
HAL Id: tel-04549982
https://theses.hal.science/tel-04549982

Submitted on 17 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vers la généralisation de l’apprentissage par
renforcement

Quentin Gallouédec

To cite this version:
Quentin Gallouédec. Vers la généralisation de l’apprentissage par renforcement. Autre. Ecole Centrale
de Lyon, 2024. Français. �NNT : 2024ECDL0013�. �tel-04549982�

https://theses.hal.science/tel-04549982
https://hal.archives-ouvertes.fr


NNT : 2024ECDL0013

THÈSE DE DOCTORAT

réalisée au sein de l’École Centrale de Lyon
délivrée par l’École Doctorale N°512

Spécialité : Informatique

Toward the Generalization of Reinforcement
Learning

par
Quentin GALLOUÉDEC

le 26 Mars 2024

Jury

Président David FILLIAT Professeur des universités
ENSTA Paris

Rapporteur Guillaume ALLIBERT Professeur des universités
Université Côte d’Azur

Rapporteur Paul HONEINE Professeur des universités
Université de Rouen Normandie

Examinatrice Laëtitia MATIGNON Maîtresse de conférence
Université Claude Bernard Lyon 1

Examinateur Olivier SIGAUD Professeur des universités
Sorbonne Université

Directeur de thèse Emmanuel DELLANDRÉA Maître de conférence HDR
École Centrale de Lyon



2



“La simplicité est la sophistication suprême.”

— Léonard de Vinci
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Abstract

Conventional Reinforcement Learning (RL) involves training a unimodal agent
on a single, well-defined task, guided by a gradient-optimized reward signal. This
framework does not allow us to envisage a learning agent adapted to real-world
problems involving diverse modality streams, multiple tasks, often poorly defined,
sometimes not defined at all. Hence, we advocate for transitioning towards a
more general framework, aiming to create RL algorithms that more inherently
versatile. To advance in this direction, we identify two primary areas of focus.

The first aspect involves improving exploration, enabling the agent to learn
from the environment with reduced dependence on the reward signal. We
present Latent Go-Explore (LGE), an extension of the Go-Explore algorithm.
While Go-Explore achieved impressive results, it was constrained by domain-
specific knowledge. LGE overcomes these limitations, offering wider applicability
within a general framework. In various tested environments, LGE consistently
outperforms the baselines, showcasing its enhanced effectiveness and versatility.
The second focus is to design a general-purpose agent that can operate in
a variety of environments, thus involving a multimodal structure and even
transcending the conventional sequential framework of RL. We introduce Jack of
All Trades (JAT), a multimodal Transformer-based architecture uniquely tailored
to sequential decision tasks. Using a single set of weights, JAT demonstrates
robustness and versatility, competing with its unique baseline on several RL
benchmarks and even showing promising performance on vision and textual
tasks. We believe that these two contributions are a valuable step towards a
more general approach to RL. In addition, we present other methodological and
technical advances that are closely related to our core research question. The first
is the introduction of a set of sparsely rewarded simulated robotic environments
designed to provide the community with the necessary tools for learning under
conditions of low supervision. Notably, three years after its introduction, this
contribution has been widely adopted by the community and continues to receive
active maintenance and support. On the other hand, we present Open RL
Benchmark, our pioneering initiative to provide a comprehensive set of and fully
tracked RL experiments, going beyond typical data to include all algorithm-
specific and system metrics. This benchmark aims to improve research efficiency
by providing out-of-the-box RL data and facilitating accurate reproducibility of
experiments. With its community-driven approach, it has quickly become an
important resource, documenting over 25,000 runs.

These technical and methodological advances, along with the scientific contri-
butions described above, are intended to promote a more general approach, we
hope, represent a meaningful step toward the eventual development of a more
versatile RL agent.
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Résumé

L’apprentissage par renforcement conventionnel implique l’entraînement d’un
agent unimodal sur une tâche unique et bien définie, guidé par un signal de
récompense optimisé pour le gradient. Ce cadre ne nous permet pas d’envisager
un agent d’apprentissage adapté aux problèmes du monde réel impliquant des
flux de diverses modalités, des tâches multiples, souvent mal définies, voire pas
définies du tout. C’est pourquoi nous préconisons une transition vers un cadre
plus général, visant à créer des algorithmes d’apprentissage par renforcement
plus adaptables et intrinsèquement polyvalents.

Pour progresser dans cette direction, nous identifions deux domaines d’intérêt
principaux. Le premier est l’amélioration de l’exploration, qui permet à l’agent
d’apprendre de l’environnement en dépendant le moins possible du signal de
récompense. Nous présentons Latent Go-Explore (LGE), une généralisation de
l’algorithme Go-Explore qui, malgré ses résultats impressionnants, était limité par
une forte contrainte de connaissance du domaine. LGE atténue ces limitations et
permet une application plus large dans un cadre plus général. LGE démontre son
efficacité et sa polyvalence accrues en surpassant de manière significative les lignes
de base dans tous les environnements testés. Le deuxième domaine d’intérêt est
celui de la conception d’un agent polyvalent qui peut fonctionner dans une variété
d’environnements, impliquant ainsi une structure multimodale et transcendant
même le cadre séquentiel conventionnel de l’apprentissage par renforcement.
Nous présentons Jack of All Trades (JAT), une architecture multimodale basée
Transformers, spécialement conçue pour les tâches de décision séquentielle. En
utilisant un seul ensemble de poids, JAT démontre sa robustesse et sa polyvalence,
rivalisant avec son unique référence sur plusieurs benchmarks d’apprentissage par
renforcement et montrant même des performances prometteuses sur des tâches
de vision et textuelles. Nous pensons que ces deux contributions constituent
une étape importante vers une approche plus générale de l’apprentissage par
renforcement. En outre, nous présentons d’autres avancées méthodologiques et
techniques qui sont étroitement liées à notre question de recherche initiale. La
première est l’introduction d’un ensemble d’environnements robotiques simulés
à récompense éparse, conçus pour fournir à la communauté les outils nécessaires
à l’apprentissage dans des conditions de faible supervision. Trois ans après son
introduction, cette contribution a été largement adoptée par la communauté et
continue de faire l’objet d’une maintenance et d’un support actifs. D’autre part,
nous présentons Open RL Benchmark, notre initiative pionnière visant à fournir
un ensemble complet et entièrement enregistré d’expériences d’apprentissage
par renforcement, allant au-delà des données typiques pour inclure toutes les
métriques spécifiques à l’algorithme et au système. Ce benchmark vise à améliorer
l’efficacité de la recherche en fournissant des données prêtes à l’emploi et en
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facilitant la reproductibilité précise des expériences. Grâce à son approche
communautaire, il est rapidement devenu une ressource importante, documentant
plus de 25 000 exécutions.

Ces avancées techniques et méthodologiques, associées aux contributions
scientifiques décrites ci-dessus, visent à promouvoir une approche plus générale
de l’apprentissage par renforcement et, nous l’espérons, représentent une étape
significative vers le développement à terme d’un agent plus polyvalent.
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Chapter 1

Introduction

It is a rather big ambition: to teach how to learn. This is the definition, or
at least the intuition, that helps to explain Reinforcement Learning (RL). The
ambition goes beyond that of supervised learning, which is only about teaching.
The idea is thrilling, but it has taken a long time to put it into practice, until
the great successes of the last decade. These include reaching human level in
simple retro games [187, 188], surpassing the best human players in complex
board games like chess and Go [250, 251], and even reaching Grandmaster status
in StarCraft II [276]. These impressive and encouraging successes seem to be
paving the way for the emergence of autonomous agents—entities perceiving
and interacting independently with their environment—both in terms of their
behavior and their learning. As we delve deeper into RL, we begin to realize
that there are still major barriers to overcome. In this thesis, we identify some
of these barriers and provide solutions to better understand and overcome them.

1.1 Problems and Objectives

In the field of RL, the most widespread approach involves training an agent to
maximize a reward signal in a given environment. While this methodology has
undoubtedly produced some impressive achievements, it is rooted in a somewhat
narrow perspective that is difficult to apply to the complexities of real-world
scenarios. The conventional RL paradigm assumes that an agent is faced with a
single, clearly defined task, supported by an available and sufficiently informative
reward signal. However, this framework weakens when extended beyond the
confines of well-defined tasks and controlled environments.

In this pursuit, we advocate for a shift in focus towards making RL more
general and adaptable. Instead of resorting to specialized, intricate tricks
that tailor RL algorithms to highly unique settings, our aim is to develop
methodologies that enhance the general applicability of RL. This approach
involves creating versatile and robust algorithms that can operate effectively
across a diverse range of environments and tasks, without the need for context-
specific tuning. Embracing this perspective is crucial for the evolution of RL
into a tool that is not just theoretically sound but also practically relevant in a
variety of real-world contexts.

The limitations of traditional RL become apparent when considering its

1
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application to real-world problems, which are often multifaceted and not easily
encapsulated by a single reward function. To bridge this gap between theoretical
RL and its practical, real-world application, it is imperative to broaden our
approach and relax the rigid assumptions underpinning current methodologies.
Our work is thus motivated by the need to adapt and extend RL to more complex,
realistic scenarios, moving beyond simplistic control problems or retro games.

To achieve this, we have identified several major objectives that form the
cornerstone of our research. These objectives are critical in reshaping RL to
be more flexible, adaptable, and applicable to a diverse array of real-world
challenges. They include:

• Improving autonomous exploration: One of the main aims is to
develop methods for autonomous exploration that do not rely on informative
reward signals. The aim is to create general strategies that are robust to
various possible dynamics, enabling an agent to navigate and learn from
its environment independently, without the need for externally defined
rewards.

• Generalist agent development: At the heart of our research is the
creation of versatile agents capable of performing multiple tasks within a
unified, multimodal framework. The goal is to develop a single-network
agent that efficiently handles a diverse set of tasks and modalities. By inte-
grating diverse data and experiences, such an agent would draw on a broad
knowledge base, moving beyond task-specific learning to a more adaptive
and general approach to RL. This is an evolution towards versatile agents
capable of seamlessly navigating between different tasks, environments and
data types.

Throughout our work, we have been confronted with a third crucial issue:
the rationalization of effort. A major challenge we have observed is the difficulty
of comparing and reproducing results from existing literature. In computer
vision (CV)—although addressing only part of the issue—the establishment
of datasets such as Pascal [75], COCO [166], and ImageNet [229], and their
associated challenges and leaderboards, have played a key role in standardising
performance evaluation and advancing the field. Despite commendable efforts by
the community to promote open research and facilitate access to implementations,
significant obstacles remain. One of the main reasons for this challenge is the
lack of a universally accepted framework for testing, evaluating, reporting and
sharing results, models and implementations.

Aware of the importance of filling this gap, we have devoted part of our
research to developing and maintaining technical solutions to meet these needs.
Our aim has been to propose tools and methodologies that not only facilitate
but also standardize these processes in RL research. In doing so, we aim to
simplify the replication and comparison of studies, thus contributing to a more
cohesive and collaborative research environment.

1.2 Contributions and Publications
The array of challenges outlined in this thesis is multifaceted, spanning various
dimensions of RL. Our contributions to addressing these challenges are captured
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in a series of papers, some already published and others currently under review
at leading conferences in the field. These contributions are both scientific and
technical, reflecting our belief that advancing the field of RL hinges not just on
theoretical breakthroughs but also on the ability of researchers to reproduce,
apply, and effectively compare these findings.

Cell-Free Latent Go-Explore One of the main advances in our work con-
cerns exploration methods in the context of RL. A fundamental foundation has
been laid with Go-Explore [70, 71], an effective exploration method, albeit with
significant constraints in terms of domain knowledge. This method requires a
detailed understanding of the environment and its dynamics in order to divide it
into a number of cells. On this basis, we developed Latent Go-Explore (LGE), an
evolution of Go-Explore designed to relax these constraints. LGE abandons the
traditional cell-based approach in favor of a learned latent representation of the
environment. We have explored various methods of learning the representation,
including inverse dynamics, forward dynamics and Vector-Quantized Variational
AutoEncoder (VQ-VAE) [272], demonstrating that each can be a wise choice
depending on the characteristics of the environment. The learned representation
is used to estimate the latent visitation density, using a computationally light
particle-based estimator. This estimated density is then used to sample goals,
preferably in areas of low latent density, which are supposed to correspond to
regions less frequented by the agent. Following a carefully selected list of inter-
mediate subgoals, the agent is guided towards the final sampled goal. Once this
goal has been reached, the agent continues its exploration from this point. LGE
has proven its versatility in a multitude of contexts, whether visual or non-visual,
low- or high-dimensional, and with full or partial observations. This innovation
significantly extends the applicability of the Go-Explore method, enhancing
its versatility and robustness. It has demonstrated superior performance in
complex environments, excelling particularly in challenging scenarios such as
Montezuma’s Revenge. LGE has been published at ICML 2023 [90].

Jack of All Trades, Expert of Some: a Multi-Purpose Transformer
Agent Another important area of our research has been to address the limi-
tations of RL applications, which are often confined to single environments or
tasks. Inspired by the flexibility of Transformer models for Natural Language
Processing (NLP), we set out to create a Jack of All Trades network (JAT),
based on this model and designated to operate in a multimodal, multitasking and
versatile way. JAT represents a paradigm shift, as it contains in a single network
the ability to perform a wide range of different tasks, from sophisticated robot
control to playing Atari games, and from engaging in conversations to describing
images. The resulting model showed impressive performance, competing with
its closest baseline Gato [224], despite Gato being significantly larger in size.
It closely mirrors expert scores in the sequential decision-making domains on
which it was trained. It also demonstrated promising capabilities in language
processing and image comprehension tasks, further illustrating its effectiveness.
To the best of our knowledge, this is the most advanced and efficient generalist
agent for sequential decision-making. This pretrained agent is available as open
source. We are also releasing the complete dataset used to train it, as well as
all the expert agents used to create this dataset. At the time of writing, as far
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as we know, this is the first dataset this diverse, and we hope it will continue
to grow. The work on JAT resulted in a paper [92], which is under
review for ICML 2024.

PandaGym1: Open-Source Goal-Conditioned Environments for Robotic
Learning The RL community was in need of environments that were not only
easy to customize but also freely accessible, open-source, and actively maintained,
especially for evaluating complex robotic control tasks. Addressing this need,
in 2020, we introduced PandaGym. This set of simulated robotic environments
fulfills all these criteria and has significantly contributed to the field. The initial
release of PandaGym included baseline results from leading algorithms, yet
none were fully successful in solving all the tasks presented. This work has
been published at the 4th Workshop on Robotic Learning at NeurIPS
2021 [91]. Three years after its initial release, the community’s enthusiastic
adoption of PandaGym is evident. The environments have been downloaded
tens of thousands of times, and the initial baselines have been surpassed multiple
times. Numerous users have leveraged PandaGym to develop their own custom
settings for research, adding new tasks and functionalities. The platform has
not only evolved but also improved significantly, incorporating new tasks and
enhancements, largely driven by the numerous contributions from the commu-
nity. These contributions have led to the identification and rectification of some
bugs, further refining the platform. Today, PandaGym’s ecosystem is enriched
with an abundance of pretrained models, tutorials, and courses that integrate
it into their content. We believe that the journey of PandaGym underscores
its significant contribution to the field, demonstrating how a well-maintained
and community-driven platform can evolve over time, enriching research and
broadening the scope of possibilities in RL.

Open RL Benchmark2: Comprehensive Tracked Experiments for Rein-
forcement Learning Proceeding from a concern similar to that of PandaGym,
we believe that the RL literature often lacks a general framework, as well as
a common method for reporting, comparing, and enabling the reproduction of
previously obtained results. Firmly convinced that such a framework is essential
for significant and solid progress, we propose a collaborative and open benchmark
named Open RL Benchmark. This platform serves as a comprehensive collection
of meticulously tracked and downloadable experiments in RL, going far beyond
the traditional focus on the episodic return curve as a function of training steps.
It offers an extensive range of training data, encompassing both static elements,
like hyperparameters, and evolving values such as episodic return, loss metrics,
episode length, or any algorithm-specific metrics. To ensure a complete picture
of the training process, Open RL Benchmark also includes detailed information
on software (e.g., libraries used) and hardware (e.g., number and models of
GPUs), thereby providing a full understanding of the training environment.
Emphasizing our focus on reproducibility, each experiment tracked within Open
RL Benchmark is designed to include all the necessary information necessary
for its exact replication. This includes pinned versions of dependencies and
the exact commands used in the experiments. Such meticulous documentation

1https://github.com/qgallouedec/panda-gym
2https://github.com/openrlbenchmark/openrlbenchmark

https://github.com/qgallouedec/panda-gym
https://github.com/openrlbenchmark/openrlbenchmark
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ensures that researchers can not only analyze but also accurately replicate the
studies, fostering an environment of transparent and verifiable scientific progress.
Open RL Benchmark extends its capabilities far beyond simply facilitating
standard comparisons. It enables researchers to conduct a wide range of ana-
lytical explorations. The platform enables conventional assessments, such as
tracking episodic return against training steps. However, its true potential lies in
opening up avenues for more innovative and less explored analysis. For example,
researchers can compare the memory use of different algorithms, or assess the
consistency of results obtained from different RL libraries. This range of analysis
fosters a richer, more nuanced exploration of RL, paving the way for deeper
understanding and advancing methodologies in the field. Finally, Open RL
Benchmark is designed as an evolutionary tool, to be fed by the community.
New runs are added every day, increasing the statistical robustness of the results
and the spectrum of the benchmark. As of this writing, Open RL Benchmark
includes over 25,000 tracked experiments from nearly fifty contributors. Open
RL Benchmark is the subject of a paper [118] to be submitted to the
NeurIPS 2024 Datasets and Benchmarks track.

1.3 Contents

In Chapter 2, we examine the essential concepts and theoretical frameworks of RL.
This chapter serves as the cornerstone of the thesis, methodically outlining the
fundamental principles of RL. We begin by examining the tabular case, providing
a clear and comprehensive introduction to the fundamentals. This leads to a
discussion of the integration of deep learning with RL, focusing on value-based
deep RL approaches. The chapter then explores alternative approaches, first
policy-based and then model-based. These sections aim to provide a balanced
understanding of the theoretical aspects and state-of-the-art algorithms in this
field. To conclude the chapter, we examine a series of emerging methodologies.
With this introductory chapter, we lay a solid foundation for the extensive and
multifaceted exploration of RL, paving the way for more advanced topics in
subsequent chapters.

In Chapter 3, we focus on LGE, our contribution to exploration methods
for RL. The chapter begins with a thorough review of existing methodologies,
focusing particularly on Go-Explore [70, 71], its key contributions and its lim-
itations. This review justifies the need for the advances we propose. At the
heart of this chapter we detail the development of LGE. We describe the means
used to make the approach more general and robust, in particular by using a
latent representation of the environment rather than relying on predefined cells.
The chapter then explores in detail the various aspects of LGE and examines
how each of them contributes effectively to its success. Next, we engage in a
detailed comparison of LGE’s performance against various robust state-of-the-art
methods in a wide range of environments. These include visual and non-visual
contexts, as well as environments ranging from high- to low-dimensional spaces.
We demonstrate the improved performance of LGE in complex situations, high-
lighting in particular its success in demanding environments such as Montezuma’s
Revenge. Through this analysis, we demonstrate that LGE offers a more general
and efficient framework for exploration, outperforming current methods in the
literature.
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In Chapter 4 we focus on the development of JAT, a novel effort in our
research to overcome the typical limitations of RL applications, which are often
confined to single environments or tasks. The chapter begins with a detailed
review of the emerging literature on multimodal general-purpose agents. It then
focuses on the development of JAT, which has been inspired by the versatility of
Transformer models [274] in NLP. We explain how JAT integrates a wide range of
capabilities within a single network, explaining its multimodality, its ability to be
used in sequential decision-making tasks, but also in text generation tasks. JAT
demonstrates impressive performance, achieving scores comparable to expert
benchmarks used in its training data. We also present its promising capabilities
in NLP and image understanding. We then justify its architectural choices on the
basis of several studies and examine the contribution of the different components
to the functioning of JAT. The chapter concludes by charting new paths for RL
research. These challenges include the development of strategies to effectively
manage joint training on multiple tasks of varying complexity, each with its own
unique dataset, whose volume and modalities may vary significantly. Finally, we
motivate the idea that future work should also propose methods for integrating
a wider range of data than that generated by experts. We justify that these
developments are crucial to create adaptive and trainable models capable of
handling the multiple facets of real-world RL scenarios.

In Chapter 5, we explore a range of works that represent key technical
contributions to the RL community. Convinced that these contributions are
crucial but often overlooked in facilitating research that effectively builds on
(and not alongside) existing work, we present several tools designed to improve
clarity, consistency, and reproducibility in this area. This chapter details our
efforts in developing these tools, emphasizing their role in promoting a more
integrated and coherent research. The chapter begins with an introduction
to PandaGym, our open-source platform for simulated robotic learning. We
discuss its development, key features, and the significant role it has played in
the RL community. This section also includes a retrospective analysis of how
PandaGym has been used and developed over the past three years, highlighting
its lasting impact and relevance. We then introduce Open RL Benchmark, a
comprehensive platform for tracking and sharing RL experiments. We explore
its architecture, functionalities, and its central role in addressing the challenges
of reproducibility and comparative analysis in RL research. The chapter also
discusses the intended use of Open RL Benchmark, its current significance in
the field, and our expectations for how the community will engage with and
contribute to its development.

We conclude this document with the Chapter 6 dedicated to its synthesis,
which aims to provide an overall view of the proposed contributions. We place
particular emphasis on the links between these contributions in order to provide
a coherent vision of what this work has achieved. We also propose a series of
reflections that have emerged from this work, which we hope will help to better
guide future research, both in its technical and scientific practice. We extend
this concluding chapter by taking a step back and proposing a discussion of
the ethical issues surrounding artificial intelligence. As with good technical
and scientific practice, we believe that it is crucial to develop a reflection on
these issues, especially now that AI has emerged from the laboratory and is
already beginning to reshape the world. At a more individual level, we’ll take
the opposite approach, explaining not the contribution of my work to AI, but the
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contribution of AI to my work. Similarly, we strongly believe that this reflection
needs to be promoted and discussed by researchers now to ensure transparent
and trustworthy research.
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Chapter 2

Reinforcement Learning: From
Core Principles to
Cutting-Edge Algorithms

The basic idea of RL is learning what to do. How an agent should interact
with its environment in order to maximize a reward signal. To become familiar
with this field, several notions are essential. This chapter is intended to lay the
foundations for understanding the contributions presented later in this document.
We introduce the fundamental concepts underlying RL, in particular the Markov
decision process (MDP), and give some of its properties. We then discuss learning
algorithms, starting with the tabular case and extending to the general case using
function approximators. We present some of the most widely used algorithms
from the literature and conclude with an overview of specialized RL frameworks
that are also currently at the forefront of active research. This chapter draws
upon components from [261], [283] and [1].

2.1 Introduction to Reinforcement Learning

2.1.1 Overall process

In this first section, we give the intuition of the process. A sequential decision-
making process is composed of an environment and an agent, which interact
with each other.

The interaction process is sequential, which means that the interactions occur
only at certain discrete instants. At each timestep, the agent takes the action,
according to the state of the environment. Then the environment changes its
internal state according to this action. The state is the set of variables that
describe the environment. The environment returns this new state to the agent.
It also returns a reward, measuring how well the agent does. Considering this
new state, and the reward, the agent takes a new action, and the process starts
again. The interaction process ends when the agent reaches a so-called terminal
state. The goal of the agent is to receive as much reward as possible. He must
therefore learn to choose the actions that produce the greatest amount of reward.

9
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Agent Environment

action

state

reward

Figure 2.1: Schematic representation of the interaction between the agent and
the environment.

2.1.2 Markov Decision Process

State, action, reward

Definition 2.1.1. The state space, denoted S, is defined as an arbitrary set
(which can be finite or infinite, continuous or not). An element of this set is
called a state, and is used to describe the state of the environment.

Definition 2.1.2. Let s ∈ S be a state. The action space in s, denoted by
A(s), is defined as the set of all possible actions that can be taken in state s.

Remark 1. For simplicity, it is frequently assumed that the set of possible
actions does not depend on the specific state, implying that the action space is
constant across all states in S. Under this assumption, the action space is simply
denoted as A rather than A(s) for each state s ∈ S. Henceforth, we shall refer
to A as the action space, and this will be the standing assumption throughout
this document.
Remark 2. If both the state and action spaces are finite, the problem is
categorized as a tabular problem. This case is discussed extensively in Section
2.2.

Definition 2.1.3. Let s ∈ S be a state and a ∈ A an action. The reward space
for this state-action pair, denoted by R(s, a), is defined as the subset of the real
numbers R representing all possible rewards received after taking action a in
state s.

Remark 3. For the sake of simplicity, it is often assumed that the reward does
not depend on states or actions, implying that the reward function is constant
over the product space S ×A. Therefore, we denote it simply as R and refer to
it as the reward space. This will be the standing assumption in this document.
Furthermore, since R is a subset of R, we will often conflate it with R.
Remark 4. In this document, we use capital letters to designate random
variables. For instance, the action taken by the agent at time t ∈ N is denoted by
At. Similarly, for the notions already introduced, we use St and Rt to represent
the state and the reward, respectively, at time t.
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Remark 5. The set of possible states S, actions A and rewards R may be
continuous. In a rigorous mathematical approach, it would be essential to
consider the whole set of crossed cases, based on the topology of these spaces
for the theorems and proofs in this document. Typically, the core differences
in these cases would involve altering sums to integrals. However, for the sake
of simplicity and practicality in this document, we will assume these spaces to
be finite. It is important to note that in real-world applications, especially in
computer science, it is usually feasible to approximate or discretize R into a
finite set, albeit with potential for approximation errors.

Definition 2.1.4. The initial state, denoted by S0, is defined as the state
where the agent starts its interaction with the environment. This initial state is
sampled according to a predefined distribution, referred to as the initial state
distribution, denoted by ρ0. The initial state distribution is formally defined as:

ρ0
.
= P (S0 = ·) (2.1)

Remark 6. In some cases, the initial state is always the same. For example,
in the game of Go, the initial state is consistently an empty board. In these
particular scenarios, we denote the constant initial state as s0. The initial state
distribution is thus expressed as:

∀s ∈ S ρ0(s) = 1s=s0 (2.2)

Transition function, terminal state, history, episode

Definition 2.1.5. The transition function, denoted by p, is defined as the
probability function over the states and the rewards given a state and an action.
formally, the transition function is defined as:

p : R× S × S ×A → [0, 1]
(r, s′ | s, a) 7→ P (St+1 = s′, Rt+1 = r | St = s,At = a)

(2.3)

Remark 7. At this point, it might be necessary to make p depend on t.
However, as we will explore in Definition 2.1.12, the Markovian property implies
that the distribution remains constant across t. Therefore, for the sake of
simplicity, we will omit the t dependence in our notation.

Definition 2.1.6. A state s is termed terminal if and only if:

∀(a, r, s′) ∈ A×R× S, p(r, s′ | s, a) = 1s′=s · 1r=0 (2.4)

This equation implies that in a terminal state s, regardless of the action taken,
the system remains in state s with reward 0. The set of non-terminal states is
denoted by S+, and the set of terminal states is denoted by S−. Thus, we have
S− ∪ S+ = S and S− ∩ S+ = ∅.

Remark 8. A terminal state is defined as a state from which the agent cannot
depart, and that invariably yields a reward of zero. Upon reaching a terminal
state, the agent’s interaction process is considered to be concluded.
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For the following, it will be useful to have the reward and state distributions,
which are obtained simply by marginalizing the joint distribution.

Definition 2.1.7. The state transition function, denoted by p, is defined as
the probability distribution over states s′ ∈ S given a current state s ∈ S and
an action taken a ∈ A. This function determines the likelihood of transitioning
from one state to another state upon the execution of an action. Formally, the
state transition function is defined as:

p : S × S ×A → [0, 1]
(s′ | s, a) 7→ P (St+1 = s′ | St = s,At = a)

(2.5)

Theorem 2.1.1.

∀(s, a, s′) ∈ S ×A× S p(s′ | s, a) =
∑
r∈R

p(r, s′ | s, a) (2.6)

Proof. Immediate consequence of the law of total probability.

Definition 2.1.8. The reward distribution, denoted by p, is defined as the
probability distribution over rewards given a state and an action. Formally, the
reward distribution is defined as:

p : R× S ×A → [0, 1]
(r | s, a) 7→ P (Rt+1 = r | St = s,At = a)

(2.7)

Theorem 2.1.2.

∀(a, r, s′) ∈ A×R× S p(r | s, a) =
∑
s′∈S

p(r, s′ | s, a) (2.8)

Proof. Immediate consequence of the law of total probability.

At this point, let’s introduce a few more elements of vocabulary, in particular
the aptly named transitions, histories and episodes.

Definition 2.1.9. An element of S ×A×R× S is called a transition.

Definition 2.1.10. An history, denoted by h, is defined as a sequence of states,
actions, and rewards up to timestep t. Formally, a history is defined as:

h = (s0, a0, r1, s1, . . . , st−1, at−1, rt, st) (2.9)

where si ∈ S, ai ∈ A, and ri ∈ R for all i ⩽ t. The length of the history is
defined as the integer t.

Remark 9. In a history, states range from s0 (the initial state) to st (the last
state, which is not necessarily a terminal state); actions range from a0 to at−1

(excluding the action taken in state st); and rewards range from r1 to rt (noting
that there is no r0, as the initial state does not yield a reward).
Remark 10. The set of possible histories is the union, for all t ∈ N, of histories
of length t.

Definition 2.1.11. An episode (or trajectory), denoted by τ , is defined as a
history in which the last state is terminal. Formally, an episode is defined as:

τ
.
= (s0, a0, r1, s1, . . . , st−1, at−1, rt, st) where st ∈ S− (2.10)
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Markovian property

At this point, we introduce a central property of the processes known as the
Markov property. All of the relationships used in RL are directly derived from
the application of this property.

Definition 2.1.12. A stochastic process verifies the Markov property (or
is Markovian) if the conditional probability distribution of future states and
rewards depends only on the current state and action, and not on the past history.
Formally, for any history h = (s0, a0, r1, . . . , at−1, rt−1, st), action a, reward r,
and state s′, the process satisfies:

P (Rt+1 = r, St+1 = s′ | Ht = h,At = a)

= P (Rt+1 = r, St+1 = s′ | St = st, At = a)

This definition originates from the work of Russian mathematician Andrey
Markov.

Remark 11. Intuitively, a process is Markovian when the future is independent
of the past, given the present. Everything there is to know is contained in the
current state.

Remark 12. In practice, and throughout this document unless otherwise
stated, we assume that the process is Markovian. Theoretically, for a non-
Markovian process, expanding the state space to include the entire history can
transform it into a Markovian process.

Definition 2.1.13. A Markov Decision Process (MDP) is the tuple ⟨S,A, p⟩.

Remark 13. It this document, we assume that the length of the episodes is
bounded from above. In other words, the interaction process always ends at
some point. It is commonly referred to as a finite-horizon MDP or episodic
MDP.

Definition 2.1.14. The horizon, denoted by T , is defined as the step beyond
which the process is guaranteed to have reached a terminal state. It is formally
defined as:

T
.
= argmin

t∈N
P (St ∈ S−) = 1 (2.11)

2.1.3 Policy and value functions

In numerous scenarios, the reward resulting from a good action may not be
immediate. Consider a chess game: a strategically sound move does not guarantee
an immediate win. Consequently, the agent’s objective is not to maximize the
immediate reward, but the total reward along the way.
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Return, policy

Definition 2.1.15. The return, denoted by Gt, is the sum of future discounted
rewards. Formally, the return is defined as:

Gt
.
= Rt+1 + γRt+2 + γ2Rt+3 + · · · =

T∑
i=0

γiRt+i+1 (2.12)

where γ ∈ [0, 1] is the discount factor.

Remark 14. The discount factor is used to make immediate rewards more
valuable. When setting γ = 0, the agent only considers immediate rewards,
disregarding future rewards. Conversely, γ = 1 implies that all future rewards
are valued equally, regardless of their temporal distance. However, γ = 1 is
permissible only if the length of the episodes is bounded from above (which
is the case in this document, refer to Remark 13). Otherwise, the constraint
0 ⩽ γ < 1 applies. In practice, γ is usually set around 0.99.

It is worth noting that the concept of return can be expressed recursively.
To put it simply, what I’ll get in the future can be decomposed into what I’ll get
tomorrow plus what I’ll get in tomorrow’s future.

Theorem 2.1.3.
Gt = Rt+1 + γGt+1 (2.13)

Proof.

Gt =

+∞∑
i=0

γiRt+i+1 ((2.12))

= Rt+1 +

+∞∑
i=1

γiRt+i+1

= Rt+1 +

+∞∑
i=0

γi+1Rt+(i+1)+1

= Rt+1 + γ

+∞∑
i=0

γiR(t+1)+i+1

= Rt+1 + γGt+1 ((2.13))

None of the concepts introduced so far, however, provide guidance on what
actions to take in such a process. The ultimate goal, of course, is to choose the
right actions to reap the maximum rewards. To achieve this, one must follow a
plan, ideally an effective one. This plan is formally known as a policy.

Definition 2.1.16. The policy, denoted by π, is defined as a probability
distribution over actions given states. It represents the probability that the
agent takes a specific action in a given state. Formally, the policy is defined as:

π : A× S → [0, 1]
(a | s) 7→ P (At = a | St = s)

(2.14)
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Remark 15. Sometimes, policies are deterministic, meaning each state corre-
sponds to a unique action. This is known as a deterministic policy, as opposed
to a stochastic policy. In the case of a deterministic policy, it is denoted by
a = π(s). In this document, policies are assumed to be stochastic by default.

Definition 2.1.17. The set of all policies, denoted Π, is defined as the set
containing all possible policies. Formally, the set of all policies is defined as:

Π =
{
π ∈ [0, 1]A×S | ∀s ∈ S, π(· | s) is a probability distribution over A

}
(2.15)

State-value function, action-value function

Now that we have introduced the policy, the plan, we need to be able to evaluate
the plan, to determine if it is a good plan. To do that, we’re going to judge, for
each possible state, how much reward we can expect from following it.

Definition 2.1.18. Let π be a policy. The state-value function, denoted by
V π, is defined as the expected return starting from state s ∈ S and thereafter
following policy π. Formally, the state-value function is defined as:

V π : S → R
s 7→ E

[
Gt | St = s,

(⋂+∞
i=0 At+i ∼ π(· | St+i)

)] (2.16)

Remark 16. To simplify the notation, Eπ stands for the expectation under
the condition that all actions are sampled according to the policy π (unless
otherwise stated):

Eπ = E

[
· |

∞⋂
i=0

At+i ∼ π(· | St+i)

]
(2.17)

Consequently, we express the state-value function as:

V π(s) = Eπ [Gt | St = s] (2.18)

What happens if the policy isn’t followed just once? This is a question that
will be very useful to answer later when we show how to improve a policy. To
answer this question, we introduce a new value function.

Definition 2.1.19. The action-value function, denoted by Qπ, is defined as
the expected cumulative reward after taking an action in a state, and thereafter
following the policy π. Formally, the action-value function is defined as:

Qπ : S ×A → R
(s, a) 7→ Eπ[Gt | St = s,At = a]

(2.19)

Remark 17. We can extend the term state-value function (respectively, action-
value function) to any function mapping from S (respectively, S×A) to R. These
functions are thus not necessarily associated with a specific policy. In such cases,
we will denote them simply by V (respectively, Q).

Was not following the policy the right thing to do? To find out, we need to
compare what they got with what would have been gotten if the policy had been
followed. This relative amount of reward is called the advantage. If it is positive,
it was advantageous not to follow the policy.
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Definition 2.1.20. The advantage function, denoted by Aπ, is defined as the
expected extra reward received for choosing a particular action in a state, over
the expected reward of following the policy π from that state. Formally, the
advantage function is defined as:

Aπ : S ×A → R
(s, a) 7→ Qπ(s, a)− V π(s)

(2.20)

2.1.4 Bellman equations and optimal policies

Bellman expectation equations

The value functions are interconnected and can be expressed relative to each
other. Returning to our previous question: what are the consequences when
the agent deviates from the policy just once? This choice not only impacts the
immediate reward but also leads the agent to a different next state than it would
have reached by following the policy. This relationship is precisely formalized by
the following theorem.

Theorem 2.1.4. For all (s, a) ∈ S ×A,

Qπ(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γV π(s′)) (2.21)

Proof. Let (s, a) ∈ S ×A.

Qπ(s, a) = Eπ [Gt | St = s,At = a] ((2.19))
= Eπ [Rt+1 + γGt+1 | St = s,At = a] (from (2.13))
= Eπ [Rt+1 | St = s,At = a] + γEπ [Gt+1 | St = a,At = a]

Using the Markov property,

Eπ [Gt+1 | St = a,At = a] =
∑
s′∈S

p(s′ | s, a)Eπ [Gt+1 | St = a,At = a, St+1 = s′]

=
∑
s′∈S

p(s′ | s, a)Eπ [Gt+1 | St+1 = s′]

=
∑
s′∈S

p(s′ | s, a)V π(s′)

Therefore,

Qπ(s, a) =
∑
r∈R

p(r | s, a)r + γ
∑
s′∈S

p(s′ | s, a)V π(s′)

=
∑
r∈R

∑
s′∈S

p(r, s′ | s, a)r +
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)γV π(s′)

=
∑

(r,s)∈R×S
p(r, s′ | s, a)(r + γV π(s′)) ((2.21))
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Corollary 2.1.4.1. For all (s, a) ∈ S ×A,

Qπ(s, a) = Eπ [Rt+1 + γV π(St+1) | St = s,At = a] (2.22)

Proof. Simple rewriting of Equation (2.21).

Similarly, we can express the value of a state in terms of the action-state
function.

Theorem 2.1.5. For all s ∈ S,

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a) (2.23)

Proof. Let s ∈ S.

V π(s) = Eπ [Gt | St = s] ((2.16))

=
∑
a∈A

P (At = a | St = s)Eπ [Gt | St = s,At = a]

=
∑
a∈A

π(a | s)Qπ(s, a) ((2.23))

Corollary 2.1.5.1. For all s ∈ S,

V π(s) = Eπ [Q
π(s,At) | St = s] (2.24)

Proof. Simple rewriting of Equation (2.23).

We therefore introduce Bellman’s expectation equations, which formalize the
recursive relation on the two value functions. For each, the idea is to decompose
the expectation of the future into the sum of the expectation of the immediate
reward and the rewards that will come later.

Theorem 2.1.6 (Bellman expectation equations). For all (s, a) ∈ S ×A,

V π(s) = Eπ [Rt+1 + γV π(St+1) | St = s] (2.25)
Qπ(s, a) = Eπ [Rt+1 + γQπ(St+1, At+1) | St = s,At = a] (2.26)

Proof of Bellman expectation equation for V π. Let s ∈ S.

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a) ((2.23))

=
∑
a∈A

π(a | s)Eπ [Rt+1 + γV π(St+1) | St = s,At = a] (from (2.22))

=
∑
a∈A

P (At = a | St = s)Eπ [Rt+1 + γV π(St+1) | St = s,At = a]

(from (2.14))

= Eπ [Rt+1 + γV π(St+1) | St = s] ((2.25))
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Proof of Bellman expectation equation for Qπ. Let (s, a) ∈ S ×A.

Qπ(s, a) = Eπ [Rt+1 + γV π(St+1) | St = s,At = a] ((2.22))
= Eπ [Rt+1 + γEπ [Q

π(St+1, At+1)] | St = s,At = a] (from (2.23))
= Eπ [Rt+1 + γQπ(St+1, At+1) | St = s,At = a] ((2.26))

Optimal policies

At this stage, we are able to evaluate the value of a policy. However, the goal is
not just any policy; it is the optimal policy—the one that consistently makes
the best decisions. In the following sections, we provide a formal definition of
this optimality and introduce the properties that will guide us in finding this
optimal policy.

Definition 2.1.21. Let π and π′ be two policies. π′ is said to be better than
π, denoted

π ⩽ π′

if and only if
∀s ∈ S, V π(s) ⩽ V π′

(s) (2.27)

Remark 18. Defined in this way, is better than constitutes a partial order on
Π. It is important to note that this order relation is not necessarily a total order.
That is, given any two policies, it is not always the case that one is better than
the other.

Definition 2.1.22. The optimal state-value function, denoted by V ∗, is the
maximum of state-value functions over all policies. It is formally defined as:

V ∗ : S → R
s 7→ max

π∈Π
V π(s) (2.28)

Remark 19. As a consequence of Remark 13, (π ∈ Π, s ∈ S) 7→ V π(s) is
indeed bounded from above. Intuitively, this means that since the agent receives
a finite reward, a finite number of times, the sum of the rewards is bounded
from above. This implies that supπ∈Π V

π(s) does exist. However, for stochastic
policies, it cannot be guaranteed that this supremum is attained within Π.
Nevertheless, we will proceed with the assumption that it is reached, though
this is not formally justified.

Definition 2.1.23. The optimal action-value function, denoted by Q∗, is the
maximum of the action-value functions over all policies. Formally, the optimal
action-value function is defined as:

Q∗ : S ×A → R
(s, a) 7→ max

π∈Π
Qπ(s, a) (2.29)
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Definition 2.1.24. A policy π is optimal if and only if its state-value function
is the optimal state-value function. An optimal policy is usually denoted by π∗.

π is optimal ⇐⇒ V π = V ∗ (2.30)

Theorem 2.1.7.
π is optimal =⇒ Qπ = Q∗ (2.31)

Proof. Let π be an optimal policy. Then V π = V ∗ (from Definition 2.1.24). Let
s be a state and a an action.

Qπ(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γV π(s′)) ((2.21))

=
∑

(r,s′)∈S×S
p(r, s′ | s, a)(r + γV ∗(s′))

=
∑

(r,s′)∈S×S
p(r, s′ | s, a)(r + γmax

π̃∈Π
V π̃(s′)) (from (2.28))

= max
π̃∈Π

∑
(r,s′)∈S×S

p(r, s′ | s, a)(r + γV π̃(s′))

= max
π̃∈Π

Qπ̃(s, a) (from (2.21))

= Q∗(s, a) (from (2.29))

Remark 20. The converse, however, is not true. This can be demonstrated
by considering the nature of the action-value function Qπ(s, a). This function
essentially answers the question: What return can I expect if I take action a
and then follow policy π?. As an example, consider a one-step MDP (i.e. the
episode ends immediately after the first action), the policy followed thereafter
becomes irrelevant. Consequently, the action-value function simply represents
the expected return of taking action a. In such a scenario, all policies, whether
optimal or not, share the same action-value function.

Remark 21. In finite MDP, such a policy does exist. However, the proof of
its existence is non-trivial. In this document, we elect to use this result without
providing its demonstration.

Greedy policy and policy improvement theorem

An effective strategy for improving a policy involves evaluating, at each step,
what the outcome would have been if the recommended action had not been
taken. If this evaluation shows that a better alternative action was available,
then choosing it instead leads to policy improvement. This approach is known
as greedy.
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Definition 2.1.25. Let Q be an action-value function. The greedy policy with
respect to Q, denoted greedy(Q), is defined as the deterministic policy that, for
each state s, chooses the action that maximizes Q(s, ·). Formally, the greedy
policy with respect to Q is defined as:

greedy(Q)
.
= s 7→ argmax

a∈A
Q(s, a) (2.32)

Furthermore, for any policy π ∈ Π, the corresponding greedy policy is denoted
by πgreedy, defined as πgreedy

.
= greedy(Qπ).

Remark 22. In this discussion, we simplify our consideration by not focusing
on cases where multiple actions yield the same maximum value, which would
render the use of argmax ambiguous. To circumvent this issue, we adopt the
convention that if multiple actions have the same value, the argmax function
selects the action with the smallest index in the action set A. This approach
ensures a unique action selection for the greedy policy, even in scenarios where
multiple actions have identical value.

Theorem 2.1.8 (Policy improvement theorem). Consider a policy π. The
greedy policy with respect to the action-value function Qπ is better than π.
Formally, this is expressed as:

∀π ∈ Π, π ⩽ πgreedy (2.33)

Lemma 2.1.8.1. Let π ∈ Π.

∀s ∈ S V π(s) ⩽ Qπ(s, πgreedy(s)) (2.34)

Proof of the lemma. Let π ∈ Π. The greedy policy πgreedy is deterministic.
Consequently, for any action a and state s, πgreedy(a | s) is either 0 or 1. In
line with the notation introduced in Remark 15, we use πgreedy(s) to denote the
action consistently chosen by πgreedy in state s ∈ S. Formally:

∀s ∈ S, πgreedy(s) = argmax
a∈A

Qπ(s, a) (2.35)

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a) ((2.23))

⩽
∑
a∈A

π(a | s)︸ ︷︷ ︸
=1

max
ã∈A

Qπ(s, ã)

= max
ã∈A

Qπ(s, ã)

= Qπ(s, πgreedy(s)) ((2.34))

Proof of the theorem. For all k ∈ N, we define the notation (At:t+k = πgreedy(St:t+k))
to indicate that the current and the next k actions are chosen according to πgreedy.
Formally, this is expressed as:

(At:t+k = πgreedy(St:t+k))
.
=

k⋂
i=0

(At+i = πgreedy(St+i)) (2.36)
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We apply the following relations recursively until reaching the final state ST ,
which, by convention, has a value of 0:

V π(s) ⩽ Qπ(s, πgreedy(s)) ((2.34))

and

Qπ(s, πgreedy(s)) = Eπ [Rt+1 + γV π(St+1) | St = s,At = πgreedy(St)]
((2.22) applied to πgreedy)

For readability, we omit in subsequent expressions that the expectations are
conditioned on St = s.

V π(s) ⩽ Qπ(s, πgreedy(s))

= Eπ [Rt+1 + γV π(St+1) | At = πgreedy(St)]

⩽ Eπ [Rt+1 + γQπ(St+1, πgreedy(St+1)) | At = πgreedy(St)]

= Eπ

[
Rt+1 + γRt+2 + γ2V π(St+2) | At:t+1 = πgreedy(St:t+1)

]
⩽ Eπ

[
Rt+1 + γRt+2 + γ2Qπ(St+2, πgreedy(St+2)) | At:t+1 = πgreedy(St:t+1)

]
= Eπ

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3V π(St+2) | At:t+2 = πgreedy(St:t+2)

]
· · ·

⩽ Eπ

Rt+1 + γRt+2 + · · ·+ γT−t−1 V π(ST︸ ︷︷ ︸
=0

) | At:T = πgreedy(St:T )


= Eπgreedy

[Gt | St = s]

= V πgreedy(s)

Corollary 2.1.8.1. Let π ∈ Π.

∀(s, a) ∈ S ×A Qπ(s, a) ⩽ Qπgreedy(s, a) (2.37)

Proof. Let π ∈ Π. For all (s, a) ∈ S ×A,

Qπ(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γV π(s′)) ((2.21))

=
∑
r∈R

p(r | s, a)r + γ
∑
s′∈S

p(s′ | s, a)V π(s′)

⩽
∑
r∈R

p(r | s, a)r + γ
∑
s′∈S

p(s′ | s, a)V πg

(s′) ((2.33))

=
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γV πgreedy(s′))

= Qπgreedy(s, a) (2.38)

Now, let’s suppose that we have access to the optimal value function (this
does not imply that we have access to an optimal policy). Then, in this case, an
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immediate way of finding an optimal policy is to systematically take the action
which, according to this value function, leads to the greatest return. In other
words, take the greedy policy with respect to this optimal value function.

Theorem 2.1.9.
greedy(Q∗) is optimal. (2.39)

Proof. Let π∗ be an optimal policy. Then, by the definition of an optimal policy
and the optimal action-value function, we have:

V π∗
= V ∗ ((2.31))

Qπ∗
= Q∗ ((2.30))

Consequently,
greedy(Q∗) = greedy(Qπ∗

) = πgreedy (2.40)

From Theorem 2.1.8, it follows that πgreedy is better than π∗:

π∗ ⩽ πgreedy ((2.33))

Then, we deduce that:

∀s ∈ S, V π∗
(s) ⩽ V πgreedy(s) (from (2.1.21))

V π∗
(s) ⩽ V πgreedy(s) ⩽ V ∗(s) (from Definition (2.1.22))

V ∗(s) ⩽ V πgreedy(s) ⩽ V ∗(s) (since π∗ is optimal)

Therefore, V ∗ = V πgreedy , and hence πgreedy = greedy(Q∗) is also optimal.

Definition 2.1.26. Let Q be a action-value function. The ε-greedy policy
with respect to Q, denoted ε−greedy(Q), is defined as the policy that chooses a
random action (from uniform distribution on A) with a probability ε, and the
best action according to Q with a probability 1− ε.

At ∼ ε-greedy(Q)(· | s)⇐⇒
{
At = greedy(Q)(s) with a proba. 1− ε
At ∼ U(A) with a proba. ε

(2.41)

Remark 23. The definition of the ε-greedy policy, while not highly formal, is
advantageous for straightforward algorithmic implementation.

Bellman optimality equations

We continue to focus on optimal policies. Like all policies, they satisfy the
Bellman equations. However, they verify additional relations that are useful for
approximating them. These relations are called Bellman optimality equations.

Theorem 2.1.10 (Bellman optimality equations). For all (s, a) ∈ S ×A

V ∗(s) = max
a∈A

∑
(r,s′)∈R×S

p(r, s′ | s, a)(r + γV ∗(s′)) (2.42)

Q∗(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γmax

a′∈A
Q∗(s′, a′)) (2.43)
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Proof. Let π = greedy(Q∗). Then, for all s ∈ S, we have:

V π(s) =
∑
a∈A

π(a | s)Qπ(s, a) ((2.23))

= Qπ

(
s, argmax

a∈A
Q∗(s, a)

)
V ∗(s) = Q∗

(
s, argmax

a∈A
Q∗(s, a)

)
(since π is optimal)

= max
a∈A

Q∗(s, a) (2.44)

On the other hand,

Qπ(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γV π(s′)) ((2.21))

Since π is optimal,

Q∗(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γV ∗(s′)) (2.45)

By applying Equation (2.44) to Equation (2.45), we deduce the Bellman opti-
mality equation for Q∗.

Q∗(s, a) =
∑

(r,s′)∈R×S
p(r, s′ | s, a)(r + γmax

a′∈A
Q∗(s′, a′)) ((2.43))

Similarly, by applying Equation (2.45) to Equation (2.44), we deduce the Bellman
optimality equation for V ∗.

V ∗(s) = max
a∈A

∑
(r,s′)∈R×S

p(r, s′ | s, a)(r + γV ∗(s′)) ((2.42))

At this stage, we have established the basic concepts and are ready to
introduce algorithms that aim to approximate an optimal policy.

2.1.5 Algorithm types
A variety of strategies have been developed to find an optimal policy. The
subsequent section explores the most prevalent methods documented in the
literature. However, before delving into these approaches, this section introduce
a categorization framework to organize these methods.

Model-based, value-based, policy-based

Various methods exist for identifying an optimal policy in RL, and these can be
broadly categorized, though it should be noted that these categories are not mu-
tually exclusive. The first category, model-based methods, involves approximating
a model of the environment. This model represents the agent’s understanding
of the environment’s dynamics in response to its actions. Specifically, it aims
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Table 2.1: RL algorithm classes.

Model Value
function

Policy

Model-free ✗ - -
Model-based ✓ - -
Value-based - ✓ ✗

Policy-based - ✗ ✓

Actor-critic - ✓ ✓

to estimate the probability of transitioning from one state to another, given an
action, along with the expected reward, denoted as p(·, · | ·, ·), (see Definition
2.1.5). When a learning method utilizes this model for decision-making, as
opposed to interacting directly with the environment, it is engaging in planning.
The second category, value-based methods, focuses on constructing a value func-
tion. This function evaluates the worth of states and actions, and the policy for
interacting with the environment is derived from it. An example is the use of an
ε-greedy policy based on this value function. The third category, policy-based
methods, directly establishes a relationship between states and actions. Unlike
the previous categories, these methods do not attempt to estimate the value
of states and actions but rather develop the policy itself. Finally, the fourth
category discussed in this document is actor-critic methods. These methods
employ a dual approach, utilizing both a policy (the actor) and a value function
evaluating the policy (the critic), hence the nomenclature.

Off-policy and on-policy learning

The policy that an agent uses to select actions is referred to as the behavioral
policy, denoted by β. This policy is distinct from the target policy, denoted by π,
which the agent aims to optimize or evaluate. When β is equal to π, the agent’s
learning process is concurrent with its interaction with the environment. This
scenario is termed on-policy learning, signifying that the agent is learning on the
job.

Conversely, if β differs from π, the agent is engaged in off-policy learning.
In this approach, the agent observes and learns from the behavior dictated by
a different policy. This method can be likened to looking over someone else’s
shoulder, as the agent utilizes experiences generated from a policy other than the
one it seeks to evaluate or optimize. A significant benefit of off-policy learning is
its ability to incorporate a wide range of experiences, including past experiences
and those from other agents, into the learning process.

2.1.6 Partially observable MDPs and interpreter

RL problems are fundamentally grounded in the framework of MDPs. However,
Some RL problems often diverge from standard MDPs in two key aspects.
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Partially Observable MDP

The first divergence is related to the assumption of complete state observability in
classical MDPs. In many real-world situations, an agent may not have full access
to the environment’s state. Instead, the agent perceives the state through an
observation function. A Partially Observable Markov Decision Process (POMDP)
is a generalization of a MDP in which the agent does not have complete and
accurate information about the current state of the environment.

Definition 2.1.27. Formally, a POMDP is defined as a tuple ⟨S,A, p,Ω, O⟩
where:

• Ω is a finite set of observations.

• O is the observation function: O : S × A × Ω → [0, 1], which defines
the probability of observing a particular observation given a state and an
action.

In a POMDP, the agent receives observations that depend on the underlying
state of the environment and the actions taken but may not uniquely identify
the state. As a result, the agent must make decisions under uncertainty about
the actual state.

Agent Environment

O

At

St+1Ot+1

Rt+1

Figure 2.2: Schematic illustration of POMDP.

Throughout this document, the assumption is that the MDP is fully observ-
able, except where specified otherwise. Our focus will be on algorithms tailored
to Markovian processes. Adapting these algorithms for use in POMDPs presents
significant challenges. In the context of a POMDP, the agent effectively deals
with a process that is not strictly Markovian (from its perspective). To mitigate
this and approximate Markovian characteristics, one approach involves utilizing
the history of observations. However, this method substantially increases the
size of the observation space, adding to the complexity.

Interpreter

The second notable difference in RL involves the origination of rewards. Contrary
to common assumptions, the environment in an RL scenario often does not
directly generate rewards. Rather, the determination of rewards is typically
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handled by a separate component known as the interpreter, which computes the
reward based on the current state. This relationship can be formally expressed
as:

Rt
.
= I(St) (2.46)

Agent Environment

I

At

St+1Rt+1

St+1

Figure 2.3: Schematic illustration of the interpreter.

Determining the appropriate reward structure to guide an agent towards
desired behaviors can be a complex task. There exists a specialized literature
focused on this topic, known as reward shaping. This field studies methods and
strategies for effectively designing reward functions that facilitate learning and
goal achievement [100].

For the sake of simplicity in our discussions, we will proceed under the
assumption that the environment directly provides the reward, thus omitting
the detailed role of the interpreter. This assumption effectively integrates the
interpreter’s function into the environment’s mechanism.

2.2 Tabular Case: Value-Based Approaches

2.2.1 Dynamic programming

In the first section, we introduced all the concepts necessary to understand a
RL problem. We also introduced the term planning (see Section 2.1.5), which
consists in solving a RL problem without interacting with the environment, using
only a model of it. Dynamic Programming (DP) describes the set of algorithms
to compute the optimal policy based on the knowledge of a perfect model of
the environment. In the following, we assume that p(·, · | ·, ·) perfectly reflects
the dynamics of the world, and we’ll present various methods for solving an RL
problem based on this model.

Policy evaluation

Consider an arbitrary π policy. The goal here is to approximate its value function
Qπ. To do this, we use the iterative policy evaluation algorithm, which consists
of iteratively computing a sequence (Qk) that tends toward an increasingly
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accurate estimate of Qπ. To do this, let’s first note that we can write Qπ as
follows.

Theorem 2.2.1. For all (s, a) ∈ S ×A

Qπ(s, a) =
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)
(
r + γ

∑
a′∈A

π(a′ | s′)Qπ(s
′, a′)

)
(2.47)

Proof.

Qπ(s, a) = Eπ [Rt+1 + γQπ(St+1, At+1) | St = s,At = a] ((2.26))

=
∑
s′∈S

∑
r∈R

p(r, s′ | s, a) (r′ + γQπ(s′, At+1))

=
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)
(
r′ + γ

∑
a′∈A

π(a | s)Qπ(s′, a′)

)
((2.47))

The value iteration algorithm initiates with an arbitrary function Q0 and
uses the following update rule for any k ∈ N:

Qk+1(s, a)←
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)
(
r + γ

∑
a′∈A

π(a′ | s′)Qk(s
′, a′)

)
(2.48)

Over iterations, the sequence (Qk) converges towards its fixed point Qπ.
It is important to note that Equation (2.48) relies on Qk for its updates,

which is an approximation of Qπ. This method of refining an estimate based on
a previous estimate, known as bootstrapping, introduces an inherent bias as it
effectively learns a guess from a guess.

Algorithm 1: Iterative policy evaluation.
Input: the policy π to be evaluated and a model p of the environment
initialize Q0(s, a) for all s ∈ S and a ∈ A; k = 0
repeat forever

for s ∈ S and a ∈ A do

Qk+1(s, a)←
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)
(
r + γ

∑
a′∈A

π(a′ | s′)Qk(s
′, a′)

)

k ← k + 1

Policy iteration

Policy iteration operates on the principle of successively estimating and enhancing
a policy π to obtain an improved policy π′. Given the action-value function of
a policy, the most straightforward approach to derive an improved policy is to
adopt a greedy strategy with respect to this action-value function (see Theorem
2.1.8). Iteratively applying this process a sufficient number of times leads to the
optimal policy π∗ (although we do not provide a formal demonstration here).
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Algorithm 2: Q-policy iteration (or policy iteration).
Input: a model of the environment p
arbitrarily initialize π(s) for all s ∈ S
while policy is improving do

estimate state-value function Q ≈ Qπ with iterative policy evaluation
π ← greedy(Q)

Value iteration

A more straightforward method involves directly using Bellman’s optimality
equation (see Equation (2.43)) to estimate the optimal value function. The
resulting algorithm is named value iteration the update rule used in this algorithm
is as follows:

Qk+1(s, a)←
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)
(
r + γmax

a′∈A
Qk(s

′, a′)

)
(2.49)

Similarly, iteratively applying this process a sufficient number of times leads to
the optimal value function Q∗.

Algorithm 3: Q-value iteration (or value iteration).
Input: a model of the environment p
arbitrarily initialize Q0(s, a) for all s ∈ S and a ∈ A
repeat forever

for s ∈ S and a ∈ A do

Qk+1(s, a)←
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)
(
r + γmax

a′∈A
Qk(s

′, a′)

)
Qk ← Qk+1

2.2.2 Monte Carlo methods
Dynamic programming is based on the strong assumption that a reliable model
of the environment is available. However, in practical scenarios, such a compre-
hensive model is often unavailable or merely approximate. In contrast, Monte
Carlo (MC) methods present a model-free approach, bypassing the need for an
exact model of the environment. These methods rely solely on experiential data.
This section is dedicated to exploring MC methods as an initial approach to
solving RL problems.

The core idea behind MC methods is to use the return Gt, as an estimator
for the state-action value function Qπ (refer to Definition 2.1.18). Consider
a scenario where the environment has been sampled N times, resulting in a
collection of state, action, and corresponding return. This data is stored in a
replay buffer, structured as a series of tuples:

D = {⟨Si, Ai, Gi⟩ for i = 1, 2, . . . , N} (2.50)
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We can then approximate the value function of the state action as follows:

Qπ(s, a)
.
= Eπ[Gt | St = s,At = a] ≈

∑N
i=1 1Si=s1Ai=aGi∑N
i=1 1Si=s1Ai=a

(2.51)

Given an approximate value of the state-action function, we can construct a
better policy by taking the greedy policy with respect to Q. This new policy is
demonstrably better, as demonstrated in Theorem 2.1.8. However, an inherent
limitation arises from the initial value of Q: certain states may remain unexplored
due to their underestimated value. To overcome this, an ε-greedy policy (defined
in 2.1.26) is used. This approach balances exploration and exploitation by
gradually reducing the value of epsilon toward zero during the learning process.
The resulting algorithm is called Greedy in the Limit with Infinite Exploration
(GLIE) [253].

Algorithm 4: Greedy in the Limit with Infinite Exploration (GLIE).
arbitrarily initialize Q(s, a) for each state s ∈ S and action a ∈ A(s)
ε← 1
π ← ε-greedy(Q)
repeat forever

collect N interactions with π and store them in D
Q← approximation of Qπ using Eq. (2.51)
π ← ε-greedy(Q)
decrease ε

Intuitively, the learning process reveals that some states are understood
more rapidly than others, for example due to the frequency at which they are
encountered. The ε-greedy policy, however, does not differentiate between states
in terms of exploration needs. A efficient alternative involves giving a bonus
when the policy explores state it does not know much. This bonus is the upper
confidence Ut(s, a) of a state-action pair. This algorithm known as the Upper
Confidence Bound (UCB) has been originally proposed by Auer et al. [15]. UCB
uses the following confidence score:

Ut : S ×A → R
(s, a) 7→

√
− log p
2Nt(s,a)

(2.52)

where p ∈ (0, 1) is reduced over time to ensure that the continues to be ex-
ploratory, and Nt(s, a) is the number of times the state-action pair (s, a) has
been encountered.

2.2.3 Temporal-Difference
After exploring MC methods, which rely on complete episodes to estimate value
functions, we now turn our attention to Temporal Difference (TD) learning. TD
methods represent a different approach, blending some aspects of MC methods
with ideas from DP.

Unlike MC methods, which require the final outcome of an episode for updates,
TD learning can update value estimates based on incomplete episodes, using
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Algorithm 5: Upper Confidence Bounds (UCB).
initialize the counter N(s, a) = 0 for each state s ∈ S and action a ∈ A
arbitrarily initialize Q(s, a) for each state s ∈ S and action a ∈ A
initialize p ∈ (0, 1)
initialize U(s, a) = +∞ for each state s ∈ S and action a ∈ A
repeat forever

sample episode S0, A0, R1, . . . , AT−1, RT , ST by acting greedily w.r.t
Q+ U

for each timestep t of the episode do
N(St, At)← N(St, At) + 1
Gt ← Rt+1 + γRt+2 + γ2Rt+3 + · · ·
Q(St, At)← Q(St, At) +

1
N(St,At)

(Gt −Q(St, At))

U(St, At)←
√

− log p
2Nt(St,At)

decrease p

current estimates to predict future outcomes. This allows TD methods to learn
from experience at each step of the episode, rather than waiting for the episode’s
conclusion. As such, TD learning is particularly advantageous in continuous or
very long tasks where episode ends are infrequent.

TD learning is grounded in the principle of bootstrapping, where current
estimates are updated based on new experiences and existing estimates (Equation
(2.25)). A key aspect of TD methods is their ability to update policies after
each timestep, using the difference (or temporal difference) between successive
predictions to guide learning. This incremental update process often leads to
faster convergence compared to MC methods.

V π(s) = Eπ[Rt+1 + γV π(St+1) | St = s] ((2.25))

The objective is to find a V that minimizes the TD error, δt, which is defined as
follows:

δt
.
= Rt+1 + γV (St+1)︸ ︷︷ ︸

TD target

−V (St) (2.53)

As previously discussed, to compute the TD error, only the immediate reward
Rt+1 and the subsequent state St+1 are required. This facilitates the approx-
imation of V π(St). Consequently, the agent can learn on the fly, without the
necessity of awaiting the conclusion of the episode.

Remark 24. For clarity and simplicity, the algorithms described herein do not
account for scenarios where St+1 is a terminal state. In practical applications,
bootstrapping is not feasible when St+1 is terminal, necessitating the omission
of the term γV (St+1) in such cases. The appropriate formulation, considering
terminal states, is given by:

δt
.
= Rt+1 + γ(V (St+1)− V (St))1S−(St+1), (2.54)

where 1S− denotes the termination indicator.
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Approximate the value function using TD

TD(0) is an algorithm that focus on iteratively approximating the value function
V π for a given policy π. This approximation is grounded in the iterative update
of the value function based on the TD error computed at each step. In each
iteration, the value of the current state V (St) is adjusted in the direction that
reduces the TD error. This process, referred to as TD update, is governed by
the learning rate α ∈ R+, which determines the extent to which new information
overrides old information. The algorithmic representation of TD(0) is presented
in Algorithm 6.

Algorithm 6: Temporal-Difference (TD(0)).
Input: a policy π to be evaluated.
arbitrarily initialize V (s) for each state s ∈ S
repeat forever

initialize the environment and get the initial state S0

repeat
choose At ∼ π(· | St)
take action At and get the reward Rt+1 and the new state St+1

δt ← Rt+1 + γV (St+1)− V (St)
V (St)← V (St) + αδt

until the end of the episode;

In summary, TD learning uses a more stable estimator that facilitates learning
on the fly. However, it is important to acknowledge that this estimator is
inherently biased due to the use of the approximated value function. Conversely,
MC methods uses an unbiased estimator, which, while possessing high variance,
requires a full episode for its computation. These differences are summarized in
Table 2.2.

Table 2.2: Comparison of MC and TD methods.

learn from
incomplete episode low variance unbiased

MC no no yes
TD yes yes no

To balance between the two extremes, an intermediate method is to use a
combination of these two estimators.

Definition 2.2.1. The n-steps return, denoted Gt:t+n is defined as

Gt:t+n
.
=

n−1∑
i=0

γiRt+i+1 + γnV (St+n) (2.55)
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Examples:

Gt:t+1 = Rt+1 + γV (St+1) 1-step return

Gt:t+2 = Rt+1 + γRt+2 + γ2V (St+2) 2-steps return

Gt:t+3 = Rt+1 + γRt+2 + γ2Rt+3 + γ3V (St+3) 3-steps return
· · ·

As the value of n increases, the bias decreases while the variance increases. To
strike a balance between these two factors, we introduce the the λ return.

Definition 2.2.2. Let λ ∈ R. The λ return, denoted Gλ
t is defined as

Gλ
t
.
= (1− λ)

T−t−1∑
n=1

λn−1Gt:t+n + λT−t−1Gt (2.56)

Remark 25. G0
t = Rt+1 + γV (St+1) is the TD(0) estimator and G1

t = Gt is
the MC estimator.

In practice, to continue to allow an update at each interaction, we use an
eligibility trace E to spread the reward over the visited states. It is equivalent
to use λ-return.

Algorithm 7: Temporal-Difference with λ-return (TD(λ)).
Input: a policy π to be evaluated.
arbitrarily initialize V (s) for each s ∈ S
repeat forever

initialize eligibility E(s) = 0 for each s ∈ S
initialize the environment and get the initial state S0

repeat
choose At ∼ π(· | St)
take action At and get the reward Rt+1 and the new state St+1

δt = Rt+1 + γV (St+1)− V (St)
for each state s ∈ S do

E(s)← λγE(s) + 1St=s

V (s)← V (s) + αδtE(s)

until the end of the episode;

Remark 26. For λ = 0, the Algorithm 7 is actually equivalent to the TD(0)
introduced previously. Hence the name.

SARSA

As in previous discussions, the Bellman optimality equation is employed to update
the approximate optimal action-value function Q. The resulting algorithm is
termed SARSA, an acronym derived from the quintuple (St, At, Rt+1, St+1, At+1)
used in its process.

Similarly, eligibility traces can be integrated to use the λ-return. This
resulting algorithm SARSA(λ).
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Algorithm 8: State-Action-Reward-State-Action (SARSA(0)).
arbitrarily initialize Q(s, a) for each state s ∈ S and action a ∈ A(s)
ε← 1
repeat forever

initialize the environment and get the initial state S0

choose the first action A0 by acting ε-greedily w.r.t. Q
repeat

choose the next action At+1 by acting ε-greedily w.r.t. Q
take action At and get the reward Rt+1 and the new state St+1

δt ← Rt+1 + γQ(St+1, At+1)−Q(St, At)
Q(St, At)← Q(St, At) + αδt
decrease ε

until the end of the episode;

Q-learning and double Q-learning

Instead of iteratively evaluating, improving, etc., Watkins [279] suggested using
the Bellman optimality equation (2.43) to approximate Q∗. The new update
rule is

Qk+1(St, At)← Qk(St, At)+α(Rt+1)+γmax
a∈A

Qk(St+1, a)−Qk(St, At)) (2.57)

This method is referred to as SARSA-max, or Q-learning.

Algorithm 9: Q-learning.
arbitrarily initialize Q
ε← 1
repeat forever

initialize the environment and observe the initial state S0

repeat
choose the action At ∼ ε-greedy(Q)
take action At and get the reward Rt+1 and the new state St+1

δt ← Rt+1 + γ max
a∈A

(Q(St+1, a))−Q(St, At)

Q(St, At)← Q(St, At) + αδt
decrease ε

until the end of the episode;

While Q-learning represents a significant advancement in RL, it is not without
its shortcomings, notably in the tendency to overestimate value estimates. This
overestimation issue primarily arises from the policy improvement step based on
the same samples used for policy evaluation. A notable solution to this problem
is the double Q-learning, as introduced by van Hasselt et al. [273]. Double
Q-learning employs two distinct value functions, QA and QB . In this approach,
one value function is randomly selected for sampling actions, while the other is
used for updating value estimates, thereby mitigating the risk of overestimation
inherent in standard Q-learning.
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Algorithm 10: Double Q-learning.
arbitrarily initialize QA and QB

ε← 1
repeat forever

initialize the environment and observe the initial state S0

repeat
choose the action At ∼ ε-greedy

(
average(QA, QB)

)
take action At and get the reward Rt+1 and the new state St+1

randomly between A and B
if A then

a∗ ← argmaxa∈A(QA(St, a))
δt ← Rt+1 + γQB(St+1, a

∗)−QA(St, At)
QA(St, At)← QA(St, At) + αδt

if B then
a∗ ← argmaxa∈A(QB(St, a))
δt ← Rt+1 + γQA(St+1, a

∗)−QB(St, At)
QB(St, At)← QB(St, At) + αδt

decrease ε
until the end of the episode;

2.2.4 Importance sampling

The algorithms discussed so far are on-policy, which implies that their learning
is limited by their reliance on the current policy. This reliance can lead to
slower convergence and less effective exploration of the state-action space. In
contrast, off-policy learning is advantageous because it facilitates evaluation
and improvement of a target policy while operating under a different, possibly
exploratory or sub-optimal, behavioral policy (denoted β). This approach allows
more efficient learning from a wider range of experience. To convert an on-policy
algorithm into an off-policy algorithm, importance sampling (IS) can be used.
Importance sampling adjusts the value function estimate by multiplying it by the
ratio of the probabilities of the actions under the target and behavioral policies,
respectively.

Table 2.3: Approximator of V π(St) according to the method and policy used for
sampling.

Sampling policy
π β

MC Gt

(
T∏

τ=t

π(Aτ | Sτ )

β(Aτ | Sτ )

)
Gt

TD Rt+1 + γV (St+1)
π(At | St)

β(At | St)
(Rt+1 + γV (St+1))

In practice, IS is not used with MC estimation because it tends to increase
the already high variance associated with MC estimates. However, its use
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in TD learning is more feasible and common. The Algorithm 11 provides
an illustrative example of how importance sampling can be integrated into a
TD-based algorithm.

Algorithm 11: Importance Sampling for off-policy TD(0).
Input: a policy π to be evaluated.
Input: a policy β to be followed.
arbitrarily initialize V (s) for each state s ∈ S
repeat forever

initialize the environment and get the initial state S0

repeat
choose At ∼ β(· | St)
take action At and get the reward Rt+1 and the new state St+1

δt ← π(At|St)
β(At|St)

(Rt+1 + γV (St+1))− V (St)

V (St)← V (St) + αδt
until the end of the episode;

2.3 Value-Based Deep RL

The algorithms discussed thus far are efficient in environments with a relatively
small number of states. However, as the number of states increases, they
encounter what Richard Bellman has termed the curse of dimensionality, where
the computational demands grow exponentially with the number of states. This
challenge becomes particularly pertinent in many RL applications where the state
space is vast, such as scenarios involving data from cameras or numerous sensors.
In these cases, it becomes intractable for an agent to explore every possible
combination of inputs, like pixels in images. In this section, we’ll study how to
overcome the curse of dimensionality using deep neural networks. Deep neural
networks are a type of function approximator that exhibit excellent capabilities,
particularly for RL problems. RL involving deep neural networks is commonly
referred to as Deep RL.

2.3.1 Some additional definitions and tools

Value functions

Definition 2.3.1. A parametrized state-value (resp. action-value) estimation
is a state-value (resp. action-value) function whose values depend on a parameter
vector in Rd, where d is the number of parameters. This parameter vector is
typically denoted by ϕ, and the corresponding parametrized state-value (resp.
action-value) function is represented as Vϕ (resp. Qϕ). Alternative notations
used are V (·, ϕ) (resp. Q(·, ·, ϕ)).

Definition 2.3.2. A differentiable state-value (resp. action-value) estimation
is a parametrized state-value (resp. action-value) estimation that can be differ-
entiated with respect to its parameter vector. When this condition is met, the
expressions ∇ϕVϕ (resp. ∇ϕQϕ) is well-defined.



36 CHAPTER 2. REINFORCEMENT LEARNING

Visitation distributions

Definition 2.3.3. Let k ∈ N. The state visitation distribution after k timesteps
starting from s under policy π, denoted by ρπk (· → ·), is defined as the function
that assigns to each pair of states the probability of transitioning from one to
the other after k timesteps while following policy π. It satisfies:

∀(s, s′) ∈ S, ρπk (s→ s′)
.
= P

(
St+k = s′ | St = s,

k−1⋂
i=0

At+i ∼ π(· | St+i)

)
(2.58)

Remark 27. Although t is used in this definition, its actual value does not
influence the distribution, a consequence of the Markov property 2.1.12. This
notation is retained for clarity, with the hope that it does not lead to confusion.

Theorem 2.3.1. The state visitation distribution after k timesteps starting
from s satisfies the following recurrence formula.

∀(s, s′′) ∈ S2 ρπk+1(s→ s′′) =
∑
s′∈S

ρπk (s→ s′)ρπ1 (s
′ → s′′) (2.59)

Proof. Let (s, s′′) ∈ S2. For simplicity, we omit the explicit mention that all ac-
tions are sampled according to the policy π. Consequently, the probability expres-
sion P (St+k = s′′ | St = s ,At:t+k−1 ∼ π) is simplified to P (St+k = s′′ | St = s).

ρπk+1(s→ s′′) = P (St+k+1 = s′′ | St = s)

=
∑
s′∈S

P (St+k = s′, St+k+1 = s′′ | St = s)

=
∑
s′∈S

P (St+k = s′ | St = s)P (St+k+1 = s′′ | St = s, St+k = s′)

(i)
=
∑
s′∈S

P (St+k = s′ | St = s)P (St+i+1 = s′′ | St+k = s′)

=
∑
s′∈S

P (St+k = s′ | St = s)P (St+1 = s′′ | St = s′)

=
∑
s′∈S

ρπk (s→ s′)ρπ1 (s
′ → s′′)

(i) is the consequence of the Markov assumption: the future is independent of
the past given the present.

Definition 2.3.4. The state visitation distribution after k timesteps under
policy π, denoted by ρπk , is defined as the function that assigns to each state the
probability of visitation after k timesteps, starting from an initial state sampled
by the environment. It satisfies:

∀s′ ∈ S ρπk (s
′)
.
=
∑
s∈S

ρ0(s)ρ
π
k (s→ s′) (2.60)
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Remark 28. ρπk is indeed a distribution over states:

∀k ∈ [0, T − 1]
∑
s∈S

ρπk (s) = 1 (2.61)

Notably, ρπ0 is the initial state distribution:

ρπ0 = ρ0 (2.62)

Theorem 2.3.2. The state visitation distribution after k timesteps under π
satisfies the following recurrence formula.

∀s′ ∈ S ρπk+1(s
′) =

∑
(s,a)∈S×A

ρπk (s)π(a | s)p(s′ | s, a) (2.63)

Proof. For consistency in notation, we assume that the states are visited sequen-
tially in the order s→ s′ → s′′.

ρπk+1(s
′′) =

∑
s∈S

P (S0 = s)ρπk+1(s→ s′′) (from (2.60))

=
∑
s∈S

P (S0 = s)
∑
s′∈S

ρπk (s→ s′)ρπ1 (s
′ → s′′) (from (2.59))

=
∑
s′∈S

∑
s∈S

P (S0 = s)ρπk (s→ s′)ρπ1 (s
′ → s′′)

=
∑
s′∈S

ρπk (s
′)ρπ1 (s

′ → s′′) (from (2.60))

=
∑
s′∈S

ρπk (s
′)P (St+1 = s′′ | St = s′, At ∼ π) (from (2.58))

=
∑
s′∈S

ρπk (s
′)
∑
a∈A

π(a | s′)p(s′′ | s′, a)

=
∑

(s′,a)∈S×A
ρπk (s

′)π(a | s′)p(s′′ | s′, a)

(2.64)

Definition 2.3.5. The state visitation distribution under policy π, is defined
as the function that assigns to each state the probability of being visited under
policy π. It is denoted ρπ and satisfies:

∀s ∈ S ρπ(s)
.
=

1

T

T−1∑
t=0

ρπt (s) (2.65)

Remark 29. Intuitively, ρπ(s) is the fraction of the total time that the agent
spends in state s when following the policy π.

Definition 2.3.6. The state transition distribution under policy π, denoted by
ρπ, is defined as the function that assigns to each state the probability of being
visited under policy π. It satisfies:

ρπ(s→ s′)
.
=

1

T

T−1∑
t=0

ρπt (s→ s′) (2.66)
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Remark 30. Intuitively, ρπ(s→ s′) is the fraction of the total time that the
agent spends in state s′ after the state s when following the policy π.

Definition 2.3.7. The action visitation distribution under π, denoted by
ρπ(·, ·), is defined as the function that assigns to each state and action the
probability of being visited under policy π. It satisfies:

∀(s, a) ∈ S ×A ρπ(s, a)
.
= ρπ(s)π(a | s) (2.67)

Remark 31. Intuitively, ρπ(s, a) is the fraction of the total time that the agent
spends in state s and takes the action a when following the policy π.

Definition 2.3.8. The return visitation distribution under π, denoted by
ρπ(s, a, g), is defined as the function that assigns to each state, action and return,
the probability of being visited under policy π. It satisfies:

ρπ(s, a, g)
.
= ρπ(s, a)P (Gt = g | St = s,At = a) (2.68)

Remark 32. Intuitively, ρπ(s, a, g) is the fraction of the total time that the
agent spends in state s, takes the action a and get the return g when following
the policy π.
Remark 33. In practice, the previous definitions are not commonly used, but
they are valuable for the subsequent demonstrations. They serve to abstract
away the inherent sequential nature of MDPs, thereby simplifying the analysis.

Cost function and approximator of its gradient

In this section, we explore the definition of the cost function, which quantifies
the imprecision of our policy evaluation. By applying an optimization algorithm
to this cost function, we can iteratively improve the approximation of the value
function. The optimization algorithms that are commonly used in this context,
such as stochastic gradient descent (SGD) [226] or Adam [134], rely on an
approximation of the gradient of the cost function. We will also discuss methods
for approximating this gradient.

Definition 2.3.9. Let || · || be a norm on R, f : R → R an arbitrary function
on states and ρ : S → R a state visitation distribution. The weighted norm with
respect to the state visitation ρ, denoted || · ||ρ, is defined as follows.

||f ||ρ .
=
∑
s∈S

ρ(s)||f(s)|| (2.69)

Similarly, we can define the weighted norm on the visitation of the action-
states:

Definition 2.3.10. Let || · || be a norm on R, f : S → R an arbitrary function
on states, and ρ : S → R+ a state visitation distribution. The weighted seminorm
with respect to the state visitation ρ, denoted || · ||ρ is defined as

||f ||ρ .
=
∑
s∈S

ρ(s)||f(s)|| (2.70)
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Remark 34. Although we won’t exhibit the proof in this document, ||f ||ρ is
indeed a seminorm on RS .
Remark 35. Intuitively, we want to give more weight to the states that are
more frequently visited. This definition is useful because it allows to naturally
give more weight to the states that are more frequently visited. Moreover, we will
see in the following that it also allows to simplify the algorithmic implementation,
by sparing the estimation of a normalization with respect to the number of visits.

Suppose we aim to estimate the value function V π of a policy π using a
function approximator, denoted as Vϕ. The primary goal is to ensure that
Vϕ closely approximates V π. In other words, the objective is to minimize the
distance ||V π − Vϕ||2ρ, representing the squared norm of the difference between
the value function and its estimate.

Definition 2.3.11. The cost function, denoted L : Rd → R, is defined as
the function that maps parameter ϕ ∈ Rd to the corresponding weighted mean
distance between the state-value function V π and its estimation Vϕ.

L(ϕ)
.
= ||Vϕ − V π||2ρ =

∑
s∈S

ρ(s)(Vϕ(s)− V π(s))2 (2.71)

Remark 36. In this document, we use the terms loss function, objective
function and cost function interchangeably. While there is a subtle semantic
distinction between the three, many authors treat them as synonymous. For the
sake of simplicity and consistency with prevailing literature, we adopt this same
assumption.
Remark 37. The distribution ρ can be any probability distribution; it is
not necessary for it to be identical to ρπ. In other words, the data used to
approximate V π does not necessarily need to be collected under the policy π
itself. As a consequence of Remark 16, when ρ = ρπ, the notation is simplified.
For example, we can write Eπ

.
= ESt,At,Gt∼ρπ .

Theorem 2.3.3. The cost function is differentiable and

∇ϕL(ϕ) = 2ESt∼ρ [(Vϕ(St)− V π(St))∇ϕVϕ(St)] (2.72)

Proof.

∇ϕL(ϕ) = ∇ϕ||Vϕ − V π||2ρ ((2.71))

= ∇ϕ

∑
s∈S

ρ(s)(Vϕ(s)− V π(s))2

=
∑
s∈S

ρ(s)∇ϕ(Vϕ(s)− V π(s))2

= 2
∑
s∈S

ρ(s)(Vϕ(s)− Vπ(s))∇ϕVϕ(s)

= 2ESt∼ρ [(Vϕ(St)− V π(St))∇ϕVϕ(St)] ((2.72))

Remark 38. The previous result is also valid for the action-value function:

∇ϕL(ϕ) = 2ESt∼ρ [(Qϕ(St, At)−Qπ(St, At))∇ϕQϕ(St, At)] (2.73)
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The gradient of the cost function is expressed as an expectation, allowing
for its estimation through sampling. To estimate V π, we can employ one of the
methods discussed in Section 2.2, such as MC, TD(0), or even TD(λ).

To illustrate, consider that we have collected interactions under policy π
(implying that ρ = ρπ). If we use MC to approximate V π(St), defined as
V π(s) = EAt,Gt∼ρ(s,·,·)[Gt], the gradient of the cost function can be approximated
as follows:

∇ϕL(ϕ) = 2Eπ [(Vϕ(St)− Eπ[Gt])∇ϕVϕ(St)] (2.74)
= 2Eπ [(Vϕ(St)−Gt)∇ϕVϕ(St)] (2.75)

In the case of using SGD as the optimization algorithm, the update rule is
as follows1:

ϕ← ϕ− α(Vϕ(St)−Gt)∇ϕVϕ(St) (2.76)
where α is the learning rate.

2.3.2 From online deep Q-learning to Deep Q-Networks
The first tabular algorithm that can be adapted with function approximators
is the Q-learning algorithm (see Algorithm 9). To achieve this, we replace the
tabular form of Q with a parameterized version Qϕ and employ an optimization
algorithm to minimize the cost function, defined as follows:

L(ϕ) = Eπ

[
Rt+1 + γmax

a′∈A
(Qϕ(St+1, a

′))−Qϕ(St, At)

]
(2.77)

Remark 39. In practice, while computing the gradient of L(ϕ) in Equation
(2.77), a stop gradient operation is applied around the target value. This is
crucial to avoid violating the causality principle, which states that the future
is independent of the past given the present. Therefore, the value function of
the next state should not depend on rewards received prior to the current state.
Consequently, in Algorithm 12, we denote the target value as y, rather than yϕ,
even though y is dependent on ϕ.

Contrary to Q-learning, Online Deep Q-learning exhibits instability due to the
bootstrapping. The next state value in the target y = Rt+1+γmaxa′∈AQϕ(St+1, a

′)
undergoes continual changes with each iteration. To illustrate this, we have
represented on Figure 2.4 the evolution of the loss several trainings.

To solve the instability problem of Online Deep Q-learning, Mnih et al. [188]
introduced two new ingredients which are a target network and experience replay.

• The target network, denoted by parameters ϕtarg, is an old version of
the online network with parameters ϕ. Every τ timesteps, the online
parameters are copied into the target parameters (ϕtarg ← ϕ).

• Experience replay, initially introduced by Lin [165], involves storing ob-
served transitions for some time and then uniformly sampling from this
buffer to update the network.

The resulting algorithm is called Deep Q-Networks (DQN). The results are shown
in Figure 2.5.

1The factor 2 is omitted as it can be integrated into the learning rate α.
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Algorithm 12: Online Deep Q-learning.
arbitrarily initialize Qϕ

ε← 1
repeat forever

initialize the environment and observe the initial state S0

repeat
choose the action At ∼ ε-greedy(Qϕ)
take action At and get the reward Rt+1 and the new state St+1

compute target value

y = Rt+1 + γmax
a′∈A

(Qϕ(St+1, a
′))

update ϕ by one step of gradient descent in the direction of

∇ϕ(y −Qϕ(St, At))
2

decrease ε
until the end of the episode;

The advent of DQN marked a pivotal moment in the evolution of RL, setting
a new standard for what could be achieved in this domain. One of the most
notable milestones achieved through the application of DQN was its remarkable
success in mastering a variety of Atari 2600 video games [21]. This breakthrough,
first demonstrated by Mnih et al. [188] in their seminal 2015 paper, showcased
DQN’s ability to outperform existing RL methods and even human experts in
complex gaming environments. The significance of this achievement lay not only
in its demonstration of superior gaming performance but also in the validation of
DQN as a powerful tool for handling high-dimensional sensory inputs—something
that traditional Q-learning methods struggled with.

2.3.3 From of DQN to Rainbow
Limitations and challenges of DQN

.
Despite the significant progress made by DQN, several inherent limitations

and challenges have been identified that have motivated further development
and adaptation. Some of them are

• The exploration vs. exploitation dilemma: A fundamental challenge
in DQN, as in all RL algorithms, is the balance between exploration
and exploitation. While DQN uses ϵ-greedy to address this, finding the
optimal balance remains complex, often leading to either sub-optimal policy
learning or inefficient exploration.

• Overestimation of Q-values: DQN tends to overestimate Q-values
due to the max operator used in Q-learning. This overestimation occurs
because the same network is used to both select and evaluate an action,
leading to biased high value estimates and consequently sub-optimal policy
decisions.
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Figure 2.4: Evolution of the absolute loss |y−Qϕ(St, At)| over timesteps in online
Deep Q-learning on CartPole-v1. The figure depicts four separate experiments,
illustrating the point of divergence in the loss function as a consequence of the
instability in the target value.

• Stability: One of the critical challenges in DQN is maintaining stability
during the training process. The repeated updates to the Q-network, using
correlations present in the sequence of observations, can lead to significant
fluctuations in the policy and convergence difficulties.

These challenges have been the incentive for the development of several
extensions to the original DQN algorithm that aim to address each of these
specific issues while retaining the strengths of the original algorithm. In the
following, we present some of these enhancements, which eventually led to an
algorithm that combines them all, called Rainbow [110].

Some DQN variants

Double Q-learning Among the notable enhancements to the DQN framework
is Double Q-Learning, which addresses the overestimation of Q-values inherent
in the standard Q-learning approach. This enhancement has already been
introduced in Section 2.2.3, and we invite the reader to refer to it.

Prioritized Experience Replay DQN utilizes a uniform sampling method
from the experience replay buffer, treating all experiences as equally important
for learning. However, not all experiences contribute equally to the learning
process. Prioritized Experience Replay (PER) [232] addresses this by assigning
a priority to each experience in the replay buffer, based on the magnitude of
the TD error. This error reflects the difference between the currently estimated
Q-values and the target Q-values, indicating how much learning potential an
experience holds. The sample priority for transition j in buffer is computed as

P (j) =
pi

α∑
i pi

α
(2.78)
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Algorithm 13: Deep Q-Networks (DQN).
Input: a differentiable action-value function Qθ parameterized with θ
randomly initialize θ and θtarg ← θ
ε← 1
initialize a empty replay buffer D
repeat forever

initialize the environment and get the initial state S0

repeat
choose the action At ∼ ε−greedy(Qθ(St, ·))
take action At and get the reward Rt+1 and the new state St+1

store the transition (St, At, Rt+1, St+1) into D
uniformly sample a batch of transitions B = {(s, a, r, s′)} from D
compute target value

y(r, s′) = r + γmax
a′∈A

(Qθtarg(s
′, a′))

update θ by one step of gradient descent in the direction of

∇θ
1

|B|
∑

(s,a,r,s′)∈B

(y(r, s′)−Qθ(s, a))
2

every τ timesteps, θtarg ← θ
decrease ε

until the end of the episode

where pi is the TD-error when it was used the last time as a sample.
It is important to note that prioritized sampling alters the original distribution

of experiences, resulting in a discrepancy where ρ in Equation (2.73) no longer
equals ρπ. To address this problem, we use importance sampling (refer to Section
2.2.4), which introduces a corrective weight into the gradient approximation,
ensuring that the learning process remains unbiased despite prioritization. This
weight, denoted as w, is computed as

wj ←
(NP (j))−β

maxi wi
(2.79)

Overall, this approach ensures that experiences from which the agent can
learn the most are replayed more often, leading to more efficient and effective
learning.

Dueling Networks A proposed method for enhancing the architecture of the
standard DQN network is Dueling DQN [278]. This approach, while not directly
aimed at mitigating overestimation, significantly improves the estimation of state
and action values. The core idea behind Dueling DQN is the decomposition of
the Q-value estimation into two distinct components: one for the state value
V π and another for the action advantage Aπ. The architecture comprises two
separate streams that converge into a single output, formulated as:

Qϕ(St, At) = Vϕ(St) +Aϕ(St, At) (2.80)
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Figure 2.5: Performance of Deep Q-Networks (DQN) on the CartPole-v1 envi-
ronment. This figure illustrates the effectiveness of DQN, integrating a target
network and experience replay, in stabilizing the learning process.

The Dueling DQN architecture intuitively allows the network to learn the
value of being in each state, independent of the specific actions taken. This is
particularly beneficial in environments where the quality of a state does not
significantly depend on the action chosen, enabling the network to discern which
states are valuable without needing to evaluate the effect of each action in every
state.

However, a challenge arises in terms of unidentifiability when attempting to
decompose Qϕ into Vϕ and Aϕ, as it is not possible to uniquely determine Vϕ
and Aϕ from Qϕ alone due to the numerous potential combinations that can sum
up to the same Qϕ value. To address this, Dueling DQN introduces a constraint:
it forces the mean advantage value to be zero. This is achieved by adjusting the
advantage function as follows:

Qϕ(St, At) = Vϕ(St) +

(
Aϕ(St, At)−

1

|A|
∑
a∈A

Aϕ(St, a)

)
(2.81)

This approach stabilizes the decomposition of Qϕ into Vϕ and Aϕ.

Multi-step Learning As previously discussed in Section 2.2.3, using the
1-step return (Rt + V (St+1) is a low-variance but biased estimator of the value.
Using the n-steps return instead, as defined in Definition 2.2.1, can limit this
problem. The use of the n-steps return generally leads to faster learning.

Distributional DQN DQN approximate the expected value of the Q-function,
which only captures the mean of the return distribution. In contrast, Distri-
butional DQN, particularly the C51 algorithm introduced in [23], represents a
significant shift by modeling the entire distribution of possible returns. Instead of
estimating a single expected value, C51 discretizes the range of possible returns
into 51 distinct bins, each representing a possible value the return can take, and
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learns the probability associated with each bin. The Q-value in this approach is
computed as the expectation of this distribution:

Qϕ(s, a) =

51∑
i=1

pϕ(s, a, i)zi (2.82)

where pϕ(s, a, i) is the learned probability of the i-th bin for a state-action pair
(s, a), and zi is the corresponding return value for that bin. By capturing the full
distribution of returns, Distributional DQN provides a more robust understanding
of the potential effects of actions, leading to more robust inference.

Noisy Nets In DQN, exploration is handled by an ϵ-greedy policy (see defini-
tion 2.1.26), where the choice between exploration and exploitation is governed by
a randomly chosen threshold. However, this method can be inefficient and over-
simplified for complex environments. Noisy Net, as introduced in [84], presents
an innovative approach to driving exploration through the network architecture
itself. In Noisy Net, the network weights contain a stochastic component, effec-
tively introducing noise into the decision making process. Each network weight
is changed to:

ϕi = µi + σi ⊙ ϵ (2.83)

where µ and σ are learnable parameters, and ϵ is a noise term sampled from
a normal distribution. This addition of noise allows the network to explore
different strategies even in the absence of explicit exploration mechanisms such
as ϵ greedy. In addition, the exploration behavior is learned and adapted as
part of the training process, with the network learning when and how much to
explore based on feedback from the environment.

Rainbow DQN

The individual improvements we have discussed, including Double Q-learning,
Prioritized Experience Replay, Dueling DQN, Multi-Step Learning, Distribu-
tional DQN, and Noisy Nets, have each demonstrated significant performance
improvements, particularly in the context of the Atari 2600 [21]. Building on
these singular successes, Hessel et al. [110] proposed a combination of these
improvements into a cohesive algorithm called Rainbow DQN. As shown in
Figure 2.6, this algorithm achieves significantly better results and has set a
strong new baseline for the Atari benchmark.

2.3.4 Next steps in distributional RL
C51 marked a significant advance in distributional RL by estimating the full
distribution of outcomes. It achieves this by using 51 discretely defined support
points, each representing a potential outcome. However, this method is not
without its limitations. The rigid, discrete framework of C51 can potentially
oversimplify the complexity inherent in the distribution of returns.

In contrast, Quantile Regression-DQN (QR-DQN) [57] builds on the funda-
mental principles of C51 to provide a more refined approach through quantile
regression. This technique allows for a dynamically determined set of support
points, providing a more flexible representation of the return distribution. Such
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Figure 2.6: Median human-normalized performance across 57 Atari games.
Figure from [110].

an approach provides a more granular and adaptive estimate of the range and
probabilities associated with returns. This is particularly beneficial in envi-
ronments characterized by significant variability and the presence of extreme
outcomes, where an accurate assessment of the distribution is as important as
understanding the average expected return. On the Atari benchmark, QR-DQN
outperforms C512.

Building upon the advancements made by QR-DQN, Implicit Quantile Net-
works (IQN) [56] represent a further refinement of distributional RL. IQN extends
the idea of quantile regression by introducing a more flexible and comprehensive
approach to modeling the return distribution. While QR-DQN estimates a fixed
number of quantiles, IQN innovates by allowing for an arbitrary number of quan-
tiles, determined implicitly by the network. During each training or evaluation
step, the network samples a different set of quantile fractions from a uniform
distribution. These sampled fractions are then input into the network, which

2QR-DQN was developed at the same time as Rainbow, which is why QR-DQN isn’t built
on Rainbow and doesn’t use it as a baseline.
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produces the corresponding quantile estimates. As a result, IQN can adaptively
represent the entire return distribution with a granularity and precision that
surpasses that of QR-DQN. Empirical evaluations on standard benchmarks, such
as the Atari suite, demonstrate that IQN outperforms QR-DQN, and achieves
close performance with respect to Rainbow, while being simpler.

The Fully Parametric Quantile Function (FQF) [288] represents a noteworthy
evolution of IQN. Diverging from IQN’s strategy of sampling an arbitrary but
fixed set of quantiles, FQF introduces a dual learning mechanism. It not
only learns the values of the quantiles but also, through a fraction proposal
network, identifies their optimal locations within the distribution. This network
effectively maps the state to the most informative quantile fractions and optimizes
this mapping by minimizing the opposite of the Wasserstein loss. The key
innovation of FQF lies in its ability to actively learn which portions of the
quantile distribution to focus on, enhancing the model’s ability to adapt to the
most relevant aspects of the return distribution.

2.3.5 Conclusion on value-based Deep RL

This section has explored the advancements in value-based Deep RL, from the
foundational DQN to more recent innovations like IQN and Rainbow. These
methods have significantly enhanced the ability to estimate and utilize value
functions in complex decision-making tasks, leading to notable successes in
various domains.

However, a primary issue with value-based Deep RL lies in its inherent
limitation in handling continuous action spaces. By design, value-based methods
aim to converge to the optimal value function by bootstrapping with a max
operation over the action space, as shown in Equation (2.77). This approach
is well-suited to discrete action spaces, where the action set is limited and
enumerable. In continuous action spaces, however, this max operation becomes
problematic due to the infinite number of possible actions, making it impractical
to find the maximum value directly.

L(ϕ) = Eπ

[
Rt+1 + γmax

a′∈A
Qϕ(St+1, a

′)−Qϕ(St, At)

]
((2.77))

This limitation necessitates alternative approaches or approximations for
dealing with continuous actions, leading to the exploration of other methods
such as policy-based or actor-critic algorithms, which can operate more naturally
in such environments.

Transitioning from this limitation, it is worth noting that there are situations
where deriving an effective policy does not require a highly accurate model of
the value function. The agent can learn to make effective decisions even with
a value function that is approximated or not fully captured. This distinction
underscores a key insight in RL: the primary goal is to learn a good policy, and
a highly detailed value function, while useful, is not absolutely necessary for this
purpose. This perspective argues for a focus on policy optimization, especially
in contexts where the value function raises significant modeling issues.



48 CHAPTER 2. REINFORCEMENT LEARNING

2.4 Policy-Based Deep RL
After discussing value-based Deep RL, which primarily focuses on evaluating and
maximizing the value function, we move on to discussing policy-based methods.
Unlike value-based approaches, policy-based methods directly learn the agent’s
policy without explicitly estimating value functions. In this section, we describe
how these methods work, what their unique advantages are and how they differ
from the value-based strategies.

2.4.1 Some additional definitions and tools
Policy

Definition 2.4.1. A parametrized policy, is defined as a policy whose behavior
is determined by a parameter vector in Rd, where d denotes the number of
parameters. This parameter vector is commonly represented by θ, and the
corresponding parametrized policy is denoted by πθ(· | ·). An alternative
notation often used is π(· | ·, θ).

Definition 2.4.2. A differentiable policy refers to a parametrized policy that
is differentiable with respect to its parameters. In such instances, the expression

∇θπθ

is well-defined. In the following, all policies are assumed to be differentiable.

The objective function

Consider a parameterized policy πθ. The objective of the learning process is to
identify the policy that maximizes the expected return. Hence, the goal is to
find the parameter θ that maximizes the expected return. Similar to value-based
methods, we need to define an objective function (see Definition 2.3.11) that is a
function of θ. As opposed to value-based methods, the goal is not to minimize
the approximation error of the value function, but rather to directly maximize
the amount of reward the agent gets following π.

Definition 2.4.3. The objective function, denoted J , is defined as the expecta-
tion of the value of the initial state.

J(θ)
.
= Eπθ

[V πθ (S0)] (2.84)

Remark 40. This definition is quite natural, since the value function is equal
to the average return under the policy π, where the initial state is sample by
the environment3.

Theorem 2.4.1.
J(θ) =

∑
s∈S

ρ0(s)V
πθ (s) (2.85)

Proof. Immediate consequence of the Definitions 2.1.18 and 2.1.4.
3Sometimes, the initial state is always the same (let’s note this state s0). In such cases, the

objective function have a much simpler expression: J(θ) = V πθ (s0).
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A reasonable approach to find the parameter θ that maximizes J(θ) is the use
of gradient ascent. The category of RL algorithms that use gradient ascent for
policy optimization is known as policy gradient methods. This class of algorithms
relies on the assumption that an estimate of the gradient is available. In the
next section, we introduce a method for approximating ∇θJ(θ).

The policy gradient theorem

Theorem 2.4.2 (Policy gradient theorem).

∇θJ(θ) ∝ Eπθ
[Qπθ (St, At)∇θ log πθ(At | St)] (2.86)

To prove this theorem, we need the following lemma.

Lemma 2.4.2.1. Let χ : S → R and ψ : S → R be functions defined on a
state space S. Suppose ψ(S−) = {0}. (In other words, for any terminal state s,
then ψ(s) = 0.) Additionally, assume ψ satisfies to a specified recursive formula.

∀s ∈ S ψ(s) = χ(s) +
∑
s′∈S

ρ1(s→ s′)ψ(s′) (2.87)

then,

∀s ∈ S ψ(s) =
∑
s′∈S

T−1∑
t=0

ρπk (s→ s′)χ(s′) (2.88)

Proof of the lemma. In this proof, we unroll the sum until the end of the episode.
Here is the first unrolling.

ψ(s) = χ(s) +
∑
s′∈S

ρπ1 (s→ s′)ψ(s′) ((2.87))

= χ(s) +
∑
s′∈S

ρπ1 (s→ s′)

(
χ(s′) +

∑
s′′∈S

ρπ1 (s
′ → s′′)ψ(s′′)

)
= χ(s) +

∑
s′∈S

ρπ1 (s→ s′)χ(s′) +
∑
s′′∈S

∑
s′∈S

ρπ1 (s→ s′)ρπ1 (s
′ → s′′)︸ ︷︷ ︸

=ρ2(s→s′′)

ψ(s′′)

= χ(s) +
∑
s′∈S

ρπ1 (s→ s′)χ(s′) +
∑
s′′∈S

ρπ2 (s→ s′′)ψ(s′′)

= χ(s) +
∑
s′∈S

ρπ1 (s→ s′)χ(s′) +
∑
s′∈S

ρπ2 (s→ s′)ψ(s′)

The expression in red is structurally identical to the initial summation, allowing
for a repeated expansion up to T :

ψ(s) = χ(s) +
∑
s′∈S

ρπ1 (s→ s′)χ(s′) + · · ·+
∑
s′∈S

ρπT (s→ s′)ψ(s′)

On the other hand,∑
s′∈S

ρπT (s→ s′)ψ(s′) =
∑

s′∈S+

ρπT (s→ s′)︸ ︷︷ ︸
=0

ψ(s′) +
∑

s′∈S−

ρπT (s→ s′)ψ(s′)︸ ︷︷ ︸
=0

= 0
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Consequently,

ψ(s) = χ(s) +

T−1∑
t=1

∑
s′∈S

ρπt (s→ s′)χ(s′)

=
∑
s′∈S

ρπ0 (s→ s′)︸ ︷︷ ︸
=1s=s′

χ(s′) +
T−1∑
t=1

∑
s′∈S

ρπt (s→ s′)χ(s′)

=
∑
s′∈S

T−1∑
t=0

ρπt (s→ s′)χ(s′) ((2.88))

Proof of the policy gradient theorem.

J(θ) =
∑
s∈S

ρ0(s)V
πθ (s) ((2.85))

∇θJ(θ) =
∑
s∈S

ρ0(s)∇θV
πθ (s) (2.89)

We evaluate the gradient of the value function ∇θV
πθ (s).

V πθ (s) =
∑
a∈A

πθ(a | s)Qπθ (s, a) ((2.23))

∇θV
πθ (s) =

∑
a∈A
∇θ(πθ(a | s)Qπθ (s, a))

=
∑
a∈A

(Qπθ (s, a)∇θπθ(a | s) + πθ(a | s)∇θQ
πθ (s, a))

=
∑
a∈A

Qπθ (s, a)∇θπθ(a | s)︸ ︷︷ ︸
.
= χθ(s)

+
∑
a∈A

πθ(a | s)∇θQ
πθ (s, a)

= χθ(s) +
∑
a∈A

πθ(a | s)∇θ

∑
(s′,r)∈S×R

p(r, s′ | s, a)(r + V πθ (s′))

(from (2.21))

= χθ(s) +
∑
a∈A

πθ(a | s)
∑

(s′,r)∈S×R
p(r, s′ | s, a)∇θV

πθ (s′)

= χθ(s) +
∑
a∈A

πθ(a | s)
∑
s′∈S

∑
r∈R

p(r, s′ | s, a)∇θV
πθ (s′)

Using: ∑
r∈R

p(r, s′ | s, a) = p(s′ | s, a) (2.90)
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It comes:

∇θV
πθ (s) = χθ(s) +

∑
a∈A

πθ(a | s)
∑
s′∈S

p(s′ | s, a)∇θV
πθ (s′)

= χθ(s) +
∑
s′∈S

∑
a∈A

πθ(a | s)p(s′ | s, a)︸ ︷︷ ︸
=ρ

πθ
1 (s→s′)

∇θV
πθ (s′) (See (2.58))

= χθ(s) +
∑
s′∈S

ρπθ
1 (s→ s′)∇θV

πθ (s′) (2.91)

Equation (2.91) is a recursive property on ∇θV
πθ (s):

∇θV
πθ (s) = χθ(s) +

∑
s′∈S

ρπθ
1 (s→ s′)∇θV

πθ (s′) ((2.91))

Using the result of the Lemma 2.4.2.1, we get:

∇θV
πθ (s) =

∑
s′∈S

T−1∑
t=0

ρπθ
t (s→ s′)χθ(s

′) (2.92)

This reformulation enables the exclusion of ∇θV
πθ(s′) from the expression,

facilitating the sampling of ∇θV
πθ(s). We now return to the analysis of the

objective function:

∇θJ(θ) =
∑
s∈S

ρ0(s)∇θV
πθ (s) ((2.89))

=
∑
s∈S

ρ0(s)
∑
s′∈S

T−1∑
t=0

ρπθ
t (s→ s′)χθ(s

′) (from (2.92))

=
∑
s′∈S

T−1∑
t=0

∑
s∈S

ρ0(s)ρ
πθ
t (s→ s′)︸ ︷︷ ︸

=ρ
πθ
t (s′)

χθ(s
′) (from (2.60))

=
∑
s′∈S

T−1∑
t=0

ρπθ
t (s′)χθ(s

′)

=
∑
s′∈S

Tρπθ (s′)χθ(s
′) (from (2.65))

∝
∑
s∈S

ρπθ (s)χθ(s)

Hence,

∇θJ(θ) ∝
∑
s∈S

ρπθ (s)
∑
a∈A

Qπθ (s, a)∇θπθ(a | s) (2.93)

This quantity can only be sampled if it is expressed as the expectation of a
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random variable. We now apply what is often called the likelihood ratio trick.

∇θJ(θ) ∝
∑
s∈S

ρπθ (s)
∑
a∈A

Qπθ (s, a)
∇θπθ(a | s)
πθ(a | s)

πθ(a | s)

=
∑

(s,a)∈S×A

(
Qπθ (s, a)

∇θπθ(a | s)
πθ(a | s)

)
πθ(a | s)ρπθ (s)︸ ︷︷ ︸

=ρπθ (s,a)

(from (2.67))

=
∑

(s,a)∈S×A

(
Qπθ (s, a)

∇θπθ(a | s)
πθ(a | s)

)
ρπθ (s, a)

Therefore, we obtain an expression of the form∑
x

f(x)P (X = x) = E [f(X)]

Consequently,

∇θJ(θ) ∝ Eπθ

[
Qπθ (St, At)

∇θπθ(At | St)

πθ(At | St)

]
= Eπθ

[Qπθ (St, At)∇θ log πθ(At | St)] ((2.86))

The result of the theorem gives an expression for the gradient that can
be sampled, thus allowing the use of gradient ascent optimization methods.
As explored in Section 2.2, there are several estimators for Qπθ(St, At). The
following sections will examine the use of these estimators in the development of
various algorithms.
Remark 41. The gradient of the objective function is not equal to the expected
value, but proportional to it. The proportionality constant is approximately
equal to the average duration of an episode. Knowledge of this constant is not
essential, because if a value maximizes a function, it also maximizes any positive
scalar multiple of that function.

2.4.2 On-policy methods

From REINFORCE to vanilla policy gradient

In this section, we study how to use the concept of maximizing the objective
function introduced in the previous section. Equation (2.86) enables the estima-
tion of the gradient of the objective function through sampling. Consequently,
any gradient ascent method can be applied to maximize the objective function,
thereby determining the policy that maximizes the expectation of the gain, as
discussed in Section 2.4.1. The REINFORCE algorithm [284], also known as
MC gradient, employs the MC estimate for the value function.

Theorem 2.4.3.

∇θJ(θ) ∝ Eπθ
[Gt∇θ log πθ(At | St)] (2.94)
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Proof. In Equation (2.86), the termQπθ (St, At) is substituted by Eπθ
[Gt | St = s,At = a],

where the expectation is conditioned on St = s and At = a. However, considering
that Gt depends on future states and actions, which are independent of past
events given St and At, the conditioning on St and At can be omitted for Gt.
Consequently, this leads to a simplification of the expression to:

∇θJ(θ) ∝ Eπθ
[Eπθ

[Gt | St = s,At = a]∇θ log πθ(At | St)]
(from (2.86) and (2.19))

= Eπθ
[Gt∇θ log πθ(At | St)] ((2.94))

Under policy π, states, actions, and rewards (St, At, Rt) are sampled. Upon
the end of an episode, the returns are computed as discounted sums of rewards,
in accordance with Equation (2.12). The gradient of the objective function can
then be approximated by the equation (2.94). Algorithm 14 shows the resulting
algorithm using SGD (ascending) as the optimization method.

Algorithm 14: REINFORCE.
Input: a differentiable policy πθ parametrized by θ
randomly initialize θ
repeat forever

sample {S0, A0, R1, . . . , AT−1, RT } ∼ πθ
for each time t ≤ T of the episode do

Gt ← Rt+1 + γRt+2 + γ2Rt+3 + · · ·
θ ← θ + αGt∇θ log πθ(At | St)

As we have seen in Section 2.2, MC estimates have high variance, which can
make the learning process unstable. A viable strategy to reduce this variance
is to subtract a baseline from Gt. While beyond our current scope, it can be
shown that adding a baseline that depends only on states does not introduce
bias. An optimal baseline is defined as a baseline that minimizes variance. Such
a baseline is denoted b∗ and we can show that:

b∗(s) = V πθ +
covπθ

(
Qπθ (s,At), ζi(s,At)

2
)

Eπθ
[ζi(s,At)2]

(2.95)

where
∀i ∈ Nd ζi(s, a)

.
=

∂

∂θi
log πθ(a | s) (2.96)

This formulation has been demonstrated in [280]. If ζi(s,At)
2 and Qπθ (s,At) are

independent, then the optimal baseline for state s is simply V πθ(s). Although
this condition is usually not met, V πθ is often used as the baseline in practice
due to its simplicity. In doing so, it is in fact the advantage Aπθ that is used in
the optimization.

It is hypothesized that the features needed to learn an effective policy may
be different from those needed to accurately approximate its value function.
Consequently, a distinct set of parameters, separate from the policy parameters,
is proposed to approximate V πθ . The resulting methods are known as actor-
critic approaches, where actor is the policy and critic is the value function.
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Incorporating this concept into REINFORCE leads of the vanilla policy gradient
(VPG) algorithm, shown in Algorithm 15.

Algorithm 15: Vanilla Policy Gradient (VPG).
Input: a differentiable policy πθ parametrized by θ
Input: a differentiable value function Vϕ parametrized by ϕ
randomly initialize θ and ϕ
repeat forever

sample {S0, A0, R1, . . . , AT−1, RT } ∼ πθ
for each time t ≤ T of the episode do

Gt ← Rt+1 + γRt+2 + γ2Rt+3 + · · ·
θ ← θ + α (Gt − Vϕ(St))∇θ log πθ(At | St)
ϕ← ϕ+ α(Vϕ(St)−Gt)

2

Advantage Actor-Critic

Although integrating a learned value estimate as a baseline in the REINFORCE
algorithm reduces variance, as discussed earlier, its practical implementation
frequently encounters significant noise that hampers the training. Additionally,
the algorithm tends to struggle with effective exploration, leading to sub-optimal
performance.

Starting from this point, Mnih et al. [189] introduced two significant enhance-
ments. To stabilize the learning, they proposed to replace the MC estimator
with the n-steps TD estimator, (similarly to the method described in Section
2.2.3). They also propose adding an entropy regularization originally proposed by
Williams and Peng [285] to discourage premature convergence to a sub-optimal
policy. Hence, the optimization is performed in the direction of the gradient
expressed as:

(Gt:t+n − Vϕ′(St))∇θ log πθ(At | St) + β∇θH(πθ(· | St)) (2.97)

where H is the entropy and β the hyperparameter that controls the weight of
the entropy regularization term. These modifications leads to the Advantage
Actor-Critic (A2C) algorithm4.

Proximal Policy Optimization

Proximal Policy Optimization (PPO) significantly builds upon the A2C frame-
work by introducing four key enhancements that improve performance and
stability5:

4A2C is actually the synchronous version of Asynchronous Advantage Actor-Critic (A3C).
A2C is often preferred over A3C because of its computational efficiency on modern hardware
and its more stable learning process, as it is updated synchronously by multiple agents, reducing
problems with stale gradients and simplifying implementation. In the end, A2C performed
better than its asynchronous equivalent, and the noise introduced by asynchronism doesn’t
seem to provide any performance advantage.

5PPO was not originally conceptualized as an extension of A2C, subsequent research has
demonstrated that A2C can be viewed as a special case of PPO [117].
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Algorithm 16: Advantage Actor-Critic (A2C).
Input: a differentiable policy πθ parametrized by θ
Input: a differentiable value function Vϕ parametrized by ϕ
Input: a fixed number of interaction steps n
randomly initialize θ and ϕ
repeat forever

sample n steps {St0 , At0 , Rt0+1, . . . , At0+n−1, Rt0+n} ∼ πθ
for each step t ≤ t0 + n do

compute Gt:t0+n ((t0 + n− t)-steps return)
θ ← θ+α (Gt:t0+n − Vϕ(St))∇θ log πθ(At | St)+β∇θH(πθ(· | St))
ϕ← ϕ− α(Vϕ(St)−Gt:t0+n)∇ϕVϕ(St)
t0 ← t0 + n

Generalized Advantage Estimation (GAE) GAE [238] is a method for
estimating the advantage, functionally analogous to the λ-return (Definition
2.2.2), GAE blends the ideas of MC and TD estimates to strike a balance between
bias and variance. The GAE formula is:

A
GAE(λ)
t

.
=

n−1∑
k=0

(γλ)k(Rt+k + γVϕ(St+k+1)− Vϕ(St+k)) (2.98)

where, λ is the parameter that balances the bias-variance trade-off. This approach
leads to more stable and efficient policy updates [10].

Multiple optimization epochs using minibatches PPO differs from the
single-update method of A2C by using multiple optimization epochs over mini-
batches for policy refinement. This approach, by iterating over multiple epochs,
results in a scenario where the policy in subsequent iterations is not the same as
the one initially used for action sampling. To address this divergence, PPO uses
importance sampling as a scaling mechanism to adjust for the changes in policy
across iterations. Overall, this method allows the algorithm to more effectively
refine its policy updates.

Normalization of advantage PPO normalizes the advantage estimates to
maintain a consistent range and variance.

Value function clipping PPO introduces value function clipping to maintain
stability during learning. The clipping operation for the value function is defined
as:

V clip(s) = clip(V (s), Vold(s)− ϵ, Vold(s) + ϵ) (2.99)

where V (s) is the current estimated value, Vold(s) is the old value estimate, and ϵ
is a hyperparameter defining the clipping range. This technique limits the extent
of the update to the value function, ensuring gradual and stable improvements.

Surrogate objective clipping Finally, PPO incorporates a clipped surrogate
objective, a critical element for moderating the magnitude of policy updates.
The basic concept is to regulate the ratio of the new policy to the old policy,
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denoted πnew(a|s)
πold(a|s) , by clipping it within a defined range set by the parameter

ϵ. This clipping acts as a safeguard, ensuring that updates do not deviate
significantly from the previous policy. The efficacy of this clipped objective is
notable; it has been shown to deliver performance comparable to Trust Region
Policy Optimization (TRPO) [237], but does so with reduced computational
requirements [115].

These algorithmic advancements are complemented by key implementation
details that are critical for their success [115]. Further elements are discussed in
Chapter 5.2.

2.4.3 Off-policy Methods
Deterministic Policy Gradient

The policy gradient methods introduced so far typically work with stochastic poli-
cies, where the policy outputs a probability distribution over actions. However,
when dealing with environments that have continuous action spaces, stochastic
policy gradients can face challenges in efficiency and performance.

The DPG algorithm [249] addresses these challenges by adopting a determin-
istic approach. Instead of a stochastic policy, DPG uses a deterministic policy
(see Remark 15) that maps states directly to specific actions, simplifying the
gradient computation.

The new nature of policy requires us to revisit the policy gradient theorem
(see Theorem 2.4.2) and give it a version suitable for deterministic policy.

Theorem 2.4.4 (Deterministic policy gradient theorem).

∇θJ(θ) = Eπθ

[
∇θπθ(St)∇aQ

πθ (St, a)|a=πθ(St)

]
(2.100)

Proof.

∇θJ(θ) = ∇θEπθ
[V πθ (S0)] ((2.3.11))

= ∇θ

∑
s∈S

ρ0(s)V
πθ (s)

=
∑
s∈S

ρ0(s)∇θV
πθ (s)

=
∑
s∈S

ρ0(s)∇θQ
πθ (s, πθ(s)) (deterministic policy)

=
∑
s∈S

ρ0(s)∇θπθ(s)∇aQ
πθ (s, a)|a=πθ(s) (chain rule)

= Eπθ

[
∇θπθ(St)∇aQ

πθ (St, a)|a=πθ(St)

]
((2.100))

Formulated in this way, the gradient can indeed be approximated, and hence
used for a gradient ascent method.

In stochastic policy gradient methods, exploration is inherently achieved
through the random selection of actions. In contrast, the DPG method lacks
this intrinsic exploration mechanism due to its deterministic nature. To address
this, DPG algorithms often integrate explicit exploration strategies, such as
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adding noise to action outputs, promoting diverse experiences and effective
learning. Alternatively, sample collection can be conducted using a different
policy, known as the behavioral policy (see Section 2.1.5). Consequently, in both
cases, the approach aligns with an off-policy algorithm framework. Considering
the inapplicability of the importance sampling technique to a deterministic policy,
Silver et al. [249] suggest an alternative objective formulation.

J(θ)
.
= Eβ [V

πθ (S0)] (2.101)

This formulation is based not on the distribution under π but on β (as discussed
in Remark 37).

Designed specifically for problems involving continuous actions, DPG repre-
sents a significant advance in policy gradient methods. However, DPG is not
without its challenges; it exhibits instability and requires precise optimization
of parameters for effective implementation. In the following section, we discuss
strategies for stabilizing DPG using the techniques introduced earlier in this
document.

Deep Deterministic Policy Gradient and its evolution

Building upon the foundation of DPG, the Deep Deterministic Policy Gradient
(DDPG) algorithm [164] addresses the inherent instability seen in DPG, akin
to the challenges faced by online Q-learning (see 2.3.2). This instability arises
primarily from the correlations present in the sequential data and the continual
updates to the policy and value estimates.

DDPG, inspired by DQN [188] approach, introduces two key concepts to
mitigate these issues:

• Experience Replay DDPG utilizes a replay buffer to store and randomly
sample experience, breaking the correlation in the observation sequence.
This random sampling stabilizes the training process.

• Target Networks DDPG employs target networks for both the actor and
critic, similar to DQN. However, unlike DQN, DDPG updates these target
networks using soft updates. The target networks are updated using a mix
of the main network parameters and the target network parameters:

ϕtarg ← τϕ+ (1− τ)ϕtarg (2.102)
θtarg ← τθ + (1− τ)θtarg (2.103)

where τ , usually small, is a parameter controlling the update rate, ensuring
slow and stable changes.

Additionally DDPG uses the learned policy augmented by Gaussian noise as
the behavioral policy.

β(· | s) = N (π(s),Σ) (2.104)

This addition of noise ensures sufficient exploration of the action space.
In summary, DDPG extends DPG by incorporating experience replay and

softly updated target networks to stabilize the learning process. The integration
of exploration through additive noise allows the algorithm to effectively explore,
making it suitable for complex environments with continuous action spaces.
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Algorithm 17: Deep Deterministic Policy Gradient (DDPG).
Input: a differentiable actor πphi parametrized by θ
Input: a differentiable critic Qϕ parametrized by ϕ
randomly initialize θ and θtarg ← θ
randomly initialize ϕ and ϕtarg ← ϕ
initialize a empty replay buffer D
repeat forever

initialize the environment and get the initial state S0

repeat
select action At ∼ N (πθ(St),Σ)
take action At and get the reward Rt+1 and the new state St+1

store the transition (St, At, Rt+1, St+1) into D
uniformly sample a batch of transitions B = {(s, a, r, s′)} from D
update ϕ by one step of gradient descent in the direction of

∇ϕ
1

|B|
∑

(s,a,r,s′)∈B

(r + γQϕtarg

(
s′, πθtarg (s

′)
)
−Qθ(s, a))

2

update θ by one step of gradient ascent in the direction of

∇θ
1

|B|
∑
s∈B

Qϕ (s, πθ(s))

Update the targets parameters

θtarg ← τθtarg + (1− τ)θ

ϕtarg ← τϕtarg + (1− τ)ϕ

until the end of the episode;

Building upon the success of DDPG, the Twin Delayed DDPG (TD3) algo-
rithm, introduced in [86], further refines the approach to mitigate the overesti-
mation bias, a notable issue in methods derived from Q-learning (see Section
2.2.3). TD3 introduces three critical enhancements: twin critics, delayed policy
updates, and target policy smoothing. It employs two separate critic networks
(hence twin) and uses their minimum value to estimate the Q-value, effectively
reducing overestimation. The delayed policy updates involve updating the policy
less frequently than the value networks, mitigating the risk of value estimates
leading policy updates astray. Target policy smoothing, a novel technique, adds
noise to the target action, thereby smoothing out the value estimate against
small changes in action space. These improvements collectively result in more
stable and reliable training, especially in environments with continuous action
spaces, positioning TD3 as a more robust alternative to DDPG.

Concurrently, Barth-Maron et al. [20] integrated the distributional approach
originally proposed by Bellemare et al. [23] into the DDPG framework (see
Section 2.3.3) and adapted it for a distributed setting, resulting in the creation
of Distributed Distributional Deep Deterministic Policy Gradients (D4PG). This
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extension enables D4PG to effectively handle probability distributions of returns,
leading to improved stability and performance.

Truncated Quantile Critics (TQC), introduced in [146], represents a further
advancement in the class of actor-critic methods for continuous control. Building
on the foundations laid by TD3, TQC integrates the concept of distributional RL,
specifically through quantile regression as seen in QR-DQN and IQN (Section
2.3.4). TQC uses multiple quantile critics networks to provide a distributional
perspective on value estimation. A key innovation in TQC is the truncation
strategy, where the highest quantiles are truncated to mitigate the overestima-
tion bias. This truncation results in a more conservative estimate, leading to
more stable and efficient learning. TQC has been shown to outperform existing
algorithms such as TD3 and SAC (Soft Actor-Critic, will be presented imme-
diately afterwards). The success of TQC in various benchmarks highlights the
effectiveness of the distributional approach to continuous control task.

Soft Actor-Critic

DDPG encounters the common overestimation bias, and its deterministic policy
falls short when extensive exploration is required. Building on DDPG, Soft Actor-
Critic (SAC) [105], aims to address both the exploration and overestimation
problems.

The main innovation of SAC is the replacement of the deterministic policy by a
stochastic one. Its policy generates a probability distribution over actions instead
of a single deterministic action. This fundamental shift in policy design greatly
enhances the algorithm’s ability to explore the action space more comprehensively
and systematically. To learn this policy, SAC incorporates an entropy term into
its objective function. The entropy bonus encourages the policy to maintain
a degree of randomness in its action selection, thus facilitating an effective
exploration-exploitation trade-off.

On the other hand, SAC uses a twin critic network structure like TD3. In
this setup, two separate critics networks are used, and the minimum of their
value estimates is used to update the value and actor parameters. This technique
plays a crucial role in mitigating overestimation bias, resulting in more accurate
and reliable value estimates. Overall, for the target calculation, we use:

r + γ min
i∈{1,2}

Qϕtarg,i
(s′, ã′)− α log πθ(ã

′ | s′), ã′ ∼ πθ(· | s′) (2.105)

And for actor loss, the terms in the summation become:

min
i∈{1,2}

Qϕi(s, ãθ)− α log πθ(ãθ | s), ãθ ∼ πθ(· | s) (2.106)

Note that in the Equation (2.106), ãθ is differentiable with respect to θ (hence
the subscript θ).

As a result, SAC delivers significantly improved performance, particularly in
terms of sampling efficiency and robustness. Its ability to effectively balance ex-
ploration and exploitation, coupled with its mechanisms to reduce overestimation
bias, enables SAC to demonstrate superior capabilities in complex environments
characterized by continuous action spaces.



60 CHAPTER 2. REINFORCEMENT LEARNING

2.4.4 Conclusion on Policy-Based Deep RL

Policy-based and actor-critic methods are now the most widespread RL algo-
rithms. However, they face challenges such as sample inefficiency, requiring large
datasets for effective learning, and stability and convergence issues, particularly
in complex environments. Additionally, these methods struggle with scalabil-
ity in high-dimensional spaces and often falter in balancing exploration and
exploitation. We further discuss some of these issues in Section 2.6.

The following section presents more specialized approaches specific to partic-
ular paradigms, some of which address the issues mentioned above. This section
completes the partial overview of the current RL research landscape.

2.5 Specialized Approaches and Paradigms

2.5.1 Model-based Reinforcement Learning

Model-based RL is a significant branch of RL where the agent learns a model of
the environment’s dynamics and uses this model for planning and decision-making.
This approach contrasts with the model-free RL methods discussed above in
this section, which learn a policy or value function directly from interactions
with the environment without an explicit model. Model-based RL has garnered
substantial interest due to its potential for increased sample efficiency over
model-free methods. Early work in this area, as highlighted by Sutton [259],
involves learning a model of the environment and using it to simulate future
states for planning. This approach, known as Dyna-Q [260], combines real and
simulated experiences to improve learning efficiency.

Recent advances have focused on integrating deep learning with model-based
approaches for better scalability and performance in complex environments. Ha
and Schmidhuber [104] introduced World Models, demonstrating how learning
a compact representation of the environment can facilitate policy learning in
visually rich settings. A significant breakthrough in model-based RL was achieved
with the development of MuZero [236]. MuZero extends the concept of Monte
Carlo Tree Search (MCTS), used in AlphaGo [250], to environments where the
rules are not known a priori. It learns a model of the environment’s dynamics and
combines it with MCTS for effective planning and decision-making, showcasing
remarkable performance in board games and Atari games.

Nagabandi et al. [192] further showed that even simple neural network-
based models could effectively bootstrap policy learning in robotic control tasks.
Another critical area of research in model-based RL is dealing with model
inaccuracies. Deisenroth and Rasmussen [61] addressed this by using Gaussian
processes to model uncertainty in the environment, leading to more robust
planning. Kurutach et al. [143] proposed Model-Ensemble Trust-Region Policy
Optimization (ME-TRPO), which uses an ensemble of models to mitigate the
impact of model errors on policy optimization.

In parallel, significant work has been done on integrating model-based and
model-free methods. Janner et al. [124] showed that combining short-horizon
model-based rollouts with model-free policy optimization leads to both sample
efficiency and asymptotic performance. This hybrid approach has become a
promising direction, as it leverages the strengths of both paradigms.
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While offering significant benefits, model-based RL struggles with the com-
plexity of accurately modeling environments where small errors can significantly
impact policy performance. Another critical issue is the balance between model
detail and computational practicality. The integration of model-based and model-
free approaches is also challenging and requires research into optimal practices
for hybrid systems.

2.5.2 Batch Reinforcement Learning

Batch RL is an approach characterized by the agent learning from a pre-collected,
static dataset of experiences. This paradigm differs from traditional online RL,
where agents continuously interact with the environment to acquire new data.
Batch RL is particularly relevant in contexts where real-time interaction is either
impractical, expensive, or risky.

In Batch RL, the key challenge is to derive an effective policy from a fixed
dataset that may not fully represent the state-action space. This scenario requires
strategies to maximize learning from limited data and to account for potential
distributional shifts. Lange et al. [150], provide foundational insights into the
capabilities and constraints of learning from fixed datasets in Batch RL.

Addressing the issue of exploration in a static data context is a critical focus
of Batch RL research. Since the agent cannot explore to gather new information,
it may encounter states during deployment that are not well represented in the
training data. Fujimoto et al. [87] address this challenge and propose methods
to mitigate the effects of distributional shifts in the absence of exploration.
Similarly, Levine et al. [162] explore offline RL, a closely related concept, and
discuss effective techniques for learning from fixed datasets.

Efficient use of data is another focus of batch RL. Techniques such as im-
portance sampling (refer to Section 2.2.4), as discussed by Precup et al. [217],
are used to optimize learning from available experience. Kumar et al. [140]
extend this by introducing conservative Q-learning, a method designed to learn
effective policies from offline data, while carefully addressing the extrapolation
error common in Batch RL.

2.5.3 Imitation Learning

Imitation Learning (IL), also known as Learning from Demonstration (LfD), is an
approach where the learning process is guided by examples provided by a teacher
or expert. This approach is useful in scenarios where it is difficult to define a
reward function or where learning from scratch is inefficient. The core concept of
IL is to use expert demonstrations to guide the agent’s policy development. Early
work in this area includes the algorithmic framework proposed by Sammut et al.
[231], where they introduced the concept of learning by observing an expert’s
actions. IL gained prominence with the work of Argall et al. [13], who provided
a comprehensive review of different approaches to LfD, categorising them into
direct behavior cloning (BC) and inverse reinforcement learning (IRL).

BC, a simple form of IL, involves directly mapping states to actions observed
by an expert, as demonstrated by Pomerleau [214] in the ALVINN autonomous
driving system. However, this approach can suffer from problems such as
compounding errors and lack of adaptability to unseen situations. We’ll discuss
this in more detail in the Chapter 4.
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IRL, another branch of IL, focuses on inferring the underlying reward function
that the expert is implicitly optimizing. This approach was notably advanced
by Ng and Russell [194], who introduced algorithms for IRL that enable agents
to understand and replicate complex behaviors that are difficult to specify with
a traditional reward function.

An important development in IL has been its integration with deep learn-
ing, allowing it to handle high-dimensional state spaces. This advancement is
exemplified by Ho and Ermon [112] in their work on Generative Adversarial
Imitation Learning (GAIL). GAIL combines the principles of IRL with the
generative adversarial network (GAN) framework, and has demonstrated strong
performance on complex control tasks.

The effectiveness of IL heavily relies on the quality and variety of expert
demonstrations. Capturing the intricate intentions of experts in complex sce-
narios remains a challenge. Research is actively directed towards enhancing the
robustness of policies derived from IL and extending its applicability to complex,
multi-agent, and real-world settings.

2.5.4 Multi-Agent Reinforcement Learning

Multi-Agent RL (MARL) is a paradigm that focuses on environments where
multiple agents interact, cooperate, compete, or coexist [167, 184, 157]. In
this context, agents must learn to make decisions in environments where other
agents are also learning and adapting. This adds layers of complexity due to the
non-stationarity and dynamics of multi-agent interactions. Fundamental work
in this area includes Littman’s paper [167] on Markov games, which extended
single-agent Markov decision processes to multi-agent settings.

Recent advances in MARL are often driven by deep learning, which facilitates
the handling of complex, high-dimensional state and action spaces. A prominent
example is DeepMind’s work on AlphaStar, which achieved the grandmaster level
in the complex multi-agent environment of StarCraft II [276]. This achievement
demonstrated the potential of deep MARL algorithms to solve highly complex
real-time strategy games.

Another important area of MARL research is the exploration of cooperative
strategies between agents. Foerster et al. [82] introduced a differentiable inter-
agent learning model, which allows agents to learn to cooperate in a shared
environment. This approach is particularly relevant in scenarios where agents
need to work together towards a common goal.

MARL is challenged by the exponentially increasing complexity of joint action
spaces and the need for scalable algorithms. Issues such as managing agent
cooperation and competition, ensuring equitable and stable learning experiences,
and dealing with partial observability are central to ongoing MARL research.
The work of Lowe et al. [173] on multi-agent actor-critic for mixed cooperative-
competitive environments is a notable contribution to addressing these issues.

2.5.5 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) involves decomposing complex tasks
into simpler, more manageable sub-tasks, inspired by how humans approach
problems. The foundational paper by Sutton et al. [262] on the options framework
is a seminal work in the field, introducing the concept of temporal abstraction,
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allowing agents to perform temporally extended actions or subroutines, which is
crucial to understanding the hierarchical decomposition of tasks.

Central to HRL is the creation of a hierarchy of decision-makers or controllers,
where each level operates at a different temporal or spatial scale. The development
of the Option-Critic Architecture by Bacon et al. [17] advances this concept
by enabling the simultaneous learning of intra-option policies and termination
conditions, addressing a key challenge in HRL. In addition, the MAXQ value
function decomposition, as outlined by Dietterich [65], provides a crucial method
for hierarchical decomposition of the value function. This approach plays an
important role in simplifying the learning process and improving efficiency in
complex environments.

The challenges lie in designing the hierarchical structure and the problem of
credit assignment in hierarchical settings. The introduction of Feudal Networks
[275] represents a significant advance. By separating the learning process into
distinct modules that operate at different levels of abstraction, Feudal Networks
facilitate more efficient learning in complex environments.

2.5.6 Meta-Reinforcement Learning

Meta-Reinforcement Learning (Meta-RL) differs from traditional RL approaches
in that the agent learns how to learn. The idea is to create agents that can
quickly adapt to new tasks using past experience.

A major focus of Meta-RL research is to develop algorithms that can generalize
across tasks. Early contributions to this field, such as the work by Schmidhuber
[233], introduced the concept of learning at multiple levels, where one level
learns to optimize the learning process of another. Researchers are exploring
various methods, such as context-based approaches, where the agent learns to
infer the context of a task and adjust its strategy accordingly. For example,
the work of Wang et al. [277] introduced a model where a meta-learner guides
a base-learner, allowing the base-learner to adapt to new tasks using previous
experience. Another approach is gradient-based meta-learning, exemplified by
the algorithm introduced by Finn et al. [80], known as model-agnostic meta-
learning (MAML). This technique optimizes the initial parameters of the model,
enabling it to quickly adapt to new tasks with only a few gradient steps.

Meta-RL faces issues primarily related to sampling efficiency, as these algo-
rithms often require extensive data for effective learning, which poses practical
challenges. Another critical area is ensuring the robustness and generalizability
of learned strategies across a wide range of tasks, which remains a focus of
ongoing research in the field.

2.5.7 Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) involves training a
reward model using human feedback, which is then used as a reward function
to optimize an agent’s policy through RL. RLHF is particularly valuable in
scenarios where traditional reward functions prove problematic, such as those
that are sparse, noisy, or deceptive. It is also highly effective in contexts where
it is difficult to define a clear reward function, but where a human can easily
judge the quality of the output, such as the fine-tuning of large language models
(LLMs). Although a relatively young methodology, RLHF has found its main
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application in the improvement of LLMs such as GPT-4 [196] and Claude [12],
following the standard methodology introduced by Christiano et al. [46].

The reward model aims to quantify the quality of an output from the main
model being fine-tuned by assigning it a reward value. It is usually learned
using human annotators who evaluate and rank the results generated by different
models. Fine-tuning of the main model is then guided by this reward signal
using a policy gradient method, most commonly PPO. An essential aspect of this
optimization process is the inclusion of a penalty mechanism that discourages the
model from deviating too far from the original pre-tuned model. This is crucial,
as it prevents the model from drifting into areas of the reward function that,
according to the learned function, may yield high rewards, but which in fact
correspond to side effects, out-of-domain generalizations, leading to nonsensical
or linguistically irrelevant results [149].

RLHF has significantly improved the fine-tuning of LLMs, making them more
aligned with human goals and more secure. However, challenges remain, as these
models can still exhibit problems such as inadvertently revealing sensitive private
information or producing false content (hallucination). In response to these
concerns, the AI research community is actively pursuing solutions to improve
the reliability and integrity of these models. Alongside these efforts, there’s a
growing push for alternative and complementary methods [35].

2.6 Conclusion and Foundation for Subsequent
Research

This chapter has introduced the basic concepts underlying RL and the algorithms
that are, at the time of writing, commonly used as baseline. Additionally, it
has reviewed more specialised approaches to RL, providing a comprehensive
understanding of methodologies that define current RL practice.

While the most advanced algorithms achieve impressive results in a variety
of scenarios, they assume a sufficiently informative reward to converge. As
a result, they have notable shortcomings in environments where rewards are
sparse or misleading, hindering their ability to discover optimal policies. This
difficulty is well illustrated by the example of the game Montezuma’s Revenge,
which, although easily mastered by humans, poses a significant challenge to the
algorithms seen so far, mainly due to the exploration problem. We discuss this
problem in more detail in Chapter 3.

Taking a step back, we can also see that the approaches we have discussed
above are primarily focused on mastering a single, specific task. This limits
their applicability in more dynamic, real-world situations where adaptability and
generalization are key. This is in sharp contrast to human learning capabilities,
where an individual can acquire skills across a wide range of tasks. We discuss
this limitation further in Chapter 4.



Chapter 3

Cell-Free Latent Go-Explore

In this chapter, we introduce Latent Go-Explore (LGE), a simple and general
approach based on the Go-Explore paradigm [70, 71] for exploration in RL.
Go-Explore was initially introduced with a strong domain knowledge constraint
for partitioning the state space into cells. However, in most real-world scenarios,
drawing domain knowledge from raw observations is complex and tedious. If
the cell partitioning is not informative enough, Go-Explore can completely fail
to explore the environment. We argue that the Go-Explore approach can be
generalized to any environment without domain knowledge and without cells
by exploiting a learned latent representation. Thus, we show that LGE can
be flexibly combined with any representation learning method. Our results
indicate that LGE, although simpler than Go-Explore, is more robust and
outperforms state-of-the-art algorithms in terms of pure exploration on multiple
hard-exploration environments including Montezuma’s Revenge. The LGE
implementation is available as open-source at https://github.com/qgalloued
ec/lge.

3.1 Introduction

RL algorithms aim to learn a policy by maximizing a reward signal. In some
cases, the rewards from the environment are sufficiently informative for the agent
to learn a complex policy, and therefore achieve impressive results, including
world level in Go [250], StarCraft II [276], or learning sophisticated robotic tasks
[154]. However, many real-world environments provide extremely sparse [22],
deceptive [156] rewards, or none at all. In such environments, unstructured
exploration, on which many current RL approaches rely, may not be sufficient
to collect data that is diverse and informative enough for the agent to learn
anything. In these cases, the agent must adopt an efficient exploration strategy to
reach high reward areas, which may require a significant amount of interactions.

Recent work by Ecoffet et al. [71] has introduced the return-then-explore
algorithm family, exemplified by Go-Explore, which significantly outperforms
state-of-the-art results on challenging exploration tasks such as Montezuma’s
Revenge by using a unique cell-based approach to grouping observations and
planning trajectories. A detailed explanation of Go-Explore, including its critical
reliance on the cell design for effective exploration, is provided in Section 3.2.2.
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Figure 3.1: LGE exploration workflow. The encountered observations are encoded
in a latent space. A latent density is estimated. A final goal is sampled from
the states already reached, by skewing the distribution with the density. A
goal-conditioned agent is trained to reach this goal by pursuing a sequence of
subgoals, derived from the experiment that led to the final goal. Once the agent
has reached the final goal, it explores from it with any exploration strategy.

In this chapter, we present Latent Go-Explore (LGE), a new algorithm
derived from Go-Explore which operates without cells. This new algorithm
meets the definition of a return-then-explore family of algorithms since the agent
samples a final goal state at the frontier of the achieved states, returns to it, and
then explores further from it. Our main contribution consists of three major
improvements.

• A latent representation is learned simultaneously with the exploration of
the agent to provide the most up-to-date and informative representation
possible.

• Sampling of the final goal is based on a non-parametric density model in
latent space. This leverages the learned latent representation for sampling
the states of interest to be reached.

• The subgoal path pursued by the agent is reduced using a characteristic
latent distance.

These three modifications, detailed in Section 3.3, allow us to generalize
the Go-Explore approach to any continuous high-dimensional environment. It
also enables the automation of the encoding of observations into an informative
latent representation, eliminating the need for manual cell design. The full LGE
exploration workflow is presented in Figure 3.1.

To evaluate LGE, we conducted experiments in the context of reward-free
exploration in various hard-exploration environments including a maze, a robotic
arm interacting with an object, and two Atari games known for their high
exploration difficulty: Montezuma’s Revenge and Pitfall.

LGE can use various types of latent representation learning methods. In this
study, we demonstrate the use of three such methods, including inverse dynamics,
forward dynamics, and auto-encoding mechanism. We show in Section 3.4.4 that
for the environments studied, LGE outperforms all state-of-the-art algorithms
studied in this chapter, and in particular Go-Explore for the exploration task.



3.2. PRELIMINARIES AND RELATED WORK 67

3.2 Preliminaries and Related Work

Goal-conditioned MDP We extend the formalism introduced in Section
2.1.2 by noting that any MDP can be augmented into a goal-conditioned MDP
with a goal space G and an initial goal distribution ρg. At each timestep, the
observation is augmented with a goal and the reward function depends on this
goal. A goal-conditioned policy [130], denoted π(· | ·, ·) also depends on the goal.

3.2.1 Measuring the exploration

In this work, we focus on the agent’s ability to explore its environment in a
pure exploration context, i.e. in the absence of extrinsic reward. This step is
particularly important because, in the case of an environment with very sparse
rewards, the agent can interact a large number of times with the environment
without getting any reward. It is therefore necessary to follow an efficient
exploration strategy to discover the few areas of the state space where the agent
can get a reward. To be able to compare the results obtained by different
methods in this context, it is necessary to use a common metric for the quality
of exploration.

The literature uses various metrics. Some papers use the average reward
on a hard-exploration task [8], the zero-shot performance on a predefined task
[241] or monitor specific identifiable events in the environment that indirectly
informs the degree of exploration [103]. We argue that these indirect measures
are unsatisfactory as they rely on the subsequent learning ability of an online and
offline agent respectively. For simplicity, we use the number of visited cells as
the metric, whose construction strategy is explained in Section 3.4.2. Therefore,
the figures represent the number of cells explored, although Go-Explore is the
only algorithm to explicitly maximize this metric. Following the guidelines of
Agarwal et al. [3], we use for all plots in this chapter the Interquartile Mean
(IQM) with the 95% Confidence Interval (CI).

3.2.2 Go-Explore

Before giving a broader overview of exploration strategies in RL, we give a detailed
explanation of Go-Explore. Ecoffet et al. [71] introduced a new paradigm in which
a goal-conditioned agent is trained to reach states it has already encountered,
and then explore from there. The agent thus iteratively pushes back the frontier
of its knowledge of the environment. We call this family of algorithms return-
then-explore. Ecoffet et al. [71] provide Go-Explore, an algorithm of this new
family, that outperforms by several orders of magnitude the state-of-the-art
scores on the game Montezuma’s Revenge, known as a hard-exploration problem.

Go-Explore relies on a grouping of observations into cells. Figure 3.3 shows
the cell generation process for the Atari environment. These cells are used both
to select target observations at the frontier of yet undiscovered states and to
build a subgoal trajectory for the agent to follow to reach the final goal cell. As
Ecoffet et al. [71] initially spotted, the cell design is not obvious. It requires
detailed knowledge of the observation space, the dynamics of the environment,
and the subsequent task. If any important information about the dynamics of
the environment is missing from the cell representation, the agent may fail to
explore at all. For example, in Montezuma’s Revenge, possession of a key is
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Figure 3.2: Go-Explore selects states from an archive, prioritising promising
cells, returns to these states using methods such as simulator restoration, and
explores using random actions or policy sampling. Found states are mapped to a
cell representation, and new or updated states are added to the archive. Figure
from [71].
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Figure 3.3: An example of cell representation in Go-Explore. The image is first
converted to grayscale, then sub-sampled to an 11×8 image containing 8 distinct
levels of pixel intensity. The resulting image is the cell representation. Figure
from [70].

a crucial piece of information that, when included in the cell representation,
increases exploration by several orders of magnitude. We also demonstrate in
Section 3.4.6 that the cell design has a major influence on the results.

3.2.3 RL exploration

Exploration in RL usually divided into three types [148, 14]: unstructured
exploration1, intrinsic rewards-based methods, and goal-based methods.

Unstructured exploration

In unstructured exploration, the agent does not adhere to a predetermined
exploration plan and instead takes actions randomly or according to a simple
heuristic. These actions may be sampled uniformly from the action space, or
in the continuous case, they may be augmented by exploration noise that is
parametrized by the current state [105] or not [164]. Unstructured exploration
can be effective in some environments, but it may not be sufficient to explore
more complex or sparsely rewarded environments.

Intrinsic reward-based methods

Intrinsic rewards-based methods are inspired by the concept of intrinsic motiva-
tion in cognitive science [201, 200]. Instead of solely relying on extrinsic rewards
provided by the environment, this approach introduces intrinsic rewards that en-
courage the agent to explore states with potential learning value. These intrinsic
rewards can be derived from various sources, each offering unique advantages.

Count-based methods Bellemare et al. [22] introduced a pioneering pseudo-
count method that addressed the challenge of countable yet extensive state
spaces by replacing traditional visitation counts with state density estimates and
computing intrinsic rewards from them. While their primary focus was on dis-
crete state spaces, they laid the foundation for future research in continuous state
spaces. Building on this work, Ostrovski et al. [199] extended the pseudo-count
concept by utilizing a PixelCNN model to estimate pseudo-counts when dealing
with image observations, leading to significant improvements in exploration

1We replace the terminology of Ładosz et al. [148] random exploration by unstructured
exploration that we think is more accurate.
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efficiency. Concurrently, Tang et al. [263] extended count-based exploration
methods to high-dimensional and continuous state spaces by introducing Lo-
cally Sensitive Hashing (LSH). Machado et al. [178] introduced an extension of
count-based methods that leverages a learned successor representation to more
effectively bridge the gap between tabular and continuous settings.

Knowledge-based methods Early work such as [234] implemented a reward
system based on the Euclidean distance between the output of the world model
and the actual output of the environment. This approach rewarded the curiosity
unit when the model had insufficient knowledge about a particular state, thus
encouraging agents to explore unfamiliar areas. In a theoretical exploration
framework, Schmidhuber [235] explored the optimal implementation of basic
computational principles for intrinsically motivated agents. While theoretically
optimal, the methods described in this work are notable for their lack of algo-
rithmic feasibility. Variational Information Maximizing Exploration (VIME) by
Houthooft et al. [114] focuses on maximizing information gain about the agent’s
beliefs about environmental dynamics, which involves rewarding actions that
effectively reduce uncertainty about these dynamics. In a different vein, Achiam
and Sastry [2] introduced the concept of surprisal defined as the error of a
learned world forward dynamics model and used as an intrinsic reward. Concur-
rently, Pathak et al. [205] introduce the Intrinsic Curiosity Module (ICM), which
formulates curiosity as an error in predicting the consequences of the agent’s
actions in a visual feature space designed to accommodate high-dimensional
continuous state spaces. Importantly, ICM justifies the use of inverse dynamics
over forward dynamics by recognizing that some elements of dynamics may be
unpredictable and should not be the focus of the agent’s exploration. In addition,
the work of Pathak et al. [206] explores the concept of disagreement between
ensemble models as a source of intrinsic reward, highlighting its resilience in the
face of stochastic environments. Burda et al. [34] offer a different perspective by
introducing Random Network Distillation (RND), a straightforward exploration
bonus method that effectively addresses the scaling challenges associated with
information or prediction gain.

Impact-based methods These methods allow agents to maximise their in-
teractions with the environment by rewarding certain actions based on the
impact and influence these actions have on the state of the environment. Mutual
Information-based State Intrinsic Control (MUSIC) [295] introduces an intrinsi-
cally motivated agent that maximizes mutual information between the agent’s
state (e.g., position and velocity) and the environment’s state (excluding the
agent’s state) to encourage exploration. In contrast, Rewarding Impact-Driven
Exploration (RIDE) [223] addresses exploration in sparse-reward procedurally
generated environments (PGE). RIDE mitigates the risks of detachment by
learning a state representation via forward and inverse dynamics models that
capture elements influenced by the agent.

Empowerment-based methods These methods aim to maximise an agent’s
ability to control its environment. Klyubin et al. [135] introduce the concept of
empowerment as an intrinsic reward that encourages the agent to seek control
over its environment. Mohamed and Rezende [190] and Rezende and Mohamed
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[225] further explore the idea of intrinsic rewards based on empowerment, where
empowerment is defined as the ability between states and actions. Agents
seeking to maximise this empowerment value are motivated to approach states
from which they can influence the largest number of future states within a given
planning horizon, thereby motivating them to target states of maximum influence.
Gregor et al. [99] also incorporate intrinsic rewards based on empowerment, which
reinforce the agent’s desire to control its environment by maximising the mutual
information between pairs of start and end states.

Goal-based methods

Methods that modify the reward of the environment provide no mechanism for
distilling the knowledge gained from visiting various states. Agents may visit
new states, but they quickly forget about them when other states become newer.
To address this issue, recent work has suggested the use of a goal-conditioned
autotelic agent specifically trained for the exploration task. This approach
allows for the use of the knowledge gained during exploration to realize new
user-specified goals [161, 51]. During the exploration phase, the reward signal
is ignored, and after the exploration phase, the data collected by the agent is
used to learn one or more subsequent tasks [127]. Goal-based methods condition
the agent with a goal that is used to guide exploration towards unknown areas.
These methods rely on a goal generator to create goals for the agent. We divide
goal-based methods into two categories: exploratory goal methods and goals to
explore from methods (called post-exploration in [290]).

Exploratory goal methods follow the intuition that the agent discovers new
areas of the observation space by pursuing goals that have been little or not
achieved before. The challenge of these methods is to choose the goal to be
neither too easy nor too hard. The literature contains several ways to approach
this trade-off. While [36] leverage a model of goal reaching capabilities to select
goals of intermediate difficulty, some other methods sample goals that either
maximize learning progress [49, 216] or value disagreement [294]. Alternatively,
[215] sample goals from the least visited areas using a parametric density model
on the visited states. It is also possible to imagine goals that have never been
reached using a language model [50], a generative model [219] or a GAN [81].

In goals to explore from methods the agent samples a goal from previously
visited states. It returns to it, either by teleportation [70, 183], or using a goal-
conditioned policy [71]. The challenge of these methods is to choose a goal that
is of high exploratory interest. Similarly, some methods estimate the density of
the encountered states, using either parametric methods [210] or non-parametric
methods [71, 183], to target the low-density areas.

In summary, methods based on a goal reaching policy should facilitate
scalable RL. The stunning results of Go-Explore illustrate this point but remain
circumscribed to few environments and require a lot of domain knowledge to
work. By bridging with concepts already used in the intrinsic reward literature,
we show a way to make this approach more general and simpler.
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3.3 Latent Go-Explore
LGE meets the definition of the return-then-explore family of algorithms. First,
a final goal state is sampled from the replay buffer, then the agent learns a
goal-conditioned policy to reach this goal. When the agent reaches the goal,
the agent starts to explore. LGE learns a latent representation of observations
and samples the goal pursued by the goal-conditioned agent in priority in low
latent density areas. In Section 3.3.1, we present how the latent representation
of observations is learned. In Section 3.3.2, we show how the latent density is
estimated and how the final goal state pursued by the agent is sampled. Then,
in Section 3.3.3, we show how to build a subgoal trajectory from the final goal to
increase the agent’s performance, in particular in far-away goal situations. The
pseudo-code of the resulting algorithm is presented in Algorithm 18. Finally, in
Section 3.3.4, we take a closer look at Go-Explore and LGE, highlighting their
main differences.

Algorithm 18: Latent Go-Explore (LGE).
Input: Number of iterations in the exploration phase T
Output: The goal-conditioned policy π and the dataset D
Initialize: Replay buffer D = ∅; Encoding module; Goal-conditioned
policy π

while t < T do
Sample a final goal state with Equation (3.8)
Build the subgoal trajectory τg using Equation (3.9)
Initialize the subgoal index: i← 0
while the last goal of τg is not reached do

Collect interaction using π(· | ·, τgi ) and store it into dataset D
if subgoal τgi is reached, i.e., ||ϕ(st)− ϕ(τgi )|| < d then

Move to the next subgoal: i← i+ 1

Explore until the end of the episode with any exploration strategy
Update π with any off-policy algorithm and HER
Every update_encoder_freq timesteps, update encoder ϕ with any
representation learning algorithm

3.3.1 Learning a latent representation
The literature contains several latent representation learning methods for RL.
Learning such a representation is orthogonal to our approach. Hence, LGE can
be combined with any learning method without the need for further modifications.
Choosing the best representation learning method given the environment is out of
the scope of this work. In this work, we present three methods of representation
learning that have been found to work well with our test environments. Two of
these methods are inspired by the literature on intrinsic reward-based methods,

Inverse dynamic representation learning Pathak et al. [205] proposed an
intrinsic reward calculated based on the agent’s prediction error of the conse-
quence of its own actions. The representation is learned using two submodules,
as presented in Figure 3.4. The first encodes the observation into a latent
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representation ϕ(st). The second takes as input ϕ(st) and ϕ(st+1) and outputs
the prediction of the action taken by the agent at timestep t. The parameters θ
of the inverse model P inv

θ are optimized by minimizing the loss function:

st

st+1

features

features

ϕ(st)

ϕ(st+1)

Inverse
Model

ât

Figure 3.4: Inverse dynamic to learn representation.

L =
1

|N |
∑

(st,at,st+1)∼D

1

2
∥at − P inv

θ (st, st+1)∥22 (3.1)

The inverse dynamics representation learning allows getting a latent repre-
sentation of the states containing only the aspects of the state on which the
agent can have an influence.

Forward dynamic representation learning In [2], the intrinsic reward is
calculated based on the prediction error of a model approximating the transition
probability function of the MDP. Two submodules are used, as presented in
Figure 3.5.

st features ϕ(st)

at

Forward
Model

ŝt+1

Figure 3.5: Forward dynamic to learn representation.

The first one encodes the observation to a latent representation ϕ(st). The
second takes as input ϕ(st) and at and outputs the prediction of the next state
ŝt+1. The model parameters θ are optimized by minimizing the loss function:

L = − 1

|N |
∑

(st,at,st+1)∼D

logPθ(st+1 | st, at) (3.2)

Vector Quantized Variational Autoencoder (VQ-VAE) Autoencoding
[111] aims to train a neural network to reconstruct its input by learning a com-
pressed representation of the data. This approach is known to be effective in
extracting useful features from the input, especially images. For Atari environ-
ments, we use a VQ-VAE [272], a technique that combines autoencoding with
vector quantization, and has shown good results, while being simple to train.
We use the coordinates of the embeddings in the embeddings table as the latent
representation.

3.3.2 Density estimation for intrinsic goal sampling

The success of the proposed method relies on the agent’s ability to generate for
itself goals that it will be able to reach and then explore from there. For the
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s0

s1

s2

s3

s4

s5

s6 s7

s8

D3(s5)

D(1)(s6)

D(2)(s6)

D(3)(s6)

Figure 3.6: Illustration of the notation used in the simple case of d = 2 and
n = 9. D(1)(s6) denotes the distance between s6 and its closest neighbor (except
itself), i.e. s8.

agent to progress in the exploration of the environment, these goals must be at
the edge of the yet unexplored areas. To identify these areas, we use an estimator
of the density of latent representations of the encountered states. Moreover,
we require the goal to be reachable. The set of reachable states is a subset of
the state space that we assume to be unknown. The easiest way to satisfy the
previous requirement is therefore to sample among the states that have already
been reached.

We estimate the density of latent representations of the encountered states
(called latent density) using the particle-based entropy estimator originally
proposed by Kung et al. [142] and used in the literature on intrinsically motivated
RL [169, 168]. This estimator has the advantage of being non-parametric and
thus does not hinge on the learning capabilities of a learned model.

Let s1, . . . , sn be a sample of event locations2 in an Rd-space, where d is an
arbitrary integer. Assume that the event location s follows a common distribution
with density function f(s). For any sample si and sj in this sample, assume
that Di(sj) = ||si − sj ||, denotes the euclidean distance between si and sj . For
any k ⩽ n, let D(k)(si) be the distance with k-th nearest neighbors of si with
respect to the euclidean distance. Figure 3.6 shows an basic example with d = 2
and n = 9.

Kung et al. [142] propose an optimal unbiased estimator f̂ for the density:

f̂ =
kU∗

k

k − 1
(3.3)

where

U∗
k =

(k − 1)

nCdDd
(k)

(3.4)

2Here, s does not necessarily denote a state, but we deliberately choose this notation, as we
believe it improves understanding, insofar as the estimator is easy to visualize when s indeed
denotes a state.



3.3. LATENT GO-EXPLORE 75

and

Cd =
πd/2

Γ(d/2 + 1)
(3.5)

Hence we have

f̂ =
k

nCd
D−d

(k) (3.6)

We follow the recommendation of Kung et al. [142] to take

k = 2n1/d (3.7)

The sampling of the final goal state follows a geometric law on the rank in
the latent density sort Ri. The probability to draw si as the final goal state is

P(G = si) = (1− p)Ri−1p (3.8)

where G is the random variable corresponding to the final goal state, and
0 ⩽ p ⩽ 1 is a hyperparameter controlling the bias towards states with a low
latent density.

This method has the advantage of being robust to approximation errors in
the density evaluation, which can be particularly important in low density areas.
In doing so, we only focus on the ability of the model to correctly order the
observations according to their latent density.

The representation is jointly learned with the exploration of the agent.
Therefore, the latent density must be regularly recomputed to take into account
the most recent representation on the one hand, and the recently visited states
on the other hand. However, considering the slow evolution of this value, we
choose to recompute the latent density only once every 5k timesteps for maze
and robotic environments, and every 500k timesteps for Atari environments.
This allows us to significantly reduce the computation needs while having a low
empirical impact on the results.

3.3.3 Subgoal trajectory
As learning progresses, the sampled final goal states are increasingly distant.
However, reaching a distant goal is challenging because it implies a sparse reward
problem.

To overcome this problem, we condition the agent to successive intermediate
goals τg = (g0, g1..., gL) that should guide it to the final goal state gL. These
intermediate goals are chosen from the trajectory that led the agent to the final
goal state (s0, s1, . . . , sT ).

The trajectory that led the agent to the final goal state is unlikely to be
optimal. Plus, if the agent is conditioned by the whole trajectory, it may fail to
reach all of them, even though some of them may not be necessary to reach the
final goal state. To allow the agent to find a better path to the final goal state,
we remove some subgoals from this trajectory. To decide whether a subgoal
should be removed from the trajectory, we evaluate the latent distance to the
previous subgoal. If the distance is less than the threshold, then the goal is
removed.

∀i ⩽ L− 1, ||ϕ(gi)− ϕ(gi+1)|| > d (3.9)
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Unlike Go-Explore, LGE doesn’t use the best known trajectory that leads
to the sampled goal area (cell). The main reason is that the best known
trajectory may be particularly difficult to reproduce, due to the dynamics and
the stochasticity of the environment, or cause the early termination of the
episode.

For example, in Montezuma’s Revenge, there are two ways to reach the
bottom of the left ladder (a necessary step to get the first key). An illustration of
the situation is shown in Figure 3.7. The first one consists in jumping right from
the promontory (red arrow), but causes the death of Panama Joe (the character)
and as a result ends of the episode. The second one, longer, consists in going
around by the right ladder (green arrows). Therefore, if the agent always chooses
the shortest path (like Go-Explore), it will most likely fail to reach the first key
and to further explore the environment.

(a) Goal state. (b) Initial state with
the two possible
paths to the final
state.

Figure 3.7: An example of how naively choosing the shortest path to a target
state can cause Go-Explore to fail. If the agent chooses the red path, this will
cause the death of the character and thus the end of the episode. To reach the
goal state, the agent must take the green path, necessarily longer.

Once the goal is reached, the agent explores using any exploration strategy.
For the sake of simplicity, we choose a random exploration strategy for our
experiments. We also impose that the agent repeats the previous action with
a probability of 90%. This technique has been shown to increase the results
significantly [71].

3.3.4 Comparing Go-Explore and LGE
The Go-Explore algorithm as presented by Ecoffet et al. [71] has many compo-
nents. All these components allow to obtain good results on test environments.
In this article, we implement our own version of Go-Explore. We have tried to
stick as much as possible to the initial implementation and to improve some
aspects. We keep the essence of Go-Explore, but our implementation is not
intended to be equivalent to the initial implementation. The main goal here is
to compare LGE and Go-Explore. Thus, the two implementations differ only
in the elements that make them unique. To the best of our knowledge, all the
components that we did not implement are compatible with LGE. It is likely that
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they improve LGE and Go-Explore in a similar way. In this section, we describe
the implementation of LGE and Go-Explore. We explain their differences if any.

Policy-based Go-Explore The initial implementation of Go-Explore distin-
guishes between the case where the environment can be reset to any desired state
and the case where this is not possible. In this work, we choose the general setting
where the environment can’t be reset to any desired state, and we therefore work
with the so-called policy-based implementation of Go-Explore.

Exploration after returning In the original implementation of Go-Explore,
once a cell is returned, exploration proceeds with random actions for a certain
number of timesteps. For both LGE and Go-Explore, we set this number
of timesteps to 50 for all environments. Note that the agent can interrupt
this exploration beforehand if the maximum number of interactions with the
environment is reached. Ecoffet et al. [71] shows that action consistency generally
allows for more effective exploration, especially in the robotic environment. For
LGE and Go-Explore, we use the same trick: the agent chooses the previous
action with a probability of 90%, and uniformly samples an action with a
probability of 10%.

Cell design The original implementation of Go-Explore provides two methods
for generating the cell representation.

1. When the observation is an image, the observation is grayscaled and
downscaled. The image produced is the cell representation. The parameters
to get this representation (downscaling width and height and number of
shades of gray) are optimized during training to maximize an objective
function that depends on a target split factor.

2. When the observation is a vector, each component of the vector is discretized
separately by hand before learning.

For all the environments presented in this work, we use a naive method of cell
generation corresponding to a discretization of the observation. The granularity
of the discretization is a hyperparameter. The choice of this hyperparameter is
crucial, we develop it in more detail in the Section 3.4.6.

Goal-conditioning In the original implementation of Go-Explore, the agent
is conditioned by the cell representation of the goal. We note that this represen-
tation can vary during learning, and even in size (see previous paragraph). It is
not clear how to structure the agent’s network when the size of the input varies
during the learning process.

In our implementation, we choose to condition the agent by the goal observa-
tion rather than by the representation of its cell. We also condition the agent by
the goal observation in LGE.

RL agent In the original implementation of Go-Explore, the goal-conditioned
agent is based on the on-policy PPO algorithm [239]. For both LGE and Go-
Explore, we rather chose to use an off-policy algorithm (SAC or DDPG, see
Section 2.4.3) to use a Hindsight Experience Replay (HER) [9] relabelling, which
has shown to perform better in a sparse reward environment.
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Reward In the original implementation of Go-Explore, the agent gets +1
reward for reaching intermediate cells and +5 reward for reaching the final cell
of a path. The rest of the time, it receives a 0 reward. For both LGE and
Go-Explore, following the suggestions of Tang and Kucukelbir [264], we rather
choose the following structure for the reward: the agent gets a reward of 0 for
a success (target cell reached for Go-Explore and latent distance with the goal
state below the distance threshold for LGE) and −1 the rest of the time. As
noted by Eysenbach et al. [76], in this setting, an optimal agent tries to terminate
the episode as quickly as possible. We therefore set done = True only at the
end of the post-exploration, and not when the agent reaches a final state.

3.4 Experiments

To demonstrate the effectiveness of our method, we apply it to a range of pure
exploration tasks. We focus on environments for which naive random exploration
is not sufficient to explore the rich variety of reachable states. We compare the
results obtained with LGE with the results obtained using several algorithms
based on intrinsic curiosity and others based on goal-directed strategies. For each
environment, LGE uses the representation method that empirically gives the best
results. Consequently, we use the forward dynamics for the maze environment,
the inverse dynamics for the robotic environment, and the VQ-VAE for Atari.

In terms of infrastructure, each run was performed on a single worker machine
equipped with one CPU and one NVIDIA® V100 GPU + 120 Gb of RAM.

3.4.1 Environments

Continuous maze We train an agent to navigate in a continuous 2D maze.
The corresponding configuration is shown in Figure 3.8. The agent starts every
episode in the center of the maze. At each timestep, the agent receives the
current coordinates as an observation and chooses an action that controls its
location change. If the agent collides with a wall, it returns to its previous
position. The reachable space is a square of 12× 12 and the agent’s action is
limited to [−1, 1] horizontally and vertically. The agent can interact 100 times
with the environment (which is just enough to explore all the maze), after which
the episode ends.

Robotic environment Robotic environments are interesting and challenging
application cases of RL, especially since the reward is often sparse. We simulate
a Franka robot under the PyBullet physics engine using PandaGym [91]. The
robot can move and interact with an object. The agent has access to the position
of the end-effector and the position of the object, as well as to the opening of
the gripper. The agent interacts 50 times with the environment and then the
object and the robot arm are reset to their initial position.

Atari We train LGE on two high-dimensional Atari 2600 environments simu-
lated through the Arcade Learning Environment (ALE) [21] that are known to
be particularly challenging for exploration: Montezuma’s Revenge and Pitfall.
Details of the settings used are presented in Section 3.4.3.
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3.4.2 Baselines

Random exploration

Most RL methods from the literature do not follow any structured exploration
strategy. In a reward-free context, the performance of the latter is often equivalent
to a random walk. We take as a reference a random agent, whose actions are
uniformly sampled over the action space at each timestep, SAC [105] and DDPG
[164] for continuous action space environments.

Intrinsic reward-based exploration

In this work, we take as reference two widely used intrinsic reward-based methods
combined with either SAC or DDPG. These methods stand out from the others
because, despite their simplicity, they have demonstrated good performance on
a wide variety of tasks.

Intrinsic Curiosity Module (ICM) [205] The intrinsic reward is computed
as the mean square error between the true latent representation and the one
predicted by a learned dynamic model given the action taken. The encoder is
trained jointly with an inverse dynamics model.

Surprise [2] The intrinsic reward is the approximation of the KL divergence
between the actual transition probabilities and a learned transition model.

Goal-directed exploration

Go-Explore [70, 71] The agent divides the observation space into cells,
prioritizes the cells that have been visited the least, returns to them using a
goal-conditioned policy, and then continues exploring from that point. This is
the policy-based and without domain knowledge variant of Go-Explore, but we
refer to it simply as Go-Explore.

The observations in continuous environments are converted into cell repre-
sentations by discretizing them. In the maze environment, we use a 24 × 24
grid, and in the robotic environment, we use a grid with a 0.1m resolution for
the position of the gripper and object. For Atari, we use the same fixed cell
representation as proposed by [71] in the policy-based case: the observation is
converted to grayscale and reduced to the size of 8 × 11 pixels. The depth is
then reduced from 256 to 8 values according to ⌊ 8p

255⌋ where p is the pixel value.
The resulting image is the representation of the cell. Go-Explore is the closest
baseline to our algorithm. Section 3.3.4 details the differences between LGE and
Go-Explore.

Diversity Is All You Need (DIAYN) [77] The agent is conditioned by a
skill and a discriminator predicts the skill pursued by the agent. The more the
discriminator predicts with certainty the skill pursued, the bigger the reward.
Conjointly, the discriminator is trained to maximize the distinguishability of
skills.
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Skew-Fit [215] The agent’s goal sampling is skewed to maximize the entropy
of a density model learned on the achieved states.

For the goal-directed methods, we use HER, [9] relabeling which has shown
to significantly increase learning.

To nullify the variation in results due to different implementations, we
implement all algorithms in the same framework: Stable-Baselines3 [222]. The
set of intrinsic reward-based methods and goal-directed methods are underpinned
by the same off-policy algorithm. The hyperparameters for this algorithm
are identical. For the maze environment, we use SAC, while for the robotic
environment, we use DDPG as it gives better results for all methods. For
Atari environments, we use QR-DQN [57], as it commonly considered to be a
strong baseline on it. For Atari, we only compare LGE to Go-Explore as it far
outperforms the others. To negate the influence of a bad choice of hyperparameter
on the results, the method-specific hyperparameters are optimized. Section 3.4.3
details the optimization process and the resulting hyperparameters.

3.4.3 Hyperparameters and environments settings
To limit the impact of the large variability of results depending on the hyperpa-
rameters, we chose to optimize the hyparameters for each experiment. For maze
and robotic environments, we selected 100 unique sets of hyperparameters from
a search space presented in Table 3.1 using Optuna [5]. For each hyperparameter
set, we train the model with 3 different seeds and keep the median score. For
Atari, we selected 10 unique sets of hyperparameters and train the agent just once.
The method-specific parameters that have not been optimized are presented in
Table 3.2. The hyperparameters used for the off-policy agent are identical for
all algorithms. They are presented in Table 3.3. For Atari, we mainly use the
setting recommended by Machado et al. [177]. Like Ecoffet et al. [71], we use
both sticky actions and start no-ops.
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Table 3.2: Hyperparameters specific to each method. Their value is identical for
all experiments and have not been optimized.

Method Hyperparameter Value

LGE Encoder training frequency 5k steps (Maze and Robotic)
500k steps (Atari)

Learning rate 0.001
Batch size 32
Gradient steps 500 (Maze and Robotic)

5k (Atari)
Exploration strategy Random
Repeat action probability 0.9

Go-Explore Exploration strategy Random
Repeat action probability 0.9

ICM Feature size 16
Networks [64, 64]
Activation function ReLU

Surprise Networks [64, 64]
Activation function ReLU

DIAYN Discriminator networks [256, 256]
Activation function ReLU

Skew-Fit Gradient steps 100
Batch size 2048
Learning rate 0.01

Table 3.3: Hyperparameters of the off-policy agent. These hyperparameters
are identical for all methods and for all experiments. The hyperparameters
related to HER relabeling only apply to the methods for which the agent is
goal-conditioned (DIAYN, Go-Explore, Skew-Fit and LGE).

Hyperparameter SAC DDPG QR-DQN

Networks [300, 400] [300, 400] CNN from [188]
Learning rate 3× 10−4 10−3 5× 10−5

Learning starts after N timesteps 100 100 1M
Batch size 256 100 32
Discount factor (γ) 0.99 0.99 0.99
Polyak update coefficient (τ) 0.005 0.005 1.0
Target entropy 2.0 N/A N/A
Target update every N timesteps N/A N/A 10k
ϵ decreases during N timesteps N/A N/A 4M
Initial ϵ N/A N/A 1.0
Final ϵ N/A N/A 0.05

Train every N timesteps 1 1 10
Gradient steps 1 1 1

HER sampling probability 0.8 0.8 0.8
HER relabeling strategy Future Future Future
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Table 3.4: Atari setting.

Parameter Value

Reset on life loss Yes
Start no-ops From 1 to 30
Action repetitions 4
Sticky action probability σ 0.25
Observation preprocessing 84× 84, grayscale
Action set Full (18 actions)
Max episode length 100k
Max-pool over last N action repeat frames 2

3.4.4 Main results

The exploration results for the maze environment are presented in Figure 3.9. A
rendering of the positions explored by the agent is presented in Figure 3.8.

(a) Random (b) SAC (c) SAC+ICM (d) SAC+Surprise

(e) Skew-Fit (f) DIAYN (g) Go-Explore (h) LGE (ours)

Figure 3.8: Space coverage of the maze environment after 100k timesteps. In f,
the different colors are the different skills.

We note that only LGE and Go-Explore significantly outperform the results
obtained with random exploration. This demonstrates the effectiveness of the
return-then-explore paradigm in this environment. We note that exploration
based on intrinsic curiosity does not yield significantly better results than those
obtained by random exploration. We hypothesize that the simple dynamics of
the environment makes the intrinsic reward to quickly converge to 0.0. Surpris-
ingly, neither Skew-Fit nor DIAYN performs significantly better than random
exploration. For DIAYN, we find that most of the skills were concentrated in the
initial position area of the agent. We hypothesize that this is the consequence
of the lack of post-exploration described by Yang et al. [290]. Finally, we note
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Figure 3.9: Comparison of the space coverage of the maze environment. Each
experiment is run 10 times. The left plot represents the space coverage (number
of cell divided by the total number of reachable cells) across timesteps. The solid
lines are the IQMs and the shaded areas are the 95% CIs. The right plot is the
final performance profile (higher is better).
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Figure 3.10: Comparison of exploration with the robotic environment. Each
experiment is run 10 times. The left plot represents the number of explored bins
across timesteps. The solid lines are the IQMs and the shaded areas are the 95%
CIs. The right plot is the final performance profile (higher is better).
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that, although the cell size has been optimized, LGE significantly outperforms
Go-Explore. LGE manages to cover almost the entire reachable space at the end
of the runs while exhibiting low variability in the results.

The exploration results for the robotic environment are presented in Figure
3.10. We notice that LGE significantly outperforms all other methods. Notably,
Go-Explore performs only slightly better than random exploration. We note that
Go-Explore does not learn to grasp the object throughout the learning process.
The results presented on a robotic environment by Ecoffet et al. [71] are much
better. We presume this is mainly due to the meticulous work done on the state
space examination and the induced cell design. Here, we use a naive grid-like
cell design. Although the grid parameter is optimized, it does not yield good
exploration results with this environment. We thus demonstrate the benefit of
using a learned representation to automatically capture important features of
the environment’s dynamics.
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Figure 3.11: Comparison of exploration on the Atari environments. Each
experiment is run 3 times. The solid lines are the IQMs and the shaded areas
are the 95% CIs.

The exploration results for Atari are presented Figure 3.11. We see that both
LGE and Go-Explore quickly discover a large number of cells, then continue
their exploration by regularly discovering new cells. LGE slightly outperforms
Go-Explore on both Pitfall and Montezuma’s Revenge. Nevertheless, we note
that the number of discovered cells is much lower than that of Go-Explore in
its full configuration (around 5k for Montezuma’s Revenge), including domain
knowledge and the ability to reset the environment in any state. This shows the
criticality of these settings for exploring these particular environments.

3.4.5 Ablation study

We study the impact of the ablation of three key elements of LGE. (1) LGE
without further exploration (as exploratory goal methods, see Section 3.2): the
environment is reset once the agent reaches the final goal instead of performing
the exploration random interactions. (2) LGE without skewing the final goal



86 CHAPTER 3. CELL-FREE LATENT GO-EXPLORE

distribution in favor of low latent density areas, the final goals are sampled
uniformly among the reached goals. (3) LGE without subgoals trajectory
reduction: the agent is just conditioned by the final goal state. We perform these
ablation studies on the maze environment and use the same hyperparameters as
in Section 3.4.4. The results are shown in Figure 3.12.
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Figure 3.12: Result of ablation study on the maze environment. Each experiment
is run 10 times. The left plot represents the space coverage across timesteps.
The solid lines are the IQMs and the shaded areas are the 95% CIs. The right
plot is the final performance profile (higher is better).

The impact of the three ablations on the outcome is significant. We find
that exploration after reaching the final goal is crucial, confirming the results of
Yang et al. [290]; without it, the agent reaches the limits of its knowledge but
has little chance to explore further. Additionally, sampling goals with low latent
density can significantly improve results by directing exploration to states with
high exploratory value. Furthermore, we observe that conditioning the agent
with successive subgoals greatly improves its exploration.

3.4.6 On the criticality of cell representation in Go-Explore
In Go-Explore, similar observations are grouped into cells and each cell encoun-
tered is stored in an archive. The cell representation is a critical aspect of
Go-Explore. In the Montezuma’s Revenge environment, a slight variation in cell
representation results in an order of magnitude difference in the results. The
cells are used to (1) estimate the density of states encountered in the observation
space and sample a target cell against it; (2) divide this goal reaching task into
a sequence of subgoals.

We argue that building a cell representation to capture the relevant com-
ponents of an environment to perform the desired task requires a significant
amount of domain knowledge. In general, this cell representation cannot be
generalized to other tasks or to other environments.

To support our claim, we present in Figure 3.13 the space coverage in a
continuous maze for different cell design. We show that even in this simple
environment, a small variation in cell design has a significant impact on the
result.
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(a) Cell size = 0.5× 0.5 (b) Cell size = 2.0× 2.0 (c) Cell size = 6.0× 6.0

Figure 3.13: Go-Explore scene coverage after 100k timesteps. The cell design is
represented by the gray grid. We show the results for 3 different cell widths and
shift. The red dots represent the visited states.

On the left, the cells are small, and the agent must visit each of them. If the
agent interacts long enough with the environment, it should eventually explore
the whole space. On the right, the cells are large. We can observe some detached
areas, because the agent has not visited the cell enough to discover the next one,
but enough so that this cell is no longer listed as a target cell.

3.5 Discussion

3.5.1 Limitation and future work
Goal-achievement functions In LGE, an agent is considered to have reached
a goal (whether final or intermediate) when the latent distance between its
state and the goal is below a threshold. This is a naive way of defining a goal
achievement function [51] that depends crucially on the latent representation.
We believe that the results could be improved by envisioning a more informative
and suitable goal achievement function for our method.

The initial state must remain the same across episodes The approach
we propose is based on the assumption that the agent is always initialized in the
same state. This assumption guarantees that at the beginning of each episode, all
the states previously reached are reachable and that the subgoal trajectory starts
with the initial state of the agent. However, in some environments, especially
in PGE, this assumption is not fulfilled [145]. In this situation, trying to follow
the subgoal trajectory may be counterproductive in reaching the final goal. It is
also possible that the final goal is not even reachable. However, note that even
the pursuit of an unreachable goal can foster exploration. We believe that an
approach inspired by generative networks such as [219] may be appropriate to
overcome this problem.

High-dimension environments and representation learning Our main
contribution consists in the generalization of the Go-Explore approach by using
a latent representation. LGE is notably effective in high-dimensional environ-
ments, specifically those with image observations. Representation learning is the
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keystone of the method. We provide a proof of concept for a forward model,
an inverse model, and a VQ-VAE. We believe that the results can be greatly
improved by choosing more finely the representation learning method for each
environment by taking advantage of the many works dealing with this subject
[158]. Representations are expected to encapsulate transitional proximity be-
tween observations, a feature not guaranteed by most learning methodologies.
Nonetheless, in practice, such transitional proximity is often exhibited in learned
representations.

The representation used by Search on Replay Buffer (SoRB) [76] is directly
that of the critic. Using the same reward structure as LGE, the critic thus
has the nice property of basically learning the negative distance of the shortest
directed path between two states. Overall, we believe that the use of SoRB in
the "Go" phase can be a substantial improvement of LGE and is a promising
way to solve the three limitations mentioned above.

Finally, we believe that the community should endeavour to find a relevant
metric for exploration, especially for image-based environments. We expect that
such a metric would allow a more accurate comparison of different methods.

3.5.2 Conclusion
We introduce LGE, a new exploration method for RL. In this method, our
agent explores the environment by selecting its own goals based on a jointly
learned latent representation. LGE can be used as pretraining in environments
where rewards are sparse or deceptive. Our main contribution is to generalize
the Go-Explore algorithm, allowing us to benefit from representation learning
algorithms for exploration. We present statistically robust empirical results con-
ducted on diverse environments, including robotic systems and Atari games, that
demonstrate our approach’s significant improvement in exploration performance.

As we conclude our study of the LGE method, it is important to recognize
that its framework, while more general, differs significantly from the ideal of
a general RL agent. Such an agent would be able to cope with all kinds of
environments and perform a variety of tasks using a single neural network. This
direction remains largely unexplored in current research. In the following chapter,
we attempt to fill this gap by laying the foundations for a more versatile RL
approach.



Chapter 4

Jack of All Trades, Expert of
Some, a Multi-Purpose
Transformer Agent

In the previous chapter, we introduced a novel approach to enhance the explo-
ration capabilities of RL agents under conditions of weak supervision, which is
particularly vital in scenarios where the reward signal is sparse or inadequate to
guide the agent’s decision process. In the quest of a general-purpose model, this
approach addresses only one facet of the challenge. The critical task of designing
an agent capable of operating seamlessly across multiple domains remains a
largely unexplored topic. The prevailing methodology in RL typically limits
models to a single task within a unimodal framework, a limitation that contrasts
with the broader vision of a versatile, multi-domain model. In this chapter, we
present Jack of All Trades (JAT), a transformer-based model with a unique
design optimized for handling sequential decision-making tasks and multimodal
data types. The JAT model demonstrates its robust capabilities and versatility
by achieving strong performance on very different RL benchmarks, along with
promising results on CV and NLP tasks, all using a single set of weights. The
JAT model marks a step towards more general, cross-domain AI model design,
and notably it is the first model of its kind to be fully open-sourced1, including
a pioneering general-purpose dataset.

The JAT project, initiated by Edward Beeching, represents a collaborative
effort between Hugging Face and the LIRIS laboratory at Ecole Centrale de
Lyon in which I assumed a leading role and was primarily involved in every
facet. Ed Beeching was deeply involved in developing the code, playing a crucial
part in the project’s technical progression. Clément Romac’s contributions were
invaluable, particularly in building the dataset. Our regular discussions and
collaborative approach significantly shaped the project’s direction. This work
resulted in a paper [92], currently under review for ICML 2024.

1Codebase: https://github.com/huggingface/jat (private until release, in the meantime:
https://github.com/qgallouedec/jat)
Model: https://huggingface.co/jat-project/jat
Dataset: https://huggingface.co/datasets/jat-project/jat-dataset
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4.1 Introduction

Machine learning researchers have long aimed to develop versatile models that
can adapt seamlessly to different domains. The recent success of Transformers
[274] in NLP, CV, and to some extent in RL, has opened new avenues in this
quest.

In this work, we attempt to extend the boundaries of this success by proposing
a single, unified model capable of operating across a wide range of NLP, CV, and
RL tasks using a single set of parameters. This effort not only seeks to challenge
the conventional compartmentalization of AI tasks into distinct domains, but
also aims to establish a more holistic approach to AI model design.

While the blending of visual and textual tasks has been extensively explored
in recent research, integrating RL tasks has been less studied and presents unique
challenges. RL tasks are inherently diverse and heterogeneous, making their
combination among themselves and with other domains a highly complex exercise.
This integration requires dealing with a landscape of different modalities, task
complexities, and data volumes across domains and tasks. New questions that
arise include: (1) How to design a model and learning method that effectively
handles different modalities and data types (sequential and non-sequential)? (2)
How to formulate a learning objective that appropriately balances and harmonizes
the different modalities, tasks, and domains without bias toward any particular
domain or task? (3) How to design a learning strategy that can accommodate
the different levels of complexity inherent in different tasks?

These goals are concurrent and, to our knowledge, have only been addressed
together by Reed et al. [224] with their model Gato. Our contributions are
characterized by three major advances: (1) Our model features an innovative
structure optimized for sequential tasks. It uniquely assigns each timestep to a
corresponding token embedding, resulting in a simpler design. This approach
significantly expands the attention window in terms of timesteps compared to
Gato (e.g., it is 19 times larger for Atari and more than 25 times larger for
Meta-World). (2) In the spirit of open source, we release our code, dataset,
and model to the research community. (3) We add observation prediction as
an auxiliary task to our model. We prove that this integration significantly
contributes to learning a more efficient agent.

Ultimately, our JAT model achieves competitive results on the tasks studied,
while being more than 6 times smaller than Gato and relying on a significantly
lower training budget. As mentioned above, this new paradigm raises a number
of open questions and paves the way for new research. We present a first
milestone in this emerging framework and acknowledge the significant potential
for improved results.

4.2 Related Work

4.2.1 Transformer for RL

Transformer models [274] are designed to model sequences and in particular
sequences of words in natural language. However, sequence modeling problems
span over a much larger set of domains than only NLP. In this work, we focus on
modeling RL trajectories (i.e., sequences of observations, actions and rewards).
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Modeling such sequences with a Transformer was introduced by Chen et al. [39]
and the Decision Transformer (DT) model. In DT, a Transformer model is
trained with offline RL to take sequences of transitions as input and predict the
next action. In particular, Chen et al. [39] proposed to use returns-to-go (i.e.
the return from the current state) to condition actions’ generation on both the
previous observation and the desired return-to-go. While this has the advantage
of explicitly modeling the relations between action selection and return, using
the model at inference requires providing at every step a desired return. Liu
and Abbeel [170] proposed to extend this by using hindsight relabelling to
better exploit sub-optimal trajectories. Zheng et al. [297] also extended the DT
approach by mixing offine pretraining and online finetuning. Finally, Lee et al.
[155] studied how the DT approach scales to a multi-task RL setup where a
single policy is learned for multiple games. Our work lies in this line of work
as it also leverages Transformers to model trajectories. However, our approach
(1) uses standard Behavior Cloning (BC) instead of conditional BC, relaxing
the need to condition the agent by the return-to-go and (2) models a multi-task
dataset in which sequences come from very different domains (e.g. control, Atari,
visual question answering, see Section 4.3.2).

4.2.2 Multi-Modal Transformer

Apart from being widely used in NLP, Transformers also strive in vision and vision-
and-language domains. As one of the first works leveraging Transformers for
vision, Dosovitskiy et al. [67] introduced Vision Transformer (ViT), a Transformer
model using image patches for recognition. Following this, a line of work aiming
to train multi-modal Transformers using both text and images emerged, including
works such as Flamingo [6], PaLI [40] or IDEFICS [151]. All these models imply
the use of an image encoder allowing to obtain image tokens or embeddings that
can be given to the Transformer alongside text tokens.

While all the aforementioned approaches produce text as output and were
solely trained to solve vision-and-language tasks such as Visual Q&A, our work
spans both vision-and-language and embodied decision-making (e.g. control).
Closer to our approach, a recent series of multi-modal Transformers trained for
decision-making appeared. For instance, Jiang et al. [126] trained a Transformer-
based robot agent with IL on tasks where a robot arm must place objects on a
table to match an instruction. Their model uses multi-modal prompts as input
(allowing them to define various objectives with a unified approach e.g. visual
goals, demonstrations, text instructions, object naming) and directly produces
motor actions for the robot arm. Similarly, RT-1 [31] leverages a multi-modal
Transformer and IL to produce motor actions for robots but this time using
expert demonstrations coming from real-world robots. Palm-E [68] and later
RT-2 [30] proposed to study the impact of pretrained Transformers when learning
decision-making robotics tasks with IL. Both works proposed to leverage a Visual
Language Model (VLM) trained on vision-and-language tasks and finetune it
for robotics tasks. While RT-2, being an extension of RT-1, directly outputs
motor actions, Palm-E still produces, as its backbone VLM, sequences of text
instructions (i.e. plans) that are then executed by low-level control policies.

Finally, our approach is largely inspired by Gato [224], which proposed
to train a Transformer on both vision-and-language and decision-making tasks
without relying on any pretrained model. The resulting model is therefore smaller
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than the ones leveraging large VLMs (e.g. Palm-E, RT-2) while still being able
to perform both vision-and-language and decision-making tasks. In this work, we
first propose to build a dataset that resembles Gato’s dataset except we only use
open-source data sources and release all demonstrations as well as expert policies
we used to obtain these demonstrations. Then, we also leverage a multi-modal
Transformer along with IL for our model, but introduce several improvements,
especially in the way observations are mapped to embeddings, allowing us not to
design prompts and improving the use of continuous observations (see Section
4.3.1).

4.2.3 Multi-Task RL

The quest for a general agent has long been a goal of RL [21]. However, most
works have chosen to use a different neural network for each environment. Recent
research has revived interest in this objective and explores it through several
approaches.

One such approach involves directly extending online learning to multi-task
environments [74, 291, 254]. These works highlight the potential for positive
transfer in multi-task learning, meaning that learning across tasks can be mutually
beneficial due to underlying commonalities. However, they also acknowledge
the risk of negative transfer, where inter-task interference can impair training.
Studies have investigated methods to limit this risk, such as that by Yang et al.
[289], which proposed refined gradient management techniques to mitigate these
detrimental effects.

An alternative approach is policy distillation, which involves condensing the
behaviors of expert agents into a singular, unified policy [230, 203]. While these
studies also report positive transfer across tasks [230], they also identify instances
of negative transfer. Subsequent research has focused on strategies to minimize
this negative transfer [266]. One limitation of policy distillation is its reliance
on the availability of policies to distill. This constraint is notably addressed in
[39], which proposes conditioning the distilled policy on the desired return thus
allowing the use of any policy, including those from non-expert agents. This
strategy has been adapted to the multi-task setting by Lee et al. [155].

Despite the diversity of research in this area, most studies are limited to
multi-task learning within a single domain, such as Atari or Meta-World, and
thus involve semantically related tasks (although this is somewhat less true for
Atari). The only notable exception we found is the Gato model [224], which
learns a large number of domains in a single network. It is the closest baseline
to our work.

4.2.4 Spotlight on Gato

In this section we briefly introduce Gato [224], a model which, although quite
different, is the closest to our work. Gato is intended to be multi-modal, multi-
tasking and multi-domain, in the sense that it addresses RL, NLP and CV tasks
in a single network. It is a transformer-based model consisting of three key
stages: tokenization and embedding, transformer encoding, and decoding with
loss computation. Gato’s main contribution lies in these initial and final stages.
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Figure 4.1: Operation of Gato as a control policy. Gato takes in a sequence that
consists of tokenized observations, separators, and actions. It uses this input to
generate the next action following a autoregressive process. Figure from [224].

Overview

In the initial tokenization and embeddings stage, all modalities are tokenized
and embedded, with the exception of images, which are divided into patches
and directly embed. Text undergoes standard SentencePiece tokenization [137],
while discrete values are shifted by 30,000 to prevent overlap with text tokens.
Continuous vectors are mapped into the interval [−1, 1] using the µ-law com-
panding algorithm, discretized into 1,024 bins, and shifted by 30,000. Token
count per timestep varies based on observation and action structure, for example,
Pendulum results in 6 tokens per timestep, while Humanoid uses 394 tokens.
Positional embeddings vary by modality and type, e.g., images use uniformly
sampled positions within patch windows and discretize over 128 values hori-
zontally and vertically. For actions, a dedicated local position embedding is
employed. Gato uses an autoregressive approach for predicting and optimizing
token logits, while masking tokens unrelated to text or action. In terms of
training, 25% of the sequences within each batch receive a prepended prompt
sequence. These prompts are sourced from episodes generated by the same agent
on the same task. Half of the prompts are extracted from the episode’s end,
while the other half are uniformly sampled from the episode. During evaluation,
the agent consistently relies on prompting.

Limitations adressed

In summary, Gato exhibits complexity and is expected to be sensitive to param-
eters such as discretization granularity, which is likely to be domain-dependent.
Discretization introduces discontinuity in the observations, which may affect
generalization. Furthermore, the fact that the timestep-based attention window
depends on observation size may lack intuitiveness. While Gato predicts tokens
for all modalities and types, it only allows decoding and prediction for a subset
of them, despite the potential benefits of full prediction for learning. Finally,
the heavy reliance on prompts adds further complexity to both the learning
and evaluation processes, raising questions regarding parameter selection and
optimality, which are also likely to be domain-dependent.
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In the next section, we will see how the JAT model addresses these challenges.
JAT simplifies the approach by introducing dedicated encoders for each modality,
ensuring a consistent mapping between timesteps and tokens. This modification
is intended to enhance generalization, particularly for continuous modalities.
Furthermore, we illustrate how JAT is capable of decoding and optimizing all
inputs, including observations—a critical auxiliary objective that significantly
improves agent learning. Lastly, while we acknowledge the motivation behind
the use of prompts in multi-task scenarios, JAT takes a divergent approach by
eliminating prompts. Our findings reveal minimal impact on results, resulting in
a substantial simplification of both the training and deployment processes.

4.3 Methodology

In this section, we introduce the JAT model, detailing our architectural choices
that underpin its effectiveness and highlighting its ability to handle different
modalities in both sequential control and text-centric tasks. We present the
associated dataset, which is notable for its groundbreaking diversity across
domains and modalities. Finally, we discuss in depth the learning strategy used.

4.3.1 Model architecture
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Figure 4.2: Architecture of the JAT network. For sequential decision-making
tasks, the observations joined to the rewards are encoded and interleaved with
the action embeddings. Each modality has its own encoder and decoder. The
model generates the next embedding autoregressively with a causal mask, and
decodes according to expected modality.



4.3. METHODOLOGY 95

Embedding mechanism

The model is designed to handle two main categories of data: tasks involving
sequential decision-making and non-sequential tasks. In non-sequential tasks,
the model currently supports two modalities: text and image. Although the
current version of the model supports image generation, we focus only on tasks
that involve text generation. To ease reading, we will refer to it as text-centric
tasks in the remainder of this work. Each of these two categories requires a
slightly different approach to the embedding process.

In both cases, the resulting sequence is truncated to match the maximum
permissible input size of the inner Transformer model. Any truncated portion is
not discarded; instead, it forms the basis of a new sample. This process may be
repeated if necessary, ensuring that no valuable information is lost.

Sequential decision-making tasks For tasks involving sequential decision-
making, the data comprises a sequence of observations, actions, and rewards. At
the embedding stage, these sequences are processed to produce an interleaved
sequence of observation embeddings (augmented with the corresponding reward)
and action embeddings, denoted as [ϕ(s0, 0.0), ϕ(a0), ϕ(s1, r1), ϕ(a1), . . .]. Unlike
DT [39] and Gato [224], each timestep is consistently associated with two
embeddings: one for the observation and the other for the action, regardless of
the modality. This enables JAT to better handle high-dimensional observations,
and to provide a much wider, constant attention window in terms of timesteps.
As an example, this multiplies the size of the attention window in terms of
timesteps by more than 25 for Meta-World. The embedding method employed at
a specific timestep is modality-dependent (with H the hidden size of the model):

• Continuous observation: The reward value is appended to the observation
vector. This augmented vector is then padded to achieve a uniform length
of 377, corresponding to the maximum augmented observation size in the
dataset. The embedding vector is subsequently obtained by passing this
padded vector through a linear layer with an output size of H. This layer
is consistently used across all timesteps.

• Discrete observation: The observation consists of a vector of integers, each
of which is encoded into a continuous vector of size H using a lookup
table. Subsequently, a linear layer is applied to reduce the dimensionality
to ⌊H/50⌋. Following vector flattening, another linear layer is applied,
resulting in an output size of H − 1. Lastly, the reward is added to the
resulting vector.

• Image observation: The input image is first resized to a uniform dimension
of 84× 84 using bicubic approximation, normalized, and padded to ensure
4 channels. The image encoder consists of a series of three blocks, each
consisting of a convolutional layer, an instance normalization layer, and
an attention layer. The output of the last block is flattened and passed
through a linear layer, resulting in an embedding vector of size H.

• Continuous action: The process is similar to that of continuous observations,
with the exception of the reward component. Notably, the linear layer is
shared with the one used for continuous observations.
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• Discrete action: In the case of discrete actions, the process is slightly
different due to the nature of the input: a discrete action is represented by
a single integer, as opposed to a vector of integers for discrete observations.
The input is directly mapped to a continuous vector of size H using the
same lookup table employed for discrete observations.

Text-Centric Tasks For text-centric tasks, each sample includes text, accom-
panied or not by an image.

• Image data: We employ the ViT architecture, as originally proposed by
Dosovitskiy et al. [67]. The image is first cropped to its central square,
and resized to 224× 224. The image is then normalized and divided into
non-overlapping patches of 16× 16. Each patch is linearly embedded in a
vector of size H.

• Text data: We use the GPT-2 tokenization strategy [220], utilizing a byte-
pair encoding (BPE) [243] specifically designed for unicode characters. The
tokenizer produces a vocabulary of 50,257 tokens. For efficient implemen-
tation, we use the Hugging Face integration [191]. Each token is mapped
to an embedding vector using a lookup table, where each unique token in
the vocabulary is associated with a distinct vector. Notably, this lookup
table is shared with the one employed for discrete values in sequential
decision-making tasks.

When a sample includes both images and text, the embeddings are arranged
so that the image embeddings precede the text embeddings. This specific order
is essential for image captioning task because of the causal masking applied by
the model’s internal Transformer. The concatenated image-text embeddings
form a unified representation for subsequent processing steps.

Transformer architecture

The JAT model is based on a Transformer architecture using EleutherAI’s
implementation of GPT-Neo [27]. It takes as input the embedding sequence
whose computation was described in the previous section. The model uses a dual
attention mechanism whose design is inspired by the Longformer [24]: global
attention with a window size of 512 tokens for full context understanding, and
local attention with a fixed window of 256 tokens. The Transformer’s feed-
forward components consist of 12 layers and 12 heads with an intermediate
dimensionality of 8192 and a hidden size of 768. They are designed to be causal,
meaning a causal mask is applied during training and inference.

Output processing and loss

The internal causal Transformer outputs a sequence of embeddings, each encod-
ing the basis for predicting subsequent elements in different data modalities. As
we predict multiple modalities within a single sequence, we use the appropriate
decoders and corresponding loss functions for each modality. When an embed-
ding encodes an image, we use a transposed convolutional neural network [292]
for prediction. When an embedding represents a continuous vector, we use a
continuous linear layer for prediction. For both image and continuous vector
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prediction, we compute the loss using Mean Square Error (MSE). When embed-
ding represents a discrete value, we use a linear projection layer to score each
discrete candidate and compute loss via cross-entropy. Notably, this projection
layer is shared between text tokens and discrete sequential values (e.g., actions
for Atari and BabyAI). The sequence’s overall loss is determined by averaging
the individual losses computed for each element. In sequential decision-making
tasks, we assign a weight to balance losses associated with observations and
actions. In Section 4.4.3, we demonstrate that predicting observations does help
in learning, addressing a common open question in [39] and [224].

4.3.2 Datasets
In this work, we have collected a wide range of datasets, classified into two
main groups: sequential decision-making datasets and textual datasets. The
former include a series of interaction sequences, each consisting of observations,
actions and a subsequent rewards, generated by so-called expert agents, details
of which are given in the following sections. The latter includes large corpora
of textual data and image-text pairs. In order to promote the emerging field
of general-purpose AI models, we have made these datasets, together with the
expert agents and the full set of code required to generate them, available to
the public as open resources in our Hugging Face repository, accessible at the
following address https://huggingface.co/jat-project. To the best of our
knowledge, this compilation is unprecedented in terms of the variety of tasks
and the volume of data, representing a valuable new contribution to the field.

Sequential decision-making datasets

For each decision-making environment, we collect a set of interactions using
expert agents. Detailed scores are available in the Section 4.4.2.

Atari We use the 57 games from the ALE [21] as a benchmark in our research,
amassing roughly 500,000 interactions per game. Episode lengths varied signifi-
cantly depending on the specific game. For each game, we trained a dedicated
agent using the asynchronous implementation of Proximal Policy Optimization
[239] from Sample Factory [208]. While the expert agents demonstrated com-
mendable performance across many games, they fell short of human benchmarks
in 14 tasks2. Five environments of this benchmark are displayed in Figure 4.3.

Figure 4.3: Examples of environments from the Atari benchmark.

2Asterix, Bowling, Centipede, Fishing Derby, Kangaroo, Montezuma’s Revenge, Ms. Pac-
man, Pitfall, Private Eye, River Raid, Seaquest, Skiing, Solaris, Venture

https://huggingface.co/jat-project
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BabyAI BabyAI stands out in our study due to its unique characteristic of
being partially observable and its dual-modality observations [43, 44]. Using the
bot provided with the BabyAI paper [43], we gathered 100,000 episodes for 39 of
its available settings. Each interaction consists of a text observation (mission), a
discrete observation (7× 7 symbolic representation of the agent’s field of view),
an action, and a reward. Five environments of this benchmark are displayed in
Figure 4.4.

Figure 4.4: Examples of environments from the BabyAI benchmark.

Meta-World Meta-World’s MT50 benchmark provides a set of 50 diverse
and challenging robot manipulation tasks [291]. Similar to the methodology
used for Atari, we trained one agent per task using the asynchronous PPO [239]
implementation of [208]. The trained agents solved most of the tasks, except for
Assembly and Disassemble, where they failed to reach the expected performance.
We limit the number of timesteps per episode to 100, which proved to be sufficient
for solving the tasks. Without this limit, much of the subsequent dataset would
consist of the stabilization phases of the agents after goal attainment, reducing
its relevance. We then used the trained agents to generate 10,000 episodes per
environment. Five environments of this benchmark are displayed in Figure 4.5.

Figure 4.5: Examples of environments from the Meta-World benchmark.

MuJoCo We included the MuJoCo locomotion benchmark suite [268, 29]
comprising 11 continuous control tasks into our study due to its diverse chal-
lenges in domain complexity and task difficulty, and its wide recognition in the
research literature. Following our methodologies for Atari and Meta-World, we
individually trained agents for each task using asynchronous PPO [239] from
Sample Factory [208]. These agents successfully solved all tasks, achieving scores
that meet or exceed the current highest standards. Subsequently, we employed
these agents to generate 10,000 episodes per environment. Five environments of
this benchmark are displayed in Figure 4.6.

Text-centric datasets

Oscar Common Crawl-based text documents have been widely used in the past
to create datasets for Language Modeling [220, 32, 221]. We chose to leverage
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Figure 4.6: Examples of environments from the MuJoCo benchmark.

the unshuffled deduplicated English subset of the OSCAR3 corpus [198] for our
Language Modeling objective. As such crawled internet data needs to be cleaned
before using it for training Language Models (e.g. deduplication, filtering out
machine-generating content), we reused both the cleaning and deduplication
pipeline from the ROOTS corpus [152]. The initial dataset was shuffled, split
into a training (95%) and test (5%) set, and evenly split into 30 shards on which
the cleaning and deduplication pipelines were applied to reduce the memory
needs. Shards were then concatenated back together, leading to a final dataset
of 245 million documents (compared to 304 million documents in the initial
dataset).

Conceptual-Captions We include the Conceptual-Captions dataset [245],
as it is a key resource for image captioning and visual understanding tasks. It
contains over 2.6 million training examples and over 12,000 test examples, with
a wide range of web-sourced images, each paired with a descriptive caption.

OK-VQA We include the OK-VQA dataset [181] because it is an essential
resource for visual question answering tasks that focus on the intersection of
visual perception and knowledge-based reasoning. With over 14,000 samples, it
contains a wide range of images, each associated with questions that require not
only visual understanding, but also external knowledge for an accurate answer.

Wikipedia The Wikipedia dataset, built from the Wikipedia dump [85],
contains over 6 million English language samples as of March 1, 2022. It offers a
wide range of topics and a wealth of information. By using this dataset, we aim
to improve the language processing capabilities of our model and provide access
to extensive reservoir of encyclopedic knowledge.

4.3.3 Training

Overall training procedure

The model was trained for 250,000 steps. We distributed the training across 8
GPUs NVIDIA V100 using the Trainer from the Hugging Face Transformers
library [286] in conjunction with Accelerate [102]. This training lasted approx-
imately 9 days. For practical reasons, each batch is made up of data from a
single dataset. We use a constant batch size of 20 and accumulate over 2 steps,
resulting in an effective batch size of 320. Consequently, each optimizer step is
performed on data from up to 16 datasets. We utilize the AdamW optimizer

3Its original version from 2019: https://huggingface.co/datasets/oscar

https://huggingface.co/datasets/oscar
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with parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The learning rate starts at
5 · 10−5 and linearly decays to zero throughout the training process.

Task-specific weight adjustments

Each task presents a unique training challenge. To allow for balanced learning
of all tasks, we introduced custom weight modifications. The choice of these
weights is made heuristically. The learning would surely benefit from a more
precise and systematic method for choosing these weights.

Sample Weight Some tasks required more updates for effective convergence.
To allow proportionate progress of all tasks during learning, these tasks are sam-
pled more frequently. Specifically, Oscar, Conceptual-Captions and Wikipedia
was assigned a sample weight of 10.0 while other have a sample weight of 1.0.

Loss Weight Some control tasks require increased accuracy of actions. To
allow for more strongly penalizing the error for these tasks, we assigned loss
weights. In MuJoCo tasks, the loss weight is typically set at 10.0, except for the
Pendulum task (20.0) and the Double Pendulum task (50.0). In Meta-World
tasks, a uniform loss weight of 50.0 is used.

CO2 emission related to experiments

Experiments on the Jean Zay supercomputer (France), with a carbon efficiency of
57.3 gCO2eq/kWh [255], consumed 2000 GPU hours on Tesla V100-SXM2-32GB
hardware (TDP4: 482 W). Total emissions were estimated at 57.2 kgCO2eq, or
29.7 kgCO2eq when considering heat recovery. Estimations used the Machine-
Learning Impact calculator from [147].

4.4 Experiments and Results

In this section we discuss the results of our experiments. First, we provide
a brief overview of the model’s performance on text-centric tasks. We then
present the results of the sequential decision tasks, showing the different levels
of mastery across the different domains within our study. Finally, we provide a
comprehensive analysis highlighting the benefits of incorporating the prediction
of the next observation as an auxiliary task during the learning process.

4.4.1 Text-centric tasks

We present a showcase of JAT’s capabilities, with a particular focus on text
completion and image captioning. It is important to note that JAT is much
smaller and has a much lower training budget than the specialized models for
these tasks. Therefore, instead of comparing it to these expert systems, we
want to demonstrate its intrinsic capabilities. Figure 4.7 shows a selection of
captioning results to illustrate how the model interprets and describes visual data.
Figure 4.8, meanwhile, shows a series of text-based interactions that provide

4Estimate for 11/2020: http://www.idris.fr/media/jean-zay/jean-zay-conso-heure-c
alcul.pdf

https://mlco2.github.io/impact#compute
https://mlco2.github.io/impact#compute
http://www.idris.fr/media/jean-zay/jean-zay-conso-heure-calcul.pdf
http://www.idris.fr/media/jean-zay/jean-zay-conso-heure-calcul.pdf
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Figure 4.7: JAT image captioning examples. The theme is usually correct,
although the relevance is sometimes limited.
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insight into its ability to complete text prompts. These examples were chosen
to highlight the model’s basic capabilities in these areas, providing a realistic
view of its current state of development and potential for future enhancements.
In addition, we provide a demo5 for direct interaction and experimentation,
allowing users to experience its functionalities.

Input Model completion

The weather today is a great time to the city of New York City. The
city is a great place to stay in.

In the future, cars will be able to drive cars to the market. The new car
will be built in the new market for the new car.

My favorite book is a book by the author of the book.

The first official website of the United States was held on Novem-
ber 6, 1891, at the behest of the United States
Secretary of State.

Figure 4.8: JAT text completion examples. The syntax is generally correct, the
completion is on-topic, although the generated text may be wrong.

4.4.2 RL tasks
We save checkpoints regularly during training. We evaluate each checkpoint on
all the tasks on which it has been trained. Unlike Gato, the evaluation does
not require any data to be used as a prompt. We show empirically in Section
4.4.4 that despite the absence of a prompt, and even in the worst case of our
study, the agent still manages to identify the requested task. For each task,
we collect 10 evaluation episodes and normalize by the average expert score
of the dataset for this task. For the final checkpoint, we use 100 evaluation
episodes. We then aggregate the results by domain. The score of the random
agent for Atari games is sourced from [188]. In other domains, this score is
approximated by averaging the returns from 1,000 episodes, where the agent
selects actions uniformly across its action space. The expert scores represent
the average return in the dataset for the task. Meanwhile, the raw score is the
average return achieved by the trained agent, based on 100 evaluation episodes.
Both these scores, along with the trained agent, are accessible as open-source6.
The normalized score is derived by comparing the agent’s return to the expert’s,
calculated using the formula: score−random_score

expert_score−random_score . It is important to note
that in instances where the expert, inaccurately named, does not fully master the
task and thus scores similarly or lower than the random agent, the normalized
score must be interpreted cautiously. Specifically, if this score falls below that
of the random agent, as in the case of Bowling, normalization is not applied.
The full results for Atari are presented in Table 4.1, for BabyAI in Table 4.2, for
Meta-World in Table 4.3, and for MuJoCo in Table 4.4. Figure 4.9 focuses on
Atari, showing the human normalized score for each environment, and Figure
4.10 shows the evolution of the aggregate score for each domain during learning.

5https://huggingface.co/spaces/jat-project/text-completion
6https://huggingface.co/jat-project/jat

https://huggingface.co/spaces/jat-project/text-completion
https://huggingface.co/jat-project/jat
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Table 4.1: Comparison of performance scores across tasks on Atari 57. The table
presents the episodic return (score) achieved by a random agent (from [188]),
scores of the expert agent (as averaged from the dataset), scores of the learned
agent, and the expert normalized score calculated as score−random_score

expert_score−random_score .

Task Random agent Expert JAT JAT (normalized)

Alien 227.8 16912.5 ± 7087.4 1085.9 ± 396.4 0.05 ± 0.02
Amidar 5.8 2164.7 ± 1229.5 41.3 ± 28.6 0.02 ± 0.01
Assault 222.4 15699.1 ± 9572.1 772.9 ± 59.3 0.04 ± 0.00
Asterix 210.0 3699.6 ± 2421.3 778.5 ± 429.0 0.16 ± 0.12
Asteroids 719.0 177011.1 ± 35334.2 1423.6 ± 538.8 0.00 ± 0.00
Atlantis 12850.0 320679.6 ± 418247.4 23541.0 ± 10376.7 0.03 ± 0.03
Bank Heist 14.2 1322.4 ± 60.8 685.5 ± 157.9 0.51 ± 0.12
Battle Zone 236.0 295592.6 ± 161961.0 12950.0 ± 4306.7 0.04 ± 0.01
Beam Rider 363.9 29589.3 ± 16133.0 762.0 ± 243.3 0.01 ± 0.01
Berzerk 123.7 57085.3 ± 13104.5 523.9 ± 161.9 0.01 ± 0.00
Bowling 23.1 20.4 ± 7.3 30.0 ± 11.5 N/A
Boxing 0.1 98.0 ± 3.8 87.0 ± 22.6 0.89 ± 0.23
Breakout 1.7 703.0 ± 203.6 9.2 ± 5.8 0.01 ± 0.01
Centipede 2090.9 11624.3 ± 4918.3 4461.7 ± 2188.8 0.25 ± 0.23
Chopper Command 811.0 90990.6 ± 270876.9 1497.0 ± 723.1 0.01 ± 0.01
Crazy Climber 10780.5 179296.9 ± 39862.1 52850.0 ± 31617.9 0.25 ± 0.19
Defender 2874.5 351958.3 ± 40466.8 10627.5 ± 4473.2 0.02 ± 0.01
Demon Attack 152.1 92195.2 ± 26174.8 315.1 ± 279.0 0.00 ± 0.00
Double Dunk -18.6 20.9 ± 3.6 0.1 ± 11.6 0.47 ± 0.29
Enduro 0.0 2292.2 ± 147.5 111.5 ± 27.4 0.05 ± 0.01
Fishing Derby -91.7 7.2 ± 25.1 -55.2 ± 19.4 0.37 ± 0.20
Freeway 0.0 33.9 ± 0.3 24.1 ± 1.6 0.71 ± 0.05
Frostbite 65.2 13196.1 ± 4341.0 617.3 ± 686.1 0.04 ± 0.05
Gopher 257.6 81676.2 ± 46329.5 2947.2 ± 1448.3 0.03 ± 0.02
Gravitar 173.0 3986.6 ± 1729.0 1030.5 ± 719.2 0.22 ± 0.19
H.E.R.O. 1027.0 44677.4 ± 1754.4 6997.9 ± 2562.5 0.14 ± 0.06
Ice Hockey -11.2 25.2 ± 5.8 -3.8 ± 3.1 0.20 ± 0.09
James Bond 29.0 27786.9 ± 33819.2 187.5 ± 72.2 0.01 ± 0.00
Kangaroo 52.0 574.0 ± 636.9 124.0 ± 156.9 0.14 ± 0.30
Krull 1598.0 11439.8 ± 1218.3 8933.0 ± 1358.6 0.75 ± 0.14
Kung-Fu Master 258.5 32392.8 ± 10006.6 100.0 ± 142.1 -0.00 ± 0.00
Montezuma’s Revenge 0.0 393.5 ± 50.4 0.0 ± 0.0 0.00 ± 0.00
Ms. Pacman 307.3 6896.1 ± 2032.0 1516.3 ± 376.7 0.18 ± 0.06
Name This Game 2292.3 22991.2 ± 2473.1 3798.6 ± 1361.6 0.07 ± 0.07
Phoenix 761.5 424583.2 ± 97649.2 1267.5 ± 1013.7 0.00 ± 0.00
PitFall -229.4 -1.4 ± 4.5 -287.4 ± 492.8 -0.25 ± 2.16
Pong -20.7 21.0 ± 0.2 -11.0 ± 11.3 0.23 ± 0.27
Private Eye 24.9 100.0 ± 0.0 96.0 ± 19.6 0.95 ± 0.26
Q*Bert 163.9 42971.4 ± 85070.7 1701.8 ± 1912.6 0.04 ± 0.04
River Raid 1338.5 14800.9 ± 7924.6 2793.1 ± 693.8 0.11 ± 0.05
Road Runner 11.5 77942.8 ± 6088.6 7699.0 ± 3446.6 0.10 ± 0.04
Robotank 2.2 80.5 ± 13.3 16.4 ± 5.2 0.18 ± 0.07
Seaquest 68.4 2597.3 ± 386.1 515.2 ± 141.5 0.18 ± 0.06
Skiing -17098.0 -10738.1 ± 111.1 -29396.1 ± 3289.8 -1.93 ± 0.52
Solaris 1236.3 1353.7 ± 517.0 988.2 ± 487.4 -2.11 ± 4.15
Space Invaders 148.0 29425.3 ± 23623.9 339.5 ± 164.1 0.01 ± 0.01
Star Gunner 664.0 360588.6 ± 49207.7 978.0 ± 638.4 0.00 ± 0.00
Surround -10.0 9.4 ± 0.8 -8.2 ± 1.2 0.09 ± 0.06
Tennis -23.8 11.1 ± 7.6 -22.4 ± 2.2 0.04 ± 0.06
Time Pilot 3568.0 69583.3 ± 29838.7 9534.0 ± 2577.8 0.09 ± 0.04
Tutankham 11.4 291.2 ± 30.4 40.2 ± 14.5 0.10 ± 0.05
Up and Down 533.4 429418.3 ± 7187.4 6072.0 ± 2283.3 0.01 ± 0.01
Venture 0.0 0.0 ± 0.0 0.0 ± 0.0 N/A
Video Pinball 0.0 441507.9 ± 283264.6 7943.0 ± 8351.2 0.02 ± 0.02
Wizard of Wor 563.5 49333.3 ± 16157.1 1306.0 ± 1139.8 0.02 ± 0.02
Yars Revenge 3092.9 270262.9 ± 161816.0 8597.4 ± 4291.8 0.02 ± 0.02
Zaxxon 32.5 73097.2 ± 14825.8 896.0 ± 1172.7 0.01 ± 0.02
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Table 4.2: Comparison of performance scores across tasks on BabyAI. The
table presents the episodic return (score) achieved by a random agent (averaged
over 1,000 episodes), scores of the expert agent (as averaged from the dataset),
scores of the learned agent, and the expert normalized score calculated as

score−random_score
expert_score−random_score .

Task Random agent Expert JAT JAT (normalized)

Action Obj Door 0.37 ± 0.39 0.99 ± 0.01 0.95 ± 0.13 0.94 ± 0.22
Blocked Unlock Pickup 0.00 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 1.00 ± 0.01
Boss Level 0.06 ± 0.21 0.94 ± 0.05 0.48 ± 0.45 0.48 ± 0.51
Boss Level No Unlock 0.06 ± 0.19 0.94 ± 0.05 0.44 ± 0.45 0.43 ± 0.51
Find Obj S5 0.08 ± 0.23 0.95 ± 0.04 0.95 ± 0.03 1.00 ± 0.04
Go To 0.13 ± 0.29 0.92 ± 0.07 0.80 ± 0.27 0.85 ± 0.35
Go To Door 0.45 ± 0.38 0.99 ± 0.00 0.99 ± 0.01 1.00 ± 0.01
Go To Imp Unlock 0.07 ± 0.22 0.83 ± 0.13 0.50 ± 0.44 0.56 ± 0.59
Go To Local 0.16 ± 0.30 0.93 ± 0.04 0.88 ± 0.14 0.94 ± 0.18
Go To Obj 0.13 ± 0.27 0.93 ± 0.03 0.93 ± 0.04 0.99 ± 0.05
Go To Obj Door 0.53 ± 0.39 0.99 ± 0.01 0.98 ± 0.04 0.97 ± 0.08
Go To Red Ball 0.17 ± 0.30 0.93 ± 0.04 0.91 ± 0.08 0.98 ± 0.11
Go To Red Ball Grey 0.12 ± 0.27 0.92 ± 0.05 0.91 ± 0.06 0.99 ± 0.08
Go To Red Ball No Dists 0.14 ± 0.28 0.93 ± 0.03 0.93 ± 0.03 1.00 ± 0.04
Go To Red Blue Ball 0.12 ± 0.27 0.92 ± 0.05 0.88 ± 0.11 0.96 ± 0.13
Go To Seq 0.08 ± 0.23 0.94 ± 0.05 0.73 ± 0.34 0.75 ± 0.40
Key Corridor 0.00 ± 0.00 0.91 ± 0.01 0.88 ± 0.10 0.97 ± 0.11
Mini Boss Level 0.07 ± 0.21 0.89 ± 0.10 0.69 ± 0.35 0.76 ± 0.43
Move Two Across S8N9 0.00 ± 0.00 0.96 ± 0.01 0.03 ± 0.15 0.03 ± 0.16
One Room S8 0.08 ± 0.21 0.92 ± 0.03 0.92 ± 0.03 1.00 ± 0.04
Open 0.10 ± 0.24 0.95 ± 0.05 0.93 ± 0.11 0.97 ± 0.13
Open Door 0.23 ± 0.34 0.99 ± 0.00 0.99 ± 0.00 1.00 ± 0.01
Open Doors Order N4 0.16 ± 0.30 0.99 ± 0.01 0.96 ± 0.11 0.97 ± 0.13
Open Red Door 0.08 ± 0.21 0.92 ± 0.03 0.92 ± 0.02 1.00 ± 0.03
Open Two Doors 0.08 ± 0.20 0.98 ± 0.00 0.98 ± 0.00 1.00 ± 0.00
Pickup 0.08 ± 0.22 0.92 ± 0.07 0.72 ± 0.34 0.77 ± 0.40
Pickup Above 0.02 ± 0.09 0.91 ± 0.07 0.92 ± 0.06 1.01 ± 0.07
Pickup Dist 0.10 ± 0.24 0.86 ± 0.21 0.88 ± 0.13 1.03 ± 0.18
Pickup Loc 0.08 ± 0.23 0.91 ± 0.04 0.84 ± 0.20 0.91 ± 0.24
Put Next S7N4 0.00 ± 0.03 0.96 ± 0.01 0.82 ± 0.26 0.86 ± 0.27
Put Next Local 0.00 ± 0.05 0.92 ± 0.03 0.60 ± 0.36 0.65 ± 0.39
Synth 0.11 ± 0.26 0.93 ± 0.06 0.68 ± 0.39 0.69 ± 0.47
Synth Loc 0.13 ± 0.29 0.94 ± 0.06 0.82 ± 0.31 0.85 ± 0.38
Synth Seq 0.07 ± 0.20 0.95 ± 0.04 0.57 ± 0.44 0.57 ± 0.50
Unblock Pickup 0.08 ± 0.22 0.91 ± 0.08 0.76 ± 0.33 0.82 ± 0.39
Unlock 0.03 ± 0.15 0.87 ± 0.10 0.55 ± 0.42 0.63 ± 0.50
Unlock Local 0.01 ± 0.09 0.98 ± 0.01 0.98 ± 0.01 1.00 ± 0.01
Unlock Pickup 0.00 ± 0.00 0.75 ± 0.04 0.76 ± 0.03 1.01 ± 0.04
Unlock To Unlock 0.00 ± 0.00 0.96 ± 0.00 0.86 ± 0.29 0.89 ± 0.30
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Table 4.3: Comparison of performance scores across tasks on Meta-World. The
table presents the episodic return (score) achieved by a random agent (averaged
over 1,000 episodes), scores of the expert agent (as averaged from the dataset),
scores of the learned agent, and the expert normalized score calculated as

score−random_score
expert_score−random_score .

Task Random agent Expert JAT JAT (normalized)

Assembly 45.3 ± 4.1 246.0 ± 3.5 238.3 ± 33.0 0.96 ± 0.16
Basketball 2.8 ± 1.2 628.0 ± 2.0 1.6 ± 0.4 -0.00 ± 0.00
BinPicking 1.9 ± 0.4 425.6 ± 101.9 374.2 ± 168.2 0.88 ± 0.40
Box Close 76.4 ± 17.9 512.5 ± 107.8 510.1 ± 117.5 0.99 ± 0.27
Button Press 31.7 ± 5.2 643.1 ± 12.8 556.8 ± 198.9 0.86 ± 0.33
Button Press Topdown 29.0 ± 10.4 490.2 ± 27.2 265.2 ± 77.9 0.51 ± 0.17
Button Press Topdown Wall 29.0 ± 10.5 497.2 ± 31.4 260.1 ± 67.7 0.49 ± 0.14
Button Press Wall 9.0 ± 4.0 675.4 ± 15.0 621.7 ± 137.1 0.92 ± 0.21
Coffee Button 31.7 ± 6.4 731.1 ± 29.3 250.5 ± 266.9 0.31 ± 0.38
Coffee Pull 4.1 ± 0.4 259.9 ± 88.5 55.1 ± 97.0 0.20 ± 0.38
Coffee Push 4.2 ± 0.8 496.8 ± 118.2 269.2 ± 237.8 0.54 ± 0.48
Dial Turn 29.6 ± 16.7 793.6 ± 80.1 738.2 ± 168.4 0.93 ± 0.22
Disassemble 40.3 ± 7.5 42.8 ± 6.3 39.1 ± 11.9 -0.47 ± 4.70
Door Close 5.3 ± 1.3 529.7 ± 27.2 528.2 ± 29.9 1.00 ± 0.06
Door Lock 112.3 ± 28.6 811.5 ± 34.1 676.5 ± 192.7 0.81 ± 0.28
Door Open 56.4 ± 11.2 581.9 ± 19.7 572.8 ± 57.5 0.98 ± 0.11
Door Unlock 94.2 ± 15.6 802.9 ± 17.1 654.9 ± 260.6 0.79 ± 0.37
Drawer Close 116.7 ± 253.1 867.9 ± 4.5 663.0 ± 214.5 0.73 ± 0.29
Drawer Open 126.8 ± 25.2 493.0 ± 2.5 489.1 ± 21.3 0.99 ± 0.06
Faucet Close 253.1 ± 22.9 753.9 ± 13.4 361.3 ± 72.3 0.22 ± 0.14
Faucet Open 244.1 ± 23.3 705.8 ± 7.1 637.9 ± 134.5 0.85 ± 0.29
Hammer 95.3 ± 9.0 693.2 ± 34.6 691.7 ± 25.3 1.00 ± 0.04
Hand Insert 2.8 ± 3.5 740.5 ± 36.7 719.6 ± 99.3 0.97 ± 0.13
Handle Press 80.4 ± 110.2 855.9 ± 72.7 731.9 ± 261.9 0.84 ± 0.34
Handle Press Side 57.0 ± 39.5 861.1 ± 20.0 84.3 ± 113.3 0.03 ± 0.14
Handle Pull 10.3 ± 13.5 669.4 ± 24.8 501.3 ± 209.5 0.74 ± 0.32
Handle Pull Side 2.1 ± 2.8 384.7 ± 102.9 233.1 ± 199.5 0.60 ± 0.52
Lever Pull 60.3 ± 15.8 612.0 ± 38.9 250.2 ± 228.6 0.34 ± 0.41
Peg Insert Side 1.7 ± 0.4 315.2 ± 140.1 288.0 ± 157.9 0.91 ± 0.50
Peg Unplug Side 4.7 ± 2.8 456.1 ± 81.7 68.5 ± 125.3 0.14 ± 0.28
Pick Out Of Hole 1.5 ± 0.2 219.6 ± 88.9 2.1 ± 0.1 0.00 ± 0.00
Pick Place 1.6 ± 1.0 419.1 ± 98.2 264.2 ± 195.7 0.63 ± 0.47
Pick Place Wall 0.0 ± 0.0 450.6 ± 64.1 6.9 ± 45.0 0.02 ± 0.10
Plate Slide 74.6 ± 13.8 527.0 ± 155.3 497.4 ± 168.7 0.93 ± 0.37
Plate Slide Back 33.5 ± 11.2 718.2 ± 87.4 196.8 ± 1.7 0.24 ± 0.00
Plate Slide Back Side 34.3 ± 11.5 729.6 ± 69.1 697.5 ± 137.8 0.95 ± 0.20
Plate Slide Side 22.6 ± 17.4 662.8 ± 102.8 122.6 ± 24.5 0.16 ± 0.04
Push 5.5 ± 2.4 750.6 ± 44.0 604.2 ± 261.9 0.80 ± 0.35
Push Back 1.2 ± 0.2 85.0 ± 107.1 91.4 ± 115.0 1.08 ± 1.37
Push Wall 6.1 ± 3.2 748.9 ± 10.6 116.5 ± 208.1 0.15 ± 0.28
Reach 149.7 ± 44.7 681.4 ± 133.7 325.3 ± 159.2 0.33 ± 0.30
Reach Wall 143.3 ± 36.6 746.1 ± 104.2 634.6 ± 231.4 0.81 ± 0.38
Shelf Place 0.0 ± 0.0 241.3 ± 24.6 124.6 ± 112.8 0.52 ± 0.47
Soccer 5.7 ± 4.6 375.2 ± 140.2 364.5 ± 175.4 0.97 ± 0.47
Stick Pull 2.6 ± 1.4 523.6 ± 18.9 398.6 ± 205.6 0.76 ± 0.39
Stick Push 2.8 ± 1.0 627.9 ± 10.2 158.3 ± 264.6 0.25 ± 0.42
Sweep 11.2 ± 7.3 494.8 ± 43.3 15.6 ± 9.3 0.01 ± 0.02
Sweep Into 12.5 ± 10.7 799.2 ± 19.1 775.3 ± 119.0 0.97 ± 0.15
Window Close 57.5 ± 7.1 591.3 ± 38.6 423.3 ± 203.9 0.69 ± 0.38
Window Open 43.4 ± 2.1 590.8 ± 57.1 593.1 ± 54.8 1.00 ± 0.10
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Table 4.4: Comparison of performance scores across tasks on MuJoCo. The
table presents the episodic return (score) achieved by a random agent (averaged
over 1,000 episodes), scores of the expert agent (as averaged from the dataset),
scores of the learned agent, and the expert normalized score calculated as

score−random_score
expert_score−random_score .

Task Random agent Expert JAT JAT (normalized)

Ant -59.9 ± 99.6 5846.4 ± 942.6 5268.0 ± 1495.4 0.90 ± 0.25
Inv. Double Pendulum 57.5 ± 17.5 9338.7 ± 352.6 4750.1 ± 931.2 0.51 ± 0.10
Half Cheetah -285.0 ± 79.8 7437.8 ± 173.3 6659.7 ± 409.7 0.90 ± 0.05
Hopper 18.4 ± 17.1 1858.7 ± 534.1 1835.9 ± 532.2 0.99 ± 0.29
Humanoid 122.0 ± 35.3 6281.0 ± 1795.8 697.4 ± 108.1 0.09 ± 0.02
Inverted Pendulum 6.1 ± 3.5 475.4 ± 179.0 116.3 ± 20.2 0.23 ± 0.04
Pusher -149.7 ± 7.4 -25.2 ± 6.7 -26.3 ± 6.3 0.99 ± 0.05
Reacher -43.0 ± 3.9 -5.7 ± 2.5 -6.1 ± 2.6 0.99 ± 0.07
Humanoid Standup 33135.8 ± 2481.9 273574.2 ± 85253.3 118125.2 ± 24880.3 0.35 ± 0.10
Swimmer 0.8 ± 10.7 92.2 ± 4.4 93.3 ± 3.8 1.01 ± 0.04
Walker 2d 2.7 ± 6.1 4631.2 ± 1059.0 4662.4 ± 762.7 1.01 ± 0.16
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Figure 4.10: Aggregated expert normalized scores with 95% CIs for each RL
domain as a function of learning step.

The final agent achieves a mean expert normalized IQM score of 63.5%,
demonstrating the network’s ability to effectively mimic expert agents across a
wide range of tasks. The agent achieves 6.1% of the expert’s score on the Atari
57 benchmark, corresponding to 16.8% of human performance, and exceeding
the average human level in 10 games. For the BabyAI benchmark, JAT achieved
a normalized score of 98.9%. However, this score falls below 50% for two tasks,
namely Boss Level No Unlock and Move Two Across S8N9. For this benchmark,
however, there is no guarantee that the expert score can be achieved, since the bot
used for dataset collection has access to the full state of the environment, while
the interacting agents only have access to a partial observation. Finally, in the
MuJoCo and Meta-World, JAT records scores of 81.2% and 68.0%, respectively.
Although JAT reaches the expert level for a fair number of Meta-World tasks,
we note that a few, such as Basketball, fail completely to be learned. Insofar as
the action and observation spaces are identical for all tasks in this benchmark,
these failures may be due to task indeterminacy, which we explore in more detail
in Section 4.4.4. Future research will have to confirm this hypothesis. We also
note that some domains are mastered more quickly than others; in particular,
BabyAI achieves a score of 90% after only 30,000 learning steps. We hypothesize
that the high semantic similarity of the tasks enables a strong positive transfer,
without however providing any proof of this.

Although the results achieved are commendable, for a fair comparison we
limit our benchmarking to Gato only, as it is the only truly comparable baseline.
Reed et al. [224] present results only for the 1.18 billion parameter version of
Gato, which is 6 times larger than JAT. Its results are normalized to expert
performance. Since we don’t have access to the normalization parameters, we
estimated scores for the random agents, which may not be exactly the same as
those used by Reed et al. [224], and used our expert scores for normalization, even
though they obviously do not match those used by Reed et al. [224]. Therefore,
comparisons of these normalized scores should be interpreted with great caution.
On the Atari benchmark, JAT achieves an average normalized score of 20.1%
approaching Gato, which reports a score of 30.9%. For BabyAI, JAT achieves
an average normalized score of 86.0%, also close to the Gato score of 93.2%.
Our study, however, is made with 39 tasks versus the 46 used in [224], with the
specific seven additional tasks in their study remaining unidentified. Since our
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evaluation includes all of the hardest tasks mentioned in their study, the seven
missing tasks are likely to be easier, suggesting a harder test scenario in our
study. For Meta-World, JAT achieves an average normalized score of 64.5%,
which is below the 87.0% reported for Gato. On the MuJoCo benchmark, JAT
achieves an average normalized score of 72.5%. While [224] doesn’t specifically
use MuJoCo, it’s noteworthy that they use the DMC [265] and Modular RL [120]
benchmarks, which have similarities to MuJoCo. For reference, Gato achieves
average scores of 63.6% and 62.9% on the DMC and Modular RL benchmarks,
respectively.

4.4.3 Predicting the observations does help
The model’s main task is to predict the actions that maximize the sum of future
rewards. Its ability to predict future observations is therefore not the main
concern. However, can this ability contribute to better prediction of actions
or accelerate the learning process? Two contrasting hypotheses emerge: firstly,
learning to predict observations could serve as an auxiliary objective, directing
the learning process towards a deeper understanding of the environment, which
could lead to improved and faster learning. Conversely, this prediction learning
could serve as a distracting objective: instead of excelling in action prediction, the
model might only achieve moderate performance in both action and observation
prediction. This could slow down the learning process, resulting in a lower overall
performance score. Reed et al. [224] choose not to predict the observation, but
does not study the influence of this prediction on learning.

To answer this question, we use a loss function that combines observation
loss (Lobs) and action loss (Lact), balanced by a weighting parameter κ. The
function is defined as:

L = κ · Lobs + (1− κ) · Lact (4.1)

We select a range of values for κ and train the model on a subset of 6 dataset
tasks from different domains (Freeway, Pong, ButtonPressWall, WindowClose,
Ant and DoubleInvertedPendulum). Figure 4.11 shows the evolution of the score
at different learning steps for different values of κ. Figure 4.12 compares the
results at the end of training for the different values of κ.

In our study of the κ coefficient and its impact on learning, we find an
interesting balance. When set to the highest value in our range (κ = 0.5), the
learning process seems to be somewhat hindered by the additional objective. On
the other hand, at lower κ values, this added task of predicting observations
doesn’t significantly impact learning, leading to scores that are similar to the
base score of 94.5± 1.1%, which we get when predicting observations isn’t part
of the objective. The sweet spot appears to be around κ = 0.005. At this
point, learning to predict observations doesn’t distract but actually improves the
agent’s learning efficiency, achieving an near-optimal score of 99.1± 0.4%. This
finding highlights that adding observation prediction into the learning process is
beneficial, provided it is balanced correctly.
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Figure 4.11: Stratified bootstrapped IQM with 95% CIs of expert normalized
episodic return as a function of learning steps. This graph displays the progression
of learning efficiency over various learning stages with different κ values. It
demonstrates that selecting an optimal κ value enables the agent to reach near-
optimal scores more rapidly.
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Figure 4.12: Aggregate measures with 95% CIs for the study on the influence of
observation prediction learning for selected tasks. The results presented cover
the selected range of κ values. These results are based on 100 evaluations per
task. The figure shows that a well-chosen κ value can significantly improve the
agent’s evaluation results.
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4.4.4 Reward as a task determinant

In multi-task learning, different environments may share identical dynamics
and observational structures while differing in their ultimate goals (i.e., reward
functions). Initially, the agent cannot distinguish the specific task it is facing.
In most cases, this problem does not arise. For BabyAI, for example, the goal
is an explicit part of the observation. For Atari, a single frame is sufficient to
determine the game, and therefore the goal. In our dataset, the only domain
that could be challenging in this respect is Meta-World, for which the structure
of observations and dynamics is consistent across tasks. Note also that even
in this case, it should be possible for the agent in some instances to infer the
task from the initial conditions. We confirm this hypothesis in the following
experiment.

To solve the problem of task indeterminacy, Gato introduces a method of
pre-empting the sequence with an expert demonstration (prompt) to guide the
agent. While this approach is effective, it imposes an important limitation: a
demonstration must be available, and this demonstration must be sufficiently
complete to clearly define the task. In the JAT model, we adopt a less restrictive
and simpler approach by incorporating the reward signal directly into the
observation encoding. We believe that this integration can, in most cases,
provide the agent with sufficient context to remove ambiguity about the task at
hand.

0.8 1.0

Single-task JAT
JAT

JAT w/o rewards

Median

0.8 1.0

Expert normalized episodic return

IQM

0.8 1.0

Mean

(a) Aggregated metrics.
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Figure 4.13: Results of the reward ablation. The vertical bars are the estimated
values and the shaded areas are the 95% stratified bootstrap CIs. The experiments
were conducted on a selection of 10 tasks from the Meta-World benchmark.
Displayed are the results of an ablation study on our JAT model variations: Single-
task JAT with each task learned by a dedicated agent; JAT without rewards
where the training omits reward signals; and the full JAT model integrating
reward signals. Results are based on 100 evaluations per task.

To support our hypothesis on the effectiveness of integrating reward signals
into observations, we conducted an experiment with three different settings. First,
to create a baseline where task indeterminacy is absent, we trained individual
agents, each on a specific task from a random subset of 10 Meta-World tasks. This
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single-task training ensures that each agent is perfectly matched to its respective
task, without any ambiguity. Next, we introduced a degree of indeterminacy
by training a single model on the same 10 tasks without access to the reward
signal, presenting a scenario that simulates a worst-case uncertainty condition.
We compare these two settings with our full JAT model, i.e. with access to
the reward signal, trained on the same selection of tasks. We compared the
performance of these three scenarios, with the results detailed in Figures 4.13
following the recommendations of Agarwal et al. [3].

Firstly, it is notable that the JAT model trained on a single task surpasses
other settings, thus demonstrating the existence of a negative impact of task
indeterminacy. However, this impact is actually very minor, and even in the most
unfavorable setting (JAT without reward), the normalized IQM score reaches
97.6 ± 0.7%. This confirms the previously formulated intuition that the task
can generally be inferred from the initial conditions. Then, when comparing the
JAT model with and without access to the reward, we observe a probability of
improvement from the former over the latter of 51.8 ± 2.5%, indicating that the
addition of the reward has a significant, albeit small, positive effect on resolving
indeterminacy. Lastly, the most significant gap is observed in the average score.
This can be attributed to the fact that this metric accounts for outliers. Here,
the outliers are the tasks suffering from indeterminacy, for which the agent often
fails to resolve the task.

In summary, the key insight from this study is that complex solutions
like prompting are often not required to address this task indetermination
issue, as it typically presents a minimal challenge. Furthermore, in instances
where the problem does manifest, implementing a straightforward strategy like
incorporating the reward into the observation proves to be an effective measure
for mitigation.

4.5 Conclusion

In this study, we introduce JAT, a novel multimodal framework for general RL
agents. JAT features the ability to handle diverse tasks of varying complexity
using a single set of parameters. Its innovations include a new transformer-based
structure that efficiently addresses sequential control, CV, and NLP tasks. We
also show that joint learning of observation prediction significantly improves
performance in sequential control tasks. We have open-sourced our training
dataset, which includes a wide range of sequential control data as well as extensive
language and visual data. We believe that JAT represents an important and
valuable step towards general-purpose RL models.

This study reveals several avenues for improvement. A primary challenge
is the joint learning of tasks characterized by high heterogeneity. Our dataset
features variations in size, task complexity, and accuracy requirements for optimal
performance. Our current approach, which uses basic sample and loss weighting,
partially addresses this challenge. A refinement of task sampling could potentially
account for task difficulty, although quantifying difficulty remains a challenge.
Another important challenge is imitation learning. While our current method
relies on rudimentary behavioral cloning, the use of more advanced imitation
learning techniques is likely to yield better results. In addition, improving the
quality of expert data is a clear opportunity for improvement. For example, in
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the Asterix task, our model’s expert score (3699.6) lags significantly behind the
scores achieved by agents such as R2D2 (999,153.3) [131]. Using the best RL
agent for each specific task could significantly improve the overall scores in our
dataset, leading to better results when distilled for the generalist agent.
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Chapter 5

Tools for Continuity in RL:
Advancing Research Through
Established Foundations

In this chapter, we introduce two contributions that complement the previously
introduced research: PandaGym and Open RL Benchmark. These two con-
tributions have the particularity of addressing methodological and technical
issues, with the aim of enabling more open and efficient research. PandaGym
offers a suite of simulated environments adapted to robotic learning in a sparse
reward situation. Open RL Benchmark presents a complete set of tracked RL
experiments, promoting transparency and reproducibility in RL research. The
unique aspect of Open RL Benchmark that we would like to highlight is that it
is a shared initiative that has benefited from the contribution of researchers and
practitioners from all over the world, and more broadly reflects the philosophy
of open research. Together, these tools reflect our commitment to continuous,
collaborative advancement in RL research, building on existing frameworks and
knowledge. The following sections explore PandaGym and Open RL Benchmark
individually.

5.1 PandaGym: Open-Source Goal-Conditioned
Environments for Robotic Learning

This section introduces PandaGym, a suite of RL environments that simulates
the Franka Emika Panda robot, integrated with OpenAI Gym [29]. PandaGym
contains six tasks: Reach, Push, Slide, Pick and Place, Stack, and Flip. Each
task offers two types of rewards—sparse and dense—and two control options:
end-effector displacement and joint control. This configuration results in a
total of 24 distinct environments. They all follow a multi-goal RL framework,
allowing to use goal-oriented RL algorithms. To foster open-research, we chose
to use the open-source physics engine PyBullet [54]. The implementation chosen
for this package allows to define very easily new tasks or new robots. This
section also presents a baseline of results obtained with state-of-the-art model-
free off-policy algorithms. PandaGym is open-source and freely available at
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https://github.com/qgallouedec/panda-gym. In 2021, PandaGym was
featured in a scholarly publication [91]. Our approach in the initial subections
is to present PandaGym as it was first introduced, followed by Subection 5.1.5
that chronicles its subsequent usage and development. This structure offers a
unique perspective on a project that isn’t merely a static endeavor but rather
one with its own evolving narrative, reflecting our view of research as a dynamic
and ongoing process.

5.1.1 Introduction

Recent advances in RL applied to robotics have enabled to learn complex
manipulation tasks. Nevertheless, current algorithms still struggle to solve tasks
for which rewards are very sparse. Recent algorithms have contributed to the
advancement in this area, but the number of interactions required to learn a
satisfactory model is still very high. For the moment, learning complex tasks
with sparse reward functions requires learning in simulation. A large number of
physics simulator exists for various applications [52]. For robotic manipulation,
the Panda robot arm from Franka Emika is widely used. For this reason, we
propose a simulated environment of this robot arm for common tasks used to
evaluate RL algorithm. Contrary to what the name of the package suggests, it
is possible to easily define new robots, which can be used directly with the tasks
already available.

5.1.2 Environments

The environments presented consist of a Panda robotic arm from Franka Emika1,
already widely used in simulation as well as in real in many academic works. It
has 7 degrees of freedom and a parallel finger gripper. The robot is simulated with
the PyBullet physics engine [54], which has the advantage of being open-source
and shows very good simulation performance. The environments are integrated
with OpenAI Gym [29], allowing the use of all learning algorithms based on
this API. All the tasks presented by Plappert et al. [212] and Andrychowicz
et al. [9] have their equivalent in this package. We have also added a Stack
task, which is harder to solve than the other tasks, since two objects must be
moved (instead of one for the Pick and Place task). The proposed environments
all follow the multi-goal RL framework [212]. At each episode, a new goal is
randomly generated. The type of this goal depends on the task. For example,
for the Reach task, it is the position to be reached with the end-effector which is
randomly generated. The observation is therefore augmented with two additional
vectors: the desired goal, and the achieved goal.

Tasks

A task consists in moving either the gripper or one (or more) object(s) to a
target position. A task is completed when the distance between the entity to
move and the target position is less than 5 cm. The tasks have an increasing
level of difficulty. For each task, a rendering is presented in the Figure 5.1.

1https://www.franka.de/

https://github.com/qgallouedec/panda-gym
https://www.franka.de/
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(a) Reach (b) Push (c) Slide

(d) Pick and Place (e) Stack

Figure 5.1: Visual rendering of the PandaGym environments. Target positions
are shaded (red and green).

PandaReach-v1 A target position must be reached with the gripper. This
target position is randomly generated in a volume of 30 cm× 30 cm× 30 cm.

PandaPush-v1 A cube, placed on a table, must be pushed to a target position
also on the table surface. The gripper is blocked closed. The target position
and the initial position of the cube are randomly generated in a 30 cm× 30 cm
square around the neutral position of the robot.

PandaSlide-v1 A flat cylinder (like an ice hockey puck) must be moved to a
target position on the surface of a table. The gripper is blocked closed. The
target position is randomly generated in a 50 cm× 50 cm square located out of
reach of the robot, in front of the neutral position. Thus, is necessary to give an
impulse to the object, instead of just pushing it.

PandaPickAndPlace-v1 A cube must be brought to a target position generated
in a volume of 30 cm× 30 cm× 20 cm above the table.

PandaStack-v1 Two cubes must be stacked at a target position on the table
surface. The target position is generated in a square of 30 cm × 30 cm. The
stacking must be done in the correct order: the red cube must be under the
green cube.
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Table 5.1: Detailed breakdown of observation spaces for PandaGym tasks.

Robot Task

End-effector Gripper
opening

Object 1 Object 2

Size 6 1 12 12

Reach ✓

Push ✓ ✓

Slide ✓ ✓

Pick and Place ✓ ✓ ✓

Stack ✓ ✓ ✓ ✓

Table 5.2: Detailed breakdown of action spaces for PandaGym tasks.

End-effector
displacement

Finger control

Size 3 1

Reach ✓

Push ✓

Slide ✓

Pick and Place ✓ ✓

Stack ✓ ✓

Observation and action space

The observation space varies depending on the task. For all tasks, the observation
contains the position and speed of the gripper (6 coordinates). The control
of the gripper does not allow to change its orientation. Its state is therefore
completely determined by these 6 coordinates. If the task involves one or more
objects, the observation space contains the position, the orientation, the linear
and rotational speed (12 coordinates) for each object. When the gripper is not
constrained to be closed, the opening of the gripper (i.e. the distance between
the fingers) is part of the observation space (1 coordinate). Table 5.1 summarises
the observation spaces for the different tasks.

The action space is composed of the end-effector displacement command (3
coordinates, one for each axis of movement x, y and z) and the fingers movement
(1 coordinate, corresponding to the variation of the gripper opening). For some
tasks, the gripper is blocked closed. For these tasks, the action space is only
composed of the end-effector displacement control. Table 5.1 summarises the
observation spaces for the different tasks.

After each agent action, the simulator runs 20 timesteps before returning
control to the agent and waiting for the next action. On the other hand, one
simulator timestep corresponds to 2 ms. The interaction frequency is therefore
25 Hz. An episode consists of 50 interactions, so the duration of an episode is
2 seconds (for the Stack task, an episode lasts 100 interactions, so 4 seconds).
These durations are empirically sufficient for the realisation of the corresponding
tasks.
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Reward

By default, the reward is sparse: a reward of 0 is obtained if the entity to move
is at the desired position (with a tolerance of 5 cm), and −1 otherwise. For each
environment, a variant exists in which the reward is dense: this reward is the
opposite of the distance between the entity to move and the desired position2.

In general, a sparse reward function is easier to define, since it is only
a question of assessing whether the task is completed in the current state.
Conversely, defining a dense reward function can be a tricky process, especially
when the task implies several completion criteria. For example, for a task
consisting in moving and rotating a cube3, defining a dense reward function
requires to assign a weight of preference to each criterion [89, 193]. These
preferences constitute additional hyperparameters.

5.1.3 Design decisions

A robotic environment consists of a robotic arm and a task. Conceptually, a
robotic arm can perform different tasks. Similarly, a task can be performed by
different robots. To allow for this flexibility, we have separated the task class
from the robot class. This allows to easily define a new task without worrying
about the robot that will execute it. In the same way, it is possible to define a
new robot without worrying about the task to be executed. Figure 5.2 shows
the chosen implementation.

Agent

RobotTaskEnv

gym.GoalEnv

robot obs

Robot

Physics 
engine

motor control

robot state

task obs

desired goal

achieved goal

done

Task
objects pose

observation

Environment

reward

action

Figure 5.2: PandaGym source code design. The task and the robot are separate,
which allows them to be modular. The agent’s actions are sent to the robot.

The main class, named RobotTaskEnv contains a robot attribute, and a
task attribute. When the agent takes an action, it is transferred directly to the
robot. The collected observation is the concatenation of the observations specific
to the robot and the observations specific to the task (see Table 5.1). Finally,
to follow the Multi-Goal framework, the desired goal and the achieved goal are
derived from the task attribute.

2For the Stack task, the reward is −
√

d1
2 + d2

2, where di is the distance between the
object i and its desired position.

3This task has been implemented in the next version of the package, see Section 5.1.5
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The proposed environments allow fast learning, even on a computer with
limited computing capacity. The PyBullet physics engine allows the parallel
simulation of several scenes. Thus, the environments are compatible with learning
methods that use multiple CPU cores. Tests show that the environments are on
average 9.2% faster than their equivalents developed on MuJoCo4 [268].

5.1.4 Experimental results

The length of a trajectory is 50 timesteps, except for the Stack task, for which
we chose a length of 100 timesteps due to its higher complexity. At the end of
each trajectory, the environment is reset and a new goal is randomly generated.
Learning is distributed over 8 CPU cores. Each core generates trajectories and
all these trajectories are stored in a common replay buffer. The result is the
success rate, which is evaluated over 80 test episodes, periodically throughout
the learning process.

Main results

We give a baseline of the results we obtain for three off-policy algorithms from
the recent literature: DDPG [164], SAC [105] and TD3 [86]. We integrate HER
[9] to all these algorithms, which has been shown to dramatically increase results
on similar robotic tasks. The implementation of DDPG used for the training is
the one proposed by Dhariwal et al. [64]. The appropriate modifications have
been made to DDPG to implement TD3 and SAC5. The hyperparameters are
available in Table 5.3. They have been chosen identical to those used in [212].
The learning curves are shown in Figure 5.3. Note that the horizontal axis
corresponds to the total number of interactions with the environment. The
learning curves are therefore independent of the number of workers used to
collect these interactions. Figure 5.4 shows an rendering of the policies at the
end of the training for the four task that are solved or partially solved.

The number of timesteps needed to resolve a task depend on the task and
the algorithm. For DDPG, the success rate reaches 100% for the Reach task and
the Push tasks, after 104 and 3× 104 timesteps, respectively. It reaches about
50% for the Slide and for the Pick and Place tasks, after 6× 105 and 1.6× 106

timesteps, respectively. The success rate for the Stack task remains close to 0
after 1.6× 106 timesteps of training. The presented algorithms do not allow to
solve it in this amount of timesteps.

Ablation studies

From the results obtained, we observe that TD3 achieves lower performance than
DDPG, despite being its more advanced iteration. We hypothesize that one of the
three key modifications in TD3 compared to DDPG might be detrimental in the
context of environments with sparse rewards. While two of these modifications -
delayed policy updates and target policy smoothing - are designed to stabilize
learning, the third addition, clipped double-Q Learning, is intended to limit
the overestimation of value estimates. In environments where reward density
is low, we speculate that overestimation of value might be minimal or even

4We measured the time required to simulate 105 timesteps using a single CPU core.
5https://github.com/qgallouedec/baselines

https://github.com/qgallouedec/baselines
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Figure 5.3: Success rates for the five Panda environments. We repeat each
experiment with 21 different random seeds. Median rates are solid lines and
interquartile range are shaded areas. We represent the results for the DDPG, SAC
and TD3 algorithms, all three ran with HER. The horizontal axis corresponds
to the total number of interaction with the environment.
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Table 5.3: Hyperparameters for PandaGym trainings. Parameters specific to a
certain algorithm are noted with the algorithm’s name in parentheses.

Parameter Value

Agent Network type Multi-layer perceptron
Network size 3 layers of 256 nodes
Optimizer Adam [134]
Learning rate 0.001
Polyak-averaging [213] 0.95
L2 normalisation coefficient 1.0

Observation Clipping [−200, 200]

Action Clipping [−1, 1]
Prob. of random (DDPG and TD3) 0.3
Additive noise type (DDPG and TD3) Gaussian
Noise scale (DDPG and TD3) 0.2

Training Episode length 50 (100 for Stack)
Testing Every 80 episodes
Number of testing episodes 80
Replay buffer size 106 transitions
Batch size 256
HER per transition (k) 4
Policy delay (TD3) 2
Policy noise (TD3) 0.2
Policy noise clip (TD3) [−0.5, 0.5]
α (SAC) 0.2

non-existent. Thus, the clipped double-Q learning could inadvertently lead to an
underestimation of value. Without definitive confirmation of this hypothesis, our
empirical findings nonetheless suggest that removing this feature significantly
improves performance, even surpassing DDPG across all tested environments.
Encouraged by these positive results, we further experimented by reversing the
trick in TD3. Rather than taking the minimum of the two critics, we opted for
the maximum, which resulted in even better performance by the agent. These
findings are presented in Figure 5.5. Additionally, we replicate and confirm the
results of Andrychowicz et al. [9] by examining the impact of removing HER
and demonstrating that its exclusion significantly reduces performance.

5.1.5 PandaGym unleashed: a story of impact and evolu-
tion

Developed in 2021 and featured in a publication the same year [91], PandaGym
addressed a crucial need in the field of robotics research: the lack of maintained,
free, open-source, and well-documented environments that are both challenging
and suitable for exploring hard exploration problems, particularly those with
sparse rewards. This gap was the primary inspiration behind PandaGym’s
development.

PandaGym distinguished itself by offering customizable environments. This
feature, in particular, has led to widespread adoption and adaptation by re-
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Figure 5.4: Overview of policies at the end of the training. Each line represents a
task. From top to bottom: Reach (one timestep between two successive images),
Push (two timesteps between two successive images), Slide (four timesteps
between two successive images) and Pick and Place (two timesteps between two
successive images).

searchers, who have customized their environments to suit specific research needs.
The initial goal of PandaGym was to establish a stable set of environments that
could serve as benchmarks for algorithms tackling hard exploration challenges.
Since its release, PandaGym has undergone significant evolution, now in its
third major version, featuring new tasks, improved dynamics, and enhancements
inspired by user feedback and contributions. This evolution has been facilitated
by an active community of users who have opened issues and contributed to the
codebase on GitHub.

The impact of PandaGym on research methodologies and practices has been
profound. As a challenging benchmark, it is now widely used within the field,
allowing for easy comparison of new algorithms with established baselines, as
detailed in Section 5.2. While specific examples of diverse applications will be
discussed in the following sections, it is important to note the broad reach and
adaptability of PandaGym in various research contexts.

In the following sections, we will delve deeper into various aspects of PandaGym’s
impact. We will explore how its design and features have facilitated research
advancements, look at its evolution through user contributions and feedback,
and examine its role as a benchmark in the field. Additionally, we will highlight
specific case studies and examples that showcase PandaGym’s application in
diverse research scenarios. This exploration will not only reflect on the software’s
success and reach but also provide insights into its future potential and ongoing
relevance in robotics research.

Usage statistics and measurable outcomes

PandaGym demonstrates significant impact in RL with over 60,000 downloads,
indicating its widespread use. Its GitHub presence, with 86 forks and over 380
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Figure 5.6: Cumulative growth of GitHub stars and PyPI downloads for
PandaGym. This graph illustrates the progressive increase in both GitHub
stars and PyPI downloads from its early development to the time of writing,
highlighting significant development milestones.

stars, reflects robust community engagement. The progressive and still steady
increase in both GitHub stars and PyPI downloads, as depicted in Figure 5.6,
further illustrates PandaGym’s growing influence. This figure also highlights key
events in PandaGym’s history. The platform’s practicality is underscored by
over 1,400 pretrained models available on the HuggingFace Hub. In standardized
testing, PandaGym is featured in 80 benchmark runs on Open RL Benchmark,
illustrating its reliability. Academically, its relevance is affirmed by citations in
over 45 scientific papers, cementing its role in advancing RL research.

Usage and case studies

Since its initial release, PandaGym has been widely recognised and cited in
numerous research papers as a fundamental benchmark in the RL community
[257, 79]. In the following sections, we discuss the various ways in which
the academic community has engaged with PandaGym, using it as a versatile
benchmark for comparative simulation studies and tailoring it to meet the unique
needs of different research questions. As an extension, we would also like to
point out that some researchers have identified specific limitations inherent
in PandaGym [141], which has led to a number of innovative extensions and
adaptations, either building on the original code base or using entirely new
methodologies [26, 132].

PandaGym as a Common Benchmark PandaGym has been widely used
in numerous studies, largely due to its recognition as a set of benchmark tasks.
Researchers have proposed improvements to widely used algorithms in the litera-
ture, such as improvements to DDPG [244] and SAC [121], using PandaGym to
provide solid validation of their improvements. Others have focused on robusti-
fying existing algorithms [107, 69], with the challenging nature of PandaGym’s
tasks providing a solid foundation for their experiments. In addition, innova-
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tions focused on curriculum learning [248, 58] have highlighted the usefulness of
PandaGym in introducing progressively more difficult tasks to improve learning
effectiveness. Innovations aimed at improving results with an appropriate number
of demonstrations for complex tasks [95, 218, 94] have also been noteworthy.
Furthermore, research on pattern efficiency issues has introduced partial learning
on low-fidelity clones [247, 246], data augmentation [11], and model-based meth-
ods [16]. Finally, PandaGym has found applications in more specific domains
such as IL [287], transfer learning [176], and policy fine-tuning [98, 97].

PandaGym for Task-Specific Needs Often chosen for its ease of customiza-
tion through well-documented and structured code, PandaGym has been tailored
by researchers to meet the specific needs of their studies. Some have modified
the physical environment of tasks by altering objects [72, 227, 293, 45], while
others have introduced elements like wind [45] or made surfaces more slippery
[125]. The customization extended to altering goals or reward functions to align
with study objectives [66, 133, 53, 128, 90], and direct modifications to the robot
itself, such as adding a scraper [211] or a wrist camera [108].

PandaGym in Robotics: The Sim2Real Transition In some cases,
PandaGym has been used to simulate the Franka Emika Panda robot, serving
as a platform for validating innovations in simulation before deployment on real
Franka Emika Panda robots [59]. Notably, successful transfers of policies learned
in the PandaGym simulation to real robots have been documented [182, 172].

PandaGym as a Simulation and Visualization Tool An unexpected yet
valuable use of PandaGym has been for its visualization capabilities [171] and
as a simulation tool. For instance, PandaGym has been instrumental in making
teleoperation tools accessible and usable for users without real robots [96].

PandaGym for Education PandaGym has been an invaluable aid to educa-
tion, with numerous articles, tutorials and courses using it to teach, particularly
over the last twelve months. These resources are aimed at a wide audience,
from beginners [129, 252, 63] to more advanced learners [42]. Some focus on
introducing the environment [63], while others use it to introduce RL topics
[129, 252].

Evolutions and community contributions

Since its initial release, PandaGym has undergone several significant develop-
ments, each enriched by valuable contributions from the community. One of the
most important updates was the introduction of a new, complex task named
Flip. This new task consist in grasping and rotate a cube to the desired orienta-
tion. This new task provides a unique challenge requiring high precision control,
particularly due to the need to finely manage surface friction. The development
and integration of the Flip task also led to improvements in the simulation’s
handling of friction, making it more reliable and reflective of real-world physics.
Another major improvement to PandaGym was the introduction of a new control
mode. In addition to the original simple control mode, which was limited to
basic (x, y, z) displacement control and relied on predefined inverse dynamics,
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the new control mode introduced the ability to individually manipulate each of
the robot’s seven joints. This advance expanded the range of possible movements
and strategies, adding depth and complexity to any task. As a result, this
new control mode was integrated into all tasks, providing a more challenging
experience. As a result, PandaGym now offers a diverse range of 24 different
environments, categorised into six tasks, two different reward types (dense and
sparse) and two control modes. This variety allows for a wide range of difficulty
levels and research interests.

In addition to these major updates, the platform has benefited from a num-
ber of smaller but powerful enhancements, many of which were user-driven.
These include the introduction of state saving and restoration capabilities, which
are critical for certain visualisation and methodological needs, and the imple-
mentation of robust random seed support, which ensures the reproducibility of
results—a critical aspect of scientific research. The active PandaGym community,
as shown by the numerous discussions and open questions (over 82 answered
in the source code repository), has played a key role in the development of the
platform. Feedback from the community has led not only to improvements and
clarifications in the documentation, but also to the development of new features
and modifications. For example, community suggestions include dual robot
environments and the integration of force sensors.

5.1.6 Conclusion
In this section, we have outlined PandaGym, a maintained, open-source set of
free simulated robotic environments. The various tasks were introduced, with
detailed explanations of their observations, actions, and rewards. We focused on
the design choices made to ensure easy customizability, as we aim for PandaGym
to be swiftly and effortlessly adapted for individual research needs. This design
facilitates the straightforward definition of new tasks and the inclusion of new
robots. We have also provided several reference results using state-of-the-art
algorithms, illustrating that at the time of its initial release, contemporary
algorithms were not able to solve all the tasks presented.

Over its three-year journey, PandaGym has garnered considerable attention
and use within the community, particularly in areas it was specifically designed
for, such as benchmarking RL control algorithms and as a customizable base
for research. We are gratified to see PandaGym widely adopted and utilized,
a testament to its relevance and utility, which is further evidenced by various
statistics and practical applications. Feedback from the community has led us to
reconsider certain enhancements, such as support for image-based learning, due
to challenges in implementation and efficiency. Nonetheless, we are encouraged
to see alternative platforms like IsaacGym [180] emerging, addressing these gaps
and expanding the field’s horizons. Despite these limitations, we remain satisfied
with the community’s engagement with PandaGym and its evolution. The
package continues to be actively maintained, evolving through both authorial
and community contributions, and we are optimistic about its ongoing evolution
to meet the community’s evolving needs.
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5.2 Open RL Benchmark: Comprehensive Tracked
Experiments for Reinforcement Learning

In many RL papers, learning curves are useful indicators to measure the ef-
fectiveness of RL algorithms. However, the complete raw data of the learning
curves are rarely available. As a result, it is usually necessary to reproduce the
experiments from scratch, which can be time-consuming and error-prone. We
present Open RL Benchmark6, a set of fully tracked RL experiments, including
not only the usual data such as episodic return, but also all algorithm-specific
and system metrics. Open RL Benchmark is community-driven: anyone can
download, use, and contribute to the data. At the time of writing, more than
25,000 runs have been tracked, for a cumulative duration of more than 8 years.
Open RL Benchmark covers a wide range of RL libraries and reference imple-
mentations. Special care is taken to ensure that each experiment is precisely
reproducible by providing not only the full parameters, but also the versions of
the dependencies used to generate it. In addition, Open RL Benchmark comes
with a command-line interface7 (CLI) for easy fetching and generating figures to
present the results. In this document, we include two case studies to demonstrate
the usefulness of Open RL Benchmark in practice. To the best of our knowledge,
Open RL Benchmark is the first RL benchmark of its kind, and the authors
hope that it will improve and facilitate the work of researchers in the field.

Open RL Benchmark is intended to be a community-driven collaboration,
as evidenced by its initiation and ongoing development. Initiated by Shengyi
(Costa) Huang, this work has benefited greatly from numerous contributions. I
have made substantial contributions to the benchmark and played a key role
in streamlining the community’s efforts. It also benefited from the invaluable
efforts of Florian Felten for extensive documentation of the CLI, and Mohamad
H. Danesh for illustrating the practical capabilities of Open RL Benchmark. To
enhance and promote this work, I initiated, organized an serve as the primary
author for a paper [118] that will be submitted to the NeurIPS 2024 Datasets
and Benchmarks track, with all the 30 contributors listed as authors.

5.2.1 Introduction

RL research is based on comparing new methods to baselines to assess progress.
This process implies the availability of the data associated with these baselines
or, alternatively, the ability to reproduce them and generate the data oneself. In
addition, the ability to reproduce also allows the methods to be compared with
new benchmarks and to identify the areas in which the methods excel and those
in which they are likely to fail, thus providing avenues for future research.

In practice, the RL research community faces complex challenges in comparing
new methods with reference data. The unavailability of reference data requires
researchers to reproduce experiments, posing difficulties due to insufficient
source code documentation and evolving software dependencies. Implementation
intricacies, as highlighted in past research, can significantly impact results
[109, 115]. Moreover, limited computing resources play a crucial role, hindering
the reproduction process and affecting researchers without substantial access.

6https://wandb.ai/openrlbenchmark
7https://github.com/openrlbenchmark/openrlbenchmark

https://wandb.ai/openrlbenchmark
https://github.com/openrlbenchmark/openrlbenchmark
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Figure 5.7: Example of learning curves that can be obtained with Open RL
Benchmark. These compare the episodic returns achieved by different implemen-
tations of PPO and DQN on a number of Atari tasks.

These challenges lead to difficulties in reliably evaluating new methods and hinder
efficient comparisons against established ones. Reproducing experiments is a time-
consuming and resource-intensive task, or researchers may rely on inconsistently
presented paper results. The lack of standardized metrics and benchmarks across
studies not only impedes comparison but also results in a substantial waste of time
and resources. To address these issues, the RL community must establish rigorous
reproducibility standards, ensuring replicability and comparability across studies.
Transparent sharing of data, code, and experimental details, along with the
adoption of consistent metrics and benchmarks, would collectively enhance the
evaluation and progression of RL research, ultimately accelerating advancements
in the field.

As a consequence, the RL research community faces significant challenges in
reliably assessing the true value and progress of new methods. This difficulty
stems largely from the complexities and constraints associated with the repro-
duction of baseline results. Researchers often face the challenge of reproducing
experiments, which can be a time-consuming and resource-intensive task. Al-
ternatively, they may rely on the results presented in papers, which may not
consistently use the same metrics or benchmarks. This situation not only hinders
the efficient comparison of new methods against established ones but also leads
to a considerable waste of time and resources. Furthermore, the uncertainty
surrounding the reproducibility of results raises concerns about the reliability
of progress claims in the field. To tackle these challenges, the community must
establish more rigorous standards for reproducibility, ensuring that results are
not only replicable but also comparable across different studies. A concerted
effort towards more transparent and comprehensive sharing of data, code, and
experimental details, as well as the adoption of consistent metrics and bench-
marks across studies, would enhance the collective ability to evaluate and build
upon the findings of RL research. This would ultimately accelerate progress in
the field.

Open RL Benchmark presents a rich collection of tracked RL experiments
and aims to set a new standard by providing a diverse training dataset. This ini-
tiative prioritizes the use of existing data over re-running baselines, emphasizing
reproducibility and transparency. Our contributions are:

• Extensive dataset: Offers a large, diverse collection of tracked RL
experiments.
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• Standardization: Establishes a new norm by encouraging reliance on
existing data, reducing the need for re-running baselines.

• Comprehensive metrics: Includes diverse tracked metrics for method-
specific and system evaluation, in addition to episodic return.

• Reproducibility: Emphasizes clear instructions and fixed dependencies,
ensuring easy experiment replication.

• Resource for research: Serves as a valuable, efficient, and collaborative
resource for RL research.

• Facilitating exploration: Enables reliable exploration and assessment
of new RL methods.

5.2.2 Comprehensive overview of Open RL Benchmark:
content, methodology, tools, and applications

This section provides a detailed exploration of the contents of Open RL Bench-
mark, including its diverse set of libraries and environments, and the metrics
it contains. We also look at the practical aspects of using Open RL Bench-
mark, highlighting its ability to ensure accurate reproducibility and facilitate
the creation of data visualizations thanks to its CLI.

Content

Open RL Benchmark data is stored and shared with W&B [25]. They are
contained in a common entity named openrlbenchmark. Runs are divided
into several projects. A project can correspond to a library, but it can also
correspond to a set of more specific runs, such as envpool-cleanrl in which we
find CleanRL runs [116] which have the particularity of being launched with the
EnvPool implementation [282] of environments. A project can also correspond
to a reference implementation, such as TD3 (project sfujim-TD3) or Phasic
Policy Gradient [48] (project phasic-policy-gradient). Open RL Benchmark
also includes reports, which are interactive documents designed to enhance the
visualization of selected representations. These reports provide a more user-
friendly format for practitioners to share, discuss, and analyze experimental
results, even across different projects. Figure 5.8 shows a preview of one such
report.

At the time of writing, Open RL Benchmark contains nearly 25,000 runs, for a
total of 72,000 hours (more than 8 years) of tracking. In the following paragraphs,
we present the libraries and environments for which runs are available in Open
RL Benchmark, as well as the metrics tracked.

Libraries At the time of writing, Open RL Benchmark contains runs for
several reference RL libraries. These libraries are: abcdRL [296], Acme [113],
Cleanba [119], CleanRL [116], jaxrl [136], moolib [185], MORL-Baselines [78],
OpenAI Baselines [64], rlgames [179] Stable-Baselines3 [222] Stable-Baselines
Jax [222] and TorchBeast [144].
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Figure 5.8: An example of a report on the W&B platform, dealing with the
contribution of QDagger [4], and using data from Open RL Benchmark. The
URL to access the report is https://wandb.ai/openrlbenchmark/openrlben
chmark/reports/Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5.

Environments The runs contained in Open RL Benchmark cover a wide
range of classic environments. They include Atari [21, 177], Classic control
[29], Box2d [29] and MuJoCo [268] as part of either Gym [29] or Gymnasium
[270] or EnvPool [282]. They also include Bullet [54], Procgen Benchmark [47],
Fetch environments [212], PandaGym [91], highway-env [160], Minigrid [44] and
MO-Gymnasium [7].

Tracked metrics Metrics are recorded throughout the learning process, con-
sistently linked with a global step indicating the number of interactions with
the environment, and an absolute time, which allows for the calculation of the
process’s relative duration to track elapsed time. We categorize these metrics
into four distinct groups:

• Training-related metrics: These are general metrics related to RL
learning. This category contains, for example, the average returns obtained,
the episode length or the number of collected samples per second.

• Method-specific metrics: These are losses and measures of key internal
values of the methods. For PPO, for example, this category includes the
value loss, the policy loss, the entropy or the approximate KL divergence.

• Evolving configuration parameters: These are configuration values
that change during the learning process. This category includes, for
example, the learning rate when there is decay, or the exploration rate (ϵ)
in DQN [187].

• System metrics: These are metrics related to system components. These
could be GPU memory usage, its power consumption, its temperature,
system and process memory usage, CPU usage or even network traffic.

https://wandb.ai/openrlbenchmark/openrlbenchmark/reports/Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5
https://wandb.ai/openrlbenchmark/openrlbenchmark/reports/Atari-CleanRL-s-Qdagger--Vmlldzo0NTg1ODY5
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The specific metrics available may vary from one library to another. In
addition, even where the metrics are technically similar, the terminology or key
used to record them may vary from one library to another. Users are advised
to consult the documentation specific to each library for precise information on
these measures.

Everything you need for perfect repeatability

Reproducing experimental results in computational research, as discussed in
Section 5.2.4, is often challenging due to evolving codebases, incomplete hy-
perparameter listings, version discrepancies, and compatibility issues. Our
approach aims to enhance reproducibility by ensuring users can exactly replicate
benchmark results. Each experiment includes a complete configuration with
all hyperparameters, frozen versions of dependencies, and the exact command,
including the necessary random seed, for systematic reproducibility. Further-
more, CleanRL [116] introduces a unique utility that streamlines the process
of experiment replication (see Figure 5.9). This utility produces the command
lines to set up a Python environment with the necessary dependencies, download
the run file, and the precise command required for the experiment reproduction.
Such an approach to reproduction facilitates research and makes it possible to
study in depth unusual phenomena, or cases of rupture8, in learning processes,
which are generally ignored in the results presented, either because they are
deliberately left out or because they are erased by the averaging process.

Figure 5.9: CleanRL’s module reproduce allows the user to generate, from an
Open RL Benchmark run reference, the exact command suite for an identical
reproduction of the run.

The CLI, for figures in one command line

Open RL Benchmark offers convenient access to raw data from RL libraries
on standard environments. It includes a feature for easily extracting and vi-
sualizing data in a paper-friendly format, streamlining the process of filtering
and extracting relevant runs and metrics for research papers through a single
command. The CLI is a powerful tool for generating most metrics-related figures
for RL research and notably, all figures in this document were generated using
the CLI. The data in Open RL Benchmark can also be accessed by custom
scripts, as detailed in Appendix B.2. Specifically, the CLI integrated into Open
RL Benchmark provides users with the flexibility to:

8Exemplified in https://github.com/DLR-RM/rl-baselines3-zoo/issues/427

https://github.com/DLR-RM/rl-baselines3-zoo/issues/427
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• Specify algorithms’ implementations (from which library) along with their
corresponding git commit or tag;

• Choose target environments for analysis;

• Define the metrics of interest;

• Opt for the additional generation of metrics and plots using RLiable [3].

Concrete example usage of the CLI and resulting plots are available in
Appendix B.1.

5.2.3 Open RL Benchmark in action: an insight into case
studies

The practical application of Open RL Benchmark is best illustrated through
case studies that demonstrate its utility in streamlining the process of comparing
and evaluating RL methods. This section delves into two specific case studies
that exemplifies the ease and efficiency with which researchers can now propose
improvements and benchmark them against existing methodologies using Open
RL Benchmark. By leveraging the comprehensive data and metrics available
from established RL libraries, these case studies showcases the benchmark’s
capability to facilitate direct and fair comparisons without the need to recreate
existing experiments. This not only saves valuable time and resources but also
ensures that comparisons are made on a consistent and reliable basis. First,
we propose to investigate the benefit of using TD(λ) for value estimation in
PPO [239] versus using MC. This simple study illustrates the use of Open RL
Benchmark via a classic research question. Moreover, as far as we know, this
question has never yet been studied in the literature. We then present a more
unusual approach. We show how Open RL Benchmark is used to demonstrate the
speedup and variance reduction of the new IMPALA implementation proposed
by Huang et al. [119]. We underline the versatility of Open RL Benchmark, both
in the evaluation of classic and more unusual RL approaches. This not only
saves valuable time and resources, but also ensures that comparisons are made
on a consistent, reliable and fully reproducible basis. All in all, these case studies
demonstrate the benchmark’s role in providing clear, accessible, and actionable
insights, which are crucial for driving forward the field of RL research.

Easily assess the contribution of TD(λ) for value estimation in PPO

In the first case study, we showcase the adaptability and usability of Open RL
Benchmark by employing a modification in PPO [239] value function estimation.
PPO typically employs GAE [238] to update the actor (see Section 2.4.2) and
the target return is computed from the GAE value, by adding the minibatch
return [115, point 5]. Empirical studies [207] have highlighted the joint merits
of GAE and TD(λ) over MC and n-steps return estimates. Here, we propose a
focused investigation into the impact of TD(λ) over MC in estimating the value
function, while maintaining GAE for advantage estimation.

The first step is to identify the reference runs in Open RL Benchmark.
As PPO is a widely recognized baseline, a large number of runs are available.
We chose to use the Stable-Baselines3 runs for this example. We retrieve the
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precise source code and command used to generate them, thanks to the pinned
dependencies provided in the runs. We apply the appropriate modification to
the source code. We select a diverse set of environments, including Atari games
(Breakout, Space Invaders, Seaquest, Enduro, Pong, Q*Bert, Beam Rider),
Box2D (Lunar Lander), and MuJoCo (Inverted Double Pendulum, Inverted
Pendulum, Reacher, Half Cheetah, Hopper, Swimmer, Walker 2d). For each
environment selected, we launch 3 learning runs using the same command as
the one retrieved and using the modified codebase. The runs are stored in a
dedicated project9. For fast and user-friendly rendering of the results, we create a
W&B report10. Using the CLI, we generate Figure 5.10 and 5.11. The command
used to generate the figures is given in Appendix C.
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(a) Results for Atari games.
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(b) Results for Box2D and MuJoCo envi-
ronments.

Figure 5.10: Comparing the original PPO and the PPO with MC for value
estimation. These experiments were conducted over 15 environments, including
Atari games, Box2D, and MuJoCo. The plots represent the episodic return
normalized by human performance for Atari and by min-max for other environ-
ments. Aggregation follows [3] recommendations, and shaded areas correspond
to stratified bootstrap 95% CIs.
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(a) Results for Atari games.
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(b) Results for MuJoCo and Box2d environments.

Figure 5.11: Comparing the original PPO and the PPO with MC for value
estimation. Aggregated minmax normalized final scores with 95% stratified
bootstrap CIs.

Figure 5.10 shows the evolution of the aggregated episodic return obtained
over the course of learning for the Atari tasks on the one hand, and the Box2d

9https://wandb.ai/modanesh/openrlbenchmark
10https://api.wandb.ai/links/modanesh/izf4yje4

https://wandb.ai/modanesh/openrlbenchmark
https://api.wandb.ai/links/modanesh/izf4yje4
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and MuJoCo tasks on the other. (This division is chosen on the basis of the
proximity of the tasks in each group.) Figure 5.10 shows the final aggregated
episodic return using the same division. We find that using the MC estimator
for the value gives significantly weaker results for the Atari environment, thus
justifying the use of TD(lambda). On the other hand, the difference in results
for the other environments is not significant and seems to have virtually no
impact. Overall, this case study demonstrates how Open RL Benchmark’s can
be leveraged for investigating TD(λ) impact on PPO’s value function estimation.
It streamlines research, reuses computations, ensuring strict reproducibility.

Demonstrating the utility of Open RL Benchmark through the Cleanba
case study

This section describes how Open RL Benchmark was instrumental in the eval-
uation and presentation of Cleanba [119], a new open-source platform for dis-
tributed RL implementing highly optimized distributed variants of PPO [239]
and IMPALA [74]. Cleanba’s authors asserted three points: (1) Cleanba im-
plementations compare favorably with baselines in terms of sample efficiency,
(2) for the same system, the Cleanba implementation is more optimized and
therefore faster, and (3) the design choices allow a reduction in the variability of
results.

To prove these assertions, the evaluation of Cleanba encountered a common
problem in RL research: the works that initially proposed these baselines did not
provide the raw results of their experiments. Although a reference implementation
is available11, it is no longer maintained. Subsequent works like moolib [185]
and TorchBeast [144] have reproduced the IMPALA results, but similarly, the
shared results are restricted to the paper’s curves, presenting only a smoothed
measure of episodic return as a function of interractions step, on a set of Atari
tasks, notwithstanding numerous, but not matching to the widespread Atari 57,
and for which the raw data that yielded these curves is not available.

Recognizing the lack of raw data for existing IMPALA implementations, the
authors reproduced the experiments, tracked the runs and integrated them into
Open RL Benchmark. As a reminder, these logged data include not only the
return curves, but also the system configurations and temporal data, which
are crucial to support the Cleanba authors’ optimization claim. Comparable
experiments have been run, tracked and shared on Open RL Benchmark with
the proposed Cleanba implementation.

Using Open RL Benchmark CLI, the authors generated several figures. The
authors have provided the exact commands to reproduce these curves in the
source directory. In Figure 5.12, taken from [119], the authors show that the
results in terms of sample efficiency compare favourably with the baselines, and
that for the same system configuration, convergence was temporally faster with
the proposed implementation, thus proving claims (1) and (2). Figure 5.13
demonstrates that Cleanba variants maintain consistent learning curves across
different hardware configurations. Conversely, moolib’s IMPALA shows marked
variability in similar settings, despite identical hyperparameters, affirming the
authors’ third claim.

11https://github.com/google-deepmind/scalable_agent

https://github.com/google-deepmind/scalable_agent
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Figure 5.12: Median human-normalized scores with 95% stratified bootstrap CIs
of Cleanba [119] variants compared with moolib [185] and monobeast [144]. The
experiments were conducted on 57 Atari games [21]. The data used to generate
the figure comes from Open RL Benchmark, and the figure was generated with
a single command from Open RL Benchmark’s CLI. Figure from [119].
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Figure 5.13: Aggregated normalized human scores with stratified 95% boot-
strap CIs, showing that unlike moolib [185], Cleanba [119] variants have more
predictable learning curves (using the same hyperparameters) across different
hardware configurations. Figure from [119].

5.2.4 Current practices in RL: data reporting, sharing and
reproducibility

Many new methods have emerged in recent years, with some becoming standard
baselines, but current practices in the field make it challenging to interpret,
compare, and replicate study results. In this section, we highlight the inconsis-
tent presentation of results, focusing on learning curves as an example. This
inconsistency can hinder interpretation and lead to incorrect conclusions. We
also note the insufficient availability of learning data, despite some positive
efforts, and examine challenges related to method reproducibility.

Analyzing learning curve practices

Plotting learning curves is a common way to show the evolution of an agent’s
performance as it learns. In this section, we take a closer look at the different
components of learning curves. We examine in detail the choices made by a
selection of key publications in the field on these different aspects. We show that
among these publications, there is no uniformity on any aspect, that the choices
of presentation are almost never motivated and that, sometimes, they are not
even explicitly stated.
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Axis Typically, the y axis measures either the return acquired during data
collection or evaluation. Some older papers, like [237, 189, 239], fail to specify
the metric, using the vague term learning curve. The first approach sums the
rewards collected during agent rollout [56, 34]). The second approach suspends
training, averaging the agent’s return over episodes, deactivating exploration
elements [86, 105, 110, 124, 19, 71, 41]. This method is prevalent and provides a
more precise evaluation. Regarding the x axis, while older baselines [237, 189]
use policy updates and learning epochs, the norm is to use interaction counts
with the environment. In Atari environments, it is often the number of frames,
adjusting for frame skipping to match human interaction frequency.

Shaded area Data variability is typically shown with a shaded area, but its
definition varies across studies. Commonly, it represents the standard deviation
[41, 124] and less commonly half the standard deviation [86]. [105] uses a min-
max representation to include outliers, covering the entire observed range. This
method offers a comprehensive view but amplifies outliers’ impact with more
runs. [71] adopts a probabilistic approach, showing a 95% bootstrap confidence
interval around the mean, ensuring statistical confidence. Unfortunately, [237,
239, 189, 56, 19] omit statistical details or even the shaded area, introducing
uncertainty in data variability interpretation, as seen in [110].

Smoothing The variability in results can hinder figure clarity. While many
papers present raw curves [237, 86, 105, 56, 124, 41, 19], smoothing is a common
practice to address this issue. However, smoothing sacrifices data variability
information. Authors should provide clear explanations of this post-treatment
to prevent misinterpretation. Unfortunately, most authors don’t offer sufficient
details to understand and reproduce the smoothing process. For instance,
[237, 239] likely use smoothing without explicit mention. [110, 86] briefly mention
curve smoothing but lack method details. The exception is [71], which provides
a precise smoothing description.

Normalization and aggregation Performance aggregation assesses method
results across various tasks and domains, indicating their generality and robust-
ness. Outside the Atari context, aggregation practices are not common due to
the absence of a universal normalization standard. In the absence of a widely
accepted normalization strategy, scores are typically not aggregated, or if done,
it relies on a min-max approach based on extreme study scores, lacking absolute
significance and unsuitable for subsequent comparisons. In the case of Atari,
early research did not use normalization or aggregate results [187]. However,
there has been a notable shift towards generalizing normalization against human
performance, although this has weaknesses and may not truly reflect agent
mastery [269]. Aggregation methods vary as well. Mean is common but can
be influenced by outliers, leading some studies to prefer the more robust me-
dian, as in [110], while, many papers now report both mean and median results
[56, 106, 18]. Recent approaches like [155] use the Interquartile Mean (IQM) for
balanced aggregation, providing a more accurate performance representation
across diverse games, as suggested by [3].
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Spectrum of data sharing practices

While the mentioned studies often have reference implementations (see Section
5.2.4), the sharing of training data typically extends only to the curves presented
in their articles. This necessitates reliance on libraries that replicate these meth-
ods, offering benchmarks with varying levels of completeness. Several widely-used
libraries in the field provide high-level summaries or graphical representations
without including raw data (e.g., Tensorforce [138], Garage [93], ACME [113],
MushroomRL [62], ChainerRL [88], and TorchRL [28]). Spinning Up [1] offers
partial data accessibility, providing benchmark curves but withholding raw data.
TF-Agent [101] is slightly better, offering experiment tracking with links to
TensorBoard.dev, though its future is uncertain due to service closure. Tianshou
[281] provides individual run reward data for Atari and average rewards for
MuJoCo, with more detailed MuJoCo data available via a Google Drive link,
but it is not widely promoted. RLLib [163] maintains an intermediate stance
in data sharing, hosting run data in a dedicated repository. However, this data
is specific to select experiments and often presented in non-standard, undocu-
mented formats, complicating its use. Leading effective data-sharing platforms
include Dopamine [37] and Sample Factory [208]. Dopamine consistently pro-
vides accessible raw evaluation data for various seeds and visualizations, along
with trained agents on Google Cloud. Sample Factory offers comprehensive data
via Weights and Biases [25] and a selection of pre-trained agents on the Hugging
Face Hub, enhancing reproducibility and collaborative research efforts.

Review on reproducibility

The literature shows variations in these practices. Some older publications like
[237, 239, 21, 189, 110] and even recent ones like [224] lack a codebase but
provide detailed descriptions for replication12. However, challenges arise because
certain hyperparameters, important but often unreported, can significantly affect
performance [10]. In addition, implementation choices have proven to be critical
[109, 119, 115, 73], complicating the distinction between implementation-based
improvements and methodological advances.

Recognizing these challenges, the RL community is advocating for higher
standards. NeurIPS, for instance, has been requesting a reproduction checklist
since 2019 [209]. Recent efforts focus on systematic sharing of source code to
promote reproducibility. However, codebases are often left unmaintained post-
publication (with rare exceptions [86]), creating complexity for users dealing with
various dependencies and unsolved issues. To address these challenges, libraries
have aggregated multiple baseline implementations (see Section 5.2.2), aiming to
match reported paper performance. However, long-term sustainability remains a
concern. While these libraries enhance reproducibility, in-depth repeatability is
still rare.

12This section uses the taxonomy introduced by [175]: repeatability means accurately
duplicating an experiment with source code and random seed availability, reproducibility
involves redoing an experiment using an existing codebase, and replicability aims to achieve
similar results independently through algorithm implementation.
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5.2.5 Discussion and conclusion
Reproducing RL results is difficult due to limited data access and code shar-
ing. Minor implementation variations can lead to performance differences, and
verifying implementations lacks tools. Researchers often rely on vague compar-
isons with paper figures, making reproduction time-consuming and challenging,
highlighting reliability and reproducibility issues in RL research. In our paper,
we introduce Open RL Benchmark, a vast collection of tracked experiments
spanning algorithms, libraries, and benchmarks. We capture all relevant metrics
and data points, offering detailed resources for precise reproduction. This tool
democratizes access to comprehensive datasets, simplifying valuable information
extraction, enabling metric comparisons, and introducing a CLI for easier data
access and visualization. Open RL Benchmark is a dynamic resource, regu-
larly updated by both its founders and the user community. User contributions,
whether new results or additional runs, enhance result reliability. Sharing trained
agents can also offer insights and support offline RL studies.

Despite its strengths, Open RL Benchmark faces challenges in user-friendliness
which must be addressed. Inconsistencies across libraries in evaluation strategies
and terminology can complicate usage. Scaling community engagement becomes
challenging with more members, libraries, and runs. The lack of Git-like version
tracking for runs adds to these limitations.

Open RL Benchmark is a key step forward in addressing RL research chal-
lenges. It offers a comprehensive, accessible, and collaborative experiment
database, enabling precise comparisons and analyses. It enhances data access,
promoting a deeper understanding of algorithmic performance. While challenges
persist, Open RL Benchmark has the potential to elevate RL research standards.
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5.3 Perspective: A Commitment to Continual
Relevance

We have introduced PandaGym and Open RL Benchmark, two contributions
designed to facilitate easier, more qualitative, and collaborative research in RL.
A key difference between these contributions and traditional scholarly outputs
is that their value lies largely in their active, long-term maintenance. This
principle is exemplified by tools like PyTorch [204], which have undergone
continuous development and improvement over the years. Today, the machine
learning community relies heavily on such well-maintained tools to advance the
field. Similarly, the continued relevance and utility of PandaGym and Open
RL Benchmark will depend on our commitment to their ongoing maintenance
and development, ensuring that they remain robust and valuable resources for
researchers now and in the future.



Chapter 6

Conclusion

6.1 Summary and Conclusion

6.1.1 Summary and contributions

This work aims to extend and redefine the scope of RL. The underlying goal
is to get closer to what we conceptualise as an autonomous generalist agent.
Such an agent, as envisioned in our research, should have key characteristics,
notably autonomy, characterized by reduced dependence on user supervision,
and versatility, which includes the ability to handle multiple input modalities,
operate in different environments with different dynamics, and achieve a wide
range of tasks. Consequently, we have focused on two main research topics: first,
improving the agent’s ability to operate in environments where goals are either
poorly defined or even absent, which implies improving existing methods in
terms of exploration; second, designing a framework for a general-purpose agent
capable of performing in multitasking, multimodal, and multidomain scenarios.
This effort is further extended to a third critical dimension–research methodology,
where our goal is to improve the current framework for RL research by providing
tools that enhance algorithm comparison and reproducibility.

We first laid the foundations of RL and introduced some of the key algo-
rithms. Our first contribution is LGE, a novel exploration method for RL. A key
component of LGE is the ability of the agent to autonomously select goals using
a jointly learned latent representation. This innovation eliminates the need for
predefined cells, a major limitation of the original Go-Explore method. As a
result, our work significantly extends the method’s ability to operate in a wide
range of environments. In addition, LGE demonstrated significantly better ex-
ploration performance than baselines in various environments, including robotic
systems and Atari games. The robust empirical results we present confirm the
effectiveness of this approach. This advance contributes directly to addressing
the initial question of our research: the generalization of RL. By enabling more
flexible and efficient exploration methods, LGE represents a significant step to-
ward developing RL algorithms that are adaptable to a wider range of real-world
scenarios, beyond the constraints of task-specific environments.

Our second key contribution JAT, a novel model characterized by its multi-
modal and multitasking design, which allows it to operate in different domains
within a single network. This design facilitates the execution of diverse tasks
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ranging from standard sequential decision making to non-sequential tasks such
as image description and text completion. The first innovation lies in its unique
structure, which has been optimized for sequential tasks by allocating each
timestep to a corresponding token embedding, resulting in a very simple design.
Another key innovation in JAT is the inclusion of an auxiliary objective for pre-
dicting future observations, a strategy that accelerates convergence and improves
overall model performance. Accompanying JAT is its comprehensive dataset,
the first to integrate such a diverse range of tasks, modalities and domains,
setting a new precedent in the field. When benchmarked against Gato, its
closest comparable baseline, JAT demonstrates competitive performance across
its trained domains. This development is particularly significant in the context
of our research, as it exemplifies our goal of generalizing RL and demonstrates
the practical applicability of JAT beyond traditional task-specific environments.
In fact, this work lays the foundations for linking RL to CV and NLP.

We also present several methodological and technical contributions that
are integral to our research. These include PandaGym, an open and actively
maintained suite of simulated robotic environments designed for complex sparse
reward tasks. These environments are closely aligned with our research goals,
challenging algorithms to learn autonomously and perform robotic tasks with
minimal supervision. The response from the RL community to PandaGym
has been largely positive, with widespread adoption and improvement over
the three years of its existence. Researchers have adapted these environments,
outperforming existing baselines and contributing significantly to its continuous
improvement. We also present Open RL Benchmark, an extensive collection of
open, thoroughly tracked RL experiments. This benchmark includes runs of a
wide range of popular RL libraries in a variety of environments. Its tracking goes
beyond mere performance metrics, providing full access to all raw training data
and essential resources for rigorous replication of results. We argue that progress
towards a generalist RL model depends on a foundation of reproducible research.
This benchmark is a testament to our commitment to enabling innovation that
builds on previous work rather than redundantly duplicating established findings.
Practical examples of its application are provided, reinforcing our aspiration
that Open RL Benchmark will evolve alongside ongoing research advances.

While the road to a truly effective generalist RL agent remains long, we
believe that our work represents a meaningful step in this direction. By enhancing
agent autonomy in contexts of weak supervision and by proposing a structure for
a multi-task and multi-domain agent, we have addressed two critical attributes
necessary for a generalist RL agent. These advances are fundamental steps in the
broader quest to realize the full potential of RL. These contributions, alongside
the technical and methodological ones, form the basis for future research, fostering
an RL landscape characterized by its broader applicability and adaptability in
diverse real-world scenarios.

6.1.2 Perspectives

In this thesis, each topic we cover is accompanied by a specific set of perspectives,
which are detailed in the respective chapters. Here, we propose a broader
overview, identifying noteworthy general perspectives on RL. Of the many
possible ones, we believe three stand out.
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Foundation models for RL Foundation models for RL can be understood
as large-scale, pretrained models that provide a versatile and adaptable base,
enabling RL agents to efficiently learn and generalize across a diverse range of
environments and tasks, akin to how foundation models in NLP have revolu-
tionized understanding and generation of human language. The application of
foundation models in RL faces unique challenges that differ from their success
in NLP. RL environments vary widely, each with unique rules and interactions,
in contrast to the consistent structure of language in NLP. This diversity raises
critical questions about the adaptability of fundations models in RL, particularly
in dealing with different state and action spaces and environment-specific dynam-
ics. Developing such models may require the creation of environment-agnostic
learning strategies, but the practicality and effectiveness of this approach remains
to be determined. Overcoming these challenges could lead to a new era in RL,
characterized by highly adaptive, versatile agents.

Reincarnating RL Traditional RL framework is predominantly characterized
by learning from scratch. However, this approach encounters a significant
bottleneck in terms of sample efficiency, a limitation unlikely to be overcome
in the foreseeable future. This question is partially addressed in a specific
framework where the distribution of data evolves during learning [159], but
this is however limited by the underlying assumption of constancy of policy
structure and data type. Therefore, this necessitates a paradigm shift in our
framework, leading us to question how prior computational data can be leveraged
to transcend the learning from scratch model. This evolving concept has been
termed Reincarnating Reinforcement Learning (RRL) [4].

The rationale behind RRL is underpinned by its immense potential, as it
recognizes the abundance of existing open data, especially from [258] or simulating
the real world [242]. By reducing resource requirements, RRL democratizes
access to more complex problem solving, enabling broader participation beyond
institutions with substantial resources. Crucially, RRL fosters an environment
in which researchers can iteratively improve existing agents. The core challenge
of RRL lies in the effective distillation of diverse data sources—ranging from
experiences to policies, optimal or not etc.—into a new policy. This challenge
has only been sporadically addressed in large-scale training programs, such as
those detailed in [197], which often lack comprehensive exploration of this aspect.
However, emerging works are beginning to tackle this issue more directly. For
example, [4] focuses on the efficient transfer of existing sub-optimal policies to
standalone, value-based RL agents, with very encouraging results.

To advance this field, a clear problem statement must be articulated. Then,
determining a suitable evaluation protocol is essential to enable coherent and
meaningful comparisons of different RRL methods. Key questions arise: What
kind of initial resources should be used? (expert experience, sub-optimal network
weights, etc.) Which environments are most appropriate for testing? Should the
protocol consider the use of data from another environments? (Thus including
scenarios in which an action dimension is added, for example.) The groundwork
has barely been laid, but we think it is an absolutely essential step towards an
RL agent that actually solves real-world problems.
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Self Supervised World-Model with Intrinsic Goals RL faces two key
challenges that hinder its broader real-world application: low sample efficiency, as
evidenced by the need for hours of training for even basic tasks like the inverted
pendulum [123], and the difficulties associated with exploration, as discussed
in Chapter 3. Learning beings such as animals, including humans, inherently
anticipate and visualise future scenarios, suggesting a reliance on an internal
world model. The idea of learning a world model and anticipating outcomes
without direct interaction with the environment, although previously sidelined,
is receiving renewed attention in the literature, notably discussed in [153]. The
integration of model learning with structured exploration based on intrinsic goals
may be the key to success. This approach’s essence, and the key question, is how
to formulate goals that balance world understanding with reward maximisation
(the exploration-exploitation dilemma). This idea fits elegantly with the vision
of a generalist agent capable of reward-free exploration and subsequent task
learning through pure planning within its internal world model.

What does the future of RL look like when integrating these three perspec-
tives? We envisage a process where initially, a general foundation agent is
retrieved. This agent, inherently multi-modal and equipped with an internal
world model, is pre-trained with diverse data from previous computations. It
is designed to process any data type efficiently, ensuring there is no risk of
unlearning, and at the very least, maintaining its current knowledge level. After
this, the agent would engage in interaction with the chosen environment(s),
identifying and exploring key areas of interest using its world model. Ultimately,
the culmination of this process is the sharing of all the computational data and
the resulting agent, allowing the cycle to iterate again, each time refining and
enhancing the agent’s capabilities.

Finally, let’s use this section on the future to revisit the past and note that
despite being 74 years old, Alan Turing’s quote remains remarkably relevant:

“Instead of trying to produce a program that simulates the mind of an adult,
why not try to produce one that simulates the mind of a child?”

— Alan M Turing (1950)

6.2 Ethical Considerations in Artificial Intelli-
gence Research

6.2.1 Ethics in AI: an all-too-often overlooked necessity
Traditionally, doctoral theses in Artificial Intelligence (AI) have focused on
technical advancements, methodological innovations, and experiments. The
emphasis is on creating, improving, and validating algorithms, models, and
applications. In this context, it is rare to find a section dedicated to the
ethical, societal, or philosophical implications of AI. This absence is all the more
surprising given that AI, by its very nature, is redefining our world and our place
within it.
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The title Doctor of Philosophy or PhD, although often associated with
philosophy, is in fact a reminder of the historical origins of medieval European
universities. The term philosophy is not used in the strict sense of the academic
discipline, but rather to signify the "love of wisdom". This wisdom encompasses
a universal quest for knowledge, transcending disciplinary boundaries. Thus,
even if the thesis focuses on AI, it is rooted in this tradition of seeking truth
and understanding.

I firmly believe that integrating ethical reflection into AI research is not only
desirable but necessary. AI is not just a mere technical tool; it shapes our society,
influences our decisions, and redefines our interactions. Ignoring the ethical
implications of our work means overlooking an essential part of AI’s impact.

As researchers, we have a responsibility not only to push the boundaries
of knowledge but also to understand and anticipate the consequences of our
discoveries. AI, with its transformative potential, demands particular vigilance
from us. Issues of fairness, transparency, privacy, and accountability are not mere
additions to our work; they are intrinsic components. The AI community seems
to be increasingly interested in this issue, as reflected by the recent introduction
of the position paper track at the ICML 2024 conference1.

Therefore, through this section, we not only aim to address the ethical
implications of my work but also encourage future AI researchers to do the
same. Ethics should not be an afterthought but an integral part of our scientific
approach. By integrating ethics into our research, we are not just creating more
efficient algorithms; we are working towards an AI that respects and enriches
humanity.

We thus invite all future doctors to seriously consider integrating ethical
reflection into their work. Only by addressing these issues head-on can we ensure
that AI truly serves everyone.

6.2.2 The societal and civilizational challenge

Separating science fiction fears from real-world ethical challenges

Public perceptions of AI threats and ethical issues are often influenced by dra-
matic depictions in science fiction, such as the AI uprising in The Terminator
or the ethical complexities of creating sentient AI in Ex Machina. While these
narratives are compelling, they stem from anthropomorphism, speculative fu-
tures, and a fundamental misunderstanding of the current capabilities of AI,
which operates within human-defined parameters. AI operates on the basis
of programmed algorithms and data processing, without the self-awareness or
subjective experiences that are hallmarks of human consciousness as currently
understood in cognitive science and philosophy. Therefore, it seems more relevant
to examine more pressing and likely real-world problems with AI that involve its
societal impact and potential for abuse. For example, deepfakes can be used for
political misinformation, and AI in hiring processes can inadvertently perpetuate
bias due to flawed training data. In addition, the ethical use of AI in surveillance
raises significant privacy concerns. In the following discussion, we will delve
into these critical issues, exploring the societal impact of AI, potential misuse
scenarios, and ethical considerations, and highlighting the need for solutions and
responsible integration of AI into society.

1https://icml.cc/Conferences/2024/CallForPositionPapers

https://icml.cc/Conferences/2024/CallForPositionPapers
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AI and the labor market

The unfolding reality of AI in the workforce underscores the notion that AI-driven
technological advances will lead to significant job displacement. This trend is
already visible, as evidenced by IBM’s initiative to replace approximately 7,800
jobs with AI over the next five years, particularly in non-customer-facing roles
such as back-office functions [83]. Moreover, the broader technology industry
is witnessing a similar pattern. According to a report from Challenger, Gray
& Christmas, about 5% of job cuts in May 2023 were directly due to AI in-
tegration [38]. The central question regarding the impact of AI on the labor
market transcends simplistic binary categorizations. Rather, it requires a critical
examination of how AI, as a transformative technological entity, is reshaping
employment dynamics. This shift in perspective is not only about the technical
capabilities of AI, but also about understanding its broader societal implications.
Significantly, AI’s impact on the labor market is not an inevitable outcome
of technological determinism. Rather, it depends largely on collective societal
decisions about the application and governance of AI in the workforce.

Deepfakes, scams and spam

Deepfake technology, which leverages AI to create realistic media, brings a
significant risk of misinformation and disinformation. Among other things, this
technology enables the creation of completely fictitious identities and documents,
leading to fraud risks and security threats. AI tools amplify these risks by
increasing the scale, effectiveness, and persuasiveness of fraudulent activities,
such as the automation of scams or mass phishing campaigns aimed at extracting
sensitive information or money. For example, the 2019 CEO impersonation scam
reported by the Wall Street Journal illustrates this significant fraud potential
[256]. Deepfakes also extend to non-consensual exploitation and pornography,
invading privacy and causing serious psychological harm to victims. Politically,
given their ease of manipulation and distribution, they can disrupt elections and
incite civil unrest by misrepresenting political figures. The evolving nature of
deepfakes technology requires advanced detection methods and public education,
but the rapid development of deepfakes continues to defy these efforts. Societal
responses, like past media manipulations, can disrupt politics, undermine trust
in media and democratic institutions, and foster skepticism and conspiracism.

Amplifying stereotypes and inequities

AI has the potential to exacerbate biases and stereotypes, a concern that has been
increasingly recognized in recent years. AI systems, trained on data reflecting
historical biases, often perpetuate and even amplify these biases, as seen in cases
involving facial recognition technologies and hiring algorithms. Studies have
already highlighted the significant disparities in the accuracy of facial recognition
technology across different demographics [33]. Similarly, in hiring, AI tools can
inadvertently favor candidates based on biased historical hiring data, as reported
by Dastin [60]. Moreover, AI-driven content recommendation systems, like those
used by social media platforms and search engines, can reinforce stereotypes
by perpetuating echo chambers and presenting biased viewpoints [202]. The
challenge lies in ensuring AI is developed and deployed responsibly, with an
emphasis on diverse, inclusive training data and continuous monitoring for biases.
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This approach is critical to prevent AI from deepening societal divisions and
reinforcing harmful stereotypes.

6.2.3 The ecological challenge
The ecological impact of AI is a growing concern, as the computational demands
of developing and operating AI systems contribute significantly to carbon emis-
sions and energy consumption. The training of large-scale AI models requires
substantial computational resources.

A critical first step is to understand the scope of the problem. There appears
to be an increasing focus on the accurate measurement of energy consumption
and carbon emissions due to AI systems, as evidenced by research such as [174].
Concurrently, tools are being developed to assist in the accurate calculation
and sharing of these data [147]. In 2022, global data centers consumed 240-340
TWh of electricity, about 1-1.3% of global electricity demand, not including the
0.4% from cryptocurrency mining. Despite the rise in demand for data center
services, energy use increased only moderately due to improved efficiency in IT
hardware and cooling. Large data centers, however, experienced a 20-40% annual
increase in energy use. Notably, combined electricity use by major companies
like Amazon, Microsoft, Google, and Meta more than doubled between 2017 and
2021, reaching around 72 TWh in 2021 [122]. The International Energy Agency
notes that in countries with expanding data storage sectors, such as Ireland and
Denmark, data centers consume a significantly higher percentage of national
electricity [186].

Furthermore, the footprint of AI goes beyond energy consumption. The
production of hardware for AI systems also contributes to environmental stress.
The extraction, refining, and transportation of minerals required to produce AI
hardware comes at a significant environmental and human cost. The problem
is further exacerbated by the short lifespan and difficult recyclability of this
hardware [55].

Efforts to employ AI for optimizing energy use in various sectors, monitoring
environmental conditions, and supporting climate research are noteworthy, as
detailed in [228]. Additionally, initiatives aimed at sustainable AI practices
are receiving increasing attention, with a focus on creating energy-efficient AI
algorithms [240]. Paradoxically, this increase in efficiency is likely to lead to an
increase in overall energy consumption as a result of the rebound effect [267].

6.2.4 Should research be halted? Openness as an imperfect
solution

At this point, the reader is likely well aware of the significant ethical challenges
posed by AI and the potential for its negative social impact. However, the reality
of AI’s impact is more nuanced. The next section provides a concrete illustration
of how AI tools can benefit research, and more specifically, how they have helped
shape this thesis. One question remains, however: How can we ensure that AI
acts as a beneficial force rather than a societal threat?

One possible approach is to collectively consider slowing down the develop-
ment of AI. This would allow time to consider the broader implications of AI
and to facilitate its integration into society. However, the feasibility of slowing
or pausing AI research is questionable. It depends on a high degree of consensus
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and collaboration among all AI stakeholders, who must not only agree that
slowing down is beneficial, but also actively engage in this approach. Given the
diversity of interests and the rapid pace of progress in AI, achieving such broad
agreement and action is challenging.

A more practical and promising way forward is to embrace openness in
AI. Openness in this context means transparency of AI models, data, and
methodologies. It is a concept that revolves around the idea of making AI
accessible and understandable to a wider audience.

The risks of such openness are not trivial. A primary concern is that it
might facilitate the development of problematic applications, including those
that could be used unethically or maliciously. However, these risks must be
weighed against the substantial benefits that openness brings to the table.
Openness enable a broader segment of society to engage with and shape these
technologies, thus limiting the risk of a few entities monopolizing them to the
detriment of many. Additionally, the open nature of these models allows for
constant auditing and community-driven improvements, particularly on issues
the community deems significant. This continuous review not only improves
the effectiveness of AI solutions, but also aligns their development with societal
values. Moreover, openness fosters increased transparency, which in turn leads
to greater understanding and trust among the general public. This aspect is
crucial in building a society that not only uses AI but also understands and
trusts its mechanisms and decisions. Numerous technologies have demonstrated
the success of an open-source strategy, with Linux, PyTorch, and Git being
prime examples. Far from being anecdotal, these technologies have become de
facto standards in the AI field itself, demonstrating the effectiveness of openness
in driving innovation, ethical development and widespread adoption.

There is no one-size-fits-all answer to the ethical challenges posed by AI. The
strategy of openness seems most promising, and is attracting growing interest,
even from big technology companies [195].

6.3 The Role of AI in Shaping Research: A Per-
sonal Perspective

This section aims to deepen our understanding of how AI tools are reshaping
research methodologies. We begin by arguing for the need to tailor our method-
ological approaches to the significant changes brought about by these emerging
technologies. We then discuss the practical applications of some of these tools
to the research presented in this document.

6.3.1 Advocating for methodological transparency: the
role of AI in research

In the annals of academic research, transparency has always been a cornerstone,
ensuring the integrity and credibility of scholarly work. As we navigate the
evolving landscape of research in the age of AI, this transparency becomes even
more crucial. The use of AI in this thesis has been more than an ordinary tool,
and has influenced various facets of the research process. It is, therefore, both a
duty and an ethical responsibility to elucidate its role and impact.
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The reasons for this are manifold. Firstly, for the sake of reproducibility, it
is vital that other scholars understand the influence of AI to either reproduce or
build upon this work. Secondly, as AI reshapes the academic paradigm, detailing
its use contributes to the ongoing discourse on the evolution of academic norms.
This exposition also serves an educational purpose, offering a valuable framework
for peers considering AI in their research, thereby fostering peer education.

However, a deeper introspection arises: if AI has played such a pivotal role
in this research, does it diminish the worthiness of obtaining a doctoral degree?
Historically, the essence of a doctoral thesis has been the demonstration of
independent research, critical thinking, and a significant contribution to one’s
field. While AI has facilitated certain tasks and perhaps even suggested research
directions, it was under the guidance, interpretation, and discretion of the
human researcher. Throughout history, scholars have embraced new tools, from
telescopes to electron microscopes, each met with initial skepticism, only to later
become integral to research. The integration of AI is merely the latest, albeit
profound, step in this evolution. The skills required to adeptly incorporate AI,
ensuring its ethical application and interpreting its outputs, are commendable
and align with the spirit of doctoral research. The very act of questioning the role
of AI in this context underscores a deep ethical reflection, a quality emblematic
of doctoral-level inquiry.

By transparently delineating the use of AI, this work not only acknowledges
its influence but also assumes responsibility for its implications, reinforcing both
the research’s credibility and public trust in academic pursuits in the AI era.

6.3.2 AI’s Practical Applications and Enhancing Research
Quality

This section provides a detailed description of the use of AI tools in this work,
with a particular focus on language models, as they were the only category used.
It is worth noting that the use of models such as Copilot2 and ChatGPT3, which
will be discussed in more detail in the following sections, has not been consistent
throughout this thesis. At the time of writing, these models have only been
available for the last 12 months. Consequently, the following discussion focuses
primarily on this one-year period.

Language models for literature review and self-learning

The task of identifying relevant papers and references was greatly facilitated by
the use of language models, particularly ChatGPT. It was able to conduct quick
literature reviews and summarize areas that were initially unfamiliar, which was
particularly useful in preparing the Section 2.5, among others. In addition, it
played a critical role in accelerating the understanding of complex concepts that
would otherwise have taken much longer to master. It was particularly effective in
highlighting and clarifying details that posed comprehension challenges, thereby
enhancing the learning process. An example is shown in Figure 6.1.

It also made it easier to make connections between seemingly disparate
concepts, enriching the research with a more integrated perspective. However, it
was found that while the answers provided by ChatGPT were often convincing,

2https://www.microsoft.com/fr-fr/microsoft-copilot
3https://chat.openai.com

https://www.microsoft.com/fr-fr/microsoft-copilot
https://chat.openai.com
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User: In Proximal Policy Optimization (PPO), what is the most
straightforward way to enhance the agent’s exploration?
Please provide a concise answer.

ChatGPT: In Proximal Policy Optimization (PPO), a straightforward
way to enhance the agent’s exploration is by increasing the
entropy term in the loss function. This encourages the agent
to explore more diverse actions, reducing the likelihood of
premature convergence to sub-optimal policies.

Figure 6.1: Example of the use of ChatGPT for self-training.

they were not infallibly accurate. This highlighted the importance of careful
verification and critical analysis

Writing assistance and correspondence

The use of AI tools like ChatGPT and DeepL proved to be invaluable in enhancing
the writing style in English for this research. These tools were effective at
correcting typos and significantly improved English fluency, ensuring clarity
and precision in academic writing as well as in professional communication.
Examples of its use in this document is shown in Figures 6.2 and 6.3. Their
influence occasionally extended to help with organizing ideas, although this
was not consistently relevant. Acting as ongoing English tutors, they not only
suggested better phrasing for the research text, but also contributed significantly
to the author’s personal language development. While there is a concern that
such tools may diminish linguistic diversity by promoting uniformity, we believe
that this uniformity can be beneficial to a certain extent: it helps to convey
complex technical content clearly and concisely, which is paramount in academic
and professional communication in this field. In addition, we believe that the
standardization of language quality provided by these tools has helped to mitigate
bias against non-native English speakers, promoting a more inclusive academic
environment.

Coding assistance

The extensive coding effort that underpinned the work presented in this document
benefited greatly from the use of AI tools, in particular ChatGPT and Copilot.
These tools played a crucial role at several stages of the coding process.

First and foremost, ChatGPT and Copilot dramatically accelerated the
process of finding coding solutions. When faced with the question "How do I do
this?", these tools provided immediate, accurate and well-explained answers to
basic questions. Moreover, Copilot has a very efficient auto-completion function,
and in particular saves a considerable amount of time on simple queries. Take,
for example, the production of documentation, for which Copilot is particularly
effective. This is an important task, not very complex, but time-consuming,
which we might be tempted to postpone or neglect without this tool. This level
of efficiency and accuracy made them more practical than traditional resources
such as forums like Stack Overflow or GitHub Issues. Notably, the launch of
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User: Could you please convert the following explanation into a
style more suited for a mathematical or academic paper?
Emphasize formal mathematical language, concise defini-
tions, and the use of appropriate notation and symbols.
Here’s the text:
"You might notice that in many cases, the reward of a good
action is not immediate. If I play a good chess move, I’m
not going to win immediately. Thus, the agent actually tries
to maximize the return instead of the reward."

ChatGPT: "In numerous scenarios, the reward resulting from an opti-
mal action may not be immediate. Consider a chess game:
a strategically sound move does not guarantee an immediate
win. Consequently, the agent’s objective is to maximize the
return, a cumulative measure, rather than the immediate
reward."

Figure 6.2: Example of the use of ChatGPT for conversion of a casual explanation
into formal academic language.

the Copilot and ChatGPT beta coincided with a significant decrease in traffic
to Stack Overflow, underscoring the effectiveness and growing preference for
AI-assisted coding solutions. There is an important nuance here. For more
complex requests, it often happens that part of the response is not correct. Just
as in the case of writing assistance, the response may still seem very credible,
which makes these cases more difficult to detect. It is precisely for this reason
that Stack Overflow has temporarily banned responses generated by these tools4.

In addition, the use of ChatGPT has sometimes improved the formulation of
requests for help in GitHub Issues. As a project manager, the benefit of receiving
clear, well-formulated questions rather than vague or poorly described problems
is considerable. This clarity of communication not only speeds up problem
resolution, but also contributes to a more effective collaborative environment.

In conclusion, the integration of AI tools such as ChatGPT and Copilot in
this research has been beneficial. These tools have improved the quality of the
code and played a role in improving the author’s coding skills. It is important for
users to find an appropriate balance in their reliance on these tools. The support
provided by these tools is expected to further improve the overall quality of
code production and help to standardise coding practices, which is particularly
beneficial in software development.

4https://stackoverflow.com/help/ai-policy

https://stackoverflow.com/help/ai-policy
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User: For my computer science thesis, I want to ensure that it
adheres to American English standards. To ensure accu-
racy, I am seeking a comprehensive list of words that are
frequently misspelled or have different spellings in British
English. This will enable me to thoroughly review and verify
the correctness of my thesis.

ChatGPT: Creating a comprehensive list of words that are often mis-
spelled or have different spellings in British and American
English is a great way to ensure the consistency and accu-
racy of your thesis. Here’s a list of commonly used words
with different American and British spellings:
1. Color (US) / Colour (UK)
2. Honor (US) / Honour (UK)
3. Labor (US) / Labour (UK)
4. Organize (US) / Organise (UK)
5. Color (US) / Colour (UK)
6. Honor (US) / Honour (UK)
7. Labor (US) / Labour (UK)
8. Organize (US) / Organise (UK)
9. Realize (US) / Realise (UK)
10. Analyze (US) / Analyse (UK)
11. Traveling (US) / Travelling (UK)
12. Defense (US) / Defence (UK)
13. License (US verb) / Licence (UK noun)
14. Practice (US noun) / Practise (UK verb)
15. Program (US) / Programme (UK)
16. Behavior (US) / Behaviour (UK)
17. Center (US) / Centre (UK)
18. Fiber (US) / Fibre (UK)
19. Tire (US) / Tyre (UK)
20. Aging (US) / Ageing (UK)
21. Dialog (US) / Dialogue (UK)
22. Catalog (US) / Catalogue (UK)
23. Check (US) / Cheque (UK)
24. Aerobic (US) / Anaerobic (UK)
Remember, this list is not exhaustive, but it covers many
of the common differences. Additionally, be aware of the
differences in punctuation and formatting conventions be-
tween American and British English, such as the use of serial
commas and quotation marks. For a more comprehensive
review, consider using a style guide or editing software that
can be set to American English standards.

Figure 6.3: Example of the use of ChatGPT for guidance on consistency im-
provements to this document.



Appendix A

JAT Dataset In Depth

This appendix completes the presentation of the JAT dataset begun in Section
4.3.2. This dataset, the scripts and expert agent used to generate it are available
as open-source1.

The JAT dataset contains sequential decision-making tasks from 4 domains:
Atari, BabyAI, Meta-World and MuJoCo. Each sample in this dataset is an
episode. This episode consists of a list of observations, actions and rewards, the
nature and size of which depend on the task. In Figure A.1, we represent for
each Atari game the average return of the episodes of the dataset normalized
by the human score from [188]. Notably, for 43 games the average score is
higher than the human score, and for 31 games the average score is more than
twice the human score. It should be noted, however, that for 7 games (Bowling,
Montezuma’s Revenge, PitFall, Private Eye, Seaquest, Solaris and Venture) the
average score is less than 10% of the human score.

We also plot the distribution of returns for each task, which provides a more
detailed picture than a simple average. Figure A.2 shows this distribution for
Atari, Figure A.3 for BabyAI, Figure A.4 for Meta-World and Figure A.5 for
MuJoCo.

1https://huggingface.co/datasets/jat-project/jat-dataset
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Figure A.2: Atari dataset return distribution.
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Figure A.3: BabyAI dataset return distribution.
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Figure A.4: Meta-World dataset return distribution.
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Figure A.5: MuJoCo dataset return distribution.
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Appendix B

Plotting Guidelines for Open
RL Benchmark

B.1 Using the CLI
This section gives notable additional examples of usage of the provided CLI. A
more comprehensive set of examples and manual is available in the README
page of the project.

B.1.1 Plotting episodic return from various libraries
First, we showcase the most basic usage of the CLI, that is comparing two
different implementations of the same algorithm based on learning curve of
episodic return. For example, Figure B.1 and Figure B.2 compare CleanRL’s
TD3 implementation against the original TD3, both in terms of sample efficiency
and time. The command used to generate this plot is listed below.
python -m openrlbenchmark.rlops \

--filters ’?we=openrlbenchmark&wpn=sfujim-TD3&ceik=env&cen=policy&metric=charts/
episodic_return’ ’TD3?cl=Official TD3’ \

--filters ’?we=openrlbenchmark&wpn=cleanrl&ceik=env_id&cen=exp_name&metric=charts/
episodic_return’ ’td3_continuous_action_jax?cl=Clean RL TD3’ \

--env-ids HalfCheetah-v2 Walker2d-v2 Hopper-v2 \
--pc.ncols 3 \
--pc.ncols-legend 2 \
--output-filename static/td3_vs_cleanrl \
--scan-history

In the above command, wpn denotes the project name, typically the learning
library name. This allows to fetch results of implementations from different
projects. Moreover, it is possible to specify which metric to compare, in this
case charts/episodic_return. Also, the CLI provides the possibility to select
a given algorithm and apply a different name in the plot, e.g. we rename TD3 to
Official TD3 and td3_continuous_action_jax to Clean RL TD3 Finally, we
can also select a set of environments through the --env-ids option.
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Figure B.1: Comparing CleanRL’s TD3 against the original TD3 implementation
(sample efficiency).
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B.1.2 RLiable integration
Open RL Benchmark also integrates with RLiable [3]. To enable such plot, the
option --rliable can be toggled, then additional parameters are available under
--rc. Figures B.3, B.4, B.5 and B.6 showcase the resulting plots of the following
command:
python -m openrlbenchmark.rlops \

--filters ’?we=openrlbenchmark&wpn=baselines&ceik=env&cen=exp_name&metric=charts/
episodic_return’ ’baselines-ppo2-cnn?cl=OpenAI Baselines PPO2’ \

--filters ’?we=openrlbenchmark&wpn=envpool-atari&ceik=env_id&cen=exp_name&metric=charts/
avg_episodic_return’ ’ppo_atari_envpool_xla_jax_truncation?cl=CleanRL PPO’ \

--env-ids AlienNoFrameskip-v4 AmidarNoFrameskip-v4 AssaultNoFrameskip-v4
AsterixNoFrameskip-v4 AsteroidsNoFrameskip-v4 AtlantisNoFrameskip-v4
BankHeistNoFrameskip-v4 BattleZoneNoFrameskip-v4 BeamRiderNoFrameskip-v4
BerzerkNoFrameskip-v4 BowlingNoFrameskip-v4 BoxingNoFrameskip-v4
BreakoutNoFrameskip-v4 CentipedeNoFrameskip-v4 ChopperCommandNoFrameskip-v4
CrazyClimberNoFrameskip-v4 DefenderNoFrameskip-v4 DemonAttackNoFrameskip-v4
DoubleDunkNoFrameskip-v4 EnduroNoFrameskip-v4 FishingDerbyNoFrameskip-v4
FreewayNoFrameskip-v4 FrostbiteNoFrameskip-v4 GopherNoFrameskip-v4
GravitarNoFrameskip-v4 HeroNoFrameskip-v4 IceHockeyNoFrameskip-v4
PrivateEyeNoFrameskip-v4 QbertNoFrameskip-v4 RiverraidNoFrameskip-v4
RoadRunnerNoFrameskip-v4 RobotankNoFrameskip-v4 SeaquestNoFrameskip-v4
SkiingNoFrameskip-v4 SolarisNoFrameskip-v4 SpaceInvadersNoFrameskip-v4
StarGunnerNoFrameskip-v4 SurroundNoFrameskip-v4 TennisNoFrameskip-v4
TimePilotNoFrameskip-v4 TutankhamNoFrameskip-v4 UpNDownNoFrameskip-v4
VentureNoFrameskip-v4 VideoPinballNoFrameskip-v4 WizardOfWorNoFrameskip-v4
YarsRevengeNoFrameskip-v4 ZaxxonNoFrameskip-v4 JamesbondNoFrameskip-v4
KangarooNoFrameskip-v4 KrullNoFrameskip-v4 KungFuMasterNoFrameskip-v4
MontezumaRevengeNoFrameskip-v4 MsPacmanNoFrameskip-v4 NameThisGameNoFrameskip-v4
PhoenixNoFrameskip-v4 PitfallNoFrameskip-v4 PongNoFrameskip-v4 \

--env-ids Alien-v5 Amidar-v5 Assault-v5 Asterix-v5 Asteroids-v5 Atlantis-v5 BankHeist-v5
BattleZone-v5 BeamRider-v5 Berzerk-v5 Bowling-v5 Boxing-v5 Breakout-v5 Centipede-v5
ChopperCommand-v5 CrazyClimber-v5 Defender-v5 DemonAttack-v5 DoubleDunk-v5 Enduro-

v5 FishingDerby-v5 Freeway-v5 Frostbite-v5 Gopher-v5 Gravitar-v5 Hero-v5 IceHockey-
v5 PrivateEye-v5 Qbert-v5 Riverraid-v5 RoadRunner-v5 Robotank-v5 Seaquest-v5 Skiing-
v5 Solaris-v5 SpaceInvaders-v5 StarGunner-v5 Surround-v5 Tennis-v5 TimePilot-v5
Tutankham-v5 UpNDown-v5 Venture-v5 VideoPinball-v5 WizardOfWor-v5 YarsRevenge-v5
Zaxxon-v5 Jamesbond-v5 Kangaroo-v5 Krull-v5 KungFuMaster-v5 MontezumaRevenge-v5
MsPacman-v5 NameThisGame-v5 Phoenix-v5 Pitfall-v5 Pong-v5 \

--no-check-empty-runs \
--pc.ncols 5 \
--pc.ncols-legend 2 \
--rliable \
--rc.score_normalization_method atari \
--rc.normalized_score_threshold 8.0 \
--rc.sample_efficiency_plots \
--rc.sample_efficiency_and_walltime_efficiency_method Median \
--rc.performance_profile_plots \
--rc.aggregate_metrics_plots \
--rc.sample_efficiency_num_bootstrap_reps 50000 \
--rc.performance_profile_num_bootstrap_reps 2000 \
--rc.interval_estimates_num_bootstrap_reps 2000 \
--output-filename static/cleanrl_vs_baselines_atari \
--scan-history
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Figure B.3: Clean RL PPO vs. OpenAI Baselines PPO, normalized score
(RLiable).
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B.1.3 Multi-metrics
Sometimes, such as in multi-objective RL (MORL), it is useful to report multiple
metrics in the paper. Hence, the CLI includes an option to plot multiple metrics.
Below is an example of CLI and resulting plots (Figure B.7) for multiple MORL
algorithms on different environments.
python -m openrlbenchmark.rlops_multi_metrics \
--filters ’?we=openrlbenchmark&wpn=MORL-Baselines&ceik=env_id&cen=algo&metrics=eval/

hypervolume&metrics=eval/igd&metrics=eval/sparsity&metrics=eval/mul’ \
’Pareto Q-Learning?cl=Pareto Q-Learning’ \
’MultiPolicy MO Q-Learning?cl=MPMOQL’ \
’MultiPolicy MO Q-Learning (OLS)?cl=MPMOQL (OLS)’ \
’MultiPolicy MO Q-Learning (GPI-LS)?cl=MPMOQL (GPI-LS)’ \
--env-ids deep-sea-treasure-v0 deep-sea-treasure-concave-v0 fruit-tree-v0 \
--pc.ncols 3 \
--pc.ncols-legend 4 \
--pc.xlabel ’Training steps’ \
--pc.ylabel ’’ \
--pc.max_steps 400000 \
--output-filename morl/morl_deterministic_envs \
--scan-history
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Figure B.7: Plotting different metrics for different environments.
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B.2 Using a custom script
Our CLI proves highly beneficial for generating standard RL plots, as demon-
strated above. Nevertheless, in certain specialized cases, researchers may wish
to expose the data in an alternative format. Fortunately, all the data hosted
in Open RL Benchmark is accessible through the W&B API. The following
example illustrates how this API can be utilized. From there, researchers can
employ any custom script for plotting this data to suit their specific needs. A
simple example of such a script is given below, and the corresponding generated
plot is shown in Figure B.8.
import matplotlib.pyplot as plt
import wandb

project_name = "sb3"
run_id = "0a1kqgev"

api = wandb.Api()
run = api.run(f"openrlbenchmark/{project_name}/{run_id}")
history = run.history(keys=["global_step", "eval/mean_reward"])
plt.plot(history["global_step"], history["eval/mean_reward"])
plt.title(run.name)
plt.savefig("custom_plot.png")

Figure B.8: Example of a plot created with a custom script, by importing data
directly from Open RL Benchmark using the W&B API.



Appendix C

Additional Details for the
Open RL Benchmark Case
Study

This appendix gives additional results related to the first case study presented
in Section 5.2.3. Figure C.2 shows the results by environment for the Atari
benchmark, and Figure C.1 shows them for the MuJoCo and Box2d benchmarks.
The command lines used to generate these figures are as follows.

python -m openrlbenchmark.rlops \
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl

=PPO’ \
--filters ’?we=modanesh&wpn=openrlbenchmark&ceik=env&cen=algo&metric=eval/mean_reward’ ’

ppo?cl=PPO w/ MC for value estimation’ \
--env-ids BreakoutNoFrameskip-v4 SpaceInvadersNoFrameskip-v4 SeaquestNoFrameskip-v4

EnduroNoFrameskip-v4 PongNoFrameskip-v4 QbertNoFrameskip-v4 BeamRiderNoFrameskip-v4
\

--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 2 \
--rliable \
--rc.score_normalization_method atari \
--rc.normalized_score_threshold 8.0 \
--rc.sample_efficiency_plots \
--rc.sample_efficiency_and_walltime_efficiency_method Median \
--rc.performance_profile_plots \
--rc.aggregate_metrics_plots \
--rc.sample_efficiency_num_bootstrap_reps 1000 \
--rc.performance_profile_num_bootstrap_reps 1000 \
--rc.interval_estimates_num_bootstrap_reps 1000 \
--output-filename static/gae_for_ppo_value_atari_per_env \
--scan-history \
--rc.sample_efficiency_figsize 7 4

python -m openrlbenchmark.rlops \
--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl

=PPO’ \
--filters ’?we=modanesh&wpn=openrlbenchmark&ceik=env&cen=algo&metric=eval/mean_reward’ ’

ppo?cl=PPO w/ MC for value estimation’ \
--env-ids InvertedDoublePendulum-v2 InvertedPendulum-v2 Reacher-v2 HalfCheetah-v3 Hopper-

v3 Swimmer-v3 Walker2d-v3 LunarLander-v2 \
--no-check-empty-runs \
--pc.ncols 3 \
--pc.ncols-legend 2 \
--rliable \
--rc.normalized_score_threshold 1.0 \
--rc.sample_efficiency_plots \
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--rc.sample_efficiency_and_walltime_efficiency_method Median \
--rc.performance_profile_plots \
--rc.aggregate_metrics_plots \
--rc.sample_efficiency_num_bootstrap_reps 1000 \
--rc.performance_profile_num_bootstrap_reps 1000 \
--rc.interval_estimates_num_bootstrap_reps 1000 \
--output-filename static/gae_for_ppo_value_mujoco_per_env \
--scan-history \
--rc.sample_efficiency_figsize 7 4
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Figure C.1: Comparison between the original PPO and the PPO with MC value
estimates in various MuJoCo and Box2D environments. Plots represent the
evolution of the episodic return as a function of the number of interactions with
the environment, and shaded areas represent the standard deviation.
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Figure C.2: Comparison between the original PPO and the PPO with MC value
estimates in various MuJoCo and Box2D environments. Plots represent the
evolution of the episodic return as a function of the number of interactions with
the environment, and shaded areas represent the standard deviation.
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Appendix D

Refine the MuJoCo
benchmark with
Stable-Baselines3

In this appendix, we present a brief overview of the learning results for the
algorithms implemented in Stable-Baselines3 [222] tested on the MuJoCo bench-
mark [29, 268], whose data is contained in Open RL Benchmark. At the time of
writing, data from 757 runs has been used, unevenly distributed between the
different experiments. It is important to emphasise that the optimization of
hyperparameters and the training budget vary from one experiment to another.
Consequently, the results should be interpreted with caution. All the hyperpa-
rameters and raw data used to generate these curves are available on Open RL
Benchmark. Figure D.1 shows the aggregation of the final performances following
the recommendations of Agarwal et al. [3], and Figure D.2 the corresponding
performance profiles. Figure D.3 shows the learning curves as a function of the
number of interactions.

The command used to generate Figures D.1, D.2 and D.3 is as follows1.
python -m openrlbenchmark.rlops \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’trpo?
cl=TRPO’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ddpg?
cl=DDPG’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’a2c?cl
=A2C’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ppo?cl
=PPO’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’
ppo_lstm?cl=PPO LSTM’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’sac?cl
=SAC’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’td3?cl
=TD3’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’ars?cl
=ARS’ \

--filters ’?we=openrlbenchmark&wpn=sb3&ceik=env&cen=algo&metric=eval/mean_reward’ ’tqc?cl
=TQC’ \

--env-ids Ant-v3 BipedalWalker-v3 BipedalWalkerHardcore-v3 HalfCheetah-v3 Hopper-v3
Humanoid-v3 Swimmer-v3 Walker2d-v3 \

1For Figure D.3, we’re omitting ARS as it was run with many more steps, and its inclusions
hinder readability.
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--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 4 \
--rliable \
--rc.normalized_score_threshold 1.0 \
--output-filename static/mujoco_sb3 \
--scan-history
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Figure D.1: Aggregated final normalized episodic return with 95% stratified
bootstrap CIs on the MuJoCo benchmark of the algorithms integrated into
Stable-Baselines3.
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Figure D.2: Performance profile of algorithms implemented using Stable-
Baselines3 [222] on the MuJoCo benchmark [268]. Scores are normalized using
the min-max method.
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Figure D.3: Sample efficiency curves for algorithms on the MuJoCo Benchmark
[268]. This graph presents the mean episodic return for algorithms implemented
using Stable-Baselines3 [222], averaged across a minimum of 10 runs (refer to
Open RL Benchmark for specific run counts). Data points are subsampled to
10,000 and interpolated for clarity. The curves are smoothed using a rolling
average with a window size of 100. The shaded regions around each curve
indicate the standard deviation.
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