] +

λ2

4γ2

(
N∏

i=n+2

(
1

R0
i

)2
)
Bn+1.

By induction, we can prove that

E[Vn+1(γ, λ)] =
n+1∏
k=1

R0
k(1−Bk)V0 +

λ

2γ

N∏
i=n+2

1

R0
i

(
1−

n+1∏
k=1

(1−Bk)

)

=aV0 +
λ

2γ
b.

and

E[V 2
n+1(γ, λ)] =

n+1∏
k=1

(R0
k)

2(1−Bk)V
2
0 +

λ2

4γ2

N∏
i=n+2

1

(R0
i )

2

(
1−

n+1∏
k=1

(1−Bk)

)

=cV 2
0 +

λ2

γ2

b

2
.

Then we can compute

Ũ
(
E[V 2

N(γ, λ)],E[VN(γ, λ)]
)
=aV0 +

λ

2γ
b− γcV 2

0 +
λ2

4γ2
b− a2V 2

0 −
λ2

4γ2
b2 − 2abλ

2γ
.

(4.16)
Û being a concave function of λ, the optimal λ⋆ must satisfy the optimally condition
∂U
∂λ
(λ⋆, γ) = 0, then

λ⋆ =
2γa

1− b
+

1

1− b
= 2γ

N∏
k=1

R0
kV0 +

1∏N
k=1(1−Bk)

.

Finally substituting the optimal λ⋆ into (4.15) provides the optimal solution

α⋆
n+1(α

⋆
n, S0|n, γ) = S−1

n

[
−Kn+1(α

⋆ T
n Sn + α0⋆

n S0
n)
]

+ S−1
n

[(
N∏
k=1

R0
kV0 +

1

2γ
∏N

k=1(1−Bk)

)(
N∏

i=n+2

1

(R0
i )
An+1Cn+1

)]
.

It is noteworthy that this approach can not provide explicit solution if transactions are
submitted to costs due to its non linear form. Numerical approaches are preferred to find
optimal portfolios submitted to transaction costs.
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2.5.3 A stochastic control algotihm to solve mean-variance multi-period port-
folio allocation with transaction costs and constraints

In this section, we show how to adapt the approach described in 2.3.3.1, to solve (E(γ)).

Problem (E(γ)) is not separable in the sense of dynamic programming. The algorithm
presented in Section 2.3.3.1 cannot be directly applied. We draw inspiration from the em-
bedding techniques in Li and Ng (2000) to propose a framework capable of numerically
finding the optimal strategy. More precisely, we adapt the framework presented in section
2.3.3.1, to solve an auxiliary problem. Formally, we apply the algorithm to the utility func-
tion U(VN) = λVN − γV 2

N . The state variables vector is completed with a new parameter
λ.

α⋆
n+1(Vn, S̃n, αn, λ) : (Ṽn, S̃n, αn, λ)→ Φ(Ṽn, S̃n, αn, λ, θ

⋆
n). (4.17)

Where θ⋆n is the neural network vector parameters. We solve the dynamic problem in a
backward fashion.

Algorithm 4

Input: {V̄ (m)
n , S̄

(m)
n , ᾱ

(m)
n , λ̄(m), m ≤M,n ≤ N}.

Output: {α⋆
n, n ≤ N}

1: n← N − 1
2: while n ≥ 0 do
3: find θ⋆n solution of θ⋆n solution to

sup
θn

1

M

M∑
m=1

U(V̂
(m)
N S0

N)

subject to Φ(V̄ (m)
n , S̄(m)

n , ᾱ(m)
n , λ̄(m), θn) ∈ Cn

4: with k=n
5: V̂

(m)
k+1 = V̄

(m)
k +∆S̄

(m)
k+1 · Φ(V̄

(m)
k , S̄

(m)
k , ᾱ

(m)
k , λ̄(m), θk)

6: −
∑d

i=1 ν|Φi(V̄
(m)
k , S̄

(m)
k , ᾱ

(m)
k , λ̄m, θk)− ᾱ

i,(m)
k |S̄i

k

7: with k ≥ n+ 1
8: V̂

(m)
k+1 = V̂

(m)
k +∆S̄

(m)
k+1 · (α⋆

k+1(V̂
(m)
k , S̃

(m)
k , α

⋆,(m)
k , λ̄(m)))−

∑d
i=1 ν|α

i,⋆,(m)
k+1 − α

i,⋆,(m)
k |S̄i

k

9: find λ⋆ solution of supλ∈R
1
M

∑M
m=1 U(V̂

(m)
N S0

N).
10: set α⋆

n+1(Ṽn, S̃n, αn) = (Ṽn, S̃n, αn, λ)→ Φ(Ṽn, S̃n, αn, λ
⋆, θ⋆n).

11: n← n− 1
12: end while

This method is theoretically able to find the optimal portfolio but remains computationally
heavy. Indeed we need a large set of exploring variables and must proceed to a high number
of maximizations in order to set the neural networks. The next section presents a more
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straightforward alternative approach to solving dynamic mean-variance portfolio allocation
with transaction costs.
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Chapter 5
Wiener chaos expansion for multi-period
portfolio allocation

This chapter studies the multi-period mean-variance portfolio allocation
problem. Many methods have been proposed these last years to challenge the
famous uni-period Markowitz strategy. But these methods cannot integrate
transaction costs or become computationally heavy and hardly applicable.
In this study, we try to tackle this allocation problem by proposing a new
approach which relies on representing the set of admissible portfolios by a
finite dimensional Wiener chaos expansion. This numerical method is able
to find an optimal strategy for the allocation problem subject to transaction
costs. To complete the study, the link between optimal portfolios submitted
to transaction costs and the underlying risk aversion is investigated. Then
a competitive and compliant benchmark based on the sequential uni-period
Markowitz strategy is built to highlight the efficiency of our approach.

Note that this Chapter 5 that is based on the article Cousin et al. (2023b),
submitted to a peer-reviewed journal.
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7 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

1 Introduction

Dynamic portfolio selection is one of the most studied topic in financial economics. The
problem consists in allocating the wealth of an investor, among a basket of assets, over
time. Finding the optimal portfolio is a difficult challenge since it depends on the objective
of the investor. The Markowitz’s mean-variance formulation represents a first answer to
this problem by providing fundamental basics for static portfolio allocation in a uni-period
case (see Markowits (1952)). Mean-variance framework offer to build a portfolio of assets
such that the expected return is maximized for a given level of risk. This portfolio theory
is based on the assumption that the parameters of the underlying stochastic model are
known and contain no estimation error. This method is easy to apply and has the favor of
asset managers. Nevertheless, when the time horizon increases, this myopic strategy which
cannot see ahead of the next time period, cannot challenge the dynamic optimal portfolio
obtained from the multi-period version of the problem. Merton (1969) is one of the first
paper studying multi-period portfolio investment in a dynamic programming framework.
In this seminal paper, the authors consider a problem with one risky asset and one risk-free
asset. At each date, the investor can re-balance its wealth between the two assets, seeking
to maximize an utility of the final time horizon wealth. They derive a simple closed-form
expression for the optimal policy when there are no constraint or transaction cost. In a
companion paper, Samuelson (1975) derive the discrete-time analog approach. The results
presented in those studies and the innovative and promising aspect of the multi-period
portfolio selection have stimulated the interest of the related scientific community. In the
following years, the literature in multi-period portfolio selection has considerably grown,
dominated by maximizing expected utility of terminal wealth of elementary forms as loga-
rithm, exponential or CRRA functions. Dynamic programming techniques turn out to be
the most suitable approaches to solve this kind of problems. Among the most noteworthy
articles, Brandt et al. (2005) compares and highlights the conditions of equivalence between
dynamic approaches and myopic strategies with CRRA utility functions.
However, important difficulties due the non separability of the problem in the sense of
dynamic programming, have been reported in finding the optimal portfolio issued from
the multi-period mean-variance approach. Nevertheless Li and Ng (2000) and Zhou and
Li (2000) provide explicit formulation for the unconstrained multi-period mean–variance
optimal portfolio both in a discrete and continuous time setting. Suggested by Professor
Markowtiz him self, Li et al. (2002) derive the optimal portfolio policy for the continuous-
time mean–variance model with no-shorting constraint. Cui et al. (2014) extend this work
to provide a discrete framework. Even if these last studies become increasingly realistic,
the ignorance of transaction costs, hinders its efficient extension for real-life application.
Transaction costs impact a lot the optimal choice of policies and cannot be ignored.
The integration of transaction cost has been widely studied in the uni-period mean-var
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case (see Best and Hlouskova (2007), Lobo et al. (2007), Pogue (1970), Xue et al. (2006),
Yoshimoto (1996)). In a multi-period context, the literature is also large on the subject.
In a continuous setting, the problem is not recent, especially when the time horizon is
considered infinite (see Dai and Zhong (2008), Davis and Norman (1990), Dumas and Lu-
ciano (1991), Morton and Pliska (1995), Muthuraman and Kumar (2006)). In a mean-var
and finite time horizon setting, Dai et al. (2010) study properties on optimal strategies
and boundaries which define the buy, sell and no trade-regions. Discrete time allocation
strategies submitted to transaction costs have also been widely pursued. Constantinides
(1979) and Holden and Holden (2013) investigate optimal investment policies with propor-
tional costs, accompanied by fixed costs for the second. They also describe them in terms
of a no-trade region in which it is optimal leave the portfolio allocation unchanged. But
many difficulties have been reported by the literature to have an efficient and accurate
method to compute optimal solutions. Furthermore, when solutions are proposed, they
remain computationally heavy and hardly applicable. Some of them tractably solve the
problem in several special cases. Boyd et al. (2013) and Peng et al. (2011) assume that
costs are convex quadratic. Other made various approximations. For instance, Draviam
and Chellathurai (2002) assume that the number of shares in risky assets are deterministic
before optimizing. Calafiore (2008) and Topcu et al. (2008) assume an affine structure for
the strategies. From another perspective, both Bertsimas and Pachamanova (2008) and Li
et al. (2022) rely a rolling horizon philosophy, with the latter utilizing a Model Predictive
Control (MPC) approach to identify sub-optimal strategies.
The most prevalent methods to tackle this kind of problem are based on stochastic control
algorithm. However, they also suffer from these criticisms. In order to limit the dimension-
ality, true curse in dynamic programming, Cai et al. (2013) use Chebyshev polynomials to
interpolate value functions on a sparse grid of the space. Many of other related studies,
as Gennotte and Jung (1994), Steinbach (2001) and Wang and Liu (2013), rely on trees
for modeling scenarios of rates of return. Al-Nator et al. (2020) go further by assuming
that every future rates of return are known by the investor. Under the same assumption,
Brown and Smith (2011) derive an upper bound to measure and highlight the good perfor-
mances of heuristic strategies. Boyd et al. (2013) perform an ADP (Approximate dynamic
programming) by using sub-optimal solutions to approximate value functions. These sub-
optimal solutions are issued from a quadratic version of the problem or from MPC method
(model predictive control). Cong and Oosterlee (2016) use an other sub-optimal solution,
called multi-stage strategy to tune the exploring phase of its backward recursion algorithm.
This method provides a solution at least, as good as the sub-optimal one. Recently, Pun
and Ye (2022) also adopt dynamic programming but is forced to deal different cases sepa-
rately, which makes their method hardly computationally applicable.

As a result, it is difficult to build intuition about the nature of optimal policies. In
this section, we attempt to fill this gap in the literature by providing a new computa-
tional scheme to solve multi-periods portfolio allocation problem submitted to transaction
cost. We address this problem by proposing a new approach that relies on representing
the set admissible portfolios by a finite dimensional Wiener chaos expansion. This nu-
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merical method estimates optimal portfolios submitted to proportional transaction costs.
The policies are computed thanks to a stochastic gradient descent algorithm, and require
no exploration framework, which was an major step of the methods based on stochastic
control algorithms (see Bachouch et al. (2021)). Then a competitive benchmark, based
on the sequential uni-period Markowitz strategy is built to highlight the efficiency of our
approach. This benchmark relies on the independence between the sharp ratio and the risk
aversion.
The main contribution of this study is threefold. We introduce a new and efficient numer-
ical method to get optimal portfolios submitted to transaction costs. Then, we study the
links between risk aversion and multi-period optimal portfolios submitted to transaction
cost. Finally, we provide a reliable benchmark with sequential mean-variance uni-period
models in the context of transaction costs mentioned above. To the best of our knowledge,
our study is the first to provide this kind of benchmark.
The remaining of this chapter is organized as follows. Section 2 is dedicated to describe
the mean-variance problem for multi-period portfolio allocation submitted to transaction
costs. Our methodology which aims at finding optimal portfolios in this context, is pre-
sented in Section 3. In section 4, we describe a numerical framework to investigate optimal
solutions. We also study the link between risk aversion and those solutions and discuss
the use of a finer time grid for the Wiener chaos expansion. Finally, in Section 6, we show
the efficiency of our solution and investigate the impact of transaction cost by compar-
ing performances of the presented models with benchmark models such as the sequential
uni-period Markowitz approach, described in Section 5.

2 Environment

This section defines the environment in which we address the mean-variance allocation
problem. In particular, we present the general mean-variance formulation for multi-period
portfolio allocation with transaction costs. Then, we specify the dynamics of risky assets
and reformulate the initial problem.

2.1 Mean-variance formulation for multi-period portfolio alloca-
tion

We define the filtered probability space (Ω,A,Γ = (Gt)t∈[0,T ],P) , with Γ = σ(W ), where
W = (W 1, . . . ,W d) is a Brownian motion defined on [0, T ] with values in R. For N
∈ N, N > 0, we introduce the discrete-time grid 0 = t0 < t1 < · · · < tN = T . Let
F , be the discrete time filtration generated by the Brownian increments on this grid,
Fn = σ(Wtk , k ≤ n) for 0 ≤ n ≤ N . We denote as L =

⋂
p≥1 L

p(Ω,FN ,P).

We consider a portfolio V , of initial wealth v0, composed of the d risky assets S =
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(S1, . . . , Sd) and the risk-free asset S0. An investor, with a risk aversion γ can re-allocate
its portfolio V at discrete times t1 < · · · < tN . We define (αn, α0

n)n∈{1,N}, the quanti-
ties of risky and risk free assets hold in the portfolio, such that ∀n ∈ {0, . . . , N}, Vn =
αn · Sn + α0

nS
0
n. The processes α and α0 are assumed to be F-predictable. The agent

aims to find the strategy (αn, α0
n)n∈{1,N}, such that the generated portfolio V , maximizes

EP[VN ]− γEP [(VN − EP[VN ])
2].

At time 0, we assume that the owner has all its wealth in cash, ie α0
0S

0
0 = v0 and

∀i ∈ {1, . . . , d}, αi
0 = 0. At time n ∈ {1, . . . , N − 1}, the investor re-balances his portfolio

from (αn, α
0
n) to (αn+1, α

0
n+1). He pays the transaction costs, proportional to the trade

cash volume per asset and equal to
∑d

i=1 ν|αi
n+1 − αi

n|Si
n. The self-financing condition is

Vn = αn+1 · Sn + α0
n+1S

0
n +

d∑
i=1

ν|αi
n+1 − αi

n|Si
n.

The dynamic mean-variance portfolio allocation with transaction costs can be written as

sup
(αn,α0

n)n

EP

[
VN − γ (VN − EP[VN ])

2]
s.t. V0 = v0, (αn, α

0
n)n F − Pred

Vn = αnSn + α0
nS

0
n = αn+1 · Sn + α0

n+1S
0
n +

d∑
i=1

ν|αi
n+1 − αi

n|Si
n.

(Eγ)

2.2 Framework and assumptions

For any discrete time process Θ, we write for k, n ∈ N, k < nΘk:n = (Θk,Θk+1, . . . ,Θn−1,Θn).
Let ∆ be the operator which associates its increments process ∆Θn = Θn − Θn−1. We

also define the normalized Brownian increments by ∆Ŵk =

(
W j

tk
−W j

tk−1√
tk−tk−1

)
j∈{1,...,d}

for

1 ≤ k ≤ N .

We assume that the financial market they represent is complete. The risk free rate (rn)n≤N

is assumed to be deterministic and ∀n ∈ {0, . . . , N}, log
(

S0
n+1

S0
n

)
= rn(tn+1−tn). We assume

that the risky assets are defined by

∀n ∈ {1, . . . , N}, i ∈ {1, . . . , d}, log
(
Si
n+1

Si
n

)
=

(
µi
n −

(σi
n)

Tσi
n

2

)
(tn+1− tn)+σi

n ·∆Wn+1,

(5.1)
where µ and σ are F -adapted processes with values in Rd and Rd×d respectively. The
process σ is called the volatility process and we assume that ∀n ∈ {1, . . . , N}, σn is a.s.
invertible, EP [|σn|2] < ∞ and that Sn ∈ L. This model implies that knowing Fn, the
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returns
{

Si
n+1

Si
n
, i ∈ {1, . . . , d}

}
are independent of Fn. Note that local volatility models

fit in this framework by considering the Euler scheme of log(S). Let F S = (FS
n )0≤n≤N

be the natural filtration of the risky assets, FS
n = σ(Stk , k ≤ n) . Since (µi)i∈{1,...,d} and

(σi)i∈{1,...,d} are F -adapted processes and σn is a.s. invertible, we can easily prove by in-
duction that F = F S.

For 0 ≤ n ≤ N we define Φn = σ−1
n (µn − rn). Let τ(t) = sup{tn < t : n ≤ N}. We

assume that EP

[
exp

(∫ T

0
1
2
|Φτ(u)|2du

)]
<∞ such that the process(

exp
(
−
∫ t

0
Φτ(u) · dWu − 1

2

∫ t

0
|Φτ(u)|2du

))
0≤t≤T

is a martingale. Therefore, we know from
Girsanov’s theorem that there exists a probability measure Q equivalent to P , defined by

dQ
dP

= exp

(
−
∫ T

0

Φτ(u) · dWu −
1

2

∫ T

0

|Φτ(u)|2du
)
.

We denote as Z =
(
exp

(
−
∫ tn
0

Φτ(u) · dWu − 1
2

∫ tn
0
|Φτ(u)|2du

))
0≤n≤N

. Let (WQ
t )t∈[0,T ] be

a Γ-adapted process defined by WQ
0 = 0 and

dWQ
t = dWt + Φτ(t)dt,

then WQ is a Brownian motion under Q. Note that

∀i ∈ {1, . . . , d}, ∆WQ,i
n+1

P
= ∆W i

n+1 + Φi
n(tn+1 − tn). (5.2)

Let F Q = (FQ
n )0≤n≤N , be the discrete time filtration generated by WQ, FQ

n = σ(WQ
tk
, k ≤

n). We notice that ∀n ∈ {1, . . . , N}, i ∈ {1, . . . , d},

log

(
Si
n+1

Si
n

)
=

(
rn −

(σi
n)

Tσi
n

2

)
(tn+1 − tn) + σi

n ·∆WQ
n+1,

We can see by induction that we also have F Q = F S.
We use the tilde notation to denote discounting and we notice that S̃i = Si/S0 is a F -
martingale under the probability Q. Lastly, we assume that the process EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]
is a.s. invertible and EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]−1

, Zn ∈ L.
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2.3 Reformulation of the problem

With the notations and assumptions of Section 2.2, the self-financing condition can be
reformulated as

∆Ṽn+1 = αn+1 ·∆S̃n+1 −
d∑

i=1

ν|αi
n+1 − αi

n|S̃i
n. (5.3)

We define the cumulative cost process C by

∀n ∈ {1, . . . , N}, Cn =
n−1∑
k=0

d∑
i=1

ν|αi
k+1 − αi

k|S̃i
k, C0 = 0. (5.4)

We decide to work with the F -martingale under Q, X̃n = Ṽn + Cn. LetM be the space of
squared integrable F -martingales under Q andMS the sub-space ofM defined by

MS =

{
M ∈M : ∃ (αk)1≤k≤N F − predictable s.t ∀n ∈ {0, . . . , N},
Mn = h+

∑n−1
k=0 αk+1 ·∆S̃k+1

}
.

MS is the set of martingales which are a martingale transformations of S̃. The space
MS also represents the space of admissible portfolios in discrete-time. The mean-variance
multi-period portfolio allocation problem with transaction costs (Eγ), can be reformulated
as

sup
X̃∈MS

EP

[
(X̃N − CN)S0

N − γ
(
(X̃N − CN)S0

N − EP[(X̃N − CN)S0
N ]
)2]

s.t. X̃0 = v0,

Cn+1 = Cn +
d∑

i=1

ν|αi
n+1 − αi

n|S̃i
n

(Eγ
MS

)

In the next section, we present a novel approach to solve the dynamic mean-var allocation
problem in presence of transaction costs.

3 Main results

The main contribution of this study is to propose and study a numerically tractable approx-
imation of (Eγ

MS
). First, we embed the original problem into a more standard stochastic

optimization framework (EγM). Then, we use Wiener chaos polynomials to obtain a finite
dimensional formulation (EγK).

117



3.1 Embedding representation

The main difficulty remains to parameterize MS. We propose to find optimal port-
folios on MS by exploring M. Furthermore, the objective function (X̃N − CN)S0

N −
γ
(
(X̃N − CN)S0

N − EP[(X̃N − CN)S0
N ]
)2

depends on the law of the portfolio value. This
non-separable form is not easy to manipulate. In order to solve (Eγ

MS
), we would like to

embed it into a tractable equivalent one.

Proposition 24. The problem (Eγ
MS

) is equivalent to

sup
Z∈M, θ∈R

EP [F
γ(Z, θ)]

s.t. Z0 = v0,

Cn+1(Z) = Cn(Z) +
d∑

i=1

ν|αi
n+1(Z)− αi

n(Z)|S̃i
n

(EγM)

With
F γ(Z, θ) = R(Z)S0

N − γ
(
(R(Z)− θ)S0

N

)2
, (5.5)

R(Z) = Pr (Z)N − CN(Z), (5.6)

Pr(Z) =

(
Z0 +

n−1∑
k=0

αk+1(Z) ·∆S̃k+1

)
0≤n≤N

, (5.7)

αn+1(Z) =
(

EQ

[
∆S̃n+1∆S̃T

n+1|Fn

])−1

EQ

[
∆Zn+1∆S̃n+1|Fn

]
. (5.8)

The proof of Proposition 24 relies on the following Lemma.

Lemma 25. The problem (Eγ
MS

) is equivalent to

sup
X̃∈MS , θ∈R

EP

[
(X̃N − CN)S0

N − γ
(
(X̃N − CN − θ)S0

N

)2]
s.t. X̃0 = v0,

Cn+1 = Cn +
d∑

i=1

ν|αi
n+1 − αi

n|S̃i
n

(EγMS
)

Proof (of Lemma 25). Let (Tn)n be a F -adapted process. We define the function

U : R→ R

θ 7−→ EP[TN ]− γEP

[(
(TN − θ)S0

N

)2]
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The function U is a second order polynomial such that lim|θ|→∞ U(θ) = −∞. Then, U
attains its maximum at a unique point θ⋆ defined by ∇U(θ⋆) = 0, θ⋆ = EP[TN ].

Proof (of Proposition 24). Let M ∈M. The projection of M onMS writes as(
h+

n−1∑
k=0

αk+1 ·∆S̃k+1

)
0≤n≤N

,

with αj
k F -predictable, h ∈ R. Let B ∈ MS such that for n ∈ {0, . . . , N}, Bn =

g +
∑n−1

k=0 ck+1 ·∆S̃k+1, g ∈ R, cjk+1 F − predictable. Then we have for n ∈ {1, . . . , N},

EQ

[(
Mn − h−

n−1∑
k=0

αk+1 ·∆S̃k+1

)(
g +

n−1∑
k=0

ck+1 ·∆S̃k+1

)]
= 0. (5.9)

By taking cjk+1 = 0, for all j ∈ {1, . . . , d}, we get h = M0. Setting g = 0, we have

EQ

[(
n−1∑
l=0

∆Ml+1 −
n−1∑
k=0

αk+1 ·∆S̃k+1

)(
n−1∑
k=0

ck+1 ·∆S̃k+1

)]
= 0. (5.10)

By developing the expression and using that M and S̃j are F -martingale, we obtain for
l ̸= k,

EQ

[
cjk+1∆Ml+1∆S̃j

k+1

]
= EQ

[
cjk+1EQ

[
∆Ml+1∆S̃j

k+1|Fl∨k

]]
= 0. (5.11)

Then, for 1 ≤ k ≤ n− 1,

EQ

[
n−1∑
l=0

∆Ml+1c
j
k+1∆S̃j

k+1

]
= EQ

[
cjk+1∆Mk+1∆S̃j

k+1

]
. (5.12)

Finally, inserting (5.12) in (5.10) yields

EQ

[
n−1∑
k=0

ck+1 ·∆S̃k+1∆Mk+1 −
n−1∑
k1=0

n−1∑
k2=0

(αk1+1 ·∆S̃k1+1)(ck2+1 ·∆S̃k2+1)

]
= 0 (5.13)

In the same way, for k1 ̸= k2,

EQ

[
(αk1+1 · S̃k1+1)(ck2+1 ·∆S̃k2+1)

]
= EQ

[
E
[
(αk1+1 ·∆S̃k1+1)(ck2+1 ·∆S̃k2+1)|Fk1∨k2

]]
= 0.

(5.14)
Then

n−1∑
k=0

EQ

[
ck+1 · EQ

[
∆S̃k+1∆Mk+1|Fk

]
− ck+1 ·

(
EQ

[
∆S̃k+1∆S̃T

k+1|Fk

]
αk+1

)]
= 0. (5.15)
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So

n−1∑
k=0

EQ

[
ck+1 ·

(
EQ

[
∆S̃k+1∆Mk+1|Fk

]
− EQ

[
∆S̃k+1∆S̃T

k+1|Fk

]
αk+1

)]
= 0. (5.16)

As this equation holds for all (ck)1≤k≤N , we deduce that (αn)n solves

EQ

[
∆Mn+1∆S̃n+1|Fn

]
= EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]
αn+1.

Then, we conclude that (αn)n is defined by (5.8) and that (EγMS
) can be reformulated

as (EγM).

3.2 Wiener chaos parametrization

We will parametrize the elements of M through the Wiener chaos expansion of their
terminal value. The basic theory of Wiener chaos expansion and the properties used here
are presented in Appendix Tool box: Wiener chaos expansion properties. According to
(Akahori et al., 2017, Theorem 2.1), every element Y of L2(Ω,FN ,Q) can be represented
by its Wiener chaos expansion as

Y = EQ[Y ] +
∑

λ∈(NN )d

βλH
⊗
λ (∆ŴQ), (5.17)

where

H
⊗
λ (∆ŴQ) =

d∏
j=1

N∏
i=1

Hλj
i

(
WQ,j

ti −WQ,j
ti−1√

ti − ti−1

)
.

We define the truncated expansion of Y of order K under Q by CK(Y ) such that

CK(Y ) = EQ[Y ] +
∑

λ∈(NN )d

|λ|1≤K

βλH
⊗
λ (∆ŴQ).

It is well-known that limK→+∞ EQ [|Y − CK(Y )|2] = 0. Proposition 51 states that for
n ≤ N , EQ [CK(Y )|Fn] = CK(EQ[Y |Fn]), which can be obtained by removing the non Fn-
measurable terms from the chaos expansion of Y . By identifying the martingale Z ∈ M
with the chaos expansion of its terminal value ZN , we slightly abuse the notation CK to
define the process CK(Z) = (CK(Zn))n.
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Let’s consider the analog problem for K > 0

sup
Z∈M, θ∈R

EP [F
γ
K(Z, θ)]

s.t. Z0 = v0,

Cn+1(CK(Z)) = Cn(CK(Z)) +
d∑

i=1

ν|αi
n+1(CK(Z))− αi

n(CK(Z))|S̃i
n

(EγK)

with F γ
K(Z, θ) = F γ(CK(Z), θ) = R(CK(Z))S

0
N − γ

(
(R(CK(Z))− θ)S0

N

)2
.

The following proposition states that the optimum of (EγK) converges to the optimum of
(EγM). As a result, we can approach the optimum of (EγM) by solving (EγK).

Proposition 26. Let (Z⋆, θ⋆) be a solution to (EγM). If ∀X ∈ L, supK>1 [XCK(Z
⋆)2] < ∞,

then, there exists η > 0 such that for all K > 0 and (ZK , θK) solution to (EγK), we have

|EP [F
γ(Z⋆, θ⋆)]− EP

[
F γ
K(Z

K , θK)
]
| ≤ ηEP

[
|Z⋆

N − CK(Z
⋆
N)|2

] 1
2 .

The proof of the proposition is based on the following lemmas.

Lemma 27. Let (Z⋆, θ⋆) be a solution to (EγM). If ∀X ∈ L, supK>1 [X CK(Z
⋆)2] <∞, then

there exists η > 0 such that

|EP [F
γ(Z⋆, θ⋆)]− EP [F

γ
K(Z

⋆, θ⋆)]| ≤ ηEP

[
|Z⋆

N − CK(Z
⋆
N)|2

] 1
2 .

Lemma 28. Let 1 ≤ p < 2, then ∃ ζ > 0, such that ∀ Z, Z
′ ∈M, ∀n ∈ {0, . . . , N − 1},

EP

[
|αn+1(Z)− αn+1(Z

′
)|p
]
≤ ζEQ

[
|∆Zn+1 −∆Z

′

n+1|2
] p

2
, (5.18)

EP [|Pr(Z⋆)N − Pr(C (Z⋆))N |] ≤ ζEQ

[∣∣∣ZN − Z
′

N

∣∣∣2] 1
2

. (5.19)

Proof (of Lemma 28). Using consecutively Jensen’s inequality and Holder’s inequality with
the coefficients 2

2−p
and 2

p
, we have

EP

[
|αn+1(Z)− αn+1(Z

′
)|p
]
= EP

[∣∣∣∣EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]−1

EQ

[(
∆Zn+1 −∆Z

′

n+1

)
∆S̃n+1|Fn

]∣∣∣∣p]
≤ EQ

[
EQ

[
|Zn|

∣∣∣∣(∆Zn+1 −∆Z
′

n+1

)
EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]−1

∆S̃n+1

∣∣∣∣p |Fn

]]

≤ EQ

[∣∣∣∣Z 1
p

n EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]−1

∆S̃n+1

∣∣∣∣ 2p
2−p

] 2−p
2

EQ

[∣∣∣∆Zn+1 −∆Z
′

n+1

∣∣∣2] p
2

.
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By recalling that S̃n+1, EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]−1

, Zn ∈ L, we find ζ > 0 such that

EQ

[∣∣∣∣Z 1
p

n EQ

[
∆S̃n+1∆S̃T

n+1|Fn

]−1

∆S̃n+1

∣∣∣∣ 2p
2−p

] 2−p
2

< ζ, and obtain (5.18). For the second

inequality (5.19), we use Holder’s inequality with the coefficients p = 3
2
, q = 3, and (5.18).

The constant ζ ′ > 0 may change over the inequalities.

EP [|Pr(Z⋆)N − Pr(C (Z⋆))N |] ≤
N−1∑
k=0

EP

[∣∣∣αk+1(Z
⋆) ·∆S̃k+1 − αk+1(CK(Z

⋆)) ·∆S̃k+1

∣∣∣]
≤

N−1∑
k=0

EP [|αk+1(Z
⋆)− αk+1(CK(Z

⋆))|p]
1
p EP

[∣∣∣∆S̃k+1

∣∣∣q] 1
q

≤
N−1∑
k=0

ζ
′
EQ

[
|∆Zk+1 −∆CK(Z

⋆)k+1|2
] 1

2 .

≤ ζ
′

(
N−1∑
k=0

EQ

[
|∆Zk+1 −∆CK(Z

⋆)k+1|2
]) 1

2

= ζ
′
EQ

[
|ZN − CK(Z

⋆)N |2
] 1

2 .

The last equality stems from the martingale property of Z⋆ − CK(Z
⋆).

Proof (of Lemma 27). We have

EP [|F γ(Z⋆, θ⋆)− F γ
K(Z

⋆, θ⋆)|] ≤ EP [|R(Z⋆)−R(CK(Z
⋆))|]S0

N

+ γEP

[
| (R(CK(Z

⋆))− θ⋆)2 − (R(Z⋆)− θ⋆)2|
]
(S0

N)
2.

For the first term, we have

EP [|Pr(Z⋆)N − CN(Z⋆)− (Pr(CK(Z
⋆))N − CN(CK(Z

⋆))) |]
≤ EP [|Pr(Z⋆)N − Pr(CK(Z

⋆))N |]

+
d∑

i=1

N−1∑
k=0

νEP

[
|αi

k+1(CK(Z
⋆))− αi

k(CK(Z
⋆))− (αi

k+1(Z
⋆)− αi

k(Z
⋆))||S̃i

k|
]
.

Using Lemma 28 and the same arguments as to prove (5.19), we find η1 > 0, such that

EP [|Pr(Z⋆)N − CN(Z⋆)− (Pr(CK(Z
⋆))N − CN(CK(Z

⋆))) |] ≤ η1EQ

[
|ZN − CK(Z

⋆
N)|

2] 1
2 .

For the second term, we rewrite

EP

[
| (R(CK(Z

⋆))− θ⋆)2 − (R(Z⋆)− θ⋆)2|
]

= EP [|R(CK(Z
⋆)) +R(Z⋆)− 2θ⋆||R(CK(Z

⋆))−R(Z⋆)|] .
≤ EP [|R(CK(Z

⋆)) +R(Z⋆)||R(CK(Z
⋆))−R(Z⋆)|] + 2|θ⋆|EP [|R(CK(Z

⋆))−R(Z⋆)|]
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Let i, j ∈ {1, . . . , d}, k, l ∈ {0, . . . , N − 1} and
Y ∈ {∆S̃i

k+1∆S̃j
l+1,∆S̃i

k+1S̃
j
l+1, S̃

i
k+1S̃

j
l+1, S̃

i
k+1∆S̃j

l+1}. By using the same decomposition
and arguments as to prove Lemma 28 and Cauchy Schwartz’ inequality, we find X ∈ L
such that

EP

[
|αi

k+1(Z
⋆)− αi

k+1(CK(Z
⋆))||αj

l+1(CK(Z
⋆))||Y|

]
= EP

[
|∆Z⋆

k+1 −∆CK(Z
⋆)k+1||∆CK(Z

⋆)l+1||X |
]

≤ EP

[
|∆Z⋆

k+1 −∆CK(Z
⋆)k+1|2

] 1
2 EP

[
|∆CK(Z

⋆)l+1|2|X |2
] 1

2 .

The same result can be obtain for EP

[
|αi

k+1(Z
⋆)− αi

k+1(CK(Z
⋆))||αj

l+1(Z
⋆)||Y|

]
. By using

the main assumption of the proposition, and considering the form of R(CK(Z
⋆)) and R(Z⋆),

we find ζ > 0 such that

EP [|R(CK(Z
⋆)) +R(Z⋆)||R(CK(Z

⋆))−R(Z⋆)|] ≤ ζEP

[
|Z⋆

N − CK(Z
⋆
N)|2

] 1
2 .

Finally, by using Lemma 28 to bound the term 2|θ⋆|EP [|R(CK(Z
⋆))−R(Z⋆)|], we find

η2 > 0 such that

EP

[
|Pr(CK(Z

⋆))N − CN(CK(Z
⋆))− Pr(Z⋆)N + CN(Z⋆)|2

]
≤ η2EP

[
|Z⋆

N − CK(Z
⋆
N)|2

] 1
2 .

Finally setting η = η1S
0
N + γη2(S

0
N)

2 gives the result.

Proof (of Proposition 26). Let (ZK , θK) be a solution to (EγK). (CK(Z
K), θK) is an admis-

sible solution for (EγM), then

EP [F
γ
K(Z

⋆, θ⋆)] ≤ EP

[
F γ
K(Z

K , θK)
]
≤ EP [F

γ(Z⋆, θ⋆)] . (5.20)

According to Lemma 27, we find η > 0 independent of K such that

|EP [F
γ(Z⋆, θ⋆)]− EP

[
F γ
K(Z

K , θK)
]
| ≤ |EP [F

γ(Z⋆, θ⋆)]− EP [F
γ
K(Z

⋆, θ⋆)] |
≤ EP [|F γ(Z⋆, θ⋆)− F γ

K(Z
⋆, θ⋆)|]

≤ ηEP

[
|Z⋆

N − CK(Z
⋆
N)|2

] 1
2 .

(5.21)

We denote m as the number of coefficients βλ appearing in the chaos expansion of order K,
m = #{λ ∈ (NN)d|λ|1 ≤ K}. By identifying the martingale Z ∈ M with the coefficients
of the chaos expansion of its terminal value ZN , we slightly abuse the notation CK to write

∀β ∈ Rm, CK(β) =
∑

λ∈(NN )d

|λ|1≤K

βλH
⊗
λ (∆ŴQ).

We can also slightly abuse the definition of the controls in (5.8). Recalling that (βλ)λ define
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the expansion of ZN , we define

αn+1(β) = EQ

[
∆S̃n+1∆(S̃n+1)

T |Fn

]−1

EQ

[
CK(∆Zn+1)∆S̃n+1|Fn

]
. (5.22)

We notice that αn+1 can be expressed as a linear combination of the chaos coefficients of
ZN . Similarly, we also extend the cost function to

Cn(β) =
n−1∑
k=0

d∑
i=1

ν|αi
k+1(β)− αi

k(β)|S̃i
k. (5.23)

Let’s extend in this context, the portfolio value function as

∀β ∈ Rm, R(β) = Pr (CK(β))N − CN(β). (5.24)

Note that β → R(β) − v0 is a positive homogeneous function, ie ∀ u > 0, R(uβ) − v0 =
u (R(β)− v0). We also express the objective function as

∀β ∈ Rm, F γ(β, θ) = R(β)S0
N − γ

(
(R(β)− θ)S0

N

)2
. (5.25)

Note that F γ is a random function. With these new functions, we can approximate the
original problem (Eγ

MS
) by a finite dimensional optimisation problem

sup
β∈Rm,θ∈R

EP [F
γ(β, θ)]

s.t. EQ [CK(β)] = v0

(Jγ)

The constraint EQ [CK(β)] = v0 is easily satisfied by setting the first coefficient equal to v0,
β0 = v0.

Proposition 29. The problem (Jγ) admits a solution.

Proof. According to Lemma 25, for β ∈ Rm, sup
θ∈R

EP [F
γ(β, θ)] always exists and is attained

for θ⋆ = EP[R(β)]. Let β ∈ Rm ̸= 0Rm . We have

EP [F
γ(β,EP[R(β)])− v0] = |β|EP

[
R
(

β

|β|

)
− v0

]
− γ |β|2 Var

[
R
(

β

|β|

)
− v0

]
= |β|EP

[
F γ

(
β

|β|
,EP[R(

β

|β|
)]

)
− v0

]
+ γ

(
|β| − |β|2

)
Var

[
R
(

β

|β|

)]
.

By considering the optimums of continuous functions on compact sets, we define

v = inf
|β|=1

Var [R(β)] , u = sup
|β|=1

EP

[
F γ

(
β

|β|
,EP[R(

β

|β|
)]

)
− v0

]
.

Since the market is assumed to be complete, it is not possible to build a risk free portfolio
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with risky assets, v > 0. Finally, ∀ β ∈ Rm, |β| > 1,

EP [F
γ(β,EP[R(β)])− v0] ≤ |β|u+ γ

(
|β| − |β|2

)
v.

With this inequality, we deduce that lim
|β| → +∞

EP [F
γ(β,EP[R(β)])] = −∞. The objec-

tive function β → EP [F
γ(β,EP[R(β)])] is continuous and EP [F

γ(0,EP[R(0)])] = v0 > 0,
then it attains its maximum. We can conclude that (Jγ) admits a solution.

4 Numerical resolution

In this section, we describe the numerical framework to solve (Jγ). We define the space
where optimal strategies are investigated and we study the link between risk aversion and
those solutions. In particular, we insure that risk aversion parametrization has no impact
on performances. Lastly, we discuss the use of a finer time grid for the Wiener chaos
expansion. We assume for the numerical resolution that σ is deterministic (Black-Scholes
case).

Let’s introduce

Z =
{
β ∈ Rm, ∀n ∈ {1, . . . , N}, i ∈ {1, . . . , d} αi

n(β) ̸= 0 a.s.
}

Rm \ Z is a closed set of Rm of measure null. Elements of this set represents strategies
where there is almost surely, no investment, during a time period between t1 and tN−1,
in a risky asset. These strategies are not realistic, not optimal and therefore are ignored.
Optimal strategies are investigated on Z. We aim to apply a stochastic descent gradient
algorithm to find such solutions.

4.1 Differentiability

We study the differentiability of (β, θ)→ EP[F
γ(β, θ)] = EP

[
R(β)S0

N − γ ((R(β)− θ)S0
N)

2
]
.

Proposition 30. R is almost surely differentiable on Z.

Proof. Let us prove that the Q(αi
n+1 = αi

n) = 0, ∀ 1 ≤ i ≤ d, 0 ≤ n ≤ N − 1. We recall
that

αn+1(β) = EQ

[
∆S̃n+1∆(S̃n+1)

T |Fn

]−1

EQ

[
CK(∆Zn+1)∆S̃n+1|Fn

]
.

Let Diag be the operator which associates to a vector (d1, . . . , dk) the matrix

d1 . . .
dk

.

125



We define

Yn = EQ

( S̃n+1

S̃n

− 1

)(
S̃n+1

S̃n

− 1

)T

|Fn

 =
[
eσ

k
n·σ

j
n(tn+1−tn) − 1

]
k,j

.

Note that Yn is deterministic and invertible. We slightly abuse of the notation CK to denote

the vector EQ

[
CK(∆Zn+1)

(
Sn+1

Sn
− 1
)
|Fn

]
=

(
EQ

[
CK(∆Zn+1)

(
S̃j
n+1

S̃j
n
− 1

)
|Fn

])
j∈{1,...,d}

.

We have

∀β ∈ Z, αn+1(β) = Diag(S̃n)
−1Y −1

n EQ

[
CK(∆Zn+1)

(
S̃n+1

S̃n

− 1

)
|Fn

]
.

The term EQ

[
CK(∆Zn+1)

(
S̃j
n+1

S̃j
n
− 1

)
|Fn

]
can be expressed as a linear combination of the

chaos coefficients of ZN such that

EQ

[
CK(∆Zn+1)

(
S̃j
n+1

S̃j
n

− 1

)
|Fn

]
=

∑
λ∈(Nn+1)d

|λ|1≤K,
λn+1 ̸=0

βλH
⊗
λ1:n

(∆ŴQ
1:n)EQ

[
Hλn+1(∆ŴQ

n+1)(
S̃j
n+1

S̃j
n

− 1)

]

(5.26)

Note that the terms EQ

[
Hλn+1(∆ŴQ

n+1)(
S̃j
n+1

S̃j
n
− 1)

]
can be estimated with Monte-Carlo

simulations. For i ∈ {1, . . . , d}, we obtain

Q(αi
n+1(β) = 0) ⇐⇒ Q

([
Y −1
n EQ

[
CK(∆Zn+1)

(
S̃n+1

S̃n

− 1

)
|Fn

]]
i

= 0

)
.

Note that
[
Y −1
n EQ

[
CK(∆Zn+1)

(
S̃n+1

S̃n
− 1
)
|Fn

]]
i
can be written as

d∑
j=1

(Y −1
n )ij

∑
k′≤K

∑
λ1:n∈(Nn)d

|λ1:n|1=k
′

 ∑
λn+1∈Nd

1≤|λn+1|1≤K−k
′

βλEQ

[
Hλn+1(∆ŴQ

n+1)(
S̃j
n+1

S̃j
n

− 1)

]H
⊗
λ1:n

(∆ŴQ
1:n).

(5.27)
With the definition of Z, we deduce that ∀β ∈ Z, Q(αi

n+1(β) = 0) = 0.
Let us introduce the following two spaces for n ≤ 1,

Pn =

{
K∑
k=1

bkHk(∆Wn), (bk)k Fn−1 −measurable, K ∈ N∗, ∃k ∈ {1, ..K}, Q(bk = 0) = 0

}
,
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En =

{ ∑L
l=0 ale

cl∆Wn , (al)l, (cl)l Fn−1 −measurable,
L ∈ N∗, ∃l ∈ {1, ..L}, Q(al = 0) = Q(cl = 0) = 0

}
.

We can deduce from (5.27) that ∃ (pn, en) ∈ Pn × En such that αi
n+1(β) = pnen. Finally,

we conclude that ∀β ∈ Z, Q
(
αi
n+1(β) = αi

n(β)
)
= EQ

[
EQ

[
1[αi

n+1(β)=αi
n(β)]
|Fn−1

]]
= 0.

Remark 31. The differentiability can be verified in the general case, where the volatility
matrix σ is stochastic and verifies the conditions of Section 2.2. In that case if ∀i ∈
{1, . . . , d}, ∀X ∈ Pn−1, (Y −1

n )i ·X ̸= 0 a.s. then R is a.s. differentiable on Z.

Proposition 32. The function

(β, θ) 7−→ EP[F
γ(β, θ)] = EP

[
R(β)S0

N − γ
(
(R(β)− θ)S0

N

)2]
is differentiable on Z × R.

Lemma 33. There exist a FN -measurable random variable D and F -adapted processes Bi, Ki

for i ∈ {1, . . . , d} and taking values in Rm, such that ∀i ∈ {1, . . . , d}, n ∈ {1, . . . , N},
EP [|Bi

n|p] + EP [|Ki
n|p] + EP [|D|p] <∞ for any p ≥ 1 and

αi
n(β) = Bi

n · β; R(β) = v0 +D · β −
d∑

i=1

N−1∑
n=0

ν|Ki
n · β|. (5.28)

Proof (of Lemma 33). According to the linearity in β of the control functions, defined
in (5.22), there exists a FN -measurable random variable D with values in Rm such that
Pr (CK(β))N = v0+D ·β and ∃ {Bi, i ∈ {1, . . . , d}}, F -adapted processes with values in Rm

such that ∀i ∈ {1, . . . , d}, n ∈ {0, . . . , N −1}, αi
n(β) = Bi

n ·β. By calling Ki
n = Bi

n+1−Bi
n,

we obtain CN(β⋆) =
∑d

i=1

∑N−1
n=0 ν|Ki

n · β|.
∀i ∈ {1, . . . , d}, n ∈ {0, . . . , N − 1}, j ∈ {1, . . . ,m}, (Bi

n)j ∈ span
{
H

⊗
λ (∆ŴQ), λ ∈ Rm

}
,

(Ki
n)j ∈ span

{
H

⊗
λ (∆ŴQ), λ ∈ Rm

}
so ∀ p ≥ 1, EP [|Bi

n|p] and EP [|Ki
n|p] < ∞. And

we have ∀ j ∈ {1, . . . ,m}, Dj =
∑N−1

n=0

∑d
i=1(B

i
n+1)j∆S̃i

n+1. S̃n ∈ Lp(Ω,Fn,P), then
EP[|Dj|p] <∞.

Proof (of Proposition 32). Let r > 0, rθ > 0 and β ∈ Rm, θ ∈ R such that |β| ≤ r, |θ| ≤ rθ.
According to Lemma 33, we have

|R(β)| ≤ V0 + |D||β|+
d∑

i=1

N−1∑
n=0

ν|Ki
n||β|.

Since we have ∀ i ∈ {1, . . . , d}, n ∈ {0, . . . , N − 1}, ∀ p ≥ 1, EP [|Ki
n|p] + EP [|D|p] < ∞,
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we have EP

[
sup
|β|≤r

|R(β)|

]
<∞ and EP

[
sup
|β|≤r

|R(β)|2
]
<∞. We bound

|F γ(β, θ)| ≤ |R(β)|+ 2γ|R(β)|2 + 2γθ2

≤ sup
|β|≤r

|R(β)|+ 2γ sup
|β|≤r

|R(β)|2 + 2γr2θ .

So EP [|F γ(β, θ)|] <∞. According to Proposition 30, R is a.s. differentiable on Z, then F
is also a.s. differentiable on Z × R. We also have

|∇R(β)| = |D −
d∑

i=1

N−1∑
n=0

ν × sign(Ki
n · β)Ki

n| ≤ |D|+
d∑

i=1

N−1∑
n=0

ν|Ki
n|.

Following the same arguments, we prove that ∀j ∈ {1, . . . ,m}

|∇βj
F γ(β, θ)| ≤ |∇R(β)|j + 2γ|∇R(β)|j|R(β)− θ|

≤ |Dj|+
d∑

i=1

N−1∑
n=0

ν|(Ki
n)j|+ 2γ

(
|Dj|+

d∑
i=1

N−1∑
n=0

ν|(Ki
n)j|

)(
sup
|β|≤r

|R(β)|+ rθ

)
.

We conclude using Cauchy Schwartz’ inequality that EP[sup|β|≤r,|θ|≤rθ
|∇βj

F γ(β, θ)|] <∞.
Similarly, we bound

|∇θF
γ(β, θ)| ≤ 2γ|R(β)− θ| ≤ 2γ sup

|β|≤r

|R(β)|+ rθ.

and apply Lebesgue’s theorem to conclude that (β, θ) → EP[F
γ(β, θ)] is differentiable on

Z × R and ∇ (EP [F
γ(β, θ)]) = EP [∇F γ(β, θ)].

4.2 Finding locally optimal solutions

We have seen that EP [∇θF
γ(β, θ⋆)] = 0 ⇐⇒ θ⋆ = EP [R(β)] . We can then deduce

according to Proposition 32 that if β⋆ ∈ Z is the chaos expansion decomposition of an
optimal portfolio then β⋆ is solution to

EP [∇β,θF
γ (β⋆,EP [R(β⋆)])] = 0. (T γ)

Proposition 34. The solutions to (T γ) are locally optimal.

Proof. R is concave w.r.t. β. Fy : (Y, θ) ∈ R2 → EP

[
Y S0

N − γ ((Y − θ)S0
N)

2
]

is con-
cave. For θ ∈ R, if EP[Fy(., θ)] is monotone increasing then EP[F

γ(β, θ)] is concave in β.
EP[Fy(., θ)] is increasing in Y if and only if EP[Y ] ≤ 1

2γ
+ θ.

Let β⋆ be a solution to (T γ). R is continuous then we can find ε > 0 such that ∀ β ∈ Rm
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s.t. |β − β⋆| ≤ ε, we have |R(β) − R(β⋆)| ≤ 1
4γ

. Then ∀(β, θ) such that |β − β⋆| ≤ ε,
|θ − EP[R(β⋆)]| ≤ 1

4γ
, we have

|θ − EP[R(β)]| ≤ |θ − EP[R(β⋆)]|+ EP[|R(β⋆)−R(β)|] ≤ 1

2γ
.

Then EP[F
γ(β, θ)] is concave on {(β, θ) : |β − β⋆| ≤ ε, |θ − EP[R(β⋆)]| ≤ 1

4γ
}.

Using the previous results, we can apply a gradient descent algorithm to find a local
optimum of (Jγ).

4.3 Influence of risk aversion

In this section, we discuss the influence of the risk aversion on optimal multi-period portfo-
lios submitted to transaction costs. One main result claims that the Sharp ratio of a zeros
gradient portfolio submitted to transaction costs is independent from its risk aversion. A
second main result affirms that all optimal portfolios have the same Sharp ratio. This
study insures that the choice of risk aversion parameter does not influence performances.
In this section, we consider the following formulation of the allocation problem

sup
β∈Z

EP [G
γ(β)]

s.t. EQ [CK(β)] = v0

(J γ)

where Gγ(β) = F γ(β,EP[R(β)]). We have seen that (β⋆, θ⋆) solves (Jγ) if and only if
θ⋆ = EP[R(β⋆)] and β⋆ solves (J γ).

Definition 35. A γ-optimal strategy is a strategy (αn(β
⋆))0≤n≤N such that β⋆ solves (J γ).

The portfolio associated to a γ-optimal strategy is called a γ-optimal portfolio.

Definition 36. A γ-zero gradient strategy or γ-locally optimal strategy is a strategy (αn(β
⋆))0≤n≤N

such that β⋆ solves (T γ). The portfolio associated to a γ-zero gradient strategy is called a
γ-zero gradient portfolio.

Proposition 37. The risk aversion, the Sharpe ratio and the volatility of a γ-zero gradient
portfolio V ⋆ submitted to transaction costs are related by

γ =
Sharpe(V ⋆

N)

2Var[V ⋆
N ]

1
2

. (5.29)

Proof. We have seen in (T γ) that if V ⋆ is a γ-zero gradient portfolio, then ∃ β⋆ ∈ Z such
that V ⋆

N = R(β⋆)S0
N and EP [Ψ (β⋆,EP [R(β⋆)])] = 0. This equality leads to

EP

[
∇R (β⋆)S0

N

(
1− 2γS0

N (R (β⋆)− EP [R (β⋆)])
)]

= 0.
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We recall that R(β⋆) = Pr (CK(β
⋆)) − CN(β⋆). As R is a.s differentiable and using the

decomposition of Lemma 33,

∀ β ∈ Z, ∇R(β) = D −
d∑

i=1

N−1∑
n=0

ν × sign(Ki
n · β)Ki

n. (5.30)

We deduce that
∀ β ∈ Z, β · ∇R(β) = R(β)− v0.

Then with
β⋆ · EP

[
∇R (β⋆)S0

N

[
1− 2γS0

N (R (β⋆)− EP [R (β⋆)])
]]

= 0,

we obtain
EP

[
R (β⋆)S0

N

[
1− 2γS0

N (R (β⋆)− EP [R (β⋆)])
]]

= v0S
0
N .

We deduce that

EP

[
R (β⋆)S0

N

]
− 2γEP

[(
R (β⋆)S0

N

)2]
+ 2γEP

[
R (β⋆)S0

N

]2
= v0S

0
N .

Finally,

γ =
Sharpe(V ⋆

N)

2Var[V ⋆
N ]

1
2

. (5.31)

Corollary 38. All γ-optimal portfolios have the same Sharpe ratio.

Proof. Let V ⋆
N be such a γ-optimal portfolio. As an optimal portfolio, V ⋆

N is also a γ-zero
gradient portfolio. Then according to Proposition 37,

EP [V
⋆
N ]− v0S

0
N = 2γVar [V ⋆

N ]

Inserting this term in the mean-variance objective function leads to

EP

[
V ⋆
N − γ (V ⋆

N − EP[V
⋆
N ])

2] = EP [V
⋆
N ]

2
− v0S

0
N

2
. (5.32)

We deduce that if V ′
N is another γ-optimal portfolio then (5.32) gives EP[V

⋆
N ] = EP[V

′
N ].

But the two portfolios also attain the same mean-variance value then

EP [V
⋆
N ]− γVar [V ⋆

N ] = EP [V
′
N ]− γVar [V ′

N ] .

With this last equality, we can conclude they have the same variance and as a result, the
same Sharpe ratio.

Remark 39. Maximizing the mean-variance objective function of zero gradient portfolios, is
equivalent to maximizing their Sharpe ratio.
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Now, let’s prove this important proposition on the impact of the risk aversion.

Proposition 40. Let (γ, γ′) ∈ R∗, then (α⋆
n)n is a γ-zero gradient strategy if and only if

( γ
γ′α

⋆
n)n is a γ′-zero gradient strategy.

Proof. Let (α⋆
n)n be a γ-zero gradient strategy with the associated chaos coefficients β⋆.

Then β⋆ is solution to (T γ). Then with the previous notations

EP

[
∇R (β⋆)S0

N

[
1− 2γS0

N (R (β⋆)− EP [R (β⋆)])
]]

= 0. (5.33)

By using the decomposition of Lemma 33, R is a.s differentiable on Z and

∇R(β) = D −
d∑

i=1

N−1∑
n=0

ν × sign(Ki
n · β)Ki

n. (5.34)

Let’s now consider the portfolio

R( γ
γ′β

⋆) = v0 +
γ

γ′D · β
⋆ −

d∑
i=1

N−1∑
n=0

ν|Ki
n ·

γ

γ′β
⋆|.

We obtain the following equality

R( γ
γ′β

⋆)− γ

γ′R(β
⋆) = v0(1−

γ

γ′ ).

We deduce that

γ

γ′ (R(β
⋆)− EP [R(β⋆)]) = R( γ

γ′β
⋆)− EP

[
R( γ

γ′β
⋆)

]
. (5.35)

By using the expression (5.34), we also notice that

∇R( γ
γ′β

⋆) = D −
d∑

i=1

N−1∑
n=0

ν × sign

(
Ki

n ·
γ

γ′β
⋆

)
Ki

n = ∇R(β⋆). (5.36)

Finally, by inserting (5.35) and (5.36) in equality (5.33), we obtain

EP

[
∇R

(
γ

γ′β
⋆

)
S0
N

[
1− 2γ′S0

N

(
R
(
γ

γ′β
⋆

)
− EP

[
R
(
γ

γ′β
⋆

)])]]
= 0, (5.37)

which finishes the proof.

Corollary 41. Let (γ, γ′) ∈ R∗, then (α⋆
n)n is a γ-optimal strategy if and only if ( γ

γ′α
⋆
n)n is a

γ′-optimal strategy.
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Proof. Let (α⋆
n)n be a γ-optimal strategy with the associated chaos coefficients β⋆. Then

β⋆ is a solution to (J γ). Firstly, according to Proposition 40, γ
γ′β

⋆ is a solution to (T γ′
)

with

EP[G
γ′
(
γ

γ′β
⋆)] = EP

[
R( γ

γ′β
⋆)S0

N − γ′
((
R( γ

γ′β
⋆)− EP

[
R( γ

γ′β
⋆)

])
S0
N

)2
]
.

But as β → R(β) − v0 is a positive homogeneous function, ie ∀ u > 0, R(uβ) − v0 =
u (R(β)− v0), then

EP[G
γ′
(
γ

γ′β
⋆)]− v0S

0
N = EP

[
γ

γ′ (R(β
⋆)− v0)S

0
N − γ′

(
γ

γ′ (R(β
⋆)− EP [R(β⋆)])S0

N

)2
]

=
γ

γ′

(
EP[G

γ(β⋆)]− v0S
0
N

)
.

If ∃ β1 ∈ Rm such that EP[G
γ′
( γ
γ′β

⋆)] < EP[G
γ′
(β1)] then using the previous equality

EP[G
γ(β⋆)] < EP[G

γ′
(γ

′

γ
β1)], which is impossible with the optimally of β⋆. We deduce that

γ
γ′β

⋆ is a solution to (J γ′
). The converse statement is obvious.

We have seen in (5.22), that the controls (α⋆
n)n can be expressed as linear functions of β⋆.

We can conclude that (α⋆
n)n is an optimal solution for (Eγ) if and only if ( γ

γ′α
⋆
n)n is an

optimal solution for (Eγ′
).

Proposition 42. Let (α⋆
n)n be a γ-zero gradient strategy and (V ⋆

n )n the associated γ-zero
gradient portfolio. Then for all u > 0, Sharpe(V ⋆

N) = Sharpe(V u
N), where (V u

n )n is the
portfolio associated to the strategy (uα⋆

n)n.

Proof. By using that β → R(β)− v0 is a positive homogeneous function, we have

Sharpe(V ⋆
N) =

EP

[
Ṽ ⋆
NS

0
N

]
− v0S

0
N

Var
[
Ṽ ⋆
NS

0
N

] 1
2

=
uEP [R(β⋆)S0

N ]

uVar [R(β⋆)S0
N ]

1
2

= Sharpe(V u
N),

that finishes the proof.

Proposition 43. The Sharpe ratio of a zeros gradient portfolio is independent of its risk
aversion.

Proof. A direct consequence of Propositions 40 and 42.

Proposition 44. Let V > 0 and (V ⋆
n )n be a γ-zero gradient portfolio. Then there exists γ′

and a γ′-zeros gradient portfolio V ′ with Sharpe(V ′
N) = Sharpe(V ⋆

N) and with volatility V.
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Proof. According to Propositions 40 and 42, for all u > 0, (uα⋆
n)n is a γ

u
-zeros gradient

strategy and the associated γ
u
-zeros gradient portfolio V u

N has the same Sharpe ratio as V ⋆
N .

Consequently, according to Proposition 37,

γ

u
=

Sharpe(V ⋆
N)

2Var(V u
N)

1
2

.

Then by choosing u = 2γV
Sharpe(V ⋆

N )
, the portfolio (uα⋆

n)n verifies the conditions.

Proposition 45. Let γ, γ′ > 0 s.t. γ ̸= γ′. Let V ⋆ (resp. V ′) be a γ-optimal portfolio (resp.
γ′-optimal portfolio). Then, Sharpe(V ⋆

N) = Sharpe(V ′
N).

Proof. Let (α′
n)n be the γ′-optimal strategy associated to V ′. Let V # the portfolio associ-

ated to the strategy (γ
′

γ
α′
n)n. According to Proposition 41, V # is a γ-optimal portfolio. Fur-

thermore, using Proposition 42, we have Sharpe(V ′
N) = Sharpe(V #

N ). According to Propo-
sition 38, γ-optimal portfolios have the same Sharpe ratio. So Sharpe(V ⋆

N) = Sharpe(V #
N ),

and finally Sharpe(V ⋆
N) = Sharpe(V ′

N).

4.4 Use of a finer grid for chaos expansion

In this section we assume that N is a multiple of p ∈ N. Let us consider two time grids,
T = {t0, . . . , tN} and T̃ = {t0, tp, . . . , tkp, . . . , tN}. Transactions are only possible at time
in T̃ , every p date time in T but processes are observable in between. We define two
associated filtrations

Gn = σ{Wk −Wk−1, 1 ≤ k ≤ n}, Fn = σ{Wkp −W(k−1)p, 1 ≤ k ≤ ⌊n
p
⌋}.

We rewrite the problem (Eγ) according to the finest grid.

sup
α1,...αkp,...,αN

EP

[
(X̃N − CN)S0

N − γ
((

X̃N − CN − EP[X̃N − CN ]
)
S0
N

)2]
subject to X̃0 = V0, (αn)n G− Pred

X̃n+1 = X̃n + α⌊n+1
p

⌋p ·∆S̃n+1

Cn+1 = Cn +
d∑

i=1

ν|αi
⌊n+1

p
⌋p − αi

⌊n
p
⌋p|S̃i

n

(Uγ)

We call (α⋆
1, . . . , α

⋆
kp, . . . , α

⋆
N) a solution of (Uγ). Since the transactions are only available

at time in T̃ , we want to know whether representing processes with chaos on grid T̃ is a
loss of information or not.
We assume here that the assets follows the dynamics presented in Section 2.2 with constant
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drift parameters and volatility matrix, ie. ∀ n ∈ {0, . . . , N}, σn = σ, rn = r, µn = µ.
Under this assumption and according to the following proposition, the response is no.

Proposition 46. α⋆
n is Fn−1 measurable.

Proof. Let us define for all p ≤ n ≤ N , the diagonal matrices R̃dn = Diag
(

S̃i
n

S̃i
n−p

)
1≤i≤d

.

First we can prove by recurrence that for all k ≤ ⌊N
p
⌋, S̃kp is Fkp measurable.

Hk: S̃kp is Fkp measurable.
H0 is true since S̃0 is deterministic and therefore G0 = F0-measurable.
Let us assume H1, . . . ,Hk true for k > 1. Then ∀ 1 ≤ i ≤ d, S̃i

(k+1)p = S̃i
kpe

(σi)·∆WQ
(k+1)p .

S̃i
kp is Fkp measurable, so S̃i

(k+1)p is F(k+1)p measurable and Hk+1 is true.
Now, Let us prove by recurrence the proposition ∀n ≥ 1, Hn: α⋆

n is Fn−1 measurable.
H1 is true because α1 is deterministic and therefore G0 = F0 measurable. Lets now assume
H2, . . . ,Hn true for n > 1.
If n ̸≡ 0 [p] then α⋆

n = α⋆
n+1. We deduce that α⋆

n+1 is Fn−1 measurable but Fn−1 = Fn so
α⋆
n+1 is Fn measurable.

If n ≡ 0 [p], ∃k ≤ ⌊N
p
⌋ − 1 such that n = kp. Its has been proven in Proposition 25 that

the problem (Uγ) is equivalent to the following

sup
α1,...αkp,...,αN ,θ∈R

EP

[
(X̃N − CN)S0

N − γ
(
(X̃N − CN − θ)S0

N

)2]
subject to X̃0 = V0, (αn)n G− Pred

X̃n+1 = X̃n + α⌊n+1
p

⌋p ·∆S̃n+1

Cn+1 = Cn +
d∑

i=1

ν|αi
⌊n+1

p
⌋p − αi

⌊n
p
⌋p|S̃i

n

(Uγ)

For θ ∈ R, we consider the analog problem

sup
α1,...αkp,...,αN

EP

[
(X̃N − CN)S0

N − γ
(
(X̃N − CN − θ)S0

N

)2]
subject to X̃0 = V0, (αn)n G− Pred

X̃n+1 = X̃n + α⌊n+1
p

⌋p ·∆S̃n+1

Cn+1 = Cn +
d∑

i=1

ν|αi
⌊n+1

p
⌋p − αi

⌊n
p
⌋p|S̃i

n

(Uγ
θ )

This stochastic control problem can be rewritten with value functions b, such that α⋆
(k+1)p

is solution of

bkp(X̃kp, S̃kp, Ckp, αkp, θ) = sup
α(k+1)p∈R

qkp(X̃kp, S̃kp, Ckp, α(k+1)p, αkp, θ),with
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
qN(x, s, c, α, α

′
θ) = (x− c)S0

N − γ ((x− c− θ)S0
N)

2
,

qN−p(x, s, c, α, α
′
, θ) = EP

[
bN(x+ α · (R̃dN − Id)s, R̃dNs, c+ ν|α− α

′| · s, α, θ)
]
,

qlp(x, s, c, α, α
′
, θ) = EP

[
b(l+1)p(x+ α · (R̃d(l+1)p − Id)s, R̃d(l+1)ps, c+ ν|α− α

′ | · s, α, θ)
]
,

For l < ⌊N
p
⌋.

With these three possible forms, and using that R̃d(k+1)p is independent from Gkp, we can
say that α⋆

(k+1)p(θ) is a deterministic function of (S̃kp, X̃kp, αkp, θ). We also notice that
X̃kp = V0 +

∑k−1
i=0 α(i+1)p(S̃(i+1)p − S̃ip). Then we can deduce that α⋆

(k+1)p(θ) is a determin-
istic function of (S̃kp, S̃(k−1)p, . . . , S0, αkp, α(k−1)p, . . . , α0). By applying Lemma 25, ∃θ⋆ ∈ R
such that (α⋆

1(θ
⋆), . . . , α⋆

N(θ
⋆)) is solution of the main problem (Uγ). Equivalently, one can

say that ∃ θ⋆ such that (α⋆
1(θ

⋆), . . . , α⋆
kp(θ

⋆), . . . , αN(θ
⋆)), a solution of (Uγ

θ⋆), is equal to
(α⋆

1, . . . , α
⋆
kp, . . . , α

⋆
N), solution of (Uγ). θ⋆ is deterministic then α⋆

(k+1)p(θ
⋆) is a determin-

istic function of
(S̃kp, S̃(k−1)p, . . . , S0, α(k−1)p(θ

⋆), α(k−2)p(θ
⋆), . . . , α0). By applying the assumption of re-

currence, we can conclude that α⋆
(k+1)p(θ

⋆) = α⋆
(k+1)p = α⋆

kp+1 is Fkp measurable. But
α⋆
kp+1 = α⋆

n+1 and Fkp = Fn so Hn+1 is true. The proposition is then true.

5 Benchmark models

Here, we present different approaches used to benchmark and challenge the multi-period
one, described in Section 3. A first element of comparison is the multi-period approach
itself but which ignores transaction costs. A second comparison is done with the sequential
uni-period Markowitz framework. We present two versions of this approach, when cost are
ignored and considered. We also study the link of risk aversion on optimal solutions for
those benchmark models.

5.1 Benchmark: Multi-period allocation ignoring transaction costs

A natural an simplified approach consists in applying the framework described in Section
3, while ignoring costs. Costs are removed from the portfolio value but do not impact the
strategy. Theoretically, we look for an optimal strategy whose costs are refunded. The
control (α⋆

n)n, are solution to (Eγ) by temporally setting ν = 0 during the resolution.
Formally, we solve

sup
(αn)n∈{1,N}

EP

[
U(X̃NS

0
N)
]

s.t. X̃0 = V0, (αn)n F − Pred

X̃n+1 = X̃n + αn+1 ·∆S̃n+1

(Eγ
0 )
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Then, the real quantity in risk free asset at stake is deduced with the auto-financing
relation and by removing costs generated by the real value of ν. Formally, after maximizing
(Eγ

0 ), the generated cost CN is computed and removed to obtain the real portfolio value
ṼN = X̃N − CN . This strategy is implemented in order to observe the effect of costs on
optimal strategies.

5.2 Benchmark: Sequential Uni-period Markowitz portfolio allo-
cation

In this section, we present an alternative approach, intended to serve as a benchmark. We
would like to compare the performance of our method to a method traditionally applied
by asset managers. We propose to implement the sequential uni-period mean–variance
Markowitz framework. This approach also corresponds to the one-time-step Model Predic-
tive Control (MPC) described in Li et al. (2022). In order to maximise the rate of return
of a portfolio while controlling its volatility at time T , an agent consecutively maximizes at
time 0 = t0 < · · · < tN = T , its uni-period mean-var objective function. We assume that
the agent has an uni-period risk aversion parameter γu. The agent has to consecutively
solve for n ∈ {0, . . . , N − 1},

sup
αn+1∈Rd,α0

n+1∈R

EP [Vn+1|Fn]− γuVarP [Vn+1|Fn]

s.t. ∆Vn+1 = αn+1 ·∆Sn+1 + α0
n+1∆S0

n+1 −
d∑

i=1

ν|αi
n+1 − αi

n|Si
n

(Y γu
n )

We present two versions of this model. A naive version, where the asset manager pays
the cost but does not take the amount into account in its strategy (by ignoring them),
is presented in Section 5.2.1. In a second version, described in Section 5.2.2, the investor
consecutively solves (Y γu

n ) and bases his strategy according to the cost he will have to pay.

5.2.1 Ignoring costs

We aim to propose here, a simplified version of the initial sequential uni-period prob-
lem (Y γu

n ). The underlying idea is the same as the multi-period version described in Sec-
tion 5.1. At each time step, the agent maximizes its mean-var utility function as though
costs are refunded. Costs do not impact the strategy and are just removed from the
portfolio value at the end. The agent has to consecutively solve for n ∈ {0, . . . , N − 1},

sup
αn+1∈Rd,α0

n+1∈R

EP [Xn+1|Fn]− γuVarP [Xn+1|Fn]

s.t. ∆Xn+1 = αn+1 ·∆Sn+1 + α0
n+1∆S0

n

(Yγu
n )
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Let (α⋆
n+1, α

0 ⋆
n+1) be a solution and (X⋆

n), the associated portfolio. The real portfolio is
computed after removing the generated costs such that V ⋆

n+1 = X⋆
n+1−Cn+1S

0
n+1. According

to the dynamics of the assets, we have for n ∈ {0, . . . , N − 1},{
EP

[
Si
n+1|Fn

]
= Si

ne
µi
n(tn+1−tn), ∀ 1 ≤ i ≤ d ,

Cov
[
Si
n+1, S

j
n+1|Fn

]
= Si

nS
j
ne

(µi
n+µj

n)(tn+1−tn)(e(σ
i
n)

T σj
n(tn+1−tn) − 1), ∀ 1 ≤ i, j ≤ d .

By calling An = Diag((eµ
i
n(tn+1−tn))1≤i≤d) and Bn = [e(µ

i
n+µj

n)(tn+1−tn)(e(σ
i
n)

T σj
n(tn+1−tn)−1)]ij,

We have

α⋆
n+1 = arg sup

αn+1∈Rd

αT
n+1AnSn + (Xn − αT

n+1Sn)
S0
n+1

S0
n

− γuα
T
n+1S

T
nBnSnαn+1

⇔ AnSn − Sn

S0
n+1

S0
n

− 2γu(S
T
nBnSn)α

⋆
n+1 = 0 ⇔ α⋆

n+1 =
AnSn − Sne

rn(tn+1−tn)

2γuST
nBnSn

. (5.38)

Remark 47. It is equivalent to remove costs at each time step or to remove them at the end
because the quantity in the risk free asset does not impact the strategy.

Comparing the multi-period strategy with this framework is a difficult task. The risk
aversion parameters γ and γu in the two models, do not refer to the same risk aversion for
the agent. We need to find a correct matching, or a measure of performance, independent
from risk aversion. Obviously, this measure is the Sharpe ratio.

Proposition 48. The Sharpe ratio of the sequential uni-period Markowitz strategy which ig-
nores costs, does not depend on the risk aversion parameter γu.

Proof. We prove by induction ∀ 0 ≤ n ≤ N , Hn : ∃ a Fn−measurable random variable Xn

not function of γu such that V ⋆
n = V0S

0
n +

Xn

2γu
.

H0 is true with X0 = 0. We assume Hn true for n > 0. We have

Ṽ ⋆
n+1 = Ṽ ⋆

n + α⋆
n+1 ·∆S̃n+1 −

d∑
i=1

ν
|αi ⋆

n+1 − αi ⋆
n |Si

n

S0
n

=
1

S0
n

(
V0S

0
n +
Xn

2γu

)
+ (α⋆

n+1)
T∆S̃n+1 −

d∑
i=1

ν
|αi ⋆

n+1 − αi ⋆
n |Si

n

S0
n

.

By using that R̃dn = Diag( S̃i
n

S̃i
n−1

), and the form of the solution in (5.38), we rewrite

(α⋆
n+1)

T∆S̃n+1 = (α⋆
n+1)

T (R̃dn+1 − Id)S̃n = S̃T
n (R̃dn+1 − Id)α⋆

n+1

=
1

S0
n

ST
n (R̃dn+1 − Id)(AnSn − Sne

rn(tn+1−tn))

2γuST
nBnSn

.
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We also have

d∑
i=1

ν

(
|αi ⋆

n+1 − αi ⋆
n |Si

n

S0
n

)
=

d∑
i=1

ν

∣∣∣∣Ai
nS

i
n − Si

ne
rn(tn+1−tn)

2γuST
nBnSn

−
Ai

n−1S
i
n−1 − Si

n−1e
rn−1(tn−tn−1)

2γuST
n−1Bn−1Sn−1

∣∣∣∣ Si
n

S0
n

.

We prove Hn+1 by denoting

Xn+1 =
S0
n+1

S0
n

(
Xn +

ST
n (Rdn+1 − Id)(AnSn − Sne

rn(tn+1−tn))

ST
nBnSn

)
−

S0
n+1

S0
n

d∑
i=1

ν

∣∣∣∣Ai
nS

i
n − Si

ne
rn(tn+1−tn)

ST
nBnSn

−
Ai

n−1S
i
n−1 − Si

n−1e
rn−1(tn−tn−1)

ST
n−1Bn−1Sn−1

∣∣∣∣Si
n.

Using this form we deduce that EP[V
⋆
N ]− V0S

0
N = EP[XN ]

2γu
, and Var[V ⋆

N ] =
Var[XN ]

4γ2
u

. Finally

Sharpe [V ⋆
N ] =

EP[V
⋆
N ]−V0

V0
− V0S0

N−V0

V0

Var[V
⋆
N−V0

V0
]
1
2

=
EP[XN ]

Var[XN ]
1
2

,

which does not depend on γu.

5.2.2 Taking costs into account

In this version, costs are taken into account in the objective function but the strategy
remains myopic. We recall that the agent has to consecutively solve (Y γu

n ). In the presence
of costs, we do not provide an explicit solution of (Y γu

n ).

In order to use this model as a benchmark, let us prove an analog result to Proposition 48.

Proposition 49. The Sharpe ratio of the sequential uni-period Markowitz strategy considering
costs, does not depend on the risk aversion parameter γu.

Proof. With the notation of the previous section, (Y γu
n ) can be rewritten as

sup
αn+1∈Rd

αT
n+1AnSn +

(
Vn − αT

n+1Sn −
d∑

i=1

−ν(|αi
n+1 − αi

n|Si
n)

)
S0
n+1

S0
n

− γuα
T
n+1S

T
nBnSnαn+1

subject to Vn+1 = αn+1Sn+1 + α0
n+1S

0
n+1

Let us consider the objective functions

∀ n ≤ N−1, fn(α) = αTAnSn+

(
Vn − αTSn −

d∑
i=1

−ν(|αi − αi
n|Si

n)

)
S0
n+1

S0
n

−γuαTST
nBnSnα.
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fn is strictly concave and lim
|α|→+∞

fn(α) = −∞, then (Y γu
n ) has an unique solution. We call

α⋆
n+1 the solution of (Y γu

n ). fn is differentiable on Rd \ On, where On = {α ∈ Rd,∃i ∈
{1, . . . , d} such that αi = αi

n}. fn admits a sub-differential ∂fn, at any point α ∈ Rd

∂fn(α) =

{
AnSn − 2γu(S

T
nBnSn)α−Diag(1 + νϵ)Sn

S0
n+1

S0
n
, with

ϵi = sign(αi − αi
n) if αi ̸= αi

n, ϵi ∈ [−1, 1] otherwise

}
.

We have 0 ∈ ∂fn(α
⋆
n+1). Let us show by induction ∀ 0 ≤ n ≤ N ,

Hn : ∃ a Fn−measurable random variable Xn

not function of γu such that α⋆
n = Xn

2γu
.

H0 is true with X0 = 0. We assume Hn true for n > 1. If ∃ i ∈ {1, . . . , d} such that
αi⋆
n+1 = αi⋆

n then it is sufficient to choose X i
n+1 = X i

n. If αi⋆
n+1 ̸= αi⋆

n , then

αi⋆
n+1 =

Aii
nS

i
n − (1− ν sign(αi⋆

n+1 − αi⋆
n ))S

i
ne

r

2γuST
nBnSn

.

Let us define Z a Fn-measurable random variable such that αi
n+1 = Z

2γu
. Then with the

form of αi⋆
n , we have

Z =
Aii

nS
i
n − (1− ν sign(Z − X i

n))S
i
ne

r

ST
nBnSn

.

We can deduce that Z is not a function of γu. Therefore Z is the chosen candidate to be
Xn+1. Hn+1 is then true, and Hn true for all n ≥ 0. Then is is easy to check that

Sharpe(V ⋆
N) =

EP

[
S0
N

(
V0 +

∑N
n=0(α

⋆
n+1)

T S̃n −
∑d

i=1 ν|αi⋆
n+1 − αi⋆

n |S̃i
n

)]
− V0S

0
N

Var
[
S0
N

(
V0 +

∑N
n=0(α

⋆
n+1)

T S̃n −
∑d

i=1 ν|αi⋆
n+1 − αi⋆

n |S̃i
n

)] 1
2

=
EP

[(∑N
n=0(Xn+1)

T S̃n −
∑d

i=1 ν|X i
n+1 −X i

n|S̃i
n

)]
Var

[(∑N
n=0X T

n+1S̃n −
∑d

i=1 ν|X i
n+1 −X i

n|S̃i
n

)] 1
2

,

which is not a function of γu.

6 Numerical illustration

In this section, we implement the approach presented in Section 3 and the sequential
uni-period Markowitz model which is used as benchmark, described in Section 5.2. We
consider the cases where costs are ignored and considered. Further details on the imple-
mented benchmark model and its link with risk aversion are presented in Section 5.2.
We assume that the risky assets follow the dynamics (5.1) with constant parameters. For-
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mally, the drift terms, the volatility matrices and the risk free rate are chosen deterministic
and constant, ie. ∀ n ∈ {0, . . . , N} µn = µ, σn = σ, rn = r. Along a first part, we compare
the performances by choosing the same risk aversion parameter γ = γu. As the Sharpe
ratios of the estimated portfolios is independent of the aversion parameter (see Proposi-
tions 43, 45 , 48, 49), it can be used as an indicator of performance. Then, along a second
part, we apply a framework for matching the risk aversion between uni-period and multi-
period models. We are able to illustrate and compare the behaviour of our solutions on
two realisations.

6.1 Model parameters

We consider d = 3 assets, evolving during N = 368 days. Transactions are only available
every 92 days. The model is described in Section 2.2. Instead of specifying a volatility
matrix, we fix the marginal volatilities (σ̂i)i∈{1.2,3} and a correlation matrix ρ as in Tables 5.1
and 5.2.

Table 5.1: Model parameters

S1 S2 S3

µ 0.06 0.02 0.14
σ̂ 0.1 0.06 0.2

Table 5.2: Correlation matrix ρ of risky assets

S1 S2 S3

S1 1 -0.2 0.3
S2 -0.2 1 -0.2
S3 0.3 -0.2 1

We fix a constant risk free rate r = 0.001. The initial portfolio wealth is v0 = 100. The
implementation parameters are summarized in the following table

Table 5.3: Implementation parameters

nb.traj MonteCarlo nb.traj. calibration nb.traj. test N p Chaos degree
107 105 105 368 92 2

A sample of trajectories is necessary to estimate the expectations EQ

[
Hλn+1(∆ŴQ

n+1)(
S̃j
n+1

S̃j
n
− 1)

]
.

These terms appear in the computation of the controls (see for instance (5.26)) and are
estimated through Monte-Carlo simulations. Then, we split a new sample into two parts.
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The first part is used to run the descent gradient algorithm to calibrate and to find an
optimal portfolio, while the second part is used to compute performance indicators. In
presence of costs, we assume that the first position is free of charge.

6.2 Same risk aversion parameter

In this first experiment, we choose the same risk aversion parameter γ = γu for the different
approaches. Since the objective functions are not the same between multi-period and uni-
period models, the agents have not the same risk aversion. Therefore volatility and rates
of return are not comparable. Nevertheless the Sharpe ratio is a relevant indicator for
comparing performances of optimal portfolios based on different risk aversions. Indeed,
the Sharpe ratios of estimated portfolios are independent from the risk aversion in every
models according to Propositions 43, 45, 48 and 49.
The implementation parameters are summarized in the following table.

Table 5.4: Implementation parameters for Multiperiod model

risk aversion batch size iteration learning rate cost(%)
0.05 100 1000 8.5 1

We compare five models; two sequential uni-period versions and two multi-period ver-
sions, where cost are on one hand ignored and on the other, considered. Moreover, we
add in the benchmark the famous equal weight portfolio to measure the performance of
the other approaches. We refer to our approach as Multi-period with costs. We refer to
Section 5 for further details on the four other benchmark models. Formally, our aim is to
evaluate the performance of our method compared to the more basic approaches commonly
used. The main results can be found in Table 5.5.

Table 5.5: Estimated metrics for evaluating models performances

rate of return(%) vol(%) Min-Var Sharpe ratio
Multi-period ignoring cost 13.24 12.17 105.83087 1.07939
Multi-period with costs 12.31 11.00 106.26365 1.11033

Sequential uni-period ignoring cost 10.44 10.00 105.43191 1.03316
Sequential uni-period with costs 11.00 10.72 105.24599 1.01606

equal weight 5.69 5.70 104.06893 0.98125

We analyse here, the difference in Sharpe ratios. By focusing on uni-period models, it is
interesting to notice that ignoring costs seems to be better than considering them. The
myopic effect, joined with the consideration of costs, may make the optimal strategy rigid
and inflexible. The agent’s myopic behavior explains why they do not see the benefit of
paying costs for short-term positions. Therefore considering cost almost freezes the strategy
and can explain that performances are not as good as if we have ignored them. Obviously
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these remarks, are dependent of the chosen parameter ν, which determines the weight of
costs in transactions.
In contrast, considering costs in the multi-period version is a significant improvement.
According to the choices of parameters, a difference of 0.03 in Sharpe ratio is not negligible.
A multi-period model targets a final value and must adapt its positions according to the
variations of the environment. These changes in positions are typically more significant
than in myopic strategies, and thus, the impact of costs becomes more critical. Ignoring
costs can have a considerable impact on strategies, leading to performance deterioration.
Undoubtedly, the myopic effect has a negative impact on performances. The difference in
Sharpe ratios between uni-period and multi-period models is not negligible. Therefore, we
advise to use multi-period models, despite their greater complexity. In that case, costs
must not be ignored.

6.3 Same risk aversion level

In a second experiment, we want to compare the optimal portfolios submitted to transaction
costs in uni-period and multi-period settings with the same level of risk. According to
Proposition 44, we can link the risk aversions γ and γu in both models to ensure the same
level of risk. This experiment aims to illustrate the comparison in terms of rates of returns.
We can also directly compare portfolio trajectories.

6.3.1 Performances

Our aim is to obtain a locally optimal multi-period portfolio that carries the same level of
risk as the optimal sequential uni-period portfolio. We adopt the approach described in
Proposition 44. We use the γ = 0.05 locally optimal multi-period portfolio estimated in
the previous section to build another locally optimal multi-period portfolio with the same
volatility as the optimal uni-period portfolio. With a uni-period risk aversion γu = 0.05,
we have obtained a volatility of 10.72% for the optimal uni-period portfolio. The γu locally
optimal multi-period portfolio estimated in the previous experiment has a Sharpe ratio
equal to 1.11033. According to Proposition 44, we can build another locally optimal multi-
period portfolio with the same Sharpe ratio and a volatility of 10.72%. To reach this
volatility, a multi-period risk aversion parameter γ = 0.0518 is estimated by using (5.29).
The main results can be found in Table 5.6

Table 5.6: Results

risk aversion rate of return(%) Min-Var Sharpe ratio
Multi-period with costs 0.0518 11.89 105.9372 1.11033

Sequential uni-period with costs 0.0500 11.00 105.24599 1.01606

The multi-period model is obviously the most performing. The difference between the rates
of return is almost 1%. This difference is important according to a level of risk of 12.72%.
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After comparing the performances of the optimal portfolios with the same risk aversion,
we illustrate their behaviour by showing trajectories from two different situations, A and
B. To ensure consistency, we use the same framework as before to match the risk aversions.

6.3.2 Behaviour on realisation A

To illustrate the comparison we present in Figures 5.1, one particular sample path of assets.

Figure 5.1: Asset trajectories in A

It can be observed that the curves for assets 1 and 2 are relatively flat and symmetric.
Asset 2 remains above its initial value. On the other hand, asset 1 remains below its initial
value. Asset 3 experiences significant growth, reaching a peak of 170 before collapsing
towards the end of the period to finish just above 120.

We respectively present in Figures 5.2, 5.3, 5.4, 5.5, the portfolios values, the cumulative
costs and the controls of the uni-period model considering cost against the multi-period
model considering cost, whose performances have been presented in Table 5.6.

Figure 5.2: Portfolio values in A Figure 5.3: Cumulative cost in A
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Figure 5.4: Controls of uni-period model
with costs in A

Figure 5.5: Controls of multi-period
model with costs in A

By analysing Figure 5.2, both portfolio trajectories follow the trend of asset 3. This
behavior is not surprising given the flat evolution of assets 1 and 2. The multi-period
portfolio outperforms at every moment, for this particular realisation.
Figures 5.3 highlights that the uni-period strategy pays few cost compared to the multi-
period one. This can be attributed to the myopic vision of the uni-period strategy, which
results in a very flat strategy that is not very sensitive to asset and wealth variations. It can
not embrace the benefit of sacrificing money in paying costs to anticipate future evolution.
The high costs required to make a reversal of strategy, further reinforce this inflexibility,
which partly explains the low Sharpe ratio estimated in Section 6.2. The long position of
this portfolio explains the high dependence with asset 3 and the decline of its value after
the middle of the period.
The multi-period portfolio follows a completely different policy. While initially adopting
a more aggressive long strategy than the uni-period portfolio, the level of risk taken is
significantly higher. The portfolio performs well during the growth of asset 3 until day 276,
at which point the strategy starts to reverse as assets are gradually sold. Subsequently,
in response to the decline of asset 3, the strategy undergoes another shift, with new asset
quantities being purchased. This strategy can be explained by the decline of asset 3 and
the portfolio value. The optimal strategy would see an opportunity to take some risk again.
Consequently, new investments are made.

6.3.3 Behaviour on realisation B

To illustrate the comparison, we present in Figures 5.6, a new realisation of the assets.
This scenario looks like the previous one, as Asset 1 and 2 exhibit minimal changes while
Asset 3 experiences a large increase without any significant decrease.
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Figure 5.6: Asset trajectories in B

We present respectively in Figures 5.7, 5.8, 5.9, 5.10, the portfolios values, the cumulative
costs and the controls of the uni-period model against the multi-period model with costs,
whose performance results have been presented in Table 5.6.

Figure 5.7: Portfolio values in B Figure 5.8: Cumulative cost in B

Figure 5.9: Controls of uni-period model
with costs in B

Figure 5.10: Controls of multi-period
model with costs in B

Although both portfolios experience growth over the period, the uni-period portfolio with
costs outperforms the multi-period portfolio at the end. It is important to note that
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this outcome is specific to this particular trajectory but cannot be generalised. The uni-
period portfolio appears to closely track the trend of asset 3, which continues to perform
toward the end of the period. As for the realisation A, the positions of the uni-period
strategy maintains predominantly long and flat positions. The multi-period strategy is
considerably different and more versatile. Following 276 days of long positions, all assets
are sold. This reverse of positions explains the plateau reached. After performing , the
portfolio eliminates all risk to insure a positive performance. Even if Asset 3 were to
continue its upward trend, this approach remains prudent. The portfolio achieves a higher
value than anticipated, justifying its wish to protect its gains.

7 Conclusion of the chapter

In this chapter, we presented an efficient numerical method for addressing multi-stage
portfolio optimization problems that involve multiple assets and transaction costs. We
applied a stochastic descent gradient algorithm to find the Wiener chaos expansion of
a locally optimal portfolio. The method can be extended to handle realistic constraints
as no-shorting constraint and is computationally tractable. Our research explored the
link between risk aversion and optimal portfolios subject to transaction costs, with two
findings standing out. Firstly, we proved that the Sharpe ratio of a locally optimal portfolio
with transaction costs does not depend on its risk aversion. Secondly, we established
that optimal portfolios have the same Sharpe ratio. We used this result to compare our
approach to a competitive benchmark, based on the sequential uni-period mean-variance
strategy. We highlighted the efficiency of our approach and we showcased our benchmark
by analyzing the performance of our models on two selected trajectories. Costs must not
be ignored in multi-period setting since reverses of strategy are frequent. On the other
hand, considering costs for uni-period models is still a topic of debate. The myopic effect
induced by costs may freeze the strategy and negatively impact performance. As expected,
the multi-period model is more intricate, but outperforms the uni-period models. We hope
that this study contributes to challenging the conventional skepticism surrounding the use
of multi-period models. Future research could extend the model to incorporate fix costs, or
handle more intricate stochastic dynamics for asset modeling. Additionally, integrating the
impact of the economic cycle with a Hidden Markov setting would significantly enhance
the model.
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Chapter 6
Extensions and variants of the approach with
chaos expansion

This chapter presents potential extensions of the approach presented in Chapter
5. We notably show how the approach can handle no-shorting constrain. We
also propose a variant in absence of transaction costs and constraint where a
sub-optimal portfolio is sought. If certain assumptions are met, this method
can result in a deterministic optimization, reducing complexity.

Abstract

Contents
1 Mean-variance multi-period allocation problem without transaction costs 147
2 Multi-period portfolio selection with transaction costs and no-shorting con-

straint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

1 Mean-variance multi-period allocation problem with-
out transaction costs

This section examines the case in which transactions are not subject to transaction costs.
We compare the approach outlined in Chapter 5 to a variant where a sub-optimal portfolio
is sought. We consider the same setting as in Chapter 5. According to this setting, ∀
n ∈ {1, . . . , N} knowing Fn−1, Rn is independent from Fn−1. Note the difference with the
explicit approach described in Section 2.5.2, where {Rn, n ∈ {1, . . . , N}} are assumed to
be independent.
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1.1 A sub-optimal strategy

This section presents an alternative to the approach described in Chapter 5. We consider
here, that the portfolio is not submitted to transaction costs. By pursuing a sub-optimal
solution, this approach achieves a significant simplification of the framework. Indeed, the
optimisation can be deterministic in specific cases. We recall several notations. Let M
be the space of squared integrable F -martingales under Q and MS the sub-space of M
defined by

MS =

{
M ∈M : ∃ (αk)1≤k≤N F − predictable s.t ∀n ∈ {0, . . . , N},
Mn = h+

∑n−1
k=0 αk+1 ·∆S̃k+1

}
.

MS is the set of martingales which are a martingale transformation of S̃. MS can also be
interpreted as the space of admissible portfolios in discrete-time. Equivalently, the problem
to solve can be rewritten as

sup
X̃∈MS

EP

[
X̃NS

0
N − γ

(
X̃NS

0
N − EP[X̃NS

0
N ]
)2]

subject to X̃0 = V0

(Aγ
MS

)

While the approach described in Chapter 5 consists in finding optimal portfolios onMS by
exploring M, we will here, proceed differently. We preliminary seek the optimal solution
on M and then try to hedge this solution with an element of MS. Formally we find
(Z⋆, θ⋆) ∈M× R solution to

sup
Z∈M,θ∈R

EP

[
ZNS

0
N − γ

(
ZNS

0
N − θ

)2]
subject to Z0 = V0

(Aγ
M)

By using the martingale representation theorem, Z⋆ could have been be perfectly hedged
by(
h+

∫ n

0
αu · dS̃udu, α Γ− predictable

)
. But this strategy is not realistic since we can only

re-balance at discrete dates. Z⋆ solution to (Aγ
M), is not necessarily an admissible solution

to (Aγ
MS

). The natural approach is too hedge this solution with an admissible portfolio
Θ⋆ ∈ MS. We have seen in Proposition 24 of Chapter 5 that the orthogonal projection
of Z⋆ on MS under Q is Θ⋆ = Pr(Z⋆). By approaching elements of M with their chaos
expansion of order K, we aim to find β⋆, θ⋆ solution to the analog problem

sup
β∈Rm,θ∈R

EP

[
CK(β)S

0
N − γ

(
CK(β)S

0
N − θ

)2]
subject to EQ[CK(β)] = V0

(Aγ
K)
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Finally we set Z⋆ = CK(β
⋆), and build a sub-optimal portfolio Θ⋆ = Pr(Z⋆).

In some case where Φ, defined by ∀i ∈ {1, . . . , d}, ∆WQ,i
n+1

P
= ∆W i

n+1 + Φi
n(tn+1 − tn),

is deterministic (as when assets are governing by a Black-Scholes model), we can explic-
itly compute EP

[
CK(β)S

0
N − γ (CK(β)S

0
N − EP[CK(β)S

0
N ])

2
]
, according to Proposition 55.

This derivation offers a deterministic form of the problem.
In the next section, we implement this solution and compare the sub-optimal portfolio to
the optimal portfolio issued from the original approach described in Chapter 5.

1.2 Numerical application without transaction cost

In this section, we compare the performances of four models when there is no transaction
cost. We consider d=3 assets, with the same dynamics assumed in Section 6. Table 6.1
provides the implementation parameters used for running the multi-period model without
transaction cost presented in Chapter 5.

Table 6.1: Implementation parameters for multi-period model

risk aversion batch size iteration learning rate cost(%)
0.05 100 1000 25 0

In absence of transaction cost, we compare four models, the sub-optimal multi-period
presented in Section 1.1, the optimal multi-period presented in Section 3, the sequential
uni-period, presented in Section 5.2 and the famous equal weight. The main results can
be found in Table 6.2

Table 6.2: Results

rate of return(%) vol(%) Min-Var Sharpe ratio
Sub-optimal multi-period 17,71 14,76 106,81390 1,19288

optimal multi-period 16,35 12,70 108,27987 1,27908
equal weight 5,69 5,70 104,06893 0,98125

Sequential uni-period 10,66 10,03 105,62782 1,05262

As expected, the optimal multi-period portfolio significantly outperforms the other port-
folios in terms of performance. It is also noteworthy that while the sub-optimal portfolio
exhibits a substantial loss of performance, it remains relatively acceptable when compared
to the other two portfolios. Equal weight strategy is a very naive method and does not
present a lot of interest when inputs parameters are known. We realize that the myopic
effect in the uni-period model, strongly deteriorates the performance of the strategy.
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2 Multi-period portfolio selection with transaction costs
and no-shorting constraint

In this section, we show how our method can be easily adapted if short positions are not
allowed.

2.1 Model

The constraint of no shorting requires the controls to be positive, ie ∀ 1 ≤ n ≤ N, 1 ≤
i ≤ d, αi

n ≥ 0. We still consider proportional transaction costs. At time n ≤ N − 1, the
portfolio is re-balanced from (αn, α

0
n) to (αn+1, α

0
n+1) and the costs

∑d
i=1 ν|αi

n+1−αi
n|Si

n is
paid. The allocation problem writes

sup
(αn)n

EP

[
ṼNS

0
N − γ

(
ṼNS

0
N − EP[ṼNS

0
N ]
)2]

subject to Ṽ0 = V0, (αn)n F − Pred

∆Ṽn+1 = αn+1 ·∆S̃n+1 −
d∑

i=1

ν
|αi

n+1 − αi
n|Si

n

S0
n

αn+1 ≥ 0

(Iγ0 )

Following the same arguments as in Chapter 5, we solve the problem

sup
β∈Z,θ∈R

EP [Fγ(β, θ)]

subject to EQ [CK(β)] = V0,

αn(β) ≥ 0 a.s.

(IγK)

In the stochastic gradient descent, the constraint of no-shorting can be numerically inte-
grated by penalizing negative controls. Let us define the penalty function

Πκ(β) = κ
N∑

n=1

d∑
i=1

|αn(β)|−, for κ > 0.

We integrate this penalty function to avoid short investments such that (IγK) writes

sup
β∈Z,θ∈R

EP [Fγ(β, θ)− Πκ(β)]

subject to EQ [CK(β)] = V0,

αn(β) ≥ 0 a.s.

(Iγ
′

K )
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We can apply a stochastic descent algorithm to solve (Iγ
′

K ).

2.2 Performance analysis

In this section, we compare the performances of the optimal portfolio with transaction
costs with the optimal portfolio with transaction costs and no shorting constraint. We aim
to observe how no-shorting constraint deteriorates the performance of the portfolios. The
implementation parameters are summarized in Table 6.3

Table 6.3: Implementation parameters for Multiperiod model

risk aversion batch size iteration learning rate cost(%) Penalty κ
0.05 100 1000 8,5 1 100

The main results can be found in Table 6.4.

Table 6.4: Results

rate of return(%) vol(%) Min-Var Sharpe ratio
Multi-period with costs 12,31 11,00 106,26365 1,11033

Multi-period with costs with no-shorting 6,77 6,04 104,94730 1,10475

When examining the Sharpe ratios, it is not surprising to observe that the no-short con-
straint results in a deterioration of performance. Due to the reduced set of potential
strategies, the reachable optimal strategy can only offer inferior performance compared
to an optimal strategy that allows shorting of assets. It is still interesting to notice that
the behaviour of the optimal strategy with no-shorting is totally different. The no-sorting
constraint almost divides the expected rate of return by two but also substantially reduced
the risk. This behavior can be rationalized as follows: since the strategy without shorting
has fewer degrees of freedom and cannot be reversed by inverting positions, the model rec-
ognizes that the strategy will face more difficulty adapting to changes. Consequently, the
optimal strategy will tend to be more stable and assume less risk than if shorting positions
were allowed.

To illustrate the comparison we present in Figures 6.1, a following realisation of assets.
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Figure 6.1: Asset trajectories

Overall, the assets increase in this situation. The variations of Asset 1 and 2 are quite
symmetric and Asset 3 performs far more the two others. We respectively present in
Figures 6.2, 6.3, 6.4, 6.5, the portfolios values, the cumulative costs and the controls of the
multi-period model with costs against the multi-period model with costs and no shorting
constraint.

Figure 6.2: Portfolio values Figure 6.3: Cumulative cost

Figure 6.4: Controls of multi-period
model with transaction costs

Figure 6.5: Controls of multi-period
model with transaction costs and no-
shorting
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In this situation, the multi-period portfolio which can take short positions obviously per-
forms better than the one which cannot. The strategy consists in buying asset at the
beginning of the period. Then the positions are progressively reversed, assets are sold and
are shorted at the end of the period. The strategy with no-shorting constraint is different.
The quantity of assets purchased under this strategy is comparatively lower than that of
the other strategy. Assets 1 and 3 are slowly sold whereas positions in asset 2 is kept
during the whole period. At the end of the period, positions on assets are still long. It
is interesting to notice than the optimal strategy with no-shorting does not seek to copy
the strategy with short positions allowed. One might have expected that assets are totally
sold when short positions are taken in the other portfolio, but it is not the case.
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Conclusion of the part

This part provided an overview of existing approaches for portfolio allocation. The selection
of a particular method manly relies on market perspective, available data and resources,
investor profile, and investment goals. When investors have reliable estimation of asset
dynamic parameters, they have to choose between two main families, the single-period
and the multi-period approaches. Single-period models, are user-friendly, computationally
tractable but they may not be optimal for long investment horizon. On the other hand,
multi-period models require more information, assumptions, and computations. They suf-
fer of the curse of dimensionality and are often computationally intractable, especially
when accounting for constraints and transaction costs. As a result, we have established
the absence of reliable method to find optimal mean-variance portfolios submitted to trans-
actions costs. We filled this gap by proposing a new computational scheme that relies on
representing the portfolio value by its finite dimensional Wiener chaos expansion. This
method is computationally feasible and can be extended to handle realistic constrain such
as no-shorting selling. Note that this method can also be easily applied for a concave
utility function. In summary, we hope that this study challenges the prevailing skepticism
regarding the use of multi-period models and offers a promising strategy for mean-variance
allocation in presence of transaction costs.
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Tool box: Wiener chaos expansion
properties

In this Appendix, we present several fundamental properties on Wiener chaos expansion
and Hermite polynomials, use-full in our study. We refer to Akahori et al. (2017), Lelong
(2018) Nualart (2006) for theoretical details.

Let Hi be the i-th Hermite polynomial defined by

H0(x) = 1 : Hi(x) = (−1)ie
x2

2
di

dxi
(e

−x2

2 ), for i ≥ 1. (6.1)

For λ ∈ Nn, x ∈ Rn, we define

H
⊗
λ (x) =

n∏
i=1

Hλi
(xi).

We have the following properties

• For i ≥ 1, H ′
i = iHi−1 with H−1 = 0.

• For x, y ∈ R,

Hi(x+ y) =
i∑

r=0

(
i

r

)
xrHi−r(y). (6.2)

• Let X, Y be two random variables with joint Gaussian distribution such that E(X) =
E(Y ) = 0 and E(X2) = E(Y 2) = 1 . Then ∀ i, j ≥ 0, we have

E [Hi(X)Hj(Y )] = 1(i=j)i!(E [XY ])i. (6.3)

• Let λ ∈ Rn ̸= 0Rn and X be a n-multivariate i.i.d standard normal vector. Then we
have

E
[
H

⊗
λ (X)

]
= 0. (6.4)
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• Let λ, λ′ ∈ Rn and X a n-multivariate i.i.d standard normal vector, then

E
[
H

⊗
λ (X)H

⊗
λ′ (X)

]
= 1(λ=λ′ )

n∏
i=1

λi! . (6.5)

The following theorem represents the base of our approach. It provides a discrete-time
general representation with a convergent serie expansion. This expansion is introduced
and proved in Akahori et al. (2017)[Theorem 2.1].

Theorem 50. Let Y be a square integrable random variable, FN -measurable, then Y admits
we have the following L2 convergent series Wiener chaos expansion

Y = E[Y ] +
∑

λ∈(NN )d

βλ

d∏
j=1

N∏
i=1

Hλj
i

(
W j

ti −W j
ti−1√

ti − ti−1

)
= E[Y ] +

∑
λ∈(NN )d

βλH
⊗
λ (∆Ŵ ).

By truncating the decomposition of Y , we call CK(Y ) the function which associates to
a FN -measurable and square integrable random variable, its Wiener chaos expansion of
order K and we have

lim
K→+∞

E
[
|Y − CK(Y )|2

]
= 0, with CK(Y ) = E[Y ] +

∑
λ∈(NN )d

|λ|1≤K

βλH
⊗
λ (∆Ŵ ).

We also call CQ
K(Y ) the random variable of the form

CQ
K(Y ) = EQ[Y ] +

∑
λ∈(NN )d

|λ|1≤K

ηλH
⊗
λ (∆ŴQ),

which has the same law than CK(Y ) under Q. By abuse of language, we call this variable,
the Wiener chaos expansion of Y under Q. Let us define m ∈ N be the number of coefficients
λ appearing in the chaos decomposition. We have m = #{λ ∈ (NN)d|λ|1 ≤ K} =

(
Nd+K
Nd

)
.

By extension we also call the operator CK on Rm that associates to coefficients β, the
expansion of order K such that

CK(β) =
∑

λ∈(NN )d

|λ|1≤K

βλH
⊗
λ (∆Ŵ ).

Proposition 51. Let Y ∈ L2(Ω,FN ,P), then

E [CK(Y )|Fn] = CK(E [Y |Fn]) = CK,n(Y ), (6.6)
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where

CK,n(Y ) = E[Y ] +
∑

λ∈(NN )d

|λ|1≤K,

∀j≤d,∀l≥n+1:λj
l=0

βλH
⊗
λ (∆Ŵ ) = E[Y ] +

∑
λ∈(Nn)d

|λ|1≤K

βλH
⊗
λ (∆Ŵ ).

The Wiener chaos expansion of the conditional expectation of the variable Y is easily ob-
tained by truncating the terms which are not Fn-measurable.

Proposition 52. Let A, B two random variables of L4(Ω,FN ,P), with respective Wiener
chaos expansions such that

A =
∑

λ1∈(NN )d

ηλ1H
⊗
λ1
(∆Ŵ ), B =

∑
λ2∈(NN )d

βλ2H
⊗
λ2
(∆Ŵ ).

Let us write (CK(A)CK(B))K for the truncated expansion of order K of CK(A)CK(B).
Then CK(AB) is exactly (CK(A)CK(B))K.

Proof. Let us write the chaos expansion of AB such that AB =
∑

λ∈(NN )d µλH
⊗
λ (∆Ŵ ).

AB also writes
∑

λ1,λ2∈(NN )d ηλ1βλ2H
⊗
λ1
(∆Ŵ )H

⊗
λ2
(∆Ŵ ).

{
H

⊗
λ (∆Ŵ ), λ ∈ (NN)d

}
is an

orthonormal basis so the decomposition is unique. We can then identify

∀ λ ∈ (NN)d, µλ =
∑

λ1,λ2∈(NN )d

|λ1|1+|λ2|1=|λ|1

ηλ1βλ2 .

Therefore, we deduce that

CK(AB) =
∑

λ∈(NN )d

|λ|1≤K

µλH
⊗
λ (∆Ŵ ) =

∑
λ1,λ2∈(NN )d

|λ1|1+|λ2|1≤K

ηλ1βλ2H
⊗
λ1
(∆Ŵ )H

⊗
λ2
(∆Ŵ ) = (CK(A)CK(B))K .

Proposition 53. Let A, B two random variables of L4(Ω,FN ,P), with respectively Wiener
chaos expansions CK(A) and CK(B) such that

CK(A) = E[A] +
∑

λ∈(NN )d

|λ|1≤K

ηλH
⊗
λ (∆Ŵ ), CK(B) = E[B] +

∑
λ
′∈(NN )d

|λ′|1≤K

βλ′H
⊗
λ′ (∆Ŵ ).
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Then CK(E [AB|Fn]) writes

CK(E [AB|Fn]) = E[A]CK,n(B) + E[B]CK,n(A)

+
∑

λ,λ
′∈(NN )d

|λ|1+|λ′ |1≤K

ηλβλ′H
⊗
λ1:n

(∆Ŵ1:n)H
⊗
λ
′
1:n

(∆Ŵ1:n)1(λn+1:N=λ
′
n+1:N )

N∏
i=n+1

d∏
j=1

λij!

Proof. This result simply stems from Proposition 52, properties of Hermite polynomial and
the linearity of the expectation.

Proposition 54. Let A and B, two F -martingales. Let’s consider the following Wiener chaos
expansion of their final value.

CK(AN) = E[A] +
∑

λ∈(NN )d

|λ|1≤K

ηλH
⊗
λ (∆Ŵ ),

CK(BN) = E[B] +
∑

λ
′∈(NN )d

|λ′ |1≤K

βλ′H
⊗
λ′ (∆Ŵ ).

Then we have the following decomposition of order K,

CK(E [∆An+1∆Bn+1|Fn]) =
∑

λ,λ
′∈(Nn+1)d

|λ|1+|λ′ |1≤K

ηλβλ′H
⊗
λ1:n

(∆Ŵ1:n)H
⊗
λ
′
1:n

(∆Ŵ1:n)1(λn+1=λ
′
n+1 ̸=0)

d∏
j=1

λn+1j! .

Proof. As A and B are F -martingales and using Proposition 51, we have

CK(∆An+1) = E [CK(AN)|Fn+1]− E [CK(AN)|Fn] = CK,n+1(AN)− CK,n(AN).

This equality also holds for ∆Bn. We deduce the following decomposition

CK(∆An+1) =
∑

λ∈(Nn+1)d

|λ|1≤K,
λn+1 ̸=0

ηλH
⊗
λ (∆Ŵ ), and CK(∆Bn+1) =

∑
λ∈(Nn+1)d

|λ|1≤K,
λn+1 ̸=0

βλH
⊗
λ (∆Ŵ ).

The announced formula yields from Proposition 52 and the conditional expectation prop-
erty of Wiener chaos expansions.

Proposition 55. Let A, a random variables FN measurable associated to the following Wiener
chaos expansion of order K.

CK(A) = E[A] +
∑

λ∈(NN )d

|λ|1≤K

ηλH
⊗
λ (∆Ŵ )
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Then ∀ϕ ∈ (RN)d,

E[CK(A)(∆W + ϕ)] = E[A] +
∑

λ∈(NN )d

|λ|1≤K

ηλ

N∏
i=1

d∏
j=1

(ϕj
i )

λij , (6.7)

E[CK(A)
2(∆W + ϕ)]K = E[A]2 + 2E[A]

∑
λ∈(NN )d

|λ|1≤K

ηλ

N∏
i=1

d∏
j=1

(ϕj
i )

λij

+
∑

λ,λ
′∈(NN )d

|λ|1+|λ′ |1≤K

ηληλ′

∏
(i,j)∈(NN )d

R(λij, λ
′

ij),
(6.8)

where R(λij, λ
′
ij) =

∑min(λij ,λ
′
ij)

s=0 s!
(
λij

s

)(
λ
′
ij
s

)
(ϕj

i )
λij−s(ϕj

i )
λ
′
ij−s.

Proof. To prove (6.7), we use the properties (6.2) and (6.4) to compute for (i, j) ∈
{1, . . . , N} × {1, . . . , d}

E

[
Hλij

(
W j

ti −W j
ti−1√

ti − ti−1

+ ϕj
i

)]
=

λij∑
r=0

(
λij

r

)
(ϕj

i )
rE

[
Hλij−r

(
W j

ti −W j
ti−1√

ti − ti−1

)]
= (ϕj

i )
λij .

To derive (6.8), we also use (6.7) to compute

E


E[A] +

∑
λ∈(NN )d

|λ|1≤K

ηλ

d∏
j=1

N∏
i≥1

Hλij

(
W j

ti −W j
ti−1√

ti − ti−1

+ ϕj
i

)
2

= E[A]2 + 2E[A]
∑

λ∈(NN )d

|λ|1≤K

ηλ

N∏
i=1

d∏
j=1

(ϕj
i )

λij

+
∑

λ,λ
′∈(NN )d

|λ|1+|λ′ |1≤K

ηληλ′

∏
(i,j)∈UN,d

E

[
Hλij

(
W j

ti −W j
ti−1√

ti − ti−1

+ ϕj
i

)
Hλ

′
ij

(
W j

ti −W j
ti−1√

ti − ti−1

+ ϕj
i

)]

×
∏

(i,j)/∈UN,d

(ϕj
i )

λij(ϕj
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where UN,d = {(i, j) ∈ (NN)d/λij ̸= 0 ∩ λ
′
ij ̸= 0}. Using (6.2), we can compute the term
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This expression remaining true for (i, j) /∈ UN,d, we obtain (6.8).
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General conclusion

Through the exploration of existing and novel approaches, this thesis tried to contribute to
the understanding of effective management of financial risk in two environments. In a first
chapter, we studied the effect of systemic risk on credit rating migrations. We reviewed
the two main families of Point-In-Time rating migration models, and highlighted the lim-
itations of each approach. Then, we proposed a promising alternative to the standard
approaches, as it enables estimation of Point-In-Time migration rating probabilities with-
out using any covariates. The model is a promising alternative to the popular approaches
for predicting rating transitions, detecting periods of crisis or generating historical stress
testing scenarios. However, the model is unable to account for idiosyncratic risk, which
represents a significant loss of information.

In the second part, our focus was on managing investment risk through portfolio allo-
cation. The method chosen by investors to reallocate their portfolio determines the way
they handle risks. We examined two families of methods: the single-period and multi-
period approaches, and highlighted the limitations of each. While single-period models
remain popular among investors, we aim to revive the debate by proposing a promising
and computationally feasible solution for optimizing multi-period mean-variance portfolios
in the presence of transaction costs. We compared the performance of our approach to
sequential single-period Markowitz portfolios, within the broader debate of how much we
should prioritize simple models over performing models. Our conclusion is that our multi-
period approach is more intricate, but outperforms uni-period models, especially when cost
are considered.

Although we have previously addressed the technical and foreseeable expansions of both
proposed approaches, we aim to expand the scope of such studies in this discussion. The
current definition of financial risk fails to completely explain current decision-making in
finance, particularly in light of climate threat and increased awareness among the public.
Therefore, it is imperative to explore how behavior, in response to climate threats, can
complete the current definition of financial risk.
Climate risk refers to the potential negative impacts that climate change can have on busi-
nesses, economies and societies. These risks can include physical risks such as increased
frequency and severity of natural disasters, as well as transition risks such as changes in
policy, regulation, and market sentiment towards low-carbon technologies. Financial au-
thorities are becoming increasingly aware of this new form of risk and are recommending
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that financial institutions incorporate climate scenarios into their forward-looking projec-
tions of rating migrations. However, we acknowledge that the models presented, which
are calibrated with historical data, are not designed to incorporate this new type of risk.
Therefore, a significant revision of credit rating models is necessary.
The consideration of climate change and evolving societal attitudes in investment land-
scape is reflected through ESG investments. ESG refers to a set of environmental, social,
and governance factors that companies are increasingly being evaluated on by investors and
stakeholders. These factors can include company’s carbon footprint, social impact, board
composition, and management practices. Investors are no longer solely concerned with the
balance between risk and return, but also with the social and environmental impact of
their investments. ESG investing allows investors to align their financial goals with their
personal values and principles, while also promoting positive change in society and the
environment. Additionally, studies have shown that companies with strong ESG practices
tend to outperform their competitors in the long run, making ESG investing an attractive
option for investors seeking both financial returns and a positive impact. As a result,
modern portfolio theory needs to be revised, as it is no longer based solely on the trade-off
between risk and return. A viable strategy should now incorporate investors’ aversions as
well as their preferences for environmental and social considerations, while alignment with
their financial objectives. The inclusion of environmental and social preferences can be
directly integrated into our approach through the objective function or constraints. How-
ever, further research is needed in this area.

By considering both climate risks and ESG factors, investors and companies can better
understand the potential impacts of climate change on their operations and make informed
decisions to mitigate these risks and build a more sustainable future.
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