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Chapter 1
Introduction

This chapter provides a brief introduction to the field of Rydberg quantum computing. In
particular, Section 1.1 provides an overview of the historical background to the development
of quantum computing. Section 1.2 gives a brief description of the efficiency of quantum com-
puting in the context of computational complexity theory. Section 1.3 describes the DiVincenzo
criteria as well as different paradigms of quantum computing. Section 1.4 gives an overview
of leading quantum computing platforms. Section 1.5 presents quantum registers based on
neutral atoms and their advantages and disadvantages for quantum computing compared to
the other leading platforms. Section 1.6 gives several examples of quantum algorithms for
which neutral-atom-based quantum computing shows a significant advantage in implemen-
tation efficiency. Section 1.7 describes the problem of insufficient quantum gate fidelities in
neutral-atom-based quantum registers and possible approaches to its solution. Finally, Sec-
tion 1.8 summarizes the research topics of this thesis and gives a description of the manuscript
structure.

1.1. Historical background

The technological revolution of the 20th century is inextricably linked with the development
of information technologies, including new approaches to the representation, storage and pro-
cessing of information. In 1936, Alan Turing, who is rightfully considered the father of modern
computer science, formulated the concept of an information processing device, later named
the universal Turing machine. According to the presented concept, a universal Turing machine
can be used to simulate any other Turing machine, as well as to implement any possible algo-
rithmic computation. Famous Church-Turing thesis states that, if a certain task can be solved
algorithmically on a physical device, then there is an equivalent algorithm for a universal Tur-
ing machine that solves this task [1]. A theoretical model for the implementation of a universal
Turing machine was proposed by John Von Neumann, and began to develop actively after the
invention of the first prototype transistor by Bardeen, Brattain and Shockley in 1947 [1, 2]. Tran-
sistors later became the main logical units for storing and processing information in computing
devices. As a result of all these great discoveries, modern programmable computers were built,
and the world entered a new age of information.

Nevertheless, themodel of classical computing devices has a number of disadvantages. First
of all, the Church-Turing thesis has no indication of the implementation efficiency for computa-
tional algorithms. To compensate for this gap, in the early 1970s, this thesis was reformulated.
The new formulation claimed that any algorithmic process can be efficiently modeled on a Tur-
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Chapter 1. Introduction
ing machine, and was called the “strong Church-Turing thesis”. Also, according to the statement
of the new formulation, if the problem does not have an efficient algorithmic solution on a Tur-
ing machine, it cannot be solved efficiently using any physical device [1].

The concept of efficiency in the strenghtened version of Church-Turing thesis implies the
possibility of solving any presented algorithmic task using the amount of computational re-
sources, which scales polynomially with the “size” (or complexity) of the task. Computational
resources can be represented, in particular, by the calculation time, the number of necessary
computational components in the physical implementation of a Turing machine (for example,
the number of transistors in a classical processor), or the number of necessary logical opera-
tions. Thus, the strong Church-Turing thesis postulates the existence of an absolutely universal
paradigm of algorithmic computing based on the use of a Turing machine [1].

As it became clear in the following decades, a number of important algorithmic tasks do not
fit into the framework of the presented model. For example, the simulation of any quantum
system obviously require an exponential amount of computational resources. The number of
complex amplitudes in the wavefunction of a multiparticle quantum system, where each parti-
cle hasA energy eigenstates scales asAn with the number n of particles involved. Thus, in order
to find an effective algorithmic solution to this problem, as well as a number of other impor-
tant tasks, a transition to a fundamentally different computing paradigm based on probabilistic
description is necessary.

Another important reason for the development of alternative concepts of information pro-
cessing is that all classical computation schemes have finite scalability, thus failing to meet the
increasing demand for computational power. According to the law of computational system
scaling, empirically derived by Gordon Moore in 1965, the number of transistors in modern in-
tegration circuits should double every two years [1]. A similar trend is also observed for the
computational performance progression, leading to the conclusion that computing power is
linearly related to the number of available processors. However, with the increasing miniatur-
ization of computing devices, Moore’s law ceases to be observed. The size ofmodern transistors
is typically a few nanometers, and therefore their further miniaturization is impossible due to
the significant influence of quantum effects on the interaction of individual logic blocks. For
2023, there is no clear consensus in the industry about whether the violation of Moore’s law
is being observed or not. So, in September 2022, the NVIDIA Corp. CEO Jensen Huang stated
that Moore’s law is no longer applicable [3], while the INTEL Corp. CEO Pat Gelsinger had the
opposite point of view [4]. Nevertheless, all experts agree that the presence of transistor minia-
turization limit will lead to the violation of Moore’s law in the short term [1, 5].

One of the possible alternatives to themodern digital computing paradigmbased on bitwise
representation of information is the concept of quantum computing. Quantum computing in-
volves the use of quantum resources, such as quantumentanglement andquantumparallelism,
and provides an extension for the concept of a universal Turing machine [1, 6, 7]. It has been
repeatedly demonstrated that quantum computers are able to efficiently solve complex tasks
that do not have an efficient algorithmic solution on a universal Turing machine. Thus, the first
proposal of a quantum algorithm formulated by David Deutsch in 1985, along with the first con-
cept of a quantum computer, consisted in solving the problem of checking a Boolean function
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1.2. Quantum computation efficiency
for constancy (presentation of the same result for all possible arguments) or balance (equilib-
rium distribution of the bitwise result for two equally large sets of arguments) [1]. This problem,
which requires 2n−1+1 number of calls to the classical algorithmic oracle, is solved in the quan-
tum computing paradigm in just one call! This algorithm was later implemented on different
quantum computing platforms, including trapped ions [8], single electron spins in diamonds
[9] and polarisation qubtis [10]. Among other tasks that have generated extensive interest in
quantum computer science, one need to highlight Shor’s factoring algorithm [11], as well as
Grover’s algorithm [12] for efficient element search in unstructured ensembles.

1.2. Quantum computation efficiency
To date, the class of problems that have an effective solution in the quantum computing

paradigm has significantly expanded. In order to describe this class, we need to introduce some
definitions from computational complexity theory. So, we define P as a class of all problems for
which solutions can be found effectively on a classical computing device. We also assert that
P is a subclass of a broader class of NP problems, for which a proposed solution can be effi-
ciently verified using a classical computer. For example, the problem of finding prime divisors
of an integer, in general, has no effective solution on a classical computer. Nevertheless, if the
solution to such a task is known in advance, it can be easily verified [1, 13].

Currently, computational complexity theory does not provide a clear relation between P
and NP classes. Nevertheless, most researchers believe that P ̸=NP. Thus, P must be included
into NP as its subclass. Another important class of problems included into NP is a class of NP-
complete problems. The problem is defined to be NP-complete, if the algorithm for solving
this problem can be efficiently transformed into an algorithm for solving any NP-problem. If
P̸=NP, it is obvious that the solution of any NP-complete problem is impossible in the classical
computing paradigm , and thus no intersections between P and NP-complete exist [1, 14].

Unfortunately, the efficiency of quantum computing for solvingNP-complete problems has
not yet been proven, although it is obvious that some problems from NP that are not included
in P have effective solutions in quantum paradigm. Defining more broadly the class of PSPACE
tasks (tasks that require small processing resources, but can use unlimited time resources), we
can say with confidence that quantum computers cannot effectively solve problems that go be-
yond PSPACE. Ultimately, BQP (a class of problems, whose solutions can be obtained efficiently
by using quantum computational paradigm) occupies parts of NP and PSPACE, including all
classical P problems [15]. The relation between different complexity classes is presented in
Fig. 1.1.

It is also useful to make a link between the results given by the theory of computational
complexity and real-world problems. Problems related to NP include, in particular, the integer
factorization problem and the “traveling salesman problem”. Efficient solutions to both of these
problems are of great practical interest for modern information science and for practical appli-
cations. For example, factorization of integers is widely used in modern encryption algorithms,
in particular the RSA algorithm. In turn, solving the traveling salesman problem can be applied
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Chapter 1. Introduction

Figure 1.1 : Complexity class diagram for P, NP, NP-complete and BQP problems. According to [1],
BQP class includes all P-class and occupies a parts of NP and PSPACE.

to efficiently construct logistic routes. Quantum computing can potentially provide solutions
to both of these problems [11, 16, 17] . Thus, continuing research in quantum computing, one
can expect to find solutions to other important problems fromNP advancing the capabilities of
modern computing systems!

1.3. Quantum computation criteria and paradigms
The physical implementation of quantum computing (QC) devices requires the use of ele-

mentary quantum objects as its logic elements. This idea, expressed by Richard Feynman in
1982, still remains relevant. It is customary to describe the advantages and disadvantages of
QC experimental setups in terms of compliance with the “DiVincenzo criteria” formulated in
2000 by David P. DiVincenzo [7]. According to these criteria, a device for quantum information
processing must:

• Be a scalable physical system with well-characterized qubits
• Allow to initialize each qubit into a simple fiducial state
• Have high stability (i.e., long decoherence times for logical elements)
• Have a universal set of quantum gates performed with high fidelity
• Give ability to measure the qubit states
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1.4. Quantum hardware platforms
To ensure the ability of quantum information transmission, two additional requirements

arise:
• The ability to interconvert stationary and moving qubits
• The ability to faithfully transmit moving qubits between specified locations
Along with the DiVincenzo criteria, it is also important to consider the ability of the quantum

computational device to support various paradigms of quantum computing. Among different
paradigms, one can distinguish digital quantum computing (DQC) [18], analog quantum com-
puting (AQC) [19], measurement-based quantum computing (MBQC) [20] and quantum anneal-
ing (QA) [21]. In digital quantum computing, the computational task is translated into a dis-
cretized algorithm, which is divided into logical blocks consisting of individual quantum gates.
Theoretically, any calculation process can be represented in this form, so digital quantum com-
puting provides a universal tool to solve any BQP problems. Nevertheless, some types of tasks,
such as simulation of quantum systems, as well as solving complex topological problems, can
be effectively emulated by the internal interactions of controllable quantum systems. Analog
quantum computing is based on the use of analogies between the Hamiltonian of the problem
under consideration and the Hamiltonian of the quantum computational system used to solve
it [22]. In turn, measurement-based quantum computing relies on the preparation of highly
entangled states called cluster or graph states. The subsequent measurement has a quantum
gate effect and allows to realize quantum algorithms, for example, quantum error correction
algorithm [23]. Finally, quantum annealing represents the quantum computing paradigm ori-
ented to solve optimisation problems which require the minimization of specific cost functions.
These cost functions generally correspond to the energy of an Ising spin glass, and quantum
anneallig provide a solution by adiabatic passage of a quantum register into the ground state
of Ising Hamiltonian [24].

1.4. Quantum hardware platforms
Currently, different physical platforms are used for quantum computing implementation. In

particular, superconducting quantum circuits based on Josephson junctions demonstrate high
compliance with the DiVincenzo criteria. Superconducting quantum computational devices are
actively developed by academic institutions, as well as private companies such as Google, IBM,
Rigetti, IQM and many others. In particular, IBM’s “Ospray” quantum processor, shown in 2022,
consists of 433 superconducting qubits. According to the IBM announcement, in 2023 the re-
search team plans to demonstrate a “Condor” quantum processor with 1121 qubits. Quantum
operations in such registers have high fidelity (∼ 99.85% for two-qubit operations), and can
also be implemented very quickly (∼ 10 − 60 nanoseconds) [25]. Nevertheless, a number of
significant issues persist in this field, presenting hard challenges for the researchers [26]. First
of all, to implement complex quantum algorithms, it is necessary to significantly increase the
coherence times in superconducting quantum processors. This task is extremely difficult, and
remains unsolved to the best of the author’s knowledge. Secondly, the need to use ultra-low
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Table 1.1 : Comparison of the performance characteristics between three different QC platforms: su-perconducting quantum circuits, ion-based quantum circuits and neutral-atom-based quantum circuits.Significant part of the table data was recollected from [28].

Platform Numberof qubits Coherencetime Gate fidelity & time
One-qubit Two-qubit

SC 53 [29]
54 [30]

433 [31, 32] 70 µs [33] 0.9992; 10 ns [34] 0.997; 60 ns [35]
0.998; 25 ns [36]

0.99922; 50 ns [37]Trappedions 32 [38], 53 [39] 50 s [40] 0.999999; 12 µs [40] 0.9992; 30 µs [41]
Neutralatoms

219 [42]
256 [43]
324 [44] 48 s [45] 0.99986 ; 31 µs [46]

0.991; 59 ns [45]
0.974 ; ∼ 400 ns [47]

0.98; 2 µs [48]
0.995 ; ∼ 200 ns[49]

temperatures in the register to maintain superconductivity complicates the implementation of
circuits. Although modern cryostatic systems are quite efficient, registers that are unstable to
temperature deviations are difficult to scale up. Also, when scaling up to a larger number of
qubits, problems of spatial coherence, effective verification and validation of system parame-
ters, calibration of parameters and maintenance of interconnectivity throughout the register
inevitably arise [27]. Finally, the main problem of superconducting quantum schemes is the
lack of natural qubit universality. Superconducting qubits are created artificially, which means
they are not ideal, and may differ in their properties. The deviation of the logical element prop-
erties in the computational system, in turn, can have an unpredictable effect on the result of
the calculation.

Another promising approach is the implementation of quantum processors based on ions
[50]. Ion quantum computing is usually based on the use of long ionic chains (also called
ionic crystals) [51]. Alternatively, quantum registers could also be implemented using isolated
modules with shuttling trapped ions, where individual ionic qubits are physically transferred
between isolated quantum processor modules, performing quantum entanglement between
them [52]. In both approaches, each ion acts as a separate qubit [53]. At the moment, the
largest “Forte” quantum register [38] based on a chain of 32 cold Ytterbium ions is registered
by IonQ Inc. Cold ion-based quantum registers demonstrate the highest accuracy of quantum
operations among all available platforms (> 99.9% for two-qubit gates), as well as high reg-
ister coherence times, allowing up to 106 quantum operations to be implemented, while for
superconducting qubits this number is 1000 times less. Additionally, high-precision prepara-
tion (> 99.93% accuracy [54, 55]) and readout (> 99.99% accuracy [40]) were shown for ion
qubit states. Unlike superconducting qubits, ions are natural objects, which means they are
completely identical. The lifetimes of ions in individual traps are shockingly high – each ion can
live in a trap for hours, days or even months! Thus, ionic quantum computers are extremely
demanded nowadays. However, ionic platform also demonstrate significant drawbacks [53].
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1.5. Neutral-atom-based quantum computing
While high ion lifetimes allow a large number of gates to be implemented, it should be noted
that such gates require several microseconds of realization time each, which is approximately
a 1000 times larger compared to the superconducting circuits. A recent analysis has shown
that the task of factorizing 1024 and 2048–bit numbers will require ∼ 10 and ∼ 100 days, re-
spectively, on the ionic quantum computer [52]. This example clearly shows the issues for the
implementation of complex quantum algorithms. Apart from that, the scaling of ionic registers
presents a separate challenge [53]. While capturing several thousands of ions into an individual
RF trap is not troubling for modern experimental setups, controlling individual qubits in such
large registers presents a number of unsolved issues, thusmaking huge ionic ensembles practi-
cally useless for quantum computation. The realization of coherent control in long ion chains is
a big practical challange for the ionic quantum technology research. A possible solution to the
scaling problem is the use of registers based on shuttling trapped ions [56]. Nevertheless, this
technology is rather new and, although promising, has not demonstrated significant superiority
over ion crystal-based computing yet.

Revising the previous examples, we can ask ourselveswhether the described approaches for
quantum computation are excessively overcomplicated? Perhaps natural systems that interact
weakly with each other in natural conditions will present an ideal choice to implement quantum
schemes? This exact reasoning inspire research teams studying the application of neutral atoms
to quantum computing!

1.5. Neutral-atom-based quantum computing
Neutral atoms represent one of the most promising and modern platforms for quantum

computing. Registers of individual ultracold atoms isolated in arrays of optical dipole traps give
access to wide computational capabilities, allowing both analog and numerical computational
algorithms to be implemented. Figure 1.2 shows a list of 6 commercial companies that cur-
rently have leading positions in the field. Each of these companies was founded by prominent
researchers from the world’s leading universities, and in a short time they managed to attract
multi-million investments in their projects [57].

Atomic registers have a number of important advantages compared to other quantum com-
puting platforms:

• Extremely high lifetimes and coherence times

In recent experiments, the atomic lifetimes in dipole traps of ∼ 10 − 60 s were demon-
strated in room temperature setup [28]. At the same time, using a cryostat, these lifetimes
can be significantly increased. The record lifetime of an individual atom in an optical trap
is currently ∼ 6000 s [58]. Also, coherence time of ∼ 40 s in an atomic register was re-
cently demonstrated [45]. Such long coherence allows to perform ∼ 106 gate operations
in quantum registers, thus paving a way towards implementation of complex quantum
algorithms.
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Chapter 1. Introduction

Figure 1.2 : A list of the most successful commercial startups in Rydberg quantum computing for 2023.Second column indicates the computationalmode under development. Development status is describedin the third column. Substantial part of the information in the table was recollected from [57].

• Scalability of registers

Since atoms are natural objects, they can be obtained absolutely identical in any quan-
tities necessary for quantum computing. Also, since atoms are neutral, the interactions
between them are much weaker than between individual ions. Thus, it is possible to pro-
duce very compact registers with interqubit distances of about 1 − 5 microns [59]. To
date, the available quantum devices based on alkali neutral atoms contain several hun-
dred qubits (see Table 1.1), and scaling to several thousand qubits is expected in 2024.

• Connectivity of registers

An important factor is the ability to implement quantum operations between remote
qubits. In atomic registers consisting of individual optical tweezers or dipole traps, a 20 : 1

connectivity was already implemented [60], and current research focuses on creating a
connectivity of at least 100 : 1 [61]. A possible approach to create “all-to-all” connectivity
is based on the qubit rearrangement during the calculation process. Atomic registers can
also be linked to each other, allowing for “horizontal scaling” [61]. Also, the creation of
three-dimensional quantum registers is possible employing optical tweezers [62].

• Universal gate sets

Recently, universal sets of single-qubit and multi-qubit gates have been demonstrated
in atomic registers, including single-qubit rotational gates, as well as two-qubit CNOT ,
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1.5. Neutral-atom-based quantum computing
CZ , CPHASE and SWAP gates [28, 63, 64]. Three-qubit Toffoli gates were also imple-
mented, even while their fidelity remains relatively low [47, 49]. Parallel implementation
of gates in large-scale quantum registers is also possible.

• High-quality ensemble preparation and readout
For alkali-atom registers, individual qubit preparation fidelity of about 98.8%was demon-
strated [65]. Also, the state readout fidelity is competitive with the other leading plat-
forms, amounting to ∼ 95% [66].

• A large number of programming paradigms available
Atomic registers are suitable both for analog quantum computing and quantum simula-
tions (AQC, QS), and for digital quantum computing (DQC) [67]. Implementation ofmixed-
type computing (DAQC) and quantum annealing-based computing (QA) is also possible
[18, 28].

• Easy control
Atomic registers are controlled by external radiation that induces transitions between
individual atomic states [59]. Unlike superconducting qubits, no individual wires are re-
quired for each qubit.

• No general cooling requirements
Atomic registers operate at room temperature, which significantly facilitates the experi-
mental implementation of calculations. However, to increase the qubit lifetimes and co-
herence times of quantum register states, one can use cryogenic-based setup [63].

High-fidelity quantum operations, comparable to those of other leading platforms, have
been demonstrated for neutral-atom-based quantum computing setups. While single-qubit
gates are easily executed with ∼ 99.98% fidelity [28], the maximum fidelities of ∼ 97.4% [47]
and∼ 99.5% [49] are demonstrated for two-qubit quantum gates. ThemaximumBell state gen-
eration fidelity is ∼ 99.1% [45]. These values already exceed the threshold for modern quan-
tum error correction algorithms, which means that the task of constructing effective neutral-
atom-based quantum computation schemes becomes technically feasible [49]. Nevertheless,
further improvements in quantum gate fidelity are necessary to efficiently implement complex
quantum algorithms in accessible quantum registers. At the moment, the deficient precision of
quantum operations can be considered as one of the limiting factors for neutral-atom-based
quantum computing.

Another factor hindering the rapid development of atomic QC is the long duration of qubit
preparation times. For registers containing about a thousand atoms, such times are measured
in hundreds ofmilliseconds, which reduces the total time allotted for the execution of any quan-
tum computation, due to the limited atomic lifetime. Moreover, when the number of atoms in
individual register will increase to ∼ 104 or more, the state preparation will take significantly
longer times. Nevertheless, efforts are being made to overcome these issues: schemes for de-
terministic loading of optical tweezers have been implemented in order to surpass the stochas-
tic nature of individual trap loading [44, 63].
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Chapter 1. Introduction
Based on the presented information, one can conclude that neutral atoms represent a

promising platform for quantum computing. The natural properties of atoms, coupled with the
ability to precisely control interatomic interactions, allow atomic quantum registers to exhibit
capabilities unavailable to other leading quantum computing platforms. Nevertheless, such
registers have a number of drawbacks that need to be compensated for.

1.6. Quantum algorithms for atomic hardware
Considering a quantum computing setup, it is very important to determine which class of

problems can be effectively solved with it. As mentioned earlier, quantum registers based on
neutral atoms can support both AQC and DQC computational paradigms, which means that
their field of application is potentially unlimited. Moreover, currently such registers are consid-
ered as the most effective tool for solving a number of practical issues, surpassing in this sense
other leading QC platforms. According to [61], three groups of tasks are proven to be solved by
neutral-atom-based quantum computing systems with superior efficiency:

• Quantum simulation
Analog quantum simulations have been implemented in atomic quantum registers to
solve various problems in materials science and statistical physics [68], including high-
temperature superconductivity [69–72], simulation of new phases of matter [43], simu-
lation of spin systems [42, 73–75], as well as problems of high-energy physics and as-
trophysics [76–78]. Nevertheless, effective analog quantum computations are possible
only if the Hamiltonian of the modeled system and the Hamiltonian of the quantum reg-
ister are essentially similar [60]. Thus, to solve the issues raised in materials science by
analog simulation, individual atoms in optical traps mimic electrons in the nodes of the
crystal lattice. More complex tasks can potentially be implemented using digital quantum
simulations [61].

• Machine learning
Machine learning is an extremely promising branch, which provides many issues to be
potentially solved by quantum computations [60]. For example, exponential acceleration
was shown for the QSVM (Quantum Support Vector Machine) algorithm [79]. Addition-
ally, classification problems that are inaccessible to classical calculations can be efficiently
solved on quantum computers [80].
An important class of machine learning tasks used in computational physics are the tasks
of identifying the physical laws that determine the behavior of the systems under con-
sideration, based on large data arrays. Physics-Informed Machine Learning (PIML) ap-
proximators present a tool for solving such problems [81]. The experts from Pasqal Inc.
state that the class of techniques available to modern quantummachine learning can be
expanded to these tasks. Moreover, according to experts, atomic quantum registers can
demonstrate the greatest success in building PIML approximators. However, this issue
has not yet been widely investigated [61].
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1.7. Gate fidelity problem
• Combinatorial optimization

Combinatorial optimization tasks efficiently solved by modern QC often become native
for atomic registers [61]. The universality of neutral atom interactions, coupled with the
possibility of exciting individual atoms into Rydberg states to enhance these interactions,
allows, in particular, to address a wide class of problems - problems of finding the max-
imal independent set (MIS) on a unit disk graph [82]. The solution of MIS tasks, in turn,
finds application in finance, bioinformatics, medicine, logistics, etc [83]. This class of prob-
lems can also potentially be extended to maximally weighted independent set problems
on a unit disk graph [84]. The basis for the effective solution of the MIS tasks is rep-
resented by variational quantum algorithms [81, 85]. Quantum Approximate Optimiza-
tion Algorithms (QAOA) and quantum annealing can also be used [61]. All these tech-
niques were effectively demonstrated in the neutral-atom-based registers. In the future,
the growth of quantum registers will significantly expand the range of efficiently solvable
combinatorial optimization problems, andmany industrial and scientific projects will ben-
efit from it.

1.7. Gate fidelity problem
The implementation of complex quantum algorithms requires a large number of quantum

gates to be implemented. In this regard, the central problem when scaling such algorithms to
a large number of qubits is the lack of accuracy of individual gates. Generally, any quantum
algorithm can be implemented with one– and two– qubit gates forming universal gate sets.
Nevertheless, in the presence of the slightest individual gate errors, the cumulative error leads
to the destruction of coherence in the computational process. There are several approaches to
solve this problem. Firstly, quantum error correction algorithms can be used. Unfortunately,
such algorithms require additional qubits and quantum gates, significantly reducing the useful
quantum volume of the register. For example, the famous Shor–code–based error correction
technique requires the use of nine qubits and several dozen one– and two–qubit operations to
correct errors in one qubit [86], assuming those operations to be perfectly implemented. Such
significant amounts of additional resources are needed because the quantum bit state cannot
be perfectly copied according to the so–called “No-Cloning Theorem” [1]. One thus cannot use
the same error correction techniques as in classical computer science.

A second solution is to increase the fidelity of individual one-qubit and two-qubit operations.
Currently, many scientific groups are proposing new approaches to the high-fidelity quantum
gate implementation [28, 63, 67]. Although recent advances have brought the accuracy of quan-
tum operations in atomic registers to values compatible with quantum error correction, further
development in this area is necessary to improve the efficiency of implementing complex quan-
tum algorithms with a limited number of available qubits.
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Table 1.2 : Theoretical proposals formulti-qubit gate implementations in Rydberg systems. First columnindicate the used approach, presented in the publications listed in the second column. Second columnalso describes the type of the implemented multi-qubit operation and its fidelity. Significant part of theinformation in this table was recollected from [28].

Dipole blockade
Basic blockade gates 0.9997 C3NOT gate [91]

0.982 Deutsch gate [92]Asymmetric interaction 0.96 Three-qubit gate [93]

Pulse shaping
0.998 Toffoli gate [94]
0.997 Toffoli gate [95]
0.999 C46NOT [96]
0.998 C2Z gate [64]
0.902 Toffoli gate [97]Multiqubit Rydberg excitationRabi-like rotationsvia Förster resonance 0.983 Toffoli gate [98]

Dark states formedvia Förster resonance 0.999 Toffoli gate [99]
HeteronuclearFörster resonance ∼ 0.98 CNOTN

and C2NOT
2 gates [100]Two-photonadiabatic passage 0.995 CkZ gates [101]

Rydberg AntiblockadeHigh-order Ωvia matching the detuning in laserfields with Rydberg interactions
0.9887 Toffoli gate [102]
0.9965 Toffoli gate [103]

Dissipation viaasymmetric interactions 0.9947 3-qubit entanglement [104]
Dissipation 0.9924 3-qubit entanglement [105]

0.99 6-qubit entanglement [106]

A very promising approach towards facilitating the implementation of complex quantum
computations is thus the development of native schemes of multi-qubit quantum gates. Such
gates, which allow operations on n qubits in a quantum register, can significantly reduce the
total number of operations required to implement quantum algorithms. For example, the well-
known three-qubit Toffoli gate is an essential element of many algorithms, including Shor’s al-
gorithm [11], Grover’s algorithm [12, 87], as well as quantum error correction [88, 89] and Taka-
hashi adders [90] implementation. Under normal conditions, 6 two-qubit gates and 9 additional
one-qubit rotations are required to perform the Toffoli gate. Thus, assuming the typical fideli-
ties of this single- and two-qubit gates to be ∼ 99.9% and ∼ 99.5% for neutral-atom registers,
one achieve the final Toffoli gate fidelity of ∼ 96%, which is relatively low for efficient quantum
computation. The implementation of a high-precision multi-qubit quantum gate in one shot
thus presents a desired goal for many research teams.
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1.8. Thesis topic and structure
Currently, many proposals are presented for the implementation of high-fidelity multiqubit

gates in Rydberg systems (see Table 1.2). Among them Rydberg-blockade-based schemes rep-
resent the mostly developed and widely used group. Such schemes are native to the imple-
mentation of quantum computing and were well investigated during the last decades. Never-
theless, the maximum three-qubit gate fidelity obtained using the dipole blockade effect so far
is∼ 97.9% [49]. Themain disadvantage of the dipole blockade effect for Rydberg quantum com-
puting is the impossibility to implement gates between far isolated qubits using this approach.
The dipole blockade is based on the van der Waals interaction, which strength decreases with
distance as 1/R6. Consequently, such gates cannot be implemented between distant atoms,
which is necessary to create high-precision entanglement in large ensembles. To compensate
for this effect, it is necessary to strengthen the interatomic interactions [28].

Förster resonances (described in detail in Subsection 2.2.5) provide a reasonable alterna-
tive to the dipole blockade effect for Rydberg quantum gate implementation. While the dipole
blockade effect prevents the excitation of several atoms into Rydberg states, schemes based on
Förster resonances assume simultaneous ensemble excitation [59, 107]. By compensating for
the Förster defect, one can achieve a significant increase in interaction strength. So, when real-
izing the resonance between the collective atomic Rydberg states, the dipole-dipole interaction
is proportional to 1/R3, thus allowing the implementation of quantum gates between further
distant atoms! While the typically allowed interatomic distance for blockade-based two-body
gate implementation is ∼ 5 microns, the Förster interaction enables the gate implementation
at distances of up to ∼ 25microns for the same Rydberg levels. This significant increase paves
a way to create full interconnectivity in quantum registers, and thus is promising for the imple-
mentation of multi-qubit quantum entanglement and quantum gates!

1.8. Thesis topic and structure
The research presented in this thesis relates to the study of three-body Förster resonances

and their applications in Rydberg quantum computing. We have developed and numerically
investigated various schemes of three-body resonances in structured and unstructured en-
sembles of Rydberg Rb atoms. A study of quasi-forbidden two-body resonance processes in
ensembles of Rb and Cs atoms has also been carried out. New methods for the resonant con-
trol in Rydberg systems have also been proposed to ensure the immunity of computed gates
to unwanted interaction channels. In particular, the use of an external magnetic field for the
separation of resonant channels has been proposed. Also, RF-induced Förster resonances have
been considered, which provided an opportunity to isolate the resonance channel of interest
and gave us extensive interaction control possibilities.

We have proposed and numerically simulated several variants of implementation of mul-
tiqubit quantum gates based on Förster resonances. In particular, two different Toffoli gate
schemes have been presented based on three-body resonance transitions in structured Rb reg-
isters. Also, doubly controlled phase gate implementation schemes have been proposed based
on two- and three-body RF-induced Förster resonances. The quantum gates demonstrate high
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theoretical fidelity values within our numerical simulations. The simplicity of the experimental
implementation of the suggested phase gates should be considered as a separate advantage.

This thesis is divided into 5 chapters. A broad introduction giving an overview of the current
status of quantum computer science, concentrating on neutral-atom-based quantum comput-
ing, is provided in current chapter (Chapter 1). Chapter 2 describes the theoretical background
to this thesis, including the Rydberg physics of alkali atoms, the foundations of quantum com-
puting, and the basics of modern Rydberg quantum computing. Chapter 3 presents the results
of the research on many-body Förster resonances obtained in Aime Cotton Laboratory (LAC)
and the Institute of Semiconductor Physics (ISP SB RAS) before 2018. Although the author of
this thesis was an employee of both institutions, the results of Chapter 3 were obtained without
his participation. Nevertheless, these results are directly relevant to the subject of this thesis
and should be considered as the basis of the conducted research. Chapter 4 presents the re-
sults of the research carried out by the author during his doctoral studies. Each of the sections
in Chapter 4 describes a different study, and is based on the results presented in the articles
produced (fully or partially) by the author of this thesis. In general, each section corresponds to
the results of a single article. The exception is Section 4.1, where results from two articles are
presented. Finally, Chapter 5 provides conclusions on the results presented in this thesis and
suggests possible directions for future research.
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Chapter 2
Theoretical foundations

Rydberg quantum computing is a young field of science covering the application of neutral
atoms to quantum computing problems. It combinesmany aspects of atomic physics and quan-
tum computation theory. This chapter will provide an overview of the theoretical foundations
needed to describe the conducted research. Specifically, in Section 2.1 , the basics of quantum
computer science are described, including the concepts of quantum gates and quantum algo-
rithms. Section 2.2 deals with the physics of Rydberg alkali atoms, including the peculiarities of
atomic structure and interatomic interactions, as well as the interactions of atoms with external
radiation. Also in this section, Förster resonances, the study of which forms the subject of this
thesis, are discussed in detail. In Section 2.3, the fundamentals of Rydberg quantum computing
are explained, including peculiarities of the structure of atomic registers, as well as details of
the implementation of quantum computations with Rydberg atoms.

2.1. Quantum information basics
This section will describe the basics of quantum computing and quantum information pro-

cessing. It includes the definition of fundamental concepts such as qubits and quantum gates,
as well as descriptions of quantum algorithms. We also discuss here the three-qubit quantum
gates and their applicability to quantum algorithms.

2.1.1. Qubits

A qubit is a logical unit of quantum information. Unlike the classical bit, which has a binary
descrete spectrum, the qubit is represented by a two-level quantum system, and thus poten-
tially contains an infinite amount of information. However, since each qubit measurement re-
sults in a collapse of the quantum state, only a small fraction of this potential becomes available
to the final user. In this subsection, we will briefly describe the concept of a qubit in terms of
quantum mechanics.

2.1.1.1. Single-qubit states

As stated before, any qubit can be represented as a two-level quantum system:
|ψ⟩ = α|0⟩+ β|1⟩ (2.1)

Here α and β are the complex amplitudes of basis states |0⟩ and |1⟩, respectively. Thus, the
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Chapter 2. Theoretical foundations
qubit can persist in an arbitrary superposition of its logical states [1].

According to the probability conservation principle, all qubit states are normalized |α|2 +

|β|2 = 1. Note that the total qubit phase is immesurable and can be omitted in quantum state
representation. Thus, one can parametrise the qubit state with two real numbers and the rel-
ative phase between two basis states. A convenient visual representation for pure qubit states
is given by a point on a Bloch sphere surface (see Fig.2.1). In such a representation, the coef-
ficients α and β are replaced by the cosine and sine of the polar angle, preserving the norm
of the vector to be unit (see Eq. 2.2). The relative phase is described by the azimuthal angle
ϕ. In the case of dissipation, mixed states can also be described in terms of the Bloch vector.
Such a vector will lie inside the surface of the Bloch sphere, and its length is determined by the
population of logical states.

|ψ⟩ = cos(θ/2)|0⟩+ sin(θ/2)eiϕ|1⟩ (2.2)

Figure 2.1 : Bloch sphere representation of qubit state |ψ⟩.

In Eq.(2.2), 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π. With the common notation |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
the vector representation of qubit state is

|ψ⟩ =
(

cos(θ/2)
eiϕ sin(θ/2)

)
∈ C2 (2.3)

Thus, a state |0⟩ is in the north pole of the Bloch sphere, while a state |1⟩ is in the south pole.
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2.1. Quantum information basics
2.1.1.2. Multi-qubit collective state

Similarly, any collective n-qubit state in C2n space can be described as a linear combination
of tensor products of the n individual qubit states [108].

|Ψ⟩n =
∑

x1,x2...xn∈{0,1}

αx1x2...xn |x1x2...xn⟩ ∈ C2n

∑
x1,x2...xn∈{0,1}

∣∣αx1x2...xn

∣∣2 = 1
(2.4)

In accordance with the presented description, the basis states of an n-qubit system are
tensor products of the basis states of individual qubits. As an example, consider a state of
a two-qubit system (2.5). The system is described by a complex vector in a four-dimensional
Hilbert space C4 with basis states (2.6). Unfortunately, multi-qubit quantum systems do not
have an intuitive geometric interpretation [1].

|Ψ⟩2 = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩ (2.5)

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1

 (2.6)

When considering the states of multi-qubit systems, it is important to distinguish between
entangled states and separable states. Separable states of an n-qubit system can be repre-
sented as a tensor product of the states of k individual subsystems of this system containing niqubits each.

|Ψ⟩n =
k⊗

i=1

|Ψ⟩ni ,
k∑

i=1

ni = n (2.7)
Alternatively, entangled states can be represented as a superposition of such products, and

cannot be described by equation (2.7). A well-known example of entangled states is given by
Bell states (2.8), which represent four maximally entangled two-qubit states.

|Φ+⟩ = |00⟩+ |11⟩√
2

, |Φ−⟩ = |00⟩ − |11⟩√
2

|Ψ+⟩ = |01⟩+ |10⟩√
2

, |Ψ−⟩ = |01⟩ − |10⟩√
2

(2.8)

2.1.2. Quantum gates

Analogous to classical computing systems, the states of quantum information units are
transformed by the action of logical operators in digital quantum computing. Such operators
can act on either one or several qubits, thus forming single- or multi-qubit quantum gates.
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Chapter 2. Theoretical foundations
Any quantum system evolution can be described by the evolution operator U(t). According

to the principle of probability conservation, as well as the principle of reversibility, this operator
must be unitary [1].

|ψ(t+ t0)⟩ = U(t)|ψ(t0)⟩ (2.9)
Thus, quantum gates are described by unitary transformations of quantum register states.

In this subsection we will describe the basic concept of such gates, as well as some specific
examples of gates that are widely used in quantum computer science.

2.1.2.1. Single-qubit gates

Unitary quantum operations acting on the states of individual qubits in a quantum register
are called single-qubit quantum gates. Since a qubit is a two-level quantum system, the oper-
ator acting on 1 qubit is a superposition of the outer products of the qubit basis states, and is
represented by a 2× 2matrix.

The simplest set of logical quantum operations is provided by the Pauli group {I, σx, σy, σz}[109]:

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.10)

Pauli gates satisfyσ2j = −iσxσyσz = I relation, commutation relations [σj , σk] = 2i
∑

l ϵjklσl,and anticommutation relations {σj , σk} = 2δjkI . The operators are presented in the standardbasis of states |0⟩ and |1⟩ (Z-basis), described in the previous section. Hereinafter, we will ad-
here to this basiswhendescribing any quantumgates andquantumalgorithms, unless specified
otherwise [1, 109].

The impact of single-qubit quantum gates can be visualized as vector rotations on the Bloch
sphere. So, the application of σx, σy, σz operations corresponds to π rotations around the
X,Y, Z axes, respectively. In this regard, operators are often referred to by a letter denot-
ing the axis of rotation. Thus, σx is denoted as X , σy as Y , and σz as Z. Generalizing rotationoperations by applying Euler’s formula eiθA = cos(θ)I+ i sin(θ)A, one can provide the following
notation [1, 109]:

Rx(θ) = e−iσxθ/2 = cos(θ/2)I − i sin(θ/2)σx =

(
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos θ/2

)
(2.11)

Ry(θ) = e−iσyθ/2 = cos(θ/2)I − i sin(θ/2)σy =

(
cos(θ/2) − sin(θ/2)
sin(θ/2) cos θ/2

)
(2.12)

Rz(θ) = e−iσzθ/2 = cos(θ/2)I − i sin(θ/2)σz =

(
e−iθ/2 0

0 eiθ/2

)
(2.13)
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2.1. Quantum information basics
Note that an arbitrary one-qubit unitary gate U can be represented as a combination of

rotations around two arbitrary orthogonal axes on the Bloch sphere. Omitting the detailed de-
scription, we provide here two frequently used decompositions: Z − Y decomposition on a
rotation thread (2.14) and AB decomposition (2.15) [1]. In the ABC decomposition the opera-
tors A, B and C are unitary and satisfy ABC = I .

U = eiαRz(β)Ry(γ)Rz(δ) (2.14)
U = eiαAXBXC (2.15)

Among other single-qubit quantum gates, it is important tomention three frequently occur-
ring operations - Hadamard gateH , phase gate S and T gate [1]. The importance of these gates
is emphasized by the fact that they do not have counterparts in classical computer science. They
are necessary for realization of universal quantum computations and also for generation of en-
tangledmultiqubit states. Further, wewill use some of these gates to describe three-qubit gates
decompositions.

H =
σx + σz√

2
==

1√
2

(
1 1
1 −1

)
(2.16)

S = eiπ/4Rz(π/2) =

(
1 0

0 eiπ/2

)
(2.17)

T = eiπ/8Rz(π/4) =

(
1 0

0 eiπ/4

)
(2.18)

2.1.2.2. Multi-qubit gates

To implement complex circuits and high-level quantum algorithms, it is necessary to per-
form logic operations involving several qubits. Thus, in addition to single-qubit gates, multi-
qubit gates are also needed for quantum computing. Such gates can be described as unitary
transformations over collective states of multiple qubits.

In general, the unitary evolution of a systemofn qubits under the action ofU1...Uk operatorsacting on subsystemswithn1...nk qubits, respectively, canbe represented as a tensor product ofindividual operators acting on the complete system. Thus, multiqubit gates can be represented
as compositions of single-qubit quantum gates, in particular Pauli gates along with the single-
qubit state projectors.  k⊗

i=1

Ui

 |Ψ⟩n =

k⊗
i=1

Ui|Ψ⟩ni ,

k∑
i=1

ni = n (2.19)
An important special case of multi-qubit gates are controlled CkU gates. These gates apply

unitary transformation U to a subset of the quantum register (target subset), if the controlling
subset Ck resides in a certain logical state.
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• Two-qubit controlled gates
CNOT and CZ gates are the most important and frequently used examples of single-

controlled gates for two-qubit quantum systems. Thus, the CNOT gate applies a negation
operation to the target qubit if the control qubit is in the |1⟩ state. The negation operation is
described by a PauliX-gate producing transitions |0⟩ → |1⟩ and |1⟩ → |0⟩. TheCZ-gate, in turn,
is a controlled version of the Pauli Z-gate.

CNOT = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.20)

CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 (2.21)

Two-qubit quantum gates are widely used in quantum computing. It is known that a uni-
versal set of quantum gates can be formed from one- and two-qubit gates, thus allowing to
decompose any quantum computation into a sequence of such gates. We will discuss the uni-
versality of quantum gates in the Subsection 2.1.3.2.

In general, an arbitrary controlled gate can be represented by amatrix of the form (2.22). Ac-
cording toABC-decomposition (2.23), we can represent such a gate by unitaryABC-operators
separatedwith twoCNOT gates and an additional controlled phase gate (2.24) needed to verify
the global phase α.

CU =


1 0 0 0
0 1 0 0
0 0 U00 U01

0 0 U10 U11

 (2.22)

CU = A⊗ CNOT ⊗B ⊗ CNOT ⊗ C ⊗ Ph(α) (2.23)

Ph(α) =


1 0 0 0
0 1 0 0
0 0 eiα 0
0 0 0 eiα

 =

(
1 0
0 eiα

)
⊗ I (2.24)

Another convenient decomposition of controlled gates exploits the fact that an arbitrary
unitary quantum operation U is analogous to a rotation on a Bloch sphere around an arbitrary
axis. Then,

CU = CRn⃗(θ)Ph(α) (2.25)
CRn⃗ = Rz(+α)Ry(+β)⊗ CRz(θ)⊗Ry(−β)Rz(−α) (2.26)
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2.1. Quantum information basics
Thus, we can realize an arbitrary unitary operation by performing a controlled Z-rotation.

This fact gives ample opportunities for decomposition of gates, and will be useful for the sub-
sequent analysis of the research results.

• Three-qubit controlled gates
The main subject of this thesis is three-qubit quantum gate implementation. Therefore,

we will describe such gates separately. The study of three-body gates has its origins in classical
theory of computation [1]. Such gates involving 3 bits simultaneously can be both universal and
reversible in classical computation. Universality is understood here in the sense that with some
three-bit gates one can perform any classical logical operations, if given the ability to initialize
the computational register to arbitrary states. Nevertheless, quantum three-qubit gates are
not necessarily universal, and need additional one-qubit gates to maintain the universality of
quantum computation.

• Toffoli gate
The Toffoli gate (CCNOT ) is a generalization of theCNOT gate to the case of a three-qubit

quantum register. This gate applies a negation operation to the target qubit if both controlling
qubits are in the |1⟩ state. Toffoli gate is widely used in quantum algorithms, in particular in
quantum error correction algorithms, Shor’s algorithm, Grover’s algorithm, and many others
[1].

In principle, decomposition of the Toffoli quantum gate is possible using one-qubit and two-
qubit quantum gates. According to [1], a minimum of 6 two-qubit and 9 one-qubit operations
are needed to decompose a Toffoli gate.

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.27)

• CCZ gate

TheCCZ-gate is a double-controlled version of the previouslymentioned PauliZ-gate. Sim-
ilar to the Toffoli gate, it applies the Pauli Z-gate operation to the target qubit only if the con-
trolling qubits are in the |1⟩ logical state. Note that these two gates can be transformed into
each other by applying Hadamard gates to the target qubit.
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CCZ =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1


(2.28)

CCZ = (I ⊗ I ⊗H)⊗ CCNOT ⊗ (I ⊗ I ⊗H) (2.29)
Principally, a large number of useful three-qubit quantum gates exist. In particular, Fredkin

[110] and Peres [111] gates are often used in complex quantum algorithms, providing advan-
tages in speed and accuracy of computation [1]. However, we do not consider all examples of
complex quantum gates here, focusing on the Toffoli and CCZ gates, which are critical for our
study.

2.1.3. Quantum circuits

2.1.3.1. Quantum circuit composition

The quantum circuits required to perform complex quantum algorithms are constructed
from sequences of single-qubit andmultiqubit quantum gates. Before we proceed to the quan-
tum algorithms description, it is necessary to consider the standard graphical representation
used for quantum registers and quantum operations.

Individual qubits in the quantum register are represented as horizontal parallel wires [108].
We assume, that prior to the computation all qubits are prepared in |0⟩ logical states, unless
specified otherwise. Quantumoperations are depicted as boxes arranged on top of a singlewire
(single-qubit gate) or a group of wires (multi-qubit gate). The scheme is read from left to right, in
such a way that at eachmoment of time the states of the quantum register are described by the
tensor product of the states of all individual qubits (the tensor product is carried out vertically
throughout the scheme).

Gates have a special representation on the quantum circuit. To show control connections,
vertical wires are used linking the controlling qubits to the box of the opreator displaying the
controlled operation. Controlling qubits are denoted by a bullet (•). Also, the sign ⊕ is used to
denote the action of controlled negation operations (for example, in CNOT and Toffoli gates).
In Figure 2.2, you can see an example of the simplest quantum algorithm, which creates the Bell
states.

2.1.3.2. Universal gate sets

Robust and reproducible implementation of arbitrary quantum circuits is a central issue in
quantum computer science. According to [1, 109], a set of quantum gates is considered uni-
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2.1. Quantum information basics

Figure 2.2 : Quantum scheme for the Bell state creation. If initialized with the input |00⟩ (as presentedhere), this quantum scheme provides an |Φ+⟩ Bell state. Nevertheless, different inputs will allow thecreation of any desired Bell state.

versal if any unitary operation on a quantum register can be arbitrarily precisely approximated
using gates from this set alone.

There are several widely known universal sets of quantum gates. Such sets may consist of
one- and two-qubit operations, or may also include three-qubit operations. Nevertheless, an
essential requirement is the presence of “sufficiently entangled and universal gates” in the set.
Consider this property in the examples below [108].

• Clifford gate set
Clifford set is a well-known gate set, consisting of {H,S,CNOT} gates. According to the

Gottesman-Knill theorem [1], any quantum computation performed using gates from this set
can be efficiently modeled on a classical computer. Thus, this set is not universal, although
the included gates are capable of producing entanglement. Note that the universality of the
Clifford setwould denote that any quantumoperations can be efficiently emulated on a classical
computer.

• Standard gate set
The standard set{H,S,CNOT, T/CCNOT} is a discrete version of amore generalCNOT+

SU(2) set and is widely used in fault-tolerant quantum computing. It consists of a Clifford set,
supplemented by one of the gates that guarantees the computation universality - T gate or
Toffoli gate [109]. This example states that the implementation of gates that can guarantee uni-
versality is critically important for the construction of universal quantum computing schemes.

• “Toffoli +H” set
In principle, the standard gate set can be reduced to two gates, the Toffoli gate and the

Hadamar gate. As it was proved in [112], this gate set retains universality. The Hadamard gate
is used to create superposition states and guarantee the possibility of generating entanglement
in a quantum register, whereas the Toffoli gate allows controlled quantum operations in the
register. Nevertheless, such a gate set is not very convenient for practical use, and the standard
one is used more often.
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2.1.4. Quantum algorithms

The main advantage of quantum computing over classical computing is its potential in solv-
ing part of the NP class of computational problems. Such problems belong to the BQP class,
whose boundaries in the space of NP problems have not yet been defined. Currently, there are
4 classes of quantum algorithms that are proven to be superior to their classical counterparts
in terms of efficiency [1, 113, 114].

• Quantum random walk-based algorithms
Quantum walks represent quantum counterparts to classical random walks. While classi-

cal random walks involve walkers occupying distinct states, and randomness emerges from
stochastic transitions between these states, quantum walks differ in how randomness arises.
The randomness in quantum walks results from:

• the quantum superposition of states
• non-random and reversible unitary evolution
• the wave function collapse triggered by state measurements
Similar to classical random walks, quantum walks can be formulated in both discrete time

and continuous time.
Quantum walks have gained recognition for their ability to achieve exponential speedups

in certain black-box problems. The list of tasks solved by quantum walk - based algorithms in-
cludes Boson sampling problem [115], element distinctness problem [116] and triangle finding
problem [117].

• Amplitude amplification-based algorithms
Amplitude amplification-based quantumalgorithmswere proposed originally byGilles Bras-

sard and Peret Hoyer in 1997 [118]. The proposed technique allows to amplify the projection
of the quantum system state into the desired subspace of its state space. Due to this amplifi-
cation, a quantum search in an unstructured ensemble can be performed, as proposed by Lov
Grover in 1996 [12]. Grover’s algorithm allows one to search in an unstructured database of
N objects in O(

√
N) steps, giving a quadratic acceleration compared to standard algorithms.

Another important algorithm of this class is the generalized quantum counting algorithm.
• Hybrid quantum-classical algorithms
Hybrid quantum-classical algorithms present an actively developing class of algorithms.

They combine quantum computing protocols with classical subroutines. Most often, the clas-
sical subroutine provides an opportunity to adapt the parameters of the algorithm in the opti-
mization process. Quantum Approximate Optimization Algorithm (QAOA) [119] and Variational
Quantum Eigensolver (VQE) [120] are among the most important examples of this algorithm
class.
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• QFT-based algorithms
The quantum Fourier transform was discovered in 1994 by Don Coppersmith [121]. This

transformation is analogous to the discrete Fourier transform applied to a quantum register
containing n qubits (and hence N = 2n complex amplitudes). For the n-qubit state |Ψ⟩n =∑N

i=0 αi|xi⟩ the result of QFT is a state |Ψ′⟩n =
∑N

k=0 α
′
k|xk⟩ with the coefficients [1]:

α′
k =

1√
N

N−1∑
j=0

e2iπjk/Nαj (2.30)
The classical discrete Fourier transform is an exponentially complex problem requiring at

least O(n2n) logical gates for N complex amplitudes (here n is the number of classical bits). At
the same time, the quantum Fourier transform for n qubits requires only a polynomial number
of quantumgates (O(n log(n)) orO(n2)), which can be reduced to linear amountO(n) in specific
cases.

Among the most important examples of the algorithms of this class one could mention the
Deutsch–Jozsa algorithm [122], the Bernstein–Vazirani algorithm [123], Shor’s algorithm [11],
Simon’s algorithm [124] and Quantum Phase Estimation (QPE) [125]. Note that the alternative
QPE algorithm optimised for Rydberg registers was developed by the author of this thesis as
part of his master research at NSU. Since this algorithm is not relevant to the subject of this
study, it is not represented in this thesis. Nevertheless, the interested reader can review it in
the article [126].

2.1.5. Gate fidelity

Quantumoperation fidelity determination is critical for the evaluation of the gate implemen-
tation quality. However, there is currently no single standard of fidelity, and different research
goals requires different fidelity definitions. Below we present commonly used approaches to
the fidelity calculation, provided in [1, 28].

Since any quantum operation can be represented as a unitary transformation of a multi-
qubit register, one of the commonly used methods for the fidelity calculation is to evaluate the
similarity of the unitary transformation operator with its ideal analogue [28]. In particular, for
two–qubitCNOT operators, themeasure presented in Eq. (2.31) is often used, whereUid is theideal gate operator, andU is the operator which corresponds to the actual gate implementation
[47, 127]. Obviously, these two operators will differ significantly due to the presence of errors in
the gate implementation. This approach was also adapted in order to better account for phase
errors in gates, as well as to obtain an average value of gate fidelity [128].

F = Tr
(
U †
idU
) (2.31)

It can also be useful to estimate the fidelity by defining the “distance” between operators
ρ and ρid [28, 129]. Specifically, one can define an operator D (ρ, ρid) = |ρ− ρid| /2, where
|A| =

√
A†A for arbitrary operator A. One thus calculate the gate fidelity as F = 1−D. When

the operators ρ and ρid are completely identical,D (ρ, ρid) = 0 and fidelity F = 1. Note that the
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distance-defined fidelity is essentially sensitive to the dephasing errors when compared with
the metric (2.31), and thus could be useful in various applications [130].

F = Tr
√√

ρidρ
√
ρid (2.32)

A natural method of measuring fidelity is to estimate the gate effect on the states of the
system under study and to compare this effect with the ideal gate counterpart. A commonly
used metric is then (2.32), described in [45, 47, 131]. Here ρid is the density matrix of the quan-
tum register state after applying the ideal gate operator, and ρ is the density matrix resulted
from the application of actual gate. Averaging the value of F over a large array of register initial
states, one finds the actual fidelity of the quantum operation. This method is universal, and we
will use it extensively to characterize quantum gates in this thesis [28].

2.2. Rydberg atoms
Neutral atoms present a convenient platform for the implementation of quantum comput-

ing. In this section, we discuss the properties of Rydberg atoms, along with strong interatomic
interactions needed for quantum gate implementation in neutral-atom-based registers. We
also consider the peculiarities of the interaction of atoms with external radiation. Finally, a de-
tailed description of Förster resonances, which constitute themain subject of this thesis, is given
in this section.

2.2.1. Historical background

Studies of atomic spectra conducted throughout the 18th century revealed the discreteness
of absorption and emission lines for various chemical elements. The equation describing the
wavelengths for these lines was empirically discovered by Johann Balmer in 1885 [132]. In 1888,
this equation was reformulated by Johannes Rydberg [133, 134] in the form (2.33), where λ de-
notes a wavelength, n1 and n2 are integer numbers and the coefficient R is a Rydberg constant
[135].

1

λ
= R

(
1

n21
− 1

n22

)
(2.33)

Rydberg’s formula showed striking agreement with the experimental data available at the
time of its presentation. However, its nature remained amystery. In 1913, the Bohr atommodel
[136] explained the Rydberg formula and gave an expression for the Rydberg constant R in
terms of fundamental physical constants. Since the energy of the Hydrogen atom in the Bohr
model can be expressed asEn = −hcR

n2 , it is obvious that the spectral lines of atoms correspond
to transitions between the energy levels |n1⟩ and |n2⟩, where the Rydberg constant isR = mq4

4πcℏ3 ,with q = e√
4πϵ0

. Thus, Bohr’s theory provided a quantummechanical explanation for the atomic
structure, paving the way for the quantum-based theory of matter composition.
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The development of the Bohr model led to the creation of modern atomic physics. It also

delivered the prerequisite for the active investigation of Rydberg atoms. Rydberg atoms are
highly excited atoms containing one (ormore) electrons in stateswith highn values. They exhibit
exaggerated properties, in particular, long lifetimes, as well as enhanced sensitivity to electric
and magnetic fields. In this thesis, we will discuss in detail the physics of alkali Rybderg atoms,
as well as their application in modern quantum computing.

Figure 2.3 : Hydrogen-like ion model.

2.2.2. Alkali atoms

Alkali metal atoms are the basic building blocks formodern atomic quantum registers. Such
atoms contain one valence electron on their outer orbital and are located in the first column of
the Mendeleev’s periodic table (thus including 3Li, 11Na, 19K, 37Rb, 55Cs and 87Fr) [137]. These
atoms exhibit high reactivity and are readily amenable to optical manipulation, which made
them convenient objects of study in the early days of atomic spectroscopy. Note that alkali
atoms also demonstrate the absence of autoionization due to two-electron excitation, when
compared, for example, with alkaline earth metal atoms of 38Sr, or lanthanide atoms of 70Yb
[138]. Both Yb and Sr are also used in modern quantum computing schemes, but their complex
level structure is not always fully understood, thus complicating the construction of quantum
registers [137]. In this subsection, we will review the basic properties of alkali atoms, as well as
the peculiarities of their interaction with external electric and magnetic fields.

2.2.2.1. Alkali-atommodel and quantum defect theory

The presence of a single valence electron makes alkali atoms similar in their behavior to
hydrogen atoms. The electrons of the inner atomic orbitals form a “closed shell” that shields
the charge of the nucleus. Thus, the valence electron is placed in the central field of the nucleus
with a unit effective charge in a rough approximation.
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Chapter 2. Theoretical foundations
To understand the properties of alkali atoms, drawing analogies with the properties of the

hydrogen atom will be instinctive. As a preliminary exemplar model we describe here an ion-
like system with a heavy core of charge +Ze, with a single orbiting electron. Note that if Z = 1,
the described system acquires the characteristics of the hydrogen atom. The Hamiltonian of
this hydrogen-like ion thus can be expressed as [135]:

Ĥ = − ℏ2

2µ
∇2 − Ze2

4πϵ0r
(2.34)

where µ = memn
me+mn

is the reduced mass of the electron with the massme and the composite
core with the massmn.The spatial dependence of the atomic potential ∼ 1/r is central. Thus, the angular momen-
tum of the electron L̂ is preserved for this model, and the spherical symmetry is obvious [139].
By choosing the ansatz of the wave function as ψ = R(r)Yl,m(θ, ϕ), we can separate the Hamil-
tonian into angular and radial parts. Here Yl,m represent the well known spherical harmonics,
which are the eigenfunctions for both L̂2 and L̂z operators [139]:{

L̂2Yl,m = l(l + 1)ℏ2Yl,m
L̂zYl,m = mℏYl,m

(2.35)
Introducing nabla operator in spherical coordinates, we can thus express the radial Schrödinger

equation as

− ℏ2

2µ

1

r2
d

dr

(
r2
d

dr

)
R(r) +

(
− Ze2

4πϵ0r
+

ℏ2

2µ

l(l + 1)

r2

)
R(r) = ER(r) (2.36)

Solution for the radial part of the wavefunction can be expressed in terms of associated
Laguerre polynomials [135] as (2.37).

Rn,l(r) =

(
4Z3(n− l − 1)!

a3µn
4(n+ l)!

)1/2

e
− Zr

naµ

(
2Zr

naµ

)l

L2l+1
n−l−1

(
2Zr

naµ

)
(2.37)

Here, aµ = ℏ2/(µq2) represent the reduced Bohr radius. Thus, we can represent the final
wavefunction as a combination of radial and angular parts:

ψn,l,m(r, θ, ϕ) = Rn,l(r)Yl,m(θ, ϕ) (2.38)
Substituting the obtained wave functions into the Schrödinger equation, we can find the en-

ergy eigenvalues that coincide with the prediction of the Bohr model, corrected by the reduced
mass and the core charge.

En =
−Z2µEH

2men2
(2.39)
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2.2. Rydberg atoms
Here EH = 2hcR corresponds to the Hartree energy.
Note that ψ acquired a dependence on the discrete coefficients n, l andm, known as quan-

tum numbers. Specifically, n is the principal quantum number, which is a positive integer, l is
the angular momentum number, restricted by integer numbers between 0 and n− 1, andm is
the l momentum projection, thus acquiring an integer value from −l to l. It can be seen, that
all of these three values relate to quantum observables (energy, momentum and momentum
projection, respectively), given by a complete set of commuting operators {Ĥ, L̂2, L̂z

} [140].
The described behavior characterizes ions having an infinitesimally small nucleus and a sin-

gle electron on the outer shell. However, for alkali atoms, the presented model is not reliable.
As described above, an alkali atom consists of a positively charged nucleus along with a closed
electron shell and an outer shell containing one valence electron. The total charge of the nu-
cleus and closed electron shell isZ−(Z−1) = 1. Thus, at a large distance from the nucleus, the
electron is placed in an effective field of unit charge, and its behavior can be described by the
model presented above with Z = 1. However, the closed shell of the atom has a finite size. In
turn, the valence electron with a low orbital momentum value can penetrate the inner shell. In
this case, the charge shielding effect decreases, and the effective potential of the electron can
increase up to −Zq2/r. Atomic potential thus can be described by a smooth “effective charge
function” Zeff (r), which tends to Z as r → 0 and tends to 1 as r → ∞ [135].

V̂eff = −Zeff (r)q
2

r
(2.40)

The effective potential enhances the coupling of low-orbital electrons with the nucleus, re-
ducing the energies of atomic levels compared to the hydrogen-like model. However, as the
orbital quantum number increases, this correction quickly disappears, since the electron prob-
ability density near the nucleus decreases. This is intuitively understandable, since as the value
of l increases, the electron’s orbit evolves from elliptical to circular shape. At the same time,
the value of the effective charge changes slightly with the principal quantum number, since
the probability density outside the isolated shell is large compared to the internal probability
density for any value of n possible for the outer electron.

It can be demonstrated that the alkali potential adjustment caused by the influence of the
nucleus can be described in terms of quantum defect δnlj [137, 141] for sufficiently high prin-
cipal quantum numbers. Since the effective potential reduces the energy of a low-orbital elec-
tron, we can introduce an amendment to the principal quantum number ν = n − δnlj . Thus,the energy spectra of the alkali atoms are represented by the following equation:

Eν = − EH

2(n− δnlj)2
= − EH

2(ν)2
(2.41)

Positive quantum defects can be described by the Rydberg-Ritz formula (2.42), which takes
into account a residual energy dependence of the quantum defect by Taylor expansion. The
coefficients δi are obtained from microwave and laser spectroscopy for S, P,D [142] and F
[143] states [138]. According to [137], quantum defects are negligible for higher-l states, and
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Table 2.1 : Leading-order coefficients of Rydberg-Ritz formula (2.42) for 85Rb [138].
State n2s1/2 n2p1/2 n2p3/2 n2d3/2 n2d5/2 n2f5/2 n2f7/2
δ0 3.1312 2.6549 2.64138 1.3481 1.3465 0.01652 0.01654

δ2 0.1784 0.2900 0.2950 −0.6029 −0.5960 −0.085 −0.086

the experimental results correlate well with the hydrogenmodel. Note that the quantum defect
also depends on the total moment of the atom j. Thus, due to the penetration of the closed
shell, the orbital symmetry is broken for the quantum defect model, and a new choice of reli-
able quantum numbers is required for system description. In the following, a set of n, l, j,mjquantum numbers will often be used to describe the basis states of atomic Hamiltonians.

δnlj = δ0 +
δ2

(n− δ0)2
+ ... (2.42)

2.2.2.2. Stark effect

One of the unique properties of the hydrogen atom is the linearity of its energy levels Stark
shifts in the presence of external electric field. Since the atomic energies depend only on the
principal quantum number, states with different values of the orbital moment l are degenerate
[144]. Thus, a hydrogen atom can have a constant dipole moment for each of its energy levels,
and, consequently, calculating the interaction of an atomwith an external field F provides non-
zero result in the first-order perturbation theory [135].

The situation is drastically changed for alkali atoms. Due to the presence of the quantum
defect δnlj , the atomic level energies are now l-dependent. Consequently, due to the absence of
degeneracy, the levels are no longermixed, and a certain energy level doesn’t have a permanent
dipole moment. Then, the second-order perturbation theory calculation for the Hamiltonian
Ĥ = Ĥ0 − d̂F⃗ gives

∆E =
∑
n′l′m′

∣∣∣⟨nlm|d̂|n′l′m′⟩
∣∣∣2

Enl − En′l′
F 2 (2.43)

The acquired energy shift is usually expressed in terms of polarizability α as

∆E = −αF
2

2
(2.44)

We thus can derive the polarizability from the expression (2.45):

α = 2
∑
n′l′m′

∣∣⟨nlm|d|n′l′m′⟩
∣∣2

En′l′ − Enl
(2.45)
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2.2. Rydberg atoms
It is known that the polarizabilities of alkali atom states grow rapidly with the principal quan-

tum number. To estimate the extent of this growth, we assume that the main contribution for
the polarizability of a certain state comes from the closest spectral state of the opposite parity.
Thus, we assume that this state has the same value of the principal quantum number n′ = n

and an angular momentum l′ = l±1. Note that while n′ = n, the quantum defects of these two
states are not the same. To account for the quantum defects, we denote the corrected n value
as ν [137].

The value of the dipole moment matrix element ⟨n′l′|d̂|nl⟩ is proportional to r, whichmeans
it has the same dependence on the principal quantum number as r ∼ ν2. In turn, the energy
difference in the limit n → ∞ is scaled as ∆E ∼ ν−3. Thus, the overall scaling of the Rydberg
atom polarizability is α ∼ ν7. This extremely strong dependence motivates the widespread use
of Rydberg atoms as electric field sensors [137, 145].

The above description well characterizes the Stark effect in Rydberg alkali atoms when the
values of the orbital momentum are l < 4. In turn, for l ≥ 4, the quantum defect becomes neg-
ligibly small, which means that the atomic spectum becomes hydrogen-like. It is also important
to note that the described approach works only in cases when the interaction induced by the
external field is small compared to the energy difference between the considered dipole-paired
states. To calculate the interaction, it is necessary to evaluate the matrix elements of the dipole
moment by numerical methods, or to approximate them analytically. A detailed algorithm for
calculating matrix elements used for the purposes of this thesis is given in the Appendix A.

2.2.2.3. Zeeman effect

The interaction of an atom with an external magnetic field can be described by the Hamil-
tonian ĤB = −µ̂B⃗. Here µ̂ = −µB(glL̂+ gSŜ) is the total magnetic moment of the atom [139],
with µB representing the Bohrmagneton. The gyromagnetic ratio factors have the values gl = 1

and gS ≈ 2. In weak fields, the energy correction due to Zeeman effect can be described by the
equation (2.46):

∆E = gjmjµBB (2.46)
where the Lande factor gj is defined as

gj =
3

2
+
s(s+ 1)− l(l + 1)

2j(j + 1)
(2.47)

As can be seen from the expression (2.46), the Zeeman effect depends on the momentum
projectionmj , and leads to splitting of spectral lines, which scales linearly with B.In the course of this study, we operate with relatively weak fields (typically, of ∼ 3.5 G),
thus causing modest Zeeman shifts. However, if the Zeeman shift is comparable to the energy
difference between undisturbed atomic levels under consideration, numerical diagonalization
of the complete Hamiltonian is necessary to calculate the effect [138, 144].
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2.2.3. Atom-light interaction

The excitation of atoms into Rydberg states occurs due to the interaction with external laser
radiation. Microwave or radio frequency radiation can also be used to control resonant dynam-
ics in Rydberg systems. In this regard, it is necessary to describe here the atom-light interaction
model that was used in this study.

Figure 2.4 : Two-level atom scheme.
We consider the semiclassical atom-light interactionmodel, which implies that radiation is a

classical electromagnetic plane wave, while the atomic states are quantized. It is assumed that
the wave is monochromatic, and the radiation frequency is close to the transition frequency
between the atomic states under consideration. Since the transition frequency between the
ground and Rydberg states is∼ 1000 THz, while the detuning value does not exceed severalMHz
in typical experiments, the latter assumption is justified [138]. The assumption of monochro-
maticity is justified when narrow-band laser setup is used [144]. We thus can consider the
atom-light interaction in rotating wave approximation.

To simplify the description, we present here the results for a two-level atom model with a
ground state |1⟩ and an excited state |2⟩ (see Fig. 2.4). We assume that the states have different
parity, and therefore dipole transitions in the system are allowed. The wave function of an atom
can be written as (2.48), where ω1(2) = E1(2)/ℏ.

|ψ(t)⟩ = c1(t)e
−iω1t|1⟩+ c2(t)e

−iω2t|2⟩ (2.48)
The interaction of a two-level atom with radiation can be described as the interaction of a

dipole with an external time-dependent electromagnetic field. The Hamiltonian of the atom-
light system can be thus represented as

Ĥ = Ĥ0 − d̂F⃗ (t) (2.49)
According to the semiclassicalmodel, the radiation is an unquantized electromagnetic wave,

which means it can be described as a periodic cosine dependence
F⃗ (t) = ϵ⃗F0 cos(ωt) (2.50)

Here ϵ⃗ is the polarization vector,F0 is the amplitude of the electric field, andω is the radiation
frequency. Then, from the Schrodinger equation we get
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ċ1 = i

dϵ12F0

ℏ
e−iω21t cos(ωt)c2(t)

ċ2 = i
dϵ12F0

ℏ
eiω21t cos(ωt)c1(t)

(2.51)

where dϵ12 is the dipole matrix element between atomic states. Using the Euler decomposi-
tion, we can rewrite expressions (2.51) as

ċ1 = i
dϵ12F0

2ℏ
e−iω21t(eiωt + e−iωt)c2(t)

ċ2 = i
dϵ12F0

2ℏ
eiω21t(eiωt + e−iωt)c1(t)

(2.52)

According to the rotating wave approximation, we can neglect the rapidly oscillating radia-
tion components in comparison with the slow components. We thus neglect the terms propor-
tional to the exponentiation of the sum frequency ω+ω21. Introducing the notation δ = ω−ω21,
c̃1(2) = c1(2)e

∓iδt/2 we get the following equation system:
d

dt

(
c̃1
c̃2

)
=
i

2

(
−δ Ω0

Ω0 δ

)(
c̃1
c̃2

)

Ω0 =
dϵ12F0

ℏ

(2.53)

Here Ω0 denotes the well-known Rabi frequency. Diagonalizing the Hamiltonian, we can
now determine the probability of finding the system in an excited state.

∣∣c̃2(t)∣∣2 = Ω2
0

2Ω2

(
1− cos(Ωt)

)
Ω =

√
Ω2
0 + δ2

(2.54)

We thus can state, that the population of atomic states oscillates between the states |1⟩ and
|2⟩ under the action of external field with the effective Rabi frequency Ω, which denotes the
strength of atom-light interaction.

In this research, we will use the presented quasiclassical description when considering the
interaction between the light and the atomic ensemble. Since the Rydberg levels are well iso-
lated in the absence of a strong mixing external field, this model is relevant.

2.2.4. Dipole-dipole interaction

Interatomic interactions in Rydberg ensembles represent the basis of this thesis. Due to
these interactions, one can achieve the correct phase and population dynamics of atomic qubits
necessary for quantumoperations. In this sectionwewill consider the dipole-dipole interactions
between Rydberg alkali atoms. Note that here a qualitative model of the interatomic dipole-
dipole interactions based on the multipole decomposition of the atomic potential is described.
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We intentionally do not give here the exact form of atomic wave functions or dipolar matrix
elements, leaving their full description for the Appendix A.

As it was shown previously in Subsection 2.2.2.2, the polarizability of Rydberg alkali atoms
increases rapidly with the effective principal quantum number ν. Consequently, the atoms ex-
hibit a strong interactionwith an external electric field. Consider two atoms located at a distance
R from each other (see Figure 2.5), with dipole moments d̂1 and d̂2, respectively. We can then
assume that the atoms influence each other due to the electric field produced by the oscillating
dipoles. Thus, the dipole-dipole interaction occurs.

Figure 2.5 : Two atoms isolated on distance R from each other. Vectors d1(2) represent the dipolemoments of the first and second atom, respectively.
When describing the dipole-dipole interaction, we assume that the atoms are strongly iso-

lated from each other, so that their Rydberg wave functions do not intersect. The minimum
distance satisfying this requirement for Rydberg atomic states |ψ1⟩ = |n1, l1, j1⟩ and |ψ2⟩ =

|n2, l2, j2⟩, is given by LeRoy radius RLR [137, 145]:

RLR = 2
(
⟨r21⟩1/2 + ⟨r22⟩1/2

) (2.55)
Here, ⟨r2i ⟩ = ⟨ψi|r2|ψi⟩.The electrostatic interaction between atoms can then be represented by a Taylor series of
the Coulombpotential. Since the considered charge systems are isolated, the potential depends
on the interatomic distance R = |r⃗1 − r⃗2| for two atoms 1 and 2 and on the dipole momentum
orientation of each atom. The first two terms in the Taylor expansion describe the charge-
charge interaction (Coulomb potential) and the charge-dipole interaction. Assuming the two
atoms to be neutral and strongly isolated ensures these two terms to be zero. Thus, according
to [137, 146], the leading term can be represented as:

V̂ 12
dd (r) =

1

4πϵ0

(
d̂1d̂2 − 3

(
d̂1n̂
)(

d̂2n̂
))

R3
(2.56)
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We can also express this formula in a more appropriate form

V̂ 12
dd (r) =

1

4πϵ0R3

[
S1(θ)

(
d̂1+d̂2− + d̂1−d̂2+ + 2d̂1zd̂2z

)
+ S2(θ)

(
d̂1+d̂2z − d̂1−d̂2z + d̂1zd̂2+ − d̂1zd̂2−

)
− S3(θ)

(
d̂1+d̂2+ + d̂1−d̂2−

)] (2.57)

with the d̂k,± being the spherical components of the dipole moment operator and the Sibeing the angular coefficients

d̂k,± = ∓ d̂k,x ± d̂k,y√
2

(2.58)


S1 =
1− 3 cos2(θ)

2

S2 =
3 sin(θ) cos(θ)√

2

S3 =
3 sin2(θ)

2

(2.59)

The dipole-dipole interaction operator V̂dd can provoke transitions between the collective
states of the diatomic system. For simplicity, we will consider the situation of the interaction
of two atoms, when each of them has only two Rydberg levels. Let atom 1 be in the Rydberg
state |ra⟩, with additional Rydberg level |rs⟩ of the opposite parity. Atom 2, in turn, is in the state
|rb⟩, and also has a Rydberg level |rt⟩. Then we can describe a diatomic system in the basis of
its collective states |ra, rb⟩ = |ra⟩ ⊗ |rb⟩ and |rs, rt⟩ = |rs⟩ ⊗ |rt⟩ (see Fig. 2.6). Note that we
restrict the description to the states with the same collective parity. We thus assume that the
transitions |ra⟩ → |rs⟩ and |rb⟩ → |rt⟩ are dipole allowed. We do not specify here the exact
form of the atomic wavefunctions, keeping the form |ri⟩ = |nilijimji⟩ throughout this section.The dipole-dipole matrix elements can be described as U(r) = ⟨rs, rt|V̂dd|ra, rb⟩ = C3

R3 [138,
144]. Note that the detailed algorithm for calculating the wave functions and matrix elements
of alkali atoms will be given in Appendix A.

Figure 2.6 : Two-level representation of collective atomic states. Here |ra⟩ and |rs⟩ denote the stateof the first atom, while |rb⟩ and |rt⟩ represent the states of the second atom. Thus, collective states aredescribed as tensor products of the relevant single-atom states.
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The Hamiltonian of a two - level system in the collective state basis can be presented as

(
0 U(r)

U(r) δF

)
(2.60)

with the corresponding eigenvalues

λ1,2 =
1

2

(
δF ±

√
δ2F + 4U2

)
(2.61)

Here we took the energy of the initial state |ra, rb⟩ as a reference. The energy difference
between two basis states is δF = Era,rb − Ers,rt . This difference is called Förster defect.The ratio between the interaction force expressed by the matrix element U(r) and the
Förster defect δF determines the behavior of the system. So, if the collective atomic levels
are strongly isolated, and the Förster defect is large compared to the interaction potential
δF ≫ U(r), we can represent the Hamiltonian eigenvalues as

λ1,2 =
1

2

δF ± δF

√
1 +

4U2

δ2F

 ≈ 1

2

δF ± δF

(
1 +

2U2

δ2F

)
λ1 = δF +

U2

δF
(2.62)

λ2 = −U
2

δF

Thus, the collective state energy depend on the interatomic distance as ∼ 1/R6. This in-
teraction regime is called the van der Waals regime, and we often refer to it as “off-resonant
interaction”. The induced dipole-dipole interaction in this case can be obtained in the second
order of perturbation theory. This effect is easily understood from a simple reasoning within
the framework of classical electrodynamics. In this case, we consider the interaction to be small
compared to the energy difference in the spectrum δF . This means that the electric field cre-
ated by the oscillating atomic dipole d̂1(2) did not have sufficient force to mix the energy levels
of atom 2(1) with different values of l. Since these levels were not originally degenerated due
to the presence of a quantum defect, the Stark interaction is zero in the first order of perturba-
tion theory. Thus, the interaction force will depend on the square of the dipole matrix element∣∣∣⟨rs, rt|V̂dd|ra, rb⟩∣∣∣2, and, therefore, will be inversely proportional to the sixth power of the inter-
atomic distance (R−6) [145].

Van der Waals regime is widely used to implement quantum gates in atomic registers. In
particular, van der Waals interactions induce the dipole blockade effect, which does not allow
more than one atom to be excited into the Rydberg state within a small volume. The implemen-
tation of quantum gates in Rydberg systems will be discussed in Subsection 2.3.3.
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2.2. Rydberg atoms
Consider the case of the strong interatomic interaction (or, equivalently, of small detuning)

δF ≪ U(r). The Hamiltonian eigenvalues thus are λ1,2 ≃ ±U , providing the system with a
strong interaction∼ 1/R3. In this case, the quantum levels are quasi-degenerate, which means
that the energy of the dipole-dipole interaction is calculated in the first order of perturbation
theory. In the case of complete degeneracy δF = 0, a resonant interaction occurs, which is
called the Förster resonance.

Since the interaction energy depends on the interatomic distance, we can describe at which
distance the exchange from the van der Waals interaction to the Förster interaction occurs.
The transition between two different regimes of interaction arises when δF ≈ U(r). Thus, the
transition distance, which we will call the crossover radius Rc, is equal to [137]

Rc =
3

√
C3

δF
(2.63)

Note that in addition to the dipole interaction, the quadrupole-quadrupole interaction for
atoms with a non-zero momentum also persists [145]. It scales as 1/R5, so even though its
strength is very small, it becomes comparable to the van der Waals interaction for long dis-
tances. However, for a typical distance of ∼ 10 microns considered in this manuscript, these
effects remain negligible. We also do not take into account any dipole-quadrupole interactions,
due to the same reasoning [147, 148].

Finally, it is useful to estimate how the strength of the interaction depends on the principal
quantum number for each of the modes. In the case of van der Waals interactions, the second
order of perturbation theory gives λ ∼ U

δF
∼ (⟨d̂1d̂2⟩)2

δF
, where di ∼ ν2 and δF ∼ ν−3. Thus, the

interaction strength scales as ν11! This abnormally fast growth makes it possible to multiply the
van der Waals interaction, and partially compensates for its drastic decay with distance.

For the Förster interaction, the same reasoning gives λ ∼ U ∼ ν4. We thus see that the
strength of the Förster resonance is much less dependent on the principal quantum number
than the strength of the van der Waals interaction.

2.2.5. Förster resonance

2.2.5.1. General properties

Dipole-dipole interaction, which we described in the previous section, can lead to non-
radiative transitions between collective states of various quantum systems. In this section, we
will consider strong dipole-dipole interactions, provided that the energy separation of collective
levels is much less than the interaction energy of the system elements. Transitions caused by
such interactions are called FRET, an abbreviation for fluorescence resonant energy transfer, or
Förster resonant energy transfer [140]. The initial recorded instances of this phenomenon can
be traced back to 1922 [149], when it was observed during the dissociation of hydrogen with
mercury. It was discovered that the transfer of energy occurred through dipole-dipole coupling
between the particles, and Theodor Förster was the pioneer in devising an effective theoretical
approach [150]. Interactions of this kind have also been widely studied in biology when describ-
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ing non-radiative transport between isolated chromophores. Presently, FRET is widely applied,
particularly inmolecular biology as a spectroscopicmethod [151]. One such application involves
the use of quantum dots for investigating biomolecular interactions [152].

Förster resonances can significantly enhance the interaction, and make it possible to cre-
ate quantum entanglement between isolated atoms. This is a priority for the implementation
of quantum gates in neutral-atom-based register. In this thesis, we study the realization of
quantum gates based on few-atom coherent Förster resonances. While the multiatom reso-
nance model will be presented later, we focus here on the description of the simplest two-body
Förster resonances in systems of two isolated atoms.

Note that non-radiative transfer occurs at near-field distances where the transition wave-
length λ is much bigger than the distance between dipole-coupled systems R. For the typical
atomic ensemble separation of ∼ 10 µm, one thus assumes a possibility of FRET for the transi-
tion frequencies ω < 10 THz. Transitions from the ground state of an atom to the Rydberg state,
in turn, require the use of high-energy radiation (∼ 100−1000 THz). Consequently, the radiation
wavelengths are shorter than the distances between the atoms, which makes ground-Rydberg
Förster transfer unprobable. We thus consider the Förster resonances between the Rydberg
states of alkali atoms. The frequencies of such transitions are shifted to the microwave range.
This places the Rydberg atoms deep into the near field limit, and makes Förster resonances
possible [138].

To achieve Förster resonance, it is crucial to fulfill the condition that the Förster defect is
much smaller than the interatomic interaction energy. Nevertheless, in alkali atoms, the degen-
eracy of collective energy levels of opposite parity is unlikely due to the presence of quantum
defects. To overcome this limitation, an external influence is required to compensate for the
quantum defect and enable Förster resonance.

Resonance induction can be achieved by the application of external electromagnetic field.
Thus, the resonance is induced due to the Stark shift of the levels [59, 67]. If a DC field is applied,
the Stark shift∆E = −1

2αF
2 can lead to the degeneracy of the initial and final states. Note that

since we are considering the interaction of two atoms, the polarizabilities of collective states in
this casewill consist of the individual contributions of each atomic state. The strong dependence
of the polarizabilities on the principal quantum number n leads to high requirements for the
field control accuracy.

Resonances induced by microwave or radio frequency fields are also often used [153, 154].
As shown in the Appendix B, additional groups of Förster resonances could appear due to the
application of external radiation, associated with the resonant Floquet sidebands.

Generally, two-body Förster resonance can be represented as a transition |n1l1;n2l2⟩ →
|n3l3;n4l4⟩. Due to the dipolar nature of the resonant interaction, only transits with ∆l = ±1

are possible for each atom, leaving |l1− l3| = |l2− l4| = 1. The lift of magnetic sublevel degener-
acy in external eletcromagnetic field can also provoke transition strength dependence on total
momentum j and its projectionmj for both atoms.
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2.2.5.2. Experimental demonstration

Coherent electrically induced Förster resonance in Rydberg system was experimentally
demonstrated in 2014 by Ravets et. al [155]. The resonance |dd⟩ → |pf⟩+|fp⟩√

/2
was shown be-

tween two 87Rb Rydberg atoms, with |p⟩ = |61P1/2,mj = 1/2⟩, |d⟩ = |59D3/2,mj = 3/2⟩,
|f⟩ = |57F5/2,mj = 5/2⟩. Two individual 87Rb atoms were isolated at a distance of ∼ 10 mi-
crons from each other in microscopic optical tweezers. An external controlling constant elec-
tric field of 32mV/cm, co-directed with the interatomic axis Z , was used to compensate for the
Förster defect. Additional 3Gmagnetic field, also aligned alongZ , was used to split the Zeeman
sublevels. Atoms were optically excited from the |5S1/2, F = 2,mF = 2⟩ Rb ground states to
Rydberg |dd⟩ states by two-photon excitation technique. Avoided crossing was demonstrated
by scanning of the laser detuning in the vicinity of resonance, displaying thus the predicted
Förster resonance was found. High-contrast Rabi-oscillations of the collective |dd⟩ state popu-
lation were demonstrated for different interatomic separation in a range of 9−12 µm, showing
an excelent agreement with theoretical predictions. This experiment confirmed the possibility
of implementing highly coherent resonant interactions in Rydberg systems.

2.2.5.3. Low-L Förster resonances

In this work, we consider mostly transitions between the S and P states of Rb atoms. Thus,
the main types of Förster resonances under consideration can be divided into 2 categories:

• S-P resonant exchange

Figure 2.7 : Two-body Förster resonance (2.64) diagram. Atoms pass into the final state by resonantexcitation hopping.

|nS;nP ⟩ → |nP ;nS⟩ (2.64)
This process corresponds to the hopping of excitation between the states of atoms. We

assume here that the total momentum and its projection remain unchanged for both atoms.
Then the collective states have a zero quantum defect regardless of the applied external field,
and therefore this resonance is always present in the system. Resonance is shown on Fig.2.7.
Note that experimental demonstration of such resonances requires simultaneous excitation of
various Rydberg states in a diatomic ensemble. This requires the use of a complex experimental
setup with two independent laser sources.
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Chapter 2. Theoretical foundations
•2P - 2S resonant transition

Figure 2.8 : Two-body Förster resonance (2.65) diagram. Atoms pass into final S states by radiation-freetransfer. If the Förster defect δF = 0, the transfer is resonant.

|nP ;nP ⟩ → |nS;n′S⟩ (2.65)
By exciting atoms into the same initial states, one can also realize a resonant transition

between nP + nP and nS + n′S collective states, with a concomitant change of the principal
quantum number. In this case, compensation of the Förster defect is necessary, which can be
obtained with the application of an external electromagnetic field. Figure 2.8 shows an illustra-
tion of such a resonance with the change of themain quantum number by one at the nP → n′S

transition. Such resonances play a key role in our study, since they are the most energetically
advantageous due to the smallness of the Förster defects. In turn, the states n′ = n± i, where
i > 1, are significantly remote in the spectrum and do not make a sizable contribution to the
dynamics of the atomic ensemble.

Note that the 2P → 2S resonance naturally depends also on the value of the total mo-
mentum j as well as its projection. Consider the case of a resonance induced by external DC
electric field applied in the direction Z. In an unstructured atomic ensemble such field creates
the quantization axis along Z , hence removing the degeneracy between the states with differ-
ent projections of the magnetic moment. So, for a transition |nP3/2

∣∣mj

∣∣⟩⊗2 → |nS, (n + 1)S⟩
resonance is possible for both values of ∣∣mj

∣∣ = 1/2, 3/2. As a consequence, due to the lift of
degeneracy, the resonance values of the external electric field will be different in these cases.

2.3. Rydberg quantum computing
We have previously reviewed the physics of Rydberg alkali atoms, as well as the basics of

quantum information processing. Synthesizing the previous experience, we describe in this
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2.3. Rydberg quantum computing
section the peculiarities of Rydberg atoms application in quantum computing. We focus on the
description of ordered atomic setups suitable for digital quantum computing, since these are
the systems considered in the framework of this thesis. A substantial amount of information
for this section was collected from [28, 60, 156]. 7
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FIG. 4. Neutral atom quantum computation platform. (a) The platform consists of a classical computer and a neutral atom
based quantum processor. The later is composed of atom arrays in a vacuum chamber, peripherals for detection and control
of atoms, e.g., laser/microwave resources, optical/microwave modulators, cameras and corresponding control electronics. (b)
A generic outline for neutral atom quantum computation architecture (see Ref. [82]). In the physical layer, neutral atoms in
the quantum processor are first cooled and captured by a magnetic optical trap (MOT) in ultra-high vacuum chamber. After
subsequently loading atoms into an optical tweezer array or an optical lattice, they are initialized with optical pumping, followed
by a sequence of quantum gates controlled via laser and microwave fields. In the end, quantum information is read out through
fluorescence imaging. The combination of noisy physical qubits and open-loop quantum control techniques such as dynamical
decoupling constructs virtual qubits with improved effective coherence time and minimized systematic gate errors, which serve
as the basic building blocks for quantum-error-correction-based universal quantum computation or noisy intermediate-scale
quantum applications. In the logic and QEC layer, decompositions of quantum algorithm in terms of quantum circuits,
together with data processing of detection results, are processed by classical computer. The user interfaces in the application
layer are also aided by classical computer.

ety of configurations as demonstrated in optical tweezer
arrays or magnetic trap arrays [98].

Neutral atoms are inherently identical, thus the re-
quirement for physical resources like laser frequencies etc.
do not grow much with the scaling up of qubits. How-
ever, neutral atom based systems suffer from cross-talks
when single-site addressing is not perfectly satisfied dur-
ing gate operations or spontaneous emissions from imag-
ing atoms are reabsorbed by nearby atoms during qubit
measurements.

The most challenging issue for neutral atom based QC
platform is the stochastic nature of atom loading into in-
dividual traps. Collisional blockade [99] limits the load-
ing probability of single atom into a small volume trap
site to around 50%. One possible approach to circum-
vent is to raise the loading probability either by aug-
menting with blue detuned catalysis light [100] or using
superfluid-Mott insulator transition in optical lattice at
the expense of longer experimental cycle time [101], or
as demonstrated more recently with immersion cooling
based on more advanced control and manipulations of
trapping potentials [102]. However, probability for simul-

taneous loading of a large number of atoms still becomes
exponentially small below a critical level for single atom
loading efficiency.

A bottom-up approach involves rearranging incom-
pletely filled arrays with moving optical traps (shown in
Fig. 5). This approach was independently demonstrated
first by several groups in 2016: Kim et al. [7] prepared 9
atoms in two-dimensional arrays with spatial light mod-
ulator; Endres et al. [8] rearranged 50 atoms in a one-
dimensional tweeter array controlled by acoustic-optical
deflector (AOD); and Barredo et al. [9] operated with a
comparable number of atoms in a two dimensional array.
In 2018, an arbitrary three dimensional configuration up
to 72 atoms was reported [103]. Recently, it is shown
that by combining moving optical tweezer steered by a
2D AOD with microtraps generated from a microlens ar-
ray, a large defect-free cluster with more than 100 atoms
can be created [104]. Sorting atoms sequentially can ex-
ponentially increase the probability for defect-free load-
ing. Loss of atom can be mitigated by a similar procedure
with lost atoms replenished from a reservoir.

For atoms in optical lattices with submicron spaced

Figure 2.9 : Neutral atom quantum computation platform. (a) The platform consists of a classical com-puter and a neutral atom based quantum processor. (b) A generic outline for neutral atom quantumcomputation architecture (see [157]). In the physical layer, neutral atoms in the quantum processor arefirst cooled and captured by a magnetic optical trap (MOT) in ultra-high vacuum chamber. After subse-quently loading atoms into an optical tweezer array or an optical lattice, they are initialized with opticalpumping, followed by a sequence of quantum gates controlled via laser and microwave fields. In theend, quantum information is read out through fluorescence imaging. The combination of noisy physi-cal qubits and open-loop quantum control techniques such as dynamical decoupling constructs virtualqubits with improved effective coherence time and minimized systematic gate errors, which serve asthe basic building blocks for quantum-error-correction-based universal quantum computation or noisyintermediate-scale quantum applications. In the logic and QEC layer, decompositions of quantum algo-rithm in terms of quantum circuits, together with data processing of detection results, are processed byclassical computer. The user interfaces in the application layer are also aided by classical computer. Thisfigure was recollected from [156] along with the provided description.
Figure 2.9(a) shows the general model of the quantum computing platform considered in

this study. The platform can be divided into two components - a classical computing interface
and a quantumprocessor based on neutral atoms. The latter comprises arrays of atoms housed
within a vacuum chamber, along with the necessary peripheral components for the detection
and control of these atoms. These peripherals include resources such as lasers and microwave
sources for manipulating the atomic states, optical and microwave modulators for fine-tuning
the interactions, cameras for capturing experimental data, and the corresponding control elec-
tronics to manage and coordinate these elements.

According to the model formulated in [157], quantum computation processing is divided
into 5 layers (see Fig 2.9(b)). The first layer describes the used physical system, thus neutral
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Chapter 2. Theoretical foundations
atoms. Inside this layer, five important steps could be allocated, including the gas sample cool-
ing, atom loading, register initialization, quantum processing and readout. Since we are inter-
ested in the physical implementation of quantum computing, it is the execution of the steps of
the first layer that will be discussed in this chapter. Layers 2-5 refer to the process of organiza-
tion of quantum computing and its practical applications. These issues are beyond the scope
of the material discussed in this thesis.

2.3.1. Atomic ensemble preparation

The atoms are initially cooled and captured using a magneto-optical trap (MOT) within an
ultra-high vacuum chamber. Then, a register of individually trapped atoms is formed. In mod-
ern quantum registers, optical tweezers are most commonly used to form atomic arrays [158].
The trap laser isolating individual atoms is divided by the spatial light modulator (SLM) into a
set of highly focused spots (∼ 1 µm in diameter). Strong focusing allows to ensure that each of
the beams (individual tweezers) contains no more than one atom in the trapping volume. This
technology allows to create atomic ensembles of different architecture and dimensionality: the
size of the quantum register is limited only by the trapping laser power and the capabilities of
the optical system [60]. However, since the population probability of an individual tweezer is
typically∼ 50%, additional permutationsmay be necessary to create a defect-free quantum reg-
ister. Such permutations can be accomplished using programmable moving optical tweezers
controlled by a 2D acousto-optic deflector (AOD) [159]. They are superimposed on themain cap-
turing beam using a polarizing beam splitter (PBS). During these permutations, imaging of the
atomic array fluorescence is performed to determine which of the tweezers have been filled.
The movement pattern is generated from the data at the external classical processor, which
controls the moving tweezers by driving the 2D AOD.

2.3.2. Rydberg excitation

The excitation of atoms or atomic ensembles into Rydberg states occurs due to the absorp-
tion of external laser radiation. For simplicity, we consider here only the excitation of hyperfine
states 5S1/2 of Rb atoms, which will be further used as qubit states in quantum gate model-
ing. In this case, coherent laser radiation is used to induce dipole transitions in the individual
atom inside the ensemble. Depending on the number of absorbed photons and the number
of intermediate levels involved in the excitation, it can be either single-photon or multi-photon
[28].

• Single-photon excitation
In single-photon excitation process, the ultraviolet photon induces a transition between the

ground state |g⟩ = 5S1/2 and the Rydberg state |r⟩ = nP1/2 or |r⟩ = nP3/2 [160, 161]. Sincethe induced interaction is dipolar, only P states can be effectively excited in this process from
the initial S state. The excitation Hamiltonian in the rotating wave approximation is of the form
(2.66). The resulting AC Stark shift of the Rydberg levels due to the applied radiation should
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2.3. Rydberg quantum computing
be taken into account when setting the excitation frequency. Thus, when a π-pulse is applied,
the transition |g⟩ → e−iπ/2|r⟩ occurs. The same pulse could be applied to de-excite the atom
from the Rydberg state back to the original ground state, with additional π phase accumulated
during the process [28, 162].

H1γ
ex =

ℏΩ
2
|r⟩⟨g|+H.c. (2.66)

Although the single-photon excitation scheme is simple and very robust, it has a number
of significant drawbacks. Firstly, with single-photon excitation, the dipole matrix elements be-
tween the ground and excited states are extremely small [163]. Thismeans thatwhen the power
of the laser source is limited, it can be difficult to obtain high excitation accuracy. Nevertheless,
high-precision single-photon excitation of Rydberg atoms was previously demonstrated for Cs,
Sr and Rb [28]. Another serious and, in general, unavoidable disadvantage of single-photon
excitation is the emerging Doppler dephasing, which significantly affects the accuracy of the
possible quantum gate implementations.

• Two-photon excitation
Compensation for the described disadvantages can be achieved by using the excitation

schemes with a number of intermediate levels. When using two-photon excitation, two dipole
transitions |5S1/2⟩ → |p⟩ = |5P1/2⟩ → |nS1/2⟩ allow to excite the high-lying Rydberg levels. With
the same approximations as for the one-photon case, the two-photon excitation Hamiltonian
can be written as (2.67) [127, 131, 163, 164]:

H2γ
ex = ℏ

(
Ω1

2
|p⟩⟨g|+ Ω2

2
|r⟩⟨p|+H.c.

)
+ ℏ∆|p⟩⟨p|+ ℏ∆ac

r |r⟩⟨r|+ ℏ∆ac
g |g⟩⟨g| (2.67)

Here, Ω1(2) represent the Rabi frequencies for the 5S → 5P and 5P → nS transitions, re-
spectively, and∆ is the frequency mismatch between the laser fields and the atomic transition.
∆ac

r(g) are the AC Stark shift caused energy defects for the ground and Rydberg states, respec-
tively. Normally, one chose a ∆ to be large to avoid possible losses due to the intermediate
level decay [165]. When the∆ is large compared to the decay rate of the intermediate |p⟩ state,
it can be adiabatically eliminated, thus producing the effective Hamiltonian [28, 166]:

H2γ
ex = ℏ

(
Ωeff

2
|r⟩⟨g|+H.c.

)
+ ℏ∆r|r⟩⟨r|+ ℏ∆g|g⟩⟨g| (2.68)

where

∆r(g) = −Ω2
2(1)/4∆ +∆ac

r(g) (2.69)
Ωeff = −Ω1Ω2/(2∆) (2.70)

As shown in [28], resonant conditions with ∆r = ∆g can be recovered. Note that due to
additional complexity of the level structure in two-photon excitation case, a dephasing of the
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ground state after the 2π pulse sequence application is possible. Thus, one need to apply spe-
cific conditions to obtain an exact π phase shift [163].

The two-photon excitation scheme is useful because it allows one to highly suppressDoppler
dephasing. According to [167, 168], several methods of dephasing suppression exist. For ex-
ample, by applying a transition between two close Rydberg states |r1⟩, |r2⟩ through a low-lyingintermediate level induced by 2ηπ pulses. However, the two-photon scheme does not allow
Rydberg P states to be excited. In alkali atoms, such states exhibit significantly higher lifetimes
than the S and D states. At room temperature, blackbody radiation is the dominant factor
in Rydberg state decay. At the same time, when using a cryostat, spontaneous emission be-
comes dominant, which strongly depends on the angular momentum value. For Rb atoms, the
lifetimes of the Rydberg (n = 100) states are 0.33, 0.38 and 0.32 ms for S, P and D orbitals,
respectively, at room temperature. At a temperature of 4 K, these times are 1.2, 2.1 and 0.9ms
[169], respectively. Thus, it is preferable to use Rydberg P states for quantum gates [28].

• Three-photon excitation
The three-photon excitation scheme can be used to exciteP Rydberg states by involving two

intermediate energy levels of the opposite parity. According to [170], with the correct spatial
configuration of the pulses, three-photon excitation allows to compensate for Doppler broad-
ening due to atomicmotion, as well as for a possible change in themomentumduring excitation
[28]. If the total momentum of the three exciting photons turns out to be zero, no atomic move-
ment is observed after excitation. The spatially dependent phase change is also compensated.
For themoment, three-photon excitation was effectively implemented in atomic gases, demon-
strating the described effect of Doppler dephasing suppression [171].

2.3.3. Quantum computations

When the preparation of the register is finished, quantum computations can be performed
in it. We briefly consider here some possible strategies of quantum operations implementation
in atomic registers.

•Qubit states
Hyperfine Zeeman sublevels of the atomic ground states can be used as qubit logical levels.

This method of storing quantum information is convenient due to the fact that these levels
provide extremely long coherence times (typically, of several seconds). Also, the energy gap
between hyperfine states is∼ h∗10 GHz, which is suitable for optical control of qubit states. As
stated in [63], the energy splittings of the atomic qubit states are significantly larger compared to
the typical interactions induced by external fields and the energy scales associated with thermal
motion, which are on the order of 1MHz. Thus, the qubits are very stable when initialized. The
initialization of the proper qubit states can be achieved by dissipative optical pumping [156].

During the following theoretical studies of three-body quantum gates we use hyperfine sub-
levels of 85Rb or 87Rb atom ground state 5S1/2 as qubit logical states. Thus, the typical energygap between qubit states is ∼ h ∗ 6.8 GHz. Experimental two-qubit entanglement has been
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2.3. Rydberg quantum computing
demonstrated previously for 87Rb in numerous experiments [47, 127, 131, 164, 172].

• Single-qubit operations
There are several strategies to realize single-qubit quantum operations in neutral-atom-

based quantum registers. First, since qubits are usually encoded in hyperfine sublevels of
ground atomic states, radiofrequency ormicrowave radiation can be used to realize single-qubit
rotations [63, 156]. High-precision quantum gates (with errors on the order of ∼ 10−5) can be
realized using this strategy in small atomic ensembles [173]. However, this method is limited in
the possibility of creating individually-addressed gates for closely spaced atoms. Therefore, an
additional site-dependent Stark shift [174] or magnetic field gradient can be used in combina-
tionwith globalmicrowave dressing to adapt themethod for utilization in large atomic registers.
Alternatively, one-qubit gate schemes based on two-photon Raman transitions are used [156].
In particular, a stimulated Raman adiabatic passage can be applied, leaving the qubit in the dark
state during evolution. Alternative schemes involving elimination of the intermediate level have
been studied in [175, 176].

• Two-qubit operations
In registers of neutral atoms, multiqubit quantum operations are realized via dipole-dipole

interactions. As was shown in Section 2.2.4, the high-lying Rydberg states of alkali atoms can
exhibit extremely strong interactions between collective two-atom states. Thus, the induction
of interaction between qubits can be realized by their Rydberg excitation.

During the last two decades, Rydberg quantum computing has developed very rapidly. A
large number of quantum schemes for realizing two-qubit gates have been proposed [28, 60,
63, 177]. In particular, gate schemes have been designed based on the effects of dipole block-
ade [91, 163, 164, 178–180], electromagnetically induced transparency [67, 181], antiblockade
[182, 183] and simultaneous Rydberg excitation [184] in weak coupling regime. An alterna-
tive approach, based on the use of Stark-tuned Förster resonances, has been proposed for the
implementation of fast high-precision two-qubit quantum gates [185–187]. The increasing po-
tential is also demonstrated for Rydberg mediated gate schemes, which exhibit the high fidelity
values along with ease of experimental implementation [47, 48].

Since a complete description of the variety of Rydberg two-qubit gate schemes is beyond the
scope of this thesis, we encourage the interested reader to refer to the paper [28]. It provides
a full description of many different Rydberg gate schemes, and an essential part of this section
is based on material collected from this publication. Nevertheless, we find it useful to show an
example of a two-body gate scheme based on Förster resonance adiabatic passage.

The schemes of quantumCNOT andCZ gates proposed in [187] are shown in Figure 2.10.
Two neutral atoms isolated at distance R from each other act as qubits. The logical |1⟩ states
of the qubits are paired with the Rydberg |r⟩ levels. If both qubits are initialized to |1⟩ states,
the excitation |11⟩ → |rr⟩ occurs. The external electric field is then adiabatically varied, shifting
the collective Rydberg levels and leading to a Förster resonance |rr⟩ → |r′r′′⟩. By passing the
resonance twice, one can achieve a deterministic phase shift suitable for realizing a CZ gate.
In turn, the CNOT gate can be realized by applying two additional one-qubit rotations to the
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Figure 2.10 : (a) Scheme of a CZ gate using double adiabatic rapid passage across Stark-tuned Försterresonance.Two atoms are excited to Rydberg states. An external electric field shifts the energy levels ofthe Rydberg atoms so that the Förster resonance is passed adiabatically two times. Then the atoms arede-excited to ground state. The phase shift is deterministically accumulated if both atoms are initiallyprepared in state |1⟩. (b) Scheme of a CNOT gate. Two additional π/2 pulses rotate the target qubitaround the y axis in the opposite directions. This figure was recollected from [187] along with the pro-vided description.

target qubit, acting as Hadamar gates. Also, the phase of de-excitation pulse 3 was changed in
order to avoid unwanted phase accumulation.

The proposed gate schemes were simulated numerically for 90S + 96S → 90P + 95P res-
onances in Cs Rydberg atoms. The gate fidelity of > 99% demonstrated in the paper [187] al-
lowed one to consider Förster resonances as promising utilities for the realization of quantum
computations.

• Three-qubit operations
The implementation of the Toffoli quantum gate in a system of neutral atomswas described

by Levine et al. in [47]. The proposed implementation is based on a strong blockade of the
nearest neighbors in a trimerized 1D array, accompanied by a discrete excitation phase jump
between two laser pulses. The achievable gate fidelity in this case was F = 0.87(4) (after state
preparation and measurement (SPAM) errors correction). Recent studies [49] propose an im-
provement of the described blockade gates using optimal continuum phase profiles for a single
pulse instead of a phase jump [64]. This technique allowed for significant increase of three-qubit
gate fidelity, up to 97.9% for parallelCCZ gates in seven atomic trimers. However, these values
are far from the threshold required for the implementation of fault-tolerant quantum comput-
ing in atomic registers (F ≥ 0.99). Equally important is the fact that the quantum gates based
on the Rydberg blockade effect require a sufficiently close arrangement of atoms [91]. The use
of strong resonant dipole-dipole interactions is one of the promising solutions for working in
large-scale registers, where it is required to implement gates between qubits spatially isolated
from each other at distances of about 10microns or more. Thus, few-body Förster resonances
appear to be of interest for the implementation of three-qubit quantum gate circuits [98].
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2.3.4. Ensemble readout

After the quantum computation is completed, the state readout is necessary to obtain in-
formation about the result of the computation [63]. Methods of readout of quantum states
in atomic registers are based on detection of fluorescence of ground states. Destructive detec-
tionmethods are based on squeezing atoms in a selected state out of the register and recording
fluorescence of the remaining atoms [156]. This class of methods demonstrates high accuracy,
but leads to the necessity to restore the register after each measurement. To compensate for
this disadvantage, non-destructive methods were proposed based on state-selective fluores-
cence. Also, a frequently used technique applied to large registers is single-site imaging in-
volving electron-multiplying charge-coupled-device (EMCCD) cameras, which allow successful
recording with an accuracy close to 99% [188]. Postprocessing of images in this case is per-
formed using Bayesian inference methods [156].
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Chapter 3
Few-body Förster resonances:
Early-stage studies

This chapter will present the results of early-stage studies of few-body Förster resonances
in Rydberg systems conducted prior to this thesis. These results were obtained in Aime Cotton
Laboratory (LAC) and in Rzhanov Institute of Semiconductor Physics (ISP). The author of this
thesis has worked in both of these institutions during the last 6 years. To the best of our knowl-
edge, the topic of few-body resonant interactions in Rydberg ensembles had not been studied
in any scientific team before. In this regard, this research, which has been going on for more
than 11 years, can be considered completely original. Nevertheless, as the author was not in-
volved in the project from the beginning, the studies conducted before 2018 can be considered
preliminary to the results of the thesis. Therefore, a separate chapter is dedicated to these re-
sults, which form the theoretical basis for the research of three-body Rydberg quantum gates
based on Förster resonances.

Note that although the studies of multi-particle Förster resonances conducted at LAC and
ISPwere pioneering by the time the project began, other groups have alsomade significant con-
tributions to the study of these effects. For instance, the group led by Michael W. Noel in Bryn
Mawr College has conducted a large-scale study of two-, three-, and four-particle resonances
in Rb atoms. In particular, the time dynamics of resonance processes [189] and the thermaliza-
tion of dipole-dipole interactions [190] were deeply investigated. However, we do not describe
these studies in detail here because they are not directly related to the subject of this thesis and
consider multiparticle resonances in disordered ensembles. The interested reader can refer to
the original articles.

This chapter is divided into three sections corresponding to the threemain stages of Förster
resonances research conducted at LAC and ISP from 2012 to 2018. Specifically, Section 3.1
presents an initial proposal on the structure of the many-body Förster resonance process in
Rydberg ensembles, as well as an experiment on the recording of four-body resonances in a
low-density gas of Cs atoms. This study was carried out at LAC by the team of P. Pillet in 2012
[191]. Section 3.2 outlines the three-body Borromean resonances in Cs atoms recorded in the
same team in 2015 [107]. An experiment on the recording of three-body resonances in small
ensembles of Rb atoms [192], performed in 2017 at ISP by the teamof I. Beterov and I. Ryabtsev,
is described in Section 3.3. The results of numerical studies of the coherence of three-body
resonances in small Rydberg ensembles are also described in this section [193].
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3.1. Four-body Förster resonances in Cs ensembles
Investigating few-body interactions in atomic systems stands as one of the fundamental

tasks of modern physics. Such studies allow one to better understand the structure of ele-
mentary physical systems, paving the way for the creation of new materials and computational
models. Various few-body effects have been demonstrated over the past 20 years in such sys-
tems, including trimer photoassociation [194], Efimov physics [195–197], as well as three-body
recombination leading to the formation of molecules in a trap [198, 199].

Rydberg atomic ensembles have been successfully used for the investigation of few-body
effects [155, 200–202]. Since Rydberg atoms exhibit strong dipole-dipole interactions [137, 203],
as well as high lifetimes in a cold sample [169], low-density Rydberg gases represent a conve-
nient playground for studying multiparticle interactions. In this regard, the study of few-body
resonance processes in ensembles of ultracold Rydberg atoms presented an important and
interesting task, motivating the start of our research project.

The pioneering experiments on the observation of few-body Förster resonances were car-
ried out in the Aime Cotton Laboratory during the last decade. Thus, in 2012, a four-body Stark
induced resonance was first demonstrated in a low-density cloud of Rydberg Cs atoms in a
magneto-optical trap [191]. In this section we present the results of this study. Note that we do
not review all the details of the study, focusing on the parts relevant to this thesis. For a more
detailed analysis see the original paper.

3.1.1. Four-body resonance proposal

Before starting the discussion of many-body Förster resonances, it will be useful to briefly
recall the theoretical basis for their implementation. By the time this study began, the two-
atom Förster resonances described in Subsection 2.2.5 had been extensively investigated [155].
Resonance transitions require efficient compensation of the energy defects between collective
states, which leads to quasi-degeneracy of energy levels. Dipole transitions between resonant
states must also be allowed, which imposes constraints on their parity. This requirement, how-
ever, can be circumvented by realizing a “ladder” of dipole-resolved transitions occurring simul-
taneously in a multi-atomic system. Thus, the two-atom transition |ni1li1, ni2li2⟩ → |nf1 lf1 ;nf2 lf2 ⟩,where lfm = lim ± k for integer k, is replaced by a sequence of transitions |ni1li1, ni2li2⟩ → ... →
|na1la1 , na2la2⟩ → ... → |nf1 lf1 , nf2 lf2 ⟩, given that each of those transitions is dipole-resolved. Here,
the indices i and f denote the initial and final states, respectively, while the index a denotes
some intermediate state (one of many). To realize such a transit, the final and initial states of
the system must also be degenerate. Thus, the sum of energy defects of all the two-body tran-
sitions involved in ladder-like transfer should tend to zero, leading to zero energy difference
between initial and final states.

For many-body resonances, parallel transitions can involve different atoms, still subject to
the requirement of the total energy defect negligibility. So, given a multi-atom Rydberg sys-
tem withN atoms, one can describe the following many-body Förster resonant transition (3.1),
composed of at least N − 1 dipole-resolved two-body transitions.
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3.1. Four-body Förster resonances in Cs ensembles

|ni1li1;ni2li2; ...;niN liN ⟩ → |nf1 lf1 ;nf2 lf2 ; ...;nfN l
f
N ⟩ (3.1)

Inspired by the idea of resonant population transfer based on parallel two-body resonances,
a group of researchers led by Pierre Pillet proposed a possible scheme for the realization of
a four-body resonance, and also conducted an experiment on its recording. Four-body Stark
induced resonance (3.2) was studied in a low-density cloud of Rydberg caesium atoms in a
magneto-optical trap for n = 23. All the results described below were originally presented
in the article [191] and are given here with the permission of the authors. The notations used
in the original article have been retained.

4× 23p3/2 → 2× 23s+ 23p1/2 + 23d5/2 (3.2)
2× 23p3/2 → 23s+ 24s (3.3)

2× 24s→ 23p1/2 + 23d5/2 (3.4)
In contrast to the previously described two-body resonances, this resonance corresponds

to a simultaneous change of states of four atoms. The resonance process can be described
as three two-body transitions in a four-atom system occurring simultaneously. During the first
stage of the transition, all four atoms pass from the initial 23p state into a collective mixture of
24s and 23s states, as a result of two two-body non-resonant transitions (3.3) in atomic pairs.
At the second stage, the atoms in the 24s state undergo a transition (3.4) to the 23p and 23d

states. Each of these individual steps does not represent a resonant transition, while the full
four-body transition has a resonant character. Note that the transition (3.4) is quasi-forbidden
and can occur due to mixing of P and D states in the electric field. We will discuss quasi-
forbidden resonances in detail in the Subsections 4.2.2 and 4.2.3 of Chapter 4. We assume
that |mJ | = 1/2 for all states unless specified otherwise. For simplicity, we further indicate the
states 23s, 23p1/2, 23p3/2, 23d5/2 and 24s as s′, p′, p, d and s, respectively.

Figure 3.1 shows resonance processes in a four-atom system. The Stark diagram of the
atomic collective states was obtained from numerical simulations. The Stark induced collective
level crossings here correspond to two-body resonances (a1, a2) and a four-body resonance
(b). As can be seen, these resonances occur at slightly different electric fields. Concretely,
resonance (3.3) corresponds to the controlling electric field value of 79.94 V/cm, while reso-
nance (3.4) occurs at 80.42 V/cm. Four-body resonance (3.2) arises at its full amplitude at 79.99
V/cm electric field. Thus, if the four-body p → d process is resonant, each of the underlying
two-body processes will be characterized by a Förster defect ∆E1 = Es + Es′ − 2 × Ep and
∆E2 = Ed+Ep′ − 2×Es′ , respectively. If 2∆E1 = −∆E2, a resonant four-body process occurs.Note that coefficient 2 arises in the lase equation, since the first two-body resonance (3.3) must
occur twice in the system.

3.1.2. Experimental results

The resonance recording experiment was carried out in a caesium magneto-optical trap
(MOT) at a temperature of ∼ 100microkelvin. Three-photon excitation 6s→ 6p→ 7s→ nl was
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Figure 3.1 : Four-atom Stark diagram in the vicinity of four-body resonant transfer. Two-body reso-nances (3.3) and (3.4) are shown as the intersections (a1) and (a2), respectively. Intersection (b) corre-sponds to four-body resonance (3.2). Transition diagrams are also presented for each case to illustratethe processes.

used to produce a low-density Rydberg gas. As a result of the excitation, a Gaussian cloud of
∼ 2 × 105 23p cold Caesium atoms was produced. The cloud diameter was ∼ 260 µm, with a
peak atomic density of ∼ 9× 109 cm−3. The population of Rydberg states was measured using
the Selective Field Ionization method (SFI). Please see the article [191] for more detail.

The experimental results on the Förster resonance are shown in Figure 3.2. The two-body
p → s resonance (Fig. 3.2(a)) is observed at 79.94 V/cm. The flat top of the resonance suggests
that the transition is saturated. Similar behavior is also observed for the s → d resonance at
80.42 V/cm (Fig. 3.2(b)). Note that the observed saturation demonstrate that the interatomic
interaction is sufficiently strong even for low-density gaseous sample.

The four-body p→ d resonant transition is observed at an electric field value of 79.99 V/cm.
The detection of population in the d state serves as a distinct indicator of an interaction in-
volving a minimum of four atoms. The pronounced evidence that this process is not a mere
combination of two sequential 2-body processes, but rather an authentic 4-body phenomenon,
is discernible from the relative strengths of the d transfer at the 4-body resonance field during
initial excitation of either the p or s state.

In order to compare the obtained data with the theoretical calculation, numerical simula-
tions of the resonances were performed. The p → d resonance was modeled between four
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3.1. Four-body Förster resonances in Cs ensembles
atoms arranged equidistantly, choosing arbitrarily a tetrahedron shape in three-dimensional
space. The numerical model included two-body dipole-dipole interactions between |pppp⟩,
|ss′pp⟩, |ss′ss′⟩, and |ds′p′s′⟩ states in an external electric field. The ultimate distributions, pre-
sented in Figure 3.2 as the blue dashed curves, are derived through calculations utilizing the
density matrix in conjunction with the experimental peak density and field inhomogeneity. 3
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FIG. 3. (Color online) Number of detected Rydberg atoms as a func-
tion of applied electric field. a) percentage of detecteds atoms when
exciting thep state. b) percentage ofd detected when exciting thes
state. c) percentage ofd detected when exciting thep state. The error
bars account for the corrections to the cross-talk coefficients, which
are larger fors than ford, and for the observed field inhomogeneity
that affects more thep excitation, leading to larger error bars than in
thes excitation case. The results of our calculation for four equidis-
tant atoms are overlaid as dashed blue lines, with thep → s calcula-
tion amplified by a factor of two and thes → d divided by a factor of
three to coincide with experimental results. The three resonant field
values are illustrated by the vertical dotted lines.
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FIG. 4. (Color online) Figure a) shows the number of detectedd
atoms as a function of the applied electric field for excitingthep (red
+) ands (blue×) states, with ans density comparable or greater
in thes excitation than in thep excitation. The on-resonant 4-body
process creates more than a factor of four mored atoms than the off-
resonants → d 2-body process at 79.99 V/cm. Figure b) shows the
number of detectedd atoms when exciting thep → s resonance for
the |mJ | = 1/2 (79.94 V/cm) and|mJ | = 3/2 (88.14 V/cm). We
observe no significantd state population in the|mJ | = 3/2 case.

shown in Fig. 3c. While the 4-body resonance partially over-
laps thep → s 2-body resonance in field, it is important to
recall that thed state signal is well separated in the TOF.

To provide insight into the 4-body resonance, we have de-
veloped a minimal toy model with four equidistant atoms ar-
ranged as a tetrahedron. The four possible states|pppp〉 (ini-

tial state),|ss′pp〉, |ss′ss′〉, and|ds′p′s′〉 (detected state) are
coupled by dipole-dipole interactions, calculated between the
in-field eigenstates of the Rydberg atoms [33]. The final pop-
ulations, shown in Fig. 3 as the blue dashed curves, are calcu-
lated using the density matrix and the experimental peak den-
sity and field inhomogeneity. We average the results assum-
ing an Erlang (nearest neighbor) distribution for the 2-body
distance between the atoms, and a cubic Erlang distribution
for the 4-body case. Such a 2-body model is not expected
to precisely match the experiment [18] and the calculated 2-
bodyp → s curve is amplified by a factor of two while the
s → d curve has been diminished by a factor of three to match
the experimentally observed results. To account for the 0.3%
background observed in thep → d 4-body transfer, the 4-body
curve baseline has been shifted accordingly. While a more de-
tailed many-body calculation would be needed to reproduce
the data [29], it is remarkable that such a crude 4-body calcu-
lation qualitatively reproduces the shape of the experimental
signal.

The observation ofd state population constitutes a clear,
direct signature of an interaction involving at least four bod-
ies. The strong signature that the process is not a simple com-
bination of two consecutive 2-body processes, but a genuine
4-body process, lies in the relative strengths of thed transfer
at the 4-body resonance field when initially exciting thep or
s state. Figure 4a shows the number of detectedd atoms for
comparable densities ofs, either excited directly (1.4 × 105)
or obtained from excitingp and allowing 2-body transfer into
s (< 105). The larger number of detectedd atoms (about a
factor of four) when excitingp, despite a smallers density,
is explained by the fact that here the 4-bodyp → d transfer
is resonant whereas the 2-bodys → d transfer is not. Fi-
nally, exciting thep state in the|mJ | = 3/2 case, where the
p → s resonance lies around 88.1 V/cm and the 4-body reso-
nance is well separated from both 2-body resonances, we see
in Fig. 4b that no significantd population is detected at the
p → s resonance. The small observed signal is compatible
with the estimated error on the inversion matrix coefficients
in Eq. (4).

A way to increase the population transfer is to shift the ap-
plied field from thep → s resonance to thes → d reso-
nance between laser excitation and detection. The two 2-body
FRETs are then consecutively resonant and we should get ad
transfer comparable to that obtained when excitings directly.
Indeed, we have observed up to 7.5%p → d population trans-
fer with a 0.6 V/cm field shift, confirming that thep → s pop-
ulation transfer at 79.94 V/cm leads to about the sames den-
sity as directs excitation. With a larger shift it is also possible
to induce a transfer tod from the|mJ | = 3/2 p state. We ob-
served up to 2.1%p → d population transfer with a -7.7 V/cm
field shift starting from 88.14 V/cm.

The field inhomogeneity and the proximity of the 4-body
and 2-body FRET resonances impede further studies on the
resonance shape. Nevertheless, having identified the 4-body
resonance, we can study the transfer dependence on the initial
p Rydberg atom density. We vary this density by attenuating

Figure 3.2 : Number of detected Rydberg atoms as a function of applied electric field. (a) Percentageof detected s atoms when exciting the p state. (b) Percentage of d detected when exciting the s state.(c) Percentage of d detected when exciting the p state. The results of presented calculation for fourequidistant atoms are overlaid as dashed blue lines, with the p → s calculation amplified by a factor oftwo and the s→ d divided by a factor of three to coincide with experimental results. The three resonantfield values are illustrated by the vertical dotted lines.

3.1.3. Conclusion

This study has experimentally confirmed for the first time the existence of many-body res-
onant processes in ultracold atomic ensembles. While two-body Förster resonances have been
widely knownand investigated in various research groups,multi-particle resonance effects have
not been studied. At the same time, such effects can have a significant influence on the spectra
of Rydberg systems. The theoretical model proposed in this study has offered an explanation
for multiparticle resonance transitions, paving the way for further research.

According to the authors conclusion, many-body Förster resonances are of exceptional in-
terest for the implementation of quantum computations in ordered atomic registers, due to
wide possibilities of interaction control presented by Stark-induced resonant processes. In par-
ticular, multiparticle resonant transitions have a high potential to realize multiqubit quantum
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Chapter 3. Few-body Förster resonances: Early-stage studies
gates and also can be used to create multi-atom entangled states. In this regard, additional
work has been carried out to further investigate few-body resonances in Rydberg gases. In the
subsequent sections of this chapter, we will describe few-body resonance studies inspired by
this pioneering research.

3.2. Borromean Förster resonances in Cs ensembles
The successful experimental demonstration of four-atom Förster resonances carried out by

the group of P. Pillet in 2012 has aroused great interest from the scientific community due to
their potential use for the creation of quantum entanglement in large-scale quantum registers
of individual cold atoms. However, such resonances are weakly pronounced, and obtaining
high-contrast coherent interactions between individual isolated atoms would be challenging.

Of particular interest to the ultracold atom physics community are the so-called Borromean
interactions in three-atom systems [204, 205]. The Borromean character of the interaction con-
sists in the predominance of three-atom effects over two-atom effects, which in the ideal case
are negligibly small. Such interactions potentially allow the creation of quantum entanglement
between three atoms, and hence can be used to realize three-qubit quantum gates such as
Toffoli and CNOT 2 gates [92].

The interaction enhancement provided by the Förster resonance presents an ideal oppor-
tunity to realize Borromean interactions. In this regard, an experiment was performed in the
Aime Cotton Laboratory to record such resonances in a cold gas of cesium atoms in 2015 [107].

3.2.1. Three-body Förster resonance

The three-body resonance scheme presented in this study is based on two consecutive
Stark-induced two-body tansitions (3.5) and (3.6):

2× nP3/2 → nS1/2 + (n+ 1)S1/2 (3.5)
nP3/2(|m| = 3/2) + (n+ 1)S1/2 → (n+ 1)S1/2 + nP3/2(|m| = 1/2) (3.6)

nP3/2(|m| = 1/2) + nP3/2(|m| = 3/2) → nS1/2 + (n+ 1)S1/2 (3.7)
Process (3.5) presents a widely studied two-body transition, shown in detail in the previous

section as a part of 4-body resonant transfer. In alkali atoms such resonances are possible for
projections |mJ | = 1/2, 3/2 of the initial nP3/2 states. This transition is depicted on Figure 3.3(c).Since the degeneracy of collective levels with differentmomentumprojections is removed in the
presence of the external electric field due to the Stark effect, an energy defect δpp′ = Ep′ −Ep ofa few tens of MHz arises between the states p = nP3/2(|mJ | = 1/2) and p′ = nP3/2(|mJ | = 3/2).
Nevertheless, themagnitude of the defect is significantly smaller than the Förster defects of the
possible resonances, which thus remain grouped at close resonant fields. To follow the original
article desriptions, we denote the energy defect constants as a half of corresponding Förster
defect for each two-body resonance: ∆p =

Es+Es′−2Ep

2 and∆p′ =
Es+Es′−2Ep′

2 , where s = nS1/2,
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3.2. Borromean Förster resonances in Cs ensembles

condition. This atom will relay the energy between the two
other atoms.
The top diagrams of Fig. 1b represent the three-body (I)

(resp. I0ð Þ) FRET where the centre atom, transferred to p0

(resp. p), acts as the relay contributing twice to the whole energy
transfer. In this figure this is displayed by the two arrows acting
on the relay atom. The specificity of these processes resides in the
absence of a real intermediate state, which is detuned by dpp0 .
Despite the use of a relay, the transfer occurs in a single step,
implying a Borromean character of the relay atom which absorbs

the energy of the finite Förster defect. Indeed at the three-body
resonant field the two-body FRET is forbidden and only the
single three-body resonance is allowed. The overall process
corresponds to the transfer of one excitation over the three atoms.
When dpp0 is large compared to the dipole–dipole interactions, the
three-body coupling can be perturbatively evaluated to a coherent
interaction with the coupling V3b ¼ Vdip1Vdip2=dpp0 where Vdipi is
the dipole–dipole interaction coupling the Borromean atom to
the ith other atom.

Experimental protocol summary. In our experimental set-up
described in ref. 34, the preparation in an nP3/2 Rydberg state
(with n between 28 and 35) is produced through a three-photon
resonant excitation using two intermediate states 6P3/2 and 7S1/2.
The short lifetime of these intermediate states of around 30 and
50 ns, together with the duration of the excitation pulse of
typically 200 ns, broadens the excitation linewidth to around
10MHz. It limits strongly the excitation blockade, leading to high
Rydberg atom densities with random distributions. The random
interatomic distances and orientations in the Rydberg sample
justify the use of the angle-averaged interaction at the average
distance in our calculations and will prevent the observation of
coherence properties. We then let the system evolve for times
tdelay ranging from 300 ns to 1 ms during which the energy
transfer takes place towards a final population in s and s0 states.
Finally we apply an ionization ramp to obtain a time-of-flight
(TOF) signal and extract the populations Nj in each Rydberg state
j, appearing in the TOF in the order Ns0 , Np, Np0 and finally Ns.
We will usually express the results in terms of the population
transfer ratio Rss0 ¼ Ns þNs0ð Þ=

P
j Nj describing the fraction of

Rydberg atoms transfered to the s or s0 states. The population
detection presents cross-talks on the order of 10–20% due to
avoided crossings in the ionization path but we correct for them
using a simple matrix algorithm already presented in ref. 34. This
correction requires taking a reference TOF for each considered
state at a reference electric field F0 away from any resonances. The
final uncertainty in population transfer ratios Rss0 is evaluated to
be around ±0.5% for data at electric fields on the same side of
the main two-body FRET resonance than F0. On the other side,
larger residual cross-talk errors up to 5% for n¼ 35 can persist
due to the interactions during the ionization ramp. We therefore
always paid attention to take the reference TOF on the same side
as the expected three-body FRET. After the initial p or p0

preparation, the tuning of the electric field gives access
to resonances (I) and (II) (resp. I0ð Þ and II0ð Þ), but never to
resonance (III) which requires a p and p0 mixture.

Resonances. Figure 2 reports the results for n¼ 35, which leads to
the largest measured transfer due to the n4 dependence of Vdip

and to the smallest dpp0 .
In Fig. 2a, we plot the population transfer ratio versus the

applied electric field F and display the result from the p state for
different transfer delays tdelay. We resolve two peaks correspond-
ing to the two-body (II) and three-body (I) FRET at 3.30V cm� 1

and 3.17V cm� 1, respectively. They are in good agreement with
the values of 3.28V cm� 1 and 3.15V cm� 1, calculated using the
numerical method proposed in ref. 37, with our uncertainty on
the applied electric field of ±0.02V cm� 1 and on the calculated
resonance position of ±0.05V cm� 1. The observed two-body
transfer saturation limit of 50% is due to the random distribution
of Rydberg atoms in our sample leading to a statistical average
between the two-body states |ppi and j ss0i. We observe an
efficient three-body FRET transfer of up to B21% close to, but
below, the expected maximum of 33% for a statistical average
between |pppi and j ss0p0i.
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Figure 1 | Two-body and three-body FRET processes. (a) Schematic

energy diagram as a function of the applied electric field for the different
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state in the abscence of interactions, for example, for atoms far apart.

Interactions turn the different resonances into avoided crossings marked

with dash-dotted lines. They correspond to two-body resonances ((II),

(III) and (II0)) and three-body resonances ((I) and (I0)) where the resonant

energy transfers detailed in (b) to (e) can take place. (d) Describes how the

two-body FRET (II) (resp. (II’)) from the p (resp. p0) state occurs through

the exchange of a single virtual photon symbolized with two blue arrows.

(e) Describes the similar two-body FRET from a p and p0 mixture.

(b) (resp. (c)) Describes how the three-body FRET transfers the starting

ppp (resp. p0p0p0) state to the end state through the exchange of two

different virtual photons. The first virtual photon, symbolized with blue

arrows crossed with a single mark, leads the system to a virtual
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with two marks, leads it resonantly to the end state. For reference, an

horizontal dashed line at the energy Es þ Es0ð Þ=2 represents when possible
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Figure 3.3 : Two-body and three-body FRET processes for nP3/2 initial Rydberg states of Cs, with |m| =
1/2 (p) or |m| = 3/2 (p′). Here the transition diagrams (a) and (b) correspond to the three-body transitions(3.8) and (3.9), respectively. Diagrams (c, d) depict the two-body processes (3.5) and (3.7), respectively.

s′ = (n+ 1)S1/2, respectively. Note that two-body resonances (3.5) in cesium are possible only
for Rydberg states with n < 42, due to the peculiarities of the polarizabilities and quantum
defects of the p and s-states [137]. For higher levels, the application of an external electric field
causes the Förster defect to increase between the collective states, thus preventing resonant
interaction.

Equation (3.6), in turn, represents the process of excitation hopping between two atoms.
However, unlike the hopping described in Subsection 2.2.5, this process involves the original p
state to turn into a p′ state. The non-zero energy defect between the p and p′ states here results
in the process being nonresonant in an external electric field. Thus, the two processes included
in the three-body resonance provide quantum defects that can be mutually compensated by
Stark shift.

We consider a system consisting of three Rydberg atoms bound by dipole-dipole interac-
tion, and additionally exposed to an external electric field. Suppose that before the interaction,
atoms were excited into Rydberg P states. In the external non-resonant field, atoms 1 and 2
undergo the Stark-detuned transition (3.5), with energy defect ∆1. Simultaneously, transition
(3.6) proceeds involving atoms 2 and 3, transferring the excitation between them. This pro-
cess is also non-resonant, having a detuning of ∆2. However, if ∆1 = −∆2, the final and initialstates of the system are degenerate in the applied electric field! Consequently, the total three-
body transition turns out to be resonant, although each of the two-body processes constituting
it is not. The third atom in this case acts as a relay for energy transport between the donor
and acceptor atoms. This relay additionally addresses the energy disparity that obstructs the
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Chapter 3. Few-body Förster resonances: Early-stage studies
direct two-body Förster resonance energy transfer (FRET) connecting the donor and the accep-
tor. Thus, the presented arrangement culminates in a Borromean three-body energy transfer
process! The Borromean character of the interaction is guaranteed by the resonant behaviour
of the three-body transfer, which prevails over all two-body transitions at the resonance value
of the electric field Fres.

3p→ s+ s′ + p→ s+ p′ + s′ (3.8)
3p′ → p′ + s+ s′ → s+ p+ s′ (3.9)

Figures 3.3(a) and 3.3(b) show schemes of three-body resonances for the cases when the
initial states 3 × p and 3 × p′ are excited, respectively. Such resonances are described by ex-
pressions (3.8) and (3.9). For transition (3.8) the first two-body interaction has the detuning
∆1 = 2∆p = −δpp′ , while the S − P hopping detuning is∆2 = δpp′ . Thus, these detunings com-
pletely compensate each other, leading to the resonance condition∆p = −δpp′/2. Similarly, for
transition (3.9), the resonance condition∆p′ = δpp′/2 is presented.

3.2.2. Experimental results

The same experimental setup was used as for the demonstration of four-atom resonances
described in the previous section. Resonances were recorded in a cesiummagneto-optical trap.
With three-photon excitation, about 105 Rydberg atomswere generated in an excitation volume
with ∼ 300 µm diameter. The typical Rydberg atom density in the MOT was ∼ 5 × 109 atoms
cm−3 during the experiment. For more detail on the experimental implementation, please see
the original paper [107].

Figure 3.4 shows the results of Förster resonance recording as the dependence of ss′ trans-
fer rate from the applied field. The transfer rate is defined as Rss′ =

Ns+Ns′∑
k Nk

, where Ns is the
s-state population obtained from the experiment. The 3p→ s+ s′ + p′ resonance (I. Fig. 3.4(a))
is recorded in a field of 3.17 V/cm, on the slope of the two-body resonance 2p→ s+s′ (II), which
reaches a maximum at 3.30 V/cm. Good agreement with the theoretical values (3.15 V/cm and
3.28 V/cm) obtained from the numerical calculations [107] is observed. Similar results obtained
for resonances 3p′ → s+s′+p (I’) and 2p′ → s+s′ (II’) are shown in Figure 3.4(b). The resonances
are observed at fields of 3.80 V/cm and 3.60 V/cm, respectively.

The introduction of varying delays in Figure 3.4 allows one to estimate the temporal evo-
lution of the transfer process. Considering the experimental atomic density of approximately
5 × 109 atoms per cm3, the anticipated maximum for the two-body FRET coupling, denoted as
Vdip, is around 15 MHz for the average interatomic distance of 3 µm. This transfer becomes
completely saturated at the shortest delays. However, for the case of δpp′ = 70MHz (for FRET I)
the three-body interaction coupling is anticipated to be around 3MHz for the same interatomic
distance, much smaller then for two-body case. The same decrease is observed for the reso-
nance I’, when δpp′ = 95MHz, leaving the corresponding coupling of 2MHz . Consequently, one
observe temporal evolution at the shortest delays. Nevertheless, the pronounced dependence
of the three-body interaction on interatomic distances along with the stochastic distribution of
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Figure 3.4 : Averaged transfer ratio Rss′ from the initial p state (a) or p′ state (b) to s + s′ states for
n = 35 at different τdelay versus the electric field. In (a), the resonance at around 3.3 V/cm is attributedto the two-body FRET (3.5) (denoted as II) while the resonance at around 3.17 V/cm is attributed to thethree-body FRET (3.8) (denoted as I). In (b), the resonances are attributed to two-body (3.5) (II’) and three-body (3.9) (I’) transfers. Each point corresponds to the average of 50−150 individual measurements. Theerror bars correspond to the sum of the s. e. m. and the estimated error in the state discrimination.

Rydberg atoms within the gaseous sample, hinders any coherent oscillatory dynamics in these
experiments.

Note that for two-atom resonances the transfer saturation limit is expected to be 50% in an
approximate model of independant pairs, due to the random arrangement of Rydberg atoms
in the gas sample. The random arrangement leads to a statistical mixture between pp and
ss′ two-atom states. For the same reason, the expected amplitude of three-body resonances
is 33% for a statistical mixture of initial and final states. Nevertheless, this threshold is not
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Chapter 3. Few-body Förster resonances: Early-stage studies

Figure 2b presents the analogous results from the initial p0

state, corresponding to the three-body FRET of equation (3). The
resonance fields are again in excellent agreement with the
predicted values of 3.60V cm� 1 and 3.80V cm� 1 for (II’) and
(I’), respectively. In addition, we see that the two peaks are better
resolved due to the increase of the energy splitting dpp0 with the
electric field. It also implies a smaller three-body coupling V3b

and the observed transfer efficiency is smaller with around 15%
transfer.

The application of different delays in Fig. 2 enables us to
observe the transfer time evolution. At our experimental density
of B5� 109 atoms cm� 3, the typical two-body FRET coupling
Vdip is expected to reach a maximum of 15MHz at the average
interatomic distance of 3mm and the transfer is fully saturated at
the shortest delays. This interaction level, larger than the
excitation linewidth, is large enough to induce a partial excitation
blockade effect and could induce the direct excitation of one of
the two-body exciton states ð j ppi� j ss0iÞ=

ffiffiffi
2

p
still correspond-

ing to the 50% expected saturation transfer. On the contrary, with
dpp0 � 70MHz for FRET (I) (resp. dpp0 � 95MHz for FRET
(I’)), the three-body interaction coupling V3b is expected around
3MHz (resp. 2MHz) at 3-mm interatomic distances. As a
consequence, we observe a time evolution at the shortest
delays. Unfortunately, the strong dependence of the three-body
interaction V3b with the interatomic distances and
the random distribution of the Rydberg atoms in our sample
prevent us from observing any oscillations in the energy
transfer.

Density dependence. To further demonstrate the three-body
character of this phenomenon, we studied the transfer depen-
dence on the initial Rydberg atom density using the technique
developed in ref. 34. Indeed in the low density limit, a N-body
process will depend as the N-power of the initial density. We have
chosen the p0 starting state and a transfer time of tdelay ¼ 0:5 ms
where the resonances are better resolved and the signal on one
resonance is less impacted by the other resonance.

We vary the Rydberg atom density changing the duration of the
Rydberg excitation pulse. Figure 3 presents in a bi-logarithmic
scale the resulting number of transferred atoms as a function of
the initial number of Rydberg atoms for the two-body FRET at
3.60V cm� 1 and for the three-body FRET at 3.80V cm� 1. We
observe the expected quadratic behaviour of the two-body FRET
at the lowest densities but also a fast saturation at moderate
densities with a linear dependence once the 50% transfer limit is
reached. This saturation occurs at a density about 10 times smaller
than our maximum density, that is, B5� 108 atoms cm� 3 where
the coupling Vdip is around 1.5MHz at 3-mm distance. This is
consistent with the used delay of tdelay ¼ 500 ns. Moreover, the
excitation blockade is negligible and cannot explain the saturation
at this small density. The measured cubic dependence of the
transferred population on the density for the three-body FRET
signals confirms our identification of the process. For these
measurements with an estimated interaction strength around
3MHz at the highest density, we observe the beginning of a
saturation when reaching the transfer percentage of B25%, close
to the expected maximum of 33% in this case.

A general scheme. It is important to note here that the idea to use
a non-resonant relay atom to compensate for a finite Förster
defect is valid for any principal quantum number. For
confirmation, we have explored the two-body and three-body
FRET’s for the n¼ 32 Rydberg state at FB6.9V cm� 1 and
FB6.63V cm� 1, respectively, as displayed in Fig. 4. The three-
body transfer ratio is about 12% and we have observed a transfer
for n¼ 28 of about 4%. This rapid decrease of the transfer
efficiency is consistent with the Vdip strong dependence with n.
These results confirm the general application of few-body FRET
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Figure 3.5 : Sum of detected atoms in s and s’ states, Ns + Ns′ versus the initial 35p′ Rydberg atomsdensity for a transfer time of τdelay = 0.5 µs at a fixed electric field of 3.60 V/cm for the two-body FRET(black dots) in bi-logarithmic scale. Two fits check the quadratic behaviour in the low density regime(red dotted line) and the linear saturation in the high-density regime (orange dashed line). A second setof data are taken at 3.80 V/cm for the three-body FRET (grey dots) and a fit checks the expected cubicbehaviour (blue dotted dashed line). The result and the standard error of each fit is presented in thelegend. The data range used for each fit is demarcated by couples of vertical lines with correspondingcolour and style.

reached in this experiment, which may be due to both experimental measurement uncertainty
and the proximity of the two-atom resonance leading to additional phase dynamics. Thus, the
resonance I reaches a maximum amplitude of 21%, while the resonance amplitude of I’ is 15%.

Additional confirmation of the correct identification of two- and three-atom peaks was ob-
tained by estimating the dependence of the transfer on the initial density of the Rydberg gas.
According to [107, 191], in the low-density limit, theN -partial process will exhibit dynamics pro-
portional to the N th power of the initial density. Nevertheless, with an increase in density, the
transfer reaches saturation at a certain moment, provided that the maximum peak intensity is
reached under experimental conditions.

As shown on Fig.3.4, the peaks I’ and II’ are highly resolved and the resonance crosstalk is
minimized. Thus, for this study the p′ initial state was selected with the transfer time of τdelay =

0.5 µs. By varying the Rydberg atomdensity through adjustments in the duration of the Rydberg
excitation pulse, the data depicted on Fig.3.5 was obtained. This figure shows the resulting
count of transferred atoms against the initial number of Rydberg atoms, both for the two-body
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3.2. Borromean Förster resonances in Cs ensembles
FRET at 3.60 V/cm and for the three-body FRET at 3.80 V/cm.

In the case of the two-body FRET,the anticipated quadratic behaviour was observed at the
lowest densities, followedby rapid saturation atmoderate densities. Once the 50% transfer limit
is achieved, a linear dependence emerges. Remarkably, this saturation transpires at a density
of about 5× 108 atoms per cm3. This density corresponds to a coupling strength of around 1.5

MHz at a 3 µm distance, which is consistent with the employed delay of τdelay = 500 ns.
On the other hand, the cubic relationship between the transferred population and the den-

sity for the three-body FRET signals validates the previously described resonant picture. The
estimated interaction strength reached approximately 3 MHz at the highest density. Thus, the
saturation is observed when the transfer reaches approximately 25%. This value is close to the
anticipated maximum of 33% for this particular case.

Note that the proposed resonant scheme also admits generalization to a larger number of
atoms. The many-body Borromean Förster resonances in this case require several relay atoms
and could be reflected as a sequence of two-body transitions in a many-atom system. The
general scheme of such a resonance can be represented as

(2N +M)p→ Ns+Ns′ +Mp′ (3.10)
Here, 2N atoms transfer to the correspondingS states via two-body non-resonant transfers,

while M relay atoms compensate for the resonance defect. If the condition of energy defect
compensation (3.11) is satisfied, the final transfer is resonant. Note that in [107], four- and five-
atom resonances of the form (3.10) were also demonstrated. Nevertheless, their description is
beyond the scope of this thesis.

∆p =
−M
2N

δpp′ (3.11)

3.2.3. Conclusion

In the presented research, new types of many-body resonant Förster transitions have been
demonstrated. Such resonances offer a wide range of possibilities for controlling interactions in
atomic systems and can potentially serve to realize quantum entanglement inmulti-atomic reg-
isters. Borromean three-atom transitions, which are the central topic of this study, have been
demonstrated for different values of the principal quantum number n, indirectly confirming the
general nature of the resonance transfer. Three-body FRET could thus be used to realize three-
body quantum gate schemes (specifically, Toffoli and CNOT 2 gates) through the creation of
quantum entangled triplet states. Additionally, controlled SWAP gates producing state transfer
between atoms can also be realized by sp′s′ → ppp → s′p′s transitions. When the transition
is resonant, the exchange between the s states takes place. Thus, by controlling the external
electric field, a controlled exchange operation could be realized. Also, it should be noted that
heralded entanglement can be realized using a three-body FRET. In such a case, the relay atom
could serve as an indicator, via its detection in the new p or p′ state, of the states entanglement
of the other two atoms.
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Chapter 3. Few-body Förster resonances: Early-stage studies
The high potential of multi-particle Förster resonances for Rydberg quantum informatics

has attracted considerable interest from the scientific community. In this regard, the studies
of many-body resonance interactions have been continued. The following section describes
results on the study of such resonance transitions in ensembles of Rb atoms carried out collab-
oratively at LAC and ISP.

3.3. Three-body Förster resonances in Rb ensembles
Experiments carried out at Aime Cotton Laboratory clearly showed the presence of multi-

particle resonant processes in the spectra of low-density Rydberg gases. Demonstrated reso-
nances involved 2 − 5 Cs atoms, thus allowed one to suggest the possibility that multi-qubit
quantum gates can be realized based on Förster transitions [191]. Nevertheless, a number of
important questions about the nature of resonance transitions in atomic systems required ad-
ditional investigation.

First, the question was raised whether such resonances exist for arbitrary alkali Rydberg
atoms. Previous studies had been carried out using solely Cs gas as an active environment for
limited range of n values. Although the analogy between the physics of different alkali Rydberg
systems is obvious, experimental confirmation of the presence of many-body resonances for
other atomic species was required. Of particular interest was the search for such resonances
in rubidium isotopes 85Rb and 87Rb, which are often used for neutral-atom-based quantum
computing implementations [22, 59, 67].

Second, it was desirable to develop an analytical model for the three-atom resonances
demonstrated in the previous section [107]. Such resonances can be represented as several
parallel two-body transitions occurring in a system of three Rydberg atoms. The relative ease
of the theoretical analysis of the three-level quantumsystemproblems allowedone to hope that
the analytical description of resonances is possible, taking into account certain approximations.

Third, the development of a numerical model for the simulation of multiparticle Förster
resonances was of great interest. For the exact calculation of the resonance peaks shapes, as
well as the prediction of possible resonant processes, it was necessary to take into account the
Zeeman sublevels of each individual atom in the system, together with the losses associated
with blackbody radiation and spontaneous decay of Rydberg states. Similar models have been
presented earlier for two-body Förster interactions in [185, 206, 207] and [186].

Fourth, the possibility of coherent Förster transitions in atomic ensembles required confir-
mation. Previously, no coherent resonant dynamics had been demonstrated, due to the Rabi
oscillations washout caused by the atomic dynamics randomness in Rydberg gas samples. Nev-
ertheless, coherent transitions are necessary to precisely control the collective states of the
atomic quantum register, and hence to realize quantum gates in it. Thus, it was necessary to
numerically investigate resonance interactions in a structured Rydberg ensemble to demon-
strate coherent interactions. The study of the properties of these interactions also became an
important task.

To address these questions, the study of three-body Förster resonances was initiated in
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3.3. Three-body Förster resonances in Rb ensembles
Laboratory №32 of the Institute of Semiconductor Physics in Novosibirsk under the direction
of I. Ryabtsev and I. Beterov. The research was conducted in collaboration with the Aime Cot-
ton Laboratory, relying on the vast expertise acquired by P. Cheinet in P. Pillet’s group. In this
section, we present the results of these studies, which were published in [192] and [193]. It
should be noted that although the author of this thesis was an employee at ISP SB RAS at the
time of publication, he did not take any participation in the research process. Nevertheless, the
numerical model developed in this study was further adapted for the Rydberg quantum gates
studies conducted by the author, as will be presented in the next chapter.

3.3.1. Three-body resonance scheme

Multiparticle resonant interactions recording in the Rydberg system was reported at ISP SB
RAS in 2017 [192]. Three-body Borromean resonances (3.12) for n = 36, 37 were chosen as the
object of study. They are analogous to resonance transitions that were previously experimen-
tally demonstrated in LAC [107], and are of great interest for the implementation of quantum
simulations and multiqubit quantum gates in Rydberg registers [19, 59, 177, 202, 208–217].

3× nP3/2(|M |) → nS1/2 + (n+ 1)S1/2 + nP3/2(
∣∣M∗∣∣) (3.12)

Note that the notations used in this section correspond to those used in the original article.
Thus,M denotes here the momentum projection of an individual atom (unless specified other-
wise), while in the main text of this thesis it represents the total momentum projection of the
collective state.

Several qualitative differences from previous experiments made the results of this study
particularly valuable. First, transitions were demonstrated between cold 85Rb atoms, thus con-
firming the universality of the model of multiparticle resonances presented earlier. Second,
during the experiment, a small number of atoms (N = 1− 5) were excited into Rydberg states,
thereby allowing a clear demonstration of the absence of three-body interactions in systems
containing less than three atoms. This fact was an additional confirmation of the conclusions
about the three-body nature of demonstrated resonances made in [107].

Figure 3.6 shows the numerically calculated Stark structure of the atomic collective states
exhibiting Förster resonant transitions. Note that interatomic interactions have not been taken
into account within the numerical model used to calculate the Stark map. In this regard, level
crossings are shown in Fig.3.6 instead of anti-crossings. Nevertheless, this model still gives
sufficiently accurate predictions of resonant electric fields and can also be used to determine
the polarizabilities of collective states by numerical approximation of individual energy levels.

Here, each of the enumerated line crossings corresponds to a Förster resonance. Thus,
crossings 2-7 represent the two-body resonant transfers 2 × nP3/2 → nS1/2 + (n + 1)S1/2,which leave the state of the third P atom unchanged throughout the process. As shown in
the Subsection 3.2.1, such processes are also major components of the three-body resonance
transfer. In the following, wewill re-discuss the peculiarities of such transitions when describing
the analytical and numerical models of resonances developed in the course of this study.
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Chapter 3. Few-body Förster resonances: Early-stage studies

Figure 3.6 : Numerically calculated Stark structure of the Förster resonance 3 × 37P3/2 → 37S1/2 +
38S1/2 + 37P ∗

3/2 for three Rb Rydberg atoms. The energies W of various three-body collective states
are shown versus the controlling electric field. Intersections between collective states (labeled by num-bers) correspond to the Förster resonances of various kinds. Intersections 2-7 are, in fact, two-bodyresonances that do not require the third atom. The intersections 1 and 8 are three-body resonancesoccurring only in the presence of the third atom that carries away an energy excess preventing the two-body resonance.

Intersections 1 and 8 represent three-body Förster resonances (3.12). They are character-
ized by a simultaneous change of states of all three atoms, which confirms their Borromean
nature [107]. The third atom acts as a relay and serves to provide a dipole-dipole population
transfer. It also compensates the Förster defect of non-resonant two-body processes, as de-
scribed in Subsection 3.1.1.

3.3.2. Experimental results

The experimental setup used in this study to register Förster resonances had significant
similarities to the one used in previous studies [107, 191]. A sparse gas of 85Rb atoms was
confined in amagneto-optical trap discussed in [208, 218]. Themagneto-optical trapwas placed
between two stainless steel plates used to apply external electric field. Note that a non-zero DC
electric field was applied during the whole experimental sequence and was switched to the
resonant field to activate the Förster resonant transfer. A Stark-switching technique used in
this study is described in [207, 219]. Three-photon laser excitation was utilized to put atoms
into Rydberg states according to the following scheme: 5S1/2 → 5P3/2 → 6S1/2 → nP3/2 [207,208]. Thus, in a small excitation volume (∼ 15 µm in size), several Rydberg atoms (N = 1 − 5)
were obtained at each experimental cycle.
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3.3. Three-body Förster resonances in Rb ensembles

Figure 3.7 : Stark-tuned Förster resonances in Rb Rydberg atoms observed for various numbers ofatoms i = 2− 5 and various initial states: (a) 37P3/2(|M | = 1/2); (b) 37P3/2(|M | = 3/2); (c) 36P3/2(|M | =
1/2); (d) 36P3/2(|M | = 3/2). The main peaks are two-body resonances, and the additional peaks arethree-body resonances. The three-body resonance is absent for i = 2 in all records, evidencing its three-body nature.

Rydberg states population was recorded using a selective field ionization (SFI) method, with
the help of channel electron multiplier (CEM) [220]. The CEM output pulses are then detected
using two independent gates, making it possible to distinguish between signals from nS states
and a mixture of nP and (n + 1)S states. The CEM signal is also number resolved, which thus
allows to record the exact number of energy transfers as a function of the total number N of
excited atoms. The fraction of atoms transitioned to nS states SN is used to represent the
resonance spectra. For more detail on the experimental setup, please see original paper [192].

Figure 3.7 shows the experimental results on the recording of Förster resonances in a small
ensemble of 85Rb atoms. Note that due to the atomic excitation in an external electric field, only
one of the states 37P3/2(|M | = 1/2) and 37P3/2(|M | = 3/2) can be excited in each experimental
cycle. Because of this, the spectra of resonances 1 and 3, shown in Figure 3.6, are recorded sep-
arately from resonances 6 and 8 since they require different initial states. Resonances 2,4,5 and
7 cannot be recorded in the proposed experimental setup since the superposition of different
initial states is required.

The spectra around the resonances 1 and 3 is shown in Figure 3.7(a) for different numbers
of interacting atoms i = 2 − 5. When there are two Rydberg atoms in the system, the two-
body resonance 3 occurs in an electric field of 1.79 V/cm. However, in this case the three-body
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Chapter 3. Few-body Förster resonances: Early-stage studies
peak 1 is absent. If a third atom is added, this peak appears in a field of 1.71 V/cm, on the
slope of the two-body resonance. The amplitudes of the peaks increase with the addition of
atoms but do not change their positions, in satisfactory agreement with the precomputation
predictions shown in Fig. 3.6. Note that the resonances partially overlap. The overlap increases
with increasing number of atomsdue to the broadening of the two-body resonance and growing
interaction energy.

Figure 3.7(b) shows the spectra of resonances 6 and 8. As can be seen, the three-body peak
changes its position relative to the two-body peak. The two-body resonance is observed for
i = 2 − 5 atoms at 2.0 V/cm, growing when the number of atoms in the system increases. The
three-body peak at 2.14 V/cm is absent for i = 2 and appears only for i = 3−5. Figures 3.7(c) and
3.7(d) show the spectra of similar resonances for the value of the principal quantumnumbern =

36. The relative positions of the resonances as well as their amplitudes are in agreement with
expectations. However, the separation of three-body and two-body peaks is more pronounced
than for the case of n = 37. This is due to the strong dependence of polarizabilities on the value
of the principal quantum number, as well as due to the exact values of quantum defects of the
involved states [59].

The obtained results allow us to draw several important conclusions. As it was shown, reso-
nances (3.12) arise only in the presence of three or more Rydberg atoms in the system. Never-
theless, the occurrence of resonances is possible for different values of the principal quantum
number. Also, these resonances change their position and amplitude in full agreement with
expectations. Thus, we can consider these results as confirmation of the hypothesis about the
nature of many-body resonances shown earlier in [107].

3.3.3. Analytical model

The experimental results have clearly demonstrated that three-body effets significantlymod-
ify the spectra of Rydberg systems, provoking their asymmetry. In previous publications de-
voted to the description of Förster resonances, only two-body transitions were taken into ac-
count, leading to the full symmetry of the resonance spectra in numerical simulations. Experi-
mental observations in [192] show the irrelevance of this description. Therefore, it became nec-
essary to develop a new analytic theory that would increase the understanding of resonance
dynamics. Such a model was developed and described in detail in [193].

To facilitate the analytical description, several assumptions were made when constructing
the theoretical model. First, without claiming full universality, the authors concentrated on the
description of the results of the experiments performed. Since themain channels of interaction
in these experiments were two- and three-body resonances, the description was limited to the
case of interaction of three atoms. Secondly, an equidistant spatial configuration was chosen.
Thus, in the following description it is assumed that the interacting atoms are located in the cor-
ners of an equilateral triangle. Third, the minimum number of three collective levels which are
necessary to describe the transfer process were considered in this simplified analytical model.

Figure 3.8 shows a simplified scheme of three-body resonances (3.12) for states with n = 37.
Here state 1 is the initial state of the three-atomic system 3×37P3/2, and state 3 is its final state
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3.3. Three-body Förster resonances in Rb ensembles

Figure 3.8 : Simplified scheme of the three-body Förster resonance 3 × 37P3/2(|M | = 1/2) →
37S1/2 + 38S1/2 + 37P3/2(|M∗| = 3/2) for three Rydberg atoms. The initially populated collectivestate 1 is 3 × 37P3/2(|M | = 1/2). The final collective state 3 is 37S1/2 + 38S1/2 + 37P3/2(|M∗| =
3/2) with the changed momentum projection of the P state. The intermediate collective state 2 is
37S1/2 + 38S1/2 + 37P3/2(|M | = 1/2) with the initial momentum projection of the P state. The en-ergy defects ∆1 = E1 − E2 and ∆2 = E3 − E2 are controlled by the DC electric field. The three-bodyresonance occurs at∆1 = ∆2, while the two-body one occurs at∆1 = 0.

37S1/2+38S1/2+37P ∗
3/2 in the case of a successful three-body transfer. The intermediate state

2 serves to ensure the ladder-like transfer character described in the Subsection 3.1.1. Thus,
the three-body process can be described as a sequence of two-body transitions 1 → 2 → 3

occurring simultaneously. The detunings ∆1 and ∆2, which represent the Förster defects of
the respective two-body resonances, control the character of themultiatomic transit. When the
condition∆1 = ∆2 is satisfied, levels 1 and 3 are degenerate, provoking a three-body resonance(resonance 1 or 8 in Figure 3.6). The two-body resonance, in turn, is induced by the condition
∆1 = 0, which means that levels 1 and 2 are degenerate (resonances 3 and 6 in Figure 3.6).

Note that the ∆i detunings can be controlled by an external electric field due to the Stark
effect, as described in [59, 107, 191]. However, the degree of control of each detuning depends
on the polarizabilities of the states. While ∆1 can be chosen arbitrarily, ∆2 is in fact the Stark
splitting between |M | = 1/2 and |M | = 3/2 sublevels of the 37P3/2 state, and changes only
slightly near the Förster resonance.

Authors describe the dynamics of the system using the Schrödinger equation formalizm for
the probability amplitudes of states 1, 2 and 3. The matrix elements of the dipole-dipole tran-
sitions 1 → 2 and 2 → 3, are denoted as variables V1 and V2, respectively. These elements can
also be expressed in frequency units asΩ1 = V1/ℏ,Ω2 = V2/ℏ. Themethods for calculating such
matrix elements were shown in [135, 137, 193] (see Appendix A). Note that this model considers
only the energies of the collective levels without specifying the states of each particular atom.
This means that levels 2 and 3 are additionally sixfold degenerate due to possible permutations
of atoms. Also, these states experience always-resonant hopping interactions between S and
P states, which leads to the presence of an energy shift. Then, the Schrödinger equation will
have the following form:
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iȧ1 = 6Ω1a2e
−i∆1t

iȧ2 = 2Ω1a2 +Ω1a1e
i∆1t + 2Ω2a3e

i∆2t (3.13)
iȧ3 = 2Ω2a3 + 2Ω2a2e

−i∆2t

Here, the terms containing no explicit time dependence are produced by always resonant
excitation hopping described in Subsection 2.2.5. The terms containing exponential time de-
pendence, in turn, drive dipole transitions between the collective states.

Analytical solution of the system (3.13) is possible for arbitraty values of interaction energies,
detunings, and time. Nevertheless, it requires large-scale calculations. For this reason, we leave
it in Appendix C, and invite the interested reader to review it.

The form of the three-body resonance spectrumwe are interested in can thus be calculated
as (3.14). Here, ρ3 corresponds to the probability to find one of the atoms in the final 37S1/2state, thus representing the signal measured in the experiments described in the previous sub-
section. The multiplier 6 is related to the sixfold degeneracy of the corresponding states.

ρ3 =
6|a2|2 + 6|a3|2

3
(3.14)

3.3.4. Resonance analysis

The previously obtained expression can be used to analyze the peculiarities of the experi-
mentally recorded spectrum. We analyse this formula in the limit of weak dipole-dipole interac-
tion. “Weakness” in this case means that states 2 and 3 remain almost unpopulated, while the
population of the initial state a1 ≈ 1. Consequently, the angular factors Ωit, which determine
the rate of evolution of the states, remain small throughout the process, giving Ω1t,Ω2t ≪ 1.
Given the above assumption, we can describe the shape of the spectrum (using the analytical
solutions for ai obtained in the Appendix C) as:

ρ3 ≈
8Ω2

1

∆2
1

sin2
[
∆1t

2

]
+ 32Ω2

1Ω
2
2 ×

(
1

∆1∆2(∆1 −∆2)2
sin2

[
(∆1 −∆2)t

2

]
+

1

∆1∆2
2(∆1 −∆2)

sin2
[
∆2t

2

]
− 1

∆2
1∆2(∆1 −∆2)

sin2
[
∆1t

2

])
(3.15)

While analysing the equation, it is useful to remember that two resonance conditions were
given earlier. The two-body resonance occurs at∆1 = 0, while the three-body resonance occurs
at∆1 = ∆2. We will analyze these two cases separately.
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3.3. Three-body Förster resonances in Rb ensembles
At ∆1 = 0, the amplitude of the first term in the eq. (3.15) increases faster compared to

the second and third terms, since it contains in the denominator the square of the first energy
defect. At the same time, the fourth term, also depending on ∆−2

1 , turns out to be inversely
proportional to ∆2

2, and is therefore much smaller than the first term. The second and third
terms in this case become completely identical, and eliminate each other. Thus, the two-body
resonance is described predominantly by the first term, while the fourth term causes only a
small reduction in the strength of the two-body interaction. The resonance amplitude of the
two-body transition grows as ρ3 → 2(Ω1t)

2, while the peak width is determined by the Fourier
width of the interaction pulse.

When∆1 = ∆2, the third and fourth terms of expression (3.15) compensate each other due
to the fact that ∆2 is always nonzero in the presence of an external electric field. At the same
time, the second term of the equation has the most significant growth ρ3 → 8(Ω1Ω2t/∆2)

2.
Thus, we can conclude that this term is responsible for the three-body resonance. At the same
time, the two-body dynamics is also observed near the resonance due to the presence of the
first term. This explains the incomplete isolation of the peaks from each other.

It is instructive to compare the ratio of peak magnitudes. As can be concluded from the
analysis, the amplitudes of the three-body and two-body peaks are related as (2Ω2/∆2)

2. Thus,
the three-body resonance appears to be generally weaker than the two-body resonance in the
weak interaction limit. Note that when deriving this relationwe have compared the absolute val-
ues of the resonance amplitudes in two different limits (at ∆1 = 0 for the two-body resonance
and at ∆1 = ∆2 for the three-body resonance). If we compare the relative amplitudes of both
resonances in the limit ∆1 = ∆2, according to equation (3.15), we obtain that the three-body
contribution relates to the two-body contribution as 2(Ω2t)

2. This means that the three-body
contribution in this case exceeds the two-body contribution if the interaction time is sufficiently
long. Thus, we can expect the coherence time of the three-body resonance to significantly ex-
ceed the coherence time for its two-body counterpart. The comparison of the coherence times
of these two processes is relevant due to similar phase dynamics. While the frequency of the
population oscillations can be significantly different for these processes, the phase of the col-
lective three-body state evolves at a similar rate both for two-body and three-body resonances.
Nevertheless, as we have seen earlier, the two-body peak will always be higher than the three-
body peak in absolute value.

To analyze the case of three-body resonance in more detail, we consider equation (3.14)
under the conditions |∆1 − ∆2| ≪ ∆2 (∆1 is scanned in the vicinity of ∆2) and Ω1,Ω2 < ∆2.Since the difference between ∆1 and ∆2 is small, the three-body resonance will be dominant
in this case. Note that in the framework of the previously conducted experiment ∆2/2π ≃ 9.5

MHz for the Stark sublevels of the 37P3/2 state of Rb atoms in the electric field corresponding to
the three-body resonance. At the same time, the average dipole-dipole interaction energy in the
ensemblewas∼ 1MHz. Thus, this approximation is consistentwith the experimental conditions
used for the observation of the three-body resonance. The equation (3.14) is transformed into
the following form:

ρ3 ≈
Ω2
0/3

(∆−∆0)2 +Ω2
0

sin2
[
t

2

√
(∆−∆0)2 +Ω2

0

]
(3.16)
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Chapter 3. Few-body Förster resonances: Early-stage studies
Here ∆ = ∆1 − ∆2 is the detuning from the unperturbed three-body resonance. In turn,

∆0 represents an interaction-induced three-body resonance shift. This shift can be denoted as
∆0 = −2Ω2 + (4Ω2

2 − 6Ω2
1)/(∆2 + 2Ω1), where the first term is caused by excitation hopping

between S and P states, while the second term denotes a dynamical AC Stark shift. Finally,
Ω0 = 4

√
6Ω1Ω2/(∆2 + 2Ω1) is the Rabi-like oscillation frequency.We now concentrate on analyzing the above equation. As can be seen, the exact resonance

with maximum amplitude 1/3 is realized at ∆ = ∆0. In this case, the equation is reduced to
the standard population oscillation equation given in Subsection 2.2.4. The coherent Rabi fre-
quency of such oscillations is Ω0 ≪ Ω1,Ω2 because of the large value of∆2. Consequently, thecoherence time of three-body resonances can be much larger than for two-body resonances,
in good agreement with the earlier analysis. Note that the large detuning value and small fre-
quency of the three-body resonant oscillations make this scheme in many ways analogous to
the two-photon transition scheme in a three-level system with a strongly detuned intermedi-
ate state. This analogy is extremely fortunate because the original scheme of two-body Förster
resonances also has an analogy to the transfer in a two-level system. Aswe described in Subsec-
tion 2.2.5, Förster resonances, originally proposed in chromophores, are commonly understood
as radiation-free transitions in quantum systems, replacing real photons by virtual ones.

It should be noted that the above equation does not take into account the wide variety of
Stark and Zeeman atomic sublevels, which can lead to the appearance of a large number of
interaction channels with different matrix elements, and hence to the formation of numerous
resonance peaks in the spectrumof the three-atomic system. Nevertheless, the dynamic energy
shift∆0 dependent on the ratio of matrix elements V1 and V2 can be used to separate differentchannels in order to preserve coherence.

Summarizing the analysis, it is important to focus on the following facts:
• It is convincingly shown that coherent Rabi-like oscillations can be obtained by imple-
menting three-body Förster resonance transfer in the simplifided analytical model.

• The coherence times for three-body resonances are, theoretically, larger than those of
two-body resonances.

• Three-body resonances can be demonstrated in both strong and weak interaction limits.
Thus, we can conclude that coherent three-body resonances occur when the interaction

strength between the atoms is fixed. As can be seen from equation (3.16), each minimum of
resonant Rabi oscillations refers to a π phase shift for the collective wave function of the Ryd-
berg system. Since such oscillations are controllable and reversible, they can be used to realize
multiqubit quantum gates.
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3.3. Three-body Förster resonances in Rb ensembles
3.3.5. Numerical simulations

The analytical model shown in the previous subsection allows us to characterize the prop-
erties of the three-body Förster resonances and qualitatively describes the shape of the exper-
imentally registered peaks. Nevertheless, this model does not allow us to consider the case of
large interaction times that result in broadening of the three-body resonance. Also, it does not
give an accurate description of the Stark and Zeeman atomic sublevels, which can lead to the
formation of different channels of the three-body interaction. Thus, to continue the study of
the properties of Förster resonances, the development of a numerical computational model is
necessary.

In the paper [193], the authors provide a highly accurate numericalmodel for the calculation
of many-body Förster resonant transitions in Rydberg systems. This model was subsequently
widely used in my studies of three-body resonances and was also adapted for the calculation
of many-body quantum gate schemes. Therefore, this model is described here in detail to give
the reader a baseline for understanding the results of further research. However, in order to
avoid overcomplicating the text, a portion of the material is presented in the Appendix A.

The model is based on solving the Schrödinger equation numerically, taking into account
interatomic interactions in the quasi-classical approximation. Many-body transitions are rep-
resented as sequences of two-body transitions occurring in a system of N atoms. In this case
the basis of collective atomic states is formed as⊗N

i=1 |γi⟩, where |γ⟩ = |nLJMJ⟩ representsthe individual state of each atom. For N = 3, transitions are considered in a system of 3
atoms in the basis of collective states |γ1γ2γ3⟩ = |n1L1J1M1;n2L2J2M2;n3L3J3M3⟩. Thus, forthe atoms initially excited to high 37P3/2 states, the basis was formed from the eight states
|37P3/2(M = ±1/2,±3/2)⟩, |37S1/2(M = ±1/2)⟩, |38S1/2(M = ±1/2)⟩. Similarly, for the
36P3/2 states, the basis was composed of |36P3/2(M = ±1/2,±3/2)⟩, |36S1/2(M = ±1/2)⟩,
|37S1/2(M = ±1/2)⟩ states. The initial state of the three-atom system was taken as the defined
or random superposition of the eight degenerate collective states where all three atoms were
in the |37P3/2(M = ±1/2)⟩ states (or in the |37P3/2(M = ±3/2)⟩ states, if the exciting laser was
tuned to the excitation of the 37P3/2 atoms with |M | = 3/2), with the defined or equal statistical
weights. For the random superposition, it was assumed that after laser excitation the sign of the
total momentumM =

∑
iMi for the initial state is undetermined. To reduce the computational

complexity, the basis was further restricted by discarding strongly detuned states. Specifically,
states whose zero-field Förster defect is more than 2 GHz relative to the initial state were not
included in the calculation. Thus, a basis of ∼ 160 states was formed.
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1

2

3

Figure 3.9 : Geometry of the interaction of the three Rydberg atoms. The atoms are positioned eitherrandomly in a cubic volume to perform numerical simulations with Monte Carlo averaging over the atompositions, or are spatially fixed to provide Rabi-like population oscillations.

Note that although the basis is formed from three-body collective states, the two-body tran-
sitions are considered as the basic element of the interaction, and hence all transitions in a
three-atom system involve only two atoms. Such transitions have the form |γa, γb⟩ → |γs, γt⟩,with initial states of atoms γa, γb and their final states γs, γt. Suppose the atoms are arbitrarily
arranged in space as depicted in Figure 3.9. The dipole-dipole interaction operator between
atoms 1 and 2 is

V̂dd =
1

4πϵ0R3
12

[
d̂1d̂2 − 3(d̂1n⃗12)(d̂2n⃗12)

] (3.17)
Here R12 denotes the distance between the first and the second atoms, the unit vector n⃗

indicates the direction of interatomic axis, and d̂1(2) are the dipole moment operators of atoms
1 and 2, respectively. To simplify the representation of matrix elements, it is convenient to use
spherical coordinates. Then, n⃗12 = (cosϕ sin θ, sinϕ sin θ, cos θ), and d̂k,± = ∓(d̂k,x ± id̂k,y)/

√
2

for the k-th atom. In the spherical basis, the operator V̂dd can be written as

V̂dd =
1

4πϵ0R3
12

×
[
A1(θ)(d̂1+d̂2− + d̂1−d̂2+ + 2d̂1zd̂2z)

+A2(θ, ϕ)(d̂1+d̂2z − d̂1−d̂2z + d̂1zd̂2+ − d̂1zd̂2−)

+A3(θ, ϕ)(d̂1+d̂2z + d̂1−d̂2z + d̂1zd̂2+ + d̂1zd̂2−)

+A4(θ, ϕ)(d̂1+d̂2+ + d̂1−d̂2−) +A5(θ, ϕ)(d̂1+d̂2+ − d̂1−d̂2−)
]

(3.18)
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3.3. Three-body Förster resonances in Rb ensembles
The angular prefactors Ai are

A1(θ) =
1− 3 cos2(θ)

2

A2(θ, ϕ) =
3 sin(2θ) cos(ϕ)

2
√
2

A3(θ, ϕ) = −i3 sin(2θ) sin(ϕ)
2
√
2

(3.19)
A4(θ, ϕ) = −3 sin2(θ) cos(2ϕ)

2

A5(θ, ϕ) =
3 sin2(θ) sin(2ϕ)

2

The spherical representation of the operator V̂dd gives easy selection rules for two-body
dipole-dipole transitions. Thus, the operator couples states with ∆M = 0,±1,±2, whereM =

M1 +M2 is the total momentum projection of the system. Finally, the matrix element of the
operator between the collective two-atom states |γa, γb⟩ → |γs, γt⟩ can be represented as [146]:

⟨nsMsLsJs;ntMtLtJt|V̂dd|naMaLaJa;nbMbLbJb⟩ =

=
e2

4πϵ0R3
12

{
A1(θ)
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]
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×
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√
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(3.20)

To avoid overcomplication, we do not provide the derivation of the formula (3.20) in the text
of this thesis. Yet, its derivation can be found in a textbook by M. Saffman [135]. Although it
is still unpublished, we recommend that the interested reader refer to it, because it presents a
perfect material on the advanced atomic physics. The derivation can also be found inmuch less
detail in [146]. In our computations, the radial matrix elements were calculated in the quasi-
classical approximation, according to the method described in [221]. This method forms the
basis of our model, therefore we present it in the Appendix A.
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Chapter 3. Few-body Förster resonances: Early-stage studies
It is important to note that the finite lifetimes of atomic levels are not considered at this

stage of the numerical model. Although these lifetimes are scaled as ∼ n3 for Rydberg atoms,
the presence of level decay can lead to observable consequences in simulations, including the
collapse of the expected coherence in structured ensembles.

3.3.6. Disordered ensemble simulation

The constructed model enables the simulation of multiparticle resonance interactions ob-
tained from the experiment. For this purpose, the numerical calculation was first performed for
i = 3 atoms in a disordered ensemble. The atoms were assumed to be arbitrarily arranged in
the volume 15× 15× 15 µm3 (see Fig. 3.9). According to the described method, the Schrödinger
equation was solved followed by Monte Carlo averaging over 1000 arbitrary atomic configu-
rations. The spatial coefficients of the Hamiltonian Ai (see Eq. 3.19) were calculated for each
iteration. Note that during this simulation, finite Rydberg lifetimes were not taken into account.

Figure 3.10 : Comparison between the theory and experiment for the three-atom Stark-tuned Försterresonances 3 × nP3/2(|M |) → nS1/2 + (n + 1)S1/2 + nP3/2(|M∗|) in Rb Rydberg atoms for the initialstates: (a) 37P3/2(|M | = 1/2); (b) 37P3/2(|M | = 3/2); (c) 36P3/2(|M | = 1/2); (d) 36P3/2(|M | = 3/2).The theoretical spectra have been calculated for the cubic interaction volume of 15× 15× 15 µm3, 3 µsinteraction time, andMonte Carlo averaging over 1000 random atom positions. The thick green lines arethe experimental data, the thin black lines are the full theory, and the thin magenta lines are the theorywithout accounting for the three-body resonances [192].
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3.3. Three-body Förster resonances in Rb ensembles
Figure 3.10 shows the results of theoretical modeling of experimentally obtained peaks.

Here, the green line represents the experimental results, while the black line shows the nu-
merically obtained results. The magneta line is also presented, which refers to the theoretical
model that does not take into account the presence of the three-body resonance. The gen-
eral agreement between experimental and theoretical data is demonstrated. The three-body
resonances are accurately reproduced in their height and width, proving the validity of the pre-
sented numerical model. However, a significant discrepancy is observed in Fig. 3.10(d), where
the proposedmodel underestimates the height of the resonances. The authors attribute this to
the high value of the energy defect∆ for the transition at the initial state 36P3/2, and concludethat the proposed model works qualitatively at small values of ∆, while for larger values the
model might gives incorrect predictions. We also suggest that this discrepancy may be caused
by the involuntary enhancement of the atomic density that occurred in the experiment. As can
be seen, the experimental two-body peak in the Figure 3.10(d) has a significantly larger ampli-
tude than its counterparts from other images, which confirms our hypothesis.

3.3.7. Coherent oscillations in various spatial configurations

As it was shown in Subsection 3.3.4, coherent time dynamics can be demonstrated for a
three-body resonant transfer process in Rb atoms. To achieve coherence, the condition of in-
teraction strength constancy must be satisfied. The matrix elements of the dipole-dipole inter-
action are distance dependent. Thus, spatial fixation of atoms is required to obtain coherent
resonant dynamics.

In [193], the results of coherence analysis of two- and three-body Förster resonances in a
system of three spatially fixed Rydberg atoms were presented. Numerical simulations of the
multi-atomic transitions were performed using the methods described in the Subsection 3.3.5.
Specifically, three-body Stark-induced Förster resonances 3 × 37P3/2(M = 1/2) → 37S1/2 +

38S1/2+37P3/2(M = ±3/2)were investigated. Three spatial configurations were studied; equi-
lateral triangle in theX − Y plane (which provides fully symmetric interaction and was consid-
ered in the analytical calculations); one-dimensional chain alongX axis; one-dimensional chain
along Z axis. Note that an external controlling electric field is applied along the Z axis, thus
instigating an additional symmetry of the system. The interatomic distances in all three config-
urations were R = 10 µm, with the assumption of atoms to be completely immobile during the
whole interaction process. The possible consequences of the presence of spatial deviations in
atomic register will be discussed below. All spectra were calculated for an interaction time of 7
µs, which corresponds to the maximum of the three-body transfer for the chosen interatomic
distance.

Figure 3.11 displays the results of the numerical simulations. The left column shows the
selected atomic configuration. The second column from the left shows the recorded resonance
spectrum for the corresponding configuration. The spectrum of the three-body interactions is
also additionally shown in a magnified view in the third column. The fourth column shows the
coherent Rabi-like two-body (green line) and three-body (blue line) oscillations of the final state
population obtained by choosing the respective resonance value of the external electric field.
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Chapter 3. Few-body Förster resonances: Early-stage studies

Figure 3.11 : Numerically calculated three-atomStark-tuned Förster resonances 3×37P3/2(M = 1/2) →
37S1/2 + 38S1/2 + 37P3/2(M = ±3/2) in Rb Rydberg atoms for the three spatial configurations: (a)equilateral triangle in theX − Y plane; (b) one-dimensional chain along theX axis; (c) one-dimensionalchain along the Z axis. The Z axis is directed along the controlling electric field. The three atoms aresupposed to be completely immobile. The left panels show the corresponding spatial configurationswiththemicron-sized grids. The second from the left panels are the spectra of three-atom Förster resonancescalculated for the interaction time of 7 µs. The broad saturated two-body resonance is centered near
1.79 V/cm, while there are several narrow three-body resonances near 1.71 V/cm. The third from theleft panels show the same three-body resonances zoomed in to demonstrate the number of three-bodychannels and their possible interplay. The right panels show the Rabi-like population oscillations for thecenters of the two-body resonance [the green curves] and of the most intense three-body resonance[the blue curves].

Note that the narrow three-body resonances require precise setting of the resonant eletric field
that depends on the spatial configuration and interaction channel.

• Triangular configuration
Figure 3.11(a) presents the simulation results for the triangular configuration. As can be

seen, a broad two-body peak is observed at near 1.79 V/cm, in good agreement with expecta-
tions. At the same time, the three-body resonance expected around 1.71 V/cm shows a complex
structure and splits into a family of at least 6 partially overlapping peaks. These peaks corre-
spond to different three-body interaction channels, which appear in the simulation due to the
complex Stark structure of the Rydberg levels as described above. Different matrix elements
Ω1 and Ω2 (explained earlier in the analytical approach) and different values of the dynamical
shift∆0 correspond to different interaction channels. The dipole-dipole interaction in this caseactivates all allowed transitions with∆M = 0,±1,±2, and the resonant peaks do not reach the
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3.3. Three-body Förster resonances in Rb ensembles
maximum value of 1/3 due to the population leakage through different channels. In this regard,
the three-body Rabi oscillations do not exhibit full coherence. The two-body resonances also
have several possible interaction channels leading to partial dephasing and irregular behavior,
as can be seen from the right graph in Fig. 3.11(a).

• X-oriented linear configuration
Reduction in the number of interaction channels can be facilitated by weakening the dipole-

dipole interaction between one of the atomic pairs. Suchweakening is achieved by using a linear
atomic configuration. Figure 3.11(b) shows the results for this configuration when the atoms
are arranged along the X-axis. The outermost atoms are essentially isolated from each other,
which leads to reduction of some interaction channels due to the fact that at the beginning of
the three-body interaction, the configurations in which the central atom appears in the S state
are strongly suppressed. The central atom is most likely to end up in the 37P3/2 state, whilethe outermost atoms switch to the 37S and 38S states. As a result, although all transitions with
∆M = 0,±1,±2 are allowed, half of them are strongly suppressed, and only 3 peaks prevail,
as shown in the figure. However, for long interaction times, S − P excitation hopping, which is
always resonant, will lead to complete channel mixing. Therefore, peak amplitude of 1/3 is not
achieved. A slight defasing of the two-body oscillations is also present, which is caused by the
same hopping interactions.

• Z-oriented linear configuration
A reduction in the number of interaction channels can also be implemented by fixing the

projection of the total momentum of the atomic system. To achieve this, one can arrange the
atoms along the Z-axis coinciding with the external electric field direction. Thus, the natural
quantization axis coincides with the interatomic axis, and only transitions with ∆M = 0 are al-
lowed. The results for this configuration are shown in Figure 3.11(c). Only two three-body peaks
are present in the spectrum, which correspond to two allowed interaction channels. The peak
amplitudes reach the maximum allowed value of 1/3. The resonance width is extremely small
(∼ 1mV/cm or ∼ 0.13MHz), and is limited by the Fourier width of the interaction pulses, in full
agreement with the analytical model constructed earlier. At the same time, a broad and satu-
rated two-body resonance is preserved, whose width (∼ 40mV/cm or∼ 5MHz) corresponds to
the two-body interaction energy, as shown in [192, 193]. The left wing of this resonance weakly
overlaps with the narrow three-body peaks, providing in this case aminimal (∼ 5%) contribution
to their amplitude. This contribution can be made even smaller by increasing the interaction
time or the interatomic distance.

Thus, high degree of coherence has been demonstrated for the three-body resonances in
the linear Z-oriented configuration. The period of the three-body population oscillations is
∼ 13.7 µs, which demonstrates a significant increase in the coherence time of the resonance
compared to the two-body transition. However, the two-body resonance also becomes more
coherent in the linear configuration, as can be seen from the Figure 3.11(c).
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3.3.8. Coherence dependence on atomic position variations

In the previous subsection, structured ensembles of spatially fixed atoms were investigated
for coherence of three-body resonance interactions. Nevertheless, fluctuations of atomic posi-
tions in a real experiment, accompanied by changes in the dipole-dipole interaction strength,
can lead to coherence disruption of Rabi-like population oscillations. To evaluate the influence
of such fluctuations, a numerical experiment was carried out, described in [193]. Resonances
3 × 37P3/2(M = 1/2) → 37S1/2 + 38S1/2 + 37P3/2(M = ±3/2) were modeled in an ensemble
of Rb atoms. The atoms were arranged linearly along the Z-axis, co-directed with an exter-
nal controlling electric field. The difference between this experiment and the one presented
previously laid in the uncertainty of the atomic positions fluctuating with a maximum allowed
deviation ∆R from their equilibrium value. In the absence of fluctuations, the interatomic dis-
tance was 10microns. The interaction time was 7 µs, similar to the simulations described in the
previous subsection. To record the change in the resonance character, the numerical simula-
tions were realized 100 times, and then the obtained values were averaged over the number of
realizations.

Figure 3.12 shows numerical simulation results for different values of∆R. Obviously, even
small fluctuations of 100 nm (Fig. 3.12(b)) significantly reduce the coherence of the two-body
resonance, causing dephasing and a decrease in the Rabi oscillation amplitude already ∼ 5mi-
croseconds after the interaction starts. Nevertheless, the three-body resonances show greater
stability. Thus, the amplitude of the first maximum of the Rabi oscillations at a time of 7 µs in
Figure 3.12(b) is almost identical to that in Figure 3.12(a). The decoherence of the three-body
interaction appears clearly for the first oscillation minimum at 13 µs. It can be seen that the
oscillation amplitude is reduced compared to Figure 3.12(a). Nevertheless, the dephasing is pe-
riodic in nature, as the population transfer amplitude recovers thereafter, resulting in a greater
depth of the second oscillation minimum compared to the first one. Thus, the coherence times
of three-body resonances appear to be significantly longer than for two-body resonances.

Nevertheless, when the uncertainty in the atomic positions increases, the coherence is sig-
nificantly disturbed. As can be seen from Figures 3.12(c) and 3.12(d), the resonances in this
case become lower and broader due to fluctuations of the dynamical shift. Population bounces
are observed instead of full-fledged Rabi-like oscillations, making the ensemble unsuitable for
demonstrating coherent dynamics. Thus, a high degree of control of atomic positions must be
realized in order to maintain high values of coherence times and realize multiqubit quantum
gates. Note that the experimental feasibility of realizing interatomic distance control on sub-50
nm scale [222] has been recently demonstrated.

Within the [193], the influence of atomic drift on the coherence of oscillations has been stud-
ied in terms of changes in the interaction strength. Nevertheless, it should be mentioned that
such drift may entail other undesirable effects, which also lead to decoherence of the resonant
dynamics. First, the influence of the Doppler shift is present in a real experiment, which was not
taken into account in the presented calculations. Also, the atomic drift can lead to differences in
the laser excitation phases of the hyperfine ground states. Although the described effects can
be compensated in the experiment by three-photon excitation (see Subsection 2.3.2), additional
modification of the computational model is required to account for them.
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3.3. Three-body Förster resonances in Rb ensembles

Figure 3.12 : Numerically calculated three-atom Stark-tuned Förster resonances 3 × 37P3/2(M =
1/2) → 37S1/2 + 38S1/2 + 37P3/2(M = ±3/2) in Rb Rydberg atoms for the spatial configuration ofone-dimensional chain along Z axis with the atom spacing R = 10 µm and uncertainty in the position ofeach atom: (a)∆R = 0 µm; (b)∆R = 0.1 µm; (c)∆R = 0.2 µm; (d)∆R = 0.5 µm. The left panels show thespectra of three-atom Förster resonances calculated for the interaction time of 7 µs. The middle panelsshow the three-body resonance zoomed in to demonstrate the relevant interaction channels. The rightpanels show the Rabi-like population oscillations for the centers of the two-body resonance at 1.795 V/cm[the green curves] and of the three-body resonance at 1.705 V/cm [the blue curves].

3.3.9. Conclusion

The studies shown in the articles [192, 193] have demonstrated several important results.
It was experimentally shown that three-body Förster resonances can be observed in small Rb
atomic ensembles. Numerical simulation of many-body interactions in an atomic system al-
lowed to confirm the possibility of realizing coherent Borromean resonances for three atoms.
Themain condition for coherence is the fixation of the interaction force provoked by the spatial
fixation of atoms. As for two-body transitions, Rabi oscillations arise for three-body resonances
in the case of degeneracy of initial and final collective levels. Such oscillations are accompanied
by a phase change of the collective states, which makes the described resonance interactions
potential candidates for the realization of three-body quantum gates. Nevertheless, it is im-
portant to take into account that deviations of atomic positions which can lead to coherence
violation, and negatively affect the accuracy of quantum gates.
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Results

In this chapter, research results on Förster three-body resonances and their application to
the implementation of three-qubit quantum gates are presented. Each of the sections in this
chapter describes a different scientific result obtained between 2018 and 2023. Thus, Section
4.1 describes the specific Förster resonance scheme chosen in our first proposal for the imple-
mentation of a three-qubit Toffoli gate [98], as well as the proposed gate protocol. Section 4.2
discusses an alternative scheme of fine-structure-state-changing (FSSC) three-body Förster res-
onances that simplifies the experimental realisation of quantum gates, described in [223, 224].
A Toffoli quantum gate based on this alternative resonance scheme is described in Section 4.3
[225]. Finally, Section 4.4 presents the research results on few-body radio-frequency-induced
Förster resonances and CCPHASE gate scheme proposals based on such resonances [226].

The author of this thesis was directly involved in the research process described in this chap-
ter. However, not all of the results presented here were obtained by him personally. Therefore,
in each section of this chapter, the author’s contribution will be indicated separately.

Note that the material presented in this chapter is based on articles written by the author
of this thesis. In this regard, the text of this chapter contains significant borrowings from the
articles, up to direct citations. Most of the images in this chapter were also taken from our
previously published papers. Nevertheless, due to the need for an expanded presentation of
the research material, a substantial adaptation of the text was made compared to the original
articles.

4.1. Toffoli gate: First proposal
The three-body Förster resonances studied in the paper [193] (see Section 3.3) provide an

opportunity to realize coherent population transfer between collective states of a three-atomic
system. This transfer is controlled by an external electric field, which enables tuning of the inter-
action strength along with the resonance activation. While in unstructured atomic ensembles
such resonances are significantly broadened due to the arbitrary atomic motion, resonances
in structured ensembles provide highly coherent and contrasted population oscillations. Note
that the phase dynamics of a multiatomic system is also strongly dependent on the external
control field. Thus, a precise coherent interaction control tool is provided that can be used to
implement multiqubit quantum gates.

Nevertheless, the implementation of quantum gates via the Förster resonances described
in the Section 3.3 is practically impossible due to the presence of natural limitations. First, such
resonances exist only for principal quantumnumber valuesn < 38 in Rb atoms, andn < 42 in Cs
atoms. This is due to the specific values of polarisabilities and quantum defects of the Rydberg
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levels of alkali atoms. Due to the higher polarisability of P -states, the Förster resonance is
possible only under the condition that the energy defect of the initial and final collective states
is positive in zero electric field. However, this condition is fulfilled only for Rydberg states with
relatively low values of principal quantum number. When passing to higher n, the two-body
transition 2×nP → nS+(n+1)S acquires negative energy defect in zero field. The application
of an external electric field in this case leads to an increase in the collective level energy defect,
thus prohibiting Stark-induced resonance. Since this two-body transition is an essential element
of the three-body resonance transfer described in Section 3.3, it also appears to be essentially
suppressed.

The relatively short lifetimes of the Rydberg states with n ∼ 40 then present an important
disadvantage for the quantum gates implementation. As it was shown earlier, the coherence
time of three-body resonances is much longer than that of two-body resonances. In turn, the
Rabi oscillation frequencies of the three-body resonances turns out to be much smaller. Dur-
ing the gate execution time, comparable with the oscillation period, the Rydberg level decay
can cause a complete collapse of the gate. To compensate for this drawback, the advance to
higher Rydberg levels is preferred due to their longer lifetimes. Also, the high-lying Rydberg lev-
els exhibit enhanced dipole-dipole interactions, which means that acceleration of the coherent
dynamics is possible with decreasing gate realisation time. Note that the finite lifetimes of the
atomic states were not taken into account in the simulations carried out in [193].

A new scheme of Förster resonances has been proposed in [98] for high-lying Rydberg levels
n = 80. The strong dipole-dipole interactions arising in the Rydberg system, coupled with long
Rydberg lifetimes, lead to highly coherent dynamics of populations and phases in atomic reg-
ister. A protocol implementing a Toffoli gate controlled by the electric field was also proposed
based on the discovered resonances. In this section, we first describe novel three-body energy
transfer scheme, and then analyze in detail the proposed Toffoli gate protocol. Note that most
of the material presented is adapted from the original article [98].

The analysis of many-body Förster interactions was the direct responsibility of the author
of this thesis during the research. All data presented in this section were obtained with his di-
rect involvement. The author also developed an algorithm to optimize the quantum register
parameters, which resulted in a high Toffoli gate fidelity. Nevertheless, the original scheme of
three-body resonances as well as the Toffoli gate protocol were proposed by the author’s col-
leagues. The software used during this study to perform numerical simulations of many-body
interactions is a modification of the previously developed software, and utilizes the computa-
tional model described previously in the Subsection 3.3.5.

4.1.1. New Förster resonance scheme

Before starting the description of the novel type of resonance transitions, it is useful to
analyze the experience of previous studies. In Chapter 3, many-body resonant transitions in
disordered ensembles of Rb [192, 193] and Cs [107, 191] were described. According to the the-
oretical model presented in these studies, such transitions were always characterized as the
result of several simultaneous two-body transitions. Thus, the three-body Förster resonance
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was represented as a nonresonant two-body 2P → 2S transition in a three-atom ensemble,
complemented by P → S nonresonant excitation hopping. However, as discussed in the intro-
duction to this section, the two-body 2 × nP → nS + (n + 1)S transition, which is the basis of
the three-body Borromean process, is suppressed for states with high values of the principal
quantum number. In this regard, in order to realize the three-body transfer according to the
familiar scheme, it is necessary to find a new two-body transition, which will replace the absent
one.

nP3/2 + (n+ 1)P3/2 → nS1/2 + (n+ 2)S1/2 (4.1)
Removing the constraint of using a single Rydberg level for the initial collective state, many

Förster resonant interactions can be easily found. The new type of two-body transitions pro-
posed and investigated in [98] has the form (4.1). As can be seen, the realization of transitions
of this type requires simultaneous excitation of atoms into initial states with different values of
the principal quantum number. As a result, the energy of the initial state is essentially increased
and Förster defect is positive for the presented transition in zero electric field.

nP3/2(m = 3/2) + (n+ 1)P3/2(m = 3/2) + (n+ 1)P3/2(m = −3/2) →
→ nS1/2(m = 1/2) + (n+ 2)S1/2(m = 1/2) + (n+ 1)P3/2(m = 1/2)

(4.2)
Using the two-body transition (4.1) as an auxiliary element, we have developed a scheme of

three-body transition (4.2) similar to the one presented earlier in [192]. During the three-body
transfer process, all three atoms change their quantum states, which confirms its Borromean
nature. While two atoms change from P states to S states, the third atom changes its momen-
tum projectionmj .As before, the three-body transition is realized through several parallel non-resonant two-
body transitions. The resonant condition for the three-body transition is the mutual compen-
sation of Förster defects of two-body interactions, leading to the degeneracy of collective three-
atom states. Thus, if the transition (4.1) is characterized by a Förster defect ∆1, while the exci-tation hopping (n+2)S1/2 +(n+1)P3/2(|m|) → (n+2)S1/2 +(n+1)P3/2(|m∗|) has a quantum
defect ∆2, the three-body resonance in the system occurs under the condition ∆1 = ∆2. Thetwo-body resonance, in turn, can occur at∆1 = 0.

In this study, the transitions (4.1) and (4.2) have been examined for a wide range of values
of n. However, in this thesis we only present results for n = 80. The choice of this value of n
is motivated by several factors. First, in order to realize highly coherent population and phase
dynamics in a three-atomensemble, high lifetimes of Rydberg levels are required, as was shown
in [193]. In this regard, we considered quantum states with the highest possible values of n.
Moreover, the dipole moment of the Rydberg atom also increases significantly with n, thus
leading to a stronger dependence of the interaction force on the external electric field, and
hence to a narrowing of the resonance peaks (see Subsection 2.2.2.2). To implement resonance
transitions at n = 80, the requied electric field of ∼ 10−1 V/cm must be controlled with the
relative accuracy of ∼ 10−6 V/cm. The realization of such a high-precision control is a difficult
experimental task. Thus, while choosing the value of the principal quantum number, we tried
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to find a satisfactory compromise between the desire to increase the atomic lifetimes and the
need to set realistic conditions for a possible experimental implementation.

4.1.2. Numerical simulations

When implementing numerical simulations of multiatomic transitions, we used the com-
putational model proposed earlier in [193] and described in detail in Subsection 3.3.5. Never-
theless, this model has been substantially refined to meet the goals of the current study. This
subsection will describe novel computational model in detail.

4.1.2.1. Configuration and basis

The main goal of this study was to realize a multiqubit quantum gate in an atomic register.
In this regard, we focus on the study of highly coherent resonant processes. In the paper [193]
it was shown that for the fixed atomic positions it is possible to observe coherent three-body
Förster interactions and Rabi-like population oscillations (see Subsection 3.3.7). The highest de-
gree of resonance coherence is achievable in a linear spatial configuration. For this reason, we
chose this configuration for the Toffoli gate implementation. In our numerical simulations, we
assume that atoms are arranged linearly along the Z axis, which coincides with the direction
of the external controlling electric field (see Fig.4.1). This spatial configuration imposes the se-
lection rule ∆M = 0 (here M is the total momentum projection of the collective state) on all
two-body and three-body transitions, significantly reducing the number of interaction channels
and simplifying the dynamics of collective states. Thus, at least 6 interaction channels are ob-
served when atoms are arranged in the corners of the equilateral triangle. In turn, only two
interaction channels are observed for the Z-oriented linear configuration.

1 2 3

Z

R R
Figure 4.1 : Atomic register configuration. Three Rb Rydberg atoms are arranged linearly at a distanceR from each other along the Z axis. The Z axis is aligned with the direction of external electric field.

The description of the interatomic interaction usedwithin this study is based on the physical
model given earlier in Subsection 3.3.5. The operator of the dipole-dipole interaction between
two neighboring atoms located along the Z axis can be written as [227]:

V̂dd =
e2

4πε0R3

(
â · b̂− 3âz b̂z

)
= (4.3)

= −
√
6e2

4πε0R3

1∑
q=−1

C20
1q1−qâq b̂−q.
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4.1. Toffoli gate: First proposal
Here ε0 is the dielectric constant, e is the electron charge, while a⃗ and b⃗ are the vectorial po-sitions of the two Rydberg electrons. This operator couples only two-atom collective states with

∆M = 0. The radial matrix elements of the dipole moment are calculated using a quasiclassical
approximation [221]. For more information on the radial matrix elements calculation, see the
Appendix A.

We consider collective Rydberg states |n1l1j1mj1;n2l2j2mj2;n3l3j3mj3⟩ of the three rubid-ium atoms. The Förster energy defect is the difference between the energy of an arbitrary final
collective state and of the initial collective state. In this subsection, we focus on the description
of resonances for n = 80. Thus, in our simulations, we have taken into account all magnetic
sublevels of the |80S1/2⟩, |81S1/2⟩, |82S1/2⟩, |80P1/2⟩, |80P3/2⟩, |81P1/2⟩ and |81P3/2⟩ Rb Rydbergstates. We assumed thatM = 3/2 for the initial collective state, and only considered collective
three-atom states withM = 3/2, since the total moment projection is conserved for the spatial
configurationwhichwe have chosen. To reduce the complexity of the calculations, we neglected
far-detuned collective states with the Förster energy defect larger than 1 GHz. The influence of
neighboringD states is negligible due to large Förster defects on the order of 10 GHz.

4.1.2.2. Stark effect

In order to take into account the Stark shifts of energy levels when an electric field is applied,
the values of polarizabilities of the Rydberg states of Rb atoms were calculated by polynomial
approximation of the Rydberg level energy trends. The energy trends were obtained by con-
structing single-atom Stark diagrams. The Hamiltonian of the system had the form (4.4). The
diagonal elements of the Hamiltonian were calculated by formula (4.5), where δi is the quan-tum defect of the corresponding level. The interaction with the electric field F was taken into
account in the second order of perturbation theory by adding the interaction operator Û = −d̂F⃗
to the Hamiltonian of the unperturbed atomic system Ĥ1. The calculated Stark diagrams are
shown in Figure 4.2. In order to increase the visibility of all relevant atomic levels, we present
two different pictures for different values of magnetic quantum number. Polarizability values
of atomic states obtained from the approximation are given in Table 4.1.

Ĥ = Ĥ1 + Û =


E1 ... E2 ...
... ... ... ...
... E2 ... ...
... ... ... E1

 (4.4)

Eii
1 =

−Ry
(nii − δi)2

(4.5)
Eij

2 = ⟨Ψj |Û |Ψi⟩ = ⟨Ψj | − d̂F⃗ |Ψi⟩ (4.6)
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Figure 4.2 : Numerically calculated Stark diagrams for high-lying (n ∼ 80) Rydberg levels. The energy of
|80P3/2⟩ state was taken as a reference in zero electric field. The diagrams for the value of momentumprojection |mj | = 1/2 and |mj | = 3/2 are shown in Figures (a) and (b), respectively.
Table 4.1 : Numerically estimated polarizabilities α for relevant atomic levels. Polarizabilities are mea-sured in GHz/[V/cm]2 units.

Atomic state α Atomic state α
|80S1/2(1/2)⟩ −670.9 |80P3/2(3/2)⟩ −4513.1

|81S1/2(1/2)⟩ −730.95 |81P1/2(1/2)⟩ −4821.9

|82S1/2(1/2)⟩ −757.5 |81P3/2(1/2)⟩ −5713.9

|80P1/2(1/2)⟩ −4427.4 |81P3/2(3/2)⟩ −4927.4

|80P3/2(1/2)⟩ −5259.95

4.1.2.3. Rydberg lifetimes

In order to correctly calculate the population dynamics in atomic ensembles, one must take
into account the finite lifetimes of Rydberg states. To account for them, we calculated the natu-
ral linewidths γeff of nL Rydberg states taking into account their interaction with thermal radia-
tion. The γeff is known to be inversely proportional to the total lifetime of the Rydberg state nL.
Taking into account the natural linewidth dependence on the blackbody radiation (4.7) and the
spontaneous decay rate (4.8), we can express the γeff as (4.9) [169]. Note that in the given ex-pressions A(nL → n′L′) denotes the Einstein coefficient for the transition between the states
nl and n′l′, ωnn′ is the frequency of this transition, while τ0 and τBBR are the lifetimes of the
states in view of spontaneous decay and blackbody radiation, respectively. The relevant values
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Table 4.2 : Numerically calculated γeff -factors for relevant atomic levels at room temperature (300 K).Substantial part of presented data was recollected from [169].

Atomic state γ, s−1 Atomic state γ, s−1

|80S1/2⟩ 0.0047 |80P3/2⟩ 0.00397

|81S1/2⟩ 0.0046 |81P1/2⟩ 0.0038

|82S1/2⟩ 0.0045 |81P3/2⟩ 0.00386

|80P1/2⟩ 0.0039

for the gamma-factors are presented in Table 4.2. Numerical calculation of gamma-factors was
performed using software produced by the authors of original article [169]. This software has
been adapted for relevant Rydberg levels.

γBBR =
1

τBBR
=
∑
n′

A(nL→ n′L′)
1

exp(ωnn′/kT )− 1
(4.7)

γ0 =
1

τ0
=

∑
EnL>En′L′

A(nL→ n′L′) (4.8)

γeff =
1

τeff
= γ0 + γBBR (4.9)

4.1.2.4. General Hamiltonian

Now, having defined all necessary constants, we can give the general form of the proposed
physical model of the many-body interactions. Below you can see the interaction Hamiltonian
in the collective states basis represented by formula (4.10). The elements of the Hamiltonian
are defined by formulas (4.11-4.14). Note that the electric and magnetic fields presented in the
system are directed along the axis Z , which is allocated as an axis of quantization. As can be
seen from the equation (4.13), the diagonal elements include the terms related to the account
of the Stark level shift, the energy of atomic levels, and the Zeeman effect.

Ĥ =


Epol ... Edd ...
... ... ... ...
... Edd ... ...
... ... ... Epol

 (4.10)

Eii
pol = ⟨Ψi|V̂ ii

pol|Ψi⟩ (4.11)
Eij

dd = ⟨Ψj |V̂dd|Ψi⟩ (4.12)
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Eii
pol =

3∑
j=1

2π

(
− Ry

(niij − δiij )
2
+ αii

j F
2 + µBB(mii

j g
ii
j )

)
(4.13)

V̂dd =
e2

4πε0R3

(
â · b̂− 3âz b̂z

)
= −

√
6e2

4πε0R3

1∑
q=−1

C20
1q1−qâq b̂−q (4.14)

In the framework of the given physical model we have compiled a system of Schrödinger
equations (4.16) in the collective states basis, which was described above. To take into account
the finiteness of the Rydberg states lifetimes, an additional operator Γ̂ was introduced. This
operator is diagonal, and its elements are represented by the total γ-factors of the collective
states.

Ψ =
∑
j

Cjψje
−iEjt/ℏ (4.15)

iℏ
dΨ

dt
=

(
Ĥ − i

2
Γ̂

)
Ψ (4.16)

Γ̂ =

Γ11 0 ...
0 ... 0
... 0 Γnn

 (4.17)

Γii =
3∑

j=1

γi (4.18)

4.1.3. Resonance simulation results

The two-body and three-body transitions (described earlier by equations (4.1) and (4.2), re-
spectively) were numerically modeled in an ensemble of three Rb atoms for n = 80. Figure
4.3 shows Förster resonances as the intersections of collective energy levels in external elec-
tric field. Note that this image is based on the previously obtained single atom Stark diagrams,
thus, does not take into account dipole-dipole interactions. Nevertheless, it provides a prelim-
inary estimate of the mutual location of the resonances. We see that the two-body resonance
(crossing 1) corresponds to an electric field of F = 0.1172 V/cm, while the three-body resonance
(crossing 2) is expected at a field of F = 0.123 V/cm.

We now proceed to a full-fledged simulation of multiparticle resonances in a system of
three linearly arranged Rydberg atoms, in accordance with the physical model described in
the previous subsection. We solved the Schrödinger equation for the probability amplitudes
of the 165 collective states taking into account Rydberg lifetimes [169]. For simplicity, we con-
sider an open system and neglect the return of the population from Rydberg to the ground
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Figure 4.3 : Numerically calculated Stark diagram for collective Rydberg levels. The black line rep-resents the initial state of the atomic register |80P3/2(3/2); 81P3/2(3/2); 81P3/2(−3/2)⟩, while the blueand red lines represent the |80S1/2; 82S1/2; 81P3/2(3/2)⟩ and |80S1/2; 82S1/2; 81P3/2(1/2)⟩ final states,respectively. The intersections 1 and 2 correspond to the two- and three-body Förster resonances (4.1)and (4.2), respectively.

state due to spontaneous decay. We have numerically calculated the dependence of the frac-
tion f of atoms in the final state |80S1/2⟩ on the DC electric field for the ensembles of two
and three Rydberg atoms, initially prepared in the collective states |80P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩

or |80P3/2

(
3/2
)
81P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩, respectively. For both resonances, we considered

the interaction time of 1.8 µs. The Stark shift of the Rydberg states in an external electric field
was taken into account using polarizabilities of the Rydberg states, numerically calculated for
a single atom in an external DC electric field [228]. We also introduced a Zeeman splitting of
the Rydberg states in an external magnetic field in order to lift the degeneracy of magnetic
sublevels and shift the three-body resonance peaks. Finite Rydberg lifetimes were taken into
account by considering decay rates γi of each individual Rydberg state. For more detail on the
model, please see the previous subsection.

Figure 4.4 shows the results of the numerical simulation of the Förster resonances. The two-
body Förster resonance is observed as an increase of the fraction f of atoms in the final state
|80S1/2⟩ if two atoms are initially prepared in a collective state |80P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩. The

numerically calculated dependence of f on the DC electric field for two atoms at interatomic
distance 25 µm and interaction time 1.8 µs is shown in Fig. 4.4(a). The resonance is observed in
the electric field of 0.117 V/cm, which corresponds to the position of the two-body Förster reso-
nance 1 in Fig. 4.3. This resonance is insensitive to the magnetic field due to the compensation
of the Zeeman shifts for two-atom |PP ⟩ and |SS⟩ collective states with the total momentum
projectionM = 0.
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Figure 4.4 : Numerically calculated dependence of the fraction f of atoms in the final |80S1/2⟩ stateon the DC electric field for the interaction time of τ = 1.8 µs: (a) for two atoms initially prepared inthe collective state |80P3/2(3/2)81P3/2(−3/2)⟩ at the interatomic distance R = 25 µm; (b) for the three-atom ensemble initially prepared in the state |80P3/2(3/2)81P3/2(3/2)81P3/2(−3/2)⟩ at the interatomicdistance R = 12.5 µm in the external magnetic field B = 0 G; (c) for the three-atom ensemble initiallyprepared in the state |80P3/2(3/2)81P3/2(3/2)81P3/2(−3/2)⟩ at the interatomic distance R = 12.5 µm inthe external magnetic field B = 3.5 G.

|80P3/2

(
3/2
)
81P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩

→ |80S1/2
(
1/2
)
82S1/2

(
1/2
)
81P3/2

(
1/2
)
⟩

(4.19)
If we place a third atom in the state |81P3/2

(
3/2
)
⟩ between the two atoms, which are pre-

pared in states |80P3/2

(
3/2
)
⟩ and |81P3/2

(
−3/2

)
⟩, respectively, additional three-body reso-

nances arises. The three-body transition (4.19) couples initial and final collective three-atom
states through the intermediate state |80S1/2

(
1/2
)
81P3/2

(
3/2
)
82S1/2

(
−1/2

)
⟩. We note that

other three-body interaction channels through different intermediate states also exist andmay
contribute to the population transfer and phase shifts [193].

The calculated dependence of the fraction f of atoms in the final state |80S1/2
(
1/2
)
⟩ on

the controlling DC electric field for three interacting atoms in the magnetic field is shown in
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Fig. 4.4(b) for B = 0 G and in Fig. 4.4(c) for B = 3.5 G. The atoms are arranged linearly at a
distance R = 12.5 µm from each other. The direction of the magnetic field is opposite to the
direction of the electric field in order to shift the three-body resonances to the right-hand side.
Narrow three-body peaks are clearly observed in Figs. 4.4(b) and 4.4(c). The coherent three-
body resonance is split due to always-resonant exchange interactions [193]. Therefore the po-
sitions of the three-body resonances are different from 0.123 V/cm if the interaction energy is
sufficiently large [193]. The shape of the two-body resonance is modified due to the three-body
incoherent population transfer to state |80S1/2⟩. The incoherent transfer occurs when the inter-mediate state (for example, |80S1/2 (1/2) 81P3/2

(
3/2
)
82S1/2

(
−1/2

)
⟩) is populated. In contrast

to Fig. 4.4(a), the positions of the resonances in Figs. 4.4(b) and 4.4(c) are sensitive to the external
magnetic field.

The spatial configuration which we selected is advantageous for the observation of three-
body interactions due to suppression of the resonant two-body interaction between pairs of
atoms despite the large interaction energies used. Due to the selection rule ∆M = 0, collec-
tive state of atoms 1 and 2 |80P3/2

(
3/2
)
81P3/2

(
3/2
)
⟩ is not dipole coupled to two-atom state

|80S1/2
(
1/2
)
82S1/2

(
1/2
)
⟩. Therefore, the two-body interaction between atoms 1 and 2 is for-

bidden for these particular states. The two-body interaction between atoms 2 and 3, which are
both excited into |81P3/2⟩ state, is suppressed due to the large (157MHz) Förster energy defect
for the interaction channel |81P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩ → |81S1/2

(
1/2
)
82S1/2

(
−1/2

)
⟩ in zero

electric field, which increases further to 283 MHz when resonant electric field of 0.123 V/cm is
applied. However, we should additionally take into account the always-resonant exchange in-
teraction appearing due to excitation hopping between S and P Rydberg atoms [107]. It drives
the unwanted transition |81P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩ → |81P3/2

(
−3/2

)
81P3/2

(
3/2
)
⟩ through

several off-resonant intermediate states.
Finally, the interaction between atoms 1 and 3, which are prepared in states |80P3/2⟩ and

|81P3/2⟩ is enhanced by the two-body Förster resonance |80P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩ → |80S1/2(

1/2
)
82S1/2

(
−1/2

)
⟩. At the same time, it is reduced due to the twice larger distance between

these atoms compared to the distance between the neighboring atoms.

If we tune the electric field to the resonant value F = 0.11905 V/cm in magnetic field B =

3.5 G, coherent Rabi-like population oscillations are observed for the probability p to find the
ensemble back in the initially prepared state, as shown in Fig. 4.5. This is a remarkable feature of
the three-body Förster resonance, which has not been demonstrated experimentally yet [193].
The decrease in the contrast of the oscillations as time increases is mostly caused by finite
lifetimes of the Rydberg states, although the leakage of the population to other collective three-
atom Rydberg states can also be important.
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Figure 4.5 : Time dependence of the population p of the initial state
|80P3/2
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)
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)
⟩ for the interatomic distance R = 12.5 µm, the externalmagnetic field B = 3.5 G and the electric field F = 0.11905 V/cm.

4.1.4. Toffoli gate proposal

In this subsection, we describe the proposed original scheme for the Toffoli gate implemen-
tation based on the three-atom resonant transition (4.2) in an ordered ensemble of three Rb
atoms for n = 80. Toffoli gate (or CCNOT gate) is a basic example of a three-qubit quantum
gate. It represents a generalization of the well-known CNOT gate for the three-qubit case, and
performs the operation of doubly-controlled negation. The state of the target qubit is reversed
if both controlling qubits are in logical state |1⟩ when the Toffoli gate is applied [229]. As shown
in Subsection 2.1.2.2, this gate can be implemented using a controlled-controlled-Z (CCZ) gate,
which shifts the phase of the target qubit by π if both controlling qubits are in state |1⟩, and two
Hadamard gates applied to the target qubit before and after theCCZ gate (see Fig 4.6(a)). Thus,
the task of Toffoli gate implementation can be reduced to the CCZ-gate implementation task.

Förster resonances provide a way to induce a fast phase dynamics on the collective states of
a multi-atomic system. In principle, a doubly-controlled phase gate can be based on coherent
Rabi-like oscillations at exact resonance, which should lead to a π phase shift of the collective
state after the end of the 2π pulse. This is similar to two-qubit controlled phase gates, con-
sidered in previous works [59, 154, 230]. However, off-resonant two-body Förster interactions
result in a complex behavior of the collective states phases. Consequently, it is necessary to
develop an alternative approach to the quantum gate implementation that takes into account
the presence of two- and three-body interactions.

The proposed scheme of the Toffoli gate is shown in Fig. 4.6(b). Three Rb atoms are iso-
lated in individual optical dipole traps which are evenly located along the Z axis with distanceR
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4.1. Toffoli gate: First proposal
between neighboring traps. The Z axis is still chosen along the controlling DC electric field. In
[193] we revealed that this configuration provides maximum coherence of the population os-
cillations due to specific selection rules, which close some unwanted interaction channels (see
Subsection 3.3.7), and this result was indeed verified in Figure 4.5. The logical states |0⟩ and |1⟩
are hyperfine sublevels of the ground state 5S1/2 (see Subsection 2.3.3). To couple the logical
states, two-photon Raman laser pulses, which do not populate the intermediate excited state
5P [231], can be used. As an alternative, they can be replaced by microwave pulses with indi-
vidual addressing. This can be achieved using an intense off-resonant laser acting on a selected
qubit to AC Stark shift its energy levels into resonance with the microwave radiation [232–234].
Note that in our studies we focus on possible limits linked to the Rydberg interactions and as-
sume both Rydberg excitation and individual qubit gates to be perfect.

The Toffoli gate can be implemented using 8 laser pulses. The first Hadamard gate of
Fig. 4.6(a) is replaced in Fig. 4.6(b) by the π/2 rotation around the Y axis, which is implemented
by a laser pulse numbered 1. Then, the three laser pulses 2-4 are simultaneously applied to all
three qubits. They drive the transitions |1⟩ → |r⟩ for the left control qubit, |0⟩ → |r′⟩ for the
target qubit and |1⟩ → |r′′⟩ for the right control qubit, respectively. Here |r⟩ = |80P3/2

(
3/2
)
⟩,

|r′⟩ = |81P3/2

(
3/2
)
⟩ and |r′′⟩ = |81P3/2

(
−3/2

)
⟩. The numbers in the parentheses are the

projections of the momentummj on the Z axis. Note that we consider a single-photon excita-
tion scheme to facilitate numerical calculations. Nevertheless, in a real experiment, the three-
photon excitation scheme will be preferable to compensate for Doppler shifts.

Similarly to the proposal [235], we consider Rydberg excitation in different Rydberg states.
Our analysis has shown that with the selected states it is possible to obtain high fidelity due to
long radiative lifetimes, large dipole moments and specific three-body interaction channels.

We assume that for a selected distance between the atoms, Rydberg interaction is suffi-
ciently weak to avoid Rydberg blockade. Depending on the initial state of the atoms, after laser
pulses 2-4, the number of the excited Rydberg atoms varies from zero to three. When two or
three Rydberg atoms are excited, the interaction shifts the phases of the collective three-body
atomic states. These phases can be controlled by external electric and magnetic fields if the
interactions are tuned to a three-body Förster resonance.

At the final stage, Rydberg atoms are de-excited by laser pulses 5-7. Raman laser or mi-
crowave pulse 8 drives the additional−π/2 rotation of the target qubit around the Y axis, which
is equivalent to the second Hadamard gate in Fig. 4.6(a).

The timing diagram of all controlling pulses is shown in Fig. 4.6(c). In our numerical model,
pulses 1-8 have the duration of 10 ns and are applied in a zero electric field. After the laser
excitation ends, the electric field is switched on. The magnetic field is always present, since it
cannot be rapidly switched in experiments. Short laser pulses with high intensity are required
to reduce the effect of Rydberg blockade by increasing the Rabi frequencies, which leads to a
blockade breakdown. The phase shift of the Rydberg energy levels due to the non-zero electric
field is compensated for by adjusting the phases of laser pulses 5-7.
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For the implementation of the Toffoli gate it is necessary to find the conditions for which the
three-body and two-body interactions result in the correct phase shifts of all possible initially
excited collective states. Specifically, in the case of excitation of atoms 1 and 3, the two-body res-
onance should lead to a π phase shift of the collective state, while in the other cases the phase
shift should be fully compensated. The necessary phase and population dynamics obtained
from the gate simulations is shown in Fig. 4.7. We numerically calculated the time dependences
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of the population and phase of the initially excited collective two-atom or three-atom Rydberg
states in the electric field F = 0.11912 V/cm and magnetic field B = 3.5 G for the interatomic
distance R = 12.5 µm. The electric field is very close to exact resonance value of 0.11905 V/cm,
and it is supposed to be set with high precision, as the three-body resonances are extremely
narrow. A small variation of the electric field from the exact resonance does not significantly
affect the amplitude of the Rabi oscillations, but modifies the phase of the state, allowing to re-
duce phase errors. If collective three-atom Rydberg state |rr′r′′⟩ is initially excited, we observe
almost-resonant Rabi-like oscillations. After time τ = 2.42 µs the system returns to the initial
state with almost zero phase shift, as shown in Figs. 4.7(a) and 4.7(b), respectively.

If the ensemble is initially excited into state |rgr′′⟩ (here g is the ground state which can be
either |0⟩ or |1⟩ logic state, depending on the location of the atom in Fig. 4.5(b)), the off-resonant
two-body Förster interaction |80P3/281P3/2⟩ → |80S1/282S1/2⟩ shifts the phase of the initiallyexcited state by π, as shown in Figs. 4.7(c) and 4.7(d). This phase shift is sensitive to the electric
field which acts directly on the Förster defect. It corresponds to the controlled phase shift when
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all three atoms are in state |1⟩ prior to the Rydberg excitation in Fig. 4.6(b). The population of
the initial state is reduced by approximately 10% due to finite Rydberg lifetimes and leakage
of the population to other collective states by Rydberg interaction. These are found to be the
major sources of the gate error.

If the ensemble is initially excited into state |rr′g⟩ (Figs. 4.7(e) and 4.7(f)), there is no inter-
action due to the selection rule ∆M = 0, and the probability to find the ensemble in the initial
state reduces only due to finite Rydberg lifetimes.

If the ensemble is initially excited into state |gr′r′′⟩ [Figs. 4.7(g) and 4.7(h)], the always-
resonant two-body exchange interaction |81P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩ → |81P3/2

(
−3/2

)
81P3/2(

3/2
)
⟩ occurs in a multi-step manner via intermediate S states, including |81S 82S⟩ collective

state. This leads to the phase shift of the initially excited state, which is compensated for to
zero in Fig. 4.7(h). This phase shift is found to be weakly sensitive to the electric field.

Finally, when only one atom in the ensemble is temporarily excited into the Rydberg state
|r⟩, |r′⟩ or |r′′⟩, the π and −π pulses, shown in Fig. 4.6(b), will return the system into the initial
state with zero phase shift. However, temporary Rydberg excitation will result in population
loss due to the finite lifetimes of Rydberg states. The trivial case is when no Rydberg atoms are
excited. No population or phase dynamics are observed in this case.

4.1.5. Numerical optimization

We applied the following optimization procedure to find the experimental conditions used
in Fig. 4.7:

1. For the selected interatomic distancewefind the value of themagnetic fieldwhen the two-
body and three-body Förster resonances weakly overlap, as shown in Figs. 4.4(b) and 4.4(c). This
overlapping should beweak enough to avoid distortion of coherent Rabi-like oscillations, shown
in Fig. 4.7(a). At the same time, two-body interactionsmust be sufficiently large to produce the π
phase shift in Fig. 4.7(d) during the interaction time, which is substantially smaller than Rydberg
lifetime.

2. We select the value of the electric field near the three-body resonance andfind the time in-
terval that compensates for the phase shift due to exchange interaction, as shown in Fig. 4.7(h).

3. We adjust the value of the electric field to obtain the phase shift close to π for the off-
resonant two-body Förster interaction (Fig. 4.7(d)).

4. We adjust the value of the magnetic field to tune the frequency of three-body Rabi-like
oscillations and to find the conditions when the system returns back to the initial state with zero
phase shift, as shown in Figs. 4.7(a) and 4.7(b).

If the last step is not successful, a different interatomic distance should be selected. A com-
promise has to be found as at larger interatomic distances longer time intervals are required
for phase accumulation. Therefore, the fidelity decreases due to finite Rydberg lifetimes. At
the same time, at smaller interatomic distances both overlapping of the three-body and two-
body resonances and exchange interactions become larger, and it is difficult to find suitable
experimental conditions.

To automatize the described optimization procedure, specialized software was developed.
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4.1. Toffoli gate: First proposal
The optimization was performed using numerical nonlinear global optimization methods. The
parameters of the algorithm were the interatomic distance R, the gate time T , and the values
of external electric and magnetic fields. In the preparatory step of the algorithm, the resonant
electric field was determined for the current distance value by numerical simulation within the
physical model described above. For the purpose of the gate implementation, values near the
left three-body peak from Figure 4.4(b) were scanned at a resolution of 10−6 V/cm. The scanning
range was ±0.01 V/cm from the peak value to prepare for the application of the algorithm.
Next, steps 1-4 were implemented to determine the required parameter values. Based on this
initial estimation, a Nelder-Mead optimization [236] was further carried out using an iterative
method. The parameters were varied within predetermined ranges in the first iteration, but
narrowed for subsequent iterations. Thus, the interatomic distance R was varied at the first
iteration within ±0.1 µm relative to a predetermined value, the interaction time T within ±0.1

µs, the electric field within ±0.001 V/cm, and the magnetic field within ±0.1 G. Each iteration
of the algorithm involved 102 steps within the specified limits for each parameter, calculating
the gate fidelity at each step. As a result, the optimization algorithm produced a new estimate
for the parameter values. After that, the iteration was terminated and the parameter variation
bounds were narrowed by a factor of 3. The next iteration repeated all the described steps,
excluding the preparatory stage. Thus, successively maximizing the quantum gate fidelity, we
obtained values for the experimental parameters. Note that this optimization did not take into
account the durations of Hadamard gates and excitation pulses (whichwere considered perfect)
when calculating the fidelity value. Nevertheless, we implemented an additional simulation to
take them into account. According to the analysis performed, the obtained fidelity values had
a direct correlation in both simulations. Thus, the preferred parameter values for the full gate
schemewere not significantly different from the values obtained as a result of the optimization.
The final adaptation of the parameters was carried out using a direct search algorithm.

4.1.6. Gate fidelity

We have numerically calculated the truth table for our Toffoli gate protocol (Fig. 4.8). To
estimate the gate fidelity, we have used the method proposed in [237]. This method was also
described in detail in Subsection 2.1.5. We considered 6 single-qubit configuration states |0⟩,
|1⟩,(|0⟩+ |1⟩

)
/
√
2, (|0⟩ − |1⟩

)
/
√
2, (|0⟩+ i|1⟩

)
/
√
2 and (|0⟩ − i|1⟩

)
/
√
2. We formed a set of

three-qubit states as all 63 = 216 combinations of three single-qubit basis states. We simu-
lated the density matrices ρsim of all final states after Toffoli gate was applied to each initial
state. Then we calculated the fidelity of each final state comparing to the etalon state ρet, whichis the final state of the ensemble after the ideal Toffoli gate is performed, as follows [1]:

F = Tr
√√

ρetρsim
√
ρet (4.20)

After averaging over all 216 states the simulated gate fidelity reaches 98.3%. It is limited
mainly by decay of Rydberg states, undesirable population transfer to different Rydberg states
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Figure 4.8 : Numerically simulated truth table for the Toffoli gate protocol.

due to off-resonant Rydberg interactions and finite efficiency of phase compensation at three-
body Förster resonance. Although this value is below the threshold for fault-tolerant quantum
computation, it was substantially better than the values reported for other protocols [177] at the
time of the first publication. We still believe that presented scheme can be useful formany-body
quantum simulations with Rydberg atoms in optical lattices [238–242]. Additional decrease of
gate fidelity can result from dephasing between the laser pulses due to atomic motion. Coher-
ent Rydberg excitation by short laser pulses with large Rabi frequencies which are necessary
to avoid Rydberg blockade is also a challenging task. However, such technical difficulties were
present formost of the schemes of quantum computing based on Rydberg atoms in 2018 [177].

4.1.7. Conclusion

In this study, we proposed and numerically investigated new schemes of two-body and
three-body Förster transitions. We also proposed a protocol to implement a three-qubit Tof-
foli gate based on resonant Borromean three-body interactions in the ensemble of Rb Rydberg
atoms trapped in three individual optical dipole traps. The described protocol represents the
first proposal for the realization of multiqubit gates based on Stark-induced Förster resonance.
The collective phase shifts induced by Rydberg interactions are controlled by external electric
and magnetic fields. We have shown that it is possible to reach a fidelity exceeding 98% for a
short gate duration of less than 3 µs, thus significantly exceeding the performance of other Tof-
foli gates available at the time of publication. The scheme we proposed relies on the resonant
long-range Rydberg interactions. This reduces the effect of the complex structure of Rydberg
energy levels on gate fidelity, which appears to be the major source of gate error if the Rydberg
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4.2. FSSC three-body Förster resonances
interactions are strong [243]. The proposed protocol also allows gates for larger interatomic
distances compared to standard blockade gates based on van der Waals interactions.

It is also important to acknowledge the organisations that provided financial resources to
support the implementation of the research presented in this section. This work was supported
by Russian Science Foundation Grant№ 16-12-0083 in the part of simulation of the Toffoli gate
and Grant№ 18-12-00313 in the part of the simulation of three-body interactions, RFBR Grant
№ 17-02-00987 in the part of simulation of the off-resonant Rydberg interactions and Grant
№ 16-02-00383 in part of simulation of coherent three-body Förster resonances, and Novosi-
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EU H2020 FET Proactive project RySQ (Grant№. 640378). M.S. was supported by the ARL-CDQI
program through Cooperative Agreement№W911NF-15-2-0061 and NSF award№ 1720220.

4.2. FSSC three-body Förster resonances
In the previous section the concept of quantum Toffoli gate implementation based on three-

body Förster resonances in ordered ensembles of Rb atoms was outlined. The high accuracy of
the gate was ensured by the resonance interactions coherence for the chosen spatial geometry
of the atomic register, combined with long lifetimes of the Rydberg atomic states. The quan-
tum gate was controlled by an external DC electric field providing accurate Stark shifts of the
collective atomic states. An external magnetic field was also used to provide isolation of res-
onances to increase the coherence of the three-atom interaction. The demonstrated scheme
meetsmodern standards of quantum computing, and, according to the conclusion of the paper
[98], can be extremely useful for the realization of various quantum algorithms.

Nevertheless, certain drawbacks inherent in the proposed gate protocol have been revealed.
First, the shown three-body resonances nP3/2 + (n+ 1)P3/2(m1) + (n+ 1)P3/2(m2) → nS1/2 +

(n+2)S1/2 + (n+1)P3/2(m3) require simultaneous excitation of different Rydberg states. This
significantly complicates the experimental realization of the quantum gate, since the use of sev-
eral sources of laser radiation is required. The sources must be mutually coherent, since phase
noise can negatively affect the final accuracy of the gate. An additional obstacle is presented
by the need to pair different ground states with the Rydberg states. As shown in Fig. 4.6(b), the
laser excitation of the first and third atoms occurs from the |1⟩ state, while the target atom is
excited from the |0⟩ state.

Second, the strong influence of two-body processes significantly complicates the popula-
tion and phase dynamics in the three-atom system. As shown in Subsection 4.1.3, two-body
and three-body resonances occur for close values of the external controlling electric field, since
the energy defect between the states with different momentum projections, determining the
nature of resonance, is relatively small. When the external field is fine-tuned to the three-body
resonance, two-body interactions are still observed, which, being non-resonant, still lead to sig-
nificant population and phase dynamics. In this regard, additional tricks, such as the use of
an external magnetic field for peak isolation, were required to realize the Toffoli gate. Note
that the need to apply an external homogeneous magnetic field also significantly complicates
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a potential experimental realization.

The approach applied to gate implementation in article [98], although showing high accu-
racy, appears to be counterintuitive. As shown in Subsections 3.3.4 and 4.1.4, coherent Rabi-
like population oscillations in a three-body process are accompanied by a phase change of the
system states. Each oscillation period corresponds to a π phase shift of the collective state. It
would be logical to use this property to realize theCCZ gate, which requires exactly the π phase
change, as was shown in Subsection 2.1.2.2. Then, during the first oscillation of the population,
the phase of the system would reach the required value, and the only difficulty would be to
compensate for the additional phases accumulated as a result of two-body processes. Unfor-
tunately, the complex behavior of multiparticle Rydberg transitions did not allow us to achieve
the necessary phase and population dynamics in the proposed scheme, and we had to invent
a different, less rational approach.

Although the proposed protocol has demonstrated an accuracy significantly superior to all
analogs available at the time of publication, further improvements in the gate fidelity were nec-
essary for its compatibility with quantum error correction. Additional efforts were also needed
to improve the robustness of the gate to variations in experimental parameters.

The described drawbacks motivated us to search for new possibilities to implement three-
qubit quantumgates using Förster resonances. The primary task in this regardwas to search for
new three-body interaction schemes suitable for the realization of quantum gates and investi-
gate them. In this section, we describe fine-structure-state-changing (FSSC) three-body Förster
transitions in ensembles of ultracold Rydberg atoms that we proposed in 2020 [223]. This study,
like the previous ones, was carried out jointly at Aime Cotton Laboratory and at Rzhanov Insti-
tute. The scheme of resonances studied in it was proposed by Dr. Patrick Cheinet, who is the
scientific director of this thesis. The author of this thesis, in turn, performed the numerical study
of resonances in structured and unstructured ensembles of Rb and Cs Rydberg atoms.

4.2.1. Resonant scheme description

As described in Sections 3.2, 3.3 and 4.1, Borromean three-body transitions are based on
two simultaneous two-body non-resonant processes. Thus, the three-body population trans-
fer can be represented as a ladder-like transit between the initial state 1 and the final state
3 through the strongly detuned level 2 (see Fig. 4.9). The condition for the emergence of the
three-body resonance is the degeneracy of the initial and final collective states of the atomic
system. Such degeneracy arises under when the energy defects of the transitions 1 → 2 and
2 → 3 compensate each other (∆1 = ∆2). In turn, the two-body transfer between levels 1 and2 (or levels 2 and 3) arises under the condition∆1(2) = 0.

While searching for the scheme of three-body transitions used in the previous section to
implement the Toffoli gate, we proposed a new kind of two-body transit 1 → 2, which appears
for high values of the principal quantum number n. Although this transition is indeed realizable
and allows for highly coherent dynamics in the atomic register, it requires excitation of atoms
to different initial states. As described in the introduction to this section, the need for such
excitation carries significant experimental difficulties, limiting the applicability of this scheme
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1
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3

Figure 4.9 : Simplified scheme of the three-body Förster resonance for three Rydberg atoms. Theinitially populated collective state is 1. The final collective state is 3. The intermediate collective stateis 2. The energy defects ∆1 = E1 − E2 and ∆2 = E3 − E2 are controlled by the DC electric field. Thethree-body resonance occurs at∆1 = ∆2, while the two-body one occurs at∆1 = 0.

in modern quantum registers. Therefore, we have taken a different approach when develop-
ing a new three-body resonance scheme. We did not try to reduce the energy defect of the
first two-body transfer to match the small defect of the second transition. Instead, we have
decided to increase the defect of the second transition to coincide with the large defect of the
first transition.

Among the two transitions necessary to realize the three-body transfer, we thus tried to
replace the 2 → 3 transition, which was earlier represented by the S − P excitation hopping
(n+1)S1/2+nP3/2(|m|) → nP3/2(|m∗|)+(n+1)S1/2 accompanied by a change of the projection
of the P -state momentum. In turn, the 1 → 2 transition was chosen as (4.21) again: this two-
body transition was introduced earlier in Subsections 2.2.5, 3.1.1, 3.2.1, 3.3.1, and was the basic
element of the originally proposed three-body resonances 3×nP3/2(|m|) → nS1/2+(n+1)S1/2+

nP3/2(|m∗|) [192, 193].

2× nP3/2 → nS1/2 + (n+ 1)S1/2 (4.21)
(n+ 1)S1/2 + nP3/2 → nP1/2 + (n+ 1)S1/2 (4.22)

As a replacement for the two-body excitation hopping transfer used in paper [98] (see pre-
vious section) we propose to use transition (4.22). Due to this transition the total momentum of
the P -state changes its value from J = 3/2 to 1/2. Thus, the excitation transfer is non-resonant
for any electric field value. Also, the energy defect of this transition is large enough to compen-
sate the energy defect of the two-body transition (4.21), provoking the three-body resonance.

3× nP3/2 → nS1/2 + (n+ 1)S1/2 + nP1/2 (4.23)
The new three-body transition proposed in paper [223] has the form (4.23). It is the re-

sult of two transitions (4.21) and (4.22) occurring parallelly in a three-atomic system. Note that
the initial atomic states are identical, which greatly facilitates the experimental realization of
such a transition. The presented resonance turned out to be realizable for arbitrary initial Ry-
dberg states nP3/2 both for Rb and Cs. A distinctive feature of this resonance is that the third
atom transits to a state with different total angular momentum J = 1/2 and we name this
process Fine-Structure-State-Changing (FSSC) transition. It is important to note that the state
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with J = 1/2 has no Stark structure, thus an isolated single three-body resonance occurs for
a single initial state. Therefore, the experimental study of such a three-body resonance should
be much simpler, since two-body interaction does not induce resonant transitions (4.21) when
scanning the electric field.

As indicated earlier, we aim at application of the described scheme for the high-lying Ryd-
berg states. As shown in Subsection 4.1.4, the long lifetimes of high-lying Rydberg states con-
tribute to the coherence of Rabi oscillations, which is critical for the realization of high-precision
quantum gates. At the same time, FSSC resonance may be noticeably weaker for high n due to
significantly larger detunings of intermediate levels (about 200MHz for n = 70) than in the case
of the three-body resonance 3× 37P3/2(|m|) → 37S1/2 +38S1/2 +37P3/2(|m∗|) (about 10MHz).
On the other hand, for high Rydberg states, the dipole moments of transitions are much larger
than for the initial interaction scheme that was blocked in principal quantum number. Thus,
we assume that the dipole moment enhancement could help to compensate for the possible
weakening of the three-body interaction.

4.2.2. FSSC resonance study

When presented, three-body transitions of the type (4.23) were considered as perspective
candidates for the realization of multiqubit quantum gates. Nevertheless, to evaluate the appli-
cability of the transitions to quantum computing problems, an extended study of their proper-
ties was needed. In this study, two main issues were investigated. First, it was useful to analyze
the various interaction channels contributing to the system dynamics for different alkali atoms
in order to find the best suited atomic species for quantum gate implementation. Second, we
needed to show that the resonance interactions (4.23) can exhibit coherent dynamics, and to
choose a suitable atomic configuration to realize the quantum gate. In this section, we present
the research conducted to address these issues by numerical simulations of many-body reso-
nance interactions.

We begin with the question of the applicability of the resonance scheme in various atomic
species. Previously the many-body resonances in ensembles of Cs [107, 191] and Rb [192, 193]
atoms were studied in detail. As was shown in Section 3.3, two-body non-resonant processes
make a significant contribution to the dynamics of a multi-atomic system, leading to a possible
overlap of two-body and three-body peaks. The existence of additional higher order two-body
effects can also influence the behavior of the three-body system [244]. Previously, we con-
sidered only fully resolved two-body transitions satisfying the selection rule for dipole-dipole
transitions l′ = l ± 1. In turn, an external electric field can lead to mixing of atomic states of
different parity. In the classical field, each pair of states |a⟩ and |b⟩ satisfying the selection rule
∆l = ±1 is coupled by the Stark effect. Then the eigenstates of the atomic Hamiltonian are no
longer states with a fixed momentum l, but combinations of states with different l. For exam-
ple, when P and D levels cross in the external field, the state can no longer be described as a
pure state, but only as a combined P +D state. Such a state, in turn, is coupled to both even
and odd parity states, relaxing the requirements for selection rules. We call such transitions
quasi-forbidden, due to the fact that the initial and final states of the system are in principle not
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4.2. FSSC three-body Förster resonances
dipole-coupled in zero electric field, but can couple in its presence. Nevertheless, the mixing of
states depends essentially on the energy defect between them. For example, the nP3/2 statesare strongly isolated from the rest of the spectrum, as shown in the Stark diagrams presented
earlier (see Subsection 4.1.2). In this regard, we can consider that their mixing with the rest of
the spectrum is small and the states possess a certain momentum l, at least in weak fields.

Previously, quasi-forbidden resonance transitions havebeen investigated in detail in sodium
and potassium [245, 246]. Note that the two-body quasi-forbidden 2 × S → P +D resonance
has also been used as an essential element of the resonant four-atom transfer demonstrated in
[191] (see Section 3.1). Also quasi-forbidden resonances have been experimentally investigated
in Cs for low-lying Rydberg levels with n = 28 and n = 32 [244]. It has been shown that such
resonances can contribute significantly to the dynamics of a multi-atomic system. However, ac-
cording to the results presented in [244], such processes havemodest effect on the resonances
between S and P states in unstructured samples at low values of the electric field; therefore,
they were not taken into account in the articles [107, 192]. Nevertheless, an additional study
is needed to describe the effect of quasi-forbidden resonance interactions in ordered Rydberg
ensembles for high values of the principal quantum number to ensure the possibility of high-
fidelity quantum gates based on FSSC scheme.

A study of quasi-forbidden resonance processes for high values of n was carried out in the
paper [224]. In this study, we described in detail various quasi-forbidden resonances in Rb and
Cs atoms for n = 50, 70. The primary objective of the conducted research was to investigate the
relative strength between the new class of three-body resonances and quasi-forbidden reso-
nances nearby in rubidium or cesium Rydberg atoms. We assumed that strong quasi-forbidden
resonances could indeed perturb possible gate protocols and might reduce significantly the re-
sulting gate fidelity. This study allowed us to conclude on optimum scenario to perform a quan-
tum gate from FSSC resonant interaction scheme. Note that these results were also presented
in Ku-Luc Pham’s PhD thesis, which he defended in Aime Cotton Laboratory in 2021. The author
of this thesis, in turn, participated in the discussions while conducting the research presented
in the article [224]. However, the results presented in the article are not the fruit of his direct
labor.

4.2.3. Quasi-forbidden resonances

For this study, we follow the methodology developed in [244] that we present briefly. We
start by computing the Stark energies of all states around the considered |nP3/2⟩ starting stateof a given three-body resonance of type (4.23). In this study, we restricted our calculations to
states |m| = 1/2 to avoid searching through too numerous resonances. It was demonstrated in
[244] that resonances involving higher |m|display similar strengths. We thenobtain a resonance
map, as displayed from |50P3/2⟩ of cesium in Figure 4.10: we plot in black the Stark energiesEnljof all states in a given energy interval above the starting state and in red we plot the symmetric
energy 2E50P3/2

−Enlj . Any crossing between a black line and a red line then corresponds to apossible interaction resonance. The strongest are the ones for which at least one state follows
the zero field selection rule δl = ±1 [244]. We have marqued in Figure 4.10 the first resonances
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50s

47f

51s

46f46f

Figure 4.10 : Stark Förster resonance diagram for cesium atoms in |50P3/2⟩ starting state (energy ofaround −50.9 cm−1), limited to |m| = 1/2 states. (black) Stark energies Enlj . (red) Symmetric energy
2E50P3/2 − Enlj . The crossings between these curves are possible Förster resonances. The blue circlesshow the resonances which follow the condition δl = ±1 for at least one state at zero field and for whichwe calculate interaction strength.

implying states |50S1/2⟩ or |51S1/2⟩. For the electric field range, we arbitrarily choose to searchup to around twice the 3-body resonance field.
In our search through different energy ranges in cesium, we find the following resonances:

2× |nP3/2⟩ →|nS1/2⟩+ |(n− 3)lj⟩ (4.24)
2× |nP3/2⟩ →|(n+ 1)S1/2⟩+ |(n− 4)lj⟩ (4.25)
2× |nP3/2⟩ →|(n+ 1)P1/2⟩+ |(n− 2)Dj⟩ (4.26)
2× |nP3/2⟩ →|(n− 1)P1/2⟩+ |nDj⟩ (4.27)
2× |nP3/2⟩ →|(n+ 1)Dj⟩+ |(n− 3)Dj′⟩ (4.28)

When the resonances have been identified, we compute the corresponding dipole-dipole
interaction energy using the transition dipole moments between the two starting |nP3/2⟩ statesand the two ending Stark states [244]. They will depend, among other things, on the overlap
integral between the radial wavefunctionswhich is large for states close in energy to the starting
state.

114



4.2. FSSC three-body Förster resonances
The closest states leading to resonances and fulfilling the δl = ±1 selection rule are the

two states |nS1/2⟩ and |(n + 1)S1/2⟩. The first two resonances (4.24) and (4.25) are thus the
strongest as found previously [244]. We also note that the resonance (4.28) is fully allowed
regarding the selection rules but the involved states are separated from the initial state by about
2 multiplicities leading to small overlap integrals.

Due to significantly different quantum defects in rubidium Rydberg atoms, the resonances
found for this atom are of different type:

2× |nP3/2⟩ →|(n− 1)S1/2⟩+ |(n− 1)lj⟩ (4.29)
2× |nP3/2⟩ →|(n+ 2)S1/2⟩+ |(n− 4)lj⟩ (4.30)
2× |nP3/2⟩ →|(n− 2)D5/2⟩+ |(n− 2)lj⟩ (4.31)
2× |nP3/2⟩ →|(n− 1)D5/2⟩+ |(n− 3)lj⟩ (4.32)

We note that in rubidium, the strong quasi-forbidden resonances of type (4.24) and (4.25)
do not appear anymore. They occur for fields of typically more than twice the 3-body resonance
field. The resonances involved are all of quasi-forbidden type with large energy difference with
the initial state, implying small overlap integrals in the dipole-dipole interaction.

In the resonances (4.24-4.32) listed above, the generic label l indicates that the resonance
occurs with states of the Stark multiplicity leading to a large set of consecutive resonances.
We do not compute the whole set but the first ones in order to grasp their general behavior.
The generic label j is used when the two possible values j = l − 1/2 and j = l + 1/2 lead to
resonances. For the sets of resonances with a multiplicity, we compute one out of the two as
they were found of similar strength [244].

Two-body Förster resonances have already been studied in cesium [200, 247, 248] and ru-
bidium [185, 249, 250] atoms below n ≃ 40, together with the old-type 3-body resonance
scheme presented in Sections 3.2 and 3.3. Here we concentrate on high principal quantum
numbers and choose n = 50 and n = 70 to test the evolution with increasing n. We present
the results of the different resonances in cesium and rubidium atoms in Figures 4.11 and 4.12
which display their interaction strength and compare to the corresponding FSSC 3-body reso-
nance (4.23). As we consider a potential application to quantum computation and the interac-
tion strength is highly dependent on distance, we compute the interaction strength for a rela-
tively large interatomic distance of 10 µm which is likely to be well controlled experimentally.
All interaction strengths displayed in Figures 4.11 and 4.12 are also gathered in Tables 4.3 and
4.4.

In cesiumatoms, in Figure 4.11, we can see that atn = 50 the 3-body resonance is embedded
within numerous quasi-forbidden resonances which are up to a hundred times stronger. It is
therefore unlikely to achieve any reliable quantum computation with this interaction scheme
at this principal quantum number. Increasing n will increase all interaction strengths but the
3-body one, which scales as n11 will increase faster than the 2-body ones which scale as n4.
We thus check at n = 70 and see that the 3-body interaction strength has indeed significantly
increased comparatively to the 2-body ones. It also stands almost alone at its resonance field
of 0.19 V/cm. Nevertheless, it is still almost an order of magnitude weaker than the next quasi-
forbidden resonances of types (4.24) and (4.25). Increasing n further will keep strengthening
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n=50a

b n=70

Figure 4.11 : Interaction strength at 10 µm interatomic distance versus electric field for various res-onances in cesium Rydberg atoms from initial state |nP3/2⟩. (a) Resonances at n = 50. The 3-bodyresonance is close to much stronger 2-body resonances. (b) Resonances at n = 70. The 3-body reso-nance is still weaker than many close 2-body resonances.
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a n=50

b n=70

Figure 4.12 : Interaction strength at 10 µm interatomic distance versus electric field for various reso-
nances in rubidium Rydberg atoms from initial state ∣∣∣nP3/2

〉. (a) Resonances at n = 50. The 3-body res-
onance is embedded with numerous 2-body resonances of similar strengths. (b) Resonances at n = 70.The 3-body resonance is now stronger and well seperated from all surrounding 2-body resonances.
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the 3-body interaction compared to the quasi-forbidden resonances. However the sensitivity
to electric field increases as well, as n7, and will eventually become an issue. Another option is
to use a smaller interatomic distance. Indeed the 3-body interaction scales as 1/R6 while the
2-body interactions scale as 1/R3 but the sensitivity to the exact distance will then increase and
might as well become an issue for a gate protocol fidelity. It is thus interesting to check wether
rubidium atoms present better caracteristics.

In rubidium Rydberg atoms, the energy difference between |nP3/2⟩ and |nP1/2⟩ is smaller
than in cesium. This implies that the consecutive 3-body resonance is stronger. We also ex-
plained that the resonances (4.24) and (4.25) occur for significantly higher fields than the 3-body
resonance. Thus they should not impair a gate protocol. Instead, we found resonances (4.29-
4.32) surrounding the 3-body resonance with significant strength. In Figure 4.12, we present the
strengths of these resonances together with the 3-body resonance, at n = 50 and n = 70. We
can see that resonances of type (4.32) are the strongest and are, at n = 50, of similar strength
and resonant field as the 3-body resonance. Therefore it seems again unlikely to find suitable
experimental parameters at this principal quantum number to perform a high-fidelity 3-body
quantum gate. Instead, at n = 70, the 3-body resonance has become the strongest interac-
tion by almost an order of magnitude while, like in cesium atoms, its resonance field becomes
seperate from the resonance field of the quasi-forbidden processes.
Table 4.3 : Cesium computed resonance strengths. For each quasi-forbidden resonance of types (4.24- 4.28), the resonance electric field F and expected interaction strength (I.S.) is reported. It is comparedat the end of the table with the 3-body resonance.

n = 50 n = 70
F (V/cm) I.S.(kHz) F (V/cm) I.S.(kHz)

nS + (n− 3)l 1.25 113.568 0.25 316.617
1.45 91.953 0.28 311.760

0.32 308.427
0.39 199.902

(n+ 1)S + (n− 4)l 1.62 79.728 0.30 234.933
2.05 50.453 0.36 239.299

0.43 213.391

(n+ 1)D5/2 + (n− 3)D5/2 1.48 8.250

(n+ 1)D3/2 + (n− 3)D5/2 1.65 3.970 0.05 20.874

(n+ 1)D5/2 + (n− 3)D3/2 1.66 2.890 0.11 19.118

(n+ 1)D3/2 + (n− 3)D3/2 1.84 1.580 0.10 6.990

(n− 1)P1/2 + nD5/2 0.73 2.380

(n− 1)P1/2 + nD3/2 1.04 1.080

(n− 2)D3/2 + (n+ 1)P1/2 0.60 2.860

nS + (n+ 1)S + nP1/2 1.23 1.100 0.19 52.0
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4.2. FSSC three-body Förster resonances
Table 4.4 : Rubidium computed resonance strengths. For each quasi-forbidden resonance of types (4.29- 4.32), the resonance electric field F and expected interaction strength (I.S.) is reported. It is comparedat the end of the table with the 3-body resonance.

n = 50 n = 70
F (V/cm) I.S.(KHz) F (V/cm) I.S.(kHz)

(n− 1)S + (n− 1)l 0.90 0.130 0.109 0.106
1.30 0.120 0.113 0.088

0.117 0.081
0.122 0.077

(n+ 2)S + (n− 4)l 1.02 0.165 0.17 0.413
1.28 0.173 0.18 0.406

0.19 0.403
0.20 0.404

(n− 2)D5/2 + (n− 2)l 1.24 0.650 0.190 4.794

1.29 0.810 0.195 5.856
1.34 0.960 0.201 6.721
1.4 1.100 0.207 7.513

(n− 1)D5/2 + (n− 3)l 1.00 1.510 0.161 11.766

1.04 1.920 0.166 14.459
1.09 2.300 0.171 16.710
1.14 2.690 0.176 18.821
1.20 3.100
1.25 3.500

nS + (n+ 1)S + nP1/2 1.22 3.493 0.14 172

For increasing n, the relative strength of the 3-body resonance will keep increasing com-
pared to the spurious quasi-forbidden resonances and will completely dominate them even at
interatomic distances of up to 10 microns. We thus conclude that rubidium atoms are indeed
suited to implement 3-body quantum gates based on this interaction resonance.

In summary, we have investigated the quasi-forbidden resonances surrounding the 3-body
interaction resonance scheme (4.23) presented in [223] and evaluated their relative strengths
both in cesium and rubidiumRydberg atoms. The presented study allows us to draw several im-
portant conclusions. First, this study points out that rubidium is better suited for implementing
strong 3-body interactions than cesium. Second, highly isolated three-body Förster resonances
are achievable for high values of the principal quantum number n = 70 in Rb. We conclude that
the high-lying Rydberg states of Rb atoms are potentially suitable for the implementation of
quantum gate schemes. It is thus clear that the following studies should concentrate on n = 70

levels in rubidium atoms or above.
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4.2.4. Numerical simulations

In this subsection, the results of numerical simulations of three-body FSSC resonances (4.23)
are presented. Within the framework of this study, we have investigated resonances in ordered
and disordered ensembles of Rb and Cs for a wide range of values of the principal quantum
number n ∈ [50, 90]. Nevertheless, we present here results only for n = 70 levels in Rb atoms.
As it was shown earlier, such levels should exhibit highly coherent dynamics due to the presence
of strong three-body interactions, which are also essentially isolated from quasi-forbidden two-
body resonances.

We performed numerical calculations in the sameway as it was done in [193] for three-body
resonances 3 × 37P3/2(|m|) → 37S1/2 + 38S1/2 + 37P3/2(|m∗|) (see Subsection 3.3.5). How-
ever, in Ref. [193], all magnetic sublevels of Rydberg states were taken into account, which for
the three-body Förster resonance in atoms in the 37P3/2 states required 160 collective states
with all possible values of the angular momentum projections to be taken into account. For
the 70P3/2 state, such calculations would require taking into account a much larger number of
collective states. Therefore, to reduce the number of basis states and save computing time,
we used a simplified model in which the signs of the angular momentum projections were
not taken into account (i.e., a simplified model was constructed for Stark Rydberg sublevels
rather than Zeeman ones). Its operability was checked earlier in calculations for the 37P3/2state, which showed satisfactory agreement with the experimental results regarding the posi-
tions and amplitudes of three-body resonances. We thus formed a basis of collective states
combining the |nS1/2⟩, |(n+ 1)S1/2⟩, |nP3/2(|m| = 1/2)⟩, |nP3/2(|m| = 3/2)⟩, |nP1/2⟩ states (seeSubsection 4.1.2). To additionally reduce the computational complexity, we excluded collective
states whose zero-field Förster defect from the initial state exceeded 2 GHz. Note that during
the calculations, finite Rydberg lifetimes were not taken into account in this study. While cal-
culating the matrix elements of the dipole-dipole interaction, the quasi-classical approach was
used (see Appendix A).

We considered the interaction of an ensemble of three Rydberg atoms of Rb in a linear
spatial configuration as well as in a disordered ensemble. As already discussed in Section 3.3,
due to the presence of several interaction channels, a set of several resonances corresponding
to different channels should be observed instead of a single three-body Förster resonance. In
[193], we showed that in order to reduce the number of such channels, the optimal geometry of
the three atoms is their uniform location along the quantization axis Z , which is chosen along
the direction of the control electric field. In this case, only twowell-separated three-body Förster
resonances corresponding to two interaction channels remain (see Subsection 3.3.7).

To take into account the interaction of atoms with the external electric field, the values of
polarizabilities were calculated (presented in Table 4.5). Note that in small fields the quadratic
character of such interaction is preserved for the 70P and 70S states of Rb atoms. Neverthe-
less, at the intersection of these levels with multiplet state sets, the quadratic character of the
interaction is broken, and a new method for calculating the polarizability is needed.

Fig. 4.13 shows the calculated Stark map of Rydberg states of Rb atoms near the 70P state
and the calculated Stark structure of the FSSC Förster resonance for three Rydberg Rb atoms.
For this resonance, the crossings of collective states (indicated by numbers) correspond only
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Table 4.5 : Numerically estimated polarizabilities α for relevant atomic levels. Polarizabilities are mea-sured in GHz/[V/cm]2 units.

Atomic state α Atomic state α

|70S1/2(1/2)⟩ −263.7 |70P3/2(1/2)⟩ −2006.7

|71S1/2(1/2)⟩ −290.6 |70P3/2(3/2)⟩ −1729.7

|70P1/2(1/2)⟩ −1700

to three-body Förster resonances, when all three atoms change their states, and there are no
two-body resonances at all. Three-body resonances occur at relatively small fields (0.13 − 0.16

V/cm). Thus, for a collective initial state with a single momentum projection, only one three-
body resonance arises. As can be seen from the Stark diagram (Fig. 4.13(a)), at such low values
of the electric field the individual atomic S and P states do not experience essential mixing with
neighboring states. Also, as it was shown in the previous subsection, the influence of quasi-
forbidden resonances is relatively weak for n = 70. Thus, we can state that the use of the
numerical model from Subsection 3.3.5 remains relevant.

Figure 4.14 shows the results of numerical simulations of the FSSC three-body Förster res-
onance, 3 × 70P3/2 → 70S1/2 + 71S1/2 + 70P1/2, for three Rydberg Rb atoms in several spatial
configurations. Figure 4.14(a) corresponds to the case when three atoms are uniformly located
along theZ-axis spaced byR = 10 µm, the interaction time being 0.35 µs. At such a distance, the
interaction of neighboring Rydberg atoms is relatively weak, and the three-body resonances do
not broaden. As expected, only two resonances arise in this configuration, which correspond
to two interaction channels. Their resonance electric fields of 0.1247 and 0.140 V/cm are close
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example, in Ref. [11], to implement the fast three-qubit Toffoli 
quantum gate we proposed to use the three-body Förster res-
onances  for  the  initial  collective  state  |80P3/2(M =  +3/2); 
81P3/2(M = +3/2); 81P3/2(M = –3/2)ñ and showed the possi-
bility of achieving high fidelity of the operation. However, 
this  scheme is hard to  implement experimentally, because  it 
requires several different-frequency exciting laser radiations 
rather  than  one. Therefore,  in  this work, we  found  a  new 
simpler  three-body resonance 3 ́  nP3/2 ® nS1/2 + (n + 1)S1/2 + 
nP1/2, in which three atoms are excited into identical Rydberg 
states,  and  there  is  only  one  final  state.  This  resonance 
turned  out  to  be  realisable  for  arbitrary  initial  Rydberg 
states nP3/2.

For example, Fig. 2 shows the calculated Stark diagram 
of Rydberg  states of Rb atoms near  the 70P state and  the 
calculated Stark structure of the new-type Förster resonance 
3 ́  70P3/2 ® 70S1/2  +  71S1/2  +  70P1/2  for  three Rydberg Rb 
atoms. For  this  resonance,  the  crossings of  collective  states 
(indicated by numbers) correspond only to three-body Förster 
resonances,  when  all  three  atoms  change  their  states,  and 
there are no two-body resonances at all. A distinctive feature 
of this resonance is that the third atom transits to a state with 
different  total angular momentum J = 1/2 having no Stark 
structure rather than to a state with a different projection of 
the  same  angular  momentum.  Therefore,  the  experimental 
study of  such a  three-body  resonance  should be much  sim-
pler,  since  two-body resonance  is completely absent. At  the 
same time, such a resonance may be noticeably weaker due to 
significantly  larger  detunings  of  intermediate  levels  (about 
200  MHz)  than  in  the  case  of  the  three-body  resonance 
3 ́  37P3/2 (|M|) ® 37S1/2 + 38S1/2 + 37P3/2 (|M *|) (about 10 MHz). 
On  the  other  hand,  for  high  Rydberg  states,  the  dipole 
moments of transitions are much greater. For example, for 
transitions  from  the  70P  state  to  neighbouring  states  70S 
and 71S, the radial part of the dipole moments is about 5 000 
a.u., while similar transitions from the 37P state have radial 
parts of about 1 300 a.u. As a result, the value of W0 for the 
resonance of a new type is of the same order of magnitude as 
for the resonances of the old type.

3. Results of numerical calculations 
for three-body Förster resonances
of a new type

As already discussed, in real Rydberg atoms, due to the pres-
ence  of  several  interaction  channels,  a  set  of  several  reso-
nances corresponding to different channels should be observed 
instead of a single three-body Förster resonance. In Ref. [10], 
we showed that in order to reduce the number of such chan-
nels, the optimal geometry of the three atoms is their uniform 
location along the quantisation axis Z, which is chosen along 
the direction of the control electric field. In this case, only two 
well-separated three-body Förster resonances corresponding 
to two interaction channels remain.

Nevertheless, analytical calculations for such a geometry 
turn out to be impossible; therefore, we performed numeri-
cal calculations in the same way as it was done in Ref. [10] 
for  three-body  resonances  3 ́  37P3/2 (|M|) ® 37S1/2 +  38S1/2 + 
37P3/2 (|M *|). However,  in Ref.  [10], all magnetic  sublevels 
of Rydberg states were  taken  into account, which  for  the 
three-body  Förster  resonance  in  atoms  in  the  37P3/2  states 
required 160 collective  states with all possible values of  the 
angular momentum projections to be taken into account. For 
the 70P3/2 state, such calculations would require taking into 
account a much larger number of collective states. Therefore, 
to reduce the number of basis states and save computing time, 
we used a simplified model in which the signs of the angular 
momentum projections were not  taken  into  account  (i.e.,  a 
simplified model was constructed for Stark Rydberg sublevels 
rather than Zeeman ones). Its operability was checked earlier 
in calculations for the 37P3/2 state, which showed satisfactory 
agreement with the results of Ref. [10] regarding the positions 
and amplitudes of three-body resonances. 

Figure 3 shows the results of numerical calculations of the 
three-body Förster resonance of a new type, 3 ́  70P3/2 (|M| = 
1/2) ® 70S1/2 + 71S1/2 + 70P1/2 , for three Rydberg Rb atoms 
in several spatial configurations. Figure 3a corresponds to the 
case when three atoms are uniformly located along the Z-axis 
spaced by R = 10 mm, the interaction time being 0.35 ms. At 
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Figure 2. (a) Calculated Stark diagram of Rydberg states of Rb atoms near the 70P state and (b) calculated Stark structure of a new-type Förster 
resonance  3 ́  70P3/2 ® 70S1/2 + 71S1/2 + 70P1/2 for three Rydberg Rb atoms. Crossings of collective states (indicated by numbers) correspond only 
to three-body Förster resonances, when all three atoms change their states, and two-body resonances are absent.
Figure 4.13 : (a) Calculated Stark map of Rydberg states of Rb atoms near the 70P state and (b) cal-culated Stark structure of the FSSC Förster resonance 3 × 70P3/2 → 70S1/2 + 71S1/2 + 70P1/2 for threeRydberg Rb atoms. Crossings of collective states (indicated by numbers) correspond only to three-bodyFörster resonances, when all three atoms change their states, while two-body resonances are absent.Note that on this picture M is used to define the individual momentum projections, while in the maintextm is used for this purpose.
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such  a  distance,  the  interaction  of  neighbouring  Rydberg 
atoms  is  relatively weak, and  the  three-body  resonances do 
not broaden. As expected, only two resonances arise  in this 
configuration, which correspond to two interaction channels. 
Their resonance electric fields of 0.1247 and 0.140 V cm–1 are 
close to the calculated value of 0.135 V cm–1 for the crossing 
of collective levels in Fig. 2b in the absence of interaction, tak-
ing  into  account  additional  dynamic  shifts.  The  resonance 
amplitudes tend to the maximum possible value 1/3, and their 
width when converted to the frequency scale corresponds to 
the Fourier width of the interaction pulse (about 3 MHz). The 
resonances are well resolved, and by tuning the electric field, 
one can select a specific three-body interaction channel.

With a decrease in the interatomic distance to R = 7 mm 
(Fig.  3b),  the  effective  three-body  interaction  energy  W0, 
which depends on the distance as R–6, increases by 8.5 times. 
As a result, the calculated spectra begin to noticeably broaden, 
shift,  and  partially  overlap  in  the  presence  of  population 
oscillations. In this case, one of the resonances shifts toward a 
smaller electric field, and its wing has a nonzero width even in 
a zero field. A further decrease in the distance to R = 6 mm 
(Fig.  3c)  increases  the  energy  of  three-body  interaction  by 
another 2.5 times, which is accompanied by a complete over-
lap of the two resonances and their considerable broadening. 
The observed oscillations of the populations at the wings of a 
three-body  resonance  have  a  period  that  increases  with 

decreasing electric field, which is explained by the quadratic 
nature of the Stark effect. 

We  also  calculated  the  case when  three  atoms were  ran-
domly located in a cubic interaction volume V = 14 ́  14 ́  14  mm 
averaged over 100 realisations at an interaction time of 2 ms, 
which approximately corresponded to the conditions of our 
experiment  in Ref.  [9]  during  recording  three-body  Förster 
resonances (see Fig. 1d). In this case, due to the uncertainty of 
the distance between the atoms and their mutual orientations, 
all the interaction channels are involved, the population oscil-
lations are completely washed out, and the spectrum of  the 
resonance approximately corresponds to the resonance enve-
lope  in  Fig.  3c.  The  resonance  amplitude  also  decreases 
noticeably, which is associated with the presence of zeros in 
the  interaction  energy  for  certain  spatial  configurations  of 
atoms  [12].  In  this  case,  the  three-body  interaction  is  also 
present  in  the zero electric  field, which can be explained by 
those  random  configurations  of  atoms,  in  which  they  are 
located close to each other and have large interaction energies 
comparable with the energy in Fig. 3c.

Based on  the  results  of  calculating  the  spectra of  three-
body Förster resonances of a new type (Fig. 3), we can draw 
the following conclusions. First, the spectra are highly sensi-
tive  to  interatomic  distances,  and when  a  certain  threshold 
value is reached, they begin to broaden, and individual inter-
action channels become indistinguishable. This leads to a loss 
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Figure 3. Results of numerical calculations of the three-body Förster resonance spectra of a new type 3 ́  70P3/2 (|M| = 1/2) ® 70S1/2 + 71S1/2 + 70P1/2, 
for three Rydberg Rb atoms in several spatial configurations: (a) three atoms are uniformly located along the Z axis with the interatomic spacing 
of R = 10 mm at an interaction time of 0.35 ms; (b, c) the same for R = 7 (b) and (c) 6 mm; and (d) three atoms are randomly arranged in a cubic 
interaction volume V = 14 ́  14 ́  14 mm, averaged over 100 realisations at an interaction time of 2 ms.

Figure 4.14 : Results of numerical calculations of the three-body FSSC Förster resonance spectra
3 × 70P3/2 → 70S1/2 + 71S1/2 + 70P1/2, for three Rydberg Rb atoms in several spatial configurations:(a) three atoms are uniformly located along the Z axis with the interatomic spacing of R = 10 µm atan interaction time of 0.35 µs; (b, c) the same for R = 7 µm (b) and R = 6 µm (c); (d) for three atomsrandomly arranged in a cubic interaction volume V = 14× 14× 14 µm3, averaged over 100 realizationsat an interaction time of 2 µs.

to the calculated value of 0.135 V/cm for the crossing of collective levels in Fig. 4.13(b) in the ab-
sence of interaction, taking into account additional dynamic shifts. The resonance amplitudes
tend to themaximumpossible value 1/3, and their widthwhen converted to the frequency scale
corresponds to the Fourier width of the interaction pulse (about 3 MHz). The resonances are
well resolved, and by tuning the electric field, one can select a specific three-body interaction
channel.

With a decrease in the interatomic distance to R = 7 µm (Fig. 4.14(b)), the effective three-
body interaction energy Ω0, which depends on the distance as R−6, increases by 8.5 times.
As a result, the calculated spectra begin to noticeably broaden, shift, and partially overlap in
the presence of population oscillations. In this case, one of the resonances shifts toward a
smaller electric field, and its wing has a high value even in a zero field. A further decrease
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4.2. FSSC three-body Förster resonances
in the distance to R = 6 µm (Fig. 4.14(c)) increases the energy of three-body interaction by
another 2.5 times, which is accompanied by a complete overlap of the two resonances and their
considerable broadening. The observed oscillations of the populations at the wings of a three-
body resonance have a period that increases with decreasing electric field, which is explained
by the quadratic nature of the Stark effect in these states.

We also calculated the case when three atoms were randomly located in a cubic interac-
tion volume V = 14 × 14 × 14 µm3 averaged over 100 realizations at an interaction time of
2 µs (see Fig. 4.14(d)), which approximately corresponded to the conditions of our experiment
in Ref. [192] during recording three-body Förster resonances (see Section 3.3). In this case,
due to the uncertainty of the distance between the atoms and their mutual orientations, all
the interaction channels are involved, the population oscillations are completely washed out,
and the spectrum of the resonance approximately corresponds to the resonance envelope in
Fig. 4.14(c). The resonance amplitude also decreases noticeably, which is associated with the
presence of zeros in the interaction energy for certain spatial configurations of atoms [251]. In
this case, the three-body interaction is also present in the zero electric field, which can be ex-
plained by those random configurations of atoms, in which they are located close to each other
and have large interaction energies comparable with the energy in Fig. 4.14(c). This signal can
also be explained by the presence of a non-resonant two-body signal for close pairs.

Based on the results of calculating the spectra of the three-body FSSC Förster resonances
(Fig. 4.14), we can draw several conclusions. First, the spectra are highly sensitive to interatomic
distances, and when a certain threshold value is reached, they begin to broaden, making in-
dividual interaction channels indistinguishable. This should lead to a loss of coherence and
the absence of full population oscillations at high interaction energies. Second, with a random
arrangement of three atoms in a single volume of laser excitation, coherence is completely
lost, and the interaction takes place even in a zero electric field, which complicates its obser-
vation under the conditions of previous experiment [192] for old-type resonances. Therefore,
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of coherence and the absence of full population oscillations at 
high  interaction  energies.  Second,  with  a  random  arrange-
ment  of  three  atoms  in  a  single  volume  of  laser  excitation, 
coherence  is completely  lost, and the three-body interaction 
takes place even in a zero electric field, which complicates its 
observation  under  the  conditions  of  our  experiment  [9]  for 
old-type  resonances.  Therefore,  experiments  must  be  per-
formed with single atoms in separate optical dipole traps with 
minimal  fluctuations  in  their  spatial  position,  as was  done, 
e.g., in Ref. [13]. Third, for high Rydberg states, the values of 
the  resonant  electric  field  are  rather  small,  therefore,  to 
observe narrow three-body resonances, a high-stability source 
of the electric field is required, and all possible spurious fields 
must be carefully compensated to less than 1 mV cm–1.

Our calculations also showed that, under the conditions 
of  good  spatial  localisation of  atoms  and minimisation of 
the  electric  field noise,  experimental  realisation of  coherent 
population oscillations at the three-body Förster resonance is 
possible. Figure 4a shows a magnified image of the spectrum 
from Fig. 3a. There are two well-resolved peaks of three-body 
resonance  at  electric  fields  of  0.1247  and  0.140  V  cm–1. 
Fine  tuning  to  one  of  the  peaks  (the  required  accuracy  is 
~0.1 mV cm–1) allows switching on the coherent three-body 
interaction, accompanied by population oscillations. The cal-
culated population oscillations when tuning the electric field 

to a three-body resonance in an electric field of 0.1247 V cm–1 
are presented in Fig. 4b. The contrast of oscillations exceeds 
95 %, which allows  considering  them as  the basis  for  three-
qubit quantum gates, by analogy with  the  three-body  reso-
nances that we examined in Refs [10, 11]. 

At present, we are performing more accurate theoretical 
calculations in the full interaction model (taking into account 
the Zeeman structure)  in order  to  find an optimal Rydberg 
state  for  implementing  three-qubit quantum gates based on 
the new  type of  three-body Förster  resonances discussed  in 
this paper.

Note also that the many-body electrically controlled Förster 
resonances for large ensembles of Rydberg atoms were stud-
ied experimentally in recent work [14, 15], in which the possi-
bility  of  observing  four-particle  and  higher  resonances was 
noted, which, however, requires significantly higher interac-
tion energies. 

4. Conclusion

Three-body Förster resonances of a new type, 3   ́nP3/2 ® nS1/2 + 
(n + 1)S1/2 + nP1/2, which can be implemented with Rydberg Rb 
atoms in arbitrary nP3/2 states, have been theoretically investi-
gated. Unlike other three-body resonances 3 ́  nP3/2 (|M|) ® nS1/2 
+ (n + 1)S1/2 + nP3/2 (|M *|) studied by us previously and observed 
only for low-lying states with n £ 38, such resonances can be 
observed  for  arbitrary  states.  One  more  specific  feature  of 
these resonances is that the third atom transits to a state with 
a different total angular momentum J = 1/2 having no Stark 
structure rather than to a state with a different projection of 
the same angular momentum. Thus, the experimental study of 
such three-body resonances should be much simpler, since in 
this case two-body resonance is completely absent.

Our numerical calculations using the example of the three-
body  Förster  resonance  3 ́  70P3/2 (|M|) =  1/2) ® 70S1/2  + 
71S1/2 + 70P1/2 for three Rydberg Rb atoms in several spatial 
configurations  showed  that  for  not  too  strong  interaction, 
when  various  interaction  channels  are  well  resolved  in  the 
spectra,  it  is  possible  to  observe  high-contrast  population 
oscillations. Since such oscillations are accompanied by oscil-
lations of the phase of the collective wave function of three 
atoms,  it  is  possible  to develop new  schemes of  three-qubit 
quantum gates controlled by an electric field based on them. 
This is of interest for quantum informatics with qubits based 
on neutral atoms in arrays of optical dipole traps.
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Figure 4. (a) Magnified image of the spectrum shown in Fig. 3a and (b) 
population oscillations when the electric field is tuned to a three-body 
resonance in an electric field of 0.1247 V cm–1.
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of coherence and the absence of full population oscillations at 
high  interaction  energies.  Second,  with  a  random  arrange-
ment  of  three  atoms  in  a  single  volume  of  laser  excitation, 
coherence  is completely  lost, and the three-body interaction 
takes place even in a zero electric field, which complicates its 
observation  under  the  conditions  of  our  experiment  [9]  for 
old-type  resonances.  Therefore,  experiments  must  be  per-
formed with single atoms in separate optical dipole traps with 
minimal  fluctuations  in  their  spatial  position,  as was  done, 
e.g., in Ref. [13]. Third, for high Rydberg states, the values of 
the  resonant  electric  field  are  rather  small,  therefore,  to 
observe narrow three-body resonances, a high-stability source 
of the electric field is required, and all possible spurious fields 
must be carefully compensated to less than 1 mV cm–1.

Our calculations also showed that, under the conditions 
of  good  spatial  localisation of  atoms  and minimisation of 
the  electric  field noise,  experimental  realisation of  coherent 
population oscillations at the three-body Förster resonance is 
possible. Figure 4a shows a magnified image of the spectrum 
from Fig. 3a. There are two well-resolved peaks of three-body 
resonance  at  electric  fields  of  0.1247  and  0.140  V  cm–1. 
Fine  tuning  to  one  of  the  peaks  (the  required  accuracy  is 
~0.1 mV cm–1) allows switching on the coherent three-body 
interaction, accompanied by population oscillations. The cal-
culated population oscillations when tuning the electric field 

to a three-body resonance in an electric field of 0.1247 V cm–1 
are presented in Fig. 4b. The contrast of oscillations exceeds 
95 %, which allows  considering  them as  the basis  for  three-
qubit quantum gates, by analogy with  the  three-body  reso-
nances that we examined in Refs [10, 11]. 

At present, we are performing more accurate theoretical 
calculations in the full interaction model (taking into account 
the Zeeman structure)  in order  to  find an optimal Rydberg 
state  for  implementing  three-qubit quantum gates based on 
the new  type of  three-body Förster  resonances discussed  in 
this paper.

Note also that the many-body electrically controlled Förster 
resonances for large ensembles of Rydberg atoms were stud-
ied experimentally in recent work [14, 15], in which the possi-
bility  of  observing  four-particle  and  higher  resonances was 
noted, which, however, requires significantly higher interac-
tion energies. 

4. Conclusion

Three-body Förster resonances of a new type, 3   ́nP3/2 ® nS1/2 + 
(n + 1)S1/2 + nP1/2, which can be implemented with Rydberg Rb 
atoms in arbitrary nP3/2 states, have been theoretically investi-
gated. Unlike other three-body resonances 3 ́  nP3/2 (|M|) ® nS1/2 
+ (n + 1)S1/2 + nP3/2 (|M *|) studied by us previously and observed 
only for low-lying states with n £ 38, such resonances can be 
observed  for  arbitrary  states.  One  more  specific  feature  of 
these resonances is that the third atom transits to a state with 
a different total angular momentum J = 1/2 having no Stark 
structure rather than to a state with a different projection of 
the same angular momentum. Thus, the experimental study of 
such three-body resonances should be much simpler, since in 
this case two-body resonance is completely absent.

Our numerical calculations using the example of the three-
body  Förster  resonance  3 ́  70P3/2 (|M|) =  1/2) ® 70S1/2  + 
71S1/2 + 70P1/2 for three Rydberg Rb atoms in several spatial 
configurations  showed  that  for  not  too  strong  interaction, 
when  various  interaction  channels  are  well  resolved  in  the 
spectra,  it  is  possible  to  observe  high-contrast  population 
oscillations. Since such oscillations are accompanied by oscil-
lations of the phase of the collective wave function of three 
atoms,  it  is  possible  to develop new  schemes of  three-qubit 
quantum gates controlled by an electric field based on them. 
This is of interest for quantum informatics with qubits based 
on neutral atoms in arrays of optical dipole traps.
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Figure 4. (a) Magnified image of the spectrum shown in Fig. 3a and (b) 
population oscillations when the electric field is tuned to a three-body 
resonance in an electric field of 0.1247 V cm–1.

Figure 4.15 : (a) Magnified image of the spectrum shown in Fig.4.14(a) and (b) population oscillationswhen the electric field is tuned to a three-body resonance in an electric field of 0.1247 V/cm.
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Chapter 4. Results
experiments must be performed with single atoms in separate optical dipole traps with mini-
mal fluctuations in their spatial position, as was done, e.g., in Ref. [155]. Third, for high Rydberg
states, the values of the resonant electric field are rather small, therefore, to observe narrow
three-body resonances, a high-stability source of the electric field is required, and all possible
spurious fields must be carefully compensated to less than 1mV/cm.

Our calculations also showed that, under the conditions of good spatial localization of atoms
andminimization of the electric field noise, experimental realization of coherent population os-
cillations at the three-body Förster resonance is possible. Figure 4.15(a) shows a magnified
image of the spectrum from Fig.4.14(a). There are two well-resolved peaks of three-body res-
onance at electric fields of 0.1247 V/cm and 0.140 V/cm. Fine tuning to one of the peaks (the
required accuracy is∼ 0.1mV/cm) allows switching on the coherent three-body interaction, ac-
companied by population oscillations. The calculated population oscillations when tuning to a
three-body resonance in an electric field of 0.1247 V/cm are presented in Fig.4.15(b). The con-
trast of oscillations exceeds 95%, which allows considering them as the basis for three-qubit
quantum gates, by analogy with the three-body resonances that we examined in Refs. [98, 193]
(see Sections 3.3, 4.1).

4.2.5. Conclusion

Based on the results of the conducted research, the following conclusions can be drawn. We
have developed and numerically investigated a new scheme of three-body FSSC Förster reso-
nances. For quantum computing purposes, the scheme has several advantages over the pre-
viously proposed ones. First, identical initial Rydberg states are used to realize the three-body
resonances, which facilitates the experimental implementation of quantum gates. The absence
of closely located two-body resonances, in turn, significantly simplifies the resonance dynamics,
thus facilitating the algorithm for controlling a possible quantumgate. Also, the quasi-forbidden
resonances observed in the system in the presence of an external controlling electric field can
have a significant effect on the FSSC resonance processes. Nevertheless, the relative strength
of quasi-forbidden transitions can be significantly reduced when switching to higher Rydberg
levels. In particular, for the high-lying Rydberg n = 70 levels of rubidium, the strength of the
three-body interaction exceeds that of the nearby quasi-forbidden two-body transitions by at
least an order of magnitude.

Second, our numerical calculations using the example of the three-body Förster resonance
3 × 70P3/2 → 70S1/2 + 71S1/2 + 70P1/2 for three Rydberg Rb atoms in several spatial configu-
rations showed that for not too strong interaction, when various interaction channels are well
resolved in the spectra, it is possible to observe high-contrast population oscillations. Since
such oscillations are accompanied by oscillations of the phase of the collective wave function
of three atoms, it is possible to develop new schemes of three-qubit quantum gates controlled
by an electric field based on them.

This work was supported by the Russian Foundation for Basic Research (Grant No. 19-52-
15010) and Novosibirsk State University.
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4.3. FSSC-based Toffoli gate
4.3. FSSC-based Toffoli gate
In the previous section, we considered a new schemeof three-body FSSC Förster resonances

proposed in [223]. This scheme assumes the use of the same initial states for three Rydberg
atoms, and is suitable for different atomic species, as well as for arbitrary values of the principal
quantum number n. An additional advantage of the scheme was the absence of strong dipole-
resolved two-body interactions in proximity of the three-body resonance. In turn, the nearby
quasi-forbidden resonances turn out to be weak as compared to the three-body interaction for
high-lying Rydberg levels. We have convincingly demonstrated coherent population oscillations
of the atomic register collective states for the initial 70P states of Rb atoms in a linear spatial
configuration. Thus, according to the results of our study, we conclude that the implementation
of three-qubit quantum gates is possible based on the presented resonances.

In this section we report our results on the realisation of three-qubit quantum gates based
on three-particle FSSC resonances. We have successfully developed and numerically investi-
gated a quantum Toffoli gate protocol based on 3 × 70P3/2 → 70S1/2 + 71S1/2 + 70P1/2 reso-nances in an ensemble of individually isolated Rb atoms. The high coherence of the resonant
population dynamics, coupled with the long lifetimes of the high-lying Rydberg states, allows
for a high accuracy of the gate implementation for realistic experimental parameters. Also,
the dependence of the resonant peak width on the external controlling electric field has been
investigated, and methods to improve the stability of the gate have been proposed.

This work was carried out mostly by the author of this thesis. All the results obtained within
the framework of this study andpresented in the paper [225]were obtained by him. The original
Toffoli gate protocol is also the result of the author’s contribution. However, it is important
to emphasize that the resonances that underlie this scheme were proposed by the author’s
colleagues (see Section 4.2). The Toffoli gate protocol, although original, is based on a previous
scheme presented in [98], developed by the author’s colleagues (see Section 4.1).

4.3.1. Numerical model

A new scheme of three-body resonances, also called “fine-structure-state-changing (FSSC)
resonances”, was studied in detail in [223]. However, as mentioned in the Subsection 4.2.4,
such resonances were simulated in a truncated basis. Since the consideration of the full set of
Zeeman sublevels of the Rydberg collective states significantly complicates the calculations and
leads to an increase in the time required for the simulation, we had restricted ourselves in [223]
to the consideration of the Stark sublevels of these states. Nevertheless, the consideration of
the Zeeman sublevels is necessary to obtain fully relevant results for the subsequent quantum
gate modeling. Therefore, as part of this study, additional simulations of the resonances have
been performed in the extended basis. We briefly describe here the simulations performed and
the theoretical model used.

The computational model developed in this study is based on a previously developedmodel
detailed in Subsection 4.1.2. We consider the three-body FSSC Förster resonance of the form
(4.33) described in the previous section. Note that |nP3/2⟩⊗3 here denotes the product of three
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Chapter 4. Results
Table 4.6 : Numerically calculated γ-factors for relevant atomic levels. Substantial part of presenteddata was recollected from [169].

Atomic state γeff , s−1 Atomic state γeff , s−1

|70S1/2⟩ 0.0066 |70P1/2⟩ 0.0053

|71S1/2⟩ 0.0064 |70P3/2⟩ 0.0052

identical ket vectors. Since Rb states with n = 70 have demonstrated high coherence of the
three-body FSSC interaction (see Section 4.2), we focus on the study of these states. As before,
quasi-classical approximation is used to compute matrix elements. The interaction of levels
with the external electric field is taken into account by adding the quadratic Stark shift. The
values of polarizabilities of the relevant states are given in Subsection 4.2.4. To account for the
finiteness of the lifetimes of the Rydberg states, the γ-factors were calculated given in Table 4.6.
The method described in [169] was used to calculate these γ-factors.

To compute the population and phase dynamics in the atomic system, we solved the non-
Hermitian Hamiltonian based Schrödinger equation for the probability amplitudes of the sys-
tem collective states taking into account Rydberg lifetimes [169]. For simplicity, we considered
an open system and neglected the return of the population from Rydberg states to the ground
states due to spontaneous decay.

|nP3/2⟩⊗3 → |nS1/2; (n+ 1)S1/2;nP1/2⟩ (4.33)
As described in our article [223] (see Subsection 4.2.4), sets of three-body resonances are

observed in Rydberg atoms instead of a single resonance, due to the large number of interaction
channels in Rydberg systems. To reduce the number of observed resonances, it is necessary to
choose the optimal geometry of the atomic register. We have proved in Subsection 3.3.7 that
the linear arrangement of atoms at the same distances from each other along the quantization
axis coinciding in the direction with the external control DC electric field (Z axis) is optimal [193].
Note that in this case the dipole-dipole interaction operator couples only two-atom collective
states with∆M = 0, whereM is the total momentum projection of the collective state.

Throughout the section, we describe the behavior of the collective states of three Rb Ryd-
berg atoms in the spatial configuration described above, as well as the interactions between
them. These states have the form |n1l1j1

(
mj1

)
;n2l2j2

(
mj2

)
;n3l3j3

(
mj3

)
⟩ in Dirac notation.

The Förster energy defect is the difference between the energies of the final and initial collective
states.

As shown in Subsection 4.2.1, the two-body 2 × nP → nS + (n + 1)S Förster resonance
is known to be absent in rubidium for principal quantum numbers above n = 38 due to the
specific values of quantum defects and polarizabilities of Rydberg states nP and nS [223, 227].
Therefore, off-resonant two-body interactions induce small phase shifts but no sizable popula-
tion transfer, in contrast to the scheme, previously considered in Section 4.1 [98]. This substan-
tially simplifies the population and phase dynamics of the collective three-body states, as will
be shown below.
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Figure 4.16 : (a) Numerically calculated Stark structure of the collective energy levels, involved inthree-body Förster resonance |70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩. The intersections 1-4 mark thepositions of three-body resonances. (b) Numerically calculated dependence of the fraction ρ of atoms inthe final |71S1/2⟩ state after three-body interaction on the external DC electric field for the initial state
|70P3/2

(
m = 1/2

)
⟩⊗3 (marked as 1 in Fig. 1(a)). The atoms are located along the Z axis at interatomicdistance R = 10microns.

In Figure 4.16(a), the energies of the collective Rydberg states involved in three-body Förster
resonance (4.33) are depicted as functions of the external electric field. These dependencies
of energy levels are calculated for different fine structure components of Rb 70P state. The
intersectionswith the final quantumstate, indicated as 1-4,mark the positions of possible three-
body resonances. Note that this picture is analogous to the Figure 4.13(b) and is given here for
ease of reading only.

Figure 4.16(b) shows the dependence of the calculated probabilities of the Förster resonant
energy transfer on the external electric field when all atoms are initially excited into the state
|70P3/2

(
m = 1/2

)
⟩. This corresponds to resonance 1 in Fig. 4.16(a). Two resonant features are

clearly seen. The splitting and shift of the resonances are caused by multiple channels of three-
body Förster interaction through different intermediate quantum states.

Note that Figure 4.16(b) represents the results of simulations performed in the extended ba-
sis. We considered all Zeeman sublevels of the states 70S1/2, 71S1/2, 70P3/2, 70P1/2 and formed
the collective states from all possible combinations of these levels. To facilitate the calculations,
we did not consider collective states with Förster defect larger than 2 GHz in zero electric field.
Thus, a basis of ∼ 360 collective states was formed. Comparing the obtained peaks with those
presented earlier in Subsection 4.2.4 (see Figures 4.14(a) and 4.15(a)), we see a good agreement
of the results. Nevertheless, a basis expansion is also necessary for a more accurate account of
the resonant phase dynamics.
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Chapter 4. Results
4.3.2. Toffoli gate proposal

The Toffoli quantum gate (or CCNOT gate) is a universal three-qubit quantum gate. As
discussed before, it is very important for the effective implementation of many quantum al-
gorithms, in particular, for quantum error correction. This gate can also be represented as a
CCZ gate wrapped with Hadamard gates, as shown in Fig. 4.17(a). For more information on
the Toffoli gate, please see Subsection 2.1.2.2 or Subsection 4.1.4.

The proposed scheme for the implementation of the Toffoli gate is shown in Fig. 4.17(b). As
before, three Rb atoms are confined in three optical dipole traps located along the direction of
the external electric field (Z axis) with interatomic distance R. We consider Förster resonances
(4.33) for n = 70 described in the previous subsection. In particular, the resonance 1 from
Fig.4.16(a) is used to produce the gate action.

To couple the logical states of qubits (namely, |0⟩ and |1⟩), we propose to use two-photon
Raman laser pulses that do not populate the intermediate excited state 5P . A three-photon
excitation scheme can be used to pair the logical states of qubits with Rydberg levels [170].
The effects associated with the phase and intensity noise of the laser were considered in detail
in [252]. Note that during the simulations presented in this section, the logical states of qubits
were not taken into account. Thus, all the pulses presented on Fig. 4.17(b) are assumed to be
perfect and cause no additional losses.

Eight laser pulses are used to implement the gate. As the first step, the pulse 1 is used,
which is a Y -rotation by π/2, carrying out the action of the first Hadamard gate in Fig. 4.17(a)
(we consider it to be perfect during our calculations). Then, the pulses 2-4 required for the
|1⟩ → |70P3/2

(
1/2
)
⟩ transitions are applied simultaneously to all three qubits.

Depending on the initial state of the system, after laser pulses 2-4 have been applied, the
number of the excited Rydberg atoms varies from zero to three. When all three atoms are
excited, the phase of the collective atomic state is shifted by π, due to the three-body Förster
resonance, tuned by an external electric field.

At the final stage, Rydberg atoms are de-excited by laser pulses 5-7. Raman laser or mi-
crowave pulse 8 drives the additional−π/2 rotation of the target qubit around the Y axis, which
is equivalent to the second Hadamard gate in Fig. 4.17(a). The timing diagram of all controlling
pulses is shown in Fig. 4.17(c).

128



4.3. FSSC-based Toffoli gate

1 8

2,3,4 5,6,7

Timing diagram

To oli gateff(a)

(b)

(c)

=control

control

target H HZ

Electric eldfi

time

Rydberg excitation

Raman laser pulses

smt 010.=smt 010.=

smt 010.=smt 010.=

1 3

1

0
2p1 8

1/271S

-3/2
-1/2 1/2

3/2

-p

25

To oli gate with three trapped atomsff

control controltarget
2

T

3/270P

1/270S

1/25S

1/270P

p -p

36

p p-p

47

2-p

Figure 4.17 : (a) General scheme of the three-qubit Toffoli gate. (b) Scheme of the Toffoli gate based onthree-body FSSC resonance. Three atoms are located in the individual optical dipole traps aligned alongthe Z axis, which is co-directed with the controlling DC electric field. Laser Raman (or microwave) pulses1 and 8 drive transitions between the logical states |0⟩ and |1⟩ of the target qubit. Laser pulses 2-7 exciteand de-excite the chosen Rydberg states of the three atoms. The π phase shift due to the three-body in-teraction appears only if all three atoms are excited into Rydberg states. The green and blue arrows hereindicate |70P3/2⟩⊗3 → |70S1/2; 70P3/2; 71S1/2⟩ and |70S1/2; 70P3/2; 71S1/2⟩ → |70S1/2; 71S1/2; 70P1/2⟩ in-termediate two-body transitions, respectively. (c) Timing diagram of the pulses in the proposed gatescheme. The whole gate scheme includes the following 5 steps: application of pulse 1, simultaneousapplication of pulses 2-4, application of a constant external electric field, simultaneous application ofpulses 5-7, application of pulse 8.

129



Chapter 4. Results
4.3.3. Phase and population dynamics
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Figure 4.18 : Numerically calculated time dependences of the populations and phases of the initiallyexcited collective states of three interacting atoms. The upper row (a, b, g, h) depicts the multiparticlestate population and phase evolution when all three atoms are excited into Rydberg states (|rrr⟩). Themiddle (c, d, i, j) and lower (e, f, k, l) rows belong to configurations |rgr⟩ and |grr⟩ (|rrg⟩), respectively. Here
|g⟩ is the |0⟩ ground state, |r⟩ is the Rydberg state |70P3/2

(
m = 1/2

)
⟩. The phase values are presentedin ordinary units in the range (−π, π). System parameters: (a - f) R = 10 µm; F = 0.14235 V/cm; T = 1.15µs; (g - l) R = 8.5 µm;F = 0.1469 V/cm; T = 0.42 µs.

To implement the Toffoli gate, it is necessary to find the conditions under which different in-
teratomic interactions lead to the required phase shifts of the initially excited collective states.
Therefore, it is necessary to optimize the parameters of the atomic system: the interatomic
distance R, the interaction time T and the value of the external DC electric field. Taking into
account the technical limitations of experimental implementations, it is necessary to pay atten-
tion to the required accuracy of the parameter values. In particular, we found the following
requirements for accuracy thresholds: the interatomic distance must be controlled with an ac-
curacy of 0.1 µm; the interaction time - 0.01 µs; the external electric field - 10−4 V/cm. Here we
assume that the maximum allowable deviation of the gate fidelity cannot exceed one percent.

Figure 4.18 shows the numerically calculated phase and population dynamics of the initially
excited collective two- and three-body Rydberg atomic states for optimized system parameters.
Left-hand and right-hand panels of Fig. 4.18 show the time dependencies of the populations
and phases of initial collective states for interatomic distances R = 10 µm and R = 8.5 µm,
respectively. When calculating the gate scheme, both two-body and three-body interactions in
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4.3. FSSC-based Toffoli gate
the atomic system were taken into account. Note that for the successful execution of the gate,
it is extremely important that the populations of the initial states are close to unity after the end
of the interaction.

• Three Rydberg atoms
If all three atoms are excited into Rydberg states, we observe almost resonant Rabi-like pop-

ulation oscillations (Figs. 4.18(a, g)). In this case, the phase of the state changes by π after the in-
teraction timedue to the three-body resonance |70P3/2

(
m = 1/2

)
⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩(Fig. 4.18(b, h)). This phase shift is sensitive to the electric field which acts directly on the Förster

energy defect. It corresponds to the controlled phase shift when all three atoms are in state
|1⟩ prior to the Rydberg excitation in Fig. 4.17(b). Note that Fig. 4.17(b) shows only one of the
possible transition schemes. In the resonant process, we cannot attribute |70P3/2⟩ → |70S1/2⟩,
|70P3/2⟩ → |71S1/2⟩ and |70P3/2⟩ → |70P1/2⟩ transitions to a specific atom 1, 2 or 3. The pop-
ulation of initial state after the completion of the interaction is 91.5% due to the finite Rydberg
lifetimes and the leakage of population to other collective levels by Rydberg interactions. These
are found to be the major sources of the gate error.

• Two Rydberg atoms
Consider the case when only two of the three atoms are in Rydberg states. Then, due to the

selection rule∆M = 0 only off-resonant two-body interactions |70P3/2

(
m = 1/2

)
⟩⊗2 →

|70S1/2
(
m = 1/2

)
; 71S1/2

(
m = 1/2

)
⟩ are possible. The state |70S1/2; 71S1/2⟩ can also interact

off-resonantly with |70P1/2⟩⊗2 and |70P3/2; 70P1/2⟩ states. A detailed analysis of two-body inter-actions in three-body systems of Rydberg atoms is given in article [224] (see Subsection 4.2.3).
If the atomic ensemble is initially excited to state |rgr⟩ (here |g⟩ is the ground state |0⟩,

|r⟩ is the Rydberg state |70P3/2

(
m = 1/2

)
⟩), we can consider the influence of the interactions

described above on the population and the phase of the final state as negligible (Figs. 4.18(c, d,
i, j)). This is due to the fact that the two Rydberg atoms are too far apart from each other. Since
the dipole-dipole interaction is proportional toR−3, an increase in the distance between atoms
by a factor of two causes an eightfold decrease in the strength of the dipole-dipole interaction
even for resonant processes. But, since the two-particle process described here is not resonant,
the interaction exhibits van der Waals character (see Subsection 2.2.4). Thus, the interaction
is proportional to R−6, and hence it will be 64 times smaller then for closely spaced atoms
discussed below.

Alternatively, when the ensemble is initially excited into one of the states |grr⟩ or |rrg⟩, we
can observe a significant influence of the off-resonant two-body interactions on the phase of the
collective state (Figs. 4.18(f, l)). This leads to the phase shift of the initially excited state, which
can be compensated to zero during the interaction time T (see Fig. 4.17(c)). This phase shift is
found to be sensitive to the external electric field. Two-body interactions also have a significant
impact on the population of the initial state, leading to weak (with an amplitude of 5 − 10%)
Rabi-like oscillations (Figs. 4.18(e, k)).

Finally, when only one atom in the ensemble is temporarily excited into the Rydberg state,
the π and −π pulses, shown in Fig. 4.17(b), will return the system into the initial state with zero
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phase shift. However, temporary Rydberg excitation will result in population loss due to the
finite lifetimes of Rydberg states. The trivial case is when no Rydberg atoms are excited. The
pulses 2-7 will have no effect in this instance.

In contrast to our previous proposal [98], we obtained the required phase dynamics without
the need to use an external magnetic field for fine tuning of the position of three-body Förster
resonance in the electric field scale. Moreover, the absence of the two-body Förster resonance
in the vicinity of the three-body Förster resonance substantially simplifies the phase dynamics of
the collective three-atom states. In this regard, we base the new gate scheme on the phase shift
induced by three-body rather than two-body interaction, which makes it much more intuitive.
We also obviate the need to excite atoms from different ground states.

4.3.4. Optimization of gate parameters

The optimal values of the system parameters (interatomic distance R, interaction time T ,
electric field value F ) were calculated by performing multi-objective optimization using the
Nelder-Mead method in order to increase the gate fidelity [253]. As mentioned above, for ex-
perimental implementation, these parameters must be controlled with high accuracy. Thus,
when developing a gate scheme, it is necessary to take into account all possible sources of the
gate fidelity losses arising from insufficient control of parameters and suggest ways tominimize
their total effect.

The greatest control accuracy is necessary for the DC electric field: as can be seen from
Fig. 4.16(b), the resonance peaks are extremely narrow, and even a field variation of 10−4 V/cm
can critically affect the gate fidelity. To mitigate this disadvantage, we propose to reduce the
interatomic distances.

Figure 4.19 shows the dependence of the gate fidelity on the external electric field for two
different interatomic distances. It can be seen that with a decrease in distance the requirements
for the accuracy of field value control are significantly reduced. At a distance of R = 10 µm, a
fidelity of ∼ 98% (with a maximum fidelity of 99.05%) is obtained for a field mismatch of 10−4

V/cm. Thus, we can attribute this variation of field to the fidelity loss of ∼ 1%. At R = 8.5 µm,
the same fidelity loss is obtained only at a field mismatch of about 4 · 10−4 V/cm (note that the
maximum achievable fidelity is the same for both distances).

It should also be noted that the distance reduction has a positive effect on the gate imple-
mentation time. Specifically, the time required for gate implementation is 0.42 µs when the
distance between atoms is 8.5 µm. In the case when the interatomic distance is 10microns, the
required time is about 3 times higher. Nevertheless, due to the enhanced interatomic interac-
tions, the precise setting of the quantum gate is significantly complicated, and the improvement
in accuracy does not arise for shorter distances. In principle, additional controlling parameters
could allow fine-tuning of the gate, as will be discussed in the next section.

To estimate the gate fidelity, the method proposed in [237] was used (see Subsection 2.1.5
or Subsection 4.1.6). We considered a set of 216 different initial quantum register configurations
and simulated the application of the developed quantum gate to each of these configurations.
We calculated the density matrices ρsim of all final states after Toffoli gate was applied to each
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Figure 4.19 : Dependence of the fidelity of the Toffoli gate on the DC electric field for two differentinteratomic distances: R = 10 µm (red curve) and R = 8.5 µm (blue curve). The maximum fidelityof 99.05% is achieved with an electric field of 0.14232 V/cm. The interaction times coincide with thoseindicated in the description of Fig. 4.18 for both cases.(a) For a wide range of electric field values (0.1−0.2V/cm). (b) Near the fidelity maxima.

initial state. Then we calculated the fidelity comparing ρsim to the etalon density matrix ρet,which represent the final state of the ensemble after the use of the perfect Toffoli gate [1].
Averaging over all 216 initial states, we calculated the gate fidelity.

F = Tr
√√

ρetρsim
√
ρet (4.34)

Note that the losses of the gate fidelity occurring at the stages of excitation and de-excitation
of the Rydberg levels were not taken into account in presented calculations. If excitation takes
place in a zero electric field, the different Zeeman sublevels of the initial 70P state are populated
during the excitation process. This, in turn, can lead to undesirable two- and three-particle
interactions in the Rydberg system, violating the coherence of the resonance. According to our
estimate, the maximum fidelity leakage caused by these processes does not exceed 0.88%.

Wehave conducted an additional study, assuming the Rydberg excitation to beperformedat
a non-resonant but non-zero electric field. It was found that by applying the external DC electric
field of 0.2 V/cm during excitation, one can reduce the fidelity loss to 0.23%. Additional multi-
parametric optimization allows us to adjust the fidelity values to compensate for the described
effect and make it almost negligible. Thus, an additional fidelity loss of only 0.03% during the
Rydberg excitation was obtained for the Toffoli gate model with the following parameter val-
ues: R = 10 µm; F = 0.14225 V/cm; T = 1.12 µs, F0 = 0.2 V/cm, τ = 0.01 µs. Here F0 is thedescribed external excitation field, and τ is the duration of the excitation pulse. In this study,
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these two parameters were chosen for analytical reasons and were not included in the opti-
mization process. Finally, we can summarize that the theoretical fidelity of the proposed gate
is F > 99%.

Since the excitation electric field value and the durations of the exciting and de-exciting
pulses are variable parameters, they provide an additional opportunity to control the interac-
tion in a three-body system. While providing the described research, we were already confident
that by performingmultiparametric optimization taking into account these parameters, the gate
fidelity could be significantly increased. A similar approach to boost the fidelity of quantum op-
erations was demonstrated in article [254]. However, this issue required additional research.
We detail the implications of accounting for excitation effects in the external field in the next
section, and show that by involving new controlling parameters, achieving significant accuracy
improvements is possible.

As mentioned above, the limited lifetimes of Rydberg states are major sources of the gate
error in the proposed gate scheme. A possible solution to this problem may be the use of a
cryogenic environment [255], that can greatly improve the Rydberg static lifetimes. For example,
Rydberg 70S state limetime is ∼ 150 µs for 300 K temperature, while for ∼ 0 K it improves to
∼ 410 µs. The lifetime extension effect is evenmore pronounced for RydbergP states. Thus, for
Rydberg 70P1/2 states the lifetime increases from∼ 188µs for 300K environmental temperature
to ∼ 740 µs for ∼ 0 K environment.

4.3.5. Conclusion

We proposed a protocol to implement a three-qubit Toffoli gate based on FSSC three-body
resonant Förster energy transfer in the ensemble of Rb Rydberg atoms isolated in three indi-
vidual optical dipole traps. This new type of resonance is based on a change of fine structure
state of one of the atoms involved in the interaction. The collective phase shifts induced by Ry-
dberg interactions are controlled by an external electric field. We have shown that it is possible
to reach a fidelity exceeding 99% for a short gate duration from 0.4 µs to 1.2 µs. Gate imple-
mentation has been numerically demonstrated for large interatomic distances (∼ 10 µm). In
order to minimize the decrease in gate fidelity, we found a compromise between the control
accuracies of various experimental parameters (interaction time, interatomic distance and DC
electric field). We managed to achieve a significant reduction in the sensitivity of the circuit to
electric field deviations by applying a slight interatomic distance variation, avoiding a decrease
in the gate fidelity.

It is important to emphasize the advantages of the proposed quantum gate protocol with
respect to the protocol considered earlier in Section 4.1. First, the FSSC three-body resonances
are realized for identical initial atomic states nP3/2, so the new gate protocol does not require
simultaneous excitation of atoms into different Rydberg states. This fact greatly facilitates the
potential gate implementation, since the use of the same laser source for the Rydberg excitation
is allowed. Facilitation of the experimental implementation is also guaranteed by the simpler
Rydberg excitation scheme. To realize the previous protocol from Section 4.1, we needed to
guarantee that both logic states |0⟩ and |1⟩ are coupled to the high-lying Rydberg levels. In the

134



4.4. CCPHASE gate based on RF-induced FSSC resonances
current protocol, in contrast, we only need to ensure the connectivity of |1⟩ → |r⟩, where |r⟩ is
the initial Rydberg state of each atom.

Note that in the proposed protocol, off-resonant two-body interactions lead to relatively
weak phase dynamics. This reduces the effect of the complex structure of Rydberg energy levels
on gate fidelity, which appears to be the major source of gate error if the Rydberg interactions
are strong [243]. Also, it eliminates the need for additional tools to increase peak isolation, such
as the magnetic field used earlier in Section 4.1. Finally, due to the absence of strong two-body
interactions, we can realize the gate using a three-body phase shift, while fully compensating
the two-body phase dynamics. This approach to the implementation of CCZ-gate is intuitive,
since every oscillation of the population in a multiparticle system is accompanied by a π phase
shift.

This work was supported by the Russia-France cooperation grant ECOMBI (CNRS grant№.
PRC2312 and RFBR grant№. 19-52-15010). The Russian teamwas also supported by the Novosi-
birsk State University and by the Foundation for the Advancement of Theoretical Physics and
Mathematics "BASIS". The French team was also supported by the EU H2020 FET Proactive
project RySQ (grant№. 640378).

4.4. CCPHASE gate based on
RF-induced FSSC resonances

The scheme of the three-qubit quantum gate presented in the Section 4.3 provides a direct
proof of applicability of three-body FSSC Förster resonances for quantum computing purposes.
The high quantum gate fidelity, supplemented by simplicity of its implementation, makes it a
useful tool for the realization of complex quantum algorithms. In order to build on this success,
we have continued to investigate the possibilities ofmany-body quantumgates implementation
in structured Rydberg ensembles.

The purpose of further studies was to search for ways to compensate for the few disadvan-
tages left with the developed gate scheme. First, as it was shown in previous works [98, 225],
a high quality of experimental parameters control is required for successful gate implementa-
tion. In particular, accurate resonant tuning of the external DC electric field is necessary, down
to 10−4 V/cm. The implementation of such a degree of field control is in itself a challenging task,
especially when considering the necessary change in electric field during the gate implemen-
tation which could lead to significant deviations in gate fidelity, linked to the risk of unwanted
transitions. Note that in previous gate schemes, atomic excitation was considered in either
zero electric field (Section 4.1), or in a strongly non-resonant field (Section 4.3). Thus, the field
switching can critically affect the stability of these schemes.

Second, within the numerical computations shown in Section 4.3, the gate behaviour was
simulated directly for atoms in the relevant Rydberg states, thus disregarding possible accuracy
losses at the stages of excitation and de-excitation of atomic Rydberg states. In the paper [225],
we assumed that the time of radiation pulses required at these stages is small compared to the
implementation time of the Toffoli gate, and therefore, possible population leakage and addi-
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tional phase dynamics will not lead to significant deviations in the gate fidelity. Nevertheless,
for absolute confidence in the reliability of the obtained results, it is necessary to extend the nu-
merical model, taking into account all the transitions occurring in the system, including also the
stages of Rydberg excitation and de-excitation, during which Rydberg interactions could affect
the system dynamics.

Finally, the search for new possibilities to control multiparticle interactions in three-atomic
systems is necessary. So far, we have considered only resonances controlled by an external DC
electric field. Also, an external magnetic field has been applied in Section 4.1 to isolate two- and
three-body resonance peaks. Nevertheless, in order to realize an accurate quantum gate, it is
necessary to achieve certain phase and population dynamics in the quantum system, control-
ling a huge amount of involved quantum states at once. Additional controlling experimental
parameters, in turn, can help fine-tune the phases and amplitudes of the resonant oscillations,
achieving the desired behavior and improving the gate fidelity. Thus, in this study, we have also
focused on searching for new possibilities to implement multi-particle system control. Note
that desirable control utilities should provide the opportunity for precise experimental tuning,
which is difficult to realize using magnetic and electric DC fields.

To extend the control possibilities in a multiparticle system, we propose to use Förster tran-
sitions induced by external radiofrequency radiation. Previously, two-body RF-induced Förster
resonances were studied in detail in [153, 207, 256–258]. It was shown that in addition to reso-
nances existing in DC electric fields, RF radiation also allows one to induce inaccessible Förster
resonances whose energy defect is negative in zero electric field and increases along with DC
field. For example, in [257], two-body RF-induced resonances 2×39P3/2 → 39S1/2+40S1/2 weredemonstrated in Rb atoms. As repeatedly emphasized in the previous sections, the resonance
2 × nP3/2 → nS1/2 + (n + 1)S1/2 cannot be realized in ensembles of Rb atoms for n > 38 in
the DC electric field due to the specific values of the polarizabilities and quantum defects of the
involved collective states (for example, see Section 4.1). Nevertheless, as the results of [257]
show, such resonances can be induced by RF radiation.

The application of RF-induced two-body resonances in Rydberg quantum computing has
also been investigated previously [154, 259]. For example, in [154], a two-body quantum CZ-
gate scheme based on the adiabatic passage of a radiofrequency-induced two-body Förster
resonance 60P3/2(3/2) + 80P3/2(3/2) → 59D5/2(5/2) + 78D5/2(5/2) was proposed. The gener-ation of Bell states has also been demonstrated in this study.

In [226], we describe for the first time RF-induced three-body Förster resonant transitions
in ordered arrays of three Rb atoms. We show that under RF radiation, few-body resonances
acquire replicas for parameters that can be chosen with the RF frequency and that even two-
body or three-body processes displaying no resonance in DC field can be accessed through one
of these replicas. Many-body RF-induced Förster resonances have not been investigated previ-
ously, making the results of this study unique. We have also shown that coherent population
dynamics resulting fromRF-induced resonance can be obtained in three-atomordered Rydberg
arrays. We conclude that RF radiation provides new opportunities to facilitate the experimental
realization of many-body Rydberg gates, as well as gives new degrees of freedom in interaction
control, allowing to significantly increase the accuracy of the gate implementation.
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The use of radiofrequency-induced Förster resonances allowed us to achieve a high degree

of control in the three-qubit system. We have proposed new protocols of three-body quantum
gates CCPHASE, which are based on either accessible three-body or inaccessible two-body
Förster resonances. While the gate scheme based on three-body resonance [192] is a significant
development of our previousCCZ gate proposals [98, 225] (shown as elements of Toffoli gates
in Sections 4.1 and 4.3), the scheme based on the two-body resonance replica demonstrates a
fundamentally new approach to the three-body operator construction. Both of these schemes
demonstrate high gate fidelity (∼ 99.7% assuming cryogenic environment and ∼ 99.3% for
room temperature) and are limitedmainly by the Rydberg lifetimes. The developedCCPHASE
gates allow for arbitrary transformations of collective state phases of the three-qubit register
by varying the RF parameters. The advantage of this technique is that it can be applied at large
interatomic distances (∼ 10 µm), paving a way to create full interconnectivity in large atomic
arrays [59, 260, 261]. Also, the shown scheme provides a great facilitation for the experimental
implementation and Rydberg excitation control due to the fact that the value of external DC
electric field is kept constant during the experiment.

The results presented within this section and those presented in the paper [226] were ob-
tained by the author of this thesis. Nevertheless, the idea of investigating RF-induced reso-
nances was proposed by the author’s colleagues. The author gratefully thanks his co-authors
for their assistance with the simulations as well as fruitful scientific discussions.

4.4.1. Introduction to CCPHASE gates

Previously, we have described the possibilities of application of multi-qubit quantum gates
to realize complex quantum computational schemes (see Sections 1.7, 2.1.3.2). Thus, it was
mentioned that multi-qubit gates allow to achieve a significant reduction in the total number
of gates for various quantum algorithms, including QAOA [262], quantum error correction [88,
263, 264], Grover’s search [265], Shor’s algorithm [11], fault-tolerant quantum computation im-
plementation [266] and many others. A particularly challenging task is the implementation of
multi-qubit controlled quantumoperations, such asCkNOT andCNOT k gates [100, 267–270],
Fredkin gates [271], CkPHASE gates [48]. We also demonstrated in the previous sections of
this chapter, that Förster resonances can be applied to implement doubly-controlled three-
qubit quantum gates.

TheCCPHASE gate is a generalization of the well-knownCCZ-gate for an arbitrary phase
ϕ of a final multiqubit state. If both controlling qubits are in the state |1⟩, a transformation is
applied to the target qubit that changes the phase difference between its logic states by ϕ. The
gate action can thus be represented by an operator (4.35).

CCPHASE gates are not widely researched, thus the area of their potential application is
not completely clear. Nevertheless, since the combination ofCCPHASE gates with sequences
of single-qubit gates and global phase gates allows, in principle, to implement arbitrary doubly-
controlled unitary operations [1], we can argue that a successful implementation of such a gate
will be useful in all the previously listed algorithms, and can also be applied in a number of
quantum simulation algorithms (e.g., in the quantum phase estimation algorithm [19]). Note

137



Chapter 4. Results
that the possibility of realizing arbitrary unitary gate is based on the analysis for CU -gate ABC
decomposition, shown in Subsection 2.1.2.2. According to [272], arbitrary doubly-controlled
phase gates (similar to the CCPHASE gate proposed in this section) have been successfully
applied to solve theMAX-3-SAT problem using QAOA. The experiment realized on a 32-qubit su-
perconducting quantum processor “Aspen-9” demonstrated a qualitative and quantitative im-
provement in the generated QAOA landscape when using the custom CCPHASE gate over
the full two-qubit decomposition of the circuit.

CCPHASE =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 eiϕ


(4.35)

To the best of our knowledge, doubly-controlled phase gate protocols have not been explic-
itly proposed for Rydberg registers before. Nevertheless, according to our analysis, the CCZ
quantum gate protocol implemented in [47] can be adapted to realize arbitrary phase gates.
This protocol is based on the use of a controlled excitation phase shift in the presence of a
strong dipole blockade. Thus, its application is limited to registers in which the atoms are iso-
lated at a small distance ∼ 5 µm from each other. In turn, our proposed protocol based on
three-atom Förster resonances can be applied to much further separated qubits (with inter-
atomic distances up to several tens of µm). Thus, we can state that the new CCPHASE gate
protocol is of great interest for modern Rydberg quantum computing.

4.4.2. RF-induced Förster resonances

Resonant interactions induced by a time-dependent periodic electric field were analyzed in
detail in [153]. Following the course of this work, we distinguish two approaches to the sim-
ulation of RF-induced resonances: the numerical solution of the Schrödinger equation, or the
application of an analytical approach using the description of Floquet sidebands. While the
Floquet sideband approach provides convenient insights into the understanding of resonant
processes in two-level systems, numerical methods are better suited for describing complex
multilevel dynamics. Thus, in this section we concentrate on the numerical description, using
the elements of the Floquet sideband approach only to provide the reader with some analytical
analogies. Note that we introduce the theory of RF-induced resonances only briefly here. For a
more detailed description, the reader can refer to the Appendix B, or the original paper [153].

We consider Förster resonances in an ordered ensemble of three Rb atoms. This means
that all the operators given in this section are described in the basis of collective states
Ψi = |n1i l1i j1i
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indices denote the number of the atom in the ensemble, while the lower indices relate to the
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4.4. CCPHASE gate based on RF-induced FSSC resonances
different configurations of the individual quantum numbers of each atomic state.

To describe the dynamics of the interatomic interaction, we solve the Schrödinger equation
for the following Hamiltonian:

Ĥ = Ĥ0 + ĤFS
+ ĤFRF

+ V̂ (4.36)
Here Ĥ0 denotes the Hamiltonian of the atomic system without taking into account any

interactions, ĤFS
is the Hamiltonian of the interaction with the DC part of the electric field,

ĤFRF
stands for the interaction with the RF radiation, that is, the time-dependent component

of the field. We define the total field in the system as (4.37), where FS and FRF indicate the
amplitudes of the stationary and oscillatory parts of electric field, respectively.

F = FS + FRF cos (ωt) (4.37)
The operator V̂ describes a set of dipole-dipole interatomic interactions in a system of three

Rydberg atoms. According to the previous sections (see Subsections 2.2.4, 3.3.5 and 4.1.2), it
can be described as a composition of individual diatomic dipole-dipole interactions, which can
be expressed as [227]:

V̂dd = −
√
6e2

4πε0R3

1∑
q=−1

C20
1q 1−qâq b̂−q. (4.38)

The radial matrix elements of the dipole moment are calculated using a quasiclassical ap-
proximation [221] (see Appendix A). Note that in the case of linear arrangement of atoms (which
is described in this study) the V̂dd operator couples only two-atom collective stateswith∆M = 0,
whereM is the total momentum projection of the collective state.

In this work we focus on FSSC three-body Förster resonances (4.39), whichwere described in
detail in the previous sections (see Sections 4.2 and 4.3) [223, 225]. Assuming that at the begin-
ning of the interaction the system is in state |nP3/2⟩⊗3 , we consider transitions of the form (4.40),
where, due to the resonant interaction, the amplitudeCfin of the final state |nS1/2; (n+ 1)S1/2;

nP1/2⟩ is much larger than all other complex amplitudes in the system. Thus, the main part of
the population dynamics of the atomic system will be described by equation (4.39).

|nP3/2⟩⊗3 → |nS1/2; (n+ 1)S1/2;nP1/2⟩ (4.39)
|nP3/2⟩⊗3 →

∑
i

CiΨi (4.40)
To facilitate an intuitive description, one could consider transitions (4.39) in a two-level sys-

tem with Ψin = |nP3/2⟩⊗3 and Ψfin = |nS1/2; (n+ 1)S1/2;nP1/2⟩. We assume that these are
the eigenstates of the Hamiltonian Ĥ0 + ĤFS

, which does not include the interaction of atoms
with each other or with radiation. Then the state of the system has the form (4.41).
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Ψ = aΨin(r)e
−iE1t/ℏ + bΨfin(r)e

−iE2t/ℏ (4.41)
Here, the energy levels depend on the external electric field. We consider the case of the

quadratic Stark effect (4.42). If the energy levels become degenerate (E1 = E2), this intersectiondenotes a three-body Förster resonance.

E1(2) = E0
1(2) −

1

2
α1(2)F

2
S (4.42)

We take into account the other interactions in the systemby adding the corresponding parts
of the Hamiltonian V̂ and ĤFRF

. The interatomic interaction leads to the removal of the energy
levels degeneracy in the resonant field, and induces an avoided crossing. This avoided crossing
has a width of Rabi frequency Ω0 = 2⟨Ψfin(r)|V̂ |Ψin(r)⟩.Interactionwith the AC electric field leads to the fact that the energy levels of the system also
become time-dependent (4.43). Then, we can conclude that the anti-crossings which lead to a
resonant interaction of the form (4.39) will multiply in this case and that they will be repeated
with the periodicity determined by the frequency of RF radiation.

E1(2) = E0
1(2) −

1

2
α1(2)(FS + FRF cos(ωt))2 (4.43)

Note that the given two-level model is incomplete and serves only for the purposes of
demonstration of the RF-induction principle for many-body resonances. To obtain an informa-
tive result, the interaction with external radiation should be taken into account in the numerical
simulation including a wide range of Rydberg states.

4.4.3. Numerical simulations

This subsection provides a detailed description of our numerical simulations of Förster res-
onances induced by RF radiation in a three-atom system. We model the interaction between
atoms isolated in individual optical dipole traps arranged linearly and equidistantly along the di-
rection of the external control electric field (Z axis). As described previously in Subsection 3.3.7,
the choice of such an atomic configuration reduces the number of interaction channels (due to
the presence of axial symmetry), and makes it easier to describe polyatomic resonances.

We consider level |RRR⟩ = |70P3/2

(
m = 1/2

)
⟩⊗3 as the initial Rydberg level for resonances

(4.39). Thus, the three-body resonance under study has the form (4.44). Note that arbitrary
value for the principal quantum number n can be chosen, according to the experimental re-
quirements. For the demonstration purposes, we consider n = 70, since a good compromise
between robustness to small fluctuations of DC electric field and individual Rydberg lifetimes
was shown for this value in previous sections (see Sections 4.2 and 4.3) [223, 225]. To reduce
the number of basis states, we limit the collective state spectra by ± 2 GHz relative to the en-
ergy of |70P3/2⟩⊗3 state, thus considering only atomic states with a momentum value l ≤ 1.
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4.4. CCPHASE gate based on RF-induced FSSC resonances
Also, due to the linear configuration of the atomic ensemble, a selection rule ∆M = 0 arises
[98, 193], which allows us to exclude collective states whose total moment projection differs
from M of the initial state. Thus, we significantly reduce the basis of states under considera-
tion, down to ∼ 360 collective states, presented by combinations of all the magnetic sublevels
of |70S1/2⟩, |71S1/2⟩, |70P1/2⟩, |70P3/2⟩ individual Rydberg states.

|70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩ (4.44)
Numerical approach to the simulation of resonant interactions inducedby a time-dependent

periodic electric field was analysed in detail in [153]. We incorporate this approach into the nu-
merical model presented earlier in Sections 4.1 and 4.3. To model the time dynamics of the
three-body system, we solve numerically the non-Hermitian Hamiltonian based Schrödinger
equations for the complex amplitudes of the collective basis states taking into account Rydberg
lifetimes [169]. During the simulation, we take into account the dipole-dipole interatomic inter-
actions (DDI) [227], as well as the interaction of atoms with an external cumulative electric field
F = FS + FRF cos (2πωt) [153]. Here FS denotes the static part of electric field (DC field), while
FRF is the amplitude of RF field (AC field).

Figure 4.20 depicts the three-body Förster resonances (4.44) obtained from the simulation.
This effect has several physical interpretations. On the one hand, the energy barrier δ between
the collective states of the multiatomic system is compensated by radiofrequency radiation.
Thus, by absorbing or emitting one or several photons of frequency ω, atoms experience the
Förster resonance in the case if δ = kω, where k is an integer. This process is represented in
the Stark diagram Fig. 4.20(a). Here the arrows show the transfer from the initial (blue line) to
the final (red line) state of the triatomic system as a result of emission (left arrow) or absorption
(right arrow) of a single photon. The electric field differences between the original three-body
resonance |70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩, depicted by the intersection of the solid blueand red lines, and the RF-induced resonances shown by arrows, are only determined by the
frequency of the external radiation. Thus, we gain the possibility to control the position of the
induced resonances in the scale of the DC electric field by changing only the frequency of RF-
radiation.

An alternative description is based on the Floquet approach. The energies (4.43) depend
on time periodically, which leads to the formation of an infinite number of sidebands in the
spectrum, separated by ω (Fig. 4.20(b)). The eigenfunctions of the Hamiltonian, in turn, also
have relative amplitudes anL,m, described by generalized Bessel functions (see Appendix B).

anL,m =

∞∑
k=−∞

Jm−2k

(
αnLFSFRF

ω

)
Jk

(
αnLF

2
RF

8ω

)
(4.45)

Figure 4.20(b) depicts the three-body Förster resonances in a form of Stark diagram, includ-
ing both the collective atomic states and their Floquet sidebands. It shows the initial and final
states of the system (solid lines), accompanied by sidebands (dashed lines). Each intersection

141



Chapter 4. Results

0 , 0 0 0 , 0 5 0 , 1 0 0 , 1 5 0 , 2 0
- 2 5 0
- 2 0 0
- 1 5 0
- 1 0 0

- 5 0
0

0 , 0 0 0 , 0 5 0 , 1 0 0 , 1 5 0 , 2 0
- 2 5 0
- 2 0 0
- 1 5 0
- 1 0 0

- 5 0
0

5 0

0 , 0 0 0 , 0 5 0 , 1 0 0 , 1 5 0 , 2 0
0 , 0 0
0 , 0 5
0 , 1 0
0 , 1 5
0 , 2 0
0 , 2 5
0 , 3 0

En
erg

y (
MH

z)

 3 ×7 0 P 3 / 2 ( | m | = 1 / 2 )
 7 0 S 1 / 2 + 7 1 S 1 / 2 + 7 0 P 1 / 2

 3 ×7 0 P 3 / 2 ( | m | = 1 / 2 )
 7 0 S 1 / 2 + 7 1 S 1 / 2 + 7 0 P 1 / 2

En
erg

y (
MH

z) 1
2 3

4
5 6

7

∗( c )

( b )

 N o  R F
 R F  ( 5 0  M H z )

ρ

E l e c t r i c  f i e l d  ( V / c m )

( a )

Figure 4.20 : (a) Numerically calculated Stark structure of the collective energy levels, involved in three-body Förster resonance |70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩. The energy of the initial state |70P3/2⟩⊗3

is taken as a reference. The intersection of solid blue (initial state) and red (final state) lines mark theposition of the original three-body resonance, while the arrows indicate the corresponding RF-inducedresonances. (b) Floquet representation of the Stark structure of collective energy levels. Solid lines cor-respond to the initial (blue) and final (red) states of the system. Dashed lines denote the correspondingfirst-order Floquet sidebands. Each intersection corresponds to a three-body resonance. (c) Numericallycalculated dependence of the fraction ρ of atoms in the final |71S1/2⟩ state after three-body interactionon the external DC electric field for the initial state |70P3/2

(
m = 1/2

)
⟩⊗3. The atoms are located alongthe Z axis at interatomic distance R = 10 microns. Different groups of peaks represents original orRF-induced resonances. Two cases are presented: three-body resonance in the absence of RF induction(black line); three-body RF-induced resonant peaks along with the original resonance (green line).
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4.4. CCPHASE gate based on RF-induced FSSC resonances
of the lines corresponds to a resonance. The original three-body resonance (4.44) is still repre-
sented by the intersection of solid blue (initial state) and red (final state) lines, and is indicated
by the number 4. This resonance naturally exists in the corresponding DC electric field even
in absence of RF radiation. The intersections of the sidebands with the original levels corre-
spond to first-order resonances and are located in the same DC electric field as the “arrows” in
Figure 4.20(a). Two RF-induced first-order resonances were found near the original three-body
resonance, depicted by the intersections 1, 2 and 6, 7 between the original energy levels and
corresponding Floquet sidebands. Also, resonances 3 and 5 appear in the same DC electric field
as original resonance due to the Floquet sidebands intersection. These resonances are com-
pletely analogous to the original resonance 4 and do not create additional interaction channels.
Note that during the calculation of the presented Stark diagrams, no interatomic interactions
were taken into account.

In Figure 4.20(c), numerically simulated three-body Förster resonances (4.44) are shown.
When RF radiation is turned off, only original resonance 4 remains (black line). Note that in the
resonant process, we cannot attribute |70P3/2⟩ → |70S1/2⟩, |70P3/2⟩ → |71S1/2⟩ and |70P3/2⟩ →
|70P1/2⟩ transitions to a specific atom in an ensemble. In this regard, several resonant inter-
action channels are formed, from which only two are allowed due to symmetry reasons [193].
This process is similar to the Autler–Townes effect, and leads to the splitting of resonant peaks
into 2 satellites due to always resonant excitation hopping, as it is shown in the Figure 4.20(c).
Presence of the RF radiation induces additional first-order peaks (green line). The relative dis-
tances between the resonances correspond to the applied radiation frequency of 50MHz. The
displacement of the doublet centers relative to the expected resonant positions provided in
Figures 4.20(a, b), is due to the presense of the interatomic dipole-dipole interaction V̂ in the
Hamiltonian Ĥ for the complete simulation, while it was not taken into account during Stark
maps calculation. The expected DC field of the resonance peak is also displaced due to the
AC Stark shift produced by the RF field applied. This effect is clearly noticeable for the original
three-body resonance peak (black line on Fig.4.20(c)), which shifts when the RF part of the field
is switched on (central doublet, green line in Fig.4.20(c)).

A great decrease of intensity can be seen for the left Floquet sideband (which is represented
by two leftmost peaks in Fig.4.20(c), green line), when comparing with the right sideband (two
rightmost peaks in Fig.4.20(c)). This decrease is associated with two effects. First, the amplitude
is influenced by two-body exchange interactions between S and P states, accompanied by ex-
change of momentum projection m. These interactions are resonant in the zero field due to
the spectra degeneracy, thus provoking a significant leakage of the initial state population. The
influence of such processes decreases quadratically when the DC field increases and becomes
negligibly small for the original resonance [223]. Second, the modulation depth (or equivalently
the amplitude of the Floquet sideband) depends on the DC electric field. Since the Stark ef-
fect is quadratic, the modulation depth increases fast with the DC field component, which is
demonstrated by Eq. (4.45). Thus, a significant decrease in peak amplitudes can be expected
for small values of FS compared to larger values. To avoid the unwanted influence of these two
effects, we further concentrate on the rightmost peak from Fig.4.20(b) (signed with asterisk)
when considering any resonant dynamics.
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Figure 4.21 : (a) Numerically calculated Stark structure of the collective energy levels, involved in res-onant Förster interactions. The energy of the initial state |70P3/2⟩⊗3 is taken as a reference in zerofield. The intersection of solid blue and red lines mark the positions of the original three-body reso-nance |70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩, while the arrow indicates the RF-induced two-body reso-nance |70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P3/2⟩. (b) Floquet representation of the Stark structure of col-lective energy levels. Solid lines correspond to the initial state |70P3/2⟩⊗3 (blue) and the final state
|70S1/2; 71S1/2; 70P1/2⟩ (red). Dashed lines denote the first-order Floquet sidebands of the final states
|70S1/2; 71S1/2; 70P3/2(|m| = 1/2)⟩ (brown) and |70S1/2; 71S1/2; 70P3/2(|m| = 3/2)⟩ (green). Each inter-section corresponds to a resonant process. (c) Numerically calculated dependence of the fraction ρ ofatoms in the final |71S1/2⟩ state after the many-body interaction on the external DC electric field for the
initial state |70P3/2

(
m = 1/2

)
⟩⊗3. The atoms are located along the Z axis at R = 10 µm distance. Threecases are presented: three-body resonance in the absence of RF induction (black line); two-body reso-nance enabled by RF radiation when only two atoms are excited (cyan line); two- and three-body peakswhen three Rydberg atoms are exposed to RF radiation (green line).
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4.4. CCPHASE gate based on RF-induced FSSC resonances
The use of RF radiation alsomakes it possible to induce transitions that are energetically for-

bidden under the conditions of the DC Stark effect. Figure 4.21 demonstrates an example of a
two-body transition between states |70P3/2⟩⊗3 and |70S1/2; 71S1/2; 70P3/2⟩. As it was explainedin previous sections (for example, see Section 4.1), such transitions are forbidden under the or-
dinary conditions of resonance (4.44) provoked by DC electric field, since the Stark effect in this
case leads to an increase of the energy gap of initial and final states (Fig. 4.21(a)). Nevertheless,
by applying RF radiation, we can induce new two-body resonances for arbitrary values of DC
electric field. For example, choosing the RF frequency to be 318MHz we obtain this resonance
for almost the same DC field as for the previous scheme with 50 MHz. This is demonstrated in
Figure 4.21(a), where the arrow shows the RF-induced two-body transition (at 0.1815 V/cm) ap-
pearing close to the DC electric field, for which RF-induced three-body resonance was observed
in Figure 4.20(c) (0.1805 V/cm). In principle, we can induce resonances in an exactly matching
electric field by slightly changing the radiation frequency. Thus, by changing only the frequency
of the field, we can activate different strong interactions in the system.

Turning to the Floquet approach (Figure 4.21(b)), we can see several intersections between
the collective energy levels. Thus, the intersection 4 of the solid red and blue lines here, as in
the previous picture, refers to the three-body resonance. This resonance is shown in Figure
4.21(c) as the two leftmost peaks (green line and black line). Note that the signal evolution time
was chosen to maximise the two-body resonance peak. Therefore, the three-body resonance
has a smaller amplitude than in Fig. 4.20. The intersections of first-order Floquet sidebands of
levels |70S1/2; 71S1/2; 70P3/2(|m| = 3/2)⟩ and |70S1/2; 71S1/2; 70P3/2(|m| = 1/2)⟩ (dashed green
and brown lines, respectively), with the initial state (solid blue line), reflect resonances (4.46)
and (4.47), respectively. The peaks corresponding to these resonances only appear when the
external RF radiation is applied. Note that Figure 4.21(b) shows only the intersections of the
end-state sidebands with the initial state, and does not show a complementary picture (which,
nevertheless, is present at higher energy values).

|70P3/2(|m| = 1/2)⟩⊗3 → |70S1/2; 71S1/2; 70P3/2(|m| = 3/2)⟩ (4.46)
|70P3/2(|m| = 1/2)⟩⊗3 → |70S1/2; 71S1/2; 70P3/2(|m| = 1/2)⟩ (4.47)

It is important to point out that the nature of resonances (4.46) and (4.47) is fundamentally
different. The resonance (4.46) is a three-body resonance, since the states of all three atoms
change in the process. It is shown by the central pair of peaks on the green line (Fig. 4.21(c)).
In turn, the resonance (4.47) is two-body, shown by the rightmost peak on the green line in
Fig. 4.21(c). Note that for two-body interactions the peak doubling effect we described earlier is
not observed, thus a single peak represents a Floquet sideband. To demonstrate the two-body
nature of this effect, we conducted a simulation taking into account the presence of only two
atoms in the ensemble (cyan line in Fig. 4.21(c)), separated by a distanceR. It can be seen that in
this case the peak is present and retains its amplitude, which proves its fundamental two-body
nature. The significant peak shift in this case is explained by the absence of interaction with the
third atom.

The data presented in this subsection demonstrate a wide range of possibilities provided
145



Chapter 4. Results
by external RF radiation for controlling a triatomic system. Let’s assume that an experimental
setup has been prepared, consisting of a register of Rydberg atoms isolated in individual optical
dipole traps, and an external electric field co-directed with the interatomic axis. Then, we have
the opportunity to switch between various polyatomic interactions and adjust their strength
only by controlling the parameters of external RF radiation (frequency and amplitude, as well
as the shape of the pulses). This control mechanism is extremely convenient for implementing
complex multiqubit gates. In the next chapter, we will demonstrate exactly how the described
interactions can be used to implement a three-qubit CCPHASE quantum gate.

4.4.4. CCPHASE gate proposal

RF-induced resonant interactions shown in the previous subsection allows the direct con-
trol of phase and population dynamics of many-body Rydberg states in atomic ensemble. Thus,
we state that presented interactions are promising candidates for the implementation ofmany-
bodyquantumgate protocols. To prove this, wedemonstrate here twoexamples ofCCPHASE
gate protocol for arbitrary value of ϕ, based either on three-body, or on two-body resonant in-
teraction.

The universal gate schemewe present is a substantial modification of our previous proposal
[225], shown in Section 4.3. The same linear arrangement of atomic qubits is kept, which was
described above. We use the central atom as a target qubit, and two outer atoms as control
ones. We utilize RF field to induce the Förster resonance for a chosen value of FS and thus
implement a quantum doubly-controlled phase gate CCPHASE. Note that the DC part of the
electric field is being kept constant during the whole process, thus facilitating the experimental
implementation of the scheme.

The significant improvement lies in the application of non-resonant DC electric field, which
allows us to limit unwanted interactions during laser excitation, as well as avoid the influence
of always-resonant zero-field interactions of the form |nP3/2(m1)⟩⊗3 → |nP3/2(m2);nP3/2(m3);

nP3/2(m4)⟩. Such interactions can arise due to the degeneracy of states with different projec-
tions of the magnetic moment in the zero field. Nevertheless, when the DC field is present,
these interactions are no longer resonant and do not lead to any unwanted dynamics.

• Gate protocol
The implementation of the desiredCCPHASE gate can be divided into a sequence of three

steps (see Fig.4.22).
Step 1: The laser excitation π pulses 1-3 are applied simultaneously to all three atomic

qubits. We assume that prior to the excitation, the atoms were in their logical states (namely,
|0⟩ and |1⟩). These states are represented by two pre-selected hyperfine sublevels of rubidium
ground states |5S1/2⟩ (see Subsection 2.3.2) [59, 273]. We consider fully resonant single-photon
laser excitation in rotating wave approximation, assuming that only transitions of the form
|1⟩ → |R⟩ = |70P3/2

(
m = 1/2

)
⟩ are allowed. We thus account for interactions during laser ex-

citation, in contrast with the previously used models. For practical applications, a three-photon
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4.4. CCPHASE gate based on RF-induced FSSC resonances
excitation scheme can be used to pair the logical states of qubits with Rydberg levels [170], as
discussed in Subsection 2.3.2. The effects associated with the phase and intensity noise of the
laser were considered in [252] and were not taken into account in this study, which focuses on
the influence of Rydberg interactions.

Step 2: RF pulse of the duration T is applied to the system, inducing resonance for a chosen
value of the DC electric field. Note that the DC field, which is non-resonant in the absence
of RF, appears to be resonant for a certain Floquet sideband, which arises as a result of the
radiofrequency radiation application. The RF pulse is accompanied by two waiting times T 1

waitand T 2
wait, which are additional configurable system parameters. The DC and AC parts of the

electric field are co-directed, thus keeping the symmetry of the atomic system unchanged. The
resonant interaction causes the phase of the collective state |RRR⟩ to change by ϕ during the

CCPHASE gate with three trapped atoms(a)
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Figure 4.22 : (a) Scheme of general CCPHASE gate based on three-body Rydberg interactions. ThreeRb atoms are located in the individual optical dipole traps aligned along the Z axis, which is co-directedwith the external control electric field. Laser pulses 1-6 excite and de-excite the chosen Rydberg atomicstates. The ϕ phase shift due to the three-body interaction appears only if all three atoms are excitedinto Rydberg states. The green and blue arrows here indicate |70P3/2⟩⊗3 → |70S1/2; 70P3/2; 71S1/2⟩and |70S1/2; 70P3/2; 71S1/2⟩ → |70S1/2; 71S1/2; 70P1/2⟩ two-body transitions, respectively. Thus, the fullscheme corresponds to a collective resonant transition |70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩. (b) Timingdiagram of the pulses in the proposed gate scheme.
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interaction time. This corresponds to a CCPHASE gate implementation, provided that all
other states of the system remain unchanged after the application of RF radiation terminated.

Step 3: The de-excitation−π pulses 4-6 are applied simultaneously to all three atomic qubits.
We performed numerous simulations of the operation of CCPHASE gate scheme for a

wide range of ϕ. The simulations were performed in an extended basis of states, which also
included the logical states of qubits, in contrast with previously considered scheme in Section
4.3. For the first demonstration of the gate operation, we consider the implementation of the
Toffoli gate (see Fig. 4.23), based on a three-body RF-induced Förster resonance (4.44). We use
the CCPHASE(π) ≡ CCZ gate, supplementing it with two Hadamard gates on target qubit.
These Hadamard gates are performed by two-photon Raman Yπ/2 pulses [274].

• Three-body resonance-based protocol
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Figure 4.23 : Population dynamics of collective states of a triatomic register in the process of imple-menting a Toffoli gate based on a three-body resonance (Eq. 4.44) for the initial states |111⟩ (a) and |011⟩(b). The applied pulses are indicated at the top of the figure. The initial state of the quantum register isrepresented by a black dotted line, and the final state is represented by a red dashed line. The blue linein each case represents the corresponding collective Rydberg state, and green line corresponds to itscounterpart associated with a partial Rydberg state. System parameters: R = 10 µm, FS = 0.1805 V/cm,
FRF = 0.05 V/cm, ω = 50 MHz, T = 300 K, t = 1.27 µs. The estimated gate fidelity is 99.31% for non-cryogenic environment.
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4.4. CCPHASE gate based on RF-induced FSSC resonances
Figure 4.23(a) shows the behavior of the relevant collective states of the system in the case

when the initial state of the register is |111⟩. Note that we use standard qubit state notation
|Control⟩ ⊗ |Control⟩ ⊗ |Target⟩ for the register states, although in the proposed gate, target
qubit is the central one. Due to the application of the Hadamard gate, the population is first
evenly distributed between states |111⟩ and |110⟩. Then the atoms are excited into the Rydberg
state (|RRR⟩ − |RR 0⟩

)
/
√
2. The subsequent RF pulse, which in this case has a duration of

1.27 µs, induces a three-body resonance (4.44), shown in Figure 4.20(c) by the rightmost peak
(signed with asterisk). As a result of the resonant interaction, the phase evolution accelerates,
and the phase of the |RRR⟩ state changes by π. Additional waiting times T 1

wait and T 2
wait allow to

adapt the phases of different collective states and compensate for unwanted phase shifts. The
stages of de-excitation of atoms and the second application of the Hadamard gate complete
the scheme. As demonstrated in Fig. 4.23(a), the accumulated phase shift leads to the final
population interchange between |111⟩ and |110⟩ states.

Although two-body interactions are present in the system, they do not add any sizeable
effect on the Rydberg states presented on Fig.4.23(a). For the |RRR⟩ state, the three-body
resonance has a dominant influence. The |RR 0⟩ state, in turn, is characterized by a doubled
distance between atoms excited into Rydberg states, and the absence of resonant dynamics. In
this case, the effect of two-body interactions is sufficiently weakened [227].

Figure 4.23(b) depicts the simulated dynamics of populations in the case when only one
of the controlling qubits was initialized into state |1⟩ along with the target qubit. Insignificant
population dynamics, expressed in small population oscillations of the |0RR⟩ state, is associated
here with the presence of non-resonant two-body interactions |70P3/2⟩⊗2 → |70S1/2; 71S1/2⟩.The two-body state |70S1/2; 71S1/2⟩ can also interact off-resonantly with the states |70P1/2⟩⊗2

and |70P3/2; 70P1/2⟩. These interactions also lead to the accumulation of the phase shift of the
collective Rydberg state. Nevertheless, by choosing precise values of experimental parameters
(interatomic distance, gate execution time, delay times, and external field parameters), this shift
can be fully compensated. As a result, themajority of population of the initial state |011⟩ returns
back to unity, while the population of the opposite state |010⟩ effectively returns to zero after
applying the pulse sequence. A detailed analysis of two-body interactions in three-body systems
of Rydberg atoms is given in our previous articles [154, 193, 223, 225] as well as in previous
Sections 4.2 and 4.3.

For initial states |100⟩, |010⟩, |001⟩, only one atom is excited to the Rydberg state (or partially
excited due to aHadamard key application for the |001⟩ state). Thus, the dynamics of the system
is limited by the decay of the Rydberg state associated with finite lifetimes. Finally, for initial
state |000⟩, we assume the absence of any dynamics.

• Two-body resonance-based protocol
A similar CCPHASE-gate scheme can also be realized through the use of the inaccessible

two-body resonance (4.47). This seems counterintuitive since a two-body operator cannot lead
to entanglement of the states of the three atoms under ordinary circumstances. To describe
the nature of the proposed gate implementation technique, let us refer to Figure 4.21(c). As can
be seen from this figure, in the case of excitation of only two closely spaced atoms (e.g., atoms 1
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Figure 4.24 : Population dynamics of collective states of a triatomic register in the process of imple-menting a Toffoli gate based on a two-body resonance (4.47) for the initial states |111⟩ (a) and |011⟩ (b).The applied pulses are indicated at the top of the image. The initial state of the quantum register isrepresented by a black dotted line, and the final state is represented by a red dashed line. The blueline in each case represents the corresponding collective Rydberg state, and green line corresponds toits counterpart associated with a partial Rydberg state. System parameters: R = 10 µm, FS = 0.1805V/cm, FRF = 0.052 V/cm, ω = 318MHz, T = 300 K, t = 1.27 µs. The estimated gate fidelity is 99.29% fornon-cryogenic environment.

and 2 or atoms 2 and 3) into Rydberg states, the two-body resonance arises atFS = 0.1679 V/cm.
However, if all three atoms have been excited into Rydberg states, the two-body peak is strongly
shifted, and is found at FS = 0.1815 V/cm. At the same time, an external DC electric field is kept
constant throughout the gate implementation time. By tuning the field to a value close to the
position of the two-body peak in the three-atomic excitation case, we can thus induce strong
resonant phase and population dynamics for the |RRR⟩ state. In turn, the phase dynamics
will be highly suppressed at the same electric field in the case of two-atom excitation. Thus,
adjusting the position and strength of the resonance by tuning the parameters of the inducing
RF radiation, we can regulate the phase and population dynamics of the three-body system and
implement the quantum CCPHASE gate according to steps 1-3 described above. Note that
three-body interaction process (4.46) would also present a small off-resonant contribution into
the system dynamics and should be taken into account.
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4.4. CCPHASE gate based on RF-induced FSSC resonances
We again demonstrate here the gate performance on the example of the Toffoli gate. As

can be seen from Figure 4.24(a), the population of |RRR⟩ state demonstrates rapid Rabi oscil-
lations (in full accordance with the analyses presented in Subsection 3.3.7). These oscillations
correspond to a two-body transition (4.47), and are accompanied by a π phase shift. However,
such oscillations are absent for |RR 0⟩ state, when only two atoms are excited into Rydberg
states. This is due to the return of the two-body resonance to its original value in the absence
of the third Rydberg atom (see the cyan and green curves in Figure 4.21(c)). An increase in the
interatomic distance also plays a significant role, as we discussed above. Combined, these two
effects suppress population oscillations to negligible values. Yet, if only the resonance displace-
ment effect is active, small population oscillations remain noticeable, as shown for the |0RR⟩
state in Figure 4.24(b). As in the previous scheme, such interactions lead to a significant phase
shift, compensation of which is achieved by optimising the system parameters. Note that in this
case the delay times were not used as control parameters, since the correct phase dynamics
was obtained with RF frequency and amplitude control only.

It is also important to emphasize that in the described two-body-based protocol, the used
values of the parameters of the quantum register (R, T and FS ) are completely similar to the
values for previously described three-body-based protocol. This may be surprising, since, ac-
cording to the analysis of Figures 4.20(c) and 4.21(c), the three-body and two-body resonances
(4.44) and (4.47) occur at slightly different values of the external electric field for R = 10 µm.
Nevertheless, the proposed protocol is implemented for FS = 0.1805 V/cm, in a slight deviation
from the exact peak of the two-body resonance. This can be noticed from the incomplete am-
plitude of the Rabi oscillations in Figure 4.24(a). In turn, this value of the electric field exactly
corresponds to the value used in the three-body gate protocol described earlier.

4.4.5. Gate fidelity

Using the method proposed earlier in Subsections 2.1.5, 4.1.6 and 4.3.4, we measured the
accuracy ofCCPHASE gates for a wide range of ϕ values. Several exemplar results are shown
in Table 4.7 for the gate protocol based on three-body resonance (4.44). The second two-body
resonance-based gate protocol demonstrates similar fidelity results (with variations on the or-
der of 0.05%). Note that the characteristics of the applied RF radiation are the only controlling
parameters of the gate. To perform different phase gates, we only change FRF and ω, and keep
all the other parameters fixed.

For the described experimental conditions of resonance (Eq. 4.44), the average accuracy
of gate implementation is 99.27% for a room-temperature environment. The main source of
fidelity losses (∼ 0.51%) is the finiteness of the lifetimes of Rydberg states. Compensation for
these losses down to 0.13% can be achieved using a cryostat at 4 K [58, 275] temperature for the
proposed parameter values, increasing the average fidelity to 99.65%. Additional compensation
for Rydberg lifetime losses can be achieved by using higher Rydberg levels [59, 156]. The losses
associated with the non-optimal choice of parameter values are estimated as∼ 0.22% after the
application of multiparametric optimization routines based on simulated annealing technique
[276]. However, this optimization is preliminary and does not allow us to obtain fully optimal
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Chapter 4. Results
Table 4.7 : EstimatedCCPHASE(ϕ) gate fidelities for different values of ϕ. The three-body resonancebased implementation was considered. Results for room temperature (300 K) and cryogenic setup (4 K)are presented. System parameters: R = 10 µm, FS = 0.1805 V/cm, T = 1.27 µs, T 1

wait = T 2
wait = 0.2 µs.RF parameters are shown in the table for each gate.

T , K CCPHASE(π4 ) CCPHASE(π2 ) CCPHASE(3π4 ) CCPHASE(π)300 99.27 99.26 99.22 99.314 99.64 99.63 99.6 99.69
FRF , V/cm 0.0389 0.0388 0.0416 0.05
ω, MHz 46.75 48.5 48.35 50

parameter values in an atomic system due to the complexity of the task. Remaining losses
could be compensated by applying additionalmulti-parametric optimization routines alongwith
appropriate composite pulse sequences [277, 278] or coherent control techniques [279, 280].
For practical applications, we propose to use simulated annealing method in conjunction with
Nelder-Mead pre-processing [281]. QAOA optimization techniques may also be applicable [84,
262].

To implement correct phase gates experimentally, it is necessary to pay attention to the re-
quired accuracy of the parameter values control. Assuming that the allowable fidelity deviation
from the maximum value cannot exceed 0.1%we found the following requirements for param-
eter accuracy thresholds: the interatomic distance must be controlled with an accuracy of 20
nm; the interaction time - 0.025 µs; DC electric field amplitude - 7 · 10−5 V/cm, AC electric field
amplitude - 9 · 10−5 V/cm, RF frequency - 20 KHz. While the control of the interaction time, as
well as of the RF frequency, does not present any experimental challenges [282], the limiting
factors are the complexity of the DC and AC field amplitudes control, along with the interatomic
distance control. A method to reduce possible gate errors due to electric field variations was
proposed in Section 4.3, based on the interatomic distance reduction for the chosen value of n
[225]. Thus, if necessary, one can find a compromise between the sensitivities to these two pa-
rameters suitable for a particular experimental realization. A complete analysis on electric field
calibration was proposed both for DC [283, 284] and AC [285–287] fields in Rydberg systems. A
proper level of interatomic distance control has been demonstrated with modern holographic
and AOD-based tweezer techniques [179, 222, 288, 289].

4.4.6. Conclusion

In this section, we have proposed and numerically investigated RF-induced many-body
Förster resonances for 70P states of Rb atoms. In particular, we have considered RF-induced
three-body FSSC resonances in a system of ordered Rb atoms. The performed numerical sim-
ulations allowed us to reliably demonstrate that coherent population oscillations are exhibited
by tuning the DC electric field on the Floquet sideband of the FSSC resonance. Thus, by con-
trolling the parameters of the external RF radiation, one can control the phase and population
dynamics in the Rydberg system.

We proposed a protocol of three-body quantum CCPHASE gate based on the described
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4.4. CCPHASE gate based on RF-induced FSSC resonances
resonances. The high accuracy of the gate for arbitrary values of ϕ was demonstrated in simu-
lations. The main advantage of this protocol over possible analogues is its applicability at large
interatomic distances (∼ 10 µm). Thus, we can conclude that proposed gate protocol is promis-
ing for realisation of quantum computations in large-scale Rydberg registers.

Comparing the quantum gate protocol proposed in this section with the schemes proposed
earlier in Sections 4.1 and 4.3, it is important to note several key advantages. First, the external
DC electric field is kept constant throughout the gate implementation, avoiding possible inter-
action deviations at the moment of field switching. Also, since the excitation and de-excitation
of atoms are performed in the external field, the undesirable effects associated with population
leakage due to two-body exchange interactions, which are resonant in the zero field, become
negligible. Second, the interaction control is performed predominantly by external RF radiation
parameters. Tuning the delay times, as well as the frequency and amplitude of the external
radiation, allows one to realise gates for different values of ϕ, keeping all other parameters of
the system unchanged. Thus, the experimental realisation of the gate is greatly facilitated. Ad-
ditional variation of the RF pulse shape can also be used to reduce the gate implementation
time. Third, since RF radiation allows inducing resonances for arbitrary values of the external
DC field, a compromise can be chosen to reduce the influence of quasi-forbidden resonances.

In addition to the three-body FSSC resonances, the controlling RF radiation also allows one
to realise inaccessible two-body resonances for high-lying Rydberg states. We demonstrated an
example of such a resonance, and shown that coherent population and phase dynamics can be
obtained for it. Note that this resonance can be induced for the same system parameters used
for three-body resonance induction previously. The only control parameters needed to switch
between the interactions are the frequency and amplitude of the RF radiation.

We have also proposed a protocol to realise the CCPHASE gate based on two-body in-
accessible resonances. This protocol is based on the effect of the resonance peak shift upon
variation in the number of excited Rydberg atoms. To the best of our knowledge, this technol-
ogy of many-body gate production has not been used before, which makes this gate protocol
an interesting object for further studies.

This work was supported by French government, under the “Vernadski” scholarship pro-
gram grant, and by National Research Agency (ANR), under grant ANR-22-CE47-0005 (QIPRYA
project). The Russian team was supported by Russian Science Foundation grant №. 23-12-
00067.
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Chapter 5
Summary and Outlook

5.1. Summary
Many-body Förster resonances in Rydberg systems were first discovered in Aime Cotton

Laboratory (LAC) in 2012. Four-body resonance transitions in a low-density Rydberg gas of Cs
atoms demonstrated the potential for enhancing dipole-dipole interactions in Rydberg ensem-
bles. Further studies carried out in LAC and Rzhanov Institute of Semiconductor Physics (ISP)
allowed both teams to experimentally register three-body Borromean resonances in ensembles
of Cs and Rb atoms. The numerically demonstrated possibility of realising coherent resonance
dynamics in structured atomic ensembles allowed one to consider Borromean resonances as
potential candidates for the implementation of three-qubit quantum gates. The main advan-
tage of Förster resonances is their long-range nature, which allows quantum gates between
distant qubits. This is important for creating full interconnectivity in a quantum register.

Within the framework of this thesis, a comprehensive study of the applicability of Förster
resonances for the quantumcomputation implementation in neutral-atom-basedquantum reg-
isters has been carried out. The research cycle consisted of four stages. At each stage, different
variants of resonance schemes were proposed, as well as approaches to their use for creating
quantum gates.

5.1.1. First stage

During the first stage of investigations, new three-body resonances of the type (5.1) were
proposed and numerically modelled. The main advantage of such resonances over the previ-
ously investigated transitions (5.2) was the possibility of their realisation for high-lying Rydberg
atomic states with n > 38 in Rb. This became possible due to the fact that the first two-body
transition 2 × nP → nS + (n + 1)S, necessary for the realisation of the parallel Borromean
transfer, was replaced by the nP + (n + 1)P → nS + (n + 1)S transition, thus relaxing the
constraint of using a single initial Rydberg level for all atoms. Such transitions have a positive
quantum defect in the zero electric field, and can be used in conjunction with non-resonant
SP excitation hopping to realise a three-body population transfer. Coherent population oscil-
lations were demonstrated for this new resonant interaction scheme in a structured ensemble,
accompanied by a phase change of the collective register states. Thus, it was shown that these
resonances are promising for the realisation of three-qubit quantum gates.

nP3/2(m = 3/2) + (n+ 1)P3/2(m = 3/2) + (n+ 1)P3/2(m = −3/2) →
→ nS1/2(m = 1/2) + (n+ 2)S1/2(m = 1/2) + (n+ 1)P3/2(m = 1/2)

(5.1)
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3× nP3/2(|m|) → nS1/2 + (n+ 1)S1/2 + nP3/2(|m∗|) (5.2)
The scheme of the Toffoli quantum gate was proposed based on the resonance (5.3) in Rb

atoms. The use of high-lying n = 80 states allowed us to significantly increase the lifetimes of
the collective Rydberg states and reduce the influence of decay on the coherence of population
oscillations. In the framework of the numerical simulations, the atomswere arranged linearly at
a distance R = 10 µm from each other along the quantisation axis Z coinciding with the direc-
tion of the external DC electric field. This configuration allows to reduce essentially the number
of multiparticle interaction channels due to the presence of the selection rule on the total pro-
jection of the systemmomentum∆M = 0. To further isolate the two- and three-body resonant
peaks, an externalmagnetic fieldwas utilised. High gate fidelity of∼ 98.3%was demonstrated in
numerical simulations, obtained due to themulti-parametric optimisation based on the Nelder-
Mead method. The implementation time of the gate was 2.42microseconds.

|80P3/2

(
3/2
)
; 81P3/2

(
3/2
)
; 81P3/2

(
−3/2

)
⟩ →

→ |80S1/2
(
1/2
)
; 82S1/2

(
1/2
)
; 81P3/2

(
1/2
)
⟩

(5.3)
Among the significant drawbacks of the developed scheme, the complexity of its potential

experimental realisation should be noted. In particular, the excitation of atoms into different
Rydberg states requires the use of several mutually coherent laser sources. Also, the necessity
to use an external magnetic field to isolate the relevant three-body interaction channel compli-
cates the experimental setup. The high sensitivity of the gate to deviations of the controlling DC
electric field places demands on the setup isolation from the environment. Additional research
was also needed to improve the fidelity of the quantum gate up to values of > 99% to make
it compatible with quantum error correction techniques. We concluded that although the pro-
posed gate could potentially be applied to the implementation of complex quantum algorithms,
additional efforts were required to compensate for the described drawbacks.

5.1.2. Second stage

As shown before, relaxing the constraint for using a single Rydberg level leads to experi-
mental drawbacks. Therefore, a different Förster resonance scheme was required. We pro-
posed andnumerically investigated fine-structure-state-changing (FSSC) three-body Förster res-
onances (5.4). Their main difference from the previously presented transitions (5.1) is that dur-
ing the three-body FSSC process the total momentum of the third atom changes to a lower
value. Since the SP -hopping process with momentum change J = 3/2 → J = 1/2 has a sig-
nificant energy defect, the condition of mutual defect compensation ∆1 = ∆2 can be fulfilled
using the standard two-body transition 2 × nP → nS + (n + 1)S. At the same time, due to
the negative energy defect, the two-body transition cannot be resonant in an external field, as
already discussed. Thus, only three-body resonances are realised in a three-atomic system, in
the absence of two-body peaks. This greatly simplifies the phase and population dynamics in
the quantum register.
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3× nP3/2 → nS1/2 + (n+ 1)S1/2 + nP1/2 (5.4)
The resonances (5.4) were numerically investigated for ensembles of Rb and Cs atoms. We

also investigatedmany-body quasi-forbidden Förster resonances located near the (5.4) scheme
resonant DC electric field. Determination of the strength of such resonances was necessary
to assess their potential influence on the coherence of Rabi oscillations in atomic ensembles,
and to determine the most suitable atomic elements and Rydberg states for the realisation of
multiqubit quantum gates. Based on the results of this study, we concluded that three-atom
rubidium ensembles exhibit highly isolated three-body resonances whose strength is an order
of magnitude greater than that of nearby quasi-forbidden transitions for high-lying Rydberg
states with n = 70 or above.

An extended numerical study of many-body resonances (5.4) was then carried out in struc-
tured and unstructured ensembles of Rb atoms. In the linear spatial configuration of the reg-
ister, only two three-body channels were observed for large interatomic distances R = 10 µm,
in the complete absence of two-body resonance interactions. Highly coherent population os-
cillations were also demonstrated, accompanied by phase changes of the system states. Thus,
we concluded that the FSSC resonances shown are promising for implementation of multiqubit
quantum gate protocols and proceed to the development of the corresponding gates.

5.1.3. Third stage

During the third stage of research, the Toffoli quantum gate protocol based on FSSC reso-
nances (5.4) for n = 70was proposed and numericallymodeled. The linear spatial configuration
of the three-atom register was chosen similarly to the previous case. Themain difference of the
newquantumgate protocol from the previously considered protocol was the lack of necessity to
excite atoms into different Rydberg states. Also, the absence of two-body resonance processes
near three-body peaks significantly simplified the phase dynamics of the system.

Through a series of numerical experiments, we convincingly demonstrated that the fidelity
of our proposed Toffoli quantum gate is> 99%. Thus, a significant improvement in fidelity was
achieved compared to the previous protocol described in Subsection 5.1.1.

We achieved a significant reduction of the quantum gate time compared to the previously
proposed scheme (up to 1.15 µs at interatomic distanceR = 10 µm and up to 0.42 µs atR = 8.5

µm). This seems counterintuitive, since the strength of the three-body interaction certainly de-
creases with decreasing n. Nevertheless, due to the essential simplification of the phase dy-
namics of the system in absence of two-body resonance processes, we managed to implement
the gate during the first period of Rabi oscillations, which had been impossible for the previous
scheme.

We also investigated the influence of variations of atomic register parameters on the fidelity
of the quantum gate. As was shown, the main limiting factor preventing an increase in fidelity
is the strong sensitivity of the gate to variations in the electric field and interatomic distance.
Nevertheless, a compromise can be reached that allows relaxing the requirements for control-
ling one of the parameters. In particular, strong dependence of the gate fidelity on the DC field
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variations can be reduced when the interatomic distance R is decreased due to the enhance-
ment of the interatomic interaction and broadening of the resonance peaks. It was shown that
when the interatomic distance is reduced from R = 10 µm to R = 8.5 µm, the sensitivity to
field fluctuations decreases by about a factor of 4. Although the reduction of the interatomic
distance does not meet the goals of realizing quantum gates between distant atoms, the pre-
sented study provides an opportunity to evaluate different variants of the quantum register
balancing necessary to achieve the maximum experimental fidelity of the gate.

Despite the significant improvement of the fidelity of the quantum gate compared to the
previous proposal, a number of drawbacks of the scheme required additional efforts. First of
all, the necessity to change the external controlling field by means of the Stark-switching tech-
nique remained, which imposed significant limitations on the possible accuracy of experimen-
tal realizations. Also, the insufficient number of controllable system parameters significantly
limited the possibility of compensating for undesired phase and population dynamics. Thus,
further studies were required to compensate for the described shortcomings.

5.1.4. Fourth stage

At this stage, we concentrated on the search for additional mechanisms to control multipar-
ticle resonance interactions in Rydberg systems. In particular, we studied in detail the use of
external radio frequency radiation to induce Förster resonances. Previously, radio-frequency
(RF) induced resonances had been studied in detail in two-atom systems. However, studies of
many-body RF-induced Förster resonances were not presented prioir to this work, to the best
of our knowledge.

We proposed and numerically investigated three-body RF-induced FSSC resonances in sys-
tems of spatially isolated Rydberg atoms of Rb. Such resonances are based on the application of
a composite inducing field, which includes both DC electric field and radio frequency radiation.
The RF photons allow to compensate the Förster defect of the collective Rydberg states for an
arbitrarily chosen value of the external inducing DC field. Also, external RF radiation allows to
achieve the induction of inaccessible two-body Förster resonances 2×nP → nS + (n+1)S for
high-lying Rydberg states. Such resonances cannot be realized for collective Rydberg states of
Rb with n > 38 due to specific values of polarizabilities and quantum defects of these states.
Nevertheless, the compensation of the two-body energy defect is possible due to the RF emis-
sion or absorption. Thus, external RF radiation provides a flexible tool for manipulating the
dipole-dipole interaction.

We numerically simulated two-body (5.5) and three-body (5.6) RF-induced resonance inter-
actions in the ordered ensemble of Rb atoms for n = 70. It was shown that for both types
of resonances, the position of the first Floquet sideband is effectively controlled by external
radiation. Thus, the resonance can be induced for an arbitrary value of the DC electric field.
This fact makes it possible to achieve a significant isolation of the three-body peaks from the
surrounding quasi-forbidden resonances, and to reduce their influence on the dynamics of the
quantum system. According to the conclusions of this study, multiparticle resonances demon-
strate coherent population dynamics in a linear spatial configuration, and are well suited for
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the realization of quantum gates.

|70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P3/2(|m| = 1/2)⟩ (5.5)
|70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩ (5.6)

We also proposed and numerically investigated protocols of three-qubit CCPHASE gates
based on the proposed two-body and three-body RF-induced resonances. The use of inducing
radiation allows us to effectively control the population and phase dynamics of the system,
giving ample opportunities to manipulate quantum states. Thus, we can use the frequency
and amplitude of the external radiation as exclusive control parameters to control the phase
of the gate. It was shown that by keeping all system parameters (interatomic distance, external
DC electric field and time of the gate realization) unchanged, we can realize the CCPHASE
gate for arbitrary value of ϕ with high fidelity by varying only the frequency and amplitude of
the RF field. Also, the activation of two-body or three-body resonances can be implemented by
varying the RF field parameters, while fully preserving all the other experimental parameters. In
this regard, different variations of the proposed gates can be realized in the same experimental
setup. Note that the ability to implement arbitrary gateswithout changing the register geometry
is crucial for performing algorithms in large-scale quantum computing devices.

The proposed protocols of quantum gates demonstrate high fidelity. In particular, the aver-
age fidelity of gates based on three-body resonances was ∼ 99.3% at room temperature. The
main source of losses, as in the previously proposed protocols, was represented by the finite
lifetimes of Rydberg states. Thus, whenmodeling the realization of the gate in a cryogenic setup
(with a temperature of 4 K), we managed to achieve a fidelity of∼ 99.7%, which significantly ex-
ceeds the fidelity of all currently available experimental realizations of three-body gates.

5.1.5. Results

Summarizing the above information, we can highlight the following important results we
achieved as an outcome of our research:

• Förster resonances (5.1) in Rb atoms were numerically investigated. Coherent resonance
dynamics was numerically demonstrated in a linear spatial configuration of the quantum
register.

• A Toffoli quantum gate based on (5.1) resonances for n = 80 in Rb atoms was proposed
and numerically simulated. The quantum gate demonstrated high speed (T = 2.42 µs),
high fidelity (98.3%), and long-range performance (R = 12.5 µm).

• FSSC three-body Förster resonances (5.4) were proposed and numerically investigated in
ensembles of Rb and Cs. Coherent resonance dynamics was demonstrated in a struc-
tured ensemble. The absence of additional resonance peaks was demonstrated.

• A Toffoli quantum gate based on three-body FSSC resonances (5.4) for n = 70 in Rb
atoms was proposed and numerically studied. The improved fidelity of the quantum gate
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(> 99%) as well as the acceleration of its implementation time (T = 0.42− 1.15 µs) while
preserving the long-range action (R = 8.5− 12.5 µm) favorably distinguished it from the
previously demonstrated gate. The potential experimental realization of the gate was
considerably simplified in comparison with the previous proposal by reducing the com-
plexity of the resonance dynamics and due to the utilization of identical initial Rydberg
states.

• Three-body radio-frequency induced FSSC Förster resonances in Rb atoms were pro-
posed and numerically investigated. Coherent dynamics was demonstrated for reso-
nances in a structured ensemble. It was shown that RF radiation could be used to induce
inaccessible two-particle resonances.

• The protocols of CCPHASE quantum gates for arbitrary phase ϕ were proposed and
numerically analyzed based on many-body RF-induced Förster resonances. The theoret-
ically achievable fidelity of the gates was ∼ 99.3% (∼ 99.7% for a cryogenic setup), while
maintaining fast (T ∼ 1.4 µs) and long-range performance (R = 10 µm). The use of RF
parameters as exclusive interaction controls significantly facilitated the potential experi-
mental realization of the gate.

5.2. Outlook
The presented study offers various options for realization of multiqubit quantum gates

based on many-body Förster resonances. The proposed protocols demonstrate high theoreti-
cal fidelity values, as well as a high rate of performance. The main advantage of the proposed
approach is the possibility of realizing gates between distant qubits, which can be useful for
creating interconnectivity of large-scale quantum registers. Inspired by the potential of Förster
quantum gates for quantum computer science problems, we intend to continue our research
in this area. In this subsection, we describe a number of possible research directions, in which
the further investigation would be required for the development of the presented technology.

5.2.1. Fidelity improvement

High fidelity values in the rangeF ∈
[
98.3%− 99.7%

] have been theoretically demonstrated
for three-qubit quantum gates in this thesis. Nevertheless, the efficient implementation of
complex quantum algorithms requires further improvements in fidelity. For example, solving
the problem of computing a 256-bit elliptic private key based on the Shor algorithm requires
∼ 5 × 107 three-qubit Toffoli gates [290, 291]. Thus, the fidelity losses of ∼ 3 × 10−3 are unac-
ceptable. At the same time, proposals of three-qubit gates based on dipole blockade and pulse
shaping currently available demonstrate theoretical error values of ∼ 10−6 [28, 64].

As it was noted repeatedly in Chapter 4 (for example, see the Subsection 4.4.5), the main
sources of accuracy losses are finite lifetimes of Rydberg atoms, as well as suboptimal choice of
parameters of the quantum system. We are actively working on developing possible solutions
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to both of these difficulties.

Several approaches exist to overcome the accuracy limit imposed by finite lifetimes. First,
a transition to higher Rydberg levels is possible, which allows one to significantly extend the
lifetimes, as well as to increase the interaction strength, thereby speeding up the gate perfor-
mance. However, enhanced coupling also leads to a significant narrowing of the resonance
peaks, and imposes additional constraints on the level of electric field control. An alternative
solution is to use two-body RF-induced resonances to realize three-qubit quantum operations,
as was shown in Section 4.4. Since the strength of two-body resonances is significantly superior
to that of three-body resonances, the execution of the gate can be faster if the phase dynamics
is accelerated. At the moment, we are investigating the inaccessible two-body resonances and
their application to the realization of fast multiqubit quantum operations.

The non-optimal choice of parameters of the quantum system is related to the complexity
of solving the multi-parameter optimization problem. When determining the quantum gate pa-
rameters, we need to achieve the desired phase and population dynamics for all N collective
quantum states of the considered register (2N−1 parameters in total). Note that the number of
controlling parameters (interaction time, interatomic distance, etc.) is most often much smaller
than the number of involved quantum states. Thus, an absolutely exact solution of this prob-
lem is not possible. In principle, the solution of such a problem for a three-atom system can be
efficiently approximated using simulated annealing or Nelder-Mead algorithms. Nevertheless,
the available software solutions showed low efficiency in solving this problem. Thus, the used
internal optimization tools of “Wolfram Mathematica” software gave substantially non-optimal
results and also required long implementation time on the processors available to us (approx-
imately 3 days for the optimization of a system with ∼ 360 collective states on a 16-core Intel
Core i7 processor).

To overcome this obstacle, we develop an optimization algorithm focused on optimizing
the parameters of multi-atom quantum registers in order to maximize the fidelity of quantum
gates. This algorithm is based on truncation and linearization of the optimization problem. We
briefly describe here the main ideas of this algorithm.

According to the previous considerations, in order to obtain an absolutely optimized quan-
tum gate scheme, certain phase and population dynamics must be achieved for N collective
states of the quantum system. Nevertheless, since we focus on excitations of a single initial
state (e.g., 3 × nP3/2), it can be argued that for a large number of spectrum states not paired
with the ground state, the population dynamics will be negligible. Thus, we can reduce the
problem to considering eight different initial ground states of the quantum register, their cor-
responding initial Rydberg states, and the collective final Rydberg states paired with them. On
average, after truncation, the problem typically contains 5 − 10% of the original number of
quantum states. Nevertheless, with a rough approximation, one can dispense with optimizing
only the Rydberg states, and hence the problem can be reduced to several states exhibiting the
largest dynamics. Specifically, for the quantum gate protocols we described earlier, the most
significant dynamics is demonstrated for states with three Rydberg atoms, as well as for states
with two closely spaced Rydberg atoms. In turn, if two excited atoms are located at a long dis-
tance from each other (outermost atoms in the linear register), insignificant phase dynamics is
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observed, which can be taken into account in the more precise calculations. Thus, we reduce
the problem from ∼ 360 states to three states |rrr⟩, |grr⟩, |rrg⟩, leaving only five parameters
needed to be optimized.

The linearization of the problem is achieved by looking at the collective state amplitude os-
cillations and extracting their phasewhich evolves linearly with time. In principle, in the absence
of essential deviations related to strong non-resonant interactions, the population dynamics of
any quantum state can be described in the form of Rabi oscillations with a certain detuning
from resonance. Approximating the population oscillations by periodic dependences, we intro-
duce the concept of “population phase” - a linear parameter depending on the effective Rabi
frequency and time. Thanks to this concept, we can represent the desired result of the whole
optimization problem as a vector consisting of the values of the “population phase” and the real
phases of the collective states.

Finally, the linearized constrained problem can be efficiently solved using standard opti-
mization algorithms. Currently, we are trying out the solution of such a problem using a com-
position of the Nelder-Mead algorithm (for global optimization) and simulated annealing (for
exact optimization near a local minimum). Although the algorithm is not yet fully ready, we are
already getting the first results. For example, multiparametric optimization allowed us to obtain
0.3% improvement in fidelity for the CCPHASE gates described in Section 4.4, increasing the
fidelity from ∼ 99.4% to ∼ 99.7%. We’re hoping to achieve further fidelity improvement once
the described algorithm is refined.

5.2.2. Sensitivity to atomic positions

Within the framework of this thesis, we have only slightly touched upon the issue of depen-
dence of quantum gates accuracy on atomic positions. Nevertheless, careful study of this issue
is necessary for successful realization of multiqubit quantum gates.

High position sensitivity of the demonstrated gate protocols arises for two reasons: the in-
teraction strength depends on the interatomic distance and laser excitation of the atoms to the
Rydberg levels adds a position dependent phase. The position dependent phase sensitivity is
in principle solved if using a multi-photon excitation with the right angles and should not repre-
sent more than a technical detail. On the other hand, the interaction strength dependence on
the interatomic distance is a fundamental consequence of the few-body interaction and can-
not be removed. Different strategies can be pursued to minimize this effect, including the use
of “echo” technique that could allow to time reverse the effect of the position dependence, or
finding the composite-pulse sequences [277] of the interaction removing the sensitivity to the
interatomic distance. We intend to study these methods and investigate their possible applica-
tion in modern quantum registers.

5.2.3. Förster blockade gates

Previously, we have referred several times to the possibility of quantum gates implemen-
tation based on the dipole blockade effect. Such gates are extremely convenient for complex
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quantum computations, and show the highest accuracy results among all proposals for Ryd-
berg quantum computing. In a recent publication, the group of M. Lukin reported a parallel
realization of high-precision (∼ 99.5%) two-qubit quantum gates on up to 60 atoms [49]. This
amazing result allows to declare reaching the gate fidelity sufficient for effective quantum error
correction.

The high fidelity of gates based on dipole blockade compared to technologies based on
simultaneous Rydberg excitation is caused by several factors. First, such gates are much more
robust to interatomic distance fluctuations if the atoms are deep inside the blockade radius.
Second, since fewer atoms are excited into Rydberg states, the influence of the finite lifetimes of
these states is also significantly reduced. This effect is further enhanced by the short realization
times of the gates (on the order of a few hundred nanoseconds). Nevertheless, as described
earlier, a significant disadvantage of such gates is their small-range effect. Due to the fact that
the dipole blockade is based on the van der Waals interaction, one can expect the formation of
such gates only between atoms located at a distance of several microns from each other.

One possible way to compensate for this effect could be to use blockade in the Förster
regime. As mentioned in Subsection 2.2.4, when compensating for the Förster defect, dipole-
dipole interactions are observed that depend on distance as ∼ 1/R3. Thus, by exciting the
atoms near the Förster resonance, one can achieve an enhancement of the dipole blockade
effect, which leads to a significant increase in the blockade radius. Previously, the blockade
effect upon excitation at the Förster resonance has been studied in Aime Cotton Laboratory
[200]. However, no gates based on this effect have been proposed so far, to the best of author’s
knowledge. We plan to conduct theoretical research aimed at finding algorithms for realizing
multi-qubit gates using the Förster blockade effect. We believe that such gates will be able to
exhibit the high accuracy of blockade gates and the long-range performance of Förster gates,
benefiting from the advantages of both approaches.

5.2.4. Experiment proposal

The results of the theoretical study shown in the framework of this thesis reflect the high
prospectivity of Förster resonances for Rydberg quantum computing problems. As part of a
project on the study of complex Rydberg interactions conducted at the Institute of Semicon-
ductor Physics (ISP), an experiment is planned to observe three-body FSSC Förster resonances
in an ensemble of three rubidium atoms.

The experimental procedure is based on the approaches proposed in [155]. Three Rb atoms
are assumed to be isolated in microscopic optical tweezers arranged linearly at a distance R
from each other. Three-photon laser excitation of the atoms will be used to compensate for
the Doppler shifts [292]. It is assumed that the high-lying 70P3/2 state will be chosen as the
initial Rydberg state, in accordance with the numerical calculation results given in Section 4.2.
Independent external electrodes will be used to apply an external electric field for the induction
of multiparticle resonances.

The first stage of the experiment is expected to demonstrate many-body coherent Förster
interactions (5.4), and compare the results with the numerical demonstration shown in Sec-
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tion 4.2 of this thesis. In the second stage, it is intended to demonstrate a three-qubit quantum
Toffoli gate based on FSSC resonances as shown in Section 4.3.

The experiment is planned to be carried out within the next two years. We are convinced
that the experimental study will confirm the previously obtained theoretical results and further
demonstrate the high potential of Förster resonance interactions for Rydberg quantum com-
puting.

5.3. Afterword
Rydberg quantum computing is an actively developing area of applied research. During

the last 20 years, it has attracted increasing interest of the scientific community due to the
prospect of atomic registers for realization of quantum computations. The most important
recent discoveries in this field are related to the construction of large-scale quantum registers
based on individual Rydberg atoms [44], demonstration of high lifetimes of individual atoms in
optical traps [58], and realization of high-precision parallel two-qubit quantum gates [49].

Solving the problem of interconnectivity of quantum registers by realizing multiqubit quan-
tum gates between distant atoms is highly demanded due to the prospect of QC devices scaling
up to several thousands of atoms within the next few years. The research results described in
this thesis present one possible approach to this problem, based on the use of few-body reso-
nant Förster transitions for three-qubit gate protocols. We are convinced that this method will
in the long run enable great progress in the efficiency of quantum computing in atomic regis-
ters. Intending to continue both theoretical and experimental studies of multiparticle Förster
resonances, we believe in the soon and indispensable success of our chosen approach.

The main goal of this text was to familiarize the reader with the results of our research in
the field of resonant Förster interactions in Rydberg ensembles. We hope that this text will be
relevant to both young researchers and specialists, and will allow all interested to understand
the unique features of Rydberg physics that we are so passionate about. Thank you for reading!
Good luck!
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Appendix

A. Alkali wave functions and radial matrix elements

A.1. Wave functions

The description of alkali-atom spectra provided by the quantum defect model gives a good
agreement with the experimental results. Nevertheless, to model the interatomic interaction,
we need to formalize the description of the system wavefunctions. Unfortunately, the exact
solution of the Schrödinger equation with an effective potential of the form (A.1) cannot be
obtained analytically for good predictiveZeff models. In turn, the use of numerical methods for
multilevel atomic systems significantly slows down the calculation. An alternative approach is to
solve the Schrödinger equation for non-integer values of the principal quantum number, called
the Coulomb approximation. Although this approach leads to divergence of wave functions, it
can be successfully applied for some interaction models. We present here the summary of this
approach, based on the description given in [135]. Note that the wave functions described here
are not used for the quasi-classical matrix element calculations described in the subsequent
paragraph.

V̂eff = −Zeff (r)q
2

r
(A.1)

As for the case of a hydrogen-like atom, we concentrate on finding wave functions in the
form ψ = Rγl(r)Ylm(θ, ϕ). A significant correction here is the factor γ = n− δnlj , which replacesthe principal quantum number n. The Schrodinger equation for bound states thus reduces to

d2ϕ

dz2
− l(l + 1)

z2
ϕ+

2γ

z
ϕ− ϕ = 0 (A.2)

Here z = κr with κ =
√
−2µE/ℏ2 and ϕ(z) = zR(z/κ).

According to [135], the solutions to equation (A.2) can be described as Whittaker functions
Mγ,l+1/2(2z) andWγ,l+1/2(2z). Since the functionMγ,l+1/2 does not exist for integer values of
2l+1, it is not suitable for description. We thus can express two linearly independent solutions
in terms ofWγ,l+1/2 function as (A.3). These solutions can be represented in terms of confluent
second-kind hypergeometric function U .

ϕ+(z) =Wγ,l+1/2(2z) = e−z(2z)l+1U(1 + l − γ, 2 + 2l, 2z)

ϕ−(z) =W−γ,l+1/2(−2z) = ez(−2z)l+1U(1 + l + γ, 2 + 2l,−2z)
(A.3)

Finally, taking into account the boundary conditions and normalisation conditions we can
express the wave functions as (A.4).
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Pγl = rRγl =
1√
a0

1

γ[Γ(γ + l + 1)Γ(γ − l)]1/2
×

× e−r/(a0γ)(2r/(a0γ))
l+1U(1 + l − γ, 2 + 2l, 2r/(a0γ))

(A.4)
For the integer values of γ this formula can be transformed to the previous description of

Hydrogen-like wavefunctions by introducing the additional phase factor (−1)n+l−⟨γ⟩, where ⟨γ⟩
is the nearest integer to γ. However, for non-integer γ the function may diverge in the origin. It
is thus instructive to pick a cutoff radius rmin = a0l(l + 1)/2 when calculating matrix elements.
For more detailed desctiption, please see [135].

A.2. Matrix elements

Calculation of matrix elements of the alkali-atom wavefunctions is an extremely complex
process. As stated in [137, 138], wave functions can be calculated numerically using Runge-Kutta
[293] orNumerov [294]methods. However, in this case, the calculation ofmatrix elements takes
considerable time for a system including large number of atoms in the presence of complex
interactions with additional external fields.

Within the framework of this study, we calculate the radial matrix elements of wave func-
tions in a quasi-classical approximation. The method of such calculation was presented by
Kaulakus in 1995 [221]. The quasi–classical approximation shows good agreement with nu-
merical methods when calculating the interactions of Rydberg alkali atoms.

In order tomaintain the uniformity of the designations presented in the original article [221],
we will use atomic units for further calculations. We perform calculations in momentum rep-
resentation. Thus, the quasiclassical form of the radial wave function Pnl = rRnl(r) can be
represented in the classically allowed region as

Pnl =
2√

Tvr(r)
cosΦnl(r) (A.5)

Here T represents the classical rotation period, vr is the electron radial velocity and Φnl isradial-dependent phase.

vr(r) =

√√√√
2Enl − 2U(r)−

(
l + 1

2

)2
r2

(A.6)
Φnl =

∫ r

r1

vr(r)dr −
π

4
(A.7)

Here U(r) represents an effective potential which defines the motion of the valence elec-
tron, r1(2) are the classical turning points. We thus can represent the dipole matrix element
as

Dn′l±1
nl =

1

ω

∫
Pnl(r)

(
dPn′l±1(r)

dr
± lmax

Pn′l±1(r)

r

)
dr (A.8)
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where lmax = max(l, l ± 1), ω = En′l′ − Enl.While integrating, we neglect the rapidly oscillating terms containing the sumof frequencies.

We also take into account that, according to expressions (A.6) and (A.7) the phase difference
∆Φ = Φn′l′ − Φnl ≃ ωt−∆lϕ+ ..., where ϕ is the polar angle. Thus, integration of the Eq.(A.8)
yields to the r-form of the radial dipole matrix element:

Rn′l±1
nl = ⟨nl|r|n′l ± 1⟩ = 2√

TT ′

∫ Tc/2

0
r(t) cos∆Φ(t)dt (A.9)

Here Tc is a mean period to be defined later. It is also convenient to express the matrix
element in Cartesian coordinates:

Rn′l±1
nl = ⟨nl|r|n′l ± 1⟩ = 2√

TT ′

∫ Tc/2

0

(
x(t) cosωt± y(t) sinωt

)
dt (A.10)

In the previous expressions, we did not specify the interaction potential U . We do not dwell
in detail on the case of a hydrogen-like atom, and immediately proceed to the description of
the case when the atom has a quantum defect, as it was described in Subection 2.2.2.1. A
convenient model of interaction in this case will be the sum of the Coulomb potential and the
perturbation potential∆U(r) arising due to the deviation from the Coulomb approximation:

U(r) = −Z
r
+∆U(r) (A.11)

The addition to the potential acts only at small values of r when the electron is near the
nucleus and the inner core is not shielded. At the same time, the main contribution to radial
matrix elements occurs at large distances, where the interaction is precisely approximated by
the Coulomb potential. The influence of ∆U can thus be taken into account in the form of a
non-Coulomb scattering phase ϕδ = πδnlj . Thus, in the high-r region, the phase and phase
difference may be represented as

Φnl(r) =

∫ r

rc1

vcr(r)dr + ϕδ −
π

4
(A.12)

∆Φ ≃ ωt−∆lϕ ≃ ∆+ ωtc −∆lϕc (A.13)
r = (ν2c /Z)(1− e cos ξ), tc = (ν3c /Z

2)(ξ − e sin ξ)

ϕc = arccos

(
cos ξ − e

1− e cos ξ

)
, e =

[
1−

(
l + l′ + 1

2νc

)2
]1/2 (A.14)

Here vcr is the radial velocity for the Coulomb potential, and e is eccentricity. For the fur-
ther simplicity, we also denote the classical orbit period Tc = 2πν3c /Z

2 and turning points
rc1,2 = (ν2c )/Z(1∓ e). Here νc denotes the centered effective principal quantum number, which
is assigned as (A.15) due to the quasiclassical quantization conditions.

ν3c =
2(νν ′)2

ν + ν ′
(A.15)
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Note that for non-hydrogenic atoms the phase difference∆(r) = ϕδ′ − ϕδ mostly increases

in the region r ≃ rc1, while the main contribution to the matrix elements is acquired on much
larger distances r ∼ ν2. Thus, we can replace in expression (A.10) ωt → ∆ + ωtc for the fur-ther calculations, while ϕ ≃ ϕc. Finally, we can substitute all the new parameters into original
integral, which gives the following result:

Rn′l±1
nl = (−1)∆n ν5c

Z(νν ′)3/2
D±

r (e, s) (A.16)
D±

r =
1

s

(
J ′
−s(es)±

√
e−2 − 1

(
J−s(es)−

sinπs

πs

))
+

1− e

πs
sinπs (A.17)

Here s = ν ′ − ν, and J are the Anger functions. Due to the Anger function symmetry prop-
erties we can express Js(−z) = J−s(z) and J ′

−s(z) = −J ′
s(−z). Then, the resulting matrix

elements are perfectly symmetric.
Although the above representation of matrix elements is extremely accurate, it can be im-

proved by switching to momentum representation. The difference between the representa-
tions is that when we switch to the coordinate representation, we replace the potential U with
an additional phase, and therefore the second term of the formula (A.17) arises. However, this
difference is a small correction ∼ α2, where α =

√
1− e2. Thus, the above quasi-classical ap-

proximation of matrix elements represents a highly accurate result, and allows calculating the
dynamics of large quantum systems in a reasonable time with limited processor power.

In the framework of this study, we use the Eq.(A.16) given here to calculate the matrix ele-
ments when computing the interaction Hamiltonians for numerical simulations. We note that
all the results in this paragraph have been presented more extensively in [221]. We encourage
the interested reader to refer to the original paper for further details.

B. RF-induced resonance model
In this appendix, we describe the interactions of alkali Rydberg ensembles with external ra-

diation. Providing this description presents a rather hard issue due to the complex structure
of the collective energy levels of atoms in an external electric field. Thus, we will demonstrate
a simplified model that takes into account only 2 collective states. The following description is
based on the results presented in [153]. Note that in the numerical simulations carried out in
Section 4.4, we solved the Schrödinger equation for the full Hamiltonian of the system. There-
fore, the description given here only provides a simplified picture of the observed processes.

We consider a system of logical levels |1⟩ and |2⟩ interacting with each other through the
previously described dipole-dipole interaction V̂ , in the presence of a composite electric field
F (t) = FS + FRF cos(ωt). The Hamiltonian of this system can be described as Ĥ = Ĥ0 +

ĤFS
+ ĤFRF

+ V̂ . Here Ĥ0 represents the Hamiltonian of a non-interacting two level system. To
simplify the problem, we consistently consider the perturbation of the Hamiltonian Ĥ0 by theother three terms.
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B. RF-induced resonance model
We firstly describe the interaction of the two-level system with a static field. Let the Hamil-

tonian include only the first two terms Ĥ = Ĥ0 + ĤFS
. Thus, the system can be described by

the wavefunction

ψ(r, t) = aψ1(r, t) + bψ2(r, t) (B.1)
ψ1(2)(r, t) = ψ1(2)(r)e

−iW1(2)t (B.2)
Here ψ1(2) are the system eigenstates, andW1(2) are the corresponding eigenenergies. Asshown in Subsection 2.2.2.2, these energies can be described by the sum of the atomic level

energy and the quadratic Stark shift. For simplicity, the level |1⟩ energy can be kept referent,
providingW1 = 0,W2 = W0 − 1

2αF
2
S , whereW0 = W2 −W1 is the energy difference betweenthe system eigenstates.

As a second step we add the perturbations provided by dipole-dipole interaction and the
external radiation. Depending on the order in which the corresponding operators are added
to the Hamiltonian, two kinds of solution representations arise, both of which are useful for
understanding the dynamics of the system. We consider themboth, starting with the casewhen
we add the operator V̂ first. This operator provides a quantum beat oscillation frequency Ω =

2⟨ψ2|V̂ |ψ1⟩, as it was described earlier. Note that in case of a Förster resonance this additionalinteraction also lifts the collective level degeneracy.
To add the time-dependent radiation field component, we further separate the wavefunc-

tion into time- and distance - dependent parts as
ψ(r, t) = T1(t)ψ1(r) + T2(t)ψ2(r) (B.3)

Here ψ1(2) are the original eigenstates of the system in DC field. This separation remains
valid for long interatomic distances, when both spatial states remain approximately unchanged
during the interaction. Hence, according to the Schrodinger equation

iṪ1(2)(t) =W1(2)(t) +
Ω

2
T2(1)(t) (B.4)

The energiesW1(2) are time dependent because they are determined by the Stark effect in
an alternating field:

W2 =W0 −
1

2
α(FS + FRF cos(ωt))2 (B.5)

Equation (B.4) could be solved numerically to provide the corresponding eigenfunctions of
the system. Nevertheless, the insights gained from this approach are limited. In this regard, we
present below the Floquet sideband approach, which is considered to be more informative for
describing the interaction of a field with an atomic ensemble. While bothmethods yield equiva-
lent results, obtaining an answer through a coherent superposition of stationary states proves
to bemore informative than understanding the time evolution of a wavefunction. It’s important
to note that the numerical approach remains applicable to all types of time-dependent fields,
whereas the Floquet approach is specifically tailored to periodic functions.
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In Floquet approach, we describe the dipole-dipole interactions for a system which includes

external radiation. So we first add the perturbation ĤFRF
and then the dipole operator V̂ to the

Hamiltonian. Thus, using the time-dependent Schrödinger equation for basis statesψ1(2)(r, t) =

T1(2)(t)ψ1(2)(r), we obtain:
iṪ1(2)(t) =W1(2)(t)T2(1)(t) (B.6)

The time dependence of the energies W1(2) was represented earlier by the formula (B.5).
Integrating the resulting equation, we obtain:

T2(t) = exp

−i

W0 −
1

2
α

(
F 2
S +

F 2
RF

2

) t


× exp

(
i
αFRFFS

ω
sin(ωt)

)
× exp

(
i
αF 2

RF

8ω
sin(2ωt)

) (B.7)

The last two exponential terms of this expression can be represented as generalized Bessel
functions. We thus have for the resulting wavefunction:

ψ2(r, t) = ψ2(r)e
−i

W0− 1
2
α

(
F 2
S+

F2
RF
2

)t

×
∞∑

n=−∞
einωtJn

(
αFRFFS

ω
,
αF 2

Rf

8ω

)
(B.8)

This expression reveals that thewavefunction comprises the initial spatial wavefunction, but
with a modified time dependence characterized by an infinite number of sidebands. Thus, we
have potentially an infinite number of possible level intercrossings which correspond to Förster
resonances. It is also instructive to reveal sideband energies:

W2,n =W0 −
1

2
α

(
F 2
S +

F 2
RF

2

)
− nω (B.9)

Thus, each sideband of the wave function can be considered as a state containing n ad-
ditional photons. The sideband amplitude, in turn, depends on both DC and AC electric field
amplitudes, as well as on the frequency of the applied radiation. For a more detailed descrip-
tion, please refer to [153].

C. Analytical model of three-body Förster resonances
In this appendix, we describe the analytic model of three-body Förster resonance interac-

tions given in [193]. Figure C.1 shows a simplified scheme of three-body resonances (3.12) for
stateswithn = 37. Here state 1 is the initial state of the three-atomic system 3×37P3/2, and state3 is its final state 37S1/2 + 38S1/2 + 37P ∗

3/2 in the case of a successful three-body transfer. Theintermediate state 2 serves to ensure the ladder-like transfer character described in the Subsec-
tion 3.1.1. Thus, the three-body process can be described as a sequence of two-body transitions
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C. Analytical model of three-body Förster resonances
1 → 2 → 3 occurring simultaneously. The detunings ∆1 and ∆2, which represent the Förster
defects of the respective two-body resonances, control the character of themultiatomic transit.
When the condition∆1 = ∆2 is satisfied, levels 1 and 3 are degenerate, provoking a three-bodyresonance (resonance 1 or 8 in Figure 3.6). The two-body resonance, in turn, is induced by the
condition∆1 = 0, whichmeans that levels 1 and 2 are degenerate (resonances 3 and 6 in Figure
3.6).

Figure C.1 : Simplified scheme of the three-body Förster resonance 3×37P3/2(|M |) → 37S1/2+38S1/2+
37P3/2(|M∗|) for three Rydberg atoms. The initially populated collective state 1 is 3 × 37P3/2(|M |). Thefinal collective state 3 is 37S1/2 + 38S1/2 + 37P3/2(|M∗|) with the changed momentum projection of the
P state. The intermediate collective state 2 is 37S1/2 + 38S1/2 + 37P3/2(|M |) with the initial momentprojection of the P state. The energy defects∆1 = E1 −E2 and∆2 = E3 −E2 are controlled by the DCelectric field. The three-body resonance occurs at∆1 = ∆2, while the two-body one occurs at∆1 = 0.

Authors describe the dynamics of the system using the Schrödinger equation formalism for
the probability amplitudes of states 1, 2 and 3. The matrix elements of the dipole-dipole tran-
sitions 1 → 2 and 2 → 3, are denoted as variables V1 and V2, respectively. These elements can
also be expressed in frequency units as Ω1 = V1/ℏ, Ω2 = V2/ℏ. The methods for calculating
such matrix elements were shown in [135, 137, 193], as well as in Appendix A. Note that this
model considers only the energies of the collective levels without specifying the states of each
particular atom. This means that levels 2 and 3 are additionally sixfold degenerate due to possi-
ble permutations of atoms. Also, these states experience always-resonant hopping interactions
between S and P states, which leads to the presence of an energy shift. Then, the Schrödinger
equation will have the following form:

iȧ1 = 6Ω1a2e
−i∆1t

iȧ2 = 2Ω1a2 +Ω1a1e
i∆1t + 2Ω2a3e

i∆2t (C.1)
iȧ3 = 2Ω2a3 + 2Ω2a2e

−i∆2t

Here, the terms containing no explicit time dependence are produced by excitation hopping
described in Subsection 2.2.5. The terms containing exponential time dependence, in turn, are
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representations of dipole-dipole transitions and were described in the same subsection.

To simplify the systemof equations, we introduce substitutions a2 = α2e
−2iΩ1t, a3 = α3e

−2iΩ2t.
These substitutions exclude the time-independent terms, leading to the following form of the
expressions:

iȧ1 = 6Ω1α2e
−i(∆1+2Ω1)t

iα̇2 = Ω1a1e
i(∆1+2Ω1)t + 2Ω2α3e

i(∆2+2Ω1−2Ω2)t (C.2)
iα̇3 = 2Ω2α2e

−i(∆2+2Ω1−2Ω2)t

The complex amplitudes a1, α2 and α3 can be found analytically in this system of equations.
Let us demonstrate this for α3. Differentiating the last expression twice and substituting the
values of the derivatives into the previous equations, we can reformulate the system exclusively
in terms of α3. After several substitutions, a single differential equation can be found:

...
α 3 + i (2∆2 −∆1 + 2Ω1 − 4Ω2) α̈3

+
[
(∆2 + 2Ω1 − 2Ω2) (∆1 −∆2 + 2Ω2) + 6Ω2

1 + 4Ω2
2

]
α̇3

− 4i (∆1 −∆2 + 2Ω2) Ω
2
2 = 0

(C.3)

It is convenient to search for solutions of this expression as α ∼ eiµt. Then, for equation
(C.3) we obtain

µ3 + (2∆2 −∆1 + 2Ω1 − 4Ω2)µ
2

−
[
(∆2 + 2Ω1 − 2Ω2) (∆1 −∆2 + 2Ω2) + 6Ω2

1 + 4Ω2
2

]
µ

+ 4 (∆1 −∆2 + 2Ω2) Ω
2
2 = 0

(C.4)

The resulting expression is a standard cubic equation that can be solved analytically. We
omit the exact calculations, giving here only the expressions necessary to write down the equa-
tion roots.

S = −
[
(∆2 + 2Ω1 − 2Ω2) (∆1 −∆2 + 2Ω2) + 6Ω2

1 + 4Ω2
2

]
T = 4 (∆1 −∆2 + 2Ω2) Ω

2
2

A = S − (2∆2 −∆1 + 2Ω1 − 4Ω2)
2/3

B = 2(2∆2 −∆1 + 2Ω1 − 4Ω2)
3/27

− (2∆2 −∆1 + 2Ω1 − 4Ω2)S/3 + T

D = (A/3)3 + (B/2)2

U = (−B/2 +
√
D)1/3

U∗ = −(B/2 +
√
D)1/3

(C.5)
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The equation roots can be denoted as

µ1 = U + U∗ − (2∆2 −∆1 + 2Ω1 − 4Ω2)/3

µ2 = −(U + U∗)/2 + i
√
3(U − U∗)/2 (C.6)

µ3 = −(U + U∗)/2− i
√
3(U − U∗)/2

(C.7)
Solutions α3 for the original equation (C.3) could thus be found as

α3 =

3∑
i=1

cie
iµit (C.8)

To find the probability amplitudes, initial conditions should be applied. We assume that
only the state 1 was populated prior to the interaction, giving the following conditions: α3(0) =

0, ȧ3(0) = 0, ä3(0) = −2Ω1Ω2. Thus, for the coefficients ci we can find

c1 =
2Ω1Ω2

(µ2 − µ1)(µ1 − µ3)

c2 =
2Ω1Ω2

(µ2 − µ1)(µ3 − µ2)
(C.9)

c3 =
2Ω1Ω2

(µ1 − µ3)(µ3 − µ2)

(C.10)
We then can use the Eq. (C.2) to find α2 from α3

α2 = iα̇3e
i(∆2+2Ω1−2Ω2)t/(2Ω2) (C.11)

The exact analytical solutions for the equations (C.1) could be expressed using α2 and α3 forarbitrary values of interaction energies, detunings and time. Nevertheless, these solutions are
rather complex and cannot be presented in a comprehensible form. In this regard, the authors
limit themselves to describing the form of the obtained resonance spectra within weak dipole-
dipole interaction limit, as well as near the exact three-body resonance, where the interactions
turns into strong. The analysis of the resonance spectra based on the presented model is given
in Subsection 3.3.4. For a more detailed description, please refer to the original article [193].
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Resume
Les réseaux d’atomes neutres refroidis et isolés dans des pinces optiques individuelles

présentent un grand intérêt pour la réalisation de calculs quantiques. Les durées de vie élevées
des atomes dans des pièges individuels (∼ 6000 s), complétées par les vastes possibilités de con-
trôle cohérent des états quantiques par radiofréquence externe ou rayonnement micro-ondes,
garantissent une grande précision des opérations quantiques à qubit unique pour les qubits
atomiques. Les registres multiqubits actuellement disponibles contiennent jusqu’à plusieurs
centaines d’atomes reliés par des portes à deux qubits très précises (∼ 99.5%). La mise à
l’échelle des registres jusqu’à quelques dizaines demilliers d’atomes devrait se poursuivre dans
les années à venir.

L’un des principaux obstacles à l’application des registres quantiques atomiques à la réso-
lution de problèmes pratiques est l’impossibilité de réaliser des portes multiqubits à longue
portée et de haute précision. Ces portes sont des composants importants de nombreux algo-
rithmes quantiques, notamment l’algorithme de Grover, l’algorithme de Shor, les algorithmes
de correction d’erreurs quantiques, QAOA, VQE et bien d’autres. En outre, les portes à longue
portée sont nécessaires pour maintenir la connectivité totale des registres à mesure que leur
taille augmente.

L’utilisation de résonances d’interaction dans les ensembles atomiques, appelées couram-
ment résonance de Förster, constitue une approche prometteuse pour la réalisation de portes
à longue portée. L’augmentation de l’interaction garantie par sa nature résonante permet de
réaliser des opérations quantiques entre qubits distants, ce qui surpasse de manière significa-
tive toutes les approches concurrentes en matière d’opérations à longue portée. La grande
précision des opérations à trois qubits démontrée dans cette étude nous permet d’affirmer
que l’approche proposée est prometteuse pour une application dans les registres quantiques
modernes.

Dans le cadre de cette thèse, une étude complète de l’applicabilité des résonances de Förster
pour la mise en œuvre du calcul quantique dans les registres quantiques à base d’atomes neu-
tres a été réalisée. Le cycle de recherche s’est déroulé en quatre étapes. À chaque étape, dif-
férentes variantes de schémas de résonance ont été proposées, ainsi que des approches de
leur utilisation pour créer des portes quantiques. Des méthodes supplémentaires ont égale-
ment été proposées pour améliorer la précision et la stabilité des portes quantiques et pour
faciliter leur réalisation expérimentale.
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Resume
I. Première étape
Au cours de la première étape des recherches, de nouvelles résonances à trois corps du type

(R.1) ont été proposées etmodélisées numériquement. Le principal avantage de ces résonances
par rapport aux transitions précédemment étudiées (R.2) était la possibilité de les réaliser pour
des états atomiques de Rydberg de grand nombre quantique principal avec n > 38 dans le
Rb. Cela a été rendu possible par le fait que la première transition à deux corps 2 × nP →
nS+(n+1)S, nécessaire à la réalisation du transfert borroméen parallèle, a été remplacée par
la transition nP+(n+1)P → nS+(n+2)S, relâchant ainsi la contrainte d’utiliser un seul niveau
de Rydberg initial pour tous les atomes. De telles transitions ont un défaut quantique positif
à champ électrique nul, et peuvent être utilisées en conjonction avec des sauts d’excitation
SP non résonnants pour réaliser un transfert de population à trois corps. Des oscillations co-
hérentes de la population ont été démontrées pour ce nouveau schéma d’interaction résonante
dans un ensemble structuré, accompagnées d’un changement de phase des états de registre
collectif. Ainsi, il a été démontré que ces résonances sont prometteuses pour la réalisation de
portes quantiques à trois qubits.

nP3/2(m = 3/2) + (n+ 1)P3/2(m = 3/2) + (n+ 1)P3/2(m = −3/2) →
→ nS1/2(m = 1/2) + (n+ 2)S1/2(m = 1/2) + (n+ 1)P3/2(m = 1/2)

(R.1)

3× nP3/2(|m|) → nS1/2 + (n+ 1)S1/2 + nP3/2(|m∗|) (R.2)
Un schéma de porte quantique de Toffoli a été proposé sur la base de la résonance (R.3)

dans les atomes de Rb. L’utilisation d’états élevés n = 80 nous a permis d’augmenter significa-
tivement les durées de vie des états collectifs de Rydberg et de réduire l’influence des pertes
sur la cohérence des oscillations de la population. Dans le cadre des simulations numériques,
les atomes ont été disposés linéairement à une distance R = 10 µm les uns des autres le long
de l’axe de quantification Z coïncidant avec la direction du champ électrique continu externe.
Cette configuration permet de réduire considérablement le nombre de canaux d’interaction
multiparticulaire en raison de la présence de la règle de sélection sur la projection totale de la
quantité de mouvement du système ∆M = 0. Pour isoler davantage les pics de résonance à
deux et trois corps, un champ magnétique externe a été utilisé. Une haute fidélité de ∼ 98.3%

a été démontrée pour cette porte dans les simulations numériques grâce à une optimisation
multiparamétrique réalisée à l’aide de la méthode Nelder-Mead. Le temps de mise en œuvre
obtenu pour la porte est de 2.42microsecondes.

|80P3/2

(
3/2
)
81P3/2

(
3/2
)
81P3/2

(
−3/2

)
⟩ →

→ |80S1/2
(
1/2
)
82S1/2

(
1/2
)
81P3/2

(
1/2
)
⟩

(R.3)
Parmi les inconvénients significatifs du schémadéveloppé, il convient de noter la complexité

de sa réalisation expérimentale. En particulier, l’excitation des atomes dans différents états de
Rydberg nécessite l’utilisation de plusieurs sources laser mutuellement cohérentes. De plus, la
nécessité d’utiliser un champ magnétique externe pour isoler le processus d’interaction à trois
corps complique le dispositif expérimental. La grande sensibilité de la porte aux déviations du
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II. Deuxième étape
champ électrique statique de contrôle impose des exigences enmatière d’isolation du dispositif
par rapport à l’environnement. Des recherches supplémentaires sont également nécessaires
pour améliorer la précision de la porte quantique jusqu’à des valeurs supérieures à 99% afin
de la rendre compatible avec les techniques de correction d’erreurs quantiques. Nous avons
conclu que, bien que la porte proposée puisse potentiellement être appliquée à la mise en
œuvre d’algorithmes quantiques complexes, des efforts supplémentaires sont nécessaires pour
compenser les inconvénients décrits.

II. Deuxième étape
Commenous l’avonsmontré précédemment, l’assouplissement de la contrainte d’utilisation

d’un seul niveau de Rydberg conduit à des inconvénients expérimentaux. Par conséquent,
un schéma de résonance de Förster différent était nécessaire. Nous avons proposé et étudié
numériquement des résonances de Förster à trois corps à changement d’état de structure fine
(FSSC) (R.4). Leur principale différence avec les transitions présentées précédemment (R.1) est
que pendant le processus FSSC à trois corps, le moment angulaire total du troisième atome
passe à une valeur inférieure. Étant donné que le processus de saut d’excitation SP avec
changement de moment angulaire J = 3/2 → J = 1/2 présente un défaut d’énergie impor-
tant, la condition de compensationmutuelle des défauts∆1 = ∆2 peut être remplie en utilisant
la transition standard à deux corps 2 × nP → nS + (n + 1)S. En même temps, en raison du
défaut d’énergie négative, la transition à deux corps ne peut pas être résonante dans un champ
externe, comme nous l’avons déjà mentionné. Ainsi, seules les résonances à trois corps sont
réalisées dans un système à trois atomes, en l’absence de processus à deux corps. Cela simplifie
grandement la dynamique de phase et de population dans le registre quantique.

3× nP3/2 → nS1/2 + (n+ 1)S1/2 + nP1/2 (R.4)
Les résonances (R.4) ont été étudiées numériquement pour des ensembles d’atomes de Rb

et de Cs. Nous avons également étudié les résonances de Förster quasi-interdites à plusieurs
corps situées près du champ électrique statique résonant du schéma (R.4). La détermination de
l’intensité de ces résonances était nécessaire pour évaluer leur influence potentielle sur la co-
hérence des oscillations de Rabi dans les ensembles atomiques et pour déterminer les éléments
atomiques et les états de Rydberg les plus appropriés pour la réalisation de portes quantiques
multiqubits. Sur la base des résultats de cette étude, nous avons conclu que les ensembles
de rubidium à trois atomes présentent des résonances à trois corps très isolées dont la force
est supérieure d’un ordre de grandeur à celle des transitions quasi-interdites voisines pour les
états de Rydberg de haute altitude n = 70 ou plus.

Une étude numérique poussée des résonances à plusieurs corps (R.4) a ensuite été réal-
isée dans des ensembles structurés et non structurés d’atomes de Rb. Dans la configuration
spatiale linéaire du registre, seuls deux canaux à trois corps ont été observés pour de grandes
distances interatomiques R = 10 µm, en l’absence totale d’interactions de résonance à deux
corps. Des oscillations de population très cohérentes ont également été mises en évidence,
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Resume
accompagnées de changements de la phase des états du système. Ainsi, nous avons conclu
que les résonances FSSC démontrées sont prometteuses pour la mise en œuvre de protocoles
de portes quantiques multiqubits et nous avons procédé au développement des portes corre-
spondantes.

III. Troisième étape
Au cours de la troisième étape de la recherche, un protocole de porte quantique de Toffoli

basé sur les résonances FSSC (R.4) pour n = 70 a été proposé et modélisé numériquement.
La configuration spatiale linéaire du registre à trois atomes a été choisie de manière similaire
au cas précédent. La principale différence entre le nouveau protocole de porte quantique et
le protocole considéré précédemment est l’absence de nécessité d’exciter les atomes dans dif-
férents états de Rydberg. En outre, l’absence de processus de résonance à deux corps près des
interactions à trois corps simplifie considérablement la dynamique de phase du système.

Grâce à une série d’expériences numériques, nous avons démontré de manière convain-
cante que la précision de notre porte quantique de Toffoli proposée est > 99%. Ainsi, une
amélioration significative de la précision a été obtenue par rapport au protocole précédent
décrit dans la sous-section I.

Nous avons obtenu une réduction significative du temps de porte quantique par rapport
au schéma proposé précédemment (jusqu’à 1.15 µs à la distance interatomique R = 10 µm et
jusqu’à 0.42 µs à R = 8.5 µm). Cela semble contre-intuitif, puisque la force de l’interaction à
trois corps diminue certainement avec la diminution de n. Néanmoins, grâce à la simplification
essentielle de la dynamique de phase du système due à l’absence de processus de résonance
à deux corps, nous avons réussi à mettre en œuvre la porte pendant la première période des
oscillations de Rabi, ce qui avait été impossible pour le schéma précédent.

Nous avons également étudié l’influence des variations des paramètres du registre atom-
ique sur la précision de la porte quantique. Comme nous l’avons montré, les deux principaux
facteurs limitant sont la forte sensibilité de la porte aux variations du champ électrique et à
la distance interatomique. Néanmoins, il est possible de parvenir à un compromis qui per-
mette d’assouplir les exigences relatives au contrôle de l’un des paramètres. En particulier, la
forte dépendance de la fidélité de la porte aux variations du champ continu peut être réduite
lorsque la distance interatomique R est diminuée en raison de l’augmentation de l’interaction
interatomique et de l’élargissement des pics de résonance. Il a été démontré que lorsque la
distance interatomique est réduite de R = 10 µm à R = 8.5 µm, la sensibilité aux fluctuations
du champ diminue d’un facteur d’environ 4. Bien que la réduction de la distance interatomique
ne réponde pas aux objectifs de réalisation de portes quantiques entre atomes distants, l’étude
présentée permet d’évaluer différentes variantes de l’équilibrage du registre quantique néces-
saires pour atteindre la précision expérimentale maximale de la porte.

Malgré l’amélioration significative de la précision de la porte quantique par rapport à la
proposition précédente, un certain nombre d’inconvénients du système ont nécessité des ef-
forts supplémentaires. Tout d’abord, la nécessité de modifier le champ de contrôle externe
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IV. Quatrième étape
pendant la porte quantique subsistait, ce qui limitait considérablement la précision possible
des réalisations expérimentales. En outre, le nombre insuffisant de paramètres contrôlables
du système a considérablement limité la possibilité de compenser les dynamiques de phase
et de population indésirables. D’autres études ont donc été nécessaires pour compenser les
lacunes décrites.

IV. Quatrième étape

À ce stade, nous nous sommes concentrés sur la recherche de mécanismes supplémen-
taires pour contrôler les interactions de résonance multiparticulaire dans les ensembles
d’atomes de Rydberg. En particulier, nous avons étudié en détail l’utilisation d’un rayonnement
radiofréquence externe pour induire des résonances de Förster. Auparavant, les résonances
induites par les radiofréquences (RF) avaient été étudiées en détail dans des systèmes à deux
atomes. Cependant, à notre connaissance, aucune étude sur les résonances de Förster induites
par des radiofréquences à particules multiples n’a été présentée avant ce travail.

Nous avons proposé et étudié numériquement des résonances FSSC à trois corps induites
par des radiofréquences dans des systèmes d’atomes de Rydberg de Rb isolés dans l’espace.
Ces résonances sont basées sur l’application d’un champ inducteur composite, qui comprend
à la fois un champ électrique continu et un rayonnement de radiofréquence. Les photons RF
permettent de compenser le défaut de Förster des états de Rydberg collectifs pour une valeur
arbitrairement choisie du champ de contrôle externe. Le rayonnement RF externe permet
également d’induire des résonances de Förster à deux corps inaccessibles nP + (n + 1)P →
nS + (n+ 1)S pour les états de Rydberg élevés. De telles résonances ne peuvent pas être réal-
isées pour les états de Rydberg collectifs du Rb avec n > 38 en raison des valeurs spéciales des
polarisabilités et des défauts quantiques de ces états. Néanmoins, la compensation du défaut
d’énergie à deux corps est possible grâce à l’émission ou à l’absorption de radiofréquences.
Ainsi, le rayonnement RF externe fournit un outil flexible pour manipuler l’interaction dipôle-
dipôle.

Nous avons simulé numériquement des interactions de résonance à deux corps (R.5) et à
trois corps (R.6) induites par les radiofréquences dans l’ensemble ordonné d’atomes de Rb pour
n = 70. Il a étémontré que pour les deux types de résonances, la position de la première bande
latérale de Floquet est effectivement contrôlée par le rayonnement externe. Ainsi, la résonance
peut être induite pour une valeur arbitraire du champ électrique continu. Ce fait permet d’isoler
de manière significative les pics à trois corps des résonances quasi-interdites environnantes et
de réduire leur influence sur la dynamiquedu systèmequantique. Selon les conclusions de cette
étude, les résonancesmultiparticules présentent unedynamique depopulation cohérente dans
une configuration spatiale linéaire et conviennent bien à la réalisation de portes quantiques.

|70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P3/2(|m| = 1/2)⟩ (R.5)
|70P3/2⟩⊗3 → |70S1/2; 71S1/2; 70P1/2⟩ (R.6)
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Resume
Nous avons également proposé et étudié numériquement des protocoles de portes

CCPHASE à trois qubits basés sur les résonances à deux corps et à trois corps induites par
la radiofréquence. L’utilisation d’un rayonnement inducteur nous permet de contrôler efficace-
ment la population et la dynamique de phase du système, ce qui offre de nombreuses pos-
sibilités de manipulation des états quantiques. Ainsi, nous pouvons utiliser la fréquence et
l’amplitude du rayonnement externe comme paramètres de contrôle exclusifs pour contrôler
la phase de la porte. Il a été démontré qu’en gardant tous les paramètres du système (dis-
tance interatomique, champ électrique continu externe et temps de réalisation de la porte)
inchangés, nous pouvons réaliser la porte CCPHASE pour une valeur arbitraire de ϕ avec
une grande précision en faisant varier uniquement la fréquence et l’amplitude du champ RF.
Demême, l’activation de la résonance à deux et trois corps peut se produire tout en préservant
entièrement tous les paramètres expérimentaux, en faisant varier les paramètres du champ RF.
À cet égard, différentes variations des portes proposées peuvent être réalisées dans le même
dispositif expérimental. Il convient de noter que la possibilité de mettre en œuvre des portes
arbitraires sans modifier la géométrie du registre est cruciale pour l’exécution d’algorithmes
dans des installations d’informatique quantique à grande échelle.

Les protocoles proposés pour les portes quantiques font preuve d’une grande fidélité. En
particulier, la fidélité moyenne des portes basées sur les résonances à trois corps était de
∼ 99.3% à température ambiante. La principale source de pertes, comme dans les protocoles
proposés précédemment, est représentée par les durées de vie finies des états de Rydberg.
Ainsi, en modélisant la réalisation de la porte dans un ensemble cryogénique (avec une tem-
pérature de 4 K), nous avons réussi à atteindre une fidélité de ∼ 99.7%, ce qui dépasse de
manière significative la fidélité de toutes les réalisations expérimentales de portes à trois corps
actuellement disponibles.

V. Conclusion
Ces travaux ont permis de proposer et d’étudier numériquement plusieurs schémas de ré-

sonances de Förster à trois particules dans des ensembles structurés d’atomes de Rydberg
isolés dans des pinces optiques individuelles. Des schémas pour la réalisation de portes quan-
tiques multicubiques à longue portée basées sur les résonances présentées ont également été
proposés. Des techniques supplémentaires pour contrôler l’interaction dipôle-dipôle ont été
proposées, y compris l’utilisation d’un rayonnement radiofréquence externe induisant la réso-
nance et d’un champ magnétique externe. Les résultats obtenus nous permettent d’affirmer
le potentiel élevé des résonances de Förster pour la réalisation de portes quantiques dans des
registres quantiques basés sur des atomes neutres, ainsi que le potentiel d’utilisation de cet
effet pour maintenir l’interconnectivité entre des qubits distants et des registres quantiques
isolés.
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